Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Parasites in primates : indicators of the host phylogeny Glen, David Richard 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 G54.pdf [ 4.72MB ]
Metadata
JSON: 831-1.0096068.json
JSON-LD: 831-1.0096068-ld.json
RDF/XML (Pretty): 831-1.0096068-rdf.xml
RDF/JSON: 831-1.0096068-rdf.json
Turtle: 831-1.0096068-turtle.txt
N-Triples: 831-1.0096068-rdf-ntriples.txt
Original Record: 831-1.0096068-source.json
Full Text
831-1.0096068-fulltext.txt
Citation
831-1.0096068.ris

Full Text

PARASITES IN PRIMATES: INDICATORS OF THE HOST PHYLOGENY by DAVID RICHARD (CjLEN B.Sc., U n i v e r s i t y of B r i t i s h Columbia, 1981 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA May 1984 © D a v i d Richard Glen, 1984 a 6 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head o f my department o r by h i s or her r e p r e s e n t a t i v e s . I t i s understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . David R. Glen Department of Zoology The U n i v e r s i t y of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date Q . T n l y 1 Q P . 4 DE-6 (3/81) i i ABSTRACT The use of p a r a s i t e s to i n f e r host r e l a t i o n s h i p s i s w e l l e s t a b l i s h e d . T h i s t h e s i s a p p l i e s t h i s concept to the p a r a s i t e s in c a t a r r h i n e primates. Three c a t a r r h i n e phylogenies are o u t l i n e d , a ' t r o g l o d y t i a n ' , a ' h y l o b a t i a n ' and a 'pongoian' h y p o t h e s i s . The e x i s t e n c e of these c o n f l i c t i n g host phylogenies r a i s e s the p o s s i b i l i t y of using p a r a s i t e data as an a p r i o r i t o o l to h e l p choose between them. The c e n t r a l theme of t h i s t h e s i s i s to see whether any one of the three primate phylogenies b e t t e r e x p l a i n s the a v a i l a b l e p a r a s i t o l o g i c a l evidence. P a r a s i t e data are of a d i f f e r e n t c l a s s than the data u s u a l l y used to i n f e r host r e l a t i o n s h i p s , and have thus been c o n s i d e r e d c o n s i l i e n t . Two types of p a r a s i t e data have been used to i n f e r primate r e l a t i o n s h i p s . These i n c l u d e analyses of presence/absence c h e c k l i s t s , and a nalyses of p a r t i c u l a r groups of p a r a s i t e s in primates. Both these types of data are f e a t u r e d i n t h i s t h e s i s . The presence/absence data were analysed using a percentage c a l c u l a t i o n of shared p a r a s i t e s , and a p h y l o g e n e t i c p r o t o c o l . The r e s u l t s of these analyses show that humans and c e r c o p i t h e e i d s have the most p a r a s i t e s i n common. Thus, t h i s evidence can not be used to support any one of the three primate phylogenies o u t l i n e d . With the exception of humans the presence/absence data support a c o e v o l u t i o n a r y p a t t e r n between primates and t h e i r helminth p a r a s i t e s . The divergence of humans from t h i s p a t t e r n i s the r e s u l t of a number of host t r a n s f e r s to humans by p a r a s i t e s normally found i n c e r c o p i t h e e i d s . A p h y l o g e n e t i c a n a l y s i s of twelve s p e c i e s i n three subgenera of the hookworm genus Oesophagostomum i s a l s o presented. T h i s a n a l y s i s was based on twenty two c h a r a c t e r s and the o v e r a l l c-index f o r the proposed phylogeny was 80%. The phylogeny of these p a r a s i t e s i s more s u p p o r t i v e of the ' t r o g l o d y t i a n ' primate h y p o t h e s i s . T h i s c o n c l u s i o n i s however, dependant on the absence of a coevolved Oesophagostomum s p e c i e s i n orangutans. Regardless of which primate phylogeny i s c o r r e c t the r e l a t i o n s h i p between the Oesophagostomum species and primates appear to be predominantly c o e v o l u t i o n a r y . The biogeographic r e l a t i o n s h i p s between Oesophagostomum s p e c i e s and t h e i r hosts are a l s o d i s c u s s e d . The support of the Oesophagostomum phylogeny for the ' t r o g l o d y t i a n ' hypothesis i s i n c o n f l i c t with a previous study in which the pinworms ( E n t e r o b i u s ) in primates were shown to support the ' h y l o b a t i a n ' primate h y p o t h e s i s . These f i n d i n g s , along with the presence/absence r e s u l t s suggest that the p a r a s i t e data at present do not support any one p a r t i c u l a r primate phylogeny. There are however, no p a r a s i t e data s u p p o r t i n g the 'pongoian' primate h y p o t h e s i s . i v TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES v i LIST OF FIGURES - v i i LIST OF APPENDICES v i i i ACKNOWLEDGMENTS i x INTRODUCTION A] H i s t o r i c a l review of p a r a s i t e s as i n d i c a t o r s 1 B] Phylogeny of c a t a r r h i n e primates 5 C] Primate p a r a s i t e data 9 I) Presence/absence c h e c k l i s t s 10 II) S p e c i f i c p a r a s i t e groups 12 a) Helminths 12 b) Protozoans 13 c) Arthropods 14 I I I ) Oesophaqostomum : H i s t o r i c a l review 16 MATERIALS AND METHODS A] Oesophaqostomum I-) M a t e r i a l s 19 II) Method of a n a l y s i s 20 a) G e n e r a l i z e d Oesophagostomum morphology 21 b) Characters and c h a r a c t e r s t a t e s 23 c) Outgroup d e s i g n a t i o n and c h a r a c t e r coding ....26 d) Phylogenetic a n a l y s i s 29 B] Presence/absence c h e c k l i s t s I) M a t e r i a l s 31 II) Methods of analyses a) Percentage c a l c u l a t i o n of shared p a r a s i t e s ...33 b) Phylogenetic a n a l y s i s 35 RESULTS A] Oesophagostomum I ) Phylogeny . . 37 II) Taxonomy 39 II I ) Biogeography 42 B] Presence/absence c h e c k l i s t s I) Percentages of shared p a r a s i t e s 44 II) Phylogenetic a n a l y s i s 46 DISCUSSION A] Co e v o l u t i o n of primates and p a r a s i t e s 48 I) Oesophagostomum evidence 48 II) E n t e r o b i u s evidence 55 II I ) Presence/absence evidence 57 SUMMARY 62 LITERATURE CITED 64 v i LIST OF TABLES Table 1. P a r t i a l c l a s s i f i c a t i o n of the S t r o n g y l o i d e a 103 Table 2. C l a s s i f i c a t i o n of the T r i b e Oesophagostominea ....104 Table 3. Oesophaqostomum s p e c i e s and specimen l o c a t i o n ....105 Table 4. Summary of c h a r a c t e r s and coded c h a r a c t e r s t a t e s .106 Table 5. P a r a s i t e c h e c k l i s t from Dunn (1966) 109 Table 6. P a r a s i t e c h e c k l i s t Dunn (1966) with c e r c o p i t h e c i d p a r a s i t e s added 110 Table 7. Cestodes r e p o r t e d from c a t a r r h i n e primates 111 Table 8. Trematodes rep o r t e d from c a t a r r h i n e primates 112 Table 9. Nematodes r e p o r t e d from c a t a r r h i n e primates 113 Table 10. Consistency i n d i c e s f o r Oesophaqostomum a n a l y s i s 114 Table 11. Percentages of shared p a r a s i t e s 115 Table 12. Oesophaqostomum host records and geographic d i s t r i b u t i o n s 116 LIST OF FIGURES F i g u r e 1. ' T r o g l o d y t i a n ' primate phylogeny 71. F i g u r e 2. 'Hylobatian' primate phylogeny 73 F i g u r e 3. 'Pongoian' primate phylogeny 75 F i g u r e 4. Oesophaqostomum aculeatum a n t e r i o r end 77 Fi g u r e 5. Oesophaqostomum stephanostomum a n t e r i o r end 79 Fi g u r e 6. Oesophagostomum stephanostomum p o s t e r i o r end of male 81 Fi g u r e 7. Oesophaqostomum aculeatum p o s t e r i o r end of female 83 Fi g u r e 8. Oesophaqostomum bifurcum en face s e c t i o n 85 Fi g u r e 9. Oesophaqostomum stephanostomum en face s e c t i o n ..87 Fi g u r e 10 . Host r e l a t i o n s h i p s i n d i c a t e d by a n a l y s i s of Dunn's (1966) presence/absence c h e c k l i s t 89 Fi g u r e 11. Host r e l a t i o n s h i p s i n d i c a t e d by a n a l y s i s of Dunn's (1966) c h e c k l i s t p l u s c e r c o p i t h e e i d p a r a s i t e s 91 Fi g u r e 12. Host r e l a t i o n s h i p s i n d i c a t e d by a n a l y s i s of the expanded presence/absence c h e c k l i s t 93 F i g u r e 13. P a r t i a l p h y l o g e n e t i c r e c o n s t r u c t i o n of the genus Oesophagostomum 95 F i g u r e 14. Phylogeny of Conoweberia I h l e a and L e r o u x i e l l a .97 F i g u r e 15. Phylogeny of Conoweber i a I h l e a and L e r o u x i e l l a with host and geographic changes 99 F i g u r e 16. Phylogeny of Ente r o b i u s ...101 v i i i LIST OF APPENDICES Appendix 1. Dunn's (1966) data coded presence=1 and absence = 0 117 Appendix 2. Dunn's (1966) data coded with an outgroup 118 Appendix 3. Dunn's (1966) data p l u s c e r c o p i t h e c i d p a r a s i t e s and coded presence=1 absence = 0 119 Appendix 4. Dunn's (1966) data pl u s c e r c o p i t h e c i d p a r a s i t e s and coded with an outgroup 120 Appendix 5. Expanded c h e c k l i s t coded presence=1 absence=0 .121 Appendix 6. Expanded c h e c k l i s t coded with an outgroup 122 Appendix 7. Coded Oesophagostomum data 123 Appendix 8. A d d i t i v e b i n a r y matrix f o r Oesophagostomum phylogeny 124 Appendix 9. P a r a s i t e ( Oesophagostomum ) c h a r a c t e r matrix 125 Appendix 10. Primate t r e e s as numerical ancestor f u n c t i o n s 126 Appendix 11. A d d i t i v e b i n a r y matrix f o r E n t e r o b i u s phylogeny 127 Appendix 12. P a r a s i t e ( E n t e r o b i u s ) c h a r a c t e r matrix 128 ACKNOWLEDGMENTS A number of people have helped c o n s i d e r a b l y with t h i s p r o j e c t . In p a r t i c u l a r I would l i k e to thank Dr. A. Boggie, whose advice was ins t r u m e n t a l i n my d e c i s i o n to pursue t h i s degree. My thanks a l s o to Dr. A. Kluge who helped s t i m u l a t e my i n t e r e s t i n the p a r a s i t e s in primates. T h i s p r o j e c t would not have been p o s s i b l e without the loans of specimens, and I thank Dr. R. L i c h t e n f e l s (United S t a t e s N a t i o n a l Museum), Dr. R. Bray ( B r i t i s h Museum of N a t u r a l H i s t o r y ) and Dr. A. Chabaud (French Museum N a t i o n a l d ' H i s t o i r e N a t u r e l l e ) . I would a l s o l i k e to extend my thanks to Dr. Jack Maze whose s p i r i t e d d i s c u s s i o n s and h e l p f u l comments are a p p r e c i a t e d , and to Ri c h a r d O'Grady whose u n s e l f i s h t e c h n i c a l advice ( p a r t i c u l a r l y with PHYSYS) and companionship helped make my graduate experience a p o s i t i v e one. I would a l s o l i k e to extend my s i n c e r e s t thanks to Dr. Dan Brooks who as my s u p e r v i s o r p r o v i d e d what I c o n s i d e r to be an i d e a l environment f o r a graduate degree. At the same time as encouraging a high l e v e l of independence, Dan pro v i d e d many hours of s t i m u l a t i n g t h o u g h t f u l guidance, and a d v i c e . F i n a l l y I would l i k e to thank the F a c u l t y of Graduate Studies and the Department of Zoology f o r t h e i r support ( U n i v e r s i t y of B r i t i s h Columbia Graduate F e l l o w s h i p 1982-84, McLean F r a s e r Memorial F e l l o w s h i p 1981-83). T h i s r e s e a r c h was funded by NSERC grant 76-7696 to Dr. D. Brooks. 1 INTRODUCTION A] H i s t o r i c a l review of p a r a s i t e s as i n d i c a t o r s : A s s o c i a t i o n s between p a r a s i t e s and the-ir hosts are not random phenomena. For many years, p a r a s i t o l o g i s t s have assumed that such non-randomness i n v o l v e s a h i s t o r i c a l component. For example, K e l l o g g (1896) suggested that avian b i t i n g l i c e c o u l d be used as i n d i c a t o r s of ph y l o g e n e t i c r e l a t i o n s h i p s between t h e i r h o s t s . "The occurrence of a p a r a s i t e s p e c i e s common to European and American b i r d s , which i s not an in f r e q u e n t matter, must have another e x p l a n a t i o n than any yet suggested. T h i s e x p l a n a t i o n I b e l i e v e i s , f o r many of the i n s t a n c e s , that the p a r a s i t e species has p e r s i s t e d unchanged from the common ancestor of the two or more now d i s t i n c t but c l o s e l y - a l l i e d b i r d -s p e c i e s . " (p. 51 ) Since t h i s time a l i m i t e d number of p a r a s i t o l o g i s t s have repor t e d s i m i l a r p a t t e r n s from a v a r i e t y of h o s t - p a r a s i t e a s s o c i a t i o n s (see Brooks, 1979 and r e f e r e n c e s t h e r e i n ) . There are two major reasons f o r the small number of s t u d i e s attempting to use p a r a s i t e s as i n d i c a t o r s of t h e i r h o s t s ' p h y l o g e n i e s . The f i r s t i s that there are few in-depth comparative s t u d i e s of p a r a s i t e s and t h e i r h o s t s . Hennig (1966) s t a t e d : "The main d i f f i c u l t y i n the way of a general use of the p a r a s i t o l o g i c a l method i s that only a minute amount of the p o s s i b l e knowledge of p a r a s i t e s and t h e i r hosts i s a v a i l a b l e . " (p. 180) 2 The second reason f o r there being few attempts to use p a r a s i t e s for i n f e r r i n g host phylogenies i s t h a t , u n t i l r e c e n t l y , c l e a r methodological p r o t o c o l s f o r h a n d l i n g p a r a s i t e data have been absent. Hennig (1966) o u t l i n e d an approach (phylogenetic systematics or c l a d i s t i c s ) f o r r e c o n s t r u c t i n g the g e n e a l o g i c a l r e l a t i o n s h i p s of groups of organisms. Although Hennig recognised that p a r a s i t e s were p o t e n t i a l l y u s e f u l i n understanding host phylogenies, he maintained that p a r a s i t e data should be a p p l i e d a p o s t e r i o r i as a form of c o r r o b o r a t i o n f o r a 'known' host phylogeny. That i s , they should be used only a f t e r a host phylogeny i s e s t a b l i s h e d . T h i s poses a problem because (as w i l l be argued l a t e r ) the host phylogeny i s not always 'known'. Hennig's emphasis on an a p o s t e r i o r i approach f o l l o w e d from h i s concern t h a t , because p a r a s i t e s may c o l o n i z e new hosts "(through host t r a n s f e r s ) , r e l i a n c e on p a r a s i t o l o g i c a l data may produce many para- and p o l y p h y l e t i c host groupings. In c o n t r a s t , Brooks (1981b) suggested that "such p o t e n t i a l problems are no g r e a t e r with p a r a s i t e data than with any other c h a r a c t e r s . " In o u t l i n i n g an approach to h a n d l i n g p a r a s i t e s , Brooks (1981b) argued that r e f e r e n c e to a host phylogeny i s not r e q u i r e d i n r e c o n s t r u c t i n g the p a r a s i t e phylogeny. Furthermore, f o r cases i n which a host phylogeny has not been proposed, p a r a s i t e s may be used to suggest host r e l a t i o n s h i p s (Brooks, 1981b,c). However, i f the host phylogeny has been r e c o n s t r u c t e d , one can compare i t with a p a r a s i t e phylogeny, and d i s t i n c t i o n s between long-term c o e v o l u t i o n a r y h o s t - p a r a s i t e a s s o c i a t i o n s and those that may have r e s u l t e d from more recent host t r a n s f e r s can be made. The concept of c o e v o l u t i o n i s c e n t r a l to understanding the 3 use of p a r a s i t e s as i n d i c a t o r s of host phylogenies. Although the term was o r i g i n a l l y coined by E h r l i c h and Raven (1964) to r e f e r to contemporary stepwise r e c i p r o c a l responses between p l a n t s and i n s e c t s with c l o s e and evident e c o l o g i c a l r e l a t i o n s h i p s , i t has more r e c e n t l y been a p p l i e d to longer-term a s s o c i a t i o n s , in which the phylogenies of, f o r example, p a r a s i t e s and h o s t s , show some degree of congruence ( M i t t e r and Brooks, 1983; Brooks, 1979; Brooks and M i t t e r , 1 9 8 4 ) . T h i s t h e s i s i s d i r e c t e d at t h i s form of longer-term h i s t o r i c a l , or systematic c o e v o l u t i o n . The key to the approach o u t l i n e d by Brooks (1981b) was that more than one ( p r e f e r a b l y many) p a r a s i t e groups must be analysed. T h i s i s r e q u i r e d to minimize the e f f e c t s of host t r a n s f e r s on the a n a l y s e s . " P a r a s i t e s e x h i b i t the same kinds of s i m i l a r i t y r e l a t i o n s h i p s with t h e i r hosts as do any other kinds of c h a r a c t e r . T h i s means that any s i n g l e p a r a s i t e taxon, l i k e any other s i n g l e c h a r a c t e r , may not completely r e s o l v e the p h y l o g e n e t i c r e l a t i o n s h i p s of i t s host group and may give m i s l e a d i n g r e s u l t s i f there are homoplasious or symplesiomorphic host-p a r a s i t e r e l a t i o n s h i p s . These problems may be overcome by i n c r e a s i n g the number of p a r a s i t e taxa c o n s i d e r e d i f a c o n s i s t e n t p a t t e r n of host r e l a t i o n s h i p emerges. T h i s i s not based on the assumption that most host-p a r a s i t e r e l a t i o n s h i p s r e s u l t from c o - s p e c i a t i o n ; r a t h e r i t i s based on the o b s e r v a t i o n that a s i n g l e c o n s i s t e n t p a t t e r n of host r e l a t i o n s h i p s i n d i c a t e d by the p a r a s i t e data i s i n c o n s i s t e n t with the a l t e r n a t i v e to c o - s p e c i a t i o n , namely random c o l o n i z a t i o n or host s w i t c h i n g . " (Brooks, 1981b) p. 239 T h i s emphasis on a n a l y s i n g m u l t i p l e p a r a s i t e groups i s analogous to the methodology of p h y l o g e n e t i c s y s t e m a t i c s i n g e n e r a l , i n which as many c h a r a c t e r s as p o s s i b l e are used to r e c o n t r u c t a group's phylogeny. In doing so the e f f e c t s of homoplasious 4 (convergent or p a r a l l e l ) e v o l u t i o n on an a n a l y s i s , are minimized. In t h i s t h e s i s I review the p a r a s i t o l o g i c a l l i t e r a t u r e with respect to the attempts that have been made to use p a r a s i t e s of c a t a r r h i n e primates as i n d i c a t o r s of t h e i r h o s t s ' p h y l o g e n i e s . A l s o , I present a d d i t i o n a l evidence that can be a p p l i e d to t h i s problem . One of the i n t e r e s t i n g aspects of t h i s study i s that the phylogeny of the host group (the c a t a r r h i n e s ) has r e c e i v e d c o n s i d e r a b l e a t t e n t i o n and yet i s s t i l l c o n t r o v e r s i a l . 5 B] Phylogeny of c a t a r r h i n e primates: Evidence from many sources has been a p p l i e d to the problem of r e c o n s t r u c t i n g the phylogeny of primates. These i n c l u d e anatomical (see Kluge, 1983 f o r a review), ontogenetic (Luckett, 1976), biomechanical (Jenkins and F l e a g l e , 1975; T u t t l e , 1975), c y t o l o g i c a l (Stanyon and C h i a r e l l i , 1982; D u t r i l l a u x , 1979), and molecular ( f o r example, Brown et a l ., 1982; Goodman et a l ., 1982) evidence. From t h i s wealth of data one might expect a c o n s i d e r a b l e degree of support f o r a s i n g l e primate phylogeny. Some p r i m a t o l o g i s t s have argued that such a consensus has been achieved. For example, Washburn (1973) claimed "that man i s most c l o s e l y r e l a t e d to the A f r i c a n apes rn^ay now be c o n s i d e r e d a f a c t . " More r e c e n t l y Pilbeam (1984) s t a t e d : "The e a r l i e r debate between p h y s i c a l a n t h r o p o l o g i s t s and molecular b i o l o g i s t s over the p a t t e r n and timing of hominoid e v o l u t i o n i s now b a s i c a l l y s e t t l e d . Most p a l e o n t o l o g i s t s (and comparative anatomists) agree the molecular p a t t e r n s showing the A f r i c a n apes are g e n e t i c a l l y very l i t t l e d i f f e r e n t from humans and the Asian apes are about twice as d i f f e r e n t r e f l e c t the f a c t that the common ancestor hominids share with the chimpanzee and the g o r i l l a was i n e x i s t e n c e only about h a l f as long ago as the l a s t common ancestor of a l l the l a r g e r hominoids." (p.85) That i s , t h i s consensus argues that Homo + Pan (chimpanzees) + G o r i l l a share a common ancestor (that i s , they form a monophyletic group). A monophyletic group i s a group which i n c l u d e s a common ancestor and a l l of i t s descendants ( F a r r i s , 1974). However, c l o s e r examination of the p r i m a t o l o g i c a l 6 l i t e r a t u r e suggests that there i s strong evidence supporting other primate phylogenies (Kluge, 1983; Schwartz, 1984), which do not support the monophyly of humans and the A f r i c a n apes ( Pan and G o r i l i a ) . Three c o n f l i c t i n g primate phylogenies are summarized i n F i g u r e s 1, 2 and 3. F i g u r e 1 i s a branching diagram r e p r e s e n t i n g the phylogeny accepted by most p r i m a t o l o g i s t s . In t h i s h ypothesis the hominid l i n e a g e i s the s i s t e r group of the monophyletic group c o n t a i n i n g chimpanzees and g o r i l l a s . The Asian apes ( Ponqo - orangutans and Hylobates - gibbons) and the Old World monkeys ( C e r c o p i t h e c i d a e ) are c o n s i d e r e d to be r e l a t i v e l y more p r i m i t i v e . The widespread acceptance of t h i s ' t r o g l o d y t i a n ' model (so c a l l e d because of the c l o s e r e l a t i o n s h i p between humans and chimpanzees), has been due to the apparent overwhelming support from molecular s t u d i e s (see for example Goodman, et a l ., 1982 and r e f e r e n c e s t h e r e i n ) . F i g u r e 2 i s a branching diagram r e p r e s e n t i n g the phylogeny supported by Kluge (1983). In t h i s h ypothesis the Great apes or Pongidae (chimpanzees + g o r i l l a s + orangutans) form a monophyletic grouping and the hominid l i n e a g e i s the s i s t e r group to the Great apes. T h i s ' h y l o b a t i a n ' model of human e v o l u t i o n (so c a l l e d because i t suggests that the humans are c l o s e r to the Asian apes), was f i r s t proposed many years ago ( S c h u l t z , 1930; K e i t h , 1931) but has been l a r g e l y overshadowed by the ' t r o g l o d y t i a n ' model. The support f o r the h y l o b a t i a n model comes p r i m a r i l y from comparative anatomical analyses (Kluge, 1983). F i g u r e 3 i s a branching diagram r e p r e s e n t i n g the primate phylogeny r e c e n t l y advocated by Schwartz (1984). In t h i s 7 hypothesis humans form a monophyletic group with orangutans, and t h i s grouping i s the s i s t e r group to the monophyletic group c o n t a i n i n g chimpanzees and g o r i l l a s . The evidence supporting t h i s 'pongoian' hypothesis ( s o - c a l l e d because of the c l o s e l i n k between humans and orangutans) comes p r i m a r i l y from comparative anatomical a n a l y s e s . The presence of a disagreement l i k e t h i s i s not unusual i n scien c e and there i s scope f o r much d i s c u s s i o n as to how the data s u p p o r t i n g each hypothesis are obtained and analysed ( f o r example, see F a r r i s , 1981 f o r a d i s c u s s i o n of the methods of a n a l y s i n g molecular d a t a ) . However, f o r t h i s t h e s i s i t i s s u f f i c i e n t to e s t a b l i s h that not a l l p r i m a t o l o g i s t s agree with respect to the phylogeny of higher primates. T h i s r a i s e s the p o s s i b i l i t y of using p a r a s i t e data as an a p r i o r i t o o l i n h e l p i n g to choose between opposing primate p h y l o g e n i e s . A proposed primate phylogeny i s a hypothesis which may become a b a s i s of e x p l a i n i n g data from d i v e r s e d i s c i p l i n e s , and the s t r e n g t h of the phylogeny i s measured i n pa r t by i t s a b i l i t y to o f f e r such e x p l a n a t i o n s . Data from these d i v e r s e d i s c i p l i n e s may be independent (or quasi-independent) of each other and the use of such independent l i n e s of evidence to evaluate t h e o r i e s i n v o l v e s the search f o r c o n s i l i e n c e . Whewell (1847) recognised the importance of c o n s i l i e n c e when he s t a t e d : "...the c o n s i l i e n c e of i n d u c t i o n s takes p l a c e when an i n d u c t i o n obtained from one c l a s s of f a c t s c o i n c i d e s with an i n d u c t i o n , obtained from another c l a s s . T h i s c o n s i l i e n c e i s a t e s t of the t r u t h of a theory in which i t o c c u r s . " ( V o l . II p. 469) 8 Along the same l i n e s , Ruse (1979) summed up a d i s c u s s i o n of c o n s i l i e n c e with the statement that "a good s c i e n t i f i c theory e x p l a i n s i n many d i f f e r e n t d i v e r s e areas, drawing a l l together and u n i f y i n g under one s i n g l e h y p o t h e s i s . " Kluge (1983) has suggested that p a r a s i t e data p r o v i d e an a d d i t i o n a l c o n s i l i e n t source of evidence, which can be used to support one or the other primate phylogeny. The c e n t r a l theme of t h i s t h e s i s i s the examination of the p a r a s i t o l o g i c a l evidence, and dete r m i n a t i o n of whether one or the other of the c o n f l i c t i n g primate phylogenies b e t t e r e x p l a i n s the a v a i l a b l e p a r a s i t o l o g i c a l data. 9 C] Primate p a r a s i t e data: The p a r a s i t o l o g i c a l l i t e r a t u r e c o n t a i n s numerous r e p o r t s of p a r a s i t e s in primates. However, most of t h i s r e s e a r c h has had a strong biomedical emphasis (see Kuntz, 1982). An area that has r e c e i v e d f a r l e s s a t t e n t i o n i s the use of primate p a r a s i t e s as i n d i c a t o r s of t h e i r hosts' p h y l o g e n i e s . T h i s l a c k of a t t e n t i o n i s e x e m p l i f i e d i n the c o n c l u d i n g remarks of Ciochon and C h i a r e l l i (1980): " F i n a l l y , no paper appears where the h o s t - p a r a s i t e r e l a t i o n s h i p s of the P l a t y r r h i n i are i l l u c i d a t e d and compared with those of c a t a r r h i n e s and lower primates. T h i s p a r a s i t o l o g i c a l data can provide an independent source of v e r i f i c a t i o n regarding the host's phylogeny (See TMayr, 1 957)... .Which make them [ p a r a s i t e s ] e x c e l l e n t candidates for r e c o n s t r u c t i n g the p h y l o g e n e t i c and biogeographic r e l a t i o n s h i p s of t h e i r h o s t s . In t h i s regard s e v e r a l p a r a s i t o l o g i s t s were contacted with the aim of s o l i c i t i n g such a study f o r the P l a t y r r h i n i . I t was found t h a t , l i k e so many other aspects of New World monkey comparative b i o l o g y very l i t t l e data e x i s t e d on the s u b j e c t . T h e r e f o r e no study c o u l d be attempted. We f e e l t h i s area of p l a t y r r h i n e b i o l o g y deserves and w i l l one day y i e l d important su p p o r t i n g evidence." (p. 498) T h i s t h e s i s examines s p e c i f i c a l l y the p a r a s i t e s i n the C a t a r r h i n i , and although t h i s data base i s more e x t e n s i v e than that f o r the P l a t y r r h i n i (New World p r i m a t e s ) , there have been few attempts to use these primate p a r a s i t e s as i n d i c a t o r s of t h e i r hosts' phylogenies. The few s t u d i e s that have attempted to do t h i s can be c a t e g o r i z e d i n t o two major groupings: analyses i n v o l v i n g presence/absence c h e c k l i s t s (Dunn, 1966); and analyses of i n d i v i d u a l p a r a s i t e groups (Kuhn, 1967; Garnham, 1973; Brooks and Glen, 1982). . . 10 I) Presence/absence c h e c k l i s t s : Although a number of c h e c k l i s t s of p a r a s i t e s i n primates have been p u b l i s h e d (Yamashita, 1963; Kuntz and Myers, 1969; Myers and Kuntz, 1965, 1972), only one has attempted to e x p l i c i t l y l i n k the presence and absence of p a r a s i t e s with any ph y l o g e n e t i c i n f o r m a t i o n about the hosts (Dunn, 1966). U n d e r l y i n g Dunn's approach was the assumption that the more c l o s e l y r e l a t e d two hosts are, the more p a r a s i t e s they would have i n common. Dunn presented and analysed a c h e c k l i s t of 34 p a r a s i t e genera from four primate hosts (humans, chimpanzees, gibbons, and orangutans) and he concluded that i t provided strong evidence i n favour of the ' t r o g l o d y t i a n ' hypothesis of human e v o l u t i o n . "These helminth p a t t e r n s r e f l e c t the f a c t that man shares many more genera (and s p e c i e s ) of helminths with the A f r i c a n pongids than he does with the gibbons and orangutans. A s u b s t a n t i a l p o r t i o n of t h i s sharing r e p r e s e n t s p h y s i o l o g i c a l h o s t - s p e c i f i c i t y and i s t h e r e f o r e p h y l e t i c a l l y s i g n i f i c a n t . E c o l o g i c a l f a c t o r s cannot be very important i n determining the p a t t e r n s f o r the four hominoid genera." (Dunn, 1966) p. 341 If the 34 p a r a s i t e genera presented by Dunn are ' p h y l e t i c a l l y s i g n i f i c a n t ' , one would p r e d i c t that expanding h i s data set to in c l u d e the p a r a s i t e s i n c e r c o p i t h e c i d s should not a f f e c t the c o n c l u s i o n s drawn by Dunn. That i s , expanding the data set should not a f f e c t the i n f e r r e d host r e l a t i o n s h i p that humans share a common ancestor with A f r i c a n apes . T h i s p r e d i c t i o n i s t e s t e d i n part by a n a l y s i n g a c h e c k l i s t which i n c l u d e s the 11 a d d i t i o n of the p a r a s i t e s i n c e r c o p i t h e c i d s to the c h e c k l i s t p u b l i s h e d by Dunn. Furthermore, i f the 34 p a r a s i t e genera analysed by Dunn are a r e p r e s e n t a t i v e sample of a l l the known p a r a s i t e s i n c a t a r r h i n e s , one would p r e d i c t that expanding the presence/absence data to i n c l u d e more p a r a s i t e genera should not a f f e c t the i n f e r r e d host r e l a t i o n s h i p s . T h i s p r e d i c t i o n i s t e s t e d by a n a l y s i n g an expanded c h e c k l i s t of 87 p a r a s i t e genera from c a t a r r h i n e s . The p a r a s i t e s i n g o r i l l a s and c e r c o p i t h e e i ds are i n c l u d e d i n t h i s expanded c h e c k l i s t . 12 II) S p e c i f i c p a r a s i t e groups: P a r a s i t o l o g i c a l evidence i n v o l v i n g p a r t i c u l a r groups have been c o n s i d e r e d i n support of both the ' t r o g l o d y t i a n ' and ' h y l o b a t i a n ' models of human e v o l u t i o n . P a r a s i t e s from a v a r i e t y of groups have been s t u d i e d , and these i n c l u d e r e p r e s e n t a t i v e s from the helminths, protozoans and arthropods. a) Helminths: For over 50 years p a r a s i t o l o g i s t s have re c o g n i s e d that nematodes of the genus E n t e r o b i u s (pinworms) may be u s e f u l as i n d i c a t o r s of primate phylogeny (Cameron, 1929; Sandosham, 1950; I n g l i s , 1961). However, a p h y l o g e n e t i c hypothesis of these p a r a s i t e s was not proposed u n t i l r e c e n t l y (Brooks and Glen, 1982). The r e s u l t s of that study supported the ' h y l o b a t i a n ' primate h y p o t h e s i s . The three d i f f e r e n t p a r a s i t e s p e c i e s i n chimpanzees, g o r i l l a s and orangutans ( E_^  a n t h r o p o p i t h e c i j_ E.  l e r o u x i and E^ b u c k l e y i , r e s p e c t i v e l y ) , form a monophyletic group with E_;_ v e r m i c u l a r i s , the s p e c i e s i n humans, as the s i s t e r s p e c i e s (Figure 16). 13 b) Protozoans: Because of t h e i r medical importance much of the work done on primate protozoans has been done on the m a l a r i a l p a r a s i t e s . (Garnham, 1973; P e t e r s et a l ., 1976). T h i s evidence has been claimed as support f o r the ' t r o g l o d y t i a n ' h y p o t h e s i s . The m a l a r i a l data are summed up by Dunn (1966) who s t a t e d : "the r e l a t i o n s h i p of the m a l a r i a l p a r a s i t e s of man and the A f r i c a n pongids are extremely c l o s e ; the plasmodia of Pongo and the gibbons, however, are w e l l d e f i n e d separate s p e c i e s . " (p. 336) The problem with a s s e s s i n g the m a l a r i a l evidence i s that a p h y l o g e n e t i c hypothesis of these p a r a s i t e s has not been presented. The c r i t e r i a upon which the host r e l a t i o n s h i p s are i n f e r r e d are not c l e a r l y s t a t e d , and are d i f f i c u l t to reproduce and i n t e r p r e t . For example, the m a l a r i a l p a r a s i t e s in Asian apes may be very d i f f e r e n t from those in A f r i c a n apes and humans. However, i f these d i f f e r e n c e s are due to unique (autapomorphic) t r a i t s , they w i l l not be u s e f u l i n e s t a b l i s h i n g r e l a t i o n s h i p s between the m a l a r i a l s p e c i e s . Dunn's c l a i m of support of these data f o r the ' t r o g l o d y t i a n ' hypothesis i s based on o v e r a l l s i m i l a r i t y , and such measures are not always a c c u r a t e r e f l e c t i o n s of g e n e a l o g i c a l r e l a t i o n s h i p s . 14 c) Arthropods: The Anoplura or b i t i n g l i c e of primates have a l s o been used to i n f e r the phylogeny of primates. T h i s evidence has a l s o been claimed as support for the ' t r o g l o d y t i a n ' h y p o t h e s i s . * "the d i s t r i b u t i o n of the two genera P e d i c u l u s and P h t h i r u s on A f r i c a n Pongidae and on the Homininae i s a very strong argument f o r the c l o s e a f f i n i t i e s of the two groups." (Kuhn, 1967) p. 194 As with the m a l a r i a l p a r a s i t e s , a p h y l o g e n e t i c hypothesis f o r t h i s group of organisms i s l a c k i n g . With respect to the Anoplura on primates there are some a s s o c i a t i o n s that appear to be the r e s u l t of c o e v o l u t i o n , and others that have r e s u l t e d from host t r a n s f e r s . For example, c e r c o p i t h e e i d s host the genus Pe d i c i n u s , and these p a r a s i t e s do not appear to be c l o s e l y r e l a t e d to those on humans and higher apes. Furthermore, the genera P e d i c u l u s and P h t h i r u s have not been r e p o r t e d from the Asian apes, and ac c o r d i n g to Kuhn (1967), t h e i r absence may be the r e s u l t of the s o c i a l s t r u c t u r e of w i l d p o p u l a t i o n s of these h o s t s . In c a p t i v i t y the hig h host s p e c i f i c i t y of these p a r a s i t e s d i s a p p e a r s . The anopluran evidence from these p a r a s i t e s i n primates may support the ' t r o g l o d y t i a n ' h y p o t h e s i s , however i n the absence of a p h y l o g e n e t i c hypothesis these data are very d i f f i c u l t to assess. In order to make a stronger statement with respect to which primate phylogeny i s best supported by analyses of s p e c i f i c p a r a s i t e groups, i t i s necessary to r e c o n s t r u c t phylogenies of 1 5 more groups of c a t a r r h i n e p a r a s i t e s . With t h i s i n mind I have p h y l o g e n e t i c a l l y analysed three subgenera of nematodes ( Conoweber i a , I h l e a , and L e r o u x i e l l a ) belonging i n the hookworm genus Oesophagostomum (Molin, 1861). Members in t h i s group have been repo r t e d i n a l l the major c a t a r r h i n e taxa. 16 I I I ) Oesophagostomum : H i s t o r i c a l review: The genus Oesophaqostomum belongs in the s u p e r f a m i l y S t r o n g y l o i d e a . T h i s s u p e r f a m i l y i s almost e x c l u s i v e l y p a r a s i t i c i n mammals, and i s u s u a l l y c h a r a c t e r i z e d by having a high degree of host s p e c i f i c i t y . Although a number of S t r o n g y l o i d e a c l a s s i f i c a t i o n s e x i s t (Chabaud, 1965; Popava, 1955; Yamaguti, 1961), I have r e l i e d h e a v i l y on the most recent attempt ( L i c h t e n f e l s , 1980). One of the major problems with e a r l i e r c l a s s i f i c a t i o n s i s that too much emphasis was p l a c e d on too few c h a r a c t e r s . "Authors of e a r l i e r c l a s s i f i c a t i o n s of the S t r o n g y l o i d e a r e l i e d h e a v i l y oh the morphology of b u c c a l c a p s u l e s . Separation of f a m i l i e s and s u b f a m i l i e s was d i f f i c u l t and a r b i t r a r y and there was l i t t l e i n d i c a t i o n of the r e l a t i o n between p a r a s i t e and host e v o l u t i o n below the s u p e r f a m i l y l e v e l . " ( L i c h t e n f e l s , 1980:1) Two a d d i t i o n a l c h a r a c t e r s were proposed by L i c h t e n f e l s i n an attempt to make the c l a s s i f i c a t i o n more r e f l e c t i v e of the e v o l u t i o n a r y process. One was based on the shape of the female o v e j e c t o r and the other on the arrangement of rays a s s o c i a t e d with the male c o p u l a t o r y bursa. L i c h t e n f e l s used these two c h a r a c t e r s to separate the S t r o n g y l o i d e a i n t o four f a m i l i e s . F o l l o w i n g t h i s scheme, Oesophagostomum belongs to the f a m i l y Chabertidae (Table 1). L i c h t e n f e l s r e l i e d on the shape of the buccal capsule to i n d i c a t e s u b f a m i l i e s . For example, Oesophagostomum belongs in the Oesophagostominae, a subfamily 17 c h a r a c t e r i z e d by small c y l i n d r i c a l b u c c a l c a p s u l e s (except those i n A u s t r a l i a n m a r s u p i a l s ) , and i t i s l i k e l y that at t h i s l e v e l a number of groups are e i t h e r para- or p o l y p h y l e t i c . The Oesophagostominae c o n t a i n s three t r i b e s , two of which, B o u r g e l a t i o i d i n e a and Oesophagostominea, possess a w e l l developed c e r v i c a l groove. In the B o u r g e l a t i o i d i n e a the groove encompasses the e n t i r e body and i n the Oesophagostominea i t i s r e s t r i c t e d to the v e n t r a l s u r f a c e . Two genera are placed i n the Oesophagostominea, Daubneyia (Le Roux, 1940) which are found i n A f r i c a n s u i d s , and Oesophagostomum which are repo r t e d from a number of mammals i n c l u d i n g primates. Within Oesophagostomum a number of subgenera have been proposed (Table 2), and t h i s s p l i t t i n g has been widely c r i t i c i z e d . For example, Thornton (1924) s t a t e d : " . . . . i n regard to the genus Oesophagostomum one i s f a s t approaching the stage when a subgenus w i l l hold but a s i n g l e s p e c i e s , o b v i o u s l y an untenable p o s i t i o n . . . . " p. 394 Thornton's c r i t i c i s m s stemmed from the f a c t that the s p l i t t i n g up of the genus Oesophagostomum was based p r i m a r i l y on host records, and not on c h a r a c t e r i s t i c s of the p a r a s i t e s themselves. That i s , the emphasis was on an e x t r i n s i c e c o l o g i c a l f a c t o r i n the form of host i d e n t i t i e s . Yamaguti (1961) supported these c r i t i c i s m s as f o l l o w s : 18 "I agree with Goodey (1924), Thornton (1924), and B a y l i s and Daubney (1926) i n that the d i v i s i o n of the genus i n t o four subgenera ( Oesophagostomum , Proteracrum and Hysteracrum of R a i l l i e t and Henry, 1913; and Conoweber i a of I h l e , 1922) i s unnecessary, and so are the a d d i t i o n a l subgenera B o s i c o l a (Sanground, 1929), I h l e i a [ s i c ] of Travassos and Vogelsang, 1932, Hydsonia , Le Roux, 1940 and Pukuia Le Roux, 1940." (p.394) I have examined i n d e t a i l three of these subgenera, L e r o u x i e l l a ,  I h l e a and Conoweber i a . A l l s p e c i e s in these subgenera are c h a r a c t e r i z e d by w e l l developed oesophageal f u n n e l s , c o n s i s t i n g of three s c l e r o t i z e d p l a t e s , each with a d e n t i c l e that may p r o j e c t i n t o the p o s t e r i o r p o r t i o n of the b u c c a l c a p s u l e . The subgenus I h l e a i s c h a r a c t e r i z e d by the presence of s i x d e n t i c l e s . The degree of development of t h i s c h a r a c t e r i s unique to these three subgenera, and i t separates them from other members of the genus Oesophaqostomum . Throughout t h i s t h e s i s s p e c i e s belonging to these three subgenera w i l l be r e f e r r e d to as the study group or ingroup. A l l those Oesophagostomum s p e c i e s r e p o r t e d from primates have been p l a c e d i n e i t h e r Conoweber i a or I h l e a . 19 MATERIALS AND METHOD(S) A] Oesophagostomum : I) M a t e r i a l s : Specimens belonging to the subgenera L e r o u x i e l l a ,  Conoweberia and I h l e a were borrowed from the major p a r a s i t e c o l l e c t i o n s . Table 3 l i s t s the s p e c i e s examined, and the museums from which they were obt a i n e d . The specimens were s t o r e d i n a mixture of 70% ethanol and 5% g l y c e r i n e , and c l e a r e d i n l a c t o p h e n o l before examination. The worms were mounted i n temporary g l y c e r i n e mounts f o r m i c r o s c o p i c a l examination. A drawing tube was used to prepare F i g u r e s .4-7. Specimens of 0^ susannes , O^ r a i l l i e t i , 0^ zukowskyi and 0. v e n t r i were not a v a i l a b l e . For these s p e c i e s o r i g i n a l d e s c r i p t i o n s and diagrams were used. Papers in which a d d i t i o n a l c h a r a c t e r s and measurements were proposed were a l s o used ( f o r example, Travassos and Vogelsang, 1932). Although more than 20 nominal s p e c i e s have been a s s i g n e d to I h l e a , Conoweberia and L e r o u x i e l l a , only 12 s p e c i e s are recog n i z e d as v a l i d i n t h i s a n a l y s i s . T h i s r e c o g n i t i o n agrees s t r o n g l y with the most recent key f o r these subgenera, i n which 11 s p e c i e s were recognized (Chabaud and Durette-Desset, 1973). The only s p e c i e s added i s 0.  brumpti . On the b a s i s of i t s o v e r a l l l e n g t h , shape of the buccal c a p s u l e , and s i z e of i t s s p i c u l e s i t i s d i s t i n c t from other members of the study group . However, only two specimens were a v a i l a b l e , and i d e a l l y more specimens are r e q u i r e d to more a c c u r a t e l y e s t a b l i s h the ranges of some c h a r a c t e r s . 20 II) Method of a n a l y s i s : The systematic technique used i n t h i s a n a l y s i s was c l a d i s t i c s or p h y l o g e n e t i c s y s t e m a t i c s (Hennig, 1966; Wiley, 1981). A number of p r e c i s of t h i s methodology have been p u b l i s h e d (Kluge, 1983; M i t t e r and Brooks, 1983; Brooks, O'Grady and Glen, in p r e s s ) , and I w i l l add only statements that r e f e r s p e c i f i c a l l y to the present study. There are a number of important steps in a p h y l o g e n e t i c a n a l y s i s . The f i r s t i n v o l v e s a good understanding of the morphology of the organisms i n the study group ( a ) . T h i s step i s important because i t p r o v i d e s a general r e f e r e n c e f o r the next two steps , the choosing of c h a r a c t e r s and c h a r a c t e r s t a t e s ( b ) , and the p o l a r i z a t i o n of these c h a r a c t e r t r a n s f o r m a t i o n s ( c ) . The p o l a r i z a t i o n of c h a r a c t e r t r a n s f o r m a t i o n s i n v o l v e s determining which s t a t e s are r e l a t i v e l y p r i m i t i v e ( plesiomorphic) and which are r e l a t i v e l y d e r i v e d (apomorphic). The most g e n e r a l method for t h i s step, and the method used in t h i s a n a l y s i s , i s based on the outgroup c r i t e r i o n (see l a t e r d i s c u s s i o n ) . These c h a r a c t e r t r a n s f o r m a t i o n s can 7be summarized i n a coded data matrix. The f i n a l methodological step i n v o l v e s the a c t u a l a n a l y s i s of the p o l a r i z e d c h a r a c t e r t r a n s f o r m a t i o n s (d). For t h i s step a computer sy s t e m a t i c s program (PHYSYS) was used. PHYSYS was developed and i n s t a l l e d at U.B.C. by Dr J.S. F a r r i s (State U n i v e r s i t y of New York, Stony Brook). 21 a) G e n e r a l i z e d Oesophagostomum morphology: The outer c o v e r i n g of nematodes i s a n o n - c e l l u l a r l a y e r termed a c u t i c l e . In Oesophagostomum species i t i s c h a r a c t e r i z e d by t r a n s v e r s e s t r i a t i o n s , and the d i s t a n c e s between these s t r i a t L o n s are h i g h l y v a r i a b l e , ranging from .007-.023mm. In general the s t r i a t i o n s are c l o s e r together at the a n t e r i o r and p o s t e r i o r ends of the body. The a n t e r i o r ends of Oesophagostomum sp e c i e s are dis t e n d e d or bulbous, and are separated from the r e s t of the body by a d i s t i n c t groove r e s t r i c t e d to the v e n t r a l s u r f a c e ( F i g u r e s 4 and 5). The nerve r i n g and e x c r e t o r y pore are both s i t u a t e d c l o s e to the v e n t r a l groove. The o r a l aperture i s surrounded by s i x c i r c u m - o r a l p a p i l l a e , two short broad l a t e r a l p a p i l l a e and four longer submedian p a p i l l a e . A c u t i c u l a r i z e d mouth c o l l a r i s a l s o p r e s e n t . The o r a l a perture i s guarded by an e x t e r n a l l e a f crown, c o n s i s t i n g of numerous elements or p e t a l s . At the base of the e x t e r n a l crown there i s an i n t e r n a l crown of twice as many elements. Some d e s c r i p t i o n s have r e p o r t e d the i n t e r n a l crown to be l a c k i n g . In my ob s e r v a t i o n s i t has always been present, although i t can be e a s i l y obscured by the c u t i c u l a r i z e d mouth c o l l a r . The d i m i n u t i v e s i z e of the i n t e r n a l elements (.005-.010mm) may have c o n t r i b u t e d to t h e i r not being seen. Immediately p o s t e r i o r to the corona i s the buccal c a p s u l e . The w a l l s of the capsule are h e a v i l y s c l e r o t i z e d and the capsule i s u s u a l l y narrower at the a n t e r i o r end. The bu c c a l capsule leads i n t o the oesophageal f u n n e l , which i s w e l l developed and h e a v i l y s c l e r o t i z e d . At the a n t e r i o r end of the funnel are three ( s i x i n I h l e a ) d e n t i c l e s , one d o r s a l and two l a t e r o v e n t r a l . 22 These d e n t i c l e s may p r o j e c t i n t o the p o s t e r i o r p o r t i o n of the buccal c a p s u l e . The oesophageal funnel opens p o s t e r i o r l y i n t o the oesophagus which i s long and c l u b shaped. The oesophagus leads to the i n t e s t i n e which runs the length of the body, the rectum being c l o s e to the p o s t e r i o r end of the body. C e r v i c a l p a p i l l a e are present and are s i t u a t e d between the v e n t r a l groove and the oesophageal s w e l l i n g . Oesophagostomum spp. males are u s u a l l y s l i g h t l y s maller than the females, and are c h a r a c t e r i z e d by a w e l l developed c o p u l a t o r y bursa (Figure 6). The bursa c o n s i s t s of two l a t e r a l lobes and a smaller d o r s a l lobe. The lobes are supported by numerous rays, whose number and morphology appear very s i m i l a r in a l l the s p e c i e s in the study group. The s p i c u l e s are long, e q u a l l y lengthed and a l a t e d . They pass through the c l o a c a and may be p a r t i a l l y protruded. A s c l e r o t i z e d gubernaculum i s present. Oesophagostomum spp. females possess a short p o i n t e d t a i l which may be sh a r p l y curved (Figure 7). The anus and vulva are separate, the anus being c l o s e to the p o s t e r i o r end of the body. The v u l v a i s a short d i s t a n c e a n t e r i o r to the anus and i s a s s o c i a t e d with a prominent g e n i t a l cone. The vagina i s r e l a t i v e l y short and leads to the J-shaped o v e j e c t o r . The o v e j e c t o r c o n s i s t s of three p a r t s ; a t h i c k w a l l e d v e s t i b u l e communicating with the vagina; p a i r e d t h i c k s p h i n c t e r r e g i o n s ; and a t h i n n e r walled i n f u n d i b u l a e which connects with the u t e r i . The uterus connected to the p o s t e r i o r o v e j e c t o r curves s h a r p l y and runs p a r a l l e l to the uterus connected to the a n t e r i o r o v e j e c t o r . 23 b) Chara c t e r s and c h a r a c t e r s t a t e s : A t o t a l of twenty-two c h a r a c t e r s was used i n t h i s a n a l y s i s . Some c h a r a c t e r s , such as the shape of the e x t e r n a l elements, form f a i r l y simple b i n a r y c h a r a c t e r s , while o t h e r s , such as the number of d e n t i c l e s , form more complex m u l t i - s t a t e c h a r a c t e r s . A l l twenty-two c h a r a c t e r s and t h e i r c h a r a c t e r s t a t e s are summarized i n Table 4. Some c h a r a c t e r s , f o r example, the number of elements i n the e x t e r n a l corona, are not s u f f i c i e n t l y e x p l a i n e d in the t a b l e , and the f o l l o w i n g s u b - s e c t i o n s provide f u r t h e r e x p l a n a t i o n . 1) Number of elements i n the e x t e r n a l crown. The only way to c l e a r l y e s t a b l i s h the number of e x t e r n a l elements i s to do en face examinations of the a n t e r i o r ends of worms. Many d e s c r i p t i o n s however, have been based on whole mounts, and the number of elements have u s u a l l y been p l a c e d at ten. In a few s t u d i e s en face views have been examined, and i n some of these the number of elements have been repo r t e d at twelve to s i x t e e n , and i n three s p e c i e s the number repo r t e d was numerous (30-40 elements). P r e p a r a t i o n of en face views of a l l the s p e c i e s would have been u s e f u l i n r e s o l v i n g t h i s d i s p u t e . U n f o r t u n a t e l y however, not enough m a t e r i a l was a v a i l a b l e to permit s e c t i o n i n g . Regardless of whether ten to s i x t e e n elements are present, there are at l e a s t two c l e a r l y d e f i n e d c h a r a c t e r s t a t e s i n the study group, those s p e c i e s with few elements (10-16), and those with many elements (30-40). 24 Specimens of Oesophagostomum pachycephalum were, obtained from three museums. Those from the B r i t i s h Museum of N a t u r a l H i s t o r y ( a c c e s s i o n number 698-701) and the French Museum N a t i o n a l d ' H i s t o i r e N a t u r e l l e ( a c c e s s i o n number 475SB) had approximately t h i r t y elements, while those from the United S t a t e s N a t i o n a l Museum (a c c e s s i o n number 3308) had ten. T h i s suggested that e i t h e r the European or the American specimens had been m i s i d e n t i f i e d . R e s o l u t i o n of t h i s problem r e q u i r e s the type specimens, but u n f o r t u n a t e l y they were not a v a i l a b l e . Furthermore, the o r i g i n a l d e s c r i p t i o n was not d e t a i l e d enough as i t l i s t e d the number of elements as "numerous" (Molin, 1861). However, on the b a s i s of other c h a r a c t e r s , such as the o v e r a l l body l e n g t h and the shape and s i z e of the b u c c a l c a p s u l e , i t i s reasonably c l e a r that the European specimens have been c o r r e c t l y i d e n t i f i e d . The 0^ pachycephalum from the USNM appear to be specimens of 0^ bifurcum . 2) P a t t e r n of elements of the e x t e r n a l corona - en face view. There are two s t a t e s evident f o r t h i s c h a r a c t e r . For most members of the subgenus Conoweberia the e x t e r n a l elements converge towards the center of the o r a l a perture ( F i g u r e 8). In c o n t r a s t , those i n 0^ stephanostomum and v e n t r i do not converge (Figure 9),. 3) P a t t e r n of oesophageal s c l e r o t i z a t i o n . A l l the s p ecies i n the study group have a w e l l developed oesophageal f u n n e l . In most s p e c i e s the funnel i s d e s c r i b e d as 25 cup or goblet-shaped, the s i d e s being curved (Figure 4). In members of the subgenus I h l e a and i n 0^ pachycephalum the funnel i s V-shaped, the s i d e s being s t r a i g h t e r (Figure 5). 4) Shape of the elements of the e x t e r n a l corona. Two s t a t e s are evident f o r t h i s c h a r a c t e r . For most members of the subgenus Conoweber i a the elements are p o i n t e d and t r i a n g u l a r i n shape (Fi g u r e s 4 and 6). In those s p e c i e s with more than t h i r t y e x t e r n a l elements, the elements are more rounded and c y l i n d r i c a l i n shape ( F i g u r e s 5 and 7). 5) Number of d e n t i c l e s in the oesophageal f u n n e l . The p a t t e r n and the degree of development of the oesophageal d e n t i c l e s i s unique to the study group. In members of the subgenera Conoweber i a and L e r o u x i e l l a there are three d e n t i c l e s p r o j e c t i n g i n t o the lumen of the f u n n e l , and in I h l e a there are s i x d e n t i c l e s p r e s e n t . As with the number of e x t e r n a l elements, i t i s very d i f f i c u l t to count the number of d e n t i c l e s when l o o k i n g at a l a t e r a l s e c t i o n of a whole mount. A s e r i a l s e c t i o n through the funnel i s necessary to a c c u r a t e l y e s t a b l i s h the number of d e n t i c l e s . To the best of my knowledge s e r i a l s e c t i o n s of pachycephalum have not been made, but u n f o r t u n a t e l y not enough m a t e r i a l was a v a i l a b l e to permit s e c t i o n i n g . These would be p a r t i c u l a r l y i n t e r e s t i n g i n l i g h t of i t s l a r g e number of e x t e r n a l elements and the shape (V) of the oesophageal f u n n e l . 26 c) Outgroup d e s i g n a t i o n and c h a r a c t e r coding: Only shared d e r i v e d or synapomorphic t r a i t s are capable of i n d i c a t i n g n a t u r a l groups. Because of t h i s , determining which c h a r a c t e r s are d e r i v e d (apomorphic) and which are p r i m i t i v e (plesiomorphic) i s very important. The most gen e r a l method f o r determining c h a r a c t e r p o l a r i t y i s the outgroup method (Lundberg, 1972; Wiley, 1981). T h i s method i s based on the f o l l o w i n g concept: "Given two c h a r a c t e r s that are homologues and found w i t h i n a s i n g l e monophyletic group, the c h a r a c t e r that i s a l s o found i n the s i s t e r group i s the ple s i o m o r p h i c c h a r a c t e r whereas the c h a r a c t e r found w i t h i n the monophyletic group i s the apomorphic c h a r a c t e r . " (Wiley, 1981) p.139 That i s , the c h a r a c t e r s t a t e present i n at l e a s t one member of the study group (or ingroup), and i n some s p e c i e s o u t s i d e the ingroup (the outgroup), w i l l be p r i m i t i v e . U s u a l l y the most s u i t a b l e outgroup i s the s i s t e r group, or a group that i s c l o s e l y r e l a t e d to the ingroup. In order to determine which members of the genus Oesophaqostomum are most s u i t a b l e as outgroups, the phy l o g e n e t i c r e l a t i o n s h i p s of the v a r i o u s sub-genera have been p a r t i a l l y r e c o n s t r u c t e d ( F i g u r e 13). Information f o r t h i s cladogram was obtained from keys p u b l i s h e d by Chabaud and Durette-Desset (1973), and L i c h t e n f e l s (1981). The cladogram suggests that the subgenera B o s i c o l a and Oesophagostomum are the most a p p r o p r i a t e outgroups. For two types of c h a r a c t e r s , however, the above outgroups 27 were not s u f f i c i e n t f o r completely determining the p o l a r i t y of tr a n s f o r m a t i o n s e r i e s . In these cases the f u n c t i o n a l outgroup method o u t l i n e d by Watrous and Wheeler (1981) was used. T h i s method i s based on the idea t h a t , i n those i n s t a n c e s where the outgroup i s unable to determine the p o l a r i t y of a t r a n s f o r m a t i o n , i t i s best to use the most plesiomorphic members of the ingroup as a f u n c t i o n a l outgroup. The "outgroup comparison need not be c o n s t r a i n e d by nomenclatural rank or Linnaen h i e r a r c h i c a l s t r u c t u r e s " (Watrous and Wheeler, 1981). Thus, determining the most pl e s i o m o r p h i c members of the ingroup i s based on c h a r a c t e r s p o l a r i z e d using the i n i t i a l outgroup (the subgenera B o s i c o l a and Oesophagostomum ) . An example of t h i s method i n v o l v e s the oesophageal f u n n e l . A l l members of the study group have w e l l developed s c l e r o t i z e d funnels with p r o j e c t i n g d e n t i c l e s . T h i s c h a r a c t e r i s absent in the outgroup subgenera, and consequently these outgroups are unable to determine which c h a r a c t e r s t a t e , cup-shaped, or V-shaped i s p r i m i t i v e . However, on the b a s i s of other c h a r a c t e r s 0_;_ zukowskyi , 0^ bifurcum , 0.  brumpti , and 0^ aculeatum are the most pl e s i o m o r p h i c members of the ingroup , and s i n c e a l l these s p e c i e s have a cup-shaped f u n n e l , t h i s c h a r a c t e r s t a t e i s hypothesized to be p r i m i t i v e . The same reasoning was used to p o l a r i z e the t r a n s f o r m a t i o n s e r i e s f o r the c h a r a c t e r i n v o l v i n g the le n g t h of the oesophageal f u n n e l . The other type of c h a r a c t e r which r e q u i r e d a f u n c t i o n a l outgroup was was those in which there was c o n s i d e r a b l e v a r i a t i o n in the outgroup. For example, i n the subgenus B o s i c o l a the c e r v i c a l p a p i l l a e are s i t u a t e d c l o s e to the v e n t r a l groove, and 28 in the subgenus Oesophagostomum they are more p o s t e r i o r , being c l o s e r to the oesophageal s w e l l i n g . Within the ingroup the p a p i l l a e occur between the above two extremes. Without f u l l y r e s o l v i n g the r e l a t i o n s h i p s between the subgenera B o s i c o l a and Oesophagostomum i t i s impossible to t e l l whether the trend i n the ingroup i s towards the p a p i l l a e moving a n t e r i o r l y (from that s t a t e i n the subgenus Oesophaqostomum ) , or p o s t e r i o r l y (from that s t a t e i n the subgenus B o s i c o l a ) . Appealing to a f u n c t i o n a l outgroup suggests that p r i m i t i v e l y the p a p i l l a e are c l o s e to the v e n t r a l groove . Character s t a t e s designated "0" are the p l e s i o m o r p h i c s t a t e s , and p o s i t i v e whole numbers i n d i c a t e the d e r i v e d s t a t e s . Reversing t h i s convention ( f o r b i n a r y c h a r a c t e r s ) would not a f f e c t the a n a l y s i s so long as the same convention was followed f o r an e n t i r e data s e t . The coded values and t h e i r corresponding c h a r a c t e r s t a t e s are summarized in Table 4. The c h a r a c t e r s t a t e s found i n each s p e c i e s of the ingroup are summarized in Appendix 7. A value of "9" was entered f o r missing data; there are two reasons f o r such e n t r i e s . For some s p e c i e s , f o r example, 0.  r a i l l i e t i , specimens were not a v a i l a b l e , and the o r i g i n a l d e s c r i p t i o n s were not s u f f i c i e n t l y d e t a i l e d to e s t a b l i s h the nature of a l l c h a r a c t e r s and c h a r a c t e r s t a t e s used i n t h i s a n a l y s i s . A l s o , s e c t i o n i n g of specimens was not p o s s i b l e and consequently some c h a r a c t e r s t a t e s i n a few s p e c i e s c o u l d not be determined. 29 d) Phylogenetic a n a l y s i s : P h y l o g e n e t i c a n a l y s i s of the Oesophagostomum data was a i d e d by use of PHYSYS. The o p t i o n s s p e c i f i e d were Pimental and Wagner.S. Both of these o p t i o n s produce p h y l o g e n e t i c t r e e s using the Wagner a l g o r i t h m ( F a r r i s , 1970). They only group organisms a c c o r d i n g to t h e i r shared d e r i v e d (synapomorphic) t r a i t s , and are based on the concept of o v e r a l l parsimony. That i s they minimize the amount of c h a r a c t e r change that i s p o s t u l a t e d to be the r e s u l t of homoplasious (convergent or p a r a l l e l ) e v o l u t i o n . The two o p t i o n s d i f f e r p r i m a r i l y i n that the Wagner.S op t i o n has a branch swapping r o u t i n e and i s thus more l i k e l y to f i n d the most parsimonious t r e e . T h i s i s p a r t i c u l a r l y t r u e when there i s a c o n s i d e r a b l e amount of homoplasy in a data s e t . One of the s t a t i s t i c s used to measure the f i t of p a r t i c u l a r c h a r a c t e r s to a hypothesized phylogeny i s the c o n s i s t e n c y (c) index ( F a r r i s , 1970). T h i s value i s c a l c u l a t e d by d i v i d i n g the minimum p o s s i b l e number of c h a r a c t e r t r a n s f o r m a t i o n s by the a c t u a l number of t r a n s f o r m a t i o n s hypothesized from the phylogeny. For example, a c-index of 1.0 (100%) f o r a p a r t i c u l a r c h a r a c t e r suggests that there i s no p o s t u l a t e d homoplasy for that c h a r a c t e r . Rather than l i s t the c-index f o r each c h a r a c t e r , an o v e r a l l c-index i s u s u a l l y l i s t e d . T h i s value represents an average f i t of a l l the c h a r a c t e r s used to the hypothesized t r e e topology. Three c h a r a c t e r s i n t h i s a n a l y s i s were s p l i t i n t o two t r a n s f o r m a t i o n s e r i e s each. The reason f o r t h i s was that l e a v i n g them as a s i n g l e t r a n s f o r m a t i o n s e r i e s r e s u l t e d in a r t i f i c i a l l y 30 low c - i n d i c e s . For example, there are four c h a r a c t e r s t a t e ranges f o r male body l e n g t h ; 6-13mm; 13-l8mm; l8-25mm; and l e s s than 6mm. The range i n the outgroup i s 6-13mm and t h i s s t a t e was coded as 0. T h i s suggests two tre n d s , one of i n c r e a s i n g l e n g t h to 13-l8mm and 18-25mm, and one of dec r e a s i n g l e n g t h to l e s s than 6mm. If the four c h a r a c t e r s t a t e s are coded as; 6-13mm=0; 13-I8mm=1; l8-25mm=2; and <6mm=3; a c-index of .60 i s c a l c u l a t e d . T h i s r e f l e c t s the f a c t that PHYSYS reads the tr a n s f o r m a t i o n s e r i e s as 0 1 2 3 which suggests that there i s an in c r e a s e i n l e n g t h followed by a secondary decrease. However, i f the tr a n s f o r m a t i o n i s coded as 0 1 2 a c-index of 1.00 i s c a l c u l a t e d . In order to code f o r t h i s second transfomation s e r i e s the c h a r a c t e r male body l e n g t h was s p l i t i n t o two t r a n s f o r m a t i o n s e r i e s . The other two c h a r a c t e r s t r e a t e d i n t h i s manner were female body le n g t h and male body width . 31 MATERIALS AND METHODS OF ANALYSES (cont...) B] Presence/absence c h e c k l i s t s : I ) M a t e r i a l s : Three presence/absence c h e c k l i s t s of helminths from primates were analysed. The f i r s t of these, taken d i r e c t l y from Dunn (1966), i n c l u d e s a t o t a l of t h i r t y four p a r a s i t e genera repo r t e d from four primate hosts; gibbons, orangutans, chimpanzees, and humans (Table 5) . Data f o r t h i s c h e c k l i s t were obtained by Dunn from secondary sources such as Yamaguti (1958, 1959, 1961), and Yamashita (1963). The second c h e c k l i s t (Table 6) adds Old World monkey p a r a s i t e s to the c h e c k l i s t of t h i r t y four p a r a s i t e genera p u b l i s h e d by Dunn. The t h i r d c h e c k l i s t expands the l i s t to i n c l u d e e i g h t y seven p a r a s i t e genera repo r t e d from c a t a r r h i n e S ' and i n c l u d e s those p a r a s i t e s r e p o r t e d from g o r i l l a s ( i n a d d i t i o n to those from Old World monkeys). For ease of h a n d l i n g t h i s c h e c k l i s t has been s p l i t i n t o three t a b l e s , the cestodes (Table 7), the trematodes (Table 8), and the nematodes (Table 9). Data f o r t h i s expanded c h e c k l i s t were c o l l e c t e d from a number of sources, i n c l u d i n g secondary l i t e r a t u r e such as Yamaguti (1958, 1959, 1961), Yamashita (1963), and S t i l e s and Hassal (1929). More s p e c i f i c c h e c k l i s t s were a l s o used, i n c l u d i n g the c h e c k l i s t s of p a r a s i t e s from baboons (Myers and Kuntz, 1965); macaques (Kuntz and Myers, 1969); and chimpanzees (Myers and Kuntz, 1972). For a l l the c h e c k l i s t s compiled i n t h i s t h e s i s only n a t u r a l i n f e c t i o n s were i n c l u d e d . A l s o , when p o s s i b l e , secondary sources were confirmed 32 by r e f e r e n c e to the primarary l i t e r a t u r e . I t i s p o s s i b l e that f o r a number of reasons some e n t r i e s may be i n c o r r e c t . For example, both host and p a r a s i t e s p e c i e s f o r some r e p o r t s may have been i n c o r r e c t l y i d e n t i f i e d . No attempts were made to a l t e r the i n f o r m a t i o n i n the r e f e r e n c e c h e c k l i s t s . My i n t e n t i o n i n t h i s s e c t i o n i s not to d i s c u s s whether or not the p u b l i s h e d data, as they have been r e p o r t e d , are c o r r e c t , but r a t h e r to see whether they support the c o n c l u s i o n s that have been drawn from them. 33 II) Methods of a n a l y s e s : Two approaches to h a n d l i n g presence/absence data were ex p l o r e d . The f i r s t of these i n v o l v e d c a l c u l a t i n g the percentages of p a r a s i t e s shared by p a i r s of hosts, and the second i n v o l v e d c o n v e r t i n g the presence/absence data to binary c h a r a c t e r s and a n a l y s i n g them p h y l o g e n e t i c a l l y . a) Percent c a l c u l a t i o n s of shared p a r a s i t e s : Dunn (1966) used a presence/absence c h e c k l i s t of p a r a s i t e s i n primates (Table 5) to c a l c u l a t e the percentages of p a r a s i t e s shared by d i f f e r e n t p a i r s of h o s t s . The formula f o r the c a l c u l a t i o n was; % of shared p a r a s i t e s = A/B X 100 where A r e f e r s to the number of p a r a s i t e genera shared by any two h o s t s , and B the number of p a r a s i t e genera found in both h o s t s . For example, humans and chimpanzees are i n f e c t e d with 28 of the 34 p a r a s i t e genera l i s t e d i n Table 5. Of these 28, 18 (64%) are shared by humans and chimpanzees . L i k e w i s e , 23 of 34 p a r a s i t e genera are found i n humans and orangutans , and of these 10 (43%) are shared. The method o u t l i n e d by Dunn f o r c a l c u l a t i n g the percentage of shared p a r a s i t e s i s j u s t one of a number that have been proposed. For example, Ern s t and Ernst (1980) used an index of s i m i l a r i t y based on the general formula; 34 % of shared p a r a s i t e s = 2C/A+B X 100 where C r e f e r s to the number of p a r a s i t e s p e c i e s shared by two hosts, and A and B r e f e r to the number of p a r a s i t e s found i n each of two h o s t s . A l l these formulae f o r c a l c u l a t i n g percentages of shared p a r a s i t e s are measures of raw s i m i l a r i t y . Brooks (1981a) argued that such measures lack the h i s t o r i c a l component necessary f o r p h y l o g e n e t i c s t u d i e s and t h e r e f o r e may not be s u i t a b l e f o r making p h y l o g e n e t i c i n f e r e n c e s . The primary reasons f o r p r o v i d i n g the percentages of p a r a s i t e s shared by p a i r s of hosts i s to provide f o r a d i r e c t comparison to Dunn's a n a l y s i s , and to .see whether the r e s u l t s from t h i s approach agree with those from other methods. 35 b) Phylogenetic a n a l y s i s : In a p h y l o g e n e t i c sense there are three p o s s i b l e p r o t o c o l s for h a n d l i n g presence/absence data. The f i r s t two approaches assume e i t h e r that presence of a p a r t i c u l a r p a r a s i t e i s d e r i v e d and absence i s p r i m i t i v e , or that presence i s p r i m i t i v e and absence i s d e r i v e d . I n t u i t i v e l y i t seems p o s s i b l e that i n some cases presence may be d e r i v e d and i n others i t may be p r i m i t i v e . In the percent c a l c u l a t i o n adopted by Dunn (1966) only the presence of p a r t i c u l a r p a r a s i t e s was seen as i n f o r m a t i v e . T h i s corresponds to making the assumption that presence i s the d e r i v e d s t a t e . The t h i r d p o s s i b l e p r o t o c o l f o r p h y l o g e n e t i c a l l y a n a l y s i n g presence/absence data i s to code that s t a t e i n the most plesiomorphic host group (a f u n c t i o n a l outgroup) as p r i m i t i v e , and the a l t e r n a t e s t a t e as d e r i v e d . In some cases presence may be d e r i v e d and in others i t may be p r i m i t i v e . For example, D i c r o c o e l i u m (Table 8) i s present i n monkeys, humans, chimpanzees, and orangutans. Because i t i s present i n monkeys (the most p r i m i t i v e host group), presence i s coded as p r i m i t i v e , and absence as d e r i v e d . In c o n t r a s t Coneinnum (Table 8) i s r e p o r t e d from g o r i l l a s and chimpanzees, and i s absent in monkeys. Consequently presence i s coded as d e r i v e d , and absence as p r i m i t i v e . T h i s approach to a n a l y s i n g presence/absence data does c o n t a i n an inherent h i s t o r i c a l component and i s t h e r e f o r e more s u i t a b l e for p h y l o g e n e t i c analyses than the two previous approaches. One aspect of t h i s approach that may be a problem i s that s u f f i c i e n t knowledge of the host phylogeny i s r e q u i r e d to 36 choose the most p r i m i t i v e host group. With respect to t h i s study t h i s does not present a problem s i n c e the c h o i c e s of outgroups, gibbons f o r Dunn's data, and c e r c o p i t h e c i d s f o r the remaining c h e c k l i s t s do not c o n f l i c t with any of the primate phylogenies represented i n F i g u r e s 1, 2 and 3. T h i s approach to handling presence/absence data i s very s i m i l a r to one r e c e n t l y used by Cressey, C o l l e t t e and Russo (1983). In a d e t a i l e d a n a l y s i s of copepod p a r a s i t e s from scombrid (mackeral) f i s h e s these authors p h y l o g e n e t i c a l l y analysed a presence/absence c h e c k l i s t . The coding p r o t o c o l they adopted i n v o l v e d two s t e p s . An i n i t i a l step i n which presence was a r b i t r a r i l y coded as p r i m i t i v e and absence as d e r i v e d , and a second step i n which the r e s u l t i n g p h y l o g e n e t i c t r e e was rooted with the most p r i m i t i v e host group. T h i s approach i s almost i d e n t i c a l to the approach adopted in t h i s t h e s i s . In order to provide a comparison with Dunn's percent c a l c u l a t i o n r e s u l t s , a l l three c h e c k l i s t s were coded such that presence was d e r i v e d and absence was p r i m i t i v e . These coded data s e t s are l i s t e d i n Appendices 1, 3 and 5. The three c h e c k l i s t s were a l s o coded using the outgroup method o u t l i n e d above, and these data s e t s are l i s t e d in Appendices 2, 4 and 6. In a l l these appendices "0" s i g n i f i e s the p r i m i t i v e s t a t e and "1" the d e r i v e d s t a t e . A l l s i x coded presence/absence data s e t s were analysed with the Pimental and Wagner.S op t i o n s of PHYSYS. 37 RESULTS A] Oesophagostomum : I) Phylogeny: Twenty two c h a r a c t e r s were s t u d i e d and used to r e c o n s t r u c t the phylogeny of the twelve s p e c i e s i n the subgenera Conoweberia, I h l e a and L e r o u x i e l l a . F i g u r e 14 represents the most parsimonious phylogeny f o r these taxa and c h a r a c t e r s . . F o l l o w i n g Brooks (1981b), t h i s p a r a s i t e phylogeny was r e c o n s t r u c t e d without r e f e r e n c e to the hosts i n which the p a r a s i t e s are found. I t i s important to p o i n t out that t h i s p a r a s i t e phylogeny i s a h y p o t h e s i s , which i n v i t e s f u r t h e r t e s t i n g . A d d i t i o n a l s t u d i e s may uncover more c h a r a c t e r s that w i l l e i t h e r c o r r o b o r a t e and strengthen the phylogeny presented h e r e i n , or w i l l u l t i m a t e l y f a l s i f y i t . The c h a r a c t e r t r a n s f o r m a t i o n s used in t h i s a n a l y s i s have been mapped on to the cladogram. Those c h a r a c t e r s p o s t u l a t e d to e x h i b i t some homoplasy are marked with an a s t e r i s k . The o v e r a l l c o n s i s t e n c y index f o r t h i s cladogram i s 80%. T h i s f i g u r e r e p r e s e n t s an average measure of f i t f o r a l l c h a r a c t e r s used to the hypothesized t r e e topology. The i n d i v i d u a l c - i n d i c e s f o r a l l the c h a r a c t e r s are l i s t e d i n Table 10. A c-index of 80% i s a h i g h c o n s i s t e n c y , r e p r e s e n t i n g a good f i t of the data to the t r e e topology. A number of c h a r a c t e r s i n t h i s a n a l y s i s are used as absolute l e n g t h s . That i s , they were not converted to r a t i o s . These i n c l u d e such c h a r a c t e r s as oesophageal l e n g t h , female t a i l 38 l e n g t h , and le n g t h and width of the c e p h a l i c d i s t e n s i o n . In a few d e s c r i p t i o n s and diagnoses these c h a r a c t e r s have been presented as r a t i o s . During the present study these c h a r a c t e r s were coded as r a t i o s ( p r o p o r t i o n a l to o v e r a l l body l e n g t h and width), and i t was found that doing t h i s d i d not a f f e c t the topology of tre e but d i d decrease the c-index. For t h i s reason these c h a r a c t e r s were l e f t as ab s o l u t e l e n g t h s . Furthermore, removing these c h a r a c t e r s had l i t t l e e f f e c t on the cladogram. Of the eleven nodes, two c o l l a p s e d r e s u l t i n g in one polytomy. The re s t of the tree remained i d e n t i c a l with the f u l l y r e s o l v e d t r e e shown i n F i g u r e 14. The monophyletic nature of the twelve s p e c i e s i n t h i s study i s supported by three c h a r a c t e r s . Two of these i n v o l v e the oesophageal f u n n e l . A l l members i n the study group have w e l l developed s c l e r o t i z e d funnels that are e i t h e r cup or V-shaped. A l s o , p r o j e c t i n g i n t o the lumen of the oesophageal funnel are 3 (or 6) d e n t i c l e s . The t h i r d c h a r a c t e r unique to the study group i n v o l v e s the s i z e of the elements of the e x t e r n a l corona. In a l l s p e c i e s they are i n the range of .012-.025mm. During t h i s a n a l y s i s emphasis was p l a c e d on c h a r a c t e r s that were shared by more than one s p e c i e s ( r a t h e r than those t r a i t s unique to a s i n g l e s p e c i e s ) . While c h a r a c t e r s unique to s p e c i e s are very u s e f u l i n d i s t i n g u i s h i n g and diag n o s i n g s p e c i e s , they are not u s e f u l in e s t a b l i s h i n g r e l a t i o n s h i p s between s p e c i e s . 39 11) Taxonomy: The major purpose of taxonomy i s to provide d e s c r i p t i o n s of organismic d i v e r s i t y . These d e s c r i p t i o n s are o f t e n i n the form of c l a s s i f i c a t i o n s . Wiley (1981) suggested t h a t ; "The major purpose of a p h y l o g e n e t i c c l a s s i f i c a t i o n i s to condense and summarize the i n f e r r e d h i s t o r y of s p e c i a t i o n as r e f l e c t e d by our best hypotheses of that h i s t o r y . " (p. 3) That i s , the c l a s s i f i c a t i o n should r e f l e c t the g e n e a l o g i c a l r e l a t i o n s h i p s of organisms. A c o n s i d e r a b l e degree of p a r a s i t e taxonomy has been done without any attempts to r e c o n s t r u c t p a r a s i t e phylogenies, and the c l a s s i f i c a t i o n of the genus Oesophaqostomum i s no e x c e p t i o n . Although there has been c o n s i d e r a b l e d i s c u s s i o n as to whether the genus should be s p l i t up, there have not been any attempts to r e c o n s t r u c t the phylogeny of these p a r a s i t e s . T h i s t h e s i s w i l l d i s c u s s the s t a t u s of three subgenera ( Conoweberia, Ihl e a and L e r o u x i e l l a ) in the genus Oesophagostomum . In order that taxonomic groupings be c o n s i s t e n t with genealogy, they must be monophyletic. Before the monophyly of taxa can be d i s c u s s e d a g e n e a l o g i c a l hypothesis or phylogeny i s necessary. The p a r a s i t e phylogeny presented in t h i s t h e s i s suggests that two of the subgenera s t u d i e d ( I h l e a and L e r o u x i e l l a ) are monophyletic, and one ( Conoweber i a ) i s p a r a p h y l e t i c . A p a r a p h y l e t i c group i s a group that i n c l u d e s a common ancestor and some but not a l l i t s descendants ( F a r r i s , 1974). The 40 monophyly of L e r o u x i e l l a i s supported by the presence of t r a n s v e r s e processes in the b u c c a l capsule, and the monophyly of I h l e a by the presence of s i x oesophageal d e n t i c l e s , and the en  face p a t t e r n of the elements of the e x t e r n a l corona. T r a d i t i o n a l l y two s p e c i e s ( 0^ stephanostomum and v e n t r i ) have been placed i n the subgenus I h l e a , and one of the major d i a g n o s t i c f e a t u r e s of t h i s subgenus has been the presence of 30-40 e x t e r n a l elements. The 0^ pachycephalum specimens examined for t h i s study a l s o had 30-40 elements. T h i s suggests that t h i s s p e c i e s belongs i n the subgenus I h l e a and not Conoweberia . In order to c l a r i f y t h i s p o i n t the type specimens should be examined. A l s o , s e r i a l s e c t i o n s and an en face view are necessary to e s t a b l i s h the number of oesophageal d e n t i c l e s and the p a t t e r n of the e x t e r n a l elements. Because the number of 0. pachycephalum specimens a v a i l a b l e was l i m i t e d i t was not p o s s i b l e to get permission to s e c t i o n t h i s s p e c i e s . Although t h i s a n a l y s i s r e c o g n i s e s that I h l e a and L e r o u x i e l l a are monophyletic, i t i s not recommended that these two subgenera be maintained. Instead i t i s proposed that they be c o n s i d e r e d j u n i o r synonyms of the subgenus Conoweber i a . The reason f o r t h i s i s that i f I h l e a and L e r o u x i e l l a are recognised, there i s no way to group the remaining e i g h t s p e c i e s in a manner c o n s i s t e n t with t h e i r genealogy without a s s i g n i n g each s p e c i e s to i t s own subgenus. Thus ten subgenera would be r e q u i r e d f o r the twelve s p e c i e s in the study group. T h i s would c o n s i d e r a b l y complicate the e x i s t i n g c l a s s i f i c a t i o n . By a s s i g n i n g a l l twelve s p e c i e s to the genus Conoweberia , the e x i s t i n g c l a s s i f i c a t i o n i s d i s r u p t e d l e a s t . Thus, i t i s proposed that a l l those 41 Oesophagostomum s p e c i e s with a w e l l developed oesophageal funnel with d e n t i c l e s (three or s i x ) , and small elements of the e x t e r n a l corona be as s i g n e d to the subgenus Conoweber i a . 42 I I I ) Biogeography: The geographic d i s t r i b u t i o n s of the p a r a s i t e s p e c i e s s t u d i e d i n t h i s a n a l y s i s are l i s t e d i n Table 12. Most of these d i s t r i b u t i o n s are l i s t e d as general d i s t r i b u t i o n , f o r example, A f r i c a and S.E. A s i a . One of the reasons for t h i s i s that f o r some primates, the p a r a s i t e s are removed in zoos and r e s e a r c h s e t t i n g s that may be f a r from the o r i g i n a l host h a b i t a t . Consequently, the exact l o c a t i o n s of primates are not always s p e c i f i e d . A l s o , the c o l l e c t i o n s from primates are uneven and incomplete, and accurate geographic d i s t r i b u t i o n s can only be s p e c u l a t i v e . One of the most important steps i n d i s c u s s i n g the biogeography of a group of organisms i s the e v o l u t i o n a r y h i s t o r y or phylogeny of that group of organisms. The biogeographic s c e n a r i o developed in t h i s t h e s i s i s dependent on the p a r a s i t e phylogeny proposed h e r e i n . In F i g u r e 15 the minimum number of major geographic changes are mapped onto the p a r a s i t e cladogram. The outgroups used i n t h i s a n a l y s i s were not u s e f u l in e s t a b l i s h i n g the p l e s i o m orphic geographic range of the Oesophagostomum sp e c i e s i n primates, since both the subgenera B o s i c o l a and Oesophaqostomum are u b i q u i t o u s . However, the occurrence of 0^ zukowskyi, 0. bifurcum and 0^ brumpti in A f r i c a suggest that A f r i c a i s the plesiomorphic range f o r Oesophaqostomum sp e c i e s i n primates. T h i s suggests that 0.  bifurcum has s e c o n d a r i l y d i s p e r s e d to South East A s i a . C o n s i d e r i n g the d i s p e r s a l c a p a b i l i t i e s of humans, i t i s l i k e l y that humans have t r a n s f e r r e d t h i s p a r a s i t e s p e c i e s to S.E. A s i a . 43 The e x i s t e n c e of 0^ aculeatum, 0. b l a n c h a r d i , 0. r a i l l i e t i and 0. ovatum in South East Asian primates, and 0_j_ x e r i and 0.  susannes in South A f r i c a n rodents suggest e i t h e r of the f o l l o w i n g two s c e n a r i o s , each of which r e q u i r e h y p o t h e s i z i n g two geographic changes. In the f i r s t s c e n a r i o , the common ancestor of 0_j_ aculeatum d i s p e r s e d to South East A s i a , and those s p e c i e s in rodents have d i s p e r s e d back to A f r i c a . In the second s c e n a r i o there have been two d i s p e r s a l events to South East A s i a , the f i r s t i n v o l v i n g aculeatum , and the second the common ancestor of 0^ b l a n c h a r d i and the r e s t of the subgenus. In terms of the number of geographic changes both these s c e n a r i o s are e q u a l l y parsimonious. The occurrence of pachycephalum and 0.  stephanostomum in A f r i c a suggest that there has been a d i s p e r s a l event r e t u r n i n g these p a r a s i t e s to the p l e s i o m o r p h i c range. Thus, there appear to be two major geographic s h i f t s a f f e c t i n g the Oesophagostomum s p e c i e s in primates, a d i s p e r s a l from A f r i c a to South East A s i a , f o l l o w e d by a r e t u r n from South East A s i a to A f r i c a . F i n a l l y , there has been a d i s p e r s a l event to South America ( B r a z i l ) by the ancestor of 0^ stephanostomum and 0.  v e n t r i . Since O^ stephanostomum i s present i n humans, chimpanzees and g o r i l l a s (and the l a t t e r two hosts do not appear to d i s p e r s e very much) i t i s very l i k e l y that humans have t r a n s m i t t e d t h i s p a r a s i t e to South America. Since the indigenous South Americans are hypothesized to have come from A s i a , i t i s p o s s i b l e t hat these s p e c i e s were t r a n s m i t t e d with the s l a v e t r a d e . 44 RESULTS (cont...) B] Presence/absence c h e c k l i s t s : I) Percentages of shared p a r a s i t e s : The percentages of p a r a s i t e s shared by p a i r s of hosts are c a l c u l a t e d f o r a l l three c h e c k l i s t s , and these values are l i s t e d i n Table 11. For the c h e c k l i s t presented by Dunn (1966) humans and chimpanzees share the hi g h e s t percentage (64%) of p a r a s i t e s . T h i s value i s c o n s i d e r a b l y higher than the other host p a i r i n g s . For example, humans and orangutans are next h i g h e s t with 43% of t h e i r p a r a s i t e genera i n common. On the b a s i s of these hosts and these 34 p a r a s i t e genera the high p r o p o r t i o n shared by humans and chimpanzees would appear to support a c l o s e r e l a t i o n s h i p between these two h o s t s . On the a d d i t i o n of the p a r a s i t e s i n c e r c o p i t h e e ids to the c h e c k l i s t p u b l i s h e d by Dunn, the r e l a t i v e percentages of shared p a r a s i t e s change notably . Of the 34 p a r a s i t e genera c o n s i d e r e d humans shares a higher percentage with c e r c o p i t h e e ids (71%), than with chimpanzees (64%), or any other host group. Furthermore, the percentages of p a r a s i t e s shared by each primate group and c e r c o p i t h e c i d s are a l l r e l a t i v e l y h igh, ranging from 46% ( gibbons + c e r c o p i t h e c i d s ) to 71% ( humans + c e r c o p i t h e c i d s ) . The important f i n d i n g from t h i s set of c a l c u l a t i o n s i s that humans do not share the hi g h e s t p r o p o r t i o n of p a r a s i t e s with chimpanzees. In other words, the a d d i t i o n of p a r a s i t e s from another host group ( c e r c o p i t h e c i d s ) does a f f e c t the host r e l a t i o n s h i p s i n f e r r e d by Dunn. 45 Expanding the c h e c k l i s t to i n c l u d e 87 p a r a s i t e genera from a l l the major c a t a r r h i n e taxa a l s o changes the r e l a t i v e percentages of shared p a r a s i t e s . At 34 of 76 (45%), humans and c e r c o p i t h e c i d s s t i l l share the g r e a t e s t p r o p o r t i o n of p a r a s i t e s . They are fo l l o w e d c l o s e l y by chimpanzees and g o r i l l a s who share 13 of 32 (41%), and by gibbons and orangutans who share 7 of 19 (37%). In ge n e r a l the percentages of shared p a r a s i t e s for the expanded c h e c k l i s t are lower than f o r the two previous c h e c k l i s t s . The reason f o r t h i s i s that the p r o p o r t i o n of p a r a s i t e genera unique to one host group i s gre a t e r f o r the expanded c h e c k l i s t (40 of 87) than, f o r example, Dunn's c h e c k l i s t (11 of 34). The important f i n d i n g s from the expanded c h e c k l i s t are t h a t , as f o r the p r e v i o u s c h e c k l i s t s humans and chimpanzees do not share the g r e a t e s t p r o p o r t i o n of p a r a s i t e s , and that changing the number of p a r a s i t e s c o n s i d e r e d changes the c o n c l u s i o n s drawn. T h i s suggests that the p a r a s i t e genera presented by Dunn were not r e p r e s e n t a t i v e of a l l the known p a r a s i t e s from c a t a r r h i n e primates. 46 II) Phylogenetic a n a l y s e s : For the most p a r t , the r e s u l t s of the p h y l o g e n e t i c analyses for the presence/absence c h e c k l i s t s support the r e s u l t s obtained from the c a l c u l a t i o n s of percentages of shared p a r a s i t e s . The r e s u l t s of the p h y l o g e n e t i c analyses are presented i n F i g u r e s 10-12. Two coding p r o t o c o l s were used in these analyses (see methods s e c t i o n ) ; however, the r e s u l t s with respect to the i n f e r r e d host r e l a t i o n s h i p s were i d e n t i c a l and thus only one cladogram i s presented f o r each c h e c k l i s t . The p h y l o g e n e t i c a n a l y s i s of Dunn's c h e c k l i s t i s presented in F i g u r e 10. These r e s u l t s support the c o n c l u s i o n s drawn by Dunn. That i s , the i n f e r r e d host phylogeny from Dunn's data supports the ' t r o g l o d y t i a n ' model of human e v o l u t i o n . The c-index f o r t h i s i n f e r r e d host phylogeny i s 87%. The p h y l o g e n e t i c a n a l y s i s of the c h e c k l i s t i n which c e r c o p i t h e c i d p a r a s i t e s were added to Dunn's c h e c k l i s t i s presented i n F i g u r e 11. T h i s phylogeny d i f f e r s from the p r e v i o u s phylogeny in that the Asian apes ( gibbons and orangutans ) form a monophyletic group. Humans and chimpanzees are s t i l l l i n k e d t ogether. However, the support f o r t h i s grouping i s c o n s i d e r a b l y weaker. In the previous cladogram (from Dunn's data) e i g h t p a r a s i t e genera supported the grouping of humans and chimpanzees together. In F i g u r e 11 only two p a r a s i t e genera support keeping humans and chimpanzees t o g e t h e r . The c-index f o r the i n f e r r e d host phylogeny in F i g u r e 11 i s 79%. The p h y l o g e n e t i c a n a l y s i s of the expanded primate p a r a s i t e c h e c k l i s t i s presented i n F i g u r e 12. In t h i s h y p o thesis humans 47 are c o n s i d e r e d more p r i m i t i v e than the Asian and A f r i c a n apes. This f i n d i n g i s i n c o n f l i c t with a l l three of the primate phylogenies c o n s i d e r e d i n t h i s t h e s i s . T h i s r e s u l t r e f l e c t s the ob s e r v a t i o n that humans share more p a r a s i t e s with c e r c o p i t h e c i d s than with any of the higher primates. With the exception of humans, the host r e l a t i o n s h i p s i n f e r r e d from the presence/absence data are congruent with the phylogeny of c a t a r r h i n e s ( i f humans are removed from the three c a t a r r h i n e phylogenies c o n s i d e r e d , they are a l l i d e n t i c a l ) . The c-index for the i n f e r r e d host phylogeny in F i g u r e 12 i s 81%. 48 DISCUSSION A] C o e v o l u t i o n of primates and p a r a s i t e s : The e x i s t e n c e of a p a r t i c u l a r p a r a s i t e i n a p a r t i c u l a r host may be e x p l a i n e d i n terms of e i t h e r a h i s t o r i c a l c o e v o l u t i o n a r y a s s o c i a t i o n , or a more recent host t r a n s f e r . In the case of c o e v o l u t i o n the p a r a s i t e or i t s c l o s e r e l a t i v e s are p o s t u l a t e d to have evolved with the host l i n e a g e . In c o n t r a s t , h y p o t h e s i z i n g host t r a n s f e r s are r e q u i r e d when a p a r a s i t e i s re p o r t e d from a host and there appears no connection between the p a r a s i t e phylogeny and the host phylogeny. In order to d i s t i n g u i s h between those a s s o c i a t i o n s that have r e s u l t e d from h o s t / p a r a s i t e c o e v o l u t i o n , and those from more recent host t r a n s f e r s , phylogenies of the p a r a s i t e s and the hosts are r e q u i r e d . Three- sources of p a r a s i t e data that are r e l e v a n t to the c o e v o l u t i o n of primates and t h e i r p a r a s i t e s w i l l be d i s c u s s e d . These i n c l u d e the p h y l o g e n e t i c analyses of the three subgenera i n the genus Oesophagostomum , the genus E n t e r o b i u s , and the presence/absence c h e c k l i s t d a t a . I) Oesophagostomum : T h i s s e c t i o n compares the Oesophagostomum and host phylogenies to assess the degree to which c a t a r r h i n e s and these p a r a s i t e s have coevolved. With res p e c t to c a t a r r h i n e s , the three phylogenies that have been proposed d i f f e r with r e s p e c t to the 49 r e l a t i o n s h i p s between humans and other Great apes, but agree that c e r c o p i t h e e ids and gibbons are most p l e s i o m o r p h i c , that g o r i l l a s and chimpanzees form a monophyletic group, and that orangutans are mid-way between gibbons and chimpanzees+gorillas. Regardless of which of the three primate phylogenies i s c o r r e c t , the phylogeny of the Oesophagostomum s p e c i e s s t u d i e d i n t h i s a n a l y s i s suggest a p a t t e r n that can be e x p l a i n e d predominantly i n terms of c o e v o l u t i o n . Table 12 presents a l i s t of the twelve p a r a s i t e s p e c i e s analysed and the hosts i n which they are found. Of these twelve, a l l but three are present i n primates. The primate phylogeny that r e q u i r e s p o s t u l a t i n g the fewest host t r a n s f e r s f o r the Oesophagostomum s p e c i e s i n the study group i s the ' t r o g l o d y t i a n ' primate hypothesis ( F i g u r e 1). According to t h i s host phylogeny seven host t r a n s f e r s are necessary to e x p l a i n the host r e c o r d s . These t r a n s f e r s are mapped onto the p a r a s i t e phylogeny (Figure 15). The f i r s t of these host t r a n s f e r s i n v o l v e d the i n f e c t i o n of primates by the common ancestor of a l l Conoweber i a s p e c i e s . P o s t u l a t i n g t h i s as a t r a n s f e r i s supported by the occurrence of the outgroup subgenera B o s i c o l a and Oesophagostomum i n ruminants and s u i d s r e s p e c t i v e l y , r a ther than New World monkeys, lemurs, or i n s e c t i v o r e s . The four most pl e s i o m o r p h i c p a r a s i t e s p e c i e s , 0.  zukowskyi , 0^ bifurcum , 0^ brumpti , and 0^ aculeatum , are a l l r e p o r t e d from monkeys, and these a s s o c i a t i o n s are c o n s i s t e n t with a c o e v o l u t i o n a r y hypothesis . Two of these four p a r a s i t e s p e c i e s have s e c o n d a r i l y t r a n s f e r e d to a d d i t i o n a l primate hosts. 0. bifurcum has i n f e c t e d humans and chimpanzees, and 0^ brumpti has i n f e c t e d humans. Two p a r a s i t e s p e c i e s i n the study group, 0^ 50 x e r i and 0^ susannes , are r e p o r t e d from South A f r i c a n rodents ( g r o u n d - s q u i r r e l s and s p r i n g h a r e s , r e s p e c t i v e l y ) ; and t h e i r presence i n these hosts i s c l e a r l y the r e s u l t of a host t r a n s f e r . A second t r a n s f e r i s l i k e l y to have o c c u r r e d from g r o u n d - s q u i r r e l s to s p r i n g h a r e s , or v i c e - v e r s a , but s i n c e i t has no bearing on the r e l a t i o n s h i p s with primates i t has not been i n c l u d e d i n F i g u r e 15. According to Le Roux (1940) these two hosts l i v e i n c l o s e p r o x i m i t y , thus f a c i l i t a t i n g t h i s host t r a n s f e r . The three Oesophagostomum sp e c i e s from gibbons are a l s o c o n s i s t e n t with a c o e v o l u t i o n a r y h y p o t h e s i s . A l l three primate phylogenies c o n s i d e r e d i n t h i s t h e s i s suggest that w i t h i n the c a t a r r h i n e s , c e r c o p i t h e c i d s and gibbons are most p l e s i o m o r p h i c , and the seven most plesiomorphic Oesophagostomum s p e c i e s i n these two hosts support t h i s host r e l a t i o n s h i p . One p a r a s i t e s p e c i e s from gibbons ( CK b l a n c h a r d i ) has a l s o been repor t e d from orangutans. Since b l a n c h a r d i i s the most plesiomorphic of the species i n gibbons, i t s occurrence i n orangutans i s p o s t u l a t e d to be the r e s u l t of a host t r a n s f e r . The presence of O^ pachycephalum i n monkeys i s a l s o p o s t u l a t e d to be the r e s u l t of a host t r a n s f e r . Oesophagostomomum  stephanostomum has been r e p o r t e d from humans, chimpanzees and g o r i l l a s , and these r e p o r t s are c o n s i s t e n t with a c o e v o l u t i o n a r y framework (from w i t h i n the ' t r o g l o d y t i a n ' framework). F i n a l l y , 0. v e n t r i was d e s c r i b e d from a w i l d cat (the s c i e n t i f i c name of the w i l d cat was not given i n the o r i g i n a l d e s c r i p t i o n ) i n B r a z i l - South America (Thornton, 1924). If t h i s s p e c i e s i s v a l i d i t s r e l a t i o n s h i p with c a t s i s c l e a r l y the r e s u l t of a host t r a n s f e r . Of the twelve p a r a s i t e s p e c i e s s t u d i e d i n t h i s 51 a n a l y s i s , e i g h t are present i n a host f o r which a c o e v o l u t i o n a r y hypothesis i s s u f f i c i e n t . The only p a r a s i t e s f o r which hypotheses of host t r a n f e r s are necessary are x e r i and 0.  susannes from rodents, 0^ pachycephalum from monkeys, and 0.  v e n t r i from c a t s . Of those s p e c i e s i n primates only 0.  pachycephalum does not f i t i n t o a c o e v o l u t i o n a r y framework. Furthermore, of the e i g h t s p e c i e s that appear to have coevolved with primates, three have s e c o n d a r i l y t r a n s f e r r e d to a d d i t i o n a l primate h o s t s . These i n c l u d e the i n f e c t i o n of humans and chimpanzees by 0^ b i furcum , humans by 0^ brumpt i , and orangutans by 0_^  b l a n c h a r d i . In comparing the Oesophagostomum phylogeny with the ' h y l o b a t i a n ' and 'pongoian' primate phylogenies ( F i g u r e s 2 and 3, r e s p e c t i v e l y ) , i't i s necessary to p o s t u l a t e one a d d i t i o n a l host t r a n s f e r f o r each host phylogeny. A l l three primate phylogenies e x p l a i n e q u a l l y w e l l the occurrence of the four most plesiomorphic p a r a s i t e s p e c i e s i n c e r c o p i t h e e i d s , the three s p e c i e s i n gibbons, and the presence of 0^ pachycephalum in monkeys. However, the presence of 0_j_ stephanostomum in humans, chimpanzees and g o r i l l a s i s c o n s i s t e n t only with the ' t r o g l o d y t i a n ' h y p o t h e s i s . In order to e x p l a i n the presence of 0. stephanostomum w i t h i n the ' h y l o b a t i a n ' h y p o t h e s i s one must p o s t u l a t e that e i t h e r O^ stephanostomum has been s e c o n d a r i l y l o s t i n orangutans, or that t h i s p a r a s i t e s p e c i e s has coevolved with humans, and has s e c o n d a r i l y i n f e c t e d chimpanzees and g o r i l l a s . In other words, f i t t i n g the Oesophagostomum phylogeny to the ' h y l o b a t i a n ' hypothesis r e q u i r e s a more complex, l e s s parsimonious e x p l a n a t i o n . L i k e w i s e , attempting to f i t the 52 Oesophaqostomum phylogeny to the 'pongoian' primate phylogeny r e q u i r e s an e x p l a n a t i o n very s i m i l a r to the l e s s parsimonious one r e q u i r e d f o r the ' h y l o b a t i a n ' h y p o t h e s i s . The c o n c l u s i o n that the Oesophagostomum phylogeny b e t t e r f i t s the ' t r o g l o d y t i a n ' hypothesis i s , however, dependent on the re p o r t e d absence of 0^ stephanostomum i n orangutans. Of a l l the primate taxa s t u d i e d i n t h i s a n a l y s i s i t appears that only orangutans do not have an Oesophagostomum s p e c i e s that has coevolved with them. The presence of 0^ b l a n c h a r d i i n orangutans i s p o s t u l a t e d to be the r e s u l t of a host t r a n s f e r . The absence of a coevolved p a r a s i t e s p e c i e s i n orangutans suggests that there may be a p a r a s i t e s p e c i e s i n orangutans that has not yet been r e p o r t e d . If O^ stephanostomum i s present i n orangutans, then the Oesophagostomum phylogeny w i l l support a l l three primate phylogenies e q u a l l y w e l l . However, i f there i s a p a r a s i t e s p e c i e s i n orangutans that i s the s i s t e r s p e c i es to the group i n c l u d i n g 0^ stephanostomum and 0_^_ v e n t r i , then the p a r a s i t e phylogeny w i l l be more sup p o r t i v e of the ' t r o g l o d y t i a n 1 h y p o t h e s i s . In view of the incomplete c o l l e c t i o n s from the Asian apes ( p a r t i c u l a r l y orangutans), i t i s q u i t e p o s s i b l e that e i t h e r 0. stephanostomum , or a yet undescribed s p e c i e s i s present i n orangutans. Brooks (1981b) o u t l i n e d an approach f o r h a n d l i n g p a r a s i t e s as p h y l o g e n e t i c i n d i c a t o r s , and he showed that p a r a s i t e phylogenies can be used to r e c o n s t r u c t host p h y l o g e n i e s . However, i n cases where the host phylogeny has been proposed, a p a r a s i t e phylogeny can be mapped onto the host phylogeny. The c o n s i s t e n c y of mapping these p a r a s i t e c h a r a c t e r s w i l l be a 53 measure of the congruence between the two phylogenies. T h i s approach i s s i m i l a r to that o r i g i n a l l y suggested by Hennig (1966), and adopted by Cressey et a l . (1983). With r e s p e c t to the three primate phylogenies c o n s i d e r e d in t h i s t h e s i s , the q u e s t i o n becomes, which primate phylogeny does the p a r a s i t e phylogeny f i t best ? The method proposed here f o l l o w s c l o s e l y that developed by Brooks (1981b) and used by Cressey et a l . (1983). I t has been modified s l i g h t l y to f a c i l i t a t e a n a l y s i s with PHYSYS. The i n i t i a l step i n t h i s process i n v o l v e s c o n v e r t i n g the p a r a s i t e phylogeny (tree) to an a d d i t i v e b i n a r y matrix (Appendix 8). T h i s b i n a r y matrix i s then transformed i n t o a c h a r a c t e r matrix, in which the p a r a s i t e s p e c i e s i n each host are recorded (Appendix 9). In cases where a host group has more than one p a r a s i t e s p e c i e s , the c h a r a c t e r s t a t e s f o r the two p a r a s i t e s e r i e s are i n c l u s i v e l y combined, and a s i n g l e s e r i e s i s used. For example, three p a r a s i t e s p e c i e s are present i n gibbons ( Cv^  b l a n c h a r d i , r a i l l i e t i and 0^ ova turn ) , and the s e r i e s fo r each of these s p e c i e s i s combined to give a s i n g l e p a r a s i t e c h a r a c t e r s t a t e f o r gibbons. T h i s p a r a s i t e matrix can be mapped onto a p a r t i c u l a r host phylogeny by using the Diagnose command of PHYSYS. The host t r e e s are set by c o n v e r t i n g the t r e e t o p o l o g i e s i n t o numerical ancestor f u n c t i o n s (Appendix 10). The c o n s i s t e n c y index f o r mapping the p a r a s i t e c h a r a c t e r s onto a host phylogeny r e f l e c t the f i t of those c h a r a c t e r s (the p a r a s i t e t r e e ) , to that p a r t i c u l a r host t r e e . The Oesophagostomum data were mapped onto a l l three of the primate hypothese, and the c-i n d i c e s were 72% f o r the ' t r o g l o d y t i a n ' h y p o t h e s i s , and 66% for both the ' h y l o b a t i a n ' and 'pongoian' hypotheses. These v a l u e s 54 support the c o n c l u s i o n that the Oesophagostomum phylogeny i s more su p p o r t i v e of the ' t r o g l o d y t i a n ' h y p o t h e s i s . Furthermore, they support the c o n c l u s i o n that the p a t t e r n between primates and t h e i r Oesophaqostomum sp e c i e s i s predominantly c o e v o l u t i o n a r y . In o u t l i n i n g an approach to h a n d l i n g p a r a s i t e s as i n d i c a t o r s of host phylogenies, Brooks (1981b) emphasized the importance of a n a l y s i n g more than one group of p a r a s i t e s . The primary reason f o r t h i s i s that p a r a s i t e s do t r a n s f e r to new hosts, and i n order to minimize the e f f e c t s of such host switches, on i n f e r r i n g host r e l a t i o n s h i p s , more than one group of p a r a s i t e s should be analysed. T h i s approach i s based on the assumption that the l i k e l i h o o d of d i f f e r e n t p a r a s i t e groups e x h i b i t i n g c o - v a r y i n g c o l o n i z a t i o n p a t t e r n s i s very s m a l l . Although a number of d i f f e r e n t p a r a s i t e groups in primates have been s t u d i e d , an e x p l i c i t p h y l o g e n e t i c hypothesis of only on group ( En t e r o b i u s ) has been proposed. The f o l l o w i n g s e c t i o n w i l l f u r t h e r examine t h i s p a r a s i t e phylogeny. 55 II) E n t e r o b i u s evidence: The phylogeny of the genus Ent e r o b i u s i s presented in F i g u r e 16. One m u l t i s t a t e and t h i r t y b inary c h a r a c t e r s were used to r e c o n s t r u c t t h i s phylogeny and the c-index f o r the cladogram was 89%. The phylogeny of these p a r a s i t e s was claimed as support f o r the ' h y l o b a t i a n ' primate hypothesis (Brooks and Glen, 1982). I have analysed the E n t e r o b i u s phylogeny i n the same way that the Oesophaqostomum phylogeny was a n a l y s e d . That i s , the E n t e r o b i u s phylogeny was converted to an a d d i t i v e b i n a r y matrix (Appendix 11), and transformed i n t o a p a r a s i t e c h a r a c t e r matrix (Appendix 12). These p a r a s i t e c h a r a c t e r s were mapped onto the primate phylogenies, which were set and coded as numerical ancestor f u n c t i o n s (Appendix 10). The c - i n d i c e s f o r mapping these data onto the three primate phylogenies were 100% for the ' h y l o b a t i a n ' h y p o t h e s i s , and 95% f o r both the ' t r o g l o d y t i a n ' and 'pongoian' hypotheses. These v a l u e s support the c l a i m made by Brooks and Glen (1982) that t h i s phylogeny i s more su p p o r t i v e of the ' h y l o b a t i a n ' h y p o t h e s i s . These values a l s o support the c o n c l u s i o n that there has been a very high degree of c o e v o l u t i o n between the E n t e r o b i u s s p e c i e s and t h e i r primate h o s t s . T h i s statement holds up r e g a r d l e s s of which primate h y p o t h e s i s i s c o r r e c t . The values f o r the E n t e r o b i u s data (100% and 95%) are c o n s i d e r a b l y higher than those f o r the Oesophaqostomum data (72% and 66%). The d i f f e r e n c e between these two s e t s of data r e f l e c t the g r e a t e r degree of host s p e c i f i c i t y between E n t e r o b i u s and primates, than between Oesophagostomum and primates. In c o n t r a s t to the E n t e r o b i u s s p e c i e s , the Oesophagostomum s p e c i e s have 56 undergone a number of host t r a n s f e r s . These host switches have r e s u l t e d i n there being a lower degree of host s p e c i f i c i t y for the Oesophagostomum s p e c i e s . With respect to comparing p a r a s i t e phylogenies to host phylogenies, i t i s not the absolute values of c - i n d i c e s i n d i f f e r e n t a n a l y ses that are important, but r a t h e r the r e l a t i v e measures of the p a r a s i t e data to the d i f f e r e n t host phylogenies w i t h i n one a n a l y s i s . In both the Oesophagostomum and E n t e r o b i u s a n a l y s e s , a p a t t e r n of c o e v o l u t i o n predominates. The r e s u l t s of these s t u d i e s show that such c o e v o l u t i o n a r y p a t t e r n s can be d e t e c t e d i n the absence of s t r i c t h o s t / p a r a s i t e s p e c i f i c i t y . The method developed by Brooks (1981b) works e q u a l l y w e l l f o r cases i n which the host s p e c i f i c i t y i s not pronounced. Thus one need not assume a p r i o r i that there i s any r e l a t i o n s h i p between host s p e c i f i c i t y and h i s t o r i c a l a s s o c i a t i o n or c o e v o l u t i o n . At present two groups of p a r a s i t i c helminths in primates have been analysed ( E n t e r o b i u s and Oesophagostomum ) , and each of these are more su p p o r t i v e of d i f f e r e n t primate p h y l o g e n i e s . The E n t e r o b i u s data support the ' h y l o b a t i a n ' primate hypothesis , and the Oesophagostomum data the ' t r o g l o d y t i a n ' h y p o t h e s i s . N e i t h e r of these p a r a s i t e phylogenies support the 'pongoian' primate h y p o t h e s i s . Another source of p a r a s i t e data that may be used to push the p a r a s i t e evidence in favour of one of these two primate phylogenies i s the presence/absence evidence. I examined these data to see whether they favour one of these host p h y l o g e n i e s . 57 III ) Presence/absence evidence: These data have i n the past been claimed to support the ' t r o g l o d y t i a n ' h y p o t h e s i s . In t h i s t h e s i s a more thorough examination of the presence/absence data of helminths from c a t a r r h i n e primates i s presented. Three methods f o r a n a l y s i n g presence/absence data were used. The f i r s t of which was based on the percentages of p a r a s i t e s shared by p a i r s of h o s t s . T h i s measure i s a measure of raw s i m i l a r i t y and i s t h e r e f o r e not the recommended method of a n a l y s i s . I t i s provided i n t h i s t h e s i s so that d i r e c t comparisons with p r e v i o u s s t u d i e s can be made, and a l s o to see whether the host r e l a t i o n s h i p s i n f e r r e d from these percentages c o i n c i d e with the host r e l a t i o n s h i p s i n f e r r e d using other methods. The two other methods used i n t h i s a n a l y s i s i n v o l v e d t r a n s f o r m i n g the presence/absence data i n t o b i n a r y c h a r a c t e r s and submitting them to p h y l o g e n e t i c a n a l y s i s . Two coding p r o t o c o l s were adopted. The f i r s t i n v o l v e d the assumption that presence of a p a r t i c u l a r p a r a s i t e i s d e r i v e d and absence p r i m i t i v e , and the second which assumed that the s t a t e present in the most p r i m i t i v e host group i s p r i m i t i v e . The f i r s t of these two methods i s a l s o based on a measure of raw s i m i l a r i t y . Brooks (1981a) has argued that such measures are probably not s u i t a b l e f o r p h y l o g e n e t i c i n f e r e n c e s . For each of the c h e c k l i s t s analysed i n t h i s t h e s i s , these two coding p r o t o c o l s gave i d e n t i c a l r e s u l t s with respect to the i n f e r r e d host r e l a t i o n s h i p s . However, there are s i t u a t i o n s f o r which these two p r o t o c o l s w i l l give d i f f e r e n t r e s u l t s , and thus the method i n which the most p r i m i t i v e host f u n c t i o n s as an outgroup i s 58 recommended. Furthermore, the r e s u l t s obtained from the percent c a l c u l a t i o n s suggested s i m i l a r host r e l a t i o n s h i p s to those i n f e r r e d u sing the p h y l o g e n e t i c approaches. The f i r s t c h e c k l i s t analysed i n t h i s t h e s i s was that presented by Dunn (1966). T h i r t y four p a r a s i t e genera from gibbons, humans, chimpanzees and orangutans were claimed as support f o r the ' t r o g l o d y t i a n ' h y p o t h e s i s . R e a n a l y s i s of these data supports the c o n c l u s i o n s made by Dunn. Dunn a l s o concluded that the helminth c h e c k l i s t p a t t e r n s were " p h y l e t i c a l l y s i g n i f i c a n t " , and that " e c o l o g i c a l f a c t o r s cannot be very important " f o r determining the presence/absence p a t t e r n s in primates. Because the c o n c l u s i o n s made by Dunn were based on a c h e c k l i s t of only t h i r t y four p a r a s i t e genera from four primate ho s t s , two p r e d i c t i o n s were forwarded and ex p l o r e d . The f i r s t was t h a t , i f the helminth p a t t e r n s d i s c u s s e d by Dunn are p h y l o g e n e t i c a l l y ( p h y l e t i c a l l y ) s i g n i f i c a n t , expanding the c h e c k l i s t to in c l u d e p a r a s i t e s from other c a t a r r h i n e taxa should not a f f e c t the i n f e r r e d host r e l a t i o n s h i p s . T h i s p r e d i c t i o n was t e s t e d i n pa r t by adding the p a r a s i t e s in c e r c o p i t h e e ids to the c h e c k l i s t p u b l i s h e d by Dunn. I t was found that while p h y l o g e n e t i c a n a l y s i s c o n t i n u e d to support Dunn's c o n c l u s i o n s , the support f o r the ' t r o g l o d y t i a n ' hypothesis was c o n s i d e r a b l y weaker. A l s o , the r e l a t i v e percentages of shared p a r a s i t e s had gone from humans and chimpanzees s h a r i n g the hi g h e s t p r o p o r t i o n (64%), to humans and c e r c o p i t h e e i d s sharing more (71%). The second p r e d i c t i o n made as a r e s u l t of Dunn's a n a l y s i s was th a t , i f the t h i r t y four p a r a s i t e genera analysed by Dunn are a r e p r e s e n t a t i v e sample of a l l helminths i n c a t a r r h i n e s , then 5 9 expanding the c h e c k l i s t to i n c l u d e a l l the helminths r e p o r t e d from c a t a r r h i n e s , should not a f f e c t the i n f e r r e d host r e l a t i o n s h i p s . T h i s p r e d i c t i o n (as w e l l as the f i r s t p r e d i c t i o n ) was t e s t e d by a n a l y s i n g an expanded c h e c k l i s t of e i g h t y seven p a r a s i t e genera from c a t a r r h i n e primates. The host r e l a t i o n s h i p s i n f e r r e d from t h i s c h e c k l i s t do not agree with those i n f e r r e d from Dunn's c h e c k l i s t . I t appears that adding a d d i t i o n a l primate taxa does a f f e c t the i n f e r r e d host r e l a t i o n s h i p s . The r e s u l t s of t h i s a n a l y s i s suggest that the p a r a s i t e sample analysed by Dunn was not a r e p r e s e n t a t i v e sample. The r e s u l t s of the a n a l y s i s of the expanded presence/absence c h e c k l i s t do not support any of the three primate phylogenies presented i n t h i s t h e s i s . T h i s i s because humans share more p a r a s i t e s with c e r c o p i t h e c i d s than with other primates, and are thus ( a c c o r d i n g to these data) c o n s i d e r e d p l e s i o m o r p h i c to the Great Apes and gibbons. T h i s f i n d i n g c o n f l i c t s with a l l three p o s t u l a t e d primate phylogenies, and suggests that presence/absence p a t t e r n s may not always be r e l i a b l e f o r i n f e r r i n g host r e l a t i o n s h i p s . With respect to the r e l a t i o n s h i p s between chimpanzees, g o r i l l a s , orangutans, gibbons and c e r c o p i t h e c i d s , the expanded c h e c k l i s t p a t t e r n s support a c o e v o l u t i o n a r y h y p o t h e s i s . I t i s only the p a r a s i t e s i n humans that c o n f l i c t with t h i s c o e v o l u t i o n a r y p a t t e r n . Thus, i n general presence/absence data of p a r a s i t e s i n primates are good i n d i c a t o r s of host r e l a t i o n s h i p s . T h i s f i n d i n g supports Cressey et a l . (1983), who found that presence/absence data of copepods from mackerals supported a p a t t e r n of c o e v o l u t i o n between these hosts and p a r a s i t e s . These authors a l s o found that s p e c i a l i z e d 60 hosts d i v e r g e d most from t h i s c o e v o l u t i o n a r y p a t t e r n , because they had s e c o n d a r i l y l o s t many p a r a s i t e groups. With respect to the presence/absence data from primates, humans diverge most from a c o e v o l u t i o n a r y p a t t e r n . In t h i s case, humans have s e c o n d a r i l y a c q u i r e d many p a r a s i t e s . Thus, presence/absence data may give m i s l e a d i n g r e s u l t s when hosts have e i t h e r s e c o n d a r i l y a c q u i r e d many p a r a s i t e s , or have s e c o n d a r i l y l o s t many p a r a s i t e s . The o b s e r v a t i o n that humans and c e r c o p i t h e c i d s share most p a r a s i t e s can be e x p l a i n e d in part by examining the hosts' geographic ranges. While most c a t a r r h i n e taxa i n h a b i t very r e s t r i c t e d ranges, humans and c e r c o p i t h e c i d s have more extensive ranges. More imp o r t a n t l y , these ranges are widely o v e r l a p p i n g , and t h i s sympatry f a c i l i t a t e s the t r a n s f e r of p a r a s i t e s between these two h o s t s . Consequently, in some cases the most c l o s e l y r e l a t e d hosts may not share the most p a r a s i t e s i n common. Thus, c o n t r a r y to Dunn's c l a i m , the host ecology ( i n the form of geographic ranges) does seem important i n e x p l a i n i n g these h o s t / p a r a s i t e r e l a t i o n s h i p s . One of the major problems with using presence/absence data as a primary source of data i s that the r e p o r t s from the d i f f e r e n t host groups are uneven. In p a r t i c u l a r the r e p o r t s from Asian apes ( e s p e c i a l l y orangutans) and g o r i l l a s are incomplete. Thus the r e p o r t e d absence of a p a r t i c u l a r p a r a s i t e may be the r e s u l t of i n s u f f i c i e n t sampling. C o r r e c t i n g t h i s s i t u a t i o n i s d i f f i c u l t because some primate groups, f o r example, orangutans and g o r i l l a s , are q u i t e r a r e . Another problem with using presence/absence data i s that the nature of the i n f e c t i o n i s not 61 always known . T h i s problem i s complicated by the f a c t that most records are made from primates i n c a p t i v i t y , and i f the d u r a t i o n in c a p t i v i t y has been short the assumption i s u s u a l l y made that the i n f e c t i o n was a c q u i r e d in the w i l d . A l s o , h o s t / p a r a s i t e s p e c i f i c i t y changes i n c a p t i v i t y . For example, arthropods of the genus P e d i c u l u s show a high degree of host s p e c i f i c i t y in the w i l d but not i n c a p t i v i t y (Kuhn, 1967). F i n a l l y , although there are problems with presence/absence data, they do provide v a l u a b l e i n f o r m a t i o n . T h i s i s p a r t i c u l a r l y so i n the absence of p h y l o g e n e t i c r e c o n s t r u c t i o n s of p a r t i c u l a r groups of p a r a s i t e s in primates. For most primate taxa the presence/absence data supports a c o e v o l u t i o n a r y h y p o t h e s i s . The exception to t h i s i n v o l v e s humans who share more p a r a s i t e s with c e r c o p i t h e c i d s than with t h e i r c l o s e s t r e l a t i v e s . I t would appear that a number of p a r a s i t e genera have s e c o n d a r i l y i n f e c t e d humans (probably from c e r c o p i t h e c i d s ) , and that the host ranges of c e r c o p i t h e c i d s and humans are important i n e x p l a i n i n g t h i s o b s e r v a t i o n . Because humans and c e r c o p i t h e c i d s share the most p a r a s i t e s in common, presence/absence data cannot be used to support or favour any of the three primate phylogenies o u t l i n e d i n t h i s t h e s i s . SUMMARY (1) The Oesophagostomum phylogeny presented i s predominantly c o n s i s t e n t with a c o e v o l u t i o n a r y h o s t / p a r a s i t e p a t t e r n . Of the nine p a r a s i t e s p e c i e s present i n primates, only one i s present i n a host f o r which a c o e v o l u t i o n a r y hypothesis i s not s u f f i c i e n t . (2) Two phylogenies of p a r a s i t e s in primates are c o n t r a s t e d , and each supports a d i f f e r e n t host phylogeny. The Oesophagostomum phylogeny supports the ' t r o g l o d y t i a n ' primate h y p o t h e s i s , and the E n t e r o b i u s phylogeny the ' h y l o b a t i a n ' h y p o t h e s i s . (3) The degree of host s p e c i f i c i t y f o r the Pesophagostomum p a r a s i t e s i s lower than that f o r the E n t e r o b i u s data. T h i s however, does not i n t e r f e r e with d i s t i n g u i s h i n g those p a t t e r n s that have r e s u l t e d from c o e v o l u t i o n , from those that have r e s u l t e d from more recent host t r a n s f e r s . Furthermore, i f the ' t r o g l o d y t i a n ' hypothesis i s c o r r e c t , the p a r a s i t e group with the l e a s t host s p e c i f i c i t y shows the c o r r e c t host p a t t e r n . (4) The presence/absence data f o r helminths from c a t a r r h i n e s supports a * p a t t e r n of c o e v o l u t i o n i n a l l primate hosts except humans. 63 (5) Contrary to pre v i o u s c l a i m s , humans do not share most p a r a s i t e s with chimpanzees. Rather, humans and c e r c o p i t h e c i d s share most p a r a s i t e s . Because of t h i s , not a l l presence/absence data with respect to primates are ac c u r a t e f o r i n f e r r i n g host r e l a t i o n s h i p s . Furthermore, because humans share most p a r a s i t e s with c e r c o p i t h e c i d s , the presence/absence data can not be used to favour or support any of the primate phylogenies o u t l i n e d i n t h i s t h e s i s . (6) A p o s s i b l e e x p l a n a t i o n f o r the high p r o p o r t i o n of p a r a s i t e s shared by humans and c e r c o p i t h e c i d s i s o f f e r e d on the b a s i s of the widely o v e r l a p p i n g geographic d i s t r i b u t i o n s of these hosts.. Thus, the host ecology does appear important in e x p l a i n i n g helminth/primate p a t t e r n s . (7) The p a r a s i t e data do not favour a s i n g l e primate phylogeny . There are p a r a s i t e data i n support of both the ' t r o g l o d y t i a n ' and the ' h y l o b a t i a n ' hypotheses of primate e v o l u t i o n . At present there are no p a r a s i t e data i n favour of the 'pongoian' primate h y p o t h e s i s . 64 LITERATURE CITED Brooks, D.R. 1979. T e s t i n g the context and extent of host-p a r a s i t e c o e v o l u t i o n . Syst. Z o o l . 28:299-307. Brooks, D.R. 1981a. Raw s i m i l a r i t y measures of shared p a r a s i t e s : An e m p i r i c a l t o o l f o r determining host p h y l o g e n e t i c r e l a t i o n s h i p s ? Syst. Zool. 30:203-207. Brooks, D.R. 1981b. Hennig's p a r a s i t o l o g i c a l method: A proposed s o l u t i o n . Syst. Z o o l . 30:229-249. Brooks, D.R., T.B. Thorson and M.E. Mayes. 1981c. Fresh-water s t i n g r a y s (Potamotrygonidae) and t h e i r helminth p a r a s i t e s : t e s t i n g hypotheses of e v o l u t i o n and c o e v o l u t i o n . i n Advances i n C l a d i s t i c s , V.A. Funk and D.R. Brooks eds. V o l . 1 , pp 147-175. Brooks, D.R. and D.R. Glen. 1982. Pinworms and primates: A case study i n c o e v o l u t i o n . Proc. Helm. Soc. Wash. 49:76-85. Brooks, D.R. and C. M i t t e r . 1984. A n a l y t i c a l approaches to studying c o e v o l u t i o n . i n Fungus-Insect R e l a t i o n s h i p s , Q. Wheeler ed., Columbia Univ. Press, New York, pp 21-27. Brooks, D.R., R.T. O'Grady and D.R Glen, in p r e s s . Phylogeny of the Cercomeria Brooks, 1982 ( P l a t y h e l m i n t h e s ) . Proc. Helm. Soc. Wash. Brown, W.M., E.M. Prager, A. Wang and A.C. Wilson. 1982. M i t o c h o n d r i a l DNA sequences of primates: Tempo and mode of e v o l u t i o n . J . Molec. E v o l . 18:225-239. Cameron, T.W.N. 1929. The s p e c i e s of Ente r o b i u s i n primates J . H e l m i n t h o l . 7:161-182. Chabaud, A.G. and M. L a r i v i e r e . 1958. Sur l e s oesophagostomes p a r a s i t e s de 1'homme. B u l l . Soc. Path. Exot. 51:385-393. Chabaud, A. 1965. Ordre des S t r o n g y l i d a . i n T r a i t e de Zool o g i e , P.P. Grasse ed. V o l . 4. pp. 869-933. 65 Chabaud, A. and M.C. Durette-Desset. 1973. D e s c r i p t i o n d'un nouveau nematode oesophagostome, p a r a s i t e d'Hyemoschis au Gabon, et remarques sur l e genre Oesophaqostomum . B u l l . Mus. Natn. H i s t . Nat., P a r i s , 3e s e r . No. 184, Zo o l o g i e . 123:1415-1424. Ciochon, R.L. and A.B. C h i a r e l l i . 1980. E v o l u t i o n a r y b i o l o g y of the New World monkeys and c o n t i n e n t a l d r i f t . Plenum Press , New York. pp. 528. Cressey, R.F., B.B. C o l l e t t e and J.L. Russo. 1983. Copepods and scombrid f i s h e s : A study i n h o s t - p a r a s i t e r e l a t i o n s h i p s . F i s h e r y B u l l . 81:227-265. Dunn, F.L. 1966. Pat t e r n s of p a r a s i t i s m i n primates: Ph y l o g e n e t i c and e c o l o g i c a l i n t e r p r e t a t i o n s , with p a r t i c u l a r r e f e r e n c e to the Hominoidea. F o l i a Primat. 4:329-345. D u t r i l l a u x , B. 1979. Chromosomal e v o l u t i o n i n primates: T e n t a t i v e phylogeny from Microcebus murinus (Prosimian) to man. Hum. Genet. 48:251-314. E h r l i c h , P.R. and P.H. Raven. 1964. B u t t e r f l i e s and p l a n t s : A study i n c o e v o l u t i o n . E v o l u t i o n 18:586-608. E r n s t , C.H. and E.M. E r n s t . 1980. R e l a t i o n s h i p s between North American t u r t l e s of the Chrysemys complex as i n d i c a t e d by t h e i r e n d o p a r a s i t i c helminths. Proc. B i o l . Soc. Wash. 93:339-345. F a r r i s , J.S. 1970. Methods f o r computing Wagner t r e e s . Syst. Z o o l . 19:83-92. F a r r i s , J.S. 1974. Formal d e f i n i t i o n s of paraphyly and p o l y p h y l y . Syst. Z o o l . 23:548-554. F a r r i s , J.S. 1981. Distance data i n p h y l o g e n e t i c a n a l y s i s , in Advances i n C l a d i s t i c s , V.A. Funk and D.R. Brooks eds. New York B o t a n i c a l Gardens, New York. pp. 3-23. Garnham, P.C.C. 1973. D i s t r i b u t i o n of m a l a r i a p a r a s i t e s in primates, i n s e c t i v o r e s and bats. Symp. Z o o l . Soc. London. 33:377-404. 66 Gedoelst, L. 1916. Notes sur l a fauna p a r a s i t a i r e du Congo Beige. Rev. Zoo l . et Bot. A f r i c a i n e s . 5:1-90. Goodman, M., M.L. Weiss and J . C z e l u s n i a k . 1982. Molecular e v o l u t i o n above the s p e c i e s l e v e l : Branching p a t t e r n , r a t e s and mechanisms. Syst. Zool. 31:376-399. Hennig, W. 1966. Phylogenetic Systematics. Univ. I l l i n o i s Press, Urbana. pp. 263. I n g l i s , W.G. 1961. The o x y u r i d p a r a s i t e s (Nematodes) of primates. Proc. Z o o l . Soc. London. 136:103-122. Je n k i n s , F.A.Jr. and J.G. F l e a g l e . 1975. Knuckle-walking and the f u n c t i o n a l anatomy of the w r i s t s i n l i v i n g apes, in Primate F u n c t i o n a l Morphology and E v o l u t i o n , R.H. T u t t l e ed. Mouton, P a r i s , pp. 213-217. K e i t h , A. 1931. New D i s c o v e r i e s r e l a t i n g to the a n t i q u i t y of man. Norton, New York. K e l l o g g , V.L. 1896. New Mallophaga. I Proc. C a l i f o r n i a Acad. S c i . V o l . 6. Kluge, A.G. 1983. C l a d i s t i c s and the c l a s s i f i c a t i o n of the Great apes, i n New I n t e r p r e t a t i o n s of Ape and Human Ance s t r y . R.L. Ciochon and R.S. C o r r u c c i n i eds. Plenum Press, New York. pp. 151-177. Kuhn, H.J. 1967. P a r a s i t e s and the phylogeny of the c a t a r r h i n e primates, i n Taxonomy and Phylogeny of the Old World Primates with r e f e r e n c e s to the o r i g i n of man. B. C h i a r e l l i ed., Rosenberg and S e l l i e r , T o r i n o , pp 187-195. Kuntz, R.E. and B.J. Myers. 1969. A c h e c k l i s t of p a r a s i t e s and commensals reported from the Taiwan macaque ( Macaca  c y c l o p i s Swinhoe, 1862) . Primates . 10:71-80. Kuntz, R.E. 1982. S i g n i f i c a n t i n f e c t i o n s i n primate p a r a s i t o l o g y . J . Human E v o l . 1-1:185-194. 67 Le Roux, P.L. 1929. On an oesophagostome ( Oesophagostome susannae, sp. nov. ) from the springhare ( Pedetes c a f f r a "T^  together with remarks on c l o s e l y r e l a t e d s p e c i e s . Ann. Rep. of D i r . Vet. Serv. Union of South A f r i c a . 15:465-479. Le Roux, P.L. 1940. On the d i v i s i o n of the genus Oesophagostomum Mo l i n , 1861, i n t o subgenera and the c r e a t i o n of a new genus fo r the oesophagostomes of the wart-hog. J . H e l m i n t h o l . 17:1-20. L i c h t e n f e l s , J.R. 1980. Keys to genera of the s u p e r f a m i l y S t r o n g y l o i d e a . No. 7. CIH keys to the nematode p a r a s i t e s of v e r t e b r a t e s . R.C. Anderson, A.G. Chabaud and S. W i l l m o t t eds. pp. 40. L u c k e t t , W.P. 1980. Monophyletic or d i p h y l e t i c o r i g i n s of Anthropoidea and H y s t r i c o g n a t h i : Evidence of the f e t a l membranes, in E v o l u t i o n a r y b i o l o g y of the New World monkeys and c o n t i n e n t a l d r i f t . R.L. Ciochon and A.B. C h i a r e l l i eds. Plenum Press, New York. pp. 345-368. Lundberg, J.G. 1972. Wagner networks and a n c e s t o r s . Syst. Z o o l . 21:398-413. M i t t e r , C. and D.R. Brooks. 1983. Phylogenetic a s p e c t s of c o e v o l u t i o n . in C o e v o l u t i o n , D.J. Futuyma and M. S l a t k i n eds. Sinauer A s s o c i a t e s , Massachusetts, pp. Myers, B.J. and R.E. Kuntz. 1965. A c h e c k l i s t of p a r a s i t e s r e p o r t e d f o r the baboon. Primates. 6:137-194. Myers, B.J. and R.E. Kuntz. 1972. A c h e c k l i s t of p a r a s i t e s and commensals re p o r t e d f o r the chimpanzee ( Pan ) . Primates. 13:433-471. O r t l e p p , R.J. 1922. A new s p e c i e s of oesophagostome ( Oesophagostome x e r i ) from a rodent ( Xerus setosus ). Proc. Z o o l . Soc. 31:461-469. Peter s , W., P.C.C. Garnham, R. K i l l i c k - K e n d r i c k , N. Rajapaksa, W. Cheong and F. Cadigan. 1976. M a l a r i a of the orang-tan ( Pongo pygmaeus ) i n Bornea. Proc. Roy. Soc. London. 275:439-482. 68 Pilbeam, D. 1984. The descent of hominoids and hominids. S c i . Amer. 250(3):84-96. Popova, T . I. 1955. S t r o n g y l o i d s of Animals and Man. S t r o n g y l i d a e . V o l . V. E s s e n t i a l s of Nematodology. Moscow Akad. Nauk. SSSR. [ T r a n s l a t e d E n g l i s h v e r s i o n ] pp. 414. R a i l l i e t , A. and A. Henry. 1905. Encore un nouveau s c l e r o s t o m i e n { Oesophagostomum brumpti sp. nov. ) C. R. Soc. B i o l . 58:643-645. R a i l l i e t , A. and A. Henry. 1906. Sur l e s oesophagostomes des primates. C. R. Soc. B i o l . 60:448-450. R a i l l i e t , A. and A. Henry. 1909. Une seconde espece d'oesophagostome p a r a s i t e de 1'homme. B u l l . Soc. Path. Exot. 2:643-649. R a i l l i e t , A. and A. Henry. 1910. Etude zoologique de 1'oesophagostome de Thomas. Ann. Trop. Med. P a r a s i t . 4:89-92. R a i l l i e t , A. and A. Henry. 1912. Les oesophagostomes p a r a s i t e s de 1'homme. Arch. P a r a s i t o l o g i e . 14:562-583. Ruse, M. 1979. F a l s i f i a b i 1 i t y , c o n s i l i e n c e and sy t e m a t i c s . S y s t . Z o o l . 29:530-536. Sandosham, A.A. 1950. On En t e r o b i u s v e r m i c u l a r i s ( Linnaeus, 1758) and some r e l a t e d s p e c i e s from primates and rodents. J . H e l m i n t h o l . 24:171-204. S c h u l t z , A.H. 1930. The sk e l e t o n of the trunk and limbs of higher primates. Human B i o l . 2:303-438. Schwartz, J.H. 1984. The e v o l u t i o n a r y r e l a t i o n s h i p s of man and orang-utans. Nature. 308:501-505. Stanyon, R. and B. C h i a r e l l i . 1982. Phylogeny of the hominoidea: The chromosome evidence. J . of Human E v o l . 11:493-504. 69 S t i l e s , C.W. and A. H a s s a l . 1929. Key catalogue of p a r a s i t e s r e p o r t e d f o r primates (monkeys and lemurs) with t h e i r p o s s i b l e h e a l t h importance. And key catalogue of primates f o r which p a r a s i t e s are r e p o r t e d , by C.W. S t i l e s and M.O. Nolan. B u l l . (152) Hyg. Lab. U.S. Pub. H e a l t h Serv. pp. 409-601 S t o s s i c h , M. 1904. Sopra a l c u n i nematodi. Ann. Mus. Zool. N a p o l i . 1:1-4. Thornton, H. 1924. A review of the oesophagostomes i n the c o l l e c t i o n of the L i v e r p o o l school of t r o p i c a l medicine. Ann. Trop. Med. and P a r a s i t . 18:393-408. Travassos, L. and E. Vogelsang. 1982. Pesquizas h e l m i n t h o l o g i c a s r e a l i s a d a s em Hamburgo. C o n t r i b u i c o a ao conhecimento das e s p e c i e s de Oesophagostomum des primatas. Mem. I n s t . Oswaldo Cruz. T. 26:251-327. T u t t l e , R. 1975. P a r a l l e l i s m , b r a c h i a t i o n , and hominoid phylogeny. in Phylogeny of the Primates, W.P. Luckett and F.S. Szalay eds. Plenum Press, New York. pp. 447-480. Washburn, S.L. 1973. Primate s t u d i e s and human e v o l u t i o n . in Nonhuman Primates and Medical Research, G.H. Browne ed. Academic Press, New York. pp. 467-485. Watrous, L.E. and Q.D. Wheeler. 1981. The outgroup comparison method of c h a r a c t e r a n a l y s i s . Syst. Z o o l . 30:1-11. Whewell, W. 1847. The Philosophy of the I n d u c t i v e Sciences, Founded upon t h e i r H i s t o r y . Parker, London. Wiley, E.O. 1981. P h y l o g e n e t i c s : The Theory and P r a c t i c e of P h y l o g e n e t i c Systematics. John Wiley and Sons, New York, pp. 439. Yamaguti, S. 1958. Systema Helminthum. V o l . 1: D i g e n e t i c Trematodes. I n t e r s c i e n c e , New York. pp. 1575. Yamaguti, S. 1959. Systema Helminthum. V o l . 2: Cestodes. I n t e r s c i e n c e , New York. pp. 860. Yamaguti, S. 1961. Systema Helminthum. V o l . 3: Nematodes. I n t e r s c i e n c e , New York. pp. 1261. 70 Yamashita, J . 1963. E c o l o g i c a l r e l a t i o n s h i p s between p a r a s i t e s and primates. Primates. 4:1-96. 71 F i g u r e 1: ' T r o g l o d y t i a n ' primate h y p o t h e s i s . 72 73 F i g u r e 2: 'Hylobatian' primate h y p o t h e s i s . 75 F i g u r e 3: 'Pongoian' primate h y p o t h e s i s . F i g u r e 4: Oesophagostomum aculeatum a n t e r i o r end. A b b r e v i a t i o n s . C P . , c e p h a l i c p a p i l l a e ; M.C , mouth c o l l a r ; V.G., v e n t r a l groove; E.P., e x c r e t o r y pore; E . L . C , e x t e r n a l l e a f crown; I . L . C , i n t e r n a l l e a f crown; B.C., buccal capsule; D., d e n t i c l e ; O.F., oesophageal f u n n e l ; CD., c e p h a l i c d i s t e n s i o n ; 0., oesophagus. 70 .100 mm gure 5: Oesophagostomum stephanostomum a n t e r i o r end. A b b r e v i a t i o n s . M.C., mouth c o l l a r ; C P . , c e p h a l i c p a p i l l a e ; E.L.C., e x t e r n a l l e a f crown; I . L . C , i n t e r n a l l e a f crown; B.C., buccal c a p s u l e ; O.F., oesophageal f u n n e l ; CD., c e p h a l i c d i s t e n s i o n ; 0., oesophagus. 30 F i g u r e 6: Oesophagostomum stephanostomum p o s t e r i o r end of male A b b r e v i a t i o n s . C.B., c o p u l a t o r y bursa; D.R., d o r s a l ray; S., s p i c u l e ; V.R., v e n t r a l ray; E.L.R., e x t e r n o - l a t e r a l ray; L.L., l a t e r a l lobe; M.L.R., m e d i o - l a t e r a l ray; P.L.R p o s t e r i o - l a t e r a l ray; E.D.R., e x t e r n o - d o r s a l ray; D.L., d o r s a l lobe. 82 i .100mm gure 7: Oesophagostomum b i furcum p o s t e r i o r end of female. A b b r e v i a t i o n s . U., uterus; I., i n t e s t i n e ; 0., o v e j e c t o r ; Va., vagina; Vu., v u l v a ; R., rectum; A., anus; In., i n f u n d i b u l a e ; S., s p h i n c t e r ; Ve., v e s t i b u l e ; 84 i — .200mm gure 8: Oesophagostomum bifurcum en face s e c t i o n . A b b r e v i a t i o n s . S.M.P., sub-medial p a p i l l a e ; O.A., o r a l a p e r t u r e ; L.P., l a t e r a l p a p i l l a e ; E.L.C., e x t e r n a l l e a f crown; M.C., mouth c o l l a r . 86 I .05mm 8 7 F i g u r e 9: Oesophagostomum stephanostomum en face view. A b b r e v i a t i o n s . S.M.P., sub-medial p a p i l l a e ; E.L.C., e x t e r n a l l e a f crown; L.P., l a t e r a l p a p i l l a e ; M.C., mouth c o l l a r . 88 S.M.P. •- - E.L.C. - - - L . P M.C. • 05mm &2 F i g u r e 10: Host r e l a t i o n s h i p s i n d i c a t e d by a n a l y s i s of Dunn's (1966) presence/absence c h e c k l i s t . 90 F i g u r e 11: Host r e l a t i o n s h i p s i n d i c a t e d by a n a l y s i s of Dunn's (1966) presence/absence c h e c k l i s t p l u s c e r c o p i t h e c p a r a s i t e s . 92 93 F i g u r e 12: Host r e l a t i o n s h i p s i n d i c a t e d by a n a l y s i s of the expanded presence/absence c h e c k l i s t . F i g u r e 13: P a r t i a l p h y l o g e n e t i c r e c o n s t r u c t i o n of the genus Oesophagostomum . 6 denticles present 3 denticles present Well developed oesophageal funnel with sclerotized plates Partially developed oesophageal funnel Short vagina ^External corona with more than 8 elements Ventral cervical groove gure 14: Phylogeny of Conoweberia I h l e a and L e r o u x i e l l a pattern of external elements(6) 6 denticles present (9) male body length 18-25mm(1) female length 20-30mm(3) 30-40 external elements(5) , V-shaped funnel (7) •rounded external elements (8) ide oesophagus .20-.30mm ( K ) . wide cephalic distension (11) buccal capsule ratio 1/3£ - V4.1 (16) "ventral groove .30-.45mm (10) r long oesophagus 1.0-1.4mm (13) wide Duccal capsule .80-1.40mm (17)* female body width .65-1.10mm(23) male body width .60-1.20mm (24) male length 13-18mm(1) ;cephalic papillae ,50-.60mm (12 )* oesophagus ,70-1.0mm long (13) buccal capsule width 50-.7Omm(17)* „ long female tail(20)* oesophagus -16->20mm wide(U) vulva moves anteriorly (21)* ephalic papillae 40-.50mm (12)* long spicules (19) female width .50-.65mm(23) female length 13-20mm (3) ventral groove .23-.30mm (10) long oesophageal funnel (18) 'short female tail (20)* •buccal capsule ratio 1/2.6" 1 / 32 06) *vulva close to posterior extremity (21)* '3 denticles present(9) 'small external elements (15) rwell developed oesopageal funnel (7) 99 Fig u r e 15: Phylogeny of Conoweberia Ihl e a and L e r o u x i e l l a with host and geographic changes. .Homo V H o m o V VtadentsV Pongo Cat S 0UTH AMERICA Pan \SOUTH .EAST kASJA vSOUTHX EAST-ASIA SOUTH EAST ASIA Old World monkeys 101 F i g u r e 16: Phylogeny of E n t e r o b i u s . 102 TABLE 1: PARTIAL CLASSIFICATION OF THE STRONGYLOIDEA ACCORDING TO LICHTENFELS ( 1 980"T~; Superfami ly Family Subfamily T r i b e • S t r o n g y l i d a e D e l e t r o c e p h a l i d a e Syngamidae S t rongy lo idea Chabert i inae Chaber t i idae Cloac in inae Oesophagostominae B o u r g e l a t i o i d i n e a Oesophagostominea Bourgelat i inae TABLE 2 : CLASSIFICATION OF THE TRIBE OESOPHAGQSTOMINBA ( M o l i n , 1861 ) ACCORDING TO LICHTENFELS (1980) . Genera Subgenera Daubneyia LeRoux, 1940 Oesophaqostomum M o l i n , 1661 Oesophaqostomum M o l i n , 1861 Hysteracrum R a i l l i e t and Henry, 1913 Proteracrum R a i l l i e t and Henry, 1913 B o s i c o l a Sandground, 1929 Conoweber ia I h l e , 1922 Ih lea Travassos and Vogelsang , 1929 L e r o u x i e l l a Chabaud and D u r e t t e - D e s s e t , 1973 TABLE 3: OESOPHAGOSTOMUM SPECIES AND SPECIMEN LOCATION : Subgenus Spec ies Mu£ A i e u n i E B c Conoweberia b l a n c h a r d i T ravassos and Voqe lsanq , 1932 aculeatum L instow, 1879 bi furcum C r e p l i n , 1849 ovatum L instow, 1906 pachycephalum M o l i n , 1861 r a i l l i e t i T ravassos and Voqe lsanq , 1932 zukowskyi T ravassos and iVoqelsanq, 1932 brumpti R a i l l i e t i and Henry, 1905 X X X X X X X X X X X Ih lea stephanostomum S t o s s i c h , 1904 v e n t r i Thornton, 1924 X X X L e r o u x i e l l a x e r i O r t l e p p , 1922 suzanne LeRoux, 1940 X Museums : A B C - B r i t i s h Museum of Natu ra l H i s t o r y (London) - Un i ted S ta tes N a t i o n a l Museum ( B e l t s v i l l e ) - Museum N a t i o n a l D ' H i s t o i r e N a t u r e l l e ( P a r i s ) TABLE 4 : SUMMARY OF CHARACTERS AND CODED CHARACTER STATES : Character Character Coding s t a t e s Male body l eng th - i n c r e a s i n g t rans fo rmat ion 6-13mm 0 13-18mm 1 18-25mm 2 - d e c r e a s i n g t rans fo rmat ion 6-13mm 0 <6mm 1 Female body length - i n c r e a s i n g t rans fo rmat ion 7-13mm 0 13-2Omm 1 20-30mm 2 - d e c r e a s i n g t rans fo rmat ion 7-13mm 0 <7mm 1 Number of elements in the e x t e r n a l corona 8-14 0 30-40 1 Pat te rn of e x t e r n a l elements - en face s e c t i o n F i g . 7 0 F i g . 8 1 Pat te rn of oesophageal s c l e r o t i z a t i o n absent 0 cup-shaped 1 V -shaped 2 Shape of e x t e r n a l elements t r i a n g u l a r 0 rounded 1 Number of oesophageal teeth absent 0 3 1 6 2 TABLE 4 ( c o n t . . . ) : SUMMARY OF CHARACTERS AND CODED CHARACTER STATES : D is tance of v e n t r a l groove from a n t e r i o r end .16-.23mm 0 .23-.30mm 1 .30-.45mm 2 width of c e p h a l i c d i s t e n s i o n .12-.25mm 0 .25-.32mm 1 D is tance of c e p h a l i c p a p i l l a e from a n t e r i o r .30-.40mm 0 end .40-.50mm 1 .50-.60mm 2 Length of oesophagus .30-.70mm 0 .70-1.0mm 1 1.0-1.4mm 2 Width of oesophagus .09-.16mm 0 .16-.20mm 1 .20-.30mm 2 Length of ex te rna l elements .025-.040mm 0 .012-.025mm 1 R a t i o of bucca l capsu le length to width 1/1 .3 -1/1 .5 0 1/2 .5 -1/3 .2 1 1/3.6 -1/4.1 2 width of bucca l capsu le .020-.050mm 0 .050-.070mm 1 .080-.140mm 2 Length of oesophageal funnel .024-.040mm 0 .040-.10mm 1 TABLE 4 ( C o n t . . . ) : SUMMARY OF CHARACTERS AND CODED CHARACTER STATES : Length of s p i c u l e .70-1.25mm 0 .50-.70mm 1 1.25-2.00mm 2 Length of female t a i l .20-.40mm 0 .13-.20mm 1 Transverse processes absent 0 present 1 D is tance of vu lva from p o s t e r i o r end . 50—.7 5mm 0 .35-.50mm 1 Maximum female body width .30-.50mm 0 .50-.65mm 1 .65-1.10mm 2 Maximum male body width - i n c r e a s i n g t rans fo rmat ion . 30-.60mm 0 .60-1.20mm 1 - d e c r e a s i n g t rans fo rmat ion .30-.60mm 0 <.30mm 1 109 TABLE 5 i PARASITE CHECKLIST FROM DUNN (1966) : P a r a s i t e genera Hy lobates Ponqo Pan. Homo T r i c h u r i s C a p i l l a r i a x S t r o n g y l o i d e s St rongy lus . . . .X Oesophaqostomum Ternidens x Ancylostoma Necator x Tr i c h o s t r o n q y l u s . . . . X L i b y o s t r o n q y l u s Pi thecos t ronqy lus Nematodi rus Dioctophyma Enterob ius Probstmayr ia A s c a r i s Chi twoodspi rura Physocephalus Streptopharaqus S e t a r i a X 1 X | 1 Tetrapetalonema . . . .X Dipetalonema D i r o f i l a r i a Loa x Onchocerca . . . . X Mon i 1 i formi s . . . .X D ic rocoe l ium Cone innum Leiper t rema Phaneropsolus x Anoplocephala Hydat iqe ra B e r t i e l l a 1 Hymenolepis 1 1 1 TABLE 6 1 CHECKLIST DATA FROM DUNN (1966) WITH CERCOPITHECIDS ADDED : P a r a s i t e genera Hy lobates Ponqo Pan Homo Old World Monkeys T r i c h u r i s C a p i l i a r i a  S t r o n g y l o s e s  S t ronqy lus  Oesophaqostomum Tern idens Ancylostoma Necator .X .X T r i c h o s t r o n q y i u s L i b y o s t r o n q y l u s  Pi thecos t ronqy lus Nematodirus Dioctophyma Ente rob ius Probstmayr ia A s c a r i s .X Chi twoodspi rura Physocephalus  Streptopharaqus S e t a r i a .X Tetrapetalonema Dipetalonema D i r o f l i a n a • X .X Loa Onchocerca M o n i l i f o r m i s D i c r o c o e l i u m Cone innum Leiper t rema  Phaneropsolus Anoplocephala  Hydat iqera B e r t i e l l a .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X Hymenolepi s .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X .X TABLE 7 : CESTODES REPORTED FROM CATARRHINE PRIMATES : P a r a s i t e genera Old World Monkeys Hy lobates Homo Ponqo G o r i l l a Pan B e r t i e l l a . . .X . Anoplocephala D i l e p s i s Echinococcus X | | Hymenolepi s Ine rmicaps i fe r Mesocestoides (L) M u l t i c e p s X | | Spi rometra X X Taenia (L) Taen ia R a i l l i e t i n a Vampi ro lep is i i TABLE 8 2. TREMATODES REPORTED FROM CATARRHINE PRIMATES : P a r a s i t e genera O ld World Hy lobates Homo Ponqo G o r i l l a Pan Monkeys Artyfechinostomum X Brodenia C l o n o r c h i s X Concinnum X D ic rocoe l ium X x Dip los tomid (L) Euparadistomum Eurytrema F a s c i o l a X X X G a s t r o d i s c o i d e s H a p l o r c h i s Metaqonimus Oqmocotyle O p i s t h o r c h i s X X Paragonimus Phaneropsolus P l a q i o r c h i s Primatotrema P y q i d i o p s i s Le ipert rema X X X Rept i l o t r e m a Schi stosoma . . . . X 1 Spelotrema Watsonius 1 1 TABLE 9 : NEMATODES REPORTED FROM CATARRHINE PRIMATES : P a r a s i t e genera Old World Hy lobates Homo Ponqo G o r i l l a Pan Monkeys Abbrev ia ta • * • • X Acanthocheilonema • • • • X Ancylostoma Anatrichosoma . . .X A s c a r i s Bruqia Characostomum • • • • X C a p i l l a r i a . X Chi twoodspi rura X C l e o a s c a r i s • • • • X Co lobyst ronqy lus * • • • X Dipetalonema D i t o f i l a r i a Dracunculus E d e s o n f i l a r i a • • • • X F i l a r i a x Globocephalus • * • • X Gonqylonema X Hete rak i s • • • • X Hetodera • • • • X Leptosoma • • • • X • Loa . . . . X . . . L i b y s t r o n q y l u s Macacanema • • • • X Meta the laz ia • • • • X M i c r o f i l a r i a x Necator X . . . Nocht i • a • . X Oesophagostomum Oxyur is Nematodi rus Onchocerca X Physa loptera x Physocephalus P i t h e c o s t r o n q y l u s x Probstmayr ia X R h a b d i t i s • • • • X R i c t u l a r i a « • • • X Streptopharaqus x S e t a r i a S t r o n g y l o i d e s St ronqy lus X Subulura • • • • X T a u r i l a • • • • X Tern idens X T r i chocepha lus 1 Tr i c h o s t r o n q y l u s T r i c h u r i s Tetrapetalonema 1 I I I 1 TABLE 10: CONSISTENCY INDICES OF CHARACTERS DSED IN THE ANALYSIS OF OESOPHAGOSTOMUM : Character Cons is tency Index 1 Inc reas ing male body leng th 100.00 2 Decreas ing male body length 100.00 3 Inc reas ing female body length 100.00 4 Decreas ing female body length 100.00 5 Number of e x t e r n a l elements 100.00 6 Pat te rn of e x t e r n a l elements en face view 100.00 7 Pat te rn of funnel s c l e r o t i z a t i o n 100.00 8 Shape of e x t e r n a l elements 100.00 9 Number of oesophageal t e e t h 100.00 10 Length of c e p h a l i c d i s t e n s i o n 100.00 1 1 Width of c e p h a l i c d i s t e n s i o n 100.00 12 P o s i t i o n of c e p h a l i c p a p i l l a e " 66.67 13 Length of oesophagus 100.00 14 Width of oesophagus 100.00 15 Length of e x t e r n a l elements 100.00 16 Buccal capsu le r a t i o 100.00 17 Buccal capsu le width 66.67 18 Length of oesophageal funne l 100.00 19 Length of s p i c u l e s 100.00 20 Length of t a i l 50.00 21 P o s i t i o n of vu lva 50.00 22 Presence of t r a n s v e r s e processes 100.00 23 Female body width 100.00 24 Inc reas ing male body width 100.00 25 Decreas ing male body width 100.00 TABLE 11: PERCENTAGES OF SHARED PARASITES : Dunn(1966) C h e c k l i s t Dunn + Monkey P a r a s i t e s Expanded C h e c k l i s t Hylobates + Ponqo 7/20 35% 7/20 35% 7/19 37% Hylobates + Pan 9/31 29% 9/31 29% 12/36 33% Hylobates + G o r i l l a 5/23 22% Hylobates + Homo 9/25 36% 9/25 36% 13/40 33% Hylobates + C e r c o p i t h e c i d s 11/24 46% 14/75 19% Ponqo + G o r i l l a 4/19 21% Ponqo + Pan 10/29 34% 10/29 34% 9/33 27% Ponqo + Homo 10/23 43% 10/23 43% 8/39 21% Ponqo + C e r c o p i t h e c i d s 11/23 48% 9/74 12% G o r i l l a + Pan 13/32 41% G o r i l l a + Homo 8/42 19% G o r i l l a + C e r c o p i t h e c i d s 8/78 9% Pan + Homo 18/28 64% 18/28 64% 17/52 33% Pan + C e r c o p i t h e c i d s 17/30 57% 22/83 27% Homo + C e r c o p i t h e c i d s 17/24 71% 34/76 45% TABLE 12 : HOST RECORDS AND DISTRIBUTION OF SPECIES IN THE STUDY GROUP . P a r a s i t e spec ies Hosts D i s t r i b u t i o n 0 . zukowskyi monkeys A f r i c a 6 . b i furcum monkeys humans chimpanzees A f r i c a S . E . A s i a 0 . brumpti monkeys humans (orangutans) A f r i c a 0 . aculeatum monkeys S . E . A s i a 0 . susannes spr inghares S . A f r i c a 0 . x e r i g r o u n d - s q u i r r e l s S . A f r i c a 0 . b lanchard i gibbons orangutans S . E . A s i a 0 . r a i l l i e t i gibbons S . E . A s i a 0 . ovaturn gibbons S . E . A s i a 0 . pachycephalum monkeys A f r i c a 0 . stephanostomum humans chimpanzees g o r i l l a s A f r i c a S . America 0 . v e n t r i cat S . America 117 APPENDIX 1: DATA FROM DUNN (1966) CODED SUCH THAT PRESENCE"1 AND  ABSENCES: 1010101000000011011001100000010111 Hylobates 101110000010.101000001100010100010 Ponqo 1111111111010111100111111111001010 Pan 1110111110001101000011111110000011 Homo 118 APPENDIX 2: DATA FROM DUNN (1966) CODED HISTORICALLY WITH AN  OUTGROUP; 0000000000000000000000000000000000 Hylobates 0001001000101110011000000010110101 Ponqo 0101010111010100111110011111011101 Pan 01000101 10001 1 1001 101.001 1 1 10010100 Homo 119 APPENDIX 3 : DATA FROM DUNN (1966) WITH CERCOPITHECIDS ADDED AND CODED  SUCH THAT PRESENCE"1 AND ABSENCE=0 : 1 1 1 1 1 1 1 1 1010010100101 1 1 1001001001 1 Cercop i thee ids 1010101000000011011001100000010111 Hy lobates 1011100000101101000001100010100010 Ponqo 1 1 1 1 1 1 1 11 101011 1 1001 1 1 1 1 1 1 1 1001010 Pan 1110111110001101000011111110010011 Homo 120 APPENDIX 4: DATA FROM DUNN (1966) WITH CERCOPITHECIDS AND CODED HISTORICALLY WITH AN OUTGROUP : 0000000000000000000000000000000000 C e r c o p i t h e c i d s 0101010110100110010010010010000100 Hylobates 0100011110001000001010010000110001 Ponqo 0000000001110010101100001101011001 Pan 0001000000101000001000001100000000 Homo 121 APPENDIX 5: DATA FROM EXTENDED CHECKLIST CODED AHISTORICALLY SUCH  THAT PRESENCE*1 and ABSENCE"0 : 1 01 1 1 1 111 1 1 01 1 1 1 01 11 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 001 1 1 1 1111111111011111110010101110111111110 C e r c o p i t h e c i d s 10001000010000000000000000001000000000010100000011 0010000000000010100001010010100001010 Hylobates 10011101111110010100011100111000001010011110100011 1010000001000010100100000000100011110 Homo 10000000000000000100000000000000100000000100000011 0010000000000000100000000000110000010 Ponqo 1 1000000000000001000000000000000000000010100010010 0010000001100100100100010000000010000 G o r i l l a 110000000100000011000000000000000010000101001 10011 0011000001000110111110110011110010111 Pan 122 APPENDIX 6: DATA FROM EXTENDED CHECKLIST CODED HISTORICALLY WITH AN OUTGROUP : 00000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000 C e r c o p i t h e c i d s 001101111010111i0111111111110111011111101011001100 110111111101110101001111110001i110100 Hylobates 00100010000101100011100011000111010101100001101100 0101111110011101010110101110011100000 Homo 00111111111011110011111111111111111111111011001100 1101111111011111010010101110001111100 Ponqo 01111111111011111111111111111111011111101011011101 1101111110111011010110111110111101110 G o r i l l a 01111111101011111011111111111111 0101111010111 -11100 1100111110011001001100011101001101011 Pan APPENDIX 7: DATA FOR OESOPHAGOSTOMUM ANALYSIS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 2 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 9 1 0 1 0 0 0 0 0 1 1 0 1 0 0 9 1 0 1 2 1 2 9 1 1 2 0 2 0 1 9 2 1 1 2 1 2 2 2 1 1 0 1 0 0 9 1 0 1 2 9 9 2 9 1 0 0 1 0 0 9 1 0 1 1 0 1 0 0 1 2 0 2 0 1 1 2 1 2 2 1 2 2 2 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 2 0 2 0 1 1 2 1 2 2 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0 Outgroup 1 1 1 2 0 0 0 1 0 0 b l a n c h a r d i 1 0 1 0 1 1 0 0 0 0 aculeatum 1 0 0 0 0 9 0 0 0 0 b i furcum 1 0 0 0 1 1 0 0 0 0 brumpti 2 2 1 2 9 9 0 9 1 0 ovaturn 2 2 1 2 0 0 0 2 1 0 pachycephalum 1 2 1 2 0 0 0 2 1 0 r a i l l i e t i 1 0 1 2 1 1 1 1 0 0 susannes 2 2 1 2 0 0 0 2 1 0 v e n t r i 1 0 1 2 1 1 1 1 0 0 xer i 0 1 0 1 0 0 0 0 0 1 zukowskyi 2 2 1 2 0 0 0 2 1 0 stephanostomum 124 APPENDIX 8: ADDITIVE BINARY MATRIX FOR THE OESOPHAGOSTOMUM PHYLOGENY: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 l u k o w s k y i 1 1 1 b i f u r c u m 2 1 1 1 b r u m p t i 3 1 1 1 1 ac u l e a t u m 4 1 1 1 1 1 x e r i 5 1 1 1 1 1 1 1 susannes 6 1 1 1 1 1 1 1 b l a n c h a r d i 7 1 1 1 1 1 1 1 r a i l l i e t i 8 1 1 1 1 1 1 1 1 ovatum 9 1 1 1 1 1 1 1 1 1 pachycephalum 10 1 1 1 1 1 1 1 1 1 1 stephanostomum 11 1 1 1 1 1 1 1 1 1 1 1 v e n t r i 12 1 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 17 1 1 1 1 1 1 1 18 1 1 1 1 1 1 19 1 1 1 1 1 20 1 1 1 1 21 1 1 1 22 1 1 23 1 APPENDIX 9 : OESOPHAGOSTOMUM DATA  CHARACTER MATRIX . CODED AS A PARASITE 111100000100001111 000000111000000111 011000000010011111 000000100000000001 000000000010011111 010000000010011111 11 Cercop i thee ids 11 Hy lobates 11 Homo 11 Ponqo 11 G o r i l l a 11 Pan 126 APPENDIX 10: PRIMATE PHYLOGENIES AS NUMERICAL ANCESTOR FUNCTIONS; HYLOBATIAN TREE 006 CERCOPIT HYLOBATE HOMOHOMO PONGOPON GORILLAG PANPANPA 011 HYLO TREE 00110010000900080007000700080009001000110011 TROGLODYTIAN TREE 006 CERCOPIT HYLOBATE PONGOPON HOMOHOMO GORILLAG PANPANPA 011 TROG TREE 00110010000900080007000700080009001000110011 PONGOIAN TREE 006 CERCOPIT HYLOBATE HOMOHOMO PONGOPON GORILLAG PANPANPA 011 PONGO TREE 0011001000070007000800080009000900100011 APPENDIX 11: ADDITIVE BINARY MATRIX FOR THE ENTEROBIUS PHYLOGENY: 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 l e m u r i s 1 1 1 i n g l i s i 2 1 1 1 1 1 1 1 1 z a k i r i 3 1 1 1 1 1 1 1 1 l o n g i s p i c u l u m A 1 1 1 1 1 1 1 p r e s b y t i s 5 1 1 1 1 1 1 p e s t e r i 6 1 1 1 1 1 1 c o l o b i s .7 1 1 1 1 1 b r e v i c a u d a 8 1 1 1 1 b i p a p i l l a t u s 9 1 1 1 v e r m i c u l a r i s 10 1 1 1 1 b u c k l e y i 11 1 1 1 1 1 l e r o u x i 12 1 1 1 1 1 1 a n t h r o p o p i t h e c i 13 1 1 1 1 1 1 U 1 1 1 1 1 1 1 15 1 1 1 1 1 16 1 1 1 1 1 1 17 1 1 1 1 18 1 1 1 1 1 19 1 1 1 20 1 1 l 1 21 1 1 1 22 l 1 2-* 1 128 APPENDIX 12: ENTEROBIUS DATA CODED AS A PARASITE CHARACTER  MATRIX . 01 1 1 1 1 1 1 100001010101 1 1 1 C e r c o p i t h e c i d s 00000000000000000000000 Hy lobates 00000000010000000010011 Homo 00000000001000001010011 Pongo 00000000000100101010011 G o r i l l a 00000000000010101010011 Pan 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096068/manifest

Comment

Related Items