UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Detection of spruce beetle (Dendrotonus rufipennis) infestations using aerial photographs Churcher, J. Joseph 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 C49.pdf [ 8.62MB ]
Metadata
JSON: 831-1.0096050.json
JSON-LD: 831-1.0096050-ld.json
RDF/XML (Pretty): 831-1.0096050-rdf.xml
RDF/JSON: 831-1.0096050-rdf.json
Turtle: 831-1.0096050-turtle.txt
N-Triples: 831-1.0096050-rdf-ntriples.txt
Original Record: 831-1.0096050-source.json
Full Text
831-1.0096050-fulltext.txt
Citation
831-1.0096050.ris

Full Text

DETECTION OF SPRUCE BEETLE (Dendroctonus rufipennis) INFESTATIONS USING AERIAL PHOTOGRAPHS by J . JOSEPH CHURCHER B. Sc. Agr. M c G i l l University 1981 A thesis submitted i n p a r t i a l f u l f i l l m e n t of the requirements for the degree of MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of Forestry, Forest Entomology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA MARCH 1984 © J . JOSEPH CHURCHER, 1984 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e head o f my department o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department Of Forest Entomology  The U n i v e r s i t y o f B r i t i s h C o l u m b i a 1956 Main Mall V a n c ouver, Canada V6T 1Y3 Date A p r i l 13, 1984 DE-6 (3/81) i i ABSTRACT Normal colour (Kodak 2448) and colour i n f r a r e d (Kodak 2443) a e r i a l photographs (1:2000) of spruce trees infested with the spruce beetle (Dendroctonus rufipennis) were obtained during the summer and f a l l of 1982. The study s i t e was located southeast of Prince George, B.C., on the north shore of Narrow Lake. The 70 mm stereo-transparencies were studied v i s u a l l y , the health status of each tree was determined, and the c l a s s i f i c a t i o n s compared to actual health categories as determined from extensive ground truthing. Densities of the i n d i v i d u a l dye-layers were measured, r a t i o s of these de n s i t i e s calculated, and the data transformed as described by Moore (1980) and H a l l et a l . (1983). The densitometric variables were analysed using both analysis of variance and discriminant analysis computer programs av a i l a b l e through the University of B r i t i s h Columbia Computing Centre. Analysis of the healthy, s t r i p - a t t a c k , 1981-attack and dead tree images led to the following conclusions. The advantages of colour i n f r a r e d f i l m do not surpass those of the normal colour f i l m , and v i c e versa. The decision of which f i l m type to use should be determined by the photo-i n t e r p r e t e r . V i s u a l analysis of the health classes studied i n t h i s research i s s u f f i c i e n t , without densitometric a n a l y s i s . If densitometry i s used, the basic dye-layer measurements and r a t i o s are adequate. The Moore transformations do not provide any further information. The r a t i o between the green- and red-sensitive dye-forming laye r s , obtainable from both normal colour and colour i n f r a r e d f i l m s , was the one v a r i a b l e that c o n s i s t e n t l y separated the images of healthy, attacked and dead trees i n i i i the analyses of variance. This variable also figured prominently i n the discriminant analyses. An optimal photographic scale f o r i n f e s t a t i o n detection and the minimum amount of time a f t e r attack required by a tree to show signs of s t r a i n on a e r i a l photographs have yet to be determined. These questions must be answered before t h i s survey technique could be termed an operational procedure i n spruce beetle management. i v TABLE OF CONTENTS Page ABSTRACT i i LIST OF TABLES v LIST OF FIGURES v i i ACKNOWLEDGEMENTS i x 1. INTRODUCTION 1 1.1 Spruce Beetle Biology 4 1.2 Normal Colour and Colour Infrared Films 7 1.3 L i t e r a t u r e Review 14 1.4 Research Objectives 18 2. METHODS 20 2.1 Site Selection and Survey 20 2.2 Photography 22 2.3 Analyses 22 2.3.1 V i s u a l Analysis 22 2.3.2 Densitometric Analyses 24 2.3.3 Stress Detection 28 2.3.4 Evaluation of Survey Method 28 3. . RESULTS AND DISCUSSIONS 29 3.1 Visual (Qualitative) Analysis 31 3.2 Densitometric (Quantitative) Analyses 36 3.2.1 Analyses of Variance 36 3.2.2 Regression Analyses 44 3.2.3 Discriminant Analyses 47 3.3 Stress Detection Analysis 54 3.4 Evaluation of Survey Method 54 4. CONCLUSIONS 57 5. LITERATURE CITED 59 6. APPENDIX I 63 V Table LIST OF TABLES I Spruce beetle i n f e s t a t i o n s by p r o v i n c i a l forest region, based on 1980- and 1981-attacked trees Page II C r i t e r i a used i n the determination of spruce tree health when viewing normal colour and colour i n f r a r e d stereo-transparencies. The corresponding c l a s s i f i c a t i o n symbols described by Murtha (1972) are provided i n parentheses 23 III Moore Transformations. These transformations more c o r r e c t l y simulate the reflectance of various wavelengths of l i g h t from the tree crown 27 IV Actual monthly p r e c i p i t a t i o n recorded by Environment Canada at the Prince George B.C. A i r p o r t f o r the period October 1981 to September 1982, and the corresponding t h i r t y - y e a r means (1951-1980) 30 V V i s u a l c l a s s i f i c a t i o n of health status of spruce trees i n two p l o t s , located at Narrow Lake, B.C. 33 VI Mean and range of c o e f f i c i e n t of v a r i a t i o n of three density measurements taken for each dye-layer of normal colour and colour i n f r a r e d f i l m images of beetle-attacked spruce trees, Narrow Lake B.C., 1982 37 VII Dye-layer density values and derived variables used to i d e n t i f y images of healthy, s t r i p - a t t a c k , 1981-attack and dead spruce trees on colour i n f r a r e d and normal colour a e r i a l f i l m s . Photographs were obtained from Plot 1, Narrow Lake study s i t e on July 24, 1982 38 VIII Dye-layer density values and derived variables used to i d e n t i f y images of healthy, s t r i p - a t t a c k , 1981-attack and dead spruce trees on colour i n f r a r e d and normal colour a e r i a l f i l m s . Photographs were obtained from Plot 2, Narrow Lake study s i t e on July 24, 1982 IX Dye-layer density values and derived variables used to i d e n t i f y images of healthy and s t r i p - a t t a c k spruce trees on colour i n f r a r e d f i l m . Photographs were obtained from Narrow Lake study s i t e on A) July 24 and B) September 23, 1982. A subset of the July CIR images used i n Tables VII and VIII i s used here for purposes of comparison 40 43 v i X P a r t i a l c o r r e l a t i o n c o e f f i c i e n t s obtained when comparing c o l o n i z a t i o n of xylem by fungi, expressed as a percentage of the s t r i p - a t t a c k tree's circumference e x h i b i t i n g fungal a c t i v i t y , to the density variables from colour i n f r a r e d f i l m s . No co r r e l a t i o n s existed for the normal colour photographs 45 XI Output of the discriminant analysis of July 24, 1982 colour i n f r a r e d images of spruce trees. The discriminant function was defined by Plot 1 data and tested with Plot 2 values 48 XII The percentage of spruce trees c o r r e c t l y c l a s s i f i e d by discriminant analysis using the o r i g i n a l dye-layer de n s i t i e s and r a t i o s , and the corresponding transformations. This i s a c l a s s s i f i c a t i o n of the d e f i n i t i o n p l o t s . The discriminant functions applied to Plot 1 were o r i g i n a l l y defined using Plot 1 data, with the same procedure repeated f o r Plot 2. The eigenvalues are expressions of the r e l a t i v e powers of the tests 50 XIII The percentage of spruce trees c o r r e c t l y c l a s s i f i e d by discriminant analysis using the o r i g i n a l dye-layer de n s i t i e s and r a t i o s , and the corresponding transformations. This i s a c l a s s i f i c a t i o n of the test p l o t s . The discriminant functions tested by Plot 1 were o r i g i n a l l y defined using Plot 2 data, and vice versa 51 XIV Variables selected during discriminant analysis of four health classes of spruce trees using o r i g i n a l dye-layer de n s i t i e s and r a t i o s , and the transformed counterparts. Variables are l i s t e d i n order of s e l e c t i o n 52 XV C l a s s i f i c a t i o n of health status of spruce trees by discriminant analysis using basic variables only, with a comparison of r e s u l t s from v i s u a l analysis (as displayed i n Table V) 53 v i i LIST OF FIGURES Figure Page 1 Areas of current beetle-infested spruce trees detected i n 1982 i n the forest regions of the province of B r i t i s h Columbia 3 2 The one-, two- and three-year l i f e cycles of the spruce beetle (Dendroctonus rufipennis Kirby) 5 3 The electro-magnetic spectrum 8 4 The s e n s i t i v i t i e s of the three layers of Kodak Normal Color (NC) (Type 2448) and Color Infrared (CIR) (Type 2443) a e r i a l f i l m s . A yellow f i l t e r i s incorporated i n the NC f i l m to prevent the l i g h t from exposing the two lower l a y e r s . In Type 2443 f i l m a yellow f i l t e r i s added to the camera to prevent exposure of a l l layers by blue wavelengths. The i n f r a r e d - s e n s i t i v e layer of CIR f i l m i s , i n r e a l i t y , the upper layer of the f i l m . It has been placed d i r e c t l y above the base i n t h i s figure for s i m p l i c i t y 9 5 Generalized reflectance pattern of v i s i b l e and near-infrared wavelengths of l i g h t from a healthy ponderosa pine needle. An o v e r a l l reduction of reflectance occurs when studying a vegetation canopy 10 6 Formation of the image of a healthy green needle on normal colour and colour i n f r a r e d f i l m s , following the s p e c t r a l reflectance given i n Figure 5 12 7 Location of two study plots on the north shore of Narrow Lake, 60 km southeast of Prince George, B.C. 21 8 Stereo-photographs of beetle-infested spruce trees, obtained on July 24, 1982 using i ) colour i n f r a r e d and i i ) normal colour a e r i a l f i l m s . Scale of the photographs i s approximately 1:2000 32 9 Stereo-photographs of beetle-infested spruce trees, obtained on i ) July 24 and i i ) September 23, 1982, using colour i n f r a r e d a e r i a l f i l m s . Scale of the photographs i s approximately 1:2000 34 10 Stereo-photographs of beetle-infested spruce trees, obtained on i ) July 24 and i i ) September 23, 1982, using normal colour a e r i a l f i l m s . Scales of the photographs are approximately 1:2000 and 1:1000, re s p e c t i v e l y 35 Density of dye i n the i n f r a r e d - s e n s i t i v e dye-forming layer of colour i n f r a r e d f i l m versus the extent of fungal a c t i v i t y , exhibited as a percentage of bole circumference colonized by the fungus i x ACKNOWLEDGEMENTS I wish to acknowledge the support, suggestions and constructive c r i t i c i s m provided by my supervisor, Dr. John McLean, and the members of my graduate committee, Drs. Peter Murtha and Bob Woodham. I thank Nedenia Holm for dr a f t i n g the f i g u r e s , and the Mi n i s t r y of Forests' employees at the Prince George Regional O f f i c e , e s p e c i a l l y Ross Wilde, for t h e i r help i n the f i e l d research. This thesis was f i n a n c i a l l y supported by the B r i t i s h Columbia M i n i s t r y of Forests, Protection Branch, and by a G.R.E.A.T. Award from the Science Council of B r i t i s h Columbia. 1 1. INTRODUCTION The spruce beetle (Dendroctonus rufIpennis Kirby) i s presently the major pest: attacking mature white and Engelmann spruce stands (Picea glauca (Moench) Voss and P_. engelmannii Parry, r e s p e c t i v e l y ) , and t h e i r hybrids, i n B r i t i s h Columbia. The Forest Insect and Disease Survey (FIDS) estimated that more than 4.4 m i l l i o n cubic metres of timber had been attacked and k i l l e d during the summers of 1980 and 1981 (Wood and Van Sickle 1983) (Table I ) . Most of the damage occurred i n the Prince George and Prince Rupert Forest Regions ( F i g . 1). Infestations were also reported i n Alberta, New Brunswick, Nova Scotia, Prince Edward Island and Newfoundland (Sterner and Davidson 1982). Spruce trees may r e t a i n green needles for up to two years a f t e r attack. A e r i a l detection of beetle-infested trees (as c a r r i e d out i n the FIDS reports quoted above) i s d i f f i c u l t u n t i l the f o l i a g e fades s u b s t a n t i a l l y or u n t i l only the bare branches remain (Schmid 1976). Therefore, new areas of i n f e s t a t i o n may remain undetected for one, two or more years, allowing s u f f i c i e n t time f o r the beetles to attack, k i l l the tree, complete t h e i r l i f e c y c l e , and move elsewhere. A method of detecting attacked trees s t i l l containing the beetles i s necessary i n order to allow the forest manager time to implement some form of insect c o n t r o l . The major purpose of t h i s study was to test the use of normal colour and colour i n f r a r e d a e r i a l photographs for the detection of spruce trees recently attacked by D. r u f i p e n n i s . Table I. Spruce beetle i n f e s t a t i o n s by p r o v i n c i a l f o r e s t region, based on 1980- and 1981-attacked trees (from Wood and Van Sickle 1983) AREA VOLUME REGION INFESTED KILLED (ha) (,000 m3) Cariboo 10,750 585 Nelson 7,000 250 Kamloops 50 — Prince George 57,500 2,000 Prince Rupert 24,000 1,600 Total 99,300 4,435 3 Figure 1. Areas of current b e e t l e - i n f e s t e d spruce trees detected i n 1982 i n the forest regions of the province of B r i t i s h Columbia (from Wood and Van S i c k l e 1983). 4 1.1 Spruce Beetle Biology The spruce beetle prefers to form g a l l e r i e s below the bark on the underside of downtrees. This food source i s available i n recent wind throws or i n the residue remaining a f t e r logging operations. However, when the beetle population increases to epidemic proportions and can no longer be supported only by downtrees and logs, the insects attack l i v e , standing trees. I t i s at t h i s time that D. rufipennis i s c l a s s i f i e d as a pest. This insect can follow either a one-, two- or three-year l i f e c y c l e , depending on the speed of l a r v a l growth. Normally, the beetle requires two years to complete i t s development ( F i g . 2). However, i n cooler climates the. spruce beetle may take as long as three years to mature from egg to adult. During summers of above average temperatures larvae may develop f a s t e r , allowing the adults to emerge during the f a l l of the year of attack. This would dramatically increase the number of attacking beetles the following spring, since these one-year cycle insects would be joining with the normal population of two-year cycle adults. A l l further discussion w i l l be applicable to epidemic populations attacking and l i v i n g i n l i v e , mature spruce trees, following a two-year l i f e c y c l e . After the ambient temperature exceeds 16°C (Dyer 1973), usually i n June, the adults leave t h e i r overwintering s i t e s at the base of the host and f l y to new trees. Once a female locates a suitable breeding s i t e , usually at a height of one to two metres on the tree bole, she begins construction of a g a l l e r y below the bark. Other i n d i v i d u a l s , both male and female, are attracted to the host material by an aggregation pheromone, emitted by the o r i g i n a l female (Borden 1982). After mating with a male, the female lays eggs on either side of her newly constructed g a l l e r y . The larvae appear 5 A D U L T S A T T A C K (BLUE STAIN FUNGI INTRODUCED) J U N E A D U L T S MAY O V E R W I N T E R f AT T R E E B A S E O C T O B E R 1 - Y E A R / ^ C Y C L E P U P A T E / v S E P T E M B E R (DURING HOT J U L Y 1 A U G U S T SUMMERS) L A R V A L F E E D I N G 'A A U G U S T t MAY L A R V A L F E E D I N G S E P T E M B E R 1 O C T O B E R 2 - Y E A R N O V E M B E R C Y C L E I (DURING NORMAL A P R I L CONDITIONS) M A Y 1 A U G U S T C O N T I N U E D F E E D I N G L A R V A E O V E R W I N T E R L A R V A L F E E D I N G 3 - Y E A R C Y C L E (IN COLDER CLIMATES) S E P T E M B E R I O C T O B E R C O N T I N U E D F E E D I N G A P R I L * N O V E M B E R L A R V A E O V E R W I N T E R Figure 2. The one-, two- and three-year l i f e cycles of the spruce beetle (Dendroctonus rufipennis Kirby)• 6 within three to four weeks and begin to feed gregariously. As they grow i n s i z e , the larvae s t a r t to feed i n d i v i d u a l l y , perpendicular to the egg g a l l e r y , and continue to destroy the phloem tissues around the tree. The larvae overwinter under the bark, and commence feeding the following spring. After four l a r v a l i n s t a r s the insects form pupae, and by mid-summer to early f a l l the adult beetles emerge from the tree. To allow the f l i g h t muscles to develop, these adults must overwinter at the base of the tree. In the spring, the f u l l y mature adults are ready to attack new host material (Schmid and Frye 1977). While the adults are forming the g a l l e r y , they introduce a blue stain i n g fungi (Ceratocystis spp.). In heavily attacked trees, the c o l o n i z a t i o n of the xylem by the fungi and the destruction of the phloem by the feeding larvae prevent the translocation of water and nutrients i n the stem, k i l l i n g the tree within one year. The f o l i a g e does not show any immediate e f f e c t of the loss of nutrients, and usually remains green for up to two years a f t e r attack (Schmid 1976; Schmid and Frye 1977). The tree responds to the i n i t i a l attack by forming r e s i n , or p i t c h , i n the region of the disturbance (Kramer and Kozlowski 1979). If enough p i t c h i s formed, the beetle may be 'drowned' or pushed out of i t s recently constructed g a l l e r y . In t h i s way, not a l l beetle attacks are successful. Occasionally, only one side of the tree i s attacked by the beetle and colonized by the fungi. The tissues on that side of the tree are k i l l e d and are incapable of transporting nutrient material. However, the tissues on the opposite, unattacked side of the tree are able to translocate enough nutrients to allow the e n t i r e tree to l i v e . This condition i s c a l l e d s t r i p -attack (Schmid and Frye 1977). 7 1.2 Normal Colour and Colour Infrared Films Colour films are s e n s i t i v e to a small portion of the electromagnetic spectrum, from 0.4 to 0.9 micrometres ( F i g . 3). (Because f a r - i n f r a r e d and thermal-infrared wavelengths are of no i n t e r e s t i n terms of t h i s study, the words near-infrared and i n f r a r e d w i l l be used interchangeably.) Each of the three layers i n colour films i s composed of s i l v e r halide c r y s t a l s suspended i n g e l a t i n , and i s s e n s i t i v e to a s p e c i f i c region of the spectrum ( F i g . 4). A yellow f i l t e r i s incorporated below the yellow dye-forming layer of the normal colour f i l m to prevent blue l i g h t from exposing the two lower l a y e r s . When using colour i n f r a r e d f i l m , however, a yellow f i l t e r (Wratten 12, for instance) must be added to the camera to compensate for the blue s e n s i t i v i t y exhibited by a l l three layers ( F r i t z 1967). Most of the blue and red l i g h t incident upon healthy green f o l i a g e i s absorbed by the ch l o r o p h y l l s , with very l i t t l e l i g h t of these wavelengths being r e f l e c t e d from the surface. More green l i g h t i s r e f l e c t e d from the canopy, and thus a healthy green needle appears green to the human eye. In the near-infrared region (0.7 to 0.9 micrometres) there i s a very high percentage of the incident l i g h t r e f l e c t e d from the needle surface and from i n t e r n a l components (Knipling 1970; Gausman 1977) ( F i g . 5). As more l i g h t of a s p e c i f i c wavelength i s r e f l e c t e d from the f o l i a g e , more s i l v e r s a l t s are exposed i n the corresponding la y e r . Processing of the f i l m r e s u l t s i n an inverse amount of dye being formed. The amount of dye formed controls the amount of l i g h t absorbed when the f i n a l photograph i s viewed. Yellow dye subtracts blue l i g h t , magenta dye removes the green portion of the spectrum, and cyan dye eliminates the red wavelengths. Thus, high reflectance of i n f r a r e d l i g h t exposes a large proportion of s i l v e r 0.4 0.5 0.6 0.7 0.9 (Mm) ULTRA -VIOLET BLUE GREEN * RED * NEAR INFRARED + + + \ VISIBLE \ L I G H T 1 0 6 I 10 _L_ 10 _1 »4 10" —1— 10 r2 10 ,-1 WAVELENGTH iixm) 10" J _ 10' _L_ 10' _1_ 10" 10 M _ l _ 10* _ u 10 v _ J _ 10' 10 —1 8 10 9 RAYS X RAYS MICROWAVE T.V. & RADIO Figure 3. The electro-magnetic spectrum (after L i l l e s a n d and K i e f e r 1979). * = Normal colour f i l m s e n s i t i v i t i e s + = Colour infrared f i l m s e n s i t i v i t i e s os 9 S E N S I T I V I T Y F I L M T Y P E D Y E - F O R M I N G L A Y E R NORMAL COLOR 2448 BLUE GREEN ( + BLUE) RED (+ BLUE) YELLOW FILTER BASE BACKING YELLOW MAGENTA CYAN YELLOW FILTER COLOR IR 2443 GREEN (+ BLUE) RED (4- BLUE) INFRARED (+ BLUE ] BASE BACKING YELLOW MAGENTA CYAN Figure 4. The s e n s i t i v i t i e s of the three layers of Kodak Normal Color (NC) (Type 2448) and Color Infrared (CIR) (Type 2443) a e r i a l f i l m s . A yellow f i l t e r i s incorporated i n the NC f i l m to prevent the l i g h t from exposing the two lower l a y e r s . In Type 2443 f i l m a yellow f i l t e r i s added to the camera to prevent exposure of a l l layers by blue wavelengths. The i n f r a r e d -s e n s i t i v e layer of CIR f i l m i s , i n r e a l i t y , the upper layer of the f i l m . It has been placed d i r e c t l y above the base i n t h i s f i g u r e f o r s i m p l i c i t y ( a f t e r F r i t z 1967). 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 BLUE GREEN RED NEAR INFRARED W A V E L E N G T H ( p m ) Figure 5. Generalized reflectance pattern of v i s i b l e and near-infrared wavelengths of l i g h t from a healthy ponderosa pine needle. An o v e r a l l reduction of reflectance occurs when studying a vegetation canopy (after H e l l e r 1968; Knipling 1970; Colwell 1974). 11 halide s a l t s i n the IR-sensitive l a y e r , r e s u l t i n g i n l i t t l e development of the cyan dye. Upon viewing, very l i t t l e of the red l i g h t i s absorbed by the cyan dye, allowing most to pass completely through the processed f i l m ( i n the case of a transparency). The observer then sees a large portion of red l i g h t (Murtha 1978; K l e i n 1982) ( F i g . 6). Measurements of the density (D) of the i n d i v i d u a l dye-layers may be obtained by using a densitometer. 1 ^ D = l o g 1 0 - = l o g 1 0 — T P r Transmittance (T) i s a r a t i o of the l i g h t that passes through the transparency ( P r ) , r e l a t i v e to a constant incident l i g h t (P^) (Eastman Kodak Co. 1971; Scarpace 1978). Through the use of various l i g h t f i l t e r s , each dye-layer of the colour films may be measured i n d i v i d u a l l y . A blue f i l t e r allows the measurement of the yellow dye-layer density, a green f i l t e r gives the magenta layer density value, and the cyan dye density i s obtained by using a red f i l t e r . White l i g h t provides the t o t a l density of a l l dye-layers combined. A difference i n dye-layer densities implies a change i n the amount of l i g h t being r e f l e c t e d from the l e a f . Densitometry provides a basis for numerical i n t e r p r e t a t i o n of l i g h t reflectance and any differences i n reflectance that may occur between healthy and stressed trees. The preceding d e s c r i p t i o n of densitometry i s perhaps an o v e r s i m p l i f i c a t i o n of the process. The following information was obtained from various Eastman Kodak Company publications (1970, 1979), and from the Operator's Manual from the Macbeth TR-524 Transmission R e f l e c t i o n NORMAL COLOUR COLOUR INFRARED SENSITIVITY FILM EXPOSURE BLUE GREEN RED DYE-LAYER YELLOW MAGENTA CYAN SENSITIVITY GREEN RED INFRARED DYE-LAYER YELLOW MAGENTA CYAN FILM DEVELOPMENT B G R PROJECTION OF WHITE LIGHT THROUGH TRANSPARENCY (BLUE, GREEN & RED WAVELENGTHS) GREEN IMAGE APPEARS GREEN G R IR 77777y'77777>V7777?'777777. •///S/y '7/////////T7/ •////// Y M C BLUE RED IMAGE APPEARS MAGENTA Figure 6. Formation of the image of a healthy green needle on normal colour and colour in f r a r e d films, following the spectral reflectance given i n Figure 5 (after Murtha 1978). 13 Densitometer (Anon. 1975). The blue f i l t e r (a Wratten 94) has i t s peak transmittance at about 0.46 micrometres, midway i n the blue wavelength region of the electromagnetic spectrum ( F i g . 3). However, no f i l t e r i s perfect and the Wr 94 also transmits at low l e v e l s (below 1%) i n other wavelengths (0.20 um to 0.43 urn and 0.50 um to 0.76 um). Thus the f i l t e r e d l i g h t produced by the densitometer i s not 'pure'. The density reading obtained when the blue f i l t e r i s i n place i s mainly a r e s u l t of the yellow dye-layer, but may also contain some information from the magenta and cyan l a y e r s . S i m i l a r l y , the green f i l t e r (Wr 93) peaks at approximately 0.55 micrometres, but transmits wavelengths of 0.20 um to 0.52 um and 0.58 um to 0.72 um at less than 1%. The densitometer's red f i l t e r (Wr 92) has a less than 1% transmittance from 0.20 um to 0.62 um and produces a dominant wavelength of about 0.65 micrometres. The 'white l i g h t ' used to measure the combined dye-layers i s a c t u a l l y f i l t e r e d through a Wratten 106 f i l t e r ( l e s s than 1% transmittance from 0.20 um to 0.42 um, 1% to 10% transmittance of wavelengths from 0.42 um to 0.52 um and greater than 10% transmittance of wavelengths larger than 0.52 um) and a CC 10 R f i l t e r . While the densitometer may not be precise i n i t s measurements, i t i s a useful t o o l i n providing the r e l a t i v e d e n s i t i e s of the three i n d i v i d u a l dye-layers, and also the t o t a l density of the transparency. 14 1.3 L i t e r a t u r e Review While discussing the e f f e c t s of b i o t i c and a b i o t i c factors on plants, various authors have used d i f f e r e n t terms to describe s i m i l a r , i f not i d e n t i c a l , circumstances. In the following l i t e r a t u r e review, and throughout t h i s t h e s i s , the d e f i n i t i o n s described below w i l l be followed s t r i c t l y . Stress i s an external factor with the p o t e n t i a l to harm, temporarily or permanently, a l i v i n g organism. Any change i n the physiology or morphology of the organism r e s u l t i n g from a stress i s referred to as s t r a i n ( L e v i t t 1980). Murtha (1972) defines damage as a reduction of the organism's f i n a n c i a l and/or b i o l o g i c a l value. Detecting s t r a i n i n plants through the use of photographs has been studied for half a century, with contradictory r e s u l t s being common. The f i r s t reported use of i n f r a r e d f i l m i n detection of plant s t r a i n was by Bawden (1933). He noted that small areas of decay on potato leaves, caused by a plant v i r u s , were not r e a d i l y v i s i b l e when panchromatic (black and white) plates were used under laboratory conditions. However, there was a much larger contrast between the healthy and dead portions of the leaf when a plate s e n s i t i v e to i n f r a r e d wavelengths was used. Colwell (1956) studied rusts of wheat, oats, barley and rye. He concluded that the fungal hyphae invading the spongy mesophyll of the leaves reduced the amount of i n f r a r e d reflectance from the diseased plant. Thus areas of r u s t - i n f e s t e d crops appeared darker than normal plants on i n f r a r e d a e r i a l photographs. These r e s u l t s occurred two to three weeks before a change i n the v i s i b l e portion of the spectrum was apparent on panchromatic or normal colour photos. 15 The terms pr e v i s u a l , nonvisual, e x t r a v i s u a l and early detection have been used to name the e f f e c t described i n the preceeding two studies. They r e f e r to a change i n the reflectance of i n f r a r e d l i g h t that i s undetectable to the human eye or on normal colour or black and white f i l m s . Often t h i s s h i f t i s followed by increases and/or decreases i n reflectance of other regions of the spectrum, which are v i s u a l l y detectable. Murtha (1978) and Fox (1978) explain the differences between these terms. The term previsual w i l l be used here. Spurr (1948) and Wear and Bongberg (1951) were the f i r s t to discuss a e r i a l photography as a method f o r surveying forest insect damage. It was hoped that the use of a e r i a l photographs as a survey technique would enhance the eventual c o n t r o l of d e f o l i a t o r s and bark beetles. In a study of ponderosa pine (Pinus ponderosa Laws) attacked by the mountain pine beetle (Dendroctonus ponderosae Hopk.), Heller (1968) found a decrease i n the near-infrared reflectance of l e s s than 10%, with a s l i g h t increase i n the red region of the spectrum. He did not f e e l that these differences were large enough to be detectable on e i t h e r normal colour (NC) or colour i n f r a r e d (CIR) f i l m s . In f a c t , he found no s i g n i f i c a n t differences between damage detection accuracy of the two f i l m types. H e l l e r and Wear (1969), i n a further examination of the same study, concluded that CIR films did not provide any previsual detection of damage, and caused a higher number of i n t e r p r e t a t i o n e r r o r s . They then described a multistage sampling system based on normal colour photographs taken at a scale of 1:8000. The 'spongy mesophyll theory', as described by Colwell (1956), was being questioned by the l a t e s i x t i e s . Knipling (1970) reviewed the theories and research concerning near-infrared reflectance. The s c a t t e r i n g and 16 eventual reflectance of near-infrared wavelengths was demonstrated to be caused primarily by c e l l w a l l / a i r space i n t e r f a c e s . In the early stages of s t r a i n , as c e l l s begin to collapse, c a v i t i e s of a i r may form between c e l l s , a c t u a l l y increasing the amount of w a l l / a i r i n t e r f a c e . Work car r i e d out by Carlson and G i l l i g a n (1983) supported t h i s observation. This would r e s u l t i n an increase of i n f r a r e d r e f l e c t a n c e . Knipling (1970) and Oester (1981) further discussed the p h y s i o l o g i c a l changes of a plant affected by s t r e s s . As the stress p e r s i s t s and the plant becomes more strained, c e l l walls would begin to break down, reducing the number of i n t e r f a c e s , subsequently decreasing the amount of scattering and r e f l e c t i o n of near-infrared l i g h t . As the chlorophylls become affected by the s t r a i n , v i s i b l e wavelength absorption i s reduced, permitting a higher reflectance i n t h i s region of the spectrum. The s u s c e p t i b i l i t y of colour i n f r a r e d f i l m to background material ( s o i l , bark, limbs) may account for further reductions i n near-infrared wavelength re f l e c t a n c e . As the canopy thins, the l e s s r e f l e c t i v e background may reduce the amount of near-infrared l i g h t exposing the f i l m . Thus, the differences between a healthy and strained canopy w i l l be further enhanced i n the i n f r a r e d region (Knipling 1970; Oester 1981). Gausman (1977) found that 8% of the near-infrared scattering and reflectance was due to stomata, n u c l e i , c e l l walls, c r y s t a l s and cytoplasm. Murtha (1982) suggested that any previsual changes i n the i n f r a r e d region may be due to the e f f e c t s of s t r a i n on these leaf and i n t e r c e l l u l a r structures. He further suggested that the c e l l w a l l / a i r space i n t e r f a c e changes discussed by K n i p l i n g (1970) may occur concurrently with changes i n the r e f l e c t e d v i s i b l e wavelengths. Bark beetle (Ips typographus L.) caused s t r a i n of Norway spruce (Picea 17 ables (L.) Karst.) was studied by Arnberg and Wastenson (1973) i n Sweden. They were able to note beetle-infested trees on normal colour and colour i n f r a r e d a e r i a l f i l m within two weeks a f t e r attack, and three weeks before any f o l i a g e colour changes were v i s i b l e from the ground. They also concluded that CIR f i l m was more advantageous than NC f i l m i n picking out attacked trees. The use of a e r i a l films as previsual detectors of strained plants i n f i e l d conditions was dismissed by Rhode and Olson (1969), H e l l e r (1971), C i e s l a (1977), C i e s l a and K l e i n (1978), Fox (1978) and Seevers (1981). They a l l found that differences between the images of strained and unstrained trees occurred at the same time on both normal colour and colour i n f r a r e d f i l m s . C i e s l a (1977) concluded that a e r i a l films did have a useful purpose i n damage detection and c i t e d several examples of t h e i r e f f e c t i v e use. Rhode and Olson (1969) and Fox (1978) found that thermal-infrared scanners were useful i n detecting trees affected by s t r e s s . L i l l e s a n d eit a l . (1975) photographed poplar trees i n the laboratory using cameras equipped with black and white i n f r a r e d f i l m (Kodak Type 2424) and 0.8 micrometre wavelength f i l t e r s . Under these conditions, they were able to p r e v i s u a l l y detect ozone stressed trees. A e r i a l i n f r a r e d f i l m was used to estimate spruce mortality i n Arizona i n 1975. Lessard and Wilson (1977) reported that large scale (1:2250) CIR photographs were useful i n determining the number of b e e t l e - k i l l e d stems per acre. However, they studied only those trees that had already l o s t t h e i r f o l i a g e , including snags. Because the purpose of t h e i r research was to estimate the damage incurred from a past beetle i n f e s t a t i o n , no attempt was made to i d e n t i f y currently attacked trees. 18 H a l l et a l . (1983) used densitometric analysis of colour i n f r a r e d f i l m dye-layers to s t a t i s t i c a l l y separate healthy Douglas-fir trees (Pseudotsuga  menziesii (Mirb.) Franco) and those attacked by the Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.). They concluded that strained trees were detectable on CIR f i l m three months a f t e r successful beetle attack, while the crowns appeared green from the ground. A l i t e r a t u r e review of p r e v i s u a l detection of stressed trees has been presented by Puritch (1981). A bibliography of publications dealing with remotely sensed forest damage has been compiled by Henninger and Hildebrandt (1980). 1.4 Research Objectives As stated e a r l i e r , the primary purpose of t h i s study was to evaluate the use of normal colour and colour i n f r a r e d a e r i a l photographs i n the detection of spruce trees recently attacked by the spruce beetle. The objectives of t h i s study were: 1. To determine i f images of spruce trees recently attacked by the spruce beetle are v i s u a l l y d i s t i n c t on normal colour and colour i n f r a r e d transparencies. 2. To determine q u a n t i t a t i v e l y i f a s i g n i f i c a n t d i f f e r e n c e e x i s t s between the images of attacked and unattacked trees, using densitometric analysis of the i n d i v i d u a l dye-layers of o r i g i n a l , p o s i t i v e transparencies. 19 3. To determine when attacked trees f i r s t show signs of s t r a i n on normal colour and colour i n f r a r e d photographs. 4. To evaluate the use of normal colour and colour i n f r a r e d a e r i a l stereo-photographs as a p r a c t i c a l method f or mapping inf e s t a t i o n s of the spruce bee t l e . 20 2. METHODS 2.1 S i t e " S e l e c t i o n and Survey Study pl o t s consisted of beetle-infested spruce stands containing healthy, dead (bearing no f o l i a g e , and attacked p r i o r to 1980), 1981-attacked ( s t i l l bearing f o l i a g e but ex h i b i t i n g beetle and fungal a c t i v i t y completely around the circumference of the stem), 1982-attacked and strip-attacked trees. A f t e r extensive examination of p o t e n t i a l s i t e s i n the Prince George, B.C. area, three stands were chosen between kilometres 6 and 9 on the Narrow Lake logging road. The plots extended from the road to the north shore of Narrow Lake, located 60 km southeast of Prince George ( F i g . 7). The area was selected i n mid-June of 1982, as the beetles were beginning t h e i r f l i g h t . The plots already contained healthy, dead, strip-attacked and 1981-attacked trees. It was hoped that overwintering beetles found at the base of previously attacked trees would i n f e s t some of the remaining healthy trees, completing the complement of health c l a s s e s . Large (2.4 m X 1.8 m) orange, p l a s t i c tarps were placed beside the road, so that the areas to be photographed were c l e a r l y v i s i b l e from the a i r . During the remainder of the summer and early f a l l , the plots were ground truthed. Boles and crowns of trees were checked c a r e f u l l y f o r signs of beetle attack such as insect f r a s s , entrance holes, p i t c h tubes, blue s t a i n i n g fungi i n the sapwood, woodpecker (Picoides spp.) a c t i v i t y and fading or loss of f o l i a g e . Each tree was then placed i n one of f i v e health classes and an i d e n t i f i c a t i o n number was painted on the tree. For strip-attacked trees, the percentage of the stem colonized by blue-staining fungi was estimated. A second ground truthing was c a r r i e d out i n February and March of 1983 to v e r i f y health c l a s s i f i c a t i o n s . Figure 7. Location of two study plots on the north shore of Narrow Lake, 60 km southeast of Prince George, B.C. Scale i s 1:50,000. From the Canada Department of Energy, Mines and Resources Map Sheet 93H/12, 'Narrow Lake'. 22 2.2 Photography Large scale (between 1:1000 and 1:2000) 70 mm a e r i a l stereo-photographs were obtained using two wingtip mounted Vinten 492 cameras equipped with 76 mm lenses. No f i l t r a t i o n was used with the normal colour (Kodak Type 2448) f i l m . When the colour i n f r a r e d (Kodak Type 2443) f i l m was exposed, Wratten 12 and colour compensating (CC 20 M) f i l t e r s were added. Photographs were planned to be taken at the time of beetle f l i g h t ( l a t e June) and about two months a f t e r insect attack ( l a t e August). Because of poor weather conditions, the f i r s t photographic f l i g h t was delayed u n t i l July 24, with the CIR f i l m exposed between 1935 Greenwich Mean Time (GMT) (12:35 PM P a c i f i c Daylight Time (PDT)) and 1959 GMT (12:59 PM PDT). (Only two of the three plots were photographed and studied because of camera malfunctions.) The NC photos were taken between 2123 GMT (2:23 PM PDT) and 2141 GMT (2:41 PM PDT). Two months l a t e r , on September 23, a second set of photos was obtained. On t h i s date, the CIR images were flown between 1810 GMT (11:10 AM PDT) and 1829 GMT (11:29 AM PDT), followed by the NC f i l m exposure between 1915 GMT (12:15 PM PDT) and 1920 GMT (12:20 PM PDT). 2.3 Analyses 2.3.1 V i s u a l Analysis Murtha (1972) presented a l i s t of s t r a i n and damage symptoms to a s s i s t with the i d e n t i f i c a t i o n of stresses associated with trees. Beetle-attacked spruce trees show few signs of s t r a i n p r i o r to t o t a l f o l i a g e l o s s , which occurs a f t e r the tree has already died. Thus an alternate method of a l l o c a t i n g health c l a s s i f i c a t i o n s , using the few a v a i l a b l e symptoms, was developed (Table I I ) . Table I I . C r i t e r i a used i n the determination of spruce tree health when viewing normal colour and colour i n f r a r e d stereo-transparencies. The corresponding c l a s s i f i c a t i o n symbols described by Murtha (1972) are provided i n parentheses. Photographs were obtained July 24 and September 23, 1982 at Narrow Lake, B.C. TREE IMAGE CHARACTERISTICS TREE HEALTH CLASS NORMAL COLOUR COLOUR INFRARED Healthy F u l l , deep green crown (HH) F u l l , red crown (HH) Strip-attack F u l l , l i g h t green crown (IIIB) F u l l , red-brown crown (IIIO) 1981-attack Thin, pale green to yellow-green crown (HE, IIIB) Thin, red-brown to brown crown ( H E , IIIO) Dead No f o l i a g e (I) No f o l i a g e (I) 24 The 70 mm stereo transparencies were viewed using a pocket stereoscope. Each tree image was examined and a health status was assigned using the s t r a i n symptoms described i n Table I I . These v i s u a l c l a s s i f i c a t i o n s were then compared to the actual health of each tree, as determined during ground tru t h i n g . Ground truthing was c a r r i e d out during the summer of 1982. The photo-interpretation did not take place u n t i l the following February. During the intervening s i x months, mental r e c o l l e c t i o n of most of the 101 study trees' locations and health status was l o s t . Certain i n d i v i d u a l trees were remembered, however, and i n such cases the s t r a i n symptoms outlined i n Table II were s t r i c t l y applied, sometimes i n contradiction to what the i n t e r p r e t e r knew was the correct health c l a s s . 2.3.2 Densitometric Analyses A Macbeth TR-524 Transmission R e f l e c t i o n Densitometer, with an aperture of 1 mm, was used to obtain density readings from the most illuminated area of the tree crown images. Using photographs at a scale of 1:1000, the area of f o l i a g e and branch measured by the densitometer at one 2 time was 0.785 m . For the normal colour f i l m , three measurements were obtained of the three dye-forming layers s e n s i t i v e to blue- (B), green- (G) and red- (R) wavelengths, as well as the t o t a l f i l m , with dye-layers combined (T) i e . twelve density readings for each tree (Appendix I ) . Once the illuminated area of the tree crown was located on the densitometer, one set of measurements of each of the three dye-layers ( B l , G l , Rl) and the combined dye-layers ( T l ) was obtained. The transparency was removed, the machine zeroed, the transparency replaced, and the same tree was relocated on the densitometer. A second set of measurements was taken of the 25 dye-layers (B2, G2, R2), and of the t o t a l f i l m (T2). The enti r e process was repeated once more to provide a t h i r d set of density measurements of the tree image (B3, G3, R3, T3). With the colour i n f r a r e d f i l m , a corresponding set of measurements was obtained for the dens i t i e s of the green- (G), red- (R) and i n f r a r e d - (IR) s e n s i t i v e dye-forming layers and the combined dye-layers (T). Removal and replacement of the transparency was done to obtain a random measurement of each image's density. The mean value of each set of three measurments was used to derive further v a r i a b l e s . Abbreviations given i n the following discussion w i l l also be used i n l a t e r tables. The four i n i t i a l v ariables for the NC f i l m were the means of the blue-, green- and red-sensitive dye-forming layers and the combined dye-layers (BM, GM, RM and TM, r e s p e c t i v e l y ) . To reduce the v a r i a b i l i t y between trees, three r a t i o s of these means were calculated, providing the blue/green (BG), blue/red (BR) and green/red (GR) v a r i a b l e s . The three Moore transformations, described below, were i d e n t i f i e d using the abbreviations BMOT, GMOT and RMOT for the blue, green and red refl e c t a n c e s . Ratios of these transformations were calculated as w e l l . Thus, the blue/green (BGMT), blue/red (BRMT) and green/red (GRMT) Moore transformation r a t i o s were derived. Thirteen corresponding variables were obtained f o r each tree image during the analysis of the CIR f i l m s . Four dye-layer means were calculated: green, red, in f r a r e d and t o t a l means (GM, RM, IRM and TM, r e s p e c t i v e l y ) . The r a t i o s of these means were green/red (GR), green/infrared (GIR) and red/infrared (RIR). Three Moore transformation variables included GMOT, RMOT and IRMT representing the green, red and in f r a r e d r e f l e c t a n c e s . The Moore r a t i o s completed the l i s t of var i a b l e s : green/red, green/infrared and 26 red/infrared (GRMT, GIRM and RIRM, r e s p e c t i v e l y ) . The Moore transformations mentioned above, proposed by Moore (1980) and H a l l et a l . (1983), represent a r e l a t i o n s h i p between s p e c t r a l reflectance of the tree crown and the r e s u l t i n g exposure of the f i l m (Table I I I ) . Generally speaking, each emulsion layer i s s e n s i t i v e to a s p e c i f i c s p e c t r a l region. In r e a l i t y , however, there are some overlapping s e n s i t i v i t i e s when there i s equal i n t e n s i t y of i l l u m i n a t i o n at a l l wavelengths. The value obtained from the densitometer i s the appropriate density of dye (unexposed s a l t s ) i n a s p e c i f i c l a y e r . (Refer to page 11 for a discussion regarding the information provided by the densitometer.) More than one spe c t r a l region may have contributed to the exposure of one p a r t i c u l a r l a y e r . Thus, i t i s not e n t i r e l y correct to say that the density of the cyan layer i n in f r a r e d f i l m implies only the reflectance of near-infrared wavelengths. The cyan dye-layer of colour i n f r a r e d f i l m used under the conditions of th i s study i s exposed by green (12%), red (36%) and i n f r a r e d (52%) wavelengths (Fleming 1980; Moore 1980). Similar percentages are found with other dye-layers contained i n both normal colour and colour i n f r a r e d f i l m s . A l l of these variables were subjected to analyses of variance using the MIDAS (Michigan Interactive Data Analysis System) computer package (Fox and Guire 1976), a regression analysis (Fox and Guire 1976) comparing the degree of fungal a c t i v i t y i n strip-attacked trees to density measurements and a stepwise discriminant analysis from the BMDP (Biomedical Data Processing) system (Jennrich and Sampson 1981). During the l a t t e r a n a lysis, Plot 1 data were used to e s t a b l i s h a discriminant function to separate health classes of trees. The r e s u l t i n g equation was tested using Plot 2 measurements. A s i m i l a r discriminant function derived from Plot 2 data was tested using Plot 1 measurements. Table I I I . Moore Transformations. BM, GM, RM, IRM are means of three density readings from the o r i g i n a l l y blue-, green-, red- and in f r a r e d - s e n s i t i v e l a y e r s , r e s p e c t i v e l y , of normal colour and colour i n f r a r e d f i l m s . These transformations more c o r r e c t l y simulate the reflectance of various wavelengths of l i g h t from the tree crown ( a f t e r Moore 1980 and H a l l et a l . 1983) NORMAL COLOUR FILM Blue Reflectance = 0.93BM + 0.11GM + 0.01RM Green Reflectance = 0.02BM + 0.89GM + 0.16RM Red Reflectance = 0.83RM COLOUR INFRARED FILM Green Reflectance = 1.00GM + 0.12RM + 0.12IRM Red Reflectance = 0.88RM + 0.36IRM Infrared Reflectance = 0.52IRM 2.3.3 Stress Detection Photographs of 1981- and 1982-attacked trees i n July and September provided images of tree responses to s t r a i n one month, three months, t h i r t e e n months and f i f t e e n months a f t e r attack. This f a c i l i t a t e d completion of the t h i r d objective, to determine when tree s t r a i n i s detectable on a e r i a l f i l m s . 2.3.4 Evaluation of Survey Method Af t e r completing the above analyses, an o v e r a l l evaluation of the detection system was made. Comments and recommendations for the a p p l i c a t i o n of t h i s technique w i l l be discussed. 29 3. RESULTS AND DISCUSSION It was expected that overwintering adults would i n f e s t some of the healthy trees i n the study p l o t s , providing 1982-attacked trees for the research. A number of trees were attacked by the beetles, but only one was s u c c e s s f u l l y colonized by the i n s e c t . The other trees were able to p i t c h out the invading beetles before construction of the egg g a l l e r y was complete. Thus, the following r e s u l t s w i l l include only four of the proposed f i v e health classes: healthy, dead, s t r i p - a t t a c k and 1981-attack. Cates and Alexander (1982) and Kramer and Kozlowski (1979) discussed past research concerning the r e l a t i o n s h i p between drought conditions and a higher s u s c e p t i b i l i t y to beetle attack. The water stresses caused by a dry growing period reduce the o l e o r e s i n exudation pressure. Less r e s i n may be produced, and more beetle attacks w i l l be successful (Vite 1961; V i t e and Wood 1961). This researcher suggests that the inverse i s also true. Above average quantities of moisture w i l l produce higher than normal amounts of r e s i n . The trees would then be able to saturate the attacked area of sapwood with r e s i n , e f f e c t i v e l y stopping g a l l e r y construction by the beetle and c o l o n i z a t i o n of the fungi. The p r e c i p i t a t i o n data obtained from Climate Information, Environment Canada (unpublished data) at Prince George Airport showed an above average winter snowfall and an above average July r a i n f a l l for 1982 (Table IV). The excess moisture provided by snowmelt, i n addition to the higher than normal summer p r e c i p i t a t i o n , l e f t the trees with a more than adequate water supply. Lorio and Hodges (1968) further suggested that these circumstances taken to the extreme, with trees being permanently flooded with water, may increase s u s c e p t i b i l i t y of l o b l o l l y pine (Pinus Table IV. Actual monthly p r e c i p i t a t i o n recorded by Environment Canada at the Prince George B.C. Airport for the period October 1981 to September 1982, and the corresponding t h i r t y - y e a r means (1951-1980) YEAR MONTH PRECIPITATION (mm) ACTUAL MEAN PERCENT DEVIATION 1981 1982 October 44.4 59.2 - 25.0 November 42.6 50.5 - 15.6 December 41.8 57.0 - 26.7 January 152.3 57.4 +165.3 February 73.0 39.2 + 86.2 March 31.4 36.8 - 14.7 A p r i l 15.7 27.4 - 42.7 May 63.3 47.3 + 33.8 June 15.0 66.9 - 77.8 July 131.2 59.7 +119.8 August 88.9 68.2 + 30.4 September 132.9 58.7 +126.4 31 taeda) to attack by the southern pine beetle (Dendroctonus f r o n t a l i s Zimm.). 3.1 V i s u a l ( Q u a l i t a t i v e ) Analysis The normal colour photos taken i n September were not analysed. Image quality was poor as a r e s u l t of smoke from a slashburn i n the area of the study p l o t s . Colour i n f r a r e d f i l m i s s e n s i t i v e to the longer, i n f r a r e d wavelengths, which more e f f e c t i v e l y penetrate through haze and smoke i n the a i r . This allowed f u l l a nalysis of the CIR photographs obtained i n September. Infrared films are extremely susceptible to poor l i g h t i n g and shadows, and require exact f i l m exposures (Fleming 1980). Normal colour films are l e s s s e n s i t i v e to these conditions. The NC tree images obtained during July were not plagued with l i g h t i n g problems as were some of the CIR photos, making the c l a s s i f i c a t i o n of tree health status easier for the normal colour f i l m . Despite the exposure problem, the contrast between images of attacked and healthy trees i s greater on the colour i n f r a r e d photos than on the s i m i l a r normal colour exposures ( F i g . 8). Generally speaking, there was no d i f f i c u l t y i n c l a s s i f y i n g healthy and dead trees. The percentage of correct c l a s s i f i c a t i o n s was higher using normal colour photographs than colour i n f r a r e d photos. Some errors occurred i n the diagnosis of 1981-attack stems i n the photographs obtained i n July, and s t r i p - a t t a c k trees were very d i f f i c u l t to detect i n both July and September (Table V). By September, the trees that were attacked the previous year (1981-attack) had l o s t a l l of t h e i r f o l i a g e , and were c l a s s i f i e d as dead (attacked p r i o r to 1981) stems (Figs. 9 and 10). This i s not an i n c o r r e c t c l a s s i f i c a t i o n , f o r the trees were indeed dead. F i f t e e n 32 O = healthy <0 = s t r i p - a t t a c k A = 1981-attack • = dead Figure 8. Stereo-photographs of beetle-infested spruce trees, obtained on July 24, 1982 using i ) colour i n f r a r e d and i i ) normal colour a e r i a l f i l m s . Scale of the photographs i s approximately 1:2000. 33 Table V. V i s u a l c l a s s i f i c a t i o n of health status of spruce trees i n two p l o t s , located at Narrow Lake, B.C. The three sets of a e r i a l photgraphs were obtained J u l y 24 and September 23, 1982 PLOT 1 PLOT 2 ACTUAL HEALTH CLASSIFIED AS CLASSIFIED AS % % STATUS HH ST 81 DD TOTAL CORR. HH ST 81 DD TOTAL CORR. A) JULY COLOUR INFRARED HEALTHY 19 0 0 0 19 100.0 22 0 0 0 22 100.0 STRIP 2 2 4 0 8 25.0 2 0 2 0 4 0.0 1981 1 4 8 0 13 61.5 0 0 7 0 7 100.0 DEAD 0 0 0 12 12 100.0 0 0 0 16 16 100.0 TOTAL 52 78.8 TOTAL 49 91.8 B) JULY NORMAL COLOUR HEALTHY 18 0 1 0 19 94.7 22 0 0 0 22 100.0 STRIP 3 3 2 0 8 37.5 3 1 0 0 4 25.0 1981 1 1 11 0 13 84.6 0 0 7 0 7 100.0 DEAD 0 0 0 12 12 100.0 0 0 0 16 16 100.0 TOTAL 52 84.6 TOTAL 49 93.9 C) SEPTEMBER COLOUR INFRARED HEALTHY 17 0 0 0 17 100.0 16 0 0 0 16 100.0 STRIP 4 4 0 2 10 40.0 4 1 0 0 5 20.0 1981 0 0 0 14 14 0.0 0 0 0 6 6 0.0 DEAD 0 0 0 11 11 100.0 0 0 0 12 12 100.0 TOTAL 52 61.5 TOTAL 39 74.4 34 O = healthy C* = s t r i p - a t t a c k A = 1981-attack • = dead Figure 9. Stereo-photographs of beetle-infested spruce trees, obtained on i ) July 24 and i i ) September 23, 1982, using colour i n f r a r e d a e r i a l f i l m s . Scale of the photographs i s approximately 1:2000. 35 O = healthy 0 = s t r i p - a t t a c k A = 1981-attack • = dead Figure 10. Stereo-photographs of beetle-infested spruce trees, obtained on i ) July 24 and i i ) September 23, 1982, using normal colour a e r i a l f i l m s . Scales of the photographs are approximately 1:2000 and 1:1000, respectively. 36 months a f t e r being attacked, i t was no longer possible to determine exactly when the trees were f i r s t placed under s t r e s s . 3.2 Densitometric (Quantitative) Analyses Only those trees that were well illuminated were included i n the quantitative analyses. September normal colour photographs were not analysed because of poor image q u a l i t y . A large range of v a r i a b i l i t y existed between the three densitometric readings taken from each tree crown image for each dye-layer. On average, t h i s v a r i a b i l i t y was l i m i t e d to about 5% (Table VI). A Student's t - t e s t (Fox and Guire 1976) evaluation of densitometric values showed a s i g n i f i c a n t d i f f e r e n c e , at the 0.05 l e v e l of p r o b a b i l i t y , between the two p l o t s . Data could not be pooled, and r e s u l t s from each plot were kept separate for a l l analyses. Reasons for the differences between plots w i l l be discussed l a t e r . 3.2.1 Analyses of Variance At best, the health classes could be s t a t i s t i c a l l y separated i n the following three categories: 1) healthy, 2) attacked ( s t r i p - a t t a c k s and 1981-attacks) and 3) dead. This was true for the green and i n f r a r e d mean variables of CIR f i l m exposed i n July f o r Plot 1. The t o t a l mean variable simply r e f l e c t s the si g n i f i c a n c e s of these two variables (Table VII). The NC f i l m layer s e n s i t i v e to mainly green wavelengths was not as useful i n separating health c l a s s e s . Only dead trees were found to be s i g n i f i c a n t l y d i f f e r e n t (Table VII). The r a t i o s of density means reduced i n t e r - t r e e v a r i a b i l i t y s l i g h t l y , as indicated by the c o e f f i c i e n t s of v a r i a t i o n , for healthy, s t r i p - a t t a c k and Table VI. Mean and range of c o e f f i c i e n t of v a r i a t i o n of three density measurements taken from each dye-layer of normal colour and colour i n f r a r e d f i l m images of beetle-attacked spruce trees, Narrow Lake B.C., 1982 LIGHT MEAN (RANGE) OF COEFFICIENT OF VARIATION SENSITIVITY JULY SEPTEMBER OF DYE-LAYER COLOUR INFRARED [110]"- NORMAL COLOUR [110] COLOUR INFRARED [28] BLUE 0.05 (0.00 -- 0.18) GREEN 0.05 (0.00 -- 0.19) 0.06 (0.00 -- 0.26) 0.05 (0.01 -- 0.17) RED 0.05 (0.00 -- 0.17) 0.05 (0.00 -- 0.24) 0.05 (0.00 -- 0.25) INFRARED 0.06 (0.00 -- 0.24) 0.07 (0.00 -- 0.35) DYE-LAYERS COMBINED 0.05 (0.01 -- 0.20) 0.06 (0.00 -- 0.25) 0.06 (0.01 -- 0.27) Numbers i n square brackets refer to the number of trees measured. Table VII. Dye-layer density values and derived variables used to id e n t i f y images of healthy, strip-attack, 1981-attack and dead spruce trees on colour infrared and normal colour a e r i a l f i l m s . Photographs were obtained from Plot 1, Narrow Lake study s i t e on July 24, 1982 COLOUR INFRARED IMAGES (X + S.D.) NORMAL COLOUR IMAGES (X+S.D.) VARIABLE HEALTHY (20) STRIP (12) 1981 (14) DEAD (12) HEALTHY (20) STRIP (12) 1981 (14) DEAD (12) BM 0.68 + 0.11a 0.76 + 0.13a 0.70 + 0.07a 0.69 + 0.10a GM 1.01 + 0.12c 1.43 + 0.25b 1.40 + 0.25b 1.77 + 0.26a 0.55 + 0.12b 0.59 + 0.11b 0.54 + 0.07b 0.77 + 0.14a RM 1.02 + 0.10b 1.26 + 0.18a 1.21 + 0.20a 1.33 + 0.20a 0.89 + 0.15a 0.88 + 0.11a 0.79 + 0.07a 0.92 + 0.14a IRM 0.64 + 0.06c 0.91 + 0.18b 0.94 + 0.17b 1.60 + 0.24a — TM 0.80 + 0.07c 1.05 + 0.17b 1.03 + 0.16b 1.35 + 0.21a 0.62 + 0.12b 0.64 + 0.10b 0.58 + 0.06b 0.77 + 0.13a BG 1.26 + 0.09a 1.30 + 0.10a 1.30 + 0.08a 0.90 + 0.04b BR — — 0.76 + 0.06b 0.85 + 0.07a 0.88 + 0.05a 0.76 + 0.04b GR 0.99 + 0.04c 1.14 + 0.07b 1.16 + 0.07b 1.33 + 0.03a 0.61 + 0.04c 0.66 + 0.04b 0.68 + 0.05b 0.84 + 0.03a GIR 1.58 + 0.12a 1.58 + 0.14a 1.50 + 0.18a 1.10 + 0.03b — — — RIR 1.60 + 0.12a 1.40 + 0.16b 1.30 + 0.20b 0.83 + 0.02c — BMOT — 0.70 + 0.12a 0.78 + 0.13a 0.72 + 0.07a 0.74 + 0.11a GMOT 1.20 + 0.13c 1.69 + 0.29b 1.66 + 0.29b 2.12 + 0.32a 0.64 + 0.13b 0.68 + 0.11b 0.62 + 0.07b 0.85 + 0.15a RMOT 1.12 + 0.11c 1.44 + 0.22b 1.40 + 0.22b 1.74 + 0.26a 0.74 + 0.12a 0.74 + 0.09a 0.66 + 0.06a 0.76 + 0.12a IRMT 0.33 + 0.03c 0.48 + 0.09b 0.49 + 0.09b 0.83 + 0.12a — — — BGMT 1.10 + 0.07b 1.15 + 0.08a 1.15 + 0.05a 0.87 + 0.04c BRMT — — 0.95 + 0.06b 1.05 + 0.08a 1.09 + 0.05a 0.98 + 0.05b GRMT 1.07 + 0.03c 1.18 + 0.05b 1.18 + 0.05b 1.21 + 0.02a 0.86 + 0.04c 0.92 + 0.04b 0.94 + 0.05b 1.11 + 0.03a GIRM 3.64 + 0.26a 3.59 + 0.30ab 3.42 + 0.41b 2.54 + 0.06c — — — RIRM 3.40 + 0.21a 3.06 + 0.26b 2.90 + 0.34b 2.09 + 0.04c — — Means within each variable for one film type ( i e . within rows) followed by the same l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t at the 0.05 l e v e l of probability using an F-test comparison (Snedecor and Cochran 1967). See page 25 for a f u l l description of variables. 39 1981-attack trees, and greatly i n the case of dead trees. Both the green/red and red/infrared r a t i o s of colour i n f r a r e d f i l m provided s i g n i f i c a n t differences between healthy, attacked and dead trees. The green/red r a t i o r e s u l t s were s i m i l a r f o r the two f i l m types (Table VII). The Moore transformations of colour i n f r a r e d images improved health class separation i n the red-sensitive dye-forming layer (RMOT) over the o r i g i n a l red mean (RM). The o v e r a l l separation of health classes was not improved by the normal colour f i l m Moore transformations. The r a t i o s based on these transformations had l i t t l e e f f e c t on the July colour i n f r a r e d images described i n Table VII. The GIRM var i a b l e r e s u l t s for the 1981-attack trees were s i g n i f i c a n t l y d i f f e r e n t from the healthy trees, an observation not possible i n the basic green/infrared r a t i o . However, the s t r i p - a t t a c k trees were not found to be d i f f e r e n t from either the healthy or 1981-attack trees. These r e s u l t s continue to show a gradual change from healthy to p a r t i a l attack to f u l l attack to dead trees. The normal colour Moore r a t i o s allow the separation of healthy, attacked and dead trees using the blue/green Moore r a t i o v a r i a b l e . There were no other improvements over the normal dye-layer r a t i o s already described. Similar trends are v i s i b l e i n the data obtained from Plot 2 tree images, as described i n Table VIII. The health classes of the colour i n f r a r e d images may be separated into healthy, attacked and dead trees using the i n f r a r e d mean var i a b l e (IRM). The green mean (GM), while not separating health status as c l e a r l y , does place the attacked trees i n an intermediary p o s i t i o n between healthy and dead trees. In the normal colour images, the green mean i s able to d i f f e r e n t i a t e only between dead and other trees, as i n Plot 1. Table VIII. Dye-layer density values and derived variables used to id e n t i f y images of healthy, strip-attack, 1981-attack and dead spruce trees on colour infrared and normal colour a e r i a l films. Photographs were obtained from Plot 2, Narrow Lake study s i t e on July 24, 1982 COLOUR INFRARED IMAGES (X + S.D.) NORMAL COLOUR IMAGES (X + S.D.) VARIABLE' HEALTHY (22) STRIP (6) 1981 (7) DEAD (17) HEALTHY (22) STRIP (6) 1981 (7) DEAD (17) BM 0.66 + 0.11a 0.77 + 0.12a 0.68 + 0.15a 0.66 + 0.14a GM 1.28 + 0.20c 1.56 + 0.43ab 1.42 + 0.36bc 1.78 + 0.22a 0.55 + 0.10b 0.65 + 0.13ab 0.55 + 0.14b 0.72 + 0.17a RM 1.25 + 0.14a 1.38 + 0.25a 1.19 + 0.27a 1.31 + 0.17a 0.91 + 0.13a 0.97 + 0.13a 0.79 + 0.15a 0.86 + 0.18a IRM 0.74 + 0.12c 1.01 + 0.27b 1.01 + 0.23b 1.59 + 0.20a — — — TM 0.96 + 0.12c 1.15 + 0.24b 1.05 + 0.24bc 1.34 + 0.17a 0.62 + 0.10a 0.70 + 0.12a 0.59 + 0.13a 0.71 + 0.16a BG . 1.22 + 0.07a 1.21 + 0.08a 1.24 + 0.10a 0.92 + 0.04b BR — 0.72 + 0.04c 0.80 + 0.05b 0.87 + 0.05a 0.76 + 0.04b GR 1.02 + 0.05c 1.12 + 0.11b 1.18 + 0.04b 1.35 + 0.05a 0.60 + 0.03c 0.66 + 0.05b 0.70 + 0.05b 0.83 + 0.03a GIR 1.74 + 0.08a 1.54 + 0.12b 1.40 + 0.16c 1.12 + 0.05d — — — RIR 1.72 + 0.13a 1.39 + 0.17b 1.18 + 0.14c 0.83 + 0.02d — — BMOT - 0.69 + 0.11a 0.80 + 0.13a 0.70 + 0.15a 0.70 + 0.15a GMOT 1.52 + 0.23c 1.85 + 0.49ab 1.68 + 0.42bc 2.12 + 0.26a 0.65 + 0.11b 0.75 + 0.13ab 0.63 + 0.15b 0.79 + 0.19a RMOT 1.37 + 0.16c 1.58 + 0.31ab 1.41 + 0.32bc 1.73 + 0.22a 0.76 + 0.10a 0.81 + 0.11a 0.65 + 0.12a 0.72 + 0.15a IRMT 0.38 + 0.06c 0.53 + 0.14b 0.52 + 0.12b 0.83 + 0.10a — — BGMT — 1.07 + 0.05b 1.08 + 0.05ab 1.12 + 0.07a 0.89 + 0.03c BRMT 0.90 + 0.05c 0.99 + 0.06b 1.07 + 0.06a 0.98 + 0.05b GRMT 1.11 + 0.04c 1.16 + 0.07b 1.18 + 0.04b 1.23 + 0.04a 0.85 + 0.04c 0.92 + 0.05b 0.96 + 0.06b 1.10 + 0.04a GIRM 3.96 + 0.19a 3.51 + 0.25b 3.20 + 0.34c 2.57 + O.lld — — RIRM 3.58 + 0.22a 3.04 + 0.28b 2.70 + 0.23c 2.09 + 0.03d — Means within each variable for one film type ( i e . within rows) followed by the same l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t at the 0.05 l e v e l of probability using an F-test comparison (Snedecor and Cochran 1967). See page 25 f o r a f u l l description of variables. 41 Dye-layer r a t i o s decreased i n t e r - t r e e v a r i a b i l i t y more i n Plot 2 images (Table VIII) than i n r e s u l t s from Plot 1 (Table VII). This i s possibly due to the differences of aspect between p l o t s . Most of Plot 1 was on a south-f a c i n g slope, with trees illuminated d i r e c t l y by the sun. Most of the area i n Plot 2 had a northerly aspect, providing darker, ' b a c k l i t ' images of trees. This would also explain the s i g n i f i c a n t difference found between images of the two plots when analysed by the Student's t - t e s t . A l l three colour i n f r a r e d dye-layer r a t i o s were useful i n separating the health classes, e s p e c i a l l y the green/infrared and red/infrared. These variables showed s i g n i f i c a n t differences between healthy, s t r i p - a t t a c k , 1981-attack and dead trees. As i n Plot 1 r e s u l t s , the green/red r a t i o separated healthy, attacked and dead trees i n both normal colour and colour i n f r a r e d f i l m s . The Moore transformations improved the r e s u l t s for the red portion of the spectrum only i n colour i n f r a r e d images, and provided no improvement i n the NC tree images, as i n Plot 1. S i m i l a r l y , the r a t i o s derived from the Moore transformations i n Table VIII were no d i f f e r e n t from the basic dye-layer r a t i o s described above. Only healthy and s t r i p - a t t a c k trees were compared i n the analyses of the September images. Since the 1981-attack trees had l o s t a l l of t h e i r f o l i a g e by t h i s date, they resembled dead trees. Since only two health classes were compared, a Student's t-test was used to determine s i g n i f i c a n t d ifferences between tree status i n Plot 1. The small sample s i z e of Plot 2 required analysis using a nonparametric s t a t i s t i c a l t e s t , the Mann-Whitney U test (Siegel 1956; Fox and Guire 1976). Again, the Moore transformations and the r a t i o s based on them di d not improve health status separation i n 42 e i t h e r Plot 1 or Plot 2 (Table IX). The only variables that showed a s i g n i f i c a n t difference between healthy and s t r i p - a t t a c k trees i n Plot 2 during September were the green/red r a t i o s . They, and other v a r i a b l e s , also showed s i g n i f i c a n t differences i n the Plot 1 September images. The Moore transformations, and the r a t i o s derived from them, do not enhance analysis of the health c l a s s e s . The p o t e n t i a l e x i s t s f o r committing errors during the v a r i a b l e c a l c u l a t i o n s . It i s suggested that the o r i g i n a l d e n s i t i e s obtained from the dye-layers, and the r a t i o s calculated from these basic readings, are adequate for health status determination. Of the basic v a r i a b l e s , the one that c o n s i s t e n t l y separated trees into healthy, attacked and dead classes was the green/red r a t i o . I t exhibited t h i s a b i l i t y f o r colour i n f r a r e d images i n Plots 1 and 2 for both J u l y and September exposures, as well as the normal colour f i l m obtained i n July of Plot 1 and Plot 2 trees. It was the only variable able to separate healthy and s t r i p - a t t a c k trees i n the September images of Plot 2 (Table IX). The green/infrared and red/infrared variables were able to further separate trees into four categories, but only i n Plot 2 and only i n July (Table V I I I ) . H a l l et al^. (1983) also showed that the green/red r a t i o was the most s i g n i f i c a n t i n c l a s s i f y i n g tree health from colour i n f r a r e d images. Since green and red are both components of the v i s i b l e portion of the spectrum, i t would be reasonable to assume that the r e s u l t s of H a l l et a l . (1983) could be duplicated using normal colour f i l m . This research indicates that such an assumption i s v a l i d . Table IX. Dye-layer density values and derived variables used to i d e n t i f y images of healthy and stri p - a t t a c k spruce trees on colour infrared f i l m . Photographs were obtained from Narrow Lake study s i t e on A) July 24 and B) September 23, 1982. A subset of the July CIR images used i n Tables VII and VIII i s used here for purposes of comparison PLOT 1 (X + S.D.) 1 PLOT 2 (X + S.D.) 2 VARIABLE HEALTHY (10) STRIP (8) HEALTHY (8) STRIP (2) A) JULY COLOUR INFRARED GM 1.05 + 0.12b 1.45 + 0.27a 1.27 + 0.14b 1.74 + 0.40a RM 1.05 + 0.12b 1.26 + 0.18a 1.24 + 0.09a 1.52 + 0.26a IRM 0.67 + 0.05b 0.93 + 0.18a 0.73 + 0.10b 1.05 + 0.20a TM 0.83 + 0.08b 1.05 + 0.17a 0.95 + 0.09a 1.24 + 0.23a GR 1.00 + 0.02b 1.15 + 0.09a 1.02 + 0.05b 1.14 + 0.07a GIR 1.58 + 0.12a 1.57 + 0.07a 1.74 + 0.10a 1.65 + 0.07a RIR 1.58 + 0.12a 1.38 + 0.14b 1.71 + 0.12a 1.45 + 0.02b GMOT 1.26 + 0.14b 1.71 + 0.32a 1.50 + 0.16b 2.05 + 0.46a RMOT 1.17 + 0.12b 1.44 + 0.22a 1.35 + 0.11a 1.72 + 0.30a IRMT 0.35 + 0.03b 0.48 + 0.09a 0.38 + 0.05b 0.55 + 0.11a GRMT 1.08 + 0.02b 1.18 + 0.06a 1.11 + 0.04b 1.19 + 0.06a GIRM 3.63 + 0.27a 3.57 + 0.16a 3.96 + 0.21a 3.74 + 0.11a RIRM 3.37 + 0.20a 3.03 + 0.24b 3.58 + 0.21a 3.15 + 0.06b B) SEPTEMBER COLOUR INFRARED GM 1.12 + 0.15b 1.42 + 0.14a 1.22 + 0.24a 1.29 + 0.08a RM 1.00 + 0.13b 1.11 + 0.07a 1.08 + 0.20a 1.08 + 0.04a IRM 0.60 + 0.07b 0.85 + 0.17a 0.64 + 0.11a 0.64 + 0.04a TM 0.78 + 0.09b 0.94 + 0.07a 0.84 + 0.14a 0.83 + 0.04a GR 1.12 + 0.05b 1.28 + 0.14a 1.12 + 0.04b 1.20 + 0.04a GIR * 1.87 + 0.09a 1.71 + 0.19b 1.90 + 0.17a 2.01 + 0.02a RIR 1.67 + 0.10a 1.36 + 0.26b 1.69 + 0.13a 1.68 + 0.06a GMOT 1.32 + 0.18b 1.66 + 0.16a 1.43 + 0.28a 1.49 + 0.08a RMOT 1.10 + 0.13b 1.28 + 0.08a 1.18 + 0.21a 1.18 + 0.05a IRMT 0.31 + 0.04b 0.44 + 0.09a 0.33 + 0.06a 0.34 + 0.02a GRMT 1.20 + 0.03b 1.29 + 0.07a 1.20 + 0.04b 1.27 + 0.02a GIRM 4.21 + 0.19a 3.83 + 0.43b 4.29 + 0.36a 4.45 + 0.03a RIRM 3.53 + 0.16a 2.99 + 0.44b 3.56 + 0.24a 3.51 + 0.07a Means within each variable ( i e . within rows) followed by the same l e t t e r are s i g n i f i c a n t l y d i f f e r e n t at the 0.05 l e v e l of pr o b a b i l i t y using a t-test comparison (Fox and Guire 1976). Means within each variable ( i e . within rows) followed by the same l e t t e r are s i g n i f i c a n t l y d i f f e r e n t at the 0.05 l e v e l of prob a b i l i t y using a Mann-Whitney U test (Siegel 1956). See page 25 f o r a f u l l d escription of variables. 44 3.2.2 Regression Analyses A regression analysis (Fox and Guire 1976) comparing the degree of fungal a c t i v i t y i n s t r i p - a t t a c k trees, expressed as the percentage of the circumference colonized by the fungi, to the various density variables revealed some s i g n i f i c a n t c o r r e l a t i o n s , e s p e c i a l l y i n the September i n f r a r e d photos (Table X). No s i m i l a r s i g n i f i c a n t c o r r e l a t i o n s existed f o r the July normal colour photos. Since the NC images obtained i n September were not analysed, there was no i n d i c a t i o n whether any c o r r e l a t i o n existed for them. The pattern suggested by the analyses of variance, from healthy to p a r t i a l attack to f u l l attack to dead trees (Tables VII and VIII), i s further developed within the s t r i p - a t t a c k category by these regression r e s u l t s . The s i n g l e v a r i a b l e which best exhibited t h i s pattern was the in f r a r e d mean. This observation i s supported by the work of Murtha and Hamilton (1969). The density values obtained by measuring the cyan dye-layer, an expression of the i n f r a r e d r e f l e c t i o n from the tree crown, increased as the extent of fungal a c t i v i t y increased ( F i g . 11). While the sample s i z e was small (n=10), these r e s u l t s suggest that an increase i n the i n t e n s i t y or extent of the s t r a i n produces a decrease i n the in f r a r e d r e f l e c t a n c e . H e l ler (1968) showed a s i m i l a r decrease, but contrary to h i s conclusions t h i s study indicates that the drop i n reflectance i s detectable on colour i n f r a r e d a e r i a l f i l m . The s i g n i f i c a n c e of a negative c o r r e l a t i o n between the green/red r a t i o and fungal a c t i v i t y (Table X) indicated that the green and red wavelength reflectances had a d i f f e r i n g rate of change i n r e l a t i o n to the degree of s t r i p - a t t a c k . F i f t e e n months a f t e r a p a r t i a l attack, a tree retains much of i t s f o l i a g e , but begins to show the degree of stress i n f l i c t e d by the beetle/ fungus complex. Table X. P a r t i a l c o r r e l a t i o n c o e f f i c i e n t s obtained when comparing c o l o n i z a t i o n of xylem by fungi, expressed as a percentage of the s t r i p - a t t a c k tree's circumference e x h i b i t i n g fungal a c t i v i t y , to the density variables from colour i n f r a r e d f i l m s . No co r r e l a t i o n s existed f o r the normal colour photographs. Images of spruce trees were obtained on July 24 and September 23, 1982 at Narrow Lake, B.C. PARTIAL CORRELATION COEFFICIENTS (r) VARIABLEz JULY SEPTEMBER (n=17) (n=10) IRM 0.05 n s 3 0.69 GR ns 0.76 GIR -0.55 -0.75 RIR ns -0.77 IRMT ns 0.68 GRMO ns 0.67 GIRM -0.55 -0.74 RIRM ns -0.75 * Results of a regression analysis, p<0.05 (Fox and Guire 1976). 2 See page 25 fo r a f u l l d e s c r i p t i o n of v a r i a b l e s . ns=not s i g n i f i c a n t , p<0.05. 2 0 3 0 4 0 5 0 6 0 70 % C I R C U M F E R E N C E W I T H F U N G A L A C T I V I T Y Figure 11. Density of dye i n the in f r a r e d - s e n s i t i v e dye-forming layer of colour i n f r a r e d f i l m versus the extent of fungal a c t i v i t y , exhibited as a percentage of bole circumference colonized by the fungus. Images of beetle-attacked spruce trees were obtained September 23, 1982 at Narrow Lake, B.C. 47 3.2.3 Discriminant Analyses Discriminant analyses were c a r r i e d out to determine the weighted l i n e a r combinations of the density variables that would best separate the tree images into the four health classes used i n t h i s study. In the analysis of the July CIR images, f or example, the order of s e l e c t i o n showed that the GR va r i a b l e gave the best separation of the health classes (Table XI[A]). A d d i t i o n a l variables were included u n t i l the F constraint values were reached. The power of the canonical variables was indicated by the eigenvalues and the 90 percent cumulative dispersion associated with the f i r s t canonical v a r i a b l e . A further 9.5 percent was associated with the second. In the test of group means (Table XI[B]), a l l group means were s i g n i f i c a n t l y d i f f e r e n t from healthy (HH) and dead (DD) tree categories while s t r i p - a t t a c k (ST) and 1981-attack (81) trees were not d i s t i n c t . One test of the analysis was to perform a jackknife c l a s s i f i c a t i o n , which used a c l a s s i f i c a t i o n function to a l l o c a t e each case, or tree, to a group, or health status, without the case being used i n the c a l c u l a t i o n of the group mean. This assigned group i s then compared to the o r i g i n a l group membership and a c l a s s i f i c a t i o n matrix i s developed (Table XI[C]). For a l l discriminant analyses c a r r i e d out i n t h i s study, data from the tree images of the alternate plot were used as a test set of unknowns i n order to further evaluate the r e l i a b i l i t y of the discriminant functions. It was decided to test the need f or the Moore transformations, based upon the ind i c a t i o n s provided from the analyses of variance. Separate discriminant analyses were c a r r i e d out using only the basic dye-layer d e n s i t i e s and r a t i o s f i r s t , and then including only the Moore transformations and r a t i o s . The discriminant functions obtained from each Table XI. Output of the discriminant analysis of July 24, 1982 colour infrared images of spruce trees. The discriminant function was defined by Plot 1 data and tested with Plot 2 values. Study s i t e s were located at Narrow Lake, B.C. A) CANONICAL VARIABLE ORDER OF VARIABLE SELECTION SELECTED Coefficients -50.96 27.15 -14.50 1 GR 19.87 -27.65 8.53 2 GIR -32.36 33.59 -15.71 3 RIR -21.49 5.56 - 1.68 4 IRM 15.24 - 4.61 - 1.94 5 GM 71.70 -33.98 28.99 Constant Eigenvalues 20.55 2.17 0.04 Cumulative Proportion of Total Dispersion 0.903 0.998 1.000 Canonical Correlations 0.98 0.83 0.19 B) Matrix of F-values for testing group means: At d.f. = 5,50 ** = p < 0.01 (F=3.43) HH ST 81 ** ST 14.02 81 18.85** 0.89 DD 179.32** 129.50** 124.77** C) Jack-knifed c l a s s i f i c a t i o n matrix: NUMBER OF CORRECT CLASSIFICATIONS GROUP X CORRECT HEALTHY STRIP 1981 DEAD HEALTHY 20 0 0 0 100.0 STRIP 2 5 5 0 41.7 1981 3 3 8 0 57.1 DEAD 0 0 0 12 100.0 TOTAL 77.6 UNKNOWNS (Plot 2) CLASSED AS: HEALTHY 17 5 0 0 77.3 STRIP 1 3 2 0 50.0 1981 0 1 6 0 85.7 DEAD 0 0 0 17 100.0 TOTAL 82.7 49 plot were i n i t i a l l y studied by the same data used to define them (Table XII), and then tested using the density values obtained from the remaining plo t (Table X I I I ) . In both cases, the transformations c l a s s i f i e d s t r i p - a t t a c k trees c o r r e c t l y more often than the basic variables (Tables XII and X I I I ) . However, o v e r a l l c l a s s i f i c a t i o n of tree health was equivalent for P l o t 2, whether the o r i g i n a l or transformed data were used. In the c l a s s i f i c a t i o n of test p l o t s , the basic variables were able to c l a s s i f y Plot 1 health status better, using either f i l m type, than the transformed variables (Table X I I I ) . The eigenvalue associated with the f i r s t canonical v a r i a b l e i s an expression of the power of the discriminant a n a l y s i s . The analyses of the o r i g i n a l v a r i a b l e s are co n s i s t e n t l y more powerful than the analyses associated with the transformed variables (Table XII). As suggested e a r l i e r , the Moore transformations and r a t i o s do not s i g n i f i c a n t l y a i d i n the separation of tree health status. The extra time involved i n t h e i r c a l c u l a t i o n i s not warranted. A l l further discussion of discriminant analyses w i l l involve only the basic dye-layer variables and the i r r a t i o s . The green/red r a t i o figured prominently i n the function derived by the computer to discriminate between health classes (Table XIV). This further enforces the observation that the green/red r a t i o i s indeed the most useful basic v a r i a b l e . C l a s s i f i c a t i o n of s t r i p - a t t a c k trees was more accurate using the discriminant analysis derived from the basic density readings than the v i s u a l c l a s s i f i c a t i o n s . However f o r the remaining health classes, with only one exception, the discriminant analysis was equal to, and i n some cases l e s s precise than, the v i s u a l analysis (Table XV). 50 Table XII. The percentage of spruce trees c o r r e c t l y c l a s s i f i e d by discriminant analysis using the o r i g i n a l dye-layer densities and r a t i o s , and the corresponding transformations ( a f t e r Moore 1980; H a l l et a l . 1983). This i s a c l a s s i f i c a t i o n of the d e f i n i t i o n p l o t s , the discriminant functions applied to Plot 1 were o r i g i n a l l y defined using Plot 1 data, with the same procedure repeated f o r Plot 2. The eigenvalues are expressions of the r e l a t i v e powers of the t e s t s . The images on normal colour and colour i n f r a r e d films were obtained on July 24, 1983 at Narrow Lake, B.C. CORRECT CLASSIFICATIONS (%) HEALTH PLOT 1 (DEFINITION) PLOT 2 (DEFINITION) STATUS . . . -ORIGINAL (n) TRANSFORMED ORIGINAL (n) TRANSFORMED A) COLOUR INFRARED HEALTHY 100 (20) 100 91 (22) 91 STRIP 42 (12) 42 50 ( 6) 50 1981 57 (14) 57 71 ( 7) 71 DEAD 100 (12) 100 100 (17) 100 TOTAL 77.6 (58) 77.6 86.5 (52) 86.5 EIGENVALUE 20.6 16.0 42.0 17.5 B) NORMAL COLOUR HEALTHY 85 (20) 85 96 (22) 96 STRIP 67 (12) 67 33 ( 6) 50 1981 57 (14) 64 100 ( 7) 100 DEAD 100 (12) 100 100 (17) 100 TOTAL 77.6 (58) 79.3 90.4 (52) 92.3 EIGENVALUE 21.6 12.4 35.3 28.1 51 Table XIII. The percentage of spruce trees c o r r e c t l y c l a s s i f i e d by discriminant analysis using the o r i g i n a l dye-layer d e n s i t i e s and r a t i o s , and the corresponding transformations ( a f t e r Moore 1980; H a l l et a l . 1983). This i s a c l a s s i f i c a t i o n of the test p l o t s . The discriminant functions tested by Plot 1 were o r i g i n a l l y defined using Plot 2 data, and vice versa. The images on normal colour and colour i n f r a r e d films were obtained on July 24, 1983 at Narrow Lake, B.C. CORRECT CLASSIFICATIONS (%) HEALTH - . - - ,. -PLOT 1 (TEST) PLOT 2 (TEST) STATUS . - - . . ORIGINAL (n) TRANSFORMED ORIGINAL (n) TRANSFORMED A) COLOUR INFRARED HEALTHY 85 (20) 85 77 (22) 77 STRIP 58 (12) 67 50 ( 6) 50 1981 71 (14) 50 86 ( 7) 86 DEAD 100 (12) 100 100 (17) 100 TOTAL 79.3 (58) 75.9 82.7 (52) 82.7 B) NORMAL COLOUR HEALTHY 80 (20) 70 100 (22) 100 STRIP 83 (12) 92 33 ( 6) 50 1981 71 (14) 64 100 ( 7) 100 DEAD 100 (12) 100 100 (17) 100 TOTAL 82.8 (58) 79.3 92.3 (52) 94.2 52 Table XIV. Variables selected during discriminant analysis of four health classes of spruce trees using o r i g i n a l dye-layer densities and r a t i o s , and the transformed counterparts ( a f t e r Moore 1980; H a l l e_t a l . 1983). The images on normal colour and colour i n f r a r e d films were obtained on July 24, 1982 at Narrow Lake, B.C. Variables are l i s t e d i n order of s e l e c t i o n VARIABLES SELECTED'" FOR CLASSIFICATION OF UKNOWNS FROM FILM PLOT 1 PLOT 2 TYPE ORIG. TRANS. ORIG. TRANS. COLOUR INFRARED RIR IRM TM GR RIRM GIRM GR GIR RIR IRM GM GIRM RIRM IRMT GMOT NORMAL COLOUR GR BM BR BG GM BRMO GRMO BMOT BGMO GR BR BG BM GRMO BMOT GMOT See page 25 for a f u l l d e s c r i p t i o n of va r i a b l e s . Table XV. C l a s s i f i c a t i o n of health status of spruce trees by discriminant analysis using basic variables only, with a comparison of re s u l t s from v i s u a l analysis (as displayed i n Table V). Colour i n f r a r e d and normal colour images were obtained July 24, 1983 at Narrow Lake, B.C. ACTUAL PLOT 1 PLOT 2 HEALTH CLASSIFIED AS % CORRECT CLASSIFIED AS % CORRECT STATUS HH ST 81 DD TOTAL DISCR. VISUAL (n) HH ST 81 DD TOTAL DISCR. VISUAI • (n) A) JULY COLOUR INFRARED HEALTHY 17 3 0 0 20 85.0 100.0 (19) 17 5 0 0 22 77.3 100.0 (22) STRIP 2 7 3 0 12 58.3 25.0 ( 8) 1 3 2 0 6 50.0 0.0 ( 4) 1981 2 2 10 0 14 71.4 61.5 (13) 0 1 6 0 7 85.7 100.0 ( 7) DEAD 0 0 0 12 12 100.0 100.0 (12) 0 0 0 17 17 100.0 100.0 (16) TOTAL 58 79.3 78.8 (52) TOTAL 52 82.7 91.8 (49) B) JULY NORMAL COLOUR HEALTHY 16 4 0 0 20 80.0 94.7 (19) 22 0 0 0 22 100.0 100.0 (22) STRIP 1 10 1 0 12 83.3 37.5 ( 8) 4 2 0 0 6 33.3 25.0 ( 4) 1981 1 3 10 0 14 71.4 84.6 (13) 0 0 7 0 7 100.0 100.0 ( 7) DEAD 0 0 0 12 12 100.0 100.0 (12) 0 0 0 17 17 100.0 100.0 (16) . TOTAL 58 82.8 84.6 (52) TOTAL 52 92.3 93.9 (49) 54 Overall analysis of tree health status was usually superior when v i s u a l techniques were used. Normal colour images provided equal or better r e s u l t s than the colour i n f r a r e d photographs when eit h e r v i s u a l or discriminant analyses were implemented (Table XV). V i s u a l analysis of normal colour images provided the best o v e r a l l r e s u l t s , except when c l a s s i f y i n g s t r i p -attack trees. Computer-aided discriminant analysis may prove b e n e f i c i a l f o r s e l e c t i o n of t h i s health status. 3.3 Stress Detection Analysis Thirteen months a f t e r attack, strained trees were v i s i b l e on both normal colour and colour i n f r a r e d f i l m s . Exactly when they would have f i r s t been detectable on each f i l m type i s unknown. This could not be determined because of an i n s u f f i c i e n t number of successful 1982-attack trees i n the study p l o t s . 3.4 Evaluation of Survey Method The number of c o r r e c t l y c l a s s i f i e d tree images i s v i r t u a l l y the same for both normal colour and colour i n f r a r e d photographs. The NC f i l m images provided marginally better r e s u l t s . While the colour i n f r a r e d f i l m reduces problems associated with haze and smoke p a r t i c l e s i n the a i r , i t does require precise exposure s e t t i n g s . The normal colour f i l m does not require the i n t e r p r e t a t i o n of colour that the CIR images do, but the v i s u a l contrast between attacked and healthy trees i s greater when colour i n f r a r e d f i l m i s used. Each f i l m type has i t s own advantages and disadvantages. The deci s i o n of which f i l m type to use should be based on the photo-i n t e r p r e t e r ' s own personal preference. 55 V i s u a l analysis of tree health i s s a t i s f a c t o r y , without the a i d of densitometric analysis as described i n t h i s research. While the average v a r i a t i o n of densitometric readings for one given tree crown at one dye-layer was 5%, i t was as high as 35% i n some cases (Table VI). This high degree of v a r i a t i o n i s probably caused by the r e l a t i v e l y large (1 mm) ® aperture of the Macbeth densitometer. Not only would the tree crown be measured, but limbs, bark and possibly surface vegetation could be included. The percentage of correct c l a s s i f i c a t i o n s was generally better with v i s u a l a n a l y s i s . The extra time involved i n the measurement of dye-layer d e n s i t i e s , input of the data into a computer and data analysis defeats the purpose of t h i s survey method to detect strained trees as quickly as possible a f t e r attack. If densitometric evaluation of the images must be used, basic dye-layer readings and r a t i o s calculated from them are adequate for proper a n a l y s i s . The Moore transformations and r a t i o s provided somewhat better c l a s s i f i c a t i o n of s t r i p - a t t a c k trees, but also reduced the o v e r a l l accuracy of the discriminant analysis for the Plot 1 images. The green/red r a t i o , a v a i l a b l e from either normal colour or colour i n f r a r e d f i l m s , i s the one v a r i a b l e that c o n s i s t e n t l y separated healthy, attacked and dead trees. If t h i s method of damage detection i s to be used as a p r a c t i c a l t o o l , a r e a l i s t i c scale of photography must be determined. Damage i s v i s i b l e i n the photos used i n t h i s study, at a scale of 1:2000, but may not be as apparent at a more p r a c t i c a l scale of 1:10,000. The e f f e c t s of scale must be examined before the survey method described here becomes operational. The precise timing of photography must also be investigated further. Photographs should be obtained as soon as possible a f t e r the s t r a i n i s 56 detectable on f i l m , providing the maximum amount of time to implement some form of c o n t r o l . Exactly when the s t r a i n becomes apparent i s the major question that must be answered before a e r i a l photographs can be used as a p r a c t i c a l means of detecting current spruce beetle i n f e s t a t i o n s . 57 4. CONCLUSIONS 1. The choice between normal colour and colour i n f r a r e d films should be determined by the person who w i l l i n t e r p r e t the photographs. It i s a matter of personal preference. 2. V i s u a l analysis of healthy, s t r i p - a t t a c k , one year old-attack and dead tree images i s adequate; densitometry does not add s i g n i f i c a n t information. Strip-attack trees may be detected more accurately i f dye-layer densities are measured. It remains to be demonstrated how trees strained for l e s s than one year would compare to the health classes found i n t h i s study. 3. The o r i g i n a l dye-layer de n s i t i e s and r a t i o s are s u f f i c i e n t f or the detection of healthy, attacked and dead trees. The green/red r a t i o i s the one v a r i a b l e that c o n s i s t e n t l y separates tree images into these categories. The Moore transformations and r a t i o s did not enhance the information that was already a v a i l a b l e from the basic d e n s i t i e s and r a t i o s . 4. Densitometric analyses of tree images show that a gradual change i n reflectance occurs as trees progress from healthy to p a r t i a l attack to f u l l attack to t o t a l loss of f o l i a g e . This progression i s also evident i n the degrees of s t r a i n within the p a r t i a l attack category. Infrared wavelength reflectance decreases with increased stress a c t i v i t y . Green and red reflectances appear to change at d i f f e r e n t rates. 5. An optimal scale for detection of infested stems must be determined. 58 6. The length of time required for s t r a i n to appear on a e r i a l photographs a f t e r the stress has been introduced has yet to be determined. This problem must be solved i f the survey method described i n t h i s thesis i s ever to become operational. 7. Observations from t h i s research i n d i c a t e that the incidence of pitch-out may increase during summers of high p r e c i p i t a t i o n . 59 5. LITERATURE CITED Anon. 1975. Operator's manual for transmission r e f l e c t i o n densitometer TR-524. Macbeth D i v i s i o n of Kollmorgen Corp. Newburgh, N.Y. 18 pp. Arnberg, W. and L. Wastenson. 1973. Use of a e r i a l photographs f or early detection of bark beetle i n f e s t a t i o n s of spruce. Ambio 3: 7 7 - 8 3 . Bawden, F.C. 1933. Infra-red photography and plant virus diseases. Nature 132: 168. Borden, J.H. 1982. Aggregation pheromones. Pages 74 - 139 i n J.B. Mitton and K.B. Sturgeon, eds. Bark beetles i n North American c o n i f e r s . University of Texas Press, Austin. Carlson, C.E. and C.J. G i l l i g a n . 1983. H i s t o l o g i c a l d i f f e r e n t i a t i o n among a b i o t i c causes of con i f e r needle necrosis. USDA Forest Service Research Paper INT-298. 17 pp. Cates, R.G. and H. Alexander. 1982. Host resistance and s u s c e p t a b i l i t y . Pages 212 - 263 i n J.B. Mitton and K.B. Sturgeon, eds. Bark beetles i n North American c o n i f e r s . University of Texas Press, Austin. C i e s l a , W.M. 1977. Color vs. color IR photos f or forest insect surveys. Proc. Sixth Biennial Workshop on A e r i a l Color Photography, pp 31 -42. C i e s l a , W.M. and W.H. K l e i n . 1978. Inventory of bark beetle mortality i n coniferous forests with color and color IR photography. Proc. of the Int. Symp. on Remote Sensing f o r Observation and Inventory of Earth Resources and the Endangered Environment 3: 2001 - 2011. Colwell, J.E. 1974. Vegetation canopy re f l e c t a n c e . Rem. Sens, of Env. 3: 175 - 183. Colwell, R.N. 1956. Determining the prevalence of c e r t a i n crop diseases by means of a e r i a l photography. H i l g a r d i a 26: 223 - 286. Dyer, E.D.A. 1973. Spruce beetle aggregated by the synthetic pheromone f r o n t a l i n . Can. J . For. Res. 3: 486 - 494. Eastman Kodak Company. 1970. Kodak f i l t e r s f o r s c i e n t i f i c and technical uses. Kodak Pu b l i c a t i o n No. B-3. Rochester, N.Y. 91 pp. Eastman Kodak Company. 1971. Basic photographic sensitometry workbook, 2nd ed. Kodak Publication No. Z-22-ED. Rochester, N.Y. 40 pp. Eastman Kodak Company. 1979. P r a c t i c a l densitometry. Kodak Pamphlet No. E-59. Rochester, N.Y. 12 pp. 60 Fleming, J.F. 1980. Standardization techniques for a e r i a l colour i n f r a r e d f i l m . Min. Supply Serv. Canada, Stock No. SMP-1253B. 28pp. Fox, D.J. and K.E. Guire. 1976. Documentation for MIDAS, 3rd ed. S t a t i s t i c a l Research Laboratory, University of Michigan, Ann Arbor. 203 pp. Fox, L. 1978. Previsual detection: the elusive dream. American Society of Photogrammetry, Symp. on Remote Sensing for Vegetation Damage Assessment, pp.53 - 64. F r i t z , N.L. 1967. Optimum methods for using i n f r a r e d - s e n s i t i v e color f i l m s . Photogramm. Eng. 33: 1128 - 1138. Gausman, H.W. 1977. Reflectance of l e a f components. Rem. Sens, of Env. 6: 1 - 9 . H a l l , P.M., J.A. McLean and P.A. Murtha. 1983. Dye-layer density analysis i d e n t i f i e s new Douglas-fir beetle attacks. Can. J . For. Res. 13: 279 - 282. H e l l e r , R.C. 1968. Previsual detection of ponderosa pine trees dying from bark beetle attack. Proc. F i f t h Symp. on Remote Sensing of the Environment 5: 387 - 434. H e l l e r , R.C. 1971. Detection and c h a r a c t e r i z a t i o n of stress symptoms i n f o r e s t vegetation. Proc. of the Int. Workshop on Earth Resources Survey Systems 2: 108 - 150. H e l l e r , R.C. and J.F. Wear. 1969. Sampling forest i n s e c t epidemics with color f i l m s . Proc. Sixth Symp. on Remote Sensing of Environment 6: 1157 - 1167. Henninger, J . and G. Hildebrandt. 1980. Bibliography of publications on damage assessment i n f o r e s t r y and a g r i c u l t u r e by remote sensing techniques, 2nd ed. University of Freiburg, Freiburg, West Germany. 280 pp. Jennrich, R. and P. Sampson. 1981. P7M: stepwise discriminant a n a l y s i s . Pages 519 - 537 i n W.J. Dixon, ed. BMDP s t a t i s t i c a l software. Department of Biomathematics, University of C a l i f o r n i a , Los Angeles. K l e i n , W.H. 1982. Understanding color i n f r a r e d photogrpahy. Stephen F. Austin State U n i v e r s i t y School of Forestry for Applied Studies, Nacogdoches, Texas. 15 pp. K n i p l i n g , E.B. 1970. Physical and p h y s i o l o g i c a l basis f o r the reflectance of v i s i b l e and near-infrared r a d i a t i o n from vegetation. Rem. Sens, of Env. 1: 155 - 159. Kramer, P.J. and T.T. Kozlowski. 1979. Isoprenoids or terpenes. Pages 293 - 297 i n P.J. Kramer and T.T. Kozlowski, Physiology of woody plants. Academic Press, San Francisco. 61 Lessard, G. and E.T. Wilson. 1977. Evaluating spruce mortality using a e r i a l i n f r a r e d 70 mm photography i n the White Mountains, Arizona. USDA Forest Service, Southwestern Region, R-3 77-15. 18 pp. L e v i t t , J . 1980. Stress concepts. Pages 1 - 21 i n J . L e v i t t , Response of plants to environmental stresses, Vol. 2. Water, r a d i a t i o n , s a l t , and other stresses. 2nd ed. Academic Press, New York. 2 v o l s . L i l l e s a n d , T.M., R.H. Brock, J.L. Roberts and W.L. Johnson. 1975. Tree stress detection through spectral r a t i o i n g of colour f i l m records. Proc. F i f t h B i e n n i a l Workshop on Colour A e r i a l Photography, pp. 79 -107. L i l l e s a n d , T.M. and R.W. K i e f e r . 1979. The electromagnetic spectrum. Page 5 i n T.M. L i l l e s a n d and R.W. Ki e f e r , Remote sensing and image i n t e r p r e t a t i o n . John Wiley & Sons, Toronto. Lorio, P.L. and J.D. Hodges. 1968. Oleoresin exudation pressure and r e l a t i v e water content of inner bark as i n d i c a t o r s of moisture stress i n l o b l o l l y pines- For. Science 14: 392 - 398. Moore, R.E. 1980. F i l m f i l t e r combinations for a e r i a l colour photography. Min. Supply Serv. Canada, Stock No. SMP-1263E. 32 pp. Murtha, P.A. 1972. A guide to a i r photo i n t e r p r e t a t i o n of forest damage i n Canada. Environ. Canada, Can. For. Serv. P u b l i c a t i o n No. 1292. 63 pp. Murtha, P.A. 1978. Remote sensing and vegetation damage: a theory f o r detection and assessment. Photogramm. Eng. 44: 1147 - 1158. Murtha, P.A. 1982. Detection and analysis of vegetation s t r e s s . Pages 2 - 24 i n R.J. H a l l , ed. Uses of remote sensing i n forest pest damage ap p r a i s a l . Environ. Canada, Can. For. Serv. Info. Rep. NOR-X-238. Murtha, P.A. and L.S. Hamilton. 1969. Detection of simulated damage on conifers using near i n f r a r e d f i l m . J . For. 67: 827 - 829. Oester, B. 1981. Signatures spectrales des a i g u i l l e s de pins s y l v e s t r e s . Signatures spectrales d'objets en t e l e d e t e c t i o n colloque i n t e r n a t i o n a l , International Society for Photogrammetry and Remote Sensing. 5: 191 - 199. Puritch, G.S. 1981. Nonvisual remote sensing of trees a f f e c t e d by s t r e s s : a review. Environ. Canada, Can. For. Serv., PFRC Forestry Technical Report 30. 39 pp. Rhode, W.G. and C.E. Olson, J r . 1969. Detecting tree moisture s t r e s s . Photogramm. Eng. 35: 561 - 566. Scarpace, F.L. 1978. Densitometry on multi-emulsion imagery. Photogramm. Eng. 44: 1279 - 1292. 62 Schmid, J.M. 1976. Temperatures, growth and f a l l of needles on Engelmann spruce infested by spruce beetles. USDA Forest Service Res. Note RM-331. 4 pp. Schmid, J.M. and R.H. Frye. 1977. Spruce beetle i n the Rockies. USDA Forest Service Gen. Tech. Rep. RM-49. 38 pp. Seevers, P.M. 1981. Considerations i n using color i n f r a r e d photographs f o r vegetative i n t e r p r e t a t i o n . Proc. Eighth B i e n n i a l Workshop on Color A e r i a l Photography, pp. 45 - 49. Sieg e l , S. 1956. The Mann-Whitney U t e s t . Pages 116 - 127 i n S. Siegel, Nonparametric s t a t i s t i c s f o r the behavioural sciences. McGraw-Hill Book Co., Toronto. Snedecor, G.W. and W.G. Cochran. 1967. Analysis of variance. Pages 267 -275 i n G.W. Snedecor and W.G. Cochran, S t a t i s t i c a l methods. Iowa State U n i v e r s i t y Press, Ames. Spurr, S.H. 1948. A e r i a l photographs i n f o r e s t r y . Ronald Press Co., New York. 340 pp. Sterner, T.E. and A.G. Davidson, eds. 1982. Forest insect and disease conditions i n Canada, 1981. Environ. Canada, Can. For. Serv., FIDS No. Fo 21-1/1981E. 46 pp. V i t e , J.P. 1961. The influence of water supply on oleoresin exudation pressure and resistance to bark beetle attack i n Pinus ponderosa. Contrib. Boyce Thompson Inst. 21: 37 - 66. Vit e , J.P. and D.L. Wood. 1961. A study on the a p p l i c a b i l i t y of the measurement of ol e o r e s i n exudation pressure i n determining s u s c e p t i b i l i t y of second growth ponderosa pine to bark beetle i n f e s t a t i o n . Contrib. Boyce Thompson Inst. 21: 67 - 78. Wear, J.F. and J.W. Bongberg. 1951. Uses of a e r i a l photographs i n co n t r o l of f o r e s t i n s e c t s . J . For. 49: 632 - 633. Wood, C.S. and G.A. Van S i c k l e . 1983. Forest insect and disease conditions, B r i t i s h Columbia and Yukon, 1982. Environ. Canada, Can. For. Serv. Info. Rep. BC-X-293. 31 pp. 63 6. APPENDIX I The raw density values obtained from normal colour and colour i n f r a r e d a e r i a l photographs, using a Macbeth TR-524 Transmission R e f l e c t i o n Densitometer, w i l l be found on the following pages. Pages 65 through 67 contain the data f o r the colour i n f r a r e d photos obtained on July 24, 1982. The data from the normal colour photos taken on the same day are located on pages 68 to 70. The data f o r healthy and s t r i p - a t t a c k trees studied i n the September 23, 1982 colour i n f r a r e d photographs w i l l be found on page 71. Page 72 l i s t s the subset of July 24 CIR photo data used as a comparison with the September colour i n f r a r e d data. The following i s a d e s c r i p t i o n of the var i a b l e t i t l e s used: T i t l e Description Tree Number used to i d e n t i f y each tree image P Plot number: 1 or 2 F F l i g h t number: 1 July 24 colour i n f r a r e d 2 July 24 normal colour 3 September 23 colour i n f r a r e d H Tree health status: 1 healthy 2 s t r i p - a t t a c k 3 1981-attack 4 dead 64 B l , B2, B3 The three densitometry readings obtained for each tree Gl, G2, G3 image, for each of the blue-, green-, red- and i n f r a r e d -R l , R2, R3 s e n s i t i v e dye-forming layers, and f o r the t o t a l layers IR1, IR2, IR3 combined T l , T2, T3 BM = (Bl + B2 + B3) / 3 GM = (Gl + G2 + G3) / 3 RM = (Rl + R2 + R3) / 3 IRM= (IR1 + IR2 + IR3)/ 3 TM = (Tl + T2 + T3) / 3 BG = BM / GM BR = BM / RM GR = GM / RM GIR = GM / IRM RIR = RM / IRM BMOT GMOT RMOT IRMT As per page 27 T R E E P F H G 1 G 2 G 3 R 1 R 2 R 3 I R 1 I R 2 I R S T 1 1 1 1 7 1 1 1 1 . 2 3 1 . 1 2 1 . 1 1 1 . 2 5 1 . 1 6 1 . 1 5 . 7 4 . 6 6 . 6 6 . 9 8 1 1 1 8 1 1 1 1 . 4 1 1 . 2 7 1 . 2 5 1 . 4 0 1 . 2 6 1 . 2 6 . 8 2 . 7 2 . 7 2 1 . 0 9 1 1 1 9 1 1 1 . 9 5 . 9 0 . 9 3 1 . 0 0 . 9 1 . 8 9 . 5 9 . 5 7 . 6 0 . 7 7 1 1 2 0 1 1 1 . 9 7 1 . 0 2 1 . 0 0 . 9 5 1 . 0 1 1 . 0 2 . 6 3 . 6 5 . 6 4 . 7 7 1 1 2 1 1 1 1 1 . 0 0 1 . 0 2 1 . 0 5 1 . 0 3 1 . 0 5 1 . 0 8 . 6 5 . 6 7 . 7 0 . 8 1 1 1 2 2 1 1 1 1 . 1 0 . 9 5 . 9 5 1 . 1 2 1 . 0 0 . 9 9 . 6 3 . 5 8 . 5 8 . 8 5 1 1 2 3 1 1 1 1 . 0 2 1 . 1 3 1 . 0 2 1 . 0 1 1 . 0 9 . 9 9 . 6 1 . 6 6 . 6 0 . 7 8 1 1 2 4 1 1 1 1 . 0 2 . 9 1 . 9 5 1 . 0 3 . 9 5 . 9 8 . 6 8 . 6 1 . 6 4 . 8 2 1 1 2 5 1 1 1 . 9 2 . 9 1 . 9 0 . 9 9 . 9 9 . 9 7 . 5 4 . 5 4 . 5 4 . 7 5 1 1 2 6 1 1 1 . 9 4 . 9 1 . 9 1 . 9 4 . 9 2 . 9 2 . 7 1 . 6 5 . 6 6 . 8 0 1 1 2 7 1 1 1 1 . 1 5 1 . 2 4 1 . 1 1 1 . 0 8 1 . 16 1 . 1 2 . 6 8 . 7 3 . 6 3 . 8 6 1 1 2 8 1 1 1 . 9 3 . 8 9 1 . 0 0 . 8 9 . 9 1 . 9 8 . 6 1 . 5 6 . 6 3 . 7 3 1 1 3 0 1 1 1 . 9 5 . 9 5 . 9 7 . 9 2 . 9 2 . 9 3 . 5 7 . 5 6 . 5 6 . 7 2 1 1 3 1 1 1 1 1 . 0 1 1 . 0 8 1 . 2 0 . 9 9 1 . 0 7 1 . 1 9 . 6 5 . 6 6 . 7 0 . 7 9 1 1 3 2 1 1 1 1 . 0 5 . 9 5 . 9 6 1 . 0 8 . 9 9 1 . 0 0 . 6 9 . 6 2 . 6 2 . 8 3 1 1 3 3 1 1 1 1 . 0 0 . 9 9 1 . 0 0 . 9 8 . 9 7 . 9 8 . 6 3 . 6 5 . 7 1 . 7 7 1 1 3 4 1 1 1 . 9 8 . 9 8 . 9 9 1 . 0 0 . 9 8 . 9 8 . 7 5 . 7 5 . 7 3 . 8 3 1 1 3 5 1 1 1 . 9 9 1 . 0 0 1 . 0 3 1 . 0 2 1 . 0 2 1 . 0 6 . 6 2 . 6 2 . 6 5 . 7 9 1 1 3 6 1 1 1 . 9 7 . 9 4 1 . 0 2 . 9 9 . 9 6 1 . 0 4 . 6 5 . 6 4 . 6 7 . 7 9 1 1 4 6 1 1 1 . 7 6 . 7 2 . 7 4 . 8 5 . 8 1 . 8 3 . 5 3 . 4 7 . 4 8 . 6 9 2 0 0 1 2 1 1 1 . 7 3 1 . 4 9 1 . 3 6 1 . 4 9 1 . 3 6 1 . 2 9 1 . 0 0 . 8 1 . 7 6 1 . 2 1 2 0 0 2 2 1 1 1 . 2 9 1 . 3 2 1 . 4 3 1 . 2 3 1 . 2 6 1 . 3 6 . 7 2 . 7 5 . 7 7 . 9 5 2 0 0 4 2 1 1 1 . 6 5 1 . 7 2 1 . 6 9 1 . 4 6 1 . 5 3 1 . 4 9 . 9 5 1 . 0 2 . 9 5 1 . 16 2 0 0 9 2 1 1 1 . 3 4 1 . 3 5 1 . 3 6 1 . 3 1 1 . 3 2 1 . 3 3 . 7 4 . 7 6 . 7 5 . 9 9 2 0 1 9 2 1 1 1 . 0 9 1 . 0 4 1 . 1 1 1 . 0 7 1 . 0 5 1 . 1 2 . 6 4 . 6 3 . 7 4 . 8 3 2 0 2 7 2 1 1 1 . 2 5 1 . 2 9 1 . 3 4 1 . 16 1 . 19 1 . 2 5 . 7 7 . 8 1 . 8 3 . 9 3 2 0 3 2 2 1 1 1 . 2 3 1 . 0 7 1 . 3 6 1 . 2 9 1 . 1 2 1 . 3 5 . 7 2 . 6 3 . 7 3 . 9 5 2 0 3 7 2 1 1 1 . 1 5 1 . 18 1 . 0 7 1 . 18 1 . 2 1 1 . 0 8 . 6 4 . 6 5 . 5 9 . 8 8 2 0 3 8 2 1 1 1 . 2 1 1 . 1 6 1 . 1 5 1 . 1 9 1 . 1 5 1 . 14 . 6 4 . 6 3 . 6 2 . 8 8 2 0 4 8 2 1 1 1 . 4 9 1 . 5 6 1 . 5 6 1 . 4 4 1 . 5 0 1 . 5 0 . 8 3 . 8 7 . 8 7 1 . 1 0 2 0 5 8 2 1 1 1 . 6 9 1 . 9 2 1 . 6 8 1 . 5 4 1 . 7 1 1 . 5 2 . 9 3 1 . 1 0 . 9 5 1 . 1 9 2 0 6 6 2 1 1 1 . 1 3 1 . 1 9 1 . 16 1 . 1 1 1 . 2 0 1 . 14 . 6 7 . 7 1 . 6 9 . 8 7 2 0 6 7 2 1 1 1 . 1 5 1 . 1 5 1 . 18 1 . 17 1 . 1 8 1 . 2 0 . 6 7 . 6 6 . 6 8 . 8 9 2 0 6 8 2 1 1 1 . 1 3 1 . 1 4 1 . 2 8 1 . 1 8 1 . 1 9 1 . 2 9 . 6 1 . 6 1 . 6 9 . 8 7 2 0 6 9 2 1 1 1 . 2 2 1 . 3 2 1 . 4 2 1 . 2 3 1 . 3 1 1 . 3 8 . 7 3 . 7 8 . 8 4 . 9 5 2 1 2 4 2 1 1 1 . 0 1 1 . 0 9 1 . 0 9 1 . 0 6 1 . 1 3 1 . 1 3 . 5 4 . 5 9 . 5 9 . 7 8 2 1 2 9 2 1 1 . 9 7 1 . 2 4 1 . 0 9 1 . 0 2 1 . 2 7 1 . 1 3 . 5 5 . 7 3 . 6 3 . 7 8 2 1 5 2 2 1 1 1 . 1 4 1 . 2 7 1 . 2 0 1 . 1 5 1 . 2 6 1 . 2 0 . 7 1 . 7 5 . 7 3 . 9 1 2 1 5 3 2 1 1 1 . 1 0 1 . 0 3 1 . 0 5 1 . 1 0 1 . 0 6 1 . 1 0 . 6 3 . 5 9 . 6 1 . 8 4 2 1 5 8 2 1 1 1 . 3 8 1 . 2 5 1 . 13 1 . 3 8 1 . 2 2 1 . 14 . 8 4 . 6 6 . 6 6 1 . 0 9 2 1 6 2 2 1 1 1 . 3 5 1 . 3 3 1 . 4 8 1 . 3 0 1 . 2 9 1 . 4 3 . 8 6 . 8 5 1 . 0 0 1 . 0 6 2 1 8 3 2 1 1 1 . 16 1 . 17 1 . 14 1 . 18 1 . 18 1 . 1 6 . 6 5 . 6 6 . 6 4 . 8 8 1 0 1 7 1 1 2 1 . 1 9 1 . 2 2 1 . 3 2 1 . 1 3 1 . 17 1 . 2 5 . 7 6 . 8 0 . 8 4 . 9 1 1 0 3 0 1 1 2 1 . 5 6 1 . 7 9 1 . 6 7 1 . 3 8 1 . 4 7 1 . 4 2 . 9 1 1 . 0 7 1 . 0 1 1 . 1 0 1 0 3 3 1 1 2 1 . 7 1 1 . 8 7 1 . 8 7 1 . 5 1 1 . 6 1 1 . 5 4 1 . 0 6 1 . 2 9 1 . 1 3 1 . 2 5 1 0 4 1 1 1 2 1 . 8 0 1 . 3 2 1 . 3 2 1 . 5 4 1 . 16 1 . 1 5 1 . 2 2 . 8 0 . 8 3 1 . 3 1 1 1 1 2 1 1 2 1 . 3 3 1 . 3 1 1 . 3 2 1 . 17 1 . 16 1 . 18 . 6 5 . 6 7 . 6 9 . 8 8 1 1 1 3 1 1 2 1 . 1 0 1 . 1 0 1 . 0 7 1 0 1 1 . 0 1 . 9 8 . 7 5 . 7 5 . 7 4 . 8 5 1 1 1 4 1 1 2 1 . 5 4 1 . 7 1 1 . 6 1 1 . 3 7 1 . 5 1 1 . 4 2 . 9 9 1 . 1 2 1 . 0 6 1 . 16 1 1 2 9 1 1 2 . 9 3 . 9 4 . 9 4 . 9 2 . 9 2 . 9 2 . 5 7 . 5 7 . 5 4 . 7 2 T 2 T 3 G M R M I R M T M G R G I R R I R G M O T R M O T I R M T . 8 9 . 8 8 1 . 1 5 1 . 1 9 . 6 9 . 9 2 . 9 7 1 . 6 8 1 . 7 3 1 3 8 1 . 2 9 . 3 6 . 9 6 . 9 7 1 . 3 1 1 . 3 1 . 7 5 1 . 0 1 1 . 0 0 1 . 7 4 1 . 7 3 1 5 6 1 . 4 2 . 3 9 . 7 1 . 7 3 . 9 3 . 9 3 . 5 9 . 7 4 . 9 9 1 . 5 8 1 . 5 9 1 1 1 1 . 0 3 . 3 1 . 8 0 . 8 1 1 . 0 0 . 9 9 . 6 4 . 7 9 1 . 0 0 1 . 5 6 1 . 5 5 1 1 9 1 . 1 0 . 3 3 . 8 4 . 8 6 1 . 0 2 1 . 0 5 . 6 7 . 8 4 . 9 7 1 . 5 2 1 . 5 6 1 2 3 1 . 1 7 . 3 5 . 7 7 . 7 7 1 . 0 0 1 . 0 4 . 6 0 . 8 0 . 9 6 1 . 6 8 1 . 7 4 1 2 0 1 . 1 3 . 3 1 . 8 5 . 7 7 1 . 0 6 1 . 0 3 . 6 2 . 8 0 1 . 0 3 1 . 7 0 1 . 6 5 1 2 6 1 . 1 3 . 3 2 . 7 5 . 7 8 . 9 6 . 9 9 . 6 4 . 7 8 . 9 7 1 . 4 9 1 . 5 3 1 1 6 1 . 1 0 . 3 3 . 7 5 . 7 4 . 9 1 . 9 8 . 5 4 . 7 5 . 9 3 1 . 6 9 1 . 8 2 1 0 9 1 . 0 6 . 2 8 . 7 6 . 7 6 . 9 2 . 9 3 . 6 7 . 7 7 . 9 9 1 . 3 7 1 . 3 8 1 1 1 1 . 0 6 . 3 5 . 9 3 . 8 4 1 . 17 1 . 1 2 . 6 8 . 8 8 1 . 0 4 1 . 7 2 1 . 6 5 1 3 8 1 . 2 3 . 3 5 . 7 1 . 7 7 . 9 4 . 9 3 . 6 0 . 7 4 1 . 0 1 1 . 5 7 1 . 5 4 1 1 2 1 . 0 3 . 3 1 . 7 1 . 7 3 . 9 6 . 9 2 . 5 6 . 7 2 1 . 0 4 1 . 7 0 1 . 6 4 1 14 1 . 0 2 . 2 9 . 8 3 . 9 1 1 . 1 0 1 . 0 8 . 6 7 . 8 4 1 . 0 1 1 . 6 4 1 . 6 2 1 3 1 1 . 1 9 . 3 5 . 7 8 . 7 8 . 9 9 1 . 0 2 . 6 4 . 8 0 . 9 6 1 . 5 3 1 . 5 9 1 1 9 1 . 1 3 . 3 3 . 7 7 . 8 1 1 . 0 0 . 9 8 . 6 6 . 7 8 1 . 0 2 1 . 5 0 1 . 4 7 1 1 9 1 . 1 0 . 3 4 . 8 3 . 8 2 . 9 8 . 9 9 . 7 4 . 8 3 1 . 0 0 1 . 3 2 1 . 3 3 1 1 9 1 . 1 4 . 3 9 . 7 9 . 8 5 1 . 0 1 1 . 0 3 . 6 3 . 8 1 . 9 7 1 . 6 0 1 . 6 4 1 2 1 1 . 1 4 . 3 3 . 7 7 . 8 2 . 9 8 1 . 0 0 . 6 5 . 7 9 . 9 8 1 . 4 9 1 . 5 3 1 17 1 . 1 1 . 3 4 . 6 4 . 6 5 . 7 4 . 8 3 . 4 9 . 6 6 . 8 9 1 . 5 0 1 . 6 8 9 0 . 9 1 . 2 6 1 . 0 5 . 9 9 1 . 5 3 1 . 3 8 . 8 6 1 . 0 8 1 . 1 1 1 . 7 8 1 . 6 1 1 8 0 1 . 5 2 . 4 5 . 9 7 1 . 0 2 1 . 3 5 1 . 2 8 . 7 5 . 9 8 1 . 0 5 1 . 8 0 1 . 7 2 1 5 9 1 . 4 0 . 3 9 1 . 2 3 1 . 16 1 . 6 9 1 . 4 9 . 9 7 1 . 18 1 . 1 3 1 . 7 3 1 . 5 3 1 9 8 1 . 6 6 . 5 1 1 . 0 0 1 . 0 0 1 . 3 5 1 . 3 2 . 7 5 1 . 0 0 1 . 0 2 1 . 8 0 1 . 7 6 1 6 0 1 . 4 3 . 3 9 . 8 2 . 9 2 1 . 0 8 1 . 0 8 . 6 7 . 8 6 1 . 0 0 1 . 6 1 1 . 6 1 1 2 9 1 . 1 9 . 3 5 . 9 7 1 . 0 0 1 . 2 9 1 . 2 0 . 8 0 . 9 7 1 . 0 8 1 . 6 1 1 . 4 9 1 5 3 1 . 3 5 . 4 2 . 8 4 . 9 6 1 . 2 2 1 . 2 5 . 6 9 . 9 2 . 9 7 1 . 7 6 1 . 8 1 1 4 5 1 . 3 5 . 3 6 . 9 0 . 8 2 1 . 1 3 1 . 1 6 . 6 3 . 8 7 . 9 8 1 . 8 1 1 . 8 5 1 3 5 1 . 2 4 . 3 3 . 8 6 . 8 5 1 . 17 1 . 1 6 . 6 3 . 8 6 1 . 0 1 1 . 8 6 1 . 8 4 1 3 9 1 . 2 5 . 3 3 1 . 1 5 1 . 1 5 1 . 5 4 1 . 4 8 . 8 6 1 . 1 3 1 . 0 4 1 . 7 9 1 . 7 3 1 8 2 1 . 6 1 . 4 5 1 . 3 6 1 . 2 1 1 . 7 6 1 ; 5 9 . 9 9 1 . 2 5 1 . 1 1 1 . 7 8 1 . 6 0 2 0 7 1 . 7 6 . 5 2 . 9 3 . 8 9 1 . 1 6 1 . 1 5 . 6 9 . 9 0 1 . 0 1 1 . 6 8 1 . 6 7 1 3 8 1 . 2 6 . 3 6 . 8 9 . 9 1 1 . 1 6 1 . 18 . 6 7 . 9 0 . 9 8 1 . 7 3 1 . 7 7 1 3 8 1 . 2 8 . 3 5 . 8 7 . 9 6 1 . 1 8 1 . 2 2 . 6 4 . 9 0 . 9 7 1 . 8 6 1 . 9 2 1 4 1 1 . 3 0 . 3 3 1 . 0 1 1 . 0 7 1 . 3 2 1 . 3 1 . 7 8 1 . 0 1 1 . 0 1 1 . 6 9 1 . 6 7 1 5 7 1 . 4 3 . 4 1 . 8 4 . 8 3 1 . 0 6 1 . 11 . 5 7 . 8 2 . 9 6 1 . 8 5 1 . 9 3 1 2 6 1 . 18 . 3 0 . 9 8 . 8 6 1 . 1 0 1 . 14 . 6 4 . 8 7 . 9 6 1 . 7 3 1 . 7 9 1 3 1 1 . 2 3 . 3 3 . 9 7 . 9 3 1 . 2 0 1 . 2 0 . 7 3 . 9 4 1 . 0 0 1 . 6 5 1 . 6 5 1 4 4 1 . 3 2 . 3 8 . 8 0 . 8 2 1 . 0 6 1 . 0 9 . 6 1 . 8 2 . 9 8 1 . 7 4 1 . 7 8 1 2 6 1 . 1 8 . 3 2 . 9 1 . 8 8 1 . 2 5 1 . 2 5 . 7 2 . 9 6 1 . 0 1 1 . 7 4 1 . 7 3 1 4 9 1 . 3 6 . 3 7 1 . 0 4 1 . 17 1 . 3 9 1 . 3 4 . 9 0 1 . 0 9 1 . 0 3 1 . 5 4 1 . 4 8 1 6 6 1 . 5 0 . 4 7 . 8 9 . 8 6 1 . 1 6 1 . 17 . 6 5 . 8 8 . 9 9 1 . 7 8 1 . 8 1 1 3 8 1 . 2 7 . 3 4 . 9 5 1 . 0 0 1 . 2 4 1 . 1 8 . 8 0 . 9 5 1 . 0 5 1 . 5 5 1 . 4 8 1 4 8 1 . 3 3 . 4 2 1 . 2 2 1 . 18 1 . 6 7 1 . 4 2 1 . 0 0 1 . 17 1 . 1 8 1 . 6 8 1 . 4 3 1 9 6 1 . 6 1 . 5 2 1 . 4 1 1 . 2 8 1 . 8 2 1 . 5 5 1 . 16 1 . 3 1 1 . 17 1 . 5 7 1 . 3 4 2 14 1 . 7 8 . 6 0 . 9 5 . 9 5 1 . 4 8 1 . 2 8 . 9 5 1 . 0 7 1 . 1 5 1 . 5 6 1 . 3 5 1 7 5 1 . 4 7 . 4 9 . 9 0 . 9 1 1 . 3 2 1 . 17 . 6 7 . 9 0 1 . 1 3 1 . 9 7 1 . 7 5 1 5 4 1 . 2 7 . 3 5 . 8 5 . 8 3 1 . 0 9 1 . 0 0 . 7 5 . 8 4 1 . 0 9 1 . 4 6 1 . 3 4 1 3 0 1 . 1 5 . 3 9 1 . 2 8 1 . 2 2 1 . 6 2 1 . 4 3 1 . 0 6 1 . 2 2 1 . 1 3 1 . 5 3 1 . 3 6 1 9 2 1 . 6 4 . 5 5 . 7 2 . 7 0 . 9 4 . 9 2 . 5 6 . 7 1 1 . 0 2 1 . 6 7 1 . 6 4 1 1 1 1 . 0 1 . 2 9 ON T R E E P F H G 1 G 2 G 3 R 1 R 2 R 3 I R 1 1 1 3 9 1 1 2 1 . 6 1 1 5 9 1 6 3 1 . 2 2 1 . 2 7 1 . 2 3 1 . 0 6 1 1 1 4 1 1 1 2 1 . 6 2 1 4 5 1 5 7 1 . 4 5 1 . 3 2 1 . 4 2 1 . 1 2 1 1 1 4 4 1 1 2 1 . 4 5 1 4 3 1 5 4 1 . 2 6 1 . 2 3 1 . 3 2 . 9 3 1 1 4 7 1 1 2 1 . 3 6 1 3 5 1 4 7 1 . 1 9 1 . 1 9 1 . 2 8 . 8 8 2 0 1 3 2 1 2 2 . 14 2 18 2 1 5 1 . 6 7 1 . 6 9 1 . 6 7 1 . 4 7 1 2 0 2 5 2 1 2 1 . 3 0 1 6 1 1 17 1 . 2 1 1 . 4 9 1 . 0 9 . 9 3 1 2 0 4 1 2 1 2 1 . 3 4 1 . 2 9 1 2 1 1 . 2 1 1 . 1 7 1 . 1 0 . 8 9 2 0 5 2 2 1 2 2 . 0 1 2 . 0 1 2 0 5 1 . 6 9 1 . 6 9 1 . 7 3 1 . 2 0 1 2 1 4 3 2 1 2 1 . 1 2 1 . 14 1 0 3 1 . 1 3 1 . 1 8 1 . 0 7 . 6 9 2 1 9 5 2 1 2 1 . 3 5 1 . 4 6 1 5 5 1 . 2 7 1 . 3 2 1 . 4 0 . 8 0 1 0 0 7 1 1 3 1 . 5 6 1 . 3 5 1 7 0 1 . 3 9 1 . 2 0 1 . 4 8 1 . 1 3 1 0 0 9 1 1 3 1 . 1 4 1 . 1 4 1 2 3 . 9 6 . 9 4 1 . 0 2 . 8 6 1 0 1 1 1 1 3 1 . 4 1 1 . 3 9 1 3 7 1 . 1 7 1 . 1 3 1 . 1 2 1 . 0 7 1 1 0 1 2 1 1 3 1 . 2 8 1 . 3 2 1 3 3 1 . 0 7 1 . 0 9 1 . 0 8 1 . 0 1 1 1 0 1 3 1 1 3 1 . 2 6 1 . 1 2 1 16 1 . 0 6 . 9 8 1 . 0 0 . 7 7 1 0 2 8 1 1 3 1 . 7 6 1 . 8 1 1 7 9 1 . 3 8 1 . 4 1 1 . 4 1 1 . 1 0 1 1 0 3 4 1 1 3 1 . 2 9 1 . 3 9 1 2 5 1 . 1 0 1 . 17 1 . 0 2 . 8 3 1 0 3 5 1 1 3 1 . 0 4 . 9 9 9 4 . 9 8 . 9 3 . 8 9 . 7 6 1 0 3 6 1 1 3 1 . 4 8 1 . 4 2 1 7 6 1 . 4 1 1 . 3 7 1 . 6 1 . 7 7 1 0 3 7 1 1 3 1 . 6 4 1 . 6 7 1 4 6 1 . 4 4 1 . 4 5 1 . 2 9 . 9 2 1 0 3 8 1 1 3 1 . 4 5 1 . 5 3 1 6 2 1 . 2 0 1 . 2 7 1 . 3 5 . 9 5 1 1 1 0 8 1 1 3 1 . 3 6 1 . 4 6 1 3 4 1 . 2 3 1 . 3 1 1 . 1 8 . 9 1 1 1 1 6 1 1 3 1 . 0 3 1 . 0 7 1 1 0 1 . 0 0 1 . 0 1 1 . 0 4 . 6 8 1 1 3 8 1 1 3 1 . 8 4 1 . 8 6 1 8 2 1 . 5 3 1 . 5 1 1 . 5 2 1 . 3 0 1 2 0 1 8 2 1 3 1 . 4 2 1 . 6 1 1 3 5 1 . 2 3 1 . 3 7 1 . 17 . 9 8 1 2 0 3 1 2 1 3 1 . 2 5 1 . 17 1 17 1 . 0 8 1 . 0 2 1 . 0 4 1 . 0 1 2 0 3 6 2 1 3 1 . 19 1 . 2 1 1 2 9 1 . 0 2 1 . 0 6 1 . 1 3 . 7 2 2 0 5 1 2 1 3 1 . 6 6 1 . 7 0 1 . 9 2 1 . 3 5 1 . 3 9 1 . 6 1 1 . 0 7 1 2 0 6 4 2 1 3 1 . 9 8 1 . 6 5 2 0 4 1 . 5 7 1 . 3 6 1 . 6 5 1 . 4 4 1 2 2 0 1 2 1 3 1 . 5 8 1 . 3 7 1 6 6 1 . 3 0 1 . 1 5 1 . 3 4 1 . 17 1 3 0 0 1 2 1 3 . 8 2 . 9 2 7 8 . 7 0 . 7 8 . 6 8 . 6 9 1 0 0 1 1 1 4 1 . 7 0 1 . 6 1 1 6 6 1 . 2 8 1 . 2 4 1 . 2 3 1 . 5 3 1 1 0 0 2 1 1 4 2 . 0 4 2 . 0 9 2 2 2 1 . 4 8 1 . 5 3 1 . 6 8 1 . 8 4 1 1 0 0 4 1 1 4 1 . 8 0 1 . 8 3 1 9 9 1 . 3 7 1 . 3 9 1 . 5 0 1 . 6 4 1 1 0 0 5 1 1 4 1 . 8 2 1 . 7 3 1 7 0 1 . 4 3 1 . 3 5 1 . 3 3 1 . 6 7 1 1 0 1 0 1 1 4 1 . 8 6 1 . 6 6 1 6 5 1 . 3 9 1 . 2 1 1 . 17 1 . 5 7 1 1 0 1 4 1 1 4 1 . 8 6 1 . 8 6 1 5 5 1 . 4 4 1 . 4 1 1 . 1 3 1 . 7 0 1 1 0 1 5 1 1 4 1 . 6 3 1 . 9 3 1 . 6 2 1 . 2 5 1 . 5 1 1 . 2 5 1 . 5 5 1 1 0 2 4 1 1 4 1 . 9 8 2 . 0 0 2 0 4 1 . 4 7 1 . 4 9 1 . 5 2 1 . 7 4 1 1 0 2 6 1 1 4 1 . 17 1 . 1 9 1 2 0 . 8 5 . 8 8 . 8 8 1 . 0 9 1 1 0 2 7 1 1 4 1 . 6 0 1 . 8 9 1 8 7 1 . 2 1 1 . 3 8 1 . 3 8 1 . 5 5 1 1 0 3 1 1 1 4 1 . 4 5 1 . 4 4 1 5 0 1 . 0 8 1 . 0 7 1 . 1 2 1 . 3 0 1 1 1 0 1 1 1 4 2 . 1 0 2 . 0 8 2 17 1 . 5 8 1 . 5 9 1 . 6 6 1 . 9 1 1 2 0 0 3 2 1 4 1 . 9 2 2 . 4 4 1 9 9 1 . 2 9 1 . 7 4 1 . 4 5 1 . 5 3 2 2 0 2 6 2 1 4 2 . 0 6 2 . 2 7 2 0 0 1 . 5 9 1 . 7 8 1 . 5 4 1 . 9 2 2 2 0 4 0 2 1 4 1 . 8 8 1 . 9 3 1 8 5 1 . 2 9 1 . 3 5 1 . 2 5 1 . 5 2 1 2 0 5 4 2 1 4 1 . 6 1 1 . 7 0 1 5 7 1 . 2 6 1 . 3 6 1 . 2 2 1 . 5 7 1 2 0 6 0 2 1 4 1 . 7 5 1 . 8 9 1 9 4 1 . 3 5 1 . 4 3 1 . 4 6 1 . 6 8 1 2 0 6 2 2 1 4 1 . 9 5 1 . 9 9 1 . 8 9 1 . 4 5 1 . 4 8 1 . 4 3 1 . 7 5 1 I R 3 T 1 T 2 T 3 G M R M I R M T M 0 1 1 0 8 1 0 9 1 0 8 1 1 0 1 6 1 1 2 4 1 0 5 1 . 0 9 0 0 1 0 5 1 2 4 1 1 2 1 19 1 5 5 1 4 0 1 0 6 1 . 1 8 9 7 1 0 8 1 0 6 1 0 5 1 14 1 4 7 1 2 7 9 9 1 . 0 8 8 7 9 7 9 9 9 9 1 1 0 1 3 9 1 2 2 9 1 1 0 3 4 5 1 4 4 1 5 2 1 4 8 1 4 8 2 1 6 1 6 8 1 4 5 1 . 4 9 2 3 8 3 1 0 3 1 3 2 9 3 1 3 6 1 2 6 1 0 0 1 0 9 8 6 8 1 1 0 1 9 8 9 3 1 2 8 1 1 6 . 8 5 . 9 7 17 1 2 0 1 4 1 1 3 8 1 4 1 2 0 2 1 7 0 1 1 9 1 . 4 0 7 2 6 4 8 8 9 2 8 3 1 1 0 1 1 3 6 8 . 8 8 9 3 1 0 0 1 0 0 1 0 8 1 16 1 4 5 1 3 3 9 1 1 . 0 8 9 7 1 2 7 1 1 5 1 0 2 1 3 1 1 5 4 1 3 6 1 1 2 1 1 6 8 7 9 4 8 6 8 6 9 3 1 17 9 7 8 9 8 8 0 4 1 0 2 1 0 6 1 0 2 1 0 2 1 3 9 1 1 4 1 0 4 1 0 3 0 9 1 0 9 9 9 1 0 2 1 0 2 1 3 1 1 0 8 1 0 6 1 . 0 1 7 2 7 3 8 7 8 1 8 3 1 1 8 1 0 1 7 4 8 4 1 1 1 0 9 1 1 9 1 2 0 1 2 0 1 7 9 1 4 0 1 1 0 1 2 0 8 9 7 6 9 2 9 9 8 7 1 3 1 1 1 0 8 3 . 9 3 7 3 6 9 8 4 8 0 7 6 9 9 9 3 . 7 3 . 8 0 7 6 9 2 1 0 5 1 0 2 1 2 3 1 5 5 1 4 6 8 2 1 . 1 0 9 3 8 4 1 1 3 1 1 4 1 0 4 1 5 9 1 3 9 9 0 1 . 1 0 0 1 1 0 9 1 0 2 1 0 8 1 1 6 1 5 3 1 2 7 1 0 2 1 0 9 9 5 9 0 1 0 2 1 1 2 1 0 0 1 3 9 1 2 4 9 2 1 0 5 7 4 7 6 8 1 8 5 8 7 1 0 7 1 0 2 7 3 8 4 3 2 1 2 8 1 3 5 1 3 5 1 3 4 1 8 4 1 5 2 1 3 0 1 3 5 17 9 2 1 0 5 1 2 1 9 9 1 4 6 1 2 6 1 0 2 1 0 8 9 3 9 0 9 8 9 2 9 2 1 2 0 1 0 5 9 5 9 4 7 2 7 9 8 4 8 5 9 2 1 2 3 1 0 7 7 4 8 7 0 8 1 . 2 7 1 1 6 1 19 1 3 9 1 7 6 1 4 5 1 1 4 1 . 2 5 1 2 1 4 8 1 4 5 1 18 1 4 7 1 8 9 1 5 3 1 3 5 1 3 7 0 0 1 3 0 1 17 1 0 2 1 2 5 1 5 4 1 2 6 1 1 6 1 1 5 7 7 6 8 6 5 7 3 6 3 8 4 7 2 7 1 6 7 5 5 1 5 1 1 3 0 1 2 8 1 2 7 1 6 6 1 2 5 1 5 3 1 2 8 9 0 2 0 4 1 5 3 1 5 7 1 7 2 2 1 2 1 5 6 1 9 3 1 6 1 6 6 1 8 0 1 4 0 1 4 1 1 5 2 1 8 7 1 4 2 1 7 0 1 4 4 6 0 1 5 7 1 4 4 1 3 7 1 3 5 1 7 5 1 3 7 1 6 1 1 3 9 4 7 1 4 3 1 4 1 1 2 2 1 19 1 7 2 1 2 6 1 4 9 1 2 7 6 6 1 3 9 1 4 8 1 4 4 1 1 5 1 7 6 1 3 3 1 5 8 1 3 6 8 4 1 5 4 1 2 7 1 5 2 1 3 2 1 7 3 1 3 4 1 6 4 1 3 7 7 4 1 8 0 1 4 7 1 5 0 1 5 4 2 0 1 1 4 9 1 7 6 1 5 0 1 1 1 0 8 8 7 9 0 9 0 1 1 9 8 7 1 0 9 8 9 7 2 1 7 3 1 2 5 1 4 3 1 4 2 1 7 9 1 3 2 1 6 7 1 3 7 2 9 1 3 1 1 0 9 1 0 8 1 1 1 1 4 6 1 0 9 1 3 0 1 0 9 9 1 1 9 9 1 6 4 1 6 2 1 6 8 2 1 2 1 6 1 1 9 4 1 6 5 0 4 1 8 0 1 3 0 1 7 4 1 5 2 2 1 2 1 4 9 1 7 9 1 5 2 1 2 1 8 7 1 6 3 1 8 2 1 5 8 2 1 1 1 6 4 1 9 7 1 6 8 5 8 1 4 5 1 3 0 1 3 5 1 2 4 1 8 9 1 3 0 1 5 2 1 3 0 6 9 1 5 3 1 3 1 1 4 0 1 2 6 1 6 3 1 2 8 1 6 0 1 3 2 7 5 1 8 0 1 3 7 1 4 5 1 4 9 1 8 6 1 4 1 1 7 4 1 4 4 7 7 1 7 4 1 4 8 1 4 9 1 4 6 1 9 4 1 4 5 1 7 5 1 4 8 GR G I R R I R G M O T R M O T I R M T . 3 0 1 . 5 3 1 . 1 8 1 8 8 1 4 7 . 5 5 . 1 1 1 . 4 6 1 . 3 2 1 8 4 1 . 6 1 . 5 5 . 1 6 1 . 4 8 1 . 2 8 1 7 4 1 . 4 8 . 5 2 . 1 4 1 . 5 4 1 . 3 5 1 6 5 1 4 0 . 4 7 . 2 9 1 . 4 8 1 . 1 5 2 5 3 2 0 0 . 7 6 . 0 8 1 . 3 6 1 . 2 7 1 6 3 1 . 4 7 . 5 2 . 1 0 1 . 5 0 1 . 3 6 1 5 2 1 . 3 3 . 4 4 . 1 9 1 . 7 0 1 . 4 3 2 3 7 1 . 9 3 . 6 2 . 9 7 1 . 6 0 1 . 6 5 1 3 1 1 . 2 4 . 3 6 . 0 9 1 . 6 0 1 . 4 6 1 7 2 1 . 5 0 . 4 7 . 1 3 1 . 3 7 1 . 2 1 1 8 3 1 6 0 . 5 8 . 2 0 1 . 3 1 1 . 0 9 1 3 9 1 18 . 4 6 . 2 2 1 . 3 3 1 . 0 9 1 6 5 1 3 8 . 5 4 . 2 1 1 . 2 3 1 . 0 2 1 5 7 1 3 3 . 5 5 . 1 6 1 . 5 9 1 . 3 7 1 3 9 1 1 6 . 3 8 . 2 8 1 . 6 2 1 . 2 7 2 0 9 1 6 3 . 5 7 . 1 9 1 . 5 8 1 . 3 3 1 5 4 1 2 6 . 4 3 . 0 6 1 . 3 6 1 . 2 8 1 1 9 1 . 0 8 . 3 8 . 0 6 1 . 9 0 1 . 7 9 1 8 3 1 5 8 . 4 2 . 1 4 1 . 7 7 1 . 5 5 1 8 6 1 5 5 . 4 7 . 2 0 1 . 5 1 1 . 2 5 1 8 1 1 4 9 . 5 3 . 1 2 1 . 5 1 1 . 3 5 1 6 5 1 4 2 . 4 8 . 0 5 1 . 4 7 1 . 4 0 1 2 8 1 1 6 . 3 8 . 2 1 1 . 4 2 1 . 17 2 1 8 1 8 1 . 6 8 . 16 1 . 4 3 1 . 2 3 1 7 3 1 4 7 . 5 3 . 14 1 . 2 6 1 . 1 1 1 4 4 1 2 6 . 4 9 . 1 5 1 . 6 5 1 . 4 4 1 4 5 1 2 1 . 3 9 . 2 1 1 . 5 4 1 . 2 7 2 0 7 1 6 9 . 5 9 . 2 4 1 . 4 0 1 . 1 3 2 2 3 1 8 3 . 7 0 . 2 2 1 . 3 3 1 . 0 9 1 8 3 1 5 3 . 6 0 . 17 1 . 18 1 . 0 1 1 0 1 8 9 . 3 7 . 3 3 1 . 0 8 . 8 2 1 9 9 1 6 5 . 8 0 . 3 5 1 . 1 0 . 8 1 2 5 4 2 0 7 1 . 0 0 . 3 2 1 . 1 0 . 8 4 2 2 5 1 8 6 . 8 8 . 2 8 1 . 0 8 . 8 5 2 1 1 1 7 9 . 8 4 . 3 7 1 . 1 6 . 8 4 2 0 5 1 6 4 . 7 7 . 3 2 1 . 1 1 . 8 4 2 1 1 1 7 4 . 8 2 . 2 9 1 . 0 5 . 8 1 2 0 8 1 7 7 . 8 5 . 3 4 1 . 14 . 8 5 2 4 0 1 9 5 . 9 2 . 3 6 1 . 0 9 . 8 0 1 4 2 1 1 6 . 5 7 . 3 5 1 . 0 7 . 7 9 2 1 5 1 7 6 . 8 7 . 3 4 1 . 1 3 . 8 4 1 7 5 1 4 3 . 6 8 . 3 1 1 . 0 9 . 8 3 2 5 4 2 1 1 1 . 0 1 . 4 2 1 . 1 8 . 8 3 2 5 1 1 9 6 . 9 3 . 2 9 1 . 0 7 . 8 3 2 5 4 2 1 5 1 . 0 2 . 4 6 1 . 2 4 . 8 5 2 2 2 1 6 9 . 7 9 . 2 7 1 . 0 2 . 8 0 1 9 7 1 7 0 . 8 3 . 3 2 1 . 0 7 . 8 1 2 2 4 1 8 7 . 9 1 . 3 4 1 . 1 1 . 8 3 2 3 3 1 9 1 . 9 1 T R E E P F H G 1 G 2 G 3 R1 R 2 R 3 I R 1 I R 2 I R 3 T 1 T 2 T 3 GM R M I R M T M GR G I R R I R G M O T R M O T I R M T 2 0 7 6 2 1 4 1 . 4 5 1 . 5 6 1 . 5 4 1 . 0 4 1 . 1 2 1 . 1 0 1 . 3 0 1 . 3 6 1 . 3 0 1 . 0 6 1 . 14 1 . 1 0 1 . 5 2 1 . 0 9 1 . 3 2 1 . 1 0 1 . 4 0 1 . 1 5 . 8 2 1 . 8 1 1 . 4 3 . 6 9 2 1 0 0 2 1 4 1 . 6 1 1 . 7 5 1 . 7 9 1 . 2 0 1 . 3 3 1 . 3 6 1 . 4 3 1 . 5 7 1 . 5 9 1 . 2 1 1 . 3 4 1 . 3 6 1 . 7 2 1 . 3 0 1 . 5 3 1 . 3 0 1 . 3 2 1 . 12 . 8 5 2 . 0 6 1 . 6 9 . 8 0 2 1 1 0 2 1 4 1 . 8 9 1 . 9 5 1 . 9 1 1 . 3 5 1 . 3 8 1 . 3 6 1 . 6 2 1 . 6 6 1 . 6 7 1 . 3 7 1 . 4 0 1 . 3 9 1 . 9 2 1 . 3 6 1 . 6 5 1 . 3 9 1 . 4 1 1 . 1 6 . 8 3 2 . 2 8 1 . 7 9 . 8 6 2 1 1 1 2 1 4 1 . 6 9 1 . 7 6 1 . 6 7 1 . 2 5 1 . 3 6 1 . 2 1 1 . 5 4 1 . 6 8 1 . 5 2 1 . 2 8 1 . 4 0 1 . 2 4 1 . 7 1 1 . 2 7 1 . 5 8 1 . 3 1 1 . 3 4 1 . 0 8 . 8 1 2 . 0 5 1 . 6 9 . 8 2 2 1 1 4 2 1 4 1 . 8 3 1 . 8 5 1 . 9 0 1 . 3 6 1 . 3 6 1 . 3 4 1 . 6 5 1 . 6 5 1 . 5 8 1 . 3 9 1 . 3 9 1 . 3 5 1 . 8 6 1 . 3 5 1 . 6 3 1 . 3 8 1 . 3 7 1 . 1 4 . 8 3 2 . 2 2 1 . 7 8 . 8 5 2 1 5 9 2 1 4 2 . 0 3 1 . 9 5 1 . 9 5 1 . 4 6 1 . 4 6 1 . 4 0 1 . 7 2 1 . 7 6 1 . 6 5 1 . 4 7 1 . 4 9 1 . 4 1 1 . 9 8 1 . 4 4 1 . 7 1 1 . 4 6 1 . 3 7 1 . 1 6 . 8 4 2 . . 3 5 1 . 8 8 . 8 9 2 1 8 8 2 1 4 1 . 4 3 1 . 7 6 1 . 5 5 1 . 0 1 1 . 3 1 1 . 1 8 1 . 2 4 1 . 6 3 1 . 3 1 1 . 0 2 1 . 3 5 1 . 17 1 . 5 8 1 . 17 1 . 3 9 1 . 1 8 1 . 3 5 1 . 1 3 . 8 4 1 . 8 9 1 . 5 3 . 7 2 2 1 8 9 2 1 4 1 . 7 2 1 . 7 2 1 . 7 2 1 . 2 8 1 . 3 2 1 . 2 8 1 . 6 0 1 . 6 3 1 . 5 9 1 . 3 1 1 . 3 5 1 . 3 2 1 . 7 2 1 . 2 9 1 . 6 1 1 . 3 3 1 . 3 3 1 . 0 7 . 8 0 2 . 0 7 1 . 7 2 . 8 4 2 2 0 0 2 1 4 1 . 2 2 1 . 2 2 1 . 2 4 . 9 0 . 9 0 . 9 1 1 . 1 3 1 . 1 3 1 . 1 5 . 9 1 . 9 1 . 9 3 1 . 2 3 . 9 0 1 . 14 . 9 2 1 . 3 6 1 . 0 8 . 7 9 1 . 4 7 1 . 2 0 . 5 9 2 2 0 4 2 1 4 1 . 6 3 1 . 9 1 1 . 8 5 1 . 2 6 1 . 4 8 1 . 4 4 1 . 5 1 1 . 7 6 1 . 6 9 1 . 2 8 1 . 5 0 1 . 4 4 1 . 8 0 1 . 3 9 1 . 6 5 1 . 4 1 1 . 2 9 1 . 0 9 . 8 4 2 . . 1 6 1 . 8 2 . 8 6 2 2 0 5 2 1 4 1 . 7 7 1 . 6 5 1 . 5 0 1 . 2 9 1 . 19 1 . 0 8 1 . 5 0 1 . 4 2 1 . 3 2 1 . 2 9 1 . 2 0 1 . 0 9 1 . 6 4 1 . 1 9 1 . 4 1 1 . 1 9 1 . 3 8 1 . 1 6 . 8 4 1 . . 9 5 1 . 5 5 . 7 3 T R E E P F H B 1 B 2 B 3 G 1 G 2 G 3 R 1 R 2 R 3 T l 1 1 1 7 1 2 1 . 4 7 . 4 6 . 4 7 . 3 6 . 3 6 . 3 7 . 6 7 . 6 7 . 6 9 . 4 4 1 1 1 8 1 2 1 . 5 0 . 5 1 . 5 0 . 3 9 . 4 0 . 3 9 . 7 3 . 7 4 . 7 3 . 4 7 1 1 1 9 1 2 1 . 5 0 . 6 6 . 5 2 . 3 8 . 5 0 . 4 0 . 6 8 . 8 4 . 7 6 . 4 6 1 1 2 0 1 2 1 . 8 5 . 7 0 J 6 9 . 7 0 . 5 2 . 5 0 1 . 0 2 . 7 9 . 7 8 . 7 6 1 1 2 1 1 2 1 . 5 8 . 6 1 . 7 4 . 4 3 . . 4 6 . 5 9 . 8 0 . 8 3 . 9 5 . 5 1 1 1 2 2 1 2 1 . 7 3 . 7 3 . 7 3 . 6 2 . 6 2 . 6 3 1 . 0 4 1 . 0 4 1 . 0 5 . 7 1 1 1 2 3 1 2 1 . 9 0 . 8 6 . 7 2 . 8 2 . 7 7 . 6 2 1 . 2 3 1 . 1 9 1 . 0 0 . 8 9 1 1 2 4 1 2 1 . 7 4 . 7 9 . 7 5 . 6 4 . 6 9 . 6 5 1 . 0 1 1 . 1 0 1 . 0 5 . 7 0 1 1 2 5 1 2 1 . 9 4 . 8 4 . 9 1 . 7 7 . 6 9 . 7 7 1 . 18 1 . 0 9 1 . 2 2 . 8 3 1 1 2 6 1 2 1 . 5 5 . 5 9 . 5 9 . 3 9 . 4 2 . 4 2 . 7 1 . 7 3 . 7 2 . 4 6 1 1 2 7 1 2 1 . 6 5 . 6 4 . 6 1 . 4 6 . 4 6 . 4 4 . 8 0 . 7 8 . 7 8 . 5 3 1 1 2 8 1 2 1 . 7 2 . 7 4 . 6 5 . 5 9 . 6 2 . 4 5 . 8 7 . 9 2 . 7 9 . 6 5 1 1 3 0 1 2 1 . 6 7 . 6 5 . 6 8 . 4 7 . 4 5 . 4 8 . 7 5 . 7 3 . 7 7 . 5 4 1 1 3 1 1 2 1 . 7 0 . 7 3 . 7 2 . 5 7 . 6 3 . 6 2 . 9 0 . 9 5 . 9 2 . 6 4 1 1 3 2 1 2 1 . 6 5 . 7 4 . 8 1 . 5 3 . 6 3 . 7 1 . 8 8 . 9 8 1 . 0 7 . 6 1 1 1 3 3 1 2 . 6 9 . 7 4 . 6 9 . 5 7 . 6 3 . 5 7 . 9 3 . 9 9 . 9 3 . 6 6 1 1 3 4 1 2 1 . 7 6 . 7 0 . 7 5 . 6 8 . 6 1 . 6 7 1 . 0 3 . 9 4 1 . 0 2 . 7 4 1 1 3 5 1 2 1 . 8 2 . 7 7 . 9 2 . 6 6 . 6 2 . 7 7 1 . 0 4 . 9 8 1 . 16 . 7 5 1 1 3 6 1 2 1 . 5 9 . 5 8 . 5 9 . 4 3 . 4 3 . 4 3 . 7 6 . 7 6 . 7 5 . 5 0 1 1 4 6 1 2 1 . 5 9 . 5 6 . 4 9 . 5 0 . 4 6 . 3 9 . 8 5 . 7 9 . 7 2 . 5 8 2 0 0 1 2 2 1 . 5 7 . 5 2 . 5 6 . 4 5 . 3 9 . 4 3 . 7 7 . 7 1 . 7 5 . 5 3 2 0 0 2 2 2 1 . 5 3 . 7 2 . 5 4 . 4 0 . 6 2 . 4 1 . 7 3 1 . 0 8 . 7 2 . 4 7 2 0 0 4 2 2 1 . 9 0 . 8 4 . 8 3 . 7 7 . 7 0 . 6 9 1 . 16 1 . 0 8 1 . 0 9 . 8 4 2 0 0 9 2 2 1 . 8 4 . 8 6 . 8 4 . 6 5 . 6 8 . 6 6 1 . 1 1 1 . 1 3 1 . 1 1 . 7 5 2 0 1 9 2 2 1 . 8 1 . 7 8 . 8 5 . 6 7 . 6 4 . 7 3 1 . 0 4 1 . 0 1 1 . 16 . 7 4 2 0 2 7 2 2 1 . 5 7 . 5 7 . 5 8 . 4 6 . 4 6 . 4 6 . 7 8 . 7 8 . 7 8 . 5 3 2 0 3 2 2 2 1 . 4 6 . 4 5 . 5 0 . 3 7 . 3 8 . 4 0 . 7 0 . 7 1 . 7 3 . 4 6 2 0 3 7 2 2 1 . 7 4 . 7 8 . 7 1 . 5 7 . 6 2 . 5 4 . 9 6 1 . 0 1 . 9 2 . 6 5 2 0 3 8 2 2 1 . 6 9 . 7 1 . 6 8 . 5 9 . 6 2 . 5 9 . 9 5 1 . 0 0 . 9 6 . 6 7 2 0 4 8 2 2 1 . 7 4 . 7 3 . 7 3 . 6 1 . 6 0 . 5 9 1 . 0 1 1 . 0 1 1 . 0 0 . 6 8 2 0 5 8 2 2 1 . 6 1 . 5 7 . 5 9 . 4 9 . 4 8 . 4 9 . 8 4 . 8 1 . 8 4 . 5 7 2 0 6 6 2 2 1 . 8 2 . 7 9 . 8 2 . 6 9 . 6 5 . 6 9 1 . 0 6 1 . 0 1 1 . 0 4 . 7 4 2 0 6 7 2 2 1 . 7 6 . 7 6 . 7 5 . 6 7 . 6 2 . 6 4 1 . 0 5 . 9 8 1 . 0 1 . 7 3 2 0 6 8 2 2 1 . 6 7 . 6 3 . 6 8 . 5 8 . 5 3 . 5 8 . 9 5 . 8 9 . 9 4 . 6 4 2 0 6 9 2 2 1 . 7 9 . 7 4 . 6 9 . 7 0 . 6 5 . 5 9 1 . 0 7 1 . 0 2 . 9 2 . 7 6 2 1 2 4 2 2 1 . 6 0 . 5 9 . 6 0 . 4 9 . 4 9 . 5 0 . 8 8 . 8 8 . 8 9 . 5 7 2 1 2 9 2 2 1 . 6 5 . 6 1 . 6 3 . 4 6 . 4 4 . 4 5 . 8 2 . 8 0 . 8 2 . 5 4 2 1 5 2 2 2 1 . 5 5 . 5 7 . 5 8 . 4 9 . 5 2 . 5 1 . 8 6 . 8 8 . 8 8 . 5 7 2 1 5 3 2 2 1 . 6 2 . 6 4 . 6 2 . 5 1 . 5 5 . 5 2 . 9 0 . 9 3 . 9 1 . 6 0 2 1 5 8 2 2 1 . 5 2 . 5 4 . 5 0 . 4 4 . 4 5 . 4 2 . 7 6 . 7 7 . 7 4 . 5 0 2 1 6 2 2 2 1 . 5 9 . 5 1 . 5 8 . 4 7 . 3 9 . 4 4 . 7 7 . 6 7 . 7 4 . 5 3 2 1 8 3 2 2 1 ' . 6 8 . 6 0 . 6 4 . 6 3 . 5 5 . 6 0 1 . 0 2 . 9 3 . 9 9 . 6 9 1 0 1 7 1 2 2 . 7 4 . 8 5 . 8 1 . 5 2 . 6 4 . 6 0 . 8 4 . 9 8 . 9 3 . 6 0 1 0 3 0 1 2 2 . 5 8 . 6 1 . 5 8 . 4 1 . 4 6 . 4 2 . 6 8 . 7 5 . 7 0 . 4 7 1 0 3 3 1 2 2 . 7 1 . 6 9 . 7 2 . 5 3 . 5 2 . 5 2 . 8 3 . 8 2 . 7 9 . 6 0 1 0 4 1 1 2 2 . 6 8 . 6 9 . 6 6 . 4 5 . 4 5 . 4 5 . 7 1 . 7 2 . 7 3 . 5 2 1 1 1 2 1 2 2 . 7 4 . 7 3 . 7 7 . 5 7 . 5 4 . 5 9 . 8 6 . 8 4 . 8 8 . 6 2 1 1 1 3 1 2 2 . 8 1 . 9 4 . 8 2 . 6 4 . 7 3 . 7 0 . 9 4 1 . 0 5 1 . 0 1 . 6 9 1 1 1 4 1 2 2 . 8 0 . 8 6 . 7 6 . 6 1 . 7 0 . 5 7 . 9 4 1 . 0 4 . 8 7 . 6 8 1 1 2 9 1 2 2 . 6 0 . 6 1 . 6 1 ' . 4 9 . 5 0 . 4 9 . 7 9 . 8 0 . 8 1 . 5 6 \2 T 3 B M G M RM T M B G B R G R B M O T G M O T R M O T 4 3 . 4 4 . 4 7 . 3 6 . 6 8 . 4 4 1 . 2 8 . 6 9 . 5 4 . 4 8 . 4 4 . 5 6 4 8 . 4 7 . 5 0 . 3 9 . 7 3 . 4 7 1 . 2 8 . 6 9 . 5 4 . 5 2 . 4 8 . 6 1 5 7 . 4 8 . 5 6 . 4 3 . 7 6 . 5 0 1 . 3 1 . 7 4 . 5 6 . 5 8 . 5 1 . 6 3 5 8 . 5 7 . 7 5 ' . 5 7 . 8 6 . 6 4 1 . 3 0 . 8 6 . 6 6 . 7 7 . 6 6 . 7 2 5 5 . 6 7 . 6 4 . 4 9 . 8 6 . 5 8 1 . 3 0 . 7 5 . 5 7 . 6 6 . 5 9 . 7 1 7 1 . 7 1 . 7 3 . 6 2 1 . 0 4 . 7 1 1 . 1 7 . 7 0 . 6 0 . 7 6 . 7 4 . 8 7 8 5 . 6 9 . 8 3 . 7 4 1 . 14 . 8 1 1 . 1 2 . 7 3 . 6 5 . 8 6 . 8 5 . 9 5 7 6 . 7 2 . 7 6 . 6 6 1 . 0 5 . 7 3 1 . 1 5 . 7 2 . 6 3 . 7 9 . 7 7 . 8 7 7 6 . 8 6 . 9 0 . 7 4 1 . 16 . 8 2 1 . 2 1 . 7 7 . 6 4 . 9 3 . 8 7 . 9 7 4 8 . 4 7 . 5 8 . 4 1 . 7 2 . 4 7 1 . 4 1 . 8 0 . 5 7 . 5 9 . 4 9 . 6 0 5 2 . 5 1 . 6 3 . 4 5 . 7 9 . 5 2 1 . 4 0 . 8 1 . 5 8 . 6 5 . 5 4 . 6 5 6 7 . 5 2 . 7 0 . 5 5 . 8 6 . 6 1 1 . 2 7 . 8 2 . 6 4 . 7 2 . 6 4 . 7 1 5 1 . 5 4 . 6 7 . 4 7 . 7 5 . 5 3 1 . 4 3 . 8 9 . 6 2 . 6 8 . 5 5 . 6 2 7 0 . 6 8 . 7 2 . 6 1 . 9 2 . 6 7 1 . 1 8 . 7 8 . 6 6 . 7 4 . 7 0 . 7 7 7 1 . 7 9 . 7 3 . 6 2 . 9 8 . 7 0 1 . 1 8 . 7 5 . 6 4 . 7 6 . 7 3 . 8 1 7 0 . 6 5 . 7 1 . 5 9 . 9 5 . 6 7 1 . 2 0 . 7 4 . 6 2 . 7 3 . 6 9 . 7 9 6 8 . 7 4 . 7 4 . 6 5 1 . 0 0 . 7 2 1 . 1 3 . 7 4 . 6 6 . 7 7 . 7 6 . 8 3 7 0 . 8 5 . 8 4 . 6 8 1 . 0 6 . 7 7 1 . 2 2 . 7 9 . 6 4 . 8 6 . 7 9 . 8 8 5 1 . 5 0 . 5 9 . 4 3 . 7 6 . 5 0 1 . 3 6 . 7 8 . 5 7 . 6 0 . 5 2 . 6 3 5 4 . 4 7 . 5 5 . 4 5 . 7 9 . 5 3 1 . 2 1 . 6 9 . 5 7 . 5 7 . 5 4 . 6 5 4 6 . 5 0 . 5 5 . 4 2 . 7 4 . 5 0 1 . 3 0 . 7 4 . 5 7 . 5 7 . 5 1 . 6 2 7 1 . 4 7 . 6 0 . 4 8 . 8 4 . 5 5 1 . 2 5 . 7 1 . 5 7 . 6 2 . 5 7 . 7 0 7 6 . 7 7 . 8 6 . 7 2 1 . 1 1 . 7 9 1 . 19 . 7 7 . 6 5 . 8 9 . 8 4 . 9 2 7 7 . 7 5 . 8 5 . 6 6 1 . 1 2 . 7 6 1 . 2 8 . 7 6 . 5 9 . 8 7 . 7 9 . 9 3 7 1 . 8 1 . 8 1 . 6 8 1 . 0 7 . 7 5 1 . 2 0 . 7 6 . 6 4 . 8 4 . 7 9 . 8 9 5 4 . 5 3 . 5 7 . 4 6 . 7 8 . 5 3 1 . 2 5 . 7 4 . 5 9 . 5 9 . 5 5 . 6 5 4 5 . 4 8 . 4 7 . 3 8 . 7 1 . 4 6 1 . 2 3 . 6 6 . 5 4 . 4 9 . 4 6 . 5 9 7 0 . 6 2 . 7 4 . 5 8 . 9 6 . 6 6 1 . 2 9 . 7 7 . 6 0 . 7 6 . 6 8 . 8 0 6 9 . 6 7 . 6 9 . 6 0 . 9 7 . 6 8 1 . 16 . 7 1 . 6 2 . 7 2 . 7 0 . 8 1 6 9 . 6 8 . 7 3 . 6 0 1 . 0 1 . 6 8 1 . 2 2 . 7 3 . 6 0 . 7 6 . 7 1 . 8 4 5 5 . 5 7 . 5 9 . 4 9 . 8 3 . 5 6 1 . 2 1 . 7 1 . 5 9 . 6 1 . 5 8 . 6 9 7 0 . 7 3 . 8 1 . 6 8 1 . 0 4 . 7 2 1 . 2 0 . 7 8 . 6 5 . 8 4 . 7 8 . 8 6 6 8 . 6 9 . 7 6 . 6 4 1 . 0 1 . 7 0 1 . 18 . 7 5 . 6 3 . 7 8 . 7 5 . 8 4 5 9 . 6 4 . 6 6 . 5 6 . 9 3 . 6 2 1 . 1 7 . 7 1 . 6 1 . 6 9 . 6 6 . 7 7 7 0 . 6 4 . 7 4 . 6 5 1 . 0 0 . 7 0 1 . 1 4 . 7 4 . 6 4 . 7 7 . 7 5 . 8 3 5 8 . 5 9 . 6 0 . 4 9 . 8 8 . 5 8 1 . 2 1 . 6 8 . 5 6 . 6 2 . 5 9 . 7 3 5 2 . 5 3 . 6 3 . 4 5 . 8 1 . 5 3 1 . 4 0 . 7 7 . 5 5 . 6 4 . 5 4 . 6 8 5 9 . 5 9 . 5 7 . 5 1 . 8 7 . 5 8 1 . 1 2 . 6 5 . 5 8 . 5 9 . 6 0 . 7 2 6 2 . 6 1 . 6 3 . 5 3 . 9 1 . 6 1 1 . 1 9 . 6 9 . 5 8 . 6 5 . 6 3 . 7 6 5 1 . 4 9 . 5 2 . 4 4 . 7 6 . 5 0 1 . 1 9 . 6 9 . 5 8 . 5 4 . 5 2 . 6 3 4 5 . 5 1 . 5 6 . 4 3 . 7 3 . 5 0 1 . 2 9 . 7 7 . 6 0 . 5 8 . 5 1 . 6 0 6 3 . 6 7 . 6 4 . 5 9 . 9 8 . 6 6 1 . 0 8 . 6 5 . 6 1 . 6 7 . 7 0 . 8 1 7 0 . 6 7 . 8 0 . 5 9 . 9 2 . 6 6 1 . 3 6 . 8 7 . 6 4 . 8 2 . 6 8 . 7 6 5 3 . 4 9 . 5 9 . 4 3 . 7 1 . 5 0 1 . 3 7 . 8 3 . 6 1 . 6 0 . 5 1 . 5 9 5 9 . 5 8 . 7 1 . 5 2 . 8 1 . 5 9 1 . 3 5 . 8 7 . 6 4 . 7 2 . 6 1 . 6 8 5 0 . 5 1 . 6 8 . 4 5 . 7 2 . 5 1 1 . 5 0 . 9 4 . 6 2 . 6 9 . 5 3 . 6 0 6 0 . 6 4 . 7 5 . 5 7 . 8 6 . 6 2 1 . 3 2 . 8 7 . 6 6 . 7 7 . 6 6 . 7 1 7 7 . 7 5 . 8 6 . 6 9 1 . 0 0 . 7 4 1 . 2 4 . 8 6 . 6 9 . 8 8 . 7 9 . 8 3 7 6 . 6 4 . 8 1 . 6 3 . 9 5 . 6 9 1 . 2 9 . 8 5 . 6 6 . 8 3 . 7 3 . 7 9 5 7 . 5 7 . 6 1 . 4 9 . 8 0 . 5 7 1 . 2 3 . 7 6 . 6 2 . 6 3 . 5 8 . 6 6 T R E E P F H B 1 B 2 B 3 G 1 G 2 G 3 R 1 R 2 R 3 T 1 1 1 3 9 1 2 2 1 . 1 0 1 . 1 2 . 8 5 . 8 2 . 8 6 . 6 0 1 . 1 1 1 . 1 6 . 8 3 . 8 7 1 1 4 1 1 2 2 . 7 7 . 7 8 . 8 8 . 6 3 . 6 5 . 7 6 . 9 2 . 9 7 1 . 0 7 . 6 8 1 1 4 4 1 2 2 . 6 0 . 5 8 . 6 2 . 5 6 . 5 3 . 4 9 . 8 1 . 7 8 . 8 5 . 5 8 1 1 4 7 1 2 2 . 8 5 . 8 3 . 8 6 . 7 0 . 6 6 . 7 1 1 . 0 0 1 . 0 3 1 . 0 0 . 7 5 2 0 1 3 2 2 2 . 9 5 . 9 5 . 9 3 . 7 9 . 8 0 . 7 6 1 . 0 9 1 . 1 1 1 . 0 4 . 8 4 2 0 2 5 2 2 2 . 6 5 . 6 4 . 6 3 . 4 9 . 4 7 . 4 6 . 7 8 . 7 7 . 7 6 . 5 4 2 0 4 1 2 2 2 . 8 8 . 8 6 . 9 1 . 7 4 . 7 4 . 7 9 1 . 0 7 1 . 0 7 1 . 12 . 7 9 2 0 5 2 2 2 2 . 6 5 . 8 0 . 7 2 . 5 1 . 7 4 . 5 8 . 8 4 1 . 17 . 9 1 . 5 9 2 1 4 3 2 2 2 . 6 4 . 6 3 . 7 0 . 5 3 . 5 0 . 5 9 . 8 4 . 8 3 . 9 0 . 5 9 2 1 9 5 2 2 2 . 8 6 . 8 0 . 7 4 . 7 5 . 6 9 . 6 8 1 . 12 1 . 0 7 1 . 0 0 . 8 0 1 0 0 7 1 2 3 . 7 7 . 7 8 . 7 6 . 5 9 . 6 1 . 5 9 . 8 4 . 8 5 . 8 3 . 6 3 1 0 0 9 1 2 3 . 7 2 . 7 7 . 6 9 . 5 5 . 5 8 . 5 3 . 7 5 . 7 9 . 7 3 . 5 7 1 0 1 1 1 2 3 . 6 9 . 7 0 . 7 0 . 5 4 . 5 6 . 5 6 . 7 8 . 7 8 . 7 8 . 5 9 1 0 1 2 1 2 3 . 6 3 . 6 1 . 6 1 . 5 4 . 5 1 . 5 0 . 7 3 . 7 0 . 7 0 . 5 7 1 0 1 3 1 2 3 . 6 2 . 5 9 . 6 2 . 4 5 . 4 1 . 4 3 . 6 8 . 6 5 . 6 7 . 5 0 1 0 2 8 1 2 3 . 7 0 . 6 9 . 7 2 . 5 4 . 5 2 . 5 6 . 7 6 . 7 3 . 7 8 . 5 5 1 0 3 4 1 2 3 . 7 8 . 7 5 . 6 7 . 6 3 . 5 9 . 5 5 . 8 9 . 8 5 . 8 3 . 6 7 1 0 3 5 1 2 3 . 5 6 . 5 6 . 5 5 . 4 4 . 4 4 . 4 4 . 7 2 . 7 2 . 7 0 . 5 0 1 0 3 6 1 2 3 . 6 4 . 6 1 . 6 1 . 4 4 . 4 1 . 4 1 . 7 7 . 7 3 . 7 3 . 5 2 1 0 3 7 1 2 3 . 6 9 . 7 0 . 6 9 . 5 1 . 5 2 . 5 2 . 7 9 . 8 0 . 7 9 . 5 7 1 0 3 8 1 2 3 . 7 8 . 7 7 . 7 8 . 5 7 . 5 7 . 5 8 . 8 3 . 8 4 . 8 5 . 6 1 1 1 0 8 1 2 3 . 7 8 . 7 0 . 7 4 . 6 3 . 5 5 . 5 8 . 9 3 . 8 4 . 8 7 . 6 7 1 1 1 6 1 2 3 . 7 3 . 7 4 . 7 7 . 5 8 . 5 6 . 5 6 . 8 8 . 8 4 . 8 6 . 6 4 1 1 3 8 1 2 3 . 7 1 . 7 3 . 8 6 . 6 3 . 6 4 . 7 3 . 8 6 . 8 6 . 9 6 . 6 6 2 0 1 8 2 2 3 . 9 5 . 7 7 . 7 8 . 8 8 . 6 2 . 6 6 1 . 14 . 8 7 . 8 9 . 9 0 2 0 3 1 2 2 3 . 5 8 . 5 8 . 5 7 . 4 1 - . 4 1 . 3 9 . 6 3 . 6 2 . 6 2 . 4 6 2 0 3 6 2 2 3 . 6 7 . 6 6 . 6 5 . 5 4 . 5 2 . 5 2 . 8 0 . 8 0 . 7 9 . 5 9 2 0 5 1 2 2 3 . 7 0 . 7 6 . 6 5 . 5 4 . 6 0 . 4 7 . 7 9 . 8 4 . 7 1 . 5 8 2 0 6 4 2 2 3 . 5 3 . 5 3 . 5 1 . 4 4 . 4 4 . 4 3 . 6 6 . 6 7 . 6 5 . 4 8 2 2 0 1 2 2 3 . 8 8 . 9 3 . 9 3 . 7 3 . 8 0 . 7 9 . 9 7 1 . 0 1 . 9 9 . 7 6 3 0 0 1 2 2 3 . 5 9 . 5 1 . 5 9 . 5 2 . 4 3 . 5 0 . 7 1 . 6 3 . 6 9 . 5 4 1 0 0 1 1 2 4 . 8 9 . 8 8 . 9 3 . 9 9 . 9 8 1 . 0 4 1 . 13 1 . 13 1 . 2 0 . 9 8 1 0 0 2 1 2 4 . 7 4 . 8 5 . 8 5 . 8 6 . 9 7 . 9 7 . 9 8 1 . 1 0 1 . 0 9 . 8 3 1 0 0 4 1 2 4 . 6 7 . 7 2 . 7 5 . 7 5 . 8 2 . 8 5 . 8 7 . 9 4 . 9 8 . 7 2 1 0 0 5 1 2 4 . 8 0 . 6 9 . 6 8 . 9 3 . 8 0 . 8 0 1 . 1 0 . 9 6 . 9 6 . 9 0 1 0 1 0 1 2 4 . 6 1 . 6 1 . 6 2 . 6 4 . 6 6 . 6 5 . 8 4 . 8 4 . 8 4 . 6 7 1 0 1 4 1 2 4 . 7 6 . 6 6 . 7 0 . 8 7 . 7 6 . 8 0 1 . 0 1 . 9 0 . 9 5 . 8 6 1 0 1 5 1 2 4 . 6 8 . 7 6 . 7 9 . 7 8 . 8 9 . 9 3 . 9 5 1 . 0 7 1 . 1 3 . 7 9 1 0 2 4 1 2 4 . 6 5 . 6 4 . 6 0 . 7 4 . 7 1 . 6 8 . 9 0 . 8 4 . 8 3 . 7 5 1 0 2 6 1 2 4 . 6 7 . 5 9 . 5 6 . 7 1 . 6 2 . 5 9 . 8 3 . 7 4 . 7 1 . 7 1 1 0 2 7 1 2 4 . 5 8 . 5 9 . 5 9 . 5 8 . 5 8 . 6 0 . 6 9 . 6 7 . 7 1 . 5 8 1 0 3 1 1 2 4 . 5 4 . 5 4 . 5 2 . 6 1 . 6 0 . 5 7 . 7 5 . 7 3 . 7 0 . 6 1 1 1 0 1 1 2 4 . 7 4 . 7 0 . 8 2 . 8 2 . 7 7 . 9 2 . 9 8 . 9 0 1 . 0 5 . 8 2 2 0 0 3 2 2 4 . 5 5 . 5 5 . 5 5 . 5 7 . 5 7 . 5 7 . 7 1 . 7 1 . 7 1 . 5 8 2 0 2 6 2 2 4 . 6 3 . 7 3 . 6 2 . 7 1 . 8 3 . 7 0 . 8 9 1 . 0 1 . 8 8 . 7 2 2 0 4 0 2 2 4 . 6 6 . 6 1 . 6 2 . 7 3 . 6 8 . 6 8 . 9 0 . 8 3 . 8 3 . 7 5 2 0 5 4 2 2 4 . 7 0 . 6 9 . 7 0 . 8 2 . 8 0 . 8 0 1 . 0 1 . 9 9 . 9 9 . 8 3 2 0 6 0 2 2 4 . 6 5 . 7 2 . 6 6 . 7 2 . 8 1 . 7 2 . 8 7 . 9 6 . 8 6 . 7 2 2 0 6 2 2 2 4 . 5 2 . 5 4 . 5 3 . 5 7 . 5 9 . 5 9 . 7 1 . 7 4 . 7 5 . 5 8 T2 T 3 B M G M R M T M B G B R GR B M O T G M O T R M O T . 9 0 . 6 4 1 . 0 2 . 7 6 1 . 0 3 . 8 0 1 . 3 5 . 9 9 . 7 4 1 . 0 5 . 8 6 . 8 6 . 7 1 . 8 0 . 8 1 . 6 8 . 9 9 . 7 3 1 . 19 . 8 2 . 6 9 . 8 4 . 7 8 . 8 2 . 5 6 . 5 5 . 6 0 . 5 3 . 8 1 . 5 6 1 . 14 . 7 4 . 6 5 . 6 2 . 6 1 . 6 8 . 7 3 . 7 4 . 8 5 . 6 9 1 . 0 1 . 7 4 1 . 2 3 . 8 4 . 6 8 . 8 7 . 7 9 . 8 4 . 8 5 . 8 0 . 9 4 . 7 8 1 . 0 8 . 8 3 1 . 2 0 . 8 7 . 7 3 . 9 7 . 8 9 . 9 0 . 5 3 . 5 3 . 6 4 . 4 7 . 7 7 . 5 3 1 . 3 5 . 8 3 . 6 1 . 6 5 . 5 6 . 6 4 . 8 1 . 8 5 . 8 8 . 7 6 1 . 0 9 . 8 2 1 . 17 . 8 1 . 7 0 . 9 2 . 8 6 . 9 0 . 8 2 . 6 4 . 7 2 . 6 1 . 9 7 . 6 8 1 . 19 . 7 4 . 6 3 . 7 5 . 7 1 . 8 1 . 5 7 . 6 4 . 6 6 . 5 4 . 8 6 . 6 0 1 . 2 2 . 7 7 . 6 3 . 6 8 . 6 3 . 7 1 . 7 4 . 6 9 . 8 0 . 7 1 1 . 0 6 . 7 4 1 . 1 3 . 7 5 . 6 6 . 8 3 . 8 2 . 8 8 . 6 5 . 6 3 . 7 7 . 6 0 . 8 4 . 6 4 1 . 2 9 . 9 2 . 7 1 . 7 9 . 6 8 . 7 0 . 6 1 . 5 6 . 7 3 . 5 5 . 7 6 . 5 8 1 . 3 1 . 9 6 . 7 3 . 7 4 . 6 3 . 6 3 . 6 0 . 5 9 . 7 0 . 5 5 . 7 8 . 5 9 1 . 2 6 . 8 9 . 7 1 . 7 2 . 6 3 . 6 5 . 5 4 . 5 4 . 6 2 . 5 2 . 7 1 . 5 5 1 . 1 9 . 8 7 . 7 3 . 6 4 . 5 9 . 5 9 . 4 6 . 4 9 . 6 1 . 4 3 . 6 7 . 4 8 1 . 4 2 . 9 2 . 6 4 . 6 2 . 5 0 . 5 5 . 5 3 . 5 8 . 7 0 . 5 4 . 7 6 . 5 5 1 . 3 0 . 9 3 . 7 1 . 7 2 . 6 2 . 6 3 . 6 4 . 6 0 . 7 3 . 5 9 . 8 6 . 6 4 1 . 2 4 . 8 6 . 6 9 . 7 6 . 6 8 . 7 1 . 5 1 . 5 0 . 5 6 . 4 4 . 7 1 . 5 0 1 . 2 7 . 7 8 . 6 2 . 5 7 . 5 2 . 5 9 . 4 8 . 4 9 . 6 2 . 4 2 . 7 4 . 5 0 1 . 4 8 . 8 3 . 5 7 . 6 3 . 5 1 . 6 2 . 5 8 . 5 7 . 6 9 . 5 2 . 7 9 . 5 7 1 . 3 4 . 8 7 . 6 5 . 7 1 . 6 0 . 6 6 . 6 2 . 6 2 . 7 8 . 5 7 . 8 4 . 6 2 1 . 3 5 . 9 2 . 6 8 . 7 9 . 6 6 . 7 0 . 5 8 . 6 1 . 7 4 . 5 9 . 8 8 . 6 2 1 . 2 6 . 8 4 . 6 7 . 7 6 . 6 8 . 7 3 . 6 2 . 6 2 . 7 5 . 5 7 . 8 6 . 6 3 1 . 3 2 . 8 7 . 6 6 . 7 7 . 6 6 . 7 1 . 6 6 . 7 5 . 7 7 . 6 7 . 8 9 . 6 9 1 . 1 5 . 8 6 . 7 5 . 8 0 . 7 5 . 7 4 . 6 5 . 6 9 . 8 3 . 7 2 . 9 7 . 7 5 1 . 16 . 8 6 . 7 4 . 8 6 . 8 1 . 8 0 . 4 5 . 4 4 . 5 8 . 4 0 . 6 2 . 4 5 1 . 4 3 . 9 3 . 6 5 . 5 9 . 4 7 . 5 2 . 5 8 . 5 7 . 6 6 . 5 3 . 8 0 . 5 8 1 . 2 5 . 8 3 . 6 6 . 6 8 . 6 1 . 6 6 . 6 3 . 5 2 . 7 0 . 5 4 . 7 8 . 5 8 1 . 3 1 . 9 0 . 6 9 . 7 2 . 6 2 . 6 5 . 4 7 . 4 7 . 5 2 . 4 4 . 6 6 . 4 7 1 . 2 0 . 7 9 . 6 6 . 5 4 . 5 0 . 5 5 . 8 0 . 7 9 . 9 1 . 7 7 . 9 9 . 7 8 1 . 18 . 9 2 . 7 8 . 9 4 . 8 6 . 8 2 . 4 5 . 5 2 . 5 6 . 4 8 . 6 8 . 5 0 1 . 17 . 8 3 . 7 1 . 5 8 . 5 5 . 5 6 . 9 5 1 . 0 1 . 9 0 1 . 0 0 1 . 1 5 . 9 8 . 9 0 . 7 8 . 8 7 . 9 6 1 . 1 0 . 9 6 . 9 3 . 9 3 . 8 1 . 9 3 1 . 0 6 . 9 0 . 8 7 . 7 7 . 8 8 . 8 7 1 . 0 2 . 8 8 . 7 9 . 8 2 . 7 1 . 8 1 . 9 3 . 7 8 . 8 8 . 7 7 . 8 7 . 7 6 . 8 8 . 7 7 . 7 8 . 7 7 . 7 2 . 8 4 1 . 0 1 . 8 2 . 8 6 . 7 2 . 8 4 . 7 8 . 9 3 . 8 4 . 6 8 . 6 7 . 6 1 . 6 5 . 8 4 . 6 7 . 9 4 . 7 3 . 7 7 . 6 5 . 7 3 . 7 0 . 7 6 . 8 0 . 7 1 . 8 1 . 9 5 . 8 1 . 8 7 . 7 4 . 8 5 . 7 6 . 8 9 . 7 9 . 8 9 . 9 4 . 7 4 . 8 7 1 . 0 5 . 8 7 . 8 6 . 7 1 . 8 3 . 8 0 . 9 5 . 8 7 . 7 1 . 6 9 . 6 3 . 7 1 . 8 6 . 7 2 . 8 9 . 7 4 . 8 3 . 6 7 . 7 8 . 7 1 . 6 1 . 5 8 . 6 1 . 6 4 . 7 6 . 6 3 . 9 5 . 8 0 . 8 4 . 6 4 . 7 0 . 6 3 . 5 7 . 6 0 . 5 9 . 5 9 . 6 9 . 5 8 1 . 0 0 . 8 5 . 8 5 . 6 2 . 6 4 . 5 7 . 6 0 . 5 6 . 5 3 . 5 9 . 7 3 . 5 9 . 9 0 . 7 3 . 8 2 . 5 7 . 6 5 . 6 0 . 7 7 . 9 1 . 7 5 . 8 4 . 9 8 . 8 3 . 9 0 . 7 7 . 8 6 . 8 0 . 9 2 . 8 1 . 5 7 . 5 8 . 5 5 . 5 7 . 7 1 . 5 8 . 9 6 . 7 7 . 8 0 . 5 8 . 6 3 . 5 9 . 8 3 . 7 1 . 6 6 . 7 5 . 9 3 . 7 5 . 8 8 . 7 1 . 8 1 . 7 1 . 8 3 . 7 7 . 6 8 . 6 8 . 6 3 . 7 0 . 8 5 . 7 0 . 9 0 . 7 4 . 8 2 . 6 7 . 7 7 . 7 1 . 8 1 " . 8 0 . 7 0 . 8 1 1 . 0 0 . 8 1 . 8 6 . 7 0 . 8 1 . 7 5 . 8 9 . 8 3 . 8 0 . 7 1 . 6 8 . 7 5 . 9 0 . 7 4 . 9 0 . 7 5 . 8 4 . 7 2 . 8 2 . 7 4 . 5 9 . 6 0 . 5 3 . 5 8 . 7 3 . 5 9 . 9 1 . 7 2 . 8 0 . 5 6 . 6 5 . 6 1 T R E E P F H B 1 B 2 B 3 G 1 G 2 G 3 R 1 R 2 R 3 T 1 T 2 T 3 B M G M R M T M B G B R GR B M O T G M O T R M O T 2 0 7 6 2 2 4 . 5 6 . 6 6 . 6 0 . 5 6 . 6 8 . 6 1 . 6 8 . 7 7 . 7 0 . 5 5 . 6 5 . 5 8 . 6 1 . 6 2 . 7 2 . 5 9 . 9 8 . 8 5 . 8 6 . 6 4 . 6 8 . 5 9 2 1 0 0 2 2 4 . 5 8 . 5 4 . 5 4 . 6 5 . 6 0 . 5 9 . 8 0 . 7 5 . 7 4 . 6 5 . 6 2 . 6 0 . 5 5 . 6 1 . 7 6 . 6 2 . 9 0 . 7 2 . 8 0 . 5 9 . 6 8 . 6 3 2 1 1 0 2 2 4 . 6 6 . 6 5 . 6 9 . 7 0 . 6 9 . 7 4 . 8 1 . 8 2 . 8 6 . 6 8 . 6 8 . 7 2 . 6 7 . 7 1 . 8 3 . 6 9 . 9 4 . 8 0 . 8 6 . 7 1 . 7 8 . 6 9 2 1 1 1 2 2 4 . 6 7 . 7 1 . 6 6 . 7 2 . 7 6 . 7 0 . 8 5 . 8 7 . 8 4 . 7 1 . 7 4 . 6 9 . 6 8 . 7 3 . 8 5 . 7 1 . 9 4 . 8 0 . 8 5 . 7 2 . 8 0 . 7 1 2 1 1 4 2 2 4 . 4 8 . 4 9 . 4 8 . 4 7 . 4 9 . 4 8 . 6 1 . 6 3 . 6 0 . 4 9 . 5 0 . 4 8 . 4 8 . 4 8 . 6 1 . 4 9 1 . 0 1 . 7 9 . 7 8 . 5 1 . 5 3 . 5 1 2 1 5 9 2 2 4 . 5 6 . 5 9 . 5 9 . 6 0 . 6 4 . 6 4 . 7 5 . 7 9 . 7 9 . 6 1 . 6 5 . 6 5 . 5 8 . 6 3 . 7 8 . 6 4 . 9 3 . 7 5 . 8 1 . 6 2 . 6 9 . 6 4 2 1 8 8 2 2 4 . 7 4 . 6 2 . 6 6 . 8 1 . 6 6 . 7 2 . 9 3 . 7 7 . 8 3 . 8 0 . 6 5 . 7 1 . 6 7 . 7 3 . 8 4 . 7 2 . 9 2 . 8 0 . 8 7 . 7 1 . 8 0 . 7 0 2 1 8 9 2 2 4 . 6 7 . 6 5 . 6 5 . 7 5 . 7 3 . 7 3 . 9 0 . 9 0 . 8 9 . 7 5 . 7 4 . 7 3 . 6 6 . 7 4 . 9 0 . 7 4 . 8 9 . 7 3 . 8 2 . 7 0 . 8 1 . 7 4 2 2 0 0 2 2 4 . 5 9 . 5 6 . 5 3 . 6 3 . 5 9 . 5 5 . 7 6 . 7 0 . 6 6 . 6 1 . 5 8 . 5 4 . 5 6 . 5 9 . 7 1 . 5 8 . 9 5 . 7 9 . 8 3 . 5 9 . 6 5 . 5 9 2 2 0 4 2 2 4 1 . 0 9 . 9 2 . 8 8 1 . 2 7 1 . 0 6 1 . 0 1 1 . 4 6 1 . 2 3 1 . 1 8 1 . 2 5 1 . 0 3 . 9 8 . 9 6 1 . 1 1 1 . 2 9 1 . 0 9 . 8 7 . 7 5 . 8 6 1 . 0 3 1 . 2 2 1 . 0 7 2 2 0 5 2 2 4 1 . 1 7 . 9 8 . 8 3 1 . 3 4 1 . 1 2 . 9 3 1 . 4 6 1 . 2 6 1 . 0 4 1 . 2 8 1 . 0 8 . 8 9 . 9 9 1 . 1 3 1 . 2 5 1 . 0 8 . 8 8 . 7 9 . 9 0 1 . 0 6 1 . 2 3 1 . 0 4 T R E E P F H G 1 G 2 G 3 R 1 R 2 R 3 I R 1 I R 2 I R 3 T 1 1 1 1 7 1 3 1 1 . 0 4 1 . 1 5 1 . 18 1 . 0 1 1 . 0 9 1 . 1 1 . 5 8 . 6 2 . 6 4 . 8 0 1 1 1 8 1 3 1 1 . 0 8 1 . 1 5 1 . 14 1 ' 0 1 1 . 0 6 1 . 0 6 . 6 1 . 6 1 . 6 1 . 8 0 1 1 1 9 1 3 1 1 . 3 5 1 . 2 3 1 . 19 1 . 2 1 1 . 1 2 1 . 0 8 . 6 8 . 6 2 . 5 8 . 9 1 1 1 2 0 1 3 1 . 8 8 . 8 8 . 8 4 . 7 7 . 7 7 . 7 5 . 4 9 . 4 7 . 4 4 . 6 2 1 1 2 1 1 3 1 . 8 4 1 . 0 4 . 9 6 . 7 5 . 9 7 . 9 1 . 4 5 . 6 0 . 5 4 . 6 0 1 1 2 7 1 3 1 1 . 2 7 1 . 1 6 1 . 2 0 1 . 1 0 1 . 0 4 1 . 0 7 . 6 3 . 5 7 . 6 0 . 8 3 1 1 2 8 1 3 1 . 9 8 . 9 7 . 9 7 . 9 0 . 9 0 . 8 9 . 5 2 . 5 2 . 5 3 . 7 1 1 1 3 3 1 3 1 1 . 2 1 1 . 2 8 1 . 2 0 1 . 0 2 1 . 0 8 1 . 0 1 . 6 4 . 6 8 . 6 3 . 8 1 1 1 3 4 1 3 1 1 . 1 3 1 . 14 1 . 13 . 9 7 . 9 7 . 9 7 . 6 7 . 6 6 . 6 6 . 8 0 1 1 3 5 1 3 1 1 . 3 3 1 . 3 9 1 . 3 8 1 . 14 1 . 17 1 . 17 . 6 9 . 7 1 . 7 2 . 8 8 2 0 0 1 2 3 1 1 . 2 2 1 . 1 5 1 . 14 1 . 0 4 . 9 9 . 9 8 . 6 7 . 6 2 . 6 1 . 8 4 2 0 0 2 2 3 1 1 . 1 1 1 . 1 3 1 . 1 0 . 9 7 1 . 0 0 . 9 8 . 6 8 . 6 1 . 5 8 . 7 7 2 0 3 2 2 3 1 . 9 2 . 8 7 . 8 9 . 8 7 . 8 3 . 8 5 . 5 1 . 4 8 . 4 8 . 6 9 2 0 3 8 2 3 1 . 9 5 1 . 18 1 . 1 0 . 8 5 1 . 0 0 . 9 5 . 4 6 . 5 8 . 5 3 . 6 6 2 0 6 6 2 3 1 1 . 7 7 1 . 4 0 1 . 3 9 1 . 5 4 1 . 2 7 1 . 2 5 1 . 1 8 . 6 8 . 6 7 1 . 3 2 2 0 6 7 2 3 1 1 . 1 9 1 . 2 5 1 . 2 7 1 . 1 0 1 . 14 1 . 14 . 6 3 . 6 3 . 6 3 . 8 3 2 1 6 2 2 3 1 1 . 0 4 1 . 0 3 1 . 2 7 . 9 3 . 9 2 1 . 1 5 . 6 1 . 5 8 . 7 6 . 7 4 2 1 8 3 2 3 1 1 . 5 4 1 . 6 9 1 . 6 7 1 . 3 2 1 . 4 6 1 . 4 4 . 6 7 . 7 8 . 7 7 . 9 4 1 0 1 7 1 3 2 1 . 2 1 1 . 17 1 . 1 5 1 . 0 4 1 . 0 1 1 . 0 0 . 7 1 . 6 6 . 6 6 . 8 5 1 0 3 0 1 3 2 1 . 3 6 1 . 4 9 1 . 3 0 1 . 1 2 1 . 2 8 1 . 0 5 . 7 5 . 7 9 . 6 9 . 8 8 1 0 3 3 1 3 2 1 . 4 1 1 . 4 4 1 . 4 3 1 . 18 1 . 1 9 1 . 16 . 7 7 . 7 7 . 7 3 . 9 4 1 0 4 1 1 3 2 1 . 9 1 1 . 4 1 1 . 4 7 1 . 4 1 . 9 0 . 9 7 1 . 3 7 . 8 9 . 9 5 1 . 3 3 1 1 2 9 1 3 2 1 . 4 1 1 . 4 2 1 . 4 4 1 . 14 1 . 18 1 . 17 . 7 4 . 8 0 . 7 2 . 9 2 1 1 3 9 1 3 2 1 . 5 3 1 . 6 2 1 . 5 7 1 . 0 1 1 . 0 3 1 . 0 1 1 . 14 1 . 1 4 1 . 1 4 . 9 8 1 1 4 4 1 3 2 1 . 4 3 1 . 5 2 1 . 5 4 1 . 1 3 1 . 2 1 1 . 2 5 . 8 5 . 9 1 . 9 4 . 9 4 1 1 4 7 1 3 2 1 . 2 6 1 . 3 1 1 . 2 9 1 . 0 6 1 . 0 9 1 . 0 6 . 7 2 . 7 3 . 7 2 . 8 8 2 0 5 2 2 3 2 1 . 2 1 1 . 2 2 1 . 2 7 1 . 0 3 1 . 0 4 1 . 0 8 . 6 0 . 6 1 . 6 2 . 7 9 2 1 9 5 2 3 2 1 . 3 3 1 . 3 6 1 . 3 3 1 . 0 9 1 . 1 2 1 . 0 8 . 6 6 . 6 7 . 6 9 . 8 4 T 2 T 3 G M RM I R M T M GR G I R R I R G M O T R M O T I R M T . 8 4 . 8 6 1 . 1 2 1 . 0 7 . 6 1 . 8 3 1 . 0 5 1 . 8 3 1 . 7 4 1 3 3 1 1 6 . 3 2 . 8 2 . 8 2 1 . 1 2 1 . 0 4 . 6 1 . 8 1 1 . 0 8 1 . 8 4 1 . 7 1 1 . 3 2 1 1 4 . 3 2 . 8 5 . 8 1 1 . 2 6 1 . 1 4 . 6 3 . 8 6 1 . 1 1 2 . 0 1 1 . 8 1 1 . 4 7 1 2 3 . 3 3 . 6 0 . 6 0 . 8 7 . 7 6 . 4 7 . 6 1 1 . 14 1 . 8 6 1 . 6 4 1 . 0 1 8 4 . 2 4 . 7 8 . 7 3 . 9 5 . 8 8 . 5 3 : 7 0 1 . 0 8 1 . 7 9 1 . 6 5 1 . 1 2 . 9 6 . 2 8 . 8 0 . 8 2 1 . 2 1 1 . 0 7 . 6 0 . 8 2 1 . 1 3 2 . 0 2 1 . 7 8 1 4 1 1 16 . 3 1 . 7 0 . 7 0 . 9 7 . 9 0 . 5 2 . 7 0 1 . 0 9 1 . 8 6 1 . 7 1 1 1 4 9 8 . 2 7 . 8 6 . 8 0 1 . 2 3 1 . 0 4 . 6 5 . 8 2 1 . 1 9 1 . 8 9 1 . 5 9 1 4 3 1 1 5 . 3 4 . 7 8 . 7 9 1 . 1 3 . 9 7 . 6 6 . 7 9 1 . 17 1 . 7 1 1 . 4 6 1 3 3 1 0 9 . 3 4 . 9 1 . 9 1 1 . 3 7 1 . 1 6 . 7 1 . 9 0 1 . 18 1 . 9 3 1 . 6 4 1 . 5 9 1 2 8 . 3 7 . 9 8 . 7 7 1 . 17 1 . 0 0 . 6 3 . 8 6 1 . 17 1 . 8 5 1 . 5 8 1 3 7 1 1 1 . 3 3 . 7 9 . 7 6 1 . 1 1 . 9 8 . 6 2 . 7 7 1 . 1 3 1 . 7 9 1 . 5 8 1 3 1 1 0 9 . 3 2 . 6 5 . 6 6 . 8 9 . 8 5 . 4 9 . 6 7 1 . 0 5 1 . 8 2 1 . 7 3 1 0 5 9 2 . 2 5 . 7 7 . 7 3 1 . 0 8 . 9 3 . 5 2 . 7 2 1 . 1 5 2 . 0 6 1 . 7 8 1 2 5 1 0 1 . 2 7 . 9 4 . 9 2 1 . 5 2 1 . 3 5 . 8 4 . 1 . 0 6 1 . 1 2 1 . 8 0 1 . 6 0 1 7 8 1 4 9 . 4 4 . 8 6 . 8 5 1 . 2 4 1 . 1 3 . 6 3 . 8 5 1 . 1 0 1 . 9 6 1 . 7 9 1 4 5 1 2 2 . 3 3 . 7 3 . 9 2 1 . 1 1 1 . 0 0 . 6 5 . 8 0 1 . 1 1 1 . 7 1 1 . 5 4 1 3 1 1 1 1 . 3 4 . 0 7 1 . 0 5 1 . 6 3 1 . 4 1 . 7 4 1 . 0 2 1 . 16 2 . 2 1 1 . 9 0 1 8 9 1 5 0 . 3 8 . 8 2 . 8 1 1 . 1 8 1 . 0 2 . 6 8 . 8 3 1 . 16 1 . 7 4 1 . 5 0 1 3 8 1 1 4 . 3 5 . 9 9 . 8 4 1 . 3 8 1 . 1 5 . 7 4 . 9 0 1 . 2 0 1 . 8 6 1 . 5 5 1 . 6 1 1 2 8 . 3 9 . 9 4 . 9 2 1 . 4 3 1 . 1 8 . 7 6 . 9 3 1 . 2 1 1 . 8 9 1 . 5 6 1 6 6 1 3 1 . 3 9 . 8 3 . 9 0 1 . 6 0 1 . 0 9 1 . 0 7 1 . 0 2 1 . 4 6 1 . 4 9 1 . 0 2 1 8 6 1 3 5 . 5 6 . 9 7 . 9 2 1 . 4 2 1 . 16 . 7 5 . 9 4 1 . 2 2 1 . 8 9 1 . 5 4 1 6 5 1 2 9 . 3 9 . 9 9 . 9 9 1 . 5 7 1 . 0 2 1 . 14 . 9 9 1 . 5 5 1 . 3 8 . 8 9 1 8 3 1 3 1 . 5 9 . 0 1 1 . 0 5 1 . 5 0 1 . 2 0 . 9 0 1 . 0 0 1 . 2 5 1 . 6 6 1 . 3 3 1 7 5 1 3 8 . 4 7 . 8 8 . 8 7 1 . 2 9 1 . 0 7 . 7 2 . 8 8 1 . 2 0 1 . 7 8 1 . 4 8 1 5 0 1 2 0 . 3 8 . 7 9 . 8 2 1 . 2 3 1 . 0 5 . 6 1 . 8 0 1 . 17 2 . 0 2 1 . 7 2 1 4 3 1 14 . 3 2 . 8 5 . 8 5 1 . 3 4 1 . 1 0 . 6 7 . 8 5 1 . 2 2 1 . 9 9 1 . 6 3 1 5 5 1 2 1 . 3 5 T R E E P F H G 1 G 2 G 3 R 1 R 2 R 3 I R 1 I R 2 I R 3 T 1 1 1 1 7 1 1 1 1 . 2 3 1 . 1 2 1 . 1 1 1 . 2 5 1 . 16 1 . 1 5 . 7 4 . 6 6 . 6 6 . 9 8 11 1 8 1 1 1 1 . 4 1 1 . 2 7 1 . 2 5 1 . 4 0 1 . 2 6 1 . 2 6 . 8 2 . 7 2 . 7 2 1 . 0 9 1 1 1 9 1 1 1 . 9 5 . 9 0 . 9 3 1 . 0 0 . 9 1 . 8 9 . 5 9 . 5 7 . 6 0 . 7 7 1 1 2 0 1 1 1 . 9 7 1 . 0 2 1 . 0 0 . 9 5 1 . 0 1 1 . 0 2 . 6 3 . 6 5 . 6 4 . 7 7 1 1 2 1 1 1 1 1 . 0 0 1 . 0 2 1 . 0 5 1 . 0 3 1 . 0 5 1 . 0 8 . 6 5 . 6 7 . 7 0 . 8 1 1 1 2 7 1 1 1 1 . 1 5 1 . 2 4 1 . 1 1 1 . 0 8 1 . 16 1 . 1 2 . 6 8 . 7 3 . 6 3 . 8 6 1 1 2 8 1 1 1 . 9 3 . 8 9 1 . 0 0 . 8 9 . 9 1 . 9 8 . 6 1 . 5 6 . 6 3 . 7 3 1 1 3 3 1 1 1 1 . 0 0 . 9 9 1 . 0 0 . 9 8 . 9 7 . 9 8 . 6 3 . 6 5 . 7 1 . 7 7 1 1 3 4 1 1 1 . 9 8 . 9 8 . 9 9 1 . 0 0 . 9 8 . 9 8 . 7 5 . 7 5 . 7 3 . 8 3 1 1 3 5 1 1 1 . 9 9 1 . 0 0 1 . 0 3 1 . 0 2 1 . 0 2 1 . 0 6 . 6 2 . 6 2 . 6 5 . 7 9 2 0 0 1 2 1 1 1 . 7 3 1 . 4 9 1 . 3 6 1 . 4 9 1 . 3 6 1 . 2 9 1 . 0 0 . 8 1 . 7 6 1 . 2 1 2 0 0 2 2 1 1 1 . 2 9 1 . 3 2 1 . 4 3 1 . 2 3 1 . 2 6 1 . 3 6 . 7 2 . 7 5 . 7 7 . 9 5 2 0 3 2 2 1 1 1 . 2 3 1 . 0 7 1 . 3 6 1 . 2 9 1 . 12 1 . 3 5 . 7 2 . 6 3 . 7 3 . 9 5 2 0 3 8 2 1 1 1 . 2 1 1 . 1 6 1 . 1 5 1 . 19 1 . 1 5 1 . 14 . 6 4 . 6 3 . 6 2 . 8 8 2 0 6 6 2 1 1 1 . 1 3 1 . 1 9 1 . 16 1 . 1 1 1 . 2 0 1 . 14 . 6 7 . 7 1 . 6 9 . 8 7 2 0 6 7 2 1 1 1 . 1 5 1 . 1 5 1 . 18 1 . 17 1 . 18 1 . 2 0 . 6 7 . 6 6 . 6 8 . 8 9 2 1 6 2 2 1 1 1 . 3 5 1 . 3 3 1 . 4 8 1 . 3 0 1 . 2 9 1 . 4 3 . 8 6 . 8 5 1 . 0 0 1 . 0 6 2 1 8 3 2 1 1 1 . 1 6 1 . 17 1 . 14 1 . 1 8 1 . 18 1 . 16 . 6 5 . 6 6 . 6 4 . 8 8 1 0 1 7 1 1 2 1 . 1 9 1 . 2 2 1 . 3 2 1 . 1 3 1 . 17 1 • 2 5 . . 7 6 . 8 0 . 8 4 . 9 1 1 0 3 0 1 1 2 1 . 5 6 1 . 7 9 1 . 6 7 1 . 3 8 1 . 4 7 1 . 4 2 . 9 1 1 . 0 7 1 . 0 1 1 . 1 0 1 0 3 3 1 1 2 1 . 7 1 1 . 8 7 1 . 8 7 1 . 5 1 1 . 6 1 1 . 5 4 1 . 0 6 1 . 2 9 1 . 1 3 1 . 2 5 1 0 4 1 1 1 2 1 . 8 0 1 . 3 2 1 . 3 2 1 . 5 4 1 . 16 1 . 1 5 1 . 2 2 . 8 0 . 8 3 1 . 3 1 1 1 2 9 1 1 2 . 9 3 . 9 4 . 9 4 . 9 2 . 9 2 . 9 2 . 5 7 . 5 7 . 5 4 . 7 2 1 1 3 9 1 1 2 1 . 6 1 1 . 5 9 1 . 6 3 1 . 2 2 1 . 2 7 1 . 2 3 1 . 0 6 1 . 0 1 1 . 0 8 1 . 0 9 1 1 4 4 1 1 2 1 . 4 5 1 . 4 3 1 . 5 4 1 . 2 6 1 . 2 3 1 . 3 2 . 9 3 . 9 7 1 . 0 8 1 . 0 6 1 1 4 7 1 1 2 1 . 3 6 1 . 3 5 1 . 4 7 1 . 1 9 1 . 19 1 . 2 8 . 8 8 . 8 7 . 9 7 . 9 9 2 0 5 2 2 1 2 2 . 0 1 2 . 0 1 2 . 0 5 1 . 6 9 1 . 6 9 1 . 7 3 1 . 2 0 1 . 17 1 . 2 0 1 . 4 1 2 1 9 5 2 1 2 1 . 3 5 1 . 4 6 1 . 5 5 1 . 2 7 1 . 3 2 1 . 4 0 . 8 0 . 9 3 1 . 0 0 1 . 0 0 T 2 T 3 G M R M I R M T M G R G I R R I R G M O T R M O T I R M T . 8 9 . 8 8 1 . 1 5 1 . 1 9 . 6 9 . 9 2 . 9 7 1 . 6 8 1 . 7 3 1 3 8 1 2 9 . 3 6 . 9 6 . 9 7 1 . 3 1 1 . 3 1 . 7 5 1 . 0 1 1 . 0 0 1 . 7 4 1 . 7 3 1 5 6 1 4 2 . 3 9 . 7 1 . 7 3 . 9 3 . 9 3 . 5 9 . 7 4 . 9 9 1 . 5 8 1 . 5 9 1 1 1 1 0 3 . 3 1 . 8 0 . 8 1 1 . 0 0 . 9 9 . 6 4 . 7 9 1 . 0 0 1 . 5 6 1 . 5 5 1 1 9 1 1 0 . 3 3 . 8 4 . 8 6 1 . 0 2 1 . 0 5 . 6 7 . 8 4 . 9 7 1 . 5 2 1 . 5 6 1 2 3 1 1 7 . 3 5 . 9 3 . 8 4 1 . 17 1 . 1 2 . 6 8 . 8 8 1 . 0 4 1 . 7 2 1 . 6 5 1 3 8 1 2 3 . 3 5 . 7 1 . 7 7 . 9 4 . 9 3 . 6 0 . 7 4 1 . 0 1 1 . 5 7 1 . 5 4 1 1 2 1 0 3 . 3 1 . 7 7 . 8 1 1 . 0 0 . 9 8 . 6 6 . 7 8 1 . 0 2 1 . 5 0 1 . 4 7 1 1 9 1 1 0 . 3 4 . 8 3 . 8 2 . 9 8 . 9 9 . 7 4 . 8 3 1 . 0 0 1 . 3 2 1 . 3 3 1 1 9 1 1 4 . 3 9 . 7 9 . 8 5 1 . 0 1 1 . 0 3 . 6 3 . 8 1 . 9 7 1 . 6 0 1 . 6 4 1 2 1 1 1 4 . 3 3 . 0 5 . 9 9 1 . 5 3 1 . 3 8 . 8 6 1 . 0 8 1 . 1 1 1 . 7 8 1 . 6 1 1 8 0 1 5 2 . 4 5 . 9 7 1 . 0 2 1 . 3 5 1 . 2 8 . 7 5 . 9 8 1 . 0 5 1 . 8 0 1 . 7 2 1 5 9 1 4 0 . 3 9 . 8 4 . 9 6 1 . 2 2 1 . 2 5 . 6 9 . 9 2 . 9 7 1 . 7 6 1 . 8 1 1 4 5 1 3 5 . 3 6 . 8 6 . 8 5 1 . 17 1 . 1 6 . 6 3 . 8 6 1 . 0 1 1 . 8 6 1 . 8 4 1 3 9 1 2 5 . 3 3 . 9 3 . 8 9 1 . 1 6 1 . 1 5 . 6 9 . 9 0 1 . 0 1 1 . 6 8 1 . 6 7 1 3 8 1 2 6 . 3 6 . 8 9 . 9 1 1 . 1 6 1 . 1 8 . 6 7 . 9 0 . 9 8 1 . 7 3 1 . 7 7 1 3 8 1 2 8 . 3 5 . 0 4 1 . 17 1 . 3 9 1 . 3 4 . 9 0 1 . 0 9 1 . 0 3 1 . 5 4 1 . 4 8 1 6 6 1 5 0 . 4 7 . 8 9 . 8 6 1 . 1 6 1 . 17 . 6 5 . 8 8 . 9 9 1 . 7 8 1 . 8 1 1 3 8 1 2 7 . 3 4 . 9 5 1 . 0 0 1 . 2 4 1 . 1 8 . 8 0 . 9 5 1 . 0 5 1 . 5 5 1 . 4 8 1 4 8 1 3 3 . 4 2 . 2 2 1 . 18 1 . 6 7 1 . 4 2 1 - O O 1 . 17 1 . 18 1 . 6 8 1 . 4 3 1 9 6 1 6 1 . 5 2 . 4 1 1 . 2 8 1 . 8 2 1 . 5 5 1 . 1 6 1 . 3 1 1 . 17 1 . 5 7 1 . 3 4 2 1 4 1 7 8 . 6 0 . 9 5 . 9 5 1 . 4 8 1 . 2 8 . 9 5 1 . 0 7 1 . 1 5 1 . 5 6 1 . 3 5 1 7 5 1 4 7 . 4 9 . 7 2 . 7 0 . 9 4 . 9 2 . 5 6 . 7 1 1 . 0 2 1 . 6 7 1 . 6 4 1 1 1 1 0 1 . 2 9 . 0 8 1 . 1 0 1 . 6 1 1 . 2 4 1 . 0 5 1 . 0 9 1 . 3 0 1 . 5 3 1 . 1 8 1 8 8 1 4 7 . 5 5 . 0 5 1 . 1 4 1 . 4 7 1 . 2 7 . 9 9 1 . 0 8 1 . 1 6 1 . 4 8 1 . 2 8 1 7 4 1 4 8 . 5 2 . 9 9 1 . 1 0 1 . 3 9 1 . 2 2 . 9 1 1 . 0 3 1 . 14 1 . 5 4 1 . 3 5 1 6 5 1 4 0 . 4 7 . 3 8 1 . 4 1 2 . 0 2 1 . 7 0 1 . 1 9 1 . 4 0 1 . 1 9 1 . 7 0 1 . 4 3 2 3 7 1 9 3 . 6 2 . 0 8 1 . 1 6 1 . 4 5 1 . 3 3 . 9 1 1 . 0 8 1 . 0 9 1 . 6 0 1 . 4 6 1 7 2 1 5 0 . 4 7 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096050/manifest

Comment

Related Items