Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Stemflow and throughfall mycobiota of a trembling aspen-red alder forest MacKinnon, J. Andrew 1982

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1982_A6_7 M25.pdf [ 4.61MB ]
Metadata
JSON: 831-1.0095709.json
JSON-LD: 831-1.0095709-ld.json
RDF/XML (Pretty): 831-1.0095709-rdf.xml
RDF/JSON: 831-1.0095709-rdf.json
Turtle: 831-1.0095709-turtle.txt
N-Triples: 831-1.0095709-rdf-ntriples.txt
Original Record: 831-1.0095709-source.json
Full Text
831-1.0095709-fulltext.txt
Citation
831-1.0095709.ris

Full Text

S T E M F L O W A N D T H R O U G H F A L L M Y C O B I O T A O F A T R E M B L I N G A S P E N - R E D A L D E R F O R E S T by J . A N D R E W M A C K I N N O N B . S c , U n i v e r s i t y O f B r i t i s h C o l u m b i a , V a n c o u v e r , 1 9 7 9 A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F M A S T E R O F S C I E N C E i n T H E F A C U L T Y O F G R A D U A T E S T U D I E S ( D e p a r t m e n t o f B o t a n y ) We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A M a y 1 9 8 2 J . A n d r e w M a c K i n n o n , 1 9 8 2 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r a n a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l m a k e i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s m a y b e g r a n t e d b y t h e h e a d o f my d e p a r t m e n t o r b y h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t b e a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f /^^)T/9/UV T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a 1956 M a i n M a l l V a n c o u v e r , C a n a d a V6T 1Y3 D a t e D E-6 (3/81) i i ABSTRACT The stemflow and t h r o u g h f a l l i n a red a l d e r - t r e m b l i n g aspen f o r e s t were sampled over the course of one year. Samples were preserved, c o n c e n t r a t e d , and examined m i c r o s c o p i c a l l y f o r fungal spores. Recorded on more than ten dates were species of Seimatosporium, A l t e r n a r i a , Fusarium, Tripospermum, T i t a e a , and spore types designated Double Crescent Conidium, Didymospore, Ovate Phragmospore, Large Phragmospore, H-Shaped Spore, and S c o l e c o s p o r e s ; recorded on s i x to ten dates were Ceratosporium  cornutum, s p e c i e s of F l a b e l l o s p o r a , Helicoma, P e s t a l o t i o p s i s , and Scolecobasidium, and the Tapered H e l i c o s p o r e ; recorded on two to f i v e dates were G y o e r f f y e l l a b i a p p e n d i c u l a t a , G y o e r f f y e l l a g e m e l l i p a r a , C l a v a r i o p s i s a q u a t i c a , T r i p o s p o r i n a  yakuensis, V a r i c o s p o r i u m elodeae, s p e c i e s of C e r a t o s p o r e l l a , Stauronema, T e t r a c l a d i u m , and T r i c l a d i u m , and the Dematiaceous T-Shaped Conidium and Tiny T r i r a d i a t e Conidium; and recorded on one date only were T e t r a p l o a ar i s t a t a , C o r n u t i s p o r a 1 i c h e n i c o l a , D i c r a n i d i o n f r a g i l e , L a t e r i r a m u l o s a u n i - i n f l a t a , a s p e c i e s of Dendrospora, and the Branched Conidium and Dematiaceous C r u c i f o r m Conidium. Seasonal s p o r u l a t i o n of most fungi was found to be p o s i t i v e l y c o r r e l a t e d with p r e c i p i t a t i o n . A p o s s i b l e r o l e i n the f o r e s t ecosystem f o r fungal propagules i n s t e m f l o w / t h r o u g h f a l l i s p o s t u l a t e d . i i i i TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES i v LIST OF FIGURES v ACKNOWLEDGEMENTS v i I n t r o d u c t i o n 1 M a t e r i a l s and methods 7 R e s u l t s 15 Spore types recorded on more than ten dates 17 Spore types recorded on s i x to ten dates 45 Spore types recorded on two to f i v e dates 49 Spore types recorded on one date only 53 D i s c u s s i o n 57 Appendix 1 c a l c u l a t i o n of stemflow and t h r o u g h f a l l volumes 72 Appendix 2. Media employed 75 Malt-yeast-peptone (MYP) medium (Bandoni 1972) 75 S o r b o s e - t e t r a c y c l i n e (SORB-T) medium (Bandoni 1981) .... 75 Oat agar (OA) medium 76 Appendix 3. V a r i a t i o n s i n spore c o n c e n t r a t i o n d u r i n g a r a i n f a l l 77 References 78 L I S T O F T A B L E S i v T a b l e I . C h e m i c a l m o d i f i c a t i o n o f r a i n f a l l b y t h e f o r e s t c a n o p y 2 T a b l e I I . C o l l e c t i o n n u m b e r s a n d d a t e s 12 T a b l e I I I . V a r i a t i o n i n s t e m f l o w s p o r e c o n c e n t r a t i o n d u r i n g a r a i n f a l l 77 V L I S T O F F I G U R E S F i g u r e 1 . C o l l e c t i n g A p p a r a t u s 8 F i g u r e 2 . S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s 18 F i g u r e 3 . S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s 20 F i g u r e 4 . S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s 22 F i g u r e 5 . S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s 24 F i g u r e 6 . S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s 26 F i g u r e 7 . S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s 28 F i g u r e s 8 , 9 . A n n u a l v a r i a t i o n i n n u m b e r s o f s p o r e s o f A l t e r n a r i a s p . ( F i g . 8 ) a n d D o u b l e C r e s c e n t C o n i d i u m ( F i g . 9 ) 30 F i g u r e s 1 0 , 1 1 . A n n u a l v a r i a t i o n i n n u m b e r s o f s p o r e s o f D i d y m o s p o r e ( F i g . 10 ) a n d O v a t e P h r a g m o s p o r e ( F i g . 11 ) . 33 F i g u r e s 1 2 , 1 3 . A n n u a l v a r i a t i o n i n n u m b e r s o f s p o r e s o f L a r g e P h r a g m o s p o r e ( F i g . 12 ) a n d H - S h a p e d S p o r e ( F i g . 1 3 ) 35 F i g u r e s 1 4 , 1 5 . A n n u a l v a r i a t i o n i n n u m b e r o f s p o r e s o f L u n a t e S p o r e ( F i g . 1 4 ) a n d S e i m a t o s p o r i u m s p . ( F i g . 15) 37 F i g u r e s 1 6 , 1 7 . A n n u a l v a r i a t i o n i n n u m b e r o f s p o r e s o f F u s a r i u m s p . ( F i g . 16 ) a n d T r i p o s p e r m u m s p p . ( F i g . 17) 40 F i g u r e s 1 8 , 1 9 . A n n u a l v a r i a t i o n i n n u m b e r o f s p o r e s o f ? T i t a e a s p . ( F i g . 18 ) a n d S c o l e c o s p o r e s ( F i g . 1 9 ) 43 F i g u r e 2 0 . A n n u a l v a r i a t i o n i n n u m b e r o f s p o r e s o f T i t a e a v i s p 46 F i g u r e s 21 a n d 2 2 . F i g u r e 2 1 . M o n t h l y i n c i d e n t p r e c i p i t a t i o n , s t e m f l o w a n d t h r o u g h f a l l v o l u m e s a t t h e s i t e s . F i g u r e 2 2 . M o n t h l y m e a n t e m p e r a t u r e a t t h e s i t e s 60 F i g u r e 2 3 . P r i n c i p a l C o m p o n e n t s A n a l y s i s S c a t t e r P l o t 63 v i i A C K N O W L E D G E M E N T S I w o u l d l i k e t o t h a n k my s u p e r v i s o r , D r . R . J . B a n d o n i , b o t h f o r h i s s u p e r v i s i o n a n d f o r i n t r o d u c i n g me t o t h e s t u d y o f f u n g i . W i t h o u t h i s a s s i s t a n c e t h i s w o r k w o u l d n o t h a v e b e e n p o s s i b l e . I w o u l d a l s o l i k e t o t h a n k t h e o t h e r t w o m e m b e r s o f my T h e s i s C o m m i t t e e : D r . G . C . H u g h e s , f o r h i s h e l p f u l a d v i c e c o n c e r n i n g f u n g i a n d f o r h i s e d i t i n g e x p e r t i s e , a n d D r . G . E . B r a d f i e l d , f o r h i s h e l p w i t h s a m p l i n g d e s i g n a n d w i t h t e c h n i c a l a s p e c t s o f d a t a m a n i p u l a t i o n . K e i t h S e i f e r t r e a d a r o u g h d r a f t o f t h i s t h e s i s a n d p r o v i d e d m a n y h e l p f u l c o m m e n t s . D a v e Z i t t i n o f t h e B i o - S c i e n c e s D a t a C e n t r e i n t r o d u c e d me t o t h e c o m p u t e r s y s t e m s u s e d i n p r o d u c t i o n o f t h i s t h e s i s . M a t e r i a l s a n d e q u i p m e n t u t i l i z e d i n t h i s r e s e a r c h w e r e s u p p o r t e d b y N R C R e s e a r c h G r a n t A - 8 0 1 t o D r . B a n d o n i . F i n a l l y , I w o u l d l i k e t o t h a n k my p a r e n t s , w h o s e h e l p a n d s u p p o r t ( f i n a n c i a l a n d s p i r i t u a l ) o v e r m a n y y e a r s o f my s t u d i e s a l l o w e d me t o c o m p l e t e t h i s w o r k ; t h i s t h e s i s i s d e d i c a t e d t o t h e m . 1 I N T R O D U C T I O N T h a t t h e l e a v e s a n d b r a n c h e s o f a t r e e a r e i n h a b i t e d b y b o t h p a r a s i t i c a n d s a p r o p h y t i c f u n g i h a s b e e n k n o w n f o r a l o n g t i m e . P l a n t p a t h o l o g i s t s h a v e s t u d i e d l e a f p a t h o g e n s f o r o v e r o n e h u n d r e d y e a r s , a n d s a p r o p h y t e s o f t h e p h y l l o p l a n e h a v e b e e n w i d e l y s t u d i e d s i n c e t h e e a r l y 1 9 5 0 ' s . Y e t , t h e r o l e o f t h e s e f u n g i i n c a n o p y p o p u l a t i o n s , a n d t h e e c o l o g y o f c a n o p i e s i n g e n e r a l , h a s n o t b e e n w e l l s t u d i e d . F o r e s t c a n o p i e s , t h e i n t e r f a c e b e t w e e n p r e c i p i t a t i o n , a n d t h r o u g h f a l l a n d s t e m f l o w , m o d i f y v a r i o u s p a r a m e t e r s o f t h e r a i n f a l l . T h e s e m o d i f i c a t i o n s h a v e a p r o f o u n d e f f e c t o n t h e c o m m u n i t i e s r e c e i v i n g t h r o u g h f a l l o r s t e m f l o w , i n c l u d i n g p h y l l o p l a n e , c a u l o p l a n e , a n d r h i z o s p h e r e p o p u l a t i o n s o f p l a n t s o n t h e f o r e s t f l o o r , a s w e l l a s t h e c o m m u n i t i e s o f d e c o m p o s e r s i n t h e v a r i o u s s o i l h o r i z o n s . S o m e m o d i f i c a t i o n s o f r a i n f a l l t h a t h a v e b e e n r e p o r t e d a r e s u m m a r i z e d i n T a b l e I . W o r k e r s h a v e g e n e r a l l y n o t c o n s i d e r e d t h e e f f e c t s o f n u t r i e n t e x c h a n g e i n f o r e s t c a n o p i e s i n t e r m s o f • t h e o r g a n i s m s t h a t l i v e i n t h e m . T h e o n l y w o r k d o c u m e n t i n g t r e e c a n o p y p o p u l a t i o n s o f m i c r o - o r g a n i s m s , m e a s u r i n g n u t r i e n t f l u x e s b e t w e e n p r e c i p i t a t i o n a n d s t e m f l o w / t h r o u g h f a l l , a n d s u g g e s t i n g c o n n e c t i o n s b e t w e e n t h e t w o , i s t h a t o f C a r r o l l a n d h i s c o -w o r k e r s ( B e r n s t e i n & C a r r o l l 1 9 7 7 ; C a r r o l l 1 9 8 0 ; C a r r o l l e t a l 1 9 8 0 ) w i t h D o u g l a s - f i r ( P s e u d o t s u g a m e n z i e s i i ( M i r b . ) F r a n c o ) i n O r e g o n . I n f o r e s t s s u c h a s t h e o n e s t u d i e d h e r e , l i t t e r f a l l , t h r o u g h f a l l w a t e r , a n d s t e m f l o w w a t e r , i n t h a t o r d e r , a r e t h e 2 Table I. Chemical modification of r a i n f a l l by the forest canopy. 3 Values are i n percent conce n t r a t i o n increase or decrease from i n c i d e n t r a i n f a l l . Reference Element T h r o u q h f a l l or Stemflow Change Na t h r o u g h f a l l t h r o u g h f a l l t h r o u g h f a l l +81% + 111% +33% K t h r o u g h f a l l stemflow t h r o u g h f a l l t h r o u g h f a l l t h r o u g h f a l l stemflow + 138% +1154% +993% +1625% + 189% +918% Mg t h r o u g h f a l l stemflow t h r o u g h f a l l t h r o u g h f a l l t h r o u g h f a l l +510% + 1362 + 133% +1422% + 180% ci t h r o u g h f a l l t h r o u g h f a l l + 179% + 18% H t h r o u g h f a l l t h r o u g h f a l l -85% -17% s t h r o u g h f a l l stemflow t h r o u g h f a l l t h r o u g h f a l l +81% + 545% + 425% + 88% p t h r o u g h f a l l • stemflow t h r o u g h f a l l t h r o u g h f a l l t h r o u g h f a l l stemflow + 233% +1483% + 251% + 883% + 267% + 567% N (inorg.) t h r o u g h f a l l t h r o u g h f a l l t h r o u g h f a l l -30% + 173% -92% N (org.) t h r o u g h f a l l +77% C t h r o u g h f a l l stemflow + 371% +2719% organic t h r o u g h f a l l +400% C a r l i s l e et a l 1966 Eaton et a l 1963 S o l l i n s e_t a l 1980 Brinson et a l 1980 Brinson et a l 1980 C a r l i s l e et a l 1966 S o l l i n s et a l 1980 Voigt 1960 Voigt 1960 Brinson et a l 1980 Brinson e_t a l 1980 C a r l i s l e et a l 1966 S o l l i n s et a l 1980 S o l l i n s et a l 1980 Eaton et a l 1963 S o l l i n s et a l 1980 Eaton et a l 1963 S o l l i n s et a l 1980 Brinson et a l 1980 Brinson et a l 1980 Eaton et a l 1963 S o l l i n s e_t a l 1980 Brinson et a l 1980 Brinson et a l 1980 C a r l i s l e et a l 1966 S o l l i n s et a l 1980 Voigt 1960 Voigt 1960 C a r l i s l e et a l 1966 Eaton et a l 1963 S o l l i n s et a l 1980 C a r l i s l e et a l 1966 Brinson et a l 1980 Brinson et a_l 1980 C a r l i s l e et a l 1966 matter 4 i m p o r t a n t m e a n s o f e l e m e n t m o v e m e n t t o t h e f o r e s t f l o o r . T h i s i s b e c a u s e , w h e n t h e o u t p u t o f m e a s u r e d e l e m e n t s i s e x p r e s s e d i n k g / h a , t h e c o n t r i b u t i o n o f s t e m f l o w i s q u i t e s m a l l . T h o u g h t h e c o n c e n t r a t i o n s o f m o s t e l e m e n t s a r e m u c h h i g h e r i n s t e m f l o w t h a n i n i n c i d e n t p r e c i p i t a t i o n o r t h r o u g h f a l l , o n l y a s m a l l p o r t i o n o f t h e p r e c i p i t a t i o n r e a c h e s t h e g r o u n d a s s t e m f l o w . R e g r e s s i o n e q u a t i o n s a l l o w e s t i m a t i o n o f t h e a m o u n t o f p r e c i p i t a t i o n t h a t i s c h a n n e l l e d i n t o t h r o u g h f a l l a n d s t e m f l o w i n d i f f e r e n t f o r e s t c o m m u n i t i e s ( e g . H e l v e y a n d P a t r i c 1 9 6 5 ) . ( B a s e d o n s u c h c a l c u l a t i o n s [ A p p e n d i x 1 ] , t h e s t e m f l o w a n d t h r o u g h f a l l f o r my s i t e s o v e r t h e s a m p l i n g p e r i o d a r e e s t i m a t e d i n F i g u r e 2 1 ) . I n n o r t h t e m p e r a t e d e c i d u o u s f o r e s t s , 0 . 5 - 9 . 0 % o f p r e c i p i t a t i o n i s c h a n n e l l e d i n t o s t e m f l o w , a n d 7 0 - 9 6 % o f p r e c i p i t a t i o n e n d s u p a s t h r o u g h f a l l ( A p p e n d i x 1 ) . T h e u s u a l u n i t s f o r m e a s u r i n g c o n c e n t r a t i o n s o f n u t r i e n t s i n r a i n f a l l , s t e m f a l l o r t h r o u g h f a l l a r e k g / h a . S t a t i s t i c a l l y , t h i s m e a s u r e r e d u c e s t h e c o e f f i c i e n t o f v a r i a t i o n i n h i g h l y v a r i a b l e c o l l e c t i n g s i t e s , t h u s r e d u c i n g t h e n u m b e r o f s a m p l i n g s t a t i o n s r e q u i r e d f o r a r e p r e s e n t a t i v e s a m p l e ( s e e K i m m i n s 1 9 7 3 ) . T h e r e a s o n t h e k g / h a m e a s u r e i s c o m m o n l y u s e d i s t h a t t h e a p p r o a c h o f t h e r e s e a r c h e r s w h o u s e i t i s t o m e a s u r e t h e a m o u n t o f t h e - ' n u t r i e n t s e n t e r i n g t h e s y s t e m , a n d t h e a m o u n t l e a v i n g ; k g / h a i s a u s e f u l u n i t f o r t h i s . O n t h e o t h e r h a n d , k g / h a v a l u e s p r o v i d e a p o o r i d e a o f w h a t i s a c t u a l l y h a p p e n i n g b i o l o g i c a l l y i n t h e s y s t e m . T h e s e v a l u e s a r e c a l c u l a t e d b y m u l t i p l y i n g t h e c o n c e n t r a t i o n o f a n e l e m e n t b y t h e v o l u m e o f w a t e r f l o w a n d d i v i d i n g t h i s v a l u e b y t h e n u m b e r o f h e c t a r e s 5 c o v e r e d by t h e s y s t e m b e i n g s t u d i e d . W h i l e t h i s p r o v i d e s a f a i r l y good i d e a o f what i s h a p p e n i n g t o r a i n f a l l or t h r o u g h f a l l , w h i c h f a l l a p p r o x i m a t e l y e v e n l y on t h e s t u d y a r e a , i t i s e n t i r e l y i n a p p r o p r i a t e f o r m e a s u r i n g t h e s t e m f l o w v a l u e s . S t e m f l o w i s n o t d e p o s i t e d r a n d o m l y i n a s t u d y a r e a , but i s i n s t e a d d e p o s i t e d i n a narrow band a r o u n d t h e b a s e s of t h e t r e e s , up t o ab o u t 20 cm away from t h e t r u n k i n some r o u g h -b a r k e d s p e c i e s ( H e l v e y & P a t r i c 1965). A l s o , t h e c o n c e n t r a t i o n s o f most e l e m e n t s i n s t e m f l o w a r e i n t u r n much h i g h e r t h a n i n t h r o u g h f a l l , w h i c h a r e much h i g h e r t h a n t h o s e o f r a i n f a l l ( s e e T a b l e I ) . The n e t r e s u l t i s t h a t s t e m f l o w c r e a t e s l o c a l i z e d a r e a s of v e r y h i g h n u t r i e n t and i o n c o n c e n t r a t i o n , w h i c h a r e more s i g n i f i c a n t b i o l o g i c a l l y t h a n low kg/ha v a l u e s might s u g g e s t . A n o t h e r p o s s i b l e r o l e f o r s t e m f l o w and, t o a l e s s e r e x t e n t , t h r o u g h f a l l , i s as a s o u r c e o f m i c r o b i a l i n n o c u l u m f o r t h e t e r r e s t r i a l e c o s y s t e m . The p r e s e n t s t u d y was i n i t i a t e d t o i n v e s t i g a t e t h e m y c o b i o t a o f s t e m f l o w and t h r o u g h f a l l . The m y c o b i o t a o f s t e m f l o w has p r e v i o u s l y been s t u d i e d by B a n d o n i (1981) and G o n c z o l ( 1 9 7 6 ) . B a n d o n i i n v e s t i g a t e d t h e s t e m f l o w of w e s t e r n r e d c e d a r ( T h u j a p i i c a t a Donn.), D o u g l a s - f i r , b i g - l e a f maple ( A c e r m a c r o p h y l l u m P u r s h ) and r e d a l d e r ( A l n u s r u b r a B o n g ) . He f o u n d t h e hyphomycetes G y o e r f f y e l l a b i a p p e n d i c u l a t a ( A r n o l d ) I n g o l d , G y o e r f f y e l l a g e m e l l i p a r a M a r v a n o v a , and ? T i t a e a s p . i n a l d e r f l o w , and G y o e r f f y e l l a g e m e l l i p a r a i n maple s t e m f l o w . He a l s o r e p o r t e d s p e c i e s o f Tri p o s p e r m u m , C e r a t o s p o r e l l a , C e r a t o s p o r i u m , T i t a e a , C o r n u t i s p o r a , and s e v e r a l 6 unidentified conidia from stem flow of various trees. Gonczol (1976) reported the occurrence of a dematiaceous T-shaped conidium, Titaea sp. , Dicranidion f r a g i l e Harkness, Cornutispora l i c h e n i c o l a Hawksw. , ? Titaea sp. , and conidia t e n t a t i v e l y i d e n t i f i e d as those of a Nectria sp. from foam of stemflow gathered at the base of a beech tree. For the present study I sampled stemflow from two trees each of red alder and trembling aspen (Populus tremuloides Michx.) and the throughfall beneath the canopies of both species. Hardwoods are common constituents of disturbed areas in southwestern B r i t i s h Columbia, and in the area that I studied these two species accounted for almost a l l of the arborescent spec ies . The study was i n i t i a t e d with several goals in mind. The f i r s t was to record the types of fungal propagules that occur in stem flow and, where possible, i d e n t i f y them. The second was to describe the d i s t r i b u t i o n (temporal and spatial) and abundance of these conidia in an attempt to suggest t h e i r , source and something of their ecological c h a r a c t e r i s t i c s . F i n a l l y , I hoped the data gathered might suggest roles that stemflow and throughfall mycobiota might play in the poplar-alder forest ecosystem. 7 MATERIALS AND METHODS F i v e sample s t a t i o n s were e s t a b l i s h e d on the U n i v e r s i t y of B r i t i s h Columbia Endowment Lands i m m e d i a t e l y s o u t h of the i n t e r s e c t i o n of an unnamed creek w i t h C h a n c e l l o r B o u l e v a r d . The s i t e i s l o c a t e d d i r e c t l y a c r o s s C h a n c e l l o r B o u l e v a r d from U n i v e r s i t y H i l l E l e mentary S c h o o l . The f o r e s t i s dominated by r e d a l d e r and t r e m b l i n g aspen up t o 45 y e a r s o l d . I t r e p r e s e n t s an e a r l y s u c c e s s i o n a l stage f o l l o w i n g l o g g i n g which c o n t i n u e d u n t i l 1936 ( K l a s s e n & Teversham 1977). D u r i n g summer and e a r l y autumn, t h e s e two s p e c i e s p r o v i d e g r e a t e r than 100% canopy c o v e r . The u n d e r s t o r y c o n t a i n s salmonberry (Rubus s p e c t a b i l i s P u r s h ) , r e d h u c k l e b e r r y ( V a c c i n i u m p a r v i f o l i u m Smith) and o t h e r s h r u b s , sword f e r n s ( P o l y s t i c h u m muni turn ( K a u l f ) P r e s l . ) and b racken f e r n s ( P t e r i d i u m a q u i l i n u m (L.) Kuhn), and numerous s p e c i e s of h e r b s . One s m a l l and one l a r g e r t r e e of each of the two dominant t r e e s p e c i e s were s e l e c t e d . A c t u a l ages of the t r e e s were not d e t e r m i n e d . C o l l e c t i n g d e v i c e s s i m i l a r t o t h o s e used by Bandoni (1981) were mounted on the t e s t t r e e s . A l e n g t h of 1/2 i n c h d i a m e t e r p l a s t i c t u b i n g s p l i t down the m i d d l e l e n g t h w i s e was t a c k e d once around the t r e e t r u n k i n a d e s c e n d i n g s p i r a l a n g l e d a t a p p r o x i m a t e l y 30 d e g r e e s . The t u b i n g emptied i n t o a p l a s t i c bag s u p p o r t e d i n an aluminum can n a i l e d t o the t r e e . To i n c r e a s e t h e f l o w of water from the t r e e i n t o the t u b i n g , the upper edge of the t u b i n g was f a s t e n e d t o the t r e e w i t h d u c t i n g tape ( F i g u r e 1 ) . T h r o u g h f a l l was sampled a t a f i f t h s t a t i o n l o c a t e d under a 8 F i g u r e 1 . C o l l e c t i n g Apparatus. 9 10 mixed canopy of the two dominant t r e e s p e c i e s . A p l a s t i c funne l (10 cm. wide at the mouth) was suspended w i t h w i r e s between two t r e e s . A s h o r t l e n g t h of t u b i n g l e d from the f u n n e l neck to a p l a s t i c bag , supported in an aluminum can hanging from the w i r e s . I t was not thought d e s i r a b l e to put any p r e s e r v a t i v e s in the p l a s t i c bags due to the p r o x i m i t y of the sampl ing s t a t i o n s to an e lementary s c h o o l . C o n s e q u e n t l y , samples were c o l l e c t e d as soon as p o s s i b l e a f t e r r a i n . The bags were emptied i n t o c o l l e c t i n g b o t t l e s , new bags put i n p l a c e , and the b o t t l e s t r a n s p o r t e d to the l a b . F o r t y - o n e c o l l e c t i o n s were made between November 6, 1980 and November 3, 1981 (Tab le I I ) . Because of the t ime i n v o l v e d i n examining each c o l l e c t i o n , i t was neces sary to p r e s e r v e the m a t e r i a l soon a f t e r r e t r i e v a l . F i v e p e r c e n t v / v 95% e t h y l a l c o h o l added to each b o t t l e proved e f f e c t i v e i n k i l l i n g organisms and i n h i b i t i n g spore g e r m i n a t i o n , wi thout e x t e n s i v e d i s t o r t i o n of spore morphology t h a t o c c u r r e d wi th some s p e c i e s at h i g h e r a l c o h o l c o n c e n t r a t i o n s . The d e n s i t y of c o n i d i a i n the samples was so low tha t c o n c e n t r a t i o n of the samples was r e q u i r e d . From each sample b o t t l e 160 m l . of p r e s e r v e d stemflow or t h r o u g h f a l l was p l a c e d i n four tubes and c e n t r i f u g e d . T h i r t y minutes c e n t r i f u g a t i o n at top speed in a c l i n i c a l c e n t r i f u g e ( I n t e r n a t i o n a l Equipment Company Model CL) removed more than 95% of the c o n i d i a from the top 20 ml i n each t u b e . Two c e n t r i f u g a t i o n s teps reduced 160 ml of sample m a t e r i a l to 40 ml of c o n c e n t r a t e w i t h a r e s u l t i n g 4X 11 T a b l e I I . C o l l e c t i o n numbers and d a t e s . Number Date Number D a t e 1 6 November 1980 22 27 J a n u a r y 1981 2 7 November 1980 23 30 J a n u a r y 1981 3 8 November 1980 24 12 F e b r u a r y 1981 4 9 November 1980 25 14 F e b r u a r y 1981 5 10 November 1980 26 16 F e b r u a r y 1981 6 18 November 1980 27 18 F e b r u a r y 1981 7 19 November 1980 28 26 F e b r u a r y 1981 8 20 November 1980 29 3 M a r c h 1981 9 27 November 1980 30 8 M a r c h 1981 10 29 November 1980 31 25 M a r c h 1981 1 1 1 December 1980 32 29 M a r c h 1981 12 2 December 1980 33 1 A p r i l 1981 13 10 December 1980 34 8 A p r i l 1981 1 4 11 December 1980 35 8 May 1981 15 14 December 1980 36 12 June 1981 16 15 December 1980 37 20 J u l y 1981 17 22 December 1980 38 5 September 1981 18 27 December 1980 39 28 September 1981 19 9 J a n u a r y 1981 40 5 O c t o b e r 1981 20 20 J a n u a r y 1981 41 3 November 1981 21 24 J a n u a r y 1981 i n c r e a s e i n c o n i d i a l d e n s i t y . . Two 0 . 1 ml s a m p l e s of t h e c o n c e n t r a t e were p i p e t t e d o n t o a c l e a n g l a s s s l i d e , a d r o p of g l y c e r i n e a d d e d , and a c o v e r s l i p p l a c e d pn t o p and f a s t e n e d i n p l a c e w i t h n a i l p o l i s h . Each s l i d e was c o d e d w i t h C o l l e c t i o n Date (No. 1 -41 ) and C o l l e c t i o n S i t e (No. 1 - 5 ) . The s l i d e s were examined a t 100X m a g n i f i c a t i o n u s i n g p h a s e -c o n t r a s t i l l u m i n a t i o n on a L e i t z W e t z l e r compound m i c r o s c o p e w i t h an Or thomat camera a t t a c h m e n t . M a g n i f i c a t i o n s of 450X and 1000X were u s e d , when n e c e s s a r y , f o r i d e n t i f i c a t i o n and p h o t o g r a p h i n g of c o n i d i a . A minimum a r e a c a l c u l a t i o n showed t h a t , a t t h e m a g n i f i c a t i o n (100X) n e c e s s a r y t o s p o t the c o n i d i a , t h r e e " s a m p l e sweeps" of t h e c o v e r s l i p a l l o w e d most e f f i c i e n t s a m p l i n g . Four or f i v e sweeps d i d not s i g n i f i c a n t l y change t h e 12 n u m b e r o f s p e c i e s r e c o r d e d o r t h e i r r e l a t i v e a b u n d a n c e . T h e t h r e e s w e e p s c o v e r e d a p p r o x i m a t e l y 1 9 . 8 s q u a r e mm. f o r a t o t a l c o v e r a g e o f a b o u t 18% o f e a c h c o v e r s l i p . T h e a b u n d a n c e o f e a c h c o n i d i a l t y p e o n e a c h s w e e p w a s r e c o r d e d . C o n i d i a w e r e r e c o r d e d u s i n g s t r i c t l y m o r p h o l o g i c a l c a t e g o r i e s a s d e f i n e d b y S a c c a r d o i n t h e 1 9 t h C e n t u r y a n d r e -d e f i n e d b y K e n d r i c k & N a g R a j ( 1 9 7 9 ) , a n d m o d i f i e d b y d e s c r i p t i v e t e r m s . W h e r e p o s s i b l e , t h e s p o r e s w e r e i d e n t i f i e d t o g e n u s o r s p e c i e s . P h o t o g r a p h s a n d d r a w i n g s w e r e m a d e f o r f u t u r e r e f e r e n c e i n e a c h c a s e . M e a s u r e s o f t h e r e l a t i v e a b u n d a n c e o f c o n i d i a w e r e c o n v e r t e d i n t o a r o u g h e s t i m a t e o f t h e a c t u a l c o n c e n t r a t i o n o f e a c h c o n i d i a l t y p e i n s t e m f l o w a n d t h r o u g h f a l l . T h e n u m b e r o f c o n i d i a f o r o n e c o v e r s l i p w a s m u l t i p l i e d b y t h e r e c i p r o c a l o f 18% t o g i v e t h e t o t a l n u m b e r o f c o n i d i a i n 0 . 1 m l o f c o n c e n t r a t e , t h e n m u l t i p l i e d b y 10 t o g i v e t h e n u m b e r o f c o n i d i a p e r m l , a n d t h e n m u l t i p l i e d b y 0 . 2 5 t o g i v e t h e n u m b e r o f c o n i d i a p e r m l i n t h e a c t u a l ( u n c o n c e n t r a t e d ) s a m p l e . T h e i d e n t i t y o f t h e f u n g i c o u l d o n l y b e c o n f i r m e d b y i s o l a t i o n o f p u r e c u l t u r e s . A s t h i s w a s n o t p o s s i b l e f r o m p r e s e r v e d s l i d e s , f r e s h m a t e r i a l w a s c o l l e c t e d f r o m t h e s i t e s i n N o v e m b e r a n d D e c e m b e r o f 1981 a n d J a n u a r y a n d F e b r u a r y o f 1 9 8 2 . T h r e e m e t h o d s w e r e u s e d t o i s o l a t e f u n g i . C o n i d i a w e r e r e m o v e d f r o m t h e a i r - w a t e r i n t e r f a c e u s i n g a f i n e n e e d l e u n d e r a d i s s e c t i n g m i c r o s c o p e a t 3 2 X o r 8 0 X m a g n i f i c a t i o n w i t h i n c i d e n t i l l u m i n a t i o n , a n d t r a n s f e r r e d t o m a l t - y e a s t - p e p t o n e a g a r w i t h t e t r a c y c l i n e ( M Y P T ; s e e A p p e n d i x 2 ) ; w a t e r f r o m t h e s a m p l e s w a s 13 s p r e a d o n w a t e r a g a r ( W A ; s e e A p p e n d i x 2 ) , a l l o w e d t o d r y , a n d t h e n b l o c k s o f a g a r w e r e c u t o u t u n d e r a d i s s e c t i n g m i c r o s c o p e u s i n g a c u t t i n g a r m d e s i g n e d b y t h e U . B . C . B o t a n y / Z o o l o g y M e c h a n i c a l S h o p , a n d t r a n s f e r r e d t o M Y P T ; a n d s a m p l e s t r e a k s w e r e m a d e o n t o s o r b o s e a g a r w i t h t e t r a c y c l i n e ( S O R B - T ; s e e A p p e n d i x 2 ) a n d a l l o w e d t o g e r m i n a t e . T h e t e t r a c y c l i n e - e n h a n c e d m e d i a w e r e e m p l o y e d t o d i s c o u r a g e b a c t e r i a l g r o w t h ; t h e s o r b o s e m e d i u m i n d u c e s c o l o n y f o r m a t i o n a n d t h u s p r e v e n t s ' w e e d f u n g i ' f r o m o v e r g r o w i n g t h e m e d i u m . I s o l a t e s t h a t f a i l e d t o s p o r u l a t e o n t h e s e m e d i a w e r e t r a n s f e r r e d t o o a t a g a r ( O A ; s e e A p p e n d i x 2 ) o r W A . F u n g i w e r e g r o w n a t 5 , 15 a n d 20 C . ; t h e l o w t e m p e r a t u r e w a s u s e d t o f a v o u r g r o w t h o f a q u a t i c H y p h o m y c e t e s , w h i c h g e n e r a l l y g r o w w e l l a t l o w e r t e m p e r a t u r e s . F u n g i i s o l a t e d a n d i d e n t i f i e d w e r e g i v e n J . A . M a c K i n n o n c o l l e c t i o n n u m b e r s a n d p l a c e d i n t h e U B C C u l t u r e C o l l e c t i o n . I n d i v i d u a l c o l l e c t i o n n u m b e r s a r e n o t e d i n t h e c u l t u r e d e s c r i p t i o n s . F u n g a l s p o r e d i v e r s i t y a n d a b u n d a n c e w e r e u s e d t o c h a r a c t e r i z e e a c h C o l l e c t i o n S i t e o n e a c h C o l l e c t i o n D a t e . A t o t a l o f 2 0 5 D a t e - S i t e s ( 5 S i t e s o n 41 D a t e s ) w e r e c h a r a c t e r i z e d . T h e s e 2 0 5 D a t e - S i t e s w e r e i n c l u d e d i n a P r i n c i p a l C o m p o n e n t s A n a l y s i s ( P C A ) , w i t h f u n g a l s p o r e d i s t r i b u t i o n a n d a b u n d a n c e c h a r a c t e r i z i n g t h e s a m p l e s . A P C A i s a m u l t i v a r i a t e a n a l y s i s w i t h a x e s d r a w n r e p r e s e n t i n g s u c c e s s i v e l y l e s s e r a m o u n t s o f v a r i a t i o n i n t h e d a t a m a t r i x . T h e f i r s t a x i s 14' a c c o u n t s f o r t h e l a r g e s t a m o u n t o f v a r i a t i o n , t h e s e c o n d a x i s f o r t h e s e c o n d l a r g e s t a m o u n t , c o n t i n u i n g s t e p w i s e a n d p r o d u c i n g a m u l t i - d i m e n s i o n a l o r d i n a t i o n i n w h i c h p r o x i m i t y o f p o i n t s r e f l e c t s t h e i r s i m i l a r i t y . T h e P C A w a s r u n o n t h e U . B . C . C o m p u t e r ( a n A m d a h l 4 7 0 v / 6 M o d e l I I ) , M i c h i g a n T e r m i n a l S y s t e m ( M T S ) , u s i n g t h e M I D A S p r o g r a m d i s t r i b u t e d b y t h e S t a t i s t i c a l R e s e a r c h L a b o r a t o r y o f t h e U n i v e r s i t y o f M i c h i g a n ( F o x & G u i r e 1 9 7 6 ) . T h e , m a t r i x f o r t h i s p r o g r a m i s a c a s e s - v a r i a b l e ' s m a t r i x , w i t h C o l l e c t i o n D a t e - S i t e s r e p r e s e n t i n g t h e c a s e s a n d t h e d i f f e r e n t s p o r e t y p e s r e p r e s e n t i n g t h e v a r i a b l e s . A l l s p o r e t y p e s a n d a l l D a t e - S i t e s w e r e u s e d i n t h e o r d i n a t i o n : t h e d a t a w e r e u n s e a l e d . 15 RESULTS C o n i d i a of at l e a s t 37 d i f f e r e n t fungal taxa were observed i n sample sweeps of the cover s l i p s , r e p r e s e n t i n g s e v e r a l d i f f e r e n t taxonomic groups. As w e l l , the c o n i d i a l types shown i n F i g u r e 6 b-g were a l s o observed, though they were not recorded i n the data base because they o c c u r r e d o u t s i d e of the sample sweeps. The i s o l a t i o n methods used were designed to s e l e c t f o r Ascomycetes, Basidiomycetes, Fungi I m p e r f e c t i , and Zygomycetes, and the absence from my samples of "lower f u n g i " such as Oomycetes and Chy t r i d i o m y c e t e s does not imply t h e i r absence from stemflow and t h r o u g h f a l l . Large numbers of amerospores were p r e s e n t , which were not i n c l u d e d here due to the d i f f i c u l t y of i d e n t i f y i n g them from p r e s e r v e d s l i d e s . Streaked p l a t e s r e v e a l e d the presence of P e n i c i I l i u m and A s p e r g i l l u s s p e c i e s , as w e l l as Zygomycetes i n the genera Mucor and Rhizopus, and the Ptychogaster anamorph of an Aph y l l o p h o r a l e o u s Basidiomycete ( J . A. MacKinnon 48); a l l of these were presumably d e r i v e d from amerospores. F i n a l l y , many yea s t s were seen i n the samples and showed up on my p l a t e s ; these i n c l u d e d sporobolomycetaceous ("mirror") y e a s t s , Leucosporidium s c o t t i i F e l l et a l (Summerbell 1981), and s e v e r a l y e a s t s that formed short c h a i n s (pseudomycelium) t h a t commonly branched i n a m u l t i r a d i a t e f a s h i o n (Figure 6h). Most of the other f u n g i present were hyphomycetes. Se v e r a l were such commonly seen saprobes or p a r a s i t e s as species of A l t e r n a r i a or Fusarium. Others were r e p r e s e n t a t i v e " a q u a t i c " hyphomycetes, such as F l a b e l l o s p o r a , T i t a e a , C l a v a r i o p s i s , 16 G y o e r f f y e l l a , T e t r a c l a d i u m , T r i c l a d i u m , L a t e r i r a m u l o s a , a n d D e n d r o s p o r a . O f t h e s e , s p e c i e s o f L a t e r i r a m u l o s a a n d T r i p o s p e r m u m h a v e t r a d i t i o n a l l y b e e n c o n s i d e r e d a s a q u a t i c h y p h o m y c e t e s ( I n g o l d 1 9 7 5 c ) , b u t h a v e n e v e r b e e n r e p o r t e d g r o w i n g o r s p o r u l a t i n g s u b m e r g e d i n s t r e a m s . T a x a i n a l l o f t h e s e g e n e r a h a v e b e e n c o l l e c t e d i n t e r r e s t r i a l o r s e m i - a q u a t i c s i t u a t i o n s . T h r e e , c o e l o m y c e t e s , a s p e c i e s o f S e i m a t o s p o r i u m , a s p e c i e s o f P e s t a l o t i o p s i s , a n d C o r n u t i s p o r a 1 i c h e n i c o l a w e r e r e c o r d e d . I t i s n o t u n u s u a l t o f i n d s p e c i e s o f t h e s e g e n e r a i n s t e m f l o w o r t h r o u g h f a l l . B o t h a p p a r e n t l y g r o w o n w o o d r a t h e r t h a n l e a v e s , a s t h e y r e a c h t h e i r p e a k s o f s p o r u l a t i o n d u r i n g t h e w i n t e r a n d s p r i n g m o n t h s w h e n t h e t r e e s a r e w i t h o u t l e a v e s . B a c t e r i a w e r e a b u n d a n t i n a l l s a m p l e s . S t r e a k e d p l a t e s p r e p a r e d f r o m u n p r e s e r v e d m a t e r i a l w e r e s o o n o v e r g r o w n w i t h b a c t e r i a u n l e s s m e d i a w e r e s u p p l e m e n t e d w i t h t e t r a c y c l i n e . N u m e r o u s p r o t o z o a n s w e r e a l s o o b s e r v e d . N o a t t e m p t w a s m a d e t o i d e n t i f y t h e p r o t o z o a n s o r t h e b a c t e r i a . D e s m i d s o f t h e h i g h l y d i s t i n c t i v e g e n u s M i c r a s t e r i a s w e r e t h e o n l y a l g a e o b s e r v e d , a n d t h e s e o n l y o n t w o o c c a s i o n s . A s a n i n d i c a t i o n o f how c o m m o n l y t h e y w e r e r e c o r d e d , s p o r e t y p e s a r e d i v i d e d i n t o t h o s e r e c o r d e d o n m o r e t h a n t e n d a t e s , t h o s e r e c o r d e d o n s i x t o t e n d a t e s , t h o s e r e c o r d e d o n t w o t o f i v e d a t e s , a n d t h o s e r e c o r d e d o n o n e d a t e o n l y . P h o t o g r a p h s ( F i g u r e s 2 - 6 ) o r l i n e d r a w i n g s ( F i g u r e 7 ) o f t h e s p o r e t y p e s a r e p r o v i d e d . S p o r u l a t i o n g r a p h s f o r t h o s e s p o r e t y p e s r e c o r d e d o n m o r e t h a n t e n d a t e s a r e a l s o p r o v i d e d ( F i g u r e s 8 - 2 0 ) . R e c o r d s o f t h e s e s p o r e t y p e s f r o m 17 other authors are noted. J . A. MacKinnon c o l l e c t i o n numbers are noted f o r those s p e c i e s i n c u l t u r e (U.B.C. C u l t u r e C o l l e c t i o n ) . Spore types recorded on more than ten dates  A l t e r n a r i a sp. T h i s spore type occurs throughout the year, with a small peak i n the f a l l , and a l a r g e peak i n January (Figure 8 ) . I t was recorded from a l l s i t e s . Species of A l t e r n a r i a are f a i r l y common p l a n t p a r a s i t e s , and t h e i r dematiaceous d i c t y o s p o r e s are q u i t e d i s t i n c t i v e . Bandoni (1974) mentioned that spores of A l t e r n a r i a are hydrophobic and f l o a t on water f i l m s , which may a i d i n t h e i r d i s p e r s a l (see D i s c u s s i o n ) . Dudka (1965) recorded A l t e r n a r i a sp. from stream foam. F i g u r e s 2h,8. Double Crescent Conidium T h i s i s the same spore type recorded by Bandoni (1981 F i g . 2f,g) from the stemflow of b i g l e a f maple and D o u g l a s - f i r . T h i s spore type occurs from November to March, with peaks i n January and February. I t i s most common on a l d e r s , but a l s o o ccurs on p o p l a r s . It i s hot l i k e the c o n i d i a of any d e s c r i b e d genus. The end of one of the c r e s c e n t s may s p l i t , as i s shown in F i g u r e 2g. F i g u r e s 2d,e,f,g,9. 18 F i g u r e 2. S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s , a ) L a r g e P h r a g m o s p o r e b ) O v a t e P h r a g m o s p o r e c ) H - S h a p e d S p o r e d -g ) D o u b l e C r e s c e n t C o n i d i u m h ) A l t e r n a r i a s p . . A l l b a r s = 20 n. 19 20 F i g u r e 3. Spore types recorded from the s i t e s , a) Lunate Spore b) Fusarium sp. c) Seimatosporium sp. d-f) Tripospermum spp. g) ? T i t a e a sp. HT S c o l e c o s p o r e s . A l l bars = 20 ?. 22 F i g u r e 4. S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s , a ) C l a v a r i o p s i s a q u a t i c a b ) S t a u r o n e m a s p . c ) C e r a t o s p o r i u m s p . d ) C e r a t o s p o r e l l a s p . e ) T a p e r e d H e l i c o s p o r e f ) F l a b e l l o s p o r a s p . g ) H e l i c o m a s p . h ) T i t a e a s p . . A l l b a r s = 20 v, e x c e p t a ) T~ b a r = 200 a. 24 F i g u r e 5 . S p o r e t y p e s r e c o r d e d f r o m t h e s i t e s , a ) D e m a t i a c e o u s C r u c i f o r m C o n i d i u m b ) D e n d r o s p o r a s p . c , d ) T r i c l a d i u m s p . e , f ) G y o e r f f y e l l a g e m e l l i p a r a g ) D e m a t i a c e o u s T - S h a p e d C o n i d i u m h ) T i n y T r i r a d i a t e C o n i d i u m . A l l b a r s = 20 », e x c e p t g , h ) , b a r s = 10 » . 25 26 F i g u r e 6. Spore types recorded from the s i t e s , a) L a t e r i r a m u l o s a u n i - i n f l a t a b) ? C e r a t o s p o r e l l a sp. c) ? S p e i r o p s i s i r r e g u l a r i s Petersen d) A l a t o s p o r a  acuminata Ingold e) Second H-Shaped Spore f) Unknown g) Unknown h) Branched Yeast. A l l bars = 20JI.-28 F i g u r e 7. Spore types recorded from the s i t e s . A) Didymospore XI00 b) P e s t a l o t i o p s i s sp. X320 c) Scolecobasidium sp. X300 d) Gyoerf'fyella b i a p p e n d i c u l a t a X220 e) TetracTadium sp. X70 f) T r i p o s p o r i n a yakuensi s X30 g) Va r i c o s p o r i u m elodeae X120 h) Branched Conidium X10 i ) T e t r a p l o a a r i s t a t a X240 j ) C o r n u t i s p o r a  1 i c h e n i c o l a X100 k) P i c r a n i d i o n f r a g i l e X75. 30 Figures 8,9. Annual v a r i a t i o n i n numbers of spores of A l t e r n a r i a sp. ( F i g . 8) and Double Crescent Conidium ( F i g . 9) T (month 0 = November, 1980). C o l l e c t i n g S i t e s : "o"=small ald e r "•"=large ald e r " A n=small poplar " A"=large poplar "«"=throughfall. FIGURE 8 31 03 "D • MM c o 03 • MM • MM o u 30-25-20— 15— 10-i 5 - : 0-o N 1 I S I month ^FIGURE 9 150H IOOH 5(H o A o • A A l o « O A o c» P CD • N vi S I month 32 Didymospore There were s e v e r a l d i f f e r e n t didymospores i n c l u d e d i n t h i s c a t e g o r y . They occ u r r e d year round at a l l s i t e s . F i g u r e s 7,J_0. « Ovate Phragmospore T h i s spore type o c c u r r e d year round at a l l s i t e s , more commonly i n the winter and s p r i n g . F i g u r e s 2b,11. Large Phragmospore T h i s spore type was very common i n the s p r i n g and f a l l , but was not recorded i n the summer. I t may perhaps represent a sp e c i e s of Fusarium. I t was recorded from a l l s i t e s . F i g u r e s 2a,12 . H-Shaped Spore T h i s spore type i s f a i r l y common at a l l s i t e s from November to February. Bandoni (pers. comm.) has found t h i s spore i n stemflow of D o u g l a s - f i r . F i g u r e s 2c,13. Lunate Spore T h i s spore type was recorded year round, and was s p e c i a l l y common i n the winter. I t was .recorded from a l l s i t e s . Bandoni (p e r s . comm.) has found t h i s spore i n stemflow of D o u g l a s - f i r . F i g u r e s 3a, 14. Seimatosporium sp. Spores of t h i s genus were recorded year round except f o r 33 F i g u r e s 1 0 , 1 1 . A n n u a l v a r i a t i o n i n n u m b e r s o f s p o r e s o f D i d y m o s p o r e ( F i g . 1 0 ) a n d O v a t e P h r a g m o s p o r e ( F i g . 1 1 ) . ( m o n t h 0 = N o v e m b e r , 1 9 8 0 ) . C o l l e c t i n g S i t e s : n O " = s m a l l a l d e r " • ' ^ l a r g e a l d e r " A " = s m a l l p o p l a r " A " = l a r g e p o p l a r " • " = t h r o u g h f a l l . ^FIGURE 10 30 2 5 H 20-15— 10-5— A J" J* A.J I A month FIGURE 11 3 0 -2 5 -20— O A 15-10-5H O A A pO^Oi O A«& O) A A A \ A A J i!i A J T T month 35 F i g u r e s 1 2 , 1 3 . A n n u a l v a r i a t i o n i n n u m b e r s o f s p o r e s o f L a r g e P h r a g m o s p o r e ( F i g . 12 ) a n d H - S h a p e d S p o r e ( F i g . 1 3 ) . ( m o n t h 0 = N o v e m b e r , 1 9 8 0 ) . C o l l e c t i n g S i t e s : " o " = s m a l l a l d e r " • " = l a r g e a l d e r " A " = s m a l l p o p l a r " A " = l a r g e p o p l a r " • ' ^ t h r o u g h f a l l . 100—r— 80H 6(H 4(H 20H FIGURE 12 A A A O 4 i «» • • o GQSD A » * * » < & • A rt I" Ji ] s rt" month _ FIGURE 13 so-ls— 20 15-i o n 5H rt ] Ui Hi ~T s iJ" month 37 F i g u r e s 1 4 , 1 5 . A n n u a l v a r i a t i o n i n n u m b e r o f s p o r e s o f L u n a t e S p o r e ( F i g . 14 ) a n d S e i m a t o s p o r i u m s p . ( F i g . 1 5 ) ( m o n t h 0 = N o v e m b e r , 1 9 8 0 ) . C o l l e c t i n g S i t e s : " 0 " = s m a l l a l d e r " • ' ^ l a r g e a l d e r " A " = s m a l l p o p l a r " A " = l a r g e p o p l a r n B " = t h r o u g h f a l l . FIGURE 14 38 lOOOH •TH a o 500H o o J M M j month •H _ FIGURE 15 150—I 100-H 5<H o A A A • o o Q A O » • mo A # a&mt& o • o N -i S J i ] ~ month 39 March and A p r i l , and were e s p e c i a l l y common from November to January. They were recorded from a l l s i t e s . T h i s coelomycete genus i n c l u d e s p a r a s i t e s of Rosa , V i t i s , and Cornus (Shoemaker 1964), among o t h e r s , but has not been recorded from Alnus or Populus . F i g u r e 3c,15. Fusarium sp. Fusarium spores were very common a l l year, from a l l s i t e s , and were most common from autumn to winter. Members of t h i s genus are very common p l a n t p a r a s i t e s . Willoughby & Archer (1973) recorded s p e c i e s of Fusarium as common i n foam of Smooth Beck, England, year round, p a r t i c u l a r l y i n the winter and s p r i n g , and Gareth Jones and O l i v e r (1964) recorded Fusarium spp. as c o l o n i z i n g beech wood i n a stream. F i g u r e s 3a,16. J . A. Mackinnon 90,91. Tripospermum spp. One of these spore types ( F i g . 3f) i s c l o s e to T. camelopardus Ingold, Dann & McDougall; the others ( F i g s 3d,e) appear to be undescribed. They were not recorded i n the summer months, but were very common i n the autumn, winter, and s p r i n g , from a l l s i t e s . Bandoni (1981, F i g . 2d) a l s o recorded s p e c i e s of Tripospermum from stemflow of maple and from s t r e e t spora . Willoughby & Archer (1973) recorded T. myrti (Lind) Hughes and T. camelopardus as r a r e i n stream foam i n England, i n the winter and s p r i n g . Hudson & Sutton (1964) r e p o r t e d T. myrti from decaying leaves i n a t e r r e s t r i a l s i t e . In f a c t , members of t h i s 40 F i g u r e s 16,17. Annual v a r i a t i o n i n number of spores of Fusarium sp. ( F i g . 16) and Tripospermum spp. ( F i g . ~ (month 0 = November, 1 980) . C o l l e c t i n g S i t e s : "0"=small a l d e r "#"=large a l d e r N A " = s m a l l poplar " A"=lar g e p o p l a r " a " = t h r o u g h f a l l . FIGURE 16 41 •iH a o a 600H 40(H 200H o o / O o N month FIGURE 17 30H 2 5 H 20H A O •rH o 15H io-5 H A N month • • 42 genus have not been r e p o r t e d as s p o r u l a t i n g i n a t y p i c a l " a q u a t i c hyphomycete" h a b i t a t , that i s , growing on decaying leaves submerged i n a stream. Though o c c a s i o n a l l y c o l l e c t e d i n stream foam, spores of t h i s genus almost c e r t a i n l y have a t e r r e s t r i a l o r i g i n . Bandoni (1981) a l s o found c o n i d i a of Tripospermum i n water flow from the s u r f a c e of a paved lane i n Vancouver, Canada. F i g u r e s 3d,e, f_,J_7. J . A. MacKinnon 7 4 (T. camelopardus). ? T i t a e a sp. Bandoni (1981 F i g . 2c) recorded spores of t h i s type from stemflow of red a l d e r as V o l u c r i s p o r a sp. I t i s a l s o one of the spore types f i g u r e d by Ingold (1975b) from stream foam, and may repre s e n t the spore f i g u r e d by Gonczol & Toth (1974 Table I I , F i g . 14). I recorded t h i s spore type, always on a l d e r , throughout the winter and s p r i n g always at low frequency. I t bears some resemblance to T i t a e a o r n i thomorpha T r o t t e r , d e s c r i b e d from chickweed l e a v e s . F i g u r e s 3g,18. Scolecospores T h i s category r e p r e s e n t s a l l of the s c o l e c o s p o r e s recorded. They a r e , f o r the most p a r t , i n d i s t i n g u i s h a b l e and probably represent propagules of s e v e r a l d i f f e r e n t fungal s p e c i e s . S c o l e c o s p o r e s occur i n low frequency i n e a r l y autumn, higher frequency i n the f a l l and winter, and were not recorded i n the s p r i n g or summer. Scolecospores were, the most f r e q u e n t l y o c c u r r i n g spore type f o r the winter and s p r i n g months. F i g u r e s 43 F i g u r e s 1 8 , 1 9 . A n n u a l v a r i a t i o n i n n u m b e r o f s p o r e s o f ? T i t a e a s p . ( F i g . 18 ) a n d S c o l e c o s p o r e s ( F i g . 1 9 ) . ( m o n t h 0 = N o v e m b e r , 1 9 8 0 ) . C o l l e c t i n g S i t e s : nO" = s m a l l a l d e r " • " = l a r g e a l d e r " A * ' = s m a l l p o p l a r " A n = l a r g e p o p l a r " B " = t h r o u g h f a l l . FIGURE 18 44 • H • H o o 30-H 25-20 -1 5 -10-5-1 • • C O • • o rt T ii. J. ! F ~ T month c3 O o 3000H 2000-H 1000-£LGURE 19 • • A A 4& rt M ji r month 45 3h,J_9. T i t a e a sp. T h i s genus has a l s o been r e p o r t e d from stemflow of b i f g l e a f maple (Bandoni 1981) and beech (Gonczol 1976 P l a t e I I I , F i g s 3,4). I t was recorded many times from the f a l l to the s p r i n g , mostly on s m a l l trembling aspen but a l s o on the a l d e r s . T h i s spore c l o s e l y resembles the spore of T. t r i r a d i a t a Hansford. F i g u r e s 4h,20. Spore types recorded on s i x to ten dates F l a b e l l o s p o r a sp. T h i s spore type was recorded from December to March on both a l d e r s and both p o p l a r s . I t was always present i n small numbers. I t does not resemble any d e s c r i b e d s p e c i e s of F l a b e l l o s p o r a , but appears i d e n t i c a l . t o the s p e c i e s whose development was d e s c r i b e d by Willoughby & Archer (1969) from submerged F r a x i n u s wood i n a stream, and a l s o by Willoughby (1968), I n g o l d (1942, 1965, 1967), Ingold & E l l i s (1952), and N i l s s o n (1960). Ingold (1975a, F i g . 2-12, F i g . 11; 1975b, F i g . 13 sp. 1) noted that he commonly found t h i s conidium i n foam samples i n Great B r i t a i n . F i g u r e 4f. Helicoma sp. T h i s dematiaceous h e l i c o s p o r e appears to be i d e n t i c a l to 46 F i g u r e 2 0 . A n n u a l v a r i a t i o n i n n u m b e r o f s p o r e s o f T i t a e a s p . . ( m o n t h 0 = N o v e m b e r , 1 9 8 0 ) . C o l l e c t i n g S i t e s : n O " = s m a l l a l d e r " • " = l a r g e a l d e r n A n = s m a l l p o p l a r " A " = l a r g e p o p l a r " B " = t h r o u g h f a l l . 100 80-JIGURE 20 6 0 H 4(H 2(H A A A A A A • A £9*Q A ^ A month 48 the one recorded by Bandoni (1981 F i g . 1g) from the t e r r e s t r i a l l i t t e r of S c i r p u s microcarpus. I t was recorded only i n November and December, on both a l d e r s . F i g u r e 4q. Ceratosporium cornutum Matsushima T h i s spore type has been c o l l e c t e d by C a r r o l l (1981, F i g . 1) from D o u g l a s - f i r t h r o u g h f a l l . I t was recorded at a l l f i v e s i t e s , i n w i n t e r - s p r i n g . F i g u r e 4c. Tapered H e l i c o s p o r e T h i s i s undoubtedly the same s p e c i e s as c o l l e c t e d i n stemflow of D o u g l a s - f i r and on stems of Juncus by Bandoni (1981 F i g . 2h), and i n stream foam by Tubaki (1965 P l a t e 2j) as H e l i c o s p o r i u m sp. I t may represent a s p e c i e s of H e l i c o s p o r i u m or He1icornyces. T h i s h e l i c o s p o r e was recorded from the autumn through the s p r i n g , on p o p l a r s . F i g u r e 4e. r P e s t a l o t i o p s i s sp. Spores of t h i s coelomycete genus were recorded d u r i n g the f a l l and winter, u s u a l l y i n low c o n c e n t r a t i o n s but with 32 c o n i d i a / m l . i n one l a r g e a l d e r stemflow sample i n December. I t was recorded from l a r g e a l d e r , with the exception of one spore from small a l d e r i n December. Ingold (1975a, F i g . 39-14) i l l u s t r a t e d an u n i d e n t i f i e d spore from stream foam i n Great B r i t a i n which may a l s o belong in'" t h i s genus. Bandoni (pe r s . comm.) found a very s i m i l a r spore i n s t r e e t spora Species of P e s t a l o t i o p s i s are very common p l a n t p a r a s i t e s . 4 9 F i g u r e 7b. J . A. MacKinnon 55. Scolecobasidium sp. T h i s spore type has been recorded by Bandoni (1981 F i g . 1b) from washed S c i r p u s microcarpus l i t t e r . T h i s spore type showed up i n e i g h t of my c o l l e c t i o n s . I t occurred at a l l s i t e s , but was most common on l a r g e a l d e r . F i g u r e 7f. Spore types recorded on two to f i v e dates G y o e r f f y e l l a b i a p p e n d i c u l a t a (Arnold) Ingold One specimen was recorded on each of three dates, from November to January, i n stemflow of l a r g e a l d e r and i n t h r o u g h f a l l . Bandoni (1981) r e p o r t e d t h i s s p e c i e s , a l s o i n the stemflow of red a l d e r t r e e s . T h i s s p e c i e s has been reported as a saprobe on c o n i f e r wood (Webster & De s c a l s 1982). F i g u r e 7d. C e r a t o s p o r e l l a sp. Three s i n g l e spores of t h i s type were recorded, twice i n September and once i n January, on both a l d e r s and on the l a r g e p o p l a r . Bandoni (1981) repo r t e d t h i s same spore type i n stemflow of an u n s p e c i f i e d t r e e s p e c i e s . F i g u r e 4c. Stauronema sp. These spores re p r e s e n t another coelomycete genus that occurs i n stemflow,and has a l s o been recorded from streams 50 (In g o l d 1974? Ingold 1975b F i g . 39,10; Ingold 1977 F i g . 1c) as an unknown conidium. F i v e spores of t h i s s p e c i e s were recorded, from the l a r g e a l d e r and both p o p l a r s , i n winter and s p r i n g . F i g u r e 4b. C l a v a r i o p s i s a q u a t i c a de Wil d T h i s s p e c i e s i s most commonly r e p o r t e d s p o r u l a t i n g i n streams, but has a l s o been r e p o r t e d as a t e r r e s t r i a l l i t t e r decomposer by Dyko (1976). I t occurs s a p r o b i c a l l y on angiosperm wood i n t e r r e s t r i a l l o c a l i t i e s (Webster & D e s c a l s 1982), and on angiosperm wood submerged i n streams (Gareth Jones and O l i v e r 1964). I t was recorded once i n November and once i n January, both times on large a l d e r . Willoughby & Archer (1973) recorded i t as most common i n winter and s p r i n g i n stream foam i n England. F i g u r e 4a. Dematiaceous T-Shaped Conidium T h i s fungus was represented by one spore on each of four c o l l e c t i n g dates. I t was recorded from l a r g e a l d e r , both p o p l a r s , and t h r o u g h f a l l . T h i s spore was a l s o r e p o r t e d by Gonczol (1976 P i I I I , F i g s 1,2) from beech t r e e hollows and Miura (1975 F i g 27) from streams. F i g u r e 5g. G y o e r f f y e l l a g e m e l l i p a r a Marvanova T h i s s p e c i e s i s a common t e r r e s t r i a l l i t t e r decomposer (Bandoni 1972; Park 1974; Gams 1975). Spores of t h i s fungus were recorded on four dates, a l l on small a l d e r i n December. 51 Bandoni (1981) recorded c o n i d i a of t h i s s p e c i e s from the stemflow of b i g - l e a f maple, and Willoughby & Archer (1973) re c o r d G. c r a g i n i f o r m i s (Petersen) Marvanova and G y o e r f f y e l l a sp. as f a i r l y common i n the winter i n stream foam i n England. G y o e r f f y e l l a g e m e l l i p a r a Marvanova has not been recorded from a q u a t i c h a b i t a t s . The spores recorded here are the secondary c o n i d i a of G y o e r f f y e l l a g e m e l l i p a r a Marvanova, as can be seen by the d e n t i c l e s at the base of the primary a x i s . F i g u r e 5e,f. J . A. MacKinnon 83. Tiny T r i r a d i a t e Conidium T h i s t i n y amerospore was recorded once i n the winter, and once i n the s p r i n g , both times i n stemflow of the l a r g e a l d e r . I t was a l s o recorded by Ingold (1975c, F i g . 39-3) as an unknown from foam i n a stream i n S c o t l a n d . I t was r a r e l y recorded i n t h i s study, but on one occ a s i o n i n December, on l a r g e a l d e r , a c o n c e n t r a t i o n of s i x c o n i d i a / m l . stemflow was noted. F i g u r e 5h. Te t r a c l a d i u m sp. » Species of t h i s genus are commonly recorded t e r r e s t r i a l l i t t e r decomposers (e. g. S c o u r f i e l d 1940, Gregory & H i r s t 1957, Hudson & Sutton 1964, Gams et a l 1969, Bandoni 1972, Makela 1972, Park 1974, Dyko 1976, Bandoni 1981). One Te t r a c l a d i u m spore was recorded from l a r g e a l d e r i n February, and two i n March from small p o p l a r . T. marchalianum de Wild, o c c u r r e d i n the winter and s p r i n g i n stream foam in England (Willoughby & Archer 1973). The spore recorded here 52 probably belongs i n t h i s genus, but i s not l i k e any d e s c r i b e d s p e c i e s ; i t bears some resemblance to T. marchalianum c o n i d i a e a r l y i n t h e i r development (Greathead 1961 F i g . 7 ) . F i g u r e 7e. T r i c l a d i u m sp. T h i s spore type resembles T. splendens I n g o l d . Species of T r i c l a d i u m have been recorded from t e r r e s t r i a l l i t t e r by Park (1974), Dyko (1976), Bandoni (1981), and o t h e r s , from the water i n the hollows of beech trunks by Gonczol (1976 P l a t e I I , F i g . 2), ' and from the stem of a herbaceous p l a n t by Yadav (1966), and from the a i r spora by Gregory & H i r s t (1957). Webster & Descals (1982) r e p o r t e d T. splendens as a saprobe on wood, and Gareth Jones & O l i v e r (1964) r e p o r t e d the same s p e c i e s on angiosperm wood submerged i n streams. There were three c o l l e c t i o n dates f o r t h i s spore type, a l l i n the autumn, from sma l l a l d e r , l a r g e p o p l a r , and t h r o u g h f a l l . Willoughby & Archer (1973) r e c o r d T. splendens and Tr i c l a d i u m spp. as abundant i n stream foam i n England d u r i n g winter and s p r i n g , and l e s s common the r e s t of the year. Bandoni recorded a spore of t h i s genus from g u t t e r flow i n the s t r e e t s of Vancouver, Canada. F i g u r e s 5c ,d. T r i p o s p o r i n a yakuensis Matsushima T h i s s p e c i e s has been c o l l e c t e d , as an unknown, by Ingold (1965 F i g . 2a; 1975a F i g . 2-7; 1975b F i g . 39-5), Hudson & Ingold (1960 P l a t e 11-6), and Willoughby & Archer (1973 F i g 4k) from stream foam in England. T h i s spore type was recorded, i n the 53 stemflow of the l a r g e and small a l d e r s , i n November and January. Matsushima (1971) d e s c r i b e d i t from decaying l e a v e s , (presumably t e r r e s t r i a l ) . F i g u r e 7f. V a r i c o s p o r i u m elodeae Kegel T h i s s p e c i e s i s a common decomposer of a wide v a r i e t y of t e r r e s t r i a l , semi-aquatic, and a q u a t i c l i t t e r (Park 1982). N i l s s o n (1964) suggested that t h i s s p e c i e s i s b e t t e r c o n s i d e r e d as an a e r o - a q u a t i c hyphomycete, s i n c e when he incubated the l e a v e s , they s p o r u l a t e d at the water s u r f a c e r a t h e r than when t o t a l l y submerged; he a l s o i s o l a t e d i t mainly from stagnant p o o l s . There are three c o l l e c t i o n s of these spores, two on s m a l l poplar and one on small a l d e r , and a l l i n November-December. Willoughby & Archer (1973) r e p o r t e d t h i s s p e c i e s as commonest i n w i n t e r - s p r i n g stream foam i n England. Bandoni (1981) records V a r i c o s p o r i u m elodeae Kegel from g u t t e r flow i n the s t r e e t s of Vancouver, Canada. F i g u r e 7g. J . A. MacKinnon 80. Spore types recorded on one date only Branched Conidium One spore was recorded, i n the stemflow of the small p o p l a r , i n December. I t appears s i m i l a r to Varicosporium  qiganteum Crane. F i g u r e 7h. 54 Dendrospora sp. One spore of t h i s type was found i n t h i s study, from stemflow pof l a r g e a l d e r i n December. Species of t h i s genus have been r e p o r t e d from decomposing t e r r e s t r i a l l i t t e r (Webster 1977, Bandoni 1981). One spore of t h i s type was recorded, from stemflow of l a r g e a l d e r , i n December. T h i s spore appears to belong t o D. t e n e l l a D e s c a l s & Webster. T h i s same spore type has been recorded as an unknown s p e c i e s of Dendrospora from streams by Ingold ( i 9 6 0 , F i g . 1d) and Iqbal (1974, F i g . 3 j ) ( b o t h f i d e D e s c a l s & Webster 1980). D. t e n e l l a i s a saprobe on angiosperm wood (Webster & Descals 1982). Willoughby & Archer (1973) recorded D. e r e c t a Ingold as most common i n the winter and s p r i n g i n stream foam i n England. Bandoni (pers. comm.) has found spores of members of t h i s genus on stems of Juncus. F i g u r e 5b. Dematiaceous Cru c i f o r m Conidium One spore was recorded, i n the stemflow of the l a r g e p o p l a r , i n December. F i g u r e 5a. T e t r a p l o a a r i s t a t a Berk. & Br. T h i s s p e c i e s has been recorded from the a i r spora by Gregory (1961), from t e r r e s t r i a l oak l i t t e r by Webster (1977), and from stream foam i n Uganda (Ingold 1966 F i g . 11q). One spore was recorded, i n the stemflow of the small p o p l a r , in February. F i g u r e 7 i . J . A. MacKinnon 81. 55 C o r n u t i s p o r a 1 i c h e n i c o l a Hawksw. T h i s coelomycete i s a l i c h e n p a r a s i t e p r e v i o u s l y recorded from A u s t r a l i a , the B r i t i s h I s l e s , I t a l y , and S w i t z e r l a n d . Four spores were recorded, from the stemflow of the l a r g e a l d e r , on one sampling date i n November. Spores of t h i s genus were c o l l e c t e d , as C o r n u t i s p o r a sp. , by Bandoni (1981) from stemflow of red cedar, a l d e r , and b i g l e a f maple, and from stems of Juncus ; as an unknown, by Gonczol (1976 P l a t e I I I , F i g 7) from the hollows of beech t r e e s ; and by Miura (1974 F i g 53) from streams. F i g u r e Ii-D i c r a n i d i o n f r a g i l e Harkness T h i s i s the s p e c i e s recorded by Gonczol (1976 F i g . III-6) as an unknown from stemflow foam at the base of a beech t r e e i n Hungary. I t was a l s o recorded by Ingold (1966 F i g . 1-30) from stream foam. The c o n i d i a of t h i s s p e c i e s can be very v a r i a b l e ( B u t t e r f i e l d 1973). One spore was recorded, i n the stemflow of the l a r g e a l d e r , i n November. F i g u r e 7k. L a t e r i r a m u l o s a u n i - i n f l a t a Matsushima One spore was recorded, from the stemflow of the small a l d e r , i n November. T h i s s p e c i e s was d e s c r i b e d by Matsushima (1971) from decaying leaves i n a t e r r e s t r i a l s i t u a t i o n . Marvanova (1973) c o l l e c t e d i t from p l a n t d e b r i s i n a stream; she suggests that i t should not be c o n s i d e r e d as an " a q u a t i c " hyphomycete, but simply as a hyphomycete with water-borne c o n i d i a . Spores of t h i s s p e c i e s i n streams i n c r e a s e g r e a t l y i n 56 n u m b e r s a f t e r a r a i n f a l l , a n d g r o w t h a n d s p o r u l a t i o n o f c u l t u r e s o f t h i s f u n g u s a r e s t i m u l a t e d b y i m m e r s i n g s t r i p s o f t h e c u l t u r e i n f l o w i n g w a t e r ( M a r v a n o v a 1 9 7 3 ) . S e v e r a l r e s e a r c h e r s ( e . g . I n g o l d & E l l i s 1 9 5 2 , F i g . 1 f ) h a v e r e p o r t e d t h i s s p o r e i n s t r e a m f o a m . W i l l o u g h b y & A r c h e r ( 1 9 7 3 ) r e c o r d t h i s s p e c i e s ( a s " U n i d e n t i f i e d s p . 1" , F i g . 4 i ) a s v e r y r a r e , o c c u r r i n g o n l y i n O c t o b e r , i n a s t r e a m i n E n g l a n d . F i g u r e 6 a . 57 DISCUSSION The r e s u l t s of t h i s i n v e s t i g a t i o n i n d i c a t e s e v e r a l i n t e r e s t i n g p o i n t s concerning f u n g i of f o r e s t canopies e s p e c i a l l y i n f o r m a t i o n with r e l a t i o n to the d i v e r s i t y of fungi p r e s e n t , d i s t r i b u t i o n of these fu n g i between s i t e s , and t h e i r s e a s o n a l i t y of s p o r u l a t i o n . As w e l l , the i n f o r m a t i o n allows a c e r t a i n amount of s p e c u l a t i o n about the r o l e of canopy fungi i n a f o r e s t ecosystem. Of the fungi recorded here, the Double Crescent Conidium, the H-Shaped Spore, Tripospermum spp. , T i t a e a spp., F l a b e l l o s p o r a , Ceratosporium, Scolecobasidium, Gyoerf f y e l l a spp., C e r a t o s p o r e l l a , C l a v a r i o p s i s , the Tiny T r i r a d i a t e , T r i c l a d i u m , T r i p o s p o r i n a , V a r i c o s p o r i u m, the Branched Conidium, Dendrospora, the Dematiaceous C r u c i f o r m Conidium, T e t r a p l o a , and L a t e r i r a m u l o s a a l l have three or more branching arms j o i n e d at a common p o i n t or to a common a x i s . Of the other fungi recorded, P e s t a l o t i o p s i s , Seimatosporium, C o r n u t i s p o r a , and D i c r a n i d i o n a l l possess appendaged spores. S e v e r a l of the common spores are not branched or appendaged (the Scol e c o s p o r e s , Fusarium). I t i s s i g n i f i c a n t that such a high percentage of the spores are branched or appendaged. Ingold (1966,1975b) noted that branched or appendaged spores are o f t e n w a t e r - t r a n s p o r t e d . These branched spores are c h a r a c t e r i s t i c not only of many aq u a t i c Fungi I m p e r f e c t i , but a l s o the Ascomycetes, Basidiomycetes, Zygomycetes, and Algae of a q u a t i c h a b i t a t s . Ingold (1975b) proposed two e x p l a n a t i o n s f o r t h i s convergent e v o l u t i o n of the t e t r a r a d i a t e shape: e i t h e r spores of t h i s shape s e t t l e more 58 s l o w l y ; o r t h e y a r e m o r e e f f e c t i v e l y t r a p p e d o n u n d e r w a t e r s u r f a c e s . W e b s t e r ( 1 9 5 9 ) f o u n d n o a p p r e c i a b l e d i f f e r e n c e i n s e t t l i n g r a t e s b e t w e e n b r a n c h e d a n d u n b r a n c h e d s p o r e s . H e a l s o f o u n d t h a t t e t r a r a d i a t e l y b r a n c h e d s p o r e s w e r e t r a p p e d u n d e r w a t e r i n h i g h e r n u m b e r s t h a n s p o r e s o f o t h e r s h a p e s . I q b a l & W e b s t e r ( 1 9 7 3 ) a n d B a n d o n i ( 1 9 7 5 ) n o t e d t h a t b u b b l e s c o u l d c o n c e n t r a t e t e t r a r a d i a t e p r o p a g u l e s a n d c a r r y t h e m t o w a t e r s u r f a c e s . B u b b l e s b u r s t i n g a t t h e s u r f a c e c a n e j e c t t h e s e s p o r e s i n t o t h e a i r , a n d t h e y c a n b e c o l l e c t e d i n t h e a e r o s o l i m m e d i a t e l y a b o v e b u r s t i n g b u b b l e s . T u b a k i ( 1 9 6 0 ) a l s o n o t e d t h e p r e s e n c e o f a q u a t i c h y p h o m y c e t e s p o r e s i n t h e a e r o s o l a t t h e b a s e o f a w a t e r f a l l . T w o o f t h e f u n g i r e p o r t e d i n t h i s s t u d y , ( T e t r a p l o a a r i s t a t a a n d T r i c l a d i u m s p . ) , a r e p r e s e n t i n t h e a i r s p o r a ( G r e g o r y 1 9 6 1 ; G r e g o r y & H i r s t 1 9 5 7 ) , a n d a r e p e r h a p s p a s s e d i n t o t h e a i r b y t h i s b u b b l e e x p l o s i o n m e c h a n i s m . B a n d o n i ( 1 9 7 4 , 1 9 7 5 ) p o i n t e d o u t t h a t t h e s e v a r i o u s e x p l a n a t i o n s r e l i e d o n c o n i d i a b e i n g p r o d u c e d , l i b e r a t e d , a n d d i s p e r s e d u n d e r f l o w i n g w a t e r , a n d n o t e d t h a t t h i s w a s n o t a p p l i c a b l e t o t e r r e s t r i a l o c c u r r e n c e s o f t h e s e f u n g i . H e s u g g e s t e d t h a t t h e b r a n c h e d s p o r e s h a p e w a s a l s o a d v a n t a g e o u s f o r d i s p e r s a l i n w a t e r f i l m s t r a p p e d b e t w e e n l a y e r s o f t e r r e s t r i a l l e a f l i t t e r . T h e b r a n c h e d s p o r e m i g h t b e m o r e e a s i l y t o r n o f f i t s c o n i d i o p h o r e b y w a t e r t e n s i o n t h a n a s p o r e w i t h a s m a l l e r s u r f a c e a r e a . A s p o r e w i t h a r m s o c c u p y i n g s e v e r a l p l a n e s ( a ' c a l t r o p ' ) m i g h t b e r e f l o a t e d m o r e e a s i l y a f t e r s e t t l i n g . A n d b r a n c h e d s p o r e s m i g h t b e m o v e d m o r e e a s i l y o n t h e w a t e r f i l m s o n t e r r e s t r i a l l i t t e r . 59 F i n a l l y , s o m e m e n t i o n s h o u l d b e m a d e o f t h e S c o l e c o s p o r e s . M a n y a q u a t i c ( a n d e v e n m o r e t e r r e s t r i a l ) h y p h o m y c e t e s p r o d u c e s i g m o i d s c o l e c o s p o r e s t h a t a r e a d a p t e d f o r w a t e r t r a n s p o r t . T h e s c o l e c o s p o r e s r e c o r d e d i n t h i s s t u d y w e r e m a i n l y s t r a i g h t a n d i n o n e p l a n e , t h a t i s , n o n - s i g m o i d . T h e y p o s s e s s e d n o o b v i o u s a d a p t a t i o n s f o r w a t e r d i s p e r s a l , b u t w e r e f o u n d i n l a r g e n u m b e r s i n m o s t s a m p l e s . T h e s p o r u l a t i o n o f a l l f u n g i a t t h e s i t e s v a r i e d s e a s o n a l l y . W h e n s p o r u l a t i o n ( F i g u r e s 8 - 2 0 ) i s c o m p a r e d w i t h t h e t o t a l p r e c i p i t a t i o n ( F i g u r e 2 1 ) , i t c a n b e s e e n t h a t t h e r e i s a p o s i t i v e c o r r e l a t i o n b e t w e e n t h e a m o u n t o f p r e c i p i t a t i o n a n d t h e n u m b e r o f s p o r e s l i b e r a t e d . H o w e v e r , t h e c o r r e l a t i o n i s n o t p e r f e c t , p a r t i c u l a r l y w h e n t h e s p o r e p r o d u c t i o n d r o p s b e f o r e p r e c i p i t a t i o n d e c r e a s e s i n t h e s p r i n g , a n d w h e n t h e p r e c i p i t a t i o n i n c r e a s e s a g a i n i n t h e a u t u m n w i t h o u t a c o n c u r r e n t r i s e i n s p o r e p r o d u c t i o n . I t c a n a l s o b e s h o w n t h a t t h e r e i s a c o r r e l a t i o n b e t w e e n t e m p e r a t u r e ( F i g u r e 2 2 ) a n d s p o r e p r o d u c t i o n ( F i g u r e s 8 - 2 0 ) ; h e r e , t h e c o r r e l a t i o n i s a n i n v e r s e o n e , w i t h t h e s p o r e p r o d u c t i o n g r e a t e s t d u r i n g t h e c o l d e s t m o n t h s . A s w e l l , t h e s p o r e p r o d u c t i o n p e a k s i n t h e m o n t h s w h e n t h e t r e e s a r e w i t h o u t l e a v e s . S i n c e m a n y o f t h e f u n g i r e p o r t e d h e r e p r o d u c e s p o r e s s p e c i a l i z e d f o r a q u a t i c d i s p e r s a l , t h e c o r r e l a t i o n o f s p o r u l a t i o n w i t h p r e c i p i t a t i o n i s n o t u n e x p e c t e d . A n d s i n c e p r e c i p i t a t i o n i s g r e a t e s t d u r i n g t h e c o l d e s t m o n t h s o f t h e y e a r , i t i s n o t s u r p r i s i n g t h a t t h e r e i s a n i n v e r s e c o r r e l a t i o n b e t w e e n t e m p e r a t u r e a n d s p o r e p r o d u c t i o n . T h e o n s e t o f t h e r a i n y s e a s o n i n V a n c o u v e r , i n O c t o b e r , i s p r o b a b l y t h e t i m e w h e n 60 F i g u r e s 21 a n d 2 2 . F i g u r e 2 1 . M o n t h l y i n c i d e n t p r e c i p i t a t i o n , s t e m f l o w a n d t h r o u g h f a l l v o l u m e s a t t h e s i t e s . F i g u r e 2 2 . M o n t h l y m e a n t e m p e r a t u r e a t t h e s i t e s . ( m o n t h 0 = N o v e m b e r 1 9 8 0 ) F i g u r e 2 0 : " c o i n c i d e n t p r e c i p i t a t i o n " # " = t h r o u g h f a l l n A " = s t e m f l o w . 300-9-: 200-a a 1 I lOO-i o F I G U R E J 2 1 O o o o o o o o A * » ' - - t . -rt ] iJi Ui J i J • 8 ^ A , A A • | month 20 - r - FIGURE 22 U o, , <D +-» 05 i _ CD a £ I5H K H 5 H O N month J i A 62 most of the " t r e e f u n g i " begin to grow again a f t e r having remained dormant d u r i n g the dry season. A l t e r n a t i v e l y , these fun g i begin to s p o r u l a t e again with the onset of the the r a i n y season a f t e r having grown v e g e t a t i v e l y i n or on the wood through the summer. The number of s p e c i e s s p o r u l a t i n g i n c r e a s e s through the l a t e autumn i n t o the winter, and does not drop o f f again u n t i l the s p r i n g . Besides the temporal v a r i a t i o n i n s p o r u l a t i o n , the p o s s i b i l i t y t h a t there i s a l s o a s p a t i a l v a r i a t i o n , r e f l e c t i n g the presence of these fungi i n some t r e e s and not i n o t h e r s , was i n v e s t i g a t e d . A PCA o r d i n a t i o n of axes 1 and 2 was performed to determine i f there was an obvious s p a t i a l d i s t r i b u t i o n of the spore types. No clumping of sample p o i n t s with r e s p e c t to s i t e was e v i d e n t ( F i g u r e 23). The only p o i n t s that do not o r d i n a t e with the r e s t of the samples are the p o i n t s i n F i g u r e 23 l a b e l l e d a, b, c, and d. Point a (the l a r g e a l d e r stemflow sample on C o l l e c t i o n Date 17) was c l e a r l y separated on the x - a x i s from most samples. V a r i a b l e 1 (the Scolecospore spore type) has a high weight (0.99) with the f i r s t PCA a x i s ; t h i s i n d i c a t e s that s e p a r a t i o n of the samples on the x - a x i s i s based p r i m a r i l y on the abundance of S c o l e c o s p o r e s . T h i s sample (p o i n t a) had a very l a r g e c o n c e n t r a t i o n of Scolecospores (3500 c o n i d i a / m l . ) . P o i n t s b, c, and d were separated on the y - a x i s , an a x i s whose s e p a r a t i o n i s based p r i m a r i l y on V a r i a b l e 2 (Fusarium sp. ; 0.69 weight with the second a x i s ) and V a r i a b l e 3 (Lunate Spore; 0.71 weight with t h i s a x i s ) . Point b (the l a r g e a l d e r stemflow on C o l l e c t i n g 63 Figure 23. P r i n c i p a l Components Analysis Scatter Plot. X-axis=PCA axis 1; Y-axis=PCA axis 2. 64 65 D a t e 1 9 ) i s u n u s u a l i n i t s h i g h c o n c e n t r a t i o n ( 1 1 0 0 c o n i d i a / m l . ) o f L u n a t e S p o r e ; p o i n t c ( t h e s m a l l a l d e r s t e m f l o w o n C o l l e c t i o n D a t e 1 8 ) h a s a h i g h c o n c e n t r a t i o n ( 5 6 0 c o n i d i a / m l . ) o f F u s a r i u m s p . ; a n d p o i n t d ( t h e l a r g e a l d e r s t e m f l o w o n C o l l e c t i o n D a t e 18) a l s o h a s a h i g h c o n c e n t r a t i o n ( 5 4 0 c o n i d i a / m l . ) o f F u s a r i u m s p . . D e s p i t e t h e c l e a r s e p a r a t i o n o f t h e s e f o u r p o i n t s , t h e c l u s t e r i n g o f t h e r e s t i s m o r e s i g n i f i c a n t . T h i s c l u s t e r i n g i n d i c a t e s t h a t t h e s e p o i n t s a r e o b v i o u s l y s i m i l a r , b a s e d o n s p o r e t y p e d i s t r i b u t i o n a n d a b u n d a n c e . T h i s c o n f i r m s w h a t s e e m e d o b v i o u s f r o m c a s u a l o b s e r v a t i o n o f t h e d a t a ; t h e d i f f e r e n t s i t e s d o n o t p o s s e s s m a r k e d l y d i f f e r e n t s p o r e t y p e s . T h e s t e m f l o w m y c o b i o t a o f t r e m b l i n g a s p e n a n d r e d a l d e r a t my s i t e s a r e s i m i l a r , a n d t h e s p o r e t y p e s f o u n d i n t h r o u g h f a l l a r e t h e s a m e ( t h o u g h g e n e r a l l y i n l o w e r c o n c e n t r a t i o n ) a s t h o s e i n s t e m f l o w . ' T h e l a r g e r t r e e s o f t h e t w o s p e c i e s s e e m e d t o s u p p o r t s l i g h t l y m o r e d i v e r s e f u n g a l p o p u l a t i o n s , a s j u d g e d b y t h e n u m b e r o f s p o r e t y p e s r e c o r d e d . T h i s m a y b e d u e t o i n c r e a s e d s u r f a c e a r e a f o r c o l o n i z a t i o n d u e t o b a r k c r a c k i n g , o r p e r h a p s t o t h e p r e s e n c e o f l i c h e n s i n t h e l a r g e r t r e e s . D r . G . C . C a r r o l l h a s s u g g e s t e d t o me t h a t s o m e o f t h e u n k n o w n s p o r e t y p e s may b e l i c h e n p a r a s i t e s . T h e l i c h e n p a r a s i t e C o r n u t i s p o r a l i c h e n i c o l a w a s r e c o r d e d f r o m t h e l a r g e r r e d a l d e r . T h e p r e s e n c e o f t h e a q u a t i c h y p h o m y c e t e s i n t r e e s h a s b e e n n o t e d o n l y r e c e n t l y ( C a r r o l l 1 9 8 2 , B a n d o n i 1 9 8 1 , G o n c z o l 1 9 7 6 ) a n d t h e n t h e r e w a s l i t t l e i n f o r m a t i o n o n t h e i r d i s t r i b u t i o n a n d a b u n d a n c e . W i t h t h e i n f o r m a t i o n p r e s e n t e d h e r e , l i m i t e d 66 s p e c u l a t i o n o n t h e r o l e o f t h e s e f u n g i i n t h e f o r e s t e c o s y s t e m i s p o s s i b l e . T h e g r e a t e s t a b o v e - g r o u n d m a s s o f o r g a n i c m a t t e r i n p u t t o t h e t e r r e s t r i a l a n d s t r e a m d e c o m p o s i n g s y s t e m s i n n o r t h t e m p e r a t e h a r d w o o d f o r e s t s i s t r e e l e a v e s ( G o s z e t a l 1 9 7 8 ) . M o s t o f t h e f u n g i t h a t I h a v e i d e n t i f i e d f r o m s t e m f l o w a n d t h r o u g h f a l l ( w i t h t h e e x c e p t i o n o f t h e s p e c i e s o f A s p e r g i l l u s , P e n i c i l l i u m , a n d t h e Z y g o m y c e t e s ) a r e n o t b e l i e v e d t o b e i m p o r t a n t i n d e c o m p o s i t i o n o f l e a v e s o n l a n d , a l t h o u g h t h e y h a v e b e e n i s o l a t e d f r o m d e c o m p o s i n g l e a v e s i n m o i s t t e r r e s t r i a l s i t u a t i o n s ( B a n d o n i 1 9 8 1 ) . A t my s i t e s , c o n i d i a o f A l a t o s p o r a  a c u m i n a t a , T r i c l a d i u m s p . , a n d V a r i c o s p o r i u m e l o d e a e w e r e c o m m o n l y o b s e r v e d o n t e r r e s t r i a l A l n u s a n d P o p u l u s l e a v e s . M e t h o d s t o d e m o n s t r a t e g r o w t h o f t h e s e f u n g i i n t h e l i t t e r w e r e n o t e m p l o y e d ; h o w e v e r , t h e h i g h c o n c e n t r a t i o n s o f s p o r e s o f t h e s e s p e c i e s o n s o m e l e a v e s w o u l d s u g g e s t t h a t t h e y w e r e a c t i v e l y g r o w i n g t h e r e . T h e m a i n r o l e o f t h e t r u l y " a q u a t i c " h y p h o m y c e t e s ( t h o s e f o r m s p e c i e s r e s t r i c t e d t o s t r e a m s ) a p p e a r s t o b e i n l e a f d e c o m p o s i t i o n . T h e s t r e a m s y s t e m s i n n o r t h t e m p e r a t e f o r e s t e d r e g i o n s a r e a l l o c h t h o n o u s , i n t h a t t h e y d e p e n d a l m o s t e n t i r e l y o n o r g a n i c m a t t e r p r o d u c e d b y p l a n t s i n t h e a d j o i n i n g t e r r e s t r i a l s y s t e m s ( t h e w a t e r s h e d ) . F i s h e r & L i k e n s ( 1 9 7 3 ) , i n a s t u d y o f a f i r s t o r d e r s t r e a m i n New H a m p s h i r e , s h o w e d t h a t 99% o f t h e e n e r g y i n p u t t o t h e s t r e a m w a s f r o m t h e t e r r e s t r i a l e c o s y s t e m , w i t h t h e o t h e r 1% b e i n g l a r g e l y p h o t o s y n t h e s i z e d b y m o s s e s i n t h e s t r e a m . O f t h i s , 47% w a s d i s s o l v e d o r g a n i c m a t t e r 67 ( p a r t i c l e s l e s s t h a n 0.5 m i c r o n s i n d i a m e t e r ) and 53% was p a r t i c u l a t e o r g a n i c m a t t e r ( p a r t i c l e s g r e a t e r t h a n 0.5 m i c r o n s i n d i a m e t e r ) . Of t h e p a r t i c u l a t e o r g a n i c m a t t e r , 96% was c o a r s e p a r t i c u l a t e o r g a n i c m a t t e r ( p a r t i c l e s g r e a t e r t h a n 1 mm. d i a m e t e r ) . S i x t y - s i x p e r c e n t o f t h e t o t a l o r g a n i c m a t t e r p a s s e d downstream, and 34% was c o n v e r t e d t o c a r b o n d i o x i d e i n t h e i r s t u d y s i t e . The d a t a o f S e d e l l e t a_l (1973) from a s t r e a m i n O r e g o n t e l l e s s e n t i a l l y t h e same s t o r y . The c o a r s e p a r t i c u l a t e o r g a n i c m a t t e r i s c o n v e r t e d t o f i n e p a r t i c u l a t e o r g a n i c m a t t e r ( p a r t i c l e s l e s s t h a n 1 mm. d i a m e t e r ) by a c o m b i n a t i o n of a b r a s i o n , m i c r o b i a l d e g r a d a t i o n , and t h e a c t i o n s of t h e " s h r e d d e r " i n v e r t e b r a t e s . The m i c r o b i a l o r g a n i s m s , among wh i c h t h e f u n g i a p p e a r t o be t h e most i m p o r t a n t component ( S u b e r k r o p p & K l u g 1974,1976,1980), a p p e a r t o be t h e fo r m i n w h i c h o r g a n i c m a t t e r i s p a s s e d from t h e p a r t i c u l a t e o r g a n i c m a t t e r t o t h e i n v e r t e b r a t e s ( B a r l o c h e r & K e n d r i c k I 9 7 3 a , b ) . The major components o f t h e a l l o c h t h o n o u s o r g a n i c m a t t e r i n p u t a r e u n a v a i l a b l e t o t h e i n v e r t e b r a t e s b u t can be u t i l i z e d by t h e s e a n i m a l s a f t e r " p r o c e s s i n g " ; t h e m i c r o b i a l b i o m a s s p r o d u c e d by t h e g r o w t h of f u n g i and b a c t e r i a on l e a v e s and t w i g s c an be u t i l i z e d d i r e c t l y by i n v e r t e b r a t e s . The m i c r o b e s , i n p a r t i c u l a r t h e f u n g i , i n c l u d i n g t h e a q u a t i c h y p h o m y c e t e s , a r e an i m p o r t a n t l i n k i n t h e f o o d c h a i n of t h e s t r e a m e c o s y s t e m s . F u r t h e r p r o c e s s i n g of t h e o r g a n i c m a t t e r i n s t r e a m s i s w e l l documented by Cummins (1974) and Cummins & K l u g ( 1 9 7 9 ) . The f u n g i r e p o r t e d i n t h i s s t u d y a r e p r o b a b l y p e r t h o p h y t e s 68 o n w o o d o r b a r k , t r e e p a r a s i t e s ( A l t e r n a r i a , F u s a r i u m ) o r , a s i s t h e c a s e f o r C o r n u t i s p o r a 1 i c h e n i c o l a , l i c h e n p a r a s i t e s . I t h a s b e e n s h o w n t h a t l e a v e s t r a p p e d i n h o l l o w s i n a t r e e may s u p p o r t p o p u l a t i o n s o f m a n y d i f f e r e n t f u n g i ( G o n c z o l 1 9 7 6 ; B a n d o n i 1 9 8 1 ) , i n c l u d i n g s o m e o f t h e s p e c i e s f o u n d i n t h i s s t u d y . H o w e v e r , n o t r a p p e d l e a v e s w e r e v i s i b l e i n a n y o f t h e t r e e s s a m p l e d i n t h i s s t u d y . A s n o t e d p r e v i o u s l y i n T a b l e I , s t e m f l o w a n d t h r o u g h f a l l a r e c h e m i c a l l y d i f f e r e n t f r o m t h e i n c i d e n t r a i n f a l l . T h e s e c h e m i c a l c h a n g e s a r e i m p o r t a n t t o t h e o r g a n i s m s i n t h e f o r e s t f l o o r d e c o m p o s e r s y s t e m . A n e q u a l l y i m p o r t a n t r o l e f o r s t e m f l o w a n d t h r o u g h f a l l may b e a s a s o u r c e o f m i c r o b i a l i n o c u l u m t o t h e f o r e s t f l o o r . H e r e t h e c o n t r i b u t i o n s o f o n l y t h e m y c o b i o t a w i l l b e c o n s i d e r e d , t h o u g h t h e i n o c u l u m c o n t a i n s b a c t e r i a , p r o t o z o a n s , a n d a l g a e a s w e l l . M a n y o f t h e f u n g i r e p r e s e n t e d b y s p o r e s i n s t e m f l o w a n d t h r o u g h f a l l c a n b e i s o l a t e d f r o m d e c o m p o s i n g m a t e r i a l o n t h e f o r e s t f l o o r ; t h a t i s , t h e y a r e s a p r o b e s i n b o t h t r e e s a n d t e r r e s t r i a l l o c a l i t i e s . M a n y o f t h e s p o r e s a r e w a t e r - b o r n e , a n d i t s e e m s l i k e l y t h a t t h e y i n i t i a l l y r e a c h t h e f o r e s t f l o o r f r o m t h e t r e e s . T h e l e a v e s , a t a b s c i s s i o n , c o n t a i n v e r y f e w o f t h e f u n g i t h a t a r e i m p o r t a n t i n t h e i r u l t i m a t e d e g r a d a t i o n . I t i s p o s s i b l e t o i s o l a t e a q u a t i c h y p h o m y c e t e s a n d o t h e r h y p h o m y c e t e s ( P e n i c i l l i u m , T r i c h o d e r m a ) f r o m f a l l e n l e a v e s n o t l o n g a f t e r a b s c i s s i o n , a n d t h e s e f u n g i h a v e c o n s i d e r a b l e c e l l u l o l y t i c a n d l i g n o l y t i c c a p a b i l i t i e s . A s w e l l , i n a s i t u a t i o n a n a l a g o u s t o t h a t w e l l s t u d i e d i n a q u a t i c s y s t e m s , t h e f u n g i p r o b a b l y c o n v e r t t h e c e l l u l o s i c p l a n t 69 material to microbial biomass available to the invertebrate 'shredders'. Most of these 'shredders' lack c e l l u l a s e enzymes (Cummins 1974). There are other sources of inoculum for the leaves after abscission. Once a leaf has been inoculated, i t may bear hundreds of thousands of conidia of a hyphomycete over the course of i t s degradation. These conidia, which could then be dispersed by water films (Bandoni & Koske 1974), are important in spreading the fungus to other leaves. In fact, the number of spores present in stemflow and throughfall could not account for the large number of colonies of these fungi present on leaves on the forest f l o o r . Since the leaves from the previous year are largely gone from the forest floor by the time of next abscission, they do not represent a source of inoculum for newly f a l l e n leaves. However, spores from the s o i l can move, on water films, up in the s o i l to inoculate the freshly f a l l e n leaves. At least one of the fungi reported here (Varicosporium elodeae) has also been reported from s o i l s (eg. Waid 1944). It seems l i k e l y that spores in stemflow/throughfall also serve as inoculum for the freshly f a l l e n leaves. A few of the fungi l i s t e d in the Results section of t h i s thesis were found on the leaves around the base of the sample trees. Gonczol (1976) found that leaves in hollows in the trunks of beech trees, which had not been in contact with the ground, possessed r i c h fungal populations including several of the fungi found in t h i s study. One role for stemflow/throughfall, then, would be as mycobiota inoculum to the t e r r e s t r i a l decomposing systems. Both 70 t r e e s p e c i e s s t u d i e d d r o p t h e i r l e a v e s i n November. The f i r s t f o u r months t h a t t h e s e l e a v e s spend on the ground a r e c o i n c i d e n t w i t h t he months of g r e a t e s t f u n g a l spore c o n c e n t r a t i o n s i n stemflow and t h r o u g h f a l l , and a r e a l s o c o i n c i d e n t w i t h the months of maximum s t e m f l o w / t h r o u g h f a l l volume ( F i g u r e 21) . At l e a s t some of the l e a v e s become i n o c u l a t e d by the saprobe spores i n the s t e m f l o w / t h r o u g h f a l l . These l e a v e s produce l a r g e numbers of s p o r e s t h a t a r e sp r e a d i n water f i l m s t o i n f e c t o t h e r l e a v e s . Some of th e s e i n f e c t e d l e a v e s a r e t r a n s p o r t e d t o streams, where t h e i r f a t e has been w e l l documented (Kaushik & Hynes 1971). They a r e broken down m a i n l y by the a q u a t i c hyphomycetes. Other l e a v e s decompose i n the t e r r e s t r i a l ecosystem; a g a i n some of the f u n g i i n o c u l a t e d from s t e m f l o w / t h r o u g h f a l l may be imp o r t a n t i n d e c o m p o s i t i o n . A l l of t h i s r a i s e s the q u e s t i o n of how th e s e f u n g i get i n t o the t r e e s . As was mentioned e a r l i e r , most of the i m p e r f e c t f u n g i r e c o r d e d i n t h i s study p o s s e s s branched c o n i d i a . Though s t u d i e s by Tubaki (1960) have shown t h a t branched s p o r e s can be t r a n s m i t t e d t o some h e i g h t i n a e r o s o l , t h e r e was no d i s t u r b a n c e of the c r e e k s u f f i c i e n t t o gen e r a t e any amount of a e r o s o l . Spores of some f u n g i may have been t r a n s m i t t e d on the f e e t of b i r d s t o the t r e e t o p s , but t h i s e x p l a n a t i o n seems u n l i k e l y t o account f o r the d i v e r s i t y and abundance of f u n g a l s p e c i e s p r e s e n t i n the t r e e s . Perhaps the most l i k e l y e x p l a n a t i o n i n v o l v e s t he teleomorphs of th e s e hyphomycetes and Coelomycetes. Where known, the teleomorphs of the f u n g i i n t h i s study have w i n d - d i s p e r s e d s p o r e s . Most of the known teleomorphs of the 71 aquatic hyphomycetes are Ascomycetes found as saprobes on wood in t e r r e s t r i a l s i t u a t i o n s near streams (Webster & Descals 1979). The wind-dispersed ascospores of these teleomorphs could e a s i l y be transported to the tops of t r e e s , where t h e i r germination could produce the anamorphic hyphomycete s t a t e . 72 APPENDIX 1 CALCULATION OF STEMFLOW AND THROUGHFALL VOLUMES R e g r e s s i o n e q u a t i o n s f o r p r e d i c t i n g s t e m f l o w volume f rom p r e c i p i t a t i o n i n t e m p e r a t e hardwood f o r e s t s , d e r i v e d f rom t h e d a t a of H e l v e y & P a t r i c ( 1 9 6 5 ) , Lawson ( 1 9 6 7 ) , Henderson e_t a l ( 1 9 7 7 ) , and H u t c h i n s o n & R o b e r t s ( 1 9 8 1 ) , a r e : (summer v a l u e s ) S=0. 0 0 5 P - 0 . 0 1 4 t o S = 0 . 0 8 7 P - 0 . 0 0 1 and ( w i n t e r v a l u e s ) S = 0 . 0 1 7 P - 0 . 0 1 7 t o S = 0 . 0 4 8 P - 0 . 0 0 1 where S=stemf low v o l u m e , and P = p r e c i p i t a t i o n vo lume o r f rom l e s s t h a n 0 .5% t o a l m o s t 9% of t h e t o t a l p r e c i p i t a t i o n a s s t e m f l o w . S i m i l a r e q u a t i o n s f o r t h r o u g h f a l l a r e : (summer v a l u e s ) T = 0 . 6 9 7 P - 0 . 0 6 4 t o T = 0 . 9 5 5 P - 0 . 0 0 2 and 73 (winter values) T=0.789P-0.038 to T=0.959P-0.001 where T = t h r o u g h f a l l volume, and P = p r e c i p i t a t i o n volume or from about 70% of the p r e c i p i t a t i o n as t h r o u g h f a l l , to almost 96%. Using the g e n e r a l i z e d equations of Helvey & P a t r i c (1965): (summer val u e s ) S=0.041P-0.005 and T=0.901P-0.031 and (winter values) S=0.062P-0.005 and T=0 . 9 14P-0.015 where S=stemflow volume T = t h r o u g h f a l l volume, and P = p r e c i p i t a t i o n volume and c o n s i d e r i n g November to March i n c l u s i v e as winter months (the months that most t r e e s are without l e a v e s ) , the 74 p r e c i p i t a t i o n data from Environment Canada m e t e o r o l o g i c a l s t a t i o n were entered i n t o the equations to give rough values f o r the stemflow and t h r o u g h f a l l volumes at my s i t e over the sampling p e r i o d (Figure 21 ) . 7 5 A P P E N D I X 2 . M E D I A E M P L O Y E D M a I t - y e a s t - p e p t o n e ( M Y P ) m e d i u m ( B a n d o n i 1 9 7 2 ) 7 . 0 g . m a l t e x t r a c t 1 . 0 g . s o y t o n e 0 . 5 g . y e a s t e x t r a c t 7 . 0 g . I C N a g a r 1 0 0 0 m l . d i s t i l l e d w a t e r T h i s m e d i u m w a s u s e d f o r m a i n t e n a n c e o f a x e n i c c u l t u r e s . W h e n u s e d f o r i s o l a t i o n s f r o m n a t u r e , o r f o r t r a n s f e r r i n g c u l t u r e s t h a t w e r e c o n t a m i n a t e d b y b a c t e r i a . 100 m g / 1 w a t e r -s o l u b l e t e t r a c y c l i n e w a s a d d e d a f t e r a u t o c l a v i n g t o p r o d u c e m a l t - y e a s t - p e p t o n e - t e t r a c y c l i n e ( M Y P T ) a g a r . T h e t e t r a c y c l i n e w a s a d d e d t o i n h i b i t b a c t e r i a l g r o w t h . S o r b o s e - t e t r a c y c l i n e ( S O R B - T ) m e d i u m ( B a n d o n i 1 9 8 1 ) 4 . 0 g . s o r b o s e 0 . 5 g . y e a s t e x t r a c t 7 . 0 g . I C N a g a r 1 0 0 0 m l . d i s t i l l e d w a t e r 100 m g / 1 w a t e r - s o l u b l e t e t r a c y c l i n e ( a d d e d a f t e r a u t o c l a v i n g ) 76 T h i s m e d i u m w a s u s e d f o r i s o l a t i o n s f r o m n a t u r e . W i t h s o r b o s e a s a c a r b o n s o u r c e , t h e " w e e d " f u n g i s u c h a s s p e c i e s o f P e n i c i I l i u m o r A s p e r g i l l u s f o r m c o l o n i e s a n d d o n o t o v e r g r o w t h e o t h e r f u n g i o n t h e p l a t e . A s w i t h M Y P T , t h e t e t r a c y c l i n e w a s a d d e d t o d i s c o u r a g e b a c t e r i a l g r o w t h . O a t a g a r ( O A ) m e d i u m O a t f l a k e s 7 . 0 g . I C N a g a r 1 0 0 0 m l . d i s t i l l e d w a t e r T h e a u t o c l a v e d w a t e r a n d a g a r w e r e p o u r e d o v e r t h e a u t o c l a v e d o a t f l a k e s ( 6 - 1 0 f l a k e s / p e t r i p l a t e ) . T h i s m e d i u m i n d u c e d s p o r u l a t i o n o f s o m e f u n g i t h a t w o u l d n o t s p o r u l a t e o n o t h e r m e d i a . 77 A P P E N D I X 3 . V A R I A T I O N S I N S P O R E C O N C E N T R A T I O N D U R I N G A R A I N F A L L S p o r e c o n c e n t r a t i o n s i n s t e m f l o w o r t h r o u g h f a l l d o n o t r e m a i n c o n s t a n t d u r i n g a p e r i o d o f r a i n f a l l . A s c a n b e s e e n f r o m T a b l e I I I , t h e s p o r e c o n c e n t r a t i o n i s h i g h e s t a t t h e b e g i n n i n g o f a r a i n f a l l , p r o b a b l y f r o m s p o r e s p r o d u c e d f o l l o w i n g t e r m i n a t i o n o f t h e p r e v i o u s r a i n . T h e c o n c e n t r a t i o n d r o p s s h a r p l y a f t e r a s h o r t p e r i o d , a n d t h e n i n c r e a s e s s l o w l y t o a c e r t a i n p l a t e a u l e v e l ; t h i s r e p r e s e n t s t h e g r a d u a l i n c r e a s e i n s p o r u l a t i o n d u r i n g t h e r a i n f a l l . T a b l e I I I . V a r i a t i o n i n s t e m f l o w s p o r e c o n c e n t r a t i o n d u r i n g a r a i n f a l l . L a r g e a l d e r s t e m f l o w , M a r c h 1 4 , 1 9 8 2 . s a m p l i n g p e r i o d s p o r e c o n c e n t r a t i o n ( h o u r s a f t e r b e g i n n i n g o f r a i n f a l l ) ( c o n i d i a / m l ) 0 00 0 - 0 . 2 5 44 0 . 2 5 - 0 . 5 0 21 0 . 5 0 - 0 . 7 5 07 0 . 7 5 - 1 . 0 1 1 1 . 0 - 1 . 5 1 6 1 . 5 - 2 . 0 31 2 . 0 - 3 . 0 35 3 . 0 - 4 . 0 40 4 . 0 - 5 . 0 36 5 . 0 - 6 . 0 42 78 REFERENCES Archer, J . F., and Willoughby, L. G. 1969. Wood as the growth substratum f o r a freshwater foam spore. Trans. B r i t . Mycol. Soc. 53: 484-486. Bandoni, R. J . 1972. T e r r e s t r i a l occurrence of some aq u a t i c Hyphomycetes. Can. J . Bot. 50: 2283-2288. Bandoni, R. J . 1974. D i s p e r s a l of microorganisms on decaying leaves and l i t t e r . Proc. F i r s t I n t . Cong. I n t . Assoc. Microb. Soc. Tokyo. Bandoni, R. J . 1981. Aquatic hyphomycetes from t e r r e s t r i a l l i t t e r . In The Fungal Community - I t s O r g a n i z a t i o n and  Role i n the Ecosystem ~~'. (D. Wicklow and G. C a r r o l l , e d s ) . Marcel Dekker, Inc., New York. Bandoni, R. J . , and Koske, R. E. 1974. Monolayers and m i c r o b i a l d i s p e r s a l . Science 183: 1079-1081. B e r n s t e i n , M. E., and C a r r o l l , G. 1977. M i c r o b i a l p o p u l a t i o n s on Douglas f i r needle s u r f a c e s . Microb. E c o l . 4: 41-52. B u t t e r f i e l d , W. 1973. M o r p h o l o g i c a l v a r i a t i o n of D i c r a n i d i o n  f r a g i l e and D. i n a e q u a l i s i n c u l t u r e . Can. J . Bot. 51: 795-799. C a r r o l l , G. C. 1980. Fo r e s t c a n o p i e s : complex and independent subsystems. In F o r e s t s : F r e s h P e r s p e c t i v e s from Ecosystems  A n a l y s i s . (R. H. Waring, ed.TT pp. 87-107. Oregon State U n i v e r s i t y Press, C o r v a l l i s . C a r r o l l , G. C. 1981. M i c r o b i a l p r o d u c t i v i t y on a e r i a l p l a n t s u r f a c e s . In M i c r o b i a l Ecology of the P h y l l o p l a n e ( J . P. Blakeman, ed.) pp. 15-46. Academic Press, London. C a r r o l l , G. C , Pike, L. H., P e r k i n s , J . R., and Sherwood, M. 1980. Biomass and d i s t r i b u t i o n p a t t e r n s of c o n i f e r twig microepiphytes i n a Douglas f i r f o r e s t . Can. J . Bot. 58: 624-630. 79 C o n w a y , K . E . 1 9 7 0 . T h e a q u a t i c h y p h o m y c e t e s o f c e n t r a l New Y o r k . M y c o l o g i a 6 2 : 5 1 6 - 5 3 0 . C u m m i n s , K . W . 1 9 7 4 . S t r u c t u r e a n d f u n c t i o n o f s t r e a m e c o s y s t e m s . B i o s c i e n c e 2 4 : 6 3 1 - 6 4 1 . C u m m i n s , K . W . , a n d K l u g , M . J . 1 9 7 9 . F e e d i n g e c o l o g y o f s t r e a m i n v e r t e b r a t e s . A n n . R e v . E c o l . S y s t . 1 0 : 1 4 7 - 1 7 2 . D y k o , D . J . 1 9 7 6 . A p r e l i m i n a r y s t u d y o f a q u a t i c H y p h o m y c e t e s o n l e a v e s i n f o r e s t a n d s t r e a m l i t t e r . J . T e n n e s s e e A c a d . S c i . 5 1 : 7 - 8 . F i s h e r , P . J . 1 9 7 8 . S u r v i v a l o f a e r o - a q u a t i c h y p h o m y c e t e s o n l a n d . T r a n s . B r i t . M y c o l . S o c . 7 1 : 4 1 9 - 4 2 3 . F i s h e r , S . G . , a n d L i k e n s , G . E . 1 9 7 3 . E n e r g y f l o w i n B e a r B r o o k , New H a m p s h i r e : a n i n t e g r a t i v e a p p r o a c h t o s t r e a m e c o s y s t e m m e t a b o l i s m . E c o l . M o n o g r . 4 3 : 4 2 1 - 4 3 9 . F o x , D . J . , a n d G u i r e , K . E . 1 9 7 6 . D o c u m e n t a t i o n f o r M i d a s . T h i r d E d i t i o n . S t a t i s t i c a l R e s e a r c h L a b o r a t o r y , U n i v e r s i t y o f M i c h i g a n . G a m s , W . 1 9 7 5 . I n M a r v a n o v a , L . C o n c e r n i n g G y o e r f f y e l l a K o l . T r a n s . B r i t . M y c o l . S o c . 6 5 : 5 5 5 - 5 6 5 . G a m s , W . , D o m s c h , K . H . , a n d W e b e r , E . 1 9 6 9 . N e c h w e i s s i g n i f i k a n t v e r s c h i e d e n e r P i l z p o p u l a t i o n e n b e i g l e i c h e n d e n B o d e n n u t z u n g . P l a n t a n d S o i l 3 1 : 4 3 9 - 4 5 0 . G a r e t h J o n e s , E . B . , a n d O l i v e r , A . C . 1 9 6 4 . O c c u r r e n c e o f a q u a t i c h y p h o m y c e t e s o n w o o d s u b m e r g e d i n f r e s h a n d b r a c k i s h w a t e r . T r a n s . B r i t . M y c o l . S o c . 4 7 : 4 5 - 4 8 . G o n c z o l , J . 1 9 7 6 . E c o l o g i c a l o b s e r v a t i o n s o n t h e a q u a t i c H y p h o m y c e t e s o f H u n g a r y . I I . O b s e r v a t i o n s o n b i o t y p e s o f a q u a t i c H y p h o m y c e t e s i n S . W . H u n g a r y . A c t a B o t . A c a d . S c i . H u n g a r i c a e 2 2 : 5 1 - 6 0 . 80 G o n c z o l , J . , a n d T o t h , S . 1 9 7 4 . R a r e o r i n t e r e s t i n g c o n i d i a f r o m s t r e a m s o f H u n g a r y . B o t . K o z l e m . 6 1 : 2 5 - 3 5 . G r e a t h e a d , S . K . 1 9 6 1 . S o m e a q u a t i c h y p h o m y c e t e s i n S o u t h A f r i c a . J . S o u t h A f r . B o t . 2 7 : 1 9 5 - 2 2 8 . G r e g o r y , P . H . 1 9 6 1 . T h e M i c r o b i o l o g y o f t h e A t m o s p h e r e . 3 7 7 p p . L e o n a r d H i l l , L t d . , L o n d o n . G r e g o r y , P . H . , a n d H u r s t , J . M . 1 9 5 7 . T h e s u m m e r a i r - s p o r a a t R o t h a m s t e d i n 1 9 5 2 . J . G e n . M i c r o b i o l . 1 7 : 1 3 5 - 1 5 2 . H e l v e y , J . D . , a n d P a t r i c , J . H . 1 9 6 5 . C a n o p y a n d l i t t e r i n t e r c e p t i o n o f r a i n f a l l b y h a r d w o o d s o f e a s t e r n U n i t e d S t a t e s . W a t e r R e s . R e s . 1: 1 9 3 - 2 0 6 . H e n d e r s o n , G . S . , H a r r i s , W . F . , T o d d , D . E . , a n d G r i z z a r d , T . 1 9 7 7 . Q u a n t i t y a n d c h e m i s t r y o f t h r o u g h f a l l a s i n f l u e n c e d b y f o r e s t t y p e a n d s e a s o n . J . E c o l . 6 5 : 3 6 5 - 3 7 4 . H u d s o n , H . J . s , a n d I n g o l d , C . T . 1 9 6 0 . A q u a t i c h y p h o m y c e t e s f r o m J a m a i c a . T r a n s . B r i t . M y c o l . S o c . 4 3 : 4 6 9 - 4 7 8 . H u d s o n , H . J . , a n d S u t t o n , B . C . 1 9 6 4 . T r i s u l c o s p o r i u m a n d T e t r a n a c r i u m , t w o new g e n e r a o f F u n g i I m p e r f e c t i . T r a n s . B r i t . M y c o l . S o c . 4 7 : 1 9 7 - 2 0 3 . H u t c h i n s o n , I . , a n d R o b e r t s , M . C . 1 9 8 1 . V e r t i c a l v a r i a t i o n i n s t e m f l o w g e n e r a t i o n . J . A p p l . E c o l . 1 8 : 5 2 1 - 5 2 7 . I n g o l d , C . T . 1 9 5 9 . A q u a t i c s p o r a o f Omo F o r e s t , N i g e r i a . T r a n s . B r i t . M y c o l . S o c . 4 2 : 4 7 9 - 4 8 5 . I n g o l d , C . T . 1 9 6 5 . H y p h o m y c e t e s p o r e s f r o m m o u n t a i n t o r r e n t s . T r a n s . B r i t . M y c o l . S o c . 4 8 : 4 5 3 - 4 5 8 . I n g o l d , C . T . 1 9 6 6 . T h e t e t r a r a d i a t e a q u a t i c f u n g a l s p o r e . M y c o l o g i a 5 8 : 4 3 - 5 6 . 81 Ingold, C. T. 1975a. Hooker L e c t u r e 1974. Convergent e v o l u t i o n in a q u a t i c f u n g i : the t e t r a r a d i a t e spore. B i o l . J . L i n n . Soc. 7: 1-25. Ingold, C. T. 1975b. C o n i d i a i n the foam of two E n g l i s h streams. Trans. B r i t . Mycol. Soc. 65: 522-527. Ingold, C. T. 1975c. An I l l u s t r a t e d Guide to the Aquatic and Water-Borne Hyphomycetes (Fungi Imperfect i ) wi th notes on  t h e i r b i o l o g y . 96 pp. Freshwater B i o l o g i c a l A s s o c i a t i o n S c i e n t i f i c P u b l i c a t i o n No. 30. The F e r r y House, Ambleside. Ingold, C. T. 1977. I d e n t i t y of some c o n i d i a from stream foam. Trans. B r i t . Mycol. Soc. 69: 325-327. Kaushik, N. K., and Hynes, H. B. N. 1971. The f a t e of the dead leaves that f a l l i n t o streams. Arch. H y d r o b i o l . 68: 465-515. Kendrick, B., and Nag Raj, T. R. 1979. M o r p h o l o g i c a l terms i n Fungi I m p e r f e c t i . In The Whole Fungus. The Sexual Asexual  S y n t h e s i s . (B. Kendrick, ed.). pp. 43-61. N a t i o n a l Museum of N a t u r a l S c i e n c e s , N a t i o n a l Museums of Canada, and the Kananaskis Foundation, Ottawa. Kimmins, J . P. 1973. Some s t a t i s t i c a l aspects of sampling t h r o u g h f a l l p r e c i p i t a t i o n in n u t r i e n t c y c l i n g s t u d i e s i n B r i t i s h Columbian c o a s t a l f o r e s t s . Ecology 54: 1008-1019. Koske, R. E., and Duncan, I. W. 1974. Temperature e f f e c t s on growth, s p o r u l a t i o n , and germination of some " a q u a t i c " hyphomycetes. Can. J . Bot. 52: 1387-1391. Makela, K. 1972. Some a q u a t i c Hyphomycetes on grasses i n F i n l a n d . K a r s t e n i a 13: 16-22. Marvanova, L. 1973. Notes on L a t e r i r a m u l o s a u n i - i n f l a t a . Trans. B r i t . Mycol. Soc. 60: 145-165. Matsushima, T. 1971. M i c r o f u n g i of the Solomon I s l a n d s and Papau-New Guinea. 78 pp. Pub l i s h e d by the author. Kobe. 82 Miura, K. 1974. Stream spora of Japan. Trans. Mycol. Soc. Japan 15: 289-308. N i l s s o n , S. 1964. Freshwater Hyphomycetes. Taxonomy, morphology and ecology. Symb. Bot. U p s a l . 18: 1-130. Park, D. 1974. T r i c l a d i u m t e r r e s t r e sp. nov. Trans. B r i t . Mycol. Soc. 63: 179-183. Park, D. 1974. Aquatic Hyphomycetes i n non-aquatic h a b i t a t s . Trans. B r i t . Mycol. Soc. 63: 183-187. P r i c e , I. P., and T a l b o t , P. H. B. 1966. An a q u a t i c hyphomycete in a l i g n i c o l o u s h a b i t a t . A u s t r . J . Bot. 14: 19-23. Sanders, P. F., and Webster, J . 1978. S u r v i v a l of a q u a t i c hyphomycetes i n t e r r e s t r i a l s i t u a t i o n s . Trans. B r i t . Mycol. Soc. 71: 231-237. S c o u r f i e l d , D. J . 1940. The m i c r o s c o p i c l i f e of the ' l e a f -c a r p e t ' of woods and f o r e s t s . Essex N a t u r a l i s t 26: 231-246. Shoemaker, R. A. 1964. Seimatosporium ( = C r y p t o s t i c t u s ) p a r a s i t e s of Rosa, V i t i s , and Cornus . Can. J . Bot. 42: 411-421. Suberkropp, K. F., and Klug, M. J . 1974. Decomposition of deciduous l e a f l i t t e r i n a woodland stream. I. A scanning e l e c t r o n m i c r o s c o p i c study. Microb. E c o l . 1: 96-103. Suberkropp, K. F., and Klug, M. J . 1976. Fungi and b a c t e r i a a s s o c i a t e d with l e a v e s d u r i n g p r o c e s s i n g i n a woodland stream. Ecology 57: 707-719. Suberkropp, K. F., and Klug, M. J . 1980. The maceration of deciduous l e a f l i t t e r by a q u a t i c Hyphomycetes. Can. J . Bot. 58: 1025-1031. Summerbell, R. C. 1981. The genus Leucosporidium i n southern B r i t i s h Columbia, an area of temperate c l i m a t e . MSc. T h e s i s , U n i v e r s i t y of B r i t i s h Columbia. 83 Tubaki, K. 1960. On the Japanese a q u a t i c Hyphomycetes. Scum and foam group, r e f e r r i n g to the p r e l i m i n a r y survey of the snow group. Nagaoa 7: 15-29. Tubaki, K. 1965. Short note on a q u a t i c spora i n East New Guinea. Trans. Mycol. Soc. Japan 6: 11-14. Waid, J . S. 1944. Occurrence of a q u a t i c Hyphomycetes upon the root s u r f a c e s of beech grown i n woodland s o i l s . Trans. B r i t . Mycol. Soc. 37: 420-421. Webster, J . 1954. The m i c r o - f u n g i of D a c t y l i s glomerata with p a r t i c u l a r r e f e r e n c e to t h e i r occurrence and s u c c e s s i o n on decaying culms. Ph.D. T h e s i s , London U n i v e r s i t y , ( c i t e d i n Park, 1974). Webster, J . 1959. Experiments with spores of a q u a t i c hyphomycetes. I. Sedimentation and impaction on smooth s u r f a c e s . Ann. Bot. (London) (N.S.) 23: 595-611. Webster, J . 1977. Seasonal o b s e r v a t i o n s on 'aquatic' Hyphomycetes on oak leaves on the ground. Trans. B r i t . Mycol. Soc. 68: 108-111. Webster, J . , and D e s c a l s , E. 1982. Morphology, D i s t r i b u t i o n and Ecology of C o n i d i a l Fungi i n Freshwater H a b i t a t s , pp. 295-356. In B i o l o g y of C o n i d i a l F u n g i . V o l . j_. Academic P r e s s , Inc., New York. Willoughby, L. G. 1968. E c o l o g i c a l work on the lower fungi i n freshwater - s u b s t r a t e r e l a t i o n s h i p s . V e r o f f . I n s t . M eeresforsch. Bremerh. Sonderband 3: 125-132. Willoughby, L. G., and Archer, J . F. 1973. The fungal spora of a freshwater stream and i t s c o l o n i z a t i o n p a t t e r n on wood. Freshwat. B i o l . 3: 219-239. Yadav, A. S. 1966. The ecology of m i c r o - f u n g i on decaying stems of Heracleum sphondylium. Trans. B r i t . Mycol. Soc. 49: 471-485. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095709/manifest

Comment

Related Items