Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Energy analysis of residential structure space conditioned by heat pump and furnace using computer simulation Choi, Charlie Kee-choon 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1983_A7 C56.pdf [ 3.65MB ]
Metadata
JSON: 831-1.0095774.json
JSON-LD: 831-1.0095774-ld.json
RDF/XML (Pretty): 831-1.0095774-rdf.xml
RDF/JSON: 831-1.0095774-rdf.json
Turtle: 831-1.0095774-turtle.txt
N-Triples: 831-1.0095774-rdf-ntriples.txt
Original Record: 831-1.0095774-source.json
Full Text
831-1.0095774-fulltext.txt
Citation
831-1.0095774.ris

Full Text

ENERGY ANALYSIS OF RESIDENTIAL STRUCTURE SPACE CONDITIONED BY HEAT PUMP AND FURNACE USING COMPUTER SIMULATION by KEE CHOON CHARLIE^CHOI B.A.Sc, U n i v e r s i t y Of Toronto, 1976 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES Department Of Mechanical E n g i n e e r i n g We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA August 1983 © Kee Choon C h a r l i e Choi, 1983 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. I t i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of M e c h a n i c a l E n g i n e e r i n g The University of B r i t i s h Columbia 1956 M a i n M a l l Vancouver, Canada V6T 1Y3 Date Sept. 8, I983 DE-6 (3/81) i i A b s t r a c t An energy s i m u l a t i o n program, named RHECAP ( R e s i d e n t i a l Home Energy Consumption A n a l y s i s Program), f o r r e s i d e n t i a l s t r u c t u r e space c o n d i t i o n e d by a furnace and a heat pump has been developed. The program c a l c u l a t e s the h o u r l y c o o l i n g or h e a t i n g l o a d imposed on the furnace or heat pump and then the energy input to the furnace or heat pump to s a t i s f y the l o a d f o r every hour of every day of a condensed year. The condensed year c o n s i s t s of t h i r t y - s i x days; a month i s represented by three days. The h o u r l y c o o l i n g load i s determined by using a method desig n a t e d as "Time-Averaging with S h i f t " . T h i s method has been developed from time-averaging p r i n c i p l e and uses a d i f f e r e n t set of parameters, time-averaging p e r i o d and s h i f t amount, f o r d i f f e r e n t energy sources. Each h o u r l y l o a d of a day i s obtained by summing the a r i t h m e t i c average of the r a d i a n t heat gains of a number of preceding hours and the c o n v e c t i v e heat gain of the c u r r e n t hour. T h i s g i v e s the d a i l y load p r o f i l e which i s then s h i f t e d to y i e l d the f i n a l load p r o f i l e . T h i s method accounts f o r the b u i l d i n g heat storage e f f e c t i n c o n v e r t i n g instantaneous heat gain to the c o o l i n g l o a d . A polynomial equation which expresses the furnace e f f i c i e n c y degradation with the drop of the furnace load has been developed. T h i s equation and the furnace performance at steady s t a t e c o n d i t i o n are used to represent furnace performance f o r the e n t i r e range of o p e r a t i n g c o n d i t i o n s . The same equation can be used f o r furnace u n i t s of a l l d i f f e r e n t c a p a c i t i e s . i i i Six l i n e a r equations that represent the non-dimensionalized heat pump performance, the output r a t i n g ( h e a ting and s e n s i b l e c o o l i n g ) and e l e c t r i c i t y use, have been developed. The equations are f u n c t i o n s of the outdoor enthalpy. These equations only r e q u i r e the heat pump performance at the outdoor temperature of 3 5°C (tonnage of heat pump i s quoted under t h i s c o n d i t i o n ) to represent the heat pump performance f o r the e n t i r e range of outdoor o p e r a t i n g c o n d i t i o n s . The s i x equations can be used f o r heat pumps of d i f f e r e n t c a p a c i t i e s from d i f f e r e n t manufacturers. A simple method of s e l e c t i n g a y e a r l y condensed weather data has been developed. The condensed weather data c o n s i s t s of three days of a c t u a l weather i n f o r m a t i o n f o r each month. The weather i n f o r m a t i o n i s used to determine the c o o l i n g and hea t i n g l o a d c o n t r i b u t i o n s of weather dependent sources and heat pump performance. The program r e s u l t s are compared with the r e s u l t s of two e x i s t i n g programs using an e x i s t i n g and a f i c t i t i o u s r e s i d e n t i a l s t r u c t u r e i n Vancouver to v a l i d a t e the program. The v a l i d a t i o n of the program seems to i n d i c a t e d t hat the program p r o v i d e s a c c e p t a b l e r e s u l t s and the s i m u l a t i o n methods used are v a l i d . Table of Contents A b s t r a c t i i L i s t of Tables v i L i s t of F i g u r e s y i i Nomenclature v i i i Acknowledgements ; x Gl o s s a r y x i Chapter I INTRODUCTION 1 1.1 P r e l i m i n a r y Remarks 1 1.2 O b j e c t i v e And Scope 2 1.3 L i t e r a t u r e Review 4 Chapter II STRUCTURE AND CONDITIONING SYSTEM 8 2.1 R e s i d e n t i a l S t r u c t u r e 8 2.2 Space C o n d i t i o n i n g System 8 2.2.1 Space Temperature C o n t r o l System 8 2.2.2 Furnace 9 2.2.3 Heat Pump 11 2.2.4 Combined Set-up Of Furnace And Heat Pump 11 Chapter I I I SIMULATION METHODS 13 3.1 Load S i m u l a t i o n 13 3.1.1 Space Temperature S e t t i n g 13 3.1.2 Sources Of C o n d i t i o n i n g Load 13 3.1.3 Fundamentals Of C o o l i n g Load Determination 15 3.1.4 S i m p l i f i e d C o o l i n g Load Determination Methods ...19 3.2 System S i m u l a t i o n 24 3.2.1 A i r Loop S i m u l a t i o n 24 3.2.2 Furnace 26 3.2.3 Heat Pump 28 3.3 S i m u l a t i o n Of Weather Information 33 Chapter IV PROGRAM 37 Chapter V VALIDATION OF THE PROGRAM 38 5.1 Method 38 5.2 Input And Output 40 5.3 Remarks 40 Chapter VI CLOSING REMARKS 45 6.1 Co n c l u s i o n s 45 6.2 L i m i t a t i o n s Of The Program 46 6.3 Recommendation For Fu r t h e r Work 48 BIBLIOGRAPHY 49 APPENDIX A - TRANSFER FUNCTION 52 APPENDIX B - TIME-AVERAGING WITH SHIFT PARAMETER DETERMINATION 55 APPENDIX C - FURNACE OPERATION 60 APPENDIX D - HOW TO USE RHECAP 63 APPENDIX E - FLOW CHART 70 APPENDIX F - VALIDATION OF RHECAP 74 v i L i s t of Tables 1. Space Use P r o f i l e of L i g h t s , A p p l i a n c e s , and Occupants 16 2. Radiant P o r t i o n of Va r i o u s Heat Gain 22 3. Parameters of Time-Averaging with S h i f t method 23 4. Furnace C o r r e c t i o n F a c t o r f o r a l l s i z e s 27 5. C o e f f i c i e n t s of Heat Pump Performance Representation .33 6. Run R e s u l t s of RHECAP and EASI 41 7. Run R e s u l t s of RHECAP and BLAST 43 v i i L i s t of F i g u r e s 1. Cross S e c t i o n a l View of Gas Furnace 10 2. T y p i c a l Set-up of Furnace and Heat Pump 12 3. Heat Gain and C o o l i n g Load 17 4. A i r Loop Network of A T y p i c a l Residence 24 5. Heating Capacity of R e s i d e n t i a l Heat Pump 31 6. C o o l i n g Capacity of R e s i d e n t i a l Heat Pump 32 7. Non-Dimensionalized Energy Use of Heat Pump(heating) .34 8. Non-Dimensionalized Energy Use of Heat Pump(cooling) .35 9. F l o o r Plan 39 10. Heating and C o o l i n g Demands of RHECAP and EASI 42 11. Heating Loads of RHECAP and BLAST 44 12. Time -Averaging with S h i f t and T r a n s f e r Function Methods Comparison 56 13. Time -Averaging with S h i f t and T r a n s f e r F u n c t i o n Methods Comparison 57 14. Time -Averaging with S h i f t and T r a n s f e r F u n c t i o n Methods Comparison 58 15. Time -Averaging with S h i f t and T r a n s f e r F u n c t i o n Methods Comparison 59 16. Heat Exchanger Temperature P r o f i l e 62 v i i i Nomenclature SYMBOL DESCRIPTION UNITS a f b C o e f f i c i e n t s used f o r heat pump performance r e p r e s e n t a i o n dimensionless A Area m2 AFR A i r flow r a t i o , a c t u a l / d e s i g n a i r flow dimensionless C C o r r e c t i o n f a c t o r d imensionless CAP C a p a c i t y of c o n d i t i o n i n g equipment W CL C o o l i n g load W ConL C o n d i t i o n i n g load W Cp S p e c i f i c heat J/kg«K ELE E l e c t r i c i t y use W EU Energy use by equipment W h Outdoor a i r enthalpy kJ/kg he Convective heat t r a n s f e r c o e f f i c i e n t W/m2-K IR Rate of i n f i l t r a t i o n kg/s k Thermal c o n d u c t i v i t y W/m-K L Duct length or height of heat exchanger m LR Load r a t i o , load/maximum c a p a c i t y dimensionless ma A i r flow r a t e kg/s n Averaging p e r i o d of Time-Averaging with S h i f t method h N Number of days i n each month d P Perimeter of duct m Pr P r a n d t l number dimensionless q Heat t r a n s f e r r a t e (per minute) W Q Hourly c o n d i t i o n i n g c a p a c i t y . W Re Reynolds number dimensionless SC Shading c o e f f i c i e n t d i mensionless SHGF S o l a r heat gain f a c t o r W/m2 t Temperature °C U Conduction heat t r a n s f e r c o e f f i c i e n t W/m2-K V Volume m3 X A i r mixing r a t i o , o u t d o o r / s u p p l y dimensionless 7? E f f i c i e n c y d i m e n s i o n l e s s T Time i n minute min ix SUBSCRIPT DESCRIPTION a A i r b Bonnet c Convection p o r t i o n of cy Cy c l e D D a i l y ds Duct surrounding e E l e c t r i c i t y F F e n e s t r a t i o n f Furnace fb Furnace burner fan Fan h House he Heat exchanger hp Heat pump i I nput Is Loss i n supply duct m Monthly 0 Outdoor r Return - r i Radiant p o r t i o n of - i t h hour R Room Ri Room i n i t i a l Rf Room f i n a l Rs Room set sa S o l - A i r sys System s Supply w Wall 2 3 Stages of furnace c y c l e Acknowledgement The author wishes to express h i s a p p r e c i a t i o n to Dr. D. McAdam for h i s advice and encouragement throughout t h i s work; they were e s s e n t i a l i n f i n i s h i n g t h i s work. Thanks goes to Dr. Z. El-Ramly, Mr. K.W. Lau, and Mr. H. Lau of the B. C. Hydro: Dr. El-Ramly f o r l e t t i n g the author use the B. C. Hydro computing f a c i l i t i e s and a v a i l b l e energy s i m u l a t i o n program to c a r r y out the v a l i d a t i o n of t h i s work and Mr. K.W. Lau and Mr. H. Lau f o r t a k i n g p a r t i n u s e f u l d i s c u s s i o n s at e a r l y stage of t h i s work which l a t e r formed i n t o one of the major themes of t h i s work. Thanks a l s o goes to Dr. J . Hay of the Department of Geography and Mr. H. Mak of the B. C. Hydro computing c e n t r e f o r p r o v i d i n g Vancouver s o l a r r a d i a t i o n and weather i n f o r m a t i o n , r e s p e c t i v e l y . F i n a n c i a l support f o r the d u r a t i o n of t h i s work by the N a t u r a l Science and E n g i n e e r i n g Research C o u n c i l i s g r e a t l y a p p r e c i a t e d . x i G l o s s a r y A i r Flow R a t i o (AFR): the r a t i o of the a c t u a l a i r flow over the indoor c o i l of a heat pump to the a i r flow on which the heat pump performance i s ra t e d A i r Mixing R a t i o : the r a t i o of outdoor a i r v o l u m e t r i c flow r a t e to the t o t a l supply a i r v o l u m e t r i c flow rate to the thermal zone Ant i c i p a t o r : a r e s i s t o r c i r c u i t b u i l t i n t o the thermostat to minimize space temperature f l u c t u a t i o n from a d e s i r e d l e v e l ; i t i s en e r g i z e d when the thermostat sends a s i g n a l to s t a r t h e a t i n g ; the heat generated i n the thermostat causes the thermostat to stop the h e a t i n g a c t i o n sooner than i t would otherwise; the overshoot of the space temperature i s minimized; i n c o o l i n g thermostat mode, the r e s i s t o r c i r c u i t i s e n e r g i z e d when the c o o l i n g a c t i o n i s stopped causing a premature c o o l i n g demand C o e f f i c i e n t of Performance (COP): a dimensionless v a r i a b l e that expresses the e f f e c t i v e n e s s of a r e f r i g e r a t i o n system; i t i s the ' r a t i o of u s e f u l r e f r i g e r a t i n g heat t r a n s f e r r a t e to the e l e c t r i c a l energy consumed by the system C o o l i n g Load: the r a t e at which heat must be removed from the thermal zone to maintain zone a i r temperature at a d e s i r e d l e v e l C o n d i t i o n i n g Load: c o o l i n g load and h e a t i n g l o a d are c o l l e c t i v e l y r e f e r r e d to as c o n d i t i o n i n g l o a d i n t h i s work Heating Load: the r a t e at which heat must be added to the thermal zone to maintain zone a i r temperature at a d e s i r e d l e v e l Shading C o e f f i c i e n t (SC): the r a t i o of the s o l a r heat gain of g l a z i n g m a t e r i a l under a s p e c i f i c set of c o n d i t i o n s to the s o l a r heat gain of the ASHRAE r e f e r e n c e g l a z i n g m a t e r i a l ; the ASHRAE r e f e r e n c e g l a z i n g m a t e r i a l i s d o u b l e - s t r e n g t h s i n g l e sheet g l a s s with 0.86 tr a n s m i t t a n c e , 0.08 r e f l e c t a n c e , and 0.06 absorptance at normal i n c i d e n c e with t h i c k n e s s of 3.2 mm •Sol-Air Temperature: an a r b i t r a r y outdoor temperature that i s used to determine the heat gain through e x t e r i o r w a l l s and r o o f s ; i t g i v e s the r a t e of heat entry i n t o the su r f a c e that accounts f o r x i i the e f f e c t s of i n c i d e n t s o l a r r a d i a t i o n , r a d i a n t heat exchange with surroundings, and c o n v e c t i v e heat exchange with the outdoor a i r S o l a r Heat Gain: a p o r t i o n of the t o t a l heat admission through g l a z i n g m a t e r i a l that c o n s i s t s of the amounts of the r a d i a t i o n t r a n s m i t t e d through g l a z i n g m a t e r i a l and the inward flow of absorbed s o l a r r a d i a t i o n i n the g l a z i n g m a t e r i a l S o l a r Heat Gain F a c t o r (SHGF): the s o l a r heat gain through the s u n l i t ASHRAE ref e r e n c e g l a z i n g m a t e r i a l Thermal Zone: a zone or a space whose temperature i s c o n t r o l l e d by a s i n g l e c o n t r o l Time-Averaging with S h i f t Method: a method of e s t i m a t i n g the c o o l i n g l o a d c o n t r i b u t i o n s of d i f f e r e n t c o o l i n g load sources; the h o u r l y c o o l i n g load of a d a i l y p r o f i l e i s obtained by summing the h o u r l y c o n v e c t i v e heat gain and the time-averaging of r a d i a t i v e heat gains of previous hours and then the e n t i r e p r o f i l e i s s h i f t e d to give the d a i l y p r o f i l e ; the d u r a t i o n of the time-averaging and the amount of s h i f t are f u n c t i o n s of c o o l i n g load sources and mass of the s t r u c t u r e i n v o l v e d T r a n s f e r Function Method: a method of e s t i m a t i n g the c o o l i n g load c o n t r i b u t i o n s of d i f f e r e n t c o o l i n g load sources; i t uses a set of t r a n s f e r f u n c t i o n c o e f f i c i e n t s that r e p r e s e n t s the r e l a t i o n between the c o o l i n g l o a d and energy g a i n ; the c o o l i n g load i s the product of the t r a n s f e r f u n c t i o n c o e f f i c i e n t s and the amount of energy gain Two-Position C o n t r o l : the c o n t r o l whose d i r e c t i o n sent out i s e i t h e r on or o f f ; the furnace or heat pump i s o p e r a t i n g e i t h e r at f u l l c a p a c i t y or at zero c a p a c i t y 1 I. INTRODUCTION 1.1.Preliminary Remarks Many computer s i m u l a t i o n s of b u i l d i n g energy use have been done and major emphasis has been commercial b u i l d i n g s . However, there i s a growing need f o r computer energy a n a l y s i s f o r the r e s i d e n t i a l s t r u c t u r e s . Such a n a l y s i s can be used to design an energy e f f i c i e n t b u i l d i n g and c o o l i n g and h e a t i n g systems or to improve the energy use e f f i c i e n c y of an e x i s t i n g b u i l d i n g and c o o l i n g and h e a t i n g systems through r e t r o f i t . Programs intended f o r commercial b u i l d i n g s can be used f o r r e s i d e n t i a l s t r u c t u r e s . However, high c o s t s of using the programs make them u n s u i t a b l e f o r r e s i d e n t i a l s t r u c t u r e s . A computer energy a n a l y s i s program that i s s u i t a b l e f o r r e s i d e n t i a l s t r u c t u r e s must be cheap and simple to use. The c o s t of using the computer energy a n a l y s i s program can be reduced by us i n g s i m p l i f i e d s i m u l a t i o n techniques at v a r i o u s stages of the s i m u l a t i o n program; s i m u l a t i o n of the i n t e r a c t i o n s of three elements, the b u i l d i n g , the h e a t i n g and c o o l i n g systems, and the outdoor environment. S i m p l i f i c a t i o n s make programs much e a s i e r to use through simpler input requirement and simpler output. 2 1.2 O b j e c t i v e And Scope Heat pumps are now used widely to heat and c o o l r e s i d e n t i a l s t r u c t u r e s , though heat pumps require, supplementary heating d u r i n g p e r i o d s of low outdoor temperature. I n i t i a l c o s t of a heat pump i s high, but f i n a n c i a l b e n e f i t s through long term use are p o s s i b l e due to i t s e f f i c i e n t use of energy. I t i s the o b j e c t i v e of t h i s work to develop the load and system s i m u l a t i o n methods and a computer energy s i m u l a t i o n program f o r the r e s i d e n t i a l s t r u c t u r e s space c o n d i t i o n e d by furnace and heat pump. Heavy emphasis i s p l a c e d on minimizing the c o s t s a s s o c i a t e d with u s i n g the program and p r o v i d i n g an easy-to-use program. T h i s i s achieved through the use of s i m p l i f i e d s i m u l a t i o n methods. The program developed here i s not intended to make accurate p r e d i c t i o n s of energy performance, but r a t h e r , i s intended to be used f o r comparison of a l t e r n a t i v e s ( probably the same can be s a i d f o r a l l other programs ), be i t d i f f e r e n t b u i l d i n g m a t e r i a l s or furnaces and heat pumps. For example, i t can be used to i n v e s t i g a t e the energy use r e d u c t i o n due to the improvement of the thermal performance of the s t r u c t u r e or due to the a d d i t i o n of a heat pump to the e x i s t i n g furnace. The program output i n c l u d e s monthly and y e a r l y c o o l i n g and he a t i n g loads of the r e s i d e n t i a l s t r u c t u r e and energy consumption by the furnace and heat pump. A c o o l i n g l o a d d e t e r m i n a t i o n method that takes the b u i l d i n g heat storage e f f e c t i n t o c o n s i d e r a t i o n has been developed. The method i s c a l l e d Time-Averaging with S h i f t method and d e r i v e d 3 from the time-averaging p r i n c i p l e . In r e p r e s e n t i n g the hea t i n g and c o o l i n g system performance, i t was decided to r e l y on the data provided by manufacturers. A polynomial equation which expresses the furnace e f f i c i e n c y degradation with the drop of the furnace l o a d has been developed. The equation i s a f u n c t i o n of furnace load f a c t o r (imposed l o a d / c a p a c i t y ) . T h i s equation and the steady s t a t e furnace performance are used to represent furnace performance f o r the e n t i r e range of o p e r a t i n g c o n d i t i o n s . The same equation can be used f o r d i f f e r n e t c a p a c i t y furnaces. The equation i s based on the furnace o p e r a t i o n a l procedure, the furnace heat exchanger thermal c h a r a c t e r i s t i c s , and the maximum furnace output. Heat pump performance r e p r e s e n t a i o n i s e n t i r e l y based on performance data p r o v i d e d by manufacturers. Six l i n e a r equations that represent the non-dimensionalized heat pump performance, the output r a t i n g (heating and s e n s i b l e c o o l i n g ) and e l e c t r i c i t y use, have been developed. The equations are f u n c t i o n s of the outdoor enthalpy. These equations and the heat pump performance at the outdoor temperature of 35°C (tonnage of heat pump; s e n s i b l e ) are used t o represent the heat pump performance f o r the e n t i r e range of outdoor o p e r a t i n g c o n d i t i o n s . The s i x equations can be used f o r heat pumps of d i f f e r e n t c a p a c i t i e s from d i f f e r e n t manufacturers. Another c o s t c u t t i n g measure i s the use of a condensed weather year. A simple method of choosing the days whose weather i n f o r m a t i o n i s i n c l u d e d i n a y e a r l y condensed weather 4 data has been developed. The condensed weather data c o n s i s t s of three days of a c t u a l weather i n f o r m a t i o n f o r each month. The weather i n f o r m a t i o n i s used to determine the c o o l i n g and h e a t i n g lo a d c o n t r i b u t i o n s of weather dependent sources and heat pump performance. V a l i d a t i o n of the program i s c a r r i e d out by comparing the r e s u l t s of RHECAP with the r e s u l t s of two e x i s t i n g programs using an e x i s t i n g and a f i c t i t i o u s r e s i d e n t i a l s t r u c t u r e s i n Vancouver. 1.3 L i t e r a t u r e Review A l l computer energy a n a l y s i s s i m u l a t i o n program c a l c u l a t e s the space h e a t i n g and c o o l i n g loads and the energy load imposed on the system based on the c a l c u l a t e d space h e a t i n g and c o o l i n g l o a d s . The fundamental approach to determining the h o u r l y c o o l i n g load r e q u i r e s a l a b o r i o u s s o l u t i o n of energy balance equations i n v o l v i n g the room a i r and i t s surroundings. T h i s makes i t u n s u i t a b l e f o r an energy s i m u l a t i o n program. Three s i m p l i f i e d procedures[1] have been developed to determine the h o u r l y c o o l i n g l o a d : C a r r i e r storage l o a d f a c t o r method, time-averaging method, and weighting f a c t o r method (T r a n s f e r F u n c t i o n method). The three procedures determine the c o o l i n g l o a d u s i n g a s i m i l a r approach. F i r s t , the heat gains from v a r i o u s sources are determined. Then heat gains are m o d i f i e d to y i e l d the c o o l i n g loads that take the b u i l d i n g heat storage e f f e c t i n t o c o n s i d e r a t i o n . I t i s i n t h i s m o d i f i c a t i o n of the heat gains 5 that the three procedures are d i f f e r e n t . The C a r r i e r method u t i l i z e s storage l o a d f a c t o r s which are given f o r d i f f e r e n t c o n s t r u c t i o n s ( l i g h t , medium, and heavy) and d u r a t i o n s (8 hour, 12 hour, and 24 hour) of system o p e r a t i o n . The c o o l i n g l o a d i s the product of the heat gain and the a p p r o p r i a t e storage load f a c t o r . The time-averaging method takes an a r i t h m e t i c average of s e v e r a l heat gains of p r e v i o u s hours. T h i s has the e f f e c t of t r a n s f e r r i n g some of the heat gain to the c o o l i n g load of l a t e r time. A b r i e f o u t l i n e of the time-averaging of heat gains of preceding hours to determine the c o o l i n g load of an hour was f i r s t made in the 1967 ASHRAE Handbook of Fundamentals[2]. Both the C a r r i e r method and time-averaging method l a c k r e f e r e n c e m a t e r i a l to s u b s t a n t i a t e the t h e o r i e s behind t h e i r concepts. The T r a n s f e r F u n c t i o n method has been s u b s t a n t i a t e d s c i e n t i f i c a l l y [ 3 , 4 , 5 , 6 ] . T h i s method uses the t r a n s f e r f u n c t i o n s that c h a r a c t e r i z e the r e l a t i o n between an u n i t e x c i t a t i o n (energy source) and the system (room) response to the u n i t e x c i t a t i o n . The t r a n s f e r f u n c t i o n s can be o b t a i n e d f o r d i f f e r e n t heat g a i n sources and c o n s t r u c t i o n s . Using t h i s method, the c o o l i n g l o a d i s determined by summing the products of p r e v i o u s hourly heat gains and t h e i r corresponding t r a n s f e r f u n c t i o n s . C o n d i t i o n i n g system s i m u l a t i o n based on steady s t a t e a n a l y s i s i s adequate as the dynamic response of the systems i s much more r a p i d than that of the b u i l d i n g . The steady s t a t e a n a l y s i s assumes that the system o p e r a t i n g c o n d i t i o n s d u r i n g an hour remains the same with d i f f e r e n t o p e r a t i n g c o n d i t i o n s at the 6 next hour. System equipment steady s t a t e performance data i s u s u a l l y p r o v i d e d i n c a t a l o g s i n t a b l e form or graph a l l o w i n g the performance r e p r e s e n t a t i o n i n equation form. However, t h i s performance r e p r e s e n t a t i o n must be mod i f i e d to i n c l u d e the t r a n s i e n t e f f e c t s of the equipment o p e r a t i o n . The steady s t a t e e f f i c i e n c y of the gas furnace i s about 75%. D i f f e r e n t approaches were attempted to e s t a b l i s h the furnace performance l e v e l over the e n t i r e range of o p e r a t i n g c o n d i t i o n s and used i n programs. Reference 7 used measured average furnace e f f i c i e n c y (65%) f o r a l l o p e r a t i n g c o n d i t i o n s to p r e d i c t annual energy use. The energy output was obtained by measuring the supply a i r temperature f o r a t y p i c a l o p e r a t i n g c o n d i t i o n and i n t e g r a t i n g over the fan o p e r a t i n g p e r i o d . Then the average furnace e f f i c i e n c y was determined. Energy programs that use dynamic furnace performance s i m u l a t i o n r o u t i n e s were used to study the seasonal furnace performance[8,9]. Both s t u d i e s performed the supply a i r temperature c a l c u l a t i o n s d u r i n g each s i m u l a t i o n time increment and use the temperature to determine the furnace output. In r e f e r e n c e 8, computer p r e d i c t e d and measured bi-monthly energy consumptions v a r i e d c o n s i d e r a b l y , but y e a r l y energy consumptions showed l i t t l e d i f f e r e n c e . In re f e r e n c e 9, the d i f f e r e n c e of about 5% between the computed and measured gas consumptions over about a month p e r i o d was observed. The heat pump manufacturers provide the performance data over the e n t i r e range of the outdoor o p e r a t i n g c o n d i t i o n s [ 1 0 ] r e a d i l y a l l o w i n g f o r heat pump performance i n equation form. An 7 a n a l y s i s on the heat pump i n d i c a t e d that the performance degradation due to t r a n s i e n t e f f e c t s i s about 5%[11]. E f f o r t s were a l s o made to simulate the heat pump performance[9,12,13]. In r e f e r e n c e 9, the approach used f o r heat pump s i m u l a t i o n i s s i m i l a r to the furnace s i m u l a t i o n . The supply a i r temperature was determined and i n t e g r a t e d over the o p e r a t i n g p e r i o d to determine the output. I t was a l s o i n v o l v e d with s i m u l a t i n g other space c o n d i t i o n i n g systems and comparing the p r e d i c t e d with the measured energy consumptions. The comparisons showed that the e r r o r of heat pump s i m u l a t i o n r e s u l t s were- the l a r g e s t at 15%. 8 I I . STRUCTURE AND CONDITIONING SYSTEM 2.1 R e s i d e n t i a l S t r u c t u r e The e n t i r e s t r u c t u r e i s modelled as a s i n g l e thermal zone whose t o t a l c o n d i t i o n i n g l o a d determines the system l o a d . The thermal zone i s a space whose temperature i s c o n t r o l l e d by a s i n g l e c o n t r o l . However, input of the s t r u c t u r e i n f o r m a t i o n can be done us i n g as many as three zones, bedroom, k i t c h e n , and basement, whose hourly c o n d i t i o n i n g loads are determined s e p a r a t e l y and added to y i e l d the s t r u c t u r e c o n d i t i o n i n g l o a d . D i v i s i o n of the s t r u c t u r e i s u s e f u l when i t has a p e c u l i a r shape and when only the loads of s e l e c t e d areas of a s t r u c t u r e are r e q u i r e d . I t a l s o p r o v i d e s i n f o r m a t i o n on how d i f f e r e n t p a r t s of the s t r u c t u r e c o n t r i b u t e to the t o t a l c o n d i t i o n i n g l o a d . Each thermal zone i s encl o s e d by a combination of e x t e r n a l w a l l s , below-grade w a l l s , r o o f , c e i l i n g , f l o o r , and windows on both w a l l and r o o f . I t a l s o may c o n t a i n heat sources such as occupants, a p p l i a n c e s , and l i g h t s . Each zone has some i n f i l t r a t i o n . 2.2 Space C o n d i t i o n i n g System 2.2.1 Space Temperature C o n t r o l System The c o n t r o l system used i s a c l o s e d loop system c o n t r o l l e d by a thermostat. The c o n t r o l used i s a timed t w o - p o s i t i o n c o n t r o l [ l 4 ] t hat turns the furnace or heat pump on and o f f based on the temperature of the c o n d i t i o n e d space. A small r e s i s t o r c i r c u i t , c a l l e d an a n t i c i p a t o r , i s used to minimize space 9 temperature f l u c t u a t i o n . 2.2.2 Furnace  Furnace D e s c r i p t i o n The furnace c o n s i s t s of a housing and a number of burner u n i t s f o r gas and o i l furnaces and a number of h e a t i n g elements f o r an e l e c t r i c furnace. Burner u n i t s are the same shape and s i z e and i g n i t e s i m u l t a n e o u s l y . E l e c t r i c h e a t i n g elements are equal c a p a c i t y and come on i n sequence. The o p e r a t i o n i s assumed to be the same f o r each furnace and one performance r e p r e s e n t a t i o n method i s used f o r a l l three types of furnace. The a i r i s blown from below and heated as i t passes the heat exchanger. F i g u r e 1 shows a c r o s s s e c t i o n a l view of a two burner gas furnace. Furnace Operation Furnace o p e r a t i o n i s set at s i x c y c l e s per hour at a l l loads.[15] Each c y c l e has four stages of v a r y i n g l e n g t h . The time spent on each stage depends on the l o a d imposed and fan on-o f f temperature set-up. Four stages of each c y c l e a r e : stage 1 : fan o f f / burner on stage 2 : fan on / burner on stage 3 : fan on / burner o f f stage 4 : fan o f f / burner o f f Upon r e c e i v i n g a s i g n a l from the thermostat c a l l i n g f o r heat, the burner i s i g n i t e d . T h i s r a i s e s the temperature of the heat exchangers and the s t a t i o n a r y a i r mass surrounding them (stage 1). When the a i r temperature reaches the fan high l i m i t , the fan s t a r t s and sends heated a i r to the space (stage 2). The 10 F u r n a c e h o u s i n g B u r n e r h o u s i n g B u r n e r o p e n i ng F i g u r e 1 - Cross S e c t i o n a l View of Gas Furnace thermostat sends a s i g n a l to turn the burner o f f when the space temperature nears the thermostat set p o i n t . The fan remains on u n t i l the supply a i r temperature reaches the fan low l i m i t ( s t a g e 3) and then s t o p s . During the l a s t stage, both burner and fan are o f f . 11 2.2.3 Heat Pump Heat Pump D e s c r i p t i o n The heat pump c o n t a i n s indoor and outdoor s e c t i o n s . The indoor s e c t i o n c o n t a i n s a c o i l which a c t s as an evaporator during the c o o l i n g mode and a condenser d u r i n g the h e a t i n g mode. The outdoor s e c t i o n c o n t a i n s compressor, c o i l , flow r e v e r s i n g v a l v e , and necessary c o n t r o l s . The outdoor c o i l a c t s as a condenser d u r i n g the c o o l i n g mode and an evaporator d u r i n g the heating mode. Heat Pump Ope r a t i o n Heat pump oper a t i o n i s set at three twenty minute c y c l e s per h o u r [ l 5 ] . Each c y c l e c o n s i s t s of two stages. The stages are: stage 1 : fan on / heat pump on stage 2 : fan o f f / heat pump o f f 2.2.4 Combined Set-up Of Furnace And Heat Pump The common p r a c t i c e i s to pl a c e the c o i l downstream of the gas furnace heat exchanger and upstream of the he a t i n g elements fo r the e l e c t r i c furnace.[16] A t y p i c a l set-up of gas furnace and heat pump i s i l l u s t r a t e d i n F i g u r e 2. I t i s common c o n t r o l l o g i c to prevent the simultaneous o p e r a t i o n of the furnace and heat pump d u r i n g the he a t i n g mode.[17] The balance p o i n t temperature i s used to determine which equipment i s needed to s a t i s f y h e a t i n g demand. The balance p o i n t temperature i s the outdoor temperature above which h e a t i n g demand can be met with F i g u r e 2 - T y p i c a l Set-up of Furnace and Heat Pump the heat pump al o n e . The furnace i s r e q u i r e d below t h i s l e v e l . 1 3 I I I . SIMULATION METHODS 3.1 Load S i m u l a t i o n 3.1.1 Space Temperature S e t t i n g In t h i s work, the thermostat setback s e t t i n g i s handled without t a k i n g the t r a n s i e n t response of the space temperature to the change of thermostat s e t t i n g i n t o c o n s i d e r a t i o n . I t i s assumed that the space temperature response i s immediate to the change of thermostat s e t t i n g . T h i s assumption does not int r o d u c e a l a r g e e r r o r due to the r e l a t i v e l y small mass of the r e s i d e n t i a l s t r u c t u r e . 3.1.2 Sources Of C o n d i t i o n i n g Load The c o n d i t i o n i n g l o a d can be c l a s s i f i e d a c c o r d i n g to the source of heat t r a n s f e r and the type of l o a d : s e n s i b l e and l a t e n t . The l o a d imposed on the c o o l i n g equipment i s the sum of the s e n s i b l e and l a t e n t l o a d s . In t h i s work, onl y the s e n s i b l e load i s c o n s i d e r e d and used to determined the system l o a d . The j u s t i f i c a t i o n s a r e : i . The humidity l e v e l of most r e s i d e n t i a l s t r u c t u r e i s not c o n t r o l l e d i i . The d i s t i n c t i o n i s needed when the s e l e c t i o n of c o o l i n g equipment i s c o n s i d e r e d and the program i s not intended to be used f o r the s e l e c t i o n of c o o l i n g equipment i i i . I t reduces c a l c u l a t i o n e f f o r t 1 4 The sources that c o n t r i b u t e to the c o n d i t i o n i n g l o a d a r e : (1) heat conduction through e x t e r i o r w a l l s , below-grade w a l l s , r o o f s , and f l o o r s ; (2) s o l a r gain and conduction through tr a n s p a r e n t s u r f a c e s such as windows on w a l l and roof; (3) heat generated by l i g h t s , a p p l i a n c e s , and occupants; (4) heat gain or l o s s due to the i n f i l t r a t i o n of outdoor a i r . (1) Conduction Heat Gain The heat gain by conduction through c o n s t r u c t i o n elements i s Q = U A w ( t 0 - t R ) (3.1) For h e a t i n g l o a d c a l c u l a t i o n , t 0 i s the outdoor d r y - b u l b temperature. However, the s o l - a i r temperature[18] i s used to determine the c o o l i n g l o a d . Temperature of the e a r t h i s used i n s t e a d of the outdoor temperature when determining the heat t r a n s f e r through the below-grade c o n s t r u c t i o n elements. U and A w are the proper heat t r a n s f e r c o e f f i c i e n t of and area of the c o n s t r u c t i o n element i n c o n s i d e r a t i o n r e s p e c t i v e l y . (2) S o l a r Heat Gain The t o t a l heat admission through a t r a n s p a r e n t s u r f a c e i s by s o l a r heat gain and conduction heat g a i n . For t h i s , the method developed by ASHRAE i s u s e d [ l 9 ] . I t u t i l i z e s the s o l a r heat gain f a c t o r (SHGF) and shading c o e f f i c i e n t (SC). The SHGF i s the heat gain through the ref e r e n c e g l a z i n g m a t e r i a l , double-s t r e n g t h s i n g l e g l a z i n g 3.2 mm t h i c k . The SC i s d e f i n e d as the r a t i o of s o l a r heat gain of a g l a z i n g m a t e r i a l in c o n s i d e r a t i o n to that of the d o u b l e - s t r e n g t h g l a s s . T h e r e f o r e , t o t a l heat 15 admission through the t r a n s p a r e n t s u r f a c e i s Q = ( SC (SHGF) + U ( t 0 - tH) ) A F (3.2) where A F i s the area of the t r a n s p a r e n t s u r f a c e . In d e t e r m i n a t i o n of the SHGF, measured d i r e c t and d i f f u s e r a d i a t i o n [ 2 0 ] are used. (3) I n t e r n a l Heat Sources The heat given out from i n t e r n a l sources such as l i g h t s , a p p l i a n c e s , and occupants (65 watts/person) r e q u i r e d a i l y p r o f i l e s which d e s c r i b e the h o u r l y u t i l i z a t i o n or presence of above items. The p r o f i l e s are l i s t e d i n Table 1. (4) I n f i l t r a t i o n I n f i l t r a t i o n amount i s assumed to be constant at a l l hours and i s based on number of a i r changes per hour. I n f i l t r a t i o n l o s s or gain i s [ 1 8 ] Q = Cp (IR) ( t e - t R ) (3.3) where IR i s i n f i l t r a t i o n r a t e and Cp i s the s p e c i f i c heat of a i r i n c l u d i n g the water vapour. 3.1.3 Fundamentals Of C o o l i n g Load Determination The c o o l i n g load i s the r a t e at which heat must be removed from the thermal zone to maintain zone a i r temperature at a d e s i r e d l e v e l . The instantaneous heat gain by the space does not n e c e s s a r i l y r e s u l t i n an instantaneous c o o l i n g load because of b u i l d i n g heat storage e f f e c t . P a r t of the heat gain by the space i s by c o n v e c t i o n and r e s u l t s i n an instantaneous c o o l i n g 16 SPAC :E USE PROFILE : s OF + HOUR LIGHTS APPLIANCES OCCUPANTS 1 0 1 10 2 0 1 10 3 0 1 10 4 0 1 10 5 0 1 10 6 0 1 10 7 0 5 10 8 0 5 8 9 0 1 7 10 0 1 4 1 1 0 1 4 1 2 0 1 3 13 0 3 3 1 4 0 1 3 1 5 0 1 3 16 0 1 4 17 5 2 4 18 7 10 7 19 10 10 8 20 1 0 5 8 21 10 2 10 22 1 0 1 1 0 23 5 1 10 24 0 1 1 0 + P r o f i l e i s 10 d u r i n g the hour of maximum use Table 1 - Space Use P r o f i l e of L i g h t s , A p p l i a n c e s , and Occupants l o a d . The r e s t i s absorbed by the s u r f a c e s that enclose the space. T h i s p o r t i o n w i l l not c o n t r i b u t e to the c o o l i n g l o a d u n t i l some l a t e r time when the temperatures of s u r f a c e s are higher than the space temperature. Then, heat t r a n s f e r occurs from the s u r f a c e s to the space by c o n v e c t i o n . T h e r e f o r e , the c o o l i n g l o a d can be c o n s i d e r e d as the sum of instantaneous and delayed heat g a i n s . As a consequence, the d a i l y c o o l i n g l o a d p r o f i l e shows a lower peak than and a delay from heat gain 17 >• time F i g u r e 3 - Heat Gain and C o o l i n g Load p r o f i l e as shown i n F i g u r e 3. Accurate d e t e r m i n a t i o n of c o o l i n g l o a d i s important f o r the ac c u r a t e determination of system l o a d , because, system e f f i c i e n c y depends on the l o a d imposed on the system. Two c o n d i t i o n i n g l o a d h i s t o r i e s with the same t o t a l l o a d c o u l d r e q u i r e very d i f f e r e n t t o t a l system energy consumptions. Accurate d e t e r m i n a t i o n of the c o o l i n g l o a d through a mathematical model r e q u i r e s a l a b o r i o u s s o l u t i o n of energy balance equations of the space a i r , surrounding w a l l s , and energy sources. To demonstrate the exact c o o l i n g l o a d c a l c u l a t i o n p r i n c i p l e , a f i c t i t i o u s space enclosed by a number of w a l l s , a c e i l i n g , and a f l o o r , s u b j e c t e d to i n f i l t r a t i o n and having an i n t e r n a l heat source i s c o n s i d e r e d . The govering energy exchange equations at each i n s i d e s u r f a c e at a given time a r e : 18 Q'i Qcoin/.i. +°»rad,L + (3 roA, sol ,i + (3 r<*d, int,l f o r i=1 to n (where n i s the number of e n c l o s i n g s u r f a c e s ) where q. = r a t e of heat conducted i n t o s u r f a c e i at the i n s i d e s u r f a c e at a given time q = r a t e of c o n v e c t i v e heat t r a n s f e r between the i n s i d e " W , L s u r f a c e i and the space a i r at a given time q r a d . = r a t e of r a d i a n t heat t r a n s f e r between the i n s i d e ' s u r f a c e i and other s u r f a c e s that encloses- the space at a given time d s o l i = r a t e °f s o l a r energy coming through the windows and ra ,so,t absorbed by s u r f a c e i at a given time ^ r o d i - n t c = r a t e °f heat r a d i a t e d from i n t e r n a l energy sources and 'L ' absorbed by su r f a c e i at a given time The above equations make use of i n s i d e s u r f a c e temperatures which are unknown and space a i r temperature which i s assumed to be a known q u a n t i t y . The i n s i d e s u r f a c e temperatures can be determined by s o l v i n g the above s i x equations and the governing equations of conduction w i t h i n the s i x e n c l o s i n g c o n s t r u c t i o n elements s i m u l t a n e o u s l y . Knowing the i n s i d e s u r f a c e temperatures, the c o o l i n g load at the time of i n t e r e s t i s given by: CL = c l C o n i / +Cl^| +c^-Conv,%0\ +C^c.om/, tut where CL = c o o l i n g l o a d at the time of i n t e r e s t clcom/ = c o o l i n g l o a d c o n t r i b u t i o n from c o n v e c t i v e heat t r a n s f e r between the i n s i d e s u r f a c e s of the space and the space a i r at the time of i n t e r e s t c l ^ r = c o o l i n g l o a d c o n t r i b u t i o n from i n f i l t r a t i o n at the time of i n t e r e s t clasm/.sol = c o o l i n g l o a d c o n t r i b u t i o n from s o l a r heat coming through the windows and convected i n t o the space a i r at the time of i n t e r e s t clcoKi/.int = c o o l i n g load c o n t r i b u t i o n from i n t e r n a l energy sources and convected i n t o the space at the time of i n t e r e s t T h i s procedure of c o o l i n g l o a d d e t e r m i n a t i o n i s time 19 consuming and expensive. Use of i t in any energy s i m u l a t i o n program can not be j u s t i f i e d . 3.1.4 S i m p l i f i e d C o o l i n g Load Determination Methods Two s i m p l i f i e d c o o l i n g l o a d determination methods, time-averaging and weighting f a c t o r ( T r a n s f e r Function) methods, are d i s c u s s e d here. In t h i s work, the time-averaging method i s r e f i n e d and improved by i n c o r p o r a t i n g a s h i f t and used i n the program. The method i s named Time-Averaging with S h i f t method. The T r a n s f e r F u n c t i o n method i s d e s c r i b e d as the parameters of Time-Averaging with S h i f t method, time-averaging p e r i o d and s h i f t , are based on the r e s u l t s of the T r a n s f e r Function method. T r a n s f e r F u n c t i o n Method The T r a n s f e r F u n c t i o n method with the s u p e r p o s i t i o n p r i n c i p l e i s widely used i n l a r g e s c a l e computer energy s i m u l a t i o n programs. The c o o l i n g l o a d d e t e r m i n a t i o n r e q u i r e s m u l t i p l i c a t i o n of t i m e - s e r i e s heat gain and t h e i r c orresponding t r a n s f e r f u n c t i o n s . The s u p e r p o s i t i o n p r i n c i p l e i m p l i e s that the i n d i v i d u a l response can be determined as i f i t were independent of the others and then the responses are added to g i v e the t o t a l system response. In a d d i t i o n , the use of the T r a n s f e r F u n c t i o n method with the s u p e r p o s i t i o n p r i n c i p l e r e q u i r e s that the system i s both l i n e a r and i n v a r i a b l e . Reference 11 has shown that i t i s adequate to use a l i n e a r model when d e s c r i b i n g the energy balance between the space a i r and energy source. L i n e a r i t y 2 0 i m p l i e s that the magnitude of response and e x c i t a t i o n are l i n e a r l y r e l a t e d . I n v a r i a b i l i t y i m p l i e s that the response of e x c i t a t i o n at d i f f e r e n t times are always equal. When determining h o u r l y c o o l i n g l o a d , the t r a n s f e r f u n c t i o n c o e f f i c i e n t s f o r d i f f e r e n t energy gain sources are r e q u i r e d . Then the hourl y c o o l i n g load c o n t r i b u t i o n of i n d i v i d u a l c o o l i n g l o a d source can be determined and then the c o o l i n g l o a d c o n t r i b u t i o n s are added to give the hourl y c o o l i n g l o a d . Determination of the t r a n s f e r f u n c t i o n s i n v o l v e s s o l v i n g the heat blance equations i n S e c t i o n 3.1.3. Beside the unknown q u a n t i t i e s , i n s i d e s u r f a c e temperatures and c o o l i n g l o a d , the s o l u t i o n of the heat balance equations makes use of number of parameters whose values c o u l d take on a range of value s i n a c t u a l s i t u a t i o n s (eg. i n s i d e w a l l c o n v e c t i o n heat t r a n s f e r c o e f f i c i e n t ). Furthermore, the modelling of the room and mass i n v o l v e d c o u l d not cover a l l p o s s i b l e cases. T h e r e f o r e , i t i s r e q u i r e d to take the assumed valu e s and s i m p l i f i e d c a ses. I t i s necessary to t r e a t the problem as such to make the c a l c u l a t i o n manageable and pro v i d e a set of t r a n s f e r f u n c t i o n c o e f f i c i e n t s that i s handy to use. Reference 11 looked i n t o how d i f f e r e n t assumptions and s i m p l i f i c a t i o n s a f f e c t the accuracy of c o o l i n g l o a d determined. Appendix A d i s c u s s e s the method of t r a n s f e r f u n c t i o n s d e t e r m i n a t i o n . Time-Averaging with S h i f t method The time-averaging p r i n c i p l e i s r e f i n e d and improved by i n c o r p o r a t i n g a s h i f t to be used i n the program. The time-21 averaging and s h i f t e f f e c t i v e l y account f o r the b u i l d i n g heat storage e f f e c t to give the c o o l i n g l o a d p r o f i l e f o r d i f f e r e n t energy gain sources. The parameters, time-averaging p e r i o d and s h i f t , have been developed f o r d i f f e r e n t c o n s t r u c t i o n s ( a c c o r d i n g to i t s weight) and energy gain sources (see Table 3). As i s the case with the use of the T r a n s f e r F u n c t i o n method, t h i s method i s a l s o used with the s u p e r p o s i t i o n p r i n c i p l e . I n d i v i d u a l c o o l i n g l o a d c o n t r i b u t i o n s are determined s e p a r a t e l y u s i n g t h i s method and added to g i v e the t o t a l c o o l i n g l o a d . The Time-Averaging with S h i f t method i s only v a l i d when the f o l l o w i n g c r i t e r i a p r e v a i l : (1) The r a d i a n t p o r t i o n of heat gains from d i f f e r e n t sources are known (Table 2 ) . (2) The T r a n s f e r F u n c t i o n method p r e d i c t s a c c e p t a b l e c o o l i n g l o a d c o n t r i b u t i o n s of d i f f e r e n t heat gain sources. As s t a t e d i n S e c t i o n 1.3, t h i s method can not be s u b s t a n t i a t e d s c i e n t i f i c a l l y . However, each step can be reasoned. The c o o l i n g l o a d of the c u r r e n t hour i s determined by summing the a r i t h m e t i c average of the r a d i a n t heat gains of pre c e d i n g hours and c o n v e c t i v e heat gain of c u r r e n t hour. Mat h e m a t i c a l l y , i t can be represented by 1 -n CL = — H q r. + q c (3.4) n i = 0 The time-averaging alone has an e f f e c t on d i s t r i b u t i n g the r a d i a n t heat gain of an hour to the f o l l o w i n g hours. However, i t can not f u l l y account f o r the e f f e c t b u i l d i n g heat storage 22 ELEMENTS OF HEAT GAIN RADIANT PORTION* OF HEAT GAIN(%) t r a n s m i s s i o n 60 s o l a r gain 80 occupants 40 l i g h t s 70 equipment 50 i n f i l t r a t i o n 0 + From 1967 ASHRAE Handbook of Fundamental Table 2 - Radiant P o r t i o n of V a r i o u s Heat Gain has on c o o l i n g l o a d . The' l a g of peak c o o l i n g l o a d to the peak heat gain i s s t i l l unaccounted f o r . T h e r e f o r e , t h i s i s c o r r e c t e d by s h i f t i n g the e n t i r e d a i l y load p r o f i l e obtained with time-averaging by an amount which i t l a g s the a c t u a l p r o f i l e . The p r o f i l e a t t a i n e d using the T r a n s f e r F u n c t i o n method i s used i n pl a c e of the a c t u a l p r o f i l e . The d e t e r m i n a t i o n of the time-averaging p e r i o d and s h i f t f o r d i f f e r e n t energy sources i s a two-step procedure. The d i f f e r e n t time-averaged c o o l i n g l o a d p r o f i l e s are f i r s t determined and compared with the a c t u a l p r o f i l e . The time-averaging p e r i o d of the p r o f i l e that i s the c l o s e s t to the a c t u a l determines the time-averaging p e r i o d . Then the amount the time-averaged p r o f i l e peak l a g s the a c t u a l peak i s the s h i f t f o r the energy gain source. Appendix B e x p l a i n s i n f u r t h e r d e t a i l how the parameters are determined and shows how w e l l the 23 ELEMENTS OF HEAT GAIN TYPE (m(mass/unit a r e a ) : kg/m2) OF CONSTRUCTION AVERAGING PERIOD(h) SHIFT (h) . transmi s s i o n very l i g h t m< 50 7 0 through l i g h t 50<m<150 9 1 c o n s t r u c t ion medium I50<m<300 1 6 3 heavy 300<m<450 22 5 s o l a r gain f o r a l l types • 1 6 1 equipment f o r a l l types 1 6 1 l i g h t s f o r a l l types 1 6 . 1 occupants f o r a l l types 16 1 i n f i l t r a t ion f o r a l l types - -Table 3 - Parameters of Time-Averaging with S h i f t method method p r e d i c t s the c o o l i n g l o a d . The parameters f o r d i f f e r e n t sources of heat gain are t a b u l a t e d i n Table 3. The time-averaging p e r i o d and s h i f t depend on the heaviness of the c o n s t r u c t i o n i n v o l v e d and the energy gain source. The parameters are l a r g e r f o r hea v i e r c o n s t r u c t i o n , because h e a v i e r c o n s t r u c t i o n would r e q u i r e a longer time to have i t s temperature r a i s e d to above the room temperature and hence to c o n t r i b u t e to the c o o l i n g l o a d . The c a l c u l a t i o n s i n v o l v e d with the a p p l i c a t i o n of the Time-Averaging with S h i f t method are very simple and s t r a i g h t f o r w a r d . T h i s method only r e q u i r e s f i v e s e t s of parameter to determine the c o o l i n g load c o n t r i b u t i o n of a l l energy gain sources. 24 S u p p l y F u r n a c e & h e a t pump R e t u r n O u t d o o r 3 a i r M i x e d a i r F a n F i g u r e 4 - A i r Loop Network of A T y p i c a l Residence 3.2 System S i m u l a t i o n 3.2.1 A i r Loop S i m u l a t i o n The a i r loop i s a c l o s e d loop network ( F i g u r e 4 ). The ho u r l y l o a d imposed on the system i s the sum of the space c o n d i t i o n i n g l o a d (ConL) and the heat gain or l o s s o c c u r i n g i n the supply duct. The r e l a t i o n s h i p can be w r i t t e n as ConL + q. T + q e > / c r =0 (3.5) ^ Is ^ s y s where 25 ma Cp ( t b - ) q = (3.6) 7 60 CAP 0 q s v s = (3.7) ' 60 ma Cp ( t s - t b ) q = ( 3 < 8 ) , s 60 Unknowns are t b , , and t s . ConL i s determined from the l o a d s i m u l a t i o n . Now tfa» = t 0 X + t r (1 - X) (3.9) The r e t u r n a i r temperature, t r , i s the same as the set room temperature. Using equation (3.6) q Sys 60 fcb = ~ + fcf*n (3.10) ma Cp and u s i n g e m p i r i c a l e q u a t i o n [ 2 l ] U P L fcs = (fcb " fcds ) E x p ( ) + tds (3.11) ma Cp The h o u r l y on-time of the c o n d i t i o n i n g system can be determined using equation (3.5) -ConL T = (3.12) The system l o a d i s 26 CAP£ Qsysc = r (3.13) 7 60 3.2.2 Furnace The h o u r l y furnace burner on-time, r , determined from the a i r loop s i m u l a t i o n i s based on the assumption that the furnace operates at s t e a d y - s t a t e e f f i c i e n c y at a l l l o a d s . The furnace output per minute i s (3.14) However, t h i s i s only true f o r steady s t a t e o p e r a t i o n , when the furnace operates under stage two c o n d i t i o n f o r an hour. E f f i c i e n c y drops with the drop of furnace l o a d , hence the furnace output per minute drops. The furnace output of stage three i s somewhat l e s s than stage two due to i t s lower heat exchanger temperature. T h e r e f o r e , the e f f i c i e n c y drops as the r a t i o of stage two p e r i o d to stage three p e r i o d decreases. Hence, a c o r r e c t i o n f a c t o r which would give the c o r r e c t furnace on-time when m u l t i p l i e d by the furnace on-time based on the steady s t a t e performance i s r e q u i r e d . The e x p r e s s i o n f o r the c o r r e c t i o n f a c t o r , C^, i s 1 q 2 r 2 + q 3 r 3  = (3.15) Cf q 2('-2 + T 3 ) A computer program i s developed to determine furnace o p e r a t i n g c o n d i t i o n s , time spent, and r a t e of heat t r a n s f e r d u r i n g each stage f o r d i f f e r e n t load requirements. I t 27 LOAD STAGE 2 STAGE 3 C / RATIO,LR (min) (min) T 0.1 0.1 1 .3 1 .37 0.2 1 .0 1 .3 1 .20 0.3 2.0 1.3 1.13 0.4 3.0 1.3 1.10 0.5 4.0 1 .3 1 .08 0.6 5.0 1 .3 1 .07 0.7 6.0 1.3 1 .06 0.8 7.0 1 .3 1 .05 0.9 8.0 1 .3 1 .04 q 3/q 2=0.72 Table 4 - Furnace C o r r e c t i o n F a c t o r f o r a l l s i z e s i n c o r p o r a t e s furnace o p e r a t i o n , heat t r a n s f e r , and heat exchanger m a t e r i a l c h a r a c t e r i s t i c s . D e t a i l e d e x p l a n a t i o n of the problem f o r m u l a t i o n i s i n Appendix C. The times of stages two and three (Table 4) f o r furnaces of a l l s i z e s at d i f f e r e n t load r a t i o s , LR, are determined using the program. The LR i s d e f i n e d as the r a t i o of h o u r l y furnace l o a d to furnace c a p a c i t y . I t i s p r e d i c t e d that the o p e r a t i o n p a t t e r n s are the same f o r a l l furnace s i z e s . The burner i s on d u r i n g the stages one and two and the fan i s on du r i n g the stages two and t h r e e . The program p r e d i c t s that there i s no s i g n i f i c a n t d i f f e r e n c e between d u r a t i o n s of stages one and t h r e e . To s i m p l i f y the a i r loop s i m u l a t i o n , the combined time of stages two and three i s t r e a t e d as furnace on-time to represent both the burner on-time and fan on-time. The combined time of stages two and three i s used i n s t e a d of two and one, because the time of stage three i s more a c c u r a t e l y determined than stage one. Using the Zj values of Table 4, a polynomial equation of 28 the furnace on-time c o r r e c t i o n f a c t o r as a f u n c t i o n of load r a t i o i s e s t a b l i s h e d . I t i s Cj. (LR) = 1 .568-2.51 5 LR+4.195 LR 2-2.300 LR 3 (3.16) The above polynomial equation can be used f o r furnaces of a l l s i z e s . The furnace on-time, 7y , i s determined by m u l t i p l y i n g the h o u r l y on-time of the c o n d i t i o n i n g system from the a i r loop s i m u l a t i o n ( S e c t i o n 3.2.1) by the a p p r o p r i a t e c o r r e c t i o n f a c t o r . The h o u r l y burner energy use i s EU = — T — — 7 — (3.17) 60 The h o u r l y fan e l e c t r i c i t y energy use i s ELE = (3 . 1 8 ) 60 I t i s assumed that the same furnace o p e r a t i o n treatment d i s c u s s e d above can be a p p l i e d to a l l three furnace types, gas, o i l , and e l e c t r i c . 3.2.3 Heat Pump Steady s t a t e heat pump performance at v a r y i n g outdoor c o n d i t i o n s w e l l documented by d i f f e r e n t manufacturers[10]. The heat pump performance degradation due to the t r a n s i e n t e f f e c t s i s s m a l l [ l l ] t h e r e f o r e i t i s n e g l e c t e d . Performance i s ra t e d using standard t e s t c o n d i t i o n s based on the ARI standards 240-76 29 and 270-75. Performance i s ra t e d under the f o l l o w i n g c o n d i t i o n s : i . 72% outdoor r e l a t i v e humidity i i . Three minimum performance r a t i n g s are done at three outdoor temperatures; -8.3°C/-9.4°C + low temperature and 8.3°C/6.1°C h i g h temperature f o r hea t i n g and 35°C f o r c o o l i n g i i i . The c o o l i n g r a t i n g s with the a i r temperature e n t e r i n g the indoor c o i l of 26.7°C/19.4°C i v . The hea t i n g r a t i n g s are done with the a i r temperature e n t e r i n g the indoor c o i l of 21.1°C v. The r a t i n g s are done with a i r flow r a t e of 0.212 m 3/s +  + per every 352 W of c o o l i n g c a p a c i t y at 35°C outdoor temperature Performance r a t i n g depends on the s i z e of the heat pump and enthalpy of the outdoor a i r . Performance r a t i n g i s non-d i m e n s i o n a l i z e d by d i v i d i n g each r a t i n g by i t s r e s p e c t i v e s e n s i b l e c o o l i n g r a t i n g at 35°C to e l i m i n a t e the dependence on the s i z e of the heat pump. Heat pump s i z e quoted i s the c o o l i n g r a t i n g ( s e n s i b l e and l a t e n t ) at outdoor temperature of 35°C. The non-dimensionalized q u a n t i t y i s p l o t t e d a g a i n s t the enthalpy ( F i g u r e s 5 and 6). The p l o t s show that the r e l a t i o n s h i p s between the two q u a n t i t i e s can be represented by a l i n e a r equation of f o l l o w i n g form + dry-bulb/wet-bulb temperature + + ARI s t a t e s 0.183 m3/s but 0.212 m3/s i s used 30 ChPhp = a + b h (3.19) For h e a t i n g (Figure 5), two l i n e a r equations are used. The c a p a c i t y r e p r e s e n t a t i o n i s d i v i d e d i n t o two regions bounded by 20 kJ/kg enthalpy l e v e l . Two s t r a i g h t l i n e s are chosen over a curve to represent the performance because when the i n d i v i d u a l heat pump performance i s p l o t t e d two s t r a i g h t l i n e s represented the performance more c l o s e l y than a curve, The c o o l i n g performance (Figure 6) r e q u i r e s one l i n e a r equation over the e n t i r e o p e r a t i n g range. A s i m i l a r approach i s taken to develop e x p r e s s i o n s f o r e l e c t r i c i t y use by the heat pump. The concept of c o e f f i c i e n t of performance(COP) i s a p p l i e d f o r both h e a t i n g and c o o l i n g . T h i s i s p l o t t e d a g a i n s t enthalpy of the outdoor a i r (Figure 7 and 8). The two q u a n t i t i e s are l i n e a r l y r e l a t e d . The c o e f f i c i e n t s , a and b, are l i s t e d i n Table 5. A l l the r a t i n g s are done under standard a i r flow c o n d i t i o n s . In p r a c t i c e , t h i s can not be met when the heat pump i s used s i n c e the e x i s t i n g furnace fan i s used with the r e t r o f i t heat pump. Th e r e f o r e , a c o r r e c t i o n f a c t o r t h a t accounts f o r the a i r flow v a r i a t i o n i s needed. According to the in f o r m a t i o n p r o v i d e d by manufacturers[10], only the c o o l i n g performance i s s i g n i f i c a n t l y a f f e c t e d by a i r flow v a r i a t i o n . The e f f e c t on the hea t i n g performance i s marginal and t h e r e f o r e n e g l e c t e d . The c o r r e c t i o n f a c t o r f o r c o o l i n g performance i s a l i n e a r f u n c t i o n of a i r flow r a t i o (AFR) and can be w r i t t e n as C y (AFR) = 0.95 + 0.05 AFR (3.20) The equation (3.19) can be m o d i f i e d to give the c o r r e c t c a p a c i t y 31 2 . 5 CO LLI CO z u Q i j 1 . 5 o < o 1 . 0 CL < ^ 0 . 5 0 . 0 1 1 1 1 1 1 1 1 1 1 I 1 1 -(! ^ - ^ ^ \ V V ^ — k — a 1 1 1 1 1 1 1 1 1 i 1 1 1 - 2 0 - 3 0 0 ID . 2 0 30 40 OUTDOOR A!R ENTfiAL.FY('<J/KG) 50 F i g u r e 5 - Heating C a p a c i t y of R e s i d e n t i a l Heat Pump as f o l l o w s : CAP h p = (a + b h) C h p (AFR) (3.21) A c o r r e c t i o n f a c t o r must be i n c l u d e d f o r heat pump e l e c t r i c i t y use. I t i s a l i n e a r f u n c t i o n of AFR and can be w r i t t e n as C e hp (AFR) = 0.98 + 0.002 AFR (3.22) The h o u r l y energy use by the heat pump i s 32 2 . 5 CO UJ ° 2 . 0 CO UJ C i UJ 1 . 5 o < o ! . 0 CL < ^ . 0 . 5 0 . 0 70 B 0 ' 90 100 110 ]20 .130 ! 43 OUTDOOR ALR E.NTHAL.PY(!<J/KG) F i g u r e 6 - Co o l i n g C a p a c i t y of R e s i d e n t i a l Heat Pump EU CAP hp Tfcp C e hp COP 60 (3.23) The h o u r l y energy use by the furnace fan i s EU 60 (3.24) 33 Outdoor a i r enthalpy (kJ/kg) Coef f i c ier i t s ( a , b) dimensionless capac i t y CAP=a + b h dimensionless e l e c t r i c i t y use COP=a + b h hea t i n g 20>h 0.948 , 0.0268 2.101 , 0.0375 20<h 1.158 , 0.0166 2.612 , 0.0128 c o o l i n g - 1.075 ,-0.00089 2.250 ,-0.0050 Table 5 - C o e f f i c i e n t s of Heat Pump Performance Representation 3.3 S i m u l a t i o n Of Weather Information Condensed weather data c o n s i s t i n g of three days of a c t u a l weather i n f o r m a t i o n per month i s used to simulate weather c o n d i t i o n s . Each day i s s e l e c t e d from a ten (or ei g h t or eleven) day p e r i o d of each month. Monthly energy use i s found by m u l t i p l y i n g the energy use of three s e l e c t e d days by an a p p r o p r i a t e r a t i o . M a thematically, i t can be w r i t t e n as f o l l o w s : N 3 EU = — 2.( E U f j + E U h p d ) (3.25) 3 i = 1 The procedures used to s e l e c t the days i n c l u d e d i n the condensed weather data are the f o l l o w i n g . Hourly c o n d i t i o n i n g l o a d of a f i c t i t i o u s house i s determined f o r every hour of every day of a year. The ho u r l y energy consumption of e i t h e r the furnace or heat pump i s determined using the methods developed i n S e c t i o n s 3.2.2 and 3.2.3 and added to give the d a i l y energy consumptions of each equipment. Then a day from each ten day 34 5 . 0 CO UJ O 4 . 0 CO UJ Q t— CL 3 . 0 h i— z> 2 . 0 CL t— O ^ J . 0 0 . 0 -20 - ] 0 0 10 20 30 4Q OUTDOOR AIR ENTHALPY (KJ/KG) 50 F i g u r e 7 - Non-Dimensionalized Energy Use of Heat Pump(heating) p e r i o d which i s the most r e p r e s e n t a t i v e from the energy consumption p o i n t of view ( i . e . when the energy consumptions are m u l t i p l i e d by ten and summed, i t i s the c l o s e s t to the ten day energy consumption t o t a l ) i s chosen. Only the d r y - b u l b temperature i s c o n s i d e r e d t o determine the c o n d i t i o n i n g l o a d . T h i s not only saves the time i n v o l v e d f o r s e l e c t i o n of days but a l s o i s a good approximation as the dry-bulb temperature i s the one weather v a r i a b l e that i s the most i n d i c a t i v e of the l e v e l of the c o n d i t i o n i n g l o a d . 3 5 5 . 0 CO CO UJ o 4 . 0 CO UJ Q t— Z> CL 3 . 0 =>2.D k o CL 1-0 h 0 . 0 70 BO 90 ! 0 0 110 ]20 3 30 OUTDOOR A!R ENTHALPY (KJ/KG) ] 40 F i g u r e 8 - Non-Dimensionalized Energy Use of Heat Pump(cooling) Once the days are s e l e c t e d , the h o u r l y dry-bulb temperature p r o f i l e a long with i t s corresponding h o u r l y humidity r a t i o * and outdoor a i r enthalpy p r o f i l e s are i n c l u d e d i n the weather f i l e . The d r y - b u l b temperature and enthalpy are used to determine heat t r a n s f e r through the c o n s t r u c t i o n elements and heat pump c a p a c i t y . The ho u r l y s o l a r heat g a i n f a c t o r and s o l - a i r + T h i s q u a n t i t y i s not used i n the program 3 6 temperature of s e l e c t e d days are determined f o r s i x t e e n p r i n c i p a l d i r e c t i o n s and a h o r i z o n t a l s u r f a c e and i n c l u d e d i n a separate f i l e . The s o l a r heat gain f a c t o r i s used to determine the s o l a r gain through f e n e s t r a t i o n . S o l - a i r temperature i s used to determine the heat t r a n s f e r through c o n s t r u c t i o n elements by the Time-Averaging with S h i f t method. Average monthly temperature of e a r t h i s a l s o i n c l u d e d i n the condensed weather data. 37 IV. PROGRAM The program, RHECAP(Residential Home Energy Consumption A n a l y s i s Program), i s w r i t t e n using FORTRAN language and t e s t e d on UBC computing f a c i l i t y (Amdahl 470/V6-II). C o r r e c t a p p l i c a t i o n s of the s i m u l a t i o n methods are v e r i f i e d through manual checks of the program and i t s s u b r o u t i n e s . The program subrout i n e s and input requirements, output, and how to run the program are d i s c u s s e d i n Appendix D. The l o g i c flow diagram f o r the main program i s i n c l u d e d i n Appendix E. 38 V. VALIDATION OF THE PROGRAM 5.1 Method The energy a n a l y s i s r e s u l t s of RHECAP are compared with the r e s u l t s of two r e f e r e n c e programs. The r e f e r e n c e programs s e l e c t e d f o r the purpose are EASl[22] and BLAST[23,24]. Two s t r u c t u r e s are used f o r comparison; one f o r each r e f e r e n c e program. RHECAP was used to perform the energy a n a l y s i s on both s t r u c t u r e s and the r e s u l t s are compared. EASI i s s i m i l a r t o RHECAP i n i t s i n t e n t i o n and complexity of a n a l y s i s . EASI was w r i t t e n with the i n t e n t i o n of p r o v i d i n g an easy-to-use energy program at the expense of reduced accuracy and c a p a b i l i t y . T h i s means EASI i s not s u i t a b l e f o r accurate energy performance p r e d i c t i o n , but r a t h e r , i s s u i t a b l e f o r comparison of a l t e r n a t i v e s . EASI only performs the c o n d i t i o n i n g load s i m u l a t i o n . EASI performs the b u i l d i n g thermal l o a d s i m u l a t i o n based on condensed weather data; each month of the condensed weather data c o n s i s t s of seven days. The e r r o r s of l e s s than 5% were claim e d from the use of condensed weather data.[22] EASI has not been throughly t e s t e d and i t i s not i n i t s f i n a l form. BLAST i s a comprehensive energy a n a l y s i s program that has been throughly t e s t e d [ 2 4 ] . I t i s capable of han d l i n g many of the commercial systyems. I t uses f u l l y e a r l y weather data to simulate the weather c o n d i t i o n . The s t r u c t u r e used with EASI i s an e x i s t i n g house i n Vancouver, B.C. I t i s a s i n g l e s t o r e y house with a basement. The e n t i r e house i s d i v i d e d i n t o three zones; l i v i n g room, 39 t r B e d Rm K i t c h e n B a t h B e d Rm L i v i n g Rm 1 G r o u n d f l o o r W a l l F e n ^ r . t r a t i o n d o u b l e o l a z e d L a u n d r y & F u r n a c e Rm B a s e m e n t f l o o r F i g u r e 9 - F l o o r Plan 40 bedroom, and basement. F i g u r e 9 shows the f l o o r p l a n of the house. The s t r u c t u r e used with BLAST i s a f i c t i t i o u s house (Vancouver l o c a t i o n ) . I t i s again a s i n g l e s t o r e y house with the dimensions of 9.1 m X 12.2 m X 4.9 m. The e n t i r e s t r u c t u r e i s d i v i d e d i n t o two zones; above-ground and below-ground. The comparison with . EASI only f e a t u r e s load s i m u l a t i o n r e s u l t s s i n c e EASI does not have the c a p a b i l i t y of handl i n g the furnace and heat pump system. Furthermore, l i v i n g room loads are only compared as the c o n d i t i o n i n g l o a d of EASI does not i n c l u d e the heat t r a n s f e r between the s t r u c t u r e and e a r t h . Due to the l a c k of a c t u a l energy use data, the system s i m u l a t i o n r e s u l t s of RHECAP are not compared with the a c t u a l f i g u r e . However, i t i s v e r i f i e d that the system s i m u l a t i o n r e s u l t s are d e r i v e d from the l o a d s i m u l a t i o n r e s u l t s . The comparison with BLAST only f e a t u r e s h e a t i n g load and furnace energy consumption r e s u l t s as other data of the BLAST run[25] i s not a v a i l a b l e . 5.2 Input And Output The input and output of RHECAP runs are i n c l u d e d i n Appendix F. 5.3 Remarks The r e s u l t s of RHECAP and EASI are t a b u l a t e d i n Table 6 and p l o t t e d i n F i g u r e 10. One-to-one comparisons of monthly c o n d i t i o n i n g loads are not s t r i c t l y p o s s i b l e because d i f f e r e n t weather data and space use p r o f i l e s are used. However, the o v e r a l l y e a r l y weather p a t t e r n does not change d r a s t i c a l l y from 41 HEATINC 5 (kWh) COOL INC 5 (kWh) MONTH RHECAP EASI RHECAP EASI 1 2101 1400 0 37 2 1374 1 1 30 8 16 3 954 945 38 38 4 828 723 67 141 5 409 415 202 186 6 226 153 430 41 1 7 1 05 1 47 452 702 8 134 1 66 463 508 9 256 340 189 284 10 850 532 14 1 19 1 1 1351 1021 1 27 12 1 400 1303 0 1 1 TOTAL 9991 8276 1 864 2478 TOTAL RHECAP = 11855 EASI = 10754 Table 6 - Run R e s u l t s of RHECAP and EASI one year to another. Based on t h i s assumption, items of i n t e r e s t are the c o r r e l a t i o n of the monthly loads and y e a r l y t o t a l l o a d s . F i g u r e 10 i n d i c a t e s that the set of r e s u l t s are s t r o n g l y c o r r e l a t e d with few d e v i a t i o n s . There are a. s i z a b l e d i f f e r e n c e s i n h e a t i n g demand f o r January and c o o l i n g demand f o r J u l y . The p o s s i b l e e x p l a n a t i o n s a r e : (1) January and J u l y of 1979, the year RHECAP weather f i l e i s based on, was c o l d e r than long term January and J u l y averages (2) The c o o l i n g demand of RHECAP i s s e n s i b l e only when the c o o l i n g demand of EASI i s f o r sum of s e n s i b l e and l a t e n t The system s i m u l a t i o n r e s u l t s are v e r i f i e d by checking hourl y c a l c u l a t i o n s of furnace and heat pump lo a d s . I t i s a l s o 42 2400 i 1 1 1 1 1 1 1 1 1 r MONTH F i g u r e 10 - Heating and C o o l i n g Demands of RHECAP and EASI v e r i f i e d that the monthly furnace and heat pump loads are reasonable f i g u r e s f o r corresponding monthly c o n d i t i o n i n g l o a d s . The furnace energy consumption i n d i c a t e s that the furnace y e a r l y average e f f i c i e n c y i s 62%. The program a l s o p r e d i c t s that the heat pump operates with y e a r l y average c o e f f i c i e n c y of performance of 2.0. The r e s u l t s of RHECAP and BLAST are t a b u l a t e d i n Table 7 43 HEATINC 5 (kWh) FURNACE C :ON (kWh) MONTH RHECAP BLAST RHECAP BLAST 1 6433 5710 9510 7079 2 3855 4249 5833 5273 3 2420 3228 3774 3991 4 2391 2418 3940 2982 5 1 231 1 267 2096 1 550 6 646 679 1 1 78 826 7 345 395 61 1 480 8 464 507 823 616 9 1 029 1012 1 849 1234 10 3052 2347 4874 2890 1 1 3836 3941 6043 4885 1 2 4661 4331 7081 5369 TOTAL 30361 30088 4761 1 37185 Table 7 - Run R e s u l t s of RHECAP and BLAST and p l o t t e d (heating load only) i n F i g u r e 11. The r e s u l t s of both RHECAP and BLAST are f o r the year 1979. F i g u r e 11 i l l u s t r a t e s that the he a t i n g load r e s u l t s of two programs match c l o s e l y . The d i f f e r e n c e of the y e a r l y t o t a l l o a d i s 1% of the t o t a l . Comparison of the furnace energy consumption r e s u l t s i s not v a l i d s i n c e BLAST does not simulate the t r a n s i e n t furnace o p e r a t i o n . The furnace energy consumptions are d e r i v e d by merely d i v i d i n g the hea t i n g l o a d by the furnace e f f i c i e n c y (80%). RHECAP p r e d i c t s that the y e a r l y furnace e f f i c i e n c y i s 65%. . The v a l i d a t i o n shows that RHECAP p r e d i c t i o n s are s a t i s f a c t o r y when used with Vancouver weather data and the p a r t i c u l a r s t r u c t u r e s employed f o r v a l i d a t i o n . I t a l s o seems t o i n d i c a t e that the s i m u l a t i o n methods used i n the program are 4 4 F i g u r e 11 - Heating Loads of RHECAP and BLAST v a l i d . 4 5 VI. CLOSING REMARKS 6.1 Co n c l u s i o n s The computer energy s i m u l a t i o n program that i s easy-to-use, low c o s t i n g , r e q u i r e s simple input, and produces simple output f o r easy a n a l y s i s has been developed. T h i s program i s designed f o r s t r u c t u r e s that use a combined system of furnace and heat pump. I t has been demonstrated that the program generates s a t i s f a c t o r y r e s u l t s f o r the s t r u c t u r e s used f o r v a l i d a t i o n . Time-Averaging with S h i f t method developed here can s a t i s f a c t o r i l y c a l c u l a t e c o o l i n g l o a d c o n t r i b u t i o n s of a l l energy sources. T h i s method only r e q u i r e s f i v e s e t s of parameter, time-averaging p e r i o d and s h i f t , to c a l c u l a t e the c o o l i n g l o a d of a l l heat gain sources. The g e n e r a l i z e d methods of r e p r e s e n t i n g furnace and heat pump performances have been developed. They can be a p p l i e d to u n i t s of d i f f e r e n t c a p a c i t i e s and manufacturers. The furnace performance f o r the e n t i r e o p e a r a t i n g c o n d i t i o n s i s represented with the steady s t a t e furnace performance and a c o r r e c t i o n f a c t o r developed here. The c o r r e c t i o n f a c t o r i s a polynomial equation which expresses the furnace performance degradation with the drop of the furnace l o a d . Six l i n e a r equations that represent the non-dimensionalized heat pump performance, the output r a t i n g (heating and s e n s i b l e c o o l i n g ) and e l e c t r i c i t y use, have been developed. The equations are the f u n c t i o n s of outdoor enthalpy. The 46 performance over the e n t i r e outdoor o p e r a t i n g c o n d i t i o n s can be represented with above s i x equations and the r a t e d tonnage ( s e n s i b l e ) of the heat pump. A simple method of choosing the days whose weather i n f o r m a t i o n i s i n c l u d e d i n a y e a r l y condensed weather data has been developed and used with good r e s u l t . 6.2 L i m i t a t i o n s Of The Program Because the program developed i n c o r p o r a t e s many s i m p l i f i e d s i m u l a t i o n methods, i t i s best s u i t e d f o r comparing a l t e r n a t i v e s , a l t e r n a t i v e c o n s t r u c t i o n m a t e r i a l s and the space c o n d i t i o n i n g systems. By the same reasoning, i t i s not to be used f o r the purpose of p r e d i c t i n g the a b s o l u t e energy use of or d e s i g n i n g a p a r t i c u l a r space c o n d i t i o n i n g system. The p a r t i c u l a r uses of the program a r e : i . Annual space c o n d i t i o n i n g load of a s t r u c t u r e at both design and e x i s t i n g stages i i . Annual energy use by a furnace i i i . Annual energy use by combination of the furnace and heat pump The annual energy saving of a r e t r o f i t heat pump use can be determined a f t e r making two separate s i m u l a t i o n runs. F i r s t , the energy use by the furnace alone i s determined by running the program u s i n g a f a l s e balance p o i n t temperature that i s higher than the hi g h e s t winter ambient temperature. Second, the energy use by the furnace and heat pump i s determined by running the 4 7 program using the recommended balance p o i n t temperature. Then, annual h e a t i n g energy saving can be determined knowing the c u r r e n t u n i t gas(or o i l ) and/or u n i t e l e c t r i c i t y p r i c e . As an example, a y e a r l y s aving of $200 i s p r e d i c t e d u sing the input used with EASI (Appendix F ) . One problem a s s o c i a t e d with the r e s i d e n t i a l energy s i m u l a t i o n i s the temperature c o n t r o l mechanism. I t r a r e l y maintains the temperature a c c o r d i n g to the c o n t r o l assumed i n the s i m u l a t i o n program, i n that the system i s s e n s i t i v e to the t o t a l l o a d requirement of the s t r u c t u r e . I t i s only s e n s i t i v e to the l o a d requirement of the zone where the thermostat i s l o c a t e d . T h e r e f o r e , there i s uneven temperature d i s t r i b u t i o n throughout the s t r u c t u r e . I t i s beyond the scope of t h i s work to i n c l u d e the uneven temperature d i s t r i b u t i o n . The r a t e of heat t r a n s f e r through the below-grade w a l l i s not uniform throughout. I t decreases with depth. Furthermore, the r a t e of heat t r a n s f e r through the below-grade f l o o r depends on the depth of f l o o r below grade and the f l o o r shape[26]. In t h i s work, the d e t a i l e d c a l c u l a t i o n procedures are not employed. The r a t e s of heat t r a n s f e r through below-grade w a l l and f l o o r are determined using the steady s t a t e conduction equation ( S e c t i o n 3.1.2). T h e r e f o r e , the program user has to p r o v i d e proper heat t r a n s f e r c o e f f i c i e n t s of below-grade w a l l and f l o o r . C e r t a i n l o a d c o n t r i b u t i n g items of a r e s i d e n c e can vary g r e a t l y from a c t u a l to what i s assumed in s i m u l a t i o n . They are items such as the i n f i l t r a t i o n r a t e , occupancy, use of l i g h t , and a p p l i a n c e use. T h e r e f o r e , the o v e r a l l r e s u l t s of the 48 computer program can be q u i t e d i f f e r e n t from the a c t u a l . T h i s i s another v a l i d reason to use the program f o r comparison purpose rather than d e t e r m i n a t i o n of the a b s o l u t e energy use. 6.3 Recommendation For Furt h e r Work P o s s i b l e program improvements are the d i r e c t r e s u l t s of the change i n b u i l d i n g p r a c t i c e such as the presence of overhangs or shade on south f a c i n g windows and the use of sol a r i u m s . These can have s i g n i f i c a n t impact on t o t a l energy use. T h e r e f o r e , improvements of the program to account f o r above items on the t o t a l energy use would be worthwhile. Another improvement can be made on the handl i n g of the thermostat setback s e t t i n g . The improved -thermostat setback s e t t i n g h a n d l i n g r o u t i n e would i n c o r p o r a t e the t r a n s i e n t response of the space temperature to the change of thermostat s e t t i n g . More v a l i d a t i o n s of the program and i t s s i m u l a t i o n methods using weather data other than the one used i n t h i s work i s d e s i r a b l e . The weather data of other c i t i e s , long term average and a p a r t i c u l a r year, i s recommended to be used. The weather data used i n t h i s work i s f o r Vancouver i n 1979. 49 BIBLIOGRAPHY 1. ASHRAE, Procedure f o r Determining Heating and C o o l i n g Loads f o r Computerizing Energy C a l c u l a t i o n s , Task Group on Energy Requirements f o r Heating and C o o l i n g of B u i l d i n g s , 1976. 2. ASHRAE, CHAPTER 28 A i r - C o n d i t i o n i n g C o o l i n g Load, ASHRAE Handbook of Fundamentals, ASHRAE, New York, 1967. 3. M i t a l a s , G.P., An Assessment of Common Assumptions i n E s t i m a t i n g C o o l i n g Loads and Space Temperature, ASHRAE Paper No. 1949, 1965. 4. Stephenson, D.G. and M i t a l a s , G.P., C o o l i n g Load C a l c u l a t i o n s by Thermal Response F a c t o r Method, ASHRAE Paper No. 2018, 1967. 5. M i t a l a s , G.P. and Stephenson, D.G., Room Thermal Response F a c t o r s , ASHRAE Paper No. 2019, 1967. 6. M i t a l a s , G.P., An Experimental Check on the Weighting Fa c t o r Method of C a l c u l a t i n g Room C o o l i n g Load, ASHRAE Paper No. 2125, 1969. 7. Peavy, B.A., Burch, D.M., Powell, F . J . , and Hunt, CM., Comparison of Measured and Computer P r e d i c t e d Thermal Performance of a Four Bedroom Wood-Frame Townhouse, U.S. Departmernt of Commerce and N a t i o n a l Bureau of Standards, 1 975. 10, Gable, G.K. and Koenig, K., Seasonal Operating Performance of Gas Heating Systems with C e r t a i n Energy-Saving F e a t u r e s , ASHRAE Paper No. CH-77-14 #2, 1977. B l a n c e t t , R.S., Sepsy, C.F., McBride, M,F,. and Jones, CD., Energy C a l c u l a t i o n Procedures f o r Residences with F i e l d V a l i d a t i o n , ASHRAE Paper No. PH-79-7A #4, 1979. Information Brochure C a r r i e r Lennox Westinghouse York 38RQ 5-15-79 22-2018-7 22-2080-3 22-2057-8, 22-2073-4, 22-2080-4, 22-2081-4, and 22-2082-2 515.21-SG3U79) and 5 1 5. 30-TG2 (1 080 ) 11. Goldschmidt, V.W., Hart, G.H., and Reiner, R.C, A Note on the T r a n s i e n t Performance and Degradation C o e f f i c i e n t of a F i e l d Tested Heat Pump - C o o l i n g and Heating Mode, ASHRAE Paper No 2610, 1980. 50 12. G r o f f , G.C. and Reedy, W.R., I n v e s t i g a t i o n of Heat Pump Performance i n the Northern Climate Through F i e l d M o n i t o r i n g and Computer S i m u l a t i o n , ASHRAE Paper No. At-78-8 #1, 1978. 13. Shade, G.R., Saving Energy by Night Setback of a R e s i d e n t i a l Heat Pump System, ASHRAE Paper No. AT-78-8 #2, 1978. 14. Schneider, K.S., HVAC C o n t r o l Systems, John Wiley and Sons, Inc., New York, 1981. 15. Honeywell i n f o r m a t i o n brochure, Form No. 60-2485-1, pp31, 1 981 . 16. ASHRAE, Chapter 25 Furnaces and Space Heaters, ASHRAE Handbook of Equipment, ASHRAE, New York, 1979. 17. B l a t t , M.H. and E r i c k s o n , R.C, R e s i d e n t i a l Hybrid Heat Pump S t a t e - o f - t h e - A r t Assessment, ASHRAE paper No. 2611, 1980. 18. ASHRAE, Chapter 25 A i r - C o n d i t i o n i n g C o o l i n g Load, ASHRAE Handbook of Fundamentals, ASHRAE, New York, 1977. 19. ASHRAE, Chapter 26 F e n e s t r a t i o n ASHRAE Handbook of Fundamentals, ASHRAE, New York, 1977. 20. Hay, J.E., Department of Geography UBC, R a d i a t i o n Measurements of Vancouver 1979 and 1980(on Magnetic Tape). 21. ASHRAE, Procedures f o r S i m u l a t i n g the Performance of Components and Systems f o r Energy C a l c u l a t i o n s , ASHRAE, New York, 1975. 22. EASI: The program and i t s documentation are not p u b l i c l y a v a i l a b l e y e t ; The program and documentation (User's, E n g i n e e r i n g , and Programmer's manuals i n d r a f t form) are l o c a l l y a v a i l a b l e through the B.C. Hydro; T h i s program i s the work of the P u b l i c Works Canada, Computer Aided Design(CAD) Centre, 1980. 23. H i t t l e , D.C, BLAST, The B u i l d i n g Loads A n a l y s i s and System Thermodynamics Program, Reference Manual, U.S. Army C o n s t r u c t i o n E n g i n e e r i n g Laboratory, Champaign, I l l i n o i s , 1977. 24. H i t t l e , D.C, BLAST Program, Proceeding of T h i r d I n t e r n a t i o n a l Symposium on the use of Computer f o r En g i n e e r i n g Related to B u i l d i n g s , 271-280, 1978. 25. BLAST r e s u l t s on a f i c t i t i o u s house i n Vancouver, Prepared by Hoy Lau of B.C. Hydro, Vancouver, B.C., 1982. ASHRAE, Chapter 24 Heating Load, ASHRAE Handbook of Fundamentals, ASHRAE, New York, 1977. Chapman, A.J., Heat T r a n s f e r , T h i r d E d i t i o n , Macmillan P u b l i s h i n g Co. Inc., New York, 1974. 52 APPENDIX A ~ TRANSFER FUNCTION The g e n e r a l i z e d method of determining the response f a c t o r ( t r a n s f e r f u n c t i o n s ) f o r any room and e x c i t a t i o n i s d i s c u s s e d . T h i s i s the summary of the r e f e r e n c e 13. In an e n c l o s u r e , a l l three modes of heat t r a n s f e r , c o n v e c t i o n , r a d i a t i o n , and cunduction, occur simultaneously between e n c l o s i n g s u r f a c e s and the enclosed a i r . T h e r e f o r e , heat balance on u n i t area f o r any i n s i d e s u r f a c e i at time n can be w r i t t e n as: where q = c o n v e c t i o n heat gain (=h; (TQ- TV ) where h; =convection heat t r a n s f e r c o e f f i c i e n t s , T a = a i r temperature, T<; =temperature of s u r f a c e i ) Qrad i n = r a d i a n t heat gain (=2-9i.j (Tj -Tj_ ) where J=number of e n c l o s i n g s u r f a c e s , g*'. =fc.j4crTa^ , fc,j =absorption f a c t o r s f o r s u r f a c e i,V=Stefan-Boltzmann cons t a n t , T<xi/g =time average of a l l a b s o l u t e s u r f a c e temperatures) Qcond L,H = conduction heat gain ( t h i s amount can be expressed i n time s e r i e s form using the temperatures of inner and outer w a l l s and corresponding response f a c t o r s , i t can be w r i t t e n as: oo oo where x p and y^ are response f a c t o r s ( Appendix A of Reference 13 g i v e s the formulas f o r the temperatures and f a c t o r s ) , T K=outer w a l l s u r f a c e temperature) e ^ n = e x c i t a t i o n S u b s t i t u t i o n of heat gain e x p r e s s i o n s i n equation (A.1) and rearrangement of terms g i v e s : 53 J J -Ten ( h L +2.91, + x 0 ) + T y o + Z g , . T,.. -e£.n - T a . n h : + £ T U , . - p > * P ~ p | T ^ n - P ) v P { A ' 2 ) The heat balance f o r room a i r can be w r i t t e n as: dt B (A.3) where t = time B = heat storage c a p a c i t y of room a i r q = r a t e of heat ( s e n s i b l e ) removed by c o n d i t i o n i n g system $ % A l h L ( T l -TV ) Equation (A.3) can be approximated by: dTo. Ta_ i t - T a t _ A _ (A.4) dt A Equating equations (A.3) and (A.4) with s u b s t i t u t i o n of the ex p r e s s i o n f o r £ i n equation (A.3) g i v e s : L A i h L T L ) n - ( |- + £ A, h- ) T A |„ i - i l - l "A" + --- T f t l C M.„ = q n (A.5) The equation (A. 2 ) can be w r i t t e n i n matrix form such as: [M] • [T]n = [ K ] n (A.6 ) where [M] = constant matrix ( c o n t a i n s a l l the constant terms of equation (A.2)) [ T ] n = temperature matrix (column of temperatures of i n s i d e s u r f a c e s at time n) [K] = e x c i t a t i o n matrix (column of e x c i t a t i o n components at time n) I n v e r t i n g the matrix [M], [ T ] ^ can be s o l v e d by: 54 .[T ] n = [M] • [ K ] n (A.7) The s u r f a c e temperature and c o o l i n g l o a d response f a c t o r s fo r any e x c i t a t i o n can be determined by s o l v i n g equations (A.7) and (A.5) r e s p e c t i v e l y . The su r f a c e temperature response f a c t o r s f o r any e x c i t a t i o n are determined by only l e t t i n g the e x c i t i o n i n c o n s i d e r a t i o n take a u n i t time s e r i e s ( i . e . 1,0,0, • • m ) • The c a l c u l a t i o n s t a r t s with n=0. Using [ K ] 0 , whose elements are a l l zero except the element that c orresponding the e x c i t a t i o n i n c o n s i d e r a t i o n , [ T ] 0 i s determined using equation (A.7). Then, the procedures are repeated u n t i l the s u c c e s s i v e terms i n each of the temperature t i m e - s e r i e s become con s t a n t . Now T i i M obtained can be used i n (A.5) to get the c o o l i n g l o a d response f a c t o r s f o r the e x c i t a t i o n i n c o n s i d e r a t i o n . 55 APPENDIX B - TIME-AVERAGING WITH SHIFT PARAMETER DETERMINATION The w a l l types l i s t e d i n 1977 ASHRAE Handbook of Fundamentals[18] and t h e i r t r a n s f e r f u n c t i o n c o e f f i c i e n t s are used to i l l u s t r a t e the method of parameter d e t e r m i n a t i o n . The w a l l s are d i v i d e d i n t o four groups a c c o r d i n g to t h e i r heat t r a n s f e r c o e f f i c i e n t s ( U - v a l u e s ) . Each group i s f u r t h e r d i v i d e d i n t o four subgroups a c c o r d i n g to t h e i r mass per u n i t area (kg/m 2, see S e c t i o n 4.2). These d i v i s i o n s are necessary to show that the parameters, time-averaging p e r i o d and s h i f t , depend only on the mass of the w a l l . For each w a l l , the c o n t r i b u t i o n to the c o o l i n g load i s determined u s i n g : i . Hourly heat gain i s c a l c u l a t e d using Q = U A ( t s a _ - t a ) (B. 1 ) i i . Averages of the r a d i a n t heat g a i n s ( T a b l e 2) of p r e c e d i n g hours are added to the c o n v e c t i v e heat g a i n of the c u r r e n t hour to g i v e the c o o l i n g l o a d c o n t r i b u t i o n of c u r r e n t hour. The averaging i s done up to twenty-four hours. Then the c o o l i n g load c o n t r i b u t i o n i s determined by the T r a n s f e r F u n c t i o n method. The l o a d p r o f i l e of the T r a n s f e r Function method i s compared with p r o f i l e s of d i f f e r e n t time-averaging i n t e r v a l s to e s t a b l i s h the time-averaging i n t e r v a l f o r the w a l l under c o n s i d e r a t i o n . The comparisons are done on the p r o f i l e shape 5 6 30 .0 £ 24.0 -z. o '5 18.0 cp t— z o o 12.0 Q < Q 6.0 0.0 AVERAGING (h) : SHIFT (h) : U (W/rr>* K) : MASS/AREA(kg/m) : 1 a 25 SOLID : HMt—AVERAGING WITH SHIFT DASHED: TRANSFER FUNCTION METHOD 8 12 16 HOUR OF DAY (h) 20 2 4 F i g u r e 12 - Time -Averaging with S h i f t and T r a n s f e r Function Methods Comparison and the peak value of the p r o f i l e without regard to the time of the peak h o u r l y c o o l i n g l o a d . Then, the s e l e c t e d p r o f i l e i s s h i f t e d by the amount i t l a g s that of the T r a n s f e r F u n c t i o n method. The time-averaging i n t e r v a l and s h i f t are then determined f o r the w a l l . These procedures are repeated f o r a l l w a l l types. Both the time-averaging i n t e r v a l and s h i f t depend only on 5 7 30 .0 # 24.0 2 O '5]8.0 on Z c ^ 12.0 Q < O. 6.0 0.0 AVERAGING (h) : 5H1FT (h) : U (W/rv\l K) MASS/AREA(V9/rri) Q 1 0.C3S 8D SOLID : T!M£—AVERAGING W!!'H SHFT DASHED: TRANSFER FUNCTION METHOD 3 ! 2 16 HOUR OF DAY (hj 20 24 F i g u r e 13 - Time -Averaging with S h i f t and T r a n s f e r Function Methods Comparison the mass of the w a l l . One set of parameters i s adequate to determine the c o o l i n g l o a d c o n t r i b u t i o n s of conduction heat gains of w a l l s belonging to each of the four w a l l groups (Table 3), c l a s s i f i e d a c c o r d i n g to t h e i r mass/unit area. The c o o l i n g load c o n t r i b u t i o n p r o f i l e s of four d i f f e r e n t w a l l s , each from d i f f e r e n t w a l l groups, are determined by the T r a n s f e r F u n c t i o n and Time-Averaging with S h i f t methods and compared i n F i g u r e s 58 30 .0 24.0 2 O 5 !8.Q go AVERAGING (h) : IB SHIFT (h) : 3 U (W/rrt* K) 0.G24 MASS/AREA(kg/rn) : !95 SOLID : TIME—AVERAGING WITH SHIFT DASHED: TRANSFER FUN CTLDN METHOD O U !2.Q Q < O 6.0 _ i i i i i i i i i i I 4 8 ] 2 1 6 20 2 4 HOUR OF DAY (h) F i g u r e 14 - Time -Averaging with S h i f t and T r a n s f e r F u n c t i o n Methods Comparison 12, 13, 14, and 15. The parameter val u e s f o r the d i f f e r e n t roof types l i s t e d i n 1977 ASHRAE Handbook of Fundamentals[23] are the same as the parameters f o r the w a l l s . The a p p l i c a t i o n parameters f o r s o l a r gain through t r a n s p a r e n t s u r f a c e s , a p p l i a n c e s , l i g h t s and occupants are e s t a b l i s h e d using a s i m i l a r approach. The c o n t r o l l i n g f a c t o r 0.0 0 59 30 .0 24.0 o '3 18.0 cp o ° !2.0 < O 6.0 h 0.0 AVERAGING (h) : <:2 SHIFT (!l) ' : 5 Li (W/rrt* K) ; 0.579 MASS/A R £A k g/ m*! : 315 SOLID : TIME—AVERAGING WITH SHIFT DASHED: TRANSFER FUNCTION METHOD 8 12 16 HOUR OF DAY (h) 20 2 4 F i g u r e 15 - Time -Averaging with S h i f t and T r a n s f e r F u n c t i o n Methods Comparison t h a t d i c t a t e s the parameters i s the mass of the s t r u c t u r e . However, the c o o l i n g l o a d c o n t r i b u t i o n s of these heat gain sources are i n s e n s i t i v e to the mass of the s t r u c t u r e . Hence, the parameters of medium c o n s t r u c t i o n (350 kg/m2 of f l o o r area) are used (Table 3). 60 APPENDIX C - FURNACE OPERATION Determination of furnace o p e r a t i o n a l c o n d i t i o n s assumes the f o l l o w i n g i . Furnace operates at s i x c y c l e s per hour at a l l loads and each c y c l e goes through four stages which are mentioned i n s e c t i o n 2.2.2 i i . Return a i r i s maintained at 18°C i i i . The flow through the heat exchanger can be t r e a t e d as the v e r t i c a l flow over a v e r t i c a l heated f l a t p l a t e with uniform s u r f a c e temperature i v . Average c o n d i t i o n s f o r each stage are used to determine the heat t r a n s f e r of each stage v. The r a t e of heat exchanger temperature r i s e and drop are constant F i r s t , o p e r a t i n g c o n d i t i o n s of stages two and three are determined. The r a t e of heat added to the supply a i r duri n g the stages two and three are ma Cp ( t b - t r ) q 2 3 = (C. 1 ) 60 and Qcy = q 2 r2+ q 3 T 3 (C.2) Performing the heat t r a n s f e r c a l c u l t i o n between the a i r stream and the heat exchanger y i e l d s the same r e s u l t s . The equation governing the heat t r a n f e r p r o c e s s , f o r c e d c o n v e c t i o n , i s [27]: 61 he A h e ( t h e - t s ) q = (C.3) 60 where i n r\-> c T-i _ ° T - i - / u /T 'he he = 0.036 Re°' ePr 0 , 3 ( k / L h e ) (C.4) The supply a i r temperatures f o r both stages two and three are t 2 = t f o n (C.5) t 3 = ( t f o n +t f ^  )/2 (C.6) Terms he and t h e are both dependent on each other; i t e r a t i o n i s used to s o l v e f o r the heat exchanger temperature u s i n g equations (C.1) and (C.3). F i g u r e 16 shows the heat exchange temperature p r o f i l e of a c y c l e at h a l f l o a d . Then, the ra t e of heat exchanger temperature drop i s determined using q 3 = mhfc C p h e (C.7) AT 3 t h e r e f o r e , A t h e q 3  = ( C . 8 ) A r 3 (m h e C p h e ) The time of stage three i s given by ( t y,e 2 - t v,e 3) 2 T 3 = (C.9) A t h e / A r 3 T h i s leads to d e t e r m i n a t i o n of time spent d u r i n g stage two using equation (C.2). 62 4 6 T I M E ( m i n ) 10 F i g u r e 16 - Heat Exchanger Temperature P r o f i l e ( q C y " Q3 r 3 ) r 2 = L (C.10) q 2 The o p e r a t i n g c o n d i t i o n s of stages one and four are determined s i m i l a r l y . The heat t r a n s f e r between heat exchanger and a i r d u r i n g stages four and one i s by n a t u r a l c o n v e c t i o n . I t i s a l s o necessary to observe that t o t a l time a l l o c a t e d f o r a c y c l e does not exceed ten minutes. 63 APPENDIX D - HOW TO USE RHECAP D.1 Program The f u n c t i o n s of the s u b r o u t i n e s are as f o l l o w s : SUBROUTINE : FUNCTION INPUT : Reads input data DATCHK : P r i n t s the input data on request f o r v i s u a l check VOLHOU : Determines co n s t a n t s used in the subroutine AIRSIM TEMPRO : E s t a b l i s h e s h e a t i n g and c o o l i n g temperature p r o f i l e AZI : Assigns each e x t e r i o r s u r f a c e o r i e n t a t i o n to one of the s i x t e e n p r i n c i p a l d i r e c t i o n s ASSIGN : Assigns d a i l y occupancy, a p p l i a n c e , and l i g h t p r o f i l e s and the parameter val u e s used in the Time-Averaging with S h i f t ( T - A S) method QTIMAV : C a l c u l a t e s d a i l y c o o l i n g load c o n t r i b u t i o n p r o f i l e due to a l l sources of heat gain using the T-A S method WEAINF : Reads weather i n f o r m a t i o n of a condensed month from weather f i l e SOLHGF : Reads s o l a r heat gain f a c t o r s and s o l - a i r temperatures of e x t e r i o r s u r f a c e s and h o r i z o n t a l s u r f a c e from s o l a r f i l e QWR : Determines d a i l y c o n d i t i o n i n g l o a d c o n t r i b u t i o n p r o f i l e due to heat t r a n s f e r through c o n s t r u c t i o n elements using a simple conduction equation QINFIL : Determines d a i l y c o n d i t i o n i n g l o a d c o n t r i b u t i o n p r o f i l e due to i n f i l t r a t i o n 6 4 CLCON and CLMISC : Determine the hourly c o n d i t i o n i n g load of each zone by adding a l l sources CLSUM : Determines h o u r l y house c o n d i t i o n i n g l o a d SUMML : P r i n t s the summary t a b l e of the load s i m u l a t i o n PERFUR : C a l c u l a t e s furnace performance v a r i a b l e s PERHP : Assigns c o e f f i c i e n t s needed to determine the heat pump performance R M T E M 1 : Determines room temperature i n absence of the space c o n d i t i o n i n g system AIRSIM : Determines h o u r l y system on-time to s a t i s f y set room temperature HEATPH : Determines heat pump c a p a c i t y during h e a t i n g mode HEATPC : Determines heat pump c a p a c i t y during c o o l i n g mode SUMMS : P r i n t s the summary t a b l e of system s i m u l a t i o n D . 2 Input D . 2 . 1 Background The program r e q u i r e s formatted i n p u t . However, an input form which i n c l u d e s a d e s c r i p t i o n of each input item i s pr o v i d e d to make the task of input simple and minimize input e r r o r . Futhermore, the program has the c a p a b i l i t y of checking input i f d e s i r e d . The input can be such that only the loa d s i m u l a t i o n i s computed. SI u n i t s are used e x c l u s i v e l y . A sample input i s shown i n Appendix F. 65 D.2.2 Input* d e t a i l i . General Information a. C o n t r o l i n f o r m a t i o n • Request f o r input check only (Yes or No | A1) • Load s i m u l a t i o n only request (Yes or No | A l ) b. t i t l e i n f o r m a t i o n • Run t i t l e , 3 l i n e s (any i n f o r m t i o n | 3A80) • C i t y d e s i g n a t i o n (VANcouver, V i c t o r i a | A3) i i . S t r u c t u r e D e s c r i p t i o n c. B u i l d i n g o r i e n t a t i o n • B u i l d i n g north with respect to t r u e north, c l o c k w i s e p o s i t i v e (deg | 14) • Number of e x t e r i o r s u r f a c e azimuths (dimensionless, maximum of 6 | 14) • Azimuth angles with respect to b u i l d i n g south, c l o c k w i s e angle (deg | 614) d. C o n s t r u c t i o n m a t e r i a l • Number of d i f f e r e n t g l a s s m a t e r i a l s used (dimensionless, maximum of 2 | 14) • U-value, SC value (W/m2 K, dim e n s i o n l e s s | 4F6.3) • Presence of g l a s s s e c t i o n on roof (1 or 0 | 11) + Each • i s e q u i v a l e n t to a l i n e of input; d e s c r i p t i o n of each input (allowed input or u n i t , whenever the l i t e r a l i n f o r m a t i o n i s needed only the c a p i t a l l e t t e r s i n order of appearance are input | Format) 66 only i n c l u d e next p i e c e of input i f above i s 1 • U-value, SC value (W/m2 R, dimensionless | 2F6.3) • Number of e x t e r n a l above ground w a l l types used (dimensionless, maximum of 2 | 11) • U-value, type (m(mass/unit area)) of c o n s t r u c t i o n (W/m2 K, X L M H | 2(F6.3,A1)) where m< 50 : very l i g h t ( X ) 50<m<150 : l i g h t ( L ) 150<m<300 : medium(M) 300<m<450 : heavy(H) m i s i n kilogram per meter square • Number of e x t e r n a l underground w a l l types used (dimensionless, 0 or 1 | I I ) only i n c l u d e next p i e c e of input i f above i s 1 • U-value (W/m2 K | F6.3) • Roof U-value, type of c o n s t r u c t i o n , see w a l l (W/m2 K, X L M H | F6.3, A1) same as the w a l l weight c l a s s i f i c a t i o n and only one i s allowed • Number of d i f f e r e n t p a r t i t i o n types used (dimensionless, maximum of 3 | 11) • U-value (W/m2 K | F6.3) • Numer of d i f f e r e n t f l o o r types used (dimensionless, maximum of 2 | 11) • U-value (W/m2 K | F6.3) 67 • Number of d i f f e r e n t c e i l i n g types used (dimensionless, maximum of 2 | 11) • U-value (W/m2 K | F6.3) Room temperature s e t t i n g Heating season • Time i n t e r v a l and temperature s e t t i n g s f o r normal s e t t i n g (h, °C | 212, F4.1) • Setback s e t t i n g (same as above) c o o l i n g season (same as heating season) Zones and s u r f a c e s i n f o r m a t i o n • Number of zones (dimensionless, maximum of 3 | 11) • Zone d e s c r i p t i o n ( f o l l o w i n g i n f o r m a t i o n required) Zone number (dimensionless | 12) • Zone d e s c r i p t i o n ( L i v i n g room, BEDroom, BASement | A3) • Number of s u r f a c e s through which heat exchange takes p l a c e , w a l l s and windows of d i f f e r e n t o r i e n t a t i o n s , r o o f , and c e i l i n g are a l l counted i n d i v i d u a l l y ( d imensionless, maximum of 11 | 12) • F l o o r area (X10 m2 | 16) • Wall height (X10 m | 16) • T o t a l h o u r l y heat from a p p l i a n c e s (W | 16) • T o t a l h o u r l y heat from l i g h t s (W | 16) • I n f i l t r a i t o n (number of a i r changes/h X10 | 16) • Surface d e s c r i p t i o n ( f o l l o w i n g i n f o r m a t i o n required) 68 • Nature of s u r f a c e ( E x t e r n a l W a l l , RooF, Underground Wall, F e n e s t r a t i o n on Roof, P A r t i t i o n , FLoor, and F E n e s t r a t i o n | A2) • O r i e n t a t i o n number, matches with s u r f a c e azimuth number (dimensionless | 12) • Area of s u r f a c e (X10 m2 | 16) • C o n s t r u c t i o n element number, i f r e l e v a n t , i . e . , two e x t e r i o r w a l l types are p o s s i b l e (dimensionless | 12) • D e s c r i p t i o n of the space a d j o i n i n g the s u r f a c e (GRounD, ATMosphere | A3) i i i . System D e s c r i p t i o n g. C o n t r o l • T h r o t t l i n g range (°C | F7.3) • Balance p o i n t temperature (°C | F7.3) h. A i r supply • Fan a i r supply (m 3/s | F7.3) • Fan e l e c t r i c i t y use (kW | F7.3) • F r a c t i o n of f r e s h a i r intake (dimensionless | F7.3) i . Furnace • Type of furnace (GAS, OIL, or E L E c t r i c | A3) • Furnace output c a p a c i t y (kW | F7.3) • E f f i c i e n c y of furnace (% | F7.3) j . Heat pump • C o o l i n g c a p a c i t y ( s e n s i b l e ) at 35°C(kW | F7.3) 69 D.3 Output D.3.1 Input V e r i f i c a t i o n T h i s f e a t u r e merely reads the input v a r i a b l e s using the format p r e s c r i b e d and p r i n t s them as read. T h i s does not have the c a p a b i l i t y of checking the v a l i d i t y of the i n p u t . A sample output f e a t u r i n g the sample input used i n D.2.1 i s i n c l u d e d i n Appendix F. D.3.2 Run Output The output of the run c o n s i s t s of two p a r t s , l o a d and system s i m u l a t i o n . The lo a d s i m u l a t i o n output i n c l u d e s the t o t a l monthly and y e a r l y c o n d i t i o n i n g load of each zone as w e l l as e n t i r e s t r u c t u r e f o r every month of the year. The system s i m u l a t i o n output i n c l u d e s the t o t a l monthly energy consumption of the house f o r each p i e c e of equipment. The corresponding output u s i n g the input of D.2.1 i s a l s o i n c l u d e d i n Appendix F. D.4 Run Procedure The f o l l o w i n g f i l e s are needed to run the program Device Description(Name) 4 Space use profile(RHEPRO) 5 Input(RHEINP) 6 Output(RHEOUT) 7 Weather(RHWVAN, Vancouver) 8 Solar(RHSVAN, Vancouver) RHECAPLOAD Compiled program A t y p i c a l run statement would be $RUN RHECAPLOAD 4=RHEPR0 5=RHEINP 6=RHE0UT 7=RHWVAN 8=RHSVAN APPENDIX E - FLOW CHART S t a r t ' input yes a s s i g n { values : and det« constant parameter :or T-A S srmine :s used determi ne temperature prof i l e a s s i g n azimuth numbers to e x t e r i o r w a l l s 71 w e a t l f l e r > s o l a r c s o l - a i i g a i n a n d : t e m p . c o n d u c t i o n t h r o u g h w a l l , r o o f , a n d s o l a r g a i n u s i n g T - A S c o n d u c t i o n t h r o u g h w a l l , r o o f , a n d s o l a r g a i n ± i n f i l t r a t i o n B below grade heat t r a n s f e r and conduction through f e n e s t r a t i o n ± sources of c o n d i t i o n i n g loads are added ± l o a d s i m u l a t i o n summary > rewind weather f i l e i e s t a b l i s h the performance of furnace and heat pump ± weather yes heat pump capac i t y > heat pump on time > heat pump consumpt ion heat pump capac1ty \ heat pump on time ^ heat pump consumption system s imulat i on summar APPENDIX F - VALIDATION OF RHECAP Pages 75 to 76 : : Input of an e x i s t i n g Vancouver house Pages 77 to 81 : : Output f o r input (above) v e r i f i c a t i o n Pages 82 to 83 : : Run output of above used to v a l i d a t e with EASI Pages 84 to 85 j : Input of a f i c t i t i o u s Vancouver house Pages 86 to 87 : : Run output of above used to v a l i d a t e with BLAST ** RHECAP INPUT ** RUN CONTROL INPUT VERIFICATION ONLY( Y OR N ) : Y LOAD SIMULATION ONLY( Y OR N ) : N TITLE OWNER : JOHN BROWN ADDRESS : 3817 W. 2ND AVE. VANCOUVER, B.C. CITY( VAN, VIC ) : VAN BUILDING ORIENTATION BUILDING NORTH( DEG ) : 0 NUMBER OF SURFACE AZIMUTH : 4 AZIMUTH ANGLES : 90, 180, 270, 360 CONSTRUCTION MATERIALS 1. NUMBER OF DIFFERENT GLASSES USED ON EXTERIOR WALLS U-VALUE(SC VALUE) : 2.950( 0.830) 2. GLASS SECTION AVAILABLE ON ROOF( IF YES 1, NO 0; IF ZERO INPUT 0.0 ( 0 . 0 ) FOR U AND SC VALUES) U-VALUE(SC VALUE) : 0.0 ( 0 . 0 ) 3. NUMBER OF DIFFERENT EXTERIOR WALL CONSTRUCTIONS U-VALUE(WT. CLASS) : 0.244(D 4. PRESENCE OF BELOW GRADE WALL( IF YES 1, NO 0; IF ZERO INPUT 0.000 FOR U-VALUE) U-VALUE . : 4.080 5. ROOF U-VALUE(WT. CLASS) : 1.816(L) 6. NUMBER OF DIFFERENT PARTITION CONSTRUCTIONS USED U-VALUE : 0.100, 7. NUMBER OF DIFFERENT FLOOR CONSTRUCTIONS USED U-VALUE : 1.634, 8. NUMBER OF DIFFERENT CEILING CONSTRUCTIONS USED U-VALUE : 0.200 THERMOSTAT SETTING DURING HEATING SEASON FROM HOUR 7 TO HOUR 22 SET AT 21.5 FROM HOUR 23 TO HOUR 6 SET AT 18.0 DURING COOLING SEASON FROM HOUR 7 TO HOUR 22 SET AT 25.0 FROM HOUR 23 TO HOUR 6 SET AT 22.0 STRUCTURE DESCRIPTION NUMBER OF ZONES : 3 ZONE DESCRIPTION 1, LIV, 8, 495, 31, 1200, 400, 6 SURFACE DESCRIPTION EW, 1, 172, 1,ATM EWf 2, 119, 1,ATM EW, 3, 65, 1,ATM EW, 4, 120, 1,ATM FE, 1, 81, 1,ATM FE, 2, .8, 1,ATM FE, 4, 7, 1,ATM RF, 515, 1,ATM ZONE DESCRIPTION 2, BED, 6, 323, 46, 0, 0, 6 SURFACE DESCRIPTION 76 EW, 3, 358, 1,ATM EW, 4, 100, 1,ATM FE, 3, 79, 1,ATM RF, , 339, 1,ATM FL, , 323, 1,GRD BG, , 240, 1,GRD ZONE DESCRIPTION 3,BAS, 7, 495, 21 , 0, 0, 6 SURFACE DESCRIPTION EW, 1, 84, 1,ATM EW, 2, 20, 1,ATM EW, 3, 12,1,ATM EW, 4, 29, 1,ATM FE, 1, 9,1,ATM BG 294, 1,GRD FL 495, 1,GRD NUMBER OF OCCUPANTS : 4 SYSTEM DESCRIPTION 1.CONTROLLER THROTTLING RANGE OF THERMOSTAT( DEG C ) : 2.0 BALANCE POINT TEMPERATURE( DEG C ) : 3.0 2. FAN FAN SUPPLY VOLUME( M**3/S ) FAN ENERGY USE (KW) FRACTION OF OUTDOOR FRESH AIR 0.246 0.2 0.1 3.FURNACE FURNACE TYPE(GAS,ELE) FURNACE CAPACITY( KW ) EFFICIENCY OF FURNACE( % ) GAS 17.5 75.0 4.HEAT PUMP COOLING RATING AT 35 C, TOTAL ( KW ) 6.54 77 INPUT DATA FOR RHECAP ( RESIDENTIAL HOME ENERGY CONSUMPTION ANALYSIS PROGRAM *TITLE : OWNER : JOHN BROWN ADDRESS : 3817 W. 2ND AVE. VANCOUVER, B.C. NUMBER OF OCCUPANTS : 4 *CITY : VAN *STRUCTURE ORIENTATION BUILDING NORTH : 0 DEG 1 2 3 4 AZIMUTH 90 180 270 360 *ROOM TEMPERATURE SET LEVELS HEATING SEASON : FROM HOUR 7 TO HOUR 22 SET AT 21.5 FROM HOUR 23 TO HOUR 6 SET AT 18.0 COOLING SEASON : FROM HOUR 7 TO HOUR 22 SET AT 25.0 FROM HOUR 23 TO HOUR 6 SET AT 22.0 BUILDING DESCRIPTION *CONSTRUCTION MATERIAL USED U-VALUE(SC VALUE) (WEIGHT CATEGORY) FENESTRATION EXTERIOR WALL . UNDERGROUND WALL ROOF PARTITION FLOOR CEILING 2.950( 0.830) 0.244( L ) 4.080 1.816( L ) 0. 100 1 .634 0.200 ' THERMAL BLOCK INFORMATION THERMAL BLOCK # 1 HEADING 1LIV 8 495 31 1200 400 6 SURFACE HEADING EW 1 172 1 ATM EW 2 119 1 ATM EW 3 65 1 ATM EW 4 120 1 ATM FE 1 81 1 ATM FE 2 8 1 ATM FE 4 7 1 ATM RF 0 515 1 ATM THERMAL BLOCK # 2 HEADING 2BED 6 323 46 0 0 6 SURFACE HEADING EW 3 358 1 ATM EW 4 100 1 ATM FE 3 79 1 ATM RF 0 339 1 ATM FL 0 323 1GRD BG 0 240 1GRD THERMAL BLOCK # 3 HEADING 3BAS 7 495 21 0 0 6 SURFACE HEADING EW 1 84 1 ATM EW 2 20 1 ATM EW 3 1 2 1 ATM EW 4 29 1 ATM FE 1 9 1 ATM BG 0 294 1GRD FL 0 495 1GRD SYSTEM DESCRIPTION *CONTROL THROTTLING RANGE BALANCE PT. TEMPERATURE 2.0 DEG C 3.0 DEG C *AIR SUPPLY FAN AIR SUPPLY FAN ELECTRICITY ENERGY FRACTION OF FRESH AIR INTAKE 0.2 M E03/S 0.2 KW 0.10 *GAS FURNACE FURNACE TYPE FURNACE OUTPUT CAPACITY EFFICIENCY OF FURNACE *HEAT PUMP GAS 17.50 KW 75.00 COOLING CAPACITY (95 F;35 C) 6.54 KW AIR CONDITIONING LOAD SUMMARY TITLE OWNER ADDRESS JOHN BROWN 3817 W. 2ND AVE. VANCOUVER, B.C. LEGEND CL: COOLING LOAD KWH HL: HEATING LOAD KWH MONTH 1 CL HL CL HL CL HL CL HL LIVING ROOM O. -2101 . 8 . -1374. 38. -954. 67 . -828. BEDROOM 0. -2669. 0. -1931 . 2. -1487 . 47 . -1271 . BASEMENT O -1466 O -1 167 0 -1131 O -981 CL HL CL HL CL HL CL HL 202. -409. 430. -226. 452. -105. 463. -134. 204 . -786. 321 . -455. 336. -400. 272. -443. 0-836 0 -676 O -576 0 -669 10 1 1 12 CL HL CL HL CL HL CL HL 189. -256 . 14 . -850. 1 . •1351. O. •1400. 13 . -778. O. -1511. 13 . - 1893. 0. -2067. O-772 0 -997 0 -1 154 O -1257 TOTAL 1864. 1209. TOTAL -999 1 -15691 -11681 SYSTEM LOAD O. -6236. 0. -4465. 0. -3532. 13. -2978. 117. -1742. 326. -932 . 449. -743. 368 . -878 . 20. -1625. 0. -3344. 0. -4385. O. -4724. 1293. -35582. SYSTEM SIMULATION SUMMARY ENERGY CONSUMPTION (%AGE OF LOADING ; PEAK LOAD FACTOR) WHERE MORE THAN =SYSTEM LOAD/ KW.H MAX. CAPACITYMAX. CAPACITY IS REQUIRED HOURLY HEATING COOLING TOTAL MONTH FURNACE H.P. H.P. 1 FAN 9438.( 0:0.9) 108. 46. ( 4. 2; 1 . 5) 0. 0. ( 0;0.0) 9484 . 112. 2 FAN 4228.( 0:0.8) 48 . 633 . ( 54 . 27; 1 . 5) 0. 0. ( 0;0.0) 4861 . 103 . 3 FAN 1145.( 0;0.8) 13. 1068.( 90. 15; 1 . 2) 0. 0. ( 0;0.0) 2212 103 4 FAN 0.( 0;0.0) 0. 1167.( 97 . 12; 1 . . 1) 6 . 1 . ( 0;0.1) 1 174 98 5 FAN 0.( 0;0.0) 0. 644. ( 52. 0;0. 8) 57 . 5. ( 0;0.5) 701 57 6 FAN 0.( 0:0.0) 0. 353. ( 28. 0:0 6 > 167 . 15. ( 0;0.8) 520 43 7 FAN o.( 0:0.0) 0. 263. ( 20. 0;0 .4) 225. 20. ( 0;1.0) 488 40 8 FAN 0.( 0;0.0) 0. 310. ( 23. 0;0 .5) 185 . 17 . ( 0;0.7) 495 40 9 FAN 0.( 0;0.0) o. 597 . ( 45 . 0;0 .6) 10. 1 . ( 0;0.2) 607 46 10 FAN 0.( 0:0.0) 0. 1231 .( 98. 1 ; 1 . 1) 0. 0. ( 0:0.0) 1231 98 1 1 FAN 2101.( 0;0.8) 24. 1139.( 96 . 40; 1 .4) 0. 0 ( 0;0.0) 3240 120 12 FAN 399.( OiO.G) 5. 1510.( 127 . 69; 1 .5) 0 0 ( 0;0.0) 1909 132 FAN 17311. 1 9 8 . 8961 . 736 . 650 59 26922 992 CD to 84 ** RHECAP INPUT ** RUN CONTROL INPUT VERIFICATION ONLY( Y OR N ) : N LOAD SIMULATION ONLY( Y OR N ) : N TITLE OWNER : BLAST ADDRESS : 1111 UNKNOWN ST. VANCOUVER, B.C. CITY( VAN, VIC ) : VAN BUILDING ORIENTATION BUILDING NORTH( DEG ) : 0 NUMBER OF SURFACE AZIMUTH : 4 AZIMUTH ANGLES : 90, 180, 270, 360 CONSTRUCTION MATERIALS 1. NUMBER OF DIFFERENT GLASSES USED ON EXTERIOR WALLS U-VALUE(SC VALUE) : 3.149( 1.150) 2. GLASS SECTION AVAILABLE ON ROOF( IF YES IF ZERO INPUT 0.0 U-VALUE(SC VALUE) : .NUMBER OF DIFFERENT U-VALUE(WT. CLASS) 1, NO 0; ( 0 . 0 ) FOR U AND SC VALUES) 0.0 ( 0.0 ) EXTERIOR WALL CONSTRUCTIONS : 0.589(L) 2.064(M) 0 2 4. PRESENCE OF BELOW GRADE WALL( IF YES IF ZERO INPUT 0.000 FOR U~VALUE) U-VALUE : 2.437 5. ROOF U-VALUE(WT. CLASS) : 0.500(L) 1, NO 0; 6. NUMBER OF DIFFERENT U-VALUE : 7. NUMBER OF DIFFERENT U-VALUE : 8. NUMBER OF DIFFERENT U-VALUE : THERMOSTAT SETTING DURING HEATING SEASON HOUR 7 HOUR 24 COOLING HOUR 7 HOUR 24 PARTITION CONSTRUCTIONS USED 0. 100, FLOOR CONSTRUCTIONS USED 1.943, CEILING CONSTRUCTIONS USED 0.505 TO HOUR TO HOUR SEASON TO HOUR TO HOUR FROM FROM DURING FROM FROM STRUCTURE DESCRIPTION NUMBER OF ZONES : ZONE DESCRIPTION 1, LIV, 9, 1115, SURFACE DESCRIPTION EW, 1, 295, 1,ATM EW, 2, 343, 1,ATM EW, 3, 302, 1,ATM EW, 4, 332, 1,ATM FE, 1, 39, 1,ATM FE, 2, 102, 1,ATM FE, 3, 31, 1.ATM FE, 4, 113, 1,ATM RF, 1115,1,ATM ZONE DESCRIPTION 2, BED, 9, 1115, 12, 23 6 23 6 SET SET SET SET AT AT AT AT 22.2 16.6 25.0 22.0 36, 5860, 586, 85 SURFACE DESCRIPTION EW, 1 , 28, 2, ATM EW, 2, 37, 2, ATM EW, 3, 28, 2, ATM EW, 4, 37, 2, ATM BG, 1 , 84, 1 , GRD BG, 2, 111, 1 , GRD BG, 3, 84, 1 , GRD BG, 4, 111, 1 , GRD FL 1115, 1 , GRD NUMBER OF OCCUPANTS : 8 SYSTEM DESCRIPTION 1.CONTROLLER THROTTLING RANGE OF THERMOSTAT( DEG C ) : 2.0 BALANCE POINT TEMPERATURE( DEG C ) : 99.0 2 .FAN FAN SUPPLY VOLUME( M**3/S ) FAN ENERGY USE (KW) FRACTION OF OUTDOOR FRESH AIR 0.369 0.30 0.0 3.FURNACE FURNACE TYPE(GAS,ELE) FURNACE CAPACITY( KW ) EFFICIENCY OF FURNACE( % ) GAS 26.4 80.0 4.HEAT PUMP COOLING RATING AT 35 C, TOTAL ( KW ) 9.81 AIR CONDITIONING LOAD SUMMARY TITLE OWNER : BLAST ADDRESS : 1111 UNKNOWN ST. VANCOUVER, B.C. LEGEND CL: COOLING LOAD KWH HL: HEATING LOAD KWH MONTH LIVING ROOM BEDROOM BASEMENT 1 CL O. 0. 0. HL -3700. -2734. O. 2 CL 550. 0. O. HL -2032. -2182. 0. 3 CL 1864. 0. 0. HL -1288. -2114. O. 4 CL 1348. 0. 0. HL -1197. -1845. 0. 5 CL 2483. 0. 0. HL -575. -1567. 0. 6 CL 3227. 0. 0. HL -328. -1278. 0. 7 CL N 2976. 1. 0. HL -83. -1074. 0. 8 CL 3099. 0. 0. HL -120. -1213. 0. 9 CL 1509. 0. 0. HL -288. -1394. 0. 10 CL 224. 0. 0. HL -1448. -1800. O. 11 CL 710. 0. O. HL -2060. -2153. 0. 12 CL 69. 0. 0. HL -2436. -2294. 0. TOTAL 18060. TOTAL -15554. -21648 0. SYSTEM LOAD O . -6433. 190. -3855. 882 . -2420. 696. -2391 . 1572 . -1231 . 2267. -646 . 2165. -345 . 2230. -464 . 856 . -1029. 28 . -3052. 334 . -3836. O . -4661 . 11220. -30361 SYSTEM SIMULATION SUMMARY ENERGY CONSUMPTION (%AGE OF LOADING ; PEAK LOAD FACTOR) WHERE MORE THAN =SYSTEM LOAD/ KW.H MAX. CAPACITYMAX. CAPACITY IS REQUIRED HOURLY HEATING COOLING TOTAL MONTH FURNACE 1 9 5 1 0 . ( 0 ; 0 . 7 ) FAN 1 0 8 . 2 5 8 3 3 . ( 0 , 0 . 6 ) FAN 6 6 . 3 3 7 7 4 . ( 0 : 0 . 5 ) FAN 4 3 . 4 3 9 4 0 . ( 0 ; 0 . 5 ) FAN 4 5 . 5 2 0 9 6 . ( 0 : 0 . 4 ) FAN 2 4 . 6 1 1 7 8 . ( 0 : 0 . 3 ) FAN 1 3 . 7 6 1 1 . ( 0 ; 0 . 2 ) FAN 7 . 8 8 2 3 . ( 0 : 0 . 3 ) FAN 9 . 9 1 8 4 9 . ( 0 ; 0 . 3 ) FAN 2 1 . 1 0 4 8 7 4 . ( 0 : 0 . 4 ) FAN 5 5 . 1 1 6 0 4 3 . ( 0 ; 0 . 6 ) FAN 6 9 . 1 2 7 0 8 1 . ( 0 : 0 . 6 ) FAN 8 0 . H.P . 0 . ( O. 0 . ( 0 . o . ( 0 . 0 . ( 0 . o . ( o . o . ( 0 . 0 . ( 0 . 0 . ( o . o . ( o . o . ( o . o . ( 0 . o . ( o . 0 : 0 . 0 ) 0 ; 0 . o ) 0 ; 0 . 0 ) 0 : 0 . 0 ) 0 : 0 . 0 ) 0 : 0 . 0 ) 0 : 0 . 0 ) 0 : 0 . 0 ) 0 : 0 . 0 ) 0 : 0 . 0 ) 0 : 0 . 0 ) 0 : 0 . 0 ) H.P. 0 . ( 0 : 0 . 0 ) 0 . 8 7 . ( 0 : 0 . 9 ) 8 . 4 0 7 . ( 2 ; 1 . 2 ) 3 8 . 3 3 7 . ( 4 ; 1 . 2 ) 3 1 . 7 1 1 . ( 1 3 ; 1 . 4 ) 6 5 . 1 0 3 9 . ( 1 9 : 1 . 7 ) 9 5 . 8 9 1 . ( 2 9 : 1 . 8 ) 8 0 . 9 0 2 . ( 2 7 : 1 . 6 ) 8 1 . 4 1 3 . ( 5 ; 1 . 4 ) 3 7 . 1 4 . ( 0 : 0 . 2 ) 1 . 1 6 3 . ( 0 : 0 . 9 ) 1 5 . 0 . ( 0 : 0 . 0 ) 0 . 9 5 1 0 . 1 0 8 . 5 9 2 0 . 7 5 . 4 1 8 0 . 8 1 . 4 2 7 7 . 7 6 . 2 8 0 7 . 8 9 . 2 2 1 8 . 1 0 8 . 1 5 0 3 . 8 7 . 1 7 2 5 . 9 1 . 2 2 6 2 . 5 8 . 4 8 8 8 . 5 7 . 6 2 0 6 . 8 4 . 7 0 8 1 . 8 0 . FAN 4 7 6 1 1 . 5 4 1 . 0 . 0 . 4 9 6 4 . 4 5 3 . 5 2 5 7 5 . 9 9 4 . 00 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0095774/manifest

Comment

Related Items