UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

ESR and microwave conductivity studies in DEM(TCNQ) above room temperature Cabañas, Francisco Xavier 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1982_A6_7 C32.pdf [ 2.42MB ]
Metadata
JSON: 831-1.0095552.json
JSON-LD: 831-1.0095552-ld.json
RDF/XML (Pretty): 831-1.0095552-rdf.xml
RDF/JSON: 831-1.0095552-rdf.json
Turtle: 831-1.0095552-turtle.txt
N-Triples: 831-1.0095552-rdf-ntriples.txt
Original Record: 831-1.0095552-source.json
Full Text
831-1.0095552-fulltext.txt
Citation
831-1.0095552.ris

Full Text

ESR AND MICROWAVE CONDUCTIVITY STUDIES IN DEM(TCNQ) 2 ABOVE ROOM TEMPERATURE by FRANCISCO XAVIER CABANAS B.Sc. The U n i v e r s i t y of B r i t i s h C olumbia, 1979 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of P h y s i c s ) We ac c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA November 1981 © F r a n c i s c o X a v i e r Cabanas, 1981 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree t h a t permission f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head of my department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood th a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission. Department of P V v ^ S t C j  The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date ABSTRACT Two phase t r a n s i t i o n s have been found i n DEM(TCNQ) 2 a t 400(3) K and a t 442(6) K t o 453(6) K u s i n g ESR and measurements of the microwave c o n d u c t i v i t y . These t e m p e r a t u r e s a re l e s s than the v a l u e s of 415 K and 483 K p r e v i o u s l y o b t a i n e d from temperature dependent G u i n i e r measurements. Below 400(3) K two ESR l i n e s , I and I I a r e observed c o r r e s p o n d i n g t o the two s t a c k s , B and A, i n DEM(TCNQ) 2. Above 400(3) K and below 453(6) K o n l y one l i n e remains w i t h the same g v a l u e as l i n e I . The a n g u l a r dependence of the g v a l u e was f i t t e d t o g 2 = g 2 c o s 2 e + g ^ s i n e and v a l u e s of g x = 2.003551( 14) and g = 2.002730(15) were o b t a i n e d . Between 298 K and 442(6) K the c o n d u c t i v i t y was t h a t of a semiconductor w i t h an e x i t a t i o n energy E 0 = 0.385(52) e.v. The -4k F phase t r a n s i t i o n i s p o s t u l a t e d a t 447(9) K. The phase t r a n s i t i o n a t 400(3) K i s due t o a t r a n s f e r of s p i n d e n s i t y from s t a c k A t o s t a c k B, and has no e f f e c t on the t o t a l s p i n s u s c e p t i b i l i t y or on the c o n d u c t i v i t y t o w i t h i n the e x p e r i m e n t a l e r r o r . TABLE OF CONTENTS A b s t r a c t i i Ta b l e of C o n t e n t s i i i L i s t of T a b l e s . .v L i s t of F i g u r e s v i Acknowlegements . . . . v i i CHAPTER 1 INTRODUCTION 1 1.1 S i g n i f i c a n c e of DEM(TCNQ) 2 and R e l a t e d Compounds — 1 1.2 C h a r a c t e r i s t i c s of DEM(TCNQ) 2 4 1 . 3 O u t l i n e 6 CHAPTER 2 DIELECTRIC CONSTANT AND CONDUCTIVITY THEORY AND MEASUREMENTS 8 2.1 Theory of C a v i t y P e r t u r b a t i o n 8 2.2 D i e l e c t r i c C o n s tant Measuring Apparatus 12 2.3 D i e l e c t r i c C o n s t a n t and C o n d u c t i v i t y Measurements ..15 CHAPTER 3 DIELECTRIC CONSTANT AND CONDUCTIVITY RESULTS ..17 3.1 E x p e r i m e n t a l R e s u l t s 17 3.2 D i s c u s s i o n of the D i e l e c t r i c C onstant and c o n d u c t i v i t y Measurements 22 (a) Quoted E x p e r i m e n t a l E r r o r s 22 (b) Shape of the Samples as a Source of E r r o r .......23 CHAPTER 4 ESR APPARATUS, MEASUREMENTS AND SUSCEPTIBILITY CALCULATIONS 24 4.1 ESR Apparatus 24 4.2 The ESR Measurements ....26 4.3 C o n v o l u t e d G a u s s i a n - L o r e n t z i a n F i t ......29 (a) F i t .,29 (b) B a s e l i n e D t e r m i n a t i o n 30 CHAPTER 5 ESR EXPERIMENTAL RESULTS 31 5. 1 ESR g V a l u e s 31 5.2 A n g u l a r Dependence of the g V a l u e s 34 5.3 Temperature Dependence of the S u s c e p t i b i l i t y 37 5.4 Temperature Dependence of the Peak t o Peak Widths of the ESR l i n e s 41 CHAPTER 6 DISSCUSION OF.THE RESULTS 43 6.1 Phase T r a n s i t i o n s i n DEM(TCNQ) 2 43 6.2 Comparison of DEM(TCNQ) 2 t o MEM(TCNQ) 2 and HEM(TCNQ) 2 • 4 5 CHAPTER 7 CONCLUSIONS AND FURTHER POSSIBLE EXPERIMENTS ..47 7.1 C o n c l u s i o n s 47 7.2 F u r t h e r D i r e c t i o n s 48 B i b i l o g r a p h y ...49 V LIST OF TABLES T a b l e 2.1 P h y s i c a l Data of the Nylon T e s t Sample 16 T a b l e 3.1 P h y s i c a l Data of . DEM (.TCNQ ) 2 Samples ... . ...20 T a b l e 3.2 E x p e r i m e n t a l R e s u l t s ...20 T a b l e 5.1 ESR g V a l u e s ... .32 T a b l e 5.2 g„and g x f o r DEM (TCNQ) 2 ......34 LIST OF FIGURES F i g u r e 1.1 The MEM, DEM and HEM M o l e c u l e s 2 F i g u r e 1.2 The TCNQ M o l e c u l e 2 F i g u r e 1.3 Shape of a T y p i c a l DEM(TCNQ) 2 C r y s t a l Showing the R e l a t i v e D i r e c t i o n s of S t a c k s A and B and the Magnetic F i e l d H i n the ESR Measurements 5 F i g u r e 2.1 C a v i t y and Sample H o l d e r used f o r D i e l e c t r i c C o n s t ant and C o n d u c t i v i t y Measurements 11 F i g u r e 2.2 Resonance of the C a v i t y used f o r the D i e l e c t r i c C onstant and C o n d u c t i v i t y Measurements 13 F i g u r e 2.3 B l o c k Diagram of the D i e l e c t r i c C o n s t a n t and C o n d u c t i v i t y Measurements 14 F i g u r e 3.1 Microwave C o n d u c t i v i t y of DEM(TCNQ) 2 vs Temperature 18 F i g u r e 3.2 N a t u r a l L o g a r i t h i m of the Microwave C o n d u c t i v i t y of DEM(TCNQ) 2 vs I n v e r s e Temperature 19 F i g u r e 4.1 B l o c k Diagram of the ESR Apparatus 25 F i g u r e 4.2 ESR C a v i t y and V a r i a n Flow System 27 F i g u r e 4.3 T y p i c a l ESR S p e c t r a above and below the Phase T r a n s i t i o n a t 400(3) K 28 F i g u r e 5.1 Angul a r Dependence of the g Va l u e of DEM(TCNQ) 2 above the Phase T r a n s i t i o n a t 400(3) K ...... 33 F i g u r e 5.2 Temperature Dependence of t h e S p i n S u s c e p t i b i l i t y of L i n e I of DEM (TCNQ) 2 35 F i g u r e 5.3 Temperature Dependence of the S p i n S u s c e p t i b i l i t y of L i n e I I of DEM (TCNQ) 2 36 F i g u r e 5.4 Temperature Dependence of the Sum of the S p i n S u s c e p t i b i l i t i e s of L i n e s I and I I of DEM(TCNQ 2 38 F i g u r e 5.5 Temperature Dependence of the Peak t o Peak H a l f w i d t h of l i n e s I and I I of DEM (TCNQ) 2 39 F i g u r e 5.6 A n g u l a r Dependence of the Peak t o Peak H a l f w i d t h of l i n e I of DEM(TCNQ) 2 above the Phase T r a n s i t i o n a t 400(3) K 40 v i i i ACKNOWLEGEMENTS I wish t o e x p r e s s my g r a t i t u d e t o my s u p e r v i s o r , Dr. C. F. S c h w e r d t f e g e r , f o r h i s s u p e r v i s i o n , a s s i s t a n c e , and exchange of i d e a s both d u r i n g the performance of the e x p e r i m e n t s and the p r e p a r a t i o n of the t h e s i s . I would a l s o l i k e t o thank Dr. J . F. C a r o l a n who read the t h e s i s f o r h i s s u g g e s t i o n s and comments. I am a l s o i n d e b t e d t o Dr. G. A. Sawatzky and Dr. B. van Bodegom of the U n i v e r s i t y of Groningen f o r p r o v i d i n g the DEM(TCNQ) 2 samples. A post g r a d u a t e s c h o l a r s h i p from the N a t u r a l S c i e n c e s and E n g i n e e r i n g R e s e a r c h C o u n c i l of Canada i s g r a t e f u l l y acknowleged. R e s e a r c h f o r t h i s t h e s i s was funded by the N a t u r a l S c i e n c e s and E n g i n e e r i n g Research . C o u n c i l of Canada through g r a n t s t o . D r . S c h w e r d t f e g e r . 1 CHAPTER 1 INTRODUCTION 1 .1 SIGNIFICANCE OF DEM(TCNQ) 2 AND RELATED COMPOUNDS N — e t h y l ^ N — e t h y l — m o r p h o l i n i u m t e t r a c y a n o q u i d i m e t h a n e , DEM(TCNQ) 2, i s a member of a f a m i l y of r e l a t e d compounds where the m o r p h o l i n i u m group changes. When the r a d i c a l denoted by R i n f i g u r e 1.1 i s r e p l a c e d by C 2 H 5 we have DEM(TCNQ) 2, by CH 3 we have MEM(TCNQ) 2 (MEM = N - m e t h y l — N - e t h y l - m o r p h o l i n i u m ) , and by H we have HEM(TCNQ) 2 (HEM = N — e t h y l — m o r p h o l i n i u m ) . The s i g n i f i c a n t c h a r a c t e r i s t i c of the s e compounds i s the q u a s i o n e — d i m e n s i o n a l b e h a v i o u r of the e l e c t r i c a l c o n d u c t i v i t y . T h i s p r o v i d e s an example of a p h y s i c a l system where o n e — d i m e n s i o n a l t h e o r y can be t e s t e d . The Hubbard H a m i l t o n i a n and the p r e d i c t i o n of 2k F and 4k F i n s t a b i l i t i e s depending on the v a l u e of U/t has been c r u c i a l t o t h i s t h e o r y (see H u i z i n g a 1980 p.2) (1.1) 2 CH2 CH2 C?Hc / \ / 0 *N \ / \ C H 2 — C H 2 R Figure 1.1 The MEM, DEM and HEM Molecules R = CH3 : MEM ; R = C 2H 5 : DEM ; R = H : HEM 3 Measurements have been performed on MEM(TCNQ) 2 and HEM(TCNQ) 2. The c r y s t a l s t r u c t u r e of MEM(TCNQ) 2 a t 113 K has been r e p o r t e d by Bosh and van Bodegom (1977). Two phase t r a n s i t i o n s have been found i n MEM(TCNQ) 2 a t 18 K and 340 K. The s p e c i f i c heat of MEM(TCNQ) 2 has been r e p o r t e d by Sawatzky e t a l . (1980). They r e p o r t a peak i n the s p e c i f i c heat a t 19 K w i t h an e n t r o p y g a i n of 1.4J—mole/K, and a n o t h e r peak a t 335 K w i t h an e n t r o p y g a i n of 14J—mole/K, c o r r e s p o n d i n g t o the two phase t r a n s i t i o n s i n MEM(TCNQ) 2. H u i z i n g a , Kommandeur, Sawatzky, and Thole r e p o r t a S p i n — P e i e r l s phase t r a n s i t i o n a t 18 K. The h i g h temperature c o n d u c t i v i t y of MEM(TCNQ) 2 has been measured by Morrow e t a l . (1980), where a r e v e r s i b l e s e m i c o n d u c t o r — m e t a l phase t r a n s i t i o n i s r e p o r t e d a t 340 K. H u i z i n g a (1980) has c o r r e l a t e d the phase t r a n s i t i o n s a t 18 K and 340 K i n MEM(TCNQ) 2 w i t h the 2k F and 4k F i n s t a b i l i t i e s . The c r y s t a l s t r u c t u r e of the r e l a t e d compound HEM(TCNQ) 2 has been measured by van Bodegom and van de Boer (1981). A phase t r a n s i t i o n a t 450 K u s i n g a D i f f e r e n t i a l S c a n n i n g C a l o r i m e t e r (DSC) t e c h n i q u e and a sharp d e c l i n e i n the s p i n s u s c e p t i b i l i t y at 425 K, i n d i c a t i n g a phase t r a n s i t i o n , has been r e p o r t e d by H u i z i n g a (1980 p.108) i n HEM(TCNQ) 2. T h i s phase t r a n s i t i o n i s a t t r i b u t e d by H u i z i n g a t o be r e l a t e d t o t h e 2k F i n s t a b i l i t y p r e d i c t e d from the t h e o r y , i m p l y i n g t h a t U / t 0 i s much l e s s f o r HEM(TCNQ) 2 than f o r MEM(TCNQ) 2 (see H u i z i n g a 1980 p.101). 4 1.2 CHARACTERISTICS OF DEM(TCNQ) 2 The c r y s t a l s t r u c t u r e of DEM(TCNQ) 2 has been measured by M o r r s i n k and van Bodegom (1981). They r e p o r t two t y p e s of TCNQ s h e e t s , A and B, t h a t a r e a t an a n g l e of 60° (see f i g . 1 . 3 ) . T h i s makes DEM(TCNQ) 2 f u n d a m e n t a l l y d i f f e r e n t from MEM(TCNQ) 2 or HEM(TCNQ) 2. Sheet B behaves i n a o n e — d i m e n s i o n a l f a s h i o n and i s s i m i l a r t o MEM(TCNQ) 2 i n i t s b e h a v i o r below room t e m p e r a t u r e . A S p i n — P e i e r l s phase t r a n s i t i o n has been observed i n sheet B of DEM(TCNQ)2 a t 23 K by S c h w e r d t f e g e r , O o s t r a and Sawatzky. T h i s compares t o the S p i n — P e i e r l s phase t r a n s i t i o n a t 18 K i n MEM(TCNQ) 2. T h i s phase t r a n s i t i o n p r o b a b l y c o r r e s p o n d s t o the 2k F i n s t a b i l i t y i n the s t a c k of TCNQ m o l e c u l e s i n sheet B of DEM(TCNQ) 2. U n l i k e the s t a c k s i n sheet B, t h e s t a c k s i n sheet A do not •undergo a S p i n — P e i e r l s phase t r a n s i t i o n between 1.5 K and room te m p e r a t u r e . The l a t t e r s t a c k remains paramagnetic down t o 1.5 K. W h i l e s t a c k B has been shown t o - behave i n a s i m i l a r manner t o the s i n g l e s t a c k of TCNQ m o l e c u l e s i n MEM(TCNQ) 2; the c o r r e s p o n d i n g s t a c k f o r sheet A behaves more l i k e a t w o — d i m e n s i o n a l system ( S c h w e r d t f e g e r , O o s t r a and Sa w a t z k y ) . 5 F i g u r e 1.3 Shape of a T y p i c a l DEM(TCNQ) 2 C r y s t a l . The Arrows L a b e l l e d A and B I n d i c a t e the D i r e c t i o n s of S t a c k s A and. B R e s p e c t i v e l y and the Arrow L a b e l l e d H I n d i c a t e s the D i r e c t i o n of the S t a t i c M a gnetic F i e l d f o r the ESR Measurements. 6 At h i g h temperatures M o r r s i n k and van Bodegom r e p o r t two r e v e r s i b l e phase t r a n s i t i o n s a t 415 K and 483 K i n DEM(TCNQ) 2. The ESR s p e c t r a of DEM(TCNQ) 2 between 23 K and 298 K has two l i n e s I and I I t h a t o r i g i n a t e i n s h e e t s B and A r e s p e c t i v e l y . We f o l l o w the n o t a t i o n of S c h w e r d t f e g e r , Wagner and Sawatzky (1980). The a n g u l a r dependence of the v a l u e s of g a t 77 K and 198 K, and of g a t 1.14 K, 4.2 K, 77 K, and 298 K are r e p o r t e d by S c h w e r d t f e g e r Wagner and Sawatzky (1980) (see t a b l e 5.2). The s p i n — s u s c e p t i b i l i t y and h a l f w i d t h of l i n e s I and I I as a f u n c t i o n of temperature has been measured by S c h w e r d t f e g e r , O o s t r a and Sawatzky. A q u a l i t a t i v e s i m i l a r i t y between the b u l k s u s c e p t i b i l i t i e s of DEM(TCNQ) 2 and MEM(TCNQ) 2 i n the temperature range from 4 K t o 300 K i s r e p o r t e d by Kuindersma, Sawatzky and Kommandeur (1975). There a r e i n d i c a t i o n s t h a t the c o n t r i b u t i o n t o the b u l k s u s c e p t i b i l i t y from s t a c k s A and B a r e s i m i l a r , however t h e r e i s a fundamental d i f f e r e n c e i n the n a t u r e of the s t a c k s A and B i n DEM(TCNQ) 2. 1.3 OUTLINE In c h a p t e r 2 we p r e s e n t the t h e o r y b e h i n d the microwave c o n d u c t i v i t y measurements and a d e s c r i p t i o n of the a p p a r a t u s and e x p e r i m e n t a l procedure used t o measure the microwave c o n d u c t i v i t y . The microwave c o n d u c t i v i t y d a t a as a f u n c t i o n of 7 temperature between 290 K and 480 K, showing a phase t r a n s i t i o n a t 442(6) K t o g e t h e r , w i t h the r e a l p a r t of the d i e l e c t r i c c o n s t a n t a t room temperature i s p r e s e n t e d i n c h a p t e r 3. In c h a p t e r 4 we p r e s e n t a d e s c r i p t i o n of the ESR a p p a r a t u s and the e x p e r i m e n t a l p r o c e d u r e , t o g e t h e r w i t h the n u m e r i c a l methods used i n the a n a l y s i s of the ESR d a t a . Chapter 5 c o n t a i n s the ESR r e s u l t s . These r e s u l t s i n c l u d e : The s p i n s u s c e p t i b i l i t i e s of l i n e s I and I I , the sum of the s p i n s u s c e p t i b i l i t i e s of l i n e s I and I I , and the peak t o peak h a l f w i d t h of l i n e s I and I I as a f u n c t i o n of t e m p e r a t u r e , the phase t r a n s i t i o n t e m p e r a t u r e s t h a t were found a t 400(3) K and 453(6) K i n the s u s c e p t i b i l i t y and h a l f w i d t h d a t a , the a n g u l a r dependence of the g v a l u e and h a l f w i d t h , measured a t T=400(3) K, of the o n l y l i n e above the phase t r a n s i t i o n a t 400(3) K, and the g v a l u e s , measured a t © = 60° (see f i g . 1.3), of b o t h l i n e below the phase t r a n s i t i o n a t 400(3) K and the s i n g l e l i n e above 400(3) K. Chapter 6 c o n t a i n s a comparison between the r e s u l t s f o r DEM(TCNQ) 2 and the r e s u l t s f o r MEM(TCNQ) 2 and HEM(TCNQ) 2 t o g e t h e r w i t h a c o r r e l a t i o n of the d i f f e r e n t phase t r a n s i t i o n t e m p e r a t u r e s i n DEM(TCNQ) 2 w i t h the two p o s t u l a t e d phase t r a n s i t i o n s i n DEM(TCNQ) 2 above room t e m p e r a t u r e . G e n e r a l c o n c l u s i o n s and some f u r t h e r e x p e r i m e n t s on DEM(TCNQ) 2 a r e p r e s e n t e d i n c h a p t e r 7. 8 CHAPTER 2 DIELECTRIC CONSTANT AND CONDUCTIVITY THEORY AND MEASUREMENTS 2.1 THEORY OF CAVITY PERTURBATION I f a d i e l e c t r i c sample of volume V, i s i n t r o d u c e d i n t o a re s o n a n t c a v i t y of volume V 0 the s h i f t i n the complex f r e q u e n c y f o r s m a l l p e r t u r b a t i o n s i s [ ( E , - D O - E Q - D , ) - ( H , - B o - H o - B , ) ] d V = (2.1) \ [ E 0 ' D 0 - H 0 . B 0 ] d V J V 0 " - - -where n 0 = 2tri/ 0 (1+i/2Q 0 ) and n, = 2nv , (1 +i/2Q, ) a r e the u n p e r t u r b e d and p e r t u r b e d complex f r e q u e n c i e s r e s p e c t i v e l y (Waldron,1969.pp.87-93). In the e x p e r i m e n t s the f r e q u e n c y of the c a v i t y w i t h the sample h o l d e r a l o n e , nw, and the frequ e n c y of the c a v i t y w i t h the sample h o l d e r and the sample, n £, were measured. I f we assume t h a t the f i e l d d i s p l a c e d by the sample i s the u n p e r t u r b e d f i e l d , and a p p r o x i m a t i n g n 0 by nH i n the denominator of (2.1) we o b t a i n 9 n„-n-s [(E 5.D 0-Eo'D s)-(H s.B 0-Ho'B )]dV r J . : ( 2 . 2 ) [E 0.D 0-H 0.B 0]dV where E 0+ E s , D0+ Ds, H 0 + H s, and B0+ Bs, are the e l e c t r i c and magnetic f i e l d s in the sample, and is the volume of the sample. For non magnetic samples H0= B0= 0. If the sample is e l l i p s o i d a l , the dimensions of the sample are much less than a wavelength, and the skindepth i s larger than or close to the smallest dimension of the sample, then the f i e l d in the sample i s E 0 E 0+E s = ( 2 . 3 ) 1+n(c -1) where n i s the depolarizing factor and e=€'+ie" i s the complex d i e l e c t r i c constant of the sample (Buranov et a l , 1 9 7 1 , p . 5 2 8 ) . If equation ( 2 . 3 ) i s substituted into equation ( 2 . 2 ) , then equating real and imaginary parts and assuming that E 0 i s constant over the volume of the sample, we obtain for a sample on the axis of a c y l i n d r i c a l cavity 1 / 1 oe" _ ( _ - _ = ( 2 . 4 ) 2 V Q Q/ U l+nU ' - l ) ] 2 + (ne")2} and :{(€'-D[l+n(e'-l)+n(e")2]} — ( 2 . 5 ) {1+n(€ *-1)}2 + (ne")2 10 where o = {E 0.D 0-H 0.B 0}dV (2.6) E O M T i s the magnitude of the e l e c t r i c f i e l d on the axis of the cavity, and e 0 i s the permitivity of free space (Buranov et al,l971 p.528). For the TM 0, 0 mode (E 0-D 0-H 0.B 0)dV = (2.7) where J,(ka) = 0.51915 (Waldron,1970 pp.303-305). o i s then 1.8552V /V 0. The solution of (2.4) and (2.5) for e'-1 and e" i s a A n 22 (2.8) and t'-1 1 T fa - 6 - - 6| n \ n A 2 - - 6 J (2.9) where 6 = and A = - - - (Buranov et a l , l 9 7 l p.528) The quantities 6, A, N and c can be measured or calculated, and hence e' and c" can be determined. 11 SAMPLE 5 F i g u r e 2.1 C a v i t y a n d S a m p l e H o l d e r u s e d f o r D i e l e c t r i c C o n s t a n t a n d C o n d u c t i v i t y M e a s u r e m e n t s . 12 2.2 DIELECTRIC CONSTANT MEASURING APPARATUS The sample was mounted on the a x i s of a c y l i n d r i c a l c a v i t y o p e r a t i n g i n the TM 0, 0 mode a t 9.2 GHz (see f i g . 2.1) the microwave s o u r c e was an HP8620C sweep o s c i l l a t o r w i t h an HP86250B RF p l u g i n . The f r e q u e n c y was measured w i t h an HP5245L fr e q u e n c y c o u n t e r w i t h an HP5255A fre q u e n c y c o n v e r t e r . Scans of the power r e f l e c t e d from the c a v i t y as a f u n c t i o n of f r e q u e n c y were o b t a i n e d (see f i g . 2 . 2 ) from which the resonant f r e q u e n c y and the Q of the resonance were d e t e r m i n e d . A b l o c k diagram of the a p p a r a t u s i s shown i n f i g u r e 2.3. To o b t a i n the c o a r s e temperature the sample c a v i t y was p l a c e d i n s i d e a g l a s s c y l i n d e r t h a t was wrapped w i t h h e a t i n g t a p e . The f i n e temperature was o b t a i n e d by u s i n g two power r e s i s t o r s next t o the c a v i t y . The c a v i t y and h e a t i n g elements were then p l a c e d i n s i d e a g l a s s dewer f o r i n s u l a t i o n . C o n t r o l of the f i n e t e m p e r a t u r e was a c c o m p l i s h e d by means of a r e s i s t a n c e b r i d g e u s i n g a t h e r m i s t o r as the temperature s e n s i t i v e element. T h i s p r o v i d e d a temperature s t a b i l i t y of 0.1°C d u r i n g each data scan. 13 Figure 2.2 Resonance of the C a v i t y used for the D i e l e c t r i c Constant and C o n d u c t i v i t y Measurements with and without the Sample. 14 Microwa ve Sweep Oscillator Matched Loaa X-Y Recorder X H Scope Variable Short Magic Tee Variable Attenuator 0-40db Screw Tuner Isolator Magic Tee Isolator i Crystal Detector X Isolator Null Voltmeter Frequency Counter Variable Attenua tor 0-AOdb Programable Power Supply 1 " Coarse Heater Supply D.V.M. (Thermocouple | Voltage) Fine Heater Cavity Thermistor F i g u r e 2.3 Block Diagram of the D i e l e c t r i c Constant and C o n d u c t i v i t y A p p a r a t u s . 15 2.3 DIELECTRIC CONSTANT AND CONDUCTIVITY MEASUREMENTS The r e s o n a n t f r e q u e n c i e s of the c a v i t y , p e r t u r b e d by the sample h o l d e r , w i t h and w i t h o u t the sample i n p l a c e were measured as a f u n c t i o n of t e m p e r a t u r e . In the l a t t e r case a l e a s t squares f i t t o the a s t r a i g h t l i n e was made and the v a l u e s of t he. re s o n a n t f r e q u e n c y and Q of the c a v i t y , were c a l c u l a t e d f o r the te m p e r a t u r e s c o r r e s p o n d i n g t o the scans where the c a v i t y was p e r t u r b e d by the sample h o l d e r and the sample. In t h i s manner i t -was p o s s i b l e t o determine a t each temperature the resonant f r e q u e n c y and Q of the c a v i t y owing t o the empty sample h o l d e r . In o r d e r t o determine the d e p o l a r i z i n g f a c t o r of the samples, the l i n e a r d i m e n s i o n s of the samples were measured on a t r a v e l l i n g m i c r o s c o p e and the d e p o l a r i z i n g f a c t o r s were o b t a i n e d by i n t e r p o l a t i o n from a p l o t of the Demagne t i z i n g F a c t o r s of the G e n e r a l E l l i p s o i d (Osborn,l945 p.355). The a p p r o x i m a t i o n t h a t the sample i s e l l i p s o i d a l has t o be made i n o r d e r t o a p p l y e q u a t i o n ( 2 . 3 ) . I n making t h i s a p p r o x i m a t i o n e l l i p s o i d s w i t h the same volume and l i n e a r d i m e n s i o n a l r a t i o s as the samples were used. The volumes of the samples were d e t e r m i n e d by w e i g h i n g the samples and u s i n g the known d e n s i t y of DEM(TCNQ) 2, d M= 1.253 mg mm"3, ( M o r r s i n k e t a l , 1981 p.107). The volumes measured by t h i s method agreed w i t h the volumes o b t a i n e d from the l i n e a r d i m e n s i o n s of the samples t o w i t h i n e x p e r i m e n t a l e r r o r . In e q u a t i o n (2.2) the e l e c t r i c f i e l d i n the immediate 16 v i c i n i t y of the sample i s assumed t o be e q u a l t o the f i e l d i n t h a t l o c a t i o n of the c a v i t y w i t h o u t the sample. T h i s assumption i s v a l i d because the volume of the sample as w e l l as the volume of the sample h o l d e r a r e n e g l i g i b l e when compared t o the volume of the c a v i t y . TABLE 2 . 1 PHYSICAL DATA OF THE NYLON TEST SAMPLE Sample a (mm) b(mm) c (mm) Volume (mm3) D e p o l a r -i z i n g F a c t o r #1 4 . 6 6 ( 2 ) 0 . 4 7 ( 2 ) 0 . 3 3 ( 2 ) 0 . 7 1 ( 5 ) 0 . 0 1 5 ( 3 ) Another p o s s i b l e source of e r r o r i s the shape of the sample h o l d e r . T h i s was checked by measuring the d i e l e c t r i c c o n s t a n t and of n y l o n t h r e a d . A p i e c e of n y l o n t h r e a d was measured and v a l u e s of e ' = 2 . 9 4 and e " = 0 . 0 3 2 were o b t a i n e d (see t a b l e 2 . 1 ) . T h i s compares w e l l w i t h the p u b l i s h e d v a l u e s of t ' = 2 . 8 4 — 3 . 0 3 and € " = 0 . 0 3 2 - 0 . 0 3 9 (Von H i p p i e , p p . 3 1 0 - 3 1 1 , 3 2 3 ) . 17 CHAPTER 3 DIELECTRIC CONSTANT AND CONDUCTIVITY RESULTS 3.1 EXPERIMENTAL RESULTS Three c r y s t a l s of DEM(TCNQ) 2 were used i n the d i e l e c t r i c c o n s t a n t and c o n d u c t i v i t y measurements. The p h y s i c a l d ata of the c r y s t a l s a r e shown i n t a b l e 3.1. The v a l u e s a, b, and c are the p r i n c i p a l axes of the a p p r o x i m a t i n g e l l i p s o i d used i n c a l c u l a t i n g the d e p o l a r i z i n g f a c t o r s . These v a l u e s approximate the d i m e n s i o n s of the samples a l o n g the d i r e c t i o n s p a r a l l e l and p e r p e n d i c u l a r t o the e l e c t r i c f i e l d . The microwave c o n d u c t i v i t y of the c r y s t a l s as a f u n c t i o n of temperature i s p l o t t e d i n f i g 3.1 and i n f i g 3.2. The measured microwave c o n d u c t i v i t y was low enough so t h a t the low e s t v a l u e of the s k i n depth was g r e a t e r than 1.8 mm. T h i s i s l a r g e r than the s m a l l e s t d i m e n s i o n of the sample (see t a b l e 3.2). The room temperature d i e l e c t r i c c o n s t a n t and c o n d u c t i v i t y a r e summarized i n t a b l e 3.2. I t was o n l y p o s s i b l e t o o b t a i n e' a t room temperature because the l a r g e d e p o l a r i z i n g f a c t o r causes the measurements of e' t o be u n r e l i a b l e when the c o n d u c t i v i t y i n c r e a s e s . 18 to m ro <M — d d d d d d (,-WO-U) AllAllOnQNOD F i g u r e 3.1 Microwave C o n d u c t i v i t y of DEM(TCNQ) 2 vs Temperature A : Sample #1 Q:Sample #2 Sample #3. The S o l i d Curve i s E s t i m a t e d from the P o i n t s . I 0 2 / T F i g u r e 3.2 N a t u r a l L o g a r i t h m o f t h e M i c r o w a v e C o n d u c t i v i t y o f D E M ( T C N Q ) 2 v s I n v e r s e T e m p e r a t u r e . S y m b o l s a r e d e f i n e d i n f i g . 3 . 1 . The S o l i d C u r v e i s E s t i m a t e d f r o m t h e P o i n t s . .20 TABLE 3.1 PHYSICAL DATA OF DEM(TCNQ) 2 SAMPLES Sample a (mm) b(mm) c (mm) Volume (mm3) D e p o l a r -i z i n g F a c t o r #1 1 .36(2). 0.62(2) 0.16(2) 0. 1 140(3) 0.055(5) #2 0.92(2) 0.69(2) 0.15(2) 0.0651(3) 0.095(5) #3 0.81(5) 0.75(5) 0.25(2) 0.1416(3) 0. 165(15) TABLE 3.2 EXPERIMENTAL RESULTS Sample (Room-temp) e" (Room-temp) E 0 (e.v.) lntf o ln{(n-cm)- 1} #1 11.0 5.5 0.328(26) 2.9(5) #2 4.3 2.7 0.403(43) 3.8(7) #3 11.6 2.4 0.43(12) 4.3(21) average 9.0(23) 3.5(10) 0.389(52) 3.7(9) 21 The c o n d u c t i v i t y was found t o f o l l o w a semiconductor l i k e b e h a v i o r below 370 K. The d a t a was a n a l y s e d i n terms of the e q u a t i o n <y = * 0 e x p ( - E 0 / 2 k T ) (3.1) where E 0 i s the band gap. The v a l u e s of E 0 and ln<r 0 o b t a i n e d f o r the c r y s t a l s a r e shown i n t a b l e 3.2. Above 370 K d e v i a t i o n s from an o r d i n a r y semiconductor b e h a v i o r are observed and a t a temperature of 442(6) K a d i s c o n t i n u i t y i n the c o n d u c t i v i t y i s o b s e r v e d , i n d i c a t i n g a phase t r a n s i t i o n . Above the phase t r a n s i t i o n an abrupt decrease i n the c o n d u c t i v i t y i s o b s e r v e d . The h e a t i n g of the sample was found t o be n o n — r e v e r s i b l e , owing t o the f a c t t h a t the samples l o s t 25% of t h e i r mass when they were heated between 450 K and 480 K, and the subsequent room temperature c o n d u c t i v i t y was s h a r p l y lower when the sample had been heated up t o 480 K. T h i s l o s s of mass t o g e t h e r w i t h the d e c r e a s e of the c o n d u c t i v i t y i n d i c a t e s the d e c o m p o s i t i o n of the sample above 450 K. ,22 3.2 DISCUSSION OF THE DIELECTRIC CONSTANT AND CONDUCTIVITY  MEASUREMENTS (a) Quoted E x p e r i m e n t a l E r r o r s The e r r o r s i n the di m e n s i o n s of the samples were e s t i m a t e d u s i n g r e p e a t e d measurements on a t r a v e l l i n g m i c r o s c o p e . The measurements f o r sample #3 have l a r g e r e r r o r because the sample's l o n g e s t dimension was a t an a n g l e of about 30° t o the e l e c t r i c f i e l d i n s t e a d of a l o n g the e l e c t r i c f i e l d . T h i s meant t h a t e s t i m a t e s of the dime n s i o n s of the sample a l o n g the e l e c t r i c f i e l d and p e r p e n d i c u l a r t o the e l e c t r i c f i e l d were used i n s t e a d of the l e n g t h , w i d t h , and t h i c k n e s s of the sample. The quoted e r r o r i n the d e p o l a r i z i n g f a c t o r i s due t o the e s t i m a t e d e r r o r s i n the d i m e n s i o n s . o f the samples. T h i s e r r o r does not i n c l u d e any a d d i t i o n a l e r r o r s i n t r o d u c e d by the a p p r o x i m a t i o n of the shape of the samples as e l l i p s o i d s . The quoted e r r o r s f o r E 0 and ln<y0 f o r each sample a re the s t a n d a r d e r r o r s from the f i t of the c o n d u c t i v i t y d a t a t o I n * = - E 0 / 2 k T + l n t f o (3.2) where the parameters E 0 and l n < j r 0 a r e dete r m i n e d by the f i t . T h i s e r r o r i n c o r p o r a t e s the s t a t i s t i c a l e r r o r i n the d a t a f o r each sample, i t does not i n c o r p o r a t e any s y s t e m a t i c e r r o r s . The v a l u e s of E 0 and l n c r 0 d e s c r i b e d as average i n t a b l e 3.2 are de t e r m i n e d from a f i t t o e q u a t i o n (3.2) u s i n g the d a t a from the t h r e e samples. The e r r o r s i n E 0 and lho- 0 o b t a i n e d i n t h i s case 23 are the s t a n d a r d e r r o r s from the f i t . These l a s t e r r o r s w i l l i n c l u d e some of the s y s t e m a t i c e r r o r i n as f a r as t h i s e r r o r i s s y s t e m a t i c t o one sample, but not s y s t e m a t i c t o a l l the measurements. The l a r g e s t c o n t r i b u t i o n t o t h i s k i n d of e r r o r comes from d e p o l a r i z i n g f a c t o r . The e r r o r s quoted f o r c' and e" f o r t h e average r e s u l t a r e the s t a n d a r d e r r o r of t h e mean of t h e t h r e e measurements. (b) Shape of the Samples as a Source of E r r o r , The d e t e r m i n a t i o n of e' i s l i m i t e d by the d e p o l a r i z i n g f a c t o r of the samples. A s m a l l d e p o l a r i z i n g f a c t o r i s d e s i r a b l e because i t a l l o w s the e l e c t r i c f i e l d t o p e n e t r a t e i n s i d e the sample p e r m i t t i n g a measurement of e'. Another d i s a d v a n t a g e of a l a r g e d e p o l a r i z i n g f a c t o r i s t h a t the d e p o l a r i z i n g f a c t o r i s de t e r m i n e d o n l y a p p r o x i m a t e l y . I f the terms t h a t c o n t a i n the d e p o l a r i z i n g f a c t o r a re dominant i n e q u a t i o n s (2.8) and (2.9) then t h e e r r o r s i n the d e p o l a r i z i n g f a c t o r t o g e t h e r w i t h the a p p r o x i m a t i o n of the sample shape by an e l l i p s o i d would i n t r o d u c e s i g n i f i c a n t e r r o r s i n t o t h e f i n a l r e s u l t s . The o p t i m a l shape t o m i n i m i z e the d e p o l a r i z i n g f a c t o r i s a ve r y l o n g and t h i n c r y s t a l where a>>b>c. The c r y s t a l s used were s e l e c t e d f o r low d e p o l a r i z i n g f a c t o r ; however the a v a i l a b l e c r y s t a l s were f a r from the o p t i m a l shape. T h i s l i m i t e d the a c c u r a c y of the experiment and p r e c l u d e d a measurement of e' above room t e m p e r a t u r e . 24 CHAPTER 4 ESR APPARATUS, MEASUREMENTS AND SUSCEPTIBILITY CALCULATIONS 4.1 ESR APPARATUS E l e c t r o n s p i n resonance, ESR, was performed a t X—band. The sample was p l a c e d i n a r e c t a n g u l a r c a v i t y o p e r a t i n g i n the TE102 mode. The c a v i t y was p l a c e d i n a magnetic f i e l d t h a t was. swept thr o u g h the ESR resonance. The magnetic f i e l d was modulated a t 100 KHz by means of c o i l s p l a c e d on. the c a v i t y e x t e r i o r . The s t a t i c f i e l d was measured by means of an NMR probe. The d i f f e r e n c e i n f i e l d between t h e p o s i t i o n of t h e NMR probe and the c e n t e r of the c a v i t y was c a l i b r a t e d w i t h a s t a n d a r d ESR sample of L i F : L i , the NMR f r e q u e n c i e s b e i n g measured on an HP5245L fr e q u e n c y c o u n t e r . The microwave source was a V a r i a n VA—297 k l y s t r o n o p e r a t i n g a t 9.2 GHz t h a t was p h a s e — l o c k e d t o the sample c a v i t y f r e q u e n c y . The microwave freq u e n c y was measured by an HP5245L fr e q u e n c y c o u n t e r w i t h an HP5255A f r e q u e n c y c o n v e r t e r . Scope N.M.R. Oscillator Frequency Counter Variable Attenuator 0-40db D.V.M. tThermocouptt Voltage) Sample Heater Supply N.M.R. Probe WOKHz Modulation* Coils Magnetic Field Sfctee/} Coils I Klystron Klystron Supply I , A.F.C. Isolator 1 10db Directional Coupler Crys-tal Bias Variable Attenuator 0-SOdb 1 I Pre Amplifier Circulator I Tuned Crystal Detector Audio Amplifier Magnet Pole Face Nitrogen Gas Input Mini Computer Lock-in Amplifier X-Y Recorder Magnetic Field Sweep D.C. Amplifier F i g u r e 4 . 1 B l o c k D i a g r a m o f t h e ESR A p p a r a t u s . 26 A b s o r p t i o n of the sample was d e t e c t e d w i t h a l o c k i n a m p l i f i e r whose output gave the d e r i v a t i v e of the ESR s i g n a l and a f t e r a m p l i f i c a t i o n was r e c o r d e d on an X—Y r e c o r d e r , or sampled d i g i t a l l y w i t h a NOVA 2 microcomputer and punched out on paper ta p e . The d i g i t i z e d d a t a c o u l d then be read i n t o t he UBC computing system f o r f u r t h e r p r o c e s s i n g . A b l o c k diagram of the ap p a r a t u s i s shown i n f i g . 4.1. The sample was heated by means of a V a r i a n f l o w system ( f i g . 4.2) u s i n g n i t r o g e n gas as the heat t r a n s f e r medium. The sample temperature was measured u s i n g an i r o n — c o n s t a n t a n thermocouple w i t h an i c e b a t h as r e f e r e n c e . 4.2 THE ESR MEASUREMENTS E l e c t r o n s p i n resonance (ESR) measurements were performed on DEM(TCNQ) 2 as a f u n c t i o n of temperature between room temperature and 453(6) K. The g v a l u e s of the two o b s e r v e d l i n e s were measured as a f u n c t i o n of t e m p e r a t u r e . Above the phase t r a n s i t i o n the -g v a l u e of l i n e I was measured as a f u n c t i o n of the a n g l e between the c r y s t a l a x i s and the magnetic f i e l d . The s p i n s u s c e p t i b i l i t i e s and peak t o peak w i d t h s were then d e t e r m i n e d by f i t t i n g the i n t e g r a l of the output d e r i v a t i v e curve w i t h c o n v o l u t e d G a u s s i a n - L o r e n t z i a n f u n c t i o n s . SAMPLE TUBE WAVEGUIDE 100 KHz MODULATION COILS THERMOCOUPLE A/L OUT .. GLASS K DEWER CAVITY SAMPLE HEATER F i g u r e 4 . 2 ESR C a v i t y a n d V a r i a n F l o w S y s t e m . F i g u r e 4 . 3 T y p i c a l ESR S p e c t r a a b o v e T r a n s i t i o n a t 4 0 0 ( 3 ) K . a n d b e l o w t h e P h a s e 29 The s p i n s u s c e p t i b i l i t i e s and peak t o peak w i d t h s c o u l d then be o b t a i n e d from the G a u s s i a n - L o r e n t z i a n f u n c t i o n s . T y p i c a l ESR s p e c t r a below and above the obser v e d phase t r a n s i t i o n a r e shown i n f i g . 4 . 3 . 4 . 3 CONVOLUTED GAUSSIAN-LORENTZIAN FIT (a) F i t The d i g i t i z e d ESR output s i g n a l was i n t e g r a t e d n u m e r i c a l l y and then f i t t e d w i t h c o n v o l u t e d G a u s s i a n - L o r e n t z i a n f u n c t i o n s . The f i t was performed by m i n i m i z i n g the sum of square d e v i a t i o n s between the d a t a p o i n t s and the f u n c t i o n s . The s u s c e p t i b i l i t i e s of each i n d i v i d u a l c u r v e were then d e t e r m i n e d by i n t e r g r a t i n g the G a u s s i a n - L o r e n t z i a n f u n c t i o n s o b t a i n e d from the f i t . The c o r r e s p o n d i n g peak t o peak h a l f w i d t h s were o b t a i n e d from the d e r i v a t i v e of the G a u s s i a n - L o r e n t z i a n f u n c t i o n s o b t a i n e d from the f i t . T h i s method p r o v i d e d the s u s c e p t i b i l i t i e s and peak t o peak h a l f w i d t h s of each i n d i v i d u a l l i n e i n the c o n v o l u t e d ESR s p e c t r a below the phase t r a n s i t i o n . Above t h e phase t r a n s i t i o n the s u s c e p t i b i l i t i e s , and peak t o peak h a l f w i d t h s were d e t e r m i n e d from a f i t of a s i n g l e c o n v o l u t e d G a u s s i a n - L o r e n t z i a n f u n c t i o n t o the i n t e g r a t e d d a t a . The most s i g n i f i c a n t e r r o r i n the s u s c e p t i b i l i t y c a l c u l a t i o n a r i s e s from the d e t e r m i n a t i o n of the b a s e l i n e ; 30 however in'. 12% of the d a t a scans s i g n i f i c a n t d i s t o r t i o n s were found t h a t were not due t o i n t e g r a t i n g a d e r i v a t i v e curve w i t h an i n c o r r e c t b a s e l i n e . These d i s t o r t i o n s were due t o an asymmetry i n the d e r i v a t i v e c u r v e s . The meaning of the s u s c e p t i b i l i t i e s i n t h e s e c a s e s i s s u s p e c t , and these scans were not i n c o r p o r a t e d i n the r e s u l t s . (b) B a s e l i n e D e t e r m i n a t i o n The problem of d e t e r m i n i n g the b a s e l i n e i s a s i g n i f i c a n t l i m i t a t i o n t o the f i n a l a c c u r a c y of the s u s c e p t i b i l i t i e s . The i n i t i a l e s t i m a t e of the b a s e l i n e was d e t e r m i n e d by a v e r a g i n g the d a t a a c r o s s the s c a n . The i n t e g r a t e d d a t a were a l s o found t o have d i s t o r t i o n s t h a t were a t t r i b u t e d t o problems i n b a s e l i n e removal. There were scans where the t a i l b e f o r e the peaks d e c r e a s e d b e f o r e i t i n c r e a s e d , t h i s i s due t o removing too l a r g e a b a s e l i n e , and t h e r e were scans where the t a i l a f t e r the peaks i n c r e a s e d b e f o r e i t d e c r e a s e d , t h i s i s due t o removing too s m a l l a b a s e l i n e . These d i s t o r t i o n s were m i n i m i z e d by making changes t o the i n i t i a l b a s e l i n e of the o r d e r of 0.5% i n t e r a c t i v e l y on the UBC computer. The c o n t r i b u t i o n t o the e r r o r i n the s u s c e p t i b i l i t i e s from t h i s source c o u l d be e s t i m a t e d t o be about 10%. 31 CHAPTER 5 ESR EXPERIMENTAL RESULTS 5.1 ESR q VALUES At room temperature two l i n e s I and I I are found i n the spectrum of DEM(TCNQ) 2, c o r r e s p o n d i n g t o the two s t a c k s B and A. We f o l l o w the n o t a t i o n of S c h w e r d t f e g e r e t a l . 1980. The g v a l u e s of l i n e s I and I I of the ESR spectrum of DEM(TCNQ) 2 were determined as a f u n c t i o n of temperature between 290-K and 401 K a t an a n g l e 9 = 60° (see f i g . 5 . 1 ) The g v a l u e was found t o be independent of temperature between .290 K and T c = 400 K. The g v a l u e s g i v e n i n t a b l e I f o r T<T C a r e the average of the g v a l u e s measured f o r 9 = 60° a t v a r i o u s t e m p e r a t u r e s between 290 K and 400(3) K. The g v a l u e s of both l i n e s below the phase t r a n s i t i o n and the g v a l u e f o r the s i n g l e l i n e above the phase t r a n s i t i o n a re summarized i n the t a b l e below. 32 TABLE 5. 1 ESR CJ VALUES Temp. I I I T<TC T>TC 2.003233(23) 2.003250(10) 2.002571(17) The g v a l u e below the phase t r a n s i t i o n was not found t o change a p a r t from e x p e r i m e n t a l e r r o r . The e r r o r s quoted f o r the g v a l u e s below T t a r e the s t a n d a r d e r r o r or the mean of n i n e measurements a t d i f f e r e n t t e m p e r a t u r e s below T c . The e r r o r s quoted f o r the g v a l u e above T c are the s t a n d a r d e r r o r of the mean of two r e s u l t s above the phase t r a n s i t i o n . The above e r r o r s do not i n c l u d e any s y s t e m a t i c e r r o r s from the c a l i b r a t i o n . The c a l i b r a t i o n was performed u s i n g a sample of L i F : L i . The g v a l u e of L i i s 2.002317(2). ( P r e s s l e y e t a l 1963, and Gordon et a l 1972 p.345 and p.336). The c a l i b r a t i o n i n t r o d u c e s a s y s t e m a t i c e r r o r of 0.001% t o the g v a l u e measurements. These g v a l u e d a t a i m p l y t h a t the r e m a i n i n g l i n e above the phase t r a n s i t i o n i s l i n e I . 33 F i g u r e 5.1 A n g u l a r dependence of the g v a l u e of DEM(TCNQ) 2 above the phase t r a n s i t i o n a t 4.00(3) K Q: c r y s t a l #5 X: repeat run of c r y s t a l #5. The s o l i d l i n e i s a f i t t o e q u a t i o n 5.1 34 5.2 ANGULAR DEPENDENCE OF THE CJ VALUES The a n g u l a r dependence of the g v a l u e s above the phase t r a n s i t i o n was measured by r o t a t i n g the sample i n t h e pl a n e of the s t a t i c magnetic f i e l d . T h i s d a t a i s p l o t t e d i n f i g 5.1. The a n g u l a r dependence of the g v a l u e was f i t t e d t o the e q u a t i o n g 2 = g 2 c o s 2 e + g^sin 2© (5.1) The r e s u l t i n g v a l u e s f o r g | t and g^ a t 401 K t o g e t h e r w i t h the v a l u e s quoted i n the l i t e r a t u r e f o r lower t e m p e r a t u r e s ( S c h w e r d t f e g e r e t a l 1980) a r e summarized i n t a b l e 5.2. TABLE 5.2 AND . oLj_ FOR DEM(TCNQ) 2 Temp. (K) l i n e 9„ I l i n e 9„ I I 9x 401 2.002730(15) 2.003551(14) - -298 2.00235 2.00325 2. 00230 2 .00335 77 2.00219 2.00231 2. 00223 2 .00315 4.2 - - 2. 00270 2 .00399 1.14 - - 2. 00147 2 .00399 35 r i r — — i 1 ID CVJ c - 0 i x ( a i o w / r w 3 ) A i n i a i i d 3 o s n s F i g u r e 5.2 Temperature Dependence of the S p i n S u s c e p t i b i l i t y of l i n e I of DEM(TCNQ) 2 • : c r y s t a l #4 0 : c r y s t a l #5 X : repeat run of c r y s t a l #5 #: c r y s t a l #6 The S o l i d Curve i s E s t i m a t e d from the P o i n t s 36 LU or < cr LU GL LU £.oi x (aiouj/nw3) A i n i a i i d 3 D s n s F i g u r e 5.3 Temperature Dependence of the S p i n S u s c e p t i b i l i t y of l i n e I I of DEM(TCNQ) 2. Symbols a r e D e f i n e d i n F i g . 5.2. The S o l i d Curve i s E s t i m a t e d from the P o i n t s . 37 The quoted e x p e r i m e n t a l e r r o r f o r g ) ( and qx i s the s t a t i s t i c a l e r r o r from the f i t of the da t a t o e q u a t i o n 5.1. The s y s t e m a t i c d i f f e r e n c e between the v a l u e s f o r g ( ) and q± a t 298 K and a t 420 K c o u l d be due t o a s y s t e m a t i c e r r o r between the two measurements. T h i s c o n c l u s i o n i s reached because the measurements a t 298 K were c a l i b r a t e d u s i n g DPPH and t h e r e was no d i f f e r e n c e i n g v a l u e between 298 K and 401 K when both measurements were performed u s i n g the same c a l i b r a t i o n . 5.3 TEMPERATURE DEPENDENCE OF THE SUSCEPTIBILITY The s p i n s u s c e p t i b i l i t y of DEM(TCNQ) 2 has been measured below 270 K (S c h w e r d t f e g e r e t a l . 1980). The s p i n s u s c e p t i b i l i t y of l i n e s I and I I i s shown i n f i g s . 5.2 and 5.3 r e s p e c t i v e l y . The sum of the s u s c e p t i b i l i t i e s of l i n e s I and I I i s p l o t t e d i n f i g . 5.4. From t h i s d a t a we see t h a t the s u s c e p t i b i l i t y of l i n e I I goes t o z e r o a t 400(3) K. Above 400(3) K o n l y one l i n e i s ob s e r v e d , i n d i c a t i n g a phase t r a n s i t i o n a t 400(3) K. The s p i n s u s c e p t i b i l i t y of l i n e I i n c r e a s e s a t 400(3) K and the combined s u s c e p t i b i l i t y c urve i s c o n t i n u o u s a c r o s s the phase t r a n s i t i o n . We have seen t h a t the g v a l u e of l i n e I b e f o r e the phase t r a n s i t i o n i s the same as the g v a l u e of the s i n g l e l i n e above the phase t r a n s i t i o n (see s e c t i o n 5.1). T h i s t o g e t h e r w i t h the s u s c e p t i b i l i t y d a t a i n d i c a t e s t h a t t h e r e i s a t r a n s f e r of s p i n from s t a c k A t o s t a c k B a t 400(3) K. There i s a t p r e s e n t no p h y s i c a l e x p l a n a t i o n f o r t h i s t r a n s f e r of s p i n . 38 F i g u r e 5.4 Temperature Dependence of the Sum of the S p i n S u s c e p t i b i l i t i e s of l i n e s I and I I of DEM(TCNQ) 2. Symbols a r e D e f i n e d i n F i g . 5.2 The S o l i d Curve i s E s t i m a t e d from the P o i n t s 39 I i I I I I I I 310 350 390 430 TEMPERATURE (K) F i g u r e 5 . 5 T e m p e r a t u r e D e p e n d e n c e o f t h e P e a k t o P e a k H a l f w i d t h o f L i n e s I a n d I I o f D E M ( T C N Q ) 2 . S y m b o l s a r e D e f i n e d i n F i g . 5 . 2 40 o o o o d d d ( S S R D 6 ) H V F i g u r e 5.6 A n g u l a r Dependence of t h e Peak t o Peak H a l f w i d t h of l i n e I of DEM(TCNQ) 2 above the phase t r a n s i t i o n a t 400(3) K. The S o l i d L i n e i s a F i t t o H 2 = H 2cos 2e + H 2 s i n 2 e . 41 The phase t r a n s i t i o n a t 4 0 0 ( 3 ) K was found t o be r e v e r s i b l e . Sample #5 was taken p a s t the phase t r a n s i t i o n t o 401 K and then c o o l e d back t o room t e m p e r a t u r e . The re p e a t measurements of sample #5 were no d i f f e r e n t i n the s u s c e p t i b i l i t y or the g v a l u e . Between 4 1 5 K and 4 5 3 ( 6 ) K the combined s u s c e p t i b i l i t y d e c r e a s e s s h a r p l y t o z e r o and does not f o l l o w the h i g h temperature t a i l of the C u r i e — W i e s s law. T h i s d e c r e a s e i n the s u s c e p t i b i l i t y , however, i s i r r e v e r s i b l e . A repeat measurement a f t e r the sample has been c o o l e d t o room temperature produces no ESR s i g n a l The s c a t t e r i n the da t a of the s u s c e p t i b i l i t y as a f u n c t i o n of t e m p e r a t u r e , a r i s e s from the e r r o r i n the d e t e r m i n a t i o n of the G a u s s i a n - L o r e n t z i a n f i t t i n g f u n c t i o n s . These e r r o r s a r i s e from the d e t e r m i n a t i o n of the b a s e l i n e . 5 . 4 TEMPERATURE DEPENDENCE OF THE PEAK TO PEAK WIDTHS OF THE ESR  LINES The peak t o peak w i d t h of the ESR l i n e s was measured as a f u n c t i o n of temperature between 290 K and 4 5 3 ( 6 ) K. The da t a a r e p l o t t e d i n f i g 5 . 5 . The peak t o peak w i d t h s were c a l c u l a t e d by a double n u m e r i c a l i n t e r g r a t i o n of each G a u s s i a n - L o r e n t z i a n f u n c t i o n o b t a i n e d from the f i t . The d a t a show a broade n i n g of both l i n e s w i t h • i n c r e a s i n g t emperature as the phase t r a n s i t i o n t e m p e r a t u r e , 4 0 0 ( 3 ) K, i s 42 approached from below. The phase t r a n s i t i o n a t 400(3) K i s accompanied by a d i s c o n t i n o u s drop i n the peak t o peak h a l f w i d t h of l i n e I , and the d i s a p p e a r a n c e of l i n e I I . The peak t o peak h a l f w i d t h as a f u n c t i o n of a n g l e f o r s t a c k B above the phase t r a n s i t i o n i s p l o t t e d i n f i g 5.6. The h a l f w i d t h i n t h i s case was measured d i r e c t l y from the ESR sc a n s . The a n g u l a r dependence of the h a l f w i d t h r e a c h e s a minimum f o r the same 9 where the a n g u l a r dependence of the g v a l u e s e x h i b i t s a maximum (see f i g 5.1). T h i s r e s u l t i s s i m i l a r t o t h a t r e p o r t e d by S c h w e r d t f e g e r e t a l (1980) f o r s t a c k A a t 77 K The s c a t t e r i n the peak t o peak h a l f w i d t h vs temperature c u r v e a r i s e s from the d e t e r m i n a t i o n of the G a u s s i a n - L o r e n t z i a n f i t t i n g f u n c t i o n . The most s i g n i f i c a n t c o n t r i b u t i o n t o th e s e e r r o r s i s the d e t e r m i n a t i o n of the b a s e l i n e (see s e c t i o n 4.3). The e s t i m a t e d e r r o r s i n the peak t o peak h a l f w i d t h as a f u n c t i o n of a n g l e a r e a r e e s t i m a t e d from the ESR data s c a n s . 43 CHAPTER 6 DISSCUSION OF THE RESULTS 6. 1 PHASE TRANSITIONS .IN DEM (TCNQ) 2 The ESR measurements show a r e v e r s i b l e phase t r a n s i t i o n a t 400(3) K, where the s u s c e p t i b i l i t y of l i n e I I goes i n t o l i n e I . At t h i s t e mperature t h e r e i s no i n d i c a t i o n of a phase t r a n s i t i o n i n the microwave c o n d u c t i v i t y or i n the t o t a l s p i n s u s c e p t i b i l i t y . T h i s phase t r a n s i t i o n i s e x p l a i n e d by a t r a n s f e r of s p i n d e n s i t y from s t a c k B t o s t a c k A. The f a c t t h a t the c o n d u c t i v i t y and s p i n s u s c e p t i b i l i t y a r e c o n t i n u o u s over t h i s phase t r a n s i t i o n and t h a t the s p i n s u s c e p t i b i l i t y e q u a l s the v a l u e of the s p i n s u s c e p t i b i l i t y i m m e d i a t e l y below the phase t r a n s i t i o n a t 400(3) K i m p l i e s t h a t the c o n t r i b u t i o n t o the c o n d u c t i v i t y and t o the s u s c e p t i b i l i t y from s t a c k A and s t a c k B are e q u a l . N o n — r e v e r s i b l e e f f e c t s i n the s u s c e p t i b i l i t y a r e observed above 415 K w h i l e below t h i s t e mperature the c r y s t a l behaves i n a r e v e r s i b l e manner. These n o n — r e v e r s i b l e e f f e c t s c o u l d p o s s i b l y be due t o the onset of the d e c o m p o s i t i o n of the sample. At a temperature of 442(6) K a n o n — r e v e r s i b l e phase t r a n s i t i o n i n the microwave c o n d u c t i v i t y i s o b s e r v e d . Between 420 K and 453(6) K the s p i n s u s c e p t i b i l i t y d e c r e a s e s 44 i r r e v e r s i b l y t o z e r o . T h i s i n d i c a t e s t h a t the d e c rease of the s p i n s u s c e p t i b i l i t y t o z e r o and the d i s c o n t i n u i t y i n the c o n d u c t i v i t y a r e d i f f e r e n t m a n i f e s t a t i o n s of the same phase t r a n s i t i o n . The d e c r e a s e of the c o n d u c t i v i t y between 460 K and 480 K was found t o be due t o a d e c o m p o s i t i o n of the sample. On the o t h e r hand te m p e r a t u r e dependent G u i n i e r photographs of DEM(TCNQ) 2 showed two r e v e r s i b l e phase t r a n s i t i o n s a t 415 K and 483 K. ( M o r r s i n k e t a l 1980). We p o s t u l a t e t h a t the phase t r a n s i t i o n a t 442(6) K t o 453(6) K and the G u i n i e r measurement a t 483 K a r e r e l a t e d . S i m i l a r l y we p o s t u l a t e t h a t the r e v e r s i b l e phase t r a n s i t i o n a t 400(3) K i s r e l a t e d t o the phase t r a n s i t i o n a t 415 K o b t a i n e d by the G u i n i e r measurement. A p o s s i b l e e x p l a n a t i o n i s - t h a t t h e s e two phase t r a n s i t i o n s o c c u r over a range of t e m p e r a t u r e s , w i t h the e l e c t r o n i c e f f e c t s o c c u r r i n g b e f o r e the s t r u c t u r a l e f f e c t s . These d i f f e r e n c e s i n the phase t r a n s i t i o n t e m p e r a t u r e s can a l s o be e x p l a i n e d by the d i f f e r e n t r a t e s a t which the sample was heated i n t h e v a r i o u s e x p e r i m e n t s , th e s l o w e s t r a t e b e i n g the c o n d u c t i v i t y measurement w i t h the l o w e s t phase t r a n s i t i o n t e m p e r a t u r e , then the ESR measurements and f i n a l l y the G u i n i e r measurements w i t h the f a s t e s t r a t e of h e a t i n g and the h i g h e s t phase t r a n s i t i o n t e m p e r a t u r e . A l t h o u g h t h i s r e q u i r e s f u r t h e r i n v e s t i g a t i o n , a s i m i l a r p a t t e r n i s seen i n the o t h e r compounds as noted below. 45 6.2 COMPARISON OF DEM(TCNQ) 2 TO HEM(TCNQ) 2 AND MEM(TCNQ) 2 The ESR of HEM(TCNQ) 2 e x h i b i t s a phase t r a n s i t i o n a t 425 K w i t h a d e c r e a s e t o z e r o of the s p i n s u s c e p t i b i l i t y and a d i f f e r e n t i a l s c a n n i n g c a l o r i m e t e r (DSC) measurement of HEM(TCNQ) 2 e x h i b i t s a phase t r a n s i t i o n a t 450 K. ( H u i z i n g a 1980 p.108).Temperature dependent G u i n i e r photographs of HEM(TCNQ) 2 e x h i b i t a phase t r a n s i t i o n a t 456 R (van Bodegom, 1979, p.73). T h i s c o r r e s p o n d s t o the 2k F phase t r a n s i t i o n i n HEM(TCNQ) 2 ( H u i z i n g a 1980 p.108). These d i f f e r e n c e s i n phase t r a n s i t i o n t e m p e r a t u r e s a r e v e r y s i m i l a r t o tho s e r e p o r t e d f o r DEM(TCNQ) 2 above. In MEM(TCNQ) 2 we f i n d b o th the 2 k F and the 4 k F i n s t a b i l i t i e s . The 2 k F i n s t a b i l i t y has been a t t r i b u t e d t o the S p i n — P e i e r l s phase t r a n s i t i o n a t 18 K w h i l e the 4k f phase t r a n s i t i o n has been a t t r i b u t e d t o the s e m i c o n d u c t o r — m e t a l phase t r a n s i t i o n a t 335 K ( H u i z i n g a 1980 ). The q u e s t i o n of how the phase t r a n s i t i o n s i n MEM(TCNQ) 2 and HEM(TCNQ) 2 r e l a t e t o the phase t r a n s i t i o n s B of DEM(TCNQ) 2 remains t o be answered. The S p i n — P e i e r l s phase t r a n s i t i o n i n MEM(TCNQ)2 a t 18 K i s c l o s e t o the S p i n - P e i e r l s phase t r a n s i t i o n a t 23 K i n s t a c k B of DEM(TCNQ) 2. The n a t u r e of the two phase t r a n s i t i o n s above room temperature i n DEM(TCNQ) 2 s h o u l d i n d i c a t e which phase t r a n s i t i o n c o r r e s p o n d s t o the 4k F i n s t a b i l i t y i n Stack B of DEM(TCNQ) 2. The phase t r a n s i t i o n a t 400(3) K i s r e l a t e d t o s t a c k A. There i s a t r a n s f e r of s p i n d e n s i t y from s t a c k A t o s t a c k B, but t h e r e i s no e f f e c t on the t o t a l b u l k s u s c e p t i b i l i t y or the 46 c o n d u c t i v i t y t o w i t h i n the s c a t t e r i n the d a t a . The r a d i c a l e f f e c t s on the s u s c e p t i b i l i t y and the c o n d u c t i v i t y a r e observed at 453(6) K and 442(6) K r e s p e c t i v e l y , i n d i c a t i n g t h a t t h i s phase t r a n s i t i o n may c o r r e s p o n d t o t h e 4k F i n s t a b i l i t y . T h i s however i s not c l e a r because of the d e c o m p o s i t i o n of the sample. The l a t t e r phase t r a n s i t i o n i n DEM(TCNQ) 2 i s however d i f f e r e n t from the s e m i c o n d u c t o r — m e t a l phase t r a n s i t i o n i n MEM(TCNQ) 2 i n t h a t no m e t a l l i c c o n d u c t i v i t y i s o b s e r v e d above t h i s phase t r a n s i t i o n . T h i s however can be e x p l a i n e d because the phase t r a n s i t i o n temperature i n DEM(TCNQ) 2 i s h i g h e r than i n MEM(TCNQ) 2, namely because of the p r o b a b l e d e c o m p o s i t i o n of the DEM(TCNQ) 2 sample. There a r e a l s o some s i m i l a r i t i e s between the h i g h e s t phase t r a n s i t i o n i n DEM(TCNQ) 2 and the phase t r a n s i t i o n a t 425 t o 450 K i n HEM(TCNQ) 2 i n t h a t i n both phase t r a n s i t i o n s the s u s c e p t i b i l i t y d e c r e a s e s t o z e r o and t h e r e a r e temperature d i s c r e p a n c i e s of 30 K and 31 K between the decrease of the s u s c e p t i b i l i t y t o z e r o and the G u i n i e r measurements r e s p e c t i v e l y . The cause of the temp e r a t u r e d i s c r e p a n c y i n both c a s e s i s p r o b a b l y the speed a t which b o t h k i n d s of measurements were made or a d i f f e r e n c e i n the temperature between the e l e c t r o n i c and the s t r u c t u r a l e f f e c t s . The p r o x i m i t y i n the temper a t u r e s of the s e two phase t r a n s i t i o n s c o u l d a l s o account f o r some of the s i m i l a r i t i e s . 47 CHAPTER 7 CONCLUSIONS AND FURTHER POSSIBLE EXPERIMENTS 7.1 CONCLUSIONS The ESR and microwave c o n d u c t i v i t y of DEM(TCNQ) 2 above room temp e r a t u r e showed two phase t r a n s i t i o n s . F i r s t l y a r e v e r s i b l e phase t r a n s i t i o n a t 400(3) K where t h e r e was a t r a n s f e r of s p i n d e n s i t y from s t a c k A t o s t a c k B. The a n g u l a r dependence of the g v a l u e of the s i n g l e l i n e above t h i s phase t r a n s i t i o n was i d e n t i c a l t o t h a t of l i n e I . T h i s phase t r a n s i t i o n was not observ e d i n a measurement of the t o t a l s p i n s u s c e p t i b i l i t y nor i n a measurement of the microwave c o n d u c t i v i t y . The second phase t r a n s i t i o n was observed between 442(6) K and 453(6) K. T h i s i s a n o n — r e v e r s i b l e phase t r a n s i t i o n t h a t was m a n i f e s t e d by a d i s c o n t i n u i t y i n the microwave c o n d u c t i v i t y and the decrease t o z e r o of the t o t a l s p i n s u s c e p t i b i l i t y . T h i s phase t r a n s i t i o n i s p o s s i b l y due t o the 4k i n s t a b i l i t y i n s t a c k B of DEM(TCNQ) 2. The phase t r a n s i t i o n t e m p e r a t u r e s d e t e r m i n e d by the ESR and microwave c o n d u c t i v i t y methods were lower than the G u i n i e r photograph r e s u l t s f o r both phase t r a n s i t i o n s . 48 7.2 FURTHER DIRECTIONS There a r e many p o s s i b i l i t i e s f o r f u r t h e r r e s e a r c h on r e l a t e d TCNQ compounds; however we w i l l o n l y c o n s i d e r f u r t h e r e x p e r i m e n t s i n DEM(TCNQ) 2 t h a t a r e suggested by t h i s work: (a) A study of the dependence of the phase t r a n s i t i o n t e m p e r a t u r e s on the r a t e of h e a t i n g of. the c r y s t a l . The t i m e s i n v o l v e d would be from 6—hours t o 1—2 days f o r h e a t i n g the sample from room temperature t o about 480 K. T h i s would c l a r i f y the d i s c r e p a n c y i n the phase t r a n s i t i o n t e m p e r a t u r e s between the ESR and microwave c o n d u c t i v i t y measurements and the G u i n i e r photograph measurements. (b) The r e a l p a r t of the d i e l e c t r i c c o n s t a n t can be measured as a f u n c t i o n of temperature p a s t t h e s e phase t r a n s i t i o n s . T h i s experiment i s c o n t i n g e n t on o b t a i n i n g t h i n l o n g c r y s t a l s of DEM(TCNQ) 2 which a r e v e r y d i f f i c u l t t o grow. 49 BIBLIOGRAPHY van Bodegom, B., and van de Boer, J . L., A c t a . C r y s t B37, 1195 (1981) Bosh, A., and van Bodegom, B., A c t a . C r y s t . B33, 3013 (1977) Buranov, L. I . , and Shchegolev, I . F., I n s t r u m e n t s and  E x p e r i m e n t a l Techniques 14, 528 (1971) Gordon, A. J . , and F o r d , R. A., The Chemical Companion; A Handbook of P r a c t i c a l . Data Techniques and R e f e r e n c e s (John W i l l e y and Sons: New York, 1972T von H i p p e l , A., T a b l e s of D i e l e c t r i c M a t e r i a l s ( L a b o r a t o r y f o r I n s u l a t i o n R e s e a r c h , M a s s a c h u s e t t s I n s t i t u t e of Technology) H u i z i n g a , S., PhD T h e s i s , U n i v e r s i t y of Groningen (1980) H u i z i n g a , S., Kommandeur, J . , Sawatzky, G. A., and T h o l e , B. T., Phys Rev B19, 4723 (1979) Kuindersma, P. I . , Sawatzky, G. A., and Kommandeur, J . , J .  P h y s i c s C ( S o l i d S t a t e ) -8^ 3005 ( 1975) . Morrow, M., Hardy, W. N., C a r o l a n , J . F., B e r l i n s k y , A. J . , W e i l e r , L., G u j r a l , V. K., J a n o s s y , A., H o l c z e r , K., M i h l a y , G., G r i i n e r , G., H u i z i n g a , S., Verwey, A., and Sawatzky, G. A., Can. J_j_ of Phys. 58 334 (1980) M o r r s i n k , H., and van Bodegom, B., A c t a C r y s t . 37, 107 (1981) Osborn, J . A., Phys. Rev. 60 351 (1945) P r e s s l e y , R. J . , and Berk, H. L., B u l l . Am. Phys. Soc. 8, 345 (1963) 50 Sawatzky, G. A., H u i z i n g a , S., and Kommandeur, J . , P r o c e e d i n g s  of the I n t e r n a t i o n a l Conference on Q u a s i — o n e — d i m e n s i o n a l  C o n d u c t o r s , September 1978 Dubrobnik Y u g o s l a v i a , L e c t u r e Notes  i n P h y s i c s . p . 34, {"Berlin: S p r i n g e r V e r l a g , 1978) S c h w e r d t f e g e r , C. F., O o s t r a , S., and Sawatzky, G. A., Phys Rev (I n p r i n t 1981) S c h w e r d t f e g e r , C. F., Wagner, H. J . , and Sawatzky, G. A., S o l i d  S t a t e Comm. 35, 7 (1980) Waldron, R. A., Theory of Guided E l e c t r o m a g n e t i c Waves (London: van N o s t r a n d R e i n h o l d Company, 19701 ~ Waldron, R. A., The Theory of Waveguides and C a v i t i e s (New York: Gordon and Bre a c h S c i e n c e P u b l i s h e r s , 1969) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0095552/manifest

Comment

Related Items