Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The suburban water balance : daily, monthly and annual results from Vancouver, B.C. Grimmond, Christine Susan Betham 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 G75.pdf [ 15.41MB ]
Metadata
JSON: 831-1.0096077.json
JSON-LD: 831-1.0096077-ld.json
RDF/XML (Pretty): 831-1.0096077-rdf.xml
RDF/JSON: 831-1.0096077-rdf.json
Turtle: 831-1.0096077-turtle.txt
N-Triples: 831-1.0096077-rdf-ntriples.txt
Original Record: 831-1.0096077-source.json
Full Text
831-1.0096077-fulltext.txt
Citation
831-1.0096077.ris

Full Text

THE SUBURBAN WATER BALANCE: DAILY, MONTHLY AND ANNUAL RESULTS FROM VANCOUVER, B.C. By CHRISTINE SUSAN BETHAM GRIMMOND B.Sc. ( H o n s . ) , U n i v e r s i t y o f Otago, 1980 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department o f Geography) We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t he r e q u i r e d s t a n d a r d THE'UNIVERSITY OF BRITISH COLUMBIA November 1983 © CHRISTINE SUSAN BETHAM GRIMMOND, 1983 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head o f my department o r by h i s or her r e p r e s e n t a t i v e s . I t i s understood t h a t copying or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department o f Geography  The U n i v e r s i t y of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date November 29, 1983 'E-6 (3/81) A b s t r a c t T h i s s t u d y p r e s e n t s a method f o r the assessment of the d a i l y w a t e r b a l a n c e a t a suburban s i t e . I t i s a p p l i e d to a suburb of south c e n t r a l Vancouver, B.C. f o r the year 1982. P r e c i p i t a t i o n and p i p e d water s u p p l y were measured. E v a p o r a t i o n was c a l c u l a t e d u s i n g a model d e v e l o p e d by Oke and S t e y n ( p e r s . comm.) which u t i l i s e s measured c l i m a t o l o g i c a l d a t a . Runoff was d e t e r m i n e d f o r p e r v i o u s and i m p e r v i o u s s u r f a c e t y p e s u s i n g a s s u m p t i o n s r e l a t e d t o s o i l r e t e n t i o n , i n f i l t r a t i o n and s t o r a g e c a p a c i t y . The net change i n water s t o r a g e was c a l c u l a t e d by d i f f e r e n c e . S e n s i t i v i t y a n a l y s e s were co n d u c t e d on the i n p u t v a l u e s i n o r d e r to determine t h e i r impact on the model o u t p u t . The a p p r o p r i a t e range f o r i n p u t v a l u e s was d e t e r m i n e d from a n a l y s e s of t h e i r v a r i a b i l i t y . R e s u l t s i n d i c a t e t h a t the o b j e c t i v e of a water b a l a n c e s t u d y i s impor-t a n t i n d e t e r m i n i n g how c a r e f u l l y the catchment d e s c r i b i n g p arameters s h o u l d be d e f i n e d . For i n s t a n c e , i f the purpose of the s t u d y i s t o d e t e r -mine the d a i l y w ater b a l a n c e o n l y , and not the d a i l y m o i s t u r e s t a t u s of the suburban e n v i r o n m e n t , then the d e f i n i t i o n of the parameters may be l e s s r i g o r o u s . The r e s u l t s show t h a t the summer water b a l a n c e of the suburban e n v i r o n -ment i s m o d i f i e d t o a c o n s i d e r a b l e e x t e n t by the amount of water p i p e d i n and a p p l i e d to the e x t e r n a l environment. I n the Vancouver study a r e a the p i p e d s u p p l y i s e q u a l t o the i n p u t of p r e c i p i t a t i o n . Summer water use by the r e s i d e n t s i s found t o be r e l a t e d t o a i r t e m p e r a t u r e and the o c c u r r e n c e of p r e c i p i t a t i o n . The d a i l y w ater b a l a n c e s i n c l u d e d days when the amount of water b e i n g added to the e x t e r n a l environment i s s u f f i c i e n t not o n l y to s u p p o r t the c a l c u l a t e d e v a p o r a t i o n but a l s o to add t o s t o r a g e . The p r i m a r y means of water output from the system i n the summer months was e v a p o r a t i o n , which r e p r e s e n t e d 81% of the water l o s s . i The c a l c u l a t e d r e s u l t s compared f a v o u r a b l y w i t h p r e v i o u s r e s e a r c h w i t h i n the Vancouver r e g i o n . D a i l y w ater b a l a n c e r e s u l t s f o r J u l y and August were s i m i l a r to t h o s e of an e a r l i e r p i l o t s t u d y i n the a r e a ; evapo-r a t i o n r a t e s were s i m i l a r i n magnitude to those r e p o r t e d f o r a nearby suburban a r e a by Kalanda e t a l . ( 1 9 8 0 ) ; and the monthly r u n o f f r a t i o s showed the same p a t t e r n as t h o s e f o r a nearby undeveloped catchment. i i TABLE OF CONTENTS Page ABSTRACT i i LIST OF TABLES v i i LIST OF FIGURES x ACKNOWLEDGEMENTS x i i i SYMBOLS x i v CHAPTER 1 INTRODUCTION 1 1.1 O b j e c t i v e s 1 1.2 S i g n i f i c a n c e of Che Study 1 1.3 P r e v i o u s R e s e a r c h 2 1.4 R e s e a r c h Methodology 7 CHAPTER 2 STUDY AREA AND DATA COLLECTION 9 2.1 P h y s i c a l S e t t i n g 9 2.2 Study Area 9 2.3 Measurement Programme and Techniques 13 2.3.1 O a k r i d g e 15 2.3.2 K e r r i s d a l e 15 2.3.3 Hudson 20 2.3.4 Sunset 20 2.4 E r r o r s and M i s s i n g Data 25 2.4.1 Water P i p e s 25 2.4.2 P r e c i p i t a t i o n 25 2.4.3 Net R a d i a t i o n 28 2.4.4 Temperature, R e l a t i v e H u m i d i t y and Wind speed 29 2.4.5 S o i l M o i s t u r e 30 i i i CHAPTER 3 VARIABILITY OF THE WATER BALANCE COMPONENTS 31 3.1 I n t r o d u c t i o n 31 3.2 P r e c i p i t a t i o n 32 3.3 Water Use 35 3.3.1 F a c t o r s I n f l u e n c i n g Water Use 35 3.3.2 O a k r i d g e Water Use 36 3.4 Runoff 41 3.5 S t o r a g e 44 3.5.1 Hudson S o i l M o i s t u r e 46 3.6 E v a p o r a t i o n 46 3.6.1 Net R a d i a t i o n 48 3.6.2 S t o r a g e Heat F l u x 49 3.6.3 A i r Temperature 54 3.6.4 R e l a t i v e H u m i d i t y 55 3.6.5 Wind speed 57 3.7 I m p l i c a t i o n s f o r S e n s i t i v y A n a l y s e s 61 CHAPTER 4 WATER BALANCE: METHOD, RESULTS AND SENSITIVITY ANALYSIS 65 4.1 Methodology 65 4.1.1 INPUT 65 4.1.2 RUNOFF 65 4.1.3 EVAP 68 4.1.4 STORE 69 4.1.5 CHSTOR . 70 4.1.6 TOTAL 70 4.1.7 OUTPUT 70 4.2 R e s u l t s 71 4.2.1 I n t r o d u c t i o n 71 i v 4.2.2 Base R e s u l t s 71 4.2.3 Comparisons of the 1982 K e r r i s d a l e | O a k r i d g e r e s u l t s w i t h o t h e r r e s u l t s 80 4.2.4 S o i l M o i s t u r e and S t o r a g e 84 4.2.5 E v a p o r a t i o n V a r i a b i l i t y 86 4.2.6 Comparison of the Oa k r i d g e Water Use w i t h Other R e s i d e n t i a l Areas 90 4.2.7 S t a t i s t i c a l E s t i m a t i o n of the Oakridge Water Use 92 4.3 S e n s i t i v i t y 94 4.3.1 E v a p o r a t i o n 94 4.3.2 P r e c i p i t a t i o n and Water Use 101 4.3.3 St o r a g e Parameters 102 4.3.3.1 I n i t i a l r e t e n t i o n s t o r a g e 102 4.3.3.2 S o i l s t o r a g e s i z e 102 4.3.3.3 P e r v i o u s R e t e n t i o n S t o r a g e C a p a c i t y 106 4.3.3.4 Impervious R e t e n t i o n S t o r a g e C a p a c i t y 106 4.3.4 P r o p o r t i o n of the P e r v i o u s Area I r r i g a t e d 106 4.3.5 P r o p o r t i o n of the I r r i g a t e d Water A p p l i e d to the P e r v i o u s Area 109 4.4 D i s c u s s i o n 112 CHAPTER 5 SUMMARY OF CONCLUSIONS 114 5.1 C o n c l u s i o n s 114 5.2 S u g g e s t i o n f o r F u t u r e R e s e a r c h 115 REFERENCES 117 APPENDICES APPENDIX I J u l i a n Day C a l e n d a r 123 APPENDIX I I D a i l y Data 124 APPENDIX I I I E v a p o r a t i o n M o d e l l i n g scheme 131 v APPENDIX IV Mo n t h l y C l i m a t e S t a t i s t i c s 138 APPENDIX V BALDAY Program 143 APPENDIX VI BALDAY Base R e s u l t s 156 v i LIST OF TABLES T a b l e Page 1.1 Measured o r a n t i c i p a t e d s u r f a c e h y d r o l o g i c changes 3 to u r b a n i s a t i o n 1.2 Examples o f urban water b a l a n c e s t u d i e s 4 1.3 Urban w a t e r b a l a n c e r e s u l t s 5 2.1 Land use i n Vancouver and G.V.R.D. f o r 1982 10 2.2 Land c o v e r of the O a k r i d g e catchment and Sunset a r e a 14 2.3 P o p u l a t i o n f o r the O a k r i d g e catchment, Vancouver and the G.V.R.D. 14 2.4 D e f i n i t i o n of a day 14 2.5 Normal and 1982/3 measurements of c l i m a t i c v a r i a b l e s at Vancouver I n t e r n a t i o n a l A i r p o r t 16 2.6 Summer view f a c t o r s from the K e r r i s d a l e c l i m a t e tower 21 2.7 Summary of measurement t e c h n i q u e s and time p e r i o d s 26 2.8 E r r o r s a s s o c i a t e d w i t h the d a t a s e t due t o measurement and f i l l i n of m i s s i n g d a t a 27 3.1 I n t e r and i n t r a - s i t e p r e c i p i t a t i o n v a r i a b i l i t y 33 3.2 M o n t h l y p r e c i p i t a t i o n d a t a f o r the K e r r i s d a l e s i t e 34 3.3 Oa k r i d g e monthly water use 37 3.4 V a l u e s o f r e t e n t i o n s t o r a g e 45 3.5 T y p i c a l i n f i l t r a t i o n r a t e s f o r s u r f a c e s i n the G r e a t e r Vancouver A r e a 45 3.6 Hudson monthly s o i l m o i s t u r e 47 3.7 Comparison of net r a d i a t i v e f l u x e s between K e r r i s d a l e and Sunset s i t e (Day 162 - 210) 50 3.8 Mean annual wind speed f o r the Vancouver a r e a 62 4.1 D a i l y d a t a r e q u i r e m e n t s and catchement parameters f o r BALDAY. Catchment parameters v a l u e s are f o r the K e r r i s d a l e / O a k r i d g e s i t e 67 4.2 Comparison of a c t u a l and p o s s i b l e water use 74 4.3 S e a s o n a l w a t e r b a l a n c e f o r K e r r i s d a l e / O a k r i d g e 78 v i i 4.4 Comparison o f the K e r r i s d a l e / O a k r i d g e water budget i n J u l y - August 1982 w i t h t h a t i n 1980 82 4.5 Comparison of the K e r r i s d a l e / O a k r i d g e r e s u l t s w i t h the Sydney, A u s t r a l i a w ater b a l a n c e 82 4.6 R e s i d e n t i a l w a t e r use f o r B a l t i m o r e and O a k r i d g e , Vancouver 91 4.7 Water use i n metered and f l a t r a t e a r e a s 91 4.8 A p p l i c a t i o n of Loudon (1981) w a t e r use p r e d i c t i o n e q u a t i o n s t o 1982 data 93 4.9 S t e p w i s e m u l t i p l e r e g r e s s i o n e q u a t i o n s 93 4.10 Comparison o f J u l y & August 1980 & 1982 c o n d i t i o n s f o r Vancouver I n t e r n a t i o n a l A i r p o r t 95 4.11 L i n e a r r e g r e s s i o n e q u a t i o n s f o r p r e d i c t i n g w a t e r use from e v a p o r a t i o n 96 4.12 S e n s i t i v t y a n a l y s i s of the Oke and Steyn (1983, p e r s . comm.) e v a p o r a t i o n scheme 97 4.13 I n f l u e n c e o f ch a n g i n g the i n i t i a l r e t e n t o n s t o r a g e s t a t u s on the e x t e r n a l w a t e r b a l a n c e 105 4.14 I n f l u e n c e of the s i z e of the i m p e r v i o u s s t o r a g e c a p a c i t y on the method of e v a p o r a t i o n c a l c u l a t i o n 107 4.15 I n f l u e n c e of the p r o p o r t i o n o f the i r r i g a t i o n w a t e r g o i n g to p e r v i o u s a r e a on the e x t e r n a l water b a l a n c e 111 111.1 D e t e r m i n a t i o n of AA 134 111.2 R e s u l t s u s i n g d a t a measured at Sun s e t , Vancouver and the Oke and St e y n (1983, p e r s . comm.) e v a p o r a t i o n scheme 134 IV.1 K e r r i s d a l e net r a d i a t i o n by month 138 IV.2 K e r r i s d a l e s t o r a g e heat f l u x by month 139 IV.3 K e r r i s d a l e s i t e a i r t e m p e r a t u r e by month 140 IV.4 K e r r i s d a l e s i t e r e l a t i v e h u m i d i t y by month 141 IV.5 K e r r i s d a l e s i t e wind speed by month 142 VI.1 Suburban water b a l a n c e by month 156 VI.2 E x t e r n a l suburban water b a l a n c e by month 157 VI.3 Runoff r a t i o by month 158 v i i i VI.4 Suburban water b a l a n c e by day 159 VI.5 Suburban water b a l a n c e by day w i t h s t a t u s of water s t o r e s and the d i v i s i o n between the i n t e r n a l and e x t e r n a l system 166 i x LIST OF FIGURES F i g u r e Page 2.1 Land use i n the Vancouver a r e a 11 2.2 The K e r r i s d a l e / O a k r i d g e s t u d y s i t e • 11 2.3 A e r i a l v i e w of the K e r r i s d a l e / O a k r i d g e a r e a 12 2.4 Photograph of r a i n g a u g e 3 w i t h i n the O a k r i d g e catchment 17 2.5 Photograph of c l i m a t o l o g i c a l i n s t r u m e n t a t i o n on the K e r r i s d a l e tower 19 2.6 F i s h e y e l e n s photographs from the K e r r i s d a l e tower f a c i n g groundwards: (a) Summer (b) W i n t e r 22 2.7 F i s h e y e l e n s photographs from the K e r r i s d a l e tower f a c i n g skywards: (a) Summer (b) W i n t e r - 23 2.8 Photograph o f the Hudson s i t e 24 3.1 Annual d a i l y w ater use by month f o r Oa k r i d g e (a) D a i l y maxima, minima, and mean (b) C o e f f i c i e n t of v a r i a t i o n 38 3.2 D a i l y w a t e r use and p r e c i p i t a t i o n f o r J a n u a r y - March 1982 a t Oa k r i d g e 39 3.3 D a i l y (a) t e m p e r a t u r e , (b) water use, and ( c ) p r e c i p i t a t i o n d u r i n g May - J u l y 1982 i n the Oa k r i d g e catchment. I n (b) water use i s from the meter, and % of e x t e r n a l w a t e r i n g i s from the Oa k r i d g e s u r v e y . 40 3.4 D a i l y water use c y c l e s a t the Oa k r i d g e catchment (a) D a i l y water use c y c l e s from 1980 meter da t a (b) Frequency of hour s p e c i f i e d as e x t e r n a l water use from the 1982 Oa k r i d g e s u r v e y 42 3.5 Components of urban r u n o f f d e t e r m i n a t i o n 43 3.6 Annual h o u r l y by month net r a d i a t i o n f o r K e r r i s d a l e (a) Maxima, minima, and mean (b) C o e f f i c i e n t of v a r i a t i o n 51 3.7 Annual h o u r l y by month- s t o r a g e heat f l u x f o r K e r r i s d a l e (a) Maxima, minima, and mean (b) C o e f f i c i e n t of v a r i a t i o n 53 3.8 Annual h o u r l y by month tem p e r a t u r e f o r K e r r i s d a l e x (a) Maxima, minima, and mean (b) C o e f f i c i e n t of v a r i a t i o n 56 3.9 Annual h o u r l y by month r e l a t i v e h u m i d i t y f o r K e r r i s d a l e (a) Maxima, minima, and mean (b) C o e f f i c i e n t :of v a r i a t i o n 58 3.10 Annual h o u r l y by month wind speed f o r K e r r i s d a l e (a) Maxima, minima, and mean (b) C o e f f i c i e n t of v a r i a t i o n 60 4.1 B a s i c s t r u c t u r e of the BALDAY program 66 4.2 M o n t h l y water b a l a n c e f o r the whole K e r r i s d a l e / O a k r i d g e system 72 4.3 E x t e r n a l monthly water b a l a n c e f o r K e r r i s d a l e / O a k r i d g e 73 4.4 M o n t h l y i n t e r n a l water use and r u n o f f , and t h e i r p r o p o r t i o n of t o t a l w ater use and r u n o f f 75 4.5 D a i l y s o i l m o i s t u r e and s t o r a g e 77 4.6 Suburban water b a l a n c e f o r K e r r i s d a l e / O a k r i d g e f o r the whole a r e a and f o r the e x t e r n a l environment 79 4.7 M o n t h l y r u n o f f r a t i o s f o r O a k r i d g e 81 4.8 M o n t h l y r u n o f f r a t i o s f o r K e r r i s d a l e / O a k r i d g e , West Creek and Vancouver 85 4.9 D a i l y e x t e r n a l w a t e r b a l a n c e f o r K e r r i s d a l e / O a k r i d g e 87 4.10 M o n t h l y water b a l a n c e w i t h no p i p e d water s u p p l y f o r K e r r i s d a l e / O a k r i d g e 89 4.11 I n f l u e n c e of c h a n g i n g d a i l y d a t a on e v a p o r a t i o n 99 4.12 I n f l u e n c e of c h a n g i n g the catchment d e f i n i n g parameters on e v a p o r a t i o n 100 4.13 I n f l u e n c e of c h a n g i n g p r e c i p i t a t i o n on the o u t p u t s of the e x t e r n a l water b a l a n c e i n June and December 103 4.14 I n f l u e n c e of c h a n g i n g water use on the o u t p u t s of the e x t e r n a l water b a l a n c e i n June and December 104 4.15 I n f l u e n c e of PRETEN on the o u t p u t s of the monthly e x t e r n a l water b a l a n c e 105 4.16 I n f l u e n c e of AREAI on the o u t p u t s of the monthly e x t e r n a l water b a l a n c e 110 I I I . l Measured v e r s u s m o d e l l e d e v a p o r a t i o n f o r 1980 S u n s e t , Vancouver 135 x i I I I . 2 Measured e v a p o r a t i o n v e r s u s m o d e l l e d e v a p o r a t i o n f o r 1977 and 1978 S u n s e t , Vancouver 137 x i i ACKNOWLEDGEMENTS I would l i k e t o e x p r e s s my a p p r e c i a t i o n of my s u p e r v i s o r y committee: Dr T.R. Oke f o r h i s guidance and supp o r t throughout the c o u r s e of t h i s s t u d y ; Dr M.A. Church f o r h i s a d v i c e and c o n s t r u c t i v e c r i t i c i s m of d r a f t c o p i e s ; and Dr J.E. Hay f o r p r o v i d i n g d a t a , equipment and h e l p f u l d i s c u s s i o n . The n a t u r e of t h i s t h e s i s was such t h a t many pe o p l e have h e l p e d w i t h f i e l d w o r k and p r o v i d e d u s e f u l d i s c u s s i o n . To these I e x p r e s s my s i n c e r e t h a n k s : Dr T.A. B l a c k , Dr M. B o v i s , J . Chan, H.A. Cl e u g h , D.M.B. Grimmond, Dr and Mrs J . L . Knox, S.M. Loudon, D. M a r t i n , L. M i t d a l , R. N i s s e n , R.G. R o b e r t s , Dr S.O. R u s s e l l , Dr J.M. Ryder, C.J. Souch, Dr D.G. S t e y n , U.B.C. M e c h a n i c a l E n g i n e e r i n g Dept., Vancouver C i t y E n g i n e e r i n g Dept., Dr J . de V r i e s , N. Wanless and the r e s i d e n t s of the stu d y a r e a . An r e s e a r c h o p e r a t i n g g r a n t from the N a t u r a l S c i e n c e s and E n g i n e e r i n g Research C o u n c i l o f Canada t o Dr T.R. Oke c o v e r e d the f i n a n c i n g of t h i s p r o j e c t . ' x i i i SYMBOLS a C o e f f i c i e n t f o r d e t e r m i n i n g s t o r a g e heat f l u x ( g r e e n s p a c e ) a I n t e r c e p t of l i n e a r r e g r e s s i o n e q u a t i o n A A r e a (m ) AA C o e f f i c i e n t which r e l a t e s s t a t u s of s o i l m o i s t u r e t o a r e a A j P r o p o r t i o n of p e r v i o u s a r e a which i s u n i r r i g a t e d A 2 P r o p o r t i o n of p e r v i o u s a r e a which i s i r r i g a t e d A^ F r a c t i o n of t o t a l s u r f a c e c o v e r e d by i t h s u r f a c e type AREAI P e r v i o u s i r r i g a t e d a r e a used i n BALDAY program AREAU P e r v i o u s u n i r r i g a t e d a r e a used i n BALDAY program b C o e f f i c i e n t f o r d e t e r m i n i n g s t o r a g e heat f l u x ( b u i l t ) b S l o p e of l i n e a r r e g r e s s i o n e q u a t i o n C p S p e c i f i c heat conductance a t c o n s t a n t p r e s s u r e (J/kg/K) C Runoff c o e f f i c i e n t C.V. C o e f f i c i e n t o f v a r i a t i o n d D i s p l a c e m e n t l e n g t h (m) D D i s p l a c e m e n t l e n g t h used i n BALDAY program (m) D Days s i n c e p r e c i p i t a t i o n ( d a y s ) e a Vapour p r e s s u r e (mb) e s S a t u r a t i o n vapour p r e s s u r e (mb) E E v a p o r a t i o n (mm) E a D r y i n g power of the a i r (mm) Ep P o t e n t i a l e v a p o r a t i o n (mm) Epo Term used when E=Ep (mm) G Groundwater h r R e l a t i v e h u m i d i t y (%) i I n t e n s i t y of r a i n f a l l (mm/hr) i S u b s c r i p t f o r i d e n t i f y i n g l a n d uses x i v I Water p i p e d - i n (mm or m^/d) I r I r r i g a t i o n (mm) J J u l i a n day k von [Carman's c o n s t a n t 9 9 K+ Incoming shortwave r a d i a t i o n (W/m or MJ/m /.d) 9 9 K+ R e f l e c t e d shortwave r a d i a t i o n (W/m or MJ/m /d) L v L a t e n t heat o f v a p o r i s a t i o n ( J / k g ) 2 L+ Incoming longwave r a d i a t i o n (W/m ) 2 L t O u t g o i n g longwave r a d i a t i o n (W/m ) MPIPES Mean w i n t e r water p i p e d - i n used i n BALDAY program (mm) n Number of p e r v i o u s s u r f a c e t y p e s p P r e c i p i t a t i o n PERCEN % of e x t e r n a l water p i p e d - i n a p p l i e d to AREAI Q* Net r a d i a t i o n f l u x (W/m2 or MJ/m 2/d) Q E L a t e n t heat f l u x (W/m2) Q s S t o r a g e heat f l u x (W/m2 o r MJ/m 2/d) r Runoff (mm) r Runoff v i a c h a n n e l s and wat e r c o u r s e s (mm) c r 5'. R unoff v i a sewers (mm) r^ S u r f a c e r u n o f f (mm) r ^ S u b s u r f a c e r u n o f f (mm) r 2 C o e f f i c i e n t of d e t e r m i n a t i o n S Change i n s t o r a g e (mm) s Slop e of s a t u r a t i o n of vapour p r e s s u r e v e r s u s t e m p e r a t u r e c u r v e (mb/°C) SSM S o i l m o i s t u r e SSMF F i e l d c a p a c i t y STOR S t o r a g e c a p a c i t y of s o i l (mm) xv T Temperature (°C) u Mean h o r i z o n t a l wind speed (m/s) VRETNI R e t e n t i o n c a p a c i t y o f the i r r i g a t e d p e r v i o u s a r e a (mm) VRETNU R e t e n t i o n c a p a c i t y of the u n i r r i g a t e d p e r v i o u s a r e a (mm) z H e i g h t of measurement (m) z o m Momentum roughness l e n g t h (m) z o v Water vapour roughness l e n g t h (m) ZOM Momentum roughness l e n g t h used i n BALDAY program (m) ZOV Water vapour roughness l e n g t h used i n BALDAY program (m) <* P r i e s t l e y and T a y l o r (1979) e m p i r i c a l c o e f f i c i e n t a ' D a v i e s and A l l e n (1973) e m p i r i c a l c o e f f i c i e n t ctj E m p i r i c a l c o e f f i c i e n t f o r p e r v i o u s u n i r r i g a t e d a r e a otj E m p i r i c a l c o e f f i c i e n t f o r p e r v i o u s i r r i g a t e d a r e a Y P y s c h r o m e t r i c ' c o n s t a n t ' (mb/°C) p D e n s i t y o f a i r (kg/m^) xv i CHAPTER 1 INTRODUCTION 1.1 O b j e c t i v e s T h i s s t u d y was prompted from c o n s i d e r a t i o n of whether t h e r e was s u f f i -c i e n t w a t e r to sup p o r t the magnitude o f the e v a p o r a t i v e f l u x e s t h a t have been measured i n the suburban environment. The o b j e c t i v e s of t h i s s t u d y a r e : 1) t o a s s e s s an annual suburban water b a l a n c e ; and 2) t o a s s e s s the v a r i a b i l i t y of the phenomena i n f l u e n c i n g the suburban water b a l a n c e and t h e i r s i g n i f i c a n c e w i t h i n the water b a l a n c e . 1.2 S i g n i f i c a n c e of the Study Water, l i k e energy, a i r and l a n d , i s a r e s o u r c e t h a t p l a y s an impor-t a n t r o l e i n d e v e l o p i n g a n a t i o n a l economy and i n the p r o c e s s o f u r b a n i s a -t i o n ( A s h t o n & L a n g f e l d , 1982). Large volumes of water are p i p e d i n t o an urban a r e a from r e s e r v o i r s e i t h e r because r a i n f a l l does not f a l l i n s u f f i -c i e n t volumes, or w i t h the r e q u i r e d f r e q u e n c y t o s u s t a i n a c i t y ' s needs. The c o l l e c t i o n o f water i n r e s e r v o i r s a l l o w s the s p a t i a l and t e m p o r a l v a r i a b i l i t y of r a i n f a l l o c c u r r e n c e to be l e s s c o n f i n i n g t o water demand from urban a r e a s . Y e t , the c o s t of i m p o r t i n g t h i s water i s e x p e n s i v e and i s i n c r e a s i n g w i t h i n c r e a s i n g u r b a n i s a t i o n . By the end of t h i s c e n t u r y F o s t e r and S e w e l l (1981) a n t i c i p a t e t h a t the demand p l a c e d on s i x r i v e r b a s i n s s u p p o r t i n g n e a r l y h a l f o f Canada's major m e t r o p o l i t a n a r e a s , and hundreds of s m a l l e r towns, w i l l e i t h e r exceed, or w i l l be w i t h i n 20% o f , the a v a i l a -b l e monthly w a t e r s u p p l i e s . Hence, the need to co n s e r v e and p r e v e n t wastage of water i n urban areas has h e l p e d s t i m u l a t e c o n s i d e r a t i o n s of water use and i t s r o u t e t h r o u g h the urban system. 1 1.3 P r e v i o u s R e s e a r c h The water b a l a n c e p r o v i d e s a framework f o r the s t u d y of the urban water system. The water b a l a n c e of an urban volume may be e x p r e s s e d as f o l l o w s : p + I = r + E + S (1.1) where p i s p r e c i p i t a t i o n ; I i s water p i p e d i n ; r i s r u n o f f ; E i s e v a p o r a t i o n ; and S i s s t o r a g e change. The major d i f f e r e n c e between an urban water b a l a n c e and t h a t of an undeve-l o p e d a r e a i s the p i p e d - i n term ( I ) . A n t h r o p o g e n i c i n f l u e n c e s change the r e l a t i v e r o l e s of the components of the water b a l a n c e compared to t h a t of an undeveloped s i t e (Oke, 1974). A v e r y g e n e r a l i s e d scheme of the h y d r o -l o g i c changes to be a n t i c i p a t e d i s shown i n T a b l e 1.1. The few urban water b a l a n c e s t u d i e s t h a t have been c a r r i e d out have d i f f e r e d c o n s i d e r a b l y i n t h e i r o b j e c t i v e s ( T a b l e 1.2). However, t h e i r r e s u l t s a re not d i r e c t l y comparable because of the d i f f e r e n t p r e s e n t a t i o n s of the b a l a n c e s ( T a b l e 1.3). Most of the s t u d i e s p r e s e n t e s t i m a t e s of the ' n a t u r a l ' b a l a n c e of the a r e a r a t h e r than t a k i n g the i n f l u e n c e of i m p o r t e d water i n t o a c c o u n t . The importance of I v a r i e s w i t h the urban a r e a under c o n s i d e r a t i o n : i n an a r e a where I i s f o r i n t e r n a l , or d o m e s t i c , use o n l y the e x t e r n a l , or n a t u r a l water b a l a n c e i s not i n f l u e n c e d , except f o r s u p p l y p i p e l e a k a g e , and t h e r e are two d i s t i n c t b u d gets. D i f f e r e n t l a n d uses t y p e s w i t h i n the urban a r e a have v a r y i n g s u r f a c e c h a r a c t e r i s i t i c s , p a r t i c u l a r l y v a r y i n g amounts of v e g e t a t i o n (Auer, 1978). The A s t o n ( 1 9 7 7 ) , L i n d h (1978a,b) and L ' v o v i c h and Chernogayeva (1977) s t u -d i e s r e p r e s e n t e d e n t i r e u r b a n i s e d a r e a s , whereas the B e l l (1972) s t u d y encompassed a range of l a n d uses w i t h i n a p a r t of Sydney. I n c o n t r a s t , the Loudon (1981) s t u d y was of a p u r e l y r e s i d e n t i a l a r e a w h i c h , u s i n g Auer's 2 T a b l e 1.1 Measured or a n t i c i p a t e d s u r f a c e h y d r o l o g i c changes due t o u r b a n i s a t i o n (Oke, 1974) Element Comparison w i t h r u r a l environment Remarks P more? Thermal and m e c h a n i c a l u p l i f t , n u c l e i , combustion I more P i p e d water s u p p l y E l e s s ? R e d u c t i o n of e v a p o r a t i n g s u r f a c e s r more Lower p e r m e a b i l i t y and c h a n n e l l i n g S l e s s Poor i n t e r c e p t i o n and i n f i l t r a t i o n 3 T a b l e 1.2 Examples of urban water b a l a n c e s t u d i e s Author Comments A s t o n (1977) L o c a t i o n : Hong Kong P e r i o d : A n n u a l , 1971 A r e a : 1046 km 2 Purpose: P r e d i c t i o n of f u t u r e water r e q u i r e m e n t s Techniques used: p measured E measured (pan) r d i f f e r e n c e S measured B e l l (1972) L o c a t i o n : Sydney, A u s t r a l i a P e r i o d : A n n u a l , 1962 - 1971 A r e a : 1035 km 2 Purpose: P r e d i c t i o n of f u t u r e water d i s p o s a l r e q u i r e m e n t s Techniques used: p measured I,G e s t i m a t e d but method not s t a t e d E m o d e l l e d (Penman b a s i s ) r m o d e l l e d ( e m p i r i c a l ) L i n d h L o c a t i o n : T o t a l u r b a n i s e d a r e a of Sweden (1978a,b) P e r i o d : A n n u a l , 1970 ? A r e a : 4024 km 2 Purpose: P a r t of the I n t e r n a t i o n a l H y d r o l o g i c a l Decade r e s e a r c h programme Techniques used: p, G, E, r e s t i m a t e d but method not s t a t e d L ' v o v i c h & Chernogayeva (1977) L o c a t i o n : Moscow,. USSR P e r i o d : S e a s o n a l , A n n u a l , ? A r e a : 879 km 2 Purpose: To d e t e r m i n e the i n f l u e n c e of u r b a n i s a t i o n Techniques used: p measured E d i f f e r e n c e r m o d e l l e d Loudon (1981) L o c a t i o n : K e r r i s d a l e , Vancouver P e r i o d : D a i l y and 2 months, J u l y - August 1980 A r e a : 0.21 km 2 Purpose: To determine the summer suburban water b a l a n c e Techniques used: p measured I measured I r e s t i m a t e d E measured (Bowen r a t i o , m o d e l l e d r e g r e s s i o n ) r e s t i m a t e d S e s t i m a t e d Where G i s groundwater 4 T a b l e 1.3 Urban water b a l a n c e r e s u l t s (see T a b l e 1.2) Hong Kong ( A s t o n , 1977) p = E + r + s 1912 = 1128 + 567 + 215 mm 100 = 5 9 + 3 0 + 1 1 % Sydney, A u s t r a l i a ( B e l l , 1972) p + I + G = E + r s + r c 1150 + 333 + 16 = 736 + 261 + 502 mm 77 + 22 + 1 = 49 + 17 + 34 7„ where r s i s r u n o f f v i a sewers r c i s r u n o f f v i a c h a n n e l s and water c o u r s e s Moscow, USSR ( L ' v o v i c h & Chernogayeva, 1977) p = r t + r 2 + E 200 = 123 + 2 7 + 5 0 mm w i n t e r - s p r i n g 100 = 62 + 13 + 25 7. 500 = 127 + 23 + 350 mm summer-autumn 100 = 25 + 5 + 70 7, 700 = 250 + 50 + 400 mm y e a r 100 = 36 + 7 + 57 % where-Tj i s s u r f a c e r u n o f f r^. i s s u b s u r f a c e r u n o f f Sweden ( L i n d h , 1978a,b) p = r + E + G 701 = 211 + 316 + 174 mm (a) 100 = 30 + 45 + 25 % 701 = 146 + 359 + 196 mm (b) 100 = 21 + 51 + 28 7, Vancouver, Canada (Loudon, 1981) p + I r = E + S + r 90 + 106 = 181 - 1 3 + 2 8 mm 46 + 54 = 93 - 7 + 1 4 % where I_ i s i r r i g a t i o n 5 (1978) c l a s s i f i c a t i o n , c o u l d b e s t be d e s c r i b e d as common r e s i d e n t i a l ( R l ) . The r e s i d e n t i a l a r e a has l a r g e r amounts of v e g e t a t i o n than i n d u s t r i a l and commercial a r e a s (Auer, 1978) t h e r e f o r e the l i k e l i h o o d of p i p e d water b e i n g used e x t e r n a l l y i s g r e a t e r . The components of the wa t e r b a l a n c e have been s t u d i e d s e p a r a t e l y from a v a r i e t y of p e r s p e c t i v e s and f o r a v a r i e t y of p u r p o s e s . One such approach i s the s t u d y of e v a p o r a t i o n as a s o u r c e / s i n k of l a t e n t heat i n the s u r f a c e energy b a l a n c e . E v a p o r a t i o n , i n an urban e n v i r o n m e n t , was t r a d i t i o n a l l y assumed t o be d r a s t i c a l l y l e s s than t h a t from n e i g h b o u r i n g r u r a l a r e a s because of s u p p o s e d l y major c o n t r a s t s between h y d r o l o g i c p r o p e r t i e s of b u i l d i n g m a t e r i a l s and v e g e t a t i o n c o v e r e d s o i l s ( C h a n d l e r , 1976). K a l a n d a et a l . (1980) posed the f o l l o w i n g q u e s t i o n s a f t e r energy b a l a n c e d e t e r m i n a -t i o n s o f e v a p o r a t i o n w i t h i n the suburban environment were found t o have a " r a t h e r l a r g e magnitude": - How can a s u r f a c e composed of 36% b u i l t s u r f a c e s m a i n t a i n near ' e q u i l i b -rium' e v a p o t r a n s p i r a t i o n r a t e s 6 days a f t e r o n l y moderate r a i n ? - What i s the source of m o i s t u r e t o sup p o r t these r a t e s of water l o s s ? - What mechanism u n d e r l i e s the r e t u r n t o h i g h e v a p o t r a n s p i r a t i o n a f t e r the environment appears to be d r y i n g out? They p o s t u l a t e d t h a t human i n t e r v e n t i o n i n the water b a l a n c e o f c i t i e s i n the form of the p i p e d water s u p p l y i s the source of the w a t e r . The water b a l a n c e , t h e r e f o r e , p r o v i d e s a s u i t a b l e framework w i t h i n w hich t o f u r t h e r c o n s i d e r t h e i r p o s t u l a t e . The study a l s o s h o u l d h e l p to a s s e s s the s o u r c e s and s i n k s of w a t e r , t h e i r r e l a t i v e m a g n i t u d e s , the l o c a t i o n of water and the t i m i n g o f water uptake and r e l e a s e i n the subur-ban environment. T h i s c o u l d h e l p to determine means of c o n s e r v i n g water i n the urban system and to f i n d whether man's i n t e r v e n t i o n i n the water b a l a n c e i s s u f f i c i e n t to sup p o r t the r e p o r t e d magnitudes of e v a p o r a t i o n . 6 U r b a n i s a t i o n causes changes from the r u r a l environment but w i t h i n the urban a r e a t h e r e i s a l s o s p a t i a l and t e m p o r a l v a r i a t i o n . W i t h i n the urban water b a l a n c e a l l of the components and the phenomena used t o determine i t v a r y b o t h s p a t i a l l y and t e m p o r a l l y . The w a t e r b a l a n c e s t u d y of one suburban a r e a encompasses one s p a t i a l s c a l e but l i e s w i t h i n a range of p o s s i b l e s c a l e s . That i s , w i t h i n the s t u d y a r e a t h e r e w i l l be l o c a l v a r i a b i l i t y so t h a t c a r e s h o u l d be e x e r c i s e d t o ensure t h a t d a t a measured and used i n c a l c u l a t i o n s a r e r e p r e s e n t a t i v e of the 'average' c o n d i t i o n s t h e r e . S t i l l , t h e r e a l s o remains much l a r g e r s c a l e v a r i a b i l i t y from p l a c e t o p l a c e w i t h i n the c i t y , and between urban and r u r a l a r e a s : t h e s e w i l l not be i n v e s t i g a t e d d i r e c t l y i n t h i s s t u d y . 1.4 Research Methodology To c a r r y out t h i s s t u d y a suburban a r e a of Vancouver, B.C., ( O a k r i d g e ) was chosen. The s i t e p o s s e s e d a number of u s e f u l a t t r i b u t e s . I t i s r e a s o n -a b l y r e p r e s e n t a t i v e of suburban c o n d i t i o n s , and t h i s l a n d use c l a s s o c c u p i e s 39% of Vancouver. I t i s p o s s i b l e t o u t i l i s e an e x i s i t i n g gauge to m o n i t o r the i ncoming p i p e d water s u p p l y ; i t i s c l o s e t o the s i t e of the K a l a n d a et a l . (1980) s t u d y ; and i t i s the s i t e of the Loudon (1981) water b a l a n c e s t u d y . The measurement of a l l the components of the water b a l a n c e was not p o s s i b l e so t h e i r assessment was c a r r i e d out u s i n g a c o m b i n a t i o n of measu-rement and m o d e l l i n g methods. The v a r i a b i l i t y of the phenomena was d e t e r -mined by measurement and w i t h r e f e r e n c e to the l i t e r a t u r e . The component terms of the d a i l y , monthly and annual water budget were e v a l u a t e d as f o l l o w s . The i n p u t s , p and I , were both measured d i r e c t l y . E v a p o r a t i o n was d e t e r m i n e d u s i n g a model d e v e l o p e d by Oke and S t e y n (1983, p e r s . comm.) which i s a m o d i f i e d v e r s i o n of the B r u t s a e r t and S t r i e k e r 7 (1979) e v a p o r a t i o n model, u t i l i s i n g an a d v e c t i o n - a r i d i t y a p p roach. D a i l y e v a p o r a t i o n was c a l c u l a t e d u s i n g measured net r a d i a t i o n , t e m p e r a t u r e , r e l a -t i v e h u m i d i t y , s o i l m o i s t u r e , wind speed and p a r a m e t e r i s e d s t o r a g e heat f l u x v a l u e s . Runoff was d e t e r m i n e d f o r p e r v i o u s and i m p e r v i o u s s u r f a c e t y p e s u s i n g assumptions r e l a t e d t o s u r f a c e r e t e n t i o n , i n f i l t r a t i o n and s o i l w a t e r s t o r a g e c a p a c i t y . The change i n s t o r a g e was c a l c u l a t e d by d i f f e r e n c e . The d a i l y O a k r i d g e suburban water b a l a n c e was a s s e s s e d u s i n g a compu-t e r program t h a t was d e v e l o p e d f o r the p u r p o s e . The program used the d a i l y d a t a , the Oke and S t e y n e v a p o r a t i o n model, and the n e c e s s a r y a s s u m p t i o n s . A s e n s i t i v i t y a n a l y s i s of the model was c o n d u c t e d which i n v e s t i g a t e d the r e s p o n s e of the model t o v a r i a t i o n o f c l i m a t e i n p u t d a t a and s u r f a c e c h a r a c t e r i s i t i c s d e t e r m i n e d from an a n a l y s i s of t h e i r v a r i a b i l i t y . 8 CHAPTER 2 STUDY AREA AND DATA COLLECTION 2.1 P h y s i c a l S e t t i n g Vancouver i s l o c a t e d at 49° 15' N l a t i t u d e on the west c o a s t of N o r t h America but i s c l i m a t i c a l l y i s o l a t e d from the c o n t i n e n t a l i n t e r i o r by a s e r i e s of mountain c h a i n s p a r a l l e l l i n g the c o a s t l i n e . Vancouver c i t y i s s i t u a t e d on the B u r r a r d G l a c i a l Upland (Clague & L u t e r n a u e r , 1982) a t the west end of the lower F r a s e r V a l l e y and has low t o moderate r e l i e f . W i t h i n Vancouver c i t y , 39% of the a r e a i s r e s i d e n t i a l ( T a b l e 2.1, F i g . 2.1). Housing o c c u p i e s about 50% of a l l the l a n d i n the G r e a t e r Vancouver R e g i o n a l D i s t r i c t (G.V.R.D.) d e v e l o p e d f o r urban u s e s . S i n g l e f a m i l y houses r e p r e s e n t 53%, of a l l h o u s i n g u n i t s i n the r e g i o n , the o t h e r h a l f b e i n g apartments and townhouses (G.V.R.D., 1983). 2.2 Study A r e a The r e s i d e n t i a l a r e a s of O a k r i d g e and K e r r i s d a l e , where t h i s s t u d y was co n d u c t e d , a re l o c a t e d on a s o u t h f a c i n g s l o p e of the g l a c i a l u p l a n d ( F i g . 2.1). Armstrong and H i c o c k ' s (1976) g e o l o g i c map i n d i c a t e s t h a t the a r e a c o n s i s t s of Vashon d r i f t of the l a s t g l a c i a t i o n o v e r l a i n by post g l a c i a l C a p i l a n o sediments ( a l l u v i a l and l i t t o r a l sands and sandy g r a v e l s ) w i t h bedrock more than 10m from the s u r f a c e . The s t u d y a r e a c o n s i s t e d of the Oakridge catchment and the K e r r i s d a l e c l i m a t e s t a t i o n 0.8 km t o the n o r t h -west ( F i g . 2.2). The l a n d use i n t h i s a r e a i s c l a s s i f i e d as r e s i d e n t i a l -s i n g l e f a m i l y d w e l l i n g s by the G.V.R.D. (1979) and would be Common R e s i d e n -t i a l R l under Auer's (1978) c l a s s i f i c a t i o n . The O a k r i d g e s i t e i s a 21 h e c t a r e t e s t p l o t f o r the Water Works D i v i s i o n of the Vancouver C i t y E n g i n e e r i n g Department. The catchment i s d e f i n e d by the inco m i n g water p i p e s r a t h e r than by the t o p o g r a p h i c bounda-r i e s o r sewerage d r a i n a g e p i p e s ( F i g . 2.3) (Vancouver C i t y , E n g i n e e r i n g 9 T a b l e 2.1 Land use i n Vancouver and G.V.R.D. f o r 1982 ( a f t e r G.V.R.D., 1983) LANDUSE VANCOUVER G.V.R.D. (ha) (%) (ha) (7.) Open and Undeveloped 438 R e s i d e n t i a l 4588 I n d u s t r i a l 653 A g r i c u l t u r a l 17 Commercial 452 I n s t i t u t i o n a l 459 T r a n s p o r t a t i o n & Communication U t i l i t e s 274 R e c r e a t i o n 1444 Roads 3318 Other 47 3.7 128016 56.0 39.3 32235 14.1 5.6 4621 2.0 0.1 21978 9.6 3.9 1769 0.8 3.9 3671 1.6 2.3 5026 2.2 12.4 124171 5.5 28.4 14127 6.2 0.4 4663 2.0 T o t a l Land A r e a 11690 100.0 228577 100.0 10 F i g . 2.1 Land use i n the Vancouver a r e a (G.V.R.D., 1983) F i g . 2.2 The K e r r i s d a l e / O a k r i d g e s t u d y s i t e I K E R R 1 S C >ALE ° < 4 9 T H A v p SUNSET • t-... . OAKRIDGE «S 1 t-5 4 T H A v e w CO u. > z < cr a i CAMBIE ST -MAIN ST FRASER KNIGHT 0 j 2 k m 1-5 R a i n g a u g e S i t e s I 1 — 1 1 W a t e r , m e t e r 5 S o l i s a m p l e s i t e i i Kerrisdale climate station Oakridge catchment N, r - ^ - , • \ V *\ V \ l I ' \ • • K V / J i I K • * — • v. • s L . J < 0 gOOmatf t — water pipe a — iludy a l l * boundary —combined fewer plpaa — contour* (Interval 1.» m) • mater «lta F i g . 2.3 A e r i a l v i e w o f the K e r r i s d a l e / O a k r i d g e a r e a ( P h o t o g r a p h No. BC 79009 #185, s c a l e 1:8000) - s t u d y s i t e b o u n d a r y • c o n t o u r * ( M a r v e l 1.S m l — w a t e r p i p e * — c o m b i n e d s e w e r p i p e * • m e t e r a i t e 12 Department, 1972; Vancouver C i t y , E n g i n e e r i n g Department, 1981). There a re no streams f l o w i n g t h r o u g h the a r e a , nor e v i d e n c e t h a t t h e r e were b e f o r e u r b a n i s a t i o n ( P r o c t o r , 1978). The catchment has an e l e v a t i o n range of 14m, between 93 and 79m above sea l e v e l , and a maximum s l o p e of 1° 21'. The t o p o g r a p h i c l o c a t i o n of the catchment s u g g e s t s t h a t i t i s i n an a r e a of n e i t h e r net g a i n nor net l o s s of w a t e r . T h e r e f o r e f o r the purpose of the wat e r b a l a n c e c a l c u l a t i o n s the l o n g term change i n s t o r a g e can be assumed to be z e r o . Landcover i n the catchment was d e t e r m i n e d u s i n g a e r i a l photographs from March 1979 e n l a r g e d t o a s c a l e of 1:2000 (Vancouver C i t y , P l a n n i n g Department, 1979). The catchment l a n d c o v e r i s 60.3% p e r v i o u s and 39.7% i m p e r v i o u s ( T a b l e 2.2). The mean s i z e of the 191 l o t s w i t h i n the catchment i s 670 m2 (Vancouver C i t y , E n g i n e e r i n g Department, 1972). The catchment s t r a d d l e s Enumeraton Areas 114 and 115 of Census T r a c t 010 f o r E l e c t o r a l D i s t r i c t 59027 (Canada, S t a t i s t i c s , Census D i v i s i o n , 1983). From the 1981 census da t a f o r these a r e a s the p o p u l a t i o n i s c a l c u -l a t e d t o be a p p r o x i m a t e l y 420. The age breakdown ( T a b l e 2.3) i n d i c a t e s t h a t t h i s a r e a has a l a r g e r p e r c e n t a g e of p e o p l e i n the 'over 60' age group than G r e a t e r Vancouver as a whole. 2.3 Measurement Programme and Techniques The study was c a r r i e d out f o r one year b e g i n n i n g i n J a n u a r y , 1982. A l l measurements were r e f e r r e d t o L o c a l Apparent Time ( L . A . T . ) . The d e f i n i t i o n of a day was r e l a t e d t o the time of the water use measurements ( T a b l e 2.4). The J u l i a n day was used t o d i s t i n g u i s h i n d i v i d u a l days (Appendix I ) . The measurement programme began on J u l i a n day 22,1982. The g e n e r a l c l i m a t e f o r the y e a r , based on the data c o l l e c t e d by the Atm o s p h e r i c Environment S e r v i c e (A.E.S.) at the Vancouver I n t e r n a t i o n a l 13 T a b l e 2.2 Land c o v e r of the Oakridge ( K a l a n d a et a l , 1980) catchment and Sunset a r e a PERMEABILITY SURFACE TYPE 7„ AREAL COVERAGE OAKRIDGE SUNSET IMPERVIOUS COMMERCIAL HOUSES GARAGES PAVEMENT 0.0 17.2 1.8 20.7 39.7 11 14 11 36 PERVIOUS VEGETATION OPEN WATER 59.6 0.7 60.3 64 TOTAL 100.0 100 Ta b l e 2.3 P o p u l a t i o n f o r the O a k r i d g e catchment, Vancouver and the G.V.R.D. (Canada, S t a t i s t i c s , Census D i v i s i o n , 1983) (see T e x t ) TOTAL POPULATION OAKRIDGE 420 VANCOUVER 414,281 G.V.R.D. 1,268,183 AGE GROUP ( 7 o ) 0 - 1 9 20 - 39 40 - 59 60+ 24 21 25 30 21 36 22 21 27 34 22 17 Table 2.4 D e f i n i t i o n of a day DAY TO DAY ACTUAL TIME BEGINNING END RECORDER TIME BEGINNING END 22 - 123 0700 0659 0800 0700 124 - 303 0600 0559 0700 0600 304 - 387 0700 0659 0800 0700 NOTE: Time i s L o c a l Apparent Time : Days are numbered a c c o r d i n g to J u l i a n day c a l e n d a r 14 A i r p o r t c l i m a t e s t a t i o n (Canada, Dept. o f Environment, A.E.S.; 1982, 1983), i s summarised i n T a b l e 2.5. 2.3.1 O a k r i d g e D a i l y measurements of p i p e d water i n t a k e were made u s i n g a Neptune T r i d e n t P r o t e c t u s 6" meter l o c a t e d a t West 52nd Avenue and Oak S t r e e t ( F i g s . 2.2, 2.3). The d a i l y t o t a l was d e t e r m i n e d by the d i f f e r e n c e of the c u m u l a t i v e t o t a l w i t h t h a t from the p r e v i o u s day. The e r r o r of the meter i s 1 - 2% (Vancouver C i t y E n g i n e e r i n g Department, Water Works D i v i s i o n , p e r s .  comm.). D a i l y t o t a l s of p r e c i p i t a t i o n were measured at f o u r s i t e s ( F i g . 2.2) u s i n g 100 mm d i a m e t e r p l a s t i c r a i n g a u g e s w i t h t h e i r o r i f i c e s mounted 300mm above the ground ( F i g . 2.4). 2.3.2 K e r r i s d a l e The c l i m a t o l o g i c a l measurements at the K e r r i s d a l e s i t e were measured h o u r l y u s i n g a 10 second sweep Campbell S c i e n t i f i c I n c . CR21 M i c r o l o g g e r . That i s , the s i g n a l s o u r c e was scanned e v e r y 10 seconds f o r data from each dat a m o n i t o r i n g c h a n n e l . The h o u r l y d a t a were w r i t t e n t o c a s s e t t e s w h i c h were r e a d on t o the U.B.C. Amdahl/V8 computer u s i n g a Campbell S c i e n t i f i c I n c . A235 A u d i o t a p e I n t e r f a c e . The v a l u e s f o r a s p e c i f i c hour were r e p r e s e n t a t i v e o f the c l i m a t i c c o n d i t i o n s f o r the p r e c e d i n g 60 minutes (see Tab l e 2.4). The c l i m a t e s t a t i o n c o n s i s t e d of a pneumatic t e l e s c o p i c mast ( H i l o m a s t NK.9) on which a net p y r r a d i o m e t e r ( S w i s s t e c o P t y . L t d . Model S I ) , a r e l a -t i v e h u m i d i t y s e n s o r (Campbell S c i e n t i f i c I n c . Model 201) and a cup anemo-meter (Met-One Model 012A) were mounted at 9m ( F i g . 2.5); and a t i p p i n g b u cket r a i n g a u g e ( S i e r r a - M i s c o Inc Model RG2501) mounted w i t h the 200 mm 15 T a b l e 2.5 Normal (N) (1951-1980) and 1982/3 measurements of c l i m a t i c at v a r i a b l e s f o r Vancouver I n t e r n a t i o n a l A i r p o r t (Canada, Dept. of Environment, A.E.S., 1982, 1983; Hay & Oke, 1976) MONTH PRECIPITATION MEAN AIR BRIGHT MEAN MEAN WIND TEMPERATURE SUNSHINE RELATIVE SPEED HUMIDITY (mm) ( °C) (h. o urs) (7=) (km/h) N 1982 N 1982 N 1982 N 1982 N 1982 JANUARY 1 153.8 238.6 2.5 1.9 53.5 23.6 87 85 12.2 12.4 FEBRUARY 2 116.6 224.6 4.4 4.2 92.5 69.1 85 95 12.1 13.8 MARCH 101.0 64.9 5.8 5.5 129.3 151.9 82 78 13.5 11.4 APRIL 59.6 89.3 8.8 7.7 180.5 226.2 75 69 13.3 14.7 MAY3 51.6 22.6 12.2 12.1 246.1 251.5 74 70 11.8 12.2 JUNE" 45.2 29.2 15.1 16.7 238.4 285.1 76 72 11.5 11.3 JULY 32.0 67.0 17.3 17.0 307.1 210.3 74 75 11.4 12.8 AUGUST 41.1 37.2 17.1 16.8 256.2 219.9 78 77 10.6 12.3 SEPTEMBER 67.1 44.2 14.2 14.6 183.1 168.4 80 82 10.6 10.7 OCTOBER 114.0 118.0 10.0 10.2 121.0 126.7 87 83 11.2 12.9 NOVEMBER 150.1 174.9 5.9 4.2 69.3 89.9 88 84 12.2 10.2 DECEMBER 5 182.4 149.7 3.9 4.1 47.9 71.8 89 83 13.0 12.2 TOTAL 1112.6 1260.2 9.8 9.6 1919.6 1894.4 82 80 12.0 12.2 1983 1983 1983 1983 1983 JANUARY 6 153.8 172.3 2.5 6.3 53.5 49.8 87 86 12.2 11.8 NOTE 1. Sunshine 2nd lowest on r e c o r d 2. One of the w e t t e s t 3. D r i e s t on r e c o r d 4. D u l l e s t and 5 t h w e t t e s t on r e c o r d 5. Sunshine 3 r d h i g h e s t 6. Warmest on r e c o r d 16 F i g . 2.4 P h o t o g r a p h of r a i n g a u g e 3 w i t h i n t h e O a k r i d g e catchment 17 d i a m e t e r o r i f i c e a t 5.7m. The p o l y t h e n e domes of the net p y r r a d i o m e t e r were kept i n f l a t e d and f r e e of i n t e r n a l c o n d e n s a t i o n by a i r pumped th r o u g h g r a n u l a t e d s i l i c a g e l . The s i g n a l from the s e n s o r was l o g g e d and i n t e g r a t e d on the CR21 M i c r o l o g -ger t o produce h o u r l y averages of the net r a d i a n t f l u x d e n s i t y . The r e l a t i v e h u m i d i t y s e n s o r was s h e l t e r e d from m o i s t u r e and d i r e c t s o l a r r a d i a t i o n by a h a l f c y l i n d e r c o v e r e d w i t h a l u m i n i u m f o i l w h i c h was p l a c e d a p p r o x i m a t e l y 25 mm from the s e n s o r c o v e r . The s e n s i n g head c o n -t a i n e d a r e l a t i v e h u m i d i t y t r a n s d u c e r ( P h y s - C h e m i c a l R e s e a r c h Model PCRC-11 + 1% d e v i a t i o n ) and a t h e r m i s t o r (Fenwal UUT - 5 1 J 1 ) . The r e l a t i v e h u m i d i t y output was l i n e a r t o w i t h i n + 370 over the range 1070 t o 977>. H o u r l y averages of t e m p e r a t u r e and r e l a t i v e h u m i d i t y were produced from the s i g n a l s l o g g e d on the CR21 M i c r o l o g g e r . The wind speed s e n s o r was a 3 cup anemometer w i t h a m a g n e t i c - r e e d s w i t c h assembly which produced a s e r i e s of c o n t a c t c l o s u r e s , the f r e q u e n c y of w hich was p r o p o r t i o n a l to wind speed. The s t a r t i n g speed of the anemome-t e r was 0.5 mls and the a c c u r a c y o v e r the c a l i b r a t e d range of 0 t o 50 m/s was + 1.5% ( m a n u f a c t u r e r ) . H o u r l y averages were r e c o r d e d by the CR21 M i c r o -l o g g e r . The r a i n g a u g e t i p p e d on the a c c u m u l a t i o n of 1mm i n a c o l l e c t i o n buc-k e t . H o u r l y t o t a l s of p r e c i p i t a t i o n were produced by the p u l s e c o u n t e r of the CR21 M i c r o l o g g e r . The c o n t r i b u t i o n of any s u r f a c e to the r a d i a t i o n 'seen' by a radiome-t e r can be e x p r e s s e d by i t s v i e w f a c t o r ( R e i f s n y d e r & L u l l , 1965). View f a c t o r s from the top of the tower were d e t e r m i n e d u s i n g f i s h e y e photographs ( S t e y n , 1980a). Photographs were t a k e n i n both the skyward and groundward d i r e c t i o n s . Both summer (day 205) and w i n t e r (day 380) c o n d i t i o n s were sampled but the r e s u l t s are not d i r e c t l y comparable because the camera was 18 F i g . 2.5 P h o t o g r a p h of c l i m a t o l o g i c a l i n s t r u m e n t a t i o n on t h e K e r r i s d a l e tower 19 noc p o s i t i o n e d i n e x a c t l y the same p l a c e . The summer v i e w f a c t o r s a r e l i s t e d i n T a b l e 2.6. The summer photographs had g r e a t e r t r e e f o l i a g e , as would be e x p e c t e d , ( F i g s . 2.6, 2.7). The l a c k of t r e e f o l i a g e i n the w i n t e r groundward p h o t o g r a p h meant t h a t sky between the t r e e t r u n k s was v i s i b l e d e s p i t e the camera b e i n g mounted lower on the tower ( F i g . 2.6). The w i n t e r photograph saw more of the lawn and y a r d of the p r o p e r t y on whi c h the tower was s i t u a t e d ( n o t e the verandah of the house on t h i s p r o p e r t y was a l t e r e d between p h o t o g r a p h s ) . The skyward o r i e n t e d photographs were s i m i l a r f o r the two seasons e x c e p t t h a t i n w i n t e r sky i s v i s i b l e t h r o u g h some of the branches ( F i g . 2.7). 2.3.3 Hudson Measurements of p r e c i p i t a t i o n were made u s i n g a gauge w i t h a 200mm dia m e t e r o r i f i c e l o c a t e d 200mm above the s u r f a c e . O b s e r v a t i o n s were made d a i l y a t a p p r o x i m a t e l y 1600 hours a t the Hudson s i t e . A p p r o x i m a t e l y weekly measurements of s o i l m o i s t u r e were made a t t h i s s i t e ( F i g . 2.8) u s i n g the g r a v i m e t r i c s a m p l i n g t e c h n i q u e ( G a r d n e r , 1965). The average d r y weight m o i s t u r e c o n t e n t f o r the p r o f i l e from the s u r f a c e t o a depth of 200mm was d e t e r m i n e d . 2.3.4 Sunset The Sunset s i t e i s i n an a r e a where the predominant l a n d use i s s i n g l e f a m i l y (1-2 s t o r e y ) h o u s i n g . I n a c i r c l e w i t h 2 km r a d i u s c e n t r e d on t h i s s i t e 64% of the a r e a was c o v e r e d w i t h p e r v i o u s s u r f a c e s ( m a i n l y lawns, p a r k s and a cemetry) and 367, i m p e r v i o u s ( T a b l e 2.2) (Kala n d a et a 1., 1980). For f u r t h e r d e s c r i p t i o n of t h i s s i t e see Kalanda ( 1 9 7 9 ) , Kalanda et a l . (1980) and Steyn (1980b). 20 T a b l e 2.6 Summer v i e w f a c t o r s from the K e r r i s d a l e c l i m a t e tower SURFACE SKYWARD GROUNDWARD (%) (%) Sky 94.92 0.00 V e g e t a t i o n 3.68 85.03 Man made 1.40 14.48 Open water 0.00 0.49 T o t a l 100.00 100.00 21 2 2 F i g . 2.8 P h o t o g r a p h of t h e Hudson s i t e 24 Measurements of net r a d i a t i o n were made at the Sunset s i t e , from day 162 t o 210, u s i n g a net p y r r a d i o m e t e r ( S w i s s t e c o P t y . L t d . Model S I ) s i t -u a t e d at 22m on a 30m tower. The p o l y t h e n e domes of the net p y r r a d i o m e t e r were kept i n f l a t e d and f r e e of i n t e r n a l c o n d e n s a t i o n by a i r pumped t h r o u g h g r a n u l a t e d s i l i c a d e s s i c a n t . The s i g n a l from the s e n s o r was i n t e g r a t e d and logged on a d a t a l o g g e r (Campbell S c i e n t i f i c CR5) t o produce h o u r l y a v e r a g e s . 2.4 E r r o r s and M i s s i n g Data To o b t a i n a complete d a t a s e t f o r the y e a r m i s s i n g d a t a had t o be f i l l e d i n u s i n g v a r i o u s t e c h n i q u e s . T a b l e 2.7 summarises the measured d a t a set by phenomena. The r e l a t i v e s i z e s of the e r r o r s a s s o c i a t e d w i t h the t e c h n i q u e s used f o r measurement and t o f i l l i n m i s s i n g d a t a are l i s t e d i n T a b l e 2.8. Measurement e r r o r s can be b o t h random and s y s t e m a t i c . The random e r r o r s are a f u n c t i o n of the v a r i a b i l i t y o f the phenomena b e i n g measured w h i l s t the s y s t e m a t i c e r r o r s a r e caused by the type of equipment used and i t s s i t i n g . 2.4.1 Water P i p e s The 13 m i s s i n g d a i l y t o t a l s of water p i p e d a t a were f i l l e d i n by two methods. When o n l y one day's datum was m i s s i n g the mean of the v a l u e s from the day p r i o r t o , and f o l l o w i n g the m i s s i n g day was adopted. When t h e r e was more than one c o n s e c u t i v e day's dat a m i s s i n g , these m i s s i n g d a t a were ap p r o x i m a t e d by the mean of the season (2 o c c a s i o n s of 3 days and 1 of 5 d a y s ) . 2.4.2 P r e c i p i t a t i o n To o b t a i n a complete d a t a set f o r the K e r r i s d a l e s i t e a r e g r e s s i o n r e l a t i o n was used between the d a i l y d a t a a t the s i t e and t h a t c o l l e c t e d by 25 T a b l e 2.7 Summary of measurement t e c h n i q u e s and time p e r i o d s PHENOMENON SITE TIME TECHNIQUE, FREQUENCY (DAY) PRECIPITATION K e r r i s d a l e 293 - 387 T i p p i n g bucket r a i n j jauge, 1 mm t i p - h o u r l y t o t a l s O a k r i d g e 1 213 - 387 D a i l y a c c u m u l a t i o n O a k r i d g e 2 213 - 387 D a i l y a c c u m u l a t i o n O a k r i d g e 3 213 - 387 D a i l y a c c u m u l a t i o n O a k r i d g e 4 213 - 387 D a i l y a c c u m u l a t i o n Hudson 32 - 387 D a i l y a c c u m u l a t i o n WATER PIPES O a k r i d g e 22 - 387 Flow gauge - d a i l y a c c u m u l a t i o n NET RADIATION K e r r i s d a l e 22 - 387 Net p y r r a d i o m e t e r - h o u r l y a v e r a g e s Sunset 162 - 210 Net p y r r a d i o m e t e r - h o u r l y a v e r a g e s RELATIVE K e r r i s d a l e 22 - 387 C a p a c i t a n c e s e n s o r - h o u r l y ave rage s HUMIDITY AIR K e r r i s d a l e 22 - 387 T h e r m i s i t o r - h o u r l y a v e r a g e s TEMPERATURE WIND SPEED K e r r i s d a l e 22 - 387 Cup anemometer - h o u r l y a v e r a g e s SOIL MOISTURE Hudson 22 - 387 G r a v i m e t r i c samples - weekly 26 T a b l e 2.8 E r r o r s a s s o c i a t e d w i t h and f i l l i n of m i s s i n g the d a t a d a t a s e t due to measurement PHENOMENA MEASUREMENT ERROR FIL L IN ERROR (%) (%) PIPE WATER FLOW + 1 - 2 + 8 PRECIPITATION + 7 + 5 NET RADIATION + 2 + 3 RELATIVE HUMIDITY + 3 + 5 TEMPERATURE + 2 + 5 WIND SPEED + 3 + 5 SOIL MOISTURE + 15 + 15 27 A.E.S. a t the Vancouver I n t e r n a t i o n a l A i r p o r t (AIRPORT) ( F i g . 2.1). The A i r p o r t d a t a were t o t a l l e d f o r the day (as d e f i n e d f o r the K e r r i s d a l e s i t e ) f o r days 293 t o 387. D u r i n g t h i s 95 day p e r i o d t h e r e was 61 days on w h i c h p r e c i p i t a t i o n o c c u r r e d . The l i n e a r r e g r e s s i o n e q u a t i o n r e l a t i n g the two s i t e s wa s: KERRISDALE = 0.1009 + (1.0734 x AIRPORT) (2.1) w i t h a c o e f f i c i e n t of d e t e r m i n a t i o n ( r 2 ) v a l u e of 0.95 and a s t a n d a r d e r r o r of e s t i m a t e of 8.6 mm. D a i l y v a l u e s of p r e c i p i t a t i o n were d e t e r m i n e d f o r the K e r r i s d a l e s i t e u s i n g e q u a t i o n 2.1, assuming t h a t p r e c i p i t a t i o n o c c u r -r e d d u r i n g the same hours and i n the same p r o p o r t i o n t o the d a i l y t o t a l as at the A i r p o r t . There i s no method of measuring the ' t r u e ' p r e c i p i t a t i o n , t h a t i s the amount of water which would have reached the ground had the gauge not been t h e r e , hence a l l measurements are r e l a t i v e . Wind i s the f a c t o r t h a t causes the most problems because i t causes the p r e c i p i t a t i o n t o f a l l o b l i q u e l y and g e n e r a t e s t u r b u l e n c e around the gauge o r i f i c e (Rodda et a l . , 1976). E r r o r s i n e s t i m a t i n g a r e a l p r e c i p i t a t i o n from a g i v e n gauge network o c c u r because of the random p a t h of storms (Ward, 1975). Futhermore, the urban a r e a has v e r y v a r i a b l e s u r f a c e c o n f i g u r a t i o n s w i t h i n a s m a l l a r e a due to b u i l d i n g s and v e g e t a t i o n , so t h a t the s i t i n g of gauges to measure p r e c i -p i t a t i o n i n an urban a r e a becomes even more d i f f i c u l t than i n a r u r a l a r e a . The measurement e r r o r was assumed to be + 7% on d a i l y t o t a l s based on a c o l l a t i o n of r e s e a r c h c a r r i e d out by A l d r i d g e (1976), F i n k e l s t e i n ( 1 9 7 1 ) , H u t c h i n s o n ( 1 9 6 9 ) , M a n d e v i l l e and Rodda (1 9 7 0 ) , R a p i e r and Grant ( 1 9 7 1 ) , and Waugh (1971) i n t o r a i n g a u g e e r r o r s . 2.4.3 Net R a d i a t i o n M a l f u n c t i o n s and s e r v i c i n g of the equipment l e d to the requirement 28 t h a t 3.6% of the h o u r l y net r a d i a t i o n d a t a needed t o be r e c o n s t r u c t e d . The r e m a i n i n g 96.47 0 of the hours were compared w i t h the data s et c o l l e c t e d a t the U n i v e r s i t y o f B r i t i s h Columbia (U.B.C.) ( F i g . 2.1) as p a r t of the U.B.C. S o l a r M o n i t o r i n g Programme (Hay, 1979). These d a t a c o n s i s t e d of the f o u r components of net r a d i a t i o n : Q* = (K+ - K+) + ( U - L+) (2.2) where Q* i s net r a d i a t i o n ; K + i s inco m i n g shortwave r a d i a t i o n ; K+ i s o u t g o i n g shortwave r a d i a t i o n ; L+ i s incoming longwave r a d i a t i o n ; and i s o u t g o i n g longwave r a d i a t i o n . The l i n e a r r e g r e s s i o n e q u a t i o n f o r the r e l a t i o n s h i p between the two s i t e s was: KERRISDALE = 0.02375 + (0.9013 x UBC) (2.3) w i t h an r 2 v a l u e of 0.97 and a s t a n d a r d e r r o r of the e s t i m a t e o f 0.104 MJ/m 2. H o u r l y v a l u e s o f net r a d i a t i o n were c a l c u l a t e d i n MJ/m and then c o n v e r t e d to W/m2. T y p i c a l measurement e r r o r s f o r net p y r r a d i o m e t e r s are 3-47> on i n s t a n -taneous measurements ( L a t i m e r , 1972). The net p y r r a d i o m e t e r was r e c a l i b -r a t e d by A.E.S. at the end of the measurement programme and had a new c a l i b r a t i o n which was w i t h i n 2% of the p r e v i o u s v a l u e . 2.4.4 Temperature, R e l a t i v e H u m i d i t y and Wind speed The m i s s i n g 1.8% of data f o r t e m p e r a t u r e , r e l a t i v e h u m i d i t y and wind speed were f i l l e d i n by one of two methods. When t h e r e was o n l y one hour of data m i s s i n g , the data f o r the hour b e f o r e and the hour a f t e r the m i s s i n g v a l u e were averaged. When more than one hour of data was m i s s i n g , the t r e n d of the phenomenon at the A i r p o r t was used t o f i l l i n the m i s s i n g h o u r s . Comparisons a g a i n s t an Assman psychrometer were made a t the b e g i n n i n g , d u r i n g and at the end of the. y e a r s measurements of temperature and r e l a t i v e 29 h u m i d i t y . The d i f f e r e n c e s were l e s s than 2% on i n s t a n t a n e o u s measurements. The Met-One 014A anemometer was r e c a l i b r a t e d at the end of the measu-rement programme u s i n g the U.B.C. M e c h a n i c a l E n g i n e e r i n g wind t u n n e l . The c a l i b r a t i o n was l e s s than 5% d i f f e r e n t from the m a n u f a c t u r e r ' s c a l i b r a t i o n . 2.4.5 S o i l M o i s t u r e L i n e a r i n t e r p o l a t i o n was used t o determine d a i l y v a l u e s from the weekly measured d a t a . Due t o the v a r i a b i l i t y of s o i l t y p e s i n the suburban environment the s o i l m o i s t u r e i s a l s o v a r i a b l e . The n a t u r a l s o i l has been d i s t u r b e d and t h e r e has a l s o been m a t e r i a l brought i n from o t h e r a r e a s . The d i s t u r b a n c e s i n c l u d e e x c a v a t i o n f o r c o n s t r u c t i n g houses and c o m p a c t i o n w i t h r o a d b u i l d -i n g . The s o i l m o i s t u r e measurements are t h e r e f o r e o n l y a sample of the range of p o s s i b l e s o i l m o i s t u r e s and an i n d e x of the t e m p o r a l v a r i a b i l i t y at one p o i n t . The measurement e r r o r of 15% i s based on t h i s s t u d y ' s o b s e r -ved s p a t i a l d i f f e r e n c e s i n s o i l p r o f i l e m o i s t u r e measurements. 30 CHAPTER 3 VARIABILITY OF THE WATER BALANCE COMPONENTS 3.1 I n t r o d u c t i o n ' T h i s c h a p t e r d i s c u s s e s the v a r i a b i l i t y of a l l f a c t o r s used to d e t e r -mine the water b a l a n c e . T h i s w i l l e s t a b l i s h the range over which each f a c t o r s h o u l d be v a r i e d when c o n d u c t i n g s e n s i t i v i t y a n a l y s e s of the water b a l a n c e c a l c u l a t i o n s . D i s c u s s i o n i s based on the measured dat a c o l l e c t e d d u r i n g the s t u d y p e r i o d ( p r i m a r i l y on a monthly b a s i s ) and on i n f o r m a t i o n a v a i l a b l e i n the l i t e r a t u r e . C o n s i d e r a t i o n i s g i v e n to both s p a t i a l and temporal v a r i a b i l i t y and, where a p p r o p r i a t e , t o v a r i a b i l i t y a s s o c i a t e d w i t h the t e c h n i q u e s used i n d e t e r m i n i n g the components of the water b a l a n c e . T h i s d i s c u s s i o n of v a r i a b i l i t y a l s o p r o v i d e s an a p p r o p r i a t e s e t t i n g f o r c o n s i d e r i n g the c l i m a t i c s t a t u s of 1982 compared w i t h a " n o r m a l " y e a r . I t i s based on d a t a c o l l e c t e d by the A t m o s p h e r i c E n v i r o n m e n t S e r v i c e (A.E.S.) at the Vancouver I n t e r n a t i o n a l A i r p o r t C l i m a t e S t a t i o n ( T a b l e 2.5) which have been c o l l a t e d f o r the f u l l t h i r t e e n months w i t h i n which t h i s s t u d y f e l l . That i s , the data r e f e r r i n g to J a n u a r y 1982 and J a n u a r y 1983 are f o r the whole month, whereas i t s h o u l d be n o t e d t h a t the measurements made a t the s t u d y s i t e d u r i n g t h e s e two months r e f e r to o n l y 10 and 21 days r e s p e c t i v e l y . The mean d a i l y data measured i n t h i s s t u d y a r e l i s t e d i n Appendix I I . The measured dat a have been averaged f o r the warmer (summer) and the c o o l e r ( w i n t e r ) h a l v e s of the y e a r . Summer f o r these purposes was d e f i n e d as b e i n g A p r i l t o September i n c l u s i v e . One of the s t a t i s t i c a l methods used f o r a n a l y s i n g the v a r i a b i l i t y i s the c o e f f i c i e n t of v a r i a t i o n ( C . V . ) : c o e f f i c i e n t of v a r i a t i o n = s t a n d a r d d e v i a t i o n (3.1) mean When the c o e f f i c i e n t of v a r i a t i o n approaches 1.0 the v a r i a b i l i t y i s h i g h . 31 T h i s i s a poor s t a t i s t i c when the mean approaches z e r o , such as o c c u r s w i t h net r a d i a t i o n d u r i n g w i n t e r months. 3.2 P r e c i p i t a t i o n Annual i s o h y e t s i n the G r e a t e r Vancouver a r e a c l o s e l y p a r a l l e l the t o p o g r a p h i c c o n t o u r s . P r e c i p i t a t i o n amounts i n c r e a s e r a p i d l y from s o u t h t o n o r t h (1000 t o 2500 mm) and t o a l e s s e r e x t e n t from west t o e a s t (1100 t o 1700 mm) (Hay & Oke, 1976). The measured v a r i a b i l i t y between the A i r p o r t , Hudson, K e r r i s d a l e and Oak r i d g e s i t e s ( F i g . 2.1, F i g . 2.2) s t i l l d e monstrates the i n f l u e n c e of topography ( T a b l e 3.1) d e s p i t e the d i f f e r e n c e s i n s i t i n g of the i n d i v i d u a l gauges. I n t e r s i t e ( K e r r i s d a l e - A i r p o r t , O a k r i d g e - A i r p o r t ) v a r i a t i o n of p r e c i p i t a t i o n r e c e i p t was g r e a t e r than the i n t r a - s i t e ( K e r r i s d a l e - O a k r i d -ge, O a k r i d g e - 4 s i t e s ) v a r i a t i o n ( T a b l e 3.1). The c l i m a t e of Vancouver r e s u l t s i n a summer minimum of p r e c i p i t a t i o n . I n 1982 the A i r p o r t r e c e i v e d 13.37» more than normal p r e c i p i t a t i o n w i t h s i x of the months r e c o r d i n g h i g h e r than normal amounts ( T a b l e 2.5). J u l y r e c e i v e d t w i c e the normal whereas May r e c e i v e d l e s s than h a l f the monthly n o r m a l . The K e r r i s d a l e d a t a f o l l o w a s i m i l a r t r e n d t h r o u g h the y e a r ( T a b l e 3.2) . The maximum d a i l y i n t e n s i t y f o r the K e r r i s d a l e s i t e was 50.4 mm/d r e c o r d e d on J u l i a n day 44. The maximum h o u r l y i n t e n s i t y f o r the year was 7.9 mm/h on J u l i a n day 289. August had the lo w e s t maximum h o u r l y i n t e n s i t y w i t h a v a l u e of 2.7 mm/h (day 224) and May had the lowest maximum d a i l y i n t e n s i t y w i t h 8.5 mm/d (day 137) ( T a b l e 3.2). 32 T a b l e 3.1 I n t e r and i n t r a - s i t e p r e c i p i t a t i o n v a r i a b i l i t y SITE ELEVATION No. OF TOTAL MEAN S.D. C.V. PERIOD DAYS 1 (m) (mm) (mm) (mm) ( J u l i a n day) (a) INTER SITE VARIATION KERRISDALE 82 58 525. 0 9. .1 8. ,8 0. 97 295 -- 386 OAKRIDGE 2 86 58 550. 3 9. .5. 9. .2 0. 97 295 -- 386 AIRPORT 5 61 507. 6 8. ,3 7. .8 0. 94 295 -- 386 KERRISDALE 82 61 551. 0 9, .0 8. ,6 0. 96 295 -- 386 AIRPORT 5 84 644. 4 7. ,5 8. ,4 1. 12 182 -- 386 HUDSON 91 84 669. 8 8. ,1 8. ,5 1. 05 182 -- 386 (b) INTRA SITE VARIATION OAKRIDGE 51 KERRISDALE - OAKRIDGE 51 KERRISDALE - AIRPORT 51 OAKRIDGE - AIRPORT 51 DIFFERENCE IN RECEIPT (mm) 0.8 0.8 0.7 0.7 1.5 1.8 1.7 1.9 295 - 386 295 - 386 295 - 386 295 - 386 NOTE: 1. R e f e r s t o the number of days w i t h u s a b l e p r e c i p i t a t i o n r e c o r d 2. Mean of the 4 s i t e s 33 T a b l e 3.2 M o n t h l y p r e c i p i t a t i o n d a t a f o r K e r r i s d a l e s i t e TOTAL MAXIMUM DAILY INTENSITY MAXIMUM HOURLY INTENSITY DAY AMOUNT HOUR AMOUNT DAY HOUR AMOUNT (mm) (mm) (mm) (mm) 1982 JANUARY 87.0 24 25.9 1800 3.2 23 1700 4.1 FEBRUARY 232.3 44 50.4 1700 4.2 49 1000 7.6 MARCH 56.7 60 12.0 2000 4.9 60 2000 4.9 APRIL 90.2 93 18.8 1800 2.6 103 1500 6.0 MAY 24.6 137 8.5 400 4.9 137 400 4.9 JUNE 32.2 177 23.5 1200 5.8 177 1200 5.8 JULY 72.9 195 24.5 700 7.2 196 700 7.2 . AUGUST 30.2 224 12.8 1700,2000 2.7 224 1700,2000 2.7 SEPTEMBER 47.9 253 16.0 300 3.1 246 1600 4.5 OCTOBER 61.8 274 15.8 100 5.3 289 1200 7.9 NOVEMBER 189.0 332 24.0 1200,1300 4.0 307 2200 5.0 DECEMBER 147.0 336 42.0 500 5.0 337 500 5.0 1983 JANUARY 143.0 374 29.0 600 3.0 369 2400 4.0 YEAR 1214.8 44 50.4 700 7.2 289 1200 7.9 NOTE: Hour r e f e r s t o the hour e n d i n g J a n u a r y 1982 - 10 days o n l y Janua r y 1983 - 21 days o n l y 34 3.3 Water Use 3.3.1 F a c t o r s I n f l u e n c i n g Water Use The American Water Works A s s o c i a t i o n - Commmittee on Water Use (A.W.-W.A.-C.W.U.) (1973) s t u d y of 49 U n i t e d S t a t e s c i t i e s f o r the p e r i o d i 9 6 0 t o 1970 c o n c l u d e d t h a t customer b i l l i n g and ch a n g i n g c l i m a t o l o g i c a l c o n d i t i o n s are the two most s i g n i f i c a n t f a c t o r s i n obs e r v e d f l u c t u a t i o n s of water use. The two main t y p e s o f customer b i l l i n g f o r water use ar e metered and f l a t r a t e . P r i c i n g p l a y s no r o l e i n demand i n those a r e a s b i l l e d a t a f l a t r a t e because a d e f i n e d amount i s p a i d i r r e s p e c t i v e of consum p t i o n , but under metered b i l l i n g the p r i c e v a r i e s d i r e c t l y w i t h the q u a n t i t y of water used. The s t u d y a r e a , l i k e most a r e a s of Vancouver, i s c h a r g e d , as p a r t of the p r o p e r t y t a x e s , a t a f l a t r a t e of $60.50/year f o r water (Vancouver C i t y , E n g i n e e r i n g Department, Water Works D i v i s i o n , p e r s . comm.). Hanke and F l a c k (1968) compared water consumption between metered and f l a t r a t e r e s i d e n t i a l a r e a s f o r the e n t i r e spectrum of U.S. c l i m a t i c c o n d i -t i o n s . Annual d a i l y water use per d w e l l i n g u n i t was 1.5 time s g r e a t e r i n f l a t r a t e a r e a s compared w i t h metered a r e a s , w i t h s p r i n k l i n g c o n s t i t u t i n g 607,, of the f l a t r a t e a r e a ' s average a n n u a l water use. From the l i t e r a t u r e (A.W.W.A-C.W.U., 1973; Barnes, 1977; L i n a w e a v e r et  a l . , 1967) r a i n f a l l and tempe r a t u r e are found t o be the p r i n c i p a l v a r i a b l e s of c l i m a t e which i n f l u e n c e water consumption The c l i m a t i c - p e d o l o g i c - v e g e t a -t i v e c h a r a c t e r i s t i c s of an ar e a s i g n i f i c a n t l y i n f l u e n c e the t o t a l l e v e l of r e s i d e n t i a l customer usage. For example, r e s i d e n t i a l water use per customer i n low r a i n f a l l a r e as of the w e s t e r n U n i t e d S t a t e s averages more than t w i c e t h a t of the e a s t e r n and s o u t h e r n areas (A.W.W.A.-C.W.U., 1973). The seaso n -a l v a r i a t i o n i s p r i m a r i l y due t o r e s i d e n t i a l w a t e r i n g of lawns i n the summer. I n m i d w i n t e r the average d a i l y use i s about 207o lower than, the annual d a i l y a v erage; i n summer i t may be 20 to 307=, h i g h e r ( L i n s l e y & 35 F r a n z i n i , 1979). D a i l y v a r i a t i o n has been l i t t l e r e s e a r c h e d p r o b a b l y due t o the f a c t t h a t the p r i m a r y purpose of the major s t u d i e s i s t o determine average d a i l y use f o r f u t u r e p l a n n i n g (A.W.W.A.-C.W.U., 1973). 3.3.2 O a k r i d g e Water Use The O a k r i d g e catchment had an ann u a l d a i l y consumption of 331.5 m^/d. D a i l y v a r i a b i l i t y i n w i n t e r was low (C.V.=0.087, T a b l e 3.3), whereas mean d a i l y summer water use was a p p r o x i m a t e l y t h r e e times g r e a t e r than i n w i n t e r and v a r i a b i l i t y was i n c r e a s e d (C.V.=0.775, T a b l e 3.3). The mean d a i l y w ater use peaked i n June but the c o e f f i c i e n t o f v a r i a t i o n was g r e a t e s t i n J u l y w i t h a secondary peak i n May ( F i g . 3.1). The water b e i n g p i p e d i n i s used w i t h i n the home f o r dom e s t i c purposes and e x t e r n a l l y f o r s p r i n k l i n g . S i n c e the w i n t e r mean d a i l y water use can be c o n s i d e r e d t o r e p r e s e n t the i n t e r n a l w ater use thro u g h o u t the y e a r (A.W.W.A-C.W.U., 1973) t h e r e i s a b a s i s f o r p a r t i t i o n i n g w ater between the two u s e s . I n w i n t e r the d a i l y w ater use does not v a r y i f a p r e c i p i t a t i o n event o c c u r s ( F i g . 3.2). However, i n the summer a p r e c i p i t a t i o n event u s u a l l y l e a d s t o a drop i n the amount of wat e r used. T h i s i s because much of the summer i n c r e a s e i n wa t e r use i s c o n s i d e r e d t o be a consequence of the a p p l i c a t i o n of w ater t o the e x t e r n a l environment. Thus p r e c i p i t a t i o n d e c r e a s e s the demand f o r s p r i n k l i n g water whereas i n c r e a s i n g t e m p e r a t u r e c o i n c i d e s w i t h i n c r e a s i n g water use ( F i g . 3.3). I n t h i s s t u d y a s u r v e y was c a r r i e d out of e x t e r n a l water use h a b i t s f o r the May to August p e r i o d i n the Oak r i d g e a r e a . I t i n v o l v e d p eople f i l l i n g i n a d i a r y i n d i c a t i n g when and where they used water on t h e i r p r o p e r t y . There were 23 re s p o n d e n t s i n May, 33 i n June, 21 i n J u l y and 15 i n August. The pe r c e n t a g e of those s u r v e y e d who wate r e d on each day (f r o m 36 T a b l e 3.3 O a k r i d g e monthly w a t e r use MONTH MEAN S.D. C.V. MINIMUM DAY MAXIMUM DAY TOTAL CUMULATIVE (m3/d) (m3 /d) (m 3/d) (m 3/d) (m 3) TOTAL (m 3) 1982 JANUARY 162. 8 9.6 0.059 151. 9 22 181.7 31 1628. 4 1628.4 FEBRUARY 171. 5 10.9 0.064 115. 7 35 201.6 38 4801. 6 6430.0 MARCH 157. 5 18.6 0.118 121. 0 85 205.8 87 4884. 6 11314.6 APRIL 189. 4 47.0 0.248 135. 3 104 326.4 115 5682. 1 16996.7 MAY 432. 0 256.8 0.595 182. 6 134 1202.9 150 13390. 5 30387.2 JUNE 947. 5 457.3 0.483 239. 8 177 1620.4 170 28423. 6 58810.8 JULY 616. 5 395.3 0.641 175. 9 196 1439.1 206 19112. 0 77922.8 AUGUST 570. 2 263.7 0.480 193. 1 222 1061.7 218 17676. 3 95599.1 SEPTEMBER 238. 9 86.9 0.364 160. 8 271 519.6 245 7165. 4 102764.5 OCTOBER 172. 1 14.9 0.086 145. 3 298 208.6 284 5334. 5 108099.0 NOVEMBER 157. 6 8.3 0.053 143. 9 330 177.2 325 4728. 3 112827.3 DECEMBER 158. 4 8.8 0.056 146. 1 356 185.1 347 4909. 9 117737.1 1983 JANUARY 155. 1 8.1 0.052 144. 8 384 171.8 381 3257. 1 120994.2 SUMMER 499.7 387.2 0.775 135.3 104 1620.4 170 91449.9 WINTER 162.3 14.1 0.087 121.0 85 208.6 284 29544.3 YEAR 331.5 322.1 0.972 121.0 85 1620.4 170 NOTE: Summer - J u l i a n day 91 t o 273 37 3.1 Annual d a i l y w ater use by month f o r O a k r i d g e (a) D a i l y maxima, minima and mean (b) C o e f f i c i e n t of v a r i a t i o n 0 . 0 - " 1 1 1 i 1 1 1 1 1 1 1 1 i J F M A M J J A S O N D J T ime (months) 38 F i g . 3.2 D a i l y water use and p r e c i p i t a t i o n f o r J a n u a r y - March 1982 at O a k r i d g e 1250 1000-•o CO £ 750-> > c ^ 500-a> a. 22 32 42 52 62 72 82 Time Cd] 39 3.3 D a i l y (a) t e m p e r a t u r e , (b) water use, and ( c ) p r e c i p i t a t i o n d u r i n May - J u l y 1982 i n the Oakridge catchment. I n (b) water use i s from the O a k r i d g e meter, and % e x t e r n a l w a t e r i n g i s from the O a k r i d g e s u r v e y . (a) o c OJ CD 3" O Ids •100 a X A -80 3 ffl •< -60 i * '•40 rln o > -20 2 123 133 153 163 173 183 193 203 Time C d) 40 0600 to 0559 on the next d a y ) , and the metered amount of water p i p e d i n f o l l o w a r e m a r k a b l y s i m i l a r t r e n d ( F i g 3.3). S p r i n k l i n g of gardens was the predominant use of water s p e c i f i e d by r e s p o n d e n t s . Loudon ( 1 9 8 1 ) , w o r k i n g a t the same s i t e , i d e n t i f i e d two d i s t i n c t d a i l y c y c l e s i n metered water use i n the summer. Both were c l i m a t i c a l l y dependent ( F i g . 3.4a). Low water use days o c c u r r e d i n c o n j u n c t i o n w i t h , or on the day a f t e r p r e c i p i t a t i o n . The two peaks of t h i s type can be a s s o c i a t e d w i t h morning and e v e n i n g meals and b a t h i n g . On ' h i g h ' water use days the peak o c c u r r e d a t 1800 hours P a c i f i c D a y l i g h t Time (P.D.T). T h i s c o i n c i d e s w i t h the most f r e q u e n t l y s p e c i f i e d hours of e x t e r n a l water use from the 1982 s u r v e y (1600 and 1700 h o u r s ) ( F i g 3.4b). There was a s t e a d y i n c r e a s e i n the number of p e o p l e w a t e r i n g i n each hour of the day from 0700 and the shape of the f r e q u e n c y c u r v e c l o s e l y f o l l o w s t h a t of the h i g h water use c y c l e . 3.4 Runoff Runoff was not d i r e c t l y measured i n t h i s s t u d y so d i s c u s s i o n w i l l be i n c l u d e d here on the method f o r d e t e r m i n i n g urban r u n o f f . B e f o r e urban r u n o f f can be d e t e r m i n e d , by measurement or m o d e l l i n g , c o n s i d e r a t i o n has t o be g i v e n t o t h r e e t y p e s of urban s o u r c e ( F i g 3.5): 1) the water from p r e c i p i t a t i o n ; 2) the p i p e d - i n water which has been a p p l i e d to the e x t e r n a l e n v i r o n m e n t ; and 3) the base l o a d of sewerage, which i s the "used" p i p e d - i n water not a p p l i e d t o the e x t e r n a l environment. From the r e s u l t s of gauging sewers and incoming water p i p e s i t has been found t h a t the d a i l y base l o a d of sewerage can be r e g a r d e d as b e i n g a p p r o x i m a t e l y e q u i v a l e n t to the mean d a i l y w i n t e r water p i p e d - i n (Vancouver 41 F i g . 3.4 D a i l y w a t e r use c y c l e s at the O a k r i d g e catchment (a) D a i l y water use c y c l e s from 1980 meter d a t a ( a f t e r Loudon, 1981) (b) Frequency of hour s p e c i f i e d f o r e x t e r n a l water use from the 1982 O a k r i d g e s u r v e y 1 1 1 1 1 1 1 1 1 1 r 0 4 0 0 Time CP.D.T.) 42 F i g . 3.5 Components of urban r u n o f f d e t e r m i n a t i o n WATER PIPED-IN RAINFALL INTERNAL (Domestic and o t h e r uses) EXTERNAL ( S p r i n k l i n g e t c . ) SURFACE RETENTION EVAPORATION OVERLAND FLOW SUPPLY INFILTRATION SOIL MOISTURE & WATER TABLE & LATER EVAPOTRANSPIRATION s u b s u r f a c e RUNOFF - s u r f a c e s u b s u r f a c e sewer 43 E n g i n e e r s & G r e a t e r Vancouver Sewerage and Dra i n a g e D i s t r i c t (G.V.S.D.D.), 1979; A.W.W.A.-C.W.U., 1973). The r e m a i n i n g p i p e d - i n water and t h a t sup-p l i e d by p r e c i p i t a t i o n i s a v a i l a b l e f o r e v a p o r a t i o n , r u n o f f and changes i n wate r s t o r a g e ( F i g . 3.5). T h i s s e c t i o n w i l l f o c u s on the water b e i n g app-l i e d t o the e x t e r n a l environment. Models f o r d e t e r m i n i n g urban r u n o f f range i n c o m p l e x i t y from the s i m p l e R a t i o n a l method (Mulvaney, 1851) t o l a r g e s c a l e computer models whi c h s o l v e many s i m u l t a n e o u s d i f f e r e n t i a l e q u a t i o n s (Dendrou, 1982; P e r k s , 1977). The f i r s t s t e p i n the more complex models i s t o determine the ' a b s t r a c t i o n s ' from r a i n f a l l , so as to o b t a i n the e f f e c t i v e p r e c i p i t a t i o n w hich then becomes the s u r f a c e r u n o f f s u p p l y ( F i g . 3.5). A b s t r a c t i o n s c o n s i s t of s u r f a c e r e t e n t i o n , i n f i l t r a t i o n and e v a p o r a t i o n . As t h i s s t u d y i s i n t e r e s t e d o n l y i n the volume c o n t r i b u t i n g to the water b a l a n c e , the water r e m a i n i n g a f t e r the a b s t r a c t i o n s i s assumed t o be r u n o f f . 3.5 S t o r a g e Water s t o r a g e c o n s i s t s o f r e t e n t i o n s t o r a g e and s o i l s t o r a g e . S u r f a c e r e t e n t i o n i n c l u d e s b o t h d e p r e s s i o n s t o r a g e ( t h a t water which g e t s t r a p p e d i n s m a l l p u d d l e s w i t h o u t e i t h e r i n f i l t r a t i n g or r u n n i n g o f f ) , and i n t e r c e p -t i o n ( t h e r e t e n t i o n of water by the urban s u r f a c e c o v e r , such as v e g e t a t i o n and b u i l d i n g s ( A r o n , 1 9 8 2 ) ) . Both are s u b j e c t to a l a r g e amount of un c e r -t a i n t y , and have been l i t t l e measured or a s s e s s e d i n an urban environment ( A r o n , 1982). I n t e r c e p t i o n i s not r e g a r d e d as b e i n g s i g n i f i c a n t compared t o d e p r e s s i o n s t o r a g e i n urban areas whereas i t i s i n f o r e s t e d a r e a s ( M e c h l e r & R i e c k e n , 1977). The type of v e g e t a t i o n and b u i l d i n g c o v e r w i l l i n f l u e n c e the s i z e of the i n t e r c e p t i o n s t o r a g e ( T a b l e 3.4). S o i l s t o r a g e i s c o n t r i b u t e d t o by water from i n f i l t r a t o n and d e p l e t e d p r i m a r i l y by e v a p o r a t i o n . T a b l e 3.5 l i s t s i n f i l t r a t i o n r a t e s f o r some 44 T a b l e 3.4 V a l u e s of r e t e n t i o n s t o r a g e A u t h o r S u r f a c e R e t e n t i o n s t o r a g e (mm) (recommended) B r a t e r (1968) pavements 1.6 g r a s s l a n d 6.4 s m a l l paved a r e a s 1.0 - 2.5 Me c h l e r & R i e c k e n p e r v i o u s 6.4 (1977) i m p e r v i o u s 1.6 W r i g h t - M c L a u g h l i n l a r g e paved a r e a s 1.3 - 3.8 (2.5) E n g i n e e r s L t d . ( 1 9 6 9 ) r o o f - f l a t 2.5 - 7.6 (2.5) - s l o p e d 1.3 - 2.5 (1.3) lawn g r a s s 5.1 - 12.7 (7.6) wooded a r e a s & f l a t f i e l d s 5.1 - 15.2 (10.2) T a b l e 3.5 T y p i c a l i n f i l t r a t i o n r a t e s f o r s u r f a c e s i n the G r e a t e r Vancouver Area A u t h o r S u r f a c e I n f . i l t r a t o n r a t e (mm/hour) CBA E n g i n e e r i n g Richmond L t d . (1973) - peat 600mm deep - n a t u r a l v e g e t a t i o n - h i g h water t a b l e 0.5 - 0.7 - d r y 50 - farm p a s t u r e 1.7 - 3.7 - p l a y i n g f i e l d c u t g r a s s 1.8 - 11.1 - c l a y s i l t s - farm p a s t u r e 2.2 - 10.0 - sandy s i l t s - p l a y i n g f i e l d s c u t g r a s s 0.7 - 18.5 -farm p a s t u r e • 8.5 de V r i e s K e r r i s d a l e , Vancouver 36 ( p e r s . comm.) R u s s e l l Vancouver a r e a 2 ( p e r s . comm.) f i n a l r a t e Vancouver (1979) Vancouver 2 f i n a l r a t e 45 G r e a t e r Vancouver s u r f a c e s . The i n f i l t r a t i o n r a t e f o r the K e r r i s d a l e a r e a (de V r i e s , p e r s . comm.) i s g r e a t e r than the maximum h o u r l y i n t e n s i t y of p r e c i p i t a t i o n r e c o r d e d f o r the K e r r i s d a l e s t u d y s i t e d u r i n g 1982 ( T a b l e 3.2). T h i s means t h a t a l l water f a l l i n g on p e r v i o u s a r e a s can be assumed t o i n f i l t r a t e , a f t e r f i l l i n g r e t e n t i o n s t o r a g e . The depth of s o i l s t o r a g e f o r the K e r r i s d a l e a r e a i s a p p r o x i m a t e l y 150 mm (de V r i e s , p e r s . comm.). Hare and Thomas (1979) used 152 mm f o r t h e i r T h o r n t h w a i t e water b a l a n c e c a l c u l a t i o n s f o r Vancouver. 3.5.1 Hudson S o i l M o i s t u r e The range o f s o i l m o i s t u r e s r e c o r d e d at t h i s u n i r r i g a t e d s i t e d u r i n g the y e a r v a r i e d from 0.633 on J u l i a n day 44 t o 0.113 on J u l i a n day 172 (T a b l e 3.10). The maximum s o i l m o i s t u r e exceeded the f i e l d c a p a c i t y (0.55) due t o i n t e n s e p r e c i p i t a t i o n ( T a b l e 3.2) b e i n g r e c o r d e d on t h a t day. That i s , f r e e d r a i n a g e had not ceased. The t e m p o r a l v a r i a b i l i t y on a monthly b a s i s was not l a r g e . June had the lowest mean monthly s o i l s t o r a g e (0.171) but the h i g h e s t c o e f f i c i e n t o f v a r i a t i o n ( 0 . 1 9 3 ) . The annual c o e f f i c i e n t of v a r i a t i o n was 0.370. 3.6 E v a p o r a t i o n E v a p o r a t i o n was not d i r e c t l y measured i n t h i s s t u d y . Methods of model-l i n g e v a p o r a t i o n and the v a r i a b i l i t y of the c l i m a t i c v a r i a b l e s used w i t h i n the Oke and St e y n ( p e r s . comm.) e v a p o r a t i o n model w i l l be d i s c u s s e d i n t h i s s e c t i o n . F u l l d e t a i l s of the l a t t e r are g i v e n i n Appendix I I I . Appendix IV c o n t a i n s the monthly summaries of the data c o l l e c t e d a t the K e r r i s d a l e c l i m a t e s t a t i o n . 46 T a b l e 3.6 Hudson monthly s o i l m o i s t u r e ( d r y w e i g h t ) ( d i m e n s i o n l e s s ) MONTH MEAN S.D. C.V. MINIMIUM DAY MAXIMUM DAY 1982 JANUARY 0. 565 0. 001 0. 002 0. 563 22 0. .565 31 FEBRUARY 0. 583 0. 039 0. 067 0. 484 59 0. ,633 44 MARCH 0. 544 0. 022 0. 040 0. 500 60 0. ,582 65 APRIL 0. 450 0. 045 0. 100 0. 366 120 0. ,508 91 MAY 0. 325 0. 037 0. 114 0. 247 151 0. ,366 128 JUNE 0. 171 0. 033 0. 193 0. 113 172 0. ,239 152 JULY 0. 243 0. 022 0. 091 0. 206 194 0. ,288 201 AUGUST 0. 219 0. 018 0. 082 0. 184 237 0. ,258 229 SEPTEMBER 0. 261 0. 010 0. 038 0. 233 271 0, ,273 261 OCTOBER 0. 287 0. 022 0. 077 0. 245 286 0. ,325 299 NOVEMBER 0. 305 0. 036 0. 118 0. 245 306 0. ,371 334 DECEMBER 0. 362 0. 020 0. 055 0. 322 353 0. .387 338 1983 JANUARY 0. 393 0. 034 0. 087 0. 357 368 0. ,446 386 SUMMER 0. 278 0. 094 0. 338 0. 113 172 0. ,508 91 WINTER 0. 420 0. 120 0. 286 0. 245 306 0. ,633 44 YEAR 0. 349 0. 129 0. 370 0. 113 172 0. ,633 44 47 3.6.1 Net R a d i a t i o n S t u d i e s of the i n d i v i d u a l components of the the net r a d i a t i o n budget (eqn. 2.2) suggest t h a t u r b a n / r u r a l d i f f e r e n c e s are u s u a l l y s m a l l , but t h a t t h e r e i s a tendency f o r the c i t y t o have a s l i g h t r a d i a t i v e d e f i c i t , i n c omparison w i t h the c o u n t r y s i d e , a t a l l times (Oke, 1979). Oke and McCaughey (1983) measured suburban ( S u n s e t ) r u r a l ( A i r p o r t a r e a ) energy b a l a n c e d i f f e r e n c e s i n the Vancouver a r e a d u r i n g J u l y and August 1980. Under c l e a r sky c o n d i t i o n s , when i n t e r s i t e c l o u d c o u l d not i n t e r f e r e , the suburban s i t e r e c e i v e d on average 6% more r a d i a t i o n i n the d aytime. The p a r t l y c l o u d y r e s u l t s showed v i r t u a l l y no d i f f e r e n c e i n the d a y t i m e , and an o v e r a l l d a i l y d e f i c i t f o r the suburban a r e a of 5%. The s p a t i a l v a r i a b i l i t y of net r a d i a t i o n i n d i f f e r e n t l a n d use a r e a s of Columbus, Ohio has been i n v e s t i g a t e d by A r n f i e l d (1982) u s i n g a model which employs the p r i n c i p l e s of r a d i a t i v e geometry and the L a m b e r t i a n a s s u m p t i o n s . The g e n e r a l g r a d i e n t of Q* between the r u r a l a r e a and the c e n t r a l b u s i n e s s d i s t r i c t was one of i n c r e a s i n g net r a d i a t i o n towards the c i t y c e n t r e . I n Vancouver no l a r g e s c a l e measurements of s p a t i a l v a r i a b i l i t y of net r a d i a t i o n have been c a r r i e d o u t . O b s e r v a t i o n s of s o l a r r a d i a t i o n have been made at t w e l v e l o c a t i o n s i n the Lower M a i n l a n d s i n c e June 1979 (Hay, 1983). For the l o n g term d i s t r i b u t i o n , the o r o g r a p h i c enhancement of c l o u d amount by the mountains i n the n o r t h of the a r e a l e a d s to a s y s t e m a t i c r e d u c t i o n of s o l a r r a d i a t i o n i n t h a t v i c i n i t y . The use of l o n g term averages o b s c u r e s the l a r g e r s p a t i a l g r a d i e n t s t h a t o c c u r i n the s h o r t term (Hay, 1983). The v a r i a b i l i t y of net r a d i a t i o n i s a f u n c t i o n of not o n l y the a t m o s p h e r i c s t a t e but a l s o the s u r f a c e t y p e , w h i c h i n f l u e n c e s b o t h the a l b edo and the e m i s s i v i t y . A comparison of the net r a d i a t i o n f l u x d e n s i t y between the K e r r i s d a l e 48 and Sunset s i t e s was c a r r i e d out based on 4 7 days ( F i g . 2 . 3 ) d u r i n g the p e r i o d day 1 6 2 t o 2 1 0 . The K e r r i s d a l e s i t e r e c o r d e d a c o n s i s t e n t l y l a r g e r net r a d i a t i o n f l u x ( T a b l e 3 . 7 ) but the d i f f e r e n c e i s w i t h i n the e r r o r of measurement ( T a b l e 2 . 8 ) . W i t h c l e a r sky c o n d i t i o n s the daytime d i f f e r e n c e was 4 . 5 % . The pe r c e n t a g e d i f f e r e n c e s a s s o c i a t e d w i t h c l o u d y c o n d i t i o n s were g r e a t e r than w i t h c l e a r s i t e s but the a b s o l u t e v a l u e s and d i f f e r e n c e s were s m a l l e r ( T a b l e 3 . 7 ) . The t e m p o r a l v a r i a b i l i t y of net r a d i a t i o n was i n v e s t i g a t e d u s i n g the data measured at the K e r r i s d a l e s i t e (Appendix I V . 1 ) . The measured net r a d i a t i o n had a summer minimum c o e f f i c i e n t of v a r i a t i o n a l t h o u g h a maximum s t a n d a r d d e v i a t i o n ( F i g . 3 . 6 ) . The maximum mean monthly and maximum mean d a i l y v a l u e s b o t h o c c u r r e d i n June ( F i g . 3 . 6 ) . May had a mean d a i l y v a l u e t h a t was j u s t s l i g h t l y l e s s than the June v a l u e . The A.E.S. A i r p o r t s i t e r e c o r d e d 1 . 3 7 » fewer hours of su n s h i n e i n 1 9 8 2 than normal ( T a b l e 2 . 5 ) , y e t seven o f the t h i r t e e n months r e c o r d e d h i g h e r than normal s u n s h i n e h o u r s . The r e m a i n i n g f i v e ( J a n u a r y 1 9 8 2 , F e b r u a r y , J u l y , August and September) r e c o r d e d lower than normal h o u r s . The l a r g e s t p e r c e n t a g e d i f f e r e n c e o c c u r r e d i n Janua r y ( 5 7 7 o l e s s than normal) but J u l y , w i t h 9 6 . 8 hours l e s s t h a n n o r m a l , had the l a r g e s t d e v i a t i o n i n terms of a c t u a l hours ( T a b l e 2 . 5 ) . 3 . 6 . 2 S t o r a g e Heat F l u x The heat s t o r a g e term of the urban energy b a l a n c e remains l a r g e l y u n r e s e a r c h e d d e s p i t e the f a c t t h a t i t i s commonly su g g e s t e d to be s i g n i f i -c a n t l y g r e a t e r than i n r u r a l a r e a s (Oke et a l . , 1 9 8 0 ) . The p a u c i t y of i n f o r m a t i o n almost c e r t a i n l y stems from the d i f f i c u l t y of measurement. Oke et a l . ( 1 9 8 0 ) propose a methodology f o r p a r a m e t e r i s i n g h o u r l y 4 9 T a b l e 3.7 Comparison of net r a d i a t i v e f l u x e s between the K e r r i s d a l e and Sunset s i t e s (day 162 - 210) DAILY DAYTIME ALL DAYS CLEAR CLOUDY ALL DAYS CLEAR CLOUDY NUMBER OF DAYS 47 18 29 47 18 29 KERRISDALE (MJ/m 2) 11.90 15.32 9.78 13.58 17.46 11.09 SUNSET (MJ/m 2) 10.80 14.34 8.64 12.57 16.71 10.46 KERRISDALE/SUNSET (%) 110.2 106.8 113.2 108.0 104.5 106.0 50 F i g . 3.6 Annual h o u r l y net r a d i a t i o n by month f o r K e r r i s d a l e (a) D a i l y maxima, minima and mean (b) C o e f f i c i e n t of v a r i a t i o n §0.2-o J F M A M J J A S 6 N 6 j Time (months) 51 urban heat s t o r a g e u s i n g e s t a b l i s h e d l i n e a r r e l a t i o n s h i p s between net r a d i a t i o n and heat s t o r a g e s i n m a t e r i a l s commonly e n c o u n t e r e d i n urban a r e a s ; and a w e i g h t i n g o f these e q u a t i o n s a c c o r d i n g t o the a r e a l f r a c t i o n o f greenspace and b u i l t l a n d u s e s . The composite heat s t o r a g e v e r s u s net s t o r a g e i s computed a s : Q = ZAi (a,Q* + b L ) (3.5) i=l 1 where i s f r a c t i o n of the t o t a l s u r f a c e a r e a c o v e r e d by the i t h l a n d use t y p e ; and a^ ,bj a r e c o e f f i c i e n t s i n the p a r a m e t e r i s a t i o n f o r the i t h l a n d use. The s p a t i a l v a r i a b i l i t y of the computed s t o r a g e heat f l u x i s t h e r e f o r e p r i m a r i l y dependent on the v a r i a b i l i t y of l a n d use w i t h i n the a r e a and the v a r i a b i l i t y o f net r a d i a t i o n (see s e c t i o n 3.6.1). For the suburban e n v i r o n -ment the s i m p l e l a n d use breakdown between greenspace and b u i l t was found by Oke et a l . (1980) t o be of s u f f i c i e n t d e t a i l . U s i n g the a p p r o p r i a t e l a n d use i n f o r m a t i o n f o r K e r r i s d a l e the e q u a t i o n s a r e : Q s = 0.25(Q*-31) day (3.6) Qs = 0.68Q* n i g h t (3.7) The c a l c u l a t e d s t o r a g e heat f l u x f o r the K e r r i s d a l e s t u d y a r e a had a range of 5.53 MJ / s r / d - w i t h i n the ye a r (Appendix IV.2, F i g . 3.7). As a r e s u l t o f the net r a d i a t i o n d i s t r i b u t i o n June had the l a r g e s t mean monthly and the maximum d a i l y s t o r a g e v a l u e s . The s m a l l e s t mean monthly v a l u e and the minimum d a i l y v a l u e f o r the ye a r o c c u r r e d i n December. August was the o n l y month i n which the minimum d a i l y v a l u e was g r e a t e r than z e r o . S i x of the t h i r t e e n months had mean monthly v a l u e s l e s s than z e r o so t h a t t h e i r c o e f f i c i e n t of v a r i a t i o n i s l e s s than z e r o . The c o e f f i c i e n t of v a r i a t i o n had an a b s o l u t e minimum i n J u l y w i t h a v a l u e o f 0.396. 52 F i g . 3.7 Annual h o u r l y s t o r a g e heat f l u x by month f o r K e r r i s d a l e (a) D a i l y maxima, minima and mean (b) C o e f f i c i e n t of v a r i a t i o n 3.6.3 A i r Temperature The s p a t i a l v a r i a b i l i t y of a i r temperature has been s t u d i e d i n Vancou-v e r i n the form of urban heat i s l a n d s t u d i e s u s i n g d a t a from c a r t r a v e r s e s (Oke, 1976) and the mean, annual t e m p e r a t u r e d i s t r i b u t i o n from the s t a n d a r d s t a t i o n network (Hay & Oke, 1976). The s p a t i a l p a t t e r n i s r e l a t e d t o l a n d use w i t h the maximum temp e r a t u r e b e i n g r e c o r d e d i n the densest b u i l t - u p a r e a of the c i t y c o r e . W i t h i n Vancouver c i t y t h e r e i s a range of approxima-te t e l y 2 C between a r e a s on an a n n u a l b a s i s . As i n d i c a t e d by Hay (1983) (see s e c t i o n 3.6.1) l o n g term averages obscure the g r e a t e r s p a t i a l v a r i a b i l i t y t h a t o c c u r s i n the s h o r t e r term. There was l e s s than a t e n t h of a degree C e l s i u s d i f f e r e n c e i n mean a i r t e m p e r a t u r e f o r the y e a r between the Vancouver I n t e r n a t i o n a l A i r p o r t and the K e r r i s d a l e s i t e ( T a b l e s 2.4 and Appendix I V . 3 ) . The A i r p o r t t e m p e r a t u r e f e l l w i t h i n the normal t e m p e r a t u r e i s o t h e r m s (Hay & Oke, 1976) whereas the K e r r i s d a l e s i t e was c o o l e r than the suggested n o r m a l . Mean monthly tempera-t u r e s were never more than 1°C a p a r t ( e x c l u d i n g J a n u a r y 1982 which had o n l y 10 days of d a t a a t the K e r r i s d a l e s i t e ) . Temperature t r a v e r s e s by a u t o m o b i l e were c a r r i e d out on days 187 ( c l o u d y ) and 221 ( c l o u d y ) w i t h i n the s t u d y a r e a . The a i r t e m p e r a t u r e s were m o n i t o r e d w i t h a s h i e l d e d and a s p i r a t e d t h e r m i s t o r thermometer system (Oke & M a x w e l l , 1975). The temperature r e c o r d e r and s e n s i n g system had a r e l a -t i v e a c c u r a c y of + 0.2°C (Oke & F u g g l e , 1972). T r a v e r s e s were c a r r i e d out a l o n g both a l l e y w a y s and roads w i t h the probe mounted at 1.05m (day 187) and 3.55m (day 221) above the ground. The f i r s t t r a n s e c t , c a r r i e d out between 1445 and 1615h on day 187, c o v e r e d the whole a r e a shown i n F i g . 2.2. On t h i s o c c a s i o n t h e r e was-a 4°C range of t e m p e r a t u r e (between 23 and 27°C). The second t r a n s e c t was c a r r i e d out between 1300 and 1340h around the K e r r i s d a l e and O a k r i d g e study s i t e s . The range of temperature measured 54 was 2.5°C (between 15.5 and 18.0°C). I n g e n e r a l the a l l e y w a y s were c o o l e r than the s t r e e t s and the major s t r e e t s were warmer than the s i d e s t r e e t s . The f i r s t t r a n s e c t when the probe was mounted at 1.05m, measured warmer te m p e r a t u r e s t h a n r e c o r d e d at the K e r r i s d a l e tower, whereas f o r the second t r a n s e c t , when the probe was mounted at 3.55m, the mean h o u r l y t e m p e r a t u r e s r e c o r d e d f o r the K e r r i s d a l e tower were 18.9°C f o r the hour e n d i n g 1300h and 15.6°C f o r 1400h. That i s , the measured t e m p o r a l v a r i a b i l i t y was the same as the s p a t i a l v a r i a b i l i t y . The mean annual a i r t e m p e r a t u r e f o r 1982 was 0.2°C l e s s t h a n normal at the Vancouver I n t e r n a t o n a l A i r p o r t ( T a b l e 2.5), but f i v e of the t h i r t e e n months had warmer than normal t e m p e r a t u r e s ; J a n u a r y 1982 showed the g r e a -t e s t d e v i a t i o n b e i n g 3.8°C warmer than n o r m a l . The mean monthly t e m p e r a t u r e f o r the K e r r i s d a l e s i t e was at i t s m a x i -mum i n June. The maximum mean d a i l y v a l u e o c c u r r e d i n June on day 169 (25° C) (Appendix IV.3 and F i g 3.8). I n December the minimum mean monthly tempe-o r a t u r e was r e c o r d e d (3.4-C).However, the minimum mean d a i l y v a l u e o c c u r r e d i n November on day 326. The c o e f f i c i e n t of v a r i a t i o n had a minimum i n the summer months ( F i g . 3.8) but t h e r e were secondary minima i n January 1982 and 1983. August had the lowest c o e f f i c i e n t of v a r i a t i o n (0.136) and F e b r u a r y had the h i g h e s t c o e f f i c i e n t o f v a r i a t i o n ( 0 . 7 6 3 ) . 3.6.4 R e l a t i v e H u m i d i t y There appears t o be a daytime s p e c i f i c h u m i d i t y d e f i c i t due t o reduced s u r f a c e e v a p o t r a n s p i r a t i o n i n a c i t y and the e n t r a i n m e n t of d r i e r a i r i n the boundary l a y e r from above by the enhanced c o n v e c t i v e development. The n o c t u r n a l s u r p l u s i s o f t e n a s c r i b e d to c o n t i n u e d e v a p o r a t i o n and l e s s 55 3.8 Annual h o u r l y t e m p e r a t u r e by month f o r K e r r i s d a l e (a) D a i l y maxima, minima and mean (b) C o e f f i c i e n t of v a r i a t i o n d e w f a l l i n the c i t y , and to the a d d i t i o n of a n t h r o p o g e n i c m o i s t u r e (Oke, 1979). The r e l a t i v e h u m i d i t y measured a t the Vancouver I n t e r n a t i o n a l A i r p o r t d u r i n g the st u d y p e r i o d was 2% lower than normal ( T a b l e 2.5). Three of the t h i r t e e n months ( F e b r u a r y , J u l y , and September) had a h i g h e r than normal mean monthly r e l a t i v e h u m i d i t y , whereas A p r i l and December b o t h had r e l a -t i v e h u m i d i t i e s t h a t were 6% l e s s than normal. The mean an n u a l r e l a t i v e h u m i d i t y at the K e r r i s d a l e s i t e was 807o. The mean w i n t e r r e l a t i v e h u m i d i t y was 67„ l a r g e r than t h a t i n the summer (Appen-d i x I V . 4 ) . The i n c r e a s i n g c o e f f i c i e n t of v a r i a t i o n w i t h d e c r e a s i n g mean monthly r e l a t i v e h u m i d i t y ( F i g . 3.9) i s due to the i n v e r s e r e l a t i o n s h i p between the mean (w h i c h i s a p p r o a c h i n g a maximum l i m i t a t 1007o) and S.D. The minimum mean monthly r e l a t i v e h u m i d i t y and the l a r g e s t c o e f f i c i e n t of v a r i a t i o n o c c u r r e d i n A p r i l . The range of r e l a t i v e h u m i d i t y r e c o r d e d d u r i n g the y e a r was from 37.57„ r e c o r d e d on J u l i a n day 150 t o the maximum 1007». 3.6.5 Wind speed The wind f i e l d o v er a mesoscale a r e a c o n t a i n i n g an urban complex may be e x p e c t e d t o be p e r t u r b e d as a consequence of (Auer, 1981): 1) d i f f e r e n c e s i n the d e n s i t y and c h a r a c t e r i s t i c s of the roughness e l e -ments ; 2) v a r i a t i o n s i n the v e r t i c a l t r a n s p o r t of momentum through m e c h a n i c a l and th e r m a l m i x i n g ; and 3) l o c a l , t h e r m a l l y i n d u c e d p r e s s u r e p e r t u r b a t i o n s a s s o c i a t e d w i t h the urban heat i s l a n d . The urban environment causes an i n c r e a s e i n momentum roughness c o e f f i -c i e n t but i t s h o u l d be no t e d t h a t i t i s not easy to o b t a i n r e l i a b l e e s t i -mates (Oke, 1979). For example, Duchene-Marullaz (1976) showed at a sub u r -57 F i g . 3.9 Annual h o u r l y r e l a t i v e h u m i d i t y by month f o r K e r r i s d a l e (a) D a i l y maxima, minima and mean (b) C o e f f i c i e n t o f v a r i a t i o n 58 ban s i t e i n Nantes t h a t the d i r e c t i o n of f e t c h was i m p o r t a n t . The urban wind speed p r o f i l e i s o f t e n r a t h e r complex, e s p e c i a l l y i n l i g h t wind c o n d i t i o n s at n i g h t (Oke, 1979). Urban winds a l s o e x h i b i t g r e a -t e r t e m p o r a l v a r i b i l i t y than r u r a l a r e a s and even though d e c e l e r a t i o n may be o c c u r r i n g at l o w - l e v e l s , i t i s q u i t e common to o b s e r v e a r e l a t i v e a c c e -l e r a t i o n of a i r f l o w at h i g h e r l e v e l s o v e r a c i t y ( A l b e r t e t a l . , 1973). The mean wind speed r e c o r d e d a t the Vancouver I n t e r n a t i o n a l A i r p o r t was 0.2 km/h g r e a t e r than normal ( T a b l e 2.5). Whereas seven of the t h i r t e e n months r e c o r d e d h i g h e r than normal wind speeds, the remainder r e c o r d e d lower than n o r m a l . The g r e a t e s t d e v i a t i o n from normal o c c u r r e d i n November w i t h a mean 2 km/h l e s s than n o r m a l . For most c l i m a t e s t a t i o n s i n the Vancouver a r e a the p r e v a l e n t wind d i r e c t i o n i s from the e a s t and s o u t h e a s t , w i t h a secondary maximum from the n o r t h w e s t . The l a t t e r i s e s p e c i a l l y r e l a t e d to the w i n t e r passage o f f r o n -t a l storms and the n o r t h w e s t - s o u t h e a s t o r i e n t a t i o n o f the S t r a i t of G e o r g i a , w h i c h f u r t h e r c h a n n e l s the f l o w . The e a s t - west a l i g n m e n t of the f l o w i s a l s o caused by the l a n d / s e a b r e e z e c i r c u l a t i o n w hich i s common i n the summer a n t i c y c l o n i c s i t u a t i o n (Hay & Oke, 1976). The K e r r i s d a l e s i t e had a mean wind speed of 1.3 m/s f o r the y e a r (Appendix I V . 5 ) . The maximum c o e f f i c i e n t of v a r i a t i o n and the maximum mean d a i l y v a l u e of wind speed both o c c u r i n December ( F i g . 3.10). In J a n u a r y 1982 the maximum mean monthly v a l u e o c c u r r e d . The minimum mean monthly wind speed and c o e f f i c i e n t of v a r i a t i o n o c c u r r e d i n September. The w i n t e r mean windspeed was h i g h e r than t h a t of the summer but the c o e f f i c i e n t was a l s o l a r g e r . The wind speeds r e c o r d e d at the a i r p o r t were more than t w i c e t h a t r e c o r d e d at the K e r r i s d a l e s i t e f o r each month. The windspeeds measured at the Vancouver U.B.C. and Vancouver Harbour c l i m a t e s t a t i o n s were c l o s e r to 59 F i g . 3.10 Annual h o u r l y windspeed by month f o r K e r r i s d a l e (a) D a i l y maxima, minima and mean (b) C o e f f i c i e n t of v a r i a t i o n maximum mean minimum Time (months) 60 t h o s e a t the K e r r i s d a l e s i t e ( T a b l e 3.8). The p e r c e n t a g e d e p a r t u r e was l a r g e i n j u s t about a l l c a s e s , a l t h o u g h the U.B.C. mean wind speed f o r June was o n l y s l i g h t l y l a r g e r and i n J u l y was l e s s than K e r r i s d a l e ( T a b l e 3.8). 3.7 I m p l i c a t i o n s f o r S e n s i t i v i t y A n a l y s e s D i s c u s s i o n of the v a r i a b i l i t y of the phenomena r e q u i r e d f o r the water b a l a n c e a l l o w s the d e t e r m i n a t i o n of the r e p r e s e n t a t i v e n e s s of the measured data r e l a t i v e t o o t h e r urban a r e a s i n Vancouver and the s i z e of the v a r i a -t i o n t o be used f o r s e n s i t i v i t y a n a l y s e s . The p r e c i p i t a t i o n measurements showed t h a t i n t r a s i t e v a r i a b i l i t y of c a t c h was s m a l l e r than the i n t e r s i t e v a r i a b i l i t y . Thus, the K e r r i s d a l e d a t a were t a k e n t o be r e p r e s e n t a t i v e of 'average' c o n d i t i o n s i n the a r e a . Based on the s p a t i a l d i s t r i b u t i o n of normal annual p r e c i p i t a t i o n a c r o s s Vancouver (Hay & Oke, 1976) a range of + 50% was c o n s i d e r e d a p p r o p r i a t e f o r s e n s i t i -v i t y a n a l y s e s . As the water use data were f o r an a r e a encompassing 191 l o t s t h e r e was a u t o m a t i c s p a t i a l a v e r a g i n g f o r w i t h i n s i t e v a r i a b i l i t y . F or s e n s i t i v i t y a n a l y s i s p u r p o s e s , a range o f + 55%, was chosen based on the work by Geyer et a 1. (1963) i n B a l t i m o r e , which t a k e s i n t o account the i n f l u e n c e o f the d e n s i t y o f h o u s i n g . Runoff was not measured i n t h i s s t u d y ; r a t h e r i t i s a p r o d u c t of the water b a l a n c e c a l c u l a t i o n s . The method of d e t e r m i n a t i o n depends on the p a r t i t i o n i n g of the catchment between p e r v i o u s and i m p e r v i o u s a r e a s . Ave-rage v a l u e s were a s s i g n e d f o r the r e t e n t i o n c a p a c i t i e s of the s u r f a c e s but f o r the s e n s i t i v i t y a n a l y s e s the range was based on the data p r e s e n t e d i n Tab l e 3.4. The s t a t u s of s o i l w i t h i n the urban environment i s v e r y v a r i a b l e due to the l a r g e number of d i s t u r b a n c e s . T h i s i n f l u e n c e s the s o i l water s t o r a g e 61 T a b l e 3.8 Mean monthly wind speed ( k m / h ) . f o r the Vancouver ( s o u r c e A.E.S.) MONTH KERRISDALE U.B.C. HARBOUR AIRPORT 1982 JANUARY 6.1 7.3 7.8 12.4 FEBRUARY 5.8 8.7 9.8 13.8 MARCH 5.3 6.8 7.0 11.4 APRIL 6.1 8.4 8.7 14.7 MAY 4.9 6.5 6.1 12.2 JUNE 4.2 4.5 5.9 11.3 JULY 4.2 2.6 7.6 12.8 AUGUST 3.8 - 7.6 12.3 SEPTEMBER 3.6 6.2 4.9 10.7 OCTOBER 4.5 9.2 7.8 12.9 NOVEMBER 4.1 7.0 7.4 10.2 DECEMBER 5.0 8.9 7.8 12.2 1983 JANUARY 4.8 8.0 7.6 11.8 62 c a p a c i t y , the f i e l d c a p a c i t y and the r a t e of i n f i l t r a t i o n . The e f f e c t on f i e l d c a p a c i t y i s p r o b a b l y the most i m p o r t a n t . The i n t r a - s i t e v a r i a b i l i t y of f i e l d c a p a c i t y would p r o b a b l y be of the o r d e r of 15%. The v a l u e s used f o r the s e n s i t i v i t y a n a l y s i s ranged between 0 . 3 5 and 0 . 7 0 . The i n t r a - s i t e v a r i a b i l i t y o f i n f i l t r a t i o n r a t e s on p e r v i o u s s u r f a c e s i s not of im p o r t a n c e i n t h i s s t u d y because the r a t e c o u l d be assumed t o be g r e a t e r than the maximum d a i l y p r e c i p i t a t i o n i n t e n s i t y . I n f i l t r a t i o n would be i m p o r t a n t i n are a s where t h i s i s not the c a s e . E v a p o r a t i o n was not measured i n t h i s s t u d y . Hence the v a r i a b i l i t y of the c l i m a t i c elements used i n i t s c a l c u l a t i o n were c o n s i d e r e d . A + 1 5 7 , range of v a r i a t i o n f o r net r a d i a t i o n was used f o r the s e n s i t i -v i t y a n a l y s e s . T h i s c h o i c e was based on c o n s i d e r a t i o n of the measured s p a t i a l v a r i a b i l i t y and the p o s s i b l e i n s t r u m e n t a t i o n e r r o r . The s t o r a g e heat f l u x v a r i e s s p a t i a l l y as a f u n c t i o n of the l a n d c o v e r ( f o r example between greenspace and b u i l t a r e a s ) . The d i f f e r e n c e i n g r e e n -space between Sunset ( 0 . 6 4 ) and K e r r i s d a l e ( 0 . 6 0 ) caused a d i f f e r e n c e of l e s s than 3 7 o i n t h e i r s t o r a g e heat f l u x ( i f the same net r a d i a t i o n f l u x was assumed f o r b o t h s i t e s ) . Comb i n i n g the v a r i a b i l i t y of b o t h net r a d i a t i o n and l a n d use a range of + 2 5 7 , was used f o r the s e n s i t i v i t y a n a l y s e s . Temperature v a r i a b i l i t y i s r e l a t e d to l a n d use, as demonstrated by urban heat i s l a n d r e s e a r c h . Temperature was v a r i e d t h rough a range of + 2 5 7 , based on te m p e r a t u r e normal maps of Vancouver (Hay & Oke, 1 9 7 6 ) and urban heat i s l a n d s t u d i e s (Oke, 1 9 8 2 ) . The s p a t i a l v a r i a b i l i t y of r e l a t i v e h u m i d i t y i s r e l a t e d t o the v a r i a -b i l i t y of l a n d c o v e r between impermeable and permeable s u r f a c e s , and the l o c a t i o n of combustion s o u r c e s which have water vapour as one of t h e i r end p r o d u c t s . The s p a t i a l v a r i a b i l i t y w i t h i n the stu d y a r e a was assumed to be 6 3 r e l a t i v e l y s m a l l . T h i s was based on the f a c t t h a t the t e m p e r a t u r e v a r i a -b i l i t y was s m a l l , t h e r e are no major l a n d use d i f f e r e n c e s , and the o n l y combustion s o u r c e s were c a r s and space h e a t i n g ( w h i c h may be c o n s i d e r e d t o be s p a t i a l l y averaged s o u r c e s ) . The range used f o r s e n s i t i v i t y a n a l y s e s was the same as f o r t e m p e r a t u r e . Wind r o s e s f o r the t h r e e c l i m a t e s t a t i o n s s u r r o u n d i n g the s t u d y a r e a (Hay & Oke, 1976) have s i m i l a r form. They show the predominant wind d i r e c -t i o n t o be from the e a s t . A c t u a l s p a t i a l v a r i a b i l i t y of wind speed w i t h i n Vancouver i s l a r g e . The wind speed measured at K e r r i s d a l e was l e s s t h a n t h a t at s u r r o u n d i n g c l i m a t e s t a t i o n s . T h i s i s p r o b a b l y due t o i t s s i t i n g w i t h i n a l e s s exposed a r e a compared to the A.E.S. c l i m a t e s t a t i o n s . T h e r e -f o r e the s e n s i t i v i t y a n a l y s e s used a wide range of v a l u e s (between + 65% and - 35%, of measured v a l u e s ) . The w a t e r b a l a n c e s t u d y of the K e r r i s d a l e / O a k r i d g e a r e a was c a r r i e d out f o r a y e a r t h e r e f o r e the s e a s o n a l and s h o r t e r term t e m p o r a l v a r i a b i l i t y a r e encompassed. C o n s i d e r a t i o n , t h e n , has t o be g i v e n t o the t e m p o r a l r e p r e s e n t a t i v e n e s s of 1982. T h i s can be done th r o u g h the use of A.E.S. d a t a f o r 1982 i n r e s p e c t t o the l o n g term normal f o r the A i r p o r t c l i m a t e s t a t i o n ( T a b l e 2.5). The f i r s t h a l f of the year and the l a s t two months c o n t a i n e d some a n o m a l i e s , but the remainder were c l o s e t o n o r m a l . The major d e v i a -t i o n s were i n p r e c i p i t a t i o n , ( J a n u a r y - A p r i l , and J u l y were w e t t e r ; and May-June d r i e r than n o r m a l ) . May was the t h i r d d r i e s t on r e c o r d and J u l y was the f i f t h w e t t e s t and the d u l l e s t on r e c o r d . The p e r i o d December 1982 -J a n u a r y 1983 was much m i l d e r than normal w i t h J a n u a r y 1983 b e i n g the war-mest e v e r r e c o r d e d at the A i r p o r t . 64 CHAPTER 4 WATER BALANCE: METHOD, RESULTS AND SENSITIVITY ANALYSIS 4.1 Methodology The c a l c u l a t i o n of the wat e r b a l a n c e was c a r r i e d out on a d a i l y b a s i s u s i n g a computer program (BALDAY) w r i t t e n i n FORTRAN f o r the U.B.C. Amdahl 470/V8 computer (Appendix V ) . The s t r u c t u r e of the program and o r d e r of c a l c u l a t i o n a r e o u t l i n e d i n F i g . 4.1. The major s u b r o u t i n e s a r e i d e n t i f i e d by c a p i t a l s on the l e f t hand s i d e of the f i g u r e . 4.1.1 INPUT A l l d a i l y d a t a and parameters d e s c r i b i n g the catchment ( F i g . 4.1, Tab l e 4.1) are rea d i n a t the b e g i n n i n g of the program. I n i t i a l i s a t i o n of the a r r a y which s t o r e s the c a l c u l a t e d r e s u l t s and c o n v e r s i o n of the p i p e d -i n water t o a depth of water a l s o o c c u r s w i t h i n the INPUT s u b r o u t i n e . 4.1.2 RUNOFF The RUNOFF s u b r o u t i n e has two f u n c t i o n s : 1) the a d d i t i o n of water t o the i n d i v i d u a l s u r f a c e t y p e s ; and 2) the c a l c u l a t i o n of r u n o f f . The f i r s t s t e p i s t o det e r m i n e whether p r e c i p i t a t i o n has o c c u r r e d . The water i s then d i v i d e d between the t h r e e s u r f a c e t y p e s : i m p e r v i o u s ; i r r i -g a t e d p e r v i o u s ; and u n i r r i g a t e d p e r v i o u s , a c c o r d i n g to the p r o p o r t i o n of the catchment they r e p r e s e n t . The s u b r o u t i n e PART i s then c a l l e d , i n which the water i s a c t u a l l y a p p l i e d to the environment. The f i r s t s t e p i s to add water to each r e t e n -t i o n s t o r a g e a r e a : the s t a t u s of each i s then checked. I f the water a p p l i e d t o the pavement r e t e n t i o n s t o r a g e causes i t t o exceed i t s c a p a c i t y the s u r p l u s water i s added t o e x t e r n a l r u n o f f . S i m i l a r l y e xcess water added to the i r r i g a t e d and/or u n i r r i g a t e d r e t e n t i o n s t o r a g e s c o n t r i b u t e s t o the s o i l 65 F i g 4.1 B a s i c s t r u c t u r e of the BALDAY program INPUT - r e a d i n d a i l y d a t a - r e a d i n parameters d e s c r i b i n g catchment - i n i t i a l i s e r e s u l t s a r r a y - c o n v e r t water p i p e d - i n t o a depth d a i l y c a l c u l a t i o n RUNOFF - add p r e c i p i t a t i o n t o s t o r a g e s @. r e t e n t i o n - p e r v i o u s - u n i r r i g a t e d - i r r i g a t e d PART excess — s t o r a g e e x c e s s — r u n o f f ® . r e t e n t i o n - i m p e r v i o u s PART excess — r u n o f f - add s p r i n k l i n g water to s t o r a g e s r e t e n t i o n - p e r v i o u s i r r i g a t e d PART excess — s t o r a g e e x c e s s — r u n o f f EVAPORATION - c a l c u l a t e d from c l i m a t o l o g i c a l d a t a i f p r e c i p i t a t i o n >, 5 mm f o r day or i m p e r v i o u s r e t e n t i o n c o n t a i n s water — P r i e s t l e y and T a y l o r (1972) e l s e B r u t s a e r t and S t r i e k e r (1979) form of e q u a t i o n m o d i f i e d f o r the suburban environment STORE - s u b t r a c t e v a p o r a t i o n from s t o r a g e s (a), r e t e n t i o n - p e r v i o u s - u n i r r i g a t e d - i r r i g a t e d - i m p e r v i o u s ® . s t o r a g e CHSTOR - s u b t r a c t the s t a t u s o f p r e c e d i n g day's s t o r a g e s from today's TOTAL - c a l c u l a t e s monthly, s e a s o n a l and annual s t a t i s t i c s \ OUTPUT - w r i t e s r e s u l t s 66 T a b l e 4.1 D a i l y d a t a r e q u i r e m e n t s and catchment parameters f o r BALDAY. Catchment parameter v a l u e s a r e f o r the K e r r i s d a l e / O a k r i d g e s i t e DAILY DATA UNITS D a i l y Averages Day Net r a d i a t i o n S t o r a g e heat f l u x Temperature R e l a t i v e h u m i d i t y Wind speed S o i l m o i s t u r e J u l i a n day W/m2 W/m2 °C % m/s dimens i o n l e s s D a i l y T o t a l s P r e c i p i t a t i o n Water p i p e d - i n mm m 3/d PARAMETER VALUE Ar e a P e r v i o u s - u n i r r i g a t e d - i r r i g a t e d (UAREA) (IAREA) 0.3015 0.3015 I n i t i a l S t o r a g e C o n d i t i o n s S o i l (DAY(1,9)) 150.0 mm R e t e n t i o n - p e r v i o u s - u n i r r i g a t e d (DAY(1,10)) 0.0 mm - i r r i g a t e d (DAY(1,27)) 0.0 mm - i m p e r v i o u s (DAY(1,11)) 0.0 mm F i e l d c a p a c i t y D i s p l a c e m e n t l e n g t h Roughness l e n g t h - vapour - momentum He i g h t of wind measurements Mean w i n t e r w a t e r p i p e s 1 R a t i o of s p r i n k l i n g . t o v e g e t a t i o n S t o r a g e C a p a c i t i e s S o i l R e t e n t i o n - p e r v i o u s - u n i r r i g a t e d - i r r i g a t e d - i m p e r v i o u s (SSMF) (D) (Z0V) (Z0M) (MPIPES) (PERCEN) (ST0R) (VRETNU) (VRETNI) (PRETEN) 0.55 3.5 m 0.052 m 0.52 m 9.0 m 0.7635 mm 1.0 150.0 mm 7.0x0.3015=2.11 mm 2.11 mm 1.46x0.397=0.59 mm NOTE: 1. J a n u a r y to March, November to Janu a r y 67 s t o r a g e , and i f t h i s c a p a c i t y i s exceeded the water goes to e x t e r n a l r u n o f f . The p r o g r a m ' r e t u r n s t o the RUNOFF s u b r o u t i n e at t h i s p o i n t to d e a l w i t h the water p i p e d - i n . T h i s component i s i n i t i a l l y s e p a r a t e d between i n t e r n a l and e x t e r n a l water use by s u b t r a c t i o n of the mean w i n t e r d a i l y w a ter use (MPIPES) from the t o t a l w ater p i p e d i n . I f the water use f o r the day was l e s s t h a n or e q u a l t o MPIPES the i n t e r n a l r u n o f f i s s e t e q u a l t o the depth of w a t e r p i p e d i n . However, i f the water use f o r the day was g r e a t e r than MPIPES th e n the i n t e r n a l w ater use and the i n t e r n a l r u n o f f are s e t e q u a l t o MPIPES. The e x t e r n a l water use i s s e t t o the e x c e s s of the t o t a l i n t e r n a l water use from MPIPES. The p a r t i t i o n i n g of the p i p e d - i n w ater between the p e r v i o u s i r r i g a t e d and the i m p e r v i o u s i s by the f a c t o r PERCEN. I t i s the p r o p o r t i o n of the p i p e d s u p p l y which i s a p p l i e d t o the i r r i g a t e d p e r v i o u s a r e a , w i t h the r e m a i n i n g p o r t i o n g o i n g t o the i m p e r v i o u s a r e a . When the s u b r o u t i n e PART i s c a l l e d the e x e c u t i o n goes t h r o u g h the sequence as d e s c r i b e d above. On the r e t u r n of c o n t r o l t o the RUNOFF s u b r o u t i n e the t o t a l d a i l y r u n o f f i s c a l c u l a t e d by the a d d i t i o n of the i n t e r n a l and e x t e r n a l r u n o f f components. The program then r e t u r n s c o n t r o l t o the MAIN s e c t i o n of the program. 4.1.3 EVAP The purpose of the EVAP s u b r o u t i n e i s to c a l c u l a t e d a i l y e v a p o r a t i o n ( F i g . 4.1). The s a t u r a t i o n vapour p r e s s u r e and the s l o p e of the s a t u r a t i o n vapour p r e s s u r e c u r v e are c a l c u l a t e d u s i n g the e q u a t i o n s p r e s e n t e d by Lowe (1977) w h i c h r e q u i r e s temperature d a t a . The vapour p r e s s u r e ( e a ) can then be d e t e r m i n e d from the r e l a t i v e h u m i d i t y ( h r ) measurements: e a = h r x e s (4.1) 68 where e s i s s a t u r a t i o n vapour p r e s s u r e . The p s y c h r o m e t r i c " c o n s t a n t " (Y) v a r i e s w i t h t e m p e r a t u r e and p r e s s u r e ( R i p l e y , 1976; S t i g t e r , 1976). The p r e s s u r e v a r i a t i o n r e c o r d e d a t one e l e v a t i o n i s s m a l l so the v a l u e of Y was d e t e r m i n e d u s i n g t e m p e r a t u r e and an e q u a t i o n (4.2) d e r i v e d from M o n t e i t h ( 1 9 7 3 ) : Y = 0.646 + (0.00065 x T) (4.2) where T i s t e m p e r a t u r e . E v a p o r a t i o n r a t e s were c a l c u l a t e d a c c o r d i n g t o a scheme d e v i s e d by Oke and S t e y n (1983, p e r s . comm.) (Appendix I I I ) . T h i s model has pe r f o r m e d w e l l under a v a r i e t y of summer/autumn c o n d i t i o n s w i t h i n Vancouver but has not been v e r i f i e d f o r o t h e r seasons or i n o t h e r l o c a t i o n s . The s i z e s of the d i s p l a c e m e n t and momentum roughness l e n g t h s used a re thos e c a l c u l a t e d by S t e y n (1980b) f o r the Sunset a r e a . The d i s p l a c e m e n t l e n g t h was d e t e r m i n e d u s i n g K u t z b a c h ' s (1961) and N i c h o l s o n ' s (1975) t e c h -n i q u e s w h i l e L e t t a u ' s (1969) method was used f o r momentum roughness. The wat e r vapour roughness was c a l c u l a t e d u s i n g the f a c t t h a t the b u l k t r a n s f e r c o e f f i c i e n t f o r water vapour i s 10% of the drag c o e f f i c i e n t at Z0M=0.52m ( B r u t s a e r t , 1982). The depth o f water e v a p o r a t e d was d e t e r m i n e d u s i n g E=Q^/L V where L v i s l a t e n t heat of v a p o r i s a t i o n w h i c h was c a l c u l a t e d u s i n g t e m p e r a t u r e and S t o r r and den Hartog ' s (1975) e q u a t i o n . 4.1.4 STORE The STORE s u b r o u t i n e removes the c a l c u l a t e d e v a p o r a t i o n (as an e q u i v a -l e n t depth of w a t e r ) from the suburban water budget. I n i t i a l l y i t d e t e r -mines which e q u a t i o n was used t o c a l c u l a t e e v a p o r a t i o n (dependent on p r e c i -p i t a t i o n ) . I f eqn. I I I . l was used, then the t o t a l depth of water e v a p o r a t e d i s 69 d i v i d e d a c c o r d i n g t o the p r o p o r t i o n of s u r f a c e t y p e s w i t h i n the catchment (as i n the RUNOFF s u b r o u t i n e f o r the a d d i t i o n of p r e c i p i t a t i o n ) , and the water i s removed from the i n d i v i d u a l r e t e n t i o n s t o r e s . When t h e r e i s more e v a p o r a t i o n than water then i t i s removed from s o i l s t o r a g e . I f eqn. I I I . 2 was used t o c a l c u l a t e the e v a p o r a t i o n the depth of wa t e r i s d i v i d e d between the two p e r v i o u s l a n d uses o n l y . Water i s removed f i r s t -l y from the p e r v i o u s u n i r r i g a t e d r e t e n t i o n s t o r e . S e c o n d l y , the excess i s added t o t h a t removed from the i r r i g a t e d a r e a , and t h i r d l y , any r e m a i n i n g e v a p o r a t i v e w a t e r i s e x t r a c t e d from s o i l s t o r a g e . 4.1.5 CHSTOR The CHSTOR s u b r o u t i n e i s the l a s t s u b r o u t i n e used t o p e r f o r m the d a i l y c a l c u l a t i o n s . I t c a l c u l a t e s the change i n s t o r a g e by comparing the updated s t a t u s o f the water s t o r e s w i t h t h e i r s t a t u s on the p r e c e d i n g day. The c a l c u l a t i o n i s pe r f o r m e d f o r each o f the f o u r s t o r a g e l o c a t i o n s ( i m p e r v i o u s r e t e n t i o n ; p e r v i o u s i r r i g a t e d r e t e n t i o n ; p e r v i o u s u n i r r i g a t e d r e t e n t i o n and s o i l s t o r a g e ) and then summed. 4.1.6 TOTAL The s u b r o u t i n e TOTAL c a l c u l a t e s r u n o f f r a t i o s , and monthly, s e a s o n a l and annual b a l a n c e s . The b a l a n c e s c a l c u l a t e d a r e f o r the whole suburban environment and f o r the e x t e r n a l suburban environment. 4.1.7 OUTPUT OUTPUT i s the f i n a l s u b r o u t i n e i n the BALDAY program ( F i g . 4.1). I t w r i t e s the d a i l y r e s u l t s of the water b a l a n c e s . The r e s u l t s i n c l u d e the s t a t u s of the s t o r a g e l o c a t i o n s and the d a i l y change i n s t o r a g e . 70 4.2 R e s u l t s 4.2.1 I n t r o d u c t i o n The water b a l a n c e r e s u l t s p r e s e n t e d i n t h i s s e c t i o n were c a l c u l a t e d u s i n g the BALDAY program (Appendix V) as d e s c r i b e d i n s e c t i o n 4.1. Appendix I I l i s t s the d a i l y i n p u t d a t a which were measured as s t a t e d i n C h a p t e r 2, ex c e p t f o r the s t o r a g e heat f l u x w h i c h was d e t e r m i n e d as no t e d i n s e c t i o n 3.6.2. The r a t i o n a l e b e h i n d the i n d i v i d u a l catchment parameter v a l u e s ( T a b l e 4.1) was p r e s e n t e d i n C h a p t e r s 2 and 3. The t o t a l w ater b a l a n c e f o r the whole suburban a r e a of K e r r i s -d a l e / O a k r i d g e ( i n c l u d i n g the i n t e r n a l w ater component) d i f f e r s from t h a t f o r the e x t e r n a l system w i t h r e s p e c t to the water use and r u n o f f terms ( F i g s . 4.2 & 4.3). U n l e s s the d a i l y t o t a l of water use was l e s s t h a n the mean w i n t e r v a l u e the i n t e r n a l use i s assumed to be e q u a l to the mean w i n t e r use. For the months May t o September a c t u a l i n t e r n a l w ater use e q u a l l e d p o s s i b l e water use (as d e f i n e d by program) ( T a b l e 4.2); whereas f o r the r e m a i n i n g months the monthly t o t a l was l e s s than the p o s s i b l e w a t e r use. The program causes the i n t e r n a l water use t o t o e q u a l the i n t e r n a l r u n o f f . 4.2.2 Base R e s u l t s I n t e r n a l water use and i n t e r n a l r u n o f f have o p p o s i t e s e a s o n a l t r e n d s when e x p r e s s e d as p e r c e n t a g e s of t h e i r r e s p e c t i v e t o t a l s ( F i g . 4.4). The p r o p o r t i o n a l i m p o r t a n c e of i n t e r n a l w ater use d e c r e a s e s i n the summer months as the a c t u a l amount of water use i n c r e a s e s , w i t h the minimium o c c u r r i n g i n June which c o i n c i d e s w i t h the month of g r e a t e s t water use ( F i g . 4.2). I n c o n t r a s t the impo r t a n c e of i n t e r n a l r u n o f f i n c r e a s e s i n the summer ( F i g . 4.4). T h i s i s due to two f a c t o r s . F i r s t l y , t h e r e i s l e s s 71 F i g . 4.2 Mo n t h l y water b a l a n c e f o r the whole K e r r i s d a l e / O a k r i d g e system 250 200-~ 150-E J F M A M J J A S O N . D J Time (months) 72 F i g . 4.3 E x t e r n a l monthly water b a l a n c e f o r K e r r i s d a l e / O a k r i d g e 73 T a b l e 4.2 Comparison o f a c t u a l and p o s s i b l e monthly water use MONTH N INTERNAL WATER USE (mm/month) ACTUAL POSSIBLE 1982 JANUARY 10 7. .49 7 .64 FEBRUARY 28 21. .34 21 .38 MARCH 31 22. .33 23 .67 APRIL 30 22. ,45 22 .90 MAY 31 23. ,67 23 .67 JUNE 30 22. .90 22 .90 JULY 31 23. ,67 23 .67 AUGUST 31 23. ,67 23 .67 SEPTEMBER 30 22. .90 22 .90 OCTOBER 31 23. ,45 23 .67 NOVEMBER 30 22. ,21 22 .90 DECEMBER 31 22. .98 23 .67 1983 JANUARY 21 15. ,34 16 .03 NOTE: N i s the number of days i n the 'month' 74 F i g . 4.4 Monthly i n t e r n a l water use and r u n o f f , and t h e i r p r o p o r t i o n of t o t a l w a ter use and r u n o f f (Note the broken l i n e s i n the monthly i n t e r n a l water use/ r u n o f f are the t o t a l of the two J a n u a r y p e r i o d s ) 75 p r e c i p i t a t i o n i n the summer months ( F i g . 4.2) and t h e r e f o r e l e s s n a t u r a l r u n o f f , and s e c o n d l y , the s o i l w ater s t o r a g e i s no l o n g e r a t c a p a c i t y so the e x t e r n a l r u n o f f i s o c c u r r i n g o n l y from the i m p e r v i o u s a r e a (Appendix V I ) . The s o i l s t o r a g e i s f u l l e x c e p t f o r o c c a s i o n a l days u n t i l J u l i a n day 108 and does not r e t u r n t o c a p a c i t y u n t i l day 289 ( F i g . 4.5). D u r i n g t h i s p e r i o d e x t e r n a l r u n o f f can o c c u r o n l y from the i m p e r v i o u s a r e a . The i n t e r -n a l r u n o f f r e p r e s e n t s the most s i g n i f i c a n t p r o p o r t i o n of t o t a l monthly r u n o f f i n May, the month w i t h l e a s t p r e c i p i t a t i o n ( F i g . 4.2). There was a drop i n s i g n i f i c a n c e i n J u l y due t o the l a r g e amount of p r e c i p i t a t i o n r e c e i v e d i n t h i s month ( F i g . 4.4). A s i m i l a r change from the g e n e r a l t r e n d can be o b s e r v e d i n A p r i l due a l s o t o a l a r g e p r e c i p i t a t i o n r e c e i p t . The summer ( A p r i l t o September i n c l u s i v e ) e x t e r n a l water b a l a n c e ( T a b l e 4.3) had a p p r o x i m a t e l y e q u a l i n p u t s of water from p r e c i p i t a t i o n and p i p e s . E v a p o r a t i o n was the major p r o c e s s f o r removal of water from the suburban c a t c h m e n t , w i t h d r a w i n g 8 1 % ( o r 482 mm) of water i n the summer but o n l y 8% ( o r 73 mm) i n w i n t e r . I n the w i n t e r p r e c i p i t a t i o n was the p r i m a r y s u p p l i e r of w a t e r . The r u n o f f from the a r e a was 90% of the e x t e r n a l o u t p ut ( T a b l e 4.3), 86.5% of the annual r u n o f f . The net a c c u m u l a t i o n of water i n s t o r a g e over the y e a r i s due t o the r e t e n t i o n s t o r a g e s c o n t a i n i n g water at the end of the y e a r compared t o s t a r t i n g the year empty (Appendix V I ) . The s i g n i f i c a n c e of p r e c i p i t a t i o n as an i n p u t t o the water b a l a n c e d e c r e a s e s i n the summer months w h i l e the p i p e d - i n water s u p p l y i n c r e a s e s ( F i g . 4.6). The peak i n p i p e d - i n water o c c u r r e d i n June w i t h 112 mm b e i n g a p p l i e d t o the environment ( F i g . 4.3), whereas the peak t o t a l i n p u t month was F e b r u a r y w i t h 232 mm b e i n g s u p p l i e d by p r e c i p i t a t i o n and 1.5 mm from the p i p e d s u p p l y . E v a p o r a t i o n i n c r e a s e d i n s i g n i f i c a n c e i n the summer months as a p r o -76 r-a a a CM _J LLJ LD C C tr o h— CO a CD a a O CD m a UJ , D a t o o o CO m a a a ***** x SOIL STORAGE * SOIL MOISTURE 1 0 2 . 0 1 3 2 . 0 1 2 2 . 0 1 3 2 . 0 1 4 2 . 0 1 5 2 . 0 162.0 F i g . 4.5 D a i l y s o i l m o i s t u r e ( m e a s u r e d / i n t e r p o l a t e d ) and s t o r a g e (computed) 11 2 0 2 . 0 2 3 2 . 0 DRY 2 2 2 . 0 2 3 2 . 0 2 4 2 . 0 2 5 2 . 0 2 6 2 . 0 211.0 2 8 2 . 0 2 9 2 . 0 3 0 2 . 0 3 J 2 . 0 3 2 2 . 0 — f — 3 3 2 . 0 3 4 2 . 0 3 5 2 . 0 3 6 2 . 0 3 7 2 . 0 3 8 2 . 0 3 9 2 . 0 -I T a b l e 4.3 S e a s o n a l w a t e r b a l a n c e f o r K e r r i s d a l e / O a k r i d g e p + I = E + S + r Whole System Summer 298.0 435.5 482.1 -17.3 268.7 mm 40.6 59.4 65.7 -2.4 36.6 7„ W i n t e r Year 916.7 86.7 1214.7 67.8 140.7 13.3 576.2 32.2 72.7 6.9 554.8 31.0 21.5 2.0 963.2 mm 91.1 7o 4.2 1231.8 mm 0.2 68.8 % E x t e r n a l System S umme r 298.0 296.2 482.1 -17.3 129.4 mm 50.1 49.9 81.1 -2.9 21.8 % W i n t e r 916.7 99.4 5.5 0.6 72.7 7.9 21.5 2.3 828.0 mm 89.8 7o Year 1214.7 80.1 301.7 19.9 554.8 36.6 4.2 0.3 957.4 mm 63.1 7„ 78 F i g . 4.6 Suburban water b a l a n c e f o r K e r r i s d a l e / O a k r i d g e (7o) f o r the whole a r e a and f o r the e x t e r n a l environment — evaporation — runoff — change in storage 1 1 1 1 1 1 1 T 1 1 1 J F M A M J J A S O N D J Time Cmonths) 79 c e s s of w a t e r removal from the catchment w h i l e r u n o f f d e c r e a s e d ( F i g . 4.6). A p r i l and May were the months i n w h i c h the removal of water from s t o r a g e was the g r e a t e s t ( F i g . 4.3), whereas October had the l a r g e s t a d d i t i o n of water t o s t o r a g e . The monthly t r e n d s of the w a t e r b a l a n c e components f o r the whole system ( t h a t i s , i n t e r n a l and e x t e r n a l ) have the same shape as f o r the e x t e r n a l o n l y ( F i g . 4.6) but the p r e c i p i t a t i o n and e v a p o r a t i o n regimes are l e s s p r o m i n e n t . The e x t e r n a l r u n o f f r a t i o s f o r i m p e r v i o u s s u r f a c e s , as would be expec-t e d , are h i g h e r t h a n f o r the p e r v i o u s s u r f a c e s and the t o t a l e x t e r n a l environment ( F i g . 4.7). 4.2.3 Comparisons of the 1982 K e r r i s d a l e / O a k r i d g e r e s u l t s w i t h  o t h e r r e s u l t s The e x t e r n a l water b a l a n c e r e s u l t s f o r the J u l y - August p e r i o d of 1982 compare f a v o u r a b l y w i t h the r e s u l t s f o r the same p e r i o d i n 1980 ( L o u -don, 1981) ( T a b l e 4.4). There was a g r e a t e r amount of water added to the system i n 1982 but the r a t i o of p r e c i p i t a t i o n to p i p e d s u p p l y remained v i r t u a l l y the same. The t o t a l amount of e v a p o r a t i o n was a p p r o x i m a t e l y 180 mm i n b o t h y e a r s ( T a b l e 4.4). The same p r o p o r t i o n of water was removed from the catchment by r u n o f f (14%) i n b o t h y e a r s a l t h o u g h 1982 had a g r e a t e r a c t u a l volume of w a t e r . The s m a l l change i n s t o r a g e i n 1980 was n e g a t i v e ; t h a t i s , t h e r e was a net removal of water from s t o r a g e whereas i n 1982 t h e r e was a net a d d i t i o n of w a t e r . Water b a l a n c e c a l c u l a t i o n s r e p o r t e d by Hare and Thomas (1979) based on c l i m a t e normals (1941-1970) f o r Vancouver I n t e r n a t i o n a l A i r p o r t u s i n g the T h o r n t h w a i t e water budget methodology d i d not i n c l u d e a p i p e d - i n water component: 80 F i g . 4.7 Mo n t h l y r u n o f f r a t i o s f o r O a k r i d g e ( i . e . r u n o f f / p r e c i p i t a t i o n ) 1.0 J F M A M J J A S O. N D J Time (months) 81 T a b l e 4.4 Comparison of the K e r r i s d a l e / O a k r i d g e water budget i n J u l y -August 1982 w i t h t h a t i n 1980 (Loudon, 1981) p + I = E + S + r 1982 103 128 182 16 33 mm 45 55 79 7 14 % 1980 90 106 181 -13 28 mm 46 54 93 -7 14 7o T a b l e 4.5 Comparison of the K e r r i s d a l e / O a k r i d g e r e s u l t s w i t h the Sydney, A u s t r a l i a ( B e l l , 1972) water b a l a n c e P + I + G = = E + S + r Sydney 1150 333 16 736 0 763 mm 77 22 1 49 0 51 % Vancouver 1215 576 0 555 4 1232 mm 68 32 0 31 0 69 % 82 p = E + r (4.2) 1068 = 533 + 535 mm The amount of e v a p o r a t i o n c a l c u l a t e d f o r an annual p e r i o d i s s i m i l a r t o t h a t c a l c u l a t e d f o r 1982 (555 mm), but the p r e c i p i t a t i o n and t h e r e f o r e r u n o f f are lower ( T a b l e 4.3). The p a r t i t i o n i n g o f the budget t h r o u g h the y e a r i s d i f f e r e n t between the two s t u d i e s ; t h i s s t u d y has c o n s i s t e n t l y lower e v a p o r a t i o n i n the w i n t e r months and h i g h e r v a l u e s i n the summer. Thus the s i m i l a r i t y of the annual water b a l a n c e s i s p a r t i a l -l y c o i n c i d e n t a l . The a n n u a l water b a l a n c e from t h i s s t u d y i s not d i r e c t l y comparable w i t h o t h e r urban water b a l a n c e s t u d i e s due t o the d i f f e r e n c e s i n the c l i -mate, the a c t u a l format of the water b a l a n c e and the l a n d use c o n s i d e r e d (see Chapter 1 ) . Of the annual water b a l a n c e s l i s t e d i n T a b l e 1.3 o n l y the Sydney s t u d y ( B e l l , 1972) has the p i p e d - i n water as an i n p u t t o the water b a l a n c e . The O a k r i d g e catchment had a l a r g e r s u p p l y of water b o t h from the p r e c i p i t a t i o n and the p i p e d - i n water s u p p l y but assumed no a d d i t i o n from groundwater ( T a b l e 4.5). E v a p o r a t i o n was more s i g n i f i c a n t and a c c o u n t e d f o r a l a r g e r a c t u a l volume of water removal i n Sydney than Vancouver. T h i s i s p r o b a b l y due t o Sydney's warmer c l i m a t e . On the o t h e r hand, the r u n o f f i n Vancouver was a p p r o x i m a t e l y 470 mm g r e a t e r than i n Sydney and hence formed a more s i g n i f i c a n t o u t p u t of the water b a l a n c e . In o r d e r t o compare the O a k r i d g e r u n o f f r a t i o s f o r 1982 w i t h a l o c a l n a t u r a l regime a s m a l l catchment (West Creek) e a s t of Vancouver w i t h an u n r e g u l a t e d f l o w was cho sen. The West Creek catchment i s gauged near F o r t L a n g l e y ( S t a t i o n no. 08MH098) by the Water Survey of Canada. The catchment has a d r a i n a g e a r e a of 11.4 km and i s l o c a t e d at l a t i t u d e 49° 08' 37'' N, l o n g i t u d e 122° 31' 48'' W. The p r e c i p i t a t i o n d a t a used i n the r a t i o were 83 those c o l l e c t e d by the A.E.S. a t W h a l l e y F o r e s t N u r s e r y s i t u a t e d at 49 11' N, 122° 50' W. The d a t a s e t i s not complete f o r the y e a r ( F i g . 4.8). The 1982 O a k r i d g e r u n o f f r a t i o s f o r the e x t e r n a l environment f o l l o w a s i m i l a r monthly t r e n d t o t h a t of the West Creek catchment and the c a l c u -l a t e d r u n o f f r a t i o s from the water b a l a n c e f o r Vancouver r e p o r t e d by Hare and Thomas (1979) ( F i g . 4.8). The p e r s i s t e n c e of r u n o f f i n t o the midsummer i n West Creek i s p r o b a b l y due t o groundwater i n f l u e n c i n g the b a s e f l o w . T h i s i s a f a c t o r w h i c h was not c o n s i d e r e d i n the suburban a r e a so may have b i a s e d the computed r u n o f f p a t t e r n ( t h a t i s , p a r t of the r u n o f f may go t o groundwater and then r e t u r n as r u n o f f i n a l a t e r month). The s t u d y a r e a i s s m a l l e r than West Creek, hence the e f f e c t p r o b a b l y i s not major. 4.2.4 S o i l M o i s t u r e and S t o r a g e The s o i l m o i s t u r e measured at the Hudson s i t e on a weekly b a s i s (Chap-t e r 2) and the d a i l y v a l u e s i n t e r p o l a t e d between measurements were compared w i t h the c a l c u l a t e d d a i l y s t a t u s of the s o i l s t o r a g e to h e l p a s s e s s the a b i l i t y of the BALDAY program to d e t e r m i n e t h i s term. F i g . 4.5 i s a p l o t of t h e i r d a i l y v a r i a t i o n . I t s h o u l d be noted t h a t the s o i l m o i s t u r e d a t a were det e r m i n e d by i n t e r p o l a t i o n between measurements made i n an u n i r r i g a t e d a r e a but the s o i l s t o r a g e r e s u l t s a r e r e p r e s e n t a t i v e of the combined i r r i -g a t e d and u n i r r i g a t e d a r e a . I n m i d w i n t e r the computed s o i l s t o r a g e d i d not show the same degree of temporal v a r i a b i l i t y as the o b s e r v e d s o i l m o i s t u r e . T h i s i s due p a r t i a l l y to the s o i l s t o r a g e h a v i n g a s e t l i m i t of 150mm so t h a t once i t i s f u l l v a r i a b i l i t y can o c c u r o n l y i f a decrease o c c u r s . The same g e n e r a l t r e n d i s found i n the two p l o t s f o r the r e m a i n i n g months. In summer the s t e a d y a v a i l a b i l i t y of water from the p i p e d - i n s u p p l y p r e v e n t s the computed o v e r a l l s o i l s t o r a g e from f o l l o w i n g the g e n e r a l 84 4.8 M o n t h l y r u n o f f r a t i o s f o r K e r r i s d a l e / O a k r i d g e , West Creek and Vancouver (Hare & Thomas, 1979) Time (months) 85 d e c r e a s e e x h i b i t e d by u n i r r i g a t e d m o i s t u r e measurements. The June s o i l m o i s t u r e showed a g e n e r a l d e c r e a s e t o day 172 and the n a g e n e r a l i n c r e a s e , whereas the s o i l s t o r a g e d i d not show such a d e c r e a s e ( F i g . 4.5). 4.2.5 E v a p o r a t i o n V a r i a b i l i t y K a l a n d a e t a l . (1980) a c c e p t e d t h e i r " r a t h e r l a r g e magnitude" l a t e n t heat f l u x measurements a f t e r e r r o r a n a l y s i s but posed the q u e s t i o n "what was the sou r c e o f m o i s t u r e t o su p p o r t t h e s e r a t e s of water l o s s ?" To attempt t o answer t h i s q u e s t i o n the s i z e o f the e v a p o r a t i o n r a t e s and the so u r c e s of water a v a i l a b l e t o s u p p o r t these r a t e s w i l l be c o n s i d e r e d f o r the p r e s e n t s t u d y . The d a i l y v a r i a t i o n of e v a p o r a t i o n through the ye a r i s p l o t t e d i n F i g . 4.9. The maximum d a i l y e v a p o r a t i o n of 6.00 mm (14.7 MJ/m 2/d) o c c u r r e d on day 167. T h i s s t u d y c o n t a i n s even h i g h e r e v a p o r a t i o n r a t e s than t h o s e r e p o r t e d by K a l a n d a et a 1. ( 1 9 8 0 ) , but t h i s i s t o be e x p e c t e d s i n c e t h e i r s t u d y was c a r r i e d out from mid-August t o e a r l y O c t ober 1977 which i s a f t e r the peak of energy a v a i l a b i l i t y (see Chapter 3 ) . The e v a p o r a t i o n r a t e s v a r i e d t h r o u g h the summer i n response t o p r e c i -p i t a t i o n e v e n t s ( F i g . 4.9). For example t h e r e was a r e d u c t i o n i n the evapo-r a t i o n on day 176 when 2.5 mm of r a i n f e l l ( F i g . 4.9). As i n the K a l a n d a et a l . s t u d y the e v a p o r a t i o n r a t e s were no t e d to remain h i g h a f t e r o n l y moderate r a i n f a l l : f o r example, the p e r i o d f o l l o w i n g 1.39mm of r a i n on day 156 u n t i l day 176 ( F i g . 4.9). T h i s p e r i o d a l s o c o n t a i n s the h i g h e s t e v a p o r -a t i o n r a t e (see above) f o r the y e a r , e l e v e n days a f t e r a p r e c i p i t a t i o n e v e n t . The water use f o r t h i s p e r i o d f o l l o w s a t r e n d s i m i l a r t o t h a t of e v a p o r a t i o n . That i s , on the day of and on the day f o l l o w i n g che r a i n f a l l the e x t e r n a l water use remained low: a f t e r t h i s water use began t o r i s e s t e a d i l y . The r e d u c t i o n i n e v a p o r a t i o n and water use on days 164 and 165 86 F i g . 4.9 D a i l y e x t e r n a l water b a l a n c e f o r K e r r i s d a l e / O a k r i d g e %~\ 22.0 3 2 . 0 4 2 . 0 5 2 . 0 6 2 . 0 7 2 . 0 8 2 . 0 9 2 . 0 102.0 132.0 122.0 132.0 142.0 152.0 162.0 172.0 162.0 192.0 2 0 2 . 0 2 1 2 . 0 DRY 2 2 2 . 0 2 3 2 . 0 2 4 2 . 0 2 5 2 . 0 2 6 2 . 0 2 7 2 . 0 2 8 2 . 0 2 9 2 . 0 3 0 2 . 0 33 2 . 0 3 2 2 . 0 3 3 2 . 0 3 4 2 . 0 3 5 2 . 0 3 6 2 . 0 3 7 2 . 0 3 8 2 . 0 3 9 2 . 0 can be a t t r i b u t e d t o t h e s e days b e i n g c l o u d y u n t i l noon and t h e n becoming sunny ( F i g . 4.9). The water f o r e v a p o r a t i o n was s u p p l i e d p r i m a r i l y from the s o i l s t o r a g e on day 157, a f t e r w hich the amount s u p p l i e d from s t o r a g e d e c r e a s e d w h i l e the water use went up u n t i l day 161. On t h a t day t h e r e was more water s u p p l i e d than e v a p o r a t e d , hence t h e r e was a net g a i n i n the s t o r a g e . The c l o u d y p e r i o d (days 165 and 166) caused water f o r e v a p o r a t i o n once a g a i n t o be s u p p l i e d from b o t h the s t o r a g e and the p i p e d s u p p l y ( F i g . 4.9). The i m p o r t a n c e of the p i p e d water s u p p l y i n m a i n t a i n i n g e v a p o r a t i o n r a t e s can be c o n s i d e r e d by c a l c u l a t i n g the water b a l a n c e when 1=0, t h a t i s , assuming no i r r i g a t i o n s u p p l e m e n t a t i o n of the b u d g e t ( F i g . 4.10). The evapo-r a t i o n r a t e s a r e lower because t h e r e i s no i r r i g a t e d p e r v i o u s a r e a (see s e c t i o n 4.1.3). D e s p i t e the lower e v a p o r a t i o n r a t e s the change i n s t o r a g e was l a r g e r . The minimum s o i l s t o r a g e s t a t u s of 96.8 mm o c c u r r e d on day 160 when t h e r e was p i p e d - i n w a t e r , but when 1=0 the s t o r a g e i s i n d i c a t e d t o be 79.2 on t h i s day and c o n t i n u e s t o drop u n t i l a minimum on day 273 b e f o r e r e t u r n i n g t o f u l l c a p a c i t y on day 359. U s i n g the BALDAY program i t can be seen t h a t the environment c o u l d not s u p p o r t the e v a p o r a t i o n r a t e s i f the p i p e d water s u p p l y was not a v a i l a b l e , but the program does not l i m i t the e v a p o r a t i o n r a t e s w i t h r e s p e c t t o s t a t u s of s o i l s t o r a g e . The s u p p l y of p i p e d - i n water t o the e x t e r n a l environment i s t h e r e f o r e i m p o r t a n t i n the summer months to h e l p m a i n t a i n the e v a p o r a t i o n r a t e s between p e r i o d s of r a i n f a l l . In the w i n t e r months the water f o r e v a p o r a t i o n i s p r i m a r i l y from p r e c i p i t a t i o n and s t o r a g e because the e x t e r n a l p i p e d - i n w ater s u p p l y i s m i n i m a l ( F i g . 4.9). 88 F i g 4.10 M o n t h l y water b a l a n c e w i t h no p i p e d water s u p p l y f o r K e r r i s d a l e / O a k r i d g e 89 4.2.6 Comparison of the Oa k r i d g e Water Use w i t h Other R e s i d e n t i a l Areas Geyer et a l . (1963) c a r r i e d out a stu d y of water use i n f o u r r e s i d e n -t i a l a r e a s o f B a l t i m o r e , M a r y l a n d w i t h a metered water s u p p l y d u r i n g the f o u r y e a r p e r i o d 1959 t o 1963. The a r e a has a warm temperate c l i m a t e w i t h a humid summer. They found t h a t t h e r e was an i n c r e a s e i n consumption per d w e l l i n g u n i t w i t h i n c r e a s i n g l o t s i z e and an i n c r e a s e i n magnitude of the d a i l y demand w i t h d e c r e a s i n g d e n s i t y ( T a b l e 3.4). The O a k r i d g e s t u d y s i t e has a l a r g e r consumption than would be expec-t e d from the Geyer e t a l . (1963) r e s u l t s ( T a b l e 4.6). T h i s may be due to' f o u r f a c t o r s : 1) the Vancouver water s u p p l y i s charged at a f l a t r a t e and t h e r e f o r e c o s t i s not a r e s t r i c t i n g f a c t o r ; 2) the number of water u s i n g d e v i c e s w i t h i n the home has i n c r e a s e d i n the l a s t 20 y e a r s ; 3) c u l t u r a l d i f f e r e n c e s i n a t t i t u d e s t o g a r d e n i n g ; and 4) d i f f e r e n c e s i n c l i m a t e . The f i r s t f a c t o r ' appears t o be the most i m p o r t a n t as the O a k r i d g e d a t a ( T a b l e 4.6) f i t s the same p a t t e r n as f l a t r a t e a r e a s ( T a b l e 4.7). (Hanke & F l a c k , 1968). I n Vancouver not o n l y i s the d a i l y average consumption h i g h , but the p r o p o r t i o n of s p r i n k l i n g of the t o t a l w ater use i s s i g n i f i c a n t l y l a r g e r than f o r the B a l t i m o r e r e s i d e n t i a l a r e a w i t h comparable l o t s i z e . The " n o r m a l " c l i m a t e of Vancouver ( T a b l e 2.5) i s s l i g h t l y w e t t e r and c o o l e r than B a l t i m o r e but i t s summer i s c o m p a r a t i v e l y d r i e r . 90 T a b l e 4.6 R e s i d e n t i a l water use d a t a f o r B a l t i m o r e and O a k r i d g e , Vancouver AREA STUDIED LOT SIZE (m 2) CONSUMPTION FOR GIVEN PERIOD AVERAGE MAXIMUM ANNUAL DAY (m 3 / d / d w e l 1 i n g u n i t ) RATIO MAXIMUM DAY TO AVERAGE ANNUAL SPRINKLING AS % OF ANNUAL WATER USE DONNYBROOK 102 0.59 0.80 1.35 7 .7 APARTMENTS 1 COUNTRY CLUB 650 0.86 2.49 2.90 17 .6 PARK 1 PINE VALLEY 1 706 1.00 4.13 4.14 18 .6 HAMPTON1 2601 1.26 4.95 4.16 39 .2 OAKRIDGE 2 669 1.69 8.48 5.02 52 .4 NOTE: 1. Geyer e t a l . (1963) 2. P r e s e n t s t u d y T a b l e 4.7 Water use i n metered and f l a t r a t e a r e a s ( a f t e r Hanke & F l a c k , 1968) METERED AREA FLAT RATE AREA ( m 3 / d a y / d w e l l i n g u n i t ) AVERAGE ANNUAL LEAKAGE & WASTE 0.095 0.136 HOUSEHOLD 0.935 0.893 SPRINKLING 0.704 1.590 TOTAL 1.734 2.619 MAXIMUM DAY 3.706 8.911 91 4.2.7 S t a t i s t i c a l E s t i m a t i o n of the Oa k r i d g e Water Use The s t a t i s t i c a l e s t i m a t i o n of water use v i a c l i m a t o l o g i c a l v a r i a b l e s was c a r r i e d out by Loudon (1981) f o r the Oa k r i d g e catchment ( T a b l e 4.8). R e g r e s s i o n e q u a t i o n s were d e v e l o p e d based on 35 days of data i n the J u l y -August 1980 p e r i o d . The measure of concordance t o be used i n the c o m p a r i -2 2 sons i s the c o e f f i c i e n t of d e t e r m i n a t i o n ( r ). The r v a l u e i s the e s t i -mated p r o p o r t i o n of the v a r i a n c e of the wa t e r use t h a t can be a t t r i b u t e d t o i t s l i n e a r r e g r e s s i o n on the independent v a r i a b l e s , w h i l e 1 - r i s the p r o p o r t i o n f r e e from the chosen independent v a r i a b l e s (Snedecor & Cochran, 1980). U s i n g s i m p l e l i n e a r r e g r e s s i o n , t e m p e r a t u r e was found t o be the b e s t d e s c r i p t o r of the v a r i a n c e . T h i s was a l s o found f o r the 1982 s t u d y , i r r e s -p e c t i v e of the time p e r i o d under c o n s i d e r a t i o n ( T a b l e 4.9). The a p p l i c a t i o n of the Loudon e q u a t i o n s 1 and 3 ( T a b l e 4.8) t o t h i s s t u d y on an annual b a s i s p r o v i d e d r 2 v a l u e s below 0.60 when compared w i t h the measured r e s i d e n t i a l use. However when the e q u a t i o n s a re a p p l i e d t o the J u l y and August p e r i o d ( t h a t i s , the same months as Loudon) an r 2 of between 0.70 and 0.75 was o b t a i n e d . Loudon's e q u a t i o n s 2,4,5 and 6 ( T a b l e 4.8) were a p p l i e d u s i n g i n c o m i n g s o l a r r a d i a t i o n d a t a c o l l e c t e d a t the Langara s i t e of the U.B.C. Me s o s c a l e S o l a r R a d i a t i o n Network (Hay, 1983). E q u a t i o n s 2 and 4 performed p o o r l y f o r both time s c a l e s . E q u a t i o n s 5 and 6 produced r v a l u e s between 0.70 and 0.75 f o r the J u l y - August p e r i o d but t h i s was not an improvement on e q u a t i o n 1. G i v e n t h a t r e g r e s s i o n e q u a t i o n s a re de v e l o p e d f o r s p e c i f i c time pe-r i o d s the r e s u l t s f o r J u l y and August 1982 are r e a s o n a b l e . The v a l u e s c a l c u l a t e d f o r the r e s t of the y e a r were o f t e n n e g a t i v e and t h e r e f o r e u n r e a l i s t i c . J u l y 1982 had 41% l e s s s u n s h i n e r e c o r d e d than J u l y 1980 where-a s , August 1982 had 63% more p r e c i p i t a t i o n and 7% l e s s s u n s h i n e hours than 92 T a b l e 4.8 A p p l i c a t i o n o f Loudon (1981) water use p r e d i c t i o n e q u a t i o n s t o 1982 dat a No. EQUATION r 2 b r 2 YEAR JULY-AUG YEAR JULY-AUG LOUDON 1 1=172.3T-2246.1 0.53 0.71 0.23 0.65 0.66 2 I=31.0K++51.6 0.48 0.44 0.77 0.97 0.42 3 I=133.2T+13.0D-1733.3 0.56 0.73 0.29 0.78 0.76 4 I=25.1K++19.7D-52.7 0.55 0.55 0.86 1.09 0.72 5 I=15.1K++136.6T-193.6 0.57 0.71 0.27 0.63 0.72 6 I=16.1K++93.4T+13.6D-1380.4 0.61 0.72 0.36 0.76 0.85 Where I water use (m 3/d) in c o m i n g s o l a r r a d i a t i o n (MJ/m /d) T t e m p e r a t u r e (°C) D days s i n c e p r e c i p i t a t i o n b y=a+bx Tab l e 4.9 S t e p w i s e m u l t i p l e r e g r e s s i o n e q u a t i o n s PERIOD EQUATION r 2 S.E. (m /d) YEAR I=39.52T-57.60 0.53 220.8 I=30.14T+33.62D-53.54 0.65 191.9 1=21.94T+29.70D+1.19Q* -39. 51 0.67 185.9 I=15.49T+29.29D+1.36Q* -335 .86SSM+130.55 0.68 183.8 I=14.11T+31.35D+1.53Q* -381 .72SSM+4.42p+ 129. 56 0.69 181.9 APRIL I=66.00T-446.18 0.56 259.4 - 1=90.24T-3.60J-139.02 0.72 205.9 SEPT I=72.61T-2.84J+26.10D- 120. 49 0.78 184.3 I=56.16T-3.41J+25.75D- 1175 •93SSM+547.34 0.80 174.4 MAY I=92.46T-823.72 0.66 236.9 - 1=112.62T-4.17J-383.29 0.76 198.1 SEPT 1=90.99T-3.42J-25.18D- 288. 20 0.82 171.6 I=80.71T-3.94J+23.22D- 1203 .90SSM+267.09 0.84 163.3 I=69.36T-3.26J+21.82D- 1409 .93SSM+1.04Q* + 245 .89 0.85 160.2 I=68.82T-3.35J+18.01D- 1595 .87SSM+4.85Q---17. 78Q S+196.42 0.86 153.9 JULY 1=107.46T-1206.20 0.72 183.6 -AUG I=118.20T+307.16U-1723 .97 0.74 176.6 Where Q* net r a d i a t i o n (W/m ) SSM s o i l m o i s t u r e ( d i m e n s i o n l e s s ) p p r e c i p i t a t i o n (mm) J J u l i a n day Qs s t o r a g e heat f l u x (W/m ) U wind speed (m/s) S.E. s t a n d a r d e r r o r of I 93 August 1980 ( T a b l e 4.10). The e q u a t i o n s d e v e l o p e d f o r 1982 had 477„ of the water use u n e x p l a i n e d by t e m p e r a t u r e f o r the y e a r ; 447,, f o r A p r i l t o September i n c l u s i v e ; 34% f o r May t o September and 2870 f o r J u l y and August ( T a b l e 3.6). To i n c r e a s e the amount of e x p l a n a t i o n and de c r e a s e the s t a n d a r d e r r o r of the water use e s t i m a t e , s t e p w i s e m u l t i p l e r e g r e s s i o n was per f o r m e d . The May t o September i n c l u s i v e e q u a t i o n s had s i x s t e p s and the m u l t i p l e r e g r e s s i o n e x p l a i n e d 867= of the v a r i a n c e and had a s t a n d a r d e r r o r of 153.9 m J/d. The s t a t i s t i c a l e s t i m a t i o n of summer water use based on the c a l c u l a t e d e v a p o r a t i o n was b e s t when the same day d a i l y t o t a l o f e v a p o r a t i o n was used ( T a b l e 4.11). There was a de c r e a s e i n the c o e f f i c i e n t of d e t e r m i n a t i o n as the e v a p o r a t i o n was l a g g e d by more days b e f o r e the water use. The l i n e a r r e l a t i o n s h i p was s t r o n g e s t i n June compared t o the o t h e r summer months ( T a b l e 4.11). 4.3 S e n s i t i v i t y I n t h i s s e c t i o n the r e s u l t s of s e n s i t i v i t y a n a l y s e s a r e p r e s e n t e d . The v a l u e s used f o r each s e n s i t i v i t y a n a l y s i s remain those p r e s e n t e d i n T a b l e 4.1 and the data i n Appendix I I , e x c e p t f o r the parameter under t e s t . The v a r i a b l e s were a l t e r e d over the ranges l i s t e d i n T a b l e 4.12. The d a i l y d a t a were v a r i e d a c c o r d i n g t o the measurement e r r o r s and the e s t i m a t e d v a r i a b i -l i t y of the i n p u t s w i t h i n the Vancouver a r e a (see C h a p t e r s 2 & 3 ) . The v a r i a t i o n s of the catchment's parameters were based on a r e v i e w of the l i t e r a t u r e (see Chapter 3 ) . 4.3.1 E v a p o r a t i o n The i n p u t s to the e v a p o r a t i o n c a l c u l a t i o n c o n s i s t of s i x d a i l y d a t a 94 T a b l e 4.10 Comparison of J u l y & August 1980 & 1982 c o n d i t i o n s f o r Vancouver I n t e r n a t i o n a l A i r p o r t (A.E.S.) PHENOMENA MONTH 1980 1982 NORMAL PRECIPITATION JULY 67.6 67.0 32.0 (mm) AUGUST 22.8 37.2 41.1 TEMPERATURE JULY 16.6 17.0 17.4 (°C) AUGUST 16.4 16.8 17.1 SUNSHINE JULY 296.5 210.3 304.5 ( h o u r s ) AUGUST 236.0 219.9 255.0 95 Table 4.11 L i n e a r r e g r e s s i o n e q u a t i o n s f o r p r e d i c t i n g w ater use from e v a p o r a t i o n PERIOD EQUATION r 2 S.E. (mm) NO LAG A p r i l - September A p r i l May June J u l y August September 1=0.8532E-0.6293 0.60 1.18 1=0.1257E+0.0299 0.21 0.19 1=0.3899E+0.1192 0.15 1.17 1=1.0580E-0.6529 0.74 1.16 1=0.7983E-0.5504 0.56 1.30 1=0.5142E+0.6928 0.25 1.17 1=0.3198E+0.0366 0.29 0.36 EVAPORATION LAGGED A p r i l - September Lagged 1 day Lagged 2 days Lagged 3 days 1=0.8235E-0.5486 0.56 1.23 1=0.7327E-0.3278 0.47 1.33 1=0.6433E-0.1088 0.36 1.46 96 T a b l e 4.12 S e n s i t i v i t y e v a p o r a t i o n a n a l y s i s scheme of the Oke and S t e y n (1983, p e r s . comm.) RANGE OF VARIATION SLOPE RESULTING RANGE BASE (day 161) (%) DAILY DATA Q* + 15% 0.04mm/Wm 47.9 Q s + 25% 0.04mm/Wm"2 13.0 T + 25% 0.08mm/°C 16.2 h p + 25% 0.04mm/% 19.0 u + 65% 35% 1.47mm/ms-1 32.7 SSM 1 + 25% 8.0 CATCHMENT PARAMETERS SSMF 1 0.35 - 0.70 8.0 AREAI 30 - 90 % 0.02mm/% 43.3 D 2 - 6 m 0.25mm/m 19.4 ZOV 0.026 - 0.130 m 7.14mm/m 15.4 ZOM 0.4 - 2.6 m 0.9lmm/m 40.5 NOTE 1. see t e x t 97 v a l u e s and f i v e parameters which d e s c r i b e the catchment ( T a b l e 4.12). Two days were chosen f o r s e n s i t i v i t y a n a l y s i s : days 161 and 335, w h i c h expe-r i e n c e d the median e v a p o r a t i o n under the base c o n d i t i o n s (see Appendix VI) i n June and December r e s p e c t i v e l y . The e v a p o r a t i o n on day 161 was c a l c u -l a t e d u s i n g eqn. I I I . 2 , whereas on day 335 eqn. I I I . l was used. The r e s u l t s of t h i s a n a l y s i s are shown i n F i g s . 4. l ' l and 4.12. Day 335 r e s u l t s are shown s o l e l y i n F i g . 4.11 and are f o r Q s o n l y because t h i s i s the o n l y i n p u t t o eqn. I I I . l w h ich i n f l u e n c e d the c a l c u l a t e d e v a p o r a t i o n . I n c o n t r a s t , the m o d i f i e d B r u t s a e r t and S t r i e k e r (1979) e v a p o r a t i o n equa-t i o n (eqn. I I I . 2 ) i s s e n s i t i v e to a l l the i n p u t s . The s o i l m o i s t u r e (SSM) and f i e l d c a p a c i t y (SSMF) cause o n l y a s m a l l a l t e r a t i o n i n e v a p o r a t i o n e x c e p t at the p o i n t where SSM/SSMF drops below 0.30, t h e r e b y c a u s i n g a drop of AA from 0.452 to 0.302 ( T a b l e I I I . l ) . T h i s drop l e a d s t o a r e d u c t i o n i n the s i z e of the aerodynamic term of the e v a p o r a t i o n e q u a t i o n (eqn. I I I . 2 ) t h e r e b y i n c r e a s i n g the e v a p o r a t i o n by a p p r o x i m a t e l y 0.5mm due to e x p e c t e d a d v e c t i o n between the i r r i g a t e d and u n i r r i g a t e d a r e a s . The s l o p e s of the r e l a t i o n s h i p s d e t e r m i n e d from the s e n s i t i v i t y a n a l y -ses are l i s t e d i n T a b l e 4.12. (Note t h a t the s l o p e s are not d i r e c t l y comparable because of t h e i r d i f f e r e n t u n i t s . ) Any a l t e r a t i o n i n e v a p o r a t i o n causes changes i n the o t h e r two o u t p u t s of the water b a l a n c e . These i n f l u e n c e s can be summarised as f o l l o w s . An i n c r e a s e of e v a p o r a t i o n causes a g r e a t e r change i n s t o r a g e when the amount of water b e i n g s u p p l i e d t o the environment remains c o n s t a n t . G r e a t e r d e p l e -t i o n i n s o i l s t o r a g e means t h a t the amount of water r e q u i r e d to f i l l the s o i l s t o r e i s i n c r e a s e d and r u n o f f i s thus r e d u c e d . T h i s i s a consequence of the p e r v i o u s a r e a not b e i n g a source a r e a f o r r u n o f f f o r a l o n g e r p e r i o d of t i m e . The r e d u c t i o n i n r u n o f f a l s o causes a d e c r e a s e i n the r u n o f f r a t i o . The e f f e c t s of the a l t e r a t i o n s are most o b v i o u s i n the s p r i n g and 98 F i g . 4.11 I n f l u e n c e of c h a n g i n g the d a i l y d a t a on e v a p o r a t i o n (day 161 and day 335) 2 1 o-t -40 0 40 80 120 160 200 240 Q" CW/m2: -10 0 10 20 30 40 50 60 Qs CW/m2) 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 • 1.6 1.8 2.0 a 99 F i g . 4.12 I n f l u e n c e of c h a n g i n g the catchment d e f i n i n g parameters on e v a p o r a t i o n (day 161) 100 autumn when the t r a n s i t i o n o c c u r s between the s o i l s t o r a g e b e i n g f u l l or n o t . 4.3.2 P r e c i p i t a t i o n and Water Use The s e n s i t i v i t y t o the i n p u t s was i n v e s t i g a t e d by v a r y i n g the p r e c i p i -t a t i o n term by + 50% and p i p e d - i n water by + 55%,. The s e n s i t i v i t y a n a l y s e s were c a r r i e d out f o r the whole y e a r . Hence the r e s u l t s p r e s e n t e d f o r June and December ( F i g s . 4.13 & 4.14) are due p a r t i a l l y t o a n t e c e d e n t c o n d i -t i o n s , and not j u s t t o a l t e r i n g the i n p u t s f o r the p a r t i c u l a r month i n q u e s t i o n . A l t e r a t i o n s to the two water b a l a n c e i n p u t s were a p p l i e d by c h a n g i n g the amounts on the days on which the i n p u t s o c c u r r e d , r a t h e r than by c h a n g i n g the number of days on w h i c h the i n p u t o c c u r r e d . A l t e r i n g p r e c i p i -t a t i o n and water use does not cause changes i n the d a i l y t o t a l s of e v a p o r a -t i o n or the e q u a t i o n used f o r i t s c o m p u t a t i o n . The i n f l u e n c e of the a l t e r a t i o n i s e x p r e s s e d i n the p a r t i t i o n i n g of r u n o f f ( r ) and change i n s t o r a g e ( S ) . Changes are d i f f e r e n t b o t h between June and December, and as a r e s u l t of a l t e r i n g the p r e c i p i t a t i o n and the w ater use. The June/December d i f f e r e n c e i n r esponse i s caused by the d i f f e -r e n c e i n s o i l s t o r a g e , which i s not f u l l i n June whereas i n December i t i s . The p r e c i p i t a t i o n / w a t e r use d i f f e r e n c e r e s u l t s from the f a c t t h a t p r e c i p i -t a t i o n i s a p p l i e d t o the whole environment whereas the p i p e d - i n water i s a p p l i e d t o the p e r v i o u s i r r i g a t e d a r e a o n l y . I n December, when p r e c i p i t a t i o n i s reduced by 45% the s o i l s t o r a g e i s not f u l l t h e r e f o r e r u n o f f o n l y o c c u r s from i m p e r v i o u s a r e a s . Once the p r e c i p i t a t i o n i n p u t reaches the p o i n t a t which the s o i l s t o r a g e becomes f u l l , S remains c o n s t a n t and r i n c r e a s e s w i t h f u r t h e r i n c r e a s e s i n p r e c i p i -101 t a t i o n , due t o r u n o f f now o c c u r r i n g from the whole a r e a ( F i g . 4.13). I n June r u n o f f remains c o n s t a n t as water use i s i n c r e a s e d from 55% of the measured w a t e r use u n t i l the p o i n t i s r e a c h e d when the s o i l s t o r a g e i s f i l l e d a f t e r w h i c h r u n o f f o c c u r s from the whole catchment ( F i g . 4.14). The change i n s t o r a g e i s n e g a t i v e w h i l e the monthly water use i s below 100 mm because e v a p o r a t i o n i s removing more water than i s b e i n g added to the e n v i r o n m e n t . From 100 t o 134 mm the a d d i t i o n of w a t e r causes a net g a i n i n s t o r a g e . At 134 mm the s o i l s t o r a g e becomes f u l l so p e r v i o u s a r e a s a r e h a v i n g water removed by b o t h r u n o f f and e v a p o r a t i o n ( F i g . 4.14). 4.3.3 S t o r a g e Parameters 4.3.3.1 I n i t i a l R e t e n t i o n S t o r a g e The base r e s u l t s assume t h a t the t h r e e r e t e n t i o n s t o r e s PRETEN, VRETNI and VRETNU are empty on day 21. When the water b a l a n c e c a l c u l a t i o n s a re performed w i t h t h e s e s t o r e s i n i t i a l l y f u l l the d a i l y w ater b a l a n c e s are changed on the f i r s t two days o n l y ( T a b l e 4.13). The change i n s t o r a g e i s , t h e r e f o r e , a l t e r e d f o r the w i n t e r and f o r the y e a r . Runoff i s i n c r e a s e d by the s u p p l y of water because the i n i t i a l a p p l i c a t i o n of water does not have to f i l l the s t o r e s . 4.3.3.2 S o i l S t o r a g e S i z e A l t e r a t i o n of the s o i l s t o r a g e c a p a c i t y does not i n f l u e n c e the water b a l a n c e when i n the range between 75 and 175 mm. T h i s i s because the v a l u e s f o r the change i n s t o r a g e remain the same, o n l y the d a i l y s t a t u s of the s o i l s t o r a g e i s a l t e r e d . The range of s o i l m o i s t u r e s t a t u s i s 53.21 mm under a l l c a p a c i t i e s . 102 F i g . 4.13 I n f l u e n c e of cha n g i n g p r e c i p i t a t i o n on the o u t p u t s of the e x t e r n a l w ater b a l a n c e i n June and December June December -evaporation / / /runoff \change in storage change in storage runoff \ evaporation — — , ! , 1 1 1 1 1 1 0 20 40 60 80 1 00 1 20 1 40 1 60 1 80 200 220 M,onthly precipitation [mm) 103 F i g . 4.14 I n f l u e n c e of c h a n g i n g water use on the o u t p u t s of the e x t e r n a l w a t e r b a l a n c e i n June and December 18 0' 104 T a b l e 4.13 I n f l u e n c e of c h a n g i n g the i n i t i a l r e t e n t i o n s t o r a g e s t a t u s on the e x t e r n a l water b a l a n c e INITIAL PERIOD E S r RETENTION mm/ % mm/ % mm/ % STORAGE p e r i o d p e r i o d p e r i o d STATUS FULL DAY 22 0. 0 0. 0 0. 0 0.0 5. 44 100.0 DAY 23 0. 0 0. 0 0. 0 0.0 18. 74 100.0 WINTER 72. 7 7. 9 16. 7 1.8 832. 8 90.3 YEAR 554. 8 36. 6 -0. 6 0.0 962. 2 63.5 EMPTY DAY 22 0. 0 0. 0 3. 42 55.7 2. 02 44.3 DAY 23 0. 0 0. 0 1. 38 7.4 17. 37 92.7 WINTER 72. 7 7. 9 21. 5 2.3 828. 0 89.8 YEAR 554. 8 36. 6 4. 2 0.3 957. 4 63.1 105 4.3.3.3 P e r v i o u s R e t e n t i o n S t o r a g e C a p a c i t y (VRETNU/I) Changing VRETNU/I c a p a c i t y from 5.0 t o 9.0 mm a l t e r s the d a i l y w ater b a l a n c e of o n l y the f i r s t two days. The net d a i l y change i n s t o r a g e remains the same, but the a b s o l u t e s t a t u s of VRETNU, VRETNI and the s o i l s t o r a g e are d i f f e r e n t . When VRETNU/I c a p a c i t y i s 5.0 mm the s t o r e s a r e bo t h empty and not t o t a l l y f u l l on a g r e a t e r number of days. The s t o r a g e d e c r e a s e s t o a minimum of 95.9mm compared t o 98.0 mm when VRETNU/I i s i n c r e a s e d from 5.0 to 9.0 mm. 4.3.3.4 Im p e r v i o u s R e t e n t i o n S t o r a g e C a p a c i t y (PRETEN) The i n c r e a s e of PRETEN c a p a c i t y from 0.50 t o 2.50 mm causes an i n -c r e a s e i n the number of days on whi c h e v a p o r a t i o n i s c a l c u l a t e d u s i n g the P r i e s t l e y and T a y l o r (1972) e q u a t i o n ( T a b l e 4.14). T h i s i s due t o the s t o r e b e i n g a b l e t o r e t a i n more p r e c i p i t a t i o n , t h e r e f o r e t a k i n g l o n g e r to empty, and thus c a u s i n g the c r i t e r i a n e c e s s a r y t o use eqn. I I I . l t o be i n v o k e d on more o c c a s i o n s . The i n f l u e n c e of the two extremes (PRETEN=2.5 and 0.5) on the o u t p u t s of the water b a l a n c e a r e shown i n F i g 4.15 as a d i f f e r e n c e from the base r e s u l t s . When PRETEN e q u a l s 0.5 t h e r e was a de c r e a s e i n e v a p o r a t i o n , a summer d e c r e a s e i n change i n s t o r a g e and an i n c r e a s e i n r u n o f f compared to the base r e s u l t s ( F i g . 4.15). 4.3.4 P r o p o r t i o n of the P e r v i o u s A r e a I r r i g a t e d (AREAI) V a l u e s of AREAI a f f e c t b oth the amount of water added t o the p e r v i o u s e n v i r o n m e n t , and the c a l c u l a t i o n of e v a p o r a t i o n when eqn. I I I . 2 i s used. The i n f l u e n c e on d a i l y e v a p o r a t i o n was d i s c u s s e d i n s e c t i o n 4.3.1. The i n f l u e n c e s of a l t e r i n g AREAI from 90% to 30% w i t h r e s p e c t t o the monthly base water b a l a n c e r e s u l t s (when AREAI was 50%,) a r e p l o t t e d i n F i g . 106 T a b l e 4.14 I n f l u e n c e of the s i z e of the i m p e r v i o u s s t o r a g e c a p a c i t y on the method of e v a p o r a t i o n c a l c u l a t i o n PRETEN No. of days t h a t e v a p o r a t i o n was c a l c u l a t e d u s i n g eqn. I I I . l 0.50 183 1.00 204 1.46 211 2.00 217 2.50 224 107 F i g . 4.15 I n f l u e n c e of PRETEN on the o u t p u t s of the e x t e r n a l water b a l a n c e altered PRETEN base J F M A M 3 J A 1 5 S 5 J Time (months! 108 4.16. V a r i a t i o n s from the base r e s u l t s o c c u r between March and November. The l a r g e s t d e v i a t i o n o c c u r s i n November when AREAI was 90%, r e s u l t i n g i n a l a r g e p o s i t i v e change i n s t o r a g e ( a c c u m u l a t i o n ) and an a s s o c i a t e d r e d u c t i o n i n r u n o f f . I n c r e a s e d e v a p o r a t i o n d u r i n g the summer months d e p l e t e s the s o i l s t o r e so t h a t a l a r g e p r o p o r t i o n of the November p r e c i p i t a t i o n goes to r e -f i l l i n g r a t h e r t h a n t o r u n o f f . 4.3.5 P r o p o r t i o n of the I r r i g a t e d Water A p p l i e d t o the P e r v i o u s Area (PERCEN) The base water b a l a n c e r e s u l t s assume t h a t the e x t e r n a l p i p e d - i n water i s a p p l i e d o n l y t o the p e r v i o u s a r e a ; t h a t i s , PERCEN=1.00. Through the a l t e r a t i o n of PERCEN the i n f l u e n c e of the a p p l i c a t i o n of the water to the i m p e r v i o u s and p e r v i o u s a r e a can be d e t e r m i n e d . I t s h o u l d be noted t h a t the water s u p p l i e d t o the p e r v i o u s a r e a i s assumed t o be a p p l i e d to o n l y 50%, of t h a t a r e a . PERCEN was d e c r e a s e d by 20%; t h a t i s , the p r o p o r t i o n of the e x t e r n a l water s u p p l y t o the i r r i g a t e d p e r v i o u s a r e a was d e c r e a s e d from 1.0 t o 0.8, and the d i f f e r e n c e was a p p l i e d to the i m p e r v i o u s a r e a . T h i s a l t e r a -t i o n causes a change i n a l l t h r e e of the o u t p u t s ( T a b l e 4.15). The i n i t i a l change of PERCEN t o 0.9 causes the e v a p o r a t i o n t o i n c r e a s e , t h i s i s due t o the change from u s i n g eqn. I I I . l on 211 days to i t s use on 351 days. The e v a p o r a t i o n remains c o n s t a n t when PRETEN i s d e c r e a s e d a f u r t h e r 10%. The l a r g e r change i n s t o r a g e i n the summer months i s because the h i g h e r evapo-r a t i o n and lower amount of water causes g r e a t e r s o i l s t o r a g e d e p l e t i o n . The r u n o f f i n c r e a s e s i n the summer because the water a p p l i e d t o the i m p e r v i o u s s u r f a c e a f t e r f i l l i n g the r e t e n t i o n s t o r e s goes to r u n o f f . However, i n the w i n t e r r u n o f f i s lower because i t t a k e s a l o n g e r p e r i o d f o r the s o i l s t o r a g e t o become f u l l . 109 4.16 I n f l u e n c e of AREAI on the o u t p u t s of the monthly e x t e r n a l water b a l a n c e T a b l e 4.15 I n f l u e n c e of p r o p o r t i o n of the i r r i g a t i o n water g o i n g t o p e r v i o u s a r e a s on the e x t e r n a l water b a l PERCEN PERIOD • E S r mm 7o mm °k mm % 100 SUMMER 482.1 81.1 -17.3 -2.9 129.4 21.8 WINTER 72.7 7.9 21.5 2.3 828.0 89.8 YEAR 554.8 36.6 4.2 0.3 957.4 63.1 90 SUMMER 493.6 83.1 -23.7 -4.0 124.3 20.9 WINTER 85.2 9.2 27.9 3.0 809.1 87.7 YEAR 578.8 38.2 4.2 0.3 933.4 61.6 80 SUMMER 493.6 83.1 -40.0 -6.7 140.5 23.6 WINTER 85.2 9.2 44.2 4.8 792.9 86.0 YEAR 578.8 38.2 4.2 0.3 933.4 61.6 111 4.4 D i s c u s s i o n The water b a l a n c e r e s u l t s p r e s e n t e d i n t h i s c h a p t e r depend upon the methodology used t o determine them. S e n s i t i v i t y a n a l y s i s can be used to determine w h i c h f a c t o r s are c r i t c a l l y i m p o r t a n t i n c a l c u l a t i n g the water b a l a n c e . The a n a l y s i s a l s o p e r m i t s the assessment of the i n f l u e n c e of c h a n g i n g urban h y d r o l o g i c c h a r a c t e r i s t i c s , or of e r r o r s i n the measured d a t a on the water b a l a n c e r e s u l t s . The most c r i t i c a l d a i l y d a t a i n p u t f o r the c a l c u l a t i o n of e v a p o r a t i o n i s net r a d i a t i o n f o l l o w e d by wind speed ( T a b l e 4.12). AREAI and ZOM are the most c r i t i c a l catchment parameters ( T a b l e 4.12). As the c o n s e r v a t i o n of m a t t e r i s the b a s i c u n d e r l y i n g p r i n c i p l e of the water b a l a n c e the a l t e r a t i o n of one component of the b a l a n c e o u t p u t s causes a l t e r a t i o n i n a t l e a s t one of the o t h e r o u t p u t s . From the f o r e g o i n g s e n s i -t i v i t y a n a l y s i s i t i s apparent t h a t the time when the s o i l s t o r a g e s w i t c h e s from b e i n g f u l l t o l e s s than f u l l i s an i m p o r t a n t e x p r e s s i o n of the i n f l u e -nce of the v a r i a t i o n s . T h i s r e s u l t s from the f a c t t h a t when the s o i l s t o r a g e i s f u l l the e x c e s s water a p p l i e d t o any a r e a , once the r e t e n t i o n s t o r e s are f u l l , goes t o r u n o f f , whereas when the s o i l s t o r a g e i s not f u l l o n l y the i m p e r v i o u s a r e a g e n e r a t e s r u n o f f and the water i n p u t to the p e r -v i o u s a r e a i s added t o s o i l s t o r a g e . The c a l c u l a t i o n of e v a p o r a t i o n i s i n f l u e n c e d by the v a r i a t i o n of the i n p u t s f o r the two e q u a t i o n s , and by the s t a t u s of PRETEN and PERCEN because of t h e i r i n f l u e n c e on w h i c h e q u a t i o n i s used to p e r f o r m the c a l c u -l a t i o n . The water b a l a n c e r e s u l t s f o r K e r r i s d a l e / O a k r i d g e show a b a s i c t r e n d t h r o u g h the y e a r t h a t would be e x p e c t e d f o r the a r e a i n which the s t u d y was c a r r i e d o u t . The p r e c i p i t a t i o n and water use f a l l w i t h i n the c l i m a t o l o g i c a l e x p e c t a t i o n s f o r t h i s a r e a ( f o r f u r t h e r d i s c u s s i o n see Chapter 3 ) . The 112 summer d a i l y e v a p o r a t i o n l i e s w i t h i n the range measured by K a l a n d a et a l . (1980) and by Oke and McCaughey ( 1 9 8 3 ) . I n a d d i t i o n the p a r t i t i o n i n g of the o u t p u t s between the change i n s t o r a g e and r u n o f f appears t o f a l l w i t h i n the c l i m a t i c e x p e c t a t i o n of t h i s a r e a when the r u n o f f r a t i o s f o r the a r e a are compared w i t h t h o s e f o r West Creek ( F i g . 4.8). 113 CHAPTER 5 SUMMARY OF CONCLUSIONS 5.1 C o n c l u s i o n s T h i s s t u d y sought t o a s s e s s a d a i l y w a t e r b a l a n c e f o r a suburban a r e a i n Vancouver, B.C. over an annual p e r i o d ; the v a r i a b i l i t y of the par a m e t e r s used t o c o n s t r u c t the water b a l a n c e ; and the i n f l u e n c e o f t h e i r v a r i a b i l i t y on the computed water b a l a n c e , e s p e c i a l l y i t s e v a p o r a t i o n component. The c o n c l u s i o n s of t h i s s t u d y a re as f o l l o w s : 1) The summer wa t e r b a l a n c e of the suburban environment i s augmented to the e x t e n t t h a t the amount of water p i p e d - i n and a p p l i e d t o the e x t e r n a l environment i s e q u a l to the p r e c i p i t a t i o n d u r i n g the summer p e r i o d . 2) The p r i m a r y method of removal o f water i n the summer months i s e v a p o r a -t i o n , w hich r e p r e s e n t s 8 1 % of the o u t p u t s . The d a i l y water b a l a n c e s i n c l u d e days when the amount of water b e i n g added t o the e x t e r n a l environment i s s u f f i c i e n t not o n l y t o sup p o r t the c a l c u l a t e d e v a p o r a t i o n but a l s o t o add t o s t o r a g e . 3) The i n t e r n a l ( d o m e s t i c ) water use i n the summer r e p r e s e n t s 32% of the p i p e d water s u p p l y . The r e m a i n i n g 68% goes to the e x t e r n a l environment m a i n l y v i a lawn s p r i n k l i n g . 4) The d a i l y water b a l a n c e r e s u l t s f o r J u l y and August compared f a v o u r a b l y w i t h those of the Loudon (1981) s t u d y i n the same a r e a . 5) The monthly r u n o f f r a t i o s d e t e r m i n e d f o r the suburban ( K e r r i s -d a l e / O a k r i d g e ) r e s u l t s f o l l o w a s i m i l a r p a t t e r n t o an undeveloped (West Creek) catchment. 6) The s e n s i t i v i t y a n a l y s i s , p r i m a r i l y c onducted over ranges found w i t h i n the G r e a t e r Vancouver a r e a , p e r m i t s assessment of the i n f l u e n c e of the assumptions and the p o s s i b l e v a r i a t i o n of the r e q u i r e d i n p u t d a t a f o r suburban a r e a s . The a l t e r a t i o n of p r e c i p i t a t i o n and p i p e d - i n water s u p p l y i n f l u e n c e s the p a r t i t i o n i n g of the o u t p u t s between r u n o f f and 114 the change i n s t o r a g e . The v a r i a t i o n i s most i n f l u e n t i a l when the s o i l s t o r a g e s t a t u s i s c h a n g i n g from b e i n g a t , t o below, c a p a c i t y , or v i c e v e r s a which o c c u r s i n s p r i n g and autumn. T h i s i s because of the assump-t i o n w i t h i n the water b a l a n c e model t h a t r u n o f f o n l y o c c u r s from the p e r v i o u s a r e a when s o i l s t o r a g e i s f u l l . The c a p a c i t y of the i m p e r v i o u s r e t e n t i o n s t o r e i s i m p o r t a n t f o r d e t e r m i n i n g which e v a p o r a t i o n model i s used and f o r the p a r t i t i o n i n g of water between t h a t r e m a i n i n g on the s u r -f a c e or t h a t g o i n g t o r u n o f f . For the c a l c u l a t i o n of e v a p o r a t i o n the most c r i t i c a l d a i l y measurements are net r a d i a t i o n and wind speed, whereas the p r o p o r t i o n o f the p e r v i o u s a r e a i r r i g a t e d and the momentum roughness l e n g t h a r e the most c r i t c a l catchment parameters 7) The s e n s i t i v i t y a n a l y s i s showed t h a t the r e q u i r e d end use of the water b a l a n c e s t u d y i s i m p o r t a n t i n d e t e r m i n i n g how c a r e f u l l y the catchment d e s c r i b i n g parameters need t o d e f i n e d . I f the purpose o f the s t u d y i s t o dete r m i n e the d a i l y water b a l a n c e o n l y , and not the d a i l y m o i s t u r e s t a t u s of the suburban e n v i r o n m e n t , t h e n the d e f i n i t i o n of the parame-t e r s may be l e s s r i g o r o u s . The r e s p o n s e of the e v a p o r a t i o n and water b a l a n c e models t o a l t e r a t i o n of t h e i r i n p u t s i s p r i m a r i l y l i n e a r . The model i n i t s p r e s e n t form c o u l d be used i n suburban a r e a s where snow i s not a s i g n i f i c a n t f a c t o r i n the water b a l a n c e . 5.2 S u g g e s t i o n s f o r F u t u r e R e s e a r c h There i s a need to v e r i f y the methodology proposed here f o r a s s e s s i n g the water b a l a n c e e s p e c i a l l y w i t h r e s p e c t to the c a t c h m e n t - d e s c r i b i n g p a r a m e t e r s . Such v e r i f i c a t i o n would h e l p i n the m o d e l l i n g of not o n l y the water b a l a n c e but a l s o the d a i l y m o i s t u r e s t a t u s of the suburban e n v i r o n -115 m e r i t . More s p e c i f i c f u t u r e r e s e a r c h s h o u l d i n c l u d e : 1) d e t a i l e d s t u d y of the s i t e where the p i p e d - i n water i s a p p l i e d t o the e x t e r n a l e n v i r o n m e n t ; 2) model development t o i n c o r p o r a t e the movement of w a t e r between i r r i g a t e d and u n i r r i g a t e d a r e a s ; and 3) f u r t h e r r e f i n e m e n t of the d e t e r m i n a t i o n of the AA parameter i n the Oke and S t e y n (1983, p e r s . comm) m o d i f i c a t i o n of the B r u t a s e r t and S t r i e k e r (1979) e v a p o r a t i o n e q u a t i o n . 116 REFERENCES A l b e r t , R.E., H. Moses and W.R. R o b i n s o n , 1973: Some measurements of n o c t u r n a l wind f l o w over S t . L o u i s : METROMEX 1971. Annual Report R a d i o l o g . & E n v i r . Res. D i v . , ANL - 7690, P t . IV, Argonne Nat. Lab., Argonne, 111., 1-19. A l d r i d g e , R., 1976: The measurement of r a i n f a l l a t ground l e v e l . J . H y d r o l  (N.Z.), 15, 35-40. American Water Works A s s o c i a t i o n , Committee on Water Use, 1973: Trends i n water use. J . A.W.W.A., 65, 285-300. A r m s t r o n g , J.E. and S.R. H i c o c k , 1976: S u r f i c i a l g e o l o g y , Vancouver, B.C., Map 1486A ( s c a l e 1:50,000). G e o l o g i c a l Survey of Canada, Energy, Mines and R e s o u r c e s . A r n f i e l d , A . J . , 1982: An approach t o the e s t i m a t i o n of the s u r f a c e r a d i a t i v e p r o p e r t i e s and r a d i a t i o n budgets of c i t i e s . P h y s i c a l  Geography, 3, 97-122. A r o n , G., 1982: R a i n f a l l a b s t r a c t i o n s . I n Urban Stormwater H y d r o l o g y , K i b l e r , D.F. (ed.) A.G.U. Water Resources Monograph 7, 69-86. A s h t o n , W.J. and J.M..LangfeId, 1982: Water c o n s e r v a t i o n and l a n d use p l a n n i n g . H a b i t a t , 25, 18-22. A s t o n , A., 1977: Water r e s o u r c e s and consumption i n Hong Kong. Urban  E c o l o g y , 2, 327-353. Auer, A.H. J r . , 1978: C o r r e l a t i o n of l a n d use w i t h m e t e o r o l o g i c a l a n o m a l i e s . J . A p p l . M e t e o r o l . , 17, 636-643. Auer, A.H. J r . , 1981: Urban boundary l a y e r . M e t e o r o l . Monogr., 18 ( 4 0 ) , 41-62. . Barnes, J.R., 1977: A n a l y s i s of r e s i d e n t i a l water use. Unpubl M.Sc. T h e s i s , U n i v . of Wyoming, L a r a m i e , 78p. B e l l , F.C., 1972: The a c q u i s i t i o n , consumption and e l i m i n a t i o n of wa t e r by Sydney urban system. P r o c . of the E c o l o g . Soc. of A u s t r a l i a , 7, 160-176. Bouchet, R.J., 1963: E v a p o t r a n s p i r a t i o n r e e l e et p o t e n t i e l l e , s i g n i f i c a t i o n c l i m a t i q u e . G e n e r a l Assembly, I n t e r n . A s s o c . S c i . H y d o l . , P u b l . 62, Gentbrugge, B e l g i u m , 134-142. B r a t e r , E.F., 1968: Steps toward a b e t t e r u n d e r s t a n d i n g of urban r u n o f f p r o c e s s e s . Water Resour. Res., 4, 335-347. B r u t s a e r t , W., 1982: E v a p o r a t i o n i n t o the Atmosphere: Theory, H i s t o r y  and A p p l i c a t i o n s . , D. R e i d e l P u b l . Co., H o l l a n d . B r u t s a e r t , W. and S t r i e k e r - H . , 1979: An a d v e c t i o n - a r i d i t y approach t o e s t i m a t e a c t u a l r e g i o n a l e v a p o t r a n s p i r a t i o n . Water Resour. Res., 117 15, 443-450. Canada, E n v i r o n m e n t , A t m o s p h e r i c Environment S e r v i c e , 1982: Mo n t h l y M e t e o r o l . Summary, J a n u a r y - December, 1982, Vancouver I n t e r n a t i o n a l A i r p o r t , B.C. Canada, Environment, A t m o s p h e r i c Environment S e r v i c e , 1983: Mo n t h l y M e t e o r o l . Summary, J a n u a r y 1983, Vancouver I n t e r n a t i o n a l A i r p o r t , B.C. Canada, E n v i r o n m e n t , I n l a n d Waters D i r e c t o r a t e , Water Resources B r a n c h , Water Survey o f Canada, 1982: S u r f a c e water d a t a . R e f e r e n c e Index. Canada. Canada, S t a t i s t i c s , Census D i v i s i o n , 1983: Census of Canada 1981. Enumeration a r e a d a t a on m i c r o f i c h e . Ottawa, Canada. CBA E n g i n e e r i n g L t d . , 1973: A d r a i n a g e p l a n f o r L u l u I s l a n d . Vancouver, Canada, 71p. C h a n d l e r , T . J . , 1976: Urban c l i m a t o l o g y and i t s r e l e v a n c e t o urban d e s i g n . WMO Tech. Note No. 149, 61p. C l a g u e , J . J . and J.L. L u t e r n a u e r , 1982: L a t e r Q u a t e r n a r y s e d i m e n t a r y e n v i r o n m e n t , s o u t h w e s t e r n B.C. I n t e r . A s s o c . of S e d i m e n t o l o g i s t s , E x c u r s i o n 30a, 167p. D a v i e s , J.A. and C D . A l l e n , 1973: E q u i l i b r i u m , p o t e n t i a l , and a c t u a l e v a p o r a t i o n from c r o p p e d s u r f a c e s i n s o u t h e r n O n t a r i o . J . A p p l .  M e t e o r o l . , 12, 649-657. Dendrou, S.A., 1982: Overview of urban stormwater models. I n Urban  Stormwater H y d r o l o g y , K i b l e r , D.F. (ed.) A.G.U. Water Resources Monograph 7, 219-247. D u c h e n e - M a r u l l a z , P., 1976: S t r u c t u r e du vent en zone s u b u r b a i n e r u g o s i t e et c o r r e l a t i o n l a t e r a l e . R eport EN, CLI 76-2, C e n t r e S c i e n t i f . Tech. B a t i m e n t , Nantes. F i n k e l s t e i n , J . , 1971: Comparisons between 4" p l a s t i c and 5" copper r a i n g a u g e s . J . H y d r o l . ( N . Z . ) , 10, 100-103. F o s t e r , H. and W. S e w e l l , 1981: Water: the Emerging C r i s i s i n Canada. Canadian I n s t i t u t e f o r economic P o l i c y , Ottawa, 117p. Gardner, W.H., 1965: Water c o n t e n t . , I n Methods of S o i l A n a l y s i s P a r t 1 P h y s i c a l and M i n e r a l o g i c a l P r o p e r t i e s . , B l a c k C A . ( e d . ) , Adv. Agron, 92-93. Geyer, J . C , J.B. W o l f f , F.P. Linaweaver J r . and A . J . Duncan, 1963: F i n a l and summary r e p o r t on phase 1 of the r e s i d e n t i a l w ater use r e s e a r c h p r o j e c t J a n u a r y 1, 1959 t o Janu a r y 1, 1963. Dept. of S a n i t a r y E n g i n e e r i n g and Water R e s o u r c e s , The Johns Hopkins U n i v e r s i t y , B a l t i m o r e , 131p. 118 G r e a t e r Vancouver R e g i o n a l D i s t r i c t , 1976: Map of c i t y of Vancouver. Drawing no. WM-1, Sheet #6, ( s c a l e 1:12,500). G r e a t e r Vancouver R e g i o n a l D i s t r i c t , 1979: Map of g e n e r a l l a n d use. ( s c a l e 1:50,000). G r e a t e r Vancouver R e g i o n a l D i s t r i c t , 1983: G r e a t e r Vancouver's l a n d r e s o u r c e . Hanke, S.H. and J.E. F l a c k , 1968: E f e c t s of m e t e r i n g urban w a t e r . J . A.W.W.A., 60, 1359-1366. Hare, F.K. and M.K. Thomas, 1979: C l i m a t e Canada. (2nd ed.) W i l e y Pub., T o r o n t o . Hay, J.E., 1979: Study of shortwave r a d i a t i o n on n o n - h o r i z o n t a l s u r f a c e s . Canadian C l i m a t e C e n t r e R e p o r t 79-12, A.E.S., Downsview, O n t a r i o . Hay, J.E., 1983: S o l a r energy system d e s i g n : The impact of m e s o s c a l e v a r i a t i o n s i n s o l a r r a d i a t i o n . Atmos. Ocean, 21, 138-157. Hay, J.E. and T.R. Oke, 1976: The C l i m a t e of Vancouver, T a n t a l u s R e s e a r c h L t d . , Vancouver, B.C. H u t c h i n s o n , P., 1969: A note on random r a i n g a u g e e r r o r s . J . Hydro!.  (N.Z.), 8, 8-10. K a l a n d a , B.D., 1979: Suburban e v a p o t r a n s p i r a t i o n e s t i m a t e s i n Vancouver from energy b a l a n c e measurements. Unpubl. M.Sc. T h e s i s , The U n i v e r s i t y o f B r i t i s h C o l u m b i a , Vancouver, 123p. K a l a n d a , B.D., T.R. Oke and D.L. S p i t t l e h o u s e , 1980: Suburban energy b a l a n c e e s t i m a t e s f o r Vancouver, B.C., u s i n g the Bowen r a t i o - e n e r g y b a l a n c e a p p r o a c h . J . A p p l . M e t e o r o l . , 19, 791-802. K u t z b a c h , J.E., 1961: I n v e s t i g a t i o n s of the m o d i f i c a t i o n of wind p r o f i l e s from a r t i f i c a l l y c o n t r o l l e d s u r f a c e roughness. Annual R e p o r t . Dept. of M e t e o r o l o g y , U n i v e r s i t y of W i s c o n s i n . L a t i m e r , J.JR. , 1972: R a d i a t i o n measurement. I n t . F i e l d Year f o r the  Great Lakes Tech. Manual S e r . No. 2, NRC/USNAS/IHD, Ottawa. L e t t a u , H.H., 1969: Note on aerodynamic roughness-parameter e s t i m a t i o n on the b a s i s of roughness-element d e s c r i p t i o n . J . A p p l . M e t e o r o l . , 8, 828-832. L i n a w e a v e r , F.P. J r . , J.C. Geyer and J.B. W o l f f , 1967: A Study of  R e s i d e n t i a l Water Use. Washington D.C., GPO. L i n d h , G., 1978a: Urban h y d r o l o g i c a l m o d e l l i n g and catchment r e s e a r c h i n Sweden. I n R e s e a r c h on Urban H y d r o l o g y . McPherson, B., ( e d . ) , v o l . 2, 229-265. L i n d h , G., 1978b: Soci o - e c o n o m i c a s p e c t s of urban h y d r o l o g y . Ambio, 7, 16-22. 119 L i n s l e y , R.K. and J.B. F r a n z i n i , 1979: W a t e r - r e s o u r c e s E n g i n e e r i n g . ( 3 r d ed.) M c G r a w - H i l l Book Co., New York, 716. Loudon, S.M., 1981: Suburban water use d a t a used t o de v e l o p a water use p r e d i c t i o n model and a suburban summer wa t e r budget. Unpubl. m a n u s c r i p t , 61p. Lowe, P.R., 1977: An a p p r o x i m a t i n g p o l y n o m i a l f o r the c o m p u t a t i o n of s a t u r a t i o n vapour p r e s s u r e . J . A p p l . M e t e o r o l . , 16, 100-103. L ' v o v i c h , M.I. and G.M. Chernogayeva, 1977: T r a n s f o r m a t i o n of the wa t e r b a l a n c e w i t h i n the c i t y o f Moscow. S o v i e t Geog., 18, 302-312. M a n d e v i l l e , A.N. and J.C. Rodda, 1970: A c o n t r i b u t i o n t o the o b j e c t i v e assessment of a r e a l r a i n f a l l amounts. J . H y d r o l . ( N . Z . ) , 9, 281-291. M e c h l e r , W.A. and D.G. R i e c k e n , 1977: Review of methods f o r computing storm r u n o f f from urban a r e a s : h i s t o r y and s t a t e of the a r t . G r e a t e r Vancouver Sewerage and D r a i n a g e D i s t r i c t , 57p. M o n t e i t h , J . L . , 1973: P r i n c i p l e s of E n v i r o n m e n t a l P h y s i c s . A m erican E l s e v i e r , New Y o r k , 241p. Morton, F . I . , 1976: E s t i m a t i n g e v a p o r a t i o n and t r a n s p i r a t i o n from c l i m a t o l o g i c a l o b s e r v a t i o n s . J . A p p l . M e t e o r o l . , 14, 488-497. Mulvaney, T . J . , 1851: On the use of s e l f r e g i s t e r i n g r a i n and f l o o d gauges i n making o b s e r v a t i o n s o f the r e l a t i o n s of r a i n f a l l and of f l o o d d i s c h a r g e s i n a g i v e n catchment. T r a n s . I n s t . C i v . Eng. I r .  ( D u b l i n ) , 4, 18-31. N i c h o l s o n , S.E., 1975: A p o l l u t i o n model f o r s t r e e t - l e v e l a i r . Atmos.  Env., 9, 19-31. Oke, T.R., 1974: Review of urban c l i m a t o l o g y 1968-1973. WM0 Tech. Note No. 134. Geneva, 133p. Oke, T.R., 1976: The d i s t i n c t i o n between canopy and b o u n d a r y - l a y e r urban heat i s l a n d s . Atmosphere, 14, 268-277. Oke, T.R., 1979: Review of urban c l i m a t o l o g y 1973-1976.WM0 Tech. Note No. 169, lOOp. Oke, T.R., 1982: The e n e r g e t i c b a s i s of the urban heat i s l a n d . Q u a r t .  J . R o y a l M e t e o r o l . S o c , 108, 1-24. Oke, T.R. and R.F. F u g g l e , 1972: Comparison of u r b a n / r u r a l c o u n t e r and net r a d i a t i o n at n i g h t . Boundary L a y e r M e t e o r o l . , 2, 290-308. Oke, T.R., B.D. Ka l a n d a and D.G. S t e y n , 1980: P a r a m e t e r i s a t i o n of heat s t o r a g e i n urban a r e a s . Urban E c o l . , 5, 45-54. Oke, T.R. and G.B. M a x w e l l , 1975: Urban heat i s l a n d dynamics i n M o n t r e a l 120 and Vancouver. Atmos. E n v i r o n . , 9, 191-200. Oke, T.R. and J.H. McCaughey, 1983: S u b u r b a n - r u r a l energy b a l a n c e comparisons f o r Vancouver B.C.: An extreme case? Boundary L a y e r  M e t e o r o l . , i n p r e s s . Penman, H.L., 1948: N a t u r a l e v a p o r a t i o n from open w a t e r , bare s o i l and g r a s s . P r o c . R o y a l Soc. London S e r i e s A, 193, 120-145. P e r k s , A.R., 1977: A r e v i e w of urban r u n o f f models. I n Modern Concepts  i n Urban D r a i n a g e . C a n a d a - O n t a r i o Agreement on Gr e a t Lakes Water Q u a l i t y Conf. P r o c , #5, 159-172. P r i e s t l e y , C.H.B. and R.J. T a y l o r , 1972: On the assessment o f s u r f a c e heat f l u x and e v a p o r a t i o n u s i n g l a r g e s c a l e p a r a m e t e r s . M o n t h l y  Weath. Rev., 100, 81-92. P r o c t o r , S . J . , 1978: Map of Vancouver o l d stre a m s . Water J . of the  Vancouver Aquarium, 3, 4. R a p i e r , D.A. and P . J . G r a n t , 1971: Comparison of w e t t i n g l o s s e s on two types of r a i n g a u g e . J . H y d r o l . ( N . Z . ) , 10, 104-108. R e i f s n y d e r , W.E. and H.W. L u l l , 1965: R a d i a n t energy i n r e l a t i o n t o f o r e s t s . U.S.D.A. F o r . S e r v . , Tech. B u l l . , 1344. R i p l e y , E.A., 1976: Comments on "Gamma - the p s y c h r o m e t r i c n o n - c o n s t a n t " . J . A p p l . M e t e o r o l . , 15, 1027-1028. Rodda, J . C , R.A. Downing and F.M. Law, 1976: S y s t e m a t i c H y d r o l o g y . N e w n e s - B u t t e r w o r t h , London. S h u t t l e w o r t h , W.J. and I.R. C a l d e r , 1979: Has the P r i e s t l e y - T a y l o r e q u a t i o n any r e l e v a n c e to f o r e s t e v a p o r a t i o n ? J . A p p l . M e t e o r o l . , 18, 639-646. Snedecor, G.W. and W.G. Cochran, 1980: S t a t i s t i c a l Methods. ( 7 t h ed.) Iowa S t a t e P r e s s , Ames, Iowa, 507p. S t e y n , D.G., 1980a: The c a l c u l a t i o n o f view f a c t o r s from f i s h - e y e l e n s p h o t o g r a p h s . Atmos.-Ocean, 18, 254-258. S t e y n , D.G., 1980b: T u r b u l e n c e , d i f f u s i o n and the daytime mixed l a y e r depth over a c o a s t a l c i t y . Unpubl. Ph.D. T h e s i s , The U n i v e r s i t y of B r i t i s h C o lumbia, Vancouver, 161p. S t i g t e r , C.J., 1976: On the no n - c o n s t a n t gamma. J . A p p l . M e t e o r o l . , 15, 1326-1327. S t o r r , D. and G. den H a r t o g , 1975: Gamma - the p s y c h r o m e t r i c n o n - c o n s t a n t . J . A p p l . M e t e o r o l . , 14, 1397-1398. Vancouver C i t y , E n g i n e e r i n g Dept., 1972: Map of 50th and Hudson t e s t a r e a . Drawing K24 ( s c a l e 1":200'). 121 Vancouver C i t y , E n g i n e e r i n g Dept., 1981: Maps of sewer p i p e s . Drawings S71c and S71d. Vancouver C i t y , E n g i n e e r i n g Dept. and G r e a t e r Vancouver Sewerage and Dra i n a g e D i s t r i c t , 1979: Combined sewer o v e r f l o w and abatement s t u d y . D r a f t r e p o r t . Vancover C i t y , P l a n n i n g Dept., 1979: A e r i a l p h o t o g r a p h s . Sheet 79, BC 79009, No 184, 186, ( s c a l e 1:2000). Ward, R.C., 1975: P r i n c i p l e s o f H y d r o l o g y . (2nd ed.) M c G r a w - H i l l Book Co., Great B r i t a i n , 367p. Waugh, J.R., 1971: E v a l u a t i o n of r a i n f a l l d a t a from p l a s t i c and copper r a i n g a u g e s . J . H y d r o l . ( N . Z . ) , 10, 109-112. W r i g h t - M c L a u g h l i n E n g i n e e r s L t d . , 1969: Urban storm d r a i n a g e c r i t e r i a manual. 2 v o l s . Denver R e g i o n a l C o u n c i l of Governments. 122 APPENDIX I J u l i a n Day C a l e n d a r Note the numbering extends beyond 365 to p r e v e n t c o n f u s i o n between the two Ja n u a r y s t u d y p e r i o d s . DAY JAN FEB MAR APR MAY JUNE JULY AUG SEP OCT NOV DEC JAN 1 32 60 91 121 152 182 213 244 274 305 335 366 2 33 61 92 122 153 183 214 245 275 306 336 367 3 34 62 93 123 154 184 215 246 276 307 337 368 4 35 63 94 124 155 185 216 247 277 308 338 369 5 36 64 95 125 156 186 217 248 278 309 339 370 6 37 65 96 126 157 187 218 249 279 310 340 371 7 • 38 66 97 127 158 188 219 250 280 311 341 372 8 39 67 98 128 159 189 220 251 281 312 342 373 9 40 68 99 129 160 190 221 252 282 313 343 374 10 41 69 100 130 161 191 222 253 283 314 344 375 11 42 70 101 131 162 192 223 254 284 315 345 376 12 43 71 102 132 163 193 224 255 285 316 346 377 13 44 72 103 133 164 194 225 256 286 317 347 378 14 45 73 104 134 165 195 226 257 287 318 348 379 15 46 74 105 135 166 196 227 258 288 319 349 380 16 47 75 106 136 167 197 228 259 289 320 350 381 17 48 76 107 137 168 198 229 260 290 321 351 382 18 49 77 108 138 169 199 230 261 291 322 352 383 19 50 78 109 139 170 200 231 262 292 323 353 384 20 51 79 110 140 171 201 232 263 293 324 354 385 21 52 80 111 141 172 202 233 264 294 325 355 386 22 22 53 81 112 142 173 203 234 265 295 326 356 387 23 23 54 82 113 143 174 204 235 266 296 327 357 24 24 55 83 114 144 175 205 236 267 297 328 358 25 25 56 84 115 145 176 206 237 268 298 329 359 26 26 . 57 85 116 146 177 207 238 269 299 330 360 27 27 58 86 117 147 178 208 239 270 300 331 361 28 28 59 87 118 148 179 209 240 271 301 332 362 29 29 88 119 149 180 210 241 272 302 333 363 30 30 89 120 150 181 211 242 273 303 334 364 31 31 90 151 212 243 304 365 123 APPENDIX II K e r r i s d a l e and Oakridge d a i l y data s e t Averaged 0800 TO 0700 22-123. 304-387, 0700 TO 0600 124-303 DAY Q* Os T R H . WIND PRECIP PIPES SSM DAYS SINCE K4-(W/m2) (W/rn2) (C) (%) (ra/s) (mm) (m3/DAY) (%/100) PRECIP (Md/m2/d) 22 . -5 . 93 -5 . 07 -0 . 12 99 .84 1 .41 4 . 7 151 .9 0. 563 0. 1 . 59 23 . -20 . 27 - 16 . 49 4 .04 98 . 55 1 . 52 17 . 9 172 .6 0 565 0. 0. .62 24 . 23 .04 -2 .64 5 . 15 9 1 . 58 1 . 23 25 . 9 172 . 6 0 565 0. 5 . 49 25 . -3 . 60 -7 . 24 5 . 44 95 .84 2 . 36 6 . 4 164 . 4 0 565 O. O . 56 26 . - 18 . 62 - 16 . 67 4 . 34 91 . 25 2 . 23 2 . 1 156 . 1 0 565 0. 1 . 15 27 . 10 . 7 1 - 1 . .94 3 , 10 98 . 36 1 .40 6 . 5 154 .8 0. 565 0. 2 . 03 28 . 13 .50 - 1 . 23 3 .77 97 .00 1 .07 7 .6 154 .6 0. . 565 0. 2 .60 29 . 4 . 98 -2 . 58 5 . 70 98 .63 1 .73 1 . 3 154 .6 0 565 O. 1 . 29 30. -27 . 43 -2 1 . 94 5 . 13 93 . 38 2 . 35 6 .0 165 . 1 0. 565 0. O . 39 3 1 . 1 3 . 50 -2 . 99 4 .01 90 . 2 1 1 .59 8 . 5 18 1 . 7 o. 565 0. 4 . 09 32 . 7 .93 - 1 . 29 3 . 19 100 .00 1 . 10 7 . 1 171 .7 0 565 O. 1 . 15 33 . 1 . 20 -9 .67 2 . 50 98 . 15 0 .86 0 . 3 164 . 3 0 565 0. 2 .51 34 . 24 . 55 -10. . 78 1 10 89 . 58 1 .05 0 0 160 .0 0. 565 1 . 7 . 46 35 . -11 . 5 1 - 19 . 62 - 1 . 20 74 . 1 1 0 .83 O. .0 155 . 7 0. 565 2 . 2 . 70 36 . 33 .64 -6 .60 1 . 53 82 .60 0 .86 0. .0 163 .0 0. 565 3 . a .46 37 . 27 . 34 -11 . 5 1 1 .43 90 . 39 1 .01 0 .0 177 . 3 0. . 565 4 . 8 .67 38 . 57 89 0 .02 2 . 59 76 .88 1 . 12 O .0 201 . 6 0. 573 5 . 9 . 75 39 . 0. . 57 - 18 . 18 -0 .06 43 . 23 1 .65 0. 0 176 . 2 0. 584 6 . 6 00 40. 49 . 53 3 2 1 -0 . 49 42 .98 1 .31 0. 0 168 0 0. 594 7 . 9 .47 4 1 . 38 . 36 5 . 29 1 1 1 73 .09 1 .86 0. 0 163 . 5 0 602 8 . 6 . 10 42 . 10 . 25 - 1 25 2 . 84 98 . 82 1 .65 5 . 1 177 . 9 0 6 16 0. 1 87 43 . 5 . 19 -2 . 53 5 26 99 . 7 1 2 . 36 34 . 0 16 1 .0 0. 628 0. 0 .94 44 . 6 . 46 -3 . 77 5 . 36 100 .00 1 .58 50. 4 182 .0 0. 633 0. 0. 61 45 . 12 .32 - 1 . 78 7 . 23 99 .98 1 .31 23 9 181 . 2 0. 631 0. 1 . 66 46 . 6 . 1 1 -2 . 78 8 .92 97 . 70 1 .97 13 . 7 164 .9 0. 630 0. 1 . 40 47 . -2 . 63 -7 . 63 8 . 36 97 .03 1 .63 2 . 1 164 . 7 0. 626 0. 1 . . 46 48 . 45 . 29 -o . 17 7 .06 83 68 1 . 5 1 0. 5 163 . 2 0. 620 0. 8 98 49 . -0 .01 -5 . 44 5 2 1 98 . 37 2 09 40. 2 163 . 8 0. 617 0. 0 . 70 50. 36 . 10 3 .07 8 . 20 92 .01 2 . 13 7 . 5 158 .0 0. 6 11 0. 5 .21 5 1 . 6 . 42 - 12 . 88 3 . 68 91 . 13 2 . 1 1 1 . 1 181 . 2 o 608 0. 4 , 51 52 . 38 . 65 4 . 90 2 . 39 92 . 17 1 79 7 . 8 190 . 6 0. 600 o. 6 . 64 53 . 23 .42 -3 . 63 1 . .09 96 . 43 1 . 5 1 1 . 2 178 . 1 o. 584 0. 5 48 54 . 63 . 18 1 1 . 25 1 . 34 92 .72 1 .47 0. 0 164 . 1 o. 570 1. 9 . 3 1 55 . 2 1 . 9 1 -0. . 63 2 86 89 .58 2 .31 ' 4 . 8 168 .5 0. 554 0. 4 . 31 56 . 4 . 40 - 10. . 46 4 . 94 87 . 90 2 .06 2 . 8 167 .6 0. 538 0. 3 . 68 57 . -8 23 -11. 74 3 . 69 97 . 57 1 .87 16 . 2 • 163 6 o. 520 0. 1 . 04 58 . 28 . 30 - 1 .62 4 . 76 83 . 70 1 . 92 0. 0 180 . 5 0. 505 1. 6 03 59 . 39 . 38 3 . 57 8 . 22 85 . 5 1 1 87 13. 3 189 . 4 0. 484 0. 6 . 70 60. 5 . 22 -8 . 43 5 .93 98 . 50 1 . 68 12 . 0 169 . 8 0. 500 0. 2 . 12 6 1 . 29 . 57 1 . 97 6 . 04 92 . 99 2 . 01 7 . 7 147 6 o. 520 0. 4 . 62 62 . 7 . 32 -6 . 90 4 . 36 98 78 1 19 1 . 4 145 . 5 0. 540 0. 2 . 49 63 . 54 . 40 -0 . 16 4 . 56 92 . 60 0 . 94 0. 0 150 . 6 0. 550 1. 9 . 69 64 . 46 . 36 -5 . 5 1 4 . 30 93 .05 1 07 O. 0 155 7 0. 570 2 . 1 1 09 65 . 28 . 95 - 10. 29 3 59 91 . 7 1 1 . 06 0. 0 164 . 4 0. 582 3 . 10. 23 66 . 64 84 - 1 . . 70 4 . 98 88 .65 1 26 0. 0 177 . 7 0. 580 4 . 14 . 80 67 . 77 . 75 1 1 06 8 . 93 79 . 13 1 . 02 O. 0 153 . 7 0. 578 5 . 12 .81 68 . 15 . 1 1 -11. . 59 6 . 69 92 76 1 . 49 0. 0 142 . 2 0. 575 6 . 6 09 69 . 28 . 65 - 1 . 94 5 . 5 1 87 . 22 1 . 78 4 . 9 144 . 1 0. 572 0. 5 . 94 70. 69 39 6 84 4 . 58 69 82 2 7 1 6 . 0 139 9 0. 570 0. 15 . 16 7 1 . 14 . 89 -5 . 62 4 79 94 . 89 1 . 96 1 . 5 134 . 7 0. 569 0. 3 . 29 72 . 43 . 80 - 1 . 25 4 . 16 89 2 1 1 . 16 0. 0 183 . 2 0. 567 1 . 8 77 73 . 82 . 23 4 . 74 3 . 55 84 . 87 1 . 45 0. 0 163 9 0. 560 2 . 16 . 08 co r- ••- co r- CO co CN CO oo inoOTCOT-^TOCM CD CM ID CO 0) in cn O *- CM r- r- p» CO in CD CD CD r- in "3- CD CO CM CD CD *- CM cn in O <r CD T in CD in o i CM CM O r- CD r- CO oo n o t mincncocNinccr- co CM — co « i Jl O IN » 1 r- CM in p- 00 CN r- CM T CD CO to co CO 0) p- in O in in in in — CO p- CO p-• r» r~ co CD in r~ 10 05 o n o n i n c n r - T C N O c N — co CN O — CD co co in CM CD CD — in i in co ro in in CD r- in •3- co t- CO in •3- CD 00 p~ co co CD in CN CN CN CN CN -r- CN CN CN CM CN CM CM CM CM CM CM CN CM CN — CN CN CM CN 1 *- CM co -3 in CD r » CO 0 ) O O O O O O O O O O O - CN CO i n O O O O O O O CM CO T in CD p- CO CD O O O CN o o - CM CO "7 in CD p~ co CD o o i ai n o - CO CO CD o — CM co T O ^ O O C N C O C N C D O in CD in IN o i T in co CD p- CO in CO O CO CM O CO CD CN CD CD CD CD CD CO CD CD CD CD CD O cn 01 CO CM CM CM co n n n CD oo CO CD r~ r~ r~ r- r~ r~ r- r- r- CD in CM O co r~ p~ CD CD CD CD CD CD CD ID CD CD CD CD in in T i in in in in in in to in in in in i n i n i n i n i n i n i n ' 3 ' 1 T 1 t 7 « ^ i ^ T IT co ro CO CO CO CO to CO CO CO CO CO CO CO CO CO CO CO CO i O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O i CM CO in O CO in CD r- CD CM O c o c o c o r - c n m ^ r o o r~ co CD p~ co m CN in co co p- p- p- p- r- CM 00 CO CO T O in T CM CO CO O CN O CD — CO o 1 — 00 P- •» cn CM in o c n i n i n c n c o c D O c o ,- co r- CM CD iD in i— r- r- in co co ro co ro CO *T O p- 00 CD 00 CD ro p- — CO o in O CO CD •tf 00 p- CD o CO ) m *r w v r- CO CO in co in CN c o O c M T i n i i n i n co in CD CD CM ro ID CD co cn co co CD CD CD CD CD in CN CN CD CO ID p- CM CD CN O *r cn CD CD oo 0) ro CD CD T CM CN CM cn CM CM — — CN CN CN CN CN CM CN CM CO CO CN CO CO c N O O O O O O O O O O ^ i o ^ n r ^ ^ C N i O m ^ O O O O O U J n - ^ c o t i J C N i O O O O O O O O O O O t o a J O O t O O O O O O O O O O O O O ^ O O O O O O O O O O r ^ ^ O O i n ^ t ^ c n o o c N O O O O O c N - * - - ^ C N O ' ^ , T O O O O O O O O O O ^ ' O O O O c v > O O O O O O O O O O c N i O c o r ^ a D m ^ c o c N / ^ L n c o r - ^ u > c n M i i ) 0 ^ C0<X>LT)lX)^C0C0COC0Lr)(X>OTCOi^CT)CnCT)COr^cr)OT I — I I * - I I ! - - - I - | « - T - C \ I — I I I ' - O J - ^ O J — •^'-^-•^rNfN'---o,''- I C \ ' C N C S » - C N C N C N O J — — OTCNir)nc^cnir)Lnn(i)ir)con^ojror^inu300c^ m c o c o c o c o r ^ c o a ) ^ < £ ) c o ^ c o c o L r > c ^ c N r - r ^ ^ c o o r ^ r ^ r ^ r ^ r - r - c o c o c o m c c a o a D c o c o a D a i O T 125 134 . 33 . 56 0 .4 1' 10 . 14 98 . 27 0 .86 4 .6 182 . 6 O 340 0 . 6 . 22 135 . 151 . IO 23 . 40 13 66 74 . 76 1 . 24 0 . 0 297 .6 0 . 335 1 . 25 . 15 136 . 106 . , 13 19 . 50 14 . 22 79 . 16 1 . 20 4 . 4 4 18 . 8 0 . 330 O. 15 .51 137 . 112. 1 1 18 .64 1 1 . 23 82 . 17 1 . 19 8 .5 220 . 7 0. 327 0 . 16 .95 138 . 162 . 69 25 . 48 10 89 79 .84 1 . 34 0 .0 255 .8 0 . 322 1 . 26 . 8 1 139 . 150 43 22 . 27 12 . 7 1 75 . 58 1 . 22 0 .0 298 . 7 0. 3 19 2 . 26 .61 140. 111 34 13 . 14 13 . 63 7 1 . 25 1 .04 0 .0 39 1 . 3 0 3 14 3 . 17 .86 14 1. 170 . 44 32 .64 15 . 7 1 70 . 46 1 . 19 1 . 2 356 . 7 0 309 0 . 26 . 24 142 . 70. 94 2 . 09 10 . 79 9 1 .05 1 . 27 0 . 3 272 . 5 0. 304 0 . 1 1 . 69 143 . 119 94 15 12 13 22 77 . 95 1 . 10 0 .0 44 1 . 1 0 . 300 1 . 19 . 24 144 . 188 . 46 35 .01 15 . 72 76 .67 1 . 58 0 .0 704 . 7 0 293 2 . 29 .01 145 . 176 . 46 30 .09 1 1 . 85 75 . 33 1 .90 0 . 0 459 . 3 0. 289 3 . 28 .85 146 . 132 99 20. . 34 1 1 . 57 79 . 72 1 . 50 0 .0 366 . 8 0 . 283 4 . 23 .07 147 . 182 59 3 1 . 37 14 .62 74 .07 1 . 20 0 O 610 . 3 0 . 277 5 . 28 . 26 148 . 179 . 08 28 . 68 16 . 17 54 32 1 . 43 0 . 0 882 . 5 0. 27 1 6. 30 . 24 149 . 163 . 72 24 . 88 17 . 54 38 . 84 1 . 19 0 .0 1080 . 0 0 . 265 7 . 30 . 6 1 150. 178 01 29 . 79 19 . 12 37 . 50 1 . 28 0 .0 1202 . 9 0 255 8 . 30 28 15 1. 137 78 2 1 . 88 17 . 35 59 . 25 1 . 30 0 . 0 932 . 8 0. . 247 9 . 22 . 98 152 . 94 . . 25 14 . 89 12 . 36 78 .00 1 . 55 2 .9 476 . 3 0. 239 0 . 12 . 95 153 . 67 . 7 1 5 . 13 1 1 . . 44 91 . 46 0 .94 0 . 7 284 . 1 0 . 23 1 0 . 12 . 19 154 . 165 . 7 1 29 .92 14 .01 73 . 37 1 . 24 O . 0 591 . 9 0. 220 1 . 26 . 15 155 . 78 . 67 10 .07 12 . 79 88 .41 1 . 2 1 0 . 3 378 ,o o. 2 13 0 . 1 1 . 96 156 . 68 . 33 8 .42 10 . 86 97 .08 0 .96 1 . 4 311 . 6 0. 205 0 . 6 . 93 157 . 14 1. . 79 19 98 12 65 80 04 1 . 30 0 .0 311 . 6 0 . 194 1 . 26 .61 158 . 181 2 1 29 .91 14 . 49 76 .63 1 .25 . 0 .0 797 . 4 0. 191 2 . 28 .51 159 . 149 . 88 22 . 56 15 10 81 . 22 1 . 16 0 .0 84 1 . 5 0 . 188 3 . 24 . 77 160. 183 . 38 30. 20 17 . 46 60 . 96 1 . 10 0. .0 1082 . 0 0 . 183 4 . 30. . 33 16 1. 182 17 29 . 84 19 . 86 53 . 66 1 . 12 0 . 0 1272 . 5 0. . 180 5 . 30 . 48 162 . 18 1 . 79 30. . 20 20 . 59 56 23 1 . 15 0 .0 1345 . 6 0 . 176 6 . 29 . 65 163 . 187 . 54 34 . . 77 17 . 59 76 .95 1 . 59 0. .0 1390. . 5 0 . 173 7 . 29 . 35 164 . 133 83 26 39 15 . 40 85 . 70 1 .48 0 .0 839 . 2 0 . 167 8 . 18 39 165 . 120 . 79 15 .47 16 .01 85 . 17 0 .93 0 .0 9 11 . 7 0. 163 9 . 20 . 52 166 . 183 . 96 30. . 76 18 . 1 1 76 .80 1 .02 0 .0 1226 . 6 0 . 157 10. 29 99 167 . 182 .08 30. 39 19 .84 73 . 67 1 .02 0. 0 1317 1 0 . 150 1 1 . 29 92 168 . 180 08 29 . 77 22 . 86 52 . 78 1 . 15 0 .0 1443 .9 0 . 14 1 12 . 29 . . 93 169 . 17 1 . 58 27 54 25 .05 39 . 23 1 .00 0 .0 1485 . 7 0 . 134 13 . 29 . 14 170. 179 . 2 1 29 . 80 23 54 60 . 22 0 .90 0. .0 1620. . 4 0 . 127 14 . 29 . . 14 17 1. 179 58 29 57 20 . 48 77 . 80 1 . 14 o O 1450 . 9 0 . 120 15 . 29 . 43 172 . 182 . 25 30. . 56 18 . 12 77 .87 1 . 29 0. .0 1358 . 2 0 . 113 16 . 28 . . 70 173. 183 7 1 30. 39 17 88 75 . 40 1 .09 0. 0 1425 . 8 0 . 122 17 . 30. 25 174 . 183 63 30. 49 19 26 72 . 9 1 1 .03 0. 0 1480 9 0 . 133 18 . 30. 20 175 . 178 63 29 . 26 22 . 23 63 . 4 1 1 . 17 0 .0 1482 . 1 0 . 14 1 19 . 30 28 176 . 55 . .88 5 . 26 16 . 78 87 . 97 1 . 15 2 . 5 684 . . 4 0 . 152 0 . 9 . 77 177 . 28 25 - 1 . 29 14 . 64 97 ,97 0 .83 23. 5 239. 8 0 . 162 0 . 4 . 28 178 . 85 .00 1 1 . . 48 16 . 68 88 . 49 1 16 0 3 3 12 2 0 . 172 0 . 14 . 23 179 . 178 . 38 35 . 45 18 . 20 83 . 05 1 . 1 1 0. 5 497 . 9 0 . 182 0 . 26 . . 39 180. 188 . 75 38 . 65 20. 2 1 79 . 23 1 . 19 0 . 0 1074 . 5 0 . 192 1 . 26 . 48 181 . 56 . 79 5 . 75 14 . 78 94 . . 40 1 .55 0. 0 489 . . 3 0 . 202 2. 7 . .48 182 . 84 . . 33 15 . 20 14 . 18 92 . 79 1 .45 2 . 7 493 . 0 0 . 2 17 0 . 10. 90 183 . 93 . . 33 16 . 4 1 15 . 55 9 1 . . 74 1 . 16 10. 9 273 . 8 0 . 228 0 . 12 . 36 184 . 38 7 1 3 . 04 10. 28 98 . 34 1. 51 16 . 5 199 . 7 0 . 240 0 . 5 . 09 185 . 14 1 . 25 28 . 14 14 . 94 78 . 80 1 . 35 0 . 6 248 . 8 0 . 250 0 . 18 70 186 . 123 58 19 9 1 14 . 34 83 . 7 1 1 . 30 0 . O 206 1 0 . 262 1 . 17 . 7 1 187 . 168 . 42 3 1 . 76 16 . 70 7 1 63 1. 01 0 . 0 353 . 5 0 . 275 2 . 23 . 17 188 . 1 18 54 16 . 59 15 . 91 80 89 1 27 0 0 350. 5 0 . 270 3 . 19 . 65 189 . 155 . 7 1 25 . 4 1 16 . 58 75 . 73 1. 14 0 . 0 589 . 6 0 . 260 4 . 24 . 52 190. 176 . 96 28 . 6 1 18 . 9 1 69 85 1. 15 0 . 0 998 . 6 0 . 249 5 . 28 . 59 191 . 176 . 96 32 . 96 19 . 16 77 . 45 1 06 0 . 0 1 128 . 1 0 . 239 6 . 27 . 24 192 . 158 . 63 27 . 40 18 . 39 74 . 5 1 1. 18 0 . 0 1 120. 6 0 . 228 7 . 23 . 87 193 . 175 . 79 30. 13 19 . 65 7 1 . 37 1. 05 0 . 0 882 . 7 0 . 2 17 8 . 27 . 75 194 . 26 .00 -6 . 46 14 .04 90 . 26 1 . 32 7 .0 662 . 1 0. 206 0. 6 . 37 195 . 132 . 38 27 . 28 12 .83 84 . 4 1 1 . 30 24 .5 196 . 3 0. 2 19 0. 18 .43 196 . 39 .00 3 . 33 12 . 78 95 . 15 1 . 17 9 . 5 175 . 9 0 230 0. 5 . 26 197 . 88 . 75 15 62 15 . 97 88 . 50 0 . 76 0 .0 222 . 2 0 240 1 . 12 . 17 198 . 136 . 42 27 OO 18 .54 81 .7 1 O . 83 0 .0 301 .0 0 251 2 . 16 . 77 199 . 159 .00 27 . 15 18 . 38 81 . 24 1 . 34 0 .0 38 1 . 6 0 263 3 . 25 .01 200. 48 . 50 4 . 76 14 . 93 93 . 35 1 . 16 0 . 7 31 1 . 5 0. 274 0. 6 .46 201 . 67 . 17 3 47 13 .67 92 . 4 1 1 . 37 0 .4 219 .9 0. 288 0. 12 . 22 202 . 122 .04 19 . 76 14 .53 79 .86 1 .05 0 .O 317 . 5 0 279 1 . 14 .58 203 . 1 1 1 .46 13 . 13 14 .99 82 .43 1 .01 O .0 583 .0 0. 269 2 . 18 . 27 204 . 17 1 . 58 27 . 2 1 17 . 2 1 78 . 80 0 . 99 0 .0 •835 . 3 0. 259 3. 27 .61 205 . 179 . 58 32 .05 19 . 63 77 .00 0 . 89 0 .0 1053 . 5 0. 250 4 . 28 . 20 206 . 166 .00 25 . 28 22 .68 64 .40 0 . 78 O .0 1439 . 1 0 24 1 5 . 27 .91 207 . 164 . 38 25 50 23 . 49 64 .90 0 .82 0 .0 1357 .0 0. 232 6 . 27 . 29 208 . 161 . 58 25 .47 22 .93 72 . 22 1 .08 0 .0 1383 .9 0. 22 1 7 . 25 .86 209 . 173 . 88 32 . 75 18 .88 84 . 16 1 . 47 0 .0 1084 .0 0. 22 1 8 . 26 .01 2 10 . 156 . 46 27 . 59 18 .42 86 .09 1 .21 0 .0 784 .0 0. 220 9 . 23 . 7 1 2 11. 6 1 . 7 1 9 . 78 15 . 85 92 . 86 1 . 35 O .0 460 . 9 0. 2 19 10. 7 . 96 2 12. 50 . 92 6 . 5 1 14 . 72 90 . 45 1 . 25 0 .0 498 . 3 0. 2 19 1 1 . 6 . 98 2 13. 27 . 17 1 . 16 12 . 59 96 . 4 1 1 . 19 0 . 3 296 . 2 0. 2 18 0. 3 . 74 2 14. 48 . 54 1 . 70 14 . 36 93 .92 0 90 1 . 1 2 14 . 7 0. 2 17 0. 7 .93 2 15. 86 . 38 12 .00 14 . 5 1 84 . 5 1 1 06 0 . 4 535 .0 0. 2 16 O. 12 . 94 2 16 . 132 . 67 19 .90 15 .82 69 . 74 1 13 0 .0 535 .0 0. 2 15 1 . 23 . 40 2 17. 48 . 75 4 . 96 16 . 4 1 83 . 19 1. 00 0 . 3 535 O 0. 2 13 0. 8 . 13 2 18. 158 . 2 1 23 . 89 19 . 36 73 . 57 1 08 0 .0 106 1 . 7 0. 2 1 1 1 . 26 . 14 2 19. 157 . 88 24 . 77 22 . 16 66 . 19 0 92 0 .0 9 16 . 8 0. 209 2 . 25 . 22 220. 62 . 25 2 . 7 1 18 13 86 . 33 0 88 0 .0 746 . 5 0. 207 3 . 1 1 .65 22 1 . 85 .00 12 56 15 28 92 . 67 1. . 33 2 O 436 . 2 0. 205 O. 12 .43 222 . 43 . 33 4 . 20 14 . 1 1 91 .68 0 82 5 . 3 193 . 1 0. 203 0. 5 .90 223 . 106 . 67 15 . 97 16 . 20 84 .69 1 13 0 .0 196 . 7 0. 200 1 . 13 . 1 1 224 . 35 . 29 2 . 55 13 . 45 92 . 70 1 .60 12 . 8 506 .6 0. 2 10 0. 5 . 32 225 . 132 . 50 24 . 65 14 . 30 79 . 58 1. .06 2 . 0 228 . 4 0. 220 O. 18 . 72 226 . 88 .63 5 . 90 13 , . 98 77 . 10 1. 07 0. 0 235 . 4 0. 2 30 1 . 16 . 23 227 . 15 1 . 29 23 . 70 15 . 9 1 7 1 . 10 1. 03 0 .0 366 . 7 0. 239 2 . 24 . 77 228 . 1 13 . 96 16 .01 16 . 33 68 . 40 1 07 0 .0 374 . 7 0. 249 3 . 19 .09 229 . 14 1 . 29 19 19 16 . 20 75 . 24 0 91 0. .0 462 . 4 0. 258 4 . 24 . 27 230. 142 . 25 19 . 20 16 . 93 72 .69 0 94 0. .0 656 . 1 0. 250 5 . 24 .66 231 . 146 .42 22 27 19 13 67 .09 0 91 0 .0 817 . 4 0. 24 1 6 . 24 . 54 232 . 127 .08 15 .91 19 . 38 69 .68 0. 86 0. .0 834 . 2 0. 232 7 . 22 . 22 233 . 137 .04 17 . 75 17 . 68 72 70 1 01 0. 0 951 .0 0. 222 8 . 23 . 70 234 . 1 35 .63 17 . 8 1 17 . 55 72 . 34 1 17 0. 0 725 . 7 0. 2 13 9 . 23 .07 235 . 136 . 50 17 . 49 19 .90 67 14 0. 97 0 0 943 9 0. 204 10. 23 . 27 236 . 134 . 25 16 . 93 20 . 80 64 . 76 0. 89 0 0 982 . 4 0. 194 1 1 . 23 . 15 237 . 128 .00 15 .44 20 . 44 68 19 0. 94 0 0 1049 . 7 0. 184 12 . 22 . 17 238 . 1 1 1 . 88 1 7 . 98 17 . 16 78 .05 1. 60 0. 0 575 .6 0. 193 13 . 16 68 239 . 55 . 29 5 88 16 53 79 . 27 1. 12 0 0 534 7 0. 204 14 . 8 . 17 240. 76 .67 2 .89 16 . 5 1 76 .01 0. 95 0. 0 689 . 4 0. 2 14 15 . 14 .88 24 1 . 98 . 75 18 . 1 1 17 . 08 79 62 0. 99 5. 3 6 19 .9 0. 225 0. 15 . 1 1 242 . 47 . 79 6 28 14 . 46 87 . 15 1. 08 0. 7 222 . 9 0. 236 0. 5 83 243 . 109 . 38 15 .69 16 . 54 74 . 16 0. 84 0. .0 232 3 0. 246 1 . 15 .97 244 . 1 1 1 . 7 1 12 .91 17 . 32 74 .88 0 92 0. 0 374 7 0. 256 2 . 20 .06 245 . 127 . 2 1 15 . 69 18 . 70 79 81 0. 90 0. 0 519 .6 0. 266 3 . 20 .06 246 . 40 .00 3 . 65 15 . 15 86 82 1. 24 15 . 2 255 . 2 0. 265 O. 5 59 247 . 69 . 92 5 . 33 15 . 59 83 30 1. 13 1 . 6 174 . 7 0. 263 0. 9 .9 1 248 . 109 . 92 1 1 .42 17 . 34 76 . 10 o 9 1 O. 0 253 7 0. 261 1 . 19 . 37 249 . 80 . 75 12 . 17 17 . 9 1 75 . 37 1 10 0 0 294 1 0. 259 2 . 12 . 17 250. 54 . 79 6 . 08 17 46 78 50 0. 98 0. 0 2 10 . 7 0. 257 3 . 7 .01 251 . 59 . 88 8 .69 16 23 78 83 1. 32 5 . 9 2 16 . 7 0 259 0. 7 .73 252 . 56 . 17 - 1 82 13 . 12 76 09 1. 03 0. .0 210 9 0. 26 1 1 . 12 . 28 253 . 127 . 33 24 . 57 13 . 38 7 1 . 91 1. 45 16 . 0 223 . 4 0. 263 0. 19 . 2 1 254 . 19 . 88 -3 . 82 10 .45 87 . 55 0 .95 2 . 4 17 1 . 6 0. 265 0. 2 . 46 255 . 98 . 13 7 .61 13 .02 78 . 33 1 .02 0 .0 187 . 9 0. 267 1 . 19 . 42 256 . 74 .08 - 1 . 89 14 . 52 63 .61 1 . 12 0 .0 202 . 5 0 . 269 2 . 16 . 74 257 . 87 .42 3 . 36 14 . 86 56 28 1 . 15 O .O 210 . 4 O 27 1 3 . 19 .68 258 . 75 . 13 2 .47 14 . 85 63 . 80 0 . 92 0 .0 257 . 1 0. 273 4 . 15 . 16 259 . 95 . 17 6 . 14 17 .23 70 . 29 0 . 97 0 .0 292 . 5 0. 273 5 . 18 . 2 1 260. 9 1 .00 5 . 39 17 . 78 72 . 34 0 .97 0 .0 353 .9 0. 273 6 . 17 .66 261 . 86 . 58 4 .42 18 . 35 73 . 25 0 .87 0 .0 446 . 1 0 273 7 . 16 .88 262 . 69 . 50 4 . 97 16 . 54 78 . 34 O . 94 0 .0 340 .0 0. . 272 8 . 13 . 14 263 . 24 .08 -o. . 63 14 . 32 86 .83 0 .80 0 . 7 183 . 2 0 272 0. 4 . 17 264 . 19 . 17 -3 .01 13 . 84 87 .06 0 75 0 .0 167 .0 0 272 1 . 3 .70 265 . 61 .96 2 . 82 15 .03 85 . 18 0 . 96 0 .0 185 . 3 0 268 2 . 12 .94 266 . 65 .08 1 .81 15 . 56 84 .05 0 .83 0 .0 178 . 5 0. 262 3 . 13 . 98 267 . 13 . 96 -3 . 59 15 . 30 85 .04 1 . 10 5 .0 172 . 2 0 257 0. 3 .05 268 . 1 . 75 - 13 .94 12 . 99 83 . 10 0 .96 0 .5 187 . 1 0. 251 0. 4 . 46 269 . 8 1 .04 7 . 70 12 . 74 80 . 76 0 .88 0 .0 196 . 2 0. 247 1 . 14 . 77 270. 14 .63 -6 . 52 1 1 . 20 86 . 18 0. .85 0 .0 18 1 . 1 0. 240 2 . 3 . 98 271 . 34 . 96 -3 9 1 9 .43 82 .93 0 97 0 .5 160 .8 0. 233 0. 8 . 36 272 . 73 . 42 0 . 70 12 . 10 69 17 0 .94 0 .0 17 1 . 2 0 244 1 . 15 . 77 273 . 66 . 29 - 1 . 92 1 1 . 95 73 . 16 0 .87 0 .0 187 . 1 0. 252 2 . 15 .49 274 . 7 1 . 63 12 . 28 12 . 2 1 80 . 29 1 33 15 .8 174 . 9 0 260 0. 10 . 66 275 . 60 . 25 3 .00 10 .53 77 . 49 0 .99 0 .5 176 . 8 o. 270 0. 1 1 .94 276 . 22 . 54 -9 .67 9 . 55 80 . 40 1 . 13 0 .0 185 . 1 0 279 1 . 7 . 62 277 . 65 . 67 0 . 90 10 .82 72 . 29 1. . 1 1 10 . 1 188 . 3 0. 289 0. 14 . 43 278 . 38 . 38 1 . . 13 12 . 58 68 .09 1. 37 10 . 6 162 . 3 0 299 0. 7 . 82 279 . 1 . 54 - 10 . 23 9 . 48 84 . 76 1 .70 0 .0 168 . 3 0. 309 1 . 2 . 8 1 280. 64 . 92 4 29 9 . 86 76 . 48 1. 13 0 . 5 165 . 4 0. 3 19 0. 13 .03 281 . 4 1 .67 2 87 10 . 52 75 .08 0. 91 0 O 157 .0 0 305 1 . 7 .01 282 . 55 . 88 -2 . 36 1 1 . 72 75 . 47 0. 83 0 .0 173 . 2 0. 290 2 . 12 97 283 . 66 . 25 2 . 53 12 .01 79 . 75 0. 80 0 .0 182 .0 0. 280 3 . 13 . 4 1 284 . 56 . 58 1 . 90 1 1 . 57 84 . 29 0. . 74 0 .0 208 . 6 0. 269 4 . 1 1 . 73 285 . 58 . 13 - 1 . .08 12 3 1 83 . 49 0. 73 0 .0 176 3 0. 257 5 . 1 1 . 73 286 . 55 . 33 -2 . 5 1 13 .61 76 .76 0. 7 1 0 .0 189 .9 0. 245 6 . 12 . 18 287 . 50 . 58 - 1 . 39 13 . 73 79 . 79 0. 72 0 .0 188 .6 0. 25 1 7 . 10 .91 288 . 42 . 29 1 . . 56 13 . 1 1 83 . 76 1. 32 0 .0 179. . 1 0. 26 1 8 . 8 . 39 289 . - 14 . 50 - 16 . 62 7 . 66 83 . 30 1. 48 15 . 1 162 4 0. 267 0. 1 . .93 290. 22 . 25 - 12 . 18 6 .07 78 . 93 1. 06 0 .5 182 . 4 0. 272 0. 8 . 82 29 1 . 34 . 96 -8 . 86 5 92 77 . 5 1 0. 9 1 0 .0 173 4 0. 280 1 . 1 1 . 69 292 . 36 .00 -9 . 03 6 . 96 77 .31 0. 86 0 0 162 . 7 0. 286 2 . 1 1 . 47 293 . 46 .67 4 . 25 9 43 78 . 29 1. 33 2 .6 162 2 0. 29 1 0. 8 . 39 294 . 7 .42 -2 . 63 1 1 75 85 .85 1. 65 0. .0 17 1. 0 0. 299 1 . 1 .62 295 . 8 . 29 -9 . 70 12 . 2 1 77 . 16 2 . 26 0. 0 153 . 8 0. 302 2 . 4 . 76 296 . 1 1 .96 -4 . 16 13 10 77 . 4 1 2 . 03 0 0 165 . 6 0. 3 10 3 . 3 . 54 297 . -7 .08 - 12 . 15 12 36 78 . 44 1 . 40 0. o 207 2 0. 3 16 4 . 1 . 54 298 . -4 . 7 1 -9 . 40 12 . 58 76 . 56 1 . 82 0 0 145 . 3 0. 322 5 . 1 68 299 . -9 . 13 - 13 02 9 . 16 82 .06 2 . 7 1 0. 0 16 1 . 0 0. 325 6 . 1 . 49 300. 7 88 -4 . 13 8 . 67 86 36 1 . 36 0. 0 151 . 7 0. 315 7 . 1 . 89 301 . -2 . 7 1 -8 . 92 7 . 29 87 27 0. 98 0. .0 150. 2 0. 300 8 . 1 . 19 302 . 44 . 2 1 0. 76 6 . 69 82 . 34 0. 97 0. 0 159 . 2 0. 289 9 . 9 . 80 303 . 27 . 7 1 1 . 94 7 . 59 81 . 36 1 . 08 0. 0 173 . 8 0. 279 10. 4 . 84 304 . - 10 .08 - 16 . 20 7 . 98 84 99 1 . 70 6 . 0 176 . 8 0. 267 0. 1 . 78 305 . 5 .08 - 15 . 68 6 . 01 8 1 26 0. 96 0. 0 158 . 4 0. 255 1 . 6 . 36 306 . 18 . 54 -6 . 60 6. 78 76 . 51 0. 85 0. 0 147 . 6 0. 245 2 . 6 . 40 307 . 1 . . 79 -5 . 86 9 70 73 . 6 1 1 . 4 1 15 . 0 168 . 6 0. 252 0. 1 . 93 308 . 13 . 25 -7 . 40 7 . 32 81 99 1 . 18 1 1 . 0 160. 6 0. 259 0. 4 . 94 309 . -8 . 75 - 16 . 92 5 . 98 81 . 76 1 . 28 1 1 . 0 150. 6 0. 265 0. 2 . 52 310. 5 .04 -7 . 1 1 4 . 63 84 . 73 1 . 21 5 . 0 157 . 4 0. 27 1 0. 2 . 32 3 11. -2 1 . 38 -22 . 99 4 . 82 78 . 05 1 . 7 1 1 . 0 169 . 4 0. 279 0. 2 . 43 3 12. 3 . 54 - 17 . 98 4 . 06 73 . 39 0. 95 0. 0 156 . 1 0. 284 1 . 8 23 3 13. 3 . 33 - 18 . 04 3 . 31 73 . 03 1. 01 0. 0 143 . 9 0. 29 1 2 . 8 . 32 314 . 12 . 67 - 12 . 57 1 .88 8 1 . 50 0 .87 0 .0 143 9 O. 291 3 . 7 .84 315. 14 . 08 - 10 .08 2 .91 79 . 77 0 . 82 0 O 159 . 2 0. 291 4 . 7 . 33 3 16. -7 . 79 -11 . 90 1 .59 86 . 80 0. 95 6 .0 145 . 4 0 29 1 O. 1 . 17 317 . 12 . 67 -11 . 26 1 . 39 82 91 0. .84 0 .0 164 . 9 0 29 1 1 . 7 . 58 318. 18 . 33 -6 . 35 2 .85 75 .95 0 .80 0 .0 165 . 1 0. 291 2 . 7 . 10 3 19. 3 . 13 -2 .86 3 . 37 83 .58 1 . . 69 22 .0 156 . 1 0. 29 1 O. 1 . 10 320. 2 33 -3 .09 6 .03 88 .97 1 . . 49 22 .o 155 . 8 O 291 O. 0 . 59 32 1 . 0 .08 -8 .31 4 .09 88 .52 1 . . 16 2 o 150 . 7 0. 291 0. 2 . 20 322 . 23. 33 0 .96 4 .98 79 . 49 0 .99 4 .0 153 . 1 0. 300 0. 4 .30 323 . -0. .04 - 13 . 13 3 . 48 82 . 37 1 . 26 2 .0 153 .0 0 308 0. 4 .45 324 . 3 . 79 -5 .02 0 . 50 87 . 69 O . 86 4 .o 158 . 1 0 3 16 O. 1 . 42 325 . -5 . 29 - 19 . 53 - 1 .00 76 . 53 0 82 1 .0 177 . 2 0. 322 0. 5 . 85 326 . -11 . 54 -22 33 - 1 . 32 7 1 .51 0 87 0 .0 159 . 8 0 330 1 . 6 . 18 327 . -7 .04 - 19 . 48 0 . 10 77 . 5 1 0 . 75 0 .0 155 . 6 0 338 2 . 5 .88 328 . 9 . 96 -7 . 17 -0 . 18 83 .06 0 72 0 .0 157 .6 0 344 3 . 5 . 1 1 329 . 12 . 50 -0 . 77 1 . 59 8 1 .60 0. .80 4 .0 158 2 0 350 0. 2 . 23 330. 5 00 -2 . 82 5 . 56 87 .43 1 .51 12 .0 143 . 9 0 354 0. 0 .99 331 . 1 .08 -3 . 12 6 . 40 86 .63 1 61 21 .o 163 . 4 o. 359 O. 0 .6 1 332 . -0 . 33 -3 .51 5 . 73 86 60 1 5 1 24 :o 174 . 7 o 363 0. 0 . 35 333 . O . 50 -4 . 84 5 . 45 85 . 30 1 . 78 7 .0 162 . 3 o 369 O. 1 .03 334 . 14 . 63 -o .90 5 . 57 84 . 49 1 49 15 .0 157 . 7 0. 37 1 O. 3 08 335 . -2 .63 -6 . 73 5 19 86 . 40 0 99 1 .0 15 1 . 5 0 375 0. 0 .88 336 . 1 .08 -2 . 67 4 . 84 87 . 53 2 00 42 .0 157 6 0. 380 O. O . 44 337 . -30 . 79 -25 . 17 6 . 77 80 . 49 2 .03 2 .0 158 . 6 0. 383 0. 1 .00 338 . -6 .42 - 16 . 55 4 . 45 77 . 64 1 . 03 0 .0 168 .5 0. 387 1 . 4 . .01 339 . -4 . 50 - 13 . 87 3 . 75 7 1 . 72 0. 75 0 .0 178 . 2 0. 384 2 . 4 . 46 340 . -2 1 OO -25 . 25 1 . 56 76 . 25 0 88 0 .0 160 . 2 0 38 1 3 . 4 .77 34 1 . - 1 7 2 1 -2 1 . 76 0 97 74 . 74 0 72 0 .0 150 2 0. 379 4 . 4 . 54 342 . - 13 . 92 - 16 .97 2 .00 74 .83 0. . 72 0 .0 154 . 7 0. 372 5 . 2 . 32 343 . -20 33 -24 . 7 1 1 . 92 77 . 20 0. 73 0 .0 159 . 1 o. 368 6 . 4 . 46 344 . - 17 . 67 -23 . 59 2 .02 77 . 78 0 75 0 .0 157 .0 0. 362 7 . 4 61 345 . 13 . 17 - 1 . 49 5 . 70 69 . 24 1 . 33 16 .0 164 , 4 0. 359 O. 2 52 346 . -0 . 79 -5 . 74 4 .66 87 .06 1. 05 9 .0 17 1 . 2 0. 354 0. 0. .65 347 . 4 . 2 1 -5 . 87 4 . 93 83 . 73 1. 28 2 .0 185 , 1 0. 350 0. 2 . 01 348 . -4 . 29 -6 . 76 5 . 72 82 94 2 . 35 1 1 .0 159 , 7 0. 346 0. 0. . 77 349 . 0 2 1 -5 . 58 7 .40 82 .96 2 56 14 .0 156 . 1 0 . 34 1 0 . 1 68 350 . -4 . 50 - 10 . 4 1 7 .85 74 63 2 . 19 4 .0 156 . 1 0. 336 0. 2 . 49 35 1 . -3 . 42 -7 . 57 5 .65 83 . 66 2 . 68 4 .0 156 . 1 o. 332 0. 1 . 23 352 . -9 25 -9 . 46 5 .64 78 45 3 . 50 7 .0 152 . 4 0. 326 0. O 73 353 . - 18 .88 -20. 47 4 . . 18 78 12 1 . 87 0 .0 154 . 8 0. 322 1 . 3 57 354 . - 1 . .50 -5 . 1 1 3 12 83. 05 1 . 4 1 7 .0 153 . 2 0. 330 0. 0 93 355 . 5 . 04 -6 . 34 5. . 20 78 . 38 2 . 05 13 .0 149 . 3 0. 339 0. 2 . 92 356 . -7 . 38 - 14 . 60 3 . 80 8 1 . 30 1 . 53 0 .0 146 . 1 o. 347 1. 3 . 18 357 . 3 . 50 -7 . 74 3 . 38 83 . 49 1 . 02 1 .0 149 3 0. 355 0. 3 . 38 358 . -6 . 00 -9 . 42 5 . 3 1 75 . 48 1 . 52 1 .0 168 . 0 0. 363 0. 1 . 14 359 . -11. 33 - 10 . 54 2 . 26 87 00 1 . 40 12 .0 167 . 0 0 370 0. O. 43 360. - 17 .92 -23 . 13 0. 10 83 . 70 0. 88 0 0 157 . 8 0. 379 1. 3 . 39 36 1 . - 17 . 67 -22 . 73 0. 02 73 . 70 0. 88 0. .0 157 . 3 0. 386 2 . 4 . 83 362 . -21 . 63 -24 . 88 0. 18 77 . 45 0. 96 0. .0 151 5 0. 382 3 . 4 . 33 363 . -11. . 7 1 -20. .47 -o. 77 82 . 08 0. 69 1 .0 147 . 7 0. 378 0. 4 . 83 364 . 9 . 38 -7 . 57 -1. 01 85 . 74 0. 64 0 .0 147 . 7 0. 374 1 . 5 . 38 365 . 2 . 54 - 10. 05 -o. 92 88 . 55 0. 69 0. 0 163 . 4 0. 369 2 . 3 . 50 366 . 10. 79 - 1 . 60 3 . 69 78 . 86 1 . 42 2 . 0 156 . 1 0. 364 0. 1 . 77 367 . 1 . 7 1 -3 . 14 3 . 7 1 87 . 92 1 . 47 17 0 160. 1 o. 36 1 0. 0. 54 368 . 6 . 33 - 1 . 79 3 . 72 87 4 1 1 . 74 10. .0 163 . 2 0. 357 0. 1 . 15 369 . 7 . 83 - 1 . 45 4 . 91 89 . 58 1 . 4 1 28 . 0 151 . 8 0. 359 0. 1 . 52 370. 5 . 29 -6 . 78 4 . 67 83 . 95 1 . 34 0. 0 156 2 0. 36 1 1 . 3 . 26 37 1 . O. 2 1 -4 . 59 5 . 94 84 . 9 1 1 . 59 7 . 0 148 . 8 0. 362 0. 0. 79 372 -5 . 54 -7 . 27 6 . 92 85 63 1 . 64 22 . o 147 . 0 0. 364 0. 0 28 373 . -2 . 75 - 12 . 23 4 . 34 74 . 36 1 . 73 1 . 0 158 . 7 0. 366 0. 4 . 03 c\i — — T r r - c o i n r - r o c N m i n c o c N O ^ c N ^ - n c o c D c o — O c o n O — c M ^ - m m ' ^ - c M O ' - ' - o i i r ) 000-nn>toOOO'n ooOTcoiDr -T innOLOCDiDiD c o i o r ^ c o c n o — c N r : * T T ^ T r o o o o o o o o o o d o o — mcocc-cococN — ^ i et o o o o o o o o o o o o o o O l ' i n O O O O - B i O I U O O TcocOLncocncMO T T^ ' ' - r^ro - - - - O O O - - - O O O ro iD inmnt -T r ' - nco tM ' -a ) — ^ r~ co — co — Mn O o o r-c o c o c o r - r - - r - r - r ~ c o r ~ C D r ~ i ~ Ln-'-cnncncOLfiocNLOcocn — l O c o c o r - T C N n c D c o c n c D i D O c o c o o m c o c c c N c D c o o ) — " - ^ r m c o c o t m o i i n m o i O - co CN n CM o r- 01 CM — o t u n - o i i — — CM t t I 1 — CM i i i i i t i m c c a i c o o i n i — c M c n n o c o r o c M c o r ^ c o c N c o c D ' r r M c o m n c o c N O O i o — ro — n o ^ m u i i i ^ i n t D N c o c o O ^ c M n ^ T i n t D r " - r ^ r - r* - r - - r ^cococococococo 130 APPENDIX I I I E v a p o r a t i o n M o d e l l i n g Scheme The approach u t i l i s e s b oth s t a n d a r d e v a p o r a t i o n e q u a t i o n s of the s o -c a l l e d C o m b i n a t i o n Model ( i n c o r p o r a t i n g energy and aerodynamic i n f l u e n c e s ) and m o d i f i c a t i o n s t o account f o r s p e c i a l suburban f e a t u r e s ( i n c l u d i n g s u r -f a c e water a v a i l a b i l i t y and ' o a s i s - t y p e ' a d v e c t i o n ) . Three t y p e s of s u r f a c e a r e d i s t i n g u i s h e d : i m p e r v i o u s , p e r v i o u s i r r i g a t e d , and p e r v i o u s u n i r r i -g a t e d . I m pervious s u r f a c e s are c o n s i d e r e d to be wet ( s a t u r a t e d ) d u r i n g r a i n y days ( g r e a t e r than 5 mm) or when the paved a r e a r e t e n t i o n s t o r a g e i s no n - z e r o , o t h e r w i s e they a re assumed t o be d r y . P e r v i o u s i r r i g a t e d s u r f a c e s are assumed always t o be wet w i t h water f r e e l y a v a i l a b l e . The p e r v i o u s , u n i r r i g a t e d s u r f a c e s p o s s e s s a range of m o i s t u r e s t a t e s , from t o t a l l y wet t o f a i r l y d r y . T h e i r s t a t e at any g i v e n time are r e l a t e d d i r e c t l y t o t h e i r s o i l water c o n t e n t . I n the event of g r e a t e r than 5 mm of r a i n on any day a l l t h r e e s u r -f a c e s a re assumed t o be wet and e v a p o t r a n s p i r i n g at a p o t e n t i a l r a t e . T h i s has been demonstrated a t the Sunset s i t e ( K a l a n d a e t a l . , 1980). Hence the l a t e n t heat f l u x was c a l c u l a t e d a c c o r d i n g t o the P r i e s t l e y and T a y l o r (1972) e q u a t i o n : where a i s an e m p i r i c a l c o e f f i c i e n t . W ithout r a i n ( t h a t i s , w i t h at l e a s t one s u r f a c e type n o n - s a t u r a t e d ) the l a t e n t heat f l u x i s c a l c u l a t e d a c c o r d i n g to a m o d i f i e d v e r s i o n of B r u t -s a e r t and S t r i e k e r ' s (1979) a d v e c t i o n - a r i d i t y a pproach. The e q u a t i o n used QE = a (Q* - Q s) _s ( I I I . l ) . S + Y was as f o l l o w s : ( I I I . 2 ) QE= ( 2 a - l ) _ s _ ( Q * - Q s ) z\cx c D Q k 2 S+Y i=i Y l n ( z i - d + Z p v ) l n ( z 2 - d + z 0 ( n ) where n i s number of p e r v i o u s s u r f a c e t y p e s ; i = l i s u n i r r i g a t e d s u r f a c e ; 131 i=2 i s i s > a i i s AA i s *s i s e a i s P i s Cp i s u i s k i s Z2 i s z i i s i s zo in i s d i s The f i r s t term i s the s o - c a l l e d energy term. I t resembles eqn. I I I . l but d i f f e r s i n two i m p o r t a n t r e s p e c t s . F i r s t , i t uses Bouchet's (1963) t h e o r e t i c a l argument t h a t t h e r e i s symmetry between p o t e n t i a l and a c t u a l e v a p o t r a n s p i r a t i o n : E p + E = 2 E p o ( I I I . 3 ) where E p i s p o t e n t i a l e v a p o r a t i o n ; E i s a c t u a l e v a p o r a t i o n ; and Epo i s a term f o r when E=E p . Morton (1976) has a p p l i e d t h i s c o n cept i n v e r y a r i d r e g i o n s (where E e q u a l s p r e c i p i t a t i o n ) and o b t a i n e d good agreement. He used P r i e s t l e y and T a y l o r ' s (1972) e q u a t i o n (eqn. I I I . l ) t o c a l c u l a t e E p o and a m o d i f i e d v e r s i o n of Penman's e q u a t i o n f o r E p . B r u t s a e r t and S t r i e k e r (1979) combined e q u a t i o n I I I . l and Penman's (1948) e q u a t i o n (eqn. I I I . 4 ) f o r E p u s i n g eqn. I I I . l . E = _ s _ (Q*-Q s) + _Y_ E a ( I I I . 4 ) S + Y s+ y where E a i s the d r y i n g power of the a i r . S e c o n d l y , s i n c e the t h r e e s u r f a c e t y p e s of the suburban environment c o v e r a range of m o i s t u r e a v a i l a b i l i t y from none to p o s s i b l y u n l i m i t e d , the o.^  v a l u e s a l l o w f o r the i n c r e a s e i n the energy component due to a d v e c t i o n . The i n f l u e n c e of each a 1 v a l u e i s dependent on the p r o p o r t i o n of the a r e a t h a t the v a l u e r e p r e s e n t s . V a l u e s measured i n f o r e s t e nvironments under wet 132 c o n d i t i o n s have been as h i g h as 11.52 ( S h u t t l e w o r t h & C a l d e r , 1979). The same s t u d y a l s o o b t a i n e d v a l u e s under a l l c o n d i t i o n s (wet and d r y ) of 2.08 f o r a i n P l y n l i m o n F o r e s t . (Note, the f o r e s t may p o s s e s s some p a r a l l e l s t o the urban e n v i r o n m e n t . ) The second term i s the aerodynamic term which i n c o r p o r a t e s w i n d speed, roughness and vapour p r e s s u r e . I n t h i s case the term has been m o d i f i e d to i n c l u d e a c o e f f i c i e n t r e l a t e d t o the a r e a l s o i l m o i s t u r e s t a t u s of the suburban s u r f a c e , c a l c u l a t e d as i n T a b l e I I I . l . T h i s a l l o w s f o r the f a c t t h a t not a l l s u r f a c e s have e q u a l water a v a i l a b i l i t y . The e m p i r i c a l c o e f f i c i e n t s f o r the model were d e t e r m i n e d u s i n g d a t a c o l l e c t e d at the Sunset s i t e d u r i n g J u l y and August 1980 (Oke & McCaughey, 1983). The 29 days i n the d a t a s e t i n c l u d e d both "wet" and " d r y " days; t h a t i s , b o t h eqns. I I I . l and I I I . 2 were used. A v a l u e of 1.28 was used f o r ( B r u t s a e r t & S t r i e k e r , 1979).. The v a l u e of a ' was c a l c u l a t e d on a d a i l y b a s i s u s i n g the D a v i e s and A l l e n (1973) e q u a t i o n : a\ = 1.28 (1 - exp ( -10.563 x (SSM/SSMF))) ( I I I . 5 ) where SSM i s s o i l m o i s t u r e ; and SSMF i s f i e l d c a p a c i t y . The v a l u e of a 2' was e m p i r i c a l l y d e t e r m i n e d from the 1980 d a t a s e t to be 1.28 u n l e s s a j was g r e a t e r than 1.00 and a v a i l a b l e energy was between 100 W/m2 and 120 W/m2 whence a 2=1.70. I f the a v a i l a b l e energy was g r e a t e r than 120 W/m2 then a'=2.60. The f i t of the model (eqn. I I I . 2 ) to the d a t a used i n i t s development ( t h a t i s , the 1980 d a t a ) y i e l d e d a c o e f f i c i e n t of d e t e r m i n a t i o n ( r 2 ) of 0.81, mean b i a s e r r o r (M.B.E.) of 15.41 W/m2 and a r o o t mean square e r r o r (R.M.S.E.) of 21.93 W/m2 ( T a b l e I I I . 2 , F i g . I I I . l ) . The model was then a p p l i e d to independent d a t a s e t s c o l l e c t e d at the Sunset s i t e i n the summers of 1977 and 1978 ( K a l a n d a , .1979; S t e y n , 1980b) 133 T a b l e I I I . l D e t e r m i n a t i o n of AA SSM/SSMF VALUE OF AA » 0.60 A j + A 2 0.30£SSM/SSMF<0.60 ( A t + 2 A 2 ) / 2 <0.30 A 2 Where Aj i s the p r o p o r t i o n of the a r e a t h a t i s p e r v i o u s u n i r r i g a t e d l a n d use A 2 i s the p r o p o r t i o n of the a r e a t h a t i s p e r v i o u s i r r i g a t e d l a n d use SSM i s the s o i l m o i s t u r e SSMF i s the f i e l d c a p a c i t y T a b l e I I I . 2 R e s u l t s u s i n g d a t a measured at Sun s e t , Vancouver and the Oke and S t e y n ( 1 9 8 3 , p e r s . comm.) e v a p o r a t i o n scheme. YEAR(S) N r • 2 M.B i.E. R.M. S.E. (w/ m 2) (w/ m 2) 1980 29 0. 81 15. 41 21. 93 1977 14 0. 51 10. 01 12. 90 1978 13 0. 38 14. 67 18. 43 1977 & 1978 27 0. 47 12. 25 15. 81 1977, 1978 & 1980 56 0. 83 13. 89 19. 22 NOTE: N i s the number of days i n the data s e t 134 F i g . I I I . l Measured v e r s u s m o d e l l e d e v a p o r a t i o n f o r 1980 Su n s e t , Vancouver 2 4 HOUR A V E R A G E S . 'ION (W/M2) ISO.O 180.0 i i R2 - 0 . 8 J 4 MflE - J 5 . 4 0 6 + / + / :D EVAPQRAI + + * y + A + v + / + + MEASURE .90.0 + o a _ io + / + / + o a _ m / + y / + + + + a a 0 . i i 0 3 0 . 0 G f l . 0 1 3 0 . 0 MODELLED 1 ' " ™ T l " 2 0.a J 5 0 . Q EVAPORATION I 1 (W/M2J 135 ( T a b l e I I I . 2 , F i g . I I I . 2 ) . The M.B.E. and R.M.S.E. were lower f o r 1977 and 1978 than f o r 1980. The r v a l u e s were, however, lower i n consequence o f the s m a l l e r range of c o n d i t i o n s w i t h i n the d a t a s e t s . 136 I I I . 2 Measured v e r s u s m o d e l l e d e v a p o r a t i o n f o r 1977 and 1978 S u n s e t , Vancouver 137 APPENDIX IV Monthly C l i m a t e S t a t i s t i c s T a b l e I V . l K e r r i s d a l e net r a d i a t i o n (MJ/m 2/d) by month MONTH MEAN S. .D. C. V. MINIMUM DAY MAXIMUM DAY 1982 JANUARY -0. 08 1, .38 -17. 277 -2. 37 30 1. 99 24 FEBRUARY 1. 75 1, .73 0. 991 - 1 . 00 35 5. 46 54 MARCH 4. 68 2. .44 0. 522 0. 45 60 8. 15 81 APRIL 8. 87 3, .72 0. 419 1. 27 102 13. 10 108 MAY 11. 61 3. .47 0. 299 2. 90 134 16. 28 144 JUNE 12. 48 4. .35 0. 348 2. 44 177 16. 31 180 JULY 10. 67 4. .22 0. 396 2. 25 194 15. 52 205 AUGUST 8. 94 3. ,44 0. 385 2. 35 213 13. 67 218 SEPTEMBER 5. 73 2. ,87 0. 500 0. 15 268 11. 00 253 OCTOBER 2. 65 2. .30 0. 870 - 1 . 25 289 6. 19 274 NOVEMBER 0. 35 0. .84 2. 378 - 1 . 85 311 2. 02 322 DECEMBER -0. 67 0. .88 - 1 . 364 -2. 66 337 1. 14 345 1983 JANUARY -0. 01 0. ,65 -46. 120 - 1 . 20 379 1. 16 381 SUMMER 9. 73 4. .32 0. 444 0. 15 268 16. 31 180 WINTER 1. 46 2. ,48 1. 699 -2. 66 337 8. 15 81 YEAR 5. 61 5. ,43 0. 969 -2. 66 337 16. 31 180 138 T a b l e IV.2 K e r r i s d a l e s t o r a g e heat f l u x (MJ/nr/d) by month MONTH MEAN S. D. C. V. MINIMUM DAY MAXIMUM DAY 1982 JANUARY -0. 68 0. 62 -0. 912 - 1 . 90 30 0. 11 28 FEBRUARY -0. 35 0. 61 - 1 . 764 - 1 . 69 . 35 0. 97 - 54 MARCH 0. 04 0. 58 15. 998 - 1 . 00 68 1. 08 84 APRIL 1. 09 0. 58 0. 651 -0. 40 101 1. 94 96 MAY 1. 78 0. 71 0. 441 -0. 32 122 3. 02 144 JUNE 2. 02 0. 78 0. 458 -0. 11 177 3. 34 180 JULY 1. 74 0. 92 0. 396 -0. 56 194 2. 85 191 AUGUST 1. 19 0. 91 0. 547 0. 10 213 2. 14 219 SEPTEMBER 0. 31 0. 65 2. 067 - 1 . 20 268 2. 12 253 OCTOBER -0. 33 0. 64 - 1 . 824 - 1 . 44 289 1. 06 274 NOVEMBER -0. 83 0. 59 -0. 708 - 1 . 98 311 0. 08 311 DECEMBER - 1 . 15 0. 58 -0. 575 -2. 18 340 -0. 13 345 1983 JANUARY -0. 71 0. 59 -0. 821 - 1 . 92 379 -0. 05 381 SUMMER 1. 36 0. 96 0. 711 - 1 . 20 268 3. 34 180 WINTER 0. 55 0. 72 - 1 . 297 -2. 18 340 1. 08 84 YEAR 0. 40 1. 28 3. 170 -2. 18 340 3. 34 180 139 T a b l e IV.3 K e r r i s d a l e a i r tem p e r a t u r e (°C) by month MONTH MEAN S. D. C. V. MINIMUM DAY MAXIMUM DAY 1982 JANUARY 4. 06 1. 60 0. 394 -0. 12 22 5. 70 29 FEBRUARY 3. 68 2. 81 0. 763 - 1 . 20 35 8. 92 46 MARCH 5. 55 1. 74 0. 313 2. 70 74 10. 60 84 APRIL 7. 76 2. 77 0. 357 3. 36 93 15. 42 112 MAY 12. 52 2. 74 0. 219 6. 93 122 19. 12 150 JUNE 17. 31 3. 60 0. 208 10. 86 156 25. 05 169 JULY 16. 74 3. 04 0. 182 10. 28 184 23. 50 207 .AUGUST 16. 75 2. 29 0. 136 12. 59 213 22. 16 219 SEPTEMBER 14. 81 2. 39 0. 162 9. 43 271 18. 70 245 OCTOBER 10. 29 2. 34 0. 227 5. 92 291 13. 73 287 NOVEMBER 3. 79 2. 61 0. 690 - 1 . 32 326 9. 70 307 DECEMBER 3. 42 2. 48 0. 727 - 1 . 01 364 7. 85 350 1983 JANUARY 5. 55 1. 89 0. 340 2. 60 379 9. 15 383 SUMMER 14. 33 4. 38 0. 305 3. 36 93 25. 05 169 WINTER 5. 33 3. 33 0. 625 - 1 . 32 326 13. 73 287 YEAR 9. 85 5. 95 0. 604 - 1 . 32 326 25. 05 169 140 T a b l e IV.4 K e r r i s d a l e r e l a t i v e h u m i d i t y (70) by month MONTH MEAN S. D. C. V. MINIMUM DAY MAXIMUM DAY 1982 JANUARY 95. 46 3. 38 0. 035 90. 21 31 99. 84 22 FEBRUARY 87. 68 14. 58 0. 166 42. 98 40 100. 00 44 MARCH 83. 69 12. 59 0. 150 51. 87 76 98. 78 62 APRIL 71. 83 17. 29 0. 241 40. 40 111 99. 28 93 MAY 75. 42 12. 81 0. 170 37. 50 150 98. 27 134 JUNE 76. 47 13. 55 0. 177 39. 23 169 97. 97 177 JULY 82. 16 8. 89 0. 108 64. 40 206 98. 34 184 AUGUST 77. 93 9. 06 0. 116 64. 76 236 96. 41 213 SEPTEMBER 77. 63 7. 70 0. 099 56. 28 257 87. 55 254 OCTOBER 79. 79 4. 26 0. 053 68. 09 278 87. 28 301 NOVEMBER 81. 42 4. 89 0. 060 71. 51 326 88. 97 320 DECEMBER 80. 17 4. 96 0. 062 69. 24 345 88. 55 352 1983 JANUARY 81. 10 5. 23 0. 065 71. 65 377 89. 58 369 SUMMER 76. 93 12. 39 0. 161 37. 50 150 99. 98 93 WINTER 83. 01 9. 52 0. 115 42. 98 40 100. 00 44 YEAR 79. 96 11. 46 0. 143 37. 50 40 100. 00 44 141 T a b l e IV.5 K e r r i s d a l e wind, speed (m/'s) by month MONTH MEAN S. D. C. V. MINIMUM DAY MAXIMUM DAY 1982 JANUARY 1 .69 0. 45 0. 263 1. 07 28 2. .36 25 FEBRUARY 1 .60 0. 45 0. 279 0. 83 35 2, .36 43 MARCH 1 .46 0. 37 0. 253 0. 95 63 2. .71 70 APRIL 1 .68 0. 33 0. 198 1. 23 120 2, .53 102 MAY 1 .35 0. 25 0. 181 0. 86 134 1. .94 127 JUNE 1 .16 0. 19 0. 162 0. 83 177 1. ,59 163 JULY 1 .15 0. 20 0. 174 0. 76 197 1. ,51 184 AUGUST 1 .05 0. 18 0. 176 0. 82 222 1, .60 238 SEPTEMBER 0 .99 0. 15 0. 152 0. 75 264 1. .50 253 OCTOBER 1 .26 0. 47 0. 376 0. 71 286 2. .71 299 NOVEMBER 1 .14 0. 33 0. 287 0. 72 328 1. .78 333 DECEMBER 1 .39 0. 71 0. 513 0. 64 364 3. .50 352 1983 JANUARY 1 .33 0. 36 0. 271 '.,0. 62 380 1. ,84 382 SUMMER 1 .23 0. 32 0. 261 0. 75 294 2, ,53 102 WINTER 1 .38 0. 50 0. 361 0. 62 380 3, .50 352 YEAR 1 .31 0.43 0.326 0. 62 380 3. ,50 352 142 APPENDIX V BALDAY program •P-2 COMMON / C 2 / C A T C H ( 2 0 ) 3 A COMMON / C 3 / D A Y ( 4 0 0 , 4 5 ) H 5 I N T E G E R I , M 6 7 Q c PROGRAM C A L C U L A T E S T H E D A I L Y WATER B A L A N C E o 9 c D A Y ( L , . 1 ) DAY 10 c D A Y ( L , , 2 ) N E T R A D I A T I O N 1 1 c D A Y ( L , , 17) S T O R A G E H E A T F L U X 12 c D A Y ( L , , 2 9 ) L A T E N T H E A T F L U X 13 c D A Y ( L , 3 0 ) S E N S I B L E H E A T F L U X 14 c D A Y(L, . 4 1 ) BOWEN R A T I O 15 c D A Y ( L , , 3 ) T E M P E R A T U R E 16 c DAY ( L 4 ) R E L A T I V E H U M I D I T Y 17 c D A Y ( L , , 5 ) WIND S P E E D 18 c D A Y (L, 6 ) P R E C I P I T A T I O N 19 c D A Y ( L , , 38 ) P R E C I P I T A T I O N - P A V E M E N T 2 0 c D A Y ( L , , 37 ) P R E C I P I T A T I O N - V E G E T A T I O N 2 1 c & E X T E R N A L WATER A P P L I E D 22 c DA Y ( L , 7 ) WATER IN ( P I P E D AND E X T E R N A L ) 23 c D A Y ( L , 2 5 ) S O I L M O I S T U R E 24 c 25 c D A Y ( L , 8 ) E V A P O R A T I O N 26 c D A Y ( L , 2 6 ) E V A P O R A T I O N MODEL U S E D 27 c D A Y ( L , 9 ) S T O R A G E 28 c D A Y ( L . 13) C H A N G E IN S T O R A G E 29 c D A Y ( L , 10) R E T E N T I O N - V E G E T A T I O N U N I R R I G A T E D 3 0 c D A Y ( L , 2 7 ) R E T E N T I O N - V E G E T A T I O N I R R I G A T E D 3 1 c D A Y ( L . 1 1 ) R E T E N T I O N - P A V E M E N T 32 c D A Y ( L , 12) R U N O F F ( E X T E R N A L ) 33 c D A Y ( L , 3 3 ) R U N O F F - V E G E T A T I O N 34 c D A Y ( L , 3 4 ) R U N O F F - P A V E M E N T 35 c D A Y ( L . 14) WATER I N ( I N T E R N A L ) R U N O F F ( I N T E R N A L ) 36 c D A Y ( L . 15) WATER IN ( E X T E R N A L ) 37 c D A Y ( L , 16) T O T A L R U N O F F 38 c C A T C H ( 1) T O T A L P E R V I O U S A R E A 39 c C A T C H ( 2 ) P R E V I O U S A R E A - I R R I G A T E D 4 0 c C A T C H ( 3 ) P E R V I O U S A R E A - U N I R R I G A T E D 4 1 c C A T C H ( 4 ) I N I T I A L S T O R A G E S T A T U S 42 c C A T C H ( 5 ) I N I T I A L R E T E N T I O N P E R V I O U S U N I R R I G A T E D 4 3 c C A T C H ( 6 ) I N I T I A L R E T E N T I O N P E R V I O U S I R R I G A T E D 44 c C A T C H ( 7 ) I N I T I A L R E T E N T I O N I M P E R V I O U S 4 5 c C A T C H ( 8 ) F I E L D C A P A C I T Y 46 c C A T C H ( 9 ) D I S P L A C E M E N T L E N G T H 47 c C A T C H ( 10) VAPOUR R O U G H N E S S L E N G T H 48 c C A T C H ( 1 1 ) MOMENTUM R O U G H N E S S L E N G T H 4 9 c C A T C H ( 1 2 ) H E I G H T OF WIND M E A S U R E M E N T S 5 0 c C A T C H ( 13) MEAN D A I L Y WINTER WATER U S E 5 1 c C A T C H ( 14) P R O P O R T I O N OF I R R I G A T I O N WATER G O I N G TO 52 c P E R V I O U S I R R I G A T E D A R E A 5 3 c C A T C H ( 1 5 ) S O I L S T O R A G E C A P A C I T Y 54 c C A T C H ( 16) P E R V I O U S I R R I G A T E D R E T E N T I O N S T O R A G E C A P A C I T Y 55 c C A T C H ( 17) P E R V I O U S U N I R R I G A T E D R E T E N T I O N S T O R A G E 56 c , C A P A C I T Y 57 c C A T C H ( 18) I M P E R V I O U S R E T E N T I O N S T O R A G E C A P A C I T Y 58 c * * * * * + * > * * 5 9 W R I T E ( 8 , 8 0 ) 60 80 FORMAT(2X,'INITIAL INPUTS :') 6 1 M = 0 62 CALL INPUT(M) 63 AREAU=CATCH(3)/CATCH(1) 64 AREAI=CATCH(2)/CATCH( 1) 65 C 66 DO 10O 1=1,M 67 IF (I GT.1) GO TO 1 68 C INITIALISES STARTING STORAGE 69 C ALTER CHSTOR AT SAME TIME 70 OAY(1,9)=CATCH(4) 7 1 DAY(1,10)=CATCH(5) 72 DAY( 1.11 )=CATCH(7) 73 DAY(1,27)=CATCH(6) 74 IF (I.EO.1) GO TO 2 75 1 N= I - 1 76 77 DAYU.9) =DAY(N,9) 78 DAY(I,10)=DAY(N.10) 79 DA Y( 1.11)=DAY(N, 11) 80 DAY( I . 27)=DAY(N.27) 8 1 2 CALL RUNOFF(I,AREAU,AREAI . SEN) 82 CALL EVAP(I.AREAU.AREAI,SEN) 83 CALL STORE(I.AREAU,AREAI) 84 CALL CHSTOR(I) 85 100 CONTINUE 86 C 87 CALL TOTAL(M) 88 CALL OUTPUT(M) 89 STOP 90 "END 91 SUBROUTINE EVAP(I,AREAU.AREAI.SEN) 92 COMMON /C2/ CATCH(20) 93 COMMON /C3/ DAY(400,45) 94 REAL PSY,SSMF,A0,A1.A2,A3,A4,A5,A6.AA1,AA2,AA3,AA4.AA5.AA6 95 REAL T.Q.tS.EA.S.Z.Y.HV.E,FN.A IRDEN,SO IL,D,ZOV.ZOM,FNW.I AREA 96 c* * * *.+ **t + ***** + ****t** + + + *t** + + + + + + * + * + + + + + + * + 97 c 1 . CALCULATES ES,S,EA 98 c A0-A6 CONSTANTS FOR DETERMINING ES L0WE(1977) 99 c AA0-AA6 CONSTANTS FOR DETERMINING S L0WE(1977) 100 c ES SATURATION VAPOUR PRESSURE 101 c CALCULATED IN MB 102 c EA VAPOUR PRESSURE 103 c CALCULATED IN MB 104 c S SLOPE OF THE SATURATION CURVE 105 c CALCULATED IN MB/C 106 c PSY PSYCHROME TRIC 'CONSTANT' 107 c CALCULATED MB/C 108 c CALCULATED USING MONTE ITH( 1973) 109 c T TEMPERATURE 1 10 c 2. CALCULATES Q=QN-QS 1 1 1 c OS STORAGE HEAT FLUX OKE ETAL(1980) 1 12 c ON NET RADIATION 1 13 c 3. CALCULATES EVAPORATION 1 14 c E EVAPORATION STEYN & OKE (1983) 1 15 c CALCULATED IN W/M2 THEN CONVERTED TO MM 1 16 c AREAU PERVIOUS UN IRRI GATED 1 17 c AREAI PERVIOUS IRRIGATED 1 18 c SSMF SOIL MOISTURE AT FIELD CAPACITY (FRACTION) 1 19 c FNW WIND AND VAPOUR PRESSURE FUNCTION 120 C D DISPLACEMENT LENGTH 12 1 C ZOV ROUGHNESS LENGTH FOR VAPOUR 122 C ZOM ROUGHNESS LENGTH FOR WIND 123 C AIRDEN DENSITY OF AIR 124 C MONTE ITH( 1973) 125 C HV LATENT HEAT OF VAPOURISATION 126 C STORR & DEN HARTOG (1975) 127 C CALULATED IN W/M2 128 C DAY(I,26)=1 PRIESTLEY 8. TAYLOR 129 C 2 OKE & STEYN 1 30 C** 131 UAR E A = AREAU*CATCH( 1) 132 I AREA = AREAI*CATCH( 1) 133 SSMF=CATCH(8) 134 D=CATCH(9) 135 ZOV=CATCH(10) 136 Z0M=CATCH(11) 137 FNW=ALOG((CATCH( 12 )-D + ZOV)/ZOV)*ALOG((CATCH( 12)-D + ZOM)/ZOM) 138 IF( I .EQ. 1) WRITE(8,81 )UAREA,IAREA,SSMF 139 8 1 FORMAT( 10X, 'UAREA= ',F5.3,' I AREA = '.F5.3,' SSMF= ' ,F5.3 ) 140 IF(I.EQ.I) WRITE(8,82)0,ZOV,ZOM 14 1 82 FORMAT( 10X, 'D= ' ,F4 . 2 , ' ZOV= '.F5.3,' ZOM= '.F5.3) 142 C 143 A0=6.107799961 144 A 1 =4 436518521D-1 145 A2= 1 . 428945805D-2 146 A3=2.6506484710-4 147 A4=3.031240396D-6 148 A5=2.034080948D-8 149 A6 = 6.136820929D-11 150 C 15 1 AA0=4.4380999840-1 152 AA1=2.857002636D-2 153 AA2=7.938054040D-4 154 AA3= 1 . 215215065D-5 -155 AA4=1.036561403D-7 156 •AA5=3.5324218100-10 157 ' AA6=-7.090244804D-13 158 C 159 0=DAY(I,2)-DAY(1,17) 160 T=DAY(1,3) 16 1 HV= (597.3 - 0.5653*T)/2.388E-4 162 ES= AO +T*(A1 + T*(A2 +T*(A3 + T*(A4 + T*(A5 + A 6 * T ) ) ) ) ) 163 E A = (DAY(I ,4)/100) * FS 164 S = AA0 +T*(AA1+ T*(AA2 + T*(AA3+ T*(AA4 + T*(AA5 + AA6 * T ) ) ) ) ) 165 PSY=6.4 6D-1+(6.5D-4*T) 166 Z= S/(S+PSY) 167 Y= PSY/(PSY+S) 168 IF (DAY(1,6).GT.5.0) GO TO 1 169 IF (DAY(I.11).GT.0.00) GO TO 1 170 DAY( I , 26 ) =2.0 17 1 ' c* DAVIES 6 ALLEN (1973) 172 SO IL = DAY(I,25)/SSMF 173 ALPHA=1.28*(1-EXP(-10.563*SOIL)) 174 ALPHA 1 = 1.28 175 1F(ALPHA.GT. 1 .00.AND.0.GE. 120.0) ALPHA 1=2.60 176 IF(ALPHA.GT. 1 .00.AND.Q.LT. 120.0.AND.0 GT. 100.0) ALPHA 1 = 1 .70 177 c 178 c* PERVIOUS UNIRRIGATED & IRRIGATED EVAPORATION ONLY 179 E 1 = 1 . 56* Z*0*((UAREA *ALPHA) + (IAREA*ALPHA1)) 180 C 18 1 AIRDEN=1 .2923*(273. 16/(273. 16 + T ) ) 182 FN=AIRDEN*1.6968D2/FNW 183 IF(SOIL.GE.0.60) ST=UAREA+IAREA 184 IF(SOIL.GE.O.30.AND.SO IL.LT.0.60) ST = ((UAREA+1 AREA) +1 AREA)/2 185 IF(S0IL.LT.O.3O) ST = I AREA 186 E2=ST*Y*(ES-EA)+(FN/PSY)*DAY( 1,5) 187 E=E1-E2 188 DAY(I.29)=E 189 . E=E*3600*24/HV 190 WRITE(9,93)DAY(I. 1),0,ALPHA,ALPHA 1,E 191 93 F0RMAT(5F1O3) 192 GO TO 2 193 C 194 C* PRIESTLEY AND TAYLOR (1972) 195 1 DAY( I , 26)=1 .0 196 E=1.28*Q*Z 197 DAY(I,29)=E 198 E=E*3600*24/HV 199 2 IF(E . LT.O.OOO) E=0.00 200 DAY(I.8)=E 201 RETURN 202 END 203 SUBROUTINE STORE(I,AREAU,AREAI) 204 COMMON /C2/ CATCH(20) 205 COMMON /C3/ DAY(400,45) 206 REAL EVEG.EPAV,RVEGU,RVEGI,RPAV,RVEGU1,RVEGI1,RPAV1,RVEGS 207 INTEGER N -P* 208 c**********************************+******++***************+********** °" 209 C 1. ADJUSTS RETENTION STORAGE DUE TO EVAPORATION 2 10 C 2. ADJUSTS STORAGE DUE TO EVAPORATION 211 C I TODAY 212 C N YESTERDAY 213 C EVEG EVAPORATION FROM VEGETATION 214 C EPAV EVAPORATION FROM PAVEMENT 215 C RVEG VEGETATION RETENTION STOREGE 216 C U UNIRRIGATED 217 C I IRRIGATED 218 C RPAV PAVEMENT RETENTION STORAGE 219 C RVEG1 ADJUSTOR FOR RVEG 220 C RPAV1 ADJUSTOR FOR RPAV 221 £ + *** + *** .**** + ***** + *+. ********** + + **** + *** + *************** + *********** 222 IF(DAY(I.8).EO.O.OOO) GO TO 1 223 RVEGU=0 224 RVEGI=0 225 RVEGI 1=0 226 RVEGU1=0 227 RPAV1=0 228 EVEG=0 229 EPAV=0 230 RVEG=0 231 RPAV=0 232 C* PARTITION EVAPORATION 233 IF (DAY(I ,26) .EO.2.0) GO TO 2 234 EVEG=DAY(I,8)*CATCH(1) 235 EPAV=DAY(I,8)-EVEG 236 C* EMPTY IMPERVIOUS RETENTION STORAGE 237 RPAV=DAY(1,11)~EPAV 238 IF(RPAV.GE.0.0) DAY(I.11)=RPAV 239 IF(RPAV.LT.0.0)RPAV1=ABS(RPAV) 2 4 0 I F ( R P A V . L E . 0 . 0 ) D A Y ( 1 , 1 1 ) = 0 . 0 241 I F ( R P A V 1 . G T . 0 . 0 0 0 ) E V E G = E V E G + R P A V 1 2 4 2 C * E M P T Y V E G E T A T I O N R E T E N T I O N S T O R A G E 2 4 3 2 I F ( D A Y ( I , 2 6 ) . E Q . 2 . 0 ) E V E G = D A Y ( 1 , 8 ) 244 R V E G U = D A Y ( I , 1 0 ) - ( E V E G * A R E A U ) 2 4 5 I F ( R V E G U . G E . 0 . 0 0 0 ) D A Y ( I , 10 ) =RVEGU 2 4 6 I F ( R V E G U . L T . 0 . 0 0 0 ) R V E G U 1 = A B S ( R V E G U ) 2 4 7 I F ( R V E G U . L E . 0 . 0 0 0 ) D A Y ( I , 1 0 ) = 0 . O 2 4 8 R V E G I = D A Y ( I , 2 7 ) - ( ( E V E G * A R E A I ) + R V E G U 1 ) 2 4 9 I F ( R V E G I . G E . 0 . 0 0 0 ) D A Y ( I , 2 7 ) =RVEGI 2 5 0 I F ( R V E G I . L T . 0 . 0 0 0 ) R V E G I 1 = A B S ( R V E G I ) 251 I F ( R V E G I . L E . 0 . 0 0 0 ) D A Y ( I , 2 7 ) = 0 . 0 2 5 2 C * EMPTY S T O R A G E 2 5 3 I F ( R V E G I 1 G T . 0 . 0 ) O A Y ( I . 9 ) = D A Y ( I . 9 ) - R V E G I 1 2 5 4 1 C O N T I N U E 2 5 5 R E T U R N 2 5 6 END 2 5 7 S U B R O U T I N E R U N O F F ( I , A R E A U , A R E A I . S E N ) 2 5 8 COMMON / C 2 / C A T C H ( 2 0 ) 2 5 9 COMMON / C 3 / D A Y ( 4 0 0 , 4 5 ) 2 6 0 R E A L M P I P E S . P V E G , P P A V , P I P E S 1 . P E R C E N 2 6 f £ * * * * * * * * * + * * * * * * * * * * * + * * * * * * * * * • + + * * * t * + + * * * * * + * * * * * * * * * * * + + * * * * + * * * * 262 C 1. P A R T I T I O N S T H E I N C O M I N G WATER B E T W E E N P E R V I O U S AND 2 6 3 C I M P E R V I O U S S U R F A C E S 2 6 4 C M P I P E S MEAN W I N T E R D A L IY WATER P I P E D - I N 2 6 5 C P E R C E N % OF S P R I N K L I N G TO V E G E T A T I O N 2 6 6 C PI P E S 1 A D J U S T O R FOR P I P E S i - - 2 6 7 C P V E G WATER A P P L I E D TO V E G E T A T I O N 2 6 8 C P P A V WATER A P P L I E D TO P A V E M E N T 2 6 9 + + * * * * + #******** + * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * * * * * * * * * + * * * * * * 2 7 0 C * V A L U E OF MEAN W I N T E R WATER P I P E D - I N 271 M P I P E S = C A T C H ( 1 3 ) 2 7 2 I F ( I . E Q . 1 ) W R I T E ( 8 . 8 1 ) M P I P E S 2 7 3 81 F O R M A T ( 1 0 X , ' M P I P E S = ' , F 5 . 3 ) 2 7 4 P E R C E N = C A T C H ( 1 4 ) 2 7 5 IF ( I . E Q . 1 ) W R I T E ( 8 . 8 2 ) P E R C E N 2 7 6 82 F O R M A T ( 10X, ' P O R T I O N OF S P R I N K L I N G ON T O V E G E T A T I O N = ' . F 3 . 1 ) 2 7 7 C * P R E C I P I T A T I O N I N P U T 278 I F ( D A Y ( 1 , 6 ) . E O . 0 . 0 0 0 ) GO TO 10 2 7 9 P V E G = C A T C H ( 1 ) * D A Y ( I , 6 ) 2 8 0 P P A V = D A Y ( I . 6 ) - P V E G 281 C A L L P A R T ( I , P P A V , P V E G , A R E A U , A R E A I ) 2 8 2 C * P I P E D INPUT 2 8 3 10 P I P E S 1 = D A Y ( I ,7 ) - M P I P E S 284 I F ( P I P E S 1 . L E . 0 . 0 0 0 ) D A Y ( I . 1 4 ) = D A Y ( I , 7 ) 2 8 5 I F ( P I P E S 1 . G T . 0 . 0 0 0 ) D A Y ( I , 15 ) = P I P E S 1 2 8 6 I F ( D A Y ( I , 7 ) . L E . M P I P E S ) GO TO 2 0 2 8 7 D A Y ( I . 1 4 ) = M P I P E S 2 8 8 P V E G = P I P E S 1 * P E R C E N 2 8 9 P P A V = D A Y ( I , 1 5 ) - P V E G 2 9 0 C A L L P A R T ( I . P P A V , P V E G , A R E A U . A R E A I ) 291 2 0 C O N T I N U E 2 9 2 D A Y ( I . 1 6 ) = D A Y ( I . 14) + D A Y ( I , 1 2 ) 2 9 3 D A Y ( I , 3 7 ) = ( D A Y ( I , 6 ) « X A T C H ( 1 ) ) + ( D A Y ( I , 1 5 ) * P E R C E N ) 294 D A Y ( I . 3 8 ) = 0 A Y ( I , 6 ) *( 1 . 0 ~ C A T C H ( 1) ) + ( D A Y ( I . 1 5 ) * ( 1 - P E R C E N ) ) 2 9 5 D A Y ( I . 3 3 ) = D A Y ( I , 1 2 ) ~ D A Y ( 1 , 3 4 ) 2 9 6 R E T U R N 2 9 7 END 2 9 8 S U B R O U T I N E P A R T ( I , P P A V , P V E G , A R E A U , A R E A I ) 2 9 9 COMMON / C 2 / C A T C H ( 2 0 ) 300 COMMON ,'C3/ DAY (400, 45) 301 REAL VRETNI,VRETNU,PRETEN,RVEGI,RVEGU,RPAV1,STOR,PPAV,PVEG 302 303 c 1. PARTITIONS THE INCOMING WATER BETWEEN STORAGE AND 304 c RUNOFF 305 c VRETNU RETENTION BY VEGETATION - UNIRRIGATED 30G c VRETNI - IRRIGATED 307 c PRETEN RETENTION BY PAVEMENT 308 Q * * *. ********************************* 309 STOR=CATCH(15) 310 RVEGI=0.0 3 1 1 RVEGU=0.0 ' 312 RPAV1=0.0 313 C* INITIALISE RETENTION AND ADJUST FOR PORTION OF AREA 314 VRETNI=CATCH(16) 315 VRETNU=CATCH(17) 316 PRETEN=CATCH(18) 3 17 IF (I.EQ.1) WRITE(8,81) VRETNI,VRETNU.PRETEN 3 18 8 1 FORMAT(10X,'VRETNI= '.F5.2,' VRETNU= '.F5.2,' PRETEN=' , F5.2 ) 3 19 IF(DAY(I, 15) .GT.0.00)DAY(I ,27 )=DAY(I ,27) + (AREA I*PVEG) 320 IF(DAY( I , 15).GT.0.00)DAY(I, 10)=DAY(I. 10) + (AREAU*PVEG) 32 1 IF(DAY( I , 15) GT.0.00) GO TO t 322 DAY(I,10)=OAY(I,10)+ (PVEG* ARE AU) 323 DAY(I ,27)=DA Y(I ,27 ) + (PVEG*AREA I ) 324 1 DA Y(I . 1 1 )=DAY(I , 1 1 ) + PPAV 325 IF(DAY( I . 10) .LE.VRETNU) GO TO 10 326 RVEGU=DAY(I,10)-VRETNU 327 DAY( I . 10)=VRETNU 328 DAY(I.9)=DAY(I.9)+RVEGU 329 IF (OAY(I,9 ) .GT.STOR) EXCESS=DAY(I,9)-STOR 330 IF (DAY(I .9) .GT STOR) DAY(1,9)=STOR 33 1 IF (DAY(I ,9 ) .EO.STOR) DAY( I , 12 ) =DAY(I , 12)+ EXCESS 332 10 IF(DAY(I.27).LE.VRETNI) GO TO 20 333 RVEGI=DAY(I.27)-VRETNI 334 DAY(I.27)=VRETNI 335 DAY(I,9)=DAY(I,9)+RVEGI 336 IF (0AY(I,9) GT.STOR) EXCESS=DAY(I,9)-STOR 337 IF (DAY(I,9) GT.STOR) DAY(I,9)=STOR 338 IF (DAY(I ,9) .EO.STOR) DAY(I , 12)=0AY(I. 12)+ EXCESS 339 20 IF(DAY(I,11).LE.PRETEN) GO TO 30 340 RPAV1=DAY(1.11 )-PRETEN 34 1 DAY(I, 1 1 ) = PRETEN 342 DA Y(I, 12)=DAY(I . 12) + RPAV1 343 DAY(I,34)=DAY(I,34)+RPAV1 344 30 CONTINUE 345 RETURN 346 END 347 SUBROUTINE CHSTOR(I) 348 COMMON /C2/ CATCH(20) 349 COMMON /C3/ DAY(400,45) 350 REAL A,B,C,D 35 1 INTEGER N 352 C* * * * 353 c 1. DETERMINES THE OVERALL CHANGE IN STORAGE FROM YESTERDAY 354 £ * + * * **********+***+**+++**+*•***********+**+************************* 355 N= I - 1 356 IF(I GT.1) GO TO 11 357 IF(I . E Q . I ) A=DAY(1,9)-CATCH(4) 358 IF(I . E O . I ) B=DAY(1,10)-CATCH(5) 359 I F ( I . E O . I ) C=DAY(1,11)-CATCH(7) 360 IF(I.EO.I) D=DAY(1,27)-CATCH(6) 36 1 GO TO 22 362 11 A=(DAY(I.9)-DAY(N.9)) 363 B=DAY( I , 10)-DAY(N, 10) 364 C = DAY(I, 1 1 )-DAY(N, 11) 365 D=DAY(I,27)-DAY(N,27) 366 22 DAY( I , 13) = A+B+C+D 367 RETURN 368 END 369 SUBROUTINE TOTAL(M) 370 COMMON /C2/ CATCH(20) 37 1 COMMON /C3/ DAY(400,45) 372 Q**************************************** ***************************** 373 C DAY(I,18) PRECIPITATION 374 C DAY(I,19) WATER PIPED IN 375 C DAY(I,20) EVAPORATION 376 C DAY(I,21) CHANGE IN STORAGE 377 C DAY(I,22) TOTAL RUNOFF 378 C DAY(I,23) INTERNAL RUNOFF & WATER PIPED IN 379 C DAYU.24) EXETERNAL WATER PIPED IN 380 C DAY(I,28) EXTERNAL RUNOFF 381 C DAYU.31) LATENT ENERGY FLUX 382 C DAY(I,35) RUNOFF - VEGETATION IRRIGATED 383 C DAY(I,36) RUNOFF - PAVEMENT 384 C DAY(I,39) PRECIPITATION - VEGETATION IRRIGATED & EXTERNAL 385 C WATER 386 C DAY(I,40) PRECIPITATION - PAVEMENT 4> 387 C OUTPUT 4 TOTAL WATER BALANCE 388 C OUTPUT 5 EXTERNAL WATER BALANCE 389 C OUTPUT 6 RUNOFF RATIO - VEGETATION UNIRRIGATED 390 Q* * * * * **************************** ************************************ 391 TOTALP=0 392 TOTALW=0 393 TOTALE=0 394 TOTALS=0 395 T0TALR=0 396 TOTALI=0 397 TOTAL F =0 398 T0TAL0=O 399 WTOTP=0 400 WTOTW=0 401 WTOTE=0 402 WTOTS=0 403 WTOTR=0 404 WTOTI=0 405 WTOTF=0 406 WTOTO=0 407 STOTP=0 408 ST0TW=0 409 STOTE=0 410 STOTS=0 411 STOTR=0 412 STOTI=0 4 13 STOTF=0 414 STOTO=0 415 NE=0 4 16 UY=0 417 JW=0 418 JS=0 419 WRITE(4,40) 420 40 FORMAT(/,20X,'MONTHLY WATER BALANCE') 421 WRITE(4,41) 422 41 FORMAT(20X,'=====================') 423 WRITE(4,42) 4 24 42 FORMAT(10X,'MONTH',7X,'P',8X,'I',10X,'E',8X,'S'.8X,'R',10X, 425 -'IP',7X,'RP') 426 WRITE(5.50) 427 50 FORMAT{/,20X,'EXTERNAL MONTHLY WATER BALANCE') ' 428 WRITE(5,51) 429 51 F0RMAT(20X,'= = = = = = = = = = = = = = = = = = = = = = = = = = = = = =' ) 430 WRITE(5,52) 431 52 FORMAT(10X,'MONTH',7X,'P',8X,'I',10X,'E',8X,'S',8X,'R') 432 WRITE(6,61) 433 61 FORMAT(/,20X,'RUNOFF RATIO') 434 WRITE(6,62) 435 62 FORMAT(20X,'============' ) 436 WRITE(6,64) 437 64 FORMAT(/, 16X, 'VEGETAT ION' , 438 -16X.' PAVEMENT',16X,' TOTAL (EXTERNAL)') 439 WRITE(6,63) 440 63 FORMAT(1X,' MONTH',5X,3('R'.8X,'P',8X,'R/P',9X),'H DAYS') 441 K=0 442 IF (M.E0.366) K =1 443 B=DAY(1,1) 444 IF(B.LT.32) MB=1 445 I F ( B .GT.31.AND.B.LT.60+K) MB=2 446 IF(B.GT.60+K.AND.B.LT.91+K ) MB=3 ^ 447 IF(B.GT.91+K.AND.B.LT.121+K) MB = 4 Q 448 IF(B.GT.121+K.AND.B.LT.152+K) MB=5 449 IF(B.GT. 152+K.AND B.LT. 182+K ) MB=6 450 IF(B.GT.182+K.AND.B.LT.213+K) MB=7 451 IF(B.GT.213+K.AND B.LT.244+K) MB=8 452 IF(B.GT.244+K.AND.B.LT.274+K) MB = 9 453 I F(B .GT . 274 + K . AND . B . LT . 305 + K ) MB=10 454 IF (B . GT . 305+ K . AND . B . LT . 335 + K ) MB=11 455 IF(B GT 335+K) MB=12 456 E=DAY(M,1) 457 IF(E . LT.32) ME =1 458 _ IF(E.GT.31.AND.E.LT.60+K) ME=2 459 " IF(E.GT.60+K.AND.E.LT.91+K) ME=3 460 IF(E.GT.91+K.AND.E.LT . 121+K ) ME = 4 461 IF(E.GT.121+K.AND.E.LT.152+K) ME=5 462 IF(E.GT. 152 + K.AND.E.LT. 182 + K ) ME=6 463 IF(E.GT.182+K.AND.E.LT.213+K) ME=7 464 IF(E.GT.213+K.AND.E.LT.244+K) ME=8 465 IF(E.GT.244+K.AND.E.LT.274+K) ME=9 466 IF ( E .GT.274 + K.AND.E.LT.305 + K) ME=10 467 IF(E.GT.305 + K.AND.E.LT.335 + K ) ME=11 468 IF(E.GT.335+K) ME=12 469 DO 200 MONTH=MB,ME 470 NB=NE+1 471 IF(MONTH.EO.MB) NB=1 472 IF(MONTH.EO.1) NE=32-B 473 IF(MONTH.EO.2) NE=60+K-B 474 IF(MONTH.EO.3) NE=91+K-B 475 IF(MONTH.EO.4) NE=121+K-B 476 IF(M0NTH.E0.5) NE=152+K-B 477 IF(MONTH.EO.6) NE=182+K-B 478 IF(MONTH.EO.7) NE=213+K-B 479 IF(MONTH.EO.8) NE=244+K-B 480 IF(MONTH.E0.9) NE=274+K-B 48 1 IF(MONTH.EO.10) NE=305+K-B 482 IF(MONTH.EQ.11) NE=335+K-B 483 IF(MONTH.EO.12) NE=366+K-B 484 d = 0 485 DO 100 I=NB,NE 486 N=I - 1 487 d = d+ 1 488 IF( I . EQ.NB) N = NB 489 0AY(I , 18 )=DAY(I ,6)+0AY(N, 18) 490 DA Y(I , 19)=DAY(I .7)+DAY(N, 19) 49 1 DAY(I,20)=DAY(I,8)+DAY(N, 20) 492 DAY(1,21)=OAY(1.13)+DAY(N,21) 493 DAY( I ,22)=DAY(I , 16)+DAY(N,22) 494 DAY(I,23)=DAY(I,14)+DAY(N.23) 495 DAY(I ,24 )=DAY(I , 15)+DAY(N,24) 496 DAY(I ,28)=DAY(I , 12)+DAY(N,28) 497 DAY(I,35)=DAY(I,33)+DAY(N,35) 498 DAY(I,36)=DAY(I,34)+DAY(N,36) 499 DAY( I , 39)=DAY(I .37)+DAY(N,39) 500 DAY(I,40)=DAY(I,38)+DAY(N,40) 501 100 - CONTINUE 502 C 503 C* MONTHLY RUNOFF RATIO 504 C 505 RX 1 =DAY(NE,35)/DAY(NE,39) 506 RX2 = DAY(NE,36)/DAY (NE , 40) 507 RXX 3 = DAY(NE, 18) +DAY(NE,24) 508 RX 3 = DAY(NE,28)/RXX3 509 WRIT E(6,60)MONTH,DAY(NE,35),DAY(NE,39), 510 -RX1,DAY(NE,36),DAY(NE,40),RX2,DAY(NE,28),RXX3.RX3,d 5 1 1 60 FORMAT(/,1X,14,3X,3(3(F6.2,3X),3X),16) 512 C 513 C* MONTHLY WATER BALANCE 5 14 c 515 X =DAY(NE, 18) + DAY(NE,19) 5 16 X1 = (DAY(NE. 18)/X)* 100 517 X2=100-X1 5 18 XX = DA Y(NE,20)+DAY(NE,21 )+DAY(NE,22) 5 19 XX1=(DAY(NE,20)/XX)*100 520 XX2=(DAY(NE,21)/XX)*100 52 1 XX3=100-(XX1+XX2) 522 XXX1=(DAY(NE,23)/DAY(NE,19))*100 523 XXX2=(DAY(NE.23)/DAY(NE,22))*100 524 WRITE(4.43)M0NTH,DA Y(NE, 18),DAY(NE, 19),DAY(NE,20).DAY(NE,2 525 -DAY(NE,22),DAY(NE,23),DAY(NE.23) 526 43 FORMAT(/,10X.14,5X,2(F6.2.3X),2X.3(F6.2,3X),2X,2(F6.2,3X), 527 - ' MM ' ) 528 WRITE(4.44)X1,X2,XX1,XX2,XX3,XXX1.XXX2 529 44 FORMAT(19X,2(F6.2.3X),2X,3(F6.2,3X),2X,2(F6.2,3X),' %') 530 C 53 1 C* MONTHLY EXTERNAL WATER BALANCE 532 C 533 E X =DAY(NE. 18)+DAY(NE,24) 534 EX1=(DAY(NE,18)/EX)*100 535 EX2=100-EX1 536 E X X =DA Y ( NE , 20 ) + DA Y ( NE , 2 1 ) +DA Y ( NE , 28 ) 537 EXX 1 = (DAY(NE.20J/EXX)*100 538 EXX2=(DAY(NE,2 1)/EXX)+100 539 EXX3=100-(EXX1+EXX2) 540 WRITE(5,53)MONTH,DAY(NE, 18) ,DAY(NE.24),DAY(NE,20),DAY(NE,21) 54 1 -,DAY(NE,28) 542 53 FORMAT(/, 10X,I4,5X,2(FG.2,3X),2X,3(F6.2,3X),20X , ' MM') 543 WRITE(5,54)EX1 .EX2,EXX 1 ,EXX2,EXX3 544 54 FORMAT(19X,2(F6.2,3X),2X,3(F6.2,3X),20X,' %') 545 C 546 C YEAR 547 C 548 dY=JY+J 549 TOTALP=DAY(NE,18)+T0TALP 550 TOTALW=DAY(NE, 19)+T0TALW 551 T0TALE=DAY(NE,2O)+TOTALE 552 TOTALS=DAY(NE.21)+TOTALS 553 T0TALR=DAY(NE,22)+TOTALR 554 TOTALI=DAY(NE.23)+TOTALI 555 TOTALF=DAY(NE,24)+TOTALF 556 TOTALO=DAY(NE,28)+TOTALO 557 IF(MONTH.GT.3.AND.MONTH.LT.10) GO TO 2 558 C 559 C WINTER 560 C 561 JW=dW+J 562 WTOTP=DAY(NE,18)+WT0TP 563 WT0TW=DAY(NE.19)+WT0TW 564 WTOTE=DAY(NE,20)+WTOTE 565 WTOTS = DAY(NE,2 1 j + WTOTS 566 WTOTR=OAY(NE.22)+WT0TR 567 WTOTI=DAY(NE,23J+WTOTI ^ 568 WTOTF=DAY(NE.24j+WTOTF 569 WTOTO=DAY(NE,28)+WTOTO 570 GO TO 200 571 C 572 C SUMMER 573 C 574 2 JS=JS+J 575 ST0TP=DAY(NE,18J+ST0TP 576 STOTW=DAY(NE.19)+ST0TW 577 ST0TE=DAY(NE.2O)+ST0TE' 578 STOTS=DAY(NE,21)+STOTS 579 STOTR=DAY(NE.22)+STOTR 580 STOTI=DAY(NE,23)+ST0TI 581 STOTF=DAY(NE.24J+STOTF 582 Sr0T0=DAY(NE,28)+ST0T0 583 200 CONTINUE 584 C 585 C YEAR 586 C 587 TOT = TOT ALP-*-TOT A LW 588 TOT1 = (TOTALP/TOT)* 100 589 T0T2=100-TOT1 590 TOTX=T0TALE+TOTALS+TOTALR 591 TOTX1 = (T0TALE/T0TX)* 100 592 T0TX2=(T0TALS/T0TX)*100 593 TOTX3= 100-(T0TX1 + T0TX2) 594 T0TXX1=(T0TALI/T0TALW)*1OO 595 T0TXX2=(T0TALI/T0TALR)*100 596 C 597 C WINTER 598 C 599 WT0T=WT0TP+WT0TW On GOO WTOT1=(WTOTP/WTOT)*100 601 WT0T2=100-WTOT1 G02 WTOTX=WTOTE+WTOTS+WTOTR 603 WTOTX1=(WT0TE/WT0TX)*1OO 604 WT0TX2=(WT0TS/WT0TX)* 100 605 WT0TX3=1OO-(WT0TX1+WT0TX2) 606 WT0XX1=(WT0TI/WT0TW)*100 607 WT0XX2=(WT0TI/WT0TR)»100 608 C 609 C SUMMER 6 10 C 6 1 1 ST0T=ST0TP+ST0TW 6 12 STOT1=(ST0TP/ST0T)*100 6 13 ST0T2=1OO-STOT1 6 14 STOTX=STOTE+STOTS+STOTR 615 STOTX 1 = (ST0TE/ST0TX)*100 6 16 ST0TX2 = (STOTS/ST0TX)* 100 6 17 ST0TX3=100-(STOTX1+ST0TX2) 618 STOXX 1 = (ST0TI/ST0TW)*100 619 STOXX2MSTOT1/ST0TR)* 100 620 62 1 C 622 C* SUMMER WATER BALANCE 623 c 624 WRITE(4,984)ST0TP,ST0TW,ST0TE,ST0TS,ST0TR,ST0TI.STOTI 625 984 FORMAT(//,8X. 'SUMMER' , 1X . 2(3X,F6. 1 ) . 2X,3(3X,F6. 1 ) , 2X,2(3X, 626 -F6.1).5X,'MM') 627 WRITE(4.983)STOT1,ST0T2,STOTX1,ST0TX2,ST0TX3,STOXX1,ST0XX2 628 983 FORMAT( 15X,2(3X.F6. 1),2X,3(3X,F6. 1 ) .2X,2(3X,F6. 1 ) ,5X, '%' ) 629 C 630 C* SUMMER EXTERNAL WATER BALANCE 63 1 C 632 SETOT=STOTP+STOTF 633 SETOT 1 = (STOTP/SETOT)* 100 634 SET0T2= 100-SETOT1 635 SETOTX=STOTE+STOTS+STOTO 636 SETOX 1 = (ST0TE/SET0TX)*100 637 SET0X2=(STOTS/SETOTX)*100 638 SET0X3=100-(SETOX1+SET0X2) 639 WRITE(5 , 354 )STOTP,STOTF.STOTE,STOTS,STOTO 640 354 FORMAT (7/,8X, 'SUMMER' , 1X,2( 3X , F6. 1),2X,3(3X,F6. 1),25X, 'MM ' ) 64 1 WRITE(5.353)SETOT1.SET0T2.SETOX1.SET0X2.SET0X3 642 353 FORMAT( 15X.2(3X , F6. 1 ) ,2X.3(3X.F6 . 1 ) ,25X, '%') 643 C 644 C* WINTER WATER BALANCE 645 C 646 WRITE(4,784)WTOTP,WTOTW,WTOTE,WTOTS,WTOTR,WTOTI,WTOTI 647 784 FORMAT(//,8X, 'WINTER' , 1X,2(3X,F6. 1),2X,3(3X,F6. 1),2X.2(3X, 648 -F6 1),5X,'MM') 649 WRITE(4.783)WTOT1,WT0T2,WTOTX1.WT0TX2.WT0TX3,WTOXX1,WT0XX2 650 783 FORMAT ( 15X . 2( 3X . F6 . 1 ) , 2X , 3 ( 3X , F6 . 1 ) , 2X . 2 ( 3X , F6 . 1 ) , 5X , '%' .) 65 1 C 652 C* WINTER EXTERNAL WATER BALANCE 653 c 654 WETOT=WTOTP+WTOTF 655 WETOT 1 = (WTOTP/WETOT)* 100 656 WET0T2=100-WETOT1 657 WETOTX=WTOTE+WTOTS+WTOTO 658 WET0X1=(WT0TE/WET0TX)*100 659 WET0X2=(WT0TS/WET0TX)*100 6G0 WET0X3=100-(WETOX1+WET0X2) 66 1 WRITE(5,254)WTOTP,WTOTF.WTOTE,WTOTS,WTOTO 662 254 FORMAT(//,8X, 'WINTER' , 1X.2(3X,F6. 1 ) .2X,3(3X,F6. 1 ) ,25X, ' MM' ) 663 WRITE(5,253)WET0T1.WET0T2,WETOX1,WET0X2,WET0X3 664 253 FORMAT(15X,2(3X , F6 . 1 ) ,2X , 3(3X,F6. 1),25X,'%') 665 C 666 C* WATER BALANCE FOR YEAR 667 C 668 WRITE(4,88JM 669 88 FORMAT(/,20X, 'SUBURBAN WATER BALANCE FOR' ,14,' DAYS') 670 WRITE(4,89) 67 1 89 FORMAT(20X,'====================================') 672 WRITE(4.82) 673 82 FORMAT(22X, 'P' ,8X, ' I ' , 10X, 'E' ,8X, 'S' ,8X, 'R' , 10X, 'IP',7X, 'RP ' ) 674 WRITE(4,884)TOTALP,TOTALW,TOTALE.TOTALS.TOTALR,TOTALI.TOTAL I 675 884 FORMAT(15X,2(3X,F6. 1 ) ,2X,3(3X,F6. 1 ) ,2X,2(3X,F6 . 1 ) ,5X, 'MM' ) 676 WRITE(4.883)T0T1.T0T2.T0TX1,T0TX2,T0TX3,TOTXX1,T0TXX2 677 883 FORMAT* 15X,2(3X,F6 . 1 ) ,2X,3(3X,F6. 1 ) ,2X,2(3X,F6. 1 ) ,5X, '%' ) 678 C 679 C* EXTERNAL WATER BALANCE FOR YEAR 680 C 68 1 ETOT=TOTALP+TOTALF 682 ET0T1=(T0TALP/ET0T)*1OO 683 ET0T2= 100-ETOT 1 684 ETOTX=TOTALE+TOTALS+TOTALO 685 ET0TX1=(T0TALE/ET0TX)*100 , 686 ET0TX2=(T0TALS/ET0TX)*100 687 ET0TX3=10O-(ET0TX1+ET0TX2) 688 WRITE(5,58)M 689 58 FORMAT(/,18X.'EXTERNAL SUBURBAN WATER BALANCE FOR',14,' DAYS') 690 WRITE(5,59) 691 59 FORMAT(I8X,'======«====================================') 692 WRITE(5,552) 693 552 FORMAT(22X,'P',8X,'I',10X,'E',8X,'S'.8X,'R') 694 WRITE(5.554 )TOTALP.TOTALF,TOTALE.TOTALS,TOTALO 695 554 FORMAT( 15X,2(3X , F6 . 1 ) ,2X , 3(3X,F6. 1 ) ,25X, 'MM' ) 696 WRITE(5,553)ET0T1 ,E T0T2,ETOTX1,ET0TX2,ET0TX3 697 553 FORMAT( 15X,2(3X,F6. 1 ) , 2X.3(3X,F6. 1 ) ,25X, '%' ) 698 RETURN 699 END 700 SUBROUTINE INPUT(M) 701 COMMON /C2/ CATCH(20) 702 COMMON /C3/ DAY(400,45) 703 INTEGER L,K 704 C*** + + *********************************************************** 705 C 1. READS IN THE DATA 706 C 2. INITIALISES THE ARRAYS 707 c INPUT FROM 7 DAILY DATA 708 c 3 CATCHMENT PARAMETERS 709 c** + ****************************************************************** 7 10 c 7 1 1 DO 102 L=1,400 7 12 READ(7,70,END=998)(DAY(L,K),K=1,2),DAY(L.17),(DAY(L,K).K=3,7) 7 13 -,DAY(L,25) 7 14 c* TO CHECK IF INPUT IS CORRECT REMOVE C ON NEXT LINE 7 15 c WRITE(9,70)(DAY(L,K),K=1,2),DAY(L,17),(DAY(L,K),K=3,7),DAY(L,25) 7 16 70 FORMAT(5F10.3,10X.4F10.3) 7 17 M = M+1 7 18 C* CONVERT M3/DAY TO MM/DAY 719 DAY(L,7)=DAY(L,7)/2.10E2 720 721 C* INITIALISE VALUES 722 DO 104 K=8,16 723 DAY(L,K)=0.0 724 104 CONTINUE 725 DO 105 K=18,24 726 DAY(L,K)=0.0 727 105 CONTINUE 728 DO 106 K=26,44 729 DAY(L,K)=0.0 730 106 CONTINUE 73 1 102 CONTINUE 732 998 CONTINUE 733 DO 103 1=2.18 734 READ(3.30.END = 999)CATCH( I ) 735 30 FORMAT(F12.4) 736 103 CONTINUE 737 CATCH( 1 )=CATCH(2)+CATCH(3) 738 999 CONTINUE 739 RETURN 740 END 74 1 SUBROUTINE OUTPUT(M) 742 COMMON /C2/ CATCH(20) 743 COMMON /C3/ DAY(400,45) 744 C* * * * ************************************************ 745 c 1. WRITES RESULTS 746 c OUTPUT ON 8 747 * * * ***************************************************************** 748 WRITE(8,80) 749 80 F0RMAT(/,9X,'DAILY SUBURBAN WATER BALANCE') 750 WRITE(8,81) 751 8 1 FORMAT(9X,'============================') 752 WRITE(8,82) 753 82 FORMAT(4X,'DAY'.7X,'I'.8X,'P',8X,'E'.8X,'R',8X.'S') 754 WRITE(8,83) 755 83 FORMAT(8X,5(5X.'(MM)')) 756 DO 104 L=1,M 757 WRITE(8.84)DAY(L , 1),DAY(L.7 ) ,DAY(L,6),DAY(L.8),DAY(L, 16), 758 -DAY(L,13) 759 760 84 FORMAT(4X,F4.0,5(3X,F6.2 ) ) 761 104 CONTINUE 762 WRITE(8,880) 763 880 FORMAT(/,18X,'DAILY WATER BALANCE') 764 WRITE(8 , 881) 765 881 FORMAT(18X,'===================') 766 WRITE(8,85) 767 85 FORMAT(8X. 'DAY' ,7X, 'IP ' , 8X . ' IE' , 9X. 'P' ,9X, 'E' .9X, 'RP' , 768 -9X, 'RE' , 7X, 'S' ,8X, 'SVU' ,7X, 'SVI' ,8X, 'SP' ) 769 WRITE(8,87) 770 87 FORMATf12X,10(4X.'(MM/D)')) 77 1 DO 105 L=1.M 772 WRITE(8,86)DAY(L.1).DAY(L,14).DAY(L,15),DAY(L,6),DAY(L,8), 773 -DAY(L , 14),DAY(L, 12),DAY(L,9).DAY(L,10),OAY(L,27),DAY(L, 11) 774 86 FORMAT(8X,F4.O,10(3X,F7.2)) 775 105 CONTINUE 776 RETURN 777 END End of f i l e APPENDIX VI BALDAY Base R e s u l t s T a b l e VI.1 Suburban water b a l a n c e by month MONTH IP RP 86 . 99 9 1.82 7 . 75 8 . 18 1 . 70 1 .80 4 . 46 4 . 70 88 . 59 93 . 50 7 . 49 96.64 7 .49 8 . 46 MM % 232.28 9 1 .04 22 . 86 8 . 96 10.97 4 . 30 -0.51 -0. 20 244.68 95 . 90 21 .34 93 . 35 2 1 . 34 8 . 72 MM % 56 . 70 70.91 23 . 26 29 .09 24 .64 30.8 1 0.31 0. 39 55 .01 68.80 22 . 33 96 .00 22 . 33 40. 59 MM % 90. 19 76 . 92 27 .06 23 .08 43.91 37 . 45 14.61 12.46 87 . 94 75.01 22 . 45 82.98 22 . 45 25.53 MM % 24 .64 27 . 87 63 . 76 72 . 13 93 . 30 105.55 -34.61 -39 . 15 29.70 33 . 60 23.67 37 . 12 23 .67 79.68 MM % 32 . 15 19 . 19 135.35 80.8 1 124.80 74 .51 10.08 6 .02 32.62 19 . 47 22 . 90 16 .92 22 . 90 70. 22 MM % 72 . 93 44 . 49 9 1.01 55 . 5 1 105.7 1 64 . 48 58 85 48.65 29 . 68 23.67 26 .01 23.67 48 . 65 MM O N 30. 2 1 26.41 84 . 17 73 . 59 75 . 87 66 . 33 66 83 31 .85 27 .85 23.67 28 . 12 23 . 67 74.31 MM % 47 . 87 58 . 39 34 . 12 4 1.61 38 . 53 46 . 99 56 79 37 .90 46.22 22 . 90 67 . 13 22 . 90 60. 4 3 MM 10 6 1.76 70. 86 25.40 29 . 14 19 . 57 22 . 45 17.72 20. 33 49.88 57 . 22 23.45 92 . 33 23 .45 4 7 .02 MM % 1 1 189.00 89 . 36 22 . 52 10.64 8 . 38 3 .96 -0. 20 -0.09 203.33 96 . 13 22 . 2 1 98 .66 22.21 10.93 MM % 12 14 7.00 86 . 28 23 . 38 13.72 78 22 -0.31 -O. 18 166.91 97 .96 22 . 98 98 . 3 1 22 .98 13.77 MM 13 14 3.00 90. 22 15.51 9 . 78 67 32 0.05 0.03 154.79 97 .65 15 . 34 98.93 15 . 34 9.91% MM SUMMER 298.0 435.5 482.1 40.6 59.4 65.7 WINTER 916.7 140.7 72.7 86.7 13.3 6.9 YEAR 1214.7 576.2 554.8 67.8 32.2 3 1.0 -17.3 268.7 139.3 139.3 MM -2.4 36.6 32.0 5 1.8 % 2 1.5 963.2 135.2 135.2 MM 2.0 91.1 96.1 14.0 % 4.2 1231.8 274.4 274.4 MM 0.2 68.8 47.6 22.3 % T a b l e VI.2 E x t e r n a l suburban water b a l a n c e by month MONTH 86 . 99 99 . 70 0. 26 0.30 1 . 70 1 .95 4 . 46 5.11 81.09 MM 92.94 % 232 . 28 99 . 35 1 . 52 0.65 10.97 4 .69 -0.51 -O. 22 223.34 MM 95.53 % 56 . 70 98 . 38 0.93 1 .62 24 .64 42 . 75 0.31 0.54 32.68 MM 72.66 % 90. 19 95 . 14 4.61 4 . 86 43 .91 46 . 32 14.6 1 15.41 65.49 MM 69.09 % 24 . 64 38 .06 40. 10 61 .94 93 . 30 144.14 -34.6 I -53.46 6.04 MM 9.32 % 32 . 15 22 . 23 112.45 77 . 77 124.80 86 . 31 10.08 6 . 97 9.72 MM 6.7 2 % 72 .93 5 1 . 99 67 . 34 48 .01 105.71 75 . 36 9 . 58 6 . 83 24.98 MM 17.81 % 30. 2 1 33 . 30 60. 50 66 . 70 75.87 83 . 64 6 . 66 7 . 34 8.18 MM 9.02 % 47 . 87 8 1 .02 11.22 18 . 98 38 . 53 65.21 5 . 56 9 .42 15.00 MM 25.37 % 10 6 1 . 76 96 .94 1 . 95 3 .06 19 . 57 30.7 1 17 . 72 27 .81 26.42 MM 4 1 .48 % 1 1 189.00 99 . 84 0. 30 0.16 8 . 38 4 . 43 -0. 20 -O. 10 18 1.11 MM 95.6 7 % 12 14 7.00 99 . 73 O. 40 0.27 3 . 78 2 . 56 -0.31 -0.2 1 143.93 MM 97.65 % 13 14 3.00 99 . 88 0.17 0.12 3 . 67 2 . 57 0.05 0.03 139.44 MM 97.40 % SUMMER 298.0 50. 1 296 . 2 49 . 9 482 . 1 8 1.1 17 3 -2 . 9 129.4 MM 21.8 % WINTER 916.7 99 . 4 5 . 5 0.6 72 . 7 7 . 9 2 1.5 2 . 3 828.0 MM 89 . 8 % YEAR 12 14.7 80. 1 301 . 7 19.9 554 . 8 36 . 6 4 . 2 0.3 957.4 MM 63 . 1 7. T a b l e VI.3 Runoff r a t i o by month VEGETATION PAVEMENT TOTAL (EXTERNAL) MONTH R P R/P R P R/P R P R/P H DAYS Co 1 47 .68 52 .72 0 .90 33 ,42 34 . 54 0 .97 81 .09 87 . 25 0 .93 10 2 134 . 78 14 1 . 59 0 . 95 88 . 56 92 . 22 0 . 96 223 . 34 233 .80 0 . 96 28 __.3 .. ... 14 . 73 35 . 12 0. . 42 17 95 22 .51 0 .80 32 .68 57 .63 0 . 57 3 1 4 34 .81 58 . 99 0 59 30 .68 35 .81 0 86 65 . 49- 94 . 80 0 .69 30 5 0 .0 54 . 95 0. .0 6 .04 9 . 78 0 .62 6 .04 64 .73 0 .09 31 6 0 .0 13 1 83 0. 0 9 . 72 12 . 76 0. 76 9. . 72 144 .60 O. .07 30 7 0 0 111 . 32 0 0 24 .98 28 . 95 0. 86 24 .98 140 27 0 18 3 1 8 0 • o .',. 78 . 72 0. 0 8 . 18 1 1 . 99 0. 68 8 . 18 90 7 1 0. 09 3 1 9 0. 0 40. 08 0. 0 15 . OO 19 00 0. 79 15. 00 59 09 0. 25 30 10 5 . 82 39 19 0. 15 20. .60 24 . 52 0. 84 26. 42 63 . 7 1 0. 4 1 3 1 1 1 109: 16 114. 27 0. 96 7 1 . 95 75 03 O. 96 18 1. 1 1 189 . 30 0. 96 30 12 86 . 94 89 . 04 0. 98 56 . 99 58 . 36 0. 98 143 . 93 147 . 40 0. 98 3 1 1 3 84 . 16 86 . 39 0. 9 7 55 . 29 56. 77 0. 97 139. 44 143 . 17 0. 97 2 1 T a b l e VI.4 Suburban water b a l a n c e by day INITIAL INPUTS : MPIPES = 0 . 7 6 3 PORTION OF SPRINKLING ON TO VEGETATION = 1.0 VRETNI= 2 . 1 1 VRETNU= 2 . 1 1 PRETEN= 0 . 5 8 UAREA= 0 . 3 0 2 I AREA = 0 . 3 0 2 SSMF = 0 . 5 5 0 0= 3 . 5 0 ZOV= 0 . 0 5 2 ZOM = 0 . 5 2 0 DAY I P E R S (MM) (MM) (MM) (MM) (MM) Ln 22 . 0 . 72 4 72 0. 0 2 . 02 3 . 42 23 . 0 . 82 17 92 o .0 17 37 1 .38 24 . 0 . 82 25 . 86 o . 55 26 .69 - 0 .55 25 . 0 . 78 6 . 43 0 . 08 6 . 66 0 . 47 26 . 0 . 74 2 14 0 0 2 80 0 08 27 . 0 . .74 6 . 54 o . 26 7 . 28 - 0 . 26 28 . 0 . 74 7 .61 o 30 8 . 10 - 0 . .05 29 . 0 . 74 1 28 0 . . 17 1 7 1 0 . 14 3 0 . 0 . 79 6 .00 o . 0 6 62 O . 17 31 . 0 . 87 8 48 0 34 9 . 34 - 0 . 34 32 . 0 . 82 7 08 0 19 7 . 56 0 16 33 . 0 . 78 O 32 0 . 2 1 0 91 - 0 03 34 . 0 . .76 0 . 0 0 66 0 . 76 -0. .66 35 . 0 . 74 0 .0 0 14 0 . . 74 -0. 14 36 . 0 78 0 0 0 . 77 0 76 - 0 . 75 37 . 0 . 84 0 . . 0 0 . 46 0. 76 - 0 . 38 38 . 0 . 96 0 .0 0 .43 0 76 -o. . 24 39 . 0 . 84 0 . 0 0 . 0 0 76 0 08 4 0 . 0 . 80 0 . 0 0 .0 0 . 76 O .04 4 1 . 0 . 78 0 . .0 0 0 0 76 0 .02 42 . 0 . 85 5 . 15 0 . 23 3 73 2 03 43 . 0 . 77 34 .02 0 . 17 34 . 56 0 . .06 44 . 0 . 87 50. . 44 0 . .22 5 1 . 14 - o . .06 45 . 0 . 86 23 93 0 . 32 24 . 57 - 0 10 46 . 0 . 79 13 . . 73 0 2 1 14 . 19 0 . . 1 1 47 . 0 . 78 2 14 0 . 12 2 . 7 1 0 10 48 . 0 78 O . 53 1 .04 1 , 19 - 0 . 92 49 . 0 . 78 40 . 25 0 . 12 39 . 98 0 92 5 0 . 0 . 75 7 . 51 0 . 78 8 . 14 - 0 . 66 51 . 0 . 86 1 07 0 . 40 1 . 15 0 39 52 . 0 . 9 1 7 .83 0 . .66 8 . 34 - o . 27 53 . 0 . 85 1 . 17 0 . 5 1 1 . 36 0 . 16 54 . 0 . 78 0 . 0 0 . 98 0 . 76 - 0 . 97 55 . 0 . 80 4 . 82 0 .45 4 15 1. 02 56 . 0 . 80 2 . 78 0 . 32 3 . 13 0 . 13 57 . 0 . 78 16 . . 20 0 . 07 16 . 66 0 . 25 58 . 0 . 86 0 .0 0 . 64 0 . 82 - 0 . 59 59 . 0 . 90 13 . . 30 0 . 85 13 . 54 - 0 . 18 6 0 . 0 . 8 1 12 01 0 . 30 1 1 . 97 0 . 55 6 1 . o . 70 7 72 0. 6 1 8 . 12 - o . 31 62 . o . 69 1 . 39 0 . 30 1 . 47 0 . 31 63 . 0 . 72 0 . 0 1. 16 0 . 72 - 1 . 16 64 . 0 . 74 0 .0 1 .09 0 . 74 - 1 . 09 65 . 0 . 78 0 . 0 0 . 53 0 . 76 - 0 . 51 66 . 0- 85 0 . O 0 . 95 0 . 76 - o . 87 67 . 0 . 73 O. .0 0 . .85 0 . 73 - 0 . 85 68 . 0 . 68 0 . 0 0 . 26 0 . 68 - o . 26 c c c o c o c c t r i i r c s o O c o c ^ c N n r ^ ^ c N © w O O O ^ ^ ^ O O O O ^ ' O O O ^ O ^ O ^ ^ O O O ^ ^ O O O O O n O O O O ' * ( N ' - o l ( N ' - 0 ' ' 0 ' - C N ^ ' • 0 ( N , • , • c v c N O l O ( ^ c N I I i I I I I I I I I I I I I I I I 1 1 1 I I I I I I I I I I I I I ! I I I I I I O m co r- T. ^ ^ ^ l n ^ ^ ^ ^ ^ ^ O < N ^ l i ) n n ^ c N ^ c n ^ ^ ^ ^ ^ c N ^ Q t r a ) ( i ) ^ l J l ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ o ^ ^ ^ ^ ^ n ^ ^ ^ ^ ^ ^ ( N ^ O O O ^ O O O O O O O O O O n ^ O O c ^ n r ^ C N c o c N O O O O O - ^ r ^ ^ C N i O O o i O O O O O O O O O O L f i O O O O - ^ O O O O O O ro o "~ <NOcN<Nco(T)a)cocor^ r- r- *r r~ o -rr o 0 ) O l n O O ^ O O O O O O O O O O ^ l f i ^ f ^ w n ^ o ^ ^ l f i O O O O O l n c N O ^ v J ' - C I ) O O O O O O O O O O l i ^ l i ) O O ^ P O O O O O O O ^ t S ^ O O c o O O O O O O O O O O ^ ^ O O i r J ^ r ^ r ^ c o c N O O O O O c N i ^ ^ c ^ O ^ c n O O O O O O O O O O ^ O O O O r o O O O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o - ^ o o o o o o o o 160 c N i ^ ^ n i o t i i o o O u n a o ^ u D a j O T ^ L n c o ^ c r j c o r ^ O L n I i I I i I i I I I I i I I I i i i i i i i i I I —— j j i i i i i ^ ^ ^ ^ u ^ O ^ O l L ^ ^ ^ ^ ^ ^ ^ ^ h ^ ^ ^ ^ ^ ^ n ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ • ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ . ' - l ^ ^ ^ ^ ^ ( N U ^ ^ ^ ^ ^ ^ O O O O O c N O ' ^ c o O O O O O O O O O O O O O O ' - O O O O O O O O O O O O O O O O O O O O O O O ' ^ c n O O O O - ^ i i J O O O O c ^ m < i > ^ c o c } O T C T ) 0 ^ c o O c ^ L r ) T r O T n O r*- r - o j 01 in w i n u o CJ n co T CN ^ O O O O O ^ O ^ ^ O O O ^ n O O O O O O O O O c o r ^ O r i c ^ O O O O O O O O O O O O O O O O O O O ^ ' L n C ) i n O O t i ) 0 ^ i r ) U ) 0 0 0 O O O O o j ^ O ^ - x O O O - ^ O O O O O O O O O O o J O O O ' - O O O O O O O O O O O O O O O O O O O C M n O O O O f N O t P O O O O CM O c o n ^ ^ r ^ c s i c D i n o N i C N j c s o O O ^ ( N n n n n n n n n n n ^ N t ^ ^ ^ - T T j - r t j ^ i n i n i n i n i n i i i i i i i n i n ^ 161 N - 0 0 - u > t N i n - ( N r > 0 ' 0 « ' O O O O N O O O O O O O O " - - < v N O i - - o O N N - o O O O O ' 0 " n O - - - i i ) 0 -i r • • f -— i l l i i t i i I I i I I i i i i i i i i i l i l t I I l £ ( £ l £ < £ l £ > m c N r - - l O t p l P C 0 l 0 < i ) l D C D l P t I > i a i p l 0 l P C J ) l 0 l £ C 0 O O O O O C N O n O O O O O O O O O O O O O O O O O O O O O O O O O C N O L D ' - O O O O O O O O O O O O O O O c N O O O O i D O O ^ m m ^ m o c N O o i r e ^ — - ^ c N C M m m m m m m ^ - ^ o o — C N C N - ^ r - t^LT j T CM c N r - c N C M co in r~ o in in c o o 0 0 0 0 0 0 ) ^ m O O O r - ^ O O O O O O O O O O O n O ' ^ O C r ) O O O O c \ i O t ~ o O O O O O O O O O O O O O O O < N r ~ 0 0 0 " - 0 0 O O O O O c C T C O O O O O O O O O O O O O O O O O O ' - O O O O O O C N m O C M C M O O O O O O O O O O O O O O O m O O O O m ' - O r - ( ^ r ^ ^ O m c n ^ t c n c M c o m - - - c o c o c N m ( £ i c n t p r o c o r ^ ' - c N m m m t c r - m a D C M ^ — c o c N m c o o c M C ^ r ^ r o t c c n c o O ^ m c o m i ^ ' - c o r ^ C N n ^ 5 1 ( 1 1 0 ) 0 1 0 1 ( 1 ) 0 1 0 ) 0 ) 0 1 0 1 0 0 0 0 0 0 0 0 0 - - ' - ' - • - ' - ' - ' - ' - - ' ( N C N P I O i r M M O I M n c o O ' - C M n ' a - m c o r - c o c n O ' - r M c n ' a - m t c r ^ c o O ' - ' - ' - — — — — — — — CMCMCMCMCNCMCMCNCM OJCNICMC\(NCNCNC\C\ l rNCMOICNCNCMCNCNOICV ICN o i O ' - r M n r j i p t i i r ^ o g j O ' - c N O ^ i n t o r ^ c o CMCMCMCMCNCMCNCMCNICMCNCMCMCMOICMCMCMCMCM 162 r~coror--<i'CDOincocNcoiD^T*- ^ ^ ' 1 n K ) c N 0 > ' - c ^ l 0 l ^ D O 7 O m u J l n l n u ) ^ T O ^ 0 l O ^ ( N ^ \ ^ ^ 3 O T - ^ c ^ c N O m in cn io r-- cn o> T T c n i n r - ^ ' r j u j L n i r j a j i D c N n - - in o CN *- CN r- — ^ r o m t o » ' - o o i c » n a ) O t o O c ( j c o n n i ~ o ) i n - c < ' » O r « O O O O i i i O c « 9 i f i i J ) n O O f t O P - n O O O O O O O O O " f i O - O O O O c o O O i n T O O O O — O - O O O o O O O - O O O O O O O O O O — O O O O < i i i i i i i i i i i i i i i i i i I I i i i i i i i i i i i i i I I I I I I i CPCDCNCOCOCNCDC0COCOCOCOCOCOl£CO(£COCOO0lOCPlOCOCD^COCOCn^cOCOL^ p-p~Lnr^Lr ) ' T ~r^r~- r^r - r^r~-i^r*p*-r— i— i i — r v t ^ N , r r ^ t ^ I " C , } > t , ' r ^ r * » h ' r ^ i v f ^ i ^ p L T r o N t , » c j t ^ r ' t ^ ^ t i > r ^ p - t ^ i ^ t ^ t ^ i ^ p - t O L n O O C N O C O - O O O O O O O O O O O O C N O O O O O O C O O O ^ C S O O O O O O O O O c j > ^ c o O n i ^ O t D ^ c o ^ i £ c o ^ i f l ^ O o i o ^ i f l 7 > t f l 7 ^ i n c o c ^ O C ' O i n n i i i r > ' T t O L n r ^ r ^ ^ r 7 i i ! r ^ in — f is MI) eo — r ~ ^ r c o c - i 0 ' C c o c o o ) i o i n i D ' - u 3 i C ' - n i n ^ i i i c N o i O O i n ^ n u j r o i N i n n f l i - O ' - O c n ^ O f ' O i i n O o i t O O O O O O i O ' - ' - ' f i n ' - ' i - 0 ' - O C M O C N O o d - - ' - ^ 0 0 - - 0 0 ' - 0 0 ' - - - - 0 ^ 0 0 ' - 0 0 - ' - ' - - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O o> in T ^ r n c o r ^ r o c o c M c n m co r- O C O O O a ) O c n c o O O O O O O O O t - - O O O O i n O O i n O O r - - i n o o i D O i n O O O O O O O O ' - i n o o i n O O O O O O O O O O O O O O O O O i n o i n c N O O O O O O G O O O O O i n o O O O O O i n O O O O O O O O O O O O O c o o i o c N c n c o O c N c n a > c N c N r ^ O c n i n c N c n c o c B r ~ c N c n m n - a 3 0 r ~ o ^ O O O O C O C O O T O C N C O I O — c r cococooocococncnr^cooocococDOT O O O •>- » - — — CN o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o mo — c N n i i n c o r - o o c n o T i n m i n m i n m i n m i n i n c o C N C N C N C N C N C N C N C N C N C N C N C N — c N D T i n c o r - c o c n O ' - c N c o i o c o c o c o i o t o c o c c r - r ^ r * -C N C N C N C N C N C N C N C N C N C N C N C N n 7 i n c p M i o Q O ' - c N n t r - r~t ^ r ~ r - r - - r ^ c o co.co co co C N C N C N C N C N C N C N C N C N C N C N C N i n i o r - c o c n o - — c N c o ^ - i n c o c o c o c o c o c o c n c n c n c n c n c n c n C N C N C N C N C N C N C N C N C N C N C N C N r ~ c o O ) 0 ' - c N C O ' T i n c o r - - c o C S O I O I O O O O O O O O O M M C N o n n n n o o n n 163 309 . 0. 72 1 1 .00 o . 18 1 1 24 0 30 310 . 0 . 75 5 .00 0 . 26 5 . 57 -0 .08 3 1 1 . 0 . 8 1 1 .00 0 .03 1 . 55 0 . 22 3 12. 0. 74 0 .0 0 . 45 0 . 74 -0. . 45 313 . 0. 69 0 .0 0 . 43 0 . 69 -0 . 43 314 . 0. 69 0 .0 • 0 .49 0 .69 -0 .49 315 . 0. 76 0 .0 0 . 48 0 . 76 -0 . 48 3 16. 0. 69 6 .00 0 .08 4 , .80 1 .81 317 . 0. 79 O .0 0 . 45 O . 76 -o . 43 318 . 0. 79 0 .0 0 . 49 O .76 -0 . 47 3 19. 0. 74 22 .00 0 . 12 21 . 76 0 . 86 320 . 0 . 74 22 .00 o . 12 22 . 62 o .00 32 1 . 0 72 2 .00 o . 18 2 .60 -0 .05 322 . 0. 73 4 .00 0 . 48 4 . 55 -0 .31 323 . 0. 73 2 .00 0 . 27 2 . 25 0 . 2 1 324 . 0. 75 4 .00 0 16 4 . .49 0 . 1 1 325 . 0 84 1 .00 0 . 25 1 .68 -0 .08 326 . 0. 76 0 .0 o . 18 0 . 76 -o 18 327 . 0. 74 O .0 0 . 22 0 . 74 -0 . 22 328 . 0. 75 0 .0 o . 3 1 0 75 -0 .31 329 . 0. 75 4 .00 0 . 25 3 . . 79 0 . 7 1 330 . 0. 69 12 .00 0 . 17 12 . 43 0 .08 33 1 . 0. 78 2 1 .00 0 .09 2 1 .61 0 08 332 . 0. 83 24 .00 0 .07 24 . 74 0 .02 333 . 0. 77 7 .00 0 12 7 . 70 -0 . .05 334 . 0. 75 15 .00 0 . 34 15 .63 -0 22 335 . 0. 72 1 .00 0 .09 1 . 38 0. 25 336 . 0. 75 42 .00 0 08 42 . 66 0. .01 337 . 0. 76 2 .00 0 .0 2 68 0. 08 338 . 0. 80 0 .0 0 21 0 80 -0 . .21 339 . 0. 85 0 .0 0 . 19 0. . 76 -0 . 1 1 340 . 0 . 76 0 .0 0 .08 0. 76 -o. 08 34 1 . 0. 72 0. .0 0. 08 0 72 -o 08 342 . 0. 7 4 0 .0 0 .06 0 74 -o. 06 343 . 0. 76 0 .0 0 .08 0 . 76 -0 . 08 344 . 0. 75 O .0 0. . 1 1 0 75 -o. 1 1 345 . 0. 78 16 OO 0. 32 16 . 04 0. 42 346 . o. 82 9 .00 0 . 1 1 9 . 49 0. 22 347 . 0. 88 2 .00 0 . 22 2 78 -o. 1 1 348 . 0. 76 1 1 . .00 0 .05 1 1 . 54 0. 16 349 . 0. 74 14 . 00 0. 13 14 . 69 - 0 . 08 350 . 0 . 74 4 OO o . 14 4 . 61 -o 00 351 . 0. 74 4 .00 0 .09 4 . 60 0 . 05 352 . 0. 73 7 . .00 0. OO 7 . 63 0 . 09 353 . 0. 74 0 .0 0. 03 0 . 74 - 0 . 03 354 . 0 . 73 7 .00 0 .07 7 . 69 -o . 03 355 . 0. 7 1 13 OO 0. 25 13 . 64 -o . 17 356 . 0. 70 0. .0 0. 15 0 . 70 - 0 . 15 357 . 0. 7 1 1 00 0 . 23 1 . 32 0. 17 358 . 0. 80 1 . 00 0 . 07 1 . 57 0 . 15 359 . 0. 80 12 00 0. 0 12 . 72 0. 07 360. 0 . 75 0. 0 0. 09 0 . 75 -o . 09 36 1 . 0 . 75 0 . 0 0. 09 0 . 75 -0 . 09 362 . 0 . 72 0 . 0 0. 06 0 . 72 - 0 . 06 363 . 0. 70 1 . .00 0. 15 1 . 46 0 . 09 364 . 0. 70 0. 0 0. 29 0 . 70 - 0 . 29 365 . 0. 78 0. .0 0 . 22 0 . 76 -0 . 20 366 . 0 . 74 2 00 0 . 26 2 . 09 0 . 40 367 . 0. 76 17 00 0 . 10 17 . 5 1 0. 16 368 . 0. 78 10. 00 0 . 17 10. 68 -o . 17 369 . 0. 72 28 .00 0. . 20 28 56 -0. .03 370. 0. . 74 0 .0 0. . 26 0. . 74 -0. . 26 37 1 . 0 7 1. 7 .00 0. 11 7 . 25 0. 35 372 . 0. 70 22 .00 0. 04 22 . 59 0. 07 373 . O. 76 1 .00 0. 20 1 . .72 -0. . 16 374 . 0. 82 29 .00 0. .03 29 . 62 0. . 17 375 . O. 79 1 .00 0. .05 1 . . 76 -o. .02 376 . 0. 70 5 .00 0. 27 5 . 65 -0. . 23 377 . 0. 70 0 .0 0. 24 0. 70 -o. 24 378 . 0. 7 1 0 .0 0. 18 0. 7 1 -0. 18 379 . 0. 7 1 0. .0 0. 17 0. 71 -o. 17 380. 0. 73 0. .0 0. 27 0. 73 -0. 27 38 1 . 0. 82 1 . .00 0. 31 0. 76 0. 74 382 . 0. 78 5 .00 0. 13 5 . 40 0. . 26 383 . 0. 73 9 .00 0. 1 1 9. .61 0. 02 384 . 0. 69 6 . 00 0. 17 6 . 58 -0. 06 385 . 0. 7 1 0 .0 0. 20 0. 71 -0. 20 386 . 0. 72 0. .0 0. 23 0. 72 -0. 23 T a b l e VI.5 Suburban water b a l a n c e by day with s t a t u s of water s t o r e s and the d i v i s i o n between the i n t e r n a l ( i ) and e x t e r n a l (e) system Where SVU i s the p e r v i o u s u n i r r i g a t e d r e t e n t i o n SVI i s the p e r v i o u s i r r i g a t e d r e t e n t i o n SP i s the impervious r e t e n t i o n DAY I i l e P E Ri Re S SVU SVI SP (MM/D) (MM/D) (MM/D) (MM/D) (MM/D) (MM/D) (MM/D) (MM/D) (MM/D) (MM/D) 22 . 0. 72 0. 0 4 .72 0 0 0 .72 1 . 29 150 00 1 . 42 1 .42 0. 58 23 . 0. 76 0. .06 17 . 92 0. .0 0 . 76 16 .60 150 .00 2 . 1 1 2 . 1 1 0. 58 24 . 0. 76 0. 06 25 . 86 0. 55 0. . 76 25 .92 150. .00 1 .94 1 . 94 0. 36 25 . 0. 76 0 .02 6 .43 0 08 0 . 76 5 .90 150 .00 2 .09 2 .09 0 55 26 . 0. 74 0. 0 2 . 14 O. .0 0 .74 2 .06 150 .00 2 . 1 1 2 . 1 1 0. 58 27 . 0. 74 0. .0 6 . 54 0. 26 0 . 74 6 . 54 150 .00 2 .03 2 .03 0. 48 28 . 0. 74 0. .0 7 6 1 0. 30 0. . 74 7 . 36 150. .00 2 .02 2 .02 0. 46 29 . 0. 74 0. .0 1 . 28 0 17 0 . 74 0 .98 150 .00 2 .06 2 .06 0. 51 30. 0. 76 0 02 6 .00 0 0 0. . 76 5 .86 150 .00 2 . 1 1 2 . 1 1 0. . 58 3 1 . 0. 76 0. 10 8 . 48 0. . 34 0. . 76 8 . 58 150 .00 2 .01 2 .01 0. 44 32 . 0. 76 0. .05 7 . 08 0 19 0 . 76 6 . 79 150 .00 2 .05 2 .05 0. 51 33 . 0. 76 0 .02 0 . 32 0 21 0 . 76 0 . 15 150 .00 2 .05 2 .05 0. . 49 34 . 0. 76 0 .0 0 .0 0. 66 0 . 76 • 0 .0 150 .00 1 .85 1 .85 0. 23 35 . 0. 74 0 .0 0. .0 o. . 14 0. . 74 0 .0 150 .00 1 .80 1 . 80 0. 18 36 . 0. 76 0. .01 0. .0 0. 77 0 76 0 .0 150 .00 1 .51 1 . 5 1 0. 0 37 . 0 76 0 .08 0 .0 0 46 0 . 76 0 .0 150 .00 1 . 32 1 . 32 0. 0 38 . 0. 76 0. . 20 0. .0 0. . 43 0. 76 0 .0 150 .00 1 . 20 1 . 20 0. 0 39 . 0. 76 0. .08 0. .0 0. O 0. . 76 0 .0 150. .00 1 . 24 1 . 24 0. 0 40 . 0. 76 0. .04 0 0 0 O O . 76 0 .0 150 .00 1 . 26 1 . 26 0. 0 4 1 . 0 76 0. 02 0. .0 0. O 0 . 76 0 .0 150 .00 1 .27 1 . 27 0. o 42 . 0. 76 0. .08 5 . 15 0. 23 0 76 2 . 97 150 .00 2 .04 2 .04 0. 49 43 . 0. 76 0 .00 34 . 02 0 17 0. . 76 33 . 80 150. .00 2 .06 2 .06 0. 5 1 44 . 0. 76 o 10 50 44 o 22 0 . 76 50 . 38 150 .00 2 .04 2 .04 0. 49 45 . 0. 76 0. 10 23 . 93 0. 32 0 . 76 23 . 8 1 150. .00 2 .01 2 .01 0. 45 46 . 0. 76 0. 02 13. 73 0. 21 0. 76 13 .43 150. .00 2 .05 2 .05 0. 49 47 . 0. 76 0. .02 2 . 14 0 12 0. 76 1 . 95 150. .00 2 .07 2 .07 0. 53 48 . O 76 0 .01 0 . 53 1. 04 0 76 0 .42 150 oo 1 .80 1 .80 0. 17 49 . 0. 76 0. .02 40. 25 0. 12 0. 76 39 . 22 150 .00 2 .07 2 .07 0. 53 50. 0. 75 0. 0 7 . 51 0. 78 0. 75 7 . 39 150. .00 1 .87 1 . 87 0. 27 5 1 . 0. 76 0. 10 1 . 07 0. 40 0. 76 0 38 150 oo 1 .99 1 .99 0. 42 52 . 0. 76 0 14 7 . 83 0. 66 0. .76 7 .58 150. .00 1 . 9 1 1 .91 0. 32 53 . 0. 76 0. 08 1 . 17 o. 51 0. 76 0 . 59 150. oo 1 . 96 1 . 96 0. 38 54 . 0. 76 0. 02 0. 0 0. 98 0. 76 0. .0 150. .00 1 .66 1 . 66 0. 0 55 . o. 76 0 . 04 4 . 82 0. 45 0. 76 3 . 39 150. oo 1 . 97 1 . 97 0. 40 56 . 0. . 76 0 .03 2 78 0. 32 0. 76 2 . 37 150. .00 2 .01 2 .01 0. 45 57 . 0. 76 0 02 16 . 20 0. 07 0. 76 15 90 150. 00 2 .09 2 .09 0. 55 58 . 0. 76 0. 10 0. 0 0. 64 0. 76 0. .05 150 00 1 . 92 1 .92 0. 30 59 . 0. 76 0. 14 13 . 30 0. 85 0. 76 12 . 78 150 . 00 1 .85 1 .85 o. 24 60. 0. . 76 o. 05 12 . 01 0. 30 0. 76 1 1 2 1 150 .00 2 .02 2 .02 0. 46 6 1 . 0. 70 0. 0 7 . 72 0. 6 1 0. 70 7 . 42 150 00 1 . 93 1 .93 0. 34 62 . 0. 69 0. 0 1 . 39 0. 30 0. 69 0 78 150 . 00 2 .02 2 .02 0. 46 63 . 0. 72 0. 0 0. 0 1. 16 0. 72 0 0 150. 00 1 . 67 1 . 67 0. 00 64 . o. 74 0. 0 0. 0 1 09 0. 74 0 0 150 .00 1 . 13 1 . 13 o. 0 65 . 0 . 76 0 02 0. O 0. 53 0. 76 0 0 150 00 0 . 87 0 .87 0. 0 66 . 0. 76 0. 08 0. 0 0. 95 — "0. 76 -o .-Q - 150. 00 0 . 44 0 . 44 0. 0 67 . 0. 73 0. 0 0. 0 0. 85 0. 73 0 0 150. 00 0 .01 0 .01 0. 0 68 . .0. 68 0. 0 0 0 0. 26 0. 68 0. 0 149 . 77 0 .0 0 .0 0. 0 69 . 0. 69 0. 0 4 . 93 o. 67 o. 69 1 38 149 77 1 29 1 9Q n n i in *- n ^ T r- > o in ro o O * - CM i» ro O T O O C N O O O O O O O O O O T O O O C M C O O O - ^ O O O O O O O T T C O O O C M O O O O O O O O O O O O O O O C M O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 6 0 O O O O O O O O O O O O O O O O O 0 6 0 O — c o i n c o c n c o c o c o o — in o c o c o a i r - i n r - " - o a > O r o r r i D i D r - c o O c o — co — cor*'- 00 ^ O l ^ r o l ^ c ^ c ^ c ^ l I n o o o O O O l n O u c O I I l ^ o ^ O l r ) ( I ) ^ I l ^ I l f ^ O r ^ o l O l O l ^ ( o < n < ^ ) O O O O O O O O O c ^ ' r l N O O ^ O O O O O O O - ' - 0 ' O O O O O O O O O O N - ' 0 " " « ' - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 — c o i n c o c n c o c o c o o — m O c o c o c n r - i n r - — O c o O c o * ? i o t o r - c o O c o — co — cor--- co ^ c ^ ^ c O l X l c ^ c ^ c 9 ^ n O O O O O O l n O l B l ^ l c ^ ^ J l ^ O l n c ^ ^ B ^ i n o c ^ Q C ^ ( B a l n o 3 o O O O O O O O O O ( N l f I N O O ^ O O O O O O O 0 - O O O O O O O O O O C M - - 0 - - - - c s i - 0 0 0 0 0 0 O O O O O O O O O O - O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 ' l t ) 1 T O ^ O O O ( I l O O O O O O O O O n n o 0 0 0 0 0 0 1 l l l ' « J l « t I ! - ^ l I t « } o o « l ? « l ^ i ( J l C ) - C ^ « 0 O O O O O O O O O O t O n n n l I ) 1 1 ^ t o l O O O O O O O O O ^ l l J O O O O O O O f f l l 1 ^ l t ^ o t o « O J l ^ l M - m O l » 7 ( B ^ O O O O O O O O O O ( » ^ l ^ ^ ^ ^ ^ l ( I l ( l H ) O O O O O O O O O t n 0 ) O O O O O O O J l ^ D n N • • O U l ! - " ^ l » e ^ t - ' 8 l n « 10 r~ O t f f l B d i D f u O ID in CM o — — « ' O O i i O O O O O O O O O O » ' » 0 0 « i i l i m ) t H O O O O P ' » « ! i i n O O c ( O O O O O O O O O O n O O O O » 0 0 0 0 0 0 0 C O O O O O O O O O O O O O O O C N O O O — C N C D — r - c M O O O O O O c D O c M O O C M O O O O O O O O O O i n O O O O O O O O O O O O t ^ ^ c o i D n c N — i n o o i D i £ U > ^ c D C M i x ) i £ c D O - co — C M C O U > C O O C D C D ( £ > C D I £ I D I P ^ C ^ ! i ) U I ^ • ^ ^ ^ ^ ^ ^ i l ^ ^ ^ ^ r - ^ m ^ ^ l i ) ^ ^ ^ ^ ^ r * ^ ^ ' r • ^ - ^ ^ r - ^ L C ^ P l - ^ * ^ ^ ^ - ^ ^ ^ ^ ^ ^ ^ r * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ O O O O O O O 0 6 0 O O O O O O 0 6 0 6 0 O O O O O 0 6 6 0 O O O O 0 6 6 6 0 O O O 0 6 0 O O O 0 6 0 6 0 O O O O O O O co <r 01 to r- ID — r- O ^ i n - ^ ^ c n o o ^ T i D ^ T c o - c o i O O ^ i n i n O T N i n c o - - o i n c o { N O ) i r ) O t N C O i n t f l O i i > ^ c i i i D O n o i U ) n t 3 ' - 0 O , - O , - O 0 O T * ' " - * O 0 0 0 T ' , - ' " 0 0 , - , - 0 ' - ' - 0 O O ' - ' - O O O ' - ' - 0 f , i ' - c j w , - ' - ' - ^ ^ c v f N r v 0 w c J O c j n n 0 o n ^ — O — c -JOCNCMCOOicncocor - r- p» r- r~ T r- r- CD^r ^ O O i c O O N O O O O O O O O O O m i i ^ n o i n - o i M n O O O O O i B N O M J - o i O O O O O O O O O O i i n i i O O a i O O O O O O O O » ' O O n O O O O O O O O O O ^ - 0 0 « H M ^ « ) P i O O O O O c i - - i M O - n 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 n O O O O O O O — CM 0) O — O rJ-CM — T- T -— CD CO CO C M C M C M C M C N C O C D C O C M C M C n c D l D C M C O — C O O O O O C M — LOr-CO O O - O O O O O O O ' O O ' - O O - N O O O O O O O O O O O n n O O O O O O O O O ' - ' t n t M O n O O n ' j n - ^ i t i D f f l O ' O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 6 6 0 O O - -r - ^ c o i D c o c M — i n O T i D U > c o ^ c o o i c o c r c D O — o — cMcocDcoocoii)co(£cO(r c ^ c i D r — r— 1— r ^ r * - r - - U 3 r ^ r - i - - r — r— r— L n t — r— t D r - f ^ i — ^ 1 — r— r ^ r — r - - i — r ^ r ^ : — r ^ L D C D r — i— r ^ r ^ r ^ r - - r ^ r ^ r ^ i — r ^ r ^ c — r— r— r - r — r — c — r ^ r ^ r - ^ r ^ c -O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 - - c ^ l n ^ l n ^ 5 ^ o o a l O • - o l ^ ^ ^ n ^ ^ f f l Q ^ O - - c y ^ ^ u l c o ^ c o O l O - - c l C l ^ ; i n ^ o r - . c o oo O — r M c o ^ i n i D r - - c o c T ) 0 — c M C O T i n i D r - c o c n ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ O 0 3 a 3 C 0 O l ^ l C 0 C 0 C 0 O C 3 C f l C « r o m 0 1 O C ) 0 ) 0 ^ O O O O 0 O O O O O ' - ' - ' - ' - ' ' < — C M C N C N C N C M C - I C M C M C M C M 167 in in co O O O O C N O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C N O O O O O O C M O O O O O 000060000000006000000000000000000000000000000600000000000000 is m r O O r- co 0 in — o> coco » IT n N 9 co - >» it O O O « « r « N O O O O O O O O O O O w u n M O O c i O O O O O O O n i n O O O O O O O O O O i i H 0 N O O n ' n c 0 P O O O O 0 0 0 0 ' 0 " O O O O o d o O O O O O O O " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - ' 0 0 0 ' - ' 0 0 0 0 0 10 co r~ O O r- co cn in — cn coco • t f c o c o r ^ T c o — T I C O O O C N T — C M C M O O O O O O O O O O O C N — u n « O O M O O O O O O O n i i ) 0 0 0 0 0 0 0 0 0 0 « i i j n O O N ' n o > 0 0 0 0 o o o 6 - o - - o o o o 6 o o o 6 o o o 6 o - - o o o o o o o o o o o o o o o o o o o o o o - - - o o o - ' - - o o o o o cnOcncn<7 )C)cnr~CNOCr>r^cor-cor - - r oLO — C ^ C O I S C O C O C O O T C O C O O T C O O T C D I ^ cn in — — — — — r ^ n o i c N ' T i n r r c o O c o c o c o c j i c N C N O O — i s c o o c n r ^ r ^ o c o c N C N c N i n O i n i n i n r ^ r ^ o ^ c n c n n h - c n c o c o c o c n ^ r ^ c n O ' T c n cncooococococo — O c o c o t o c K D M n o i - — C O C O ^ - ^ T C O C O — c o r ~ c o r ~ t ^ c o c o c o c c c o o o c n O O O — — — — intnin < T - T-»cncDcor'-<TCNa> — — — — — — — CM CM — ' — — — oooooooooooooocncncicncncncncncncncncnooooooo — — — — — — — CM CM CM C N CM ••-n ID is o r- O i n c o c o c o O O O C M C M O — f ~ O O O O O O O O O O O O O O i n O O O O O O O O O O O O O O O O O O O O O O O T r - O O O O ^ r ~ o > 0 0 0 0 0 OOo6 - 0-CMOOOOOOOo66oo6o6oOOOo66oOo66o66oOo6oOOOOcoo66oocomo6oOO ISCOCOCDCSlflCOlOCCCOCOCOCDCDCOlOCOCOCOCCICOlDCSlfllflCOlOlflCDCOCOC^ t — r — t — 1— j — — r — 1—^c— — t ^ r — [ — — 1— r ^ r — r — 1— E— r — t — [— 1— r ^ i — i — r — t — f — r ^ * r ~ r — r ^ t — r—• r — r — 1— r — r — r— 1— 1— t — 1— 1 — ^ r - - i — r — r — 1— 1^ t — O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O n c o c o c o c o c o c n o — c o O c o i n n c o ^ c M c o c o r ^ i n c o o c M c n o c N O c o i n c ^ — c o c o c o c o i n o c n — © O — C N — c o T C O T C o O r ^ c n r - T — CM — CM 10 cn — — 10 co co m cn — ^ c o o o c N c o c n c n o i n c o c n c n c o r ^ c n r ^ ^ r c o — cNcoOcn — co — inoo<rin T C N — C N O O C N C N ^ T T — co — c N i n T C N i n ^ r r o o c N C N — <3- — — n i n ^ i n i n u i i n c N c N i n i o i n L n i n i n t n i n i n i n — o c N ^ - i n — — C N O C O C N * 3 - C N ^ c o — O r - r- C N co in M 01 C D O C M C O C O T C M ' < I -O O O O c o O ^ ^ O O O — c o O O O O O O O O O c o r - O c o c o o O O O O O O O O O O O O O O O O O O ^ i n c o i n O O c o c n i n c D O O O O O O O C M T O ^ O O O O O — O O O O O O O O O O C N O O O — O O O O O O O O O O O O O O O O O O O C N C O O O O O C N O C D O O O O O CNCPinO — i n c o c n i n c o O ^ c o ^ c n c N c o ^ ^ c o i o c o O O T c o ^ c N C M C O ' ^ c n O ' T i o c o a o c o — — — m i n o c o c n c n o c o c N — tnr -co'3'cncNcNCN — T co 10 cn cn — c o c N c N T i o — o i L O C o i n T O i — 7 n c a l f l l n l n O O ^ • ^ O c ^ c ^ ^ c o c o c N l n O l n ^ n ( J - ^ O c ^ l c ^ l n o ^ l ^ n l n l n m ^ 7 C N O ^ O ) 0 — O O O O O — O O O — O O — CM — o CN co ^  co — O C N — O O n n ^ i n i n i n n n i n i n c o i t i s c o i n c O ' s c i J o i O O ^ -^r — — O O O O O O C N COCOlOCOlOCOlOCOlOCOlOCOCOlPlOCOlOlOCOlSCOCOlOCOCOlOlOC^ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O — t N O T T i n i o t ^ c o c n O — c N r o T i n c o r - c o c n O — c M c o ^ - i n i o r ^ c o c n O — c N c o ^ i n c o r ^ c o o i O — c N C O < 3 - i n i o r ~ c o c n O — C N r o ^ c n c o r - c o c n c o c o c o n c o c o c o c o c o c o ^ ^ ^ ^ ^ ^ ^ ^ T r ^ L n i n i n i n L O i n L O i n i n i n i o i o c o c o i s c o c D c o i ^ 168 n o in o O O O O C N O C M O O O O O O O O O O O O O O O O O O O O O O O O O — O C M O O O O O O O O O O O O O O O O O O O O O - O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c •7 o C N CM C N u> in cn O t- o C N in co cn 1 -3- — u> incNCDCNCNO) — I - T C N C D C O o c o r - n O O O O ( J O « ) O O O ' • O O O O O O O O O O ' • ^ l l l P ^ ^ T m O O ^ ^ ^ U l ( 0 0 ) n o O O O O • • l n t U l U ^ t 0 ) ^ t « ( N ' - n O O B " T l I l ^ O O O O - — — — O O O O O O O O O O O O O O O O O O O O O O O - — O — O O O O O O O O O O O O O O — - - - O O O - •— o o O CM CM C N to in cn O O CM in co cn T - T — to incMCDCMCMcn — r - ^ C N i o c o O c o r - c o O O O O » O l 0 O O O ' O O O O O O O O O O ' l n ^ l l ^ ^ • J ^ J O O ^ n ^ u l m 0 ) n o O O O O ' • l ! l ^ ^ ^ l t ^ l ) c ^ f f f ( ' ^ O O 0 ) ' n l l t O O O O - - - - O O O O O O O O O O O O O O O O O O O O O O O - - O - O O O O O O O O O O O O O O - - - — O O O - - O O r -cctocoincoTTrTCMCOcnOcoinincnco-^cnc*)- o r - r - t ' - ' T ^ m ^ r - c o c o r ^ f ^ m m m m c n o m m m c o c M C M C N m c o c n ' 3 - ' 3 - ' ! T i n i s i n i n c n o c n c n i n i o i c i c n — o ^ O M l » O l n u * ^ l ! l l ) ^ C l J l J O l S O ' ^ ^ » o c « N n ^ l ) m o o ^ ^ ^ ^ ' • ' - n n n l l l ( o u l l ) n o l n ^ ^ ^ cot^r - - L f)r^cNJinLnm — — o c n c n c D i n u o c p t D i n n n n r o r o c n c o r o — — — — — n n n C 0 C T > r 0 C 0 C M C N C M C M C M C N C N C M C M C N C N C N C N C N C N O l C M C M C N I C M C N C ^ cn to — cn — 0) in — mm O O O O — c i c N O O O O O O O O O O O O O O O O O O O O O O O O c N m O T ' 5 - O O O O O O O O O O O O O O O m O O O O ' ^ C N O O O O O O C M C n c o O O O O O O O O O O O O O O O O O O O O O O O O O - O T O O O O O O O O O O O O O O O O - O O O O m o O O ' . 0 C C < 0 l J 3 l C l £ l J 3 C O l f l ( £ l £ l S C 0 t P l £ l £ * £ l £ C 0 ( £ l £ l £ C 0 l 0 i £ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O C O C N O ) — m O T c a D t c M c n c N i — in cn to cn — c n c n O r - - c N r - T C r > O t n c o — a i c o c o - ^ r - m c o m o c n o i c r i c n i n c n t i j o t o i n - - ^ c o c N r j r - o n i n i D ^ r c o c o c n - — c o c N r - m O T c o m T c v i o a ) — B u n 0 i i i r ( a i o n 0 0 u i e o ( i ) ^ n i 5 n n » c 9 0 i o c a o u i j u i r i n - a i o - - 0 « ) 0 ' -m m ^ r m O c N O c N O T - — c N C M t n t n i n i n i n i n T — O O — <N CM — <3- in — CM — CM o CM — ^ - - t ^ r / o i o o i c N C N c i ' * O — CM - — CM co — — CM — c- r- in n oi C N r~ CM CM co in r- co min CD O O O O O c n T i n O O O r - T O O O O O O O O O O O C O O l O C O O O O O C N O r - O O O O O O O O O O O O O O O O C N r - O O O - C D O O O O O O i D ^ c n O O O O O O O O O O O O O O O O O — O O O O O O c N m o c N C N O O O O O O O O O O O O O O O m O O O O m — O O cn — r - , * r c n r - r - c n r ~ i n c N c o i n - — i n c o o r o o r - c o — i n c o c o c o c o c n o c n - l o t - t n c v i i i a j c N ^ i i i n r - N o n ' - r j C o c o o J O i O ^ c M - i n i - ^ r r c n CD in <r co — O C M i D O t * - C M i ^ O c M C \ i O r - - c o ^ c n * T i D i D C M r ' - r - r - C M i D r - r o - — C D C O C O C D O ^ T C O - o j r - t D r - o i c M c n r - i n — c o c o O r - ' ^ O ' T C O n « T r n n O O O 0 ' - O 0 O 0 i n » u i i D ^ v ( M ' - ' - O 0 - ' - - f n M ' - 0 O ' 0 0 O ' - ' - P i n n n n n n ^ ' - r o i M O O ^ ' O O 0 0 i D i D t D i D i D i D t £ C D i o t D i D i D C D C D t D C D O i D C 0 C D ( £ < £ i D i D t D t D t D i D i D t Q ( £ < £ r - r - r - r - f - r - r - r - r - r — r - r - r - r - r » - r - r - ~ r - - r — r — c— (— i — i — i — :— c— i — • t — i — r — r — f — i — [— r — i — t — i — r — r — r — r — i — — [— i — r-- r— i — r — o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O — c M r o - ^ i n i D r - c o c n O - c N D ^ - i n c c r - c o o O — C N O T i n c c r - c o c n o — C M r o n - m t o r ^ c o c n O - C M C O ^ m i D r - o o c n O — c N c O " 3 - i n i D i - - - c o c n — — — — — — — — — — C N C N C N C N C M C M C M C N C M C N C M C M C M C M C N C M C M C M C M C N C M C M C M C M C M C N C M C M C M C M C M C M C ^ 169 2 5 0 . 0 76 0 . 24 0 . 0 0 72 0 . 76 0 . 0 134 . 74 0 . 19 0 . 19 0 . o 251 . 0 . 76 0 . 27 5 . 9 0 1 . 47 0 . 76 1 . 7 6 134 . 74 1 . 6 6 1 . 6 6 0 . 0 2 5 2 . 0 . 76 0 . 24 0 . 0 0 .81 0 . 76 0 . 0 134 . 74 1 . 37 1 . 37 0 . 0 2 5 3 . 0 . 76 0 . 3 0 15 . 9 9 2 . 78 0 . 76 5 . 77 143 . 2 1 1 .01 1 .01 0 o 254 . 0 . . 76 0 . 0 5 2 . 35 0 . 6 0 0 . 7 6 0 . 35 143 . 2 1 1 . 57 1 . 5 7 0 . 34 2 5 5 . 0 . 76 0 . 13 0 . 0 2 . 43 0 . 76 0 . 0 143 . 2 1 0 . 59 O . 59 0 . 0 2 5 6 . O . 76 O . 2 0 0 . 0 O . 8 5 0 . 7 6 0 . 0 143 . 2 1 0 . 26 0 . 26 0 . 0 2 5 7 . 0 . 76 0 . 24 0 .O 0 . 8 0 0 . 76 0 . 0 143 . 17 0 . 0 0 . 0 0 . 0 2 5 8 . 0 . . 76 0 . 46 0 . 0 0 . 98 0 . 76 0 . 0 142 . 6 5 0 . 0 0 . 0 0 . 0 2 5 9 . 0 . 76 0 . 63 0 . 0 1 .61 0 . 76 0 . 0 14 1 . 6 8 0 . 0 0 . 0 0 . 0 2 6 0 . 0 . 76 0 92 0 .O 1 . 58 0 . 76 0 . 0 141 . 0 2 0 . 0 0 . 0 0 . 0 261 . 0 . 76 1. . 36 0 .O 1 . 6 1 0 76 0 . 0 140 . 77 0 . 0 0 . O 0 . 0 2 6 2 . 0 . 76 0 . 86 0 . 0 1 . 16 0 . 76 0 . 0 140 . 46 0 . 0 0 O 0 . 0 2 6 3 . 0 . 76 0 . 1 1 0 . 74 0 . 6 8 0 . 76 0 . 0 140 . 46 0 . 0 7 0 . 0 7 0 . 0 2 264 . 0 . 76 0 . 0 3 0 . 0 0 .61 0 . 76 0 . 0 140 . 0 6 0 . 0 0 . 0 0 . 0 2 6 5 . 0 . 76 0 . 12 0 . 0 1 . 16 0 . 76 0 . 0 139 . 0 2 0 . 0 0 . 0 0 . 0 2 6 6 . 0 . 76 0 . 0 9 0 . 0 1. .31 0 . 76 0 . 0 137 . 79 0 O 0 . . 0 0 . 0 2 6 7 . 0 . 76 0 . 06 5 . 04 0 . . 5 0 0 76 1 . 42 137 . 79 1. . 4 0 1 . 4 0 0 . 38 2 6 8 . 0 . . 76 0 . 13 0 . 53 0 . 42 0 . 76 0 .01 137 . 79 1 . 4 9 1 . 4 9 O . 4 1 2 6 9 . 0 . 76 0 17 0 . 0 1 . 96 0 . . 76 0 . 0 137 . 7 9 0 81 O .81 0 . 0 2 7 0 . 0 . 76 0 . 10 0 O 0 2 1 0 . 76 0 O 137 . 79 0 . 75 0 . . 75 0 . 0 27 1 . 0 . 76 0 . 0 0 0 . 5 3 0 . 95 0 . 76 0 . 0 137 . 7 9 0 . 54 0 . . 54 0 . 0 2 7 2 . 0 . 76 0 . 05 0 . 0 1. .04 0 . . 76 0 . 0 137 . 79 0 . 0 5 0 . 0 5 0 . 0 27 3 . o . 76 0 . 13 0 O 1 07 0 . . 7 6 O . 0 136 . 9 4 0 . 0 0 . 0 0 . 0 274 . 0 . 76 0 . 0 7 15 . 77 1. . 56 0 , , 76 5 . 68 142 . 3 0 1 . 62 1 . 62 0 . 0 2 7 5 . 0 . 76 0 . . 08 0 . 53 1. . 44 0 76 0 . 0 142 . 3 0 1. . 2 0 1 . . 2 0 0 . 0 276 . 0 . 76 0 . 12 0 . 0 0 . 2 1 0 . 76 0 . 0 142 . 3 0 1. . 15 1 . 15 0 . 0 2 7 7 . 0 . 76 0 13 10 . 0 8 1 65 0 . 76 3 . 42 146 . 6 0 1. . 58 1 . . 58 0 o 2 7 8 . 0 . 76 0 . .01 10 . 62 0 . 9 9 0 . 76 5. . 58 150 . 0 0 1. .81 1 . 81 o . 19 2 7 9 . 0 . 76 0 . 04 0 . 0 0 29 0 . 76 0 . 0 150 . 0 0 1. . 74 1 . 74 0 . 0 7 2 8 0 . 0 . 76 0 . 02 0 . 53 1. . 5 0 0 . 76 0 . 0 150 . 0 0 1. . 3 1 1 . .31 0 . 0 28 1 . 0 . 75 0 . 0 0 . 0 0 . 36 0 . 75 0 . 0 150 . 0 0 1. 13 1 . 13 0 . 0 2 8 2 . 0 . 76 0 . 06 0 . . 0 0 . 9 0 0 . 76 0 . . 0 150 . 0 0 o . . 7 0 0 . 7 0 0 . 0 2 8 3 . 0 . 76 0 . 10 0 . 0 1. 15 0 . 76 0 . . 0 150 0 0 0 . 18 0 . 18 0 0 284 . 0 . 76 0 . . 23 0 . . 0 1. 0 3 0 . 76 0 0 149 . 5 6 0 . O 0 . 0 0 . 0 2 8 5 . 0 . 76 0 . 08 0 . 0 1. 15 0 . 76 0 . . 0 148 . 4 9 0 0 0 . . 0 0 . 0 2 8 6 . 0 . 76 0 14 0 . 0 1. 03 0 . 76 0 . 0 147 . 6 0 o . 0 o . 0 0 . 0 2 8 7 . 0 . 76 0 . 13 0 0 0 . 94 0 . 76 0 . . 0 146 8 0 0 . O 0 0 0 . 0 2 8 8 . 0 . 76 0 . 0 9 0 . 0 0 . 46 0 . 76 0 . 0 146 . 4 3 0 . 0 0 . 0 0 . 0 2 8 9 . 0 . 76 0 . 01 15 . 1 3 0 . 0 5 0 . 76 6 . 77 150 0 0 2 . 10 2 . 10 0 . 56 2 9 0 . 0 . 76 0 . . 1 1 0 . . 5 3 0 . 77 0 . 76 0 . 5 9 150 . 0 0 1. 88 1 . . 8 8 0 . 2 8 29 1 . 0 . 76 0 . 06 0 . . 0 0 . 97 o . 76 0 . 0 150 . 0 0 1. 56 1 . 56 0 . 0 2 9 2 . 0 . 76 0 . 01 0 . 0 0 . 54 0 . 76 0 . 0 150 . 0 0 1. 3 0 1 . 3 0 0 . . 0 2 9 3 . 0 . 76 0 . 01 2 57 1. 04 0 . 76 0 . 44 150 0 0 1. 77 1 . 77 0 . . 17 294 . C. 76 0 . 05 0 . 0 o . 26 0 . 76 0 . 0 1 5 0 . . 0 0 1. 7 1 1 . 71 0 . . 06 2 9 5 . 0 . 73 0 . 0 0 . 0 0 . 47 0 . 73 0 . 0 1 5 0 . OO 1. 51 1 . 5 1 0 . 0 296 . 0 . 76 0 . 0 3 0 0 0 . 0 0 . 76 0 . . 0 150 . 0 0 1. 52 1 . 52 0 . 0 2 9 7 . 0 . 76 0 . 22 0 . 0 0 . 0 0 . 76 0 . . 0 1 5 0 . . 0 0 1. 6 3 1 . 6 3 0 0 2 9 8 . 0 . 6 9 0 . 0 0 . 0 0 . 0 0 . 6 9 0 . 0 1 5 0 . 0 0 1. 6 3 1 . 6 3 0 . . 0 2 9 9 . 0 . 76 0 . 0 0 0 . 0 o . 0 0 . 76 0 . 0 1 5 0 . 0 0 1. 6 3 1 . 6 3 0 . 0 3 0 0 . 0 . 72 0 . 0 0 . 0 0 . 0 0 . 72 0 . 0 150 . 0 0 1. 6 3 1 . 6 3 0 . 0 301 . o 72 0 . 0 0 . 0 0 . 0 0 . 72 o . 0 150 . 0 0 1. 6 3 1 . 6 3 0 O 3 0 2 . 0 . 76 0 . 0 0 . 0 0 . 55 0 . 76 0 0 1 5 0 . 0 0 1 . 36 1 . 36 0 . . 0 3 0 3 . 0 . 76 0 . 06 0 . 0 0 . 1 1 0 . 76 0 . 0 1 5 0 . . 0 0 1. 34 1 . 34 0 . 0 304 . 0 . 76 0 . 0 8 6 . 0 0 0 . 14 0 . 76 3 . 95 1 5 0 . OO 2 . 07 2 . 0 7 0 . 52 3 0 5 . 0 . 75 0 . 0 0 . 0 0 . 46 0 . 75 0 . 0 1 5 0 . 0 0 1. 9 3 1 . 9 3 0 . 34 3 0 6 . o . 7 0 0 . 0 0 . 0 0 . 57 0 . 7 0 0 . 0 1 5 0 . 0 0 1. 76 1 . 76 0 . 1 1 307 . o . 76 0 . 04 15 . 0 0 0 . 19 0 . 76 13 . 86 1 5 0 . . 0 0 2 . 0 5 2 . 0 5 0 5 0 3 0 8 . 0 . 76 0 . 0 0 1 1 . 0 0 0 . 48 0 . 76 10 . 81 1 5 0 . 0 0 1. 97 1 . 97 0 . 39 3 0 9 . o . 72 0 . 0 1 1 . 0 0 0 . 18 0 . 72 1 0 . 52 1 5 0 . 0 0 2 . 0 6 2 . 0 6 0 . 5 1 310. 0. 75 0. 0 5 . 00 0. 26 0 311. 0. 76 0. 04 1 . OO 0. 03 0 312. 0. 74 0. 0 0. 0 0 45 0 313. 0 . 69 0. 0 0. 0 0. 43 0 3 14. 0. 69 0. 0 0. 0 0. 49 0 315. 0. 76 0. 0 0. 0 0 48 0 316 . 0. 69 0. 0 6 . 00 0. 08 0 317. 0. 76 0. 02 0. 0 0. 45 0 3 18. O. 76 0. 02 0. 0 0. 49 0 3 19. O . 74 0. 0 22 00 0. 12 0 320. 0. 74 0. 0 22 . 00 0. 12 0 32 1 . 0. 72 0. .0 2 . 00 0. 18 0 322 . O. 73 0. o 4 . 00 0. 48 0 323 . 0. 73 0. 0 2 . 00 0. 27 0 324 . 0. 75 0 .0 4 00 0. 16 0 325 . 0. 76 0. 08 1 . .00 0. 25 0 326 . 0. 76 0 .0 0. 0 0 18 0 327 . 0. 74 0. .0 o .0 0. 22 0 328 . 0. 75 0. .0 0 .0 0. 31 0 329 . 0. 75 0 .0 4 .00 0. 25 0 330. 0. 69 0 .0 12 00 0. 17 0 33 1 . 0. 76 0 .01 2 1 .00 0 09 0 332 . 0. 76 0 07 24 .00 0 07 0 333 . 0. 76 0 .01 7 .00 0. . 12 0 334 . 0. 75 0 .0 15 . 00 0 . 34 o 335 . 0. 72 0 .0 1 .00 0 .09 0 336 . 0. 75 0 .0 42 .00 o .08 0 337 . 0. 76 0 .0 2 .00 0. .0 o 338 . o. 76 0 .04 0 .0 0 .21 0 339. 0. 76 0 .09 0 .0 0 . 19 0 340. 0. 76 0 .0 0 .0 0. .08 0 34 1 . 0. 72 0 .0 0 .0 0 .08 0 342 . 0. 74 0 .0 0 .0 0. .06 0 343 . 0. 76 0 .0 0 .0 0 08 0 344 . 0. 75 0 .0 0 .0 0 . 1 1 0 345 . 0. 76 0 .02 16 .00 0 . 32 0 346 . 0. . 76 0 .05 9 .00 0 . 1 1 0 347 . 0. 76 0 . 12 2 .00 0 22 0 348 . 0. 76 0 .0 1 1 .oo 0 .05 0 349 . 0. 74 0 . 0 14 .00 0 . 13 0 350. 0. 74 0 .0 4 .00 0 . 14 0 351 . 0. . 74 0 .0 4 .00 0 .09 0 352 . 0. 73 0 .0 7 .00 0 .00 0 353 . 0 74 0 .0 0 .0 0 .03 0 354 . 0. 7 3 o .0 7 .00 0 07 0 355 . 0. . 7 1 0 .0 13 .00 0 . 25 0 356 . 0 . 70 0 .0 0 .o o . 15 0 357 . 0. 7 1 0 .0 1 .00 0 . 23 0 358 . 0 . 76 0 .04 1 oo 0 .07 0 359 . 0 . 76 0 .03 12 oo 0 .0 0 360 . 0 .75 0 .0 0 .0 0 09 0 36 1 . 0 . 75 0 .0 0 .0 0 .09 0 362 . 0. . 72 0 .0 0 .0 0 .06 o 363 . 0 . 70 0 .0 1 .00 0 . 15 0 364 . 0 . 70 0 .0 0 .0 0 . 29 0 365 . 0 . 76 0 .01 0 .0 0 . 22 0 366 . 0 . 74 0 .0 2 .00 0 . 26 0 367 . 0. . 76 0 .0 17 .00 0 . 10 0 368 . 0 . 76 0 .01 10 .00 0 . 17 0 369 . 0 .72 0 .0 28 .oo 0 . 20 0 75 4 . 82 150. 00 2 . 03 2 03 0. 48 76 0. 79 150. 00 2 . 10 2 . 10 0. 57 74 0. 0 150 . 00 1. 96 1 . 96 0. 39 69 0 . 0 150. 00 1. 83 1 83 0. 22 69 0. 0 150 . 00 1. 69 1 . .69 0. 02 76 0. 0 150. 00 1. 46 1 46 0. 0 69 4 . 1 1 150. 00 2 . 09 2 . 09 0. 55 76 0. 0 150. 00 1 96 1 . .96 0. 37 76 0. 0 150 . 00 1 . 82 1 .82 0. 17 74 21 . 02 150 00 2 07 2 .07 0. 53 74 2 1 88 150. 00 2 07 2 .07 0. 53 72 1 . 88 150. 00 2 . 06 2 .06 0. 51 73 3 . 82 150 00 1 97 1 .97 0. 39 73 1 . .52 150. 00 2 03 2 .03 0. 47 75 3 73 150 .00 2 .06 2 .06 0. 52 76 0 92 150. 00 2 . 04 2 .04 0. 48 76 0 0 150 .00 1. .98 1 .98 0. 41 74 0 0 150 .00 1 .91 1 . 9 1 0. 32 75 0 .0 150. .00 1. . 82 1 .82 0. 20 75 3 . 04 150. .00 2 .03 2 .03 0. 48 69 '11 75 150. 00 2 .06 2 .06 0. 5 1 76 20 . 84 150 .00 2 08 2 .08 0. 54 76 23 . 97 150 00 2 .09 2 .09 0. 55 76 6 . 94 150 .00 2 .07 2 .07 0. 53 75 14 . 88 150 oo 2 .01 2 .01 0. 45 72 0. .66 150. .00 2 .08 2 .08 0. 54 75 4 1 91 150 .00 2 .09 2 .09 0. 55 76 1 . .92 150. .00 2 . 1 1 2 . 1 1 0. 58 76 0 .04 150 .00 2 .05 2 .05 0 . 50 76 0 .0 150 .00 2 .03 2 .03 0. 42 76 0 .0 150 .00 2 .01 2 .01 0. 39 72 0 0 150 .00 1 . 98 1 . 98 0. 35 74 0 O 150 oo 1 . 96 1 . 96 0. 33 76 0 .0 150 oo 1 . 94 1 . 94 0. 30 75 0 .0 150 .oo 1 . 90 1 . 90 0. 25 76 15 . 27 150 .00 .01 2 .01 0. 45 76 8 . . 73 150 oo 2 .08 2 .08 0. 54 76 2 01 150 .00 2 .04 2 .04 o. 49 76 10 . 78 150 oo 2 .09 2 .09 0. 56 74 13 .95 150 .00 2 .07 2 .07 0. 53 74 3 . 87 150 .00 2 .07 2 .07 0. 53 74 3 86 150 .00 . 2 .08 2 .08 0. 54 73 6 .91 150 .00 2 . 1 1 2 . 1 1 0. 58 74 0 O 150 .oo 2 . 10 2 . 10 0. 56 73 6 .96 150 .00 2 .09 2 .09 0. , 55 7 1 12 .93 150 .oo 2 .04 2 .04 0. 48 70 0 .O 150 .00 1 .99 1 .99 o. .42 7 1 0 ,60 150 .00 2 .04 2 .04 0. 49 76 0 . 8 1 150 .00 2 .09 2 .09 0. 55 76 11 . 96 150 .00 2 . 1 1 2 . 1 1 0 . 58 75 0 .0 150 .00 2 .08 2 .08 0. . 54 75 0 .0 150 .00 2 .05 2 .05 0 . 5 1 72 0 .0 150 .00 2 .04 2 .04 0. 48 70 0 . 76 150 .00 2 .06 2 .06 0 . 52 70 0 0 150 .00 1 .98 1 . 98 0 . 40 76 0 .0 150 .00 1 .92 1 . 92 0 32 74 1 .35 150 .00 2 .03 2 .03 0 . 48 76 16 . 74 150 .00 2 .08 2 .08 0 . 54 76 9 .91 150 .00 2 .06 2 .06 0 . 5 1 72 27 . 83 150 .oo 2 . 05 2 .05 o . 50 O T C D O r - t c r - r - O T c o — c o < r - co^-o o o o o o o o o o o o o o o o o r - c o o i n o o c o i n o i n r - — M S I B O n cnO — O — — O c n c n c o r - O O O O O c n — C N C M C M C M C N C N — — — — C N C N C N C M C M — r - c o O t n O O o i n o m p - ' - r - o o t o O D c n o — O — — O c n c n c o r - O O O O O c n — C N C M C N C M C M C M — — — — C N C N C N C M C M — O O O O O O O O O O O O O O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o cn CD to <D to ^ r- cn O c n c o c n c o c n c n O O O O O i D c o c o O O O i t - O o O ^ O O O O O t o m O O ^ - O a u a O O ' co I D I D co cn — C N r - r - r - r - r - i — P ' - r - r - r - r - r - r - r - i D P - t -0 6 0 0 0 O 0 6 0 0 6 0 O O O O O I D — ^ O r o t n r - T c o r - c - - - ro — r-Oco CM — O C N O G C M C M — — C M C O — — — C N C M O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O c ~ c M — cn — n O O O O - in cn co O O CM CM UO C N If) CM O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O •7 — O c f l i D i D O O — — cocDcDcocn — CM r - r - r - r - r - r - r - r - r - t ~ r - r - r - r - - C D r - r -O O O O O O O O O O O O O O O O O O — c M c o - ^ i n t o r - c o c n o — CM co T in 10 r - t - c - t - r - r - r - r ~ r - r - - c o c o c o c o c o c o c o f O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0096077/manifest

Comment

Related Items