UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Forest floors under second growth Douglas-fir stands : their chemical variability and some relationships… Carter, Reid Ewart 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1983_A6_7 C37.pdf [ 6.7MB ]
Metadata
JSON: 831-1.0095789.json
JSON-LD: 831-1.0095789-ld.json
RDF/XML (Pretty): 831-1.0095789-rdf.xml
RDF/JSON: 831-1.0095789-rdf.json
Turtle: 831-1.0095789-turtle.txt
N-Triples: 831-1.0095789-rdf-ntriples.txt
Original Record: 831-1.0095789-source.json
Full Text
831-1.0095789-fulltext.txt
Citation
831-1.0095789.ris

Full Text

FOREST FLOORS UNDER SECOND GROWTH DOUGLAS-FIR STANDS THEIR  CHEMICAL V A R I A B I L I T Y  AND SOME  RELATIONSHIPS  TO PRODUCTIVITY  By REID EWART CARTER B.Sc,  T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1979  A T H E S I S SUBMITTED  IN P A R T I A L FULFILLMENT OF  THE REQUIREMENTS  FOR THE DEGREE OF  MASTER OF SCIENCE  in THE FACULTY OF GRADUATE (Department o f S o i l  We a c c e p t t h i s t h e s i s a s  STUDIES  Science)  conforming  to the required standard  THE UNIVERSITY  OF B R I T I S H COLUMBIA  May 1983 © REID EWART CARTER, 1 9 8 3  In p r e s e n t i n g  this thesis  r e q u i r e m e n t s f o r an of  British  it  freely available  agree t h a t for  that  Library  s h a l l make  for reference  and  study.  I  for extensive copying of  h i s or  be  her  g r a n t e d by  s h a l l not  be  So/L.  Sc<0tf<?£  The U n i v e r s i t y o f B r i t i s h 1956 Main Mall V a n c o u v e r , Canada V6T 1Y3  DE-6  (3/81)  of  further this  Columbia  thesis  head o f  this  my  It is thesis  a l l o w e d w i t h o u t my  permission.  Department o f  the  representatives.  copying or p u b l i c a t i o n  f i n a n c i a l gain  University  the  s c h o l a r l y p u r p o s e s may  understood  the  the  I agree that  permission by  f u l f i l m e n t of  advanced degree a t  Columbia,  department or for  in partial  written  ABSTRACT The v a r i a b i l i t y  o f 23 c h e m i c a l  properties  o f LF  and H h o r i z o n s  e s t a b l i s h e d under s i x ,  s i x t y t o one h u n d r e d and t h i r t y y e a r - o l d  (Pseudotsuga  (Mirb.)  menziesii  a n d two g e o g r a p h i c Biogeoclimatic a n d N:S  locations within  Zone.  pH ( C a C l 2 h  stands  representing  the Coastal  total  P,  S,  Western  t h a n 15 s a m p l e s  of significance with  and Ca w e r e  an  found t o have the  A l , Mn  greatest  error  of 10%.  within-plot  the  means o f  individual  properties In stands  H,  f r o m 15 i n d i v i d u a l correlated  samples  a related  at  study,  Coastal  properties  from a wide  for all  the  with  the  1% l e v e l  range  depth-weighted  of  the  productivity  than tested.  samples w i t h i n each depth-weighted  f o r most f o r e s t  plot  were  arithmetic floor  of second growth  of the site  forest types  composite sample.  Mn was a b l e  Douglas-fir  W e s t e r n H e m l o c k Zone was e x a m i n e d i n r e l a t i o n floor.  over  Fifty-three  to account  A jackknifed stepwise  by a  Seventeen d i f f e r e n t  discriminant analysis  t o 28  sampled  distribution.  LF,  single  forest  correlated with  f o r more t h a n 44% o f t h e  ii  p l o t s were  a broad geographic  p r o p e r t i e s w e r e f o u n d t o be s i g n i f i c a n t l y  index.  less  properties  and Ah h o r i z o n s o f e a c h p l o t w e r e c h a r a c t e r i z e d  Total  Fe,  tested.  i n the  chemical  1% l e v e l  Total  5%  variability.  between  shown t o be s i g n i f i c a n t l y  variability—all  allowable  variability  prepared  N:P  the  shown t o be s i g n i f i c a n t l y  Composite samples  hygrotopes  p e r p l o t t o p r e d i c t a mean v a l u e a t  w i t h i n p l o t s was at  three  N, C and Z n ; and C : N ,  Variability  plots  Douglas-fir  Hemlock  r a t i o s were found t o have the l o w e s t w i t h i n - p l o t  requiring less level  Franco)  was  floor  site  index.  variability  in  site  p r o c e d u r e was a b l e  to  classify total  site classes correctly  59.5% o f the time u s i n g a combination of  l i p i d s , Mn, Ca and K C l - e x t r a c t a b l e N i n the LF h o r i z o n of  u n s t r a t i f i e d sample p o p u l a t i o n expressed on a kg/ha b a s i s . r e s u l t s of a l l  analyses, total  Ca and S and N:S,  C:N and Ca:Al  the  From the  Mn, l i p i d s , a s h - f r e e l i p i d s , KC1-N, Mg, K, r a t i o s were thought to have the  r e l a t i o n s h i p to D o u g l a s - f i r p r o d u c t i v i t y o f a l l  forest floor  strongest  properties  examined. Studies  t h a t examined r e l a t i o n s h i p s between i n d i v i d u a l  parameters and f o r e s t p r o d u c t i v i t y d i d not r e v e a l productivity  assessment.  any methods of  Such s t u d i e s appear to be most u s e f u l  c l a r i f y i n g many of the n u t r i e n t  interactions within forest  111  site direct for  stands.  Table of  Contents Page  ABSTRACT  ii  TABLE  iv  OF CONTENTS  L I S T OF TABLES  vi  L I S T OF FIGURES  ix  L I S T OF APPENDICES  x  L I S T OF ABBREVIATIONS USED IN THE TEXT  xi  ACKNOWLEDGEMENTS  x  INTRODUCTION  1  MATERIALS AND METHODS  3  I.  SAMPLING STRATEGIES AND THE V A R I A B I L I T Y  OF FOREST FLOORS . . . .  Introduction Variability Stands  12 of Forest  Properties  the C o a s t a l  Western  Variability  of Chemical  Ratios  D o u g l a s - f i r Stands  of  in  Douglas-fir  H e m l o c k Zone in Forest  the Coastal  15  Floors  Western  Under  Hemlock Zone  . . . .  of Composite Sampling Techniques  Variability II.  Floor  of  Usefulness  12  Within  and Among P l o t s  31 37  and H o r i z o n s  DOUGLAS-FIR PRODUCTIVITY IN RELATION TO CHEMICAL  38 PROPERTIES  OF THE FOREST FLOOR  41  Introduction  41  Numerical  47  Methods  C o r r e l a t i o n of  Site  Index  with  Forest  Properties  Floor  Chemical 48  iv  i  i  1  Page Separation  of  Site  Classes  with  Stepwise  Discriminant  Analysis Separation  52 of  Site Classes  by A v e r a g e  Distance  Analysis Examination  59 of Possible  Forest  Floor-Site  Relationships SUMMARY  Cluster  Index 61  AND CONCLUSIONS  65  LITERATURE CITED  70  APPENDICES  76  v  LIST OF TABLES Table 1-1  Page V a r i a t i o n o f chemical  p r o p e r t i e s w i t h i n p l o t s e x p r e s s e d as  c o e f f i c i e n t of v a r i a t i o n . 1-2  16  Chemical p r o p e r t i e s o f s i x p l o t s : expressed as a mean o f 15 samples.  1-3  17  Sample requirements necessary  to p r e d i c t a mean v a l u e  LF h o r i z o n samples at f o u r given l e v e l s l-3b  Sample requirements necessary  Nine chemical  1-5  Sample requirements necessary chemical  1- 6  ratios;  ratios  18  accuracy.  to p r e d i c t a mean v a l u e f o r H  h o r i z o n samples at f o u r given l e v e l s 1-4  of  for  of  19  accuracy.  e x p r e s s e d as a mean o f 15 samples. to p r e d i c t a mean v a l u e  for  o f the LF and H h o r i z o n s .  35  C o r r e l a t i o n between weighted mean data and composite d a t a o f the LF and H h o r i z o n s .  2- 1  Significant  2-3  39  c o r r e l a t i o n s between f o r e s t f l o o r  p r o p e r t i e s and s i t e 2-2  chemical  index.  49  Significant  c o r r e l a t i o n s between f o r e s t f l o o r  properties,  (Kg/ha)  and s i t e  chemical  index of D o u g l a s - f i r .  The c l a s s i f i c a t i o n m a t r i x f o r stepwise analysis  i n v o l v i n g 18 v a r i a b l e s  f o r the LF h o r i z o n s of  all 53  The j a c k k n i f e d c l a s s i f i c a t i o n m a t r i x f o r discriminant analysis h o r i z o n s of a l l  51  discriminant  plots. 2-4  34  stepwise  i n v o l v i n g 28 v a r i a b l e s  f o r the LF 53  plots. vi  Table 2-5  Page The c l a s s i f i c a t i o n  matrix  analysis  28 v a r i a b l e s  involving  for  stepwise for  discriminant  the H h o r i z o n s of  all  plots. 2-6  54  The j a c k k n i f e d discriminant horizons of  2-7  classification  analysis all  matrix  involving  analysis  16 v a r i a b l e s  involving LF  28 v a r i a b l e s  for  the  H 54  matrix  the  stepwise  plots.  The c l a s s i f i c a t i o n  for  for  horizons of  all  for  stepwise  plots  discriminant  e x p r e s s e d on a K g / h a having  humus f o r m s  basis in  the  Mor o r d e r . 2-8  55  The j a c k k n i f e d discriminant Kg/ha b a s i s forms  2-9  c l a s s i f i c a t i o n matrix  analysis for  the  involving  LF  stepwise  16 v a r i a b l e s  horizons of  all  plots  e x p r e s s e d on a having  humus  i n t h e Mor o r d e r .  The c l a s s i f i c a t i o n m a t r i x analysis for  for  involving  55 for  stepwise  discriminant  16 v a r i a b l e s e x p r e s s e d on a K g / h a  the H h o r i z o n s of  all  plots  having  humus f o r m s  in  basis the  Mor o r d e r . 2-10  The j a c k k n i f e d discriminant Kg/ha b a s i s forms  2-11  56 classification  analysis for  matrix  involving  for  stepwise  16 v a r i a b l e s e x p r e s s e d on a  the H h o r i z o n s of a l l  plots  having  humus  i n t h e Mor o r d e r .  56  The c l a s s i f i c a t i o n  matrix  analysis  16 v a r i a b l e s e x p r e s s e d on a K g / h a  involving  for  vii  stepwise  discriminant basis  Page  Table  2-12  for  the  LFH h o r i z o n s o f  Mor  order.  The j a c k k n i f e d discriminant Kg/ha b a s i s forms  all  plots  having  c l a s s i f i c a t i o n matrix  analysis for  i n t h e Mor  the  involving  v-111  in  the  stepwise  16 v a r i a b l e s e x p r e s s e d on a  LFH h o r i z o n s o f  order.  for  humus f o r m s  all  plots  having  humus  L I S T OF FIGURES Figure 1  Page L o c a t i o n o f sample p l o t s  i n the Coastal  W e s t e r n Hemlock  Zone o f B r i t i s h C o l u m b i a . 2  Range i n s i t e  3  Average  4  i n d e x f o r 53 s a m p l e p l o t s  distance cluster analysis  parameters  (m/100 y r . ) .  u s i n g 28 c h e m i c a l  f o r t h e LF h o r i z o n d a t a o f a l l  ix  43  plots.  60  L I S T OF APPENDICES Page 1.0  S i t e d e s c r i p t i o n data  2.0  Complete  forest  f l o o r chemical  data—LF  horizon  77  2.1  Complete  forest  f l o o r chemical  data—H  horizon  79  3.0  Correlation matrix  all  chemical  data--LF h o r i z o n . . .  83  3.1  Correlation matrix for a l l  chemical  data--H  84  4.0  Correlation matrix  f o r chemical  order  horizons  4.1  4.2  (Kg/ha)  --LF  for  76  f o r chemical  order  horizons  —H  Correlation matrix order  (Kg/ha)  i n the  Mor 85  Correlation matrix (Kg/ha)  data of p l o t s  horizon . . .  data of p l o t s  i n the  Mor 86  f o r chemical  —LFH horizons  data of p l o t s  i n the  Mor 87  x  L I S T OF ABBREVIATIONS USED IN THE TEXT A%  Total  A%(na) T o t a l Ah  l i p i d s in f r a c t i o n A of sequential l i p i d s e x p r e s s e d on an a s h - f r e e  A mineral less  accumulation of organic  Represents  Total  aluminum  C  Total  carbon  (%).  Ca  Total  calcium  (ppm).  Ca/Al  Ratio  of  total  Ca t o t o t a l  Al.  Ca/Mg  Ratio  of total  Ca t o t o t a l  Mg.  C/N  Ratio  of  surface  c o n t a i n i n g 17% o r  a z o n e o f maximum i n s i t u  (%).  C to t o t a l  CEC  C a t i o n exchange  Cu  Total  CV.  C o e f f i c i e n t of  F  An o r g a n i c  total  N.  capacity.  (ppm). variation.  h o r i z o n c h a r a c t e r i z e d by an a c c u m u l a t i o n o f  decomposed o r g a n i c m a t t e r woody m a t e r i a l s iron  (Canada  derived mainly  Soil  from l e a v e s ,  Survey Committee,  and  1978).  Total  H  An o r g a n i c h o r i z o n c h a r a c t e r i z e d by an a c c u m u l a t i o n o f  (%).  organic matter Soil  partly twigs,  Fe  (Canada  1974).  matter.  Al  copper  (Lowe,  basis.  h o r i z o n formed at or near the  o r g a n i c C by w e i g h t .  extraction  i n which the o r i g i n a l  Survey Committee,  1978).  K  Total  potassium  K/Ca  Ratio  of  KC1-N  Potassium c h l o r i d e - e x t r a c t a b l e - N .  total  (ppm). K to total  Ca.  x1  structures  are  decomposed  indiscernible  L  An o r g a n i c h o r i z o n c h a r a c t e r i z e d by an a c c u m u l a t i o n o f matter  derived mainly  which the o r i g i n a l Survey committee,  from l e a v e s ,  structures  twigs,  are  easily  a n d woody m a t e r i a l s d i s c e r n i b l e (Canada  1978).  LF  A c o m p o s i t e h o r i z o n f o r m e d by c o m b i n i n g t h e L a n d F  Mg  Total  magnesium  Mg/K  Ratio  of Total  Min-N  Mineralizable-nitrogen  Mn  Total  manganese  (ppm).  N  Total  nitrogen  (%).  NH -N  Total  ammonium-nitrogen  N/Mn  Ratio  of t o t a l  nitrogen to t o t a l  manganese.  N/P  Ratio  of  total  nitrogen to total  phosphorus.  N/S  Ratio  of t o t a l  nitrogen to total  sulphur.  P  Total  phosphorus  P/Al  Ratio  of  4  pH(CaCl ) 2  total  (ppm). Mg t o t o t a l  K.  (ppm).  (ppm).  (%).  phosphorus to t o t a l  pH m e a s u r e d i n a 0 . 0 1 M C a C l  S  Total  sulphur  Zn  Total  zinc  organic  (%).  (ppm).  xii  2  aluminum. solution.  horizons.  in Soil  ACKNOWLEDGEMENTS In  the p r e p a r a t i o n of t h i s  thesis  a n d e n c o u r a g e m e n t f r o m many s o u r c e s . the  financial  I  have r e c e i v e d  Firstly,  s u p p o r t p r o v i d e d by B r i t i s h  and c o m p a n i o n s h i p o f J u l i e Patti  Carbis.  gratefully the  Dr.  Hans S c h r e i e r ,  acknowledged f o r  statistical I  analysis  would l i k e  assistance  in all  are  assistance Finally,  invaluable  assistance  stages  due t o D r s . T .  Esther  Yip  and  are  and a d v i c e  during  data.  o f my g r a d u a t e K l i n k a are  program.  gratefully  M. B a l l a r d  a n d L.  E.  their  The i n s i g h t  I w o u l d l i k e t o t h a n k my w i f e , t h r o u g h o u t my g r a d u a t e  Debi  program.  xiii  valuable and  acknowledged.  Special  Lowe f o r t h e i r  patience,  and p r o f e s s i o n a l i s m d u r i n g b o t h c o u r s e a n d t h e s i s  encouragement  Limited.  co-operation  B a r r y Wong a n d J o h n Emmanuel  their  of the  Eveline Wolterson,  support  acknowledge  Products  by t h e a d v i c e ,  t o t h a n k my c o m m i t t e e members f o r  imagination of Dr. Karel thanks  Lansiquot,  I would l i k e to  Columbia Forest  The l a b o r a t o r y w o r k was made q u i t e e n j o y a b l e  guidance,  Carter,  work.  f o r her p a t i e n c e  and  1  INTRODUCTION The i m p o r t a n c e o f  forest  r e c o g n i z e d i n many s t u d i e s Klinka,  1981).  Forest  floors  (Gosz e t  i n n u t r i e n t c y c l i n g has  a l . , 1 9 7 6 ; Q u e s n e l , 1 9 8 0 ; Lowe a n d  f l o o r s h a v e b e e n shown n o t o n l y  s i g n i f i c a n t a c c u m u l a t i o n s o f many e s s e n t i a l s t o r e many o f plants  these  (Gosz e t  elements  al.,  Douglas-fir  attempt  i s of great  on f o r e s t  In  c a n be r e a d i l y  Since very  little  these  forest  it  r e l a t i o n s h i p s to  sample from a broad g e o g r a p h i c  site  (Krajina,  and  forest  of  the  to  properties  productivity.  floor it  properties  was d e c i d e d  range o f s i t e  to  types  W e s t e r n Hemlock  p r o p e r t i e s c o u l d be c o m p a r e d  to e s t a b l i s h the magnitude o f w i t h i n - p l o t This c o n s t i t u t e d the  between variation  first  part  study. the  second p a r t  a r e compared between  are  is  1969).  usefulness of composite samples.  In  class.  d i s t r i b u t i o n and w i d e  f l o o r chemical  i t was n e c e s s a r y  and t h e  by  was d e c i d e d  fertility  range of D o u g l a s - f i r i n the C o a s t a l  Before f o r e s t plots  to  C o l u m b i a and  f l o o r s i n terms o f chemical  s i g n i f i c a n t r e l a t i o n s h i p s between  B i o g e o c l i m a t i c Zone  utilized  information  and p r o d u c t i v i t y m i g h t be a p p l i c a b l e o v e r a s p e c i f i c a r e a  throughout the  but a l s o  in British  f l o o r s under D o u g l a s - f i r stands  to bear  o r d e r t h a t any  represent  n u t r i e n t elements  economic importance  Northwest.  to c h a r a c t e r i z e  t h a t were l i k e l y  i n forms t h a t  to  1976).  throughout the P a c i f i c available  been  A variety  used t o a s s u r e  stands  of the  forest  f l o o r chemical  in r e l a t i o n to Douglas-fir s i t e  of parametric that  study  and n o n - p a r a m e t r i c  i n d e x and  statistical  b o t h dependent and i n d e p e n d e n t  properties site  procedures  relationships  2  between f o r e s t the  potential  floor properties usefulness  of  and p r o d u c t i v i t y  studies  of t h i s  are  kind is  revealed. discussed.  Finally,  3  MATERIALS AND METHODS S a m p l i n g was u n d e r t a k e n o v e r a w i d e g e o g r a p h i c a l Coastal  W e s t e r n H e m l o c k (CWH)  British  Columbia ( K r a j i n a ,  B i o g e o c l i m a t i c Zone o f  1969;  K l i n k a et  area,  southwestern  a l . , 1979)(Fig.  1).  s a m p l i n g was c a r r i e d o u t d u r i n g t h e m o n t h s o f May a n d J u n e , of  fifty-three  l a b e l l e d as  sample p l o t s were e s t a b l i s h e d .  criteria 1)  wide  s e l e c t i o n should attempt  Selection  range o f 3)  These were as  The s t a n d s m u s t be w i t h i n t h e g e o g r a p h i c a l  distribution within  site  this  of  A total  of these  were  plots. of  follows:  to provide a broad  t h e CWH  geographical  zone  sample p l o t s w i t h i n s t a n d s  i n d i c e s , hygrotopes^,  t r e e s p e c i e s m u s t be g r e a t e r  should attempt to provide  trophotopes^, aspects  than or equal  4)  The s t a n d must be i n an age c l a s s  5)  The s t a n d m u s t be w e l l and o v e r s t o r y  Field  boundaries of  The D o u g l a s - f i r c o m p o n e n t o f t h e o v e r s t o r y  understory  coastal  1981.  sampled"  the  s e l e c t e d f o r s a m p l i n g h a d t o meet a number  before being judged s u i t a b l e .  Zone and s i t e  2)  Forty-seven  " s t a n d a r d " p l o t s and s i x as " i n t e n s i v e l y  The f o r e s t s t a n d s  within  t o 80  and  dominant and c o d o m i n a n t  percent  b e t w e e n 6 0 a n d 130 y e a r s  s t o c k e d and r e l a t i v e l y  homogeneous  in  vegetation.  A t e a c h o f t h e s i t e s c h o s e n t o e s t a b l i s h t h e s t a n d a r d p l o t s an of  a p p r o x i m a t e l y 400m2 was e s t a b l i s h e d w i t h i n an a r e a c o n s i d e r e d t o  relatively  homogeneous i n t o p o g r a p h y ,  s t o c k i n g and v e g e t a t i o n .  s a m p l i n g l o c a t i o n s were randomly chosen w i t h i n each stumps,  r o c k s , s t a n d i n g w a t e r and o t h e r o b j e c t s  Ecological Ecological  2  a  m o i s t u r e regime (Walmsley et a l . , n u t r i e n t regime (Walmsley et a l . ,  be  Ten  sample p l o t .  not c h a r a c t e r i s t i c  1980). 1980).  area  Trees, of  the  Figure  1.  L o c a t i o n o f Sample  Plots  i n the Coastal  W e s t e r n H e m l o c k Zone o f B r i t i s h  Columbia.  5  f o r e s t f l o o r were n o t s a m p l e d . of  sampling l i t e r a t u r e  al.,  1981)  1978)  revealed  that the  (Quesnel,  it  the t o t a l  and M c C o l l ,  discontinuous layer,  Soil  for future  genesis  review  1971; K l i n k a  Survey  variability  the p o s s i b i l i t y t h a t  associated with  undifferentiated entity. sampling of  the f o r e s t 1978).  This  horizons of the S o i l  Committee,  representing a minor Quesnel,  1980,  s t u d i e s t o be a b l e t o  noted stratify  t h i s m i g h t r e d u c e some o f  s a m p l i n g t h e f o r e s t f l o o r as  Therefore,  it  an  was d e c i d e d t o s t r a t i f y  f l o o r i n t o LF and H h o r i z o n s (Canada  Soil  s t r a t i f i c a t i o n a l s o approximates the 0  Survey S t a f f  the  X  the Survey and 0  out successive surface area  samples of the f o r e s t f l o o r .  o f 86 s q u a r e i n c h e s  (560cm2)  a n d s e p a r a t e d i n t o LF a n d H h o r i z o n s . morphological  samples a c t u a l l y analysis.  w  e  r  The d e p t h o f t h e LF  and r o o t s  included i n the  e  removed u n d i s t u r b e d  Ah h o r i z o n s , c l a s s i f i e d a c c o r d i n g However, t h a n 17%C.  after  the  greater  sample.  these  numerical  and H h o r i z o n s was m e a s u r e d as t h e mean  four faces  o f t h e e x c a v a t i o n c r e a t e d when  D e c a y i n g wood, undecomposed c o n e s ,  t h a n one c e n t i m e t e r  i n d i a m e t e r were  to  lab  Although  r e p r e s e n t Ah h o r i z o n s t h e y w e r e i n c l u d e d i n t h e  f l o o r s a m p l e was r e m o v e d .  material  j  samples were f o u n d t o have l e s s  the m i d p o i n t depths of forest  a n c  cut  T h e s e s a m p l e s h a d a minimum  c h a r a c t e r i s t i c s , were n o t s a m p l e d .  three  2  (1975).  A t e a c h s a m p l i n g l o c a t i o n a s h a r p k n i f e o r s p a d e was u s e d t o  analysis,  et  f l o o r i n t o s m a l l e r c o m p o n e n t s b a s e d on d e g r e e o f d e c o m p o s i t i o n .  A l s o n o t e d was  Committee,  1980; G r i e r  forest f l o o r accumulation.  w o u l d be u s e f u l  forest  s a m p l i n g e x p e r i e n c e and a  t h a t the L h o r i z o n (Canadian  o f t e n forms a t h i n ,  component o f  Previous  of  the rocky  not  B o t h t h e humus f o r m a n d e a c h s a m p l e h o r i z o n w e r e  6  tentatively labelled,  c l a s s i f i e d according to K l i n k a et  sealed  in p l a s t i c  p r e p a r a t i o n and a n a l y s i s .  b a g s and t a k e n  al.  (1981).  All  to the l a b o r a t o r y  A i r drying of a l l  samples  for  were  sample  s a m p l e s was i n i t i a t e d w i t h i n  3  days of sample c o l l e c t i o n . On e a c h p l o t a S i t e D e s c r i p t i o n F o r m ( W a l m s l e y e t completed.  This  Aspect  2.  Slope  3.  Elevation  4.  Biogeoclimatic  5.  Plant  6.  Site  Position  7.  Site  surface  8.  Microtopography  9.  Meso s l o p e l e n g t h a n d meso u p - s l o p e  (determined  the  through the  use o f a Suunto  clinometer)  Zone/Subzone  Association ( M a c r o and  Meso)  shape  Ecological  11 .  Nutrient  12.  Soil  13.  Perviousness  14.  P e r c e n t c o v e r o f d e c a y i n g wood, b e d r o c k , c o b b l e s ,  Forests  regime  (Hygrotope)  (Trophotope)  drainage  parameters  tables  m o i s t u r e regime  length  10.  Site  was  following information:  1.  mineral All  recorded the  a l . , 1980)  soil,  o r g a n i c m a t t e r and  stones,  water.  were d e s c r i b e d a c c o r d i n g t o Walmsley  et  al.,  (1980).  i n d e x f o r D o u g l a s - f i r was d e t e r m i n e d on e a c h p l o t a c c o r d i n g  and m e t h o d s d e s c r i b e d i n t h e B r i t i s h  C r u i s e r s Manual  (1980).  Columbia M i n i s t r y  T h i s m e t h o d u s e s t h e mean s i t e  of  index  for  to  7  f o u r c o d o m i n a n t and two d o m i n a n t t r e e s  per p l o t .  sweeps  plot centre,  were t a k e n e q u i d i s t a n t  a l o n g a randomly  chosen a c c e s s .  The s i x " i n t e n s i v e " range the  i n both s i t e  University  from the This  Island.  Three  "standard"  plots with  were chosen density  instead of  p l o t s were set-up  the  Forest  near  location.  Bulk  densities  blender.  were d e t e r m i n e d  samples were a i r - d r i e d  Samples  f o r the  s a m p l e was w e i g h t e d  contributing horizons. contributed twice was o n l y to  In  samples were r e t a i n e d  for  oven-drying  moisture content  the  and, a  locations bulk  sampling bead  displacement  (1981). ground i n a Waring  This of  the  an LF h o r i z o n t h a t was 2 cm t h i c k s a m p l e a s an L F h o r i z o n  "intensive"  however,  individual  laboratory plastic  air-dried  a 4.000 g subsample o v e r n i g h t  p l o t s were a l s o  p o r t i o n s of the  in air-tight  of the  the  p l o t s were then combined t o form a  from the  samples were l a b e l l e d and s t o r e d Hygroscopic  glass  on  and  a c c o r d i n g t o t h e mean f i e l d t h i c k n e s s  t h i s way  Samples  broad  southern  s a m p l e d h o r i z o n s - - L F and H.  form w e i g h t e d c o m p o s i t e samples;  field  al.  on  sampling  a t each  u s i n g the  a s much t o t h e c o m p o s i t e L F  1 cm t h i c k .  a  B.C.  same way a s  a t 25°C and f i n e l y  "standard"  composite sample f o r each o f the composite  Forest  fifteen  humus f o r m was t a k e n  m e t h o d o u t l i n e d by N u s z d o r f e r i n K l i n k a e t All  i n the  Haney,  t e n a s on t h e s t a n d a r d p l o t s ;  sample o f the e n t i r e  area.  sample p l o t s were chosen  following exceptions:  the  prism  directions  sample p l o t s were chosen to r e p r e s e n t  Columbia Research  These  two  in opposite  r e m a i n i n g t h r e e were on t h e Cowichan L a k e R e s e a r c h Vancouver  each p l o t ,  allowed c a l c u l a t i o n of basal  i n d e x and h y g r o t o p e .  of B r i t i s h  In  at  that  combined  individual  analysis.  All  containers.  s a m p l e s was d e t e r m i n e d  105°C, c o o l i n g i n  a  by  8  desiccator, air  dry  and w e i g h i n g t o d e t e r m i n e m o i s t u r e l o s s as a p e r c e n t a g e  sample w e i g h t .  property values  This  t o an o v e n - d r y  were measured i n a 1:10 a Radiometer use o f a Leco  analyses  basis.  Values  organic matter:  0.01  Induction  Furnace  ( B r e m n e r and T a b a t a b a i , were d u p l i c a t e d .  Michigan), 1971).  the  other  g subsamples  M CaCl2 s u s p e n s i o n by u s e Total  and C A n a l y s e r Model  Josephs,  all  f o r pH u s i n g 5 . 0  C o p e n h a g e n PHM 62 s t a n d a r d pH m e t e r .  Equipment C o r p o r a t i o n S t . subsample  i n f o r m a t i o n was u s e d t o c o r r e c t  of  C was e s t i m a t e d  N o . 521  small  The mean o f d u p l i c a t e a n a l y s i s  by  (Laboratory  t o combust a 0.060  Due t o t h e  of  g  sample values  size, was  recorded. Total  S was d e t e r m i n e d by t h e u s e o f a F i s h e r  475 o p e r a t i n g i n c o n j u n c t i o n w i t h a h i g h t e m p e r a t u r e furnace  where S i s  quantitatively  converted  t o SO2,  Sulfur  A n a l y z e r Model  resistance with  almost  f o r m a t i o n o f SO3.  The c o m b u s t i o n o c c u r s i n an o x y g e n a t m o s p h e r e  reduced pressure.  The SO2  burette  coupled with  Guthrie,  is  a b s o r b e d and q u a n t i t a t e d u s i n g an  a microprocessor which c a l c u l a t e s  type no at automatic  t h e % S (Lowe  and  1981). Total  l i p i d s i n t h e o r g a n i c m a t t e r w e r e d e t e r m i n e d by t h e  p r o p o s e d by Lowe ( 1 9 7 4 ) .  A 5 . 0 0 0 g s u b s a m p l e was u s e d i n s t e a d o f  method the  50.00  g subsample. Total variation  elemental  of the  of the  s a m p l e s was p e r f o r m e d by a  s u l p h u r i c a c i d - h y d r o g e n p e r o x i d e p r o c e d u r e p r o p o s e d by  L i n d n e r and H a r l e y 1.000  analysis  (1942)  and m o d i f i e d by P a r k i n s o n and A l l e n  g s u b s a m p l e was w e i g h e d i n t o a d i g e s t i o n t u b e ,  concentrated  5.0 mis  (1975). of  s u l p h u r i c a c i d was a d d e d , and t h e s o l u t i o n was m i x e d on a  A  9  Sybron  thermolyne  vortex mixer.  Two s u c c e s s i v e  1 ml a d d i t i o n s o f  h y d r o g e n p e r o x i d e - l i t h i u m s u l p h a t e m i x t u r e were t h e n a d d e d , and s o l u t i o n was m i x e d on t h e v o r t e x m i x e r .  a  the  The d i g e s t i o n t u b e s w e r e  then  h e a t e d on a b l o c k d i g e s t o r , u s i n g d i s c o n t i n u o u s h e a t i n g , f o r 2 t o 3 m i n u t e s or u n t i l block  s p a t t e r i n g and f o a m i n g c e a s e d .  d i g e s t o r and a l l o w e d t o c o o l  The s a m p l e s w e r e r e m o v e d f r o m  f o r 5 t o 10 m i n u t e s .  Two more 1 ml  a d d i t i o n s o f t h e hydrogen p e r o x i d e - l i t h i u m s u l p h a t e m i x t u r e were added.  block  then  The d i g e s t i o n t u b e s w e r e t h e n p l a c e d i n t h e b l o c k d i g e s t o r f o r  minutes a t 360°C.  F o l l o w i n g d i g e s t i o n t h e t u b e s were removed f r o m  d i g e s t o r and a l l o w e d t o c o o l  f o r 5 t o 10 m i n u t e s .  A final  0 . 5 ml  aliquots of  as n e c e s s a r y ,  cooling, water.  added  s a m p l e s w e r e h e a t e d on t h e b l o c k d i g e s t o r f o r a n o t h e r 30 m i n u t e s .  Additional added,  90  the  a l i q u o t o f t h e h y d r o g e n - p e r o x i d e - l i t h i u m s u l p h a t e m i x t u r e was t h e n and t h e  the  the  t h e h y d r o g e n - p e r o x i d e - l i t h i u m s u l p h a t e m i x t u r e were  to ensure c l a r i f i c a t i o n of a l l  d i g e s t s w e r e made up t o v o l u m e w i t h d i s t i l l e d ,  Total  N and t o t a l  T e c h n i c o n A u t o a n a l y z e r II b a s e d on t h e B e r t h e l o t  c o m p l e x by a s c o r b i c  (Anonymous 1 9 7 4 ) .  (phenol-hypochlorite)  acid  demineralized  The m e t h o d f o r t o t a l  N  reaction  The  for NH4-N.  (Watanabe and O l s e n , 1 9 6 5 ) .  The m e t h o d h a s  (Anonymous, 1 9 7 4 ) .  A l , M n , Cu a n d Zn w e r e m e a s u r e d by u s e o f a t o m i c  spectrophotometry  (Price,  1978).  using the h i g h e r temperature  the  is t  r e d u c t i o n o f t h e ammonium m o l y b d o p h o s p h a t e  adapted f o r use w i t h b l o c k d i g e s t o r a c i d d i g e s t s Fe,  After  P w e r e d e t e r m i n e d c o l o r i m e t r i c a l l y by u s e o f  m e t h o d f o r P i s b a s e d on t h e  C a , M g , K,  samples.  Total  Ca and t o t a l  nitrous oxide-acetylene  e l e m e n t s w e r e d e t e r m i n e d u s i n g an a c e t y l e n e - a i r  Al were  Total  absorption  determined  flame w h i l e  flame.  been  all  other  10  Total  m i n e r a l i z a b l e N was e s t i m a t e d by u s e o f an  i n c u b a t i o n p r o c e d u r e m o d i f i e d f r o m W a r i n g and Bremner  anaerobic  (1964).  A 0.500 g  s u b s a m p l e was w e i g h e d i n t o a 125 ml p l a s t i c b o t t l e a n d 12 ml o f w a t e r was a d d e d and t h e b o t t l e s w e r e s e a l e d . p l a c e d i n an i n c u b a t o r a t 30°C f o r 14 d a y s , and t h e  samples were shaken f o r 2 h o u r s .  were f i l t e r e d  (Whatman N o . 1 a s h l e s s )  distilled  T h e s e w e r e m i x e d and 12 ml o f 2 N KC1 was  F o l l o w i n g s h a k i n g , the  then  then  samples  and t h e e x t r a c t a n t was a n a l y z e d  ammonium-N by u s e o f t h e T e c h n i c o n A u t o a n a l y z e r  II  (Anonymous,  t h e e x p e r i m e n t was r e p e a t e d ,  this  time without  the  II  f i l t e r e d and a n a l y z e d f o r ammonium-N on t h e T e c h n i c o n  (Anonymous,  1974).  The v a l u e s  s u b t r a c t e d from the values mineralizable Total evaluated  for  incubation.  for  N H 4 - N , m i n e r a l i z a b l e N and K C l - e x t r a c t a b l e N were  not  N.  f o r the  17 p r o p e r t i e s .  and C a : A l ash-free by  then  ammonium-N, g i v i n g a v a l u e  individual  samples from the  c o m p o s i t e samples used i n the p r o d u c t i v i t y of  two  Autoanalyzer  f o r the K C l - e x t r a c t a b l e N were  total  In  two week  The 0 . 5 0 0 g s u b s a m p l e s w e r e a d d e d t o 2 5 . 0 m i s o f 1 N K C 1 , s h a k e n f o r hours,  for  1974).  o r d e r t o d e t e r m i n e t h e amount o f N a c t u a l l y m i n e r a l i z e d d u r i n g t h e incubation,  added  Nine r a t i o s :  were c a l c u l a t e d  C : N , N:P,  and t o t a l  lipids  intensive  sample p l o t s .  study were a n a l y z e d f o r a N:S,  N:Mn, N:K,  (A%)  K:Ca,  The total  Ca:Mg,  P:A1  a n d N H 4 - N w e r e p u t on an  b a s i s by d i v i d i n g by % o r g a n i c m a t t e r c a l c u l a t e d by m u l t i p l y i n g %C  1.724. The c h e m i c a l  data of a l l  s a m p l e p l o t s h a v i n g humus f o r m s i n t h e  o r d e r were t r a n s f o r m e d t o a w e i g h t m u l t i p l y i n g t h e a v e r a g e d e p t h (m)  per u n i t area  basis.  Mor  T h i s was done by  o f e a c h h o r i z o n on t h e p l o t by  10 m 4  2  11  and t h e p e r c e n t floor, m /ha. 3  of the  g i v i n g the This  o f 110 k g n r materials.  3  total  total  surface  volume o f  area of the p l o t covered  forest  floor material  by t h e  i n each  horizon  v a l u e was m u l t i p l i e d by a s t a n d a r d i z e d b u l k d e n s i t y f o r LF h o r i z o n m a t e r i a l s These  a n d 175 k g m  standardized bulk density  45 s a m p l e s o f b o t h LF  - 3  in  estimate  for H horizon  estimates  and H h o r i z o n s o f Mor humus  forest  were c a l c u l a t e d  forms.  from  12  SAMPLING STRATEGIES AND THE V A R I A B I L I T Y OF FOREST FLOORS Introduction In stands, of  order to c h a r a c t e r i z e  a sampling strategy  samples necessary  forest  seasonal floors  A large  variability Lowe,  to c h a r a c t e r i z e  various  of these  forest  forest  To d e t e r m i n e t h e  chemical  of  1980).  al.,  1972; Stutzbach et  1958; Mader,  and  and M c C o l l ,  forest  floor  1 9 6 3 ; McFee and S t o n e ,  a l . , 1972; G r i e r  be  investigating  Fewer s t u d i e s have examined f o r e s t  (Hammond e t  a  f l o o r p r o p e r t i e s must  s o i l s without s p e c i f i c a l l y  number  properties of  number o f s t u d i e s h a v e d e a l t w i t h t h e s p a t i a l  variabilities  (Quesnel,  f l o o r s of d i f f e r e n t  m u s t f i r s t be d e f i n e d .  f l o o r the v a r i a b i l i t y  examined.  the f o r e s t  1965;  1971 and Q u e s n e l ,  1980). B e f o r e r e l a t i o n s h i p s between  t r e e g r o w t h and s o i l  nutrient  c a n be e x a m i n e d t h r o u g h t h e u s e o f c o m p o s i t e s a m p l i n g t e c h n i q u e s , number o f s a m p l e s n e c e s s a r y particular  forest  status the  t o meet p r e s c r i b e d s t a n d a r d s o f a c c u r a c y  f l o o r p r o p e r t i e s as w e l l  as t h e  usefulness of  for  composite  s a m p l i n g m u s t be d e t e r m i n e d . Previous and s o i l  nutrient  variability of  s t u d i e s have n o t e d t h a t  ecological  s t a t u s may n o t be d e t e c t a b l e  (Mader,  a property  is  because  1 9 6 3 ; B l y t h e and M c L e o d , 1978)  tree  studies  (Bell  samples are  and W i l l i a m s ,  site  1968).  and t h a t  Therefore,  the  the  c a n n o t be p r o p e r l y c h a r a c t e r i z e d  floors  soil  variability and  soil  unless  collected.  A number o f s t u d i e s h a v e c h a r a c t e r i z e d f o r e s t  growth  o f s h o r t range  a s i m p o r t a n t a s t h e mean v a l u e f o r p e d o l o g i c a l  component o f a f o r e s t sufficient  r e l a t i o n s h i p s between  under  13  Douglas-fir  (Pseudotsuga  (Gessel  and B a l c i ,  Klinka,  1981).  menziesii (Mirb.)  1965; Youngberg, 1966; G r i e r  Gessel  and B a l c i  (1965)  were needed to p r o p e r l y d e s c r i b e t h e forests They  Franco)  i n the P a c i f i c  and M c C o l l ,  found a l a r g e  forest  Northwest  1 9 7 1 ; Lowe and  number o f  samples  f l o o r s of old-growth  coniferous  i n t h e C a s c a d e and O l y m p i c m o u n t a i n r e g i o n s o f W a s h i n g t o n  a t t r i b u t e d the v a r i a b i l i t y  of forest  s u c h as uneven d i s t r i b u t i o n o f t r e e s heterogeneous  State.  f l o o r w e i g h t and d e p t h t o  on a s i t e ,  variation  in tree  species composition, topographic i r r e g u l a r i t i e s ,  factors  ages,  windthrow,  o c c u r r e n c e o f woody m a t e r i a l s , and random l o c a t i o n o f s a m p l e s i n a heterogeneous variability vegetation several  population.  i n the chemical effects.  chemical  Douglas-fir  T a p p e i n e r and Aim (1975)  Grier  value of properties be a d e q u a t e l y  properties of forest f l o o r s to and M c C o l l  p r o p e r t i e s of the  plantation  in western  estimated with  estimated with  560 c m ^ .  (1971)  forest  less  found t h a t  mean pH c o u l d  t h a n 30 s a m p l e s f o r a s a m p l i n g e r r o r  Quesnel  pHfh^O)  sample s i z e  found t h a t  and p H ( C a C l 2 )  i n c r e a s e d t o 25% and t h e c o n f i d e n c e l e v e l total  a n d Na d i s p l a c e d by  (1980)  of  15  total  w i t h an  samples carbon,  allowable  When t h e a l l o w a b l e e r r o r  was  t o 9 0 % , 15 s a m p l e s p e r s i t e P,  M g , K,  NH4OAC,  of  adequately  l o s s on i g n i t i o n ,  e r r o r o f 10% a t t h e 95% c o n f i d e n c e l e v e l .  f o u n d t o be s u f f i c i e n t t o e s t i m a t e  the  n i t r o g e n and s o i l  Many o f t h e p r o p e r t i e s c o u l d be  n i t r o g e n , CEC a t pH 7 . 0 ,  d i s p l a c e d by NaCl  They  carbon, total  p e r s i t e w o u l d be s u f f i c i e n t t o e s t i m a t e total  of  f l o o r in a 40-year-old  f o r an i n d i v i d u a l  15 s a m p l e s o r l e s s .  the  undergrowth  s t u d i e d the v a r i a b i l i t y  Washington.  such as t o t a l  10% o r l e s s w i t h 9 5 % c o n f i d e n c e approximately  a t t r i b u t e d some o f  were  C u , Z n , CEC a t pH 4 , K  i n a d d i t i o n to  the  14  previously necessary Al  listed properties.  However,  t o c o l l e c t more t h a n 40 s a m p l e s p e r s i t e  and Ca a t pH 4 and 7 ,  accuracy.  Mader  (1963)  noted t h a t  efficiency  of  most u s e f u l extensive  areas.  They  noted that  Island,  r e p r e s e n t i n g a range objectives  of  this  i n f o r m a t i o n on t h e forest  part of  number o f  tree  p l o t s was l i k e l y  regression analysis sample data  o f B.C.  the  factors  the  fairly  are  of  Research Forest  sites  samples necessary  Forest  properties near  Haney,  n e a r C o w i c h a n L a k e on  a t each  location  and humus f o r m t a x o n . First,  to estimate  to  The  gain  t h e mean  value  p r o p e r t i e s t o be u s e d i n e x a m i n i n g p o s s i b l e growth.  Secondly  to determine whether  t o be a s e r i o u s d e t e r r e n t  and, f i n a l l y ,  to evaluate  the  individual  variation  to c o r r e l a t i o n accuracy  of  and  composite  samples used to  create  sample.  an e f f o r t  variability,  necessary  found t h a t  of chemical  study were t h r e e - f o l d .  i n r e l a t i o n t o t h e mean o f  the composite  deviation  the  of  remains low over  the v a r i a b i l i t y  the three  Fe,  growth.  i n both p r o d u c t i v i t y c l a s s  f l o o r chemical  relationships with  In  studying tree  with  (1978)  highly variable  on t h e C o w i c h a n L a k e R e s e a r c h  southern Vancouver  within  also  t h r e e on t h e U n i v e r s i t y  and t h r e e  in order to optimize  B l y t h e and M a c l e o d  was d e c i d e d t o q u a n t i f y  on s i x s i t e s ;  of  properties  t h o s e whose v a r i a b i l i t y  p r e d i c t i v e value for It  B.C.  are  lower l e v e l  c o m p o s i t i n g s a m p l e s w o u l d be  f i e l d and l a b w o r k .  properties  be  f o r e x t r a c t a b l e Mn,  i n o r d e r t o o b t a i n even t h i s  when e x a m i n i n g h i g h l y v a r i a b l e  little  he f o u n d i t w o u l d s t i l l  various  (SD),  to quantify  d i f f e r e n t aspects of f o r e s t  statistical  methods were u s e d .  The mean  floor (x),  and t h e c o e f f i c i e n t o f v a r i a t i o n w e r e c a l c u l a t e d  standard  for  each  15  p r o p e r t y , w i t h i n each h o r i z o n , calculations  are  o u t l i n e d by W i l l i a m s  d e s c r i b e d by H u s c h e t d a t a by G r i e r (1980),  the  from a t o t a l  al.  and M c C o l l  (1963)  (1968).  (1971),  Lewis  (1976),  d a t a were a n a l y z e d t o d e t e r m i n e  and 0 . 0 1 )  different  a n d two a l l o w a b l e  levels  of  statistical n =  t 2  Following a type of  w h i c h has been p r e v i o u s l y  t o o b t a i n t h e mean v a l u e o f a p r o p e r t y w i t h (0.05  o f 15 s a m p l e s p e r p l o t .  errors  Slavinski  the  analysis  a p p l i e d to  (1977)  number o f  These  and Q u e s n e l  samples  necessary  two d i f f e r e n t c o n f i d e n c e  ( 1 0 % and 2 0 % ) .  soil  levels  Representing  four  rigor. .(n-l)  (C^) .. 2  (A.E.)2 where n i s  t h e number o f s a m p l i n g u n i t s n e e d e d t o e s t i m a t e  s p e c i f i e d a l l o w a b l e e r r o r and p r o b a b i l i t y ; t ( _ i )  is  n  students  t - d i s t r i b u t i o n w i t h n-1  c o e f f i c i e n t of variation error  in percent  (Husch  Variability  et  and A . E .  six sites  The mean v a l u e s plot  are g i v e n  value for l-3b.  i n T a b l e 1-2 levels  for Ca, Fe,  Al  of  the sampling  i n D o u g l a s - f i r Stands Zone  48-53).  study have  Within-plot  been  variation  f o r each h o r i z o n i s p r e s e n t e d i n Table  f o r the chemical  four given  Values  properties  p r o p e r t i e s of each h o r i z o n w i t h i n  and t h e sample r e q u i r e m e n t s of confidence are and Mn a l l  a  1980).  sampled i n t h i s  s u m m a r i z e d i n A p p e n d i c e s 1 and 2 ( p l o t s  is  the a l l o w a b l e  t h e C o a s t a l Western Hemlock  Data d e s c r i b i n g the  humus f o r m c h e m i c a l  is  a l . , 1963; Quesnel,  of Forest Floor Properties of  the value  degrees o f freedom; C.V.  in percent;  t h e mean w i t h  given  to achieve  in Tables  l-3a  of 1-1.  each a mean and  seemed t o show a h i g h d e g r e e  of  16  T a b l e 1-1.  V a r i a t i o n of Chemical P r o p e r t i e s Within P l o t s of V a r i a t i o n  Property  Horizon  Range i n C o e f f i c i e n t of Variation  E x p r e s s e d as  %  Coefficient  Mean C o e f f i c i e n t of V a r i a t i o n  pH(CaCl )  LF H  4.1 3.9 -  5.9 14.1  5.2 7.5  cm  LF H  6.7 - 16.4 9.1 - 4 0 . 9  7.3 19.7  LF H  4.1 - 1 7 . 3 7.0 - 3 8 . 9  11.5 21.0  P(%)  LF H  6.9 9.9 9.7 - 19.6  8.1 13.4  S(%)  LF H  6.2 - 15.9 13.8 - 58.9  11.1 28.5  A(%)  LF H  11.9 - 18.4 13.8 - 41.4  16.0 27.8  Cu(ppm)  LF H  10.8 - 29.4 15.2 - 47.1  21.0 27.3  Zn(ppm)  LF H  9.7 - 2 0 . 9 12.8 - 27.1  13.3 20.9  Ca(ppm)  LF H  16.8 - 49.1 19.2 -121.7  38.4  Mg(pm)  LF H  16.5 - 43.3 15.3 - 45.7  27.1 30.4  K(ppm)  LF H  10.9 - 41.1 13.6 - 37.4  21.3 25.7  Fe(%)  LF H  48.7 - 85.5 23.4 - 55.8  66.1 40.5  Al(%)  LF H  19.1 - 8 0 . 0 22.4 - 51.3  56.2 34.1  Mn(%)  LF H  19.4 - 87.7 27.4 -111.9  48.9 58.7  2  N U )  69.5  17  Table 1-2. Chemical Properties of Six Plots: Expressed as a Mean of 15 Samples  Horizon  Property  Plot A 1  Not B 2  Mot C 3  Not D*  Not E 5  Not F 6  pH(CaCl )  LF H  3.83 3.82  2.84 2.55  2.61 2.34  4.27 3.91  4.05 3.55  3.96 3.63  C{%)  LF H  28.59 18.59  36.47 35.14  36.57 35.73  29.60 17.39  34.03 31.79  34.21 32.78  N(%)  LF H  1.15 0.71  1.08 0.87  1.13 1.10  0.96 0.65  1.05 0.96  0.97 0.97  ?(%)  LF H  0.088 0.086  0.101 0.078  0.068 0.058  0.081 0.066  0.106 0.117  0.091 0.092  S(%)  LF H  0.146 0.087  0.141 0.124  0.165 0.152  0.114 0.077  0.107 0.107  0.112 0.112  A(%)  LF H  3.37 1.51  3.70 3.49  3.17 3.23  2.16 0.64  3.45 3.04  3.65 3.38  Cutppm)  LF H  20.5 20.0  27.6 24.0  19.7 13.1  12.1 19.2  7.8 10.3  Zn(ppm)  LF H  69.9 79.3  64.4 56.2  51.0 49.5  39.6 53.0  58.8 53.5  54.1 53.4  Ca(ppm)  LF H  5007.5 585.0  1141.3 455.7  953.8 452.6  6447.7 2231 .8  7843.9 3682.3  5783.4 9160.1  Mg(ppm)  LF H  1105.5 1729.2  605.4 613.3  549.2 507.5  2650.5 4959.9  1107.1 1503.4  1307.8 1622.6  K(ppm)  LF H  804.2 904.6  1260.8 937.8  542.3 345.9  781.1 797.1  976.4 1179.2  886.5 890.9  Fe(%)  LF' H  0.702 1.574  0.279 0.382  0.281 0.392  0.829 2.634  0.282 0.709  0.294 0.759  Aim  LF H  0.684 1.524  0.273 0.466  0.238 0.319  0.936 1.951  0.252 0.611  0.218 0.504  LF H  0.063 0.114  0.064 0.017  0.113 0.065  0.456 0.748  0.514 0.438  0.255 0.258  2  1 Predominantly Mull and Moder humus forms 2 Predominantly Hemihumimor and Humimor humus forms Predominantly Humimor with some Hemlmor humus forms Predominantly Mull and Moder humus forms Predominantly Hemimor with some Hemihumimor humus forms 6 Predominantly Hemihumimor humus forms 3 4  5  7.5 9.6  18  Table l-3a.  Sample Requirements Necessary to Predict a Mean Value for the Chemical Properties of the LF Horizon at Four given Levels of Accuracy  High Value  Low Value  Property  L.S.  High Value  Low Value  A.E.  n*  5.96 13.59 2.93 1 .47 3.40 0.73 13.11 30.21 6.51 3.27 7.55 1.63  Property  L.S.  A.E.  n"  pH(CaCl )  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  0.86 0.22 1.62 0.48  1.08 0.27 2.40 0.60  0.52 0.13 1.15 0.29  Zn(ppm)  0.05 0.05 0.90 0.01  0.10 0.20 0.10 0.20  cm  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  5.02 1.28 11.37 2.75  17.57 4.39 39.06 9.76  0.61 0.15 1.36 0.34  Ca(ppm)  0.05 0.05 0.01 0,01  0.10 0.20 0.10 0.20  N(»)  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  4.66 1.34 10.38 2.60  9.23 2.32 20.60 5.15  ,52 .13 ,15 .29  Mg(ppm)  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  26.68 58.12 7.32 6.67 14.53 1 .83 59.29 129.17 16.27 14.82 32.29 4.07  ?{%)  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  2.92 0.53 4.66 1.16  .06 .77 .81 1.70  0.86 0.21 91 48  K(ppm)  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  17.84 52.44 4.46 13.11 39.65 116.57 9.91 29.14  S(%)  0.05 0.05 0.01 0.01  0.10 0.20 0.20 0.20  4.21 1.05 9.36 2.34  7.81 1.95 17.37 4.34  1.18 0.29 2.62 0.66  Fe(ppm)  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  141 .61 35.4 314.72 78.69  A(%)  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  8.13 2.03 18.06 4.51  11.53 2.88 25.63 6.41  4.36 1.09 9.69 2.42  Al(ppm)  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  114.83 198.74 11.34 28.71 49.89 2.83 255.22 491.71 25.20 63.80 110.42 6.30  Cu(ppm)  0.05 0.05 0.01 0.01  0.10 0.20 0.70 0.20  15.12 3.78 33.61 8.40  26.89 6.72 59.77 14.94  3.63 0.91 8.07 2.02  Mn(ppm)  0.05 0.03 0.01 0.01  0.10 0.20 0.10 0.20  88.27 238.83 11.71 22.07 59.71 2.93 196.18 530.81 26.02 49.05 132.70 6.50  1 Level of  Significance  2  1  49.49 74.90 8.71 12.37 18.72 2.18 109.97 166.46 19.37 27.50 41.61 4.84  3.68 0.92 8.18 2.04  226.79 73.69 56.70 18.42 504.05 126.01 40.95  3 The°number of"samples necessary to predict mean values for a given level of accuracy. E  19  Table l-3b.  Sample Requirements Necessary to Predict a Mean Value for the Chemical Properties of the H Horizons at Four Given Levels of Accuracy n  3  High Value  Value  C o w ' ~ Property L.S. A.E. n  J  High Value  Low Value  Property  L.S. A.E.  pH(CaCl )  .05 .05 .01 .01  0.10 0.20 0.10 0.20  2.10 0.52 4.67 1.16  6.19 1.55 13.75 3.44  0.47 0.12 1.05 0.26  Zn(ppm)  .05 .05 .01 .01  0.10 0.20 0.10 0.20  14.26 3.57 31.73 7.93  22.77 5.69 50.60 12.65  5.12 1.28 11.38 2.85  cm  .05 .05 .01 .01  0.10 17.05 0.20 4.26 0.10 37.89 0.20 9.47  52.01 13.00 115.59 28.90  3.26 0.82 7.25 1.81  Ca(ppm)  .05 .05 .01 .01  0.10 196.56 0.20 49.14 0.10 436.81 0.20 109.20  459.72 114.93 1021.75 255.44  11.43 2.86 25.40 6.35  N(%)  .05 .05 .01 .01  0.10 17.31 0.20 4.32 0.10 38.45 0.20 9.61  46.90 11.73 104.24 26.06  1.54 0.38 3.42 0.86  Mg(ppm)  .05 .05 .01 .01  0.10 0.20 0.10 0.20  33.96 8.49 75.48 18.87  64.91 16.23 144.23 36.07  7.29 1.82 16.20 4.05  P(%)  .05 .05 .01 .01  0.10 5.94 0.20 1.48 0.10 13.20 0.20 3.30  11.92 2.98 26.50 6.63  2.92 0.73 6.49 1.62  K(ppm)  .05 .05 .01 .01  0.10 0.20 0.10 0.20  22.69 5.67 50.43 12.61  43.48 10.87 96.64 24.16  5.76 1.44 12.81 3.20  sm  .05 .05 .01 .01  45.45 0.10 14.60 11.36 0.20 3.65 0.10 32.45 101.02 0.20 8.11 . 25.26  1.08 0.27 2.39 0.60  Fe(%)  .05 .05 .01 .01  0.10 55.02 0.20 13.76 0.10 122.29 0.20 30.57  96.51 24.13 214.49 53.62  16.95 4.24 37.68 9.42  Am  .05 .05 .01 .01  0.10 27.48 0.20 6.87 0.10 61.08 0.20 15.27  53.17 13.29 118.17 29.54  10.74 2.68 23.87 5.97  Aim  .05 .05 .01 .01  0.10 51.89 0.20 12.97 0.10 115.34 0.20 28.83  92.32 23.08 205.18 51.29  15.59 3.90 34.64 8.66  Cu(ppm)  .05 .05 .01 .01  0.10 26.38 0.20 6.60 0.10 58.63 0.20 14.66  68.89 17.22 153.11 38.28  7.15 1.79 15.88 3.97  Mn(%)  .05 .05 .01 .01  0.10 128.19 0.20 32.05 0.10 284.90 0.20 71.23  388.22 97.06 862.84 215.71  23.21 5.80 51.58 12.90  2  Level of significance Allowable error 3 Number of samples necessary to predict mean values for a given level of accuracy 1  2  20  variability  within plots.  a relatively  Quesnel  also  found Fe,  t h o u g h t t o be a n a t u r a l  under second-growth D o u g l a s - f i r stands values  they  to d e t e c t i o n l i m i t s of the conventional  are c l o s e  atomic a b s o r p t i o n  involved  values  in this  locations.  of B.C.  l o w pH v a l u e s  of t h i s  the g e n e r a l l y  higher values  (C.L.R.F.). slightly  In  all  associated with  Forest  (U.B.C.R.F.)  found at  the  hygric was  the  two  flame  is  six  be  the  the  generally  in keeping  with  Forest  o f t h e LF h o r i z o n s a m p l e s w e r e  higher than those of the H h o r i z o n samples.  Quesnel  (1980)  ecosystem, while  t o p r e d i c t a mean v a l u e a t a  with values  f o u n d by Q u e s n e l  found the g r e a t e s t w i t h i n - p l o t v a r i a b i l i t y in this  study,  the  greatest  The pH o f  t h e LF h o r i z o n s was  within-plot  f o u n d t o be l e s s  given  (1980). in a  variability  f o u n d i n a s u b x e r i c e c o s y s t e m w i t h a Humimor humus f o r m ( K l i n k a  1981).  as  geographical  at  and r e f l e c t s  to  the Cowichan Lake Research  pH v a l u e s  o f c o n f i d e n c e compares w e l l  However,  acetylene-air  The h i g h v a l u e o f 4 . 2 7  The number o f s a m p l e s n e c e s s a r y level  1971).  showed a b r o a d r a n g e w h i c h a p p e a r s  location.  cases  forest  spectroscopy.  inherently  Research  of  some c a u t i o n  The l o w v a l u e o f 2 . 3 4 was f o u n d on a m e s i c s i t e  University  High  o f t h e LF and H h o r i z o n s e x a m i n e d on t h e  study  associated with properties  have  error.  feature  f o u n d f o r Cu s h o u l d be r e g a r d e d w i t h  The pH(CaCl2) sites  a n d Mn t o  ( G r i e r and M c C o l l ,  The a n a l y t i c a l  used i n the  Al  h i g h v a r i a t i o n due t o s u b s a m p l i n g and a n a l y t i c a l  w i t h i n - p l o t v a r i a b i l i t y o f Ca i s floors  (1980)  variable  et  than  c o r r e s p o n d i n g H h o r i z o n s w i t h o n l y one s a m p l e p e r p l o t b e i n g n e c e s s a r y p r e d i c t t h e mean +_ 10% w i t h 9 5 % c o n f i d e n c e samples per p l o t i n the H h o r i z o n s .  i n t h e LF h o r i z o n a n d  From t h e d a t a o f t h i s  study  al.,  to  2.1 it  is  not  21  p o s s i b l e to s t a t e whether  greater  variability  is  associated with  either  h i g h o r l o w pH v a l u e s . Variability closely  i n C b o t h w i t h i n a n d among p l o t s was f o u n d t o  a s s o c i a t e d w i t h d e g r e e o f d e c o m p o s i t i o n and m i n e r a l  i n c o r p o r a t i o n t h r o u g h m i x i n g by s o i l variable mineral  content.  horizon.  C  The LF h o r i z o n s w e r e  F i v e samples per p l o t were n e c e s s a r y  The g r e a t e s t  ecosystems  Quesnel  (1980)  i n t h e LF  variability  with Mull  and Moder humus f o r m s .  where g r e a t e s t  locations  there  xeric/subxeric  v a r i a b i l i t y was  were o n l y m i n i m a l ecosystems  major d i f f e r e n c e  Values  (hygric  forest  - xeric)  and C . L . R . F . in C  ecosystem. and  In  between  with  from  both  the  f o r both h o r i z o n s ;  these ecosystems  and t h e  (1979)  hygric  w e r e much l o w e r i n b o t h t h e L F a n d H h o r i z o n s .  These compared w e l l  with  results  from D o u g l a s - f i r stands i n the D o u g l a s - f i r reported values  f o u n d by  Region.  r a n g i n g from 0 . 7 1 % t o 1.52%  i n the  nine p l a n t communities under d i f f e r e n t D o u g l a s - f i r stands Youngberg (1979)  floors  the  f o r N r a n g e d f r o m 0 . 9 6 % t o 1 . 1 5 % i n t h e LF h o r i z o n t o 0 . 6 5 %  Youngberg (1966)  Oregon.  mean  This agreed well  found i n a h y g r i c  and t h e m e s i c e c o s y s t e m s  t o 1.10% i n the H h o r i z o n .  floors of  differences  i n C o c c u r r e d between  ecosystems where C v a l u e s  to p r e d i c t the  in  i n b o t h L F a n d H h o r i z o n s was f o u n d on  t o mor humus f o r m s on b o t h t h e U . B . C . R . F .  Heilman  less  h o r i z o n and 1 7 . 0 s a m p l e s / p l o t i n t h e H  increased with decreasing moisture content  mull  soil  t h a n t h e H, a s w o u l d be e x p e c t e d due t o t h e i r l o w e r v a r i a t i o n  +_ 10% w i t h 9 5 % c o n f i d e n c e  hygric  fauna.  be  found N  values  r a n g i n g from 0.63% to 1.08%,  correlated with  site  index.  forest in  in nine old-growth Douglas-fir w h i c h a p p e a r e d t o be  G o s z et_ a l ^ ( 1 9 7 6 )  closely  and C o l e and J o h n s o n  (1979)  22  suggest that closure  higher levels  and t h a t  during this  nitrogen  as a f t e r  within  the  t r e e and s o i l  of N i n the  t o be c l o s e l y  however,  varied samples  necessary  for  plots,  associated with  of p o t e n t i a l  nitrogen  is  stand  productivity  efficiently  microorganisms w i l l  within  have a  high  for  having a mor-type  and M o d e r humus f o r m s t h e  t h e H.  for  However,  t h e LF  If  the  t h e LF  if  the  the H h o r i z o n s .  Quesnel  to p r e d i c t  variability  hygric  ecosystems  (1971)  found 6 s a m p l e s / p l o t were n e c e s s a r y f o r LFH s a m p l e s  humus  amount o f N number  of was  taken 17.3  hygric  than  than  4.0  10.0  f o u n d between  2 and 14  t h e mean +_ 10% w i t h 9 5 % c o n f i d e n c e ;  with greater  versus mesic  (1980)  plot.  h o r i z o n s and  two  h o r i z o n s and l e s s  again,  95% c o n f i d e n c e  plots  and moder humus f o r m s w e r e e x c l u d e d , l e s s  samples were n e c e s s a r y  studied  t h e mean +_ 10% w i t h 9 5 % c o n f i d e n c e  s a m p l e s / p l o t were r e q u i r e d f o r samples/plot  ecosystems  t h e humus f o r m s f o u n d i n e a c h  s a m p l e s / p l o t were r e q u i r e d  with mull  of the  b o t h LF and H h o r i z o n s .  to estimate  4.7  floors  each o f the  s a m p l e s / p l o t were r e q u i r e d f o r ecosystems  forest  on p l o t s w i t h M u l l  considerably  all  t o be f o u n d b e f o r e  predictor  stand c l o s u r e  N was q u i t e c o n s i s t e n t w i t h i n form,  likely  demand. Variability  appeared  are  N m i g h t be a b e t t e r  time,  retranslocated  of N  i n t h e H h o r i z o n s t h a n LF h o r i z o n s and and x e r i c e c o s y s t e m s .  from a small  to p r e d i c t  in  G r i e r and M c C o l l t h e mean + 10% w i t h  plot in Douglas-fir in  western  Washington. Gosz e t increase  with  Forest.  In  al.  (1976)  found N c o n c e n t r a t i o n s  depth  i n the  forest  this  study,  all  f l o o r s of the  six sites  exhibited a  Hubbard Brook  general Experimental  showed a c o n s i s t e n t d e c r e a s e  in N  23  c o n c e n t r a t i o n with depth i n the t o be c l o s e l y  correlated  forest  floor.  N i n the H h o r i z o n  with %0.M. with a correlation  appeared  coefficient  (r)  of  0.91. Values  f o r P r a n g e d f r o m 0 . 0 6 8 % t o 0 . 1 0 6 % i n t h e LF  from 0.058% to 0.117% i n the those  of Heilman  floors  (1979)  H horizon.  who r e p o r t e d a r a n g e  i n the D o u g l a s - f i r Region.  of 0.089% to 0.211%  These  values  total  coniferous  forests  compare w e l l whether  with  Youngberg  (1966;  1979)  forest  significance taken to  of  those  of various  h a v e become a common p r a c t i c e  f l o o r of  ranges  different  and B a l c i  (1965)  is  papers  affect  to omit  etc.  P  determine the  used f o r comparison  symposia, conferences, i n these  for total  d i f f i c u l t to  method w i l l  in  It  are  appears  specific  methods making c o m p a r i s o n o f d a t a  of  value.  P concentration Within-plot  is  not c o n s i s t e n t l y  variability  organic matter,  P.  necessary  The number o f  c o n f i d e n c e was 2 . 8 the H h o r i z o n .  samples  samples/plot  T h i s was  greater  does n o t appear  humus f o r m t a x o n , p e r c e n t  increase  it  Many v a l u e s  i n f o r m a t i o n on f i e l d a n d l a b o r a t o r y  horizons.  study,  from experimental  comparisons.  from p r o c e e d i n g s  questionable  reported  Although the c i t e d values  found i n t h i s  resulting  these  forest  o f 0 . 0 9 8 % t o 0 . 1 2 2 % f o r c o m p o s i t e LFH s a m p l e s  of Washington.  differences  with  of 0.024% to 0.22% f o r  and 0 . 0 7 % t o 0 . 1 1 % i n t h e  P values  and  compare w e l l  p l a n t c o m m u n i t i e s under D o u g l a s - f i r i n Oregon and G e s s e l listed  horizon  to estimate  t o be a s s o c i a t e d  with of  t h e mean +_ 10% w i t h 9 5 %  h o r i z o n and 5 . 9  to Quesnel  in within-plot v a r i a b i l i t y with  t h e LF o r H  o r h i g h o r low c o n c e n t r a t i o n s  f o r t h e LF  in contrast  in either  (1980)  samples/plot  who f o u n d  for  an  i n c r e a s i n g s o i l m o i s t u r e and  that  24  f r o m 15 t o 55 s a m p l e s / p l o t f o r L F f o r H h o r i z o n s were n e c e s s a r y confidence,  d e p e n d i n g on t h e  S concentration  h o r i z o n s a n d f r o m 21 t o 88  to predict ecological  ranged  t h e mean +_ 10% w i t h 9 5 % moisture  in Douglas-fir  analyzing total  region  Youngberg the  (1966)  forest  stands  floors  increased with  equal  this  forest  found t o t a l of  i n Oregon.  Forest;  soils  are  S vary c o n s i d e r a b l y .  from 0.05% to 0.20% i n  degree  of  i n the  S concentration  al.  r a n g e o f 8 t o 12 p r o p o s e d by H e i l m a n  N:S  ratios  to 9 . 8 ,  stands  S  ranged  while  generally  s o i l s of the  N:S  (1979)  Hubbard  ratios  N and t o t a l  t h a n on  S were i n  Brook  were  were  and R u s s e l l  plots  in  Douglas-fir  most were below the  on t h e C . L . R . F .  although both t o t a l  on t h e C . L . R . F .  found t o t a l  horizons.  ratio  concentration  r a n g i n g from 6.8  in  s t u d y , where S c o n c e n t r a t i o n s  N:S  plots,  used  found S c o n c e n t r a t i o n  d e c o m p o s e d LF  t o be g r e a t e r  few d a t a on S  p l a n t communities under  (1976)  and  r a n g e d from 0 . 0 7 5 % t o 1.18%  quite  appeared  horizons  and m e t h o d s  decomposition in forest  less  Very  (1979)  generally  U.B.C.R.F.  low,  available  i n LF  under D o u g l a s - f i r  was n o t t h e c a s e i n t h i s  or greater  study.  Heilman  floors  nine d i f f e r e n t  Gosz e t  regime.  from 0.107% to 0.165%  from 0.077% to 0.152% i n H h o r i z o n s i n t h i s levels  samples/plot  normal (1961).  the  lower  plots.  No d a t a c o u l d be f o u n d f o r c o m p a r i s o n o f w i t h i n - p l o t v a r i a b i l i t y total  S.  LF  h o r i z o n s were l e s s  requiring only  4.2  samples  versus  mean +_ 10% w i t h 9 5 % c o n f i d e n c e . found i n the H h o r i z o n s of Mull C.L.R.F. floors  variable  w i t h i n p l o t s than H h o r i z o n s ,  14.6 samples/plot The g r e a t e s t  humus f o r m s .  in order  U.B.C.R.F.  to p r e d i c t  within-plot variability The f o r e s t  showed s l i g h t l y more w i t h i n - p l o t v a r i a b i l i t y  of the  of  floors  than  the  of  the  forest  the  was  25  L e v e l s o f F r a c t i o n A - - L i p i d s (A%)  ranged from 2.16% to 3.65% i n  h o r i z o n s and 0 . 6 4 % t o 3 . 4 9 % i n H h o r i z o n s . Lowe a n d K l i n k a ( 1 9 8 1 ) Vancouver  These compare v e r y w e l l  who f o u n d A% i n c o m p o s i t e LFH s a m p l e s f r o m  Island l o c a t i o n s to decrease  increasing biological activity,  with  w i t h a mean v a l u e o f 3 . 9 % f o r  biological  activity  i n A% w i t h  in this  a p p e a r e d t o be v e r y  closely  correlated (r)  c o n c l u d e t h a t A% i s more c l o s e l y matter  in forest  matter; t h e LF  f l o o r s than the  however, horizons,  between both the  these  Hemimors, There  was  with  O.M%  1-2.  i n the H horizons  of 0.97.  T h i s m i g h t l e a d one  correlated  t o t h e amount o f  state  of  A%  decomposition of  the  to  organic organic  a s c a n be s e e n i n T a b l e  1, A% i s much more c o n s i s t e n t  as  correlation  is  C%, a l t h o u g h t h e  properties is  nature  three  i n c r e a s i n g d e c o m p o s i t i o n and  s t u d y a s c a n be s e e n i n T a b l e  with a correlation c o e f f i c i e n t  with  d e g r e e o f d e c o m p o s i t i o n and  3.2% f o r Humimors, 2 . 2 % f o r Mormoders and 0 . 1 % f o r V e r m i m u l l s . also a c o n s i s t e n t decrease  LF  not s i g n i f i c a n t at 0 . 2 7 .  and amount o f o r g a n i c m a t t e r  likely  coefficient This  in  (r)  indicates  that  d e t e r m i n e A% i n  forest  floors. Within-plot plots  having Mull  variability  was q u i t e  i n c o n s i s t e n t between  plots,  a n d M o d e r humus f o r m s b e i n g much more v a r i a b l e  w i t h Mor humus f o r m s .  LF  h o r i z o n s r e q u i r e d 8.1  samples/plot to  than  with those  estimate  t h e mean _+ 1 0 % w i t h 9 5 % c o n f i d e n c e w h i l e H h o r i z o n s r e q u i r e d 2 7 . 5 samples/pl o t . Total U.B.C.R.F.  Ca was c o n s i d e r a b l y h i g h e r on t h e C . L . R . F .  plots,  s o i l s most l i k e l y  a s c a n be s e e n i n T a b l e t o c o n t a i n low l e v e l s  of  1.  t h a n on  the  A c c o r d i n g to Heilman  total  (1979)  Ca i n c l u d e e x t r e m e l y  acid  26  soils  from areas o f h i g h r a i n f a l l  serpentine.  a n d s o i l s h i g h i n Mg d e r i v e d  The l o w p H , h i g h r a i n f a l l  parent materials f o u n d on t h i s  o f t h e U . B . C . R . F . may a c c o u n t  forest.  A review  1966; G r i e r  Ca v a l u e s  and M c C o l l ,  1979).  on t h e U . B . C . R . F .  w e r e f o u n d t o be w e l l  the Total  plots  Many o f t h e  determination Ca d e c r e a s e d  of  f o r the  total  with  range  plots  lower  on f o r e s t  Ca  the values  f l o o r s of  1 9 7 1 ; C o l e and  in this  below t h i s  Ca c a n g i v e  study, range.  quite  d e p t h and d e g r e e  of  However,  variable  high concentration  the H - h o r i z o n .  This  trend of decreasing  Ca w i t h  indicating forest  that  litter  H horizons of  Ca i n f o r e s t  rather  than  Quesnel  (Bernier,  the o v e r l y i n g  (1980)  i n the  forest  ecological (1971)  moisture  this  1968)  to estimate  of three regimes:  generally  L and F  o l d growth xeric,  study  in  d e p t h and d e g r e e  of  from o r g a n i c  However,  (1979);  additions  Lacelle  of  (1971)  had g r e a t e r  found  Ca  horizons. s a m p l e s / p l o t a n d 47 t o 233 H  t h e mean +_ 1 0 % w i t h 9 5 % stands  representing  m e s i c and h y g r i c .  Grier  confidence  three and M c C o l l  t h e mean + 10%  under a 4 0 - y e a r - o l d D o u g l a s - f i r stand i n western 50 LF h o r i z o n s a m p l e s / p l o t w e r e r e q u i r e d  + 10% w i t h 9 5 % c o n f i d e n c e  all  o f Ca  and P r i t c h e t t  f o u n d 15 s a m p l e s / p l o t w e r e n e e d e d t o e s t i m a t e  95% c o n f i d e n c e In  floors  soil.  f o u n d 14 t o 61 LF  s a m p l e s / p l o t were n e c e s s a r y  (1976)  originated  than the mineral  raw m o d e r s  concentrations  floors  al.  methods  d e c o m p o s i t i o n on  p l o t had an e x c e p t i o n a l l y  f o u n d by G o s z e t  those  results.  This  d e c o m p o s i t i o n was a l s o  Johnson,  especially  but one.  total  the  f r o m 4 2 0 t o 3 5 , 3 7 0 ppm  1971; L a c e l l e ,  1979 and H e i l m a n ,  used f o r  igneous o r i g i n of  of the l i t e r a t u r e  D o u g l a s - f i r r e g i o n shows t o t a l (Youngberg,  and a c i d  from  Washington.  to estimate  and 197 H h o r i z o n s s a m p l e s / p l o t .  This  with  the  mean  compares  27  quite well related  w i t h Quesnel  to e i t h e r  variability  by G o s z e t  al.  for total  Ca, or to  to  be  within-plot  Ca.  Mg c o n c e n t r a t i o n s  t r e n d s b e t w e e n LF  Humus f o r m t a x a d i d n o t a p p e a r  high or low values  of total  Total  (1980).  d i d not appear  and H h o r i z o n s .  (1976)  and Q u e s n e l  t o show any  significant  T h i s was a l s o t h e c a s e i n p a s t (1980).  Values  for  total  studies  Mg r a n g e d  from  5 4 9 . 2 t o 2 6 5 0 ppm i n L F h o r i z o n s a n d 5 0 7 . 5 t o 4 9 5 9 ppm i n H h o r i z o n s . studies  under second growth D o u g l a s - f i r stands i n western Washington  Oregon have r e p o r t e d a v e r y (Youngberg,  to estimate  variability  of  total  than the U . B . C . R . F . K is  and M c C o l l ,  variability  samples/plot being necessary horizons  s i m i l a r range o f v a l u e s  1966; 1979; G r i e r  Within-plot  subject  of total  for total  Mg was r e l a t i v e l y  Mg  high with  f o u n d t o be much g r e a t e r  This  within-plot  on t h e C . L . R . F .  plots  plots.  c o n s i d e r e d t o be one o f t h e m o s t m o b i l e p l a n t  t o b o t h l e a c h i n g and r a p i d c y c l i n g w i t h i n  the  1979; Heilman, 1979).  compare w e l l  with  r e s u l t s o f p a s t s t u d i e s on f o r e s t  Douglas-fir  stands  forest  V a l u e s -for t o t a l  i n the D o u g l a s - f i r r e g i o n .  nutrients; (Leaf,  1968;  K in this  study  floor properties  Youngberg (1966;  d i f f e r e n t p l a n t communities under D o u g l a s - f i r stands w h i l e found a range of values stand i n western  range of K c o n c e n t r a t i o n s  under  1979)  r e p o r t e d a r a n g e o f 730 t o 2 7 5 0 ppm i n t h e c o m b i n e d LFH h o r i z o n s o f  Douglas-fir  26.7  f o r LF h o r i z o n s a n d 3 4 . 0 s a m p l e s / p l o t f o r H  t h e mean +_ 10% w i t h 9 5 % c o n f i d e n c e . Mg was  and  1971).  C o l e and J o h n s o n ,  (1971)  Past  Grier  nine  and M c C o l l  f r o m 8 6 0 t o 3 8 2 0 ppm u n d e r a 4 0 - y e a r - o l d  Washington;  found i n t h i s  as c a n be s e e n i n T a b l e study  i s w i t h i n , but near  1-2, the  the lower  28  end o f  the  ranges  c i t e d above.  H h o r i z o n s i n terms concentrations  No t r e n d s  of concentration  were g e n e r a l l y  were a p p a r e n t  a l t h o u g h Gosz e t  greatest  i n the f r e s h  between  al.  t h e LF  (1976)  litter,  and  found  decreasing  with  depth. Eighteen  s a m p l e s / p l o t i n t h e LF  H h o r i z o n were n e c e s s a r y This  compares w e l l  were r e q u i r e d f o r  w i t h Quesnel  samples  to predict  respectively  be p o s i t i v e l y for  and M c C o l l  (1971)  had c o r r e l a t i o n  suggested  correlated,  that  contamination felt  correlations  with  this  level  horizons,  result  floor  hypothesis  is  Fe,  C.  Al  and  Washington.  Fe and A l w e r e f o u n d  t o 0 . 9 9 f o r t h e LF of both elements  of mineral  soil  supported further  was g r e a t e r It  has  i n the H  been  inclusions  and 1979)  by t h e a b o v e  a n d 1-3b a l a r g e  number o f  and a g r e a t e r  allowable  f o u n d a s i m i l a r amount o f w i t h i n - p l o t v a r i a b i l i t y  error. o f Fe  Quesnel and A l  in  and  strong  samples  w i t h i n each p l o t i n o r d e r t o p r e d i c t t h e mean, even a t  of confidence  to  h o r i z o n and 0 . 9 8  (Gosz e t a l . , 1976; P r i t c h e t t ,  l-3a  LFH  and - 0 . 9 4 and - 0 . 9 9  soil-forest floor interface.  i n the f o r e s t  between  necessary  lower  for composite  o f - 0 . 9 2 and - 0 . 9 9  Furthermore,  r equal  As c a n be s e e n f r o m T a b l e s are  95% c o n f i d e n c e  C i n LF  The c o n c e n t r a t i o n  t h i s may be t h e  that  samples/plot  who f o u n d 15 s a m p l e s / p l o t w e r e  coefficients  with C in H horizons.  the H h o r i z o n .  is  who f o u n d 14 t o 3 0  t h e mean +_ 10% w i t h  horizon--near the mineral  it  (1980),  when c o r r e l a t e d w i t h  when c o r r e l a t e d  the  t h e mean +_ 10% w i t h 9 5 % c o n f i d e n c e .  under a 4 0 - y e a r - o l d D o u g l a s - f i r stand i n western Fe and A l  in  t h e LF h o r i z o n and 22 t o 32 s a m p l e s / p l o t f o r t h e H  h o r i z o n and w i t h G r i e r necessary  to p r e d i c t  h o r i z o n a n d 23 s a m p l e s / p l o t  a  (1980) forest  29  f l o o r s under old-growth stands near P o r t Hardy, variability  o f Fe and A l was f o u n d t o be much g r e a t e r  on t h e U . B . C . R . F . populations the  very  T h i s may be due t o d i f f e r e n c e s  and t h e m i x i n g a c t i v i t i e s  different  pH's  C o p p e r and z i n c o r humus f o r m t a x a . greater  on t h e  (1976),  levels  U.B.C.R.F.  (Hibbard,  t h a n on t h e C . L . R . F .  these  variability  B.C.  1940; Stone,  variability  i n LF h o r i z o n s .  (1980)  faunal of  between  horizons  Levels of copper i n  w i t h data o f Quesnel s t u d i e s examined the study.  (1980) forest  Zinc  and G o s z floors  of  found i n  for  on t h e forest  Quesnel  i n the D o u g l a s - f i r  of both elements  Both elements  sites  found the  was g r e a t e r  showed c o n s i d e r a b l y l e s s  examined i n t h i s  f l o o r s of three  (1980)  respectively,  necessary related  the  a l . , 1976 a n d Q u e s n e l , region  study  t h a n was  old-growth ecosystems  number o f  in H horizons within-plot  f o u n d by  Quesnel  near P o r t  Hardy,  samples/plot required to  predict  t h e mean +_ 10% w i t h 9 5 % c o n f i d e n c e was 47 t o 101 and 15 t o 45 f o r Cu and Zn,  et  concentration  t h a n , most v a l u e s  1968; Gosz e t  both  found. Within-plot  than  than  p o p u l a t i o n s as a r e s u l t  a l t h o u g h no d a t a on z i n c c o n c e n t r a t i o n s  c o u l d be  both i n  showed no c o n s i s t e n t t r e n d s  a p p e a r e d t o be s i m i l a r t o , o r s l i g h t l y l o w e r  1980),  on t h e C . L . R . F .  locations.  q u i t e d i f f e r e n t from those o f t h i s  literature  Within-plot  C o n c e n t r a t i o n s o f both elements were s i g n i f i c a n t l y  although both of  ecosystems  of these  f o u n d on t h e two  t h e LF a n d H h o r i z o n s c o m p a r e d w e l l al.  B.C.  i n LF h o r i z o n s w i t h 1 t o 96 and 20 t o 76 s a m p l e s  f o r Cu a n d Zn i n H h o r i z o n s .  to e i t h e r  humus f o r m t a x o n o r  Variability concentration.  being  d i d not appear to  be  30  Manganese c o n c e n t r a t i o n s were s i g n i f i c a n t l y g r e a t e r C.L.R.F.  t h a n on t h e U . B . C . R . F .  or the e f f e c t s  near  activities  the  (1979)  interface  general  i n the  forest  range o f values  the C . L . R . F . A review  due t o  the  soil.  the  forest  f l o o r and t h e m i n e r a l  f l o o r s examined appear  c i t e d by Q u e s n e l o f b o t h LF  o f Mn v a r i a b i l i t y  (1980)  study.  cited  This  Manganese  t o be w i t h i n  the  and G r i e r and M c C o l l  (1971)  and H h o r i z o n s on p l o t s D and E  i n the l i t e r a t u r e  literature.  showed a  i n t h e number o f s a m p l e s / p l o t f o u n d t o be n e c e s s a r y  15 s a m p l e s / p l o t w e r e n e c e s s a r y  Grier  and M c C o l l  (1971)  f o r t h e LFH h o r i z o n s o f a s m a l l  second growth D o u g l a s - f i r i n western  Washington.  Quesnel  plot  (1980)  to  found under  f o u n d 58  1951 s a m p l e s / p l o t w e r e r e q u i r e d f o r L F h o r i z o n s and 2 8 7 t o 2 8 5 3  s a m p l e s / p l o t were r e q u i r e d f o r H h o r i z o n s i n t h e ecosystems the  greater  of  p r e d i c t t h e mean +_ 10% w i t h 9 5 % c o n f i d e n c e .  to  sites  w e r e somewhat h i g h e r t h a n t h o s e f o u n d i n t h e  c o n s i d e r a b l e range  lithology  usually  a l t h o u g h t h e Mn c o n c e n t r a t i o n s of  site  s u g g e s t e d t h a t Mn c o n c e n t r a t i o n was  t r e n d was n o t a p p a r e n t o n t h e s i t e s e x a m i n e d i n t h i s concentrations  the  b r i n g i n g about  a n d o r g a n i c h o r i z o n s on t h e C . L . R . F .  h i g h e r pH. P r i t c h e t t greatest  T h i s may be due t o e i t h e r  o f more d y n a m i c m i c r o b i a l  mixing of mineral  on  under old-growth stands  sample r e q u i r e m e n t s  forest  near P o r t Hardy,  f o r each p l o t ,  at  the  f l o o r s of  B.C.  above l e v e l  88 s a m p l e s  f o r LF h o r i z o n s and 128 s a m p l e s f o r H h o r i z o n s .  not appear  t o be r e l a t e d  location.  to e i t h e r  In  this  three study,  of accuracy, Variability  humus f o r m t a x a , Mn c o n c e n t r a t i o n  or  were did  31  Variability  of Chemical  D o u g l a s - f i r Stands of Ratios forestry is  of chemical  f o r many y e a r s .  is  demand.  ratio  t h o u g h t t o be c l o s e l y the  decreased  1957).  from NH4-N  plants,  for  as a c a t a l y s t  therefore,  there  c o n c e n t r a t i o n when K i s are  both e s s e n t i a l  relative 12:1  is  ratios  1972; Turner K:Ca  the  Russell  (1961)  s o i l s while  et  al.,  and Ca:Mg r a t i o s  concentrations at  (Maclean,  h i g h e r t h a n 1 4 . 6 may i n d i c a t e  Lambert,  several  n u t r i e n t s a n d t h e N:S  in mineral  of these  root surface.  decreases, 1969).  N  more N:P  net  r a t i o c a n be u s e d a s exists  p l a n t s do n o t  s o u r c e s , a s non  rather  i n the  1957).  ratio  an  than  synthesize K-deficient  enzymes i n v o l v e d i n  o f t e n an i n c r e a s e  deficient  concentrations. normal  is  N:K  K-deficient  p r o t e i n s as r a p i d l y , e s p e c i a l l y  synthesis;  and  available  increased  a possible K-defficiency  examining K concentration alone.  as K a c t s  nitrate,  the  (Buckman and B r a d y ,  (C:N)  t i e d t o m i n e r a l i z a t i o n and i m m o b i l i z a t i o n o f  (Maclean,  determining whether  and  nitrogen  high,  As t h e C : N r a t i o  s u p p l y o f one r e s u l t i n g i n t h e  m i n e r a l i z a t i o n of the other index for  is  t o be i n s h o r t s u p p l y , a s m o s t o f  and ammonium become a v a i l a b l e  with  Zone  carbon to t o t a l  When t h e C : N r a t i o  nitrates  P,  Under  Western Hemlock  The r a t i o o f t o t a l  likely  Floors  p r o p e r t i e s have been used i n a g r i c u l t u r e  b e i n g t a k e n up by m i c r o b i a l  is  in Forest  the Coastal  t h e m o s t commonly u s e d r a t i o .  e v e n ammonium a r e  Ratios  protein  NH4-N  N i t r o g e n and s u l p h u r  gives  an i n d i c a t i o n o f  their  s u g g e s t s t h a t a r a t i o between 8  other  authors  suggest that  a sulphur deficiency  (Kelly  foliar  to N:S  and  1977). are o f t e n used to determine the  essential  cations.  relative  Ca c o m p e t e s w i t h K f o r  A h i g h C a : M g r a t i o may i n d i c a t e  that  the  ion  uptake carrier  32  at  the  root surface  is  b e i n g o v e r w h e l m e d by C a , r e s u l t i n g i n an  inadequate  s u p p l y o f Mg. Ballard may r e f l e c t  (1982b)  suggests that  a K deficiency.  2 to 3 i n s o i l  Low C a : M g v a l u e s ,  may r e f l e c t  ultramafic  Woodell,  1975).  normally  r a n g e f r o m a p p r o x i m a t e l y 3:1  floors  Leaf  (1968)  examined i n t h i s  H h o r i z o n s ( T a b l e 1-4)  a f o l i a r K:Ca less  than 0.5  parent materials  suggests that  to 5:1.  b e l o w 3:1  much l o w e r  i n t h e H h o r i z o n t h a n i n t h e LF h o r i z o n s .  of  t h e h i g h e s t Ca  horizons H  and  concentrations  t h e h i g h e s t Mg  usually  i n b o t h t h e LF  Ca:Mg r a t i o s  being  This  and  l i m i t i n g or  are  generally  is  a  found i n the  concentrations usually  forest  result  LF  being found in  the  horizons. The P:A1  relative  increases This  (Humphreys i n the  requires  high A l  3  +  is  u s e d a s an i n d e x o f P and A l  soil  that  and Truman, 1 9 6 4 ) .  and Truman,  concentrations  than 3 suggesting a p o s s i b l e P As t h e c o n c e n t r a t i o n o f  t h e amount o f P r e q u i r e d by p l a n t s  is  l u x u r y a m o u n t s o f P be t a k e n up by t r e e s  concentrations  grown i n t h e  i n order to o b t a i n the  absence of A l  3  +  or A l  3  +  3  +  increased. in soils  same g r o w t h a s  a t low c o n c e n t r a t i o n s  Al  with  trees  (Humphreys  1964).  The C a : A l Al  ratio  t o each o t h e r w i t h a v a l u e l e s s  deficiency  for  high c o n c e n t r a t i o n s .  and  soils  i n the  d o e s n o t i m p l y t h a t Ca i s  in abnormally  0.5  and  in forest  Ca:Mg r a t i o s  t h a t Mg i s  than  in foliage  (Proctor  Ca:Mg r a t i o s  s t u d y were o f t e n w e l l although t h i s  value of less  toxicity.  ratio  is  t h o u g h t t o g i v e an i n d i c a t i o n o f t h e  The t o x i c i t y o f a g i v e n c o n c e n t r a t i o n o f A l  i n f l u e n c e d by t h e c o n c e n t r a t i o n o f a c c o m p a n y i n g c a t i o n s .  is  potential greatly  An i n c r e a s e  in  33  the c o n c e n t r a t i o n of other c a t i o n s decrease  i n Al In  chemical These  Mg2 ,  +  Na )  +  tends  +  study  ratios  it  was d e c i d e d t o e x a m i n e t h e v a r i a b i l i t y  calculated  from nine d i f f e r e n t  were c a l c u l a t e d  forest  i n d i v i d u a l l y f o r each o f  floor  study.  The v a r i a b i l i t y o f e a c h r a t i o  d e s c r i b e d i n the  previous  of  subsamples  i n both f o r e s t  equation  if  are  ratios,  e a c h h o r i z o n on e a c h p l o t ,  horizons  are  given  variable  N:Mn, K : C a ,  ratios  in Table  in Table  than t h e i r  Ca:Mg, Ca:Al  t h a n as i n d i v i d u a l The g r e a t e s t  predominantly  ratios  individual and P:A1  all  The s a m p l e  ratios  All  and H  and N:S  were  element c o n c e n t r a t i o n s showed g r e a t e r  from  requirements  o f t h e LF  C : N , N:P  found  involved.  variability  as  properties.  and Moder o r d e r  ratios  (i.e.,  from p l o t to p l o t .  humus  forms  p l o t s A a n d D) w i t h  e x c e p t K : C a w e r e more v a r i a b l e  h o r i z o n s and t h e d e g r e e o f w i t h i n - p l o t v a r i a b i l i t y considerably  and d e n o m i n a t o r .  v a r i a b i l i t y was f o u n d on p l o t s w i t h  i n the Mull  exception of K:Ca.  Three  1-4.  can  be  p r e s e n t e d a s a mean f o r 15 s a m p l e s  given  1-5.  e r r o r s may  i n numerator  t o p r e d i c t a mean v a l u e f o r c h e m i c a l  t o be l e s s N:K,  are  properties  r e l a t i o n s h i p s , they  Analytical  opposite errors  The n i n e c h e m i c a l  necessary  important nutrient  to considerable e r r o r s . there  as  chapter.  a s a l t h o u g h t h e y may e l u c i d a t e  exaggerated  of  floor  C a u t i o n m u s t be e x e r c i s e d when u s i n g r a t i o s o f c h e m i c a l  be s u b j e c t  nine  previous  h o r i z o n s o f e a c h p l o t was t h e n d e t e r m i n e d by u s i n g H u s c h ' s  also  a  properties.  fifteen  b o t h t h e . L F and H h o r i z o n s o f t h e s i x p l o t s used i n t h e variability  to cause  toxicity.  this  ratios  (Ca2 ,  for all  Coefficients of variation  i n the H  ratios for  the  the  ranged mean  34  T a b l e 1-4.  Ratio  Nine Chemical  Horizon  3  5  6  U.B.C. Plot A 1  E x p r e s s e d a s a Mean o f 15  Research Plot B 2  Forest Plot C 3  Samples  Cowichan Lake Research F o r e s t Plot Plot Plot F E D* 1  5  6  C:N  LF H  25.2 26.7  33.9 41.0  32.7 33.3  31.0 27.1  32.7 34.0  35.5 33.8  N:P  LF H  13.0 8.4  10.6 11.2  16.5 18.7  11.8 9.9  9.9 8.3  10.7 10.7  N:S  LF H  7.9 8.3  7.6 7.1  6.9 7.2  8.4 8.5  10.0 9.0  8.7 8.7  N:K  LF H  15.5 7.9  8.7 9.6  22.8 35.3  12.7 10.5  10.9 8.4  11.2 12.6  K:Ca  LF H  0.28 2.5  1.3 3.2  0.65 1.6  0.17 0.68  0.13 0.35  0.17 0.10  Ca:Mg  LF H  5.1 .44  1.9 0.77  1.8 0.91  3.4 1.1  7.9 2.8  4.6 6.4  P:A1  LF H  0.17 .07  0.39 0.18  0.31 0.19  0.21 0.07  0.53 0.22  0.52 0.23  N:Mn  LF H  7.2 5.8  2.1 2.3  4.4 4.4  Ca:Al  LF H  2.0 0.50  4.1 0.74  3.5 2.3  Predominantly Predominantly Predominantly 4 Predominantly Predominantly Predominantly 1  2  Ratios:  21.5 8.6 1.1 0.07  25.8 89.3 0.45 0.11  10.8 22.6 0.45 0.16  M u l l a n d M o d e r humus f o r m s . Henrihumimor a n d Humimor humus f o r m s . Humimor w i t h some Hemimor humus f o r m s . M u l l a n d M o d e r humus f o r m s . Hemimor w i t h some Hemihumimor humus f o r m s . Hemihumimor humus f o r m s .  35  Table 1-5.  Sample Requirements Necessary to Predict a Mean Value for Chemical Ratios of the LF and H Horizons High Value  LF Horizon Property  L.S.  A.E.  Low Value  H Horizon Property L.S.  A.E.  n*  High Value  Low Value"  C:N  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  4.7 1.2 10.7 2.7  13.0 3.3 29.0 7.2  1.5 0.4 3.4 0.8  C:N  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  12.9 3.2 28.5 7.1  23.3 5.8 51.7 12.9  5.0 1.2 11.0 2.8  N:P  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  3.7 0.9 8.1 2.0  11.1 2.8 24.6 6.2  0.7 0.2 1.6 0.4  N:P  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  14.4 3.6 32.0 8.0  42.1 10.5 93.5 23.4  3.3 0.8 7.3 1.8  N:S  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  3.7 0.9 8.1 2.0  9.8 2.4 21.7 5.4  0.9 0.1 2.1 0.5  N:S  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  6.3 1.6 14.0 3.5  25.8 6.4 57.2 14.3  0.6 0.2 1.4 0.3  N:K  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  17.3 4.3 38.5 9.6  33.0 8.3 73.4 18.3  6.4 1.6 14.2 3.6  N:K  05 05 01 0.01  0.10 0.20 0.10 0.20  61.6 15.4 137 34.2  212 53 472 117  12.9 3.2 28.6 7.1  K:Ca  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  179.0 695 44.8 174 1545 398 99.5 386  21.5 5.4 47.9 12.0  K:Ca  05 05 0.01 0.01  0.10 0.20 0.10 0.20  150 37. 332 83  442 110 981 245  34.8 8.7 77.4 19.4  Ca:Mg  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  82.0 20.5 182 45.6  204 51.0 453 113  22.8 5.7 50.8 12.7  Ca:Mg  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  421 105 935 235  1065 266 2367 592  53.3 13.3 118 29.6  P:A1  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  88.0 22.0 196 49.0  331 82. 735 184  14.4 3.6 31.9 8.0  P:A1  0.05 0.05 0.01 ,01  0.10 0.20 0.10 0.20  143 544 35.8 136 318 1210 79.5 303  22.5 5.6 50.1 12.5  N:Mn  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  134 572 33.4 143 297 1272 74.3 318  21.1 5.3 46.8 11.7  N:Mn  .05 .05 0.01 0.01  0.10 0.20 0.10 0.20  280 1210 69.7 303 620 2689 155 672  33.8 8.4 75.0 18.8  Ca:Al  0.05 0.05 0.01 0.01  0.10 0.20 0.10 0.20  167 41. 371 92.  494 124 1099 275  50.7 12.7 112.6 28.2  Ca:Al  0.05 0.05 0.01 0.01  0.10 626 0.20 157 0.10 1391 0.20 348  1  . « A s in Tables l-3a and l-3b. 2  3  1133 283 2518 629  94.5 23.6 210 52.5  36 variability of six plots were greater than 100% for all ratios except N:K and Ca:Mg in the LF horizons and C:N in both composite horizons. Consistent changes in values for the nine ratios on the U.B.C.R.F. and C.L.R.F. locations could only be seen in those ratios involving Ca or Mn.  Calcium and Mn concentrations were much lower on the U.B.C.R.F.  Neither location appeared to have consistently lower or higher within-plot variability for any of the ratios examined. As a result of the findings of both variability studies i t is suggested that five properties of the forest floor may be most useful i f only a limited amount of laboratory analysis is possible.  Total P, S, N  and C as well as pH(CaCl2) will require the least number of samples for lab analysis i f field samples are to be analyzed individually.  These  chemical properties will also allow the calculation of three commonly used ratios--C:N, N:P and N:S.  However, i f composite sampling methods are to be  used, accuracy can be improved without increasing the number of samples for lab analysis. The desired level of significance and allowable error must also be decided upon before the examination of any forest floor property is decided against due to the large number of samples required.  If an allowable error  of 20% is acceptable and meets the objectives of a given study the number of samples required can be reduced by 4 times when compared to an allowable error of 10%.  Reducing the level of significance will also greatly reduce  the sample requirements. Based on the findings of this study i t appears that composite sampling is likely the most efficient solution for obtaining a  37  representative  sample.  Studies  that  f l o o r s o f an e c o s y s t e m t h r o u g h t h e willing  to accept large errors  comparisons are  plots  is  analysis  heavily  the  on t h e  s i g n i f i c a n t l y greater  following  chemical  assumption that  plots. techniques the  sections.  Techniques  Due t o c o n s t r a i n t s on b o t h f i n a n c e s a n d t i m e i t t o compromise between number o f p l o t s  as was  studied.  However,  shown i n P a r t  standards of accuracy  while  many f o r e s t  they  I.  In  are  floor properties  o r d e r t o meet t h e s e  o p t i m i z i n g the e f f i c i e n c y  h o r i z o n w i t h i n each p l o t .  c o m p o s i t e d on a d e p t h - w e i g h t e d b a s i s two s a m p l e s p e r p l o t . individual properties.  is  the  of the  in this  These  study  u s e d 15 were  f o r b o t h LF and H h o r i z o n s t o  this  study  of  sampling  subsamples  These c o m p o s i t e s a m p l e s , as w e l l  i n t e n t i o n of  require  prescribed  as t h e  s u b s a m p l e s , w e r e t h e n a n a l y z e d f o r 14 d i f f e r e n t It  the  1963).  The c o m p o s i t e s a m p l i n g t e c h n i q u e u t i l i z e d f o r each  necessary  t o meet p r e s c r i b e d s t a n d a r d s  d e s i g n a c o m p o s i t e sample i s o f t e n used (Mader,  subsamples  is often  t h e number o f s a m p l e s a n a l y z e d p e r p l o t and  rigorous w i t h i n - p l o t sampling i f  results  among  be a s s e s s e d i n  Usefulness of Composite Sampling  accuracy,  if  different  variability  within  will  be  p r o p e r t i e s ; and,  of composite sampling  variability  forest  f l o o r properties of  than v a r i a b i l i t y  between-plot  the  o f a s i n g l e sample must  forest  The u s e f u l n e s s and t h e a c c u r a c y and w i t h i n - v e r s u s  to c h a r a c t e r i z e  f o r almost a l l  t o be made b e t w e e n  e c o s y s t e m s , must r e l y  attempt  15  chemical  t o compare t h e  found f o r the composite samples w i t h the r e s u l t s  create  analytical  found f o r  the  38  w e i g h t e d mean v a l u e o f t h e 15 i n d i v i d u a l each p l o t .  The c o m p o s i t e v a l u e s  subsamples f o r each h o r i z o n w i t h i n  a n d t h e w e i g h t e d mean v a l u e s all  coefficient  the above c o r r e l a t i o n  given  in Table  o f 14 c h e m i c a l  properties for  total  horizons at  the 0.05 l e v e l  significantly small  rather  1-6,  C and t o t a l  correlated  than i n h e r e n t  f o r composite samples  were  Two  Mn w e r e n o t s i g n i f i c a n t l y c o r r e l a t e d f o r  i n t h e LF h o r i z o n . and v a r i a b i l i t y  differences  This  is  both  not  l i k e l y a function  r e s u l t i n g from l a b  r e s u l t i n g from e i t h e r  of  analysis  the p h y s i c a l  or  compositing methods.  B a s e d on t h e  r e s u l t s of t h i s c o r r e l a t i o n i t  methods o f o b t a i n i n g r e p r e s e n t a t i v e quite  suitable.  It  is  analytical is  errors will limited.  forest  assumed t h a t  15 s u b s a m p l e s w i t h i n e a c h p l o t i s  analyses  is  o f p r o b a b i l i t y a n d f r a c t i o n A - l i p i d s was  number o f p l o t s ,  numerical  are  most v a l u e s  c o r r e l a t e d w i t h t h o s e r e p r e s e n t i n g a w e i g h t e d mean v a l u e .  properties,  the  correlation  1-6.  As c a n be s e e n i n T a b l e highly  The  all  p r o p e r t i e s were t e s t e d f o r c o r r e l a t i o n a c r o s s (r)  6 plots.  of  f l o o r chemical  data f o r a  plot  r o l e assuming t h a t  the greater  efficiency  replication  of  and l o w e r c o s t s gained  as  of  through  methods.  Variability Mader  both  t h e v a l u e c a l c u l a t e d a s t h e mean  c o m p o s i t e s a m p l i n g t e c h n i q u e s l i k e l y o u t w e i g h any b e n e f i t s more i n t e n s i v e  that  l i k e l y t o be s l i g h t l y more a c c u r a t e  play a lesser However,  appears  (1963)  Within  a n d Among P l o t s  suggested that  t h a n v a r i a b i l i t y between  plots i f  and H o r i z o n s  v a r i a b i l i t y w i t h i n p l o t s m u s t be  variability  is  n o t t o be a  serious  less  of  39  T a b l e 1-6.  Property  C o r r e l a t i o n B e t w e e n W e i g h t e d Mean D a t a and H H o r i z o n s o f S i x P l o t s  Horizon  Correlation  Coef.  (r)  and C o m p o s i t e  Property  Horizon  Data  of  the  Correlation  pH(CaCl )  LF H  .9948 .9945  Zn  LF H  .9955 .9946  C  LF H  .7805 .7210  Ca  LF H  .8572 .9812  N  LF H  .9062 .9006  Mg  LF H  .9848 .9969  P  LF H  .9479 .9403  K  LF H  .9657 .9517  S  LF H  .9790 .9490  Fe  LF H  .9762 .9897  LF H  .4515 .9759  Al  LF H  .8595 .9945  LF H  .9788 .9852  Mn  LF H  .7131 .4360  2  Fraction  Cu  A  *r is significant > 0.9172.  at  the 0.050  level  when >_ . 8 1 1 4 and a t  the 0.010  level  LF  Coef.  when  40  deterrent analysis examine within  to c o r r e l a t i o n of variance  (Grieg  the v a r i a b i l i t y  chemical  Results  at  floor:  properties;  pH(CaCl2).  Multiple  horizons  represented  C , N,  tested  Range T e s t  at  the  P,  within  horizon.  each  The F - p r o b a b i l i t y variance  between  at  t h e 5%  tested.  be a s e r i o u s relationships  This  deterrent between  Test  the  and r e g r e s s i o n  1963; L i ,  1967).  being of  the  Four  for all  14  within-plot  f o r each  property  within-plots  1% l e v e l  for  that within-plot v a r i a b i l i t y  to c o r r e l a t i o n (Mader,  between  F-probability.  do n o t t a k e  the  to  properties  the comparison of v a r i a n c e s i g n i f i c a n t at  Test  f o u n d t h e LF and H  subsets  tests  both  Range  F-values  A % , C a , M g , Fe a n d A l .  These  to  whether  variance  horizons, with  homogeneous  indicates  plots  used  level.  showed t h a t  s i m p l y u s i n g t h e mean v a l u e  p l o t s was  is  New M u l t i p l e  determine  and N e w m a n - K e u l ' s  for  section,  f o r each h o r i z o n ,  f o l l o w i n g chemical  S,  t h e 5% l e v e l .  into account,  properties  within  two d i s t i n c t ,  variability  versus  for  1968)  C u , Z n , K a n d Mn d i d n o t h a v e a s i g n i f i c a n t  Duncan's  properties  subsets  of variance  than v a r i a n c e  1% l e v e l ,  this  f l o o r h o r i z o n s c o u l d be shown  homogeneous  from a n a l y s i s  the  tests—Duncan's  o f both f o r e s t  h o r i z o n s was g r e a t e r significant  floor properties  Two r a n g e  two d i s t i n c t ,  In  1978; L i ,  Range T e s t w e r e a l s o u s e d t o  properties  represent  and O s t e r l i n ,  of forest  a n d among p l o t s .  and Newman-KeuVs  forest  and r e g r e s s i o n a n a l y s i s .  analysis  all  should  comparing  not  41  DOUGLAS-FIR PRODUCTIVITY IN RELATION TO  CHEMICAL  PROPERTIES OF THE FOREST FLOOR  Introduction Today's shrinking soil  f o r e s t base, creates  f e r t i l i t y and a p r a c t i c a l  potential of  e x p a n d i n g demand f o r wood p r o d u c t s , c o u p l e d w i t h  (Powers,  1980).  a need f o r a c l e a r e r  understanding of  means f o r a s s e s s i n g f o r e s t  The a c c u r a t e  large crop  of  e x t e n t the  useable  investment  (Steinbrenner, Forest  variables. influence  1970;  that  productivity  Previous  determines  studies  i s a f u n c t i o n o f a wide have shown t h a t  i n terms o f  1972; Mader,  range o f  Timber y i e l d s  are  a n d t h e number o f t r e e s  environmental  variables  site  index  (Hill  et  the  that  1960; Post  and  and C u r t i s ,  are  As d e n s i t y c a n v a r y w i d e l y normally c l a s s i f i e d for  potential  growth r a t e s  S i t e i n d e x h a s b e e n f o u n d t o be t h e m o s t u s e f u l f o r many s p e c i e s ,  will  1979;  1981).  on an a r e a .  f o r e s t lands  that  a l . , 1948; Gessel  a f u n c t i o n of both the growth r a t e of  purposes according to t h e i r  productivity  to a  environmental  1976; Youngberg, 1979; S t e i n b r e n n e r ,  1 9 8 0 ; Lowe a n d K l i n k a ,  influence y i eld s ,  in  c a n be made i n t h e l a n d o r i n g r o w i n g  1 9 4 8 ; C a r m e a n , 1 9 5 4 ; Lemmon, 1 9 5 5 ; T o t t l ,  Powers,  one  Productivity,  t r e e g r o w t h c a n be c o m b i n e d i n t o e s t i m a t i n g e q u a t i o n s  Le T a c o n ,  is  1979).  predict productivity Lloyd,  f o r e s t products per u n i t a r e a ,  forest  productivity  assessment of p r o d u c t i v i t y  t h e most i m p o r t a n t a s p e c t s o f f o r e s t l a n d management.  terms of y i e l d s  a  the  trees  and  thus  comparative  (Steinbrenner,  i n d i c a t o r of  1979).  potential  as h e i g h t g r o w t h f o r most t r e e s p e c i e s  is  42  uniform over  a wide range o f stand d e n s i t i e s  However, Douglas-fir forested,  i n the Coastal  an a c c u r a t e  environmental in  since a s i g n i f i c a n t portion of  stands  always p o s s i b l e .  that  properties of  individually, through the analysis  are  the  is  to i d e n t i f y the  These v a r i a b l e s ,  forest  floor, will  no l o n g e r index i s some o f  growth of  not the  Douglas-fir  i n t h i s c a s e a number  be r e l a t e d  to s i t e  of  index  t h r o u g h t h e u s e o f c o r r e l a t i o n and r e g r e s s i o n , and a s a g r o u p  use o f d i s c r i m i n a n t a n a l y s i s  ( P a t t e r s o n and W h i t a k e r ,  causative  study  correlated with  Zone.  supporting  t r e e growth u s i n g s i t e  The p u r p o s e o f t h i s  variables  the areas  1979).  W e s t e r n H e m l o c k Zone a r e  assessment of  t h e CWH B i o g e o c l i m a t i c  chemical  (Steinbrenner,  r e l a t i o n s h i p s are  1978).  the primary  be made t o i l l u m i n a t e some o f t h e  (Dixon et  a l . , 1981)  Although predictive focus of  factors  this  study  and  cluster  rather  than  an a t t e m p t  r e s p o n s i b l e f o r any  will  relationships  found. In  order to ensure  that  e q u a t i o n s were as a c c u r a t e to  sample a l l  individual  any f o r e s t  and r e l i a b l e  variables  r a n g e d f r o m 14- t o 59 m/100 y e a r s nutrient  regimes  (Walmsley et  submesotrophic to e u t r o p h i c broad geographic  instead,  would apply over  as p o s s i b l e , e v e r y  throughout t h e i r (Figure 2),  a l . , 1980)  respectively,  estimating effort  was  Site  index  range.  ecological  moisture  and t h e  t o be t e s t e d f o r  the f u l l  and  sample p l o t s c o v e r e d  relationships with  t h e y were sampled so t h a t  made  and  ranged from x e r i c to h y g r i c  d i s t r i b u t i o n w i t h i n t h e CWH a & b s u b z o n e s .  n o t sampled as v a r i a b l e s Douglas-fir;  f l o o r - s i t e index  These  g e o g r a p h i c and e n v i r o n m e n t a l  range o f  s u p p o r t i n g D o u g l a s - f i r i n t h e a & b s u b z o n e s o f t h e CWH Z o n e .  were  the growth  any r e l a t i o n s h i p s  a  found  sites  of  6'  44  A number o f e n v i r o n m e n t been c a r r i e d o u t i n the p a s t . r e l a t i o n s h i p between Washington. of  Gessel  soil  site  and L l o y d  (1948)  Steinbrenner  (1979)  al.  (1948)  showed a  relating  site  Carmean  (1954)  developed  i n d e x t o g r o u p s b a s e d on  plots  in  and g l a c i a t e d  d e p t h , depth of  precipitation,  soil  variables  are  that  southwestern  (1976)  readily  showed t h a t  regression analyses.  drainage  the A h o r i z o n , All  elevation,  of these  up t o 6 0 % o f t h e v a r i a t i o n and s i t e  variables  in height.  organic matter,  variables  Textural  parent  index  would appear l o g i c a l  that  forest  f l o o r chemistry  forest  floor in nutrient cycling.  forest f l o o r contains  and  and  annual  studies  emphasized  i n the  in site  in stepwise were a b l e  pure  field for  use  regressions.  i n d e x c o u l d be multiple  t o a c c o u n t f o r 80  components, coarse  materials,  pH o f l o w e r h o r i z o n s , and m o i s t u r e  c h a r a c t e r i s t i c s w e r e common s i g n i f i c a n t It  texture  Washington.  site  d i s c e r n i b l e and m e a s u r a b l e  Age p l u s s o i l  the v a r i a t i o n class,  soil  s o i l s i n western Washington  t e x t u r e and s l o p e .  a c c o u n t e d f o r by u s i n g s o i l  t o 90% o f  region  individual  i n e s t i m a t i n g e q u a t i o n s b a s e d on s i m p l e l i n e a r o r c u r v i l i n e a r Mader  County,  studying s o i l s in a glaciated  S i g n i f i c a n t c o r r e l a t i o n s were found between soil  i n Lewis  e x a m i n e d s o i l - s i t e r e l a t i o n s h i p s f o r 184 p l o t s o f  D o u g l a s - f i r on r e s i d u a l  effective  well-defined  f o u n d a s t r o n g r e l a t i o n s h i p between  f o r 155 l o w e l e v a t i o n  Oregon.  et  index of D o u g l a s - f i r .  regression equations materials  Hill  p r o f i l e g r o u p s and p r o d u c t i v i t y  northwestern Washington  and t h e  o r s o i l - s i t e s t u d i e s f o r D o u g l a s - f i r have  factors.  studies  relating  c a n be j u s t i f i e d by t h e a c t i v e Cole et  al.  (1967)  stand p r o d u c t i v i t y r o l e p l a y e d by showed t h a t  a s i g n i f i c a n t p o r t i o n of the n u t r i e n t s  the  actively  the  to  45  cycling  i n the  show t h a t  the  forest forest  stand.  f l o o r , which accounts  t h i c k n e s s and 6% o f t h e the s t a n d ' s  total  A small and s e v e r a l forest  Atkinson,  species  (Zottl,  to chemical  I960;  (1962)  h a v i n g a pH o f  5.0  the growth of  that  to 5.5.  1 9 8 0 ; K l i n k a and L o w e ,  D o u g l a s - f i r reaches Zottl  (1960)  o f p i n e and s p r u c e .  had a s i g n i f i c a n t c o r r e l a t i o n w i t h  (1978),  its  and  and 1981).  b e s t g r o w t h on  s t r o n g l y w i t h b o t h t r e e growth and f o l i a r N  in Bavarian forests  spruce, but s o i l  soil  found N m i n e r a l i z e d from  f o u n d N q u a n t i t i e s m i n e r a l i z e d d u r i n g i n c u b a t i o n o f Al  Atkinson  zone  Douglas-fir  Fowelles, 1 9 6 2 ; Le T a c o n , 1 9 7 2 , Shumway  states  f o r e s t humus c o r r e l a t e d  in  root  p r o p e r t i e s of the mineral  1978; Youngberg, 1979; Powers,  concentration  the  (1974)  r o o t z o n e n i t r o g e n , s u p p l i e s a p p r o x i m a t e l y 50% o f  number o f s t u d i e s h a v e r e l a t e d  Fowells soils  f o r o n l y 3% o f  al.  N uptake.  other  floor  C a l c u l a t i o n s from data of C o l e et  nitrate  site  and t o t a l  Le T a c o n  (1972)  horizon soil  samples  i n d e x and f o l i a r N c o n c e n t r a t i o n s  N contents  s t u d y i n g D o u g l a s - f i r growth  did not.  Shumway a n d  i n the P a c i f i c  Northwest,  f o u n d g r o w t h r e s p o n s e t o N f e r t i l i z a t i o n c o u l d be p r e d i c t e d f r o m N m i n e r a l i z e d i n t h e 0- t o 15-cm s o i l Youngberg (1979),  i n a study  d e p t h zone and r e l a t i v e  stand  r e l a t i n g the n u t r i e n t content of f o r e s t  s a m p l e s f r o m D o u g l a s - f i r s t a n d s o f d i f f e r e n t v i g o r on two s o i l found s i g n i f i c a n t c o r r e l a t i o n s index.  Powers (1980)  availability  index of Pinus  between  total  N, P,  K a n d Ca and  floor  series, site  e x a m i n e d m i n e r a l i z e d s o i l N as an i n d e x o f N  to f o r e s t t r e e s .  composited f o r the  density.  Mineralizable-N in mineral  18 t o 22 cm d e p t h z o n e was  p o n d e r o s a (Laws)  soil  samples  f o u n d t o be r e l a t e d  o n l y when N was a t v e r y l o w l e v e l s  to  site  of 0 to  46  12 ppm. by t h e  It  was  suggested that  anaerobic  productivity influence  incubation  on s o i l s  between  N availability  technique,  t o P.  strongly  controls  t e s t i n g 12 ppm o f N o r l e s s ,  12 and 20 ppm a n d c e a s e s  ponderosa,  as  estimated  potential  having  lessening  t o be a l i m i t i n g  factor  thereafter. Lowe and K l i n k a forest  productivity  British  accounted  and w e s t e r n  and p e d o g e n e s i s ,  was  (Thuja  able  were needed  probably  needed  f o r 81% of the  red cedar  variables  variables (and  after  examining f o r e s t i n t h e CWH Zone o f  variation  to account  f o r western  amabilis  fir  [Abies  properties  hemlock amabilis  were p r o p o s e d s u g g e s t i n g t h a t  the  (Tsuga  variation.  Forbes])  and C i n t h e  fulvic  A l t h o u g h many o f between  growth c l a s s  examples o f f u r t h e r  total  polyphenol these  or site  lipids,  of western  sugars  those  number  hemlock  Sarg.)  of  hypotheses and  following three  i n the B f r a c t i o n ,  or C:N  fraction.  researchers  found s i g n i f i c a n t  relationships  i n d e x a n d numerous e n v i r o n m e n t a l  t e s t i n g of these  (Raf.)  were e x a m i n e d , s e v e r a l  productivity  with  Different  from  After a large  D o u g l a s - f i r i n t h e CWH Z o n e c o u l d be p r e d i c t e d f r o m t h e four discriminating properties:  Douglas-fir  heterophylla  (Dougl.)  red cedar.  of the organic matter  of  Total  and a r e g r e s s i o n e q u a t i o n  f o r 96% o f t h i s  to  southwestern  i n growth c l a s s  p l i c a t a Donn.)  f o r D o u g l a s - f i r and w e s t e r n  chemical  ratio  humus i n r e l a t i o n  C o l u m b i a , r e p o r t e d a number o f p o s s i b l e r e l a t i o n s h i p s .  lipids  eight  (1981),  proposed r e l a t i o n s h i p s  variables  no  c o u l d be f o u n d .  47  Numerical A complete and c a l c u l a t e d , productivity  with  is  given  Cruisers Manual,  In index,  an e f f o r t  to s i t e  1980).  the  initial  index or s i t e  These t e s t s  testing  for  floor  class  involved  measured  properties,  (Ministry  the e n t i r e  of  53  plots  plot. to reduce  some o f t h e o u t s i d e  s t r a t i f i e d the  factors  affecting  site  The  first  s a m p l e b a s e by t h e humus f o r m t a x a f o u n d on  the  On many p l o t s a number o f g r o u p s a n d s u b g r o u p s o f a humus f o r m  m i g h t be f o u n d and o c c a s i o n a l l y within  a single plot.  could only  on e a c h p l o t .  This  Mor, 6 with The  moisture  humus f o r m s o f d i f f e r e n t  be made f o r  resulted  Moder and 10 w i t h M u l l  (Malmsley  et  and h y g r i c  hygrotopes,  and m e s i c  hygrotopes  and t h e  subxeric  hygrotopes.  or elevation It and f o r e s t  This  humus  1980).  the  resulted site  The  "wet"  found plots  class  ecological  included  included the  i n c l u d e d the  i n 13 w e t ,  found  forms.  "Mesic" class  dry c l a s s  b a s e d on o t h e r  were not  d o m i n a n t humus f o r m o r d e r  used g r o u p i n g s o f d i f f e r e n t  al.,  subhygric  Stratifications  the  order  this  i n t h e 53 p l o t s b e i n g d i v i d e d i n t o 37  second s t r a t i f i c a t i o n  regimes  o r d e r s were  Because of t h i s w i t h i n - p l o t v a r i a b i l i t y  stratification  with  In  both  two s e p a r a t e s a m p l e s t r a t i f i c a t i o n p r o c e d u r e s w e r e u s e d .  procedure plot.  floor properties,  b e t w e e n D o u g l a s - f i r and f o r e s t  d a t a were r e l a t e d  two h o r i z o n s p e r  forest  i n Appendix 2.  relationships  concentration Forests,  l i s t i n g of a l l  Methods  very  29 m e s i c  characteristics  xeric,  submesic xeric  and 11 d r y  s u c h as  the  slope,  and  plots. aspect  used.  was d e c i d e d t o e x a m i n e p o s s i b l e r e l a t i o n s h i p s floor properties  through the  use o f t h r e e  between s i t e  statistical  index  48  techniques.  First,  relationships;  a s i m p l e c o r r e l a t i o n m a t r i x was u s e d t o e x a m i n e  scattergrams  w e r e o b t a i n e d , and v a r i o u s  r e l a t i o n s h i p s were t e s t e d . classes  discriminant analysis  distance cluster analysis test  for  created  properties s e l e c t e d though a  procedure  from multi-parameter  in site class  data.  s e t o f d a t a f o r e a c h p l o t was w e l l  Forest  for all It  index are  coefficients Total  of  1 9 7 8 ) was t h e n u s e d  between  natural  groupings  All  given  (LF)  Mor ( L F ) Total  i n Table 2-1.  chemical  Correlation  g i v e n i n A p p e n d i x 3.0  r e l a t i o n s h i p s are  basis  matrices and  3.1.  i m p l i e d by  correlation.  Mn i n t h e LF  h o r i z o n o f b o t h t h e u n s t r a t i f i e d p o p u l a t i o n and  following regression  Douglas-fir  equations:  Site  I n d e x D o u g l a s - f i r = - 4 2 . 5 Mn% + 4 3 . 9  r  2  Site  I n d e x D o u g l a s - f i r = - 3 6 . 7 Mn% + 4 1 . 4  r  2  lipids,  of  Properties  from t e s t i n g of a l l  no c a u s e a n d e f f e c t  index y i e l d i n g the Plots  complete  with  t h e Mor o r d e r was f o u n d t o h a v e t h e s t r o n g e s t c o r r e l a t i o n w i t h site  to  analysis.  Index  data of both composite h o r i z o n s are  m u s t be n o t e d t h a t  these  Site  F l o o r Chemical  The s i g n i f i c a n t c o r r e l a t i o n s site  An a v e r a g e  a s s e l e c t e d d a t a c h o s e n on t h e b a s i s  i n c o r r e l a t i o n and d i s c r i m i n a n t  versus  a l . , 1981).  site  jackknifed  T h i s m e t h o d was u s e d on t h e  C o r r e l a t i o n of  properties  (Dixon et  ( P a t t e r s o n and W h i t a k e r ,  significant differences  significance  curvilinear  R e l a t i o n s h i p s were t h e n examined between  o f D o u g l a s - f i r and c h e m i c a l  stepwise  linear  e x p r e s s e d on b o t h an o v e n - d r y  L A % ( n a ) ] , w e r e a l s o f o u n d t o be n e g a t i v e l y  (A%)  a n d an  correlated with  = 0.44 = 0.41. ash-free site  index  49  Table  2-1.  Significant S i t e Index  C o r r e l a t i o n s Between F o r e s t  Horizon  Stratification All  Plots  (unstratified)  Humus Form T a x a Mors  Properties  Level of Significance  Chemical Property  Mn C:N A%(na)  -0.66 -0.44 -0.42 -0.45 -0.44  0.01 0.01 0.01 0.01 0.01  Mn N:P N:K N:P N:K N S Mn P C:N N:Mn  -0.64 0.38 0.41 0.48 0.45 0.43 0.44 -0.41 -0.38 -0.36 0.33  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.05  -0.88 -0.88  0.05 0.05  LF H  Mn  LF H  F l o o r Chemical  k%  Moders  LF H  A%(na) A%(na)  Mulls  LF H  ns K  0.65  0.05  LF H  A%(na) A% A%(na) C  0.63 0.75 0.70 0.65  0.05 0.05 0.05 0.05  LF H  ns N:K  ns  ns  0.38  0.05  LF H  Mg K Ca:K Mg Al P N:K  0.57 0.72 0.65 0.65 0.64 0.59 0.58  0.05 0.01 0.05 0.05 0.05 0.05 0.05  Ecological Dry  Mesic Wet  Moisture  Regime  ns  ns  and  50  when t e s t e d somewhat  across  lower.  ecological index.  the e n t i r e  However,  moisture  sample p o p u l a t i o n a l t h o u g h the  k% and A % ( n a )  i n the  plots  having a  r e g i m e w e r e f o u n d t o be p o s i t i v e l y  Other p r o p e r t i e s  that  appear  S and K as w e l l  as N:P  N, S and P w e r e f o u n d t o h a v e a s i g n i f i c a n t  site  chemical all of  i n d e x i n some o f t h e properties  were n o t  highly correlated, decomposition of Neither  the c o r r e l a t i o n s relatively  likely  the  of the  sample s t r a t i f i c a t i o n s  independently  unstratified  few member p l o t s - - M o d e r s  ( 1 3 ) — w i t h i n s u f f i c i e n t degrees and r e g r e s s i o n  (6),  properties  These were t e s t e d floor  matrices  for  correlation However,  instead,  they  t h e amount a n d  appeared  these were  degree  sample.  Mulls  t o i m p r o v e any  Four of  (10),  dry  the  (11)  o f freedom f o r c o n f i d e n c e  of  forest  e x p r e s s e d on a K g / h a b a s i s w e r e a l s o  forest  N:K  in  of  strata  and  had  wet  correlation  results.  The c h e m i c a l  index.  and  matter.  sample s t r a t i f i c a t i o n s  found i n the  used.  significant;  being associated with  organic  site  consistent  ratios. with  N, P,  dry  some r e l a t i v e l y  site  C,  total  are  correlated with  relationship with Total  index are  to bear  r-values  (both  ecto-  16 c h e m i c a l  floors  tested  i n t h e Mor  for correlation with  b o t h by h o r i z o n a n d a s a t o t a l and e n d o r g a n i c properties  humus f o r m s ) .  (Kg/ha)  order,  are  given  f o r the  The  site entire  correlation  in Appendix 4 . 0 ,  4.1  and 4 . 2 . Significant  correlations  on a Kg/ha b a s i s and s i t e  between  floor properties  index of D o u g l a s - f i r are  These c o r r e l a t i o n s  were o n l y  the  bulk  o f Moder and M u l l  for  the  densities  forest  tested  use o f a s t a n d a r d i z e d b u l k  for  forest  given  floors  expressed  i n Table  o f t h e Mor o r d e r  humus f o r m s w e r e t o o v a r i a b l e  density.  2-2.  to  as allow  51  Table 2-2.  Horizon  S i g n i f i c a n t C o r r e l a t i o n s Between F o r e s t K g / h a and S i t e I n d e x o f D o u g l a s - f i r  Number o f Plots  Chemical Property  37  Mn KC1-N N  37  S N C  37  N S C Mn KC1-N Zn  F l o o r Chemical  r  Properties  Level of Significance  -0.481 0.417 0.372  0.01 0.05 0.05  0.450 0.438 0.391  0.01 0.01 0.05  0.479 0.458 0.436 -0.389 0.380 0.336  0.01 0.01 0.01 0.05 0.05 0.05  52  C o r r e l a t i o n s e x a m i n i n g f o r e s t f l o o r p r o p e r t i e s e x p r e s s e d on a K g / h a basis  and s i t e  forest  i n d e x o f D o u g l a s - f i r were q u i t e  s i m i l a r to those  f l o o r p r o p e r t i e s e x p r e s s e d as c o n c e n t r a t i o n s .  accounted f o r the g r e a t e s t  amount o f  the v a r i a b i l i t y  a l t h o u g h t t h e maximum r ^ - v a l u e s o f 0 . 2 3 f o r t o t a l too small  t o be o f  Separation  any p r e d i c t i v e  u s e on i t s  given  f o r 28 v a r i a b l e s  in Tables  matrices  for  the  respectively.  same 28 v a r i a b l e s  are  variables sets  reproduced in Tables were u s e d .  of variables In  variables  The  f l o o r p r o p e r t i e s o f the  LF,  e x p r e s s e d on a K g / h a  for  classify  the  h o r i z o n data with  were used t o maximize the  A % , A % ( n a ) , M g , K a n d P.  i n a lower  forest  o f t h e LF  and t h e o r d e r  jackknifed c l a s s i f i c a t i o n gives resulting  are  Sixteen the  same  r e p r o d u c e d i n T a b l e s 2 - 8 , 2-10 a n d 2 - 1 2 .  The v a r i a b l e s  to c o r r e c t l y  i n T a b l e 2-4 and 2 - 6 .  t h e Mor O r d e r ,  j a c k k n i f e d c l a s s i f i c a t i o n where t h r e e able  discriminant  t h e LF and H h o r i z o n s  The j a c k k n i f e d c l a s s i f i c a t i o n m a t r i c e s  only eight variables  Ca:Al,  is  Analysis  2 - 7 , 2 - 9 , and 2 - 1 1 , r e s p e c t i v e l y .  the d i s c r i m i n a n t a n a l y s i s  four groups. Mn, N:S,  are  horizon  The j a c k k n i f e d c l a s s i f i c a t i o n  given  produced f o r the  index  Mn i n t h e L F  p r o d u c e d by t h e s t e p w i s e  H and LFH h o r i z o n s f o r humus f o r m s o f are  in site  own.  used to c h a r a c t e r i z e  2-3 a n d 2 - 5 ,  c l a s s i f i c a t i o n matrices  basis,  M n , C , N and S  of S i t e Classes with Stepwise Discriminant  The c l a s s i f i c a t i o n m a t r i c e s analysis  Total  examining  separation of  i n w h i c h they were u t i l i z e d Compared t o t h e r e s u l t s o f  variables,  M n , N:S  and C a : A l ,  f o u r groups 56.6% of the t i m e . a less  28  biased c l a s s i f i c a t i o n  number o f c a s e s c o r r e c t l y  classified.  the are  the were  The normally  53  Table  2-3.  The C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 28 V a r i a b l e s f o r t h e LF H o r i z o n s o f a l l Plots  Group  Percent Correct  100  Low  Table  Number Cow  of  Cases Poor  Classified Medium  into  Group Good  3  0  0  0  Poor  77.8  0  7  1  1  M e d i urn  65.0  0  3  13  4  Good  81.0  0  0  4  17  Total  75.5  10  18  2  2-4.  The J a c k k n i f e d C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t I n v o l v i n g 28 V a r i a b l e s f o r t h e LF H o r i z o n s o f a l l P l o t s  Group  Low  Percent Correct  100  Number L~ow  of  Cases Poor  Classified Medium  into  Group Good  3  0  0  0  Poor  55.6  2  5  1  1  M e d i urn  55.0  0  4  1  5  Good  52.4  1  1  8  11  Total  56.6  6  10  20  17  Analysis  54  Table 2-5.  The C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 28 V a r i a b l e s f o r t h e H H o r i z o n s o f a l l P l o t s  Group  Percent Correct  Number Low  of  Cases Poor  Classified Medium  into  Group Good  100.0  3  0  0  0  Poor  44.4  3  4  3  0  Medium  50.0  2  4  10  4  Good  81.0  1  1  2  17  Total  64.2  9  9  14  21  Low  Table 2-6.  The J a c k k n i f e d C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 28 v a r i a b l e s f o r t h e H H o r i z o n s o f a l l Plots  Group  Percent Correct  Number Cow  of  Cases Poor  Classified Medium  into  Group Good  0.0  0  3  0  0  Poor  44.4  3  4  1  0  M e d i urn  30.0  4  5  6  5  Good  76.2  1  1  3  16  Total  49.1  8  13  11  21  Low  55  Table 2-7.  The C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 16 V a r i a b l e s E x p r e s s e d on a K g / h a B a s i s f o r t h e L F H o r i z o n s o f a l l P l o t s h a v i n g Humus Forms i n t h e Mor O r d e r  Group  Percent Correct  of  Cases Poor  Classified M e d i urn  into  Group Good  100.0  3  0  0  0  Poor  77.8  1  7  1  0  Medium  60.0  1  3  9  2  Good  60.0  1  1  2  6  Total  67.6  6  11  12  Low  Table  Number Cow  2-8.  8  The J a c k k n i f e d C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 16 V a r i a b l e s E x p r e s s e d on a K g / h a b a s i s f o r t h e LF H o r i z o n s o f a l l P l o t s h a v i n g Humus Forms i n t h e Mor O r d e r  Group  Percent Correct  Number Cow  of  Cases Poor  Classified Medium  into  Group Good  Low  0  0  2  1  0  Poor  44.4  3  4  2  0  Medium  53.3  1  3  8  3  Good  60.0  1  1  2  6  Total  48.6  5  10  13  7  56  Table  2-9.  The C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 16 V a r i a b l e s E x p r e s s e d on a K g / h a B a s i s f o r t h e H H o r i z o n s o f a l l P l o t s h a v i n g Humus Forms i n t h e Mor O r d e r  Group  Number Low  of  Cases Poor  Classified Medi urn  into  Group Good  Low  33.3  1  2  0  0  Poor  88.9  1  8  0  0  0.0  6  5  0  4  Good  60.0  1  3  0  6  Total  40.5  9  18  0  10  M e d i urn  Table  Percent Correct  2-10.  Group  The J a c k k n i f e d C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 16 V a r i a b l e s E x p r e s s e d on a K g / h a b a s i s f o r t h e H H o r i z o n s o f a l l P l o t s h a v i n g Humus Forms i n t h e M o r Order  Percent Correct  Number Cow  of  Cases Poor  Classified Medi urn  into  Group Good  0.0  0  2  1  0  66.7  2  6  1  0  0.0  6  5  0  4  Good  60.0  1  3  0  6  Total  32.4  9  16  2  10  Low Poor Medium  57  Table  2-11.  Group  Percent Correct  Number Low  of  Cases Poor  Classified Medium  into  Group Good  Low  66.7  2  1  0  0  Poor  77.8  2  7  0  0  6.7  1  12  1  1  Good  70.0  1  2  0  7  Total  45.9  6  22  1  8  Medium  Table  The C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m n a n t A n a l y s i s I n v o l v i n g 16 V a r i a b l e s E x p r e s s e d on a K g / h a B a s i s f o r t h e LFH H o r i z o n s o f a l l P l o t s h a v i n g Humus F o r m s i n t h e Mor Order  2-12.  Group  The J a c k k n i f e d C l a s s i f i c a t i o n M a t r i x f o r S t e p w i s e D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 16 V a r i a b l e s E x p r e s s e d on a K g / h a B a s i s f o r t h e LFH H o r i z o n s o f a l l P l o t s h a v i n g Humus Forms i n t h e Mor Order  Percent Correct  Number Low  of  Cases Poor  Classified Medium  into  Group Good  0.0  0  3  0  0  66.7  2  6  1  0  0.0  2  12  0  2  Good  60.0  1  3  0  6  Total  32.4  4  24  1  8  Low Poor Medium  58  C l a s s i f i c a t i o n of of 9 variables variables,  site  to c o r r e c t l y  classes  classify  Classification t h e LF  of s i t e  respectively.  group s e p a r a t i o n , A% and Mn f o r  classes  the H h o r i z o n d a t a .  value for  group  separating  for  results of  site classes.  the  normal  this  stepwise  value  data  for  horizon data,  site  classes  horizons  and  from  S,  the  (Kg/ha)  decreasing  site  classes  in discriminating site  of the  Ca:Al, site  four  A%(na)  and Ca  separation.  Total  classes,  t o p r e d i c t a mean a t  it  for also  classes.  site  c l a s s e s was 7 5 . 5 and 5 6 . 6 %  plots. This  w o u l d be m i s c l a s s i f i e d i f  of within-plot v a r i a b i l i t y  in order  d i s c r i m i n a t i o n procedure  Mn and A % , w e r e t h e m o s t u s e f u l  u t i l i z e d t h e LF h o r i z o n d a t a o f a l l  useful  10%.  A%(na).  and j a c k k n i f e d c l a s s i f i c a t i o n r e s p e c t i v e l y .  were used f o r  of  four  u s e d 5 and 3  and e n d o r g a n i c  KC1-N, Mg, N:S,  alone,  h i g h degree  The  f l o o r chemical  t h e LF of  the  K C 1 - N , A % , Mn and C a , l i s t e d i n o r d e r o f  t h a t two v a r i a b l e s ,  number o f  plot  forest  The s e p a r a t i o n  t o be o f some u s e i n s e p a r a t i n g  separation  per  separating  in order of decreasing  f o r both ecto-  The maximum s e p a r a t i o n  large  from the  time.  use  separation.  B a s e d on t h e would appear  the  M g , KC1-N and  K C 1 - N , M n , A % , C a , and Mg f o r  utilized 4 variables;  correct  value for  Ca:Al,  These were,  e x p r e s s e d as a t o t a l  appeared  N:S,  49.1% of  and H h o r i z o n s , e x p r e s s e d on a K g / h a b a s i s ,  variables,  data  the c l a s s e s  l i s t e d in order of decreasing  g r o u p s were A%, C : N , Mn, K : C a ,  of  from H horzon data r e q u i r e d the  indicated that  forest  Mn, the v a r i a b l e  This  floor  a  data  f o u n d t o be m o s t  h a s a l s o been shown t o e x h i b i t a r e q u i r i n g a minimum o f 88 the  5% l e v e l  with  samples  an a l l o w a b l e  error  59 Separation Average  of  S i t e C l a s s e s by A v e r a g e  distance  cluster  analysis  occur  i n a population of samples,  study  the  i n t e r e s t was  analysis  i n the  and H h o r i z o n d a t a  K,  testing.  attempted  sets  separation  same p r o c e d u r e ,  of  site  class  Instead,  geographic  they  location  at  the o r i g i n of  cluster  natural  measured.  In  this the  classes  properties  Mn, A%, A % ( n a ) , results  of out  for  C : N , N:P,  of the  on  N:S,  correlation  testing.  f o r each c o m p o s i t e h o r i z o n were a l s o used f o r  site  classes  for plots  i n t h e Mor and M u l l  parameters,  groupings  for  i n any o f  for all  separation,  the  a p p e a r e d t o be a r r a n g e d and humus f o r m t a x a .  sequential  the c l u s t e r  data  plots  i n the  is  Plots the  points  in Figure  given  all  in Figure  3.  significantly  sets  or  stratifications  sampled i n c l o s e  same c l u s t e r  3.  H  Mor  according to a combination  or near s e q u e n t i a l  the  orders.  p r o d u c e d f o r t h e LF h o r i z o n s o f  parameters  an  was a p p l i e d t o t h e L F ,  c o u l d n o t be shown t o r e p r e s e n t  separation  groups  p r o d u c e d by  p r o c e d u r e s were used i n a second  g r o u p i n g s were w i t h i n  significant  28 c h e m i c a l  from the  t o each o t h e r were o f t e n a r r a n g e d w i t h i n be s e e n i n t h e o f t e n  Analysis  p r o c e d u r e was c a r r i e d  e x p r e s s e d on a K g / h a b a s i s ,  u s i n g 28 c h e m i c a l  different used.  selected  An e x a m p l e o f t h e c l u s t e r  The c l u s t e r s  This  all  u s i n g 16 c h e m i c a l  and LFH h o r i z o n d a t a ,  plots,  index.  utilizing  M g , KC1-N and C a : A l  The two d a t a  order.  b a s e d on v a r i a b l e s  Eleven parameters,  and d i s c r i m i n a n t a n a l y s i s  The  whether  corresponded to the c l a s s i f i c a t i o n of p r o d u c t i v i t y  preliminary K:Ca,  assesses  Cluster  extent to which c l u s t e r s  D o u g l a s - f i r a s m e a s u r e d by s i t e t h e LF  Distance  group;  proximity this  l i s t i n g of plot Plots  same humus f o r m o r d e r ;  b a s e d on humus f o r m o r d e r c o u l d be s h o w n .  no  can  numbers  w i t h i n many o f however  of  the  10 21  33  U  Figure  3. A v e r a g e  24  22  u  Distance  Cluster Analysis  LF H o r i z o n D a t a o f a l l  Plots.  1 4G  40 38  4.4  37 39  35  53  36 52  32  42  43 47  41  U  u s i n g 28 C h e m i c a l  Parameters  for  the  cn o  61  Initially, relationships  the parameters  to s i t e  t h o u g h t t o have the c l o s e s t  i n d e x w e r e t o be a r r a n g e d  independent  in a predictive  t h r o u g h the use o f a s t e p w i s e m u l t i p l e r e g r e s s i o n p r o c e d u r e . to the  poor c l a s s i f i c a t i o n r e s u l t s  from the  stepwise  a n d c o r r e l a t i o n p r o c e d u r e s i t was d e c i d e d t h a t  model  However,  discriminant  a useful  due  analysis  p r e d i c t i v e model,  a p p l i c a b l e o v e r a b r o a d r a n g e o f g e o g r a p h i c l o c a t i o n and e c o l o g i c a l conditions,  was u n l i k e l y ,  and t h e m u l t i p l e r e g r e s s i o n was n o t  Examination of Possible Forest Index C a u s i t i v e Total index or s i t e site  attempted.  Floor-Site  Relationships  Mn was f o u n d t o h a v e t h e m o s t c o n s i s t e n t r e l a t i o n s h i p t o class  of D o u g l a s - f i r .  index decreased.  In  g e n e r a l , as t o t a l  T h i s may be due t o a v a r i a b l e  component i n the sampled s t a n d s .  Mn i n c r e a s e d ,  western  K l i n k a and Lowe ( 1 9 8 1 )  hemlock  state  that  humus f o r m p r o p e r t i e s c o r r e l a t e d w i t h p r o d u c t i v e g r o w t h o f w e s t e r n are  different  from those  f o r D o u g l a s - f i r , and t h a t  properties correlated with correlation. the  The a u t h o r s  growth of western  growth of both s p e c i e s suggest that  growth o f D o u g l a s - f i r .  Both e a s t e r n  the m a j o r i t y  species Ballard,  f o u n d on t h e 1982a).  same s i t e  and D o u g l a s - f i r s i t e  foliage,  forest  often  coniferous  (Young and G u i n n , 1 9 6 6 ; S t o n e ,  The r e l a t i o n s h i p b e t w e e n  the  h e m l o c k h a v e b e e n shown  2 t o 8 t i m e s as h i g h as o t h e r  1968 a n d  f l o o r Mn c o n c e n t r a t i o n  i n d e x may be a r e s u l t o f t h e r o l e p l a y e d by  of  favouring  conditions for  m a i n t a i n e x c e p t i o n a l l y h i g h c o n c e n t r a t i o n s o f Mn i n t h e i r having f o l i a r concentrations  of  show t h e o p p o s i t e s i g n  adverse  and w e s t e r n  the hemlock  humus f o r m c h a r a c t e r i s t i c s  h e m l o c k may r e p r e s e n t  site  western  to  62  hemlock b o t h i n d e t e r m i n i n g t h e c o n d i t i o n s f o r t h e growth o f and t h e c o n c e n t r a t i o n Foliar  o f Mn i n t h e f o r e s t  concentrations  correlation with  the  concentration toxicity  was  o f Mn h a v e a l s o b e e n shown t o h a v e a  r e l a t i o n s h i p between  o f Mn i n b o t h w e s t e r n r u l e d o u t by a l a t e r  D o u g l a s - f i r could handle l o s s o f g r o w t h was Total  very  hemlock  study  the f o r e s t  (A%)  the  floor.  o f h i g h k% w i t h  and t o t a l  to t h i s  Total  o f Mn b e f o r e  found  However  1979) w h i c h toxicity  Mn  found  symptoms  l i p i d s e x p r e s s e d on an a s h - f r e e inconsistent  K l i n k a a n d Lowe ( 1 9 8 1 )  and s l o w its  rates  i n the H h o r i z o n s  suggest that  of n u t r i e n t  basis  the  association  a s an i n d i c a t i o n o f  release  from  slow  organic  h i g h demand f o r n u t r i e n t s , may be  quite  factor.  A % ( n a ) was u s e d t o e x a m i n e w h e t h e r  relationships  between  a n d t h e g r o w t h o f D o u g l a s - f i r w e r e a f u n c t i o n o f t h e amount o f m i n e r a l i n c o r p o r a t i o n or the the  forest  floor.  actual  assumed t o i n d i c a t e  organic matter  state  of decomposition of the  organic  that  soil  a l t h o u g h n o t as s i g n i f i c a n t as A%.  any  relationships  are  i n c o r p o r a t i o n and t h e  i n the f o r e s t  floor.  This  a f u n c t i o n of both  state  A% soil  matter  A % ( n a ) was shown t o h a v e a s i g n i f i c a n t r e l a t i o n s h i p  the growth o f D o u g l a s - f i r ,  amount o f m i n e r a l  or  statistical  growth of D o u g l a s - f i r , e s p e c i a l l y  Douglas-fir, with  sensitive  al.,  (1978)  foliar  and D o u g l a s - f i r .  p o o r g r o w t h s h o u l d be i n t e r p r e t e d  decomposition rates, forms.  g r o w t h and  (Radwan e t  high l e v e l s  ( A % ( n a ) ) w e r e f o u n d t o h a v e a somewhat  of  Radwan a n d D e b e l l  observed.  lipids  relationship with  floor.  growth o f D o u g l a s - f i r .  a s i g n i f i c a n t negative  Douglas-fir  in  with  is  the  of decomposition of  the  63  The p o s i t i v e c o r r e l a t i o n b e t w e e n k% b o t h t h e LF regime  and H h o r i z o n s o f t h e  remains u n e x p l a i n e d .  from the  smaller  number  (11)  plots  and A%(na)  and s i t e  index  having a dry e c o l o g i c a l  moisture  T h i s may be an a n o m a l o u s c o r r e l a t i o n of  samples  it  separation was  of  site  classes  exchangeable-nitrogen for  root  KC1 r e l e a s e s  both water s o l u b l e  relationships  growth o f D o u g l a s - f i r appears variables  number o f  samples  author  estimate  that  i n d e x when and  of nitrogen readily  for  adequate  productivity  e q u a t i o n would have t o q u a n t i f y micro-climate, materials,  slope,  drainage  available  not part of  the equation  for  potential.  depth, texture,  to error is  f l o o r chemistry Many o f  require  different  an  excessive  It  is  felt  A reliable  as w e l l  Equations  fragment  variables  as macrocontent,  as b o t h m i n e r a l utilizing  are  predictive  such v a r i a b l e s coarse  soil  a small  growth.  and parent  and  number  i n s i t u a t i o n s w h e r e some p r o p e r t y  limiting  by  to  tree species  number o f  and  the  u s e a number o f v a r i a b l e s  and u t i l i z e  properties.  may be s u b j e c t  floors  f o r the large  and p a r v i o u s n e s s  f l o o r chemical  variables  soil  forest  that  potential  too s i m p l i s t i c to account  determining a s i t e ' s  forest  within-plot characterization.  equations  productivity  between  t o be o f l i m i t e d v a l u e .  used t o c h a r a c t e r i z e  predictive  a site's  generally  forest  site  although  uptake.  chemical  the  variables  discriminant analysis,  a n d s h o u l d be a m e a s u r e  The e x a m i n a t i o n o f the  by s t e p w i s e  n o t f o u n d t o be s i g n i f i c a n t l y c o r r e l a t e d w i t h  examined i n d e p e n d e n t l y .  resulting  used.  K C l - e x t r a c t a b l e N was shown t o be one o f t h e more u s e f u l for  in  of  that  is  64 However,  s o i l - s i t e studies of t h i s  R e l a t i o n s h i p s between i n d i v i d u a l  forest  type are  not without  f l o o r p r o p e r t i e s are  z o n e s o f a c c u m u l a t i o n and d e p l e t i o n o f n u t r i e n t e l e m e n t s the  forest  are  value.  elucidated, identified  f l o o r and many o f t h e c o m p l e x i t i e s o f n u t r i e n t c y c l i n g  e x p o s e d and c l a r i f i e d . to the e f f e c t i v e  Studies of this  management o f  the  nature  forest  are a necessary  resource.  in  are  prerequisite  65  SUMMARY AND CONCLUSIONS In estimate  order to ensure  undertake  that  t o be u s e d i n a l a t e r a preliminary  s a m p l i n g was u n d e r t a k e n  the v a r i a b i l i t y  both the  physical  variability  of forest  site  an u n e v e n  mixing of mineral of soil  site-specific differences  of  attributes  soil  microtopography,  d i s t r i b u t i o n of trees with  the  animals.  source  seepage-inputs,  properties  is  associated  the  site.  f l o o r chemistry  site  appear with  Within-plot appears  to  understory  and  This  is  chemical  t o be likely  differential  i n p u t s and r a t e s  contribute  to f o r e s t  the  result  of  Forest  of n u t r i e n t  floor  the  relatively  properties.  each  c o m p o s i t e s a m p l e was  also created  horizon unit  site.  sample.  sites  cycling  variability  a t e a c h o f two  Two h o r i z o n u n i t s w e r e s a m p l e d on e a c h s i t e  samples were c o l l e c t e d w i t h i n  cited  would  1965).  was c o m p l e t e d .  those  From a  it  a l s o appears  these  atmospheric  to  study,  on t h e  components.  o f many o f  chemical  f l o o r t h r o u g h s i l v o t u r b a t i o n and  Variability  f o r many c h e m i c a l  i n the  forest  floor  i t was d e c i d e d  woody m a t e r i a l s ,  A sampling program i n v o l v i n g t h r e e  each  of  to  floor variability.  this  f l o o r chemical  t h e s t a n d b i o m a s s may a l l  (Ovington,  of forest  results  of forest  study,  o f b o t h humus f o r m t a x a a n d f o r e s t  vegetation,  materials,  and t h e  and b i o l o g i c a l  be a s s o c i a t e d w i t h  activities  productivity  investigation  of the l i t e r a t u r e ,  within  adequate  t h e mean a n d t h e w i t h i n - p l o t v a r i a b i l i t y  properties  review  that  on e a c h  by a random p r o c e d u r e .  on a d e p t h - w e i g h t e d  Fourteen  The mean v a l u e s from the  unit  chemical  basis  A few t r e n d s  for  fifteen A  single  each  p r o p e r t i e s were measured  found f o r most p r o p e r t i e s  literature.  and  locations  related  compared w e l l to s i t e ,  for with  h o r i z o n and  66  humus f o r m t a x a w e r e n o t e d . increase  in Fe,  to mineral  soil  As n o t e d by p a s t  AT and Mn c o n c e n t r a t i o n  with  forest depth i s  soil  researchers,  likely  attributable  inclusions.  The number o f  samples  necessary  to p r e d i c t  t h e mean ± 10% w i t h 9 5 %  c o n f i d e n c e was shown t o r a n g e  f r o m 1 t o 141 s a m p l e s p e r p l o t f o r  chemical  h o r i z o n and f r o m 3 t o 197 s a m p l e s  properties  the H h o r i z o n .  For  of  t h e LF  the  increasing v a r i a b i l i t y  fourteen i n the  chemical  increasing variability  was  h o r i z o n i n terms  horizon while compare the P,  very well  lower S,  of overall  the most v a r i a b l e with  inherent  N and C makes  the  variability these  was  results of  < Fe.  tested,  follows: In  < Fe  of Quesnel five  properties  forest  the order  The was  H horizon; (1980). floor  in  of  p H < P < S < N _ <  < Mn < C a .  hygric  per p l o t  this  as f o l l o w s :  sample r e q u i r e m e n t s the  the  the H h o r i z o n s  slightly different,  < S < Zn < C j< N < K < Cu < A% < Mg < A l variable  properties  LF h o r i z o n s was a s  C < Zn < A% < Cu < K < Mg < Ca < Mn < A l order of  the  least the mesic  this  It  is  pH < P  LF  was f o u n d  suggested  to  that  properties--pH(CaCl ), 2  the most d e s i r a b l e  for  predictive  purposes. C o m p o s i t e s a m p l i n g was efficiency  while maintaining precision.  t o be s i g n i f i c a n t l y the  correlated  15 s u b s a m p l e s o f e a c h  most f o r e s t techniques  do o f f e r  with  This  the depth-weighted site  for  f o r many o f t h e  arithmetic  found  mean  a t t h e 1% l e v e l  to analyzing a l l forest  optimizing  samples were  i m p l i e s that composite  a sound a l t e r n a t i v e  However,  means  The c o m p o s i t e  h o r i z o n u n i t on e a c h  floor properties.  independently. in this  s u g g e s t e d as a v i a b l e  of  for  sampling  samples  floor properties  analyzed  s t u d y a c o m p o s i t e s a m p l e b a s e d o n 15 s a m p l e s p e r p l o t w i l l  not  be  67  s u f f i c i e n t to give a representative normally considered Within-plot among p l o t s  t o be  variability  LF  distinct,  subsets  parameters  both p l o t s  was  at  examined.  to c o r r e l a t i o n  After properties  within  the  Kg/ha b a s i s  f o r D o u g l a s - f i r over  Total  moisture  all  representing a  serious  o f a number o f  chemical relationships  range o f s i t e  Fifty-three  i n d e x and  a broad geographic  ecological  distribution  Mn was  = .44).  forest  floor  (LFH)  were examined o v e r  the  s t r a t i f i e d by d o m i n a n t humus f o r m  strongest correlation with  c o r r e l a t i o n was  i n t h e Mor o r d e r .  as A%, a l s o  Relationships  shown t o h a v e t h e  This  the complete  and on a  order  regime.  e x p r e s s e d as c o n c e n t r a t i o n s for plots  and  two  for  f l o o r d a t a was a n a l y z e d b o t h a s c o n c e n t r a t i o n s  s e t o f p l o t s and on s e t s  2  of confidence  to examine p o s s i b l e  full  f o r LF and H h o r i z o n s w i t h  and e c o l o g i c a l  (r  represent  and t h e g r o w t h o f D o u g l a s - f i r . the  variability  analysis.  initiated  f l o o r chemistry  than  c o m p a r i s o n s t o be made b e t w e e n  variability  b e i n g e x p r e s s e d on a K g / h a b a s i s .  index  accuracy  a & b s u b z o n e s o f t h e CWH Z o n e .  Forest  complete  5% l e v e l  and r e g r e s s i o n  a s e c o n d s t u d y was  regimes  the  variability  s t a n d s were chosen t o r e p r e s e n t moisture  of  problems f o r c o r r e l a t i o n  This allows  e s t a b l i s h i n g the  between f o r e s t  any  and H h o r i z o n s w e r e shown t o  and h o r i z o n s w i t h o u t  deterrent  shown t o be much l e s s  and s h o u l d n o t r e p r e s e n t  homogeneous  a level  acceptable.  regression analyses.  chemical  mean v a l u e w i t h  found f o r  t h e LF  f o r both the u n s t r a t i f i e d Total  N, P,  horizon  site  data  sample p o p u l a t i o n  S and K a n d t h e i r  showed s t r o n g c o r r e l a t i o n s w i t h  site  index.  ratios  Results  as of  and  well  68  correlations  between s i t e  Kg/ha b a s i s were v e r y greatest  i n d e x and f o r e s t  s i m i l a r with  amount o f v a r i a b i l i t y The b e s t  separation  in site  of  site  discriminant analysis  procedure  56.6% of  the  Total  the  time  M n , N:S  for  and C a : A l  most c o n s i s t a n t l y  e x p r e s s e d as c o n c e n t r a t i o n s classes.  Testing  of the  e x p r e s s e d i n K g / h a was Natural distance different geographic  separation.  was  stratified  site classes.  Total  site  best  floor  data  separation  to  hemlock  provide  through the a p p l i c a t i o n of  forms.  would l o g i c a l l y  C l u s t e r groups appeared t o  B a s e d on t h e  represent  a l t h o u g h no  general  significant  shown.  sampled s t a n d s .  Lipids  eleven forest  Douglas-fir, a relatively  results  data  significantly  r e l a t i o n s h i p b e t w e e n Mn c o n c e n t r a t i o n  be r e l a t e d  site  average  and s i t e  (A%,  A%(na))  to  were  demanding s p e c i e s  s u c h an i n d e x t h r o u g h i t s  of c o r r e l a t i o n  and d i s c r i m i n a n t  index  component  an i n d e x o f d e c o m p o s i t i o n r a t e s and r a t e s o f n u t r i e n t  from o r g a n i c ally,  i n the  of  use o f  o f D o u g l a s - f i r was h y p o t h e s i z e d t o be a f u n c t i o n o f a v a r i a b l e western  the  separation.  c o u l d n o t be shown t o r e p r e s e n t  g r o u p i n g o f humus f o r m s c o u l d be  and  sample  Mn and A% w e r e  Forest  class  75.5  respectively.  s a m p l e p o p u l a t i o n and t h e  reduce  stepwise  correctly  unstratified  separation.  l o c a t i o n a n d / o r humus f o r m o r d e r ,  The c o n s i s t e n t  use o f a  analyses  shown t o o b t a i n t h e  found to  analysis  through the  LF h o r i z o n o f t h e  groupings created  cluster  classes  used f o r  the  index.  s i m p l e and j a c k k n i f e d  i n the  e x p r e s s e d on a  Mn, C , N and S a c c o u n t i n g f o r  c l a s s i f i e d the c l a s s e s  p o p u l a t i o n w e r e u s e d t o make t h e variables  total  f l o o r chemistry  of  suggested release nutrition-  site  index.  analysis  f l o o r p r o p e r t i e s were s e l e c t e d as t h e most u s e f u l  indicators  69  o f D o u g l a s - f i r g r o w t h — M n , k%, A % ( n a ) , KC1-N, K, M g , Ca a n d S a n d C : N , N:S and C a : A l .  Three o f these  necessarily  useful  properties,  relationships Douglas-fir they  will  useful  forest  elements  forest  floor  t o be u s e f u l  a l t h o u g h many o f t h e  f l o o r chemistry  limited practical  Instead,  studies  of this  and t h e growth p e r f o r m a n c e  value i n d i r e c t nature  r e l a t i o n s h i p s between  productivity  w e r e p r o p o s e d t o be m o s t individual  forest  floor nutrient  some o f t h e many c o m p l e x i t i e s o f n u t r i e n t  i n D o u g l a s - f i r s t a n d s o f t h e CWH Z o n e .  of  significant,  i d e n t i f y i n g zones o f a c c u m u l a t i o n and d e p l e t i o n o f  and c l a r i f y i n g  when  properties.  i n t h e CWH Zone w e r e shown t o be s t a t i s t i c a l l y  for elucidating  properties,  other  i t i s suggested t h a t ,  between  have o n l y  assessment.  and N : S , were n o t  i n d i c a t o r s o n t h e i r own b u t a p p e a r e d  applied i n conjunction with I n summary,  KC1-N, C a : A l  cycling  70  LITERATURE CITED  Anonymous.  1979.  Technicon Autoanalyzer II.  Methodology:  i n d i v i d u a l / s i m u l t a n e o u s d e t e r m i n a t i o n o f n i t r o g e n and p h o s p h o r o u s BD a c i d d i g e s t s . I n d u s t r i a l Method No. 334-74A. Ball,  D . F . a n d W.M. W i l l i a m s . 1968. V a r i a b i l i t y of p r o p e r t i e s i n two u n c u l t i v a t e d b r o w n e a r t h s . 19(2):379-391.  Ballard,  s o i l chemical J . Soil Sci.  T.M. 1982a. F o l i a r a n a l y s i s research. Experimental C o n t r a c t R e s e a r c h R p t . t o R e s e a r c h B r a n c h , BCMOF. .  1982b.  Soils).  Manual  Depart,  of  for Soil Soil  Project  S c i e n c e 3 0 3 / F o r e s t r y 312  Sci.,  Fac.  of A g r i c u l t u r e .  (Forest  Univ.  of  B a r t h o l o m e w , W.V. and F . E . C l a r k . 1965. Soil nitrogen. Agronomy no. 10. American Soc. of Agron. Madison, Wise. 615 p p . Bernier,  B.  1968.  Descriptive  outline of forest  CA. Inc.  1968. Soil-plant relationships. New Y o r k . 792 p p .  B.C.  Series  humus-form  classification. P r o c . of the 7th meeting of the N a t ' l . S o i l Comm. o f C a n a d a . U n i v . o f A l b e r t a , Edmonton, p. 139-154. Black,  889.  Sci.  2nd e d . J o h n W i l e y & S o n s ,  Blythe,  J . F . and D . A . M a c l e o d . 1978. The s i g n i f i c a n c e o f s o i l v a r i a b i l i t y for forest s o i l studies in north-east Scotland. J . Soil Sci. 29:419-430.  Bremner,  J . M . and M.A. T a b a t a b a i . 1 9 7 1 . Use o f a u t o m a t e d c o m b u s t i o n t e c h n i q u e s f o r t o t a l c a r b o n , t o t a l n i t r o g e n and t o t a l s u l p h u r a n a l y s i s of s o i l s .  B u c k m a n , H . O . and N . C B r a d y . 1 9 6 9 . The n a t u r e 7th ed. C o l l i e r - M a c M i l l a n L t d . London. Canadian S o i l  Survey Committee.  classification. Canada. Ottawa, C a r m e a n , W.H.  1954.  1978.  and p r o p e r t i e s o f 653 p p .  The C a n a d i a n s y s t e m o f  Can. Dep. A g r i c . P u b l . 1 6 4 6 . Ont. 164 p p .  Site quality  Supply  f o r D o u g l a s - f i r i n south  soils.  soil and  Services  western  W a s h i n g t o n and i t s r e l a t i o n s h i p t o p r e c i p i t a t i o n , e l e v a t i o n a n d physical soil properties. S o i l S c i . S o c . Amer. P r o c . 18:330-335.  Cole,  D.W., S . P . G e s s e l , and S . F . D i c e . 1967. D i s t r i b u t i o n and c y c l i n g o f n i t r o g e n , p h o s p h o r o u s , p o t a s s i u m and c a l c i u m i n a s e c o n d - g r o w t h D o u g l a s - f i r ecosystem. Symp. on P r i m a r y P r o d u c t i v i t y and M i n e r a l C y c l i n g i n Natural Ecosystems. U n i v . o f Maine P r e s s , pp. 197-232.  71  Cole,  D.W., J . T u r n e r , and C. B l e d s o e . 1974. R e q u i r e m e n t and u p t a k e o f mineral nutrients in coniferous ecosystems. In^ Symp. B e l o w G r o u n d Ecosystem. Fort C o l l i n s , Colo. 1 9 7 3 . Dowden, H u t c h i n s o n & Ross Publ. and D. J o h n s o n . 1 9 8 1 . The c y c l i n g o f e l e m e n t s w i t h i n forests. C h a p . XI i n H e i l m a n , P . E . e t a l . 1981. Forest s o i l s of the D o u g l a s - f i r r e g i o n . C o o p . E x t e n s i o n , Wash. S t a t e U n i v . 298 p p .  Dixon,  W . J . . , M.B. B r o w n , L. E n g e l m a n , J . W . F r a n e , and J . D . T o p o r e k . 1 9 8 1 . BMDP S t a t i s t i c a l California Press, Berkeley, pp. 519-537.  M.A. H i l l , R . I . software. Univ.  Jenrich of  Fowells,  H.A. 1965. S i l v i c s o f f o r e s t t r e e s o f the United S t a t e s . U.S.D.A. F o r . S e r v . A g r i c . Handbook N o . 2 7 1 . 762 p p .  Gentle,  S.W. a n d F . R . H u m p h r e y s . 1967. Experience with f e r t i l i z e r s i n man-made f o r e s t s o f P i n u s r a d i a t a W a l e s . F o r e s t r y C o m m i s s i o n o f N.S.W" 3T p p .  Gessel,  S . P . And W.J. L l o y d . 1950. E f f e c t o f some p h y s i c a l s o i l p r o p e r t i e s on D o u g l a s - f i r q u a l i t y . Jour. For. 38:405-410.  phosphatic i n New S o u t h  and A . N . B a l c i . 1 9 6 5 . Amount a n d c o m p o s i t i o n o f f o r e s t f l o o r under Washington c o n i f e r o u s f o r e s t s , p p . 1 1 - 2 3 . ITK C . T . Y o u n g b e r g (ed.) F o r e s t - s o i l r e l a t i o n s h i p s i n North America. Second N o r t h Amer. F o r e s t S o i l s C o n f . P r o c . 1 9 6 3 . C o r v a l l i s : O r e g . S t a t e U n i v . Press. Gosz, J . R . ,  G.E.  Likens  and F . H .  Bormann.  1976.  Organic matter  n u t r i e n t d y n a m i c s o f t h e f o r e s t and f o r e s t f l o o r i n t h e Brook F o r e s t . Oecologia (Berl.) 22:305-320.  and Hubbard  Grieg,  M. and D. O s t e r l i n . 1978. UBC ANOVAR - A n a l y s i s o f v a r i a n c e covariance. Computing C e n t r e , U n i v . of B r i t i s h C o l u m b i a , V a n c o u v e r , B.C.- 69 p p .  Grier,  C . C . and J . G . M c C o l l . 1971. Forest f l o o r c h a r a c t e r i s t i c s within a small p l o t i n D o u g l a s - f i r i n western Washington. S o i l S c i . Soc. Amer. P r o c . 3 5 : 9 8 8 - 9 9 1 .  Hammond, L . C . , W . L . P r i t c h e t t a n d V . Chew. 1958. r e l a t i o n to s o i l heterogeneity. Soil Sci. 22:548-552. Heilman,  Soil Soc.  and  sampling i n Amer. P r o c .  P. 1 9 7 9 . M i n e r a l s , c h e m i c a l p r o p e r t i e s and f e r t i l i t y o f f o r e s t soils. C h a p . VI i n H e i l m a n , P . E . e t a l . 1981. Forest S o i l s of t h e D o u g l a s - f i r r e g i o n . C o - o p . E x t e n s i o n . W a s h . S t a t e U n i v . 298 p p . ,  H.W.  A n d e r s o n and D . M .  Baumgartner.  1981.  t h e D o u g l a s - f i r r e g i o n . Co-op E x t e n s i o n , Wash.  Forest  soils  State Univ.  of  298 p p .  72  Hibbard, Hill,  P.L. 1 9 4 0 . A c c u m u l a t i o n o f z i n c on s o i l vegetation. Soil Sci. 50:53-55.  under  long-persistant  W.W., A . A r n s t and R . M . B o n d . 1948. Methods of c o r r e l a t i n g with Douglas-fir s i t e q u a l i t y . Jour. For. 46:835-841.  soils  H u m p h r e y , J . F . a n d R. T r u m a n . 1 9 6 4 . A l u m i n u m and t h e p h o s p h o r u s requirements of Pinus r a d i a t a . P l a n t and S o i l 2 0 : 1 3 1 - 1 3 4 . H u s c h , B. 1 9 6 3 . F o r e s t M e n s u r a t i o n and S t a t i s t i c s . York. 474 p p . Kelly,  Ronald P r e s s ,  New  J . and M . J . L a m b e r t . 1 9 7 2 . The r e l a t i o n s h i p between s u l p h u r n i t r o g e n i n the f o l i a g e of Pinus r a d i a t a . P l a n t and S o i l 37:395-407.  Klinka,  and  K . , F . C . N u s z d o r f e r a n d L. S k o d a . 1979. Biogeoclimatic units of c e n t r a l and s o u t h e r n V a n c o u v e r I s l a n d . Prov. of B r i t i s h Columbia, Min. of Forests. 120 p p . (1 m a p ) . , R.M. G r e e n , R.L. T r o w b r i d g e and L . E . Lowe. 1981. Taxonomic c l a s s i f i c a t i o n o f humus f o r m s i n e c o s y s t e m s o f B r i t i s h C o l u m b i a . 1 s t . Approx. Prov. of B r i t i s h Columbia. Min. of F o r e s t s . 54 p p .  Krajina,  V.J. Univ.  Lacelle,  L.E.H. 1 9 7 1 . C a r b o n and n i t r o g e n t r a n s f o r m a t i o n s i n some f o r e s t floors. M.Sc. t h e s i s . Department of S o i l S c i e n c e , U n i v . of B.C., Vancouver, B.C. 58 p p .  Leaf,  1969. Ecology o f Western North America. of B r i t i s h Columbia. , 2 ( 1 ) : 147 p p .  Dept.  of  Botany,  A.L. 1 9 6 8 . K, Mg and S d e f i c i e n c i e s i n f o r e s t t r e e s ; i n : F o r e s t f e r t i l i z a t i o n — t h e o r y a n d p r a c t i c e , 306 p p . M u s c l e SrToals, Alabama: T . V . A . N a t l . F e r t . Development C e n t r e .  Lemmon, P . E . 1 9 5 5 . F a c t o r s a f f e c t i n g p r o d u c t i v i t y o f some l a n d s i n t h e W i l l a m e t t e b a s i n o f Oregon f o r D o u g l a s - f i r t i m b e r . Jour. For. 53:323-330. L e T a c o n , F. 1 9 7 2 . A v a i l a b i l i t y o f n i t r a t e and ammonical N i n c e r t a i n s o i l s of eastern France. E f f e c t on t h e n u t r i t i o n o f P i c e a a b i e s K a r s t . Ann. S c i . For. 30:182-203. Lewis, T. 1 9 7 6 . The t i l l - d e r i v e d p o d z o l s o f V a n c o u v e r I s l a n d . Ph.D. thesis. U n i v . of B r i t i s h C o l u m b i a , Vancouver, B.C. 158 p p . Li,  J.C.R. 1967. S t a t i s t i c a l A r b o r , M i c h . 574 p p . .  1968.  inference  Statistical  Ann A r b o r , M i c h . 6 5 8 p p .  I.  inference  Edwards B r o t h e r s , II.  Inc.  Edwards B r o t h e r s ,  Ann Inc.  73  Lindner,  R.C.  and C P .  Harley.  1942.  A r a p i d method f o r  determination of n i t r o g e n i n p l a n t t i s s u e . Lowe,  the  S c i . 96:565-566.  L.E. 1 9 7 2 . A s p e c t s o f c h e m i c a l v a r i a b i l i t y i n f o r e s t humus l a y e r s under a mature western hemlock-western redcedar s t a n d . Can. J . For. Res. 2^:487-488. .  1974.  A sequential  e x t r a c t i o n procedure f o r studying  d i s t r i b u t i o n of organic fractions J . F o r . R e s . 4_:446-454.  in forest  humus l a y e r s .  the  Can.  and T . F . G u t h r i e . 1 9 8 1 . The d e v e l o p m e n t o f an a n a l y t i c a l method t o d e t e r m i n e s u l p h u r c o n t e n t o f f o l i a g e . C o n t r a c t Research R p t . , Research Branch, B.C. M i n . of F o r . 69 p p . (mimeo). a n d K. K l i n k a . 1 9 8 1 . F o r e s t humus i n t h e C o a s t a l W e s t e r n H e m i o c k B i o g e o c l i m a t i c Zone o f B r i t i s h C o l u m b i a i n r e l a t i o n t o f o r e s t p r o d u c t i v i t y and p e d o g e n e s i s . B.C. M i n . F o r e s t s , Res. Note no. 89. 83 p p . M a c l e a n , E.O. levels Mader, D.L.  1957. P l a n t g r o w t h a n d u p t a k e o f n u t r i e n t s a s i n f l u e n c e d by of n i t r o g e n . S o i l S c i . S o c . Amer. P r o c . 2^:219-222.  1963.  studies .  Soil  i n the 1976.  v a r i a b i l i t y - - a s e r i o u s problem i n  northeast. Soil-site  pine in Massachusetts. McFee,  Soil  Sci.  productivity Soil  Sci.  Soc.  for natural  Soc.  soil-site  Amer. P r o c .  27:707-709.  stands of  white  Amer. J . , 4 0 : 1 1 2 - 1 1 6 .  W.W. and E . L . S t o n e . 1 9 6 5 . Q u a n t i t y , d i s t r i b u t i o n and v a r i a b i l i t y o f o r g a n i c m a t t e r a n d n u t r i e n t s i n a f o r e s t p o d z o l i n New Y o r k . S o i l S c i . S o c . Amer. P r o c . 29:432-436.  Ministry  of F o r e s t s . 1980. C r u i s e r s Manual. Forest Service procedures c r u i s e c o m p i l a t i o n . B.C. M i n . of F o r . , V i c t o r i a , B.C.  and  Nuszdorfer, F.C. 1981. Bulk d e n s i t y . I n : Taxonomic c l a s s i f i c a t i o n o f humus f o r m s i n e c o s y s t e m s o f B r i t i s h C o l u m b i a . L a n d Management R p t . No. 8. B.C. M i n . F o r . pp. 49-51. Ovington, J.D. 1965. Organic p r o d u c t i o n , turnover woodlands. B i o l . Rev. 4 0 : 2 4 5 - 3 3 6 .  and m i n e r a l  cycling  in  P a r k i n s o n , J . A . and S . E . A l l e n . 1 9 7 5 . A wet o x i d a t i o n p r o c e d u r e s u i t a b l e f o r t h e d e t e r m i n a t i o n o f n i t r o g e n and m i n e r a l n u t r i e n t s i n biological material. Comm. S o i l S c i . a n d P l a n t A n a l . 6 ( 1 ) : 1 - 1 1 . P a t t e r s o n , J . M . and R.A. W h i t a k e r . 1 9 7 8 . H i e r a r c h i c a l g r o u p i n g a n a l y s i s w i t h o p t i o n a l c o n t i g u i t y c o n s t r a i n t . UBC-CGROUP, U . B . C , 21 p p .  74  Post,  B.W., and R.O. C u r t i s . 1970. E s t i m a t i o n o f n o r t h e r n hardwood s i t e i n d e x from s o i l s and t o p o g r a p h y i n t h e Green M o u n t a i n s o f V e r m o n t . B u l l . 664. A g r i c . Exp. S t n . , Univ. of Vermont, B u r l i n g t o n , Vermont. 17 p p .  Powers,  Price,  R.F. 1 9 8 0 . M i n e r a l i z a b l e s o i l n i t r o g e n a s an i n d e x o f a v a i l a b i l i t y to f o r e s t t r e e s . S o i l S c i . S o c , Amer. J . 44:1314-1320. W.J. 1978. A n a l y t i c a l atomic Ltd. London. 239 p p .  absorption spectrometry.  P r i t c h e t t , W.L. 1979. P r o p e r t i e s a n d management o f f o r e s t W i l e y & S o n s , New Y o r k . 500 p p . Proctor, Quesnel,  J . and S . R . J . W o o d e l l . 1975. Adv. E c o l . Res. 9:255-366. H.J.  1980.  Forest  The e c o l o g y o f  f l o o r s near P o r t Hardy,  Canada. M.Sc. t h e s i s . Department of S o i l Vancouver, B.C. 152 p p .  nitrogen  Heydon & Son  soils.  serpentine  John soils.  B r i t i s h Columbia,  Science,  Univ.  Radwan, M.A. and D.S. D e B e l l . 1 9 7 8 . U n p u b l i s h e d d a t a on f i l e Sciences Laboratory, Olympia, Washington.  at  of  B.C.  Forestry  , J . S . Shumway and D . S . D e B e l l . 1979. E f f e c t s o f manganese and m a n g a n e s e - n i t r o g e n a p p l i c a t i o n s on g r o w t h and n u t r i t i o n o f Douglas-fir seedlings. USDA F o r . S e r v . R e s . P a p . PNW-265, 12 p p . P a c . N o r t h w e s t F o r e s t and Range E x p . S t a t i o n , P o r t l a n d , O r e g o n . Russell,  E.W. 1961. S o i l c o n d i t i o n s and p l a n t g r o w t h . Longman G r o u p L t d . London. 849 p p .  Shumway, J .  a n d W.A.  Atkinson.  1978.  10th e d i t i o n .  Predicting nitrogen f e r t i l i z e r  response i n unthinned stands of D o u g l a s - f i r . Anal. 9:529-539.  Comm. S o i l  Sci.  Plant  S l a v i n s k i , H.C. 1977. S o i l v a r i a b i l i t y along a topographic sequence, U . B . C . Endownment L a n d s . M.Sc. t h e s i s . Univ. of B.C., Vancouver, B.C. 203 p p . Soil  Survey S t a f f .  1975.  Soil  taxonomy.  A basic  system of  soil  c l a s s i f i c a t i o n f o r making and i n t e r p r e t i n g s o i l s u r v e y s . C o n s e r v . S e r v . USDA. A g r i c . Handbook n o . 4 3 6 . 754 p p .  Soil  S t e i n b r e n n e r , E.C. 1979. Forest soil productivity relationships. In: Heilman et a l . Forest s o i l s of the D o u g l a s - f i r region. Co-op. E x t e n s i o n , Wash. S t a t e U n i v . 298 p p .  75  Stone,  E.L. 1968. Microelement n u t r i t i o n o f f o r e s t t r e e s : a review. I_n: F o r e s t f e r t i l i z a t i o n — t h e o r y a n d p r a c t i c e , 306 p p . M u s c l e S h o a l s , Alabama: T . V . A . N a t l . F e r t . Development C e n t r e .  S t u t z b a c h , J . S . , A . L . L e a f and R.E. L e o n a r d . f l o o r s under a red pine p l a n t a t i o n . Switzer,  G.L.,  L.E.  N e l s o n and W.H.  forest stands. In: pp. Muscle ShoaTs,  Smith.  1972. V a r i a t i o n Soil S c i . 114(1): 1968.  The m i n e r a l  in forest 24-28. cycle  in  F o r e s t f e r t i l i z a t i o n — t h e o r y and p r a c t i c e . 306 Alabama: T . V . A . N a t l . F e r t . Development C e n t r e .  T a p p e i n e r , J . C . and A . A . A i m . 1 9 7 5 . U n d e r g r o w t h v e g e t a t i o n e f f e c t s on n u t r i e n t c o n t e n t o f l i t t e r f a l l a n d s o i l s i n r e d p i n e and b i r c h stands in northern Minnesota. Ecology 56:1193-1200. Turner, J . ,  and M . J .  Lambert,  and S . P .  Gessel.  1977.  Use o f  the  foliage  s u l p h a t e c o n c e n t r a t i o n s t o p r e d i c t r e s p o n s e t o u r e a a p p l i c a t i o n by Douglas-fir. Can. J . F o r . Res. 7^:476-480. Waring,  S . A . and J . M . B r e m n e r . 1964. Ammonium p r o d u c t i o n i n s o i l u n d e r w a t e r l o g g e d c o n d i t i o n s a s an i n d e x o f n i t r o g e n a v a i l a b i l i t y . Nature 201:951-952.  Walmsley,  M.,  G. U t z i g ,  T.  Void,  D.  Moon a n d J .  D e s c r i b i n g ecosystems i n the f i e l d . Mgmt. R e p o r t N o . 7 . V i c t o r i a , B.C.  van B a r n e v e l d .  RAB T e c h n i c a l 224 p p .  1980.  Paper 2.  Land  W a t a n a b e , F . S . a n d S . R . 01 s e n . 1 9 6 5 . T e s t o f an a s c o r b i c a c i d m e t h o d d e t e r m i n i n g p h o s p h o r u s i n w a t e r a n d NaHC0 e x t r a c t s f r o m s o i l . S o i l S c i . S o c . Amer. P r o c . 49:677-678.  for  3  Williams,  F.  1968.  Inc.  Reasoning with  statistics.  Holt,  Rinehard & Winston,  188 p p .  Youngberg, C.T. 1966. F o r e s t f l o o r s i n D o u g l a s - f i r f o r e s t s : dry weight and c h e m i c a l p r o p e r t i e s . S o i l S c i . S o c . Amer. P r o c . 30:406-409. .  1979.  Organic matter  of f o r e s t  floors.  Chap. V I I .  In:  Heilman, P.E. et a l . 1981. F o r e s t s o i l s of the D o u g l a s - f i r region. C o - o p . E x t e n s i o n , Wash. S t a t e U n i v . 298 p p . Y o u n g , H.E. and V . P . G u i n n . 1966. Chemical elements i n complete t r e e s o f seven s p e c i e s i n M a i n . Tappi. 49(5):190-197. Zottl,  H. 1960. Die M i n e r a l s t i c k s t o f f a n l i e f e r i n g i n Fichten-und Kiefernbestanden Bayerns. Forstwiss. C b l . 79:221-236.  mature  APPENDIX  1.  SITE DESCRIPTION OATA  Ei a s a l >lte ndex I)BH A Vrea dumber Helqht I 40 46 70 36.0 66 1 27 28 44 24.8 2 71 34 46 60 32.3 117 3 34 53 85 34.6 4 118 47 81 B5 47.8 S 117 45 70 105 41.3 6 78 26 33 60 24.9 7 80 45 66 75 42.6 8 86 43 61 80 41.3 g 84 32 49 85 33.2 10 125 42 47 40 36.9 11 69 23 25 50 21.0 12 66 25 38 75 26. 1 13 143 45 58 55 41.5 14 78 47 59 60 43.6 15 77 14 26 27 12.7 16 75 27 47 50 24.5 73 17 45 55 55 38.4 18 64 35 35 45 30.7 19 65 43 43 60 36.0 20 60 42 43 60 36.3 21 68 44 55 65 37.3 22 67 43 52 110 45.3 23 125 31 36 70 31.6 • 24 125 45 60 115 46.8 25 122 43 54 90 41.1 26 86 31 32 95 30. 1 27 96 17 25 60 17. 1 28 98 43 68 95 42.5 93 29 36 58 75 35.0 30 91 34 52 85 33.5 31 93 59 68 65 53.0 32 76 42 44 105 38.0 33 73 47 41 90 40.4 34 64 19 27 38 16.4 35 97 51 S3 95 39.5 36 53 28 31 105 26.7 37 80 37 36 100 34.7 38 82 100 41 40 38.6 BO 39 47 39 65 38.6 62 40 65 44 45 37 .6 41 69 44 35 33 29.8 42 61 36 36 95 32 .9 73 43 21 21 48 17.7 44 62 47 41 100 40.0 45 63 18 17 95 15.9 46 69 38 39 115 35.6 47 72 48 74 At 45.2 82 48 33 41 62 32. C 4S 94 ) 45 56 7C 40. £ ) BE 5C 4«> 51 7C) 51 6£ 40.e I 31 3« 5!! 33.1 7C) 5: 2<> 19 5C) 19.!> s:) 5  1M o t  Organic] Hvorotope Trophotope Matter 3 5 65 210 500 490 150 740 325 470 460 570 240 120 370 140 143 175 160 315 310 270 90 70 650 630 640 230 140 150 35 35 110 180 290 80 • 110 40 350 31 280 265 95 50 200 340 210 200 160 21 360 485 210 205 240  levatlon  1  1ope O 400 20 230 47 215 42 200 50 280 27 195 24 175 22 180 20 270 40 240 60 290 3 175 61 120 0 400 O 400 27 250 18 225 40 145 5 400 35 170 400 400 22 180 30 180 50 215 32 240 400 220 400 400 67 190 400 28 180 46 190 285 400 10 230 40 280 275 20 250 400 250 20 280 35 ISO 42 135 48 320 70 320 27 255 230 140 280 400 400  APPENDIX  2.  COMPLETE FOREST FLOOR CHEMICAL DATA--LF HORIZON  Ca Mn K Mg Zn Cu KC1 % F r a c n . Mnrzbl Plot (ppm) XA1 (ppm) %Fe (ppm) (ppm) (ppm) (nom) N (ppm) A »S %P %N Number %c 0.406 326 912 .0 0. 52 246. S4. 180 519. 23 677. 25 508 32 . 43.344 184.212 4.876 0. 180 0.069 1.111 1 37.294 0.250 0. 346 1935. 6 17 .840 76. 712 646. 70 1248. 80 758. 20 77.069 5.637 404.611 0. 156 0.095 1 .213 2 37.375 0.348 0. 321 871 .1 199. 91 687. 75 0. 138 4 .677 72.626 70.426 63 .273 50. 4 35 458. 50 0.064 0.935 3 35.488 0.353 0. 331 1192. 1 76 .821 59. 161 507. 73 772. 63 286.09 6.976 46.622 69.934 0. 140 0.073 1.113 4 34.967 0.538 0. 554 815. 4 17 1 19. 761 . 60 82 .432 62 .720 761 .60 4.516 135.475 60.211 0. 155 0.058 1 .084 5 35.930 0.556 0. 373 970. 2 7 1 .971 152.4 10 108 .486 68. 796 992. 25 926. 10 427. 77 0. 164 4.816 0.066 1 .261 6 32.722 0.565 0. 367 1820. 9 2377. 05 6.566 495.144 64.584 182 .091 108. 537 1143. 68 1345. 50 0. 170 1 . 193 0.099 7 32.740 0.247 0. 216 1982 .3 398. 21 506. 57 792. 90 22 .025 59. 027 5.762 139.550 93.034 0.082 0. 160 1 .304 8 38.588 0.312 0. 295 1213. 1 23 .192 62. 440 579. 80 914. 30 590. 50 0. 161 4.353 517.360 85.632 0.089 1 .249 9 34.520 0.263 0. 326 1306. 7 22 .802 50. 866 504. 27 767. 38 313. 97 0. 143 4 .929 732.470 82.087 0.075 1.131* 10 35.694 0.356 0. 295 7787 .5 49.128 21 .360 58. 740 1090. 25 912. 25 504. 63 4 .076 422.928 0. 139 1 . 157 0.092 1 1 35.689 75 0.337 0. 248 7761 .3 2882. 59.606 1308. 32 1064. 40 51 .446 93. 135 5.393 311.869 0. 153 0. 100 1 .215 12 37.254 0.378 0. 282 8350. 5 48.521 17 .580 65. 046 1164. 68 1296. 52 2658. 98 0.131 5.327 425.084 0.092 1 .028 13 34.720 0.227 0. 168 31 10.4 69.984 13 .770 45. 360 567. 00 972. 00 789. 75 0. 105 4.374 322.704 0.073 0.956 14 30.051 0.309 0. 221 2654 .8 270.950 55.037 14 .1 12 50 274 771 .75 1367. 10 926. 10 0. 102 5. 133 0.086 0.997 15 34.222 0.513 0. 387 2492. 9 3624. 67.007 40 314.881 1215. 50 1259. 70 37 128 83 980 0.117 4 .473 0.080 0.990 16 33.857 0.536 0. 428 1839 6 45.007 66.439 44 650 92 872 1272 52 1428. 80 1562. 75 0. 128 4.054 0.076 1 .081 17 30.005 0.469 0. 410 1202. 7 32.755 126.926 125 391 24 737 831 68 853 00 224 34 0. 160 2. 883 0.073 1 .407 18 29.684 0.356 0. 291 1023 5 264.864 102.528 418 300 51 620 534 00 1068 00 289 25 0.087 0. 156 4.717 1 .264 19 38.893 218.772 174.168 212 400 59 295 685 88 2168 25 663 75 0.469 0. 311 1309 8 0. 157 4.531 1 .425 0.091 20 33.099 0.374 0. 226 1887 9 267.264 87.696 33 930 63 510 478 50 1065 75 870 00 0. 155 4 .942 360.672 95.472 1 . 166 0.084 21 37.062 0.380 0 259 3041.O 1237 60 928 20 0.095 0. 151 4 . 102615.600 84.240 34 476 75 140 751 40 1 .406 32.973 22 0.477 0 373 6525 0 1620.00 1687 50 1327 50 10 800 69 300 0. 125 3.672 648.614 1 . 107 0.081 23 35.910 81.077 0.356 0 276 7778 8 8 890 63 1 19 1111 25 1755 77 2533 65 7.308 236.813 128.978 0.111 1 . 182 0. 107 24 33.960 0.440 0 321 7929 0 13 215 87 219 1211 38 1651 88 947 07 0. 130 7.559 515.596 155.0O2 0.088 1 .313 25 33.214 0.493 0 460 7400 3 1 1 661 71 760 1704 30 2915 25 2332 20 7.086 0. 109 0. 107 1 . 166 26 36 . 149 508.771 130.176 0.723 0 659 3091 7 3683 80 8 . 787 504.526 149.016 22 600 75 936 2666 80 1559 40 0. 113 0.111 1 .058 27 31.098 0.443 0 388 6652 5 9 757 84 265 1907 05 1774 00 4878 50 0. 127 5.020 456.576 216.480 0. 121 1.171 28 35.746 0.492 0 453 2345 2 84 337 9 020 125 460 1209 50 779 OO 0.098 2. 165 537.264 100.464 0.927 0. 106 29 24.190 0.864 0 783 2302 3 00 1001 1296 75 1956 50 12 740 40 040 4 .823 725.760 69.120 0. 117 0.099 1 .046 30 29. 302 0.5B5 0 497 7875 0 27 000 45 900 1687 50 1080 00 810 00 0. 152 4 .032 214.973 28.517 1 .278 O. 1 18 23.670 31 1 .280 1 252 1297 9 17 366 42 044 3998 75 1805 15 982 55 0. 120 3.948 407.322 59.315 0. 137 0.850 32 25.226 0.296 0 211 7392 0 80 940 OO 1232 10 752 43 008 1120 00 4.695 0. 126 1 . 183 0. 126 19.678 33 36.288 30.610 0.501 0 374 2541 .7 63 1161 52 1252 1138 75 906 41 487 15 0. 102 3.899 369.528 46.992 0.088 0.783 34 32.705 0. 178 0 132 8010 .0 10 680 72 .090 823 25 1379 .50 6363 .50 4.236 1 . 148 0. 1 14 0.114 83.585 42.864 35 33.998 1.116 0 674 1223 .4 15 . 181 55 .366 2098 .55 1026 .95 535 .80 3.751 0. 104 0. 113 27.267 0.938 36 30.183 0.320 0 214 10293 .8 .88 3499 915 .OO 983 .63 0.0 0. 102 6.112 22.236 21 .045 87 .840 0.814 0. 106 37 33.306 0.536 0 .349 8706 .8 .25 3415 .73 58.313 4.715 17.030 40 . 185 142 .880 1339 .50 1116 0. 1 14 0.096 0.920 38 32.952 0.710 0 .439 10644 .0 1862 .70 0. 121 5.003 178.819 18.119 124 . 180 365 .444 1907 .05 975 .70 0. 106 0.931 39 27.586 0.807 0 .465 7176 .0 .87 1533 784 .88 19.555 21.600 42 . 159 138 . 138 1928 .55 4.575 0.098 0.096 0.834 40 28.614 1.737 1 .395 720 .0 .00 990 1125 .00 3015 .00 53 . 100 27 .900 19.890 0.098 5.544 154.440 0. 109 0.873 30.060 41 1 .215 0 .936 1863 .0 18 .000 63 .000 2362 .50 1237 .50 1620 .00 1 .620 33.984 5.202 0.094 0. 102 0.810 42 29.070 0.619 0 .338 7522 .5 1526 .63 17 . 700 52 .215 1659 .38 663 .75 25.546 0.117 5.292 229.392 0.088 1 .000 43 33.895 0.692 0 .543 5543 .8 15 .966 67 .412 1884 .88 1663 . 13 6209.00 42.384 5.659 85.152 0. 100 0. 100 0.887 44 26.610 1 .351 1 . 121 2419 .4 19 .426 56 .512 3642 .38 1434 .88 761 . 15 0.099 6.464 214.039 34.948 0.072 0.945 45 26.B43 0.843 0 .700 2492 .5 2971 .45 0.098 6. 120 47 .01 1 26 .399 10 .644 65 .638 2062 .27 1352 .68 0.090 0.798 46 35.923 1 .469 1 . 144 1486 .6 910 .01 1238 .88 47.467 22 .525 46 .852 3626 .52 0.085 4.829 64.421 0.077 0.631 24.147 47 0.611 0 .528 2270 .0 17 .980 71 .920 1033 .85 730 .89 593 .34 49.294 0. 136 4 .657 448.78 1 . 322 0.091 48 27.419 0.250 0 .257 1035 . 9 23 .218 63 .403 602 .77 1596 .68 428 .64 51 .09 87.871 6.519 0. 137 1 . 152 0.096 49 34.380 0.248 0 .212 971 .3 1 13.54 16 .853 50 .559 510 .02 598 .73 5.428 640.769 45.883 0.057 0. 145 1.215 50 31.666 .44 0.521 0 .417 6952 .0 534 847 .27 1868 .35 7 .821 35 .629 42.432 0.071 0. 1 15 4.762 298.24 1 .060 30.763 51 0.212 0 . 190 8287 .5 33.677 7 .072 60 . 112 960 .91 1 149.20 4641 .00 0.097 0. 1 13 7.779 339.456 1 .025 52 33.327 0.210 0 . 158 9427 .8 7 .893 48 .235 1 195.35 986 .63 1896 .95 8.419 5.297 0.083 0. 108 0.886 53 30.432  APPENDIX 2.2  Plot  COMPLETE FOREST FLOOR CHEMICAL DATA--LF HORIZON  P/Al Ca/Mq K/Ca Ca/Al N/K N/Mn N ^J/S er (:/N 0.211 1 .757 0.743 O. 280 16.400 6. 181 16.184 45.055 1 33.577 273 2.993 0.645 0.559 9.714 16.000 12.830 7.771 2 30.809 200 1 .900 O. 789 0.271 13.600 46.789 14.571 6.755 3 37.941 221 2.348 0.648 0.360 14.400 38.889 15.181 7 .925 31.429 4 105 1 .071 0.934 O. 147 14.235 18.615 90.977 6.994 177 5 33.140 0.978 0.955 O. 260 13.619 19.067 29.485 7.688 269 6 25.944 0.739 1 .592 0.496 8.867 5.019 12.091 7 .037 27.444 0.380 7 0.400 3.913 16.444 0.918 8. 132 15.914 32.743 0.302 8 29.595 0.754 2 .092 13.659 0.411 •7 .735 14.000 21.148 0.231 9 27.643 0.587 2 .591 14.743 36.034 0.401 15.000 7.914 0.117 10 31.550 7 . 143 0.311 12.683 22.928 2.644 12.621 8.333 11 30.846 7 . 292 0.4O4 9.288 4.215 3 . 125 0. 169 12.124 0.327 7.919 O. 155 12 30.657 7. 170 7.932 3.868 11.143 2.960 0.433 7.852 0.312 13 33.761 5.486 9.833 12.103 13.111 1 .846 O. 390 9.077 14 31.441 3.440 7 . 290 1 . 199 0.515 10.762 I 1 .531 9.741 34.336 0.488 15 1 .979 0.205 8. 145 2.732 0.644 12.444 O. 177 8.485 0.777 16 34.196 1 .446 7.562 6.914 0.430 14.235 8.462 0.709 17 27.769 1 .446 O. 177 16.500 62.738 0.293 19.412 0.300 8.777 1 .043 1.917 18 21.091 11.833 43.692 0.352 14.490 8.114 655 1 .910 0.293 19 30.775 6.571 21.467 0.422 15.631 0.369 9.096 565 3.945 20 23.230 10.939 13.400 0.835 13.958 0.369 305 7.528 31.791 4 .047 21 15.143 11.357 1 . 174 14.722 0.217 259 9.298 4.915 22 23.459 560 6.833 1 .747 13.667 0.386 226 8.849 7 .000 23 32.439 734 4.667 2.814 0.275 II .083 208 10.640 6.545 24 28.722 947 13.860 2.473 O. 232 394 4.342 25 25 .302 10. 136 14.900 000 5.OOO 1 .608 O. 171 10.924 0.504 31.OOO 10.744 783 26 2.871 159 0.469 0.311 0.267 9.360 9.512 27 29.402 600 2.40O 488 1 .716 0.234 O. 332 9.706 9.231 11.895 28 30.530 27.427 939 0.518 0. 150 0.563 8.760 9.417 8.070 29 26. 106 10.455 177 0.294 O. 237 O. 137 8.915 10.550 11.833 15.778 30 28.000 667 1 .585 O. 109 1 .391 10.840 8.402 4.709 18.521 8.651 31 325 O. 104 0.600 O. 167 6.200 12.571 7.099 9.600 32 29.677 600 3.51 0.237 0.493 9.362 9.362 6.255 6.745 33 30.682 232 0.680 0.865 O. 172 8.866 7.679 8.323 1 .804 34 41.744 730 6.081 0. 154 0.839 10.078 10.078 9. 130 17.500 35 29.612 583 O. 181 0.496 0.089 9.052 8.900 8.333 2.327 32.190 36 10.465 4.808 0.327 O. 128 7.672 8.240 8.018 2.693 37 40.899 6.50O 0.242 2 .494 0.092 8.047 9.545 9.626 5.000 5.581 38 35.825 0.207 2.424 O. 109 8.750 10.629 5.439 7.721 3.721 39 29.619 0.078 1 .544 1 .563 8.692 7.760 8.818 8.532 0.239 40 34 .301 O. 101 O.OS2 0.664 8.017 6.545 5.000 8.899 34.433 0.789 41 0.262 0. 199 088 8.571 15.067 6.551 7.965 4 .533 42 35.889 0. 185 2.225 300 O. 1 1 .300 1 .429 5.333 8.561 2.941 43 33.894 0.064 1 .021 8.850 0. 593 6.585 12.413 8.850 0.664 4-4 30.000 O. 128 0.216 13.210 o.543 5.902 2.687 9.554 1 .209 0.067 28.411 45 0.356 833 8.91 o. 5.091 6.931 0.4 8. 182 45.000 46 O. 172 0. 130 8.235 22 . 273 18.08 o.322 2. 196 7.447 38.286 41 0.372 0.430 14.554 26.875 o.54 1 . 7.19 O. 268 9.735 20.748 4E 0.403 616 12.056 107.031 1. 7.215 1 .904 8.431 29.845 4£ 0.17 1 O. 458 21. 406 19.837 20. 296 0. 122 3.721 8.354 26 .05f 5C) 0.512 1 .667 14.878 o. 139 2.210 12.513 8.625 9.242 29.01C 5 O. 528 4.360 10.545 o. 105 8.923 4 .669 7 .887 ) 9.063 32. SOC 5 :! 5.972 10.632 0. 8.978 > 8.211 5: 1 34.35(  CO  APPENDIX 2.1  COMPLETE FOREST FLOOR CHEMICAL DATA--H  Mn Ca :u Zn « % F r a c n . Unrzbl. <C1»A1 =>lot ppm) (PPm) ..(PP") (ppm) ( >J (ppm) Extr. N (ppm) 236 0.493 KP 0.591 •Jumber nc 98.28 m Y.S A 455.OO 5.405 104.832 26. 208 23.660 50.960 750.75 168 0.055 0. 155 0.709 0.919 0.400 113.66 t 37.219 15.984 55.056 510.60 1021 .20 49.018 78.854 8.87 1 298 0.085 0.141 0.333 1 .048 123.85 0.660 2 34.810 519.80 723.20 4 . 249 158.381 36.883 40.680 54.240 400 0.054 0. 120 0.691 0.786 32.544 139.23 0.710 3 568.75 910.00 4.623 218.400 43.680 51.870 59.150 273 0.055 0. 1 18 0.898 0.855 112.24 0.976 4 28.392 170.80 902.80 2 . 147 384.154 37.478 48.800 56.608 305 0.051 0. 1 16 0.562 0.869 378.96 0.943 5 30.939 77.587 44.900 66.452 785.75 898.00 146.554 577 4 .400 0.057 0. 1 19 0.471 721.60 0.979 0.613 834.35 969.65 6 32.508 70.356 82.082 40.680 6.242 294.864 742 0.077 0. 144 0.386 87.52 0.947 0.424 7 34.276 17.680 54.808 530.40 640.90 92.643 59.405 636.2 4.261 0. 155 172.93 0.429 1 . 132 0.071 0.493 8 33.857 62.720 582.40 694.40 20.608 54.656 398.003 478.8 4 . 489 0. 152 92.34 0.515 1 . 138 0.073 641.25 0.368 9 34.138 17.955 50.445 598.50 1248.8 4.566 139.108 80.455 0.847 0.064 0. 127 1 .008 0.983 1516.40 869.70 599.42 10 32.917 2 1 .408 64.224 56.553 997.9 3. 140 140.401 0. 1 19 0.463 1 . 177 0.085 0.606 1002.38 1514.70 002.38 1 1 32.736 2167 5.203 445.678 46.154 35.640 69.498 1360.30 1338.00 2140.80 0.092 0. 146 0.551 0.624 0.989 12 35.818 16 .056 47.276 1352.5 4 . 567 111.322 38.534 159.53 0.266 0.073 0.099 0.347 0.776 563.55 997 .05 13 34.253 10.404 39.015 91.555 1169.8 0.0 2.480 146.45 0. 1 14 0.282 0.384 669.75 1071.60 1 . 1 10 0.077 14 32.079 8.930 32.148 47.150 171.456 3.215 368.0 0.957 0.071 0. 121 1587.00 1725.00 1035.00 1 .058 0.938 15 35.452 3. 128 477.848 38.824 34.040 63.480 1820.95 1844.00 507.10 239.7 0.069 0. 104 1 .475 0.718 1 .365 16 24.932 453.624 33.192 36.880 65.462 1569.75 1274.00 282. 10 3. 172 218 0.063 0.099 1 .410 1 .438 0.710 17 22.128 70.980 65.520 39.312 463.008 2 . 184 97.55 295 648.88 1543.88 0.618 0.071 0. 141 0.698 1 .046 18 24.388 49.404 53.700 68.02O 408.120 5.495 279.03 1219.05 261 .9 970.73 0.869 0.065 0. 132 0.958 1 .020 19 33.473 95.357 112.875 79.464 875.55 1302.10 257.73 647.993 3.413 314 0.084 0. 157 0.763 1.111 0.898 20 31.966 36.818 75.432 45.259 254.314 5 . 334 689.9 873.60 851.20 241.92 0.552 0.081 0. 150 0.952 0.699 33.046 21 31.360 84.224 55.910 199.987 1620.00 3.889 2970 1372.50 1980.00 0.651 0. 171 1 . 147 0.075 0.882 22 33.062 13 .500 62.100 1786.00 2232.50 3795.25 7 . 272 241.920 38.880 1652 0.884 0. 124 1 . 197 0.082 1 .009 23 33.570 13.395 64.296 1622.45 1732.07 767.38 116.804 72.869 7.305 1640.0 0.741 0. 107 0. 113 1 .027 1 .009 30.273 24 21.925 58.759 75.773 5445.00 368.340 5.016 2587.50 1575.00 0.760 1656.0 0.075 0. 147 1.272 0.495 25 32.361 15.300 62.100 2289.90 1526.60 5432.90 73.440 5.634 92.880 2891.6 0.871 0.954 0.112 0. 116 0.718 26 32.040 11.674 77.228 1836.38 1438.13 8628.75 7.274 293. 107 86.208 0.599 5973.8 0. 121 0. 108 1 .042 0.735 27 30.352 11.505 106.200 2256.30 952.20 544.82 4.655 335.592 89.208 331 0. 107 1 .656 0. 150 1 .615 1 .062 28 31.240 8 . 280 36.432 2598.40 1276.OO 742.40 186.797 53.654 2.236 612.5 1.717 0.065 0.489 0. 1 13 1 .698 18.630 29 13.920 60.320 2363.40 1272.60 863.55 48.998 290.650 3.267 1436.2 0.724 0. 108 0.111 1 . 1 18 1 . 109 30 29.789 3.236 475.589 47.995 27.270 52.722 9249.15 2629.20 1878.00 385 0. 135 3.756 0. 109 3.474 0.973 33.451 31 9.014 37.560 62.913 1642.50 1237.50 1620.00 2 . 329 101.412 6075.0 0.571 0. 164 0.060 0.479 0.675 11.268 32 399.89 18.900 47.700 1004.30 30.240 1118.43 299.160 4.212 730.4 0.603 0.089 0. 132 1 .035 0.73O 33 31.500 8.217 32.868 950.25 1018. 13 3167.50 1 .881 241.945 25.381 841 .6 0.639 0.084 0. 109 0.776 0.751 26.294 34 652.50 22.625 57.015 24.344 900.00 3105.00 4.308 167.696 1 .485 423.0 0. 124 0. 126 0.986 2.277 35 30.317 4375.80 22.500 69.300 994.50 34.560 1 193.40 284.040 3.258 0.390 6851 .0 0. 106 0. 105 0.837 0.601 36 23.580 1051.63 5079. 13 31.824 23.868 83.980 2282.25 0.0 5.375 0.868 7383.8 0. 106 0.089 0.796 1 .325 37 33.327 3.866 196.810 22.285 51.910 176.315 4248.80 700.60 2350.40 1 .356 2802 0. 105 0. 1 16 0.850 1 .926 38 26.939 9.582 133.792 316.40O 3258.88 764. 15 1573.25 3.453 117.339 1 .016 6517.8 0.099 0.099 0.678 1 .645 39 23.323 23.284 75.516 201.376 4370.00 1081.00 1251.20 167.663 3.740 2.300 7130.0 0.095 0. 101 0.728 3.570 40 27.240 17.664 44.160 69.920 4080.65 917.00 2452.98 216.384 3 . 367 2.292 9170.0 0.075 0. 109 0.653 3.026 22.816 41 2958.05 927.15 2781.45 33.012 89.866 22.466 3.283 191.011 0.808 1854 0.083 0.081 0.614 1.413 18.065 42 4036.50 1883.70 6009.90 26.490 60.044 25.430 383.575 1 .435 4 .062 708.6 0.086 0. 109 1 .015 1 .794 43 26.048 16. 146 94.185 4847 . 10 1630.80 1753. 1 14.173 0.897 1.812 5.777 1494 .9 0. 124 0.081 0.673 2.038 32.023 44 251.324 22.650 23.556 83.352 2148.00 1767.63 3468. 1 1 .074 1020.3 4 . 149 0.065 0.086 0.797 1 .253 20.204 45 12.530 65.335 5093.50 1043.75 1035.40 22.375 2.505 5.674 0.0 2O0.4 0.095 0.081 0.689 3.323 46 28.103 44.088 35.070 51.770 1730.63 957.15 1306.05 1 .777 0.0 2 . 388 383 .0 0.076 0.023 1 .717 0. 109 14.008 47 104.60 87 1.65 581 . 1 17.722 • 19.383 85.839 0.386 194.938 2.972 433.6 0.096 0.098 0.358 16.614 0.821 48 57.59 531.60 509.45 23.244 58.1 10 34 . 33C 0.318 5.695 102.989 358.8 0.072 0. 129 0.354 0.957 33.078 49 14.176 51.388 4387.71 846.65 871 .4 34.022 2.065 4.767 253.042 1652.0 0.048 0. 144 1 .276 2.065 20.996 5C 17.346 48.734 1329.OO 1251.92 4031.30 65.419 0.495 3765.5 261.677 2.461 0.05G 0.085 0.79C 0.602 19.41 51 9.746 54.046 1236.90 1041.60 2148.30 0.371 4 . 731 191.376 42.526 6293.0 0.111 0. 106 0.951 0.503 31 .27« 52 47.740 8.68C 37.496 4 . 878 170.822 0.086 0. 104 0.95* 33.93E 5C CD  APPENDIX 2.1 COMPLETE FOREST FLOOR CHEMICAL DATA--H  HORIZON  Plot Ca/Mq P/A1 Ca/AI K/Ca N/K N/Mn N/P N/S dumber C/N 0.048 1 .923 0. 315 0. 111 1 40. 495 5.94 1 16. 833 93. 519 20. 200 0.024 6.053 0. 330 0. 120 10. 261 12. 292 92 .187 7. 421 2 33 .220 2. 424 0. 574 0. 163 0.090 10. 875 14. 500 63. 504 3 41 .379 6. 541 0.058 2 . 273 0. 704 0.079 40O 667 438 9. 61 . 7. 231 15. 4 33. 191 0. 303 0.057 0.030 0. 625 17 .1 15 77 .391 50. 857 7. 479 5 35. 618 0.054 2. 941 0. 389 0. 101 10. 900 17. 302 25. 829 8. 195 33 .211 6 1 . 680 0. 692 . 0.163 767 0. 123 9. 13. 125 12. 353 6. 562 7 36. 190 0. 863 1 . 400 0. 183 0. 192 17. 655 293 314 129. 16. 000 7. 8 29. 922 0. 148 1 . 092 1 . 092 0. 171 16. 387. 15. 488 65. 803 7 .471 9 30. 000 0.093 1 .339 0. 800 0. 125 15. 333 7. 770 15. 333 106. 481 10 33 .478 0. 147 0. 696 o. 824 0. 100 643 538 13. 19. 13. 895 9. 925 1 1 27. 803 0.215 1 . 518 0 996 0. 198 867 6. 529 777 9. 10. 6. 768 2 16 36. 12 0.393 0. 617 1 593 0. 133 5 80O 3 625 7 .838 10 610 13 44. 138 0.508 737 2 400 0. 290 0. 1 1 130 14 382 69 565 9. 697 14 28. 906 0.415 0 916 1 747 0. 253 64 750 024 8 125 13 7. 721 15 37 .810 4 688 0 232 0.072 0.038 4 160 6 933 6 903 10 400 16 34. 744 0.016 7 692 0 132 0. 042 14 000 3 850 1 1 324 7 196 17 31 169 5 833 0 139 0.050 214 0.015 097 8 37 14 744 7 419 18 23 304 0.048 5 227 0 455 0 106 6 203 7 230 14 658 98 165 19 34 953 4 655 0 270 0 097 9 1 1 1 0.030 13 226 39 806 7 069 20 28 780 0.041 4 143 0 359 0 106 934 7 310 11 778 36 6 347 34 717 21 1 234 0 790 0 136 474 0. 125 47 407 13 15 238 702 6 22 28 828 0.456 0 667 2 164 0 126 6 045 7 389 14 615 9 638 23 28 045 0. 187 1 351 0 925 0 121 4 600 2 706 9 583 9 127 24 29 478 7 342 0.221 1 056 1 01 1 0 101 57 1 16 17 059 8 631 25 25 448 0.218 0 951 0 640 0 147 1 752 6 057 8 548 8 217 26 33 585 0.332 0 528 1 263 0 124 6 824 1 917 9 667 8 593 27 29 138 0.997 0 24 1 3 253 0 250 7 385 1 231 7 101 9 917 28 29 417 2 875 0 147 0 068 0.020 967 5 130 8 564 4 338 7 29 38 136 0.036 2 083 OT236 0 065 5 673 9 750 6 500 6 724 30 41 154 0 608 0 098 0. 130 0 886 7 643 1 1 263 7 181 8 917 34 393 31 6 829 0 042 0 044 0.010 1 821 914 2 550 7 969 2 32 23 529 3 699 0 156 1 .063 0 204 8 364 6 389 11 616 7 823 33 30 435 1 375 0 653 0 139 0. 121 7 727 19 406 7 143 9 239 34 33 882 1 210 0 886 0 197 0. 132 9 689 3 1 14 7 842 7 956 35 30 734 0.028 2 128 0 136 0 071 828 9 300 949 12 7 7 881 36 28 172 1 . 757 0 145 5 741 0 272 8 000 1 818 7 500 8 911 37 41 889 0.851 0 142 3 235 0 134 8 085 1 .674 7 .308 8 120 38 31 684 .677 O.207 0 250 0 660 0 073 9 .885 6 .818 2 6 .818 39 34 400 0.642 0 . 1 17 2 .000 0 094 .529 4 .629 9 7 .642 7 .407 .232 37 40 0 . 152 1 .632 0 048 0.310 5 . 22 1 6 .043 5 .966 34 .930 8 .659 41 . 100 2 .247 0 036 0. 400 0 6 .700 2 .505 7 .444 7 .614 42 29 .403 0 .667 0 106 .500 0.230 0 .952 .433 .856 3 10 11 9 .350 43 25 .652 0.049 2 .658 0 . 176 0 086 1 . 1 19 3 .571 5 .435 44 47 .600 8 .333 1 .091 0 .308 0 036 0.082 4 .889 4 .548 12 .222 9 .263 45 25 .341 1 . 732 0 .475 0 .088 0.095 3 .899 1 .987 7 .264 8 .556 46 40 .779 0.008 5 .208 0 .039 0 .030 1.040 1 .048 1 .429 4 .643 47 36 .923 2 .499 0 .221 0 .054 0.022 6 . 290 8 .582 8 .558 8 .396 48 20 . 225 .010 0 .746 0 . 185 .974 2 0. 1 12 10 13 .375 91 .453 7 .431 49 34 .579 1 .481 0 .704 0 . 150 0. 113 24 .000 .538 26 .667 221 .889 16 .458 8 50 0 . 377 0 .027 0.080 0 .512 24 .479 9 .320 14 . 1 18 9 . 100 9 .366 51 0 .332 2 .833 0 .215 7 .643 0.760 2 .374 9 .000 8 .640 52 32 .685 5 .088 0 .237 1 .698 0 . 166 4 .444 9 . 167 9 . 167 10 .891 53 35 .545  CO  o  81  KEY TO ABBREVIATIONS USED IN APPENDICES SITEINDX  s i t e index (m/lOOyrs)  PH  pH (CaCl )  HC%  total carbon  HN  total nitrogen  HP  total phosphorus  HS  total sulphur  HFRACAX  fraction A - l i p i d s  HNMNRLPP  mineralizable nitrogen (ppm)  HNEXTRPP  K-Cl  HCUPPM  total copper (ppm)  HZNPPM  total zinc (ppm)  HFE%  total iron  HAL%  total aluminum  HMG%  total magnesium  (%)  HK%  total potassium  (%)  HMN%  total manganese  (%)  HCA%  total calcium  HCNRAT  carbon:nitrogen r a t i o  HNPRAT  nitrogen:phosphorus  HNSPRAT  nitrogen:sulphur  HNKRAT  nitrogen-.potassium  HKCARAT  potassium:calcium  ratio  HCAMGRAT  calcium-.magnesium  ratio  HPALRAT  phosphorus:aluminum  2  (%) (%) (%)  (%) (%)  extractable nitrogen (ppm)  (%) (%)  (%)  ratio  ratio ratio  ratio  3.0, 3.1, 4.0, 4.1 AND 4.2  HNMNRAT  nitrogen:manganese  ratio  NCAALRAT  calcium:aluminum r a t i o  NH4NPPM  total  FRAXNA  f r a c t i o n A-lipids (ash free  NH4NPPNA  total ammonium nitrogen (ash free  KGHAHC  carbon (kg/ha)  KGHAHN  nitrogen (kg/ha)  KGHAHP  phosphorus (kg/ha)  KGHAHS  sulphur (kg/ha)  KGHAHFRA  fraction A-lipds (kg/ha)  KGHAHFE  iron (kg/ha)  KGHAHAL  aluminum (kg/ha)  KGHAHMG  magnesium (kg/ha)  KGHAHK  potassium (kg/ha)  KGHAHMN  manganese (kg/ha)  KGHAHCA  calcium (kg/ha)  KGHAHMNR  mineralizable nitrogen (kg/ha)  KGHAHNEX  KC1 extractable nitrogen (kg/ha)  KGHAHCU  copper (kg/ha)  KGHAHZN  zinc (kg/ha)  KGHAHNH4  ammonium nitrogen (kg/ha)  ammonium nitrogen (ppm) basis) basis)  APPENDIX N=53  3.0 C O R R E L A T I O N M A T R I X FOR A L L C H E M I C A L D A T A - - L F  DF=51  .2 7 0 6 R@ ,05= .  HORIZON  R@. 0 1 = . 3 5 0 9  VARIABLE 5.SITEINDX  1 .0000  19.PH  -.0796  1.0000  32.HCX  -.2413  -.4657  33.HNX  .0705  34.HPX  -.1188  .5640  -.4851  1.0000 .3875  1.0000  -.2077  -.0932  1.0000  .0491  -.7150  .4631  "7742  -.3207  1.0000  36.HFRACAX  -.2572  .0747  .2397  .0079  .0676  -.1007  37.HNMNRLPP  -.0829  .0493  .0883  .4452  .2270  .2068  .0580  1.0000  38.HNEXTRPP  .0496  -.2359  . 1337  .6609  .0058  .3123  -.0597  ..3954  39.HCUPPM  .0050  -.3877  .3201  -.1443  .4304  -.0856  -.1243  .2354  40.HZNPPM  -.0729  .2729  -.1588  -.1334  .2136  -.0921  .0148  -.0801  -.0825  44.HFEX  .2522  .4276  -.5818  -.5220  . 1978  -.4545  -.0321  -.2746  -.2801  -.0739  .0235  1.0000  45.HALX  .2424  .3766  -.5610  -.4769  .2041  -.4081  -.0080  -.1849  -.2148  -.1070  -.0694  .8621  47.HMGX  . 1336  .6878 3"  -.6177  -.5616  .3829  -.5873  .0907  -.1366  -.2593  -.2236  .0583  .8827  .8780  1 .0000  .2844  -.0203  -.0286  . 1291  . 1721  .3100  35.HSX  . 1876  1.0000  1.0000 1.0000 . 1426  48.HKX  -.1450  .3222  .0335  .0538  .4368  -. 2304  .3337  . 1679  49.HMNX  -.6587  .4787  .0140  -.2187  .4465  -.3782  .3093  .0325  -.1489  -.1955  50.HCAX  -.2495  .6628  .0003  -.0976  .4095  -.3173  . 1858  . 1270  51.HCNRAT  -.2405  . 1582  .2747  -.7598  -.0713  -.4765  . 1369  -.7256  .3506  .6696  52.HNPRAT  . 1933  53.HNSRAT  .0177  .4128  -. 1403  S4.HNKRAT  .2530  -.5753  . 1684  55. HKCARAT  .2364  -.4997  56.HCAMGRAT  -.2613  57.HPALRAT  -.2808  58.HNMNRAT  . 3030  -.7670  .7230  -.0769  .3677  -.4573  .2016  .4701  -.4984  .5980  -.2546  -.0127  .0623  -.1342  .2530  -.0622  .3298  .2545  .0743  .2629  -.1151  -.0278  .3754  .2387  .2509  - 6712  . 1642  .3434  -.5946  . 1963  S9.HCAALRAT  -.3119  4112  64.NH4NPPM  -.0613  -.0026  ,0982  .5094  65.FRAXNA  -.3027  -.1324  .5895  . 1788  66.NH4NPPNA  -.1064  -.0647  .2910  .5445  32. HCX  33. KMX  5. 19. SITEINDX PH  . 1435  -.0452  1.0000  1.0000  . 1931  -.0726  -.1034  . 1561  -.2506  -.3294  .0414  -.1961 .  -.2440  .3783  -.4548  -.4994  -.1833  -.0084  .1100  .3353  .2912  -.2412  -.4306  -.3886  .3380  .3166  -.2325  -.0415  -.0387  -.0416  . 1212  .0819  . 1286  -.0880  -.3685  -.3599  . 1355  .3864  -.2573  .3688  .4345  -.2386  . 1553  . 1145  . 1472 -.5850 . 1062 -.5395 . 1217  . 1685  . 1461  -.1479  -.2094  . 1861  -.5413  -. 5904  -.3151  .0630  .0727  . 1504  -.0110  -.0693  .0102  -.6707  -.6961  -.5051  .5173  -.1935  .0352  .2652  -.2139  -.2214  -.1427  -.4062  -.4247  -.4773  -.1703  -.3188  -.1840  . 1648  . 1532  .0536  -.2051  -.2237  .2424  .0264  .9794  .5324  -.0706  -.0850  -.3129  . 1043  .9175  .0962  .0549  -.0062  -.0484  -.2913  -.2586  -.1990  . 1518  .2979  .0857  .9568  .5133  -.0359  -. 1054  -.3839  -.2932  -.2581  34. HPX  35. HSX  36. HFRACAX  37. 38. 39. HNMNRLPP HNEXTRPP HCUPPM  44. HFEX  45. HALX  47. HMGX  .2998 . 1995 -.0251  -.2251  . 1476  40. HZNPPM  oo  CO  APPENDIX  48.HK%  3.0  continued.  1 .0000  49.HMN%  .3803  50.HCAX  . 1673  1.0000 .5266  1 .0000  51.HCNRAT  -.0430  .2198  .0827  1.0000  52.HNPRAT  -.3152  -.4808  -.3934  -.4377  1.0000  53.HNSRAT  .4387  .2915  .3458  -.3164  -.1803  1 .0000  -.2461  -.3584  .6997  -.2670  1 .0000  . 1869  -.3130  -.0821  1.0000 1.0000  S4.HNKRAT  -.7816  -.4911 -.4042  -.7720  -.0576  55.HKCARAT  . 1683  56.HCAMGRAT  .0324  .4613  .8611  .0864  -.1913  .2755  -.0717  -.7065  .3960  .4967  -.0066  -.0722  .2371  .0091  .7960  1 .0000  .0165  -.4007  57.HPALRAT  -.4813  -.2385  .7592  -.3120  .7100  .1932  ' .0000  -.5577  -.3358  -.4552  .3165  58.HNMNRAT  -.2779  .2773  -.1532  " .3740  1 .0000  .8480  .8077  .5329  .9405  .0520  -.6461  59.HCAALRAT  .0680  .0096  64.NH4NPPM  . 1965  -.0055  .0746  65.FRAXNA  .2874  .2450  . 1555  .2381  .0231  .0816  48. HKX  49. HMNX  50. HCAX  66.NH4NPPNA  . 1303 -.5134 . 1968 -.4208 51 . HCNRAT  . 1329  . 1676  .3726  .0840  . 1313  .2143  .3368  . 1181  52. HNPRAT  53. HNSRAT  54. HNKRA  -.1292  -.1969  . 1072  . 1402  -.0711  .2541  .2268  -.1863  . 1513  . 1982  55. HKCARAT  " .0887 .0678  58. 57. 56. HNMNRAT HCAMSRAT HPALRA"  1.0000  . 1885  .0866  1.0000  .0427  .9726  .2049  64. 59. HCAALRAT NH4NPPM  65. FRA%NA  1.0000 66. NH4NPPNA  CORRELATION MATRIX FOR A L L CHEMICAL DATA--H  APPENDIX 3.1 N = 53 5. SITEINDX  5  R@  R@ . 05 = .2706  DF =  HORIZON  .01 =.3509  1.0000 -.0101 -.2957  .4651  1 .0000  3 3 . HNX  .0317  .4652  .6836  1.0000  34. HPX  -.1197  .5778  -.1569  -.2284  1.0000  3 5 . HS%  .0218  .6922  .7305  .8470  -.3559  1.0000  .5305  .3993  .0302  .3476  1.0000  .4246  -.1729  1 .0000  .0046  . 1 109  -.0020  .0336  <1 . 0 0 0 0  -.0954  . 1016  -.1924  .3266  -.1816  11 . 0 0 0 0 .6786  1.0000  3 6 . HFRACAX  -.4442  1  .0000  19. PH 3 2 . HC%  •. 1 0 9 4  3 7 . HNMNRLPP  -.0044  -.2112  .0993  .3301  3 8 . HNEXTRPP  .0409  -.1834  . 1282  . 1863  3 9 . HCUPPM  . 1348  .0176  - . 1070  -.1277  v  -.  1751  4 0 . HZNPPM  .0181  .4303  -.1229  -.1609  .2389  -.1051  -.0150  -.0523  -.2839  44. HFEX  .2967  .5907  -.8016  -.7106  .3338  -.7158  -.4478  -.0766  -.2618  .2211  .2293  .5419  -.8221  -.6956  .3764  -.6923  -.4348.  -.0645  -.1768  . 1333  .9373  1 .0000  .3065  . 1199  45., HALX  . 1290  .2782  .8720  .8978  4 7 . . HMGX 4 8 . HKX  1.0000  .2758  .7388  -.7183  -.6403  .5038  -.7095  -.3205  -.1658  -.2660  .3531  -.1231  -.1171  .4778  -.2445  .2506  .0807  -.0349  r.1542  -.0897  .2196  .3388  -.1980  -.1981  -.0427  -.1713  .2908  .0632  .0444  .3574  .2105  .0556  .6373  .0033  -.0802  .6759  -.3247  .2935  4 9 .HMNX  -.4201 -.0995  .5480  -.0229  -.0810  .3401  -.2624  .0364  -.1098  -.1939  .0169  5 0 .HCAX  .0040  .3550  -.4151  .0495  -.1839  . 1641  -.3303  -.0345  .0063  -.1114  - . 1 8 3 0  -.4491  .0437  51 .HCNRAT  .0910  -.0191  -.2682  -.5898  -.5757  . 1108  -.3972  -.0856  -.0842  -.0796  -.0625  -.3131  - . 3 2 3 0  5 2 .HNPRAT  . 1760  5 3 • HNSRAT  .0080  5 4 .HNKRAT  .2279  -.6975  .4235  .7221  -.7601  .7042  . 1670  .2732  .3203  .0912  .3989  .2430  -.1186  . 1523  -.1093  .2481  .3330  -.4346  .3737  -.1158  . 1160  -.0165  .0672  3024  -.3115  -.2789  -.0711  -.0673  -.0722  . 1949  .0180  .2109  -.1828  .2764  .2210  -.0415  -.0645  -.1878  .0981  -.2355  -.3322 -.7261  -.4047 -.  . 1980  .3501  5 5 .HKCARAT  -.0121  5 6 .HCAMGRAT  -.1840  .2650  -.2673  .6111  .4748  .0990  .3591  .2966  -.1899  . 1432  -.3045  -.1452  57 .HPALRAT  -.2573  -.6938  .2268  .4185  -.5581  .5060  . 1193  -.0078  .0759  -.0535  -.2364  -.4449  - . 4 0 3 9  -.7256  -.2069  - . 2 9 1 3  5 8 .HNMNRAT  . 1599  .2350  .1130  .2651  -.0983  -.2368  . 1213  .3665  -.1683  .4353  -.4368  -.2517  .7434  .5140  -.0225  .5041  -.0653  -.3183  -.2005  .3318  .0036  ea i . F R A X N A 6 6 i. N H 4 N P P N A  59 .HCAALRAT 64 .NH4NPPM  . 1733  19. 5. SITEIND:< P H  .3743 32. HCX  .4930 33. HNX  -.1573  .5895  . 1549  -.1836  . 1325  -.1694  -.0730  -.1621  -.1622  .9737  .2555  .2701  -.1114  -.1310  -.1026  .9524  -.1260  .0726  -.1981  -.0820  -.6123  -.5983  -.1260  -.3126  -.2983  . 1395  .2736  .2516  .0059  .9152  39. 38. 37. H N M N R L P I > H N E X T R P P> H C U P P M  34.  35.  36.  HPX  HSX  HFRACAX  40. HZNPPM  44 . HFEX  45. HALX  APPENDIX  3.1  continued.  I . OOOO 48. HKX 49. HMNX 50. HCAX 51. HCNRAT 52. HNPRAT  .4105  1 .0000  .2719  .3849  1 .0000  .2057  -.0175  .5081  -.0418 .  . 1123  -.1249 -.6214  -.3840  -.5006  1.0000 .0517 -.3266  1 .0000 - . 3486  1.0000  53. HNSRAT  .0584  .2263  .4411  .3455  -.3970  . 1061  1 . OOOO  54. HNKRAT  -.3751  -.6573  -.3009  -.1592  -.0985  .5826  -.0275  1.0000  -.0514  -.0636  -.4390  -.2437  1.0000  -. 1016  .4067  -.0553  -.5391  . 1777  .2548  .0718  -.4019  .7554  -.1425  .5668  -.1621  .3962  -.0852  55. HKCARAT 56. HCAMGRAT 57. HPALRAT 58. HNMNRAT 59. HCAALRAT 64. NH4NPPH 65. FRAXNA 66. NH4NPPNA  - . 5507  .3539  -.3288  -.1550  -.0591  .4165  .7994  .1112  -.5416  -.1347  .2241  .2052  . 1562  . 1320  -.5092  -.3802  .4626  .7758  -.1973  -.1417  . 1532  .2027  .0005  .2688  .2482  .0516  -. 1818  -.1450  -.1869  .3314  49. HMNX  50. HCAX  -.4863  -.4708  -.0926  -.0231'  -.2136  .0715  -.4826 -.3606 47. HMGX  48. HKX  -.1857 . 1379 -.3381  51 . HCNRAT  .2869  52. HNPRAT  -.0698 . 1144 -.1083 53. HNSRAT  .0901 -.0249 . 1343 54. HNKRAT  . 1166 -.4893 . 1837 - . 1204 .0903 55. HKCARAT  1 .0000 .6472 -.1797 .9802 -. 1845  1.0000 . 1953 .6078 -. 1468  .2130  .4444  -.0965  .0471  57. 56. HCAMGRAT HPALRAT  1.0000 -.2470  1.0000  .0070  -.1719  . 1630 .0521 58. HNMNRAT  . 1897 -.0979  1.0000 -.1013 .9461  64. 59. HCAALRAT NH4NPPM  1 .OOOO . 1214 65. FRAXNA  1 .0000 66. NH4NPPNA  CORRELATION MATRIX FOR CHEMICAL DATA OF PLOTS IN THE MOR ORDER (Kg/ha) --LF HORIZONS  APPENDIX 4.0  3246  R»  .0100"  VARIABLE 5.SITEIN0X  1 .0000  7 8 . KGHAHC  .3124  1 .0000  7 9 . KGHAHN  .3724  .9635  1 .0000  BO.KGHAHP  .2373  .8916  .8901  1 .0000  8 1 . KGHAHS  .3108  .9749  .9698  .8643  1 .0000  8 2 . KGHAHFRA  .2362  .8953  .8989  .8991  .8605  1 .OOOO  8 3 . KGHAHFE  .0915  .7139  .6784  .7999  6889  .7453  1 .0000  .8160  7039  .7747  .9607  1 .OOOO .8141  8 4 . KGHAHAL 8 5 . KGHAHMG 8 6 . KGHAHK 87.  KGHAHMN  88.  KGHAHCA  .7444  .0360  11 . 0 0 0 0  .3454  .3441  .581 1  .2814  .5384  .8234  .6047  .6125  .7714  .5166  .7137  .6918  .7210  .7130  1 .OOOO  -.0917  .2525  . 1244  . 1312  .3973  .3714  .6606  .4153  -.0648  . 1052  . 1212  .0569  .4119  I .0000  . 1726  . 1433  .4437  -.0411  .3971  -.0586  -.1113  -.0079  -.0817 . 1368  -4811  .6977  .0646  1.0000  .5486  .5832  .57 1 1  .2809  .2023  .2360  . 5788  .3596  8 9 . KGHAHMNR  .6689  .4213  .6697  .5200  .6495  .0250  .6479  .6613  -.1324  .7531  .3615  4166  .6744  .5371  9 0 . KGHAHNEX  .2282  .0293  . 1287  -.2930  .2563  . 3430  -.0902  . 2988  .2874  .0533  .2825  .2195  9 1 . KGHAHCU  .6933  .651 1  .6623  .6968  .5164  . 1501  .651 1  .4861  .2546  .6323  .6243  9 2 . KGHAHZN  .6034  .6372  .6275  .3382  .4869  -.1226  .7300  .4130  .2810  .6352  .2415  9 3 . KGHAHNH4  5.  78.  79. KGHAHN  80. KGHAHP  SITEINOX  KGHAHC  81 . KGHAHS  8 9 . KGHAHMNR 1 .0000  9 0 . KGHAHNEX  4766 1 ..OOOO  9 1 . KGHAHCU  .0897  3079  1 .0000  9 2 . KGHAHZN  .3423  .4447  .3133  1 .0000  9 3 . KGHAHNH4  .9907  .5921  . 1300  .3828  91 . 90. 89 . KGHAHMNR KGHAHNEX KGHAHCU  92 . KGHAHZN  1 .0000  KGHAHNH4  83. 82. KGHAHFRA KGHAHFE  84. KGHAHAL  85. KGHAHMG  86. KGHAHK  87. KGHAHMN  . 1888 -.O034 88. KGHAHCA  APPENDIX 4.1 37  OF- 35  R»  CORRELATION MATRIX FOR CHEMICAL DATA OF PLOTS IN THE MOR ORDER (Kg/ha) --H HORIZONS .0500' . 3246  R« .0100- .4182  VARIABLE 5.SITEINDX  1 .OOOO  78.KGHAHC  .3905  1 .0000  79.KGHAHN  .4383  .9161  1 .0000  80. KGHAHP  .2322  .8200  .8061  1 .OOOO .740O  1 .0000  81.KGHAHS  .4497  .9371  .9657  82.KGHAHFRA  .2057  .7800  .7939  .6888  .8015  1 .0000  83.KGHAHFE  .2424  .2022  .2776  .3122  .2578  .1885  1 .0000  .4370  .8415  84.KGHAHAL  .0670  .3648  .3888  .4640  .4042  85.KGHAHMG  . 1435  .0514  . 1272  .3771  .0576  .0988  .8129  .6951  1 .0000  86.KGHAHK  . 1331  .5602  .5970  .6718  .5103  .5570  .5574  .6384  .4363  1.OOOO  .0513  .0492  .0282  .4488  . 1326  1.0000 .6033  1 .0000  87.KGHAHMN  -.2898  -.2463  . 1960  .2551  .3217  88.KGHAHCA  . 1 105  .0336  .0552  .3713  . 07 17  .0081  .0792  .0551  .3611  . 1773  89.KGHAHMNR  . 1028  . 3231  .4515  .3381  .4652  .3422  .5569  .5862  .3870  .5526  -.0382  -.0092  -.0196  .0808  -.3302  -. 1801  90.KGHAHNEX  .2716  .8674  .8493  .8441  .7961  .6435  .2176  .3904  . 1501  .6170  91 .KtiHAHCU  .2713  . 1041  .0872  -.0028  . 1829  .0433  .5098  .3942  .3221  -.0451  .4786  .5566  92.KGHAHZN  .3200  .2674  .3150  .3882  .3269  .2698  .5549  93.KGHAHNH4  . 1594  .5043  .6157  .5121  .6151  .4667  .5558  78. 5. SITEINDX KGHAHC  79. KGHAHN  80. KGHAHP  89.KGHAHMNR  1.OOOO  90.KGHAHNE X  .2840  1 . OOOO  91.KGHAHCU  .2045  .0337  1 .0000  92.KGHAHZN  . 1629  .2674  . 7801  1.0000  93 KGHAHNH4  .9719  .5015  . 1928  .2125  91 . 90. 89 . KGHAHMNR KGHAHNEX KGHAHCU  92 . KGHAHZN  81 . KGHAHS  1 .OOOO 93. KGHAHNH4  83. 82. KGHAHFRA KGHAHFE  . 1268  .0740 - .0392  .6247  .3860  .650O  84. KGHAHAL  85. KGHAHMG  86. KGHAHK  87. KGHAHMN  . 1855 .01 15 88. KGHAHCA  APPENDIX 4.2 N* 37  OF" 35  CORRELATION MATRIX FOR CHEMICAL DATA OF PLOTS IN THE MOR ORDER (Kg/ha) --LFH HORIZONS  R» .0500* .3246  R» .0100- .4182  VARIABLE 52.S1TEINOX  1 .0000  3S.KHHCS  .4360  1 .0000  36. KHHNS  .4790  .9273  1 .0000  37.KHHPS  .3135  .8059  .8007  1.0000  38.KHHSS  .4581  .9515  .9608  .7343  1.0000  39.KHHFRAS  .2471  .8286  .8394  .7618  .8313  1.0000  40.KHHFES  .2458  .2109  .2799  .2932  .2613  .2473  1 .0000  41.KHHALS  .0711  .3530  .3808  .4591  .3760  .4490  .8340  1 .0000  -.0622  .0297  .3911  -.0585  . 1 1 16  .7751  .6713  1 OOOO  42.KHHMGS 43.KHHKS 44.KHHMNS  .0969  r  . 1604  .4799  .5211  .6320  .4001  .5647  .4973  .5938  .4290  1.0000  -.3891  -.3770  -.3395  .1167  -.4433  -.1172  .0375  .0084  .4845  . 1321  1.0000  .3143  .5576  1.0000  4S.KHHCAS  . 1070  - . 1444  46.KKHMNRS  . 1959  .4890  -. 1006  .2212  -.2377  -.0719  . 1080  -.0673  .4299  .6661  .4996  .6220  .5598  .3706  .4750  .2323  .4933  -.1411  -.0724  .3363  .3818  .0898  . 5999  -.1340  -.0598  47.KHHNEXS  .3802  .7801  .7991  .7712  .7195  .6557  4B.KHHCUS  . 1499  .0803  .0606  -.1297  . 1654  .0521  . 1870  .0901  -.0902  -.0970  -.3487  -.3583  .3095  .3345  .3298  .3989  .5533  .4514  .4581  .0898  -.0334  .0989  -.1326  -.0763  49.KHHZNS 50.KHHNH4S  .3355  .2556  .2510  .5926  .7541  .6003  .6988  .6305  .3755  .4998  .2349  .5593  35. 52. SITEINDX KHHCS  36. KHHNS  37. KHHPS  38. KKHSS  39. KHHFRAS  40. KHHFES  41 . KHHALS  42. KHHMGS  43. KHHKS  46.KHHNNRS  1.0000  47.KHHNEXS  .4658  i .oooo  48.KHHCUS  . 1225  .0535  1.0000  49.KHHZNS  .2144  .2007  .3962  SO.KHHNH4S  .9839  .6163  . 1 198  .2313  46. KHKMNRS  47. KHHNEXS  48. KHHCUS  49. KHHZNS  1.0000 1.0000 SO. KHHNH4S  44. KHHMNS  43. KHHCAS  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095789/manifest

Comment

Related Items