Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The suburban water balance : daily, monthly and annual results from Vancouver, B.C. Grimmond, Christine Susan Betham 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 G75.pdf [ 15.41MB ]
Metadata
JSON: 831-1.0096077.json
JSON-LD: 831-1.0096077-ld.json
RDF/XML (Pretty): 831-1.0096077-rdf.xml
RDF/JSON: 831-1.0096077-rdf.json
Turtle: 831-1.0096077-turtle.txt
N-Triples: 831-1.0096077-rdf-ntriples.txt
Original Record: 831-1.0096077-source.json
Full Text
831-1.0096077-fulltext.txt
Citation
831-1.0096077.ris

Full Text

THE SUBURBAN WATER BALANCE: D A I L Y , MONTHLY AND ANNUAL RESULTS FROM VANCOUVER, B.C. By C H R I S T I N E SUSAN BETHAM GRIMMOND B.Sc.  (Hons.), U n i v e r s i t y  o f O t a g o , 1980  A T H E S I S SUBMITTED I N P A R T I A L F U L F I L L M E N T OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE  in THE FACULTY OF GRADUATE (Department  We a c c e p t t h i s to  STUDIES  o f Geography)  thesis  the required  as c o n f o r m i n g standard  THE'UNIVERSITY OF B R I T I S H COLUMBIA November 1983 ©  C H R I S T I N E SUSAN BETHAM GRIMMOND, 1983  In p r e s e n t i n g  this thesis  i n partial  fulfilment of the  r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y of  British  it  freely available  agree t h a t for  Columbia,  I agree that f o r reference  permission  scholarly  the Library  shall  and study.  I  f o rextensive  copying or p u b l i c a t i o n  f i n a n c i a l gain  shall  Geography  The U n i v e r s i t y o f B r i t i s h 1956 Main Mall Vancouver, Canada V6T 1Y3  'E-6 (3/81)  November 29, 1983  of this  It is thesis  n o t be a l l o w e d w i t h o u t my  permission.  Date  thesis  p u r p o s e s may be g r a n t e d by t h e h e a d o f my  understood that  Department o f  further  copying o f t h i s  department o r by h i s o r h e r r e p r e s e n t a t i v e s .  for  make  Columbia  written  Abstract T h i s s t u d y p r e s e n t s a method f o r the assessment balance at a suburban Vancouver,  B.C.  site.  It i s applied  f o r t h e y e a r 1982.  w e r e m e a s u r e d . E v a p o r a t i o n was  to s o i l  change i n w a t e r  retention, s t o r a g e was  water  central  and p i p e d w a t e r  supply  c a l c u l a t e d u s i n g a m o d e l d e v e l o p e d by  d e t e r m i n e d f o r p e r v i o u s and  related  to a suburb of south  Precipitation  and S t e y n ( p e r s . comm.) w h i c h u t i l i s e s was  of the d a i l y  measured c l i m a t o l o g i c a l  impervious surface types using  i n f i l t r a t i o n and calculated  data. Runoff assumptions  s t o r a g e c a p a c i t y . The  by d i f f e r e n c e .  net  S e n s i t i v i t y analyses  w e r e c o n d u c t e d on t h e i n p u t v a l u e s i n o r d e r t o d e t e r m i n e  their  m o d e l o u t p u t . The  determined  appropriate  analyses of t h e i r  variability.  Results  that  tant  indicate  i n d e t e r m i n i n g how  range  Oke  f o r i n p u t v a l u e s was  i m p a c t on from  the o b j e c t i v e of a water balance study i s impor-  carefully  s h o u l d be d e f i n e d . F o r i n s t a n c e ,  the catchment i f the purpose  describing  parameters  of the study i s to  deter-  m i n e t h e d a i l y w a t e r b a l a n c e o n l y , and n o t t h e d a i l y m o i s t u r e s t a t u s o f suburban  environment,  the  t h e n t h e d e f i n i t i o n o f t h e p a r a m e t e r s may  be  the  less  rigorous. The  results  show t h a t  t h e summer w a t e r b a l a n c e o f t h e s u b u r b a n  environ-  ment i s m o d i f i e d t o a c o n s i d e r a b l e e x t e n t by t h e amount o f w a t e r p i p e d i n and a p p l i e d piped the of  to the e x t e r n a l  environment.  I n the Vancouver  s u p p l y i s e q u a l to the i n p u t of p r e c i p i t a t i o n .  residents  i s f o u n d t o be r e l a t e d  precipitation.  The  Summer w a t e r use  t o a i r t e m p e r a t u r e and  the by  the o c c u r r e n c e  d a i l y w a t e r b a l a n c e s i n c l u d e d d a y s when t h e amount o f  w a t e r b e i n g added to the e x t e r n a l support the c a l c u l a t e d  study area  environment  e v a p o r a t i o n but a l s o  means o f w a t e r o u t p u t f r o m t h e s y s t e m which r e p r e s e n t e d 81% of the water i  is sufficient  t o add  not o n l y  t o s t o r a g e . The  to  primary  i n t h e summer months was e v a p o r a t i o n ,  loss.  The within  calculated  the Vancouver  August were s i m i l a r ration  results region.  compared f a v o u r a b l y w i t h p r e v i o u s r e s e a r c h Daily  water balance r e s u l t s  t o t h o s e o f an e a r l i e r  r a t e s were s i m i l a r  i n magnitude  pilot  for July  study i n the area;  to those r e p o r t e d  s u b u r b a n a r e a by K a l a n d a e t a l . ( 1 9 8 0 ) ; and t h e m o n t h l y  evapo-  f o r a nearby runoff  showed t h e same p a t t e r n as t h o s e f o r a n e a r b y u n d e v e l o p e d  ii  and  ratios  catchment.  TABLE OF  CONTENTS Page  ABSTRACT  i i  L I S T OF TABLES  v i i  L I S T OF FIGURES  x  ACKNOWLEDGEMENTS  xiii  SYMBOLS  xiv  CHAPTER 1  INTRODUCTION  1  1.1  Objectives  1  1.2  Significance  1.3  Previous Research  2  1.4  Research Methodology  7  STUDY AREA AND DATA COLLECTION  9  2.1  Physical  9  2.2  Study Area  2.3  M e a s u r e m e n t Programme a n d T e c h n i q u e s  CHAPTER 2  o f Che S t u d y  Setting  1  9 13  2.3.1  Oakridge  15  2.3.2  Kerrisdale  15  2.3.3  Hudson  20  2.3.4  Sunset  20  2.4  Errors  and M i s s i n g  Data  25  2.4.1  Water P i p e s  25  2.4.2  Precipitation  25  2.4.3  Net R a d i a t i o n  28  2.4.4  Temperature,  2.4.5  S o i l Moisture  iii  Relative  H u m i d i t y a n d Wind s p e e d  29 30  CHAPTER 3  V A R I A B I L I T Y OF THE WATER BALANCE COMPONENTS  31  3.1  Introduction  31  3.2  Precipitation  32  3.3  W a t e r Use  35  3.3.1  Factors  I n f l u e n c i n g W a t e r Use  3.3.2  O a k r i d g e W a t e r Use  35 36  3.4  Runoff  41  3.5  Storage  44  3.5.1 3.6  Hudson S o i l  Moisture  46  Evaporation  46  3.6.1  Net R a d i a t i o n  48  3.6.2  S t o r a g e Heat F l u x  49  3.6.3  A i r Temperature  54  3.6.4  R e l a t i v e Humidity  55  3.6.5  Wind  57  3.7  CHAPTER 4  4.1  speed  Implications  f o r Sensitivy Analyses  WATER BALANCE: METHOD, RESULTS AND  61  SENSITIVITY  ANALYSIS  65  Methodology  65  4.1.1  INPUT  65  4.1.2  RUNOFF  65  4.1.3  EVAP  68  4.1.4  STORE  69  4.1.5  CHSTOR .  70  4.1.6  TOTAL  70  4.1.7  OUTPUT  70  4.2 4.2.1  Results  71  Introduction iv  71  4.2.2  Base R e s u l t s  71  4.2.3  C o m p a r i s o n s o f t h e 1982 K e r r i s d a l e | O a k r i d g e r e s u l t s with other r e s u l t s  80  4.2.4  Soil Moisture  84  4.2.5  Evaporation V a r i a b i l i t y  4.2.6  Comparison of the Oakridge Other R e s i d e n t i a l Areas  4.2.7  4.3  Statistical  and S t o r a g e  86 W a t e r Use w i t h  E s t i m a t i o n of the  92  Sensitivity  94  Evaporation  4.3.2  Precipitation  4.3.3  Storage  94 and W a t e r Use  102  Initial  4.3.3.2  Soil  4.3.3.3  Pervious Retention Storage  4.3.3.4  Impervious  4.4  CHAPTER 5  101  Parameters  4.3.3.1  4.3.5  Oakridge  W a t e r Use  4.3.1  4.3.4  90  r e t e n t i o n storage  storage  102  size  102 Capacity  Retention Storage  P r o p o r t i o n of the Pervious Area P r o p o r t i o n of the I r r i g a t e d to the P e r v i o u s Area Discussion  Capacity Irrigated  106 106 106  Water A p p l i e d 109 112  SUMMARY OF CONCLUSIONS  114  5.1  Conclusions  114  5.2  Suggestion  f o r Future  Research  REFERENCES  115 117  APPENDICES APPENDIX I  Julian  Day C a l e n d a r  APPENDIX I I  D a i l y Data  124  APPENDIX I I I  E v a p o r a t i o n M o d e l l i n g scheme  131  v  123  APPENDIX I V  Monthly Climate  APPENDIX V  BALDAY P r o g r a m  143  APPENDIX V I  BALDAY B a s e R e s u l t s  156  vi  Statistics  138  L I S T OF TABLES Table  Page  1.1  Measured o r a n t i c i p a t e d to u r b a n i s a t i o n  s u r f a c e h y d r o l o g i c changes  1.2  Examples  1.3  Urban water b a l a n c e r e s u l t s  5  2.1  Land use i n Vancouver  10  2.2  Land c o v e r o f t h e O a k r i d g e catchment  and Sunset a r e a  14  2.3  P o p u l a t i o n f o r t h e O a k r i d g e catchment, Vancouver and the G.V.R.D.  14  2.4  Definition  14  2.5  N o r m a l a n d 1982/3 m e a s u r e m e n t s o f c l i m a t i c Vancouver I n t e r n a t i o n a l A i r p o r t  o f urban water balance s t u d i e s  4  a n d G.V.R.D. f o r 1982  o f a day variables at  16  2.6  Summer v i e w f a c t o r s  2.7  Summary o f m e a s u r e m e n t t e c h n i q u e s a n d t i m e p e r i o d s  2.8  Errors associated with and  fill  from the K e r r i s d a l e  3  climate  tower  21 26  t h e d a t a s e t due t o m e a s u r e m e n t  i n of missing data  27  3.1  I n t e r and i n t r a - s i t e  precipitation variability  3.2  Monthly p r e c i p i t a t i o n data f o r the K e r r i s d a l e  3.3  Oakridge monthly water use  3.4  Values of r e t e n t i o n storage  3.5  Typical i n f i l t r a t i o n Vancouver Area  rates  33 site  34 37 45  f o r surfaces  i n the Greater 45  3.6  Hudson m o n t h l y  s o i l moisture  47  3.7  Comparison o f n e t r a d i a t i v e f l u x e s between and S u n s e t s i t e (Day 162 - 2 1 0 )  Kerrisdale  3.8  Mean a n n u a l w i n d s p e e d f o r t h e V a n c o u v e r  4.1  D a i l y d a t a r e q u i r e m e n t s and catchement p a r a m e t e r s f o r BALDAY. C a t c h m e n t p a r a m e t e r s v a l u e s a r e f o r t h e Kerrisdale/Oakridge site  67  4.2  Comparison  74  4.3  Seasonal water balance f o r Kerrisdale/Oakridge  of actual  area  50  and p o s s i b l e water use  vii  62  78  4.4  Comparison o f t h e K e r r i s d a l e / O a k r i d g e water budget i n J u l y - A u g u s t 1982 w i t h t h a t i n 1980  82  Comparison o f t h e K e r r i s d a l e / O a k r i d g e r e s u l t s w i t h t h e Sydney, A u s t r a l i a water b a l a n c e  82  R e s i d e n t i a l water use f o r B a l t i m o r e and O a k r i d g e , Vancouver  91  4.7  Water use i n metered  91  4.8  A p p l i c a t i o n o f Loudon (1981) w a t e r use p r e d i c t i o n e q u a t i o n s t o 1982 d a t a  93  4.9  Stepwise m u l t i p l e  93  4.10  C o m p a r i s o n o f J u l y & A u g u s t 1980 & 1982 c o n d i t i o n s f o r Vancouver I n t e r n a t i o n a l A i r p o r t  95  Linear regression equations f o r predicting water use from e v a p o r a t i o n  96  S e n s i t i v t y a n a l y s i s o f t h e Oke a n d S t e y n p e r s . comm.) e v a p o r a t i o n scheme  97  4.5  4.6  4.11  4.12  4.13  4.14  4.15  and f l a t  rate areas  regression equations  (1983,  Influence of changing the i n i t i a l retenton storage s t a t u s on t h e e x t e r n a l w a t e r b a l a n c e  105  Influence of the size of the impervious storage capacity on t h e m e t h o d o f e v a p o r a t i o n c a l c u l a t i o n  107  Influence of the p r o p o r t i o n of the i r r i g a t i o n  water  g o i n g t o p e r v i o u s a r e a on t h e e x t e r n a l w a t e r b a l a n c e  111  111.1  D e t e r m i n a t i o n o f AA  134  111.2  Results using  data measured a t Sunset, Vancouver  and t h e  Oke a n d S t e y n ( 1 9 8 3 , p e r s . comm.) e v a p o r a t i o n scheme  134  IV.1  K e r r i s d a l e n e t r a d i a t i o n b y month  138  IV.2  Kerrisdale  s t o r a g e h e a t f l u x by month  139  IV.3  Kerrisdale  site  a i r t e m p e r a t u r e by month  140  IV.4  Kerrisdale  site  relative  141  IV.5  Kerrisdale  s i t e wind  VI.1  Suburban  w a t e r b a l a n c e by month  156  VI.2  External  s u b u r b a n w a t e r b a l a n c e by month  157  VI.3  R u n o f f r a t i o b y month  h u m i d i t y by month  s p e e d by month  viii  142  158  VI.4  Suburban  w a t e r b a l a n c e by day  VI.5  S u b u r b a n w a t e r b a l a n c e by day w i t h s t a t u s o f s t o r e s and t h e d i v i s i o n b e t w e e n t h e i n t e r n a l e x t e r n a l system  ix  159 water and 166  L I S T OF  FIGURES  Figure  Page  2.1  Land use i n t h e Vancouver  2.2  The K e r r i s d a l e / O a k r i d g e  2.3  Aerial  2.4  Photograph of raingauge 3 w i t h i n  2.5  Photograph of c l i m a t o l o g i c a l K e r r i s d a l e tower  2.6  2.7  area  11  study s i t e  •  11  view of the Kerrisdale/Oakridge area  12  the Oakridge catchment  17  i n s t r u m e n t a t i o n on t h e 19  Fisheye lens photographs f a c i n g groundwards: ( a ) Summer (b) W i n t e r  from the K e r r i s d a l e  Fisheye lens photographs f a c i n g skywards: ( a ) Summer (b) W i n t e r  from t h e K e r r i s d a l e  tower  22 tower  -  23  2.8  P h o t o g r a p h o f t h e Hudson s i t e  24  3.1  A n n u a l d a i l y w a t e r u s e b y month f o r O a k r i d g e ( a ) D a i l y maxima, m i n i m a , a n d mean (b) C o e f f i c i e n t o f v a r i a t i o n  38  D a i l y w a t e r use and p r e c i p i t a t i o n 1982 a t O a k r i d g e  39  3.2  3.3  f o r J a n u a r y - March  D a i l y ( a ) t e m p e r a t u r e , ( b ) w a t e r u s e , and ( c ) p r e c i p i t a t i o n d u r i n g May - J u l y 1982 i n t h e O a k r i d g e catchment. I n (b) w a t e r use i s from t h e meter, and % o f e x t e r n a l w a t e r i n g i s from the Oakridge s u r v e y .  40  D a i l y water use c y c l e s a t t h e Oakridge catchment ( a ) D a i l y w a t e r u s e c y c l e s f r o m 1980 m e t e r d a t a ( b ) F r e q u e n c y o f h o u r s p e c i f i e d as e x t e r n a l w a t e r u s e f r o m t h e 1982 O a k r i d g e s u r v e y  42  3.5  Components o f u r b a n r u n o f f  43  3.6  A n n u a l h o u r l y by month n e t r a d i a t i o n ( a ) M a x i m a , m i n i m a , a n d mean (b) C o e f f i c i e n t of v a r i a t i o n  3.4  3.7  3.8  determination for Kerrisdale  A n n u a l h o u r l y by month- s t o r a g e h e a t f l u x ( a ) M a x i m a , m i n i m a , a n d mean (b) C o e f f i c i e n t of v a r i a t i o n  51 for Kerrisdale  A n n u a l h o u r l y by month t e m p e r a t u r e f o r K e r r i s d a l e  x  53  3.9  3.10  ( a ) M a x i m a , m i n i m a , a n d mean (b) C o e f f i c i e n t of v a r i a t i o n  56  A n n u a l h o u r l y by month r e l a t i v e h u m i d i t y f o r K e r r i s d a l e ( a ) M a x i m a , m i n i m a , a n d mean ( b ) C o e f f i c i e n t :of v a r i a t i o n  58  A n n u a l h o u r l y by month w i n d s p e e d ( a ) M a x i m a , m i n i m a , a n d mean (b) C o e f f i c i e n t o f v a r i a t i o n  60  for Kerrisdale  4.1  Basic  s t r u c t u r e o f t h e BALDAY p r o g r a m  4.2  M o n t h l y water b a l a n c e f o r the whole system  66 Kerrisdale/Oakridge 72  4.3  E x t e r n a l monthly water balance f o r K e r r i s d a l e / O a k r i d g e  73  4.4  M o n t h l y i n t e r n a l w a t e r use and r u n o f f , and t h e i r p r o p o r t i o n o f t o t a l w a t e r use and r u n o f f  75  4.5  Daily soil  77  4.6  Suburban whole  m o i s t u r e and s t o r a g e  water balance f o r K e r r i s d a l e / O a k r i d g e  f o r the  a r e a and f o r t h e e x t e r n a l environment  4.7  Monthly runoff r a t i o s  f o rOakridge  4.8  Monthly runoff r a t i o s C r e e k and Vancouver  f o rKerrisdale/Oakridge,  79 81 West 85  4.9  D a i l y e x t e r n a l water balance f o rKerrisdale/Oakridge  87  4.10  M o n t h l y w a t e r b a l a n c e w i t h no p i p e d Kerrisdale/Oakridge  89  4.11  Influence  4.12  I n f l u e n c e of changing the catchment on e v a p o r a t i o n  4.13  4.14  4.15  4.16  III.l  of changing d a i l y  water  supply f o r  d a t a on e v a p o r a t i o n  99  d e f i n i n g parameters 100  I n f l u e n c e o f c h a n g i n g p r e c i p i t a t i o n on t h e o u t p u t s o f t h e e x t e r n a l w a t e r b a l a n c e i n J u n e a n d December  103  I n f l u e n c e o f c h a n g i n g w a t e r u s e on t h e o u t p u t s o f t h e e x t e r n a l w a t e r b a l a n c e i n J u n e a n d December  104  I n f l u e n c e o f PRETEN on t h e o u t p u t s o f t h e m o n t h l y e x t e r n a l water balance  105  I n f l u e n c e o f AREAI on t h e o u t p u t s o f t h e m o n t h l y e x t e r n a l water balance  110  Measured v e r s u s m o d e l l e d e v a p o r a t i o n Vancouver  135  xi  f o r 1980 S u n s e t ,  III.2  Measured e v a p o r a t i o n versus modelled and 1978 S u n s e t , V a n c o u v e r  xii  evaporation  for  1977 137  ACKNOWLEDGEMENTS I would  like  to express  Dr T.R. Oke f o r h i s g u i d a n c e study;  my a p p r e c i a t i o n o f my s u p e r v i s o r y c o m m i t t e e : and support  throughout  the course  Dr M.A. C h u r c h f o r h i s a d v i c e a n d c o n s t r u c t i v e c r i t i c i s m  of this of draft  c o p i e s ; a n d Dr J . E . Hay f o r p r o v i d i n g d a t a , e q u i p m e n t a n d h e l p f u l discussion. The  nature  of t h i s  t h e s i s was s u c h  t h a t many p e o p l e  f i e l d w o r k a n d p r o v i d e d u s e f u l d i s c u s s i o n . To t h e s e thanks:  I express  Dr T.A. B l a c k , Dr M. B o v i s , J . C h a n , H.A. C l e u g h ,  Dr a n d M r s J . L . K n o x , S.M. L o u d o n , D. M a r t i n , L. M i t d a l , Roberts,  Dr S.O. R u s s e l l ,  Mechanical  E n g i n e e r i n g Dept., Vancouver C i t y  Engineering  research operating grant  Research  D.M.B. Grimmond, R. N i s s e n ,  project.'  xiii  R.G. U.B.C.  D e p t . , Dr J . de  area.  from t h e N a t u r a l S c i e n c e s  C o u n c i l o f Canada t o Dr T.R. Oke c o v e r e d  with  my s i n c e r e  Dr J.M. R y d e r , C . J . S o u c h , Dr D.G. S t e y n ,  V r i e s , N. W a n l e s s a n d t h e r e s i d e n t s o f t h e s t u d y An  have h e l p e d  and E n g i n e e r i n g  the f i n a n c i n g of t h i s  SYMBOLS a  Coefficient  f o r determining  a  Intercept of l i n e a r regression equation  A  Area  AA  C o e f f i c i e n t which  Aj  P r o p o r t i o n of p e r v i o u s area which  i s unirrigated  A2  P r o p o r t i o n of pervious area which  is irrigated  A^  F r a c t i o n of t o t a l  by i t h s u r f a c e  AREAI  Pervious  AREAU  Pervious unirrigated  b  Coefficient  b  Slope  Cp  S p e c i f i c heat  C  Runoff  C.V.  Coefficient  of v a r i a t i o n  d  Displacement  l e n g t h (m)  D  Displacement  l e n g t h u s e d i n BALDAY p r o g r a m  D  Days s i n c e p r e c i p i t a t i o n  relates  f o r determining  s t o r a g e heat  flux (built)  of l i n e a r r e g r e s s i o n equation conductance at constant pressure  coefficient  s  S a t u r a t i o n vapour pressure Evaporation  (days)  (mb) (mb)  (mm)  D r y i n g power o f t h e a i r (mm)  Ep  Potential  Epo  Term u s e d when E=Ep  G  Groundwater r  type  a r e a u s e d i n BALDAY p r o g r a m  e  h  to area  i r r i g a t e d a r e a u s e d i n BALDAY p r o g r a m  Vapour p r e s s u r e  a  (greenspace)  status of s o i l moisture  surface covered  a  E  flux  (m )  e  E  storage heat  evaporation  Relative humidity  (mm)  (mm)  (%)  i  Intensity  of r a i n f a l l  i  S u b s c r i p t f o r i d e n t i f y i n g l a n d uses  xiv  (mm/hr)  (m)  (J/kg/K)  I  Water p i p e d - i n  I  r  Irrigation  (mm o r m^/d)  (mm)  J  J u l i a n day  k  v o n [Carman's c o n s t a n t  K+  Incoming  K+  Reflected  L  L a t e n t heat o f v a p o r i s a t i o n  (J/kg)  Incoming  (W/m )  v  shortwave  radiation  shortwave  (W/m  radiation  9  (W/m  9  o r MJ/m /.d) 9  9 o r MJ/m /d)  2 L+  longwave r a d i a t i o n  2  Lt  Outgoing  longwave r a d i a t i o n  MPIPES  Mean w i n t e r w a t e r p i p e d - i n u s e d  n  Number o f p e r v i o u s s u r f a c e t y p e s  p  Precipitation  PERCEN  % o f e x t e r n a l water  Q*  Net r a d i a t i o n  Q  E  L a t e n t heat  Q  s  Storage heat  r r  c  flux  flux flux  R u n o f f v i a sewers  r^  Surface runoff  r^  Subsurface runoff  r  Coefficient  2  i n BALDAY p r o g r a m  piped-in applied (W/m  2  t o AREAI  o r MJ/m /d) 2  (W/m ) 2  (W/m  2  o r MJ/m /d) 2  R u n o f f (mm) Runoff v i a c h a n n e l s and water c o u r s e s  r '. 5  (W/m )  (mm)  (mm)  (mm) (mm)  of determination  S  Change i n s t o r a g e  (mm)  s  Slope o f s a t u r a t i o n o f vapour t e m p e r a t u r e c u r v e (mb/°C)  SSM  Soil  SSMF  Field  STOR  Storage capacity  moisture capacity of s o i l  xv  (mm)  pressure versus  (mm)  T  Temperature  (°C)  u  Mean h o r i z o n t a l w i n d s p e e d (m/s)  VRETNI  Retention capacity of the i r r i g a t e d  VRETNU  Retention c a p a c i t y of the u n i r r i g a t e d  z  Height  o f measurement  z  o m  Momentum  z  o v  Water  roughness  Momentum r o u g h n e s s  ZOV  Water  length  pervious area  (mm)  (m)  length  (m)  l e n g t h u s e d i n BALDAY p r o g r a m  vapour roughness and T a y l o r  (mm)  (m)  vapour roughness  ZOM  pervious area  (m)  l e n g t h u s e d i n BALDAY p r o g r a m  <*  Priestley  (1979) e m p i r i c a l c o e f f i c i e n t  a'  D a v i e s and A l l e n  ctj  Empirical coefficient  f o r pervious unirrigated  otj  Empirical coefficient  f o r pervious  Y  Pyschrometric  p  D e n s i t y o f a i r (kg/m^)  (1973) e m p i r i c a l c o e f f i c i e n t  'constant'  xv i  (mb/°C)  irrigated  area  area  (m)  CHAPTER 1.1  1  INTRODUCTION  Objectives T h i s s t u d y was p r o m p t e d  cient water  from c o n s i d e r a t i o n of whether  to support the magnitude  been measured i n t h e suburban The  o b j e c t i v e s of t h i s  t h e r e was  of the e v a p o r a t i v e f l u x e s  that  suffihave  environment.  study are:  1) t o a s s e s s a n a n n u a l s u b u r b a n w a t e r b a l a n c e ; a n d 2) t o a s s e s s t h e v a r i a b i l i t y w a t e r b a l a n c e and t h e i r  1.2 S i g n i f i c a n c e Water, tant role tion  like  o f t h e phenomena i n f l u e n c i n g  significance within  e n e r g y , a i r and l a n d ,  (Ashton & Langfeld,  i s a r e s o u r c e t h a t p l a y s an  1982). L a r g e volumes  or with the required  c o l l e c t i o n of water  variability  o f w a t e r a r e p i p e d i n t o an  rainfall  does n o t f a l l  frequency to sustain a c i t y ' s  i n reservoirs allows  the s p a t i a l  o f r a i n f a l l o c c u r r e n c e t o be l e s s c o n f i n i n g  from urban a r e a s . Y e t , the c o s t of i m p o r t i n g increasing with  increasing  t h i s water  that  to water  ble of and  s m a l l e r towns, w i l l e i t h e r  demand  century Foster  t h e demand p l a c e d on s i x r i v e r b a s i n s  e x c e e d , o r w i l l be w i t h i n  m o n t h l y w a t e r s u p p l i e s . H e n c e , t h e need water  needs.  i s e x p e n s i v e and i s  s u p p o r t i n g n e a r l y h a l f o f C a n a d a ' s m a j o r m e t r o p o l i t a n a r e a s , and of  in suffi-  and t e m p o r a l  u r b a n i s a t i o n . By t h e end o f t h i s  and S e w e l l ( 1 9 8 1 ) a n t i c i p a t e  impor-  economy a n d i n t h e p r o c e s s o f u r b a n i s a -  urban area from r e s e r v o i r s e i t h e r because  The  the water balance.  of the Study  i n developing a national  c i e n t volumes,  the suburban  hundreds  20% o f , the a v a i l a -  t o c o n s e r v e and p r e v e n t  wastage  i n u r b a n a r e a s has h e l p e d s t i m u l a t e c o n s i d e r a t i o n s o f w a t e r use  i t s route through the urban  system.  1  1.3  Previous The  water  Research  water  system.  b a l a n c e p r o v i d e s a framework f o r the study of the The  water  balance  o f an u r b a n  v o l u m e may  urban  be e x p r e s s e d  as  follows: p + I = where p I r E S The  is is is is is  r + E + S  (1.1)  precipitation; water piped i n ; runoff; e v a p o r a t i o n ; and s t o r a g e change.  m a j o r d i f f e r e n c e b e t w e e n an u r b a n w a t e r  loped area relative  i s the p i p e d - i n term  ( I ) . Anthropogenic  r o l e s of the components of the water  an u n d e v e l o p e d  site  l o g i c c h a n g e s t o be The  balance  few u r b a n  (Oke,  1974).  anticipated water  t h a t o f an  the  b a l a n c e compared to t h a t of  i s shown i n T a b l e  hydro-  1.1.  s t u d i e s t h a t have b e e n c a r r i e d  objectives  undeve-  i n f l u e n c e s change  A v e r y g e n e r a l i s e d scheme o f t h e  balance  differed considerably in their  and  ( T a b l e 1.2).  However,  out  have  their  r e s u l t s are not  directly  of the b a l a n c e s  ( T a b l e 1.3). Most of the s t u d i e s p r e s e n t e s t i m a t e s of  'natural' water  b a l a n c e of the a r e a r a t h e r than t a k i n g  into account.  consideration: the e x t e r n a l , pipe  dies  importance  or n a t u r a l water t h e r e a r e two  l a n d uses  characterisitics, Aston  The  the  balance  encompassed a range  area  or domestic,  under  use  i n f l u e n c e d , except  only  for supply  budgets.  the urban  a r e a have v a r y i n g s u r f a c e  L ' v o v i c h and  Chernogayeva  u r b a n i s e d a r e a s , whereas the B e l l  1978).  (1977)  (1972)  of a p u r e l y r e s i d e n t i a l  2  area which,  using  stu-  study  of l a n d uses w i t h i n a p a r t of Sydney. In c o n t r a s t ,  L o u d o n ( 1 9 8 1 ) s t u d y was  the  imported  v a r y i n g amounts o f v e g e t a t i o n ( A u e r ,  ( 1 9 7 7 ) , L i n d h ( 1 9 7 8 a , b ) and  represented entire  i s not  distinct  types w i t h i n  particularly  i n f l u e n c e of  of I v a r i e s w i t h the urban  i n an a r e a where I i s f o r i n t e r n a l ,  l e a k a g e , and Different  The  comparable because of the d i f f e r e n t p r e s e n t a t i o n s  the  Auer's  T a b l e 1.1  Element  Measured o r a n t i c i p a t e d s u r f a c e h y d r o l o g i c changes u r b a n i s a t i o n (Oke, 1974)  Comparison w i t h r u r a l environment  due t o  Remarks  P  more?  Thermal nuclei,  I  more  Piped water  E  less?  Reduction of evaporating  r  more  Lower p e r m e a b i l i t y and c h a n n e l l i n g  S  less  Poor  3  and m e c h a n i c a l combustion  uplift,  supply  i n t e r c e p t i o n and  surfaces  infiltration  T a b l e 1.2  Examples  of urban water balance  studies  Author  Comments  A s t o n (1977)  Location: Period: Area: Purpose: Techniques  Hong Kong A n n u a l , 1971 1046 km P r e d i c t i o n of f u t u r e water used: p measured E measured (pan) r difference S measured  Location: Period: Area: Purpose: Techniques  Sydney, A u s t r a l i a A n n u a l , 1962 - 1971 1035 km P r e d i c t i o n of f u t u r e water d i s p o s a l used: p measured I,G e s t i m a t e d b u t method n o t E m o d e l l e d (Penman b a s i s ) r modelled (empirical)  Bell  (1972)  Lindh (1978a,b)  L'vovich & Chernogayeva (1977)  Loudon (1981)  2  requirements  2  Location: Period: Area: Purpose:  requirements stated  T o t a l u r b a n i s e d a r e a o f Sweden A n n u a l , 1970 ? 4024 km P a r t o f t h e I n t e r n a t i o n a l H y d r o l o g i c a l Decade r e s e a r c h programme T e c h n i q u e s u s e d : p, G, E, r e s t i m a t e d b u t m e t h o d not s t a t e d  Location: Period: Area: Purpose: Techniques  2  Moscow,. USSR Seasonal, Annual, ? 879 km To d e t e r m i n e t h e i n f l u e n c e o f used: p measured E difference r modelled 2  Location: Period: Area: Purpose:  urbanisation  K e r r i s d a l e , Vancouver D a i l y and 2 m o n t h s , J u l y - A u g u s t 1980 0.21 km To d e t e r m i n e t h e summer s u b u r b a n w a t e r balance Techniques used: p measured I measured I e s t i m a t e d E m e a s u r e d (Bowen r a t i o , m o d e l l e d regression) r estimated S estimated 2  r  Where G i s g r o u n d w a t e r  4  Table  1.3 U r b a n w a t e r  balance r e s u l t s  (see Table  Hong Kong ( A s t o n , 1 9 7 7 ) p  =  1912 100  E  +  r  +  s  = 1128 + 567 + 215 = 5 9 + 3 0 + 1 1  Sydney, A u s t r a l i a p  +  1150 77  I  +  mm %  ( B e l l , 1972)  G =  E  + r  s  + r  c  + 333 + 16 = 736 + 261 + 502 + 22 + 1 = 49 + 17 + 34  where r r  i s r u n o f f v i a sewers  s  i s r u n o f f v i a c h a n n e l s and water  c  Moscow, USSR ( L ' v o v i c h & C h e r n o g a y e v a , p 200 100 500 100 700 100  =  r  + r  t  2  i s surface  mm mm mm %  701 100 701 100  =  r  +  E  p + I  r  =  runoff  +  G mm % mm 7,  Canada (Loudon, E  year  1978a,b)  = 211 + 316 + 174 = 30 + 45 + 25 = 146 + 359 + 196 = 21 + 51 + 28  Vancouver,  summer-autumn  runoff  r^. i s s u b s u r f a c e Sweden ( L i n d h ,  winter-spring  7. 7,  +S  (a) (b)  1981)  +r  90 + 106 = 181 - 1 3 + 2 8 46 + 54 = 93 - 7 + 1 4  mm %  where I_ i s i r r i g a t i o n  5  courses  1977)  + E  = 123 + 2 7 + 5 0 = 62 + 13 + 25 = 127 + 23 + 350 = 25 + 5 + 70 = 250 + 50 + 400 = 36 + 7 + 57  where-Tj  p  mm  7„  1.2)  (1978) c l a s s i f i c a t i o n , The  residential  commercial  a r e a h a s l a r g e r amounts o f v e g e t a t i o n  a r e a s ( A u e r , 1978) t h e r e f o r e  used e x t e r n a l l y The  than i n d u s t r i a l and  the l i k e l i h o o d  of piped water being  i s greater.  components o f t h e w a t e r b a l a n c e have been s t u d i e d  a variety is  c o u l d b e s t be d e s c r i b e d as common r e s i d e n t i a l ( R l ) .  o f p e r s p e c t i v e s and f o r a v a r i e t y  separately  o f p u r p o s e s . One s u c h  t h e s t u d y o f e v a p o r a t i o n as a s o u r c e / s i n k o f l a t e n t h e a t  e n e r g y b a l a n c e . E v a p o r a t i o n , i n an u r b a n e n v i r o n m e n t , was assumed t o be d r a s t i c a l l y  less  because of supposedly major  than that  "rather  large  traditionally areas  c o n t r a s t s between h y d r o l o g i c p r o p e r t i e s o f  the f o l l o w i n g  tions of evaporation within  approach  i n the surface  from n e i g h b o u r i n g r u r a l  b u i l d i n g m a t e r i a l s and v e g e t a t i o n c o v e r e d s o i l s et a l . (1980) posed  from  ( C h a n d l e r , 1976).  questions after  the suburban  Kalanda  energy balance d e t e r m i n a -  environment  were f o u n d t o have a  magnitude":  - How c a n a s u r f a c e composed o f 3 6 % b u i l t s u r f a c e s m a i n t a i n n e a r ' e q u i l i b r i u m ' e v a p o t r a n s p i r a t i o n r a t e s 6 days a f t e r o n l y moderate r a i n ? - What i s t h e s o u r c e o f m o i s t u r e t o s u p p o r t t h e s e r a t e s o f w a t e r  loss?  - What m e c h a n i s m u n d e r l i e s t h e r e t u r n t o h i g h e v a p o t r a n s p i r a t i o n a f t e r t h e e n v i r o n m e n t a p p e a r s t o be d r y i n g o u t ? They p o s t u l a t e d  t h a t human i n t e r v e n t i o n  the form o f t h e p i p e d water The  i n the water balance of c i t i e s i n  supply i s the source of the water.  water balance, t h e r e f o r e , provides a s u i t a b l e  which to f u r t h e r consider t h e i r  framework  p o s t u l a t e . The s t u d y a l s o  a s s e s s t h e s o u r c e s and s i n k s o f w a t e r , t h e i r  within  should help to  r e l a t i v e magnitudes, the  l o c a t i o n o f w a t e r and t h e t i m i n g o f w a t e r u p t a k e and r e l e a s e  i n the subur-  ban e n v i r o n m e n t . T h i s c o u l d h e l p t o d e t e r m i n e means o f c o n s e r v i n g w a t e r u r b a n s y s t e m a n d t o f i n d w h e t h e r man's i n t e r v e n t i o n sufficient  i n the water balance i s  to support the r e p o r t e d magnitudes of e v a p o r a t i o n .  6  i n the  U r b a n i s a t i o n causes changes urban area there i s a l s o  from the r u r a l  spatial  and  temporal v a r i a t i o n .  w a t e r b a l a n c e a l l o f t h e c o m p o n e n t s and vary both s p a t i a l l y  and  a r e a e n c o m p a s s e s one s c a l e s . That  spatial  i s ,within  s c a l e but  1.4  c h o s e n . The  'average' c o n d i t i o n s  areas: these w i l l  study a suburban  there.  n o t be  area of Vancouver,  s i t e p o s s e s e d a number o f u s e f u l c o n d i t i o n s , and  It is possible  incoming p i p e d water a l . (1980)  variability  so  Still,  investigated  Methodology  39% of Vancouver.  et  local  possible  s c a l e v a r i a b i l i t y from p l a c e to p l a c e w i t h i n  a b l y r e p r e s e n t a t i v e of suburban  the  be  suburban  study.  To c a r r y o u t t h i s was  urban  t o e n s u r e t h a t d a t a m e a s u r e d and u s e d i n  c i t y , a n d b e t w e e n u r b a n and r u r a l  Research  the  t h e phenomena u s e d t o d e t e r m i n e i t  the study a r e a t h e r e w i l l  t h e r e a l s o r e m a i n s much l a r g e r  in this  W i t h i n the  l i e s w i t h i n a range of  c a l c u l a t i o n s are r e p r e s e n t a t i v e of the  directly  but w i t h i n  t e m p o r a l l y . The w a t e r b a l a n c e s t u d y o f one  t h a t c a r e s h o u l d be e x e r c i s e d  the  environment  s t u d y ; and  to u t i l i s e  supply; i t i s close i t i s the s i t e  B.C.,  attributes. this  (Oakridge)  I t i s reason-  l a n d use c l a s s o c c u p i e s  an e x i s i t i n g to the s i t e  gauge t o m o n i t o r of the K a l a n d a  of the Loudon (1981) w a t e r  balance  study. The m e a s u r e m e n t o f a l l t h e c o m p o n e n t s o f t h e w a t e r b a l a n c e was possible  so t h e i r  assessment  was  carried  rement and m o d e l l i n g m e t h o d s . The mined  out u s i n g a c o m b i n a t i o n o f measu-  v a r i a b i l i t y o f t h e phenomena was  by m e a s u r e m e n t and w i t h r e f e r e n c e t o t h e The  component t e r m s o f t h e d a i l y ,  e v a l u a t e d as f o l l o w s . E v a p o r a t i o n was  The  i n p u t s , p and  monthly  and a n n u a l w a t e r b u d g e t  I , were b o t h measured  were  directly.  and S t e y n  i s a m o d i f i e d v e r s i o n o f t h e B r u t s a e r t and  7  deter-  literature.  d e t e r m i n e d u s i n g a m o d e l d e v e l o p e d by Oke  p e r s . comm.) w h i c h  not  (1983,  Strieker  (1979)  e v a p o r a t i o n model,  e v a p o r a t i o n was  utilising  calculated  tive humidity, s o i l  u s i n g measured net r a d i a t i o n ,  m o i s t u r e , wind  f l u x v a l u e s . R u n o f f was  determined  types using assumptions  related  water  s t o r a g e c a p a c i t y . The The  d a i l y Oakridge  t e r p r o g r a m t h a t was d a t a , t h e Oke sensitivity  and  an a d v e c t i o n - a r i d i t y  speed  f o r p e r v i o u s and  c h a n g e i n s t o r a g e was  developed  f o r t h e p u r p o s e . The  Steyn e v a p o r a t i o n model,  and  determined  infiltration  and  soil  difference.  a s s e s s e d u s i n g a compuprogram used  the  daily  the n e c e s s a r y a s s u m p t i o n s . investigated  the  i n p u t d a t a and s u r f a c e  f r o m an a n a l y s i s o f t h e i r  8  rela-  impervious surface  conducted which  response of the model t o v a r i a t i o n of c l i m a t e characterisitics  temperature,  c a l c u l a t e d by  w a t e r b a l a n c e was  a n a l y s i s o f t h e m o d e l was  Daily  and p a r a m e t e r i s e d s t o r a g e h e a t  to surface r e t e n t i o n ,  suburban  approach.  variability.  A  CHAPTER  2  STUDY AREA AND DATA COLLECTION  2.1 P h y s i c a l  Setting  V a n c o u v e r i s l o c a t e d a t 49° 15' N l a t i t u d e America  but i s c l i m a t i c a l l y  isolated  from  on t h e w e s t c o a s t  the c o n t i n e n t a l i n t e r i o r  s e r i e s of mountain chains p a r a l l e l l i n g  the c o a s t l i n e .  s i t u a t e d on t h e B u r r a r d G l a c i a l  (Clague & Luternauer,  w e s t end o f t h e l o w e r  occupies  Regional D i s t r i c t  39% of the area  r e p r e s e n t 53%, o f a l l h o u s i n g apartments  The  residential  areas  and H i c o c k ' s  c o n s i s t s of Vashon d r i f t C a p i l a n o sediments  west  tial  f o r urban uses.  Vancouver  S i n g l e f a m i l y houses being  1983).  more t h a n  facing  10m f r o m  slope of the g l a c i a l  ( 1 9 7 6 ) g e o l o g i c map  of the l a s t  (alluvial  and K e r r i s d a l e , w h e r e t h i s  glaciation  and l i t t o r a l  indicates  study  upland ( F i g .  that the area  o v e r l a i n by p o s t  glacial  t h e s u r f a c e . The s t u d y a r e a c o n s i s t e d o f t h e  c a t c h m e n t and t h e K e r r i s d a l e  c l i m a t e s t a t i o n 0.8 km t o t h e n o r t h is classified  as r e s i d e n t i a l  f a m i l y d w e l l i n g s by t h e G.V.R.D. ( 1 9 7 9 ) a n d w o u l d be Common  R l under Auer's The  Oakridge  (1978)  site  i s a 21 h e c t a r e  water  r i e s o r sewerage d r a i n a g e  -  Residen-  classification.  D i v i s i o n of the Vancouver C i t y d e f i n e d by t h e i n c o m i n g  was  sands and sandy g r a v e l s ) w i t h  ( F i g . 2 . 2 ) . The l a n d u s e i n t h i s a r e a  single  ( T a b l e 2.1, F i g .  i n the r e g i o n , the other h a l f  of Oakridge  a r e l o c a t e d on a s o u t h  2.1). Armstrong  Oakridge  i s residential  relief.  Area  conducted,  bedrock  units  a n d t o w n h o u s e s (G.V.R.D.,  2.2 S t u d y  1982) a t t h e  about 50% o f a l l the l a n d i n the G r e a t e r  (G.V.R.D.) d e v e l o p e d  by a  Vancouver c i t y i s  F r a s e r V a l l e y and has low t o moderate  W i t h i n Vancouver c i t y , 2.1). Housing  Upland  of North  test plot  f o r t h e W a t e r Works  E n g i n e e r i n g D e p a r t m e n t . The c a t c h m e n t i s p i p e s r a t h e r t h a n by t h e t o p o g r a p h i c  pipes  ( F i g . 2.3) ( V a n c o u v e r  9  City,  bounda-  Engineering  T a b l e 2.1 L a n d u s e i n V a n c o u v e r a n d G.V.R.D. f o r 1982 ( a f t e r G.V.R.D., 1 9 8 3 )  LANDUSE  VANCOUVER (ha) (%)  Open a n d U n d e v e l o p e d Residential Industrial Agricultural Commercial Institutional Transportation & Communication U t i l i t e s Recreation Roads Other  438 4588 653 17 452 459  3.7 39.3 5.6 0.1 3.9 3.9  128016 32235 4621 21978 1769 3671  56.0 14.1 2.0 9.6 0.8 1.6  274 1444 3318 47  2.3 12.4 28.4 0.4  5026 124171 14127 4663  2.2 5.5 6.2 2.0  11690  100.0  228577  T o t a l Land A r e a  10  G.V.R.D. (ha) (7.)  100.0  Fig.  2.1 L a n d u s e i n t h e V a n c o u v e r a r e a  Fig.  2.2 The K e r r i s d a l e / O a k r i d g e  study  (G.V.R.D., 1 9 8 3 )  site  I K E R R 1 S C  >ALE  °  .  ... OAKRIDGE  SUNSET  < 49TH  •  Av p  «S 1 t-  t-  cr  a  1-5  R a i n g a u g e  1  W a t e r ,  5  S o l i  KNIGHT  j  0  S i t e s  I  m e t e r  s a m p l e  CO  w  FRASER  ST MAIN  <  -  > z  CAMBIE  i  u.  A v e  ST  5 4 T H  s i t e  ii  1  2 —  1  k  m  Kerrisdale climate station  Oakridge catchment  N, r-^-,  • \ V *\ V  \ l I'  J• v.  I K  L  • i .  K  •  s  V•  * — •  J<  \  0  gOOmatf t  — —  i l u d y a l l * boundary contour* (Interval 1.» m)  — water pipe a — c o m b i n e d fewer plpaa • mater «lta  /  Fig.  2.3 A e r i a l v i e w o f t h e K e r r i s d a l e / O a k r i d g e a r e a ( P h o t o g r a p h No. BC 79009 #185, s c a l e 1:8000)  -study  site  •contour*  12  b o u n d a r y  ( M a r v e l  1.S  m l  — — •  water p i p e * c o m b i n e d sewer meter aite  pipe*  Department,  1972; Vancouver C i t y ,  E n g i n e e r i n g Department,  no s t r e a m s f l o w i n g t h r o u g h t h e a r e a , n o r e v i d e n c e t h a t urbanisation between  (Proctor,  t h e r e were  1 9 7 8 ) . The c a t c h m e n t h a s an e l e v a t i o n  93 a n d 79m a b o v e  topographic  1981). There a r e  sea l e v e l ,  r a n g e o f 14m,  a n d a maximum s l o p e o f 1° 2 1 ' . The  l o c a t i o n of the catchment suggests t h a t  neither net gain nor net loss of water. Therefore water balance c a l c u l a t i o n s  before  t h e l o n g t e r m change  i t i s i n an a r e a o f  f o r the purpose of the  i n s t o r a g e c a n be  assumed  t o be z e r o . L a n d c o v e r i n t h e c a t c h m e n t was d e t e r m i n e d u s i n g a e r i a l from March  1979 e n l a r g e d t o a s c a l e o f 1:2000 ( V a n c o u v e r C i t y ,  Department, impervious is  670 m The  010  1 9 7 9 ) . The c a t c h m e n t  ( T a b l e 2 . 2 ) . The mean s i z e  o f t h e 191 l o t s w i t h i n  catchment s t r a d d l e s Enumeraton  forElectoral  District  the catchment  1972).  A r e a s 114 a n d 115 o f C e n s u s  59027 ( C a n a d a , S t a t i s t i c s ,  Census  t o be a p p r o x i m a t e l y 4 2 0 . The age b r e a k d o w n  Tract  Division,  1 9 8 3 ) . From t h e 1981 c e n s u s d a t a f o r t h e s e a r e a s t h e p o p u l a t i o n lated  Planning  l a n d c o v e r i s 6 0 . 3 % p e r v i o u s and 3 9 . 7 %  (Vancouver C i t y , E n g i n e e r i n g Department,  2  photographs  i s calcu-  ( T a b l e 2.3) i n d i c a t e s  that  t h i s a r e a h a s a l a r g e r p e r c e n t a g e o f p e o p l e i n t h e ' o v e r 60' age g r o u p t h a n G r e a t e r V a n c o u v e r as a w h o l e .  2.3 M e a s u r e m e n t The  Programme a n d T e c h n i q u e s  s t u d y was c a r r i e d  measurements  were r e f e r r e d  o f a day was r e l a t e d The J u l i a n  o u t f o r one y e a r b e g i n n i n g  i n J a n u a r y , 1982. A l l  t o L o c a l A p p a r e n t Time ( L . A . T . ) . The d e f i n i t i o n  t o t h e t i m e o f t h e w a t e r use measurements  day was u s e d t o d i s t i n g u i s h  individual  days  (Table 2.4).  ( A p p e n d i x I ) . The  measurement programme began on J u l i a n day 22,1982. The  general climate  f o r t h e y e a r , b a s e d on t h e d a t a c o l l e c t e d by t h e  Atmospheric Environment S e r v i c e  (A.E.S.) a t t h e Vancouver  13  International  Table  2.2 L a n d c o v e r o f t h e O a k r i d g e c a t c h m e n t a n d S u n s e t a r e a ( K a l a n d a e t a l , 1980)  7„ AREAL OAKRIDGE  PERMEABILITY  SURFACE TYPE  IMPERVIOUS  COMMERCIAL HOUSES GARAGES PAVEMENT  0.0 17.2 1.8 20.7 39.7  11 36  VEGETATION OPEN WATER  59.6 0.7 60.3  64  100.0  100  PERVIOUS  TOTAL  COVERAGE SUNSET  11 14  T a b l e 2.3 P o p u l a t i o n f o r t h e O a k r i d g e c a t c h m e n t , V a n c o u v e r a n d t h e G.V.R.D. ( C a n a d a , S t a t i s t i c s , C e n s u s D i v i s i o n , 1983) ( s e e T e x t )  TOTAL  OAKRIDGE 420  POPULATION  AGE GROUP ( 7 o ) 0-19 20 - 39 40 - 59 60+  24 21 25 30  T a b l e 2.4 D e f i n i t i o n  DAY  TO  DAY  22 124 304  -  123 303 387  VANCOUVER 414,281  G.V.R.D. 1,268,183  21 36 22 21  27 34 22 17  o f a day  ACTUAL TIME BEGINNING END  0700 0600 0700  0659 0559 0659  NOTE: Time i s L o c a l A p p a r e n t Time : Days a r e numbered a c c o r d i n g  14  RECORDER TIME BEGINNING END  0800 0700 0800  to J u l i a n  0700 0600 0700  day c a l e n d a r  Airport is  climate  summarised  2.3.1  station  ( C a n a d a , D e p t . o f E n v i r o n m e n t , A.E.S.; 1 9 8 2 , 1 9 8 3 ) ,  i n T a b l e 2.5.  Oakridge D a i l y m e a s u r e m e n t s o f p i p e d w a t e r i n t a k e w e r e made u s i n g a  T r i d e n t P r o t e c t u s 6" m e t e r (Figs.  2.2, 2 . 3 ) . The d a i l y  cumulative t o t a l  with that  Neptune  l o c a t e d a t West 52nd Avenue a n d Oak S t r e e t total  was d e t e r m i n e d b y t h e d i f f e r e n c e  of the  f r o m t h e p r e v i o u s d a y . The e r r o r o f t h e m e t e r i s  1 - 2% ( V a n c o u v e r C i t y E n g i n e e r i n g D e p a r t m e n t ,  W a t e r Works D i v i s i o n ,  pers.  comm.). Daily  totals  o f p r e c i p i t a t i o n were measured  u s i n g 100 mm d i a m e t e r p l a s t i c above  the ground  2.3.2  Kerrisdale  (Fig.  raingauges with  at four  their  2.4).  h o u r l y u s i n g a 10 s e c o n d sweep C a m p b e l l S c i e n t i f i c i s , the signal  ( F i g . 2.2)  o r i f i c e s m o u n t e d 300mm  The c l i m a t o l o g i c a l m e a s u r e m e n t s a t t h e K e r r i s d a l e  That  sites  s i t e were  I n c . CR21 M i c r o l o g g e r .  s o u r c e was s c a n n e d e v e r y 10 s e c o n d s  d a t a m o n i t o r i n g c h a n n e l . The h o u r l y  d a t a were w r i t t e n  were r e a d on t o t h e U.B.C. Amdahl/V8 c o m p u t e r  measured  f o r d a t a from each  to cassettes  using a Campbell  which  Scientific  I n c . A235 A u d i o t a p e I n t e r f a c e . The v a l u e s  f o r a s p e c i f i c hour  r e p r e s e n t a t i v e of the c l i m a t i c  f o r t h e p r e c e d i n g 60 m i n u t e s ( s e e  conditions  were  Table 2.4). The NK.9)  climate  station  consisted  of a pneumatic  on w h i c h a n e t p y r r a d i o m e t e r ( S w i s s t e c o P t y . L t d . M o d e l  t i v e humidity sensor (Campbell S c i e n t i f i c meter  t e l e s c o p i c mast  (Met-One M o d e l  I n c . Model  (Hilomast  SI), a  rela-  2 0 1 ) a n d a c u p anemo-  0 1 2 A ) were m o u n t e d a t 9m ( F i g . 2 . 5 ) ; a n d a t i p p i n g  b u c k e t r a i n g a u g e ( S i e r r a - M i s c o I n c Model  15  RG2501) m o u n t e d w i t h  t h e 200 mm  T a b l e 2.5 N o r m a l (N) ( 1 9 5 1 - 1 9 8 0 ) a n d 1982/3 m e a s u r e m e n t s o f c l i m a t i c a t v a r i a b l e s f o r Vancouver I n t e r n a t i o n a l A i r p o r t (Canada, Dept. o f E n v i r o n m e n t , A.E.S., 1 9 8 2 , 1 9 8 3 ; Hay & Oke, 1 9 7 6 )  PRECIPITATION  MONTH  MEAN AIR TEMPERATURE  (mm) N  JANUARY FEBRUARY MARCH APRIL MAY JUNE" JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1  2  3  5  TOTAL  JANUARY  NOTE 1. 2. 3. 4. 5. 6.  6  153.8 116.6 101.0 59.6 51.6 45.2 32.0 41.1 67.1 114.0 150.1 182.4  1982  N  238.6 224.6 64.9 89.3 22.6 29.2 67.0 37.2 44.2 118.0 174.9 149.7  2.5 4.4 5.8 8.8 12.2 15.1 17.3 17.1 14.2 10.0 5.9 3.9  1112.6 1260.2  9.8  1983 172.3  2.5  153.8  BRIGHT SUNSHINE  (°C) 1982  1.9 4.2 5.5 7.7 12.1 16.7 17.0 16.8 14.6 10.2 4.2 4.1  (h.o u r s ) N 1982  (7=) N  1982  MEAN WIND SPEED (km/h) N 1982  53.5 92.5 129.3 180.5 246.1 238.4 307.1 256.2 183.1 121.0 69.3 47.9  23.6 69.1 151.9 226.2 251.5 285.1 210.3 219.9 168.4 126.7 89.9 71.8  87 85 82 75 74 76 74 78 80 87 88 89  85 95 78 69 70 72 75 77 82 83 84 83  12.2 12.1 13.5 13.3 11.8 11.5 11.4 10.6 10.6 11.2 12.2 13.0  12.4 13.8 11.4 14.7 12.2 11.3 12.8 12.3 10.7 12.9 10.2 12.2  9.6 1919.6  1894.4  82  80  12.0  12.2  1983 49.8  87  1983 86  12.2  1983 11.8  1983 6.3  53.5  S u n s h i n e 2nd l o w e s t on r e c o r d One o f t h e w e t t e s t D r i e s t on r e c o r d D u l l e s t a n d 5 t h w e t t e s t on r e c o r d Sunshine 3 r d highest Warmest on r e c o r d  16  MEAN RELATIVE HUMIDITY  Fig.  2.4  Photograph  of raingauge 3 w i t h i n  17  the Oakridge  catchment  diameter o r i f i c e The  at  p o l y t h e n e domes o f t h e n e t p y r r a d i o m e t e r w e r e k e p t  f r e e of i n t e r n a l The  signal  l o g g e d and  h o u r l y averages  relative  h u m i d i t y s e n s o r was  p l a c e d a p p r o x i m a t e l y 25 mm  i n t e g r a t e d on t h e CR21  of the net r a d i a n t  s o l a r r a d i a t i o n by a h a l f c y l i n d e r from  sheltered  flux  + 1% d e v i a t i o n ) and  of  linear  temperature  on t h e CR21 The  w h i c h was was  0.5  was  + 1.5%  foil  107  0  r e l a t i v e h u m i d i t y were p r o d u c e d  which  s e n s i n g head Research  - 5 1 J 1 ) . The  over the range  direct was  con-  M o d e l PCRC-11  relative  humidity  t o 977>. H o u r l y  averages  from  the s i g n a l s  logged  Micrologger.  wind  ter  a t h e r m i s t o r ( F e n w a l UUT 0  density.  covered w i t h aluminium  t h e s e n s o r c o v e r . The  t o w i t h i n + 37  and  speed  s w i t c h assembly of  and  Microlog-  f r o m m o i s t u r e and  tained a r e l a t i v e humidity transducer (Phys-Chemical  o u t p u t was  inflated  c o n d e n s a t i o n by a i r pumped t h r o u g h g r a n u l a t e d s i l i c a g e l .  f r o m t h e s e n s o r was  ger to produce The  5.7m.  s e n s o r was  which produced  proportional mls  a 3 cup  and  anemometer w i t h a  magnetic-reed  a s e r i e s of c o n t a c t c l o s u r e s ,  to wind  speed.  The  starting  the a c c u r a c y o v e r the c a l i b r a t e d  (manufacturer). Hourly averages  speed range  the  frequency  o f t h e anemomeo f 0 t o 50  w e r e r e c o r d e d by t h e CR21  m/s Micro-  logger. The ket.  Hourly t o t a l s  t h e CR21 The ter  raingauge  t i p p e d on  t h e a c c u m u l a t i o n o f 1mm  o f p r e c i p i t a t i o n were p r o d u c e d  in a collection  by  buc-  the p u l s e c o u n t e r  of  Micrologger. c o n t r i b u t i o n o f any  c a n be e x p r e s s e d by  s u r f a c e to the r a d i a t i o n  i t s view  factor  (Reifsnyder & L u l l ,  factors  from the top of the tower were d e t e r m i n e d  (Steyn,  1980a).  Photographs  directions.  Both  sampled  the r e s u l t s  but  'seen'  and w i n t e r ( d a y 380)  are not d i r e c t l y  18  1965).  using fisheye  were t a k e n i n b o t h the skyward  summer ( d a y 205)  by a  comparable  and  radiomeView  photographs groundward  conditions  were  because the camera  was  Fig.  2.5  Photograph of c l i m a t o l o g i c a l  19  instrumentation  on t h e K e r r i s d a l e  tower  noc  positioned  listed would  i n exactly  t h e same p l a c e . The summer v i e w f a c t o r s a r e  i n T a b l e 2.6. The summer p h o t o g r a p h s be e x p e c t e d ,  (Figs.  groundward photograph  2.6, 2 . 7 ) . The l a c k o f t r e e  meant t h a t  was  l o w e r on t h e t o w e r  (note the verandah  i n the winter  t r u n k s was v i s i b l e  ( F i g . 2 . 6 ) . The w i n t e r  o f t h e h o u s e on t h i s  b e t w e e n p h o t o g r a p h s ) . The s k y w a r d two s e a s o n s  2.3.3  f o l i a g e , as  saw more o f t h e l a w n a n d y a r d o f t h e p r o p e r t y on w h i c h  situated  branches  foliage  s k y between t h e t r e e  d e s p i t e t h e camera b e i n g mounted photograph  had g r e a t e r t r e e  except  (Fig.  that  p r o p e r t y was a l t e r e d  o r i e n t e d photographs  i n winter sky i sv i s i b l e  the tower  were s i m i l a r  f o r the  t h r o u g h some o f t h e  2.7).  Hudson M e a s u r e m e n t s o f p r e c i p i t a t i o n w e r e made u s i n g a gauge w i t h a 200mm  diameter o r i f i c e  located  200mm a b o v e t h e s u r f a c e . O b s e r v a t i o n s w e r e made  d a i l y a t a p p r o x i m a t e l y 1600 h o u r s  a t t h e Hudson  A p p r o x i m a t e l y weekly measurements o f s o i l site  ( F i g . 2.8) u s i n g t h e g r a v i m e t r i c  The a v e r a g e  site. m o i s t u r e w e r e made a t t h i s  sampling technique (Gardner,  d r y weight moisture content f o r the p r o f i l e  1965).  from the s u r f a c e t o  a d e p t h o f 200mm was d e t e r m i n e d .  2.3.4 S u n s e t The S u n s e t family site  site  i s i n a n a r e a where t h e p r e d o m i n a n t  (1-2 s t o r e y ) housing. I n a c i r c l e  with  l a n d use i s s i n g l e  2 km r a d i u s c e n t r e d on t h i s  6 4 % o f t h e a r e a was c o v e r e d w i t h p e r v i o u s s u r f a c e s ( m a i n l y  p a r k s and a cemetry) For f u r t h e r  a n d 367, i m p e r v i o u s ( T a b l e 2.2) ( K a l a n d a e t a 1.,  description  (1980) and S t e y n  lawns,  of t h i s  site  (1980b).  20  see Kalanda  (1979), Kalanda  1980).  et a l .  T a b l e 2.6 Summer v i e w f a c t o r s  SURFACE  from the K e r r i s d a l e c l i m a t e  SKYWARD  GROUNDWARD  (%)  (%)  94.92  0.00  Vegetat ion  3.68  85.03  Man made  1.40  14.48  Open w a t e r  0.00  0.49  100.00  100.00  Sky  Total  21  tower  2 2  Fig.  2.8 P h o t o g r a p h o f t h e H u d s o n  24  site  Measurements of net 162  t o 210,  uated  logged  on a 30m  inflated  granulated  2.4  u s i n g a net p y r r a d i o m e t e r  a t 22m  were kept  r a d i a t i o n w e r e made a t t h e S u n s e t  silica  on a d a t a  tower.  and  The  f r e e of i n t e r n a l signal  logger (Campbell  day  domes o f t h e n e t  condensation from  Scientific  the  pyrradiometer  by a i r pumped  s e n s o r was  CR5)  sit-  through  i n t e g r a t e d and  to produce h o u r l y  averages.  E r r o r s and M i s s i n g D a t a To  o b t a i n a complete  d a t a s e t f o r t h e y e a r m i s s i n g d a t a had  filled  i n using v a r i o u s techniques. Table  set  phenomena.  by  The for  from  ( S w i s s t e c o P t y . L t d . Model SI)  polythene  d e s s i c a n t . The  site,  relative  sizes  m e a s u r e m e n t and  to f i l l  s y s t e m a t i c e r r o r s are caused  The  13 m i s s i n g d a i l y  prior  more t h a n one approximated  random and  listed  i n Table  s y s t e m a t i c . The  the  used  2.8.  random e r r o r s a r e  o f t h e phenomena b e i n g m e a s u r e d w h i l s t by  data  t y p e o f e q u i p m e n t u s e d and  the  its siting.  Pipes  m e t h o d s . When o n l y one t h e day  summarises the measured  i n m i s s i n g data are  a f u n c t i o n of the v a r i a b i l i t y  Water  be  of the e r r o r s a s s o c i a t e d w i t h the t e c h n i q u e s  M e a s u r e m e n t e r r o r s c a n be b o t h  2.4.1  2.7  to  t o , and  totals  of water  d a y ' s datum was following  p i p e d a t a were f i l l e d  i n by  m i s s i n g t h e mean o f t h e v a l u e s  t h e m i s s i n g day  was  adopted.  t h e mean o f t h e s e a s o n  from  When t h e r e  c o n s e c u t i v e day's data m i s s i n g , these m i s s i n g data by  two  (2 o c c a s i o n s o f 3 d a y s and  was  were 1 of  5  days).  2.4.2  Precipitation To  o b t a i n a complete  r e l a t i o n was  data  set f o r the K e r r i s d a l e  used between the d a i l y  25  d a t a a t the s i t e  site and  a regression  that c o l l e c t e d  by  Table  2.7 Summary o f m e a s u r e m e n t  PHENOMENON  PRECIPITATION  SITE  TIME (DAY)  293 - 387 T i p p i n g b u c k e t  Oakridge Oakridge Oakridge Oakridge Hudson  213 213 213 213 32  1 2 3 4  Oakridge  NET  Kerrisdale Sunset  -  387 387 387 387 387  periods  TECHNIQUE, FREQUENCY  Kerrisdale  WATER P I P E S RADIATION  t e c h n i q u e s and time  Daily Daily Daily Daily Daily  r a i n jj a u g e , 1 mm t i p - hourly totals accumulation accumulation accumulation accumulation accumulation - daily  22 - 387 F l o w gauge 22 - 387 Net 162 - 210 Net  pyrradiometer pyrradiometer  accumulation  - hourly averages - hourly averages - h o u r l y ave r a g e s  RELATIVE HUMIDITY  Kerrisdale  22 - 387 C a p a c i t a n c e  AIR TEMPERATURE  Kerrisdale  22 - 387 T h e r m i s i t o r  - hourly averages  WIND SPEED  Kerrisdale  22 - 387 Cup  - hourly averages  SOIL MOISTURE  Hudson  22 - 387 G r a v i m e t r i c s a m p l e s - w e e k l y  26  sensor  anemometer  T a b l e 2.8 E r r o r s a s s o c i a t e d w i t h t h e d a t a s e t due t o measurement and f i l l i n o f m i s s i n g d a t a  PHENOMENA  MEASUREMENT ERROR (%)  P I P E WATER  FLOW  F I L L I N ERROR (%)  + 1 - 2  + 8  PRECIPITATION  + 7  + 5  NET RADIATION  + 2  + 3  RELATIVE  + 3  + 5  TEMPERATURE  + 2  + 5  WIND  + 3  + 5  + 15  + 15  HUMIDITY  SPEED  SOIL MOISTURE  27  A.E.S. a t t h e V a n c o u v e r I n t e r n a t i o n a l A i r p o r t Airport  d a t a were t o t a l l e d  f o r d a y s 293  t o 387.  f o r t h e day  During  p r e c i p i t a t i o n o c c u r r e d . The  t h i s 95 linear  (AIRPORT) ( F i g . 2 . 1 ) .  The  (as d e f i n e d f o r the K e r r i s d a l e s i t e )  day  p e r i o d t h e r e was  regression equation  61  d a y s on  relating  which  the  two  s i t e s wa s: KERRISDALE = 0.1009 + ( 1 . 0 7 3 4 x AIRPORT) with a coefficient  of d e t e r m i n a t i o n  of e s t i m a t e  mm.  o f 8.6  the K e r r i s d a l e s i t e red d u r i n g the at the  (2.1)  ( r ) v a l u e o f 0.95  and  2  D a i l y v a l u e s o f p r e c i p i t a t i o n were d e t e r m i n e d  using equation  same h o u r s and  2.1,  i n the  assuming t h a t p r e c i p i t a t i o n  same p r o p o r t i o n t o t h e d a i l y  amount o f w a t e r w h i c h w o u l d h a v e r e a c h e d t h e r e , hence a l l measurements are  'true' p r e c i p i t a t i o n , t h e g r o u n d had  relative.  Wind i s t h e  t h e most p r o b l e m s b e c a u s e i t c a u s e s t h e p r e c i p i t a t i o n generates  t u r b u l e n c e a r o u n d t h e gauge o r i f i c e  Errors  in estimating areal  precipitation  o c c u r b e c a u s e o f t h e random p a t h u r b a n a r e a has  very variable  t o b u i l d i n g s and pitation The  for occur-  total  as  that  been  causes  o b l i q u e l y and  (Rodda e t a l . , 1 9 7 6 ) . f r o m a g i v e n gauge  network  (Ward, 1 9 7 5 ) . F u t h e r m o r e ,  v e g e t a t i o n , so t h a t t h e s i t i n g  of r e s e a r c h c a r r i e d  assumed t o be out  ( 1 9 6 9 ) , M a n d e v i l l e and  Waugh ( 1 9 7 1 ) i n t o  factor  the  the  surface c o n f i g u r a t i o n s w i t h i n a small area  m e a s u r e m e n t e r r o r was  Hutchinson  Net  of storms  that i s  t h e gauge n o t  to f a l l  of gauges to measure  i n an u r b a n a r e a becomes e v e n more d i f f i c u l t  a collation  2.4.3  error  Airport.  T h e r e i s no m e t h o d o f m e a s u r i n g t h e  and  a standard  + 7% on  than daily  by A l d r i d g e ( 1 9 7 6 ) ,  Rodda ( 1 9 7 0 ) ,  raingauge  errors.  servicing  of the equipment  Rapier  in a rural totals  and  Grant  preciarea.  based  Finkelstein  28  l e d to the  on  (1971),  (1971),  Radiation  M a l f u n c t i o n s and  due  requirement  t h a t 3.6% o f t h e h o u r l y n e t r a d i a t i o n d a t a n e e d e d t o be r e c o n s t r u c t e d . The remaining  96.47  0  of the hours  the U n i v e r s i t y o f B r i t i s h  were compared w i t h t h e d a t a  Columbia  set collected at  (U.B.C.) ( F i g . 2.1) as p a r t o f t h e  U.B.C. S o l a r M o n i t o r i n g Programme ( H a y , 1 9 7 9 ) .  These d a t a c o n s i s t e d o f t h e  f o u r components o f n e t r a d i a t i o n : Q* = (K+ - K+) + ( U where Q* K + K+ L+  The  linear  L+)  (2.2)  i s net r a d i a t i o n ; i s incoming shortwave r a d i a t i o n ; i s outgoing shortwave r a d i a t i o n ; i s incoming longwave r a d i a t i o n ; and i s o u t g o i n g longwave r a d i a t i o n .  regression equation  f o r the r e l a t i o n s h i p  b e t w e e n t h e two s i t e s  was: KERRISDALE = 0.02375 + ( 0 . 9 0 1 3 x UBC) w i t h an r  2  (2.3)  v a l u e o f 0.97 a n d a s t a n d a r d e r r o r o f t h e e s t i m a t e o f 0.104 MJ/m . 2  H o u r l y v a l u e s o f n e t r a d i a t i o n were c a l c u l a t e d to  i n MJ/m  and t h e n  converted  W/m . 2  T y p i c a l measurement e r r o r s f o r n e t p y r r a d i o m e t e r s taneous measurements ( L a t i m e r , 1972).  a r e 3-47> on i n s t a n -  The n e t p y r r a d i o m e t e r  was  recalib-  r a t e d by A.E.S. a t t h e e n d o f t h e m e a s u r e m e n t programme a n d h a d a new c a l i b r a t i o n which  2.4.4  was w i t h i n  2% o f t h e p r e v i o u s v a l u e .  Temperature, R e l a t i v e Humidity The  m i s s i n g 1.8% o f d a t a  speed were f i l l e d  and Wind speed  f o r temperature,  relative  h u m i d i t y and w i n d  i n by one o f two m e t h o d s . When t h e r e was o n l y one h o u r o f  data m i s s i n g , the data v a l u e were a v e r a g e d .  f o r the hour before  and t h e hour a f t e r  the m i s s i n g  When more t h a n one h o u r o f d a t a was m i s s i n g , t h e t r e n d  o f t h e phenomenon a t t h e A i r p o r t was u s e d t o f i l l C o m p a r i s o n s a g a i n s t a n Assman p s y c h r o m e t e r  i n the m i s s i n g  were made a t t h e b e g i n n i n g ,  d u r i n g a n d a t t h e e n d o f the. y e a r s m e a s u r e m e n t s o f t e m p e r a t u r e  29  hours.  and r e l a t i v e  humidity.  The d i f f e r e n c e s were  less  The Met-One 014A anemometer r e m e n t programme c a l i b r a t i o n was  2.4.5  Soil Linear  soil  2% on i n s t a n t a n e o u s  recalibrated  u s i n g t h e U.B.C. M e c h a n i c a l less  than  5% d i f f e r e n t  measurements.  a t t h e end o f t h e measu-  E n g i n e e r i n g w i n d t u n n e l . The  from the manufacturer's  calibration.  Moisture i n t e r p o l a t i o n was u s e d t o d e t e r m i n e  weekly measured Due  was  than  from the  data.  to the v a r i a b i l i t y  moisture  daily values  of s o i l  i s also variable.  types  i n the suburban environment the  The n a t u r a l s o i l  t h e r e has a l s o been m a t e r i a l b r o u g h t  has been d i s t u r b e d and  i n f r o m o t h e r a r e a s . The  disturbances  i n c l u d e e x c a v a t i o n f o r c o n s t r u c t i n g houses and c o m p a c t i o n w i t h r o a d ing.  The s o i l  moisture  range of p o s s i b l e s o i l at ved  measurements a r e t h e r e f o r e o n l y a sample of the moistures  one p o i n t . The m e a s u r e m e n t spatial  build-  and an i n d e x o f t h e t e m p o r a l  e r r o r o f 1 5 % i s b a s e d on t h i s  differences in soil  p r o f i l e moisture  30  variability  study's  measurements.  obser-  CHAPTER 3  V A R I A B I L I T Y OF THE WATER BALANCE COMPONENTS  3.1 I n t r o d u c t i o n ' This chapter mine t h e w a t e r factor  calculations. the study  available temporal the  balance.  This w i l l  establish  s h o u l d be v a r i e d when c o n d u c t i n g  balance during  discusses the v a r i a b i l i t y  i n the l i t e r a t u r e .  techniques  It  sensitivity  C o n s i d e r a t i o n i s given to both  used i n d e t e r m i n i n g  have b e e n c o l l a t e d  study  fell.  setting  f o r the f u l l  during these  year.  Environment Service Climate Station  (Table  t h i r t e e n months w i t h i n w h i c h to January  2.5)  this  1982 a n d J a n u a r y  f o r t h e w h o l e m o n t h , w h e r e a s i t s h o u l d be n o t e d site  balance.  s t a t u s o f 1982 c o m p a r e d w i t h a " n o r m a l "  That i s , the data r e f e r r i n g  made a t t h e s t u d y  associated with  a l s o p r o v i d e s an a p p r o p r i a t e  i s b a s e d on d a t a c o l l e c t e d b y t h e A t m o s p h e r i c  which  collected  s p a t i a l and  t h e components o f t h e water  (A.E.S.) a t t h e Vancouver I n t e r n a t i o n a l A i r p o r t  are  analyses of the water  a n d , where a p p r o p r i a t e , t o v a r i a b i l i t y  c o n s i d e r i n g the c l i m a t i c  each  on a m o n t h l y b a s i s ) a n d on i n f o r m a t i o n  This d i s c u s s i o n of v a r i a b i l i t y for  the range over which  D i s c u s s i o n i s b a s e d on t h e m e a s u r e d d a t a  period (primarily  variability  o f a l l f a c t o r s used t o d e t e r -  1983  t h a t the measurements  two months r e f e r  t o o n l y 10 a n d 21 d a y s  respectively. The The  mean d a i l y  data measured i n t h i s  measured d a t a have been a v e r a g e d  study are l i s t e d  f o r t h e warmer (summer) a n d t h e c o o l e r  ( w i n t e r ) h a l v e s o f t h e y e a r . Summer f o r t h e s e p u r p o s e s April  t o September  i n Appendix I I .  was d e f i n e d as b e i n g  inclusive.  One o f t h e s t a t i s t i c a l m e t h o d s u s e d f o r a n a l y s i n g t h e v a r i a b i l i t y i s the c o e f f i c i e n t coefficient  of v a r i a t i o n  (C.V.):  of v a r i a t i o n = standard d e v i a t i o n mean  When t h e c o e f f i c i e n t  of v a r i a t i o n  31  a p p r o a c h e s 1.0 t h e v a r i a b i l i t y  (3.1)  i s high.  This  i s a poor s t a t i s t i c  net  radiation  3.2  Precipitation Annual  when t h e mean a p p r o a c h e s z e r o ,  during winter  isohyets  i n the G r e a t e r Vancouver area c l o s e l y  1700  ( 1 0 0 0 t o 2500 mm)  ( H a y & Oke, 1 9 7 6 ) .  The  measured v a r i a b i l i t y  topography  (Fig.  precipitation ge,  2.1, F i g .  (Kerrisdale  receipt  2.2) s t i l l  - Airport,  was g r e a t e r  1982 t h e A i r p o r t  of  t h e months r e c o r d i n g h i g h e r  received  twice  received  from south t o  from west t o e a s t  (1100 t o  Hudson, K e r r i s d a l e  in siting  and of  of the i n d i v i d u a l  Oakridge - A i r p o r t )  v a r i a t i o n of  (Kerrisdale  - Oakrid-  (Table 3.1). i n a summer minimum o f p r e c i p i t a t i o n .  13.37» more t h a n n o r m a l p r e c i p i t a t i o n t h a n n o r m a l amounts ( T a b l e 2 . 5 ) .  t h e n o r m a l w h e r e a s May r e c e i v e d  n o r m a l . The K e r r i s d a l e  rapidly  than the i n t r a - s i t e  c l i m a t e of Vancouver r e s u l t s  In  p a r a l l e l the  demonstrates the influence  the differences  Oakridge - 4 s i t e s ) v a r i a t i o n The  extent  between the A i r p o r t ,  ( T a b l e 3.1) d e s p i t e  gauges. I n t e r s i t e  amounts i n c r e a s e  and t o a l e s s e r  mm)  Oakridge s i t e s  with  months.  topographic contours. P r e c i p i t a t i o n north  s u c h as o c c u r s  data follow  a similar  less  than h a l f  with s i x  July the monthly  trend through the year  (Table  3.2) . The  maximum d a i l y  intensity  f o r the K e r r i s d a l e  s i t e was 50.4 mm/d  r e c o r d e d on J u l i a n  day 44. The maximum h o u r l y  7.9 mm/h  day 2 8 9 . A u g u s t h a d t h e l o w e s t maximum h o u r l y  on J u l i a n  w i t h a v a l u e o f 2.7 mm/h i n t e n s i t y w i t h 8.5 mm/d  intensity  f o r t h e y e a r was  ( d a y 2 2 4 ) a n d May h a d t h e l o w e s t maximum ( d a y 137) ( T a b l e 3 . 2 ) .  32  intensity daily  T a b l e 3.1 I n t e r a n d i n t r a - s i t e p r e c i p i t a t i o n v a r i a b i l i t y  SITE  ELEVATION No. OF DAYS (m)  TOTAL  MEAN  S.D.  C.V.  PERIOD  1  (mm)  (mm)  (mm)  ( J u l i a n day)  ( a ) INTER S I T E VARIATION KERRISDALE OAKRIDGE AIRPORT KERRISDALE AIRPORT HUDSON 2  82 86 5 82 5 91  58 58 61 61 84 84  525. 0 550. 3 507. 6 551. 0 644. 4 669. 8  8.,8 9..2 7..8 8.,6 8.,4 8.,5  DIFFERENCE IN RECEIPT (mm) 0.8 0.8 0.7 0.7 1.5 1.8 1.7 1.9  ( b ) INTRA S I T E VARIATION  OAKRIDGE KERRISDALE - OAKRIDGE KERRISDALE - AIRPORT OAKRIDGE - AIRPORT  9..1 9..5. 8.,3 9,.0 7.,5 8.,1  51 51 51 51  0. 97 0. 97 0. 94 0. 96 1. 12 1. 05  295 295 295 295 182 182  -------  386 386 386 386 386 386  295 295 295 295  -  386 386 386 386  NOTE: 1. R e f e r s t o t h e number o f d a y s w i t h u s a b l e p r e c i p i t a t i o n 2. Mean o f t h e 4 s i t e s  33  record  T a b l e 3.2 M o n t h l y p r e c i p i t a t i o n  TOTAL  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  YEAR  data f o r K e r r i s d a l e  site  (mm)  MAXIMUM DAILY INTENSITY DAY AMOUNT HOUR AMOUNT (mm) (mm)  MAXIMUM HOURLY I N T E N S I T Y DAY HOUR AMOUNT (mm)  87.0 232.3 56.7 90.2 24.6 32.2 72.9 30.2 47.9 61.8 189.0 147.0  24 44 60 93 137 177 195 224 253 274 332 336  25.9 50.4 12.0 18.8 8.5 23.5 24.5 12.8 16.0 15.8 24.0 42.0  1800 1700 2000 1800 400 1200 700 1700,2000 300 100 1200,1300 500  3.2 4.2 4.9 2.6 4.9 5.8 7.2 2.7 3.1 5.3 4.0 5.0  23 49 60 103 137 177 196 224 246 289 307 337  143.0 374  29.0  600  3.0  369  2400  4.0  44  50.4  700  7.2  289  1200  7.9  1214.8  NOTE: H o u r r e f e r s t o t h e h o u r e n d i n g J a n u a r y 1982 - 10 d a y s o n l y J a n u a r y 1983 - 21 d a y s o n l y  34  1700 1000 2000 1500 400 1200 700 1700,2000 1600 1200 2200 500  4.1 7.6 4.9 6.0 4.9 5.8 7.2 . 2.7 4.5 7.9 5.0 5.0  3.3  Water Use  3.3.1  F a c t o r s I n f l u e n c i n g Water Use The  A m e r i c a n W a t e r Works A s s o c i a t i o n - Commmittee o n W a t e r Use (A.W.-  W.A.-C.W.U.) ( 1 9 7 3 ) 1970 are  and changing c l i m a t o l o g i c a l  t h e two most s i g n i f i c a n t  factors  i n observed f l u c t u a t i o n s o f water use.  two m a i n t y p e s o f c u s t o m e r  rate.  metered  P r i c i n g p l a y s no r o l e  billing  the p r i c e v a r i e s  E n g i n e e r i n g Department, Hanke a n d F l a c k  t i o n s . Annual flat  in  the q u a n t i t y o f water  areas f o r the e n t i r e  used.  i s c h a r g e d , as p a r t o f t h e f o r water  (Vancouver  City,  p e r s . comm.). between metered and  s p e c t r u m o f U.S. c l i m a t i c  (A.W.W.A-C.W.U., 1973;  i n f l u e n c e water consumption  customer  low r a i n f a l l  areas, with  sprinkling  condi-  constituting  Barnes,  1977;  Linaweaver e t  a n d t e m p e r a t u r e a r e f o u n d t o be t h e p r i n c i p a l  characteristics  residential  o f consumption, b u t under  r a t e area's average annual water u s e .  rainfall  c l i m a t e which  tive  r a t e o f $60.50/year  W a t e r Works D i v i s i o n ,  From t h e l i t e r a t u r e  of  directly with  r a t e a r e a s compared w i t h metered  1967)  irrespective  at a flat  d a i l y w a t e r u s e p e r d w e l l i n g u n i t was 1.5 t i m e s g r e a t e r i n  607,, o f t h e f l a t  al.,  i n demand i n t h o s e a r e a s b i l l e d  (1968) compared w a t e r c o n s u m p t i o n  residential  conditions  f o r water use are metered and  most a r e a s o f V a n c o u v e r ,  property taxes, at a f l a t  rate  billing  a d e f i n e d amount i s p a i d  study area, l i k e  flat  i960 t o  billing  r a t e because  The  f o r the period  concluded that customer  The flat  s t u d y o f 49 U n i t e d S t a t e s c i t i e s  o f an a r e a s i g n i f i c a n t l y usage.  F o r example,  variables  The c l i m a t i c - p e d o l o g i c - v e g e t a influence  residential  the t o t a l  level of  water use p e r customer  a r e a s o f t h e w e s t e r n U n i t e d S t a t e s a v e r a g e s more t h a n t w i c e  t h a t o f t h e e a s t e r n a n d s o u t h e r n a r e a s (A.W.W.A.-C.W.U., 1 9 7 3 ) . The s e a s o n al  variation  is primarily  due t o r e s i d e n t i a l w a t e r i n g o f l a w n s  summer. I n m i d w i n t e r t h e a v e r a g e annual d a i l y  average;  daily  use i s about  207  o  i n the  l o w e r than, t h e  i n summer i t may be 20 t o 307=, h i g h e r ( L i n s l e y &  35  Franzini, the  fact  average  1979). D a i l y  variation  has been l i t t l e  r e s e a r c h e d p r o b a b l y due t o  o f t h e major  i s t o determine  that t h e primary purpose  studies  d a i l y u s e f o r f u t u r e p l a n n i n g (A.W.W.A.-C.W.U.,  1973).  3.3.2 O a k r i d g e W a t e r U s e The  Oakridge catchment  h a d an a n n u a l d a i l y c o n s u m p t i o n  Daily  variability  daily  summer w a t e r u s e was a p p r o x i m a t e l y t h r e e t i m e s g r e a t e r  o f 331.5 m^/d.  i n w i n t e r was l o w (C.V.=0.087, T a b l e 3 . 3 ) , w h e r e a s mean  and v a r i a b i l i t y was i n c r e a s e d  than i n w i n t e r  (C.V.=0.775, T a b l e 3 . 3 ) . The mean d a i l y  use p e a k e d i n J u n e b u t t h e c o e f f i c i e n t  of variation  was g r e a t e s t  water  i n July  w i t h a s e c o n d a r y p e a k i n May ( F i g . 3 . 1 ) . The  water b e i n g p i p e d i n i s used w i t h i n  and e x t e r n a l l y considered  forsprinkling.  t h e home f o r d o m e s t i c  S i n c e t h e w i n t e r mean d a i l y w a t e r u s e c a n be  t o r e p r e s e n t t h e i n t e r n a l w a t e r u s e t h r o u g h o u t t h e y e a r (A.W.W.A-  C.W.U., 1 9 7 3 ) t h e r e i s a b a s i s  f o r p a r t i t i o n i n g w a t e r b e t w e e n t h e two u s e s .  I n w i n t e r t h e d a i l y w a t e r use does n o t v a r y i f a p r e c i p i t a t i o n (Fig. drop  purposes  3 . 2 ) . H o w e v e r , i n t h e summer a p r e c i p i t a t i o n  event  event u s u a l l y  occurs  leads to a  i n t h e amount o f w a t e r u s e d . T h i s i s b e c a u s e much o f t h e summer  increase  i n w a t e r u s e i s c o n s i d e r e d t o be a c o n s e q u e n c e o f t h e a p p l i c a t i o n  of w a t e r  to theexternal  demand f o r s p r i n k l i n g  e n v i r o n m e n t . Thus p r e c i p i t a t i o n  water whereas i n c r e a s i n g  decreases the  temperature c o i n c i d e s  with  i n c r e a s i n g water use ( F i g . 3 . 3 ) . In for  this  s t u d y a s u r v e y was c a r r i e d  t h e May t o A u g u s t  filling  i na diary  period  indicating  o u t o f e x t e r n a l water use h a b i t s  i n the Oakridge area. I t involved when a n d w h e r e t h e y u s e d w a t e r  p r o p e r t y . T h e r e were 23 r e s p o n d e n t s i n May, 33 i n J u n e , i n August.  on t h e i r  21 i n J u l y  The p e r c e n t a g e o f t h o s e s u r v e y e d who w a t e r e d on e a c h  36  people  a n d 15  day ( f r o m  T a b l e 3.3 O a k r i d g e m o n t h l y w a t e r u s e  MONTH  MEAN  S.D.  C.V.  MINIMUM DAY  (m3/d) (m /d)  (m /d)  3  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  (m /d)  3  9.6 10.9 18.6 47.0 256.8 457.3 395.3 263.7 86.9 14.9 8.3 8.8  0.059 0.064 0.118 0.248 0.595 0.483 0.641 0.480 0.364 0.086 0.053 0.056  151. 9 115. 7 121. 0 135. 3 182. 6 239. 8 175. 9 193. 1 160. 8 145. 3 143. 9 146. 1  22 35 85 104 134 177 196 222 271 298 330 356  155. 1  8.1  0.052  144. 8  SUMMER WINTER  499.7 162.3  387.2 14.1  0.775 0.087  YEAR  331.5  322.1  0.972  37  3  CUMULATIVE TOTAL (m ) 3  31 38 87 115 150 170 206 218 245 284 325 347  1628. 4 4801. 6 4884. 6 5682. 1 13390. 5 28423. 6 19112. 0 17676. 3 7165. 4 5334. 5 4728. 3 4909. 9  1628.4 6430.0 11314.6 16996.7 30387.2 58810.8 77922.8 95599.1 102764.5 108099.0 112827.3 117737.1  384  171.8 381  3257. 1  120994.2  135.3 121.0  104 85  1620.4 170 208.6 284  91449.9 29544.3  121.0  85  1620.4 170  day 91 t o 273  181.7 201.6 205.8 326.4 1202.9 1620.4 1439.1 1061.7 519.6 208.6 177.2 185.1  TOTAL (m )  3  162. 8 171. 5 157. 5 189. 4 432. 0 947. 5 616. 5 570. 2 238. 9 172. 1 157. 6 158. 4  NOTE: Summer - J u l i a n  MAXIMUM DAY  3.1 A n n u a l d a i l y w a t e r u s e by month f o r O a k r i d g e ( a ) D a i l y maxima, m i n i m a a n d mean (b) C o e f f i c i e n t o f v a r i a t i o n  0.0-"  1  J  1  F  i  1  M  A  1  M J Time  1  1  1  J A (months)  38  1  S  1  1  O  N  i  1  D  J  F i g . 3.2  D a i l y water Oakridge  use and p r e c i p i t a t i o n  f o r J a n u a r y - M a r c h 1982  1250  1000-  •o CO  £ > >  750-  c ^  a>  500-  a.  22  32  42  52 Time Cd]  39  62  72  82  at  3.3  D a i l y ( a ) t e m p e r a t u r e , ( b ) w a t e r u s e , and ( c ) p r e c i p i t a t i o n d u r i n May - J u l y 1982 i n t h e O a k r i d g e c a t c h m e n t . I n ( b ) w a t e r use i s f r o m t h e O a k r i d g e m e t e r , and % e x t e r n a l w a t e r i n g i s f r o m t h e Oakridge survey.  (a)  o  c OJ CD 3" O  Ids  •100  a X A  -80  3  ffl  •<  -60  i  '•40  rln  *  o > -20  123  133  163  153  T i m e C d)  40  173  183  193  203  2  0600 t o 0559 on t h e n e x t d a y ) , and f o l l o w a remarkably s i m i l a r predominant  use o f w a t e r  trend  the metered  ( F i g 3.3). S p r i n k l i n g  specified  i n metered  w a t e r use  (Fig.  3 . 4 a ) . Low  after  precipitation.  morning  The  of t h i s  a n d b a t h i n g . On  ' h i g h ' w a t e r use days  ( 1 6 0 0 and  1700  h o u r s o f e x t e r n a l w a t e r use  h o u r s ) ( F i g 3.4b). There  was  3.4  the frequency curve c l o s e l y  follows  daily  o r on t h e  the peak  from the  with 1982  a steady increase f r o m 0700 and  day  with  h o u r s P a c i f i c D a y l i g h t Time ( P . D . T ) . T h i s c o i n c i d e s specified  the  dependent  t y p e c a n be a s s o c i a t e d  number o f p e o p l e w a t e r i n g i n e a c h h o u r o f t h e day of  distinct  i n t h e summer. B o t h w e r e c l i m a t i c a l l y  two p e a k s  and e v e n i n g m e a l s  most f r e q u e n t l y  survey  i d e n t i f i e d two  w a t e r use days o c c u r r e d i n c o n j u n c t i o n w i t h ,  o c c u r r e d a t 1800 the  o f g a r d e n s was  by r e s p o n d e n t s .  L o u d o n ( 1 9 8 1 ) , w o r k i n g a t t h e same s i t e , cycles  amount o f w a t e r p i p e d i n  the  t h a t o f t h e h i g h w a t e r use  i n the shape  cycle.  Runoff R u n o f f was  not d i r e c t l y measured i n t h i s  s t u d y so d i s c u s s i o n w i l l  i n c l u d e d h e r e on t h e m e t h o d f o r d e t e r m i n i n g u r b a n  be  runoff.  B e f o r e u r b a n r u n o f f c a n be d e t e r m i n e d , by m e a s u r e m e n t o r m o d e l l i n g , c o n s i d e r a t i o n has  t o be g i v e n t o t h r e e t y p e s o f u r b a n s o u r c e ( F i g 3 . 5 ) :  1) t h e w a t e r  precipitation;  from  2) t h e p i p e d - i n w a t e r w h i c h has b e e n a p p l i e d  to the e x t e r n a l  environment;  and 3) t h e b a s e applied  l o a d of sewerage,  to the e x t e r n a l  From t h e r e s u l t s been found t h a t  which  not  environment.  of gauging  the d a i l y base  approximately equivalent  i s the "used" p i p e d - i n water  sewers  and  i n c o m i n g w a t e r p i p e s i t has  l o a d of sewerage  c a n be r e g a r d e d as b e i n g  t o t h e mean d a i l y w i n t e r w a t e r p i p e d - i n  41  (Vancouver  Fig.  3.4  D a i l y w a t e r use c y c l e s a t t h e O a k r i d g e c a t c h m e n t ( a ) D a i l y w a t e r use c y c l e s f r o m 1980 m e t e r d a t a ( a f t e r L o u d o n , 1981) ( b ) F r e q u e n c y o f h o u r s p e c i f i e d f o r e x t e r n a l w a t e r use f r o m t h e 1982 O a k r i d g e s u r v e y  1  1  1  1  1  1  1  1  1  1  r  0400  Time CP.D.T.) 42  Fig.  3.5 C o m p o n e n t s o f u r b a n r u n o f f  WATER P I P E D - I N  INTERNAL (Domestic and o t h e r uses)  determination  RAINFALL  EXTERNAL (Sprinkling etc.)  SURFACE RETENTION  OVERLAND FLOW SUPPLY  EVAPORATION  INFILTRATION  SOIL MOISTURE & WATER TABLE & LATER EVAPOTRANSPIRATION  subsurface  RUNOFF  - surface subsurface sewer  43  Engineers  & G r e a t e r V a n c o u v e r Sewerage and D r a i n a g e  1979;  A.W.W.A.-C.W.U., 1 9 7 3 ) .  plied  by p r e c i p i t a t i o n  water  storage  lied  is available  ( F i g . 3.5).  t o the e x t e r n a l  The r e m a i n i n g  District  p i p e d - i n water  (G.V.S.D.D.),  and t h a t  f o r e v a p o r a t i o n , r u n o f f and changes i n  This section w i l l  f o c u s on the water  being  s i m p l e R a t i o n a l method ( M u l v a n e y , s o l v e many s i m u l t a n e o u s  1977).  t o l a r g e s c a l e computer models  differential  equations  from  rainfall,  3.5  of surface retention,  infiltration  remaining  after  t o the water  balance, the  t h e a b s t r a c t i o n s i s assumed t o be r u n o f f .  i n c l u d e s both  small puddles  tion  without  depression storage either  (the r e t e n t i o n o f water buildings  (Aron,1982)).  t a i n t y , a n d have b e e n l i t t l e (Aron,  1982).  & Riecken,  1977).  s i z e o f the Soil  which  are  gets  such  regarded  i n an urban  as b e i n g  as v e g e t a t i o n  environment  significant  The t y p e o f v e g e t a t i o n a n d b u i l d i n g (Table  i s c o n t r i b u t e d t o by w a t e r  p r i m a r i l y by e v a p o r a t i o n . T a b l e  compared t o (Mechler  cover w i l l i n f l u e n c e  3.4). from  infiltraton  3.5 l i s t s i n f i l t r a t i o n  44  trapped  s u b j e c t t o a l a r g e amount o f u n c e r -  measured o r assessed  storage  Surface  o r running o f f ) , and i n t e r c e p -  by the urban s u r f a c e c o v e r , Both  storage.  i n urban areas whereas i t i s i n f o r e s t e d areas  interception  storage  (that water  infiltrating  I n t e r c e p t i o n i s not  depression storage  the  study  Storage  retention  and  precipitation  a n d e v a p o r a t i o n . As t h i s  Water s t o r a g e c o n s i s t s o f r e t e n t i o n s t o r a g e and s o i l  in  Perks,  ( F i g . 3.5). A b s t r a c t i o n s  i n t e r e s t e d o n l y i n the volume c o n t r i b u t i n g  water  ( D e n d r o u , 1982;  so a s t o o b t a i n t h e e f f e c t i v e  t h e n becomes t h e s u r f a c e r u n o f f s u p p l y  consist is  1851)  the  The f i r s t s t e p i n t h e more c o m p l e x m o d e l s i s t o d e t e r m i n e t h e  'abstractions' which  app-  environment.  Models f o r d e t e r m i n i n g urban r u n o f f range i n c o m p l e x i t y from  which  sup-  and d e p l e t e d  r a t e s f o r some  Table  3.4  Values  of retention  Author  Brater  Mechler (1977)  Surface  (1968)  Retention storage (mm) (recommended)  pavements grass land s m a l l paved  & Riecken  areas  1.6 6.4 1.0 - 2.5 6.4 1.6  pervious impervious  Wright - McLaughlin Engineers Ltd.(1969)  Table  storage  l a r g e paved areas roof - f l a t - sloped lawn g r a s s wooded a r e a s & flat fields  3.5 T y p i c a l i n f i l t r a t i o n Area  rates  1.3 2.5 1.3 5.1  - 3.8 - 7.6 - 2.5 - 12.7  5.1  - 15.2 ( 1 0 . 2 )  for surfaces in  Author  Surface  CBA E n g i n e e r i n g L t d . (1973)  Richmond - p e a t 600mm deep - natural vegetation -high water t a b l e -dry - farm p a s t u r e - playing f i e l d c u t grass - c l a y s i l t s - farm p a s t u r e - sandy s i l t s -playing f i e l d s cut grass -farm pasture  (2.5) (2.5) (1.3) (7.6)  the Greater  Inf.iltraton rate (mm/hour)  1.7 1.8 2.2 0.7  - 0.7 50 - 3.7 - 11.1 - 10.0 - 18.5 • 8.5 36  Kerrisdale,  Russell ( p e r s . comm.)  Vancouver area f i n a l rate  2  Vancouver  Vancouver f i n a l rate  2  45  Vancouver  0.5  de V r i e s ( p e r s . comm.)  (1979)  Vancouver  G r e a t e r V a n c o u v e r s u r f a c e s . The i n f i l t r a t i o n (de V r i e s , p e r s . comm.) i s g r e a t e r t h a n p r e c i p i t a t i o n recorded 3.2).  The  after  depth  mm ( d e V r i e s , Thornthwaite  3.5.1  calculations  moistures  due  to intense p r e c i p i t a t i o n  is,  free drainage temporal  3.6  150  152 mm f o r t h e i r  f o r Vancouver.  recorded  site  during  d a y 44 t o 0.113 on J u l i a n d a y 172  moisture  (Table  at this unirrigated  exceeded the f i e l d  3.2) b e i n g  recorded  variability  capacity  (0.55)  on t h a t d a y . T h a t  The a n n u a l  on a m o n t h l y b a s i s was n o t l a r g e . J u n e h a d storage  (0.171) but t h e h i g h e s t c o e f f i c i e n t o f  coefficient  o f v a r i a t i o n was 0.370.  Evaporation E v a p o r a t i o n was n o t d i r e c t l y m e a s u r e d i n t h i s  ling  i sapproximately  had not ceased.  l o w e s t mean m o n t h l y s o i l (0.193).  c a n be a s s u m e d t o  Moisture  ( T a b l e 3 . 1 0 ) . The maximum s o i l  variation  areas  f o r the K e r r i s d a l e area  t h e y e a r v a r i e d f r o m 0.633 on J u l i a n  the  on p e r v i o u s  d u r i n g 1982 ( T a b l e  retention storage.  storage  water balance  range o f s o i l  The  site  p e r s . comm.). H a r e a n d Thomas ( 1 9 7 9 ) u s e d  Hudson S o i l The  filling  of s o i l  t h e maximum h o u r l y i n t e n s i t y o f  f o r the K e r r i s d a l e study  T h i s means t h a t a l l w a t e r f a l l i n g  infiltrate,  r a t e f o r the K e r r i s d a l e area  e v a p o r a t i o n and t h e v a r i a b i l i t y  t h e Oke a n d S t e y n  of the c l i m a t i c  v a r i a b l e s used w i t h i n  ( p e r s . comm.) e v a p o r a t i o n m o d e l w i l l  section.  Full  contains  t h e m o n t h l y summaries o f t h e d a t a  climate  s t u d y . Methods o f model-  details  of the l a t t e r  station.  46  are given  be d i s c u s s e d i n t h i s  i n Appendix I I I . Appendix IV  collected  at the K e r r i s d a l e  Table  3.6 Hudson m o n t h l y s o i l m o i s t u r e  MONTH  S.D.  C.V.  0. 565 0. 583 0. 544 0. 450 0. 325 0. 171 0. 243 0. 219 0. 261 0. 287 0. 305 0. 362  0. 001 0. 039 0. 022 0. 045 0. 037 0. 033 0. 022 0. 018 0. 010 0. 022 0. 036 0. 020  0. 393  SUMMER WINTER  YEAR  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  MEAN  (dryweight)  (dimensionless)  MINIMIUM  DAY  MAXIMUM  DAY  0. 002 0. 067 0. 040 0. 100 0. 114 0. 193 0. 091 0. 082 0. 038 0. 077 0. 118 0. 055  0. 563 0. 484 0. 500 0. 366 0. 247 0. 113 0. 206 0. 184 0. 233 0. 245 0. 245 0. 322  22 59 60 120 151 172 194 237 271 286 306 353  0..565 0.,633 0.,582 0.,508 0.,366 0.,239 0.,288 0.,258 0,,273 0.,325 0.,371 0..387  31 44 65 91 128 152 201 229 261 299 334 338  0. 034  0. 087  0. 357  368  0.,446  386  0. 278 0. 420  0. 094 0. 120  0. 338 0. 286  0. 113 0. 245  172 306  0.,508 0.,633  91 44  0. 349  0. 129  0. 370  0. 113  172  0.,633  44  47  3.6.1  Net  Radiation  Studies  of the  individual  (eqn.  2.2)  there  i s a tendency f o r the  suggest that u r b a n / r u r a l  comparison with Oke  and  A u g u s t 1980. interfere,  city  the  an  cloudy  overall  (Oke,  that  in  1979).  r e c e i v e d on a v e r a g e 6%  results  daily  spatial variability  o f C o l u m b u s , O h i o has  deficit  f o r the  gradient  central  d i s t r i c t was  one  of  cloud could  no  between the  i n c r e a s i n g net  not  difference in  radiation in different  o f Q*  and  more r a d i a t i o n i n  of  the  rural  the the  5%.  l a n d use  (1982) u s i n g  o f r a d i a t i v e g e o m e t r y and  general  during July  suburban area  b e e n i n v e s t i g a t e d by A r n f i e l d  a s s u m p t i o n s . The business  showed v i r t u a l l y  of net  which employs the p r i n c i p l e s  areas  a model  Lambertian area  and  the  r a d i a t i o n towards  the  centre. I n V a n c o u v e r no  l a r g e s c a l e measurements of  r a d i a t i o n have been c a r r i e d made a t t w e l v e the  long  out.  Observations  term d i s t r i b u t i o n ,  the mountains i n the n o r t h  the  larger spatial  variability s t a t e but  of net  a l s o the  gradients  orographic  of the area The  that occur  leads use  spatial variability  of  l o c a t i o n s i n the Lower M a i n l a n d  of s o l a r r a d i a t i o n i n that v i c i n i t y . the  radiative deficit,  c o n d i t i o n s , when i n t e r s i t e  suburban s i t e  d a y t i m e , and  by  a l l times  u s u a l l y s m a l l , but  d i f f e r e n c e s i n the Vancouver a r e a  Under c l e a r sky  partly  For  d i f f e r e n c e s are  r a d i a t i o n budget  McCaughey ( 1 9 8 3 ) m e a s u r e d s u b u r b a n ( S u n s e t ) r u r a l ( A i r p o r t  d a y t i m e . The  city  the net  to have a s l i g h t  the c o u n t r y s i d e , a t  area) energy balance  The  components of the  of  i n the  net  s o l a r r a d i a t i o n have been  s i n c e J u n e 1979  (Hay,  enhancement of c l o u d to a s y s t e m a t i c long short  r a d i a t i o n i s a f u n c t i o n of not surface  of  only  the  amount  reduction  term averages t e r m (Hay,  1983).  obscures  1983).  The  atmospheric  t y p e , w h i c h i n f l u e n c e s b o t h t h e a l b e d o and  the  emissivity. A c o m p a r i s o n of the net  r a d i a t i o n f l u x d e n s i t y between the K e r r i s d a l e  48  and  Sunset  s i t e s was c a r r i e d o u t b a s e d  p e r i o d day 1 6 2 t o 2 1 0 . The K e r r i s d a l e net r a d i a t i o n  4.5%.  The p e r c e n t a g e  g r e a t e r than w i t h c l e a r smaller The  site  recorded a c o n s i s t e n t l y  (Table 3 . 7 ) but the difference  (Table 2 . 8 ) . With c l e a r  measurement was  flux  on 4 7 d a y s ( F i g . 2 . 3 ) d u r i n g t h e  sky conditions  i swithin  the error of  the daytime  difference  differences associated with cloudy conditions s i t e s b u t t h e a b s o l u t e v a l u e s and d i f f e r e n c e s  temporal v a r i a b i l i t y  were  o f n e t r a d i a t i o n was i n v e s t i g a t e d u s i n g t h e site  (Appendix  r a d i a t i o n h a d a summer minimum c o e f f i c i e n t standard deviation  IV.1).  The m e a s u r e d n e t  o f v a r i a t i o n a l t h o u g h a maximum  ( F i g . 3 . 6 ) . The maximum mean m o n t h l y  a n d maximum mean  d a i l y v a l u e s b o t h o c c u r r e d i n J u n e ( F i g . 3 . 6 ) . May h a d a mean d a i l y t h a t was j u s t  slightly  A.E.S. A i r p o r t  less site  r e c o r d e d 1 . 3 7 » fewer hours  ( T a b l e 2 . 5 ) , y e t seven  than normal  s u n s h i n e h o u r s . The r e m a i n i n g f i v e  J u l y , August percentage  d i f f e r e n c e occurred i n January  a c t u a l hours  of sunshine  in 1 9 8 2  o f t h e t h i r t e e n months r e c o r d e d h i g h e r (January 1 9 8 2 , February,  and September) r e c o r d e d lower than normal  w i t h 9 6 . 8 hours  value  than t h e June v a l u e .  than normal  3.6.2  were  (Table 3 . 7 ) .  data measured a t t h e K e r r i s d a l e  The  larger  (577o  h o u r s . The l a r g e s t  l e s s than normal) but J u l y ,  l e s s than normal, had t h e l a r g e s t  deviation  i n terms o f  (Table 2 . 5 ) .  S t o r a g e Heat F l u x The  heat  unresearched  s t o r a g e term of t h e urban despite the fact  that  energy  balance remains  i t i s commonly s u g g e s t e d  c a n t l y g r e a t e r than i n r u r a l  areas  i n f o r m a t i o n almost  stems f r o m t h e d i f f i c u l t y  Oke  et a l .  certainly  ( 1 9 8 0 )  propose  (Oke e t a l . ,  1 9 8 0 ) .  largely  t o be s i g n i f i -  The p a u c i t y o f o f measurement.  a methodology f o r p a r a m e t e r i s i n g h o u r l y  4 9  T a b l e 3.7 C o m p a r i s o n o f n e t r a d i a t i v e f l u x e s b e t w e e n t h e K e r r i s d a l e a n d S u n s e t s i t e s ( d a y 162 - 2 1 0 )  ALL DAYS NUMBER OF DAYS  DAILY CLEAR  47  CLOUDY  18  29  DAYTIME A L L DAYS CLEAR 47  18  CLOUDY 29  KERRISDALE ( M J / m )  11.90  15.32  9.78  13.58  17.46  11.09  SUNSET ( M J / m )  10.80  14.34  8.64  12.57  16.71  10.46  KERRISDALE/SUNSET (%)  110.2  106.8  113.2  108.0  104.5  106.0  2  2  50  Fig.  3.6 A n n u a l h o u r l y n e t r a d i a t i o n by month f o r K e r r i s d a l e ( a ) D a i l y maxima, m i n i m a a n d mean (b) C o e f f i c i e n t o f v a r i a t i o n  §0.2-  o  J  F  M  A  M  J  J  A  S  Time (months)  51  6  N  6  j  urban heat  storage using e s t a b l i s h e d l i n e a r  r a d i a t i o n and heat  storages  i n m a t e r i a l s commonly e n c o u n t e r e d  a r e a s ; and a w e i g h t i n g o f these of greenspace and b u i l t storage  equations  land uses.  = ZAi i=l  where  The  according to the areal  The c o m p o s i t e h e a t  storage  versus net  (3.5)  L  1  i s f r a c t i o n of the t o t a l surface area covered by t h e i t h l a n d u s e t y p e ; a n d a^ ,bj a r e c o e f f i c i e n t s i n t h e p a r a m e t e r i s a t i o n f o r t h e i t h land use. variability  o f t h e computed s t o r a g e heat  d e p e n d e n t on t h e v a r i a b i l i t y  variability  of net r a d i a t i o n  ment t h e s i m p l e  flux  i s therefore  o f l a n d use w i t h i n t h e a r e a and t h e  (see s e c t i o n 3.6.1). F o r the suburban  l a n d use breakdown between greenspace and b u i l t  by Oke e t a l . ( 1 9 8 0 ) t o be o f s u f f i c i e n t  detail.  Using  environ-  was  found  the appropriate  land  information f o rK e r r i s d a l e the equations a r e : Q  = 0.25(Q*-31)  s  Qs = 0.68Q* The  calculated  storage heat  r a n g e o f 5.53 M J / s r / d result  of the net r a d i a t i o n  t h e maximum d a i l y  day  (3.6)  night  (3.7)  flux  f o r the K e r r i s d a l e  w i t h i n the year  (Appendix  distribution  IV.2,  study  F i g . 3 . 7 ) . As a  J u n e h a d t h e l a r g e s t mean m o n t h l y  f o r the year  occurred  i n December. A u g u s t was t h e  o n l y month i n w h i c h t h e minimum d a i l y v a l u e was g r e a t e r t h a n S i x o f t h e t h i r t e e n months h a d mean m o n t h l y v a l u e s their coefficient  area had a  s t o r a g e v a l u e s . The s m a l l e s t mean m o n t h l y v a l u e a n d  t h e minimum d a i l y v a l u e  that  fraction  (a,Q* + b )  spatial  primarily  and  i n urban  i s computed a s :  Q  use  r e l a t i o n s h i p s between n e t  of v a r i a t i o n  i s less  than  less  zero. than  z e r o . The c o e f f i c i e n t o f  v a r i a t i o n h a d a n a b s o l u t e minimum i n J u l y w i t h a v a l u e o f 0.396.  52  z e r o so  Fig.  3.7 A n n u a l h o u r l y s t o r a g e h e a t f l u x by month f o r K e r r i s d a l e ( a ) D a i l y maxima, m i n i m a a n d mean (b) C o e f f i c i e n t of v a r i a t i o n  3.6.3  Air The  Temperature spatial  variability  o f a i r t e m p e r a t u r e has b e e n s t u d i e d  v e r i n the form of urban heat (Oke,  1976)  island  studies using  d a t a from c a r  a n d t h e mean, a n n u a l t e m p e r a t u r e d i s t r i b u t i o n  s t a t i o n network  (Hay & Oke,  1 9 7 6 ) . The  spatial  pattern  c o r e . W i t h i n Vancouver  city  Vancou-  traverses  from the s t a n d a r d  is related  use w i t h t h e maximum t e m p e r a t u r e b e i n g r e c o r d e d i n t h e d e n s e s t area of the c i t y  in  to  land  built-up  t h e r e i s a range of  approxima-  te  tely  2 C b e t w e e n a r e a s on an a n n u a l b a s i s . As  i n d i c a t e d by Hay  s e c t i o n 3.6.1) l o n g t e r m a v e r a g e s o b s c u r e t h e g r e a t e r t h a t occurs i n the s h o r t e r T h e r e was  less  fell  within  Kerrisdale  site  than a t e n t h of a degree C e l s i u s  ( T a b l e s 2.4  the normal s i t e was  and A p p e n d i x  221  International Airport  I V . 3 ) . The  1976)  (cloudy) within  and  temperature whereas  t h e s t u d y a r e a . The  m o n i t o r e d w i t h a s h i e l d e d and a s p i r a t e d  thermistor  t e m p e r a t u r e r e c o r d e r and  tempera-  w h i c h had  o u t on d a y s  and  3.55m ( d a y 221)  roads w i t h  a i r t e m p e r a t u r e s were  thermometer  system  s e n s i n g s y s t e m had  t h e p r o b e m o u n t e d a t 1.05m  above the ground.  b e t w e e n 1445  and  2.2.  o c c a s i o n t h e r e was-a 4°C  On  this  27°C). The  second  the K e r r i s d a l e  1615h  on day  t r a n s e c t was  187,  The  first  a  (Oke  rela-  o u t b e t w e e n 1300 The  out 187)  out  a r e a shown i n F i g .  range of t e m p e r a t u r e  and O a k r i d g e s t u d y s i t e s .  (day  transect, carried  c o v e r e d the whole  carried  54  only  187  t i v e a c c u r a c y o f + 0.2°C (Oke & F u g g l e , 1 9 7 2 ) . T r a v e r s e s were c a r r i e d a l o n g b o t h a l l e y w a y s and  the  site).  t r a v e r s e s by a u t o m o b i l e were c a r r i e d  & M a x w e l l , 1 9 7 5 ) . The  Airport  a p a r t ( e x c l u d i n g J a n u a r y 1982  10 d a y s o f d a t a a t t h e K e r r i s d a l e  ( c l o u d y ) and  i n mean a i r  t h a n t h e s u g g e s t e d n o r m a l . Mean m o n t h l y  t u r e s were n e v e r more t h a n 1°C  Temperature  variability  difference  t e m p e r a t u r e i s o t h e r m s (Hay & Oke,  cooler  (see  term.  t e m p e r a t u r e f o r the y e a r between the Vancouver the K e r r i s d a l e  spatial  (1983)  and  (between 1340h  range of temperature  23  and  around measured  was  2.5°C ( b e t w e e n  than the s t r e e t s The  first  15.5 a n d 18.0°C). I n g e n e r a l t h e a l l e y w a y s w e r e  and t h e major  s t r e e t s w e r e warmer t h a n t h e s i d e  cooler  streets.  t r a n s e c t when t h e p r o b e was m o u n t e d a t 1.05m, m e a s u r e d warmer  temperatures  than recorded at the K e r r i s d a l e  tower, whereas f o r the second  t r a n s e c t , when t h e p r o b e was m o u n t e d a t 3.55m, t h e mean h o u r l y t e m p e r a t u r e s recorded  f o r the Kerrisdale  15.6°C f o r 1 4 0 0 h . T h a t as t h e s p a t i a l  t o w e r w e r e 18.9°C f o r t h e h o u r  i s , t h e m e a s u r e d t e m p o r a l v a r i a b i l i t y was t h e same  variability.  The mean a n n u a l a i r t e m p e r a t u r e the Vancouver  Internatonal Airport  months h a d warmer t h a n n o r m a l  f o r 1982 was 0.2°C l e s s t h a n n o r m a l a t  (Table 2.5), but f i v e  temperatures; January  t e s t d e v i a t i o n b e i n g 3.8°C warmer t h a n The mum  e n d i n g 1300h a n d  mean m o n t h l y  temperature  C) ( A p p e n d i x I V . 3 a n d F i g 3 . 8 ) .  1982 showed t h e g r e a -  normal.  f o r the K e r r i s d a l e  i n J u n e . The maximum mean d a i l y  of the t h i r t e e n  s i t e was a t i t s m a x i -  v a l u e o c c u r r e d i n J u n e on d a y 169 (25°  I n December t h e minimum mean m o n t h l y  tempe-  o r a t u r e was r e c o r d e d ( 3 . 4 - C ) . H o w e v e r , t h e minimum mean d a i l y v a l u e o c c u r r e d i n November on d a y 3 2 6 . The 3.8)  coefficient  o f v a r i a t i o n h a d a minimum i n t h e summer m o n t h s ( F i g .  b u t t h e r e were s e c o n d a r y minima i n J a n u a r y  the lowest c o e f f i c i e n t coefficient  of v a r i a t i o n  3.6.4 R e l a t i v e There  of v a r i a t i o n (0.763).  t o be a d a y t i m e  surface evapotranspiration  nocturnal  and F e b r u a r y had t h e h i g h e s t  Humidity  appears  the boundary  (0.136)  1982 a n d 1 9 8 3 . A u g u s t h a d  layer  surplus  specific  in a city  humidity d e f i c i t  due t o r e d u c e d  and t h e e n t r a i n m e n t o f d r i e r  airin  f r o m a b o v e by t h e e n h a n c e d c o n v e c t i v e d e v e l o p m e n t . i s often ascribed  55  t o c o n t i n u e d e v a p o r a t i o n and l e s s  The  3.8 A n n u a l h o u r l y t e m p e r a t u r e by month f o r K e r r i s d a l e ( a ) D a i l y maxima, m i n i m a a n d mean (b) C o e f f i c i e n t of v a r i a t i o n  dewfall  i n the c i t y ,  and t o t h e a d d i t i o n o f a n t h r o p o g e n i c m o i s t u r e (Oke,  1979). The  relative  h u m i d i t y measured a t the Vancouver  t h e s t u d y p e r i o d was 2% l o w e r t h a n n o r m a l  during  t h i r t e e n months ( F e b r u a r y , J u l y , mean m o n t h l y  The  mean a n n u a l  mean w i n t e r r e l a t i v e  than  monthly  h u m i d i t y was 67„ l a r g e r  than that  s i t e was 807 . The o  i n t h e summer  (Appen-  o f v a r i a t i o n w i t h d e c r e a s i n g mean  r e l a t i v e h u m i d i t y ( F i g . 3.9) i s due t o t h e i n v e r s e r e l a t i o n s h i p  minimum mean m o n t h l y  relative  variation occurred i n A p r i l .  Wind The  a t 1007 ) a n d S.D. o  h u m i d i t y and t h e l a r g e s t  The r a n g e  of r e l a t i v e  t h e y e a r was f r o m 37.57„ r e c o r d e d on J u l i a n  3.6.5  normal  normal.  b e t w e e n t h e mean ( w h i c h i s a p p r o a c h i n g a maximum l i m i t The  of the  a n d December b o t h h a d r e l a -  r e l a t i v e humidity at the K e r r i s d a l e  d i x I V . 4 ) . The i n c r e a s i n g c o e f f i c i e n t  Airport  ( T a b l e 2 . 5 ) . Three  and September) had a h i g h e r than  r e l a t i v e h u m i d i t y , whereas A p r i l  t i v e h u m i d i t i e s t h a t w e r e 6% l e s s  International  c o e f f i c i e n t of  humidity recorded during  day 150 t o t h e maximum 1007».  speed  wind  be e x p e c t e d  field  over a mesoscale  a r e a c o n t a i n i n g an u r b a n  t o be p e r t u r b e d as a c o n s e q u e n c e o f ( A u e r ,  1) d i f f e r e n c e s  i n t h e d e n s i t y and c h a r a c t e r i s t i c s  c o m p l e x may  1981):  of the roughness  ele-  ments ; 2) v a r i a t i o n s  i n the v e r t i c a l  transport  o f momentum t h r o u g h m e c h a n i c a l a n d  t h e r m a l m i x i n g ; and 3)  local,  heat  t h e r m a l l y induced p r e s s u r e p e r t u r b a t i o n s a s s o c i a t e d w i t h the urban  island. The  urban  environment  causes  c i e n t b u t i t s h o u l d be n o t e d mates (Oke, 1979).  that  a n i n c r e a s e i n momentum r o u g h n e s s  coeffi-  i t i s not easy  esti-  For example, Duchene-Marullaz  57  to obtain r e l i a b l e  ( 1 9 7 6 ) showed a t a s u b u r -  Fig.  3.9 A n n u a l h o u r l y r e l a t i v e h u m i d i t y by month f o r K e r r i s d a l e ( a ) D a i l y maxima, m i n i m a a n d mean (b) C o e f f i c i e n t o f v a r i a t i o n  58  ban  site The  i n Nantes  that  t h e d i r e c t i o n o f f e t c h was i m p o r t a n t .  urban wind speed p r o f i l e  l i g h t wind c o n d i t i o n s at night ter  temporal v a r i b i l i t y  i s o f t e n r a t h e r complex,  (Oke, 1979). Urban winds  than r u r a l  be o c c u r r i n g a t l o w - l e v e l s ,  a r e a s and even though  l e v e l s over a c i t y  than normal  w i t h a mean 2 km/h l e s s F o r most c l i m a t e direction  acce-  1973). Airport  speeds, the remainder r e c o r d e d  deviation  f r o m n o r m a l o c c u r r e d i n November  than normal.  stations  i n the Vancouver  area the prevalent  wind  i s f r o m t h e e a s t a n d s o u t h e a s t , w i t h a s e c o n d a r y maximum f r o m t h e  n o r t h w e s t . The l a t t e r tal  International  may  ( T a b l e 2 . 5 ) . Whereas s e v e n o f t h e t h i r t e e n  months r e c o r d e d h i g h e r t h a n n o r m a l w i n d l o w e r t h a n n o r m a l . The g r e a t e s t  grea-  deceleration  (Albert et a l . ,  The mean w i n d s p e e d r e c o r d e d a t t h e V a n c o u v e r 0.2 km/h g r e a t e r  also exhibit  i t i s q u i t e common t o o b s e r v e a r e l a t i v e  l e r a t i o n of a i r f l o w at higher  was  especially i n  i s especially  related  t o t h e w i n t e r passage  of fron-  storms and t h e n o r t h w e s t - s o u t h e a s t o r i e n t a t i o n o f the S t r a i t o f  G e o r g i a , w h i c h f u r t h e r c h a n n e l s t h e f l o w . The e a s t - w e s t a l i g n m e n t o f t h e f l o w i s a l s o c a u s e d by t h e l a n d / s e a b r e e z e c i r c u l a t i o n w h i c h i s common i n t h e summer a n t i c y c l o n i c The  Kerrisdale  site  situation  ( H a y & Oke, 1 9 7 6 ) .  h a d a mean w i n d s p e e d o f 1.3 m/s  ( A p p e n d i x I V . 5 ) . The maximum c o e f f i c i e n t  f o r the year  o f v a r i a t i o n a n d t h e maximum mean  d a i l y v a l u e o f w i n d s p e e d b o t h o c c u r i n December ( F i g . 3 . 1 0 ) . 1982  In January  t h e maximum mean m o n t h l y v a l u e o c c u r r e d . The minimum mean m o n t h l y  speed and c o e f f i c i e n t w i n d s p e e d was h i g h e r  of v a r i a t i o n  wind  o c c u r r e d i n S e p t e m b e r . The w i n t e r mean  t h a n t h a t o f t h e summer b u t t h e c o e f f i c i e n t  was  also  larger. The w i n d s p e e d s  r e c o r d e d a t t h e a i r p o r t were more t h a n t w i c e  recorded at the K e r r i s d a l e the Vancouver  site  f o r e a c h month. The w i n d s p e e d s  U.B.C. a n d V a n c o u v e r  59  Harbour  climate  that  measured a t  s t a t i o n s were c l o s e r t o  Fig.  3.10 A n n u a l h o u r l y w i n d s p e e d b y month f o r K e r r i s d a l e ( a ) D a i l y maxima, m i n i m a a n d mean (b) C o e f f i c i e n t o f v a r i a t i o n  maximum  mean  Time (months)  60  minimum  those a t the K e r r i s d a l e large was  site  ( T a b l e 3 . 8 ) . The p e r c e n t a g e  i n j u s t about a l l c a s e s , a l t h o u g h  only s l i g h t l y  (Table 3.8).  o f t h e phenomena r e q u i r e d f o r t h e w a t e r  a l l o w s the d e t e r m i n a t i o n of the r e p r e s e n t a t i v e n e s s of t h e measured  data r e l a t i v e tion  than K e r r i s d a l e  Analyses  Discussion of the v a r i a b i l i t y balance  t h e U.B.C. mean w i n d s p e e d f o r J u n e  l a r g e r a n d i n J u l y was l e s s  3.7 I m p l i c a t i o n s f o r S e n s i t i v i t y  d e p a r t u r e was  t o other urban areas  t o be u s e d f o r s e n s i t i v i t y The  i n Vancouver and t h e s i z e  analyses.  p r e c i p i t a t i o n m e a s u r e m e n t s showed t h a t i n t r a s i t e  c a t c h was s m a l l e r t h a n t h e i n t e r s i t e v a r i a b i l i t y . were t a k e n  t o be r e p r e s e n t a t i v e o f ' a v e r a g e '  on t h e s p a t i a l  distribution  of the v a r i a -  of normal annual  v a r i a b i l i t y of  Thus, the K e r r i s d a l e  c o n d i t i o n s i n the area. p r e c i p i t a t i o n across  data  Based  Vancouver  (Hay  & Oke, 1 9 7 6 ) a r a n g e o f + 5 0 % was c o n s i d e r e d a p p r o p r i a t e f o r s e n s i t i -  vity  analyses. As  the water  automatic  spatial  u s e d a t a w e r e f o r an a r e a e n c o m p a s s i n g 191 l o t s averaging  a n a l y s i s purposes, et  a 1.  f o rwithin  site variability.  t h e r e was  For s e n s i t i v i t y  a r a n g e o f + 55%, was c h o s e n b a s e d on t h e w o r k by G e y e r  (1963) i n B a l t i m o r e , which  takes  i n t o account  the influence of the  density of housing. Runoff water  balance  partitioning rage for  calculations.  study;rather i t i s a product  the s e n s i t i v i t y  f o r the r e t e n t i o n c a p a c i t i e s  analyses  of the  The m e t h o d o f d e t e r m i n a t i o n d e p e n d s on t h e  o f the catchment between p e r v i o u s and i m p e r v i o u s  v a l u e s were a s s i g n e d  Table  areas.  Ave-  of the surfaces but  t h e r a n g e was b a s e d on t h e d a t a p r e s e n t e d i n  3.4. The  to  was n o t m e a s u r e d i n t h i s  status of s o i l  within  the urban environment  i s v e r y v a r i a b l e due  t h e l a r g e number o f d i s t u r b a n c e s . T h i s i n f l u e n c e s t h e s o i l  61  water  storage  T a b l e 3.8 Mean m o n t h l y w i n d ( s o u r c e A.E.S.)  MONTH  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  KERRISDALE  6.1 5.8 5.3 6.1 4.9 4.2 4.2 3.8 3.6 4.5 4.1 5.0 4.8  speed  U.B.C.  7.3 8.7 6.8 8.4 6.5 4.5 2.6  (km/h).for t h e Vancouver  HARBOUR  AIRPORT  6.2 9.2 7.0 8.9  7.8 9.8 7.0 8.7 6.1 5.9 7.6 7.6 4.9 7.8 7.4 7.8  12.4 13.8 11.4 14.7 12.2 11.3 12.8 12.3 10.7 12.9 10.2 12.2  8.0  7.6  11.8  -  62  capacity, field  the f i e l d  capacity  of f i e l d  analysis  of i n f i l t r a t i o n  study because  maximum d a i l y  ranged between  r a t e s on p e r v i o u s s u r f a c e s  intensity.  than the  i nthis  s t u d y . Hence t h e v a r i a b i l i t y o f considered.  f o r n e t r a d i a t i o n was u s e d f o r t h e s e n s i t i -  a n a l y s e s . T h i s c h o i c e was b a s e d on c o n s i d e r a t i o n o f t h e m e a s u r e d  spatial variability The  and t h e p o s s i b l e  storage heat f l u x v a r i e s  ( f o r example  between  space between  instrumentation  spatially  greenspace and b u i l t  Sunset  than 37o i n t h e i r  storage heat f l u x Comb i n i n g  Temperature urban heat  island  variability  as a f u n c t i o n o f t h e l a n d c o v e r  ( 0 . 6 0 )  i s related  r e s e a r c h . Temperature  The bility  studies  spatial  (Oke,  f l u x was  of both net r a d i a t i o n analyses.  t o l a n d u s e , as d e m o n s t r a t e d by was v a r i e d  through a range of + 2 5 7 ,  ( H a y & Oke, 1 9 7 6 ) a n d u r b a n  1 9 8 2 ) .  variability  o f l a n d c o v e r between  caused a d i f f e r e n c e of  f o r the s e n s i t i v i t y  b a s e d on t e m p e r a t u r e n o r m a l maps o f V a n c o u v e r heat i s l a n d  i n green-  ( i f t h e same n e t r a d i a t i o n  the v a r i a b i l i t y  l a n d u s e a r a n g e o f + 2 5 7 , was u s e d  error.  a r e a s ) . The d i f f e r e n c e  and K e r r i s d a l e  ( 0 . 6 4 )  assumed f o r b o t h s i t e s ) . and  i s not of importance  I n f i l t r a t i o n w o u l d be i m p o r t a n t i n  e l e m e n t s u s e d i n i t s c a l c u l a t i o n were  A + 1 5 7 , range o f v a r i a t i o n  less  The i n t r a - s i t e  i s not the case.  E v a p o r a t i o n was n o t m e a s u r e d the c l i m a t i c  0 . 3 5 and 0 . 7 0 .  t h e r a t e c o u l d be a s s u m e d t o be g r e a t e r  precipitation  a r e a s where t h i s  vity  variability  c a p a c i t y w o u l d p r o b a b l y be o f t h e o r d e r o f 15%. The v a l u e s u s e d  variability this  The e f f e c t on  i s p r o b a b l y t h e most i m p o r t a n t . The i n t r a - s i t e  for the s e n s i t i v i t y  in  c a p a c i t y and t h e r a t e o f i n f i l t r a t i o n .  of r e l a t i v e impermeable  humidity i s related and permeable  l o c a t i o n o f c o m b u s t i o n s o u r c e s w h i c h have w a t e r vapour p r o d u c t s . The s p a t i a l v a r i a b i l i t y  6 3  within  to the v a r i a -  s u r f a c e s , and t h e as one o f t h e i r e n d  t h e s t u d y a r e a was assumed t o be  relatively  s m a l l . T h i s was  b i l i t y was  small,  combustion  s o u r c e s w e r e c a r s and  be  spatially  t h e same as  & Oke,  tion  t o be  fact  t h a t the temperature differences,  s p a c e h e a t i n g ( w h i c h may  s o u r c e s ) . The  and be  varia-  the  only  considered  range used f o r s e n s i t i v i t y  f o r the t h r e e c l i m a t e s t a t i o n s  1976) from  have s i m i l a r  form.  surrounding  analyses  the study  They show t h e p r e d o m i n a n t w i n d  the e a s t . A c t u a l s p a t i a l v a r i a b i l i t y  V a n c o u v e r i s l a r g e . The  of wind speed  w i n d s p e e d m e a s u r e d a t K e r r i s d a l e was  that at surrounding c l i m a t e s t a t i o n s . This  f o r e the s e n s i t i v i t y  i s probably  due  a n a l y s e s used a wide range of v a l u e s  water  f o r a year  balance  study of the K e r r i s d a l e /  t h e r e f o r e t h e s e a s o n a l and  a r e e n c o m p a s s e d . C o n s i d e r a t i o n , t h e n , has r e p r e s e n t a t i v e n e s s o f 1982. for  1982  T h i s c a n be  i n r e s p e c t to the  (Table 2.5).  The  some a n o m a l i e s ,  first but  t o be  within  less  than  to i t s s i t i n g There-  (between +  h a l f o f t h e y e a r and  the  was  t h a n n o r m a l ) . May  1983  was  last  65%  the t h i r d  the d u l l e s t  at the  Airport.  64  two  driest  on r e c o r d . The  carried variability  temporal o f A.E.S. climate  data  station  months c o n t a i n e d The  major d e v i a -  J u l y w e r e w e t t e r ; and on r e c o r d and  July  p e r i o d December 1982  much m i l d e r t h a n n o r m a l w i t h J a n u a r y  mest e v e r r e c o r d e d  t h e use  were c l o s e t o n o r m a l .  June d r i e r  January  temporal  l o n g term normal f o r the A i r p o r t  the remainder  w e t t e s t and  a r e a was  g i v e n to the  done t h r o u g h  ( J a n u a r y - A p r i l , and  fifth  Oakridge  s h o r t e r term  t i o n s were i n p r e c i p i t a t i o n ,  the  area  - 35%, o f m e a s u r e d v a l u e s ) . The  out  was  direc-  w i t h i n a l e s s e x p o s e d a r e a c o m p a r e d t o t h e A.E.S. c l i m a t e s t a t i o n s .  and  to  temperature.  Wind r o s e s (Hay  the  t h e r e a r e no m a j o r l a n d use  averaged for  b a s e d on  1983  being  the  Maywas -  war-  CHAPTER 4 4.1  WATER BALANCE: METHOD, RESULTS AND S E N S I T I V I T Y ANALYSIS  Methodology The  c a l c u l a t i o n of the water balance  u s i n g a computer 470/V8 c o m p u t e r  program  4.1.1  on t h e l e f t  basis  (BALDAY) w r i t t e n i n FORTRAN f o r t h e U.B.C. Amdahl  ( A p p e n d i x V ) . The s t r u c t u r e o f t h e p r o g r a m  calculation are outlined by c a p i t a l s  was c a r r i e d o u t on a d a i l y  i n F i g . 4 . 1 . The m a j o r  subroutines  and order o f are identified  hand s i d e o f t h e f i g u r e .  INPUT All  daily  data and parameters  T a b l e 4.1) a r e r e a d the a r r a y which  d e s c r i b i n g t h e catchment  i n at the beginning  stores the calculated  o f t h e program.  results  ( F i g . 4.1,  I n i t i a l i s a t i o n of  and c o n v e r s i o n o f t h e p i p e d -  i n w a t e r t o a d e p t h o f w a t e r a l s o o c c u r s w i t h i n t h e INPUT s u b r o u t i n e .  4.1.2  RUNOFF The  RUNOFF s u b r o u t i n e h a s two f u n c t i o n s :  1) t h e a d d i t i o n o f w a t e r t o t h e i n d i v i d u a l  s u r f a c e types; and  2) t h e c a l c u l a t i o n o f r u n o f f . The  first  step i s t o determine whether  p r e c i p i t a t i o n h a s o c c u r r e d . The  water  i s then d i v i d e d between t h e t h r e e s u r f a c e t y p e s :  gated  p e r v i o u s ; and u n i r r i g a t e d p e r v i o u s , a c c o r d i n g  the catchment The applied tion to  they  irri-  to the p r o p o r t i o n of  represent.  s u b r o u t i n e PART i s t h e n c a l l e d , t o t h e e n v i r o n m e n t . The f i r s t  s t o r a g e a r e a : t h e s t a t u s o f each  i n which  step  the water  i s t o add water  i s then checked.  t h e pavement r e t e n t i o n s t o r a g e c a u s e s  i t t o exceed  surplus water  i s added t o e x t e r n a l r u n o f f . S i m i l a r l y  the  and/or  irrigated  impervious;  unirrigated  65  r e t e n t i o n storages  i s actually t o each  reten-  I f the water a p p l i e d i t s capacity the  e x c e s s w a t e r added t o c o n t r i b u t e s to the s o i l  F i g 4.1 B a s i c s t r u c t u r e o f t h e BALDAY p r o g r a m  INPUT  -  read i n d a i l y data read i n parameters d e s c r i b i n g catchment i n i t i a l i s e results array c o n v e r t water p i p e d - i n t o a depth daily  RUNOFF  calculation  - add p r e c i p i t a t i o n t o s t o r a g e s @. r e t e n t i o n - p e r v i o u s - u n i r r i g a t e d - irrigated PART excess — storage excess — runoff ® . r e t e n t i o n - impervious PART excess — runoff - add s p r i n k l i n g water t o s t o r a g e s retention - pervious i r r i g a t e d PART excess — storage excess — runoff  EVAPORATION - c a l c u l a t e d f r o m c l i m a t o l o g i c a l d a t a i f p r e c i p i t a t i o n >, 5 mm f o r d a y o r i m p e r v i o u s r e t e n t i o n c o n t a i n s water — P r i e s t l e y and T a y l o r (1972) e l s e B r u t s a e r t and S t r i e k e r (1979) form o f e q u a t i o n m o d i f i e d f o r the suburban environment STORE  - s u b t r a c t e v a p o r a t i o n from s t o r a g e s (a), r e t e n t i o n - p e r v i o u s - u n i r r i g a t e d - irrigated - impervious ® . storage  CHSTOR  - s u b t r a c t t h e s t a t u s o f p r e c e d i n g day's s t o r a g e s  TOTAL  - c a l c u l a t e s monthly, s e a s o n a l and annual  OUTPUT  - writes  \  results  66  from  statistics  today's  T a b l e 4.1 D a i l y d a t a r e q u i r e m e n t s a n d c a t c h m e n t p a r a m e t e r s f o r BALDAY. Catchment parameter v a l u e s a r e f o r the K e r r i s d a l e / O a k r i d g e s i t e  DAILY DATA  UNITS  D a i l y Averages Day Net r a d i a t i o n Storage heat f l u x Temperature Relative humidity Wind speed Soil moisture  J u l i a n day W/m W/m °C 2  2  % m/s dimens i o n l e s s  Daily Totals Precipitation Water p i p e d - i n  mm m /d 3  VALUE  PARAMETER  Area Pervious-  unirrigated irrigated  (UAREA) (IAREA)  I n i t i a l Storage Conditions Soil Retention - pervious - unirrigated - irrigated - impervious Field capacity Displacement length Roughness l e n g t h - vapour - momentum H e i g h t o f wind measurements Mean w i n t e r w a t e r p i p e s Ratio of s p r i n k l i n g . t o vegetat ion  (DAY(1,9)) (DAY(1,10)) (DAY(1,27)) (DAY(1,11)) (SSMF) (D) (Z0V) (Z0M)  1  (MPIPES) (PERCEN)  Storage C a p a c i t i e s Soil Retention - pervious - unirrigated - irrigated - impervious  (ST0R) (VRETNU) (VRETNI) (PRETEN)  NOTE: 1. J a n u a r y t o M a r c h , November t o J a n u a r y  67  0.3015 0.3015  150.0 0.0 0.0 0.0  mm mm mm mm  0.55 3.5 m 0.052 m 0.52 m 9.0 m 0.7635 mm 1.0  150.0 mm 7.0x0.3015=2.11 2.11 mm 1.46x0.397=0.59  mm mm  s t o r a g e , and The  i f this capacity  i s exceeded  t h e w a t e r goes t o e x t e r n a l  p r o g r a m ' r e t u r n s t o t h e RUNOFF s u b r o u t i n e a t t h i s p o i n t  w i t h t h e w a t e r p i p e d - i n . T h i s component i s i n i t i a l l y internal  day was the  s e p a r a t e d between  (MPIPES) from the t o t a l w a t e r p i p e d i n . I f the w a t e r  l e s s t h a n o r e q u a l t o MPIPES t h e i n t e r n a l  runoff  d e p t h o f w a t e r p i p e d i n . H o w e v e r , i f t h e w a t e r use  g r e a t e r t h a n MPIPES t h e n t h e i n t e r n a l set  e q u a l t o M P I P E S . The  total  internal  w a t e r use  w a t e r use and  e x t e r n a l w a t e r use f r o m M P I P E S . The  w a t e r b e t w e e n t h e p e r v i o u s i r r i g a t e d and  irrigated  pervious area, with  On runoff  i s c a l c u l a t e d by program  i s set equal to  f o r t h e day  was  runoff  are  i s set t o the excess of the  partitioning  of the  piped-in factor  i s applied  to the  the remaining p o r t i o n going to the impervious the e x e c u t i o n goes t h r o u g h the  above.  the r e t u r n of c o n t r o l  c o m p o n e n t s . The  f o r the  t h e i m p e r v i o u s i s by t h e  a r e a . When t h e s u b r o u t i n e PART i s c a l l e d as d e s c r i b e d  daily  use  the i n t e r n a l  PERCEN. I t i s t h e p r o p o r t i o n o f t h e p i p e d s u p p l y w h i c h  sequence  to deal  and e x t e r n a l w a t e r use by s u b t r a c t i o n o f t h e mean w i n t e r  w a t e r use  runoff.  t o t h e RUNOFF s u b r o u t i n e t h e t o t a l  the a d d i t i o n of the i n t e r n a l then returns c o n t r o l  daily  and e x t e r n a l  runoff  t o t h e MAIN s e c t i o n o f t h e  program.  4.1.3  EVAP The  (Fig.  purpose  o f t h e EVAP s u b r o u t i n e i s t o c a l c u l a t e  daily evaporation  4.1). The  s a t u r a t i o n v a p o u r p r e s s u r e and  pressure curve are c a l c u l a t e d which requires  using  t e m p e r a t u r e d a t a . The  the s l o p e of the s a t u r a t i o n  vapour  t h e e q u a t i o n s p r e s e n t e d by Lowe  (1977)  vapour p r e s s u r e ( e ) can then a  be  d e t e r m i n e d from the r e l a t i v e h u m i d i t y ( h ) measurements: r  e  a  = h  r  x e  (4.1)  s  68  where e The (Ripley,  i s s a t u r a t i o n vapour p r e s s u r e .  s  p s y c h r o m e t r i c " c o n s t a n t " (Y) v a r i e s w i t h t e m p e r a t u r e and p r e s s u r e 1976; S t i g t e r ,  elevation  i s small  1 9 7 6 ) . The p r e s s u r e v a r i a t i o n r e c o r d e d a t one  s o t h e v a l u e o f Y was d e t e r m i n e d u s i n g t e m p e r a t u r e a n d  an e q u a t i o n ( 4 . 2 ) d e r i v e d  from M o n t e i t h (1973):  Y = 0.646 + ( 0 . 0 0 0 6 5 x T)  (4.2)  where T i s t e m p e r a t u r e . E v a p o r a t i o n r a t e s were c a l c u l a t e d  a c c o r d i n g t o a scheme d e v i s e d by Oke  and S t e y n ( 1 9 8 3 , p e r s . comm.) ( A p p e n d i x I I I ) . under  a variety  been v e r i f i e d The  o f summer/autumn c o n d i t i o n s w i t h i n V a n c o u v e r  f o r o t h e r seasons  sizes  T h i s model has p e r f o r m e d  or i n other  well  but has not  locations.  o f t h e d i s p l a c e m e n t a n d momentum r o u g h n e s s  l e n g t h s used a r e  t h o s e c a l c u l a t e d b y S t e y n ( 1 9 8 0 b ) f o r t h e S u n s e t a r e a . The d i s p l a c e m e n t l e n g t h was d e t e r m i n e d u s i n g K u t z b a c h ' s  (1961) and N i c h o l s o n ' s (1975)  n i q u e s w h i l e L e t t a u ' s ( 1 9 6 9 ) m e t h o d was u s e d water vapour  r o u g h n e s s was c a l c u l a t e d u s i n g  coefficient  f o r water vapour  (Brutsaert,  1982).  The  f o r momentum r o u g h n e s s . The the fact  the bulk  i s 10% of the drag c o e f f i c i e n t  l a t e n t h e a t o f v a p o r i s a t i o n w h i c h was c a l c u l a t e d  4.1.4  that  transfer  a t Z0M=0.52m  d e p t h o f w a t e r e v a p o r a t e d was d e t e r m i n e d u s i n g E = Q ^ / L  S t o r r and den H a r t o g ' s  tech-  V  where L  v  is  u s i n g temperature and  (1975) e q u a t i o n .  STORE The  STORE s u b r o u t i n e r e m o v e s t h e c a l c u l a t e d  e v a p o r a t i o n ( a s an e q u i v a -  l e n t depth o f water) from the suburban water budget. m i n e s w h i c h e q u a t i o n was u s e d t o c a l c u l a t e pitation).  I f eqn. I I I . l  was u s e d ,  69  Initially  i t deter-  e v a p o r a t i o n (dependent  then the t o t a l  on p r e c i -  depth of water evaporated i s  d i v i d e d a c c o r d i n g t o the p r o p o r t i o n of s u r f a c e types w i t h i n the catchment ( a s i n t h e RUNOFF s u b r o u t i n e  f o rthe a d d i t i o n of p r e c i p i t a t i o n ) ,  w a t e r i s removed from t h e i n d i v i d u a l evaporation If  than water then  r e t e n t i o n s t o r e s . When t h e r e  i t i s removed from s o i l  e q n . I I I . 2 was u s e d t o c a l c u l a t e  is  d i v i d e d b e t w e e n t h e two p e r v i o u s  ly  from t h e p e r v i o u s u n i r r i g a t e d  the evaporation  t h e depth  of water  l a n d uses o n l y . Water i s removed  r e t e n t i o n s t o r e . Secondly, a r e a , and t h i r d l y ,  e v a p o r a t i v e water i s e x t r a c t e d from s o i l  storage.  first-  the excess i s any r e m a i n i n g  CHSTOR The  CHSTOR s u b r o u t i n e  calculations.  I t calculates  i s the last  calculation  soil  storage)  4.1.6  TOTAL  irrigated  retention;  pervious  d a y . The  locations (impervious  unirrigated  balances.  The b a l a n c e s  runoff ratios,  r e t e n t i o n and  and m o n t h l y ,  c a l c u l a t e d a r e f o r the whole  environment and f o r the e x t e r n a l suburban  4.1.7  the d a i l y  a n d t h e n summed.  s u b r o u t i n e TOTAL c a l c u l a t e s  annual  s t a t u s on t h e p r e c e d i n g  i s performed f o r each o f t h e f o u r s t o r a g e  retention; pervious  The  s u b r o u t i n e used t o perform  t h e change i n s t o r a g e by c o m p a r i n g t h e u p d a t e d  s t a t u s of the water s t o r e s w i t h t h e i r  and  i s more  storage.  added t o t h a t removed from t h e i r r i g a t e d  4.1.5  and t h e  seasonal  suburban  environment.  OUTPUT OUTPUT i s t h e f i n a l  writes  the d a i l y  results  status of the storage  subroutine  i n t h e BALDAY p r o g r a m ( F i g . 4 . 1 ) . I t  of the water balances.  l o c a t i o n s and t h e d a i l y  70  The r e s u l t s  i n c l u d e the  change i n s t o r a g e .  4.2  Results  4.2.1  Introduction The w a t e r b a l a n c e r e s u l t s p r e s e n t e d i n t h i s  u s i n g t h e BALDAY p r o g r a m II  lists  the d a i l y  s e c t i o n were  ( A p p e n d i x V) a s d e s c r i b e d  i n s e c t i o n 4.1. A p p e n d i x  i n p u t d a t a w h i c h were measured as s t a t e d  except f o r the s t o r a g e heat  calculated  i n C h a p t e r 2,  f l u x w h i c h was d e t e r m i n e d as n o t e d i n s e c t i o n  3.6.2. The r a t i o n a l e b e h i n d t h e i n d i v i d u a l  catchment  parameter  values  ( T a b l e 4.1) was p r e s e n t e d i n C h a p t e r s 2 a n d 3. The  t o t a l water b a l a n c e f o r t h e whole  dale/Oakridge for  (including  the e x t e r n a l  (Figs.  suburban  area of K e r r i s -  t h e i n t e r n a l water component) d i f f e r s  from  system w i t h r e s p e c t t o the water use and r u n o f f  4.2 & 4 . 3 ) . U n l e s s t h e d a i l y  mean w i n t e r v a l u e t h e i n t e r n a l  total  o f w a t e r u s e was l e s s  that  terms than the  u s e i s assumed t o be e q u a l t o t h e mean  w i n t e r u s e . F o r t h e months May t o S e p t e m b e r a c t u a l  i n t e r n a l water use  e q u a l l e d p o s s i b l e w a t e r u s e ( a s d e f i n e d by p r o g r a m ) ( T a b l e 4 . 2 ) ; w h e r e a s for  t h e r e m a i n i n g months t h e m o n t h l y  u s e . The p r o g r a m  causes  t o t a l was l e s s  than the p o s s i b l e  water  t h e i n t e r n a l w a t e r use t o t o e q u a l t h e i n t e r n a l  runoff.  4.2.2 B a s e  Results  I n t e r n a l water  use and i n t e r n a l  r u n o f f have o p p o s i t e s e a s o n a l t r e n d s  when e x p r e s s e d a s p e r c e n t a g e s o f t h e i r proportional  (Fig.  totals  ( F i g . 4 . 4 ) . The  i m p o r t a n c e o f i n t e r n a l w a t e r u s e d e c r e a s e s i n t h e summer  months a s t h e a c t u a l occurring  respective  amount o f w a t e r u s e i n c r e a s e s , w i t h  i n June w h i c h c o i n c i d e s w i t h  4.2). In contrast  t h e month o f g r e a t e s t w a t e r u s e  the importance of i n t e r n a l  summer ( F i g . 4 . 4 ) . T h i s i s due t o two f a c t o r s .  71  the minimium  runoff  Firstly,  increases  i nthe  there i s less  Fig.  4.2 M o n t h l y w a t e r b a l a n c e f o r t h e w h o l e  Kerrisdale/Oakridge  250  200-  ~ 150E  J  F  M  A  M  J  J A S Time (months)  72  O  N  .  D  J  system  Fig.  4.3  E x t e r n a l monthly water balance f o r K e r r i s d a l e / O a k r i d g e  73  T a b l e 4.2 C o m p a r i s o n o f a c t u a l  MONTH  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  N  and p o s s i b l e monthly water use  INTERNAL WATER USE (mm/month) ACTUAL POSSIBLE  10 28 31 30 31 30 31 31 30 31 30 31  7..49 21. .34 22..33 22.,45 23.,67 22..90 23.,67 23.,67 22..90 23.,45 22.,21 22..98  7 .64 21 .38 23 .67 22 .90 23 .67 22 .90 23 .67 23 .67 22 .90 23 .67 22 .90 23 .67  21  15.,34  16 .03  NOTE: N i s t h e number o f d a y s i n t h e 'month'  74  Fig.  4.4  M o n t h l y i n t e r n a l w a t e r u s e and r u n o f f , and t h e i r p r o p o r t i o n o f t o t a l w a t e r use and r u n o f f (Note the broken l i n e s i n the monthly i n t e r n a l water use/ r u n o f f a r e t h e t o t a l o f t h e two J a n u a r y p e r i o d s )  75  precipitation  i n t h e summer months ( F i g . 4.2) a n d t h e r e f o r e  r u n o f f , and s e c o n d l y , the  external runoff  VI).  The s o i l  108  the s o i l  water storage  i s occurring only  storage  is full  except  nal  external runoff  f o roccasional  runoff  runoff  represents  can occur only  (Appendix  days u n t i l  J u l i a n day  day 289 ( F i g . 4 . 5 ) . D u r i n g  from the i m p e r v i o u s a r e a .  t h e most s i g n i f i c a n t  i n May, t h e month w i t h  a t c a p a c i t y so  from the impervious area  and does n o t r e t u r n t o c a p a c i t y u n t i l  period  i s no l o n g e r  less natural  proportion  least precipitation  of t o t a l  The  this inter-  monthly  ( F i g . 4 . 2 ) . T h e r e was a  d r o p i n s i g n i f i c a n c e i n J u l y due t o t h e l a r g e amount o f p r e c i p i t a t i o n received can  i n t h i s month ( F i g . 4 . 4 ) . A s i m i l a r c h a n g e f r o m t h e g e n e r a l  be o b s e r v e d i n A p r i l The  summer ( A p r i l  due a l s o t o a l a r g e p r e c i p i t a t i o n r e c e i p t .  t o September i n c l u s i v e ) e x t e r n a l water  (Table  4.3) h a d a p p r o x i m a t e l y  pipes.  Evaporation  equal  inputs  was t h e m a j o r p r o c e s s  f o r removal of water from the  is  i n t h e summer b u t  i n winter.  In the w i n t e r  p r e c i p i t a t i o n was t h e p r i m a r y s u p p l i e r o f w a t e r . The  from the area  was 9 0 % o f t h e e x t e r n a l o u t p u t  (Table  4.3), 86.5% of  a n n u a l r u n o f f . The n e t a c c u m u l a t i o n o f w a t e r i n s t o r a g e due t o t h e r e t e n t i o n s t o r a g e s  compared t o s t a r t i n g The  (Fig.  t h e y e a r empty ( A p p e n d i x V I ) .  s i g n i f i c a n c e o f p r e c i p i t a t i o n as an i n p u t  to the environment  was F e b r u a r y w i t h piped  t o the water  the p i p e d - i n water  4 . 6 ) . The p e a k i n p i p e d - i n w a t e r o c c u r r e d  applied  over the year  c o n t a i n i n g w a t e r a t t h e end o f t h e y e a r  d e c r e a s e s i n t h e summer months w h i l e  the  of water  8% ( o r 73 mm)  runoff the  balance  o f water from p r e c i p i t a t i o n and  s u b u r b a n c a t c h m e n t , w i t h d r a w i n g 8 1 % ( o r 482 mm) only  trend  supply  i n June w i t h  ( F i g . 4 . 3 ) , whereas t h e peak t o t a l  232 mm b e i n g  balance increases  112 mm  being  input  month  s u p p l i e d by p r e c i p i t a t i o n a n d 1.5 mm  from  supply.  Evaporation  increased  i n s i g n i f i c a n c e i n t h e summer months as a p r o -  76  Fig.  4.5 D a i l y  soil  moisture  (measured/interpolated)  and storage  (computed)  11  r-  a  a  ***** a  CM _J  UJ , D a to o  a  LLJ CD LD CC  m o a CO  tr o  h— CO a  a  a  O CD  x  * m  SOIL STORAGE SOIL MOISTURE  a  a  102.0  132.0  122.0  132.0  142.0  152.0  162.0  202.0  DRY  232.0  222.0  232.0  242.0  252.0  — f —  262.0  211.0  -I  282.0  292.0  302.0  3J2.0  322.0  332.0  342.0  352.0  362.0  372.0  382.0  392.0  T a b l e 4.3 S e a s o n a l w a t e r  balance  p  Whole  f o r Kerrisdale/Oakridge  +  I  =  E  +  S +  r  System  Summer  298.0 40.6  435.5 59.4  482.1 65.7  -17.3 -2.4  268.7 36.6  mm  Winter  916.7 86.7  140.7 13.3  72.7 6.9  21.5 2.0  963.2 91.1  mm  1214.7 67.8  576.2 32.2  554.8 31.0  4.2 0.2  1231.8 68.8  mm %  S umme r  298.0 50.1  296.2 49.9  482.1 81.1  -17.3 -2.9  129.4 21.8  mm %  Winter  916.7 99.4  5.5 0.6  72.7 7.9  21.5 2.3  828.0 89.8  7o  1214.7 80.1  301.7 19.9  554.8 36.6  4.2 0.3  957.4 63.1  Year  External  Year  7„  7o  System  78  mm  mm  7„  Fig.  4.6 S u b u r b a n w a t e r b a l a n c e f o r K e r r i s d a l e / O a k r i d g e a r e a and f o r t h e e x t e r n a l e n v i r o n m e n t  — — — J  1  F  M  1  A  1  M  1  J  evaporation runoff change in storage 1  1  Time Cmonths)  79  (7o) f o r t h e w h o l e  J  1  A  T  S  1  O  1  N  1  D  J  cess of water removal April was  and May  were t h e months i n w h i c h  the g r e a t e s t  water  while runoff  system  the removal of water  ( F i g . 4 . 3 ) , w h e r e a s O c t o b e r had  monthly  (that  external  the l a r g e s t  addition  t r e n d s of the w a t e r b a l a n c e components f o r the  i s , internal  only  ( F i g . 4.6)  and e x t e r n a l ) have t h e same s h a p e  of  whole  as f o r t h e  b u t t h e p r e c i p i t a t i o n and e v a p o r a t i o n r e g i m e s  external  runoff ratios  f o r i m p e r v i o u s s u r f a c e s , as w o u l d be  t e d , a r e h i g h e r t h a n f o r t h e p e r v i o u s s u r f a c e s and environment  4.2.3  are  Kerrisdale/Oakridge results  e x t e r n a l water balance r e s u l t s  1982  compare f a v o u r a b l y w i t h  don,  1981)  system  but the r a t i o  t h e same. The  the catchment  by r u n o f f  t h e r e was  period i n 1980  to p i p e d supply  amount o f e v a p o r a t i o n was  of (Lou-  remained  approximately  same p r o p o r t i o n o f w a t e r was  ( 1 4 % ) i n b o t h y e a r s a l t h o u g h 1982  v o l u m e o f w a t e r . The  i s , t h e r e was  f o r t h e same p e r i o d  of p r e c i p i t a t i o n  total  with  a g r e a t e r amount o f w a t e r a d d e d t o t h e  i n b o t h y e a r s ( T a b l e 4 . 4 ) . The  actual  external  f o r the J u l y - August  the r e s u l t s  ( T a b l e 4 . 4 ) . T h e r e was  i n 1982  virtually  the t o t a l  expec-  ( F i g . 4.7).  C o m p a r i s o n s o f t h e 1982 other r e s u l t s The  that  from s t o r a g e  prominent. The  mm  decreased ( F i g . 4.6).  to storage. The  less  from the catchment  180  removed  had a  from  greater  s m a l l c h a n g e i n s t o r a g e i n 1980 was n e g a t i v e ;  a net removal  of water  from s t o r a g e whereas i n  1982  a net a d d i t i o n of water.  Water b a l a n c e c a l c u l a t i o n s c l i m a t e normals  r e p o r t e d by Hare and Thomas ( 1 9 7 9 ) b a s e d  (1941-1970) f o r Vancouver  T h o r n t h w a i t e water budget  methodology  component:  80  International  Airport  d i d not i n c l u d e a p i p e d - i n  using water  the  on  Fig.  4.7 M o n t h l y r u n o f f r a t i o s f o r O a k r i d g e  (i.e.  runoff/precipitation)  1.0  J  F  M  A  M  J  J  A  Time (months)  81  S  O.  N  D  J  T a b l e 4.4  Comparison of the K e r r i s d a l e / O a k r i d g e water budget A u g u s t 1982 w i t h t h a t i n 1980 ( L o u d o n , 1981)  p +  1982  1980  T a b l e 4.5  I  =  E  +  -  S + r  103 45  128 55  182 79  16 7  33 14  mm  90 46  106 54  181 93  -13 -7  28 14  mm  %  7o  Comparison of the K e r r i s d a l e / O a k r i d g e A u s t r a l i a ( B e l l , 1972) w a t e r b a l a n c e  P  i n July  + I + G  ==  E + S +  r  Sydney  1150 77  333 22  16 1  736 49  0 0  763 51  mm %  Vancouver  1215 68  576 32  0 0  555 31  4 0  1232 69  mm %  82  results  with  the Sydney,  p  =  1068 The  E  +  = 533  r  (4.2)  + 535  mm  amount o f e v a p o r a t i o n c a l c u l a t e d  that calculated  f o r 1982  ( 5 5 5 mm),  f o r an a n n u a l p e r i o d  is similar  b u t t h e p r e c i p i t a t i o n and  r u n o f f a r e l o w e r ( T a b l e 4 . 3 ) . The  partitioning  year i s d i f f e r e n t  studies;  b e t w e e n t h e two  of the budget  this  s t u d y has  to  therefore through the  consistently  l o w e r e v a p o r a t i o n i n t h e w i n t e r months and h i g h e r v a l u e s i n t h e summer. Thus t h e s i m i l a r i t y ly  of the annual water b a l a n c e s i s p a r t i a l -  coincidental. The  annual water b a l a n c e from t h i s  s t u d y i s not d i r e c t l y  w i t h o t h e r u r b a n w a t e r b a l a n c e s t u d i e s due mate, the a c t u a l (see Chapter  f o r m a t o f t h e w a t e r b a l a n c e and  1 ) . Of  has  had a l a r g e r  the p i p e d - i n water  a l a r g e r a c t u a l volume o f water removal  Vancouver  t o Sydney's  was  a p p r o x i m a t e l y 470 mm  a more s i g n i f i c a n t  greater  regime  unregulated Langley  the  from  This i s  t h a n i n S y d n e y and h e n c e  formed  output of the water b a l a n c e .  a s m a l l catchment  f l o w was  (West  cho s e n . The  h a s a d r a i n a g e a r e a o f 11.4 122°  water  the o t h e r hand, the r u n o f f i n  f o r 1982  with a  Creek) east of Vancouver  West C r e e k c a t c h m e n t  3 1 ' 48''  W.  km The  and  i s gauged near  i s located at l a t i t u d e  p r e c i p i t a t i o n data used  83  local  with  ( S t a t i o n no. 08MH098) by t h e W a t e r S u r v e y o f C a n a d a . The  longitude  the  and a c c o u n t e d f o r  i n Sydney t h a n Vancouver.  I n o r d e r t o compare t h e O a k r i d g e r u n o f f r a t i o s natural  to the  supply of water both from  more s i g n i f i c a n t  warmer c l i m a t e . On  cli-  only  s u p p l y b u t assumed no a d d i t i o n  ( T a b l e 4 . 5 ) . E v a p o r a t i o n was  p r o b a b l y due  i n T a b l e 1.3  t h e p i p e d - i n w a t e r as an i n p u t  Oakridge catchment  p r e c i p i t a t i o n and groundwater  1972)  i n the  t h e l a n d use c o n s i d e r e d  the annual water b a l a n c e s l i s t e d  Sydney s t u d y ( B e l l , b a l a n c e . The  to the d i f f e r e n c e s  comparable  an Fort  catchment  4 9 ° 08'  i n the r a t i o  37'' were  N,  those N,  c o l l e c t e d by  122°  50'  The  W.  1982  t h e A.E.S. a t W h a l l e y  The  data  Oakridge  set i s not  Forest Nursery  complete  runoff ratios  situated  f o r the year  and  from  the water  f o r the e x t e r n a l environment  Thomas ( 1 9 7 9 ) ( F i g . 4 . 8 ) .  The  balance  p e r s i s t e n c e of r u n o f f i n t o  West C r e e k i s p r o b a b l y  due  is  a f a c t o r which  c o n s i d e r e d i n the  was  not  to groundwater i n f l u e n c i n g  b i a s e d the computed r u n o f f p a t t e r n ( t h a t g r o u n d w a t e r and  t h e n r e t u r n as  s m a l l e r t h a n West C r e e k ,  4.2.4  The ter  soil  2) and  with  ability their  area but gated  temporal to  the  and In  by  midwinter  s t a t u s of the  i n the In  prevents  I t s h o u l d be  two  to  study area i s  major.  on a w e e k l y  basis  (Chap-  soil  noted  storage  this  to h e l p assess  term.  F i g . 4.5  t h a t the s o i l  the  is a plot  moisture  data  of  were  unirrigated irri-  area.  the computed s o i l as  s t o r a g e d i d not  the observed  storage having a set can  go  s t o r a g e r e s u l t s a r e r e p r e s e n t a t i v e of the combined  variability  variability found  daily  unirrigated  the s o i l  i s not  i n t e r p o l a t i o n b e t w e e n m e a s u r e m e n t s made i n an soil  have  i n t e r p o l a t e d between measurements were compared  o f t h e BALDAY p r o g r a m t o d e t e r m i n e  determined  so may  This  Storage  the d a i l y v a l u e s  daily variation.  Hare  t h e midsummer  r u n o f f i n a l a t e r m o n t h ) . The probably  a  calcu-  the b a s e f l o w .  suburban area  m o i s t u r e m e a s u r e d a t t h e Hudson s i t e  the c a l c u l a t e d  the  i s , p a r t o f t h e r u n o f f may  hence the e f f e c t  S o i l M o i s t u r e and  follow  f o r V a n c o u v e r r e p o r t e d by  in  11'  ( F i g . 4.8).  s i m i l a r m o n t h l y t r e n d t o t h a t o f t h e West C r e e k c a t c h m e n t and lated runoff ratios  a t 49  soil  limit  plots  f o r the r e m a i n i n g  summer t h e s t e a d y a v a i l a b i l i t y the computed o v e r a l l  soil  84  m o i s t u r e . T h i s i s due  of  occur only i f a decrease  show t h e same d e g r e e partially  150mm so t h a t once i t i s o c c u r s . The  full  same g e n e r a l t r e n d i s  months.  of water  storage  from  from  of  the p i p e d - i n s u p p l y  following  the  general  4.8 M o n t h l y r u n o f f r a t i o s f o r K e r r i s d a l e / O a k r i d g e , V a n c o u v e r ( H a r e & Thomas, 1979)  Time (months)  85  West C r e e k a n d  decrease  e x h i b i t e d by u n i r r i g a t e d m o i s t u r e  moisture  showed a g e n e r a l d e c r e a s e  whereas the s o i l  4.2.5  Evaporation Kalanda  heat was  storage  of moisture  attempt  t o answer t h i s  sources  of water a v a i l a b l e  The 4.9. day  their  167. T h i s  study  s t u d y was c a r r i e d  to support  to support  these  rates w i l l  through  e t a 1.  (1980),  but t h i s  loss  "what  ?" To  r a t e s and t h e  be c o n s i d e r e d f o r  the year  i s plotted  inFig.  ( 1 4 . 7 MJ/m /d) o c c u r r e d on 2  r a t e s than  i s t o be e x p e c t e d  those  since  their  o u t f r o m m i d - A u g u s t t o e a r l y O c t o b e r 1977 w h i c h i s a f t e r (see Chapter 3 ) .  r a t e s v a r i e d through  t h e summer i n r e s p o n s e  the evaporation  fell  to p r e c i -  ( F i g . 4 . 9 ) . As i n t h e K a l a n d a  r a t e s were n o t e d  to remain high a f t e r  f o r example, the p e r i o d f o l l o w i n g  only  1.39mm o f r a i n  d a y 176 ( F i g . 4 . 9 ) . T h i s p e r i o d a l s o c o n t a i n s t h e h i g h e s t  a t i o n r a t e ( s e e above) f o r the year, e l e v e n  days a f t e r  e v a p o r a t i o n . T h a t i s , on t h e d a y o f a n d on t h e day f o l l o w i n g the e x t e r n a l water use remained  low: a f t e r  on d a y evapor-  a precipitation  The w a t e r u s e f o r t h i s p e r i o d f o l l o w s a t r e n d s i m i l a r  steadily.  latent  ( F i g . 4 . 9 ) . F o r e x a m p l e t h e r e was a r e d u c t i o n i n t h e e v a p o -  moderate r a i n f a l l :  event.  r a t e s of water  e v a p o r a t i o n o f 6.00 mm  r a t i o n on d a y 176 when 2.5 mm o f r a i n  until  these  c o n t a i n s even h i g h e r e v a p o r a t i o n  evaporation  p i t a t i o n events  156  " r a t h e r large magnitude"  question the s i z e of the evaporation  the peak o f energy a v a i l a b i l i t y  a l . study  ( F i g . 4.5).  e r r o r a n a l y s i s but posed t h e q u e s t i o n  d a i l y v a r i a t i o n of evaporation  r e p o r t e d by K a l a n d a  et  increase,  study.  The maximum d a i l y  The  a decrease  a general  soil  Variability  f l u x measurements a f t e r  the p r e s e n t  t o d a y 172 a n d t h e n  d i d n o t show s u c h  e t a l . (1980) a c c e p t e d  the source  m e a s u r e m e n t s . The J u n e  to that of che  rainfall  t h i s w a t e r use b e g a n t o r i s e  The r e d u c t i o n i n e v a p o r a t i o n a n d w a t e r u s e on d a y s 164 a n d 165  86  Fig.  22.0  32.0  42.0  52.0  62.0  72.0  82.0  92.0  102.0  132.0  122.0  132.0  142.0  152.0  162.0  172.0  162.0  192.0  202.0  212.0  DRY  222.0  232.0  242.0  252.0  262.0  272.0  282.0  292.0  302.0  33 2 . 0  322.0  332.0  4.9 D a i l y e x t e r n a l w a t e r b a l a n c e f o r K e r r i s d a l e / O a k r i d g e  342.0  352.0  362.0  372.0  382.0  %~\  392.0  can  be a t t r i b u t e d  to these  days b e i n g c l o u d y  until  noon and  then  becoming  sunny ( F i g . 4.9). The on  day  w a t e r f o r e v a p o r a t i o n was  157,  than  until  evaporated,  cloudy p e r i o d (days be  165  s u p p l i e d from both The  importance  r a t e s can  be  a s s u m i n g no  on  this  returning  On  The  lower  166)  and  the p i p e d  supplementation because there the  lower  to f u l l  c a p a c i t y on  p i p e d w a t e r s u p p l y was  not  i s no  important  supply i n the  more w a t e r  irrigated  Using  support  a v a i l a b l e , but  the  storage  when 1=0,  o c c u r r e d on  water supply  i s minimal  ( F i g . 4.9).  88  evapo(see  storage day  273  160  to  be  before  t h e BALDAY p r o g r a m i t c a n  be  the e v a p o r a t i o n r a t e s i f the  the program does not  limit  the  storage. is therefore  the e v a p o r a t i o n  b e t w e e n p e r i o d s o f r a i n f a l l . I n t h e w i n t e r months t h e w a t e r and  that i s ,  is indicated  a minimum on day  summer months t o h e l p m a i n t a i n  from p r e c i p i t a t i o n  to  evaporation  of p i p e d - i n water to the e x t e r n a l environment  is primarily  once a g a i n  pervious area  mm  The  ( F i g . 4.9).  in maintaining  e v a p o r a t i o n r a t e s w i t h r e s p e c t to s t a t u s of s o i l The  supply  s t a t u s o f 96.8  359.  seen t h a t the environment c o u l d not  while  o f t h e b u d g e t ( F i g . 4 . 1 0 ) . The  to drop u n t i l day  storage  g a i n i n the s t o r a g e .  the water b a l a n c e  b u t when 1=0  continues  t h e r e was  e v a p o r a t i o n r a t e s the change i n  storage  p i p e d - i n water, and  a net  soil  decreased  caused water f o r e v a p o r a t i o n  storage  minimum s o i l  day  t h a t day  of the p i p e d water s u p p l y  irrigation  when t h e r e was 79.2  161.  h e n c e t h e r e was  and  the  s e c t i o n 4.1.3). Despite larger.  day  c o n s i d e r e d by c a l c u l a t i n g  r a t i o n r a t e s are  was  from the  a f t e r w h i c h t h e amount s u p p l i e d f r o m s t o r a g e  t h e w a t e r use w e n t up supplied  supplied primarily  for  rates evaporation  s t o r a g e because the e x t e r n a l p i p e d - i n  Fig  4.10  M o n t h l y w a t e r b a l a n c e w i t h no p i p e d w a t e r Kerrisdale/Oakridge  89  supply for  4.2.6 C o m p a r i s o n o f t h e O a k r i d g e W a t e r Use w i t h O t h e r R e s i d e n t i a l A r e a s Geyer e t a l . (1963) c a r r i e d tial  out a study  o f water use i n f o u r  areas of B a l t i m o r e , Maryland w i t h a metered water supply  four year  period  1959 t o 1 9 6 3 . The a r e a  daily  demand w i t h The  i n consumption per  i n c r e a s i n g l o t s i z e a n d an i n c r e a s e decreasing  Oakridge study  site  density  during the  h a s a warm t e m p e r a t e c l i m a t e w i t h a  h u m i d summer. They f o u n d t h a t t h e r e was an i n c r e a s e dwelling unit with  residen-  i n magnitude of the  (Table 3.4).  h a s a l a r g e r c o n s u m p t i o n t h a n w o u l d be e x p e c -  t e d from t h e Geyer e t a l . (1963) r e s u l t s  (Table  4 . 6 ) . T h i s may be due t o '  four f a c t o r s : 1) t h e V a n c o u v e r w a t e r s u p p l y i s not a r e s t r i c t i n g 2)  devices  d i f f e r e n c e s i n a t t i t u d e s to gardening;  first  i n the  and  f a c t o r ' a p p e a r s t o be t h e most i m p o r t a n t  (Table  4.6) f i t s  Flack,  1968). I n Vancouver not only  t h e same p a t t e r n a s f l a t  the p r o p o r t i o n of s p r i n k l i n g  larger The  w i t h i n t h e home h a s i n c r e a s e d  differences i n climate. The  but  cost  20 y e a r s ;  3) c u l t u r a l 4)  r a t e and t h e r e f o r e  factor;  t h e number o f w a t e r u s i n g last  i s charged at a f l a t  than f o r the B a l t i m o r e  than B a l t i m o r e  i s the d a i l y  (Table  area  4.7). (Hanke &  average consumption  with  comparable  high,  l o t size.  2.5) i s s l i g h t l y w e t t e r  b u t i t s summer i s c o m p a r a t i v e l y  90  (Table  data  o f t h e t o t a l w a t e r use i s s i g n i f i c a n t l y  residential  "normal" c l i m a t e of Vancouver  rate areas  as t h e O a k r i d g e  drier.  and c o o l e r  T a b l e 4.6 R e s i d e n t i a l w a t e r u s e d a t a f o r B a l t i m o r e a n d O a k r i d g e , V a n c o u v e r  AREA STUDIED  LOT SIZE  (m ) 2  DONNYBROOK APARTMENTS COUNTRY CLUB PARK PINE V A L L E Y HAMPTON  CONSUMPTION FOR GIVEN PERIOD AVERAGE MAXIMUM ANNUAL DAY (m /d/dwel1ing u n i t )  RATIO S P R I N K L I N G AS MAXIMUM DAY % OF ANNUAL TO WATER USE AVERAGE ANNUAL  3  102  0.59  0.80  1.35  7 .7  650  0.86  2.49  2.90  17 .6  706 2601  1.00 1.26  4.13 4.95  4.14 4.16  18 .6 39 .2  669  1.69  8.48  5.02  52 .4  1  1  1  1  OAKRIDGE  2  NOTE: 1. G e y e r e t a l . ( 1 9 6 3 ) 2. P r e s e n t s t u d y  T a b l e 4.7 W a t e r u s e i n m e t e r e d a n d f l a t ( a f t e r Hanke & F l a c k , 1 9 6 8 )  rate areas  METERED AREA FLAT RATE AREA (m /day/dwelling unit) 3  AVERAGE ANNUAL LEAKAGE & WASTE HOUSEHOLD SPRINKLING  0.095 0.935 0.704  0.136 0.893 1.590  TOTAL  1.734  2.619  MAXIMUM DAY  3.706  8.911  91  4.2.7 S t a t i s t i c a l The  statistical  was c a r r i e d Regression August  E s t i m a t i o n of the Oakridge e s t i m a t i o n of water  W a t e r Use  use v i a c l i m a t o l o g i c a l  o u t by L o u d o n ( 1 9 8 1 ) f o r t h e O a k r i d g e e q u a t i o n s were d e v e l o p e d  catchment  b a s e d on 35 d a y s o f d a t a  sons i s t h e c o e f f i c i e n t  i n the J u l y  -  2  o f d e t e r m i n a t i o n ( r ) . The r  mated p r o p o r t i o n o f t h e v a r i a n c e o f t h e w a t e r linear  r e g r e s s i o n on t h e i n d e p e n d e n t  proportion 1980).  (Table 4.8).  1980 p e r i o d . The m e a s u r e o f c o n c o r d a n c e t o be u s e d i n t h e c o m p a r i 2  its  variables  free  Using  from  simple  i s the e s t i -  u s e t h a t c a n be a t t r i b u t e d t o  variables, while 1 - r  the chosen independent linear  value  variables  r e g r e s s i o n , temperature  d e s c r i p t o r o f t h e v a r i a n c e . T h i s was a l s o f o u n d  (Snedecor  was f o u n d  i s the &  Cochran,  t o be t h e b e s t  f o r t h e 1982 s t u d y ,  irres-  p e c t i v e o f t h e t i m e p e r i o d u n d e r c o n s i d e r a t i o n ( T a b l e 4 . 9 ) . The  application  of t h e Loudon e q u a t i o n s  annual  basis provided r residential  2  s t u d y on an  v a l u e s b e l o w 0.60 when c o m p a r e d w i t h t h e m e a s u r e d  u s e . However when t h e e q u a t i o n s  August p e r i o d ( t h a t and  1 a n d 3 ( T a b l e 4.8) t o t h i s  a r e a p p l i e d t o t h e J u l y and  i s , t h e same m o n t h s as L o u d o n ) an r  2  o f between  0.70  0.75 was o b t a i n e d . Loudon's e q u a t i o n s  2,4,5 a n d 6 ( T a b l e 4.8) w e r e a p p l i e d u s i n g  s o l a r r a d i a t i o n data c o l l e c t e d S o l a r R a d i a t i o n Network both  time  a t the Langara  (Hay, 1983).  scales. Equations  site  Equations  5 and 6 p r o d u c e d  r  o f t h e U.B.C.  2 and 4 performed  incoming  Mesoscale poorly f o r  v a l u e s b e t w e e n 0.70 a n d  0.75 f o r t h e J u l y - A u g u s t p e r i o d b u t t h i s was n o t an i m p r o v e m e n t on equation  1.  Given riods  that regression equations  the r e s u l t s  calculated  f o r the r e s t  unrealistic. as, August  for July  July  are developed  and A u g u s t  for specific  time pe-  1982 a r e r e a s o n a b l e . The v a l u e s  o f t h e y e a r were o f t e n n e g a t i v e and t h e r e f o r e  1982 h a d 4 1 % l e s s  sunshine  1982 h a d 6 3 % more p r e c i p i t a t i o n 92  recorded  a n d 7% l e s s  than J u l y sunshine  1980 w h e r e hours  than  Table  4.8 A p p l i c a t i o n o f L o u d o n ( 1 9 8 1 ) w a t e r e q u a t i o n s t o 1982 d a t a  No. EQUATION  1 2 3 4 5 6  r  1=172.3T-2246.1 I=31.0K++51.6 I=133.2T+13.0D-1733.3 I=25.1K++19.7D-52.7 I=15.1K++136.6T-193.6 I=16.1K++93.4T+13.6D-1380.4  Where  Table  I T b  water use (m /d) t e m p e r a t u r e (°C) y=a+bx 3  4.9 S t e p w i s e  PERIOD  multiple  D  YEAR  0.53 0.48 0.56 0.55 0.57 0.61  use  prediction  b  JULY-AUG  YEAR  JULY-AUG  r LOUDON  0.71 0.44 0.73 0.55 0.71 0.72  0.23 0.77 0.29 0.86 0.27 0.36  0.65 0.97 0.78 1.09 0.63 0.76  0.66 0.42 0.76 0.72 0.72 0.85  2  2  i n c o m i n g s o l a r r a d i a t i o n (MJ/m days s i n c e p r e c i p i t a t i o n  regression  /d)  equations  EQUATION  r  2  S.E. (m /d)  YEAR  I=39.52T-57.60 I=30.14T+33.62D-53.54 1=21.94T+29.70D+1.19Q* - 3 9 . 51 I=15.49T+29.29D+1.36Q* -335 .86SSM+130.55 I=14.11T+31.35D+1.53Q* -381 .72SSM+4.42p+ 129. 56  0.53 0.65 0.67 0.68 0.69  220.8 191.9 185.9 183.8 181.9  APRIL  I=66.00T-446.18 1=90.24T-3.60J-139.02 I = 7 2 . 6 1 T - 2 . 8 4 J + 2 6 . 1 0 D - 120. 49 I = 5 6 . 1 6 T - 3 . 4 1 J + 2 5 . 7 5 D - 1175 •93SSM+547.34  0.56 0.72 0.78 0.80  259.4 205.9 184.3 174.4  I=92.46T-823.72 1=112.62T-4.17J-383.29 1 = 9 0 . 9 9 T - 3 . 4 2 J - 2 5 . 1 8 D - 288. 20 I = 8 0 . 7 1 T - 3 . 9 4 J + 2 3 . 2 2 D - 1203 .90SSM+267.09 I = 6 9 . 3 6 T - 3 . 2 6 J + 2 1 . 8 2 D - 1409 .93SSM+1.04Q* + 245 .89 I = 6 8 . 8 2 T - 3 . 3 5 J + 1 8 . 0 1 D - 1595 .87SSM+4.85Q-- -17. 78Q +196.42  0.66 0.76 0.82 0.84 0.85 0.86  236.9 198.1 171.6 163.3 160.2 153.9  1=107.46T-1206.20 I=118.20T+307.16U-1723 .97  0.72 0.74  183.6 176.6  SEPT  MAY  SEPT  S  JULY -AUG  Where Q* p Qs S.E.  n e t r a d i a t i o n (W/m ) p r e c i p i t a t i o n (mm) s t o r a g e h e a t f l u x (W/m standard error of I  93  )  SSM J U  s o i l moisture (dimensionless) J u l i a n day w i n d s p e e d (m/s)  A u g u s t 1980 ( T a b l e The by  equations  temperature  4.10). developed  f o r the year;  May t o S e p t e m b e r a n d 287  0  f o r 1982 h a d 477„ o f t h e w a t e r u s e u n e x p l a i n e d 447,, f o r A p r i l  t o September i n c l u s i v e ;  f o r J u l y and August  amount o f e x p l a n a t i o n a n d d e c r e a s e  ( T a b l e 3 . 6 ) . To i n c r e a s e t h e  the standard  e r r o r o f t h e w a t e r use e s t i m a t e ,  s t e p w i s e m u l t i p l e r e g r e s s i o n was p e r f o r m e d . The May t o S e p t e m b e r equations  statistical  e r r o r o f 153.9 m /d. J  e s t i m a t i o n o f summer w a t e r u s e b a s e d on t h e c a l c u l a t e d  e v a p o r a t i o n was b e s t when t h e same day d a i l y ( T a b l e 4 . 1 1 ) . T h e r e was a d e c r e a s e t h e e v a p o r a t i o n was l a g g e d  total  o f e v a p o r a t i o n was u s e d  i n the c o e f f i c i e n t  by more d a y s b e f o r e  o f d e t e r m i n a t i o n as  t h e w a t e r u s e . The  r e l a t i o n s h i p was s t r o n g e s t i n J u n e c o m p a r e d t o t h e o t h e r (Table  4.3  inclusive  h a d s i x s t e p s a n d t h e m u l t i p l e r e g r e s s i o n e x p l a i n e d 867= o f t h e  v a r i a n c e and had a s t a n d a r d The  summer m o n t h s  Sensitivity  v a l u e s used  s e c t i o n the r e s u l t s f o r each s e n s i t i v i t y  4.1 a n d t h e d a t a  of s e n s i t i v i t y  over  analyses  a n a l y s i s remain those  i n Appendix I I , except  v a r i a b l e s were a l t e r e d  the ranges  are presented.  presented  f o r the parameter under t e s t . listed  i n Table  of the i n p u t s w i t h i n the Vancouver area  4.12. The d a i l y  (see Chapters  The  i n Table  were v a r i e d a c c o r d i n g t o t h e measurement e r r o r s and t h e e s t i m a t e d  The data  variabi-  2 & 3 ) . The  variations  o f t h e c a t c h m e n t ' s p a r a m e t e r s w e r e b a s e d on a r e v i e w  literature  (see Chapter 3 ) .  4.3.1  linear  4.11).  In t h i s  lity  34%f o r  of the  Evaporat ion The  i n p u t s to the e v a p o r a t i o n  94  c a l c u l a t i o n c o n s i s t of s i x d a i l y  data  T a b l e 4.10 C o m p a r i s o n o f J u l y & A u g u s t 1980 & 1982 c o n d i t i o n s f o r Vancouver I n t e r n a t i o n a l A i r p o r t (A.E.S.)  PHENOMENA  MONTH  1980  1982  PRECIPITATION (mm)  JULY AUGUST  67.6 22.8  67.0 37.2  32.0 41.1  TEMPERATURE (°C)  JULY AUGUST  16.6 16.4  17.0 16.8  17.4 17.1  SUNSHINE (hours)  JULY AUGUST  296.5 236.0  210.3 219.9  304.5 255.0  95  NORMAL  T a b l e 4.11 L i n e a r r e g r e s s i o n e q u a t i o n s evaporation  PERIOD  for predicting  w a t e r use from  EQUATION  r  NO LAG A p r i l - September April May June July August September  1=0.8532E-0.6293 1=0.1257E+0.0299 1=0.3899E+0.1192 1=1.0580E-0.6529 1=0.7983E-0.5504 1=0.5142E+0.6928 1=0.3198E+0.0366  0.60 0.21 0.15 0.74 0.56 0.25 0.29  1.18 0.19 1.17 1.16 1.30 1.17 0.36  EVAPORATION LAGGED A p r i l - September L a g g e d 1 day Lagged 2 days Lagged 3 days  1=0.8235E-0.5486 1=0.7327E-0.3278 1=0.6433E-0.1088  0.56 0.47 0.36  1.23 1.33 1.46  96  2  S.E. (mm)  T a b l e 4.12 S e n s i t i v i t y evaporation  a n a l y s i s o f t h e Oke a n d S t e y n scheme  RANGE OF VARIATION  ( 1 9 8 3 , p e r s . comm.)  SLOPE  RESULTING RANGE BASE ( d a y 1 6 1 ) (%)  DAILY DATA Q*  + 15%  0.04mm/Wm  Q  + 25%  0.04mm/Wm"  13.0  T  + 25%  0.08mm/°C  16.2  h  + 25%  0.04mm/%  19.0  s  p  u SSM  + 65%  2  35%  1.47mm/ms-  + 25%  1  47.9  1  32.7 8.0  CATCHMENT PARAMETERS SSMF  1  AREAI  0.35 - 0.70  8.0  30 - 90 %  0.02mm/%  43.3  2 - 6 m  0.25mm/m  19.4  ZOV  0.026 - 0.130 m  7.14mm/m  15.4  ZOM  0.4 - 2.6 m  0.9lmm/m  40.5  D  NOTE 1. s e e t e x t  97  v a l u e s and  f i v e parameters which d e s c r i b e the catchment  days were c h o s e n f o r s e n s i t i v i t y rienced in  the median e v a p o r a t i o n  J u n e and  results  r e s u l t s are  I I I . 2 , w h e r e a s on  the o n l y i n p u t t o eqn. In  The  evaporation  day  335  of t h i s a n a l y s i s are  shown s o l e l y  i n F i g . 4.11  III.l  and  (eqn. field  except o f AA the  and  eqn.  on day  III.l  are  for Q  s  Strieker  irrigated  and  i n Table  4.12.  comparable because of t h e i r alteration  (Note  T h i s drop  approximately  unirrigated determined  soil  4.12.  moisture  (SSM)  thereby  causing a  leads to a r e d u c t i o n i n (eqn.  0.5mm due  to  III.2) expected  areas. from the  sensitivity  analy-  directly  s u m m a r i s e d as  two  outputs  follows.  soil  s t o r e i s i n c r e a s e d and  ratio.  The  amount  s t o r a g e means t h a t t h e amount o f w a t e r r e q u i r e d t o f i l l r u n o f f i s thus  of the p e r v i o u s a r e a not b e i n g a source o f t i m e . The  An  s u p p l i e d to the environment remains c o n s t a n t . G r e a t e r  in soil  reduced.  area  This  of the a l t e r a t i o n s  98  deplethe  i s a consequence  f o r runoff f o r a longer period  r e d u c t i o n i n r u n o f f a l s o causes a decrease  effects  drop  units.)  T h e s e i n f l u e n c e s c a n be  tion  is  equa-  i n c r e a s e o f e v a p o r a t i o n c a u s e s a g r e a t e r c h a n g e i n s t o r a g e when t h e of w a t e r b e i n g  335  evaporation.  i n e v a p o r a t i o n causes changes i n the o t h e r  of the water b a l a n c e .  Day  i n evaporation  t h a t the s l o p e s are not  different  calcu-  (1979) e v a p o r a t i o n  i n p u t s . The  VI)  used.  of the e v a p o r a t i o n e q u a t i o n  s l o p e s of the r e l a t i o n s h i p s listed  was  only because t h i s  III.l).  i n c r e a s i n g t h e e v a p o r a t i o n by  Any  was  c a p a c i t y (SSMF) c a u s e o n l y a s m a l l a l t e r a t i o n  s i z e of the aerodynamic term  ses are  expe-  and  to a l l the  f r o m 0.452 t o 0.302 ( T a b l e  The  161  which i n f l u e n c e d the c a l c u l a t e d  III.2) is sensitive  a d v e c t i o n between the  which  4. l ' l and  a t t h e p o i n t where SSM/SSMF d r o p s b e l o w 0.30,  thereby  335,  shown i n F i g s .  c o n t r a s t , t h e m o d i f i e d B r u t s a e r t and  tion  d a y s 161  Two  under the base c o n d i t i o n s (see A p p e n d i x  December r e s p e c t i v e l y .  l a t e d u s i n g eqn. The  analysis:  (Table 4.12).  a r e most o b v i o u s  i n the i n the  runoff spring  and  Fig.  4.11  I n f l u e n c e of changing day 335)  the d a i l y  d a t a on e v a p o r a t i o n  (day  161  and  2  1  o-t  0  40  80  120  160  200  240  Q" CW/m :  -10  0  10  20  30  40  50  60  Q  1  0.2  0.4  0.6  0.8  1.0  1.2  -40  0.0  99  2  1.4  • 1.6  s  CW/ 2) m  1.8  2.0  a  Fig.  4.12  I n f l u e n c e of changing the catchment e v a p o r a t i o n ( d a y 161)  100  defining  parameters  on  autumn when t h e  transition  occurs  between the  soil  storage  being  full  or  not.  4.3.2  Precipitation The  tation  t e r m by  + 50%  out  and  not  and  Use  i n p u t s was  4.13  just  i n v e s t i g a t e d by  p i p e d - i n w a t e r by  f o r the whole y e a r .  December ( F i g s .  tions,  Water  s e n s i t i v i t y to the  were c a r r i e d and  and  & 4.14)  Hence t h e  are  to a l t e r i n g  the  + 55%,.  due  f o r the  the  sensitivity  results  partially  inputs  The  varying  presented  analyses f o r June  to antecedent particular  precipi-  condi-  month i n  question. Alterations the  amounts on  c h a n g i n g the tation  and  t i o n or the The runoff  w a t e r use  does not  equation  The  the  inputs occurred,  rather  occurred.  change i n s t o r a g e  daily  ( S ) . Changes a r e  a result  of a l t e r i n g  full  by  Altering totals  precipi-  of  evapora-  partitioning  different  both  of  between the  J u n e / D e c e m b e r d i f f e r e n c e i n r e s p o n s e i s c a u s e d by  the  diffe-  pervious  therefore  precipitation  than  and  which i s not  full  the  i n the  i n J u n e w h e r e a s i n December i t i s .  difference results  from the  i s a p p l i e d to the whole environment whereas the to the  changing  precipitation  storage,  as  i s expressed  i r r i g a t e d area  I n December, when p r e c i p i t a t i o n  full,  input  cause changes i n the  alteration  p r e c i p i t a t i o n / w a t e r use  applied  not  i n p u t s w e r e a p p l i e d by  used f o r i t s c o m p u t a t i o n .  December, and  rence i n s o i l  tation  water balance  d a y s on w h i c h t h e  i n f l u e n c e of  water use.  The  the  two  number o f d a y s on w h i c h t h e  ( r ) and  J u n e and  to the  input  runoff  only  reaches the  S remains constant  and  occurs  that  precipi-  p i p e d - i n water i s  only.  i s r e d u c e d by  45%  the  soil  from i m p e r v i o u s a r e a s .  p o i n t at which the  r increases  101  fact  with  soil  storage  Once  storage  further increases  is  the  becomes in  precipi-  tation,  due  In the  t o r u n o f f now  June  runoff  occurring  r e m a i n s c o n s t a n t as w a t e r use  measured w a t e r use u n t i l  filled  from the whole  the p o i n t  because  the monthly  e v a p o r a t i o n i s r e m o v i n g more w a t e r  e n v i r o n m e n t . From 100 s t o r a g e . A t 134 mm  t o 134 mm  the s o i l  i s increased  from 55% of  i s r e a c h e d when t h e s o i l  a f t e r which r u n o f f o c c u r s from the whole  change i n s t o r a g e i s n e g a t i v e w h i l e  area ( F i g . 4.13).  storage i s  catchment  ( F i g . 4.14).  The  water  i s below  mm  use  100  than i s b e i n g added t o the  the a d d i t i o n of water causes a net g a i n i n  s t o r a g e becomes f u l l so p e r v i o u s a r e a s a r e  h a v i n g w a t e r r e m o v e d by b o t h r u n o f f and e v a p o r a t i o n ( F i g . 4 . 1 4 ) .  4.3.3  Storage  Parameters  4.3.3.1 I n i t i a l The  base  R e t e n t i o n Storage  results  assume t h a t  t h e t h r e e r e t e n t i o n s t o r e s PRETEN, VRETNI  and VRETNU a r e empty on day 2 1 . When t h e w a t e r b a l a n c e c a l c u l a t i o n s performed w i t h changed  these stores  on t h e f i r s t  therefore, altered the to  two  fill  the  4.3.3.2 S o i l  i n i t i a l l y f u l l the d a i l y water balances are  days o n l y  ( T a b l e 4.13).  f o r t h e w i n t e r and  s u p p l y of water because  change i n s t o r a g e i s ,  f o r the y e a r . Runoff  i s increased  by  the i n i t i a l a p p l i c a t i o n of w a t e r does not have  Storage  Size s t o r a g e c a p a c i t y does not  b a l a n c e when i n t h e r a n g e b e t w e e n 75 and  soil  The  stores.  A l t e r a t i o n of the s o i l  for  are  the change i n s t o r a g e remain s t o r a g e i s a l t e r e d . The  175 mm.  t h e same, o n l y  range of s o i l  under a l l c a p a c i t i e s .  102  influence  T h i s i s because the d a i l y  moisture status  the  water  the v a l u e s  s t a t u s of the i s 53.21  mm  Fig.  4.13 I n f l u e n c e o f c h a n g i n g p r e c i p i t a t i o n w a t e r b a l a n c e i n J u n e a n d December  on t h e o u t p u t s o f t h e  external  June December  -evaporation  /  /  /runoff \change in storage change in storage runoff  \ evaporation  0  — —  20  ,  40  !  60  ,  80  1  1 00  1  1 20  M,onthly precipitation  103  1  1 40  1  1 60  [mm)  1  1 80  1  200  220  Fig.  4.14  I n f l u e n c e o f c h a n g i n g w a t e r use on t h e o u t p u t s o f t h e w a t e r b a l a n c e i n J u n e a n d December  18 0'  104  external  T a b l e 4.13 I n f l u e n c e o f c h a n g i n g t h e i n i t i a l r e t e n t i o n s t a t u s on t h e e x t e r n a l w a t e r b a l a n c e  INITIAL RETENTION STORAGE STATUS  PERIOD  FULL  EMPTY  E  S  storage  r  mm/ period  %  mm/ period  %  DAY 22 DAY 23 WINTER YEAR  0. 0 0. 0 72. 7 554. 8  0. 0 0. 0 7. 9 36. 6  0. 0 0. 0 16. 7 -0. 6  0.0 0.0 1.8 0.0  5. 44 18. 74 832. 8 962. 2  100.0 100.0 90.3 63.5  DAY 22 DAY 23 WINTER YEAR  0. 0 0. 0 72. 7 554. 8  0. 0 0. 0 7. 9 36. 6  3. 42 1. 38 21. 5 4. 2  55.7 7.4 2.3 0.3  2. 02 17. 37 828. 0 957. 4  44.3 92.7 89.8 63.1  105  mm/ period  %  4.3.3.3 P e r v i o u s R e t e n t i o n S t o r a g e  C a p a c i t y (VRETNU/I)  C h a n g i n g VRETNU/I c a p a c i t y f r o m 5.0 t o 9.0 mm a l t e r s balance  of only the f i r s t  the  same, b u t t h e a b s o l u t e  are  different.  and  not t o t a l l y  two d a y s .  The n e t d a i l y  the d a i l y  change i n s t o r a g e  s t a t u s o f VRETNU, VRETNI a n d t h e s o i l  on a g r e a t e r number o f d a y s .  The s t o r a g e  remains  storage  When VRETNU/I c a p a c i t y i s 5.0 mm t h e s t o r e s a r e b o t h full  water  empty  decreases  to  a minimum o f 95.9mm c o m p a r e d t o 9 8 . 0 mm when VRETNU/I i s i n c r e a s e d f r o m 5.0 t o 9.0 mm.  4.3.3.4 I m p e r v i o u s The crease  Retention Storage  i n c r e a s e o f PRETEN c a p a c i t y f r o m 0.50 t o 2.50 mm c a u s e s an i n -  and T a y l o r  being able to r e t a i n  more  thus  causing  (1972) e q u a t i o n  (Table 4.14). T h i s  more p r e c i p i t a t i o n ,  the c r i t e r i a  i s calculated  necessary  using the  i s due t o t h e s t o r e  t h e r e f o r e t a k i n g l o n g e r t o empty, t o use eqn. I I I . l  t o be i n v o k e d on  occasions. The  i n f l u e n c e o f t h e two e x t r e m e s  of the water balance results.  the base r e s u l t s  0.5 t h e r e was a d e c r e a s e  ( F i g . 4.15).  o f AREAI a f f e c t  both  e n v i r o n m e n t , and t h e c a l c u l a t i o n i n f l u e n c e on d a i l y The  i n evaporation, a  i n change i n s t o r a g e and an i n c r e a s e i n r u n o f f compared t o  4.3.4 P r o p o r t i o n o f t h e P e r v i o u s A r e a Values  (PRETEN=2.5 a n d 0.5) on t h e o u t p u t s  a r e shown i n F i g 4.15 a s a d i f f e r e n c e f r o m t h e b a s e  When PRETEN e q u a l s  summer d e c r e a s e  The  (PRETEN)  i n t h e number o f days on w h i c h e v a p o r a t i o n  Priestley  and  Capacity  Irrigated  (AREAI)  t h e amount o f w a t e r a d d e d t o t h e p e r v i o u s o f e v a p o r a t i o n when e q n . I I I . 2  i s used.  e v a p o r a t i o n was d i s c u s s e d i n s e c t i o n 4.3.1.  influences of a l t e r i n g  monthly base water b a l a n c e  AREAI f r o m 9 0 % t o 3 0 % w i t h r e s p e c t t o t h e  results  106  (when AREAI was 50%,) a r e p l o t t e d  in Fig.  T a b l e 4.14  PRETEN  I n f l u e n c e of the s i z e of the i m p e r v i o u s s t o r a g e c a p a c i t y on t h e m e t h o d o f e v a p o r a t i o n c a l c u l a t i o n  No. was  of days t h a t e v a p o r a t i o n c a l c u l a t e d u s i n g eqn. I I I . l  0.50  183  1.00  204  1.46  211  2.00  217  2.50  224  107  Fig.  4.15 I n f l u e n c e o f PRETEN on t h e o u t p u t s o f t h e e x t e r n a l w a t e r  altered PRETEN base  J  F  M  A  M  3  108  J A 1 Time (months!  5  S  5  J  balance  4.16. The  V a r i a t i o n s from the base r e s u l t s largest  d e v i a t i o n occurs  large positive in  store  evaporation  (accumulation) d u r i n g the  4.3.5  r a t h e r than  resulting  in a  an a s s o c i a t e d r e d u c t i o n  summer months d e p l e t e s  the  soil  to r u n o f f .  P r o p o r t i o n of the The  I r r i g a t e d Water A p p l i e d to the P e r v i o u s Area  base w a t e r b a l a n c e  results  impervious  and  be  determined.  water s u p p l i e d to the p e r v i o u s area t h a t a r e a . PERCEN was  decreased  e x t e r n a l water supply  to the  0.8,  and  by  20%;  r a t i o n and runoff  III.l  remains constant  l a r g e r change i n s t o r a g e lower  on  211  i n the  filling  t o become  that  the  decreased  the from  area. This  ( T a b l e 4 . 1 5 ) . The  days t o i t s use  when PRETEN i s d e c r e a s e d  on  351  initial  days.  The  a f u r t h e r 10%.  The  storage  to  evapo-  depletion.  summer b e c a u s e t h e w a t e r a p p l i e d t o t h e  1.0  altera-  i s due  summer months i s b e c a u s e t h e h i g h e r  The  impervious  the r e t e n t i o n s t o r e s goes t o r u n o f f . However, i n the  w i n t e r r u n o f f i s lower because i t takes storage  impervious  amount o f w a t e r c a u s e s g r e a t e r s o i l  i n c r e a s e s i n the  surface after  p e r v i o u s a r e a was  the o u t p u t s  the  a p p l i e d t o o n l y 50%, o f  causes the e v a p o r a t i o n to i n c r e a s e , t h i s  the change from u s i n g eqn. evaporation  noted  t h a t i s , the p r o p o r t i o n of  a p p l i e d to the  t i o n causes a change i n a l l t h r e e of  the  of the water to  I t s h o u l d be  i s a s s u m e d t o be  irrigated  t h e d i f f e r e n c e was  c h a n g e o f PERCEN t o 0.9  t h a t i s , PERCEN=1.00. T h r o u g h  i n f l u e n c e of the a p p l i c a t i o n  p e r v i o u s a r e a can  (PERCEN)  assume t h a t t h e e x t e r n a l p i p e d - i n w a t e r  a p p l i e d o n l y to the p e r v i o u s a r e a ;  a l t e r a t i o n o f PERCEN t h e  to  and  90%,  November.  so t h a t a l a r g e p r o p o r t i o n o f t h e November p r e c i p i t a t i o n g o e s t o r e -  filling  is  b e t w e e n M a r c h and  i n November when AREAI was  change i n s t o r a g e  runoff. Increased  occur  full.  109  a l o n g e r p e r i o d f o r the  soil  4.16  I n f l u e n c e o f AREAI on t h e o u t p u t s o f t h e m o n t h l y balance  external  water  T a b l e 4.15 I n f l u e n c e o f p r o p o r t i o n o f t h e i r r i g a t i o n w a t e r g o i n g t o p e r v i o u s a r e a s on t h e e x t e r n a l w a t e r b a l  PERCEN  PERIOD  •E mm  S  7o  mm  r °k  mm  %  100  SUMMER WINTER YEAR  482.1 81.1 72.7 7.9 554.8 36.6  - 1 7 . 3 -2.9 21.5 2.3 4.2 0.3  129.4 21.8 828.0 89.8 957.4 63.1  90  SUMMER WINTER YEAR  493.6 85.2 578.8  83.1 9.2 38.2  -23.7 27.9 4.2  -4.0 3.0 0.3  124.3 20.9 8 0 9 . 1 87.7 933.4 61.6  80  SUMMER WINTER YEAR  493.6 85.2 578.8  83.1 9.2 38.2  - 4 0 . 0 -6.7 44.2 4.8 4.2 0.3  140.5 23.6 792.9 8 6 . 0 933.4 61.6  111  4.4  Discussion The  water  balance  results  methodology used to determine determine  which  b a l a n c e . The changing  presented  in this  them. S e n s i t i v i t y  f a c t o r s are c r i t c a l l y  analysis also permits  important  balance  results.  The  (Table  c a n be  to  in calculating  most c r i t i c a l  used the  water  i n f l u e n c e of  daily  data  input for  f o l l o w e d by w i n d  a r e t h e most c r i t i c a l  the c o n s e r v a t i o n of m a t t e r  balance  alteration tivity  the a l t e r a t i o n  i n at  analysis  from b e i n g nce  the  catchment  speed  parameters  4.12).  As water  ZOM  d e p e n d upon  or of e r r o r s i n the measured  the c a l c u l a t i o n of e v a p o r a t i o n i s net r a d i a t i o n ( T a b l e 4 . 1 2 ) . AREAI and  analysis  the assessment of the  urban h y d r o l o g i c c h a r a c t e r i s t i c s ,  d a t a on t h e w a t e r  chapter  l e a s t one  to l e s s  of the v a r i a t i o n s .  storage  is full  s t o r e s are o n l y the  The inputs  full,  full  i s an  water  from  important the  fact  a p p l i e d t o any  area generates  two  r u n o f f and  soil  of  outputs  causes sensi-  storage  switches  e x p r e s s i o n of the t h a t when t h e  soil  influe-  soil retention  storage  the water  the  foregoing  a r e a , once the  g o e s t o r u n o f f , w h e r e a s when t h e  calculation  because of t h e i r  t h a t t h e t i m e when t h e  This r e s u l t s  i s added t o s o i l  f o r the  component o f t h e b a l a n c e  o f t h e o t h e r o u t p u t s . From t h e  than  the excess  impervious  vious area  o f one  i t i s apparent  full  i s the b a s i c u n d e r l y i n g p r i n c i p l e  i s not  i n p u t to the  full per-  storage.  o f e v a p o r a t i o n i s i n f l u e n c e d by  e q u a t i o n s , and  by  i n f l u e n c e on w h i c h  the  the v a r i a t i o n  s t a t u s o f PRETEN and  equation  of  the  PERCEN  i s used to perform  the  calcu-  lation. The  water  balance  results  f o r K e r r i s d a l e / O a k r i d g e show a b a s i c t r e n d  through  the year  t h a t w o u l d be  carried  o u t . The  p r e c i p i t a t i o n and  expectations  f o r t h i s area  expected water  f o r the area use  fall  i n which  within  ( f o r f u r t h e r d i s c u s s i o n see  112  the  Chapter  the  study  was  climatological 3).  The  summer d a i l y ( 1 9 8 0 ) and  evaporation lies within  by Oke  the range  and McCaughey ( 1 9 8 3 ) .  In a d d i t i o n  o u t p u t s b e t w e e n t h e c h a n g e i n s t o r a g e and climatic  m e a s u r e d by K a l a n d a  the p a r t i t i o n i n g  r u n o f f appears  e x p e c t a t i o n o f t h i s a r e a when t h e r u n o f f r a t i o s  compared w i t h those  f o r West C r e e k  113  ( F i g . 4.8).  et a l .  to f a l l  of  the  within  the  f o r the area  are  CHAPTER 5  SUMMARY OF CONCLUSIONS  5.1 C o n c l u s i o n s T h i s s t u d y sought t o a s s e s s a d a i l y w a t e r b a l a n c e f o r a suburban i n Vancouver,  B.C. o v e r an a n n u a l p e r i o d ; t h e v a r i a b i l i t y  used t o c o n s t r u c t  The  of the parameters  t h e water b a l a n c e ; and t h e i n f l u e n c e o f t h e i r  on t h e c o m p u t e d w a t e r b a l a n c e , e s p e c i a l l y conclusions of t h i s  area  i t s evaporation  variability  component.  s t u d y a r e as f o l l o w s :  1) The summer w a t e r b a l a n c e o f t h e s u b u r b a n e n v i r o n m e n t extent that  t h e amount o f w a t e r p i p e d - i n a n d a p p l i e d  environment  i s equal to the p r e c i p i t a t i o n  during  i s augmented t o t h e to the e x t e r n a l  t h e summer  period.  2) The p r i m a r y m e t h o d o f r e m o v a l o f w a t e r i n t h e summer months i s e v a p o r a t i o n , w h i c h r e p r e s e n t s 8 1 % o f t h e o u t p u t s . The d a i l y w a t e r b a l a n c e s include  d a y s when t h e amount o f w a t e r b e i n g a d d e d t o t h e e x t e r n a l  environment  i s s u f f i c i e n t not only  to support the c a l c u l a t e d  evaporation  but a l s o t o add t o s t o r a g e . 3) The i n t e r n a l  ( d o m e s t i c ) w a t e r u s e i n t h e summer r e p r e s e n t s 3 2 % o f t h e  p i p e d w a t e r s u p p l y . The r e m a i n i n g 6 8 % g o e s t o t h e e x t e r n a l m a i n l y v i a lawn  environment  sprinkling.  4) The d a i l y w a t e r b a l a n c e r e s u l t s  f o r J u l y and August compared  favourably  w i t h t h o s e o f t h e L o u d o n ( 1 9 8 1 ) s t u d y i n t h e same a r e a . 5) The m o n t h l y  runoff  ratios  dale/Oakridge) results Creek)  follow a similar  (Kerris-  p a t t e r n t o an u n d e v e l o p e d  (West  catchment.  6) The s e n s i t i v i t y a n a l y s i s , the  determined f o r the suburban  G r e a t e r Vancouver  primarily  conducted over ranges  a r e a , p e r m i t s assessment  a s s u m p t i o n s and t h e p o s s i b l e v a r i a t i o n  supply influences  the p a r t i t i o n i n g  114  within  of the influence of the  of the required  s u b u r b a n a r e a s . The a l t e r a t i o n o f p r e c i p i t a t i o n  found  input  and p i p e d - i n  data f o r water  o f t h e o u t p u t s between r u n o f f and  t h e c h a n g e i n s t o r a g e . The v a r i a t i o n storage s t a t u s i s changing versa which  occurs  tion within  the water  from b e i n g a t , t o below, c a p a c i t y , o r v i c e  b a l a n c e model t h a t r u n o f f o n l y o c c u r s storage i s f u l l .  r e t e n t i o n store i s important  of water  7) The s e n s i t i v i t y study  analysis  s t a t u s of t h e suburban  The of  their The  response  balance  water  then  of the study  the d e f i n i t i o n  o f t h e e v a p o r a t i o n and water  i s to  moisture  o f t h e parame-  f o r Future  balance models t o a l t e r a t i o n  linear. f o r m c o u l d be u s e d  factor  i n the water  i n suburban  areas  where  balance.  Research  There i s a need t o v e r i f y  parameters.  the catchment  o n l y , and n o t t h e d a i l y  environment,  model i n i t s p r e s e n t  balance  roughness  rigorous.  snow i s n o t a s i g n i f i c a n t  the water  whereas  parameters  i n d e t e r m i n i n g how c a r e f u l l y  inputs i s primarily  5.2 S u g g e s t i o n s  a n d t h e momentum  need t o d e f i n e d . I f t h e purpose  the d a i l y water  t e r s may be l e s s  catchment  speed,  showed t h a t t h e r e q u i r e d e n d u s e o f t h e w a t e r  i s important  d e s c r i b i n g parameters determine  of evaporation the  d a i l y measurements a r e n e t r a d i a t i o n and wind  the p r o p o r t i o n o f t h e p e r v i o u s a r e a i r r i g a t e d  balance  e v a p o r a t i o n model i s  b e t w e e n t h a t r e m a i n i n g on t h e s u r -  face or that going to r u n o f f . For the c a l c u l a t i o n  l e n g t h a r e t h e most c r i t c a l  from the  The c a p a c i t y o f t h e i m p e r v i o u s  f o r determining which  and f o r t h e p a r t i t i o n i n g  most c r i t i c a l  when t h e s o i l  i n s p r i n g a n d autumn. T h i s i s b e c a u s e o f t h e a s s u m p -  p e r v i o u s a r e a when s o i l  used  i s most i n f l u e n t i a l  the methodology proposed  here  f o rassessing  e s p e c i a l l y w i t h respect to the catchment-describing  Such v e r i f i c a t i o n would h e l p i n the m o d e l l i n g o f not o n l y the  balance  but a l s o  the d a i l y moisture  115  s t a t u s of the suburban  environ-  merit.  More s p e c i f i c 1) d e t a i l e d external  future research  should include:  s t u d y o f t h e s i t e where t h e p i p e d - i n w a t e r  i s a p p l i e d to the  environment;  2) m o d e l d e v e l o p m e n t and u n i r r i g a t e d  t o i n c o r p o r a t e t h e movement o f w a t e r b e t w e e n  areas;  3) f u r t h e r r e f i n e m e n t  and  o f t h e d e t e r m i n a t i o n o f t h e AA p a r a m e t e r  i n the  and S t e y n ( 1 9 8 3 , p e r s . comm) m o d i f i c a t i o n o f t h e B r u t a s e r t and (1979) e v a p o r a t i o n  irrigated  equation.  116  Oke  Strieker  REFERENCES A l b e r t , R.E., H. Moses a n d W.R. R o b i n s o n , 1 9 7 3 : Some m e a s u r e m e n t s o f n o c t u r n a l w i n d f l o w o v e r S t . L o u i s : METROMEX 1 9 7 1 . A n n u a l R e p o r t R a d i o l o g . & E n v i r . R e s . D i v . , ANL - 7690, P t . I V , A r g o n n e N a t . L a b . , A r g o n n e , 1 1 1 . , 1-19. A l d r i d g e , R., 1 9 7 6 : The m e a s u r e m e n t o f r a i n f a l l (N.Z.), 1 5 , 3 5 - 4 0 . A m e r i c a n W a t e r Works A s s o c i a t i o n , C o m m i t t e e w a t e r u s e . J . A.W.W.A., 6 5 , 2 8 5 - 3 0 0 .  a t ground  level.  J . Hydrol  on W a t e r U s e , 1 9 7 3 : T r e n d s i n  A r m s t r o n g , J . E . a n d S.R. H i c o c k , 1 9 7 6 : S u r f i c i a l g e o l o g y , V a n c o u v e r , B.C., Map 1486A ( s c a l e 1 : 5 0 , 0 0 0 ) . G e o l o g i c a l S u r v e y o f C a n a d a , E n e r g y , Mines and R e s o u r c e s . A r n f i e l d , A . J . , 1 9 8 2 : An a p p r o a c h t o t h e e s t i m a t i o n o f t h e s u r f a c e r a d i a t i v e p r o p e r t i e s and r a d i a t i o n budgets o f c i t i e s . P h y s i c a l G e o g r a p h y , 3, 9 7 - 1 2 2 . A r o n , G., 1 9 8 2 : R a i n f a l l a b s t r a c t i o n s . I n U r b a n S t o r m w a t e r H y d r o l o g y , K i b l e r , D.F. ( e d . ) A.G.U. W a t e r R e s o u r c e s M o n o g r a p h 7, 6 9 - 8 6 . A s h t o n , W.J. a n d J . M . . L a n g f e I d , 1 9 8 2 : W a t e r c o n s e r v a t i o n p l a n n i n g . H a b i t a t , 2 5 , 18-22. A s t o n , A., 1 9 7 7 : W a t e r r e s o u r c e s E c o l o g y , 2, 3 2 7 - 3 5 3 .  and consumption  i n Hong K o n g .  A u e r , A.H. J r . , 1 9 7 8 : C o r r e l a t i o n o f l a n d u s e w i t h a n o m a l i e s . J . A p p l . M e t e o r o l . , 17, 636-643. A u e r , A.H. J r . , 1 9 8 1 : U r b a n 18 ( 4 0 ) , 4 1 - 6 2 . .  boundary  and land use  Urban  meteorological  layer. Meteorol.  Monogr.,  B a r n e s , J.R., 1 9 7 7 : A n a l y s i s o f r e s i d e n t i a l w a t e r u s e . U n p u b l M.Sc. T h e s i s , U n i v . o f Wyoming, L a r a m i e , 78p. Bell,  F.C., 1 9 7 2 : The a c q u i s i t i o n , c o n s u m p t i o n a n d e l i m i n a t i o n o f w a t e r by S y d n e y u r b a n s y s t e m . P r o c . o f t h e E c o l o g . S o c . o f A u s t r a l i a , 7, 1 6 0 - 1 7 6 .  Bouchet, R . J . , 1963: E v a p o t r a n s p i r a t i o n r e e l e e t p o t e n t i e l l e , s i g n i f i c a t i o n c l i m a t i q u e . General Assembly, I n t e r n . Assoc. S c i . H y d o l . , P u b l . 62, G e n t b r u g g e , B e l g i u m , 134-142. B r a t e r , E.F., 1968: S t e p s toward a b e t t e r u n d e r s t a n d i n g o f urban p r o c e s s e s . W a t e r R e s o u r . R e s . , 4, 3 3 5 - 3 4 7 . B r u t s a e r t , W., 1 9 8 2 : E v a p o r a t i o n and A p p l i c a t i o n s . , D. R e i d e l  i n t o t h e Atmosphere: P u b l . Co., H o l l a n d .  Theory,  runoff  History  B r u t s a e r t , W. a n d S t r i e k e r - H . , 1 9 7 9 : An a d v e c t i o n - a r i d i t y a p p r o a c h t o e s t i m a t e a c t u a l r e g i o n a l e v a p o t r a n s p i r a t i o n . Water Resour. R e s . ,  117  15,  443-450.  Canada, E n v i r o n m e n t , A t m o s p h e r i c E n v i r o n m e n t S e r v i c e , 1982: M o n t h l y M e t e o r o l . Summary, J a n u a r y - December, 1 9 8 2 , V a n c o u v e r I n t e r n a t i o n a l A i r p o r t , B.C. Canada, E n v i r o n m e n t , A t m o s p h e r i c E n v i r o n m e n t S e r v i c e , 1983: M o n t h l y M e t e o r o l . Summary, J a n u a r y 1 9 8 3 , V a n c o u v e r I n t e r n a t i o n a l A i r p o r t , B.C. Canada, E n v i r o n m e n t , I n l a n d Waters D i r e c t o r a t e , Water R e s o u r c e s B r a n c h , Water Survey o f Canada, 1982: S u r f a c e w a t e r d a t a . R e f e r e n c e Index. Canada. Canada, S t a t i s t i c s , Census D i v i s i o n , 1983: Census o f Canada 1981. E n u m e r a t i o n a r e a d a t a on m i c r o f i c h e . O t t a w a , C a n a d a . CBA E n g i n e e r i n g L t d . , 1 9 7 3 : C a n a d a , 71p.  A drainage plan f o r Lulu Island.  Vancouver,  C h a n d l e r , T . J . , 1976: Urban c l i m a t o l o g y and i t s r e l e v a n c e t o u r b a n WMO T e c h . N o t e No. 1 4 9 , 6 1 p .  design.  C l a g u e , J . J . and J . L . L u t e r n a u e r , 1982: L a t e r Q u a t e r n a r y s e d i m e n t a r y e n v i r o n m e n t , s o u t h w e s t e r n B.C. I n t e r . A s s o c . o f S e d i m e n t o l o g i s t s , E x c u r s i o n 3 0 a , 167p. D a v i e s , J.A. and C D . A l l e n , 1973: E q u i l i b r i u m , p o t e n t i a l , and a c t u a l e v a p o r a t i o n from cropped s u r f a c e s i n s o u t h e r n O n t a r i o . J . A p p l . M e t e o r o l . , 12, 649-657. D e n d r o u , S.A., 1 9 8 2 : O v e r v i e w o f u r b a n s t o r m w a t e r m o d e l s . I n U r b a n S t o r m w a t e r H y d r o l o g y , K i b l e r , D.F. ( e d . ) A.G.U. W a t e r R e s o u r c e s M o n o g r a p h 7, 2 1 9 - 2 4 7 . D u c h e n e - M a r u l l a z , P., 1 9 7 6 : S t r u c t u r e du v e n t en zone s u b u r b a i n e r u g o s i t e e t c o r r e l a t i o n l a t e r a l e . R e p o r t EN, C L I 7 6 - 2 , C e n t r e S c i e n t i f . T e c h . Batiment, Nantes. F i n k e l s t e i n , J . , 1 9 7 1 : C o m p a r i s o n s b e t w e e n 4" p l a s t i c r a i n g a u g e s . J . H y d r o l . ( N . Z . ) , 10, 1 0 0 - 1 0 3 .  a n d 5" c o p p e r  F o s t e r , H. a n d W. S e w e l l , 1 9 8 1 : W a t e r : t h e E m e r g i n g C r i s i s C a n a d i a n I n s t i t u t e f o r e c o n o m i c P o l i c y , O t t a w a , 117p. G a r d n e r , W.H., 1 9 6 5 : W a t e r c o n t e n t . , I n M e t h o d s o f S o i l P h y s i c a l and M i n e r a l o g i c a l P r o p e r t i e s . , B l a c k C A . 92-93.  i n Canada.  Analysis Part 1 ( e d . ) , Adv. Agron,  G e y e r , J . C , J . B . W o l f f , F.P. L i n a w e a v e r J r . a n d A . J . D u n c a n , 1 9 6 3 : F i n a l a n d summary r e p o r t on p h a s e 1 o f t h e r e s i d e n t i a l w a t e r u s e r e s e a r c h p r o j e c t J a n u a r y 1, 1959 t o J a n u a r y 1, 1 9 6 3 . D e p t . o f S a n i t a r y E n g i n e e r i n g a n d W a t e r R e s o u r c e s , The J o h n s H o p k i n s U n i v e r s i t y , B a l t i m o r e , 131p.  118  G r e a t e r V a n c o u v e r R e g i o n a l D i s t r i c t , 1976: Map o f c i t y D r a w i n g no. WM-1, S h e e t #6, ( s c a l e 1 : 1 2 , 5 0 0 ) .  of  Greater Vancouver R e g i o n a l D i s t r i c t , ( s c a l e 1:50,000).  1979:  Map  land  use.  Greater Vancouver resource.  1983:  G r e a t e r Vancouver's  land  Regional D i s t r i c t ,  of g e n e r a l  Vancouver.  H a n k e , S.H. a n d J . E . F l a c k , 1968: J . A.W.W.A., 60, 1 3 5 9 - 1 3 6 6 .  E f e c t s of m e t e r i n g urban water.  H a r e , F.K. Pub.,  C l i m a t e C a n a d a . ( 2 n d ed.) W i l e y  a n d M.K. Thomas, 1979: Toronto.  Hay,  J . E . , 1979: S t u d y o f s h o r t w a v e r a d i a t i o n on n o n - h o r i z o n t a l s u r f a c e s . C a n a d i a n C l i m a t e C e n t r e R e p o r t 7 9 - 1 2 , A.E.S., D o w n s v i e w , O n t a r i o .  Hay,  J . E . , 1983: S o l a r e n e r g y s y s t e m d e s i g n : The i m p a c t o f m e s o s c a l e v a r i a t i o n s i n s o l a r r a d i a t i o n . Atmos. Ocean, 21, 138-157.  Hay,  J . E . and T.R. Oke, 1976: Research L t d . , Vancouver,  H u t c h i n s o n , P., (N.Z.), 8,  1969: 8-10.  The C l i m a t e o f V a n c o u v e r , T a n t a l u s B.C.  A n o t e on random r a i n g a u g e e r r o r s .  J.  Hydro!.  K a l a n d a , B.D., 1979: Suburban e v a p o t r a n s p i r a t i o n e s t i m a t e s i n Vancouver f r o m e n e r g y b a l a n c e m e a s u r e m e n t s . U n p u b l . M.Sc. T h e s i s , The U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , 123p. K a l a n d a , B.D., T.R. Oke and D.L. S p i t t l e h o u s e , 1980: Suburban energy b a l a n c e e s t i m a t e s f o r V a n c o u v e r , B.C., u s i n g t h e Bowen r a t i o - e n e r g y b a l a n c e a p p r o a c h . J . A p p l . M e t e o r o l . , 19, 7 9 1 - 8 0 2 . K u t z b a c h , J . E . , 1961: I n v e s t i g a t i o n s of the m o d i f i c a t i o n of wind p r o f i l e s from a r t i f i c a l l y c o n t r o l l e d s u r f a c e roughness. Annual R e p o r t . Dept. of M e t e o r o l o g y , U n i v e r s i t y of W i s c o n s i n . L a t i m e r , J.JR. , 1972: R a d i a t i o n measurement. I n t . F i e l d Year f o r the G r e a t L a k e s T e c h . M a n u a l S e r . No. 2, NRC/USNAS/IHD, O t t a w a . L e t t a u , H.H., 1969: N o t e on a e r o d y n a m i c r o u g h n e s s - p a r a m e t e r e s t i m a t i o n on t h e b a s i s o f r o u g h n e s s - e l e m e n t d e s c r i p t i o n . J . A p p l . M e t e o r o l . , 8, 828-832. L i n a w e a v e r , F.P. J r . , J.C. G e y e r and J . B . W o l f f , 1967: R e s i d e n t i a l W a t e r Use. W a s h i n g t o n D.C., GPO.  A Study of  L i n d h , G., 1 9 7 8 a : U r b a n h y d r o l o g i c a l m o d e l l i n g and c a t c h m e n t r e s e a r c h i n Sweden. I n R e s e a r c h on U r b a n H y d r o l o g y . M c P h e r s o n , B., ( e d . ) , v o l . 2, 2 2 9 - 2 6 5 . L i n d h , G., 1978b: 7, 16-22.  S o c i o - e c o n o m i c a s p e c t s of urban h y d r o l o g y . Ambio,  119  L i n s l e y , R.K. a n d J . B . F r a n z i n i , 1 9 7 9 : W a t e r - r e s o u r c e s E n g i n e e r i n g . ( 3 r d e d . ) M c G r a w - H i l l Book C o . , New Y o r k , 716. L o u d o n , S.M., 1 9 8 1 : S u b u r b a n w a t e r u s e d a t a u s e d t o d e v e l o p a w a t e r u s e p r e d i c t i o n m o d e l a n d a s u b u r b a n summer w a t e r b u d g e t . U n p u b l . m a n u s c r i p t , 61p. Lowe, P.R., 1 9 7 7 : An a p p r o x i m a t i n g p o l y n o m i a l f o r t h e c o m p u t a t i o n o f s a t u r a t i o n v a p o u r p r e s s u r e . J . A p p l . M e t e o r o l . , 16, 1 0 0 - 1 0 3 . L ' v o v i c h , M . I . a n d G.M. C h e r n o g a y e v a , 1 9 7 7 : T r a n s f o r m a t i o n o f t h e w a t e r b a l a n c e w i t h i n t h e c i t y o f Moscow. S o v i e t G e o g . , 18, 3 0 2 - 3 1 2 . M a n d e v i l l e , A.N. a n d J . C . R o d d a , 1 9 7 0 : A c o n t r i b u t i o n t o t h e o b j e c t i v e a s s e s s m e n t o f a r e a l r a i n f a l l a m o u n t s . J . H y d r o l . ( N . Z . ) , 9, 281-291. M e c h l e r , W.A. a n d D.G. R i e c k e n , 1 9 7 7 : R e v i e w o f m e t h o d s f o r c o m p u t i n g storm r u n o f f from urban a r e a s : h i s t o r y and s t a t e of t h e a r t . G r e a t e r V a n c o u v e r Sewerage and D r a i n a g e D i s t r i c t , 57p. M o n t e i t h , J . L . , 1973: P r i n c i p l e s E l s e v i e r , New Y o r k , 2 4 1 p .  of Environmental Physics.  American  M o r t o n , F . I . , 1976: E s t i m a t i n g e v a p o r a t i o n and t r a n s p i r a t i o n from c l i m a t o l o g i c a l o b s e r v a t i o n s . J . A p p l . M e t e o r o l . , 14, 4 8 8 - 4 9 7 . M u l v a n e y , T . J . , 1 8 5 1 : On t h e u s e o f s e l f r e g i s t e r i n g r a i n a n d f l o o d gauges i n making o b s e r v a t i o n s o f t h e r e l a t i o n s o f r a i n f a l l and o f f l o o d d i s c h a r g e s i n a g i v e n catchment. T r a n s . I n s t . C i v . Eng. I r . ( D u b l i n ) , 4, 1 8 - 3 1 . N i c h o l s o n , S.E., 1 9 7 5 : E n v . , 9, 1 9 - 3 1 .  A p o l l u t i o n model  f o r s t r e e t - l e v e l a i r . Atmos.  Oke,  T.R., 1 9 7 4 : R e v i e w o f u r b a n c l i m a t o l o g y No. 134. G e n e v a , 133p.  Oke,  T.R., 1 9 7 6 : The d i s t i n c t i o n b e t w e e n c a n o p y h e a t i s l a n d s . A t m o s p h e r e , 14, 268-277.  Oke,  T.R., 1 9 7 9 : R e v i e w o f u r b a n c l i m a t o l o g y No. 1 6 9 , lOOp.  Oke,  T.R., 1 9 8 2 : The e n e r g e t i c b a s i s o f t h e u r b a n h e a t i s l a n d . J . R o y a l M e t e o r o l . S o c , 1 0 8 , 1-24.  Oke,  T.R. a n d R.F. F u g g l e , 1 9 7 2 : C o m p a r i s o n o f u r b a n / r u r a l c o u n t e r a n d n e t r a d i a t i o n a t n i g h t . B o u n d a r y L a y e r M e t e o r o l . , 2, 290-308.  Oke,  T.R., B.D. K a l a n d a a n d D.G. S t e y n , 1 9 8 0 : P a r a m e t e r i s a t i o n s t o r a g e i n u r b a n a r e a s . U r b a n E c o l . , 5, 4 5 - 5 4 .  Oke,  T.R. a n d G.B. M a x w e l l , 1 9 7 5 :  120  1968-1973.  WM0  Tech.  Note  and b o u n d a r y - l a y e r urban  1973-1976.WM0 T e c h .  Urban heat i s l a n d dynamics  Note  Quart.  of heat  i n Montreal  and Oke,  V a n c o u v e r . A t m o s . E n v i r o n . , 9, 1 9 1 - 2 0 0 .  T.R. a n d J . H . M c C a u g h e y , 1 9 8 3 : S u b u r b a n - r u r a l e n e r g y b a l a n c e c o m p a r i s o n s f o r V a n c o u v e r B.C.: An e x t r e m e c a s e ? B o u n d a r y L a y e r Meteorol. , i n press.  Penman, H.L., 1 9 4 8 : N a t u r a l e v a p o r a t i o n f r o m o p e n w a t e r , b a r e g r a s s . P r o c . R o y a l S o c . L o n d o n S e r i e s A, 1 9 3 , 1 2 0 - 1 4 5 .  s o i l and  P e r k s , A.R., 1 9 7 7 : A r e v i e w o f u r b a n r u n o f f m o d e l s . I n M o d e r n C o n c e p t s i n U r b a n D r a i n a g e . C a n a d a - O n t a r i o A g r e e m e n t on G r e a t L a k e s W a t e r Q u a l i t y C o n f . P r o c , #5, 1 5 9 - 1 7 2 . P r i e s t l e y , C.H.B. a n d R . J . T a y l o r , 1 9 7 2 : On t h e a s s e s s m e n t o f s u r f a c e heat f l u x and e v a p o r a t i o n u s i n g l a r g e s c a l e parameters. Monthly Weath. Rev., 100, 81-92. P r o c t o r , S . J . , 1 9 7 8 : Map o f V a n c o u v e r o l d s t r e a m s . V a n c o u v e r A q u a r i u m , 3, 4.  Water J . o f t h e  R a p i e r , D.A. a n d P . J . G r a n t , 1 9 7 1 : C o m p a r i s o n o f w e t t i n g types o f r a i n g a u g e . J . H y d r o l . ( N . Z . ) , 10, 104-108.  l o s s e s on two  R e i f s n y d e r , W.E. a n d H.W. L u l l , 1 9 6 5 : R a d i a n t e n e r g y i n r e l a t i o n t o f o r e s t s . U.S.D.A. F o r . S e r v . , T e c h . B u l l . , 1 3 4 4 . R i p l e y , E.A., 1 9 7 6 : Comments on "Gamma - t h e p s y c h r o m e t r i c J . A p p l . M e t e o r o l . , 15, 1027-1028. R o d d a , J . C , R.A. D o w n i n g a n d F.M. Law, 1 9 7 6 : S y s t e m a t i c Newnes-Butterworth, London.  non-constant".  Hydrology.  S h u t t l e w o r t h , W.J. a n d I.R. C a l d e r , 1 9 7 9 : Has t h e P r i e s t l e y - T a y l o r e q u a t i o n any r e l e v a n c e t o f o r e s t e v a p o r a t i o n ? J . A p p l . M e t e o r o l . , 18, 6 3 9 - 6 4 6 . S n e d e c o r , G.W. a n d W.G. C o c h r a n , 1 9 8 0 : S t a t i s t i c a l Iowa S t a t e P r e s s , Ames, I o w a , 507p.  Methods. ( 7 t h ed.)  S t e y n , D.G., 1 9 8 0 a : The c a l c u l a t i o n o f v i e w f a c t o r s p h o t o g r a p h s . Atmos.-Ocean, 18, 254-258.  from f i s h - e y e lens  S t e y n , D.G., 1980b: T u r b u l e n c e , d i f f u s i o n a n d t h e d a y t i m e m i x e d l a y e r d e p t h o v e r a c o a s t a l c i t y . U n p u b l . Ph.D. T h e s i s , The U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , 161p. Stigter, 15,  C . J . , 1 9 7 6 : On t h e n o n - c o n s t a n t 1326-1327.  gamma. J . A p p l .  Meteorol.,  S t o r r , D. a n d G. d e n H a r t o g , 1 9 7 5 : Gamma - t h e p s y c h r o m e t r i c n o n - c o n s t a n t . J . A p p l . M e t e o r o l . , 14, 1397-1398. V a n c o u v e r C i t y , E n g i n e e r i n g D e p t . , 1 9 7 2 : Map o f 5 0 t h a r e a . D r a w i n g K24 ( s c a l e 1":200').  121  a n d Hudson  test  Vancouver C i t y , E n g i n e e r i n g Dept., 1981: S71c a n d S 7 1 d .  Maps o f s e w e r p i p e s .  Drawings  V a n c o u v e r C i t y , E n g i n e e r i n g D e p t . a n d G r e a t e r V a n c o u v e r Sewerage a n d D r a i n a g e D i s t r i c t , 1979: C o m b i n e d s e w e r o v e r f l o w a n d a b a t e m e n t s t u d y . Draft report. V a n c o v e r C i t y , P l a n n i n g Dept., 1979: A e r i a l BC 79009, No 184, 1 8 6 , ( s c a l e 1 : 2 0 0 0 ) .  p h o t o g r a p h s . Sheet 79,  Ward, R.C., 1975: P r i n c i p l e s o f H y d r o l o g y . (2nd ed.) M c G r a w - H i l l Book Co., G r e a t B r i t a i n , 367p. Waugh, J.R., 1 9 7 1 : E v a l u a t i o n o f r a i n f a l l d a t a f r o m p l a s t i c a n d c o p p e r r a i n g a u g e s . J . H y d r o l . ( N . Z . ) , 10, 1 0 9 - 1 1 2 . W r i g h t - M c L a u g h l i n E n g i n e e r s L t d . , 1969: Urban s t o r m d r a i n a g e manual. 2 v o l s . Denver R e g i o n a l C o u n c i l o f Governments.  122  criteria  A P P E N D I X I J u l i a n Day  Calendar  Note t h e numbering extends January study periods.  JAN  DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  •  22 23 24 25 26 27 28 29 30 31  FEB  32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 . 57 58 59  b e y o n d 365 t o p r e v e n t c o n f u s i o n b e t w e e n  t h e two  MAR  APR  MAY  JUNE  JULY  AUG  SEP  OCT  NOV  DEC  JAN  60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90  91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120  121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151  152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181  182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212  213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243  244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273  274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304  305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334  335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365  366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387  123  APPENDIX  DAY  22 . 23 . 24 . 25 . 26 . 27 . 28 . 29 . 30. 31 . 32 . 33 . 34 . 35 . 36 . 37 . 38 . 39 . 40. 41 . 42 . 43 . 44 . 45 . 46 . 47 . 48 . 49 . 50. 51 . 52 . 53 . 54 . 55 . 56 . 57 . 58 . 59 . 60. 61 . 62 . 63 . 64 . 65 . 66 . 67 . 68 . 69 . 70. 71 . 72 . 73 .  I I K e r r i s d a l e and O a k r i d g e d a i l y d a t a s e t A v e r a g e d 0800 TO 0 7 0 0 2 2 - 1 2 3 . 304-387, 0700 TO 0600  Q* (W/m2)  Os (W/rn2)  -5 . 93 -20 . 27 23 .04 -3 . 60 - 18 . 62 10 . 7 1 13 .50 4 . 98 -27 . 43 1 3. 50 7 .93 1 . 20 24 . 55 -11 . 5 1 33 .64 27 . 34 57 89 0.. 57 49 . 53 38 . 36 10 . 25 5 . 19 6 . 46 12 .32 6.1 1 -2 . 63 45 . 29 -0 .01 36 . 10 6 . 42 38 . 65 23 .42 63 . 18 2 1. 9 1 4 .. 40 -8 23 28 . 30 39 . 38 5 . 22 29 . 57 7 . 32 54 . 40 46 . 36 28 . 95 64 84 77 . 75 15 . 1 1 28 .65 69 39 14 .89 43 .80 82 .23  -5 . .07 - 16 . 49 -2 .64 -7 . 24 - 16 . 67 - 1 .94 . - 1. 23 -2 . 58 -2 1 . 94 -2 . 99 - 1. 29 -9 .67 -10. . 78 - 19 . 62 -6 .60 -11 . 5 1 0 .02 - 18 . 18 3 2 1 5 . 29 - 1 25 -2 . 53 -3 . 77 - 1. 78 -2 . 78 -7 . 63 -o . 17 -5 . 44 3 .07 - 12 . 88 4 .. 90 -3 . 63 1 1 . 25 -0.. 63 - 10.. 46 -11. 74 - 1.62 3 . 57 .43 -8 . 1 .97 -6 . 90 -0 . 16 -5 . 5 1 - 10. 29 - 1 .. 70 1 1 06 -11.. 59 94 - 1 . 6 84 -5 .62 - 1 .25 4 .74  T (C)  RH. (%)  WIND (ra/s)  -0 . 12 4 .04 5 . 15 5 . 44 4 . 34 3 , 10 3 .77 5 . 70 5 . 13 4 .01 3 . 19 2 . 50 1 10 - 1 . 20 1 . 53 1 .43 2 . 59 -0 .06 -0 . 49 1 1 1 2 . 84 5 26 5 . 36 7 . 23 8 .92 8 . 36 7 .06 5 2 1 8 . 20 3 . 68 2 . 39 1 .09 . 1 . 34 2 86 4 . 94 3 . 69 4 . 76 8 .. 22 5 .93 6 .04 4 . 36 4 . 56 4 . 30 3 59 4 . 98 8 . 93 6 .69 5 .5 1 4 .58 4 79 4 .16 3 .55  99 .84 98 . 55 9 1. 58 95 .84 91 . 25 98 . 36 97 .00 98 .63 93 . 38 90 . 2 1 100 .00 98 . 15 89 . 58 74 . 1 1 82 .60 90 . 39 76 .88 43 . 23 42 .98 73 .09 98 . 82 99 . 7 1 100 .00 99 .98 97 . 70 97 .03 83 68 98 . 37 92 .01 91 . 13 92 . 17 96 . 43 92 .72 89 .58 87 . 90 97 . 57 83 . 70 85 . 5 1 98 . 50 92 . 99 98 78 92 . 60 93 .05 91 . 7 1 88 .65 79 . 13 92 76 87 .22 69 82 94 . .89 89 2 1 84 .87  1 .41 1 . 52 1 . 23 2 . 36 2 . 23 1 .40 1 .07 1 .73 2 . 35 1 .59 1 . 10 0 .86 1 .05 0 .83 0 .86 1 .01 1 . 12 1 .65 1 .31 1 .86 1 .65 2 . 36 1 .58 1 .31 1 .97 1 .63 1. 5 1 2 09 2 . 13 2.1 1 1 79 1. 5 1 1 .47 2 .31 ' 2 .06 1 .87 1 . 92 1 87 1 .68 . 2 .01 1 19 0 . 94 1 07 1 .06 1 26 1 .02 1 .49 1 .78 2 7 1 1 .96 1 .16 1 .45  124-303  PRECIP (mm)  4 .. 7 17 . 9 25 . 9 6. 4 2. 1 6. 5 7 .6 1. 3 6 .0 8. 5 7. 1 0. 3 0 0 O..0 0..0 0 .0 O .0 0. 0 0. 0 0. 0 5. 1 34 . .0 50. 4 23 9 13 .7 2 .1 0. 5 40. 2 7 .5 1 .1 7 .8 1 .2 0. 0 4 .8 2 .8 16 .2 • 0. 0 13. 3 12 .0 7 .7 1 .4 0. 0 O. 0 0. 0 0. 0 O. 0 0. 0 4 .9 6 .0 1 .5 0. 0 0. 0  PIPES (m3/DAY)  SSM (%/100)  151 .9 172 .6 172 . 6 164 . 4 156 . 1 154 .8 154 .6 154 .6 165 . 1 18 1 . 7 171 .7 164 . 3 160 .0 155 . 7 163 .0 177 . 3 201 . 6 176 . 2 168 0 163 . 5 177 . 9 16 1.0 182 .0 181 . 2 164 .9 164 . 7 163 . 2 163 . 8 158 .0 181 . 2 190 . 6 178 . 1 164 . 1 168 .5 167 .6 163 6 180 . 5 189 . 4 169 . 8 147 6 145 . 5 150 . 6 155 7 164 . 4 177 . 7 153 . 7 142 . 2 144 . 1 139 9 134 . 7 183 . 2 163 9  0. 563 0 565 0 565 0 565 0 565 0. 565 0.. 565 0 565 0. 565 o. 565 0 565 0 565 0. 565 0. 565 0. 565 0.. 565 0. 573 0. 584 0. 594 0 602 0 6 16 0. 628 0. 633 0. 631 0. 630 0. 626 0. 620 0. 617 0. 6 11 o 608 0. 600 o. 584 o. 570 0. 554 0. 538 o. 520 0. 505 0. 484 0. 500 o. 520 0. 540 0. 550 0. 570 0. 582 0. 580 0. 578 0. 575 0. 572 0. 570 0. 569 0. 567 0. 560  DAYS SINCE K4PRECIP (Md/m2/d)  0. 0. 0. O. 0. 0. 0. O. 0. 0. O. 0. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.  o.  0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 2 . 3 . 4 . 5 . 6 . 0. 0. 0. 1 . 2 .  1 . 59 0..62 5 . 49 O . 56 1 . 15 2 .03 2 .60 1 . 29 O . 39 4 .09 . 1 . 15 2 .51 7 . 46 2 . 70 a .46 8 .67 9 . 75 6 00 9 .47 6 . 10 1 87 0 .94 0. 61 1 . 66 1 . 40 1 .. 46 8 98 0 . 70 5 .21 4 ,51 6 .64 5 48 9. 31 4 .31 . 3 .68 1 .04 6 03 6 . 70 2 .12 4 .62 2 .49 9 . 69 1 1 09 10. 23 14 .80 12 .81 6 09 5 .94 15 . 16 3 .29 8 77 16 .08  CO co CN CO oo i n o O T C O T - ^ T O C M CD CM ID CO co r- ••- cor0) in cn O *- CM r- r- p» i CM CM O r- CD r- CO oo n o t m i n c n c o c N i n c c r - co CM — co « i Jl O IN » 1 r- CM in — co CN O — CD co co in CM CD CD — • r» r~ co CDin r~ 10 05 o n o n i n c n r - T C N O c N CN CN CN CN CN CN -r-  1 *- CM co -3in CD r » CO 0 ) O O O O O O O O O O  O  -  CN CO  i n O O O O O O O  *- CM cn in O <r CD T in CD in o CO in CD CD CD r- in "3- CD CO CM CD CD p- 00 CN r- CM T CD CO to co CO 0) p- in O in in in in — CO p- CO pro in in CD r- in •3- co t- CO in •3- CD 00 in i in co p~ coco CD in CN CN CM CN CM CM CM CM CM CM CN CM CN — CN CN CM CN  CM CO T  in CD p- CO CD O O O  CN  o o  - CM CO "7 in CD p~ co CD o o  i ai n o  - CO CO CD o — CM co T O ^ O O C N C O C N C D O in CD in IN o i T in co CD p- CO in CO O CO CM O CO CD CN CD CD CD CD CD CO CD CD CD CD CD O cn 01 CO CM CM CM co n n n CM CD oo CO CD r~ r~ r~ r- r~ r~ r- rr- CD in O co r~ p~ CD CD CD CD CD CD CD ID CD CD CD CD in in T T 1 t 7 « ^ i T IT co ro CO CO CO CO to CO CO CO CO CO CO CO CO CO CO CO CO i in in in in in in to in in in in i n i n i n i n i n i n i n ' 3 ' 1 ^ i O O O O O O OO O O O O O O O O O O O O O O O  O O O O O O O O  O O O O O O O O O  O O O O O O O O O O  i CM CO in O CO in CD r- CD CM O c o c o c o r - c n m ^ r o o r~ co  CD p~ co m CN in co co p- p- p- p- r- CM 00 CO CM CO CO T O in T — CO o in c n i n i n c n c o c D O c o ,- co r- CM CD iD in i— r- r- in co co ro co ro CO *T O p- 00 CD 00 CD ro pCM in o 1 — 00 P- •» cn CN CD CO ID p- CM CD CN O *r ) m *r w v r- CO CO in co in CNc o O c M T i n i i n i n co in CD CD CM ro ID CD co cn co co CD CD CD CD CD in CN CM CN CM cn CM CM — — CN CN CN CN CN  O O O O O O O O O  CO  O CN O CD — CO o  O CO CD •tf 00 p- CD o CO cn CD CD oo 0) ro CD CD T CM CN CM CO CO CN CO CO  c N O O O O O O O O O O ^ i o ^ n r ^ ^ C N i O m ^ O O O O O U J n - ^ c o t i J C N i O O O O O O O O O O O t o a J O O t O O O O O O O O O O O O O ^ O O O O O O O O O O r ^ ^ O O i n ^ t ^ c n o o c N O O O O O c N - * - - ^ C N O ' ^  ,  T O O O O O O O O O O ^ ' O O O O c  v  > O O O O O O O O O O c  N  i  Ocor^aDm^cocN/^Lncor-^u>cnMii)0^ C0<X>LT)lX)^C0C0COC0Lr)(X>OTCOi^CT)CnCT)COr^cr)OT  I  —  I  I  * -  I I ! - - - I - | « - T - C \ I  —  I  I  I  OTCNir)nc^cnir)Lnn(i)ir)con^ojror^inu300c^ mcocococor^coa)^<£)co^cocoLr>c^cNr-r^^coo  r^r^r^r^r-r-cococomccaoaDcocoaDaiOT  125  ' - O J - ^ O J  —  •^'-^-•^rNfN'---o,''-  I  C \ ' C N C S » - C N C N C N O J  —  —  134 . 135 . 136 . 137 . 138 . 139 . 140. 14 1. 142 . 143 . 144 . 145 . 146 . 147 . 148 . 149 . 150. 15 1. 152 . 153 . 154 . 155 . 156 . 157 . 158 . 159 . 160. 16 1. 162 . 163 . 164 . 165 . 166 . 167 . 168 . 169 . 170. 17 1. 172 . 173. 174 . 175 . 176 . 177 . 178 . 179 . 180. 181 . 182 . 183 . 184 . 185 . 186 . 187 . 188 . 189 . 190. 191 . 192 . 193 .  33 . 56 151 . IO 106 ., 13 112. 1 1 162 . 69 150 43 111 34 170 . 44 7 0 . 94 119 94 188 . 46 176 . 46 132 99 182 59 179 ..08 163 ..72 178 01 137 78 94 .. 25 67 . 7 1 165 . 7 1 78 . 67 68 . 33 14 1.. 79 181 2 1 149 . 88 183 . 38 182 17 18 1 . 79 187 . 54 133 83 120 . 79 183 . 96 182 .08 180 08 17 1 . 58 179 . 2 1 179 58 182 . 25 183 7 1 183 63 178 63 55 ..88 28 25 85 . 0 0 178 . 38 188 . 75 56 . 79 84 .. 33 93 .. 33 38 7 1 14 1 . 25 123 58 168 . 42 1 18 54 155 . 7 1 176 . 96 176 . 96 158 . 63 175 . 79  0 .4 1' 23 . 40 19 . 50 18 .64 25 . 48 22 ..27 13 . 14 32 .64 2 .09 15 12 35 .01 30 . 0 9 2 0 . . 34 3 1 . 37 28 . 68 24 . 88 29 . 79 2 1 . 88 14 . 89 5 . 13 29 .92 10 .07 8 .42 19 98 29 .91 22 . 56 3 0 . 20 29 . 84 3 0 . . 20 34 .. 77 26 39 15 .47 3 0 . . 76 3 0 . 39 29 . 77 27 54 29 . 80 29 57 3 0 . . 56 3 0 . 39 3 0 . 49 29 . 26 5 . 26 - 1 . 29 1 1 . . 48 35 . 45 38 . 65 5 . 75 15 . 20 16 . 4 1 3 . 04 28 . 14 19 9 1 3 1 .76 16 . 59 25 . 4 1 28 . 6 1 32 . 96 27 . 40 3 0 . 13  10 . 14 13 66 14 . 22 1 1. 23 10 89 12 . 7 1 13 . 63 15 . 7 1 10 . 79 13 22 15 . 72 1 1. 85 1 1 57 . 14 .62 16 . 17 17 . 54 19 . 12 17 . 35 12 . 36 1 1. 44 . 14 .01 12 . 79 10 . 86 12 65 14 . 49 15 10 17 . 46 19 . 86 20 . 59 17 . 59 15 . 40 16 .01 18 . 1 1 19 .84 22 . 86 25 . 0 5 23 54 20 . 48 18 . 12 17 88 19 26 22 . 23 16 . 78 14 . 64 16 . 68 18 . 20 20. 2 1 14 . 78 14 . 18 15 . 55 10. 28 14 . 94 14 . 34 16 . 70 15 . 91 16 . 58 18 . 9 1 19 . 16 18 . 39 19 . 65  98 . 27 74 . 76 79 . 16 82 . 17 79 .84 75 . 58 7 1 . 25 70 . 46 9 1 .05 77 . 95 76 .67 75 . 33 79 . 72 74 .07 54 32 38 . 84 37 . 50 59 . 25 78 . 0 0 91 . 46 73 . 37 88 .41 97 .08 80 04 76 . 6 3 81 . 22 60 . 96 53 . 66 56 23 76 .95 85 . 70 85 . 17 76 . 8 0 73 . 67 52 . 78 39 . 23 60 . 22 77 . 80 77 .87 75 . 40 72 . 9 1 63 . 4 1 87 . 97 97 ,97 88 . 49 83 ..05 79 . 23 94 .. 40 92 . 79 9 1 . .74 98 . 34 78 . 80 83 . 7 1 7 1 63 80 89 75 . 73 69 85 77 . 45 74 . 5 1 7 1 .37  0 .86 1 . 24 1 . 20 1 . 19 1 . 34 1 . 22 1 .04 1 . 19 1 . 27 1 . 10 1 . 58 1 .90 1 . 50 1 . 20 1 . 43 1 . 19 1 . 28 1 . 30 1 . 55 0 .94 1 . 24 1. 2 1 0 .96 1 . 30 1 .25 . 1 . 16 1 . 10 1 . 12 1 . 15 1 . 59 1 .48 0 .93 1 .02 1 .02 1 . 15 1 .00 0 .90 1 . 14 1 . 29 1 .09 1 .03 1 . 17 1 . 15 0 .83 1 16 1. 1 1 1 . 19 1 .55 1 .45 1 . 16 1. 51 1 . 35 1 . 30 1. 01 1 27 1. 14 1. 15 1 06 1. 18 1. 05  4 .6 0 .0 4. 4 8 .5 0 .0 0 .0 0 .0 1. 2 0 . 3 0 .0 0 .0 0 .0 0 .0 0 O 0 .0 0 .0 0 .0 0 .0 2 .9 0 . 7 O .0 0 .3 1. 4 0 .0 0 .0 0 .0 0 .. 0 0 .0 0 .0 0 .. 0 0 .0 0 .0 0 .0 0. 0 0 .0 0 .0 0 .. 0 o O 0 .. 0 0. 0 0. 0 0 .0 2 .5 23. 5 0 3 0. 5 0. 0 0. 0 2 .7 10. 9 16 . 5 0. 6 0. O 0. 0 0 0 0. 0 0. 0 0. 0 0. 0 0. 0  182 . 6 297 .6 4 18 . 8 220 . 7 255 .8 298 . 7 39 1 . 3 356 . 7 272 . 5 44 1 . 1 704 . 7 459 . 3 366 . 8 610 . 3 882 . 5 1080 . 0 1202 . 9 932 . 8 476 . 3 284 . 1 591 . 9 378 , o 311 . 6 311 . 6 797 . 4 84 1 . 5 1082 . 0 1272 . 5 1345 . 6 1390.. 5 839 . 2 9 11 . 7 1226 . 6 1317 1 1443 .9 1485 . 7 1620.. 4 1450 . 9 1358 . 2 1425 . 8 1480 9 1482 . 1 684 .. 4 239. 8 3 12 2 497 . 9 1074 . 5 489 .. 3 493 . 0 273 . 8 199 . 7 248 . 8 206 1 353 . 5 350. 5 589 . 6 998 . 6 1 128 . 1 1 120. 6 882 . 7  O 340 0 . 335 0 . 330 0 . 327 0 . 322 0 . 3 19 0 3 14 0 309 0 . 304 0 . 300 0 293 0 . 289 0 . 283 0 . 277 0 . 27 1 0 . 265 0 255 0 . . 247 0 . 239 0 . 23 1 0 . 220 o . 2 13 0 . 205 0 . 194 0 . 191 0 . 188 0 . 183 0 . . 180 0 . 176 0 . 173 0 . 167 0 . 163 0 . 157 0 . 150 0 . 14 1 0 . 134 0 . 127 0 . 120 0 . 113 0 . 122 0 . 133 0 . 14 1 0 . 152 0 . 162 0 . 172 0 . 182 0 . 192 0 . 202 0 . 2 17 0 . 228 0 . 240 0 . 250 0 . 262 0 . 275 0 . 270 0 . 260 0 . 249 0 . 239 0 . 228 0 . 2 17  0. 1 . O. 0. 1 . 2. 3. 0. 0. 1 . 2. 3. 4 . 5. 6. 7 . 8. 9. 0. 0. 1 . 0. 0. 1 . 2. 3. 4 . 5. 6. 7 . 8. 9. 10. 1 1 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 0. 0. 0. 0. 1 . 2. 0. 0. 0. 0. 1 . 2. 3. 4 . 5. 6. 7 . 8.  6 . 22 25 . 15 15 .51 16 . 9 5 26 . 8 1 26 .61 17 .86 26 . 24 1 1. 69 19 . 24 29 .01 28 . 8 5 23 .07 28 . 26 30 . 24 30 . 6 1 30 28 22 . 98 12 . 95 12 . 19 26 . 15 1 1. 96 6 . 93 26 .61 28 .51 24 . 77 3 0 . . 33 30 . 48 29 . 65 29 . 35 18 39 20 . 52 29 99 29 92 29 .. 93 29 . 14 29 .. 14 29 . 43 28 .. 70 3 0 . 25 3 0 . 20 30 28 9 . 77 4 . 28 14 . 23 26 .. 39 26 . 48 7 .48 . 10. 90 12 . 36 5 . 09 18 70 17 . 7 1 23 . 17 19 . 65 24 . 52 28 . 59 27 . 24 23 . 87 27 . 75  194 . 195 . 196 . 197 . 198 . 199 . 200. 201 . 202 . 203 . 204 . 205 . 206 . 207 . 208 . 209 . 2 10 . 2 11. 2 12. 2 13. 2 14. 2 15. 2 16 . 2 17. 2 18. 2 19. 220. 22 1 . 222 . 223 . 224 . 225 . 226 . 227 . 228 . 229 . 230. 231 . 232 . 233 . 234 . 235 . 236 . 237 . 238 . 239 . 240. 24 1 . 242 . 243 . 244 . 245 . 246 . 247 . 248 . 249 . 250. 251 . 252 . 253 .  26 .00 132 . 38 39 .00 88 . 75 136 . 42 159 .00 48 . 50 67 . 17 122 .04 1 1 .46 1 17 1. 58 179 . 58 166 .00 164 . 38 161 . 58 173 . 88 156 . 46 6 1. 7 1 50 . 92 27 . 17 48 . 54 86 . 38 132 . 67 48 . 75 158 . 2 1 157 . 88 62 . 25 85 .00 43 . 33 106 . 67 35 . 29 132 . 50 88 .63 15 1. 29 1 13. 96 14 1. 29 142 . 25 146 .42 127 .08 137 .04 1 35.63 136 . 50 134 . 25 128 .00 1 1 . 1 88 55 . 29 76 .67 98 . 75 47 . 79 109 . 38 1 1 . 17 1 127 . 2 1 40 .00 69 . 92 109 . 92 80 . 75 54 . 79 59 . 88 56 . 17 127 . 33  -6 . 46 27 . 28 3 . 33 15 62 27 OO 27 . 15 4 . 76 3 47 19 . 76 13 . 13 27 . 2 1 32 .05 25 . 28 25 50 25 .47 32 . 75 27 . 59 9 . 78 6. 5 1 1 . 16 1 . 70 12 .00 19 .90 4 . 96 23 . 89 24 . 77 2. 7 1 12 56 4 . 20 15 . 97 2 . 55 24 . 65 5 . 90 23 . 70 16 .01 19 19 19 . 20 22 27 15 .91 17 . 75 17 . 8 1 17 . 49 16 . 93 15 .44 1 7. 98 5 88 2 .89 18 . 1 1 6 28 15 .69 12 .91 15 . 69 3 . 65 5 . 33 1 1.42 12 . 17 6 .08 . 8 .69 - 1 82 24 . 57  14 .04 12 .83 12 . 78 15 . 97 18 .54 18 . 38 14 . 93 13 .67 14 .53 14 .99 17 . 2 1 19 . 63 22 .68 23 . 49 22 .93 18 .88 18 .42 15 . 85 14 . 72 12 . 59 14 . 36 14 . 5 1 15 .82 16 . 4 1 19 . 36 22 . 16 18 13 15 28 14 . 1 1 16 . 20 13 . 45 14 .. 30 13 . , 98 15 . 9 1 16 . 33 16 . 20 16 . 93 19 13 19 . 38 17 . 68 17 .. 55 19 .90 20 . 80 20 . 44 17 .16 16 53 16 . 5 1 17 .08 14 .. 46 16 . 54 17 . 32 18 .70 15 .15 15 .59 17 . 34 17 . 9 1 17 46 16 23 13 .12 13 . 38  90 . 26 84 . 4 1 95 . 15 88 . 50 81 .7 1 81 . 24 93 . 35 92 . 4 1 79 .86 82 .43 78 . 80 77 .00 64 .40 64 .90 72 . 22 84 . 16 86 .09 92 . 86 90 . 45 96 . 4 1 93 .92 84 . 5 1 69 . 74 83 . 19 73 . 57 66 . 19 86 . 33 92 . 67 91 .68 84 .69 92 . 70 79 . 58 77 . 10 7 1. 10 68 . 40 75 . 24 72 .69 67 .09 69 .68 72 70 72 . 34 67 14 64 . 76 68 19 78 .05 79 . 27 76 .01 79 62 87 . 15 74 . 16 74 .88 79 81 86 82 83 30 76 . 10 75 . 37 78 50 78 83 76 09 71 . 91  1 . 32 1 . 30 1 . 17 0 . 76 O . 83 1 . 34 1 . 16 1 . 37 1 .05 1 .01 0 . 99 0 . 89 0 . 78 0 .82 1 .08 1 . 47 1 .21 1 . 35 1 . 25 1 . 19 0 90 1 06 1 13 1. 00 1 08 0 92 0 88 1.. 33 0 82 1 13 1 .60 1..06 1.07 1. 03 1 07 0 91 0 94 0 91 0. 86 1 01 1 17 0. 97 0. 89 0. 94 1. 60 1. 12 0. 95 0. 99 1.08 0. 84 0 92 0. 90 1. 24 1. 13 o 9 1 1 10 0. 98 1. 32 1.03 1. 45  7 .0 24 .5 9. 5 0 .0 0 .0 0 .0 0. 7 0 .4 0 .O O .0 0 .0 0 .0 O .0 0 .0 0 .0 0 .0 0 .0 O .0 0 .0 0. 3 1. 1 0. 4 0 .0 0. 3 0 .0 0 .0 0 .0 2 O 5. 3 0 .0 12 .8 . 2 .0 . 0. 0 0 .0 0 .0 0..0 0..0 0 .0 0..0 0. 0 0. 0 0 0 0 0 0 0 0. 0 0 0 0. 0 5. 3 0. 7 0..0 0. 0 0. 0 15 .2 1 . 6 O. 0 0 0 0. 0 5 .9 0..0 16 .0  662 . 1 196 . 3 175 . 9 222 . 2 301 .0 38 1 . 6 31 1 . 5 219 .9 317 . 5 583 .0 •835 . 3 1053 . 5 1439 . 1 1357 .0 1383 .9 1084 .0 784 .0 460 . 9 498 . 3 296 . 2 2 14 . 7 535 .0 535 .0 535 O 106 1 . 7 9 16 . 8 746 . 5 436 . 2 193 . 1 196 . 7 506 .6 228 . 4 235 . 4 366 . 7 374 . 7 462 . 4 656 . 1 817 . 4 834 . 2 951 .0 725 . 7 943 9 982 . 4 1049 . 7 575 .6 534 7 689 . 4 6 19 .9 222 . 9 232 3 374 7 519 .6 255 . 2 174 . 7 253 7 294 1 2 10 . 7 2 16 . 7 210 9 223 . 4  0. 206 0. 2 19 0 230 0 240 0 251 0 263 0. 274 0. 288 0 279 0. 269 0. 259 0. 250 0 24 1 0. 232 0. 22 1 0. 22 1 0. 220 0. 2 19 0. 2 19 0. 2 18 0. 2 17 0. 2 16 0. 2 15 0. 2 13 0. 2 1 1 0. 209 0. 207 0. 205 0. 203 0. 200 0. 2 10 0. 220 0. 2 30 0. 239 0. 249 0. 258 0. 250 0. 24 1 0. 232 0. 222 0. 2 13 0. 204 0. 194 0. 184 0. 193 0. 204 0. 2 14 0. 225 0. 236 0. 246 0. 256 0. 266 0. 265 0. 263 0. 261 0. 259 0. 257 0 259 0. 26 1 0. 263  0. 0. 0. 1 . 2 . 3 . 0. 0. 1 . 2 . 3. 4 . 5 . 6 . 7 . 8 . 9 . 10. 1 1 . 0. 0. O. 1 . 0. 1 . 2 . 3 . O. 0. 1 . 0. O. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10. 1 1 . 12 . 13 . 14 . 15 . 0. 0. 1 . 2 . 3 . O. 0. 1 . 2 . 3 . 0. 1 . 0.  6 . 37 18 .43 5 . 26 12 . 17 16 . 77 25 .01 6 .46 12 . 22 14 .58 18 . 27 27 .61 28 . 20 27 .91 27 . 29 25 .86 26 .01 23 . 7 1 7 . 96 6 . 98 3 . 74 7 .93 12 . 94 23 . 40 8 . 13 26 . 14 25 . 22 1 1.65 12 .43 5 .90 13 . 1 1 5 . 32 18 . 72 16 . 23 24 . 77 19 .09 24 . 27 24 .66 24 . 54 22 . 22 23 . 70 23 .07 23 . 27 23 . 15 22 . 17 16 68 8 . 17 14 .88 15 . 1 1 5 83 15 .97 20 .06 20 .06 5 59 9 .9 1 19 . 37 12 . 17 7 .01 7 .73 12 . 28 19 . 2 1  254 . 255 . 256 . 257 . 258 . 259 . 260. 261 . 262 . 263 . 264 . 265 . 266 . 267 . 268 . 269 . 270. 271 . 272 . 273 . 274 . 275 . 276 . 277 . 278 . 279 . 280. 281 . 282 . 283 . 284 . 285 . 286 . 287 . 288 . 289 . 290. 29 1 . 292 . 293 . 294 . 295 . 296 . 297 . 298 . 299 . 300. 301 . 302 . 303 . 304 . 305 . 306 . 307 . 308 . 309 . 310. 3 11. 3 12. 3 13.  19 . 88 98 . 13 74 .08 87 .42 75 . 13 95 . 17 9 1.00 86 . 58 69 . 50 24 .08 19 . 17 61 .96 65 .08 13 . 96 1 . 75 8 1.04 14 .63 34 . 96 73 . 42 66 . 29 7 1. 63 60 . 25 22 . 54 65 . 67 38 . 38 1 . 54 64 . 92 4 1.67 55 . 88 66 . 25 56 . 58 58 . 13 55 . 33 50 . 58 42 . 29 - 14 . 50 22 . 25 34 . 96 36 .00 46 .67 7 .42 8 . 29 1 1.96 -7 .08 -4 . 7 1 -9 . 13 7 88 -2 . 7 1 44 . 2 1 27 . 7 1 - 10 .08 5 .08 18 . 54 1 .. 79 13 . 25 -8 . 75 5 .04 -2 1. 38 3 . 54 3 .. 33  -3 . 82 7 .61 - 1. 89 3 . 36 2 .47 6 . 14 5 . 39 4 .42 4 . 97 -o.. 63 -3 .01 2 . 82 1 .81 -3 . 59 - 13 .94 7 . 70 -6 . 52 -3 9 1 0 . 70 - 1. 92 12 . 28 3 .00 -9 .67 0 . 90 1 .. 13 - 10 . 23 4 29 2 87 -2 . 36 2 . 53 1 . 90 - 1 .08 . -2 . 5 1 - 1. 39 1 ..56 - 16 .62 - 12 . 18 -8 . 86 -9 . .03 4 .25 -2 .63 . -9 .70 -4 .16 - 12 . 15 -9 .40 - 13 02 -4 .13 -8 .92 0. 76 1 . 94 - 16 .20 - 15 .68 -6 .60 -5 .86 -7 .40 - 16 .92 -7 .1 1 -22 .99 - 17 .98 - 18 .04  10 .45 13 .02 14 . 52 14 . 86 14 . 85 17 .23 17 . 78 18 . 35 16 . 54 14 . 32 13 . 84 15 .03 15 . 56 15 . 30 12 . 99 12 . 74 1 1. 20 9 .43 12 . 10 1 1. 95 12 . 2 1 10 .53 9 . 55 10 .82 12 . 58 9 . 48 9 . 86 10 . 52 1 1. 72 12 .01 1 1. 57 12 3 1 13 .61 13 . 73 13 . 1 1 7 .. 66 6 .07 5 92 6 .. 96 9 43 1 1 75 12 .2 1 13 10 12 36 12 .58 9 .16 8 .67 7 .29 6 .69 7 .59 7 .98 6 .01 6. 78 9 70 7 .32 5 .98 4 .63 4 .82 4 .06 3 .31  87 . 55 78 . 33 63 .61 56 28 63 . 80 70 . 29 72 . 34 73 . 25 78 . 34 86 .83 87 .06 85 . 18 84 .05 85 .04 83 . 10 80 . 76 86 . 18 82 .93 69 17 73 . 16 80 . 29 77 . 49 80 . 40 72 . 29 68 .09 84 . 76 76 . 48 75 .08 75 . 47 79 . 75 84 . 29 83 . 49 76 .76 79 . 79 83 . 76 83 . 30 78 . 93 77 . 5 1 77 .31 78 . 29 85 .85 77 . 16 77 . 4 1 78 . 44 76 . 56 82 .06 86 36 87 27 82 . 34 81 . 36 84 99 8 1 26 76 .51 73 .6 1 81 99 81 . 76 84 .73 78 .05 73 . 39 73 .03  0 .95 1 .02 1 . 12 1 . 15 0 . 92 0 . 97 0 .97 0 .87 O . 94 0 .80 0 75 0 . 96 0 .83 1 .10 0 .96 0 .88 0..85 0 97 0 .94 0 .87 1 33 0 .99 1 . 13 1.. 1 1 1. 37 1 .70 1. 13 0. 91 0. 83 0. 80 0.. 74 0. 73 0. 7 1 0. 72 1. 32 1. 48 1.06 0. 9 1 0. 86 1. 33 1. 65 2 .26 2 .03 1 . 40 1 . 82 2 .7 1 1 .36 0. 98 0. 97 1 . 08 1 .70 0. 96 0. 85 1 . 4 1 1 .18 1 .28 1 .21 1 . 7 1 0. 95 1.01  2. 4 0 .0 0 .0 O .O 0 .0 0 .0 0 .0 0 .0 0 .0 0. 7 0 .0 0 .0 0 .0 5 .0 0 .5 0 .0 0 .0 0 .5 0 .0 0 .0 15 .8 0 .5 0 .0 10 . 1 10 . 6 0 .0 0. 5 0 O 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 15 . 1 0 .5 0 .0 0 0 2 .6 0..0 0. 0 0 0 0. o 0 0 0. 0 0. 0 0..0 0. 0 0. 0 6 .0 0. 0 0. 0 15 .0 1 1 0. 1 1 0. 5 .0 1 . 0 0. 0 0. 0  17 1. 6 187 . 9 202 . 5 210 . 4 257 . 1 292 . 5 353 .9 446 . 1 340 .0 183 . 2 167 .0 185 . 3 178 . 5 172 . 2 187 . 1 196 . 2 18 1. 1 160 .8 17 1. 2 187 . 1 174 . 9 176 . 8 185 . 1 188 . 3 162 . 3 168 . 3 165 . 4 157 .0 173 . 2 182 .0 208 . 6 176 3 189 .9 188 .6 179.. 1 162 4 182 . 4 173 4 162 .7 162 2 17 1. .0 153 .8 165 .6 207 2 145 .3 16 1 0 . 151 .7 150. 2 159 .2 173 .8 176 .8 158 .4 147 .6 168 .6 160. 6 150. 6 157 .4 169 .4 156 . 1 143 .9  0. 265 0. 267 0 . 269 O 27 1 0. 273 0. 273 0. 273 0 273 0.. 272 0 272 0 272 0 268 0. 262 0 257 0. 251 0. 247 0. 240 0. 233 0 244 0. 252 0 260 o. 270 0 279 0. 289 0 299 0. 309 0. 3 19 0 305 0. 290 0. 280 0. 269 0. 257 0. 245 0. 25 1 0. 26 1 0. 267 0. 272 0. 280 0. 286 0. 29 1 0. 299 0. 302 0. 3 10 0. 3 16 0. 322 0. 325 0. 315 0. 300 0. 289 0. 279 0. 267 0. 255 0. 245 0. 252 0. 259 0. 265 0. 27 1 0. 279 0. 284 0. 29 1  0. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 0. 1 . 2 . 3 . 0. 0. 1 . 2 . 0. 1 . 2 . 0. 0. 1 . 0. 0. 1 . 0. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 0. 0. 1 . 2 . 0. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10. 0. 1 . 2 . 0. 0. 0. 0. 0. 1 . 2 .  2 . 46 19 . 42 16 . 74 19 .68 15 . 16 18 . 2 1 17 .66 16 .88 13 . 14 4 . 17 3 .70 12 .94 13 . 98 3 .05 4 . 46 14 . 77 3 . 98 8 . 36 15 . 77 15 .49 10 . 66 1 1.94 7 . 62 14 . 43 7 . 82 2. 8 1 13 .03 7 .01 12 97 13 . 4 1 1 1. 73 1 1. 73 12 . 18 10 .91 8 . 39 1 .93 . 8 . 82 1 1. 69 1 1. 47 8 .39 1 .62 4 .76 3 .54 1 . 54 1 68 1 .49 1 .89 1 .19 9 .80 4 .84 1 .78 6 .36 6 .40 1 . 93 4 .94 2 .52 2 .32 2 .43 8 23 8 .32  314 . 315. 3 16. 317 . 318. 3 19. 320. 32 1 . 322 . 323 . 324 . 325 . 326 . 327 . 328 . 329 . 330. 331 . 332 . 333 . 334 . 335 . 336 . 337 . 338 . 339 . 340 . 34 1 . 342 . 343 . 344 . 345 . 346 . 347 . 348 . 349 . 350 . 35 1 . 352 . 353 . 354 . 355 . 356 . 357 . 358 . 359 . 360. 36 1 . 362 . 363 . 364 . 365 . 366 . 367 . 368 . 369 . 370. 37 1 . 372 373 .  12 . 67 14 .08 . -7 .79 12 .67 18 . 33 3 . 13 2 33 0 .08 23. 33 -0..04 3 . 79 -5 . 29 -11 . 54 -7 .04 9 . 96 12 . 50 5 00 1 .08 -0 . 33 O . 50 14 .63 . -2 .63 1 .08 -30 . 79 -6 .42 -4 . 50 -2 1 OO - 1 72 1 - 13 .92 . -20 33 - 17 . 67 13 . 17 -0 . 79 4. 2 1 -4 . 29 0 2 1 -4 . 50 -3 . 42 -9 25 - 18 .88 - 1 .50 . 5 .04 . -7 .38 3 .50 -6 .00 -11. 33 - 17 .92 - 17 .67 -21 .63 -11.. 7 1 9 .38 2 .54 10. 79 1 . 7 1 6 .33 7 .83 5 .29 O. 2 1 -5 .54 -2 .75  - 12 . 57 - 10 .08 -11 . 90 -11 . 26 -6 . 35 -2 .86 -3 .09 -8 .31 0 .96 - 13 . 13 -5 .02 - 19 . 53 -22 33 - 19 . 48 -7 . 17 -0 . 77 -2 . 82 -3 . 12 -3 .51 -4 . 84 -o .90 -6 . 73 -2 . 67 -25 . 17 - 16 . 55 - 13 . 87 -25 . 25 -2 1. 76 - 16 .97 -24 . 7 1 -23 . 59 - 1. 49 -5 . 74 -5 . 87 -6 . 76 -5 . 58 - 10 . 4 1 -7 . 57 -9 . 46 -20. 47 -5 . 1 1 -6 . 34 - 14 .60 -7 .74 . -9 .42 - 10 . 54 -23 . 13 -22 . 73 -24 .88 -20..47 -7 .57 - 10. 05 - 1 60 . -3 .14 -1 . 79 -1 . 45 -6 .78 -4 .59 -7 .27 - 12 .23  1 .88 2 .91 1 .59 1 . 39 2 .85 3 . 37 6 .03 4 .09 4 .98 3 . 48 0 . 50 - 1.00 - 1. 32 0 . 10 -0 . 18 1 . 59 5 . 56 6 . 40 5 . 73 5 . 45 5 . 57 5 19 4 . 84 6 . 77 4 . 45 3 . 75 1 . 56 0 97 2 .00 1 . 92 2 .02 5 . 70 4 .66 4 . 93 5 . 72 7 .40 7 .85 5 .65 5 .64 4 .. 18 3 12 5.. 20 3 .80 . 3 .38 5 .3 1 2 . 26 0. 10 0. 02 0. 18 -o. 77 -1. 01 -o. 92 3 .69 3 .7 1 3 .72 4 .91 4 .67 5 .94 6 .92 4 .34  8 1. 50 79 . 77 86 . 80 82 91 75 .95 83 .58 88 .97 88 .52 79 . 49 82 . 37 87 . 69 76 . 53 7 1.51 77 . 5 1 83 .06 8 1.60 87 .43 86 .63 86 60 85 . 30 84 . 49 86 . 40 87 . 53 80 . 49 77 . 64 7 1. 72 76 . 25 74 . 74 74 .83 77 . 20 77 . 78 69 . 24 87 .06 83 . 73 82 94 82 .96 74 63 83 . 66 78 45 78 12 83. 05 78 .38 81 . 30 83 .49 75 .48 87 00 83 .70 73 .70 77 .45 82 .08 85 .74 88 .55 78 .86 87 .92 87 4 1 89 .58 83 .95 84 .9 1 85 63 74 .36  0 .87 0 . 82 0. 95 0..84 0 .80 1 .. 69 1 .. 49 1 .. 16 0 .99 1 . 26 O . 86 0 82 0 87 0 . 75 0 72 0..80 1 .51 1 61 1 51 1 . 78 1 49 0 99 2 00 2 .03 1 . 03 0. 75 0 88 0 72 0.. 72 0. 73 0 75 1 . 33 1. 05 1. 28 2 .35 2 56 2 .19 2 .68 3 .50 1 .87 1 . 41 2 .05 1 .53 1 . 02 1 . 52 1 .40 0. 88 0. 88 0. 96 0. 69 0. 64 0. 69 1 .42 1 . 47 74 1 . 1 . 4 1 1 .34 1 . 59 1 . 64 1 . 73  0 .0 0 O 6 .0 0 .0 0 .0 22 .0 22 .o 2 o 4 .0 2 .0 4 .o 1 .0 0 .0 0 .0 0 .0 4 .0 12 .0 21 .o 24 :o 7 .0 15 .0 1 .0 42 .0 2 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 16 .0 9 .0 2 .0 1 1.0 14 .0 4 .0 4 .0 7 .0 0 .0 7 .0 13 .0 0 .0 1 .0 1 .0 12 .0 0 0 0..0 0..0 1 .0 0 .0 0. 0 2 .0 17 0 10..0 28 .0 . 0. 0 7 .0 22 .o 1 . 0  143 9 159 . 2 145 . 4 164 . 9 165 . 1 156 . 1 155 . 8 150 . 7 153 . 1 153 .0 158 . 1 177 . 2 159 . 8 155 . 6 157 .6 158 2 143 . 9 163 . 4 174 . 7 162 . 3 157 . 7 15 1. 5 157 6 158 . 6 168 .5 178 . 2 160 . 2 150 2 154 . 7 159 . 1 157 .0 164 , 4 17 1. 2 185 , 1 159 , 7 156 . 1 156 . 1 156 .1 152 . 4 154 .8 153 .2 149 . 3 146 . 1 149 3 168 .0 167 .0 157 .8 157 .3 151 5 147 .7 147 .7 163 .4 156 . 1 160. 1 163 .2 151 .8 156 2 148 .8 147 .0 158 .7  O. 291 0. 291 0 29 1 0 29 1 0. 291 0. 29 1 O 291 0. 291 0. 300 0 308 0 3 16 0. 322 0 330 0 338 0 344 0 350 0 354 o. 359 o 363 o 369 0. 37 1 0 375 0. 380 0. 383 0. 387 0. 384 0 38 1 0. 379 0. 372 o. 368 0. 362 0. 359 0. 354 0. 350 0. 346 0 .34 1 0. 336 o. 332 0. 326 0. 322 0. 330 0. 339 o. 347 0. 355 0. 363 0 370 0. 379 0. 386 0. 382 0. 378 0. 374 0. 369 0. 364 o. 36 1 0. 357 0. 359 0. 36 1 0. 362 0. 364 0. 366  3 . 4 . O. 1 . 2 . O. O. 0. 0. 0. O. 0. 1 . 2 . 3 . 0. 0. O. 0. O. O. 0. O. 0. 1 . 2 . 3 . 4 . 5 . 6 . 7 . O. 0. 0. 0. 0 . 0. 0. 0. 1 . 0. 0. 1. 0. 0. 0. 1. 2 . 3 . 0. 1 . 2 . 0. 0. 0. 0. 1 . 0. 0. 0.  7 .84 7 . 33 1 . 17 7 . 58 7 . 10 1 . 10 0 . 59 2 . 20 4 .30 4 .45 1 . 42 5 . 85 6 . 18 5 .88 5.1 1 2 . 23 0 .99 0 .6 1 0 . 35 1 .03 3 08 0 .88 O . 44 1 .00 4 .01 . 4 .46 . 4 .77 4 . 54 2 . 32 4 .. 46 4 61 2 52 0..65 2 .01 0.. 77 1 68 2 . 49 1 .23 O 73 3 57 0 93 2 .92 3 .18 3 .38 1 .14 O. 43 3 .39 4 .83 4 .33 4 .83 5 .38 3 .50 1 .77 0. 54 1 .15 1 .52 3 .26 0. 79 0 28 4 .03  c\i — — T r r - c o i n r - r o c N m i n c o cNO^cN^-ncocDco — O c o n O — cM^-mm'^-cMO'-'-oiir)  000-nn>toOOO'n  ooOTcoiDr-TinnOLOCDiDiD coior^cocno — cNr:*TT^Tr  oooooooooodoo  — mcocc-cococN —  ^ i et o  ooooooooooooo O l ' i n O O O O - B i O I U O O  TcocOLncocncMO T^''-r^ro T  - - - - O O O - - - O O O  roiDinmnt-Tr'-ncotM'-a) — ^ r~ co — co — Mn O o o rcococor-r--r-r-r~cor~CDr~i~  Ln-'-cnncncOLfiocNLOcocn — lOcocor-TCNncDcocncDiDO  cocoomcocccNcDcoo) — "-^r m c o c o t m o i i n m o i O - co CN n CM i i  o r- 01 CM — o t i  — i  — i i  CM  t  t  i  u n I  o  1 — CM t  i  mccaicooini—cMcnnocoro cMcor^cocNcocD'rrMcomnco c N O O i o — ro — n o i  i  ^ mu  i  ^intDNcocoO^cMn^TintD r"-r^r-r*-r--r^cococococococo  130  APPENDIX I I I E v a p o r a t i o n  Modelling  The a p p r o a c h u t i l i s e s called and  standard  evaporation  m o d i f i c a t i o n s to account f o r s p e c i a l  are  gated.  pervious  irrigated,  days ( g r e a t e r than they  5 mm)  unirrigated fairly water  influences)  (including  and p e r v i o u s  t o be wet ( s a t u r a t e d )  o r when t h e p a v e d a r e a  d r y . T h e i r s t a t e a t any g i v e n  time  The  5 mm  been d e m o n s t r a t e d a t t h e S u n s e t  surfaces  s t a t e s , from t o t a l l y  are r e l a t e d  directly  wet  to t h e i r  o f r a i n on any day a l l t h r e e  site  (Kalanda  l a t e n t h e a t f l u x was c a l c u l a t e d a c c o r d i n g  Q  during  pervious,  f a c e s a r e assumed t o be wet a n d e v a p o t r a n s p i r i n g a t a p o t e n t i a l  (1972)  unirri-  content.  In the event of g r e a t e r than  has  of s u r f a c e  irrigated  freely available.  s u r f a c e s possess a range of m o i s t u r e  sur-  r e t e n t i o n storage i s  a r e a s s u m e d t o be d r y . P e r v i o u s  assumed a l w a y s t o be wet w i t h w a t e r  soil  suburban f e a t u r e s  Impervious surfaces are considered  non-zero, otherwise are  of the so-  and ' o a s i s - t y p e ' a d v e c t i o n ) . T h r e e t y p e s  d i s t i n g u i s h e d : impervious,  rainy  equations  C o m b i n a t i o n Model ( i n c o r p o r a t i n g energy and a e r o d y n a m i c  face water a v a i l a b i l i t y  to  both  Scheme  sur-  rate. This  e t a l . , 1 9 8 0 ) . Hence t h e  to the P r i e s t l e y  and T a y l o r  equation: E  = a (Q* - Q ) s  _s  (III.l).  S+Y  where a i s an e m p i r i c a l c o e f f i c i e n t . Without r a i n the  l a t e n t heat  ( t h a t i s , w i t h a t l e a s t one s u r f a c e  flux  i s calculated according  s a e r t and S t r i e k e r ' s (1979) a d v e c t i o n  type  non-saturated)  to a modified  - aridity  v e r s i o n of B r u t -  a p p r o a c h . The e q u a t i o n  (III.2)  was a s f o l l o w s : Q= E  z\cx  (2a-l)_s_(Q*-Q ) s  S+Y  w h e r e nn i=l  used  c Y  i=i  i s number o f p e r v i o u s s u r f a c e i s unirrigated surface;  131  Q k ln(zi-d+Zpv )ln(z -d+z 2  D  types;  2  0 ( n  )  is is > is i AA is is *s e is i s P Cp is u is k is i s Z i s i is o in i s d is i=2  a  a  2  z  z  The but  first  differs  term i s the  i n two  theoretical  s o - c a l l e d e n e r g y term. I t r e s e m b l e s eqn.  important  respects. F i r s t ,  argument t h a t t h e r e  i t uses Bouchet's  i s symmetry b e t w e e n p o t e n t i a l  III.l  (1963)  and  actual  evapotranspiration: E  p  + E = 2E  where E  is potential  p  E Epo  p r e c i p i t a t i o n ) and (1972) e q u a t i o n  E  obtained III.l)  for E .  Secondly,  s+  that  i s the  s i n c e the  a l l o w f o r the  i n f l u e n c e of each a the v a l u e  arid  and  p o  regions  a modified  and  III.4) for E  p  equals  Taylor's  v e r s i o n of  (1979) combined u s i n g eqn.  equation III.l. (III.4)  a  y  three  the a i r .  surface  availability  types  of  the  suburban  value  i s d e p e n d e n t on  represents. Values  132  environment  f r o m none t o p o s s i b l y u n l i m i t e d , t h e  i n c r e a s e i n t h e e n e r g y component due 1  (where E  used P r i e s t l e y  Strieker  (eqn.  d r y i n g power o f  a range of m o i s t u r e  o.^ v a l u e s The  E  s  S+ Y  cover  to c a l c u l a t e E  B r u t s a e r t and  p  = _ s _ ( Q * - Q ) + _Y_  a  and .  g o o d a g r e e m e n t . He  Penman's ( 1 9 4 8 ) e q u a t i o n  where E  p  a p p l i e d t h i s concept i n very  (eqn.  Penman's e q u a t i o n and  evaporation;  i s actual evaporation; i s a t e r m f o r when E=E  M o r t o n (1976) has  III.l  (III.3)  p o  to  the p r o p o r t i o n of  advection. the  area  measured i n f o r e s t environments under  wet  c o n d i t i o n s have b e e n as h i g h as 11.52  (Shuttleworth & Calder,  1979).  same s t u d y a l s o o b t a i n e d v a l u e s u n d e r  a l lconditions  dry) of  for  a i n Plynlimon Forest.  the  urban The  roughness  term i s the aerodynamic  and v a p o u r  pressure. In t h i s  include a coefficient  related  surface, calculated  empirical  collected  29 d a y s  b o t h eqns.  basis using  site  III.l  and  is soil  v a l u e o f a ' was 2  1.28  u n l e s s a j was  W/m  and  2  120 W/m  120 W/m  2  This allows  the fact  f o r the model were d e t e r m i n e d u s i n g  data  availability.  1980  (Oke & M c C a u g h e y ,  and  v a l u e o f a'  was  " d r y " days; was  calculated  that  used f o r on a  daily  (1973) e q u a t i o n :  ( -10.563 x ( S S M / S S M F ) ) )  (III.5)  m o i s t u r e ; and capacity.  empirically  d e t e r m i n e d f r o m t h e 1980  g r e a t e r t h a n 1.00 whence  and a v a i l a b l e  a =1.70. I f the a v a i l a b l e 2  d a t a s e t t o be  e n e r g y was e n e r g y was  between  100  greater  than  t h e n a'=2.60.  2  The  f i t of the model  (that  i s , t h e 1980  0.81,  mean b i a s e r r o r  (R.M.S.E.) o f 21.93 The Sunset  m o i s t u r e s t a t u s of  I I I . 2 w e r e u s e d . A v a l u e o f 1.28  SSMF i s f i e l d The  speed,  f o r the  1979).. The  (1 - exp  w h e r e SSM  soil  d u r i n g J u l y and A u g u s t  t h e D a v i e s and A l l e n  = 1.28  incorporates wind  i n the d a t a s e t i n c l u d e d b o t h "wet"  (Brutsaert & Strieker,  a\  to  c a s e the term has been m o d i f i e d t o  as i n T a b l e I I I . l .  coefficients  at the Sunset  1 9 8 3 ) . The is,  p o s s e s s some p a r a l l e l s  term which  to the a r e a l  t h a t not a l l s u r f a c e s have e q u a l water The  2.08  environment.) second  suburban  ( N o t e , t h e f o r e s t may  (wet and  The  m o d e l was  site  (eqn. I I I . 2 ) to the d a t a used  data) y i e l d e d  a coefficient  (M.B.E.) o f 15.41  W/m  2  (Table I I I . 2 ,  then a p p l i e d  W/m  2  133  and  of d e t e r m i n a t i o n ( r ) of 2  and a r o o t mean s q u a r e  error  Fig. III.l).  to independent  i n t h e summers o f 1977  i n i t s development  1978  data sets c o l l e c t e d  at the  ( K a l a n d a , .1979; S t e y n ,  1980b)  Table  III.l  D e t e r m i n a t i o n o f AA  SSM/SSMF  VALUE OF AA  » 0.60  Aj + A  0.30£SSM/SSMF<0.60  (A  <0.30  t  2  + 2A )/2 2  A  2  Where A j  i s the p r o p o r t i o n of the area that i s pervious l a n d use A i s the p r o p o r t i o n of the area that i s pervious l a n d use SSM i s the s o i l moisture SSMF i s t h e f i e l d c a p a c i t y 2  Table  unirrigated irrigated  I I I . 2 R e s u l t s u s i n g d a t a measured a t S u n s e t , V a n c o u v e r and t h e Oke a n d S t e y n ( 1 9 8 3 , p e r s . comm.) e v a p o r a t i o n scheme.  YEAR(S)  N  r• 2  M.B i.E. (w/ m ) 2  R.M. S.E. (w/ m ) 2  1980  29  0. 81  15. 41  2 1 . 93  1977  14  0. 51  10. 01  12. 90  1978  13  0. 38  14. 67  18. 43  1977 & 1978  27  0. 47  12. 25  15. 81  1977, 1978 & 1980  56  0. 83  13. 89  19. 22  NOTE: N i s t h e number o f d a y s i n t h e d a t a s e t  134  Measured versus modelled  HOUR  R2  -  Vancouver  AVERAGES.  180.0 i  24  e v a p o r a t i o n f o r 1980 S u n s e t ,  0.8J4  MflE -  J5.406  ISO.O i  (W/M2)  III.l  + *  o a  io  v  +  /  +  /  /  y A  +  +  +  +  +  +  +  .90.0  MEASURE:D EVAPQRAI'ION  Fig.  +  _  / +  /  o  /  +  /  +  +  +  y  a _ m  +  +  a a 0. 0  i  30.0  i Gfl. 0  1  30.0  1  l"20.a  ' " ™ T J50.Q  MODELLED EVAPORATION  135  I  (W/M2J  1  (Table I I I . 2 ,  Fig. III.2).  1978 t h a n f o r 1 9 8 0 . The r smaller  range of c o n d i t i o n s  The M.B.E. a n d R.M.S.E. w e r e  l o w e r f o r 1977 a n d  v a l u e s were, however, lower i n consequence o f the within  136  the data  sets.  I I I . 2 Measured v e r s u s modelled Vancouver  137  e v a p o r a t i o n f o r 1977  and  1978  Sunset,  APPENDIX IV M o n t h l y C l i m a t e Table I V . lK e r r i s d a l e  MONTH  net r a d i a t i o n  MEAN  S..D.  - 0 . 08 1. 75 4. 68 8. 87 11. 61 12. 48 10. 67 8. 94 5. 73 2. 65 0. 35 - 0 . 67  1,.38 1,.73 2..44 3,.72 3..47 4..35 4..22 3.,44 2.,87 2..30 0..84 0..88  - 0 . 01  SUMMER WINTER  YEAR  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  Statistics  C.V.  (MJ/m /d) by m o n t h 2  MINIMUM  DAY  MAXIMUM  DAY  - 1 7 . 277 0. 991 0. 522 0. 419 0. 299 0. 348 0. 396 0. 385 0. 500 0. 870 2. 378 - 1 . 364  - 2 . 37 - 1 . 00 0. 45 1. 27 2. 90 2. 44 2. 25 2. 35 0. 15 - 1 . 25 - 1 . 85 - 2 . 66  30 35 60 102 134 177 194 213 268 289 311 337  1. 99 5. 46 8. 15 13. 10 16. 28 16. 31 15. 52 13. 67 11. 00 6. 19 2. 02 1. 14  24 54 81 108 144 180 205 218 253 274 322 345  0.,65  - 4 6 . 120  - 1 . 20  379  1. 16  381  9. 73 1. 46  4..32 2.,48  0. 444 1. 699  0. 15 - 2 . 66  268 337  16. 31 8. 15  180 81  5. 61  5.,43  0. 969  - 2 . 66  337  16. 31  180  138  Table IV.2 K e r r i s d a l e  MONTH  storage heat f l u x  ( M J / n r / d ) by month  MEAN  S. D.  C.V.  - 0 . 68 - 0 . 35 0. 04 1. 09 1. 78 2. 02 1. 74 1. 19 0. 31 - 0 . 33 - 0 . 83 - 1 . 15  0. 62 0. 61 0. 58 0. 58 0. 71 0. 78 0. 92 0. 91 0. 65 0. 64 0. 59 0. 58  - 0 . 912 - 1 . 764 15. 998 0. 651 0. 441 0. 458 0. 396 0. 547 2. 067 - 1 . 824 - 0 . 708 - 0 . 575  - 1 . 90 - 1 . 69 . - 1 . 00 - 0 . 40 - 0 . 32 - 0 . 11 - 0 . 56 0. 10 - 1 . 20 - 1 . 44 - 1 . 98 - 2 . 18  30 35 68 101 122 177 194 213 268 289 311 340  0. 11 0. 97 1. 08 1. 94 3. 02 3. 34 2. 85 2. 14 2. 12 1. 06 0. 08 - 0 . 13  28 54 84 96 144 180 191 219 253 274 311 345  - 0 . 71  0. 59  - 0 . 821  - 1 . 92  379  - 0 . 05  381  SUMMER WINTER  1. 36 0. 55  0. 96 0. 72  0. 711 - 1 . 297  - 1 . 20 - 2 . 18  268 340  3. 34 1. 08  180 84  YEAR  0. 40  1. 28  3. 170  - 2 . 18  340  3. 34  180  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  139  MINIMUM  DAY  MAXIMUM  DAY  Table IV.3 K e r r i s d a l e  MONTH  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY .AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  SUMMER WINTER  YEAR  a i r temperature  (°C) by month  MEAN  S. D.  C.V.  MINIMUM  DAY  MAXIMUM  DAY  4. 06 3. 68 5. 55 7. 76 12. 52 17. 31 16. 74 16. 75 14. 81 10. 29 3. 79 3. 42  1. 60 2. 81 1. 74 2. 77 2. 74 3. 60 3. 04 2. 29 2. 39 2. 34 2. 61 2. 48  0. 394 0. 763 0. 313 0. 357 0. 219 0. 208 0. 182 0. 136 0. 162 0. 227 0. 690 0. 727  - 0 . 12 - 1 . 20 2. 70 3. 36 6. 93 10. 86 10. 28 12. 59 9. 43 5. 92 - 1 . 32 - 1 . 01  22 35 74 93 122 156 184 213 271 291 326 364  5. 70 8. 92 10. 60 15. 42 19. 12 25. 05 23. 50 22. 16 18. 70 13. 73 9. 70 7. 85  29 46 84 112 150 169 207 219 245 287 307 350  5. 55  1. 89  0. 340  2. 60  379  9. 15  383  14. 33 5. 33  4. 38 3. 33  0. 305 0. 625  3. 36 - 1 . 32  93 326  25. 05 13. 73  169 287  9. 85  5. 95  0. 604  - 1 . 32  326  25. 05  169  140  Table IV.4K e r r i s d a l e  MONTH  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  MEAN  95. 87. 83. 71. 75. 76. 82. 77. 77. 79. 81. 80.  relative  S. D.  humidity  (7 ) by month 0  C.V.  MINIMUM  DAY  MAXIMUM  DAY  46 68 69 83 42 47 16 93 63 79 42 17  3. 38 14. 58 12. 59 17. 29 12. 81 13. 55 8. 89 9. 06 7. 70 4. 26 4. 89 4. 96  0. 035 0. 166 0. 150 0. 241 0. 170 0. 177 0. 108 0. 116 0. 099 0. 053 0. 060 0. 062  90. 21 42. 98 5 1 . 87 40. 40 37. 50 39. 23 64. 40 64. 76 56. 28 68. 09 71. 51 69. 24  31 40 76 111 150 169 206 236 257 278 326 345  99. 84 100. 00 98. 78 99. 28 98. 27 97. 97 98. 34 96. 41 87. 55 87. 28 88. 97 88. 55  22 44 62 93 134 177 184 213 254 301 320 352  8 1 . 10  5. 23  0. 065  71. 65  377  89. 58  369  SUMMER WINTER  76. 93 8 3 . 01  12. 39 9. 52  0. 161 0. 115  37. 50 42. 98  150 40  99. 98 100. 00  93 44  YEAR  79. 96  11. 46  0. 143  37. 50  40  100. 00  44  141  Table IV.5 K e r r i s d a l e wind, speed  (m/'s) by month  MEAN  S. D.  C.V.  1 .69 1 .60 1 .46 1 .68 1 .35 1 .16 1 .15 1 .05 0 .99 1 .26 1 .14 1 .39  0. 45 0. 45 0. 37 0. 33 0. 25 0. 19 0. 20 0. 18 0. 15 0. 47 0. 33 0. 71  0. 263 0. 279 0. 253 0. 198 0. 181 0. 162 0. 174 0. 176 0. 152 0. 376 0. 287 0. 513  1. 07 0. 83 0. 95 1. 23 0. 86 0. 83 0. 76 0. 82 0. 75 0. 71 0. 72 0. 64  28 35 63 120 134 177 197 222 264 286 328 364  2..36 2,.36 2..71 2,.53 1..94 1.,59 1.,51 1,.60 1..50 2..71 1..78 3..50  25 43 70 102 127 163 184 238 253 299 333 352  1 .33  0. 36  0. 271  '.,0. 62  380  1.,84  382  SUMMER WINTER  1 .23 1 .38  0. 32 0. 50  0. 261 0. 361  0. 75 0. 62  294 380  2,,53 3,.50  102 352  YEAR  1 .31  0.43  0.326  0. 62  380  3.,50  352  MONTH  1982 JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1983 JANUARY  142  MINIMUM  DAY  MAXIMUM  DAY  APPENDIX 2 3  V BALDAY  COMMON COMMON  program  /C2/ /C3/  CATCH(20) DAY(400,45)  A H  5 6 7  INTEGER  c  I ,M  PROGRAM  CALCULATES  THE DAILY  WATER  BALANCE  Q  •P-  o 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4 1 42 43 44 45 46 47 48 49 50 5 1 52 53 54 55 56 57 58 59  c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c , c c* * * * *  DAY(L,. 1 ) D A Y ( L ,, 2 ) D A Y ( L , , 17) DAY(L,,29) DAY(L,30) D A Y ( L ,. 4 1 ) DAY(L,,3) DAY ( L 4 ) D A Y ( L ,,5) DAY(L, 6) D A Y ( L ,, 3 8 ) D A Y ( L , , 37 ) DA Y ( L , 7 ) D A Y ( L , 25)  &  DA Y ( L DAY(L, DAY(L, DAY(L. DAY(L, DAY(L, DA Y ( L DAY(L, DAY(L, DA Y ( L DAY(L.  ,8 ) 26)  CATCH CATCH CATCH  (15) ( 16) ( 17)  CATCH  ( 18) +*>*  9) 13) 10) 27)  .1 1 ) 12) 33) ,3 4 ) 14) D A Y ( L . 15) D A Y ( L , 16) C A T C H ( 1) CATCH (2) CATCH (3) CATCH (4) CATCH (5) CATCH (6) CATCH (7) CATCH (8) CATCH (9) C A T C H ( 10) CATCH (11) CATCH (12) C A T C H ( 13) C A T C H ( 14)  WRITE(8,80)  DAY NET RADIATION STORAGE HEAT FLUX LATENT HEAT FLUX S E N S I B L E HEAT FLUX BOWEN R A T I O TEMPERATURE RELATIVE HUMIDITY WIND S P E E D PRECIPITATION PRECIPITATION - PAVEMENT PRECIPITATION -VEGETATION E X T E R N A L WATER A P P L I E D WATER I N ( P I P E D AND E X T E R N A L ) SOIL MOISTURE EVAPORATION  E V A P O R A T I O N MODEL USED STORAGE CHANGE IN STORAGE RETENTION - VEGETATION UNIRRIGATED RETENTION - VEGETATION IRRIGATED R E T E N T I O N - PAVEMENT RUNOFF (EXTERNAL) RUNOFF - V E G E T A T I O N RUNOFF - PAVEMENT WATER I N ( I N T E R N A L ) RUNOFF (INTERNAL) WATER I N ( E X T E R N A L ) TOTAL RUNOFF TOTAL PERVIOUS AREA PREVIOUS AREA IRRIGATED PERVIOUS AREA UNIRRIGATED I N I T I A L STORAGE STATUS I N I T I A L RETENTION PERVIOUS UNIRRIGATED I N I T I A L RETENTION PERVIOUS IRRIGATED INITIAL RETENTION IMPERVIOUS FIELD CAPACITY DISPLACEMENT LENGTH VAPOUR ROUGHNESS L E N G T H MOMENTUM R O U G H N E S S L E N G T H H E I G H T O F WIND M E A S U R E M E N T S M E A N D A I L Y W I N T E R WATER U S E P R O P O R T I O N OF I R R I G A T I O N WATER G O I N G T O PERVIOUS I R R I G A T E D AREA SOIL STORAGE C A P A C I T Y PERVIOUS IRRIGATED R E T E N T I O N STORAGE C A P A C I T Y PERVIOUS UNIRRIGATED RETENTION STORAGE CAPACITY IMPERVIOUS RETENTION STORAGE CAPACITY *  60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 1 10 1 1 1 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19  80  FORMAT(2X,'INITIAL INPUTS :') M=0 CALL INPUT(M) AREAU=CATCH(3)/CATCH(1) AREAI=CATCH(2)/CATCH( 1)  C DO IF  C C  1  2  100 C  10O 1=1,M ( I GT.1) GO TO 1 I N I T I A L I S E S STARTING STORAGE ALTER CHSTOR AT SAME TIME OAY(1,9)=CATCH(4) DAY(1,10)=CATCH(5) DAY( 1.11 )=CATCH(7) DAY(1,27)=CATCH(6) IF ( I . E O . 1 ) GO TO 2 N= I - 1 D A Y U . 9 ) =DAY(N,9) DAY(I,10)=DAY(N.10) DA Y( 1.11)=DAY(N, 11) DAY( I . 27)=DAY(N.27) CALL RUNOFF(I,AREAU,AREAI . SEN) CALL EVAP(I.AREAU.AREAI,SEN) CALL STORE(I.AREAU,AREAI) CALL CHSTOR(I) CONTINUE CALL TOTAL(M) CALL OUTPUT(M) STOP "END SUBROUTINE EVAP(I,AREAU.AREAI.SEN) COMMON /C2/ CATCH(20) COMMON /C3/ DAY(400,45) REAL PSY,SSMF,A0,A1.A2,A3,A4,A5,A6.AA1,AA2,AA3,AA4.AA5.AA6 REAL T.Q.tS.EA.S.Z.Y.HV.E,FN.A IRDEN,SO IL,D,ZOV.ZOM,FNW.I AREA  c* * **.+ **t + ***** + ****t** + + + *t** + + ++++*+*+ +++ + +*+ c 1 . CALCULATES ES,S,EA A0-A6 CONSTANTS FOR DETERMINING ES L0WE(1977) c AA0-AA6 CONSTANTS FOR DETERMINING S L0WE(1977) c ES SATURATION VAPOUR PRESSURE c CALCULATED IN MB c EA VAPOUR PRESSURE c CALCULATED IN MB c S SLOPE OF THE SATURATION CURVE c CALCULATED IN MB/C c PSY PSYCHROME TRIC 'CONSTANT' c CALCULATED MB/C c CALCULATED USING MONTE ITH( 1973) c T TEMPERATURE c 2. CALCULATES Q=QN-QS c OS STORAGE HEAT FLUX OKE E T A L ( 1 9 8 0 ) c ON NET RADIATION c 3. CALCULATES EVAPORATION c E EVAPORATION STEYN & OKE ( 1 9 8 3 ) c CALCULATED IN W/M2 THEN CONVERTED TO MM c AREAU PERVIOUS UN IRRI GATED c AREAI PERVIOUS IRRIGATED c SSMF SOIL MOISTURE AT FIELD CAPACITY (FRACTION) c FNW WIND AND VAPOUR PRESSURE FUNCTION c  120 12 1 122 123 124 125 126 127 128 129 1 30 131 132 133 134 135 136 137 138 139 140 14 1 142 143 144 145 146 147 148 149 150 15 1 152 153 154 155 156 157 158 159 160 16 1 162 163 164 165 166 167 168 169 170 17 1 172 173 174 175 176 177 178 179  C C C C C C C C C C C**  8 1 82 C  D ZOV ZOM AIRDEN  DISPLACEMENT LENGTH ROUGHNESS LENGTH FOR VAPOUR ROUGHNESS LENGTH FOR WIND DENSITY OF AIR MONTE ITH( 1973) HV LATENT HEAT OF VAPOURISATION STORR & DEN HARTOG ( 1 9 7 5 ) CALULATED IN W/M2 D A Y ( I , 2 6 ) = 1 P R I E S T L E Y 8. TAYLOR 2 OKE & STEYN UAR E A = AREAU*CATCH( 1) I AREA = AREAI*CATCH( 1) SSMF=CATCH(8) D=CATCH(9) ZOV=CATCH(10) Z0M=CATCH(11) FNW=ALOG((CATCH( 12 )-D + ZOV)/ZOV)*ALOG((CATCH( 12)-D + ZOM)/ZOM) IF( I .EQ. 1) WRITE(8,81 )UAREA,IAREA,SSMF FORMAT( 10X, 'UAREA= ' , F 5 . 3 , ' I AREA = '.F5.3,' SSMF= ' ,F5.3 ) I F ( I . E Q . I ) WRITE(8,82)0,ZOV,ZOM FORMAT( 10X, 'D= ' ,F4 . 2 , ' ZOV= '.F5.3,' ZOM= '.F5.3) A0=6.107799961 A 1 =4 436518521D-1 A2= 1 . 428945805D-2 A3=2.6506484710-4 A4=3.031240396D-6 A5=2.034080948D-8 A6 = 6.136820929D-11  C AA0=4.4380999840-1 AA1=2.857002636D-2 AA2=7.938054040D-4 AA3= 1 . 215215065D-5 AA4=1.036561403D-7 •AA5=3.5324218100-10 ' AA6=-7.090244804D-13  -  C  ' c*  c c*  0=DAY(I,2)-DAY(1,17) T=DAY(1,3) HV= (597.3 - 0 . 5 6 5 3 * T ) / 2 . 3 8 8 E - 4 ES= AO +T*(A1 + T*(A2 +T*(A3 + T*(A4 + T * ( A 5 + A 6 * T ) ) ) ) ) E A = (DAY(I , 4 ) / 1 0 0 ) * FS S = AA0 +T*(AA1+ T*(AA2 + T*(AA3+ T*(AA4 + T*(AA5 + AA6 * T ) ) ) ) ) PSY=6.4 6D-1+(6.5D-4*T) Z= S/(S+PSY) Y= PSY/(PSY+S) IF ( D A Y ( 1 , 6 ) . G T . 5 . 0 ) GO TO 1 IF ( D A Y ( I . 1 1 ) . G T . 0 . 0 0 ) GO TO 1 DAY( I , 26 ) =2.0 DAVIES 6 ALLEN ( 1 9 7 3 ) SO IL = D A Y ( I , 2 5 ) / S S M F ALPHA=1.28*(1-EXP(-10.563*SOIL)) ALPHA 1 = 1.28 1F(ALPHA.GT. 1 .00.AND.0.GE. 120.0) ALPHA 1=2.60 I F ( A L P H A . G T . 1 .00.AND.Q.LT. 120.0.AND.0 GT. 100.0) ALPHA 1 = 1 .70 PERVIOUS UNIRRIGATED & IRRIGATED EVAPORATION ONLY E 1 = 1 . 56* Z*0*((UAREA *ALPHA) + ( I A R E A * A L P H A 1 ) )  -P* °"  180 18 1 182 183 184 185 186 187 188 189 . 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208  P R I E S T L E Y AND TAYLOR ( 1 9 7 2 ) DAY( I , 26)=1 .0 E=1.28*Q*Z DAY(I,29)=E E=E*3600*24/HV 2 I F ( E . LT.O.OOO) E=0.00 DAY(I.8)=E RETURN END SUBROUTINE S T O R E ( I , A R E A U , A R E A I ) COMMON /C2/ C A T C H ( 2 0 ) COMMON /C3/ D A Y ( 4 0 0 , 4 5 ) REAL EVEG.EPAV,RVEGU,RVEGI,RPAV,RVEGU1,RVEGI1,RPAV1,RVEGS INTEGER N c**********************************+******++***************+**********  209 2 10 211 212 213 214 215 216 217 218 219 220 221  C C C C C C C C C C C C £ + *** +  222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239  C  93  AIRDEN=1 . 2 9 2 3 * ( 2 7 3 . 1 6 / ( 2 7 3 . 16 + T ) ) FN=AIRDEN*1.6968D2/FNW I F ( S O I L . G E . 0 . 6 0 ) ST=UAREA+IAREA IF(SOIL.GE.O.30.AND.SO I L . L T . 0 . 6 0 ) ST = ((UAREA+1 AREA) +1 AREA)/2 I F ( S 0 I L . L T . O . 3 O ) ST = I AREA E 2 = S T * Y * ( E S - E A ) + ( F N / P S Y ) * D A Y ( 1,5) E=E1-E2 DAY(I.29)=E E=E*3600*24/HV W R I T E ( 9 , 9 3 ) D A Y ( I . 1),0,ALPHA,ALPHA 1,E F0RMAT(5F1O3) GO TO 2  C C* 1  C*  C*  1. ADJUSTS RETENTION STORAGE DUE TO EVAPORATION 2. ADJUSTS STORAGE DUE TO EVAPORATION I TODAY N YESTERDAY EVEG EVAPORATION FROM VEGETATION EPAV EVAPORATION FROM PAVEMENT RVEG VEGETATION RETENTION STOREGE U UNIRRIGATED I IRRIGATED RPAV PAVEMENT RETENTION STORAGE RVEG1 ADJUSTOR FOR RVEG RPAV1 ADJUSTOR FOR RPAV *** .**** + * * * * * + *+. * * * * * * * * * * + + **** + *** + * * * * * * * * * * * * * * * + * * * * * * * * * * * I F ( D A Y ( I . 8 ) . E O . O . O O O ) GO TO 1 RVEGU=0 RVEGI=0 RVEGI 1=0 RVEGU1=0 RPAV1=0 EVEG=0 EPAV=0 RVEG=0 RPAV=0 PARTITION EVAPORATION IF (DAY(I ,26) .EO.2.0) GO TO 2 EVEG=DAY(I,8)*CATCH(1) EPAV=DAY(I,8)-EVEG EMPTY IMPERVIOUS RETENTION STORAGE RPAV=DAY(1,11)~EPAV I F ( R P A V . G E . 0 . 0 ) DAY(I.11)=RPAV IF(RPAV.LT.0.0)RPAV1=ABS(RPAV)  240 241 242 243 244 245 246  C* 2  247 248  IF(RVEGU.LE.0.000) DAY(I,10)=0.O RVEGI=DAY(I,27)-((EVEG*AREAI)+RVEGU1)  249 250  IF(RVEGI . G E . 0 . 0 0 0 ) IF(RVEGI.LT.0.000)  251 252 253 254 255  i--  IF(RPAV.LE.0.0) DAY(1,11)=0.0 IF(RPAV1.GT.0.000) EVEG=EVEG+RPAV1 EMPTY V E G E T A T I O N R E T E N T I O N STORAGE IF(DAY(I,26).EQ.2.0) EVEG=DAY(1,8) RVEGU=DAY(I,10)-(EVEG*AREAU) IF(RVEGU.GE.0.000) D A Y ( I , 10 ) = R V E G U IF(RVEGU.LT.0.000) RVEGU1=ABS(RVEGU)  IF(RVEGI.LE.0.000) EMPTY STORAGE IF(RVEGI1 G T . 0 . 0 ) CONTINUE RETURN  C* 1  D A Y ( I , 2 7 ) =RVEGI RVEGI1=ABS(RVEGI) DAY(I,27)=0.0 OAY(I . 9 )  =DAY(I.9)-RVEGI1  256 257 258 259 260 26f  END SUBROUTINE RUNOFF(I ,AREAU,AREA I .SEN) COMMON / C 2 / CATCH(20) COMMON / C 3 / DAY(400,45) REAL M P I P E S . P V E G , P P A V , P I P E S 1 . P E R C E N £ * * * * * * * * * +* * * * * * * * * * * + * * * * * * * * * • ++* **t* ++* * * * * +* * * * * * * * * * * ++* * * * + ****  262 263 264  C C C  P A R T I T I O N S T H E I N C O M I N G WATER B E T W E E N IMPERVIOUS SURFACES MPIPES M E A N W I N T E R D A L IY WATER PIPED-IN  265 266 267 268 269  C C C C  PERCEN % OF S P R I N K L I N G T O V E G E T A T I O N PI P E S 1 A D J U S T O R FOR P I P E S PVEG WATER A P P L I E D T O V E G E T A T I O N PPAV WATER A P P L I E D T O P A V E M E N T + * * * * + #******** + * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * * * * * * * * * + * * * * * *  270 271  C*  272 273 274 275 276  1.  +  81  82 C*  V A L U E OF M E A N W I N T E R WATER MPIPES=CATCH(13)  IF ( I . E Q . 1 ) WRITE(8.81)MPIPES FORMAT(10X,'MPIPES = ',F5.3) PERCEN=CATCH(14) IF ( I . E Q . 1 ) WRITE(8.82)PERCEN F O R M A T ( 1 0 X , ' P O R T I O N OF S P R I N K L I N G ON T O V E G E T A T I O N  C*  P R E C I P I T A T I O N INPUT I F ( D A Y ( 1 , 6 ) . E O . 0 . 0 0 0 ) GO TO 10 PVEG=CATCH(1)*DAY(I,6) PPAV = D A Y ( I .6 ) - P V E G CALL PART(I,PPAV,PVEG,AREAU,AREAI) PIPED INPUT  283  10  P I P E S 1 =DAY(I ,7  291 292 293 294 295 296 297 298 299  AND  PIPED-IN  277 278 279 280 281 282 284 285 286 287 288 289 290  PERVIOUS  =  '.F3.1)  )-MPIPES  IF(PIPES1 .LE.0.000) DAY(I. 14)=DAY(I,7) I F ( P I P E S 1 . G T . 0 . 0 0 0 ) D A Y ( I , 15 ) = P I P E S 1 IF(DAY(I,7).LE.MPIPES) GO TO 2 0 DAY(I.14)=MPIPES PVEG=PIPES1*PERCEN PPAV=DAY(I,15)-PVEG CALL PART(I.PPAV,PVEG,AREAU.AREAI) 20  CONTINUE D A Y ( I . 1 6 ) = D A Y ( I . 14) + DAY(I,12) D A Y ( I , 3 7 ) = (DAY(I, 6)«XATCH( 1 ) ) + (DAY(I, 15)*PERCEN) D A Y ( I . 3 8 ) = 0 A Y ( I , 6 ) *( 1 . 0 ~ C A T C H ( 1) ) + ( D A Y ( I . 1 5 ) * ( 1 - P E R C E N ) ) DAY(I.33)=DAY(I,12)~DAY(1,34) RETURN END SUBROUTINE PART(I , P P A V , P V E G , A R E A U , A R E A I ) COMMON / C 2 / CATCH(20)  300 301 302 303 304 305 30G 307 308 309 310 31 1 312 313 314 315 316 3 17 3 18 3 19 320 32 1 322 323 324 325 326 327 328 329 330 33 1 332 333 334 335 336 337 338 339 340 34 1 342 343 344 345 346 347 348 349 350 35 1 352 353 354 355 356 357 358 359  COMMON ,'C3/ DAY (400, 4 5 ) REAL VRETNI,VRETNU,PRETEN,RVEGI,RVEGU,RPAV1,STOR,PPAV,PVEG c 1. PARTITIONS THE INCOMING WATER BETWEEN STORAGE AND RUNOFF c VRETNU RETENTION BY VEGETATION - UNIRRIGATED c VRETNI - IRRIGATED c PRETEN RETENTION BY PAVEMENT c Q * * *. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * STOR=CATCH(15) RVEGI=0.0 RVEGU=0.0 ' RPAV1=0.0 C* I N I T I A L I S E RETENTION AND ADJUST FOR PORTION OF AREA VRETNI=CATCH(16) VRETNU=CATCH(17) PRETEN=CATCH(18) IF ( I . E Q . 1 ) WRITE(8,81) VRETNI,VRETNU.PRETEN 8 1 FORMAT(10X,'VRETNI= '.F5.2,' VRETNU= '.F5.2,' PRETEN=' , F5.2 ) I F ( D A Y ( I , 15) .GT.0.00)DAY(I ,27 )=DAY(I ,27) + (AREA I*PVEG) I F ( D A Y ( I , 1 5 ) . G T . 0 . 0 0 ) D A Y ( I , 1 0 ) = D A Y ( I . 10) + (AREAU*PVEG) I F ( D A Y ( I , 15) GT.0.00) GO TO t D A Y ( I , 1 0 ) = O A Y ( I , 1 0 ) + (PVEG* ARE AU) D A Y ( I ,27)=DA Y ( I ,27 ) + (PVEG*AREA I ) 1 DA Y ( I . 1 1 )=DAY(I , 1 1 ) + PPAV I F ( D A Y ( I . 10) .LE.VRETNU) GO TO 10 RVEGU=DAY(I,10)-VRETNU DAY( I . 10)=VRETNU DAY(I.9)=DAY(I.9)+RVEGU IF ( O A Y ( I , 9 ) .GT.STOR) EXCESS=DAY(I,9)-STOR IF (DAY(I .9) .GT STOR) DAY(1,9)=STOR IF (DAY(I ,9 ) .EO.STOR) DAY( I , 12 ) =DAY(I , 12)+ EXCESS I F ( D A Y ( I . 2 7 ) . L E . V R E T N I ) GO TO 20 10 RVEGI=DAY(I.27)-VRETNI DAY(I.27)=VRETNI DAY(I,9)=DAY(I,9)+RVEGI IF ( 0 A Y ( I , 9 ) GT.STOR) EXCESS=DAY(I,9)-STOR IF ( D A Y ( I , 9 ) GT.STOR) DAY(I,9)=STOR IF (DAY(I ,9) .EO.STOR) DAY(I , 1 2 ) = 0 A Y ( I . 12)+ EXCESS I F ( D A Y ( I , 1 1 ) . L E . P R E T E N ) GO TO 30 20 RPAV1=DAY(1.11 )-PRETEN D A Y ( I , 1 1 ) = PRETEN DA Y ( I , 12)=DAY(I . 12) + RPAV1 DAY(I,34)=DAY(I,34)+RPAV1 30 CONTINUE RETURN END SUBROUTINE C H S T O R ( I ) COMMON /C2/ CATCH(20) COMMON /C3/ D A Y ( 4 0 0 , 4 5 ) REAL A,B,C,D INTEGER N C* * * * c 1. DETERMINES THE OVERALL CHANGE IN STORAGE FROM YESTERDAY  £ * + * ***********+***+**+++**+*•***********+**+*************************  N= I - 1 I F ( I GT.1) IF(I.EQ.I) IF(I.EO.I) IF(I.EO.I)  GO TO 11 A=DAY(1,9)-CATCH(4) B=DAY(1,10)-CATCH(5) C=DAY(1,11)-CATCH(7)  360 36 1 362 363 364 365 366 367 368 369 370 37 1  4>  11  22  I F ( I . E O . I ) D=DAY(1,27)-CATCH(6) GO TO 22 A=(DAY(I.9)-DAY(N.9)) B=DAY( I , 10)-DAY(N, 10) C = D A Y ( I , 1 1 )-DAY(N, 11) D=DAY(I,27)-DAY(N,27) DAY( I , 13) = A+B+C+D RETURN END SUBROUTINE TOTAL(M) COMMON /C2/ C A T C H ( 2 0 ) COMMON /C3/ D A Y ( 4 0 0 , 4 5 )  372  Q**************************************** *****************************  373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389  C C C C C C C C C C C C C C C C C  390  Q* * * * * **************************** ************************************  391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 4 13 414 415 4 16 417 418 419  DAY(I,18) DAY(I,19) DAY(I,20) DAY(I,21) DAY(I,22) DAY(I,23) DAYU.24) DAY(I,28) DAYU.31) DAY(I,35) DAY(I,36) DAY(I,39) DAY(I,40) OUTPUT 4 OUTPUT 5 OUTPUT 6 TOTALP=0 TOTALW=0 TOTALE=0 TOTALS=0 T0TALR=0 TOTALI=0 TOTAL F =0 T0TAL0=O WTOTP=0 WTOTW=0 WTOTE=0 WTOTS=0 WTOTR=0 WTOTI=0 WTOTF=0 WTOTO=0 STOTP=0 ST0TW=0 STOTE=0 STOTS=0 STOTR=0 STOTI=0 STOTF=0 STOTO=0 NE=0 UY=0 JW=0 JS=0 WRITE(4,40)  PRECIPITATION WATER PIPED IN EVAPORATION CHANGE IN STORAGE TOTAL RUNOFF INTERNAL RUNOFF & WATER PIPED IN EXETERNAL WATER PIPED IN EXTERNAL RUNOFF LATENT ENERGY FLUX RUNOFF - VEGETATION IRRIGATED RUNOFF - PAVEMENT P R E C I P I T A T I O N - VEGETATION IRRIGATED & WATER P R E C I P I T A T I O N - PAVEMENT TOTAL WATER BALANCE EXTERNAL WATER BALANCE RUNOFF RATIO - VEGETATION UNIRRIGATED  EXTERNAL  ^ Q  420 421 422 423 4 24 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 _ 459 " 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479  40 41 42  50 51 52 61 62 64  63  FORMAT(/,20X,'MONTHLY WATER BALANCE') WRITE(4,41) FORMAT(20X,'=====================') WRITE(4,42) FORMAT(10X,'MONTH',7X,'P',8X,'I',10X,'E',8X,'S'.8X,'R',10X, -'IP',7X,'RP') WRITE(5.50) FORMAT{/,20X,'EXTERNAL MONTHLY WATER BALANCE') ' WRITE(5,51) F0RMAT(20X,'= = = = = = = = = = = = = = = = = = = = = = = = = = = = = =' ) WRITE(5,52) FORMAT(10X,'MONTH',7X,'P',8X,'I',10X,'E',8X,'S',8X,'R') WRITE(6,61) FORMAT(/,20X,'RUNOFF RATIO') WRITE(6,62) FORMAT(20X,'============' ) WRITE(6,64) FORMAT(/, 16X, 'VEGETAT ION' , -16X.' PAVEMENT',16X,' TOTAL (EXTERNAL)') WRITE(6,63) FORMAT(1X,' MONTH',5X,3('R'.8X,'P',8X,'R/P',9X),'H DAYS') K=0 IF (M.E0.366) K =1 B=DAY(1,1) I F ( B . L T . 3 2 ) MB=1 I F ( B .GT.31.AND.B.LT.60+K) MB=2 IF(B.GT.60+K.AND.B.LT.91+K ) MB=3 IF(B.GT.91+K.AND.B.LT.121+K) MB = 4 IF(B.GT.121+K.AND.B.LT.152+K) MB=5 IF(B.GT. 152+K.AND B.LT. 182+K ) MB=6 IF(B.GT.182+K.AND.B.LT.213+K) MB=7 IF(B.GT.213+K.AND B.LT.244+K) MB=8 IF(B.GT.244+K.AND.B.LT.274+K) MB = 9 I F ( B .GT . 274 + K . AND . B . LT . 305 + K ) MB=10 IF (B . GT . 305+ K . AND . B . LT . 335 + K ) MB=11 I F ( B GT 335+K) MB=12 E=DAY(M,1) I F ( E . LT.32) ME =1 IF(E.GT.31.AND.E.LT.60+K) ME=2 IF(E.GT.60+K.AND.E.LT.91+K) ME=3 IF(E.GT.91+K.AND.E.LT . 121+K ) ME = 4 IF(E.GT.121+K.AND.E.LT.152+K) ME=5 I F ( E . G T . 152 + K.AND.E.LT. 182 + K ) ME=6 IF(E.GT.182+K.AND.E.LT.213+K) ME=7 IF(E.GT.213+K.AND.E.LT.244+K) ME=8 IF(E.GT.244+K.AND.E.LT.274+K) ME=9 IF ( E .GT.274 + K.AND.E.LT.305 + K) ME=10 I F ( E . G T . 3 0 5 + K.AND.E.LT.335 + K ) ME=11 IF(E.GT.335+K) ME=12 DO 200 MONTH=MB,ME NB=NE+1 IF(MONTH.EO.MB) NB=1 IF(MONTH.EO.1) NE=32-B IF(MONTH.EO.2) NE=60+K-B IF(MONTH.EO.3) NE=91+K-B IF(MONTH.EO.4) NE=121+K-B IF(M0NTH.E0.5) NE=152+K-B IF(MONTH.EO.6) NE=182+K-B IF(MONTH.EO.7) NE=213+K-B IF(MONTH.EO.8) NE=244+K-B  480 48 1 482 483 484 485 486 487 488 489 490 49 1 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 51 1 512 513 5 14 515 5 16 517 5 18 5 19 520 52 1 522 523 524 525 526 527 528 529 530 53 1 532 533 534 535 536 537 538 539  100 C C* C  60 C C*  c  43  44 C C* C  IF(MONTH.E0.9) NE=274+K-B IF(MONTH.EO.10) NE=305+K-B IF(MONTH.EQ.11) NE=335+K-B IF(MONTH.EO.12) NE=366+K-B d =0 DO 100 I=NB,NE N=I - 1 d = d+ 1 I F ( I . EQ.NB) N = NB 0 A Y ( I , 18 )=DAY(I ,6)+0AY(N, 18) DA Y ( I , 19)=DAY(I .7)+DAY(N, 19) D A Y ( I , 2 0 ) = D A Y ( I , 8 ) + D A Y ( N , 20) DAY(1,21)=OAY(1.13)+DAY(N,21) DAY( I ,22)=DAY(I , 16)+DAY(N,22) DAY(I,23)=DAY(I,14)+DAY(N.23) DAY(I ,24 )=DAY(I , 15)+DAY(N,24) D A Y ( I ,28)=DAY(I , 12)+DAY(N,28) DAY(I,35)=DAY(I,33)+DAY(N,35) DAY(I,36)=DAY(I,34)+DAY(N,36) DAY( I , 39)=DAY(I .37)+DAY(N,39) DAY(I,40)=DAY(I,38)+DAY(N,40) - CONTINUE MONTHLY RUNOFF  RATIO  RX 1 =DAY(NE,35)/DAY(NE,39) RX2 = DAY(NE,36)/DAY (NE , 40) RXX 3 = DAY(NE, 18) +DAY(NE,24) RX 3 = DAY(NE,28)/RXX3 WRIT E(6,60)MONTH,DAY(NE,35),DAY(NE,39), -RX1,DAY(NE,36),DAY(NE,40),RX2,DAY(NE,28),RXX3.RX3,d FORMAT(/,1X,14,3X,3(3(F6.2,3X),3X),16) MONTHLY WATER  BALANCE  X =DAY(NE, 18) + DAY(NE,19) X1 = (DAY(NE. 1 8 ) / X ) * 100 X2=100-X1 XX = DA Y(NE,20)+DAY(NE,21 )+DAY(NE,22) XX1=(DAY(NE,20)/XX)*100 XX2=(DAY(NE,21)/XX)*100 XX3=100-(XX1+XX2) XXX1=(DAY(NE,23)/DAY(NE,19))*100 XXX2=(DAY(NE.23)/DAY(NE,22))*100 WRITE(4.43)M0NTH,DA Y(NE, 18),DAY(NE, 19),DAY(NE,20).DAY(NE,2 -DAY(NE,22),DAY(NE,23),DAY(NE.23) FORMAT(/,10X.14,5X,2(F6.2.3X),2X.3(F6.2,3X),2X,2(F6.2,3X), - ' MM ' ) WRITE(4.44)X1,X2,XX1,XX2,XX3,XXX1.XXX2 F O R M A T ( 1 9 X , 2 ( F 6 . 2 . 3 X ) , 2 X , 3 ( F 6 . 2 , 3 X ) , 2 X , 2 ( F 6 . 2 , 3 X ) , ' %') MONTHLY EXTERNAL  WATER  BALANCE  E X =DAY(NE. 18)+DAY(NE,24) EX1=(DAY(NE,18)/EX)*100 EX2=100-EX1 E X X =DA Y ( NE , 20 ) + DA Y ( NE , 2 1 ) +DA Y ( NE , 28 ) EXX 1 = ( D A Y ( N E . 2 0 J / E X X ) * 1 0 0 EXX2=(DAY(NE,2 1)/EXX)+100 EXX3=100-(EXX1+EXX2)  ^  540 54 1 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599  53 54 C C C  WRITE(5,53)MONTH,DAY(NE, 18) , D A Y ( N E . 2 4 ) , D A Y ( N E , 2 0 ) , D A Y ( N E , 2 1 ) -,DAY(NE,28) FORMAT(/, 1 0 X , I 4 , 5 X , 2 ( F G . 2 , 3 X ) , 2 X , 3 ( F 6 . 2 , 3 X ) , 2 0 X , ' MM') W R I T E ( 5 , 5 4 ) E X 1 .EX2,EXX 1 ,EXX2,EXX3 F O R M A T ( 1 9 X , 2 ( F 6 . 2 , 3 X ) , 2 X , 3 ( F 6 . 2 , 3 X ) , 2 0 X , ' %') YEAR dY=JY+J TOTALP=DAY(NE,18)+T0TALP TOTALW=DAY(NE, 19)+T0TALW T0TALE=DAY(NE,2O)+TOTALE TOTALS=DAY(NE.21)+TOTALS T0TALR=DAY(NE,22)+TOTALR TOTALI=DAY(NE.23)+TOTALI TOTALF=DAY(NE,24)+TOTALF TOTALO=DAY(NE,28)+TOTALO IF(MONTH.GT.3.AND.MONTH.LT.10) GO  C C C  WINTER JW=dW+J WTOTP=DAY(NE,18)+WT0TP WT0TW=DAY(NE.19)+WT0TW WTOTE=DAY(NE,20)+WTOTE WTOTS = DAY(NE,2 1 j + WTOTS WTOTR=OAY(NE.22)+WT0TR WTOTI=DAY(NE,23J+WTOTI WTOTF=DAY(NE.24j+WTOTF WTOTO=DAY(NE,28)+WTOTO GO TO 200  C C C 2  200 C C C  SUMMER JS=JS+J ST0TP=DAY(NE,18J+ST0TP STOTW=DAY(NE.19)+ST0TW ST0TE=DAY(NE.2O)+ST0TE' STOTS=DAY(NE,21)+STOTS STOTR=DAY(NE.22)+STOTR STOTI=DAY(NE,23)+ST0TI STOTF=DAY(NE.24J+STOTF Sr0T0=DAY(NE,28)+ST0T0 CONTINUE YEAR TOT = TOT ALP-*-TOT A LW TOT1 = ( T O T A L P / T O T ) * 100 T0T2=100-TOT1 TOTX=T0TALE+TOTALS+TOTALR TOTX1 = ( T 0 T A L E / T 0 T X ) * 100 T0TX2=(T0TALS/T0TX)*100 TOTX3= 100-(T0TX1 + T 0 T X 2 ) T0TXX1=(T0TALI/T0TALW)*1OO T0TXX2=(T0TALI/T0TALR)*100  C C C  WINTER WT0T=WT0TP+WT0TW  TO 2  On  GOO 601 G02 603 604 605 606 607 608 609 6 10 61 1 6 12 6 13 6 14 615 6 16 6 17 618 619 620 62 1 622 623 624 625 626 627 628 629 630 63 1 632 633 634 635 636 637 638 639 640 64 1 642 643 644 645 646 647 648 649 650 65 1 652 653 654 655 656 657 658 659  WTOT1=(WTOTP/WTOT)*100 WT0T2=100-WTOT1 WTOTX=WTOTE+WTOTS+WTOTR WTOTX1=(WT0TE/WT0TX)*1OO WT0TX2=(WT0TS/WT0TX)* 100 WT0TX3=1OO-(WT0TX1+WT0TX2) WT0XX1=(WT0TI/WT0TW)*100 WT0XX2=(WT0TI/WT0TR)»100 C C C  SUMMER ST0T=ST0TP+ST0TW STOT1=(ST0TP/ST0T)*100 ST0T2=1OO-STOT1 STOTX=STOTE+STOTS+STOTR STOTX 1 = ( S T 0 T E / S T 0 T X ) * 1 0 0 ST0TX2 = ( S T O T S / S T 0 T X ) * 100 ST0TX3=100-(STOTX1+ST0TX2) STOXX 1 = ( S T 0 T I / S T 0 T W ) * 1 0 0 S T O X X 2 M S T O T 1 / S T 0 T R ) * 100  C C* c 984  983 C C* C  354 353 C C* C 784  783 C C* c  SUMMER  WATER BALANCE  WRITE(4,984)ST0TP,ST0TW,ST0TE,ST0TS,ST0TR,ST0TI.STOTI FORMAT(//,8X. 'SUMMER' , 1X . 2 ( 3 X , F 6 . 1 ) . 2 X , 3 ( 3 X , F 6 . 1 ) , 2X,2(3X, -F6.1).5X,'MM') WRITE(4.983)STOT1,ST0T2,STOTX1,ST0TX2,ST0TX3,STOXX1,ST0XX2 FORMAT( 15X,2(3X.F6. 1 ) , 2 X , 3 ( 3 X , F 6 . 1 ) .2X,2(3X,F6. 1 ) ,5X, '%' ) SUMMER  EXTERNAL  WATER  BALANCE  SETOT=STOTP+STOTF SETOT 1 = ( S T O T P / S E T O T ) * 100 SET0T2= 100-SETOT1 SETOTX=STOTE+STOTS+STOTO SETOX 1 = ( S T 0 T E / S E T 0 T X ) * 1 0 0 SET0X2=(STOTS/SETOTX)*100 SET0X3=100-(SETOX1+SET0X2) WRITE(5 , 354 )STOTP,STOTF.STOTE,STOTS,STOTO FORMAT (7/,8X, 'SUMMER' , 1X,2( 3X , F6. 1 ) , 2 X , 3 ( 3 X , F 6 . 1),25X, 'MM ' ) WRITE(5.353)SETOT1.SET0T2.SETOX1.SET0X2.SET0X3 FORMAT( 15X.2(3X , F6. 1 ) ,2X.3(3X.F6 . 1 ) ,25X, '%') WINTER WATER  BALANCE  WRITE(4,784)WTOTP,WTOTW,WTOTE,WTOTS,WTOTR,WTOTI,WTOTI FORMAT(//,8X, 'WINTER' , 1 X , 2 ( 3 X , F 6 . 1 ) , 2 X , 3 ( 3 X , F 6 . 1 ) , 2 X . 2 ( 3 X , -F6 1),5X,'MM') WRITE(4.783)WTOT1,WT0T2,WTOTX1.WT0TX2.WT0TX3,WTOXX1,WT0XX2 FORMAT ( 15X . 2( 3X . F6 . 1 ) , 2X , 3 ( 3X , F6 . 1 ) , 2X . 2 ( 3X , F6 . 1 ) , 5X , '%' .) WINTER  EXTERNAL  WATER  BALANCE  WETOT=WTOTP+WTOTF WETOT 1 = (WTOTP/WETOT)* 100 WET0T2=100-WETOT1 WETOTX=WTOTE+WTOTS+WTOTO WET0X1=(WT0TE/WET0TX)*100 WET0X2=(WT0TS/WET0TX)*100  6G0 66 1 662 663 664 665 666 667 668 669 670 67 1 672 673 674 675 676 677 678 679 680 68 1 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 7 10 7 1 1 7 12 7 13 7 14 7 15 7 16 7 17 7 18 719  254 253 C C* C 88 89 82 884 883 C C* C  58 59 552 554 553  C*** + C C  WET0X3=100-(WETOX1+WET0X2) WRITE(5,254)WTOTP,WTOTF.WTOTE,WTOTS,WTOTO FORMAT(//,8X, 'WINTER' , 1X.2(3X,F6. 1 ) .2X,3(3X,F6. 1 ) ,25X, ' MM' ) WRITE(5,253)WET0T1.WET0T2,WETOX1,WET0X2,WET0X3 FORMAT(15X,2(3X , F6 . 1 ) ,2X , 3 ( 3 X , F 6 . 1 ) , 2 5 X , ' % ' ) WATER BALANCE  FOR YEAR  WRITE(4,88JM FORMAT(/,20X, 'SUBURBAN WATER BALANCE FOR' ,14,' DAYS') WRITE(4,89) FORMAT(20X,'====================================') WRITE(4.82) FORMAT(22X, 'P' ,8X, ' I ' , 10X, 'E' ,8X, 'S' ,8X, 'R' , 10X, 'IP',7X, 'RP ' ) WRITE(4,884)TOTALP,TOTALW,TOTALE.TOTALS.TOTALR,TOTALI.TOTAL I FORMAT(15X,2(3X,F6. 1 ) ,2X,3(3X,F6. 1 ) ,2X,2(3X,F6 . 1 ) ,5X, 'MM' ) WRITE(4.883)T0T1.T0T2.T0TX1,T0TX2,T0TX3,TOTXX1,T0TXX2 FORMAT* 15X,2(3X,F6 . 1 ) ,2X,3(3X,F6. 1 ) ,2X,2(3X,F6. 1 ) ,5X, '%' ) EXTERNAL  WATER BALANCE  FOR YEAR  ETOT=TOTALP+TOTALF ET0T1=(T0TALP/ET0T)*1OO ET0T2= 100-ETOT 1 ETOTX=TOTALE+TOTALS+TOTALO ET0TX1=(T0TALE/ET0TX)*100 , ET0TX2=(T0TALS/ET0TX)*100 ET0TX3=10O-(ET0TX1+ET0TX2) WRITE(5,58)M FORMAT(/,18X.'EXTERNAL SUBURBAN WATER BALANCE FOR',14,' DAYS') WRITE(5,59) FORMAT(I8X,'======«====================================') WRITE(5,552) FORMAT(22X,'P',8X,'I',10X,'E',8X,'S'.8X,'R') WRITE(5.554 )TOTALP.TOTALF,TOTALE.TOTALS,TOTALO FORMAT( 15X,2(3X , F6 . 1 ) ,2X , 3 ( 3 X , F 6 . 1 ) ,25X, 'MM' ) W R I T E ( 5 , 5 5 3 ) E T 0 T 1 ,E T0T2,ETOTX1,ET0TX2,ET0TX3 FORMAT( 15X,2(3X,F6. 1 ) , 2 X . 3 ( 3 X , F 6 . 1 ) ,25X, '%' ) RETURN END SUBROUTINE INPUT(M) COMMON /C2/ C A T C H ( 2 0 ) COMMON /C3/ D A Y ( 4 0 0 , 4 5 ) INTEGER L,K +  ***********************************************************  1. READS IN THE DATA 2. I N I T I A L I S E S THE ARRAYS INPUT FROM 7 DAILY DATA 3 CATCHMENT PARAMETERS  c c c** +****************************************************************** c  c* c 70 C*  DO 102 L=1,400 READ(7,70,END=998)(DAY(L,K),K=1,2),DAY(L.17),(DAY(L,K).K=3,7) -,DAY(L,25) TO CHECK IF INPUT IS CORRECT REMOVE C ON NEXT LINE WRITE(9,70)(DAY(L,K),K=1,2),DAY(L,17),(DAY(L,K),K=3,7),DAY(L,25) FORMAT(5F10.3,10X.4F10.3) M = M+1 CONVERT M3/DAY TO MM/DAY DAY(L,7)=DAY(L,7)/2.10E2  720 721 722 723 724 725 726 727 728 729 730 73 1 732 733 734 735 736 737 738 739 740 74 1 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 77 1 772 773 774 775 776 777 End o f f i l  C*  I N I T I A L I S E VALUES DO 104 K=8,16 DAY(L,K)=0.0 104 CONTINUE DO 105 K=18,24 DAY(L,K)=0.0 CONTINUE 105 DO 106 K=26,44 DAY(L,K)=0.0 106 CONTINUE 102 CONTINUE 998 CONTINUE DO 103 1=2.18 READ(3.30.END = 9 9 9 ) C A T C H ( I ) FORMAT(F12.4) 30 CONTINUE 103 CATCH( 1 )=CATCH(2)+CATCH(3) 999 CONTINUE RETURN END SUBROUTINE OUTPUT(M) COMMON /C2/ C A T C H ( 2 0 ) COMMON /C3/ D A Y ( 4 0 0 , 4 5 ) C* * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c 1. WRITES RESULTS OUTPUT ON 8 c * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * WRITE(8,80) F0RMAT(/,9X,'DAILY SUBURBAN WATER BALANCE') 80 WRITE(8,81) FORMAT(9X,'============================') 81 WRITE(8,82) 82 FORMAT(4X,'DAY'.7X,'I'.8X,'P',8X,'E'.8X,'R',8X.'S') WRITE(8,83) 83 FORMAT(8X,5(5X.'(MM)')) DO 104 L=1,M WRITE(8.84)DAY(L , 1),DAY(L.7 ) ,DAY(L,6),DAY(L.8),DAY(L, 16), -DAY(L,13) 84 104 880 881 85  87  86 105  e  FORMAT(4X,F4.0,5(3X,F6.2 ) ) CONTINUE WRITE(8,880) FORMAT(/,18X,'DAILY WATER BALANCE') WRITE(8 , 881) FORMAT(18X,'===================') WRITE(8,85) FORMAT(8X. 'DAY' ,7X, 'IP ' , 8X . ' I E ' , 9X. 'P' ,9X, 'E' .9X, 'RP' , -9X, 'RE' , 7X, 'S' ,8X, 'SVU' ,7X, 'SVI' ,8X, 'SP' ) WRITE(8,87) FORMATf12X,10(4X.'(MM/D)')) DO 105 L=1.M WRITE(8,86)DAY(L.1).DAY(L,14).DAY(L,15),DAY(L,6),DAY(L,8), -DAY(L , 14),DAY(L, 1 2 ) , D A Y ( L , 9 ) . D A Y ( L , 1 0 ) , O A Y ( L , 2 7 ) , D A Y ( L , 11) FORMAT(8X,F4.O,10(3X,F7.2)) CONTINUE RETURN END  APPENDIX VI BALDAY B a s e R e s u l t s T a b l e VI.1 Suburban water b a l a n c e  by month  MONTH  IP  86 . 99 9 1.82  7 . 75 8 . 18  1 . 70 1 .80  4 . 46 4 . 70  RP  88 . 59 93 . 50  7 . 49 96.64  7 .49 8 . 46  MM  -0.51 -0. 20  244.68 95 . 90  21 .34 93 . 35  2 1 . 34 8 . 72  MM %  55 .01 68.80  22 . 33 96 .00  22 . 33 40. 59  % %  232.28 9 1 .04  22 . 86 8 . 96  10.97 4 . 30  56 . 70 70.91  23 . 26 29 .09  24 .64 30.8 1  0.31 0. 39  90. 19 76 . 92  27 .06 23 .08  43.91 37 . 45  14.61 12.46  87 . 94 75.01  22 . 45 82.98  22 . 45 25.53  24 .64 27 . 87  63 . 76 72 . 13  93 . 30 105.55  -34.61 -39 . 15  29.70 33 . 60  23.67 37 . 12  23 .67 79.68  10.08 6 .02  32.62 19 . 47  22 . 90 16 .92  22 . 90 70. 22  32 . 15 19 . 19  135.35 80.8 1  124.80 74 .51  %  MM  MM  MM  % MM  %  72 . 93 44 . 49  9 1.01 55 . 5 1  105.7 1 64 . 48  58 85  48.65 29 . 68  23.67 26 .01  23.67 48 . 65  30. 2 1 26.41  84 . 17 73 . 59  75 . 87 66 . 33  66 83  31 .85 27 .85  23.67 28 . 12  23 . 67 74.31  47 . 87 58 . 39  34 . 12 4 1.61  38 . 53 46 . 99  56 79  37 .90 46.22  22 . 90 67 . 13  22 . 90 60. 4 3  MM  10  6 1.76 70. 86  25.40 29 . 14  19 . 57 22 . 45  17.72 20. 33  49.88 57 . 22  23.45 92 . 33  23 .45 4 7 .02  MM  1 1  189.00 89 . 36  22 . 52 10.64  8 . 38 3 .96  -0. 20 -0.09  203.33 96 . 13  22 . 2 1 98 .66  22.21 10.93  MM %  12  14 7.00 86 . 28  23 . 38 13.72  78 22  -0.31 -O. 18  166.91 97 .96  22 . 98 98 . 3 1  22 .98 13.77  MM  13  14 3.00 90. 22  15.51 9 . 78  67 32  0.05 0.03  154.79 97 .65  15 . 34 98.93  15 . 34 9.91%  MM  ON  MM  MM  %  %  SUMMER  298.0 40.6  435.5 59.4  482.1 65.7  -17.3 -2.4  268.7 36.6  139.3 32.0  139.3 5 1.8  MM %  WINTER  916.7 86.7  140.7 13.3  72.7 6.9  2 1.5 2.0  963.2 91.1  135.2 96.1  135.2 14.0  MM %  576.2 32.2  554.8 3 1.0  4.2 0.2  1231.8 68.8  274.4 47.6  274.4 22.3  MM %  YEAR  1214.7 67.8  Table  VI.2 External  suburban water  balance  by month  MONTH  86 . 99 99 . 70  10  1 . 70 1 .95  4 . 46 5.11  81.09 MM 92.94 %  232 . 28 99 . 35  1 . 52 0.65  10.97 4 .69  -0.51 -O. 22  56 . 70 98 . 38  0.93 1 .62  24 .64 42 . 75  0.31 0.54  32.68 MM 72.66 %  90. 19 95 . 14  4.61 4 . 86  43 .91 46 . 32  14.6 1 15.41  65.49 MM 69.09 %  24 . 64 38 .06  40. 10 61 .94  93 . 30 144.14  -34.6 I -53.46  32 . 15 22 . 23  112.45 77 . 77  124.80 86 . 31  10.08 6 . 97  9.72 MM 6.7 2 %  72 .93 5 1 . 99  67 . 34 48 .01  105.71 75 . 36  9 . 58 6 . 83  24.98 MM 17.81 %  30. 2 1 33 . 30  60. 50 66 . 70  75.87 83 . 64  6 . 66 7 . 34  47 . 87 8 1 .02  11.22 18 . 98  38 . 53 65.21  5 . 56 9 .42  15.00 MM 25.37 %  19 . 57 30.7 1  17 . 72 27 .81  26.42 MM 4 1 .48 %  6 1 . 76 96 .94  1 . 95 3 .06  223.34 MM 95.53 %  6.04 9.32  8.18 9.02  MM %  MM %  1 1  189.00 99 . 84  0. 30 0.16  8 . 38 4 . 43  -0. 20 -O. 10  18 1.11 MM 95.6 7 %  12  14 7.00 99 . 73  O. 40 0.27  3 . 78 2 . 56  -0.31 -0.2 1  143.93 MM 97.65 %  13  14 3.00 99 . 88  0.17 0.12  3 . 67 2 . 57  0.05 0.03  139.44 MM 97.40 %  SUMMER  298.0 50. 1  WINTER  916.7 99 . 4  YEAR  0. 26 0.30  12 14.7 80. 1  296 . 2 49 . 9  482 . 1 8 1.1  17 3 -2 . 9  129.4 21.8  MM %  5 . 5 0.6  72 . 7 7 . 9  2 1.5 2. 3  828.0 89 . 8  MM %  301 . 7 19.9  554 . 8 36 . 6  4. 2 0.3  957.4 MM 63 . 1 7.  Table  ratio  by month  MONTH  R  VEGETATION P  1  47 .68  52 .72  0 .90  33 ,42  34 . 54  0 .97  2  134 . 78  14 1. 59  0 . 95  88 . 56  92 . 22  0 . 96  223 . 34  __.3 .. ... 14. 73  35 . 12  0.. 42  17 95  22 .51  0 .80  30 .68  35 .81  R/P  R  PAVEMENT P  TOTAL R/P  R  (EXTERNAL) P R/P  87 . 25  H DAYS  0 .93  10  233 .80  0 . 96  28  32 .68  57 .63  0 . 57  3 1  0 86  65 . 49-  94 . 80  0 .69  30  81 .09  4  34 .81  58 . 99  0 59  5  0 .0  54 . 95  0..0  6 .04  9 . 78  0 .62  6 .04  64 .73  0 .09  31  6  0 .0  13 1 83  0. 0  9 . 72  12 . 76  0. 76  9.. 72  144 .60  O..07  30  7  0 0  111 . 32  0 0  28 . 95  0. 86  24 .98  140 27  0  18  3 1  8  0 • o .',.  78 . 72  0. 0  1 1. 99  0. 68  8 .18  90 7 1  0. 09  31  9  0. 0  40. 08  0. 0  15 .OO  19 00  0. 79  15. 00  59 09  0. 25  30  5 .82  39  19  0. 15  20..60  24 .52  0. 84  26. 42  63 .7 1  0. 4 1  3 1  10  Co  VI.3 Runoff  24 .98 8 . 18  1 1  109: 16  114. 27  0. 96  71 . 95  75 03  O. 96  18 1. 1 1  189 .30  0. 96  30  12  86 .94  89 .04  0. 98  56 .99  58 .36  0. 98  143 .93  147 .40  0. 98  31  13  84 . 16  86 .39  0. 9  55 .29  56. 77  0. 97  139. 44  143 . 17  0. 97  2 1  7  Table  VI.4 Suburban  INITIAL  DAY  Ln  22 . 23 . 24 . 25 . 26 . 27 . 28 . 29 . 30. 31 . 32 . 33 . 34 . 35 . 36 . 37 . 38 . 39 . 40. 41 . 42 . 43 . 44 . 45 . 46 . 47 . 48 . 49 . 50. 51 . 52 . 53 . 54 . 55 . 56 . 57 . 58 . 59 . 60. 6 1 . 62 . 63 . 64 . 65 . 66 . 67 . 68 .  water b a l a n c e  by d a y  INPUTS : MPIPES = 0 . 7 6 3 PORTION OF SPRINKLING ON TO VEGETATION = VRETNI= 2 . 1 1 VRETNU= 2 . 1 1 PRETEN= 0 . 5 8 UAREA= 0 . 3 0 2 I AREA = 0 . 3 0 2 SSMF = 0 . 5 5 0 0= 3 . 5 0 ZOV= 0 . 0 5 2 ZOM = 0 . 5 2 0 I (MM)  P (MM)  E (MM)  R (MM)  0 . 72 0 . 82 0 . 82 0 . 78 0 . 74 0 . .74 0 . 74 0 . 74 0 . 79 0 . 87 0 . 82 0 . 78 0 . .76 0 . 74 0 78 0 . 84 0 . 96 0 . 84 0 . 80 0 . 78 0 . 85 0 . 77 0 . 87 0 . 86 0 . 79 0 . 78 0 78 0 . 78 0 . 75 0 . 86 0. 9 1 0 . 85 0 . 78 0 . 80 0 . 80 0 . 78 0 . 86 0 . 90 0. 8 1 o . 70 o . 69 0 . 72 0 . 74 0 . 78 0- 85 0 . 73 0 . 68  4 72 17 92 25 . 86 6 . 43 2 14 6 . 54 7 .61 1 28 6 .00 8 48 7 08 O 32 0 .0 0 .0 0 0 0. .0 0 .0 0. 0 0. 0 0. .0 5 . 15 34 .02 5 0 . . 44 23 93 13 .. 73 2 14 O . 53 40 . 25 7 ..51 1 07 7 .83 1 . 17 0. 0 4 . 82 2 . 78 16 .. 20 0 .0 13 .. 30 12 01 7 72 1 .39 0. 0 0 .0 0. 0 0. O O.. 0 0. 0  0. 0 o .0 o . 55 0 . 08 0 0 o . 26 o 30 0 . . 17 o .0 0 34 0 19 0 .2 1 0 66 0 14 0 . 77 0 . 46 0 .43 0 .0 0 .0 0 0 0 . 23 0 . 17 0 . .22 0 . 32 0 2 1 0 . 12 1 .04 0 . 12 0 . 78 0 . 40 0 . .66 0. 5 1 0 . 98 0 .45 0 . 32 0 . 07 0 . 64 0 . 85 0 . 30 0. 6 1 0 . 30 1. 16 1 .09 0 . 53 0 . 95 0 . .85 0 . 26  2 . 02 17 37 26 .69 6 . 66 2 80 7 . 28 8 . 10 1 7 1 6 62 9 . 34 7 . 56 0 91 0 . 76 0 . . 74 0 76 0. 76 0 76 0 76 0 . 76 0 76 3 73 34 . 56 5 1 . 14 24 . 57 14 . 19 2 .7 1 1 , 19 39 . 98 8 . 14 1 . 15 8 . 34 1 . 36 0 . 76 4 15 3 . 13 16 . 66 0 . 82 13 . 54 1 1 97 . 8 . 12 1 .47 0 . 72 0 . 74 0 . 76 0 . 76 0 . 73 0 . 68  1.0  S (MM)  3 . 42 1 .38 - 0 .55 0 . 47 0 08 - 0 . 26 - 0 . .05 0 . 14 O . 17 - 0 . 34 0 16 - 0 03 -0..66 -0. 14 - 0 . 75 - 0 . 38 -o.. 24 0 08 O .04 0 .02 2 03 0 . .06 - o . .06 - 0 10 0. . 1 1 0 10 - 0 . 92 0 92 - 0 . 66 0 39 - o . 27 0 . 16 - 0 . 97 1. 02 0 . 13 0 . 25 - 0 . 59 - 0 . 18 0 . 55 - o . 31 0 . 31 - 1 . 16 - 1 . 09 - 0 . 51 - o . 87 - 0 . 85 - o . 26  cccococctriircsoOcoc^cNnr^^cN© w O O O ^ ^ ^ O O O O ^ ' O O O ^ O ^ O ^ ^ O O O ^ ^ O O O O O n O O O O ' * ( N ' - o l ( N ' - 0 ' ' 0 ' - C N ^ ' • 0 ( N I I  O m co r-  i  T.  I  ^ ^ ^ l  I  n  I  I  I  I  I I I  I  I I  I I I  I  1 1 1  I  I  I  I  I  I  I  I  I  ,  •  ,  • c v c N O l O ( ^ c N  I I I !  I  I  I  I  I  I  ^ ^ ^ ^ ^ ^ O < N ^ l i ) n n ^ c N ^ c n ^ ^ ^ ^ ^ c N ^ Q t r a ) ( i ) ^ l J l ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ ^ ^ n ^ ^ ^ ^ ^ ^  ( N ^ O O O ^ O O O O O O O O O O n ^ O O c ^ n r ^ C N c o c N O O O O O - ^ r ^ ^ C N i O O o i O O O O O O O O O O L f i O O O O - ^ O O O O O O  ro  o  "~  <NOcN<Nco(T)a)cocor^  r-  r- *r  r~  o -rr  o  0 ) O l n O O ^ O O O O O O O O O O ^ l f i ^ f ^ w n ^ o ^ ^ l f i O O O O O l n c N O ^ v J ' - C I ) O O O O O O O O O O l i ^ l i ) O O ^ P O O O O O O O ^ t S ^ O O c o O O O O O O O O O O ^ ^ O O i r J ^ r ^ r ^ c o c N O O O O O c N i ^ ^ c ^ O ^ c n O O O O O O O O O O ^ O O O O r o O O O O O O  o o o o  o o o o o o o o o o o o o o o o o o o o o o o o o o - ^ o o o o o o o o  160  cNi^^niotiiooOunao^uDajOT^Lnco^crjcor^OLn  I i I I  ^  ^  ^  ^  u  i  ^  O  ^  I i I I I I i I I I i  O  l  L  ^  ^  ^  ^  ^  ^  ^  ^  h  ^  ^  i i i  ^  ^  ^  ^  n  ^  ^  ^  i i i i  ^  ^  ^  ^  ^  ^  I I  ^  ^  •  ^  ^  ^  ^  ^  —— j j i  ^  ^  ^  ^  ^  ^  ^  .  '  -  l  ^  ^  ^  ^  ^  i i i i  (  N  U  ^  ^  ^  ^  ^  ^  O O O O O c N O ' ^ c o O O O O O O O O O O O O O O ' - O O O O O O O O O O O O O O O O O O O O O O O ' ^ c n O O O O - ^ i i J O O O O  c^m<i>^coc}OTCT)0^coOc^Lr)TrOT  n O r*r-oj 01 in win u o CJ n co T CN ^ O O O O O ^ O ^ ^ O O O ^ n O O O O O O O O O c o r ^ O r i c ^ O O O O O O O O O O O O O O O O O O O ^ ' L n C ) i n O O t i ) 0 ^ i r ) U ) 0 0 0 O O O O o j ^ O ^ - x O O O - ^ O O O O O O O O O O o J O O O ' - O O O O O O O O O O O O O O O O O O O C M n O O O O f N O t P O O O O CM  Ocon^^r^csicDinoNiCNjcsoOO^  ( N n n n n n n n n n n ^ N t ^ ^ ^ - T T j - r t j ^ i n i n i n i n i n i i i i i i i n i n ^  161  N-00-u>tNin-(Nr>0' i  r  •  •  f  -—  i l l  0 « ' O O O O N O O O O O O O O " - - < v N O i - - o O N N - o O O O O ' 0 " n O - - - i i ) 0 i  i  t  i  i  I I  i  I I  i  i  i  i  i  i  i  i  i  l i l t  I I  l£(£l£<£l£>mcNr--lOtplPC0l0<i)lDCDlPtI>iaipl0lPCJ)l0l£C0 O O O O O C N O n O O O O O O O O O O O O O O O O O O O O O O O O O C N O L D ' - O O O O O O O O O O O O O O O c N O O O O i D O O  ^ m m ^ m o c N O o i r e ^  —  -^cNCMmmmmmm^-^oo —  C N C N - ^  r-t^LTj T CM cNr-cNCM co in r~ o in in coo 0 0 0 0 0 0 ) ^ m O O O r - ^ O O O O O O O O O O O n O ' ^ O C ) O O O O c \ i O t ~ o O O O O O O O O O O O O O O O < N r ~ 0 0 0 " - 0 0 r  O O O O O c C T C O O O O O O O O O O O O O O O O O O ' - O O O O O O C N m O C M C M O O O O O O O O O O O O O O O m O O O O m ' - O  r-(^r^^Omcn^tcncMcom---cococNm(£icntprocor^'-  51(110)0101(1)010)0)0101000000000 - - ' - ' - • - ' - ' - ' - ' - - ' ( N C N P I O i r M M O I M n  cNmmmtcr-maDCM^ — cocNmcoocMC^r^rotccncoO^mcomi^'-cor^CNn^  coO'-CMn'a-mcor-cocnO'-rMcn'a-mtcr^co o i O ' - r M n r j i p t i i r ^ o g j O ' - c N O ^ i n t o r ^ c o O ' - ' - ' - — — — — — — — CMCMCMCMCNCMCMCNCM OJCNICMC\(NCNCNC\C\lrNCMOICNCNCMCNCNOICVICN CMCMCMCMCNCMCNCMCNICMCNCMCMCMOICMCMCMCMCM  162  r~coror--<i'CDOincocNcoiD^T*- ^ ^ ' 1 n K ) c N 0 > ' - c ^ l 0 l ^ D O 7 O m u J l n l n u ) ^ T O ^ 0 l O ^ ( N ^ \ ^ ^ 3 O - ^ c ^ c N O m in cn io r-- cn o> T T c n i n r - ^ ' r j u j L n i r j a j i D c N n - - in o CN *- CN r- — ^romto»'-ooic»na)OtoOc(jconni~o)in-c<'»Or«OOOOiiiOc«9ifiiJ)n T  O O f t O P - n O O O O O O O O O " f i O < i i i i i i i i i i i i i  - O O O O c o O O i n T O O O O — O - O O O o O O O i i i i i I I i i i i i i i i i i i i i  O O I I  O  O  O  O  O  O  O  O I I  —  O I I  O  O  O  i  CPCDCNCOCOCNCDC0COCOCOCOCOCOl£CO(£COCOO0lOCPlOCOCD^COCOCn^cOCOL^ p-p~Lnr^Lr)' ~r^r~-r^r-r^r~-i^r*p*-r—i— i  i— r t ^ N r r ^ t ^ " C } > t ' r ^ r * » h ' r ^ i f ^ i ^ p L T r o N t » c j t ^ r ' t ^ ^ t i > r ^ p - t ^ i ^ t ^ t ^ i ^ p - t O L n  T  O  O  C  N  O  C  O  -  O  O  O  O  O  O  O  O  O  O  O  O  v  C  N  O  O  O  O  O  ,  O  C  I  O  O  ,  O  v  ,  ^  C  S  O  O  O  O  O  O  O  ,  O  Ocj>^coOni^OtD^co^i£co^ifl^Ooio^ifl7>tfl7^incoc^OC'Oinniiir>'TtOLnr^r^^r7ii!r^ in — f is MI) eo — r~^rcoc-i0'Ccocoo)ioiniD'-u3iC'nin^iiicNoiOOin^nujroiNinnfli-O'-Ocn^Of'OiinOoitOOOOOOiO'-'-'fin'-'i - 0 ' - O C M O C N O o d - - ' - ^ 0 0 - - 0 0 ' - 0 0 ' - - - - 0 ^ 0 0 ' - 0 0 - ' - ' - - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  O o> in T ^ r n c o r ^ r o c o c M c n m co rO C O O O a ) O c n c o O O O O O O O O t - - O O O O i n O O i n O O r - - i n o o i D O i n O O O O O O O O ' - i n o o i n O O O O O O O O O O O O O O O O O i n o i n c N O O O O O O G O O O O O i n o O O O O O i n O O O O O O O O O O O  OOcooiocNcncoOcNcna>cNcNr^OcnincNcncocBr~cNcnmn-a30r~o ^ O O O O C O C O O T O C N C O I O  O O O •>- » - — —  —  CN  crcococooocococncnr^cooocococDOT  o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o  mo — c N n i i n c o r - o o c n o — c N D T i n c o r - c o c n O ' - c N n 7 i n c p M i o Q O ' - c N n t i n i o r - c o c n o - — c N c o ^ - i n c o T i n m i n m i n m i n m i n i n c o c o i o c o c o c o i o t o c o c c r - r ^ r * - r - r ~ t ^ r ~ r - r - - r ^ c o co.co co coc o c o c o c o c o c n c n c n c n c n c n c n CNCNCNCNCNCNCNCNCNCNCNCN  CNCNCNCNCNCNCNCNCNCNCNCN  CNCNCNCNCNCNCNCNCNCNCNCN  163  CNCNCNCNCNCNCNCNCNCNCNCN  r~coO)0'-cNCO'Tincor--co C S O I O I O O O O O O O O O M M C N o n n n n o o n n  309 . 310. 311. 3 12. 313 . 314 . 315 . 3 16. 317 . 318 . 3 19. 320. 32 1 . 322 . 323 . 324 . 325 . 326 . 327 . 328 . 329 . 330. 33 1 . 332 . 333 . 334 . 335 . 336 . 337 . 338 . 339 . 340. 34 1 . 342 . 343 . 344 . 345 . 346 . 347 . 348 . 349 . 350. 351 . 352 . 353 . 354 . 355 . 356 . 357 . 358 . 359 . 360. 36 1 . 362 . 363 . 364 . 365 . 366 . 367 . 368 .  0 . 72 0 . 75 0. 8 1 0 . 74 0 . 69 0 . 69 0 . 76 0 . 69 0 . 79 0 . 79 0 . 74 0 . 74 0 72 0 . 73 0 . 73 0 . 75 0 84 0 . 76 0 . 74 0 . 75 0 . 75 0 . 69 0 . 78 0 . 83 0 . 77 0 . 75 0 . 72 0 . 75 0 . 76 0 . 80 0 . 85 0 . 76 0 . 72 0. 7 4 0 . 76 0 . 75 0 . 78 o . 82 0 . 88 0 . 76 0 . 74 0 . 74 0 . 74 0 . 73 0 . 74 0 . 73 0. 7 1 0 . 70 0. 7 1 0 . 80 0 . 80 0 . 75 0 . 75 0 . 72 0 . 70 0 . 70 0 . 78 0 . 74 0 . 76 0 . 78  1 .1 00 5 .00 1.00 0 .0 0 .0 0 .0 • 0 .0 6 .00 O .0 0 .0 22 .00 22 .00 2 .00 4 .00 2 .00 4 .00 1.00 0 .0 O .0 0 .0 4 .00 12 . 0 0 21 .00 24 .00 7 .00 15 . 0 0 1. 0 0 42 .00 2 .00 0 .0 0 .0 0 .0 0 ..0 0 .0 0 .0 O .0 16 OO 9 .00 2 .00 1 .00 1 . 14 .00 4 OO 4 .00 7 .00 . 0 .0 7 .00 13 OO 0 ..0 1 00 1 00 . 12 0 0 0. 0 0. 0 0. 0 1.00 . 0. 0 0 ..0 2 00 17 0 0 10. 00  o . 18 0 . 26 0 .03 0 . 45 0 . 43 0 .49 0 . 48 0 .08 0 . 45 0 . 49 0 . 12 o . 12 o . 18 0 . 48 0 . 27 0 16 0 . 25 o . 18 0 . 22 o.31 0 . 25 0 . 17 0 .09 0 .07 0 12 0 . 34 0 .09 0 08 0 .0 0 21 0 . 19 0 .08 0 . 08 0 .06 0 .08 0 .. 1 1 0 . 32 0.1 1 0 . 22 0 .05 0 . 13 o . 14 0 .09 0 . OO 0 . 03 0 .07 0 . 25 0 . 15 0 . 23 0 . 07 0. 0 0 . 09 0 . 09 0 . 06 0 . 15 0 . 29 0 . 22 0 . 26 0 . 10 0 . 17  1 1 24 5 . 57 1. 55 0 . 74 0 . 69 0 .69 0 . 76 4 .80 , O . 76 O .76 21 . 76 22 ..62 2 .60 4 . 55 2 . 25 4 .49 . 1.68 0 . 76 0 . 74 0 75 3 .. 79 12 . 43 21 .61 24 . 74 7 . 70 15 .63 1 38 . 42 ..66 2 68 0 80 0 .. 76 0 . 76 0 72 0 74 0 . 76 0 75 16 .04 9 . 49 2 78 1 1 54 . 14 .69 4 .61 4 .60 7 .63 0 . 74 7 .69 13 .64 0 . 70 1 32 . 1 57 . 12 .72 0 . 75 0 . 75 0 . 72 1 46 . 0 . 70 0 . 76 2 .09 17 . 5 1 10. 68  0 30 -0 .08 0 . 22 - 0 . . 45 -0 . 43 -0 .49 -0 . 48 1.81 -o . 43 -0 . 47 0 . 86 o .00 -0 .05 -0 .31 0.21 0.1 1 -0 .08 -o 18 -0 . 22 -0 .31 0.71 0 .08 0 08 0 .02 - 0 . .05 -0 22 0 . 25 0 ..01 0 . 08 - 0 . .21 -0. 1 1 - o . 08 -o 08 -o. 06 - 0 . 08 -o. 1 1 0 . 42 0 . 22 -o. 1 1 0 . 16 - 0 . 08 -o 00 0 . 05 0 . 09 - 0 . 03 - o . 03 - o . 17 - 0 . 15 0 . 17 0 . 15 0 . 07 - o . 09 -0 . 09 - 0 . 06 0 . 09 - 0 . 29 - 0 . 20 0 . 40 0 . 16 - o . 17  369 . 370. 37 1 . 372 . 373 . 374 . 375 . 376 . 377 . 378 . 379 . 380. 38 1 . 382 . 383 . 384 . 385 . 386 .  0. 72 0.. 74 0 7 1. 0. 70 O. 76 0. 82 O. 79 0. 70 0. 70 0. 7 1 0. 7 1 0. 73 0. 82 0. 78 0. 73 0. 69 0. 7 1 0. 72  28 .00 0 .0 7 .00 22 .00 1 .00 29 .00 1 .00 5 .00 0 .0 0 .0 0..0 0..0 1 .00 . 5 .00 9 .00 6 .00 . 0 .0 0..0  0.. 20 0.. 26 0. 11 0. 04 0. 20 0..03 0..05 0. 27 0. 24 0. 18 0. 17 0. 27 0. 31 0. 13 0. 1 1 0. 17 0. 20 0. 23  28 56 0.. 74 7 .25 22 .59 1 .72 . 29 .62 1 .. 76 5 .65 0. 70 0. 7 1 0. 71 0. 73 0. 76 5 .40 9..61 6 .58 0. 71 0. 72  -0..03 -0.. 26 0. 35 0. 07 -0.. 16 0.. 17 -o..02 -0.. 23 -o. 24 -0. 18 -o. 17 -0. 27 0. 74 0.. 26 0. 02 -0. 06 -0. 20 -0. 23  Table  VI.5 Suburban internal  w a t e r b a l a n c e by d a y w i t h s t a t u s ( i ) and e x t e r n a l (e) system  o f water  stores  and t h e d i v i s i o n  between t h e  Where SVU i s t h e p e r v i o u s u n i r r i g a t e d r e t e n t i o n SVI i s t h e p e r v i o u s i r r i g a t e d r e t e n t i o n SP i s the impervious retention  DAY  22 . 23 . 24 . 25 . 26 . 27 . 28 . 29 . 30. 3 1. 32 . 33 . 34 . 35 . 36 . 37 . 38 . 39 . 40 . 41. 42 . 43 . 44 . 45 . 46 . 47 . 48 . 49 . 50. 5 1 . 52 . 53 . 54 . 55 . 56 . 57 . 58 . 59 . 60. 61. 62 . 63 . 64 . 65 . 66 . 67 . 68 . 69 .  Ii (MM/D)  0. 72 0. 76 0. 76 0. 76 0. 74 0. 74 0. 74 0. 74 0. 76 0. 76 0. 76 0. 76 0. 76 0. 74 0. 76 0 76 0. 76 0. 76 0. 76 0 76 0. 76 0. 76 0. 76 0. 76 0. 76 0. 76 O 76 0. 76 0. 75 0. 76 0. 76 0. 76 0. 76 o . 76 0.. 76 0. 76 0. 76 0. 76 0.. 76 0. 70 0. 69 0. 72 o. 74 0 .76 0. 76 0. 73 .0. 68 0. 69  le (MM/D)  0. 0 0..06 0. 06 0 .02 0. 0 0..0 0..0 0..0 0 02 0. 10 0..05 0 .02 0 .0 0 .0 0..01 0 .08 0.. 20 0..08 0..04 0. 02 0..08 0 .00 o 10 0. 10 0. 02 0..02 0 .01 0..02 0. 0 0. 10 0 14 0. 08 0. 02 0 .04 0 .03 0 02 0. 10 0. 14 o. 05 0. 0 0. 0 0. 0 0. 0 0 02 0. 08 0. 0 0. 0 0. 0  P (MM/D)  4 .72 17 . .92 25 ..86 6 .43 2 . 14 6 . 54 7 6 1 1 . 28 6 .00 8 . 48 7 .08 0 . 32 0 .0 0..0 0..0 0 .0 0..0 0..0 0 0 0..0 5 . 15 34 ..02 50 44 23 .. 93 13. 73 2 .14 0 . 53 40. 25 7 .51 1 .07 7 .83 1 . 17 0. 0 4 .82 2 78 16 .20 0. 0 13 .30 12 .01 7 .72 1 .39 0. 0 0. 0 0. O 0. 0 0. 0 0 0 4 .93  E (MM/D)  0 0 0..0 0. 55 0 08 O. .0 0. 26 0. 30 0 17 0 0 0.. 34 0 19 0 21 0. 66 o. . 14 0. 77 0 46 0.. 43 0. O 0 O 0. O 0. 23 0 17 o 22 0. 32 0. 21 0 12 1. 04 0. 12 0. 78 0. 40 0. 66 o . 51 0. 98 0. 45 0. 32 0. 07 0. 64 0. 85 0. 30 0. 6 1 0. 30 1. 16 1 09 0. 53 — 0. 95 0. 85 0. 26 o . 67  Ri (MM/D)  0 .72 0 . 76 0.. 76 0 . 76 0 .74 0 . 74 0.. 74 0 . 74 0.. 76 0.. 76 0 . 76 0 . 76 0 . 76 0.. 74 0 76 0 . 76 0. 76 0.. 76 O . 76 0 . 76 0 76 0.. 76 0 . 76 0 . 76 0. 76 0. 76 0 76 0. 76 0. 75 0. 76 0..76 0. 76 0. 76 0. 76 0. 76 0. 76 0. 76 0. 76 0. 76 0. 70 0. 69 0. 72 0. 74 0. 76 " 0 . 76 0. 73 0. 68 o . 69  Re (MM/D)  S (MM/D)  150 00 1 . 29 16 .60 150 .00 150..00 25 .92 5 .90 150 .00 2 .06 150 .00 6 . 54 150 .00 7 . 36 150..00 150 .00 0 .98 150 .00 5 .86 150 .00 8 . 58 150 .00 6 . 79 150 .00 0 . 15 150 .00 • 0 .0 150 .00 0 .0 150 .00 0 .0 150 .00 0 .0 150 .00 0 .0 150..00 0 .0 150 .00 0 .0 150 .00 0 .0 150 .00 2 . 97 150..00 33 . 80 150 .00 50 . 38 23 . 8 1 150..00 150..00 13 .43 1 . 95 150..00 150 oo 0 .42 150 .00 39 . 22 7 . 39 150..00 150 oo 0 38 150..00 7 .58 150. oo 0 . 59 150..00 0..0 150. oo 3 .39 150..00 2 . 37 15 90 150. 00 150 00 0..05 12 . 78 150 .00 150 .00 1 1 2 1 7 . 42 150 00 150 .00 0 78 150. 00 0 0 150 .00 0 0 150 00 0 0 - 150.0 0 - o .-Q 150. 00 0 0 149 .. 77 0. 0 149 77 1 38  SVU (MM/D)  1 . 42 2.1 1 1 .94 2 .09 2.1 1 2 .03 2 .02 2 .06 2.1 1 2 .01 2 .05 2 .05 1 .85 1 .80 1 .51 1 . 32 1 . 20 1 . 24 1 . 26 1 .27 2 .04 2 .06 2 .04 2 .01 2 .05 2 .07 1 .80 2 .07 1 .87 1 .99 1. 9 1 1 . 96 1 .66 1 . 97 2 .01 2 .09 1 . 92 1 .85 2 .02 1 . 93 2 .02 1 . 67 1 . 13 0 . 87 0 . 44 0 .01 0 .0 1 29  SVI (MM/D)  1 .42 2.1 1 1 . 94 2 .09 2.1 1 2 .03 2 .02 2 .06 2. 1 1 2 .01 2 .05 2 .05 1 .85 1 . 80 1. 5 1 1 . 32 1 . 20 1 . 24 1 . 26 1 . 27 2 .04 2 .06 2 .04 2 .01 2 .05 2 .07 1 .80 2 .07 1 . 87 1 .99 1 .91 1 . 96 1 . 66 1 . 97 2 .01 2 .09 1 .92 1 .85 2 .02 1 .93 2 .02 1 . 67 1 . 13 0 .87 0 . 44 0 .01 0 .0 1 9Q  SP (MM/D)  0. 58 0. 58 0. 36 0 55 0. 58 0. 48 0. 46 0. 51 0.. 58 0. 44 0. 51 0.. 49 0. 23 0. 18 0. 0 0. 0 0. 0 0. 0 0. 0 0. o 0. 49 0. 5 1 0. 49 0. 45 0. 49 0. 53 0. 17 0. 53 0. 27 0. 42 0. 32 0. 38 0. 0 0. 40 0. 45 0. 55 0. 30 o . 24 0. 46 0. 34 0. 46 0. 00 o. 0 0. 0 0. 0 0. 0 0. 0 n n i  in *- n O  T  O  O  C  ^ N  O  O  O  O  O  O  O  O  O  O  T O O  T  O  C  M  r- > C  O  o  O  O  in ro -  ^  O  O  O  O  O  O  O  T  o  T  O C  O  i»  * - CM O O C  M  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  C  ro  M  O  O  O  O  O  O  O  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 6 0 O O O O O O O O O O O O O O O O O 0 6 0 O  — coincocncococoo — in o c o c o a i r - i n r - " - o a > O r o r r i D i D r - c o O c o — co — cor*'00 ^Ol^rol^c^c^c^lInoooOOOlnOucOIIl^o^Olr)(I)^Il^Ilf^Or^olOlOl^(o<n<^)OOOOOOOOOc^'rlNOO^OOOOOOO 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0  - ' - 0 ' O O O O O O O O O O N - ' 0 " " « ' - 0 0 0 0 0 0  — coincocncococoo — m Ocococnr-inr-—OcoOco*?io t o r - c o O c o — co — cor--co ^ c ^ ^ c O l X l c ^ c ^ c 9 ^ n O O O O O O l n O l B l ^ l c ^ ^ J l ^ O l n c ^ ^ B ^ i n o c ^ Q C ^ ( B a l n o 3 o O O O O O O O O O ( N l f I N O O ^ O O O O O O O 0 - O O O O O O O O O O C M - - 0 - - - - c s i - 0 0 0 0 0 0  O O O O O O O O O O - O O O O O O O O O O O O  0 0 0 0 0 0 0 0 0 0 ' l t ) 1 T O ^ O O O ( I l O O O O O O O O O n n o 0 0 0 0 0 0 1 l l l ' « J l « t I ! - ^ l I t « } o o « l ? « l ^ i ( J l C ) - C ^ « 0 O O O O O O O O O O t O n n n l I ) 1 1 ^ t o l O O O O O O O O O ^ l l J O O O O O O O f f l l 1 ^ l t ^ o t o « O J l ^ l M - m O l » 7 ( B ^ O O O O O O O O O O ( » ^ l ^ ^ ^ ^ ^ l ( I l ( l H ) O O O O O O O O O t n 0 ) O O O O O O O J l ^ D n N • • O U l ! - " ^ l » e ^ t - ' 8 l n «  10 r~ O tffl B d i D f u O ID in CM o — — « ' O O i O O O O O O O O O O » ' » 0 0 « i i l i m ) t H O O O O P ' » « ! i i n O O c ( O O O O O O O O O O n O O O O » 0 0 0 0 0 0 0 i  C  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  C  N  O  O  O  —  t^^coiDncN — inooiDi£U>^cDCMix)i£cDO-  CNCD  co —  —  r - c M O O O O O O c D O c M O O C M O O O O O O O O O O i n O O O O O O O O O O O O  C M C O U > C O O C D C D ( £ > C D I £ I D I P ^ C ^  ! i ) U I ^ • ^ ^ ^ ^ ^ ^ i l ^ ^ ^ ^ r - ^ m ^ ^ l i ) ^ ^ ^ ^ ^ r * ^ ^ ' r • ^ - ^ ^ r - ^ L C ^ P l - ^ * ^ ^ ^ - ^ ^ ^ ^ ^ ^ ^ r * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ O O O O O O O 0 6 0 O O O O O O 0 6 0 6 0 O O O O O 0 6 6 0 O O O O 0 6 6 6 0 O O O 0 6 0 O O O 0 6 0 6 0 O O O O O O O  co  ID  <r 01 to r-  '-0O  ,  -O  ,  -O0O  T  ^in-^^cnoo^TiD^Tco- c o i OO^ininOTNinco--oinco{NO)ir)OtNCOintflOii>^ciiiDOnoiU)nt3  — r- O  *'"-*O000  T  '  ,  -'"00  ,  -  ,  -0'-'-0OO'-'-OOO'-'-0f  ,  i'-cjw  ,  -'-'-^^cvfNrv0wcJOcjnn0on^  — O — c-JOCNCMCOOicncocorr- p» r- r~ T r- rCD^r ^ O O i c O O N O O O O O O O O O O m i i ^ n o i n - o i M n O O O O O i B N O M J - o i O O O O O O O O O O i i n i i O O a i O O O O O O O O » ' O O n O O O O O O O O O O ^ - 0 0 « H M ^ « ) P i O O O O O c i - - i M O - n 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 n O O O O O O O  — CM 0) O — O rJ-CM — T- T -— CD CO CO C M C M C M C M C N C O C D C O C M C M C n c D l D C M C O — C O O O O O C M — LOr-CO O O - O O O O O O O ' O O ' - O O - N O O O O O O O O O O O n n O O O O O O O O O ' - ' t n t M O n O O n ' j n - ^ i t i D f f l O ' O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 6 6 0 O O - -  r - ^ c o i D c o c M — i n O T i D U > c o ^ c o o i c o c r c D O — o — cMcocDcoocoii)co(£cO(r c^ciDr—  r—  1— r ^ r * - r - - U 3 r ^ r - i - - r —  r—  r—  Lnt—  r—  t D r - f ^ i —  ^ 1 — r—  r^r—  r--i— r ^ r ^ : —  r^LDCDr—  i—  r ^ r ^ r ^ r - - r ^ r ^ r ^ i —  r^r^c—  r—  r—  r-r—  r—c—  r ^ r ^ r - ^ r ^ c -  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O  0--c^ln^ln^5^ooalO•-ol^^^n^^fflQ^O--cy^^ulco^coOlO--clCl^;in^o  r - . c o oo O — r M c o ^ i n i D r - - c o c T ) 0 — c M C O T i n i D r - c o c n  ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ O 0 3 a 3 C 0 O l ^ l C 0 C 0 C 0 O C 3 C f l C « r o m 0 1 O C ) 0 ) 0 ^ O O O O 0 O O O O O ' - ' - ' - ' - ' '  167  <  —  CMCNCNCNCMC-ICMCMCMCM  in O  O  O  O  C  in N  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  C  N  O  co O  O  O  O  O  C  M  O  O  O  O  O  000060000000006000000000000000000000000000000600000000000000 is m r O O r- co 0 in — o> coco » IT n N 9 co - >» i t O O O « « « N O O O O O O O O O O O w u n M O O c i O O O O O O O n i n O O O O O O O O O O i i H 0 N O O n ' n c 0 P O O O O r  0 0 0 0 ' 0 " O O O O o d o O O O O O O O " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - ' 0 0 0 ' - ' 0 0 0 0 0  10 co r~ O O  O O O C N T  —  C  M  C  M  O  O  O  O  O  O  O  O  O  O  O  C  N  r- co cn in — —  cn coco • t f c o c o r ^ T c o —T I C u n « O O M O O O O O O O n i i ) 0 0 0 0 0 0 0 0 0 0 « i i j n O O N ' n o > 0 0 0 0  ooo6-o--oooo6ooo6ooo6o--oooooooooooooooooooooo---ooo-'--ooooo  cnOcncn<7)C)cnr~CNOCr>r^cor-cor--roLO  C ^ C O I S C O C O C O O T C O C O O T C O O T C D I ^  —  cn in — — — — — r ^ n o i c N ' T i n r r c o O c o c o c o c j i c N C N O O — i s c o o c n r ^ r ^ o c o c N C N c N i n O i n i n i n r ^ r ^ o ^ c n c n n h - c n c o c o c o c n ^ r ^ c n O ' T c n cncooococococo — O c o c o t o c K D M n o i - — C O C O ^ - ^ T C O C O — c o r ~ c o r ~ t ^ c o c o c o c c c o o o c n O O O — — — — i n t n i n < T - T - » c n c D c o r ' - < T C N a >  — — — — — — — CM CM — ' — — — oooooooooooooocncncicncncncncncncncncnooooooo — — — — — — — CM CM CM CN CM • ID  n  is o  O O O C M C M O  —  rO i n c o c o c o f ~ O O O O O O O O O O O O O O i n O O O O O O O O O O O O O O O O O O O O O O O T r - O O O O ^ r ~ o > 0 0 0 0 0  OOo6-0-CMOOOOOOOo66oo6o6oOOOo66oOo66o66oOo6oOOOOcoo66oocomo6oOO  ISCOCOCDCSlflCOlOCCCOCOCOCDCDCOlOCOCOCOCCICOlDCSlfllflCOlOlflCDCOCOC^ t—  t — 1— j — — r — 1 — ^ c — — t ^ r — [ — — 1— r ^ r — r — 1— E— r — t — [— 1 — r ^ i —  r—  i— r— t — f— r ^ * r ~ r —  r ^ t — r—• r —  r — r — r—  r — 1—  1— 1—  t — 1— 1 — ^ r - - i —  r — r — 1— 1 ^ t —  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O  — coOcoinnco^cMcocor^incoocMcnocNOcoinc^ — cocococoinocn — ©  ncocococococno  O — CN — c o T C O T C o O r ^ c n r - T T  C N O O C N C N ^ T T  CN —  co—  —  Or-  r-  O O O O c o O ^ ^ O O O  —  O  —  O  O  C  M  T  O  ^  O  O  O  O  O  — CM  — CM 10 cn — — 10 co co m cn — ^ c o o o c N c o c n c n o i n c o c n c n c o r ^ c n r ^ ^ r c o — c N c o O c n — co — i n o o < r i n  co — c N i n T C N i n ^ r r o o c N C N  CN  co  — <3- — — n i n ^ i n i n u i i n c N c N i n i o i n L n i n i n t n i n i n i n  M  in  —  01  ocN^-in  —  —  C N O C O C N * 3 - C N ^  C D O C M C O C O T C M ' < I -  c o O O O O O O O O O c o r - O c o c o o O O O O O O O O O O O O O O O O O O ^ i n c o i n O O c o c n i n c D O O O O O  O  O  O  O  O  O  O  O  O  C  N  O  O  O  —  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  C  N  C  O  O  O  O  O  C  N  O  C  D  O  O  O  O  O  CNCPinO — i n c o c n i n c o O ^ c o ^ c n c N c o ^ ^ c o i o c o O O T c o ^ c N C M C O ' ^ c n O ' T i o c o a o c o — — — m i n o c o c n c n o c o c N — tnr-co'3'cncNcNCN — T co 10 cn cn — c o c N c N T i o — o i L O C o i n T O i — 7 n c a l f l l n l n O O ^ • ^ O c ^ c ^ ^ c o c o c N l n O l n ^ n ( J - ^ O c ^ l c ^ l n o ^ l ^ n l n l n m ^ 7 C N O ^ O ) 0 — O O O O O  — O O O — O O  —  CM —  o  CN  co ^  co  —  O C N  —  O O n n ^ i n i n i n n n i n i n c o i t i s c o i n c O ' s c i J o i O O ^ -^r  —  —  O  O  O  O  O  O  C  N  COCOlOCOlOCOlOCOlOCOlOCOCOlPlOCOlOlOCOlSCOCOlOCOCOlOlOC^ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O  O — tNOTTiniot^cocnO — cNroTincor-cocnO  — cMco^-inior^cocnO — c N c o ^ i n c o r ^ c o o i O — cNCO<3-inior~cocnO — CNro^cncor-cocn  c o c o c o n c o c o c o c o c o c o ^ ^ ^ ^ ^ ^ ^ ^ T r ^ L n i n i n i n L O i n L O i n i n i n i o i o c o c o i s c o c D c o i ^  168  n O  O  O  O  C  o N  in  O  C  M  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  o  —  O  C  M  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  -  O  O  O  oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooc  •7 o C N C M CN u> in cn O t- o C N in co cn 1 -3- — u> incNCDCNCNO) — I - T C N C D C O ocor-n O O O O ( J O « ) O O O ' • O O O O O O O O O O ' • ^ l l l P ^ ^ T m O O ^ ^ ^ U l ( 0 0 ) n o O O O O • • l n t U l U ^ t 0 ) ^ t « ( N ' - n O O B " T l I l ^  O O O O -  — — — O O O O O O O O O O O O O O O O O O O O O O O -  — O — O O O O O O O O O O O O O O  — - - - O O O  - •— o o  O CM CM CN to in cn O O CM in co cn T - T — to incMCDCMCMcn — r - ^ C N i o c o Ocor-co O O O O » O l 0 O O O ' O O O O O O O O O O ' l n ^ l l ^ ^ • J ^ J O O ^ n ^ u l m 0 ) n o O O O O ' • l ! l ^ ^ ^ l t ^ l ) c ^ f f f ( ' ^ O O 0 ) ' n l l t O O O O - - - - O O O O O O O O O O O O O O O O O O O O O O O - - O - O O O O O O O O O O O O O O - - - —  O O O - - O O  r-cctocoincoTTrTCMCOcnOcoinincnco-^cnc*)or-r-t'-'T^m^r-cocor^f^mmmmcnommmcocMCMCNmcocn'3-'3-' T inisinincnocncninioicicn — o ^ O M l » O l n u * ^ l ! l l ) ^ C l J l J O l S O ' ^ ^ » o c « N n ^ l ) m o o ^ ^ ^ ^ ' • ' - n n n l l l ( o u l l ) n o l n ^ ^ ^ !  cot^r--Lf)r^cNJinLnm —  —  —  —  O O O O  —  — — ocncncDinuocptDinnnnrorocncoro  nnnC0CT>r0C0CMCNCMCMCMCNCNCMCMCNCNCNCNCNCNOlCMCMCNICMCNC^  cn to — cn — 0) in — mm — c i c N O O O O O O O O O O O O O O O O O O O O O O O O c N m O T ' 5 - O O O O O O O O O O O O O O O m O O O O ' ^ C N O O  O O O O C M C n c o O O O O O O O O O O O O O O O O O O O O O O O O O - O T O O O O O O O O O O O O O O O O - O O O O m o O O  ' . 0 C C < 0 l J 3 l C l £ l J 3 C O l f l ( £ l £ l S C 0 t P l £ l £ * £ l £ C 0 ( £ l £ l £ C 0 l 0 i £  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O O C O C N O )  —  m O T c a D t c M c n c N i  O  O  O  — in cn  O  O  O  O  O  to cn —  niniD^rcococn- — c o c N r - m O T c o m T c v i o a ) —  m m ^ r m O c N O c N O T  - — c N C M t n t n i n i n i n i n T  O  O  O  O  O  O  O  cncnOr--cNr-TC  r  O  O  O  O  >Otnco  O  —  O  O  O  O  O  O  O  O  C  O  O  O  O  O  O  O  O  O  O  O  a i c o c o - ^ r - m c o m o c n o i c r i c n i n c n t i j o t o i n -  O  O  O  O  O  - ^ c o c N r j r - o  B u n 0 i i i r ( a i o n 0 0 u i e o ( i ) ^ n i 5 n n » c 9 0 i o c a o u i j u i r i n - a i o - - 0 « ) 0 ' -  — O O  — <N C M — <3- in — CM — CM o CM — ^ - - t ^ r / o i o o i c N C N c i ' * O — CM -  — CM co — — CM —  c- r- in n oi C N r~ C M CM co in r- co min CD O O O O O c n T i n O O O r - T O O O O O O O O O O O C O O l O C O O O O O C N O r - O O O O O O O O O O O O O O O O C N r - O O O - C D O O O O O O i D ^ c n O O O O O O O O O O O O O O O O O  — O O O O O O c N m o c N C N O O O O O O O O O O O O O O O m O O O O m  —  O O  cn — r - * r c n r - r - c n r ~ i n c N c o i n - — i n c o o r o o r - c o — i n c o c o c o c o c n o c n l o t - t n c v i i i a j c N ^ i i i n r - N o n ' - r j C o c o o J O i O ^ c M - i n i - ^ r r c n CD in < r c o — O C M i D O t * - C M i ^ O c M C \ i O r - - c o ^ c n * T i D i D C M r ' - r - r - C M i D r - r o — C D C O C O C D O ^ T C O - o j r - t D r - o i c M c n r - i n — c o c o O r - ' ^ O ' T C O ,  n « T r n n O O O 0 ' - O 0 O 0 i n » u i i D ^ v ( M ' - ' - O 0 - ' - - f n M ' - 0 O ' 0 0 O ' - ' - P i n n n n n n ^ ' - r o i M O O ^ ' O O 0 0  i D i D t D i D i D i D t £ C D i o t D i D i D C D C D t D C D O i D C 0 C D ( £ < £ i D i D t D t D t D i D i D t Q ( £ < £ r - r - r - r - f - r - r - r - r - r —  r-r-r-r-r»-r-  r-~r--  r — r — c—  (— i — i — i — :—  c— i — •  t —i — r —r —  f — i — [—  r —i —t —i —  r —  r —r — r —i — —  [—  i — r-- — r  i — r—  oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo  O — c M r o - ^ i n i D r - c o c n O -c N D ^ - i n c c r - c o o O — C N O T i n c c r - c o c n o — C M r o n - m t o r ^ c o c n O - C M C O ^ m i D r - o o c n O — cNcO"3-iniDi---cocn —  —  —  —  —  —  —  —  —  —  CNCNCNCNCMCMCMCNCMCNCMCMCMCMCNCMCMCMCMCNCMCMCMCMCMCNCMCMCMCMCMCMC^  169  250. 251 . 252 . 253 . 254 . 255 . 256 . 257 . 258 . 259 . 260. 261 . 262 . 263 . 264 . 265 . 266 . 267 . 268 . 269 . 2 70. 27 1 . 272 . 27 3 . 274 . 275 . 276 . 277 . 278 . 279 . 280. 28 1 . 282 . 283 . 284 . 285 . 286 . 287 . 288 . 289 . 290. 29 1 . 292 . 293 . 294 . 295 . 296 . 297 . 298 . 299 . 300. 301 . 302 . 303 . 304 . 305 . 306 . 307 . 308 . 309 .  0 76 0 . 76 0 . 76 0 . 76 0 .. 76 0 . 76 O . 76 0 . 76 0 .. 7 6 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 .. 7 6 0 . 76 0 . 76 0 . 76 0 . 76 o . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 75 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 C. 7 6 0 . 73 0 . 76 0 . 76 0 . 69 0 . 76 0 . 72 o 72 0 . 76 0 . 76 0 . 76 0 . 75 o . 70 o . 76 0 . 76 o . 72  0 0 0 0 0 0 O 0 0 0 0  . 24 . 27 . 24 . 30 .05 . 13 . 20 . 24 . 46 . 63 92 1.. 36 0 . 86 0 . 1 1 0 .03 0 . 12 0 .09 0 .06 0 . 13 0 17 0 . 10 0 .00 0 .05 0 . 13 0 .07 0 .. 0 8 0 . 12 0 13 0 . .01 0 .04 0 .02 0 .0 0. 06 0 . 10 0 . . 23 0 .08 0 14 0 . 13 0. 09 0 . 01 0 .. 1 1 0. 06 0 . 01 0 . 01 0. 05 0. 0 0. 03 0 . 22 0. 0 0. 00 0. 0 0 .0 0. 0 0. 06 0. 08 0. 0 0. 0 0 . 04 0. 00 0. 0  0 .0 5 .90 0 .0 15 . 9 9 2 . 35 0 .0 0 .0 0 .O 0 .0 0 .0 0 .O 0 .O 0 .0 0 . 74 0 .0 0 .0 0 .0 5 .04 0 . 53 0 .0 0 O 0 .53 0 .0 0 O 15 . 7 7 0 . 53 0 .0 10 . 0 8 10 . 6 2 0 .0 0 . 53 0 .0 0 .. 0 0. 0 0 .. 0 0 .0 0 .0 0 0 0. 0 15 . 1 3 0 .. 5 3 0 .. 0 0. 0 2 57 0. 0 0. 0 0 0 0. 0 0. 0 0. 0 0. 0 0 .0 0. 0 0. 0 6 .00 0. 0 0. 0 15 . 0 0 1 10 .0 1 1 0 0.  0 72 1. 47 0 .81 2 . 78 0 .60 2 . 43 O .85 0 .80 0 . 98 1. 6 1 1. 5 8 1 6. 1 1. 16 0 .68 0 .61 1. 16 1.. 3 1 0 .. 5 0 0 .42 1. 9 6 0 2 1 0 .95 1.. 0 4 1 07 1.. 5 6 1.. 44 0 . 2 1 1 65 0. 99 0 29 1.. 5 0 0 . 36 0. 90 1. 15 1. 0 3 1. 15 1. 0 3 0 . 94 0 . 46 0. 05 0 . 77 0 . 97 0 . 54 1. 0 4 o . 26 0 . 47 0. 0 0. 0 0. 0 o. 0 0. 0 0. 0 0 . 55 0. 1 1 0 . 14 0 . 46 0 . 57 0 . 19 0 . 48 0 . 18  0 . 76 0 . 76 0 . 76 0 . 76 0 .76 0 . 76 0 .76 0 . 76 0 . 76 0 . 76 0 . 76 0 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 76 0 . 76 0 .. 7 6 0 . 76 0 . 76 0 .. 76 0 .. 7 6 0 ,, 7 6 0 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 75 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76 o . 76 0 . 76 0 . 76 0 . 76 0 . 73 0 . 76 0 . 76 0 . 69 0 . 76 0 . 72 0 . 72 0 . 76 0 . 76 0 . 76 0. 75 0 . 70 0 . 76 0 . 76 0 . 72  0 .0 1. 7 6 0 .0 5 . 77 0 . 35 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1. 4 2 0 .01 0 .0 0 O 0 .0 0 .0 O .0 5 . 68 0 .0 0 .0 3 . 42 5 .. 5 8 0 .0 0 .0 0 .0 0 .. 0 0 .. 0 0 0 0 .. 0 0 .0 0 .. 0 0. 0 6 . 77 0 .59 0 .0 0 .0 0 . 44 0. 0 0. 0 0 .. 0 0 .. 0 0. 0 0. 0 0. 0 o. 0 0 0 0. 0 3. 95 0. 0 0. 0 13 . 8 6 1 0 . 81 1 0 . 52  134 . 7 4 134 . 74 134 . 7 4 143 . 2 1 143 . 2 1 143 . 2 1 143 . 2 1 1 4 3 . 17 142 . 6 5 14 1. 6 8 141 . 0 2 140 . 77 140 . 46 140 . 46 140 . 0 6 139 . 0 2 137 . 7 9 137 . 7 9 137 . 7 9 137 . 7 9 137 . 7 9 137 . 7 9 137 . 7 9 136 . 9 4 142 . 3 0 142 . 3 0 142 . 3 0 146 . 6 0 150 . 0 0 150 . 0 0 150 . 0 0 150 . 0 0 150 . 0 0 150 0 0 149 . 5 6 148 . 4 9 147 . 6 0 146 8 0 146 . 4 3 150 0 0 150 . 0 0 150 . 0 0 150 . 0 0 150 0 0 1 5 0 .. 0 0 1 5 0 . OO 150 . 0 0 1 5 0 .. 0 0 150. 0 0 150. 0 0 150. 0 0 150 . 0 0 150. 0 0 1 5 0 .. 0 0 1 5 0 . OO 150. 00 150. 0 0 1 5 0 .. 0 0 150. 0 0 150. 0 0  0 . 19 1. 6 6 1. 3 7 1. 0 1 1. 5 7 0 . 59 0 . 26 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .07 0 .0 0 .0 0 O 1.. 4 0 1. 4 9 0 81 0 . 75 0 . 54 0 .05 0 .0 1. 6 2 1.. 2 0 1.. 15 1.. 5 8 1.. 8 1 1.. 74 1.. 3 1 1. 13 o .. 7 0 0 . 18 0. O 0 0 o. 0 0. O 0. 0 2 . 10 1. 8 8 1. 5 6 1. 3 0 1. 7 7 1. 7 1 1. 51 1. 5 2 1. 6 3 1. 6 3 1. 6 3 1. 6 3 1. 6 3 1 3. 6 1. 34 2 .0 7 1. 9 3 1. 7 6 2 .0 5 1. 9 7 2 .0 6  0 . 19 1. 6 6 1. 37 1. 0 1 1. 5 7 O . 59 0 . 26 0 .0 0 .0 0 .0 0 .0 0 .O 0 O 0 .07 0 .0 0 .0 0 .. 0 1. 4 0 1. 4 9 O .81 0 .. 7 5 0 .. 5 4 0 .05 0 .0 1. 6 2 1. .2 0 1 15 . 1. 5 .8 1 81 . 1. 7 4 1. 3. 1 1 13 . 0. 70 0 . 18 0. 0 0 .. 0 o. 0 0 0 0. 0 2 . 10 1. 8. 8 1 5. 6 1 3. 0 1 7. 7 1 71 . 1 5. 1 1 5. 2 1 6. 3 1 6. 3 1 6. 3 1 6. 3 1 6. 3 1 3. 6 1 3. 4 2 .0 7 1 9. 3 1 7. 6 2 .0 5 1 9. 7 2 .0 6  0 .o 0 .0 0 .0 0 o 0 . 34 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .02 0 .0 0 .0 0 .0 0 . 38 O.4 1 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 o o . 19 0 .07 0 .0 0 .0 0 .0 0 0 0 .0 0 .0 0 .0 0 .0 0 .0 0 . 56 0 .28 0 .0 0 .. 0 0 . . 17 0 .. 0 6 0. 0 0 .0 0 0 0 .. 0 0. 0 0. 0 0 O 0 .. 0 0. 0 0 . 52 0 . 34 0. 1 1 0 50 0 . 39 0. 5 1  310. 311. 312. 313. 3 14. 315. 316 . 317. 3 18. 3 19. 320. 32 1 . 322 . 323 . 324 . 325 . 326 . 327 . 328 . 329 . 330. 33 1 . 332 . 333 . 334 . 335 . 336 . 337 . 338 . 339. 340. 34 1 . 342 . 343 . 344 . 345 . 346 . 347 . 348 . 349 . 350. 351 . 352 . 353 . 354 . 355 . 356 . 357 . 358 . 359 . 360 . 36 1 . 362 . 363 . 364 . 365 . 366 . 367 . 368 . 369 .  0. 75 0. 76 0. 74 0 .69 0. 69 0. 76 0. 69 0. 76 O. 76 O .74 0. 74 0. 72 O. 73 0. 73 0. 75 0. 76 0. 76 0. 74 0. 75 0. 75 0. 69 0. 76 0. 76 0. 76 0. 75 0. 72 0. 75 0. 76 o. 76 0. 76 0. 76 0. 72 0. 74 0. 76 0. 75 0. 76 0.. 76 0. 76 0. 76 0. 74 0. 74 0.. 74 0. 73 0 74 0. 7 3 0.. 7 1 0 . 70 0. 7 1 0 . 76 0 . 76 0 .75 0 . 75 0.. 72 0 . 70 0 . 70 0 . 76 0 . 74 0.. 76 0 . 76 0 .72  0. 0 0. 04 0. 0 0. 0 0. 0 0. 0 0. 0 0. 02 0. 02 0. 0 0. 0 0..0 0. o 0. 0 0 .0 0. 08 0 .0 0..0 0..0 0 .0 0 .0 0 .01 0 07 0 .01 0 .0 0 .0 0 .0 0 .0 0 .04 0 .09 0 .0 0 .0 0 .0 0 .0 0 .0 0 .02 0 .05 0 . 12 0 .0 0. 0 0 .0 0 .0 0 .0 0 .0 o .0 0 .0 0 .0 0 .0 0 .04 0 .03 0 .0 0 .0 0 .0 0 .0 0 .0 0 .01 0 .0 0 .0 0 .01 0 .0  5 .00 1 . OO 0. 0 0. 0 0. 0 0. 0 6 .0 0 0. 0 0. 0 22 0 0 22 .00 2 .00 . 4 .0 0 2 .00 4 00 1 .00 . 0. 0 o .0 0 .0 4 .00 12 00 2 1.00 24 .00 7 .00 15 . 00 1 .00 42 .00 2 .00 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 16 .00 9 .00 2 .00 1 1.oo 14 .00 4 .00 4 .00 7 .00 0 .0 7 .00 13 .00 0 .o 1 .00 1 oo 12 oo 0 .0 0 .0 0 .0 1 .00 0 .0 0 .0 2 .00 17 .00 10 .00 28 .oo  0. 26 0. 03 0 45 0. 43 0. 49 0 48 0. 08 0. 45 0. 49 0. 12 0. 12 0. 18 0. 48 0. 27 0. 16 0. 25 0 18 0. 22 0. 31 0. 25 0. 17 0 09 0 07 0.. 12 0 . 34 0 .09 o .08 0..0 0 .21 0 . 19 0..08 0 .08 0..06 0 08 0. 1 1 0 . 32 0.1 1 0 22 0 .05 0 . 13 0 . 14 0 .09 0 .00 0 .03 0 07 0 . 25 o . 15 0 . 23 0 .07 0 .0 0 09 0 .09 0 .06 0 . 15 0 . 29 0 . 22 0 . 26 0 . 10 0 . 17 0 . 20  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  o 0 0  o  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  o 0 0 0 0 0 0 0  75 76 74 69 69 76 69 76 76 74 74 72 73 73 75 76 76 74 75 75 69 76 76 76 75 72 75 76 76 76 76 72 74 76 75 76 76 76 76 74 74 74 73 74 73 7 1 70 7 1 76 76 75 75 72 70 70 76 74 76 76 72  4 .82 0. 79 0. 0 0 .0 0. 0 0. 0 4 .1 1 0. 0 0. 0 21 .02 2 1 88 1 .88 3 .82 1 .52 . 3 73 0 92 0 0 0 0 0 .0 3 .04 '11 75 20 . 84 23 . 97 6 . 94 14 .88 0..66 4 1 91 1 .92 . 0 .04 0 .0 0 .0 0 0 0 O 0 .0 0 .0 15 . 27 8 .. 73 2 01 10 . 78 13 .95 3 . 87 3 86 6 .91 0 O 6 .96 12 .93 0 .O 0 ,60 0. 8 1 11 . 96 0 .0 0 .0 0 .0 0 . 76 0 0 0 .0 1 .35 16 . 74 9 .91 27 . 83  150. 0 0 150. 0 0 150 .0 0 150. 0 0 150 .0 0 150. 0 0 150. 0 0 150. 0 0 150 .0 0 150 0 0 150. 0 0 150. 0 0 150 0 0 150. 0 0 150 .00 150. 0 0 150 .00 150 .00 150..00 150..00 150. 0 0 150 .00 150 0 0 150 .00 150 oo 150..00 150 .00 150..00 150 .00 150 .00 150 .00 150 .00 150 oo 150 oo 150 .oo 150 .00 150 oo 150 .00 150 oo 150 .00 150 .00 150 .00 . 150 .00 150 .oo 150 .00 150 .oo 150 .00 150 .00 150 .00 150 .00 150 .00 150 .00 150 .00 150 .00 150 .00 150 .00 150 .00 150 .00 150 .00 150 .oo  2 .03 2 .10 1. 96 1. 83 1. 69 1. 46 2 .09 1 96 1 . 82 2 07 2 07 2 .06 . 1 97 2 03 2 .06 2 .04 . 1..98 1 .91 1.. 82 2 .03 2 .06 2 08 2 .09 2 .07 2 .01 2 .08 2 .09 2.1 1 2 .05 2 .03 2 .01 1 . 98 1 . 96 1 . 94 1 . 90 .01 2 .08 2 .04 2 .09 2 .07 2 .07 2 .08 2.1 1 2 . 10 2 .09 2 .04 1 .99 2 .04 2 .09 2.1 1 2 .08 2 .05 2 .04 2 .06 1 .98 1 .92 2 .03 2 .08 2 .06 2 . 05  2 03 2 .10 1 . 96 1 83 1 .69 . 46 2 .09 . .96 1 .82 2 .07 2 .07 2 .06 1 .97 2 .03 2 .06 2 .04 1 .98 1. 9 1 1 .82 2 .03 2 .06 2 .08 2 .09 2 .07 2 .01 2 .08 2 .09 2.1 1 2 .05 2 .03 2 .01 1 . 98 1 . 96 1 . 94 1 . 90 2 .01 2 .08 2 .04 2 .09 2 .07 2 .07 2 .08 2. 1 1 2 . 10 2 .09 2 .04 1 .99 2 .04 2 .09 2. 1 1 2 .08 2 .05 2 .04 2 .06 1 . 98 1 . 92 2 .03 2 .08 2 .06 2 .05  1 1.  0. 48 0. 57 0. 39 0. 22 0. 02 0. 0 0. 55 0. 37 0. 17 0. 53 0. 53 0. 51 0. 39 0. 47 0. 52 0. 48 0. 41 0. 32 0. 20 0. 48 0. 5 1 0. 54 0. 55 0. 53 0. 45 0. 54 0. 55 0. 58 0 .50 0. 42 0. 39 0. 35 0. 33 0. 30 0. 25 0. 45 0. 54 o. 49 0. 56 0. 53 0. 53 0. 54 0. 58 0. 56 0., 55 0. 48 o..42 0. 49 0. 55 0 . 58 0.. 54 0. 5 1 0. 48 0 . 52 0 . 40 0 32 0 . 48 0 . 54 0. 5 1 o . 50  OTCDOr-tcr-r-OTco  — c o < r - co^-  ooooooooooooooooo  r-cooinoocoinoinr- — MSIB O n cnO — O — — O c n c n c o r - O O O O O c n —  C N C M C M C M C N C N  —  —  —  —  C N C N C N C M C M  —  r-coOtnOOoinomp-'-r-ootoOD cno — O — — O c n c n c o r - O O O O O c n —  C N C M C N C M C M C M  —  —  —  —  C N C N C N C M C M  —  O O O O O O O O O O O O O O O O O  ooooooooooooooooo ooooooooooooooooo  cn C D to <D to ^ r- cn OcncocncocncnOOOOOiDcocoOO  Oit-OoO^OOOOOtomOO  ^ - O a u a O O ' co I D I D co cn — C N r-r-r-r-r-i—P'-r-r-r-r-r-r-r-iDP-t0 6 0 0 0 O 0 6 0 0 6 0 O O O O O  ID — ^ O r o t n r - T c o r - c - - -  ro — r - O c o  CM  —  —  O C N O G C M C M  —  —  CMCO  —  —  CNCM  O O O O O O O O O O O O O O O O O  O O O O O O O O O O O O O O O O O O O O O O O O O O O O c ~ c M — cn — n O O O O CM CM  UO  CN  - in cn co O O  If) C M  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O  •7 — O c f l i D i D O O  — — cocDcDcocn — CM  r - r - r - r - r - r - r - r - r - t ~ r - r - r - r - - C D r - r -  O O O O O O O O O O O O O O O O O  O — c M c o - ^ i n t o r - c o c n o — CM co T in 10 r-t-c-t-r-r-r-r~r-r--cococococococo f O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096077/manifest

Comment

Related Items