UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Soil water regimes on a forested watershed Giles, Donald George 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1983_A6_7 G55.pdf [ 27.46MB ]
Metadata
JSON: 831-1.0095781.json
JSON-LD: 831-1.0095781-ld.json
RDF/XML (Pretty): 831-1.0095781-rdf.xml
RDF/JSON: 831-1.0095781-rdf.json
Turtle: 831-1.0095781-turtle.txt
N-Triples: 831-1.0095781-rdf-ntriples.txt
Original Record: 831-1.0095781-source.json
Full Text
831-1.0095781-fulltext.txt
Citation
831-1.0095781.ris

Full Text

SOIL WATER REGIMES ON A FORESTED WATERSHED by DONALD GEORGE GILES (B .Sc , University of Oxford, England, 1938) A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Soi l Science) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA Apri l 1983 ©Donald George Giles, 1983 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. I t i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of Soil Science. The University of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date DE-6 (3/81) - i i -ABSTRACT The q u a n t i t a t i v e e v a l u a t i o n of summer water s t r e s s over a range of s i t e s on a forested watershed was accomplished by determining the s o i l water d e f i c i t s o c c u r r i n g during the growing season. The r e l a t i o n s h i p of s o i l water d e f i c i t to f o r e s t p r o d u c t i v i t y was studied using s i t e index, t o t a l stemwood volume and annual incremental stemwood volume per u n i t area to q u a n t i f y f o r e s t p r o d u c t i v i t y at each s i t e . Two procedures were used for ev a l u a t i n g growing season s o i l water d e f i c i t s . In the f i r s t procedure, d e f i c i t s were c a l c u l a t e d at each s i t e during the growing seasons of 1980 and 1981 by summation of the weekly s h o r t f a l l s of the a c t u a l t r a n s p i r a t i o n rate ( l i m i t e d by a v a i l a b l e s o i l water storage) below the maximum t r a n s p i r a t i o n rate ( l i m i t e d by net r a d i a t i o n ) . This required the determination of c o e f f i c i e n t s i n the r e l a t i o n s h i p s of t r a n s p i r a t i o n r a t e to a v a i l a b l e s o i l water storage, to net r a d i a t i o n , and to the evaporation rate of int e r c e p t e d r a i n f a l l . These c o e f f i c i e n t s were c a l c u l a t e d by weekly water balancing of ev a p o t r a n s p i r a t i o n against measured p r e c i p i t a t i o n plus measured s o i l water withdrawal from storage during periods when drainage, run-off and c a p i l l a r y r i s e were n e g l i g i b l e . The second procedure for c a l c u l a t i n g growing season s o i l water d e f i c i t s was by monthly water budgeting over the growing season of each year from 1964- to 1981, f o r which years the required c l i m a t o l o g i c a l data was a v a i l a b l e . Maximum e v a p o t r a n s p i r a t i o n c a l c u l a t e d from the average d a i l y net r a d i a t i o n was balanced against a v a i l a b l e s o i l water storage plus p r e c i p i t a t i o n on a monthly b a s i s , with carry over of unused s o i l water storage to the next month. - i i i -Growing season soil water deficit variations between sites for 1980 and 1981 were found to be well correlated with forest productivity as quantified by site index and by total stemwood volume. Relative differences in soil water deficits between sites for the years 1980 and 1981 were thus concluded to be representative of the average relative site to site differences over the l i fe of the stand. These conclusions were confirmed by comparing the average growing season soil water deficits over the years 1964 to 1981 with the average annual incremental stemwood occurring at a site over this period as determined by tree ring width measurements. Yearly incremental stemwood volume for 1964-81 was also found to be well correlated with growing season soil water deficit, although less variation of growth with deficit was apparent between years at a given site, than when comparing variation of growth with deficit between sites. - i v -TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS i v LIST OF TABLES v i i LIST OF FIGURES x LIST OF APPENDICES x v i i ACKNOWLEDGEMENTS x i x NOTATION xx 1. INTRODUCTION 1 2. THEORY ^ 1. E v a p o t r a n s p i r a t i o n 5 1. Energy l i m i t e d e v a p o t r a n s p i r a t i o n 5 2. Determination of net r a d i a t i o n f l u x d ensity 11 3. E v a p o t r a n s p i r a t i o n l i m i t e d by s o i l water 12 4. Evaporation of in t e r c e p t e d r a i n f a l l 15 5. T r a n s p i r a t i o n r a t e 17 2. Water balance 17 3. Tree growth and water regime 18 3. EXPERIMENTAL PROCEDURES 22 1. S i t e d e s c r i p t i o n 23 1. S i t e l o c a t i o n s 23 2. S u r f i c i a l geology 26 3. Forest d e s c r i p t i o n 26 2. S o i l p r o p e r t i e s 28 1. S o i l p r o f i l e d e s c r i p t i o n s 28 2. Bulk d e n s i t y determination 28 3. S o i l coarse fragment content 31 S o i l t e x t u r a l c l a s s e s 35 5. S o i l water r e t e n t i o n 39 - V -Page 3. P r e c i p i t a t i o n 41 1. Measurement 41 2. R a i n f a l l i n t e r c e p t i o n 41 4. Net r a d i a t i o n 45 1. Solar i r r a d i a n c e 45 2. Net Long wave i r r a d i a n c e 47 5. S o i l water content 48 1. Access tube i n s t a l l a t i o n methods 48 2. Access tube number and l o c a t i o n 50 3. Measurement depths 53 4. C a l i b r a t i o n of the neutron probe 53 5. Er r o r a n a l y s i s of neutron probe 64 6. Water content of the humus l a y e r 70 6. S o i l Water p o t e n t i a l measurements 71 7. Water t a b l e measurements 72 8. Saturated h y d r a u l i c c o n d u c t i v i t i e s and ru n - o f f 73 9. C a l c u l a t i o n of water balance components by date periods 75 1. E q u i l i b r i u m e v a p o t r a n s p i r a t i o n 76 2. P r e c i p i t a t i o n and i n t e r c e p t i o n 76 3. P r o f i l e water storage and e x t r a c t a b l e p r o f i l e water 77 4. Actu a l e v a p o t r a n s p i r a t i o n 79 1. Determination of e v a p o t r a n s p i r a t i o n parameters... 79 2. C a l c u l a t i o n of a c t u a l e v a p o t r a n s p i r a t i o n 83 5. C a l c u l a t i o n of approximate growing season d e f i c i t by monthly water balance 85 10. Forest p r o d u c t i v i t y measurement 87 1. S i t e index measurements 88 2. Stand de n s i t y by volume 88 3. Current annual growth measurement 89 - v i -Page 1. Incremental stemwood from r i n g width measurements 90 2. Expected Incremental stemwood by l i n e a r r e g r e s s i o n 91 4. RESULTS AND DISCUSSION 92 1. Water balances f o r 1980 and 1981 93 1. Net cumulative withdrawal of water stored i n the s o i l 93 2. Recharge of root zone f o l l o w i n g summer dry periods 123 2. Growing season s o i l water d e f i c i t s 126 3. R e l a t i o n s h i p of f o r e s t p r o d u c t i v i t y to growing season s o i l water d e f i c i t s 141 1. R e l a t i o n s h i p of s i t e index to 1980 and 1981 growing season s o i l water d e f i c i t 1A-3 2. R e l a t i o n s h i p of t o t a l stemwood volume to 1980-81 growing season water d e f i c i t s 143 3. R e l a t i o n s h i p of annual stemwood increment to growing season s o i l water d e f i c i t 146 1. Annual incremental stemwood and 1980-81 s o i l water d e f i c i t s 149 2. Annual incremental stemwood and the estimated d e f i c i t s over the period 1964-81.... 149 4. Conclusions 157 REFERENCES 161 APPENDICES 165 - v i i -LIST OF TABLES Table 3-1a Table 3-1b Table 3-2 Table 3-3 Table 3-4 Table 3-5 Table 3-6 Table 3-7 Page S o i l p r o f i l e d e s c r i p t i o n s of study s i t e s . S i t e s 0 to 6 are o r t h i c humo f e r r i c podzols. S i t e 7 i s t e r r i c humisol. (From B r i t i s h Columbia M i n i s t r y of Forests-Ecosystem D e s c r i p t i o n s ) 29 Root zone depths at s i t e s 0 to 6 determined by in s p e c t i o n of p r o f i l e s at two s o i l p i t s at each s i t e , and comparison with B r i t i s h Columbia M i n i s t r y of F orests s o i l d e s c r i p t i o n s , 30 V a r i a t i o n with depth below the LFH-mineral s o i l i n t e r f a c e of the bulk d e n s i t y of the l e s s than 2 mm f r a c t i o n f o r s i t e s 0 to 6. Under the heading 'Depth', > 45 or > 60 r e f e r s to the horizon between 45/60 cm and bedrock or compacted t i l l . . . . , 32 V a r i a t i o n with depth below the LFH-mineral s o i l i n t e r f a c e of the bulk d e n s i t y of the l e s s than 10 mm f r a c t i o n f o r s i t e s 0 to 6. Under the heading 'Depth', > 45 or > 60 r e f e r s to the horizon between 45/60 cm and bedrock or compacted t i l l 33 V a r i a t i o n with depth of the volume percent of coarse fragments greater than 10 mm f o r s i t e s 0 - 6 36 V a r i a t i o n with depth of the volume percent of coarse fragments greater than 2 mm f o r s i t e s 0 to 6 37 P a r t i c l e s i z e a n a l y s i s of the l e s s than 2 mm f r a c t i o n f o r s i t e s 0 to 6. The c l a s s i f i c a t i o n i s i n accordance with the U.S.D.A. s o i l t e x t u r a l c l a s s e s , as f o l l o w s : Name of Separate Diameter range (mm) 2.0-0.05 0.05-0.002 < 0.002 Sand S i l t Clay 38 Summary of tree s p e c i e s , average basal area per hectare, average D.B.H., average basal area per tre e and number of tr e e s per hectare based on measurements of a l l tr e e s (DBH > 7 cm) i n 20 m x 20 m sample p l o t s at each s i t e . Leaf area i n d i c e s were c a l c u l a t e d as described i n Section 3.3.2 , 44 - v i i i -Page Table 3-8 V a r i a b i l i t y of volumetric s o i l water content change over a 20 m x 20 m p l o t at s i t e 4. The average change and standard d e v i a t i o n are f o r 16 access tubes In a s t r a t i f i e d random arrangement, and measured at 30 cm depth. During the drying period 3uly 1 to August 17, 1981 the average standard d e v i a t i o n was 0.0048 m3/m3 and was used to c a l c u l a t e the standard e r r o r of the mean and 95% confidence l i m i t s of the mean (see t e x t ) 67 Table 4-1 The cumulative net withdrawal of s o i l water storage at each s i t e during the growing seasons of 1980 and 1981. This i s c a l c u l a t e d by accumulating values of E-P f o r data periods when E > P, and i s represented by the area bounded by the e v a p o t r a n s p i r a t i o n rate and the p r e c i p i t a t i o n r a t e p l o t s i n Figures 4-15 to 4-28 94 Table 4-2 C a p i l l a r y r i s e (-) or drainage (+) determined from water balance c a l c u l a t i o n s f o r data periods during the f i r s t r a i n f a l l f o l l o w i n g a f t e r the end of the growing season. Negative e n t r i e s i n d i c a t e s o i l recharge t a k i n g place from c a p i l l a r y r i s e r e s u l t i n g from subsurface downflow, and p o s i t i v e e n t r i e s i n d i c a t e completion of s o i l water recharge and drainage from the p r o f i l e going to subsurface flow. Note the time l a g between p o s i t i v e drainage being e s t a b l i s h e d at s i t e s 1 to 3 and the completion of recharge (see Figures 4-8B to 4-14B) 124 Table 4-3 Cumulative s o i l water d e f i c i t s (I(Etmax~ E t ) ) at each s i t e f o r the growing seasons (May to Sept. i n c l u s i v e ) of 1980 and 1981 for data periods when a c t u a l t r a n s p i r a t i o n (Et) i s l e s s t n a n maximum t r a n s p i r a t i o n ( E t m i ? x ) (see Figures 4-15 to 4-28). The cumulative d e f i c i t i s represented by the area between the maximum t r a n s p i r a t i o n and a c t u a l t r a n s p i r a t i o n l i n e s i n the above referenced f i g u r e s 142 Table 4-4 The s i t e i n d i c e s at 100 years f o r s i t e s 0 to 6, based on the dominant Douglas f i r t r e e s at each s i t e . 100 years i n d i c e s were determined by using the height versus age r e l a t i o n s h i p s of the B r i t i s h Columbia M i n i s t r y of Forests (Hegyi et a l . , 1979) 144 - i x -Page Table 4-5 Values of average basal area per t r e e , average stemwood volume per t r e e and t o t a l stemwood volume per hectare f o r t r e e s with DBH > 7 cm f o r each s i t e . Also shown are the slopes of the t r e e volume basal area regression l i n e s (C) obtained by o p t i c a l dendrometer measurements 147 Table 4-6 Comparisons of incremental stemwood volume (from t r e e r i n g measurements) with s o i l water d e f i c i t s and growing season t r a n s p i r a t i o n . The 95% confidence l i m i t s f o r incremental stemwood measurements are also shown 150 Table 4-7 Table 4-8 S i t e s 1, 4 and 6 growing season s o i l water d e f i c i t s c a l c u l a t e d f o r the years 1964 through 1981 from monthly water balances and annual incremental stemwood volumes f o r each year determined from t r e e r i n g measurements 152 Linear r e g r e s s i o n equations r e l a t i n g annual incremental stemwood volume (y) to growing season s o i l water d e f i c i t (x) f o r years 1964-1981 at s i t e s 1, 4 and 6. S i t e s 4 and 6 r e g r e s s i o n equation were c a l c u l a t e d both i n c l u d i n g and excluding years of zero d e f i c i t 154 - X -LIST OF FIGURES Page Fi g u r e 2-1 D a i l y e v a p o t r a n s p i r a t i o n r a t e ( E j ) versus f r a c t i o n of e x t r a c t a b l e water i n the root zone ( 9 e ) f o r days with no r a i n f o r f i v e ranges of the e q u i l i b r i u m e v a p o t r a n s p i r a t i o n r a t e ( E e q ) (from S p i t t l e h o u s e and Black, 1981) 14 Figure 3-1 Map showing study s i t e s on the N.W. slope of Mesachie Mountain. The B i o g e o c l i m a t i c subzone i s East Vancouver I s l a n d D r i e r Maritime C o a s t a l Western Hemlock designated CWHa2. The study s i t e s are c l a s s i f i e d as very x e r i c ( 0 ) , x e r i c ( 1 ) , subxeric ( 2 ) , submesic ( 3 ) , mesic ( 4 ) , subhygric ( 5 ) , h y g r i c (6) and subhydric (7) 24 Fig u r e 3-2 -Topographical Sequence of Ecosystems corresponding to the range of the sample p l o t s showing major pl a n t a s s o c i a t i o n s and t r e e species. Tree Species Symbols: P I : Pinus c o n t o r t a (lodgepole pine) Fd: Pseudotsuga m e n z i e s i i (Douglas f i r ) . HW: Tsuga h e t e r o p h y l l a (western hemlock). CW: Thuja p l i c a t a (western red ce d a r ) . Bg: Abies grandis (grand f i r ) Dr: Alnus rubra (red a l d e r ) . Bracketted a b b r e v i a t i o n i n d i c a t e s the species i s a minor component of the a s s o c i a t i o n 25 Figure 3-3 Map showing s u r f i c i a l geology of study area. Legend: Genetic M a t e r i a l s : C = c o l l u v i a l , M = Morai n a l , R = bedrock, F = f l u v i a l . Surface Expression: b = bl a n k e t , s = steep, v = veneer, m = subdued, f = f a n , h = hummocky. Texture ( p r e f i x ) : g = g r a v e l l y . Q u a l i f y i n g D e s c r i p t o r ( s u p e r s c r i p t ) : G = g l a c i a l 27 Figure 3-4 Throu g h f a l l gauge f o r determining the r e l a t i o n s h i p between r a i n f a l l i n t e r c e p t i o n and r a i n f a l l i n t e n s i t y . The g u t t e r s had a s l i g h t bulge i n width because spacing braces were not used i n order t o avoid raindrop splash 43 - x i -Page Figure 3-5 C a l i b r a t i o n p l o t f o r the neutron probe at depths 30 cm and greater f o r a l l s i t e s . Each point was the average of three neutron probe readings from access tubes i n a t r i a n g u l a r c o n f i g u r a t i o n vs. the average of three volumetric water contents of samples taken during 1980 and 1981 adjacent to the three access tubes, and repeated at 15 cm depth i n t e r v a l s . Water contents were determined g r a v i m e t r i c a l l y and converted to volumetric s o i l water contents f o r the whole s o i l at that depth. The l i n e represents the regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.232 x count r a t i o - 0.021 r 2 = 0.85 56 Figure 3-6 R e l a t i o n s h i p between the neutron count r a t i o at 15 cm depth and the average volumetric water content determined g r a v i m e t r i c a l l y of the mineral s o i l between the LFH mineral s o i l i n t e r f a c e and approximately the 23 cm depth. The l a t t e r depth was estimated by s u b t r a c t i n g the radius of the sphere of i n f l u e n c e of the probe (7 cm) from 30 cm, which was the upper neutron probe depth f o r the c a l i b r a t i o n l i n e shown i n Figure 3-5. Each point was the average of three neutron probe readings from the access tubes i n t r i a n g u l a r c o n f i g u r a t i o n vs. the average of three volumetric water contents of samples taken i n 1980 and 1981 at random l o c a t i o n s over the 20 m x 20 m s i t e . The l i n e represents the re g r e s s i o n equation: V o l . f r a c . H2O (whole s o i l ) = 0.234 x Count r a t i o - 0.029 r 2 = 0.85 57 Figure 3-7 Same as Figure 3-6 except f o r s i t e 1. Regression equation: V o l . f r a c . H2O (whole s o i l ) = 0.246 x count r a t i o - 0.045 r 2 = 0.81 58 Figure 3-8 Same as Figure 3-6 except f o r s i t e 2. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.226 x count r a t i o - 0.075 r 2 = 0.88 59 Figure 3-9 Same as Figure 3-6 except f o r s i t e 3. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.275 x count r a t i o - 0.064 r 2 = 0.74 60 Figure 3-10 Same as Figure 3-6 except f o r s i t e 4. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.258 x count r a t i o - 0.068 r 2 = 0.80 61 - x i i -Page Figure 3-11 Same as Figure 3-6 except f o r s i t e 5. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.266 x count r a t i o - 0.011 r 2 = 0.80 62 Figure 3-12 Same as Figure 3-6 except f o r s i t e 6. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.253 x count r a t i o - 0.018 r 2 = 0.68 63 Figure 3-13 Cumulative average change i n volumetric s o i l water content, measured at 16 access tubes at s i t e 4, p l o t t e d against time (see Table 3-7). The v e r t i c a l l i n e s show the standard d e v i a t i o n of the measurement and i n d i c a t e the v a r i a b i l i t y i n s o i l water storage change at the s i t e . The f i r s t seven p o i n t s on the time sc a l e show progressive drying of the s o i l , and are followed by i n t e r m i t t e n t recharge 68 Fi g u r e 3-14 Water t a b l e measurements at s i t e s 4, 5 and 6 f o r the period October 1980 to Oune 1981. Water t a b l e s were not found at s i t e s 0 to 3. At s i t e 4 a water t a b l e was present from mid November 1980 to the end of A p r i l 1981, at s i t e 5 from e a r l y November 1980 to mid May 1981 and at s i t e 6 from l a t e October 1980 to mid 3une 1981 \ 74 Fi g u r e 3-15 Determination of the i n t e r c e p t i o n m u l t i p l i e r g i n the e v a p o t r a n s p i r a t i o n equation E = E T + g l where E i s the t o t a l e v a p o t r a n s p i r a t i o n r a t e , E T i s the t r a n s p i r a t i o n r a t e assuming the vegetation i s dry, and g l i s the average net i n t e r c e p t i o n l o s s r a t e ( S e c t i o n 2.1.4). From the water balance, when drainage and runoff are zero E = P-AW/At. Ey + g l was c a l c u l a t e d f o r data periods through the growing season f o r d i f f e r e n t values of g. By p l o t t i n g cumulative P-AW/At (ordinate) against cumulative ET + g l (abscissa) f o r the whole growing season an average value of q was found by t r i a l and e r r o r when \ (E T + g l ) = J (P-AW/At) 78 Figure 3-16 Determination of s o i l water content when t r a n s p i r a t i o n ceases (6 mi n)« When r a i n f a l l i s n i l , and c a p i l l a r y r i s e i s n e g l i g i b l e , Ej = -AW/At. By p l o t t i n g Ej against volumetric s o i l water content f o r such data pe r i o d s , as s o i l water content i s reduced the data points converge to zero t r a n s p i r a t i o n at 0 m i n 80 - x i i i -Page Figure 3-17 Determination of e v a p o t r a n s p i r a t i o n parameters a (energy l i m i t e d ) and b ( s o i l water l i m i t e d ) . Data periods were s e l e c t e d when p r e c i p i t a t i o n and drainage were zero (tensiometers showing that water p o t e n t i a l gradiant i s upwards) and c a p i l l a r y r i s e i s n e g l i g i b l e (low water p o t e n t i a l hence low h y d r a u l i c c o n d u c t i v i t y throughout the p r o f i l e ) . By p l o t t i n g t r a n s p i r a t i o n (E-r) against e x t r a c t a b l e water ( 6 e ) , both r e l a t i v e to e q u i l i b r i u m evaDOtranspiration, the r e l a t i o n s h i p may be represented by two s t r a i g h t l i n e s : E m a x / E e q = a (energy l i m i t e d t r a n s p i r a t i o n , h o r i z o n t a l l i n e ) : E s / E e q = b 6 e / E e q ( s o i l water l i m i t e d t r a n s p i r a t i o n , s l o p i n g l i n e ) , which i n t e r s e c t at a c r i t i c a l value of 6 e ( 9 e c ) such that 6 / E D O = a/b 82 ec eq Figure 4-1A S i t e 0: Time course of rat e s of p r e c i p i t a t i o n and ev a p o t r a n s p i r a t i o n f o r data periods f o r year 1980 3une to December i n c l u s i v e . The data p o i n t s are the mid-points of each data period on the h o r i z o n t a l s c a l e , and the average f l u x d e n s i t y on the v e r t i c a l s c a l e 95 Fig u r e 4-1B S i t e 0: Time course of r a t e s of s o i l water storage change and drainage and s o i l water storage f o r data periods f o r year 1980 3une to December i n c l u s i v e . The data points f o r s o i l water storage change and drainage are the mid-points of each data p e r i o d . The data points of water storage ( r i g h t hand v e r t i c a l s cale) correspond to the days when data was taken.... 96 Fig u r e 4-2A Same as Figure 4-1A except f o r s i t e 1 97 Fig u r e 4-2B Same as Figure A--1B except f o r s i t e 1 98 Figure 4-3A Same as Figure A--1A except f o r s i t e 2 99 Fig u r e 4-3B Same as Figure 4-1B except f o r s i t e 2 100 Fi g u r e 4-4A Same as Figure 4-1A except f o r s i t e 3 101 Figure 4-4B Same as Figure 4--1B except f o r s i t e 3.... 102 Figure 4-5A Same as Figure A--1A except f o r s i t e 4 103 - x i v -Page Figure 4-5B Same as Figure 4-1B except f o r s i t e 4 104 Figure 4-6A Same as Figure 4-1A except f o r s i t e 5 105 Figure 4-6B Same as Figure 4-1B except f o r s i t e 5 106 Figure 4-7A Same as Figure 4-1A except f o r s i t e 6 107 Figure 4-7B Same as Figure 4-1B except f o r s i t e 6 108 Figure 4-8A S i t e 0: Time course of rate of p r e c i p i t a t i o n and ev a p o t r a n s p i r a t i o n for data periods f o r year 1981 January to October i n c l u s i v e . The data p o i n t s are mid-points of each data period on the h o r i z o n t a l s c a l e , and the average f l u x d e n s i t y on the v e r t i c a l s c a l e 109 Figure 4-8B S i t e 0: Time course of r a t e s of s o i l water storage change and drainage and s o i l water storage f o r data periods for year 1981 Oanuary to October i n c l u s i v e . The data p o i n t s f o r s o i l water storage change and drainage are the mid points of each data p e r i o d . The data p o i n t s of water storage ( r i g h t hand v e r t i c a l scale) correspond to the days when data was taken.... 110 Figure 4-9A Same as Figure 4-8A except f o r s i t e 1 111 Figure 4-9B Same as Figure 4-8B except f o r s i t e 1 112 Figure 4-10A Same as Figure 4-8A except f o r s i t e 2 113 Figure 4-10B Same as Figure 4-8B except f o r s i t e 2 114 Figure 4-11A Same as Figure 4-8A except f or s i t e 3 115 Figure 4-11B Same as r i g u r e 4-8B except f o r s i t e 3 116 Figure 4-12A Same as Figure 4-8A except f o r s i t e 4 117 Figure 4-12B Same as Figure 4-8B except f o r s i t e 4 118 Figure 4-13A Same as Figure 4-8A except f o r s i t e 5 119 Figure 4-13B Same as Figure 4-8B except f o r s i t e 5 120 - XV P a g e F i g u r e 4 - 1 4 A Same a s F i g u r e 4 - 8 A e x c e p t f o r s i t e 6 121 F i g u r e 4 - 1 4 B Same a s F i g u r e 4 - 8 B e x c e p t f o r s i t e 6 122 F i g u r e 4 - 1 5 T r a n s p i r a t i o n a n d max imum t r a n s p i r a t i o n r a t e s f o r s i t e 0 d u r i n g t h e 1 9 8 0 g r o w i n g s e a s o n . Max imum t r a n s p i r a t i o n i s c a l c u l a t e d f r o m t h e max imum e v a p o t r a n s p i r a t i o n r a t e by s u b t r a c t i n g t h e e v a p o r a t i o n o f i n t e r c e p t e d r a i n f a l l ( S e c t i o n 3 . 9 . 4 . 2 ) . E v a p o r a t i o n f r o m t h e s o i l i s c o n s i d e r e d ^ n e g l i g i b l e . A c t u a l t r a n s p i r a t i o n i s l e s s t h a n max imum t r a n s p i r a t i o n when t r a n s p i r a t i o n b e c o m e s l i m i t e d by s o i l w a t e r s t o r a g e . T h e d a t a p o i n t s c o r r e s p o n d t o t h e m i d p o i n t s o f t h e d a t a p e r i o d s o r t h e h o r i z o n t a l t i m e s c a l e , a n d a v e r a g e f l u x d e n s i t y o n t h e v e r t i c a l s c a l e . T h e a v e r a g e d e f i c i t d u r i n g a d a t a p e r i o d i s t h e s h o r t f a l l o f t r a n s p i r a t i o n b e l o w max imum t r a n s p i r a t i o n , a n d t h e g r o w i n g s e a s o n d e f i c i t i s t h e s u m m a t i o n o f d a t a p e r i o d s d e f i c i t s a n d i s s h o w n by t h e s h a d e d a r e a 127 F i g u r e 4 - 1 6 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 0 1981 g r o w i n g s e a s o n 128 F i g u r e 4 - 1 7 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 1 1 9 8 0 g r o w i n g s e a s o n 129 F i g u r e 4 - 1 8 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 1 1981 g r o w i n g s e a s o n 1 3 0 F i g u r e 4 - 1 9 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 2 1 9 8 0 g r o w i n g s e a s o n 131 F i g u r e 4 - 2 0 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 2 1981 g r o w i n g s e a s o n 132 F i g u r e 4 - 2 1 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 3 1 9 8 0 g r o w i n g s e a s o n 133 F i g u r e 4 - 2 2 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 3 1981 g r o w i n g s e a s o n 1 3 4 F i g u r e 4 - 2 3 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 4 1 9 8 0 g r o w i n g s e a s o n 1 3 5 F i g u r e 4 - 2 4 Same a s F i g u r e 4 - 1 5 e x c e p t t h a t f o r s i t e 4 1981 g r o w i n g s e a s o n 1 3 6 - x v i -Page Figure 4-25 Figure 4-26 Figure 4-27 Fig y r e 4-28 Figure 4-29 Figure 4-30 Figure 4-31 Figure 4-32 Same as Figure 4-15 except that f o r s i t e 5 1980 growing season 137 Same as Figure 4-15 except that f o r s i t e 5 1981 growing season 138 Same as Figure 4-15 except that f o r s i t e 6 1980 growing season 139 Same as Figure 4-15 except that f or s i t e 6 1981 growing season 140 Values of the 100 year s i t e index p l o t t e d against values of the growing season s o i l water d e f i c i t f o r years 1980 (A) and 1981 ( 0 ) . Numbers adjacent to the p o ints are s i t e numbers 145 To t a l stemwood volume per hectare p l o t t e d against growing season s o i l water d e f i c i t f o r the years 1980 (A) and 1981 ( 0 ) . Numbers adjacent to the poi n t s are s i t e numbers 148 Annual incremental stemwood versus growing season water d e f i c i t f o r s i t e s 1, 4 and 6 f o r the years 1964-1981. Also shown are the re g r e s s i o n l i n e s with (W) and without (W0) the i n c l u s i o n of years with zero growing season water d e f i c i t . There were no zero water d e f i c i t years f o r s i t e 1. For years of zero d e f i c i t ( s i t e 4: 3 years, s i t e 6, 11 years) the averaged value of the annual stemwood increments i s p l o t t e d on the o r d i n a t e . Equations of l i n e s and r values are given i n Table 4-8 153 Average annual incremental stemwood versus average growing season water d e f i c i t f o r s i t e s 1, 4 and 6 fo r the years 1964-81. Average incremental stemwood was c a l c u l a t e d i n two ways: ( i ) from the ar i t h m e t i c average annual growth increment f o r the past 18 years ( i i ) from the slope of the l i n e a r r e gression l i n e of annual r i n g width against time f o r past 25 years and c a l c u l a t i n g the expected volume increase for the mid year of the 1964-81 period , 156 \ - x v i i -LIST OF APPENDICES Page Appendix 1 S i t e d e s c r i p t i o n s provided by the B r i t i s h Columbia M i n i s t r y of Forests of s i t e s 0, 1, 2, 4, 6 and 7 165 Appendix 2 S o i l water r e t e n t i o n c h a r a c t e r i s t i c s 172 Appendix 3 P l o t s of t h r o u g h f a l l c o l l e c t e d beneath the t r e e s against r a i n f a l l i n t e n s i t y 180 Appendix 4 D a i l y m e t e o r o l o g i c a l data at Mesachie from 3une 5, 1980 to October 29, 1981 185 Appendix 5 P l o t of K+ (earth surface)/K+ ( e x t r a t e r r e s t i a l ) against (sunshine h o u r s ) / ( d a y l i g h t hours) 197 Appendix 6 Volumetric s o i l water contents at s p e c i f i e d depths determined by neutron probe at S i t e s 0 to 6 from 3une 5, 1980 to October 29, 1981 199 Appendix 7 Volumetric water contents of the LFH la y e r at S i t e s 0 to 6 determined from samples taken at the same time as the neutron probe measurements... 207 Appendix 8 P l o t s of t o t a l s o i l water p o t e n t i a l against depth at S i t e s 0 to 6 at s p e c i f i e d dates through the growing season of 1981, determined by tensiometers i n s t a l l e d at depths s p e c i f i e d 210 Appendix 9 Dates and times when neutron probe s o i l water measurements were taken at each s i t e and used i n water balance c a l c u l a t i o n s 218 Appendix 10 D a i l y net r a d i a t i o n (daytime b a s i s ) , and c a l c u l a t e d d a i l y e q u i l i b r i u m e v a p o t r a n s p i r a t i o n f o r each day from Oune 5, 1980 to October 29, 1981 221 Appendix 11 E q u i l i b r i u m e v a p o t r a n s p i r a t i o n f o r each data period and each s i t e , determined by summation of d a i l y e q u i l i b r i u m e v a p o t r a n s p i r a t i o n (Appendix 10) over data periods (Appendix 9) 233 Appendix 12 P r e c i p i t a t i o n and gross i n t e r c e p t i o n f o r each s i t e and f o r data periods, determined by summation of p r e c i p i t a t i o n (Appendix 4) over data periods 235 - xvi i i -Page Appendix 13 Profile water storage for each site calculated from neutron probe measurements by summation of the water content determined for each horizon over the total root zone 238 Appendix 14 Extractable water in the soil profile at each site for each data period 241 Appendix 15 Profile water storage change (Wfinal'^initial) determined from Appendix 13 243 Appendix 16 Actual evapotranspiration for data periods determined as described in Section 3.9.4.2 245 Appendix 17 Actual transpiration for data periods determined as described in Section 2.1.5 247 Appendix 18 Inventories of trees by species and DBH with DBH > 7.0 cm on 20 m x 20 m plots at each s i te . . . . 249 Appendix 19 Water balance data for data periods at each site. . 258 Appendix 20 Relationship of tree volume to basal area 269 Appendix 21 Ring width measurements from increment cores taken from samples of trees at Sites 1, 4 and 6... 277 - x i x -ACKNOWLEDGMENTS Funding f o r t h i s p r o j e c t was provided by the B r i t i s h Columbia M i n i s t r y of F o r e s t s , and s p e c i a l a p p r e c i a t i o n i s extended to Dr. K. K l i n k a , Research Branch, who i n i t i a t e d the funding. The w r i t e r expresses s i n c e r e thanks to the t h e s i s committee members, e s p e c i a l l y to Dr. T.A. Black f o r h i s guidance, encouragement and support throughout the study, to Dr. L.M. L a v k u l i c h f o r h i s encouragement and as s i s t a n c e , and to Dr. K. K l i n k a and Dr. T.M. B a l l a r d f o r t h e i r advice. S p e c i a l thanks to Mr. Ingelmar C a r l s s o n , Head of the Cowichan Lake Experimental S t a t i o n for h i s kind a s s i s t a n c e i n making a v a i l a b l e the s t a t i o n f a c i l i t i e s and meteorological records, to Mr. Dave S p i t t l e h o u s e f o r h i s valuable advice, to Mr. Frank K e l l i h e r f o r h i s advice and p r a c t i c a l a s s i s t a n c e i n f o r e s t mensuration and to Mr. David P r i c e f o r a s s i s t a n c e i n f o r e s t mensuration. Thanks also are due to Mrs. Oeeva Oonahs f o r her patience with the typing of the t h e s i s . - XX -NOTATION A photosynthesis rate (kg m" d" ) AWSC a v a i l a b l e water storage c a p a c i t y (mm) 2 Bi t r e e cross s e c t i o n area (m ) 2 B2 t r e e cross s e c t i o n area (m ) C neutron probe count rat e (counts/s) CL confidence l i m i t s f o r s o i l water changes (dimensionless) D drainage rate (mm d - 1 ) DBH tree diameter at breast height (cm) 2 1 E e v a p o t r a n s p i r a t i o n rate per u n i t ground area (kg m" s" , mm d" 1) E e q u i l i b r i u m e v a p o t r a n s p i r a t i o n rate (kg m~2 s " 1 , mm d" 1) eq E^ evaporation r a t e of in t e r c e p t e d water (mm d - 1 ) Snax energy l i m i t e d e v a p o t r a n s p i r a t i o n r a t e (mm d - 1 ) E & s o i l water supply l i m i t e d e v a p o t r a n s p i r a t i o n r a t e (mm d" 1) L 2 1 1 E-j. t r a n s p i r a t i o n rate from dry vegetation (kg m d" , mm d~ ) E t t r a n s p i r a t i o n r a t e from vegetation during periods when evaporation of int e r c e p t e d (mm d - 1 ) r a i n i s takin g place (mm d" 1) G s o i l heat f l u x d ensity (W m"2, M3 m - 2 d _ 1 ) G growth rate H s e n s i b l e heat f l u x d ensity (W m"2) I gross i n t e r c e p t i o n r a t e (mm d - 1 ) 2 1 K+ shortwave r a d i a t i o n f l u x d e n s i t y (M3 m" d" ) 2 l K + m a x maximum p o s s i b l e d a i l y shortwave r a d i a t i o n (MJ m~ d" ) 2 l ^ + ET e x t r a t e r r e s t i a l shortwave r a d i a t i o n (MO m" d~ ) L l a t e n t heat of v a p o u r i z a t i o n of water (3 k g - 1 ) - xx i -L* net longwave rad ia t ion f lux densi ty (M3 m~z d " 1 ) LAI lea f area index (m leaf/m ground) M rate of energy storage within the canopy (W m" ) N durat ion of day l ight (hours) P r a i n f a l l rate (mm d" 1 ) Q p rec i s ion of determination of s o i l water change (dimensionless) R run-off rate (mm d" 1 ) R n net rad ia t ion f lux density (W m" 2 , M3 m" 2 d - 1 ) S s e n s i t i v i t y of neutron probe (counts s - l / 1 % volumetr ic change in s o i l water content) T daytime mean a i r temperature (K) T th rough fa l l (mm d - 1 ) T , monthly average da i l y temperature ( ° C ) a T Q l ea f temperature ( ° C ) T m a x d a i l y maximum a i r temperature ( ° C ) ^min da i l y minimum a i r temperature ( ° C ) W Water storage capaci ty of the root zone (mm) W m a x W at f i e l d capacity (mm) *min W at which t r ansp i r a t i on v i r t u a l l y ceases (mm) Z radius of the sphere of inf luence of neutron emission (cm) a so la r r ad ia t ion r e f l e c t i o n c o e f f i c i e n t of vegetat ion (dimensionless) b r a t i o of E s to 6 e (mm d _ 1 ) c c o e f f i c i e n t in da i l y c loudiness fac tor (dimensionless) C p s p e c i f i c heat of a i r at constant pressure (3 k g " 1 ° C - 1 ) d c o e f f i c i e n t in da i l y c loudiness fac tor (dimensionless) or zero plane displacement (m) xxii -vapour pressure of air (kPa) vapour pressure at leaf surface (kPa) saturated vapour pressure of air at temperature (T) (kPa) coefficient in the interception of rainfall equation (dimensionless) coefficient in the equation for the daily evaporation of intercepted water coefficient in the interception of rainfall equation (dimensionless) von Kantian's constant (dimensionless) soil hydraulic conductivity (m s _ 1 ) root zone depth (mm) bright sunshine duration (hours) or number of data points (dimensionless) total of resistances to water diffusion from substomatal evaporating sites to the leaf surface and across boundary layer (s m-1) same as r except for C02 correlation coefficient (dimensionless) aerodynamic resistance for water vapour (s m-1) laminar boundary layer resistance for wet vapour (s m"1) laminar boundary layer resistance for C02 (s m"1) canopy or surface resistance for water vapour (s m"1) mesophyll resistance for carbon dioxide (s m"1) leaf stomatal resistance for water vapour (s nr 1) leaf stomatal resistance for carbon dioxide (s nr 1) slope of the saturation vapour pressure curve (kPa ° C _ 1 ) standard deviation of the mean (variable) - x x i i i -t time (d) or Student t s t a t i s t i ca l parameter u wind speed (m s - 1 ) vpd vapour pressure def ic i t of air (kPa) z height above the qround (m) Z Q roughness length (m) A difference in associated parameter (dimensionless) a ratio of E m a x to E e q for dry vegetation (dimensionless) ratio of E^ x to E e q for completely wet vegetation (dimensionless) Y psychrometric constant (kPa ° C _ 1 ) e effective long wave emissivity of the sky (dimensionless) a longwave emissivity of the vegetation (dimensionless) Y carbon dioxide concentration (ppm) 0 fraction of extractable water in the root zone (dimensionless) e 9 c r i t i c a l value of 6„ (dimensionless) ec e 8 volumetric water content of the whole mineral so i l m (m3 water/m3 soi l ) 0 q volumetric water content of the humus layer (m3 water/m3 soil) 6 average volumetric water content of the root zone at f ie ld max capacity (m3 water/m3 soil) 6 . average volumetric water content of the root zone at which min 3 „ transpiration ceases (m water/m soil) p density of air (kg m" ) o Stephan-Boltzman constant (MO m" d" K" ) Y so i l water matric potential (kPa) m MfT s o i l water total potential (kPa) - 1 -I. INTRODUCTION - 2 -I. INTRODUCTION The s o i l ' s c a p a c i t y to store water i s one of the important f a c t o r s that determine s i t e q u a l i t y . A number of s o i l - s i t e f a c t o r s such as slope, aspect, t e x t u r a l and depth d i f f e r e n c e s are s i g n i f i c a n t i n t h i s connection because of t h e i r r e l a t i o n s h i p to water a v a i l a b i l i t y during a summer drought period (White, 1958; Zahner, 1958). McMinn (1961) found that species r e p r e s e n t a t i o n , the abundance and vigour of p l a n t s and the s i t e i n d i c e s of Pseudotsuga m e n z i e s i i were a l l c o r r e l a t e d with s o i l water regimes at p l o t s located i n the Nanaimo River V a l l e y of Vancouver I s l a n d . More r e c e n t l y , K r a j i n a (1965, 1969, 1972) has concluded that i n an area c h a r a c t e r i z e d by uniform c l i m a t e , the plant a s s o c i a t i o n s i n a mature ecosystem are p r i n c i p a l l y the r e s u l t of v a r i a t i o n s i n the two 'parameters' s o i l water and s o i l n u t r i e n t s . This concept has been f u r t h e r developed by K l i n k a (1976) i n the i d e n t i f i c a t i o n of bi o g e o c l i m a t i c d i v i s i o n s of ecosystems w i t h i n a r e g i o n a l c l i m a t e . The o b j e c t i v e of t h i s approach to ecosystem c l a s s i f i c a t i o n has been to provide p h y s i c a l and chemical bases f o r subzone i d e n t i f i c a t i o n , with p a r t i c u l a r reference to f o r e s t p r o d u c t i v i t y and resource planning, and as a b a s i s f o r d e c i s i o n s on s i l v i c u l t u r e p r a c t i c e s . According to t h i s system, s i t e s i n a c l i m a t i c subzone are d i f f e r e n t i a t e d and c l a s s i f i e d by a s c e r t a i n i n g the i n d i c a t o r species of t r e e s , shrubs, mosses and l i c h e n s which are climax dominant, and the s o i l water status of s i t e s i s i n f e r r e d from the plant a s s o c i a t i o n s present. - 3 -Clearly it is of importance that quantitative soil moisture data be obtained on sites that have been characterized by plant species. Such data would (1) provide a basis for quantitative identification of sites from the standpoint of soil water regimes, using physical measurements, (2) facilitate a comparison between a quantitative classification of soil water status with classification by indicator species and (3) enable quantitatively based predictions about ecosystems for various aspects of forest management. Accordingly, the objectives of the present study were: (1) to quantify site growth potential by means of the growing season soil water deficit, (2) to compare growing season soil water deficits at different positions on a forested watershed with site characterization by indicator species and (3) to compare soil water deficits with variations in forest productivity. - 4 -2. THEORY - 5 -2.1 Evapotranspiration The determination of seasonal soil water deficit requires a comparison of the actual transpiration rate with the maximum transpiration rate. Seasonal soil water deficit is determined by the cumulative shortfall for all days during the growing season of actual transpiration below the maximum transpiration. For the purpose of this thesis E t will be used to denote the transpiration rate, and does not include the evaporation of intercepted water. E will be used to denote the evapotranspiration rate, i.e. the sum of transpiration plus evaporation of intercepted rainfal l . Ey will be used in the analysis and is the calculated transpiration rate assuming that the vegetation is dry, and it may be limited by the energy received by the canopy or the soil water supply. If the vegetation is dry E t = E = E T. 2.1.1 Energy Limited Evapotranspiration The first physically sound approach to the determination of evapotranspiration from saturated natural surfaces was due to Penman (1948), who specified two requirements for continued evaporation, (1) a supply of energy to provide latent heat of vapourization and (2) a mechanism for removing the vapour. The original Penman equation thus comprises an energy term, which is a function of net radiation, and an aerodynamic term which is empirically derived from the vapour pressure deficit and the wind velocity. - 6 -The f i r s t a n a l y t i c a l s o l u t i o n f o r t r a n s p i r a t i o n from v e g e t a t i o n , based on Penman's concepts, was due to Monteith ( 1 9 6 5 ) . 1 s(R - G - M) + p c n ( e ' ( T ( z ) ) - e ( z ) ) / r , ( z ) T ~ L~ ~~ s + Y(1 + r / r ( Z ) ) 1 1 ' c a where E j (kg m" 2s - 1) i s water vapour f l u x d e n s i t y , L (3 k g - 1 ) i s l a t e n t heat of va p o u r i z a t i o n of water, R n (W m"2) i s net r a d i a t i o n f l u x d e n s i t y , G (W m - 2) i s s o i l heat f l u x d e n s i t y , M (W m"2) i s the rate 3 1 1 of energy storage w i t h i n the canopy^ p (kg m" ) and Cp (3 kg" K" ) are d e n s i t y and s p e c i f i c heat of a i r r e s p e c t i v e l y , e'(T(z)) and e(z) (kPa) are the s a t u r a t i o n (at a i r temperature T(z)) and a c t u a l values of vapour pressure at a height z above the surface, s = de'(T(z))/dT i s the slope of the s a t u r a t i o n vapour pressure versus temperature curve at a i r temperature, and Y (kPa K" 1) i s the psychrometric constant. Monteith introduced r e s i s t a n c e terminology, and thereby was able to r e l a t e evaporation to l i n k e d d i f f u s i o n processes. Thus r a ( z ) (s m - 1) i s the aerodynamic r e s i s t a n c e to d i f f u s i o n of water vapour from the surface to the height z (m), and r c (s m"1) i s thecanopy r e s i s t a n c e to d i f f u s i o n of water vapour from the saturated region i n the sub-stomatal c a v i t i e s to the sur f a c e . For i d e a l c o n d i t i o n s of n e u t r a l atmospheric s t a b l i l i t y and large f e t c h , and assuming that the s i m i l a r i t y p r i n c i p l e holds and that the v i r t u a l sink of momentum i s the same as the v i r t u a l source of water vapour and s e n s i b l e heat, the aerodynamic r e s i s t a n c e to water vapour and se n s i b l e heat t r a n s f e r defined as: - 7 -(resistance to diffusion pc of water vapour from r a(z) = -^ P- (eQ-e(z))/LE surface to the height - (2) is given by z - d + z r (z) = a 1 0 In z o z in the atmosphere) _ (resistance to the / k u transfer of momentum - (3) from the height z to the surface) where e 0 (kPa) is the unknown water vapour pressure at the leaf surface, z 0 (m) is the aerodynamic roughness parameter, d (m) is the zero plane displacement, k is von Karman's constant and u (m/s) is the wind velocity at a height z above the surface. The canopy resistance (resistance to diffusion pc of water vapour from sub-r = —P- (e'(T ) - e )/LE stomatal cavities to - (4) ° Y o o surface of canopy) where e'(T0) is the saturation vapour pressure at leaf temperature. The canopy resistance which integrates the leaf stomatal resistance (r s) over the canopy can be written as 1 = * ! " LAI r r c i=1 s where n is the number of leaf layers, and the leaf area index (LAI) is measured for each layer. Because of the large number of variables requiring measurement for the rigorous application of the Penman-Monteith equation, two attempts at simplification have been directed to developing a single - 8 -term formula in place of the Penman-Monteith two-term expression. The f i r s t i s for aerodynamically rough canopies where r a i s small compared This expression has been applied to coniferous forest canopies by McNaughton and Black (1973), Tan et a l . (1978), Oarvis and Stewart (1979) and Oarvis (1981). The second s i m p l i f i c a t i o n , using only the radiat ion term, was introduced by P r ies t ley and Taylor (1972), who ra t iona l ized the Penman-Monteith two term equation to the two aspects of (1) determining the surface value of vapour f lux and (2) considering i t s var ia t ion with height. On land surfaces (as opposed to oceans) they noted that the apportionment of avai lable energy between latent heat f lux (LE) and sensible heat f lux (H)is governed by the two factors (1) moisture status of the ground and (2) r ad ia t ion . P r i es t l ey and Taylor made use of the fol lowing re la t ionship for a saturated surface in equi l ibr ium with i t s turbulent boundary layer (see McNaughton 1976) with r~. The Penman-Monteith equation can then be s impl i f i ed to : 1 pc p vpd L Y r c - (5) where vpd is the vapour pressure d e f i c i t (e ' (T(z)) - e (z ) ) . H_ Y LE " s - (6) where H/LE i s the Bowen r a t i o , which when combined with the energy balance equation (R n = G + M + H + LE) gives - 9 -R - G - M = T T T • ( 7 ) n E q u a t i o n ( 7 ) c a n b e r e w r i t t e n a s f o l l o w s t o g i v e t h e e q u i l i b r i u m e v a p o t r a n s p i r a t i o n r a t e ( E e q ) E e q = ( s / ( s + Y ) ) ( R n - G - M ) / L - ( 8 ) T h e y c h a r a c t e r i z e d t h e m o i s t s u r f a c e e v a p o t r a n s p i r a t i o n r a t e by r e l a t i n g i t t o t h e e q u i l i b r i u m e v a p o t r a n s p i r a t i o n r a t e a s f o l l o w s : E = a E - ( 9 ) max e q v ' w h e r e E „ , a x i s t h e max imum e v a p o t r a n s p i r a t i o n r a t e and a i s a n e x p e r i m e n t a l l y d e t e r m i n e d c o e f f i c i e n t . T h i s i m p l i e s t h a t t h e r a d i a t i o n a n d a e r o d y n a m i c t e r m s o f t h e P e n m a n - M o n t e i t h e q u a t i o n a r e c o r r e l a t e d . P r i e s t l e y a n d T a y l o r e x a m i n e d d a t a f r o m t h r e e v e g e t a t i o n s u r f a c e s and f i v e w a t e r s u r f a c e s u n d e r d i f f e r e n t c l i m a t e s , a n d a r r i v e d a t a n a v e r a g e 2 4 - h o u r v a l u e o f a = 1 . 2 6 . S h u t t l e w o r t h a n d C a l d e r ( 1 9 7 9 ) p o i n t o u t t h a t P r i e s t l e y a n d T a y l o r g i v e no c o n s i d e r a t i o n t o s u r f a c e c o n t r o l o f e v a p o r a t i v e p r o c e s s e s , a n d i n d i c a t e t h a t t h e g e n e r a l i z a t i o n o f a = 1 . 2 6 i s u n r e a l i s t i c , e s p e c i a l l y i n t h e c a s e o f f o r e s t s w h e r e s u r f a c e r o u g h n e s s e n h a n c e s e v a p o r a t i v e p r o c e s s e s . T h e y show t h a t e v a p o t r a n s p i r a t i o n r a t e s f o r P l y n l i m o n and T h e t f o r d f o r e s t s i n t h e U . K . i n d i c a t e v a l u e s f o r a r a n g i n g f r o m 0 . 6 f o r d r y c o n d i t i o n s , t o 1 1 . 0 f o r we t c o n d i t i o n s when t h e r e i s a d v e c t i v e e n h a n c e m e n t . - 10 -T h e m e r i t o f P r i e s t l e y and T a y l o r ' s a p p r o a c h i s i t s s i m p l i c i t y , r e q u i r i n g o n l y m e a s u r e m e n t s o f s o l a r r a d i a t i o n a n d a t m o s p h e r i c t e m p e r a t u r e , i n c o m p a r i s o n w i t h ( 5 ) w h i c h r e q u i r e s v a p o u r p r e s s u r e d e f i c i t , l e a f a r e a i n d e x a n d s t o m a t a l r e s i s t a n c e m e a s u r e m e n t s a t many l e v e l s . T h e c o n c l u s i o n was t h e r e f o r e r e a c h e d t h a t P r i e s t l e y a n d T a y l o r ' s a p p r o a c h s h o u l d be u s e d , b u t w i t h t h e c o n d i t i o n t h a t t h e p a r a m e t e r a s h o u l d be c o n s i d e r e d a s s p e c i f i c t o t h e s t u d y a r e a and s h o u l d be e v a l u a t e d . I n s u p p o r t o f t h i s c o n c l u s i o n i t i s n o t e d t h a t M c N a u g h t o n and B l a c k ( 1 9 7 3 ) a t U . B . C . R e s e a r c h F o r e s t ( d a t a f o r 18 d a y s ) f o u n d g o o d a g r e e m e n t b e t w e e n e v a p o t r a n s p i r a t i o n d e t e r m i n e d by t h e e n e r g y b a l a n c e / B o w e n r a t i o m e a s u r e m e n t s w i t h t h e r e s u l t s f r o m P r i e s t l e y a n d T a y l o r s e q u a t i o n u s i n g a = 1 . 0 5 . 3 u r y and T a n n e r ( 1 9 7 5 ) f o u n d t h a t f o r w e l l i r r i g a t e d c r o p s , by a d j u s t i n g a f o r v a r i a t i o n s i n l o c a l a d v e c t i o n b y n o r m a l i z i n g w i t h v a p o u r p r e s s u r e d e f i c i t , g o o d a g r e e m e n t was o b t a i n e d w i t h l y s i m e t e r d e t e r m i n e d e v a p o t r a n s p i r a t i o n . O u r y a n d T a n n e r t h u s i n d i c a t e d t h a t v a r i a t i o n s i n a d v e c t i o n c o u l d be e f f e c t i v e l y r e f l e c t e d i n a s i t e s p e c i f i c v a l u e f o r a . S p i t t l e h o u s e and B l a c k ( 1 9 8 1 a ) s u c c e s s f u l l y m o d e l l e d e v a p o t r a n s p i r a t i o n f r o m a y o u n g D o u g l a s - F i r f o r e s t w i t h a = 0 . 8 0 ( 2 4 h o u r b a s i s ) f r o m B l a c k ' s ( 1 9 7 9 ) e n e r g y b a l a n c e / B o w e n r a t i o m e a s u r e m e n t s , c o n f i r m e d by w a t e r b a l a n c e s . S o i l h e a t f l u x d e n s i t y G a n d e n e r g y s t o r a g e w i t h i n t h e c a n o p y M i n ( 8 ) a r e c o n s i d e r e d n e g l i g i b l e u n d e r a f o r e s t c a n o p y w i t h a v e r a g e s t o c k i n g d e n s i t y , a n d c o n s e q u e n t l y a r e n o t c o n s i d e r e d i n t h i s s t u d y . - 11 -2.1.2 Determination of Net Ra d i a t i o n Flux Density The average daytime value of the net r a d i a t i o n f l u x d e n s i t y was determined from the equation: R n = (1 - a) K4- + L* - (10) where K+ (MO m - 2 d _ 1 ) i s the d a i l y s o l a r i r r a d i a n c e , L* (MO m - 2 d a y - 1 ) i s the daytime net long wave i r r a d i a n c e , and a i s the canopy r e f l e c t i o n c o e f f i c i e n t ( a l b e d o ) . Oarvis et a l . (1976) suggest a value of 0.12 f o r the albedo of coniferous f o r e s t canopies which was confirmed by Sp i t t l e h o u s e and Black (1981). Daytime net long wave i r r a d i a n c e was c a l c u l a t e d as f o l l o w s (Jury and Tanner, 1975). L* = (c + d K+/K+ ) (e - e ) oT 4 - (11) max a v where T i s the daytime mean a i r temperature (K), a i s the Stefan-Boltzmann constant, K + m a x i s t h e maximum c l e a r sky s o l a r i r r a d i a n c e and K+/K+ m a x i s an estimate of the f r a c t i o n of cloud cover. The constants c and d were set to 0.1 and 0.9 r e s p e c t i v e l y ( S p i t t l e h o u s e and Black, 1981a). e a i s the apparent emmissivity of the atmosphere which i s dependent on humidity and was c a l c u l a t e d from the Idso-Oackson formula: e = 1 - 0.261 exp (-7.77x10"^ (T - 273) 2) -(12) (Aase and Idso, 1979), where T i s i n K e l v i n s . Idso (1980) notes that the above equation, which i s f o r c o n t i n e n t a l environments, overestimates e a i n c o a s t a l areas. S p i t t l e h o u s e and Black (1981a) note that a - 12 -reduction of the above calculated e a by 8% when Rn > 8 M3 n r 2 d - 1 , or when K+/K+max is over 0.5 corrects this systematic overestimate of Rn. e v is the emissivity of vegetation and is taken as 0.95 (Oarvis et a l . , 1976). K+ in equations (10) and (11) was adjusted for slope and aspect at each site. View factor corrections for L*, based on slope correction factor = cos (slope/2) were found to be negligible. Daytime net radiation was calculated to enable calculation of evapotranspiration and site water balances throughout the 1980-'81 winter period, because Rn calculated on a 24 hour basis frequently resulted in unreasonably negative values of E during these winter months using a determined in the summer on a 24 hour basis. 2.1.3 Evapotranspiration limited by soil water Several workers have observed that as soil water is reduced below field capacity, a crit ical water content is reached below which the evapotranspiration rate starts to decline. Priestley and Taylor (1972) showed that at soil water contents below the crit ical value, Ej/Eeq declines linearly with root zone water storage. Tanner and Richie (1974) normalized root zone soil water storage to fractional extractable water, defined as W - W . max min where W(mm) is actual root zone water storage, Wmin (mm) is the soil - 13 -w a t e r s t o r a g e a t w h i c h t r a n s p i r a t i o n c e a s e s a n d W m a x ( m m ) i s t h e r o o t z o n e w a t e r s t o r a g e a t f i e l d c a p a c i t y . T h e y f o u n d t h a t i n t h e d r y i n g p h a s e s E y / E m a x i s l i n e a r l y r e l a t e d t o 9 e . S p i t t l e h o u s e a n d B l a c k ( 1 9 8 1 b ) s h o w E v e r s u s 6 e f o r d i f f e r e n t r a n g e s o f E g q ( F i g u r e 2 - 1 ) a n d S p i t t l e h o u s e ( 1 9 8 1 , A p p e n d i x V ) p o i n t s o u t t h a t t h e f a m i l y o f c u r v e s s h o w n i n F i g u r e 2-1 i s g i v e n b y : E = ctE 6^ > 9 - ( 9 ) max e q e — e c E = b 9 9 o < 9 o „ - ( 1 4 ) s e e e c w h e r e t h e E s i s t h e s o i l ( s u p p l y ) l i m i t e d e v a p o t r a n s p i r a t i o n r a t e . T h e c r i t i c a l v a l u e o f 9 e f o r a g i v e n E e q o c c u r s when bee = o £ e q , o r 9 e c = (a/b) E e q . T h e a b o v e t w o p h a s e r e l a t i o n s h i p s t h u s b e c o m e : E = aE 9 /E > a/b ( e n e r g y l i m i t e d ) max e q e e q — M ' E = b9 9 /E < a/b ( s o i l w a t e r l i m i t e d ) s e e e q T h e r e f o r e , by n o r m a l i z i n g 9 e a n d E a g a i n s t E e q ( b y d i v i d i n g e a c h b y E e q) t h e e f f e c t s o f v a r i a t i o n s o f E e q ( o r s o l a r i r r a d i a n c e ) a r e e l i m i n a t e d , a n d t h e f a m i l y o f c u r v e s o f F i g u r e 2-1 r e d u c e s t o t w o s t r a i g h t l i n e s . C o n s e q u e n t l y f o r a c a n o p y w i t h d r y l e a v e s ( i . e . l e a v e s n o t w e t ) t h e e v a p o t r a n s p i r a t i o n r a t e i s g i v e n by ( S p i t t l e h o u s e a n d B l a c k , 1 9 8 1 a ) : E T = l e s s e r o f E , f E m a x - ( 1 5 ) - 14 -DOUGLAS FIR. COURTENAY.BC 29/6/75 - t l / t / 7 6 Figure 2-1 Dally evapotranspiration rate (E^) versus f r a c t i o n of extractable water i n the root zone (6 e) for days with no r a i n for f i v e ranges of the equilibrium evapotranspiration rate ( E e q ) (from Spittlehouse and Black 1981) - 15 -2.1.4 Evaporation of Intercepted R a i n f a l l Rutter (1975) notes that i n the i n i t i a l stages of a p r e c i p i t a t i o n event, much of the water i s r e t a i n e d by ve g e t a t i o n . There appears to be a f a i r l y w e l l defined storage c a p a c i t y f o r any given canopy, and when t h i s i s exceeded f u r t h e r i n t e r c e p t e d water e i t h e r d r i p s from the canopy or runs down stems. The combination of the water which d r i p s from the canopy or f a l l s through the gaps i s u s u a l l y c a l l e d t h r o u g h f a l l , and the sum of t h r o u g h f a l l and stemflow i s c a l l e d net p r e c i p i t a t i o n . The d i f f e r e n c e between gross p r e c i p i t a t i o n and net p r e c i p i t a t i o n i s c a l l e d the gross i n t e r c e p t i o n l o s s , and c o n s i s t s of water held i n storage i n the canopy plus water evaporated from the canopy during the period of the r a i n f a l l . Many workers have r e l a t e d gross i n t e r c e p t i o n I to gross p r e c i p i t a t i o n P by fu n c t i o n s of the form I = hP + f where the constant h i s r e l a t e d to evaporation of i n t e r c e p t e d r a i n f a l l during the storm, and f i s a constant r e l a t e d to storage of water i n the canopy which evaporates a f t e r r a i n f a l l ceases. In the present study i n t e r c e p t i o n f u n c t i o n s with the above format have been developed f o r each s i t e , from d i r e c t measurements on some s i t e s , and with l i n e a r i n t e r p o l a t i o n s at other s i t e s based on a l i n e a r r e l a t i o n s h i p between gross i n t e r c e p t i o n and the canopy l e a f area index. This w i l l be discussed l a t e r . The e f f e c t of i n t e r c e p t i o n on t r a n s p i r a t i o n r e s u l t s from the f a c t that leaves covered with f i l m s of water do not t r a n s p i r e . While in t e r c e p t e d water i s being evaporated there should be a saving i n water which would otherwise be taken up from the s o i l and t r a n s p i r e d . Burgy - 16 -a n d P o m e r o y ( 1 9 5 8 ) d i s t i n g u i s h e d g r o s s i n t e r c e p t i o n l o s s ( g r o s s p r e c i p i t a t i o n m i n u s n e t p r e c i p i t a t i o n ) f r o m n e t i n t e r c e p t i o n l o s s w h i c h i s g r o s s i n t e r c e p t i o n l o s s m i n u s t h e s a v i n g i n t r a n s p i r e d w a t e r . M c N a u g h t o n a n d B l a c k ( 1 9 7 3 ) r e s o l v e t h e e v a l u a t i o n o f t h e e v a p o r a t i o n o f i n t e r c e p t e d r a i n f a l l i n t h e f o l l o w i n g w a y . I f i s t h e e v a p o r a t i o n r a t e o f i n t e r c e p t e d w a t e r , t h e n f o r a g i v e n p e r i o d o f t i m e t h e f r a c t i o n o f t h e t i m e r e q u i r e d t o e v a p o r a t e t h e g r o s s i n t e r c e p t i o n o v e r t h a t p e r i o d i s I/E^ w h e r e I i s t h e a v e r a g e g r o s s i n t e r c e p t i o n r a t e f o r t h e p e r i o d . Now d u r i n g a r a i n f a l l e v e n t a n d u n t i l s t o r e d i n t e r c e p t e d w a t e r i s e v a p o r a t e d t h e t r a n s p i r a t i o n r a t e i s z e r o . T h e a v e r a g e t r a n s p i r a t i o n r a t e f o r t h e p e r i o d (E^) i s t h e n g i v e n b y : E t = ( 1 " I / E i ) E T - ( 1 6 ) C o n s e q u e n t l y , t h e a v e r a g e e v a p o t r a n s p i r a t i o n r a t e f o r t h e p e r i o d i s t h e sum o f t h e g r o s s i n t e r c e p t i o n r a t e a n d E t> E = I + (1 - I / E i ) E T - ( 1 7 ) o r E = E T + g l - ( 1 8 ) E T w h e r e g = 1 - - ( 1 9 ) E i N o t e t h a t I ( E j / E ^ ) i s t h e s a v i n g i n t r a n s p i r e d w a t e r f o r t h e p e r i o d o f I, a n d g l i s t h e a v e r a g e n e t i n t e r c e p t i o n l o s s r a t e i . e . g r o s s i n t e r c e p t i o n l o s s r a t e m i n u s t h e r a t e o f s a v i n g i n t r a n s p i r e d w a t e r . E m a x / E i * s c a l l e d t h e r e l a t i v e t r a n s p i r a t i o n r a t e a n d i s g e n e r a l l y c o n s t a n t f o r a g i v e n c a n o p y , i n t h e a b s e n c e o f a b n o r m a l a d v e c t i v e - 17 -s i t u a t i o n s . Equation (18) together with (15) and (19) were used i n t h i s study to c a l c u l a t e E. I t i s noted that Gash (1977) commenting on Thorn and O l i v e r (1977) derived (18) independently by making a p r o p o r t i o n a l adjustment to the dry surface r e s i s t a n c e i n Monteith's equation f o r r a i n f a l l during a given p e r i o d . Shuttleworth and Calder (1979) note that f o r Thetford Forest (U.K.) the value of g i n (18) i s 0.93. McNaughton and Black (1973) f i n d g = 0.17 for a young D o u g l a s - f i r f o r e s t at U.B.C. Research F o r e s t , and S p i t t l e h o u s e and Black (1981a) f i n d g = 0.6 ± 0.2 f o r thinned and unthinned D o u g l a s - f i r stands at Courtenay on Vancouver I s l a n d . A l l three of these g values are probably mainly a p p l i c a b l e to energy l i m i t e d c o n d i t i o n s . 2.1.5 T r a n s p i r a t i o n Rate I t i s important to d i s t i n g u i s h between the t r a n s p i r a t i o n r a t e , which i s the rate of l o s s of water vapour from the stomata of the v e g e t a t i o n , and the e v a p o t r a n s p i r a t i o n r a t e , which i s equal to the t r a n s p i r a t i o n r a t e plus the rate of evaporation from the s o i l ( n e g l i g i b l e for f o r e s t f l o o r s ) plus the rate of evaporation of i n t e r c e p t e d r a i n f a l l . Equation (16) i n the l a s t s e c t i o n gives the r e l a t i o n s h i p between t r a n s p i r a t i o n r a t e (Et)» I» F-I and Ey. S u b s t i t u t i o n of Ej from (19) i n t o (16) gives the f o l l o w i n g convenient expression that was used i n t h i s study f o r c a l c u l a t i n g t r a n s p i r a t i o n r a t e : E t = Ey - I (1 - g) - (20) - 18 -2.2 Water Balance The water balance equation f o r the f o r e s t canopy and root zone assuming one dimensional flow i s : P = E + AW/At + D + R - (21) where P i s the average p r e c i p i t a t i o n r a t e over the data p e r i o d , AW/At i s the average rat e of change i n s o i l p r o f i l e water (AW = Wf£ n ai -^ i n i t i a l ) ' R * s t n e r^te of r u n o f f , and D i s the r a t e of drainage from the root zone (negative value corresponding to c a p i l l a r y r i s e ) . When P i s zero and D and R are n e g l i g i b l e , E i s given to a good approximation by: E = - AW/At This equation was used i n t h i s study to c a l c u l a t e e v a p o t r a n s p i r a t i o n rates of a f o r e s t stand under these c o n d i t i o n s . This w i l l be f u r t h e r discussed i n Section 3.9.4. When run-of f i s zero (see Se c t i o n 3.8) drainage can be c a l c u l a t e d as a r e s i d u a l from (21). The rate of drainage or c a p i l l a r y r i s e i s also given by Darcy's Law as f o l l o w s where k i s the unsaturated h y d r a u l i c c o n d u c t i v i t y , i s the t o t a l s o i l water p o t e n t i a l , and AIJ>T/AZ i s the gradient of \|rr with depth (or the h y d r a u l i c g r a d i e n t ) . 2.3 Tree Growth and Water Regime The e f f i c i e n c y of water u t i l i z a t i o n by pl a n t s i s measured by the t r a n s p i r a t i o n r a t i o or the r a t i o of t r a n s p i r a t i o n to dry matter - 19 -production. B i e r h u i z e n and S l a t y e r ( 1 9 6 5 ) developed a n a l y t i c a l l y the f o l l o w i n g expression f o r the t r a n s p i r a t i o n r a t i o : E t / A = o . 0 7 9 * • § 1 - ( 2 3 ) . where Ey and A are t r a n s p i r a t i o n and photosynthesis (kg m"2 d - 1 ) , Ae i s vapour pressure d i f f e r e n c e between the stomatal c a v i t i e s and the ambient a i r (mm Hg) and Av i s the CO2 concentration d i f f e r e n c e between ambient a i r and the c h l o r o p l a s t s w i t h i n the l e a f (ppm CO2), Er = ( r D + r s ) , which are the r e s i s t a n c e s f o r d i f f u s i n g water vapour passing from evaporating s i t e s to the l e a f surface ( r s ) and thence across the laminar boundary l a y e r ( r ^ ) , and Er' = ( r ^ + r s + r m ) > which are the corresponding r e s i s t a n c e s f o r C 0 2 with the a d d i t i o n of r m f o r C 0 2 mesophyll r e s i s t a n c e , a l l i n u n i t s s/cm. Working with cotton p l a n t s B i e r h u i z e n and S l a t y e r showed that Er'/Er and a l s o Av are f a i r l y constant with normal l i g h t i n t e n s i t i e s . Therefore, w i t h i n a c l i m a t i c region, i f Ae i s f a i r l y constant, photosynthesis i s d i r e c t l y p r o p o r t i o n a l to ev a p o t r a n s p i r a t i o n f o r a given plant s p e c i e s . V a r i a t i o n s i n annual increment can often be ascribed to the s i n g l e f a c t o r of growing season water a v a i l a b i l i t y , which o v e r r i d e s other growth regulatory processes. Thus Bassett ( 1 9 6 4 ) found a c o r r e l a t i o n c o e f f i c i e n t of 0 . 9 7 between annual tre e growth and estimated water s t r e s s f o r a f o r e s t of predominantly l o b l o l l y and short l e a f pines (Pinus taeda and Pinus e c h i n a t a ) . S o i l moisture s t r e s s was estimated f o r each day of the growing season over a 21 year growth p e r i o d , based upon a v a i l a b i l i t y of s o i l water between f i e l d maximum and f i e l d - 20 -minimum. Zahner and Donnelly (1966) found c o r r e l a t i o n c o e f f i c i e n t s of 0.80 to 0.90 f o r r e l a t i n g water d e f i c i t s to width of annual growth r i n g s of Pinus r e s i n o s a over a 10 year p e r i o d . Water s t r e s s was determined fo r the current growing season plus the previous year growing season. Whitehead and Darvis (1981), d i s c u s s i n g the l i n e a r r e l a t i o n s h i p between sapwood basal area and f o l i a g e , which has been found by s e v e r a l workers, note that f o r rough canopies 'since canopy r e s i s t a n c e i s i n v e r s e l y p r o p o r t i o n a l to LAI, t r a n s p i r a t i o n rate i s p r o p o r t i o n a l to LAI. I t i s t h e r e f o r e reasonable to suppose a c l o s e developmental r e l a t i o n s h i p between the extent of the f o l i a g e area, which i s c h a r a c t e r i s t i c of the l o s s system, and the s i z e of the supply system'. P o s t u l a t i n g a growth rate v a r i a b l e G with appropriate u n i t s of l i n e a l , a r e a l or volume growth per day, i t i s t h e r e f o r e reasonable to propose, f o r a given species and c l i m a t i c subzone, a r e l a t i o n s h i p between G and the d a i l y t r a n s p i r a t i o n E t such that G = k E t where k i s a constant. I t f o l l o w s that maximum growth rat e (G m a x ) c a n ^ e expressed as G m a x = k E t m a x where E t m a x i s the t r a n s p i r a t i o n r a t e under energy l i m i t e d c o n d i t i o n s , i . e . the rate computed from (20) when E T = Emax* Sub t r a c t i n g the former expression from the l a t t e r we have: Gm v^ " G = k < E i- " E,.) max t t max G = Gmax " k < E t " E t > max I n t e g r a t i n g over the a growing season to obtain G j 0 ^ a ^ , the t o t a l - 21 -growth, we have: T o t a l = E G max Growing Season E k(E - E t) max Growing Season - (24) = E G max Growing Season k E (E f c - E t) max Growing Season (25) which i n d i c a t e s that the growth i n a growing season may be l i n e a r l y r e l a t e d to the summation of s o i l water d e f i c i t s over the growing season. - 22 -3. EXPERIMENTAL PROCEDURES - 23 -3.1 Site Descriptions 3.1.1 Site Locations The study was carried out on a series of established plots on the forested north west slope of Mesachie Mountain, which is near to the British Columbia Ministry of Forests Experimental Station at Cowichan Lake, Vancouver Island, Latitude 48° 50' Longitude 124° 08'. The sample plots shown in Figure 3-1 represent almost mature ecosystems in the East Vancouver Island Drier Maritime Coastal Western Hemlock Variant, designated as CWHa2 Biogeoclimatic Unit. The soil moisture regimes of the eight sample plots have been differentiated on the basis of their plant associations and forest productivity and classified by Klinka (personal communication, 1980) as very xeric (0), xeric (1), subxeric (2), submesic (3), mesic (4), subhygric (5), hygric (6) and subhydric (7), corresponding to the soil hygrotopes of the edatopic grid (Klinka, 1979). The elevations of the plots range from 190 m above sea level at Site 7 to 300 m above sea level at Site 0. Figure 3-2 shows the topographic sequence of the ecosystems corresponding to the range of the sample plots. The position of the water table is relevant to hydrologic and soil water deficit considerations. At Sites 0 to 3 no water table was observed even after heavy rainfall during the winter months. At sites k to 6 water tables at varying depths were experienced during winter, but disappeared during the growing season. At Site 7 the situation was different. Throughout the summer season water table depths of 20-30 cm were observed, rising to the soil surface during winter. At site 7 - 24 -Figure 3-1 Map showing study s i t e s on the N.W. slope of Mesachie Mountain. The b i o g e o c l i m a t i c subzone i s East Vancouver I s l a n d D r i e r Maritime Coastal Western Hemlock designated CWHa2. The study s i t e s are c l a s s i f e d as very x e r i c ( 0 ) , x e r i c (1), subxeric ( 2 ) , submesic ( 3 ) , mesic ( 4 ) , subhygric ( 5 ) , h y g r i c (6) and subhydric ( 7 ) . - 25 -Figure 3-2 Topographical sequence of ecosystems corresponding to the range of the sample p l o t s showing major plant a s s o c i a t i o n s and t r e e s p e c i e s . Tree Species Symbols: P I : Pinus c o n t o r t a (lodgepole p i n e ) , Fd: Pseudotsuga  m e n z i e s i i (Douglas f i r ) , Hw: Tsuga h e t e r o p h y l l a (western hemlock), CW: Thuja p l i c a t a (western red c e d a r ) , Bg: Abies grandis (grand f i r ) , Dr: Alnus rubra (red a l d e r ) . Bracketted a b b r e v i a t i o n i n d i c a t e s the species i s a minor component of the a s s o c i a t i o n . - 26 -e v a p o t r a n s p i r a t i o n parameters cannot be determined by water balance methods, and s o i l water d e f i c i t s do not e x i s t . S i t e 7 has t h e r e f o r e been excluded from the present study, which i s based on the q u a n t i f i c a t i o n of s o i l water d e f i c i t s during the growing season. 3.1.2 S u r f i c i a l Geology The parent m a t e r i a l s c o n s i s t of a morainal veneer over bedrock of v o l c a n i c o r i g i n . The veneer ranges i n t h i c k n e s s from 35 cm at the very x e r i c (0) s i t e where there are outcrops of bedrock, to approximately 1 meter t h i c k at the mesic (4) sub hy g r i c (5) and hy g r i c (6) s i t e s . The coarse fragments c o n s i s t predominantly of a n d e s i t i c rock with minor q u a n t i t i e s of b a s a l t . Figure 3-3 i s a map s e c t i o n showing the s u r f i c i a l geology of the area. 3.1.3 Forest D e s c r i p t i o n The o r i g i n a l f o r e s t which covered the area of the study p l o t s was almost completely destroyed by f i r e i n 1908. Natural regeneration has r e s u l t e d i n an approximately even aged second growth stand c o n s i s t i n g of predominantly Douglas f i r (Pseudotsuga m e n z i e s i i (Mirb.) Franco) with smaller q u a n t i t i e s of Western hemlock (Tsuga h e t e r o p h y l l a Sarg.) at the wetter s i t e s , and approximately 50% Lodgepole pine (Pinus c o n t o r t a Dougl.) at the very x e r i c s i t e . Thinning was c a r r i e d out at S i t e s 4 and 6 i n 1964. - 27 -Figure 3-3 Map showing s u r f i c i a l geology of study area. Legend: Genetic Materials: C » colluvial, M = morainal, R = bedrock, F = fluvial.Surface Expression: b = blanket, s = steep, v = veneer, m = subdued, f = fan, h = hummocky. Texture (prefix): g = gravelly. Qualifying Descriptor (superscript): G = glacial - 28 -3.2 Soil Properties 3.2.1 Soil Profile Descriptions Profile descriptions, compiled by the British Columbia Forest Service, are provided in Appendix 1. A summary showing horizon and depth is shown in Table 3-1a (personal communication, 1980). Site 0 to Site 6 are classified as orthic Humo-Ferric Podzols, and Site 7 is a Terric Humisol. Table 3-1b shows the root zone depths determined from observations at two soil pits at each site, and considered in conjunction with soil description records of the British Columbia Ministry of Forests. 3.2.2 Bulk Density Determination At each site bulk densities were determined at three depths corresponding approximately to (i) upper B horizon (Bf & Bf 1) at 5 cm - 20 cm depth, (ii) lower B horizon (Bf2 & Bm) at 20 cm - 45/60 cm, ( i i i ) BC to C horizon at > 60 cm. The excavation method was used (Blake, 1965). Thin gauge plastic bags were util ised, f i l led with water, for determining the volume of the excavated hole. The sample volumes averaged 1.5 l i ters. For precise measurement of the volume, a template was used made from a 20 x 20 cm piece of plywood with a 15 cm diameter short plastic cylindrical insert, for excavating the hole. This was levelled using a small level gauge at the location prepared for excavation. In f i l l ing the plastic bags with water care was taken to f i l l to the level of the base of the template, corresponding to the horizontal ground level. Plastic bags were carefully checked for leaks, and the volume determination was repeated If leaks were noted. Three Table 3-1a S o i l p r o f i l e d e s c r i p t i o n s of study s i t e s . S i t e s 0 to 6 are o r t h i c humo-ferric podzols. S i t e 7 i s f e r r i c humisol. (From B r i t i s h Columbia Forest Service - Ecosystem d e s c r i p t i o n s , K l i n k a personal communication, 1980) S i te 0 Very Xer ic S i te 1 Xeric S i te 2 Subxerlc S i te 3 Submeslc S i t e * Me s i c S i te Subhyq 5 r l c S i te Hygr 6 l c S i t e Subhyd 7 r l c Horizon Depth (cm) Horizon Depth (cm) Horizon Depth (cm) Horizon Depth (cm) Horizon Depth (cm) Horizon Depth (cm) Horizon Depth (cm) Horizon Depth (cm) LFH AeJ B f l Bf2 R 4-0 0- 1 1- 19 19-35 35* LFH AeJ Bf Bm R 5.5-0 0-0.5 0.5-33 33-52 52* LFH Ae Bf Bm BC nc 3- 0 0-4 4- 46 66-91 91+ LFH Ae B f l Bf1 BC C 2-0 0- 1 1- 14 14-49 49-63 63+ LFH Bhf Bf2 Bm BC I1C 3.5-0 0-16 16-35 35-53 53-86 66+ LFH Bhf B f l Bf2 BC C 3-0 0-15 15-35 35-78 78-112 112-125+ LFH Ah B f l Bm Bf2 IIC 1.5-0 0-7 7-26 26-40 40-74 74+ LFH Ohl 0h2 0h3 Bg 1-0 0-5 5-21 21-50 50-80+ - 30 -Table 3-1b Root zone depths at sites 0 to 6 determined by inspection of profiles at two soil pits at each site, and considered in conjunction with British Columbia Ministry of Forests soil descriptions Root Zone Site Depth (m) 0 0.41 1 0.52 2 0.85 3 0.89 4 1.0 5 1.13 6 1.0 - 31 -replicate determinations were carried out at each depth. The excavated soil was oven dried at 105° C and weighed. After drying the soil was sieved to remove coarse fragments > 10 mm, which were weighed and the volume calculated. The excavated volume was then adjusted for the > 10 mm stones, thus enabling the bulk density of soil containing stones < 10 mm to be determined. The coarse fragments of size between 2 mm and 10 mm were then sieved, washed, dried and weighed, to enable the bulk density of soil containing coarse fragments < 2 mm to be determined. The bulk density of the < 10 mm coarse fragment fraction was determined to enable the weight percent water content of the large number of gravimetric samples taken to be converted to volume percent water content, on the basis that these samples were homogeneous with respect to < 10 mm coarse fragments. Since extensive sampling for gravimetric water content was required for calibrating the neutron prode at each site, by basing these determinations on the 0 - 10 mm fraction laboratory time was considerably reduced, compared with screening to 0 - 2 mm soi l . Bulk densities of the < 2 mm and < 10 mm fractions are shown for each site in Tables 3-2 and 3-3 respectively. 3.2.3 Soil Coarse Fragment Content In order to calibrate the neutron probe, which measures volumetric soil water content in the whole soil (soil + coarse fragments), from gravimetric soil water determinations which were the mass fraction of water in oven dry 0-10 mm soi l , it was necessary to multiply the gravimetric mass fraction by (1) the bulk density and (2) - 32 -Table 3-2 Variation with depth below the LFH-mineral soil interface of the bulk density of the less than 2 mm fraction for sites 0 to 6. Under the heading 'Depth' > 45 or > 60 refers to the horizon between 45/60 cm and bedrock or compacted t i l l . Site Depth (cm) Bulk Density (Mg m"3) 0 5 _ 17 0.64 20 - 40 0.74 1 5 20 0.65 20 - 45 0.71 2 5 20 0.56 20 - 60 0.80 > 60 0.85 3 5 20 0.51 20 - 45 0.64 > 45 0.81 4 5 _ 20 0.68 20 - 60 0.81 > 60 0.79 5 5 20 0.64 20 - 60 0.70 > 60 0.81 6 5 20 0.82 20 _ 60 0.96 > 60 1.10 - 33 -Table 3-3 Variation with depth below the LFH-mineral soil interface of the bulk density of the less than 10 mm fraction for sites 0 to 6. Under the heading 'Depth'. > 45 or > 60 refers to the horizon between 45/60 cm and bedrock/compacted t i l l . Site Depth (cm) Bulk Density (Mg m"3) 0 5-17 0.80 20-40 1.00 1 5-20 0.91 20 - 45 0.95 2 5-20 0.93 20 - 60 1.25 > 60 1.25 3 5-20 1.02 20 - 45 1.12 > 45 1.24 4 5-20 1.07 20 - 60 1.22 > 60 1.32 5 5-20 0.89 20-60 1.10 > 60 1.18 6 5-20 1.06 20 - 50 1.24 > 60 1.35 - 34 -the volume fraction of the less than 10 mm fraction of soil in the whole soil and divide by the density of H20. Thus: Vol of H?0 Vol of total soil Mass of H 2 P Mass of < 10 mm O.D. Soil (Gravimetric H20 mass fraction of < 10 mm fraction) Mass of < 10 mm O.D. Soil Vol of < 10 O.D. Soil (Bulk density of < 10 mm fraction) Vol of < 10 mm O.D. Soil Vol. of Total Soil (1 - vol fraction of coarse fragments > 10 mm) 1 Density of H20 The volume fraction of coarse fragments > 10 mm was determined at each site by digging a soil pit of approximately 1 cubic meter, and screening the soil excavated to specific horizon depths. The coarse fragments with size greater than 10 mm were weighed, using a bucket and spring balance, and the excavated volumes were measured. The volume of the > 10 mm coarse fragments was calculated from their average specific gravity. The volume fraction of < 10 mm soil per volume of total soil was then 1 - volume fraction of > 10 mm coarse fragments. The nearest commercially available screening wire mesh available had 12.7 mm (1/2 inch) centre to centre wires, for which the size of the opening was 11.35 mm (0.447"). In order to adjust the stone content retained on this 11.35 mm screen to a 10 mm screen, a factor was 35 -determined by screening the bulk density excavations (approx. 1.5 l i t e r s ) through a T y l e r 10 mm s i e v e , and then screening the stones r e t a i n e d on the sieve through the 11.35 mm mesh screen. In t h i s way the volume of coarse fragments of s i z e l e s s than 11.35 mm and greater than 10 mm per volume of < 10 mm s o i l was determined and the volume of coarse fragments retained on the 11.35 mm sieve was adjusted up a c c o r d i n g l y to > 10 mm s i z e . A s p e c i f i c g r a v i t y of 2.65 was used to convert mass to volume. The volumetric content f o r > 2 mm coarse fragments was determined using the bulk density excavation samples, by screening with a 2 mm siev e the s o i l which had passed through a 10 mm s i e v e . The coarse fragments retained on the 2 mm sieve were washed, d r i e d and weighed and the volume determined using a s p e c i f i c g r a v i t y of 2.65. Tables 3-4 and 3-5 show the volume percent of stones > 10 mm and > 2 mm r e s p e c t i v e l y by s i t e and horizon depth. 3.2.4 S o i l T e x t u r a l Classes S o i l t e x t u r e s were determined by sedimentation using the hydrometer method, with two r e p l i c a t e s f o r each t e s t . The percentage of sand, s i l t and c l a y i n the samples screened through a 2 mm sieve are shown i n Table 3-6. the f o l l o w i n g are the U.S.D.A. t e x t u r a l c l a s s e s found f o r each s i t e (not c o n s i d e r i n g > 2 mm component): - 36 -Table 3-4 Variation with depth of the volume percent of coarse fragments greater than 10 mm for sites 0-6 Site Depth (cm) Coarse fragments (vol %) 0 5 _ 16 13.0 16 - 35 12.5 1 5 _ 20 24.7 20 - 42 27.8 2 5 _ 20 24.5 20 - 40 22.7 40 - 65 17.8 65 - 85 24.9 3 5 12 12.6 12 - 45 10.2 45 - 90 16.3 4 5 20 15.9 *- 20 - 40 16.0 40 - 60 17.7 60 - 80 15.9 5 5 _ 20 9.5 20 - 40 17.9 40 - 60 10.9 60 - 90 23.0 6 5 20 17.6 20 40 21.0 40 - 60 20.9 60 - 70 18.1 - 37 -T a b l e 3-5 V a r i a t i o n w i t h d e p t h o f t h e v o l u m e p e r c e n t o f c o a r s e f r a g m e n t s g r e a t e r t h a n 2 mm f o r s i t e s 0 t o 6 C o a r s e D e p t h f r a g m e n t s S i t e ( cm) ( v o l %) 0 5 _ 16 2 1 . 2 16 - 35 2 3 . 8 1 5 2 0 3 6 . 2 2 0 - 4 2 3 8 . 7 2 5 _ 2 0 4 0 . 1 2 0 - 4 0 4 1 . 3 4 0 8 0 4 0 . 2 3 5 12 3 3 . 0 12 - 4 5 3 1 . 8 4 5 - 9 0 3 2 . 7 4 5 _ 2 0 3 3 . 5 2 0 - 4 0 3 5 . 7 4 0 - 6 0 3 7 . 2 6 0 - 8 0 3 4 . 7 5 5 2 0 2 0 . 9 2 0 - 6 0 3 3 . 2 6 0 - 9 0 4 0 . 8 6 5 2 0 3 1 . 0 2 0 - 4 0 3 5 . 5 4 0 7 0 2 9 . 7 - 38 -Table 3-6 Particle size analysis of the less than 2 mm fraction for sites 0 to 6. The classification is in accordance with the U.S.D.A. soil textural classes, as follows: Name of separate Diameter range (mm) Sand 2.0 - 0.05 Silt 0.05 - 0.002 Clay < 0.002 Site No. Horizon Percentage Sand Silt Clay 0 B 59.5 37.1 3.4 1 B 41 .7 49.8 8.5 2 B 49.2 42.5 8.3 C 57.8 37.8 4.4 3 B 48.5 41.5 10.0 C 56.3 36.7 7.0 4 B 44.7 42.7 12.6 C 49.0 39.3 11.7 5 B 47.5 43.0 9.5 C 51.5 40.2 8.3 6 B 43.0 45.3 11.7 - 39 -Site Textural No. Horizon Class 0 B Sandy Loam 1 B Loam 2 B Loam C Sandy Loam 3 B Loam C Sandy Loam 4 B Loam C Loam 5 B Loam C Loam 6 B Loam 3.2.5 Soil Water Retention Volumetric soil water content versus matric potential curves were determined for each site. In the high water matric potential range (greater than -80 kPa) field data were obtained by comparing tensiometer readings at different depths with neutron probe volumetric soil water content determinations from adjacent access tubes. At each site a set of tensiometer tubes set up about one meter from a set of 3 neutron probe access tubes enabled this comparison. In the low range, i.e. at -400 kPa and -1500 kPa, matric potential vs volumetric soil water content data was obtained in the laboratory using pressure membranes under pressures of 400 kPa and 1500 kPa. Soil samples were screened through a 2 mm sieve and three replicate runs were made at each pressure. To adjust the water contents of the 2 mm soil fraction, obtained gravimetrically, to volumetric water content under field conditions, the following conversion was made: - 40 -Vol H 20 _ Mass of H ?0 Vol t o t a l s o i l ~ Mass < 2mm s o i l Mass of < 2mm s o i l  X V o l . of < 10 mm s o l V o l . of < 10 mm s o i l V o l . of t o t a l s o i l x 1  Density of H2O For the high range of s o i l water matric p o t e n t i a l s undisturbed core samples were used, and the cores were f i t t e d i n t o Tempe (6 cm diameter, 150 kPa a i r entry) pressure c e l l s and water r e t e n t i o n data was obtained at a range of pressures from 3 kPa to 100 kPa. The data p l o t t e d approximately p a r a l l e l to the f i e l d tensiometer data but with varying amounts of o f f - s e t . These core samples contained coarse fragments which occupied an average 23% of the sample volume, with a maximum of 36% of the sample volume i n one case. Because of these high stone contents, which caused s i g n i f i c a n t disturbance to the samples as the cores were dri v e n i n t o the s o i l , i t was decided that s u f f i c i e n t confidence could not be placed i n the r e s u l t s . Therefore, i t was ' decided to use f i e l d tensiometer data f or the high range of s o i l matric p o t e n t i a l , as described above. The s o i l water r e t e n t i o n p l o t s are shown i n Appendix 2. - 41 -3.3 Precipitation 3 . 3 . 1 M e a s u r e m e n t P r e c i p i t a t i o n i s r e c o r d e d t w i c e d a i l y a t t h e C o w i c h a n L a k e E x p e r i m e n t a l S t a t i o n ( a t 0 8 . 0 0 h r s a n d a t 1 6 . 0 0 h r s ) . I n o r d e r t o c h e c k t h e u n i f o r m i t y o f p r e c i p i t a t i o n o v e r ^the s t u d y a r e a a s t a n d a r d r a i n g a u g e w i t h 9 . 2 cm d i a m e t e r f u n n e l was l o c a t e d i n a n o p e n a r e a c l o s e t o S i t e 0 , a n d t h e p r e c i p i t a t i o n was m e a s u r e d w e e k l y . D u r i n g t h e m o n t h s Dune t o O c t o b e r 1 9 8 0 t h e s i t e l o c a t e d r a i n g a u g e s h o w e d a n a v e r a g e d e f i c i t o f 7% b e l o w t h e E x p e r i m e n t a l S t a t i o n r e c o r d . A d e f i c i e n c y f o r a n u n s h i e l d e d r a i n g a u g e i n a n e x p o s e d l o c a t i o n c o m p a r e d t o a s h i e l d e d r a i n g a u g e , i s t o be a n t i c i p a t e d , d u e t o t h e u p w a r d a c c e l e r a t i o n o f t h e a i r f o r c e d o v e r t h e t o p o f t h e g a u g e , c a u s e d by w i n d . T h e m e a s u r e d d e f i c i e n c y i s i n t h e a n t i c i p a t e d r a n g e f o r t h e p r e v a i l i n g w i n d c o n d i t i o n ( L i n s l e y e t a l . , 1 9 7 5 ) . I t w a s , t h e r e f o r e , d e c i d e d t h a t t h e E x p e r i m e n t a l S t a t i o n p r e c i p i t a t i o n d a t a s h o u l d be u s e d f o r a l l o f t h e s i t e s . 3 . 3 . 2 R a i n f a l l I n t e r c e p t i o n I t was n o t e d i n S e c t i o n 2 . 1 . 4 t h a t t h e c a l c u l a t i o n o f t h e e v a p o r a t i o n r a t e o f i n t e r c e p t e d r a i n f a l l r e q u i r e s a k n o w l e d g e o f t h e r e l a t i o n s h i p o f i n t e r c e p t i o n t o g r o s s p r e c i p i t a t i o n . I t was a l s o p o i n t e d o u t t h a t many w o r k e r s h a v e f o u n d i n t e r c e p t i o n r e l a t i o n s h i p s o f t h e f o r m I = hP + f w h e r e h i s a c o n s t a n t r e l a t e d t o t h e e v a p o r a t i o n o f i n t e r c e p t e d r a i n f a l l d u r i n g t h e s t o r m , a n d f i s a c o n s t a n t r e l a t e d t o t h e s t o r a g e o f w a t e r i n t h e c a n o p y . Z i n k e ( 1 9 6 7 ) e m p h a s i z e d t h e r e l a t i o n s h i p b e t w e e n l e a f a r e a a n d t h e s t o r a g e p a r a m e t e r f . R o t h a c h e r - 42 -(1963) found a good c o r r e l a t i o n f o r Pseudotsuga m e n s i e s i i between t h r o u g h f a l l (T) and stand d e n s i t y where T = ( 1 - h ) P - f . In the present study i t was decided ( i ) to measure t h r o u g h f a l l at four of the s i t e s , and to determine the constants h and f f o r those s i t e s , and ( i i ) to see whether a f u n c t i o n a l r e l a t i o n s h i p between h and f and the c a l c u l a t e d l e a f area index f o r these s i t e s would enable these constants to be determined f o r the other three s i t e s , by l i n e a r i n t e r p o l a t i o n / e x t r a p o l a t i o n . T h r o u g h f a l l gauges were constructed from r a i n f a l l g u t t e r i n g (see Figure 3-4). Each gauge con s i s t e d of a 3 meter length of aluminum g u t t e r i n g with a downspout at one end from which t h r o u g h f a l l could be accumulated i n a 22.8 l i t r e (5 gal.) p l a s t i c water b o t t l e , contained i n s i d e a 45.5 l i t r e (10 gal.) p l a s t i c container with a wooden l i d . The outer container was provided f o r i n s u l a t i o n . The c o l l e c t i n g area of each gauge was 0.28 square meters. These gauges were i n s t a l l e d at s i t e s 0, 2, 4 and 6 and one was i n s t a l l e d i n the open area near to s i t e 0 where the raingauge was l o c a t e d . The accumulated t h r o u g h f a l l was measured at 1 - 2 week i n t e r v a l s with a measuring c y l i n d e r f o r the period from September 1980 to September 1981 . Appendix 3 shows p l o t s of gauged t h r o u g h f a l l measured at the s i t e , against gauged p r e c i p i t a t i o n measured at the gauging device located i n the open area. An equation r e l a t i n g t h r o u g h f a l l to p r e c i p i t a t i o n was c a l c u l a t e d by l i n e a r r e g r e s s i o n f o r each s i t e . Leaf area index ( t o t a l ) was then c a l c u l a t e d f o r each s i t e (Table 3-7) by f i r s t c a l c u l a t i n g l e a f biomass from t r e e diameter (DBH) - 43 -2985mm | 193 mm • 100 mm » 93mmJ O j Aluminum gutter / | (closed at ends) ^ — i 1 Plastic funnel - 1 r ——v Plastic container (38 liter • 10 gal.) Plastic water bottle (19 liter - 5gal.) Figure 3-4 Throughfall gauge for determining the relationship between r a i n f a l l interception and r a i n f a l l intensity. The gutters had a slight bulge in width because spacing braces were not used in order to avoid raindrop splash. - 44 -Table 3-7 Summary of tree species, average basal area per hectare, average D.B.H., average basal area per tree and number of trees per hectare based on measurements of all trees (DBH > 7 cm) in 20 m x 20 m sample plots at each site. Leaf area indices were calculated as described in Section 3.3.2. TREE TYPE DOUGLAS FIR LODGEPOLE PINE ARBUTUS TOT/AVG ALL TREES AVG BASAL AREA SO N/HA 22.5 9.4 0.7 32.fi TREE TVPE AVG BASAL AREA SO M/HA DOUGLAS FIR 47.0 WESTERN HEMLOCK O.C TOT/AVG ALL TREES 47.7 TREE TVPE DOUGLAS FIR WESTERN HEMLOCK WESTERN RED CEDAR TOT/AVG ALL TREES AVG BASAL AREA SO M/HA 4S.7 1.1 1.B B1.3 TREE TVPE AVG BASAL AREA SO M/HA DOUGLAS FIR 83.9 WESTERN HEMLOCK ••• AVG DBH CM 20.8 18.0 18.8 17.8 AVG DBH CM 18.C 18.1 18.6 AVG DBH CM 18.3 33.6 87.6 18.8 AVG DBH CM 21.1 18.8 SITE NO: 0 AVG BASAL AREA PER TREE:SO M 0.050 0.020 0.030 0.034 SITE NO: 1 AVG BASAL AREA PER TREE:SO M 0.031 0.026 0.031 SITE NO: 2 AVG BASAL AREA PER TREE: SO M 0.031 0.044 0.080 0.032 SITE NO: 3 AVG BASAL AREA PER TREE:SO M 0.038 0.039 TREES PER HA. 4SO 475 25 880 TREES PER HA. 1500 25 1825 TREES PER HA. 1850 25 28 1600 TREES PER HA. LAI (PROJ) HA/HA 1.86 2.02 O. 10 3.88 LAI (PROJ) HA/HA 4.80 0.15 1400 226 B.OS LAI (PROJ) HA/HA 8.31 0.35 0.46 6.02 LAI (PROJ) HA/HA 8.77 1.87 TOT/AVG ALL TREES 62.7 20.8 0.038 1625 7.34 SITE NO: 4 TREE TVPE AVG BASAL AREA AVG DBH AVG BASAL AREA TREES PER HA. LAI (PROJ) SO M/HA CM PER TREE:SO M HA/HA DOUGLAS FIR 42.2 32.6 0.O94 450 4.47 WESTERN HEMLOCK 1.9 17.0 0.025 75 0.38 WESTERN RED CEDAR 0.7 18.8 0.026 25 0.23 TOT/AVG ALL TREES 44.8 28.8 0.082 850 8.08 SITE NO: 5 TREE TVPE AVG BASAL AREA AVG DBH AVG BASAL AREA TREES PER HA. LAI (PROJ) SO M/HA CM PER TREE:SO M HA/HA OOUGLAS FIR 46.3 39.9 0.132 350 5. 13 WESTERN HEMLOCK 17.4 , 29.7 0.077 225 3.68 WESTERN RED CEDAR 2.7 24.8 0.054 80 0.74 TOT/AVG ALL TREES 66.4 35.0 0. 106 625 9.56 SITE NO: 6 TREE TVPE AVG BASAL AREA AVG DBH AVG BASAL AREA TREES PER HA LAI (PROJ) SO M/HA CM PER TREE:SO M HA/HA DOUGLAS FIR 59.9 38.8 0. 141 425 8.94 RED ALDER 9.4 30.4 0.075 125 1.00 WESTERN HEMLOCK 1.0 32.5 0.040 25 0.23 GRAND FIR 10.6 46.8 0.215 80 0.79 TOT/AVG ALL TREES 81.1 37.3 0.130 625 7.86 SITE NO: 7 TREE TVPE AVG BASAL AREA AVG DBH AVG BASAL AREA TREES PER HA LAI (PROJ) SO M/HA CM PER TREE:SO M HA/HA RED ALDER 25.4 32.3 0.065 300 3.66 WESTERN HEMLOCK, 4.8 16.2 0.027 175 0.78 WESTERN RED CEDAR 2.2 33.7 0.089 25 0.65 TOT/AVG ALL TREES 32.4 26.7 0.065 800 4.09 - 45 -relationships for each species determined by Waring et a l . (1978), and by converting leaf biomass to total LAI using correlations from Gholz et a l . (1976). Correlations for arbutus (Arbutus menziesii) and red alder (Alnus rubra) were not available, and so coefficients for Castanopsis  chrysophylla, which has similar leaf structure to these species, were used. The coefficients in the interception functions, h and f which had been developed from throughfall measurements ( i .e. from T = (1 - h)P - f) at Sites 0, 2, 4 and 6 were then related to the LAI calculated for these sites by plotting (1 - h) and f vs. LAI. Good correlations were obtained, and i t was thus possible to determine the factors in the interception functions for Sites 1, 3, and 5 from calculation of the leaf area indices for these sites and using the plots of (1 - h) and f vs LAI. The following are the interception functions determined for each s i te: Site No. Interception Function How Determined 0 I = 0.04 P + .85 From throughfall 1 I = 0.10 P + 1.14 Calculated 2 I = 0.145 P + 1.32 From throughfall 3 I = 0.23 P + 1.84 Calculated 4 I = 0.12 P + 1.17 From throughfall 5 I = 0.26 P + 1.98 Calculated 6 I = 0.22 P + 1.84 From throughfall Daily precipitation data for the whole study period is included in the tabulation of Meteorological data in Appendix 4. 3.* Net Radiation 3.4.1 Solar Irradiance Daily solar irradiance was measured using a Lintronic so lar i -meter, which was mounted at the Cowichan Lake Experimental station - 46 -above a green house and located to give maximum sky view f a c t o r . The output from the so l a r i m e t e r (mV) was connected to an i n t e g r a t o r . By means of a timer the i n t e g r a t o r was set up to p r i n t out the t o t a l s o l a r r a d i a t i o n accumulated f o r the day at midnight each n i g h t . The s o l a r i m e t e r was i n i t i a l l y c a l i b r a t e d i n May 1980 against a standardized Kipp s o l a r i m e t e r before i n s t a l l a t i o n . The s e n s i t i v i t y was 0.021 mV/ (W m ). The i n t e g r a t o r c a l i b r a t i o n was checked against a known voltage and i t s s e n s i t i v i t y was 10.06 counts h-1/mV. The combined s e n s i t i v i t y of so l a r i m e t e r and i n t e g r a t o r was 0.0171 M3 m" d" per counts d " 1. The c a l i b r a t i o n of the so l a r i m e t e r was rechecked i n s i t u against another s o l a r i m e t e r of r e c e n t l y checked c a l i b r a t i o n on January 23-24, 1981. The average of two t e s t s showed that the s e n s i t i v i t y had changed by l e s s than 5%. The s o l a r i m e t e r f a i l e d due to a crack i n the p l a s t i c dome cover over the thermopile assembly on August 23, 1981. During the Deriod of 2-3 weeks u n t i l a replacement s o l a r i m e t e r could be i n s t a l l e d , d a i l y s o l a r i r r a d i a n c e was determined from the Campbell-Stokes sunshine record at the Cowichan Lake Experimental S t a t i o n . A c o r r e l a t i o n was developed between the Campbell-Stokes sunshine record and p r e v i o u s l y measured s o l a r i r r a d i a n c e . Appendix 5 shows a p l o t of K+/K+ Ej v*. n/N where K+ i s the d a i l y s o l a r r a d i a t i o n at the earth surface and K+^y i s the e x t r a - t e r r e s t i a l s o l a r i r r a d i a n c e , n i s the hours of b r i g h t sunshine (by Campbell -Stokes reading) and N i s the hours of d a y l i g h t . The r e l a t i o n s h i p : - 47 -K+/K+ET = 0.47 n/N + 0.295 (r 2 = 0.92) was used to calculate the daily solar radiation during this short period until a replacement Lintronic solarimeter was obtained. Appendix 4 shows daily solar radiation for the whole study period. 3.4.2 Net Long Wave Irradiance As was noted in Section 2.1.2, calculation of net long wave irradiance requires only mean air temperature measurement and the cloudiness parameter K+/K+max. K+ m a x was found to be well approximated by 0.73K+FJ. Daily maximum and minimum temperatures are recorded at the Cowichan Lake Experimental Station. Since net radiation was calculated for daylight hours only, this required an average daytime air temperature. This was found to be well approximated by: ( 2 x Tmax + W / 3 Calculated daytime mean air temperature correlated closely with the average daytime temperature as recorded in a hygrothermograph located in a Stevenson screen at the open area close to Site 0. In order to check the possibility of temperature variations across the transect, the average daily temperatures (T m a x + Tmjn)/2 determined from the hygrothermograph, which provided a continuous temperature record for 403 out of the 512 data days of the study was compared with the average daily temperature calculated from the temperature recordings at the Experimental Station. A linear regression of one on the other showed the following relationship: - 48 -T (site) a 1.00 T (station) - 0.44 (°C) (r 2 = 0.93) It was, therefore, considered acceptable to use the Experimental Station temperatures for all of the sites. Daily temperature data, and daytime net long wave irradiance calculated using (11) for each day are included in the tabulation of meteorological data in Appendix 4. 3.5 Soil Water Content The neutron probe method was selected for soil water determinations in this study because of its suitability for repeated non-destructive measurements, where precision is particularly important in the determination of the change in soil water with time and soil variability effects are eliminated by measuring at fixed locations. The neutron probe model selected was the Campbell Pacific Model 503. In this instrument, the probe containing a fast neutron source of Americium 241 of strength 1.85 GBq (50 millicurie) and a slow neutron detector in a radiation protective housing, are integral with the scalar (slow neutron counter) and liquid crystal display in one portable unit weighing about 13 kg. The whole unit is quite convenient therefore for carrying by hand between sites. 3.5.1 Access Tube Installation Methods Access tubing suitable for the neutron probe is 5.08 cm (2 in) 0. D. x 0.123 cm (0.049 in) wall thickness aluminum tubing, having an 1. D. which gives very close clearance with the probe. Suitable lengths - 49 -of tubing, corresponding to profile depths, were precut and one end was closed with a schedule 40 PVC plug, sealed In place with silicone sealant. This method of closing the bottom of the tube showed no significant leakage after two years. Being thin-walled, the access tubes could not be hammered into the ground. Various methods have been used for installing access tubes with the aim of causing minimum soil disturbance. Two methods considered were (i) making the hole by driving a 5 cm (2 in) O.D. heavy wall open ended pipe into the ground down to bedrock, with repeated withdrawals to remove soil inside the pipe, (ii) using a 5 cm (2 in) bucket type auger to make a hole as close to the access tube diameter as possible. The main problems arise from the stoniness of the soi l , and changes caused to the compaction/bulk density of the soil adjacent to the tube wall. McGowan and Williams (1980) point out that 'although the probe has a large sphere of influence, readings are particularly sensitive to a narrow range of soil a few mm thick immediately surrounding the access tube.' They carried out comparisons between the water content profile for an access tube which had been carefully installed with one installed in a purposely damaged hole. It was noted that the effect of the damage was mainly evident in the top 30 cm of the profile, while below this depth the readings for the two tubes agreed within the random count error. To avoid soil compaction around the tube wall, it was decided to use an auger for making access tube holes. In practice it was generally - 50 -found that the auger would go down to about 20 cm without much obstruction, and that stoniness increased at 20-30 cm, and below. The procedure followed was to try out different locations over the 20 m x 20 m plot by driving a 1.3 cm (1/2 inch) steel rod into the ground, and selecting locations where the rod could be hammered down to bedrock. If serious stoniness was encountered while augering the top 20-30 cm, the location was abandoned. After installing the access tube any spaces around the tube were back fi l led with fine soil which was lightly compacted. 3.5.2 Access Tube Number and Location The rationale for deciding on access tube numbers and locations is based on sample number requirements in relation to variability. For water balance calculations, the change in water content of a profile between data times is the parameter of interest, subject to meeting acceptable measurement precision. The number of access tubes to quantify soil water change for the whole plot is clearly a function of the variability of the time course change in water content over the area of the 20 m x 20 m plot and of the precision and confidence level required. McGowan and Williams (1980) discuss in some detail the large variability experienced in measurements of changes in soil water over comparatively small areas. For an agricultural soi l , using eight closely spaced access tubes, McGowan and Williams show standard deviations between measured decreases in soil water greater than the - 51 -mean of measured decreases for all of the access tubes. In paragraph 3.5.5 below, an experiment to determine spatial variability of soil water content change with time is described. The conclusion was reached that, certainly for forest soils, the sample population required to provide an average value of soil water change with required precision and acceptable confidence limits would require an excessively large number of access tubes. The infeasibility of having a very large sample population to define precisely the average for the whole 20 m x 20 m area forces the conclusion to consider intensive sampling over small area within the site. In this way the water balance equation may be calculated with acceptable precision for the small intensive site, which then, at a somewhat lower level of precision, represents the soil water status of the whole site. In order to resolve the number and configuration of the tubes for optimum precision, consideration must be given to the immediate environment around the probe. Variability in the horizontal sphere of influence of soil water content, and limitation of vertical resolution (ability to distinguish soil water changes with depth) are the two factors most frequently noted in regard to the precision of neutron probe soil water measurements. Van Bavel (1956) defined the sphere of influence as the sphere around the neutron source that contains 95% of the thermalized neutrons. Olgaard (1965) developed the following relationship for five soils of varying density and compostion: - 52 -100 Z = 1.4 + 10 6 v where Z (cm) is the radius of the sphere of influence of neutron emission and 8V is the volume fraction of water in the soi l . For the range of soil water contents experienced in this study Z ranges from 30 to 50 cm for wet and dry conditions respectively. Vertical resolution becomes a serious problem with soil profiles having large textural variability (McGowan and Williams, 1980; Douglass, 1962). However, since the textural changes with depth at the study sites are small and generally gradual, vertical resolution was not considered a serious problem. Furthermore, when changes in soil water are determined by repeated measurements at the same depth, vertical abnormalities tend to cancel out. Bearing in mind cost limitations, it was decided to set up two locations at each site with three access tubes in a group at each location. This provides two locations with approximately 3 square meters of intensive sampling at each site. Each group of 3 tubes was arranged in a triangular configuration, with the tubes approximately 1 meter apart. The water content was averaged at each horizon for the three tubes. From sphere of influence considerations, the maximum calculated sphere of influence (dry conditions) was about 50 cm, so that overlapping was avoided in the one meter triangular configuration. - 53 -3.5.3 Measurement depths The vertical dimension of the 'sphere of influence' of the Campbell Pacific neutron probe is stated by the supplier to average 15 cm. To cover the full range of depths without overlapping, measurements were therefore taken at 15 cm intervals. 3.5.4 Calibration of the Neutron Probe Calibration of the neutron probe requires the derivation of a correlation whereby neutron counts can be converted to soil water contents. The calibration can be carried out in the laboratory or in the f ie ld. It was decided to use field calibration because of the difficulty of providing a reliable laboratory simulation of the soil chemistry, bulk density and soil structure in the f ie ld. The method of calibration was to correlate the neutron probe count ratio with the volumetric water content calculated for field conditions. The neutron probe count ratio is the ratio of the actual count over the standard count shown when the probe is inside the protective housing, which is a fixed environment for neutron thermalizing. Determination of the counting period for thermalized neutrons has been described by McGowan and Williams (1980) who note that Bell (1976) derived an expression for the standard deviation of soil water content OQ based on statistical fluctuations in the count rate due to the random nature of nuclear disintegrations for a Drobe with linear calibration: - 54 -where C is the count rate (counts/second), t is the time (s) over which the counts are integrated, S is the sensitivity in counts per second per 1% change in water content. Based on a counting period of 30 seconds, and from experience in this study of an average 10 counts per second per 1% change in water content, then for the highest counting rate experienced (i.e. under the wettest condition) of 16000 counts in 30 seconds (C = 533 counts/second), we find og = 0.42. This indicates that for 95% confidence the precision in soil water content determination will be about ±0.84% using 30 seconds counting time. For a typical neutron count during the growing season of 6000 counts/30 s e c , OQ = 0.26 and for 95% confidence the precision will be ± 0.52%. The random count error will be significantly reduced (higher measurement precision) by the averaging effect of taking neutron counts at three access tubes in close proximity. The procedure used for calibrating the neutron probe for 30 cm and deeper horizons was to carry out a number of calibration runs to span the ful l range of experienced soil water contents between summer soil water deficit conditions and field capacity. The procedure for each calibration run was to take gravimetric samples, augered from the 30 cm depth and at 15 cm depth intervals below 30 cm, at three locations around the periphery of each group of three access tubes. Gravimetric water content was determined by drying at 105°C and the samples were screened through a 10 mm sieve. The water content of the < 10 mm fraction was converted to the volumetric water fraction for the whole soil by the procedure described in paragraph 3.2.3. The averaged count ratio of the neutron probe at each depth and the corresponding average of the volumetric water contents of the three samples are the two - 55 -variables for the linear regression. Figure 3-5 shows the plot of these data points for all sites, and the regression relationship obtained was: Vol. fraction H20 (whole soil) = 0.232 x Count Ratio - 0.021 (r 2 = 0.85) It is generally recognized by most workers that the same calibration developed for 30 cm and deeper horizons cannot be used for the 0 - 20 cm surface horizon due to the fact that the sphere of influence of the neutrons may intersect with the soil surface, resulting in the escape of fast neutrons from the soil mass. The neutron probe would in this case give readings indicating a lower than actual soil water content. Various methods have been suggested to overcome the effect of the surface interface. Cole and Green (1966) apply a correction factor to the deeper profile calibration. Pierpoint (1966) recommends using a surface shield of 2 inch thick polyethylene of 60 cm (2 ft) diameter. Initially, it was planned to use gravimetric soil water, converted to volumetric for water determinations at the surface horizon. However, it was also decided to record the neutron probe readings at 15 cm and investigate the possibility of a correlation. The procedure for gravimetric sampling was to auger three replicates in the 0-15 cm depth at random locations over the 20 m x 20 m plot at the same time that the neutron, probe readings were taken. Gravimetric water was determined and converted to volumetric for field conditions. The average of three soil water vol. fractions was then plotted against the average of all six neutron probe count ratios at 15 cm. Figures 3-6 to - 56 -Figure 3-5 C a l i b r a t i o n plot for the neutron probe at depths 30 cm and greater for a l l s i t e s . Each point was the average of three neutron probe readings from access tubes i n a tria n g u l a r configuration vs. the average of three volumetric water contents of samples taken during 1980 and 1981 adjacent to the three access tubes, and repeated at 15 cm depth i n t e r v a l s . Water contents were determined g r a v i m e t r i c a l l y and converted to volumetric s o i l water contents for the whole s o i l at that depth. The l i n e represents the regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.232 x count r a t i o -0.021 r 2 = 0.85 - 57 -csi I | | ) | I I I I I I I I I I I I I I I I I I I I O q I . i i i i i i i i i i I I | I I I d—I—I I I I I—L o 0.0 0.1 0.2 0.3 0.4 V 0 L . F R A C T I 0 N W A T E R IN W H O L E SOIL Figure 3-6 Relationship between the neutron count ratio at 15 cm depth and the average volumetric water content determined gravimetrically of the mineral soil between the LFH mineral soil interface and approximately the 23 cm depth at site 0. The latter depth was estimated by subtracting the radius of the sphere of influence of the probe (7 cm) from 30 cm, which was the upper neutron probe depth for the calibration line shown in Figure 3-5. Each point was the average of three neutron probe readings from the access tubes in triangular configuration vs. the average of three volumetric water contents of samples taken in 1980 and 1981 at random locations over the 20 m x 20 m site. The line represents the regression equation: Vol. frac. H20 (whole soil) = 0.234 x count ratio -0.029 r 2 = 0.85 - 58 -q c4 ZD o q o 3 0 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 i 1 1 1 i i 1 1 1 1 1 1 1 1 1 1 t t 1 i 1 1 1 1 1 1 » 1 1 1 0.0 0.1 0.2 0.3 0.4 V O L . F R A C T I O N W A T E R IN W H O L E SOIL Figure 3-7 Same as Figure 3-6 except f o r S i t e 1. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.246 x count r a t i o - 0.045 r 2 = 0.81 - 59 -I | I I I I I I I I I I I I I I M I I I I I i i i i i • i i i i ' ' ' i i I < I I I I I I I 0.1 0.2 0.3 0.4 V 0 L . F R A C T I 0 N W A T E R IN W H O L E SOIL Figure 3-8 Same as Figure 3-6 except f o r S i t e 2. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.226 x count r a t i o - 0.075 r = 0.88 - 60 -q CN <2 rr z ZD o q o i— *> z>o UJ I I I I I I I I I I I I I I I I I I I I ' ' I I ' I ' I i I I I I I L 0.0 0.1 0.2 0.3 0.4 V 0 L . F R A C T I 0 N W A T E R IN W H O L E SOIL Figure 3-9 Same as Figure 3-6 except f o r S i t e 3. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.275 x count r a t i o - 0.064 r = 0.74 - 61 -I I I I I I I I I I I I I I I I I I I I I I I • i i I I • ' I I I I I I 0 0 0.1 0.2 0.3 0.4 V 0 L . F R A C T I 0 N W A T E R IN W H O L E SOIL F i g u r e 3-10 Same a s F i g u r e 3-6 e x c e p t f o r S i t e 4 . R e g r e s s i o n e q u a t i o n : V o l . f r a c . H 2 0 { w h o l e s o i l ) = 0 . 2 5 8 x c o u n t r a t i o - 0 . 0 6 8 r = 0 . 8 0 - 62 -o i I | | | I I I I I I I I I I I I I I I I I I I I I O q I i i i i i i i i i i i i i i i i i i i o 0.0 0.1 0.2 0.3 0.4 V 0 L . F R A C T I 0 N W A T E R IN W H O L E SOIL Figure 3-11 Same as Figure 3-6 except f o r S i t e 5. Regression equation: V o l . f r a c . H2O (whole s o i l ) = 0.266 x count r a t i o - 0.11 r = 0.80 - 63 -0.0 0.1 0.2 0.3" 0.4 V O L . F R A C T I O N W A T E R IN W H O L E SOIL Figure 3-12 Same as Figure 3-6 except f o r S i t e 6. Regression equation: V o l . f r a c . H 20 (whole s o i l ) = 0.253 x count r a t i o - 0.018 r = 0.68 - 6k -3-12 show these plots and the linear regression equations obtained for each site. Appendix 6 shows the soil water contents as determined at Sites 0 to Site 6 of specified depths. The volumetric fraction water contents were obtained by averaging the measurements at each of the three access tubes for each set of three tubes. 3.5.5 Error Analysis of Neutron Probe Soil Water Determinations McGowan and Williams (1980) distinguish the following main sources of error in soil water measurements using the neutron probe method. (a) Systematic errors: (i) Calibration (ii) Soil damage from access tube installation ( i i i ) Damage to surface soil and vegetation (b) Random errors: (iv) Random count error (v) Relocation error (vi) Inherent soil variability These will now be considered in relation to the study sites, (i) Calibration Distinction must be made between the use of the neutron probe for absolute measurements of soil water, and its use for measurement of changes in soil water storage. In the present study, since soil water changes are being measured for use in the soil water balance, the influence of adjacent horizons due to poor vertical resolution remains almost constant for successive measurements. The - 65 -slope of the calibration curve is , therefore, the determining factor, and since the correlation coefficient for the calibration plot r = 0.85, this indicates that 85% of the neutron probe count ratio is accounted for by gravimetric soil water determination and conversion to volumetric water content. (ii) Soil damage from access tube Installation The main source of error from soil damage arises from changes in the compaction and bulk density of the soil adjacent to the access tube, or from cracks and cavities extending from the soil surface and downwards, and providing preferential pathways for water flow. Multiple tube installations, by replicating measurements, help to average out soil damage effects. Since calibration of the neutron probe was carried out in the f ield, errors arising from access tube installation are incorporated into the calibration coefficient and reflected in the correlation coefficients. ( i i i ) Damage to the soil surface and vegetation Care was taken to avoid surface compaction of the soil and vegetation damage adjacent to tube locations, and portable duckboards were kept for this purpose at each site. (iv) Random count error The random count error was discused in paragraph 3.5.4. It was noted that the random count error for a 95% confidence level is about 0.5% for growing season soil water contents, (v) Relocation error This error arises from not locating the probe at exactly the same deoth on consecutive measurements. To minimize this error the - 66 -neutron probe was always mounted at a constant height above the soil surface. This was accomplished by an adaptor, made of plastic pipe and fitted with a flanged footing, for resting on the surface, which thus supported the neutron probe at a constant height. The cable of the probe was marked off with clamps at required depth intervals, and the clamps are held in a latching device at the top of the prode housing when measurements were taken. McGowan & Williams (1980) note from their experience that relocation error may account for a 20-30% increase of the random count error, thus increasing this error to about 0.6% at low soil moisture levels. (vi) Inherent Soil Variability The subject of variation in the change in storage of soil water was discussed in paragraph 3.5.2. in connection with access tube sampling intensity. In order to evaluate the effects of spatial variability on the precision of measured changes in soil water, an experiment was set up at Site k (mesic site) over a 20 m x 20 m plot. Sixteen access tubes were located on a stratified random basis by dividing the plot into four quadrants and randomly locating four access tubes in each quadrant. Soil water contents were determined at each tube at 30 cm depth at one week intervals during the months of Duly to October 1981. The change of soil water content and the standard deviations for all tubes were calculated. Table 3-8 shows the average change for 16 tubes and the standard deviations between tubes, and Figure 3-13 is a plot of this data. It is noteworthy that during the soil drying period the standard deviations are significantly smaller than after rewetting, probably due - 67 -Table 3-8 Variability of volumetric soil water content change over a 20 m x 20 m plot at Site 4. The average change and standard deviation are for 16 access tubes in a stratified random arrangement, and measured at 30 cm depth. During the drying period Duly 1 to August 17, 1981 the average standard deviation was 0.0048 m3/m3, and was used to calculate the standard error of the mean and 95% confidence limits of the mean (see text). Data Period (1981) Average Change in Vol. Soil Water Content (m3/m3) Cumulative Change in Vol. Soil Water Content (m3/m3) Standard Deviation 1/7 - 7/7 - 0.0146 - 0.0146 0.0038 7/7 - 13/7 - 0.0047 - 0.0193 0.0030 13/7 - 22/7 - 0.0136 - 0.0329 0.0061 22/7 - 27/7 - 0.0121 - 0.0450 0.0040 27/7 - 4/8 - 0.0152 - 0.0602 0.0050 4/8 - 10/8 - 0.0098 - 0.0700 0.0060 10/8 - 17/8 - 0.0153 - 0.0853 0.0058 17/8 - 1/9 + 0.0447 - 0.0406 0.0269 1/9 - 11/9 - 0.0246 - 0.0652 0.0153 11/9 - 25/9 + 0.0271 - 0.0381 0.0096 25/9 - 9/10 + 0.0421 0.004 0.0138 - 68 -i — r i — i — i — r i — i — i — ' i o X 00 o < or °1 o Z I < O 1 t o o CM J L i ' i i I I L L 2 0 4 0 6 0 8 0 100 120 D A Y S AFTER JUNE 30 1981 Figure 3-13 Cumulative average change in volumetric soil water content, measured at 16 access tubes at Site 4, plotted against time (see Table 3.8) . The vertical lines show the standard deviations of the measurement and indicate the variability in soil water storage change at the site. The first seven points on the time scale show progressive drying of the soi l , and are followed by intermittent recharge. - 69 -to variations in hydrophobicity and formation of soil cracks during drying. It was noted that the standard deviations increased as the drying period progressed, as found by McGowan and Williams (1980). Considering only the soil drying phase it is evident that the average change in volumetric soil water content was 0.0122 per week. The average of the standard deviations was 0.0048. Since a normal distribution can be assumed for randomly located access tubes, the 95% confidence limits for soil water changes can be calculated from O s 2 1/2 CL = y ± t (-*-) where y is the mean of soil water content changes for sixteen tubes, t is Students t statistical parameter with n - 1 degrees of freedom, s v is standard deviation of soil water content changes, and n is the number of access tube locations. Noting that t for 95% confidence limits and 15 degrees of freedom =2.13, CL = 0.0122 ± 2.13 ( ( P - ^ | i ) 2 ) / 2 = 0.0122 ± 0.0026 Thus the average change of soil water content determined from 16 access tubes will be subject to an error of ± 21% at a 95% confidence level. - 70 -In order to achieve a precision of 10% with 95% confidence the number of access tubes required would be: .2 2 t s n = * Q2 where Q, the specified precision limit for soil water change, is 10% of 0.0122 (2.13) (0.0048) n = 2 ( 0 . 0 0 1 2 2 r = 70 access tubes, Clearly this number of access tubes is impractical, which leads to the decision to carry out intensive sampling on limited areas within each site as described in Section 3.5.2. 3.5.6 Water content of the Humus Layer The water content of the humus layer was determined each time neutron prode reading were taken. The humus layer thickness showed considerable variability and the method of sampling was to cut three replicate 10 cm x 10 cm squares down to the interface between humus layer and mineral soi l . In the case of Site 6 this layer included the Ah horizon. The samples were collected in plastic bags, and the depth of the humus layer was recorded for each sample. Water content was determined in the laboratory, and since the volume of each sample was known, the volumetric water content could be directly calculated. - 71 -Because of the variability experienced in LFH water content between replicate samples and also between data days it was decided not to use the volumetric water content of the LFH as measured in the laboratory directly in the summation of profile water storage. Averaging and smoothing of LFH content water was necessary, and this was carried out by developing correlations between LFH water content and the neutron probe measured water content of the mineral soil at 15 cm depth. Humus layer water volumetric water contents are shown in Appendix 7. 3.6 Soil Water Potential Measurements Tensiometers were installed in Oune, 1980 at approximately 15 cm depth intervals at each site (except Site 7), using acrylic tubing with sealed porous ceramic tips which were rated at 1 bar air entry value. From the top of each tube a nylon capillary tube passed up to the top of a 1 meter scale mounted on an angle iron support. The down section of the nylon tubes were mounted adjacent to the scale, with the bottom end in a mercury reservoir, enabling direct reading of the mercury levels in the nylon tubes. Four to six tensiometers were installed at each site, depending on soil depth. For installation of the tensiometer tubes, a steel bar of the same diameter as the acrylic tensiometer tube was hammered into the soil down to the required depth at a location 1.0-1.5 m distance from a set of neutron probe access tubes. To ensure good contact between the porous tip and the soi l , and also to seal the tube against the walls of the hole, a slurry of fine sandy loam was made up and transferred to the bottom of each hole with a piece of open ended - 72 -acrylic tubing. When the tensiometer was pushed down in place, the slurry sealed the tube and excess slurry flowed out of the top of the hole, around the tube. Tensiometers were charged with deaerated water, produced by boiling water in a Buchner funnel flask with the side arm clamped, and closed with a rubber stopper when at the boiling point. Air was removed from the tensiometer tube and nylon connector by syphoning deaerated water from the flask, until al l air was displaced via the mercury reservoir. Recharging with deaerated water was required more frequently as water potential approached -80 KPa, and air began to enter through the porous tip. The top of the acrylic tensiometer tube, extending about 5 cm above the clamped and gasketed nylon capillary off-take, served for f i l l ing the tube with water. When closed with a stopper after completely f i l l ing , this served also as an air trap to minimize the chance of air bubbles getting into the capillary. When air bubbles showed up in the nylon capillary, the tensiometer was recharged with deaerated water. Appendix 8 Figures 1 to 7 show plots of soil total water potential against depth for each site, at different dates through the growing season of 1981.which were typical of both years. From these plots the reversal from water downflow to upflow through the soil profile as the growing season progressed is generally quite clear. 3.7 Water Table Measurements At Sites 4, 5 and 6 a water table appeared above the bedrock/compacted t i l l during the months of November and December and - 73 -remained at varying depths until May - Dune. Water table depth measurement was carried out by installing in Oune 1980 a PVC standpipe consisting of 5.1 cm (2 inch) I.D. PVC tube with 6 mm (1/4 inch) holes drilled on 5 cm centers from the open bottom up to a height of 30 cm. The tube was installed with the bottom on bedrock or compacted t i l l (e.g. in a soil pit which was then back f i l led with coarse fragments). *" Measurements of the water tables at Sites 4, 5 and 6 are plotted in Figure 3 - 1 4 . No water tables occurred at Sites 0 to 3. At Site 7 the water table varied from being at the soil surface in winter, to 30 cm depth in summer. 3.8 Saturated Hydraulic Conductivities and Run-Off In order to determine whether sites could be differentiated from the standpoint of soil hydraulic conductivites, and also to evaluate the possible occurrence of surface run-off, it was decided to determine soil saturated hydraulic conductivities (k s at) by infiltration at each site. Saturated (infiltration) hydraulic conductivity was determined using the constant head well permeameter of Talsma (Talsma and Hallam, 1980). This is a simple and rapid method; the equipment comprises a water reservoir fabricated from 3.8 cm (1 1/2 inch) diameter acrylic tubing which is placed in a 5.1 cm (2 inch) hole augered to a depth of 20 cm. A constant head of water is maintained in the well and measurements continued until a final steady state infiltration rate into the well is obtained (20-30 minutes). k s a t is determined from the solution of the 3 dimensional flow problem by Glover (in Zangar, 1953) - 74 -OCT NOV DEC JAN FEB MAR APR MAY JUNE 0 40 80 120 160 200 240 DAYS AFTER SEPT 30 1980 Figure 3-14 Water table measurements at sites 4, 5 and 6 for the period October 1980 to Dune 1981. Water tables were not found at sites 0 to 3. At site 4 a water table was present from mid November 1980 to the end of April 1981, at site 5 from early November 1980 to mid May 1981 and at site 6 from late October 1980 to mid Oune 1981. - 75 -for the limit of steady flow. Three replicate hydraulic conductivities were determined at each of sites 1 to 6. No significant differences in saturated (infiltration) conductivity was evident between sites. The average saturated hydraulic conductivity was found to be 3.7 x 10~5 m/s with a standard deviation of 1.2 x 10"5 m/s. This average saturated hydraulic conductivity is about one order of magnitude higher than the maximum observed precipitation rate, thus precluding the possibility of run-off. In the application of the water balance equation (21) run-off (R) was therefore considered to be zero at a l l times. 3.9 Calculation of Water Balance Components by Data Periods The dates and times when neutron probe readings were taken determined the data periods for water balance calculations. These dates and times were recorded on the neutron probe data sheet when readings were taken at each site. The breakdown into data periods is shown in Appendix 9. The time periods between neutron probe measurements are shown in days and fractions of days. Data times and periods are different at each site because of variations in times when data were taken. A total of 50 sets of data were obtained over the 17 month period of the study. The following methods were used for converting water balance components calculated on a daily basis, to the data periods correspond-ing to the neutron probe measurments of soil water storage changes. - 76 -3.9.1 Equilibrium Evapotranspiration Daily net radiation was calculated from daily short wave and long wave radiation using equation (10). Daily equilibrium evapotranspiration was calculated from daily net radiation, and latent heat of vapourization and s/(s + y) shown in Appendix 4. Appendix 10 shows daily net radiation and daily equilibrium evapotranspiration. Equilibrium evapotranspiration for each data period was determined by summation of daily data. The fractional Eeq for the f irst and last days of the data periods were determined by calculating from the times of neutron probe data the hours of daylight after the start time on the first day and before the finish time on the last day respectively for each data period, and pro-rating Eeq for these times. Equilibrium evapotranspiration for data periods is shown in Appendix 11. 3.9.2 Precipitation and Interception Precipitation for data periods was calculated by summation of daily precipitation (Appendix 4). Precipitation for the first and last days in the data periods was determined from the data times, as time fractions of the p.m. and a.m. raingauge readings respectively. Interception for data periods was calculated for each site using the interception functions described in Section 3.3.2. Appendix 12 shows precipitation and gross interception for data periods. To determine the interception multiplier g, described in Section 2.1.4, equations (18) and (21) are solved simultaneously by selecting - 77 -periods when D and R are both zero, but P is not zero. In this case (21) becomes E = P - AW/At and we have:" ' I (ET + gl) = I (P - AW/At) Figure 3.15 shows cumulative P - AW/At for data periods having rainfall during the summers of 1980 and 1981 versus cumulative ET + g l . A value of g = 0.8 was found by tr ial and error to result in a close balance, and was used in the evapotranspiration model for all the sites. 3.9.3 Profile Water Storage and Extractable Profile Water Profile water storage W(mm) was calculated as follows: z=i _ w = z em(z) Az + z o e Q - (26) z=o where 8m(z) is the whole mineral soil volumetric water content as measured for depth intervals Az(mm), Jt(mm) is the depth of the root zone, z (mm) is the depth of the humus layer and 6 is the average o o volumetric water content of the humus layer. Mineral soil water contents at each depth interval were determined from neutron probe measurements, and averages were calculated for each set of three access tubes. Determination of humus layer water content is described in Section 3.5.6. Profile water storage contents are tabulated in Appendix 13. - 78 -o o o 0 100 200 300 400 500 600 700 600 900 1000 EVAPOTRANSPIRATION RATE ( m m ) Figure 3-15 Determination of the interception multiplier g in the evapotranspiration equation E = Ej + gl where E is the total evapotranspiration rate, Ej is the transpiration rate assuming the vegetation is dry, and gl is the average net interception loss rate (section 2.1.4). From the water balance, when drainage and runoff are zero E = P - AW/At. Ej + gl was calculated for data periods through the growing season for different values of g. By plotting cumulative P - AW/At (ordinate) against cumulative Ej + gl (abscissa) for the whole growing season an average value of g was found by tr ial and error when £(E T + gl) = E(P - AW/At). - 79 -Extractable water 0 e is calculated from equation (13). Wmin was determined using data periods when rainfall and drainage were zero, so that E = -AW/At (Section 3.9.4.1). Then E was plotted against volumetric soil water content for all sites (see Figure 3-16). The data shows a scatter of points converging as soil water content decreases, enabling an extrapolation to E = 0. In this way the value of ~$min for all sites was found to be 0.091. Then W . = 6 . x h (mm) , where min min 1 h = I + z 0 . Wmax is the soil profile water content at field capacity, which is considered to be the water content corresponding to a soil matric potential of -10 kPa, and is obtained from soil water retention plots (Section 3.2.5), and Wm=1„ = 6__„ x h mm max max Extractable water for data periods is shown in Appendix 14. The change in profile water storage (AW) for data periods was calculated by subtracting the init ia l profile water storage from the final profile water storage. Appendix 15 shows this data. 3.9.4 Actual Evapotranspiration 3.9.4.1 Determination of Evapotranspiration Parameters The determination of evapotranspiration parameters a (energy limiting), b (soil water limiting) was accomplished by substituting data into equations (9), (14) and (21). Data periods were selected when - 80 -O o 1° to < DC O I— < o to < cr o 6 1 1 1 1 — 1 I 1 1 • 1 1 1 1 1 1 1 1 -A -A A - A A - A A A & -A A A — * A — A -A -4 * A A A -/A A ' A ' A A _ / * | #/ / A 1 1 - u k 1 4 — I I I — 1 1 1 1 1 _ l _ 1 1 i / I I I 1 1 1 ] I .0 0.1 0 . 2 0 .3 V O L . FRACTION WATER IN WHOLE SOIL Figure 3-16 Determination of soil water content when transpiration ceases (^ min '^ When rainfall is n i l , and capillary rise is negligible, ET = - AW/At. By plotting Ej against volumetric soil water content for such data periods, as soil water content is reduced the data points converge to zero transpiration at 8 m j n . Dashed line was obtained by linear regression of transpiration values less than 2 mm/day. - 81 -P = 0, D = 0. (R = 0 at all times), i.e. when the soil water potential increased with soil depth and the unsaturated hydraulic conductivity was very small. An estimate of the error in E from assuming negligible capillary rise was obtained by using Darcy's Law and the hydraulic conductivity vs volumetric soil water content relationship of Spittlehouse (1981) for Dashwood series gravelly sandly loam. This soil was noted to have a saturated hydraulic conductivity (infiltration) of 1.2 x 10"5 m/s, which is comparatively close to the average saturated conductivity of 3.7 x 10"5 m/s for this study area. The highest rate of capillary rise was found at the hygric site (Site 6) as follows: From the average profile water content the unsaturated hydraulic conductivity of 0.01 - 0.03 mm/day was estimated for the selected period when D < 0 and after the water table had disappeared. From the tensiometer plots the maximum upward gradient of A^/Az = 10 was found. Thus Darcy's law gives a maximum rate of capillary rise of 0.1 - 0.3 mm/day. Based on the actual evapotranspiration rate of 3.0 mm/day, the error in assuming zero capillary rise is thus about 3% - 9% of E. A graphical solution of the (9), (14) and (21) is obtained by plotting E/Eeq (ordinate) against 9 e/E e q (abscissa). The plotted points for all sites are shown in Figure 3-17. The value of b is the slope of the E/Eeq versus 6 e /E e q relationship below the crit ical soil water content 8 e c . The average value of b for al l sites was found to be 4.4 mm/day; however Sites 1, 2 and 4 were selected for the determination of b because these sites showed less in-site variation of volumetric soil water content between access tubes, and these site gave - 82 -0.0 0.1 0 .2 0 .3 E X T R A C T A B L E W A T E R / E . E O ( D a y s / m m ) Figure 3-17 Determination of evapotranspiration parameters a (energy limited) and b (soil water limited). Data periods were selected when precipitation and drainage were zero (tensiometers showing that water potential gradient is upwards) and capillary rise is negligible (low water potential hence low hydraulic conductivity throughout the profile). By plotting transpiration (Ey) against extractable water (8 e), both relative to equilibrium evapotranspiration, the relationship may be represented by two straight lines: Em a x/E eq = a (energy limited transpiration, horizontal line); Es/Eeq = b6e/Eeq (soil water limited transpiration, sloping line), which Intersect at a crit ical value of 9 e(9 e c) such that e ec / E eq = a / b -- 83 -an average value of b = 4.1 mm/day. The average value of a found for sites 1, 2, 4, 5 and 6 was 0.725, while for site 6 a = 0.78. The former value of a was used in al l subsequent water balance analyses. The value of a/b for sites 1, 2 and 4 was 0.177 d/mm which compares to 0.08 d/mm found by Spittlehouse and Black (1981) (a on a 24 hour basis) for their Douglas f ir site at Courtenay. 3.9.4.2 Calculation of Actual Evapotranspiration was below the crit ical water content, transpiration was soil water limited and was calculated from equation ( 1 4 ) (i.e. E T = E 5 ) a n cj ^ the soil water content was above the crit ical water content, transpiration was energy limited and was calculated from equation (9) (i.e. Ej =.Em a x). evaporation of intercepted rainfall must be accounted for by using (18). As reported in Section 3.9.2, g was 0.8 for energy limiting conditions. Equation (19) was used to determine g for soil limiting conditions as follows. We express E^  in the Priestley Taylor form as (Shuttleworth and Calder, 1979): For data periods with no rainfall , if the soil water content For data periods when there was rainfal l , the additional a E w - (27) where is the Priestley Taylor a for a canopy with completely wet leaves. Substituting (27) into (19), we have a - (28) a w 1 - g - 84 -Substituting ET = ctEeq into (28). gives: g = 1 - £ - (29) 3 a E w eq Since a and g for energy limiting conditions were found to be 0.725 and 0.8 respectively, cx^  = 3.5, which is applicable to both energy and soil limiting conditions. In soil limited conditions, E g = 1 p—— - (30) y a E w eq since ET = Es* Note that as E s decreases g increases, and the saving in transpired water when the vegetation is wet decreases. During the winter months, when energy available for evapotranspiration is low, it was sometimes found that calculated transpiration plus evaporation of intercepted water (ctE e q + gl) was less than the gross interception. This corresponds to the conditions described by Shuttleworth and Calder (1979) and by Thorn and Oliver (1977) for conditions of large surface roughness, and specifically for forests. They attributed excessively high evaporation to strong advective enhancement. In the present study, in instances when gross interception was found to be greater than calculated evapotranspiration, it was assumed that evapotranspiration was equal to gross interception. Appendix 16 shows actual evapotranspiration for the data periods. - 85 -3.9.5 Calculation of Approximate Growing Season  Deficit by Monthly Water Balance To enable the evaluation of the sensitivity of growth to soil water deficit at higher deficits than were experienced in the two years of the study, a method for calculating approximate soil water deficits in other years was used. In this procedure monthly water balances were calculated using monthly average solar irradiance and sunshine hours data from Nanaimo (Latitude 49° 03' Longitude 123° 52') and monthly average precipitation and temperature data from Cowichan Experimental Station (Latitude 48° 50' Longitude 124° 08'). The following is a summary of the calculations in this procedure: (i) R = 0.9 (0.88 K+ + L*) n where K+ is the monthly average daily solar irradiance M3 m - 2 day - 1. Spittlehouse (1982) found that the 0.9 factor was required to correct the calculated Rn using Nanaimo values. L* is calculated as follows (Monteith, 1973): L* = (107 - Ta) (0.2 + 0.8 n/N) where T a is the monthly average daily temperature °C, n is the monthly average daily bright sunshine hours, and N is the maximum monthly average daily sunshine hours. Emax = a u r r W Rn ( m m d _ 1 ) where s, y and L are as described in Section 2.1.1. a has the value 0.8 - 86 -on a 2k hour basis corresponding to 0.725 found for daytime basis in Section 3.9.4.1. ( i i i ) I E = E x No. days in the month (mm) max max (iv) P = Total precipitation for the month (mm) (v) AWSC = Root zone Depth x (6 - 6 . ) (mm) max min where AWSC is available soil water storage capacity (mm) and 0 m a x is the volumetric soil water content at matric potential = -10 kPa, and emin * s ^ e volumetric soil water content when transpiration = 0 (see Section 3.9.3). For months June, Duly and August, the soil water budget is calculated by monthly water balance. (vi) The value of the deficit for a given month is equal to E m a x minus the sum of precipitation and the remaining available soil water storage from the previous month. This monthly deficit was computed for Dune, Duly and August, the 3 summer months which experience has shown "produce the growing season water deficit. It was assumed that the soil water content at the beginning of Dune was AWSC as calculated above. The method was evaluated by comparing results calculated for Courtenay (using Nanaimo and Campbell River meteorological data) with deficits calculated by Spittlehouse (1983) using daily balance calculations. As anticipated the monthly balance calculation - 87 -significantly underestimated growing season soil water deficits calculated on a daily basis. A linear regression of growing season soil water deficit calculated by daily balance in the range from 0 to 177 mm against calculation by monthly balancing was as follows: Deficit (daily balance) = 0.89 x Deficit (monthly balance) + 33 (mm) with r 2 = 0.7. At growing season soil water deficits above 165 mm the difference is less than 10%, and so monthly balancing may be used to approximately calculate soil water deficit in a very dry year. 3.10 Forest Productivity Measurement In April 1982 at each site a 20 m x 20 m plot was carefully marked out, and all of the trees within the plot were numbered with aluminum tags. The species were noted and the diameter at breast height of each tree was recorded. These records are shown in Appendix 18. Table 3-8 provides, for each site a summary of tree species, average basal area (m2), and the number of each species per hectare, al l based on the 20 m x 20 m sample areas. For quantifying forest productivities at the sites three methods were used: (1) Site index measurements. (2) Total stemwood volume per hectare based on trees with DBH greater than 7 cm. (3) Annual incremental stemwood volume per hectare from tree ring measurements. - 88 -3.10.1 Site Index Measurements Site Index estimations for Pseudotsuga menziesii (Douglas fir) were made at each site based on the average height and total age of dominant trees at each site. Dominant tree height and age data were obtained from forest mensuration forms compiled by Ministry of Forests personnel, and checked against tree height measured by Relaskope. The only significant difference found between the two sources of data was at Site 5 (subhygric) where the Ministry of Forests data appeared to underestimate the average height of two dominant Douglas f i r trees at 35.9 m compared with 43.3 m measured by Relaskope. Site Index curves used to estimate the height at 100 years were from Hegyi et al. (1979) in Ministry of Forests Inventory Branch, Forest Inventory Report No 1. 3.10.2 Stand Density by Volume For the determination of total stemwood by volume at each site it was necessary to develop tree volume versus basal area relationships, which reflect the variations in tree form classes between sites. For this purpose tree diameters were measured at different heights using a Relaskope (optical dendrometer). From three to six diameter/height measurements were made on a sample of six trees at each site (2 large trees, 2 intermediate, 2 small). The volumes of these trees were calculated using Smalian's formula (Avery, 1975) to determine the volumes of the measured sections: - 89 -(B + B )L Cubic Volume = — 2 — where B-) and B2 are cross sectional areas at points separated by distance L. Tree volume versus basal area plots are included in Appendix 20. An error estimate for height and diameter measurements using the Relaskope at known heights and diameters showed an average error in both dimensions of ZA%. 3.10.3 Current Annual Growth Measurement Annual growth measurement was accomplished by determining the annual stemwood increment from tree ring measurements. Due to time limitations it was decided to restrict annual increment measurements to Sites 1, 4 and 6. Sites 1 and 6 cover the economic range of the transect, and Site k is classified as the mesic site. In September 1982 a sample of 10 trees was selected at each site from the 20 m x 20 m plots such that the samples covered the range of DBH measurements at these sites. Two cores were bored at opposite sides of each tree at DBH, and parallel to the slope. At the same time that the cores were bored, tree diameters were measured at the core height, and four bark thickness measurements were also taken and averaged. Ring widths were measured to the nearest one hundredth millimeter by the Faculty of Forestry (Appendix 21). Due to damaged cores, some could not be measured. The following tabulation shows the number of trees at each site for which core measurements were made: - 90 -Number of Trees Site 1 Site 4 Site 6 Two cores/Tree k 6 8 One core/Tree 3 3 2_ Total Trees 7 9 10 Two procedures were used to determine annual incremental stemwood: (1) Measurements of 1981 and 1980 ring widths were used to calculate actual incremental stemwood volume for these years. (2) Expected annual ring widths were determined by fitting a regression line to the ring measurement data for the past 25 years. The two methods will now be reviewed. 3.10.3.1 Incremental Stemwood from Ring Width Measurements The 1982 ring radius for each tree was calculated from DBH and bark thickness measurements. From measurements of tree ring widths for 1982, 1981 and 1980 the annular areas of growth were calculated. Annular areas were averaged for trees when two core measurements were available. The annual incremental stemwood volumes for each tree were calculated using known stemwood volume/basal area relationships (Section 3.10.2). From the distribution of DBH classes within the 20 m x 20 m plots, the weighted average stemwood volume increase per hectare was calculated for the years 1980 and 1981 for each site. - 91 -3.10.3.2 Expected Incremental Stemwood by Linear Regression Tree ring widths were plotted for all measured cores for the past 25 years. A straight line was fitted to the points by linear regression, giving a linear relationship between expected ring width and time for each core. Starting from the actual ring radius determined in 1982 from DBH and bark thickness measurements, the expected ring radii for previous years were calculated by successively subtracting expected ring widths obtained from the regression equation. Expected annual basal areas were calculated, and annual basal area increments by subtraction. Expected incremental growth volume was calculated for each tree from stemwood volume vs basal area relationships. From the distribution of DBH size classes the expected weighted average incremental stemwood volume per hectare was calculated for a site. - 92 -RESULTS AND DISCUSSION - 93 -4.1 Water Balances for 1980 and 1981 Figures 4-1A and B to Figures 4-7A and B show time courses of the water balance components at sites 0 to 6 for dune 1980 to December 1980 inclusive, while Figures 4-8A and B to Figures 4-14A and B are for Oanuary 1981 to October 1981 inclusive. Figures marked 'A' show average precipitation and evapotranspiration rates and figures marked 'B' show average rates of soil water storage change and drainage over the data periods. These diagrams are compiled from data tabulated in Appendix 19. Note that the data points shown represent the midpoint of each data period on the horizontal scale. 4.1.1 Net Cumulative Withdrawal of Water Stored in the Soil A useful climatological estimate of the capacity of the soil to store water available to the trees is the summation of E - P for E > P during the growing season. This assumes that drainage is small. (If drainage is positive, E - P underestimates this capacity, while if it is negative it overestimates). It can be readily shown that if drainage is zero the above summation for E > P corresponds to the maximum drawdown in root zone soil water storage that occurs during the growing season. In both years by the beginning of Duly and for most of the months of Duly and August soil water drainage rate had decreased almost to zero. The last dates when water tables were observed at sites 4, 5 and 6 in 198.1 were April 29, May 20 and Dune 14 respectively, and as already noted^the lowering of the water table below the impermeable boundary resulted in negligible capillary rise (negative D). The values of the cumulative totals of E - P for E > P are shown in Table 4-1. The table - 94 -Table 4-1 The cumulative net withdrawal of soil water storage at each site during the growing seasons of 1980 and 1981. This is calculated by accumulating values of E-P for data periods when E > P, and is represented by the area bounded by the evapotranspiration rate and the precipitation rate plots in Figures 4-1A to 4-14A. Year Site 0 1 2 3 4 5 6 1980 99.4 91.7 126.2 144.9 141.8 158.4 157.6 1981 107.8 101.3 130.0 163.8 147.5 175.3 178.4 / - 95 -Figure 4--1A Site 0: Time course of rates of precipitation and evapotranspiration for data periods for year 1980 Dune to December inclusive. The data points are the mid-points of each data period on the horizontal scale, and the average flux density on the veritical scale. - 96 -JUNE JULY AUG SEPT OCT NOV , DEC LO ID I 1 1 I I I I I I' I I I I I I I I I STORAGE CHANGE I i i i i i i i i i i i i i I l I I I I 1 20 40 60 80 100 120 140 160 180 200 220 DAYS AFTER MAY 31 1980 Figure A--1B Site 0: Time course of rates of soil water storage change and drainage and soil water storage for data periods for year 1980 to Dune to December inclusive. The data points are the mid-points of each data period on the horizontal scale, and the average storage change and drainage on the left hand vertical scale. The data points of water storage (right hand vertical scale) correspond to the days when data was taken on the horizontal scale. - 97 -F i g u r e 4 - 2 A Same a s F i g u r e 4 - 1 A e x c e p t f o r S i t e 1 . - 98 -E UJ O o < -2 <t oo CC Q 10 a z < X o O O 1 < O 1 •— ty)<o i 1 1 1 1 1  1 1 1 1 I T 1 1 H-T I1 1 1 1 e — - i( /1 _ / i * / ' ,' i \ ' ' ' --DRAINAGE i \ ' > ' i k ! 1 ' --i ' ' ., I I -i > ' i > ' --i 1 ' i 1 ' — © — STORAGE "x A f < f /V j / l • 1 A~1 \ 'i» 1 ~T* \ / \' > l\ 'l / \ / V H \ i . « H 1 / -- \ | . STORAGE CHANGE -i i i i i i i i i i i i i i . i i i i l J _ E E IO O < DC 5 to 0 20 40 60 80 100 120 140 160 180 200 DAYS AFTER MAY 31 1980 220 Figure 4-2B Same as Figure 4-1B except f o r S i t e 1. - 99 -F i g u r e 4 - 3 A Same a s F i g u r e 4 - 1 A e x c e p t f o r S i t e 2 . - 100 -JUNE JULY AUG SEPT OCT NOV DEC E O o < ~ Z <t_ oo or o o 2 <-« UJ O N Z < o I i I (N o 1 < a: *» o 1 i— I I1 I I I1 I I I1 I I l' I I l' I ' l ' STORAGE STORAGE CHANGE ' ' ' i i i i i i I I I I I I I I I I -J-o CO o — io o < or or UJ I— «=>* 0 20 40 60 80 100 120 140 160 180 200 220 DAYS AFTER MAY 31 1980 Figure 4-3B Same as Figure 4-1B except for Site 2. - 101 -JUNE JULY AUG SEPT OCT NOV DEC 0 20 40 60 80 100 120 140 160 180 200 220 DAYS AFTER MAY 31 1980 Figure 4-4A Same as Figure 4-1A except for Site 3. - 102 -JUNE JULY AUG SEPT OCT NOV, DEC I i i i i i i i i • i i i i i i i i i i i i I 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 m o 1 6 0 1 8 0 2 0 0 2 2 0 DAYS AFTER MAY 31 1980 Figure 4-4B Same as Figure 4-1B except for Site 3. - 103 -JUNE JULY AUG SEPT OCT NOV DEC i i I i i I i i i' i i i' i i i i i i i i i | a - 1 0 20 40 60 80 100 120 140 160 180 200 220 DAYS AFTER MAY 31 1980 F i g u r e 4 - 5 A Same a s F i g u r e 4 - 1 A e x c e p t f o r S i t e 4 . - 104 -JUNE JULY AUG )SEPT | OCT | NOV t DEC { E 2 E O o z < o o DC O io Q Z OCM z < X o o I • I CM o 1 < OS •« O 1 t— C/l<o I I I I I I I I I I I f I I I I I I I I DRAINAGE/ \ R-" V ' "".STORAGE o CO o — •o UJ O < DC 5«/> Si > /STORAGE CHANGE i i i i i i i i i i i I I I 1 20 40 60 80 100 120 140 160 180 200 DAYS AFTER MAY 31 1980 220 F i g u r e 4 - 5 B Same a s F i g u r e 4-1B e x c e p t f o r S i t e 4 . - 105 -F i g u r e A - 6 A Same a s F i g u r e 4 - 1 A e x c e p t f o r S i t e 5 . - 106 -JUNE JULY AUG SEPT OCT NOV DEC E 2 E O o < ~ z or O O z < " Ul O N Z < X o O O 1 < or f O 1 t— I 1 1 1 1 1 1 1 1 "1 1 1 1 1 1 1 1 1 1 1 1 1 -• e~ r / / \ / -^ ^ T O R A G E -V - • ' > / • > i / - 4 ' 6 — A 1 / \ i ^DRAINAGE / • ,'\ A / ' \ ' i \ - 6 i \ — i »^ :\ to _ STORAGE CHANGE -" I 1 . i i i i i i i l l I 1 i I I 1 1 1 1 _ 1 _ E E to •*> LU O < or Sin 0 20 40 60 80 100 120 140 160 180 200 220 DAYS AFTER MAY 31 1980 Figure 4-6B Same as Figure 4-1B except f o r S i t e 5. - 107 -Figure 4-7A Same as Figure 4-1A except for Site 6. - 108 -0 20 40 60 80 100 120 140 160 180 200 220 DAYS AFTER MAY 31 1980 Figure 4-7B Same as Figure 4-lB except for Site 6. - 109 -JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT i i J i i I i i I I i I i i I i i I i i i I i i i i i i i i | (/)<£ -Z < cr 2 -0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 F i g u r e 4 - 8 A S i t e 0 : T i m e c o u r s e o f r a t e o f p r e c i p i t a t i o n a n d e v a p o t r a n s p i r a t i o n f o r d a t a p e r i o d s f o r y e a r 1981 O a n u a r y t o O c t o b e r i n c l u s i v e . T h e d a t a p o i n t s a r e m i d - p o i n t s o f e a c h d a t a p e r i o d o n t h e h o r i z o n t a l s c a l e , a n d t h e a v e r a g e f l u x d e n s i t y o n t h e v e r t i c a l s c a l e . - 110 -E UJ O o < -z < t DO or Q IO O Z <<* O c M z < X o o I • I O l o 1 < or 7 •— C O i o I JAN FEB MAR . APR . MAY JUNE t JULY | AUG |SEPT [ OCT [ i i I i i \ i i I i i I i i i 1 i i i i i i i i i i i i I i i i i i \DRAINAGE STORAGE CHANGEN o oo IO o < or o < I ! I I I I I I I I I I I I I I I I I I I I I I 20 40 60 80 tOO 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 Figure 4-8B Site 0: Time course of rates of soil water storage change and drainage and soil water storage for data periods for year 1981 3anuary to October inclusive. The data points are the mid-points of each data period on the horizontal scale, and average storage change and drainage on the left hand vertical scale. The data points of water storage (right hand vertical scale) correspond to the days when data was taken on the horizontal scale. - 111 -F i g u r e 4 - 9 A Same a s F i g u r e 4 - 8 A e x c e p t f o r S i t e 1 - 112 -E S E O o z <t oo or o Q Z O N Z < X o O I • I CNl o 1 < or •>» O 1 t— I JAN FEB MAR APR MAY JUNE JULY AUG S E P T O C T i i i1 i i \ i i I i i 1 i i i1 i i i1 i i i1 i i i i i i ' ' i '\DRAINAGE STORAGE CHANGE' i i i i ' i i i i i i I I I I I I I I I o oo u> o < or 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 Figure 4-9B Same as Figure 4-8B except f o r S i t e 1 - 113 -20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 Figure 4-10A Same as Figure 4-8A except for Site 2 - 114 -JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT E O o z < j oo or Q to O Z O o , Z < X o O I • I CM o 1 < or f O 1 t— L O i o I i I I l l ' I ' I ' ' I ' » o < or I I I i i i i J 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 F i g u r e 4 - 1 0 B Same a s F i g u r e 4 - 8 B e x c e p t f o r S i t e 2 - 115 -F i g u r e 4 - 1 1 A Same a s F i g u r e 4 - 8 A e x c e p t f o r S i t e 3 - 116 -t O t a I -I ' I i i i i i i i i i i l l I I I I I I I I I I I I I I I I I I 0 20 40 60 BO 100 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 F i g u r e 4 - 1 I B Same a s F i g u r e 4 - 8 B e x c e p t f o r S i t e 3 - 117 -JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT CN CN (/)«£ z < DC 2 o > < UJ or CL. " I i i h i I i i I i i I i i r i PRECIP e-'EVAPOTRANS i i i i I I I I I I I I 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 F i g u r e 4 - 1 2 A Same a s F i g u r e 4 - 8 A e x c e p t f o r S i t e 4 / - 118 -Figure 4-12B Same as Figure 4-8B except f o r S i t e 4 - 119 -F i g u r e 4 - 1 3 A Same a s F i g u r e 4 - 8 A e x c e p t f o r S i t e 5 - 120 -0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 D A Y S A F T E R D E C 31 1 9 8 0 F i g u r e 4 - 1 3 B Same a s F i g u r e 4-8B e x c e p t f o r S i t e 5 - 121 -CM CM E» N. in <£ z < or 2 t— O 0 - CM > W o < oJ UJ or h PRECIP JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT i i / i i \ i i I i i I i i i' i i / i i i' i I i i i i i i i 1 ' 1 | V | Y _ ^ rl 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 Figure 4-14A Same as Figure 4-8A except for Site 6 - 122 -JAN FEB MAR APR . MAY .JUNE, JULY t AUG [SEPT | OCT | o co E E u> o < cn o £ 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 DAYS AFTER DEC 31 1980 F i g u r e 4 - 1 4 B Same a s F i g u r e 4 - 8 B e x c e p t f o r S i t e 6 - 123 -shows that these values increase dramatically from site 0 to site 6. The values correspond closely with observed water storage drawdown during the growing season shown in Figures 4-1B to 4-14B. Net cumulative withdrawal of water stored in the soil is a function of the root zone depth and the soil water retention characteristics. Since for the study area variations in soil water retention characteristics between sites are comparatively small (see Figures, Appendix 2), the major factor in determining the variation in soil water withdrawal between sites is the root zone depth (see Table 3-1b). 4.1.2 Recharge of root zone following summer dry periods It is instructive to discuss the progress of recharge of soil water in the root zone down the transect towards the end of the growing season as precipitation increases. Recharge from subsurface flow (through capillary rise) can be calculated as a residual in the water balance equation (21). Calculated values of D for data periods from the end of August through October 1981 are tabulated in Table 4-2. The precipitation was init ial ly light, and increased gradually resulting in the gradual progress of soil water recharge. Surface run-off was not experienced because of the high soil permeability. As recharge took place at higher elevations by infiltration throuqh shallow soils, it would appear that a steady state was soon reached when saturated subsurface down flow along the surface of the Impermeable bedrock or compacted t i l l became established. Subsurface flow then propagated downslope resulting in capillary rise which added to infiltration in recharging the root zone (Dunne et a l . , 1979.) Table k-Z Capillary rise (-) or drainage (+) determined from water balance calculations for data periods during the first rainfall following after the end of the growing season. Negative entries indicate soil recharge taking place from capillary rise resulting from subsurface downflow, and positive entries indicate completion of soil water recharge and drainage from the profile going to subsurface flow. Note the time lag between positive drainage being established at Sites 1 to 3 and the completion of soil water recharge at Site 6. First observation of water tables follows completion of recharge (See Figures 4-8B to . Data period raid-point date Aug 21 Aug 27 Sept 6 Sept 20 Oct 3 Oct 19 Length of period (days) 6 7 10 14 13 16 P rec ip i t a t i on (mm/day) 1.1 6.2 0.2 4.6 12.6 5.1 Water Table depth as f i r s t observed on Oct 9 (m) D o Ca p l l l a r y r i s e (-) or Drainage ' •) (ram/day) S i te 0 +0.9 -2.9 -1.2 •1.3 +9.3 •3.5 -S i te 1 +0.* -0.9 -0.4 •2.9 +6.6 +3.8 -S i te 2 •0.6 -4.4 +0.2 +1.2 +7.5 •3.4 -S i te 3 -0.3 -1.1 -1.6 +0.7 +6.3 •3.2 -S i te 4 0 +0.5 -0.8 +0.5 +6.9 •6.9 0.98 S i te 5 +0.5 -1.9 -0.4 •1.0 -1.6 +1.7 0.91 S i te 6 +0.3 -0.2 -1.1 -3.3 -1.1 •3.0 0.37 - 125 -At the upper part of the transect, sites 0 to 2 show that recharge was completed within two weeks of the first significant rainfall in the August 27 data period, and thereafter D remained positive (Table 4-2 and Figures 4-8A and B, 4-9A and B, 4-10A and B). At the lower elevation of site 6 there was a low recharge rate init ial ly which increased, reaching a maximum rate in the September 20 data period. Recharge continued into the October 3 data period until the water table was first observed on October 10 (Figure 4-14A and B). Figure 4-14B and Table 4-2 show that D was strongly negative from the time of slow recharge rate (September 6 data period) until the October 3 data period. The progress of soil water recharge may be followed in the time course of soil water potentials (total) measured down the profile at each site by tensiometers. Thus at site 1 negative potential gradients near the top and positive near the bottom show that recharge is taking place both by infiltration and by capillary rise on September 2 and September 12, 1981 (Appendix 8 Figure 2). At site 6, Appendix 8 Figure 7 shows that on September 10 all tensiometers were showing water potentials less than -75 kPa, while by September 25 they were nearly uniform down the profile and averaged -9.6 kPa. By October 9, when the water table was first seen at 37 cm depth, all of the tensiometers were showing water potentials close to zero. Table 4-2 shows a significant rate of recharge in the September 20 data period, at which time therefore the tensiometer at 67 cm depth would have been expected to show zero potential, and a positive potential gradient near the bottom of the profile. The situation may be explained by irregularities in the - 126 -surface of the impermeable boundary resulting in channel flow down the slope and a non uniform water table build-up. The implication of these results is that while capillary rise during most of the growing season was small at site 6, there was a 5-6 week period following the beginning of the fal l rains during which capillary rise was significant at this site. The conclusion that capillary rise was small during the growing season was supported from hydraulic conductivity determinations (Section 3.9.4.1). Contrary to the generally held view, seepage (saturated flow of water above the impermeable layer (C horizon)) was absent from all sites with the exception of Site 7 during Duly and August. This was shown by (i) the disappearance of water table by mid-Dune and (ii) increasingly negative matric potentials which developed at the bottom of the soil profile. It is noteworthy that in 1980 the progress of soil recharge cannot be as readily distinguished at the end of the growing season as in 1981, because the first significant rainfall in 1980 did not occur until October 31, and then 162 mm was recorded in the next 5 days. This was probably sufficient for complete recharge of the whole transect. 4.2 Growing Season Soli Water Deficits Figures 4-15 to 4-28 show plots of maximum and actual average weekly transpiration rates during the growing seasons of 1980 and 1981. The cumulative soil water deficit for the growing season is the summation of the shortfall of E t below E t m a x and is equivalent to the horizontally shaded area in the plots. These cumulative deficits - 127 -MAY JUNE JULY AUG SEPT 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1980 F i g u r e 4 - 1 5 T r a n s p i r a t i o n a n d m a x i m u m t r a n s p i r a t i o n r a t e s f o r s i t e 0 d u r i n g t h e 1 9 8 0 g r o w i n g s e a s o n . M a x i m u m t r a n s p i r a t i o n i s c a l c u l a t e d f r o m t h e m a x i m u m e v a p o t r a n s p i r a t i o n r a t e b y s u b t r a c t i n g t h e e v a p o r a t i o n o f i n t e r c e p t e d r a i n f a l l ( s e c t i o n 3 . 9 . 4 . 2 ) . E v a p o r a t i o n f r o m t h e s o i l i s c o n s i d e r e d n e g l i g i b l e . A c t u a l t r a n s p i r a t i o n i s l e s s t h a n m a x i m u m t r a n s p i r a t i o n w h e n t r a n s p i r a t i o n b e c o m e s l i m i t e d b y s o i l w a t e r s t o r a g e . T h e d a t a p o i n t s c o r r e s p o n d t o t h e m i d - p o i n t s o f t h e d a t a p e r i o d s o n t h e h o r i z o n t a l t i m e s c a l e , a n d a v e r a g e f l u x d e n s i t y o n t h e v e r t i c a l s c a l e . T h e a v e r a g e d e f i c i t d u r i n g a d a t a p e r i o d i s t h e s h o r t f a l l o f t r a n s p i r a t i o n b e l o w max imum t r a n s p i r a t i o n , a n d t h e g r o w i n g s e a s o n d e f i c i t i s t h e s u m m a t i o n o f d a t a p e r i o d d e f i c i t s a n d i s s h o w n b y t h e s h a d e d a r e a . - 128 -O MAY JUNE JULY I AUG SEPT 1 ? • \ E E O • NS. to • < CN r— • q AX CN Q LO « < • o < LO \— d q d 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1981 F i g u r e 4 - 1 6 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 0 1981 g r o w i n g s e a s o n - 129 -MAY JUNE JULY AUG SEPT 3 l I I l' I I l' I l l ' l I l ' l I l' q I i i i i i i i i I I I I I I I—I o 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1980 F i g u r e 4 - 1 7 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 1 1 9 8 0 g r o w i n g s e a s o n -130 -MAY JUNE JULY AUG SEPT 3 l I I l' M l' I I l' I I l ' l I l ' | TJ If) q I i i i i i i i i I I I I I I I I o 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1981 F i g u r e 4 - 1 8 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 1 1 9 8 1 g r o w i n g s e a s o n - 131 -q in \ q 00 tn CN < Cr: 1— • q X < in o • "7 < q 00 < c r 1 • o o o MAY JUNE JULY I I I' I I I1 AUG SEPT J I I I I I i M A X . T R A N S . A i I l I I I I I I I I I I I 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1980 F i g u r e 4 - 1 9 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 2 1 9 8 0 g r o w i n g s e a s o n - 132 -MAY JUNE JULY AUG SEPT 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1981 F i g u r e 4 - 2 0 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 2 1981 g r o w i n g s e a s o n - 133 -MAY JUNE JULY AUG SEPT 9 I » i ' i i i i i i i i I I I I I I o 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1980 F i g u r e 4-21 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 3 1 9 8 0 g r o w i n g s e a s o n - 134 -MAY JUNE JULY AUG SEPT 9 I i i i i i i i i i i I I l I I I o 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1981 F i g u r e 4 - 2 2 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 3 1981 g r o w i n g s e a s o n - 135 -MAY JUNE JULY AUG SEPT 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1980 4 - 2 3 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 4 1 9 8 0 g r o w i n g - 136 -MAY JUNE JULY AUG SEPT 9 I I I I I I I I t i » i i i i i l o 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1981 F i g u r e 4 - 2 4 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 4 1981 g r o w i n g s e a s o n - 137 -MAY JUNE JULY AUG SEPT o I i j I l I « i I f I I I I I i i i I I i I ! 9 I i i I i I I i l l l I > I I I I o 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1980 F i g u r e 4 - 2 5 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 5 1 9 8 0 g r o w i n g s e a s o n - 138 -MAY JUNE JULY AUG SEPT 9 I i i i i i i i I I I I I I I I I o 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1981 F i g u r e 4 - 2 6 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 5 1981 g r o w i n g s e a s o n - 139 -MAY JUNE JULY AUG SEPT ~ 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1980 F i g u r e 4 - 2 7 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 6 1 9 8 0 g r o w i n g s e a s o n - HO -MAY JUNE JULY AUG SEPT 3 I I I l ' I I l ' I 1 l ' I I l ' I I l ' 9 1 i i i i I I I I I I I o 0 20 40 60 80 100 120 140 160 GROWING SEASON STARTING MAY 1 1981 F i g u r e 4 - 2 8 Same a s F i g u r e 4 - 1 5 e x c e p t f o r S i t e 6 1981 g r o w i n g s e a s o n - 141 -are shown for the 1980 and 1981 growing seasons in Table 4-3. The values of the growing season water deficits range from 55 mm at site 0 to 0 mm at site 6 in 1980, and from 79 mm at site 0 to 4 mm at site 6 in 1981. The values of the deficits at each site are in the same order as the relative ranking of the sites by the British Columbia Ministry of Forests according to the ecological moisture regime classification, based on an evaluation of topographical and soil properties and indicator plants. 4.3 Relationship of Forest Productivity to Growing Season Soil Water  Deficit Section 3.11 describes the three methods used in this study for quantifying tree growth: i. Site index at 100 years i i . Total stemwood volume per hectare i i i . Annual incremental stemwood volume per hectare. The limitation in using site index as a measure of forest productivity is that it does not take into account factors associated with volume growth. As a result site index provides only a rough estimate of the growing capacity of a site. Total stemwood volume per hectare quantifies tree growth as an average over the l i fe of the stand. However physiological changes to the trees with growth, and also disturbances due to management actions or disease may limit the significance that can be attached to climate growth relationships based - 142 -Table 4-3 Cumulative soil water deficits (E^m a x - ^) at each site for the growing seasons (May to Sept. inclusive) of 1980 and 1981 for data periods when actual transpiration (E^ .) is less than maximum transpiration (E^max) (See Figures 4-15 to 4-28). The cumulative deficit is represented by the area between the maximum transpiration and actual transpiration lines in the above referenced figures. Year SITE 0 1 2 3 4 5 6 1980 54.5 33.2 18.0 16.1 8.7 0 0 1981 78.5 53.6 36.1 25.6 25.3 4.1 3.7 i - 143 -on long term averages. This difficulty is overcome by quantifying growth as annual incremental stemwood volume per hectare which can then be related to the current yearly climatic variations. The following sections describe the results found by each of these three methods. 4.3.1 Relationship of Site Index to 1980 and 1981 Growing Season Soil  Water Deficit Table 4.4 shows the site indices at 100 years for the stands at sites 0 to 6 based on dominant Douglas f i r trees at each site. The site indices are well correlated with the ranking of the sites based on the ecological moisture regime classification of the British Columbia Ministry of Forests. Figure 4-29 shows the site indices plotted against growing season soil water deficit for years 1980 and 1981. In both years site index correlates well with growing season soil water deficit (r 2 = 0.87 for 1980 and 1981). It should be noted that the reason that there is a good correlation between site index and deficit in 1980/81 is that differences in deficits between sites in 1980 and 1981 are well correlated with the relative deficit differences between sites over the l i fe of the stand. 4.3.2 Relationships of Total Stemwood Volume to 1980-81 Growing Season  Water Deficits Plots of tree stemwood volume versus basal area at breast height are shown in Appendix 20 (see Section 3.11.2). The relationship at each site between tree volume and basal area was found to be linear in form: - 144 -Table 4-4 The site indices at 100 years for sites 0 to 6, based on the dominant Douglas fir trees at each site. 100 years indices were determined by using the height versus age relationships of the British Columbia Ministry of Forests (Hegyi et a l . , 1979) Site Soil Water Regime Class Site Index at 100 Years 0 Very Xeric 17 1 Xeric 31 2 Sub Xeric 29 3 Sub Mesic 36 4 Mesic 47 5 Sub Hygric 48 6 Hygric 53 - 145 -Figure 4-29 Values of the 100 year site index plotted against values of the growing season soil water deficit for years 1980 (A) and 1980 (©). Numbers adjacent to the points are site numbers. - 146 -Tree stemwood volume = C x Basal Area where C = Tree form constant x Site Avg. tree height (Avery, 1975). The values of C determined for each site are shown in Table 4-5. It will be noted that at any site: , ^ Avq. tree stemwood volume Tree form constant = —— Avg. tree basal area x Avg. tree height Values found for the tree form constant ranged from 0.54 at site 0 to 0.45 at site 6. Decrease in the tree form constant indicates greater taper on trees at the lower sites. Using the values found for C the total stemwood volumes per hectare for trees with DBH > 7 cm at each site was calculated from DBH data for all the trees in the 20m x 20m plots. The results are shown in Table 4-5. Figure 4-30 shows the plot of total stemwood volume per hectare against growing season soil water deficit for the years 1980 and 1981. Total stemwood volume correlated well with growing season soil water deficit in both 1980 and 1981, except at site 4 which showed an anomolously low volume per hectare, approximately equal to the volume at site 2. This may be explained by the fact that site 4 was thinned in 1964 resulting in the removal of a significant volume of wood. Excluding site 4 the values of the correlation coefficient were 0.78 and 0.82 for 1980 and 1981 respectively. 4.3.3 Relationship of Annual Stemwood Increment to Growing  Season Water Deficit The following sections describe (i) the relationship between annual stemwood increment in 1980 and 1981 and the corresponding soil - 147 -Table 4-5 Values of average basal area per tree, average stemwood volume per tree and total stemwood volume per hectare for trees with DBH > 7cm for each site. Also shown are the slopes of the tree volume basal area regression lines (C) obtained by optical dendrometer measurements Site Average Basal Area per Tree (m ) Volume/ Basal Area (C) m2/m2 Trees per ha Average Volume per Tree (m3) Volume per ha (m3/ha) 0 0.034 12.1 950 0.41 391 1 0.031 13.9 1525 0.43 655 2 0.032 14.4 1600 0.46 736 3 0.039 14.9 1625 0.581 944 4 0.082 16.4 550 1.34 740 5 0.106 16.5 625 1.75 1093 6 0.130 19.7 625 2.56 1600 - 148 -I I I I I I I I I I—I I I I I I I I I O -o ID , r-O — 6 6 O SL I I I I I I I I I • I I I I I I I I 1 I I O 0 20 40 60 80 100 GROWING S E A S O N WATER DEFICIT ( m m ) F i g u r e 4 - 3 0 T o t a l s t e m w o o d v o l u m e p e r h e c t a r e p l o t t e d a g a i n s t g r o w i n g s e a s o n s o i l w a t e r d e f i c i t f o r t h e y e a r s 1 9 8 0 ( A ) a n d 1 9 8 1 ( © ) . N u m b e r s a d j a c e n t t o t h e p o i n t s a r e s i t e n u m b e r s . - 149 -water deficits at sites 1 and 2; and (ii) the relationship between measured annual stemwood increment at these same three sites for the last 18 years, and the corresponding soil water deficits for these sites estimated using the simple monthly water balance procedure described in section 3.9.5. 4.3.3.1 Annual Incremental Stemwood and 1980-81 Soil Water Deficits Table 4-6 shows the annual incremental stemwood volumes at sites 1, 4 and 6 determined from measurements of 1980 and 1981 tree ring widths. Comparison of growth rates between years 1980 and 1981 shows no significant differences on all three sites. Comparing sites, there is a significant difference between sites 1 and 6. Sites 1 and 4 show no difference in 1980, but in 1981 which was the drier year the difference appears to increase. Values of growing season transpiration were computed for the same two years to determine whether this would be a better predictor of incremental stemwood. Table 4-6 shows that transpiration at Site 6 was certainly larger than at Site 1, which corresponds to the growth difference between these sites. However the rather high value of transpiration at Site 4 would suggest higher growth rates than were observed at this site. As noted earlier Site 4 might be considered unrepresentative because of unusually heavy thinning in 1964. 4.3.3.2 Annual Incremental Stemwood and the Estimated Deficits  Over the Period 1964-81 For Sites 1, 4 and 6 the relationship of growth to growing season soil water deficit for the 18 year period 1964-81 Is shown in - 150 -Table 4-6 Comparisons of incremental stemwood volume (from tree ring measurements) with soil water deficits and growing season transpiration. The 95% confidence limits for incremental stemwood measurements are also shown. Incremental Soil Growing Stemwood Water Season Site Stems Vol Deficit Transpiration No. per ha Year (m3/ha) (mm) (mm) 1980 13.5 33 254 ±3.0 1 1525 1981 12.6 54 232 ±2.8 1980 13.2 9 316 ±2.4 4 550 1981 14.2 25 303 ±2.6 1980 18.0 0 316 ±3.6 6 625 1981 19.8 4 316 ±3.9 - 151 -Table 4-7 and Figure 4.31. Table 4-7 shows that at Site 1 the growing season soil water deficits ranged from 15 mm to 250 mm, at Site 4 from 0 mm (3 years) to 185 mm, and at Site 6 from 0 mm (11 years) to 131 mm. When growing season soil water deficit is zero, and therefore soil water availability is not a limiting factor for growth, it is probable that other climatic factors, particularly ambient temperature, may then exercise increasing control over growth. Linear regression lines were therefore calculated at Sites 4 and 6 both including and excluding years of zero growing season soil water deficits (Table 4-8). The correlation coefficient for Site 1 (at which there were no zero deficit years) was 0.32 and for sites 4 and 6 they were 0.32 and 0.50 excluding zero deficit years, and 0.27 and 0.09 including zero deficit years respectively (see Table 4-8). The low values of al l of these correlation coefficients was certainly partly caused by errors introduced into soil water deficit calculations (more so at low deficits) by using monthly water balances, whereas daily or at the most weekly water balances would have been preferable. The reduction in the correlation coefficient caused by including years of zero deficit in the regressions indicates, especially at Site 6, that other climatic factors must be causing the large variability in growth in years of zero deficit. It is noteworthy that other workers studying the relationships between tree rings and climate (Zahner and Donnelly, 1966; Fritts 1979) have used multivariate analysis methods in which multiple climatic variables of current and previous years were used to achieve high correlation coefficients. - 152 -Table 4-7 Sites 1, 4 and 6 growing season soil water deficits calculated for the years 1964 through 1981 from monthly water balances and annual incremental stemwood volumes for each year determined from tree ring measurements Site 1 Site 4 Site 6 Year Deficit (mm) Incre-mental Stemwood (m3/ha) Deficit (mm) Incre-mental Stemwood (m3/ha) Deficit (mm) Incre-mental Stemwood (m3/ha) 1964 15 13.5 0 12.8 0 20.2 1965 158 9.7 93 11.4 41 15.6 1966 71 11.0 8 11.1 0 13.0 1967 249 8.4 185 10.3 132 13.7 1968 67 9.4 0 10.8 0 11.7 1969 182 9.8 117 10.8 65 13.2 1970 182 9.7 117 12.8 49 15.9 1971 86 10.2 22 12.7 0 15.2 1972 79 9.2 15 12.0 0 15.0 1973 124 13.7 59 13.4 8 15.6 1974 92 10.7 28 13.0 0 16.6 1975 125 8.4 60 10.9 0 14.0 1976 60 11.3 0 14.0 0 17.9 1977 140 10.6 75 12.1 24 17.0 1978 148 9.5 83 12.0 0 15.9 1979 126 9.7 61 12.3 10 15.7 1980 68 13.5 5 13.2 0 17.2 1981 79 12.6 15 14.2 0 19.4 Average 114 10.6 52 12.2 18 15.7 - 153 -0 20 40 60 80 100 120 140 160 180 200 220 240 A N N U A L GROWING S E A S O N WATER DEFICIT ( m m ) Figure 4-31 Annual incremental stemwood versus growing season water deficit for sites 1, 4 and 6 for the years 1964 to 1981. Also shown are the regression lines with (W) and without (W0) the inclusion of years with zero growing season water deficit. There were no zero water deficit years for site 1. For years of zero deficit (site 4: 3 years, site 6: 11 years) the averaged value of the annual stemwood increments is plotted on the ordinate. Equations of lines and r values are given in Table 4-8. - 154 -Table 4-8 Linear regression equations relating annual incremental stemwood volume (y) to growing season soil water defict (x) for years 1964-81 at sites 1, 4 and 6. Sites 4 and 6 regression equations were calculated both including and excluding years of zero deficit Site Zero Deficit Years Linear Regression Equation Correlation Coefficient 1 None y = 12.6 - 0.017 x 0.32 4 Included y = 12.7 - 0.011 x 0.27 Excluded y = 12.9 - 0.012 x 0.32 6 Included y = 16.1 - 0.019 x 0.09 Excluded y = 16.3 - 0.022 x 0.50 - 155 -The slopes of the linear regression plots for Sites 1, 4 and 6 were -0.017, -0.011 and -0.019 m2 ha" 1 y" 1 mm"1 respectively (Table 4-8). The difference between the slopes calculated including and excluding zero deficit years at sites 4 and 6 were relatively small. The similarity of the slopes of the three linear regression lines is noteworthy, indicating that the relationship of growth to soil water deficit did not vary significantly between sites over the transect. Figure 4.32 shows the values of average annual incremental volume growth for the eighteen year period for sites 1, 4 and 6 plotted against the average growing season water deficit for the same period. The average incremental growth was calculated in two ways: (i) calculating the arithmetic average annual growth Increment for the past 18 years and (ii) determining the slope of the linear regression line of annual ring width against time for the past 25 year period and calculating the expected volume Increment growth for the mid year of the 1964-1981 period (using the method described in Section 3.11.3). As expected the slopes of the two plots are not significantly different. Comparison of the slopes of the regression relationships shown in Figures 4-31 and 4-32 indicates that, based on the limited data available, growth appears to show about three times greater sensitivity to growing season water deficit differences between sites as compared with year to year deficit differences at a given site. This may be an example of the adaptation of vegetation to a specific environment with respect to yearly climatic changes. Waring and Franklin (1979a) note that the large volume of sapwood which is a structural feature of - 156 -CD i — -O 3 U Q *~ O UJ (/) *~ _J < CN o z 0 5 » i i i i i i i i i i i i i i i i i i i i i i i * — A - A r i t h m e t i c a v e r a g e of i n c r e m e n t s = 15.9 - .051x r 2 = .94 e---o L i n e a r r e g r e s s i o n of r i ng widths = 16.3 - . 067x r 2 = . 9 9 00 I I I I I I I I I L_J b— I—L 0 20 40 60 80 100 120 140 160 180 200 220 240 A V G . GROWING S E A S O N WATER DEFICIT ( m m ) Figure 4-32 Average annual incremental stemwood versus average growing season water d e f i c i t f o r s i t e s 1, 4 and 6 f o r the years 1964 to 1981. Average incremental stemwood was c a l c u l a t e d i n two ways: ( i ) from the a r i t h m e t i c average annual growth increment f o r the past 18 years ( i i ) from the slope of the l i n e a r r e g r e s s i o n l i n e of annual r i n g width against time f o r past 25 years and c a l c u l a t i n g the expected volume increase f o r the mid year of the 1964-81 p e r i o d . - 157 -conifers dampens the effect of dry summer months and provides a significant buffer against extremes of water potential in foliage and stem. Waring et_. j i l . (1979b) conclude that the sapwood in conifers serves as a major reservoir from which up to 50% of the water transpired may be withdrawn over several days. Gholz (1982) found a good correlation between site leaf area index and growing season water deficit at eight forest stands in the Pacific Northwest located along a transect from the Pacific coast to the east slopes of the Cascade Mountains. He notes, however, that at a given site leaf area index is nearly constant from year to year, while water deficits may vary by over 100%. He suggested that the relationship between the transpiring leaf surface and available water on the site reflects an adaptation to long term hydrologic conditions, rather than to the relatively large climatic fluctuations from year to year. Regarding Figure 4.32 it should be noted that in relating the average deficit over 18 years to the average growth for that period, the assumption is made that the sites are similar with respect to soil fert i l i ty , soil temperature and soil aeration. The soil fert i l i ty assumption is probably not as good as the others since decreasing root zone depth from Site 6 to Site 1 may result in reduced available nutrients to the trees, and this may partly explain the fact that the slopes in Figure 4.32 are greater than in Figure 4.31. 4.4 Conclusions The usefulness of the water balance analysis is that it provides a simple quantitative procedure by which different soil water regimes - 158 -and microclimates can be quantitatively characterized. The growing season water deficits calculated from the water balance then furnish a basis for studying forest productivity differences between sites from the standpoint of water availability. It was shown that water balance components can be determined using minimal soil and meteorological data. Furthermore by selecting periods of zero drainage and negligible capillary rise the calibration of the evapotranspiration model can be accomplished without direct measurements of evapotranspiration. From a comparison of saturated hydraulic conductivity measurements with maximum rainfall rates it was determined that run off was zero at all of the sites. Seasonal changes in the water balance were similar, with the exception of Site 7, at all of the sites. As precipitation declined with the onset of the growing season, drainage was gradually reduced to zero while water was withdrawn from soil water storage to meet evapotranspiration demands. The absence of seepage (saturated flow of water above the impermeable layer (C horizon)) during Duly and August at al l sites, with the exception of Site 7, was shown by the disappearance of water table in mid-Oune and by increasingly negative matric potentials which developed at the bottom of the soil profile. It was concluded from water balance analyses, as well as from hydraulic conductivities inferred from measurements of soil water contents and also from soil water matric potentials, that after the water table had dropped below the impermeable layer there was very l i t t le soil recharge - 159 -by capillary rise at Sites 0-6 during the rainless period in Duly and August. At the end of the growing season soil water recharge took place both by rainfall infiltration and by capillary rise from seepage water. The period of capillary rise was of short duration at the top of the transect and of longer duration at the foot of the transect. When soil recharge was completed, drainage again became positive and remained so during the winter months. Since growth is directly related to transpiration, water stress differences quantified through the growing season water deficit can be used to classify sites. It was thus found that deficits at each site were in the same order as the relative ranking of the sites by the British Columbia Ministry of Forests ecosystem classification. Taking the 1980/81 growing season soil water deficits as being indicative of the long term water deficits at each of the sites it was found that site index correlated well with growing season soil water deficit. Taking total stemwood volume as the criterion a good correlation was also found with soil water deficits across the transect. Quantitative determination of annual incremental stemwood growth by accurate tree ring measurements enabled a comparison of growth with concurrent climatic variations. Expansion of the scope of the study to cover a wide range of growing season deficits over the past 18 years enabled the relationship of annual growth to annual deficit variations to be studied. The results indicated that the correlation between annual incremental stemwood and growing season water deficit at a given site was approximately the same for the three sites studied. By - 160 -averaging annual incremental growth and growing season deficits over the eighteen year period an evaluation of the relationship of growth to deficit between sites was made. It was concluded that the sensitivity of growth to deficit when measured between sites was significantly higher than the sensitivity when measured between years at a single site. However, it was recognized that soil fert i l i ty differences between sites may account for a part of the growth variation seen along the transect. - 161 -REFERENCES Aase, O.K. and S.B. Idso. 1978. A comparison of two formula types for calculating long wave radiation from the atmosphere. Water Resour. Res., 14:623-625. Avery, T.E. 1975. Natural Resource Measurements. 5:90-102, McGraw-Hill. Bassett, 3.R. 1964. Tree growth and affected by soil moisture availability. Soil Sci. Soc. Am. Proc, 28:436-438. Bell, 3.P. 1976. Neutron probe practice. Report No. 19. Institute of Hydrology, Wallingford, U.K. Bierhuizen, 3.F. and R.O. Slatyer. 1965. Effect of atmospheric concentration of water vapour and C02 in determining transpiration-photosynthesis relationships with cotton leaves. Agr. Met., 2:259-270. Blake, G.R. 1965. Particle Density. In Methods of Soil Analysis, (ed. CA. Black), pp. 371-373, Agronomy No. 9, Am. Soc. of Agr., Madison, Wis. Burgy, R.H. and CR. Pomeroy. 1958. Interception losses in grassy vegetation. Amer. Geophys. Union Trans., 39:1095-1100. Cole, 3.A. and M.3. Green. 1966. Measuring soil moisture in the Brening Catchment: problems of using neutron scatter equipment in soil with peaty layers. Symposium on Water in the Unsaturated Zone, Wageningen, Netherlands. Douglas, 3.E. 1962. Variance of nuclear moisture measurements. USDA Forest Service, S.E. Forest Exp. Stat. Paper 143, North Carolina, U.S.A. Dunne, T, and L.B. Leopold. 1979. Water in Environmental Planning. Freeman. Fritts, H.C 1976. Tree Rings and Climate. Academic Press. Gash, 3.H.C. 1978. Comments on the paper by A.S. Thorn and H.R. Oliver, 'On Penman's equation for estimating regional evaporation'. Quart. 3.R. Met. Soc, 104:532-533. Gholz, H.L., F.K. Fitz, and R.H. Waring. 1976. Leaf area differences associated with old-growth forest communities in the Western Oregon Cascades. Can. 3. For. Res., 6:49-57. Gholz, H.L. 1982. Environmental limits on above ground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63 (2):469-481. - 162 -Hegyi, F., 3. 3elinek and D.B. Carpenter. 1979. Site index equations and curves for the major tree species in British Columbia. Forest Inventory Report No. 1. Inventory Branch, Ministry of Forests, Province of British Columbia. Idso, S.B. 1980. On the apparent incompatability of different atmospheric thermal radiation data sets. Quart. 3.R. Meteorol. Soc, 106:375-376. Oarvis, P.G., G.B. Games and 3.3. Landsberg. 1976. Coniferous forest. In Vegetation and the Atmosphere, Vol. 2, Case Studies, (ed. 3.L. Monteith), pp. 1717-240. Acad. Press, London, U.K. 3arvis, P.G. and 3.B. Stewart. 1979. Evaporation of water from plantation forest. In The Ecology of Even-Aged Forest Plantations, (eds. E.D. Ford, D.C. Malcolm, and 3. Atterson), pp. 327-350. Inst. Terrestial Ecology, NERC, Cambridge, U.K. Garvis, P.G. 1981. Stomatal conductance, gaseous exchange and transpiration. In Plants and their Atmospheric Environment (eds. 3. Grace, E.D. Ford, and P.G. 3arvis) pp. 175-204. Blackwell, Oxford, U.K. 3ury, W.A. and C.B. Tanner. 1975. Advection modification of the Priestley and Taylor evapotranspiration formula. Agron. 3., 67:840-842. Klinka, K. 1976. Ecosystem units, their classification, interpretation and mapping in the University of B.C. Research Forest. University of B.C., Ph.D. Thesis. Klinka, K., F.C. Nuszdorfer and L. Skoda. 1979. Biogeoclimatic Units of Central and Southern Vancouver Island. Krajina, V.3. 1965. Biogeoclimatic zones and classification in British Columbia. Ecology of Western N. America, 1:1-17. Krajina, V.3. 1969. Ecology of forest trees in British Columbia. Ecology of Western N. America, 2:1-146. Krajina, V.3. 1972. Ecosystem perspectives in forestry, University of B.C., Vancouver. Paper presented as H.R. MacMillan lecture in Forestry. Linsley, R.K., M.A. Kohler and 3.H.L. Paulhus. 1975. Hydrology for Engineers, page 70, McGraw-Hill. McGowan, M. and 3.B. Williams. 1980. The water balance of an agricultural catchment. I. Estimation of evaporation from soil water records. Soil Science, 31(2):217-230. - 163 -McMinn, R.G. 1961. Water relations and forest distribution in the Doublas f ir region of Vancouver Island. Canada Dept. of Agriculture, Publication No. 1091. McNaughton, K.G. and T.A. Black. 1973. A study of evapotranspiration from a Douglas f ir forest using the energy balance approach. Water Resour. Res., 9:1579-1590. Monteith, O.L. 1965. Evaporation and environment. Symp. Soc. Expl. Biol. , 19:205-234. Olgaard, P.L. 1965. On the theory of the neutronic method for measuring the water content of soi l . Danish Atomic Energy Commission Res. Est. Riso. Rept., 97. Penman, H.L. 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. A., 193:120-145. Pierpoint, G. 1965. Measuring surface soil moisture with the neutron depth probe and surface shield, Soil Science, 101:189-192. Priestley, C.H.B. and R.3. Taylor. 1972. On the assessment of surface heat flux, and evaporation using large scale parameters. Mon. Weather Rev., 10:81-92. Rutter, A.3. 1975. The hydrological cycle in vegetation. In vegetation and the atmosphere, Vol. 1, Principles (ed 3.L. Monteith), pp. 111-154, Acad. Press, New York. Shuttleworth, W.3. and I.R. Calder. 1979. Has the Priestley-Taylor equation any relevance to forest evaporation? 3. App. Meteorol., 18:639-646. Spittlehouse, D.L., and T.A. Black. 1980. Evaluation of the Bowen ratio/energy balance method of determining forest evapotranspiration, Atmosphere-Ocean, 18:98-116. Spittlehouse, D.L., and T.A. Black. 1981a. A growing season water balance model applied to two Douglas f ir stands. Water Resour. Res., 17:1651-1656. Spittlehouse, D.L. and T.A. Black 1981b. Measuring and modelling forest evapotranspiration. Can. 3our. Chem. Eng. 59:173-180. Spittlehouse, D.L. 1981. Measuring and modelling evapotranspiration from Douglas f ir stands, Ph.D. thesis, Univ. of British Columbia, Vancouver, B.C. Spittlehouse, D.L. 1982. Determination of the frequency and intensity of growing season water deficits using a forest water balance model. Canadian Society of Soil Science Meetings. 3uly 11-15, 1982, Vancouver. - 164 -Spittlehouse, D.L. 1983. A forest water balance model used to determine the frequency and intensity of growing season water deficit in a Douglas f i r stand. Abstract for 16th Conference on Agriculture and Forest Meteorology, Fort Collins Colorado, American Meteorological Society. Talsma, T. and P.M. Hallam. 1980. Hydraulic conductivity measurements of forest catchments. Aust. 3. Soil Res., 18:139-148. Tan, C.S., T.A. Black and 3.U. Nnyamah. 1978. A simple diffusion model of transpiration applied to a thinned Douglas f i r stand. Ecol. Soc. of America, 59(6):1221-1229. Tanner, C.B. and 3.1. Ritchie. 1974. Evapotranspiration: empiricisms and modelling. Paper presented. Ann. Meeting Am. Soc. Agron., Chicago, 111., U.S.A. , Thorn, A.S. and H.R. Oliver. 1977. On Penman's equation for estimating regional evaporation, Quart. 3.R. Met. Soc, 103:345-357. Van Bavel, C.H.M. 1956. Neutron and gamma radiation as applied to measuring physical properties of soil in its natural state. Trans. 6th Intern. Congr. Soil Sci. B. 355-60. Waring, R.H., W.H. Emmingham, H.L. Gholz, and CC . Grier. 1978. Variation in maximum leaf area of coniferous forests in oregon and its ecological significance. Forest Science, 24:131-140. Waring, R.H. and 3.F. Franklin. 1979a. Evergreen coniferous forests of the Pacific Northwest. Science 204:1380-1386. Waring, R.H., D. Whitehead and P.G. Darvis. 1979b. The contribution of stored water to transpiration in Scots pine. Plant, Cell and Environment (2), 309-317. White, D.P. 1958. Available water: The key to forest site evaluation. First North Am. Forest Soils Conf., Michigan State Univ. Whitehead, D. and P.G. Garvis. 1981. Coniferous Forests and Plantations. In Water deficits and plant growth (ed. T.T. Kozlowski), Vol. 6, pp. 86-89, Acad. Press, New York. Zahner, R. 1958. Site quality relationships of pine forests in southern Arkansas and northern Louisiana. For. Science, 4:163-176. Zahner, R. and 3.R. Donnelly. 1967. Refining correlations of rainfall and radial growth in young red pine. Ecology, 48:525-530. Zangar, C.N. 1953. Theory and problems of water precolation. Eng. Monog. No. 8, Bur. Reclam. Denver, Colo. U.S.A. Zinke, P.3. 1967. Forest interception studies in the United States. In International Symposium on Forest Hydrology (eds. W.E. Sopper and H.W. Lull), pp. 137-161, Pergamon, Oxford, U.K. - 165 -APPENDIX I Site descriptions provided by the British Columbia Ministry of Forests for sites 0, 1, 2, 4, 6 and 7 - 166 -S i t e 0 Very Xeric Ecosystem Site Description Elevation SIope/Aspect Site position Terrain classification Drainage Pervlousness Ecological moisture regime Nutrient regime Soil classification Humus Form classification 300 itr 8X/300" crest moralnal veneer and bedrock outcrops rapidly moderately very xeric meso trophic Orthic Humo-Ferr1c Podzol Orthihemimor (Tenuic phase) Ecosystem (Biogeocoenotlc) Type: Lichen - Salal - (Lodgepole Pine) -Doug1as-f1r: sandy Orthic Humo-Ferric Podzol with Orthihemimor developed on shallow moralnal veneer. Pedon Description Horizon Oepth Description Lv 4-3 Coniferous needles and moss; moist; single particle; loose; mossy; no roots; no visible biota; abrupt, smooth boundary. Fq 3-1 . Moist; weak, compact matted; moderate tenacious; fibrous; plentiful, very fine roots; common white, and few to common fine brown mycella, random; few clusters of fine droppings, few centipedes and larvae; abrupt, smooth boundary. Hdt 1-0 Moist; moderate, medium blocky; moderate tenacious; gritty; common, fine roots; common, fine, charcoal; no visible biota; abrupt smooth boundary. Aej 0-1 Dark reddish gray (5YR.4/2m); sandy loam; weak, fine, subangular blocky; nonstlcky, friable, nonplastlc; few fine roots, horizontal matrix; abrupt smooth boundary; 0-1 cm thick. Bfl 1-19 Oark reddish brown (5YR 3/4m); loamy sand; weak, fine, subangular blocky; nonstlcky, friable, nonplastlc; abundant medium roots, horizontal matrix;clear, smooth boundary; 16-22 cm thick. BfZ 19-35 Dark brown (10YR 3/3m); loamy sand; weak, very fine, subangular blocky; nonsticky, friable, nonplastlc; plentiful, medium roots, oblique matrix; abrupt, smooth boundary; 15-18 cm thick. R 35+ - 167 -Site 1 Xeric Ecosystem  Site Description Elevation 280 nr SI ope/Aspect 34X/3100 Site position Upper slope Terrain c lass i f icat ion moralnal veneer Drainage rapidly Pervlousness moderately Ecological moisture regime xeric Nutrient regime mesotrophlc Soil c lass i f icat ion Orthic Humo^Ferrlc Podzol Humus Form c lass i f icat ion Humlmormoder Ecosystem (B1ogeocoenot1c) Type - Stokeslella-(Oceanspray) - Salal -Douglas-f1r: sandy Orthic Humo-Ferr1c Podzol with Humlmormoder developed on moralnal veneer. Pedon Description Horizon Depth Description Lv 5.5-4.5 Gaultheria leaves & coniferous needles; moist; weak, non-compact matted; loose; leafy to acerose; no roots; common, very fine brown mycella, clustered; abrupt smooth boundary. Faq 4.5-2.5 Moist; moderate, compact matted; moderate tenacious; f ibrous; p lent i fu l , fine roots, horizontal; common coarse white and yellow mycella, random; common, medium and coarse droppings, comnon large centipedes; abrupt smooth boundary. Hd 2.5-0 Moist; black (10YR 2/1m); moderate, f ine, granular; fr iable to weak tenacious; f ibrous; abundant, fine roots, horizontal; common white & yellow mycella, random; common droppings; abrupt, smooth boundary. Aej 0-0.5 Dark reddish gray (5YR 4/2m); sandy loam; weak, very f ine , subangular blocky; nonstlcky, f r iab le , nonplastfc; few, very fine roots, horizontal, matrix; abrupt, smooth boundary; 0-1 cm thick. Bf 0.5-33 Strong brown (7.5YR 4/6m); loamy sand; weak to moderate, very fine subangular blocky; nonstlcky, f r iab le , nonplastlc; abundant, medium roots, horizontal, exped; clear, smooth boundary; 28-35 cm thick. frw\ 33-52 Brown to dark brown (7.5YR 4/4m); loamy sand; moderate, very f ine, subangular blocky; nonstlcky, f r iab le , nonplastlc; abundant medium roots, horizontal, exped; abrupt, wavy boundary; 17-24 OP thick. R 52+ - 168 -Site 2 Subxeric Ecosystem Site Description Elevation SIope/Aspect Site position Terrain classification Drainage Pervlousness Ecological moisture regime Nutrient regime Soil classification Humus Form classification Ecosystem (Blogeocoenotlc) Type - Stokesiella - Sa1a1-(Westem Hemlock) -Douglas-f1r: loamy-skeletal Orthic Humo-Ferr1c Podzol with Orthlhemihumimor, developed on moralnal blanket. 210 m 20X/3200 Upper middle slope Moral nal blanket Well moderately subxeric mesotrophlc Orthic Humo-Ferric Podzol Orthihemihumimor (Tenulc phase) Pedon Description Horizon Depth Description Lv 3-2.5 Coniferous needles & Gaultheria leaves; moist; weak, non-compact matted; loose; acerose; no roots; abrupt, smooth boundary. Fq 2.5-1 Moist; moderate, compact matted; slightly tenacious; slightly felty; few, fine roots, horizontal; common white and yellow mycella; few fly larvae, Collembola, and millipedes; abrupt, smooth boundary. Hd 1-0 Moist; weak to moderate, compact matted; friable; greasy to slightly felty; common, fine roots, horizontal; common, fine, charcoal; common white and yellow mycella; few fly larvae and Collembola; abrupt, wavy boundary. Ae 0-4 Brown to dark brown (10YR 2/2m) and very pale brown (10YR 3/3d); loam; moderate, medium, subangular blocky; slightly sticky, friable, slightly plastic; abundant, very fine roots, horizontal, matrix; clear, wavy boundary; 0-11 cm thick; extremely add. Bf 4-46 Brown to dark brown (7.5YR 4/4m) and yellowish brown (10YR 5/4d); loam; weak to moderate, medium, subangular blocky; slightly sticky, very friable, slightly plastic; plentiful fine to coarse roots, horizontal and oblique, exped; clear, wavy boundary; 20-55 cm thick; very strongly add. Bm • 46-66 Dark yellowish brown (10YR 4/4m) and light yellowish brown (10YR 6/4d); loam; moderate, medium to coarse, angular blocky; slightly sticky, very friable, slightly plastic; few, fine roots, horizontal, exped; gradual, wavy boundary; 14-24 cm thick.; very strongly add. BC 66-91 Dark brown (10YR 3/3m) and pale brown (10YR 6/3d); loam; weak, medium, granular; nonstlcky, very friable, slightly plastic; few, fine roots, horizontal, exped; abrupt, smooth boundary; 18-28 cm thick; strongly add. IIC 91+ Loamy sand; massive; nonstlcky, firm, nonplastlc. - 169 -Site 4 Mesic Ecosystem  Site Description Elevation 205 m SIope/Aspect 1 OX/310° Site position Middle slope Terrain classification Moral nal blanket Drainage Well Pervlousness Moderately Ecological moisture regime Mesic Nutrient regime Mesotrophlc Soil classification Orthic Humo Ferric Podzol Humus Form Classification OrtMhemlhumimor (Tenulc phase) Ecosystem (B1ogeocoenot1c) Type - Stokeslella - Hyloconrium - Douglas-f1r - Western Hemlock: loamy-skeletal Orthic Humo-Ferr1c Podzol with Orthl-hemlhumlmor developed on mora*nal blanket. Pedon Descrfptlon Horizon Depth Description Lv 3.5-3.0 Coniferous needles; moist; weak, non-compact matted; loose; acerose to mossy; no roots; no visible biota; abrupt, smooth boundary. Fq 3.0-1.0 Moist; moderate, compact matted; weak, tenacious; slightly felty; few, fine roots, horizontal; common white and yellow mycella; few fly larvae and Collembola; abrupt, smooth boundary. Hd 1.0-0 Moist; weak to moderate, compact matted; friable; greasy; few, fine roots, horizontal; common fine charcoal, clustered; common white and yellow mycella; abrupt, wavy boundary. Bfl 0-16 Brown to dark brown (10YR 4/3m) and brown to dark brown (10YR 4/3d); loam; moderate, medium, subangular blocky; nonstlcky, friable, nonplastlc; few, fine to coarse roots, horizontal, exped; gradual, wavy boundary; 7-22 cm thick; very strongly add. Bf2 16-35 Brown to dark brown (7.5YR 4/4m) and light brown (10YR 6/4d); loam; moderate, 'medium, subangular blocky; nonstlcky, very friable, nonplastlc; few, fine to coarse roots, horizontal, exped; gradual, broken boundary; 8-32 orr thick; very strongly add. Bm 35-53 Dark yellowish brown (10YR 4/4m) and light yellowish brown (10YR 6/4d); loam; weak, fine, subangular blocky; nonstlcky, very friable, nonplastlc; few, fine to medium roots, horizontal, exped; clear, wavy boundary; 0-21 cm thick, very strongly add. BC 53-86 Dark grayish brown (10YR 4/2m) and light brownish gray (2.5Y 6.2d); sandy loam; weak, fine, granular; nonstlcky, very friable, nonplastlc; few, fine to medium roots, horizontal, exped; abrupt, wavy boundary; 18-40 cm thick, strongly add. IIC 86+ Loamy sand; massive; nonstlcky, firm, nonplastlc; no roots. - 170 -Site 6 Hygric Ecosystem Site Description Elevation Slope/Aspect Site position Terrain classification Drainage Pervlousness Ecological niolsture regime Nutrient regime Soil classification Humus Form Classification Ecosystem (Blogeocoenotic) Type - Foamflower - Swordfern - Douglas-fir and Grand Fir - Western Redcedar: loamy Orthic Humo-Ferr1c Podzol with Orthi-vermimull developed on, moral nal blanket. 190 m 10J/2900 Lower slope Moral nal blanket Imperfectly Moderately Subhygric to hygric Permesotrophlc Orthic Humo Ferric Podzol Orthivermlmull Pedon Description Horizon Depth Lv 1.5-0.5 Description / Coniferous needles and herbaceous foliage; moist; weak, non-compact matted; loose; acerose; no roots; common Insects; abrupt, smooth boundary. Fa 0.5-0 Moist; weak, non-compact matted; loose; acerose; no roots; few, fine, charcoal, clustered; common Insects (millipedes, spiders, cetipedes, fly larvae) and droppings; abrupt, wavy boundary. Ah 0-7 Very dark brown (10YR 2/2m); loam; moderate, medium, granular; slightly sticky, friable, slightly plastic; abundant very fine to medium roots, horizontal, matrix; clear, wavy boundary; 2-10 cm thick; extremely acid; common earthworms. Bfl 7-26 Dark yellowish brown (10YR 3/4m) and yellowish brown (10YR 5/4d); loam; moderate, medium, angular blocky; slightly sticky, very friable, slightly plastic; plentiful very fine to medium roots, horizontal, exped; clear, wavy boundary; 12-23 cm thick; very strongly acid. Bm 26-40 Dark yellowish brown (10YR 3/4m) and yellowish brown (10YR 5/4d); loam; moderate, medium, angular blocky; nonstlcky, friable, slightly plastic; plentiful, fine to medium roots, horizontal, exped; clear, wavy boundary; 9-23 cm thick; strongly add. Bf2 40-74 Dark yellowish brown (10YR 3/6m) and light yellowish brown. (10YR 6/4d); loam; moderate, fine, angular blocky; nonstlcky, friable, slightly plastic; abundant, fine to coarse roots, horizontal, exped; abrupt, wavy boundary; 16-44 cm thick; very strongly add. IIC 74+ Loamy sand; massive, nonstlcky, firm, nonplastlc; no roots. - 171 -Site 7 Subhydrlc Ecosystem Site Description Elevation SIope/Aspect Site position Terrain classification Drainage Perviousness Ecological moisture regime Nutrient regime Soil classification Humus Form classification 190 m OX/flat toe Organic veneer over moralnal blanket very poorly slowly subhydrlc eutrophlc Terric Humisol Parasaprtmull Ecosystem (B1ogeocoenot1c) Type: Lady fern - Skunk cabbage - Red alder -Western Redcedar: Terric Humisol with ParasapHmull developed on morainal blanket. Pedon Description Horizon Depth Description Lv 1-0 Deciduous and herbaceous Utter; wet; moderate, non-compact matted; loose; leafy; no roots; abundant Insects (millipedes, Collembola, fly larvae); abrupt, wavy boundary. Ohl 0-5 Wet; black (10YR 2/lm) and very dark brown (10YR 2/2d); weak, medium blocky; friable; greasy; plentiful, fine to medium roots, random; common, fine, charcoal, random; abundant Insects, common earthworms; von Post class 9; gradual, wavy boundary 0h2 5-21 Saturated; black (10YR 2/lm) and very dark brown (10YR 2/2d); weak, medium, blocky; friable; greasy; plentiful, fine to medium roots, random; common, fine charcoal, random; no visible biota; von Post class 9; gradual, wavy boundary. 0h3 21-50 Saturated; black (10YR 2/Tm) and very dark brown (10YR 2/2d); massive; pliable; greasy; plentiful fine to medium roots, random; common, fine charcoal, random; no visible biota; von Post class 9; gradual, wavy boundary. Bg 50-80+ Dark grayish brown (2.5Y 4-/2m); silty clay loam; common, medium, prominent (10YR 4/6m) mottles; massive; few, fine roots, horizontal, matrix. - 172 -APPENDIX 2 So i l Water Retention Characteristics Matric potentials above -100 kPa were measured by f i e l d tensiometers and the corresponding s o i l water measurements were by neutron probe at adjacent access tubes. Water retention at matric potentials below -100 kPa ( i . e . -400 and -1500 kPa) were determined by pressure membrane extraction and averaging the r e s u l t s from three r e p l i c a t e samples. - 173 -O b | | | | | | . I I I I I I I I I = 0 .0 0.1 0 .2 0 . 3 . 0 . 4 VOL.FRACTION SOIL WATER Figure 1 Site 0 - 174 -^ 0 0 0.1 0 .2 0 .3 0 .4 VOL.FRACTION SOIL WATER Figure 2 Site 1 - 175 -o Efn—|— | I r—r—I T 0.1 0 .2 0 . 3 0 V0L.FRACTI0N SOIL WATER Figure 3 S i t e 2 - 176 -I I I I I I I I I I I I I I I I I I I I l I I I I I I I I L 0.1 0 .2 0 . 3 VOL.FRACTION SOIL WATER F i g u r e 4 S i t e 3 - 177 -o |- i—i—i—i i i i i i i i r 0 .0 0.1 0 .2 0 . 3 0 .4 V O L . F R A C T I O N SOIL WATER F i g u r e 5 S i t e 4 - 178 -o m V -n t— UJ o l — " O m o r r o i— <£ uO — Ill 11 1 1 1 1 1 1 1 1 1 1 1 E - T\30 CM - \\45 CM --- \K ~60 CMXx " 75 C M ^ < ^ ^ •s — ill 11 N o >g. -- ^ \ -- \ \ Q _ 1 1 1 1 1 1 I 1 1 1 1 1 L 1 1 0 0 0.1 0 .2 0 . 3 VOL.FRACTION SOIL WATER 0.4 F i g u r e 6 S i t e 5 - 179 -UO D D_ I O m < to I— fs i LxJ o o ^ Q_ ^ O ^ or o r— r ~ <; m 0 .0 0.1 0 .2 0 . 3 VOL.FRACTION SOIL WATER F i g u r e 7 S i t e 6 - 180 -APPENDIX 3 Plots of throughfall collected beneath the trees against rainfall intensity T h r o u g h f a l l was measured w i t h a t r o u g h r a i n g a g e ( F i g u r e 3-4) and r a i n f a l l i n t e n s i t y was measured w i t h an i d e n t i c a l r a i n g a g e l o c a t e d i n an a d j a c e n t open a r e a . - 181 -Figure 1 Site 0 - 182 -F i g u r e 2 S i t e 2 - 1 8 3 -m in I I I I I I I I I I I I I I ' ' I I I I o m in C m C to _"f J o U-o N Z> O o CM X i i i I i i i i I ' ' ' ' ' ' ' ' ' ' 5 10 15 20 25 30 35 40 45 50 P R E C I P I T A T I O N ( m m ) F i g u r e 3 S i t e 4 - 184 -I I I I I I I I I I I I I I I I I I I ' i I l l I L 5 10 15 20 25 30 35 40 45 50 P R E C I P I T A T I O N ( m m ) F i g u r e 4 S i t e 6 - 185 -APPENDIX 4 Daily meteorological data at Nesachie from June 5, 1980 to October 29, 1981 METEOROLOGICAL DATA : MESACHIE 1980- 1981 NO. MONTH/ MAX TEMP MIN TEMP S/ LAT .HT . PRECIP S.W.RAD L.W.RAD MAX S ;.w. ATMOS DAY DEG C DEG C (S+GAMMA) MJ/KG MM MJ/M2D MJ/M2D MJ/M2D EMISSTY 1 6/ 5 14 . 5 8 . 5 0. 57 2. 472 1 .4 1 1 . 0 -1 . 8 29 . 6 0 .77 2 6/ 6 17 . 0 9 . 5 0. 60 2 . 467 1 .8 22 . 6 -4 . 3 29 . 7 0 . 72 3 6/ 7 17 . 5 8 . 5 0. 60 2 . 4G7 0 .3 14 . 4 -2 . 2 29 . 7 0 . 78 4 6/ 8 17 . 0 1 1 . 0 0. 61 2. 465 17.2 5 . 9 -1 . 1 29 . 8 0 .78 5 6/ 9 17 . 0 10. 5 0. 61 2 . 465 6 .8 16. 4 - 3 . 3 29. 8 0 .72 6 6/10 17 . 0 10. 0 0. 61 2 . 465 3.6 16. 9 -3 . 4 29 . 9 0 . 72 7 6/1 1 18. 5 8 . 5 0. 61 2 . 465 4 . 2 26. 5 -4 . 9 29 . 9 0 . 72 8 6/12 22 . 0 6 . 5 0. 63 - 2 . 461 0 . 0 29 . 0 -5 . 3 29 . 9 0 . 73 9 6/13 22 . 5 10. 5 0. 65 2. 458 0 . 0 30. 8 -5 . 5 30. 0 0 . 73 10 6/14 22 . 5 10. 5 0. 65 2. 458 0 . 0 15 . 3 - 3 . 0 30. 0 O. 73 1 1 6/15 21 . 0 1 1 . 0 0. 63 2 . 461 0 . 0 23 . 5 -4 . 3 30. 1 0 . 73 12 6/16 21 . 5 1 1 . 5 0. 65 2. 458 0 . 0 1 1 . 8 -1 . 7 30. 1 0 . 8 0 13 6/17 19. 0 1 1 . 5 0. 62 2 . 463 0 .2 22 . 4 -4 . 2 30. 1 0 . 72 14 6/18 21 . 0 7 . 0 0. 62 2 . 463 0 . 0 21 . 1 -4 . 0 30. 1 0 .72 15 6/19 24 . 0 7 . 0 0. 65 2. 458 0 . 0 29. 2 -5 . 2 30. 2 0 .73 16 6/20 24. 0 10. 0 0. 66 2 . 455 0 . 0 23 . 7 -4 . 3 30. 2 0 . 74 17 6/21 23. .5 9. 5 0. 66 2 . 455 0 . 0 26 . 5 -4 . 8 30. 2 0 . 74 18 6/22 22. .0 1 1 . 5 0. 65 2. 458 1 . 2 12 . 0 -1 . 8 30. 2 0 . 80 19 6/23 16. . 5 6 . 0 0. 58 2 . 470 2.6 14. ,5 -2. . 2 30. , 1 0 .77 20 6/24 19. .5 10. .0 0. 62 2 . 463 1 .8 13 . ,6 -2 . 0 30. . 1 0 . 79 21 6/25 16 . 5 12 . 0 0. 61 2 . 465 23 .4 5. ,3 - 1 . . 1 30. . 1 0 . 78 22 6/26 12 .5 9. .0 0. .55 2. , 475 3.4 6. .3 -1 . 2 30. . 1 O. 76 23 6/27 16 .5 1 1 .0 0. .61 2 , .465 0 .6 13 .8 -2 . 1 30 . 1 0. 78 24 6/28 18 .0 9 .5 0. .61 2, .465 0 . 0 19 .5 -3 .8 30 . 1 0 . 72 25 6/29 18 .5 7 .5 0. ,61 2 . 465 0 . 0 23 .2 -4 . 4 30 .0 0 . 72 26 6/30 22 .0 7 .5 0. .63 2 .461 0 . 0 28 .8 -5 .2 30 .0 0 .73 27 7/ 1 26 .0 8 .0 0 .67 2, .454 0 . 0 29 .8 -5 .3 29 .9 0 .74 28 7/ 2 26 .0 9 .0 0 .67 2, .454 0 . 0 15 .0 -2 .8 29 .9 0. 74 29 7/ 3 16 .0 1 1 .5 0 .60 2 .467 22 .6 6 .3 -1 . 2 29 .9 0 . 78 30 7/ 4 15 .0 8 .0 0 .58 2 .470 10.6 13 .7 -2 . 1 29 .8 0 . 77 31 7/ 5 16 .5 9 . 5 0 .60 2 .467 0 . 0 15 .2 -3 .0 29 .7 O. 71 32 7/ 6 17 . 5 10 .O 0 .61 2 .465 1 .0 16 .0 -3 . 2 29 .7 0 . 72 33 7/ 7 24 .0 9 .0 0 .66 2 .455 0 .6 28 .2 -5 .0 29 .6 0 . 74 34 7/ 8 26 .0 10 .5 0 .68 2 .452 0 . 0 28 .3 -4 .9 29 .6 0 . 75 35 7/ 9 26 .0 1 1 .0 0 .68 2 .452 0 . 0 27 . 1 -4 . 7 29 .5 0 .75 36 7/10 23 .0 12 .0 0 .66 2 .455 0 .6 6 .3 - 1 . 1 29 .5 0 . 8 0 37 7/1 1 20 .0 12 .0 0 .63 2 .461 3.8 18 .3 -3 .5 29 .4 0. 73 38 7/12 24 .5 12 .0 0 .67 2 . 454 0 . 0 24 .8 -4 .4 29 . 3 0 . 74 39 7/13 23 . 5 1 1 .5 0 .66 2 .455 2 . 2 10 .5 -1 .6 29 . 3 0 . 8 0 40 7/14 20 .0 13 .0 0 .63 2 .461 0 .6 21 . 3 -4 .0 29 .3 0 . 73 41 7/15 21 .0 13 .5 0 .65 2 .458 0 .6 7 . 2 - 1 . 2 29 . 2 0 . 8 0 42 7/16 20 .5 12 .0 0 .63 2 .461 3.8 24 .6 -4 .6 29 . 1 C. 73 43 7/17 22 . 5 9 . 5 0 .65 2 . 458 O.O 21 .8 -4 . 1 29 .0 0. 73 44 7/18 25 . 5 10 .5 0 .67 2 .454 0 . 0 25 .6 -4 .6 28 .8 0. 75 45 7/19 25 .0 12 .0 0 .67 2 .454 6.2 9 . 3 -1 .4 28 .8 0.81 46 7/20 25 . 5 13 . 5 0 .68 2 .452 0 .2 23 .9 -4 . 3 28 . 6 0. 75 47 7/21 30 .5 13 .0 0 .72 2 .444 0 . 0 26 .6 -4 .6 28 . 5 0. 77 48 7/22 31 .5 15 .0 0 .74 2 .440 0 . 0 23 .0 -3 .9 28 . 4 0 . 78 CD ON METEOROLOGICAL DATA : MESACHIE 1980- 1981 NO. MONTH/ MAX TEMP MIN TEMP S/ LAT ' .HT . PRECIP S.W.RAD L.W.RAD MAX S.W. ATMOS DAY DEG c DEG c (S+GAMMA) Md/KG MM MJ/M2D MJ/M2D M0/M2D EMISSTY 49 7/23 24 . 0 13. 5 0. 67 2 . 454 0. 0 21 . 7 -4 . 1 28 . 3 0.75 50 7/24 26. 0 10. 5 0. 68 2. 452 0. 0 26. 4 -4 . 8 28 . 2 0.75 51 7/25 26. 5 1 1 . 0 0. 68 2 . 452 0. 0 25. 0 -4 . 6 28 . 1 0.75 52 7/26 28. 5 1 1 . 0 0. 69 2 . 449 0. 0 26. 1 -4 . 7 28 . 0 0.76 53 7/27 28. 5 12 . 5 0. 70 2 . 447 0. 0 26. 4 -4 . 7 27 . 9 0.76 54 7/28 28. 5 10. 0 0. 69 2 . 449 0. 0 27 . 0 -4 . 9 27 . 7 0.76 55 7/29 26. 0 8. 5 o. 67 2 . 454 0. 0 27 . 0 -5 . 0 27 . 7 0.74 56 7/30 26. 0 10. 5 0. 68 2 . 452 0. 0 26 . 3 -4 . 9 27. 6 0.75 57 7/31 26. 0 10. 5 0. 68 2. 452 0. 0 25 . 8 -4. 8 27. 4 0.75 58 8/ 1 19. 5 14 . 5 0. 65 2 . 458 0. 0 1 1 . .5 -1 . 8 27 . 2 0.80 59 8/ 2 19. 5 1 1 . 5 0. 63 2. 461 0. 0 10. 4 - 1 . .7 27 . 1 0.79 60 8/ 3 22. 0 12 . 5 0. 66 2. 455 0. 0 25. 3 -4 . 5 26 . 9 0.74 61 8/ 4 22. 5 9. 5 0. 65 2 . 458 0. 0 19. .3 -3 . 6 26. .7 0.73 62 8/ 5 23. 0 12. .0 0. 66 2. 455 0. 0 21 . 9 -4 . 0 26. 5 0.74 63 8/ 6 23. 5 9. 0 0. 65 2 . 458 0. 4 22 . 0 -4. . 1 26. 4 0.74 64 8/ 7 26. 5 1 1 . .0 0. 68 2 . 452 0. 0 23 . 3 -4 . 2 26. 1 0.75 65 8/ 8 30. 0 1 1 . .5 0. 72 2. 444 0. 0 23 . 1 -4 . 0 26. 0 0.76 66 8/ 9 30. 0 1 1 . .0 0. 70 2. 447 0. 0 24 . 2 -4 . 3 25. 8 0.76 67 8/10 32. .0 12 . 0 0. 73 2 . 442 0. .0 23 . 5 -4 . . 1 25 . 6 0.77 68 8/1 1 30. .0 14 . 0 0. 72 2. 444 0. .0 23. . 5 -4 . 1 25.. 4 0. 77 69 8/12 30. .0 12 . 5 0. 72 2 . 444 0. .0 21 , .5 -3. .9 25 . 3 0.77 70 8/13 26. . 5 12 . 0 0. 68 2 . 452 0. .0 18 . 6 -3 .6 25 . 0 0.75 71 8/14 24 . 0 12 . 5 0. 67 2 . 454 0, ,0 18 . 3 -3 .6 24 . 9 0.74 72 8/15 22 . 5 12. .0 0. 66 2 . 455 0. .0 15. .8 -3 . 2 24 . 7 0.74 73 8/16 22 . 5 1 1 .0 0. 65 2 . 458 0. .0 16 . 1 -3 . 3 24. .5 0.74 74 8/17 22. .0 13 .5 0. 66 2 . 455 1. .2 8 .9 -1 . 5 24 . 3 0.80 75 8/18 23. .5 8 .0 0. 65 2. 458 3. ,0 24 .0 -4 .8 24. . 2 0.73 76 8/19 24. .0 8 .5 0. 66 2. 455 0 .0 23 .4 -4 .7 24 . 0 0.74 77 8/20 22. . 5 10 .0 0. 65 2. 458 0. .0 21 . 3 -4 .4 23. 8 0.73 78 8/21 23. .0 10 .5 0. .66 2. .455 0. .0 21 .2 -4 .3 23 . 7 0.74 79 8/22 23. . 5 9 .0 0. 65 2. .458 0. .0 15 .6 -3 .4 23 . 4 0.74 80 8/23 19. . 5 1 1 .5 0. .63 2. .461 0 .0 1 1 .7 -2 .7 23 . 3 0.73 81 8/24 23 .0 12 .0 0. 66 2 . 455 0. .0 22 .8 -4 .7 23 . 1 0.74 82 8/25 24 .0 7. .0 c. .65 2. .458 0. .0 21 . 1 -4 .5 22 . 9 0.73 83 8/26 24 .0 1 1 .0 0. 66 2 . 455 4 . 3 6 . 3 -1 . 2 22 . 7 0.81 84 8/27 16 . 5 1 1 .0 0. .61 2 .465 1 . 2 1 1 .4 -2 .7 22. .6 0.72 85 8/28 18 .0 7 .0 0. 60 2 . 467 0 .0 15 .8 -3 .6 22 . 3 0.71 86 8/29 19 . 5 4 .5 0. .60 2 . 467 0 .0 17 .4 -4 .0 22 . 2 0.72 87 8/30 19 . 5 1 1 .0 0. .62 2, .463 0 .0 10 . 7 - 1 .9 22, .0 0.79 88 8/31 18 .5 12 .5 0. .62 2 . 463 0 .0 10 . 2 - 1 .9 21 .8 0.79 89 9/ 1 19 .0 10 .5 0. .62 2. .463 14 .4 5 .4 -1 .2 21 .7 0.79 90 9/ 2 16 .0 8 .5 0, .58 2. .470 0 . 2 1 1 .6 -2 .9 21 .5 0.71 91 9/ 3 16 .0 10 .0 0 .60 2 .467 0 .0 9 .8 -1 .9 21 .2 0.78 92 9/ 4 18 . 5 10 .0 0 .62 2 .463 0 . 2 1 1 .0 -2 .5 21 .0 0.72 93 9/ 5 23 .0 12 .0 0 .66 2 .455 0 .0 19 .0 -3 .9 20 .9 0. 74 94 9/ 6 23 .0 12 .0 0 .66 2 .455 15 .4 4 .4 -0 .9 20 . 7 0.80 95 9/ 7 20 . 5 1 1 .5 0 .63 2 .461 3 .6 19 . 2 -4 .0 20 . 4 0. 73 96 9/ 8 22 .0 8 .O 0 .63 2 .461 0 .4 18 . 3 -3 .9 20. . 2 0.73 oo METEOROLOGICAL DATA : MESACHIE 1980- 1981 NO . MONTH/ MAX TEMP MIN TEMP S/ LAT • .HT . PRECIP S.W.RAD L.W.RAD MAX S ,. W. ATMOS DAY DEG C DEG C (S+GAMMA) MJ/KG MM .MJ/M2D MJ/M2D MJ/M2D EMISSTY 97 9/ 9 26 . 0 6. 5 0. 66 2 . 455 0. 0 19 . 3 -4 . 0 20. 1 0 .74 98 9/10 27 . 0 8. 0 0. 67 2 . 454 0. 0 18 . 8 -3 . 9 19. 9 0 .75 99 9/1 1 27 . 0 10. 5 0. 68 2 . 452 0. 0 16 . 8 -3 . 6 19. 6 0 .75 100 9/12 21 . 0 10. 0 0. 63 2 . 461 0. 0 1 1 . 7 -2 . 8 19. 4 0 .73 101 9/13 24 . 0 10. 0 0. 66 2 . 455 0. 0 14 . 9 -3 . 3 19. 3 0 .74 102 9/14 26 . 0 10. 5 0. 68 2 . 452 0. 0 16. 4 -3 . 6 19. 1 0 .75 103 9/15 26 . 0 8 . ,5 0 . 67 2 . 454 0. 0 16 . 2 -3 . 6 18 . 8 0 . 74 104 9/16 25 . 0 9. .0 0. 66 2. 455 0. 0 16 . 7 -3 . 8 18 . 7 0 .74 105 9/17 25 . O 8 . 0 0 . 66 2 . 455 0. 0 14 . 7 -3 . 4 18 . 5 0 . 74 106 9/18 19 . 0 12 . 5 0 . 63 2. 461 0. 0 3 . 5 -0 . 9 18 . 3 0. 79 107 9/19 16 . 0 1 1 . 5 0. 60 2 . 467 22. 7 8 . 4 - 1 . 7 18 . 0 0 .78 108 9/20 15 . 5 8. 5 0. 58 2. 470 0. 0 9. 5 -2 . 5 17 . 9 0.71 109 9/21 16 . 5 9. ,0 0. 60 2. 467 0. 0 13 . 1 -3 . 4 17 . 7 0.71 1 10 9/22 16 . 0 9. ,5 0. 60 2 . 467 1 . 6 5. 9 -1 . 3 17 . 4 0 .77 1 1 1 9/23 15 . 0 10. .0 0 . 58 2 . 470 1 . 2 6 . 3 -1 . ,4 17 . 2 0 .77 112 9/24 18 . 0 1 1 . ,0 0. 62 2 . 463 0. 0 15. .4 -4 , 0 17 . 1 0 . 72 1 13 9/25 21 , .0 6 . , 5 0 . 62 2 . 463 0. ,0 19 . ,4 -4 . ,9 16. 9 0 . 72 1 14 9/26 23 . 5 7 .0 0 . 65 2 . 458 0. ,0 16 . 6 -4 . 2 16 . 6 0 .73 115 9/27 23 . 5 10, .0 0. 66 2 . 455 0. ,0 3 . 2 -0, ,8 16. 4 0 . 8 0 116 9/28 15 .5 1 1 , .0 0. 60 2. 467 5. ,8 2 . 9 -0, 8 16 . 3 0 . 78 1 17 9/29 15 .0 13 .0 0. 60 2. 467 21 . , 2 7, . 1 -1 .6 16. 1 0 .78 1 18 9/30 17 . 0 8, .5 0. 60 2. 467 4 . ,6 10 ,9 -3, .2 15. 8 0.71 1 19 10/ 1 18 . 5 8, .0 0. 61 2. 465 0. 0 14 .8 -4 , . 1 15. 6 0 . 72 120 10/ 2 22 . 5 5 .0 0. 63 2 . 461 0, .0 14, .5 -4 , . 1 15. 4 0 . 73 121 10/ 3 24 .0 7 .0 0. 65 2 . 458 0 .0 14 .4 -4 .0 15. 3 0 .73 122 10/ 4 20 .5 6 .0 0. 62 2 . 463 0 .0 12 .8 -3 . 7 15. 0 0 .72 123 10/ 5 24 .5 8 .0 0. 66 2. 455 0 .0 13 . 3 -3 . 3 14 . 8 0 .74 124 10/ 6 24 .5 8 .0 0. 66 2. 455 0 .0 13 . 1 -3 . 3 14. ,6 0 .74 125 10/ 7 21 .5 10 .5 0. 65 2. 458 0 .0 10 . 7 -2 .8 14 . 4 0 .73 126 10/ 8 19 .5 1 1 .0 0. 62 2. ,463 0 .8 12 .5 -3 . 3 14 . 2 0 .73 127 10/ 9 17 .5 8 .0 0. GO 2 .467 0 .0 5 .6 - 1 . 3 14 . 0 0 .78 128 10/10 20 .5 5 .5 0. ,61 2 . ,465 0 .0 1 1 . 3 -3 . 1 13. .8 0 .72 129 10/1 1 19 .5 8 .5 0. ,62 2 . 463 0 .0 4 .7 -1 . 1 13, .6 0 .78 130 10/12 14 .0 8 .5 0. ,57 2, .472 12 .0 5 .4 -1 .3 13, .4 0 .77 131 10/13 14 .5 7 .0 0. .57 2. .472 9 . 1 7 .6 -2 .4 13, . 1 0 . 7 0 132 10/14 16 .0 5 .0 0, , 57 2, .472 0 .5 12 .4 -3 .7 12 .9 0.71 133 10/15 16 .0 4 .5 0, . 57 2 .472 0 .0 9 .9 -3 .0 12 .8 0.71 134 10/16 16 .0 1 .5 0, .55 2 .475 0 .0 1 1 .9 -3 .6 12 .6 0 . 70 135 10/17 16 .0 3 .0 0, .57 2 .472 0 .0 3 .3 -1 .0 12 . 4 0 . 76 136 10/18 12 .5 8 .0 0, .55 2 .475 0 .0 3 .7 -1 . 1 12 . 2 0 .76 137 10/19 15 .5 7 .5 0 .58 2 .470 1 .8 7 .6 -2 .5 12 .0 0.71 138 10/20 15 .5 9 .5 0 .58 2 .470 3 .0 9 .6 -3 . 1 1 1 .8 0.71 139 10/21 15 .5 4 .5 0 .57 2 .472 1 .6 1 1 .4 -3 . 7 1 1 .7 0 . 7 0 140 10/22 14 .0 1 .0 0 . 54 2 .477 0 .0 9 .6 -3 .3 1 1 . 5 0 . 7 0 141 10/23 13 .5 1 .5 0 .53 2 .479 0 .0 9 .0 -3 . 1 1 1 . 3 0 . 7 0 142 10/24 12 . 5 3 .0 0 . 53 2 .479 0 .0 2 .6 -0 .9 1 1 . 1 0 .76 143 10/25 1 1 .5 5 .5 0 .53 2 . 479 0 .0 6 . 1 -2 . 3 10 . 9 0 . 70 144 10/26 12 .5 4 .O 0 .54 2 .477 0 .0 6 . 1 -2 . 3 10 .7 0 . 70 METEOROLOGICAL DATA : MESACHIE 1980- 1981 NO. MONTH/ MAX TEMP MIN TEMP S/ LAT.HT DAY DEG C DEG C (S+GAMMA) Md/KG 145 10/27 12.0 2 .O 0. 53 2.479 146 10/28 13.5 3.5 0. 54 2.477 147 10/29 13.0 6 .0 0. 55 2 . 475 148 10/30 13.0 4 . 5 0 .54 2 .477 149 10/31 12.5 8 .0 0 .55 2.475 150 11/ 1 12.5 9 . 5 0 .55 2 .475 151 11/ 2 13.0 6 .5 0 .55 2.475 152 11/ 3 11.5 8 .0 0 .54 2.477 153 11/ 4 15.5 9.5 0 .58 2.470 154 11/ 5 15 .O 10.0 0. 58 2 .470 155 11/ 6 12.5 9 .0 0. 55 2.475 156 11/ 7 12 .0 8.5 0. 55 2.475 157 11/ 8 11.5 7.5 0. 54 2 . 477 158 11/ 9 9.5 3.0 0 .50 2.484 159 1 1/10 12.5 2 .0 0. 53 2.479 160 11/11 7.5 1 .0 0. 47 2 .489 161 1 1/12 6 .0 0 . 0 0. 45 2.491 162 11/13 7.5 - 2 . 0 0. 45 2.491 163 11/14 7.0 3 .0 0 .48 2.487 164 1 1/15 7.5 1 .5 0 .47 2.489 165 11/16 7.5 0 . 0 0 .47 2.489 166 11/17 6 .5 3 .0 0 .47 2.489 167 1 1/18 8.5 4 . 0 0 . 5 0 2.484 168 1 1/19 9 .0 7.0 0.51 2.482 169 1 1/20 11.0 7.5 0. 54 2.477 170 11/21 1 1 .0 6 .0 0. 53 2.479 171 1 1/22 8.5 2 .0 0 .48 2 .487 172 1 1/23 5.0 -1 .0 0 .44 2.494 173 1 1/24 5.0 1 .0 0. 45 2.491 174 1 1/25 8 .0 2 .0 0 .48 2.487 175 1 1/26 6.5 3.5 0 .47 2.489 176 1 1/27 13.0 4 .5 0 .54 2.477 177 1 1/28 7.5 1 .0 0 .47 2.489 178 1 1/29 7.0 0 . 0 0 .47 2.489 179 1 1/30 6 . 0 1 .5 0 .45 2.491 180 12/ 1 5.5 0 .5 0. 45 2.491 181 12/ 2 3 .0 0 .5 0 .42 2.496 182 12/ 3 1 .5 -0 .5 0.41 2.498 183 12/ 4 1 .5 - 1 . 0 0.41 2.498 184 12/ 5 1 .0 - 4 . 0 0. 39 2.501 185 12/ 6 3.5 - 2 . 0 0.42 2.496 186 12/ 7 -1 .0 -7 .5 0. 36 2 . 506 187 12/ 8 1 .0 - 3 . 0 0. 39 2.501 188 12/ 9 1 .5 0 . 0 0.41 2.498 189 12/10 9 .0 1 .0 0 .48 2.487 190 12/11 11.0 8 .0 0. 54 2.477 191 12/12 9.5 1 .0 0. 50 2.484 192 12/13 6.5 2.5 0 .47 2.489 PRECIP S.W.RAD L.W.RAD MAX S.W. ATMOS MM MJ/M2D MJ/M2D MJ/M2D EMISSTY 0. 0 4 3 - 1 4 10. 6 0 . 75 0 0 7 6 -2 9 10 4 0 . 7 0 0. 6 3 1 -1 1 10 2 0 .76 0 0 5 7 -2 3 10 0 0 . 7 0 38 6 1 2 -0 6 9 9 0. 76 75 6 1 6 -0 7 9 7 0. 76 8 0 2 7 -1 0 9 6 0 .76 20 2 1 3 -0 7 9 5 0 .76 19 6 4 6 - 1 5 9 3 0 .77 4 6 1 7 -0 8 9 2 0 .77 54 6 . 2 3 -0 8 9 1 0 .76 46 2 2 9 -1 0 9 0 0 . 76 15 6 4 4 -1 4 8 8 0 .76 25 6 4 0 -1 3 8 7 0 .75 1 0 4 5 - 1 9 8 5 0 .69 0 0 6 2 -2 4 8 4 0 .69 0 0 5 6 -2 2 8 3 0 .68 0 0 6 0 -2 4 8 2 0 .68 3 2 1 7 -0 7 8 0 0 .75 0 4 5 1 -2 2 8 0 0 .69 5 6 2 0 -0 8 7 9 0 .74 20 0 3 0 -1 1 7 8 0 .74 17 4 1 1 -0 6 7 7 0 .75 19 8 4 3 -2 0 7 6 0 .69 27 4 1 1 -0 6 7 5 0 .76 50 2 5 4 -2 4 7 4 0 . 7 0 0 0 3 6 -1 3 7 4 0. 75 1 0 2 6 -1 0 7 3 0 .74 0 3 2 8 -1 1 7 2 0 .74 9 2 4 3 -2 1 7 2 0 .69 2 2 1 7 -0 8 7 0 0 .74 53 8 3 5 -1 8 6 9 0 . 7 0 1 2 2 2 -1 0 6 9 0 .74 47 5 1 3 -0 7 6 8 0 .74 13 3 3 9 -2 0 . 6 7 0 .68 4 2 1 9 -0 9 6 7 0. 74 12 2 1 0 -0 6 6 6 0. 74 5 0 1 9 -0 9 6 6 0 .74 6 3 2 2 -1 0 6 6 0 .74 3 0 1 5 -0 7 6 5 0. 74 0 0 6 3 -3 0 6 4 0 .68 0 0 3 3 -1 4 6 4 0 .68 0 0 2 0 -0 8 6 4 0 .74 0 0 1 3 -0 6 6 3 0 .74 64 8 0 8 -0 5 6 3 0 .75 6 8 2 7 -1 1 6 2 0 .76 0 4 4 0 -2 0 6 1 0 .69 0 0 1 2 -0 6 6 1 0. 74 METEOROLOGICAL DATA : MESACHIE 1980- 1981 DAY NO. MONTH/ MAX TEMP MIN TEMP S/ LAT .HT . DAY DEG C DEG C (S+GAMMA) MJ/KG 193 12/14 10.0 5.0 0.51 2.482 194 12/15 11.5 9 .0 0 .55 2.475 195 12/16 11.0 7.5 0 .54 2.477 196 12/17 9 .0 6 .5 0.51 2.482 197 12/18 7.0 1 .5 0 .47 2.489 198 12/19 5.0 -1 .0 0 .44 2 . 494 199 12/20 4 . 5 2.5 0 .45 2.491 200 12/21 8.5 5.0 0 .50 2 .484 201 12/22 10.5 7 . 5 0 .53 2 .479 202 12/23 11.0 3.5 0.51 2.482 203 12/24 11.0 5.5 0 .53 2.479 204 12/25 12.5 9 .0 0. 55 2 .475 205 12/26 15.0 10.0 0 .58 2.470 206 12/27 13.5 8 .0 0 .57 2.472 207 ,12/28 9.5 5.5 0.51 2.482 208 12/29 1 1 .0 6.5 0 .53 2.479 209 12/30 9 .0 7 . 5 0.51 2 .482 210 12/31 9 .0 8 .0 0 .53 2.479 211 1/ 1 9 .0 1 .0 0 .48 2 .487 212 1/ 2 9 .0 -0.5 0 .48 2.487 213 1/ 3 8 .0 -0 .5 0 .47 2 . 489 214 1/ 4 7.0 3 .0 0 .48 2.487 215 1/ 5 9 .0 1 .0 0 .48 2 .487 216 1/ 6 10.0 3 .0 0.51 2.482 217 1/ 7 9.5 4 . 0 0.51 2.482 218 1/ 8 6 .5 1 .0 0 .47 2.489 219 1/ 9 7 .5 4 . 0 0 .48 2 .487 220 1/10 10.5 1 .0 0 .50 2 .484 221 1/11 8.5 -1 .5 0. 47 2 .489 222 1/12 12.0 2.5 0 .53 2.479 223 1/13 12.5 4 . 0 0. 54 2.477 224 1/14 13.0 -1.5 0.51 2.482 225 1/15 11.5 -1 .5 0 .50 2 . 484 226 1/16 1 1 .0 -0 .5 0 . 5 0 2.484 227 1/17 10.5 2.5 0.51 2 .482 228 1/18 9 .0 3 .0 0 . 5 0 2 .484 229 1/19 11.5 5.5 0 .53 2.479 230 1/20 12.0 6 .5 0 .54 2.477 231 1/21 10.5 8 .0 0 .54 2 .477 232 1/22 13.0 7.5 0 .55 2 .475 233 1/23 10.5 6 .0 0 .53 2.479 234 1/24 10.0 4 . 0 0.51 2.482 235 1/25 8 .0 3 .0 0 .48 2.487 236 1/26 6.5 2.5 0 .47 2 .489 237 1/27 6 .O 1 .5 0 .45 2 .491 238 1/28 5.0 0 . 0 0 .44 2.494 239 1/29 6 .0 0 .5 0 .45 2.491 240 1/30 8 .0 1 .5 0 .48 2 .487 ECIP S.W.RAD L.W.RAD MAX S i .W. ATMOS MM MJ/M2D MJ/M2D MJ/M2D EMISSTY 33.6 1 . 5 -0 .7 6 . 1 0 .75 6.8 2 . 9 -1 .2 6. 1 0 .76 1 .4 2 . 2 -1 .0 6. 0 0 .76 1 .2 1 . 7 -0 .8 6 . 0 0 .75 0 . 0 3. 7 -1 .9 6. 0 0 .68 0 . 0 1 . 7 -0 .8 5. 9 0 .74 8 .0 0. 8 -0 .5 5. 9 0 . 74 51 .4 0 . 7 -0 .5 6 . 0 0. 75 13.8 2 . 3 -1 .0 6 . 0 0 .76 0 .6 1 . 8 -0 .8 6. 1 0 . 75 3 4 . 0 1 . 4 -0 .7 6 . 1 0 . 76 24 . 2 1 . 2 -0 .6 6 . 2 0 . 76 **** 0. 5 -0 .4 6. 2 0 .77 51 .8 3 . 0 -1 .2 6. 3 0 . 76 10.0 3 . 0 -1 .2 6. 4 0. 75 6. 1 0. 6 -0 .4 6. 4 0 .76 10.2 1 . 1 -0 .6 6. 4 0 . 75 5.6 2. 4 -1 .0 6. 5 0 .75 0 .7 4 . 7 -2 .2 6. 5 0 .69 0 . 0 5. . 1 -2 .3 6 . 6 0 .69 0 . 0 4 . 3 - 2 . 0 6. .6 0 .68 0 .0 2. ,2 -0 .9 6. .7 0 . 75 0.6 2 , 7 -1.1 6. .7 O. 75 2.4 4 . ,8 -2 .2 6. .8 0 .69 0 .4 2. .4 -1 .0 6 .9 0 . 75 0 .8 1 .6 -0 .7 6 .9 0 . 74 24 .6 1 .8 -0 .8 6 .9 0 .75 0 . 0 5 .6 -2 .5 7 .0 0 .69 0 . 0 3 .6 -1 .7 7 . 1 0 .68 0 . 0 5 . 4 -2 . 4 7 .2 0 . 6 9 0 . 0 5 .0 -2 .3 7 . 2 O. 70 0 . 0 6 .0 -2 .6 7 . 2 0 .69 0 . 0 5 .5 -2 .4 7 .3 0 .69 0 . 0 5 .3 -2 . 3 7 .4 0 . 6 9 2.9 0 .9 -0 .5 7 .5 0 .75 56 .4 0 .6 -0 .4 7 .6 0 .75 2.9 2 . 1 -0 .8 7 .7 0 .76 4 .9 3 .4 -1 .2 7 .8 0 . 76 36 .9 1 .5 -0 .6 7 .9 0. 76 11.5 3 .0 - 1 . 0 8 .0 0 . 76 1 .6 4 .3 -1 .8 8 .0 0 .69 1 . 7 4 .2 -1 .7 8 .2 0 .69 1 .0 5 .0 - 2 . 0 8 .2 0 .69 18.0 3 .5 -1.1 8 .3 0 .74 1 .7 5 .3 - 2 . 0 8 .4 0 .68 2.4 0 .4 -0 .3 8 .5 0 . 74 0 . 0 1 . 1 -0 .5 8 .6 0. 74 0 . 0 4 .6 - 1 .7 8 .7 0 .69 METEOROLOGICAL DATA : MESACHIE 1980- 1981 DAY NO. MONTH/ MAX TEMP MIN TEIV DAY DEG C DEG 241 1/31 7.5 0. 242 2/ 1 7.5 2 . 243 2/ 2 7.5 3 . 244 2/ 3 8.5 0. 245 2/ 4 8.0 -2 . 246 2/ 5 7.0 -1 . 247 2/ 6 6.0 -1 . 248 2/ 7 6.0 -2. 249 2/ 8 5.0 -1 . 250 2/ 9 6.0 -1 . 251 2/10 4.0 -5. 252 2/11 1 .5 -6. 253 2/12 2.5 - 1 . 254 2/13 7.5 1 , 255 2/14 10.5 5. 256 2/15 9.5 5 257 2/16 11.5 8 258 2/17 9.0 7 259 2/18 8.0 3 260 2/19 11.5 5 261 2/20 7.0 3 262 2/21 8.0 5 263 2/22 12.0 2 264 2/23 12.0 2 265 2/24 9.5 4 266 2/25 9.5 5 267 2/26 8.5 4 268 2/27 10.0 1 269 2/28 13.5 1 270 3/ 1 14.0 -1 271 3/ 2 14 .0 0 272 3/ 3 11.5 5 273 3/ 4 9.0 -1 274 3/ 5 7.0 -1 275 3/ 6 9.0 -1 276 3/ 7 9.5 3 277 3/ 8 11 .0 2 278 3/ 9 15.0 -1 279 3/10 15.0 0 280 3/11 14.5 6 281 3/12 17.0 0 282 3/13 16.5 6 283 3/14 14.5 6 284 3/15 13.0 5 285 3/16 12.5 5 286 3/17 12.5 -0 287 3/18 15.0 3 288 3/19 16.0 1 IP s/ LAT.HT. PRECIP C (S+GAMMA) Md/KG MM 0 0.47 2.489 0.0 0 0.48 2.487 o.o 0 0.48 2.487 1 .0 0 0.48 2.487 0.0 0 0.47 2.489 0.0 0 0.45 2.491 0.0 0 0.45 2.491 o.o 0 0.44 2.494 0.0 0 0.44 2 . 494 0.0 o 0. 45 2.491 0.0 0 0.41 2 .498 0.0 5 0.39 2.501 0.0 0 0.41 2.498 7.4 5 0.47 2 . 489 24 .4 5 0. 53 2.479 27.6 5 0.51 2.482 51 .6 0 0.54 2.477 55 . 7 0 0.51 2.482 26.5 5 0.48 2.487 32. 1 5 0. 53 2 .479 53.2 0 0.48 2 .487 1 . 3 0 0.50 2.484 2.0 5 0.53 2.479 0.0 0 0. 53 2.479 4.5 5 0.51 2.482 0.8 0 0.51 2.482 12.7 5 0.50 2 .484 3.4 0 0.50 2 . 484 0.0 5 0.53 2.479 1 .9 0 0. 53 2 .479 0.0 0 0.53 2 . 479 0.0 0 0.53 2 .479 3.6 0 0.48 2.487 0.0 .5 0.45 2.491 0.0 .5 0.47 2.489 0.0 ,0 0.50 2.484 5.6 .5 0.51 2.482 5.6 O 0. 54 2.477 0.0 .5 0.54 2 .477 0.0 .5 0.57 2.472 0.4 .0 0.55 2.475 0.0 .O 0. 58 2.470 0.0 .0 0.57 2.472 0.0 .0 0.54 2.477 12.4 .0 0.54 2 .477 0.7 .5 0.51 2.482 0.0 .O 0. 55 2 .475 0.0 .0 0.55 2 .475 0.0 S.W.RAD L.W.RAD MAX S i.W. ATMOS MJ/M2D MJ/M2D MJ/M2D EMISSTY 6 . 6 -2 . 3 8. 8 0.68 2 . 7 -0. 9 9 . 0 0. 75 5. 2 -1 . 9 9 . 1 0.69 2 . 3 -0. 8 9. 3 0.75 7 . 4 -2. 4 9. 4 0.68 7 . 7 -2 . 5 9 . 6 0.68 5. 9 -1 . 9 9. 7 0.68 2 . 0 -0. 7 9 . 9 0. 74 6 . 4 -2 . 0 10. 0 0.68 3 . 6 -1 . 2 10. 1 0.74 5. 7 -2 . 0 10. 3 0.68 10. 3 -3 . 2 10. 4 0.68 2. 0 -0. 7 10. 6 0.74 2. 6 -0. 9 10. 7 0.74 1 . 7 -0, ,7 10. 9 0.75 3. 7 -1 . 1 1 1 . 2 0.75 1 . ,3 -0, .6 1 1 . 3 0.76 1 . .7 -0. .6 1 1 . 5 0.75 2 , .4 -0 .8 1 1 . 8 0.75 2 . , 3 -0 . 7 12 . 0 0.76 5. .0 -1 . 3 12 . 2 0. 75 4 . 1 - 1 . 1 12 . 3 0. 75 7, .4 -2 . 3 12 . 6 0.69 5 .3 -1 . 3 12 . 8 0.75 4 .8 -1 .2 13. .0 0.75 3 .8 -1 .O 13 . 1 0. 75 6 .7 -2 .0 13 . 4 0.69 10 .3 -2 .8 13 . 6 0.69 1 1 .6 -3 . 1 13 . 8 0. 70 12 .3 -3 . 2 14 O 0.69 9 .2 -2 .4 14 . 2 0.70 7 .6 -2 .0 14 .5 0. 70 10 .7 -2 . 7 14 .7 0.69 1 1 .5 -2 . 8 14 .9 0.68 10 .9 -2 .6 15 . 1 0.69 6 . 1 -1 . 3 15 .3 0. 75 12 .0 -2 .8 15 .5 0.69 14 .7 -3 . 4 15 .7 0. 70 9 .3 -2 .6 15 .9 0.70 13 .4 -3 . 5 16 . 1 0.70 14 .9 -3 .8 16 .4 0. 70 15 .6 -3 .9 16 .6 0.71 12 . 2 -3 . 1 16 .8 0.70 6 .2 -1 . 4 17 .0 0. 76 17 . 1 -4 . 1 17 .2 0.70 6 .9 -1 .5 17 .4 0.75 10 .9 -2 . 7 17 .6 0.70 17 .5 -4 . 1 17 .7 0.70 METEOROLOGICAL DATA : MESACHIE 1980- 1981 NO/ MONTH/ MAX TEMP MIN TEMP S/ LAT DAY DEG c DEG C (S+GAMMA) Mv. 289 3/20 18 . 0 - 1 . 0 0. 57 2 . 290 3/21 16 . 0 5 .0 0. 57 2 . 291 3/22 13 . 0 4 .0 0 .54 2 . 292 3/23 13 . 0 3 .0 0 .54 2. 293 3/24 12 . 0 1.0 0.51 2 . 294 3/25 12 . 0 6 .5 0 .54 2 . 295 3/26 17 . 0 2 . 5 0 .57 2 . 296 3/27 16 . 5 4 .0 0 .57 2 . 297 3/28 9. 5 6 . 0 0.51 2 . 298 3/29 9. 0 5.5 0.51 2. 299 3/30 9 . 0 5 .0 0.51 2 . 300 3/31 8 . 5 3 .0 0. 50 2 . 301 4/ 1 10. 5 2 .0 0.51 2 . 302 4/ 2 10. 0 3.5 0.51 2. 303 4/ 3 1 1 . 5 1 .0 0.51 2 304 4/ 4 1 1 . 0 3 .0 0.51 2 305 4/ 5 1 1 . .0 4 . 0 0 .53 2 306 4/ 6 1 1 , .0 2 .0 0.51 2 307 4/ 7 9. ,0 2.5 0 .50 2 308 4/ 8 8 . 0 4 . 0 0 .50 2 309 4/ 9 8 . 0 3 .0 0 .48 2 310 4/10 7 , .5 2 .0 0 .48 2 311 4/11 5. .5 0 . 0 0 .45 2 312 4/12 8 .0 0 . 0 0 .47 2 313 4/13 10 .5 -1 .5 0 .48 2 314 4/14 16 .0 - 1 . 0 0.54 2 315 4/15 16 .0 2 .0 0 .55 2 316 4/16 12 .5 4 .5 0 .54 2 317 4/17 15 .5 2 .0 0 .55 2 318 4/18 18 .0 0 .5 0 .57 2 319 4/19 20 .0 8 .0 0 .62 2 320 4/20 18 .0 7 ,0 0 .60 2 321 4/21 10 .5 6 .0 0. 53 2 322 4/22 12 .0 9 . 0 0 .55 2 323 4/23 14 .0 10 .0 0 .58 2 324 4/24 12 .5 4 . 0 0 .54 2 325 4/25 14 .0 1 .0 0. 54 2 326 4/26 15 .0 0 . 0 0.54 2 327 4/27 15 .5 5.5 0 .57 2 328 4/28 12 .5 7 .0 0 .55 2 329 4/29 14 .0 9.5 0 .57 2 330 4/30 17 .5 7 . 5 0 .60 2 331 5/ 1 13 .0 6 . 0 0 .55 2 332 5/ 2 1 1 .0 4 .0 0 .53 2 333 5/ 3 1 1 .0 5 .0 0 .53 2 334 5/ 4 10 .0 3.5 0.51 2 335 5/ 5 12 .5 2 .0 0 .53 2 336 5/ 6 12 .0 7 .0 0.54 2 .HT . PRECIP S.W.RAD L.W.RAD MAX S i .W. ATMOS i/KG MM MJ/M2D MJ/M2D MJ/M2D EMISSTY 472' 0 . 0 17 . 6 -4 . 1 18 . 0 0 . 7 0 472 0 . 0 7. 5 -1 . 5 18 . 2 0 .77 477 7.2 12 . 7 -3 . 0 18 . 4 0 . 7 0 477 12.8 14 . 0 - 3 . 2 18 . 5 0 . 7 0 482 0 . 0 1 1 . 8 -2 . 7 18. 8 0 .69 477 17.2 1 1 . 7 -2 . 7 19. 0 0 . 7 0 472 0 .9 18 . 7 -4 . 0 19. 1 0.71 472 0 . 0 6. 4 -1 . 2 19 . 3 0 .77 482 2 . 5 6. 4 -1 . 3 19 . 6 0 .75 482 17.0 6. 6 -1 . 3 19 . 7 0 .75 482 3. 1 8 . 8 - 1 . 6 19 . 9 0 .75 484 35 .0 1 1 . 7 -2 . 6 20. 1 0 .69 482 0 .4 17 . 7 -3 . 6 20. 3 0 .69 482 5.2 9. 3 -1 . 6 20. 5 0 .75 482 2.8 19. 2 -3 . 9 20. 7 0 .69 482 4 .5 5. 9 -1 . 1 20. 9 0 .75 479 37 .4 18 . 9 -3 . .7 21 . 1 0 .69 482 0 .4 13. .4 -2. . 7 21 . 2 0 .69 484 0 .4 10. 8 -2 , 3 21 . 5 0 .69 484 8.7 12 , 5 -2 . 5 21 . 6 0 .69 487 1 . 4 12 , .3 -2. .5 21 . 8 0 .69 487 95 .9 4. .2 -0 .9 22 , 0 0 .75 491 24 .6 13. .7 -3 .0 22 . 2 0 .68 489 0 . 0 14 .8 -3 . 2 22 . 4 0 .69 487 0 . 0 19 .9 -4 .2 22 , .6 0 .69 477 0 . 0 22 .8 -4 .8 22 . 8 0 . 7 0 475 5.2 10 . 1 - 1 .8 22 .9 0 .76 477 6 .6 1 1 .6 -2 .0 23 . 1 0 .76 475 0 . 0 22 . 2 -4 .6 23 .3 0 . 7 0 .472 0 . 0 22 .8 -4 .6 23 .5 0.71 .463 0 . 0 23 .8 -4 . 7 23 .7 0 .72 .467 0 .4 7 .9 - 1 .4 23 .9 0 .78 .479 6 .0 7 .8 -1 .4 24 .0 0 .75 .475 20 .9 5 .4 -1 . 1 24 .2 0 .76 .470 8.5 6 .0 -1 . 2 24 .4 0 .77 .477 13.5 15 .3 -3 . 1 24 .6 0 . 7 0 .477 0 . 0 23 .8 -4 .6 24 . 7 0 . 7 0 .477 0 . 0 20 .8 -4 .0 25 .0 0 . 7 0 .472 9 .9 5 . 1 - 1 .0 25 . 1 0 .77 .475 20 .4 5 . 2 -1 .0 25 . 3 0 .76 .472 2 .0 1 1 .8 -1 .9 25 . 5 0 .77 .467 0 .4 8 . 2 - 1 . 4 25 .6 0 .78 .475 8 . 5 1 1 .6 -1 .8 25 .8 0 .76 .479 14.0 12 .5 -2 .0 25 .9 0 .75 .479 7.2 8 .4 -1 .4 26 . 1 0. 75 .482 2 . 3 16 .8 -3 . 2 26 . 2 0 .69 .479 0 .3 18 . 7 -3 .5 26 .4 0 .69 .477 1 . 7 7 .8 - 1 .3 26 .5 0 .76 METEOROLOGICAL DATA : MESACHIE 1980- 1981 DAY NO. MONTH/ MAX TEMP MIN TEMP S/ LAT .HT. PRECIP S . W.RAD L.W.RAD MAX S ; .W. ATMOS DAY DEG C DEG C (S+GAMMA) MJ/KG MM MJ/M2D MJ/M2D MJ/M2D EMISSTY 337 5/ 7 10. 5 7 . 5 0. 53 2 . 479 7 . 7 7 . 5 -1 . 3 26 . 7 0 .76 338 5/ 8 14. 0 3 . 0 0. 54 2. 477 0. 0 17. 7 -3 . 3 26 . 9 0 . 7 0 339 5/ 9 14 . 0 7 . 0 0. 57 2 . 472 1 . 6 19 . 8 -3 . 6 27 . 0 0 . 7 0 340 5/10 14 . 5 4 . 5 0. 55 2 . 475 0. 0 14. 9 -2 . 8 27 . 2 0 . 7 0 341 5/11 16. 0 4 . 5 0. 57 2 . 472 0. 0 21 . 8 -3 . 9 27 . 3 0.71 342 5/12 20. 0 4. 0 0. 61 2 . 465 0. 0 26 . 4 -5 . 1 27 . 4 0 .72 343 5/13 20. 0 9. 5 0. 62 2 . 463 0. 6 8 . 3 -1 . 4 27 . 6 0 .79 344 5/14 15. 0 9. 0 0 . 58 2 . 470 0. 0 12 . 0 -1 . 9 27 . 7 0 .77 345 5/15 15. 0 4 . 0 0. 55 2. 475 0. 0 21 . 8 -4. ,3 27 . 8 0 . 7 0 346 5/16 16. ,5 6. 5 0. 58 2 . 470 0. 0 24 . 9 -4 . ,7 28 . 0 0.71 347 5/17 17 . 0 7. 5 0. 60 2 . 467 2 . 2 8 . 8 -1 . .5 28 . 0 0 .77 348 5/18 19. 0 9. 5 0. 62 2 . 463 0. 1 12 . 1 -1 . ,9 28 . 2 0 . 78 349 5/19 17. .0 10. ,0 0 . 61 2. 465 10. 2 10. 1 -1 . .6 28 . 3 0 .78 .X 350 5/20 18. , 5 1 1 . ,0 0. 62 2 . 463 0. 0 17 . 5 -3 . 4 28 . 3 0 .72 351 5/21 19. .0 9, ,5 0 . 62 2. 463 0. ,0 1 1 . 6 -1 . 8 28 . 5 0 . 78 352 5/22 17. .5 7 , .5 0. 60 2 . 467 0. ,0 17 . ,5 -3 .4 28 . 5 0.71 353 5/23 19, .5 9, .0 0. 62 2. 463 0, ,0 14 . , 1 -2, . 1 28. 6 0 .79 354 5/24 19. .0 12, . 5 0. 63 2 . 461 11, .0 10. , 1 -1 , .6 28. 8 0 .79 355 5/25 16, .5 8 .5 0. 60 2. 467 21 , . 4 13. ,0 -2 .0 28. 8 0 .77 356 5/26 15 .5 6 .5 0. 57 2. .472 0 .0 19 , 8 -3 .8 29 . 0 0.71 357 5/27 19 .5 4 .0 0. 60 2 . 467 0 .0 27 . 8 -5 .0 29. 1 0.71 358 5/28 23 .5 9 .0 0. 65 2 . 458 0 .0 24 , .7 -4 .4 29. 1 0 .74 359 5/29 24 .3 9 . 5 0. 66 2 . 455 0 .5 7 , .5 -1 .2 29. 3 0 . 8 0 360 5/30 17 .0 10 .0 0. 61 2 . 465 1 .0 17 , .8 -3 .4 29. , 3 0 .72 361 5/31 19 .0 5 .0 0. 60 2 , .467 0 .0 29, .4 -5 .2 29. .4 0.71 362 6/ 1 22 .0 6 .0 0. 63 2, .461 0 .0 22 , .7 -4 . 1 29. 5 0 .73 363 6/ 2 19 .5 8 .0 0. 62 2, .463 0 .0 14 .4 -2 . 1 29. .6 0 .78 364 6/ 3 16 .5 10 .5 0. ,60 2, .467 6 .5 1 1 .6 -1 .8 29. ,6 0 .78 365 6/ 4 15 .0 9 . 5 0. ,58 2 .470 4 .8 9 .7 -1 .6 29. ,6 0 .77 366 6/ 5 14 .5 10 .5 0. ,58 2 .470 17 .4 8 . 2 -1 .4 29. ,6 0 .77 367 6/ 6 15 .5 8 .0 0. .58 2 .470 1 .8 17 .7 -3 .4 29, . 7 0.71 368 6/ 7 15 .0 v 5 . 5 0. ,57 2 .472 0 .4 19 .5 -3 .6 29, . 7 0 . 7 0 369 6/ 8 15 .0 6 .0 0. .57 2 .472 2 .4 8 .9 -1 .5 29, . 8 0 .77 370 6/ 9 15 .0 9 .5 0, .58 2 .470 5 .0 12 .4 -1 .9 29. .8 0 .77 371 6/10 13 .5 8 .0 0, .57 2 .472 7 .3 15 .7 -3 .0 29, .9 0 . 7 0 372 6/11 17 .5 5 .0 0, .58 2 .470 0 .2 23 . 2 -4 .2 29, .9 0.71 373 6/12 17 .0 7 . 5 0, .60 2 .467 1 .5 17 .5 -3 .3 29, .9 0.71 374 6/13 14 .5 6 .5 0. .57 2 .472 3 .6 12 . 3 -2 .0 30 .0 0. 77 375 6/14 17 .5 8 .0 0, .60 2 .467 0 .2 18 . 2 -3 .6 30 .0 0.71 376 6/15 17 .5 7 .0 0 .60 2 .467 0 .5 8 .9 -1 .5 30 . 1 0 . 78 377 6/16 16 .0 8 .5 0 .58 2 . 470 4 .9 18 .9 -3 . 7 30 . 1 0.71 378 6/17 13 .5 7 .0 0 .55 2 .475 0 .5 1 1 .2 -1 .8 30 . 1 0 .76 379 6/18 13 .0 8 .0 o .55 2 .475 22 .2 6 .5 -1 . 3 30 . 1 0 .76 380 6/19 15 .0 10 . 5 0 .58 2 .470 1 .6 12 .4 -2 .0 30 . 2 0 .77 381 6/20 15 .0 8 .0 0 .58 2 .470 1 .5 12 . 1 -1 .9 30 . 2 0 .77 382 6/21 14 .0 8 . 5 0 .57 2 .472 12 .0 9 .0 -1 .6 30 . 2 0 .77 383 6/22 15 .5 10 .0 0 .60 2 .467 4 .5 12 . 1 -1 .9 30 . 2 0 .77 384 6/23 14 .5 9 . 5 0 .58 2 .470 2 .5 10 .8 -1 .8 30 . 1 0 .77 METEOROLOGICAL DATA : MESACHIE 1980- 1981 DAY NO. MONTH/ MAX TEMP MIN TEMP S/ LAT.HT. DAY DEG c DEG c (S+GAMMA) MJ/KG 385 6/24 22 . 0 6. 0 0. 63 2.461 386 6/25 25 . 5 9. 0 0. 67 2.454 387 6/26 25 . 0 9. 5 0. 67 2.454 388 6/27 22 . 0 9. 0 0. 63 2.461 389 6/28 23 . 0 9. 0 0. 65 2.458 390 6/29 21 . 0 1 1 . 5 0. 65 2 .458 391 6/30 21 . 0 12 . 0 0. 65 2.458 392 7/ 1 20. 5 1 1 . 5 0. 63 2.461 393 7/ 2 25. 5 9. 5 0. 67 2.454 394 7/ 3 26 . 0 1 1 . 5 0. 68 2 .452 395 7/ 4 27 . 6 1 1 . 0 0. 69 2 . 449 396 7/ 5 27 . 5 12 . 0 0. 69 2.449 397 7/ 6 22 . 0 9. 0 0. 63 2.461 398 7/ 7 18 . 5 9. 5 0. 61 2.465 399 7/ 8 17 . 0 9. .0 0. 60 2.467 400 7/ 9 19 . 0 9. ,0 0. 62 2 .463 401 7/10 18 . 5 9. .5 0. 61 2 .465 402 7/1 1 19 . 0 9. .0 0. 62 2 .463 403 7/12 22 .5 10. .5 0. 65 2.458 404 7/13 22 , .0 12. .0 0. 65 2.458 405 7/14 22 .0 13 .0 0. 66 2.455 406 7/15 27 .0 1 1 . .0 0. 68 2.452 407 7/16 29 .0 13 .0 0. 70 2.447 408 7/17 30 .0 12 .5 0. 72 2.444 409 7/18 26 .0 13 .0 0. 68 2.452 410 7/19 22 .0 14 .0 0. 66 2.455 41 1 7/20 23 .5 14 .5 0. 67 2.454 412 7/21 23 .5 14 .0 0. .67 2.454 413 7/22 22 .5 13 .0 0. .66 2.455 414 7/23 23 .5 14 .0 0. .67 2 .454 415 7/24 27 .5 12 .0 0. .69 2.449 416 7/25 30 .5 13 .0 0. .72 2 .444 417 7/26 30 .5 14 .0 0 .73 2.442 418 7/27 31 .0 15 .5 0 .74 2.440 419 7/28 30 .0 12 .0 0 . 72 2.444 420 7/29 19 .0 13 .0 0 .63 2 .461 421 7/30 20 .5 12 .5 0 .65 2.458 422 7/31 24 .5 1 1 . 5 0 .67 2.454 423 8/ 1 26 .5 9 .0 0 .67 2.454 424 8/ 2 26 .5 10 .5 0 .68 2 .452 425 8/ 3 22 .0 12 .5 0 .66 2 .455 426 8/ 4 25 .5 10 .0 0 .67 2.454 427 8/ 5 27 .5 1 1 .0 0 .69 2.449 428 8/ 6 33 .0 12 .0 0 . 74 2.440 429 8/ 7 36 .0 14 .5 0 .76 2.432 430 8/ 8 38 .0 15 .0 0 .77 2.430 431 8/ 9 37 .5 16 .0 0 . 77 2.430 432 8/10 36 .5 16 .5 0 . 77 2.430 CIP S.W.RAD L.W.RAD MAX S ,.W. ATMOS MM MJ/M2D MJ/M2D MJ/M2D EMISSTY 0. 0 28. 8 -5. 2 30. 1 0. 73 0. 0 29. 4 -5 . 2 30. 1 0.74 0. 0 29. 0 -5 . 1 30. 1 0.74 0. 0 27 . 5 -5. 0 30. 1 0. 73 0. 0 13. 1 -1 . 9 30. 1 0.80 1. 8 20. 6 -3. 9 30. 0 0.73 0. 3 1 1 . 7 -1 . 8 30. 0 0.80 0. 5 28. 9 -5. 2 29. 9 0.73 0. 0 27 . 3 -4 . 9 29. 9 0.74 0. 0 25. 1 -4 . 5 29. 9 0.75 0. 0 27, 7 -4 . 8 29. 8 0.75 0. 0 26. 8 -4 . 7 29. 7 0.76 0. 0 15. 2 -3. 0 29. 7 0.73 0. 0 19. 0 -3 . 7 29. 6 0.72 0. 0 16. 2 -3. 3 29. 6 0.71 0. 0 14. 9 -3 . 0 29. 5 0. 72 6 . 9 13. 3 -2 . 1 29. 5 0.78 0. 9 22 . 1 -4 . 3 29. 4 0. 72 0. 0 21 . 7 -4 . 1 29 . 3 0.73 0. .5 7. . 1 - 1 . .2 29 . 3 0.80 0. .0 24 . 3 -4 . 4 29 . 3 0. 74 0. .0 26. .9 -4. . 7 29. 2 0. 75 0, ,0 24 . 0 -4 . 2 29. 1 0.76 0. .0 20. ,0 -3, .5 29. 0 0. 77 0. .0 20. .0 -3. .7 28. 8 0.75 0. .0 7. .8 -1 . 3 28. 8 0.80 0. .0 23. . 3 -4 . 3 28. 6 0.75 0. .3 12 . 3 - 1 . .8 28. 5 0.81 0 .0 14 . 5 -2 .9 28 . 4 0. 74 0 .0 19 . 2 -3 . 7 28. , 3 0.74 0 .0 26 .0 -4 . 7 28 . 2 0.76 0 .0 25 . 7 -4 .5 28 . 1 0.77 0 .0 25 . 7 -4 .5 28 . 0 0. 77 0 .0 25 .6 -4 .4 27 . 9 0.78 0 .0 9 .2 -1 . 3 27. .7 0.83 1 .0 14 . 8 -3 . 1 27 . 7 0.73 0 .0 13 .7 -2 . 1 27 . 6 0.80 0 .0 24 .5 -4 .7 27 . 4 0.74 0 .0 26 .0 -4 .9 27 . 2 0.75 0 .0 24 .0 -4 .6 27 . 1 0. 75 0 .0 21 . 4 -4 . 3 26 .9 0.74 0 .0 24 . 7 -4 .8 26 . 7 0.74 0 .0 24 .5 -4 . 7 26 . 5 0.75 0 .0 24 . 2 -4 .4 26 . 4 0.78 0 .0 23 . 5 -4 . 1 26 . 1 0.79 0 .0 23 .6 -4 .0 26 .0 0.80 0 .0 23 . 4 -4 .0 25 .8 0.80 0 .0 23 . 4 -4 . 1 25 .6 0.80 vO -P-METEOROLOGICAL DATA : MESACHIE 1980- 1981 NO. MONTH/ MAX TEMP MIN TEMP S/ LAT .HT . DAY DEG C DEG C (S+GAMMA) Md/KG 433 8/11 36 . 5 16. 5 0. 77 2.430 434 8/12 36 . 5 15 . 0 0. 76 2.432 435 8/13 30. 5 15. 0 0. 73 2.442 436 8/14 31 . 0 15 . 0 0 . 73 2 .442 437 8/15 30. 0 13 . 0 0 . 72 2.444 438 8/16 30. 5 13. 0 0 . 72 2 .444 439 8/17 29 . 5 12. 5 0. 72 2 .444 440 8/18 32 . 5 12. 5 0. 74 2 .440 441 8/19 32 . 5 1 1 . 5 0. 73 2.442 442 8/20 19 . 5 14 . 0 0 . 63 2.461 443 8/21 23 . 5 9. 0 0. 65 2 .458 444 8/22 26 . 0 1 1 . 0 0. 68 2.452 445 8/23 29 . 5 14 . O 0. 72 2.444 446 8/24 30. .0 12 . 5 0. 72 2.444 447 8/25 18 . 0 10. .5 0 . 61 2.465 448 8/26 21 . 0 8. O 0. 62 2.463 449 8/27 21 . ,0 10. .0 0. 63 2.461 450 8/28 21 . 0 9 . 0 0. 63 2 .461 451 8/29 21 . 0 12 . 0 0. 65 2.458 452 8/30 21 . 5 12 . 5 0. 65 2.458 453 8/31 21 .5 10. .0 0. 63 2 .461 454 9/ 1 17 .0 12 . 5 0. 61 2.465 455 9/ 2 22 .0 10. .0 0. 65 2.458 456 9/ 3 20 .5 10. .5 0. 63 2.461 457 9/ 4 17 .0 12 .5 0. 61 2.465 458 9/ 5 23 .0 10 .0 0. 65 2.458 459 9/ 6 26 .5 9 .5 0. 68 2.452 460 9/ 7 30 .5 10 .0 0. .70 2.447 461 9/ 8 29 .5 1 1 .5 0. .70 2.447 462 9/ 9 26 .0 14 .5 0 .69 2.449 463 9/10 22 .5 1 1 .0 0. .65 2.458 464 9/11 24 .5 1 1 .0 0 .67 2.454 465 9/12 25 .0 9 .0 0 .66 2 .455 466 9/13 23 .0 9 .0 0 .65 2 .458 467 9/14 26 .0 8 .5 0 .67 2.454 468 9/15 29 .0 9 .0 0 .69 2 .449 469 9/16 28 .5 1 1 .0 0 .69 2.449 470 9/17 26 .5 12 .0 0 .68 2.452 471 9/18 22 .0 12 .0 0 .65 2.458 472 9/19 17 .5 9 .0 0 .61 2.465 473 9/20 17 .0 7 .0 0 .60 2.467 474 9/21 12 .0 9 .0 0 .55 2.475 475 9/22 13 .0 8 .0 0 .55 2.475 476 9/23 13 . 5 5 .5 0 .55 2.475 477 9/24 13 .5 6 .5 0 .55 2.475 478 9/25 15 .5 6 .0 0 . 57 2.472 479 9/26 15 .0 5 .0 0 .57 2.472 480 9/27 15 .0 9 .0 0 .58 2 .470 PRECIP S.W.RAD L.W.RAD MAX S.W. ATMOS MM Md/M2D Md/M2D Md/M2D EMISSTY 0 . 0 24 . 0 -4 . 2 25 . 4 0 . 8 0 0 . 0 23. 9 -4 . 2 25 . 3 0 . 8 0 0 . 0 23 . 2 -4 . 5 25 . 0 0 .77 0 . 0 22 . 5 -4 . 3 24 . 9 0 .77 0 . 0 22 . 5 -4 . 1 24 . 7 0 .77 0 . 0 22. 2 -4 . 1 24 . 5 0 .77 0 . 0 23 . 7 -4 . 4 24 . 3 0 .76 0 . 0 23 . 8 -4 . 3 24 . 2 0 .78 0 . 0 15. 2 -2 . 9 24 . 0 0 .77 0 . 0 9. 6 -1 . 6 23 . 8 0 .79 0 . 0 21 . 8 -4 . 5 23 . 7 0 .74 0 . 0 20. 8 -4 . 2 23 . 4 0 .75 0 . 0 20. 6 -4 . 0 23 . 3 0 .77 7.2 1 1 . 2 -1 . 6 23 . 1 0 .83 18.4 18 . 8 -4 . 1 22 . 9 0 .72 0 . 0 17 . 9 -4 . 0 . 22 . 7 0 .73 0 . 0 14 . 0 -3 . 2 22 . 6 0 .73 0 . 0 15 . 3 -3 . 5 22 . 3 0 .73 1 .0 12 . 6 -3 . .0 22 . 2 0 .73 0 . 0 19. 8 -4 . 4 22 . 0 0 .73 11.6 9. .3 -1 , .7 21 . 8 0 .79 19.2 10. .7 -2 . ,0 21 . 7 0 .78 0 . 0 15. .9 -3 . 7 21 , 5 0 .73 0 .9 12. . 1 -3 . .0 21 .2 0 .73 O.O 9 .5 - 1 .8 21 .0 0 .78 0 . 0 18 .2 -4 . 2 20 .9 0 .74 0 . 0 18 .8 -4 . 3 20 . 7 0 .75 0 . 0 19 . 1 -4 . 2 20 .4 0 .76 0 . 0 19 . 1 -4 . 3 20 .2 0 .76 0 .6 9 . 7 -1 .7 20 . 1 0 .82 0 .4 17 .6 -4 .3 19 .9 6.74 0 . 0 18 . 1 -4 .4 19 .6 0 .74 0 . 0 18 .7 -4 .6 19 .4 0 .74 0 . 0 19 .2 -4 .8 19 .3 0 .73 0 . 0 18 .8 -4 . 7 19 . 1 0 .74 0 . 0 18 .8 -4 .6 18 .8 0 .76 0 . 0 18 .5 -4 .0 18 . 7 0 .76 0 . 0 15 .4 -3 .5 18 . 5 0 .75 0 .5 6 .9 -1 . 3 18 .3 0 . 8 0 5.4 14 . 1 -3 . 5 18 .0 0 .72 4 .9 6 .9 -1 .5 17 .9 0 .77 43 .4 6 .9 -1 .5 17 .7 0 .76 6 .6 9 .8 -2 .7 17 .4 0 . 7 0 0.2 8 .9 -2 .5 17 .2 0 . 7 0 3.2 10 .5 -2 .9 17 . 1 0 . 7 0 O.O 14 .5 -3 .8 16 .9 0.71 0. 1 10 .6 -3 .0 16 .6 0. 70 4.4 7 .0 -1 .6 16 . 4 0 .77 METEOROLOGICAL DATA : MESACHIE 1980-1981 DAY NO. MONTH/ MAX TEMP MIN TEH DAY DEG C DEG 481 9/28 16. 0 9 482 9/29 13. 5 3 483 9/30 14. 0 9 484 10/ 1 14 . 0 10 485 10/ 2 13. 5 5 486 10/ 3 1 1 . 5 3 487 10/ 4 12. 5 1 488 10/ 5 1 1 . .5 4 489 10/ 6 12. .5 10 490 10/ 7 12 . 5 8 491 10/ 8 1 1 .0 7 492 10/ 9 13. .0 3 493 10/10 12 .0 5 494 10/1 1 13 .0 0 495 10/12 14 .0 1 496 10/13 16 .0 2 497 10/14 16 .0 3 498 10/15 16 .0 4 499 10/16 16 .0 5 500 10/17 16 .0 7 501 10/18 15 . 5 5 502 10/19 1 1 .0 6 503 10/20 14 .0 4 504 10/21 14 .0 -1 505 10/22 17 . 5 0 506 10/23 17 . 5 2 507 10/24 15 .0 4 508 10/25 15 . 5 5 509 10/26 1 1 . 5 6 510 10/27 12 .0 8 511 10/28 1 1 . 5 5 512 10/29 8 .5 5 IP s/ LAT ' .HT . PRECIP C (S+GAMMA) MJ/KG MM 5 0 .60 2 . 467 13.4 5 0 .54 2 . 477 0 .5 0 0.57 2 . 472 8.2 0 0.58 2 . 470 39 .8 0 0 .55 2 . 475 0.2 5 0 .53 2 . 479 8.6 0 0 .53 2 . 479 1 .2 5 0.53 2. 479 20.2 0 0 .57 2 . 472 27 .8 0 0 .55 2. 475 26 . 1 0 0 .54 2 . 477 21 .4 5 0 .54 2 . 477 2.8 0 0.54 2 . 477 0 .6 5 0 .53 2 . 479 0 .8 0 0.54 2. 477 0 . 0 0 0 .55 2 . 475 0 .3 0 0 .57 2 . 472 0.2 0 0 .57 2 . 472 0 .4 5 0 .57 2. 472 0 . 0 0 0 .58 2 . 470 0 . 0 5 0 .57 2 . 472 0 . 0 5 0 .53 2 . 479 0 .4 .0 0 .55 2. .475 0 . 0 .0 0 .53 2. .479 0 . 0 .0 0 .57 2 .472 0 . 0 .0 0 .57 2 .472 0 . 0 .0 0 .55 2 .475 0 . 0 .0 0 .57 2 .472 0 . 0 .0 0 .54 2 .477 4 .5 .0 0 .55 2 .475 55 .5 .5 0 .53 2 .479 30.2 .5 0 .50 2 .484 14.9 S.W.RAD L.W.RAD MAX S.W. ATMOS MJ/M2D MJ/M2D MJ/M2D EMISSTY 13. 2 -3 . 6 16. 3 0.71 9. 6 -2 . 8 16. 1 0 . 7 0 6. 9 -1 . 6 15 . 8 0. 77 2. 0 - 0 . 7 15. 6 0. 77 1 1 . 2 - 3 . 3 15. 4 0 . 7 0 1 1 . 7 -3 . 5 15. 3 0 . 6 9 8. 9 -2 . 8 15. 0 0 . 6 9 1 . 6 -0 . 7 14. 8 0 .76 3. 7 -1 . 1 14 . 6 0. 76 5. 8 - 1 . 6 14 . 4 0 .76 3. 4 -1 . 1 14. 2 0 .76 9. 0 -3 . 0 14 . 0 0 . 7 0 9. . 1 -3 . , 1 13. 8 0 . 7 0 1 1 . .9 -3 . 9 13. 6 0 . 6 9 10. 5 -3 . .6 13. ,4 0 . 7 0 10. , 7 -3 , .7 13, . 1 0. 70 10. .4 -3 . 6 12 . ,9 0 . 7 0 8. .2 -3 , .0 12 , .8 0 . 7 0 8 .8 -3 . 2 12, .6 0.71 6. . 7 -2. .2 12, .4 0.71 6 . 5 -2 . 2 12 .2 0.71 3 .0 -O .9 12 .0 0 .76 8 .4 -2 .8 1 1 .8 0 . 7 0 9 .7 -3 . 2 1 1 .7 0 .69 9 . 7 -3 . 3 1 1 .5 0 . 70 8 .4 -2 .9 1 1 .3 0.71 8 .2 -2 .9 1 1 . 1 0 . 7 0 4 .9 -1 .5 10 .9 0 .77 5 . 1 -1 .5 10 .7 0 .76 1 .7 -0 .7 10 .6 0 . 76 3 .3 -1 . 1 10 .4 0 .76 3 .7 -1 .2 10 .2 0 .75 197 -APPENDIX 5 Plot of K+ (earth surface)/K+ (extraterrestial) against (sunshine hours)/(daylight hours) A regression yields the relationship: K+ (earth surface)/K+ (extraterrestial) = 0.47 (sunshine hours)/(daylight hours) + 0.295 r 2 = 0.92. This relationship was used to determine K+ (earth surface) when the solarimeter was out of operation from August 23, 1981 to September 30, 1981. 198 00 O o ID o • o UJ d CM O q d 0 0 0.1 0 .2 0 . 3 0 .4 0 . 5 0 . 6 0 .7 0 .8 0 .9 SUNSHINE HRS./DAYLIGHT HRS. - 199 -APPENDIX 6 Volumetric s o i l water contents at specified depths determined by neutron probe at sites 0 to 6 from Dune 5, 1980 to October 28, 1981 Zeros in column headings indicate no neutron probe measurement depths, and zeros below indicate no access tubes installed or data not obtained. SITE O SOIL WATER ! CONTENT BY DEPTH: AVG.VOL.FRAC. EACH SET DATA DATE TUBES 1-3 : DEPTH SET 1E i CM 22 ! CM 0 CM 0 CM 0 CM 0 CM 1 JUNE 5 1980 0 . 000 0. 284 0 . 000 0. 000 0. 000 0 . 000 2 JUNE 14 1980 0 . 000 0. 289 0. 000 0. 000 0. 000 0. 000 3 JUNE 19 1980 0 . 000 0. 271 0 . 000 0. 000 0. 000 0. 000 4 JUNE 26 1980 0. 264 0. 304 0 . 000 0. 000 0. 000 0. 000 5 JULY 4 1980 0. 274 0. 318 0. 000 0. 000 0. 000 0. 000 6 JULY 10 1980 0 . 254 0. 295 0. 000 0. 000 0. 000 0. 000 7 JULY 17 1980 0. 244 0. 287 0. 000 0. 000 0. 000 0. 000 8 JULY 25 1980 0 . 210 0. 246 0. 000 0. 000 0. 000 0. 000 9 JULY 31 1980 0 . 160 0. 195 0. 000 0. 000 0. 000 0. 000 10 AUG 7 1980 0 . 1 17 0. 148 0. 000 0. 000 0. 000 0. OOO 1 1 AUG 15 1980 0 . 092 0. 119 0. 000 0. 000 0. 000 0. 000 12 AUG 20 1980 0 . 087 0. 113 0. OOO 0. 000 o :ooo 0. 000 13 AUG 30 1980 0 . 079 0. 103 0. 000 0. 000 0. 000 0. 000 14 SEPT 4 1980 0 . 1 19 0 . 136 0. 000 0. 000 0. 000 0. 000 15 SEPT 16 1980 0 . 121 0. 154 0. 000 0. 000 0. 000 0. 000 16 SEPT 23 1980 0 . 179 0. 210 0. 000 0. 000 0. 000 0. 000 17 SEPT 30 1980 0. 218 0. 250 0. 000 0. ,000 0. 000 0. OOO 18 OCT 7 1980 0 . 183 0. 221 0. 000 0. .000 0. 000 0. .000 19 OCT 13 1980 0 . 211 0. 239 0. ,000 0. ,000 0. 000 0. 000 20 OCT 21 1980 0 . 000 0. 000 0. OOO 0. ,000 0. ,000 0. ,000 21 OCT 28 1980 0 . 214 0. 247 0. .000 0, ,000 0, ,000 0. ,000 22 NOV 4 1980 0 . OOO 0. 000 0. ,000 0. ,000 0. ,000 0, ,000 23 NOV 18 1980 0 . 283 0. 336 0. ,000 0, ,000 0. ,000 0. .000 24 DEC 2 1980 0 . 299 0. 357 0. OOO 0. .000 0. ,000 0. .000 25 DEC 15 1980 0. 292 0. 340 0, .000 0. .000 0, ,000 0, .000 26 JAN 9 1981 0. 288 0. 337 0. .000 0. .000 0. .000 0. .000 27 JAN 23 1981 0. 287 0. 339 0. .000 0. .000 0. .000 0, ,000 28 FEB 7 1981 0. 270 0. 314 0. .000 0. .000 0. .000 0. .000 29 FEB 19 1981 0. 304 0. 356 0 ,000 0, .000 0. .000 0. .000 30 MAR 13 1981 0. 259 0. 303 0. .000 0 .000 0, .000 0. .000 31 MAR 27 1981 0. 276 0. 321 0. .000 0 .OOO 0. . 000 0. .000 32 APR 16 1981 0. 298 0. 351 0 .OOO 0 .000 0. .000 0 .000 33 MAY 6 1981 0. 294 0. , 332 0 .OOO 0 .000 0 .000 0 .000 34 MAY 19 1981 0. 264 0. 31 1 0 .000 0 .000 0 .000 0 .000 35 JUNE 2 1981 0. ,264 0. ,300 0 .000 0 .000 0 .000 0 .000 36 JUNE 15 1981 0. 275 0. 315 0 .000 0 .000 0 .000 0 .000 37 JUNE 30 1981 0. ,264 0. . 302 0 .000 0 .000 0 .000 0 .000 38 JULY 6 1981 0. ,224 0. , 256 0 .000 0 .000 0 .000 0 .000 39 JULY 13 1981 0. ,214 0. ,245 0 .000 0 .000 0 .000 0 .000 40 JULY 21 1981 0. , 155 0. . 188 0 .000 0 .000 0 .000 0 .000 41 JULY 27 1981 0. , 1 18 0. . 144 0 .000 0 .000 0 .000 0 .000 42 AUG 4 1981 0. ,096 0, . 1 18 0 .000 0 .000 0 .000 0 .000 43 AUG 10 1981 0. ,083 0. , 109 0 .000 0 .000 0 .000 0 .000 44 AUG 17 1981 0. ,078 0. .099 0 .000 0 .000 0 .000 0 .000 45 AUG 24 1981 0. .080 0. .097 0 .000 0 .000 0 .000 0 .000 46 SEPT 1 1981 0. .230 0 . 257 0 .000 0 .000 0 .000 0 .000 47 SEPT 1 1 1981 0 . 190 0 .214 0 .000 0 .000 0 .000 0 .000 48 SEPT 25 1981 0 .242 0 . 276 0 .000 0 .000 0 .000 0 .OOO 49 OCT 9 1981 0 . 292 0 . 320 0 .000 0 .000 0 .000 0 .000 50 OCT 28 1981 0 . 304 0 . 339 0 .000 0 .000 0 .000 0 .000 3 NEUTRON PROBE ACCESS TUBES. TUBES 4-6:DEPTH 15 CM 2E i CM 0 CM 0 CM 0 CM 0 CM 0 . 000 0. 000 0. 000 0 . 000 0 . 000 0 . 000 0. 000 0 . 288 0. 000 0 . 000 0 . 000 0 . 000 0. 000 0 . 278 0. 000 0 . 000 0 . 000 0 . 000 0 . 272 0. 293 0. 000 0. 000 0 . 000 0 . 000 0. 297 0 . 323 0. 000 0. 000 0 . 000 0 . 000 0. 275 0 . 290 0. 000 0. 000 0 . 000 0 . 000 0 . 264 0. 283 0. 000 0. 000 0 . 000 0 . 000 0 . 236 0. 248 0. 000 0. 000 0 . 000 0 . 000 0 . 191 0. 208 0. 000 0. 000 0 . 000 0. OOO 0 . 147 0 . 163 0. 000 0. 000 0. 000 0. 000 0 . 108 0. 128 0. 000 0. 000 0. 000 0. 000 0 . 101 0. 123 0. OOO 0. 000 0. 000 0. 000 0 . 087 0. 112 0. 000 0. 000 0. 000 0. 000 0 . 120 0 . 128 0. 000 0. 000 0. 000 0. 000 0. 136 0 . 157 0. ,000 0. 000 0. 000 0. ,000 0. 182 0 . 196 0. ,000 0. ,000 0. ,000 0. 000 0. 210 0. 215 0. ,000 0. ,000 0. 000 o. ,000 0. 201 0. 203 0. ,000 0. .000 0. ,000 0. .000 0. 219 0. 239 0. .000 0. ,000 0. ,000 0. OOO 0. 000 0. 000 0 .000 0, ,000 0. .000 0. .000 0. 230 0. 248 0. .000 0. .000 0. .000 0. ,000 0. 000 0. 000 0. .000 0, .000 0. .000 0. 000 0. 296 0. 335 0. .000 0, .000 0. .000 0. ,000 0. 314 0. 350 0 .000 0 .OOO 0. OOO 0. OOO 0. ,303 0. 333 0. .000 0. .000 0. .000 0. .000 0. .000 0. 000 0 .000 0. .000 0. .000 0 .000 0. ,297 0. 320 0. .000 0. .000 0. .000 0. .000 0. .282 0. 302 0 .000 0. .000 0. .000 0. .OOO 0. ,312 0. 336 0 .000 0, .000 0, .000 0. .OOO 0. ,280 0. 297 0 .000 0 .000 0. .000 0, .000 0. . 290 0. 309 0 .000 0 .000 0. .000 0. .000 0. ,314 0. ,339 0 .000 0 .000 0. .000 0. .000 0. . 302 0. 316 0 .000 0 .000 0. .000 0 .000 0. .279 0. ,294 0 .000 0 .000 0 .000 0 .000 0, ,267 0. ,283 0 .000 0 .000 0 .000 0 .000 0. .284 0. ,297 0 .000 0 .000 0 .000 0 .OOO 0. .280 0. ,291 0 .000 0 .000 0 .000 0 .000 0. . 234 0, , 251 0 .000 0 .000 0 .000 0 .000 0, .219 0. ,236 0 .000 0 .000 0 .000 0 .000 0 . 167 0. . 183 0 .000 0 .000 0 .000 0 .000 0 . 132 0, . 147 0 .000 0 .000 0 .000 0 .000 0 . 101 0. . 120 0 .000 0 .000 0 .000 0 .000 0 .093 0. .112 0 .000 0 .000 0 .000 0 .000 0 .086 0 . 103 0 .000 0 .000 0 .000 0 .000 0 .088 0 . 102 0 .000 0 .000 0 .000 0 .000 0 .212 0 . 236 0 .000 0 .OOO 0 .000 0 .000 0 . 191 0 .210 0 .000 0 .000 0 .000 0 .000 0 . 250 0 .276 0 .000 0 .OOO 0 .000 o .ooo 0 . 285 0 .315 0 .000 0 .000 0 .000 0 .000 0 . 306 0 .365 0 .000 0 .000 0 .000 0 .000 ro o o SITE 1 SOIL WATER ! CONTENT BY DEPTH: DATA DATE TUBES 1-3 SET 15 i CM 25 i CM 0 CM 1 JUNE 5 1980 0 . 000 0 . 186 0 . 000 2 JUNE 14 1980 0 . 000 0 . 207 0. 000 3 JUNE 19 1980 0. 000 0 . 188 0. 000 4 JUNE 26 1980 0. 209 0 . 208 0 . 000 5 JULY 4 1980 0 . 236 0 . 240 0 . 000 6 JULY 10 1980 0. 192 0. 204 0 . 000 7 JULY 17 1980 0 . 173 0. 188 0. 000 8 JULY 25 1980 0 . 141 0 . 156 0. 000 9 JULY 31 1980 0. 1 10 0 . 128 0. 000 10 AUG 7 1980 0. 087 0 . 105 0. 000 1 1 AUG 15 1980 0 . 000 0 . 000 0 . 000 12 AUG : 20 1980 0 . 000 0. 000 0 . 000 13 AUG 30 1980 0 . 068 0 . 092 0. 000 14 SEPT 4 1980 0 . 099 0 . 113 0. OOO 15 SEPT 16 1980 0. 099 0 . 112 0. 000 16 SEPT 23 1980 0 . 141 0 . 154 0. 000 17 SEPT 30 1980 0 . 186 0 . 191 0. 000 18 OCT 7 1980 0. 141 0 . 147 0. 000 19 OCT 13 1980 0. 164 0 . 170 0. 000 20 OCT 21 1980 0. 000 0. 000 0. .000 21 OCT 28 1980 0. 148 0. 153 0. 000 22 NOV 4 1980 0. 230 0. 249 0. .000 23 NOV 18 1980 0. 248 0. 252 0. ,000 24 DEC 2 1980 0. 250 0. 261 0. ,000 25 DEC 15 1980 0. 236 0. 259 0. ,000 26 JAN 9 1981 0. .240 0. 262 0. .000 27 JAN 23 1981 0. .233 0. 259 0. .000 28 FEB 7 1981 0. . 221 0. .247 0, .000 29 FEB 19 1981 0. . 249 0. .269 0. .000 30 MAR 13 1981 0. .214 0. .233 0 .000 31 MAR 27 1981 0. . 230 0. . 254 0 .000 32 APR 16 1981 0 .250 0. , 270 0 .000 33 MAY 6 1981 0 .246 0. . 266 0 .000 34 MAY 19 1981 0, .221 0. . 238 0 .000 35 JUNE 2 1981 0 . 208 0, .230 0 .000 36 JUNE 15 1981 0 .215 0, .237 0 .000 37 JUNE 30 1981 0 . 209 0, .232 0 .OOO 38 JULY 6 1981 0 . 172 0. . 192 0 .000 39 JULY 13 1981 0 . 154 0 . 177 0 .000 40 JULY 21 1981 0 . 117 0 .141 0 .000 41 JULY 27 1981 0 .092 0 . 1 19 0 .000 42 AUG 4 1981 0 .075 0 . 103 0 .000 43 AUG 10 1981 0 .074 0 .098 0 .000 44 AUG 17 1981 0 .063 0 .089 0 .000 45 AUG 24 1981 0 .070 0 .094 0 .000 46 SEPT 1 1981 0 . 141 0 . 168 0 .000 47 SEPT 1 1 1981 0 .115 0 . 138 0 .000 48 SEPT 25 1981 0 . 172 0 . 187 0 .000 49 OCT 9 1981 0 .217 0 . 249 0 .000 50 OCT 28 1981 0 . 230 0 .259 0 .000 AVG.VOL.FRAC. EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. :DEPTH TUBES 4-6:DEPTH 0 CM 0 CM 0 CM 15 CM 30 CM 37 CM 0 CM O CM 0 CM 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 o.ooo 0 .000 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 O.OOO 0 . 0 0 0 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 O.OOO 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 O.OOO 0 . 0 0 0 O.OOO 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 O.OOO 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 O.OOO 0 .000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 . 0 0 0 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 O.OOO 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 O.OOO 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 O.OOO 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 1 0 .000 0 .000 0 .000 O.OOO 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 ro 0 .000 0 .000 0 .000 O.OOO 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 . 0 0 0 2 0 .000 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 O.OOO O.OOO 0 .000 O.OOO 0 .000 0 .000 0 . 0 0 0 ' 0 . 0 0 0 0 .000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 O.OOO 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 . 0 0 0 O.OOO 0 .000 0 .000 0 .296 0 .299 0.312 O.OOO O.OOO O.OOO 0 .000 0 .000 0 .000 0 .276 0 .284 0 .293 0 . 0 0 0 O.OOO 0 . 0 0 0 0 .000 0 .000 0 .000 0 .276 0 .279 0 .299 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0^273 0 .278 0.304 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .277 0 .282 0 .302 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .242 0 .249 0 .266 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 .228 0 .235 0 .249 0 .000 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 .183 0 .195 0 .199 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .000 0 .000 0 .000 0 .155 0 .169 0 .176 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .128 0.141 0 .146 0 .000 0 .000 O.OOO 0 .000 0 .000 0 .000 0 .118 0 .137 0.141 0 .000 0 .000 0 . 0 0 0 0 .000 O.OOO 0 .000 0 .109 0 .127 0 .132 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .106 0 .123 0 .127 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 .210 0 .196 0 .190 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0 . 1 7 0 0 .172 0 .173 0 .000 0 . 0 0 0 O.OOO 0 .000 0 .000 0 .000 0 .225 0 .218 0 .000 0 .000 0 .000 0 . 0 0 0 0 .000 0 .000 0 .000 0.271 0 .280 0 .287 0 .000 0 .000 O.OOO 0 .000 0 .000 0 .000 0 .282 0 .283 0.292 0 .000 0 .000 0 . 0 0 0 SITE 2 : SOIL WATER CONTENT BY DEPTH: AVG.VOL.FRAC. DATA DATE TUBES 1-3:DEPTH SET 15 i CM 3C i CM 45 CM 54 CM C ) CM 1 JUNE 5 1980 0 . 000 0. 221 0. 220 0. 225 0. 000 2 JUNE 14 1980 O. 000 0 . 231 0. 236 0. 240 0. 000 3 JUNE 19 1980 0 . 000 0. 222 0. 226 0. 232 0. 000 4 JUNE 26 1980 0 . 169 0. 234 0. 235 0. 238 0. 000 5 JULY 4 1980 0 . 188 0 . 250 0. 250 0. 253 0. 000 6 JULY 10 1980 O. 164 0 . 230 0. 237 0. 241 0. 000 7 JULY 17 1980 0 . 161 0. 228 0. 228 0. 236 0. 000 8 JULY 25 1980 0 . 150 0. 214 0. 221 0. 226 0. 000 9 JULY 31 1980 0 . 127 0. 200 0. 204 0. 214 0. 000 10 AUG 7 1980 0 . 100 0 . 177 0. 190 0. 197 0. 000 1 1 AUG 15 1980 o . 080 0 . 157 0 . 175 0. 181 0. 000 12 AUG : 20 1980 0 . 077 0. 152 0. 167 0. 175 0. 000 13 AUG : 30 1980 0 . 069 0. 142 0. 153 0. 164 0. 000 14 SEPT 4 1980 0 . 105 0. 167 0. 167 0. 171 0. 000 15 SEPT 16 1980 0 . 097 0. 169 0. 171 0. 180 0. 000 16 SEPT 23 1980 0 . 130 0. 196 0 . 193 0. 193 0. 000 17 SEPT 30 1980 0 . 159 0. 225 0. 208 0. 216 0. 000 18 OCT 7 1980 0 . 133 0. 198 0. 204 0. 206 0. 000 19 OCT 13 1980 0 . 156 0. 219 0 . 211 0. 214 0. 000 20 OCT 21 1980 0. 142 0. 204 0. 204 0. 208 0. 000 21 OCT 28 1980 0. 149 0. 21 1 0. 208 0. 214 0. 000 22 NOV 4 1980 0. 184 0. 249 0. 247 0. 262 0. 000 23 NOV 18 1980 0. 201 0. 262 0. 253 0. 264 0. 000 24 DEC 2 1980 0. 196 0. 251 0. 250 0. 260 0. .000 25 DEC 15 1980 0. , 180 0. 243 0. 245 0. 254 0. .000 26 JAN 9 1981 0, , 186 0. 246 0. 246 0. 255 0. .000 27 JAN 23 1981 .179 0. 240 0. 240 0. 251 0, ,000 28 FEB 7 1981 0. . 168 0. 234 0. 235 0. 246 0. .000 29 FEB 19 1981 0 .205 0. 263 0. .263 0. .267 0. .000 30 MAR 13 1981 0 . 168 0. .234 0. .237 0. .246 0 .000 31 MAR 27 1981 0 . 177 0. . 235 0. .243 0. .252 0 .000 32 APR 16 1981 0 . 195 0. . 252 0. , 252 0. . 261 0 .000 33 MAY 6 1981 0 . 188 0. , 246 0. .246 0. .257 0 .000 34 MAY 19 1981 0 . 178 0. . 238 0. .233 0. .245 0 .000 35 JUNE 2 1981 0 . 158 0. .225 0. .229 0. .246 0 .000 36 JUNE 15 1981 0 . 177 0 . 230 0 .232 0 .241 0 .000 37 JUNE 30 1981 0 . 166 0 . 227 0 . 237 0 .248 0 .000 38 JULY 6 1981 o . 149 0 .217 0 .222 0 .230 0 .OOO 39 JULY 13 1981 0 . 148 0 .206 0 .215 0 .224 0 .000 40 JULY 21 1981 0 . 126 0 . 193 0 .206 0 .213 0 .000 41 JULY 27 1981 0 . 108 0 . 179 0 . 178 0 .200 0 .000 42 AUG 4 1981 0 .090 0 . 164 0 . 177 0 . 188 0 .000 43 AUG 10 1981 0 .078 0 . 158 0 . 168 0 . 177 0 .000 44 AUG 17 1981 0 .069 0 . 146 0 . 153 0 . 162 0 .000 45 AUG 24 1981 0 .072 0 . 140 0 . 143 0 . 152 0 .000 46 SEPT 1 1981 o . 157 0 . 222 0 .215 0 . 226 0 .000 47 SEPT 1 1 1981 0 . 1 16 0 . 183 0 . 188 0 . 194 0 .000 48 SEPT 25 1981 0 . 150 0 .213 0 .214 0 .222 0 .000 49 OCT 9 1981 0 . 177 0 . 238 0 .243 0 .251 0 .000 50 OCT 28 1981 0 . 184 0 . 244 0 . 242 0 .253 0 .000 EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. TUBES 4-6:DEPTH c ) CM 15 i CM 3C 1 CM 44 CM 0 CM 0 CM 0 CM 0. 000 0 . 000 0 . 000 0 . 000 0. 000 0. 000 0. 000 0. 000 0 . 000 0. 000 0 . 000 0 . 000 0. 000 0 . OOO 0. 000 0. 000 0 . 227 0. 208 0. 000 0. 000 0 . OOO 0. 000 0 . 194 0 . 247 0. 232 0 . OOO 0. OOO 0. OOO 0 . 000 0 . 213 0 . 266 0 . 247 0 . 000 0 . 000 0 . 000 0. 000 0. 187 0. 245 0 . 234 0 . 213 0. 000 0 . OOO 0. 000 0 . 176 0 . 244 0 . 244 0 . 000 0. 000 0 . 000 0. 000 0 . 149 0 . 227 0. 232 0. 000 0. 000 0. OOO 0. 000 0 . 1 18 0 . 203 0. 211 0. 000 0. OOO 0 . 000 0 . 000 0 . 092 0 . 178 0 . 186 0 . OOO 0 . OOO 0 . 000 0 . 000 0 . 079 0. 157 0 . 169 0. OOO 0. 000 0 . 000 0. 000 0. 077 0. 154 0 . 165 0. 000 0. OOO 0. OOO 0. OOO 0 . 074 0 . 148 O. 157 0 . 000 0. 000 0. 000 0. 000 0. 104 0 . 178 0. 178 0. OOO 0. 000 0. 000 0. 000 0 . 096 0. 176 0. 182 0. 000 0. 000 0. 000 0. 000 0 . 131 O. 205 0 . 202 0. 000 0. 000 0. 000 0. 000 0 . 165 0 . 232 0 . 225 0. 000 0. 000 0. 000 0. 000 0. 138 0 . 210 0. 206 0. 000 0. 000 o. 000 0. 000 0 . 156 0 . 219 0. 215 0. 000 0. 000 0. 000 0. ,000 0 . 147 0. 209 0 . 205 0. ,000 0. OOO 0. 000 0. .000 0 . 161 0. 223 0 . 212 0. .000 0. ,000 0. ,000 0. ,000 0. 210 0. 280 0. 276 0. .000 0. ,000 0. ,000 0. ,000 0. 230 0. 294 0. 288 0. OOO 0. ,000 0. ,000 0, ,000 0. 223 0. 287 0. 282 0, .000 0. ,000 0. ,000 0. .000 0. 212 0. 280 0. 273 0, .000 0. .000 0. .000 0. .000 0. 000 0. ,000 0. 000 0. .000 0, .OOO 0. .000 0 .000 0. 212 0. ,274 0. 268 0 .000 0 .000 0, .000 0 .000 0. , 197 0. . 269 0. 267 0 .000 0. .000 0. .OOO 0 .000 0. ,232 0. ,295 0. ,288 0 .000 0 .000 0 .000 0 .000 0. , 191 0. , 265 0. ,262 0 .000 0 .000 0 .000 0 .000 0. . 203 0. . 273 0. ,257 0 .000 0 .000 0 .000 0 .000 0. . 223 0 .286 0. , 283 0 .000 0 .000 0 .000 0 .000 0. .217 0. .280 0. .271 0 .000 0 .000 0 .000 0 .000 0, . 195 0 . 260 0, .256 0 .000 0 .000 0 .000 0 .000 0 . 177 0 .256 0. .253 0 .000 0 .000 0 .000 0 .000 0 . 196 0 .260 0. . 255 0 .000 0 .000 0 .000 0 .000 0 . 189 0 .261 0. . 258 0 .000 0 .000 0 .000 0 .000 0 . 160 0 . 236 0 .241 0 .000 0 .000 0 .000 0 .000 0 . 148 0 . 228 0 .237 0 .000 0 .000 0 .OOO 0 .000 0 . 1 19 0 . 202 0 .214 0 .000 0 .000 0 .000 0 .000 0 .099 0 . 179 0 . 193 0 .000 0 .000 0 .000 0 .000 0 .087 0 . 163 0 . 170 0 .OOO 0 .000 0 .000 0 .000 0 .085 0 . 155 0 . 166 0 .000 0 .000 0 .000 0 .000 0 .075 0 . 147 0 . 155 0 .000 0 .000 0 .OOO 0 .000 0 .077 0 . 143 0 . 146 0 .000 0 .000 0 .000 0 .000 0 . 155 0 .219 o . 220 0 .000 0 .000 0 .000 0 .000 0 . 1 14 0 . 189 0 . 195 0 .000 0 .000 0 .000 0 .000 0 . 155 0 . 220 0 .221 0 .000 0 .000 0 .000 0 .000 0 . 208 0 . 268 0 .269 0 .000 0 .000 0 .OOO 0 .000 0 .217 0 .272 0 .270 0 .000 0 .000 0 .000 SITE 3 : SOIL WATER CONTENT BY DEPTH: AVG.VOL.FRAC. EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. DATA DATE TUBES 1-3 : DEPTH TUBES 4-6:DEPTH SET 1E i CM 3C i CM 45 CM 6C 1 CM 72 : CM 8G ; CM 15 CM 30 CM 45 CM 60 CM 71 I CM 0 CM 1 JUNE 5 1980 0. 000 0. 150 0. 140 0. 146 0. 121 0. 184 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 2 JUNE 14 1980 0. 000 0. 168 0. 153 0. 151 0. 116 0. 183 0. 000 0. 000 0. 000 0. 000 0. OOO 0. 000 3 JUNE 19 1980 0. 000 0. 158 0. 149 0. 149 0. 163 0. 000 0. 000 0. 000 0. 000 0. 000 0. OOO 0. 000 4 JUNE 26 1980 0. 189 0. 171 0. 153 0. 153 0. 173 0. 173 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 5 JULY 4 1980 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 6 JULY 10 1980 0. 178 0. 164 0. 157 0. 157 0. 156 0. 192 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 7 JULY 17 1980 0. 174 0. 159 0. 152 0. 152 0. 163 0. 187 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 8 JULY 25 1980 0. 147 0. 148 0. 140 0. 145 0. 154 0. 179 0. 000 0. 000 0. 000 0. 000 0. 000 0. OOO 9 JULY 31 1980 0. 124 0. 132 0. 133 0. 137 0. 164 0. 171 0. 000 0. 000 0. 000 0. 000 0. 000 0. .000 10 AUG 7 1980 0. 106 0. 123 0. 124 0. 127 0. 153 0. 160 O. 000 0. 000 0. 000 0. OOO 0. OOO 0. ,000 1 1 AUG 15 1980 O. 094 0. 117 0. 117 0. 120 0. 143 0. 150 0. 000 0. 000 0. 000 0. 000 0. OOO 0. .000 12 AUG 20 1980 0. 092 0. 114 0. 1 14 0. 117 0. 139 0. 145 0. 000 0. 000 0. 000 0. 000 0. 000 0. .000 13 AUG 30 1980 0. 088 0. 1 10 0. 109 0. 1 13 0. 1 19 0. 129 0. 000 0. 000 0. 000 0. 000 0. 000 0. .000 14 SEPT 4 1980 0. 101 0. 114 0. 108 0. 113 0. 117 0. 135 0. 000 0. 000 0. 000 0. ,000 0. 000 0. OOO 15 SEPT 16 1980 0. 099 0. 1 18 0. 1 15 0. 1 18 0. 121 0. 133 0. OOO 0. OOO 0. 000 0. 000 0. 000 0. OOO 16 SEPT 23 1980 0. 119 0. 132 0. 127 0. 127 0. 129 0. 134 0. 000 0. ,000 0. 000 0. ,000 0. OOO 0. OOO 17 SEPT 30 1980 0. 142 0. 147 0. 140 0. 135 0. 123 0. 144 0. ,000 0. ,000 0. 000 0. ,000 0. ,000 0. ,000 18 OCT 7 1980 0. 133 0. 139 0. 133 0. 132 0. 134 0. 144 0. ,000 0. .000 0. 000 0. ,000 0. ,000 0. .000 19 OCT 13 1980 0. 140 0. 135 0. 130 0. 127 0. 130 0. 142 0. ,000 0. ,000 0. 000 0. ,000 0. ,000 0. ,000 20 OCT 21 1980 0. 147 0. 135 0. 130 0. 127 0. 130 0. 140 0. ,000 0. .000 0. .000 0. .000 0. ,000 0. .000 21 OCT 28 1980 0. 150 0. 140 0. 131 0. 126 0. 131 0. 142 0. ,000 0. ,000 0. ,000 0. .000 0. ,000 0, ,000 22 NOV 4 1980 0. 189 0. 172 0. 170 0. 180 0. 196 0. 224 0. OOO 0. ,000 0. 000 0. ,000 0. ,000 0 .000 23 NOV 18 1980 0. .211 0. 185 0. 176 0. 178 0. 211 0. 215 0. .000 0, .000 0. ,000 0. .000 0. ,000 0, .000 24 DEC 2 1980 0. 217 0. 202 0. 177 0. 182 0. 195 0. 227 0. .000 0 .000 0. ,000 0. OOO 0. .000 0. .000 25 DEC 15 1980 0. ,214 0. 191 0. 179 0. 184 0. 202 0. 233 0. .000 0, .000 0. ,000 0, .000 0. ,000 0. .000 26 JAN 9 1981 0. .000 0. OOO 0. 000 0. 000 0. 000 0. 000 0, .000 0, .OOO 0, ,000 0, .000 0. .000 0, .000 27 JAN 23 1981 o. ,206 0. 183 0. 172 0. 180 0. 198 0. 226 0, .000 0, .000 0. ,000 0, .000 0. ,000 0, .000 28 FEB 7 1981 0. . 192 0. 174 0. 160 0. 169 0. 184 0. 210 0, .000 0, .000 0. ,000 .0, .000 0. .000 0. .000 29 FEB 19 1981 0. ,234 0. 204 0. 192 0. 205 0. 228 0. 275 0, .000 0 .000 0. ,000 0 .000 0. .000 0 .000 30 MAR 13 1981 0. , 187 0. 172 0. 160 0. 168 0. 179 0. 210 0, .000 0, .000 0 ,000 0, .000 0. .000 0 .000 31 MAR 27 1981 0. ,204 0. 182 0. 170 0. 175 0. 189 0. 214 0 .000 0 .000 0, ,000 0 .000 0. .OOO 0 .000 32 APR 16 1981 0. .224 o. 193 0. 183 0. 188 0. 198 0. 226 0 .000 0 .000 0, ,000 0, .000 0 .OOO 0 .000 33 MAY 6 1981 0, .207 0. 183 0. 174 0. 177 0. 212 0. 218 0 .294 0 . 260 0. .233 0 . 228 0, .206 0 .000 34 MAY 19 1981 0. . 183 0. 167 0. 158 0. 165 0. 176 0. 203 0, .287 0 . 251 0, .221 0 .211 0, . 200 0 .000 35 JUNE 2 1981 0. , 174 0. 166 0. 158 0. 163 0. 178 0. 202 0 . 266 0 .246 0, .220 0 .213 0, . 193 0 .000 36 JUNE 15 1981 0, . 189 0. 170 0. 158 0. 163 0. 193 0. 200 0 .278 0 .247 0 .221 0 .214 0 . 193 0 .000 37 JUNE 30 1981 0. , 178 0. 165 0. 159 0. 166 0. 194 0. 203 0 . 274 0 .247 0, . 222 0 .205 0 . 195 0 .000 38 JULY 6 1981 0. . 152 0. 152 0. 146 0. 157 0. 185 0. 192 0 .253 0 . 236 0 . 209 0 .206 0 . 187 0 .OOO 39 JULY 13 1981 0, . 144 o. 144 0. 144 0. 151 0. 183 0. 189 0 .246 0 . 230 0 .207 0 . 198 0 . 178 0 .000 40 JULY 21 1981 0. . 119 0. 134 0. 137 0. 144 0. 175 • 0. 179 0 .217 0 .213 0 . 192 0 . 188 0 . 174 0 .000 41 JULY 27 1981 0 . 108 0. 129 0. 129 0. 139 0. 166 0. 172 0 . 182 0 . 190 0 . 184 0 . 181 0 . 169 0 .000 42 AUG 4 1981 0 .097 0. 120 0. 123 0. 130 0. 154 0. , 164 0 . 170 0 . 184 0 . 169 0 . 168 0 . 159 0 .000 43 AUG 10 1981 0 .094 0. 1 19 0. 118 0. 126 0. 146 0. , 152 0 . 155 0 . 172 0 . 157 0 . 163 0 . 151 0 .000 44 AUG 17 1981 0 .092 0. 1 1 1 0. 108 0. 120 0. 135 0. , 137 0 . 137 0 . 161 0 . 145 0 . 146 0 . 140 0 .000 45 AUG 24 1981 0 .096 0. 101 0. 101 0. 112 0. 126 0. 128 0 . 144 0 . 156 0 . 135 0 . 136 0 . 130 0 .000 46 SEPT 1 1981 0 . 130 0. 136 0. 132 0. 135 0. 140 0. , 138 0 .204 0 .201 o . 185 0 . 179 0 .151 0 .000 47 SEPT 11 1981 0 . 1 12 0. 126 0. 127 0. 129 0. , 140 0. , 140 0 . 187 0 . 193 0 . 177 0 . 169 0 . 150 0 .000 48 SEPT 25 1981 0 . 129 0. 134 0. 133 0. 141 o. , 156 0. . 157 0 .221 0 .218 0 . 198 0 . 194 0 . 167 0 .OOO 49 OCT 9 1981 0 . 194 0. 178 0. 168 0. , 189 0. .220 0. . 225 0 .259 0 . 242 0 .221 0 .231 0 .215 0 .000 50 OCT 28 1981 o . 171 0. , 181 0. 171 0. , 187 0. 221 0, .230 0 .268 o .245 o .223 0 . 233 0 .239 0 . OOO SITE 4 : SOIL WATER CONTENT BY DEPTH: AVG.VOL.FRAC. DATA DATE TUBES 1-3:DEPTH SET 15 CM 30 i CM 45 CM 54 CM C I CM 1 JUNE 5 1980 0. 000 0. 212 0. 192 0. 204 0. 000 2 JUNE 14 1980 0. 000 0. 220 0. 199 0. 208 0. 000 3 JUNE 19 1980 0. 000 0. 211 0. 193 0. 202 0. 000 4 JUNE 26 1980 0. 252 0. 223 0. 196 0. 200 0. 000 5 JULY 4 1980 0. 267 0. 237 0. 204 0. 213 0. 000 6 JULY 10 1980 0. 238 0. 215 0. 199 0. 209 0. 000 7 JULY 17 1980 0. 206 0. 209 0. 192 0. 207 0. 000 8 JULY 25 1980 0. 212 0. 193 0. 184 0. 189 0. 000 9 JULY 31 1980 0. 183 0. 178 0. 174 0. 181 0. 000 10 AUG 7 1980 0. 158 0. 165 0. 161 0. 182 0. 000 1 1 AUG 15 1980 0. 134 0. 153 0. 151 0. 159 0. 000 12 AUG : 20 1980 0. 127 0. 148 0. 147 0. 152 0. 000 13 AUG : 30 1980 0. 1 13 0. 138 0. 139 0. 142 0. 000 14 SEPT 4 1980 0. 146 0. 142 0. 136 0. 136 0. 000 15 SEPT 16 1980 0. 132 0. 140 0. 138 0. 135 0. 000 16 SEPT 23 1980 0. 166 0. 157 0. 144 0. 136 0. 000 17 SEPT 30 1980 0. 205 0. 173 0. 153 0. 137 0. 000 18 OCT 7 1980 0. 176 0. 167 0. 154 0. 141 0. 000 19 OCT 13 1980 0. 191 0. 166 0. 153 0. 142 0. 000 20 OCT 21 1980 0. 182 0. 165 0. 153 0. 150 0. 000 21 OCT 28 1980 0. 197 0. 168 0. 157 0. 150 0. 000 22 NOV 4 1980 0. 260 0. 234 0. 222 0. 232 0. 000 23 NOV 18 1980 0. 260 0. 235 0. 219 0. 227 0. .000 24 DEC 2 1980 0. 267 0. 243 0. 225 0. 241 0. ,000 25 DEC 15 1980 0. 266 0. 240 0. 226 0. 234 0. ,000 26 JAN 9 1981 0. 265 0. 244 0. 254 0. 248 o. . 246 27 JAN 23 1981 0. 259 0. 236 0. 227 0. 249 0. .000 28 FEB 7 1981 0. ,245 0. 220 0. 213 0. 237 0 .000 29 FEB 19 1981 0. ,283 0. ,260 0. 251 0. 259 0 .000 30 MAR 13 1981 0. . 242 0. , 221 0. 210 0. .223 0 .000 31 MAR 27 1981 0. . 251 0. . 228 0. 216 0. .228 0 .000 32 APR 16 1981 0, .268 0, , 240 0. 224 0, .238 0 .000 33 MAY 6 1981 0, .256 0, .237 0. 219 0. .234 0 .000 34 MAY 19 1981 0. .242 0, . 220 0. 206 0 .223 0 .000 35 JUNE 2 1981 0 .232 o. . 221 0. 204 0 .221 0 .000 36 JUNE 15 1981 0. .239 o .218 0. 207 0, .213 0 .000 37 JUNE 30 1981 0 . 233 0 . 222 0. 211 0 .219 0 .000 38 JULY 6 1981 0 .211 0 . 208 0. 196 0 . 203 0 .000 39 JULY 13 1981 0 .200 0 . 195 0. , 191 0 . 199 0 .000 40 JULY 21 1981 0 . 177 0 . 184 0. , 180 0 . 189 0 .000 41 JULY 27 1981 0 . 155 0 . 169 0. . 167 0 . 173 0 .000 42 AUG 4 1981 0 . 134 0 . 154 0. . 156 0 . 163 0 .000 43 AUG 10 1981 0 . 123 0 . 146 0, .151 0 . 151 0 .000 44 AUG 17 1981 0 . 109 0 . 136 0 . 142 0 . 140 0 .000 45 AUG 24 1981 0 . 1 10 0 . 131 0 . 135 0 . 132 0 .000 46 SEPT 1 1981 0 . 177 0 . 155 0 . 145 0 . 137 0 .000 47 SEPT 1 1 1981 0 . 138 0 . 144 0 . 147 0 . 130 0 .000 48 SEPT 25 1981 0 . 182 0 .171 0 . 1G6 0 . 149 0 .000 49 OCT 9 1981 0 .243 0 .224 0 .220 0 .227 0 .000 50 OCT 28 1981 0 . 248 0 . 228 0 . 220 0 .000 0 .000 EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. TUBES 4-6:DEPTH c > CM 15 i CM 3C • CM 45 i CM 6C I CM 75 i CM C > CM 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 222 0. 238 0. 224 0. 223 0. OOO 0. 000 0. 000 0. 214 0. 231 0. 221 0. 220 0. OOO 0. 000 0. 249 0. 224 0. 239 0. 225 0. 216 0. 000 0. 000 0. 268 0. 235 0. 247 0. 240 0. 231 0. 000 0. 000 0. 237 0. 224 0. 240 0. 234 0. 232 0. 000 0. 000 0. 233 0. 219 0. 235 0. 227 0. 229 0. 000 0. 000 0. 214 0. 207 0. 224 0. 217 0. 217 0. 000 0. 000 0. 182 0. 195 0. 214 0. 205 0. 204 0. 000 0. 000 0. 156 0. 176 0. 198 0. 190 0. 189 0. 000 0. 000 0. 130 0. 158 0. 177 0. 173 0. 172 0. 000 0. 000 0. 124 0. 152 0. 169 0. 165 0. 164 O. 000 0. 000 0. 1 12 0. 141 0. 153 0. 149 0. 149 0. 000 0. 000 0. 137 0. 140 0. 154 0. 147 0. 147 0. 000 0. 000 0. 125 0. 142 0. 155 0. 149 0. 147 0. 000 0. 000 0. 160 0. 148 0. 163 0. 155 0. 160 0. 000 0. 000 0. 195 0. 166 0. 167 0. 161 0. 166 0. 000 0. 000 0. 170 0. 166 0. 172 0. 164 0. 165 0. 000 0. 000 0. 181 0. 162 0. 169 0. 165 0. 168 0. ,000 0. ,000 0. 175 0. 165 0. 171 0. 164 0. 165 0. ,000 0. ,000 0. 193 0. 170 0. 177 0. 164 0. 162 0. ,000 0. .000 0. 250 0. 229 0. 245 0. 244 0. 244 0. ,000 0. .000 0. 258 0. 235 0. 249 0. 242 0. 243 0. .000 0. .000 0. 269 0. 242 0. 256 0. 254 0. 261 0. OOO 0 .000 0. ,265 0. 239 0. 250 0. 252 0. 262 0. .000 0 .000 0. ,000 0. 000 0. 000 0. 000 0. ,000 o .OOO 0, .000 0. ,253 0. 232 0. ,248 0. 243 0. 252 0. .000 0 .000 0. , 238 0. ,226 0. .242 0. 238 0. ,240 o .000 0 .000 0, .280 0. ,261 0. ,283 0. ,413 0. ,485 0 .000 0 .000 0, .237 0. . 227 0. . 240 0. ,237 0. .240 0 .000 0 .OOO 0. .248 0. . 234 0. .245 0, , 242 0. .244 0 .000 0 .000 0 .266 0. .244 0 .253 0, .226 0, .232 0 .000 0 .000 0 .257 0. . 234 0 .248 0, .245 0. .248 0 .000 0 .000 0 .244 0 .223 0 . 238 0 .232 0 . 240 0 .000 0 .000 0 .231 0 .219 0 . 234 0 . 231 0 .232 0 .000 0 .000 0 .240 0 . 221 0 .237 0 .233 0 . 240 0 .000 0 .000 0 .235 0 .223 0 .238 0 .235 0 .243 0 .000 0 .000 0 .213 0 .213 0 . 227 0 .227 0 .227 0 .000 0 .000 0 .207 0 .211 0 . 222 0 .217 0 .223 0 .000 0 .000 0 . 184 0 . 195 0 .211 0 .206 0 . 209 0 .000 0 .000 0 . 164 0 . 184 0 .204 0 . 193 0 .201 0 .000 0 .000 0 . 143 0 .171 0 . 187 0 . 179 0 . 182 0 .000 0 .000 0 . 127 0 . 157 0 .171 0 . 165 0 . 170 0 .000 0 .000 0 . 113 0 . 146 0 . 157 0 . 151 0 . 157 0 .000 0 .000 0 . 118 0 . 140 0 . 147 0 . 142 0 . 148 o .000 0 .000 0 . 167 0 . 169 0 . 165 0 . 156 0 . 182 0 .000 0 .000 0 . 137 0 . 161 0 . 169 0 . 160 0 . 173 o .000 0 .000 0 . 173 0 . 188 0 .200 0 . 189 0 .200 o .000 0 .000 0 .229 0 .231 0 .242 0 . 239 0 .242 0 .000 0 .000 0 .236 0 . 236 0 .244 0 . 237 0 .243 0 .000 SITE 5 : SOIL WATER CONTENT BY DEPTH: AVG.VOL.FRAC. DATA DATE TUBES , 1-3 : DEPTH SET 15 i CM v 30 CM 45 i CM 60 CM 70 CM 1 JUNE 5 1980 0. 000 0. 250 0. 263 0. 303 0. 319 2 JUNE 14 1980 0. 000 0. 253 0. 266 0. 301 0. 317 3 JUNE 19 1980 0. 000 0. 244 0. 260 0. 291 0. 311 4 JUNE 26 1980 0. 232 0. 254 0. 259 0. 291 0. 305 5 JULY 4 1980 0. 245 0. 271 0. 270 0. 295 0. 302 6 JULY 10 1980 0. 218 0. 249 0. 259 0. 296 0. 302 7 JULY 17 1980 0. 211 0. 243 0. 260 0. 292 0. 303 8 JULY 25 1980 0. 191 0. 234 0. 242 0. 275 0. 282 9 JULY 31 1980 O. 170 0. 220 0. 229 0. 257 0. 264 10 AUG 7 1980 0. 147 0. 207 0. 204 0. 239 0. 244 1 1 AUG 15 1980 0. 129 0. 196 0. 204 0. 223 0. 227 12 AUG 20 1980 0. 121 0. 189 0. 196 0. 213 0. 217 13 AUG 30 1980 0. 106 0. 176 0. 180 0. 191 0. 198 14 SEPT 4 1980 0. 125 0. 175 0. 174 0. 188 0. 197 15 SEPT 16 1980 0. 135 0. 184 0. 172 0. 186 0. 191 16 SEPT 23 1980 0. 169 0. 197 0. 179 0. 185 0. 189 17 SEPT 30 1980 0. 206 0. 218 0. 186 0. 187 0. 194 18 OCT 7 1980 0. 184 0. 208 0. 194 0. 194 0. 195 19 OCT 13 1980 0. 193 0. 203 0. 191 0. 193 0. 201 20 OCT 21 1980 0. 000 0. 000 0. 000 0. 000 0. 000 21 OCT 28 1980 0. 192 0. 209 0. 190 0. 192 0. 197 22 NOV 4 1980 0. 245 0. 274 0. 290 0. 324 0. 400 23 NOV 18 1980 0. 245 0. 279 0. 302 0. 360 0. 442 24 DEC 2 1980 0. 247 0. 293 0. 320 0. 391 0. 463 25 DEC 15 1980 0. 245 0. 291 0. 328 0. 401 0. 472 26 JAN 9 1981 0. 238 0. 275 0. 295 0. 344 0. 362 27 JAN 23 1981 0. 235 0. .281 0. 309 0. 367 0. ,429 28 FEB 7 1981 0. 225 0. .268 0. 293 0. 337 0. ,361 29 FEB 19 1981 0. 269 0. .361 0. 470 0. 525 0. .534 30 MAR 13 1981 0. 216 0. .267' 0. 291 0. 337 0. ,359 31 MAR 27 1981 0. .225 0. ,270 0. 287 0. 333 0. ,350 32 APR 16 1981 0. . 245 0, .283 0. 311 0. ,372 0, ,443 33 MAY 6 1981 0. . 240 0. .277 0. 299 0. ,346 0. .367 34 MAY 19 1981 0. , 226 0. .271 0. 291 0. , 335 0. ,355 35 JUNE 2 1981 0. .210 0 .259 0. 279 0. .318 0. .333 36 JUNE 15 1981 0. .217 0 .258 0. .275 0, ,318 0. .332 37 JUNE 30 1981 0. .214 0 .261 0. 281 0. .327 0 .340 38 JULY 6 1981 0. . 191 0 .247 0. ,269 0. ,314 0 .326 39 JULY 13 1981 0. . 189 0 .247 0. . 266 0. .308 0 .317 40 JULY 21 1981 0 . 166 0 .236 0. .248 0 .291 0 .299 41 JULY 27 1981 0 . 148 0 .220 0. .232 0 . 268 0 .277 42 AUG 4 1981 o . 136 0 .207 0. .218 0 . 250 0 .256 43 AUG 10 1981 o . 125 0 .207 0. .213 0 .242 0 .235 44 AUG 17 1981 o . 108 0 . 187 0. . 189 0 .215 0 . 195 45 AUG 24 1981 0 . 106 0 . 178 0 . 177 0 .202 0 . 183 46 SEPT 1 1981 0 . 161 0 .207 0 . 197 0 . 205 0 .202 47 SEPT 1 1 1981 0 . 145 0 . 199 0 . 192 0 .205 0 . 183 48 SEPT 25 1981 0 . 172 0 .216 0 .209 0 .218 0 .200 49 OCT 9 1981 0 .221 0 . 283 0 .321 0 .415 0 .453 50 OCT 28 1981 0 . 231 0 .298 0 .358 0 .460 0 .508 EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. TUBES 4-6:DEPTH 0 CM 15 CM 30 CM 45 CM 60 CM 75 CM 83 CM 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. OOO 0. 000 0. 000 0. 000 0. 000 0. OOO 0. OOO 0. 000 0. 000 0. 000 0. 000 o: 000 0. 000 0. 000 0. OOO o. 000 0. 000 O. OOO 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. OOO 0. OOO 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. OOO 0. 000 0. 000 0. OOO 0. 000 0. 000 0. 000 O. 000 0. 000 0. 000 0. 000 0. OOO 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 .0. 000 0. ,000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. ,000 0. 000 0. 000 0. 000 0. 000 0. .000 0. 000 0. ,000 0. .000 0. 000 0. .000 0. 000 0. 000 0. 000 0. ,000 0. ,000 0. 000 0. ,000 0. 000 0. ,000 0. 000 0. ,000 0. ,000 0. 000 0. ,000 0. 000 0. ,000 0. 000 0. .000 0. ,000 0. .000 0. ,000 0. 000 0. ,000 0. .000 0, .000 0. ,000 0. ,000 0. .000 0. .000 O. ,000 0. ,000 0 .000 0. OOO 0. ,000 0, ,000 0. ,000 0 .000 0. ,000 0 .000 0. .000 0. ,000 0, .000 0. ,000 0. .OOO 0, .000 0 .000 0. .OOO 0, ,000 0, .000 0. ,000 0. .000 0. .000 0 .000 0, .000 0. .000 0, .000 0. ,000 0. .000 0. .000 0 .000 0 .000 0. .000 0 .000 0. .000 0 .000 0, .OOO 0 .000 0 .000 0, .000 0. .000 0. .000 0 .000 0, .000 0 .000 0. .000 0, .000 0 .000 0 .000 0 .000 0. .000 0 .000 0 .000 0 .000 0 .000 0. .000 0 .000 0 .000 0 .000 0 .OOO 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .259 0. .317 0 . 337 0 . 356 0 .403 0 .441 0 .000 0 . 236 0 . 302 0 .314 0 .327 0 .367 0 .405 0 .000 0 . 225 0 . 297 0 . 304 o .323 0 .357 0 .388 0 .000 0 . 229 0 . 294 0 . 303 0 .317 0 .351 0 .387 0 .000 0 .233 0 .300 0 .307 0 .318 0 .357 0 .399 0 .000 0 .207 0 .288 0 .300 0 .313 0 .346 0 .383 0 .000 0 . 196 0 . 287 0 . 294 0 .309 0 .342 0 .382 0 .000 0 . 182 0 .275 0 . 286 0 .299 0 .337 0 . 366 0 .000 0 . 160 0 .268 0 . 282 0 .296 0 .327 0 . 359 0 .OOO 0 . 148 0 .255 0 . 270 0 . 284 0 .316 0 . 357 0 .000 0 . 137 0 .249 0 .269 0 .282 0 .314 0 . 340 0 .OOO 0 . 1 19 0 .225 0 .246 0 .259 0 .294 0 . 320 0 .000 0 . 1 19 0 . 209 0 . 230 0 .244 0 . 277 0 .301 0 .000 0 . 189 0 . 274 0 .277 0 .277 0 . 296 0 . 335 0 .000 0 . 159 0 . 245 0 .254 0 .259 0 . 280 0 .323 0 .000 0 . 193 0 . 265 0 . 272 0 .278 0 . 292 0 .317 0 .000 0 . 245 0 . 320 0 .374 0 .440 0 .419 0 .425 0 .000 0 .264 0 .377 0 .433 0 .442 0 .407 0 .391 SITE 6 : SOIL WATER CONTENT BY DEPTH: AVG.VOL.FRAC. EACH SET OF 3 NEUTRON PROBE ACCESS TUBES. DATA DATE TUBES 1-3:DEPTH TUBES 4-6:DEPTH SET 15 CM 30 CM 45 CM 60 CM 69 CM 0 CM 15 CM 30 CM 45 CM 55 CM 0 CM 0 CM 1 JUNE 5 1980 0 . 000 0. 285 0 . 332 0. 373 0. 403 0. OOO 0 . 000 0 . 000 0 . 000 0. 000 0. 000 0. OOO 2 JUNE 14 1980 0. 000 0. 280 0 . 317 0 . 368 0. 397 0. 000 0 . 000 0. 000 0 . 000 0. 000 0. 000 0. 000 3 JUNE 19 1980 0. 000 0. 263 0 . 301 0. 355 0. 372 0. 000 0 . 000 0. 276 0 . 297 0 . 327 0. 000 0. 000 4 JUNE 26 1980 0 . 317 0. 289 0. 330 0. 380 0. 389 0. 000 0 . 341 0. 301 0. 320 0 . 364 0. 000 0. 000 5 JULY 4 1980 0 . 322 0 . 293 0 . 344 0 . 406 0. 397 0. 000 0 . 350 0. 319 0 . 376 0 . 444 0. 000 0. OOO 6 JULY 10 1980 0 . 298 0 . 273 0. 313 0 . 364 0. 379 0. 000 0 . 331 0. 284 0. 301 0 . 339 0. 000 0. 000 7 JULY 17 1980 0 . 290 0 . 258 0. 293 0. 352 0. 368 0. 000 0 . 317 0. 272 0 . 288 0. 323 0. 000 0. 000 8 JULY 25 1980 0 . 273 0. 243 0 . 275 0 . 327 0. 345 0. 000 0 . 304 0. 259 0 . 267 0. 306 0. 000 0. 000 9 JULY 31 1980 0 . 243 0. 218 0 . 245 0 . 300 0. 325 0. 000 0 . 290 0. 236 0 . 249 0. 285 0. 000 0. .000 10 AUG 7 1980 0 . 209 0. 193 0 . 218 0 . 276 0. 302 0. 000 0 . 263 0. 216 0. 230 0. 266 0. 000 0. 000 1 1 AUG 15 1980 0 . 181 0. 166 0 . 195 0. 252 0. 279 0. 000 0 . 232 0. 195 0 . 210 0 . 247 0. .000 0. ,000 12 AUG 20 1980 0 . 170 0. 157 0 . 182 0. 235 0.'262 0. 000 0 . 222 0. 184 0 . 198 0. 235 0. ,000 0. .000 13 AUG 30 1980 0 . 146 0. 139 0 . 157 O. 203 0. 228 0. 000 0 . 201 0. 162 0 . 173 0. 213 0. .000 0. OOO 14 SEPT 4 1980 0 . 173 0. 146 0 . 159 0. 198 0. 223 0. 000 0 . 208 0. 157 0. 171 0. 205 0. .000 0. .000 15 SEPT 16 1980 0. 160 0 . 147 0 . 157 0. 188 0. 204 0. 000 0 . 224 0. 164 0 . 165 0. 199 0. .000 0. ,000 16 SEPT 23 1980 0 . 222 0 . 176 0 . 173 0. 193 0. 210 0. 000 0 . 265 0. 180 0 . 165 0. 197 0. .000 0. .000 17 SEPT 30 1980 0 . 268 0 . 201 0. 184 0. 200 0. 219 0. ,000 0 . 293 0. 199 0. 171 0. 198 0. OOO 0. .000 18 OCT 7 1980 0 . 226 0 . 190 0. 184 0. 199 0. 213 0. ,000 0. 256 0. 184 0. 169 0. 188 0. .000 0. ,000 19 OCT 13 1980 0 . 227 0 . 168 0. 169 0. 191 0. 209 0. 000 0 . 269 0. 186 0. 169 0. 195 0. .000 0. ,000 20 OCT 21 1980 0 . 210 0 . 166 0. 163 0. 189 0. 207 0. ,000 0 . 259 0. 192 0. 175 0. 195 0. .000 0. ,000 21 OCT 28 1980 0 . 221 0. 162 0. 159 0. 190 0. 206 0. .000 0. 267 0. . 186 0. 171 0. 201 0, .000 0. ,000 22 NOV 4 1980 0 . 319 0. 306 0. 407 0. 410 0. 381 0. ,000 0. 379 0. 440 0. 511 0. 476 0. .000 0, ,000 23 NOV 18 1980 0. 325 0. 314 0. 392 0. 421 0. 393 0, ,000 0. 369 0. .394 0. 508 0. 484 0. .OOO 0. .000 24 DEC 2 1980 0 . 353 0 . 372 0. 481 0. 437 0. 401 0, ,000 0. 444 0. .502 0. 532 0. 495 0. .000 0. .OOO 25 DEC 15 1980 0 . 351 0. 386 0. 491 0. 443 0. 416 0, ,000 0. 453 0. .507 0. 533 0. 498 0. .000 0. .OOO 26 JAN 9 1981 0 . 347 0. 351 0. 460 0. 443 0. 414 0, ,000 0. 000 0. ,000 0. 000 0. ,000 0, .000 0. .000 27 JAN 23 1981 0. 342 0. 358 0. 471 0. 447 0. 415 0, ,000 0. 416 0. ,478 0. 534 0. ,500 0. .000 0, .000 28 FEB 7 1981 0. 336 0. 328 0. 406 0. 439 0. 436 0, .000 0. 359 0. ,338 0. 424 0. ,471 0. .000 0, .000 29 FEB 19 1981 0. 475 0. 539 0. 538 0. 454 0. 441 0. .000 0. 504 0. ,517 0. 543 0. .506 0, .OOO 0, .000 30 MAR 13 1981 0. 339 0. 328 0. 387 0. 433 0. 418 0. .000 0. 358 0. ,317 0. 351 0. ,408 0. .000 0, .000 31 MAR 27 1981 0. 333 0. 318 0. 373 0. .429 0. 421 0. .000 0. 348 0. .314 0. 348 0. .402 0 .000 0 .000 32 APR 16 1981 0. 346 0. 350 0. 450 0. .449 0. 431 0. .000 0. 406 0. ,459 0. 538 0. ,504 0 .000 0. .OOO 33 MAY 6 1981 0. 341 0. 336 0. 410 0. .449 0. 430 0, .000 0. 371 0. , 351 0. 456 0. ,486 0. .000 0 .000 34 MAY 19 1981 0. 327 0. 318 0. 363 0. .418 0. 416 0 .000 0. 350 0. ,316 0. 352 0. ,405 0 .000 0 .000 35 JUNE 2 1981 0. 322 0. 297 0. 344 0. .399 0. 412 0. .000 0. 344 0. ,305 0. 329 0. , 375 0 .000 0. .000 36 JUNE 15 1981 0. 313 0. 293 0. 339 0. ,387 0. 401 0 .000 0. 334 0. . 298 0. 325 0. , 364 0. .000 0 .000 37 JUNE 30 1981 0. 301 0. 287 0. 325 0. ,376 0. ,385 0 .000 0. ,336 0. , 297 0. ,318 0, , 358 0 .000 0~ .000 38 JULY 6 1981 0. 280 0. 259 0. .294 0. ,347 0. ,357 0 .000 0. ,317 0. .277 0. ,296 0. , 329 0 .000 0 .000 39 JULY 13 1981 0. 269 0. 249 0. .286 0. .335 0. 346 0 .000 0. ,311 0. .270 0. .292 0, , 325 0 .000 0 .000 40 JULY 21 1981 0. 236 0. 225 0. 255 0, .313 0. ,324 0 .000 0. .291 0, .253 0, ,269 0, .306 0 .000 0 .000 41 JULY 27 1981 0. 206 0. . 194 0. 229 0, .290 0. ,311 0 .000 0. , 275 0, .237 0. ,257 0, .284 0 .000 0 .000 42 AUG 4 1981 0. , 176 0. , 165 0. . 198 0. . 267 0. ,292 0 .000 0. , 242 0 .215 0. ,238 0. .268 0 .000 0 .000 43 AUG 10 1981 0. . 161 0. , 150 0. , 177 0. .237 0. ,269 0 .000 0. , 220 0 . 195 0. .219 0. .261 0 .000 0 .000 44 AUG 17 1981 0. , 149 0. . 141 0. . 161 0. .210 0. ,237 0 .000 0. . 200 0. . 170 0. , 203 0, .240 0 .000 0 .000 45 AUG 24 1981 0. . 148 0. , 135 0. , 156 0 . 195 0, ,213 0 .000 0, , 187 0 . 158 0. . 190 0 . 222 0 .OOO 0 .OOO 46 SEPT 1 1981 0. , 233 0. . 182 0. . 169 0 . 196 0. ,213 0 .000 0. .281 0 . 201 0. , 196 0 . 222 0 .000 0 .000 47 SEPT 1 1 1981 0, , 179 0. . 158 0. . 161 0 . 195 0. .210 0 .000 0. .233 0 . 187 0, . 195 0 .218 0 .OOO 0 .000 48 SEPT 25 1981 0. . 240 0. . 224 0. . 252 0 .273 0. . 298 0 .000 0. . 297 0 .266 0 .291 0 .315 0 .OOO 0 .000 49 OCT 9 1981 0. .316 0. . 340 0. .451 0 .411 0, , 397 0 .000 0. .416 0 .475 0. .515 0. .478 o .000 0 .000 50 OCT 28 1981 0. . 321 0, , 341 0. .461 0 .419 0. .402 0 .000 0. .422 0 .478 0. .508 0 .483 0 .000 0. OOO - 207 -APPENDIX 7 Volumetric water contents of the L.F.H. layer at sites 0 to 6 determined from samples taken at the same time as the neutron probe measurements. At each site 3 replicate samples 10 cm x 10 cm x measured depth to the LFH/mineral soil interface were taken. The volumetric water contents were determined by drying to 105°C. Because of large temporal and spatial variability of LFH water content the data shown are after averaging and smoothing by developing correlations with mineral soil water content at 15 cm depth measured by neutron probe. Zeros indicate that no access tubes were installed or data not obtained. INDEX NO: 1 DATE : JUNE 5 1980 INDEX NO: 2 DATE : JUNE 14 1980 INDEX NO: 3 DATE : JUNE 19 1980 INDEX NO: 4 DATE : JUNE 26 1980 INDEX NO: 5 DATE : JULY 4 1980 INDEX NO: 6 DATE : JULY 10 1980 INDEX NO: 7 DATE : JULY 17 1980 INDEX NO: 8 DATE : JULY 25 1980 INDEX NO: 9 DATE : JULY 31 1980 INDEX NO: 10 OATE : AUG 7 1980 INDEX NO: 11 DATE : AUG 15 1980 INDEX NO: 12 DATE : AUG 20 1980 INDEX NO: 13 DATE : AUG 30 1980 INDEX NO: 14 DATE : SEPT 4 1980 INDEX NO: 15 DATE : SEPT 16 1980 INDEX NO: 16 DATE : SEPT 23 1980 INDEX NO: 17 DATE : SEPT 30 1980 INDEX NO: 18 DATE : OCT 7 1980 INDEX NO: 19 DATE : OCT 13 1980 IN0EX NO: 20 DATE : OCT 21 1980 INDEX NO: 21 OATE : OCT 28 1980 INDEX NO: 22 DATE- NOV 4 1980 INDEX NO: 23 DATE NOV 18 1980 INDEX NO: 24 DATE DEC 2 1980 INDEX NO: 25 DATE DEC 15 1980 LFH MOISTURE CONTENT SITE 0 SITE 1 « I T E 2 TUBES 1-3: 0 3 8 0 . 3 9 0 .37 TUBES 4-6 : O O O 0 . 0 0 0 . 0 0 TUBES 1-3: 0.31 0 . 3 0 0 .37 TUBES 4-6: 0.31 O.OO 0 . 0 0 TUBES 1-3: 0. 28 0.21 0 .35 TUBES 4-6 : 0 .28 0 . 0 0 0 .35 TUBES 1-3: 0.31 0 .26 0.31 TUBES 4-6 : 0 .33 0 . 0 0 0 .38 TUBES 1-3: 0 .33 0.31 0 .37 TUBES 4-6 : 0 .36 0 . 0 0 0 .44 TUBES 1-3: 0 3 0 0 .24 0 . 3 0 TUBES 4-6 : 0 .33 0 . 0 0 0 .37 TUBES 1-3: 0 .29 0.21 0 . 2 9 TUBES 4-6 : 0 .32 0 . 0 0 0 .33 TUBES 1-3: 0 .24 0 . 16 0 .26 TUBES 4-6 : 0 .28 0 . 0 0 0 2 6 TUBES 1-3: 0 . 17 0.11 0 . 2 0 TUBES 4-6 : 0.21 0 . 0 0 0 . 17 TUBES 1-3 0 . 11 0 .08 0 . 12 TUBES 4-6 0 . 15 0 . 0 0 0 . 10 TUBES 1-3 0 .07 0 . 0 0 0 .07 TUBES 4-6 0 .09 0 . 0 0 0 .06 TUBES 1-3 0 .06 0 . 0 0 0 .06 TUBES 4-6 0 .08 0 . 0 0 0 .06 TUBES 1-3 0 .05 0 .05 0 .03 TUBES 4-6 0 .06 0 . 0 0 0 .05 TUBES 1-3 0 . 11 0 . 10 0 . 13 TUBES 4-6 0 . 11 0 . 0 0 0 . 13 TUBES 1-3 0 . 11 0 . 10 0 . 11 TUBES 4-6 0 . 13 0 . 0 0 0 . 11 TUBES 1-3 0 . 19 0 . 16 0 . 2 0 TUBES 4-6 0 . 2 0 0 . 0 0 0.21 TUBES 1-3 0 .25 0 .23 0 . 2 9 TUBES 4-6 0 .24 0 . 0 0 0 3 0 TUBES 1-3 0 . 2 0 0 .16 0.21 TUBES 4-6 0 .23 0 . 0 0 0 .23 TUBES 1-3 0 .24 0 . 2 0 0 .28 TUBES 4-6 0 .25 0 . 0 0 0 . 2 8 TUBES 1-3 0 . 0 0 0 . 0 0 0 .24 TUBES 4-6 0 . 0 0 0 . 0 0 0 .25 TUBES 1-3 0 .24 0 . 17 0 . 2 6 TUBES 4-6 0 .27 0 . 0 0 0 . 2 9 TUBES 1-3 O.OO 0 . 3 0 0 . 3 6 TUBES 4-6 0 . 0 0 0 . 0 0 0 .43 TUBES 1-3 0 .34 0 .32 0 . 4 0 TUBES 4-6 0 36 0 . 0 0 0 . 4 9 TUBES 1-3 0. 37 0 .33 0 . 3 9 TUBES 4-6 0 . 3 9 0 . 0 0 0 .47 TUBES 1-3 0 .36 0.31 0 .35 TUBES 4-6 0 . 37 0 . 0 0 0 .44 SITE 3 SITE 4 SITE 5 S ITE 6 0 . 0 0 0.31 0 .52 0 . 4 5 0 . 0 0 O.OO 0 . 0 0 0 . 0 0 0 . 0 0 0 . 2 9 0.51 0 . 4 0 0 . 0 0 0 . 2 9 0 . 0 0 0 . 0 0 0 .28 0 .26 0 . 2 9 0 . 3 5 0 . 0 0 0 .26 0 . 0 0 0 . 3 5 0 . 3 0 0.31 0 . 3 5 0 . 3 5 O.OO 0.31 0 . 0 0 0 . 3 7 0 . 0 0 0 .33 0 . 3 7 0 . 3 5 0 . 0 0 0 .33 O.OO 0 . 3 8 0 .27 0 .29 0 .32 0 .32 0 . 0 0 0 .29 0 . 0 0 0 . 3 6 0 .26 0 .25 0.31 0 .31 0 . 0 0 0 . 2 9 O.OO 0 . 3 5 0 . 18 0 .26 0 .27 0 . 2 9 0 . 0 0 0 .26 0 . 0 0 0 . 3 3 0 . 12 0 .22 0 .24 0 . 2 6 0 . 0 0 0 .22 0 . 0 0 0 .31 0 .07 0 . 19 0 . 19 0 .22 0 . 0 0 0 . 18 0 . 0 0 0 . 2 8 0 .04 0 . 15 0 . 16 0 . 19 0 . 0 0 0 . 15 0 . 0 0 0 . 2 5 0 .03 0 . 15 0 . 15 0 . 17 0 . 0 0 0 . 14 0 . 0 0 0 . 2 3 0 .02 0 . 13 0 . 12 0 . 15 0 . 0 0 0 . 13 O.OO 0.21 0 .05 0 . 17 0 . 15 0 . 18 0 . 0 0 0 . 16 0 . 0 0 0 .22 0 .05 0 . 15 0 . 17 0 . 16 0 . 0 0 0 . 14 0 . 0 0 0 .24 0 . 10 0 . 2 0 0 .23 0 . 2 4 O.OO 0 . 19 0 . 0 0 0 . 2 9 0 . 17 0 .25 0 . 3 0 0 . 2 9 0 . 0 0 0 .24 O.OO 0 .32 0 . 14 0.21 0 . 2 6 0 . 2 4 0 . 0 0 0 . 2 0 O.OO 0 . 2 7 0 . 16 0 .23 0 . 2 8 0 .24 0 . 0 0 0 .22 0 . 0 0 0 . 2 9 0 . 18 0 .22 0 . 0 0 0 .22 0 . 0 0 0.21 O.OO 0 . 2 8 0 . 19 0 .24 0 . 2 7 0 .23 0 . 0 0 0 .23 0 . 0 0 0 . 2 9 0 . 3 0 0 .32 0 . 3 7 0 . 3 5 0 . 0 0 0.31 0 . 0 0 0 .42 0 .36 0 .32 0 . 3 7 0 . 36 O.OO 0 .32 O.OO 0.41 0 . 3 8 0 .33 0 . 3 7 0 3 9 0 . 0 0 0 .33 0 . 0 0 0 . 4 9 0 .37 0 .33 0 . 3 7 0 . 3 9 0 . 0 0 0 .33 O.OO 0 . 5 0 INDEX NO: 26 DATE : JAN 9 1981 INOEX NO: 27 DATE : JAN 23 1981 INDEX NO: 28 DATE : FEB 7 1981 INDEX NO: 29 DATE : FEB 19 1981 INDEX "NO: 30 DATE : MAR 13 1981 INOEX NO : 31 DATE : MAR 27 1981 INDEX NO: 32 DATE : APR 16 1981 INOEX NO: 33 DATE: MAY 6 1981 INDEX NO: 34 DATE : MAY 19 1981 INDEX NO 35 OATE : JUNE 2 1961 INDEX NO: 36 DATE : JUNE 15 1981 INDEX NO: 37 OATE : JUNE 30 1981 INDEX NO: 38 DATE : JULY 6 1981 INDEX NO: 39 DATE : JULY 13 1981 INDEX NO: 40 OATE : JULY 21 1981 INDEX NO: 4 1 DATE : JULY 27 1981 INOEX NO: 42 DATE : AUG 4 1981 INOEX NO: 43 DATE: AUG 10 1981 INDEX NO: 44 DATE: AUG 17 1981 INDEX NO: 45 DATE: AUG 24 1981 INDEX NO: 46 DATE : SEPT 1 1981 INOEX NO: 47 DATE : SEPT 11 1981 INDEX NO: 48 DATE SEPT 25 1981 INDEX NO : 49 DATE : OCT 9 1981 INDEX NO 50 DATE : OCT 28 1981 LFH MOISTURE CONTENT SITE 0 SITE 1 SITE 2 TUBES 1-3: 0.35 0.31 0.36 TUBES 4-6: 0.00 0.00 O.OO TUBES 1-3: 0.35 0.30 0. 34 TUBES 4-6: 0.36 O.OO 0.43 TUBES 1-3: 0.32 0.28 0.31 TUBES 4-6: 0.34 0.00 0 3 9 TUBES 1-3: 0. 37 0.33 0.42 TUBES 4-6: 0.38 0.00 0.49 TUBES 1-3: 0.31 0.27 0.31 TUBES 4-6: 0.34 0.00 0.38 TUBES 1-3: 0.33 0.30 0.34 TUBES 4-6: 0.35 0.00 0.41 TUBES 1-3: 0.36 0.33 0.39 TUBES 4-6: 0.39 O.OO 0.47 TUBES 1-3: 0.36 0.32 0.37 TUBES 4-6: 0.37 0.40 0.45 TUBES 1-3: 0.32 0.28 0.34 TUBES 4-6: 0.34 0.37 0.39 TUBES 1-3: 0.32 0.26 0.28 TUBES 4-6: 0.32 0.37 0.34 TUBES 1-3: 0.33 0.27 0.34 TUBES 4-6: 0.34 0.36 0.39 TUBES 1-3: 0.32 0.26 0.31 TUBES 4-6: 0.34 0.37 0.37 TUBES 1-3: 0.26 0.21 0.26 TUBES 4-6: 0.27 0.32 0.29 TUBES 1-3: 0.24 0. 18 0.26 TUBES 4-6: 0. 25 0.29 0.26 TUBES 1-3: 0. 16 0.12 0. 19 TUBES 4-6: 0. 18 0.22 0. 18 TUBES 1-3: 0. 1 1 0 0 9 0. 14 TUBES 4-6: 0. 13 0. 18 0. 12 TUBES 1-3: 0.07 0.06 0.09 TUBES 4-6: 0.08 0. 14 0.08 TUBES 1-3: 0.06 0.06 0.06 TUBES 4-6: 0.07 0. 12 0.08 TUBES 1-3: 0.05 0.04 0.03 TUBES 4-6: 0.06 0. 11 0.05 TUBES 1-3: 0.05 0.05 0.04 TUBES 4-6: 0.06 0. 11 0.06 TUBES 1-3: 0.27 0. 16 0.28 TUBES 4-6: 0.24 0.27 0.27 TUBES 1-3: 0.21 0. 12 0. 17 TUBES 4-6: 0.21 0 2 1 0. 16 TUBES 1-3: 0 2 8 0.21 0.26 TUBES 4-6: 0.30 0.29 0.27 TUBES 1-3: 0.36 0.28 0.34 TUBES 4-6: 0.35 0.36 0.42 TUBES 1-3: 0.37 0.30 0. 36 TUBES 4-6: 0.38 0.38 0. 45 SITE 3 SITE 4 SITE 5 SITE 6 O.OO 0.33 0.36 0.38 0.00 0.00 O.OO O.OO 0. 35 0.32 0.35 0.38 O.OO 0.31 0.00 0.46 0.31 0.30 0.33 0.37 0.00 0.29 0 0 0 0.40 0.43 0.35 0.41 0.53 0.00 0.35 O.OO 0.56 0.30 0.30 0.32 0.37 0.00 0.29 0.00 0.39 0.34 0.31 0.33 0.36 0.00 0.30 0.00 0.38 0.40 0.33 0.37 0.38 0.00 0.33 0.00 0.45 0.35 0.32 0.36 0.37 0.60 0.32 0.40 0.41 0.28 0.30 0.34 0.36 0.58 0.30 0.35 0.38 0.26 0.28 0.31 0.35 0.52 0.28 0.33 0.38 0.30 0.29 0.32 0.34 0.55 0.29 0.34 0.37 0.27 0.29 0.32 0.33 C.54 0.29 0.35 0.37 0.20 0.26 0.27 0.30 0.48 0.26 0.30 0.35 0. 18 0.24 0.27 0.29 0.46 0.25 0.28 0.34 0. 10 0.21 0.23 0.25 0.38 0.22 0.26 0.32 0.07 0. 18 0.20 0.22 0.28 0. 19 0.22 0.30 0.04 O. 16 0. 17 0. 18 0.25 0.17 0.20 0.26 0.03 0. 14 0. 16 0. 16 0.21 0. 15 0. 18 0.23 0.03 0. 12 0. 12 0. 15 0. 16 0. 13 0. 14 0.21 0.04 0. 12 0. 12 0. 15 0. 17 0. 13 0. 14 0. 19 0. 14 0.21 0 2 2 0.25 0.34 0.20 0.27 0.30 0.08 0. 16 0. 19 0. 18 0.30 0. 16 0.22 0.25 0. 13 0 2 2 0.24 0.26 0.39 0.21 0.28 0.32 0.32 0.30 0.33 0.34 0.50 0.28 0.37 0.46 0.25 0.30 0.35 0.35 0.52 0.29 0.41 0. 47 - 210 -APPENDIX 8 Plot of total soil water potential against depth at sites 0 to 6 at specifed dates through the growing season of 1981, determined by tensiometers installed at depths specified. o DEPTH (METERS) 0.6 0 . 4 0 .2 0 .0 m—i r T—l—i—r AUG 5 *JULY 28 J 0 o &-SEPT 2 ' JULY 13 -*JULY 7 "*JUNE 30 I I I I I I I L J I I - 212 -F i g u r e 2 S i t e 1 DEPTH (METERS) .6 0 . 4 0 .2 0 .0 i—i—i—rn—i i i JULY 28 JULY 22 SEPT 10 OCT 10 SEPT 2 JUNE 2 I I I I J i i DEPTH (METERS) 0.8 0.6 0.4 0.2 - 2 1 5 -O 6 CN CO d 2 « X o 00 d - 1 0 0 i i r m * —l o o A 44 4» 4* + # -4 I I I I L •80 - 6 0 - 4 0 - 2 0 TOTAL POTENTIAL (kPa) F i g u r e 5 S i t e 4 - 216 -F i g u r e 6 S i t e 5 o DEPTH (METERS) 0.6 0 . 4 0 .2 0 .0 * SEPT 25 _ * JUN 15 I i i I I I I I I I I I I—L - 218 -APPENDIX 9 Dates and times when neutron probe soil water measurements were taken at each site and used in water balance calculations. Zeros indicate that neutron probe data was not obtained. DATA START TIMES AND DATA PERIODS SITE 0 SITE 1 SITE 2 START TIME START TIME START TIME DATA SET NO: 1 DAYS DATE 0 . 5 0 6/ 5 9 13 0 .46 6/ 5 9 13 0. 58 6/ 5 8 88 DATA SET NO: 2 DAYS DATE 9 .63 6/14 4 88 9.58 6/14 5 00 9.46 6/14 6 00 DATA SET NO : 3 DAYS DATE 14.50 6/19 7 00 14.58 6/19 7 00 15.46 6/20 7 04 DATA SET NO : 4 DAYS DATE 21 . 50 6/26 7 88 21 .58 6/26 7 83 22 .50 6/27 7 00 DATA SET NO: 5 DAYS DATE 29 .38 7/ 4 6 00 29.42 7/ 4 6 00 29 .50 7/ 4 6 00 DATA SET NO: 6 DAYS DATE 35. 38 7/10 7 17 35.42 7/10 7 17 35 .50 7/10 7 96 DATA SET NO: 7 DAYS DATE 42.54 7/17 7 83 42 .58 7/17 7 83 43.46 7/18 6 00 DATA SET NO: 8 DAYS DATE 50. 38 7/25 7 00 50.42 7/25 7 00 49 .46 7/24 7 17 DATA SET NO : 9 DAYS DATE 57 . 38 8/ 1 7 04 57 .42 8/ 1 7 08 56 .63 7/31 7 71 DATA SET NO: 10 DAYS DATE 64 . 42 8/ 8 7 21 0 .00 8/ 1 0 00 64 . 33 8/ 8 7 13 DATA SET NO : 1 1 DAYS DATE 71 .63 8/15 5 00 0 .00 8/ 1 0 00 71 .46 8/15 5 00 DATA SET NO: 12 DAYS DATE 76 .63 8/20 9 88 64 .50 8/ 8 22 08 76.46 8/20 10 21 DATA SET NO: 13 DAYS DATE 8 6 . 5 0 8/30 5 08 86 .58 8/30 4 96 86.67 8/30 4 83 DATA SET NO: 14 DAYS DATE 91 .58 9/ 4 1 1 92 91 . 54 9/ 4 12 00 91 .50 9/ 4 12 17 DATA SET NO : 15 DAYS DATE 103.50 9/16 7 13 103.54 9/16 7 13 103.67 9/16 6 79 DATA SET NO : 16 DAYS DATE 1 10.63 9/23 6 75 110.67 9/23 6 75 110.46 9/23 7 04 DATA SET NO : 17 DAYS DATE 117.38 9/30 7 25 1 17.42 9/30 7 25 117.50 9/30 6 96 DATA SET NO: 18 DAYS DATE 124.63 10/ 7 6 79 124.67 10/ 7 6 79 124.46 10/ 7 6 88 DATA SET NO: 19 DAYS DATE 0 . 0 0 10/ 7 0 00 0 .00 10/ 7 0 00 131.33 10/14 7 29 DATA SET NO : 20 DAYS DATE 131.42 10/14 14 08 131.46 10/14 14 08 138.63 10/21 6 96 DATA SET NO: 21 DAYS DATE 0 . 0 0 10/14 0 00 145.54 10/28 7 04 145.58 10/28 6 79 DATA SET NO : 22 DAYS DATE 145.50 10/28 21 00 152.58 1 1/ 4 13 96 152.38 1 1/ 4 14 25 DATA SET NO: 23 DAYS DATE 166.50 11/18 14 08 166.54 11/18 14 .08 166.63 1 1/18 13 .83 DATA SET NO : 24 DAYS DATE 180.58 12/ 2 14 92 180.63 12/ 2 14 .79 180.46 12/ 2 14 .88 DATA SET NO : 25 DAYS DATE 195.50 12/17 24 .00 195.42 12/17 24 . 17 195.33 12/17 24 .04 MESACHIE 1980-1981 SITE 3 SITE 4 SITE 5 SITE 6 START TIME START TIME START TIME 1 .46 7 96 0 .63 8 75 1 . 42 8 08 1 .33 8 00 6/ 6 6/ 5 6/ 6 6/ 6 9.42 6 00 9 .38 6 00 9 .50 6 04 9 .33 6 00 6/14 6/14 6/14 6/14 15.42 7 00 15.38 7 00 15.54 7 00 15.33 7 00 6/20 6/20 6/20 6/20 0 .00 0 00 22 .38 7 21 22 . 54 6 92 22 . 33 7 29 6/20 6/27 6/27 6/27 22.42 13 21 29 .58 6 00 29 .46 6 00 29 .63 6 04 6/27 7/ 4 7/ 4 7/ 4 35 .63 7 79 35 .58 7 79 35 .46 8 04 3 5 . 6 7 7 67 7/10 7/10 7/10 7/10 43.42 6 00 43 .38 6 00 4 3 . 5 0 6 00 43 . 33 6 00 7/18 7/18 7/18 7/18 49.42 7 17 49 .38 7 13 4 9 . 5 0 7 96 49 . 33 7 13 7/24 7/24 7/24 7/24 56.58 7 00 5 6 . 5 0 7 04 57 .46 7 08 56 .46 7 04 7/31 7/31 8/ 1 7/31 63 .58 7 83 63 .54 7 83 64 . 54 7 00 63 . 50 7 83 8/ 7 8/ 7 8/ 8 8/ 7 71 .42 5 00 71 .38 5 00 71 .54 5 00 71 .33 5 00 8/15 8/15 8/15 8/15 76.42 10 00 76 . 38 10 00 76 .54 10 08 76 .33 10 00 8/20 8/20 8/20 8/20 86.42 5 21 86 .38 6 00 86 .63 5 79 86 . 33 6 13 8/30 8/30 8/30 8/30 91 .63 1 1 79 92 . 38 1 1 00 92 .42 1 1 21 9 2 . 4 6 10 88 9/ 4 9/ 5 9/ 5 9/ 5 103.42 7 00 103.38 7 00 103.63 6 92 103.33 7 00 9/16 9/16 9/16 9/16 110.42 7 21 110.38 7 21 110.54 6 92 110.33 7 21 9/23 9/23 9/23 9/23 117.63 6 79 117.58 6 79 117.46 7 08 117.54 6 79 9/30 9/30 9/30 9/30 124.42 6 13 124.38 6 13 124.54 6 08 124.33 6 13 10/ 7 10/ 7 10/ 7 10/ 7 130.54 7 79 130.50 7 92 0 . 0 0 0 00 130.46 8 08 10/13 10/13 10/ 7 10/13 138.33 7 08 138.42 6 96 130.63 15 00 138.54 6 79 10/21 10/21 10/13 10/21 145.42 7 . 13 145.38 7 .08 145.63 6 71 145.33 7 .08 10/28 10/28 10/28 10/28 152.54 13 .88 152.46 13 .92 152.33 14 25 152.42 13 .92 11/ 4 1 1/ 4 1 1 / 4 1 1 / 4 166.42 14 .00 166.38 14 .00 166.58 13 96 166.33 14 .00 11/18 11/18 1 1/18 11/18 180.42 14 . 13 180.38 14 . 13 180.54 14 83 180.33 14 13 12/ 2 12/ 2 12/ 2 12/ 2 194.54 24 .79 194.50 24 .04 195.38 24 04 194.46 24 04 12/16 12/16 12/17 12/16 DATA START TIMES AND DATA PERIODS 2 TIME 13.96 14.00 12.12 SITE 0 SITE 1 SITE START TIME START TIME START DATA SET NO: 26 DAYS DATE 219.50 1/10 14 . 00 219.58 1/10 13 . 83 219.38 1/10 DATA SET NO : 27 DAYS DATE 233.50 1/24 14 . 00 233.42 1/24 14 . 00 233.33 1/24 DATA SET NO : 28 DAYS DATE 247.50 2/ 7 12 . 96 247.42 2/ 7 12 . 96 247.33 2/ 7 DATA SET NO: 29 DAYS DATE 260.46 2/20 22. 00 260.38 2/20 22 . 13 259.46 2/19 DATA SET NO : 30 DAYS DATE 282.46 3/14 14 . 04 282 .50 3/14 13 . 92 282.33 3/14 DATA SET NO: 31 DAYS DA.TE 296 .50 3/28 18 . 04 296.42 3/28 18 . 17 296.33 3/28 DATA SET NO: 32 DAYS DATE 314.54 4/15 21 . 96 314.58 4/15 21 . 83 315 .50 4/16 DATA SET NO : 33 DAYS DATE 336.50 5/ 7 12 . 92 336.42 5/ 7 13 . 04 336.33 5/ 7 DATA SET NO: 34 DAYS DATE 349.42 5/20 14, .00 349.46 5/20 14 . 00 349.54 5/20 DATA SET NO: 35 DAYS DATE 363.42 6/ 3 12 .96 363.46 6/ 3 12. .96 362.67 6/ 2 DATA SET NO : 36 DAYS DATE 376.38 6/16 13 . 17 376.42 6/16 13 17 376.54 6/16 DATA SET NO: 37 DAYS DATE 389.54 6/29 8 .88 389.58 6/29 8 . 75 390.46 6/30 DATA SET NO: 38 DAYS DATE 398.42 7/ 8 6 . 13 398.33 7/ 8 6 . 13 397.42 7/ 7 DATA SET NO: 39 DAYS DATE 404.54 7/14 9 .00 404.46 7/14 8 .88 404.33 7/14 DATA SET NO: 40 DAYS DATE 413.54 7/23 4 .83 413 .33 7/23 5 . 13 412.46 7/22 DATA SET NO : 41 DAYS DATE 418.38 7/28 8 .04 418 .46 7/28 8 .00 418.33 7/28 DATA SET NO: 42 DAYS DATE 426.42 8/ 5 5 .08 426.46 8/ 5 5 .08 426.33 8/ 5 DATA SET NO : 43 DAYS DATE 431.50 8/10 7 .88 431 .54 8/10 7 .88 431 .58 8/10 DATA SET NO: 44 DAYS DATE 439.38 8/18 6 .29 439.42 8/18 6 .21 439 .50 8/18 DATA SET NO: 45 DAYS DATE 445.67 8/24 8 .71 445.63 8/24 8 . 79 445.71 8/24 DATA SET NO: 46 DAYS DATE 454.38 9/ 2 10 .04 454 .42 9/ 2 9 .92 453.58 9/ 1 DATA SET NO: 47 DAYS DATE 464.42 9/12 13 .04 464.33 9/12 13 .04 463 .63 9/11 DATA SET NO: 48 DAYS DATE 477.46 9/25 14 .92 477.38 9/25 15 .04 477.33 9/25 DATA SET NO : 49 DAYS DATE 492.38 10/ 10 18 . 17 492.42 10/10 18 .04 491.58 10/ 9 22.88 14 .00 19. 17 20.83 13.21 13.13 13.88 13.92 6 .96 6.92 8.13 5.88 8 .00 5.25 7.92 6.21 7 .88 10.04 13.71 14 . 25 19.04 : MESACHIE SITE 3 START 219.33 1/10 232 .50 1/23 246.46 2 / 6 259.42 2/19 281.54 3/13 295 .50 3/27 315.42 4/16 335.46 5/ 6 348 .63 5/19 362.58 6/ 2 375.58 6/15 390.42 6/30 396 .50 7/ 6 403.54 7/13 412.33 7/22 417 .50 7/27 425 .50 8/ 4 431.63 8/10 438.58 8/17 445.79 8/24 453.33 9/ 1 463 .50 9/11 478.54 9/26 491.42 10/ 9 TIME 13 . 1980-1981 SITE START 17 218.54 1/ 9 13.96 232.46 1/23 12.96 246 .50 2/ 6 22 .13 259.38 2/19 13.96 281 .50 3/13 19.92 295 .54 " 3/27 20 .04 315.38 4/16 13.17 335 .50 5/ 6 13.96 349 .33 5/20 13.00 362 .50 6/ 2 14.83 375 .50 6/15 6 .08 390.38 6/30 7.04 396.46 7/ 6 8 .79 403 .50 7/13 c . 1 7 411 .79 7/21 8 .00 417 .58 7/27 6 .13 425 .54 8/ 4 6 .96 431 .67 8/10 7.21 438 .50 8/17 7.54 445.54 8/24 10.17 453 .38 9/ 1 15.04 463 .50 9/11 12.88 478.46 9/26 17 491 .46 10/ 9 20. 4 TIME 13.92 14 .04 12.88 22 . 13 14 .04 19.83 20. 13 13.83 13. 17 13 .00 14.88 6 .08 7 .04 8.29 5.79 7.96 6 .13 6 .83 7.04 7.83 10. 13 14.96 13 .00 20. OO SITE 5 SITE 6 START TIME 219.42 13. 96 218 .50 14 . 08 1/10 1/ 9 233.38 14 . 00 232 .58 14. 00 1/24 1/23 247.38 12. 17 246 .58 12 . 75 2/ 7 2/ 6 259.54 22. 83 259 .33 22 . 25 2/19 2/19 282.38 14 . OO 281 .58 14 . 00 3/14 3/13 296 .38 19. . 17 295.58 19 . 75 3/28 3/27 315.54 20. ,83 315 .33 20. ,25 4/16 4/16 336.38 13. , 13 335 .58 14 . ,00 5/ 7 5/ 6 349 .50 13. ,83 349 .58 13. .04 5/20 5/20 363.33 13. . 13 362 .63 13, ,00 6/ 3 6/ 2 376.46 13 . 17 375 .63 14 , .71 6/16 6/15 389 .63 7 .88 390 .33 7 .00 6/29 6/30 397 .50 6 .92 397 .(33 6 . 13 7/ 7 7/ 7 404.42 8 . 13 403 .46 8 .29 7/14 7/13 412.54 5 .96 41 1 .75 5 .92 7/22 7/21 418 .50 8 .00 417 .67 7 .96 7/28 7/27 426 .50 5 .04 425 .63 6 . 17 8/ 5 8/ 4 431.54 7 .92 431 .79 6 .67 8/10 8/10 439.46 6 .38 438 .46 7 .04 8/18 8/17 445 .83 8 .63 4 4 5 . 5 0 7 .96 8/24 8/24 454.46 9 .21 453 .46 10 .08 9/ 2 9/ 1 463.67 13 .67 463 .54 14 .88 9/11 9/1 1 477.33 14 . 29 478 .42 13 . 13 9/25 9/26 491 .63 18 .96 491 .54 19 . 79 10/ 9 10/ 9 r\» ro O - 221 -APPENDIX 10 Daily net radiation (daytime basis) and calculated daily equilibrium evapotranspiration for each day from Dune 5, 1980 to October 29, 1981. Differences between sites for a given day result from variations in slope and aspect between sites. DAY MONTH/ DAILY NET RADIATION (DAYTIME) : MJ/M2D DAY SITE O SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 1 6/ 5 7 . 89 7 . 21 7 . 50 7 . 89 7 . 79 7 . 69 7 . 79 2 6/ 6 15 . 57 14 . 18 14 . 77 15. 57 15 . 37 15. 17 15 . 37 3 6/ 7 10. 49 9 . 60 9. 98 10. 49 10. 36 10. 23 10. 36 4 6/ 8 4 . 05 3 . 69 3. 85 4 . 05 4 . 00 3. 95 4 . 00 5 6/ 9 1 1 . 12 10. 1 1 10. 55 1 1 . 12 10. 98 10. 83 10. 98 6 6/10 1 1 . 48 10. 44 10. 89 1 1 . 48 1 1 . 33 1 1 . 18 1 1 . 33 7 6/1 1 18 . 36 16. 73 17 . 43 18 . 36 18 . 13 17 . 90 18 . 13 8 6/12 20 . 20 18. 42 19. 18 20. 20 19 . 95 19 . 69 19. 95 9 6/13 21 . 59 19 . 70 20. 51 21 . 59 21 . 32 21 . 05 21 . 32 10 6/14 10. 48 9. 54 9. 94 10. 48 10. 34 10. 21 10. 34 1 1 6/15 16 . 32 14 . 87 15 . 49 16 . 32 16 . 1 1 15 . 91 16 . 1 1 12 6/16 8. 60 7 . 88 8 . 19 8 . 60 8 . 50 8 . 40 8 . 50 13 6/17 15. 49 14 . 12 14 . 71 15 . 49 15 . 30 15 . 10 15 . 30 14 6/18 14 . 57 13 . 27 13. 83 14 . 57 14 . 38 14 . 20 14 . 38 15 6/19 20. 50 18 . 70 19. 47 20. 50 20. 24 19. 99 20. 24 16 6/20 16 . 59 15. 13 15. 76 16 . 59 16. 38 16. 17 16 . 38 17 6/21 18 . 59 16. 96 17. 66 18 . 59 18 . 36 18 . 12 18 . 36 18 6/22 8 . 78 8 . 04 8. 36 8 . ,78 8 . 67 8 . 57 8 . 67 19 6/23 10. 54 9 . 65 10. 03 10. ,54 10. 41 10. 28 10. 41 20 6/24 9 . 96 9. 12 9. 48 9 . ,96 9. 84 9. 72 9 . 84 21 6/25 3. 62 3 . 29 3 . 43 3 , .62 3. 57 3. 53 3 . 57 22 6/26 4 . 31 3. ,92 4 . 09 4 . ,31 4. 26 4. 20 4 . 26 23 6/27 10. .02 9. , 17 9. 54 10 .02 9 . ,90 9 . 78 9. .90 24 6/28 13 , 42 12. , 22 12 . 73 13 .42 13 . ,25 13 . 07 13. . 25 25 6/29 16. .02 14 , . 59 15 . , 20 16 .02 15. .81 15. .61 15. .81 26 6/30 20 . 14 18 , 37 19. . 13 20 . 14 19, ,89 19 .64 19 .89 27 7/ 1 20 .96 18, .60 19. .65 20 .96 20 .70 20 . 18 20 .70 28 7/ 2 10 . 35 9 . 16 9. .69 10 .35 10 .21 9 .95 10 .21 29 7/ 3 4 . 40 3 .89 4 , . 12 4 .40 4 . 34 4 . 23 4 . 34 30 7/ 4 9 .94 8 .85 9. . 34 9 .94 9 .82 9 .58 9 .82 31 7/ 5 10 .31 9 . 1 1 9 .64 10 .31 10 . 17 9 .91 10 . 17 32 7/ 6 10 .94 9 .67 10 . 24 10 .94 10 .80 10 .52 10 .80 33 7/ 7 19 .80 17 .57 18 . 56 19 .80 19 .56 19 .06 19 .56 34 7/ 8 20 .01 17 . 76 18 . 76 20 .01 19 .76 19 . 26 19 .76 35 7/ 9 19 .09 16 .94 17 .90 19 .09 18 .85 18 . 37 18 .85 36 7/10 4 . 45 3 .95 4 : 17 4 .45 4 .39 4 .28 4 .39 37 7/1 1 12 .64 1 1 . 18 1 1 .83 12 .64 12 . 48 12 . 15 12 . 48 38 7/12 17 .41 15 .45 16 . 32 17 .41 17 . 19 16 .76 17 . 19 39 7/13 7 . 70 6 .87 7 . 24 7 . 70 7 .61 7 .42 7 .61 40 7/14 14 .73 13 .04 13 . 79 14 . 73 14 .54 14 . 17 14 . 54 41 7/15 5 . 14 4 .57 4 .82 5 . 14 5 .07 4 .95 5 .07 42 7/16 17 .05 15 . 1 1 15 . 97 17 .05 16 .84 16 .41 16 .84 43 7/17 15 .09 13 . 36 14 . 13 15 .09 14 .90 14 .52 14 .90 44 7/18 17 .93 15 .90 16 .80 17 .93 17 .70 17 . 25 17 .70 45 7/19 6 . 75 6 .02 6 . 34 6 . 75 6 .67 6 . 51 6 .67 46 7/20 16 . 70 14 .81 15 .65 16 .70 16 .49 16 .07 16 .49 47 7/21 18 .89 16 . 78 17 . 72 18 .89 18 .65 18 . 19 18 .65 48 7/22 16 . 34 14 .51 15 . 32 16 . 34 16 . 14 15 .73 16 . 14 49 7/23 15 .04 13 . 32 14 .08 15 .04 14 .85 14 .46 14 .85 50 7/24 18 . 37 16 . 28 17 .21 18 . 37 18 . 14 17 .67 18 . 14 DAILY EOUI. EVAPOTRANSPIRATION (DAYTIME): MM SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 1. 82 1 . 66 1 . 73 1 . 82 1 . 80 1 . 77 1 . 80 3 . 79 3. 45 • 3. 59 3 . 79 3. 74 3 . 69 3. 74 2 . 55 2 . 33 2 . 43 2 . 55 2. 52 2 . 49 2. 52 1 . 00 0. 91 0. 95 1 . 00 0. 99 0 . 98 0. 99 2 . 75 2 . 50 2 . 61 2 . 75 2. 72 2 . 68 2. 72 2. 84 2 . 58 2 . 69 2 . 84 2 . 80 2. 77 2 . 80 4 . 54 4 . 14 4 . 31 4 . 54 4 . 49 4 . 43 4. 49 5 . 17 4 . 72 4 . 91 5 . 17 5. 1 1 5 . 04 5. 1 1 5 . 71 5 . 21 5 . 42 5. 71 5. 64 5 . 57 5 . 64 2 . 77 2 . 52 2 . 63 2 . 77 2. 74 2 . 70 2 . 74 4 . 18 3. 81 3 . 97 4 . 18 4 . 13 4 . 07 4 . 13 2 . 28 2 . 08 2 . 17 2 . 28 2 . 25 2 . 22 2. 25 3 . 90 3. 55 3 . 70 3 . 90 3 . 85 3. 80 3 . 85 3. 67 3 . 34 3 . 48 3 . 67 3. 62 3. ,57 3. 62 5 . 42 4 . 95 5 . 15 5 . 42 5 . 35 5 . ,29 " 5 . 35 4 . 46 4 . 07 4 . 24 4 . 46 4 . 40 4 . ,35 4 . 40 5 . 00 4 . 56 4 . ,75 5 . 00 4 . 94 4 . ,87 4 . 94 2 . 32 2. , 13 2 , 21 2 . 32 2 . ,29 2 . 27 2. 29 2 . 48 2 . , 27 2 , . 36 2 . ,48 2 , ,45 2 . 42 2 . 45 2. 51 2 . , 30 2 , . 39 2 , 51 2. .48 2 .45 2. 48 0. 90 0, ,82 0, .85 0, ,90 0. .88 0. .87 0. 88 0. 96 0. .87 0 .91 0. .96 0. .95 0 .93 0. 95 i 2 . 48 2 .27 2 . 36 2 . , 48 2 .45 2 .42 2. ,45 r\> ro 3 . 32 3 .02 3 . 15 3 .32 3 .28 3 .24 3 . 28 3. .96 3 .61 3 . 76 3 .96 3 .91 3 .86 3 . 91 ro 5. . 16 4 . 70 4 .90 5 . 16 5 .09 5 .03 5. .09 i 5 .72 5 .08 5 . 37 5 . 72 5 .65 5 .51 5 .65 2 .82 2 .50 2 .64 2 .82 2 .79 2 .72 2 .79 1 .07 0 .95 1 .00 1 .07 1 .06 1 .03 1 .06 2 . 33 2 .08 2 . 19 2 . 33 2 .31 2 .25 2 .31 2 .51 2 .21 2 . 34 2 .51 2 .47 2 .41 2 .47 2 .71 2 .39 2 .53 2 .71 2 .67 2 .60 2 .67 5 . 32 4 . 72 4 .99 5 . 32 5 . 26 5 . 12 5 . 26 5 . 55 4 .93 5 .20 5 .55 5 .48 5 .34 5 .48 5 . 29 4 . 70 4 .96 5 .29 5 .23 5 . 10 5 .23 1 .20 1 .06 1 . 12 1 . 20 1 . 18 1 .15 1 . 18 3 .23 2 .86 3 .03 3 . 23 3 . 19 3 . 1 1 3 . 19 4 .75 4 . 22 4 . 46 4 .75 4 .69 4 . 57 4 .69 2 .07 1 .85 1 .95 2 .07 2 .04 1 .99 2 .04 3 . 77 3 . 34 3 .53 3 .77 3 .72 3 .63 3 .72 1 . 36 1 .21 1 . 27 1 . 36 1 .34 1 .31 1 . 34 4 . 37 3 .87 4 .09 4 .37 4 .31 4 .20 4 .31 3 . 99 3 .53 3 . 74 3 .99 3 .94 3 . 84 3 .94 4 .90 4 . 34 4 .59 4 .90 4 . 83 4 .71 .4 .83 1 .84 1 .64 1 . 73 1 .84 1 .82 1 . 78 1 .82 4 .63 4 . 1 1 4 . 34 4 .63 4 . 57 4 .46 4 .57 5 .56 4 .94 5 . 22 5 . 56 5 .50 5 . 36 5 .50 4-.95 4 .40 4 .65 4 .95 4 .89 4 . 77 4 .89 4 . 1 1 3 .64 3 .84 4 . 1 1 4 .05 3 .95 4 .05 5 .09 4 .51 4 . 77 5 .09 5 .03 4 .90 5 .03 DAY MONTH/ DAILY NE DAY S ITE 0 SITE ' 51 7/25 17 . 43 15 . 45 52 7/26 18 . 28 16 . 21 53 7/27 18 . 51 16 . 42 54 7/28 18 . 88 16 . 74 55 7/29 18 . 69 16 . 55 56 7/30 18 . 23 16 . 15 57 7/31 17 . 86 15 . 82 58 8/ 1 8 . 17 6 . 96 59 8/ 2 7 . 31 6 . 22 60 8/ 3 17 . 47 14 . 80 61 8/ 4 13 . 17 1 1 . 14 62 8/ 5 15 . 04 12 . 73 63 8/ 6 15 . 05 12 . 73 64 8/ 7 16 . 09 13 . 63 65 8/ 8 16 . 08 13 . 64 66 8/ 9 16. 83 14 . 27 67 8/10 16 . 38 13 . 90 68 8/1 1 16 . 35 13 . 87 69 8/12 14 . 89 12 . 61 70 8/13 12 , .62 10. 66 71 8/14 12 . 32 10. 39 72 8/15 10. .55 8 . 88 73 8/16 10. . 70 9 . 00 74 8/17 6 . 32 5 . 37 75 8/18 16 .09 13 . 56 76 8/19 15 .67 13 . 21 77 8/20 14 . 17 1 1 . 93 78 8/21 14 .09 1 1 . .85 79 8/22 10 . 23 8 . 58 80 8/23 7 . 50 6 . 26 81 8/24 15 . 17 12 . 76 82 8/25 13 .93 1 1 . . 70 83 8/26 4 . 35 3 .68 84 8/27 T . 18 5 .98 85 8/28 10 . 10 8 . 44 86 8/29 11 .20 9 . 36 87 8/30 7 . 4 1 6 . 28 83 8/31 7 .04 5 .96 89 9/ 1 3 . 50 2 .65 90 9/ 2 7 . 16 5 . 33 91 9/ 3 6 .65 5 .09 92 9/ 4 7 .08 5 . 34 93 9/ 5 12 . 70 9 .69 94 9/ 6 2 . 93 2 . 24 95 9/ 7 12 . 70 9 . 65 96 9/ 8 12 .02 9 . 12 97 9/ 9 12 . 74. 9 .69 98 9/10 12 .43 9 . 45 99 9/ 1 1 1 1 .09 8 . 42 100 9/12 7 . 47 5 .61 RADIATION (DAYTIME) : MJ/M2D SITE 2 SITE 3 SITE 4 SITE 5 16 . 33 17 . 43 17 . 21 16 . 77 17 . 13 18 . 28 18 . 05 17 . 59 17 . 35 18 . 51 18 . 28 17 . 81 17 . 70 18 . 88 18 . 65 18 . 17 17 . 50 18 . 69 18 . 45 17 . 98 17 . 07 18 . 23 18 . 00 17 . 53 16 . 73 17 . 86 17 . 64 17 . 18 7 . 46 8 . 27 7 . 97 7 . 76 6 . 67 7 . 40 7 . 13 6 . 95 15 . 91 17 . 69 17 . 02 16. 58 1 1 . 99 13 . 34 12 . 83 12 . 49 13 . 70 15 . 24 14 . 66 14 . 27 13 . 69 15 . 24 14 . 66 14 . 27 14 . 65 16 . 29 15 . 68 15 . 27 14 . 65 I 6 • 28 15 . 67 15. 26 15 . 34 1*7 . 04 16 . 40 15. 98 14 . 94 16 . 59 15 . 97 15. 56 14 . 90 16 . 56 15. 94 15 . 53 13 . 56 15. 08 14 . 51 14 . 13 1 1 . 47 12 . 78 12 . 29 1 1 . 96 1 1 . 19 12 . 48 1 1 . 99 1 1 . 67 9 . 58 10. 69 10, , 27 9 . ,99 9 . 71 10. .84 10. .42 10. , 14 5 . 77 6 . 39 6, . 16 6 , 00 14 .61 16 . 30 15 , .67 15 , , 25 14 . 23 15 .88 15 .26 14 ,85 12 .86 14 . 36 13 .80 13, .42 12 . 78 14 . 27 13 .72 13 .34 9 .27 • 10 . 37 9 .95 9 .68 6 . 77 7 .60 7 . 29 7 .08 13 .77 15 . 37 14 .77 14 . 37 12 .63 14 . 12 13 .56 13 . 19 3 .96 4 .40 4 .24 4 . 12 6 . 48 7 . 28 6 .98 6 .78 9 . 13 10 . 24 9 .83 9 .55 10 . 12 1 1 . 35 10 .89 10 .58 6 . 75 7 . 50 7 . 22 7 .03 6 .41 7 . 13 6 .86 6 .68 2 .98 3 .55 3 . 36 3 .22 6 .04 7 . 27 6 .86 6 .55 5 .69 6 . 73 6 .39 6 . 13 6 .02 7 . 18 6 . 79 6 .50 10 .86 12 .87 12 .20 1 1 .69 2 .51 2 .97 2 .82 2 . 70 10 .84 12 .86 12 . 19 1 1 .68 10 . 25 12 . 18 1 1 .54 1 1 .06 10 .88 12 .91 12 . 23 1 1 .73 10 .61 12 .60 1 1 .93 1 1 . 44 9 . 46 1 1 . 24 10 .64 10 . 20 6 . 34 7 .58 7 . 16 6 .85 DAILY EOUI SITE 6 SITE 0 SITE 1 17.21 4 . 83 4 . 28 18 .05 5 . 15 4 .57 18 . 28 5 . 30 4 . 70 18.65 5 . 32 4 . 72 18.45 5 . 10 4.52 18 . OO 5 . 05 4 .48 17.64 4 . 95 4 . 39 7.97 2 . 16 1 .84 7.13 1 . 87 1 .59 17 .02 4 . 70 3.98 12 .83 3 . 48 2.95 14 .66 4 . 04 3.42 14 . 66 3 . 98 3 . 37 15.68 4 . 46 3 . 78 15.67 4 . 74 4 .02 16.40 4 . 81 4 .08 15.97 4 . 90 4 . 16 15.94 4 , .82 4 .09 14.51 4 , . 39 3 . 72 12 . 29 3 , .50 2 .95 1 1 . 99 3 , .36 2.84 10. 27 2 .84 2 . 39 10.42 2 .83 2 .38 6 . 16 1 . 70 1 . 44 15.67 4 . 25 3.59 15.26 4 .21 3.55 13.80 3 . 75 3. 15 13.72 3 .79 3. 19 9.95 2 .70 2.27 7 . 29 1 .92 1 .60 14 . 77 4 .08 3.43 13 . 56 3 .68 3 .09 ' 4 . 24 1 . 17 0 .99 6.98 1 . 78 1 .48 9.83 2 .46 2.05 10.89 2 . 72 2 . 28 7 . 22 1 . 86 1 . 58 6 . 86 1 . 77 1 . 50 3.36 0 .88 0 .67 6.86 1 .68 1 . 25 6 . 39 1 .62 1 .24 6 .79 1 .78 1 .35 12.20 3 .41 2 .60 2.82 0 . 79 0 . 6 0 12.19 3 . 25 2.47 1 1 . 54 3 .08 2 . 34 12 . 23 3 . 43 2.61 1 1 .93 3 . 39 2 . 58 10.64 3 .08 2 . 34 7.16 1 .91 1 . 44 EVAPOTRANSPIRATION (DAYTIME): MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 4 . 53 4 . 83 4 . 77 4 . 65 4 . 77 4 . 83 5 . 15 5 . 09 4 . 96 5. 09 4 . 96 5 . 30 5. 23 5. 10 5. 23 4 . 99 5 . 32 5. 25 5. 12 5. 25 4. 78 5 . 10 5 . 04 4. 91 5. 04 4 . 73 5 . 05 4 . 99 4 . 86 4 . 99 4 . 64 4 . 95 4 . 89 4 . 76 4 . 89 1 . 97 2 . 19 2 . 1 1 2 . 05 2 . 1 1 1 . 71 1 . 90 1 . 83 1 . 78 1 . 83 4 . 28 4 . 76 4 . 58 4 . 46 4 . 58 3. 17 3 . 53 3 . 39 3. 30 3 . 39 3. 68 4 . 10 3 . 94 3 . 84 3 . 94 3 . 62 4 . 03 3 . 88 3 . 77 3. 88 4 . 06 4 . 52 4 . 35 4 . 23 4 . 35 4 . 32 4 . 80 4 . 62 4 . 50 4 . 62 4 . 39 4 . 88 4 . 69 4 . ,57 ^ 4 . 69 4 . , 47 4 . 96 4 . 77 4 . ,65 4 . 77 4 . 39 4 . 88 4 . 70 4 . ,57 4 . 70 3 , .99 4 . 44 4 . 27 4 . , 16 4 . 27 3 . , 18 3. 54 3. 41 3. .32 3 . 41 3, .06 3 . 41 3. ,27 3 . 19 3 . 27 2, .57 2 , .87 2 . 76 2 . 69 2 . 76 l 2, . 57 2 , .87 2 . ,76 2 .68 2 . ,76 1 . 55 1 , . 72 1 . .66 1 .61 1 . .66 r\> 3 .86 4 . 3 1 4 . 14 4 .03 4 , 14 Ul 3 .83 4 .27 4 . 10 3 .99 4 , . 10 | 3 .40 3 .80 3, .65 3 .55 3 .65 3 .44 3 .84 3 .69 3 .59 3 .69 2 .45 2 . 74 2 .63 2 .56 2 . 63 1 .73 1 .95 1 .87 1 .81 1 .87 3 .70 4 . 13 3 .97 3 .86 3 .97 3 . 34 3 .73 3 . 59 3 .49 3 . 59 1 .06 1 . 18 1 . 14 1 . 1 1 1 . 14 1 .60 1 .80 1 . 73 1 .68 1 . 73 2 . 22 2 .49 2 .39 2 .32 2 . 39 2 .46 2 . 76 2 .65 2 .57 2 .65 1 . 70 1 .89 1 .82 1 . 77 1 .82 1 .61 1 .79 1 .73 1 .68 1 .73 0 . 75 0 .89 0 .85 0 .81 0 .85 1 .42 1 .71 1 .61 1 .54 1 .61 1 . 39 1 .64 1 .55 1 .49 1 .55 1 .52 1 .81 1 .71 1 .64 1 .71 2 .92 3 .46 3 . 28 3 .14 3 . 28 0 .68 0 .80 0 . 76 0 . 73 0 . 76 2 . 77 3 . 29 3 . 12 2 .99 3 . 12 2 .62 3 . 12 2 .95 2 . 83 2 .95 2 .92 3 . 47 3 . 29 3 . 15 3 . 29 2 . 90 3 . 44 3 . 26 3 . 12 3 . 26 2 . 62 3 . 12 2 . 95 2 .83 2 .95 1 . 62 1 . 94 1 .83 1 . 75 1 .83 DAY MONTH/ DAILY NET RADIATION (DAYTIME) : MJ/M2D DAILY EOUI DAY SITE O SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 SITE 0 SITE 1 101 9/13 9 . 61 7 . 25 8 . 17 9 . 74 9. 21 8 . 82 9 . 21 2 . 58 1 . 95 102 9/14 10. 65 8 . 06 9 . 06 10. 79 10. 22 9 . 78 10. 22 2 . 95 2 . 23 103 9/15 10. 48 7 . 91 8 . 91 10. 62 10.. 05 9 . 62 10. 05 2 . 86 2 . 16 104 9/16 10. 75 8 . 1 1 9 . 14 10. 90 10. 31 9 . 87 10. 31 2 . 89 2 . 18 105 9/17 9. 34 7 . 02 7 . 93 9. 47 8 . 96 8 . 57 8 . 96 2 . 51 1 . 89 106 9/18 2 . 22 1 . 66 1 . 88 2 . 25 2. 13 2 . 04 2 . 13 0. 57 0. 43 107 9/19 5 . 61 4 . 29 4 . 80 5 . 69 5. 39 5 . 17 5. 39 1 . 37 1 . 04 108 9/20 5 . 76 4 . 25 4. 84 5 . 84 5 . 51 5 . 25 5. 51 1 . 35 1 . 00 109 9/21 8 . 07 5 . 99 6 . 80 8 . 18 7 . 72 7 . 37 7 . 72 1 . 96 1 . 46 1 10 9/22 3. 80 2 . 87 3 . 23 3 . 85 3 . 65 3 . 49 3. 65 0. 92 0 . 70 1 1 1 9/23 4 . 07 3 . 07 3 . 46 4 . 12 3. 90 3 . 74 3 . 90 0. 96 0 . 72 1 12 9/24 9 . 48 7 . 04 7 . 99 9 . 62 9 . 07 8 . 67 9. 07 2 . 39 1. 77 1 13 9/25 12 . 00 8 . 92 10. 12 12 . 17 1 1 . 49 10. 97 1 1 . 49 3 . 02 2 . 25 1 14 9/26 10. 19 7 . 57 8 . 59 10. 34 9 . 76 9 . 32 9 . 76 2. 70 2 . 00 1 15 9/27 1 . 96 1 . 45 1 . 65 1 . .99 1 . 88 1 . 79 1 . 88 0. 53 0. 39 1 16 9/28 1 . 64 1 . 19 1 . 37 1 . .67 1 . 57 1 . 49 1 . 57 0. 40 0. 29 1 17 9/29 4 . 56 3 . 4d 3 . 87 4: 62 4 . 37 4 . 18 4 . 37 1 . 1 1 0. 84 1 18 9/30 6 . 38 4 . G 5 5 . 32 6 . 48 6 . 09 5 . 80 6 . 09 1 . 55 1 . 13 1 19 10/ 1 8 . 61 5 . 8 8 6 . 79 8 .87 8 . 09 7 . 70 8 . 22 2. . 13 1 . 45 120 10/ 2 8 . 42 5 . 74 6 . 63 8 .67 7 . 91 7 . 52 8 . 03 15 1 . 47 121 10/ 3 8 . 37 5 . 7 2 6 . 60 8 . 63 7 . .87 7 . . 49 7 . .99 2 . .21 1 . 5 1 122 10/ 4 7 . 27 4 . 91 5 . 69 7 . . 49 6 . 82 G . . 48 6 . 93 1 . .83 1 . 24 123 10/ 5 8 . 13 5 . 6 8 6 .50 8 . 36 7 . .67 7 . 32 7 . 78 2 . 19 1 . .53 124 10/ 6 8 . .02 5 . 59 6 .40 8 . 25 7 . . 56 7 . .21 7 . .67 2 . 16 1 . . 50 125 10/ 7 6 . 38 4 . . 4 1 5 .07 6 . 57 6 .01 5 . 73 6 . 10 1 . .69 1 . . 17 126 10/ 8 7 . . 46 5 . 15 5 .92 7 .68 7 .02 6 .69 7 . 13 1 .88 1 . .30 127 10/ 9 3 . 54 2 .50 2 .85 3 .64 3 . 34 3 . 20 3 . 39 0 .86 0 .61 128 10/10 6 . 60 4 .51 5 .21 6 .80 6 .20 5 .90 6 .30 1 .63 1. . 12 129 10/11 2 . .93 2 .06 2 . 35 3 .02 2 . 77 2 .64 2 .81 0 . 74 0 .52 130 10/12 3. • 29 2 . 30 2 .63 3 . 38 3 . 10 2 .96 3 . 15 0 .76 0 .53 131 10/13 4 . 18 2 . 78 3 .25 4 . 32 3 .92 3 . 72 3 .98 0 .96 0 .64 132 10/14 7 .03 4 . 74 5 .51 7 . 25 6 .60 6 .27 6 .71 1 .62 1 .09 133 10/15 5 . 50 3 . 67 4 .28 5 .67 5 . 15 4 .89 5 . 24 1 .27 0 .85 134 10/16 6 . 64 4 . 44 5 . 17 6 .85 6 .22 5 .91 6 . 33 1 .48 0 .99 135 10/17 1 . 89 1 . 27 1 .48 1 .95 1 .77 1 .68 1 .80 0 . 44 0 . 29 136 10/18 2 .08 1 .40 1 .63 2 . 14 1 .95 1 .85 1 .98 0 .46 0 .31 137 10/19 4 .02 2 .61 3 .08 4 . 15 3 . 75 3 .55 3 .82 0 .94 0 .61 138 10/20 5 . 1 1 3 . 35 3 .93 5 . 28 4 .78 4 .52 4 .86 1 .20 0 . 79 139 10/21 6 . 1 1 4 .00 4 .70 6 .31 5 .71 5 .41 5 .81 1 .41 0 .92 140 10/22 5 .05 3 .27 3 .87 5 . 22 4 .71 4 .46 4 .80 1 . 10 0 .71 141 10/23 4 .66 3 .00 3 .55 4 .82 4 .34 4 . 1 1 4 .42 1 .00 0 .64 142 10/24 1 . 35 0 . 87 1 .03 1 .40 1 . 26 1 . 19 1 .28 0 .29 0 . 19 143 10/25 2 .98 1 .85 2 . 23 3 .09 2 .77 2 .60 2 .82 0 .64 0 .40 144 10/26 2 .93 1 .81 2 . 18 3 .04 2 .72 2 .56 2 . 77 0 .64 0 . 39 145 10/27 2 . 35 1 . 55 1 .82 2 .42 2 .20 2 .08 2 . 23 0 .50 0 . 33 146 10/28 3 . 69 2 .28 2 .75 3 .82 3 .42 3 . 22 3 .49 0 .80 0 .50 147 10/29 1 .59 1 .02 1 .21 1 .65 1 .49 1 .40 1 .51 0 . 35 0 . 23 148 10/30 2 .61 1 . 55 1 .90 2 .71 2 . 4 1 2 .26 2 .46 0 .57 0 . 34 149 10/31 0 . 42 0 .20 0 . 28 0 .44 0 .38 0 .35 0 . 39 0 .09 0 .05 150 11/ 1 O .61 0 . 29 0 .40 0 .66 0 .54 0 .51 0 . 57 0 . 13 0 .06 EVAPOTRANSPIRATION (DAYTIME): MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 2 . 20 2 . 62 2 . 48 2 . 37 2 . 48 2 . 51 2 . 99 2 . 83 2 . 71 2 . 83 2 . 43 2 . 90 2 . 74 2 . 63 2 . 74 2 . 46 2 . 93 2 . 77 2 . 65 2 : 77 2 . 13 2. 55 2 . 41 2 . 30 2. 41 0. 48 0. 58 0 . 54 0 . 52 0. 54 1 . 17 1 . 38 1 . 31 1 . 26 1 . 31 1 . 14 1 . 37 1 . 29 1 . 23 1 . 29 1 . 65 1 . 99 1 . 88 1 . 79 1 . 88 0 . 79 0. 94 0. 89 0 . 85 0. 89 * 0 . 81 0. 97 0. 92 0 . 88 0. 92 2 . 01 2. 42 2 . 28 2 . 18 2 . 28 2 . 55 3. 06 2 . 89 2 . 76 2 . 89 2 . 27 2 . 73 2 . 58 2 . 46 2 . 58 0. 44 0. 53 0. ,50 0. 48 0. 50 0. 33 0. 41 0. ,38 0. 36 0. 38 0. 94 1 . 12 1 . 06 1 . 02 1 . 06 1 . 29 1 . 58 1 . ,48 1 . 41 1 . 48 1 . 68 2 . 20 2 . ,00 1 . 91 2 . 03 1 . 70 o 2 2 2 . ,02 1 . 93 2 . 06 1 . 75 2 . 28 2 . ,08 1 . 98 2 . 1 1 1 . 43 1 . 89 1 , . 72 1 . 63 1 . 74 1 . 75 2 . 25 2 .06 1 . 97 2 . ,09 1 . . 72 2 . 2 2 2 .03 1 . .94 2 . ,06 1 . 34 1 . 74 1 . 59 1 . .51 1 , ,61 1 . .49 1 . 93 1 . 77 1 . ,68 1 . . 80 0. .69 0. .89 0 .81 0. . 78 0 . 83 1 . . 29 1 . .68 1 .53 1 , ,46 1 . .56 0. . 59 0. . 76 0 .70 0. .66 0, .71 0. ,61 0, ,78 0 .71 0. .68 0. . 73 0. .75 1 . OO 0 .90 0, .86 0 .92 1 .27 1 . .67 1 .52 1 .45 1 .55 0 .99 1 . 31 1 . 19 1 . 13 1 .21 1 . 15 1 . 52 1 . 38 1 .31 1 .41 0 . 34 0 . 45 0 .41 0 . 39 0 .41 0 . 36 0 .48 0 .43 0 .41 0 .44 0 . 72 0 .97 0 .88 o .83 0 .90 0 .92 1 . 24 1 . 12 1 .06 1 . 14 1 .08 1 . 45 1 . 32 1 .25 1 . 34 0 .84 1 . 14 1 .03 0 .97 1 .05 0 .76 1 .03 0 .93 0 .88 0 .95 0 . 22 0 . 30 0 .27 0 . 25 0 . 27 0 :48 0 .66 0 . 59 0 . 56 0 .60 0 .48 0 .66 0 . 59 0 . 56 0 .60 0 . 39 0 . 52 0 .47 0 .45 0 . 48 0 .60 0 . 83 0 . 75 0 . 70 0 . 76 0 . 27 0 . 37 0 . 33 0 .31 0 .34 0 .41 0 . 59 0 .52 0 . 49 0 . 54 0 .06 0 . 10 0 .08 0 .08 0 .09 0 .09 0 . 15 0 . 12 0 . 1 1 0 . 13 DAY MONTH/ DAILY NET RADIATION (DAYTIME) : MJ/M2D DAILY EQUI. EVAPOTRANSPIRATION (DAYTIME): MM DAY SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 151 11/ 2 1 27 0. 72 0 91 1 . 36 1 . 15 1 10 1 20 0. 28 0 16 0 20 0. 30 0. 26 0. 24 0.27 152 11/ 3 0. 47 ' 0. 20 0 29 0. 51 0. 41 0 38 0 43 0. 10 0 04 0 06 0. 11 0 09 0. 08 0.09 153 11/ 4 2 34 1 . 4 1 1 73 2 . 50 2 . 14 2 06 2 22 0. 55 0 33 0 41 0 59 O 50 0. 48 0.52 154 11/ 5 0. 67 0. 33 0 45 0. 73 0 60 0 57 0 63 0. 16 0 08 0 11 0 17 0 14 0. 13 0.15 155 11/ 6 1 15 O. 68 0 84 1 . 24 1 . 05 1 01 1 09 0. 26 0 15 0 19 0 27 0 23 0 22 0.24 156 11/ 7 1 47 0. 89 1 09 1 . 57 1 35 1 29 1 40 0 33 0 20 0 24 0 35 0 30 0. 29 0.31 157 1 1/ 8 2 35 1 . 46 1 77 2 50 2 15 2 07 2 23 O 51 0 32 0 38 0 55 0 47 0 45 0.49 158 11/ 9 2 1 1 1 . 29 1 58 2 25 1 . 93 1 86 2 00 0 42 0 26 0 32 0 45 0 39 0 37 0.40 159 1 1/10 1 96 1 . 04 1 36 2 12 1 76 1 68 1 84 0 42 0 22 0 29 0 45 0 38 0 36 0. 39 160 11/11 2 81 1 . 55 1 99 3 02 2 53 2 42 2 64 0 53 0 29 0 38 0 57 0 48 0 46 0.50 161 1 1/12 2 49 1 . 37 1 76 2 69 2 25 2 15 2 35 0 45 0 25 0 32 0 49 0 41 0 39 0.42 162 1 1/13 2 66 1 . 45 1 87 2 87 2 39 2 29 2 50 0 48 0 26 0 34 0 52 0 43 0 41 0.45 163 11/14 0 70 0 36 0 48 0 76 0 62 - 0 59 0 65 0 13 0 07 0 09 0 15 0 12 0 1 1 0.13 164 11/15 2 17 1 13 1 49 2 35 1 95 1 86 2 04 0 41 0 21 O 28 0 44 0 37 0 35 0.38 165 11/16 0 86 0 46 0 60 0 93 0 78 0 74 0 81 0 16 0 09 0 1 1 0 18 0 15 0 14 0. 15 166 11/17 1 40 0 80 1 01 1 50 1 27 1 22 1 32 0 26 0 15 0 19 0 28 0 24 0 23 . 0.25 167 11/18 0 38 0 15 0 23 0 42 0 33 0 31 0 35 0 08 0 03 0 05 0 08 0 07 0 06 0.07 168 1 1/19 1 66 0 79 1 09 1 82 1 47 1 40 1 55 0 34 0 16 0 22 0 37 0 30 0 29 0.32 169 1 1/20 0 33 0 1 1 0 19 0 37 0 28 0 26 0 30 0 07 0 02 0 04 0 08 0 06 0 06 0.07 170 1 1/21 2 1 1 1 02 1 40 2 29 1 87 1 77 - 1 96 0 45 0 22 0 30 0 49 0 40 0 38 0.42 171 1 1/22 1 67 0 95 1 20 1 79 1 51 1 45 1 57 0 32 0 18 0 23 0 35 0 29 0 28 0.30 172 1 1/23 1 16 0 64 0 82 1 25 1 05 1 00 1 09 0 21 0 1 1 0 14 0 22 0 19 0 18 0. 19 173 1 1/24 1 24 0 68 0 88 1 34 1 12 1 07 1 17 0 22 0 12 0 16 0 24 0 20 0 19 0.21 174 1 1/25 1 59 0 71 1 02 1 74 1 40 1 32 1 47 0 31 0 14 0 20 0 34 0 27 0 25 0.28 175 1 1/26 0 64 0 29 0 41 0 70 0 56 0 53 0 59 0 12 0 06 0 08 0 13 0 1 1 0 10 0.11 176 1 1/27 1 14 0 44 0 69 1 27 0 99 0 93 1 05 0 25 0 10 0 15 o 28 0 22 0 20 0. 23 177 1 1/28 0 91 0 46 0 61 0 99 0 81 0 77 0 85 0 17 0 09 0 12 0 19 0 15 0 15 0. 16 178 1 1/29 0 44 0 17 0 26 0 49 0 38 0 36 0 40 0 08 0 03 0 05 0 09 0 07 0 07 0.08 179 1 1/30 1 34 o 54 0 82 1 48 1 17 1 10 1 23 0 24 0 10 0 15 0 27 0 21 0 20 0.22 180 12/ 1 0 74 0 33 0 47 0 80 0 65 0 62 0 69 0 13 0 06 0 08 0 15 0 12 0 1 1 0.12 181 12/ 2 o 28 0 06 0 13 0 31 0 23 0 21 0 25 0 05 0 01 0 02 0 05 0 04 0 04 0.04 182 12/ 3 0 73 0 33 0 47 0 80 0 65 0 62 0 68 0 12 0 05 0 08 0 13 0 1 1 0 10 0.11 183 12/ 4 0 92 0 45 0 60 1 00 0 82 0 78 0 86 0 15 0 07 0 10 0 16 0 13 0 13 0. 14 184 12/ 5 o 56 0 23 0 34 0 61 0 49 0 46 0 52 0 09 0 04 0 05 0 10 0 08 0 07 0.08 185 12/ 6 2 31 0 98 1 42 2 54 2 03 1 92 2 15 0 39 0 16 0 24 0 43 0 34 0 32 0. 36 186 12/ 7 1 31 0 62 0 85 1 43 1 17 1 1 1 1 23 0 19 0 09 0 12 0 21 0 17 0 16 0. 18 187 12/ 8 0 88 0 45 0 59 0 95 0 79 0 75 0 82 0 14 0 07 0 09 0 15 0 12 0 12 0.13 188 12/ 9 0 47 0 20 0 29 0 52 0 42 0 39 0 44 0 08 0 03 0 05 0 09 0 07 0 06 0.07 189 12/10 0 16 0 00 0 06 0 19 0 13 0 12 0 14 0 03 0 00 0 01 0 04 0 02 0 02 0.03 190 12/11 1 17 0 60 0 79 1 27 1 06 1 01 1 10 0 26 0 13 0 17 0 28 0 23 0 22 0.24 191 12/12 1 37 0 53 0 81 1 51 1 20 1 13 1 27 0 28 0 1 1 0 16 0 30 0 24 0 23 0.26 192 12/13 0 39 o 13 0 22 0 43 0 33 0 31 0 35 0 07 0 03 0 04 0 08 0 06 0 06 0.07 193 12/14 o 52 0 21 0 31 O 57 0 45 0 43 0 48 0 1 1 0 04 0 06 0 12 0 09 0 09 0. 10 194 12/15 1 25 0 64 0 84 1 36 1 12 1 07 1 18 0 28 0 14 0 19 0 30 0 25 0 24 0.26 195 12/16 0 86 0 40 0 55 0 93 0 76 o 72 0 80 0 19 0 09 0 12 0 20 0 17 0 16 0.17 196 12/17 0 63 0 27 0 39 0 69 0 56 0 53 0 59 o 13 0 06 0 08 0 14 0 1 1 0 1 1 0.12 197 12/18 1 25 0 46 0 72 1 38 1 08 1 02 1 15 0 24 0 09 0 14 0 26 0 20 0 19 0.22 198 12/19 0 66 0 29 0 41 0 72 0 58 0 55 0 61 0 12 0 05 0 07 0 13 0 10 0 10 0.11 199 12/20 0 18 0 01 0 .07 0 21 0 14 0 .13 0 16 0 03 0 00 0 01 0 04 0 03 0 02 0.03 200 12/21 0 1 1 -0 03 0 .01 0 13 o 08 0 07 0 09 0 02 0 00 0 00 o 03 o 02 0 Ol 0.02 DAY MONTH/ DAILY NE DAY SITE 0 - SITE 1 201 12/22 0. 92 0. 44 202 12/23 0. 67 0. 30 203 12/24 0. 47 0. 18 204 12/25 0. 39 0. 14 205 12/26 0. 03 -0. 07 20G 12/27 1 . 35 0. 7 1 207 12/28 1 . 32 O. 69 208 12/29 0. 07 -0. 05 209 12/30 0. 37 0. 13 210 12/31 1 . 02 0. 52 21 1 1/ 1 1 . 80 0. 86 212 1/ 2 2 . 03 1 . 00 213 1/ 3 1 . 71 0. 83 214 1/ 4 0. 98 0. 53 215 1/ 5 1 . 26 0. 7 1 216 1/ 6 1 . 95 O. 97 217 1/ 7 1 . 13 0. 63 218 1/ 8 0. 61 0. 30 219 1/ 9 0. 76 0. 39 220 1/10 2 . 25 1 . 13 221 1/11 1 . 37 0. 65 222 1/12 2. . 19 1. 1 1 223 1/13 2 . 04 1. 02 224 1/14 2 .51 1. 30 225 1/15 2 . 32 1. 2 1 226 1/16 2 . 26 1 . 18 227 1/17 0 . 27 0 .09 228 1/18 0 . 11 -0. .01 229 1/19 0 .94 0. .53 230 1/20 1 . 76 1. .06 231 1/21 0 .61 0 .31 232 1/22 1 .54 0 .93 233 1/23 1 .86 0 . 99 234 1/24 1 .87 1 .01 235 1/25 2 . 32 1 . 30 236 1/26 1 .87 1 . 15 237 1/27 2 .51 1 . 44 238 1/28 0 .03 -0 .06 239 1/29 0 . 4 1 0 . 19 240 1/30 2 . 17 1 . 24 241 1/31 3 .28 1 .95 242 2/ 1 1 .47 0 .92 243 2/ 2 2 .61 1 . 56 244 2/ 3 1 . 23 0 . 76 245 2/ 4 3 .94 2 . 45 246 2/ 5 4 . 17 .61 247 2/ 6 3 . 18 1 .98 248 2/ 7 1 .05 0 .65 249 2/ 8 3 .51 2 . 22 250 2/ 9 1 .99 1 . 25 RADIATION (DAYTIME) : MJ/M2D SITE 2 SITE 3 SITE 4 SITE 5 0. 60 1 . 01 0. 82 0. 78 0. 42 0. 73 0. 59 0. 56 0. 28 0. 52 0. 41 0. 39 0. 22 0. 43 0. 33 0. 31 -0. 04 0. 05 0. 01 -0. 00 0. 92 1 . 45 1 . 22 1 . 16 0. 90 1 . 42 1 . 19 1 . 13 -0. 01 0. 09 0. 04 0. 03 0. 21 0. 4 1 0. 32 0. 30 0. 69 1 . 10 0. 92 0. 88 1. 19 1 . 92 1 . 60 1 . 51 1. 36 2 . 17 1 . 81 1 . 72 1. 14 1 . 82 1 . 52 1 . 44 0. 69 1 . 03 0. 88 0. 84 0. 91 1 . 34 1 . 14 1 . 10 1. 31 2 . 07 1 74 1 . 65 0. 81 1 . . 19 1 . 02 0. 98 0. 4 1 0. 66 0. .55 0. 52 0. 52 0. .81 0. 68 0. 65 1. 52 2 . 40 2 . 01 1. 91 0. 90 1 . 47 1 . . 22 1. 15 1, .49 2. . 34 1 . .96 1. 86 1. . 37 2 . 17 1 . 82 1. .73 1. . 72 2 .67 2 . 25 2 . 14 1 . 59 2 .47 2 .08 1 . .98 1 .56 2 .40 2 .02 1 . .93 0 . 15 0 . 29 0 . 23 0 .21 0 .03 0 . 13 0 .09 0. .08 0 .67 0 .99 0 .85 0 .81 1 . 30 1 .85 1 .61 1 .55 0 . 42 0 .65 0 . 54 0 .52 1 . 14 1 .62 1 .41 1 . 35 1 .29 1 . 97 1 .67 1 .59 1 .31 1 .98 1 .68 1 .61 1 .66 2 .46 2 . 10 2 .01 1 .40 1 .96 1 .71 1 .65 1 .81 2 .65 2 . 28 2 . 19 -0 .03 0 .04 0 .01 -0 .00 0 . 27 0 .44 0 .36 0 . 34 1 . 56 2 . 29 1 .96 1 .88 2 . 42 3 .46 2 .99 2 .88 1 . 1 1 1 .52 1 . 35 1 .30 1 .93 2 .70 2 . 38 2 . 29 0 .92 1 .27 1 . 13 1 .09 2 .97 4 .07 3 .62 3 .49 3 . 15 4 .31 3 .83 3 .69 2 . 39 3 . 28 2 .92 2 .81 0 . 79 1 .09 0 .97 0 .93 2 .67 3 .62 3 .23 3 . 12 1 .51 2 .05 1 .83 1 .77 DAILY EOUI SITE 6 SITE 0 SITE 1 0. 86 0. 20 0. 09 0. 63 0. 14 0. 06 0. 43 0. 10 0. 04 0. 35 0. 09 0. 03 0. 02 0. 01 0. 00 1. 27 0. 31 0. 16 1. 24 0. 27 0. 14 0. 05 0. 01 0. 00 0. 34 0. 08 O. 03 0. 96 0. 22 0. 1 1 1. 64 0. 35 0. 17 1. 85 0. 39 0. 19 1. 56 0. 32 0. 16 0. 90 0. 19 0. 10 1. 17 0. 24 0. 14 1. 78 0. 40 0. 20 1. 04 0. 23 0. 13 0. 56 0. 12 0. 06 0. .69 0. 15 0. 07 2 . 05 0. 45 0. 23 1. . 25 0. 26 0. 12 2 .00 0. 47 0. 24 1 .86 0. .44 0. 22 2 .30 0. 52 0. 27 2 . 13 0. .47 0. 24 2 .07 0. .45 0. .24 0 . 24 0. .05 0. .02 0 .09 0. ,02 0, ,00 0 .87 0 .20 0. . 1 1 1 .64 0 . 38 0 . 23 0 .56 r\ . 13 0 .07 1 .43 0 .34 0 .21 1 .71 0 .40 0 .21 1 . 72 0 . 38 0 .21 2 . 15 0 .45 0 . 25 1 .74 0 . 35 0 .22 2 . 33 0 .45 0 .26 0 .01 0 .00 0 .00 0 . 37 0 .07 0 .03 2 .00 0 .42 0 . 24 3 .05 0 .62 0 .37 1 . 37 0 .28 0 . 18 2 .43 0 .50 0 .30 1 . 15 0 . 24 0 . 15 3 .68 0 .74 0 .46 3 .90 0 .75 0 .47 2 .97 0 .57 0 .36 0 .98 0 . 19 0 . 1 1 3 . 29 0 .62 0 . 39 1 .86 0 . 36 0 . 23 EVAPOTRANSPIRATION (DAYTIME): MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 0. 13 0. 21 0. 18 0. 17 0. 18 0. 09 0. 15 0. 12 0. 12 0. 13 0. 06 0. 11 0. 09 0. 08 0. 09 0. 05 0. 09 0. 07 0. 07 0. 08 0. 00 0. 01 0. 00 0. 00 0. 00 0. 21 0. 34 0. 28 0. 27 0. 29 0. 18 0. 29 0. 24 0. 23 0. 25 0. 00 0. 02 0. 01 0. 01 0. 01 0. 04 0. 09 0. 07 0. 06 0. 07 0. 15 0. 24 0. 20 0. 19 0. 20 0. 23 0. 37 0. 31 0. 29 0. 32 0. 26 0. 42 0. 35 0. 33 0. 36 0. 21 0. 34 0. 29 0. 27 0. 29 0. 13 0. 20 0. 17 0. 16 0. 17 0. 17 0. 26 0. 22 0. 21 0. 23 0. 27 0. 43 0. 36 0. 34 0. 37 0. 17 0. 25 0. 21 0. 20 0. 21 0. 08 0. 12 0. 10 0. 10 0. 1 1 0. 10 0. 16 0. 13 0. 12 0. 13 0. 31 0. 48 0. 40 0. 38 0. 41 0. 17 0. 28 0. 23 0. 22 0. 24 0. 32 0. 50 0. 42 0. ,40 0. .43 0. 30 0. 47 0. .40 0. ,38 0. ,41 0. 35 0. .55 0. .46 0. ,44 0. .47 0. 32 0. 50 0. .42 0. ,40 0. ,43 0. 31 0. .48 0. .41 0. .39 0. .42 0. 03 0. .06 0. .05 0. .04 0. .05 0. .01 0. .03 0. .02 0. .02 0, .02 0. . 14 0. .21 0 . 18 0 . 17 0 . 19 0. . 28 0. .40 0. . 35 0 . 34 0 .36 0. .09 0. . 14 0 . 12 0 . 1 1 0 . 12 0. .25 0. .36 0 .31 0 .30 0 .32 0. , 28 0. .42 0. . 36 0. .34 0 .36 0 .27 0 .41 0 . 35 0 .33 0 .35 0 . 32 0 .47 0 .41 0 .39 0 .4 1 0 . 26 0 .37 0 . 32 0 .31 0 .33 0 .33 0 .48 0 .41 0 .40 0 .42 0 .00 0 .01 0 .00 0 .00 0 .00 0 .05 0 .08 0 .07 0 .06 0 .07 0 . 30 0 .44 0 .38 0 . 36 0 . 39 0 . 46 0 .65 0 .57 0 .54 0 .58 0 . 2 1 0 .29 0 .26 0 . 25 0 . 27 0 . 37 0 .52 . 0 .46 0 .44 0 .47 0 . 18 0 . 25 0 . 22 0 .21 0 .22 0 . 56 0 .77 0 .68 0 .66 0 .70 0 . 57 0 . 78 0 .69 0 .67 0 .70 0 .43 0 .59 0 .53 0 .51 0 .54 0 . 14 0 . 19 0 . 17 0 . 16 0 . 17 0 .47 0 .64 0 . 57 0 . 55 0 . 58 0 . 27 0 . 37 0 . 33 0 .32 0 . 34 DAY MONTH/ DAILY NET DAY SITE 0 SITE 1 251 2/10 2 . 92 1 . 76 252 2/1 1 5 . 68 3 . 59 253 2/12 0. 99 0. 59 254 2/13 1 . 39 0. 85 255 2/14 0. 80 0. 46 256 2/15 2 . 10 1 . 35 257 2/16 0. 54 0. 28 258 2/17 0. 82 0. 48 259 2/18 1 . 28 0. 80 260 2/19 1 . 20 0. 75 261 2/20 3. 02 2 . 00 262 2/21 2 . 46 1 . 62 263 2/22 4 . 14 2 . 64 264 2/23 3 . 29 2 . 21 265 2/24 2 . 97 1 . 99 266 2/25 2 . 30 1 . 53 267 2/26 3 . 84 2 . 48 268 2/27 6 . 14 4 . 04 269 2/28 6. 97 4 . 61 270 3/ 1 7 . 55 5 . 71 271 3/ 2 5 . .57 4 . 19 272 3/ 3 4 . .54 3 . .41 273 3/ 4 6 .66 5 , .06 274 3/ 5 7 .26 5. 54 275 3/ 6 6 .84 5 . .21 276 3/ 7 4 .02 3 . 1 1 277 3/ 8 7 .61 5 .82 278 3/ 9 9 .45 7 .25 279 3/10 5 .54 4 . 14 280 3/11 8 . 19 6 . 18 281 3/12 9 . 19 6 .96 282 3/13 9 .67 7 . 34 283 3/14 7 . 50 5 .67 284 3/15 4 .02 3 . 10 285 3/16 10 .76 8 .21 286 3/17 4 .52 3 . 49 287 3/18 6 . 76 5 . 13 288 3/19 1 1 . 16 8 .54 289 3/20 1 1 .30 8 .66 290 3/21 5 .03 3 .91 291 3/22 8 . 1 1 6 .20 292 3/23 8 .97 6 .87 293 3/24 7 .51 5 . 75 294 3/25 7 . 49 5 . 74 295 3/26 12 . 24 9 . 44 296 3/27 4 . 34 3 . 38 297 3/28 4 . 30 3 . 35 298 3/29 4 .46 3 .47 299 3/30 6 .08 4 . 76 300 3/31 7 .67 5 .91 RADIATION (DAYTIME) : MJ/M2D SITE 2 SITE 3 SITE 4 SITE 5 2 . 17 3. 02 2 . 67 2 . 57 4 . 32 5 . 87 5 . 23 5 . 05 0. 73 1 . 02 0. 90 0. 86 1 . 04 1 . 43 1 . 27 1 . 23 0. 58 0. 83 0. 72 0. 69 1 . 61 2 . 16 1 . 93 1 . 87 0. 37 0. 56 0. 48 0. 46 0. 59 0. 85 0. 74 0. 71 0. 97 1 . 32 1 . 18 1 . 13 0. 90 1 . 24 1 . 10 1 . 06 2 . 36 3 . 10 2 . 80 2 . 71 1 . 91 2 . 53 2. 28 2 . 20 3 . 16 4 . 27 3. 82 3 . 69 2 . 58 3. 38 3 . 05 2 . 96 2 . 33 3 . 06 2 . 76 2 . 67 1 . 80 2 . 37 2 . 13 2. 07 2 . 95 3 . 96 3. 55 3. 43 4 . 77 6 , 32 5 . 68 5 . 50 5 . 43 7 . . 17 6 . 46 6 . 25 6 . 36 7 . .66 7 . 23 7 . 01 4 , 68 5 . .65 5. 32 5 . . 16 3 , .81 4 .61 4 . . 34 4 . .21 5 . .63 6 . 76 6 . 38 6 . . 19 6 . . 15 7 .36 6 .96 6 .75 5 .78 6; .93 6 .55 6 . 36 3 .43 4 .08 3 .86 3 . 75 6 .45 7 . 72 7 . 30 7 .08 8 .02 9 .58 9 .06 8 .80 4 .63 5 .62 5 . 29 5 . 13 6 .89 8 . 30 7 .83 7 .60 7 .75 9 .33 8 .80 8 .54 8 . 16 9 .81 9 . 26 8 .98 6 .32 7 .60 7 . 17 6 .96 3 .43 4 .08 3 .86 3 . 75 9 . 1 1 10 .91 10 .31 10 .01 3 .86 4 . 58 4 . 34 4 .22 5 .71 6 .86 6 .47 6 . 28 9 .46 1 1 .31 10 .69 10 . 39 9 .60 1 1 .46 10 .84 10 .53 4 .30 5 .09 4 .83 4 .70 6 .88 8 . 22 7 .77 7 .55 7 .61 9 .09 8 .60 8 . 35 6 .37 7 .62 7 .20 6 .99 6 .36 7 .60 7 . 19 6 .98 10 .43 12 .40 1 1 .74 1 1 .41 3 .72 4 .40 4 . 17 4 .06 3 .68 4 . 36 4-. 13 4 .02 3 .82 4 .51 4 . 28 4 . 17 5 .23 6 . 16 5 .85 5 .69 6 .53 7 . 77 7 .36 7 . 15 DAILY EOUI SITE 6 SITE 0 SITE 1 2 . 72 0. 48 0. 29 5.32 0. 89 0. 56 0.92 0. 16 0. 10 1 . 30 0. 26 0. 16 0.74 0. 17 0. 10 1 .97 0. 43 0. 28 0.50 0. 12 0.06 0.76 0. 17 0. 10 1 . 20 0. 25 0.15 1.12 0. 26 0. 16 2 .84 0. 58 0. 39 2.31 0. 49 0.33 3.88 0. 89 0. 56 3. 10 0. 70 0.47 2.80 0. 61 0.41 2. 17 0. 47 0.31 3.61 0. 77 0. 50 5.77 1 . 23 0.81 6.56 1 . 49 0.99 7.23 1 . 62 1 . 22 5.32 1 . 19 0. 90 4 . 34 0. 97 0.73 6.38 1 . 29 0.98 6.96 1 . .31 1 .00 6.55 1 . . 29 0.98 3.86 0. 81 0.63 7.30 1, .56 1 . 20 9.06 2. 06 1 .58 5.29 1 .21 0.90 7 .83 1 .89 1 .42 8.80 2 .04 1 . 55 9.26 2 .27 1 . 72 7.17 1 . 73 1.31 3.86 0 .88 0.68 10.31 2 . 35 1 . 79 4.34 0 .93 0. 72 6.47 1 . 50 1.14 10.69 2 .48 1 .90 10.84 2 .61 2 .00 4 .83 1 . 16 0.90 7.77 1 .77 1 . 35 8.60 1 .95 1 .50 7.20 1 . 54 1.18 7 . 19 1 .63 1 . 25 1 1 .74 2 .82 2. 18 4.17 1 .00 0.78 4.13 0 .88 0. 69 4 . 28 0 .92 0.71 5.85 1 . 25 0.98 7 .36 1 . 54 1.19 EVAPOTRANSPIRATION (DAYTIME): MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 0. 36 0. 50 0. 44 0. 42 0. 45 0. 67 0. 91 0. 82 0. 79 0. 83 0. 12 0. 17 0. 15 0. 14 0. 15 0. 20 0. 27 0. 24 0. 23 0. 24 0. 12 0. 18 0. 15 0. 15 0. 16 0. 33 0. 44 0. 40 0. 38 0. 40 0. 08 0. 12 0. 1 1 0. 10 0. 1 1 0. 12 0. 17 0. 15 0. 15 0. 16 0. 19 0. 26 0. 23 0. 22 0. 23 0. 19 0. 27 0. 24 0. 23 0. 24 0. 45 0. 60 0. 54 0. 52 0. 55 0. 38 0. 51 0. 46 0. 44 0. 47 o. 68 O. 91 0. 82 0. 79 0. 83 0. 55 0. 72 0. 65 0. 63 0. 66 0. 48 0. 63 0. 57 0. 55 0. 58 0. 37 0. 49 0. 44 0. 42 0. 45 0. 59 0. 80 0. 71 0. 69 0. 73 0. 96 1 . 27 1 . 14 1 . 11 1 . 16 1. 16 1 . 53 1 . 38 1 . 34 1 . 40 1. 36 1 . 64 1 . 55 1 . 50 1 . 55 1. 00 1 . 21 1 . 14 1 . 10 1 . 14 0. 82 0. 99 0. 93 0. 90 0. 93 i 1. 09 1 . .30 1 . 23 1. 20 1 . 26 26 |\j 1. 1 1 1 , , 33 1 . 26 1. 22 1 . 1. 09 1 , .31 1 . .24 1. 20 1 . ,24 ~-J 0 .69 0 .82 0. ,78 0. 76 0. ,78 , 1 . 33 1 . 59 1 . .50 1 .46 1 , .50 1 . 75 2 .09 1 , .97 1 .92 1 . .97 1 .01 1 .23 1 . 15 1 . 12 1 . 15 1 .59 1 .91 1 .81 1 .75 1 .81 1 .72 2 .07 1 .96 1 .90 1 .96 1 .92 2 . 30 2 . 17 2 . 1 1 2 . 17 1 .46 1 .75 1 .65 1 .60 1 .65 0 .75 0 . 89 0 .84 0 .82 0 .84 1 .99 2 .38 2 . 25 2 . 18 2 . 25 0 . 79 0 .94 0 .89 0 .87 0 .89 1 .27 1 .52 1 .44 1 .40 1 .44 2 . 10 2 .51 2 .38 2 .31 2 .38 2 .21 2 .64 2 .50 2 .43 2 .50 0 .99 1 . 17 1 . 1 1 1 .08 1 . 1 1 1 .50 1 .79 1 .69 1 .65 1 .69 1 .66 1 .98 1 .87 1 .82 1 .87 1 .31 1 .56 1 .48 1 .44 1 .48 1 .39 1 .66 1 .57 1 .52 1 .57 2 .40 2 .86 2 .71 2 .63 2 .71 0 .86 1 .01 0 .96 0 .94 0 .96 0 .76 0 . 90 0 .85 0 .83 0 .85 0 .78 0 .93 0 .88 0 .86 0 . 88 1 .07 1 . 27 1 . 20 1 . 17 1 . 20 1 .31 1 . 56 1 .48 1 .44 1 . 48 DAY MONTH/ DAILY ' NET RADIATION (DAYTIME) MJ/M2D DAILY EOUI DAY SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 SITE 0 SITE 1 301 4/ 1 1 1 . 91 9. 89 10. 67 1 1 . 91 1 1 . 45 1 1 . 14 1 1 . 60 2. 45 2 .03 302 4/ 2 6 . 59 5. 52 5 . 93 6. 59 6 . 34 6 . 18 6. 42 1 . 35 1 . 13 303 4/ 3 13 . 03 10. 84 1 1 . 68 13 . 03 12 . 53 12. 19 12 . 70 2. 68 2.23 304 4/ 4 4 . 07 3 . 40 3 . 66 4 . 07 3 . 92 3 . 81 3 . 97 0. 84 0.70 305 4/ 5 12 . 92 10. 75 1 1 . 58 12 . 92 12 . 42 12 . 08 12 . 58 2 . 76 2 . 30 306 4/ 6 9 . 02 7 . 50 8 . 08 9 . 02 8 . 67 8 . 44 8 . 79 1 . 85 1 .54 307 4/ 7 7 . 25 6 . 01 6 . 49 7. 25 6. 96 6 . 77 7 . 06 1 . 46 1.21 308 4/ 8 8 . 46 7 . 03 7 . 58 8 . 46 8 . 13 7 . 91 8.. 24 1 . 70 1 .42 309 4/ 9 8 . 32 6 . 92 7 . 45 8 . 32 7 . 99 7 . 78 8 . 10 1 . 61 1 . 33 310 4/10 2 . 84 2 . 36 2 . 54 2 . 84 2 . 73 2. 65 2 . 76 0. 55 0.45 311 4/1 1 9 . 06 7 . 49 8 . 10 9. 06 8 . 70 8. 46 8 . 82 1 . 64 1 .35 312 4/12 9 . 79 8 . 10 8 . 75 9 . 79 9. 40 9 . 14 9. 53 1 . 85 1 .53 313 4/13 13 . 33 1 1 . 05 1 1 . .92 13 . 33 12. 80 12 . 45 12. 98 2 . 57 2.13 314 4/14 15 . 29 12 . 68 13 . 68 15 . 29 14 . 69 14 . 28 14 . 89 3 . 33 2.76 315 4/15 7 . 06 5 . 91 6 36 7 . 06 6 . 80 6 . 62 6 . 89 1 . 57 1.31 316 4/16 8 . 16 6 . 34 7 . 35 8 . 16 7 . 8G 7 . 65 7 . 96 1 . 78 1 . 49 317 4/17 14 . 95 12 . 42 13 . 39 14 . 95 14 . 37 13 . 98 14 . 56 3 . 32 2 . 76 318 4/18 15 . 46 12 . 85 13 .85 15. . 46 14 . 86 14 . 46 15 . 06 3 . 56 2 .96 319 4/19 16 . 22 13 . 50 14 .55 16 . 22 15 . 59 15 . 17 15 . 80 4 , 08 3.40 320 4/20 5 . 54 4 . 64 4 .98 5 .54 5. 33 5 . 19 5 . 40 1 , 35 1.13 321 4/21 5 . 41 4 . 52 4 .86 5 .41 5. 20 5 . 07 5 . 27 1 , , 16 0.97 322 4/22 3 .62 3 . 01 3 . 25 3 .62 3. 48 3 . 39 3 . 53 0, .81 0.67 323 4/23 4 . 13 3 . 44 3 .70 4 . 13 3 . 97 3. .86 4 . 02 0. .97 0.81 324 4/24 10 . 34 8 . 59 9 . 26 10 . 34 9 . 94 9, ,67 10. .07 2 . 25 1 .87 325 4/25 16 . 36 13 . 63 14 .68 16 . 36 15 . 73 15 . 31 15. .94 3. . 57 2.97 326 4/26 14 . 23 1 1 . .86 12 . 77 14 . 23 13. 69 13. . 32 13 .87 3. . 10 2.59 327 4/27 3 . 46 2 . 88 3 . 1 1 3 .46 3. 33 3 . 24 3. .38 0, .80 0.66 328 4/28 3 .52 2 , .93 3 . 16 3 .52 3 . 39 3 .30 3 .43 0 .78 0.65 329 4/29 8 .55 7 . 20 7 . 72 8 . 55 8 . 24 8 .03 8 .34 1 .97 1 .66 330 4/30 5 .81 4 . 88 5 . 24 5 .81 5 . 60 5 .45 5 .67 1 .41 1 . 19 331 5/ 1 8 . 34 7 . 32 7 .83 8 . 34 8 . 23 8 .03 8 . 23 1 .85 1 .63 332 5/ 2 9 .06 7 . 96 8 .51 9 .06 8 . 95 8 . 73 8 .95 1 .94 1 . 70 333 5/ 3 5 .97 5 . 23 5 .60 5 .97 5 . 90 5 . 75 5 .90 1 . 28 1.12 334 5/ 4 1 1 . 55 10. .08 10 .81 1 1 .55 1 1 . 40 1 1 . 1 1 1 1 .40 2 . 37 2 .07 335 5/ 5 12 .94 1 1 . . 30 12 . 12 12 .94 12 . 78 12 . 45 12 .78 2 . 77 2.42 336 5/ 6 5 . 56 4 .87 5 .21 5 .56 5. 49 5 . 35 5 . 49 1 .21 1 .06 337 5/ 7 5 .29 4 .63 4 .96 5 .29 5. 22 5 .09 5 .22 1 . 13 0.99 338 5/ 8 12 . 32 10 . 75 1 1 .53 12 . 32 12 . 16 1 1 .85 12 . 16 2 .68 2.34 339 5/ 9 13 .78 12 .04 12 .91 13 . 78 13 . 60 13 .25 13 .60 3 . 18 2.78 340 5/10 10 .31 8 .99 9 .65 10 .31 10. 18 9 .91 10 . 18 2 . 29 2 .00 341 5/11 15 . 30 13 . 38 14 . 34 15 .30 15 . 10 14 . 72 15 . 10 3 . 53 3.08 342 5/12 18 . 19 15 . 87 17 .03 18 . 19 17 . 96 17 .49 17 .96 4 . 50 3.93 343 5/13 5 .89 5 . 16 5 . 53 5 .89 5 . 82 5 .68 5 .82 1 . 48 1 . 30 344 5/14 8 .61 7 .55 8 .08 8 .61 8 . 50 8 . 29 8 .50 2 .02 1 .77 345 5/15 14 .95 13 .03 13 .99 14 .95 14 . 76 14 . 38 14 .76 3 . 32 2 .90 346 5/16 17 . 14 14 .95 16 .04 17 . 14 16 . 92 16 .48 16 .92 4 .02 3.51 347 5/17 6 . 27 5 . 49 5 .88 6 . 27 6 . 19 6 .03 6 . 19 1 . 52 1 . 34 348 5/18 8 . 76 7 . 70 8 .23 8 .76 8 .66 8 . 44 8 .66 2 .21 1 .94 349 5/19 7 . 22 6 . 34 6 .78 7 . 22 7 . 13 6 .96 7 . 13 1 . 79 1 .57 350 5/20 1 1 .97 10 . 44 1 1 .21 1 1 .97 1 1 .82 1 1 .51 1 1 .82 3 .01 2.63 EVAPOTRANSPIRATION (DAYTIME): MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 2 . 19 2 . 45 2 . 35 2 . 29 2. 38 1 . 22 1 . 35 1 . 30 1 . 27 1 . 32 2 . 40 2 . 68 2 . 57 2 . 50 2 . 61 0. 75 0. 84 0. .80 0. 78 0. 82 2 . 48 2 . 76 2 . 65 2 . 58 2 . 69 1 . 66 1 . 85 1 . 78 1 . 73 1 . 81 1 . 31 1 . 46 1 . 40 •1 . 36 1 . 42 1 . 53 1 . 70 1 . 64 1 . 59 1 . 66 1 . 44 1 . 61 1 , .54 1 . 50 1 . 56 0. 49 0. 55 0. .53 0. 51 0. 53 1 . 46 1 . 64 1 . .57 1 . 53 1 . 59 1 . 65 1 . 85 1 . .78 1 . 73 1 . 80 2 . 30 2 . 57 2 . 47 2. 40 2. 50 2 . 98 3 . 33 3 . 20 3 . , 1 1 3 . 25 1 . 41 1 . 57 1 . 51 1 . 47 1 . 53 1 . 60 1 . 78 1 .71 1 . ,67 , 1 . 73 2 . 98 3 . 32 3 . 19 3. , 1 1 3 . 24 3 . 19 3 . 56 3 .43 3 . 33 3 . 47 3 . ,66 4 . 08 3 .92 3 . ,82 3 . 98 1 . ,21 1 . 35 1 . 30 1 , , 26 1 . 31 1 . 04 1 . . 16 1 . 1 1 1 , 08 1 . , 13 0. ,72 0. .81 0 .77 0, , 75 0. ,78 0. .87 0. .97 0 .93 0, .91 0. ,94 2 . 02 2 . 25 2 . 17 2 . 1 1 2. ,20 3 , . 20 3. . 57 3 .43 3 . 34 3 ,47 2 .78 3. . 10 2 .98 2 .90 3 . ,02 0 . 72 0 .80 0 .77 0 .75 0. , 78 0 .70 0 . 78 0 .75 0 .73 0. .76 1 . 78 1 .97 1 .90 1 .85 1 . .92 1 . 27 1 . 4 1 1 . 36 1 . 33 1 . 38 1 . 74 1 .85 1 .83 1 . 78 1 .83 1 .82 1 .94 1 .91 1 .87 1 .91 1 . 20 1 . 28 1 .26 1 . 23 1 .26 2 . 22 2 . 37 2 .34 2 . 28 2 .34 2 . 59 2 . 77 2 .73 2 .66 2 .73 1 . 14 1 .21 1 .20 1 . 17 1 .20 1 .06 1 . 13 1 . 12 1 .09 1 . 12 2 .51 2 .68 2 .65 2 .58 2 .65 2 .98 3 . 18 3 . 14 3 .06 3 . 14 2 . 14 2 .29 2 .26 2 . 20 2 .26 3 .31 3 .53 3 .48 3 . 39 3 .48 4 .21 4 .50 4 .44 4 .33 4 .44 1 . 39 1 .48 1 .47 1 . 43 1 .47 1 .90 2 .02 2 .00 1 .95 2 .00 3 . 1 1 3 . 32 3 . 28 3 . 20 3 . 28 3 .77 4 .02 3 .97 3 .87 3 .97 1 .43 1 .52 1 .51 1 .47 1 .51 2 .07 2 .21 2 . 18 2 . 13 2 . 18 1 .68 1 . 79 1 . 77 1 . 72 1 .77 2 .82 3 .01 2 .98 2 .90 2 .98 DAY MONTH/ DAILY NET RADIATION (DAYTIME) : MJ/M2D DAY SITE 0* SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 351 5/21 8. 44 7 . 42 7 . 93 8 . 44 8 . 34 8 . 13 352 5/22 1 1 . 99 10. 45 1 1 . 22 1 1 . 99 1 1 . 83 1 1 . 53 353 5/23 10. 34 9 . 10 9 . 72 10. 34 10. 21 9 . 96 354 5/24 7 . 30 6 . 41 6 . 86 7 . 30 7 . 21 7 . 03 355 5/25 9 . 47 8 . 32 8 . 90 9 . 47 9. 36 9 . 13 356 5/26 13 . 64 1 1 . 90 12 . 77 13 . 64 13 . 47 13 . 12 357 5/27 19. 39 16 . 95 18 . 17 19 . 39 19 . 15 18 . 66 358 5/28 17 . 38 15 . 20 16 . 29 17 . 38 17 . 16 16 . 73 359 5/29 5 . 38 4 . 73 5 . 06 5 . 38 5. 32 5 . 19 360 5/30 12 . 30 10. 73 1 1 . 51 12 . 30 12 . 14 1 1 . 83 361 5/31 20. 63 18 . 04 19. 33 20. 63 20. 37 19 . 85 362 6/ 1 15 . 90 14 . 50 15 . 10 15 . 90 15. 70 15 . 50 363 6/ 2 10. 64 9. 75 10. 13 10. 64 10. 51 10. 39 364 6/ 3 8 . 46 7 . 75 8 . 05 8 . 46 8 . 36 8 . 26 365 6/ 4 6 . 97 6 . 37 6 . 63 6 . 97 6 . 88 6 . 80 366 6/ 5 5 . 80 5 . 30 5 . 51 5 . 80 5. 73 5 . 65 367 6/ 6 12. 22 1 1 . 13 1 1 . 60 12 . 22 12 . 07 1 1 . 91 368 6/ 7 13 . 51 12 . 31 12 . 82 13 . 51 13 . 34 13 . 16 369 6/ 8 6 . 36 5 . 81 6. 05 6 . 36 6 . 28 6 . 20 370 6/ 9 9 . 03 8 . 26 8 . 59 9 . 03 8 . 92 8 . 81 371 6/10 10. 76 9 80 10. 21 10. 76 10. 62 10. 49 372 6/1 1 16 . 20 14 . 77 15. 38 16 . 20 16 . 00 15 . 79 373 6/12 12 , . 14 1 1 . .06 1 1 . .52 12 . 14 1 1 . 99 1 1 . .83 374 6/13 8 . 82 8 .06 8 . 39 8 . 82 8 . 7 1 8 . 61 375 6/14 12 .48 1 1 . 35 1 1 84 12 , .48 12. . 32 12 . 16 376 6/15 6 .33 5 .78 6 .02 6 .33 6 . 26 6 . 18 377 6/16 12 . 95 1 1 . 79 12 . 28 12 .95 12 . 78 12 .62 378 6/17 8 .01 7 . 32 7 .62 8 .01 7 . 91 7 .81 379 6/18 4 .51 4 . 10 4 . 28 4 .51 4 . 45 4 . 39 380 6/19 8 .98 8 .21 3 . 54 8 .98 8 .87 8 . 76 381 6/20 8 . 74 8 .00 8 . 32 8 . 74 8 .64 8 . 53 382 6/21 6 . 36 5 . 3 1 6 .05 6 . 36 6 . 28 6 .20 383 6/22 8 . 72 7 .98 8 . 30 8 . 72 8 .62 8 .51 384 6/23 7 . 7 1 7 .05 7 . 33 7 . 7 1 7 .62 7 .52 385 6/24 20 . 15 18 . 37 19 . 13 20 . 15 19 .89 19 .64 386 6/25 20 . 73 18 .91 19 .69 20 . 73 20 .47 20 .21 387 6/26 20 .39 18 .60 19 . 37 20 . 39 20 . 13 19 .88 388 6/27 19 . 23 17 . 54 18 . 26 19 . 23 18 .99 18 . 75 389 6/28 9 .67 8 . 86 9 .21 9 .67 9 . 55 9 . 44 390 6/29 14 . 22 12 .95 13 .49 14 . 22 14 .04 13 .86 391 6/30 8 . 57 7 .85 8 . 16 8 . 57 8 . 46 8 . 36 392 7/ 1 20 . 16 17 .87 18 . 89 20 . 16 19 .90 19 .40 393 7/ 2 19 . 17 17 .01 17 .97 19 . 17 18 .93 18 .45 394 7/ 3 17 . 59 15 .61 16 .49 17 .59 17 . 37 16 .93 395 7/ 4 19 . 52 17 .33 18 . 30 19 .52 19 . 27 18 . 79 396 7/ 5 18 . 92 16 . 79 17 . 74 18 .92 18 .68 18 .21 397 7/ 6 10 . 37 9 . 16 9 . 70 10 . 37 10 . 24 9 .97 398 7/ 7 13 .02 1 1 . 52 12 . 19 13 .02 12 .86 12 .52 399 7/ 8 1 1 .01 9 .72 10 . 29 1 1 .01 10 .87 10 .58 400 7/ 9 10 .04 8 .86 9 . 39 10 .04 9 .91 9 .65 DAILY EOUI. EVAPOTRANSPIRATION (DAYTIME): MM SITE 6 SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 8 . 34 2 . 12 1 . 87 2 . 00 2 . 12 2 . 10 2 . 05 2 . 10 1 1 . 83 2 . 92 2 . 54 2 . 73 2 . 92 2 . 88 2 . 80 2 . 88 10. 21 2 . 60 2 . 29 2 . 45 2 . 60 2 . 57 2. 51 2 . 57 7 . 2 1 1 . 87 1 . 64 1 . 76 1 . 87 1 . 85 1 . 80 1 . 85 9 . 36 2 . 30 2 . 02 2 . 16 2 . 30 2 . 28 2. 22 2 . 28 13 . 47 3 . 15 2 . 74 2 . 94 3. 15 3 . 1 1 3 . 03 3. 1 1 19 . 15 4 . 72 4 . 12 4 . 42 4 . 72 4 . 66 4 . 54 4 . 66 17 . 16 4 . 60 4 . 02 4 . 31 4 . 60 4 . 54 4 . 42 4. 54 5 . 32 1 . 45 1 . 27 1 . 36 1 . 45 1 . 43 1 . 39 1 . 43 12 . 14 3 . 04 2 . 65 2 . 85 3. 04 3 . 00 2 . 93 3. 00 20. 37 5. 02 4 . 39 4 . 70 5. 02 4 . 95 4 . 83 4 . 95 15 . 70 4 . 07 3 . 7 1 3 . 86 4 . 07 4 . 02 3 . 97 4 . 02 10. 51 2 . 68 2 . 45 2 . 55 2 . 68 2 . 65 2 . 61 2 . 65 8 . 36 2 . 06 1 . 88 1 . 96 2 . 06 2 . 03 2 . 01 2 . 03 6 . 88 1 . 64 1 . 50 1 . 56 1 . 64 1 . 62 1 . 60 1 . 62 5 . 73 1 . 36 1 . 24 1 . 29 1 . 36 1 . 34 1 . 33 1 . 34 12 . 07 z . 87 2 . 61 2 . 72 2. 87 2 . 83 2 . 80 2 . 83 13 . 34 3. 1 1 2 . 84 2 . 96 3 . 1 1 3 . 08 3 . ,04 3. .08 6 . 28 1 . .47 1 . 34 1 . 39 1 . 47 1 . 45 1 . ,43 1 . 45 8 . 92 2 . 12 1 . 94 2 . 02 2 . 12 2 . 09 2 . 07 2 . ,09 10. 62 2 . 48 2 . 26 2. .35 2 . 48 2 . ,45 2 , 42 2 . 45 1 16 . 00 3. .80 3 . 47 3 . 61 3 . 80 3 .76 3 , .71 3. .76 1 1 . 99 2 .95 2 . 69 2 , 80 2. . 95 2 .92 2 .88 2 .92 rv> .01 vo 8 . 71 2 .03 1 . .86 1 . .93 2 .03 2 .01 1 .98 2 12 . 32 3 .03 2 .76 2 .88 3 .03 3 .00 2 .96 3 .00 6 . 26 1 .54 1 .41 1 .46 1 .54 1 .52 1 .50 1 .52 1 12 . 78 3 .04 2 .77 2 .88 3 .04 3 .00 2 .96 3 .00 7 .91 1 . 78 1 .63 1 .69 1 . 78 1 .76 1 . 74 1 .76 4 .45 1 .00 0 .91 0 .95 1 .00 0 .99 0 .98 0 .99 8 .87 2 . 1 1 1 .93 2 .01 2 . 1 1 2 .08 2 .06 2 .08 8 .64 2 .05 1 .88 1 .95 2 .05 2 .03 2 .00 2 .03 6 . 28 1 . 47 1 . 34 1 . 39 1 .47 1 .45 1 .43 1 .45 8 .62 2 . 12 1 .94 2 .02 2 . 12 2 . 10 2 .07 2 . 10 7 .62 1 .81 1 .65 1 . 72 1 .81 1 .79 1 .77 1 .79 19 .89 5 . 16 4 . 70 4 .90 5 . 16 5 .09 5 .03 5 .09 20 .47 5 .66 5 . 16 5 . 38 5 .66 5 .59 5 .52 5 .59 20 . 13 5 . 57 5 .08 5 . 29 5 . 57 5 .50 5 .43 5 .50 18 .99 4 .92 4 .49 4 .67 4 .92 4 .86 4 .80 4 .86 9 . 55 2 • 56 2 . 34 2 . 43 2 .56 2 .53 2 .50 2 .53 14 .04 3 .76 3 .43 3 .57 3 . 76 3 .71 3 .66 3 .71 8 .46 2 . 27 2 .07 2 . 16 2 .27 2 .24 2 .21 2 . 24 19 .90 5 . 16 4 . 58 4 .84 5 . 16 5 . 10 4 .97 5 . 10 18 .93 5 .23 4 .64 4 .91 5 .23 5 . 17 5 .04 5 . 17 17 . 37 4 .88 4 .33 4 . 57 4 .88 4 .82 4 .69 4 .82 19 .27 5 .50 4 .88 5 . 16 5 .50 5 . 43 5 . 29 5 .43 18 .68 5 .33 4 . 73 5 .00 5 . 33 5 .26 5 . 13 5 . 26 10 . 24 2 .65 2 . 35 2 .48 2 .65 2 .62 2 .55 2 .62 12 .86 3 . 22 2 .85 3 .02 3 . 22 3 . 18 3 . 10 3 . 18 10 .87 2 .68 2 .36 2 . 50 2 .68 2 .64 2 . 57 2 .64 9 .91 2 .53 2 .23 2 . 36 2 .53 2 .49 2 . 43 2 .49 DAY MONTH/ DAILY NET DAY SITE 0 SITE 1 401 7/ 10 9 . 67 8 . 61 402 7/11 15 . 20 13 . 44 403 7/12 14 . 98 13 . 26 404 7/13 5 . 03 , 4. 46 405 7/14 16 . 96 15 . 03 406 7/15 18. 94 16 . 81 407 7/16 16 . 97 15. 07 408 7/17 14 . 1 1 12 . 52 409 7/18 13 . 95 12 . 36 410 7/19 5. 59 4 . 97 41 1 7/20 16 . 23 14 . 38 412 7/21 9 . 09 8 . 1 1 413 7/22 9 . 87 8 . 72 414 7/23 13 . 24 1 1 . 72 415 7/24 18 . 18 16. 12 416 7/25 18 . 12 16 . 09 417 7/26 18 . 12 16 . 09 418 7/27 18 . 16 16. 13 419 7/28 6 . 78 6 . 06 420 7/29 9 . 96 8 . 78 421 7/30 9. 94 8 . 86 422 7/31 16 . 88 14 . 94 423 8/ 1 17 . 71 14 . 97 424 8/ 2 16 . 36 13 .82 425 8/ 3 14 . 38 12 . 12 426 8/ 4 16 .71 14 . 10 427 8/ 5 16 .66 14 .07 428 8/ 6 16 . 69 14 . 14 429 8/ 7 16 .40 13 .92 430 8/ 8 16 . 57 14 .08 431 8/ 9 16 . 42 13 .94 432 8/10 16 . 33 13 . 86 433 8/1 1 16 .70 14 . 17 434 8/12 16 . 57 14 .05 435 8/13 15 . 72 13 .27 436 8/14 15 . 22 12 .85 437 8/15 15 .48 13 . 1 1 438 8/16 15 . 28 12 .93 439 8/17 16 . 25 13 .75 440 8/18 16 .42 13 .91 441 8/19 10 .30 8 . 70 442 8/20 6 .71 5 .70 443 8/21 14 . 54 12 . 24 444 8/22 13 .90 1 1 .70 445 8/23 13 . 96 1 1 . 78 446 8/24 8 . 18 7 .00 447 8/25 12 . 25 10 . 26 448 8/26 1 1 .64 9 . 75 449 8/27 9 .00 7 . 52 450 8/28 9 .84 8 . 22 RADIATION (DAYTIME) : MJ/M2D SITE 2 SITE 3 SITE 4 SITE 5 9 . 08 9 . 67 9 . 55 9 . 31 14 . 22 15. 20 15. 00 14 . 61 14 . 02 14 . 98 14 . 78 14 . 40 4 . 71 5 . 03 4 . 96 4 . 84 15 . 89 16 . 96 16 . 74 16 . 31 17 . 76 18 . 94 18 . 70 18 . 23 15 . 92 16 . 97 16 . 76 16 . 34 13 . 23 14 . 1 1 13. 93 13 . 58 13 . 07 13 . 95 13 . 77 13 . 42 5 . 25 5. 59 5 . 52 5 . 39 15 . 20 16. 23 16 . 02 15. 61 8 . 55 9 . 09 8 . 98 8 . 76 9 . 23 9 . 87 9 . 74 9 . 49 12 . 40 13 . 24 13 . 07 12 . 73 17 . 04 18 . 18 17 . 95 17 . 49 16 . 99 18. 12 17 . 89 17 . 44 16 . 99 18. 12 17 . 90 17 . 45 17 . 04 18 . 16 17 . 94 17 . 49 6 . 38 6. 78 6 . 70 6. 54 9 . 31 9. 96 9. 33 9 . 57 9 . 34 9 . 94 9. .82 9 . 58 15 . 80 16 . 88 16 . 66 16 . 23 16 . 1 1 17 . 94 17 . 25 16. .80 14 .88 16. 57 15 .94 15 . 52 13 .06 14 . 57 14 .01 13 .63 15 . 19 16 . 93 16 . 28 15 .84 15 . 15 16. .87 16 . 23 15 . 79 15 .20 16. .90 16 . 27 15 .84 14 .95 16 .61 15 .99 15 .57 15 . 12 16 . 78 16 . 15 15 . 74 14 .97 16 .62 16 .00 15 . 59 14 .89 16 .53 15 .92 15 . 50 15 .22 16 .91 16 . 28 15 .86 15 . 10 16 . 78 16 . 15 15 . 73 14 . 29 15 .92 15 .31 14 .90 13 .83 15 .41 14 .82 14 .43 14 . 10 15 .68 15 .09 14 .69 13 .91 15 .47 14 .89 14 . 50 14 .79 16 . 46 15 .83 15 .42 14 .95 16 .63 16 .00 15 . 58 9 .36 10 .43 10 .03 9 . 77 6 . 12 6 . 79 6 .54 6 .37 13 .20 14 . 73 14 . 16 13 . 77 12 .62 14 .08 13 . 53 13 . 17 12 .69 14 . 14 13 .60 13 .24 7 .49 8 . 28 7 .98 7 .79 1 1 .09 12 .41 1 1 .91 1 1 .58 10 .54 1 1 .80 1 1 .32 1 1 .01 8 . 14 9 . 12 8 .75 8 .50 8 .90 9 .97 9 .57 9 . 30 DAILY EOUI SITE 6 SITE 0 SITE 1 9 . 55 2 . 39 2.13 15.00 3 . 83 3 . 38 14 . 78 3 . 96 3.51 4 .96 1 . 33 1.18 16.74 4 . 56 4 .04 18.70 5 . 25 4.66 16.76 4 . 86 4.31 13.93 4 . 16 3.69 13.77 3 . 87 3.43 5.52 1 . 50 1 . 34 16 .02 4 . 43 3.93 8.98 2 . 48 2 . 22 9.74 2 . 65 2 . 34 13 .07 3 . 61 3 . 20 17 .95 5 . 12 4.54 17 .89 5. 34 4.74 17.90 5 . 42 4.81 17.94 5 . 51 4 .89 6.70 2 . 00 1 . 78 9.83 2 . 55 2 . 25 9.82 2 . 63 2.34 16 .66 4 . 61 4 .08 17.25 4 .84 4 .09 15.94 4 .54 3.83 14.01 3 .87 3 . 26 16.28 4 . 56 3.85 16.23 4 .69 3 .96 16.27 5 .06 4 . 29 15.99 5 . 13 4 . 35 16. 15 5 . 25 4 .46 16.00 5 .20 4.42 15.92 5 . 17 4.39 16.28 5 .29 4 .49 16. 15 5 . 18 4 . 39 15.31 4 .70 3.97 14 .82 4 .55 3.84 15.09 4 .56 3.86 14.89 4 .50 3.81 15.83 4 . 79 4 .05 16.00 4 .98 4.22 10.03 3 .08 2 .60 6.54 1 .72 1 .46 14 . 16 3 .84 3 . 24 13.53 3 .85 3.25 13.60 4 . 1 1 3.47 7 .98 2 .41 2 .06 11.91 3 .03 2.54 1 1 . 32 2 .93 2 .45 8.75 2 .30 1 .92 9.57 2 .52 2.11 EVAPOTRANSPIRATION (DAYTIME): MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 2 . 25 2 . 39 2 . 36 2. 30 2 . 36 3 . 58 3 . 83 3 . 78 3 . 68 3. 78 3 . 71 3 . 96 3 . 91 3. 81 3 . 91 1 . 25 1 . 33 1 . 31 1 . 28 1 . 31 4 . 27 4 . 56 4 . 50 4. 39 4. 50 4 . 92 5. 25 5. 19 5. 06 5. 19 4 . 55 4. 86 4 . 80 4 . 67 4 . 80 3 . 90 4 . 16 4 . 10 4 . 00 4 . 10 3 . 62 3 . 87 3 . 82 3. 72 3. 82 1 . 41 1 . 50 1 . 48 1 . 45 1 . 48 4 . 15 4 . 43 4 . 37 4 . 26 4 . 37 2 . 33 2 . 48 2. 45 2 . 39 2. 45 2 . 48 2 . 65 2 . 62 2. 55 2. 62 3 . 38 3 . 61 3 . 57 3 . 48 3 . 57 4 . 80 5 . 12 5 . 06 4. 93 5. 06 5 . 01 5. 34 5. 27 5. 14 5. 27 5 . 08 5. 42 5. 35 5. 22 5. 35 5 . 17 5 . 51 5 . 44 5. . 30 5. .44 1 . 88 2 . 00 1 . 97 1 . 93 1 . 97 2 . 38 2. .55 2 . 52 2 . 45 2. .52 2 . 47 2 . 63 2 . 60 2 . 53 2 . 60 4 . 31 4 . 61 4 . 55 4 . 43 4 , .55 4 . 40 4 . 90 4 . 71 4, .59 4 , .71 4 , 13 4 . 60 4 .42 4 .30 4 , .42 3 , .51 3 .92 3 .77 3 .66 3. .77 4 . 15 4 .62 4 .44 4 . 33 4 .44 4 . 27 4 .75 4 .57 4 .45 4 .57 4 . 61 5 . 13 4 .93 4 .80 4 .93 4 .67 5 . 19 5 .00 4 .87 5 .00 4 .79 5 . 32 5 . 12 4 .99 5 . 12 4 .74 5 . 27 5 .07 4 .94 5 .07 4 .72 5 . 24 5 .04 4 .91 5 .04 4 .82 5 .36 5 . 16 5 .02 5 . 16 4 .72 5 . 24 5 .05 4 .92 5 .05 4 .27 4 . 76 4 .53 4 .45 4 .58 4 . 14 4 .61 4 .43 4 .31 4 .43 4 . 15 4 .62 4 .44 4 .33 4 .44 4 . 10 4 . 56 4 . 39 4 . 27 4 .39 4 .36 4 .85 4 .66 4 . 54 4 .66 4 .54 5 .04 4 .85 4 . 73 4 .85 2 .80 3 . 12 3 .00 2 .92 3 .00 1 .57 1 .74 1 .67 1 .63 1 .67 3 .49 3 .90 3 .74 3 .64 3 .74 3 .50 3 .90 3 . 75 3 .65 3 . 75 3 .74 4 . 17 4 .01 3 .90 4 .01 2 .21 2 . 44 2 . 35 2 . 29 2 . 35 2 .74 3 .07 2 .95 2 .87 2 .95 2 .65 2 .97 2 .85 2 . 77 2 .85 2 .08 2 . 33 2 . 24 2 . 18 2 . 24 2 .28 2 . 55 2 . 45 2 . 38 2 .45 DAY MONTH/ DAILY NET RADIATION (DAYTIME) MJ/M2D DAILY EOUI DAY SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 SITE 0 SITE 1 451 8/29 8 . 03 6 . 69 7 . 25 8 . 14 7 . 80 7 . 58 7 . 80 2 . 12 1 . 77 452 8/30 12 . 88 10. 79 1 1 . 66 13. 05 12 . 53 12 . 18 12 . 53 3. 41 2 . 85 453 8/31 6 . 4 1 5 . 43 5. 84 6 . 49 6. 25 6 . 08 6 . 25 1 . 64 1 . 39 454 9/ 1 7 . 34 5. 65 6 . 31 7 . 44 7 . 06 6. 78 7 . 06 1 . 82 1 . 40 455 9/ 2 10. 12 7 . 61 8. 59 10. 26 9. 71 9. 29 9. 71 2 . 68 2.01 456 9/ 3 7 . 56 5. 65 6 . 39 7 . 67 7 . 24 6 . 92 7 . 24 1 . 94 1 . 45 457 9/ 4 6 . 44 4 . 93 5 . 52 6. 52 6 . 19 5. 94 6 . 19 1 . 59 1 . 22 458 9/ 5 1 1 . 60 8 . 72 9 . 84 1 1 . 76 1 1 . 12 10. 64 1 1 . 12 3 . 07 2.31 459 9/ 6 12 . 06 9 . 09 10. 24 12 . 23 1 1 . 57 1 1 . 07 1 1 . 57 3 . 35 2.52 460 9/ 7 12 . 40 9 . 37 10. 55 12 . 56 1 1 . 89 1 1 . 39 1 1 . 89 3. 55 2.68 461 9/ 8 12 . 34 9 . 32 10. 49 12 . 51 1 1 . 84 1 1 . 34 1 1 . 84 3 . 53 2 . 67 462 9/ 9 6 . 77 5. 23 5 . 83 6 . 86 6 . 51 6 . 26 6 . 51 1 . 91 1 . 47 463 9/10 1 1 . 02 8 . 23 9 . 31 1 1 . 17 10. 55 - 10. 09 10. 55 2 . 91 2.18 464 9/1 1 1 1 . 36 8 . 49 9 . 61 1 1 . 52 10. 88 10. 40 10. 88 3 . 10 2 . 32 465 9/12 1 1 . 70 8 . 74 9 . 89 1 1 . 86 1 1 . 21 10. 71 1 1 . 21 3. 15 2 . 35 466 9/13 1 1 . 93 8 . 88 10. 07 12 . 09 1 1 . 42 10. 91 1 1 . 42 3 . 15 2 . 35 467 9/14 1 1 . 70 8 . 73 9 . 88 1 1 . 87 1 1 . 21 10. 71 1 1 . 21 3 . 19 2 . 38 468 9/15 1 1 . , 78 8 . 80 9 . 96 1 1 . 95 1 1 . 29 10. .79 1 1 . 29 3 . 32 2 . 48 469 9/16 12 . 12 9. 19 10. 33 12 . 28 1 1 . 63 1 1 . . 14 1 1 . 63 3 . 42 2 . 59 470 9/17 9 . 94 7 . 50 8 . 45 10. 08 9 . 54 9 . 13 9. 54 2 . 76 2.08 471 9/18 4 . ,69 3 . 59 4 . 02 4 . 75 4 . 50 4 . 32 4. .50 1 . ,24 0.95 472 9/19 8 . 78 6. 55 7 . 42 8. .91 8. 41 8. .04 8 . 41 2 , . 17 1 . 62 473 9/20 4 .55 3 . 45 3 . 88 4 , .61 4. .36 4 . 18 4 . 36 1 . . 1 1 0. 84 474 9/21 4 . 50 3 . 40 3 .83 4 . 56 4 . 32 4 . 13 4 .32 1 .00 0. 76 475 9/22 5 . 87 4 . 32 4 .92 5. .96 5. .61 5 . 35 5 .61 1 . 30 0. 96 476 9/23 5 . 26 3 .85 4 .40 5 . 34 5 .03 4 .79 5 .03 1 . 17 0.86 477 9/24 6 . 27 4 .61 5 . 26 6 . 36 6 .00 5 .72 6 .00 1 .39 1 .02 478 9/25 8 . 79 6 .50 7 .39 8 .92 8 .41 8 .03 8 .41 2 .03 1 .50 479 9/26 6 . 27 4 . 59 5 .25 6 . 37 5 .99 5 .71 5 .99 1 .45 1 .06 480 9/27 4 . 49 3 .39 3 .82 4 . 55 4 .31 4 . 12 4 .31 1 .06 0. 79 481 9/28 7 .87 5 . 78 6 . 59 7 .99 7 .52 7 . 17 7 .52 1 .91 1.41 482 9/29 5 . 55 4 .03 4 .62 5 .64 5 . 30 5 .05 5 . 30 1 .21 0. 88 483 9/30 4 . 38 3 . 28 3 .71 4 .44 4 . 20 4 .01 4 .20 1 .01 0.76 484 10/ 1 1 .01 0 .64 0 . 76 1 .04 O .94 0 .88 0 .95 0 . 24 0. 15 485 10/ 2 6 . 34 4 . 27 4 .96 6 . 53 5 .94 5 .65 6 .04 1 .41 0.95 486 10/ 3 6 .63 4 .47 5 . 19 6 .84 6 . 22 5 .91 6 . 32 1 .42 0. 95 487 10/ 4 4 .90 3 . 25 3 .80 5 .05 4 .58 4 .35 4 .66 1 .05 0.70 488 10/ 5 0 . 73 0 .43 0 . 53 0 . 75 0 .67 0 .63 0 .68 0 . 16 0.09 489 10/ 6 2 . 10 1 .41 1 .64 2 . 16 1 .97 1 .87 2 .00 0 .48 0. 33 490 10/ 7 3 . 43 2 . 36 2 .71 3 .53 3 .22 3 .07 3 .27 0 . 76 0.52 491 10/ 8 1 .84 1 . 22 1 .42 1 .90 1 .72 1 .63 1 .75 0 .40 0.27 492 10/ 9 4 . 77 3 . 1 1 3 .67 4 .93 4 .46 4 .22 4 .54 1 .04 0.68 493 10/10 4 .82 3 . 13 3 .69 4 .98 4 .50 4 . 26 4 .58 1 .05 0.68 494 10/1 1 6 . 37 4 . 17 4 .90 6 .58 5 .95 5 .64 6 .06 1 . 36 0. 89 495 10/12 5 . 52 3 .58 4 . 23 5 .71 5 . 15 4 .87 5 .25 1 . 20 0.78 496 10/13 5 . 54 3 .57 4 . 22 5 . 72 5 . 16 4 .88 5 .25 1 . 23 0. 79 497 10/14 5 . 34 3 . 42 4 .06 5 . 53 4 .98 4 .70 5 .07 1 .23 0.79 498 10/15 4 . 10 2 .58 3 .09 4 . 25 3 .81 3 .60 3 .89 0 .95 0.60 499 10/16 4 . 35 2 . 73 3 . 27 4 .51 4 .04 3 .81 4 . 12 1 .00 0.63 500 10/ 17 3 . 53 2 . 30 2 . 7 1 3 . 65 3 . 29 3 . 12 3 .35 0 .83 0.54 EVAPOTRANSPIRATION (DAYTIME): MM SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 1. 92 2 . 15 2 . 06 2. 00 2 . 06 3 . 08 3. 45 3 . 31 3 . 22 3. 31 1 . 49 1 . 66 1 . 60 1 . 56 1 . 60 1 . 56 1 . 84 1 . 75 1 . 68 1 . 75 2 . 27 2. 71 2. 57 2. 46 2 . 57 1 . 64 1 . 96 1 . 85 1 . 77 1 . 85 1 . 37 1 . 61 1 . 53 1 . 47 1 . 53 2 . 60 3 . 1 1 2 . 94 2 . 81 2 . 94 2 . 84 3. 39 3. 21 3. 07 3. 21 3 . 02 3. 59 3 . 40 3. 26 3. 40 3 . 00 3. 58 3 . 39 3 . 24 3. 39 1 . 64 1 . 93 1 . 84 1 . 76 1 . 84 2 . 46 2 . 95 2. 79 2 . 67 2. 79 2 . 62 3 . 14 2 . 97 2. 84 2 . 97 2 . 66 3. 19 3 . 01 2. 88 3 . 01 2 . 66 3. 20 3 . 02 2. 89 3 . 02 2 . 70 3 . 24 3 . 06 2 . 92 3 . 06 2 . 81 3. 37 3. 18 3. 04 3 . 18 2 . 91 3. 46 3. 28 3. 14 3. 28 2 . 34 2. 80 2 . 64 2. 53 2 . 64 1 . 06 1 , ,26 1 . 19 1 . 14 1 . 19 1 . 84 2 . , 20 2 . 08 1 . 99 2 . 08 0. .94 1 . , 12 1 . 06 1 . 02 1 . ,06 0. ,85 1 . .01 0, ,96 0. .92 0. . 96 W 1 . .09 1 , . 32 1 . . 25 1 . 19 1 , 25 0 .98 1 . 19 1 . . 12 1 . 06 1 . . 12 1. . 17 1 .41 1 . .33 1 . . 27 1 , .33 1 1 .70 2 .06 1 . .94 1 , .85 1 .94 1 .21 1 .47 1 , . 38 1 , .32 1 .38 0 .90 1 .07 1 .01 0. .97 1 .01 1 .60 1 .94 1 .83 1 .74 1 .83 1 .01 1 . 23 1 . 16 1 . 10 1 . 16 0 .86 1 .02 0 .97 0 .93 0 .97 0 . 18 O .24 0 . 22 0 .21 0 . 22 1 . 10 1 .45 1 . 32 1 . 26 1 . 34 1 . 1 1 1 .46 1 .33 1 . 26 1 . 35 0 .81 1 .08 0 .98 0 .93 1 .00 0 . 1 1 0 . 16 0 . 14 0 . 13 0 . 15 0 . 38 0 .50 0 .45 0 . 43 0 . 46 0 .60 0 .78 0 .72 0 .68 0 .73 0 .31 0 .41 0 .38 0 . 36 0 . 38 0 .80 1 .08 0 .97 0 .92 0 .99 0 .81 1 .09 0 .98 0 .93 1 .00 1 .05 1 .41 1 .27 1 .21 1 . 29 0 .92 1 . 24 1 . 12 1 .06 1 . 14 0 .94 1 . 27 1 . 15 1 .08 1 . 17 0 .94 1 .27 1 . 15 1 .08 1 . 17 0 .71 0 .98 0 . 88 0 .83 0 . 90 0 .75 1 .04 0 .93 0 .88 0 .95 0 .64 0 .86 0 . 77 0 . 73 0 . 79 DAY 501 502 503 504 505 506 507 508 509 510 511 512 MONTH/ DAY 10/18 10/19 10/20 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29 SITE O 3.43 .61 .45 . 17 . 1 1 . 32 . 15 .78 .83 . 77 .72 .92 DAILY NET RADIATION (DAYTIME) 1 4  5 5 4 4 2 2  0. 1 1 SITE 1 2.22 .06 ,89 .37 .31 . 77 .64 .87 .89 0.45 1.11 1 . 24 SITE 2 2.62 1 .24 3.41 3.97 91 29 14 18 20 56 31 46 SITE 3 3.54 1 .66 4.60 . 34 . 28 .47 . 30 .87 .91 0.80 1 .78 1 .98 SITE 3.20 .50 . 16 .83 . 77 .03 .86 .61 .65 .71 .61 .79 MJ/M2D 4 SITE 5 3.03 1 .43 3. 4 . 4 . 3 . 3 . 2 2 0. 1 1 DAILY EQUI. EVAPOTRANSPIRATION (DAYTIME): MM .93 57 51 81 65 .48 .51 .67 .52 .69 SITE 6 3 . 26 53 23 91 85 10 94 65 69 73 63 82 SITE O 0. 79 0. 34 .99 1 1 . 18 .00 .92 0. 1 1 1 0. 0.64 0.62 0.17 O. 37 O. 39 SITE 1 0.51 0. 23 0.64 0.72 0.76 0.64 0. 59 0.43 0.41 0. 10 0. 24 0.25 SITE 2 0.60 0. 27 O. 76 0.85 0.90 0.76 0.70 0.50 0.48 0.12 0.28 0. 29 SITE 3 0.82 0. 35 1 .02 1.14 . 22 .03 .95 .66 .64 1 1 0. 0. 0. 0. 18 0.38 0.40 SITE 4 0. 74 0.32 0.92 1 .03 1 . 10 0.93 0.86 0.60 0. 58 0.16 0. 34 0. 36 SITE 5 0.70 0. 30 0.87 0.98 1 .04 0.88 0.81 0.57 0.55 0.15 0.32 O. 34 SITE 6 0.75 0. 33 0.94 1 .05 1.12 0.95 0.87 0.61 0.59 0. 16 0.35 0.37 - 233 -APPENDIX 11 Equilibrium evapotranspiration for each data period and each site, determined by summation of daily equilibrium evapotranspiration (Appendix 10) over data periods (Appendix 9). Zeros are shown for data periods when neutron probe data was not obtained. Summation of evapotranspiration was then carried forward and data periods extended to the next neutron probe reading. SITE 0 DATA SET NO : 1 31 .44 DATA SET NO : 2 16.94 DATA SET NO : 3 21 .33 DATA SET NO : 4 25.39 EQUILIBRIUM EVAPOTRANSPIRATION FOR DATA PERIODS : MM MESACHIE 1980-1981 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 28 57 28.35 27.81 28.84 27.99 27.94 16 79 21.55 22.54 22.13 22.77 22.03 18.59 17.40 18.23 18.16 17.19 18.27 22 87 23.12 0.00 25.36 23.23 25.74 DATA SET NO : 5 23.59 20.84 21.81 48.64 22.73 22.51 22.73 DATA SET NO : 6 22.60 20.35 24.05 24.81 24.25 25.31 23.74 DATA SET NO : 7 33.63 29.78 24.42 26.03 25.69 25.09 25.68 DATA SET NO : 8 35.46 31.23 35.71 38.09 36.82 37.92 36.54 DATA SET NO : 9 25.31 22.16 23.87 25.17 24.93 25.16 24.96 DATA SET NO :10 31.79 0.00 28.33 33.08 32.13 28.04 32.51 DATA SET NO :11 16.51 0.00 14.61 16.20 15.50 15.44 15.45 DATA SET NO :12 26.00 62.17 25.90 28.10 27.12 26.05 27.22 DATA SET NO :13 8.27 5.91 5.95 9.03 9.36 8.01 10.02 DATA SET NO :14 32.44 25.08 29.29 31.98 29.47 29.85 28.76 DATA SET NO :15 11.25 8.22 7.38 11.47 10.98 9.03 11.06 DATA SET NO :16 10.47 7.79 9.64 12.31 11.50 10.05 11.35 DATA SET NO :17 15.59 10.73 11.14 13.56 12.38 13.27 12.67 DATA SET NO :18 7.33 5.12 6.35 8.08 7.41 6.57 7.49 DATA SET NO :19 0.00 0.00 6.69 8.03 7.66 0.00 8.53 DATA SET NO :20 13.05 8.47 3.75 5.89 5.00 12.21 4.44 DATA SET NO :21 0.00 1.31 1.22 2.71 2.26 1.37 2.28 DATA SET NO :22 7.06 2.62 3.66 5.08 4.45 4.46 4.71 DATA SET NO :23 3.00 1.41 1.93 3.27 2.65 2.49 2.79 DATA SET NO :24 2.43 1.06 1.51 2.56 2.04 1.99 2.11 DATA SET NO :25 4.51 2.27 2.85 4.75 3.90 3.71 4.05 DATA SET NO :26 4.56 2.24 3.15 4.67 3.91 3.89 4.23 DATA SET NO :27 5.75 3.48 4.31 5.92 5.31 5.12 5.41 DATA SET NO :28 4.45 2.70 3.13 4.67 4.04 3.75 3.93 DATA SET NO :29 27.15 20.17 22.29 26.61 24.49 24.89 25.21 DATA SET NO :30 24.18 18.18 20.64 25.01 24.11 22.59 23.63 DATA SET NO :31 31.77 26.49 29.95 33.83 32.15 31.58 32.27 DATA SET NO :32 43.56 36.46 37.89 41.14 40.09 39.21 40.86 DATA SET NO :33 33.79 29.99 32.92 34.05 34.13 33.41 35.54 DATA SET NO :34 43.36 38.14 38.99 43.01 41.21 40.98 40.42 DATA SET NO :35 30.43 27.80 30.89 30.92 30.78 30.44 30.42 DATA SET NO :36 40.78 37.38 40.03 44.04 43.65 40.03 43.04 DATA SET NO :37 36.64 31.90 29.07 28.97 28.50 32.13 30.69 DATA SET NO :38 18.48 15.81 18.33 20.89 20.76 18.80 18.56 DATA SET NO :39 33.29 28.99 29.63 31.92 31.38 30.38 31.52 DATA SET NO :40 23.42 "22.51 25.32 24.14 25.32 26.09 26.41 DATA SET NO :41 30.21 26.08 27.32 30.36 28.82 29.20 28.71 DATA SET NO :42 26.53 22.63 25.88 32.36 31.09 24.82 30.69 DATA SET NO :43 37.20 31.30 34.07 33.56 30.68 35.56 29.52 DATA SET NO :44 23.14 19.03 19.88 26.01 25.08 21.38 25.33 DATA SET NO :45 20.27 17.20 17.38 18.26 18.75 19.28 19.38 DATA SET NO :46 27.88 20.58 23.40 27.81. 26.23 24.38 26.33 DATA SET NO :47 28.43 21.29 24.67 33.56 31.34 26.41 30.80 DATA SET NO :48 15.03 11.02 12.46 12.09 11.75 13.94 12.34 DATA SET NO :49 16.75 10.68 13.12 18.73 16.60 15.00 16.48 - 235 -APPENDIX 12 Precipitation and gross interception for each site and for data periods, determined by summation of precipitation (Appendix 4) over data periods. Gross interception was calculated for data periods from interception versus rainfall intensity functions developed for each site, described in Section 3.3.2 PRECIPITATION AND GROSS SITE 0 DATA SET NO: 1 PRECIPITATION 34 . 00 GROSS INTERCEPTION 2 . 21 DATA SET NO: 2 PRECIPITATION 0. 20 GROSS INTERCEPTION 0. 20 DATA SET NO: 3 PRECIPITATION 31 . 70 GROSS INTERCEPTION 2 . 12 DATA SET NO: 4 PRECIPITATION 33. 45 GROSS INTERCEPTION 2 . 19 DATA SET NO: 5 PRECIPITATION 2. 72 GROSS INTERCEPTION 0. 96 DATA SET NO: 6 PRECIPITATION 1 1 . 52 GROSS INTERCEPTION 1 . 31 DATA SET NO: 7 PRECIPITATION 6. 40 GROSS INTERCEPTION 1 . 1 1 DATA SET NO: 8 PRECIPITATION 0. 00 GROSS INTERCEPTION 0. 00 DATA SET NO: 9 PRECIPITATION 0. 40 GROSS INTERCEPTION 0. 40 DATA SET NO: 10 PRECIPITATION 0. 00 GROSS INTERCEPTION 0. 00 DATA SET NO: 1 1 PRECIPITATION 4 . 20 GROSS INTERCEPTION 1 . 02 DATA SET NO: 12 PRECIPITATION 5. 50 GROSS INTERCEPTION 1 . 07 DATA SET NO: 13 PRECIPITATION 14 . 80 GROSS INTERCEPTION 1 . .44 DATA SET NO: 14 PRECIPITATION 19. .40 GROSS INTERCEPTION 1 .63 DATA SET NO: 15 PRECIPITATION 25 .50 GROSS INTERCEPTION 1 .87 DATA SET NO : 16 PRECIPITATION 31 .07 GROSS INTERCEPTION 2 .09 DATA SET NO: 17 PRECIPITATION 0 .52 GROSS INTERCEPTION 0 .52 DATA SET NO: 18 PRECIPITATION 22 .40 GROSS INTERCEPTION 1 .75 DATA SET NO: 19 PRECIPITATION 0 .00 GROSS INTERCEPTION 0 .00 DATA SET NO: 20 PRECIPITATION 6 .40 GROSS INTERCEPTION 1 . 1 1 DATA SET NO: 21 PRECIPITATION 0 .00 GROSS INTERCEPTION 0 .00 DATA SET NO: 22 PRECIPITATION 349 .80 GROSS INTERCEPTION 14 .84 DATA SET NO: 23 PRECIPITATION 248 .75 GROSS INTERCEPTION 10 .80 DATA SET NO: 24 PRECIPITATION 129 .55 GROSS INTERCEPTION 6 .03 DATA SET NO: 25 PRECIPITATION 386 .50 GROSS INTERCEPTION 16 .31 FOR DATA PERIODS: MM MESACHIE 1980-1981 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 34 .02 33 . 95 32 . 10 33 . 92 32 . 10 32. 10 4.54 6.24 9. 22 5. 24 10. 33 8. 90 0. 20 0.20 0. 20 0. 20 0. 20 0. 20 0. 20 0.20 0. 20 0. 20 0. 20 0. 20 32 .05 33.00 33 . 00 33 . 00 33. 00 33. 00 4 . 35 6.11 9. 43 5 . 13 10. 56 9. 10 33.25 32.60 0. 00 32 . 90 32 . 45 33. 05 4 .47 6.05 0. 00 5 . 12 10. 42 9. 1 1 2.65 2.50 35. 32 2 . 35 2 . 57 2. 35 1.41 1 .68 9 . 96 1 . 45 2 . 57 2. 35 1 1 .45 1 1 . 30 1 1 . 07 1 1 . 15 1 1 . 37 1 1 . 00 2 . 29 2.96 4 . 39 2 . 51 4 . 94 4 . 26 6.40 6.40 6. 40 6. 40 6. 40 6. 40 1 .78 2 . 25 3 . 31 1 . 94 3. 64 3. 25 O.OO 0.00 0. 00 0. 00 0. OO 0. 00 0.00 0.00 0. 00 0. 00 0. 00 0. 00 0.40 0.40 0. 40 0. 40 0. 40 0. 40 0.40 0.40 0. 40 0. 40 0. 40 0. 40 0.00 0.00 0. 00 0. 00 0. 00 0. 00 0.00 0.00 0. 00 0. 00 0. OO 0. 00 0.00 4.20 4 . 20 4 . 20 4 . 20 4 . 20 0.00 1 .93 2 . 81 1 . 67 3. .07 2. ,76 9.70 5.50 5. .50 5 . 50 5. ,50 5. ,50 2.11 2. 12 3. . 1 1 1 . 83 3. .41 3. ,05 14.80 14.80 14 .80 14 . 80 14 .80 14 , .80 2.62 3.47 5 . 24 2 , .95 5 .83 5 . 10 19.40 19.40 19 .40 19 .40 19 .40 19 .40 3.08 4.13 6 .30 3 .50 7 .02 6 . 1 1 25.50 25.50 25 .50 25 .50 25 .50 25 .50 3.69 5.02 7 .71 4 .23 8 .61 7 .45 31.15 31 . 30 31 .52 31 .45 31 .22 31 .38 4 . 26 5.86 9 .09 4 .94 10 . 10 8 . 74 0.45 0. 30 0 .07 0 . 15 0 .38 0 . 22 0.45 0. 30 0 .07 0 . 15 0 . 38 0 . 22 22 .40 22.40 21 .22 21 .00 21 .67 20 .77 3.38 4.57 6 .72 3 .69 7 .62 6 .41 0.00 6.40 7 .57 7 .80 0 .00 8 .03 0.00 2 . 25 3 .58 2 . 1 1 0 .00 3 .61 6.40 0.00 0 .00 0 .00 7 . 13 0 .00 1 .78 0.00 0 .00 0 .00 3 .83 0 .00 162.60 162.60 162 .60 162 .60 162 .60 162 .60 17 .40 24.90 39 .24 20 .68 44 .26 37 .61 188.95 192.45 183 .70 181 .95 190 .70 180 .20 20.04 29 . 23 44 .09 23 .00 51 . 56 41 . 48 247.27 242.67 251 . 15 252 .62 244 .97 254 . 10 25.87 36.51 59 .60 31 .49 65 .67 57 .74 129. 12 130.07 129 .52 129 .72 129 .60 129 .92 14 .05 20. 18 31 .63 16 .74 35 .68 30 .42 386.65 386.80 387 .62 386 .50 386 .72 386 . 17 39.81 57.41 90 .99 47 . 55 102 .53 86 .80 PRECIPITATION AND GROSS INTERCEPTION FOR DATA DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: DATA SET NO: 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 PRECIPITATION GROSS INTERCEPT ION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION PRECIPITATION GROSS INTERCEPTION SITE 0 1 18.80 .60 10 .81 5  24 . 1 279.36 12 .02 40.94 2.49 52 .45 2 .95 241.30 10. 50 130.70 6 .08 16 . 25 1 .50 40. 10 2 .45 50.30 2.86 46.60 2.71 .80 .80 8.30 1 . 18 0.30 0.30 O.OO 0.00 1 .00 0.89 0.00 0.00 00 00 20 14 50. 20 2.86 .90 .93 64.20 3.42 175.30 7 91 4 86 36 50 SITE 1 1 18 .80 13 .02 24 . 10 3.55 279. 19 29 .06 41.11 5.25 51 .82 6 . 32 242.57 25.40 129.27 14 .07 17 .02 2 .84 40. 15 5. 16 50. 25 6. 17 46 .60 5.80 0.80 0.80 8 . 30 1 .97 0. 30 0.30 0.00 0.00 1 .OO 1 .00 0.00 0.00 0.00 0.00 7 . 20 1 .86 50. 20 6 . 16 1 .90 1 . 33 64.20 7.56 175.30 18 .67 90. 74 10.21 PERIODS: MM MESACHIE 1980-SITE 2 SITE 3 SITE 4 118.80 116.90 118.05 18.55 28.73 15.34 24. 10 26.00 26.05 4.81 7.82 4.30 275.62 275.05 274.47 41.29 65.10 34.11 44.67 45.25 45.82 7.80 12.25 6.67 51.20 51.20 51.20 8.74 13.62 7.31 251.00 250.95 250.92 37.71 59.56 31.28 120.70 116.15 116.17 18.82 28.55 15.11 17.80 22.34 22.40 3.90 6.98 3.86 33.90 33.96 33.90 6.24 9.65 5.24 56.50 51.47 51.35 9.51 13.68 7.33 46.71 51.70 51.79 8.09 13.73 7.38 0.69 0.72 0.76 0.69 0.72 0.76 8 . 30 8 . 30 8 . 30 2.52 3.75 2.17 0.30 0.30 0.30 0.30 0.30 0.30 0.00 0.00 O.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 O.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.00 7 . 20 7 . 20 7 . 20 2.36 3.50 2.03 50.20 50.20 50.20 8.60 13.39 7.19 1 . 90 1.90 1.90 1 .60 1 .90 1 .40 64.20 64.26 64.24 10.63 16.62 8.88 174.62 174.41 174.47 26.64 41.95 22.11 92.66 107.05 105.55 14.76 26.46 13.84 1981 SITE 5 118.80 32.87 24 . 10 8 . 25 276.77 73.94 43.52 13.30 51.51 15.37 250.71 67 . 17 121.06 33.46 17.41 6.51 40.00 12.38 50.40 15.08 46.60 14.10 0.80 0.80 8.30 4 . 14 0.30 0.30 0.00 0.00 1 .00 1 .00 0.00 0.00 0.00 0.00 7.20 3 .85 50.20 15.03 1 .90 1 .90 64.20 18.67 174.66 47.39 92 . 31 25.98 SITE 6 1 18 .60 27 .93 25.90 7 . 54 273.90 62 . 10 46 .40 12 .05 51 .20 13 . 10 250.90 57 .04 1 16.20 27 .40 22.40 6.77 33 .90 9.30 51 .54 13.18 51 . 56 13.18 .80 .80 0. 0. 8.30 3.67 0. 30 0.30 0.00 0.00 1 .00 1 .00 0.00 0.00 0.00 0.00 7.20 3.42 50.20 12 .88 1 .90 1 .90 64.22 15 .97 174.56 40.24 104.01 24.72 ro - 238 -APPENDIX 13 Profile water storage for each site calculated from neutron probe measurements, by summation of the water content determined for each horizon over the total root zone. Zeros are shown when neutron probe data was not obtained. In this case the profile water storage is calculated to the next neutron probe reading. DATA SET NO: 1 DATA SET NO: 2 DATA SET NO: 3 DATA SET NO: 4 DATA SET NO: 5 DATA SET NO: 6 DATA SET NO: 7 DATA SET NO: 8 DATA SET NO: 9 DATA SET NO: 10 DATA SET NO: 11 DATA SET NO: 12 DATA SET NO: 13 DATA SET NO: 14 DATA SET NO: 15 DATA SET NO: 16 DATA SET NO: 17 DATA SET NO: 18 DATA SET NO: 19 DATA SET NO: 20 DATA SET NO: 21 DATA SET NO: 22 DATA SET NO: 23 DATA SET NO: 24 DATA SET NO: 25 PROFILE WATER 1 TUBES TUBES 4-TUBES 1-TUBES TUBES TUBES TUBES TUBES TUBES 1 TUBES 4 TUBES TUBES TUBES TUBES TUBES TUBES TUBES 1 TUBES 4 TUBES 1 TUBES 4 TUBES 1 TUBES 4 TUBES 1 TUBES 4 TUBES 1 TUBES 4 TUBES 1 TUBES 4 TUBES TUBES TUBES TUBES TUBES TUBES TUBES 1 TUBES 4 TUBES 1 TUBES TUBES TUBES TUBES TUBES TUBES TUBES TUBES 1 TUBES 4 TUBES TUBES TUBES 1 TUBES 4 STORAGE FOR SITE 0 133.45 0 .00 123.05 122.46 114.23 115.46 127. 14 126.26 132.63 138.93 122.90 126.56 118 . 75 122.36 101.73 108 12 78 .75 88 .65 58 . 34 68 . 27 45.78 51 .40 43 .63 48.57 39 . 33 42 .92 56 .04 54.42 60. 55 64 .40 86.56 83 . 88 104.58 94.74 90 .00 90. 10 100.44 102.13 0 .00 0 .00 102.93 106.57 0 .00 0 .00 138 . 73 141.06 147.24 148.53 141.93 142.54 DATA PERIODS SITE 1 146.36 0 . 0 0 140.60 0 .00 126 . 14 0 . 0 0 146.21 0 .00 150.19 0 . 0 0 130.71 0 . 0 0 122.05 0.00 104.25 0.00 85 .03 0 .00 68 .48 0 . 0 0 0 .00 0 . 0 0 0 . 0 0 0 . 0 0 56 . 90 0 . 0 0 75 .76 0 .00 75 . 33 0 . 0 0 100.11 0 .00 126.95 0 . 0 0 99 .02 0 .00 114.34 0 . 0 0 0 . 0 0 0 .00 105.09 0 . 0 0 153.08 0 .00 156.51 0 . 0 0 152.88 0 . 0 0 148 . 44 0 . 0 0 MM MESACHIE 1980 SITE 2 197.42 0 .00 206.4 1 0 .00 197.64 187.55 198.41 206.52 214.47 222.86 197.77 205 . 13 193.61 206.07 183.08 188.49 166.92 164.25 146.93 139.93 129.61 124.52 124.61 121.44 114.65 115.31 134.80 140.38 136.00 138.67 158.50 164.99 182.86 191 .30 165.81 169.75 180.73 181.76 170.41 171.92 176.63 182.01 216.08 238.14 225.01 252 .60 220.41 246.53 210.77 237 . 32 SITE 135 . O. 142 . 0 . 182 . O. 220. O. 0. 0. 216 . O. 212 . 0. 191 . 0. 175 . 0. 158 . 0. 146 . 0. 142 . 0. 132. 0. 139 . 0. 142. 0 . 159 . O. 177 . 0. 171 . O. 171 . 0. 173. 0 176 0 24 1 0 254 0 261 0 260 O 3 52 00 24 00 30 00 29 00 00 00 94 00 23 00 89 00 57 00 69 00 62 00 .81 .00 .71 .00 83 .00 .43 .00 . 44 .00 .71 .00 .60 .00 .27 .00 .81 .00 .70 .00 . 26 .00 .41 .00 .68 .00 .55 .00 1981 SITE 4 223.79 0 .00 224.78 237.88 211.82 226 .09 224 .00 238.67 238 .03 253 .63 224.55 241.94 213.25 237.54 202.28 223.37 187 . 27 206.08 177.86 186.44 156 . 15 165.65 149.56 158.44 138.58 144.08 144.40 149.40 139.91 147.37 152.45 163.59 166.66 179.24 160.48 173.39 164 .47 176.56 166.53 174.29 170.96 179.96 247.56 252.24 244.62 255.57 255.74 267 .85 251 .47 265.81 SITE 5 379 .92 0 . 0 0 376.11 0 . 0 0 338.01 0 . 0 0 347 . 12 0 . 0 0 354.22 0 . 0 0 340.75 0 . 0 0 337 . 72 0 . 0 0 326.04 0 . 0 0 302.26 0 . 0 0 232 . 60 0 . 0 0 265.47 0 . 0 0 255.76 0 . 0 0 239.8 1 0 . 0 0 244 . 26 0 . 0 0 245.38 0 . 0 0 260 O 279 . 32 0 . 0 0 272.65 0 . 0 0 277 .69 0 . 0 0 0 O 275.36 0 . 0 0 403 .97 0 . 0 0 4 1 5 . 7 0 0 . 0 0 435 .03 0 . 0 0 441 0 10 00 .00 .00 09 00 SITE 6 410.51 0 . 0 0 388 .56 0 . 0 0 360 .18 342 .75 376.41 374.41 386 . 16 427 .43 359.68 354 .00 346.92 337.95 325 .03 320 .55 297 . 17 300.21 267 .40 276 .40 240.02 251 . 30 225 .05 239 . 13 194.91 214.81 202 .42 212 .09 190. 15 214 .80 219 .65 229.01 243 .44 242 .38 226 .43 222.91 218 .95 230 .78 211 .18 229.31 213 .09 233 .63 391 . 19 4 8 7 . 4 0 397 .83 480 .92 433.44 529.88 442 .49 534.62 ro VjJ VO PROFILE WATER STORAGE FOR SITE 0 DATA SET NO : 26 TUBES 1-3: 140.34 TUBES 4-6 : 0.00 DATA SET NO: 27 TUBES 1-3: 140.37 TUBES 4-6: 138.09 DATA SET NO: 28 TUBES 1-3 : 131.57 TUBES 4-6 : 131.50 DATA SET NO: 29 TUBES 1-3: 146.68 TUBES 4-6: 144.00 DATA SET NO : 30 TUBES 1-3: 127.96 TUBES 4-6 : 130.71 DATA SET NO: 31 TUBES 1-3: 133.12 TUBES 4-6- 133.83 DATA SET NO : 32 TUBES 1-3- 144.77 TUBES 4-6 145.24 DATA SET NO: 33 TUBES 1-3 140.54 TUBES 4-6 139.26 DATA SET NO : 34 TUBES 1-3 130.37 TUBES 4-6 129.39 DATA SET NO: 35 TUBES 1-3 126.44 TUBES 4-6 123.75 DATA SET NO : 36 TUBES 1-3 131.78 TUBES 4-6 129.55 DATA SET NO: 37 TUBES 1-3 127.21 TUBES 4-6 128. 12 DATA SET NO: 38 TUBES 1-3 109.06 TUBES 4-6 110.40 DATA SET NO: 39 TUBES 1-3 102.82 TUBES 4-6 102.03 DATA SET NO: 40 TUBES 1-3 78 .61 TUBES 4-6 79.88 DATA SET NO: 41 TUBES 1-3 59.38 TUBES 4-6 62 .84 DATA SET NO : 42 TUBES 1-3 47 .64 TUBES 4-6 49.57 DATA SET NO: 43 TUBES 1-3 42. 19 TUBES 4-6 44.72 DATA SET NO: 44 ' TUBES 1-3 38.42 TUBES 4-6 41.15 DATA SET NO: 45 TUBES 1-3 38. 18 TUBES 4-6 4 1 .04 DATA SET NO: 46 TUBES 1-3 102.08 TUBES 4-6 94.08 DATA SET NO: 47 TUBES 1-3 91.67 TUBES 4-6 90.15 DATA SET NO : 48 TUBES 1-3 113.57 TUBES 4-6 114.82 DATA SET NO: 49 TUBES 1-3 135.14 TUBES 4-6 132.58 DATA SET NO: 50 TUBES 1-3 143.96 TUBES 4-6 149.01 PERIODS: MM MESACHIE 1980-1981 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 150. 7 1 213. 88 0. 00 261 . 78 371 . 29 430. 43 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 147 . 59 208 . 35 251 . 78 256 . 95 409 . 12 432 . 82 0. 00 233. 88 0. 00 256 . 67 0. 00 519. 92 141 . 04 202. 56 236 . 40 243 . 52 365 . 56 424 . 05 0. 00 229. 03 0. 00 246 . 78 0. 00 457. 70 153. 64 224. 78 283 . 95 272 . 86 522 . 03 509. 68 0 00 249. 37 0. 00 372 . 97 0 00 544 . 10 136 10 205. 88 237 05 236. 12 364 85 427. 1 1 0 00 227 . 28 0 00 247 . 26 0 00 422. 58 144 46 206 37 243 92 241 13 357 43 409. 80 0 00 223 91 0 00 251 90 0 00 402 15 154 58 218 66 262 87 253 21 418 35 434 37 0 00 244 09 0 00 252 86 0 00 510 70 146 47 216 08 254 61 247 92 375 95 425 98 157 22 238 74 217 77 257 43 406 66 472 92 132 23 206 1 1 228 76 234 65 363 21 404 08 162 13 222 99 228 54 246 38 392 27 406 21 125 61 197 95 222 24 231 08 342 30 392 24 161 61 214 10 220 73 239 03 377 96 383 34 128 59 199 42 228 51 227 41 341 25 383 20 161 84 218 14 222 08 244 14 375 88 373 22 126 02 201 74 227 45 230 68 347 88 369 43 162 74 220 40 221 79 245 14 383 69 368 81 105 52 186 81 207 89 213 59 329 95 341 35 144 76 201 00 211 29 230 45 367 50 344 54 94 98 180 35 198 18 205 71 322 19 328 89 134 92 192 05 203 49 224 09 360 61 337 56 75 01 168 06 181 95 191 94 301 55 301 73 1 10 29 169 22 189 16 208 65 346 08 317 74 60 98 151 63 169 54 174 25 277 92 276 10 94 30 148 10 172 29 195 68 334 38 297 19 51 06 138 76 156 57 160 03 257 24 247 82 78 15 129 56 159 31 177 56 322 .51 275 05 48 20 127 98 149 46 148 66 242 .05 224 71 72 .85 124 64 148 .82 163 07 311 .43 257 .89 43 .41 1 15 82 139 .52 136 .89 207 .77 201 .69 67 .44 1 16 05 135 . 13 148 .82 287 .06 234 .94 45 . 73 109 99 132 .97 130 .83 195 .64 188 .35 65 .09 1 10 .02 129 .24 142 .82 270 .07 217 .42 83 .87 176 .41 165 .63 153 . 25 224 .65 216 .40 107 .96 174 .68 167 .59 174 .33 321 .25 244 .69 73 . 12 156 .38 160 .09 14 1 .47 214 . 26 206 .46 99 . 10 157 .92 165 .48 166 .46 304 .02 238 .61 98 .84 177 .05 173 .58 166 . 19 234 . 19 279 .45 82 .24 179 .53 185 .69 195 . 17 316 .83 320 .62 131 .00 204 .68 241 . 1 1 236 .29 420 .41 400 .72 155 .51 225 .90 220 .59 243 . 28 430 .27 494 .94 139 .03 210 .76 243 .78 1 18 .67 466 .01 413 .51 161 . 79 235 . 1 1 233 .05 248 .09 443 .04 509 .54 - 241 -APPENDIX 14 Extractable water in the soil profile at each site for each data period. Soil profile extractable water is determined from: fl min e " W - W , max min where the parameters are as defined in Section 2.1.3. Zeros are shown when neutron probe data was not obtained. In this case extractable water was calculated to the next neutron probe reading. EXTRACTABLE WATER FROM SOIL PROFILE FOR DATA PERIODS: MM MESACHIE 1980-1981 DATA SF_T NO : 1 DATA SET NO : 2 DATA SET NO : 3 DATA SET NO : 4 DATA SET NO : 5 DA"! a SET NO : 6 DATA SET NO : 7 DATA SET NO : 8 DATA SET NO : 9 DATA SET NO : 10 DATA SET NO : 1 1 DATA SET NO : 12 DATA SET NO : 13 DATA SET NO: 14 DATA SET NO : 15 DATA SET NO : 16 DATA SET NO : 17 DATA SET NO : 18 DATA SET NO : 19 DATA SET NO: 20 DATA SET NO : 2 1 DATA SET NO : 22 DATA SET NO: 23 DATA SET NO : 24 DATA SET NO : 25 DATA SET NO: 26 DATA SET NO : 27 DATA SET NO : 28 DATA SET NO: 29 DATA SET NO: 30 DATA SET NO : 31 DATA SET NO: 32 DATA SET NO : 33 DATA SET NO: 34 DATA SET NO: 35 DATA SET NO: 36 DATA SET NO: 37 DATA SET NO: 38 DATA SET NO: 39 DATA SET NO: 40 DATA SET NO : 41 DATA SET NO: 42 DATA SET NO: 43 DATA SET NO: 44 DATA SET NO : 45 DATA SET NO: 46 DATA SET NO: 47 DATA SET NO : 48 DATA SET NO: 49 SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 1 . 322 1 . 34 1 0.984 0. 467 1 . 059 1 . 228 1 . 590 1 . 186 1 . 200 0.964 0.655 1 . 040 1 . 134 1 . 438 1.215 1 . 240 0.949 0.970 1 . 040 1 . 070 1 . 404 1 . 367 1 . 407 1 .052 0.000 1 . 144 1 . 106 1 . 547 1 . 353 1 . 299 1 .048 1 . 1 10 1 . 151 1 . 091 1 . 499 1 . 242 1 . 103 0.974 1 .077 1 . 072 1 . 055 1 . 333 1 .098 0. 918 0.912 0.976 0. 993 1 . 022 1 . 245 0. 830 0. 660 0. 776 0.828 0. 882 0. 943 1 . 133 0.527 0. 411 0.609 0.695 0. 763 0. 846 1 . 002 0. 271 0. 000 0. 457 0. 578 0. 624 0. 764 0. 865 0. 146 0. 000 0. 376 0.514 0. 515 0. 704 0. 762 0.092 0. 215 0.329 0.458 0. 439 0. 646 0. 657 0. 158 0. 265 0. 386 0.446 0. 412 0. 621 0. 593 0.314 0. 394 0. 474 0.485 0. 421 0. 633 0. 587 0.532 0. 564 0.570 0.564 0. 464 0. 668 0. 631 0.803 0. 924 0. 766 0. 706 0. 577 0. 744 0. 735 0. 833 0. 916 0. 790 0. 755 0. 612 0. 772 0. 736 0.850 0. 828 0. 767 0.729 0. 603 0. 769 0. 690 0.000 0. 000 0. 780 0. 738 0. 616 0. 000 0. 678 0.957 0. 871 0. 773 0.760 0. 635 0. 775 o. 674 O.OOO 1. 141 0.994 1 .032 0. 943 1. ,057 1. 239 1  238 1. 499 1 . 229 1 . 345 1. 233 1. . 370 1. 796 1 .552 1. 498 1 . 254 1 .428 1. 279 1. .439 1. .905 1 .569 1. . 442 1 . 196 1 .453 1. 312 1 .496 2 .031 1.514 1. .426 1.118 0.000 1. .312 1. . 354 1 . 899 1 .492 1. .421 1 . 107 1.413 1. . 305 1 .282 1 . .868 1 .428 1 .353 1.114 1.315 1. . 240 1 . 269 1 . .895 1 .472 1 . 395 1 . 177 1.445 1 .496 1 .521 2 .025 1 . 456 1 . 361 1 . 180 1 . 448 1 .483 1 .520 1 .984 1 . 370 1 . 297 1 .094 1 . 286 1 . 187 1 . 152 1 .672 1 .484 1 .426 1 . 152 1 . 390 1 .231 1 .272 1 .795 1 .531 1 .477 1 .201 1 . 359 1 .255 1 .347 1 .907 1 .421 1 . 426 1 . 134 1 . 221 1 . 206 1 . 257 1 . 733 1 .313 1 .368 1 .050 1 . 162 1 . 138 1 . 187 1 .575 1.318 1 .354 1 .027 1 . 148 1 .119 1 . 144 1 .505 1 . 337 1 . 360 1 .047 1.161 1 . 131 1 .157 1 .457 1 . 185 1 .220 0.988 1 .098 1 .077 1 . 135 1 . 366 1 .001 1 .015 0.890 1 .002 0 .988 1 .081 1 .274 0. 779 0 . 788 0. 790 0.905 0 .904 1 .025 1 . 188 0.479 0 .528 0.647 0. 784 0 .788 0 .946 1 .068 0.256 0 . 332 0. 510 0.673 0 .666 0 .871 0 .943 .0.127 0 .213 0.417 0. 585 0 .553 0 .805 0 .827 0 .063 0 . 149 0.345 0. 502 0 .452 0 .710 O .715 0.035 0 .113 0.281 0. 429 0 . 379 0 .612 0 .616 0.459 0 . 396 0.516 0. 547 0 .460 0 .669 0 .648 0.833 0 .610 0. 703 0.675 0 .526 0 . 728 0 .699 0.950 0 .572 0.713 0. 727 0 .592 0 . 734 0 .878 1 .262 0 . 97 1 0.943 1 .002 0 .924 1 . 105 1 .458 1 .497 1 . 388 1.119 1 . 239 0 .935 1 .504 1 .875 rv> -F - 243 -APPENDIX 15 Profile water storage change (W f i n ai - W i n i t i a l) determined from Appendix 13 Data for the two sets of neutron probe access tubes were averaged. Zeros are shown when neutron probe data was not obtained. In this case profile water storage change was calculated to the next neutron probe reading. DATA SET NO: 1 DATA SET NO: 2 DATA SET NO : 3 DATA SET NO: 4 DATA SET NO: 5 DATA SET NO : 6 DATA SET NO: 7 DATA SET NO: 8 DATA SET NO : 9 DATA SET NO: 10 DATA SET NO: 1 1 DATA SET NO: 12 DATA SET NO : 13 DATA SET NO: 14 DATA SET NO: 15 DATA SET NO: 16 DATA SET NO: 17 DATA SET NO: 18 DATA SET NO: 19 DATA SET NO: 20 DATA SET NO: 21 DATA SET NO: 22 DATA SET NO: 23 DATA SET NO: 24 DATA SET NO: 25 DATA SET NO: 26 DATA SET NO: 27 DATA SET NO: 28 DATA SET NO: 29 DATA SET NO: 30 DATA SET NO : 31 DATA SET NO: 32 DATA SET NO: 33 DATA SET NO: 34 DATA SET NO: 35 DATA SET NO: 36 DATA SET NO : 37 DATA SET NO: 38 DATA SET NO: 39 DATA SET NO- 40 DATA SET NO : 41 DATA SET NO: 42 DATA SET NO: 43 DATA SET NO : 44 DATA SET NO: 45 DATA SET NO: 46 DATA SET NO: 47 DATA SET NO: 48 DATA SET NO : 49 ORAGE FOR DATA PERIODS: MM MESACHIE 1980-1981 SITE 0 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 10.40 5. 76 -8 . 99 -6.72 -0.99 3. 31 21 . 94 7.91 14 . 46 8 . 77 -40.06 12 . 38 38. 10 28. 38 -11.86 -20. 07 -9 . 87 -37.99 -12.38 -9 . 1 1 -23 . 94 -9 .08 -3 . 98 -16. 20 0.00 -14 .49 -7 . 09 -31 . 38 1 1 .05 19. 48 17 . 21 3.35 12 . 58 13. 47 49. 95 4. 17 8. 66 1 . 61 4.71 7 . 85 3 . 02 14 . 41 15.63 17 . 80 14 . 05 20. 34 12.57 1 1 . 68 19. 65 21 .22 19. 22 20. 20 16.33 16.15 23 . 78 24. 10 20. 40 16. 55 22 . 16 16 . 88 14 . 53 19 . 65 26 . 79 14.71 0. 00 16 . 36 12.06 21 .25 17 . 14 26. 24 2 . 49 0. 00 4 . 04 3.82 6.90 9. 71 13. 57 4 .97 1 1 . 58 8 . 05 10.09 12.67 15 . 94 27. 23 -14. 11 -18. 86 -22 . 61 -7.12 -5.57 -4 . 45 -2. 39 -7 . 24 0. 43 0. 25 -2.60 3 . 26 -1 . 1 1 4 . 78 -22.74 -24 . 78 -24. 41 -17.01 -14.38 -14. 72 -21 . 85 - 14.44 -26 . 84 -25. 33 -18.27 -14.92 -19. 22 -18. 58 9.61 27. 94 19 . 31 6.11 6.01 6 . 67 18 . 24 -11.24 -15. 32 -13. 47 0. 33 -3.58 -5. 04 -0. 20 0.00 0. 00 10. 08 -2.53 0. 10 0. 00 4. 62 -3.46 9. 25 -8 . 16 -2.89 -5.05 2. 33 -3. 1 1 0.00 -47 . 99 -47 . 79 -64.56 -74.44 -128. 61 -215. 94 -35 . 15 -3. 43 -11. .69 -13.15 -0. 19 -11. 74 -0. .08 -7 .99 3 . 63 5 , . 33 -7 . 27 - 1 1 . 70 -19. ,33 -42 . 28 5.65 4 . 44 9. .43 1.13 3. 16 -6. 06 -6. .89 1 .58 -2. 27 -3 . 12 0.00 -10.31 69 . 81 12 .06 -0.02 3. . 12 5 . 53 8.77 4.83 -37 . 83 -2 .39 7 .69 6. .55 5 .32 15.38 1 1 .66 43. .56 35 .50 -13.81 -12. .60 -21 . 28 -47.55 -77.77 -156 .47 -86 .01 16.01 17 .55 20 .50 46.90 81 . 23 157 . 18 102 .04 -4.14 -8 . 36 1 .44 -6.87 -4 .82 7 .42 18 .87 -11.53 -10 . 12 - 16 .23 -18.95 -6.52 -60 .92 -66 .56 5 . 10 8 . 1 1 3 .96 8.26 0. 36 42 .40 23 .08 10.02 4 .67 12 .87 7.53 12.16 13 .56 44 .30 4.79 3 .56 8 . 52 7.17 •5.46 17 .61 17 .36 -5.57 -1 .61 -2 .76 -3.81 -0. 72 1 .56 9 .58 3 .00 0 .84 -2 . 29 0.68 -2 . 14 -7 .22 9 .09 17 .94 19 . 24 17 . 17 15 .03 15.89 17 .06 26 . 18 7 .30 10 . 19 7 .70 8 . 76 7.12 7 . 33 9 .71 23.18 22 .30 17 .56 15 . 28 14.60 17 .58 23 .49 18.13 15 .01 18 . 78 14.64 15.33 17 .67 23 .09 12.51 13 .04 15 .71 12.97 16. 17 16 .27 25 .21 5.15 4 .07 7 .85 8 .80 12.93 13 . 13 20 . 14 3.67 5 . 10 10 . 38 1 1 .82 13.01 29 .32 22 .98 0.18 0 .01 5 .93 6 . 22 6.03 14 .57 15 .43 -58.47 -40 .51 -65 .54 -35.50 -26.96 -40 . 10 -27 .66 7. 17 9 .81 18 .40 3.82 9.82 13 .81 8 .01 -23 . 28 -4 .43 -21 . 14 -16.85 -26.71 -16 .37 -77 .50 -19.67 -52 .71 -37 .00 -51.21 -59 . 10 -149 .83 -147 .80 -12.62 -7 . 15 -7 .65 -7.57 56 . 40 -29 . 19 -13 . 70 - F -P-- 245 -APPENDIX 16 Actual evapotranspiration for data periods, determined as described in Section 3.9.4.2 Zeros are shown for data periods when neutron probe data was not obtained. Summation of evapotranspiration was then carried forward to the next neutron probe reading. ACTUAL EVAPOTRANSPIRATION INCLUDING INTERCEPTION DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA SET: SET : SET: SET: SET : SET: SET: SET: SET: SET: SET: SET : SET: SET: SET: SET: SET : SET : SET: SET: SET : SET: SET: SET: SET: SET: SET : SET: SET: SET: SET : SET : SET : SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET: SET SET 1 ENDING: 2 ENDING: 3 ENDING: 4 ENDING: 5 ENDING: 6 ENDING: 7 ENDING: 8 ENDING: 9 ENDING: 10 ENDING: 11 ENDING: 12 ENDING: 13 ENDING: 14 ENDING: 15 ENDING: 16 ENDING: 17 ENDING: 18 ENDING: 19 ENDING: 20 ENDING: 21 ENDING: 22 ENDING: 23 ENDING: 24 ENDING: 25 ENDING: 26 ENDING: 27 ENDING: 28 ENDING: 29 ENDING: 30 ENDING 31 ENDING 32 ENDING 33 ENDING 34 ENDING 35 ENDING 36 ENDING 37 ENDING 38 ENDING 39 ENDING 40 ENDING 41 ENDING 42 ENDING 43 ENDING 44 ENDING 45 ENDING 46 ENDING 47 ENDING 48 ENDING 49 ENDING = INTERCEPTI 7 15 JUNE 14 JUNE 19 JUNE 26 JULY 4 JULY 10 JULY 17 JULY 25 JULY 31 AUG AUG AUG 20 AUG 30 SEPT 4 SEPT 16 SEPT 23 SEPT 30 OCT 7 OCT 13 OCT 21 OCT 28 NOV 4 NOV 18 DEC 2 DEC 15 JAN 9 JAN 23 FEB 7 FEB 19 MAR 13 MAR 27 APR 16 MAY 6 MAY 19 JUNE 2 JUNE 15 JUNE 30 JULY 6 JULY 13 JULY 21 JULY 27 AUG 4 AUG 10 AUG 17 AUG 24 SEPT 1 SEPT 11 SEPT 25 OCT 9 OCT 28 ON GREATE 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 R THAN CALCULAT SITE O 24.56 12.44 17. 16 20. 16 17.87 17.44 25.27 23.82 15.55 8.02 3.96 4.75 4 .58 16.74 9 9 65 26 1 1 .73 6.71 0 .00 10.35 0 .00 16.99 10.81 6 .59 16.31 7.79 5.62 12.84 21 .68 19.89 31 .44 36.44 25 .70 33 .40 24.35 31 .73 27 .20 14.34 24 .37 9.48 9.25 2.65 2.03 2.03 16.98 20.95 23.34 17 . 19 15.75 ED EVAPOTRANSP SITE 1 24 .35 12.33 16.95 20 . 15 16.24 16.58 • 23.01 18.95 12.27 0 . 0 0 . 0 .00 21 .36 6 .38 20 .65 8.91 9.05 8. 14 6.42 0 . 0 0 7.56 17 .40* 2 0 . 0 4 * 2 5 . 8 7 * 14 .05* 3 9 . 8 1 * 13 .02* 5.36 2 9 . 0 6 * 18.83 18.24 39 .53 37 .69 24.02 31 .78 25.08 31 .74 23 .77 13.04 21 .26 1 1 .09 1 1 .78 4.44 4.81 4 .66 17 .40 15.99 21 .49 22 .93 15.92 IRATION, EVAPORATION SITE 2 25 .55 15. 79 17.50 21 .60 17 . 16 19 .80 19.50 22.81 17.63 13.35 9 .36 15.56 7.09 24 .54 9 .73 11 .67 8.31 8.25 6 .65 2.72 2 4 . 9 0 * 2 9 . 2 3 * 3 6 . 5 1 * 2 0 . 1 8 * 5 7 . 4 1 * 18 .55* 6 .98 41 . 29* 2 2 . 4 0 21 .96 51 .89 42 .53 26 .99 33 .26 30.01 3 5 . 5 0 21 .62 15.31 21 .72 15.57 17.57 8.98 11.21 9 .28 19.48 18.24 26 .39 30 .35 21.31 AND ET=I FOR DATA SITE 3 23 .06 16.28 20 .76 0 . 0 0 43 .23 21 .50 21 .52 24 .34 18.57 18.56 12.84 21 .30 10.75 28 .23 14 .48 16.20 9 .89 1 1 .23 8 .69 4 .27 3 9 . 2 4 * 4 4 . 0 9 * 5 9 . 6 0 * 31 . 63* 90 .99 2 8 . 7 3 * 10.55 6 5 . 1 0 * 29 .09 29.02 72 . 17 52 .67 30 .27 38.91 33 .36 42 .92 21 .58 18. 15 23 .38 16.61 22.81 14.69 14.32 15.71 23 .95 21 .68 37 .63 42 .33 34 .75 PERIODS-SITE 4 25 . 10 16 .20 17.27 22 .48 17.64 19.59 20 . 18 25 .76 18.39 20 .05 1 1 .92 19 .50 9. 14 21 .85 1 1 .34 12.30 9 .09 8 . 32 7.24 3.63 2 0 . 6 8 * 2 3 . 0 0 * 31 . 49 * 16 .74* 4 7 . 5 5 * 15 .34* 7.29 34. 1 1* 23 .09 23 .33 48 .33 -41. 16 27 .83 34 .07 28 . 18 37 .56 21 .28 16.78 22 .99 18.35 21 .69 13.89 12.68 12.72 19.35 20 . 14 29 .83 2 6 . 2 0 23 . 1 1 DAYTIME EEQ SITE 5 28 .55 16.67 20.91 2 5 . 18 18.38 2 2 . 3 0 21.11 27 .49 18.56 20 .33 13.65 21 .61 10.47 27 .26 13.44 15.36 9.92 10.86 0 . 0 0 1 1 .92 4 4 . 2 6 * 51 . 5 6 * 6 5 . 6 7 * 3 5 . 6 8 * 102 .53* 3 2 . 8 7 * 10.31 7 3 . 9 4 * 28 .68 28 .68 76 .63 55 . 19 29 .43 39.61 34. 14 4 0 . 3 0 23 .94 16.94 22 .27 18.92 21 .97 16.64 23 .05 18.58 26.01 19. 19 34 .09 48 .02 31 .66 SITE 6 27 .38 16. 13 20 .53 25 .95 18.36 20 .62 21 .22 26 18 23 13 22 49 41 57 41 18 1 1 .34 25 .74 98 22 37 56 07 22 6 1 * 48* 74* 42* 80* 2 7 . 9 3 * 9 .95 6 2 . 1 0 * 27 .92 13 15 9 10 9 3 37 41 57 30 86 27 . 69 . 51 . 31 . 36, 32. 62 03 54 18 74 59 41 .75 22 .89 16.39 23 .09 19 21 14 62 2 0 . 9 0 19.56 20 .56 24 .36 20.61 35. 10 41 .14 31 . 73 ro ON - 247 -APPENDIX 17 Actual transpiration for data periods determined as described in Section 2.1.5 Zeros are shown for data periods when neutron probe data was not obtained. Summation of transpiration was then carried forward to the next neutron probe reading. DATA SET: 1 ENDING: JUNE 14 1980 DATA SET: 2 ENDING: JUNE 19 1980 DATA SET: 3 ENDING: JUNE 26 1980 DATA SET: 4 ENDING: JULY 4 1980 DATA SET: 5 ENDING: JULY 10 1980 DATA SET: 6 ENDING: JULY 17 1980 DATA SET: 7 ENDING: JULY 25 1980 DATA SET: 8 ENDING: JULY 31 1980 DATA SET : 9 ENDING: AUG 7 1980 DATA SET: 10 ENDING: AUG 15 1980 DATA SET: 1 1 ENDING: AUG 20 1980 DATA SET: 12 ENDING: AUG 30 1980 DATA SET: 13 ENDING: SEPT 4 1980 DATA SET: 14 ENDING: SEPT 16 1980 DATA SET : 15 ENDING: SEPT 23 1980 DATA SET: 16 ENDING: SEPT 30 1980 DATA SET: 17 ENDING: OCT 7 1980 DATA SET: 18 ENDING: OCT 13 1980 DATA SET : 19 ENDING: OCT : 21 1980 DATA SET: 20 ENDING: OCT 28 1980 DATA SET: 21 ENDING: NOV 4 1980 DATA SET: 22 ENDING: NOV 18 1980 DATA SET: 23 ENDING: DEC 2 1980 DATA SET: 24 ENDING: DEC 15 1980 DATA SET: 25 ENDING: JAN 9 1981 DATA SET: 26 ENDING: JAN 23 1981 DATA SET: 27 ENDING: FEB 7 1981 DATA SET : 28 ENDING: FEB 19 1981 DATA SET: 29 ENDING: MAR 13 1981 DATA SET: 30 ENDING: MAR 27 1981 DATA SET : 31 ENDING: APR 16 1981 DATA SET : 32 ENDING: MAY 6 1981 DATA SET: 33 ENDING: MAY 19 1981 DATA SET: 34 ENDING: JUNE 2 1981 DATA SET : 35 ENDING: JUNE 15 1981 DATA SET: 36 ENDING: JUNE 30 1981 DATA SET: 37 ENDING: JULY 6 1981 DATA SET: 38 ENDING: JULY 13 1981 DATA SET: 39 ENDING: JULY 21 1981 DATA SET: 40 ENDING: JULY 27 1981 DATA SET: 41 ENDING: AUG 4 1981 DATA SET: 42 ENDING: AUG 10 1981 DATA SET: 43 ENDING: AUG 17 1981 DATA SET : 44 ENDING: AUG 24 1981 DATA SET: 45 ENDING: SEPT 1 1981 DATA SET : 46 ENDING: SEPT 1 1 1981 DATA SET : 47 ENDING: SEPT 25 1981 DATA SET: 48 ENDING: OCT 9 1981 DATA SET : 49 ENDING: OCT 28 1981 ACTUAL TRANSPIRATION FOR DATA PERIODS SITE 0 SITE 1 SITE 22 . 35 19. 81 19. 31 12 . 24 12 . 13 15. 59 15. 04 12 . 61 1 1 . 40 17 . 97 15 . 69 15 . 55 16. 91 14 . 83 15. 48 16 . 12 14 . 30 16. 84 24 . 16 21 . 23 17 . 26 23. 82 18 . 95 22 . 81 15 . 15 1 1 . 87 17 . 23 8 . 02 0. 00 13 . 35 2 . 95 0. 00 7 . 43 3 . 68 19. 25 13 . 44 3. 14 3 . 76 3. 62 15 . 12 17 . 57 20. 41 7 . 78 5 . 22 4 . 71 7 . 17 4 . 80 5. 81 1 1 . 20 7 . 69 8 . 01 4 . 96 3 . 04 3. 69 0. 00 0. 00 4 . 40 9. 24 5. 78 2 . 72 0. 00 0. .00 0. .00 2. . 15 0. ,00 0. .00 0, ,01 0, .00 0. ,00 0, , 55 0 .00 0 .00 0 .00 0 .00 0 .00 2 . 19 0 .00 0 .00 3 .81 1 .81 2 . 16 0 .82 0 .00 0 .00 19 . 19 13 .58 14 .60 16 .94 1 1 .92 13 . 22 20 .93 14 . 13 14 . 17 30 .36 23 .62 23 .71 24 .20 21 . 18 23 .09 30 .94 26 .62 27 .02 21 .49 18 .92 20 .49 29 .02 25 .94 27 .40 26 .40 22 .97 20 .94 13 . 16 1 1 .07 12 .78 24 .07 20 .96 21 .42 9 .48 1 1 .09 15 .57 8 . 36 10 .78 16 .57 2 .65 4 .44 8 .98 2 .03 4 .81 1 1 .21 0 .89 2 .80 6 .92 14 . 12 1 1 . 24 10 .88 20 .03 14 .66 16 .65 19 .93 13 .93 15 .76 9 .32 4 . 26 3 .71 1 1 . 24 5 .70 6 .56 SITE 3 SITE 4 SITE 5 S 13. 84 19 . 86 18 . 22 18. 48 16 . 08 16 . 00 16 . 47 15 . 93 1 1 . 33 12 . 14 10. 35 1 1 . 43 0. 00 17 . 36 14 . 76 16 . 84 33 . 27 16. 19 15 . 81 16. 01 17 . 1 1 17 . 08 17 . 36 16 . 36 18 . 21 18 . 24 17 . 46 17 . 97 24. 34 25. 76 27 . 49 26 . 49 18. 17 17 . 99 18 . 16 18. 01 18 . 56 20. 05 20. 33 23 . 57 10. 03 10. 25 10. 58 10. 65 18 . 20 17 . 67 18 . 20 19 . 13 5 . 50 6. 19 4 . 64 6 . 25 21 . 93 18 . 35 20. 24 19. 63 6 . 77 7 . 1 1 4 . 83 6 . 53 7 . 1 1 7 . 35 5 . 26 6 . 48 9. 81 8 . 94 9 . 54 9 . 14 4 . 51 4 . 63 3. 24 4 . 15 5. 1 1 5. 13 0. 00 5 . 46 4 . 27 3 . ,63 8. 09 3. 22 0. 00 0. ,00 0. .00 0. 00 0. 00 0. .00 0. ,00 0. .00 0. .00 0. .00 0. OO 0. .00 0 .00 0. .00 0 .00 0. .00 -0. .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 2 .73 2 .99 2 .06 2 .41 0 .00 0 .00 0 .00 0 .00 16 .84 16 .42 15 . 38 15 .87 15 .41 16 .01 13 .30 14 .51 12 .61 17 .05 9 .46 1 1 .99 24 . 12 26 .05 21 . 73 24 . 14 23 . 29 23 .98 22 .92 24 . 42 29 . 25 28 .83 27 . 23 27 .44 19 .68 20 .85 19 .05 19 .42 29 . 19 30 . 17 26 . 20 28 .57 20 .86 20 .51 23 . 14 22 .09 14 .40 14 .61 12 .80 12 .73 23 .08 22 .69 21 .97 22 . 79 16 .61 18 .35 18 .92 19 . 14 21 .81 20 .69 20 .97 20 .62 14 .69 13 .89 16 .64 20 .90 14 . 32 12 .68 23 .05 19 . 56 12 .21 10 .69 14 . 73 17 . 14 10 .56 12 . 16 10 .97 1 1 .47 19 .78 18 . 74 17 . 29 18 .71 21 .01 20 .95 15 . 4 1 19 . 13 0 .37 4 .09 0 .63 0 .90 8 . 29 9 .27 5 .68 7 .00 - 249 -APPENDIX 18 Inventories of trees by species and DBH with DBH > 7.0 cm on 20 m x 20 plots at each site. Trees are identified on site by number tags. TREE INVENTORY : SITE 0 TREE NO TREE TYPE DBH (CM) 1 DOUGLAS FIR 7 . 1 2 LODGEPOLE PINE 21 .2 3 LODGEPOLE PINE 12.2 4 LODGEPOLE PINE 13. 1 5 LODGEPOLE PINE 12.2 e LODGEPOLE PINE 11.9 7 LODGEPOLE PINE 18.6 8 LODGEPOLE PINE 10.8 9 LODGEPOLE PINE 15.9 10 LODGEPOLE PINE 7.2 1 1 DOUGLAS FIR 18.9 .12 LODGEPOLE PINE 17.2 13 LODGEPOLE PINE 18.7 14 DOUGLAS FIR 14.6 15 DOUGLAS FIR 22.0 16 DOUGLAS FIR 19.4 17 DOUGLAS FIR 16.4 18 DOUGLAS FIR 7.9 19 LODGEPOLE PINE 13.8 20 DOUGLAS FIR 11.8 21 LODGEPOLE PINE 12.6 22 LODGEPOLE PINE 11.5 23 LODGEPOLE PINE 21 .3 24 DOUGLAS FIR 51.5 25 DOUGLAS FIR 13.9 26 DOUGLAS FIR 45.9 27 DOUGLAS FIR 26.9 28 DOUGLAS FIR 26.2 29 DOUGLAS FIR 7.0 30 ARBUTUS 19.5 31 LODGEPOLE PINE 23.8 32 LODGEPOLE PINE 24.8 33 DOUGLAS FIR 9.0 34 LODGEPOLE PINE 10.9 35 DOUGLAS FIR 52.2 36 DOUGLAS FIR 12.2 37 LODGEPOLE PINE 7.8 38 DOUGLAS FIR 12.0 TREE INVENTORY : SITE 1 TREE INVENTORY : SITE 1 NO TREE TYPE DBH (CM) 1 DOUGLAS FIR 17.5 2 DOUGLAS FIR 22.4 3 DOUGLAS FIR 13.2 4 DOUGLAS FIR 20.3 5 DOUGLAS FIR 21.7 6 DOUGLAS FIR 22 .9 7 DOUGLAS FIR 11.9 8 DOUGLAS FIR 14.7 9 DOUGLAS FIR 24 .5 10 DOUGLAS FIR 47.2 11 DOUGLAS FIR 20.7 12 DOUGLAS FIR 9.0 13 DOUGLAS FIR 31.9 14 DOUGLAS FIR 33. 1 15 DOUGLAS FIR 25.3 16 DOUGLAS FIR 13.5 17 DOUGLAS FIR 14.4 18 DOUGLAS FIR 15.8 19 DOUGLAS FIR 20.3 20 DOUGLAS FIR 25.5 21 DOUGLAS FIR 10.7 22 DOUGLAS FIR 14.2 23 DOUGLAS FIR 21.3 24 DOUGLAS FIR 7.8 25 DOUGLAS FIR 11 .0 26 DOUGLAS FIR 19.3 27 DOUGLAS FIR 30.6 28 DOUGLAS FIR 26.7 29 DOUGLAS FIR 13.0 30 DOUGLAS FIR 14.9 31 DOUGLAS FIR 11.4 32 DOUGLAS FIR 11.2 33 DOUGLAS FIR 16.7 34 DOUGLAS FIR 1 1 .0 35 DOUGLAS FIR 16.9 36 DOUGLAS FIR 27.9 37 DOUGLAS FIR 18.7 38 DOUGLAS FIR 10. 3 39 DOUGLAS FIR 15.7 40 DOUGLAS FIR 18.8 41 DOUGLAS FIR 9.0 42 DOUGLAS FIR 17.7 43 DOUGLAS FIR 15.4 44 DOUGLAS FIR 12.8 45 DOUGLAS FIR 19.9 46 DOUGLAS FIR 11.5 47 DOUGLAS FIR 24.9 48 DOUGLAS FIR 14. 1 TR EE NO TREE TYPE DBH (CM) 49 DOUGLAS FIR 13.5 50 DOUGLAS FIR 33.3 51 DOUGLAS FIR 12.7 52 DOUGLAS FIR 24 .8 53 DOUGLAS FIR 20.3 54 DOUGLAS FIR 15.2 55 DOUGLAS FIR 18.4 56 WESTERN HEMLOCK 18. 1 57 DOUGLAS FIR 27.2 58 DOUGLAS FIR 24.0 59 DOUGLAS FIR 21.4 60 DOUGLAS FIR 12.7 61 DOUGLAS FIR 12.3 I IN) TREE INVENTORY : SITE 2 NO TREE TYPE DBH (CM) 1 DOUGLAS FIR 15.8 2 DOUGLAS FIR 22.9 3 DOUGLAS FIR 18.8 4 DOUGLAS FIR 24 .6 5 DOUGLAS FIR 18.7 6 DOUGLAS FIR 28 .7 7 DOUGLAS FIR 13.7 8 WESTERN HEMLOCK 23 .6 9 DOUGLAS FIR 16.7 10 DOUGLAS FIR 23.7 11 DOUGLAS FIR 17.4 12 DOUGLAS FIR 21.1 13 DOUGLAS FIR 29.5 14 DOUGLAS FIR 13.2 15 DOUGLAS FIR 13.4 16 DOUGLAS FIR 13.2 17 DOUGLAS FIR 16.5 18 DOUGLAS FIR 18.7 19 DOUGLAS FIR 17.7 20 DOUGLAS FIR 11.5 21 DOUGLAS FIR 27 .0 22 DOUGLAS FIR 20.7 23 DOUGLAS FIR 19.7 24 DOUGLAS FIR 25.8 25 DOUGLAS FIR 20.2 26 DOUGLAS FIR 22 .5 27 DOUGLAS FIR 21 .3 28 DOUGLAS FIR 18.9 29 DOUGLAS FIR 18.4 30 DOUGLAS FIR 23.4 31 DOUGLAS FIR 13.9 32 DOUGLAS FIR 20.7 33 DOUGLAS FIR 18.6 34 DOUGLAS FIR 25.2 35 DOUGLAS FIR 27 . 1 36 DOUGLAS FIR 12.5 37 WESTERN RED CEDAR 27.6 38 DOUGLAS FIR 13.3 39 DOUGLAS FIR 25.2 40 DOUGLAS FIR 13.4 41 DOUGLAS FIR 11.5 42 DOUGLAS FIR 21.4 43 DOUGLAS FIR 14.9 44 DOUGLAS FIR 15.9 45 DOUGLAS FIR 14.8 46 DOUGLAS FIR 26. 1 47 DOUGLAS FIR 20. 1 48 DOUGLAS FIR 19 .8 T TREE INVENTORY : SITE 2 REE NO TREE TYPE DBH (CM) 49 DOUGLAS FIR 19.2 50 DOUGLAS FIR 16. 1 51 DOUGLAS FIR 13. 1 52 DOUGLAS FIR 16.2 53 DOUGLAS FIR 17.6 54 DOUGLAS FIR 21.5 55 DOUGLAS FIR 16.7 56 DOUGLAS FIR 16.3 57 DOUGLAS FIR 18.5 58 DOUGLAS FIR 15.1 59 DOUGLAS FIR 17.9 60 DOUGLAS FIR 14.0 61 DOUGLAS FIR 17.2 62 DOUGLAS FIR 14.7 63 DOUGLAS FIR 38 . 3 64 DOUGLAS FIR 33.9 I ro <oi ro TREE INVENTORY : SITE 3 TREE INVENTORY SITE 3 TREE NO 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 TREE DOUGLAS DOUGLAS WESTERN DOUGLAS WESTERN WESTERN DOUGLAS DOUGLAS DOUGLAS DOUGLAS WESTERN DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS WESTERN DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS DOUGLAS TYPE FIR FIR HEMLOCK FIR HEMLOCK HEMLOCK FIR FIR FIR FIR HEMLOCK FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR HEMLOCK FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR FIR DBH (CM) 29.2 22.6 9.2 16. 1 20.7 14. 16. 19. 33 17.8 16.9 25.8 19.0 28.0 26.5 19.3 16.0 12.6 26.0 19 25 15 12 25 14 14 27 5 0 2 5 4 0 9 9 10.2 12. 1 16.3 12.2 31 .4 22.3 14. 35. 21 15. 13. 13. 27 .9 17.3 16.0 31.5 16.0 13.9 20.0 34 .4 12.9 .3 .7 .2 .5 .7 .3 TREE NO TREE TYPE DBH (CM) 49 DOUGLAS FIR 26.3 50 DOUGLAS FIR 36.5 51 DOUGLAS FIR 23. 1 52 WESTERN HEMLOCK 39.2 53 WESTERN HEMLOCK 37.2 54 DOUGLAS FIR 19. 1 55 DOUGLAS FIR 27 .8 56 WESTERN HEMLOCK 18.3 57 DOUGLAS FIR 23.9 58 DOUGLAS FIR 20.0 59 DOUGLAS FIR 18.8 60 DOUGLAS FIR 20.5 61 DOUGLAS FIR 24.7 62 DOUGLAS FIR 14.0 63 DOUGLAS FIR 31.0 64 DOUGLAS FIR 17.0 65 WESTERN HEMLOCK 9.7 TREE INVENTORY SITE 4 TREE NO TREE TYPE DBH (CM) 1 DOUGLAS FIR 15.6 2 DOUGLAS FIR 28.2 3 DOUGLAS FIR 38. 1 4 WESTERN HEMLOCK 14.7 5 WESTERN RED CEDAR 18.8 € DOUGLAS FIR 54 . 1 7 DOUGLAS FIR 5 0 . 4 8 DOUGLAS FIR 2 1 . 0 9 WESTERN HEMLOCK 25 .O 10 DOUGLAS FIR 26 .8 11 DOUGLAS FIR 29 . 3 12 DOUGLAS FIR 36 .3 13 DOUGLAS FIR 14.5 14 DOUGLAS FIR 37 .7 15 DOUGLAS FIR 17.3 16 WESTERN HEMLOCK 11.3 17 DOUGLAS FIR 37 .5 18 DOUGLAS FIR 28 .4 19 DOUGLAS FIR 4 7 . 7 20 DOUGLAS FIR 46 .2 21 DOUGLAS FIR 2 5 . 9 22 DOUGLAS FIR 31 .8 r\> -P-i TREE INVENTORY : SITE 5 TREE NO TREE TYPE DBH (CM) 1 DOUGLAS FIR 30. 8 2 DOUGLAS FIR 36. 9 3 DOUGLAS FIR 34. 5 4 WESTERN HEMLOCK 34. 3 5 WESTERN RED CEDAR 15. 3 6 DOUGLAS FIR 46. 2 7 DOUGLAS FIR 26. 5 8 WESTERN HEMLOCK 19. 1 9 DOUGLAS FIR 55. 7 10 WESTERN HEMLOCK 24 . 3 1 1 WESTERN HEMLOCK 32. 5 12 WESTERN HEMLOCK 29. 0 13 WESTERN RED CEDAR 33. 7 14 DOUGLAS FIR 20. 3 15 DOUGLAS FIR 54 .4 16 DOUGLAS FIR 49 .7 17 WESTERN HEMLOCK 37 .0 18 DOUGLAS FIR 34 .0 19 WESTERN HEMLOCK 39 .3 20 DOUGLAS FIR 41 .6 21 DOUGLAS FIR 42 .9 22 WESTERN HEMLOCK 8 .6 23 DOUGLAS FIR 42 .5 24 DOUGLAS FIR 42 .3 25 WESTERN HEMLOCK 43 . 1 TREE INVENTORY SITE 6 TREE NO TREE TYPE DBH (CM) 1 DOUGLAS FIR 38 . 3 2 DOUGLAS FIR 53.3 3 DOUGLAS FIR 48.7 4 DOUGLAS FIR 20.7 5 DOUGLAS FIR 16. 1 6 DOUGLAS FIR 44 . 1 7 DOUGLAS FIR 20.9 8 DOUGLAS FIR 17.9 9 RED ALDER 31.0 10 DOUGLAS FIR 47.0 1 1 WESTERN HEMLOCK 22.5 12 DOUGLAS FIR 61 .2 13 DOUGLAS FIR 58.5 14 RED ALDER 23.5 15 RED ALDER 25.5 16 DOUGLAS FIR 53.2 17 RED ALDER 33.9 18 DOUGLAS FIR 19.8 19 DOUGLAS FIR 68.9 20 GRAND FIR 67.7 21 DOUGLAS FIR 29.0 22 DOUGLAS FIR 19.5 23 GRAND FIR 30.0 24 DOUGLAS FIR 43.6 25 RED ALDER 38.3 TREE INVENTORY : SITE 7 TREE NO TREE TYPE DBH (CM) 1 RED ALDER 24. 7 2 WESTERN HEMLOCK 33. 5 3 RED ALDER 31 . 7 4 WESTERN HEMLOCK 10. 8 5 RED ALDER 29. 7 6 RED ALDER 31 . 8 7 RED ALDER 28. ,0 8 RED ALDER 45, . 1 9 RED ALDER 27 .9 10 RED ALDER 33 .4 1 1 RED ALDER 27 .3 12 WESTERN HEMLOCK 13 .0 13 RED ALDER 42 .2 14 WESTERN HEMLOCK 26 . 1 15 RED ALDER 36 .7 16 WESTERN HEMLOCK 7 .7 17 WESTERN HEMLOCK 7 .5 18 WESTERN RED CEDAR 33 .7 19 RED ALDER 29 .0 20 WESTERN HEMLOCK 14 .7 r\> i - 258 -APPENDIX 19 Water balance data for data periods at each site. The water balance components in this table are identified as follows: PRECIP: Average precipitation (mm/d) for data periods. MAXIMUM ET: Average daily value of E m a x (mm/d) defined in (19) of Section 2.1.1 EVAPOTRANSPIRATION: Average daily value of Ej + gl (mm/d) (see (18) of Section 2.1 A) TRANSPIRATION: Average daily values of Et = ET - I (1-g) (mm/d) (see (20) and (30) TOTAL WATER DEFICIT: Total for data period of (E m a x - 0.2 I) - E t (mm) PRECIP-EVAPOTRANSPIRATION: Total for data period of PRECIP-EVAPOTRANSPIRATION (mm) when PRECIP > EVAPOTRANSPIRATION. EVAPOTRANSPIRATION-PRECIP: Total for data period of EVAPOTRANSPIRATION-PRECIP. (mm) when EVAPOTRANSPIRATION > PRECIP. Zeros are shown against all water balance components when neutron probe data was not obtained. The summation of water balance data was then carried forward to the next neutron probe reading. WATER BALANCE DATA SITE 0 DATA SET: 1 ENDING: JUNE 14 1980 PRECIP: 3.726 MAXIMUM ET: 2.498 EVAPOTRANSPIRATION: 2.692 TRANSPIRATION: 2.450 TOTAL WATER DEFICIT: -0.00 PRECIP-EVAPOTRANSPIRATION: 9.44 DATA PERIOD: 9.13 MID POINT DAY: 5 DATA SET: 2 ENDING: JUNE 19 1980 PRECIP: 0.041 MAXIMUM ET: 2.520 EVAPOTRANSPIRATION: 2.553 TRANSPIRATION: 2.512 TOTAL WATER DEFICIT: -0.00 EVAPOTRANSPIRATION-PRECIP: 12.24 DATA PERIOD: 4.88 MID POINT DAY: 12 DATA SET: 3 ENDING: JUNE 26 1980 PRECIP: 4.529 MAXIMUM ET: 2.209 EVAPOTRANSPIRATION: 2.451 TRANSPIRATION: 2.149 PRECIP-EVAPOTRANSPIRATION: 14.54 DATA PERIOD: 7.00 MID POINT DAY: 18 DATA SET: 4 ENDING: JULY 4 1980 PRECIP: 4.248 MAXIMUM ET: 2.337 EVAPOTRANSPIRATION: 2.560 TRANSPIRATION: 2.282 PRECIP-EVAPOTRANSPIRATION: 13.29 DATA PERIOD: 7.88 MID POINT DAY: 26 DATA SET: 5 ENDING: JULY 10 1980 PRECIP: 0.454 MAXIMUM ET: 2.850 EVAPOTRANSPIRATION: 2.978 TRANSPIRATION: 2.818 EVAPOTRANSPIRATION-PRECIP: 15.14 DATA PERIOD: 6.00 MID POINT DAY: 33 UNITS: WATER-MM TIME-DAYS SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 3.729 2.270 2.668 2. 171 0.00 9.67 9.13 5 • 0.040 ' 2 .434 2.466 2.426 -0.00 12.13 5.00 12 4.579 1 .925 2.422 1 .801 15. 10 7.00 18 4.245 2. 116 2.572 2.002 13. 10 7.83 26 0.442 2.519 2.706 2.472 13.59 6.00 33 3.825 2.316 2.879 2. 175 -0.00 8 .40 8.88 5 0.033 2.604 2.631 2.598 -0.00 15.59 6.00 13 4.686 1 .792 2 .485 1.618 15.50 7.04 19 4.657 2.394 3.085 2.221 11 .00 7 .00 26 0.417 2.636 2.860 2.579 14 .66 6.00 33 4.034 2.534 2.898 1 .739 4.48 9.04 7.96 6 0.033 2.724 2.714 2.681 0.22 16.08 6.00 13 4.714 1 .888 2.966 1 .619 12.24 7.00 19 0.000 0.000 0.000 O.OOO 0.00 0.00 0 2.674 2.670 3.273 2.519 7.91 13.21 29 3.877 2.389 2.869 2.270 -0.00 8.83 8.75 5 0.033 2.674 2.700 2.667 0.00 16.00 6.00 13 4.714 1 .881 2.467 1 .734 15.73 7.00 19 4.564 2.551 3.119 2.409 10.42 7.21 26 0.392 2.747 2.940 2.698 15.29 6.00 33 3.971 2.510 3.532 2.255 -0.00 3.55 8.08 6 0.033 2.733 2.759 2.726 0.00 16.47 6.04 13 4.714 1 .780 2.987 1 .479 12.09 7.00 19 4.692 2.435 3.640 2. 134 7.27 6.92 26 0.429 2.720 3.063 2.634 15.81 6.00 33 4.012 2.532 3.422 2.310 0.00 4.72 8.00 6 0.033 2.662 2.689 2.656 -0.00 15.93 6.00 13 4.714 1 .892 2.932 1 .632 12.47 7.00 19 4.533 2.559 3.559 2.310 7. 10 7.29 26 0.389 2.727 3.038 2.649 16.01 6.04 33 WATER BALANCE DATA SITE 0 DATA SET: 6 ENDING: JULY 17 1980 PRECIP: 1.608 MAXIMUM ET: 2.286 EVAPOTRANSPIRATION: 2.433 TRANSPIRATION: 2.250 EVAPOTRANSPIRATION-PRECIP: 5.91 DATA PERIOD: 7.17 MID POINT DAY: 39 DATA SET: 7 ENDING: JULY 25 1980 PRECIP: 0.817 MAXIMUM ET: 3.113 EVAPOTRANSPIRATION: -3.226 TRANSPIRATION: 3.085 EVAPOTRANSPIRATION-PRECIP: 18.87 DATA PERIOD: 7.83 MID POINT DAY: 47 DATA SET: 8 ENDING: JULY 31 1980 PRECIP: 0.000 MAXIMUM ET: 3.673 EVAPOTRANSPIRATION: 3.402 TRANSPIRATION: 3.402 TOTAL WATER DEFICIT: 1.89 EVAPOTRANSPIRATION-PRECIP: 23.82 DATA PERIOD: 7.00 MID POINT DAY: 54 DATA SET: 9 ENDING: AUG 7 1980 PRECIP: 0.057 MAXIMUM ET: 2.606 EVAPOTRANSPIRATION: 2.208 TRANSPIRATION: 2.151 TOTAL WATER DEFICIT: 3.12 EVAPOTRANSPIRATION-PRECIP: 15.15 DATA PERIOD: 7.04 MID POINT DAY: 61 DATA SET: 10 ENDING: AUG 15 1980 PRECIP: 0.000 MAXIMUM ET: 3.198 EVAPOTRANSPIRATION: 1.113 TRANSPIRATION: 1.113 TOTAL WATER DEFICIT: 15.03 EVAPOTRANSPIRATION-PRECIP: 8.02 DATA PERIOD: 7.21 MID POINT DAY: 68 UNITS: WATER-MM TIME-DAYS SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 1 .598 2.059 2.314 1 .995 5. 13 7. 17 39 0.817 2.756 2.938 2.711 16.61 7.83 47 0.000 3.234 2.707 2.707 3.69 18.95 7.00 54 0.056 2.268 1 .732 I .676 4. 12 II .87 7.08 61 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0 1 .420 2. 191 2.488 2. 1 16 8.50 7.96 40 1 .067 2.951 3.251 2.876 13. 10 6.00 47 0.000 3.613 3. 183 3. 183 3.08 22.81 7. 17 53 0.052 2.245 2.287 2.235 0.00 17.23 7.71 61 0.000 2.882 1 .873 1 .873 7. 19 13.35 7. 13 68 1 .421 2.309 2.759 2. 196 10.42 7.79 40 1 .067 3. 146 3.587 3.035 15. 12 6.00 47 0.000 3.853 3 .397 3.397 3.27 24.34 7.17 53 0.057 2.607 2.653 2.596 0.00 18. 17 7.00 60 0.000 3.061 2.369 2.369 5.42 18.56 7.83 68 1 .431 2.256 2.514 2. 192 8.44 7 .79 40 1 .067 3. 104 3.363 3.040 13.78 6.00 47 0.000 3.747 3.615 3.615 0.94 25.76 7. 13 53 0.057 2 .566 2.612 2.555 0.00 17.99 7.04 60 0.000 2.974 2.559 2.559 3.25 20.05 7 .83 68 1.415 2.282 2.773 2. 159 10.92 8.04 40 1 .067 3.032 3.518 2.911 14.71 6.00 47 O.OOO 3.455 3.455 3.455 0.00 27.49 7.96 54 0.056 2.575 2.621 2.564 0.00 18. 16 7 .08 61 0.000 2.904 2.904 2.904 0.00 20.33 7.00 68 1 .435 2.245 2 .689 2. 134 9.62 7.67 40 1 .067 3. 103 3.536 2.995 14.82 6.00 47 0.000 3.718 3.718 3.718 0.00 26.49 7. 13 53 0.057 2.570 2.615 2.558 0.00 18.01 7 .04 60 0.000 Li. 009 3.009 3.009 0.00 23.57 7.83 68 WATER BALANCE DATA SITE 0 DATA SET: 11 ENDING: AUG 20 1980 PRECIP MAXIMUM ET EVAPOTRANSPIRATION TRANSPIRATION TOTAL WATER DEFICIT EVAPOTRANSPIRATION-PRECIP PRECIP-EVAPOTRANSPIRATION DATA PERIOD MID POINT DAY DATA SET: 12 ENDING: AUG 30 1980 PRECIP: 0.557 MAXIMUM ET: 1..909 EVAPOTRANSPIRATION: 0.481 TRANSPIRATION: 0.372 TOTAL WATER DEFICIT: 14.96 EVAPOTRANSPIRATION-PRECIP: 0.00 PRECIP-EVAPOTRANSPIRATION: 0.75 DATA PERIOD: 9.88 MID POINT DAY: 82 DATA SET: 13 ENDING: SEPT 4 1980 PRECIP: 2.911 MAXIMUM ET: 1.180 EVAPOTRANSPIRATION: 0.902 TRANSPIRATION: 0.618 TOTAL WATER DEFICIT: 2.57 PRECIP-EVAPOTRANSPIRATION: 10.22 DATA PERIOD: 5.08 MID POINT DAY: 89 DATA SET: 14 ENDING: SEPT 16 1980 PRECIP: 1.628 MAXIMUM ET: 1.973 EVAPOTRANSPIRATION: 1.405 TRANSPIRATION: 1.269 TOTAL WATER DEFICIT: 8.07 EVAPOTRANSPIRATION-PRECIP: 0.00 PRECIP-EVAPOTRANSPIRATION: 2.66 DATA PERIOD: 11.92 MID POINT DAY: 98 DATA SET: 15 ENDING: SEPT 23 1980 PRECIP: 3.579 MAXIMUM ET: 1.145 EVAPOTRANSPIRATION: 1.355 TRANSPIRATION: 1.092 PRECIP-EVAPOTRANSPIRATION: 15.85 DATA PERIOD: 7.13 MID POINT DAY: . 107 2.393 0.793 0.589 8.82 0.00 0.24 5.00 74 UNITS: WATER-MM TIME-DAYS SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 0.000 0.840 0.840 0.840 0.840 0.840 0.000 2. 118 2.349 2.248 2.239 2.241 0.000 1 .873 2.567 2.384 2.731 2.683 0.000 1 .487 2.006 2 .049 2. 116 2. 130 0.00 2.77 1 . 15 0.66 0.00 -0.00 0.00 5. 16 8.64 7.72 9.45 9.21 0.00 0.00 0.00 0.00 0.00 O.OO 0.00 5.00 5.00 5.00 5.00 5.00 0 74 74 74 74 74 0.439 0.539 0.550 0.550 0.545 0.550 2 .041 1 .840 2.037 1 .967 1 .873 1 .974 0.967 1 .524 2. 130 1 .950 2. 143 2.218 0.872 1 .317 1 .820 1 .767 1 .805 1.913 25.40 4.91 1 .55 1 .63 0.00 -0.00 1 1 .66 10.06 15.80 14 .00 16. 11 16.68 0.00 0.00 0.00 0.00 0.00 0.00 22.08 10.21 10.00 10.00 10.08 10.00 76 82 82 82 82 82 2.985 3.062 2 .842 2.467 2.555 2.416 0.864 0.893 1 .258 1.131 1 .003 1 . 186 1 .286 1 .466 2.063 1 .523 1 .808 1 .852 0.758 0.749 1 .056 1 .032 0.802 ' .020 0.00 0.00 0.00 -0.00 -0.00 -0.00 8.42 7.71 4.05 5.66 4.33 3.46 4.96 4.83 5.21 6 .00 5.79 S. 13 89 89 89 90 90 90 1.617 1 .595 1 .645 1 .764 1 .731 1 .784 1 .515 1 .745 1 .966 1 .942 1 .931 1.917 1 .721 2.017 2.394 1 .986 2.432 2.367 1 .464 1 .677 1 .859 1 .668 1 :805 1 .805 0.00 0.00 0.00 2.31 -O.OO 0.00 1 .25 5. 14 8.83 2.45 7 .86 6.34 0.00 0.00 0.00 0.00 0.00 0.00 12.00 12. 17 11 .79 11 .00 11.21 10.88 98 98 98 98 98 98 3.579 3.755 3.643 3.643 3.687 3.643 0.837 0.842 1 . 188 1 . 137 0.947 1 . 146 1 .251 1 .433 2.068 1 .620 1 .943 1 .997 0.733 0.694 0.967 1 .016 0.698 0.933 16.59 15.77 1 1 .02 14. 16 12.06 1 1 .52 7.13 6.79 7.00 7.00 6.92 7.00 107 107 107 107 107 107 rvi ON WATER BALANCE DATA SITE 0 DATA SET: 16 ENDING: SEPT 30 1980 PRECIP: 4.604 MAXIMUM ET: 1.124 EVAPOTRANSPIRATION: 1.372 TRANSPIRATION: 1.062 PRECIP-EVAPOTRANSPIRATION: 21.81 DATA PERIOD: 6.75 MID POINT DAY: 114 DATA SET: 17 ENDING: OCT 7 1980 PRECIP: 0.072 MAXIMUM ET: 1.559 EVAPOTRANSPIRATION: 1.617 TRANSPIRATION: 1.545 EVAPOTRANSPIRATION-PRECIP: 11'. 20 DATA PERIOD: 7.25 MID POINT DAY: 121 DATA SET: 18 ENDING: OCT 13 1980 PRECIP: 3.298 MAXIMUM ET: 0.782 EVAPOTRANSPIRATION: 0.988 TRANSPIRATION: 0.731 PRECIP-EVAPOTRANSPIRATION: 15.69 DATA PERIOD: 6.79 MID POINT DAY: 128 DATA SET: 19 ENDING: OCT 21 1980 PRECIP: O.OOO MAXIMUM ET: 0.000 EVAPOTRANSPIRATION: 0.000 TRANSPIRATION: 0.000 EVAPOTRANSPIRATION-PRECIP: 0.00 PRECIP-EVAPOTRANSPIRATION: 0.00 DATA PERIOD: O.OO MID POINT DAY: 0 DATA SET: 20 ENDING: OCT 28 1980 PRECIP: 0.454 MAXIMUM ET: 0.672 EVAPOTRANSPIRATION: 0.735 TRANSPIRATION: 0.656 EVAPOTRANSPIRATION-PRECIP: 3.95 DATA PERIOD: 14.08 MID POINT DAY: 139 UNITS: WATER-MM TIME-DAYS SITE 1 SITE 2 SITE 3 4.615 4.445 4.373 0.836 0.992 1 .239 1 .341 1 .658 2.248 0.710 0.826 0.986 22. 10 19.63 15.32 6.75 7.04 7.21 1 14 1 14 114 0.062 0.043 0.011 1 .073 1 . 160 1 .447 1 . 123 1 . 195 1 .456 1 .061 1 . 152 1 .445 7 .69 8.01 9.81 7.25 6.96 6.79 121 121 121 3.298 3.258 3.465 0.547 0.669 0.956 0.945 1 .201 1 .834 0.447 0.536 0.737 15.98 14. 15 9.99 6.79 6.88 6. 13 128 128 128 0.000 0.878 0.972 0.000 0.666 0.748 0.000 0.912 1.115 0.000 0.604 0.656 0.00 0.25 1 . 12 0.00 0.00 0.00 0.00 7.29 7.79 0 135 135 0.454 0.000 0.000 0.436 0.390 0.602 0.537 0.390 0.602 0.411 0.390 0.602 1 . 16 2.72 4.27 14.08 6.96 7.08 139 142 142 SITE 4 SITE 5 SITE 6 4.363 4.514 4.353 1 . 157 1 .053 1.141 1 .706 2.221 2.111 1 .020 0.761 0.899 19. 15 15.86 16. 16 7.21 6.92 7.21 1 14 1 14 114 0.022 0.053 0.033 1 .321 1 .358 1 .353 1 .339 1 .400 1 .379 1 .317 1 .347 1 .346 8 .94 9.54 9. 14 6.79 7.08 3.79 121 121 121 3.429 3.563 3.392 0.877 0.783 0.886 1 .359 1 .785 1 .724 0.756 0.533 0.677 12.68 10.82 10.22 6. 13 6.08 6. 13 128 128 128 0.985 0.000 0.993 0.701 0.000 0.765 0.914 0.000 1 . 122 0.648 O.OOO 0.676 0.00 0.00 1 .05 0.56 0.00 0.00 |7 .92 0.00 8.08 j 135 0 135 0.000 0.475 0.000 0.521 0.590 0.474 0.521 0.795 0.474 0.521 0.539 0.474 3 .63 4.79 3.22 6.96 15.00 6.79 142 138 142 WATER BALANCE DATA SITE 0 DATA SET: 21 ENDING: NOV 4 1980 PRECIP: 0.000 MAXIMUM ET: 0.000 EVAPOTRANSPIRATION: 0.000 TRANSPIRATION: 0.000 PRECIP-EVAPOTRANSPIRATION: 0.00 DATA PERIOD: 0.00 MID POINT DAY: 0 DATA SET: 22 ENDING: NOV 18 1980 PRECIP: 16.657 MAXIMUM ET: 0.244 EVAPOTRANSPIRATION: 0.809 TRANSPIRATION: 0.102 PRECIP-EVAPOTRANSPIRATION: 332.81 DATA PERIOD: 21.00 MID POINT DAY: 156 DATA SET: 23 ENDING: DEC 2 1980 PRECIP: 17.663 MAXIMUM ET: 0.154 EVAPOTRANSPIRATION: 0.768 TRANSPIRATION: 0.001 PRECIP-EVAPOTRANSPIRATION: 237.94 DATA PERIOD: 14.08 MID POINT DAY: 174 DATA SET: 24 ENDING: DEC 15 1980 PRECIP: 8.685 MAXIMUM ET: 0.118 EVAPOTRANSPIRATION: 0.442 TRANSPIRATION: 0.037 PRECIP-EVAPOTRANSPIRATION: 122.96 DATA PERIOD: 14.92 MID POINT DAY: 188 DATA SET: 25 ENDING: JAN 9 1981 PRECIP: 16.104 MAXIMUM ET: 0.136 EVAPOTRANSPIRATION: 0.680 TRANSPIRATION: 0.000 PRECIP-EVAPOTRANSPIRATION: 370.18 DATA PERIOD: 24.00 MID POINT DAY: 208 UNITS: WATER-MM TIME-DAYS SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 23.091 0. 135 2.471 0.000 145.20 7 .04 149 13.537 0. 136 1 .435 0.000 168.91 13.96 160 17.558 0.072 1 .837 0.000 221.41 14.08 174 8 .730 0.052 0.950 0.000 115.07 14.79 188 15.999 0.068 1 .647 0.000 346.84 24. 17 208 23.941 0. 131 3.666 0.000 137.70 6.79 149 13.505 0. 186 2.051 0.000 163.22 14.25 160 17.543 0. 101 2.639 0.000 206.17 13.83 174 8.745 0.073 1 .357 0.000 109.89 14.88 188 16.089 0.086 2.388 0.000 329.39 24.04 208 22.821 0.276 5.507 0.000 123.36 7. 13 149 13.240 0.265 3. 178 0.000 139.61 13.88 160 17.939 0. 169 4.257 0.000 191.55 14.00 174 9. 170 0. 131 2.239 0.000 97.89 14. 13 188 15.635 O. 139 3.670 0.000 296.63 24.79 207 22.955 0.232 2.920 0.000 141.92 7.08 149 13.074 0.232 1 .653 0.000 158.95 13.92 160 18.045 0. 137 2.249 0.000 221 . 14 14.00 174 9. 184 0. 105 1 . 185 0.000 112.99 14. 13 188 16.076 0. 1 18 1 .978 0.000 338.95 24.04 207 24.239 O. 148 6.597 0.000 118.34 6.71 149 13.382 0.227 3.618 0.000 139. 14 14.25 160 17.550 O. 129 4.705 O.OOO 179.30 13.96 174 8.737 0.097 2.405 0.000 93.92 14.83 188 16.086 0.112 4.265 O.OOO 284.19 24.04 208 22.955 0.234 5.310 0.000 124.99 7 .08 149 12.948 0.245 2 .981 0.000 138.72 13.92 160 18.150 O. 145 4. 124 0.000 196.36 14.00 174 9. 198 0. 109 2. 154 0.000 99.50 14. 13 188 16.063 0. 122 3.610 O.OOO 299.37 24.04 207 WATER BALANCE DATA SITE 0 DATA SET: 26 ENDING: JAN 23 1981 PRECIP: 8.486 MAXIMUM ET: 0.236 EVAPOTRANSPIRATION: 0.556 TRANSPIRATION: 0.156 PRECIP-EVAPOTRANSPIRATION: 111.01 DATA PERIOD: 14.00 MID POINT DAY: 227 DATA SET: 27 ENDING: FEB 7 1981 PRECIP: 1.721 MAXIMUM ET: 0.298 EVAPOTRANSPIRATION: 0.402 TRANSPIRATION: 0.272 PRECIP-EVAPOTRANSPIRATION: 18.48 DATA PERIOD.: 14.00 MID POINT DAY: 241 DATA SET: 28 ENDING: FEB 19 1981 PRECIP: 21.559 MAXIMUM ET: 0.249 EVAPOTRANSPIRATION: 0.991 TRANSPIRATION: 0.063 PRECIP-EVAPOTRANSPIRATION: 266.52 DATA PERIOD: 12.96 MID POINT DAY: 254 DATA SET: 29 ENDING: MAR 13 1981 PRECIP: 1.861 MAXIMUM ET: 0.895 EVAPOTRANSPIRATION: 0.985 TRANSPIRATION: 0.872 PRECIP-EVAPOTRANSPIRATION: 19.26 DATA PERIOD: 22.00 MID POINT DAY: 272 DATA SET: 30 ENDING: MAR 27 1981 PRECIP: 3.735 MAXIMUM ET: 1.248 EVAPOTRANSPIRATION: 1.416 TRANSPIRATION: 1.206 PRECIP-EVAPOTRANSPIRATION: 32.56 DATA PERIOD: 14.04 MID POINT DAY: 290 UNITS: WATER-MM TIME-DAYS SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 8 .588 0. 118 0.941 0.000 105.78 13.83 227 1 .721 0. 180 0.383 O. 129 18.74 14.00 241 21.545 0. 151 2.242 0.000 250. 13 12.96 254 1 .858 0.661 0.851 0.614 22.29 22. 13 272 3.724 0.947 1.311 0.856 33.59 13.92 290 8.511 O. 164 1 .329 0.000 100.25 13.96 227 1 .721 0.223 0.498 0. 154 17.12 14.00 -241 22.732 0. 187 3.405 0.000 234.34 12. 12 254 1 .953 0.706 0.979 0.638 22.28 22.88 271 3.657 1 .069 1 .569 0.944 29.24 14.00 290 8.878 0.257 2. 182 0.000 88. 17 13. 17 226 1 .863 0.308 0.756 O. 196 15.45 13.96 240 21.226 0.261 5.024 0.000 209.95 12.96 253 2.045 0.872 1.315 0.761 16. 16 22. 13 271 3.668 1 .299 2.079 1 . 104 22. 18 13.96 289 8.483 0.204 1 . 102 0.000 102.71 13.92 226 1 .855 0.274 0.519 0.213 18.76 14.04 240 21.318 0.227 2 .649 0.000 240.37 12.88 253 2.071 0.802 1 .043 0.742 22.74 22. 13 271 3 .646 1 .245 1 .661 1 . 140 27.87 14.04 289 8.511 0.202 2.355 0.000 85.93 13.96 227 1 .721 0.265 0.736 0. 147 13.79 14.00 241 22.749 0.223 6.077 0.000 202.83 12. 17 254 1 .906 0.790 1 .256 0.674 14.84 22.83 271 3.679 1 . 170 2.048 0.950 22.84 14.OO 290 8.421 0.218 1 .983 0.000 90.67 14.08 226 1 .850 0.280 0.711 O. 172 15.95 14.00 240 21.482 0.223 4.870 0.000 211.80 12.75 253 2.085 0.822 1 .255 0.713 18.48 22.25 271 3.657 1 .224 1 .973 1 .037 23.58 14.00 289 WATER BALANCE DATA SITE 0 DATA SET: 31 ENDING: APR 16 1981 PRECIP: 13.375 MAXIMUM ET: 1.277 EVAPOTRANSPIRATION: 1.742 TRANSPIRATION: 1.160 PRECIP-EVAPOTRANSPIRATION: 209.86 DATA PERIOD: 18.04 MID POINT DAY: 306 DATA SET: 32 ENDING: MAY 6 1981 PRECIP: 5.952 MAXIMUM ET: 1.438 EVAPOTRANSPIRATION: 1.660 TRANSPIRATION: 1.383 PRECIP-EVAPOTRANSPIRATION: 94.26 DATA PERIOD: 21.96 MID POINT DAY: 326 DATA SET: 33 ENDING: MAY 19 1981 PRECIP: 1.258 MAXIMUM ET: 1.897 EVAPOTRANSPIRATION: 1.990 TRANSPIRATION: 1-.874 EVAPOTRANSPIRATION-PRECIP: 9.45 DATA PERIOD: 12.92 MID POINT DAY: 343 DATA SET: 34 ENDING: JUNE 2 1981 PRECIP: 2.864 MAXIMUM ET: 2.245 EVAPOTRANSPIRATION: 2.385 TRANSPIRATION: 2.210 EVAPOTRANSPIRATION-PRECIP: 0.00 PRECIP-EVAPOTRANSPIRATION: 6.70 DATA PERIOD: 14.00 MID POINT DAY: 357 DATA SET: 35 ENDING: JUNE 15 1981 PRECIP: 3.882 MAXIMUM ET: 1.702 EVAPOTRANSPIRATION: 1.879 TRANSPIRATION: 1.658 PRECIP-EVAPOTRANSPIRATION: 25.95 DATA PERIOD: 12.96 MID POINT DAY: 370 UNITS: WATER-MM TIME-DAYS SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 13.353 1 .057 2. 176 0.778 203.05 - 18.17 306 5.921 1.211 1 .726 1 .082 91 .59 21 .83 326 1 .305 1 .667 1 .842 1 .624 6.99 13.04 343 2.868 1 .975 2.270 1 .902 0.00 8.37 14.00 357 3.878 1 .555 1 .936 1 .460 25. 17 12.96 370 13.096 1 . 133 2.707 0.739 199. 1 1 19. 17 306 5.794 1.319 2.041 1 . 138 78. 17 20.83 326 1 .348 1 .807 2.043 1 .748 9. 19 13.21 343 2.583 2. 154 2.534 2.059 0.00 0.64 13. 13 356 4.072 1.614 2. 163 1 .477 26 .49 13.88 370 12.600 1 .231 3.624 0.633 178.78 19.92 306 5.795 1 .488 2.628 1 .203 63.48 20.04 326 1 .697 1 .875 2.299 1 .769 7.93 13. 17 342 2.433 2.234 2.787 2.096 4.94 0.00 13.96 356 3.960 1 .724 2.566 1 .514 18. 12 13.00 369 12.652 1 . 175 2.437 0.860 202.59 19.83 306 5.773 1 .444 2.045 1 .294 75.02 20. 13 326 1 .619 1 .789 2.012 1 .733 5.43 13.83 343 2.575 2.269 2.587 2. 190 0. 17 0.00 13. 17 356 3.950 1 .716 2. 168 1 .604 23. 17 13.00 369 13.081 1 . 195 3.998 0.494 174.08 19. 17 306 5.811 1 . 364 2.649 1 .043 65.87 20.83 326 1 .327 1 .846 2.242 1 .747 12.02 13. 13 343 2.892 2. 148 2.864 1 .969 0.00 0.39 13.83 357 3.840 1 .681 2.601 1 .452 16.26 13. 13 370 12.704 1 . 185 3.495 0.607 181 .87 19.75 306 5.738 1 .463 2.545 1 . 192 64.66 20.25 326 1 .600 1 .841 2.227 1 .744 8.78 14 .00 343 2.599 2.247 2.817 2. 104 2.84 0.00 13.04 356 3.964 1.696 2.507 1 .494 18.94 13.00 369 WATER BALANCE DATA SET: 36 ENDING: JUNE 30 1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: PRECIP-EVAPOTRANSPIRATION: DATA PERIOD: MID POINT DAY: DATA SET: 37 ENDING: JULY 6 1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: DATA SET: 38 ENDING: JULY 13 1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY: DATA SET: 39 ENDING: JULY 21 1981 PRECIP: MAXIMUM ET: EVAPOTRANSPIRATION: TRANSPIRATION: EVAPOTRANSPIRATION-PRECIP: DATA PERIOD: MID POINT DAY DATA SET: 40 ENDING: JULY 27 1981 PRECIP MAXIMUM ET EVAPOTRANSPIRATION TRANSPIRATION TOTAL WATER DEFICIT EVAPOTRANSPIRATION-PRECIP DATA PERIOD MID POINT DAY DATA SITE 0 3.539 2.245 2.410 2.204 14.87 13. 17 383 0.090 2.993 3 .065 2.975 26.40 8.88 394 1 .355 2. 187 2.341 2. 148 6.04 6.13 402 0.033 2.682 2.708 2.675 24.07 9.00 409 0.000 3.514 1 .962 1 .962 7.50 9.48 4.83 416 UNITS: WATER-MM TIME-DAYS SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 3.539 3.357 3.485 3.482 3.539 3 .506 2.058 2.086 2. 153 2. 128 2.204 2. 122 2.411 2.551 2.893 2.525 3.060 2.839 1 .970 1 .969 1 .968 2.028 1 .990 1 .942 14.86 11.21 8.78 14.23 6.30 9.81 13. 17 13.92 14.83 14.88 13. 17 14.71 383 384 383 383 383 383 0.091 0.099 0.119 0. 125 0. 102 0. 114 2.643 3.029 3.452 3.397 2.958 3. 178 2.716 3. 108 3.548 3.497 3.040 3.270 2.625 3.009 3.429 3.372 2.938 3. 155 22.97 20.94 20.86 20.51 23. 14 22.09 8.75 6.96 6.08 6.08 7.88 7.00 394 394 394 394 394 394 1 .355 1 .200 1 . 179 1 . 179 1 .200 1 .355 1 .872 1 .921 2.151 2.137 1 .971 2. 197 2. 129 2.213 2.577 2.383 2.449 2.676 1 .807 1 .848 2.045 2.075 1 .851 2.078 4 .74 7.01 9.85 8.48 8.64 8.09 6.13 6.92 7 .04 7.04 6.92 6. 13 402 401 400 400 401 401 0.034 0.037 0.034 0.036 0.037 0.036 2.368 2.644 2.632 2.744 2.711 2.756 2.395 2.674 2.659 2.773 2.741 2.785 2.361 2.637 2.625 2.737 2.704 2.749 20.96 21 .42 23.08 22.69 21 .97 22.79 8.88 8. 13 8.79 8.29 8. 13 8.29 409 409 408 408 409 408 0.000 0.000 0.000 0.000 0.000 0.000 3. 185 3. 124 3.387 3. 169 3. 174 3.236 2. 164 2.651 3.215 3. 169 3. 174 3.236 2. 164 2.651 3.215 3. 169 3. 174 3.236 5.23 2.78 0.89 0.00 0.00 0.00 11 .09 15.57 16.61 18.35 18.92 19. 14 5. 13 5.88 5.17 5.79 5.96 5.92 416 416 415 415 416 415 WATER BALANCE DATA SITE 0 DATA SET: 41 ENDING: AUG 4 1981 PRECIP: 0.124 MAXIMUM ET: 2.724 EVAPOTRANSPIRATION: 1.150 TRANSPIRATION: 1.039 TOTAL WATER DEFICIT: 13.37 EVAPOTRANSPIRATION-PRECIP: 8.25 DATA PERIOD: 8.04 MID POINT DAY: 423 DATA SET: 42 ENDING: AUG 10 1981 PRECIP: 0.000 MAXIMUM ET: 3.783 EVAPOTRANSPIRATION: 0.521 TRANSPIRATION: 0.521 TOTAL WATER DEFICIT: 16.58 EVAPOTRANSPIRATION-PRECIP: 2.65 DATA PERIOD: 5.08 MID POINT DAY: 429 DATA SET: 43 ENDING: AUG 17 1981 PRECIP: 0.000 MAXIMUM ET: 3.425 EVAPOTRANSPIRATION: 0.258 TRANSPIRATION: 0.258 TOTAL WATER DEFICIT: 24.94 EVAPOTRANSPIRATION-PRECIP: 2.03 DATA PERIOD: 7.88 MID POINT DAY: 436 DATA SET: 44 ENDING: AUG 24 1981 PRECIP: 1.144 MAXIMUM ET: 2.667 EVAPOTRANSPIRATION: 0.322 TRANSPIRATION: 0.141 TOTAL WATER DEFICIT: 15.66 EVAPOTRANSPIRATION-PRECIP: 0.00 PRECIP-EVAPOTRANSPIRATION: 5.17 DATA PERIOD: 6.29 MID POINT DAY: 443 DATA SET: 45 ENDING: SEPT 1 1981 PRECIP: 5.764 MAXIMUM ET: 1.687 EVAPOTRANSPIRATION: 1.950 TRANSPIRATION: 1.622 PRECIP-EVAPOTRANSPIRATION: 33.22 DATA PERIOD: 8.71 MID POINT DAY: 450 UNITS: SITE 1 0. 125 2.363 1 .473 I .348 7 .93 10.78 8.00 423 0.000 3.227 0.873 0.873 II .97 4.44 5.08 429 0.000 2.881 0.610 0.610 17.88 4.81 7 .88 436 1 . 160 2.222 0.751 0.452 10.62 0.00 2.54 6.21 443 5.710 1 .419 1 .979 1 .279 32.80 8.79 450 WATER-MM SITE 2 0. 125 2.476 2. 196 2.071 3.04 16.57 8.00 423 O.OOO 3.574 1.711 1.711 9.78 8.98 5.25 429 0.000 3. 120 1.416 I. 416 13.49 I I. 21 7.92 436 1 . 160 2.322 1 .495 1 . 1 14 7.03 2.08 O.OO 6.21 443 6.375 1 .600 2.473 1 .381 30.72 7 .88 450 TIME-DAYS SITE 3 0. 125 2.752 2.852 2 .727 0.00 21.81 8.00 422 0.000 3.830 2.398 2.398 8.77 14.69 6. 13 429 O.OOO 3.497 2.058 2.058 10.01 14.32 6.96 435 0.999 2.616 2. 179 1 .694 5.95 8.51 0.00 7.21 442 6.656 1 .756 3. 176 1 .401 26.25 7 .54 450 SITE 4 0. 126 2.625 2.726 2.600 0.00 20.69 7.96 422 0.000 3.680 2.267 2.267 8.66 13.89 6. 13 429 O.OOO 3.254 1 .855 1 .855 9.56 12.68 6.83 435 1 .023 2.583 1 .807 1 .518 7 .09 5.52 O.OO 7 .04 442 6.408 1 .736 2.470 1 .552 30.85 7.83 450 SITE 5 0. 125 2 .646 2.746 2 .621 0.00 20.97 8.00 423 0.000 3.570 3.300 3.300 1 .36 16 .64 5.04 429 0.000 3.256 2.912 2.912 2.73 23.05 7.92 436 I . 129 2.432 2.915 2.311 0.00 II .38 0.00 6.38 443 5.820 1 .621 3.015 1 .272 24. 19 8.63 450 SITE 6 O. 126 2.615 2.716 2.590 0.00 20.62 7 .96 422 0.000 3.608 3.389 3.389 1 .35 20.90 6. 17 429 0.000 3.210 2.934 2.934 1 .84 19.56 6.67 435 1 .022 2.608 2.920 2.434 0.54 13.36 0.00 7.04 442 6.308 1 .766 3.061 1.442 25.84 7.96 450 WATER BALANCE DATA SITE 0 UNITS: SITE 1 DATA SET: 46 DATA SET: 47 DATA SET: 48 DATA SET: 49 ENDING: SEPT 11 1981 PRECIP: 0. 189 0. 192 MAXIMUM ET: 2.013 1 .505 EVAPOTRANSPIRATION: 2.087 1.612 TRANSPIRATION: 1 .994 1 .478 EVAPOTRANSPIRATION-PRECIP: 19.05 14.09 DATA PERIOD: 10.04 9.92 MID POINT DAY: 460 460 ENDING: SEPT 25 1981 PRECIP 4.923 4.923 MAXIMUM ET 1 .580 1 . 184 EVAPOTRANSPIRATION 1 .790 1 .647 TRANSPIRATION 1 .528 1 .068 PRECIP-EVAPOTRANSPIRATION 40.86 42.71 DATA PERIOD 13.04 13.04 MID POINT DAY 471 471 ENDING: OCT 9 1981 PRECIP 11.752 11.654 MAXIMUM ET 0.730 0.531 EVAPOTRANSPIRATION 1 . 152 1 .524 TRANSPIRATION 0.625 0.283 PRECIP-EVAPOTRANSPIRATION 158.11 152.37 DATA PERIOD 14.92 15.04 MID POINT DAY 485 . 485 ENDING: OCT 28 1981 PRECIP 5.029 5.029 MAXIMUM ET 0.669 0.429 EVAPOTRANSPIRATION 0.867 0.882 TRANSPIRATION 0.619 0.316 PRECIP-EVAPOTRANSPIRATION 75.61 74.82 DATA PERIOD 18.17 18.04 MID POINT DAY 502 502 WATER-MM TIME-DAYS SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 0. 189 1 .690 1.817 1 .658 16.34 10.04 459 4.683 1 .305 1 .925 1 . 150 37.81 13.71 471 12.254 0.634 2. 130 0.260 144.28 14.25 485 4.866 0.499 1.119 0.344 71 .35 19.04 501 0. 187 1 .983 2. 132 1 .946 19.78 10. 17 459 4.272 1.618 2.502 1 .397 26.64 15.04 471 13.547 0.681 3.288 0.029 132.08 12.88 485 5.308 0.673 1 .723 0.411 72.30 20. 17 502 O. 188 1 .878 1 .989 1 .851 18.24 10. 13 459 4.294 1 .519 1 .994 1 .400 34.41 14.96 471 13.421 0.655 2.015 0.315 148.27 13.OO 485 5.277 0.602 1 . 155 0.463 82.44 20.00 502 0.206 1 .919 2.084 1 .878 17.29 9.21 459 4.698 1 .401 2.494 1 . 128 30. 11 13.67 471 12.221 0.707 3.360 0.044 126.64 14.29 485 4.869 0.574 1 .670 0.300 60.65 18.96 501 0. 188 1 .893 2.044 1 .855 18.71 10.08 459 4.318 1 .501 2.360 1 .286 29. 12 14.88 471 13.300 0.682 3. 135 0.069 133.42 13.13 485 5.255 0.604 ! .603 0.354 7 2.29 19.79 502 - 269 -APPENDIX 20 Relationship of tree volume to basal area. Tree diameter measurements at determined heights were obtained by optical dendrometer for a representative sample of trees covering the DBH distribution at the site. Volumes of tree sections so measured were calculated using Smalians formula (Avery, 1975) and summed to determine the tree volumes. - 270 -Figure 1 Site 0 - 271 -| I I I I I I I I I I I I I I I I ' CO r r u i »—^ CJ UJ —I O >, ui U l r r CN 0.0 *l • I I I ' • ' ' • ' I I ' I I ' I I ' ' ' TREE BASAL'AREA (SQ.METERS) F i g u r e 2 S i t e 1 - 272 -I I I I I I I I I I I ' I ' ' 0.0 0.1 0 2 TREE BASAL AREA (SQ.METERS) F i g u r e 3 S i t e 2 - 273 -| I I I I I I I I I I I I I I I I ' I I I I I I < I I l I I I I I I I I 0.0 0.1 0 2 TREE BASAL AREA (SQ.METERS) Figure A S i t e 3 - 274 -F i g u r e 5 S i t e 4 - 275 -F i g u r e 6 S i t e 5 - 276 -F i g u r e 7 S i t e 6 - 277 -APPENDIX 21 Ring width measurements from increment cores taken from samples of trees at sites 1, * and 6 MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM LEFT TO RIGHT SITE NO: 1 TREE NO: 13 DBH(CM): 32. 2 BARK(CM): 1 .7 226 120 145 165 139 154 138 162 106 163 168 132 134 100 109 99 1 16 178 164 161 137 164 133 1 15 179 147 191 158 150 155 119 144 174 209 217 183 179 147 273 275 252 307 175 285 414 255 370 425 438 304 352 380 400 478 456 SITE NO: 1 TREE NO: 13 DBH(CM): 32. 2 BARK(CM): 1 .7 107 156 174 125 122 111 150 95 160 191 142 166 168 164 217 224 168 188 178 158 176 131 178 189 214 247 226 191 220 175 300 260 286 259 361 183 264 355 328 401 360 303 346 340 389 416 460 379 278 387 164 238 SITE NO: 1 TREE NO: 26 DBH(CM): 19. 3 BARK(CM) : 0.8 56 89 84 45 62 75 77 63 81 98 75 58 72 77 72 67 94 72 112 88 80 95 143 96 106 97 125 98 89 68 60 72 74 143 113 105 99 108 126 101 144 164 101 147 175 170 190 255 229 171 216 260 273 275 360 285 249 SITE NO: 1 TREE NO: 29 DBH(CM): 13. 1 BARK(CM): 0.7 6 9 9 18 11 26 27 27 29 49 59 36 32 37 49 43 49 65 54 41 43 40 44 51 65 91 63 55 54 41 66 85 99 95 144 87 1 15 169 123 196 199 145 167 262 296 202 283 241 196 260 168 SITE NO: 1 TREE NO: : 29 DBH(CM): : 13. .1 BARK(CM): 0.7 9 17 9 4 14 17 23 SITE NO: 1 TREE NO: : 37 DBH(CM): : 18. 8 BARK(CM): 1 .0 133 32 50 57 35 50 63 83 40 56 75 45 66 56 87 56 57 73 90 68 68 97 115 93 124 98 140 131 122 86 59 73 99 134 150 121 91 67 159 145 151 178 102 146 177 118 148 183 170 113 166 184 208 183 206 187 215 187 322 210 201 SITE NO 1 TREE NO : 37 DBH(CM) : 18 .8 BARK(CM): 1 .0 24 58 66 40 56 71 65 45 67 82 45 92 72 100 89 92 139 66 131 106 88 109 86 62 77 87 105 64 58 82 68 68 80 129 71 115 101 68 1 14 108 126 186 101 158 198 169 189 272 245 133 160 SITE NO 1 TREE : NO : 54 DBH(CM) : 15 .2 BARK(CM): 0.8 6 8 19 20 16 28 SITE NO 1 TREE : NO : 27 DBH(CM) : 30 .9 BARK(CM): 1 .6 127 181 154 172 159 102 150 74 106 138 134 167 131 135 104 83 100 102 171 153 177 215 184 128 136 99 172 127 133 109 86 95 151 180 169 196 130 115 201 218 186 253 145 245 280 208 253 272 292 273 305 368 381 353 375 290 294 94 95 50 98 66 90 93 ro oo 238 259 125 SITE NO: 1 TREE NO: 27 DBH(CM): 30.9 BARK(CM): 1.6 204 383 229 256 240 306 213 141 282 263 217 217 198 224 225 143 209 187 311 330 160 192 238 223 183 213 151 210 141 99 96 54 86 148 183 154 233 168 105 144 257 177 199 269 166 184 246 192 230 316 278 253 267 273 327 266 339 316 298 MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM SITE NO: 1 TREE NO: 40 62 56 95 57 43 78 98 64 92 115 117 107 114 112 142 144 132 180 135 175 170 SITE NO: 1 TREE NO: 45 83 103 120 109 98 72 114 124 114 142 135 90 148 115 123 1 15131 165 90 115 142 171 SITE NO: 1 TREE NO: 45 115 104 135 130 88 129 99 116 123 108 143 127 100 172 71 77 113 86 106 66 128 SITE NO: 1 TREE NO: 19 102 142 167 100 96 89 87 110 93 118 117 94 95 78 SITE NO: 4 TREE NO: 7 195 225 228 191 198 158 207 233 219 198 181 132 121 105 287 242 230 285 210 342 352 SITE NO: 4 TREE NO: 7 366 472 447 427 436 424 437 363 438 429 328 292 283 285 301 373 321 304 303 333 324 369 533 601 SITE NO: 4 TREE NO: 18 104 122 125 119 96 80 91 151 130 125 157 185 145 136 SITE NO: 4 TREE NO: 19 318 345 295 276 279 289 364 306 243 276 294 250 262 292 247 179 138 237 219 221 SITE NO: 4 TREE NO: 21 53 59 61 83 62 78 104 115 81 117 106 105 105 112 169 135 182 182 146 145 208 301 570 SITE NO: 4 TREE NO: 21 41 50 38 35 42 42 38 87 75 88 104 111 107 83 188 169 156 172 146 255 280 DBH(CM): 18.6 BARK(CM): 69 78 138 71 76 75 127 119 148 83 83 72 140 152 203 183 146 175 DBH(CM): 20.1 BARK(CM): 79 130 144 76 93 86 111 124 126 58 75 90 122 119 138 111 81 120 DBH(CM): 20.1 BARK(CM): 152 70 123 132 96 136 149 169 204 155 70 98 161 137 108 158 126 125 DBH(CM): 20.7 BARK(CM): 71 102 124 78 113 96 114 106 89 DBH(CM): 51.1 BARK(CM): 161 231 258 228 220 226 118 149 158 149 148 165 260 354 354 348 298 260 DBH(CM): 51.1 BARK(CM): 309 409 376 353 296 299 345 281 275 205 279 257 313 441 301 311 303 288 DBH(CM): 28.4 BARK(CM): 143 158 185 177 178 237 129 155 182 169 140 151 DBH(CM): 48.4 BARK(CM): 266 325 328 284 363 321 329 284 290 248 244 250 DBH(CM): 25.9 BARK(CM): 79 88 121 120 101 88 141 137 162 109 91 89 189 178 197 212 156 173 DBH(CM): 25.9 BARK(CM): 51 61 58 50 63 66 86 104 126 122 102 155 238 285 264 281 226 227 0.8 60 49 52 60 73 92 67 92 124 108 127 132 123 98 201 210 177 299 1 . 1 84 74 81 156 102 177 139 103 115 89 85 70 60 91 172 177 179 164 145 170 236 1 . 1 120 145 104 93 146 132 163 93 71 134 89 65 68 58 146 148 176 159 146 153 159 1.2 87 104 78 121 91 132 127 3. 1 226 201 191 176 218 307 280 241 269 249 254 234 226 262 289 294 203 304 292 3. 1 227 217 251 288 342 459 429 349 407 275 273 229 192 228 294 350 352 351 432 394 519 1 . 1 191 191 195 166 151 138 179 2.2 284 259 282 302 346 378 362 360 277 237 231 254 180 219 1 . 1 63 65 64 78 81 74 151 88 128 92 94 108 103 119 214 214 262 273 266 263 439 1 . 1 38 67 52 48 61 64 64 103 154 125 156 99 126 135 239 164 220 235 240 278 389 MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM LEFT TO RIGHT SITE NO: 4 TREE NO: 22 DBH(CM): 32.5 BARK(CM): 1.8 80 127 116 108 78 112 121 94 114 125 139 167 167 155 166 139 170 146 140 118 139 118 120 119 104 135 118 133 150 116 155 144 145 128 126 120 123 122 138 185 171 83 114 110 129 160 245 282 184 231 214 SITE NO: 4 TREE NO: 22 DBH(CM): 32.5 BARK(CM): 1.8 132 160 172 233 208 185 188 167 208 176 180 213 238 169 222 174 228 216 187 172 158 171 157 149 89 139 155 167 213 197 204 190 192 196 155 124 124 100 124 178 226 147 196 211 153 253 262 300 290 276 276 232 214 SITE NO: 4 TREE NO: 12 DBH(CM): 35.8 BARK(CM): 1.8 88 114 131 121 101 121 163 152 153 134 144 137 147 132 157 166 125 118 162 111 141 135 74 71 120 134 126 196 181 243 184 198 278 335 314 237 224 168 194 174 230 208 256 245 210 309 294 227 265 242 242 255 286 300 316 330 314 287 SITE NO: 4 TREE NO: 12 DBH(CM): 35.8 BARK(CM): 1.8 93 89 88 93 111 118 206 165 181 136 90 133 187 137 161 117 155 156 196 148 149 133 172 130 105 168 141 186 SITE NO: 4 TREE NO: 14 DBH(CM): 38.6 BARK(CM): 1.7 318 282 284 253 248 272 317 163 210 291 290 317 281 304 240 243 242 260 282 316 281 292 272 242 169 290 208 253 229 237 SITE NO: 4 TREE NO: 14 DBH(CM): 38.6 BARK(CM): 1.7 282 406 331 246 265 257 307 239 304 376 306 263 289 238 261 231 271 263 282 305 253 218 213 197 180 258 229 300 SITE NO: 4 TREE NO: 2 DBH(CM): 28.6 BARK(CM): 1.7 30 24 45 61 66 95 89 74 72 59 46 55 75 68 112 74 130 116 150 157 154 151 198 143 127 114 121 161 177' 206 185 189 200 188 182 140 156 58 165 183 233 ro co o 85 66 93 68 66 98 SITE NO: 4 TREE NO: 10 DBH(CM): 26.5 BARK(CM): 1.0 44 53 58 47 56 82 83 61 80 88 78 81 85 79 123 111 147 97 89 77 78 104 129 130 177 128 140 159 162 101 113 96 137 115 195 161 150 151 SITE NO: 4 TREE NO: 10 DBH(CM): 26.5 BARK(CM): 1.0 50 49 53 60 64 74 57 70 59 70 80 109 87 71 52 70 86 65 83 120 102 107 97 76 54 114 72 138 118 134 146 117 148 180 197 110 133 85 118 121 215 170 141 218 128 177 170 178 290 252 270 212 235 270 244 282 381 385 390 449 331 438 SITE NO: 6 TREE NO: 1 DBH(CM): 38.3 BARK(CM): 2.9 31 31 25 25 48 57 104 75 70 72 61 79 52 85 61 60 131 132 121 114 100 129 132 155 151 150 175 180 190 255 233 276 275 272 404 650 609 535 663 476 426 500 MESACHIE CORE RING WIDTH MEASUREMENTS : SEPTEMBER 1982 RING WIDTH UNITS ARE MM/100, STARTING AT 1982 AND PROCEEDING BACK IN TIME FROM LEFT TO RIGHT SITE NO: 6 TREE NO: 1 DBH(CM): 38.3 BARK(CM): 2.9 14 12 10 13 14 18 16 24 22 23 23 26 19 26 24 40 39 48 59 36 48 44 53 41 49 68 66 70 58 55 64 115 103 115 118 143 125 144 176 243 197 216 243 351 364 217 536 461 611 352 354 470 496 482 423 518 484 649 477 621 SITE NO: 6 TREE NO: 3 DBH(CM): 49.2 BARK(CM): 2.5 180 220 238 160 232 251 222 171 234 215 132 175 215 138 102 154 128 183 234 259 223 200 200 219 160 170 89 129 226 264 231 203 279 307 258 250 292 198 253 224 210 114 220 257 222 224 174 177 261 318 346 SITE NO: 6 TREE NO: 3 DBH(CM): 49.2 BARK(CM): 2.5 212 298 227 200 227 253 279 183 216 209 200 190 232 195 201 192 209 234 280 260 246 210 233 178 225 193 234 299 301 342 257 229 322 285 298 300 337 280 250 420 613 450 298 272 256 270 224 285 SITE NO: 6 TREE NO: 10 DBH(CM): 47.5 BARK(CM): 2.0 92 122 152 141 123 140 158 123 168 115 92 134 175 140 155 201 177 222 257 185 166 248 270 274 230 198 193 221 293 278 209 165 229 268 292 246 157 190 366 295 411 369 325 327 293 SITE NO: 6 TREE NO: 10 DBH(CM): 47.5 BARK(CM): 2.0 221 180 202 222 212 254 266 219 274 293 270 297 321 219 215 220 225 311 378 383 384 452 442 416 284 307 278 353 317 317 319 268 401 429 385 364 360 281 354 308 417 391 561 x rv> SITE NO: 6 TREE NO: 19 DBH(CM): 69.8 BARK(CM): 3.7 307 495 437 404 328 377 397 299 395 404 435 468 463 343 332 301 220 339 495 520 ' 1 376 339 308 186 242 279 278 427 517 591 555 416 422 438 427 463 603 422 424 394 40O 434 520 538 519 602 448 436 323 271 120 506 473 664 704 SITE NO: 6 TREE NO: 19 DBH(CM): 69.8 BARK(CM): 3.7 282 555 401 367 327 414 327 295 427 445 498 438 374 241 343 367 380 571 691 565 368 413 328 150 260 201 293 466 467 549 336 310 543 525 381 470 518 471 333 466 728 566 557 439 472 479 371 408 471 438 421 444 491 620 501 657 651 644 647 657 SITE NO: 6 TREE NO: 21 DBH(CM): 29.0 BARK(CM): 1.2 14 19 18 31 34 42 33 38 25 31 30 37 36 23 18 35 52 60 52 56 54 57 32 25 45 22 28 58 78 72 66 100 129 141 104 165 163 114 150 258 340 249 251 236 207 208 255 481 610 548 596 543 SITE NO: 6 TREE NO: 6 DBH(CM): 44.1 BARK(CM): 2.8 149 149 171 107 127 96 121 91 113 71 75 101 121 62 70 79 91 89 97 82 109 252 273 236 161 206 141 209 258 218 214 205 210 259 230 243 278 198 264 221 210 180 188 151 135 169 207 228 220 283 325 253 253 403 378 402 359 274 317 SITE NO: 6 TREE NO: 6 DBH(CM): 44.1 BARK(CM): 2.8 190 244 271 238 240 335 388 329 352 294 292 351 324 231 MESACHIE CORE RING RING WIDTH UNITS ARE MM/100, STARTING WIDTH MEASUREMENTS : SEPTEMBER AT 1982 AND PROCEEDING BACK IN 1982 TIME FROM LEFT TO RIGHT SITE NO: 6 TREE NO: : 12 DBH(CM): 61 . 7 BARK(CM): 3.5 239 346 303 313 305 367 434 250 292 284 223 222 269 220 203 226 223 217 340 292 326 350 455 306 241 255 208 328 376 501 485 392 489 412 337 313 378 298 330 395 432 351 417 349 321 397 353 334 432 395 609 429 451 205 240 481 523 SITE NO: 6 TREE NO: : 12 DBH(CM): : 61 . .7 BARK(CM): 3.5 293 353 359 351 280 362 389 237 291 270 275 246 276 275 279 336 251 372 495 486 406 390 503 296 334 208 216 308 300 384 314 212 344 404 405 456 454 367 301 389 422 470 318 373 257 413 263 323 442 449 643 442 426 539 595 523 465 SITE NO: 6 TREE NO: 7 DBH(CM): : 21 . 1 BARK(CM): 0.8 64 47 47 40 55 29 50 62 79 63 69 69 74 62 43 91 43 60 171 78 39 50 47 43 39 9 12 36 32 24 29 50 61 32 31 24 34 24 21 15 21 20 15 35 65 68 73 131 120 129 186 194 193 147 178 231 177 278 283 374, 363 SITE NO: 6 TREE NO: 2 DBH(CM): 53.4 BARK(CM): 2.8 387 384 374 350 325 333 409 365 316 318 321 285 264 277 266 309 295 250 386 317 323 331 351 255 263 284 301 346 312 391 277 311 335 224 352 349 407 267 296 315 385 297 205 291 273 371 332 353 410 538 495 381 300 385 335 346 314 310 331 512 386 542 SITE NO: 6 TREE NO: 2 DBH(CM): : 53. ,4 BARK(CM): 2.8 315 390 191 217 332 222 229 227 291 276 281 271 311 226 203 239 295 323 438 373 316 331 274 281 285 242 299 333 352 391 312 268 401 448 438 368 390 293 303 388 441 278 342 300 271 414 358 315 470 464 475 371 315 442 350 376 317 360 402 436 404 491 SITE NO: 6 TREE NO: : 16 DBH(CM): : 54, ,9 BARK(CM): 2.9 189 241 227 228 244 265 306 232 261 266 259 255 310 284 212 234 219 225 275 261 224 198 245 128 248 270 264 328 313 319 211 218 326 228 321 373 348 296 324 374 381 385 339 355 256 302 298 261 SITE NO: 6 TREE NO: : 16 DBH(CM) : 54, .9 BARK(CM): 2.9 280 259 272 215 224 310 297 237 304 266 254 255 242 209 164 201 199 272 305 291 234 182 342 255 247 264 314 427 347 343 229 169 380 326 368 420 420 398 298 221 355 416 340 347 242 385 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095781/manifest

Comment

Related Items