UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Soil water regimes on a forested watershed Giles, Donald George 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1983_A6_7 G55.pdf [ 27.46MB ]
Metadata
JSON: 831-1.0095781.json
JSON-LD: 831-1.0095781-ld.json
RDF/XML (Pretty): 831-1.0095781-rdf.xml
RDF/JSON: 831-1.0095781-rdf.json
Turtle: 831-1.0095781-turtle.txt
N-Triples: 831-1.0095781-rdf-ntriples.txt
Original Record: 831-1.0095781-source.json
Full Text
831-1.0095781-fulltext.txt
Citation
831-1.0095781.ris

Full Text

SOIL WATER REGIMES ON A FORESTED WATERSHED  by DONALD GEORGE GILES  ( B . S c , University of Oxford, England, 1938)  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of S o i l Science)  We accept this thesis as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA A p r i l 1983  ©Donald George G i l e s , 1983  In p r e s e n t i n g  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of  requirements f o r an advanced degree a t the  the  University  o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make it  f r e e l y a v a i l a b l e f o r reference  and  study.  I  further  agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may  be granted by  department or by h i s or her  the head of  representatives.  my  It is  understood t h a t copying or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l gain  s h a l l not be  allowed without my  permission.  Department of  Soil Science.  The U n i v e r s i t y of B r i t i s h 1956 Main Mall Vancouver, Canada V6T 1Y3 Date  DE-6  (3/81)  Columbia  written  - i i ABSTRACT  The q u a n t i t a t i v e e v a l u a t i o n o f summer water s t r e s s over a range of  s i t e s on a f o r e s t e d watershed was a c c o m p l i s h e d by d e t e r m i n i n g the  s o i l water d e f i c i t s o c c u r r i n g d u r i n g t h e growing season.  The  r e l a t i o n s h i p o f s o i l water d e f i c i t t o f o r e s t p r o d u c t i v i t y was s t u d i e d u s i n g s i t e i n d e x , t o t a l stemwood volume and annual i n c r e m e n t a l stemwood volume per u n i t a r e a t o q u a n t i f y f o r e s t p r o d u c t i v i t y at each  site.  Two procedures were used f o r e v a l u a t i n g growing season s o i l deficits.  water  I n the f i r s t p r o c e d u r e , d e f i c i t s were c a l c u l a t e d at each  site  d u r i n g t h e growing seasons o f 1980 and 1981 by summation o f t h e weekly s h o r t f a l l s o f t h e a c t u a l t r a n s p i r a t i o n r a t e ( l i m i t e d by a v a i l a b l e  soil  water s t o r a g e ) below t h e maximum t r a n s p i r a t i o n r a t e ( l i m i t e d by net radiation).  T h i s r e q u i r e d the d e t e r m i n a t i o n o f c o e f f i c i e n t s i n t h e  r e l a t i o n s h i p s o f t r a n s p i r a t i o n r a t e t o a v a i l a b l e s o i l water s t o r a g e , t o net  r a d i a t i o n , and t o t h e e v a p o r a t i o n r a t e o f i n t e r c e p t e d  rainfall.  These c o e f f i c i e n t s were c a l c u l a t e d by weekly water b a l a n c i n g o f e v a p o t r a n s p i r a t i o n a g a i n s t measured p r e c i p i t a t i o n p l u s measured  soil  water w i t h d r a w a l from s t o r a g e d u r i n g p e r i o d s when d r a i n a g e , r u n - o f f and c a p i l l a r y r i s e were n e g l i g i b l e .  The second procedure f o r c a l c u l a t i n g  growing season s o i l water d e f i c i t s was by monthly water b u d g e t i n g over the  growing season o f each year from 1964- t o 1981, f o r which y e a r s t h e  r e q u i r e d c l i m a t o l o g i c a l d a t a was a v a i l a b l e .  Maximum e v a p o t r a n s p i r a t i o n  c a l c u l a t e d from t h e average d a i l y net r a d i a t i o n was balanced a g a i n s t a v a i l a b l e s o i l water s t o r a g e p l u s p r e c i p i t a t i o n on a monthly b a s i s , w i t h c a r r y over o f unused s o i l water s t o r a g e t o the next month.  - iii Growing season soil water deficit variations between sites for 1980 and 1981 were found to be well correlated with forest productivity as quantified by site index and by total stemwood volume.  Relative  differences in soil water deficits between sites for the years 1980 and 1981 were thus concluded to be representative of the average relative site to site differences over the l i f e of the stand.  These conclusions  were confirmed by comparing the average growing season soil water deficits over the years 1964 to 1981 with the average annual incremental stemwood occurring at a site over this period as determined by tree ring width measurements.  Yearly incremental stemwood volume for 1964-81 was  also found to be well correlated with growing season soil water deficit, although less variation of growth with deficit was apparent between years at a given site, than when comparing variation of growth with deficit between sites.  - iv -  TABLE OF CONTENTS Page ABSTRACT  i  TABLE OF CONTENTS  i  iv  LIST OF TABLES  v i i  LIST OF FIGURES  x  LIST OF APPENDICES ACKNOWLEDGEMENTS  xvii xix  NOTATION  xx  1.  INTRODUCTION  1  2.  THEORY  ^  1.  5  Evapotranspiration 1. 2. 3. 4. 5.  3.  Energy l i m i t e d e v a p o t r a n s p i r a t i o n D e t e r m i n a t i o n of net r a d i a t i o n f l u x d e n s i t y E v a p o t r a n s p i r a t i o n l i m i t e d by s o i l water Evaporation o f intercepted r a i n f a l l Transpiration rate  5 11 12 15 17  2.  Water b a l a n c e  17  3.  Tree growth and water regime  18  EXPERIMENTAL PROCEDURES  22  1.  Site description  23  1. 2.  Site locations S u r f i c i a l geology  23 26  3.  Forest d e s c r i p t i o n  26  2.  Soil properties  28  1. 2. 3.  28 28 31 35 39  5.  Soil Bulk Soil Soil Soil  profile descriptions density determination c o a r s e fragment c o n t e n t textural classes water r e t e n t i o n  -  V  -  Page 3.  4.  5.  Precipitation  41  1.  Measurement  41  2.  Rainfall interception  41  Net r a d i a t i o n  45  1.  Solar  45  2.  Net Long wave i r r a d i a n c e  irradiance  47  S o i l water c o n t e n t  48  1. 2. 3. 4. 5. 6.  48 50 53 53 64 70  A c c e s s tube i n s t a l l a t i o n methods Access tube number and l o c a t i o n Measurement depths C a l i b r a t i o n of t h e neutron probe E r r o r a n a l y s i s o f neutron probe Water c o n t e n t o f the humus l a y e r  6.  S o i l Water p o t e n t i a l measurements  71  7.  Water t a b l e measurements  72  8.  S a t u r a t e d h y d r a u l i c c o n d u c t i v i t i e s and r u n - o f f  73  9.  C a l c u l a t i o n of water balance components by date p e r i o d s 1. E q u i l i b r i u m e v a p o t r a n s p i r a t i o n 2. P r e c i p i t a t i o n and i n t e r c e p t i o n 3. P r o f i l e water s t o r a g e and e x t r a c t a b l e p r o f i l e water 4. A c t u a l e v a p o t r a n s p i r a t i o n 1. D e t e r m i n a t i o n o f e v a p o t r a n s p i r a t i o n parameters... 2. C a l c u l a t i o n o f a c t u a l e v a p o t r a n s p i r a t i o n 5.  C a l c u l a t i o n o f approximate growing d e f i c i t by monthly water b a l a n c e  10.  75 76 76 77 79 79 83  season 85  F o r e s t p r o d u c t i v i t y measurement  87  1. 2. 3.  88 88 89  S i t e index measurements Stand d e n s i t y by volume C u r r e n t annual growth measurement  - vi-  Page 1. 2.  4.  I n c r e m e n t a l stemwood from r i n g w i d t h measurements Expected I n c r e m e n t a l stemwood by  90  linear regression  91  RESULTS AND DISCUSSION  92  1.  93  Water b a l a n c e s f o r 1980 and 1981 1.  2. 3.  Net c u m u l a t i v e w i t h d r a w a l o f water s t o r e d in the s o i l 2. Recharge o f r o o t zone f o l l o w i n g summer dry p e r i o d s Growing season s o i l water d e f i c i t s  123 126  R e l a t i o n s h i p o f f o r e s t p r o d u c t i v i t y t o growing season s o i l water d e f i c i t s  141  1. 2. 3.  R e l a t i o n s h i p o f s i t e index t o 1980 and 1981 growing season s o i l water d e f i c i t R e l a t i o n s h i p o f t o t a l stemwood volume t o 1980-81 growing season water d e f i c i t s R e l a t i o n s h i p o f annual stemwood increment t o growing season s o i l water d e f i c i t 1. 2.  4.  93  1A-3 143 146  Annual i n c r e m e n t a l stemwood and 1980-81 s o i l water d e f i c i t s Annual i n c r e m e n t a l stemwood and t h e  149  e s t i m a t e d d e f i c i t s over t h e p e r i o d 1964-81....  149  Conclusions  157  REFERENCES  161  APPENDICES  165  - vii -  LIST OF TABLES Page T a b l e 3-1a  S o i l p r o f i l e d e s c r i p t i o n s o f study s i t e s . S i t e s 0 t o 6 a r e o r t h i c humo f e r r i c p o d z o l s . S i t e 7 i s t e r r i c h u m i s o l . (From B r i t i s h Columbia M i n i s t r y of F o r e s t s - E c o s y s t e m D e s c r i p t i o n s )  29  Root zone depths a t s i t e s 0 t o 6 determined by i n s p e c t i o n o f p r o f i l e s a t two s o i l p i t s a t each s i t e , and comparison w i t h B r i t i s h Columbia M i n i s t r y of F o r e s t s s o i l d e s c r i p t i o n s ,  30  V a r i a t i o n w i t h depth below t h e LFH-mineral s o i l i n t e r f a c e o f t h e b u l k d e n s i t y o f t h e l e s s than 2 mm f r a c t i o n f o r s i t e s 0 t o 6. Under t h e heading 'Depth', > 45 o r > 60 r e f e r s t o t h e h o r i z o n between 45/60 cm and bedrock or compacted t i l l . . . . ,  32  V a r i a t i o n w i t h depth below t h e LFH-mineral s o i l i n t e r f a c e o f t h e b u l k d e n s i t y o f t h e l e s s than 10 mm f r a c t i o n f o r s i t e s 0 t o 6. Under t h e heading 'Depth', > 45 o r > 60 r e f e r s t o t h e h o r i z o n between 45/60 cm and bedrock o r compacted t i l l  33  T a b l e 3-4  V a r i a t i o n w i t h depth o f t h e volume p e r c e n t o f c o a r s e fragments g r e a t e r than 10 mm f o r s i t e s 0 - 6  36  T a b l e 3-5  V a r i a t i o n w i t h depth o f t h e volume p e r c e n t o f c o a r s e fragments g r e a t e r than 2 mm f o r s i t e s 0 t o 6  37  T a b l e 3-6  P a r t i c l e s i z e a n a l y s i s o f t h e l e s s than 2 mm f r a c t i o n f o r s i t e s 0 t o 6. The c l a s s i f i c a t i o n i s i n accordance w i t h t h e U.S.D.A. s o i l t e x t u r a l c l a s s e s , as f o l l o w s : Name o f S e p a r a t e Diameter range (mm) 2.0-0.05 Sand Silt 0.05-0.002 < 0.002 Clay  38  Summary o f t r e e s p e c i e s , average b a s a l area per h e c t a r e , average D.B.H., average b a s a l area p e r t r e e and number o f t r e e s per h e c t a r e based on measurements o f a l l t r e e s (DBH > 7 cm) i n 20 m x 20 m sample p l o t s a t each s i t e . L e a f area i n d i c e s were c a l c u l a t e d as d e s c r i b e d i n S e c t i o n 3.3.2  44  T a b l e 3-1b  T a b l e 3-2  T a b l e 3-3  T a b l e 3-7  ,  - viii -  Page T a b l e 3-8  V a r i a b i l i t y o f v o l u m e t r i c s o i l water c o n t e n t change over a 20 m x 20 m p l o t at s i t e 4. The average change and s t a n d a r d d e v i a t i o n a r e f o r 16 a c c e s s tubes I n a s t r a t i f i e d random arrangement, and measured a t 30 cm depth. D u r i n g t h e d r y i n g p e r i o d 3 u l y 1 t o August 17, 1981 t h e average s t a n d a r d d e v i a t i o n was 0.0048 m /m and was used t o c a l c u l a t e t h e s t a n d a r d e r r o r o f t h e mean and 95% c o n f i d e n c e l i m i t s o f t h e mean ( s e e t e x t )  67  The c u m u l a t i v e net w i t h d r a w a l o f s o i l water s t o r a g e at each s i t e d u r i n g t h e growing seasons of 1980 and 1981. T h i s i s c a l c u l a t e d by a c c u m u l a t i n g v a l u e s o f E-P f o r d a t a p e r i o d s when E > P, and i s r e p r e s e n t e d by t h e a r e a bounded by t h e e v a p o t r a n s p i r a t i o n r a t e and t h e p r e c i p i t a t i o n r a t e p l o t s i n F i g u r e s 4-15 t o 4-28  94  3  Table 4-1  T a b l e 4-2  T a b l e 4-3  3  C a p i l l a r y r i s e (-) o r d r a i n a g e (+) determined from water balance c a l c u l a t i o n s f o r d a t a p e r i o d s d u r i n g t h e f i r s t r a i n f a l l f o l l o w i n g a f t e r t h e end o f t h e growing season. Negative e n t r i e s i n d i c a t e s o i l r e c h a r g e t a k i n g p l a c e from c a p i l l a r y r i s e r e s u l t i n g from s u b s u r f a c e downflow, and p o s i t i v e e n t r i e s i n d i c a t e c o m p l e t i o n o f s o i l water r e c h a r g e and d r a i n a g e from t h e p r o f i l e going t o s u b s u r f a c e f l o w . Note t h e time l a g between p o s i t i v e d r a i n a g e b e i n g e s t a b l i s h e d at s i t e s 1 t o 3 and t h e c o m p l e t i o n of recharge ( s e e F i g u r e s 4-8B t o 4-14B) Cumulative  124  s o i l water d e f i c i t s (I(Etmax~  E ) ) at each s i t e f o r t h e growing seasons (May t o Sept. i n c l u s i v e ) o f 1980 and 1981 f o r d a t a p e r i o d s when actual t r a n s p i r a t i o n (Et) maximum transpiration (E ) ( s e e F i g u r e s 4-15 t o 4-28). The c u m u l a t i v e d e f i c i t i s r e p r e s e n t e d by t h e a r e a between t h e maximum t r a n s p i r a t i o n and a c t u a l t r a n s p i r a t i o n l i n e s i n t h e above r e f e r e n c e d figures The s i t e i n d i c e s at 100 y e a r s f o r s i t e s 0 t o 6, based on t h e dominant Douglas f i r t r e e s at each s i t e . 100 years i n d i c e s were determined by u s i n g t h e h e i g h t v e r s u s age r e l a t i o n s h i p s o f t h e B r i t i s h Columbia M i n i s t r y o f F o r e s t s (Hegyi e t a l . , 1979) t  i s  l  e  s  s  t  n  a  n  t m i ? x  Table 4-4  142  144  - ix -  Page T a b l e 4-5  T a b l e 4-6  Table  Table  4-7  4-8  V a l u e s o f average b a s a l a r e a per t r e e , average stemwood volume per t r e e and t o t a l stemwood volume per h e c t a r e f o r t r e e s w i t h DBH > 7 cm f o r each s i t e . A l s o shown are t h e s l o p e s o f the t r e e volume b a s a l a r e a r e g r e s s i o n l i n e s (C) o b t a i n e d by o p t i c a l dendrometer measurements  147  Comparisons of i n c r e m e n t a l stemwood volume (from t r e e r i n g measurements) w i t h s o i l water d e f i c i t s and growing season t r a n s p i r a t i o n . The 95% c o n f i d e n c e l i m i t s f o r i n c r e m e n t a l stemwood measurements a r e a l s o shown  150  S i t e s 1, 4 and 6 growing season s o i l water d e f i c i t s c a l c u l a t e d f o r t h e y e a r s 1964 through 1981 from monthly water b a l a n c e s and annual i n c r e m e n t a l stemwood volumes f o r each year determined from t r e e r i n g measurements  152  L i n e a r r e g r e s s i o n e q u a t i o n s r e l a t i n g annual i n c r e m e n t a l stemwood volume (y) t o growing season s o i l water d e f i c i t ( x ) f o r y e a r s 1964-1981 a t s i t e s 1, 4 and 6. S i t e s 4 and 6 r e g r e s s i o n e q u a t i o n were c a l c u l a t e d both i n c l u d i n g and e x c l u d i n g y e a r s of z e r o d e f i c i t  154  -  X  -  LIST OF FIGURES Page F i g u r e 2-1  D a i l y evapotranspiration rate (Ej) versus f r a c t i o n o f e x t r a c t a b l e water i n t h e r o o t zone ( 9 ) f o r days w i t h no r a i n f o r f i v e ranges o f the e q u i l i b r i u m e v a p o t r a n s p i r a t i o n r a t e ( E ) (from S p i t t l e h o u s e and B l a c k , 1981)  14  Map showing study s i t e s on t h e N.W. s l o p e o f Mesachie Mountain. The B i o g e o c l i m a t i c subzone i s E a s t Vancouver I s l a n d D r i e r M a r i t i m e C o a s t a l Western Hemlock d e s i g n a t e d CWHa2. The study s i t e s a r e c l a s s i f i e d as very x e r i c ( 0 ) , x e r i c ( 1 ) , s u b x e r i c ( 2 ) , submesic ( 3 ) , mesic ( 4 ) , s u b h y g r i c ( 5 ) , h y g r i c (6) and s u b h y d r i c (7)  24  e  e q  F i g u r e 3-1  F i g u r e 3-2  F i g u r e 3-3  F i g u r e 3-4  - T o p o g r a p h i c a l Sequence o f Ecosystems c o r r e s p o n d i n g t o t h e range o f t h e sample p l o t s showing major p l a n t a s s o c i a t i o n s and t r e e s p e c i e s . Tree S p e c i e s Symbols: P I : P i n u s c o n t o r t a ( l o d g e p o l e p i n e ) Fd: Pseudotsuga m e n z i e s i i (Douglas f i r ) . HW: Tsuga h e t e r o p h y l l a ( w e s t e r n hemlock). CW: Thuja p l i c a t a (western r e d c e d a r ) . Bg: A b i e s g r a n d i s (grand f i r ) Dr: A l n u s r u b r a ( r e d a l d e r ) . B r a c k e t t e d a b b r e v i a t i o n i n d i c a t e s t h e s p e c i e s i s a minor component o f t h e a s s o c i a t i o n  25  Map showing s u r f i c i a l geology o f study a r e a . Legend: G e n e t i c M a t e r i a l s : C = c o l l u v i a l , M = M o r a i n a l , R = bedrock, F = f l u v i a l . Surface E x p r e s s i o n : b = b l a n k e t , s = s t e e p , v = veneer, m = subdued, f = f a n , h = hummocky. T e x t u r e (prefix): g = gravelly. Qualifying Descriptor (superscript): G = glacial  27  T h r o u g h f a l l gauge f o r d e t e r m i n i n g t h e r e l a t i o n s h i p between r a i n f a l l i n t e r c e p t i o n and r a i n f a l l i n t e n s i t y . The g u t t e r s had a s l i g h t bulge i n w i d t h because s p a c i n g b r a c e s were not used i n o r d e r t o avoid raindrop splash  43  - xi-  Page F i g u r e 3-5  C a l i b r a t i o n p l o t f o r t h e neutron probe a t depths 30 cm and g r e a t e r f o r a l l s i t e s . Each p o i n t was the average o f t h r e e neutron probe r e a d i n g s from a c c e s s tubes i n a t r i a n g u l a r c o n f i g u r a t i o n v s . t h e average o f t h r e e v o l u m e t r i c water c o n t e n t s o f samples taken d u r i n g 1980 and 1981 a d j a c e n t t o t h e t h r e e access t u b e s , and r e p e a t e d a t 15 cm depth i n t e r v a l s . Water c o n t e n t s were determined g r a v i m e t r i c a l l y and c o n v e r t e d t o v o l u m e t r i c s o i l water c o n t e n t s f o r t h e whole s o i l at t h a t d e p t h . The l i n e r e p r e s e n t s t h e r e g r e s s i o n e q u a t i o n : V o l . f r a c . H 0 (whole s o i l ) = 0.232 x count r a t i o - 0.021 r = 0.85  56  R e l a t i o n s h i p between t h e neutron count r a t i o at 15 cm depth and t h e average v o l u m e t r i c water c o n t e n t determined g r a v i m e t r i c a l l y of t h e m i n e r a l s o i l between t h e LFH m i n e r a l s o i l i n t e r f a c e and a p p r o x i m a t e l y t h e 23 cm d e p t h . The l a t t e r depth was e s t i m a t e d by s u b t r a c t i n g t h e r a d i u s o f t h e sphere o f i n f l u e n c e o f t h e probe (7 cm) from 30 cm, which was the upper neutron probe depth f o r t h e c a l i b r a t i o n l i n e shown i n F i g u r e 3-5. Each p o i n t was t h e average of t h r e e neutron probe r e a d i n g s from t h e a c c e s s tubes i n t r i a n g u l a r c o n f i g u r a t i o n v s . t h e average of t h r e e v o l u m e t r i c water c o n t e n t s o f samples t a k e n i n 1980 and 1981 at random l o c a t i o n s over t h e 20 m x 20 m s i t e . The l i n e r e p r e s e n t s t h e r e g r e s s i o n e q u a t i o n : V o l . f r a c . H2O (whole s o i l ) = 0.234 x Count r a t i o - 0.029 r = 0.85  57  Same as F i g u r e 3-6 except f o r s i t e 1. R e g r e s s i o n e q u a t i o n : V o l . f r a c . H2O (whole s o i l ) = 0.246 x count r a t i o - 0.045 r = 0.81  58  Same as F i g u r e 3-6 except f o r s i t e 2. R e g r e s s i o n e q u a t i o n : V o l . f r a c . H 0 (whole s o i l ) = 0.226 x count r a t i o - 0.075 r = 0.88  59  Same as F i g u r e 3-6 except f o r s i t e 3. R e g r e s s i o n e q u a t i o n : V o l . f r a c . H 0 (whole s o i l ) = 0.275 x count r a t i o - 0.064 r = 0.74  60  Same as F i g u r e 3-6 except f o r s i t e 4. R e g r e s s i o n e q u a t i o n : V o l . f r a c . H 0 (whole s o i l ) = 0.258 x count r a t i o - 0.068 r = 0.80  61  2  2  F i g u r e 3-6  2  F i g u r e 3-7  2  F i g u r e 3-8  2  2  F i g u r e 3-9  2  2  F i g u r e 3-10  2  2  - xii -  Page F i g u r e 3-11  Same as F i g u r e 3-6 except f o r s i t e 5. R e g r e s s i o n e q u a t i o n : V o l . f r a c . H 0 (whole s o i l ) = 0.266 x count r a t i o - 0.011 r = 0.80  62  Same as F i g u r e 3-6 except f o r s i t e 6. R e g r e s s i o n e q u a t i o n : V o l . f r a c . H 0 (whole s o i l ) = 0.253 x count r a t i o - 0.018 r = 0.68  63  C u m u l a t i v e average change i n v o l u m e t r i c s o i l water c o n t e n t , measured a t 16 access tubes at s i t e 4, p l o t t e d a g a i n s t time ( s e e T a b l e 3 - 7 ) . The v e r t i c a l l i n e s show the s t a n d a r d d e v i a t i o n o f t h e measurement and i n d i c a t e the v a r i a b i l i t y i n s o i l water s t o r a g e change a t t h e s i t e . The f i r s t seven p o i n t s on t h e time s c a l e show p r o g r e s s i v e d r y i n g of t h e s o i l , and are f o l l o w e d by i n t e r m i t t e n t r e c h a r g e  68  Water t a b l e measurements at s i t e s 4, 5 and 6 f o r t h e p e r i o d October 1980 t o Oune 1981. Water t a b l e s were not found at s i t e s 0 t o 3. At s i t e 4 a water t a b l e was p r e s e n t from mid November 1980 t o the end o f A p r i l 1981, a t s i t e 5 from e a r l y November 1980 t o mid May 1981 and a t s i t e 6 from l a t e October 1980 to mid 3une 1981 \  74  2  2  F i g u r e 3-12  2  2  F i g u r e 3-13  F i g u r e 3-14  F i g u r e 3-15  Determination of the i n t e r c e p t i o n m u l t i p l i e r g i n the e v a p o t r a n s p i r a t i o n e q u a t i o n E = E + g l where E i s the t o t a l e v a p o t r a n s p i r a t i o n r a t e , E i s t h e t r a n s p i r a t i o n r a t e assuming t h e v e g e t a t i o n i s dry, and g l i s the average net i n t e r c e p t i o n l o s s r a t e ( S e c t i o n 2.1.4). From t h e water b a l a n c e , when d r a i n a g e and r u n o f f a r e z e r o E = P-AW/At. Ey + g l was c a l c u l a t e d f o r d a t a p e r i o d s through t h e growing season f o r d i f f e r e n t v a l u e s o f g. By p l o t t i n g c u m u l a t i v e P-AW/At ( o r d i n a t e ) a g a i n s t c u m u l a t i v e ET + g l ( a b s c i s s a ) f o r the whole growing season an average v a l u e o f q was found by t r i a l and e r r o r when \ (E + g l ) = J (P-AW/At)  78  D e t e r m i n a t i o n o f s o i l water c o n t e n t when t r a n s p i r a t i o n ceases (6 i )« When r a i n f a l l i s n i l , and c a p i l l a r y r i s e i s n e g l i g i b l e , Ej = -AW/At. By p l o t t i n g Ej a g a i n s t v o l u m e t r i c s o i l water c o n t e n t f o r such d a t a p e r i o d s , as s o i l water c o n t e n t i s reduced the d a t a p o i n t s converge to zero t r a n s p i r a t i o n at 0 i  80  T  T  T  F i g u r e 3-16  m  n  m  n  - xiii -  Page F i g u r e 3-17  D e t e r m i n a t i o n o f e v a p o t r a n s p i r a t i o n parameters a (energy l i m i t e d ) and b ( s o i l water l i m i t e d ) . Data p e r i o d s were s e l e c t e d when p r e c i p i t a t i o n and d r a i n a g e were zero ( t e n s i o m e t e r s showing t h a t water p o t e n t i a l g r a d i a n t i s upwards) and c a p i l l a r y r i s e i s n e g l i g i b l e ( l o w water p o t e n t i a l hence low h y d r a u l i c c o n d u c t i v i t y throughout t h e p r o f i l e ) . By p l o t t i n g t r a n s p i r a t i o n (E-r) a g a i n s t e x t r a c t a b l e water ( 6 ) , both r e l a t i v e t o e q u i l i b r i u m e v a D O t r a n s p i r a t i o n , t h e r e l a t i o n s h i p may be r e p r e s e n t e d by two s t r a i g h t l i n e s : E /E q = a (energy l i m i t e d t r a n s p i r a t i o n , h o r i z o n t a l l i n e ) : E /E = b6 /E ( s o i l water l i m i t e d t r a n s p i r a t i o n , s l o p i n g l i n e ) , which i n t e r s e c t a t a c r i t i c a l v a l u e o f 6 ( 9 ) such t h a t 6 / E = a/b ec eq e  m a x  s  e q  e  e  e q  e  e c  D O  F i g u r e 4-1A  82  S i t e 0: Time course o f r a t e s o f p r e c i p i t a t i o n and e v a p o t r a n s p i r a t i o n f o r d a t a p e r i o d s f o r year 1980 3une t o December i n c l u s i v e . The d a t a p o i n t s a r e the m i d - p o i n t s o f each d a t a p e r i o d on t h e h o r i z o n t a l s c a l e , and t h e average f l u x d e n s i t y on t h e v e r t i c a l scale  95  S i t e 0: Time course o f r a t e s o f s o i l water s t o r a g e change and d r a i n a g e and s o i l water s t o r a g e f o r d a t a p e r i o d s f o r year 1980 3une t o December i n c l u s i v e . The d a t a p o i n t s f o r s o i l water s t o r a g e change and d r a i n a g e a r e t h e m i d - p o i n t s o f each d a t a p e r i o d . The d a t a p o i n t s o f water s t o r a g e ( r i g h t hand v e r t i c a l s c a l e ) correspond t o t h e days when d a t a was t a k e n . . . .  96  F i g u r e 4-2A  Same as F i g u r e 4-1A except f o r s i t e 1  97  F i g u r e 4-2B  Same as F i g u r e A--1B except f o r s i t e 1  F i g u r e 4-3A  Same as F i g u r e A--1A except f o r s i t e 2  99  F i g u r e 4-3B  Same as F i g u r e 4-1B except f o r s i t e 2  100  F i g u r e 4-4A  Same as F i g u r e 4-1A except f o r s i t e 3  101  F i g u r e 4-4B  Same as F i g u r e 4--1B except f o r s i t e 3....  102  F i g u r e 4-5A  Same as F i g u r e A--1A except f o r s i t e 4  F i g u r e 4-1B  98  103  - xiv -  Page F i g u r e 4-5B  Same as F i g u r e 4-1B except f o r s i t e 4  104  F i g u r e 4-6A  Same as F i g u r e 4-1A except f o r s i t e 5  105  F i g u r e 4-6B  Same as F i g u r e 4-1B except f o r s i t e 5  106  F i g u r e 4-7A  Same as F i g u r e 4-1A except f o r s i t e 6  107  F i g u r e 4-7B  Same as F i g u r e 4-1B except f o r s i t e 6  108  F i g u r e 4-8A  S i t e 0: Time course o f r a t e o f p r e c i p i t a t i o n and e v a p o t r a n s p i r a t i o n f o r data p e r i o d s f o r year 1981 January t o October i n c l u s i v e . The d a t a p o i n t s a r e m i d - p o i n t s o f each data p e r i o d on t h e h o r i z o n t a l s c a l e , and t h e average f l u x d e n s i t y on t h e v e r t i c a l scale  109  S i t e 0: Time course o f r a t e s o f s o i l water s t o r a g e change and d r a i n a g e and s o i l water s t o r a g e f o r d a t a p e r i o d s f o r year 1981 Oanuary t o October i n c l u s i v e . The d a t a p o i n t s f o r s o i l water s t o r a g e change and d r a i n a g e a r e t h e mid p o i n t s o f each d a t a p e r i o d . The d a t a p o i n t s o f water s t o r a g e ( r i g h t hand v e r t i c a l s c a l e ) correspond t o t h e days when data was t a k e n . . . .  110  F i g u r e 4-9A  Same as F i g u r e 4-8A except f o r s i t e 1  111  F i g u r e 4-9B  Same as F i g u r e 4-8B except f o r s i t e 1  112  F i g u r e 4-10A  Same as F i g u r e 4-8A except f o r s i t e 2  113  F i g u r e 4-10B  Same as F i g u r e 4-8B except f o r s i t e 2  114  F i g u r e 4-11A  Same as F i g u r e 4-8A except f o r s i t e 3  115  F i g u r e 4-11B  Same as i g u r e 4-8B except f o r s i t e 3  116  F i g u r e 4-12A  Same as F i g u r e 4-8A except f o r s i t e 4  F i g u r e 4-12B  Same as F i g u r e 4-8B except f o r s i t e 4  F i g u r e 4-13A  Same as F i g u r e 4-8A except f o r s i t e 5  119  F i g u r e 4-13B  Same as F i g u r e 4-8B except f o r s i t e 5  120  F i g u r e 4-8B  r  117 118  -  XV  Page Figure  4-14A  Same  as  Figure  4-8A  except  for  site  6  121  Figure  4-14B  Same a s  Figure  4-8B  except  for  site  6  122  Figure  4-15  T r a n s p i r a t i o n and maximum t r a n s p i r a t i o n r a t e s for s i t e 0 d u r i n g t h e 1980 g r o w i n g s e a s o n . Maximum t r a n s p i r a t i o n i s c a l c u l a t e d f r o m t h e maximum e v a p o t r a n s p i r a t i o n r a t e by s u b t r a c t i n g t h e evaporation of intercepted r a i n f a l l (Section 3.9. 4.2). E v a p o r a t i o n from the s o i l i s c o n s i d e r e d negligible. Actual t r a n s p i r a t i o n is less than maximum t r a n s p i r a t i o n when t r a n s p i r a t i o n b e c o m e s  ^  l i m i t e d by s o i l w a t e r s t o r a g e . The d a t a p o i n t s correspond to the mid p o i n t s of the d a t a p e r i o d s o r t h e h o r i z o n t a l t i m e s c a l e , and a v e r a g e f l u x d e n s i t y on t h e v e r t i c a l s c a l e . The a v e r a g e d e f i c i t during a data period i s the s h o r t f a l l of t r a n s p i r a t i o n b e l o w maximum t r a n s p i r a t i o n , and t h e  Figure  Figure  4-16  4-17  growing  season  periods  deficits  Same  as  Figure  1981  growing  Same a s 1980  Figure  4-18  Same a s 1981  Figure  4-19  Same a s 1980  Figure  4-20  Same a s 1981  Figure  4-21  Same a s 1980  Figure  4-22  Same a s 1981  Figure  Figure  4-23  4-24  Same  as  1980  growing  Same a s 1981  for  of  shaded site  4-15  4-15  4-15  4-15  4-15  4-15  4-15  4-15  season  area  127  128 except  that  for  site  1 129  except  that  for  site  1 130  except  that  for  site  2 131  except  that  for  site  2 132  except  that  for  site  3 133  except  that  for  site  3 134  except  that  for  site  4  season  Figure  data  0  season  Figure  growing  that  the  season  Figure  growing  except  summation by  season  Figure  growing  the  shown  season  Figure  growing  is  season  Figure  growing  4-15  is  season  Figure  growing  and  season  Figure  growing  deficit  135 except  that  for  site  4 136  - xvi-  Page F i g u r e 4-25  Same as F i g u r e 4-15 except t h a t f o r s i t e 5 1980 growing season  137  F i g u r e 4-26  Same as F i g u r e 4-15 except t h a t f o r s i t e 5 1981 growing season  138  Same as F i g u r e 4-15 except t h a t f o r s i t e 6 1980 growing season  139  Same as F i g u r e 4-15 except t h a t f o r s i t e 6 1981 growing season  140  V a l u e s o f t h e 100 y e a r s i t e index p l o t t e d a g a i n s t v a l u e s o f t h e growing season s o i l water d e f i c i t f o r y e a r s 1980 (A) and 1981 ( 0 ) . Numbers a d j a c e n t t o the p o i n t s a r e s i t e numbers  145  T o t a l stemwood volume per h e c t a r e p l o t t e d a g a i n s t growing season s o i l water d e f i c i t f o r t h e y e a r s 1980 (A) and 1981 ( 0 ) . Numbers a d j a c e n t t o t h e p o i n t s a r e s i t e numbers  148  Annual i n c r e m e n t a l stemwood v e r s u s growing season water d e f i c i t f o r s i t e s 1, 4 and 6 f o r t h e y e a r s 1964-1981. A l s o shown a r e t h e r e g r e s s i o n l i n e s w i t h (W) and w i t h o u t (W0) t h e i n c l u s i o n o f y e a r s w i t h z e r o growing season water d e f i c i t . There were no z e r o water d e f i c i t y e a r s f o r s i t e 1. F o r y e a r s of z e r o d e f i c i t ( s i t e 4: 3 y e a r s , s i t e 6, 11 y e a r s ) the averaged v a l u e o f t h e annual stemwood i n c r e m e n t s i s p l o t t e d on t h e o r d i n a t e . E q u a t i o n s o f l i n e s and r v a l u e s a r e g i v e n i n T a b l e 4-8  153  Average annual i n c r e m e n t a l stemwood v e r s u s average growing season water d e f i c i t f o r s i t e s 1, 4 and 6 f o r t h e y e a r s 1964-81. Average i n c r e m e n t a l stemwood was c a l c u l a t e d i n two ways: ( i ) from t h e a r i t h m e t i c average annual growth increment f o r t h e past 18 y e a r s ( i i ) from t h e s l o p e o f t h e l i n e a r r e g r e s s i o n l i n e o f annual r i n g w i d t h a g a i n s t t i m e f o r past 25 y e a r s and c a l c u l a t i n g t h e e x p e c t e d volume i n c r e a s e f o r t h e mid year o f t h e 1964-81 period ,  156  F i g u r e 4-27 F i g y r e 4-28 F i g u r e 4-29  F i g u r e 4-30  F i g u r e 4-31  F i g u r e 4-32  \  - xvii -  LIST OF APPENDICES Page Appendix 1  S i t e d e s c r i p t i o n s p r o v i d e d by t h e B r i t i s h Columbia M i n i s t r y o f F o r e s t s o f s i t e s 0, 1, 2, 4, 6 and 7  165  Appendix 2  S o i l water r e t e n t i o n c h a r a c t e r i s t i c s  172  Appendix 3  P l o t s o f t h r o u g h f a l l c o l l e c t e d beneath t h e trees against r a i n f a l l i n t e n s i t y  180  D a i l y m e t e o r o l o g i c a l d a t a at Mesachie from 3une 5, 1980 t o October 29, 1981  185  P l o t o f K+ ( e a r t h s u r f a c e ) / K + ( e x t r a t e r r e s t i a l ) a g a i n s t ( s u n s h i n e h o u r s ) / ( d a y l i g h t hours)  197  V o l u m e t r i c s o i l water c o n t e n t s at s p e c i f i e d depths determined by neutron probe at S i t e s 0 t o 6 from 3une 5, 1980 t o October 29, 1981  199  V o l u m e t r i c water c o n t e n t s o f t h e LFH l a y e r a t S i t e s 0 t o 6 determined from samples t a k e n a t the same time as t h e neutron probe measurements...  207  P l o t s o f t o t a l s o i l water p o t e n t i a l a g a i n s t depth at S i t e s 0 t o 6 at s p e c i f i e d dates through t h e growing season o f 1981, determined by t e n s i o m e t e r s i n s t a l l e d at depths s p e c i f i e d  210  Dates and t i m e s when neutron probe s o i l water measurements were t a k e n at each s i t e and used i n water b a l a n c e c a l c u l a t i o n s  218  D a i l y net r a d i a t i o n (daytime b a s i s ) , and calculated daily equilibrium evapotranspiration f o r each day from Oune 5, 1980 t o October 29, 1981  221  E q u i l i b r i u m e v a p o t r a n s p i r a t i o n f o r each d a t a p e r i o d and each s i t e , determined by summation o f d a i l y e q u i l i b r i u m e v a p o t r a n s p i r a t i o n (Appendix 10) over d a t a p e r i o d s (Appendix 9)  233  P r e c i p i t a t i o n and g r o s s i n t e r c e p t i o n f o r each s i t e and f o r d a t a p e r i o d s , determined by summation o f p r e c i p i t a t i o n (Appendix 4) o v e r data periods  235  Appendix 4 Appendix 5  Appendix 6  Appendix 7  Appendix 8  Appendix 9  Appendix 10  Appendix 11  Appendix  12  - xviii -  Page Appendix 13 Profile water storage for each site calculated from neutron probe measurements by summation of the water content determined for each horizon over the total root zone Appendix 14 Extractable water in the soil profile at each site for each data period  Appendix 15 Profile water storage change (Wfinal'^initial) determined from Appendix 13  Appendix 16 Actual evapotranspiration for data periods determined as described in Section 3.9.4.2  Appendix 17 Actual transpiration for data periods determined as described in Section 2.1.5  238 241 243 245 247  Appendix 18 Inventories of trees by species and DBH with DBH > 7.0 cm on 20 m x 20 m plots at each s i t e . . . .  249  Appendix 19 Water balance data for data periods at each s i t e . .  258  Appendix 20  Relationship of tree volume to basal area  269  Appendix 21  Ring width measurements from increment cores  taken from samples of trees at Sites 1, 4 and 6...  277  - xix -  ACKNOWLEDGMENTS Funding f o r t h i s p r o j e c t was p r o v i d e d  by the B r i t i s h  Columbia  M i n i s t r y o f F o r e s t s , and s p e c i a l a p p r e c i a t i o n i s extended t o Dr. K. K l i n k a , Research Branch, who i n i t i a t e d the  funding.  The w r i t e r e x p r e s s e s s i n c e r e thanks t o the t h e s i s members, e s p e c i a l l y t o Dr. T.A. B l a c k  committee  f o r h i s g u i d a n c e , encouragement  and support throughout the s t u d y , t o Dr. L.M. L a v k u l i c h f o r h i s encouragement and a s s i s t a n c e , and t o Dr. K. K l i n k a and Dr. T.M. B a l l a r d for t h e i r  advice.  S p e c i a l thanks t o Mr. Ingelmar C a r l s s o n , Head o f the Cowichan Lake E x p e r i m e n t a l S t a t i o n f o r h i s k i n d a s s i s t a n c e i n making a v a i l a b l e the s t a t i o n f a c i l i t i e s and m e t e o r o l o g i c a l  r e c o r d s , t o Mr. Dave  S p i t t l e h o u s e f o r h i s v a l u a b l e a d v i c e , t o Mr. Frank K e l l i h e r f o r h i s advice  and p r a c t i c a l a s s i s t a n c e i n f o r e s t m e n s u r a t i o n and t o Mr. David  Price for assistance  i n forest mensuration.  Mrs. Oeeva Oonahs f o r her p a t i e n c e  Thanks a l s o are due t o  w i t h the t y p i n g o f the t h e s i s .  -  XX  -  NOTATION A  photosynthesis  AWSC  a v a i l a b l e water s t o r a g e  r a t e (kg m"  d" )  capacity  (mm)  2 Bi  t r e e c r o s s s e c t i o n area (m ) 2  B2  t r e e c r o s s s e c t i o n area (m )  C  neutron probe count r a t e  CL  confidence  D  d r a i n a g e r a t e (mm  DBH  t r e e diameter at b r e a s t h e i g h t  E  e v a p o t r a n s p i r a t i o n r a t e per u n i t ground area (kg m" mm d" ) e q u i l i b r i u m e v a p o t r a n s p i r a t i o n r a t e (kg m~ s " , mm  E  (counts/s)  l i m i t s f o r s o i l water changes d  - 1  (dimensionless)  ) (cm) 2  1  s" ,  1  2  eq  E^  evaporation  Snax  energy l i m i t e d e v a p o t r a n s p i r a t i o n  E  s o i l water supply  &  r a t e o f i n t e r c e p t e d water (mm  1  d  r a t e (mm  - 1  d  - 1  )  r a t e (mm  E  t r a n s p i r a t i o n r a t e from v e g e t a t i o n  t  evaporation (mm d" )  of i n t e r c e p t e d  d" ) 1  2 1 1 d" , mm d~ )  L  t r a n s p i r a t i o n r a t e from d r y v e g e t a t i o n  1  )  limited evapotranspiration  E-j.  d" )  (kg m  during periods  when  (mm d ) r a i n i s t a k i n g - 1  place  1  G  s o i l heat f l u x d e n s i t y  G  growth r a t e  H  s e n s i b l e heat f l u x d e n s i t y  I  g r o s s i n t e r c e p t i o n r a t e (mm  K+  shortwave r a d i a t i o n f l u x d e n s i t y  K+  m a x  (W m" ,  M3 m  2  (W d  -2  d  _ 1  )  m" ) 2  - 1  ) (M3 m"  2  1 d" )  maximum p o s s i b l e d a i l y shortwave r a d i a t i o n (MJ m~ 2 l  ^ ET  e x t r a t e r r e s t i a l shortwave r a d i a t i o n (MO m"  L  l a t e n t heat o f v a p o u r i z a t i o n of water (3 k g  +  d~ ) - 1  )  2  l  d" )  - xxi L*  net longwave r a d i a t i o n f l u x d e n s i t y  LAI  leaf  M  r a t e of energy storage w i t h i n  N  d u r a t i o n of d a y l i g h t  P  rainfall  Q  p r e c i s i o n of d e t e r m i n a t i o n of s o i l water change (dimensionless)  R  r u n - o f f r a t e (mm d " )  R  area index (m  leaf/m  (M3 m~  d" )  z  1  ground) the canopy (W m" )  (hours)  r a t e (mm d " ) 1  1  net r a d i a t i o n f l u x d e n s i t y  n  (W m " , M3 m " 2  2  d  - 1  )  S  s e n s i t i v i t y of neutron probe (counts s - l / 1 % v o l u m e t r i c change i n s o i l water content)  T  daytime mean a i r temperature  T  t h r o u g h f a l l (mm d  T, a  monthly average d a i l y temperature ( ° C )  T  l e a f temperature ( ° C )  Q  T  m a x  - 1  (K)  )  d a i l y maximum a i r temperature ( ° C )  ^min  d a i l y minimum a i r temperature ( ° C )  W  Water storage c a p a c i t y of the root zone (mm)  W  m a x  W at f i e l d c a p a c i t y (mm)  *min  W at which t r a n s p i r a t i o n v i r t u a l l y  Z  r a d i u s of the sphere of i n f l u e n c e of neutron e m i s s i o n (cm)  a  s o l a r r a d i a t i o n r e f l e c t i o n c o e f f i c i e n t of v e g e t a t i o n (dimensionless)  b  r a t i o of E  c  coefficient  Cp  s p e c i f i c heat of a i r at c o n s t a n t p r e s s u r e (3 k g " ° C  d  c o e f f i c i e n t in daily cloudiness factor o r zero plane displacement (m)  s  to 6e  (mm d  _ 1  ceases (mm)  )  in daily cloudiness factor  (dimensionless) 1  - 1  (dimensionless)  )  xxii vapour pressure of air  (kPa)  vapour pressure at leaf surface (kPa) saturated vapour pressure of air at temperature (T)  (kPa)  coefficient in the interception of rainfall equation (dimensionless) coefficient in the equation for the daily evaporation of intercepted water coefficient in the interception of rainfall equation (dimensionless) von Kantian's constant (dimensionless) soil hydraulic conductivity (m s ) _1  root zone depth (mm) bright sunshine duration (hours) or number of data points (dimensionless) total of resistances to water diffusion from substomatal evaporating sites to the leaf surface and across boundary layer (s m ) -1  same as r except for C0  2  correlation coefficient (dimensionless) aerodynamic resistance for water vapour (s m ) -1  laminar boundary layer resistance for wet vapour (s m" ) 1  laminar boundary layer resistance for C0 (s m" ) 1  2  canopy or surface resistance for water vapour (s m" ) 1  mesophyll resistance for carbon dioxide (s m" ) 1  leaf stomatal resistance for water vapour (s nr ) 1  leaf stomatal resistance for carbon dioxide (s nr ) 1  slope of the saturation vapour pressure curve (kPa ° C ) _ 1  standard deviation of the mean (variable)  - xxiii t  time (d) or Student t s t a t i s t i c a l  u  wind speed (m  vpd  vapour pressure d e f i c i t of a i r (kPa)  z  height above the qround (m)  Z  parameter  s-1)  roughness length (m)  Q  A  difference in associated parameter  (dimensionless)  a  r a t i o of E m a x to E e q for dry vegetation  (dimensionless)  r a t i o of E ^ x to E e q for completely wet vegetation (dimensionless) Y  psychrometric constant  e  effective  a  (kPa ° C _ 1 )  long wave emissivity of the sky  longwave emissivity of the vegetation  (dimensionless)  (dimensionless)  Y  carbon dioxide concentration (ppm)  0 e  fraction of extractable  9 ec  c r i t i c a l value of 6„ (dimensionless) e  8  volumetric water content of the whole mineral s o i l (m3 water/m3 soil)  m  0  q  6 max 6 . min  water in the root zone  volumetric water content of the humus layer (m3 water/m 3 average volumetric water content of the root zone at capacity (m3 water/m3  soil)  field  soil)  average volumetric water content of the root zone at which 3 „ transpiration ceases (m  water/m  soil)  p  density of a i r (kg m" )  o Y m  Stephan-Boltzman constant (MO m" d" s o i l water matric potential (kPa)  Mf  s o i l water t o t a l potential (kPa)  T  (dimensionless)  K" )  - 1 -  I.  INTRODUCTION  - 2 -  I.  INTRODUCTION The s o i l ' s c a p a c i t y t o s t o r e water i s one o f t h e i m p o r t a n t  f a c t o r s t h a t determine s i t e q u a l i t y . as s l o p e , a s p e c t , connection  A number o f s o i l - s i t e f a c t o r s such  t e x t u r a l and depth d i f f e r e n c e s a r e s i g n i f i c a n t i n t h i s  because o f t h e i r r e l a t i o n s h i p t o water a v a i l a b i l i t y  a summer drought p e r i o d found t h a t s p e c i e s  (White, 1958; Zahner, 1958).  McMinn  during (1961)  r e p r e s e n t a t i o n , t h e abundance and v i g o u r o f p l a n t s  and t h e s i t e i n d i c e s of Pseudotsuga m e n z i e s i i were a l l c o r r e l a t e d  with  s o i l water regimes a t p l o t s l o c a t e d i n the Nanaimo R i v e r V a l l e y o f Vancouver  Island.  More r e c e n t l y , K r a j i n a (1965, 1969, 1972) has concluded t h a t i n an area c h a r a c t e r i z e d by u n i f o r m c l i m a t e , t h e p l a n t a s s o c i a t i o n s i n a mature ecosystem a r e p r i n c i p a l l y t h e r e s u l t o f v a r i a t i o n s i n t h e two 'parameters' s o i l water and s o i l n u t r i e n t s .  T h i s concept has been  f u r t h e r developed by K l i n k a (1976) i n t h e i d e n t i f i c a t i o n o f b i o g e o c l i m a t i c d i v i s i o n s o f ecosystems w i t h i n a r e g i o n a l c l i m a t e .  The  o b j e c t i v e o f t h i s approach t o ecosystem c l a s s i f i c a t i o n has been t o provide  p h y s i c a l and c h e m i c a l bases f o r subzone i d e n t i f i c a t i o n ,  p a r t i c u l a r reference  t o f o r e s t p r o d u c t i v i t y and r e s o u r c e  with  p l a n n i n g , and  as a b a s i s f o r d e c i s i o n s on s i l v i c u l t u r e p r a c t i c e s . According  t o t h i s system, s i t e s i n a c l i m a t i c subzone a r e  d i f f e r e n t i a t e d and c l a s s i f i e d by a s c e r t a i n i n g t h e i n d i c a t o r s p e c i e s o f t r e e s , s h r u b s , mosses and l i c h e n s which are c l i m a x  dominant, and t h e  s o i l water s t a t u s o f s i t e s i s i n f e r r e d from the p l a n t present.  associations  - 3-  Clearly it is of importance that quantitative soil moisture data be obtained on sites that have been characterized by plant species. Such data would (1)  provide a basis for quantitative identification of  sites from the standpoint of soil water regimes, using physical measurements, (2)  facilitate a comparison between a quantitative  classification of soil water status with classification by indicator species and (3)  enable quantitatively based predictions about  ecosystems for various aspects of forest management. Accordingly, the objectives of the present study were:  (1)  to  quantify site growth potential by means of the growing season soil water deficit, (2)  to compare growing season soil water deficits at different  positions on a forested watershed with site characterization by indicator species and (3)  to compare soil water deficits with  variations in forest productivity.  - 4 -  2. THEORY  - 5 2.1  Evapotranspiration The determination of seasonal soil water deficit requires a  comparison of the actual transpiration rate with the maximum transpiration rate.  Seasonal soil water deficit is determined by the  cumulative shortfall for all days during the growing season of actual transpiration below the maximum transpiration. For the purpose of this thesis E  t  will be used to denote the  transpiration rate, and does not include the evaporation of intercepted water.  E will be used to denote the evapotranspiration rate, i.e.  sum of transpiration plus evaporation of intercepted r a i n f a l l .  the  Ey  will be used in the analysis and is the calculated transpiration rate assuming that the vegetation is dry, and it may be limited by the energy received by the canopy or the soil water supply. dry E 2.1.1  t  If the vegetation is  =E = E . T  Energy Limited Evapotranspiration The first physically sound approach to the determination of  evapotranspiration from saturated natural surfaces was due to Penman (1948), who specified two requirements for continued evaporation, (1) supply of energy to provide latent heat of vapourization and (2) mechanism for removing the vapour.  a  The original Penman equation thus  comprises an energy term, which is a function of net radiation, and an aerodynamic term which is empirically derived from the vapour pressure deficit and the wind velocity.  a  - 6 -  The f i r s t a n a l y t i c a l s o l u t i o n f o r t r a n s p i r a t i o n from v e g e t a t i o n , based on Penman's c o n c e p t s , was due t o M o n t e i t h ( 1 9 6 5 ) . s(R - G - M) + p c ( e ' ( T ( z ) ) - e ( z ) ) / r , ( z )  1  n  T ~ L~ ~ ~  s + Y(1 + r / r (Z)) c a  1  where E j (kg m " s ) i s water vapour f l u x d e n s i t y , L (3 k g 2  - 1  l a t e n t heat o f v a p o u r i z a t i o n o f w a t e r , R f l u x d e n s i t y , G (W m ) -2  of  (W m" ) 2  n  - 1  1  '  ) is  i s net r a d i a t i o n  i s s o i l heat f l u x d e n s i t y , M (W m" ) i s t h e r a t e 2  11  3  energy s t o r a g e w i t h i n t h e canopy^ p ( k g m" ) and Cp (3 k g " K" ) a r e  d e n s i t y and s p e c i f i c heat o f a i r r e s p e c t i v e l y , e ' ( T ( z ) ) and e ( z ) (kPa) are  t h e s a t u r a t i o n ( a t a i r temperature T ( z ) ) and a c t u a l v a l u e s o f vapour  p r e s s u r e a t a h e i g h t z above t h e s u r f a c e , s = d e ' ( T ( z ) ) / d T i s t h e s l o p e of  t h e s a t u r a t i o n vapour p r e s s u r e v e r s u s temperature c u r v e a t a i r  t e m p e r a t u r e , and Y ( k P a K" ) i s t h e p s y c h r o m e t r i c c o n s t a n t . M o n t e i t h 1  i n t r o d u c e d r e s i s t a n c e t e r m i n o l o g y , and t h e r e b y was a b l e t o r e l a t e evaporation to linked d i f f u s i o n processes. aerodynamic the  Thus r ( z ) ( s m ) -1  a  i s the  r e s i s t a n c e t o d i f f u s i o n o f water vapour from t h e s u r f a c e t o  h e i g h t z (m), and r  ( s m" ) i s thecanopy r e s i s t a n c e t o d i f f u s i o n 1  c  of  water vapour from t h e s a t u r a t e d r e g i o n i n t h e s u b - s t o m a t a l c a v i t i e s  to  the surface. For  i d e a l c o n d i t i o n s of n e u t r a l atmospheric s t a b l i l i t y  and l a r g e  f e t c h , and assuming t h a t the s i m i l a r i t y p r i n c i p l e h o l d s and t h a t t h e v i r t u a l s i n k o f momentum i s t h e same as t h e v i r t u a l source o f water vapour and s e n s i b l e h e a t , t h e aerodynamic s e n s i b l e heat t r a n s f e r d e f i n e d a s :  r e s i s t a n c e t o water vapour and  - 7-  r (z) a  (resistance to diffusion of water vapour from surface to the height z in the atmosphere)  pc = -^P- (e -e(z))/LE Q  - (2)  is given by  1  r (z) =  In  a  where e  0  (kPa)  surface, z  0  _ / k u  z - d + z 0  z o  (resistance to the transfer of momentum from the height z to the surface)  - (3)  is the unknown water vapour pressure at the leaf  (m) is the aerodynamic roughness parameter, d (m) is  the zero plane displacement, k is von Karman's constant and u (m/s) is the wind velocity at a height z above the surface. The canopy resistance (resistance to diffusion of water vapour from substomatal cavities to - (4) surface of canopy)  pc r = —P- (e'(T ) - e )/LE ° o o Y  where e'(T ) is the saturation vapour pressure at leaf temperature. 0  The canopy resistance which integrates the leaf stomatal resistance (r ) s  over the canopy can be written as 1  r  c  =  *!"  i=1  LAI r s  where n is the number of leaf layers, and the leaf area index (LAI)  is  measured for each layer. Because of the large number of variables requiring measurement for the rigorous application of the Penman-Monteith equation, two attempts at simplification have been directed to developing a single  - 8 -  term formula in place of the Penman-Monteith two-term expression. f i r s t i s for aerodynamically rough canopies where r with r~.  a  The  i s small compared  The Penman-Monteith equation can then be s i m p l i f i e d to :  1  L  p c vpd p  Yr  - (5)  c  where vpd i s the vapour pressure d e f i c i t ( e ' ( T ( z ) ) - e ( z ) ) . This expression has been applied to coniferous forest canopies by McNaughton and Black (1973), Tan et a l . (1978), Oarvis and Stewart (1979) and Oarvis (1981). The second s i m p l i f i c a t i o n , using only the r a d i a t i o n term, was introduced by P r i e s t l e y and Taylor (1972), who r a t i o n a l i z e d the PenmanMonteith two term equation to the two aspects of (1) determining the surface value of vapour f l u x and (2) considering i t s v a r i a t i o n with height.  On land surfaces (as opposed to oceans) they noted that the  apportionment of a v a i l a b l e energy between latent heat f l u x (LE)  and  sensible heat f l u x (H)is governed by the two f a c t o r s (1) moisture status of the ground and (2) r a d i a t i o n .  P r i e s t l e y and Taylor made use of the  following r e l a t i o n s h i p for a saturated surface in e q u i l i b r i u m with i t s turbulent boundary layer (see McNaughton 1976) H_ Y LE " s  - (6)  where H/LE i s the Bowen r a t i o , which when combined with the energy balance equation (R  n  = G + M + H + LE)  gives  - 9  R  Equation  (7)  can  be  evapotranspiration  it  characterized  to  the  the  E„,  is  a x  the  Priestley  and  water  24-hour  terms  Taylor  give  processes,  of  and  for  ranging there  is  + Y))  a =  of  and  especially  from 0.6  the  (R  rate  as  -  rate  by  (8)  relating  follows:  -  rate  This  from  different  Calder  that in  Thetford  advective  data  - G - M)/L  n  eq  Penman-Monteith  and  implies  three  a  is  that  equation  are  vegetation  climates,  dry  (1979)  to  the  and  v  (9) '  an the  radiation  correlated. surfaces  arrived  out  that  control  of  generalization  of  case  of  They  forests  in  conditions,  enhancement.  point  surface  the  processes.  for  equilibrium  at  an  and average  1.26.  indicate  and  the  evapotranspiration  coefficient.  under  evaporative  Plynlimon  = a E  max  no c o n s i d e r a t i o n  unrealistic, enhances  surface  examined  surfaces  value  give  maximum e v a p o t r a n s p i r a t i o n  Shuttleworth Taylor  = (s/(s  e q  moist  determined  aerodynamic  five  to  equilibrium evapotranspiration  experimentally and  follows  ( 7 )  e  E  where  as  •  T T T  (E q)  E  They  - G - M =  n  rewritten rate  -  forests show the  to  U.K.  11.0  and  evaporative a = 1.26  where  that  Priestley  is  surface  roughness  evapotranspiration indicate  for  wet  values  conditions  for  rates a  when  -  The requiring  merit  only  temperature,  of  solar  comparison  with  (5)  in  area  levels.  The  Taylor's  approach  index  conclusion  a should  should  evaluated.  agreement  at  well by  irrigated  using  site  that  specific  successfully with ratio  a = 0.80  (8)  are  stocking  with  but  specific  conclusion  by  it  Forest  with  the  3ury  adjusting  a  pressure  to  for  for  variations  in  value  modelled (24  hour  heat  a.  flux  and  Spittlehouse  evapotranspiration basis)  confirmed  considered  density,  for  could  density  from by  G and  negligible  are  area  found  good  from P r i e s t l e y (1975) in  found  local  agreement and  Black  and  energy and  that  for  advection was  Tanner  effectively  obtained thus  reflected  in  (1981a)  a young  (1979)  and  Douglas-Fir  energy  forest  balance/Bowen  balances.  energy  under  consequently  from  Black's  water  and  the  McNaughton  the  Oury be  many  and  that  study  that  by  good  at  Priestley  variations  evapotranspiration.  pressure  18 d a y s )  Tanner  deficit,  advection  vapour  the  results  and  simplicity,  measurements  noted  (data  its  condition  determined  1.05.  vapour  is  is  atmospheric  that  the  determined  measurements, Soil  used,  Research  a =  resistance reached  as  and  requires  therefore  considered  this  which  stomatal  measurements  crops,  lysimeter  indicated  in  ratio  equation  be  approach  radiation  evapotranspiration  normalizing with  with  a  of  U.B.C.  between  balance/Bowen Taylors  be  support  (1973)  was  should  parameter  Black  and  -  Taylor's  of  leaf  In  and  measurements  deficit,  be  Priestley  10  a  storage  forest  not  within  canopy  considered  with in  the  canopy  average  this  study.  M  - 11 -  2.1.2  D e t e r m i n a t i o n o f Net R a d i a t i o n F l u x D e n s i t y The  determined  average daytime v a l u e o f t h e net r a d i a t i o n f l u x d e n s i t y was from t h e e q u a t i o n : R  where K+ (MO m  d  -2  _ 1  n  = (1 - a) K4- + L*  - (10)  ) i s t h e d a i l y s o l a r i r r a d i a n c e , L* (MO m  -2  day ) - 1  i s t h e daytime net long wave i r r a d i a n c e , and a i s t h e canopy r e f l e c t i o n coefficient(albedo).  O a r v i s et a l . (1976) suggest  a v a l u e o f 0.12 f o r  t h e albedo o f c o n i f e r o u s f o r e s t c a n o p i e s which was c o n f i r m e d by S p i t t l e h o u s e and B l a c k (1981).  Daytime net long wave i r r a d i a n c e was  c a l c u l a t e d as f o l l o w s ( J u r y and Tanner, 1975).  L* = (c + d K+/K+ ) (e - e ) o T max a v  where T i s t h e daytime mean a i r temperature Stefan-Boltzmann  constant, K +  i r r a d i a n c e and K+/K+ cover.  max  i s  t  h  m a x  e  - (11)  4  (K), a i s the  maximum c l e a r sky s o l a r  i s an e s t i m a t e o f t h e f r a c t i o n o f c l o u d  The c o n s t a n t s c and d were s e t t o 0.1 and 0.9 r e s p e c t i v e l y  ( S p i t t l e h o u s e and B l a c k , 1981a).  e  a  i s t h e apparent  emmissivity of  t h e atmosphere which i s dependent on h u m i d i t y and was c a l c u l a t e d  from  the Idso-Oackson f o r m u l a :  e  = 1 - 0.261 exp (-7.77x10"^ (T - 2 7 3 ) )  (Aase and I d s o , 1979), where T i s i n K e l v i n s .  Idso (1980) notes t h a t  the above e q u a t i o n , which i s f o r c o n t i n e n t a l environments, e  a  i n c o a s t a l areas.  -(12)  2  overestimates  S p i t t l e h o u s e and B l a c k (1981a) note t h a t a  - 12 -  reduction of the above calculated e when K+/K+ R. n  e  v  max  by 8% when R > 8 M3 n r d , or  a  2  n  - 1  is over 0.5 corrects this systematic overestimate of  is the emissivity of vegetation and is taken as 0.95 (Oarvis  et a l . , 1976).  K+ in equations (10) and (11) was adjusted for slope and  aspect at each site.  View factor corrections for L*, based on slope  correction factor = cos  (slope/2) were found to be negligible.  Daytime net radiation was calculated to enable calculation of evapotranspiration and site water balances throughout the 1980-'81 winter period, because R calculated on a 24 hour basis frequently n  resulted in unreasonably negative values of E during these winter months using a determined in the summer on a 24 hour basis. 2.1.3  Evapotranspiration limited by soil water Several workers have observed that as soil water is reduced  below field capacity, a c r i t i c a l water content is reached below which the evapotranspiration rate starts to decline.  Priestley and Taylor  (1972) showed that at soil water contents below the c r i t i c a l value, Ej/Eeq declines linearly with root zone water storage. Tanner and Richie (1974) normalized root zone soil water storage to fractional extractable water, defined as W- W. max  min  where W(mm) is actual root zone water storage, W i m  n  ( ) mm  is the soil  -  water  storage  zone  water  phases  at  which  storage  Ey/E  is  m a x  at  ranges out  of  that  Egq the  linearly  family  The or  the  E  is  s  critical 9  e  c  E ) e q  the  by  and  straight  lines.  not  the  wet)  Black,  for  e  =  = b9  aE  of the  two  e  e  and  variations family  of  Consequently  show E  of  E  for  evapotranspiration  a  rate  2-1  9  9  9 „ ec  <  e o  E  )  is  in  the  6  the  for  e  root  drying  is  given  by:  -  ec  -  evapotranspiration occurs  when  =  be e  9 /E < e eq  (soil  (or  E  a/b  (by  e q  solar  Figure  canopy  M  2-1  with  given  by  dry  e q  ,  limited)  limited)  d i v i d i n g each  reduces leaves  (14)  become:  water  irradiance)  (9)  rate.  o£  r e l a t i o n s h i p s thus  (energy '  is  points  o  e q  of  different  A p p e n d i x V)  9 /E > a/b e eq —  e q  curves  (1981,  6^ > e —  against  E  that  versus  Figure  phase  eq  m m  e  limited  a given  above  normalizing 9  effects  eliminated,  s  (supply)  (  m a x  9 .  in  e  The  max  shown  W  found  Spittlehouse  eq  9  and  They  to  = ctE  of  e q  ceases  (1981b)  and  soil  E .  E  Black  curves  = b9  the  E  Therefore,  s  value  = (a/b)  of  -  capacity. related  2-1)  max  E  where  and  (Figure  E  transpiration field  Spittlehouse  13  by  are to  two  (i.e.  (Spittlehouse  leaves and  1981a):  E  T  = lesser  of  E,  f  E  m a x  -  (15)  - 14 -  DOUGLAS FIR.  COURTENAY.BC  29/6/75 - t l / t / 7 6  F i g u r e 2-1  D a l l y e v a p o t r a n s p i r a t i o n r a t e (E^) v e r s u s f r a c t i o n of e x t r a c t a b l e water i n the r o o t zone ( 6 ) f o r days w i t h no r a i n f o r f i v e ranges of the e q u i l i b r i u m e v a p o t r a n s p i r a t i o n r a t e ( E ) (from S p i t t l e h o u s e and B l a c k 1981) e  e q  - 15 -  2.1.4  Evaporation of Intercepted  Rainfall  R u t t e r (1975) notes t h a t i n t h e i n i t i a l  stages o f a  p r e c i p i t a t i o n e v e n t , much o f t h e water i s r e t a i n e d by v e g e t a t i o n .  There  appears t o be a f a i r l y w e l l d e f i n e d s t o r a g e c a p a c i t y f o r any g i v e n canopy, and when t h i s i s exceeded  f u r t h e r i n t e r c e p t e d water e i t h e r  from t h e canopy or runs down stems.  drips  The c o m b i n a t i o n o f the water which  d r i p s from t h e canopy o r f a l l s through t h e gaps i s u s u a l l y  called  t h r o u g h f a l l , and t h e sum o f t h r o u g h f a l l and stemflow i s c a l l e d net precipitation.  The d i f f e r e n c e between g r o s s p r e c i p i t a t i o n and net  p r e c i p i t a t i o n i s c a l l e d t h e g r o s s i n t e r c e p t i o n l o s s , and c o n s i s t s o f water h e l d i n s t o r a g e i n t h e canopy p l u s water e v a p o r a t e d from t h e canopy d u r i n g t h e p e r i o d of t h e r a i n f a l l .  Many workers have r e l a t e d  g r o s s i n t e r c e p t i o n I t o g r o s s p r e c i p i t a t i o n P by f u n c t i o n s o f t h e form I = hP + f where t h e c o n s t a n t h i s r e l a t e d t o e v a p o r a t i o n o f i n t e r c e p t e d rainfall  d u r i n g t h e storm, and f i s a c o n s t a n t r e l a t e d t o s t o r a g e o f  water i n t h e canopy which e v a p o r a t e s a f t e r r a i n f a l l  ceases.  In the  p r e s e n t study i n t e r c e p t i o n f u n c t i o n s w i t h t h e above format have been developed f o r each s i t e , from d i r e c t measurements on some s i t e s , and w i t h l i n e a r i n t e r p o l a t i o n s at o t h e r s i t e s based on a l i n e a r  relationship  between g r o s s i n t e r c e p t i o n and t h e canopy  T h i s w i l l be  discussed  l e a f area i n d e x .  later.  The e f f e c t o f i n t e r c e p t i o n on t r a n s p i r a t i o n r e s u l t s from t h e f a c t t h a t l e a v e s covered w i t h f i l m s o f water do not t r a n s p i r e .  While  i n t e r c e p t e d water i s b e i n g evaporated t h e r e s h o u l d be a s a v i n g i n water which would o t h e r w i s e be taken up from t h e s o i l and t r a n s p i r e d .  Burgy  -  and  Pomeroy  (1958)  precipitation is  gross  distinguished  minus  interception McNaughton  evaporation the  of  the  loss  and  rate  fraction over  that  interception  rate  for  stored The  intercepted  average  sum o f  the  gross  period the  water  is  in  average  t  (  "  1  interception  rate  or  E  = E  where  g = 1 -  + (1  of  I,  and  gl  interception Emax/Ei constant  *  s  is  the  loss  called  for  is  the  a given  the  saving  average  rate  E  minus  net  i )  E  relative canopy,  in  (E^)  is  period  gross  average  is  gross  event rate  then  and is  by:  for  the  period  (16)  is  the  - I/E )  E  i  T  -  (17)  -  (18)  -  (19)  T  i  in  transpired  rate  of  absence  water  loss  saving  transpiration the  until  zero.  given  T rate  of  Et>  interception  the  the  the  + gl  T  E  (Ej/E^)  /  the  which  If  a rainfall  period  I  and  E  I  is  way.  transpiration  evapotranspiration  = I  that  I  of  a given  evaporate  the  the  for  loss  water.  evaluation  then  where  (gross  transpired  following  water, to  loss  interception  the  Now d u r i n g  for  =  in  the  evaporated  rate  net  saving  I/E^  period. is  from  required  E  Note  interception  resolve  rainfall  E  the  (1973)  time  transpiration  Consequently,  the  intercepted  the  interception  gross  minus  Black  of  of  -  precipitation)  intercepted  evaporation  time  net  16  in  rate of  for  rate  the  i.e.  transpired and  is  abnormal  period  gross water.  generally advective  - 17 -  situations.  E q u a t i o n (18) t o g e t h e r  with  (15) and  (19) were used i n t h i s  study t o c a l c u l a t e E. I t i s noted t h a t Gash (1977) commenting on Thorn and (1977) d e r i v e d the dry s u r f a c e given period. Forest  (18)  Oliver  i n d e p e n d e n t l y by making a p r o p o r t i o n a l adjustment t o  r e s i s t a n c e i n Monteith's equation Shuttleworth  and C a l d e r  (U.K.) the v a l u e of g i n (18)  (1973) f i n d g = 0.17  f o r r a i n f a l l during  (1979) note t h a t f o r  i s 0.93.  Thetford  McNaughton and  Black  f o r a young D o u g l a s - f i r f o r e s t at U.B.C. Research  F o r e s t , and  S p i t t l e h o u s e and  thinned  unthinned D o u g l a s - f i r stands at Courtenay on Vancouver  Island.  and  a  Black  (1981a) f i n d g = 0.6  A l l t h r e e of t h e s e g v a l u e s  ± 0.2  for  are p r o b a b l y m a i n l y a p p l i c a b l e t o  energy l i m i t e d c o n d i t i o n s . 2.1.5  T r a n s p i r a t i o n Rate It  i s i m p o r t a n t t o d i s t i n g u i s h between the t r a n s p i r a t i o n r a t e ,  which i s the r a t e of l o s s of water vapour from the stomata of v e g e t a t i o n , and  the e v a p o t r a n s p i r a t i o n  r a t e , which i s e q u a l t o  t r a n s p i r a t i o n r a t e p l u s the r a t e of e v a p o r a t i o n  from the  of  rainfall.  E q u a t i o n (16)  i n the l a s t s e c t i o n g i v e s the r e l a t i o n s h i p between  t r a n s p i r a t i o n r a t e (Et)» (19)  the  soil  ( n e g l i g i b l e f o r f o r e s t f l o o r s ) p l u s the r a t e of e v a p o r a t i o n intercepted  the  I» F-I and  Ey.  S u b s t i t u t i o n of E j from  i n t o (16) g i v e s the f o l l o w i n g c o n v e n i e n t e x p r e s s i o n  t h a t was  used  i n t h i s study f o r c a l c u l a t i n g t r a n s p i r a t i o n r a t e : E  t  = Ey - I (1 - g)  -  (20)  - 18 -  2.2  Water Balance The water b a l a n c e e q u a t i o n  assuming one d i m e n s i o n a l  f o r t h e f o r e s t canopy and r o o t zone  flow i s : P = E + AW/At + D + R  - (21)  where P i s t h e average p r e c i p i t a t i o n r a t e over t h e d a t a p e r i o d , AW/At i s the average r a t e o f change i n s o i l p r o f i l e water (AW = W f £ i na  ^initial)' R *  s t  n  e  ^te o f r u n o f f , and D i s t h e r a t e o f d r a i n a g e from  r  the r o o t zone ( n e g a t i v e  value corresponding t o c a p i l l a r y  rise).  When P i s zero and D and R a r e n e g l i g i b l e , E i s g i v e n t o a good a p p r o x i m a t i o n by: E = - AW/At This equation  was used i n t h i s study t o c a l c u l a t e  r a t e s o f a f o r e s t stand discussed  under t h e s e c o n d i t i o n s .  evapotranspiration T h i s w i l l be f u r t h e r  i n S e c t i o n 3.9.4.  When r u n - o f f i s z e r o ( s e e S e c t i o n 3.8) d r a i n a g e can be c a l c u l a t e d as a r e s i d u a l from ( 2 1 ) .  The r a t e o f d r a i n a g e o r c a p i l l a r y  r i s e i s a l s o g i v e n by Darcy's Law as f o l l o w s  where k i s t h e u n s a t u r a t e d s o i l water p o t e n t i a l , and (or  2.3  hydraulic conductivity, AIJ>T/AZ  i s the gradient  i s the t o t a l  o f \|rr w i t h depth  the hydraulic g r a d i e n t ) .  Tree Growth and Water Regime The e f f i c i e n c y o f water u t i l i z a t i o n by p l a n t s i s measured by t h e  t r a n s p i r a t i o n r a t i o or the r a t i o o f t r a n s p i r a t i o n t o dry matter  -  production.  Bierhuizen  following expression  and S l a t y e r  19  -  developed a n a l y t i c a l l y t h e  (1965)  for the t r a n s p i r a t i o n r a t i o :  E / t  A  =  o.079  *  • § 1  -  where Ey and A are t r a n s p i r a t i o n and p h o t o s y n t h e s i s  (kg m"  i s vapour p r e s s u r e  c a v i t i e s and t h e  2  d i f f e r e n c e between t h e s t o m a t a l  ambient a i r (mm Hg) and Av i s t h e CO2 c o n c e n t r a t i o n  d  (23).  - 1  ) , Ae  d i f f e r e n c e between  ambient a i r and the c h l o r o p l a s t s w i t h i n t h e l e a f (ppm CO2), Er = ( r r ),  which a r e t h e r e s i s t a n c e s f o r d i f f u s i n g water vapour p a s s i n g  s  evaporating laminar  s i t e s t o the l e a f s u r f a c e  +  D  from  ( r ) and thence a c r o s s t h e s  boundary l a y e r ( r ^ ) , and Er' = ( r ^  +  r s  +  r m  ) > which a r e t h e  corresponding resistances for C 0 2 with the a d d i t i o n of r  m  for C 0 2  m e s o p h y l l r e s i s t a n c e , a l l i n u n i t s s/cm. Working w i t h c o t t o n p l a n t s B i e r h u i z e n E r ' / E r and a l s o Av are f a i r l y c o n s t a n t Therefore,  plant  w i t h normal l i g h t  w i t h i n a c l i m a t i c r e g i o n , i f Ae i s f a i r l y  photosynthesis given  and S l a t y e r showed t h a t intensities.  constant,  i s d i r e c t l y proportional to evapotranspiration  for a  species.  V a r i a t i o n s i n annual increment can o f t e n be a s c r i b e d t o t h e s i n g l e f a c t o r o f growing season water a v a i l a b i l i t y , which other  growth r e g u l a t o r y p r o c e s s e s .  Thus B a s s e t t  (1964)  overrides  found a  c o r r e l a t i o n c o e f f i c i e n t o f 0 . 9 7 between annual t r e e growth and e s t i m a t e d water s t r e s s f o r a f o r e s t o f p r e d o m i n a n t l y l o b l o l l y and s h o r t l e a f ( P i n u s t a e d a and P i n u s e c h i n a t a ) . for  pines  S o i l m o i s t u r e s t r e s s was e s t i m a t e d  each day o f the growing season over a 2 1 year growth p e r i o d , based  upon a v a i l a b i l i t y o f s o i l water between f i e l d maximum and f i e l d  - 20  minimum. 0.80  Zahner and  t o 0.90  -  D o n n e l l y (1966) found c o r r e l a t i o n c o e f f i c i e n t s of  f o r r e l a t i n g water d e f i c i t s t o w i d t h of annual growth r i n g s  of P i n u s r e s i n o s a over a 10 year p e r i o d .  Water s t r e s s was  f o r the c u r r e n t growing season p l u s the p r e v i o u s Whitehead and  Darvis  determined  year growing season.  ( 1 9 8 1 ) , d i s c u s s i n g the l i n e a r r e l a t i o n s h i p  between sapwood b a s a l a r e a and  f o l i a g e , which has been found by  several  w o r k e r s , note t h a t f o r rough c a n o p i e s ' s i n c e canopy r e s i s t a n c e i s i n v e r s e l y p r o p o r t i o n a l to LAI, t r a n s p i r a t i o n rate i s proportional LAI.  to  I t i s t h e r e f o r e r e a s o n a b l e t o suppose a c l o s e d e v e l o p m e n t a l  r e l a t i o n s h i p between the e x t e n t  of the f o l i a g e a r e a , which i s  c h a r a c t e r i s t i c of the l o s s system, and  the s i z e of the supply  system'.  P o s t u l a t i n g a growth r a t e v a r i a b l e G w i t h a p p r o p r i a t e  u n i t s of  l i n e a l , a r e a l or volume growth per day, propose, f o r a g i v e n s p e c i e s between G and i s a constant. e x p r e s s e d as G  and  i t i s therefore reasonable to  c l i m a t i c subzone, a r e l a t i o n s h i p  the d a i l y t r a n s p i r a t i o n E  such t h a t G = k E  t  I t f o l l o w s t h a t maximum growth r a t e (G m a x  = k E  where E  t m a x  m a x  t  )  where k c a n  ^  e  i s the t r a n s p i r a t i o n r a t e  t m a x  under energy l i m i t e d c o n d i t i o n s , i . e . the r a t e computed from (20) when ET  =  Emax*  Subtracting  the former e x p r e s s i o n  m^v  G  G  "  max  from the l a t t e r we  G  =  k  <Ei-  = max " < t G  k  "  t max  E  max  "  have:  E,.)  t  E  t>  I n t e g r a t i n g over the a growing season t o o b t a i n G j ^ ^ , the 0  a  total  - 21 -  growth, we have:  Total  =  =  E G  max  E k(E  -  Growing Season  max Growing Season  E G max  k E (E  Growing Season  Growing Season  fc  -  E ) t  -  (25)  E ) t  max  which i n d i c a t e s t h a t the growth i n a growing season may  (24)  be  linearly  r e l a t e d t o t h e summation of s o i l water d e f i c i t s over t h e growing season.  - 22 -  3.  EXPERIMENTAL PROCEDURES  - 23 -  3.1  Site Descriptions  3.1.1  Site Locations The study was carried out on a series of established plots on the  forested north west slope of Mesachie Mountain, which is near to the British Columbia Ministry of Forests Experimental Station at Cowichan Lake, Vancouver Island, Latitude 48° 50' Longitude 124° 08'.  The sample  plots shown in Figure 3-1 represent almost mature ecosystems in the East Vancouver Island Drier Maritime Coastal Western Hemlock Variant, designated as CWHa2 Biogeoclimatic Unit.  The soil moisture regimes of  the eight sample plots have been differentiated on the basis of their plant associations and forest productivity and classified by Klinka (personal communication, 1980) as very xeric (0), xeric (1), subxeric (2), submesic (3), mesic (4), subhygric (5), hygric (6) and subhydric (7), corresponding to the soil hygrotopes of the edatopic grid (Klinka, 1979).  The elevations of the plots range from 190 m above sea level at  Site 7 to 300 m above sea level at Site 0.  Figure 3-2 shows the  topographic sequence of the ecosystems corresponding to the range of the sample plots. The position of the water table is relevant to hydrologic and soil water deficit considerations.  At Sites 0 to 3 no water table was  observed even after heavy rainfall during the winter months.  At sites k  to 6 water tables at varying depths were experienced during winter, but disappeared during the growing season. different.  At Site 7 the situation was  Throughout the summer season water table depths of 20-30 cm  were observed, rising to the soil surface during winter.  At site 7  - 24 -  F i g u r e 3-1  Map showing study s i t e s on the N.W. s l o p e of Mesachie Mountain. The b i o g e o c l i m a t i c subzone i s E a s t Vancouver I s l a n d D r i e r M a r i t i m e C o a s t a l Western Hemlock d e s i g n a t e d CWHa2. The study s i t e s are c l a s s i f e d as very x e r i c ( 0 ) , x e r i c (1), s u b x e r i c ( 2 ) , submesic ( 3 ) , mesic ( 4 ) , s u b h y g r i c ( 5 ) , h y g r i c (6) and s u b h y d r i c ( 7 ) .  - 25  F i g u r e 3-2  -  T o p o g r a p h i c a l sequence of ecosystems c o r r e s p o n d i n g t o the range o f the sample p l o t s showing major p l a n t a s s o c i a t i o n s and t r e e s p e c i e s . Tree S p e c i e s Symbols: P I : P i n u s c o n t o r t a ( l o d g e p o l e p i n e ) , Fd: Pseudotsuga m e n z i e s i i (Douglas f i r ) , Hw: Tsuga h e t e r o p h y l l a (western hemlock), CW: Thuja p l i c a t a (western r e d c e d a r ) , Bg: A b i e s g r a n d i s (grand f i r ) , Dr: A l n u s r u b r a ( r e d a l d e r ) . B r a c k e t t e d a b b r e v i a t i o n i n d i c a t e s the s p e c i e s i s a minor component o f the a s s o c i a t i o n .  - 26 -  e v a p o t r a n s p i r a t i o n parameters cannot be determined by water b a l a n c e methods, and s o i l water d e f i c i t s do not e x i s t .  S i t e 7 has t h e r e f o r e  been e x c l u d e d from the p r e s e n t s t u d y , which i s based on the q u a n t i f i c a t i o n o f s o i l water d e f i c i t s d u r i n g the growing season.  3.1.2  S u r f i c i a l Geology The parent m a t e r i a l s c o n s i s t of a m o r a i n a l veneer over bedrock o f  volcanic origin.  The veneer ranges i n t h i c k n e s s from 35 cm at the v e r y  x e r i c (0) s i t e where t h e r e are o u t c r o p s o f bedrock, t o a p p r o x i m a t e l y 1 meter t h i c k at the mesic (4) sub h y g r i c (5) and h y g r i c (6) s i t e s . The c o a r s e fragments c o n s i s t p r e d o m i n a n t l y of a n d e s i t i c rock w i t h minor q u a n t i t i e s of b a s a l t . F i g u r e 3-3  i s a map  s e c t i o n showing the s u r f i c i a l geology of the  area. 3.1.3  Forest Description The o r i g i n a l  f o r e s t which c o v e r e d the area o f the study p l o t s  almost c o m p l e t e l y d e s t r o y e d by f i r e i n 1908.  Natural regeneration  was  has  r e s u l t e d i n an a p p r o x i m a t e l y even aged second growth s t a n d c o n s i s t i n g o f p r e d o m i n a n t l y Douglas f i r (Pseudotsuga m e n z i e s i i ( M i r b . ) Franco) w i t h s m a l l e r q u a n t i t i e s of Western hemlock (Tsuga h e t e r o p h y l l a Sarg.) at the w e t t e r s i t e s , and a p p r o x i m a t e l y 50% Lodgepole p i n e ( P i n u s c o n t o r t a Dougl.) at the v e r y x e r i c s i t e . 6 i n 1964.  T h i n n i n g was c a r r i e d out at S i t e s 4 and  - 27 -  Figure 3-3  Map showing s u r f i c i a l geology of study area. Legend: Genetic Materials: C » c o l l u v i a l , M = morainal, R = bedrock, F = fluvial.Surface Expression: b = blanket, s = steep, v = veneer, m = subdued, f = fan, h = hummocky. Texture ( p r e f i x ) : g = gravelly. Qualifying Descriptor (superscript): G = g l a c i a l  - 28 -  3.2 3.2.1  Soil Properties Soil Profile Descriptions Profile descriptions, compiled by the British Columbia Forest  Service, are provided in Appendix 1.  A summary showing horizon and  depth is shown in Table 3-1a (personal communication, 1980).  Site 0 to  Site 6 are classified as orthic Humo-Ferric Podzols, and Site 7 is a Terric Humisol.  Table 3-1b shows the root zone depths determined from  observations at two soil pits at each site, and considered in conjunction with soil description records of the British Columbia Ministry of Forests. 3.2.2  Bulk Density Determination At each site bulk densities were determined at three depths  corresponding approximately to (i) 5 cm - 20 cm depth, (ii) (iii)  lower B horizon (Bf2 & Bm) at 20 cm - 45/60 cm,  BC to C horizon at > 60 cm.  (Blake, 1965).  upper B horizon (Bf & Bf 1) at  The excavation method was used  Thin gauge plastic bags were utilised, f i l l e d with  water, for determining the volume of the excavated hole. volumes averaged 1.5 l i t e r s .  The sample  For precise measurement of the volume, a  template was used made from a 20 x 20 cm piece of plywood with a 15 cm diameter short plastic cylindrical insert, for excavating the hole. This was levelled using a small level gauge at the location prepared for excavation.  In f i l l i n g the plastic bags with water care was taken to  f i l l to the level of the base of the template, corresponding to the horizontal ground level.  Plastic bags were carefully checked for leaks,  and the volume determination was repeated If leaks were noted.  Three  T a b l e 3-1a S o i l p r o f i l e d e s c r i p t i o n s o f study s i t e s . Sites 0 to 6 are o r t h i c humo-ferric podzols. S i t e 7 i s f e r r i c h u m i s o l . (From B r i t i s h Columbia F o r e s t S e r v i c e - Ecosystem d e s c r i p t i o n s , K l i n k a p e r s o n a l communication, 1980)  Site 0 Very X e r i c  Site 2 Subxerlc  Site 1 Xeric Depth (cm)  LFH  3-0  LFH  1.5-0  LFH  1-0  0-16  Bhf  0-15  Ah  0-7  Ohl  0-5  Bf2  16-35  Bfl  15-35  Bfl  7-26  0h2  5-21  14-49  Bm  35-53  Bf2  35-78  Bm  26-40  0h3  21-50  49-63  BC  53-86  BC  78-112  Bf2  40-74  Bg  112-125+  IIC  74+  LFH  3- 0  LFH  2-0  LFH  Ae  0-4  Ae  0- 1  Bhf  Bf  4- 46  Bfl  1- 14  Bf1 BC  LFH  AeJ  0- 1  AeJ  Bfl  1- 19  Bf  0.5-33  Bf2  19-35  Bm  33-52  Bm  R  35*  52*  BC  R  Depth (cm)  Horizon  4-0  0-0.5  Horizon  Depth (cm)  LFH  nc  66-91 91+  C  Site 7 Subhyd r l c  Depth (cm)  Horizon  Horizon  Site 6 Hygr l c  Horizon  Depth (cm)  Depth (cm)  Site 5 Subhyq r l c  Site * Me s i c  Horizon  Horizon  5.5-0  Site 3 Submeslc  63+  I1C  Depth (cm)  3.5-0  66+  C  H o r i z o n Depth (cm)  50-80+  - 30 -  Table 3-1b  Root zone depths at sites 0 to 6 determined by inspection of profiles at two soil pits at each site, and considered in conjunction with British Columbia Ministry of Forests soil descriptions  Site  Root Zone Depth (m)  0  0.41  1  0.52  2  0.85  3  0.89  4  1.0  5  1.13  6  1.0  - 31 -  replicate determinations were carried out at each depth. soil was oven dried at 105° C and weighed.  The excavated  After drying the soil was  sieved to remove coarse fragments > 10 mm, which were weighed and the volume calculated.  The excavated volume was then adjusted for the  > 10 mm stones, thus enabling the bulk density of soil containing stones < 10 mm to be determined.  The coarse fragments of size between 2 mm and  10 mm were then sieved, washed, dried and weighed, to enable the bulk density of soil containing coarse fragments < 2 mm to be determined. The bulk density of the < 10 mm coarse fragment fraction was determined to enable the weight percent water content of the large number of gravimetric samples taken to be converted to volume percent water content, on the basis that these samples were homogeneous with respect to < 10 mm coarse fragments.  Since extensive sampling for gravimetric  water content was required for calibrating the neutron prode at each site, by basing these determinations on the 0 - 10 mm fraction laboratory time was considerably reduced, compared with screening to 0 - 2 mm s o i l .  Bulk densities of the < 2 mm and < 10 mm fractions are  shown for each site in Tables 3-2 and 3-3 respectively. 3.2.3  Soil Coarse Fragment Content In order to calibrate the neutron probe, which measures  volumetric soil water content in the whole soil (soil + coarse fragments), from gravimetric soil water determinations which were the mass fraction of water in oven dry 0-10 mm s o i l , it was necessary to multiply the gravimetric mass fraction by (1) the bulk density and (2)  - 32 -  Table 3-2  Variation with depth below the LFH-mineral soil interface of the bulk density of the less than 2 mm fraction for sites 0 to 6. Under the heading 'Depth' > 45 or > 60 refers to the horizon between 45/60 cm and bedrock or compacted t i l l .  Site  Depth (cm)  0  5 20  1  5 20  2  5 20  3  4  5  6  5 20 5 20 5 20 5 20  Bulk Density (Mg m" ) 3  -  17 40  0.64 0.74  -  20 45  0.65 0.71  -  20 60 60  0.56 0.80 0.85  -  20 45 45  0.51 0.64 0.81  -  20 60 60  0.68 0.81 0.79  -  20 60 60  0.64 0.70 0.81  _  20 60 60  0.82 0.96 1.10  _  >  > _  >  >  >  - 33 -  Table 3-3  Variation with depth below the LFH-mineral soil interface of the bulk density of the less than 10 mm fraction for sites 0 to 6. Under the heading 'Depth'. > 45 or > 60 refers to the horizon between 45/60 cm and bedrock/compacted t i l l . Depth (cm)  Bulk Density (Mg m" )  0  5-17 20-40  0.80 1.00  1  5-20 20 - 45  0.91 0.95  2  5-20 20 - 60 > 60  0.93 1.25 1.25  3  5-20 20 - 45 > 45  1.02 1.12 1.24  4  5-20 20 - 60 > 60  1.07 1.22 1.32  5  5-20 20-60 > 60  0.89 1.10 1.18  6  5-20 20 - 50 > 60  1.06 1.24 1.35  Site  3  - 34 -  the volume fraction of the less than 10 mm fraction of soil in the whole soil and divide by the density of H 0. 2  Thus:  Vol of H 0 Vol of total soil ?  Mass of H2P Mass of < 10 mm O.D. Soil  (Gravimetric H 0 mass fraction of < 10 mm fraction) 2  Mass of < 10 mm O.D. Soil O.D. Soil Vol of < 10  (Bulk density of < 10 mm fraction)  Vol of < 10 mm O.D. Soil Vol. of Total Soil  (1 - vol fraction of coarse fragments > 10 mm)  1 Density of H 0 2  The volume fraction of coarse fragments > 10 mm was determined at each site by digging a soil pit of approximately 1 cubic meter, and screening the soil excavated to specific horizon depths.  The coarse  fragments with size greater than 10 mm were weighed, using a bucket and spring balance, and the excavated volumes were measured.  The volume of  the > 10 mm coarse fragments was calculated from their average specific gravity.  The volume fraction of < 10 mm soil per volume of total soil  was then 1 - volume fraction of > 10 mm coarse fragments. The nearest commercially available screening wire mesh available had 12.7 mm (1/2 inch) centre to centre wires, for which the size of the opening was 11.35 mm (0.447").  In order to adjust the stone content  retained on this 11.35 mm screen to a 10 mm screen, a factor was  35 -  determined by s c r e e n i n g the b u l k d e n s i t y e x c a v a t i o n s (approx. l i t e r s ) through a T y l e r 10 mm  s i e v e , and then s c r e e n i n g the s t o n e s  r e t a i n e d on the s i e v e through the 11.35 mm mesh s c r e e n . volume of c o a r s e fragments of s i z e l e s s than 11.35 mm 10 mm  per volume of < 10 mm  size.  I n t h i s way  the  and g r e a t e r than  s o i l was determined and the volume of c o a r s e  fragments r e t a i n e d on the 11.35 mm > 10 mm  1.5  s i e v e was a d j u s t e d up a c c o r d i n g l y t o  A s p e c i f i c g r a v i t y of 2.65  was used t o c o n v e r t mass t o  volume. The v o l u m e t r i c c o n t e n t f o r > 2 mm  c o a r s e fragments was  determined  u s i n g the b u l k d e n s i t y e x c a v a t i o n samples, by s c r e e n i n g w i t h a 2 s i e v e the s o i l which had passed through a 10 mm fragments r e t a i n e d on the 2 mm the  sieve.  and 3-5  The c o a r s e  s i e v e were washed, d r i e d and weighed and  volume determined u s i n g a s p e c i f i c g r a v i t y of T a b l e s 3-4  mm  2.65.  show the volume p e r c e n t of s t o n e s > 10 mm  > 2 mm  r e s p e c t i v e l y by s i t e and h o r i z o n d e p t h .  3.2.4  S o i l Textural Classes  and  S o i l t e x t u r e s were determined by s e d i m e n t a t i o n u s i n g the hydrometer method, w i t h two r e p l i c a t e s f o r each t e s t . sand, s i l t  The percentage o f  and c l a y i n the samples screened through a 2 mm  shown i n T a b l e 3-6.  s i e v e are  the f o l l o w i n g are the U.S.D.A. t e x t u r a l  found f o r each s i t e (not c o n s i d e r i n g > 2 mm  component):  classes  - 36 -  Table 3-4  Variation with depth of the volume percent of coarse fragments greater than 10 mm for sites 0-6  Site  Depth (cm)  Coarse fragments (vol %)  0  5 _ 16 16 - 35  13.0 12.5  1  5 _ 20 20 - 42  24.7 27.8  2  5 _ 20 20 - 40 40 - 65 65 - 85  24.5 22.7 17.8 24.9  3  5 12 45  -  12 45 90  12.6 10.2 16.3  4  5 20 40 60  -  20 40 60 80  15.9 16.0 17.7 15.9  5  5 _ 20 20 - 40 40 - 60 60 - 90  9.5 17.9 10.9 23.0  6  5 20 40 60  20 40 60 70  17.6 21.0 20.9 18.1  *-  -  -  Table  3-5  Variation fragments  37  -  with depth of the volume percent g r e a t e r t h a n 2 mm f o r s i t e s 0 t o  Depth (cm)  Site 0  1  5 16  (vol  %)  _ 16  21.2 23.8  20  -  35  -  42  36.2 38.7  _ 20  -  40.1  40 80  41.3 40.2  -  12  33.0  45 90  31.8 32.7  5 _ 20 20 40 40 60 60 80  33.5 35.7 37.2 34.7  20 60 90  20.9 33.2 40.8  20 40 70  31.0 35.5 29.7  5  20  2  5 20 40  3  5 12 45  4  Coarse fragments  -  5  5 20 60  6  5 20  40  -  of 6  coarse  - 38 -  Table 3-6  Particle size analysis of the less than 2 mm fraction for sites 0 to 6. The classification is in accordance with the U.S.D.A. soil textural classes, as follows: Name of separate  Diameter range (mm)  Sand Silt Clay  2.0 - 0.05 0.05 - 0.002 < 0.002  Site No.  Horizon  0  Percentage Sand  Silt  Clay  B  59.5  37.1  3.4  1  B  41 .7  49.8  8.5  2  B C  49.2 57.8  42.5 37.8  8.3 4.4  3  B C  48.5 56.3  41.5 36.7  10.0 7.0  4  B C  44.7 49.0  42.7 39.3  12.6 11.7  5  B C  47.5 51.5  43.0 40.2  9.5 8.3  6  B  43.0  45.3  11.7  - 39 -  Site No.  Horizon  0  B  Sandy Loam  1  B  Loam  2  B  Loam  C  Sandy Loam  B  Loam  C  Sandy Loam  B  Loam  C  Loam  B  Loam  C  Loam  B  Loam  3 4 5 6 3.2.5  Textural Class  Soil Water Retention Volumetric soil water content versus matric potential curves were  determined for each site.  In the high water matric potential range  (greater than -80 kPa) field data were obtained by comparing tensiometer readings at different depths with neutron probe volumetric soil water content determinations from adjacent access tubes.  At each site a set  of tensiometer tubes set up about one meter from a set of 3 neutron probe access tubes enabled this comparison.  In the low range, i.e.  -400 kPa and -1500 kPa, matric potential vs volumetric soil water content data was obtained in the laboratory using pressure membranes under pressures of 400 kPa and 1500 kPa.  Soil samples were screened  through a 2 mm sieve and three replicate runs were made at each pressure.  To adjust the water contents of the 2 mm soil fraction,  obtained gravimetrically, to volumetric water content under field conditions, the following conversion was made:  at  - 40 -  Vol H 0 total soil 2  Vol  _ ~  X  Mass o f H 0 Mass < 2mm s o i l ?  Mass o f < 2mm s o i l V o l . o f < 10 mm s o l  Vol. Vol.  o f < 10 mm s o i l of t o t a l s o i l  1  x  D e n s i t y o f H2O F o r t h e h i g h range o f s o i l water m a t r i c p o t e n t i a l s u n d i s t u r b e d c o r e samples were used, and t h e c o r e s were f i t t e d d i a m e t e r , 150 kPa a i r e n t r y ) was  i n t o Tempe (6 cm  p r e s s u r e c e l l s and water r e t e n t i o n d a t a  o b t a i n e d at a range o f p r e s s u r e s from 3 kPa t o 100 k P a . The d a t a  p l o t t e d a p p r o x i m a t e l y p a r a l l e l t o the f i e l d v a r y i n g amounts o f o f f - s e t .  t e n s i o m e t e r d a t a but w i t h  These c o r e samples c o n t a i n e d c o a r s e  fragments which o c c u p i e d an average 23% o f t h e sample volume, w i t h a maximum o f 36% o f the sample volume i n one c a s e .  Because o f t h e s e h i g h  stone c o n t e n t s , which caused s i g n i f i c a n t d i s t u r b a n c e t o t h e samples as the c o r e s were d r i v e n i n t o t h e s o i l ,  i t was d e c i d e d t h a t  c o n f i d e n c e c o u l d not be p l a c e d i n t h e r e s u l t s . ' d e c i d e d t o use f i e l d  T h e r e f o r e , i t was  t e n s i o m e t e r d a t a f o r t h e h i g h range o f s o i l m a t r i c  p o t e n t i a l , as d e s c r i b e d above. i n Appendix 2.  sufficient  The s o i l water r e t e n t i o n p l o t s a r e shown  - 41  3.3  Precipitation  3.3.1  Measurement Precipitation  Experimental the  9.2 the  October below  the  located  Experimental in  an  of  the  It  was,  evaporation  pointed form  out I  should  noted  of  to  wind  for  of  in  Section  intercepted  many + f  2.1.4  the  a  an  the  check  raingauge Site  Dune  deficit  air  0,  to of  7%  unshielded  raingauge, forced  deficiency (Linsley  Experimental  of  to  to  months  for  the  condition  all  close  shielded of  order  average  measured  the  to  workers  where h  gross  have  is  a  the  the  of  in  canopy.  between  the  leaf  area  the  is over  is  et  to  in  the  a l . ,  Station  sites.  found  interception  and  Zinke the  related f  is  to  It  was  the of  the  also  relationships the  related  emphasized  parameter  of  evaporation  a constant  (1967)  storage  of  a knowledge  precipitation.  storm,  and  calculation  requires  constant  during  water  that  rainfall  rainfall  relationship  an  Lake  standard  area  During  The  that  intercepted storage  open  In  a  A deficiency  wind.  used  interception  that = hP  be  an  acceleration  decided  Cowichan  area  showed  compared  prevailing  the  Interception  rate  relationship  the  study  weekly.  record.  by  at  16.00 h r s ) .  in  raingauge  upward  caused  for  data  was  the  at  located  location  therefore,  Rainfall It  to  gauge,  range  precipitation  3.3.2  due  and  measured  Station  exposed  daily  o v e r ^the  was  1980 t h e  anticipated,  1975).  funnel was  the  top  precipitation  site  twice  08.00 hrs  precipitation  anticipated  the  of  recorded  (at  cm d i a m e t e r  raingauge be  is  Station  uniformity  with and  -  f.  of  to  the Rothacher  - 42 -  (1963) found a good c o r r e l a t i o n f o r Pseudotsuga m e n s i e s i i between t h r o u g h f a l l (T) and stand d e n s i t y where T = ( 1 - h ) P - f .  I n the  p r e s e n t study i t was d e c i d e d ( i ) t o measure t h r o u g h f a l l at f o u r o f the s i t e s , and t o determine the c o n s t a n t s h and f f o r those s i t e s , and ( i i ) to  see whether a f u n c t i o n a l r e l a t i o n s h i p between h and f and t h e  c a l c u l a t e d l e a f a r e a index f o r t h e s e s i t e s would enable t h e s e c o n s t a n t s to  be determined f o r the o t h e r t h r e e s i t e s , by l i n e a r  interpolation/  extrapolation. T h r o u g h f a l l gauges were c o n s t r u c t e d from r a i n f a l l g u t t e r i n g (see F i g u r e 3-4).  Each gauge c o n s i s t e d of a 3 meter l e n g t h o f aluminum  g u t t e r i n g w i t h a downspout at one end from which t h r o u g h f a l l c o u l d accumulated i n a 22.8 i n s i d e a 45.5  litre  litre  (5 g a l . ) p l a s t i c water b o t t l e , c o n t a i n e d  (10 g a l . ) p l a s t i c c o n t a i n e r w i t h a wooden l i d .  o u t e r c o n t a i n e r was p r o v i d e d f o r i n s u l a t i o n . each gauge was 0.28  be  square meters.  The  The c o l l e c t i n g area of  These gauges were i n s t a l l e d at s i t e s  0, 2, 4 and 6 and one was i n s t a l l e d i n the open area near t o s i t e 0 where the r a i n g a u g e was l o c a t e d .  The accumulated t h r o u g h f a l l  was  measured at 1 - 2 week i n t e r v a l s w i t h a measuring c y l i n d e r f o r the p e r i o d from September 1980 t o September 1981 .  Appendix 3 shows p l o t s of  gauged t h r o u g h f a l l measured at the s i t e , a g a i n s t gauged p r e c i p i t a t i o n measured at the gauging d e v i c e l o c a t e d i n the open a r e a .  An e q u a t i o n  r e l a t i n g t h r o u g h f a l l t o p r e c i p i t a t i o n was c a l c u l a t e d by l i n e a r r e g r e s s i o n f o r each  site.  L e a f area index ( t o t a l ) was then c a l c u l a t e d f o r each s i t e ( T a b l e 3-7)  by f i r s t c a l c u l a t i n g l e a f biomass from t r e e d i a m e t e r  (DBH)  - 43 -  2985mm  |  193  mm  •  100 mm »  93mmJ  Aluminum gutter (closed at ends) |  1  /  1 ——v ^ — i  Plastic funnel Plastic container  O  j  r  (38 liter • 10 gal.)  Plastic water bottle (19 liter - 5gal.)  Figure 3-4  Throughfall gauge for determining the relationship between r a i n f a l l interception and r a i n f a l l i n t e n s i t y . The gutters had a s l i g h t bulge i n width because spacing braces were not used i n order to avoid raindrop splash.  - 44 -  Table 3-7 Summary of tree species, average basal area per hectare, average D.B.H., average basal area per tree and number of trees per hectare based on measurements of a l l trees (DBH > 7 cm) in 20 m x 20 m sample plots at each site. Leaf area indices were calculated as described in Section 3.3.2. SITE NO: 0 TREE TYPE DOUGLAS FIR LODGEPOLE PINE ARBUTUS TOT/AVG ALL TREES  AVG BASAL AREA SO N/HA 22.5 9.4 0.7  AVG DBH CM 20.8 18.0 18.8  32.fi  17.8  AVG BASAL AREA PER TREE:SO M 0.050 0.020 0.030 0.034  4SO 475 25  LAI (PROJ) HA/HA 1.86 2.02 O. 10  880  3.88  TREES PER HA.  SITE NO: 1 TREE TVPE DOUGLAS FIR WESTERN HEMLOCK TOT/AVG ALL TREES  AVG BASAL AREA SO M/HA 47.0 O.C  AVG DBH CM 18.C 18.1  AVG BASAL AREA PER TREE:SO M 0.031 0.026  TREES PER HA. 1500 25  LAI (PROJ) HA/HA 4.80 0.15  47.7  18.6  0.031  1825  B.OS  SITE NO: 2 AVG BASAL AREA TREE TVPE SO M/HA 4S.7 DOUGLAS FIR 1.1 WESTERN HEMLOCK 1.B WESTERN RED CEDAR TOT/AVG ALL TREES  AVG DBH CM 18.3 33.6 87.6  B1.3  18.8  AVG BASAL AREA SO M/HA 83.9 •••  AVG DBH CM 21.1 18.8  62.7  20.8  AVG BASAL AREA TREES PER HA. PER TREE: SO M 1850 0.031 25 0.044 28 0.080 0.032  LAI (PROJ) HA/HA 8.31 0.35 0.46  1600  6.02  TREES PER HA. 1400 226  LAI (PROJ) HA/HA 8.77 1.87  1625  7.34  TREES PER HA. 450 75 25  LAI (PROJ) HA/HA 4.47 0.38 0.23  850  8.08  TREES PER HA. 350 225 80  LAI (PROJ) HA/HA 5. 13 3.68 0.74  625  9.56  SITE NO: 3 TREE TVPE DOUGLAS FIR WESTERN HEMLOCK TOT/AVG ALL TREES  AVG BASAL AREA PER TREE:SO M 0.038 0.039 0.038 SITE NO: 4  AVG BASAL AREA TREE TVPE SO M/HA 42.2 DOUGLAS FIR 1.9 WESTERN HEMLOCK 0.7 WESTERN RED CEDAR TOT/AVG ALL TREES  44.8  AVG DBH CM 32.6 17.0 18.8 28.8  AVG BASAL AREA PER TREE:SO M 0.O94 0.025 0.026 0.082 SITE NO: 5  AVG BASAL AREA SO M/HA 46.3 OOUGLAS FIR 17.4 , WESTERN HEMLOCK 2.7 WESTERN RED CEDAR TREE TVPE  TOT/AVG ALL TREES  AVG DBH CM 39.9 29.7 24.8  66.4  35.0  AVG BASAL AREA SO M/HA 59.9 9.4 1.0 10.6  AVG DBH CM 38.8 30.4 32.5 46.8  81.1  37.3  AVG BASAL AREA PER TREE:SO M 0.132 0.077 0.054 0. 106 SITE NO: 6  TREE TVPE DOUGLAS FIR RED ALDER WESTERN HEMLOCK GRAND FIR TOT/AVG ALL TREES  AVG BASAL AREA PER TREE:SO M 0. 141 0.075 0.040 0.215 0.130  425 125 25 80  LAI (PROJ) HA/HA 8.94 1.00 0.23 0.79  625  7.86  TREES PER HA  SITE NO: 7 AVG BASAL AREA SO M/HA 25.4 RED ALDER 4.8 WESTERN HEMLOCK, WESTERN RED CEDAR 2.2 TREE TVPE  TOT/AVG ALL TREES  32.4  AVG DBH CM 32.3 16.2 33.7 26.7  AVG BASAL AREA PER TREE:SO M 0.065 0.027 0.089 0.065  TREES PER HA 300 175 25 800  LAI (PROJ) HA/HA  3.66  0.78 0.65  4.09  - 45 -  relationships for each species determined by Waring et a l . (1978), and by converting leaf biomass to t o t a l LAI using correlations from Gholz et a l . (1976).  Correlations for arbutus (Arbutus menziesii) and red alder  (Alnus rubra) were not available, and so c o e f f i c i e n t s for Castanopsis chrysophylla, which has similar leaf structure to these species, were used.  The c o e f f i c i e n t s in the interception functions, h and f  which had been developed from throughfall measurements ( i . e . from T = (1 - h)P - f) at Sites 0, 2, 4 and 6 were then related to the LAI calculated for these sites by plotting (1 - h) and f vs. LAI.  Good  correlations were obtained, and i t was thus possible to determine the factors in the interception functions for Sites 1, 3, and 5 from calculation of the leaf area indices for these sites and using the plots of (1 - h) and f vs LAI.  The following are the interception functions  determined for each s i t e : Site No. 0 1 2 3 4 5 6  Interception Function I I I I I I I  = = = = = = =  0.04 0.10 0.145 0.23 0.12 0.26 0.22  P P P P P P P  + + + + + + +  .85 1.14 1.32 1.84 1.17 1.98 1.84  How Determined From throughfall Calculated From throughfall Calculated From throughfall Calculated From throughfall  Daily precipitation data for the whole study period is included in the tabulation of Meteorological data in Appendix 4.  3.* Net Radiation 3.4.1  Solar  Irradiance  Daily solar irradiance was measured using a Lintronic s o l a r i meter, which was mounted at the Cowichan Lake Experimental station  - 46 -  above a green house and l o c a t e d t o g i v e maximum sky view f a c t o r .  The  output from t h e s o l a r i m e t e r  By  (mV) was connected t o an i n t e g r a t o r .  means o f a t i m e r t h e i n t e g r a t o r was s e t up t o p r i n t out t h e t o t a l s o l a r r a d i a t i o n accumulated f o r t h e day a t m i d n i g h t each  night.  The s o l a r i m e t e r was i n i t i a l l y c a l i b r a t e d i n May 1980 a g a i n s t a standardized 0.021  Kipp solarimeter before i n s t a l l a t i o n .  mV/ (W m  known v o l t a g e  The s e n s i t i v i t y was  ) . The i n t e g r a t o r c a l i b r a t i o n was checked a g a i n s t a and i t s s e n s i t i v i t y was 10.06 c o u n t s h /mV. -1  s e n s i t i v i t y o f s o l a r i m e t e r and i n t e g r a t o r was 0.0171 M3 m" counts d " . 1  against  The combined d" p e r  The c a l i b r a t i o n o f t h e s o l a r i m e t e r was rechecked i n s i t u  another s o l a r i m e t e r o f r e c e n t l y checked c a l i b r a t i o n on January  23-24, 1981. The average o f two t e s t s showed t h a t t h e s e n s i t i v i t y had changed  by l e s s than 5%. The s o l a r i m e t e r f a i l e d due t o a c r a c k  i n t h e p l a s t i c dome c o v e r  o v e r t h e t h e r m o p i l e assembly on August 2 3 , 1981. D u r i n g t h e Deriod o f 2-3 weeks u n t i l a replacement s o l a r i m e t e r c o u l d be i n s t a l l e d ,  daily  s o l a r i r r a d i a n c e was determined from t h e Campbell-Stokes s u n s h i n e r e c o r d at the Cowichan Lake E x p e r i m e n t a l S t a t i o n .  A c o r r e l a t i o n was developed  between t h e Campbell-Stokes s u n s h i n e r e c o r d and p r e v i o u s l y measured solar irradiance.  Appendix 5 shows a p l o t o f K+/K+ j * . /N where K+ v  n  E  i s t h e d a i l y s o l a r r a d i a t i o n a t t h e e a r t h s u r f a c e and K+^y i s t h e e x t r a - t e r r e s t i a l s o l a r i r r a d i a n c e , n i s t h e hours o f b r i g h t s u n s h i n e (by Campbell - S t o k e s r e a d i n g ) and N i s t h e hours o f d a y l i g h t . relationship:  The  - 47 -  K+/K+ = 0.47 n/N + 0.295  (r  ET  2  = 0.92)  was used to calculate the daily solar radiation during this short period until a replacement Lintronic solarimeter was obtained. Appendix 4 shows daily solar radiation for the whole study period. 3.4.2  Net Long Wave Irradiance As was noted in Section 2.1.2, calculation of net long wave  irradiance requires only mean air temperature measurement and the cloudiness parameter K+/K+ . max  approximated by 0.73K+FJ.  K+  max  was found to be well  Daily maximum and minimum temperatures are  recorded at the Cowichan Lake Experimental Station.  Since net radiation  was calculated for daylight hours only, this required an average daytime air temperature.  This was found to be well approximated by:  (2xT  max  +  W  /  3  Calculated daytime mean air temperature correlated closely with the average daytime temperature as recorded in a hygrothermograph located in a Stevenson screen at the open area close to Site 0. In order to check the possibility of temperature variations across the transect, the average daily temperatures ( T determined from the hygrothermograph, which  max  + T j )/2 m  n  provided a continuous  temperature record for 403 out of the 512 data days of the study was compared with the average daily temperature calculated from the temperature recordings at the Experimental Station.  A linear regression  of one on the other showed the following relationship:  - 48 -  T (site) a 1.00 T (station) - 0.44 (°C)  (r  2  = 0.93)  It was, therefore, considered acceptable to use the Experimental Station temperatures for a l l of the sites. Daily temperature data, and daytime net long wave irradiance calculated using (11) for each day are included in the tabulation of meteorological data in Appendix 4. 3.5  S o i l Water Content  The neutron probe method was selected for soil water determinations in this study because of its suitability for repeated non-destructive measurements, where precision is particularly important in the determination of the change in soil water with time and soil variability effects are eliminated by measuring at fixed locations. neutron probe model selected was the Campbell Pacific Model 503.  The  In  this instrument, the probe containing a fast neutron source of Americium 241 of strength 1.85 GBq (50 millicurie) and a slow neutron detector in a radiation protective housing, are integral with the scalar (slow neutron counter) and liquid crystal display in one portable unit weighing about 13 kg.  The whole unit is quite convenient therefore for  carrying by hand between sites. 3.5.1  Access Tube Installation Methods Access tubing suitable for the neutron probe is 5.08 cm (2 in)  0. D. x 0.123 cm (0.049 in) wall thickness aluminum tubing, having an 1. D. which gives very close clearance with the probe.  Suitable lengths  - 49 -  of tubing, corresponding to profile depths, were precut and one end was closed with a schedule 40 PVC plug, sealed In place with silicone sealant.  This method of closing the bottom of the tube showed no  significant leakage after two years. Being thin-walled, the access tubes could not be hammered into the ground.  Various methods have been used for installing access tubes  with the aim of causing minimum soil disturbance. considered were (i)  Two methods  making the hole by driving a 5 cm (2 in) O.D. heavy  wall open ended pipe into the ground down to bedrock, with repeated withdrawals to remove soil inside the pipe, (ii)  using a 5 cm (2 in)  bucket type auger to make a hole as close to the access tube diameter as possible.  The main problems arise from the stoniness of the s o i l , and  changes caused to the compaction/bulk density of the soil adjacent to the tube wall. McGowan and Williams (1980) point out that 'although the probe has a large sphere of influence, readings are particularly sensitive to a narrow range of soil a few mm thick immediately surrounding the access tube.'  They carried out comparisons between the water content profile  for an access tube which had been carefully installed with one installed in a purposely damaged hole.  It was noted that the effect of the damage  was mainly evident in the top 30 cm of the profile, while below this depth the readings for the two tubes agreed within the random count error. To avoid soil compaction around the tube wall, it was decided to use an auger for making access tube holes.  In practice it was generally  - 50 -  found that the auger would go down to about 20 cm without much obstruction, and that stoniness increased at 20-30 cm, and below.  The  procedure followed was to try out different locations over the 20 m x 20 m plot by driving a 1.3 cm (1/2 inch) steel rod into the ground, and selecting locations where the rod could be hammered down to bedrock.  If  serious stoniness was encountered while augering the top 20-30 cm, the location was abandoned.  After installing the access tube any spaces  around the tube were back f i l l e d with fine soil which was lightly compacted. 3.5.2  Access Tube Number and Location The rationale for deciding on access tube numbers and locations  is based on sample number requirements in relation to variability.  For  water balance calculations, the change in water content of a profile between data times is the parameter of interest, subject to meeting acceptable measurement precision.  The number of access tubes to  quantify soil water change for the whole plot is clearly a function of the variability of the time course change in water content over the area of the 20 m x 20 m plot and of the precision and confidence level required. McGowan and Williams (1980) discuss in some detail the large variability experienced in measurements of changes in soil water over comparatively small areas.  For an agricultural s o i l , using eight  closely spaced access tubes, McGowan and Williams show standard deviations between measured decreases in soil water greater than the  - 51 -  mean of measured decreases for a l l of the access tubes.  In paragraph  3.5.5 below, an experiment to determine spatial variability of soil water content change with time is described. that,  The conclusion was reached  certainly for forest soils, the sample population required to  provide an average value of soil water change with required precision and acceptable confidence limits would require an excessively large number of access tubes.  The infeasibility of having a very large sample  population to define precisely the average for the whole 20 m x 20 m area forces the conclusion to consider intensive sampling over small area within the site.  In this way the water balance equation may be  calculated with acceptable precision for the small intensive site, which then, at a somewhat lower level of precision, represents the soil water status of the whole site. In order to resolve the number and configuration of the tubes for optimum precision, consideration must be given to the immediate environment around the probe. Variability in the horizontal sphere of influence of soil water content, and limitation of vertical resolution (ability to distinguish soil water changes with depth) are the two factors most frequently noted in regard to the precision of neutron probe soil water measurements. Van Bavel (1956) defined the sphere of influence as the sphere around the neutron source that contains 95% of the thermalized neutrons.  Olgaard (1965) developed the following relationship for five  soils of varying density and compostion:  - 52 -  100  Z  =  1.4 + 10 6  v  where Z (cm) is the radius of the sphere of influence of neutron emission and 8  V  is the volume fraction of water in the s o i l .  For the  range of soil water contents experienced in this study Z ranges from 30 to 50 cm for wet and dry conditions respectively. Vertical resolution becomes a serious problem with soil profiles having large textural variability (McGowan and Williams, 1980; Douglass, 1962).  However, since the textural changes with depth at the study  sites are small and generally gradual, vertical resolution was not considered a serious problem.  Furthermore, when changes in soil water  are determined by repeated measurements at the same depth, vertical abnormalities tend to cancel out. Bearing in mind cost limitations, it was decided to set up two locations at each site with three access tubes in a group at each location.  This provides two locations with approximately 3 square  meters of intensive sampling at each site.  Each group of 3 tubes was  arranged in a triangular configuration, with the tubes approximately 1 meter apart.  The water content was averaged at each horizon for the  three tubes.  From sphere of influence considerations, the maximum  calculated sphere of influence (dry conditions) was about 50 cm, so that overlapping was avoided in the one meter triangular configuration.  - 53 -  3.5.3  Measurement depths The vertical dimension of the 'sphere of influence' of the  Campbell Pacific neutron probe is stated by the supplier to average 15 cm.  To cover the f u l l range of depths without overlapping, measurements  were therefore taken at 15 cm intervals. 3.5.4  Calibration of the Neutron Probe Calibration of the neutron probe requires the derivation of a  correlation whereby neutron counts can be converted to soil water contents. the f i e l d .  The calibration can be carried out in the laboratory or in It was decided to use field calibration because of the  difficulty of providing a reliable laboratory simulation of the soil chemistry, bulk density and soil structure in the f i e l d . The method of calibration was to correlate the neutron probe count ratio with the volumetric water content calculated for field conditions.  The neutron probe count ratio is the ratio of the actual  count over the standard count shown when the probe is inside the protective housing, which is a fixed environment for neutron thermalizing.  Determination of the counting period for thermalized  neutrons has been described by McGowan and Williams (1980) who note that Bell (1976) derived an expression for the standard deviation of soil water content OQ based on statistical fluctuations in the count rate due to the random nature of nuclear disintegrations for a Drobe with linear calibration:  - 54 -  where C is the count rate (counts/second), t is the time (s) over which the counts are integrated, S is the sensitivity in counts per second per 1% change in water content.  Based on a counting period of 30 seconds,  and from experience in this study of an average 10 counts per second per 1% change in water content, then for the highest counting rate experienced (i.e. under the wettest condition) of 16000 counts in 30 seconds (C = 533 counts/second), we find og = 0.42.  This indicates  that for 95% confidence the precision in soil water content determination will be about ±0.84% using 30 seconds counting time.  For  a typical neutron count during the growing season of 6000 counts/30 s e c , OQ = 0.26 and for 95% confidence the precision will be ± 0.52%. The random count error will be significantly reduced (higher measurement precision) by the averaging effect of taking neutron counts at three access tubes in close proximity. The procedure used for calibrating the neutron probe for 30 cm and deeper horizons was to carry out a number of calibration runs to span the f u l l range of experienced soil water contents between summer soil water deficit conditions and field capacity.  The procedure for  each calibration run was to take gravimetric samples, augered from the 30 cm depth and at 15 cm depth intervals below 30 cm, at three locations around the periphery of each group of three access tubes.  Gravimetric  water content was determined by drying at 105°C and the samples were screened through a 10 mm sieve.  The water content of the < 10 mm  fraction was converted to the volumetric water fraction for the whole soil by the procedure described in paragraph 3.2.3.  The averaged count  ratio of the neutron probe at each depth and the corresponding average of the volumetric water contents of the three samples are the two  - 55 -  variables for the linear regression.  Figure 3-5 shows the plot of these  data points for a l l sites, and the regression relationship obtained was: Vol. fraction H 0 (whole soil) = 0.232 x Count Ratio - 0.021 2  (r  2  = 0.85)  It is generally recognized by most workers that the same calibration developed for 30 cm and deeper horizons cannot be used for the 0 - 20 cm surface horizon due to the fact that the sphere of influence of the neutrons may intersect with the soil surface, resulting in the escape of fast neutrons from the soil mass.  The neutron probe  would in this case give readings indicating a lower than actual soil water content.  Various methods have been suggested to overcome the  effect of the surface interface.  Cole and Green (1966) apply a  correction factor to the deeper profile calibration.  Pierpoint (1966)  recommends using a surface shield of 2 inch thick polyethylene of 60 cm (2 ft)  diameter. I n i t i a l l y , it was planned to use gravimetric soil water,  converted to volumetric for water determinations at the surface horizon.  However, it was also decided to record the neutron probe  readings at 15 cm and investigate the possibility of a correlation.  The  procedure for gravimetric sampling was to auger three replicates in the 0-15 cm depth at random locations over the 20 m x 20 m plot at the same time that the neutron, probe readings were taken.  Gravimetric water was  determined and converted to volumetric for field conditions.  The  average of three soil water vol. fractions was then plotted against the average of a l l six neutron probe count ratios at 15 cm.  Figures 3-6 to  - 56 -  F i g u r e 3-5  C a l i b r a t i o n p l o t f o r the neutron probe at depths 30 cm and g r e a t e r f o r a l l s i t e s . Each p o i n t was the average of t h r e e neutron probe readings from access tubes i n a t r i a n g u l a r c o n f i g u r a t i o n v s . the average of t h r e e v o l u m e t r i c water contents of samples taken d u r i n g 1980 and 1981 adjacent to the three access tubes, and repeated a t 15 cm depth i n t e r v a l s . Water c o n t e n t s were determined g r a v i m e t r i c a l l y and converted to v o l u m e t r i c s o i l water contents f o r the whole s o i l a t t h a t depth. The l i n e r e p r e s e n t s the r e g r e s s i o n e q u a t i o n : V o l . f r a c . H 0 (whole s o i l ) = 0.232 x count r a t i o 0.021 r = 0.85 2  2  - 57 -  csi I  | | ) | I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  i  i  i  i  i  I I |  I  I  I d—I—I  I  I  I  I  I  O  q o  I . i  0.0  i  i  i  i  0.1  0.2  V0L.FRACTI0N Figure 3-6  0.3  WATER  IN W H O L E  I—L  0.4  SOIL  Relationship between the neutron count ratio at 15 cm depth and the average volumetric water content determined gravimetrically of the mineral soil between the LFH mineral soil interface and approximately the 23 cm depth at site 0. The latter depth was estimated by subtracting the radius of the sphere of influence of the probe (7 cm) from 30 cm, which was the upper neutron probe depth for the calibration line shown in Figure 3-5. Each point was the average of three neutron probe readings from the access tubes in triangular configuration vs. the average of three volumetric water contents of samples taken in 1980 and 1981 at random locations over the 20 m x 20 m site. The line represents the regression equation: Vol. frac. H 0 (whole soil) = 0.234 x count ratio 0.029 r = 0.85 2  2  - 58 -  q c4  1 1111i 111111111  i  111i  1  1 1 1  i  1  ZD  oq o  30  0.0  1  1 1 1 1 1 0.1  1 1  t  1  i  0.2  VOL.FRACTION  F i g u r e 3-7  t  1 1  1 » 1  0.3  WATER  IN W H O L E  11  0.4  SOIL  Same as F i g u r e 3-6 except f o r S i t e 1. Regression equation: V o l . f r a c . H 0 (whole s o i l ) = 0.246 x count r a t i o - 0.045 r = 0.81 2  2  - 59 -  I  i  |  I II III  I  IIIIIIIM IIII I  i i i i • i i i i ' ' ' i i I < I I I II 0.1  0.2  V0L.FRACTI0N  F i g u r e 3-8  0.3 WATER  IN W H O L E  I I  0.4 SOIL  Same as F i g u r e 3-6 except f o r S i t e 2. Regression equation: V o l . f r a c . H 0 (whole s o i l ) = 0.226 x count r a t i o - 0.075 r = 0.88 2  - 60 -  q  I  I  I  I  I  '  '  I  I  I  I  I  I  I ' 0.1  I  '  I  CN  I  I  I  I  I I  I  I  I I  <2  rr z  ZD  oq o  i— *> z>o UJ  0.0  i 0.2  V0L.FRACTI0N  F i g u r e 3-9  I 0.3  WATER  IN W H O L E  I  I  I  I  L  0.4 SOIL  Same as F i g u r e 3-6 except f o r S i t e 3. Regression equation: V o l . f r a c . H 0 (whole s o i l ) = 0.275 x count r a t i o - 0.064 r = 0.74 2  - 61 -  I  I  I  I  I I  0 0  I  I I  •  0.1  i i  I  I  I  I •  3-10  I  I  I  I  '  0.2  V0L.FRACTI0N Figure  I  I  I  I  I  I  I  0.3  WATER  IN W H O L E  I  I  I I  I I I  0.4  SOIL  Same a s F i g u r e 3 - 6 e x c e p t f o r S i t e 4 . Regression equation: V o l . f r a c . H 0 {whole s o i l ) = 0.258 x r a t i o - 0.068 r = 0.80 2  count  - 62 -  oi  I  |  |  |  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  O  q I i i i i i o  0.0  i  i  i  0.1 0.2 V0L.FRACTI0N WATER  F i g u r e 3-11  i  i  i  i  i  i  i  i  i  i  i  0.3 0.4 IN W H O L E S O I L  Same as F i g u r e 3-6 except f o r S i t e 5. Regression equation: V o l . f r a c . H2O (whole s o i l ) = 0.266 x count r a t i o - 0.11 r = 0.80  - 63 -  0.0  0.1  0.2  VOL.FRACTION F i g u r e 3-12  0.3" WATER  IN W H O L E  0.4 SOIL  Same as F i g u r e 3-6 except f o r S i t e 6. Regression equation: V o l . f r a c . H 0 (whole s o i l ) = 0.253 x count r a t i o - 0.018 r = 0.68 2  - 6k -  3-12 show these plots and the linear regression equations obtained for each site. Appendix 6 shows the soil water contents as determined at Sites 0 to Site 6 of specified depths.  The volumetric fraction water contents  were obtained by averaging the measurements at each of the three access tubes for each set of three tubes. 3.5.5  Error Analysis of Neutron Probe Soil Water Determinations McGowan and Williams (1980) distinguish the following main  sources of error in soil water measurements using the neutron probe method. (a)  Systematic errors: (i) (ii) (iii)  (b)  Calibration Soil damage from access tube installation Damage to surface soil and vegetation  Random errors: (iv) (v) (vi)  Random count error Relocation error Inherent soil variability  These will now be considered in relation to the study sites, (i)  Calibration Distinction must be made between the use of the neutron  probe for absolute measurements of soil water, and its use for measurement of changes in soil water storage.  In the present study,  since soil water changes are being measured for use in the soil water balance, the influence of adjacent horizons due to poor vertical resolution remains almost constant for successive measurements.  The  - 65 -  slope of the calibration curve i s , therefore, the determining factor, and since the correlation coefficient for the calibration plot r = 0.85, this indicates that 85% of the neutron probe count ratio is accounted for by gravimetric soil water determination and conversion to volumetric water content. (ii)  Soil damage from access tube Installation The main source of error from soil damage arises from  changes in the compaction and bulk density of the soil adjacent to the access tube, or from cracks and cavities extending from the soil surface and downwards, and providing preferential pathways for water flow. Multiple tube installations, by replicating measurements, help to average out soil damage effects.  Since calibration of the neutron probe  was carried out in the f i e l d , errors arising from access tube installation are incorporated into the calibration  coefficient and  reflected in the correlation coefficients. (iii)  Damage to the soil surface and vegetation Care was taken to avoid surface compaction of the soil and  vegetation damage adjacent to tube locations, and portable duckboards were kept for this purpose at each site. (iv)  Random count error The random count error was discused in paragraph 3.5.4.  It was noted that the random count error for a 95% confidence level is about  0.5% for growing season soil water contents, (v)  Relocation error This error arises from not locating the probe at exactly  the same deoth on consecutive measurements.  To minimize this error the  - 66 -  neutron probe was always mounted at a constant height above the soil surface.  This was accomplished by an adaptor, made of plastic pipe and  fitted with a flanged footing, for resting on the surface, which thus supported the neutron probe at a constant height.  The cable of the  probe was marked off with clamps at required depth intervals, and the clamps are held in a latching device at the top of the prode housing when measurements were taken.  McGowan & Williams (1980) note from their  experience that relocation error may account for a 20-30% increase of the random count error, thus increasing this error to about 0.6% at low soil moisture levels. (vi)  Inherent Soil Variability The subject of variation in the change in storage of soil  water was discussed in paragraph 3.5.2. in connection with access tube sampling intensity.  In order to evaluate the effects of spatial  variability on the precision of measured changes in soil water, an experiment was set up at Site k (mesic site) over a 20 m x 20 m plot. Sixteen access tubes were located on a stratified random basis by dividing the plot into four quadrants and randomly locating four access tubes in each quadrant.  Soil water contents were determined at each  tube at 30 cm depth at one week intervals during the months of Duly to October 1981.  The change of soil water content and the standard  deviations for a l l tubes were calculated.  Table 3-8 shows the average  change for 16 tubes and the standard deviations between tubes, and Figure 3-13 is a plot of this data. It is noteworthy that during the soil drying period the standard deviations are significantly smaller than after rewetting, probably due  - 67 -  Table 3-8  Variability of volumetric soil water content change over a 20 m x 20 m plot at Site 4. The average change and standard deviation are for 16 access tubes in a stratified random arrangement, and measured at 30 cm depth. During the drying period Duly 1 to August 17, 1981 the average standard deviation was 0.0048 m /m , and was used to calculate the standard error of the mean and 95% confidence limits of the mean (see text). 3  Data Period (1981)  Average Change in Vol. Soil Water Content (m /m )  1/7 - 7/7  - 0.0146  - 0.0146  0.0038  7/7 - 13/7  - 0.0047  - 0.0193  0.0030  13/7 - 22/7  - 0.0136  - 0.0329  0.0061  22/7 - 27/7  - 0.0121  - 0.0450  0.0040  27/7 - 4/8  - 0.0152  - 0.0602  0.0050  4/8 - 10/8  - 0.0098  - 0.0700  0.0060  10/8 - 17/8  - 0.0153  - 0.0853  0.0058  17/8 -  1/9  + 0.0447  - 0.0406  0.0269  1/9 - 11/9  - 0.0246  - 0.0652  0.0153  11/9 - 25/9  + 0.0271  - 0.0381  0.0096  25/9 - 9/10  + 0.0421  0.004  0.0138  3  3  Cumulative Change in Vol. Soil Water Content (m /m ) 3  3  Standard Deviation  3  - 68 i — i — i — r  i—r  i — i — i — '  i  o X  00  o < or  °1  I  o Z  < O to  1  o CM  J  L  i  '  i  i  I  I  L  L  20 40 60 8 0 100 120 D A Y S A F T E R J U N E 3 0 1981 Figure 3-13  Cumulative average change in volumetric soil water content, measured at 16 access tubes at Site 4, plotted against time (see Table 3.8) . The vertical lines show the standard deviations of the measurement and indicate the variability in soil water storage change at the site. The first seven points on the time scale show progressive drying of the s o i l , and are followed by intermittent recharge.  - 69 -  to variations in hydrophobicity and formation of soil cracks during drying.  It was noted that the standard deviations increased as the  drying period progressed, as found by McGowan and Williams (1980). Considering only the soil drying phase it is evident that the average change in volumetric soil water content was 0.0122 per week. The average of the standard deviations was 0.0048.  Since a normal  distribution can be assumed for randomly located access tubes, the 95% confidence limits for soil water changes can be calculated from  O s 1/2 (-*-) 2  CL = y  ± t  where y is the mean of soil water content changes for sixteen tubes, t is Students t statistical parameter with n - 1 degrees of freedom, s  v  is standard deviation of soil water content changes, and n is the number of  access tube locations.  Noting that t for 95% confidence limits and  15 degrees of freedom =2.13, CL = 0.0122 ± 2.13  ((P-^|i) ) 2  /2  = 0.0122 ± 0.0026 Thus the average change of soil water content determined from 16 access tubes will be subject to an error of ± 21% at a 95% confidence level.  - 70 -  In order to achieve a precision of 10% with 95% confidence the number of access tubes required would be:  n =  .2 2 t s Q  *  2  where Q, the specified precision limit for soil water change, is 10% of 0.0122 (2.13)  (0.0048)  n =  2 (0.00122r  = 70 access tubes, Clearly this number of access tubes is impractical, which leads to the decision to carry out intensive sampling on limited areas within each site as described in Section 3.5.2. 3.5.6  Water content of the Humus Layer The water content of the humus layer was determined each time  neutron prode reading were taken.  The humus layer thickness showed  considerable variability and the method of sampling was to cut three replicate 10 cm x 10 cm squares down to the interface between humus layer and mineral s o i l . Ah horizon.  In the case of Site 6 this layer included the  The samples were collected in plastic bags, and the depth  of the humus layer was recorded for each sample.  Water content was  determined in the laboratory, and since the volume of each sample was known, the volumetric water content could be directly calculated.  - 71 -  Because of the variability experienced in LFH water content between replicate samples and also between data days it was decided not to use the volumetric water content of the LFH as measured in the laboratory directly in the summation of profile water storage. Averaging and smoothing of LFH content water was necessary, and this was carried out by developing correlations between LFH water content and the neutron probe measured water content of the mineral soil at 15 cm depth.  Humus layer water volumetric water contents are shown in  Appendix 7. 3.6  Soil Water Potential Measurements Tensiometers were installed in Oune, 1980 at approximately 15 cm  depth intervals at each site (except Site 7), using acrylic tubing with sealed porous ceramic tips which were rated at 1 bar air entry value. From the top of each tube a nylon capillary tube passed up to the top of a 1 meter scale mounted on an angle iron support.  The down section of  the nylon tubes were mounted adjacent to the scale, with the bottom end in a mercury reservoir, enabling direct reading of the mercury levels in the nylon tubes.  Four to six tensiometers were installed at each site,  depending on soil depth.  For installation of the tensiometer tubes, a  steel bar of the same diameter as the acrylic tensiometer tube was hammered into the soil down to the required depth at a location 1.01.5 m distance from a set of neutron probe access tubes.  To ensure good  contact between the porous tip and the s o i l , and also to seal the tube against the walls of the hole, a slurry of fine sandy loam was made up and transferred to the bottom of each hole with a piece of open ended  - 72 -  acrylic tubing.  When the tensiometer was pushed down in place, the  slurry sealed the tube and excess slurry flowed out of the top of the hole, around the tube. Tensiometers were charged with deaerated water, produced by boiling water in a Buchner funnel flask with the side arm clamped, and closed with a rubber stopper when at the boiling point.  Air was removed  from the tensiometer tube and nylon connector by syphoning deaerated water from the flask, until a l l air was displaced via the mercury reservoir.  Recharging with deaerated water was required more frequently  as water potential approached -80 KPa, and air began to enter through the porous t i p .  The top of the acrylic tensiometer tube, extending  about 5 cm above the clamped and gasketed nylon capillary off-take, served for f i l l i n g the tube with water.  When closed with a stopper  after completely f i l l i n g , this served also as an air trap to minimize the chance of air bubbles getting into the capillary.  When air bubbles  showed up in the nylon capillary, the tensiometer was recharged with deaerated water. Appendix 8 Figures 1 to 7 show plots of soil total water potential against depth for each site, at different dates through the growing season of 1981.which were typical of both years.  From these  plots the reversal from water downflow to upflow through the soil profile as the growing season progressed is generally quite clear. 3.7  Water Table Measurements At Sites 4, 5 and 6 a water table appeared above the  bedrock/compacted t i l l during the months of November and December and  - 73 -  remained at varying depths until May - Dune.  Water table depth  measurement was carried out by installing in Oune 1980 a PVC standpipe consisting of 5.1 cm (2 inch) I.D.  PVC tube with 6 mm (1/4 inch) holes  drilled on 5 cm centers from the open bottom up to a height of 30 cm. The tube was installed with the bottom on bedrock or compacted t i l l (e.g. in a soil pit which was then back f i l l e d with coarse fragments). *"  Measurements of the water tables at Sites 4, 5 and 6 are plotted  in Figure 3 - 1 4 .  No water tables occurred at Sites 0 to 3.  At Site 7  the water table varied from being at the soil surface in winter, to 30 cm depth in summer. 3.8  Saturated Hydraulic Conductivities and Run-Off In order to determine whether sites could be differentiated from  the standpoint of soil hydraulic conductivites, and also to evaluate the possible occurrence of surface run-off, it was decided to determine soil saturated hydraulic conductivities ( k t ) by infiltration at each sa  site. Saturated (infiltration) hydraulic conductivity was determined using the constant head well permeameter of Talsma (Talsma and Hallam, 1980).  This is a simple and rapid method; the equipment comprises a  water reservoir fabricated from 3.8 cm (1 1/2 inch) diameter acrylic tubing which is placed in a 5.1 cm (2 inch) hole augered to a depth of 20 cm.  A constant head of water is maintained in the well and  measurements continued until a final steady state infiltration rate into the well is obtained (20-30 minutes).  k  s a t  is determined from the  solution of the 3 dimensional flow problem by Glover (in Zangar, 1953)  - 74 -  OCT  0  Figure 3-14  NOV  40  DEC  JAN  FEB  MAR  APR  80 120 160 DAYS AFTER SEPT 30 1980  200  MAY  JUNE  240  Water table measurements at sites 4, 5 and 6 for the period October 1980 to Dune 1981. Water tables were not found at sites 0 to 3. At site 4 a water table was present from mid November 1980 to the end of April 1981, at site 5 from early November 1980 to mid May 1981 and at site 6 from late October 1980 to mid Oune 1981.  - 75 -  for the limit of steady flow. Three replicate hydraulic conductivities were determined at each of sites 1 to 6. No significant differences in saturated (infiltration) conductivity was evident between sites.  The average saturated hydraulic  conductivity was found to be 3.7 x 10~ m/s with a standard deviation 5  of 1.2 x 10" m/s. 5  This average saturated hydraulic conductivity is about one order of magnitude higher than the maximum observed precipitation rate, precluding the possibility of run-off.  thus  In the application of the water  balance equation (21) run-off (R) was therefore considered to be zero at a l l times. 3.9  Calculation of Water Balance Components by Data Periods The dates and times when neutron probe readings were taken  determined the data periods for water balance calculations.  These dates  and times were recorded on the neutron probe data sheet when readings were taken at each site. Appendix 9.  The breakdown into data periods is shown in  The time periods between neutron probe measurements are  shown in days and fractions of days.  Data times and periods are  different at each site because of variations in times when data were taken.  A total of 50 sets of data were obtained over the 17 month  period of the study. The following methods were used for converting water balance components calculated on a daily basis, to the data periods corresponding to the neutron probe measurments of soil water storage changes.  - 76 -  3.9.1  Equilibrium Evapotranspiration Daily net radiation was calculated from daily short wave and long  wave radiation using equation (10).  Daily equilibrium  evapotranspiration was calculated from daily net radiation, and latent heat of vapourization and s/(s + y) shown in Appendix 4.  Appendix 10  shows daily net radiation and daily equilibrium evapotranspiration. Equilibrium evapotranspiration for each data period was determined by summation of daily data.  The fractional E q for the e  f i r s t and last days of the data periods were determined by calculating from the times of neutron probe data the hours of daylight after the start time on the first day and before the finish time on the last day respectively for each data period, and pro-rating E q for these times. e  Equilibrium evapotranspiration for data periods is shown in Appendix 11. 3.9.2  Precipitation and Interception Precipitation for data periods was calculated by summation of  daily precipitation (Appendix 4).  Precipitation for the first and last  days in the data periods was determined from the data times, as time fractions of the p.m. and a.m. raingauge readings respectively. Interception for data periods was calculated for each site using the interception functions described in Section 3.3.2.  Appendix 12 shows  precipitation and gross interception for data periods. To determine the interception multiplier g, described in Section 2.1.4, equations (18) and (21) are solved simultaneously by selecting  - 77 -  periods when D and R are both zero, but P is not zero.  In this case  (21) becomes E = P - AW/At and we have:" ' I (E  T  + gl) = I (P - AW/At)  Figure 3.15 shows cumulative P - AW/At for data periods having rainfall during the summers of 1980 and 1981 versus cumulative E T + gl.  A value of g = 0.8 was found by t r i a l and error to result in  a  close balance, and was used in the evapotranspiration model for a l l the sites. 3.9.3  Profile Water Storage and Extractable Profile Water Profile water storage W(mm) was calculated as follows: z=i w= z e () z=o m  z  _ Az + z e o  Q  - (26)  where 8 (z) is the whole mineral soil volumetric water content as m  measured for depth intervals Az(mm), Jt(mm) is the depth of the root zone, z (mm) is the depth of the humus layer and 6 is the average o o volumetric water content of the humus layer. Mineral soil water contents at each depth interval were determined from neutron probe measurements, and averages were calculated for each set of three access tubes.  Determination of humus layer water  content is described in Section 3.5.6. are tabulated in Appendix 13.  Profile water storage contents  - 78 o o  o  0  100  Figure 3-15  200 300 400 500 600 700 600 EVAPOTRANSPIRATION RATE ( m m )  900  1000  Determination of the interception multiplier g in the evapotranspiration equation E = Ej + gl where E is the total evapotranspiration rate, Ej is the transpiration rate assuming the vegetation is dry, and gl is the average net interception loss rate (section 2.1.4). From the water balance, when drainage and runoff are zero E = P - AW/At. Ej + gl was calculated for data periods through the growing season for different values of g. By plotting cumulative P - AW/At (ordinate) against cumulative Ej + gl (abscissa) for the whole growing season an average value of g was found by t r i a l and error when £ ( E + gl) = E(P - AW/At). T  - 79 -  Extractable water 0  is calculated from equation (13).  e  W i m  n  was determined using data periods when rainfall and drainage were zero, so that E = -AW/At (Section 3.9.4.1).  Then E was plotted against  volumetric soil water content for a l l sites (see Figure 3-16).  The data  shows a scatter of points converging as soil water content decreases, In this way the value of ~$ i for  enabling an extrapolation to E = 0. a l l sites was found to be 0.091.  m n  Then W . min  =6 .  x h (mm) , where  min  1  h =I +z . 0  W  max  is the soil profile water content at field capacity, which  is considered to be the water content corresponding to a soil matric potential of -10 kPa, and is obtained from soil water retention plots (Section 3.2.5), and Wmax „ = 6__„ max m=1  x h mm  Extractable water for data periods is shown in Appendix 14. The change in profile water storage (AW) for data periods was calculated by subtracting the i n i t i a l profile water storage from the final profile water storage. 3.9.4  Appendix 15 shows this data.  Actual Evapotranspiration  3.9.4.1 Determination of Evapotranspiration Parameters The determination of evapotranspiration parameters a (energy limiting), b (soil water limiting) was accomplished by substituting data into equations (9), (14) and (21).  Data periods were selected when  - 80 1  1  1  I  1—1  1  1  •  1  1  1  1  1  1  1  1  -  -  O A A  o  1°  A  -  -  A  A A  to  <  A  A *  —  A A  A  -  &  —  A  -  A  -  A  DC  4*  O I— A  < o to < cr  '  A  A  A  -  /A  A A  '  _  A  / * /  /  | #  A1 1  u  4  — I  o  6  1  .0  1  i  I  k  1  I  1  / I  — I  I  1  1  1  ]  1  1  0.1 0.2 V O L . F R A C T I O N W A T E R IN W H O L E  Figure 3-16  1  1 _l_ I  0.3 SOIL  Determination of soil water content when transpiration ceases (^min^' When rainfall is n i l , and capillary rise is negligible, E T = - AW/At. By plotting Ej against volumetric soil water content for such data periods, as soil water content is reduced the data points converge to zero transpiration at 8 j . Dashed line was obtained by linear regression of transpiration values less than 2 mm/day. m  n  - 81 -  P = 0, D = 0.  (R = 0 at a l l times), i.e. when the soil water potential  increased with soil depth and the unsaturated hydraulic conductivity was very small.  An estimate of the error in E from assuming negligible  capillary rise was obtained by using Darcy's Law and the hydraulic conductivity vs volumetric soil water content relationship of Spittlehouse (1981) for Dashwood series gravelly sandly loam.  This soil  was noted to have a saturated hydraulic conductivity (infiltration) of 1.2 x 10" m/s, which is comparatively close to the average saturated 5  conductivity of 3.7 x 10" m/s for this study area. 5  The highest rate  of capillary rise was found at the hygric site (Site 6) as follows: From the average profile water content the unsaturated hydraulic conductivity of 0.01 - 0.03 mm/day was estimated for the selected period when D < 0 and after the water table had disappeared.  From the  tensiometer plots the maximum upward gradient of A^/Az = 10 was found. Thus Darcy's law gives a maximum rate of capillary rise of 0.1 - 0.3 mm/day.  Based on the actual evapotranspiration rate of 3.0 mm/day, the  error in assuming zero capillary rise is thus about 3% - 9% of E. A graphical solution of the (9), (14) and (21) is obtained by plotting E/E  eq  (ordinate)  against 9 / E e  eq  (abscissa).  points for a l l sites are shown in Figure 3-17. slope of the E/E  eq  versus 6 / E e  soil water content 8 . e c  eq  The plotted  The value of b is the  relationship below the c r i t i c a l  The average value of b for a l l sites was  found to be 4.4 mm/day; however Sites 1, 2 and 4 were selected for the determination of b because these sites showed less in-site variation of volumetric soil water content between access tubes, and these site gave  - 82 -  0.0  Figure 3-17  0.1 0.2 0.3 EXTRACTABLE WATER/E.EO ( D a y s / m m )  Determination of evapotranspiration parameters a (energy limited) and b (soil water limited). Data periods were selected when precipitation and drainage were zero (tensiometers showing that water potential gradient is upwards) and capillary rise is negligible (low water potential hence low hydraulic conductivity throughout the profile). By plotting transpiration (Ey) against extractable water (8 ), both relative to equilibrium evapotranspiration, the relationship may be represented by two straight lines: E / E q = a (energy limited transpiration, horizontal line); E /E q = b6 /E q (soil water limited transpiration, sloping line), which Intersect at a c r i t i c a l value of 9 ( 9 ) such that e  max  e  s  e  e  e  ec eq = /E  a / b  -  e  ec  e  - 83 -  an average value of b = 4.1 mm/day.  The average value of a found for  sites 1, 2, 4, 5 and 6 was 0.725, while for site 6 a = 0.78.  The former  value of a was used in a l l subsequent water balance analyses.  The value  of a/b for sites 1, 2 and 4 was 0.177 d/mm which compares to 0.08 d/mm found by Spittlehouse and Black (1981) (a on a 24 hour basis) for their Douglas f i r site at Courtenay. 3.9.4.2  Calculation of Actual Evapotranspiration For data periods with no r a i n f a l l , i f the soil water content  was below the c r i t i c a l water content, transpiration was soil water limited and was calculated from equation ( 1 4 ) (i.e. E T = E 5 )  anc  j  ^  the s o i l water content was above the c r i t i c a l water content, transpiration was energy limited and was calculated from equation (9) (i.e. Ej =.E  max  ).  For data periods when there was r a i n f a l l , the additional evaporation of intercepted rainfall must be accounted for by using (18).  As reported in Section 3.9.2, g was 0.8 for energy limiting  conditions.  Equation (19) was used to determine g for soil limiting  conditions as follows.  We express E^ in the Priestley Taylor form as  (Shuttleworth and Calder, 1979): a E w  - (27)  where  is the Priestley Taylor a for a canopy with completely wet  leaves.  Substituting (27) into (19), we have  a  w  a  1 -g  - (28)  - 84 -  Substituting E T = ctE  eq  into (28). gives:  g =1 3  a  w  £  E  - (29)  eq  Since a and g for energy limiting conditions were found to be 0.725 and 0.8 respectively, cx^ = 3.5, which is applicable to both energy and soil limiting conditions.  In soil limited conditions,  g =1 y  since E T = E * s  E a  w  p—— eq  - (30)  E  Note that as E  s  decreases g increases,  and the saving in transpired water when the vegetation is wet decreases. During the winter months, when energy available for evapotranspiration is low, it was sometimes found that calculated transpiration plus evaporation of intercepted water (ctE less than the gross interception.  eq  + gl) was  This corresponds to the conditions  described by Shuttleworth and Calder (1979) and by Thorn and Oliver (1977) for conditions of large surface roughness, and specifically for forests.  They attributed excessively high evaporation to strong  advective enhancement.  In the present study, in instances when gross  interception was found to be greater than calculated evapotranspiration, it was assumed that evapotranspiration was equal to gross interception. Appendix 16 shows actual evapotranspiration for the data periods.  - 85 -  3.9.5  Calculation of Approximate Growing Season Deficit by Monthly Water Balance To enable the evaluation of the sensitivity of growth to soil  water deficit at higher deficits than were experienced in the two years of the study, a method for calculating approximate soil water deficits in other years was used.  In this procedure monthly water balances were  calculated using monthly average solar irradiance and sunshine hours data from Nanaimo (Latitude 49° 03' Longitude 123° 52') and monthly average precipitation and temperature data from Cowichan Experimental Station (Latitude 48° 50' Longitude 124° 08').  The following is a  summary of the calculations in this procedure: (i)  R = 0.9 (0.88 K+ + L*) n  where K+ is the monthly average daily solar irradiance M3 m  -2  day . -1  Spittlehouse (1982) found that the 0.9 factor was required to correct the calculated R using Nanaimo n  values.  L* is calculated as  follows (Monteith, 1973): L* = (107 - T ) (0.2 + 0.8 n/N) a  where T  a  is the monthly average daily temperature °C, n is the monthly  average daily bright sunshine hours, and N is the maximum monthly average daily sunshine hours.  max = a  E  urrW  Rn  (mmd_1)  where s, y and L are as described in Section 2.1.1.  a has the value 0.8  - 86 -  on a 2k hour basis corresponding to 0.725 found for daytime basis in Section 3.9.4.1. (iii)  I E =E x No. days in the month max max  (iv)  (mm)  P = Total precipitation for the month (mm)  (v)  AWSC = Root zone Depth x (6  max  - 6 . ) min  (mm)  where AWSC is available soil water storage capacity (mm) and 0  m a x  is  the volumetric soil water content at matric potential = -10 kPa, and min *  e  s  ^  e  volumetric soil water content when transpiration = 0 (see  Section 3.9.3). For months June, Duly and August, the soil water budget is calculated by monthly water balance. (vi) E  m a x  The value of the deficit for a given month is equal to  minus the sum of precipitation and the remaining available soil  water storage from the previous month.  This monthly deficit was  computed for Dune, Duly and August, the 3 summer months which experience has shown "produce the growing season water deficit.  It was assumed that  the soil water content at the beginning of Dune was AWSC as calculated above. The method was evaluated by comparing results calculated for Courtenay (using Nanaimo and Campbell River meteorological data) with deficits calculated by Spittlehouse (1983) using daily balance calculations.  As anticipated the monthly balance calculation  - 87 -  significantly underestimated growing season soil water deficits calculated on a daily basis.  A linear regression of growing season soil  water deficit calculated by daily balance in the range from 0 to 177 mm against calculation by monthly balancing was as follows: Deficit (daily balance) = 0.89 x Deficit (monthly balance) + 33 (mm) with r  2  = 0.7.  At growing season soil water deficits above 165 mm the  difference is less than 10%, and so monthly balancing may be used to approximately calculate soil water deficit in a very dry year. 3.10  Forest Productivity Measurement In April 1982 at each site a 20 m x 20 m plot was carefully  marked out, and all of the trees within the plot were numbered with aluminum tags.  The species were noted and the diameter at breast height  of each tree was recorded.  These records are shown in Appendix 18.  Table 3-8 provides, for each site a summary of tree species, average basal area (m ), and the number of each species per hectare, a l l based 2  on the 20 m x 20 m sample areas. For quantifying forest productivities at the sites three methods were used: (1)  Site index measurements.  (2)  Total stemwood volume per hectare based on trees with DBH greater than 7 cm.  (3)  Annual incremental stemwood volume per hectare from tree ring measurements.  - 88 -  3.10.1 Site Index Measurements Site Index estimations for Pseudotsuga menziesii (Douglas fir) were made at each site based on the average height and total age of dominant trees at each site.  Dominant tree height and age data were  obtained from forest mensuration forms compiled by Ministry of Forests personnel, and checked against tree height measured by Relaskope.  The  only significant difference found between the two sources of data was at Site 5 (subhygric) where the Ministry of Forests data appeared to underestimate the average height of two dominant Douglas f i r trees at 35.9 m compared with 43.3 m measured by Relaskope. Site Index curves used to estimate the height at 100 years were from Hegyi et a l . (1979) in Ministry of Forests Inventory Branch, Forest Inventory Report No 1. 3.10.2  Stand Density by Volume For the determination of total stemwood by volume at each site  it was necessary to develop tree volume versus basal area relationships, which reflect the variations in tree form classes between sites.  For  this purpose tree diameters were measured at different heights using a Relaskope (optical dendrometer).  From three to six diameter/height  measurements were made on a sample of six trees at each site (2 large trees, 2 intermediate, 2 small).  The volumes of these trees were  calculated using Smalian's formula (Avery, 1975) to determine the volumes of the measured sections:  - 89 -  (B + B )L Cubic Volume = — — 2  where B-) and B2 are cross sectional areas at points separated by distance L.  Tree volume versus basal area plots are included in  Appendix 20. An error estimate for height and diameter measurements using the Relaskope at known heights and diameters showed an average error in both dimensions of ZA%. 3.10.3  Current Annual Growth Measurement Annual growth measurement was accomplished by determining the  annual stemwood increment from tree ring measurements. Due to time limitations it was decided to restrict annual increment measurements to Sites 1, 4 and 6.  Sites 1 and 6 cover the  economic range of the transect, and Site k is classified as the mesic site.  In September 1982 a sample of 10 trees was selected at each site  from the 20 m x 20 m plots such that the samples covered the range of DBH measurements at these sites.  Two cores were bored at opposite sides  of each tree at DBH, and parallel to the slope.  At the same time that  the cores were bored, tree diameters were measured at the core height, and four bark thickness measurements were also taken and averaged. Ring widths were measured to the nearest one hundredth millimeter by the Faculty of Forestry (Appendix 21). could not be measured.  Due to damaged cores, some  The following tabulation shows the number of  trees at each site for which core measurements were made:  - 90 -  Number of Trees Site 1 Two cores/Tree One core/Tree Total Trees  Site 4  Site 6  6 3 9  8 2_ 10  k 3 7  Two procedures were used to determine annual incremental stemwood: (1)  Measurements of 1981 and 1980 ring widths were used to calculate actual incremental stemwood volume for these years.  (2)  Expected annual ring widths were determined by fitting a regression line to the ring measurement data for the past 25 years.  The two methods will now be reviewed. 3.10.3.1  Incremental Stemwood from Ring Width Measurements The 1982 ring radius for each tree was calculated from DBH and  bark thickness measurements.  From measurements of tree ring widths for  1982, 1981 and 1980 the annular areas of growth were calculated. Annular areas were averaged for trees when two core measurements were available.  The annual incremental stemwood volumes for each tree were  calculated using known stemwood volume/basal area relationships (Section 3.10.2).  From the distribution of DBH classes within the 20 m x 20 m  plots, the weighted average stemwood volume increase per hectare was calculated for the years 1980 and 1981 for each site.  - 91 -  3.10.3.2  Expected Incremental Stemwood by Linear Regression Tree ring widths were plotted for all measured cores for the  past 25 years.  A straight line was fitted to the points by linear  regression, giving a linear relationship between expected ring width and time for each core. Starting from the actual ring radius determined in 1982 from DBH and bark thickness measurements, the expected ring radii for previous years were calculated by successively subtracting expected ring widths obtained from the regression equation.  Expected annual basal areas were  calculated, and annual basal area increments by subtraction.  Expected  incremental growth volume was calculated for each tree from stemwood volume vs basal area relationships.  From the distribution of DBH size  classes the expected weighted average incremental stemwood volume per hectare was calculated for a site.  - 92 -  RESULTS AND DISCUSSION  - 93 -  4.1  Water Balances for 1980 and 1981 Figures 4-1A and B to Figures 4-7A and B show time courses of  the water balance components at sites 0 to 6 for dune 1980 to December 1980 inclusive, while Figures 4-8A and B to Figures 4-14A and B are for Oanuary 1981 to October 1981 inclusive.  Figures marked 'A' show average  precipitation and evapotranspiration rates and figures marked 'B' show average rates of soil water storage change and drainage over the data periods. 19.  These diagrams are compiled from data tabulated in Appendix  Note that the data points shown represent the midpoint of each data  period on the horizontal scale. 4.1.1  Net Cumulative Withdrawal of Water Stored in the Soil A useful climatological estimate of the capacity of the soil to  store water available to the trees is the summation of E - P for E > P during the growing season.  This assumes that drainage is small.  (If  drainage is positive, E - P underestimates this capacity, while i f it is negative it overestimates).  It can be readily shown that if drainage is  zero the above summation for E > P corresponds to the maximum drawdown in root zone soil water storage that occurs during the growing season. In both years by the beginning of Duly and for most of the months of Duly and August soil water drainage rate had decreased almost to zero.  The last dates when water tables were observed at sites 4, 5 and  6 in 198.1 were April 29, May 20 and Dune 14 respectively, and as already noted^the lowering of the water table below the impermeable boundary resulted in negligible capillary rise (negative D).  The values of the  cumulative totals of E - P for E > P are shown in Table 4-1.  The table  - 94 -  Table 4-1  The cumulative net withdrawal of soil water storage at each site during the growing seasons of 1980 and 1981. This is calculated by accumulating values of E-P for data periods when E > P, and is represented by the area bounded by the evapotranspiration rate and the precipitation rate plots in Figures 4-1A to 4-14A. Site  Year  0  1  2  3  4  5  6  1980  99.4  91.7  126.2  144.9  141.8  158.4  157.6  1981  107.8  101.3  130.0  163.8  147.5  175.3  178.4  /  - 95 -  Figure 4--1A Site 0: Time course of rates of precipitation and evapotranspiration for data periods for year 1980 Dune to December inclusive. The data points are the mid-points of each data period on the horizontal scale, and the average flux density on the veritical scale.  - 96 -  JUNE JULY 1  AUG SEPT  1  OCT  NOV , DEC  I II  I  I I  I II  I I  I I I' I  STORAGE CHANGE L O ID I  I  i  20  i  i  i  40  i  60  i  i  80  i  i  100  i  i  120  DAYS AFTER MAY  i  i  140  I  l  160  I  I  180  I  I  200  1  220  31 1980  Figure A--1B Site 0: Time course of rates of soil water storage change and drainage and soil water storage for data periods for year 1980 to Dune to December inclusive. The data points are the mid-points of each data period on the horizontal scale, and the average storage change and drainage on the left hand vertical scale. The data points of water storage (right hand vertical scale) correspond to the days when data was taken on the horizontal scale.  - 97 -  Figure  4-2A  Same Site  as F i g u r e 1.  4-1A e x c e p t  for  - 98 -  1 1 1 1  E  1 1  1 1H-T  IT  1 1  -  1 1  <t oo Q  ei( /i  —  /1  *i \ '/ i \' ik! -i  -  _  '' > '  ,'' ' ' '  1  I  i i i  Oo  2  1 1 1  1  DRAINAGE .,  UJ  <-  I  I  —  ©  —  1  IO  -  > ' > '' ' 1  E E O <  DC  5 to  CC  a  10 STORAGE  "x  A /V  Xo O  O  j  ~T*A~1 \ /  z < O <  f<f  . « H 1  / \/  /  /  l• > l\ \\''i» V H\ i 1  1  'l  -  -\|  1  .  1  -  STORAGE CHANGE  •—  ty)<o i  i 0  i i i i i i 20  40  60  i 80  i i i i i i 100  120  DAYS AFTER MAY  F i g u r e 4-2B  140  .  i i i i l J _ 160  180  200 220  31 1980  Same as F i g u r e 4-1B except f o r S i t e 1.  - 99 -  Figure  4-3A  Same Site  as F i g u r e 2.  4-1A e x c e p t  for  - 100 -  JUNE JULY  AUG SEPT OCT NOV DEC I  I  1  I  I  I  1  I  I  I  1  I  l' I  I  l' I  '  l'  o CO  E  o io  O o <~ Z <t_ oo or o  — o < or  STORAGE  or  UJ  — I «=>*  o  2 <-«  UJ ON Z  < o I i I (N o < a : *» o i— 1  STORAGE CHANGE  1  I  0  ' 20' ' 40  i  i  60  i  i  80  i  i  I  I  100 120  I  I  140  I  I  I  I  I  I -J-  160 180 200 220  DAYS AFTER MAY 31 1980  F i g u r e 4-3B  Same as F i g u r e 4-1B except f o r S i t e 2.  - 101 -  JUNE JULY  0  20  40  AUG SEPT OCT NOV DEC  60  80  100  120  140  160  180 200 220  DAYS AFTER MAY 31 1980 Figure 4-4A  Same as Figure 4-1A except for Site 3.  - 102 -  JUNE JULY  AUG SEPT  OCT  NOV, DEC  I i i i i i i i i •i i i i i i i 0  20  40  60  80  100  120  mo  160  i i i i  i  180  200  I 220  DAYS AFTER MAY 31 1980  Figure 4-4B  Same as Figure 4-1B except for Site 3.  - 103 -  JUNE JULY  AUG SEPT  OCT NOV DEC  i i I i i I i i i' i i i' i i i i i i i i i |  1  a-  0  20  40  60  80  100  120  140  160  180 200 220  DAYS AFTER MAY 31 1980 Figure  4-5A  Same a s F i g u r e Site  4.  4-1A except f o r  - 104 -  JUNE JULY I  I  I  I  AUG S E P T )  I  I  I  I  I  I  OCT NOV DEC  |  |  f  I  I  t  I  I  I  I  I  {  I  o  CO  E E  DRAINAGE/ \  2  R  o — •o UJ O  O o  <  z  DC  <oo  DC O Q Z  "V'  "".STORAGE  5«/>  io  Si >  OCM  z <  X o o I • I CM  /STORAGE CHANGE  o < OS •« O t— C/l<o I 1  1  i  20  Figure  40  60  i  80  i  i  i  i  i  100 120  i  i  i  i  I  I  I  140 160 180 200  1220  DAYS AFTER MAY 31 1980  4-5B  Same a s Site  4.  Figure  4-1B e x c e p t  for  -  Figure  A-6A  105 -  Same a s F i g u r e S i t e 5.  4-1A e x c e p t  for  - 106 -  JUNE JULY 1  1 1  E E  1 1  AUG 1  SEPT  1 1 "1  1  OCT  NOV  1 1 1 1  1  •  -  2  DEC  1 1 1 1 1 1  E E  e~  r  to •*> L U  ^^TORAGE  Oo <~  z  V  -  or O  /  z < "  4  <  6  —  1  /  A  /  i  i  - 6  \  \  —  i  »^  to  :\  O 1 < or f O 1 t—  O < or  -  / i  Sin  '  A  • ,'\  Xo O  / > >  / \ i ' \ '  ^DRAINAGE  Ul ON Z  •  '  /  -  O  / \  -•  _  -  " 1 I.  STORAGE CHANGE  I 0  20  i  i  i  40  i  60  i  i  80  i  l  100  l  I  120  DAYS AFTER MAY F i g u r e 4-6B  1  i 140  I  I  160  1  1  180  1  1  _ 1 _  200  220  31 1980  Same as F i g u r e 4-1B except f o r S i t e 5.  - 107 -  F i g u r e 4-7A  Same as F i g u r e 4-1A  except f o r S i t e  6.  - 108 -  0 20 40 60 80 100 120 140 160 180 200 220 DAYS AFTER MAY 31 1980  F i g u r e 4-7B  Same as F i g u r e 4 - l B except f o r S i t e  6.  -  JAN  FEB  MAR  APR  i iJ iI i iI iI i  I  109 -  MAY JUNE JULY i  i  I  i  i  Iiii  AUG SEPT OCT I  i  i i i i i i| i  -  (/)<£  Z  <  cr 2 -  0  20  40  60  80  100  120  140  160  180  200 220 240 260 280 300  DAYS AFTER DEC 31 1980  Figure  4-8A  Site 0: Time c o u r s e evapotranspiration f to October i n c l u s i v e each d a t a p e r i o d on f l u x d e n s i t y on t h e  o f r a t e o f p r e c i p i t a t i o n and o r d a t a p e r i o d s f o r y e a r 1981 O a n u a r y . The data p o i n t s a r e m i d - p o i n t s o f t h e h o r i z o n t a l s c a l e , and t h e average vertical scale.  - 110 -  JAN i i  I  FEB  MAR . APR . MAY JUNE JULY AUG S E P T OCT  i i \ i i  I  i i  I  t  |  |  i ii i i i i i i i  ii  1  [  [  i i I i i i i  i  i o oo  E  IO  UJ  o< or  \DRAINAGE  Oo < -  z  < t DO  or  Q  IO  O Z <<*  o<  OcM  z <  X o  o o <  I • 1I O l  or •—  STORAGE CHANGEN  7  COio I  I  !  20  40  60  80  I  I  tOO  I  I  120  I  I  140  I  I  160  I  I  180  I  I  200  I  I  220  I  I  I  I  I  I  240 260 280  I I  300  DAYS AFTER DEC 31 1980  Figure 4-8B  Site 0: Time course of rates of soil water storage change and drainage and soil water storage for data periods for year 1981 3anuary to October inclusive. The data points are the mid-points of each data period on the horizontal scale, and average storage change and drainage on the left hand vertical scale. The data points of water storage (right hand vertical scale) correspond to the days when data was taken on the horizontal scale.  - 111 -  Figure  4-9A  Same  as  Figure  4-8A e x c e p t  for  Site  1  - 112 -  JAN  FEB  MAR  APR  MAY JUNE JULY  AUG S E P T O C T  i i i i i \i i I i i 1i i i i i i i i i i 1  E E  1  1  1  i  i  ii i' 'i  S  u>  O o  '\DRAINAGE  z <t oo  or  o Q Z  ON Z  <  X o  O  I • I CNl 1  o< or •>» O  o oo  STORAGE CHANGE'  1  t— I  i 0  i 20  i  i 40  ' 60  80  100  i 120  140  160  i  i  i  i  i  I  I  I  I  I  I  I  DAYS AFTER DEC 31 1980 F i g u r e 4-9B  I  I  180 200 220 240 260 280 300  Same as F i g u r e 4-8B except f o r S i t e 1  o< or  - 113 -  20  40  60  80  100  120  140  160  180 200 220 240 260 280 300  DAYS AFTER DEC 31 1980  Figure 4-10A Same as Figure 4-8A except for Site 2  - 114 -  JAN FEB MAR  APR MAY JUNE JULY AUG SEPT OCT  E  o< or  Oo  z <j  oo  or  Q  to  O Z  Oo, Z  <  X o O I •  I CM 1  o< or  O t—  f  1  LOio I  III 0  20  i  40  Figure  60  80  4-10B  i  100  i  i  i  J  120  140  I  160  I  l  180  l  'I  'I  '  '  I  '  200 220 240 260 280 300  DAYS AFTER DEC 31 1980 Same a s F i g u r e  »  4-8B e x c e p t  for Site  2  - 115 -  Figure  4-11A  Same a s  Figure  4-8A e x c e p t  for  Site  3  - 116 -  tOta  '  I  I  0  i  i  20  i  i  40  i  i  60  i  i  BO  i  i  100  l  l  120  I  I  140  I  I  I  160  DAYS AFTER DEC Figure  4-1IB  Same a s  Figure  I  I  180  31  I  I  200  I  220  I  I  I  I  I  I  240  260  for  Site  I  280  1980  4-8B e x c e p t  3  I  -I  300  - 117 -  JAN  FEB  MAR  APR  MAY  JUNE  JULY  I i i h i I i I ii i Ir i i  AUG  SEPT  OCT  i  CN CN  PRECIP (/)«£  z <  DC 2  o  > < UJ or CL. " e-'EVAPOTRANS 20  40  i i i 60 80  i  I I I I I I I I 100 120 140 160 180 200 220 240 260 280  DAYS AFTER Figure  4-12A  /  DEC 31 1980  Same a s F i g u r e  4-8A except  f o rSite  4  300  - 118 -  F i g u r e 4-12B  Same as F i g u r e 4-8B  except f o r S i t e 4  - 119 -  Figure  4-13A  Same a s  Figure  4-8A e x c e p t  for  Site  5  -  0  20  40  60  80  100  DAYS Figure  4-13B  120  140  AFTER  Same a s  120 -  160  180  DEC  Figure  31  4-8B  200  220  240  260  280  1980 except  for  Site  5  300  - 121 -  JAN  F E B MAR  APR  i i /i i \ i i I i  i  MAY JUNE JULY AUG SEPT  I i i i'  i  i / i i i' i  I  OCT  i i i i i ii  CM CM h  PRECIP  E»  N.  in <£ z < or  t—  2  O  0-  CM  >  Wo  < oJ UJ or  1  '  1  |  V  |  Y _^  rl  20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 Figure 4-14A  DAYS AFTER DEC 31 1980 Same as Figure 4-8A except for Site 6  - 122 -  JAN  FEB  MAR  APR . MAY .JUNE, JULY AUG S E P T OCT t  [  |  |  o co  E E u>  o< cn  o £  0  20  40  60  80  100  120  140  160  180 200 220 240 260 280 300  DAYS AFTER DEC 31 1980  Figure  4-14B  Same a s F i g u r e 4 - 8 B e x c e p t  for Site  6  - 123 -  shows that these values increase dramatically from site 0 to site 6. The values correspond closely with observed water storage drawdown during the growing season shown in Figures 4-1B to 4-14B.  Net  cumulative withdrawal of water stored in the soil is a function of the root zone depth and the soil water retention characteristics.  Since for  the study area variations in soil water retention characteristics between sites are comparatively small (see Figures, Appendix 2), the major factor in determining the variation in soil water withdrawal between sites is the root zone depth (see Table 3-1b). 4.1.2  Recharge of root zone following summer dry periods It is instructive to discuss the progress of recharge of soil  water in the root zone down the transect towards the end of the growing season as precipitation increases.  Recharge from subsurface flow  (through capillary rise) can be calculated as a residual in the water balance equation (21).  Calculated values of D for data periods from the  end of August through October 1981 are tabulated in Table 4-2.  The  precipitation was i n i t i a l l y light, and increased gradually resulting in the gradual progress of soil water recharge.  Surface run-off was not  experienced because of the high soil permeability.  As recharge took  place at higher elevations by infiltration throuqh shallow soils, it would appear that a steady state was soon reached when saturated subsurface down flow along the surface of the Impermeable bedrock or compacted t i l l became established.  Subsurface flow then propagated  downslope resulting in capillary rise which added to infiltration in recharging the root zone (Dunne et a l . , 1979.)  Table k-Z Capillary rise (-) or drainage (+) determined from water balance calculations for data periods during the first rainfall following after the end of the growing season. Negative entries indicate soil recharge taking place from capillary rise resulting from subsurface downflow, and positive entries indicate completion of soil water recharge and drainage from the profile going to subsurface flow. Note the time lag between positive drainage being established at Sites 1 to 3 and the completion of soil water recharge at Site 6. First observation of water tables follows completion of recharge (See Figures 4-8B to .  Data p e r i o d raid-point date  Aug 21  Length o f p e r i o d (days) Precipitation  (mm/day) D  Site 0  o  Aug 27  Sept 6  Sept 20  Oct 3  Oct 19  6  7  10  14  13  16  1.1  6.2  0.2  4.6  12.6  5.1  Ca p l l l a r y  +0.9  r i s e (-)  -2.9  or Drainage ' •)  -1.2  Water T a b l e depth as f i r s t observed on Oct 9 (m)  (ram/day)  •1.3  +9.3  •3.5  Site 1  +0.*  -0.9  -0.4  •2.9  +6.6  +3.8  Site 2  •0.6  -4.4  +0.2  +1.2  +7.5  •3.4  Site 3  -0.3  -1.1  -1.6  +0.7  +6.3  •3.2  -  Site 4  0  +0.5  -0.8  +0.5  +6.9  •6.9  0.98  Site 5  +0.5  -1.9  -0.4  •1.0  -1.6  +1.7  0.91  Site 6  +0.3  -0.2  -1.1  -3.3  -1.1  •3.0  0.37  - 125 -  At the upper part of the transect, sites 0 to 2 show that recharge was completed within two weeks of the first significant rainfall in the August 27 data period, and thereafter D remained positive (Table 4-2 and Figures 4-8A and B, 4-9A and B, 4-10A and B). At the lower elevation of site 6 there was a low recharge rate i n i t i a l l y which increased, reaching a maximum rate in the September 20 data period.  Recharge continued into the October 3 data period until the  water table was first observed on October 10 (Figure 4-14A and B). Figure 4-14B and Table 4-2 show that D was strongly negative from the time of slow recharge rate (September 6 data period) until the October 3 data period. The progress of soil water recharge may be followed in the time course of soil water potentials (total) measured down the profile at each site by tensiometers.  Thus at site 1 negative potential gradients  near the top and positive near the bottom show that recharge is taking place both by infiltration and by capillary rise on September 2 and September 12, 1981 (Appendix 8 Figure 2).  At site 6, Appendix 8 Figure  7 shows that on September 10 all tensiometers were showing water potentials less than -75 kPa, while by September 25 they were nearly uniform down the profile and averaged -9.6 kPa.  By October 9, when the  water table was f i r s t seen at 37 cm depth, all of the tensiometers were showing water potentials close to zero.  Table 4-2 shows a significant  rate of recharge in the September 20 data period, at which time therefore the tensiometer at 67 cm depth would have been expected to show zero potential, and a positive potential gradient near the bottom of the profile.  The situation may be explained by irregularities in the  - 126 -  surface of the impermeable boundary resulting in channel flow down the slope and a non uniform water table build-up. The implication of these results is that while capillary rise during most of the growing season was small at site 6, there was a 5-6 week period following the beginning of the f a l l rains during which capillary rise was significant at this site.  The conclusion that  capillary rise was small during the growing season was supported from hydraulic conductivity determinations (Section 3.9.4.1).  Contrary to  the generally held view, seepage (saturated flow of water above the impermeable layer (C horizon)) was absent from a l l sites with the exception of Site 7 during Duly and August.  This was shown by (i)  disappearance of water table by mid-Dune and (ii)  the  increasingly negative  matric potentials which developed at the bottom of the soil profile. It is noteworthy that in 1980 the progress of soil recharge cannot be as readily distinguished at the end of the growing season as in 1981, because the first significant rainfall in 1980 did not occur until October 31, and then 162 mm was recorded in the next 5 days.  This  was probably sufficient for complete recharge of the whole transect. 4.2  Growing Season Soli Water Deficits Figures 4-15 to 4-28 show plots of maximum and actual average  weekly transpiration rates during the growing seasons of 1980 and 1981. The cumulative soil water deficit for the growing season is the summation of the shortfall of E  t  below E t  m a x  the horizontally shaded area in the plots.  and is equivalent to These cumulative deficits  - 127 -  MAY  0  20  JUNE  40  JULY  60  80  AUG  SEPT  100 120 140 160  GROWING SEASON STARTING MAY 1 1980 Figure  4-15  T r a n s p i r a t i o n a n d maximum t r a n s p i r a t i o n r a t e s f o r s i t e 0 d u r i n g t h e 1980 growing s e a s o n . Maximum t r a n s p i r a t i o n i s c a l c u l a t e d f r o m t h e maximum e v a p o t r a n s p i r a t i o n r a t e by subtracting the evaporation of intercepted rainfall (section 3.9.4.2). Evaporation from the s o i l i s considered negligible. A c t u a l t r a n s p i r a t i o n i s l e s s t h a n maximum t r a n s p i r a t i o n when t r a n s p i r a t i o n becomes l i m i t e d b y s o i l water storage. The d a t a p o i n t s c o r r e s p o n d t o t h e m i d - p o i n t s of the data periods on the h o r i z o n t a l time s c a l e , and average f l u x d e n s i t y on the v e r t i c a l s c a l e . The average d e f i c i t during a data period i s the s h o r t f a l l of t r a n s p i r a t i o n b e l o w maximum t r a n s p i r a t i o n , a n d t h e g r o w i n g season d e f i c i t i s t h e summation o f data p e r i o d d e f i c i t s and i s shown by t h e s h a d e d a r e a .  - 128 -  MAY  O  E E  AUG  SEPT  O  NS.  •  < •  AX  r—  I  JULY  •  1?  \  JUNE  CN•  q CN LO  Q  <  to  «  •  o  <  LO  \—  d q d  0  20  40  60  80  100 120 140 160  GROWING SEASON STARTING MAY 1 1981 Figure  4-16  Same  as Figure  4-15 except  for Site  0 1981 g r o w i n g  season  - 129 -  3 l  q  I  o 0 Figure  MAY  JUNE  JULY  AUG  I  I  l'  I  I  l'  I  l l ' l  i  i  i  i  i  i  i  i  20  40  60  I  80  I  100  SEPT  I  l'l  I  I  120  I  I  I  l'  I—I  140 160  GROWING SEASON STARTING MAY 1 1980  4-17  Same  as Figure  4-15 except  for Site  1 1980 growing  season  -130 -  3 TJ  MAY  JUNE  l I  I  l' M  I  i  i  JULY  AUG  SEPT  l' I I  l' I  I  l'l  i  I  I  I  I  l'|  I  I  If)  q o  i  0  20  i  i  40  60  i  i 80  I  I  I  100 120 140 160  GROWING SEASON STARTING MAY 1 1981 Figure  4-18  Same a s F i g u r e  4-15 except  for Site  1 1981 g r o w i n g  season  - 131 -  MAY  q  JULY  JUNE I  I  I' I  I  AUG I  I  1  J  I  SEPT I  I  I i  MAX.TRANS.  A  in \ q  tn  00  <  CN  Cr: 1—  X•  q  <  o  in•  "7  <  00  <  cr 1  q  •  o o o  i  0  I  20  l  I  I  40  I  60  I  I  80  I  I  I  I  100 120  I  I  140 160  GROWING SEASON STARTING MAY 1 1980 Figure  4-19  Same a s F i g u r e  4-15 except  for Site  2 1980 growing  season  - 132 -  MAY  0  20  JUNE  40  JULY  60  80  AUG  SEPT  100 120 140 160  GROWING SEASON STARTING MAY 1 1981 Figure  4-20  Same  as F i g u r e  4-15 except  for Site  2 1981 g r o w i n g  season  - 133 -  MAY  9  o  I 0  »  JUNE  i ' i  20  i  i  40  JULY  i  60  i  i  80  AUG  i  i  I  SEPT  I  I  I  I  I  100 120 140 160  GROWING SEASON STARTING MAY 1 1980 Figure  4-21  Same  as F i g u r e  4-15 except  for Site  3 1980 growing  season  - 134 -  MAY  9 o  I  0  i  i  20  JUNE  i  i  i  40  JULY  i  60  i  i  80  AUG  i  i  I  SEPT  I  100 120  l  I  I  I  140 160  GROWING SEASON STARTING MAY 1 1981 Figure  4-22  Same a s F i g u r e  4-15 except  for Site  3 1981 g r o w i n g  season  - 135 -  MAY  20  JUNE  40  JULY  60  80  AUG  SEPT  100 120 140 160  GROWING SEASON STARTING MAY 1 1980 4-23  Same a s F i g u r e  4-15 except  for Site  4 1980 growing  - 136 -  MAY  9  o  I 0  I  JUNE  I 20  I  I 40  I  JULY  I 60  I  AUG  t i 80  » i  SEPT  i  i  i  i  l  100 120 140 160  GROWING SEASON STARTING MAY 1 1981 Figure  4-24  Same  as F i g u r e  4-15 e x c e p t  for Site  4 1981 g r o w i n g  season  - 137 -  o  MAY I  «  9  o  I  i  I  0  i  i  20  JUNE i  f  I  I  I  i  40  I  JULY j  I  I  60  AUG I  I  I  i  i  l  l  80  i  l  i  SEPT I  I  l  >  I  I  I  i  I  I  I  !  I  100 120 140 160  GROWING SEASON STARTING MAY 1 1980 Figure  4-25  Same a s F i g u r e  4-15 except  for Site  5 1980 growing  season  -  MAY  9  o  Ii 0  Figure  i  20  JUNE  i  i i  40  138 -  JULY  i  60  i  I  80  AUG  I  I  I  SEPT  I  I  I  I  I  100 120 140 160  GROWING SEASON STARTING MAY 1 1981 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 5 1 9 8 1 g r o w i n g s e a s o n  4-26  - 139 -  MAY  ~0  20  JUNE  40  JULY  60  80  AUG  SEPT  100 120 140 160  GROWING SEASON STARTING MAY 1 1980 Figure  4-27  Same  as F i g u r e  4-15 except  for Site  6 1980 growing  season  - HO -  3 I  9  o  1 0  Figure  MAY I  I  i  i  20  JUNE  JULY  l '  i  i  40  I  I  AUG  l '  80  1l  I  I  I I I  60  SEPT  I  I  I  100 120 140 160  GROWING SEASON STARTING MAY 1 1981  4-28  Same a s F i g u r e  4-15 except  for Site  6 1981 g r o w i n g  season  '  I  - 141 -  are shown for the 1980 and 1981 growing seasons in Table 4-3.  The  values of the growing season water deficits range from 55 mm at site 0 to 0 mm at site 6 in 1980, and from 79 mm at site 0 to 4 mm at site 6 in 1981.  The values of the deficits at each site are in the same order as  the relative ranking of the sites by the British Columbia Ministry of Forests according to the ecological moisture regime classification, based on an evaluation of topographical and soil properties and indicator plants. 4.3  Relationship of Forest Productivity to Growing Season Soil Water Deficit Section 3.11 describes the three methods used in this study for  quantifying tree growth: i. ii. iii.  Site index at 100 years Total stemwood volume per hectare Annual incremental stemwood volume per hectare.  The limitation in using site index as a measure of forest productivity is that it does not take into account factors associated with volume growth.  As a result site index provides only a rough  estimate of the growing capacity of a site.  Total stemwood volume per  hectare quantifies tree growth as an average over the l i f e of the stand.  However physiological changes to the trees with growth, and also  disturbances due to management actions or disease may limit the significance that can be attached to climate growth relationships based  - 142 -  Table 4-3  Cumulative soil water deficits (E^ - ^) at each site for the growing seasons (May to Sept. inclusive) of 1980 and 1981 for data periods when actual transpiration (E^.) is less than maximum transpiration (E^ ) (See Figures 4-15 to 4-28). The cumulative deficit is represented by the area between the maximum transpiration and actual transpiration lines in the above referenced figures. max  max  SITE Year  0  1980  54.5  33.2  18.0  1981  78.5  53.6  36.1  1  2  3  i  4  5  6  16.1  8.7  0  0  25.6  25.3  4.1  3.7  - 143 -  on long term averages.  This difficulty is overcome by quantifying  growth as annual incremental stemwood volume per hectare which can then be related to the current yearly climatic variations.  The following  sections describe the results found by each of these three methods. 4.3.1  Relationship of Site Index to 1980 and 1981 Growing Season Soil Water Deficit Table 4.4 shows the site indices at 100 years for the stands at  sites 0 to 6 based on dominant Douglas f i r trees at each site.  The site  indices are well correlated with the ranking of the sites based on the ecological moisture regime classification of the British Columbia Ministry of Forests.  Figure 4-29 shows the site indices plotted against  growing season soil water deficit for years 1980 and 1981.  In both  years site index correlates well with growing season soil water deficit (r  2  = 0.87 for 1980 and 1981).  It should be noted that the reason that  there is a good correlation between site index and deficit in 1980/81 is that differences in deficits between sites in 1980 and 1981 are well correlated with the relative deficit differences between sites over the l i f e of the stand. 4.3.2  Relationships of Total Stemwood Volume to 1980-81 Growing Season Water Deficits Plots of tree stemwood volume versus basal area at breast height  are shown in Appendix 20 (see Section 3.11.2).  The relationship at each  site between tree volume and basal area was found to be linear in form:  - 144 -  Table 4-4  The site indices at 100 years for sites 0 to 6, based on the dominant Douglas f i r trees at each site. 100 years indices were determined by using the height versus age relationships of the British Columbia Ministry of Forests (Hegyi et a l . , 1979) Soil Water Regime Class  Site Index at 100 Years  0  Very Xeric  17  1  Xeric  31  2  Sub Xeric  29  3  Sub Mesic  36  4  Mesic  47  5  Sub Hygric  48  6  Hygric  53  Site  - 145 -  Figure 4-29  Values of the 100 year site index plotted against values of the growing season soil water deficit for years 1980 (A) and 1980 (©). Numbers adjacent to the points are site numbers.  - 146 -  Tree stemwood volume = C x Basal Area where C = Tree form constant x Site Avg. tree height (Avery, 1975). The values of C determined for each site are shown in Table 4-5.  It  will be noted that at any site: , ^ Tree form constant =  Avq. tree stemwood volume —— Avg. tree basal area x Avg. tree height  Values found for the tree form constant ranged from 0.54 at site 0 to 0.45 at site 6.  Decrease in the tree form constant indicates greater  taper on trees at the lower sites.  Using the values found for C the  total stemwood volumes per hectare for trees with DBH > 7 cm at each site was calculated from DBH data for all the trees in the 20m x 20m plots.  The results are shown in Table 4-5. Figure 4-30 shows the plot of total stemwood volume per hectare  against growing season soil water deficit for the years 1980 and 1981. Total stemwood volume correlated well with growing season soil water deficit in both 1980 and 1981, except at site 4 which showed an anomolously low volume per hectare, approximately equal to the volume at site 2.  This may be explained by the fact that site 4 was thinned in  1964 resulting in the removal of a significant volume of wood. Excluding site 4 the values of the correlation coefficient were 0.78 and 0.82 for 1980 and 1981 respectively. 4.3.3  Relationship of Annual Stemwood Increment to Growing Season Water Deficit The following sections describe (i)  the relationship between  annual stemwood increment in 1980 and 1981 and the corresponding soil  - 147 -  Table 4-5  Values of average basal area per tree, average stemwood volume per tree and total stemwood volume per hectare for trees with DBH > 7cm for each site. Also shown are the slopes of the tree volume basal area regression lines (C) obtained by optical dendrometer measurements  Trees per ha  Average Volume per Tree (m )  Volume per ha (m /ha)  12.1  950  0.41  391  0.031  13.9  1525  0.43  655  2  0.032  14.4  1600  0.46  736  3  0.039  14.9  1625  0.581  944  4  0.082  16.4  550  1.34  740  5  0.106  16.5  625  1.75  1093  6  0.130  19.7  625  2.56  1600  Site  Average Basal Area per Tree (m )  Volume/ Basal Area (C) m /m  0  0.034  1  2  2  3  3  - 148 -  I O o  ID —  I  I  I  I  I  I  I  I  I—I  I  I  I  I  I  I  I  I  , r-O 6 6  O  SL  I  I  I  I  I  I  I  I  I  •  I  I  I  I  I  I  I  I  1  I  I  O  0  Figure  4-30  20 40 60 80 GROWING S E A S O N W A T E R DEFICIT ( m m )  Total  stemwood volume  (©).  Numbers  season  soil  water  per  deficit  adjacent  to  hectare for  the  the  plotted  years  points  are  100  against  1980 (A) site  growing  and  1981  numbers.  - 149 -  water deficits at sites 1 and 2; and (ii)  the relationship between  measured annual stemwood increment at these same three sites for the last 18 years, and the corresponding soil water deficits for these sites estimated using the simple monthly water balance procedure described in section 3.9.5. 4.3.3.1  Annual Incremental Stemwood and 1980-81 Soil Water Deficits Table 4-6 shows the annual incremental stemwood volumes at sites  1, 4 and 6 determined from measurements of 1980 and 1981 tree ring widths.  Comparison of growth rates between years 1980 and 1981 shows no  significant differences on all three sites.  Comparing sites, there is a  significant difference between sites 1 and 6.  Sites 1 and 4 show no  difference in 1980, but in 1981 which was the drier year the difference appears to increase.  Values of growing season transpiration were  computed for the same two years to determine whether this would be a better predictor of incremental stemwood.  Table 4-6 shows that  transpiration at Site 6 was certainly larger than at Site 1, which corresponds to the growth difference between these sites.  However the  rather high value of transpiration at Site 4 would suggest higher growth rates than were observed at this site.  As noted earlier Site 4 might be  considered unrepresentative because of unusually heavy thinning in 1964. 4.3.3.2  Annual Incremental Stemwood and the Estimated Deficits Over the Period 1964-81 For Sites 1, 4 and 6 the relationship of growth to growing  season soil water deficit for the 18 year period 1964-81 Is shown in  - 150 -  Table 4-6  Site No.  1  4  6  Comparisons of incremental stemwood volume (from tree ring measurements) with soil water deficits and growing season transpiration. The 95% confidence limits for incremental stemwood measurements are also shown.  Stems per ha  1525  550  625  Year  Incremental Stemwood Vol (m /ha) 3  Soil Water Deficit (mm)  Growing Season Transpiration (mm)  1980  13.5 ±3.0  33  254  1981  12.6 ±2.8  54  232  1980  13.2 ±2.4  9  316  1981  14.2 ±2.6  25  303  1980  18.0 ±3.6  0  316  1981  19.8 ±3.9  4  316  - 151 -  Table 4-7 and Figure 4.31.  Table 4-7 shows that at Site 1 the growing  season soil water deficits ranged from 15 mm to 250 mm, at Site 4 from 0 mm (3 years) to 185 mm, and at Site 6 from 0 mm (11 years) to 131 mm. When growing season soil water deficit is zero, and therefore soil water availability is not a limiting factor for growth, it is probable that other climatic factors, particularly ambient temperature, may then exercise increasing control over growth.  Linear regression lines were  therefore calculated at Sites 4 and 6 both including and excluding years of zero growing season soil water deficits (Table 4-8).  The correlation  coefficient for Site 1 (at which there were no zero deficit years) was 0.32 and for sites 4 and 6 they were 0.32 and 0.50 excluding zero deficit years, and 0.27 and 0.09 including zero deficit years respectively (see Table 4-8).  The low values of a l l of these  correlation coefficients was certainly partly caused by errors introduced into soil water deficit calculations (more so at low deficits) by using monthly water balances, whereas daily or at the most weekly water balances would have been preferable.  The reduction in the  correlation coefficient caused by including years of zero deficit in the regressions indicates, especially at Site 6, that other climatic factors must be causing the large variability in growth in years of zero deficit.  It is noteworthy that other workers studying the relationships  between tree rings and climate (Zahner and Donnelly, 1966; Fritts 1979) have used multivariate analysis methods in which multiple climatic variables of current and previous years were used to achieve high correlation coefficients.  Table 4-7  - 152 -  Sites 1, 4 and 6 growing season soil water deficits calculated for the years 1964 through 1981 from monthly water balances and annual from incremental volumes for each year determined tree ringstemwood measurements  Year  Deficit (mm)  Site 6  Site 4  Site 1 Incremental Stemwood (m /ha)  Deficit (mm)  Incremental Stemwood (m /ha)  Deficit (mm)  3  3  3  Incremental Stemwood (m /ha)  1964  15  13.5  0  12.8  0  20.2  1965  158  9.7  93  11.4  41  15.6  1966  71  11.0  8  11.1  0  13.0  1967  249  8.4  185  10.3  132  13.7  1968  67  9.4  0  10.8  0  11.7  1969  182  9.8  117  10.8  65  13.2  1970  182  9.7  117  12.8  49  15.9  1971  86  10.2  22  12.7  0  15.2  1972  79  9.2  15  12.0  0  15.0  1973  124  13.7  59  13.4  8  15.6  1974  92  10.7  28  13.0  0  16.6  1975  125  8.4  60  10.9  0  14.0  1976  60  11.3  0  14.0  0  17.9  1977  140  10.6  75  12.1  24  17.0  1978  148  9.5  83  12.0  0  15.9  1979  126  9.7  61  12.3  10  15.7  1980  68  13.5  5  13.2  0  17.2  1981  79  12.6  15  14.2  0  19.4  114  10.6  52  12.2  18  15.7  Average  - 153 -  0  20  Figure 4-31  40  60  ANNUAL  80  100  120  140  160  180  200  220  GROWING S E A S O N W A T E R DEFICIT ( m m )  240  Annual incremental stemwood versus growing season water deficit for sites 1, 4 and 6 for the years 1964 to 1981. Also shown are the regression lines with (W) and without (W0) the inclusion of years with zero growing season water deficit. There were no zero water deficit years for site 1. For years of zero deficit (site 4: 3 years, site 6: 11 years) the averaged value of the annual stemwood increments is plotted on the ordinate. Equations of lines and r values are given in Table 4-8.  - 154 -  Table 4-8  Site  Linear regression equations relating annual incremental stemwood volume (y) to growing season soil water defict (x) for years 1964-81 at sites 1, 4 and 6. Sites 4 and 6 regression equations were calculated both including and excluding years of zero deficit  Zero Deficit Years  Correlation Linear Regression Equation Coefficient  1  None  y = 12.6 - 0.017 x  0.32  4  Included  y = 12.7 - 0.011 x  0.27  Excluded  y = 12.9 - 0.012 x  0.32  Included  y = 16.1 - 0.019 x  0.09  Excluded  y = 16.3 - 0.022 x  0.50  6  - 155 -  The slopes of the linear regression plots for Sites 1, 4 and 6 were -0.017, -0.011 and -0.019 m ha" y" 2  4-8).  1  1  mm" respectively (Table 1  The difference between the slopes calculated including and  excluding zero deficit years at sites 4 and 6 were relatively small. The similarity of the slopes of the three linear regression lines is noteworthy, indicating that the relationship of growth to soil water deficit did not vary significantly between sites over the transect. Figure 4.32 shows the values of average annual incremental volume growth for the eighteen year period for sites 1, 4 and 6 plotted against the average growing season water deficit for the same period. The average incremental growth was calculated in two ways:  (i)  calculating the arithmetic average annual growth Increment for the past 18 years and (ii)  determining the slope of the linear regression line of  annual ring width against time for the past 25 year period and calculating the expected volume Increment growth for the mid year of the 1964-1981 period (using the method described in Section 3.11.3).  As  expected the slopes of the two plots are not significantly different. Comparison of the slopes of the regression relationships shown in Figures 4-31 and 4-32 indicates that, based on the limited data available, growth appears to show about three times greater sensitivity to growing season water deficit differences between sites as compared with year to year deficit differences at a given site.  This may be an  example of the adaptation of vegetation to a specific environment with respect to yearly climatic changes.  Waring and Franklin (1979a) note  that the large volume of sapwood which is a structural feature of  - 156  CD  i —  -  -  i i i i i i i i i i i i i i i i i i i i i i * — A -  O  Arithmetic =  15.9  average -  of  increments  r  =  .051x  2  i  .94  3 U  Q *~ O  Linear  e---o  =  regression  16.3  -  .067x  of  ring r  2  =  widths .99  UJ  (/) *~ _J CN  <  o z  0  5» I  00  0  I  20  F i g u r e 4-32  I  I  I  I  I  I  I  L_J  b—I—L  40 60 80 100 120 140 160 180 A V G . GROWING S E A S O N W A T E R DEFICIT  200 220 (mm)  240  Average annual i n c r e m e n t a l stemwood v e r s u s average growing season water d e f i c i t f o r s i t e s 1, 4 and 6 f o r the y e a r s 1964 t o 1981. Average i n c r e m e n t a l stemwood was c a l c u l a t e d i n two ways: ( i ) from the a r i t h m e t i c average annual growth increment f o r the p a s t 18 y e a r s ( i i ) from the s l o p e of the l i n e a r r e g r e s s i o n l i n e of annual r i n g w i d t h a g a i n s t time f o r p a s t 25 y e a r s and c a l c u l a t i n g the expected volume i n c r e a s e f o r the mid y e a r of the 1964-81 p e r i o d .  - 157 -  conifers dampens the effect of dry summer months and provides a significant buffer against extremes of water potential in foliage and stem.  Waring et_. j i l . (1979b) conclude that the sapwood in conifers  serves as a major reservoir from which up to 50% of the water transpired may be withdrawn over several days.  Gholz (1982) found a good  correlation between site leaf area index and growing season water deficit at eight forest stands in the Pacific Northwest located along a transect from the Pacific coast to the east slopes of the Cascade Mountains.  He notes, however, that at a given site leaf area index is  nearly constant from year to year, while water deficits may vary by over 100%.  He suggested that the relationship between the transpiring leaf  surface and available water on the site reflects an adaptation to long term hydrologic conditions, rather than to the relatively large climatic fluctuations from year to year. Regarding Figure 4.32 it should be noted that in relating the average deficit over 18 years to the average growth for that period, the assumption is made that the sites are similar with respect to soil f e r t i l i t y , soil temperature and soil aeration.  The soil f e r t i l i t y  assumption is probably not as good as the others since decreasing root zone depth from Site 6 to Site 1 may result in reduced available nutrients to the trees, and this may partly explain the fact that the slopes in Figure 4.32 are greater than in Figure 4.31. 4.4  Conclusions The usefulness of the water balance analysis is that it provides  a simple quantitative procedure by which different soil water regimes  - 158 -  and microclimates can be quantitatively characterized.  The growing  season water deficits calculated from the water balance then furnish a basis for studying forest productivity differences between sites from the standpoint of water availability. It was shown that water balance components can be determined using minimal soil and meteorological data.  Furthermore by selecting  periods of zero drainage and negligible capillary rise the calibration of the evapotranspiration model can be accomplished without direct measurements of evapotranspiration. From a comparison of saturated hydraulic conductivity measurements with maximum rainfall rates it was determined that run off was zero at all of the sites. Seasonal changes in the water balance were similar, with the exception of Site 7, at all of the sites.  As precipitation declined  with the onset of the growing season, drainage was gradually reduced to zero while water was withdrawn from soil water storage to meet evapotranspiration demands.  The absence of seepage (saturated flow of  water above the impermeable layer (C horizon)) during Duly and August at a l l sites, with the exception of Site 7, was shown by the disappearance of water table in mid-Oune and by increasingly negative matric potentials which developed at the bottom of the soil profile.  It was  concluded from water balance analyses, as well as from hydraulic conductivities inferred from measurements of soil water contents and also from soil water matric potentials, that after the water table had dropped below the impermeable layer there was very l i t t l e soil recharge  - 159 -  by capillary rise at Sites 0-6 during the rainless period in Duly and August.  At the end of the growing season soil water recharge took place  both by rainfall infiltration and by capillary rise from seepage water. The period of capillary rise was of short duration at the top of the transect and of longer duration at the foot of the transect.  When soil  recharge was completed, drainage again became positive and remained so during the winter months. Since growth is directly related to transpiration, water stress differences quantified through the growing season water deficit can be used to classify sites.  It was thus found that deficits at each site  were in the same order as the relative ranking of the sites by the British Columbia Ministry of Forests ecosystem classification.  Taking  the 1980/81 growing season soil water deficits as being indicative of the long term water deficits at each of the sites it was found that site index correlated well with growing season soil water deficit.  Taking  total stemwood volume as the criterion a good correlation was also found with soil water deficits across the transect. Quantitative determination of annual incremental stemwood growth by accurate tree ring measurements enabled a comparison of growth with concurrent climatic variations.  Expansion of the scope of the study to  cover a wide range of growing season deficits over the past 18 years enabled the relationship of annual growth to annual deficit variations to be studied.  The results indicated that the correlation between  annual incremental stemwood and growing season water deficit at a given site was approximately the same for the three sites studied.  By  - 160 -  averaging annual incremental growth and growing season deficits over the eighteen year period an evaluation of the relationship of growth to deficit between sites was made.  It was concluded that the sensitivity  of growth to deficit when measured between sites was significantly higher than the sensitivity when measured between years at a single site.  However, it was recognized that soil f e r t i l i t y differences  between sites may account for a part of the growth variation seen along the transect.  - 161 REFERENCES Aase, O.K. and S.B. Idso. 1978. A comparison of two formula types for calculating long wave radiation from the atmosphere. Water Resour. Res., 14:623-625. Avery, T.E. 1975. McGraw-Hill.  Natural Resource Measurements.  5:90-102,  Bassett, 3.R. 1964. Tree growth and affected by soil moisture availability. Soil Sci. Soc. Am. P r o c , 28:436-438. Bell, 3.P. 1976. Neutron probe practice. Hydrology, Wallingford, U.K.  Report No. 19.  Institute of  Bierhuizen, 3.F. and R.O. Slatyer. 1965. Effect of atmospheric concentration of water vapour and C0 in determining transpiration-photosynthesis relationships with cotton leaves. Met., 2:259-270. 2  Agr.  Blake, G.R. 1965. Particle Density. In Methods of Soil Analysis, (ed. C A . Black), pp. 371-373, Agronomy No. 9, Am. Soc. of Agr., Madison, Wis. Burgy, R.H. and CR. Pomeroy. 1958. Interception losses in grassy vegetation. Amer. Geophys. Union Trans., 39:1095-1100. Cole, 3.A. and M.3. Green. 1966. Measuring soil moisture in the Brening Catchment: problems of using neutron scatter equipment in soil with peaty layers. Symposium on Water in the Unsaturated Zone, Wageningen, Netherlands. Douglas, 3.E. 1962. Variance of nuclear moisture measurements. USDA Forest Service, S.E. Forest Exp. Stat. Paper 143, North Carolina, U.S.A. Dunne, T, and L.B. Leopold. Freeman. F r i t t s , H.C  1976.  1979. Water in Environmental Planning.  Tree Rings and Climate.  Academic Press.  Gash, 3.H.C. 1978. Comments on the paper by A.S. Thorn and H.R. Oliver, 'On Penman's equation for estimating regional evaporation'. Quart. 3.R. Met. S o c , 104:532-533. Gholz, H.L., F.K. F i t z , and R.H. Waring. 1976. Leaf area differences associated with old-growth forest communities in the Western Oregon Cascades. Can. 3. For. Res., 6:49-57. Gholz, H.L. 1982. Environmental limits on above ground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63 (2):469-481.  - 162 Hegyi, F., 3. 3elinek and D.B. Carpenter. 1979. Site index equations and curves for the major tree species in British Columbia. Forest Inventory Report No. 1. Inventory Branch, Ministry of Forests, Province of British Columbia. Idso, S.B. 1980. On the apparent incompatability of different atmospheric thermal radiation data sets. Quart. 3.R. Meteorol. S o c , 106:375-376. Oarvis, P.G., G.B. Games and 3.3. Landsberg. 1976. Coniferous forest. In Vegetation and the Atmosphere, Vol. 2, Case Studies, (ed. 3.L. Monteith), pp. 1717-240. Acad. Press, London, U.K. 3arvis, P.G. and 3.B. Stewart. 1979. Evaporation of water from plantation forest. In The Ecology of Even-Aged Forest Plantations, (eds. E.D. Ford, D.C. Malcolm, and 3. Atterson), pp. 327-350. Inst. Terrestial Ecology, NERC, Cambridge, U.K. Garvis, P.G. 1981. Stomatal conductance, gaseous exchange and transpiration. In Plants and their Atmospheric Environment (eds. 3. Grace, E.D. Ford, and P.G. 3arvis) pp. 175-204. Blackwell, Oxford, U.K. 3ury, W.A. and C.B. Tanner. 1975. Advection modification of the Priestley and Taylor evapotranspiration formula. Agron. 3., 67:840-842. Klinka, K. 1976. Ecosystem units, their classification, interpretation and mapping in the University of B.C. Research Forest. University of B.C., Ph.D. Thesis. Klinka, K., F.C. Nuszdorfer and L. Skoda. 1979. of Central and Southern Vancouver Island.  Biogeoclimatic Units  Krajina, V.3. 1965. Biogeoclimatic zones and classification in British Columbia. Ecology of Western N. America, 1:1-17. Krajina, V.3. 1969. Ecology of forest trees in British Columbia. Ecology of Western N. America, 2:1-146. Krajina, V.3. 1972. Ecosystem perspectives in forestry, University of B.C., Vancouver. Paper presented as H.R. MacMillan lecture in Forestry. Linsley, R.K., M.A. Kohler and 3.H.L. Paulhus. Engineers, page 70, McGraw-Hill.  1975.  Hydrology for  McGowan, M. and 3.B. Williams. 1980. The water balance of an agricultural catchment. I. Estimation of evaporation from soil water records. Soil Science, 31(2):217-230.  - 163 McMinn, R.G. 1961. Water relations and forest distribution in the Doublas f i r region of Vancouver Island. Canada Dept. of Agriculture, Publication No. 1091. McNaughton, K.G. and T.A. Black. 1973. A study of evapotranspiration from a Douglas f i r forest using the energy balance approach. Water Resour. Res., 9:1579-1590. Monteith, O.L. 1965. B i o l . , 19:205-234.  Evaporation and environment.  Symp. Soc. Expl.  Olgaard, P.L. 1965. On the theory of the neutronic method for measuring the water content of s o i l . Danish Atomic Energy Commission Res. Est. Riso. Rept., 97. Penman, H.L. 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. A., 193:120-145. Pierpoint, G. 1965. Measuring surface soil moisture with the neutron depth probe and surface shield, Soil Science, 101:189-192. Priestley, C.H.B. and R.3. Taylor. 1972. On the assessment of surface heat flux, and evaporation using large scale parameters. Mon. Weather Rev., 10:81-92. Rutter, A.3. 1975. The hydrological cycle in vegetation. In vegetation and the atmosphere, Vol. 1, Principles (ed 3.L. Monteith), pp. 111-154, Acad. Press, New York. Shuttleworth, W.3. and I.R. Calder. 1979. Has the Priestley-Taylor equation any relevance to forest evaporation? 3. App. Meteorol., 18:639-646. Spittlehouse, D.L., and T.A. Black. 1980. Evaluation of the Bowen ratio/energy balance method of determining forest evapotranspiration, Atmosphere-Ocean, 18:98-116. Spittlehouse, D.L., and T.A. Black. 1981a. A growing season water balance model applied to two Douglas f i r stands. Water Resour. Res., 17:1651-1656. Spittlehouse, D.L. and T.A. Black 1981b. Measuring and modelling forest evapotranspiration. Can. 3our. Chem. Eng. 59:173-180. Spittlehouse, D.L. 1981. Measuring and modelling evapotranspiration from Douglas f i r stands, Ph.D. thesis, Univ. of British Columbia, Vancouver, B.C. Spittlehouse, D.L. 1982. Determination of the frequency and intensity of growing season water deficits using a forest water balance model. Canadian Society of Soil Science Meetings. 3uly 11-15, 1982, Vancouver.  - 164 Spittlehouse, D.L. 1983. A forest water balance model used to determine the frequency and intensity of growing season water deficit in a Douglas f i r stand. Abstract for 16th Conference on Agriculture and Forest Meteorology, Fort Collins Colorado, American Meteorological Society. Talsma, T. and P.M. Hallam. 1980. Hydraulic conductivity measurements of forest catchments. Aust. 3. Soil Res., 18:139-148. Tan, C.S., T.A. Black and 3.U. Nnyamah. 1978. A simple diffusion model of transpiration applied to a thinned Douglas f i r stand. Ecol. Soc. of America, 59(6):1221-1229. Tanner, C.B. and 3.1. Ritchie. 1974. Evapotranspiration: empiricisms and modelling. Paper presented. Ann. Meeting Am. Soc. Agron., Chicago, 111., U.S.A. , Thorn, A.S. and H.R. Oliver. 1977. On Penman's equation for estimating regional evaporation, Quart. 3.R. Met. S o c , 103:345-357. Van Bavel, C.H.M. 1956. Neutron and gamma radiation as applied to measuring physical properties of soil in its natural state. Trans. 6th Intern. Congr. Soil Sci. B. 355-60. Waring, R.H., W.H. Emmingham, H.L. Gholz, and C C . Grier. 1978. Variation in maximum leaf area of coniferous forests in oregon and its ecological significance. Forest Science, 24:131-140. Waring, R.H. and 3.F. Franklin. 1979a. Evergreen coniferous forests of the Pacific Northwest. Science 204:1380-1386. Waring, R.H., D. Whitehead and P.G. Darvis. 1979b. The contribution of stored water to transpiration in Scots pine. Plant, Cell and Environment (2), 309-317. White, D.P.  1958.  evaluation.  Available water:  The key to forest site  First North Am. Forest Soils Conf., Michigan State Univ.  Whitehead, D. and P.G. Garvis. 1981. Coniferous Forests and Plantations. In Water deficits and plant growth (ed. T.T. Kozlowski), Vol. 6, pp. 86-89, Acad. Press, New York. Zahner, R.  1958.  Site quality relationships of pine forests in  southern Arkansas and northern Louisiana.  For. Science, 4:163-176.  Zahner, R. and 3.R. Donnelly. 1967. Refining correlations of rainfall and radial growth in young red pine. Ecology, 48:525-530. Zangar, C.N. 1953. Theory and problems of water precolation. Monog. No. 8, Bur. Reclam. Denver, Colo. U.S.A.  Eng.  Zinke, P.3. 1967. Forest interception studies in the United States. In International Symposium on Forest Hydrology (eds. W.E. Sopper and H.W. L u l l ) , pp. 137-161, Pergamon, Oxford, U.K.  - 165 -  APPENDIX I  Site descriptions provided by the British Columbia Ministry of Forests for sites 0, 1, 2, 4, 6 and 7  - 166 Site 0  Very Xeric Ecosystem Site Description Elevation SIope/Aspect Site position Terrain classification Drainage Pervlousness Ecological moisture regime Nutrient regime Soil classification Humus Form classification  300 itr 8X/300" crest moralnal veneer and bedrock outcrops rapidly moderately very xeric meso trophic Orthic Humo-Ferr1c Podzol Orthihemimor (Tenuic phase)  Ecosystem (Biogeocoenotlc) Type: Lichen - Salal - (Lodgepole Pine) Doug1as-f1r: sandy Orthic Humo-Ferric Podzol with Orthihemimor developed on shallow moralnal veneer. Pedon Description Horizon Oepth Description Lv  4-3  Coniferous needles and moss; moist; single particle; loose; mossy; no roots; no visible biota; abrupt, smooth boundary.  Fq  3-1  . Moist; weak, compact matted; moderate tenacious; fibrous; plentiful, very fine roots; common white, and few to common fine brown mycella, random; few clusters of fine droppings, few centipedes and larvae; abrupt, smooth boundary.  Hdt  1-0  Moist; moderate, medium blocky; moderate tenacious; gritty; common, fine roots; common, fine, charcoal; no visible biota; abrupt smooth boundary.  Aej  0-1  Dark reddish gray (5YR.4/2m); sandy loam; weak, fine, subangular blocky; nonstlcky, friable, nonplastlc; few fine roots, horizontal matrix; abrupt smooth boundary; 0-1 cm thick.  Bfl  1-19  Oark reddish brown (5YR 3/4m); loamy sand; weak, fine, subangular blocky; nonstlcky, friable, nonplastlc; abundant medium roots, horizontal matrix;clear, smooth boundary; 16-22 cm thick.  BfZ  19-35  Dark brown (10YR 3/3m); loamy sand; weak, very fine, subangular blocky; nonsticky, friable, nonplastlc; plentiful, medium roots, oblique matrix; abrupt, smooth boundary; 15-18 cm thick.  R  35+  - 167 Site 1  Xeric Ecosystem Site Description Elevation SI ope/Aspect S i t e position Terrain c l a s s i f i c a t i o n Drainage Pervlousness Ecological moisture regime Nutrient regime Soil c l a s s i f i c a t i o n Humus Form c l a s s i f i c a t i o n  280 nr 34X/310 Upper slope moralnal veneer rapidly moderately xeric mesotrophlc Orthic Humo^Ferrlc Podzol Humlmormoder 0  Ecosystem (B1ogeocoenot1c) Type - Stokeslella-(Oceanspray) - Salal Douglas-f1r: sandy Orthic Humo-Ferr1c Podzol with Humlmormoder developed on moralnal veneer.  Pedon Description Horizon  Depth  Description  Lv  5.5-4.5  Gaultheria leaves & coniferous needles; moist; weak, non-compact matted; loose; leafy to acerose; no roots; common, very fine brown mycella, c l u s t e r e d ; abrupt smooth boundary.  Faq  4.5-2.5  Moist; moderate, compact matted; moderate tenacious; f i b r o u s ; p l e n t i f u l , fine roots, h o r i z o n t a l ; common coarse white and yellow mycella, random; common, medium and coarse droppings, comnon large centipedes; abrupt smooth boundary.  Hd  2.5-0  Moist; black (10YR 2/1m); moderate, f i n e , granular; f r i a b l e to weak tenacious; f i b r o u s ; abundant, fine r o o t s , horizontal; common white & yellow mycella, random; common droppings; abrupt, smooth boundary.  Aej  0-0.5  Dark reddish gray (5YR 4/2m); sandy loam; weak, very f i n e , subangular blocky; nonstlcky, f r i a b l e , nonplastfc; few, very fine roots, h o r i z o n t a l , matrix; abrupt, smooth boundary; 0-1 cm thick.  Bf  0.5-33  Strong brown (7.5YR 4/6m); loamy sand; weak to moderate, very fine subangular blocky; nonstlcky, f r i a b l e , nonplastlc; abundant, medium roots, horizontal, exped; c l e a r , smooth boundary; 28-35 cm t h i c k .  33-52  Brown to dark brown (7.5YR 4/4m); loamy sand; moderate, very f i n e , subangular blocky; nonstlcky, f r i a b l e , nonplastlc; abundant medium roots, h o r i z o n t a l , exped; abrupt, wavy boundary; 17-24 OP thick.  frw\  R  52+  - 168 Site 2 Subxeric Ecosystem Site Description Elevation SIope/Aspect Site position Terrain classification Drainage Pervlousness Ecological moisture regime Nutrient regime Soil classification Humus Form classification  210 m 20X/3200 Upper middle slope Moral nal blanket Well moderately subxeric mesotrophlc Orthic Humo-Ferric Podzol Orthihemihumimor (Tenulc phase)  Ecosystem (Blogeocoenotlc) Type - Stokesiella - Sa1a1-(Westem Hemlock) Douglas-f1r: loamy-skeletal Orthic Humo-Ferr1c Podzol with Orthlhemihumimor, developed on moralnal blanket.  Pedon Description Horizon  Depth  Description  Lv  3-2.5  Coniferous needles & Gaultheria leaves; moist; weak, non-compact matted; loose; acerose; no roots; abrupt, smooth boundary.  Fq  2.5-1  Moist; moderate, compact matted; slightly tenacious; slightly felty; few, fine roots, horizontal; common white and yellow mycella; few fly larvae, Collembola, and millipedes; abrupt, smooth boundary.  Hd  1-0  Moist; weak to moderate, compact matted; friable; greasy to slightly felty; common, fine roots, horizontal; common, fine, charcoal; common white and yellow mycella; few fly larvae and Collembola; abrupt, wavy boundary.  Ae  0-4  Brown to dark brown (10YR 2/2m) and very pale brown (10YR 3/3d); loam; moderate, medium, subangular blocky; slightly sticky, friable, slightly plastic; abundant, very fine roots, horizontal, matrix; clear, wavy boundary; 0-11 cm thick; extremely a d d .  Bf  4-46  Brown to dark brown (7.5YR 4/4m) and yellowish brown (10YR 5/4d); loam; weak to moderate, medium, subangular blocky; slightly sticky, very friable, slightly plastic; plentiful fine to coarse roots, horizontal and oblique, exped; clear, wavy boundary; 20-55 cm thick; very strongly a d d .  Bm  • 46-66  BC  66-91  Dark brown (10YR 3/3m) and pale brown (10YR 6/3d); loam; weak, medium, granular; nonstlcky, very friable, slightly plastic; few, fine roots, horizontal, exped; abrupt, smooth boundary; 18-28 cm thick; strongly a d d .  91+  Loamy sand; massive; nonstlcky, firm, nonplastlc.  IIC  Dark yellowish brown (10YR 4/4m) and light yellowish brown (10YR 6/4d); loam; moderate, medium to coarse, angular blocky; slightly sticky, very friable, slightly plastic; few, fine roots, horizontal, exped; gradual, wavy boundary; 14-24 cm thick.; very strongly a d d .  - 169 Site 4 Mesic Ecosystem Site Description Elevation 205 m SIope/Aspect 1 OX/310° Site position Middle slope Terrain classification Moral nal blanket Drainage Well Pervlousness Moderately Ecological moisture regime Mesic Nutrient regime Mesotrophlc Soil classification Orthic Humo Ferric Podzol Humus Form Classification OrtMhemlhumimor (Tenulc phase) Ecosystem (B1ogeocoenot1c) Type - Stokeslella - Hyloconrium - Douglas-f1r - Western Hemlock: loamy-skeletal Orthic Humo-Ferr1c Podzol with Orthlhemlhumlmor developed on mora*nal blanket. Pedon Descrfptlon Horizon  Depth  Description  Lv  3.5-3.0  Coniferous needles; moist; weak, non-compact matted; loose; acerose to mossy; no roots; no visible biota; abrupt, smooth boundary.  Fq  3.0-1.0  Moist; moderate, compact matted; weak, tenacious; slightly felty; few, fine roots, horizontal; common white and yellow mycella; few fly larvae and Collembola; abrupt, smooth boundary.  Hd  1.0-0  Moist; weak to moderate, compact matted; friable; greasy; few, fine roots, horizontal; common fine charcoal, clustered; common white and yellow mycella; abrupt, wavy boundary.  Bfl  0-16  Brown to dark brown (10YR 4/3m) and brown to dark brown (10YR 4/3d); loam; moderate, medium, subangular blocky; nonstlcky, friable, nonplastlc; few, fine to coarse roots, horizontal, exped; gradual, wavy boundary; 7-22 cm thick; very strongly a d d .  Bf2  16-35  Brown to dark brown (7.5YR 4/4m) and light brown (10YR 6/4d); loam; moderate, 'medium, subangular blocky; nonstlcky, very friable, nonplastlc; few, fine to coarse roots, horizontal, exped; gradual, broken boundary; 8-32 orr thick; very strongly add.  Bm  35-53  Dark yellowish brown (10YR 4/4m) and light yellowish brown (10YR 6/4d); loam; weak, fine, subangular blocky; nonstlcky, very friable, nonplastlc; few, fine to medium roots, horizontal, exped; clear, wavy boundary; 0-21 cm thick, very strongly a d d .  BC  53-86  Dark grayish brown (10YR 4/2m) and light brownish gray (2.5Y 6.2d); sandy loam; weak, fine, granular; nonstlcky, very friable, nonplastlc; few, fine to medium roots, horizontal, exped; abrupt, wavy boundary; 18-40 cm thick, strongly add.  IIC  86+  Loamy sand; massive; nonstlcky, firm, nonplastlc; no roots.  - 170 -  Site 6 Hygric Ecosystem Site Description Elevation Slope/Aspect Site position Terrain classification Drainage Pervlousness Ecological niolsture regime Nutrient regime Soil classification Humus Form Classification  190 m 10J/2900 Lower slope Moral nal blanket Imperfectly Moderately Subhygric to hygric Permesotrophlc Orthic Humo Ferric Podzol Orthivermlmull  Ecosystem (Blogeocoenotic) Type - Foamflower - Swordfern - Douglas-fir and Grand Fir - Western Redcedar: loamy Orthic Humo-Ferr1c Podzol with Orthivermimull developed on, moral nal blanket. Pedon Description Horizon  Depth  Description  Lv  1.5-0.5  Coniferous needles and herbaceous foliage; moist; weak, non-compact matted; loose; acerose; no roots; common Insects; abrupt, smooth boundary.  Fa  0.5-0  Moist; weak, non-compact matted; loose; acerose; no roots; few, fine, charcoal, clustered; common Insects (millipedes, spiders, cetipedes, fly larvae) and droppings; abrupt, wavy boundary.  Ah  0-7  Very dark brown (10YR 2/2m); loam; moderate, medium, granular; slightly sticky, friable, slightly plastic; abundant very fine to medium roots, horizontal, matrix; clear, wavy boundary; 2-10 cm thick; extremely acid; common earthworms.  Bfl  7-26  Dark yellowish brown (10YR 3/4m) and yellowish brown (10YR 5/4d); loam; moderate, medium, angular blocky; slightly sticky, very friable, slightly plastic; plentiful very fine to medium roots, horizontal, exped; clear, wavy boundary; 12-23 cm thick; very strongly acid.  Bm  26-40  Dark yellowish brown (10YR 3/4m) and yellowish brown (10YR 5/4d); loam; moderate, medium, angular blocky; nonstlcky, friable, slightly plastic; plentiful, fine to medium roots, horizontal, exped; clear, wavy boundary; 9-23 cm thick; strongly a d d .  Bf2  40-74  Dark yellowish brown (10YR 3/6m) and light yellowish brown. (10YR 6/4d); loam; moderate, fine, angular blocky; nonstlcky, friable, slightly plastic; abundant, fine to coarse roots, horizontal, exped; abrupt, wavy boundary; 16-44 cm thick; very strongly add.  IIC  74+  Loamy sand; massive, nonstlcky, firm, nonplastlc; no roots.  /  - 171 -  Site 7  Subhydrlc Ecosystem Site Description Elevation SIope/Aspect Site position Terrain classification Drainage Perviousness Ecological moisture regime Nutrient regime Soil classification Humus Form classification  190 m OX/flat toe Organic veneer over moralnal blanket very poorly slowly subhydrlc eutrophlc Terric Humisol Parasaprtmull  Ecosystem (B1ogeocoenot1c) Type: Lady fern - Skunk cabbage - Red alder Western Redcedar: Terric Humisol with ParasapHmull developed on morainal blanket. Pedon Description Horizon  Depth  Description  Lv  1-0  Deciduous and herbaceous U t t e r ; wet; moderate, noncompact matted; loose; leafy; no roots; abundant Insects (millipedes, Collembola, fly larvae); abrupt, wavy boundary.  Ohl  0-5  Wet; black (10YR 2/lm) and very dark brown (10YR 2/2d); weak, medium blocky; friable; greasy; plentiful, fine to medium roots, random; common, fine, charcoal, random; abundant Insects, common earthworms; von Post class 9; gradual, wavy boundary  0h2  5-21  Saturated; black (10YR 2/lm) and very dark brown (10YR 2/2d); weak, medium, blocky; friable; greasy; plentiful, fine to medium roots, random; common, fine charcoal, random; no visible biota; von Post class 9; gradual, wavy boundary.  0h3  21-50  Saturated; black (10YR 2/Tm) and very dark brown (10YR 2/2d); massive; pliable; greasy; plentiful fine to medium roots, random; common, fine charcoal, random; no visible biota; von Post class 9; gradual, wavy boundary.  Bg  50-80+  Dark grayish brown (2.5Y 4-/2m); silty clay loam; common, medium, prominent (10YR 4/6m) mottles; massive; few, fine roots, horizontal, matrix.  - 172 -  APPENDIX 2 S o i l Water Retention Characteristics  M a t r i c p o t e n t i a l s above -100 kPa were measured by f i e l d t e n s i o m e t e r s and the c o r r e s p o n d i n g s o i l water measurements were by neutron probe a t a d j a c e n t access tubes. Water r e t e n t i o n a t m a t r i c p o t e n t i a l s below -100 kPa ( i . e . -400 and -1500 kPa) were determined by p r e s s u r e membrane e x t r a c t i o n and a v e r a g i n g the r e s u l t s from three r e p l i c a t e samples.  - 173 -  O  b  0.0  |  |  |  |  |  | . I  0.1  I  I  0.2  I  V O L . F R A C T I O N SOIL Figure 1  Site 0  I  I  0.3  I  I  WATER  I =  .0.4  - 174 -  ^ 0 0  0.1  0.2  V O L . F R A C T I O N SOIL Figure 2  Site 1  0.3  WATER  0.4  - 175 -  o  Efn—|—|  I  r—r—I  0.1  T  0.2  0.3  V0L.FRACTI0N SOIL WATER Figure 3  Site 2  0  - 176 -  I  I  I  I  I  I  I  I  I  I  I  l  0.1  I  I  I  I  I  I  I  I  0.2  Site  I  I  I  I  I  I  I  I  L  0.3  V O L . F R A C T I O N SOIL Figure 4  I  3  WATER  - 177 -  o  |-i—i—i—i  0.0  i i i i i i i r  0.1  0.2  V O L . F R A C T I O N SOIL Figure  5  Site 4  0.3  WATER  0.4  - 178 -  1 1 1  1  1E  -  T\30 CM \\45 CM  -  75 C M ^ < ^ ^  •s  —  ill N o  11  O m  i—  -  "  UJ o l— "  rr  1 1 1  \K ~60 CMXx  t—  o  —  V -n  1  11 1 1  m  Ill  o  -  >g.  -  ^ \  -  o  < £ uO  \  -  1 1 1 1 1 0 0  1I 1 1 1 1 1 L  0.1  0.2  \  Q  1 1  0.3  VOL.FRACTION SOIL WATER Figure  6  Site 5  _  0.4  - 179 -  UO  D D_  I  < — I  O  m to fsi  LxJ o  o ^ Q_  ^  O ^ o  or r—  r  ~  <; m  0.0  0.1  0.2  0.3  VOL.FRACTION SOIL WATER Figure  7  Site  6  - 180 -  APPENDIX 3 Plots of throughfall collected beneath the trees against rainfall intensity  T h r o u g h f a l l was m e a s u r e d w i t h a t r o u g h r a i n g a g e ( F i g u r e 3-4) and r a i n f a l l i n t e n s i t y was m e a s u r e d w i t h a n i d e n t i c a l r a i n g a g e l o c a t e d i n a d j a c e n t open a r e a .  an  - 181 -  Figure 1 Site 0  -  Figure  2  182  -  Site  2  -  I  m in  I  I  I  I  I  I  I  I  183  -  I  I  I  I  I  '  I  '  I  I  I  o  m  in  Cm C to  _"f J o U-  o  Z>  Oo  X  N CM  i  5  i  i  10  I  i  i  15  i  i  I  '  '  20  25  30  Figure  3  Site  '  '  35  '  '  40  PRECIPITATION(mm)  4  '  '  45  '  '  50  - 184 -  I  I  I  i 5  10  I  I  I  I  l 15  I  l  I  I 20  I  I  I  I  I  I  I  I  I  I  I  L 25  30  35  40  PRECIPITATION(mm)  Figure 4  Site  6  45  50  '  - 185 -  APPENDIX 4 Daily meteorological data at Nesachie from June 5, 1980 to October 29, 1981  METEOROLOGICAL DATA NO. 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  MONTH/ DAY 6/ 5 6/ 6 6/ 7 6/ 8 6/ 9 6/10 6/1 1 6/12 6/13 6/14 6/15 6/16 6/17 6/18 6/19 6/20 6/21 6/22 6/23 6/24 6/25 6/26 6/27 6/28 6/29 6/30 7/ 1 7/ 2 7/ 3 7/ 4 7/ 5 7/ 6 7/ 7 7/ 8 7/ 9 7/10 7/1 1 7/12 7/13 7/14 7/15 7/16 7/17 7/18 7/19 7/20 7/21 7/22  MAX TEMP DEG C 14 . 5 17 . 0 17 . 5 17 . 0 17 . 0 17 . 0 18. 5 22 .0 22 . 5 22 . 5 21 .0 21 . 5 19. 0 21 .0 24 . 0 24. 0 2 3 ..5 2 2 ..0 16.. 5 19..5 16 . 5 12 .5 16 .5 18 .0 18 .5 22 . 0 26 . 0 26 . 0 16 . 0 15 . 0 16 .5 17 . 5 24 . 0 26 . 0 26 . 0 23 . 0 20 . 0 24 .5 23 . 5 20 . 0 21 . 0 20 .5 22 . 5 25 . 5 25 . 0 25 . 5 30 .5 31 .5  MIN TEMP DEG C 8 .5 9 .5 8 .5 1 1 0 10. 5 10. 0 8 .5 6 .5 10. 5 10. 5 1 1 0 1 1 5 1 1 5 7 .0 7 .0 10. 0 9. 5 1 1 5 6 ..0 10..0 12 .0 . 9. .0 1 .0 1 9 .5 7 .5 7 .5 8 .0 9 .0 1 .5 1 8 .0 9.5 10 .O 9 .0 10 .5 1 .10 12 . 0 12 . 0 12 . 0 1 .5 1 13 . 0 13 .5 12 . 0 9.5 10 .5 12 . 0 13 . 5 13 . 0 15 . 0  .  . . .  .  S/ (S+GAMMA) 0 . 57 0 . 60 0 . 60 0 . 61 0 . 61 0 . 61 0 . 61 0 . 63 0 . 65 0 . 65 0 . 63 0 . 65 0 . 62 0 . 62 0 . 65 0 . 66 0 . 66 0 . 65 0 . 58 0. 62 0. 61 0. .55 0. .61 0. .61 0. ,61 0. .63 0 .67 0 .67 0 .60 0 .58 0 .60 0 .61 0 .66 0 .68 0 .68 0 .66 0 .63 0 .67 0 .66 0 .63 0 .65 0 .63 0 .65 0 .67 0 .67 0 .68 0 .72 0 .74  : MESACHIE  LAT .HT . MJ/KG 2. 472 2 . 467 2 . 4G7 2. 465 2 . 465 2 . 465 2 . 465 2 . 461 2. 458 2. 458 2 . 461 2. 458 2 . 463 2 . 463 2. 458 2 . 455 2 . 455 2. 458 2 . 470 2 . 463 2 . 465 2., 475 2 .465 , 2,.465 2 .465 . 2 .461 2,.454 2,.454 2 .467 2 .470 2 .467 2 .465 2 .455 2 .452 2 .452 2 .455 2 .461 2 . 454 2 .455 2 .461 2 .458 2 .461 2 . 458 2 .454 2 .454 2 .452 2 .444 2 .440  1980- 1981  PRECIP MM 1 .4 1 .8 0.3 17.2 6.8 3.6 4. 2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 1. 2 2.6 1 .8 23.4 3.4 0.6 0.0 0.0 0.0 0.0 0.0 22.6 10.6 0.0 1 .0 0.6 0.0 0.0 0.6 3.8 0.0 2. 2 0.6 0.6 3.8 O.O 0.0 6.2 0.2 0.0 0.0  S.W.RAD MJ/M2D 1 1 0 . 22 . 6 14 . 4 5 .9 16. 4 16. 9 26. 5 29. 0 30. 8 15 . 3 23. 5 1 18 . 22 . 4 21 . 1 29. 2 23 . 7 26 . 5 12 . 0 14.,5 13 ,6 . 5.,3 6..3 13 .8 19 .5 23 .2 28 .8 29 .8 15 .0 6 .3 13 .7 15 .2 16 . 0 28 .2 28 .3 27 . 1 6 .3 18 .3 24 .8 10 .5 21 . 3 7.2 24 .6 21 .8 25 .6 9.3 23 .9 26 .6 23 . 0  L.W.RAD  MJ/M2D -1 . 8 -4. 3 -2 . 2 -1 . 1 -3. 3 -3. 4 -4 . 9 -5 . 3 -5. 5 -3. 0 -4. 3 -1 . 7 -4 . 2 -4 . 0 -5. 2 -4 . 3 -4 . 8 -1 . 8 - 2 .. 2 -2 ..0 -1 . 1. -1 ..2 -2 . 1 -3 .8 -4 . 4 -5 .2 -5 .3 -2 .8 -1 . 2 -2 . 1 -3 . 0 -3 . 2 -5 . 0 -4 .9 -4 . 7 - 1. 1 -3 .5 -4 .4 -1 .6 -4 . 0 - 1. 2 -4 .6 -4 . 1 -4 .6 -1 .4 -4 . 3 -4 .6 -3 . 9  MAX S;.w. MJ/M2D 29. 6 29 . 7 29 . 7 29. 8 29. 8 29. 9 29. 9 29 . 9 30. 0 30. 0 30. 1 30. 1 30. 1 30. 1 30. 2 30. 2 30. 2 30. 2 3 0 ., 1 3 0 .. 1 3 0 .. 1 30.. 1 30 . 1 30 . 1 30 .0 30 . 0 29 .9 29 .9 29 . 9 29 .8 29 .7 29 .7 29 .6 29 .6 29 .5 29 .5 29 .4 29 . 3 29 . 3 29 .3 29 . 2 29 . 1 29 . 0 28 .8 28 .8 28 . 6 28 . 5 28 . 4  ATMOS  EMISSTY 0.77 0 . 72 0 . 78 0.78 0.72 0 . 72 0 . 72 0 . 73 0 . 73 O. 73 0 . 73 0.80 0 . 72 0.72 0.73 0 . 74 0 . 74 0 . 80 0.77 0 . 79 0 . 78 O. 76 0 . 78 0 . 72 0 . 72 0.73 0.74 0 . 74 0 . 78 0 . 77 O. 71 0 . 72 0 . 74 0 . 75 0.75 0.80 0 . 73 0 . 74 0.80 0 . 73 0.80 C . 73 0 . 73 0 . 75 0.81 0 . 75 0 . 77 0 . 78  CD ON  METEOROLOGICAL DATA NO. 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96  MONTH/ DAY 7/23 7/24 7/25 7/26 7/27 7/28 7/29 7/30 7/31 8/ 1 8/ 2 8/ 3 8/ 4 8/ 5 8/ 6 8/ 7 8/ 8 8/ 9 8/10 8/1 1 8/12 8/13 8/14 8/15 8/16 8/17 8/18 8/19 8/20 8/21 8/22 8/23 8/24 8/25 8/26 8/27 8/28 8/29 8/30 8/31 9/ 1 9/ 2 9/ 3 9/ 4 9/ 5 9/ 6 9/ 7 9/ 8  MAX TEMP MIN TEMP S/ (S+GAMMA) DEG c DEG c 24 .0 13. 5 0.67 0.68 26. 0 10. 5 1 1 0. 0.68 26. 5 1 1 0. 0.69 28. 5 12 .5 0. 70 28. 5 0. 69 28. 5 10.0 o. 67 26. 0 8. 5 0. 68 26. 0 10. 5 0. 68 26. 0 10. 5 14 .5 0. 65 19. 5 1 1 5. 19. 5 0. 63 12 .5 0.66 22. 0 9. 5 0.65 22. 5 12..0 0.66 23. 0 9.0 0.65 23. 5 1 1.0. 0. 68 26. 5 1 1.5. 0. 72 30. 0 1 1.0. 0. 70 30. 0 12 .0 . 32..0 0. 73 14 .0 . 0. 72 30..0 12 .5 . 0. 72 30..0 12 .0 . 0. 68 26.. 5 24 .0 . 12 .. 5 0. 67 12..0 0. 66 22 . 5 1 1.0 22 . 5 0. 65 13 .5 0. 66 22..0 8 .0 0. 65 23..5 8 .5 24..0 0. 66 0. 65 22.. 5 10 .0 0..66 23..0 10 .5 9 .0 0. 65 23.. 5 1 1.5 0..63 19.. 5 12 .0 0. 66 23 .0 24 .0 7..0 c..65 1 1.0 24 .0 0. 66 1 1.0 0..61 16 . 5 7 .0 0. 60 18 .0 4 .5 0..60 19 . 5 1 1.0 0..62 19 . 5 12 .5 0..62 18 .5 19 .0 10 .5 0..62 8 .5 0,.58 16 .0 0 .60 16 .0 10 .0 0 .62 18 . 5 10 .0 12 .0 0 .66 23 .0 12 .0 0 .66 23 .0 1 1.5 0 .63 20 . 5 8 .O 0 .63 22 .0  : MESACHIE 1980- 1981  LAT' .HT . Md/KG 2 .454 2. 452 2 .452 2 .449 2 .447 2 .449 2 .454 2 .452 2. 452 2 .458 2. 461 2. 455 2 .458 2. 455 2 .458 2 .452 2. 444 2. 447 2 .442 2. 444 2 .444 2 .452 2 .454 2 .455 2 .458 2 .455 2. 458 2. 455 2. 458 2..455 2..458 2..461 2 .455 . 2..458 2 .455 . 2 .465 2 .467 . 2 .467 . 2,.463 2 .463 . 2..463 2..470 2 .467 2 .463 2 .455 2 .455 2 .461 2 .461  PRECIP MM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0. 4 0. 0 0. 0 0. 0 0..0 0..0 0..0 0..0 0,,0 0..0 0..0 1..2 3.,0 0 .0 0..0 0..0 0..0 0 .0 0..0 0..0 4. 3 1. 2 0 .0 0 .0 0 .0 0 .0 14 .4 0. 2 0 .0 0. 2 0 .0 15 .4 3 .6 0 .4  S.W.RAD MJ/M2D 21 .7 26. 4 25. 0 26. 1 26. 4 27 .0 27 .0 26 .3 25 .8 1 1.5. 10. 4 25. 3 19..3 21 .9 . 22 .0 23 . 3 23 . 1 24 . 2 23 . 5 23.. 5 21 .5 , 18 .6 . 18 .. 3 15..8 16 . 1 8 .9 24 .0 23 .4 21 . 3 21 .2 15 .6 1 1.7 22 .8 21 . 1 6. 3 1 1.4 15 .8 17 .4 10 . 7 10 . 2 5 .4 1 1.6 9 .8 1 1.0 19 .0 4 .4 19 . 2 18 . 3  L.W.RAD MJ/M2D -4 .1 -4 .8 -4 .6 -4 .7 -4 .7 -4 .9 -5 .0 -4 .9 -4. 8 -1 .8 - 1 .. 7 -4 .5 -3 .6 -4 .0 -4.. 1 -4 . 2 -4 .0 . -4 . 3 -4 .. 1 -4 . 1 -3..9 -3 .6 -3 .6 -3 . 2 -3 . 3 -1 . 5 -4 .8 -4 .7 -4 .4 -4 .3 -3 .4 -2 .7 -4 .7 -4 .5 -1 . 2 -2 .7 -3 .6 -4 .0 - 1.9 - 1.9 -1 .2 -2 .9 -1 .9 -2 .5 -3 .9 -0 .9 -4 .0 -3 .9  MAX S.W. M0/M2D 28 .3 28 .2 28 .1 28 .0 27 .9 27 .7 27 .7 27. 6 27. 4 27 .2 27 .1 26 .9 26..7 26. 5 26. 4 26. 1 26. 0 25. 8 25 .6 25..4 25 .3 . 25 .0 . 24 .9 . 24 .7 24..5 24 . 3 24.. 2 24 .0 . 23. 8 23 . 7 23 .4 23 .3 . 23 . 1 22 .9 . 22 .7 . 22..6 22 .3 . 22 . 2 22,.0 21 .8 21 .7 21 .5 21 .2 21 .0 20 .9 20 . 7 20 . 4 20.. 2  ATMOS EMISSTY 0.75 0.75 0.75 0.76 0.76 0.76 0.74 0.75 0.75 0.80 0.79 0.74 0.73 0.74 0.74 0.75 0.76 0.76 0.77 0. 77 0.77 0.75 0.74 0.74 0.74 0.80 0.73 0.74 0.73 0.74 0.74 0.73 0.74 0.73 0.81 0.72 0.71 0.72 0.79 0.79 0.79 0.71 0.78 0.72 0. 74 0.80 0. 73 0.73  oo  METEOROLOGICAL DATA MONTH/ DAY 97 9/ 9 98 9/10 9/1 1 99 9/12 100 9/13 101 9/14 102 9/15 103 9/16 104 9/17 105 9/18 106 107 9/19 108 9/20 9/21 109 9/22 1 10 9/23 1 1 1 9/24 112 9/25 1 13 1 14 9/26 9/27 115 9/28 116 1 17 9/29 1 18 9/30 1 19 10/ 1 10/ 2 120 121 10/ 3 122 10/ 4 123 10/ 5 124 10/ 6 125 10/ 7 126 10/ 8 127 10/ 9 128 10/10 129 10/1 1 10/12 130 10/13 131 10/14 132 10/15 133 10/16 134 10/17 135 10/18 136 137 10/19 138 10/20 10/21 139 10/22 140 10/23 141 10/24 142 10/25 143 144 10/26 NO .  MAX TEMP DEG C 26 . 0 27 . 0 27 . 0 21 .0 24 . 0 26 . 0 26 . 0 25 . 0 25 . O 19 . 0 16 . 0 15 . 5 16 .5 . 16 ..0 15 .0 . 18 .0 . 21 .0 , 23 ..5 23 ..5 15 .5 15 .0 17 .0 . 18 ..5 22 .5 . 24 .0 20 .5 24 .5 24 .5 21 .5 19 .5 17 .5 20 .5 19 .5 14 . 0 14 .5 16 . 0 16 . 0 16 . 0 16 . 0 12 .5 15 .5 15 .5 15 .5 14 . 0 13 .5 12 . 5 1 .5 1 12 .5  MIN TEMP S/ (S+GAMMA) DEG C 6. 5 0 . 66 8. 0 0 . 67 0 . 68 10. 5 0 . 63 10. 0 10. 0 0 . 66 0 . 68 10. 5 8 ,5 . 0 . 67 9. .0 0 . 66 8 .0 0 . 66 12 . 5 0 . 63 1 1 5 . 0 . 60 8. 5 0 . 58 9. ,0 0 . 60 9. ,5 0 . 60 10..0 0 . 58 1 ,0 1 . 0 . 62 6 ,. 5 0 . 62 7 .0 0 . 65 0 . 66 10,.0 1 .0 1 , 0 . 60 13 .0 0 . 60 8,.5 0 . 60 8,.0 0 . 61 5 .0 0 . 63 7 .0 0 . 65 6 .0 0 . 62 8 .0 0 . 66 8 .0 0 . 66 0 . 65 10 .5 1 .10 0 . 62 8 .0 0. GO 5 .5 0 . ,61 8 .5 0. ,62 8 .5 0. ,57 7 .0 0. .57 5 .0 0, , 57 4 .5 0, . 57 1 .5 0, .55 3 .0 0, .57 8 .0 0, .55 7 .5 0 .58 9 .5 0 .58 4 .5 0 .57 1.0 0 . 54 1 .5 0 .53 3 .0 0 . 53 5 .5 0 .53 4 .O 0 .54  : MESACHIE  LAT• .HT . MJ/KG 2 .455 2 .454 2 .452 2 .461 2 . 455 2 . 452 2 .454 2. 455 2 .455 2. 461 2 . 467 2. 470 2. 467 2 . 467 2 . 470 2 . 463 2 .463 2 .458 2 .455 2. 467 2. 467 2. 467 2. 465 2 . 461 2 . 458 2 . 463 2. 455 2. 455 2. 458 2.,463 2 .467 2 ,465 . 2 .463 . 2,.472 2..472 2,.472 2 .472 2 .475 2 .472 2 .475 2 .470 2 .470 2 .472 2 .477 2 .479 2 .479 2 . 479 2 .477  1980- 1981  PRECIP MM 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 22. 7 0. 0 0. 0 1 .6 1 .2 0. 0 0. ,0 0. ,0 0. ,0 5.,8 21 ,. 2 4 ,6 . 0. 0 0, .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .8 0 .0 0 .0 0 .0 12 .0 9.1 0 .5 0 .0 0 .0 0 .0 0 .0 1 .8 3 .0 1 .6 0 .0 0 .0 0 .0 0 .0 0 .0  S.W.RAD .MJ/M2D 19 . 3 18 . 8 16 . 8 1 1 7 . 14 . 9 16. 4 16 . 2 16 . 7 14 . 7 3 .5 8 .4 9. 5 13 . 1 5. 9 6 . 3 15..4 19 .,4 16 ..6 3. 2 2 .9 . 7,. 1 10 ,9 14 .8 14,.5 14 .4 12 .8 13 . 3 13 . 1 10 . 7 12 .5 5 .6 1 .13 4 .7 5 .4 7 .6 12 .4 9 .9 1 .19 3 .3 3 .7 7 .6 9 .6 1 .4 1 9 .6 9 .0 2 .6 6.1 6.1  L.W.RAD MJ/M2D -4 . 0 -3 . 9 -3. 6 -2 . 8 -3. 3 -3. 6 -3. 6 -3 . 8 -3 . 4 -0. 9 - 17. -2 ..5 -3. 4 -1 . 3 -1 .,4 -4 ,,0 -4 .,9 -4 . 2 - 0 , ,8 -0, 8 -1 .6 - 3 , .2 -4 ,. 1 -4 ,. 1 -4 .0 -3 . 7 -3 . 3 -3 . 3 -2 .8 -3 . 3 - 1. 3 -3 . 1 -1 . 1 -1 .3 -2 .4 -3 .7 -3 . 0 -3 .6 -1 . 0 -1 . 1 -2 .5 -3 . 1 -3 . 7 -3 .3 -3 . 1 -0 . 9 -2 . 3 -2 . 3  MAX S,. W. MJ/M2D 20. 1 19. 9 19. 6 19. 4 19. 3 19. 1 18 . 8 18 . 7 18 . 5 18 . 3 18 . 0 17 . 9 17 . 7 17 . 4 17 . 2 17 . 1 16. 9 16 . 6 16. 4 16 . 3 16. 1 15. 8 15. 6 15. 4 15. 3 15. 0 14 ..8 14.,6 14 ..4 14 . 2 14 ..0 13..8 13,.6 13,.4 13,. 1 12 .9 12 .8 12 .6 12 . 4 12 . 2 12 . 0 1 .8 1 1 .7 1 1 .15 1 .13 1 .11 10 . 9 10 .7  ATMOS EMISSTY 0.74 0.75 0.75 0.73 0.74 0.75 0 . 74 0.74 0 . 74 0 . 79 0.78 0.71 0.71 0.77 0.77 0 . 72 0 . 72 0.73 0.80 0 . 78 0.78 0.71 0 . 72 0 . 73 0.73 0.72 0.74 0.74 0.73 0.73 0.78 0.72 0.78 0.77 0.70 0.71 0.71 0 . 70 0 . 76 0.76 0.71 0.71 0.70 0.70 0.70 0.76 0 . 70 0 . 70  METEOROLOGICAL NO. 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192  MONTH/ DAY 10/27 10/28 10/29 10/30 10/31 11/ 1 11/ 2 11/ 3 11/ 4 11/ 5 11/ 6 11/ 7 11/ 8 11/ 9 1 1/10 11/11 1 1/12 11/13 11/14 1 1/15 11/16 11/17 1 1/18 1 1/19 1 1/20 11/21 1 1/22 1 1/23 1 1/24 1 1/25 1 1/26 1 1/27 1 1/28 1 1/29 1 1/30 12/ 1 12/ 2 12/ 3 12/ 4 12/ 5 12/ 6 12/ 7 12/ 8 12/ 9 12/10 12/11 12/12 12/13  MAX TEMP MIN TEMP DEG C DEG C 12.0 2 .O 13.5 3.5 13.0 6.0 13.0 4. 5 12.5 8.0 12.5 9 . 5 6.5 13.0 11.5 8.0 15.5 9.5 15 .O 10.0 12.5 9.0 12.0 8.5 11.5 7.5 9.5 3.0 12.5 2.0 7.5 1 .0 6.0 0.0 7.5 -2.0 7.0 3.0 7.5 1 .5 7.5 0.0 6.5 3.0 8.5 4.0 9.0 7.0 11.0 7.5 1 1 .0 6.0 8.5 2.0 5.0 -1 . 0 5.0 1 .0 8.0 2.0 6.5 3.5 13.0 4.5 7.5 1 .0 7.0 0.0 6.0 1 .5 5.5 0.5 3.0 0.5 1 .5 -0.5 1 .5 -1.0 1 .0 -4.0 3.5 -2.0 -1 . 0 -7.5 1 .0 -3.0 1 .5 0.0 9.0 1 .0 11.0 8.0 9.5 1 .0 6.5 2.5  S/ (S+GAMMA) 0 . 53 0 . 54 0 . 55 0.54 0.55 0.55 0.55 0.54 0.58 0 . 58 0 . 55 0 . 55 0 . 54 0.50 0 . 53 0 . 47 0 . 45 0 . 45 0.48 0.47 0.47 0.47 0.50 0.51 0 . 54 0 . 53 0.48 0.44 0 . 45 0.48 0.47 0.54 0.47 0.47 0.45 0 . 45 0.42 0.41 0.41 0 . 39 0.42 0 . 36 0 . 39 0.41 0.48 0 . 54 0 . 50 0.47  DATA  : MESACHIE  LAT.HT Md/KG 2.479 2.477 2 . 475 2 .477 2.475 2 .475 2.475 2.477 2.470 2 .470 2.475 2.475 2 . 477 2.484 2.479 2 .489 2.491 2.491 2.487 2.489 2.489 2.489 2.484 2.482 2.477 2.479 2 .487 2.494 2.491 2.487 2.489 2.477 2.489 2.489 2.491 2.491 2.496 2.498 2.498 2.501 2.496 2 . 506 2.501 2.498 2.487 2.477 2.484 2.489  1980- 1981  PRECIP MM 0. 0 0 0 0. 6 0 0 38 6 75 6 8 0 20 2 19 6 4 6 54 6 46 2 15 6 25 6 1 0 0 0 0 0 0 0 3 2 0 4 5 6 20 0 17 4 19 8 27 4 50 2 0 0 1 0 0 3 9 2 2 2 53 8 1 2 47 5 13 3 4 2 12 2 5 0 6 3 3 0 0 0 0 0 0 0 0 0 64 8 6 8 0 4 0 0  S.W.RAD MJ/M2D 4 3 7 6 3 1 5 7 1 2 1 6 2 7 1 3 4 6 1 7 . 2 3 2 9 4 4 4 0 4 5 6 2 5 6 6 0 1 7 5 1 2 0 3 0 1 1 4 3 1 1 5 4 3 6 2 6 2 8 4 3 1 7 3 5 2 2 1 3 3 9 1 9 1 0 1 9 2 2 1 5 6 3 3 3 2 0 1 3 0 8 2 7 4 0 1 2  L.W.RAD MJ/M2D - 1 4 -2 9 -1 1 -2 3 -0 6 -0 7 -1 0 -0 7 - 1 5 -0 8 -0 8 -1 0 -1 4 -1 3 - 1 9 -2 4 -2 2 -2 4 -0 7 -2 2 -0 8 -1 1 -0 6 -2 0 -0 6 -2 4 -1 3 -1 0 -1 1 -2 1 -0 8 -1 8 -1 0 -0 7 -2 0 . -0 9 -0 6 -0 9 -1 0 -0 7 -3 0 -1 4 -0 8 -0 6 -0 5 -1 1 -2 0 -0 6  MAX S.W. MJ/M2D 10. 6 10 4 10 2 10 0 9 9 9 7 9 6 9 5 9 3 9 2 9 1 9 0 8 8 8 7 8 5 8 4 8 3 8 2 8 0 8 0 7 9 7 8 7 7 7 6 7 5 7 4 7 4 7 3 7 2 7 2 7 0 6 9 6 9 6 8 6 7 6 7 6 6 6 6 6 6 6 5 6 4 6 4 6 4 6 3 6 3 6 2 6 1 6 1  ATMOS EMISSTY 0 . 75 0.70 0.76 0.70 0 . 76 0 . 76 0.76 0.76 0.77 0.77 0.76 0 . 76 0.76 0.75 0.69 0.69 0.68 0.68 0.75 0.69 0.74 0.74 0.75 0.69 0.76 0.70 0 . 75 0.74 0.74 0.69 0.74 0.70 0.74 0.74 0.68 0 . 74 0 . 74 0.74 0.74 0 . 74 0.68 0.68 0.74 0.74 0.75 0.76 0.69 0 . 74  METEOROLOGICAL DAY NO. 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240  MONTH/ DAY 12/14 12/15 12/16 12/17 12/18 12/19 12/20 12/21 12/22 12/23 12/24 12/25 12/26 12/27 ,12/28 12/29 12/30 12/31 1/ 1 1/ 2 1/ 3 1/ 4 1/ 5 1/ 6 1/ 7 1/ 8 1/ 9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/30  MIN TEMP MAX TEMP DEG C DEG C 5.0 10.0 11.5 9.0 11.0 7.5 9.0 6.5 7.0 1 .5 5.0 -1 . 0 4. 5 2.5 8.5 5.0 10.5 7 . 5 11.0 3.5 11.0 5.5 12.5 9.0 15.0 10.0 13.5 8.0 9.5 5.5 1 1 .0 6.5 9.0 7 . 5 9.0 8.0 9.0 1 .0 9.0 -0.5 8.0 -0.5 7.0 3.0 9.0 1 .0 10.0 3.0 9.5 4.0 6.5 1 .0 7 .5 4.0 10.5 1 .0 8.5 -1.5 12.0 2.5 12.5 4.0 13.0 -1.5 11.5 -1.5 1 1 .0 -0.5 10.5 2.5 9.0 3.0 11.5 5.5 12.0 6.5 10.5 8.0 13.0 7.5 10.5 6.0 10.0 4.0 8.0 3.0 6.5 2.5 6 .O 1 .5 5.0 0.0 6.0 0.5 8.0 1 .5  S/ (S+GAMMA) 0.51 0.55 0.54 0.51 0.47 0.44 0.45 0.50 0.53 0.51 0.53 0 . 55 0.58 0.57 0.51 0.53 0.51 0.53 0.48 0.48 0.47 0.48 0.48 0.51 0.51 0.47 0.48 0.50 0 . 47 0.53 0 . 54 0.51 0.50 0.50 0.51 0.50 0.53 0.54 0.54 0.55 0.53 0.51 0.48 0.47 0.45 0.44 0.45 0.48  DATA  : MESACHIE  LAT.HT. MJ/KG 2.482 2.475 2.477 2.482 2.489 2 . 494 2.491 2 .484 2 .479 2.482 2.479 2 .475 2.470 2.472 2.482 2.479 2 .482 2.479 2 .487 2.487 2 . 489 2.487 2 .487 2.482 2.482 2.489 2 .487 2 .484 2 .489 2.479 2.477 2.482 2 . 484 2.484 2 .482 2 .484 2.479 2.477 2 .477 2 .475 2.479 2.482 2.487 2 .489 2 .491 2.494 2.491 2 .487  1980- 1981  ECIP MM 33.6 6.8 1 .4 1 .2 0.0 0.0 8.0 51.4 13.8 0.6 34.0 24 . 2 **** 51.8 10.0 6. 1 10.2 5.6 0.7 0.0 0.0 0.0 0.6 2.4 0.4 0.8 24.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 56.4 2.9 4.9 36.9 11.5 1 .6 1 . 7 1 .0 18.0 1 .7 2.4 0.0 0.0  S.W.RAD MJ/M2D 1 .5 2 .9 2.2 1 .7 3. 7 1 .7 0. 8 0. 7 2 .3 1 .8 1 .4 1 .2 0. 5 3 .0 3 .0 0. 6 1 .1 2. 4 4 .7 5. . 1 4 .3 . 2. ,2 2 ,7 , 4 ,8 . 2..4 1 .6 1 .8 5 .6 3 .6 5.4 5 .0 6 .0 5 .5 5 .3 0 .9 0 .6 2.1 3 .4 1 .5 3 .0 4 .3 4 .2 5 .0 3 .5 5 .3 0 .4 1. 1 4 .6  L.W.RAD MJ/M2D -0.7 -1.2 -1 . 0 -0.8 -1.9 -0.8 -0.5 -0.5 -1 . 0 -0.8 -0.7 -0.6 -0.4 -1.2 -1.2 -0.4 -0.6 -1 . 0 -2.2 -2.3 -2.0 -0.9 -1.1 -2.2 -1 . 0 -0.7 -0.8 -2.5 -1.7 -2 . 4 -2.3 -2.6 -2.4 -2 . 3 -0.5 -0.4 -0.8 -1.2 -0.6 -1.0 -1.8 -1.7 -2.0 -1.1 -2.0 -0.3 -0.5 - 1 .7  MAX Si . W . MJ/M2D 6.1 6. 1 6. 0 6 .0 6. 0 5. 9 5. 9 6 .0 6 .0 6. 1 6.1 6 .2 6. 2 6. 3 6. 4 6. 4 6. 4 6. 5 6. 5 6 ..6 6. .6 6..7 6..7 6..8 6 .9 6 .9 6 .9 7 .0 7.1 7 .2 7.2 7.2 7 .3 7 .4 7 .5 7 .6 7 .7 7 .8 7 .9 8 .0 8 .0 8 .2 8 .2 8 .3 8 .4 8 .5 8 .6 8 .7  ATMOS EMISSTY 0.75 0.76 0.76 0.75 0.68 0.74 0 . 74 0 . 75 0.76 0 . 75 0 . 76 0.76 0.77 0 . 76 0 . 75 0.76 0 . 75 0.75 0.69 0.69 0.68 0 . 75 O. 75 0.69 0 . 75 0 . 74 0.75 0.69 0.68 0.69 O. 70 0.69 0.69 0.69 0.75 0.75 0.76 0.76 0 . 76 0.76 0.69 0.69 0.69 0.74 0.68 0 . 74 0 . 74 0.69  METEOROLOGICAL DATA : MESACHIE 1980- 1981 DAY NO. 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288  MONTH/ DAY 1/31 2/ 1 2/ 2 2/ 3 2/ 4 2/ 5 2/ 6 2/ 7 2/ 8 2/ 9 2/10 2/11 2/12 2/13 2/14 2/15 2/16 2/17 2/18 2/19 2/20 2/21 2/22 2/23 2/24 2/25 2/26 2/27 2/28 3/ 1 3/ 2 3/ 3 3/ 4 3/ 5 3/ 6 3/ 7 3/ 8 3/ 9 3/10 3/11 3/12 3/13 3/14 3/15 3/16 3/17 3/18 3/19  MAX TEMP MIN TEIV IP s/ DEG C (S+GAMMA) DEG C 0.47 7.5 0. 0 0.48 7.5 2 .0 0.48 7.5 3 .0 0.48 8.5 0. 0 0.47 -2 .0 8.0 0.45 -1 .0 7.0 0.45 -1 .0 6.0 0.44 -2. 0 6.0 0.44 5.0 -1 .0 0. 45 -1 .o 6.0 0.41 -5. 0 4.0 0.39 1 .5 -6. 5 0.41 2.5 -10 . 0.47 5 7.5 1 , 0. 53 10.5 5. 5 0.51 5 5 9.5 0.54 8 0 11.5 0.51 7 0 9.0 0.48 3 5 8.0 0. 53 11.5 5 5 0.48 3 0 7.0 0.50 5 0 8.0 0.53 2 5 12.0 0. 53 2 0 12.0 4 5 0.51 9.5 0.51 9.5 5 0 0.50 4 5 8.5 0.50 1 0 10.0 0.53 13.5 1 5 0. 53 -1 0 14.0 0.53 14 .0 0 0 0.53 5 0 11.5 0.48 -1 0 9.0 0.45 -1 .5 7.0 0.47 -1 .5 9.0 0.50 3 ,0 9.5 0.51 2 .5 11 .0 0. 54 -1 O 15.0 0.54 0 .5 15.0 0.57 6 .5 14.5 0.55 0 .0 17.0 0. 58 6 .O 16.5 0.57 14.5 6 .0 0.54 5 .0 13.0 0.54 5 .0 12.5 0.51 12.5 -0 .5 0. 55 3 .O 15.0 0.55 1 .0 16.0  LAT.HT. Md/KG 2.489 2.487 2.487 2.487 2.489 2.491 2.491 2.494 2 . 494 2.491 2 .498 2.501 2.498 2 . 489 2.479 2.482 2.477 2.482 2.487 2 .479 2 .487 2.484 2.479 2.479 2.482 2.482 2 .484 2 . 484 2.479 2 .479 2 . 479 2 .479 2.487 2.491 2.489 2.484 2.482 2.477 2 .477 2.472 2.475 2.470 2.472 2.477 2 .477 2.482 2 .475 2 .475  PRECIP MM 0.0 o.o 1 .0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 7.4 24 .4 27.6 51 .6 55 . 7 26.5 32. 1 53.2 1 .3 2.0 0.0 4.5 0.8 12.7 3.4 0.0 1 .9 0.0 0.0 3.6 0.0 0.0 0.0 5.6 5.6 0.0 0.0 0.4 0.0 0.0 0.0 12.4 0.7 0.0 0.0 0.0  S.W.RAD MJ/M2D 6 .6 2 .7 5. 2 2 .3 7 .4 7 .7 5. 9 2 .0 6 .4 3 .6 5. 7 10. 3 2.0 2. 6 1 . 7 3. 7 1 ,3 . 1 .7 . 2. ,4 2 ,. 3 5..0 4. 1 7,.4 5 .3 4 .8 3 .8 6 .7 10 .3 1 1.6 12 .3 9 .2 7 .6 10 .7 1 1.5 10 .9 6. 1 12 .0 14 .7 9 .3 13 .4 14 .9 15 .6 12 . 2 6 .2 17 . 1 6 .9 10 .9 17 .5  L.W.RAD MJ/M2D -2 .3 -0. 9 -1 .9 -0. 8 -2. 4 -2 .5 -1 .9 -0. 7 -2 .0 -1 .2 -2 .0 -3 .2 -0. 7 -0. 9 -0,,7 -1 .. 1 -0,.6 -0..6 -0 .8 -0 . 7 -1 . 3 - 1. 1 -2 . 3 -1 . 3 -1 .2 -1 .O -2 .0 -2 .8 -3 . 1 -3 . 2 -2 .4 -2 .0 -2 . 7 -2 . 8 -2 .6 -1 . 3 -2 .8 -3 . 4 -2 .6 -3 . 5 -3 .8 -3 .9 -3 . 1 -1 . 4 -4 . 1 -1 .5 -2 . 7 -4 . 1  MAX Si.W. MJ/M2D 8. 8 9 .0 9 .1 9. 3 9. 4 9 .6 9. 7 9 .9 10.0 10. 1 10. 3 10. 4 10.6 10. 7 10. 9 1 1 2. 1 1 3. 1 1 5. 1 1 8. 12 .0 12 .2 12 .3 12 .6 12 .8 . 13..0 13 .. 1 13 . .4 13 .6 . 13 .8 . 14 O 14 . 2 14 .5 14 .7 14 .9 15 . 1 15 .3 15 .5 15 .7 15 .9 16 . 1 16 .4 16 .6 16 .8 17 .0 17 .2 17 .4 17 .6 17 .7  ATMOS EMISSTY 0.68 0. 75 0.69 0.75 0.68 0.68 0.68 0. 74 0.68 0.74 0.68 0.68 0.74 0.74 0.75 0.75 0.76 0.75 0.75 0.76 0. 75 0. 75 0.69 0.75 0.75 0. 75 0.69 0.69 0. 70 0.69 0.70 0. 70 0.69 0.68 0.69 0. 75 0.69 0. 70 0.70 0.70 0. 70 0.71 0.70 0. 76 0.70 0.75 0.70 0.70  METEOROLOGICAL DATA NO/ 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336  MONTH/ DAY 3/20 3/21 3/22 3/23 3/24 3/25 3/26 3/27 3/28 3/29 3/30 3/31 4/ 1 4/ 2 4/ 3 4/ 4 4/ 5 4/ 6 4/ 7 4/ 8 4/ 9 4/10 4/11 4/12 4/13 4/14 4/15 4/16 4/17 4/18 4/19 4/20 4/21 4/22 4/23 4/24 4/25 4/26 4/27 4/28 4/29 4/30 5/ 1 5/ 2 5/ 3 5/ 4 5/ 5 5/ 6  MAX TEMP DEG c 18 . 0 16 . 0 13 . 0 13 . 0 12 . 0 12 . 0 17 . 0 16 . 5 9. 5 9. 0 9 .0 8 .5 10. 5 10. 0 1 1 5 1 1 0 1 .0 1 1 .0 1 9. ,0 8 .0 . 8 .0 . 7 .5 , 5..5 8 .0 10 .5 16 .0 16 .0 12 .5 15 .5 18 . 0 20 . 0 18 . 0 10 .5 12 . 0 14 . 0 12 .5 14 . 0 15 . 0 15 .5 12 .5 14 . 0 17 .5 13 . 0 1 .10 1 .10 10 . 0 12 .5 12 . 0  MIN TEMP S/ DEG C (S+GAMMA) -1.0 0 . 57 5.0 0 . 57 4.0 0.54 3.0 0.54 1.0 0.51 6.5 0.54 2.5 0.57 4.0 0.57 6.0 0.51 5.5 0.51 5.0 0.51 3.0 0 . 50 2.0 0.51 3.5 0.51 . 1 .0 0.51 . 3.0 0.51 . 4.0 0.53 , 2.0 0.51 2.5 0.50 4.0 0.50 3.0 0.48 2.0 0.48 0.0 0.45 0.0 0.47 -1.5 0.48 -1.0 0.54 2.0 0.55 4.5 0.54 2.0 0.55 0.5 0.57 8.0 0.62 7,0 0.60 6.0 0 . 53 9.0 0.55 10.0 0.58 4.0 0.54 1 .0 0 . 54 0.0 0.54 5.5 0.57 7.0 0.55 9.5 0.57 7.5 0.60 6.0 0.55 4.0 0.53 5.0 0.53 3.5 0.51 2.0 0.53 7.0 0.54  : MESACHIE  LAT .HT . Mv.i/KG 2 . 472' 2 .472 2 . 477 2. 477 2 . 482 2 . 477 2 . 472 2 . 472 2 .482 2. 482 2 . 482 2 .484 2 . 482 2. 482 2 482 2 482 2 479 2 482 2 484 2 484 2 487 2 487 2 491 2 489 2 487 2 477 2 475 2 477 2 475 2 .472 2 .463 2 .467 2 .479 2 .475 2 .470 2 .477 2 .477 2 .477 2 .472 2 .475 2 .472 2 .467 2 .475 2 .479 2 .479 2 .482 2 .479 2 .477  1980- 1981  PRECIP MM 0.0 0.0 7.2 12.8 0.0 17.2 0.9 0.0 2.5 17.0 3. 1 35 . 0 0.4 5.2 2.8 4.5 37.4 0.4 0.4 8.7 1. 4 95.9 24 .6 0.0 0.0 0.0 5.2 6.6 0.0 0.0 0.0 0.4 6.0 20.9 8.5 13.5 0.0 0.0 9.9 20.4 2.0 0.4 8.5 14.0 7.2 2.3 0.3 1. 7  S.W.RAD MJ/M2D 17 . 6 7. 5 12 . 7 14 . 0 1 1 8 . 1 1 7 . 18 . 7 6. 4 6. 4 6. 6 8 .8 1 17. 17 . 7 9. 3 19. 2 5. 9 18 . 9 13..4 10. 8 12 , 5 12 ,.3 4. .2 13..7 14 .8 19 .9 22 .8 10 . 1 1 .6 1 22 . 2 22 .8 23 .8 7 .9 7 .8 5 .4 6 .0 15 .3 23 .8 20 .8 5. 1 5.2 1 .8 1 8.2 1 1.6 12 .5 8 .4 16 .8 18 . 7 7 .8  L.W.RAD MJ/M2D -4 . 1 -1 . 5 -3 . 0 -3. 2 -2. 7 -2. 7 -4 . 0 -1 . 2 -1 . 3 -1 . 3 - 16. -2 . 6 -3. 6 -1 . 6 -3 . 9 -1 . 1 - 3 . .7 - 2 .. 7 -2 , 3 -2 . 5 - 2 ..5 -0 .9 -3 .0 -3 . 2 -4 .2 -4 .8 - 1.8 -2 . 0 -4 .6 -4 .6 -4 . 7 - 1.4 -1 .4 -1 . 1 -1 . 2 -3 . 1 -4 .6 -4 . 0 - 1. 0 -1 . 0 -1 . 9 - 1. 4 -1 .8 -2 . 0 -1 .4 -3 . 2 -3 .5 - 1.3  MAX Si .W. MJ/M2D 18 . 0 18 . 2 18 . 4 18 . 5 18. 8 19. 0 19. 1 19 . 3 19 . 6 19 . 7 19 . 9 20. 1 20. 3 20. 5 20. 7 20. 9 21 . 1 21 . 2 21 .5 21 .6 . 21 .8 22 ,0 , 22 . 2 22 .4 . 22 .6 , 22 .8 . 22 .9 23 . 1 23 .3 23 .5 23 .7 23 .9 24 . 0 24 .2 24 .4 24 .6 24 . 7 25 . 0 25 . 1 25 . 3 25 . 5 25 .6 25 .8 25 .9 26 . 1 26 . 2 26 .4 26 .5  ATMOS EMISSTY 0.70 0.77 0.70 0.70 0.69 0.70 0.71 0.77 0.75 0.75 0.75 0.69 0.69 0.75 0.69 0.75 0.69 0.69 0.69 0.69 0.69 0.75 0.68 0.69 0.69 0.70 0.76 0.76 0.70 0.71 0.72 0.78 0.75 0.76 0.77 0.70 0.70 0.70 0.77 0.76 0.77 0.78 0.76 0.75 0 . 75 0.69 0.69 0.76  METEOROLOGICAL DATA DAY NO.  .X  337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384  MONTH/ DAY 5/ 7 5/ 8 5/ 9 5/10 5/11 5/12 5/13 5/14 5/15 5/16 5/17 5/18 5/19 5/20 5/21 5/22 5/23 5/24 5/25 5/26 5/27 5/28 5/29 5/30 5/31 6/ 1 6/ 2 6/ 3 6/ 4 6/ 5 6/ 6 6/ 7 6/ 8 6/ 9 6/10 6/11 6/12 6/13 6/14 6/15 6/16 6/17 6/18 6/19 6/20 6/21 6/22 6/23  MAX TEMP DEG C 10. 5 14. 0 14 . 0 14 . 5 16. 0 20. 0 20. 0 15. 0 15. 0 16.,5 17 . 0 19. 0 17..0 18., 5 19..0 17..5 19,.5 19..0 16,.5 15 .5 19 .5 23 .5 24 .3 17 . 0 19 . 0 22 . 0 19 .5 16 .5 15 . 0 14 .5 15 .5 15 . 0 15 . 0 15 . 0 13 .5 17 .5 17 . 0 14 .5 17 .5 17 .5 16 . 0 13 .5 13 . 0 15 . 0 15 . 0 14 . 0 15 .5 14 .5  MIN TEMP S/ (S+GAMMA) DEG C 7 .5 0 . 53 3 .0 0 . 54 7 .0 0 . 57 4 .5 0 . 55 4 .5 0 . 57 4. 0 0 . 61 9. 5 0 . 62 9. 0 0 . 58 4 .0 0 . 55 6. 5 0 . 58 7. 5 0 . 60 9. 5 0 . 62 0 . 61 10.,0 1 ,0 1 . 0 . 62 9, ,5 0 . 62 7 .5 , 0 . 60 9, .0 0 . 62 12,. 5 0 . 63 8 .5 0 . 60 6 .5 0 . 57 4 .0 0 . 60 9 .0 0 . 65 9.5 0 . 66 10 . 0 0 . 61 5 .0 0 . 60 6 .0 0 . 63 8 .0 0 . 62 0. ,60 10 .5 9.5 0. ,58 10 .5 0. ,58 8 .0 0. .58 0. ,57 v 5. 5 6 .0 0. .57 9 .5 0, .58 8 .0 0, .57 5 .0 0, .58 7. 5 0, .60 6 .5 0. .57 8 .0 0, .60 7 .0 0 .60 8 .5 0 .58 7 .0 0 .55 8 .0 o .55 0 .58 10 . 5 8 .0 0 .58 8.5 0 .57 0 .60 10 . 0 9.5 0 .58  : MESACHIE  LAT . H T . MJ/KG 2 . 479 2. 477 2 .472 2 .475 2 . 472 2 . 465 2 . 463 2 . 470 2. 475 2 . 470 2 . 467 2 . 463 2. 465 2 .463 2. 463 2 . 467 2. 463 2 . 461 2. 467 2..472 2 .467 . 2 .458 . 2 .455 . 2 .465 . 2 .467 , 2,.461 2,.463 2,.467 2 .470 2 .470 2 .470 2 .472 2 .472 2 .470 2 .472 2 .470 2 .467 2 .472 2 .467 2 .467 2 . 470 2 .475 2 .475 2 .470 2 .470 2 .472 2 .467 2 .470  1980- 1981  PRECIP MM 7 .7 0. 0 1 .6 0. 0 0. 0 0. 0 0. 6 0. 0 0. 0 0. 0 2 .2 0. 1 10. 2 0. 0 0. ,0 0. ,0 0, ,0 11,.0 21 ., 4 0 .0 0 .0 0 .0 0 .5 1 .0 0 .0 0 .0 0 .0 6 .5 4 .8 17 .4 1 .8 0 .4 2 .4 5 .0 7 .3 0 .2 1 .5 3 .6 0 .2 0 .5 4 .9 0 .5 22 .2 1 .6 1 .5 12 . 0 4 .5 2 .5  S . W.RAD MJ/M2D 7 .5 17. 7 19 . 8 14. 9 21 . 8 26. 4 8 .3 12 . 0 21 .8 24 . 9 8 .8 12 . 1 10. 1 17 . 5 1 1 6 . 17 .,5 14 ., 1 10., 1 13.,0 19 ,,8 27 ..8 24 ,.7 7 .5 , 17 .8 , 2 9 , .4 22 .7 , 14 .4 1 .6 1 9 .7 8. 2 17 .7 19 .5 8 .9 12 .4 15 .7 23 . 2 17 .5 12 . 3 18 . 2 8 .9 18 .9 1 .2 1 6 .5 12 .4 12 . 1 9 .0 12 . 1 10 .8  L.W.RAD MJ/M2D -1 . 3 -3 . 3 -3. 6 -2. 8 -3 . 9 -5. 1 -1 . 4 -1 . 9 - 4 . ,3 -4 .,7 -1 ..5 -1 .,9 -1 ..6 -3 ..4 -1 . 8 -3 .4 - 2 ,. 1 -1 ,.6 -2 .0 -3 .8 -5 .0 -4 .4 -1 .2 -3 .4 -5 .2 -4 . 1 -2 . 1 -1 .8 -1 .6 -1 .4 -3 .4 -3 .6 -1 .5 -1 . 9 -3 . 0 -4 .2 -3 .3 -2 . 0 -3 .6 -1 .5 -3 . 7 -1 .8 -1 . 3 -2 . 0 -1 . 9 -1 .6 -1 .9 -1 .8  MAX S; .W. MJ/M2D 26. 7 26 . 9 27 . 0 27 . 2 27 . 3 27 . 4 27. 6 27 . 7 27 . 8 28 . 0 28 . 0 28 . 2 28 . 3 28 . 3 28 . 5 28 . 5 28. 6 28. 8 28. 8 29 . 0 29. 1 29. 1 29. 3 2 9 ., 3 2 9 . .4 29. 5 2 9 . .6 2 9 . ,6 2 9 . ,6 2 9 . ,6 2 9 ,. 7 2 9 ,. 7 2 9 ,. 8 2 9 . .8 29,.9 29,.9 29,.9 30 . 0 30 .0 30 . 1 30 . 1 30 . 1 30 . 1 30 . 2 30 . 2 30 . 2 30 . 2 30 . 1  ATMOS EMISSTY 0.76 0.70 0.70 0.70 0.71 0.72 0.79 0.77 0.70 0.71 0.77 0 . 78 0.78 0.72 0 . 78 0.71 0.79 0.79 0.77 0.71 0.71 0.74 0.80 0.72 0.71 0.73 0.78 0.78 0.77 0.77 0.71 0.70 0.77 0.77 0.70 0.71 0.71 0 . 77 0.71 0 . 78 0.71 0.76 0.76 0.77 0.77 0.77 0.77 0.77  METEOROLOGICAL DATA : MESACHIE 1980- 1981 DAY NO. 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 41 1 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432  MONTH/ DAY 6/24 6/25 6/26 6/27 6/28 6/29 6/30 7/ 1 7/ 2 7/ 3 7/ 4 7/ 5 7/ 6 7/ 7 7/ 8 7/ 9 7/10 7/1 1 7/12 7/13 7/14 7/15 7/16 7/17 7/18 7/19 7/20 7/21 7/22 7/23 7/24 7/25 7/26 7/27 7/28 7/29 7/30 7/31 8/ 1 8/ 2 8/ 3 8/ 4 8/ 5 8/ 6 8/ 7 8/ 8 8/ 9 8/10  S/ MAX TEMP MIN TEMP (S+GAMMA) DEG c DEG c 6. 0 0. 63 22 .0 9.0 0. 67 25 .5 0. 67 9. 5 25 .0 9. 0 0. 63 22 .0 9. 0 0. 65 23 .0 0. 65 1 1 5. 21 .0 12 .0 0. 65 21 .0 1 1 5. 0. 63 20. 5 9. 5 0. 67 25. 5 1 1 5. 0. 68 26 .0 1 1 0. 0. 69 27 .6 12 .0 0. 69 27 .5 9. 0 0. 63 22 .0 9. 5 0. 61 18 .5 9..0 0. 60 17 .0 . 9.,0 0. 62 19 .0 . 9..5 0. 61 18 .5 9..0 0. 62 19 .0 . 0. 65 22 .5 10..5 0. 65 12..0 22 .0 , 0. 66 13 .0 22 .0 1 1.0. 0. 68 27 .0 13 .0 0. 70 29 .0 12 .5 0. 72 30 .0 13 .0 0. 68 26 .0 14 .0 0. 66 22 .0 14 .5 0. 67 23 .5 14 .0 0..67 23 .5 0..66 13 .0 22 .5 14 .0 0..67 23 .5 12 .0 0..69 27 .5 0..72 13 .0 30 .5 14 .0 0 .73 30 .5 15 .5 0 .74 31 .0 0 . 72 12 .0 30 .0 13 .0 0 .63 19 .0 12 .5 0 .65 20 .5 1 1. 5 0 .67 24 .5 9 .0 0 .67 26 .5 0 .68 26 .5 10 .5 12 .5 0 .66 22 .0 0 .67 10 .0 25 .5 1 1.0 0 .69 27 .5 0 . 74 12 .0 33 .0 14 .5 0 .76 36 .0 15 .0 0 .77 38 .0 16 .0 0 . 77 37 .5 16 .5 0 . 77 36 .5  LAT.HT. MJ/KG 2.461 2.454 2.454 2.461 2.458 2 .458 2.458 2.461 2.454 2 .452 2 . 449 2.449 2.461 2.465 2.467 2 .463 2 .465 2 .463 2.458 2.458 2.455 2.452 2.447 2.444 2.452 2.455 2.454 2.454 2.455 2 .454 2.449 2 .444 2.442 2.440 2.444 2 .461 2.458 2.454 2.454 2 .452 2 .455 2.454 2.449 2.440 2.432 2.430 2.430 2.430  CIP MM 0. 0 0. 0 0. 0 0. 0 0. 0 1.8 0. 3 0. 5 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 6 .9 0. 9 0. 0 0..5 0..0 0..0 0,,0 0..0 0..0 0..0 0..0 0..3 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0  S.W.RAD MJ/M2D 28. 8 29. 4 29. 0 27 .5 13. 1 20. 6 1 1 7. 28. 9 27 .3 25. 1 27, 7 26. 8 15. 2 19.0 16. 2 14. 9 13. 3 22 .1 21 .7 . 7.. 1 24 . 3 26..9 24 .0 . 20.,0 20..0 7..8 23.. 3 12 . 3 14 . 5 19 . 2 26 .0 25 . 7 25 . 7 25 .6 9 .2 14 . 8 13 .7 24 .5 26 .0 24 .0 21 . 4 24 . 7 24 .5 24 . 2 23 . 5 23 .6 23 . 4 23 . 4  L.W.RAD MJ/M2D -5. 2 -5 .2 -5 .1 -5. 0 -1 .9 -3. 9 -1 .8 -5. 2 -4 .9 -4 .5 -4 .8 -4 .7 -3. 0 -3 .7 -3. 3 -3 .0 -2 .1 -4 .3 -4 .. 1 - 1.2 . -4 . 4 -4.. 7 -4 .. 2 -3,.5 -3..7 -1 .3 . -4 . 3 - 1.8 . -2 .9 -3 . 7 -4 . 7 -4 .5 -4 .5 -4 .4 -1 . 3 -3 . 1 -2 . 1 -4 .7 -4 .9 -4 .6 -4 . 3 -4 .8 -4 . 7 -4 .4 -4 . 1 -4 .0 -4 .0 -4 . 1  MAX S,.W. MJ/M2D 30. 1 30. 1 30. 1 30. 1 30. 1 30. 0 30. 0 29. 9 29. 9 29. 9 29. 8 29. 7 29. 7 29. 6 29. 6 29. 5 29. 5 29. 4 29 .3 29 .3 29 .3 29. 2 29. 1 29. 0 28. 8 28. 8 28. 6 28. 5 28 .4 28., 3 28 . 2 28 . 1 28 .0 . 27 .9 27..7 27 .. 7 27 .6 . 27 . 4 27 . 2 27 . 1 26 .9 26 . 7 26 . 5 26 . 4 26 . 1 26 .0 25 .8 25 .6  ATMOS EMISSTY 0. 73 0.74 0.74 0. 73 0.80 0.73 0.80 0.73 0.74 0.75 0.75 0.76 0.73 0.72 0.71 0. 72 0.78 0. 72 0.73 0.80 0. 74 0. 75 0.76 0. 77 0.75 0.80 0.75 0.81 0. 74 0.74 0.76 0.77 0. 77 0.78 0.83 0.73 0.80 0.74 0.75 0. 75 0.74 0.74 0.75 0.78 0.79 0.80 0.80 0.80  vO -P-  METEOROLOGICAL NO. 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480  MONTH/ DAY 8/11 8/12 8/13 8/14 8/15 8/16 8/17 8/18 8/19 8/20 8/21 8/22 8/23 8/24 8/25 8/26 8/27 8/28 8/29 8/30 8/31 9/ 1 9/ 2 9/ 3 9/ 4 9/ 5 9/ 6 9/ 7 9/ 8 9/ 9 9/10 9/11 9/12 9/13 9/14 9/15 9/16 9/17 9/18 9/19 9/20 9/21 9/22 9/23 9/24 9/25 9/26 9/27  MAX TEMP DEG C 36 . 5 36 . 5 30. 5 31 . 0 30. 0 30. 5 29 . 5 32 . 5 32 . 5 19 . 5 23 . 5 26 . 0 29 ..5 3 0 ..0 18 .0 . 21 .0 . 21 ,0 . 21 .0 . 21 .0 . 21 .5 . 21 .5 17 .0 22 . 0 20 .5 17 . 0 23 . 0 26 .5 30 .5 29 .5 26 . 0 22 .5 24 .5 25 . 0 23 . 0 26 . 0 29 . 0 28 .5 26 .5 22 . 0 17 .5 17 . 0 12 . 0 13 . 0 13 . 5 13 .5 15 .5 15 . 0 15 . 0  MIN TEMP S/ DEG C (S+GAMMA) 16. 5 0 . 77 15 . 0 0 . 76 15. 0 0 . 73 15 .0 0 . 73 13 .0 0 . 72 13. 0 0 . 72 12. 5 0 . 72 12. 5 0 . 74 1 1 5 . 0 . 73 14 . 0 0 . 63 9. 0 0 . 65 1 1 0 . 0 . 68 14 .O 0 . 72 12 . 5 0 . 72 10..5 0 . 61 8. O 0 . 62 10..0 0 . 63 9 .0 . 0 . 63 12 .0 . 0 . 65 12 .5 . 0 . 65 10..0 0 . 63 12 .5 . 0 . 61 10.. 0 0 . 65 10..5 0 . 63 12 .5 0 . 61 10 . 0 0 . 65 9 .5 0 . 68 10 . 0 0..70 1 .5 1 0..70 14 .5 0 .69 1 .10 0..65 1 .10 0 .67 9 .0 0 .66 9 .0 0 .65 8 .5 0 .67 9 .0 0 .69 1 .10 0 .69 12 . 0 0 .68 12 . 0 0 .65 9 .0 0 .61 7 .0 0 .60 9 .0 0 .55 8 .0 0 .55 5 .5 0 .55 6 .5 0 .55 6 .0 0 . 57 5 .0 0 .57 9 .0 0 .58  DATA  : MESACHIE  LAT.HT. Md/KG 2.430 2.432 2.442 2 .442 2.444 2 .444 2 .444 2.440 2.442 2.461 2 .458 2.452 2.444 2.444 2.465 2.463 2.461 2 .461 2.458 2.458 2 .461 2.465 2.458 2.461 2.465 2.458 2.452 2.447 2.447 2.449 2.458 2.454 2 .455 2 .458 2.454 2 .449 2.449 2.452 2.458 2.465 2.467 2.475 2.475 2.475 2.475 2.472 2.472 2.470  1980- 1981  PRECIP MM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.2 18.4 0.0 0.0 0.0 1 .0 0.0 11.6 19.2 0.0 0.9 O.O 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 5.4 4.9 43.4 6.6 0.2 3.2 O.O 0. 1 4.4  S.W.RAD Md/M2D 24 . 0 23. 9 23 . 2 22 . 5 22. 5 22. 2 23. 7 23. 8 15. 2 9. 6 21 . 8 20. 8 20. 6 1 1 2 . 18 . 8 17 ..9 14 .0 . 15 .3 . 12 .6 . 19. 8 9..3 10..7 15..9 12.. 1 9 .5 18 .2 18 .8 19 . 1 19 . 1 9. 7 17 .6 18 . 1 18 .7 19 .2 18 .8 18 .8 18 .5 15 .4 6 .9 14 . 1 6 .9 6 .9 9 .8 8 .9 10 .5 14 .5 10 .6 7 .0  L.W.RAD Md/M2D -4 . 2 -4 . 2 -4 . 5 -4 . 3 -4 . 1 -4 . 1 -4 . 4 -4 . 3 -2. 9 -1 . 6 -4 . 5 -4 . 2 -4 . 0 -1 . 6 -4 . 1 -4 . 0 . -3 . 2 -3 . 5 - 3 . .0 -4 . 4 -1 ,.7 -2 .,0 -3 . 7 - 3 .. 0 -1 .8 -4 . 2 -4 . 3 -4 . 2 -4 . 3 -1 .7 -4 .3 -4 .4 -4 .6 -4 .8 -4 . 7 -4 .6 -4 . 0 -3 .5 -1 . 3 -3 . 5 -1 .5 -1 .5 -2 .7 -2 .5 -2 . 9 -3 .8 -3 . 0 -1 .6  MAX S.W. Md/M2D 25 . 4 25. 3 25. 0 24 . 9 24 . 7 24 . 5 24 . 3 24 . 2 24 . 0 23 . 8 23 . 7 23 . 4 23 . 3 23. 1 22 . 9 22 . 7 22 . 6 22 ..3 22 . 2 22 ..0 21 . 8 21 .7 . 21 , 5 21 .2 21 . 0 20 .9 20 . 7 20 .4 20 .2 20 . 1 19 .9 19 .6 19 .4 19 .3 19 . 1 18 .8 18 . 7 18 . 5 18 .3 18 . 0 17 . 9 17 .7 17 .4 17 .2 17 . 1 16 . 9 16 .6 16 . 4  ATMOS EMISSTY 0.80 0.80 0.77 0.77 0.77 0.77 0.76 0.78 0.77 0.79 0.74 0.75 0.77 0.83 0.72 0.73 0.73 0.73 0.73 0.73 0.79 0.78 0.73 0.73 0.78 0.74 0.75 0.76 0.76 0.82 6.74 0.74 0.74 0.73 0.74 0.76 0.76 0.75 0.80 0.72 0.77 0.76 0.70 0.70 0.70 0.71 0 . 70 0.77  METEOROLOGICAL DATA DAY NO. 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512  MONTH/ DAY 9/28 9/29 9/30 10/ 1 10/ 2 10/ 3 10/ 4 10/ 5 10/ 6 10/ 7 10/ 8 10/ 9 10/10 10/1 1 10/12 10/13 10/14 10/15 10/16 10/17 10/18 10/19 10/20 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29  MAX TEMP MIN TEH IP DEG C DEG C 16. 0 9 5 13. 5 3 5 14. 0 9 0 14 .0 10 0 13. 5 5 0 1 1 5 . 3 5 12. 5 1 0 1 .5 1 . 4 5 12..5 10 0 12 . 5 8 0 1 .0 1 7 0 13..0 3 5 12 .0 5 0 13 .0 0 5 14 .0 1 0 16 . 0 2 0 16 . 0 3 0 16 . 0 4 0 16 . 0 5 5 16 . 0 7 0 15 . 5 5 5 1 .10 6 5 14 . 0 4 .0 14 . 0 -1 .0 17 . 5 0 .0 17 . 5 2 .0 15 . 0 4 .0 15 . 5 5 .0 1 .15 6 .0 12 . 0 8 .0 1 .15 5 .5 8 .5 5 .5  s/  (S+GAMMA) 0.60 0.54 0.57 0.58 0.55 0.53 0.53 0.53 0.57 0.55 0.54 0.54 0.54 0.53 0.54 0.55 0.57 0.57 0.57 0.58 0.57 0.53 0.55 0.53 0.57 0.57 0.55 0.57 0.54 0.55 0.53 0.50  : MESACHIE  LAT ' .HT . MJ/KG 2 . 467 2 . 477 2 . 472 2 . 470 2 . 475 2 . 479 2 . 479 2. 479 2 . 472 2. 475 2 . 477 2 . 477 2 . 477 2 . 479 2. 477 2 . 475 2 . 472 2 .472 . 2. 472 2 .470 . 2 .472 . 2 .479 . 2..475 2..479 2 .472 2 .472 2 .475 2 .472 2 .477 2 .475 2 .479 2 .484  1980-1981  PRECIP MM 13.4 0.5 8.2 39.8 0.2 8.6 1 .2 20.2 27.8 26 . 1 21.4 2.8 0.6 0.8 0.0 0.3 0.2 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 4.5 55.5 30.2 14.9  S.W.RAD MJ/M2D 13. 2 9. 6 6. 9 2. 0 2 . 1 1 1 1 7 . 8. 9 1 .6 3. 7 5. 8 3. 4 9. 0 9. . 1 1 .9 1 . 10. 5 10., 7 10..4 8..2 8 .8 6.. 7 6. 5 3 .0 8 .4 9 .7 9. 7 8 .4 8 .2 4 .9 5. 1 1 .7 3 .3 3 .7  L.W.RAD MJ/M2D -3 . 6 -2 . 8 -1 . 6 -0. 7 -3. 3 -3 . 5 -2 . 8 -0. 7 -1 . 1 - 16. -1 . 1 -3 . 0 - 3 ., 1 -3. 9 - 3 . .6 -3 ,.7 -3. 6 - 3 , .0 -3 . 2 - 2 ..2 -2 . 2 -O .9 -2 .8 -3 . 2 -3 . 3 -2 .9 -2 . 9 -1 .5 -1 .5 -0 .7 -1 . 1 -1 .2  MAX S.W. MJ/M2D 16. 3 16. 1 15 . 8 15. 6 15. 4 15. 3 15. 0 14. 8 14 . 6 14 . 4 14. 2 14 .0 13. 8 13. 6 13.,4 13,. 1 12 .,9 12 .8 , 12,.6 12,.4 12 .2 12 .0 1 .8 1 1 .7 1 1 .5 1 1 .3 1 1 .11 10 .9 10 .7 10 .6 10 .4 10 .2  ATMOS EMISSTY 0.71 0.70 0 . 77 0 . 77 0.70 0.69 0.69 0.76 0 . 76 0.76 0.76 0.70 0.70 0.69 0.70 0 . 70 0.70 0.70 0.71 0.71 0.71 0.76 0.70 0.69 0 . 70 0.71 0.70 0.77 0.76 0.76 0.76 0.75  197 -  APPENDIX 5 Plot of K+ (earth surface)/K+ (extraterrestial) against (sunshine hours)/(daylight hours)  A regression yields the relationship: K+ (earth surface)/K+ (extraterrestial) = 0.47 (sunshine hours)/(daylight hours) + 0.295 r = 0.92. 2  This relationship was used to determine K+ (earth surface) when the solarimeter was out of operation from August 23, 1981 to September 30, 1981.  198  00 O  o ID  o • o UJ  d CM O  q d  0 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  SUNSHINE HRS./DAYLIGHT HRS.  - 199 -  APPENDIX 6 Volumetric s o i l water contents at specified depths determined by neutron probe at s i t e s 0 t o 6 from Dune 5, 1980 to October 28, 1981  Zeros in column headings indicate no neutron probe measurement depths, and zeros below indicate no access tubes installed or data not obtained.  SOIL WATER! CONTENT BY D E P T H : A V G . V O L . F R A C . SITE O TUBES 1-3 : DEPTH DATA DATE 1Ei CM 22! CM 0 CM 0 CM 0 CM SET 0 . 284 0 . 000 0. 000 0 . 000 1 JUNE 5 1980 0 . 000 0 . 000 0 . 289 0. 000 0. 000 0 . 000 JUNE 14 1980 2 0 . 000 0 . 271 0 . 0 0 0 0. 000 0. 000 JUNE 19 1980 3 0 . 264 0 . 304 0 . 000 0. 000 0. 000 4 JUNE 26 1980 4 1980 0 . 318 0. 000 0. 000 0. 000 JULY 0 . 274 5 JULY 10 1980 0 . 254 0 . 295 0. 000 0. 000 0. 000 6 JULY 17 1980 0 . 287 0. 000 0 . 000 0 . 000 7 0 . 244 JULY 25 1980 0 . 210 0 . 246 0. 000 0 . 000 0. 000 8 JULY 31 1980 0 . 160 0 . 195 0. 000 0. 000 0 . 000 9 AUG 7 1980 0 . 1 17 0 . 148 0. 000 0. 000 0 . 000 10 0 . 092 0 . 119 0. 000 0. 000 0 . 000 1 1 AUG 15 1980 0 . 113 0 . OOO 0 . 0 0 0 AUG 20 1980 0 . 087 12 o :ooo AUG 30 0 . 079 0 . 103 0. 000 0. 000 0. 000 13 1980 4 1980 0. 000 0. 000 0. 000 14 SEPT 0 . 1 19 0 . 136 SEPT 16 1980 0 . 121 0 . 154 0. 000 0. 000 0. 000 15 0 . 210 0. 000 0 . 000 0 . 000 SEPT 23 1980 0 . 179 16 17 SEPT 30 1980 0 . 218 0 . 250 0. 000 0 .,000 0. 000 OCT 7 1980 0 . 183 0 . 221 0 . 0 0 0 0..000 0 . 000 18 OCT 13 1980 0 . 211 0 . 239 0 .,000 0.,000 0. 000 19 OCT 21 1980 0 . 000 0. 000 0 . OOO 0.,000 0.,000 20 OCT 28 1980 0 . 214 0 . 247 0 ..000 0,,000 0,,000 21 NOV 4 1980 0 . OOO 0 . 0 0 0 0 ., 0 0 0 0.,000 0.,000 22 NOV 18 0 . 283 0 . 336 0 ., 0 0 0 0,, 0 0 0 0.,000 1980 23 24 2 0 . 299 0 . 357 0 . OOO 0..000 0.,000 DEC 1980 0,. 0 0 0 0.. 0 0 0 0,,000 DEC 15 0 . 292 0 . 340 25 1980 JAN 9 1981 0 . 337 0.. 0 0 0 0.. 0 0 0 0..000 26 0 . 288 0 . 339 0.. 0 0 0 0.. 0 0 0 0..000 27 J A N 23 1981 0 . 287 7 1981 0 . 314 0.. 0 0 0 0.. 0 0 0 0..000 28 FEB 0 . 270 1981 0 . 304 0 . 356 0 ,000 0,. 0 0 0 0..000 29 FEB 19 1981 0 . 303 0.. 0 0 0 0 .000 0,.000 MAR 13 0 . 259 30 31 MAR 27 1981 0 . 276 0 . 321 0.. 0 0 0 0 .OOO 0.. 0 0 0 APR 16 1981 0 . 298 0 . 351 0 .OOO 0 . 0 0 0 0.. 0 0 0 32 MAY 6 1981 0 . 294 0 ., 332 0 .OOO 0 .000 0 .000 33 34 MAY 19 1981 0 . 31 1 0 . 0 0 0 0 .000 0 .000 0 . 264 1981 0., 3 0 0 0 .000 0 .000 0 .000 35 JUNE 2 0 . ,264 36 JUNE 15 1981 0 . 275 0. 315 0 .000 0 .000 0 .000 0.. 302 0 . 0 0 0 0 .000 0 .000 37 JUNE 30 1981 0 .,264 38 JULY 6 1981 0 .,224 0., 256 0 . 0 0 0 0 .000 0 .000 JULY 13 1981 0.,245 0 .000 0 .000 0 .000 39 0 .,214 0 .000 0 .000 JULY 21 1981 0 ., 155 0.. 188 0 . 0 0 0 40 41 JULY 27 1981 0 ., 1 18 0.. 144 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 AUG 4 1981 0 .,096 0,. 1 18 0 . 0 0 0 42 AUG 10 1981 0 .,083 0., 109 0 . 0 0 0 0 .000 0 .000 43 44 AUG 17 1981 0 .,078 0..099 0 .000 0 .000 0 .000 AUG 24 1981 0..080 0..097 0 .000 0 .000 0 .000 45 46 SEPT 1 1981 0..230 0 . 257 0 . 0 0 0 0 .000 0 .000 SEPT 1 11981 0 . 190 0 .214 0 .000 0 .000 0 .000 47 48 SEPT 25 1981 0 .242 0 . 276 0 . 0 0 0 0 .000 0 .000 OCT 9 1981 0 . 292 0 . 320 0 . 0 0 0 0 .000 0 .000 49 OCT 28 1981 0 . 304 0 . 339 0 . 0 0 0 0 .000 0 .000 50  EACH SET 0 CM 0 . 000 0. 000 0. 000 0 . 000 0. 000 0 . 000 0 . 000 0 . 000 0. 000 0 . OOO 0. 000 0. 000 0. 000 0 . 000 0 . 000 0 . 000 0 . OOO 0..000 0. 0 0 0 0.,000 0.,000 0,,000 0..000 0..000 0,. 0 0 0 0.. 0 0 0 0,, 0 0 0 0.. 0 0 0 0.. 0 0 0 0.. 0 0 0 0.. 0 0 0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 .000  3 NEUTRON PROBE 15 CM 0 . 000 0. 000 0. 000 0 . 272 0 . 297 0 . 275 0 . 264 0 . 236 0 . 191 0 . 147 0 . 108 0 . 101 0 . 087 0 . 120 0 . 136 0 . 182 0 . 210 0 . 201 0 . 219 0. 000 0 . 230 0. 000 0 . 296 0 . 314 0 .,303 0 .. 0 0 0 0 .,297 0 ..282 0 .,312 0 ., 2 8 0 0 .. 290 0 .,314 0 .. 302 0..279 0,,267 0..284 0.. 2 8 0 0.. 234 0,.219 0 . 167 0 . 132 0 . 101 0 .093 0 .086 0 .088 0 .212 0 . 191 0 . 250 0 . 285 0 . 306  ACCESS TUBES.  TUBES 4 - 6 : D E P T H 0 CM 0 CM 2Ei CM 0. 000 0. 000 0. 000 0. 000 0. 000 0 . 288 0. 000 0 . 278 0. 000 0. 000 0. 000 0 . 293 0. 000 0. 000 0 . 323 0. 000 0. 000 0 . 290 0. 000 0 . 283 0. 000 0. 000 0. 000 0 . 248 0. 000 0. 000 0 . 208 0 . 000 0. 000 0 . 163 0. 000 0. 000 0 . 128 0 . OOO 0 . 0 0 0 0 . 123 0. 000 0. 000 0 . 112 0. 000 0. 000 0 . 128 0 .,000 0. 000 0 . 157 0 .,000 0 .,000 0 . 196 0 .,000 0 .,000 0 . 215 0 ., 0 0 0 0 .. 0 0 0 0 . 203 0 . 239 0..000 0 ., 0 0 0 0 .000 0,, 0 0 0 0. 000 0 . 248 0.. 0 0 0 0.. 0 0 0 0. 000 0.. 0 0 0 0,. 0 0 0 0.. 0 0 0 0,. 0 0 0 0 . 335 0 . 350 0 .000 0 .OOO 0.. 0 0 0 0.. 0 0 0 0 . 333 0. 000 0 .000 0.. 0 0 0 0 . 320 0.. 0 0 0 0.. 0 0 0 0.. 0 0 0 0 . 302 0 .000 0 . 336 0 .000 0,. 0 0 0 0 . 297 0 .000 0 .000 0 . 309 0 .000 0 .000 0 .,339 0 .000 0 .000 0 .000 0 .000 0 . 316 0 .000 0 .000 0 .,294 0.,283 0 .000 0 .000 0.,297 0 .000 0 .000 0 .000 0.,291 0 .000 0,, 251 0 . 0 0 0 0 .000 0 .000 0 .000 0.,236 0.. 183 0 . 0 0 0 0 .000 0 .000 0,. 147 0 . 0 0 0 0 .000 0.. 120 0 . 0 0 0 0 .000 0 .000 0..112 0 .000 0 . 103 0 . 0 0 0 0 . 102 0 . 0 0 0 0 .000 0 . 236 0 . 0 0 0 0 .OOO 0 .000 0 .000 0 .210 0 .276 0 .000 0 .OOO 0 .000 0 .000 0 .315 0 .365 0 .000 0 .000  0 CM 0. 000 0. 000 0. 000 0. 000 0. 000 0 . 000 0 . 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0 . ,000 0. 000 0 ., 0 0 0 0 ., 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0. OOO 0.. 0 0 0 0.. 0 0 0 0 .. 0 0 0 0.. 0 0 0 0,. 0 0 0 0.. 0 0 0 0.. 0 0 0 0.. 0 0 0 0.. 0 0 0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000  0 CM 0 . 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0 . OOO 0. 000 0. 000 0. 000 0. 000 0. 000 0 ., 0 0 0 0. 000 o., 0 0 0 0 .. 0 0 0 0 . OOO 0 .. 0 0 0 0 ., 0 0 0 0. 000 0 ., 0 0 0 0 . OOO 0.. 0 0 0 0 .000 0.. 0 0 0 0..OOO 0..OOO 0,. 0 0 0 0.. 0 0 0 0.. 0 0 0 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000  o .ooo  0 .000 0 .000  ro  o o  SOIL WATER! CONTENT BY DEPTH: A V G . V O L . F R A C . SITE 1 TUBES 1-3 :DEPTH DATA DATE 0 CM 0 CM SET 15i CM 25i CM 0 CM 0.000 0.000 5 1980 0 . 000 0 . 186 0 . 000 1 JUNE 0.000 0.000 JUNE 14 1980 0 . 000 0 . 207 0 . 000 2 0.000 0.000 JUNE 19 1980 0 . 000 0 . 188 0. 000 3 0.000 0.000 4 JUNE 26 1980 0 . 209 0 . 208 0 . 000 0.000 0.000 5 JULY 4 1980 0 . 236 0 . 240 0 . 000 0.000 0.000 JULY 10 1980 0 . 192 0 . 204 0 . 000 6 0.000 0.000 7 JULY 17 1980 0 . 173 0 . 188 0. 000 0.000 0.000 JULY 25 1980 0 . 141 0 . 156 0. 000 8 0.000 0.000 JULY 31 1980 0 . 1 10 0 . 128 0. 000 9 0.000 0.000 AUG 7 1980 0 . 087 0 . 105 0. 000 10 0.000 0.000 1 1 AUG 15 1980 0 . 000 0 . 000 0 . 000 0.000 0.000 AUG :20 1980 0 . 000 0. 000 0 . 000 12 0.000 0.000 AUG 30 1980 0 . 068 0 . 092 0. 000 13 0.000 14 SEPT 4 1980 0 . 099 0 . 113 0 . OOO O.OOO 0.000 0.000 SEPT 16 1980 0 . 099 0 . 112 0. 000 15 0.000 0.000 SEPT 23 1980 0 . 141 0 . 154 0. 000 16 0.000 0.000 17 SEPT 30 1980 0 . 186 0 . 191 0 . 0 0 0 0.000 0.000 18 OCT 7 1980 0 . 141 0 . 147 0. 000 0.000 0.000 OCT 13 1980 0 . 164 0 . 170 0. 000 19 0.000 0.000 OCT 21 1980 0 . 000 0. 000 0 . .000 20 0.000 0.000 OCT 28 1980 0 . 148 0 . 153 0. 000 21 0.000 0.000 NOV 4 1980 0 . 230 0 . 249 0 . .000 22 0.000 0.000 NOV 18 1980 0 . 248 0 . 252 0.,000 23 0.000 0.000 24 DEC 2 1980 0 . 250 0 . 261 0., 0 0 0 0.000 0.000 25 DEC 15 1980 0 . 236 0 . 259 0., 0 0 0 0.000 0.000 26 JAN 9 1981 0 . .240 0 . 262 0.. 0 0 0 0.000 0.000 JAN 23 1981 0 . .233 0 . 259 0.. 0 0 0 27 0.000 0.000 7 1981 0 . . 221 0 . .247 0,. 0 0 0 28 FEB 0.000 0.000 FEB 19 1981 0.. 249 0 . .269 0.. 0 0 0 29 0.000 0.000 MAR 13 1981 0..214 0 . .233 0 .000 30 0.000 0.000 MAR 27 1981 0.. 230 0 . . 254 0 . 0 0 0 31 0.000 0.000 APR 16 1981 0 .250 0., 270 0 . 0 0 0 32 O.OOO 0.000 MAY 6 1981 0 .246 0.. 266 0 . 0 0 0 33 0.000 0.000 34 MAY 19 1981 0,.221 0.. 238 0 . 0 0 0 0.000 0.000 JUNE 2 1981 0 . 208 0,. 2 3 0 0 .000 35 0.000 0.000 36 JUNE 15 1981 0 .215 0,.237 0 .000 0.000 0.000 JUNE 30 1981 0 . 209 0,.232 0 .OOO 37 0.000 0.000 38 JULY 6 1981 0 . 172 0.. 192 0 . 0 0 0 0.000 0.000 JULY 13 1981 0 . 154 0 . 177 0 . 0 0 0 39 0.000 0.000 JULY 21 1981 0 . 117 0 .141 0 . 0 0 0 40 0.000 0.000 JULY 27 1981 0 .092 0 . 1 19 0 . 0 0 0 41 0.000 0.000 AUG 4 1981 0 .075 0 . 103 0 . 0 0 0 42 0.000 0.000 AUG 10 1981 0 .074 0 .098 0 .000 43 0.000 O.OOO AUG 17 1981 0 .063 0 .089 0 .000 44 0.000 0.000 45 AUG 24 1981 0 .070 0 .094 0 .000 0.000 0.000 SEPT 1 1981 0 . 141 0 . 168 0 . 0 0 0 46 0.000 0.000 47 SEPT 1 11981 0 .115 0 . 138 0 . 0 0 0 0.000 0.000 SEPT 25 1981 0 . 172 0 . 187 0 . 0 0 0 48 0.000 0.000 OCT 9 1981 0 .217 0 . 249 0 . 0 0 0 49 0.000 0.000 OCT 28 1981 0 . 230 0 . 2 5 9 0 .000 50  EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. TUBES 4 - 6 : D E P T H 0 CM 15 CM 30 CM 37 CM 0 CM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0 . 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0 . 0 0 0 O.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000 O.OOO 0 . 0 0 0 0.000 0.000 0.000 O.OOO 0 . 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO O.OOO 0 . 0 0 0 O.OOO 0 . 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0 . 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.296 0.299 0 . 3 1 2 O.OOO 0.000 0.276 0.284 0.293 0.000 0.000 0.276 0.279 0.299 0.000 0.000 0^273 0.278 0.304 0.000 0.000 0.277 0.282 0.302 0.000 0.000 0.242 0.249 0.266 0.000 0.000 0.228 0.235 0.249 0.000 0.000 0.183 0.195 0.199 0.000 0.000 0.155 0.169 0.176 0.000 0.000 0 . 1 2 8 0.141 0.146 0.000 0.000 0 . 1 1 8 0 . 1 3 7 0.141 0.000 0.000 0.109 0.127 0.132 0.000 0.000 0.106 0.123 0.127 0.000 0.000 0.210 0.196 0.190 0.000 0.000 0.170 0.172 0.173 0.000 0.000 0.225 0.218 0.000 0.000 0.000 0.271 0.280 0.287 0.000 0.000 0.282 0.283 0.292 0.000  O CM 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO O.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0 CM 0.000  o.ooo  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000 0.000 O.OOO 0.000 O.OOO 0.000  1  ro 2 '  SITE 2 : SOIL WATER CONTENT BY DEPTH: A V G . V O L . F R A C . DATA DATE TUBES 1-3:DEPTH C) CM 15i CM 3Ci CM 45 CM 54 CM SET 0 . 221 0 . 220 0 . 225 0. 000 5 1980 0 . 000 1 JUNE O . 000 0 . 231 0 . 236 0 . 240 0. 000 JUNE 14 1980 2 0 . 222 0 . 226 0 . 232 0. 000 0 . 000 JUNE 19 1980 3 0 . 169 0 . 234 0 . 235 0 . 238 0. 000 4 JUNE 26 1980 4 1980 0 . 188 0 . 250 0 . 250 0 . 253 0. 000 JULY 5 O . 164 0 . 230 0 . 237 0 . 241 0 . 0 0 0 JULY 10 1980 6 0 . 228 0 . 236 0. 000 JULY 17 1980 0 . 161 0 . 228 7 0 . 221 0 . 226 0 . 000 0 . 214 JULY 25 1980 0 . 150 8 0 . 200 0 . 204 0 . 214 0 . 000 0 . 127 JULY 31 1980 9 0 . 177 0 . 190 0 . 197 0. 000 AUG 7 1980 0 . 100 10 15 1980 1 1 AUG o . 080 0 . 157 0 . 175 0 . 181 0 . 0 0 0 0 . 077 0 . 152 0 . 167 0 . 175 0 . 0 0 0 1980 12 AUG :20 0 . 069 0 . 142 0 . 153 0 . 164 0. 000 AUG :30 1980 13 SEPT 4 1980 0 . 105 0 . 167 0 . 167 0 . 171 0 . 0 0 0 14 0 . 169 0 . 171 0 . 180 0. 000 SEPT 16 1980 0 . 097 15 0 . 130 0 . 196 0 . 193 0 . 193 0 . 0 0 0 SEPT 23 1980 16 0 . 225 0 . 208 0 . 216 0. 000 SEPT 30 1980 0 . 159 17 0 . 198 0 . 204 0 . 206 0 . 000 OCT 7 0 . 133 1980 18 0 . 219 0 . 211 0 . 214 0. 000 13 1980 0 . 156 OCT 19 1980 0 . 142 0 . 204 0 . 204 0 . 208 0. 000 OCT 21 20 0 . 21 1 0 . 208 0 . 214 0. 000 OCT 0 . 149 28 1980 21 NOV 4 1980 0 . 184 0 . 249 0 . 247 0 . 262 0 . 000 22 0 . 262 0 . 253 0 . 264 0. 000 NOV 18 1980 0 . 201 23 0 . 251 0 . 250 0 . 260 0..000 1980 0 . 196 24 DEC 2 0 . 245 0 . 254 0..000 0 . , 180 0 . 243 DEC 15 1980 25 1981 , 186 0 . 246 0 . 246 0 . 255 0..000 JAN 9 26 1981 0 ,.179 0 . 240 0 . 240 0 . 251 0,,000 JAN 23 27 0 . 235 0 . 246 0..000 7 1981 0 .. 168 0 . 234 FEB 28 0 . 263 0 ..263 0..267 0.. 0 0 0 1981 0 .205 FEB 19 29 1981 0 . 168 0 ..234 0..237 0..246 0 .000 MAR 13 30 0..252 0 .000 MAR 27 1981 0 . 177 0.. 235 0..243 31 1981 0 . 195 0.. 252 0., 252 0.. 261 0 . 0 0 0 APR 16 32 0..257 0 .000 1981 0 . 188 0., 246 0..246 MAY 6 33 1981 0..245 0 .000 MAY 19 0 . 178 0.. 238 0..233 34 0..229 0..246 0 .000 1981 0 . 158 0.. 2 2 5 35 JUNE 2 0 . 177 0 . 2 3 0 0 .232 0 .241 0 .000 JUNE 15 1981 36 0 . 166 0 . 227 0 . 237 0 .248 0 .000 JUNE 30 1981 37 1981 JULY 6 38 o . 149 0 .217 0 .222 0 . 2 3 0 0 .OOO 0 . 148 0 . 2 0 6 0 .215 0 .224 0 .000 JULY 13 1981 39 0 . 126 0 . 193 0 .206 0 .213 0 .000 JULY 21 1981 40 0 . 108 0 . 179 0 . 178 0 . 2 0 0 0 .000 JULY 27 1981 41 1981 0 .090 0 . 164 0 . 177 0 . 188 0 . 0 0 0 AUG 4 42 0 . 158 0 . 168 0 . 177 0 . 0 0 0 1981 0 .078 AUG 10 43 1981 0 .069 0 . 146 0 . 153 0 . 162 0 . 0 0 0 44 AUG 17 1981 0 . 140 0 . 143 0 . 152 0 . 0 0 0 0 .072 AUG 24 45 1981 SEPT 1 46 o . 157 0 . 222 0 . 2 1 5 0 . 226 0 . 0 0 0 SEPT 1 11981 0 . 1 16 0 . 183 0 . 188 0 . 194 0 . 0 0 0 47 0 .214 0 .222 0 .000 SEPT 25 1981 0 . 150 0 . 2 1 3 48 1981 0 . 177 0 . 238 0 . 2 4 3 0 .251 0 .000 49 OCT 9 0 . 184 0 . 244 0 . 242 0 .253 0 .000 OCT 28 1981 50  EACH SET OF 3 NEUTRON PROBE  c) CM 0. 000 0. 000 0. 000 0. 000 0 . 000 0. 000 0. 000 0. 000 0. 000 0 . 000 0 . 000 0. 000 0 . OOO 0. 000 0. 000 0. 000 0. 000 0 . 000 0. 000 0.,000 0..000 0.,000 0., 0 0 0 0,, 0 0 0 0.. 0 0 0 0.. 0 0 0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000  ACCESS  TUBES.  TUBES 4 - 6 : D E P T H 0 CM 3C1 CM 44 CM 15i CM 0 . 000 0. 000 0 . 000 0 . 000 0. 000 0 . 000 0. 000 0 . 000 0 . 208 0. 000 0 . 227 0. 000 0 . 247 0 . 232 0 . OOO 0 . 194 0 . 247 0. 000 0 . 266 0 . 213 0 . 234 0 . 213 0 . 245 0 . 187 0 . 244 0. 000 0 . 244 0 . 176 0 . 232 0. 000 0 . 227 0 . 149 0 . 211 0. 000 0 . 1 18 0 . 203 0 . 186 0 . OOO 0 . 178 0 . 092 0 . 157 0 . 169 0 . OOO 0 . 079 0 . 154 0 . 165 0. 000 0 . 077 O. 157 0. 000 0 . 148 0 . 074 0 . 178 0 . 178 0 . OOO 0 . 104 0 . 176 0 . 182 0. 000 0 . 096 0 . 202 0. 000 0 . 131 O. 205 0 . 225 0. 000 0 . 165 0 . 232 0 . 210 0 . 206 0. 000 0 . 138 0 . 215 0. 000 0 . 219 0 . 156 0 . 209 0 . 205 0 ., 0 0 0 0 . 147 0 . 212 0 .. 0 0 0 0 . 161 0 . 223 0 . 280 0 . 276 0.. 0 0 0 0 . 210 0 . 294 0 . 288 0. OOO 0 . 230 0 . 282 0,. 0 0 0 0 . 287 0 . 223 0 . 280 0 . 273 0,. 0 0 0 0 . 212 0 .,000 0. 000 0.. 0 0 0 0 . 000 0 . 268 0 .000 0 .,274 0 . 212 0 .000 0 ., 197 0 .. 269 0 . 267 0 .,288 0 .000 0.,295 0 .,232 0 .000 0 ., 191 0., 265 0 .,262 0 .000 0.. 203 0.. 273 0 .,257 0., 283 0 . 0 0 0 0.. 223 0 .286 0..271 0 .000 0.. 2 8 0 0..217 0 .000 0,. 195 0 . 260 0,.256 0..253 0 .000 0 . 177 0 .256 0.. 255 0 . 0 0 0 0 . 196 0 . 2 6 0 0.. 258 0 . 0 0 0 0 . 189 0 .261 0 .000 0 . 160 0 . 236 0 .241 0 .000 0 . 148 0 . 228 0 .237 0 .000 0 . 1 19 0 . 202 0 .214 0 . 179 0 . 193 0 . 0 0 0 0 .099 0 . 163 0 . 170 0 .OOO 0 .087 0 . 155 0 . 166 0 . 0 0 0 0 .085 0 . 147 0 . 155 0 . 0 0 0 0 .075 0 . 143 0 . 146 0 . 0 0 0 0 .077 0 . 155 0 . 2 1 9 o . 220 0 . 0 0 0 0 . 1 14 0 . 189 0 . 195 0 . 0 0 0 0 .000 0 . 155 0 . 220 0 .221 0 .000 0 . 208 0 . 268 0 . 2 6 9 0 .272 0 .270 0 .000 0 .217  0 CM 0. 000 0. 000 0. 000 0 . OOO 0. 000 0. 000 0. 000 0. 000 0 . OOO 0 . OOO 0. 000 0 . OOO 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0 . OOO 0., 0 0 0 0., 0 0 0 0., 0 0 0 0., 0 0 0 0.. 0 0 0 0,.OOO 0 .000 0.. 0 0 0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000  0 CM 0. 000 0 . OOO 0 . OOO 0 . OOO 0. 000 0 . OOO 0. 000 0 . OOO 0. 000 0. 000 0. 000 0 . OOO 0. 000 0. 000 0. 000 0. 000 0. 000 o. 000 0. 000 0. 000 0 ., 0 0 0 0 ., 0 0 0 0., 0 0 0 0., 0 0 0 0.. 0 0 0 0.. 0 0 0 0,. 0 0 0 0..OOO 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 .000 0 .000 0 .000 0 .OOO 0 .000  SITE 3 : SOIL WATER CONTENT BY DEPTH: TUBES 1-3 DATA DATE 45 CM 1Ei CM 3Ci CM SET 0. 140 1 JUNE 5 1980 0. 000 0. 150 0. 153 JUNE 14 1980 0. 000 0. 168 2 0. 149 3 JUNE 19 1980 0. 000 0. 158 0. 153 0. 189 0. 171 4 JUNE 26 1980 0. 0 0 0 JULY 4 1980 0. 0 0 0 0. 000 5 0. 157 JULY 10 1980 0. 178 0. 164 6 0. 152 JULY 17 1980 7 0. 174 0. 159 0. 140 JULY 25 1980 0. 147 0. 148 8 0. 133 JULY 31 1980 9 0. 124 0. 132 0. 124 AUG 7 0. 106 0. 123 1980 10 0. 117 0. 117 15 1980 O. 094 1 1 AUG 0. 114 0. 1 14 AUG 20 0. 092 12 1980 0. 1 10 0. 109 AUG 30 1980 0. 088 13 0. 114 0. 108 14 SEPT 4 1980 0. 101 SEPT 16 1980 0. 1 18 0. 1 15 0. 099 15 0. 127 SEPT 23 1980 16 0. 119 0. 132 0. 140 0. 142 0. 147 17 SEPT 3 0 1980 0. 133 OCT 7 1980 0. 133 0. 139 18 OCT 13 1980 0. 140 0. 135 0. 130 19 0. 130 OCT 21 1980 0. 147 0. 135 20 0. 131 OCT 28 1980 0. 150 0. 140 21 0. 170 NOV 4 0. 189 0. 172 22 1980 0. 176 0. 185 23 NOV 18 1980 0..211 0. 177 24 DEC 2 0. 217 0. 202 1980 0. 179 DEC 15 0.,214 0. 191 25 1980 0. 000 JAN 9 1981 0..000 0. OOO 26 JAN 23 1981 27 o.,206 0. 183 0. 172 0. 160 1981 0.. 192 0. 174 28 FEB 7 0. 192 1981 FEB 19 0.,234 0. 204 29 0. 160 MAR 13 1981 0., 187 0. 172 30 0. 170 MAR 27 1981 0. 182 31 0.,204 0. 183 APR 16 1981 0..224 o. 193 32 0. 174 MAY 6 1981 0,.207 0. 183 33 MAY 19 0. 158 1981 34 0.. 183 0. 167 0. 158 JUNE 2 1981 0., 174 0. 166 35 JUNE 15 1981 0,. 189 0. 170 0. 158 36 0. 159 0., 178 0. 165 37 JUNE 3 0 1981 0. 146 JULY 6 1981 0.. 152 0. 152 38 0. 144 JULY 13 1981 0,. 144 o. 144 39 0. 137 JULY 21 1981 0.. 119 0. 134 40 0. 129 JULY 27 1981 41 0 . 108 0. 129 1981 0 .097 0. 120 0. 123 42 AUG 4 1981 0. 1 19 0. 118 43 AUG 10 0 .094 1981 0 .092 0. 1 1 1 0. 108 44 AUG 17 0. 101 AUG 24 1981 0 .096 0. 101 45 1981 0. 132 SEPT 1 0 . 130 0. 136 46 0. 127 SEPT 11 1981 0 . 1 12 0. 126 47 0. 133 SEPT 25 1981 0 . 129 0. 134 48 1981 0. 168 OCT 9 0 . 194 0. 178 49 OCT 28 1981 50 o . 171 0., 181 0. 171  AVG.VOL.FRAC. EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. TUBES 4-6:DEPTH : DEPTH 45 CM 60 CM 15 CM 30 CM 6C1 CM 72: CM 8G; CM 0. 000 0. 0 0 0 0. 000 0. 0 0 0 0. 184 0. 121 0. 146 0. 0 0 0 0. 000 0. 000 0. 0 0 0 0. 183 0. 116 0. 151 0. 0 0 0 0. 000 0. 000 0. 0 0 0 0. 000 0. 163 0. 149 0. 000 0. 000 0. 000 0. 000 0. 173 0. 173 0. 153 0. 000 0. 0 0 0 0. 000 0. 0 0 0 0. 0 0 0 0. 000 0. 000 0. 0 0 0 0. 000 0. 000 0. 000 0. 192 0. 156 0. 157 0. 000 0. 0 0 0 0. 000 0. 0 0 0 0. 187 0. 163 0. 152 0. 0 0 0 0. 000 0. 000 0. 0 0 0 0. 179 0. 154 0. 145 0. 0 0 0 0. 0 0 0 0. 000 0. 0 0 0 0. 171 0. 164 0. 137 0. OOO 0. 000 O. 0 0 0 0. 000 0. 153 0. 160 0. 127 0. 0 0 0 0. 000 0. 0 0 0 0. 0 0 0 0. 150 0. 120 0. 143 0. 0 0 0 0. 000 0. 000 0. 000 0. 145 0. 139 0. 117 0. 000 0. 0 0 0 0. 000 0. 0 0 0 0. 1 13 0. 1 19 0. 129 0.,000 0. 000 0. 0 0 0 0. 000 0. 117 0. 135 0. 113 0. 0 0 0 0. 000 0. OOO 0. OOO 0. 133 0. 1 18 0. 121 0.,000 0.,000 0. 000 0. 000 0. 129 0. 134 0. 127 0.,000 0.,000 0.,000 0. 000 0. 123 0. 144 0. 135 0.,000 0.,000 0..000 0. 000 0. 144 0. 134 0. 132 0.,000 0.,000 0.,000 0. 000 0. 130 0. 142 0. 127 0.,000 0..000 0..000 0..000 0. 127 0. 130 0. 140 0.,000 0.,000 0.,000 0..000 0. 142 0. 131 0. 126 0.,000 0.,000 0. 000 0. OOO 0. 180 0. 196 0. 224 0..000 0,.000 0.,000 0..000 0. 215 0. 211 0. 178 0..000 0 .000 0.,000 0. OOO 0. 195 0. 227 0. 182 0..000 0,.000 0.,000 0,.000 0. 202 0. 233 0. 184 0,,000 0,.000 0,.000 0,.OOO 0. 000 0. 000 0. 000 0,.000 0,.000 0.,000 0,.000 0. 180 0. 198 0. 226 0,.000 0,.000 0.,000 .0,.000 0. 169 0. 184 0. 210 0,.000 0 .000 0.,000 0 .000 0. 275 0. 228 0. 205 0,.000 0,.000 0 ,000 0,.000 0. 210 0. 179 0. 168 0 .000 0 .000 0,,000 0 .000 0. 214 0. 189 0. 175 0 .000 0 .000 0,,000 0,.000 0. 226 0. 198 0. 188 0 . 260 0..233 0 . 228 0 .294 0. 218 0. 212 0. 177 0 .211 0 . 251 0,.221 0,.287 0. 203 0. 176 0. 165 0,.220 0 .213 0 . 266 0 .246 0. 202 0. 178 0. 163 0 .214 0 .221 0 .247 0 .278 0. 193 0. 200 0. 163 0,. 222 0 .205 0 . 274 0 .247 0. 194 0. 203 0. 166 0 . 236 0 . 209 0 .206 0 .253 0. 185 0. 192 0. 157 0 . 198 0 . 230 0 .207 0 .246 0. 183 0. 189 0. 151 0 . 192 0 . 188 0 .213 0 .217 0. 175 • 0. 179 0. 144 0 . 182 0 . 190 0 . 184 0 . 181 0. 172 0. 166 0. 139 0 . 170 0 . 184 0 . 169 0 . 168 0., 164 0. 130 0. 154 0 . 155 0 . 172 0 . 157 0 . 163 0. 146 0., 152 0. 126 0 . 137 0 . 161 0 . 145 0 . 146 0. 120 0. 135 0., 137 0 . 144 0 . 156 0 . 135 0 . 136 0. 126 0. 128 0. 112 0 .201 0 .204 0. 140 0., 138 0. 135 o . 185 0 . 179 0 . 187 0 . 193 0 . 177 0 . 169 0. 129 0., 140 0., 140 0 . 198 0 . 194 0 .218 0 .221 0. 141 o., 156 0.. 157 0 .231 0 .259 0 . 242 0 .221 0., 189 0..220 0.. 225 0 .268 0,.230 0., 187 0. 221 o .245 o .223 0 . 233  71I CM 0. 0 0 0 0. OOO 0. OOO 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. OOO 0. OOO 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. OOO 0.,000 0.,000 0.,000 0.,000 0.,000 0.,000 0.,000 0..000 0.,000 0..000 0.,000 0..000 0..000 0..000 0..OOO 0 .OOO 0,.206 0,. 200 0,. 193 0 . 193 0 . 195 0 . 187 0 . 178 0 . 174 0 . 169 0 . 159 0 . 151 0 . 140 0 . 130 0 .151 0 . 150 0 . 167 0 .215 0 .239  0 CM 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. OOO 0..000 0.,000 0..000 0..000 0..000 0. OOO 0. OOO 0. OOO 0.,000 0..000 0.,000 0..000 0,,000 0 .000 0,.000 0..000 0..000 0,.000 0,.000 0..000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 . OOO  SITE 4 : SOIL WATER CONTENT BY DEPTH: AVG.VOL.FRAC. DATA DATE TUBES 1-3:DEPTH CI CM 15 CM 30i CM 45 CM 54 CM SET 0.000 0.212 0. 192 0.204 0.000 1 JUNE 5 1980 0.000 0.220 0. 199 0.208 0.000 2 JUNE 14 1980 0.000 0. 211 0. 193 0.202 0.000 3 JUNE 19 1980 0. 252 0. 223 0. 196 0.200 0.000 4 JUNE 26 1980 0. 267 0.237 0.204 0.213 0.000 5 JULY 4 1980 0.238 0.215 0. 199 0.209 0.000 6 JULY 10 1980 0.206 0.209 0. 192 0.207 0.000 7 JULY 17 1980 0.212 0. 193 0. 184 0. 189 0.000 8 JULY 25 1980 0. 183 0. 178 0. 174 0. 181 0.000 9 JULY 31 1980 0. 158 0. 165 0. 161 0. 182 0.000 10 AUG 7 1980 0. 134 0. 153 0. 151 0. 159 0.000 1 1 AUG 15 1980 0. 127 0. 148 0. 147 0. 152 0.000 12 AUG :20 1980 0. 1 13 0. 138 0. 139 0. 142 0.000 13 AUG :30 1980 0. 146 0. 142 0. 136 0. 136 0.000 14 SEPT 4 1980 0. 132 0. 140 0. 138 0. 135 0.000 15 SEPT 16 1980 0. 166 0. 157 0. 144 0. 136 0.000 16 SEPT 23 1980 0.205 0. 173 0. 153 0. 137 0.000 17 SEPT 30 1980 0. 176 0. 167 0. 154 0. 141 0.000 18 OCT 7 1980 0. 191 0. 166 0. 153 0. 142 0.000 19 OCT 13 1980 0. 182 0. 165 0. 153 0. 150 0.000 20 OCT 21 1980 0. 197 0. 168 0. 157 0. 150 0.000 21 OCT 28 1980 0. 260 0. 234 0.222 0.232 0.000 22 NOV 4 1980 0.260 0.235 0.219 0.227 0..000 23 NOV 18 1980 0.267 0. 243 0.225 0.241 0.,000 24 DEC 2 1980 0. 266 0. 240 0.226 0.234 0.,000 25 DEC 15 1980 0. 265 0. 244 0.254 0.248 o.. 246 26 JAN 9 1981 0. 259 0. 236 0.227 0.249 0..000 27 JAN 23 1981 0.,245 0. 220 0.213 0. 237 0 .000 28 FEB 7 1981 0.,283 0.,260 0.251 0. 259 0 .000 29 FEB 19 1981 0.. 242 0., 221 0.210 0..223 0 .000 30 MAR 13 1981 0.. 251 0.. 228 0.216 0..228 0 .000 31 MAR 27 1981 0,.268 0,, 240 0.224 0,.238 0 .000 32 APR 16 1981 0,.256 0,.237 0.219 0..234 0 .000 33 MAY 6 1981 0..242 0,. 220 0.206 0 .223 0 .000 34 MAY 19 1981 0 .232 o.. 221 0.204 0 .221 0 .000 35 JUNE 2 1981 0..239 o .218 0.207 0,.213 0 .000 36 JUNE 15 1981 0 . 233 0 . 222 0. 211 0 .219 0 .000 37 JUNE 30 1981 0 .211 0 . 208 0. 196 0 . 203 0 .000 38 JULY 6 1981 0 .200 0 . 195 0., 191 0 . 199 0 .000 39 JULY 13 1981 0 . 177 0 . 184 0., 180 0 . 189 0 .000 40 JULY 21 1981 0 . 155 0 . 169 0.. 167 0 . 173 0 .000 41 JULY 27 1981 1981 0 . 134 0 . 154 0.. 156 0 . 163 0 .000 42 AUG 4 0 . 123 0 . 146 0,.151 0 . 151 0 .000 43 AUG 10 1981 0 . 109 0 . 136 0 . 142 0 . 140 0 .000 44 AUG 17 1981 0 . 1 10 0 . 131 0 . 135 0 . 132 0 .000 45 AUG 24 1981 0 . 177 0 . 155 0 . 145 0 . 137 0 .000 46 SEPT 1 1981 0 . 138 0 . 144 0 . 147 0 . 130 0 .000 47 SEPT 1 1 1981 0 . 182 0 .171 0 . 1G6 0 . 149 0 .000 48 SEPT 25 1981 1981 0 .243 0 .224 0 .220 0 .227 0 .000 49 OCT 9 0 . 248 0 . 228 0 . 220 0 .000 0 .000 50 OCT 28 1981  EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. TUBES 4-6:DEPTH C> CM 15i CM 3C• CM 45i CM 6CI CM 75i CM c> CM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. 222 0.238 0.224 0.223 0.OOO 0.000 0.000 0.214 0.231 0.221 0.220 0.OOO 0.000 0. 249 0.224 0.239 0.225 0.216 0.000 0.000 0.268 0.235 0. 247 0.240 0. 231 0.000 0.000 0. 237 0.224 0. 240 0.234 0.232 0.000 0.000 0.233 0.219 0.235 0.227 0.229 0.000 0.000 0.214 0.207 0.224 0.217 0.217 0.000 0.000 0. 182 0. 195 0.214 0.205 0.204 0.000 0.000 0. 156 0. 176 0. 198 0. 190 0. 189 0.000 0.000 0. 130 0. 158 0. 177 0. 173 0. 172 0.000 0.000 0. 124 0. 152 0. 169 0. 165 0. 164 O.000 0.000 0. 1 12 0. 141 0. 153 0. 149 0. 149 0.000 0.000 0. 137 0. 140 0. 154 0. 147 0. 147 0.000 0.000 0. 125 0. 142 0. 155 0. 149 0. 147 0.000 0.000 0. 160 0. 148 0. 163 0. 155 0. 160 0.000 0.000 0. 195 0. 166 0. 167 0. 161 0. 166 0.000 0.000 0. 170 0. 166 0. 172 0. 164 0. 165 0.000 0.000 0. 181 0. 162 0. 169 0. 165 0. 168 0.,000 0.000 0. 175 0. 165 0. 171 0. 164 0. 165 0.,000 0.,000 0. 193 0. 170 0. 177 0. 164 0. 162 0.,000 0.,000 0. 250 0.229 0.245 0.244 0.244 0.,000 0..000 0. 258 0.235 0.249 0.242 0.243 0..000 0..000 0. 269 0.242 0.256 0.254 0.261 0.OOO 0..000 0.,265 0. 239 0.250 0.252 0.262 0..000 0 .000 0.,000 0.000 0.000 0.000 0.,000 o .OOO 0 .000 0.,253 0. 232 0.,248 0. 243 0. 252 0..000 0,.000 0., 238 0.,226 0..242 0. 238 0.,240 o .000 0 .000 0,.280 0.,261 0.,283 0.,413 0.,485 0 .000 0 .000 0,.237 0.. 227 0.. 240 0.,237 0..240 0 .000 0 .000 0..248 0.. 234 0..245 0,, 242 0..244 0 .000 0 .OOO 0 .266 0..244 0 .253 0,.226 0,.232 0 .000 0 .000 0 .257 0.. 234 0 .248 0,.245 0..248 0 .000 0 .000 0 .244 0 .223 0 . 238 0 .232 0 . 240 0 .000 0 .000 0 .231 0 .219 0 . 234 0 . 231 0 .232 0 .000 0 .000 0 .240 0 . 221 0 .237 0 .233 0 . 240 0 .000 0 .000 0 .235 0 .223 0 .238 0 .235 0 .243 0 .000 0 .000 0 .213 0 .213 0 . 227 0 .227 0 .227 0 .000 0 .000 0 .207 0 .211 0 . 222 0 .217 0 .223 0 .000 0 .000 0 . 184 0 . 195 0 .211 0 .206 0 . 209 0 .000 0 .000 0 . 164 0 . 184 0 .204 0 . 193 0 .201 0 .000 0 .000 0 . 143 0 .171 0 . 187 0 . 179 0 . 182 0 .000 0 .000 0 . 127 0 . 157 0 .171 0 . 165 0 . 170 0 .000 0 .000 0 . 113 0 . 146 0 . 157 0 . 151 0 . 157 0 .000 0 .000 0 . 118 0 . 140 0 . 147 0 . 142 0 . 148 o .000 0 .000 0 . 167 0 . 169 0 . 165 0 . 156 0 . 182 0 .000 0 .000 0 . 137 0 . 161 0 . 169 0 . 160 0 . 173 o .000 0 .000 0 . 173 0 . 188 0 .200 0 . 189 0 .200 o .000 0 .000 0 .229 0 .231 0 .242 0 . 239 0 .242 0 .000 0 .000 0 .236 0 . 236 0 .244 0 . 237 0 .243 0 .000 0 .000  SITE 5 : SOIL WATER CONTENT BY DEPTH: AVG.VOL.FRAC. TUBES, 1-3: DEPTH DATA DATE 15i CM v 30 CM 45i CM 60 CM 70 CM SET 0.000 0. 250 0.263 0.303 0.319 1 JUNE 5 1980 0.000 0.253 0.266 0.301 0.317 2 JUNE 14 1980 0.000 0.244 0.260 0.291 0.311 3 JUNE 19 1980 0. 232 0.254 0.259 0.291 0.305 4 JUNE 26 1980 0.245 0.271 0.270 0.295 0.302 5 JULY 4 1980 JULY 10 1980 0. 218 0.249 0.259 0.296 0.302 6 0.211 0.243 0.260 0.292 0.303 7 JULY 17 1980 0. 191 0.234 0.242 0.275 0.282 8 JULY 25 1980 O. 170 0.220 0.229 0.257 0.264 9 JULY 31 1980 0. 147 0.207 0.204 0.239 0.244 10 AUG 7 1980 0. 129 0. 196 0.204 0.223 0.227 1 1 AUG 15 1980 0. 121 0. 189 0. 196 0.213 0.217 12 AUG 20 1980 0. 106 0. 176 0. 180 0. 191 0. 198 13 AUG 30 1980 0. 125 0. 175 0. 174 0. 188 0. 197 14 SEPT 4 1980 0. 135 0. 184 0. 172 0. 186 0. 191 15 SEPT 16 1980 0. 169 0. 197 0. 179 0. 185 0. 189 16 SEPT 23 1980 0. 206 0.218 0. 186 0. 187 0. 194 17 SEPT 30 1980 0. 184 0.208 0. 194 0. 194 0. 195 18 OCT 7 1980 0. 193 0.203 0. 191 0. 193 0.201 19 OCT 13 1980 0.000 0.000 0.000 0.000 0.000 20 OCT 21 1980 0. 192 0.209 0. 190 0. 192 0. 197 21 OCT 28 1980 0. 245 0.274 0.290 0.324 0.400 22 NOV 4 1980 0. 245 0.279 0.302 0.360 0.442 23 NOV 18 1980 0. 247 0.293 0.320 0.391 0.463 24 DEC 2 1980 0. 245 0.291 0.328 0.401 0.472 25 DEC 15 1980 0. 238 0.275 0.295 0.344 0.362 26 JAN 9 1981 0. 235 0..281 0.309 0.367 0.,429 27 JAN 23 1981 0. 225 0..268 0.293 0.337 0.,361 28 FEB 7 1981 0. 269 0..361 0.470 0.525 0..534 29 FEB 19 1981 0. 216 0..267' 0.291 0. 337 0.,359 30 MAR 13 1981 0..225 0.,270 0.287 0. 333 0.,350 31 MAR 27 1981 0.. 245 0,.283 0.311 0.,372 0,,443 32 APR 16 1981 0.. 240 0..277 0.299 0.,346 0..367 33 MAY 6 1981 0., 226 0..271 0.291 0., 335 0.,355 34 MAY 19 1981 0..210 0 .259 0.279 0..318 0..333 35 JUNE 2 1981 0..217 0 .258 0..275 0,,318 0..332 36 JUNE 15 1981 0..214 0 .261 0.281 0..327 0 .340 37 JUNE 30 1981 0.. 191 0 .247 0.,269 0.,314 0 .326 38 JULY 6 1981 0.. 189 0 .247 0.. 266 0..308 0 .317 39 JULY 13 1981 0 . 166 0 .236 0..248 0 .291 0 .299 40 JULY 21 1981 0 . 148 0 .220 0..232 0 . 268 0 .277 41 JULY 27 1981 1981 o . 136 0 .207 0..218 0 . 250 0 .256 42 AUG 4 o . 125 0 .207 0..213 0 .242 0 .235 43 AUG 10 1981 o . 108 0 . 187 0.. 189 0 .215 0 . 195 44 AUG 17 1981 0 . 106 0 . 178 0 . 177 0 .202 0 . 183 45 AUG 24 1981 0 . 161 0 .207 0 . 197 0 . 205 0 .202 46 SEPT 1 1981 0 . 145 0 . 199 0 . 192 0 .205 0 . 183 47 SEPT 1 1 1981 0 . 172 0 .216 0 .209 0 .218 0 .200 48 SEPT 25 1981 1981 0 .221 0 . 283 0 .321 0 .415 0 .453 49 OCT 9 0 . 231 0 .298 0 .358 0 .460 0 .508 50 OCT 28 1981  EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. TUBES 4-6:DEPTH 15 CM 30 CM 45 CM 60 CM 0 CM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.OOO 0.000 0.000 0.000 o:000 0.000 o.000 0.000 O.OOO 0.000 0.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.OOO 0.000 0.000 0.000 0.000 O.000 0.000 0.000 0.000 0.000 0.000 0.000 0.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 .0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0..000 0.000 0.000 0..000 0.000 0.000 0.000 0.000 0.,000 0.000 0.,000 0.000 0.000 0.,000 0.000 0.,000 0.000 0.000 0.,000 0.000 0.,000 0..000 0..000 0..000 0..000 O.,000 0.,000 0.,000 0,,000 0.,000 0 .000 0.,000 0.,000 0,.000 0.,000 0..OOO 0,.000 0.,000 0,.000 0.,000 0..000 0..000 0,,000 0,.000 0.,000 0..000 0..000 0..000 0 .000 0..000 0 .000 0,.OOO 0..000 0..000 0..000 0 .000 0,.000 0,.000 0 .000 0 .000 0 .000 0..000 0,.000 0 .000 0..000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .259 0..317 0 . 337 0 . 356 0 .000 0 . 236 0 . 302 0 .314 0 .327 0 .000 0 . 225 0 . 297 0 . 304 o .323 0 .000 0 . 229 0 . 294 0 . 303 0 .317 0 .000 0 .233 0 .300 0 .307 0 .318 0 .000 0 .207 0 .288 0 .300 0 .313 0 .000 0 . 196 0 . 287 0 . 294 0 .309 0 .000 0 . 182 0 .275 0 . 286 0 .299 0 .000 0 . 160 0 .268 0 . 282 0 .296 0 .000 0 . 148 0 .255 0 . 270 0 . 284 0 .OOO 0 . 137 0 .249 0 .269 0 .282 0 .000 0 . 1 19 0 .225 0 .246 0 .259 0 .OOO 0 . 1 19 0 . 209 0 . 230 0 .244 0 .000 0 . 189 0 . 274 0 .277 0 .277 0 .000 0 . 159 0 . 245 0 .254 0 .259 0 .000 0 . 193 0 . 265 0 . 272 0 .278 0 .000 0 . 245 0 . 320 0 .374 0 .440 0 .000 0 .264 0 .377 0 .433 0 .442 0 .000  75 CM 0.000 0.OOO 0.000 0.000 0.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.,000 0.,000 0.,000 0.,000 0.,000 0..000 0,.000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .403 0 .367 0 .357 0 .351 0 .357 0 .346 0 .342 0 .337 0 .327 0 .316 0 .314 0 .294 0 . 277 0 . 296 0 . 280 0 . 292 0 .419 0 .407  83 CM 0.000 0.OOO 0.000 0.000 0.OOO 0.000 0.000 0.000 0.000 0.000 0.000 0.OOO 0.000 0.000 0.000 0.000 0.000 0..000 0.,000 0.,000 0.,000 0.,000 0.OOO 0..000 0..OOO 0,.000 0 .000 0 .000 0..000 0 .000 0 .OOO 0 .000 0 .441 0 .405 0 .388 0 .387 0 .399 0 .383 0 .382 0 . 366 0 . 359 0 . 357 0 . 340 0 . 320 0 .301 0 . 335 0 .323 0 .317 0 .425 0 .391  SITE 6 : SOIL WATER CONTENT BY DEPTH: A V G . V O L . F R A C . DATA DATE TUBES 1-3:DEPTH 69 CM 45 CM 60 CM 30 CM 15 CM SET 0 . 403 0 . 332 0 . 373 5 1980 0 . 000 0 . 285 1 JUNE 0 . 397 0 . 368 0 . 280 0 . 317 JUNE 14 1980 0 . 000 2 0 . 372 0 . 355 0 . 263 0 . 301 JUNE 19 1980 0 . 000 3 0 . 389 0 . 380 0 . 330 4 JUNE 26 1980 0 . 317 0 . 289 0 . 397 0 . 406 JULY 4 1980 0 . 293 0 . 344 0 . 322 5 0 . 379 0 . 313 0 . 364 JULY 10 1980 0 . 298 0 . 273 6 0 . 368 0 . 293 0 . 352 7 JULY 17 1980 0 . 290 0 . 258 0 . 345 0 . 327 JULY 25 1980 0 . 275 0 . 273 0 . 243 8 0 . 325 0 . 300 0 . 218 0 . 245 JULY 31 1980 0 . 243 9 0 . 302 0 . 276 7 0 . 193 0 . 218 AUG 0 . 209 10 1980 0 . 279 15 1980 0 . 195 0 . 252 1 1 AUG 0 . 181 0 . 166 0.'262 0 . 235 0 . 157 0 . 182 AUG 2 0 1980 0 . 170 12 0 . 228 0 . 157 O. 203 0 . 139 13 AUG 30 1980 0 . 146 0 . 223 0 . 198 SEPT 4 1980 0 . 146 0 . 159 14 0 . 173 0 . 204 0 . 188 0 . 147 0 . 157 SEPT 16 1980 0 . 160 15 0 . 210 0 . 193 0 . 173 SEPT 23 1980 0 . 222 0 . 176 16 0 . 219 0 . 184 0 . 200 17 SEPT 30 1980 0 . 268 0 . 201 0 . 213 0 . 199 7 0 . 184 OCT 0 . 226 0 . 190 18 1980 0 . 191 0 . 209 0 . 168 0 . 169 OCT 13 1980 0 . 227 19 0 . 207 0 . 163 0 . 189 OCT 21 0 . 166 1980 0 . 210 20 0 . 159 0 . 190 0 . 206 OCT 0 . 162 28 1980 0 . 221 21 0 . 381 0 . 410 NOV 4 0 . 306 0 . 407 0 . 319 22 1980 0 . 393 0 . 421 0 . 314 0 . 392 NOV 18 0 . 325 23 1980 0 . 401 0 . 437 0 . 372 0 . 481 24 DEC 2 1980 0 . 353 0 . 416 0 . 443 0 . 386 0 . 491 DEC 15 1980 0 . 351 25 0 . 414 0 . 443 0. 460 JAN 9 1981 0 . 347 0 . 351 26 0 . 415 0 . 447 JAN 23 1981 0 . 358 0 . 471 27 0 . 342 0 . 436 0 . 406 0 . 439 7 1981 0 . 336 0 . 328 28 FEB 0 . 441 0 . 454 0 . 539 0 . 538 FEB 19 1981 0 . 475 29 0 . 418 0 . 387 0 . 433 1981 0 . 328 MAR 13 0 . 339 30 0 . 421 0 ..429 27 1981 0 . 318 0 . 373 MAR 0 . 333 31 0 . 431 0 . 450 0 ..449 APR 16 1981 0 . 350 0 . 346 32 0 . 430 0 ..449 0 . 410 MAY 6 1981 0 . 341 0 . 336 33 0 . 416 0 ..418 0 . 363 MAY 19 1981 0 . 318 34 0 . 327 0 . 412 0 . 344 0 ..399 0 . 297 JUNE 2 1981 0 . 322 35 0. 401 0 .,387 0 . 293 0 . 339 JUNE 15 1981 0 . 313 36 0.,385 0.,376 0 . 325 0 . 287 37 JUNE 3 0 1981 0 . 301 0.,357 0.,347 0 . 259 0 ..294 JULY 6 1981 0 . 280 38 0..335 0. 346 0 ..286 0 . 249 JULY 13 1981 0 . 269 39 0.,324 0,.313 0 . 255 JULY 21 1981 0 . 236 0 . 225 40 0.,311 0,. 2 9 0 0 .. 194 0. 229 JULY 27 1981 0 . 206 41 AUG 4 1981 0 ., 176 0 ., 165 0.. 198 0.. 267 0.,292 42 0.,269 1981 43 AUG 10 0 .. 161 0 ., 150 0., 177 0..237 0.,237 44 AUG 17 1981 0 ., 149 0 .. 141 0.. 161 0..210 1981 0 .. 148 0 ., 135 0., 156 0 . 195 0,,213 AUG 24 45 SEPT 1 1981 0., 233 0.. 182 0.. 169 0 . 196 0.,213 46 47 SEPT 1 11981 0,, 179 0.. 158 0.. 161 0 . 195 0..210 0.. 298 SEPT 25 1981 0 .. 240 0.. 224 0.. 252 0 .273 48 0 .411 0,, 397 OCT 9 1981 0.. 340 0..451 49 0..316 0..402 0 .419 OCT 28 1981 0.. 321 0,, 341 0..461 50  EACH SET OF 3 NEUTRON PROBE ACCESS T U B E S . TUBES 4 - 6 : D E P T H 55 CM 45 CM 15 CM 30 CM 0 CM 0 . OOO 0 . 000 0 . 000 0. 000 0 . 000 0. 000 0. 000 0. 000 0 . 000 0. 000 0. 000 0 . 000 0 . 276 0 . 297 0 . 327 0. 000 0 . 341 0 . 301 0 . 320 0 . 364 0. 000 0 . 350 0 . 319 0 . 376 0 . 444 0. 000 0 . 331 0 . 284 0 . 301 0 . 339 0. 000 0 . 317 0 . 272 0 . 288 0 . 323 0. 000 0 . 304 0 . 259 0 . 267 0 . 306 0. 000 0 . 290 0 . 236 0 . 249 0 . 285 0. 000 0 . 263 0 . 216 0 . 230 0 . 266 0. 000 0 . 232 0 . 195 0 . 210 0 . 247 0. 0 0 0 0 . 222 0 . 184 0 . 198 0 . 235 0. 000 0 . 201 0 . 162 0 . 173 0 . 213 0. 000 0 . 208 0 . 157 0 . 171 0 . 205 0. 0 0 0 0 . 224 0 . 164 0 . 165 0 . 199 0. 0 0 0 0 . 265 0 . 180 0 . 165 0 . 197 0.,000 0 . 293 0 . 199 0 . 171 0 . 198 0.,000 0 . 256 0 . 184 0 . 169 0 . 188 0. 0 0 0 0 . 269 0 . 186 0 . 169 0 . 195 0.,000 0 . 259 0 . 192 0 . 175 0 . 195 0..000 0 . 267 0 .. 186 0 . 171 0 . 201 0., 0 0 0 0 . 379 0 . 440 0 . 511 0 . 476 0,, 0 0 0 0 . 369 0 ..394 0 . 508 0 . 484 0,, 0 0 0 0 . 444 0 ..502 0 . 532 0 . 495 0,, 0 0 0 0 . 453 0..507 0 . 533 0 . 498 0,, 0 0 0 0. 000 0., 0 0 0 0. 000 0 .,000 0,, 0 0 0 0 . 416 0.,478 0 . 534 0 .,500 0,. 0 0 0 0 . 359 0 .,338 0 . 424 0 .,471 0.. 0 0 0 0 . 504 0.,517 0 . 543 0 ..506 0.. 0 0 0 0 . 358 0.,317 0 . 351 0 .,408 0.. 0 0 0 0 . 348 0..314 0 . 348 0 ..402 0.. 0 0 0 0 . 406 0.,459 0 . 538 0 .,504 0,. 0 0 0 0 . 371 0., 351 0 . 456 0 .,486 0 .000 0 . 350 0.,316 0 . 352 0.,405 0.. 0 0 0 0 . 344 0.,305 0 . 329 0 ., 375 0 .000 0 . 334 0.. 298 0 . 325 0 ., 364 0 .000 0 .,336 0., 297 0 .,318 0 ,, 358 0 .000 0 . ,317 0..277 0 .,296 0., 329 0 .000 0 .,311 0.. 2 7 0 0 ..292 0,, 325 0 .000 0 ..291 0,.253 0 ,,269 0,.306 0 .000 0 ., 275 0,.237 0 .,257 0,.284 0 .000 0 ., 242 0 .215 0 .,238 0..268 0 .000 0 ., 220 0 . 195 0..219 0..261 0 .000 0.. 200 0.. 170 0., 203 0,. 2 4 0 0 .000 0,, 187 0 . 158 0.. 190 0 . 222 0 .000 0..281 0 . 201 0., 196 0 . 222 0 .000 0..233 0 . 187 0,. 195 0 .218 0 .000 0.. 297 0 .266 0 .291 0 .315 0 .000 0..416 0 .475 0..515 0..478 0 .000 0..422 0 .478 0..508 0 .483  0 CM 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0 .. 0 0 0 0 ., 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0 . OOO 0 .. 0 0 0 0.. 0 0 0 0.. 0 0 0 0 ,. 0 0 0 0.. 0 0 0 0..OOO 0.. 0 0 0 0.. 0 0 0 0,. 0 0 0 0.. 0 0 0 0.. 0 0 0 0,.OOO 0.. 0 0 0 0 .000 0 .000 0.. 0 0 0 0 .000 0 .000 0.. 0 0 0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 .OOO 0 .OOO o .000 0 .000  0 CM 0 . OOO 0. 000 0. 000 0. 000 0 . OOO 0. 000 0. 000 0. 000 0 .. 0 0 0 0. 000 0 ., 0 0 0 0 .. 0 0 0 0 . OOO 0 .. 0 0 0 0 ., 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0 ., 0 0 0 0 ., 0 0 0 0., 0 0 0 0 ., 0 0 0 0 ,, 0 0 0 0 .. 0 0 0 0..OOO 0..OOO 0.. 0 0 0 0,. 0 0 0 0,. 0 0 0 0,. 0 0 0 0,. 0 0 0 0 .000 0..OOO 0 .000 0 .000 0.. 0 0 0 0 .000 0~. 0 0 0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 .000 0 .000 0 .000 0. OOO  - 207 -  APPENDIX 7 Volumetric water contents of the L.F.H. layer at sites 0 to 6 determined from samples taken at the same time as the neutron probe measurements. At each site 3 replicate samples 10 cm x 10 cm x measured depth to the LFH/mineral soil interface were taken. The volumetric water contents were determined by drying to 105°C. Because of large temporal and spatial variability of LFH water content the data shown are after averaging and smoothing by developing correlations with mineral soil water content at 15 cm depth measured by neutron probe. Zeros indicate that no access tubes were installed or data not obtained.  JUNE  5 1980  INDEX NO:  1  DATE:  INDEX NO:  2  DATE:  JUNE  14  1980  INDEX NO:  3  DATE:  JUNE  19  1980  INDEX NO:  4  DATE:  JUNE  26  1980  INDEX NO:  5  DATE:  JULY  4 1980  INDEX NO:  6  DATE:  JULY  10 1980  INDEX NO:  7  DATE:  JULY  17  1980  INDEX NO:  8  DATE:  JULY  25  1980  INDEX NO:  9  DATE:  JULY  31 1980  INDEX NO:  10  OATE:  AUG  7  INDEX NO:  11  DATE:  AUG  15 1980  INDEX NO:  12  DATE:  AUG 20  1980  INDEX NO:  13  DATE:  AUG 30  1980  INDEX NO:  14  DATE:  SEPT  4 1980  INDEX NO:  15  DATE:  SEPT  16 1980  INDEX NO:  16  DATE:  SEPT 23  1980  INDEX NO:  17  DATE:  SEPT  30  1980  INDEX NO:  18  DATE:  OCT  7  1980  INDEX NO:  19  DATE:  OCT  13  1980  IN0EX NO:  20  DATE : OCT 21  INDEX NO:  21  OATE:  OCT  28  1980  INDEX NO:  22  DATE-  NOV  4  1980  INDEX NO:  23  DATE  NOV  18  1980  INDEX NO:  24  DATE  DEC  2  1980  INDEX NO:  25  DATE  DEC  15  1980  1980  1980  TUBES 1-3: TUBES 4 - 6 : TUBES 1-3: TUBES 4 - 6 : TUBES 1-3: TUBES 4 - 6 : TUBES 1-3: TUBES 4 - 6 : TUBES 1-3: TUBES 4 - 6 : TUBES 1-3: TUBES 4 - 6 : TUBES 1-3: TUBES 4 - 6 : TUBES 1-3: TUBES 4 - 6 : TUBES 1-3: TUBES 4 - 6 : TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6 TUBES 1-3 TUBES 4-6  LFH MOISTURE CONTENT SITE 1 «ITE 2 SITE 0 038 0.39 0.37 OOO 0.00 0.00 0.30 0.37 0.31 0.31 O.OO 0.00 0 . 28 0.21 0.35 0.28 0.00 0.35 0.31 0.26 0.31 0.00 0.38 0.33 0.33 0.31 0.37 0.36 0.00 0.44 030 0.24 0.30 0.33 0.00 0.37 0.29 0.21 0.29 0.32 0.00 0.33 0.24 0 . 16 0.26 0.28 0.00 026 0 . 17 0.11 0.20 0.21 0.00 0 . 17 0.08 0 . 12 0 . 11 0.00 0 . 10 0 . 15 0.07 0.00 0.07 0.09 0.00 0.06 0.06 0.00 0.06 0.08 0.00 0.06 0.05 0.05 0.03 0.06 0.00 0.05 0 . 10 0 . 13 0 . 11 0 . 11 0.00 0 . 13 0 . 11 0 . 10 0 . 11 0 . 13 0.00 0 . 11 0 . 16 0.20 0 . 19 0.20 0.00 0.21 0.25 0.23 0.29 0.24 0.00 030 0.16 0.21 0.20 0.23 0.00 0.23 0.24 0.20 0.28 0.25 0.00 0.28 0.00 0.00 0.24 0.00 0.00 0.25 0.24 0 . 17 0.26 0.27 0.00 0.29 O.OO 0.30 0.36 0.00 0.00 0.43 0.34 0.32 0.40 0 36 0.00 0.49 0 . 37 0.33 0.39 0.39 0.00 0.47 0.36 0.31 0.35 0 . 37 0.00 0.44  SITE 3 0.00 0.00 0.00 0.00 0.28 0.00 0.30 O.OO 0.00 0.00 0.27 0.00 0.26 0.00 0 . 18 0.00 0 . 12 0.00 0.07 0.00 0.04 0.00 0.03 0.00 0.02 0.00 0.05 0.00 0.05 0.00 0 . 10 O.OO 0 . 17 0.00 0 . 14 0.00 0 . 16 0.00 0 . 18 0.00 0 . 19 0.00 0.30 0.00 0.36 O.OO 0.38 0.00 0.37 0.00  SITE 4 0.31 O.OO 0.29 0.29 0.26 0.26 0.31 0.31 0.33 0.33 0.29 0.29 0.25 0.29 0.26 0.26 0.22 0.22 0 . 19 0 . 18 0 . 15 0 . 15 0 . 15 0 . 14 0 . 13 0 . 13 0 . 17 0 . 16 0 . 15 0 . 14 0.20 0 . 19 0.25 0.24 0.21 0.20 0.23 0.22 0.22 0.21 0.24 0.23 0.32 0.31 0.32 0.32 0.33 0.33 0.33 0.33  SITE 5 0.52 0.00 0.51 0.00 0.29 0.00 0.35 0.00 0.37 O.OO 0.32 0.00 0.31 O.OO 0.27 0.00 0.24 0.00 0 . 19 0.00 0 . 16 0.00 0 . 15 0.00 0 . 12 O.OO 0 . 15 0.00 0 . 17 0.00 0.23 0.00 0.30 O.OO 0.26 O.OO 0.28 0.00 0.00 O.OO 0.27 0.00 0.37 0.00 0.37 O.OO 0.37 0.00 0.37 O.OO  SITE 6 0.45 0.00 0.40 0.00 0.35 0.35 0.35 0.37 0.35 0.38 0.32 0.36 0.31 0.35 0.29 0.33 0.26 0.31 0.22 0.28 0 . 19 0.25 0 . 17 0.23 0 . 15 0.21 0 . 18 0.22 0 . 16 0.24 0.24 0.29 0.29 0.32 0.24 0.27 0.24 0.29 0.22 0.28 0.23 0.29 0.35 0.42 0 . 36 0.41 039 0.49 0.39 0.50  INDEX NO: 26  DATE : JAN  9  1981  INOEX NO: 27  DATE : JAN 23  1981  INDEX NO: 28  DATE : FEB  7  1981  INDEX NO: 29  DATE : FEB 19  1981  INDEX "NO: 30  DATE : MAR 13  1981  INOEX NO : 31  DATE : MAR  INDEX NO: 32  DATE : APR 16  1981  INOEX NO: 33  DATE: MAY  6  1981  INDEX NO: 34  DATE : MAY 19  1981  35  OATE : JUNE 2  1961  INDEX NO  27 1981  INDEX NO: 36  DATE : JUNE 15 1981  INDEX NO: 37  OATE : JUNE 30 1981  INDEX NO: 38  DATE : JULY 6  INDEX NO: 39  DATE : JULY 13 1981  INDEX NO: 40  OATE : JULY 21 1981  INDEX NO: 4 1  DATE : JULY 27 1981  INOEX NO: 42  DATE : AUG 4  1981  INOEX NO: 43  DATE: AUG 10  1981  INDEX NO: 44  DATE: AUG 17  1981  INDEX NO: 45  DATE: AUG 24  1981  INDEX NO: 46  DATE : SEPT 1  1981  INOEX NO: 47  DATE : SEPT 11 1981  INDEX NO: 48  DATE  INDEX NO : 49  DATE : OCT 9  INDEX NO  50  1981  SEPT 25 1981 1981  DATE : OCT 28 1981  TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6: TUBES 1-3: TUBES 4-6:  LFH MOISTURE CONTENT SITE 2 SITE 1 SITE 0 0.36 0.31 0.35 O.OO 0.00 0.00 0.30 0. 34 0.35 O.OO 0.43 0.36 0.28 0.31 0.32 0.00 039 0.34 0.33 0.42 0. 37 0.00 0.49 0.38 0.27 0.31 0.31 0.34 0.00 0.38 0.34 0.30 0.33 0.41 0.00 0.35 0.39 0.33 0.36 0.47 O.OO 0.39 0.32 0.37 0.36 0.45 0.40 0.37 0.28 0.34 0.32 0.37 0.39 0.34 0.26 0.28 0.32 0.37 0.34 0.32 0.27 0.34 0.33 0.36 0.39 0.34 0.26 0.31 0.32 0.37 0.37 0.34 0.21 0.26 0.26 0.32 0.29 0.27 0.24 0. 18 0.26 0.29 0.26 0. 25 0.12 0. 19 0. 16 0.22 0. 18 0. 18 0. 14 009 0. 1 1 0. 18 0. 12 0. 13 0.06 0.09 0.07 0. 14 0.08 0.08 0.06 0.06 0.06 0.08 0.07 0. 12 0.04 0.03 0.05 0.05 0. 11 0.06 0.05 0.04 0.05 0. 11 0.06 0.06 0.27 0. 16 0.28 0.27 0.27 0.24 0. 17 0. 12 0.21 0. 16 021 0.21 0.21 0.26 028 0.29 0.27 0.30 0.28 0.34 0.36 0.36 0.42 0.35 0. 36 0.30 0.37 0.38 0. 45 0.38  SITE 3 O.OO 0.00 0. 35 O.OO 0.31 0.00 0.43 0.00 0.30 0.00 0.34 0.00 0.40 0.00 0.35 0.60 0.28 0.58 0.26 0.52 0.30 0.55 0.27 C.54 0.20 0.48 0. 18 0.46 0. 10 0.38 0.07 0.28 0.04 0.25 0.03 0.21 0.03 0. 16 0.04 0. 17 0. 14 0.34 0.08 0.30 0. 13 0.39 0.32 0.50 0.25 0.52  SITE 4 0.33 0.00 0.32 0.31 0.30 0.29 0.35 0.35 0.30 0.29 0.31 0.30 0.33 0.33 0.32 0.32 0.30 0.30 0.28 0.28 0.29 0.29 0.29 0.29 0.26 0.26 0.24 0.25 0.21 0.22 0. 18 0. 19 O. 16 0.17 0. 14 0. 15 0. 12 0. 13 0. 12 0. 13 0.21 0.20 0. 16 0. 16 022 0.21 0.30 0.28 0.30 0.29  SITE 5 0.36 O.OO 0.35 0.00 0.33 000 0.41 O.OO 0.32 0.00 0.33 0.00 0.37 0.00 0.36 0.40 0.34 0.35 0.31 0.33 0.32 0.34 0.32 0.35 0.27 0.30 0.27 0.28 0.23 0.26 0.20 0.22 0. 17 0.20 0. 16 0. 18 0. 12 0. 14 0. 12 0. 14 022 0.27 0. 19 0.22 0.24 0.28 0.33 0.37 0.35 0.41  SITE 6 0.38 O.OO 0.38 0.46 0.37 0.40 0.53 0.56 0.37 0.39 0.36 0.38 0.38 0.45 0.37 0.41 0.36 0.38 0.35 0.38 0.34 0.37 0.33 0.37 0.30 0.35 0.29 0.34 0.25 0.32 0.22 0.30 0. 18 0.26 0. 16 0.23 0. 15 0.21 0. 15 0. 19 0.25 0.30 0. 18 0.25 0.26 0.32 0.34 0.46 0.35 0. 47  - 210 -  APPENDIX 8  Plot of total s o i l water potential against depth at sites 0 to 6 at specifed dates through the growing season of 1981, determined by tensiometers installed at depths specified.  DEPTH (METERS) 0.6  0.4  0.2  T—l—i—r  m—i r AUG  0.0  5  *JULY  28  J  SEPT 2 'JULY 13 -*JULY 7  0 o  o  I  "*JUNE 3 0  &-  I  I  I  I  I  I L  J  I I  - 212 -  Figure 2  Site 1  DEPTH (METERS) .6  0.4  0.2  i—i—i—rn—i  i i  0.0  JULY 28 JULY 22  SEPT 10  i i  OCT 10  SEPT 2 JUNE 2  I  I  I  I  J  DEPTH (METERS) 0.8  0.6  0.4  0.2  - 215 -  O  i  6  CN  CO  i  m  *  r  —l  d  A  2 « X  44  o o  4» 4*  o  + #  I  00  d  -100  •80  -60  -40  TOTAL POTENTIAL Figure  5  Site  4  I  I  I  -20  (kPa)  L  -4  - 216 -  Figure  6  Site 5  DEPTH (METERS)  0.6  0.4  0.2  0.0  * SEPT 25 _  * JUN 15  o  I  i  i  I I I I I I I  I  I  I—L  - 218 -  APPENDIX 9  Dates and times when neutron probe soil water measurements were taken at each site and used in water balance calculations. Zeros indicate that neutron probe data was not obtained.  DATA  SET  NO:  1  DATA  SET  NO:  2  DATA SET  NO :  3  DATA SET  NO :  4  DATA  SET  NO:  5  DATA  SET  NO:  6  DATA  SET  NO:  7  DATA  SET  NO:  8  DATA  SET  NO :  9  DATA  SET  NO:  10  DATA  SET  NO :  1  DATA  SET  NO:  12  DATA  SET  NO:  13  DATA  SET  NO:  14  DATA  SET  NO :  15  DATA  SET  NO :  16  DATA SET  NO :  17  DATA SET  NO:  18  DATA  SET  NO:  19  DATA  SET  NO : 20  DATA SET  NO:  21  DATA  SET  NO : 22  DATA  SET  NO:  DATA  SET  NO : 24  DATA  SET  NO : 25  23  DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE 1 DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE  DATA START TIMES AND DATA PERIODS SITE 1 SITE 2 SITE 0 START TIME START TIME START TIME 0.46 0 . 58 9 13 9 13 8 88 0.50 6/ 5 6/ 5 6/ 5 9.58 9.63 9.46 4 88 5 00 6 00 6/14 6/14 6/14 14.58 15.46 14.50 7 00 7 00 7 04 6/19 6/19 6/20 22.50 21 .58 21 . 50 7 88 7 83 7 00 6/27 6/26 6/26 29.42 29.50 29.38 6 00 6 00 6 00 7/ 4 7/ 4 7/ 4 3 5 . 38 35.50 7 17 35.42 7 17 7 96 7/10 7/10 7/10 42.54 42.58 43.46 7 83 7 83 6 00 7/17 7/17 7/18 5 0 . 38 50.42 49.46 7 00 7 00 7 17 7/25 7/25 7/24 57 .42 56.63 57 . 38 7 04 7 08 7 71 7/31 8/ 1 8/ 1 64 . 42 0.00 64 . 33 7 21 0 00 7 13 8/ 8 8/ 8 8/ 1 0.00 71 .46 71 . 6 3 5 00 0 00 5 00 8/ 1 8/15 8/15 64 . 5 0 76.63 76.46 9 88 22 08 10 21 8/ 8 8/20 8/20 86.58 86.67 86.50 5 08 4 96 4 83 8/30 8/30 8/30 91 . 5 0 12 17 91 . 5 8 1 192 91 . 54 12 00 9/ 4 9/ 4 9/ 4 103.50 7 13 103.54 7 13 1 0 3 . 6 7 6 79 9/16 9/16 9/16 1 1 0 . 6 3 6 75 1 1 0 . 6 7 6 75 1 1 0 . 4 6 7 04 9/23 9/23 9/23 117.38 7 25 1 1 7 . 4 2 7 25 1 1 7 . 5 0 6 96 9/30 9/30 9/30 124.63 6 79 1 2 4 . 6 7 6 79 1 2 4 . 4 6 6 88 10/ 7 10/ 7 10/ 7 0.00 0.00 0 00 0 00 1 3 1 . 3 3 7 29 10/14 10/ 7 10/ 7 131.42 14 08 1 3 1 . 4 6 14 08 1 3 8 . 6 3 6 96 10/14 10/14 10/21 0.00 0 00 1 4 5 . 5 4 7 04 145.58 6 79 10/14 10/28 10/28 145.50 21 00 1 5 2 . 5 8 13 96 152.38 14 25 10/28 1 1/ 4 1 1/ 4 166.50 14 08 1 6 6 . 5 4 14 .08 1 6 6 . 6 3 13 .83 11/18 11/18 1 1/18 180.58 14 92 1 8 0 . 6 3 14 .79 1 8 0 . 4 6 14 .88 12/ 2 12/ 2 12/ 2 195.50 24 . 0 0 1 9 5 . 4 2 24 . 17 1 9 5 . 3 3 24 .04 12/17 12/17 12/17  MESACHIE 1980-1981 SITE SITE 3 START START TIME 7 96 0.63 1 .46 6/ 5 6/ 6 9.42 6 00 9.38 6/14 6/14 15.42 7 00 15.38 6/20 6/20 0 00 22.38 0.00 6/27 6/20 22.42 13 21 29.58 7/ 4 6/27 35 .63 7 79 35.58 7/10 7/10 43.42 6 00 43.38 7/18 7/18 49.42 7 17 49.38 7/24 7/24 56.58 7 00 56.50 7/31 7/31 63.58 7 83 63.54 8/ 7 8/ 7 71 .42 5 00 71 . 3 8 8/15 8/15 76.42 76 . 38 10 0 0 8/20 8/20 86.42 5 21 86.38 8/30 8/30 91 . 6 3 1 1 79 92 . 38 9/ 5 9/ 4 103.42 7 00 103.38 9/16 9/16 110.42 7 21 1 1 0 . 3 8 9/23 9/23 117.63 6 79 1 1 7 . 5 8 9/30 9/30 124.42 6 13 1 2 4 . 3 8 10/ 7 10/ 7 130.54 7 79 1 3 0 . 5 0 10/13 10/13 138.33 7 08 1 3 8 . 4 2 10/21 10/21 145.42 7 . 13 1 4 5 . 3 8 10/28 10/28 152.54 13 . 8 8 1 5 2 . 4 6 1 1/ 4 11/ 4 166.42 14 . 0 0 1 6 6 . 3 8 11/18 11/18 180.42 14 . 13 1 8 0 . 3 8 12/ 2 12/ 2 194.54 24 . 7 9 1 9 4 . 5 0 12/16 12/16  4  TIME 8 75 6 00 7 00 7 21 6 00 7 79 6 00 7 13 7 04 7 83 5 00  10 0 0 6 00 1 10 0 7 00 7 21 6 79 6  13  7 92 6 96 7 .08 13 .92 14 . 0 0 14 . 13 24 .04  SITE START 1 . 42 6/ 6 9.50 6/14 15.54 6/20 22 . 54 6/27 29.46 7/ 4 35.46 7/10 43.50 7/18 49.50 7/24 57 . 4 6 8/ 1 64 . 54 8/ 8 71 . 5 4 8/15 76.54 8/20 86.63 8/30 92.42 9/ 5 103.63 9/16 110.54 9/23 117.46 9/30 124.54 10/ 7 0.00 10/ 7 130.63 10/13 145.63 10/28 152.33 11/4 166.58 1 1/18 180.54 12/ 2 195.38 12/17  5 TIME 8 08 6 04 7 00 6 92 6 00 8 04 6 00 7 96 7 08 7 00 5 00 10 08 5 79 1 121 6 92 6 92 7 08 6 08 0 00 15 00 6 71 14 25 13 96 14 83 24 04  SITE 1 .33 6/ 6 9.33 6/14 15.33 6/20 22 . 33 6/27 29 . 6 3 7/ 4 35.67 7/10 43 . 33 7/18 49 . 33 7/24 56 . 4 6 7/31 63 . 50 8/ 7 71 . 3 3 8/15 76.33 8/20 86 . 33 8/30 92.46 9/ 5 103.33 9/16 110.33 9/23 117.54 9/30 124.33 10/ 7 130.46 10/13 138.54 10/21 145.33 10/28 152.42 11/4 166.33 11/18 180.33 12/ 2 194.46 12/16  6 8 00 6 00 7 00 7 29 6 04 7 67 6 00 7  13  7 04 7 83 5 00 10 0 0 6  13  10 88 7 00 7 21 6 79 6  13  8 08 6 79 7 .08 13 .92 14 . 0 0 14  13  24 04  26  DATA  SET NO:  DATA  SET NO : 27  DATA  SET NO : 28  DATA  SET NO:  29  DATA SET NO : 30 DATA  SET NO:  31  DATA  SET NO:  32  DATA SET NO : 33 DATA SET NO:  34  DATA SET NO:  35  DATA SET NO : 36 DATA  SET NO:  37  DATA  SET NO:  38  DATA  SET NO:  39  DATA  SET NO:  40  DATA  SET NO : 41  DATA  SET NO:  42  DATA SET NO : 43 SET NO:  44  DATA SET NO:  45  DATA SET NO:  46  DATA  SET NO:  47  DATA  SET NO:  48  DATA  SET NO : 49  DATA  DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DA.TE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE DAYS DATE  DATA START TIMES AND DATA PERIODS SITE 1 SITE 2 SITE 0 TIME START TIME START TIME START 13.96 219.50 14 .00 2 1 9 . 5 8 13 . 83 2 1 9 . 3 8 1/10 1/10 1/10 14.00 233.50 14 . 0 0 2 3 3 . 4 2 14 . 00 2 3 3 . 3 3 1/24 1/24 1/24 12.12 247.50 12 . 96 2 4 7 . 4 2 12 . 96 2 4 7 . 3 3 2/ 7 2/ 7 2/ 7 22.88 260.46 2 2 . 00 2 6 0 . 3 8 22 . 13 2 5 9 . 4 6 2/20 2/19 2/20 14 . 0 0 282.46 14 . 04 2 8 2 . 5 0 13 . 92 2 8 2 . 3 3 3/14 3/14 3/14 19. 17 296.50 18 ..04 2 9 6 . 4 2 18 . 17 2 9 6 . 3 3 3/28 3/28 3/28 20.83 314.54 314.58 21 .96 . 21 .83 3 1 5 . 5 0 4/16 4/15 4/15 13.21 336.50 12 ..92 3 3 6 . 4 2 13 . 04 3 3 6 . 3 3 5/ 7 5/ 7 5/ 7 13.13 349.42 14,.00 3 4 9 . 4 6 14 . 0 0 3 4 9 . 5 4 5/20 5/20 5/20 13.88 363.42 12 .96 3 6 3 . 4 6 12..96 3 6 2 . 6 7 6/ 3 6/ 3 6/ 2 13.92 376.38 13 . 17 3 7 6 . 4 2 13 17 3 7 6 . 5 4 6/16 6/16 6/16 6 .96 389.54 8 .88 3 8 9 . 5 8 8 .. 75 3 9 0 . 4 6 6/29 6/29 6/30 6.92 398.42 6 . 13 3 9 8 . 3 3 6 . 13 3 9 7 . 4 2 7/ 8 7/ 8 7/ 7 8.13 404.54 9 .00 404.46 8 .88 4 0 4 . 3 3 7/14 7/14 7/14 5.88 413.54 4 .83 4 1 3 . 3 3 5 . 13 4 1 2 . 4 6 7/22 7/23 7/23 8.00 418.38 8 .04 418 .46 8 .00 418.33 7/28 7/28 7/28 5.25 426.42 5 .08 4 2 6 . 4 6 5 .08 4 2 6 . 3 3 8/ 5 8/ 5 8/ 5 7.92 431.50 7 .88 431 .54 7 .88 431 .58 8/10 8/10 8/10 6.21 439.38 6 .29 4 3 9 . 4 2 6 .21 4 3 9 . 5 0 8/18 8/18 8/18 7 .88 445.67 8 .71 4 4 5 . 6 3 8 . 79 4 4 5 . 7 1 8/24 8/24 8/24 454.38 10.04 10 .04 454 .42 9 .92 4 5 3 . 5 8 9/ 2 9/ 2 9/ 1 13.71 464.42 13 .04 4 6 4 . 3 3 13 .04 4 6 3 . 6 3 9/12 9/11 9/12 14 . 25 477.46 14 .92 4 7 7 . 3 8 15 .04 4 7 7 . 3 3 9/25 9/25 9/25 19.04 492.38 18 . 17 4 9 2 . 4 2 18 .04 4 9 1 . 5 8 10/10 10/ 10 10/ 9  1980-1981 MESACHIE SITE 4 SITE 3 TIME TIME START START 13.92 13 . 17 2 1 8 . 5 4 219.33 1/10 1/ 9 14 .04 232.50 13.96 232.46 1/23 1/23 12.88 246.46 12.96 2 4 6 . 5 0 2/6 2/ 6 22 . 13 259.42 22.13 259.38 2/19 2/19 14 .04 281.54 13.96 2 8 1 . 5 0 3/13 3/13 295.50 19.92 2 9 5 . 5 4 " 19.83 3/27 3/27 2 0 . 13 315.42 20.04 315.38 4/16 4/16 13.83 335.46 13.17 3 3 5 . 5 0 5/ 6 5/ 6 13. 17 13.96 349.33 348 .63 5/20 5/19 13 . 0 0 13.00 362.50 362.58 6/ 2 6/ 2 14.88 14.83 3 7 5 . 5 0 375.58 6/15 6/15 6.08 6.08 390.38 390.42 6/30 6/30 7 .04 7.04 396.46 396.50 7/ 6 7/ 6 8.79 403.50 8.29 403.54 7/13 7/13 . 1 7 411.79 5.79 412.33 7/21 7/22 8.00 417.58 7.96 417.50 7/27 7/27 6.13 425.54 6.13 425.50 8/ 4 8/ 4 6.96 431.67 6.83 431.63 8/10 8/10 7.21 4 3 8 . 5 0 7.04 438.58 8/17 8/17 7.54 445.54 7.83 445.79 8/24 8/24 10. 13 10.17 453.38 453.33 9/ 1 9/ 1 14.96 15.04 4 6 3 . 5 0 463.50 9/11 9/11 13 . 0 0 12.88 478.46 478.54 9/26 9/26 491.42 2 0 . 17 491 . 4 6 2 0 . OO 10/ 9 10/ 9 :  c  SITE START 219.42 1/10 233.38 1/24 247.38 2/ 7 259.54 2/19 282.38 3/14 296.38 3/28 315.54 4/16 336.38 5/ 7 349.50 5/20 363.33 6/ 3 376.46 6/16 389.63 6/29 397.50 7/ 7 404.42 7/14 412.54 7/22 418.50 7/28 426.50 8/ 5 431.54 8/10 439.46 8/18 445.83 8/24 454.46 9/ 2 463.67 9/11 477.33 9/25 491.63 10/ 9  5 SITE 6 TIME 13. 96 2 1 8 . 5 0 14 . 08 1/ 9 14 . 00 2 3 2 . 5 8 14. 0 0 1/23 12. 17 2 4 6 . 5 8 12 . 75 2/ 6 2 2 . 83 2 5 9 . 3 3 22 . 25 2/19 14 . OO 2 8 1 . 5 8 14 . 0 0 3/13 19.. 17 2 9 5 . 5 8 19 . 75 3/27 2 0 .,83 3 1 5 . 3 3 2 0 . ,25 4/16 13., 13 3 3 5 . 5 8 14 ., 0 0 5/ 6 13.,83 3 4 9 . 5 8 13..04 5/20 13.. 13 3 6 2 . 6 3 13,, 0 0 6/ 2 13 . 17 3 7 5 . 6 3 14 ,.71 6/15 7 .88 3 9 0 . 3 3 7 .00 6/30 6 .92 397 .(33 6 . 13 7/ 7 8 . 13 4 0 3 . 4 6 8 .29 7/13 5 .96 41 1 . 7 5 5 .92 7/21 8 .00 417.67 7 .96 7/27 5 .04 4 2 5 . 6 3 6 . 17 8/ 4 7 .92 4 3 1 . 7 9 6 .67 8/10 6 .38 4 3 8 . 4 6 7 .04 8/17 8 .63 4 4 5 . 5 0 7 .96 8/24 9 .21 4 5 3 . 4 6 10 .08 9/ 1 13 .67 4 6 3 . 5 4 14 . 8 8 9/1 1 14 . 29 4 7 8 . 4 2 13 . 13 9/26 18 .96 4 9 1 . 5 4 19 . 79 10/ 9  r\» ro O  - 221 -  APPENDIX 10 Daily net radiation (daytime basis) and calculated daily equilibrium evapotranspiration for each day from Dune 5, 1980 to October 29, 1981. Differences between sites for a given day result from variations in slope and aspect between sites.  DAY 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  MONTH/ DAY 6/ 5 6/ 6 6/ 7 6/ 8 6/ 9 6/10 6/1 1 6/12 6/13 6/14 6/15 6/16 6/17 6/18 6/19 6/20 6/21 6/22 6/23 6/24 6/25 6/26 6/27 6/28 6/29 6/30 7/ 1 7/ 2 7/ 3 7/ 4 7/ 5 7/ 6 7/ 7 7/ 8 7/ 9 7/10 7/1 1 7/12 7/13 7/14 7/15 7/16 7/17 7/18 7/19 7/20 7/21 7/22 7/23 7/24  DAILY NET RADIATION (DAYTIME) SITE O 7 .89 15 . 57 10. 49 4 .05 1 1 12 . 1 1 48 . 18 . 36 2 0 . 20 21 .59 10. 48 16 . 32 8. 6 0 15. 49 14 . 57 2 0 . 50 16 . 59 18 . 59 8 . 78 10. 54 9 . 96 3. 62 4 .31 . 10..02 13 ,42 , 16..02 20 . 14 20 .96 10 . 35 4 . 40 9 .94 10 .31 10 .94 19 . 8 0 20 .01 19 . 0 9 4 . 45 12 .64 17 .41 7 . 70 14 . 7 3 5 . 14 17 . 0 5 15 . 0 9 17 . 9 3 6 . 75 16 . 70 18 . 8 9 16 . 34 15 .04 18 . 37  SITE 1 7 . 21 14 . 18 9 . 60 3 .69 10. 1 1 10. 44 16. 73 18. 42 19 . 70 9 . 54 14 . 87 7 . 88 14 . 12 13 . 27 18 . 70 15. 13 16. 96 8 .04 9 . 65 9. 12 3 . 29 3.,92 9., 17 12., 22 14 ., 59 18 , 37 18,.60 9 . 16 3 .89 8 .85 9. 1 1 9 .67 17 .57 17 . 76 16 .94 3 .95 1 .118 15 . 4 5 6 .87 13 .04 4 .57 15 . 1 1 13 . 36 15 . 9 0 6 .02 14 .81 16 . 78 14 .51 13 . 32 16 . 28  SITE 2 7 . 50 14 . 77 9. 98 3. 85 10. 55 10. 89 17 . 43 19. 18 2 0 . 51 9 . 94 15 . 49 8 . 19 14 . 71 13. 83 19. 47 15. 76 17. 66 8. 36 10. 03 9. 48 3 .43 4 .09 9. 54 12 . 73 15 ,. 20 19.. 13 19..65 9..69 4 ., 12 9.. 34 9 .64 10 . 24 18 . 56 18 . 76 17 . 9 0 4 : 17 1 .1 83 16 . 32 7 . 24 13 . 79 4 .82 15 . 97 14 . 13 16 . 8 0 6 . 34 15 .65 17 . 72 15 . 32 14 .08 17 .21  SITE 3 7 .89 15. 57 10. 49 4 .05 1 1 12 . 1 1 48 . 18 . 36 2 0 . 20 21 .59 10. 48 16 . 32 8 .60 15 .49 14 . 57 2 0 . 50 16 . 59 18 . 59 8 ,78 . 10.,54 9 ,96 . 3 .62 , 4 ,31 . 10 .02 13 .42 16 .02 20 . 14 20 .96 10 .35 4 .40 9 .94 10 .31 10 .94 19 . 8 0 20 .01 19 . 0 9 4 .45 12 .64 17 .41 7 . 70 14 . 73 5 . 14 17 .05 15 .09 17 .93 6 . 75 16 . 7 0 18 .89 16 . 34 15 .04 18 . 37  : MJ/M2D  SITE 4 SITE 5 7 .79 7 .69 15 . 37 15. 17 10. 36 10. 23 4 .0 0 3. 95 10. 98 10. 83 1 1 33 . 1 1 18 . 18 . 13 17 . 90 19 . 95 19 . 69 21 .32 21 .05 10. 34 10. 21 16 . 1 1 15 .91 8 . 50 8 . 40 15 . 30 15 . 10 14 . 38 14 . 20 2 0 . 24 19. 99 16. 38 16. 17 18 . 36 18 . 12 8 .67 8 . 57 10. 41 10. 28 9. 84 9. 72 3. 57 3. 53 4. 26 4. 20 9 ,90 . 9 .78 . 13 ,25 . 13 .07 . 15..81 15..61 19,,89 19 .64 20 .70 20 . 18 10 .21 9 .95 4 . 34 4 . 23 9 .82 9 .58 10 . 17 9 .91 10 . 8 0 10 .52 19 .56 19 .06 19 .76 19 . 26 18 .85 18 . 37 4 .39 4 .28 12 . 48 12 . 15 17 . 19 16 .76 7 .61 7 .42 14 .54 14 . 17 5 .07 4 .95 16 .84 16 .41 14 . 9 0 14 .52 17 . 7 0 17 . 25 6 .67 6 . 51 16 .49 16 .07 18 .65 18 . 19 16 . 14 15 .73 14 .85 14 .46 18 . 14 17 .67  SITE 6 7 . 79 15 . 37 10. 36 4 .00 10. 98 1 1 33 . 18 . 13 19. 95 21 .32 10. 34 16 . 1 1 8 .50 15 . 30 14 . 38 2 0 . 24 16 . 38 18 . 36 8 .67 10. 41 9 . 84 3 .57 4 . 26 9..90 13.. 25 15..81 19 .89 20 .70 10 .21 4 . 34 9 .82 10 . 17 10 . 8 0 19 .56 19 .76 18 .85 4 .39 12 . 48 17 . 19 7 .61 14 . 54 5 .07 16 .84 14 . 9 0 17 . 7 0 6 .67 16 . 4 9 18 .65 16 . 14 14 .85 18 . 14  DAILY E O U I . EVAPOTRANSPIRATION ( D A Y T I M E ) : MM SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 18.0 177 . 18.0 182 . 173 . 166 . 1. 82 3. 59 3 . 79 3. 74 3 .69 3. 74 3. 45 • 3 . 79 2 .43 2 .55 2. 52 2 .49 2. 52 2 .33 2 . 55 10.0 0 . 99 0 . 98 0 . 99 0 . 95 10.0 0 . 91 2 .61 2 .75 2. 72 2 .68 2. 72 2 . 50 2 . 75 2 .69 2 .84 2 .8 0 2. 77 2 .8 0 2 .58 2. 84 4 . 14 4 . 31 4 . 54 4 .49 4 . 43 4 . 49 4 .54 4 .91 5 . 17 5. 1 1 5 . 04 5. 1 1 4 .72 5 . 17 5 . 42 5. 71 5. 64 5 .57 5 . 64 5 . 21 5 . 71 2 .63 2 .77 2. 74 2 .7 0 2 . 74 2 . 52 2 .77 3 .97 4 . 18 4 . 13 4 .0 7 4 . 13 3. 81 4 . 18 2 . 17 2 . 28 2 . 25 2 . 22 2. 25 2 .08 2 . 28 3 .9 0 3 .85 3. 8 0 3 . 85 3 . 70 3. 55 3 .90 3 .48 3 .67 3. 62 3.,57 3. 62 3 . 34 3. 67 5 . 15 5 . 42 5 . 35 5 ,29 . " 5 . 35 4 .95 5 .42 4 .07 4 . 24 4 .46 4 . 40 4 ,35 . 4 . 40 4 .46 4 ,75 . 5 .0 0 4 . 94 4 ,87 . 4 . 94 4 . 56 5 .0 0 2 ,21 , 2 .32 . 2 ,29 . 2 .27 . 2. 29 2., 13 2 . 32 2 ., 36 2 ,48 . 2 ,45 , 2 .42 . 2 . 45 2 ,. 27 2 .48 2 ., 39 2 ,51 2..48 2 .45 2. 48 2 ,. 30 2. 51 0,.85 0,,90 0..88 0.. 8 7 0 . 88 0,,82 0. 90 0..96 0..95 0 .93 0 . 95 0 .91 0..87 0. 96 i 2 . 36 2 ,. 48 2 .45 2 .42 2.,45 2 .27 2 .48 . r\> 3 .32 3 .28 3 .24 3 .. 28 ro 3 . 15 3 .02 3 .. 32 3 .61 3 . 76 3 .96 3 .91 3 .86 3 .91 . 3..96 ro 4 .90 5 . 16 5 .09 5 .03 5..09 4 . 70 5.. 16 i 5 . 37 5 . 72 5 .65 5 .51 5 .65 5 .08 5 .72 2 .64 2 .82 2 .79 2 .72 2 .79 2 .50 2 .82 1.00 1 .07 1 .06 1.03 1 .06 1 .07 0 .95 2 . 19 2 . 33 2 .31 2 .25 2 .31 2 .08 2 . 33 2 . 34 2 .51 2 .47 2 .41 2 .47 2 .21 2 .51 2 .53 2 .71 2 .67 2 .60 2 .67 2 .39 2 .71 4 .99 5 . 32 5 . 26 5 . 12 5 . 26 4 . 72 5 . 32 5 .55 5 .48 5 .34 5 .48 5 .20 4 .93 5 . 55 4 . 70 4 .96 5 .29 5 .23 5 . 10 5 .23 5 . 29 1 . 12 1 . 20 1 . 18 1. 1 5 1 . 18 1 .06 1. 2 0 3 .03 3 . 23 3 . 19 3. 1 1 3 . 19 2 .86 3 .23 4 . 22 4 . 46 4 .75 4 .69 4 . 57 4 .69 4 .75 1.95 2 .07 2 .04 1.99 2 .04 1 .85 2 .07 3 .53 3 .77 3 .72 3 .63 3 .72 3 . 34 3 . 77 1 . 27 1 . 36 1 .34 1 .31 1 . 34 1 .21 1 . 36 4 .09 4 .37 4 .31 4 .20 4 .31 3 .87 4 . 37 3 . 74 3 .99 3 .94 3 . 84 3 .94 3 .53 3 . 99 4 .59 4 .90 4 . 83 4 .71 .4 . 8 3 4 . 34 4 .90 1 . 73 1 .84 1. 8 2 1 . 78 1.82 1 .64 1 .84 4 . 34 4 .63 4 . 57 4 .46 4 .57 4. 1 1 4 .63 4 .94 5 . 22 5 . 56 5 .50 5 . 36 5 .50 5 .56 4 .65 4 .95 4 .89 4 . 77 4 .89 4 .40 4-.95 3 .84 4. 1 1 4 .05 3 .95 4 .05 3 .64 4. 1 1 4 . 77 5 .09 5 .03 4 .90 5 .03 4 .51 5 .09  DAY 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 83 89 90 91 92 93 94 95 96 97 98 99 100  MONTH/ DAY 7/25 7/26 7/27 7/28 7/29 7/30 7/31 8/ 1 8/ 2 8/ 3 8/ 4 8/ 5 8/ 6 8/ 7 8/ 8 8/ 9 8/10 8/1 1 8/12 8/13 8/14 8/15 8/16 8/17 8/18 8/19 8/20 8/21 8/22 8/23 8/24 8/25 8/26 8/27 8/28 8/29 8/30 8/31 9/ 1 9/ 2 9/ 3 9/ 4 9/ 5 9/ 6 9/ 7 9/ 8 9/ 9 9/10 9/ 1 1 9/12  DAILY NE SITE 0 SITE ' 17 . 43 15 .45 18 . 28 16 . 21 18 . 51 16 . 42 18 . 88 16 . 74 18 . 69 16 . 55 18 . 23 16 . 15 17 . 86 15 . 82 8 . 17 6 . 96 7 .31 6 . 22 17 . 47 14 . 80 13 . 17 1 1 14 . 15 .04 12 . 73 15 .05 12 .73 16 . 09 13 . 63 16 . 08 13 . 64 16. 83 14 . 27 16 . 38 13 . 90 16 . 35 13 . 87 14 . 89 12 .61 12 .62 , 10. 66 12 . 32 10. 39 10..55 8 . 88 10.. 70 9 . 00 6 . 32 5 . 37 16 . 0 9 13 . 56 15 .67 13 . 21 14 . 17 1 1 93 . 14 . 0 9 1 .85 1 . 10 . 23 8 .. 58 7 . 50 6 . 26 15 . 17 12 . 76 13 .93 1 .1 70. 4 . 35 3 .68 T . 18 5 .98 10 . 10 8 . 44 11 . 2 0 9 . 36 7.4 1 6 . 28 7 .04 5 .96 3 . 50 2 .65 7 . 16 5 . 33 6 .65 5 .09 7 .08 5 . 34 12 . 70 9 .69 2 . 93 2 . 24 12 . 70 9 . 65 12 .02 9 . 12 12 . 74. 9 .69 12 .43 9 . 45 1 .1 09 8 . 42 7 . 47 5 .61  RADIATION (DAYTIME) : MJ/M2D SITE 2 SITE 3 SITE 4 SITE 5 17 . 43 17 . 21 16 . 77 16 . 33 17 . 13 18 . 28 18 .05 17 . 59 17 . 35 18 . 51 18 . 28 17 . 81 17 . 70 18 .88 18 .65 18 . 17 17 . 50 18 . 69 18 . 45 17 .98 17 . 07 18 . 23 18 .00 17 . 53 16 . 73 17 . 86 17 . 64 17 . 18 7 .46 8 .27 7 .97 7 . 76 6 . 67 7 . 40 7 . 13 6 . 95 15 . 91 17 .69 17 .02 16. 58 1 1 99 . 13 .34 12 .83 12 .49 15 . 24 14 . 66 14 . 27 13 . 70 13 .69 15 .24 14 .66 14 . 27 14 . 65 16 . 29 15 .68 15 . 27 14 . 65 15 .67 15. 26 I 6 •28 15 . 34 1*7 .04 16 . 40 15. 98 14 . 94 16 . 59 15 . 97 15. 56 14 . 90 16 . 56 15. 94 15 . 53 13 . 56 15. 08 14 . 51 14 . 13 1 1 47 . 12 . 78 12 . 29 1 1 96 . 1 1 19 . 12 .. 48 1 1 99 . 1 1 67 . 10,, 27 9 ,99 . 9 .58 . 10. 69 9 .71 . 10..84 10..42 10., 14 5 .. 77 6 . 39 6,. 16 6 ,00 , 14 .61 16 . 30 15 .67 , 15 ,, 25 14 . 23 15 .88 15 .26 14 ,85 12 .86 14 . 36 13 .80 13,.42 12 . 78 14 . 27 13 .72 13 .34 10 . 37 9 .95 9 .68 9 .27 • 6 . 77 7 .60 7 . 29 7 .08 13 .77 15 . 37 14 .77 14 . 37 12 .63 14 . 12 13 .56 13 . 19 3 .96 4 .40 4 .24 4 . 12 6 . 48 7 . 28 6 .98 6 .78 9 . 13 10 . 24 9 .83 9 .55 1 .135 10 .89 10 .58 10 . 12 6 . 75 7 . 50 7 . 22 7 .03 6 .41 7 . 13 6 .86 6 .68 3 .55 3 . 36 3 .22 2 .98 7 . 27 6 .86 6 .55 6 .04 6 . 73 6 .39 6 . 13 5 .69 6 .02 7 . 18 6 . 79 6 .50 12 .87 12 . 2 0 1 .1 69 10 . 8 6 2 .51 2 .97 2 .82 2 . 70 12 .86 12 . 19 1 .68 1 10 .84 10 . 25 12 . 18 1 .54 1 1 .06 1 10 .88 12 .91 12 . 23 1 .73 1 12 . 6 0 1 .93 1 1 .144 10 .61 9 . 46 1 .124 10 .64 10 . 20 7 .58 7 . 16 6 .85 6 . 34  SITE 6 17.21 18 . 0 5 18 . 28 18.65 18.45 18 . OO 17.64 7.97 7.13 17 .02 12 .83 14 .66 14 . 66 15.68 15.67 16.40 15.97 15.94 14.51 12 . 29 1 1 . 99 10. 27 10.42 6 . 16 15.67 15.26 13.80 13.72 9.95 7 . 29 14 . 77 13 . 56 ' 4 . 24 6.98 9.83 10.89 7 . 22 6 . 86 3.36 6.86 6 . 39 6.79 12.20 2.82 12.19 1 1 . 54 12 . 23 1 1 .93 10.64 7.16  EVAPOTRANSPIRATION ( D A Y T I M E ) : MM DAILY EOUI SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 4 .83 4 . 77 4 .65 4 . 77 4 . 53 4 .83 4 . 28 4 . 83 5 . 15 5 . 09 4 .96 5. 09 5 . 15 4 .57 4 .96 5 .30 5. 23 5. 10 5. 23 5 .30 4 . 70 4 .99 5 . 32 5. 25 5. 12 5. 25 5 .32 4 . 72 4 . 78 5 . 10 5 . 04 4 . 91 5. 04 5 . 10 4.52 4 .73 5 . 05 4 . 99 4 . 86 4 . 99 5 .05 4 .48 4 .95 4 . 89 4 . 76 4 . 89 4 .64 4 .95 4 . 39 2 . 19 2 .1 1 2 .05 2 .1 1 197 . 2 . 16 1 .84 1 .71 1 .90 1 .83 1 .78 1 .83 187 . 1 .59 4 . 28 4 .76 4 . 58 4 . 46 4 .58 4 .70 3.98 3 . 53 3 . 39 3. 30 3 . 39 3. 17 3 .48 2.95 4 . 10 3 .94 3 .84 3 .94 3. 68 4 .04 3.42 4 .03 3 .88 3 . 77 3. 88 3 .62 3 .98 3 . 37 4 .06 4 . 52 4 . 35 4 . 23 4 . 35 4 .46 3 . 78 4 . 32 4 .80 4 .62 4 . 50 4 . 62 4 .74 4 .02 4 .88 4 .69 4 ,57 . ^ 4 . 69 4 . 39 4 .81 4 .08 4 .96 4 .77 4 ,65 . 4 . 77 4 ,. 47 4 .90 4 . 16 4 .88 4 . 70 4 ,57 . 4 . 70 4 . 39 4 .82 , 4 .09 4 .44 4 . 27 4 ,. 16 4 . 27 3 .99 , 4 ., 39 3 . 72 3. 54 3. 41 3..32 3 .41 3 ,. 18 3 .50 , 2 .95 3 .41 . 3.,27 3 .. 19 3 . 27 3,.06 3 .36 , 2.84 2 .87 , 2 .76 . 2 .69 . 2 . 76 2,.57 2 .84 2 . 39 l 2 .87 , 2 ,76 . 2 .68 2 ,76 . 2,. 57 2 .83 2 .38 1 .66 . 1 .61 1.66 . r\> 1 .,72 1 . 55 1 . 70 1 . 44 3 .86 4.31 4 . 14 4 .03 4 , 14 Ul 4 . 25 3.59 4 .27 4 . 10 3 .99 4 ., 10 | 3 .83 4 .21 3.55 3 .80 3,.65 3 .55 3 .65 3 .40 3 . 75 3. 15 3 .44 3 .84 3 .69 3 .59 3 .69 3 .79 3. 19 2 . 74 2 .63 2 .56 2 . 63 2 .45 2 .70 2.27 1 .73 1 .95 1 .87 1 .81 1 .87 1 .92 1 .60 4 . 13 3 .97 3 .86 3 .97 3 .70 4 .08 3.43 3 .73 3 . 59 3 .49 3 . 59 3 . 34 3 .68 3 .09 1 .06 1 . 18 1 . 14 1. 1 1 1 . 14 1 . 17 0.99 1. 6 0 1.80 1 . 73 1.68 1 . 73 1 . 78 1 .48 2 . 22 2 .49 2 .39 2 .32 2 . 39 2 .46 2.05 2 . 76 2 .65 2 .57 2 .65 2 .46 2 . 72 2 . 28 1 . 70 1 .89 1 .82 1 . 77 1 .82 1 . 86 1 . 58 1 .61 1 .79 1.73 1.68 1.73 1 . 77 1 . 50 0 .85 0 .81 0 .85 0 .89 0 . 75 0 .88 0.67 1 .42 1 .71 1 .61 1.54 1 .61 1 .68 1 . 25 1 .64 1 .55 1. 4 9 1.55 1 . 39 1 .62 1 .24 1 .52 1 .81 1 .71 1. 6 4 1 .71 1 .78 1 .35 3 .46 3 . 28 3 .14 3 . 28 2 .92 3 .41 2 .60 0 .80 0 . 76 0 . 73 0 . 76 0 .68 0 . 79 0.60 2 . 77 3 . 29 3 . 12 2 .99 3 . 12 3 . 25 2.47 2 .62 3 . 12 2 .95 2 . 83 2 .95 3 .08 2 . 34 2 .92 3 . 47 3 . 29 3 . 15 3 . 29 3 . 43 2.61 3 . 44 3 . 26 3 . 12 3 . 26 2 . 90 3 . 39 2 . 58 2 . 62 3 . 12 2 . 95 2 .83 2 .95 3 .08 2 . 34 1 . 62 1 . 94 1 .83 1 . 75 1 .83 1 .91 1 . 44  DAY 101 102 103 104 105 106 107 108 109 1 10 1 1 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150  MONTH/ DAY 9/13 9/14 9/15 9/16 9/17 9/18 9/19 9/20 9/21 9/22 9/23 1 9/24 9/25 9/26 9/27 9/28 9/29 9/30 10/ 1 10/ 2 10/ 3 10/ 4 10/ 5 10/ 6 10/ 7 10/ 8 10/ 9 10/10 10/11 10/12 10/13 10/14 10/15 10/16 10/17 10/18 10/19 10/20 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29 10/30 10/31 11/ 1  DAILY NET RADIATION (DAYTIME) : MJ/M2D SITE O SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 8 .82 9. 21 9 . 74 7 . 25 8 . 17 9 . 61 9 .06 10. 79 10. 22 9 . 78 8 .06 10. 65 7 .91 8 .91 10. 62 10.. 05 9 . 62 10. 48 10. 90 10. 31 9 . 87 8 . 1 1 9 . 14 10. 75 7 .02 7 .93 9 . 47 8 .96 8 . 57 9 . 34 166 . 188 . 2 . 25 2. 13 2 .04 2 .22 4 .80 5 . 69 5. 39 5 . 17 4 .29 5 . 61 4 . 25 4 . 84 5 . 84 5 .51 5 . 25 5 . 76 5 .99 6 . 80 8 . 18 7 . 72 7 . 37 8 .07 2 .87 3 .23 3 .85 3 .65 3 .49 3. 80 4 .07 3 .07 3 .46 4 . 12 3. 90 3 . 74 7 .04 7 . 99 9 . 62 9 .07 8 .67 9 . 48 12 .0 0 8 . 92 10. 12 12 . 17 1 1 49 . 10. 97 7 . 57 8 . 59 10. 34 9 . 76 9 . 32 10. 19 145 . 165 . 1.99 . 188 . 179 . 196 . 1 37 . 1.67 . 157 . 149 . 1 19 . 164 . 3 .87 4: 62 4 .37 4 . 18 4 . 56 3 .4d 4 .G 5 5 . 32 6 .48 . 6 .09 5 .80 6 . 38 5 .88 6 .79 . 8 .87 8 .09 7 .70 8 . 61 6 . 63 8 .67 7 .91 7 .52 5 . 74 8 . 42 5 . 72 6 .60 . 8 .63 . 7 .87 . 7 .. 49 8 . 37 G .. 48 4 .9 1 5 .69 . 7 .. 49 6 .82 . 7 . 27 5 .68 6 .50 8 . 36 7 .67 . 7 . 32 8 . 13 5 .. 59 6 .40 8 . 25 7 .. 56 7 .21 . 8 ..02 6 . 38 4 .. 4 1 5 .07 6 . 57 6 .01 5 . 73 7 .. 46 5 .. 15 5 .92 7 .68 7 .02 6 .69 2 .85 3 .64 3 . 34 3 . 20 3 .. 54 2 .50 5 .21 6 .80 6 .20 5 .90 4 .51 6 .60 2 .06 2 . 35 3 .02 2 . 77 2 .64 2 ..93 2 .63 3 . 38 3 . 10 2 .96 3.• 29 2 . 30 2 . 78 4 . 18 3 .25 4 . 32 3 .92 3 . 72 7 .03 4 . 74 5 .51 7 . 25 6 .60 6 .27 3 . 67 4 .28 5 .67 5 . 15 4 .89 5 . 50 4 . 44 5 . 17 6 .85 6 .22 5 .91 6 . 64 1 . 27 1 .48 1 .95 1 .77 1 .68 1 . 89 1 .40 1 .63 2 . 14 1 .95 1 .85 2 .08 4 .02 2 .61 3 .08 4 . 15 3 . 75 3 .55 3 .93 5 . 28 4 .78 4 .52 3 . 35 5. 1 1 4 .00 4 .70 6 .31 5 .71 5 .41 6. 1 1 3 .87 5 . 22 4 .71 4 .46 3 .27 5 .05 3 .00 3 .55 4 .82 4 .34 4. 1 1 4 .66 1. 0 3 1.40 1 . 26 1 . 19 1 . 35 0 . 87 1 .85 2 . 23 3 .09 2 .77 2 .60 2 .98 1 .81 2 . 18 3 .04 2 .72 2 .56 2 .93 1 . 55 1 .82 2 .42 2 .20 2 .08 2 . 35 2 .28 2 .75 3 .82 3 .42 3 . 22 3 . 69 1 .02 1 .21 1 .65 1 .49 1.40 1 .59 2 .61 1 . 55 1.90 2 .71 2. 4 1 2 .26 0 . 28 0 .44 0 .38 0 .35 0 . 42 0 .20 0 .40 0 .66 0 .54 0 .51 O .61 0 . 29  SITE 6 9 . 21 10. 22 10. 05 10. 31 8 .96 2 . 13 5. 39 5. 51 7 . 72 3. 65 3 .90 9 . 07 1 1 49 . 9 . 76 188 . 1 57 . 4 . 37 6 . 09 8 . 22 8 .03 7 .99 . 6 .93 . 7 . 78 7 .67 . 6 . 10 7 . 13 3 . 39 6 .30 2 .81 3 . 15 3 .98 6 .71 5 . 24 6 . 33 1.80 1 .98 3 .82 4 .86 5 .81 4 .80 4 .42 1 .28 2 .82 2 . 77 2 . 23 3 .49 1 .51 2 .46 0 . 39 0 . 57  DAILY EOUI SITE 0 SITE 1 2 .58 195 . 2 .95 2 .86 2 .89 2 .51 0 . 57 137 . 1 35 . 196 . 0 . 92 0 . 96 2 . 39 3 .02 2. 70 0 . 53 0 . 40 11 . 1 1 55 . 2.. 13 15 2 .21 . 1.83 . 2 . 19 2 . 16 1.69 . 1 .88 0 .86 1 .63 0 . 74 0 .76 0 .96 1 .62 1 .27 1 .48 0 . 44 0 .46 0 .94 1.20 1 .41 1 . 10 1.00 0 .29 0 .64 0 .64 0 .50 0 .80 0 . 35 0 .57 0 .09 0 . 13  EVAPOTRANSPIRATION ( D A Y T I M E ) : MM  SITE 2 2 . 20 2 . 51 2 .23 2 .43 2 . 16 2 .46 2 . 18 2 . 13 189 . 0 . 48 0 . 43 1 17 . 104 . 1 14 . 100 . 165 . 146 . 0 . 79 0 . 70 * 0 . 81 0 . 72 2 .01 1. 77 2 .55 2 .25 2 .27 2 .00 0 . 44 0 . 39 0 . 33 0 . 29 0 . 94 0 . 84 1 29 . 1 13 . 168 . 145 . 1 70 . 147 . 175 . 15. 1 143 . 124 . 1 75 . 1.53 . 1. 72 . 1. 50 . 1 34 . 1. 17 . 1.49 . 1.30 . 0..69 0 .61 1. 29 . 1.. 12 0.. 59 0 .52 0.,61 0 .53 0..75 0 .64 1 .27 1 .09 0 .99 0 .85 1 . 15 0 .99 0 . 34 0 . 29 0 . 36 0 .31 0 . 72 0 .61 0 .92 0 . 79 1 .08 0 .92 0 .84 0 .71 0 .76 0 .64 0 . 22 0 . 19 0 :48 0 .40 0 .48 0 . 39 0 . 39 0 . 33 0 .60 0 .50 0 . 27 0 . 23 0 .41 0 . 34 0 .06 0 .05 0 .09 0 .06  SITE 3 2 .62 2 .99 2 .9 0 2 .93 2. 55 0 . 58 1 38 . 1 37 . 199 . 0 . 94 0 . 97 2. 42 3. 06 2 .73 0 . 53 0 . 41 1 12 . 1 58 . 2 . 20 o  22  2. 28 189 .  2 . 25 2 . 22  174 . 193 . 0..89 1.68 . 0.. 76 0,,78 1OO . 1.67 . 1 . 31 1 . 52 0 . 45 0 .48 0 .97 1 . 24 1 . 45 1 . 14 1 .03 0 . 30 0 .66 0 .66 0 . 52 0 . 83 0 . 37 0 . 59 0 . 10 0 . 15  SITE 4 2 .48 2 .83 2 . 74 2 .77 2 .41 0 . 54 1 31 . 1 29 . 188 . 0 . 89 0 . 92 2 . 28 2 .89 2 . 58 0 .,50 0 .,38 106 . 1,48 . 2 ,00 . 2 .,02 2 ,08 . 1. 72 , 2 .06 2 .03 1 . 59 1 . 77 0 .81 1 .53 0 .70 0 .71 0 .90 1 .52 1 . 19 1 . 38 0 .41 0 .43 0 .88 1 . 12 1 . 32 1 .03 0 .93 0 .27 0 . 59 0 . 59 0 .47 0 . 75 0 . 33 0 .52 0 .08 0 . 12  SITE 5 SITE 6 2 .37 2 .48 2 .71 2 .83 2 .63 2 .74 2 .65 2 :77 2 . 30 2. 41 0 . 52 0 . 54 1 26 . 1 31 . 1 23 . 129 . 1 79 . 188 . 0 . 85 0 . 89 0 . 88 0 . 92 2 . 18 2 . 28 2 . 76 2 .89 2 .46 2 . 58 0 . 48 0 . 50 0 . 36 0 . 38 102 . 106 . 141 . 148 . 191 . 2 .03 193 . 2 .06 . 198 . 2 .1 1 163 . 1 74 . 197 . 2 ,09 . 2 .,06 1.94 . 1.51 . 1,61 , 1,68 . 1. 80 . 0.. 78 0 . 83 1,46 , 1.56 . 0..66 0,.71 0..68 0.. 73 0,.86 0 .92 1 .45 1 .55 1 . 13 1 .21 1 .31 1 .41 0 . 39 0 .41 0 .41 0 .44 o .83 0 .90 1 .06 1 . 14 1 .25 1 . 34 0 .97 1. 0 5 0 .88 0 .95 0 . 25 0 . 27 0 . 56 0 .60 0 . 56 0 .60 0 .45 0 . 48 0 . 70 0 . 76 0 .31 0 .34 0 . 49 0 . 54 0 .08 0 .09 0. 1 1 0 . 13  DAY 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200  MONTH/ DAY 11/ 2 11/ 3 11/ 4 11/ 5 11/ 6 11/ 7 1 1/ 8 11/ 9 1 1/10 11/11 1 1/12 1 1/13 11/14 11/15 11/16 11/17 11/18 1 1/19 1 1/20 1 1/21 1 1/22 1 1/23 1 1/24 1 1/25 1 1/26 1 1/27 1 1/28 1 1/29 1 1/30 12/ 1 12/ 2 12/ 3 12/ 4 12/ 5 12/ 6 12/ 7 12/ 8 12/ 9 12/10 12/11 12/12 12/13 12/14 12/15 12/16 12/17 12/18 12/19 12/20 12/21  DAILY NET RADIATION (DAYTIME) : MJ/M2D SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 1 10 1 .15 1 . 36 1 27 0 91 0. 72 0 38 0. 41 0. 51 0 29 0. 20 0. 47 ' 2 06 2 .14 2 .50 1 . 41 1 73 2 34 0 57 0 60 0. 73 0. 33 0 45 0. 67 1 01 1 . 24 05 1 . 1 15 O.68 0 84 1 29 57 1 35 1 . 1 09 1 47 0. 89 2 07 2 15 1 77 1 . 2 50 46 2 35 1 86 1 . 93 1 58 2 25 1 . 29 2 1 1 1 68 1 76 04 1 36 2 12 1 . 1 96 2 42 2 53 1 99 3 02 1 . 55 2 81 2 15 2 25 2 69 1 . 37 1 76 2 49 2 29 2 39 1 87 2 87 1 . 45 2 66 0 76 0 62 - 0 59 0 36 0 48 0 70 1 95 1 86 1 49 2 35 1 13 2 17 0 74 0 78 0 93 0 60 0 46 0 86 1 22 1 50 1 27 1 01 1 40 0 80 0 31 0 33 0 42 0 23 0 38 0 15 1 40 1 47 1 09 1 82 1 66 0 79 0 26 0 28 0 37 0 1 1 0 19 0 33 1 77 1 87 2 29 1 02 1 40 2 1 1 1 45 1 79 1 51 1 20 1 67 0 95 1 00 1 05 1 25 1 16 0 82 0 64 1 07 1 12 1 34 1 24 0 88 0 68 1 32 1 40 1 74 1 02 1 59 0 71 0 53 0 56 0 70 0 29 0 41 0 64 0 93 1 27 0 99 0 69 1 14 0 44 0 77 0 81 0 61 0 99 0 46 0 91 0 36 0 38 0 49 0 26 0 17 0 44 1 10 1 17 1 48 1 34 o 54 0 82 0 62 0 65 0 80 0 47 0 74 0 33 0 21 0 23 0 13 0 31 0 06 o 28 0 62 0 65 0 47 0 80 0 33 0 73 0 78 1 00 0 82 0 60 0 45 0 92 0 46 0 49 0 61 0 34 0 23 o 56 1 92 2 03 1 42 2 54 2 31 0 98 1 11 1 17 1 43 1 31 0 85 0 62 0 75 0 79 0 95 0 59 0 45 0 88 0 39 0 42 0 52 0 29 0 20 0 47 0 12 0 13 0 19 0 06 0 00 0 16 1 01 1 06 1 27 0 79 1 17 0 60 1 13 1 20 1 51 0 81 1 37 0 53 0 31 0 33 0 43 0 22 o 13 0 39 0 43 0 45 O 57 0 31 o 52 0 21 1 07 1 12 1 36 0 84 1 25 0 64 o 72 0 76 0 93 0 55 0 40 0 86 0 53 0 56 0 69 0 39 0 27 0 63 1 02 1 08 1 38 0 72 1 25 0 46 0 55 0 58 0 72 0 41 0 29 0 66 0 .13 0 14 0 21 0 .07 0 01 0 18 o 08 0 07 0 13 0 .01 -0 03 0 1 1  SITE 6 1 20 0 43 2 22 0 63 1 09 1 40 2 23 2 00 1 84 2 64 2 35 2 50 0 65 2 04 0 81 1 32 0 35 1 55 0 30 1 96 1 57 1 09 1 17 1 47 0 59 1 05 0 85 0 40 1 23 0 69 0 25 0 68 0 86 0 52 2 15 1 23 0 82 0 44 0 14 1 10 1 27 0 35 0 48 1 18 0 80 0 59 1 15 0 61 0 16 0 09  DAILY EQUI. EVAPOTRANSPIRATION (DAYTIME): MM SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 0 20 0. 30 0. 26 0. 24 0.27 0 16 0. 28 0 06 0. 11 0 09 0. 08 0.09 0. 10 0 04 0 33 0 41 0 59 O 50 0. 48 0.52 0. 55 0 11 0 17 0 14 0. 13 0.15 0 08 0. 16 0 15 0 19 0 27 0 23 0 22 0.24 0. 26 0 24 0 35 0 30 0. 29 0.31 0 33 0 20 0 38 0 55 0 47 0 45 0.49 O 51 0 32 0 32 0 45 0 39 0 37 0.40 0 42 0 26 0 29 0 45 0 38 0 36 0. 39 0 22 0 42 0 38 0 57 0 48 0 46 0.50 0 29 0 53 0 32 0 49 0 41 0 39 0.42 0 25 0 45 0 34 0 52 0 43 0 41 0.45 0 26 0 48 0 07 0 09 0 15 0 12 0 1 1 0.13 0 13 0 41 0 21 O 28 0 44 0 37 0 35 0.38 0 09 0 11 0 18 0 15 0 14 0. 15 0 16 0 15 0 19 0 28 0 24 0 23 . 0.25 0 26 0 03 0 05 0 08 0 07 0 06 0.07 0 08 0 16 0 22 0 37 0 30 0 29 0.32 0 34 0 04 0 08 0 06 0 06 0.07 0 02 0 07 0 30 0 49 0 40 0 38 0.42 0 22 0 45 0 23 0 35 0 29 0 28 0.30 0 18 0 32 0 14 0 22 0 19 0 18 0. 19 0 11 0 21 0 12 0 16 0 24 0 20 0 19 0.21 0 22 0 14 0 20 0 34 0 27 0 25 0.28 0 31 0 06 0 08 0 13 0 1 1 0 10 0.11 0 12 0 25 0 10 0 15 o 28 0 22 0 20 0. 23 0 09 0 12 0 19 0 15 0 15 0. 16 0 17 0 03 0 05 0 09 0 07 0 07 0.08 0 08 0 10 0 15 0 27 0 21 0 20 0.22 0 24 0 06 0 08 0 15 0 12 0 1 1 0.12 0 13 0 01 0 02 0 05 0 04 0 04 0.04 0 05 0 05 0 08 0 13 0 11 0 10 0.11 0 12 0 07 0 10 0 16 0 13 0 13 0. 14 0 15 0 04 0 05 0 10 0 08 0 07 0.08 0 09 0 24 0 43 0 34 0 32 0. 36 0 16 0 39 0 12 0 21 0 17 0 16 0. 18 0 09 0 19 0 09 0 15 0 12 0 12 0.13 0 14 0 07 0 08 0 03 0 05 0 09 0 07 0 06 0.07 0 01 0 04 0 02 0 02 0.03 0 00 0 03 0 17 0 28 0 23 0 22 0.24 0 26 0 13 0 16 0 30 0 24 0 23 0.26 0 11 0 28 0 04 0 08 0 06 0 06 0.07 0 07 0 03 0 04 0 06 0 12 0 09 0 09 0. 10 0 11 0 19 0 30 0 25 0 24 0.26 0 14 0 28 0 09 0 12 0 20 0 17 0 16 0.17 0 19 o 13 0 06 0 08 0 14 0 11 0 1 1 0.12 0 14 0 26 0 20 0 19 0.22 0 09 0 24 0 12 0 05 0 07 0 13 0 10 0 10 0.11 0 01 0 04 0 03 0 02 0.03 0 03 0 00 0 02 0 00 0 00 o 03 o 02 0 Ol 0.02  DAY 201 202 203 204 205 20G 207 208 209 210 21 1 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250  MONTH/ DAY 12/22 12/23 12/24 12/25 12/26 12/27 12/28 12/29 12/30 12/31 1/ 1 1/ 2 1/ 3 1/ 4 1/ 5 1/ 6 1/ 7 1/ 8 1/ 9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/30 1/31 2/ 1 2/ 2 2/ 3 2/ 4 2/ 5 2/ 6 2/ 7 2/ 8 2/ 9  DAILY NE S I T E 0- S I T E 1 0. 44 0. 92 0. 67 0. 30 0. 18 0. 47 0. 14 0. 39 -0. 07 0. 03 1 .35 0. 7 1 1 .32 O. 69 -0. 05 0. 07 0. 13 0. 37 1 .02 0. 52 1 .80 0. 86 1 .00 2 .03 1 .71 0. 83 0. 53 0. 98 1 .26 0. 7 1 1 .95 O. 97 1 .13 0. 63 0. 30 0. 61 0. 39 0. 76 1 .13 2 .25 1 .37 0. 65 1. 1 1 2.. 19 1. 02 2 .04 . 1. 30 2 .51 1. 2 1 2 . 32 1 . 18 2 . 26 0 .09 0 . 27 0 . 11 -0..01 0..53 0 .94 1..06 1 . 76 0 .31 0 .61 1 .54 0 .93 1 .86 0 . 99 1 .01 1 .87 1 . 30 2 . 32 1 . 15 1 .87 1 . 44 2 .51 -0 .06 0 .03 0 . 19 0.41 1 . 24 2 . 17 1 .95 3 .28 1 .47 0 .92 1 . 56 2 .61 1 . 23 0 . 76 2 . 45 3 .94 .61 4 . 17 1 .98 3 . 18 1 .05 0 .65 2 . 22 3 .51 1 . 25 1 .99  RADIATION (DAYTIME) : MJ/M2D SITE 2 S I T E 3 SITE 4 SITE 5 0. 78 1 .01 0. 82 0. 60 0. 56 0. 59 0. 73 0. 42 0. 39 0. 41 0. 52 0. 28 0. 31 0. 33 0. 43 0. 22 -0. 00 0. 01 0. 05 -0. 04 1 .16 1 .45 1 .22 0. 92 1 .19 1 .13 1 .42 0. 90 0. 03 0. 04 0. 09 -0. 01 0. 30 0. 32 0. 4 1 0. 21 0. 88 1 .10 0. 92 0. 69 1 .51 1 .60 1 .92 1. 19 1 .72 1 .81 2 .17 1. 36 1 .44 1 .52 1 .82 1. 14 0. 84 1 .03 0. 88 0. 69 1 .10 1 .14 1 .34 0. 91 1 .65 1 74 2 .07 1. 31 0. 98 1 .02 1 .. 19 0. 81 0. 52 0..55 0. 66 0. 4 1 0. 65 0. 68 0..81 0. 52 1. 91 2 .01 . 1. 52 2 .40 . 1. 15 1 .. 22 1 .47 . 0. 90 1. 86 1 .96 . 1,.49 2.. 34 1..73 1 . 82 2 . 17 1.. 37 2 . 14 2 . 25 1.. 72 2 .67 1 .98 . 2 .08 2 .47 1 . 59 1 .93 . 2 .02 1 .56 2 .40 0 .21 0 . 23 0 . 29 0 . 15 0..08 0 .09 0 . 13 0 .03 0 .81 0 .85 0 .99 0 .67 1 .55 1 .61 1 .85 1 . 30 0 .52 0 . 54 0 .65 0 . 42 1 . 35 1 .41 1 .62 1 . 14 1 .59 1 .67 1 . 97 1 .29 1 .61 1 .68 1 .98 1 .31 2 .01 2 . 10 2 .46 1 .66 1 .65 1 .71 1 .96 1 .40 2 . 19 2 . 28 2 .65 1 .81 -0 .00 0 .01 0 .04 -0 .03 0 . 34 0 .36 0 .44 0 . 27 1 .88 1 .96 2 . 29 1 . 56 2 .88 2 .99 3 .46 2 . 42 1 .30 1 . 35 1. 1 1 1 .52 2 . 29 2 . 38 1 .93 2 .70 1 . 13 1 .09 1 .27 0 .92 3 .49 4 .07 3 .62 2 .97 3 .69 3 .83 4 .31 3 . 15 2 .81 2 .92 3 . 28 2 . 39 0 .93 0 .97 1 .09 0 . 79 3 . 12 3 .23 3 .62 2 .67 1 .77 1 .83 2 .05 1 .51  SITE 6 0. 86 0. 63 0. 43 0. 35 0. 02 1. 27 1. 24 0. 05 0. 34 0. 96 1. 64 1. 85 1. 56 0. 90 1. 17 1. 78 1. 04 0. 56 0..69 2 .05 . 1.. 25 2 .00 1 .86 2 .30 2 . 13 2 .07 0 . 24 0 .09 0 .87 1 .64 0 .56 1 .43 1 .71 1 . 72 2 . 15 1 .74 2 . 33 0 .01 0 . 37 2 .00 3 .05 1 . 37 2 .43 1 . 15 3 .68 3 .90 2 .97 0 .98 3 . 29 1 .86  DAILY EOUI SITE 0 SITE 1 0. 09 0. 20 0. 06 0. 14 0. 04 0. 10 0. 03 0. 09 0. 0 0 0. 01 0. 16 0. 31 0. 14 0. 27 0. 0 0 0. 01 O. 03 0. 08 0. 1 1 0. 22 0. 17 0. 35 0. 19 0. 39 0. 16 0. 32 0. 10 0. 19 0. 14 0. 24 0. 20 0. 40 0. 13 0. 23 0. 06 0. 12 0. 07 0. 15 0. 23 0. 45 0. 12 0. 26 0. 24 0. 47 0. 22 0..44 0. 27 0. 52 0. 24 0..47 0..24 0..45 0..02 0..05 0,,00 0.,02 0.. 1 1 0 .20 0 . 23 0 . 38 0 .07 r\. 13 0 .21 0 .34 0 .21 0 .40 0 .21 0 . 38 0 . 25 0 .45 0 .22 0 . 35 0 .26 0 .45 0 .00 0 .00 0 .03 0 .07 0 . 24 0 .42 0 .37 0 .62 0 . 18 0 .28 0 .30 0 .50 0 . 24 0 . 15 0 .74 0 .46 0 .75 0 .47 0 .36 0 .57 0.1 1 0 . 19 0 . 39 0 .62 0 . 23 0 . 36  EVAPOTRANSPIRATION ( D A Y T I M E ) : MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 0. 18 0. 17 0. 18 0. 21 0. 13 0. 13 0. 12 0. 12 0. 15 0. 09 0. 09 0. 08 0. 0 9 0. 11 0. 06 0. 08 0. 07 0. 07 0. 09 0. 05 0. 0 0 0. 0 0 0. 0 0 0. 01 0. 0 0 0. 29 0. 27 0. 28 0. 34 0. 21 0. 25 0. 23 0. 24 0. 29 0. 18 0. 01 0. 01 0. 01 0. 02 0. 0 0 0. 07 0. 06 0. 07 0. 09 0. 04 0. 20 0. 19 0. 20 0. 24 0. 15 0. 32 0. 29 0. 31 0. 37 0. 23 0. 36 0. 33 0. 35 0. 42 0. 26 0. 29 0. 27 0. 29 0. 34 0. 21 0. 17 0. 16 0. 17 0. 20 0. 13 0. 23 0. 21 0. 22 0. 26 0. 17 0. 37 0. 34 0. 36 0. 43 0. 27 0. 21 0. 20 0. 21 0. 25 0. 17 0. 1 1 0. 10 0. 10 0. 12 0. 08 0. 13 0. 12 0. 13 0. 16 0. 10 0. 41 0. 38 0. 40 0. 48 0. 31 0. 24 0. 22 0. 23 0. 28 0. 17 0..43 0.,40 0. 42 0. 50 0. 32 0.,41 0..40 0.,38 0. 47 0. 30 0..47 0.,44 0..46 0..55 0. 35 0.,43 0.,40 0..42 0. 50 0. 32 0..42 0..39 0..41 0..48 0. 31 0..05 0..04 0..05 0..06 0. 03 0,.02 0..02 0..02 0..03 0..01 0 . 19 0 . 17 0 . 18 0..21 0.. 14 0 .36 0 . 34 0.. 35 0..40 0.. 28 0 . 12 0.1 1 0 . 12 0.. 14 0..09 0 .32 0 .30 0 .31 0..36 0..25 0 .36 0..34 0..42 0.. 36 0., 28 0 .35 0 .33 0 . 35 0 .41 0 .27 0 .4 1 0 .39 0 .41 0 .47 0 . 32 0 .33 0 .31 0 . 32 0 .37 0 . 26 0 .42 0 .40 0 .41 0 .48 0 .33 0 .00 0 .00 0 .00 0 .01 0 .00 0 .07 0 .06 0 .07 0 .08 0 .05 0 . 39 0 . 36 0 .38 0 .44 0 . 30 0 .58 0 .54 0 .57 0 .65 0 . 46 0 . 27 0 . 25 0 .26 0 .29 0. 2 1 0 .47 0 .44 0 .52 . 0 .46 0 . 37 0 .22 0 .21 0 . 22 0 . 25 0 . 18 0 .70 0 .66 0 .68 0 .77 0 . 56 0 .70 0 .67 0 .69 0 . 78 0 . 57 0 .54 0 .51 0 .59 0 .53 0 .43 0 . 17 0 . 16 0 . 17 0 . 19 0 . 14 0 . 58 0 . 55 0 . 57 0 .64 0 .47 0 . 34 0 .32 0 . 33 0 . 37 0 . 27  RADIATION (DAYTIME) : MM J/ 2D DAY MONTH/ DAILY NETSITE 2 SITE 3 SITE 4 SITESI5 TE 6 DAY SITE 0SITE 1 1 . 72 .7 3.02 26.7 25.7 2 251 2/10 29.2 17.6 2 5.32 43.2 58.7 52.3 50.5 0 252 2/1 1 56.8 35.9 0 73 10.2 0.90 0.86 1.92 253 2/12 0.99 0.59 1.0 . 30 14.3 12.7 12.3 0.74 254 2/13 13.9 0.85 0.5.4 8 0 . 8 3 0 . 7 2 0 . 6 9 255 2/14 0.80 0.46 16.1 2 1 1 .97 6 19.3 18.7 0 256 2/15 2 1 .0 13.5 .37 0.5.6 50 0.48 0.46 0..7 257 2/16 0.54 0.28 0 .59 0.85 0.74 0.71 1 6 258 2/17 0.82 0.48 0 . 20 .97 13.2 1 1.8 1 1.3 1.12 259 2/18 12.8 0.80 0 .90 12.4 1 1.0 10.6 2 .84 260 2/19 12.0 0.75 0 3.6 3 1 .0 28.0 27.1 .31 261 2/20 3.02 20.0 2 19.1 25.3 2.28 22.0 2 262 2/21 24.6 16.2 3 .88 1 .6 42.7 3.82 36.9 3 263 2/22 4 1 .4 26.4 25 . 10 3.38 30.5 29.6 3 264 2/23 32.9 2 2 .1 23..8 .80 30.6 27.6 26.7 2 265 2/24 29.7 19.9 18.3 . 17 23.7 2 1 .3 2.07 2.6 266 2/25 23.0 15.3 29.0 1 5 39.6 3.55 3.43 3 267 2/26 38.4 24.8 47.7 5 . 7 7 6 3 , 2 5 6 . 8 5 5 . 0 268 2/27 6 1 .4 40.4 .56 4.3 7. .17 64.6 62.5 6 269 2/28 6.97 46.1 5 .23 3.6 7.6.6 72.3 70.1 7 270 3/ 1 7. 55 57.1 6 .32 6,8 5.6.5 5.32 5. .16 5 271 3/ 2 5.5.7 4 1 .9 4 4 . 34 3.8,1 4.61 4. .34 4.2.1 6 272 3/ 3 4.5.4 3.4.1 5 8 6. 76 63.8 6. .19 6..3 273 3/ 4 6.66 5.0,6 6..6..3 6 15 7.36 6.96 6.75 6.9 274 3/ 5 7.26 5.54 5.78 55 ;.93 6.55 6. 36 3.8 275 3/ 6 6.84 5.2.1 3.43 6 .08 3.86 3. 75 7.36 276 3/ 7 4.02 3. 1 1 6.45 4 0 7. 72 7. 30 7.08 9 277 3/ 8 7.61 5.82 8.02 9 6 8 9.06 8.80 5..0 278 3/ 9 9.45 7.25 4.63 5..5 2 5. 29 5. 13 72.9 279 3/10 5.54 4. 14 6.89 8.63 3 7.83 7.60 8.88 280 3/11 8. 19 6. 18 7.75 9.330 8 0 0 8.54 9.26 281 3/12 9. 19 6.96 8. 16 9.81 9..82 8.98 7.17 282 3/13 9.67 7. 34 6.32 7.60 7. 16 .96 3.86 283 3/14 7. 50 5.67 3.43 4.08 3.867 6 . 75 0.31 284 3/15 4.02 3. 10 9. 1 1 10.91 10.31 13 0.01 14 285 3/16 10.76 8.21 3.86 4. 58 4. 34 4 .34 286 3/17 4.52 3. 49 5.71 6.86 6.47 6..22 .47 28 16 287 3/18 6. 76 5. 13 9.46 1 .3 0.69 11 10.69 10. 39 0 288 3/19 1 .116 8.54 9.60 1 .4 .84 16 10.84 10.53 14 289 3/20 1 .3 10 8.66 4.30 5.0 .83 9 4.83 4.70 7.77 290 3/21 5.03 3.91 6.88 8. 2 7.77 7.55 8.60 291 3/22 8. 1 1 6.20 7.61 9.092 8 0 8. 35 7.20 292 3/23 8.97 6.87 6.37 7.62 7..6 6.99 293 3/24 7.51 5. 75 6.36 7.60 7.20 9 19 6.98 171. 1 294 3/25 7. 49 5. 74 10.43 12.40 1 .7 1 .4 11 4.17.74 295 3/26 12. 24 9. 44 3.72 4.40 4.14 7 4.06 .13 296 3/27 4. 34 3. 38 3.68 4. 36 4-. 1 13 4.02 4 297 3/28 4. 30 3. 35 3.82 4.51 4. 2 . 28 . 17 4 298 3/29 4.46 3.47 5.23 6. 16 5.858 4 .85 .69 5 299 3/30 6.08 4. 76 6.53 7. 77 7.36 5 7. 15 7 .36 300 3/31 7.67 5.91  M DAILY EOUIEVAPOTRANSPIRATION (DAYTIME): M SITE 0SITE 1 0.36 0.50 0.44 0.42 0.45 0.48 0. 29 S0 IT.E SI.T IT S9 ITE 0 5.83 SITE 6 67 2 0 9E 1 30S .8 2E 40.7 0.89 0. 56 0 12 0.17 0.15 0.14 0.15 0.16 0. 10 0..2 0.27 0.24 0.23 0.24 0.26 0. 16 0.10 2 0.18 0.15 0.15 0.16 0.17 0. 10 0.33 .44 0.40 0.38 0.40 0.43 0. 28 0.08 0 .12 0.1 1 0.10 0.1 1 0.12 0.06 0.12 0 .17 0.15 0.15 0.16 0.17 0. 10 0.19 0 .26 0.23 0.22 0.23 0.25 0.15 0.19 0 0.27 0.24 0.23 0.24 0.26 0. 16 0.45 0 0 0.54 0.52 0.55 0.58 0. 39 0.38 0..6 51 0.46 0.44 0.47 0.49 0.33 o.68 O.9 0.82 0.79 0.83 0.89 0. 56 0.55 0.71 0.65 0.63 0.66 0.70 0.47 0.48 0.62 0.57 0.55 0.58 0.61 0.41 0.37 0.43 0.44 0.42 0.45 0.47 0.31 0.59 0.89 0 0.71 0.69 0.73 0.77 0. 50 0.96 12.7 1.4 1 1.1 1 1.6 12.3 0.81 1.16 15.3 1 3.8 13.4 14.0 14.9 0.99 1.36 16.4 1 5.5 15.0 15.5 16.2 1 . 22 1.00 12.1 1 1 1.4 1 1.0 1 1.4 1 1.9 0. 90 0.82 0.99 0 3 0.90 0.93 i 0.97 0.73 1.09 1.3.0 1.9 .3 1.20 12.6 12.9 0.98 1. 1 1 1, ,33 12 2.6 1. 22 1 . 1.31 . 1 .00 1.09 1.31 , 1.24 . 1.20 1,224 .6 ~|\j-J 1. .29 0.98 0 0.82 0.,78 0.76 0.,7 8 , 0.81 0.63 1..69 33 1. 59 1.5.0 1.46 1.5,0 1,.56 1 . 20 1. 7 .09 1.97 , 1.92 1.97 . 2.06 1 .58 1.015 2 1.23 1. 15 1. 12 1. 15 1.21 0.90 1.59 1 1 1.81 1.75 1.81 1.89 1 .42 .72 2..9 07 1.96 1.90 1.96 2.04 1 . 55 1 .92 2. 30 2. 17 2. 1 1 2. 17 2.27 1 . 72 1 1.46 1.75 1.65 1.60 1.65 1. 73 1.31 0 5 0. 89 0.84 0.82 0.84 0.88 0.68 1..7 9 2.38 2. 25 2. 18 2. 25 2. 35 1 . 79 0.97 .94 0.89 0.87 0.89 0.93 0. 72 1.279 0 1.52 1.44 1.40 1.44 1. 50 1.14 2. 10 2 51 2.38 2.31 2.38 2.48 1 .90 2.21 2..6 2.50 2.43 2.50 2.61 2 .00 0.99 1. 4 17 1. 1 1 1.08 1. 1 1 1. 16 0.90 1.50 1.79 .69 1.65 1.69 1.77 1 . 35 1.66 1.98 1 .87 1.82 1.87 1.95 1 .50 1.31 1.56 1 .48 1.44 1.48 1. 54 1.18 1.39 1.66 1 1.57 1.52 1.57 1.63 1 . 25 2.40 2.86 2 1 2.63 2.71 2.82 2. 18 0.86 1.01 0..7 6 0.94 0.96 1.00 0.78 0.76 0. 90 0.9 85 0.83 0.85 0.88 0. 69 0.78 0.93 0.8 8 0.86 0. 88 0.92 0.71 1.07 1. 27 1. 2 . 17 1. 20 1. 25 0.98 1.31 1. 56 1.480 1 1.44 1. 48 1. 54 1.19  DAY 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350  MONTH/ DAY 4/ 1 4/ 2 4/ 3 4/ 4 4/ 5 4/ 6 4/ 7 4/ 8 4/ 9 4/10 4/1 1 4/12 4/13 4/14 4/15 4/16 4/17 4/18 4/19 4/20 4/21 4/22 4/23 4/24 4/25 4/26 4/27 4/28 4/29 4/30 5/ 1 5/ 2 5/ 3 5/ 4 5/ 5 5/ 6 5/ 7 5/ 8 5/ 9 5/10 5/11 5/12 5/13 5/14 5/15 5/16 5/17 5/18 5/19 5/20  DAILY ' NET SITE 1 SITE 0 9. 89 11 . 91 5. 52 6 .59 13 .03 10. 84 3 .40 4 .07 12 .92 10. 75 7 .50 9 .02 7 .25 6 .01 7 .03 8 .46 6 .92 8 .32 2 .36 2 .84 7 .49 9 .06 8 .10 9 .79 1 1 05 . 13 .33 12 .68 15 .29 7 .06 . 5 .91 6 .34 8 . 16 14 .95 . 12 .42 12 .85 15 . 46 13 .50 16 . 22 4 .64 5 . 54 4 .52 5 .41 . 3 .62 3 .01 4 . 13 3 .44 8 .59 10 . 34 13 .63 16 . 36 14 . 23 1 1.86 . 2 .88 . 3 . 46 3 .52 2 .93 , 7 .. 20 8 .55 4 .88 . 5 .81 7 .. 32 8 . 34 7 .96 . 9 .06 5 . 23 5 .97 1 1. 55 10..08 1 1 .. 30 12 .94 4 .87 5 . 56 4 .63 5 .29 12 . 32 10 . 75 12 .04 13 .78 8 .99 10 .31 13 . 38 15 . 30 15 . 87 18 . 19 5 . 16 5 .89 7 .55 8 .61 14 .95 13 .03 14 .95 17 . 14 5 . 49 6 . 27 7 . 70 8 . 76 6 . 34 7 . 22 1 1.97 10 . 44  MJ/M2D RADIATION (DAYTIME) SITE 5 SITE 4 SITE 3 SITE 2 1 1 14 . 1 1 45 . 1 1 91 . 10. 67 6 .18 6 .34 6. 59 5 .93 12. 19 12 .53 13 .03 1 1 68 . 3 .81 3 .92 4 .07 3 .66 12 .08 12 .42 1 1 58 . 12 .92 8 .44 8 .67 9 .02 8 .08 6 .77 6. 96 7. 25 6 .49 7 .91 8 .13 7 .58 8 .46 7 .78 7 .99 8 .32 7 .45 2. 65 2 .73 2 .84 2 .54 8. 46 8 .70 9. 06 8 .10 9 .14 9. 40 9 .79 8 .75 12 .45 12. 80 13 . 33 1 1.92 . 14 .28 14 .69 15 . 29 .68 13 . 6 .62 6 .80 7 .06 . 6 36 7 .65 7 .8G 8 . 16 7 .. 35 14 .37 13 .98 14 . 95 13 . 39 14 .46 14 .86 15.. 46 13 .85 15 .17 15 .59 16 . 22 14 .55 5 .19 5. 33 4 .98 5 .54 5 .07 . 5. 20 5 .41 4 .86 3 . 39 3. 48 3 .62 3 . 25 3..86 4 . 13 3 .97 3 .70 9,,67 9 .94 9 . 26 10 . 34 15 .31 . 15 .73 14 .68 16 . 36 13.. 32 13. 69 14 . 23 12 . 77 3 . 24 3. 33 3 .46 3.1 1 3 .30 3 .39 3 .52 3 . 16 8 .03 8 .24 7 . 72 8 . 55 5 .45 5 .60 5 .81 5 . 24 8 .03 8 .23 8 . 34 7 .83 8 . 73 8 .95 9 .06 8 .51 5 . 75 5 .90 5 .97 5 .60 1 1. 1 1 1 1 40 . 1 1.55 10 .81 12 . 45 12 .78 12 .94 12 . 12 5 . 35 5. 49 5 .56 5 .21 5 .09 5. 22 4 .96 5 .29 1 1.85 12 .16 1 1.53 12 . 32 13 .25 13 .60 13 . 78 12 .91 9 .91 10. 18 9 .65 10 .31 14 . 72 15 .10 14 . 34 15 .30 17 .49 17 .96 . 18 . 19 17 .03 5 .68 5 .82 5 .89 5 . 53 8 . 29 8 .. 50 8 .61 8 .08 14 . 38 14 .76 . 14 .95 13 .99 16 .48 16 . 92 17 . 14 16 .04 6 .03 6 . 19 5 .88 6 . 27 8 . 44 8 .66 8 .76 8 .23 6 .96 7 . 13 7 . 22 6 .78 1 1.51 1 1.82 1 1.21 1 1.97  SITE 6 1 1 60 . 6. 42 12 .70 3 .97 12 .58 8 .79 7 .06 8..24 8 .10 2 .76 8 .82 9. 53 12. 98 14 .89 6 .89 7 .96 14 .56 15 .06 15 .80 5 .40 5 .27 . 3 .53 . 4 .02 . 10..07 15..94 13 .87 3..38 3 .43 8 .34 5 .67 8 . 23 8 .95 5 .90 1 1.40 12 .78 5 . 49 5 .22 12 . 16 13 .60 10 . 18 15 . 10 17 .96 5 .82 8 .50 14 .76 16 .92 6 . 19 8 .66 7 . 13 1 1.82  DAILY EOUI SITE 1 SITE 0 2. 45 2 .03 1 .35 1 . 13 2.23 2. 68 0.70 0. 84 2 . 30 2 .76 1 .85 1 .54 1 .46 1.21 1 .42 1 .70 1 . 33 1 .61 0.45 0. 55 1 .64 1 .35 1 .85 1 .53 2 .57 2.13 3 .33 2.76 1 .57 1.31 1 .78 1 . 49 2 . 76 3 .32 2 .96 3 .56 4 ,08 3.40 1 ,35 1.13 0.97 1 ,, 16 0.67 0,.81 0.81 0..97 1 .87 2 . 25 3.. 57 2.97 2.59 3.. 10 0.66 0,.80 0.65 0 .78 1 .97 1 .66 1 .41 1 . 19 1 .85 1 .63 1 .94 1 . 70 1 . 28 1.12 2 .07 2 . 37 2.42 2 . 77 1 .06 1 .21 1 . 13 0.99 2.34 2 .68 2.78 3 . 18 2 . 29 2 .00 3 . 53 3.08 4 . 50 3.93 1 . 48 1 . 30 2 .02 1 .77 2 .90 3 . 32 4 .02 3.51 1 . 34 1 . 52 1 .94 2 .21 1 .57 1 . 79 2.63 3 .01  EVAPOTRANSPIRATION ( D A Y T I M E ) : MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 2. 38 2 .29 2 .35 2 .45 2 .19 1 .32 1 .27 1 .30 1 .35 1 .22 2 .61 2 .50 2 .57 2 .68 2 .40 0. 82 0. 78 0..80 0. 84 0. 75 2 .69 2 .58 2 .65 2 .76 2 .48 1 .81 1 .73 1 .78 . 1 .85 1 .66 1 .42 •1 . 36 1 .40 . 1 .46 1 .31 1 .66 1 .59 1 .64 . 1 .70 1 .53 1 .56 1 .50 1 .61 1 .54 , 1 .44 0. 53 0. 51 0..53 0. 55 0. 49 1 .59 1 .53 1 .57 . 1 .64 1 .46 1 .80 1 .73 1 .78 . 1 .85 1 .65 2. 50 2. 40 2 .47 . 2 .57 2 .30 3 .25 3, . 1 1 3 . 20 3 .33 2 .98 1 .53 1 .47 1 .51 . 1 .57 1 .41 , 1 .73 1 ,67 . 1 .71 1 .78 1 .60 3 .24 3., 1 1 3 . 19 3 .32 2 .98 3 .47 3 .33 3 .43 3 .56 3 .19 3 .98 3 ,82 . 4 .08 . 3 .92 3 ,66 . 1 .31 1 ,, 26 1 . 30 1 .35 1 ,21 . 1 ,. 13 1 ,08 , 1. 1 1 1 .. 16 1 .04 0.,78 0,, 75 0 .77 0..81 0.,72 0.,94 0,.91 0 .93 0..97 0..87 2.,20 2.1 1 2 . 17 2 . 25 2 .02 . 3 ,47 3 . 34 3 .43 3.. 57 3. , 20 3 ,02 . 2 .90 2 .98 3.. 10 2 .78 0., 78 0 .75 0 .77 0 .80 0 . 72 0..76 0 .73 0 .75 0 . 78 0 .70 1 .92 . 1 .85 1 .90 1 .97 1 . 78 1 . 38 1 . 33 1 . 36 1. 4 1 1 . 27 1 .83 1 . 78 1 .85 1 .83 1 . 74 1 .91 1 .87 1 .91 1 .94 1 .82 1 .26 1 . 23 1 . 28 1 .26 1 . 20 2 .34 2 . 28 2 .34 2 . 37 2 . 22 2 .73 2 .66 2 .73 2 . 77 2 . 59 1 .20 1 . 17 1 .21 1 .20 1 . 14 1 . 12 1 .09 1 . 12 1 . 13 1 .06 2 .65 2 .58 2 .65 2 .68 2 .51 3 . 14 3 .06 3 . 14 3 . 18 2 .98 2 .26 2 . 20 2 .26 2 .29 2 . 14 3 .48 3 . 39 3 .48 3 .53 3 .31 4 .44 4 .33 4 .44 4 .50 4 .21 1 .47 1 . 43 1 .48 1 .47 1 . 39 2 .00 1 .95 2 .00 2 .02 1 .90 3 . 28 3 . 20 3 . 28 3 . 32 3. 1 1 3 .97 3 .87 4 .02 3 .97 3 .77 1 .51 1 .47 1 .51 1 .52 1 .43 2 . 18 2 . 13 2 . 18 2 .21 2 .07 1 .77 1 . 72 1 . 77 1 . 79 1 .68 2 .98 2 .90 3 .01 2 .98 2 .82  DAY 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400  MONTH/ DAY 5/21 5/22 5/23 5/24 5/25 5/26 5/27 5/28 5/29 5/30 5/31 6/ 1 6/ 2 6/ 3 6/ 4 6/ 5 6/ 6 6/ 7 6/ 8 6/ 9 6/10 6/1 1 6/12 6/13 6/14 6/15 6/16 6/17 6/18 6/19 6/20 6/21 6/22 6/23 6/24 6/25 6/26 6/27 6/28 6/29 6/30 7/ 1 7/ 2 7/ 3 7/ 4 7/ 5 7/ 6 7/ 7 7/ 8 7/ 9  DAILY NET RADIATION (DAYTIME) : MJ/M2D SITE 5 SITE 4 SITE 3 SITE 2 S I T E 0* S I T E 1 8 .13 8 .34 8 .44 7 .93 7 .42 8. 44 1 1 53 . 1 1 83 . 1 1 99 . 1 1 22 . 1 1 .99 10. 45 9 .96 10. 21 9 .72 10. 34 9 .10 10. 34 7 .03 7 .21 7 .30 6 .86 6 .41 7 .30 9 .13 9. 36 9 .47 8 .90 8 .32 9 .47 13 . 12 13 .47 13 .64 12 .77 11 . 90 13 .64 18 .66 19 . 15 19 .39 18 .17 16 .95 19. 39 16 .73 17 .16 17 .38 16 .29 15 .20 17 .38 5 .19 5. 32 5 .38 4 .73 5 .06 5 .38 1 1 83 . 12 .14 12 .30 1 1 51 . 10. 73 12 .30 19 .85 20. 37 20. 63 19. 33 18 .04 20. 63 15 .50 15. 70 15 .90 15 .10 14 .50 15 .90 10. 39 10. 51 10. 64 10. 13 9. 75 10. 64 8 .26 8 .36 8 .46 7 .75 8 .05 8 .46 6 .80 6 .88 6 .97 6 .63 6 .37 6 .97 5 .65 5. 73 5 .80 5 .51 5 .30 5 .80 1 1 91 . 12 .07 12 .22 1 1 6.0 1 1 13 . 12. 22 13 . 16 13 .34 13 .51 12 .82 12 .31 13 .51 6 .20 6 .28 6 .36 6. 05 5 .81 6 .36 8 .81 8 .92 9 .03 8 .59 8 .26 9 .03 9 80 10. 49 10. 62 10. 76 10. 21 10. 76 15 . 79 16 .0 0 16 .20 . 14 .77 15. 38 16 .20 1 1.83 . 1 1 99 . 12 . 14 1 1.52 . 1 1.06 . 12 . , 14 8 .61 . 8 .7 1 8 .82 . 8 . 39 8 .06 8 . 82 12 . 16 12.. 32 12 .48 , 1 1 84 1 1. 35 12 .48 6 . 18 6 . 26 6 .33 6 .02 5 .78 6 .33 12 .62 12 . 78 12 .95 12 . 28 1 1. 79 12 .95 . 7 .81 7 .91 . 8 .01 7 .62 7 . 32 8 .01 4 . 45 4 . 39 4 .51 4 . 28 4 . 10 4 .51 8 . 76 8 .87 8 .98 3 . 54 8 .21 8 .98 8 .64 8 . 53 8 . 74 8 . 32 8 .00 8 . 74 6 .20 6 . 28 6 . 36 6 .05 5. 3 1 6 . 36 8 .51 8 .62 8 . 72 8 . 30 7 .98 8 . 72 7 .62 7 .52 7. 7 1 7 . 33 7 .05 7. 7 1 19 .64 19 .89 19 . 13 20 . 15 18 . 37 20 . 15 20 .21 20 .47 20 . 73 19 .69 18 .91 20 . 73 19 .88 20 . 13 19 . 37 20 . 39 18 .60 20 .39 18 . 75 18 .99 19 . 23 17 . 54 18 . 26 19 . 23 9 . 55 9 . 44 9 .67 9 .21 8 . 86 9 .67 14 .04 13 .86 14 . 22 13 .49 14 . 22 12 .95 8 . 36 8 . 46 8 . 57 8 . 16 7 .85 8 . 57 19 .40 19 .90 18 . 89 20 . 16 17 .87 20 . 16 18 .45 18 .93 19 . 17 17 .97 17 .01 19 . 17 16 .93 17 . 37 17 .59 16 .49 17 . 59 15 .61 18 . 79 19 . 27 19 .52 18 . 30 17 .33 19 . 52 18 .21 18 .68 17 . 74 18 .92 16 . 79 18 . 92 9 .97 10 . 24 9 . 70 10 . 37 9 . 16 10 . 37 12 .52 12 .86 13 .02 1 1. 52 12 . 19 13 .02 10 .58 1 1.01 10 .87 9 .72 10 . 29 1 1.01 9 .65 9 .91 9 . 39 10 .04 8 .86 10 .04  SITE 6 8 .34 11 . 83 10. 21 7 .2 1 9 .36 13 .47 19 . 15 17 .16 5 .32 12 .14 20. 37 15 .70 10. 51 8 .36 6 .88 5 .73 12 .07 13 .34 6 .28 8 .92 10. 62 16 .0 0 1 1 99 . 8 .71 12 .32 6 . 26 12 .78 . 7 .91 4 .45 8 .87 8 .64 6 . 28 8 .62 7 .62 19 .89 20 .47 20 . 13 18 .99 9 . 55 14 .04 8 .46 19 .90 18 .93 17 . 37 19 .27 18 .68 10 . 24 12 .86 10 .87 9 .91  DAILY EOUI. EVAPOTRANSPIRATION ( D A Y T I M E ) : MM SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 2 .10 2 .05 2 .10 2 .12 2 .0 0 1 .87 2 .12 2 .88 2 .8 0 2 .88 2 .92 2 .73 2 .54 2 .92 2 .57 2. 51 2 .57 2 .60 2 .45 2 .29 2 .60 1 .85 1 .8 0 1 .85 1 .87 1 .76 1 .64 1 .87 2 .28 2. 22 2 .28 2 .30 2 .16 2 .02 2 .30 3. 1 1 3 .03 3 .1 1 3. 15 2 .94 2 .74 3 .15 4 .66 4 .54 4 .66 4 .72 4 .42 4 .12 4 .72 4. 54 4 .42 4 .54 4 .60 4 .31 4 .02 4 .60 1 .43 1 .39 1 .43 1 .45 1 .36 1 .27 1 .45 3. 0 0 2 .93 3 .0 0 3. 04 2 .85 2 .65 3 .04 4 .95 4 .83 4 .95 5. 02 4 .70 4 .39 5. 02 4 .02 3 .97 4 .02 4 .07 3 .86 3 .7 1 4 .07 2 .65 2 .61 2 .65 2 .68 2 .55 2 .45 2 .68 2 .03 2 .01 2 .03 1 .96 2 .06 1 .88 2 .06 1 .62 1 .6 0 1 .62 1 .64 1 .56 1 .50 1 .64 1 .34 1 .33 1 .34 1 .36 1 .29 1 .24 1 .36 2 .83 2 .8 0 2 .83 2. 87 2 .72 2 .61 z .87 3..08 3 ,04 . 3 .08 3 .1 1 2 .96 2 .84 3. 1 1 1 .45 . 1 ,43 . 1 .45 1 .47 1 .39 1 .34 1 .47 . 2 ,09 . 2 .07 2 .09 . 2 . 12 2 .02 1 .94 2 . 12 2 .45 . 2 ,42 , 2 ,45 . 2 .48 . 2..35 2 .26 . 2 .48 . 3..76 1 3 .71 , 3 .76 3 .80 . 3 .61 . 3 .47 3..80 2 .92 rv> 2 .88 2 .92 2.. 95 2 ,80 , 2 .69 . 2 .95 2 .01 vo 1 .98 2 .01 2 .03 1 .93 . 1 .86 . 2 .03 3 .00 2 .96 3 .00 3 .03 2 .88 2 .76 3 .03 1 .52 1 .50 1 .52 1 .54 1 .46 1 .41 1 .54 3 .00 2 .96 3 .00 3 .04 2 .88 2 .77 3 .04 1 .76 1 . 74 1 .76 1 . 78 1 .69 1 .63 1 . 78 0 .99 0 .98 1 .00 0 .99 0 .95 1 .00 0 .91 2 .08 2 .06 2 .08 2.1 1 2 .01 1 .93 2.1 1 2 .03 2 .00 2 .03 2 .05 1 .95 1 .88 2 .05 1 .45 1 .43 1 .45 1 .47 1 . 39 1 . 34 1 . 47 2 . 10 2 .07 2 . 10 2 . 12 2 .02 1 .94 2 . 12 1 .79 1 .77 1 .79 1 .81 1 . 72 1 .65 1 .81 5 .09 5 .03 5 .09 5 . 16 4 .90 4 . 70 5 . 16 5 .59 5 .52 5 .59 5 .66 5 . 38 5 . 16 5 .66 5 .50 5 .43 5 .50 5 . 57 5 . 29 5 .08 5 . 57 4 .86 4 .80 4 .86 4 .92 4 .67 4 .49 4 .92 2 .53 2 .50 2 .53 2 .56 2 . 43 2 . 34 2 • 56 3 .71 3 .66 3 .71 3 . 76 3 .57 3 .43 3 .76 2 . 24 2 .21 2 .24 2 .27 2 . 16 2 .07 2 . 27 5 . 10 4 .97 5 . 10 4 .84 5 . 16 4 . 58 5 . 16 5 . 17 5 .04 5 . 17 5 .23 4 .91 4 .64 5 .23 4 .82 4 .69 4 .88 4 .82 4 . 57 4 .33 4 .88 5 .43 5 . 29 5 . 43 5 .50 5 . 16 4 .88 5 .50 5 . 26 5 . 13 5 .26 5 . 33 5 .00 4 . 73 5 .33 2 .62 2 .55 2 .62 2 .65 2 .48 2 . 35 2 .65 3 . 18 3 . 10 3 . 18 3 . 22 3 .02 2 .85 3 . 22 2 .64 2 . 57 2 .64 2 .68 2 . 50 2 .36 2 .68 2 .49 2 . 43 2 .49 2 .53 2 . 36 2 .23 2 .53 1  DAY 401 402 403 404 405 406 407 408 409 410 41 1 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450  MONTH/ DAY 7/ 10 7/11 7/12 7/13 7/14 7/15 7/16 7/17 7/18 7/19 7/20 7/21 7/22 7/23 7/24 7/25 7/26 7/27 7/28 7/29 7/30 7/31 8/ 1 8/ 2 8/ 3 8/ 4 8/ 5 8/ 6 8/ 7 8/ 8 8/ 9 8/10 8/1 1 8/12 8/13 8/14 8/15 8/16 8/17 8/18 8/19 8/20 8/21 8/22 8/23 8/24 8/25 8/26 8/27 8/28  DAILY NET SITE 1 SITE 0 8 .61 9 .67 13 .44 15 .20 13 .26 14 .98 , 4.46 5 .0 3 15 .03 16 .96 16 .81 18. 94 15. 07 16 .97 12 .52 14 .1 1 12 .36 13 .95 4 .97 5. 59 14 .38 16 .23 8 .1 1 9 .09 8 .72 9 .87 1 1 72 . 13 .24 16. 12 18 .18 16 .09 18 .12 16 .09 18 .12 16. 13 18 . 16 6 .06 6 .78 8 .78 9 .96 8 .86 9. 94 14 .94 . 16 .88 . 14 .97 . 17 .71 . 13 .82 16 . 36 14 . 38 12 . 12 14 . 10 16 .71 14 .07 16 .66 14 . 14 16 . 69 13 .92 16 .40 14 .08 16 . 57 13 .94 16 . 42 13 . 86 16 . 33 14 . 17 16 .70 14 .05 16 . 57 13 .27 15 . 72 12 .85 15 . 22 13 . 1 1 15 .48 12 .93 15 . 28 13 .75 16 . 25 13 .91 16 .42 8 . 70 10 .30 5 .70 6 .71 14 . 54 12 . 24 1 1.70 13 .90 1 1. 78 13 . 96 7 .00 8 . 18 12 . 25 10 . 26 1 1.64 9 . 75 7 . 52 9 .00 8 . 22 9 .84  RADIATION (DAYTIME) : MJ/M2D SITE 5 SITE 4 SITE 3 SITE 2 9 .31 9 .55 9 .67 9 .08 14 .61 15. 0 0 14 .22 15. 20 14 .40 14 .78 14 .98 14 .02 4 .84 4 .96 5 .03 4 .71 16 .31 16 .74 16 .96 15 .89 18 .23 18 .70 18 .94 17 .76 16 .34 16 .76 16 .97 15 .92 13 .58 13. 93 14 .1 1 13 .23 13 .42 13 .77 13 .95 13 .07 5 .39 5 .52 5. 59 5 .25 15. 61 16 .02 16. 23 15 .20 8 .76 8 .98 9 .09 8 .55 9 .49 9 .74 9 .87 9 .23 12 .73 13 .07 13 .24 12 .40 17 .49 17 .95 17 .04 18 .18 17 .44 17 .89 18. 12 16 .99 17 .45 17 .90 18. 12 16 .99 17 .49 17 .94 18 .16 17 .04 6. 54 6 .70 6. 78 6 .38 9 .57 9. 33 9. 96 9 .31 . 9 .58 . 9..82 9 .94 9 .34 . 16 . 23 16 .66 . 16 .88 15 .80 . 16..80 17 . 25 16 . 1 1 17 .94 15 . 52 15 .94 16. 57 14 .88 13 .63 14 .01 14 .57 13 .06 15 .84 16 . 28 16 .93 . 15 . 19 15 . 79 16 . 23 16..87 15 . 15 15 .84 16 . 27 16..90 15 .20 15 .57 15 .99 16 .61 14 .95 15 . 74 16 . 15 16 . 78 15 . 12 15 . 59 16 .00 16 .62 14 .97 15 . 50 15 .92 16 .53 14 .89 15 .86 16 . 28 16 .91 15 .22 15 . 73 16 . 15 16 . 78 15 . 10 14 .90 15 .31 15 .92 14 . 29 14 .43 14 .82 15 .41 13 .83 14 .69 15 .09 14 . 10 15 .68 14 . 50 14 .89 15 .47 13 .91 15 .42 15 .83 16 . 46 14 .79 15 . 58 16 .00 16 .63 14 .95 9 . 77 10 .03 9 .36 10 .43 6 .37 6 .54 6 . 79 6 . 12 13 . 77 14 . 16 14 . 73 13 .20 13 . 17 13 . 53 14 .08 12 .62 13 .24 13 .60 14 . 14 12 .69 7 .79 7 .98 8 . 28 7 .49 1 1.58 1 1.91 12 .41 1 1.09 1 1.01 1 1.32 1 1.80 10 .54 8 .50 8 .75 9 . 12 8 . 14 9 . 30 9 .57 9 .97 8 .90  SITE 6 9 . 55 15.00 14 . 78 4 .96 16.74 18.70 16.76 13.93 13.77 5.52 16 .02 8.98 9.74 13 .07 17 .95 17 .89 17.90 17.94 6.70 9.83 9.82 16 .66 17.25 15.94 14.01 16.28 16.23 16.27 15.99 16. 15 16.00 15.92 16.28 16. 15 15.31 14 .82 15.09 14.89 15.83 16.00 10.03 6.54 14 . 16 13.53 13.60 7 .98 11.91 1 1 . 32 8.75 9.57  DAILY EOUI SITE 1 SITE 0 2.13 2 .39 3 . 38 3 .83 3.51 3 .96 1.18 1 .33 4 .04 4 .56 4.66 5 .25 4.31 4 .86 3.69 4 .16 3.43 3 .87 1 . 34 1 .50 3.93 4 .43 2 . 22 2 .48 2 . 34 2 .65 3 . 20 3 .61 4.54 5 .12 4.74 5. 34 4.81 5 .42 4 .89 5 .51 1 . 78 2 .0 0 2 . 25 2 .55 . 2.34 2 .63 . 4 .08 4 .61 . 4 .84 4 .09 3.83 4 .54 3 . 26 3 .87 3.85 4 . 56 3 .96 4 .69 4 . 29 5 .06 4 . 35 5 . 13 4 .46 5 . 25 4.42 5 .20 4.39 5 . 17 4 .49 5 .29 4 . 39 5 . 18 3.97 4 .70 3.84 4 .55 3.86 4 .56 3.81 4 .50 4 .05 4 . 79 4.22 4 .98 2 .60 3 .08 1 .46 1 .72 3 . 24 3 .84 3.25 3 .85 3.47 4. 1 1 2 .06 2 .41 2.54 3 .03 2 .45 2 .93 1 .92 2 .30 2.11 2 .52  EVAPOTRANSPIRATION ( D A Y T I M E ) : MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 2 .36 2. 30 2 .36 2 .39 2 .25 3. 78 3 .68 3 .78 3 .83 3 .58 3 .91 3. 81 3 .91 3 .96 3 .71 1 .31 1 .28 1 .31 1 .33 1 .25 4. 50 4. 39 4 .56 4 .50 4 .27 5. 19 5. 06 5. 19 5. 25 4 .92 4 .80 4 .67 4 .80 4. 86 4 .55 4 .10 4 .0 0 4 .10 4 .16 3 .90 3. 82 3. 72 3 .82 3 .87 3 .62 1 .48 1 .45 1 .48 1 .50 1 .41 4 .37 4 .26 4 .37 4 .43 4 .15 2. 45 2 .39 2. 45 2 .48 2 .33 2. 62 2. 55 2 .62 2 .65 2 .48 3 .57 3 .48 3 .57 3 .61 3 .38 5. 06 4. 93 5 .06 5 .12 4 .80 5. 27 5. 14 5. 27 5. 34 5 .01 5. 35 5. 22 5. 35 5. 42 5 .08 5..44 5.. 30 5 .44 5 .51 5 .17 1 .97 . 1 .93 . 1 .97 . 2 .0 0 1 .88 2..52 2 .45 . 2 .52 . 2..55 2 .38 2 .60 . 2 . 53 2 .6 0 2 .63 2 .47 4 .55 , 4 .43 . 4 . 55 4 .61 . 4 .31 . 4 .71 , 4,.59 4 .71 . 4 .90 . 4 .40 . 4 .42 , 4 .30 4 .42 4 .60 . 4 ,, 13 3..77 3 .66 3 .77 3 .92 3 .51 , 4 .44 4 . 33 4 .44 4 .62 4 . 15 4 .57 4 .45 4 .57 4 .75 4 .27 . 4 .93 4 .80 4 .93 4 .61 . 5 . 13 5 .00 4 .87 5 .00 4 .67 5 . 19 4 .99 5 . 12 5 . 12 5 . 32 4 .79 5 .07 4 .94 5 .07 5 . 27 4 .74 5 .04 4 .91 5 .04 4 .72 5 . 24 5 . 16 5 .02 5 . 16 5 .36 4 .82 5 .05 4 .92 5 .05 5 . 24 4 .72 4 .58 4 .45 4 .53 4 . 76 4 .27 4 .43 4 .31 4 .43 4 .61 4 . 14 4 .44 4 .33 4 .44 4 .62 4 . 15 4 .39 4 . 27 4 . 39 4 . 56 4 . 10 4 .66 4 . 54 4 .66 4 .85 4 .36 4 .85 4 . 73 4 .85 5 .04 4 .54 3 .00 2 .92 3 .00 3 . 12 2 .80 1 .67 1 .63 1 .67 1 .74 1 .57 3 .74 3 .64 3 .74 3 .90 3 .49 3 . 75 3 .65 3 . 75 3 .90 3 .50 4 .01 4 .01 3 .90 4 . 17 3 .74 2 . 35 2 . 29 2 . 35 2 . 44 2 .21 2 .95 2 .87 2 .95 3 .07 2 .74 2 .85 2 . 77 2 .85 2 .97 2 .65 2 . 24 2 . 18 2 . 24 2 . 33 2 .08 2 .45 2 . 38 2 . 45 2 . 55 2 .28  DAY 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500  MONTH/ DAY 8/29 8/30 8/31 9/ 1 9/ 2 9/ 3 9/ 4 9/ 5 9/ 6 9/ 7 9/ 8 9/ 9 9/10 9/1 1 9/12 9/13 9/14 9/15 9/16 9/17 9/18 9/19 9/20 9/21 9/22 9/23 9/24 9/25 9/26 9/27 9/28 9/29 9/30 10/ 1 10/ 2 10/ 3 10/ 4 10/ 5 10/ 6 10/ 7 10/ 8 10/ 9 10/10 10/1 1 10/12 10/13 10/14 10/15 10/16 10/ 17  DAILY NET SITE 1 SITE 0 6 .69 8 .03 10. 79 12 .88 5 .43 6 .4 1 7 .34 5. 65 7 .61 10. 12 7 .56 5. 65 4 .93 6 .44 8 .72 1 1 60 . 9 .09 12 .06 9 .37 12 .40 9 .32 12 .34 5. 23 6 .77 8 .23 11 . 02 8 .49 1 1 .36 8 .74 1 1 70 . 8 .88 1 1 93 . 8 .73 1 1 .70 8 .80 1 1,.78 9. 19 12 . 12 7 .50 9 .94 4 ,69 . 3 .59 . 6. 55 8 . 78 3 .45 . 4 .55 4 . 50 3 .40 . 4 .32 . 5 . 87 3 .85 5 . 26 4 .61 6 . 27 6 .50 8 . 79 4 . 59 6 . 27 4 . 49 3 .39 5 . 78 7 .87 4 .03 5 . 55 3 . 28 4 . 38 1 .01 0 .64 4 . 27 6 . 34 4 .47 6 .63 3 . 25 4 .90 0 .43 0 . 73 1 .41 2 . 10 2 . 36 3 . 43 1 . 22 1 .84 3.1 1 4 . 77 4 .82 3 . 13 4 . 17 6 . 37 3 .58 5 . 52 3 .57 5 . 54 3 . 42 5 . 34 2 .58 4 . 10 2 . 73 4 . 35 2 . 30 3 . 53  MJ/M2D RADIATION (DAYTIME) SITE 5 SITE 4 SITE 3 SITE 2 7 .58 7 .80 8 .14 7 .25 12 .18 12 .53 13. 05 1 1 66 . 6 .08 6. 25 6 .49 5. 84 6. 78 7 .06 7 .44 6 .31 9. 29 9. 71 10. 26 8. 59 6 .92 7 .24 7 .67 6 .39 5. 94 6 .19 6. 52 5 .52 10. 64 1 1 12 . 1 1 76 . 9 .84 1 1 07 . 1 1 57 . 12 .23 10. 24 1 1 39 . 1 1 89 . 12 .56 10. 55 34 11 . 1 1 84 . 12 .51 10. 49 6 .26 6 .51 6 .86 5 .83 10. 55 - 10.09 1 1 17 . 9 .31 10. 40 10. 88 1 1 52 . 9 .61 1 1 21 . 10. 71 1 1 86 . 9 .89 10. 91 1 1 42 . 12 .09 10. 07 1 1 21 . 10. 71 1 1 87 . 9 .88 1 1 29 . 10..79 1 1 95 . 9 .96 1 1 .. 14 1 1 63 . 12 .28 10. 33 9 . 13 9 .54 10. 08 8 .45 4 . 32 4 .50 4 .75 4 .02 . 8..04 8. 41 7 .42 . 8..91 4 . 18 4..36 4 .61 , 3 .88 4 . 13 4 .32 . 4 .56 . 3 .83 5 . 35 5..61 5..96 4 .92 4 .79 5 .03 5 . 34 4 .40 5 .72 6 .00 6 . 36 5 . 26 8 .03 8 .41 8 .92 7 .39 5 .71 5 .99 6 . 37 5 .25 4 . 12 4 .31 4 . 55 3 .82 7 . 17 7 .52 7 .99 6 . 59 5 .05 5 . 30 5 .64 4 .62 4 .01 4 . 20 4 .44 3 .71 0 .88 1 .04 O .94 0 . 76 5 .65 5 .94 4 .96 6 . 53 5 .91 6 . 22 6 .84 5 . 19 4 .35 4 .58 5 .05 3 .80 0 .63 0 .67 0 . 75 0 . 53 1 .87 1 .97 2 . 16 1 .64 3 .07 3 .22 3 .53 2 .71 1 .63 1 .72 1 .90 1 .42 4 .22 4 .46 4 .93 3 .67 4 . 26 4 .50 4 .98 3 .69 5 .64 5 .95 6 .58 4 .90 4 .87 5 . 15 5 .71 4 . 23 4 .88 5 . 16 5 . 72 4 . 22 4 .70 4 .98 4 .06 5 . 53 3 .60 3 .81 4 . 25 3 .09 3 .81 4 .04 4 .51 3 . 27 3 . 12 3 . 29 3 . 65 2. 71  SITE 6 7 .80 12 .53 6 .25 7 .06 9. 71 7 .24 6 .19 1 1 12 . 1 1 57 . 1 1 89 . 1 1 84 . 6 .51 10. 55 10. 88 1 1 21 . 1 1 42 . 1 1 21 . 1 1 29 . 1 1 63 . 9. 54 4..50 8 .41 . 4 .. 36 4 .32 5 .61 5 .03 6 .00 8 .41 5 .99 4 .31 7 .52 5 . 30 4 .20 0 .95 6 .04 6 . 32 4 .66 0 .68 2 .00 3 .27 1 .75 4 .54 4 .58 6 .06 5 .25 5 .25 5 .07 3 .89 4 . 12 3 .35  DAILY EOUI SITE 0 SITE 1 2 .12 1 . 77 3. 41 2 . 85 1 .64 1 . 39 1 .82 1 . 40 2 .68 2.01 1 .94 1 . 45 1 .59 1 . 22 3 .07 2.31 3 .35 2.52 3. 55 2.68 3 .53 2 . 67 1 .91 1 . 47 2 .91 2.18 3 .10 2 . 32 3. 15 2 . 35 3 .15 2 . 35 3 .19 2 . 38 3 .32 2 . 48 3 .42 . 2 . 59 2 .76 . 2.08 1 ,24 . 0.95 2. , 17 1 . 62 1 .. 1 1 0. 84 1 .00 0. 76 1 . 30 0. 96 1 . 17 0.86 1 .39 1 .02 2 .03 1 .50 1 .45 1 .06 1 .06 0. 79 1 .91 1.41 1 .21 0. 88 1 .01 0.76 0 . 24 0. 15 1 .41 0.95 1 .42 0. 95 1 .05 0.70 0.09 0 . 16 0. 33 0 .48 0.52 0 . 76 0 .40 0.27 1 .04 0.68 1 .05 0.68 1 . 36 0. 89 1 . 20 0.78 1 . 23 0. 79 1 .23 0.79 0 .95 0.60 1 .00 0.63 0 .83 0.54  EVAPOTRANSPIRATION ( D A Y T I M E ) : MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 2 .06 2. 0 0 2 .06 2 .15 1. 92 3. 31 3 .22 3 .31 3. 45 3 .08 1 .6 0 1 .56 1 .60 1 .66 1 .49 1 .75 1 .68 1 .75 1 .84 1 .56 2 .57 2. 46 2. 57 2. 71 2 .27 1 .85 1 .77 1 .85 1 .96 1 .64 1 .53 1 .47 1 .53 1 .61 1 .37 2 .94 2 .81 2 .94 3 .1 1 2 .60 3. 21 3. 07 3. 21 3. 39 2 .84 3. 4 0 3. 26 3 .40 3. 59 3 .02 3. 39 3 .24 3 .39 3. 58 3 .0 0 1 .84 1 .76 1 .84 1 .93 1 .64 2. 79 2 .67 2. 79 2 .95 2 .46 2 .97 2. 84 2 .97 3 .14 2 .62 3 .01 2. 88 3 .01 3. 19 2 .66 .02 3 . 2. 89 3 .02 3. 20 2 .66 3 .06 2 .92 3 .06 3 .24 2 .70 3 .18 3. 04 3. 18 3. 37 2 .81 3. 28 3. 14 3. 28 3. 46 2 .91 2 .64 2. 53 2 .64 2. 80 2 .34 1 .19 1 .14 1 .19 1 ,26 , 1 .06 2 .08 . 1 .99 2 .08 2, . 20 1 .84 1 ,06 . 1 .02 1 ,. 12 1 .06 . 0..94 0.. 96 0..92 1 .01 . 0,,96 0.,85 W 1 , 25 1 .. 19 1 .. 25 1 ., 32 1 .09 . 1 . . 12 1 .06 . 1 . . 12 1 . 19 0 .98 1 1 .33 , 1 .. 27 1 .33 . 1 .41 1.. 17 1 .94 1 .85 , 1 .94 . 2 .06 1 .70 1 .38 1 .32 , 1 ., 38 1 .47 1 .21 1 .01 1 .01 0..97 1 .07 0 .90 1 .83 1 .74 1 .83 1 .94 1 .60 1 . 16 1 . 10 1 . 16 1 . 23 1 .01 0 .97 0 .93 1 .02 0 .97 0 .86 0 . 22 0 .21 0 . 22 O .24 0 . 18 1 . 34 1 . 26 1 . 32 1 .45 1 . 10 1 . 35 1 . 26 1 .33 1 .46 1. 1 1 1 .00 0 .93 1 .08 0 .98 0 .81 0 . 15 0 . 13 0 . 14 0 . 16 0.1 1 0 . 46 0 . 43 0 .45 0 .50 0 . 38 0 .73 0 .68 0 .72 0 .78 0 .60 0 . 38 0 . 36 0 .38 0 .41 0 .31 0 .99 0 .92 1 .08 0 .97 0 .80 1 .00 0 .93 1 .09 0 .98 0 .81 1 . 29 1 .21 1 .27 1 .41 1 .05 1 . 14 1 .06 1 . 12 1 . 24 0 .92 1 . 17 1 .08 1 . 15 1 . 27 0 .94 1 . 17 1 .08 1 . 15 1 .27 0 .94 0 . 90 0 .83 0 . 88 0 .98 0 .71 0 .95 0 .88 1 .04 0 .93 0 .75 0 . 79 0 . 73 0 . 77 0 .86 0 .64  DAY 501 502 503 504 505 506 507 508 509 510 511 512  MONTH/ DAY 10/18 10/19 10/20 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29  MJ/M2D DAILY NET RADIATION (DAYTIME) SITE 5 SITE 4 SITE 3 SITE 2 SITE 1 SITE O 3.03 3.20 3.54 2.62 2.22 3.43 1 .43 1 .66 .50 1 .24 .06 1 .61 3..93 4.60 . 16 3.41 ,89 4 .45 . 4 .57 . .83 . 34 3.97 .37 5 . 17 4 .51 . . 77 . 28 91 .31 5 . 1 1 3 .81 . .03 .47 29 . 77 4 .. 32 3 .65 . .86 . 30 14 .64 4 .. 15 2 .48 .61 .87 18 .87 2 .78 2 .51 .65 .91 20 .89 2 .83 . .71 0..67 56 0.80 0.45 0.. 77 .61 1 .52 31 1 .78 1.11 1 .72 .79 1 .69 1 .98 46 1 . 24 1 .92  SITE 6 3 . 26 53 23 91 85 10 94 65 69 73 63 82  DAILY EQUI. EVAPOTRANSPIRATION ( D A Y T I M E ) : MM SITE 6 SITE 5 SITE 4 SITE 3 SITE 2 SITE 1 0.75 0.70 0. 74 0.82 0.60 0.51 0. 33 0. 30 0.32 0. 35 0. 27 0. 23 0.94 0.87 0.92 1 .02 O. 76 0.64 1 .05 0.98 1 .03 1.14 0.85 0.72 1.12 1 .04 1 . 10 0.90 1 . 22 0.76 0.95 0.88 0.93 0.76 1 .03 0.64 0.87 0.81 0.86 0.70 0. 59 0..95 0.61 0.57 0.60 0.50 0.43 0..66 0.59 0.55 0. 58 0.48 0.41 0..64 0. 16 0.15 0.16 0.12 0. 10 0. 18 0.35 0.32 0. 34 0.28 0.38 0. 24 0.37 O. 34 0. 36 0. 29 0.40 0.25  SITE O 0. 79 0. 34 0..99 1 1 1 1 . 18 1 .00 0..92 0.64 0.62 0.17 O. 37 O. 39  - 233 -  APPENDIX 11 Equilibrium evapotranspiration for each data period and each site, determined by summation of daily equilibrium evapotranspiration (Appendix 10) over data periods (Appendix 9). Zeros are shown for data periods when neutron probe data was not obtained. Summation of evapotranspiration was then carried forward and data periods extended to the next neutron probe reading.  EQUILIBRIUM DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA  SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET  NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO  : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 :10 :11 :12 :13 :14 :15 :16 :17 :18 :19 :20 :21 :22 :23 :24 :25 :26 :27 :28 :29 :30 :31 :32 :33 :34 :35 :36 :37 :38 :39 :40 :41 :42 :43 :44 :45 :46 :47 :48 :49  EVAPOTRANSPIRATION FOR DATA PERIODS SITE 1 SITE 2 SITE 0 28 57 28.35 31 .44 16 79 21.55 16.94 18.59 17.40 21 .33 22 87 23.12 25.39 23.59 20.84 21.81 22.60 20.35 24.05 33.63 29.78 24.42 35.46 31.23 35.71 25.31 22.16 23.87 31.79 0.00 28.33 16.51 0.00 14.61 26.00 62.17 25.90 8.27 5.91 5.95 32.44 25.08 29.29 11.25 8.22 7.38 10.47 7.79 9.64 15.59 10.73 11.14 7.33 5.12 6.35 0.00 0.00 6.69 13.05 8.47 3.75 0.00 1.31 1.22 7.06 2.62 3.66 3.00 1.41 1.93 2.43 1.06 1.51 4.51 2.27 2.85 4.56 2.24 3.15 5.75 3.48 4.31 4.45 2.70 3.13 27.15 20.17 22.29 24.18 18.18 20.64 31.77 26.49 29.95 43.56 36.46 37.89 33.79 29.99 32.92 43.36 38.14 38.99 30.43 27.80 30.89 40.78 37.38 40.03 36.64 31.90 29.07 18.48 15.81 18.33 33.29 28.99 29.63 23.42 "22.51 25.32 30.21 26.08 27.32 26.53 22.63 25.88 37.20 31.30 34.07 23.14 19.03 19.88 20.27 17.20 17.38 27.88 20.58 23.40 28.43 21.29 24.67 15.03 11.02 12.46 16.75 10.68 13.12  : MM MESACHIE 1980-1981 SITE 3 SITE 4 SITE 5 27.81 28.84 27.99 22.54 22.13 22.77 18.23 18.16 17.19 0.00 25.36 23.23 48.64 22.73 22.51 24.81 24.25 25.31 26.03 25.69 25.09 38.09 36.82 37.92 25.17 24.93 25.16 33.08 32.13 28.04 16.20 15.50 15.44 28.10 27.12 26.05 9.03 9.36 8.01 31.98 29.47 29.85 11.47 10.98 9.03 12.31 11.50 10.05 13.56 12.38 13.27 8.08 7.41 6.57 8.03 7.66 0.00 5.89 5.00 12.21 2.71 2.26 1.37 5.08 4.45 4.46 3.27 2.65 2.49 2.56 2.04 1.99 4.75 3.90 3.71 4.67 3.91 3.89 5.92 5.31 5.12 4.67 4.04 3.75 26.61 24.49 24.89 25.01 24.11 22.59 33.83 32.15 31.58 41.14 40.09 39.21 34.05 34.13 33.41 43.01 41.21 40.98 30.92 30.78 30.44 44.04 43.65 40.03 28.97 28.50 32.13 20.89 20.76 18.80 31.92 31.38 30.38 24.14 25.32 26.09 30.36 28.82 29.20 32.36 31.09 24.82 33.56 30.68 35.56 26.01 25.08 21.38 18.26 18.75 19.28 27.81. 26.23 24.38 33.56 31.34 26.41 12.09 11.75 13.94 18.73 16.60 15.00  SITE 6 27.94 22.03 18.27 25.74 22.73 23.74 25.68 36.54 24.96 32.51 15.45 27.22 10.02 28.76 11.06 11.35 12.67 7.49 8.53 4.44 2.28 4.71 2.79 2.11 4.05 4.23 5.41 3.93 25.21 23.63 32.27 40.86 35.54 40.42 30.42 43.04 30.69 18.56 31.52 26.41 28.71 30.69 29.52 25.33 19.38 26.33 30.80 12.34 16.48  - 235 -  APPENDIX 12 P r e c i p i t a t i o n and gross interception f o r each s i t e and f o r data periods, determined by summation of p r e c i p i t a t i o n (Appendix over data periods.  4)  Gross interception was calculated for data periods from interception versus rainfall intensity functions developed for each site, described in Section 3.3.2  PRECIPITATION DATA  SET  NO:  1  DATA  SET  NO:  2  DATA  SET  NO:  3  DATA  SET NO:  4  DATA  SET  NO:  5  DATA  SET NO:  6  DATA  SET  NO:  7  DATA  SET  NO:  8  DATA  SET NO:  9  DATA  SET NO:  10  DATA  SET  NO:  1 1  DATA  SET  NO:  12  DATA  SET  NO:  13  DATA  SET  NO:  14  DATA  SET  NO:  15  DATA  SET  NO : 16  DATA  SET  NO:  17  DATA  SET NO:  18  DATA  SET  NO:  19  DATA  SET  NO:  20  DATA  SET  NO:  21  DATA  SET  NO:  22  DATA  SET  NO:  23  DATA  SET  NO:  24  DATA  SET  NO:  25  AND GROSS  PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION  SITE 0 34 .00 2 .21 0. 20 0. 20 31 .70 2 .12 33. 45 2 .19 2. 72 0. 96 1 1 52 . 1 .31 6. 40 1 .1 1 0. 00 0. 00 0. 40 0. 40 0. 00 0. 00 4 .20 1 .02 5. 50 1 .07 . 14 .80 . 1 .44 . 19..40 1 .63 25 .50 1 .87 31 .07 2 .09 0 .52 0 .52 22 .40 1 .75 0 .00 0 .00 6 .40 1. 1 1 0 .00 0 .00 349 .80 14 .84 248 .75 10 .80 129 .55 6 .03 386 .50 16 .31  FOR DATA PERIODS: MM MESACHIE 1980-1981 SITE 5 SITE 4 SITE 3 SITE 2 32 . 10 33 .92 32 .10 33 . 95 10. 33 5. 24 9. 22 6.24 0. 20 0. 20 0. 20 0.20 0. 20 0. 20 0. 20 0.20 33. 00 33 .00 33 .00 33.00 10. 56 5 .13 9. 43 6.11 32 .45 32 .90 0. 00 32.60 10. 42 5 .12 0. 00 6.05 2 .57 2 .35 35. 32 2.50 2 .57 1 .45 9 .96 1 .68 1 1 37 . 1 1 15 . 1 1 07 . 1 1 . 30 4 .94 2 .51 4 .39 2.96 6. 40 6. 40 6. 40 6.40 3. 64 1 .94 3 .31 2 . 25 0. OO 0. 00 0. 00 0.00 0. 00 0. 00 0. 00 0.00 0. 40 0. 40 0. 40 0.40 0. 40 0. 40 0. 40 0.40 0. 00 0. 00 0. 00 0.00 0. OO 0. 00 0. 00 0.00 4 .20 4 .20 4 .20 . 4.20 3..07 1 .67 2 .81 . 1 .93 5.,50 5 .50 5..50 5.50 3..41 1 .83 . 3.. 1 1 2. 12 14 .80 14 . .80 14 .80 14.80 5 .83 2 .95 , 5 . 24 3.47 19 .40 19 .40 19 .40 19.40 7 .02 3 .50 6 .30 4.13 25 .50 25 .50 25 .50 25.50 8 .61 4 .23 7 .71 5.02 31 .22 31 .45 31 .52 31 . 30 10 . 10 4 .94 9 .09 5.86 0 .38 0 . 15 0 .07 0. 30 0 . 38 0 . 15 0 .07 0. 30 21 .67 21 .00 21 .22 22.40 7 .62 3 .69 6 .72 4.57 0 .00 7 .80 7 .57 6.40 0 .00 2.1 1 3 .58 2 . 25 7 . 13 0 .00 0 .00 0.00 3 .83 0 .00 0 .00 0.00 162 .60 162 .60 162 .60 162.60 44 .26 20 .68 39 .24 24.90 190 .70 181 .95 183 .70 192.45 51 . 56 23 .00 44 .09 29 . 23 244 .97 252 .62 251 . 15 242.67 65 .67 31 .49 59 .60 36.51 129 .60 129 .72 129 .52 130.07 35 .68 16 .74 31 .63 20. 18 386 .72 386 .50 387 .62 386.80 102 .53 47 . 55 90 .99 57.41  SITE 1 34 .02 4.54 0. 20 0. 20 32 .05 4 . 35 33.25 4 .47 2.65 1.41 1 1 .45 2 . 29 6.40 1 .78 O.OO 0.00 0.40 0.40 0.00 0.00 0.00 0.00 9.70 2.11 14.80 2.62 19.40 3.08 25.50 3.69 31.15 4 . 26 0.45 0.45 22 .40 3.38 0.00 0.00 6.40 1 .78 162.60 17 .40 188.95 20.04 247.27 25.87 129. 12 14 .05 386.65 39.81  SITE 6 32. 10 8. 90 0. 20 0. 20 33. 00 9. 10 33. 05 9. 1 1 2. 35 2. 35 1 1 00 . 4 .26 6. 40 3. 25 0. 00 0. 00 0. 40 0. 40 0. 0 0 0. 00 4 .20 2.,76 5.,50 3.,05 14 .80 , 5 . 10 19 .40 6.1 1 25 .50 7 .45 31 .38 8 . 74 0 . 22 0 . 22 20 .77 6 .41 8 .03 3 .61 0 .00 0 .00 162 .60 37 .61 180 .20 41 . 48 254 . 10 57 .74 129 .92 30 .42 386 . 17 86 .80  DATA SET NO: 26 DATA SET NO: 27 DATA SET NO: 28 DATA SET NO: 29 DATA SET NO: 30 DATA SET NO: 31 DATA SET NO: 32 DATA SET NO: 33 DATA SET NO: 34 DATA SET NO: 35 DATA SET NO: 36 DATA SET NO: 37 DATA SET NO: 38 DATA SET NO: 39 DATA SET NO: 40 DATA SET NO: 41 DATA SET NO: 42 DATA SET NO: 43 DATA SET NO: 44 DATA SET NO: 45 DATA SET NO: 46 DATA SET NO: 47 DATA SET NO: 48 DATA SET NO: 49  PRECIPITATION AND GROSS INTERCEPTION FOR DATA PERIODS: SITE 2 SITE 1 SITE 0 118.80 1 18 .80 1 18.80 PRECIPITATION 18.55 13 .02 GROSS INTERCEPT ION 5 .60 . 24. 10 24 . 10 PRECIPITATION 24 .10 4.81 3.55 GROSS INTERCEPTION 1.81 275.62 279. 19 PRECIPITATION 279.36 41.29 29 .06 GROSS INTERCEPTION 12 .02 44.67 41.11 40.94 PRECIPITATION 7.80 5.25 2.49 GROSS INTERCEPTION 51.20 51 .82 52 .45 PRECIPITATION 8.74 6 . 32 2 .95 GROSS INTERCEPTION 251.00 242.57 241.30 PRECIPITATION 37.71 25.40 10. 50 GROSS INTERCEPTION 120.70 129.27 130.70 PRECIPITATION 18.82 14 .07 6 .08 GROSS INTERCEPTION 17.80 17 .02 16 . 25 PRECIPITATION 3.90 2 .84 1 .50 GROSS INTERCEPTION 33.90 40. 15 40. 10 PRECIPITATION 6.24 5. 16 2 .45 GROSS INTERCEPTION 56.50 50. 25 50.30 PRECIPITATION 9.51 6. 17 2.86 GROSS INTERCEPTION 46.71 46 .60 46.60 PRECIPITATION 8.09 5.80 2.71 GROSS INTERCEPTION 0.69 0.80 .80 PRECIPITATION 0.69 0.80 .80 GROSS INTERCEPTION 8 . 30 8 . 30 PRECIPITATION 8.30 2.52 1 .97 GROSS INTERCEPTION 1 . 18 0.30 0. 30 0.30 PRECIPITATION 0.30 0.30 0.30 GROSS INTERCEPTION 0.00 0.00 O.OO PRECIPITATION 0.00 0.00 0.00 GROSS INTERCEPTION 1.00 1 .OO 1 .00 PRECIPITATION 1.00 1 .00 0.89 GROSS INTERCEPTION 0.00 0.00 0.00 PRECIPITATION 0.00 0.00 0.00 GROSS INTERCEPTION 0.00 0.00 00 PRECIPITATION 0.00 0.00 00 GROSS INTERCEPTION 7 . 20 20 7 . 20 PRECIPITATION 2.36 14 1 .86 GROSS INTERCEPTION 50.20 50. 20 50. 20 PRECIPITATION 8.60 6 . 16 2.86 GROSS INTERCEPTION 1 . 90 1 .90 .90 PRECIPITATION 1 .60 1 . 33 .93 GROSS INTERCEPTION 64.20 64.20 64.20 PRECIPITATION 10.63 7.56 3.42 GROSS INTERCEPTION 174.62 175.30 175.30 PRECIPITATION 26.64 18 .67 7 86 GROSS INTERCEPTION 92.66 90. 74 91 36 PRECIPITATION 14.76 10.21 4 50 GROSS INTERCEPTION  MM MESACHIE 1980- 1981 SITE 5 SITE 3 SITE 4 118.80 116.90 118.05 32.87 28.73 15.34 24 . 10 26.00 26.05 8 . 25 7.82 4.30 276.77 275.05 274.47 73.94 65.10 34.11 43.52 45.25 45.82 13.30 12.25 6.67 51.51 51.20 51.20 15.37 13.62 7.31 250.71 250.95 250.92 67 . 17 59.56 31.28 121.06 116.15 116.17 33.46 28.55 15.11 17.41 22.34 22.40 6.51 6.98 3.86 40.00 33.96 33.90 12.38 9.65 5.24 50.40 51.47 51.35 15.08 13.68 7.33 46.60 51.70 51.79 14.10 13.73 7.38 0.80 0.72 0.76 0.80 0.72 0.76 8.30 8 . 30 8 . 30 4 . 14 3.75 2.17 0.30 0.30 0.30 0.30 0.30 0.30 0.00 0.00 O.00 0.00 0.00 0.00 1 .00 1.00 1.00 1 .00 1.00 1.00 0.00 0.00 O.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.00 7 . 20 7 . 20 7.20 3 .85 3.50 2.03 50.20 50.20 50.20 15.03 13.39 7.19 1 .90 1.90 1.90 1 .90 1 .90 1 .40 64.20 64.26 64.24 18.67 16.62 8.88 174.66 174.41 174.47 47.39 41.95 22.11 92 . 31 107.05 105.55 25.98 26.46 13.84  SITE 6 1 18 .60 27 .93 25.90 7 . 54 273.90 62 . 10 46 .40 12 .05 51 .20 13 . 10 250.90 57 .04 1 16.20 27 .40 22.40 6.77 33 .90 9.30 51 .54 13.18 51 . 56 13.18 0..80 0..80 8.30 3.67 0. 30 0.30 0.00 0.00 1 .00 1 .00 0.00 0.00 0.00 0.00 7.20 3.42 50.20 12 .88 1 .90 1 .90 64.22 15 .97 174.56 40.24 104.01 24.72  ro  - 238 -  APPENDIX 13  Profile water storage for each site calculated from neutron probe measurements, by summation of the water content determined for each horizon over the total root zone. Zeros are shown when neutron probe data was not obtained. In this case the profile water storage is calculated to the next neutron probe reading.  MM MESACHIE 1980 1981 WATER STORAGE FOR DATA PERIODS SITE 4 SITE 3 SITE 1 SITE 2 SITE 0 223.79 135 . 52 146.36 197.42 133.45 TUBES 1 0.00 O. 00 0.00 0.00 0.00 TUBES 4224.78 142 . 24 140.60 206.4 1 123.05 TUBES 1237.88 0 . 00 0.00 0.00 122.46 TUBES 211.82 182 . 30 126 . 14 197.64 114.23 TUBES 226.09 O. 0 0 187.55 115.46 0.00 TUBES 224.00 2 2 0 . 29 198.41 127. 14 146.21 TUBES 238.67 O. 00 206.52 126.26 0.00 TUBES 238.03 0 . 00 214.47 132.63 150.19 TUBES 1 253.63 0 . 00 222.86 138.93 0.00 TUBES 4 224.55 216 . 94 197.77 122.90 130.71 TUBES 241.94 O. 0 0 205 . 13 126.56 0.00 TUBES 213.25 212 . 23 193.61 118 . 75 122.05 TUBES 237.54 0 . 00 206.07 122.36 0.00 TUBES 202.28 191 . 89 183.08 101.73 104.25 TUBES 223.37 0 . 00 188.49 108 12 0.00 TUBES 187 . 27 175 . 57 166.92 85 . 0 3 TUBES 1 78 .75 206.08 164.25 0 . 00 0.00 TUBES 4 88 .65 177.86 146.93 158 . 69 68 .48 TUBES 1 58 . 34 186.44 139.93 0 . 00 0.00 TUBES 4 68 . 27 156 . 15 129.61 146 . 62 0.00 TUBES 1 45.78 165.65 124.52 0 . 00 0.00 TUBES 4 51 . 4 0 149.56 124.61 142 ..81 0.00 TUBES 1 43 .63 158.44 121.44 0 ..00 0.00 TUBES 4 48.57 138.58 114.65 132..71 56 . 90 TUBES 1 39 . 33 144.08 115.31 0 ..00 0.00 TUBES 4 42 .92 144.40 134.80 139 ..83 75.76 TUBES 1 56 .04 149.40 140.38 0 .. 0 0 TUBES 4 54.42 0.00 139.91 136.00 142..43 TUBES 6 0 . 55 75 . 33 147.37 138.67 0 .. 0 0 TUBES 64.40 0.00 152.45 158.50 159 .. 44 TUBES 86.56 100.11 163.59 164.99 O.. 0 0 TUBES 83 . 88 0.00 166.66 182.86 177 .71 . TUBES 104.58 126.95 179.24 . 0 0 191 . 3 0 0 . TUBES 94.74 0.00 160.48 165.81 171 ..6 0 TUBES 1 90.00 99.02 173.39 169.75 O.. 0 0 TUBES 4 9 0 . 10 0.00 164 . 4 7 180.73 171 .27 . TUBES 1 100.44 114.34 176.56 181.76 0.. 0 0 TUBES 102.13 0.00 166.53 170.41 173..81 TUBES 0.00 0.00 174.29 171.92 0 .00 TUBES 0.00 0.00 170.96 176.63 176 . 7 0 TUBES 102.93 105.09 179.96 182.01 0 .00 TUBES 106.57 0.00 247.56 . 26 2 1 6 . 0 8 24 1 TUBES 0.00 153.08 252.24 238.14 0 .00 TUBES 0.00 0.00 244.62 225.01 254 .41 TUBES 1 138 . 73 156.51 255.57 252.60 0 .00 TUBES 4 141.06 0.00 255.74 .68 2 2 0 . 4 1 261 TUBES 147.24 152.88 267 .85 246.53 0 .00 TUBES 148.53 0.00 251 . 4 7 210.77 260 .55 TUBES 1 141.93 148 . 44 265.81 237 . 32 TUBES 4 142.54 O .00 0.00  PROFILE DATA  SET NO:  1  DATA  SET NO:  2  DATA  SET NO:  3  DATA SET NO:  4  DATA  SET NO:  5  DATA  SET NO:  6  DATA  SET NO:  7  DATA  SET NO:  8  DATA  SET NO:  9  DATA  SET NO: 10  DATA SET NO:  11  DATA  SET NO: 12  DATA  SET NO: 13  DATA SET NO: 14 DATA  SET NO: 15  DATA  SET NO: 16  DATA  SET NO: 17  DATA  SET NO: 18  DATA SET NO: 19 DATA  SET NO: 20  DATA  SET NO: 21  DATA  SET NO: 22  DATA  SET NO: 23  DATA  SET NO: 24  DATA  SET NO: 25  SITE 5 379.92 0.00 376.11 0.00 338.01 0.00 347 . 12 0.00 354.22 0.00 340.75 0.00 337 . 72 0.00 326.04 0.00 302.26 0.00 232 . 60 0.00 265.47 0.00 255.76 0.00 239.8 1 0.00 244 . 26 0.00 245.38 0.00 260 10 O 00 279 . 32 0.00 272.65 0.00 277.69 0.00 0 .00 O .00 275.36 0.00 403.97 0.00 415.70 0.00 435.03 0.00 441 09 0 00  SITE 6 410.51 0.00 388.56 0.00 360.18 342.75 376.41 374.41 386 . 16 427.43 359.68 354.00 346.92 337.95 325.03 320.55 297 . 17 300.21 267 . 4 0 276.40 240.02 251 . 30 225 . 0 5 239 . 13 194.91 214.81 202.42 212.09 190. 15 214.80 219.65 229.01 243.44 242.38 226.43 222.91 218.95 230.78 211.18 229.31 213.09 233.63 391 . 19 487.40 397.83 480.92 433.44 529.88 442.49 534.62  ro VjJ VO  DATA  SET  NO : 26  DATA  SET  NO:  27  DATA  SET  NO:  28  DATA  SET  NO:  29  DATA  SET  NO : 30  DATA  SET  NO:  DATA  SET  NO : 32  DATA  SET  NO:  DATA  SET  NO : 34  DATA  SET  NO:  DATA  SET  NO : 36  DATA  SET  NO:  37  DATA  SET  NO:  38  DATA  SET  NO:  39  DATA  SET  NO:  40  DATA  SET  NO:  41  DATA  SET  NO : 42  DATA  SET  NO:  43  DATA  SET  NO:  44  DATA  SET  NO:  45  DATA  SET  NO:  46  DATA  SET  NO:  47  DATA  SET  NO : 48  DATA  SET  NO:  49  DATA  SET  NO:  50  31  33  35  PROFILE WATER STORAGE FOR SITE 0 140.34 TUBES 1-3: 0.00 TUBES 4-6 : 140.37 TUBES 1-3: 138.09 TUBES 4-6: 131.57 TUBES 1-3 : 131.50 TUBES 4-6 : 146.68 TUBES 1-3: 144.00 TUBES 4-6: 127.96 TUBES 1-3: 130.71 TUBES 4-6 : 133.12 TUBES 1-3: 133.83 TUBES 4-6144.77 TUBES 1-3145.24 TUBES 4-6 140.54 TUBES 1-3 139.26 TUBES 4-6 130.37 TUBES 1-3 129.39 TUBES 4-6 126.44 TUBES 1-3 123.75 TUBES 4-6 131.78 TUBES 1-3 129.55 TUBES 4-6 127.21 TUBES 1-3 128. 12 TUBES 4-6 109.06 TUBES 1-3 110.40 TUBES 4-6 102.82 TUBES 1-3 102.03 TUBES 4-6 78 .61 TUBES 1-3 79.88 TUBES 4-6 59.38 TUBES 1-3 62 .84 TUBES 4-6 47 .64 TUBES 1-3 49.57 TUBES 4-6 42. 19 TUBES 1-3 44.72 TUBES 4-6 38.42 ' TUBES 1-3 41.15 TUBES 4-6 38. 18 TUBES 1-3 4 1 .04 TUBES 4-6 102.08 TUBES 1-3 94.08 TUBES 4-6 91.67 TUBES 1-3 90.15 TUBES 4-6 113.57 TUBES 1-3 114.82 TUBES 4-6 135.14 TUBES 1-3 132.58 TUBES 4-6 143.96 TUBES 1-3 149.01 TUBES 4-6  PERIODS: MM MESACHIE 1980-1981 SITE 4 SITE 3 SITE 2 SITE 1 261 . 78 0. 0 0 213. 88 150. 7 1 0. 0 0 0. 0 0 0. 00 0. 0 0 256 . 95 251 . 78 208 . 35 147 . 59 256 . 67 0. 0 0 233. 88 0. 0 0 243 . 52 236 . 40 202. 56 141 . 04 246 . 78 0. 0 0 229. 03 0. 00 272 .86 283 . 95 224. 78 153. 64 372 .97 249. 37 0. 0 0 0 00 236. 12 237 05 205. 88 136 10 247 . 26 227 . 28 0 00 0 00 241 13 243 92 206 37 144 46 251 90 0 00 223 91 0 00 253 21 262 87 218 66 154 58 252 86 244 09 0 00 0 00 247 92 254 61 216 08 146 47 257 43 217 77 238 74 157 22 234 65 228 76 206 1 1 132 23 246 38 228 54 222 99 162 13 231 08 222 24 197 95 125 61 239 03 220 73 214 10 161 61 227 41 228 51 199 42 128 59 244 14 222 08 218 14 161 84 227 45 230 68 126 02 201 74 245 14 221 79 220 40 162 74 213 59 207 89 186 81 105 52 230 45 211 29 201 00 144 76 205 71 198 18 94 98 180 35 224 09 203 49 192 05 134 92 191 94 181 95 168 06 75 01 208 65 189 16 169 22 1 10 29 174 25 169 54 151 63 60 98 195 68 172 29 148 10 94 30 160 03 156 57 138 76 51 06 177 56 159 31 129 56 78 15 148 66 149 46 127 98 48 20 163 07 148 .82 124 64 72 .85 136 .89 139 .52 1 15 82 43 .41 148 .82 135 . 13 1 16 05 67 .44 130 .83 132 .97 109 99 45 . 73 142 .82 129 .24 1 10.02 65 .09 153 . 25 165 .63 176 .41 83 .87 174 .33 167 .59 174 .68 107 .96 14 1.47 156 .38 160 .09 73 . 12 166 .46 165 .48 157 .92 99 . 10 166 . 19 173 .58 177 .05 98 .84 195 . 17 185 .69 179 .53 82 .24 236 .29 241 . 1 1 204 .68 131 .00 243 . 28 225 .90 220 .59 155 .51 1 18.67 243 .78 210 .76 139 .03 248 .09 233 .05 235 . 1 1 161 . 79  SITE 5 371 . 29 0. 0 0 409 . 12 0. 0 0 365 . 56 0. 0 0 522 .03 0 00 364 85 0 00 357 43 0 00 418 35 0 00 375 95 406 66 363 21 392 27 342 30 377 96 341 25 375 88 347 88 383 69 329 95 367 50 322 19 360 61 301 55 346 08 277 92 334 38 257 24 322 .51 242 .05 311 .43 207 .77 287 .06 195 .64 270 .07 224 .65 321 .25 214 . 26 304 .02 234 . 19 316 .83 420 .41 430 .27 466 .01 443 .04  SITE 6 430. 43 0. 0 0 432 .82 519. 92 424 .05 457. 7 0 509. 68 544 . 10 427. 1 1 422. 58 409. 8 0 402 15 434 37 510 7 0 425 98 472 92 404 08 406 21 392 24 383 34 383 2 0 373 22 369 43 368 81 341 35 344 54 328 89 337 56 301 73 317 74 276 10 297 19 247 82 275 05 224 71 257 .89 201 .69 234 .94 188 .35 217 .42 216 .40 244 .69 206 .46 238 .61 279 .45 320 .62 400 .72 494 .94 413 .51 509 .54  - 241 -  APPENDIX 14 Extractable water in the soil profile at each site for each data period. Soil profile extractable water is determined from: fl  min e " W - W, max min  where the parameters are as defined in Section 2.1.3. Zeros are shown when neutron probe data was not obtained. In this case extractable water was calculated to the next neutron probe reading.  EXTRACTABLE DATA DATA DATA DATA DATA DA"! a DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA  SF_T SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET  NO : NO : NO : NO : NO : NO : NO : NO : NO : NO : NO : NO : NO : NO: NO : NO : NO : NO : NO : NO: NO : NO : NO: NO : NO : NO: NO : NO : NO: NO: NO : NO: NO : NO: NO: NO: NO: NO: NO: NO: NO : NO: NO: NO: NO : NO: NO: NO : NO:  1 2 3 4 5 6  7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49  WATER  FROM SOIL  PROFILE FOR DATA PERIODS: MM MESACHIE 1980-1981 SITE 4 SITE 3 SITE 2 SITE 1 SITE 0 1 .059 0. 467 0.984 1 .34 1 1 . 322 1 .040 0.655 0.964 1 .200 1 . 186 1 .040 0.970 0.949 1 .240 1.215 1 .144 0.000 1 .052 1 .407 1 . 367 1 .151 1 . 1 10 1 .048 1 .299 1 . 353 1 .072 1 .077 0.974 1 .103 1 . 242 0. 993 0.976 0.912 0. 918 1 .098 0. 882 0.828 0. 776 0. 660 0. 830 0. 763 0.695 0.609 0.527 0. 411 0. 624 0. 578 0. 457 0. 000 0. 271 0.514 0. 515 0. 376 0. 000 0. 146 0.458 0. 439 0.329 0. 215 0.092 0.446 0. 412 0. 386 0. 265 0. 158 0. 421 0.485 0. 474 0.314 0. 394 0.564 0. 464 0.570 0.532 0. 564 0. 577 0. 706 0. 766 0.803 0. 924 0. 612 0. 755 0. 790 0. 916 0. 833 0. 603 0.729 0. 767 0. 828 0.850 0. 616 0. 738 0. 780 0. 000 0.000 0. 635 0.760 0. 773 0.957 0. 871 0. 943 1 .032 0.994 1. 141 1. 233 1 . 345 1 . 229 1. 499 1 . 238 1. 279 1 .428 1 . 254 1. 498 1 .552 1. 312 1 .453 1 . 196 1.. 442 1 .569 1..312 0.000 1.118 1..426 1.514 1.. 305 1.413 1 . 107 1..421 1 .492 1.. 2 4 0 1.315 1.114 1 .353 1 .428 1 .496 1.445 1 . 177 1 . 395 1 .472 1 .483 1 . 448 1 . 180 1 . 361 1 . 456 1 . 187 1 . 286 1 .094 1 . 297 1 . 370 1 .231 1 . 390 1 . 152 1 .426 1 .484 1 .255 1 . 359 1 .201 1 .477 1 .531 1 . 206 1 . 221 1 . 134 1 . 426 1 .421 1 . 138 1 . 162 1 .050 1 .368 1 .313 1 .119 1 . 148 1 .027 1 .354 1.318 1 . 131 1.161 1 .047 1 . 360 1 . 337 1 .077 1 .098 0.988 1 .220 1 . 185 1 .002 0 .988 1 .015 0.890 1 .001 0 .904 0.905 0. 790 0. 779 0 . 788 0. 784 0 .788 0.647 0 .528 0.479 0 .666 0.673 0. 510 0.256 0 . 332 0. 585 0 .553 0.417 .0.127 0 .213 0 .452 0. 502 0.345 0 .063 0 . 149 0 . 379 0. 429 0.281 0.035 0 .113 0 .460 0. 547 0.516 0 . 396 0.459 0 .526 0.675 0. 703 0 .610 0.833 0. 727 0 .592 0.713 0 .572 0.950 0 .924 1 .002 0.943 1 .262 0 . 97 1 0 .935 1 . 239 1.119 1 . 388 1 .497  OO . OO  SITE 5 1 .228 1 .134 1 .070 1 .106 1 .091 1 .055 1 .022 0. 943 0. 846 0. 764 0. 704 0. 646 0. 621 0. 633 0. 668 0. 744 0. 772 0. 769 0. 000 0. 775 1.,057 1.. 370 1..439 1 .496 1.. 354 1 .282 1 . 269 1 .521 1 .520 1 . 152 1 .272 1 .347 1 . 257 1 . 187 1 . 144 1 .157 1 . 135 1 .081 1 .025 0 .946 0 .871 0 .805 0 .710 0 .612 0 .669 0 . 728 0 . 734 1 . 105 1 .504  SITE 6 1 .590 1 .438 1 .404 1 .547 1 .499 1 .333 1 .245 1 .133 1 .002 0. 865 0. 762 0. 657 0. 593 0. 587 0. 631 0. 735 0. 736 0. 690 0. 678 o. 674 1. 239 1. 796 1..905 2 .031 1 .899 . 1 .868 . 1 .895 . 2 .025 1 .984 1 .672 1 .795 1 .907 1 . 733 1 .575 1 .505 1 .457 1 . 366 1 .274 1 . 188 1 .068 0 .943 0 .827 .715 0 .616 0 .648 0 .699 0 .878 1 .458 1 .875  O  rv> -F  - 243 -  APPENDIX 15 Profile water storage change ( W i - W Appendix 13 f i n a  initial  ) determined from  Data for the two sets of neutron probe access tubes were averaged. Zeros are shown when neutron probe data was not obtained. In this case profile water storage change was calculated to the next neutron probe reading.  DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA  SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET  NO: NO: NO : NO: NO: NO : NO: NO: NO : NO: NO: NO: NO : NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO : NO: NO: NO: NO: NO: NO : NO: NO: NONO : NO: NO: NO : NO: NO: NO: NO: NO :  1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49  MESACHIE 1980-1981 ORAGE FOR DATA PERIODS: MM SITE 4 SITE 3 SITE 2 SITE 1 SITE 0 -6.72 -0.99 -8 .99 5. 76 10.40 12 . 38 -40.06 8 .77 14 .46 7.91 -12.38 -37.99 -9 .87 -20. 07 -11.86 -14 .49 0.00 -16. 20 -3 .98 -9 .08 12 . 58 3.35 17 .21 19. 48 1 1 .05 7 . 85 4.71 1 .61 8. 66 4. 17 12.57 20. 34 14 .05 17 .80 15.63 16.15 16.33 20. 20 19. 22 21 .22 14 . 53 16 . 88 22 .16 16. 55 20. 40 21 .25 12.06 16 .36 14.71 0. 00 6.90 3.82 4 .04 2 . 49 0. 00 12.67 10.09 8 .05 1 1 58 . 4 .97 -5.57 -7.12 -22 .61 -18. 86 -14. 11 3 . 26 -2.60 0. 25 0. 43 -7 . 24 -14.38 -17.01 -24. 41 -24 .78 -22.74 -14.92 -18.27 -25. 33 -26 .84 - 14.44 6.01 6.11 19 .31 27. 94 9.61 -3.58 0. 33 -13. 47 -15. 32 -11.24 0. 10 -2.53 10. 08 0. 00 0.00 -5.05 -2.89 -8 .16 9. 25 -3.46 -74.44 -64.56 -47 .79 -47 .99 0.00 -0. 19 -13.15 -11..69 -3. 43 -35 . 15 - 1 1 . 70 -7 . 27 5. , 33 3 .63 -7 .99 3. 16 1.13 9..43 4 .44 5.65 -10.31 0.00 -3 . 12 -2. 27 1 .58 4.83 8.77 5 . 53 3.. 12 -0.02 1 1 .66 15.38 5 .32 6..55 7 .69 -77.77 -47.55 -21 . 28 -12..60 -13.81 81 . 23 46.90 17 .55 20 .50 16.01 -4 .82 -6.87 1 .44 -8 . 36 -4.14 -6.52 -18.95 - 16 .23 -10 . 12 -11.53 0. 36 8.26 3 .96 8.1 1 5 . 10 12.16 7.53 12 .87 4 .67 10.02 •5.46 7.17 8 . 52 3 .56 4.79 -0. 72 -3.81 -2 .76 -1 .61 -5.57 -2 . 14 0.68 -2 . 29 0 .84 3 .00 15.89 15 .03 17 . 17 19 . 24 17 .94 7.12 8 . 76 7 .70 10 . 19 7 .30 14.60 15 . 28 17 .56 22 .30 23.18 15.33 14.64 18 . 78 15 .01 18.13 16. 17 12.97 15 .71 13 .04 12.51 12.93 8 .80 7 .85 4 .07 5.15 13.01 1 1 .82 10 . 38 5 . 10 3.67 6.03 6 . 22 5 .93 0 .01 0.18 -26.96 -35.50 -65 .54 -40 .51 -58.47 9.82 3.82 18 .40 9 .81 7. 17 -26.71 -16.85 -21 . 14 -4 .43 -23 . 28 -59 . 10 -51.21 -37 .00 -19.67 -52 .71 56 . 40 -7.57 -7 .65 -7 . 15 -12.62  SITE 5 3. 31 38. 10 -9 . 1 1 -7 .09 13. 47 3 .02 1 1 68 . 23 .78 19 .65 17 .14 9. 71 15 .94 -4 .45 -1 . 1 1 -14. 72 -19. 22 6 .67 -5. 04 0. 00 2. 33 -128. 61 -11. 74 -19.,33 -6. 06 .81 69 . -37 ..83 43..56 -156 .47 157 . 18 7 .42 -60 .92 42 .40 13 .56 17 .61 1 .56 -7 .22 17 .06 7 . 33 17 .58 17 .67 16 .27 13 . 13 29 .32 14 .57 -40 . 10 13 .81 -16 .37 -149 .83 -29 . 19  SITE 6 21 .94 28. 38 -23 .94 -31 .38 49. 95 14 .41 19. 65 24. 10 26 .79 26. 24 13. 57 27. 23 -2. 39 4 .78 -21 .85 -18. 58 18 .24 -0. 20 4. 62 -3. 1 1 -215. 94 -0..08 -42 . 28 -6..89 12 .06 -2 .39 35 .50 -86 .01 102 .04 18 .87 -66 .56 23 .08 44 .30 17 .36 9 .58 9 .09 26 . 18 9 .71 23 .49 23 .09 25 .21 20 . 14 22 .98 15 .43 -27 .66 8 .01 -77 .50 -147 .80 -13 . 70  -F -P-  - 245 -  APPENDIX 16  Actual evapotranspiration for data periods, determined as described in Section 3.9.4.2 Zeros are shown for data periods when neutron probe data was not obtained. Summation of evapotranspiration was then carried forward to the next neutron probe reading.  EVAPOTRANSPIRATION INCLUDING INTERCEPTION EVAPORATION FOR DATA PERIODS- DAYTIME EEQ SITE 6 SITE 5 SITE 4 SITE 3 SITE 2 SITE 1 SITE O 27.38 28.55 2 5 . 10 2 3 . 0 6 2 5 . 5 5 2 4 . 3 5 24.56 1 ENDING: JUNE 14 1980 16. 13 16.67 16.20 16.28 15. 79 12.33 12.44 2 ENDING: JUNE 19 1980 20.53 20.91 17.27 20.76 17.50 16.95 17. 16 3 ENDING: JUNE 26 1980 25.95 2 5 . 18 22 . 4 8 0.00 21 . 6 0 2 0 . 15 2 0 . 16 4 1980 4 ENDING: JULY 18.36 18.38 1 7 . 6 4 4 3 . 2 3 17 . 16 1 6 . 2 4 1 7 . 8 7 5 ENDING: JULY 10 1980 20.62 22.30 1 9 . 5 9 21 . 5 0 1 9 . 8 0 1 6 . 5 8 17.44 6 ENDING: JULY 17 1980 21 . 2 2 21.11 2 0 . 18 21 .52 19.50 • 23.01 25.27 7 ENDING: JULY 25 1980 26 49 27.49 25.76 24.34 22.81 1 8 . 9 5 2 3 . 8 2 1980 JULY 31 8 ENDING: 18 41 18.56 18.39 1 8 . 5 7 1 7 . 6 3 1 2 . 2 7 1 5 . 5 5 1980 9 ENDING: AUG 7 23 57 20.33 2 0 . 0 5 1 8 . 5 6 1 3 . 3 5 0 . 0 0 8.02 10 ENDING: AUG 15 1980 13 41 13.65 1 1 .92 12.84 9.36 . 0.00 3.96 1980 11 ENDING: AUG 20 22 18 21 .61 21 . 3 0 19.50 15.56 21 . 3 6 4.75 1980 12 ENDING: AUG 30 10.47 1 1 .34 10.75 9 . 14 7.09 6.38 4.58 4 1980 13 ENDING: SEPT 27.26 25.74 28 . 2 3 21 .85 24 .54 2 0 . 6 5 16.74 14 ENDING: SEPT 16 1980 13.44 14 . 4 8 13 98 1 1 .34 9.73 8.91 9 65 15 ENDING: SEPT 23 1980 15.36 16.20 15 22 12.30 11 . 6 7 9.05 9 26 16 ENDING: SEPT 30 1980 9.92 9.89 9 37 9.09 8. 14 8.31 1980 OCT 7 1 1 . 7 3 17 ENDING: 10.86 56 1 1 . 2 3 10 8 . 32 6 . 4 2 8 . 2 5 1980 13 6.71 18 ENDING: OCT 0.00 8.69 9 07 7.24 0.00 6.65 1980 0.00 19 ENDING: OCT 21 1 1 .92 4.27 3 22 3.63 7.56 2.72 28 1980 10.35 20 ENDING: OCT 44.26* 39.24* 37 6 1 * 20.68* 1 7 . 4 0 * 2 4 . 9 0 * 1980 NOV 4 0 . 0 0 21 ENDING: 51 . 5 6 * 44.09* 41 4 8 * 23.00* 20.04* 29.23* 1980 16.99 22 ENDING: NOV 18 65.67* 5 9 . 6 0 * 57 7 4 * 31 . 4 9 * 2 5 . 8 7 * 3 6 . 5 1 * 1980 2 10.81 23 ENDING: DEC 35.68* 31 . 6 3 * 30 4 2 * 16.74* 14.05* 20.18* 1980 6.59 24 ENDING: DEC 15 102.53* 90.99 86 8 0 * 47.55* 39.81* 57.41* 1981 9 16.31 25 ENDING: JAN 32.87* 27.93* 28.73* 15.34* 13.02* 18.55* 1981 7.79 26 ENDING: JAN 23 10.31 9.95 1 0 . 5 5 7 . 2 9 6 . 9 8 5 . 3 6 1981 7 5.62 27 ENDING: FEB 73.94* 62.10* 65.10* 3 4 . 1 1* 41 . 2 9 * 29.06* 1981 12.84 28 ENDING: FEB 19 28.68 27 .92 29.09 23.09 22.40 18.83 1981 21 . 6 8 29 ENDING: MAR 13 28.68 29.02 27 . 62 23.33 21 . 9 6 1 8 . 2 4 1981 MAR 27 1 9 . 8 9 30 ENDING 76.63 7 2 . 17 6 9 . 03 48.33 51 . 8 9 39.53 1981 APR 16 31 .44 31 ENDING 5 5 . 19 52.67 51 . 54 - 4 1 . 16 42.53 37.69 1981 6 36.44 32 ENDING MAY 29.43 30.27 31 . 18 27.83 26.99 24.02 1981 MAY 19 25.70 33 ENDING 39.61 38.91 3 6 , 74 34.07 33.26 31 . 7 8 1981 33.40 34 ENDING JUNE 2 3 4 . 14 33.36 32. 59 2 8 . 18 3 0 . 0 1 2 5 . 0 8 1981 JUNE 15 2 4 . 3 5 35 ENDING 40.30 42 . 9 2 41 . 7 5 37.56 35.50 31 .74 JUNE 3 0 1981 31 . 7 3 36 ENDING 23.94 21 . 5 8 22 . 8 9 21 . 2 8 21 . 6 2 23.77 1981 JULY 6 27.20 37 ENDING 16.94 18. 15 16.39 16.78 15.31 13.04 JULY 13 1981 14.34 38 ENDING 22.27 23.38 23.09 22.99 21 . 7 2 21 . 2 6 1981 JULY 21 24 .37 39 ENDING 18.92 16.61 18.35 19 14 15.57 1 1 .09 JULY 27 1981 9.48 40 ENDING 21 . 9 7 2 2 . 8 1 21 . 6 9 1 7 . 5 7 21 62 1 1 . 7 8 1981 AUG 4 9.25 41 ENDING 16.64 14.69 13.89 20.90 4.44 8.98 1981 2.65 42 ENDING AUG 10 23.05 14.32 12.68 19.56 4 . 8 1 11.21 1981 AUG 17 2 . 0 3 43 ENDING 18.58 15.71 12.72 20.56 4 . 6 6 9 . 2 8 1981 AUG 24 2 . 0 3 44 ENDING 26.01 23.95 24.36 19.35 17 . 4 0 19.48 1981 SEPT 1 16.98 45 ENDING 19. 19 21 . 6 8 20.61 2 0 . 14 1 5 . 9 9 18.24 SEPT 11 1981 20.95 46 ENDING 34.09 37 . 6 3 3 5 . 10 29.83 2 6 . 3 9 1981 SEPT 25 2 3 . 3 4 21 . 4 9 47 ENDING 48.02 42.33 41.14 26.20 3 0 . 3 5 1981 OCT 9 17 . 19 22 .93 48 ENDING 31 . 6 6 31 . 73 34.75 23. 1 1 21.31 OCT 28 1981 15.75 15.92 49 ENDING AND ET=I = I N T E R C E P T I ON GREATE R THAN CALCULAT ED EVAPOTRANSP I R A T I O N , ACTUAL  DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA  SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET SET  ro  ON  - 247 -  APPENDIX 17  Actual transpiration for data periods determined as described in Section 2.1.5 Zeros are shown for data periods when neutron probe data was not obtained. Summation of transpiration was then carried forward to the next neutron probe reading.  DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA  SET: SET: SET: SET: SET: SET: SET: SET: SET : SET: SET: SET: SET: SET: SET : SET: SET: SET: SET : SET: SET: SET: SET: SET: SET: SET: SET: SET : SET: SET: SET : SET : SET: SET: SET : SET: SET: SET: SET: SET: SET: SET: SET: SET : SET: SET : SET : SET: SET :  1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49  ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING: ENDING:  JUNE 14 1980 JUNE 19 1980 JUNE 26 1980 JULY 4 1980 JULY 10 1980 JULY 17 1980 JULY 25 1980 JULY 31 1980 7 1980 AUG 15 1980 AUG 1980 AUG 20 1980 AUG 30 4 1980 SEPT SEPT 16 1980 SEPT 23 1980 SEPT 30 1980 7 1980 OCT OCT 13 1980 1980 OCT :21 OCT 28 1980 4 1980 NOV 1980 NOV 18 1980 2 DEC 1980 DEC 15 1981 JAN 9 1981 JAN 23 1981 7 FEB 1981 FEB 19 1981 MAR 13 27 1981 MAR 1981 APR 16 1981 MAY 6 1981 MAY 19 1981 JUNE 2 JUNE 15 1981 JUNE 30 1981 1981 JULY 6 JULY 13 1981 JULY 21 1981 JULY 27 1981 1981 AUG 4 1981 AUG 10 1981 AUG 17 1981 AUG 24 1981 SEPT 1 SEPT 1 1 1981 SEPT 25 1981 1981 OCT 9 OCT 28 1981  ACTUAL TRANSPIRATION FOR DATA SITE 1 SITE 0 19. 81 22 .35 12 .13 12 .24 12 .61 15. 04 15 .69 17 .97 14 .83 16. 91 14 .30 16 .12 21 .23 24 .16 18 .95 23. 82 1 1 87 . 15 .15 0. 00 8 .02 0. 00 2 .95 19. 25 3 .68 3 .76 3. 14 17 .57 15 .12 5 .22 7 .78 4 .80 7 .17 7 .69 1 1 20 . 3 .04 4 .96 0. 00 0. 00 5. 78 9. 24 0..00 0. 00 0.,00 2.. 15 0,.00 0,,01 0 .00 0,, 55 0 .00 0 .00 0 .00 2 . 19 1 .81 3 .81 0 .00 0 .82 13 .58 19 . 19 1 1.92 16 .94 14 . 13 20 .93 23 .62 30 .36 21 . 18 24 .20 26 .62 30 .94 18 .92 21 .49 25 .94 29 .02 22 .97 26 .40 1 1.07 13 . 16 20 .96 24 .07 1 1.09 9 .48 10 .78 8 . 36 4 .44 2 .65 4 .81 2 .03 2 .80 0 .89 1 1. 24 14 . 12 14 .66 20 .03 13 .93 19 .93 4 . 26 9 .32 5 .70 1 1. 24  PERIODS SITE 19. 31 15. 59 1 1 40 . 15 .55 15. 48 16. 84 17 .26 22 .81 17 .23 13 .35 7 .43 13 .44 3. 62 20. 41 4 .71 5. 81 8 .01 3. 69 4 .40 2 .72 0..00 0..00 0.,00 0 .00 0 .00 0 .00 2 . 16 0 .00 14 .60 13 . 22 14 . 17 23 .71 23 .09 27 .02 20 .49 27 .40 20 .94 12 .78 21 .42 15 .57 16 .57 8 .98 1 1.21 6 .92 10 .88 16 .65 15 .76 3 .71 6 .56  SITE SITE 3 19 .86 13. 84 16 .0 0 16 .08 12 . 14 1 1 33 . 17 .36 0. 00 16. 19 33 .27 17 .08 17 .1 1 18 .24 18 .21 25. 76 24. 34 17 .99 18. 17 20. 05 18 .56 10. 25 10. 03 17 .67 18 .20 6. 19 5 .50 18 .35 21 .93 7 .1 1 6 .77 7 .35 7 .1 1 8 .94 9. 81 4 .63 4 .51 5. 13 5. 1 1 3 ,63 . 4 .27 0.,00 0. 00 0..00 0. 00 0..00 0..00 0..00 0 .00 0 .00 -0..00 0 .00 0 .00 2 .99 2 .73 0 .00 0 .00 16 .42 16 .84 16 .01 15 .41 17 .05 12 .61 26 .05 24 . 12 23 .98 23 . 29 28 .83 29 . 25 20 .85 19 .68 30 . 17 29 . 19 20 .51 20 .86 14 .61 14 .40 22 .69 23 .08 18 .35 16 .61 20 .69 21 .81 13 .89 14 .69 12 .68 14 . 32 10 .69 12 .21 12 . 16 10 .56 18 . 74 19 .78 20 .95 21 .01 4 .09 0 .37 9 .27 8 . 29  4  SITE 18 .22 16 .47 10. 35 14 .76 15 .81 17 .36 17 .46 27 .49 18 . 16 20. 33 10. 58 18 .20 4 .64 20. 24 4 .83 5 .26 9 .54 3. 24 0. 00 8. 09 0..00 0.,00 0. OO 0 .00 0 .00 0 .00 2 .06 0 .00 15 . 38 13 .30 9 .46 21 . 73 22 .92 27 . 23 19 .05 26 . 20 23 . 14 12 .80 21 .97 18 .92 20 .97 16 .64 23 .05 14 . 73 10 .97 17 . 29 15 . 4 1 0 .63 5 .68  S 5 18. 48 15 .93 1 1 43 . 16 .84 16. 01 16 .36 17 .97 26 .49 18. 01 23 .57 10. 65 19 . 13 6 .25 19. 63 6 .53 6 .48 9 .14 4 .15 5 .46 3. 22 0. 0 0 0..00 0..00 0..00 0 .00 0 .00 2 .41 0 .00 15 .87 14 .51 1 1.99 24 . 14 24 . 42 27 .44 19 .42 28 .57 22 .09 12 .73 22 . 79 19 . 14 20 .62 20 .90 19 . 56 17 . 14 1 1.47 18 .71 19 . 13 0 .90 7 .00  - 249 -  APPENDIX 18 Inventories of trees by species and DBH with DBH > 7.0 cm on 20 m x 20 plots at each site. Trees are identified on site by number tags.  TREE INVENTORY : SITE 0 TREE NO 1 2 3 4 5 e 7 8 9 10 11 .12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38  TREE TYPE DOUGLAS FIR LODGEPOLE PINE LODGEPOLE PINE LODGEPOLE PINE LODGEPOLE PINE LODGEPOLE PINE LODGEPOLE PINE LODGEPOLE PINE LODGEPOLE PINE LODGEPOLE PINE DOUGLAS FIR LODGEPOLE PINE LODGEPOLE PINE DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR LODGEPOLE PINE DOUGLAS FIR LODGEPOLE PINE LODGEPOLE PINE LODGEPOLE PINE DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR ARBUTUS LODGEPOLE PINE LODGEPOLE PINE DOUGLAS FIR LODGEPOLE PINE DOUGLAS FIR DOUGLAS FIR LODGEPOLE PINE DOUGLAS FIR  DBH (CM) 7. 1 21 .2 12.2 13. 1 12.2 11.9 18.6 10.8 15.9 7.2 18.9 17.2 18.7 14.6 22.0 19.4 16.4 7.9 13.8 11.8 12.6 11.5 21 .3 51.5 13.9 45.9 26.9 26.2 7.0 19.5 23.8 24.8 9.0 10.9 52.2 12.2 7.8 12.0  TREE NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  INVENTORY  TREE TYPE DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS FIR DOUGLAS F I R DOUGLAS FIR DOUGLAS F I R DOUGLAS FIR DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS FIR DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS FIR DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R  TREE  : SITE 1 DBH (CM) 17.5 22.4 13.2 20.3 21.7 22 .9 11.9 14.7 24 .5 47.2 20.7 9.0 31.9 33. 1 25.3 13.5 14.4 15.8 20.3 25.5 10.7 14.2 21.3 7.8 11 .0 19.3 30.6 26.7 13.0 14.9 11.4 11.2 16.7 1 1 .0 16.9 27.9 18.7 10. 3 15.7 18.8 9.0 17.7 15.4 12.8 19.9 11.5 24.9 14. 1  TR EE  NO 49 50 51 52 53 54 55 56 57 58 59 60 61  TREE DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS WESTERN DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS  INVENTORY TYPE FIR FIR FIR FIR FIR FIR FIR HEMLOCK FIR FIR FIR FIR FIR  : SITE 1 DBH  (CM) 13.5 33.3 12.7 24 .8 20.3 15.2 18.4 18. 1 27.2 24.0 21.4 12.7 12.3  I  IN)  TREE NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  INVENTORY  : SITE  TREE  2  DBH (CM) TREE TYPE 15.8 DOUGLAS FIR 22.9 DOUGLAS FIR 18.8 DOUGLAS FIR 24 .6 DOUGLAS FIR 18.7 DOUGLAS FIR 28 .7 DOUGLAS FIR 13.7 DOUGLAS FIR 23 .6 WESTERN HEMLOCK 16.7 DOUGLAS FIR 23.7 DOUGLAS F I R 17.4 DOUGLAS F I R 21.1 DOUGLAS FIR 29.5 DOUGLAS F I R 13.2 DOUGLAS FIR 13.4 DOUGLAS F I R 13.2 DOUGLAS FIR 16.5 DOUGLAS FIR 18.7 DOUGLAS F I R 17.7 DOUGLAS FIR 11.5 DOUGLAS FIR 27 .0 DOUGLAS F I R 20.7 DOUGLAS FIR 19.7 DOUGLAS F I R 25.8 DOUGLAS FIR 20.2 DOUGLAS F I R 22 .5 DOUGLAS FIR 21 .3 DOUGLAS FIR 18.9 DOUGLAS FIR 18.4 DOUGLAS F I R 23.4 DOUGLAS FIR 13.9 DOUGLAS F I R 20.7 DOUGLAS F I R 18.6 DOUGLAS FIR 25.2 DOUGLAS F I R 27 . 1 DOUGLAS FIR 12.5 DOUGLAS F I R 27.6 WESTERN RED CEDAR 13.3 DOUGLAS F I R 25.2 DOUGLAS FIR 13.4 DOUGLAS FIR 11.5 DOUGLAS F I R 21.4 DOUGLAS F I R 14.9 DOUGLAS F I R 15.9 DOUGLAS FIR 14.8 DOUGLAS FIR 26. 1 DOUGLAS FIR 20. 1 DOUGLAS F I R 19 .8 DOUGLAS F I R  T REE  NO 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  TREE DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS  INVENTORY TYPE FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR  : SITE  2  DBH (CM) 19.2 16. 1 13. 1 16.2 17.6 21.5 16.7 16.3 18.5 15.1 17.9 14.0 17.2 14.7 38 . 3 33.9  I  ro <oi ro  TREE TREE  NO 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  INVENTORY  TREE TYPE DOUGLAS FIR DOUGLAS FIR WESTERN HEMLOCK DOUGLAS FIR WESTERN HEMLOCK WESTERN HEMLOCK DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR WESTERN HEMLOCK DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS F I R DOUGLAS FIR DOUGLAS FIR WESTERN HEMLOCK DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR DOUGLAS FIR  : SITE  TREE  3  DBH (CM) 29.2 22.6 9.2 16. 1 20.7 14. 16. 19. 33 17.8 16.9 25.8 19.0 28.0 26.5 19.3 16.0 12.6 26.0 19 5 25 0 15 2 12 5 25 4 14 0 14 9 27 9 10.2 12. 1 16.3 12.2 31 .4 22.3 14..3 35..7 21 .2 15..5 13..7 13..3 27 .9 17.3 16.0 31.5 16.0 13.9 20.0 34 .4 12.9  TREE  NO 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  TREE DOUGLAS DOUGLAS DOUGLAS WESTERN WESTERN DOUGLAS DOUGLAS WESTERN DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS WESTERN  INVENTORY TYPE FIR FIR FIR HEMLOCK HEMLOCK FIR FIR HEMLOCK FIR FIR FIR FIR FIR FIR FIR FIR HEMLOCK  SITE  3  DBH (CM) 26.3 36.5 23. 1 39.2 37.2 19. 1 27 .8 18.3 23.9 20.0 18.8 20.5 24.7 14.0 31.0 17.0 9.7  TREE TREE  NO 1 2 3 4 5 € 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  TREE DOUGLAS DOUGLAS DOUGLAS WESTERN WESTERN DOUGLAS DOUGLAS DOUGLAS WESTERN DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS WESTERN DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS  INVENTORY TYPE FIR FIR FIR HEMLOCK RED CEDAR FIR FIR FIR HEMLOCK FIR FIR FIR FIR FIR FIR HEMLOCK FIR FIR FIR FIR FIR FIR  SITE 4 DBH (CM) 15.6 28.2 38. 1 14.7 18.8 54 . 1 50.4 21.0 25 .O 26.8 29 . 3 36.3 14.5 37 . 7 17.3 11.3 37 .5 28 .4 47.7 46.2 25.9 31.8  r\> -Pi  TREE TREE  NO 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25  TREE DOUGLAS DOUGLAS DOUGLAS WESTERN WESTERN DOUGLAS DOUGLAS WESTERN DOUGLAS WESTERN WESTERN WESTERN WESTERN DOUGLAS DOUGLAS DOUGLAS WESTERN DOUGLAS WESTERN DOUGLAS DOUGLAS WESTERN DOUGLAS DOUGLAS WESTERN  INVENTORY TYPE FIR FIR FIR HEMLOCK RED CEDAR FIR FIR HEMLOCK FIR HEMLOCK HEMLOCK HEMLOCK RED CEDAR FIR FIR FIR HEMLOCK FIR HEMLOCK FIR FIR HEMLOCK FIR FIR HEMLOCK  : SITE 5 DBH (CM) 30. 8 36. 9 34. 5 34. 3 15. 3 46. 2 26. 5 19. 1 55. 7 24 .3 32. 5 29. 0 33. 7 20. 3 54 .4 49 .7 37 .0 34 .0 39 .3 41 .6 42 .9 8 .6 42 .5 42 .3 43 . 1  TREE TREE  NO 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25  INVENTORY  TREE TYPE DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R DOUGLAS F I R RED ALDER DOUGLAS F I R WESTERN HEMLOCK DOUGLAS F I R DOUGLAS F I R RED ALDER RED ALDER DOUGLAS F I R RED ALDER DOUGLAS F I R DOUGLAS F I R GRAND F I R DOUGLAS F I R DOUGLAS F I R GRAND F I R DOUGLAS F I R RED ALDER  SITE 6 DBH (CM) 38 . 3 53.3 48.7 20.7 16. 1 44 . 1 20.9 17.9 31.0 47.0 22.5 61 .2 58.5 23.5 25.5 53.2 33.9 19.8 68.9 67.7 29.0 19.5 30.0 43.6 38.3  TREE TREE  NO 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20  INVENTORY  TREE TYPE RED ALDER WESTERN HEMLOCK RED ALDER WESTERN HEMLOCK RED ALDER RED ALDER RED ALDER RED ALDER RED ALDER RED ALDER RED ALDER WESTERN HEMLOCK RED ALDER WESTERN HEMLOCK RED ALDER WESTERN HEMLOCK WESTERN HEMLOCK WESTERN RED CEDAR RED ALDER WESTERN HEMLOCK  : SITE DBH  7  (CM) 24. 7 33. 5 31 .7 10. 8 29. 7 31 .8 28.,0 45,. 1 27 .9 33 .4 27 .3 13 .0 42 .2 26 . 1 36 .7 7 .7 7 .5 33 .7 29 .0 14 .7  r\>  i  - 258 -  APPENDIX 19 Water balance data for data periods at each site.  The water balance components in this table are identified as follows: PRECIP:  Average precipitation (mm/d) for data periods.  MAXIMUM ET:  Average daily value of E Section 2.1.1  EVAPOTRANSPIRATION: TRANSPIRATION:  m a x  (mm/d) defined in (19) of  Average daily value of Ej + gl (mm/d) (see (18)  of Section 2.1 A)  Average daily values of Et = ET - I (1-g) (mm/d) (see (20) and (30)  TOTAL WATER DEFICIT:  Total for data period of ( E (mm)  max  - 0.2 I)  - E  t  PRECIP-EVAPOTRANSPIRATION:  Total for data period of PRECIP-EVAPOTRANSPIRATION (mm) when PRECIP > EVAPOTRANSPIRATION.  EVAPOTRANSPIRATION-PRECIP:  Total for data period of EVAPOTRANSPIRATIONPRECIP. (mm) when EVAPOTRANSPIRATION > PRECIP.  Zeros are shown against all water balance components when neutron probe data was not obtained. The summation of water balance data was then carried forward to the next neutron probe reading.  WATER BALANCE  DATA SITE  0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  SITE  4  SITE 5  SITE 6  DATA  SET:  1  ENDING: JUNE  3.726 2.498 2.692 2.450 -0.00 9.44 9.13 5  3.729 2.270 2.668 2. 171 0.00 9.67 9.13 5 •  3.825 2.316 2.879 2. 175 -0.00 8 .40 8.88 5  4.034 2.534 2.898 1 .739 4.48 9.04 7.96 6  3.877 2.389 2.869 2.270 -0.00 8.83 8.75 5  3.971 2.510 3.532 2.255 -0.00 3.55 8.08 6  4.012 2.532 3.422 2.310 0.00 4.72 8.00 6  DATA  SET:  2  ENDING: JUNE  19 1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY:  0.041 2.520 2.553 2.512 -0.00 12.24 4.88 12  0.040 ' 2 .434 2.466 2.426 -0.00 12.13 5.00 12  0.033 2.604 2.631 2.598 -0.00 15.59 6.00 13  0.033 2.724 2.714 2.681 0.22 16.08 6.00 13  0.033 2.674 2.700 2.667 0.00 16.00 6.00 13  0.033 2.733 2.759 2.726 0.00 16.47 6.04 13  0.033 2.662 2.689 2.656 -0.00 15.93 6.00 13  DATA  SET:  3  ENDING: JUNE 26 1980 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  4.529 2.209 2.451 2.149 14.54 7.00 18  4.579 1 .925 2.422 1 .801 15. 10 7.00 18  4.686 1 .792 2 .485 1.618 15.50 7.04 19  4.714 1 .888 2.966 1 .619 12.24 7.00 19  4.714 1 .881 2.467 1 .734 15.73 7.00 19  4.714 1 .780 2.987 1 .479 12.09 7.00 19  4.714 1 .892 2.932 1 .632 12.47 7.00 19  DATA  SET:  4  ENDING: JULY  4  4.248 2.337 2.560 2.282 13.29 7.88 26  4.245 2. 116 2.572 2.002 13. 10 7.83 26  4.657 2.394 3.085 2.221 11 .00 7 .00 26  0.000 0.000 0.000 O.OOO 0.00 0.00 0  4.564 2.551 3.119 2.409 10.42 7.21 26  4.692 2.435 3.640 2. 134 7.27 6.92 26  4.533 2.559 3.559 2.310 7. 10 7.29 26  DATA  SET:  5  ENDING: JULY  0.454 2.850 2.978 2.818 15.14 6.00 33  0.442 2.519 2.706 2.472 13.59 6.00 33  0.417 2.636 2.860 2.579 14 .66 6.00 33  2.674 2.670 3.273 2.519 7.91 13.21 29  0.392 2.747 2.940 2.698 15.29 6.00 33  0.429 2.720 3.063 2.634 15.81 6.00 33  0.389 2.727 3.038 2.649 16.01 6.04 33  14 1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  1980 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 10 1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY:  WATER BALANCE  DATA SITE 0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  SITE  4  SITE  5  SITE 6  DATA  SET:  6  ENDING: JULY  1.608 2.286 2.433 2.250 5.91 7.17 39  1 .598 2.059 2.314 1 .995 5. 13 7. 17 39  1 .420 2. 191 2.488 2. 1 16 8.50 7.96 40  1 .421 2.309 2.759 2. 196 10.42 7.79 40  1 .431 2.256 2.514 2. 192 8.44 7 .79 40  1.415 2.282 2.773 2. 159 10.92 8.04 40  1 .435 2.245 2 .689 2. 134 9.62 7.67 40  DATA  SET:  7  ENDING: JULY  0.817 3.113 -3.226 3.085 18.87 7.83 47  0.817 2.756 2.938 2.711 16.61 7.83 47  1 .067 2.951 3.251 2.876 13. 10 6.00 47  1 .067 3. 146 3.587 3.035 15. 12 6.00 47  1 .067 3. 104 3.363 3.040 13.78 6.00 47  1 .067 3.032 3.518 2.911 14.71 6.00 47  1 .067 3. 103 3.536 2.995 14.82 6.00 47  DATA  SET:  8  ENDING: JULY  0.000 3.673 3.402 3.402 1.89 23.82 7.00 54  0.000 3.234 2.707 2.707 3.69 18.95 7.00 54  0.000 3.613 3. 183 3. 183 3.08 22.81 7. 17 53  0.000 3.853 3 .397 3.397 3.27 24.34 7.17 53  0.000 3.747 3.615 3.615 0.94 25.76 7. 13 53  O.OOO 3.455 3.455 3.455 0.00 27.49 7.96 54  0.000 3.718 3.718 3.718 0.00 26.49 7. 13 53  DATA  SET:  9  ENDING: AUG  0.057 2.606 2.208 2.151 3.12 15.15 7.04 61  0.056 2.268 1 .732 I .676 4. 12 II .87 7.08 61  0.052 2.245 2.287 2.235 0.00 17.23 7.71 61  0.057 2.607 2.653 2.596 0.00 18. 17 7.00 60  0.057 2 .566 2.612 2.555 0.00 17.99 7.04 60  0.056 2.575 2.621 2.564 0.00 18. 16 7 .08 61  0.057 2.570 2.615 2.558 0.00 18.01 7 .04 60  DATA  S E T : 10  0.000 3.198 1.113 1.113 15.03 8.02 7.21 68  0.000 0.000 0.000 0.000 0.00 0.00 0.00 0  0.000 2.882 1 .873 1 .873 7. 19 13.35 7. 13 68  0.000 3.061 2.369 2.369 5.42 18.56 7.83 68  0.000 2.974 2.559 2.559 3.25 20.05 7 .83 68  0.000 2.904 2.904 2.904 0.00 20.33 7.00 68  0.000 Li. 0 0 9 3.009 3.009 0.00 23.57 7.83 68  17 1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 25 1980 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 31 1980 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 1980 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY:  ENDING: AUG  7  15 1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY:  WATER BALANCE  1980 PRECIP MAXIMUM ET EVAPOTRANSPIRATION TRANSPIRATION TOTAL WATER D E F I C I T EVAPOTRANSPIRATION-PRECIP PRECIP-EVAPOTRANSPIRATION DATA PERIOD MID POINT DAY  WATER-MM SITE 2  DATA SITE 0  UNITS: SITE 1  2.393 0.793 0.589 8.82 0.00 0.24 5.00 74  0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0  0.840 2. 118 1 .873 1 .487 2.77 5. 16 0.00 5.00 74  TIME-DAYS SITE 3  SITE 6  SITE 4  SITE 5  0.840 2.349 2.567 2.006 1 . 15 8.64 0.00 5.00 74  0.840 2.248 2.384 2 .049 0.66 7.72 0.00 5.00 74  0.840 2.239 2.731 2. 116 0.00 9.45 0.00 5.00 74  0.840 2.241 2.683 2. 130 -0.00 9.21 O.OO 5.00 74  DATA  S E T : 11  ENDING: AUG 20  DATA  S E T : 12  ENDING: AUG 3 0  0.557 1..909 0.481 0.372 14.96 0.00 0.75 9.88 82  0.439 2 .041 0.967 0.872 25.40 1 1 .66 0.00 22.08 76  0.539 1 .840 1 .524 1 .317 4.91 10.06 0.00 10.21 82  0.550 2.037 2. 130 1 .820 1 .55 15.80 0.00 10.00 82  0.550 1 .967 1 .950 1 .767 1 .63 14 .00 0.00 10.00 82  0.545 1 .873 2. 143 1 .805 0.00 16. 11 0.00 10.08 82  0.550 1 .974 2.218 1.913 -0.00 16.68 0.00 10.00 82  DATA  S E T : 13  ENDING: SEPT  2.911 1.180 0.902 0.618 2.57 10.22 5.08 89  2.985 0.864 1 .286 0.758 0.00 8.42 4.96 89  3.062 0.893 1 .466 0.749 0.00 7.71 4.83 89  2 .842 1 .258 2.063 1 .056 0.00 4.05 5.21 89  2.467 1.131 1 .523 1 .032 -0.00 5.66 6 .00 90  2.555 1 .003 1 .808 0.802 -0.00 4.33 5.79 90  2.416 1 . 186 1 .852 ' .020 -0.00 3.46 S. 13 90  1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 4 1980 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  DATA  S E T : 14  ENDING: SEPT  16 1980 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  1.628 1.973 1.405 1.269 8.07 0.00 2.66 11.92 98  1.617 1 .515 1 .721 1 .464 0.00 1 .25 0.00 12.00 98  1 .595 1 .745 2.017 1 .677 0.00 5. 14 0.00 12. 17 98  1 .645 1 .966 2.394 1 .859 0.00 8.83 0.00 11 .79 98  1 .764 1 .942 1 .986 1 .668 2.31 2.45 0.00 11 .00 98  1 .731 1 .931 2.432 1 :805 -O.OO 7 .86 0.00 11.21 98  1 .784 1.917 2.367 1 .805 0.00 6.34 0.00 10.88 98  DATA  S E T : 15  ENDING: SEPT 23 1980 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  3.579 1.145 1.355 1.092 15.85 7.13 107  3.579 0.837 1 .251 0.733 16.59 7.13 107  3.755 0.842 1 .433 0.694 15.77 6.79 107  3.643 1 . 188 2.068 0.967 1 1 .02 7.00 107  3.643 1 . 137 1 .620 1 .016 14. 16 7.00 107  3.687 0.947 1 .943 0.698 12.06 6.92 107  3.643 1 . 146 1 .997 0.933 1 1 .52 7.00 107  .  rvi ON  WATER BALANCE  DATA  S E T : 16  ENDING: SEPT 30 1980 PRECIP: MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  DATA  S E T : 17  ENDING: OCT  DATA  S E T : 18  ENDING: OCT  DATA  S E T : 19  ENDING: OCT 21  DATA  S E T : 20  7  1980 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 13 1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 1980 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  ENDING: OCT  28 1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY:  DATA SITE 0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  SITE 4  SITE 5  SITE 6  4.615 0.836 1 .341 0.710 22. 10 6.75 1 14  4.445 0.992 1 .658 0.826 19.63 7.04 1 14  4.373 1 .239 2.248 0.986 15.32 7.21 114  4.363 1 . 157 1 .706 1 .020 19. 15 7.21 1 14  4.514 1 .053 2.221 0.761 15.86 6.92 1 14  4.353 1.141 2.111 0.899 16. 16 7.21 114  0.072 1.559 1.617 1.545 11'. 20 7.25 121  0.062 1 .073 1 . 123 1 .061 7 .69 7.25 121  0.043 1 . 160 1 . 195 1 . 152 8.01 6.96 121  0.011 1 .447 1 .456 1 .445 9.81 6.79 121  0.022 1 .321 1 .339 1 .317 8 .94 6.79 121  0.053 1 .358 1 .400 1 .347 9.54 7.08 121  0.033 1 .353 1 .379 1 .346 9. 14 3.79 121  3.298 0.782 0.988 0.731 15.69 6.79 128  3.298 0.547 0.945 0.447 15.98 6.79 128  3.258 0.669 1 .201 0.536 14. 15 6.88 128  3.465 0.956 1 .834 0.737 9.99 6. 13 128  3.429 0.877 1 .359 0.756 12.68 6. 13 128  3.563 0.783 1 .785 0.533 10.82 6.08 128  3.392 0.886 1 .724 0.677 10.22 6. 13 128  0.000 0.000 0.000 0.000 0.00 0.00 0.00 0  0.878 0.666 0.912 0.604 0.25 0.00 7.29 135  0.972 0.748 1.115 0.656 1 . 12 0.00 7.79 135  0.985 0.701 0.914 0.648 0.00 0.56 |7 .92  0.000 0.000 0.000 O.OOO 0.00 0.00 0.00 0  0.993 0.765 1 . 122 0.676 1 .05 0.00 8.08 135  0.000 0.390 0.390 0.390 2.72 6.96 142  0.000 0.602 0.602 0.602 4.27 7.08 142  0.000 0.521 0.521 0.521 3 .63 6.96 142  0.475 0.590 0.795 0.539 4.79 15.00 138  0.000 0.474 0.474 0.474 3.22 6.79 142  4.604 1.124 1.372 1.062 21.81 6.75 114  O.OOO 0.000 0.000 0.000 0.00 0.00 O.OO 0 0.454 0.672 0.735 0.656 3.95 14.08 139  0.454 0.436 0.537 0.411 1 . 16 14.08 139  j  135  WATER BALANCE  NOV  1980 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  DATA SITE 0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  SITE 4  SITE 5  SITE 6  23.091 0. 135 2.471 0.000 145.20 7 .04 149  23.941 0. 131 3.666 0.000 137.70 6.79 149  22.821 0.276 5.507 0.000 123.36 7. 13 149  22.955 0.232 2.920 0.000 141.92 7.08 149  24.239 O. 148 6.597 0.000 118.34 6.71 149  22.955 0.234 5.310 0.000 124.99 7 .08 149  DATA  S E T : 21  ENDING:  4  0.000 0.000 0.000 0.000 0.00 0.00 0  DATA  S E T : 22  ENDING: NOV 18  16.657 0.244 0.809 0.102 332.81 21.00 156  13.537 0. 136 1 .435 0.000 168.91 13.96 160  13.505 0. 186 2.051 0.000 163.22 14.25 160  13.240 0.265 3. 178 0.000 139.61 13.88 160  13.074 0.232 1 .653 0.000 158.95 13.92 160  13.382 0.227 3.618 0.000 139. 14 14.25 160  12.948 0.245 2 .981 0.000 138.72 13.92 160  DATA  SET: 23  ENDING: DEC  2  17.663 0.154 0.768 0.001 237.94 14.08 174  17.558 0.072 1 .837 0.000 221.41 14.08 174  17.543 0. 101 2.639 0.000 206.17 13.83 174  17.939 0. 169 4.257 0.000 191.55 14.00 174  18.045 0. 137 2.249 0.000 221 . 14 14.00 174  17.550 O. 129 4.705 O.OOO 179.30 13.96 174  18.150 O. 145 4. 124 0.000 196.36 14.00 174  DATA  S E T : 24  ENDING: DEC 15  8.685 0.118 0.442 0.037 122.96 14.92 188  8 .730 0.052 0.950 0.000 115.07 14.79 188  8.745 0.073 1 .357 0.000 109.89 14.88 188  9. 184 0. 105 1 . 185 0.000 112.99 14. 13 188  8.737 0.097 2.405 0.000 93.92 14.83 188  9. 198 0. 109 2. 154 0.000 99.50 14. 13 188  DATA  S E T : 25  ENDING:  16.104 0.136 0.680 0.000 370.18 24.00 208  15.999 0.068 1 .647 0.000 346.84 24. 17 208  16.089 0.086 2.388 0.000 329.39 24.04 208  16.076 0. 1 18 1 .978 0.000 338.95 24.04 207  16.086 0.112 4.265 O.OOO 284.19 24.04 208  16.063 0. 122 3.610 O.OOO 299.37 24.04 207  1980 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 1980 PRECIP: MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 1980 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: JAN  9  1981 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  9. 170 0. 131 2.239 0.000 97.89 14. 13 188 15.635 O. 139 3.670 0.000 296.63 24.79 207  WATER BALANCE  1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  DATA SITE 0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  8.486 0.236 0.556 0.156 111.01 14.00 227  8 .588 0. 118 0.941 0.000 105.78 13.83 227  8.511 O. 164 1 .329 0.000 100.25 13.96 227  8.878 0.257 2. 182 0.000 88. 17 13. 17 226  8.483 0.204 1 . 102 0.000 102.71 13.92 226  1 .863 0.308 0.756 O. 196 15.45 13.96 240 21.226 0.261 5.024 0.000 209.95 12.96 253  SITE 4  SITE 5  SITE 6  8.511 0.202 2.355 0.000 85.93 13.96 227  8.421 0.218 1 .983 0.000 90.67 14.08 226  1 .855 0.274 0.519 0.213 18.76 14.04 240  1 .721 0.265 0.736 0. 147 13.79 14.00 241  1 .850 0.280 0.711 O. 172 15.95 14.00 240  21.318 0.227 2 .649 0.000 240.37 12.88 253  22.749 0.223 6.077 0.000 202.83 12. 17 254  DATA  S E T : 26  ENDING:  JAN 23  DATA  S E T : 27  ENDING:  FEB  7  1.721 0.298 0.402 0.272 18.48 14.00 241  1 .721 0. 180 0.383 O. 129 18.74 14.00 241  DATA  S E T : 28  ENDING:  FEB 19  21.559 0.249 0.991 0.063 266.52 12.96 254  21.545 0. 151 2.242 0.000 250. 13 12.96 254  22.732 0. 187 3.405 0.000 234.34 12. 12 254  DATA  S E T : 29  ENDING:  MAR  1.861 0.895 0.985 0.872 19.26 22.00 272  1 .858 0.661 0.851 0.614 22.29 22. 13 272  1 .953 0.706 0.979 0.638 22.28 22.88 271  2.045 0.872 1.315 0.761 16. 16 22. 13 271  2.071 0.802 1 .043 0.742 22.74 22. 13 271  1 .906 0.790 1 .256 0.674 14.84 22.83 271  2.085 0.822 1 .255 0.713 18.48 22.25 271  DATA  S E T : 30  ENDING:  MAR  3.735 1.248 1.416 1.206 32.56 14.04 290  3.724 0.947 1.311 0.856 33.59 13.92 290  3.657 1 .069 1 .569 0.944 29.24 14.00 290  3.668 1 .299 2.079 1 . 104 22. 18 13.96 289  3 .646 1 .245 1 .661 1 . 140 27.87 14.04 289  3.679 1 . 170 2.048 0.950 22.84 14.OO 290  3.657 1 .224 1 .973 1 .037 23.58 14.00 289  1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD.: MID POINT DAY: 1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 13  1981 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 27 1981 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  1 .721 0.223 0.498 0. 154 17.12 14.00 241  21.482 0.223 4.870 0.000 211.80 12.75 253  WATER BALANCE  DATA  S E T : 31  ENDING: APR 16  1981 PRECIP: MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  DATA SITE 0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  13.375 1.277 1.742 1.160 209.86 18.04 306  13.353 1 .057 2. 176 0.778 203.05 - 18.17 306  13.096 1 . 133 2.707 0.739 199. 1 1 19. 17 306  12.600 1 .231 3.624 0.633 178.78 19.92 306  5  SITE 6  SITE 4  SITE  12.652 1 . 175 2.437 0.860 202.59 19.83 306  13.081 1 . 195 3.998 0.494 174.08 19. 17 306  12.704 1 . 185 3.495 0.607 181 .87 19.75 306  DATA S E T : 32  ENDING: MAY  6  5.952 1.438 1.660 1.383 94.26 21.96 326  5.921 1.211 1 .726 1 .082 91 .59 21 .83 326  5.794 1.319 2.041 1 . 138 78. 17 20.83 326  5.795 1 .488 2.628 1 .203 63.48 20.04 326  5.773 1 .444 2.045 1 .294 75.02 20. 13 326  5.811 1 . 364 2.649 1 .043 65.87 20.83 326  5.738 1 .463 2.545 1 . 192 64.66 20.25 326  DATA  S E T : 33  ENDING: MAY  19  1.258 1.897 1.990 1-.874 9.45 12.92 343  1 .305 1 .667 1 .842 1 .624 6.99 13.04 343  1 .348 1 .807 2.043 1 .748 9. 19 13.21 343  1 .697 1 .875 2.299 1 .769 7.93 13. 17 342  1 .619 1 .789 2.012 1 .733 5.43 13.83 343  1 .327 1 .846 2.242 1 .747 12.02 13. 13 343  1 .600 1 .841 2.227 1 .744 8.78 14 .00 343  DATA  S E T : 34  ENDING: JUNE 2  2.864 2.245 2.385 2.210 0.00 6.70 14.00 357  2.868 1 .975 2.270 1 .902 0.00 8.37 14.00 357  2.583 2. 154 2.534 2.059 0.00 0.64 13. 13 356  2.433 2.234 2.787 2.096 4.94 0.00 13.96 356  2.575 2.269 2.587 2. 190 0. 17 0.00 13. 17 356  2.892 2. 148 2.864 1 .969 0.00 0.39 13.83 357  2.599 2.247 2.817 2. 104 2.84 0.00 13.04 356  ENDING: JUNE  3.882 1.702 1.879 1.658 25.95 12.96 370  3.878 1 .555 1 .936 1 .460 25. 17 12.96 370  4.072 1.614 2. 163 1 .477 26 .49 13.88 370  3.960 1 .724 2.566 1 .514 18. 12 13.00 369  3.950 1 .716 2. 168 1 .604 23. 17 13.00 369  3.840 1 .681 2.601 1 .452 16.26 13. 13 370  3.964 1.696 2.507 1 .494 18.94 13.00 369  DATA S E T : 35  1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 15 1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  WATER  BALANCE DATA SITE 0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  SITE  4  SITE 5  SITE 6  DATA  S E T : 36  ENDING: JUNE 3 0 1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  3.539 2.245 2.410 2.204 14.87 13. 17 383  3.539 2.058 2.411 1 .970 14.86 13. 17 383  3.357 2.086 2.551 1 .969 11.21 13.92 384  3.485 2. 153 2.893 1 .968 8.78 14.83 383  3.482 2. 128 2.525 2.028 14.23 14.88 383  3.539 2.204 3.060 1 .990 6.30 13. 17 383  3 .506 2. 122 2.839 1 .942 9.81 14.71 383  DATA  S E T : 37  ENDING: JULY 6  0.090 2.993 3 .065 2.975 26.40 8.88 394  0.091 2.643 2.716 2.625 22.97 8.75 394  0.099 3.029 3. 108 3.009 20.94 6.96 394  0.119 3.452 3.548 3.429 20.86 6.08 394  0. 125 3.397 3.497 3.372 20.51 6.08 394  0. 102 2.958 3.040 2.938 23. 14 7.88 394  0. 114 3. 178 3.270 3. 155 22.09 7.00 394  DATA  S E T : 38  ENDING: JULY  1 .355 2. 187 2.341 2. 148 6.04 6.13 402  1 .355 1 .872 2. 129 1 .807 4 .74 6.13 402  1 .200 1 .921 2.213 1 .848 7.01 6.92 401  1 . 179 2.151 2.577 2.045 9.85 7 .04 400  1 . 179 2.137 2.383 2.075 8.48 7.04 400  1 .200 1 .971 2.449 1 .851 8.64 6.92 401  1 .355 2. 197 2.676 2.078 8.09 6. 13 401  DATA S E T : 3 9  ENDING: JULY 21 1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY  0.033 2.682 2.708 2.675 24.07 9.00 409  0.034 2.368 2.395 2.361 20.96 8.88 409  0.037 2.644 2.674 2.637 21 .42 8. 13 409  0.034 2.632 2.659 2.625 23.08 8.79 408  0.036 2.744 2.773 2.737 22.69 8.29 408  0.037 2.711 2.741 2.704 21 .97 8. 13 409  0.036 2.756 2.785 2.749 22.79 8.29 408  DATA S E T : 4 0  ENDING: JULY  0.000 3.514 1 .962 1 .962 7.50 9.48 4.83 416  0.000 3. 185 2. 164 2. 164 5.23 11 .09 5. 13 416  0.000 3. 124 2.651 2.651 2.78 15.57 5.88 416  0.000 3.387 3.215 3.215 0.89 16.61 5.17 415  0.000 3. 169 3. 169 3. 169 0.00 18.35 5.79 415  0.000 3. 174 3. 174 3. 174 0.00 18.92 5.96 416  0.000 3.236 3.236 3.236 0.00 19. 14 5.92 415  1981 PRECIP: MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 13 1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY:  27 1981 PRECIP MAXIMUM ET EVAPOTRANSPIRATION TRANSPIRATION TOTAL WATER D E F I C I T EVAPOTRANSPIRATION-PRECIP DATA PERIOD MID POINT DAY  WATER BALANCE  DATA SITE 0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  SITE 4  SITE 5  SITE 6  DATA  S E T : 41  ENDING: AUG 4  0.124 2.724 1.150 1.039 13.37 8.25 8.04 423  0. 125 2.363 1 .473 I .348 7 .93 10.78 8.00 423  0. 125 2.476 2. 196 2.071 3.04 16.57 8.00 423  0. 125 2.752 2.852 2 .727 0.00 21.81 8.00 422  0. 126 2.625 2.726 2.600 0.00 20.69 7.96 422  0. 125 2 .646 2.746 2 .621 0.00 20.97 8.00 423  O. 126 2.615 2.716 2.590 0.00 20.62 7 .96 422  DATA  S E T : 42  ENDING: AUG 10  0.000 3.783 0.521 0.521 16.58 2.65 5.08 429  0.000 3.227 0.873 0.873 II .97 4.44 5.08 429  O.OOO 3.574 1.711 1.711 9.78 8.98 5.25 429  0.000 3.830 2.398 2.398 8.77 14.69 6. 13 429  0.000 3.680 2.267 2.267 8.66 13.89 6. 13 429  0.000 3.570 3.300 3.300 1 .36 16 .64 5.04 429  0.000 3.608 3.389 3.389 1 .35 20.90 6. 17 429  DATA  S E T : 43  ENDING: AUG 17  0.000 3.425 0.258 0.258 24.94 2.03 7.88 436  0.000 2.881 0.610 0.610 17.88 4.81 7 .88 436  0.000 3. 120 1.416 I. 416 13.49 I I . 21 7.92 436  O.OOO 3.497 2.058 2.058 10.01 14.32 6.96 435  O.OOO 3.254 1 .855 1 .855 9.56 12.68 6.83 435  0.000 3.256 2.912 2.912 2.73 23.05 7.92 436  0.000 3.210 2.934 2.934 1 .84 19.56 6.67 435  DATA  S E T : 44  ENDING: AUG 24  1.144 2.667 0.322 0.141 15.66 0.00 5.17 6.29 443  1 . 160 2.222 0.751 0.452 10.62 0.00 2.54 6.21 443  1 . 160 2.322 1 .495 1 . 1 14 7.03 2.08 O.OO 6.21 443  0.999 2.616 2. 179 1 .694 5.95 8.51 0.00 7.21 442  1 .023 2.583 1 .807 1 .518 7 .09 5.52 O.OO 7 .04 442  I . 129 2.432 2.915 2.311 0.00 II .38 0.00 6.38 443  1 .022 2.608 2.920 2.434 0.54 13.36 0.00 7.04 442  DATA S E T : 4 5  ENDING: SEPT 1  5.764 1.687 1.950 1.622 33.22 8.71 450  5.710 1 .419 1 .979 1 .279 32.80 8.79 450  6.375 1 .600 2.473 1 .381 30.72 7 .88 450  6.656 1 .756 3. 176 1 .401 26.25 7 .54 450  6.408 1 .736 2.470 1 .552 30.85 7.83 450  5.820 1 .621 3.015 1 .272 24. 19 8.63 450  6.308 1 .766 3.061 1.442 25.84 7.96 450  1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 1981 P R E C I P : MAXIMUM E T : EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: 1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: TOTAL WATER D E F I C I T : EVAPOTRANSPIRATION-PRECIP: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: 1981 P R E C I P : MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY:  WATER BALANCE  DATA SITE 0  UNITS: SITE 1  WATER-MM SITE 2  TIME-DAYS SITE 3  SITE 4  SITE 5  SITE 6  DATA  S E T : 46  ENDING: SEPT  0. 189 2.013 2.087 1 .994 19.05 10.04 460  0. 192 1 .505 1.612 1 .478 14.09 9.92 460  0. 189 1 .690 1.817 1 .658 16.34 10.04 459  0. 187 1 .983 2. 132 1 .946 19.78 10. 17 459  O. 188 1 .878 1 .989 1 .851 18.24 10. 13 459  0.206 1 .919 2.084 1 .878 17.29 9.21 459  0. 188 1 .893 2.044 1 .855 18.71 10.08 459  DATA  S E T : 47  ENDING: SEPT 25 1981 PRECIP MAXIMUM ET EVAPOTRANSPIRATION TRANSPIRATION PRECIP-EVAPOTRANSPIRATION DATA PERIOD MID POINT DAY  4.923 1 .580 1 .790 1 .528 40.86 13.04 471  4.923 1 . 184 1 .647 1 .068 42.71 13.04 471  4.683 1 .305 1 .925 1 . 150 37.81 13.71 471  4.272 1.618 2.502 1 .397 26.64 15.04 471  4.294 1 .519 1 .994 1 .400 34.41 14.96 471  4.698 1 .401 2.494 1 . 128 30. 11 13.67 471  4.318 1 .501 2.360 1 .286 29. 12 14.88 471  DATA  S E T : 48  ENDING: OCT 9  13.421 0.655 2.015 0.315 148.27 13.OO 485  DATA  S E T : 49  ENDING: OCT 28 1981 PRECIP MAXIMUM ET EVAPOTRANSPIRATION TRANSPIRATION PRECIP-EVAPOTRANSPIRATION DATA PERIOD MID POINT DAY  11 1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY:  1981 PRECIP MAXIMUM ET EVAPOTRANSPIRATION TRANSPIRATION PRECIP-EVAPOTRANSPIRATION DATA PERIOD MID POINT DAY  11.752 0.730 1 . 152 0.625 158.11 14.92 485  11.654 0.531 1 .524 0.283 152.37 15.04 . 485  12.254 0.634 2. 130 0.260 144.28 14.25 485  13.547 0.681 3.288 0.029 132.08 12.88 485  5.029 0.669 0.867 0.619 75.61 18.17 502  5.029 0.429 0.882 0.316 74.82 18.04 502  4.866 0.499 1.119 0.344 71 .35 19.04 501  5.308 0.673 1 .723 0.411 72.30 20. 17 502  5.277 0.602 1 . 155 0.463 82.44 20.00 502  12.221 0.707 3.360 0.044 126.64 14.29 485 4.869 0.574 1 .670 0.300 60.65 18.96 501  13.300 0.682 3. 135 0.069 133.42 13.13 485 5.255 0.604 ! .603 0.354 7 2.29 19.79 502  - 269 -  APPENDIX 20 Relationship of tree volume to basal area.  Tree diameter measurements at determined heights were obtained by optical dendrometer for a representative sample of trees covering the DBH distribution at the site. Volumes of tree sections so measured were calculated using Smalians formula (Avery, 1975) and summed to determine the tree volumes.  - 270 -  Figure 1  Site 0  -  |  271 -  I I I I I I I I I I I I I I I I '  CO  rr ui  »—^  CJ UJ  CN  —I O  >, ui U l rr *l  0.0  • I I I ' • ' ' • ' I I ' I I ' I I ' ' '  TREE BASAL'AREA (SQ.METERS)  Figure  2  Site  1  - 272 -  I  I  I I I I  I I I I I  ' I ' '  0.0  02  0.1  TREE BASAL AREA (SQ.METERS)  Figure  3  Site 2  - 273 -  |  <  0.0  I I I I I I I I I I I I I I I I 'I I I I I I  I I l I I  0.1  I  I I I I I 02  TREE BASAL AREA (SQ.METERS)  Figure A  Site 3  - 274 -  Figure  5  Site 4  - 275 -  Figure  6  Site 5  - 276 -  Figure  7  Site 6  - 277 -  APPENDIX 21  Ring width measurements from increment cores taken from samples of trees at sites 1, * and 6  MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM L E F T TO RIGHT SITE 120 145 161 137 273 275  1 NO: 165 139 164 133 252 307  107 158 328  1 S I T E NO: 156 174 125 176 131 178 401 360 303  56 88 126  SITE 89 80 101  TREE NO: 13 DBH(CM): 32. 2 BARK(CM): 154 138 162 106 163 168 132 134 100 1 15 179 147 191 158 150 155 119 144 175 285 414 255 370 425 438 304 352 TREE NO: 13 DBH(CM): 32. 95 160 191 122 111 150 189 214 247 226 191 220 346 340 389 416 4 6 0 379  1 TREE NO: NO: 75 45 62 84 96 106 95 143 144 164 101 147  S I T E NO: 17 9  1 .7 164 217 286 259 238  1 BARK(CM): 0.7 37 59 36 32 99 41 66 85 196 260 168  49 95  6  127 153 201 238  NO 66 109 126  S I T E NO 19 8 SITE 181 177 218 259  43 144  178 355  94 72 112 105 99 108 360 285 249  49 87  65 54 1 15 169  94 95  50  1 TREE NO:: 29 DBH(CM):: 13..1 BARK(CM): 0.7 14 17 23 4  1 TREE NO:: 37 DBH(CM):: 18..8 BARK(CM): 1 .0 S I T E NO: 87 56 45 66 56 75 83 40 56 63 57 35 50 32 50 99 134 86 59 73 93 124 98 140 131 122 97 115 68 68 159 145 151 178 102 146 177 118 148 183 170 113 166 184 208 187 322 210 201 SITE 24 58 88 106 1 14 108  164 226 179 147  224 168 188 361 183 264  26 DBH(CM): 19. 3 BARK(CM) : 0.8 67 72 75 58 72 77 98 77 63 81 68 6 0 72 74 143 113 89 97 125 98 175 170 190 255 229 171 216 260 273 275  1 TREE NO: 29 DBH(CM): 13. S I T E NO: 49 27 29 27 11 26 9 9 18 6 54 63 55 91 65 44 51 43 40 41 123 196 199 145 167 262 296 202 283 241  9  2 BARK(CM): 142 166 168 175 300 260 278 387 164  1 .7 99 1 16 178 109 174 209 217 183 380 400 478 456  1 TREE NO : 37 DBH(CM) : 18 .8 BARK(CM): 1 .0 89 45 92 72 100 65 45 67 82 71 56 40 82 68 68 80 129 58 87 105 64 77 86 62 186 101 158 198 169 189 272 245 133 160  ro 57 73 150 121 183 206  92 71  139 115  90 133 91 67 187 215  98 66  66 101  90 93  131 68  1 TREE: NO : 54 DBH(CM) : 15 .2 BARK(CM): 0.8 28 16 20  1 NO 154 172 215 184 186 253 125  S I T E NO: 1 204 383 229 256 160 192 238 223 257 177 199 269  TREE: NO : 27 DBH(CM) : 30.9 BARK(CM): 74 106 138 134 167 131 159 102 150 86 95 99 172 127 133 109 128 136 145 245 280 208 253 272 292 273 305  1 .6 83 100 102 171 135 104 151 180 169 196 130 115 368 381 353 375 290 294  TREE NO: 27 240 306 213 183 213 151 166 184 246  1.6 224 225 143 209 187 311 330 148 183 154 233 168 105 144 273 327 266 339 316 298  DBH(CM): 30.9 BARK(CM): 141 282 263 217 217 198 210 141 99 96 54 86 192 2 3 0 316 278 253 267  oo  MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM  62 64 142  83 124 123 171  115 116 71  S I T E NO: 1 TREE NO: 40 DBH(CM): 18.6 BARK(CM): 0.8 60 49 52 60 73 69 78 138 71 76 75 56 95 57 43 78 98 83 83 72 92 124 108 127 132 92 115 117 107 114 112 127 119 148 144 132 180 135 175 170 140 152 203 183 146 175 201 210 177 299 S I T E NO: 1 TREE NO: 45 DBH(CM): 20.1 BARK(CM): 1 . 1 84 74 81 156 79 130 144 76 93 86 103 120 109 98 72 114 89 85 58 75 90 103 115 114 142 135 9 0 148 115 111 124 126 81 120 172 177 179 164 1 1 5 1 3 1 165 90 115 142 122 119 138 111  SITE 104 123 77  19 DBH(CM): 20.7 BARK(CM): 1.2 87 71 102 124 78 113 96 87 89 78 114 106  104  78  121  67 98  102 177 139 70 60 91 145 170 236  NO: 1 TREE NO: 45 DBH(CM): 20.1 BARK(CM): 1 . 1 93 146 70 123 132 96 136 120 145 104 135 130 88 129 99 152 93 71 134 89 65 70 98 108 143 127 100 172 149 169 204 155 146 148 176 159 146 113 86 106 66 128 161 137 108 158 126 125  S I T E NO: 1 TREE NO: 102 142 167 100 96 89 110 9 3 118 117 94 95  92 123  91  132 163 68 58 153 159  132  127  S I T E NO: 4 TREE NO: 7 DBH(CM): 51.1 BARK(CM): 195 225 228 191 198 158 207 161 231 258 228 220 226 233 219 198 181 132 121 105 118 149 158 149 148 165 287 242 2 3 0 285 2 1 0 342 352 260 354 354 348 298 260  3. 1 226 201 191 176 218 307 280 241 269 249 254 234 226 262 289 294 203 304 292  366 363 301 369  S I T E NO: 4 TREE NO: 7 DBH(CM): 51.1 BARK(CM): 472 447 427 436 424 437 309 409 376 353 296 299 438 4 2 9 328 292 283 285 345 281 275 205 279 257 373 321 304 303 333 324 313 441 301 311 303 288 533 601  3. 1 227 217 251 288 342 459 429 349 407 275 273 229 192 228 294 350 352 351 432 394 519  104 151  S I T E NO: 4 TREE NO: 18 DBH(CM): 28.4 BARK(CM): 1 . 1 122 125 119 96 80 91 143 158 185 177 178 237 191 191 130 125 157 185 145 136 129 155 182 169 140 151  S I T E NO: 4 318 345 295 276 306 243 276 294 247 179 138 237  195 166  151  138 179  TREE NO: 19 DBH(CM): 48.4 BARK(CM): 2.2 279 289 364 266 325 328 284 363 321 284 259 282 302 346 378 362 250 262 292 329 284 290 248 244 250 360 277 237 231 254 180 219 219 221  53 115 169 301  S I T E NO: 4 TREE NO: 21 DBH(CM): 25.9 BARK(CM): 1 . 1 79 88 121 120 101 88 63 65 64 78 81 74 151 59 61 83 62 78 104 91 89 88 128 92 94 108 103 119 81 117 106 105 105 112 141 137 162 109 135 182 182 146 145 208 189 178 197 212 156 173 214 214 262 273 266 263 439 570  41 87 188  S I T E NO: 4 TREE NO: 21 DBH(CM): 25.9 BARK(CM): 1 . 1 38 67 52 48 61 64 64 51 61 58 50 63 66 50 38 35 42 42 38 99 126 135 86 104 126 122 102 155 103 154 125 156 75 88 104 111 107 83 169 156 172 146 255 280 238 285 264 281 226 227 239 164 220 235 240 278 389  MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM L E F T TO  80 139 171  S I T E NO: 4 TREE NO: 22 DBH(CM): 32.5 BARK(CM): 1.8 127 116 108 78 112 121 94 114 125 139 167 167 155 166 139 170 146 118 120 119 104 135 118 133 150 116 155 144 145 128 126 120 123 122 83 114 110 129 160 245 282 184 231 214  132 158 226  S I T E NO: 4 TREE NO: 22 160 172 233 208 185 188 171 157 149 89 139 155 147 196 211 153 253 262  S I T E NO: 4 TREE NO: 12 88 114 131 121 101 121 163 141 135 74 71 120 134 126 2 3 0 208 256 245 210 309 294  93 149  DBH(CM): 167 208 167 213 300 290  140 118 138 185  32.5 BARK(CM): 1.8 176 180 213 238 169 222 174 228 216 187 197 204 190 192 196 155 124 124 100 124 276 276 232 214  172 178  DBH(CM): 35.8 BARK(CM): 1.8 152 153 134 144 137 147 132 157 166 125 118 162 111 196 181 243 184 198 278 335 314 237 224 168 194 174 227 265 242 242 255 286 300 316 330 314 287  S I T E NO: 4 TREE NO: 12 DBH(CM): 35.8 BARK(CM): 1.8 89 88 93 111 118 206 165 181 136 90 133 187 137 133 172 130 105 168 141 186  161  117  155 156  196  148  S I T E NO: 4 TREE NO: 14 DBH(CM): 38.6 BARK(CM): 1.7 318 282 284 253 248 272 317 163 2 1 0 291 290 317 281 304 240 243 242 260 282 316 281 292 272 242 169 290 208 253 229 237 SITE  NO:  4 TREE NO:  14 DBH(CM):  38.6 BARK(CM):  1.7  282 406 331 246 265 257 307 239 304 376 306 263 289 238 261 231 271 263 282 305 253  218 213  197  180 258 229 300  S I T E NO: 4 TREE NO: 2 DBH(CM): 28.6 BARK(CM): 1.7 30 24 45 61 66 95 89 74 72 59 46 55 75 68 112 74 130 116 150 157 154 151 198 143 127 114 121 161 177' 206 185 189 200 188 182 140 156 58 165 183 233  44 123 195  S I T E NO: 4 TREE NO: 53 58 47 56 82 111 147 97 89 77 161 150 151  RIGHT  10 DBH(CM): 26.5 BARK(CM): 1.0 85 66 83 61 80 88 78 81 85 79 78 104 129 130 177 128 140 159 162 101  93  68  66  98  113  96  137  115  S I T E NO: 4 TREE NO: 10 DBH(CM): 26.5 BARK(CM): 1.0 50 49 53 60 64 74 57 70 59 70 8 0 109 87 71 52 70 86 65 83 120 102 107 97 76 54 114 72 138 118 134 146 117 148 180 197 110 133 85 118 121 215 170 141 218 128 177 170 178 2 9 0 252 270 212 235 2 7 0 244 282 381 385 3 9 0 449 331 438 S I T E NO: 6 TREE NO: 1 DBH(CM): 38.3 BARK(CM): 2.9 31 31 25 25 48 57 104 75 70 72 61 79 52 85 61 6 0 131 132 121 114 100 129 132 155 151 150 175 180 190 255 233 276 275 272 404 6 5 0 609 535 663 476 426 5 0 0  ro co o  MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM L E F T TO RIGHT S I T E NO: 6 TREE NO: 1 DBH(CM): 38.3 BARK(CM): 2.9 14 12 10 13 14 18 16 24 22 23 23 26 19 26 24 40 39 48 59 36 48 44 53 41 49 68 66 70 58 55 64 115 103 115 118 143 125 144 176 243 197 216 243 351 364 217 536 461 611 352 354 470 496 482 423 518 484 649 477 621 S I T E NO: 6 TREE NO: 3 DBH(CM): 49.2 BARK(CM): 2.5 180 220 238 160 232 251 222 171 234 215 132 175 215 138 102 154 128 183 234 259 223 2 0 0 2 0 0 219 160 170 89 129 226 264 231 203 279 307 258 250 292 198 253 224 2 1 0 114 2 2 0 257 222 224 174 177 261 318 346 S I T E NO: 6 212 298 227 2 0 0 246 210 233 178 613 4 5 0 298 272  TREE NO: 3 DBH(CM): 49.2 BARK(CM): 2.5 227 253 279 183 216 209 200 190 232 195 201 192 209 234 280 260 225 193 234 299 301 342 257 229 322 285 298 300 337 2 8 0 2 5 0 4 2 0 256 270 224 285  S I T E NO: 6 TREE NO: 10 DBH(CM): 47.5 BARK(CM): 2.0 92 122 152 141 123 140 158 123 168 115 92 134 175 140 155 201 166 248 2 7 0 274 230 198 193 221 293 278 209 165 229 268 292 246 411 369 325 327 293  177 222 257 185 157 190 366 295  S I T E NO: 6 TREE NO: 10 DBH(CM): 47.5 BARK(CM): 2.0 221 180 202 222 212 254 266 219 274 293 270 297 321 219 215 220 225 311 378 383 384 452 442 4 1 6 284 307 278 353 317 317 319 268 401 429 385 364 360 281 354 308 417 391 561 S I T E NO: 6 307 4 9 5 4 3 7 4 0 4 376 339 308 186 40O 434 5 2 0 5 3 8  TREE NO: 19 DBH(CM): 69.8 BARK(CM): 328 377 397 299 395 404 435 468 463 242 279 278 427 517 591 555 416 422 519 602 448 436 323 271 120 506 473  3.7 343 332 301 2 2 0 339 495 520 438 427 463 603 422 424 394 664 704  S I T E NO: 6 282 555 401 367 368 413 328 150 728 566 557 4 3 9  TREE NO: 19 DBH(CM): 69.8 BARK(CM): 3.7 327 414 327 295 427 445 498 438 374 241 343 367 380 571 691 565 260 201 293 466 467 549 336 310 543 525 381 470 518 471 333 466 472 479 371 408 471 438 421 444 491 6 2 0 501 657 651 644 647 657  S I T E NO: 6 TREE NO: 21 DBH(CM): 29.0 BARK(CM): 1.2 14 19 18 31 34 42 33 38 25 31 30 37 36 23 18 35 52 54 57 32 25 45 22 28 58 78 72 66 100 129 141 104 165 163 3 4 0 249 251 236 207 208 255 481 6 1 0 548 596 543  60 52 56 114 150 258  S I T E NO: 6 TREE NO: 6 DBH(CM): 44.1 BARK(CM): 2.8 149 149 171 107 127 96 121 91 113 71 75 101 121 62 70 79 91 89 97 82 109 252 273 236 161 206 141 209 258 218 214 205 210 259 230 243 278 198 264 221 2 1 0 180 188 151 135 169 207 228 2 2 0 283 325 253 253 403 378 402 359 274 317 S I T E NO: 6 TREE NO: 6 DBH(CM): 44.1 BARK(CM): 2.8 190 244 271 238 240 335 388 329 352 294 292 351 324 231  rv>  x  '  1  MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM L E F T TO 6 S I T E NO: 239 346 303 313 326 350 455 306 432 351 417 349  TREE NO:: 12 305 367 434 241 255 208 321 397 353  DBH(CM): 61 ..7 BARK(CM): 250 292 284 223 222 269 328 376 501 485 392 489 334 432 395 609 429 451  3.5 220 203 226 412 337 313 205 240 481  223 217 340 292 378 298 330 395 523  6 S I T E NO: 293 353 359 351 406 3 9 0 503 296 422 4 7 0 318 373  TREE NO:: 12 280 362 389 334 208 216 257 413 263  DBH(CM):: 61 .7 . BARK(CM): 237 291 270 275 246 276 308 300 384 314 212 344 323 442 449 643 442 426  3.5 275 279 404 405 539 595  336 456 523  251 372 495 454 367 301 465  486 389  91 43 24 31 178 231  43 6 0 171 24 34 21 177 278 283  78 15 374,  64 39 21 363  SITE 47 50 20  NO: 47 47 15  6 TREE NO: 29 55 40 9 43 39 68 35 65  S I T E NO: 6 387 384 374 350 323 331 351 255 385 297 205 291 386 542  315 316 441 404  7 DBH(CM):: 21 . 1 BARK(CM): 0.8 62 69 69 74 63 62 79 50 32 24 29 50 61 12 36 32 73 131 120 129 186 194 193 147  TREE NO: 2 DBH(CM): 53.4 BARK(CM): 325 333 409 365 316 318 321 285 264 263 284 301 346 312 391 277 311 335 273 371 332 353 410 538 495 381 300  2.8 277 266 309 295 250 386 317 224 352 349 407 267 296 315 385 335 346 314 310 331 512  DBH(CM):: 53.,4 BARK(CM): 227 291 276 281 271 311 333 352 391 312 268 401 315 470 464 475 371 315  2.8 226 203 239 295 323 438 373 448 438 368 390 293 303 388 442 350 376 317 360 402 436  2 6 TREE NO: S I T E NO: 3 9 0 191 217 332 222 229 331 274 281 285 242 299 278 342 300 271 414 358 491  DBH(CM):: 54,,9 BARK(CM): 2.9 232 261 266 259 255 310 284 212 234 219 225 328 313 319 211 218 326 228 321 373 348 296 261  6 S I T E NO: 189 241 227 228 224 198 245 128 381 385 339 355  TREE NO:: 16 244 265 306 248 270 264 256 302 298  S I T E NO: 6 280 259 272 215 234 182 342 255 355 416 3 4 0 347  TREE NO:: 16 DBH(CM) : 54,.9 BARK(CM): 2.9 224 310 297 237 304 266 254 255 242 209 164 201 199 272 305 291 247 264 314 427 347 343 229 169 380 326 368 420 420 398 298 221 242 385  275 261 324 374  RIGHT  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095781/manifest

Comment

Related Items