Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The behaviour of iron and trace elements down catenary sequences in West Central Saskatchewan Evans, Fiona Margaret Lloyd 1982

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1982_A6_7 E93.pdf [ 12.28MB ]
Metadata
JSON: 831-1.0095504.json
JSON-LD: 831-1.0095504-ld.json
RDF/XML (Pretty): 831-1.0095504-rdf.xml
RDF/JSON: 831-1.0095504-rdf.json
Turtle: 831-1.0095504-turtle.txt
N-Triples: 831-1.0095504-rdf-ntriples.txt
Original Record: 831-1.0095504-source.json
Full Text
831-1.0095504-fulltext.txt
Citation
831-1.0095504.ris

Full Text

THE BEHAVIOUR OF IRON AND TRACE ELEMENTS DOWN CATENARY SEQUENCES IN WEST CENTRAL SASKATCHEWAN by FIONA MARGARET LLOYD EVANS B.Sc. The University College of Wales, Aberystwyth, 1978 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n c THE FACULTY OF GRADUATE STUDIES S o i l Science We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September 1982 FIONA MARGARET LLOYD EVANS 1982 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e h e a d o f my d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5 ABSTRACT Doyle (1977, 1979), working on the Southern Canadian I n t e r i o r P l a i n evaluated regional geochemical patterns based on parent material. He found that regional v a r i a t i o n i n the t o t a l concentration of copper, iron, manganese and zinc arose la r g e l y from differences among parent materials, rather than from more l o c a l (within parent material) differences caused by pedological f a c t o r s . To extend Doyle's work, a more detailed l o c a l i n v e s t i g a t i o n of the within parent material v a r i a t i o n of copper, iron, manganese and zinc on four parent materials was ca r r i e d out i n the Rosetown area, Saskatchewan. P r i n c i p a l objectives of this study were to f i n d the causes and magnitude of downslope catenary changes i n the geochemical pattern on each of four s o i l parent materials, u t i l i z i n g DTPA extraction to indicate the a v a i l a b i l i t y of these micronutrients to crops. S o i l samples were c o l l e c t e d from s o i l s developed on lacu s t r i n e clay (Regina S o i l S e r i e s ) , l a c u s t r i n e s i l t (Elstow S o i l S e r i e s ) , g l a c i a l t i l l (Weyburn S o i l Series) and aeolian sand (Dune Sand S o i l S e r i e s ) . Five s i t e s were selected for each parent material and at each s i t e , f i v e p i t s were dug at i n t e r v a l s downslope. Laboratory analysis for the entire sample set included the determination of pH, organic matter, copper, iron, manganese and zinc concentrations for s o i l digested with 4:1 HNO3/HCIO4 mixture and the same metals extracted with DTPA solution. Further analysis comprised sequential extraction of copper, iron, manganese and zinc, p a r t i c l e size separation and X-ray d i f f r a c t i o n . - i i i -Highest t o t a l elemental concentrations are found i n the Ap horizon of the Rego Dark Brown Chernozems developed on l a c u s t r i n e clay, followed by la c u s t r i n e s i l t and g l a c i a l t i l l s o i l s , with s o i l s on aeolian sands having the lowest values. The A horizons of l a c u s t r i n e s i l t s o i l s contain the highest DTPA extractable concentrations of iron, manganese and zinc, whereas, maximum extractable concentrations i n the C horizons are associated with l a c u s t r i n e clays. DTPA extractable copper i n both A and C horizons i s at a maximum i n la c u s t r i n e clay s o i l s . For the majority of s i t e s , the highest t o t a l and DTPA elemental concentrations occur at the base of the slope, this being most marked for l a c u s t r i n e s i l t s o i l s . T otal elemental concentrations for the four parent materials exhibit a r e l a t i v e l y greater uniformity when considering both trends downslope and down p r o f i l e than DTPA concentrations. A much greater proportion of DTPA extractable manganese and zinc occurs i n the organic r i c h surface horizons compared to the more a l k a l i n e C horizons. This i s also found for copper and iron but to a lesser extent. Analysis of variance shows that the compositional v a r i a t i o n among parent materials for t o t a l elemental data, accounts for well over 50% of the o v e r a l l data v a r i a b i l i t y . Duncan's New Multiple Range test r e s u l t s further substantiate these te x t u r a l groupings into l a c u s t r i n e clay, l a c u s t r i n e s i l t and g l a c i a l t i l l and aeolian sand. Results are less conclusive for DTPA elemental data. However, even though s o i l copper, iron, manganese and zinc are influenced by many pe d i o l o g i c a l factors operating separately and - i v -j o i n t l y , a large percentage of the t o t a l v a r i a b i l i t y when predicting DTPA elemental concentrations can be accounted for by the variables included i n the regression equations. The Index of Determination (I ) shows that the v a r i a b i l i t y i n DTPA elemental concentrations i s best accounted for by the regression equations for the l a c u s t r i n e clay s o i l s with 93-98% of the t o t a l v a r i a b i l i t y explained. - V -TABLE OF CONTENTS Page T i t l e Page i Abstract i i Table of Contents v L i s t of Tables v i i L i s t of Figures x i Acknowledgments x i i i CHAPTER I - INTRODUCTION 1.1 Statement of Problem 1 1.2 Previous Work 2 CHAPTER I I - THE STUDY AREA I I . 1 General Geographical Description 8 I I . 2 Climate 8 11.3 Geology 11 11.4 S o i l Types 16 11.4.1 Regina Association 16 11.4.2 Elstow Association 19 11.4.3 Weyburn Association 20 11.4.4 Dune Sand Association 21 11.5 Variations i n S o i l Morphology Downslope 22 11.6 A g r i c u l t u r a l Land Use 25 CHAPTER I I I - METHODS 111.1 Sample C o l l e c t i o n 26 111.2 Sample Preparation 26 111.3 Methods of Sample Analysis 28 111.3.1 pH 28 111.3.2 Organic Matter 28 111.3.3 Trace Metals 28 111.3.3.1 N i t r i c Acid/ P e r c h l o r i c Acid Digestion 30 111.3.3.2 DTPA Extraction 30 111.3.4 Sequential Extraction Analysis 30 111.3.5 P a r t i c l e Size Analysis 31 111.3.6 X Ray D i f f r a c t i o n Technique 34 - v i -Page 111.4 Quality Control 34 111.5 S t a t i s t i c a l Methods 37 111.5.1 Analysis Of Variance 38 111.5.2 Duncan's New Multiple Range Test 39 111.5.3 Correlation and Regression 39 CHAPTER IV - RESULTS IV.1 Raw Data 41 IV.1.1 Total and DTPA Elemental Data 41 IV.1.1.1 Lacustrine Clay Catenas 41 IV.1.1.2 Lacustrine S i l t Catenas 50 IV.1.1.3 G l a c i a l T i l l Catenas 56 IV.1.1.4 Aeolian Sand Catenas 62 IV. 1.1.5 Summary 68 IV.1.2 Sequential Extraction 68 IV.1.2.1 Lacustrine Clay Catena 68 IV.1.2.2 Lacustrine S i l t Catena 70 IV.1.2.3 G l a c i a l T i l l Catena 72 IV.1.2.4 Aeolian Sand Catena 73 IV. 1.2.5 Summary 76 IV.1.3 P a r t i c l e Size Analysis 76 IV.1.4 X Ray D i f f r a c t i o n 79 IV.2 S t a t i s t i c a l Test Results 79 IV.2.1 Analysis of Variance 80 IV.2.2 Duncan's New Multiple Range Test 80 IV.2.3 Correlation 85 IV.2.4 Regression 85 CHAPTER V - DISCUSSION V.1 General Discussion 101 V.2 Predictions 107 CHAPTER VI - CONCLUSION 111 BIBLIOGRAPHY 114 APPENDIX A 121 APPENDIX B 137 - v i i -LIST OF TABLES Page Table 1 Description of The Regina, Elstow Weyburn And Dune Sand S o i l Series 15 Table 2 Abbreviations L i s t 27 Table 3 Instrumental Settings for Techtron Atomic Absorption-IV Spectrophotometer 29 Table 4 L i s t of Samples Analysed For Sequential Extraction, P a r t i c l e Size Analysis and X Ray D i f f r a c t i o n 32 Table 5 P r i n c i p a l Clay Minerals and th e i r d/n Spacing (A°) 34 Table 6 Pr e c i s i o n at the 95% Confidence Level For Total and DTPA Elemental Concentrations 36 Table 7 Geometric Means and Standard Deviations For Cu, Fe, Mn and Zn on S o i l s Digested With HNO3 /HC10i+ 42 Table 8 Geometric Means and Standard Deviations For Cu, Fe, Mn and Zn Extracted from S o i l s With DTPA 43 Table 9 Percentage of DTPA Extractable Cu, Fe, Mn and Zn to Total Cu, Fe, Mn and Zn Concentrations (A and C Horizons) i n Lacustrine Clay, Lacustrine S i l t G l a c i a l T i l l and Aeolian Sand S o i l s 44 Table 10 Arithmetic Means and Ranges For Cu, Fe, Mn and Zn Extracted Sequentially from Lacustrine Clay S o i l s (A and C Horizons) 69 Table 11 Arithmetic Means and Ranges For Cu, Fe, Mn and Zn Extracted Sequentially from Lacustrine S i l t S o i l s (A, B and C Horizons) 71 Table 12 Arithmetic Means and Ranges For Cu, Fe, Mn And Zn Extracted Sequentially from G l a c i a l T i l l S o i l s (A and C Horizons) 74 - v i i i -Page Table 13 Arithmetic Means and Ranges for Cu, Fe, Mn and Zn Extracted Sequentially from Aeolian Sand S o i l s (A and C Horizons) 75 Table 14 Results of P a r t i c l e Size Separation for Lacustrine Clay, Lacustrine S i l t , G l a c i a l T i l l and Aeolian S o i l s 77 Table 15 Mean Values Of Percent Clay, S i l t and Sand f or LC, LS, GT and AS S o i l s and Their U.S.D.A. Textural C l a s s i f i c a t i o n 78 Table 16 Comparison of Logarithmic Within and Among Sample Site Variance Components for A Horizon, 0-30 cm Depth and C Horizon S o i l 81 Table 17 Results of Applications of Duncan's New Multiple Range Test to Logio, A Horizon S o i l Data for Individual Parent Materials 82 Table 18 Results of Applications of Duncan's New Multiple Range Test to Logio, 0-30 cm Depth S o i l Data for Parent Materials 83 Table 19 Results of Applications of Duncan's New Multiple Test to Log io , c Horizon S o i l Data for Parent Materials 84 Table 20 C o r r e l a t i o n C o e f f i c i e n t s Relating L o g 1 0 Total and DTPA Elemental Data, pH and Organic Matter for Lacustrine Clay S o i l s (A, B and C Horizons) 86 Table 21 Cor r e l a t i o n C o e f f i c i e n t s Relating Logio T o t a l and DTPA Elemental Data, pH and Organic matter for Lacustrine Clay S o i l s (A Horizon) 87 Table 22 C o r r e l a t i o n C o e f f i c i e n t s Relating L o g 1 0 Total and DTPA Elemental Data, pH and Organic matter for Lacustrine S i l t S o i l s (A, B and C Horizon) 88 Table 23 Cor r e l a t i o n C o e f f i c i e n t s Relating Logio T o t a l and DTPA Elemental Data, pH and Organic matter for Lacustrine S i l t S o i l s (A Horizon) 89 - ix -Page Table Ih Correlation C o e f f i c i e n t s Relating Login Total and DTPA Elemental Data, pH and Organic matter for G l a c i a l T i l l S o i l s (A, B and C Horizons) 90 Table 25 Correlation C o e f f i c i e n t s Relating Login Total and DTPA Elemental Data, pH and Organic matter for G l a c i a l T i l l S o i l s (A Horizon) 91 Table 26 Correlation C o e f f i c i e n t s Relating L o g 1 0 Total and DTPA Elemental Data, pH and Organic matter for G l a c i a l T i l l S o i l s (A, B and C Horizons) 92 Table 27 Correlation C o e f f i c i e n t s Relating Login Total and DTPA Elemental Data, pH and Organic matter for Aeolian Sand S o i l s (A Horizon) 93 Table 28 Index of Determination (I ) for the Dependent Variables Logio, Cu n, Fe n, Mn^ and Zn n for a l l Parent Materials (A Horizon Data) and Individual Parent Materials (A Horizon Data) 95 Table 29 Multiple C u r v i l i n e a r Regression Equations for Loqin, Cu„, Fe^, Mn„ and Zn^ for a l l Parent i U D D D D Materials (A Horizon Data) (At a Si g n i f i c a n c e Level of 0.05) 96 Table 30 Multiple C u r v i l i n e a r Regression Equations for Logio, Cu Q, Fe^, Mnp and Zn Q for Lacustrine Clay S o i l s (A Horizon Data) (At a Si g n i f i c a n c e Level of 0.05) 97 Table 31 Multiple C u r v i l i n e a r Regression Equations for Login> Cu n, Fe n, ^ n n and Zn^ for Lacustrine S i l t S o i l s (A Horizon Data) (At a Si g n i f i c a n c e Level of 0.05) 98 Table 32 Multiple C u r v i l i n e a r Regression Equations for Logio, Cu n, Fe n, Mn^ and Zn^ for G l a c i a l T i l l S o i l s (A Horizon Data) (At a Si g n i f i c a n c e Level of 0.05) 99 - X -Page Table 33 Multiple C u r v i l i n e a r Regression Equations for Logio, Cu D, Fe n, Mnp and Zn p for Aeolian Sand S o i l s (A Horizon Data) (At a Si g n i f i c a n c e Level of 0.05) 100 Table 34 C r i t i c a l Iron and Zinc DTPA S o i l Test Value ( F o l l e t t and Lindsay, 1970) 108 Table 35 Estimated C r i t i c a l Copper and Manganese DTPA S o i l Test Value ( F o l l e t t and Lindsay, 1970) 108 - x i -L I S T OF FIGURES Page Figure 1 Location of A g r i c u l t u r a l l y Settled Southern Canadian I n t e r i o r P l a i n 7 Figure 2 Major Physiographic Subdivisions of the Southern Canadian I n t e r i o r P l a i n 9 Figure 3 Topography and Drainage, Rosetown Area 10 Figure 4 Bedrock Geology, Rosetown Area 12 Figure 5 S o i l Parent Materials, Rosetown Area 14 Figure 6 Location of Sit e s , Rosetown Area 17 Figure 7 Location of Sit e s , North East of Rosetown Area 18 Figure 8 General Variations i n S o i l Morphology Downslope 23 Figure 9 Outline Of Sequential E x t r a c t i o n Procedure 33 Figure 10 Tot a l and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine Clay S o i l s - S i t e 1 45 Figure 11 T o t a l And DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine Clay S o i l s - Site 2 46 Figure 12 Tot a l and DTPA Elemental Concentrations, pH and Organic Matter Down Catena f o r Lacustrine Clay S o i l s - Site 3 47 Figure 13 T o t a l and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine Clay S o i l s - Site 4 48 Figure 14 Tot a l and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine Clay S o i l s - Site 5 49 Figure 15 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine Clay S o i l s - Site 1 51 - x i i -Page Figure 16 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine S i l t S o i l s - S i t e 2 52 Figure 17 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine S i l t S o i l s - S i t e 3 53 Figure 18 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine S i l t S o i l s - Si t e 4 54 Figure 19 T o t a l and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Lacustrine S i l t S o i l s - Site 5 55 Figure 20 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for G l a c i a l T i l l S o i l s - S i t e 1 57 Figure 21 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for G l a c i a l T i l l S o i l s - Si t e 2 58 Figure 22 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for G l a c i a l T i l l S o i l s - Si t e 3 59 Figure 23 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for G l a c i a l T i l l S o i l s - Si t e 4 60 Figure 24 Tot a l and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for G l a c i a l T i l l S o i l s - Site 5 61 Figure 25 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Aeolian Sand S o i l s - S i t e 1 63 Figure 26 T o t a l and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Aeolian Sand S o i l s - Si t e 2 64 Figure 27 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Aeolian Sand S o i l s - Si t e 3 65 Figure 28 Total and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Aeolian Sand S o i l s - S i t e 4 66 Figure 29 T o t a l and DTPA Elemental Concentrations, pH and Organic Matter Down Catena for Aeolian Sand S o i l s - Si t e 5 67 - x i i i -ACKNOWLEDGEMENTS I should l i k e to thank Dr. W.K. Fletcher for his relayed knowledge and ardent supervision, and my committee members Dr. L.M. Lavkulich, Dr. L.E. Lowe, Dr. M.A. Barnes and Dr. A.3. S i n c l a i r for t h e i r guidance throughout the research programme. A special thank you to Dr. L.M. Lavkulich and Dr. L.E. Lowe for th e i r encouragement and i n s p i r a t i o n over the l a s t two years. Also many thanks to Maggie E l l i o t t for her ready support and frie n d s h i p , in and out of the laboratory, and to Barry Wong for his patience, tremendous humour and computer expertise. To the farmers of West Central Saskatchewan - A sincere salute for t h e i r h o s p i t a l i t y and cooperation. Any benefit they gain from t h i s study w i l l be my reward. CHAPTER I INTRODUCTION I.1 Statement of Problem In the early seventies increasing interest in the geochemistry of the natural environment as i t may affect human and animal health, prompted the U.S. Geological Survey to begin a wide ranging programme of geochemical studies in the state of Missouri. The prime objective was to determine regional variations in the chemical c h a r a c t e r i s t i c s of the rocks, waters, s o i l s and vegetation. As part of t h i s programme, Miesch (1976), described a sampling strategy based on analysis of variance to evaluate regional geochemi-ca l patterns. Sampling design was based on broad categories within each of the major natural sampling media, each category being chosen so that i t s components would exhibit as much geochemical uniformity as possible, i n comparison to differences among categories (Connor et a l . 1972). U t i l i z i n g t h i s approach, T i d b a l l (1976), found the variance between trace element concentrations in s o i l series in Missouri amounted to about 80% of t o t a l variance. Doyle (1977, 1979), applied the same techniques to the Southern Canadian I n t e r i o r P l a i n , and produced regional geochemical maps for copper, iron, manganese and zinc using s o i l parent material as the prime category. This was e f f e c t i v e in so far as the quaternary parent materials are few, readily defined, r e l a t i v e l y homogenous and cover large areas. Also, because of rather weak pedological development, parent materials are a major factor determining trace element content - 2 -i n both the A and C horizons. Consequently, regional v a r i a t i o n in t o t a l concentration of the elements studied, arise largely from differences among parent materials rather than from more l o c a l (within parent material) differences caused by pedological f a c t o r s . Furthermore, these differences were found to be broadly consistent with s o i l texture and mineralogy. Thus, quartz r i c h aeolian sands are found to be impoverished in a l l four elements whereas l a c u s t r i n e clays are r e l a t i v e l y enriched. However Doyle (1977, 1979) e s s e n t i a l l y compared differences among parent material groups and a l l samples were taken from mid catena positions to minimise within group variance. To extend Doyle's work to within parent material v a r i a t i o n s , a more detailed l o c a l i nvestigation of the v a r i a t i o n of copper, iron, manganese and zinc on four parent materials has been carried out in the Rosetown area, Saskatchewan. P r i n c i p a l objectives of t h i s study were to find the causes and magnitude of downslope catenary changes in the geochemical patterns on each of four s o i l parent materials, u t i l i z i n g DTPA extraction to r e l a t e r e s u l t s to a v a i l a b i l i t y of these micronutrients to crops. 1.2 Previous Work Many workers have found that the geographical d i s t r i b u t i o n of micronutrients in s o i l s appears to be more c l o s e l y related to the composition of parent materials than to any other single f a c t o r . ( M i t c h e l l , 1972; Nair and Cottenie, 1971; F o l l e t t and Lindsay, 1970; Archer, 1963; Swaine and M i t c h e l l , 1960). For example, Berrow and M i t c h e l l (1980), working on s o i l developed on g l a c i a l t i l l in - 3 -Scotland, concluded that t o t a l trace element contents of the s o i l were related primarily to the nature of the source rocks. S i m i l a r l y on the Canadian P r a i r i e s , Bayrock and Pawluk (1966), also working on s o i l s developed on g l a c i a l t i l l , found that the d i s t r i b u t i o n of trace elements could be related to bedrock subcrop patterns. Nevertheless, despite the importance of the s o i l parent material, trace element composition of a s o i l i s also influenced by pedogenic processes which may result in removal or r e d i s t r i b u t i o n of trace elements in the s o i l (Hodgson, 1963). Thus, besides the mineralogical composition of the parent material, t o t a l amounts of trace elements present in s o i l s depend on the type and i n t e n s i t y of weathering and on the c l i m a t i c and other factors predominating during the process of s o i l formation (Sillanpaa, 1978). Factors that operate separately and j o i n t l y include weathering and leaching of soluble constituents; movements related to gleying and i t s associated oxidation and reduction e f f e c t s ; biogenic cycling and surface enrichment; size sorting with clay movement down p r o f i l e ; and possibly e f f e c t s r e s u l t i n g from microbial a c t i v i t y ( M i t c h e l l , 1955). However, a high degree of p r o f i l e development or an advanced stage of weathering i s necessary before marked v a r i a t i o n in micronutrient patterns i s evident. ( F o l l e t t and Lindsay, 1970). Nair and Cottenie (1971) working on brown earths, found that the r e l a t i o n s h i p between parent material and t o t a l trace element content in the s o i l can be close enough to permit predictions of one while knowing the other. Ultimately, however as in Austalian s o i l s that have undergone several cycles of weathering, over a long period, there may be l i t t l e - 4 -c o r r e l a t i o n between composition of the solum and i t s parent material (Oertel, 1961). A v a i l a b i l i t y of s o i l trace elements to crops depends not only on i t s t o t a l content but also on the forms in which i t occurs (Berrow and M i t c h e l l , 1980). For example, Viets (1962), views groups of i n d i v i d u a l forms in terms of 'pools'. Successive pools represent varying degrees of a v a i l a b i l i t y from ions in the s o i l solution to those remaining in the primary minerals. Each pool, except for the most unavailable corresponds to the forms of an element which are subject to removal by d i f f e r e n t types of extractants. Various studies have shown that s o i l texture ( M i t c h e l l , 1955; Nair and Cottenie, 1971); pH (Hodgson, 1963); organic matter accumulation (Hodgson, 1963; Fleming et a l , 1968) and drainage impedance (Swaine and M i t c h e l l , 1960; Hodgson, 1963; Berrow and M i t c h e l l , 1980) are major influences on the d i s t r i b u t i o n of extractable trace elements. Nair and Cottenie (1971) obtained poor r e s u l t s when predicting available trace element concentrations from parent material content because of the varying influences of the above fa c t o r s . Berrow and M i t c h e l l (1980), working on four s o i l types i n Scotland, found the t o t a l content of a s o i l to be r e l a t i v e l y constant throughout the p r o f i l e s , and concluded that t o t a l content does not therefore provide a r e l i a b l e i n d i c a t i o n of the a v a i l a b i l i t y of trace elements in s o i l . Furthermore, Sillanpaa (1978) observed that the amounts of trace elements removed yearly with normal crop y i e l d s , represent only a very small proportion, generally less than 1% of the - 5 -t o t a l amounts of the various trace elements present in s o i l s . Thus, i t i s clear that t o t a l micronutrient concentration even in the most d e f i c i e n t case w i l l generally far exceed requirements of the crop, although i n some extreme cases when the parent material has an abnormally low micronutrient content, for example, granite, t h i s w i l l not be so. Consequently, t o t a l concentrations are not necessarily a r e l i a b l e index of a v a i l a b i l i t y of micronutrients to the plant (Sillanpaa, 1978) except perhaps where the t o t a l content i s very low (Vi e t s , 1962). In an attempt to overcome these problems and predict micro-nutrient status of s o i l s , many extractants have been used to evaluate a v a i l a b i l i t y . These have included 0.1N HC1, 1N NHi+OAc, EDTA - (NHi*) C0 3, DTPA (Stewart and Tahir, 1971); 0.01 M C a C l 2 2N MgCl 2, NHi+OAc, 0.05 HC1: 0.025 H 2S0 4, DTPA (John, 1971); N NH40Ac, 1.5 M NH4 H2P0k, 2N MgCl 2, DTPA (Khan et a l , 1978); M NHi+Ox, 2.5% HOAc, 0.05 M EDTA (Berrow and M i t c h e l l , 1980). In North America, DTPA i s probably the most frequently used extractant because i t o f f e r s the most favarouble combination of s t a b i l i t y constants for the simultaneous complexing of iron, zinc, copper and manganese. Norve l l , (1972) found that although a number of chelating agents can e f f e c t i v e l y complex copper and zinc in s o i l s , DTPA was exceptional i n that i t was also among the best for iron and manganese. Since iron and zinc d e f i c i e n c i e s are most prevalent on calcareous s o i l s which cover large areas i n North America, the extractant was designed s p e c i f i c a l l y to avoid excessive d i s s o l u t i o n of CaC03 with the release of occluded micronutrients which are normally - 6 -not available for absorption by roots. F o l l e t t and Lindsay (1970), working on Colorado s o i l s with serious micronutrient d e f i c i e n c i e s of zinc and iron, found that i t provides a reasonably s a t i s f a c t o r y index of t h e i r a v a i l a b i l i t y . Other examples, include de Boer and Reisenauer (1973), working on C a l i f o r n i a n s o i l s , who conducted experiments to evaluate DTPA as an extractant of available s o i l iron, established guides for f e r t i l i z a t i o n . S i m i l a r l y , Haby and Sims (1979), in Montana suggested that DTPA s o i l analysis of copper, iron, manganese and zinc should be ca r r i e d out before forecasting f e r t i l i z e r a p p l i c a t i o ns. Also Gough et a l (1980), working on plants and s o i l s of the Northern Great Plains found that DTPA r e s u l t s for copper, iron, manganese and zinc lead to better c o r r e l a t i o n s than EDTA r e s u l t s . Studies on the d i s t r i b u t i o n of both t o t a l and available trace elements down catenary segnences are very l i m i t e d . However, Yaalon et a l . (1971), working on the d i s t r i b u t i o n of manganese in three catenas on Mediterranean s o i l s found that t o t a l manganese increased down slope by 50-80% for a l l three slopes. Fortescue (1974b) working in Ontario noted that the topographic setting of p a r t i c u l a r sampling p i t s modified the c h a r a c t e r i s t i c v e r t i c a l d i s t r i b u t i o n of trace elements in s o i l . 0 b WILES 1,000 2,000 KM Approximate extent of agriculturally settled Southern Canadian Interior Plain Boundary of North American Interior Plain FIGURE 1 Location of A g r i c u l t u r a l l y Settled Southern Canadian I n t e r i o r P l a i n (Doyle, 1977) - 8 -CHAPTER II THE STUDY AREA 11.1 General Geographical Description The study area comprises approximately 9900 km2 in West Central Saskatchewan, ( F i g . 2), Rosetown i t s e l f l y i n g about 80 km. South West of Saskatoon, and l i e s within the physiographic region known as the Great Plains Province of the I n t e r i o r Plains of North America ( F i g . 1). There are two major physiographic subdivisions, the Saskatchewan P l a i n Region, or second P r a i r i e step and the Alberta High P l a i n Region or t h i r d P r a i r i e step (Acton and E l l i s , 1978). The study area includes the Saskatchewan River P l a i n and the Howarden H i l l Uplands (F i g . 3). The former occupies the cen t r a l lowland area and i s generally f l a t to gently r o l l i n g , ranging in elevation from 600 m. adjacent to the upland to 500 m. in the north east. The Howarden H i l l Uplands in the east r i s e s to a maximum elevation of about 615 m., and are characterized by an undulating to r o l l i n g surface. Considerably higher elevation (up to 750 m.) and more rugged r e l i e f occur on the Missouri Coteau Upland, which forms part of the Alberta High P l a i n . (Fig 3). 11.2 Climate The climate i s semi arid with short warm summers and cold long winters. Mean Duly and January temperatures are 19°C and 16°C re s p e c t i v e l y . Forty to f i f t y percent of the t o t a l p r e c i p i t a t i o n (35 cm.) f a l l s in the growing season, from May to September, with the bulk of the r a i n f a l l f a l l i n g i n 3une (8 cm.). Loss of s o i l moisture by dIOOKM Boundary of Intorior Plain mm n n Northern limit of agricultural settlement — • — •—Boundary of Interior Plain subdivisions Detailod Study Area A Interior P la in S u b d i v i s i o n s Great Plain A A l b e r t a P la in Cent ra l Lowland B S a s k a t c h e w a n Pla in C Manitoba Plain (Modi f ied from Bostock , ' 1 9 6 9 ) FIGURE 2 Major Physiographic Subdivisions of the Southern Canadian I n t e r i o r P l a i n - 1 0 -I06« M/SSOUJRI QOTE/UU SASKATCHEWAN Soafcofoon 43' 51° 56 RIO LEGEND .2000 Topographic contours interval 200ft Township (Tp) -Range (R) boundaries Stream Highway FIGURE 3. Topography and drainage, Rosetown area (Doyle, 1977) - 11 -evaporation and t r a n s p i r a t i o n by plants r e s u l t s in a moisture deficency of 17-23 cms. II.3 Geology ( F i g . 4) The Geology consists of f l a t lying sequences of clays, s i l t s and gravels, ranging in age from the Upper Cretaceous Lea Park Formation to Pleistocene g l a c i a l and f l u v i o - g l a c i a l deposits, r e s u l t i n g from at least four g l a c i a t i o n s (Christiansen, 1979). However, with the exception of exposures of s i l t y clays and sands of the Bearpaw Formation at various locations along the South Saskatchewan River and in the Coteau Uplands (Scott, 1971), the only widespread deposits are Tertiary and Quaternary sands and gravels (Christiansen and Meneley, 1971). Bedrock units are t y p i c a l l y overlain by from 30 to 150 metres of Pleistocene D r i f t (Scott 1971), that form the s o i l parent materials of the region ( F i g . 5), and prevent the underlying bedrock from having much dir e c t influence on s o i l s . However, the bedrock formations did serve as a source of materials for the g l a c i a l d r i f t (Acton and E l l i s , 1978) and composition and mode of deposition of the g l a c i a l materials greatly a f f e c t s texture of the s o i l s and the nature of the s o i l landscapes. Predominent g l a c i a l materials include g l a c i a l t i l l (materials deposited d i r e c t l y from i c e ) , g l a c i o - f l u v i a l (deposited by water flowing from the ice) and g l a c i o - l a c u s t r i n e sediments (deposited in s t i l l waters of g l a c i a l lakes). T i l l s generally comprise a mixture of p a r t i c l e sizes ranging from clays to abundant pebbles and cobbles of - 12 -KDS'OO1 106° 43' 51° 58" Tp34 TP32 Tp30 Tp28 Tp26 RI2 RIO BEDROCK GEOLOGY Tertiary-Quaternary |0_| Interbedded silt, marl, sand and gravel Cretaceous | 2 | Bearpaw Formation: noncolcareous silt and clay Judith River Formation:fine sand and silt | ^ | Lea Park Formation-, silty clay FIGURE 4 Bedrock geology, Rosetown area (Doyle, 1977); Tp24 51° 00* - 13 -igneous, metamorphic and carbonate rocks. Ablation t i l l s containing a considerable amount of coarse e n g l a c i a l debris, result in landscapes of high r e l i e f with knoll and ke t t l e patterns. In contrast, the f i n e r textured ground moraine gives r i s e to smoother landscapes and t i l l p l a i n s . Calcareous deposits underlie both the Missouri Coteau and the Howarden H i l l Uplands and in many areas the d r i f t i s mantled by discontinuous ablation deposits, varying from 1 to 5 metres thick. G l a c i o - f l u v i a l and lacustine sediments are characterized by sor t i n g of the materials r e s u l t i n g in a predominence of sands, s i l t s or c l a y s . Thick deposits of la c u s t r i n e and associated d e l t a i c sediments produce nearly l e v e l landscapes. However, when the g l a c i o -f l u v i a l or lacu s t r i n e deposits are thin the re s u l t i n g land form usually r e f l e c t s the underlying material. A l l the lowland areas are underlain by lake deposits, with t h e i r maximum elevations decreasing from south to north r e f l e c t i n g the decreasing elevation of the g l a c i a l lakes in that d i r e c t i o n . G l a c i o - f l u v i a l and g l a c i o - l a c u s t r i n e deposits have been modified and re d i s t r i b u t e d by wind (aeolian) action forming elongate blowout or parabolic dunes, these are e s p e c i a l l y notable, south of D e l i s l e . Most dunes have been s t a b i l i z e d by vegetation, but in some l o c a l i t i e s dune migration i s occurring (Scott, 1971). The youngest s o i l parent materials are the a l l u v i a l flood p l a i n deposits of r i v e r s . These are most extensive along the South Saskatchewan River but in a l l amount to only a small percentage of the region as a whole. - 14 -toeecxf I06« 43' 51° 58* Tp34 TP32 Tp30 Tp29 Tp2S Tp24 51° 00' RI4 RI2 RIO SOIL PARENT MATERIAL Lacustrine clay I 1 Lacustrine silt and sand [.°c°_1 Alluvium Aeolian sand TB| Ground moraine 2~1 Hummocky moraine [ 3 1 Washboard moraine j 4 j Ridged end moraine J Glacial t Till FIGURE 5 S o i l Parent Materials, Rosetown Area (Doyle, 1977) Table 1 - Description of the Regina, Elstow, Weyburn and Dune Sand S o i l Series SOIL TYPES: DOMINANTLY DARK BROWN CHERNOZEMS S o i l Series Dominant S i g n i f i c a n t Parent Material REGINA Rego Dark Orthic Dark Fine textured, mod-Brown Brown erately calcareous clayey g l a c i o -l a c u s t r i n e deposit ELSTOW 1. Orthic Dark Brown 2. Calcareous Dark Brown 1. Calcareous Dark Brown 2. Eluviated Dark Brown Medium to moderate fi n e textured, mod-erately calcareous s i l t y g l a c i o -la c u s t r i n e deposits 3. Rego dark Brown 3. Orthic Dark Brown WEYBURN 1. Orthic Dark Brown 2. Calcareous Dark Brown 1. Calcareous Dark Brown 2. Eluviated Dark Brown Medium to moderate f i n e textured, mod-erately calcareous unsorted g l a c i a l t i l l 3. G l e y s o l i c DUNE SAND Orthic Carbonated +/ Coarse to moderate Regosol or S a l i n i z e d coarse aeolian or Regosolics wind-worked sandy gla c i o f l u v i a l and lac u s t r i n e deposit ( E l l i s et a l . 1970) - 16 -II.4 S o i l Types Chernozemic s o i l s occupy over ninty percent of the area, although Regosols, Solonetzic and G l e y s o l i c s o i l s are also present ( E l l i s et a l , 1970). P r o f i l e development i s generally weak, due in part to the r e l a t i v e l y young age of the s u r f i c i a l deposits as well as the comparatively low p r e c i p i t a t i o n . Thus, pedogenic processes have had l i t t l e e f f e c t on the non calcareous aeolian sands where Orthic Regosols predominate (Table 1). S i m i l a r l y on the moderately calcareous l a c u s t r i n e clays, Rego Dark Brown and Rego Brown Chernozems predominate (Table 1). Horizon d i f f e r e n t i a t i o n i s more advanced on the l a c u s t r i n e s i l t s and sands, and g l a c i a l t i l l s which are characterized by Orthic and to a lesser extent Calcareous, Eluviated Brown and Dark Brown Chernozems (Table 1). Bin and Bt horizons in these s o i l s , which range in thickness from a few centimetres on t i l l s and l a c u s t r i n e s i l t s to over t h i r t y eight centimetres on l a c u s t r i n e sands, are commonly underlain by carbonate enriched Cca horizons. Four s o i l series associations, selected for sample c o l l e c t i o n on the the basis of t h e i r importance and wide d i s t r i b u t i o n , (Figs. 6,7) w i l l be described in d e t a i l . II.4.1 Regina Association The Regina Association consists c h i e f l y of Chernozemic Dark Brown s o i l s developed on uniform, clayey, g l a c i o - l a c u s t r i n e deposits (Table 1). I t s parent material i s a dark greyish brown, moderately calcareous, heavy clay. Stones are v i r t u a l l y absent except where the - 17 -SOIL RESEARCH INSTITUTE CANADA PRINTED 1871 Ms' Jio' SOIL MAP OF ROSETOWN AREA SASKATCHEWAN SCALE 1:126720 R REGINA SERIES © L C LACUSTRINE CLAY SITE NO.1 E ELSTOW SERIES © LS LACUSTRINE SILT SITE NO. 2 W WEYBURN SERES © G T GLACIAL TILL SITE NO.3 OS DUNE SAND SERIES © A S AEOLIAN SAND SITE NO. 4 — 7 — HIGHWAY FIGURE 6 Location of S i t e s , Rosetown Area • - 18 SOB- RESEARCH INSTITUTE CANADA PRINTED 1 B 7 1 SOIL MAP OF ROSETOWN AREA SASKATCHEWAN SCALE 1 : 1 2 6 7 2 0 R REGINA SERIES 0 L C LACUSTRINE CLAY SITE NO. 1 E ELSTOW SERIES © I S LACUSTRINE SILT SITE NO.2 W WEYBURN SERIES ® 6 t GLACIAL TILL SITE NO.3 OS DUNE SAND SERIES © A S AEOLIAN SAND SITE NO.4 — 7 _ HIGHWAY FIGURE 7 L o c a t i o n o f S i t e s , N o r t h E a s t o f Rose town A r e a - 19 -parent material is thin over the underlying glacial t i l l . Regina soils occur mainly on very gently sloping or undulating topography as seen in the area due south of Rosetown. The dominant series is a Rego Dark Brown occurring on higher sites. An Orthic Dark Brown series often develops an slightly flatter and lower sites. This series can occupy depressions in the microrelief ( E l l i s et al, 1970). Gleysols occupy lower moderately to poorly drained sites down slope from the Orthic and Rego Series. Under the A.R.D.A. (Agricultural Rehabilitation and Development Act) Soil Capability Classification, the Regina Rego and Orthic series of the upland are placed at the top of class 2 (ie. good arable land) and represent the best agricultural soils of the Dark Brown Zone. They are particularly suited to large scale wheat farming. This high agricultural rating results from a combination of their high water holding capacity, good f e r t i l i t y and favourable topography. ( E l l i s et a l, 1970). The Gleysols are placed in class 3 (i.e. f a i r , arable land) . II.4.2 Elstow Association The Elstow Association comprises a group of Chernozemic Dark Brown soils developed on medium to moderately fine textured s i l t y glacio-lacustrine deposits (Table 1). Their parent materal is greyish brown to light olive brown, moderately calcareous loam, s i l t loam, clay loam and s i l t y clay loam. Surface stones are absent to few except where the Elstow deposit is thin (less than four feet) ( E l l i s et a l, 1970) and underlain by glacial t i l l . The soils occur mainly on - 20 -very gently sloping to roughly, undulating topography. An Orthic Dark Brown s o i l i s dominant in the association and occupies nearby a l l positions i n landscapes of low r e l i e f , as well as the well drained mid slope position in landscapes of rougher r e l i e f . Under the A.R.D.A. S o i l Capability C l a s s i f i c a t i o n , Elstow s o i l s are placed in cla s s 3 ( i e . f a i r arable land). Their limited water holding capacity and i n a b i l i t y to support good plant growth during periods of drought are th e i r major d e f i c i e n c i e s . II.4.3 Weyburn Association The Weyburn Association consists mainly of Chernozemic Dark Brown s o i l s of medium to fine texture, developed on unsorted g l a c i a l t i l l (Table 1). Their parent materials are pale brown, l i g h t yellowish brown or greyish brown (marked with whitish spots and streaks of calcium carbonate), sandy clay loams. G l a c i a l stones are common and can be a serious handicap to c u l t i v a t i o n . The Association occurs on a wide range of topographical s i t e s , in deposits from gently undulating to strongly r o l l i n g moraine. Weyburn landscapes have the sinuous appearance t y p i c a l of g l a c i a l t i l l areas characterized by a succession of knolls or ridges forming the highest land and separated by lowland depressions. Nearly a l l the Weyburn s i t e s have been mapped as loams. An Orthic Dark Brown i s the dominated series of the Association. This occupies well drained, intermediate slopes with Eluviated Dark Brown s o i l s on lower and more gentle slopes. Calcareous Dark Browns occur on the upper slopes and crests of knolls and ridges. However, an Orthic Regosol, which i s usually the eroded phase of the Calcareous or - 21 -O r t h i c Dark Brown S e r i e s , occurs on eroded k n o l l s and r i d g e s . G l e y s o l s occupy undrained depress ions and f l a t , poor l y d r a i n e d , lower l a n d s . Under the A . R . D . A . C l a s s i f i c a t i o n , the best Weyburn s o i l s are p laced i n c l a s s 3 ( i e . f a i r a rab le l a n d ) . These s o i l s i n c l u d e Weyburn loams i n u n d u l a t i n g to gent l y r o l l i n g topography. S o i l s on rougher r e l i e f are p laced i n c l a s e d 4 t o 5 ( i e . poor to u n s u i t a b l e land) depending on the s e v e r i t y of the topography. L o c a l areas of G l e y s o l i c s o i l s are p laced i n c l a s s 5 ( i e . u n s u i t a b l e fo r c u l t i v a t i o n ) . 11.4.4 Dune Sand A s s o c i a t i o n Th is a s s o c i a t i o n c o n s i s t s mainly of coarse to moderately coarse t e x t u r e d R e g o s o l i c s o i l s developed on a e o l i a n or wind worked, sandy g l a c i o - f l u v i a l and l a c u s t r i n e d e p o s i t s (Table 1 ) . The parent m a t e r i a l i s a y e l l o w i s h brown to g r e y i s h brown sand . I t i s g e n e r a l l y l ime f r e e except when u n d e r l a i n by heav ier tex tu red s u b s o i l s ( E l l i s et a l , 1970) . The A s s o c i a t i o n occurs on a wide range of topography from u n d u l a t i n g sand p l a i n s to h i l l y duned a r e a s . Sur face and i n t e r n a l dra inage i s excess i ve due to the very high p e r m e a b i l i t y of these sandy d e p o s i t s . More pronounced dune areas u s u a l l y c o n t a i n a h igher p r o p o r t i o n of f i n e sands whereas, the more subdued landscapes are composed of mixed f i n e and coarse sands . On the wide range of topography a s s o c i a t e d wi th Dune Sands, O r t h i c Regosols occur i n a l l p o s i t i o n s except depress ions where carbonated or s a l i n e Regosol Ser ies^ - and o c c a s i o n a l l y G l e y s o l i c s o i l s are deve loped. - 22 -Under the A.R.D.A. c l a s s i f i c a t i o n , most Dune Sand S o i l s are placed in c l a s s 6, and are considered suitable only for native pasture. However, Dune Sand on smoother topography may be considered as c l a s s 5. E f f o r t s have been made in some cases, and are required i n others, to s t a b i l i z e the s h i f t i n g sand and thus control i t s encroachment on to the adjoining arable lands. II.5 V a r i a t i o n in S o i l Morphology Downslope ( F i g . 8) It was evident from f i e l d studies, that shallower s o i l s tend to be associated with convex, upper slopes, and deeper s o i l s with concave, lower slopes. Furthermore, for the s i t e s investigated there i s generally (regardless of parent materal type) a rapid increase in depth of s o i l p r o f i l e once a c e r t a i n lower slope position i s reached and gleysols occupy the depressions. However, of the four s o i l series studied only the Weyburn and Elstow Associations have moderately well developed s o i l p r o f i l e s (Table 1), with Orthic Dark Brown Chernozems as the predominant s o i l s e r i e s . Moss (1972), working in Saskatchewan recognizes three types of Orthic Dark Brown Chernozems. Orthic s o i l s with a lime layer (Cca horizon) between 7-12 inches and those with t h i s layer below 12 inches, c l a s s i f i e d r espectively, as shallow o r t h i c and deep o r t h i c s o i l s . AB Orthics with an AB horizon between the Ap and B horizons are the t h i r d type. In the f i e l d , t h i s i s designated as a break down of structure rather than on a te x t u r a l basis. The Deep Orthic s o i l s perhaps, represent the c l a s s i c o r t h i c p r o f i l e and are found almost exclusively in the c l a s s i c o r t h i c slope p o s i t i o n - the midslope (King, 1976). King (1976) suggests that t h i s - 23 -King 1976 FIGURE 8 General Variations in S o i l Morphology Downslope - 24 -marks some c r i t i c a l juncture between si t u a t i o n s of moisture deficiency and moisture excess. In contrast, shallow or t h i c s o i l s have a wider d i s t r i b u t i o n and can occur everywhere except in toe slope position (King 1976). AB Orthics occur in footslope positions which they share with the eluviated s o i l s (Figure 8). However, the l a t t e r also extend onto the toe slope pos i t i o n s . Gleyed Eluviated s o i l s occupy the toe slope positions almost exclusively whereas Rego s o i l s tend to be found on the crest and shoulder slope pos i t i o n s . Calcareous s o i l s can occur anywhere from crest to midslope positions. In t h i s manner, d i s t r i b u t i o n of s o i l s downslope support the t r a d i t i o n a l concepts of catenary sequences. Most exceptions are due to slope var i a t i o n s which overide the general slope p o s i t i o n s . It i s noted that depth of the solum seems to respond to the land surface form, even down to minor i r r e g u l a r i t i e s . So that s o i l development i s seen to mirror even small changes in form. Hence, although the c l a s s i c a l model comprises upslope convexity (leading to shallower s o l a ) , r e c t l i n e a r midslope and concave lower slope (leading to deeper s o l a ) , i t i s found to be the exception and s o i l development at a s i t e i s related to more l o c a l f a c t o r s . King (1976), found that given a uniform slope, moisture accumu-l a t i o n s and associated depth of leaching w i l l decrease as distance from the moisture source increases. He also observed that thickness of the Ap horizon does not appear to follow any p a r t i c u l a r pattern, although overdeepening i s apparent at the footslope p o s i t i o n s . This i s also found to be the case in t h i s study. - 25 -II.6 A g r i c u l t u r a l Land Use The main a g r i c u l t u r a l a c t i v i t y on l a c u s t r i n e clay, s i l t and sand deposits i s wheat production. Other cereals include, barley, rye, f l a x , oats and rapeseed. Owing to low r a i n f a l l , annual y i e l d s on clay s o i l s are at least twice that on sands. Mixed farming i s practiced on the g l a c i a l t i l l areas, and regions underlain by aeolian sand are used for pasture and occasionally as wild game reserves. - 26 -CHAPTER III METHODS A L i s t of the Abbreviations used i n the text i s given in Table 2. III.1 Sample C o l l e c t i o n S o i l samples were co l l e c t e d from s o i l s developed on four d i f f e r e n t parent materials, l a c u s t r i n e clay (Regina S o i l S e r i e s ) , l a c u s t r i n e s i l t (Elstow S o i l S e r i e s ) , g l a c i a l t i l l (Weyburn S o i l Series) and aeolian sand (Dune Sand S o i l S e r i e s ) . Five s i t e s were selected for each parent material and at each s i t e f i v e p i t s were dug at i n t e r v a l s , down the slope, p i t no. 1 i s at the crest position running at i n t e r v a l s downslope to p i t no. 5. A l l horizons were sampled in duplicate and a composite sample comprising f i v e subsamples, c o l l e c t e d from the surface horizon within a 3 metre radius about each p i t . Each p i t was photographed and a description of s i t e and s o i l c h a r a c t e r i s t i c s entered on standard sheets (Description of Ecosystems in the F i e l d , Ministry of the Environment, Research Analysis Branch, Technical paper 2). Slope was measured using a Brunton compass and distances between the p i t s were measured using a ca l i b r a t e d length of rope. A l l samples were numbered randomly. Coordinates were recorded using the (one thousand metre) Universal Transverse Mercator Grid. P i t locations are summarized in Figures 6 and 7. III.3 Sample Preparation S o i l s were oven dried at 80°C and then gently disaggregated, using a porcelain pestle and mortar, p r i o r to sieving through a - 27 -Table 2 - Abbreviations L i s t LIST OF ABBREVIATIONS LC Lacustrine Clay LS Lacustrine S i l t GT G l a c i a l T i l l AS Aeolian Sand OM Organic Matter (*CUT) Cu y Copper i n S o i l Digested With 4:1 HN03 /HCIO^ Mixture ( i . e . Total S o i l Copper) (*CUD) Cu n Copper Extracted With DTPA Solution CUQ Copper Extracted With NaOCl Solution ( i . e . Copper Associated with Organic Matter) Cu c Copper Extracted With 5% HC1 Solution ( i . e . Copper Associated with S o i l Carbonates) Cu A Copper Extracted With NHitOx Solution ( i . e . Copper Associated with Amorphous Iron Oxides) Cu R Copper Extracted With 4:1 HNO3 /HClOit ( i . e . Residual S o i l Copper, f i n a l extraction i n the sequential extraction procedure) *Used in computer printout. - 28 -(minus 10-mesh) nylon sieve. A quarter s p l i t was ground in a ring m i l l to minus 80-mesh. The af f e c t s of grinding on s o i l samples are summarized by Fletcher (1981). III.3 Methods of Sample Analysis A l l s o i l s were analyzed for the following: 111.3.1 pH pH was determined by the standard method used in the Geochemistry Labaratory, U.B.C. whereby 10 g. of a minus 10-mesh (2 mm) s o i l i s added to 10 ml. of d i s t i l l e d water. The sl u r r y i s s t i r r e d four times at 10 minute i n t e r v a l s and then allowed to s e t t l e for 30 minutes, pH i s then determined using a glass and calomel reference electrode pair with an Orion Model 404 pH meter. 111.3.2 Organic Matter Organic carbon was determined by the Walkley Black t i t r i m e t r i c method (Black et a l , 1965). 1N K2Cr07 i s added to l g . s o i l (minus 80-mesh) to oxidise organic matter. Ferroin ( phenanthroline ferrous sulphate) i s added as indicator and changes from green through blue to red brown on the complete reduction of excess K2 Cr07 by 0.5 N FeSO^. A blank determination was carried out for each batch of forty samples. A d u p l i c a t i o n of 1 sample i n 10 was taken. 111.3.3 Trace Metals - 29 -Table 3 - Instrumental Settings for Techtron Atomic Absorption-IV Spectrophotometer Element Wavelength (A 0) Ai r Pressure (psi) Fuel Gauge Setting S l i t Width (u) Camp Current (MA) Cu 3247.5 20 2.5 50 3 Fe *2488.3 20 2.5 50 5 Mn 2794.8 20 2.5 50 5 Zn 2138.6 20 2.5 100 6 * 2483.3 Used For DTPA Solutions ** Acetylene - 30 -111.3.3.1 N i t r i c Acid / P e r c h l o r i c Acid Digestion Samples were digested using 4:1 HNO3/HCIO4 mixture (Fletcher, 1971) in batches of twenty four. Each batch included one U.B.C. standard rock, one blank and one duplicate. Solutions were analysed on the Techtron IV Atomic Absorption Unit for copper, iron, manganese and z i n c . Operating conditions are summarized in Table 3. This digestion i s referred to as ' t o t a l ' in the text, however i t i s not a complete digestion and some of the more resistant material w i l l remain as residue. 111.3.3.2 DTPA Extraction DTPA extractions were ca r r i e d out according to Lindsay and Norvell (1978). These authors developed t h i s test to i d e n t i f y d e f i c i e n c i e s of Cu, Fe, Mn and Zn in calcareous s o i l s . The extractant consists of 0.005 M DTPA (diethylene triamine penta acetic acid), 0.1 M triethanolamine and 0.01 M CaCl2 at a pH of 7.3. The extractant i s buffered at pH of 7.3 and contains C a C l 2 so that equilibrium with CaC03 i s established at a C0 2 l e v e l about 10 times that of the atmosphere. Thus, the extractant precludes d i s s o l u t i o n of CaC03 and the release of occluded nutrients which are normally not available to plants. Samples are run in batches of 24 which includes one s o i l standard, one blank and two duplicates. Copper, iron, manganese and zinc concentrations were then measured on the Techtron IV Atomic Absorption Unit (Table 3). III.3.4 Sequential Extraction Analysis F i r s t , catenas were selected on the basis of the change in A/C - 31 -ratios; when these change significantly down a catena, while the C horizon value remains fa ir ly constant, i t indicates development of catenary trends on a uniform parent material. Second, catenas with consistent patterns were selected for sequential extraction to estimate proportions of copper, iron, manganese and zinc fixed in specific fractions of the s o i l . (Refer to Table k for l i s t of samples selected). Four reagents were chosen to extract the five elements in a stepwise manner, each extractant drawing from a different 'pool ' . The method used is a modified version of the procedure suggested by Hoffman and Fletcher (1979). A flow chart is shown in Figure 9. Solutions were analysed by atomic absorption spectrophotometry (Techtron IV Atomic Absorption unit) for copper, iron, manganese and zinc concentrations. (Table 3). III.3.5 Particle Size Analysis Further selection of two pits (Table k) per catena was carried out for each parent material, one from an upper slope position and one from a lower slope position. The pits were chosen to manifest the maximum variation between upslope and downslope positions. Greater variation is shown throughout the pits for DTPA elemental values than for total elemental values. Therefore, DTPA concentrations were studied more closely when selecting the pits . Textural analysis was undertaken according to the Methods Manual, Pedology Laboratory U.B.C. (1981). Pretreatment of so i l includes addition of a 5% sodium hypochlorite solution (destruction of organic matter) and a citrate buffer/sodium dithionite mixture (removal of free iron oxides) prior to hydrometer analysis. Table 4 L i s t of Samples Analysed For Sequential Extraction, P a r t i c l e Size Analysis and XRD P.M. LACUSTRINE CLAY LACUSTRINE SILT GLACIAL TILL AEOLIAN SAND SITE NO. SITE 3 SITE 5 SITE 3 SITE 3 PIT NO. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6 280 357 358 169 37 572 116 528 506 211 461 368 464 294 390 144 206 243 548 SEQUENTIAL 354 54 141 284 39 35 117 535 226 512 210 133 466 462 52 491 443 580 238 382 EXTRACTION 140 420 108 51 70 34 119 167 225 307 428 370 465 351 136 529 49 571 578 530 473 227 474 391 373 576 118 299 555 204 372 369 - 345 341 158 - 543 375 383 33 472 32 - - - - 7 531 540 371 - - - 342 2 523 - - -280 169 37 506 461 464 144 548 PARTICLE 54 39 35 512 133 462 443 382 SIZE 420 70 34 307 370 351 49 530 ANALYSIS 227 204 345 523 383 472 373 576 540 369 464 X-RAY 39 35 *463c *442c DEFRACTION 462 351 345 ^Composite Samples Sample Nos. See Appendix A for d e t a i l s of the samples. - 33 -Figure 9 - Outline of Sequential Extraction Procedure Addition of 5-6% sodium hypochlorite pH adjusted to 9.5 Destruction of organic matter (and sulphide minerals) Addition of 5% HC1 solution Solution of adsorbed trace metals, resolution of metal hydroxide p r e c i p i t a t e s and solution of carbonate minerals Addition of acid NHi+Ox (Tamm's Reagent) adjusted to pH 3.5 Solution of more re s i s t a n t amorphous iron and manganese oxides and scavenged trace metals Addition of HNOa/HClO^ (4:1) mixture Solution of trace elements associated with residue s i l i c a t e s and c r y s t a l l i n e iron oxides - 34 -III.3.6 X-Ray D i f f r a c t i o n Technique Eight samples (Table 4) (minus 10-mesh) were pre-treated with a 10% sodium acetate solution (removal of carbonates and soluble s a l t s ) followed by a 5% sodium hypochlorite solution (oxidation of organic matter). Samples were then separated by centrifuging into two size f r a c t i o n s 0.2-2u and 2-5p at speeds of 750 rpm and 300 rpm respect-i v e l y . Each f r a c t i o n was placed in a l i t r e c ylinder, d i s t i l l e d water added and allowed to s e t t l e . S l i d e s were prepared and saturated with either 1N potassium chloride solution or 1N magnesium acetate and 1N magnesium chloride s o l u t i o n . Samples were run through the X-ray diffractometer and treated according to the procedure outlined in the Methods Manual, Pedology Labaratory U.B.C. 1981). X-ray conversion tables were used to diagnose X-ray d i f f r a c t i o n spacings for minerals present. (Table 5). III.4 Quality Control (Table 6) Random errors are assumed to follow a normal Gaussian d i s t r i b u -t i o n about t h e i r mean concentration ( c ) . A n a l y t i c a l precision i s then s p e c i f i e d as the percent r e l a t i v e v a r i a t i o n at the two standard deviation (95%) confidence l e v e l . P r e c i s i o n control charts were plotted using the method described by Thompson and Howarth (1978). This method u t i l i z e s a graphical plot of (Xi - X2) versus (Xi + X2)/2 where Xi and X2 are pairs of duplicates. The absolute difference (X^ - X2) being an estimator of the standard deviation (6c) and the mean value (Xi + X2)/2 being an estimator of average concentration. The spread of data - 35 -Table 5 - P r i n c i p a l Minerals and Their d/n SPACING (A°) (JACKSON, 1956) CLAY MINERAL d/n SPACING (A°) I l l i t e 10.0 Montmorillonite 17.7 K a o l i n i t e 7.2 Quartz 3.35 Plagioclase Feldspar 3.12-3.23 Potassium Feldspar 3.21-3.28 Vermiculite 14.2 Ch l o r i t e 14.2 Amphibole 8.40-8.48 Note: d/n Spacings Given Are The F i r s t Order Peaks - 36 -Table 6 - Precision at the 95% Confidence Level for Total and DTPA Elemental Concentrations Element Total No. Of Duplicates Pairs DTPA No. Of Duplicate Pairs Cu 17% 33 30% 65 Fe 15% 33 15% 63 Mn 10% 34 10% 65 Zn 15% 33 30% 65 Organic Matter 10% 23 pH 10% 30 - 37 -points i s then compared to t h e o r e t i c a l l y derived d i s t r i b u t i o n s against which precision may be compared. Pre c i s i o n at the 95% confidence l e v e l ranged from within 10-30% for copper, iron, manganese and zinc extracted with DTPA solution and from within 10-17% for the same elements digested with HN03/HC101+. (4:1) mixture. Precision for both pH and organic matter was within 10% p r e c i s i o n at the 95% confidence l e v e l . III.5 S t a t i s t i c a l Methods The following section gives a general overview of the various s t a t i s t i c a l methods used in evaluating the t o t a l (Cu T, Fey, Mn^, Zn-j.) and DTPA (Cu^, Fe^, Mn^, Zn^) extraction data. Calculations were car r i e d out for the most part on an Amdahl-470-V8 computer, using programs supplied by both the University of B r i t i s h Columbia Computing Centre and by the S t a t i s t i c a l Research Laboratory, University of Michigan. Many s t a t i s t i c a l methods assume that the data are normally d i s t r i b u t e d with equal sample variance (homogeneity of variance). However, several authors have suggested that the d i s t r i b u t i o n s of trace elements in geochemical materials approximate log normality (Ahrens, 1954; Hawkes and Webb, 1962, Miesch, 1967). Histograms and des c r i p t i v e s t a t i s t i c s (Appendix B) indicated that t h i s was the case with the present data which was therefore transformed (logio) prior to running s t a t i s t i c a l t e s t s . The various s t a t i s t i c a l methods used are:-- 38 -III.5.1 Analysis of Variance This i s a method o f estimating the amount o f t o t a l v a r i a t i o n i n a data set that can be attributed to assignable causes o f v a r i a t i o n and how much can be attributed to chance (random error) (Harnett, 1970) . A nested ( h i e r a r c h i c a l ) c l a s s i f i c a t i o n model i s set up -ijk d) j(i) k(i,j) where Y..^ i s the observed value for the kth r e p l i c a t i o n of the j t h le v e l o f C nested in the i t h l e v e l o f M. u i s the mean for the entire population. M ( i ) are main groups where i = 1,p. (There are four parent materials so p=4) . are subgroups where j=1,5. (There are f i v e catenas per parent material so s=5). e. / . . v i s the random error term, k d j ) Thus the t o t a l data v a r i a b i l i t y i s partitioned into within and among group components with the main groups being based on soil/parent material type. Data was divided by horizon that i s , into A horizon and C horizon data and by depth from 0-30 cm. For the l a t t e r , data were weighted according to the depth of each horizon using the formula presented by Kloosterman and Lavkulich (1973). N VA.. = 1 / Sh 1 I (h. x V.). j=1 where VA. i s the average value of variable j ; V. i s the thickness o f j j horizon i and h. i s the variable j value o f horizon i . - 39 -The assumption of t h i s data set was that the expression of a s o i l may be considered as the average of the variable values over the depth of the p r o f i l e (Kloosterman and Lavkulich, 1973). The analysis of variance (ANOVAR) has been documented for gene-r a l use on the Amdahl -470-V8 computer by M. Greig and D. O s t e r l i n (1978). 111.5.2 Duncans New Multiple Range Test This test was used to evaluate the si g n i f i c a n c e of differences among means for various groups of data defined on the basis of s o i l parent material. It has been described in d e t a i l by Duncan (1955). This test has been documented for general use on the U.B.C. Amdahl -470-V8 computer. 111.5.3 Correlation and Regression The l i n e a r c o r r e l a t i o n c o e f f i c i e n t r was computed to measure the strength of re l a t i o n s h i p s between data for d i f f e r e n t parent materials and between data for the d i f f e r e n t horizons, within each parent material. A backwards stepwise Multiple C u r v i l i n e a r regression model was then used, to predict the dependent variables, Cu^, Fe^, Mn^ and Zn^. A C u r v i l i n e a r model, incorporating the square, l o g i o , a n d r e c i p r o c a l of the independant variables was used; as in many cases, i t i s not reasonable to assume a l i n e a r r e l a t i o n s h i p between the dependent variable and the independent v a r i a b l e . The independent variables for the regression analysis are Cu T, F e T , MnT, Zn T, pH and OM. - 40 -The c o e f f i c i e n t of Multiple Regression R, i s a common measure 2 of the adequacy of a regression, when squared i t i s designated by R and c a l l e d the C o e f f i c i e n t of Determination. When applying a c u r v i l i n e a r model rather than a l i n e a r model, the Index of Multiple c o r r e l a t i o n I must be used (Ezekiel and Fox, 1961). The Index of Correlation has a meaning exactly corresponding to that of the c o e f f i c i e n t of Correlation R but applies to Cu r v i l i n e a r regression and not l i n e a r . - 41 -CHAPTER IV RESULTS IV.1 Raw Data IV. 1.1 Total and DTPA Elemental Data Highest t o t a l elemental concentrations are found in the Ap horizon of the Rego Dark Brown Chernozems developed on l a c u s t r i n e clay, followed by la c u s t r i n e s i l t and g l a c i a l t i l l s o i l s with s o i l s on aeolian sands having the lowest values (Table 7). There i s a tendency e s p e c i a l l y in the organic r i c h surface plough layer, for t o t a l concentrations to increase downslope. These increases are r e l a t i v e l y more pronounced for DTPA compared to t o t a l metal concentrations and are most apparent for la c u s t r i n e s i l t s o i l s (Figs. 15 to 19). The A horizons of these s o i l s also contain the highest DTPA extractable concentrations of iron, manganese and zinc whereas, maximum extractable concentrations in the C horizon are associated with l a c u s t r i n e c l a y s . DTPA extractable copper in both A and C horizons i s at a maximum in lac u s t r i n e clay s o i l s (Table 8). Proportionally, DTPA extractable metal concentrations range from less than 1% in the case of iron up to 12% of the t o t a l content for copper (Table 9). IV.1.1.1 Lacustrine Clay Catenas (Figs. 10 to 14) S o i l s are highly calcareous and increase in a l k a l i n i t y down p r o f i l e to maximum pH values of about 8.0 in the C horizon. Organic matter content decreases with depth from the surface but remains f a i r l y constant downslope except at s i t e 3 ( F i g . 12), where there i s a - 42 -Table 7 - Geometric Means and Standard Deviations ( i n parenthesis) for Cu, Fe, Mn and Zn in S o i l s Digested with HN03 /HClOit A Horizon No. Of CuT(ppm) Fe y(%) MnT(ppm) ZnT(ppm) Samples LC 24.8 2.5 309.0 85.7 25 (1.1) (1.2) (3.3) (1.1) LS 14.5 1.5 317.2 70.7 25 (1.2) (1.2) (1.2) (1.1) GT 12.8 1.3 285.0 52.5 25 (1.2) (1.1) (1.2) (1.3) AS 3.8 0.7 123.6 31.1 25 (1.5) (0.8) (1.5) (1.5) C Horizon No. Of CuT(ppm) Fe T(%) MnT(ppm) Zn (ppm) Samples LC 24.6 2.2 291.7 79.3 25 (1.1) (1.2) (1.1) (1.1) LS 18.0 1.2 283.8 53.6 25 (2.4) (1.2) (1.7) (1.3) GT 13.4 1.3 268.2 45.9 25 (1.2) (1.2) (1.2) (1.4) AS 3.6 0.6 99.1 21.7 25 (1.4) (0.8) (1.5) (1.3) - 43 -Table 8 - Geometric Means and Standard Deviations ( i n parenthesis) for Cu, Fe, Mn and Zn Extracted from S o i l s with DTPA A Horizon No. Of CuD(ppm) Fe D(ppm) Mnn(ppm) Znn(ppm) Samples LC 2.8 10.2 8.0 0.6 25 (1.2) (1.5) (1.3) (0.7) LS 1.4 36.9 24.1 1.7 25 (1.3) (2.0) (1.4) (1.5) GT 1.4 18.6 10.0 2.6 25 (1.2) (2.8) (1.7) (1.8) AS 0.4 20.1 6.1 1.8 25 (0.5) (1.6) (1.6) (1.9) C Horizon No. Of CuD(ppm) Fe D(ppm) MnQ(ppm) Znp(ppm) Samples LC 3.0 13.5 5.0 0.4 25 (1.2) (1.2) (1.4) (0.7) LS 1.7 10.1 2.9 0.2 25 (1.3) (1.4) (1.4) (0.6) GT 1.6 10.2 3.1 0.2 25 (1.3) (1.9) (1.6) (0.6) AS 0.3 9.4 2.7 0.2 25 (0.6) (1.4) (1.6) (0.5) _ [ft _ Table 9 - Percentage of DTPA Extractable Cu, Fe, Mn and Zn to Total Cu, Fe, Mn and Zn Concentrations (A and C Horizons) in Lacustrine Clay, Lacustrine S i l t , G l a c i a l T i l l and Aeolian Sand A Horizon Cu(%) Fe(%) Mn(%) Zn(%) LC 11 0.04 3 1 LS 10 0.2 8 2 GT 11 0.1 4 5 AS 11 0.3 5 6 C Horizon LC 12 0.1 2 0.5 LS 9 0.1 1 0.4 GT 12 0.1 1 0.4 AS 8 0.2 3 0.9 45 -At. t»1 CO Ct 1 1 1 I I I I I I I I I I I I I I I ' 'I 1 ' 1 1 I 1 1 1 1 I 1 0 0 ISO 2 0 0 2 5 0 5 0 0 DlSTANCE(m) 2 6 . S 2 7 . 1 2 5 . 6 3 4 . 0 27.e 2 7 . 8 2 4 . 7 2 8 . 5 87 .4 2 4 . 5 2 3 . 8 2 5 . 6 2 6 . 8 2 8 . 5 2 8 . 2 2 4 . 6 2 5 . 8 2 5 4 2 3 . S 2 5 . 6 4.0 2.8 2 .3 3.8 2.8 2.8 2.4 2.7 2 6 2.3 2.4 2.6 2 .5 2.7 2 4 2.6 2 .5 2.4 2 .5 2.2 2 6 7 . 0 2 6 1 . 6 3 1 0 . 2 3 7 0 . 1 2 8 6 . 8 2 7 4 . 3 3 1 8 . 1 2 7 7 . 6 2 7 4 . 3 3 0 7 . 1 3 0 6 . 9 2 8 4 . 3 2 6 4 . 5 2 9 2 . 6 2 7 0 . 7 2 5 7 . 5 2 6 4 . 5 3 3 6 . 6 2 8 9 . 0 2 8 3 . 7 8 3 3 8 2 . 6 8 1 . 6 6 5 . 3 62.6 8 2 . 6 9 * 4 8 6 . 7 82.6 66.3 8 7 . 0 66.3 6 1 . 2 6 0 . 3 6 5 . 6 6 4 . 8 8 0 . 0 9 5 . 8 7 5 4 » 0 E u 5 S i u . o § j a. J E * 1 o. 4 * ° i O w 6pi fc • E G. „ o E u I? < a ft = o u c 1* < o "j so i i O u. t r c _ 0 E u E ? § a < o J. ju SO c O 5 £ 7.4 7 . 4 T .4 IS 13 7.8 7.7 7.4 7.6 7.4 7.6 7* 7.6 T.7 74 7.6 7.8 7.4 6.1 74 74 6.0 7.6 7.S 7.7 3.0 S.0 2.7 2.7 2.7 1.6 1 4 2.0 1 4 2.6 1.6 1.7 1 4 1 .5 2.6 2.6 3.6 3.0 2 6 34 2 4 3.7 3.0 SJO 34 2.6 3.1 3.2 3.1 34 2.6 3.1 3 . 7 3.3 3.0 3 4 3.0 3.6 3 1 3.6 10.6 e.6 6.9 B.I 16.0 13.1 10.3 12.1 14.1 12.7 17.1 1C.9 14.B 12.5 12.8 1 6 4 11.6 12.4 11.9 1C.6 14.1 11.3 13.8 E°l u : 5 E c O KI r r a. Sd 9.7 5.0 4 .8 5 4 5.1 0.4 0 .4 0 .3 0.2 0.4 «.6 •6.5 6 .1 4 .7 7.6 0 . 6 0 . 3 0 . 6 O J 0 . 6 1 2 4 8 4 8 . 5 6 4 6.0 5 6 6 .3 6 .8 S . 6 6 . 6 6.0 5.6 5.C 4.5 6.6 6.6 o.e O.S 0.6 0 . 5 0 .7 0 .6 0.4 0 4 0 . 3 0 7 0.2 0 4 0 .3 0 . 4 LACUSTRINE CLAY SITE1 Total and DTPA Elemental Data, pH and Organic matter-Content, down Catena, f o r Lacustrine Clay S o i l s - S i t e 1 - k6 -u I s S50I Ap »P CM CH Ckl — CkS CkS » P Ckl Bin C*J Cci Ck D W T A N C E O n ) _ 0 § tt a. f a n 3 O ° J J E ° o I O - 5 0 • O a. ~ 0 E u 3 £ -u I* - 1 o i O 1 CL 2 3 . 8 2 5 . 8 2 6 . 1 2 6 . 5 2 7 . 3 2 3 . 6 2 5 . 6 2 5 . 8 2 6 . 8 2 5 . 3 26.1 2 5 . 9 2 7 . 7 2 6 . 8 2 3 . 7 27.1 27 .4 2 7 . 4 2 6 . 9 2 2 . 1 25.6 2 6 . 6 2 6 . 8 2 6 . 6 16.4 3.1 2.7 2.4 3 . 0 2 .5 2.4 2 .0 2 .3 1.8 2 . 3 2.9 2.1 3 .2 1.8 rr _ 2.5 3 .0 2.8 2.5 2 .9 2.4 2.S 2.3 2.1 2.2 2 .0 2 7 0 . 3 2 7 2 . 0 2 6 0 . 7 2 6 1 . 0 3 2 9 . 1 3 2 6 . 0 2 3 0 . 5 3 3 3 . 9 2 2 1 . 6 3 3 6 . 5 3 2 4 . 0 3 4 C . 0 2 2 6 . 7 2 2 1 . 6 3 0 4 . 2 3 3 8 . 0 2 7 4 . 3 2 8 9 . 0 2 4 8 . 4 3 0 0 . 5 2 6 4 . 5 2 S 2 . 3 3 0 7 . 2 2 6 6 . 0 2 6 3 . 0 9 6 . 5 8 4 . 8 8 1 . 6 8 8 . 6 8 1 . 7 8 7 . 6 6 6 . 2 8 9 . 4 6 2 . 0 6 6 . 1 9 4 . 9 80 .4 79.2 6 2 . 6 6 5 . 6 89 .4 , 6 0 . 0 84.2 8 6 . 5 8 4 . 8 82.1 7 7 . 3 7 5 . 8 7 6 . 0 ~ 0 E o. I o a 3 804 o I E 9-a. a. m < o -IS • a. ' „ 0 Ul I O =! ° i u. 5 cc a. 7.7 7.7 7.7 7.6 7.4 7.7 7.7 T.T 7.6 7 4 6.0 7.7 7 4 7.6 7.6 7.8 7.9 7 4 7 4 7.6 6 .0 B.1 7.7 7.7 7 4 1.8 1.9 1.9 2 .0 2.0 1 4 1.8 1.7 1.8 2.3 1.8 1.6 1.6 2.0 2.1 2 .6 3.0 3.1 2 .6 2 . 6 2.8 2.8 3 .2 2 .6 2.4 3.1 3.1 3 .2 2 4 2.1 3.3 3.1 3.2 3 .0 2.1 3.0 1.7 3.1 2.6 1.6 11.4 10.8 11 .3 6 .0 8.7 13.3 19.6 16.0 16 .7 10.7 11.8 11.1 1 1 . 0 16.2 11.2 13.9 12.1 18 .6 11.6 12.6 11.8 12.9 14 .7 18.6 13 .0 4 .9 5.9 S.B 4 . 6 6.5 5.0 6.8 7.2 6 .6 6.6 5.9 4.7 4 .3 7.1 6 .6 4.7 3 .8 6.1 6 .6 5.8 5.2 4.7 7.1 6.6 2 .3 0 1 < a It  n N CC I O. -J 0 . 3 0.4 0 . 3 0 . 5 0 .5 0.2 0 .4 0 .5 0.4 0 .5 0.3 0 .3 0 .5 0.4 0 .7 0.2 0 .3 0 .5 0 .3 0 .5 0.2 0.2 0 . 3 0.5 0.2 L A C U S T R I N E C L A Y SITE2 FIGURE 11 Total and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r Lacustrine Clay S o i l s - S i t e 2 - WJ -I0 1 I s ui wi A p Sc* Smfc A p Cc. A p Ckl Cci Ck Ck CkS Ck •— _ PM i I i i i i 100 ISO' 200' OtSTANCE(m) a ui x o O J U , u. O I 6.8 7.2 7.6 7.7 E 0 1 u X a. ? UJ 2 ° O ui u. O (C CL 601 7.6 7.6 7 4 7 4 7.6 7.7 7.8 7 4 7.7 7 4 7.4 3.7 2.9 3 4 3.0 2.2 3.2 2.3 1.6 2 4 7.7 74 B -0 8-2 3.0 2.1 2.0 6.6 7.6 7.5 7.9 44 1.9 E 11 o O u cc CL u .1 esi*i • o ^ cc CL 24.9 21.4 21.8 214 22.0 23.5 2 3 0 24.6 23.1 27.1 21.0 19.3 16.8 25.0 24.3 23.2 18.3 18.2 24.8 25.6 23.1 27.1 26.0 14 2.4 2.0 1.7 1.7 1.9 1.2 2.2 1.7 2.1 2.3 2.3 1.9 3.2 1.8 2 4 2.1 2.0 14 2.2 2.0 2.2 2.0 i i i < o Is n u cc CL 2.6 3.3 2.6 2.8 2.6 2.4 2.3 2.3 2.5 2.1 2.4 2 4 3.2 1.8 2.7 2 4 2 4 3.0 3.1 E °1 16.4 6.3 8.5 7 4 E * • 16.3 11.1 6.1 13.1 h • < ° :& -u. cc CL J 11.5 10.9 10.5 12.9 13.4 14.5 13.9 8.3 8.3 14.2 11.1 6.4 6.8 6 4 4 4 45.3 18.4 2 7 4 16.9 0-| i f Ul ? o l-TOI )FILE 60 5 i E 0-II -J u • !n-TOT> 50 CL 252.0 364.8 «•»•<» 324.9 328.5 306.0 69.6 90.4 94.9 62.5 83.9 74.6 64.2 69.2 60.5 77.8 66.9 64.4 68.7 64.6 403.0 344.3 291.9 367.2 90.4 69.3 65.8 283.4 324.9 361.7 440.6 65.2 75.2 80.2 90.4 < o S3«S| IS I I01 l l < ° -I 18*1 c o N a a. 14.7 11.9 4.7 2.9 7.1 11.9 6.6 10.5 3-7 5.6 4.5 4.6 2.4 4.2 2.1 1.S 0.6 0.6 0.4 0.2 0.6 0.3 0 3 0.4 0.3 0.3 0.4 0.2 0.3 8.4 6.7 6.9 6.2 o.e 0 4 0.4 0 4 13.2 4.4 1.6 1.4 oV 1.0 0.6 0.4 LACUSTRINE CLAY SITE3 FIGURE 12 Tota l and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r Lacustrine Clay S o i l s - S i t e 3 48 -|CA1 A p A p Bm Zcm CM Ck CM E 0 u If o rr E E 0 1 it E 5 -J u < o O S 5 0 ] 2 CC 2 5 . 6 2 7 . 1 2 4 . 8 2 5 . 6 2 .5 2.0 1.6 1.5 2 6 3 . 4 2 6 9 . 5 D*8TANCE(m) 2 6 . 6 2 4 . 6 2 6 . 6 2 5 . 6 2 6 . 3 2 1 9 . 3 192.6 2 4 5 . 9 2 9 1 . 9 3 3 9 . 4 2 6 5 . 7 - 0 - , U E I a a. < o £ UJ i 8 4 . 8 7 2 . 2 6 5 . 7 5 6 . 7 2 8 . 2 2 7 4 2 1 . 0 2 1 . 0 2 6 . 1 2 7 . 0 2 6 . 2 2 6 . 6 2 4 . 4 2 3 . 4 2 4 . 0 2 6 . 3 1.6 2.7 2.5 2.8 2.9 2.4 2.0 2 4 1 4 2.5 1.2 2.2 2 .8 3.1 2.6 2.2 2.9 3 6 3 . 5 2 9 7 . 8 2 9 7 . 8 2 4 1 . 6 2 6 4 . 5 2 9 7 . 9 2 7 7 . 9 3 i e 2 2 6 8 . 9 3 0 2 . 5 2 7 7 . 7 2 9 0 . 1 2 8 5 . 3 7 4 . 6 6 5 . 9 8 9 . 6 6 7 . 5 7 7 . 6 8 1 . 6 9 5 . 8 7 1 . 6 8 6 . 5 9 6 . 6 8 7 . 0 8 1 . 2 8 3 . 3 8 7 . 5 8 5 . 2 82 .4 6 7 . 0 i 0 1 z tv o rr - 0 E u < o H S50J 3 O u EE u. rr CL spj 1 u. 2 cc 0. E °"> o e o. < o f 5 M CC 0. 7.6 7.7 7.6 7.4 7 3 7 4 7 4 7 4 7 .8 7 .0 7.6 7 4 7 4 7 4 7.6 7 4 7 4 7 4 7 4 8 .0 7 4 2.6 2.6 2 4 3.1 2.7 2 4 1.8 2 4 2 . 1 2 4 2 4 2 4 2.6 2 4 2 . 6 2 .6 2 4 2.6 3 .2 3 . 3 2 4 2 .7 2.7 2 4 3 . 0 2 4 3 .0 2.7 3.2 3 . 3 3 .1 3 .0 3 .6 7 4 1 3 . 0 9 .7 7.8 7.2 15.2 1 2 . 3 1 1 4 15 .7 1 4 4 3.7 11.6 11 .3 8 .0 8.8 14.6 13.4 1 1 . 7 11.6 12 .5 11.5 7.7 6 . 5 8 . 7 6 .8 7.3 5.9 5 .1 5.1 6 4 5 4 5.3 6 .5 5.6 6 . 0 6.1 6 .0 5.8 5.1 5 .6 4 . 6 5.1 0.5 0 .7 0 . 5 0 .6 0 .6 0.7 0 .2 0 . 3 1.6 0 . 5 0 .8 0.4 0.2 0 . 3 0.4 O.B 1.0 0 . 3 0 . 4 0 .3 0.5 LACUSTRINE CLAY SITE4 FIGURE 13 Tot a l and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r Lacustrine Clay S o i l s - S i t e 4 - t\9 -E °1 H • Ckl Ul o Ul ml «£ u> Ck2 o . 0. . Ckl Ap> Apk Ckl Ckl Ck2 CkJ A p |CM - n - i - r CO I I I I I I I I I I I I I I I I I I I I I I 100 160 20CT 250 900 E ° E •• 3 O E ° u •I is • O J u i i - J u Is B. E -J u < o o 50 c O IM CC Dt8TAMCE(m) 26.5 27.4 24.6 23.6 26.6 24.1 25.8 23.3 24.2 26.6 26.2 24.6 23.6 22.6 26.6 26.6 25.6 23.6 23.6 24.6 2.3 2.8 1.8 2.4 2.6 2.6 2.2 1.7 2.6 2.6 2.6 1.6 2.4 2.3 2.6 2.0 1.6 2.4 2.4 1.8 324.8 285.2 368.0 373.7 302.2 338.0 315.8 233.5 267.1 292.6 281.8 230.5 287.1 373.7 310.9 278.6 238.3 298.5 353.8 262.6 63.6 99.5 90.4 95.6 89.2 84.9 97.9 62.1 84.8 62.6 76.2 58.3 79.8 74.2 80.0 75.2 56.5 61.6 84.9 106.8 „ 0 E o • cc a. • ~ 0 f h u l l u. cc a. 7.9 74 7.4 74 74 7.7 74 7.8 7.8 7.7 7.9 74 74 7.8 7.7 6.1 7.8 6.0 64 7.7 24 2.7 2.2 24 24 1.9 2.2 24 14 14 2.7 24 3.0 3.2 3.0 1.6 3.2 3.0 3.2 3.1 3.2 2.8 3.1 3.2 3.3 3.2 2.8 3.3 3.3 3.2 13.3 7.1 84 6.6 9.3 13.6 11.3 12.0 12.9 114 10.1 16.7 12.7 16.0 12.4 14.8 16.7 14.2 15.0 16.2 E ° " 9.3 7.0 7.2 10.3 6.8 l l ' 6.6 6.8 5.6 5.2 6.5 6.1 6.8 7.6 64 6.8 < o i fe . 6.0 4.9 6.6 7.7 7.4 s £ . E ° ' < o CL Ul 5§ sol 1.0 0.6 0.4 0.4 0.6 0.3 0.5 0.3 0.4 0.5 0.4 0.3 0.3 0.5 0.5 0.5 0.3 0.3 0.4 0.7 LACUSTRINE CLAY SITE5 FIGURE 14 Total and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r Lacustrine Clay S o i l s - S i t e 5 - 50 -30% increase in organic content up to 4.8% in the A horizon at the base of slope. Trace element vari a t i o n s within p r o f i l e s and down catenas are r e l a t i v e l y subdued. Nevertheless, there i s a tendency for s o i l s at the base of the slope to show enriched t o t a l and DTPA surface values for a l l four elements, t h i s i s most apparent at s i t e s 1 and 3 (Figs. 10 and 12). In the case of copper, DTPA extractable concentrations account for 11-12% of the t o t a l concentrations, much lower proportions are found for the other three elements (Table 9). Mn^ and Zn^ values decrease down most p r o f i l e s whereas at a l l four s i t e s Fe^ concentrations tend to increase with depth. IV.1.1.2 Lacustrine S i l t Catenas (Figs. 15 to 19) pH increases from the moderately a c i d i c surface horizons towards the calcareous parent material and pH values as high as 9.0 are encountered in Cca horizon. Organic matter content of surface horizons can increase s u b s t a n t i a l l y down catenas with maximum values up to 6.3% in the v i c i n i t y of the break in slope. Total and DTPA elemental concentrations in the surface horizons tend to be highest at the base of catenas with DTPA extractable concentrations showing a proportionally greater range than t o t a l contents. This i s es p e c i a l l y marked for Fe^ and Fe^ (Figs. 17, 19) and least obvious for Cu^ and Cu^ concentrations ( F i g . 18). DTPA, and to a lesser extent t o t a l iron, manganese and zinc show a general decrease in concentration from the surface down to the C horizon. - 51 -tc. A p |B«1 AO •ml _ Ck Ck E u X >-C L U l w u. o I 6.6 6.6 S.8 8 4 6.8 6.6 7.7 6.6 6.1 6.4 6.4 6.6 7.1 7.6 74 6.1 7.6 74 74 74 DllTAHCE(m) E o Z s o - ! O ui SO o cc a . 4.1 1.7 1.4 3.3 14 1.1 34 1-0 1.0 4.2 1.7 1.1 24 14 \A E £ 13.9 11.4 13.6 134 14.4 12.6 10.6 11.6 12.4 10.4 12.3 12.4 10.0 114 11.0 12.8 12.8 16.2 13.4 14.2 11.4 14.1 1.3 1.3 1.4 1.6 « 1.2 1.4 1.4 1.5 1.7 0.8 1.2 1.4 1.4 1.3 1.3 1.6 1.6 1.3 1.4 1.5 1.2 1.4 3C0.7 26S.4 347.4 274.3 264.6 201.7 208.5 256.0 266.7 166.3 184.0 24114 . 217.8 244.5 230.4 187.5 234.1 227.4 260.0 2eo .7 251.2 256.0 68.1 76.4 75.5 70.6 62.6 50.7 47.0 67.4 72.3 36.S 37.0 C5.2 49.2 -43.5 46.7 41.7 4 5.0 95.0 58.8 S6.1 59.7 0 1 H t l s- °-CL U] < 0 [ o. ui 501 1.1 1.1 1.2 a p-UJ it c O , u. cc J I Uw 74.0 16.3 13.4 15.7 S i J t»A 0.6 22.9 10.7 4.6 8.6 2.3 0.2 C.4 c O Kf CC I 0.9 0.4 1.4 1.7 10.4 38.5 8.9 10.8 24.0 7.0 2.2 3.1 1.1 1.3 0.2 0.3 1.2 1.0 0.7 1.9 16.3 23.2 13.8 6.1 7.0 2.5 0.1 0.1 1.4 14 1.6 1.1 14 77.0 17.5 10.1 7.7 8.5 28.1 10.1 6.7 2.6 3.4 3.1 0.5 O . I 0.2 0.5 1.1 1.1 1.2 13 1.7 414 8.1 8.0 7.4 8.6 2S.0 4.0 3.4 2.7 1.7 0.2 0.3 0.2 0.8 LACUSTRINE SILT SITE1 FIGURE 15 Tota l and DTPA Elemental Data, pH and Organic down Catena, f o r La c u s t r i n e S i l t S o i l s - S i t e Matter 1 Content - 52 -€ u X 60J E u J * 1 T * a O E u X * t - i ui 13.6 13.3 13.3 1S.0 17.6 2 2 . 0 23 .9 2 1 . 6 T 100' DiSTiVNCE(m) 2 1 . 8 2 8 . 3 2 5 . 0 2 3 . 5 18.6 2 3 . 5 2 3 . 0 2 3 . 3 0-1.6 1.7 . 1.8 1 4 2 . 0 . 1.3 1.4 2.5 - 1.5 ' 1.5 1.4 1.2 50 1.4 1.8 1.6 1 4 ! 0 1 u I x . - J Ul ^ •< o 3*5.7 2 7 9 . 6 4 2 0 . 0 2 6 4 . 3 2 4 3 . 7 2 2 1 . 6 2 8 0 . 4 2 9 2 . 4 2 4 8 . 2 261.6 3 8 0 . 0 3 4 7 . 6 3 4 7 . 6 2 7 9 . 6 2 0 2 . 1 3 0 1 . 4 On E u E x J Ul < o 5 a c O M CC * 0 |A/B| 2 0 . 5 2 0 . 8 17.9 17 .6 1.7 T.8 1.6 1.8 1 4 3 8 1 . 8 3 5 1 . 6 3 2 8 . 7 2 8 7 . 1 2 7 5 . 8 67.0 6 2 . 7 8 6 . 6 7 3 . 5 9 0 . 0 8 7 . 8 56 .7 54.1 85 .2 8 6 . 3 49.2 6 0 . 0 57.1 4 5 . 1 8 2 . 7 37 .5 72 .3 6 2 . 7 5 6 . 8 7 1 . 7 67.2 E u X C k ui 60l X t-CL it Ul 2 -I "5 1 < a 3 O II < ° £: ui 5oj • o u. cc a c. ^ UJ < o 6.6 6.1 6.1 0 si 1 u. £ O E u e l < o fL uj ii M CC I 50j 7.7 8 .1 8 .2 7 .8 6 . 6 6 4 7.7 7.7 6.1 7.6 . 7 . 6 7 4 6 4 7 . 8 8.1 8.1 0-2 4 2.6 3.7 4.2 4.4 1.4 2.1 2 4 1.7 3.1 • 1.2 1 4 1 4 s o 1.6 o . s 2.1 2 . 6 1.6 1.6 0.5 2.3 3 .7 1.7 2.4 C .9 2 .3 1.9 1.6 2 4 1.6 2.6 1.9 2 .0 3 . 3 3 .1 3 1 . 5 8.5 18.0 5 1 . 0 2 0 . 0 14.0 13.9 2 2 . 0 10.1 13.4 10.6 15.7 10.3 10 .0 13.2 7.4 12.3 9.1 11.8 2 1 . 0 15.7 26.2 6.0 19 .3 3 6 . 9 19.1 6.1 2.8 10.9 6.8 9 .7 7.3 3.5 2 . 6 2.3 4 .9 2.4 3.3 3 . 6 2.2 4.4 3 .4 1.2 0.3 1.3 1.2 1.6 0.2 2 .0 0 . 3 0.2 0 .6 0.1 0.4 0 .2 0.2 0 .3 0.2 0.3 0.1 0.5 0 . 6 0.2 LACUSTRINE SILT SITE2 FIGURE 16 Total and DTPA Elemental Data, pH and Organic Matter content, down Catena f o r Lacustrine S i l t S o i l s - S i t e 2 53 -0- — • AO • — • Bm • so \ — A p A p Bm BUk Zci Zci _ 0' E u I e. ui LS»2| u. O £ 64 fi.9 CO 7.6 6.3 6.4 74 7.7 8.0 6.3 7.1 7.4 7.8 54 6.4 7.6 6.0 6.6 64 64 74 E ° E -> Si » - u i i O g 14.1 2 Jta.. o 0 J 12.0 15.0 E °' i u. n • o J i 0 1 < a l w £ O 1.5 1.1 258.9 223.4 ~ 0 OS SO] . 51.1 J 42.1 -r-|,-T--r 60 -1—1—1—1 1 ) 100 D(»TANCE(m) I J I 1 160 •T-T—r-r 200 12.0 13.1 13.5 13.6 12.7 11.7 13.0 14.2 i l .3 11.7 11.8 13.3 13.6 11.6 12.0 13.2 11.8 1.6 1.3 1.3 1.4 1.6 1.8 1.6 1.4 1.4 1.2 1.4 1.0 0.8 1.7 1.2 14 300.5 310.3 308.0 322.0 237.7 244.1 243.3 345.7 237.7 245.0 247.8 230.5 168.4 201.1 238.2 222.0 184.1 ee.8 64.7 67.0 62.5 54.6 51.8 62.8 66.1 4 7.6 48.5 33.7 26.3 51.7 40.2 50.7 47.8 24 1.6 14 2.1 14 1.1 a. E u EH < 0 J tSspj s o E ° Ul < o SO1 * o u. cc E u i f < o " j 50 t o 2 cc a. E 2 a a. < o 3 £r — J 50| 0.8 1.1 1.4 1.8 41.6 36.7 26.8 12.5 21.4 8.2 s.e 3.0 1.0 0.3 . 0.2 1.0 1.6 1.6 1.4 1.4 314 11.6 10.6 8.7 11.0 23.7 8.6 54 2.3 2.5 0.7 0.2 0.2 0.2 0.2 2.4 1.2 14 14 1.0 14 1.2 18.3 10.5 10.2 7.4 21.0 5.1 4.8 2.1 0.8 0.1 0.1 0.2 2.4 1.5 1.0 14 1.4 14 1.2 36.8 12.0 7.7 6.2 25.4 10.4 3.4 2.8 0.8 0.2 0.2 0.4 34 1.6 1.6 14 1.4 1.1 04 1.2 51.0 16.7 13.6 15.7 26.2 15.1 , 11.1 3.3 2.2 0.1 LACUSTRINE SILT S ITE3 FIGURE 17 Total and DTPA Elemental Data, pH and Organic Matter Content, down Catena f o r Lacustrine S i l t S o i l s - S i t e 3 54 -E o X CL UJ o Ui mi u. O I c* To AO A/B A/8 Bm Bm Zc. i f • 10FILE I 50 a. 0-cm) X • t LW » O u. cc J 16.8 14.1 14.2 2C.2 1.8 1.8 1.8 2.1 .°1 ;u, S S c O M CC e. 322.0 264.5 237.7 347.4 7S.2 68.1 59.6 58.8 W 1 i—r—1—( T ' 100 DISTAMCE(m) iso' ' i—r—i—|—i— 200 14.2 17.1 14.0 16.3 13.7 14. i 14.7 11.6 16.0 13.5 19.0 144 16.1 14.1 15.6 20.1 16.6 12.8 •%4.e 1.6 1.3 14 1.9 1.3 1.4 1.9 1.4 1.8 1.5 2.2 1.6 2.2 1.7 "« 1.6 1.8 2.1 14 1.6 326.5 355.8 381.4 347.4 204.8 383.2 337.4 296.0 252.0 256.0 290.7 261.7 309.2 2B6.9 2744 325.5 • 322.0 262.0 260.8 67.8 75.6 78.0 80.5 54.5 52.8 67.8. 75.9 72.3 54.5 71.7 66.2 63.3 76.8 54.0 56.5 62.5 53.9 43.2 *S»S| tL o sr Ck u 1 X * UJ 3 a o cc CL E o |! a. UJ < o s O 6.9 6.7 74 7.6 3.9 1.4 1.3 50J 60j l l < o GL lij « o u. cc CL n t ° 50] UJ Q =! 1 u. 2 cc c O 1.4 1.2 1.3 2.1 35.6 13.6 12.6 12.2 32.5 9.8 7.9 4.4 1.4 0.2 0.3 0.2 6.4 6.4 6.8 74 74 4.1 14 14 1.1 1.4 14 1.6 1.7 2.1 72.5 10.0 114 94 10.7 39.3 9.4 64 44 2.7 2.3 0.2 0.4 0.3 04 6.8 6.4 64 64 7.7 44 24 14 1.1 1.4 14 14 24 78.4 67.4 19.3 14.9 9.3 37.9 174 10.4 6.3 3.6 2.8 i.e 04 o.i 0.2 5.7 7.1 7.1 7.4 74 64 4.7 3.2 24 14 1.0 1.6 14 1.2 64.4 12.6 12.3 10.0 7.0 28.6 7.7 6.1 3.9 2.1 3.0 1.5 0.4 0.5 0.1 74 84 74 74 44 14 24 14 0.9 1.1 12.5 64 114 6.0 13.1 44 44 1.9 1.0 0.3 0.5 0.2 LACUSTRINE SILT SITE4 FIGURE 18 T o t a l and DTPA Elemental Data, pH and Organic Matter Content, down Catena f o r Lacustrine S i l t S o i l s - S i t e A - 55 -x CL Ul o tu 601 Bm A h Bm A p A p A l t A h — Bm Bm C c a Cca E u X I-o_ UJ : ° 501 L UJ ^  u. 5.6 6.6 7.0 7.6 5.6 6.1 6.7 74 6.5 6.3 6.S 7.4 7.9 5.4 6.9 6.6 6.6 7.7 6.4 5.8 6.1 6.4 7.6 100" 150" DISTANCE(m) 2.7 2.5 32 1.6 1.1 04 4.1 1.5 1.3 0.9 5.1 2.0 1.6 0.9 On I? < _j'Ul . < ° 6 0 OS 13.5 13.6 12.9 14.1 16.5 11.1 12.7 11.4 12.4 12.6 114 11.2 13.9 16.0 11.6 11.0 12.0 174 15.0 16.5 18.2 10.0 18.2 0 ? 1 II < O = 2 50l 1.1 0.7 0.9 1.4 1.3 1.1 1.1 1.1 1.1 1.0 1.4 14 1.1 14 0.4 0.7 1.1 1.8 1.2 1.1 1.0 0.8 14 o n E u 2 *t. J U I £° to . 14 1.7 1.3 1.6 1.6 1.4 1.5 1.1 1.3 2.1 14 1.2 1.3 1.4 *>? 1.4 1.8 1.9 1.9 1.3 1.7 1.7 2.0 X a LU 9^ u- ? 57.8 15.7 10.3 6.9 43.0 26.5 12.3 6.5 67.6 18.4 122 6.7 84 77.6 15.0 17.1 15.2 8.5 103.5 61.7 19.0 10.6 IH 1 sol 2 CC H a 262.4 2B1.6 205.8 329.1 282.6 235.4 264.8 183.9 294.3 238.4 170.0 187.1 189.5 338.4 368.8 303.5 288.9 308.1 381.6 331.2 352.1 270.4 271.4 E 1 CL UJ <° fcui C O • 2 cc H 23.7 5.9 4.7 2.6 22.2 13.0 7.6 2.1 23.9 8.0 3.4 2.4 1.7 35.9 4.9 2.4 5.4 2.7 29.1 7.7 4.8 2.6 E u c C N CC 59.7 69.3 41.8 47.3 63.6 55.4 67.2 41.1 67.0 67.1 39.4 62.9 43.8 76.6 75.1 67.0 54.5 77.1 85.1 76.6 90.0 49.2 68.0 50 = 3 N CC -t 1.7 0.7 0.9 0.3 1.1 0.4 0.0 0.1 14 0.3 0.1 0.1 0.8 2.5 0.1 0.1 0.2 0.2 4.7 0.5 0.3 0.2 0.3 LACUSTRINE SILT SITE5 FIGURE 19 T o t a l and DTPA E l e m e n t a l D a t a , pH and O r g a n i c M a t t e r C o n t e n t , down C a t e n a f o r L a c u s t r i n e S i l t S o i l s - S i t e 5 - 56 -However, e s p e c i a l l y for Fe^, t h i s i s often, preceded by a s l i g h t increase in concentrations immediately below the plough layer. DTPA extracted manganese concentration in the Ap horizon accounts for 8% of the t o t a l manganese content. This decreases to 1% in the C horizon (Table 9). The proportion of ZnD/ZnT shows a s i m i l a r decrease from 2% to 0.4% whereas Cu^/Cuj and Fe^/Fej remain e s s e n t i a l l y constant at approximately 10% and 0.1% r e s p e c t i v e l y . IV.1.1.3 G l a c i a l T i l l Catenas (Figs. 20 to 24) pH generally increases with depth from the weakly a c i d i c to weakly a l k a l i n e surface, to the calcareous C horizon. However, several p i t s at the base of the catenas show a decrease of pH immediately below the Ap horizon ( F i g s . 20, 21). Organic matter content increases downslope for a l l catenas with values up to 6% in depressional s i t e s , compared to 2-3% on the c r e s t s . Although there are exceptions, highest surface concentrations of a l l four elements tend to be found at the base of the catenas. At s i t e 5 and to a lesser extent s i t e 4 (Figs. 24, 23) t h i s trend i s present throughout the p r o f i l e . S i m i l a r l y , Cup, Fe^, Mn^ and Zn^ also manifest r e l a t i v e l y high surface concentrations in the depressional s i t e s . This i s e s p e c i a l l y true of Fe^ which shows a twenty f o l d increase in concentration from the ridge crest to the base of slope. Fe^ also increases down catena at each of the other s i t e s as does Mri^. (Figs 21, 24). The only consistent trend for t o t a l elemental - 57 E ij I *-e. o so) Ul w u. o c • \ / B • \ p k E v r * C t . C c i £ J i 7.8 7.8 6.0 7.6 7.8 6.3 8.4 7.4 7.6 7.7 7.8 7.3 7.1 7.0 6.7 7.6 6.7 7.0 8.1 = O u rr 0 ui 1 u. DISTANCE(m) o-14.7 13.5 15.2 12.1 15.1 m 13.3 12.8 14.8 11.4 16.8 13.3 13.5 10.1 13.7 13.6 14.1 50. 13.6 16.2 14.1 16.4 0- 1.3 1.1 1.4 1.2 1.1 1.3 1.1 1.1 1.2 1.6 1.1 1.1 1.2 1.0 1.3 1.1 1.2 2.2 1.3 1.6 i l i <0 50 a UJ = 2 I J X o sol 1.2 2.5 1.4 a. *-o O cr o. 6.5 13 9 10.0 1.1 0.7 0.5 0.5 1.1 1.1 1.1 1.7 1.3 0.8 1.6 1.9 1.7 2.3 3.1 2.7 1.5 14 0.9 1.0 1.0 13.3 6.0 2.6 1.7 1.2 1.7 2.3 1.8 7.2 10.6 8.0 12.1 6.1 6.7 21.7 23.1 io.e 6.6 8.3 7.7 8.3 18.7 13.0 E y 0- 297.6 248.7 274.3 296.3 255.3 256.0 300.2 268.9 258.8 263.3 296.2 24e.2 309.0 270.6 50 258.8 2 rr 460.7 264.7 436.7 E£ a < o 50j a u, n 9.1 3.0 4.2 8.1 4.6 3.3 2.4 4.4 2.3 3.3 6.1 3.3 3.0 2.6 3.5 6.5 10.5 2 * 3 1 1.6 15 J a C v 4 Ssol S3 ~* V E = 2 63.3 32.4 50.3 44.9 35.8 32.4 47.9 46.5 37.3 34.2 49.7 38.5 48.2 34.2 36.5 45.2 93.4 90.4 0-1 EJE B Ul -1 g £5sl 9* fig 0.5 0.1 0.2 0.6 1.7 0.2 0.1 0.2 0.4 0.8 0.2 0.3 0.3 0.2 0.1 0.4 0.3 0.7 GLACIAL TILL SITE1 0.2 1 4 FIGURE 20 Total and DTPA Elemental Data, pH and Organic * Matter Content, down Catena f o r G l a c i a l T i l l S o i l s - S i t e 1 - 5 8 -E v I SJjl 10£| (cc. Ck k p k A t > k AC AD ' "—~ ei Bl — — Ccl o- 6 3 11.9 ? 10.1 ! i - 14.2 9.7 9.7 _l u < o 50 9.3 >" MJ 15.7 o 3 V c s O 60" DISTANCE(m) 9.5 100' 10.4 18.9 16.1 10.0 14.2 9.6 s.4 9 4 100J 0 O UJ c. 0.9 1.2 1.1 1.1 1.0 0.9 1.6 1.4 1.3 1.2 0.7 1.5 1.3 1.7 o.e 1.6 1.5 0.6 1.4 1.2 1.0 100] 0 UJ 186.2 220.6 224.4 0 "j 1 u. 4 t(3 2 C C 0. 100J 01 * l 1 j g 62| v * = s N C C C v 100' 234.6 175.5 182.6 x 160.0 152.1 176.6 228.6 244.1 35.5 il 10.4 27.1 30.1 331.0 44.9 44.7 26.0 36.4 52.7 46.5 46.6 44.7 330.5 292.4 240.5 317.4 260.0 311.7 220.0 276.0 252.0 67.2 53.7 62.1 68.3 S 1 - 6 62.6 32.6 47.6 47.6 j50l O C C C V 7.6 7.6 6.0 8.2 100J 0 E 5 K a * UJ 5 ° O UJ LZ O C C 501 1.7 1.6 iopJ 0 1 0.9 u 1.4 11.7 12.9 E 5 . §£, 52 < o tL UJ 0.9 0.9 14.6 o z . = 9 Of£ -100J A E * e. u < D iopJ 0 Q ui 50j < o 2 f 10PJ "? u lEsol < o "* = 2 M C C C v IOOJ 7.7 8.2 6.0 8.4 6.7 6.3 7.3 7.9 2.0 1.1 1.6 1.2 1.9 O.B 1.2 3.2 1.9 7.0 6.3 6.8 6.6 6.1 6.2 6.8 7.4 3.0 3.6 5.5 1.3 1.4 24 1.3 0.8 1.2 1.1 0.9 1.1 1.0 1.1 1.2 1.0 1.6 1.7 8.9 6.7 21.8 18.1 45.3 5.4 216 18.7 51.0 10.0 7.5 13.5 11.1 16.4 7.6 5.7 6.6 7.1 14.6 10.9 6.3 7.6 7.1 15.5 13.5 17.3 2.3 5.5 9.2 8.3 4.3 2.8 6.2 6.5 9.1 1.6 2.6 2.3 3.5 3.0 66 3.3 0.4 0.3 0.8 1.5 2.7 04 0.1 0.1 0.9 0.4 0.1 0.1 0.2 0.1 0.1 0.3 0.0 0.3 0.4 0.1 04 FIGURE 21 GLACIAL TILL SITE 2 TOTAL ANP DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r G l a c i a l T i l l S o i l s - S i t e 2 59 I 0 1 X t-L. Ul D o IE " OS " io og • — UJ < o S3, uO u. cc E 0 A c p«l Bm 81 — lei Bm A c Bt B m Pc4 10.6 14.6 8.7 16.8 15.8 6.0 11.3 16.1 12.4 12.1 11.4 12.6 15.7 10.8 6.7 10.4 8.4 13.4 11.4 10.1 13.4 1.1 1.4 1.1 1.2 1.1 1.2 1.1 1.4 1.3 0.9 1.6 1.1 1.1 1.4 1.1 1.2 1.3 1.3 1.6 1.3 1.1 l g J !»s| 215.1 326.0 304.2 276.5 180.0 292.3 345.6 389.2 217.0 172.8 198.0 176.9 237.0 154.9 26B.6 230.4 246.2 213.3 245.2 279.3 I f-Cv. x° e, Ui CC E P £ °-D Uf < o *S -so a O O C c. E oi < o CL yj S E 50 i O E 0 9iX so 5.8 7.0 5.8 5.4 5.5 6.0 7.6 6.3 5.7 5.8 6.3 8.0 64 6.8 8.1 7.4 84 6.5 7.4 6.0 7.6 3.1 2.5 4.5 6.6 6 6 1.3 1.8 1.7 2.0 2.9 1.2 2.5 1.3 1.3 1.4 1.2 0.5 1.6 1.0 1.2 1.6 0.4 1.8 1.0 1.0 0.7 1.1 1.4 0.7 1.2 1.4 1.7 1.0 1.7 1.2 1.2 1.7 42.0 16.9 54.3 156.8 100.2 19.6 7.4 16.0 51.6 50.6 12.7 6.0 19.4 11.2 6.0 6.8 32.1 17.7 9.7 21.2 8 3 11.9 5.0 15.7 24 0 15.7 7.3 8.9 8.4 5.1 2.1 4.1 2.3 2.6 2 4 5.1 5.2 5.2 7.4 3.7 5.5 3.1 E 0' CO M C 53.6 46.5 58 3 74.1 54.2 43.2 49.7 41-1 34.6 31.6 30.7 32.0 64.9 50.2 54.6 49.4 76.4 28.8 31.2 33.3 29.7 E 0 E C Ck yj < o t o IM CC Ck 50j 0.9 0.2 0.3 0.3 0.1 0.2 0.3 0.2 0.1 1.6 0.2 0.2 3.0 0.3 0.2 0.3 0.3 0.0 0.3 0.1 GLACIAL TILL SITE3 FIGURE 22 Total and DTPA Elemental Data, pH and Organic Matter content, down Catena, f o r G l a c i a l T i l l S o i l s - S i t e 3 - 60 -| I *-CL LU II. o I 9 m l 4 A p A h A h —• 3 m l imi _ : c i — A p A h c -fem< Z H B. u. O c Cv 7.8 7.8 8.0 8.0 6.8 6.4 7.5 6.2 7.0 7.6 7.4 8.0 6.1 7.1 7.6 7.8 6.5 6.6 7.5 7.8 n r ~ 5 0 l 1 r DISTANCE(m) E u Z t-C v * m 0°5£J LL 3.1 1.3 4.4 4 4 24 1.1 6.7 2.0 1.5 6.3 4.4 1.4 i 0-u E I • O K oo. • < o so i O • 10.7 8.3 11.3 12.8 14.7 B.3 8.8 8.7 12.3 13.8 14.6 11.7 11.7 11.7 13.2 11.8 14.5 14.6 16.8 16.0 E u i l H 14 1.4 14 14 0.5 0.8 2.1 0.7 0 4 1.4 1.2 1.7 14 1.0 1.2 1.6 2.5 2.4 2.3 2.1 E L) I *S 1 *2 L. CC Cv 1.3 1.1 0.8 1.2 1.2 1.0 1.4 1.4 1.4 1.3 1.8 1.4 1.5 1.6 1.3 1.6 2.1 1.7 1 u E ? 2 u i 5 f l l i i B.5 5.3 6 8 6.6 15.8 15.1 10.1 17.8 8.0 8.7 6.6 62.2 17.3 186.2 103.5 21.0 22.9 E v c a :u,50j 5 O 2 cc 296.3 264.3 267.1 299.9 230.4 210.9 204.8 188.9 222.8 201.3 303.5 2 9 , g 325.8 217.4 286.0 288.8 211.6 165.6 132.8 E i < ° CLM.501 2 CC 7.3 2.4 2.6 2.2 15.4 11.4 5.1 8.6 6.8 2 6 5.3 2 3 17.1 10.8 5.7 54 19.3 8.9 0.7 1.7 E H • c O KICC CL 42.9 25.8 31.2 37.5 58.1 61.2 49.4 45.8 53.6 80.0 6 7 0 60.0 74.6 80.9 71.4 77.8 70.6 684 E £ C.CL C uj < ° I cv u 501 KtCC C v 1.8 0.3 O.I 0 4 1.8 3.1 O.I 0.3 0.1 0.1 0.2 0 * 2.1 0.3 0.1 0.2 2.3 3.0 0 4 0.5 GLACIAL TILL SITE4 FIGURE 23 Total and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r G l a c i a l T i l l S o i l s - S i t e h - 6 \ -E u I B. u 0 60 * 1 g J 0. i t i i i Ah Ah :ci — Bin* }mt Ck Bm] E u i S s c ] z <O50] i g J < o 5 0 OUJ t- — 1 i t J O 14.2 16.5 14.6 12.0 16.3 14.4 11.4 12.8 17.5 22.6 18.0 15.0 17.2 14.7 16.3 12.0 18.7 15.9 1.6 1.5 1.5 1.6 1.3 1.3 1.3 1.8 1.5 1.4 1.3 1.6 1.3 1.3 1.2 1.7 1.3 1.5 3 2 0 . 0 351.1 3 1 4 . 6 292.6 2 7 6 . 0 3 0 3 . 5 2 7 7 . 5 2 4 ° - 5 246.4 347.7 270.0 3 3 0 . 0 3 1 6 . 9 3 1 4 5 2 5 2 ° 3 2 5 . 5 < 0 5 0 to N CC 4 9 . 7 4 1 . 0 50.0 49.7 43 .5 49.4 52 .0 49.4 4 8 . 5 6 9 . 0 48.4 45 .5 4 5 . 0 29.8 38 .3 40 .7 3 4 7 . 4 436 .4 4 8 2 . 7 3 4 5 . 6 3 1 4 . 5 6 6 . 7 83.4 86 .4 85.1 4 9 . 7 E u Z s. jSsol o. UJ 1 wi Ia. O £ S O 5 0 l O UJ ^ u O OC 0-E 1 "I <OSO| 0. uJ 3 ? 7.7 7.6 7.4 7.4 7.3 7.8 7.8 7.2 7.4 6 .8 6.2 6 .0 7.4 7.6 6 .0 8.6 7.9 7.7 7.4 8.3 7.8 1.3 3 4 3.1 5.6 0.8 0 4 3.1 1.4 6.1 1.7 1.4 6 .6 4.1 0.7 1.6 1.5 1.4 1.2 1.4 1.7 1.4 1.2 1.2 1.7 1.9 2.8 1.7 1.4 1.5 1.4 1.6 1.6 1.8 u-cr E u E ? < o 5 0 5 C < O S 0 ^ , u. i IMCC o- A 8.7 6.3 6.8 10.0 B.S 3.3 2.7 3.8 2 4 2.8 3.9 0 .3 1.6 10.7 10.0 11.9 10.1 8.8 25 8 6.3 8.0 91 .7 6.3 7.5 11 .3 7.3 10.3 10.6 2.8 11.3 5.1 2.4 15.0 1.6 2.1 7.7 11.6 2.6 1.1 0 .6 0.4 1.9 0.1 0.1 0 4 0.1 3.1 0.2 0.3 0 . 0 0 4 8.5 0.1 0 . 0 0.2 0 .8 GLACIAL TILL SITE 5 FIGURE 24 Total and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r G l a c i a l T i l l S o i l s - S i t e 5 - 62 -concentrations i s for Zn^ . values which generally decrease with depth down p r o f i l e . This decrease i s most apparent for the p r o f i l e at the base of slope, of s i t e 3, with 76 ppm and 29 ppm for the A and C horizons respectively ( F i g . 22). Copper DTPA concentrations account for 11-12% of t o t a l s o i l copper, and iron DTPA for 0.1% of t o t a l s o i l i r o n . The proportion Zn^/Zn-j- i s 5% in the surface horizons decreasing to 0.4% in the C horizon (Table 9). IV.1.1.4 Aeolian Sand Catenas (Figs. 25 to 29) pH increases with depth to parent material but unlike those on other parent materials, s o i l s are generally weakly a c i d i c to neutral. Organic matter content of surface horizons generally increases from the crest to the base of the catena. The majority of catenas reveal increasing surface values for a l l four elements, extracted with HN03/HC10LL, downslope, t h i s i s es p e c i a l l y pronounced at s i t e 2 ( F i g . 26). Fe^, a n (^ ^ nn a^- s o tend to increase downslope (Figs. 27, 28, 29). Cu^ . and Zn^ values generally decrease with depth down p r o f i l e s whereas t o t a l iron content i s f a i r l y consistent occasionally revealing a s l i g h t decrease with depth ( F i g . 26). Total manganese values, however, show an increase just below the plough layer and then decrease with depth. This i s e s p e c i a l l y pronounced for p i t s at the base of slope ( F i g . 26). Most p i t s show a decrease i n concentrations of Fe , Mn and Zn - 63 1* u I a. ui u. O cc C v , 4 o 3 sci a O J U E J 4.5 3.3 E I 4 < c 5 3 sol i o I- CC E -=• Cv 521 c O 3 £ < a *- ... O 3 5s! i 1 r DiSTANCE(m) 2.5 2.7 SOT 3.3 3.0 3.2 2.3 24 3.0 3.2 2.6 2.6 3.4 3.3 0.5 0.5 0.6 0.5 0.6 0.5 0.4 0.3 0.4 0.6 0.4 0.5 0.5 0.6 0.5 82.8 92.0 70.2. 108.2 101.1 75.6 46.9 42.4 79.8 89.8 6E.6 57.4 75.5 97.0 101.7 21.3 30.4 17.3 24.4 71.9 16.9 19.1 10.0 15.0 22.5 29.4 15.5 18.0 19.3 16.6 6.3 Kern) 6.3 t ' Si • x o . a3»o 6.4 o . £ J • 2.3 1 u -X . 0.5 C v s ° . O U j s o o . cc C v . 6.3 6.0 6.0 fc O NJ CC IS a UJ < o CL LU CL E u l l < Q CV IN Sjvsol i o u. rx o- J * 1 a c v ui < o SSsol 5£ i sl1 E t -p o. a UJ < D j 0- UJ 1 i n 19.0 19.7 10.0 1 1 5 . 8.0 10.0 5.1 3.0 2 4 5.6 3.1 2.7 1.6 0.3 0.6 64 64 64 1.3 17.5 12.4 6.6 3.1 2.7 2.6 64 64 64 3.8 0.7 21.7 8.5 6.0 7.0 2.6 4.6 64 6.8 7.0 1.3 0.5 0.5 0.4 0.5 0.5 04 0.2 0.2 0.2 04 0.3 0.2 0.4 0.2 0.3 0.2 9.5 6.1 2.8 4.3 2.6 1.7 1.2 0.5 1.7 0.4 0.7 0.3 0.1 0.1 0.2 0.0 0.1 0.0 AEOLIAN SAND SITE1 FIGURE 25 Tot a l and DTPA Elemental Data, pH and Organic Matter Content, down Catena, for Aeolian Sand S o i l s - S i t e 1 - 6*h -E o I Ssoi Si 0. AO AO c c _ Co a. z O60J O. LU mi O I 5.7 6.1 6.0 6.2 6.6 6.3 6.7 6.6 6.1 6.7 6.3 6.6 64 6.1 6.6 64 64 6.7 6.1 E J J X CL Oui O cc CL DtSTAMCE(m) 14 1.6 0.6 0.6 1.7 1.1 34 1.6 0.4 2.0 14 14 2.1 2.6 04 ll C-CL - J W 3l 2.5 7.5 1.9 3.5 3.8 1.9 3.4 6.1 4.7 4.2 5.2 3.6 3.7 2.9 4.6 5.9 2.1 2.9 < 05W s O o c 0.5 0.4 0.3 0.4 0.2 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 ol -i LL' < o. 0.7 0.6 0.6 0.8 0.7 0.7 0.7 0.7 0.7 0.5 0.8 0.8 0.7 0.7 0.8 0.7 0.7 0.6 6 IT a CL a LU < ° 5 p l CL Ul 37.3 19.6 12.4 11.2 6.5 6.5 36.2 26.7 36.2 28.5 12.3 25.9 21.3 12.6 7.2 28.7 38.2 22.9 .0 77.0 95.4 1. 1 72.0 75.2 « ° 5 0 1 LL c O 5 c t 30.1 80.5 127.2 84.5 207.6 135.2 98.2 132.0 139.4 108.0 71.5 146.3 192.4 88.0 97.5 Ol 4.9 E v ll 3.1 3.7 3.7 4.0 3.8 5.2 5.7 11.6 3.9 2.1 6.7 7.0 34 1.8 5.5 6.0 2.5 2.1 J 1" w E X e •-O. CL < °5W 22.7 28.3 17.9 20.7 30.1 214 31.3 33.3 47.8 33.4 21.4 40.0 31.7 27.1 18.0 40.8 44.8 22.7 16.0 J 1.0 I 4 E 5 e CL O. uj -, < 0 5JDJ CL Ul e O N CC CL 0.6 0.2 0.2 0.2 0.1 1.6 0.6 34 0.6 0.0 0.8 0.6 04 0.1 1.9 14 04 06 FIGURE 26 AEOLIAN SAND SITE 2 Total and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r Aeolian Sand S o i l s - S i t e 2 - 65 -AEOLIAN SAND SITE3 FIGURE 27 Total and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r Aeolian Sand S o i l s - S i t e 3 - 66 -AEOLIAN SAND SITE4 FIGURE 28 Total and DTPA Elemental Data pH and Organic down Datena, f o r Aeolian Sand S o i l s - S i t e 4 Matter Content, - 67- -5 ^ o c & An Ah — c C 0 i o , 6.0 7.8 6.7 6.8 6.0 6.4 6.4 6.5 7.0 6.4 6.4 6.2 6.1 6.2 6.7 E I = s 3.4 2.3 3.4 2.0 3.3 2.3 3.8 5.2 6.7 6.5 0 z 0 . tt UU u. O c a. 1.6 0.6 ,50^ 9 E o EF 0.5 0.2 0.2 1.6 1.6 1.0 0.8 2.1 0.4 0.4 0.2 0.0 0 4 0 4 0.4 0.2 0.4 2.5 C.5 0.5 0.7 c A 0.5 0.7 0.6 0.4 0.5 0.4 0.5 0.5 0.6 0.6 0.7 0.6 0.5 0 D u. cr 19.4 10.0 5 . fe H 5.3 21.9 18.6 10.2 4.5 12.3 7.3 31.2 15.3 12.2 25.7 19.5 15.7 0 E 1 E -S s 5 a "I 5 ? J 65.7 62.8 B8.4 84.5 82.0 46.0 77.2 59.2 113.3 115.3 103.4 89.4 12 B.B 115.5 E v EH a o. O. UJ < o a ui sol 9 E J = 9 5 a 2.6 1.6 0.9 3.6 1.6 1.2 3.1 2.3 2.1 6.2 6.3 12.7 8.3 8.7 0 1 1 = 2 16.8 15.8 18.3 19.8 13.9 19.7 16.2 324 26.6 26.3 44.7 29.6 26.8 1 "I J .^ ,50) c O K l EE O . 0.2 0.1 0.1 0.6 0.7 0.2 0.0 0.0 0.1 1.2 0.4 04 0.4 0.2 0.8 AEOLIAN SAND SITE5 FIGURE 29 Total and DTPA Elemental Data, pH and Organic Matter Content, down Catena, f o r Aeolian Sand S o i l s - S i t e 5 - 68 -down p r o f i l e . Proportions of CUp/Cu^. range from 8-11% whereas other DTPA elemental concentrations account for a lower proportion of the t o t a l content. The proportion of Zn^/Zn^ i s greater i n the surface horizon (6%) than in the C horizon (0.9%). IV.1.1.5 Summary Organic matter increases down the catena for most s i t e s whereas pH decreases. This i s esp e c i a l l y pronounced i n g l a c i a l t i l l and lac u s t r i n e s i l t s o i l s . For 18 s i t e s , the highest t o t a l and DTPA elemental concentrations occur at the base of the slope. This being most marked for l a c u s t r i n e s i l t s o i l s . Total elemental concentrations for the four parent, materials exhibit a r e l a t i v e l y greater uniformity when considering both trends downslope and down p r o f i l e than DTPA concentrations. A much greater proportion of DTPA extractable Mn and Zn occurs in the organic r i c h surface horizons compared to the more al k a l i n e C horizons. This i s also found for copper and iron but to a lesser extent (Table 9). An enrichment of Mn^ and Fe^ i s seen in the Bm and/or Bt horizon for la c u s t r i n e s i l t and g l a c i a l t i l l s o i l s , with a subsequent decrease in values at greater depths. IV.1.2 Sequential Extraction Samples analysed are l i s t e d in Table 4. IV.1.2.1 Lacustrine Clay Catena (Table 10) Copper extracted with 5% HC1 amounts to approximately half of - 69 -Table 10 - Arithmetic Means and Ranges for Cu, Fe, Mn and Zn Extracted Sequentially from Lacustrine Clay S o i l s (A and C Horizons) A Horizon NaOCl HC1 NHi+Ox HN03 / HClOit No. Of Samples Cu ppm 10.4 (8.1-11 .4) 17 (13.1-19.1) - 8.2 (7.3-9.1) 5 Fe ppm 241 .4 (192.5-288.7) 354.7 (275.9-433.5) 3165 (2796-3573) 2.1% (1.6-2.5%) 5 Mn ppm 11.5 (7.2-15.7) 95.6 (32.5-149.1) 182.5 (152.5-206.1) 70.9 (63.4-81.5) 5 Zn ppm - 7.1 (6.8-7.6) 14.2 (13.9-14.9) 61 .5 (57.5-65.0) 5 C Horizon NaOCl HC1 NH^Ox HNO3 / HCIO4 No. Of Samples Cu ppm 8.0 (6.2-10.8) 16.3 (11.7-31.0) - 6.7 (5.0-8.0) 9 Fe ppm 151 .7 (111 .2-256.7) 468.5 (275.9-433.5) 4294 (2718-7378) 2.2% (1.6-3.9%) 9 Mn ppm 10.0 (5.7-13.1) 28.1 (21.7-65.4) 179.0 (107.0-224.9) 77.0 (41.2-105.2) 9 Zn ppm - 6.5 (4.1-9.0) 15.2 (9.6-26.1) 50.6 (32.6-66.2) 9 - 70 -t o t a l s o i l copper, lower proportions are found for Cu , Cu , the 0 R lowest being for Cu^. However, more than 85% of the iron and 74% of the zinc requires a strong extraction (HN03/HC104) for i t s release. Most of the remaining iron and zinc i s associated with the free iron oxides released by ammonium oxalate. Highest manganese concentrations, 56% of t o t a l s o i l manganese, are liberated when extracted with ammonium oxalate, the lowest proportion (4%) i s given by MnQ. Iron extracted with 5% HC1 increases by 25% from the A to the C horizon, however Mn^ shows a corresponding decrease of 70%. Fe^ also shows a two f o l d increase downslope from crest to base and there i s a marked decrease in the amount of iron associated with organic matter, with depth down p r o f i l e . IV.1.2.2 Lacustrine S i l t Catena (Table 11) Maximum extraction for copper occurs with Cu^, (just less than half of t o t a l s o i l copper) followed by CUQ and Clip. CU^ concentrations f e l l below the detection l e v e l . Highest values for iron and zinc are associated with the HNO3/HCIO1L digestion with approximately 81% and 63% of the t o t a l contents being extracted, re s p e c t i v e l y . The bulk of the remaining iron and zinc i s contained in the free iron oxide f r a c t i o n with the lowest concentrations in the organic matter f r a c t i o n . Approximately 63% of t o t a l s o i l manganese i s associated with the amorphous iron oxides. Lowest manganese concentrations are found in the organic matter f r a c t i o n . - 71 -Table 11 - Arithmetic Means and Ranges for Cu, Fe, Mn and Zn Extracted Sequentially from Lacusticine S i l t S o i l s (A, B and C Horizons). A Horizon NaOCl H C 1 NHi+Ox No. of HNO3 / H C l O i x Samples Cu ppm 6.4 (5.6-8.6) 11.1 (7.1-13.4) - 6.5 (4.8-8.3) 7 Fe ppm 120.5 (105.4-233.0) 291.2 (230.8-354.7) 2676 (2220-3106) 1.5% (1.0-1.8%) 7 Mn ppm 13.2 (11.5-15.7) 38.6 (13.9-90.8) 209.4 (173.2-267.6) 49.7 (39.5-58.0) 7 Zn ppm - 7.7 (4.3-12.2) 11.5 (9.9-15.8) 43.7 (30.6-61.3) 7 B Horizon NaOCl H C 1 NH^Ox HNO3 / H C I O 4 No. of Samples Cu ppm 7.7 (6.1-10.7) 8.9 (4.3-14.1) - 5.5 (3.3-7.3) 9 Fe ppm 199.8 (99.5-233.0) 340.7 (236.5-394.1) 3072 (2641-3573) 1.5% (0.7-2.0%) 9 Mn ppm 10.2 (6.8-13.1) 11.5 (7.0-14.8) 170.7 (123.7-236.4) 42.9 (32.5-52.9) 9 Zn ppm - 11.5 (4.3-7.2) 11.4 (9.1-17.3) 30.8 (17.3-62.4) 9 C Horizon NaOCl HC1 NHLJOX HNO3 /HCIOL. No. of Samples Cu ppm 6.8 (5.6-8.4) 11.9 (7.1-16.8) -4.6 (3.2-6.6) 5 Fe ppm 141.3 (93.7-203.9) 434.4 (346.2-576.9) 2499 (2297-7656) 1.4% (1.0-1.7%) 5 Mn ppm - 27.2 (15.4-39.1) 135.2 (95.7-183.1) 64.9 (45.7-77.9) 5 Zn ppm - 5.0 (4.3-5.8) 13.9 (9.9-19.7) 24.6 (21.8-28.4) 5 - 72 -Iron associated with organic matter increases by up to 40% from the Ap to the Bm horizons, a decrease of 30% then occurs from the Bm to the Cca horizons. Iron extracted with 5% HC1 increased by one thi r d with depth down p r o f i l e to the Cca horizon. In contrast, Mn^ decreasd by 70% from the Ap to the Bm horizon and increased by just over a half from the Bm to the Cca horizon. An increase of 13% occurs from the Ap to the Bm horizons for Fe^ with a decrease of 19% from the Cca horizons. In the surface horizon, CUQ, Mn^ and Zn^. show marked decreases down catena of 47%, 59%, and 37% respectively whereas Cu R, Fe R and Zn R exhibited increases down slope of between 30-40%. IV.1.2.3 G l a c i a l T i l l Catena (Table 12) Highest copper concentrations are found for the sodium hypochlorite and 5% HC1 extractions amounting to 46% and 32%, res p e c t i v e l y , of t o t a l s o i l copper. Iron and zinc extracted with HNO3/HCIO11 exhibit the highest concentrations with successivley lower concentrations in the free iron oxide, carbonate and organic f r a c t i o n s . Zn^ concentrations are below the detection l e v e l . High manganese concentrations, 67% of the t o t a l , are associated with the free iron oxides. In surface horizons copper and iron content associated with the organic matter f r a c t i o n increases downslope by 36% and 27%, res p e c t i v e l y . Copper extracted with 5% HC1 shows a two fo l d increase from surface horizon to Cca horizon whereas Mn. shows a two fo l d - 73 -decrease. However, Cu^, Mn^  and Zn^ a l l exhibit marked increases, of 60%, 80% and 48% respectively, in the plough layer downslope. Manganese associated with the free iron oxides decreases by 26%, with depth down prof i le , whereas Mn^  shows an increase of 23%. A 36% decrease occurs for zinc digested with HNO3 /HCIO1+ with depth down prof i le . IV.1.2.4 Aeolian Sand Catena (Table 13) Copper concentrations are highest in the organic matter fraction taking up to 46% of total so i l copper, copper extracted with 5% HC1 accounts for 39% of the total contents and the lowest values are found for Cu^. Maximum iron and zinc concentrations are again given by the HNO3 / HCIO1+ digestion followed by Fe , Zn , Fe , Zn and A A L L Fe^in that order. Zn^ concentrations are below the detection level . Manganese associated with the amorphous iron oxide fraction exhibits the highest concentrations amounting to 67% of total so i l manganese. Iron associated with organic matter exhibits a 23% decrease down prof i l e . Manganese extracted with ammonium oxalate shows a 23% decrease with depth from the Ah to the Cca horizon, and both Mn^  and Zn^ increase two fold downslope in the surface horizons. Mn^  and Zn^ also show a marked increase in the surface horizons downslope. Zinc liberated with HNO3/HCIO.+ decreases by 35% down profile but shows a two fold increase in the surface horizon from the crest to the base of the slope. - 74 -Table 12 - Arithmetic Means and Ranges for Cu, Fe, Mn and Zn Extracted Sequentially from G l a c i a l T i l l S o i l s . (A and C Horizons). A Horizon No. of NaOCl HC1 NHi+Ox HN03 / HClOt, Samples Cu ppm 10.9 (8.6-13.3) 7.6 (3.5-10.6) - 5.1 (4.0-6.5) 5 Fe ppm 193.2 (105.4-288.8) 289.4 (192.3-354.7) 2223 (1942-2373) 1.5% (1.2-1.7%) 5 Mn ppm 8.4 (7.3-13.1) 55.3 (20.9-105.3) 165.3 (126.3-208.2) 35.9 (26.1-39.0) 5 Zn ppm - 6.0 (4.1-8.1) 9.6 (8.1-13.7) 30.3 (24.2-36.8) 5 C Horizon NaOCl HC1 NH4OX No. of HNO3 / HCIOLJ Samples Cu ppm 9.8 (8.6-10.1) 14.7 (10.6-21.4) - 3.9 (3.3-4.4) 6 Fe ppm 200.6 (64.4-288.8) 303.5 (12.2-27.1) 2239 (956.9-3029) 1.2% (0.6-1.8%) 6 Mn ppm 7.8 (5.7-9.8) 21 .8 (12.2-27.1) 122.3 (77.7-182.1) 46.7 (26.4-56.2) 6 Zn ppm - 5.2 (3.7-5.9) 7.2 (5.1-9.5) 19.3 (8.2-29.4) 6 - 75 -Table 13 - Arithmetic Means and Ranges for Cu, Fe, Mn and Zn Extracted Sequentially from Aeolian Sand S o i l s . (A and C Horizons) A I Horizon NaOCl HC1 NHitOx No. of HN03 / HCIO^ Samples Cu ppm 8.3 (5.7-11.1) 6.2 (2.8-11.3) - 2.2 (1.8-2.9) 7 Fe ppm 169.6 (99.5-288.8) 245.3 (192.3-275.9) 1896 (1631-2097) 7796 (5572-8936) 7 Mn ppm 7.5 (4.2-9.5) 14.6 (3.5-41.9) 123.4 (68.2-200.4) 31 .0 (26.8-35.5) 7 Zn ppm - 5.5 (2.2-6.8) 6.5 (3.3-9.9) 13.9 (9.2-18.7) 7 C Horizon NaOCl HC1 NH-+0x No. of HNO3 / HClOit Samples Cu ppm 6.2 (5.0-6.7) 5.9 (3.5-8.6) - 2.5 (2.2-3.9) 6 Fe ppm 131 .3 (99.5-174.8) 233.1 (153.9-307.7) 1795 (1455-2097) 6982 (4172-9154) 6 Mn ppm 7.7 (5.2-7.8) 12.1 (7.0-22.2) 94.7 (60.6-124.8) 32.0 (22.8-49.7) 6 Zn ppm - 4.2 (3.1-5.0) 5.1 (2.5-6.5) 9.1 (6.8-10.6) 6 - 76 -IV.1.2.5 Summary Generally, elemental concentrations for each extraction procedure are found to be highest in the la c u s t r i n e clay s o i l s , l a c u s t r i n e s i l t and g l a c i a l t i l l show s i m i l a r values and the aeolian sand s o i l s exhibiting the lowest concentrations. Copper i s strongly associated with both the organic matter and carbonate f r a c t i o n s . Manganese extracted with 5% HC1 i s concentrated in the surface horizons decreasing markedly to the C horizons, t h i s i s e s p e c i a l l y pronounced for the la c u s t r i n e clay s o i l s . However, manganese i s most abundant in the amorphous iron oxide f r a c t i o n . Iron and zinc are p r i n c i p a l l y associated with the more c y s t a l l i n e oxides and s i l i c a t e s . However, iron and zinc extracted with ammonium oxalate show marked trends with high iron concentrations encountered in the lower horizons and high zinc concentrations in the plough layer. IV.1.3 P a r t i c l e Size Analysis (Table 14) Samples analysed are l i s t e d in Table 4. The highest clay content (53%), occurs i n lacu s t r i n e clay s o i l s , the highest s i l t content (62%), in lacu s t r i n e s i l t s o i l s and s i m i l a r l y the highest sand content i n aeolian sand s o i l s (71%) (Table 15). From Table 14, i t i s seen that an increase in the amount of clay and a decrease in the amount of sand occurs for a l l four parent materials down the catenas. This trend in most pronounced in surface horizons. An increase in s i l t content i s also shown for lacu s t r i n e s i l t s o i l s . O v e r a l l , r e s u l t s are more consistent for lacustrine clay, l a c u s t r i n e s i l t and g l a c i a l t i l l than for aeolian sand s o i l s . - 77 -Table 14 - P a r t i c l e Size Separation for Lacustrine Clay, Lacustrine S i l t , G l a c i a l T i l l and Aeolian Sand S o i l s Parent P i t Horizon Material No. Type Clay% S i l t % Sand% LC 2 Apk 47 43 10 Bmk 54 44 2 Cca 49 50 2 Ck 36 45 19 LC 5 Ap 57 43 0 Cca 58 42 0 Ck 66 34 0 LS 1 Ap 29 56 15 Bm 30 60 11 Cca 27 56 17 LS 5 Ap 32 66 2 Ah 32 67 1 t Bm 36 64 1 Cca 38 58 4 GT 2 Ap 29 48 23 Cca 35 39 27 Ck 33 56 11 GT 4 Ap 29 57 14 Bt 27 51 22 Bm 27 41 33 AS 2 Ah 2 6 92 Bh 0 5 95 C 4 19 78 AS 5 Ah 8 43 50 Bm 7 49 44 C 15 6 79 - 78 -Table 15 - Mean Values of Percent Clay, S i l t and Sand for LC, LS, GT and AS S o i l s and Their U.S.D.A. Textural C l a s s i f i c a t i o n Mean Values % USDA C l a s s i f i c a t i o n Parent Clay S i l t Sand Of Texture Material LC 53.0 43.2 3.7 S i l t y Clay LS 32.1 61.6 6.3 S i l t y Clay Loam GT 29.8 45.5 24.7 S i l t y Loam AS 6.4 23.1 70.5 Loamy Sand - 79 -U.S.D.A. text u r a l c l a s s i f i c a t i o n s of the s o i l s are given in Table 15. IV.1.4 X Ray D i f f r a c t i o n Samples analysed are l i s t e d i n Table 4. The prominant clay mineral in the f i v e t i l l samples i s i l l i t e , accompanied by k a o l i n i t e , quartz and feldspars; traces of c h l o r i t e , montmorillonite and vermiculite are evident. There i s l i t t l e v a r i a -t i o n in the clay mineralogy between each horizon although the Bm and C horizons reveal high peak i n t e n s i t i e s for montmorillonite. The 2-5u size f r a c t i o n tend to have greater peak i n t e n s i t i e s for quartz, amphibole and feldspars than the 0.2-2p size f r a c t i o n . Lacustrine s i l t s o i l (Bm horizon) has a high peak i n t e n s i t y for i l l i t e and montmorillonite with lower peak i n t e n s i t i e s for k a o l i n i t e , amphibole, the feldspars and quartz; c h l o r i t e and vermiculite appear in trace amounts. In l a c u s t r i n e clay s o i l s , the Cca horizon gives high peak i n t e n s i t i e s for i l l i t e with trace amounts of quartz, the feldspars, c h l o r i t e , vermiculite and montmorillonite, both size f r a c t i o n s show the i n t e n s i t y of the plagioclase feldspar peak to be more pronounced than the potassium feldspar peak. This i s also the case for the aeolian sand s o i l (Ap horizon) with i l l i t e again being the main mineral. IV.2 S t a t i s t i c a l Test Results Analysis of Variance, Duncan's New Multiple Range Test, Correlation and Regression analysis were computed for t o t a l and DTPA elemental data, pH and organic matter. A l l data was logio transformed. (pH was not transformed for the Analysis of Variance - 80 -and Duncan's New Multiple Range test) . IV.2.1 Analysis of Variance (Table 16) pH has a high component for among compared to within parent material variance for a l l horizons. Organic matter shows similar percentages for the surface horizons. The compositional variation among the parent materials accounts for 74-98% of the total data var iab i l i ty for Cu, Fe and Mn in so i l digested with HNO3/HCIO11., horizon C data revealing the highest percentages. DTPA elemental data show a compositional variation between parent materials of 52-97%, the highest percentages occurring in the surface horizons. Variables not included in the table are not significant at the 0.05 leve l . This is more frequent in the C horizon. IV.2.2 Duncan's New Multiple Range Test (Tables 17 to 19) Glacia l t i l l and lacustrine s i l t data exhibit similar mean values and therefore tend to be grouped together, this is especially so for the total elemental data. Zn^ did not show significant differences between mean concentrations for the four parent materials (at the 0.05 level) , in any horizon. The mean elemental concentrations for the DTPA extractions give varied groupings. However, glacial t i l l and lacustrine s i l t soils are generally found within the same group. The more developed lacustrine s i l t soils exhibit the highest mean concentrations for surface horizons, whereas the lacustrine clay soils reveal the highest mean concentrations for C horizons. A far greater number of variables show significant differences between the mean concentrations for the four Table 16 - Comparison of Loq.irithmic Within and Amonq Sample Site Variance Components for A Horizon, 0-30 cm Depth and C Horizon S o i l ( S i g n i f i c a n t at P = 0.05). Partitioned Variance Estimated Amonq Parent Material Within Parent Material TolaL L o q 1 0 ~ " So i l Variables Variance Component % of Total Component % of Tot A Horizon •pH 0.3644 0.2664 73 0.0980 27 Cu.j. 0.1544 0.1144 74 0.0400 26 F e T 0.0188 0.0158 84 0.0300 16 Miij n.nw 0.0350 88 0.0500 12 Mnn 0.0592 0.0572 97 0.0020 3 Zn n 0.040 0.021 52 0.0190 48 0M 0.0168 0.0128 76 0.0040 24 0-30 cm. *pH 0.4881 0.4171 85 0.0710 15 Fe T 0.0508 0.0472 93 0.0036 7 MnT 0.0367 0.0317 86 0.0050 14 F eD 0.0424 0.0284 67 0.0140 33 MnD 0.0653 0.0573 88 0.0080 12 0M 0.0109 0.0088 81 0.0021 19 C Horizon *pH 0.3047 0.2984 98 0.0063 2 Cu^ 0.1365 0.1340 98 0.0025 2 Fe T 0.0626 0.0580 93 0.0046 7 MnT 0.0625 0.0623 99 0.0002 1 * Estimated Total Variance - 82 -Table 17 - Results of Application of Duncan's New Multiple Range Test to L o g 1 0 , A Horizon S o i l Data for Individual Parent Materials Geometric Mean Concentrations* S o i l Variable (ppm) A Horizon **pH 6.1 6.2 6.9 7.5 LS AS_ GT LC OM 2.0 2.5 3.2 3.2 AS LC_ LS GT_ Cu y 3.9 12.6 15.9 25.1 AS GT LS LC ***Fe T 0.6 1.3 1.6 2.5 AS GT LS LC Mny 125.9 251.1 316.2 316.2 AS GT LC LS Cu D 0.6 1.0 1.3 3.2 AS GT LS LC F e D 10.0 20.0 31.6 31.6 LC AS GT LS MnD 6.3 7.9 15.9 20.0 AS LC GT LS Zn p 0.6 0.6 0.8 1.3 AS LC GT LS * Means not underscored by the same overlapping l i n e are s i g n i f i c a n t l y d i f f e r e n t at P = 0.05. each forming a separate group. ** pH i s not logio transformed. *** Fe T data are in percent. - 83 -Table 18 - Results of Application of Duncan's New Multiple Range Test to Logio, °-30 cm Depth S o i l Data f o r Parent Materials Geometric Mean Concentrations* S o i l Variable (ppm) 0-30 cm **pH 6.2 6.3 7.0 7.6 LS AS GT LC 0M 1.6 2.0 2.5 3.2 AS LC GT LS Cu T 3.9 12.6 15.9 25.1 AS GT LS LC ***Fe T 0.6 1.3 1.6 2.5 AS GT LS LC Mny 125.9 251.1 316.2 316.2 AS GT LS LC F e D 12.6 15.9 15.9 31.6 LC GT AS LS MnD 5.0 6.3 7.9 20.0 AS LC GT LS * Means not underscored by the same overlapping l i n e are s i g n i f i c a n t l y d i f f e r e n t at P = 0.05, each forming a separate group. ** pH i s not logio transformed. *** Fe^. Data are in percent - 84 -Table 19 - Results of Application of Duncan's New Multiple Range Test to L o g 1 0 , C Horizon S o i l Data for Parent Materials Geometric Mean Concentrations* S o i l Variable (ppm) C Horizon **pH 6.7 7.7 7.8 7.8 AS GT LS LC OM 0.3 0.5 0.6 0.9 GT AS LS LC Cu T 3.2 12.6 15.9 25.1 AS GT LS LC ***Fe T 0.6 1.3 1.6 2.0 AS GT LS LC MnT 100.0 316.2 316.2 398.1 AS LS LC GT_ Cu R 0.3 1.6 3.2 3.2 AS LS GT LC F e D 7.9 10.0 10.0 12.6 AS LS GT LC *Means not underscored by the same overlapping l i n e are s i g n i f i c a n t l y d i f f e r e n t at P = 0.05, each forming a separate group. pH i s not logio tranformed. ***Fe Data are in percent. - 85 -parent materials in the upper plough layer compared to lower horizons. IV.2.3 Correlation (Tables 20 to 27) The highest c o r r e l a t i o n c o e f f i c i e n t s (at a s i g n i f i c a n c e l e v e l of 0.05) are most frequently found for la c u s t r i n e s i l t and g l a c i a l t i l l data, where pH i s negatively associated with Fe^, Mn^ and Zn^. High p o s i t i v e c o r r e l a t i o n s are also found between Zn^, Fe^ and Mn^ in both these s o i l s and furthermore, DTPA elemental data are p o s i t i v e l y linked to organic matter, e s p e c i a l l y in surface horizons. (Tables 23, 25). Relationships between variables for lacu s t r i n e clay s o i l s tend to be more subdued than for the other three parent materials. However, lacu s t r i n e clay data for the A horizon (Table 21) show p o s i t i v e c o r r e l a t i o n s for iron and copper, both t o t a l and DTPA extractable. G l a c i a l t i l l and aeolian sand data exhibit strong p o s i t i v e r e l a t i o n s h i p s between Cuj, Fe^, Mn^ and Zn^., in comparison to l a c u s t r i n e clay and lacu s t r i n e s i l t data. IV.2.4 Regression (Tables 28 to 33) A Backwards Stepwise Multiple C u r v i l i n e a r Regression Analysis was ca r r i e d out on A horizon data for a l l parent materials combined and for i n d i v i d u a l parent materials, as most v a r i a t i o n occurs in t h i s horizon. Regression equations were determined (Tables 29 to 33). The Index of Determination (I ) was calculated (Table 28). For the four parent materials combined (Table 29), 68-85% of the v a r i a t i o n i n DTPA elemental concentrations can be accounted for by TABLE 20 Co r r e l a t i o n C o e f f i c i e n t s Relating l o g 1 0 Total and DTPA Elemental Data, pH and Organic Matter for Lacustrine Clay S o i l s (A, B and C Horizons). DF" GO R » . 0 5 0 0 « .2500 Ris .0100= . 3248 VARIABLE LGPH 1.OOOO LGOCU - .2278 1.OOOO LGDFE - .2552 .4536 1.OOOO LGDMN - . 5 4 15 - .0631 - .0061 1.OOOO LGDZN - .4284 . 1689 . 1526 .4377 1.OOOO LGTCU .0373 .2960 . 1013 - .1593 .2222 1.0000 LGTMN - . 1286 - . 0 7 9 6 - .2578 .3626 . 1723 - . 2 8 8 3 1.OOOO LGTZN - . 1 6 3 3 .0548 - . 3 3 7 0 . 2570 . 1342 . 1 128 .4 182 1.OOOO LGTFE - . 1808 .0741 - .3184 .0086 .0649 .2854 .0556 .4293 1.0000 LGOM - . 6 3 7 9 .0385 - .0328 . 7867 .5840 - . 1547 .3304 .2646 .0291 LGPH LGDCU LGDFE LGDMN LGDZN LGTCU LGTMN LGTZN LGTFE CD N = No. Samples DF = Degrees of Freedom R .0500 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.05 l e v e l ) R .0100 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.01 l e v e l ) C o e f f i c i e n t s underlined are s i g n i f i c a n t l y >0 at P = 0.01 TABLE 21 Cor r e l a t i o n C o e f f i c i e n t s Relating L o g 1 Q Total and DTPA Elemental Data, pH and Organic Matter for Lacustrine Clay S o i l s (A Horizon) N» 25 DF" 23 Rfr .0500* .3961 R<» .0100= .5052 VARIABLE LGPH 1.0000 LGDCU -.5853 1.0000 LGDFE -.6701 .7514 1.0000 LGDMN -.4901 . 1839 .3434 1.0000 LGOZN -.4408 .0524 . 4076 .5694 1.OOOO LGTCU .0510 . 1260 .0294 -.3275 -.0346 1.OOOO LGTMN .0076 -.1454 -.1554 .4275 .2293 -.2192 1.OOOO LGTZN . 1917 -.0094 - .3822 -.2534 - .4843 -.0556 . 1862 1.0000 LGTFE .0488 . 1325 - . 1779 -.3283 - .2548 .5158 -.2488 .3971 1.0000 LGOM -.0312 .2324 .4626 .7959 .7171 -.3882 .2709 -.2605 -.2350 LGPH LGDCU LGDFE LGOMM LGDZN LGTCU LGTMN LGTZN LGTFE oo >4 1.0000 LGOM N = No. of Samples DF = Degrees of Freedom R .0500 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.05 l e v e l ) R .0100 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.01 l e v e l ) C o e f f i c i e n t s underlined are s i g n i f i c a n t l y >0 at P = 0.01 TABLE 22 Co r r e l a t i o n C o e f f i c i e n t s Relating Log 10 Total and DTPA Elemental Data, pH and Organic Matter for Lacustrine S i l t S o i l s (A, B and C Horizons) DF- 30 RO .0500- .3494 R» .0100= .4487 VARIABLE LGPH 1 .OOOO LGOCU . 1831 1.0000 LGDFE -.9410 -.0868 1.OOOO LGDMN -.7436 .0300 .7212 1.0000 LGDZN -.7134 . 1 129 .7359 .8426 1.0000 LGTCU .2999 .6294 -.1309 -. 1733 -.0481 1.0000 LGTMN .0760 . 1779 .0213 .0362 . 1329 .4264 1.0000 LGTZN .0450 . 1586 .0178 . 1259 .2940 .3555 . 7530 1.OOOO LGTFE .3376 .4003 -.3381 -.2873 - .2810 .4844 .4087 .4788 1.0000 LGOM: -.5247 .2114 .5754 .7501 .8806 . 1334 . 3439 .4536 -.0373 LGPH LGDCU LGDFE LGDMN LGDZN LGTCU LGTMN LGTZN LGTFE co co 1.0000 LGOM N = No. of Samples DF = Degrees of Freedom R .0500 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.05 l e v e l ) R .0100 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.01 l e v e l ) C o e f f i c i e n t s underlined are s i g n i f i c a n t l y >0 at P = 0.01 TABLE 23 Cor r e l a t i o n C o e f f i c i e n t s Relating L o g 1 Q Organic Matter f o r Lacustrine S i l t S o i l s (A Horizon) Total and DTPA Elemental Data, pH and i DF- 2fl Re< .0500- .3610 R » .0100= .4629 VARIABLE LGPH 1.0000 LGDCU .0217 1.OOOO LGDFE -.9328 .0533 1.OOOO LGDMN -.6150 . 29 13 .6372 1.OOOO LGDZN -.6196 .3280 .6736 .7000 1.OOOO LGTCU . 104 1 . G9G8 .0654 . 137 1 . 2620 1.OOOO LGTMN .0484 . 1G33 .0577 . 1062 .2134 .4310 1.0000 LGTZN . 1500 .2165 -.0508 .0444 .2510 .5025 .7856 1.0000 LGTFE .2951 .368 1 -.2949 -.2236 - . 2 103 . 448 1 . 3979 .531 1 1.0000 LGOM -.3393 .44 17 .4578 .6549 .8766 .4267 .4345 .4591 .0526 LGPH LGDCU LGDFE LGDMN LGDZN LGTCU LGTMN LGTZN LGTFE oo VO LGOM N = No. of Samples DF = Degrees of Freedom R .0500 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.05 l e v e l ) R .0100 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.01 l e v e l ) C o e f f i c i e n t s underlined are s i g n i f i c a n t l y >0 at P = 0.01 TABLE 24 Cor r e l a t i o n C o e f f i c i e n t s Relating Lc-g^Q Total and DTPA Elemental Data, pH and Organic Matter for G l a c i a l T i l l S o i l s (A, B and C Horizons) N= 43 OF" 4 1 Re .0500" .3000 R* .0100^ .3007 VARIABLE LGPH I.OOOO LGDCU .3195 1.OOOO LGDFE -.0510 .0563 1.OOOO LGDMN -.6292 -.2950 .6522 1.OOOO LGDZN -.5525 -.0233 .6021 .7507 1.0000 LGTCU .0773 .624 1 . 1485 -.0170 . 24 12 1.OOOO LGTMN -.2389 .0135 .2 100 .3183 .4851 .4256 1.OOOO LGTZN • -.3156 . 1205 .4796 .4760 .6006 .502 1 . 5306 1.OOOO LGTFE .0099 .3982 . 1389 .0699 . 1274 • 5533 .4005 .5020 1.0000 LGOM -.5795 -.0279 .6803 .8140 .8833 . 2699 .4260 .5756 .2093 1.OOOO 50. 51 . 52. 53. 54 . 55. 56. 57. 58. 59. LGPH LGDCU LGDFE LGDMN LGOZN LGTCU LGTMN LGTZN LGTFE LGOM \0 O N = No. of Samples DF = Degrees of Freedom R .0500 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.05 lev e l ) R .0100 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.01 le v e l ) C o e f f i c i e n t s underlined are s i g n i f i c a n t l y >0 at P = 0.01 TABLE 25 C o r r e l a t i o n C o e f f i c i e n t s R e l a t i n g Log^n O r g a n i c M a t t e r f o r G l a c i a l T i l l S o i l s (A T o t a l and DTPA E l e m e n t a l D a t a , pH and H o r i z o n ) DF- 34 RO .0500- .3291 R » .0100" .4238 VARIABLE LGPH 1.OOOO LGDCU .1839 1.OOOO LGDFE - . 8 3 7 3 .2170 1.OOOO LGDMN - . 5 3 3 6 - .1267 .5060 1 .0000 LGDZN - .4694 . 1932 .6457 . 7260 1.OOOO LGTCU .004 3 .6326 . 2262 .0777 . 3675 1.OOOO LGTMN - .2097 .0052 . 10O7 .3100 . 4974 .4719 1.OOOO LGTZN - .3643 .2585 .5303 .5343 .G780 .5885 .64 14 1.0000 LGTFE .032 1 .4534 . 1274 .03 13 . 1601 .5658 .4257 .5506 1.ocoo LGOM - .4777 .2261 .6533 .7747 .9225 .4624 .5003 .6070 .2213 LGPH LGOCU LGDFE LGDMN LGDZN LGTCU LGTMN LttT ZN LGTFE i VO 1.0000 LGOM N = No. o f Samples DF = Degrees o f Freedom R .0500 - C o r r e l a t i o n C o e f f i c i e n t ( S i g n i f i c a n t a t P R .0100 = C o r r e l a t i o n C o e f f i c i e n t ( S i g n i f i c a n t a t P 0 . 0 5 l e v e l ) 0 .01 l e v e l ) C o e f f i c i e n t s u n d e r l i n e d a r e s i g n i f i c a n t l y >0 a t P - 0 .01 TABLE 26 Correlation Coefficients Relating Log 10 Total and DTPA Elemental Data, pH and Organic Matter for Aeolian Sand S o i l s (A, B and C Horizons) OF- 33 R» .0500- .3338 R* .0100= .4296 VARIABLE LGPH 1.0000 LGOCU -.0190 1.0000 LGDFE -.5245 .4370 1 .0000 LGDMN . 1G03 .0360 .3358 1.OOOO LGDZN -.0794 .34 19 .6000 .4637 1.OOOO LGTCU .401 1 .3293 .2 118 .6050 .2516 1.OOOO LGTMN .4222 -.04B6 . 1479 .5988 .2540 .5544 1.OOOO LGTZN .3519 .0308 . 1991 .6678 .3512 .5708 .6078 1.0000 LGTFE .0593 .0664 . 1295 .4603 . 1274 .4942 .6554 • 56Q2 1.0000 LGOM .0455 .3651 .6537 .5786 .6659 .4429 .4038 . 4483 . 1 122 LGPH LGOCU LGDFE LGDMN LGDZN LGTCU LGTMN LGTZN LGTFE vo ro N = No. of Samples DF = Degrees of Freedom R .0500 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P B 0.05 l e v e l ) R .0100 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.01 l e v e l ) C o e f f i c i e n t s underlined are s i g n i f i c a n t l y >0 at P = 0.01 TABLE 27 Cor r e l a t i o n c o e f f i c i e n t s Relating L o g 1 Q Total and DTPA Elemental Data, pH and Organic Matter f or Aeolian Sand S o i l s (A Horizon) DF- 32 R» .0500- .3388 R» .0100= .4357 VARIABLE LGPH 1.0000 LGDCU - . 0747 1.OOOO LGDFE - . 4 7 6 8 .5054 1.OOOO LGDMN .2747 .08 1 1 .28 17 t.OOOO LGDZN - . 0 9 9 0 .3397 .6383 .4937 1.0000 LGTCU .3886 .3 180 .2544 .6640 .2487 1.OOOO LGTMN .4290 - .0577 . 1700 .6379 . 2523 .5526 1.OOOO LGTZN .42 15 . Ob 14 . 17 11 .6G3 1 . 3599 . 5935 . 62O0 1.OOOO LGTFE .0494 .OG 14 . 1460 . 4890 . 12G0 . 4933 .654 7 .5702 1.0000 LGOM . 1415 .4221 .6277 .5479 .6998 . 4896 .432 1 .4334 . 1260 LGPH LGDCU LGDFE LGDMN LGUZN LGTCU LGTMN LGTZN LGTFE VO R R N = No. of Samples DF = Degrees of Freedom .0500 = Correlation C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.05 l e v e l ) ,0100 = Cor r e l a t i o n C o e f f i c i e n t ( S i g n i f i c a n t at P = 0.01 l e v e l ) C o e f f i c i e n t s underlined are s i g n i f i c a n t l y >0 at P = 0.01 - 94 -the independent variables presented in the respective regression equations (at a s i g n i f i c a n c e l e v e l of 0.05%). Lacustrine clay s o i l s show the highest percentages (Table 30), 90-98% of the v a r i a b i l i t y in Cu^, Fe^, Mn^ and Zn^ alone being explained, three variables alone pH, pH and Cu^ ., accounting for 96% of the v a r i a t i o n i n Fe^. Lacustrine s i l t s o i l s show a wider range of I values, however, a large amount of the v a r i a t i o n i n Fe^ (96.9%) and Zp (95.8%) i s accounted for by 9 and 12 independent variables r e s p e c t i v e l y . G l a c i a l t i l l s o i l s exhibit a lower Index of Determination (I ) for Fe^ than l a c u s t r i n e s i l t s o i l s , but a higher percentage of the v a r i a b i l i t y i n Mn^ can be accounted for in the t i l l . Only, 54%, of the v a r i a t i o n i n Cu^ i s explained in these s o i l s , furthermore the corresponding percentage i s even les s (35%) i n the aeolian sand s o i l s . (Table 33). However, in the l a t t e r , 63-68% of the v a r i a t i o n in Fe^, Mn^ and Zn^ concentrations can be accounted for by the regression equations. Predictions for Cu^, Fe^, Mn^ and Zn^ can be computed from the regression equations (Tables 29-33) as follows. For example, for lac u s t r i n e clay s o i l s , Logio F e D = 53 - 15.8 pH + 14346 Cu T + 1.1 pH 2 „ n(53 - 15.8 pH + 14346 Cu T + 1.1 pH 2) Fe^ =10 T (Fe^ i s given as a f r a c t i o n , which i s then converted to parts per m i l l i o n ) . Table 28 - Index of Determination ( I 2 ) for the Dependent Variables L o g 1 0 , CUp, F e D > MnD and Zn^ for A l l Parent Materials (A Horizon Data) and Individual Parent Materials (A Horizon Data) Dependent Variable A l l Data LC LS GT AS I 2 ( L o g i o Cu Q) S(Y,X) Est. D.F. 0.847 0.387 117 0.925 0.210 15 X i o - 6 0.669 0.344 23 X 10-6 0.542 0.133 30 X 10-6 0.352 0.133 26 X 10-6 I 2 ( L o g i 0 Fe D) 0.739 0.967 0.969 0.762 0.636 S(Y,X) Est. D.F. 0.154 114 X 10" M 0.147 21 X 10"5 0.525 20 X 10-5 0.237 31 X 10" 4 0.538 32 X 10"5 I 2 ( L o g 1 0 MnD) 0.727 0.908 0.561 0.758 0.640 S(Y,X) Est. D.F. 0.455 116 X 10-5 0.905 16 X 10-6 0.642 27 X 10" 5 0.277 29 X 10" 5 0.182 27 X 1Q-5 I 2 ( L o g 1 0 Zn Q) S(Y,X) Est. D.F. 0.684 0.575 119 X 10" 6 0.981 0.583 10 X 10"7 0.958 0.276 17 X 10" 6 0.689 0.749 35 X 10" 6 0.679 0.480 19 X 10"6 I 2 = Index of Determination ( S i g n i f i c a n t at the 0.05 l e v e l ) S(Y,X) Est.= Estimated Standard Error of Estimate (Dependent variable = Y, Independent variables = X^,X2,...Xn D.F. = Degrees of freedom. Table 29 - Multiple Curvilinear Regression Equations for Log 1 0» C u n > Fe n, And Zn^ for a l l Parent Materials (A Horizon Data) (At a Significance Level of 0.05) _ 5 _2 Logio Cu n = 3.3 + 0 , 1 6 X 1 0 ~ - 0 , 2 7 X 1 0 ~ - 3443 Mn - 22 Fe T + 0.472 x 10 7 MnT2 + 1.6 Logio Cu T  U Cu T 0M - 0.45 Logio Zn T +1.3 Logio F e T Logio F e D = - 3296 + - 374 pH + 11359 Cu y - 739 Mny - 27.5 F e T - 52.8 OM + 9.6 pH 2 pH + 486 OM2 + 5568 logio (pH) + 0.93 logio F e T + logio OM. 6 2 L o g ^ Mn = 0.94 x 10" 1 - x 1 0 1 - + °'6^ x 1 0 " - 0.19 pH + 3351 Mn - 0.57 x 10 7 Mn ' U Cu y OM - 1.7 OM2 + 0.61 l o g 1 0 Zn T - 0.36 l o g 1 0 Fe^. + 1.6 l o g i 0 OM Logio Z n D = "3.8 - 0 , 1 2 X 1 0 1.7pH + 29388 Cu T + 0.12 pH 2 - .88 l o g 1 0 Cu y - 0.67 logio F e T Zn T + 1.5 logio OM. Table 30 - Multiple Curvilinear Regression Equations for L o g 1 0 , Cu^, Fe^, Mn^ and Zn^ for Lacustrine Clay S o i l s (A Horizon Data). (At a Significance Level of 0.05) 5240 2 2 L o g 1 0 Cu D = 2815 + - 92.9 pH + 86428 Cu y - 427.4 FeJ + 3908 Fe y - 117.4 0M pH + 3214 logio PH - logio Cu T + 1 2 - 9 l o 9 l 0 F e T Logio F e D = 53 - 15.8 pH + 14346 Cu T + 1.1 pH 2 3 0.10 x 10" . 2.3 L°9l0 M n n = 1 0 8 7 " + + 1045 Mn - 10441 Fe + 15 0M + 65177 Fe D Cu T F e T ' - 8.7 logio Cu T + 624.2 logio Fe^ 2 1 L o g 1 0 Zn D = 2891 + 0 , 2 8 X 1 0 ~ - 0 , 1 9 X 1 0 " - — - 28.7 pH - 0.38 x 10 7 Cu y + 0.20 x 10 6 Mny Cu T Mny Fe^ - 14167 Fe T - 187 OM + 1.9 pH 2 + 84335 Fe^.2 + 479 l o g i 0 Cu y - 289 l o g 1 0 Mny + 892 logio F e T + 11 logio OM. Table 31 - Multiple Curvilinear Regression Equations for Logio, Cu D, Fe^, Mn^ and Zn Q for Lacustrine S i l t S o i l s (A Horizon Data). (At a Significance Level of 0.05) L o g 1 0 Cu = -10684 + 1 6 6 8 3 - 0 A 5 * 1 ° ~ - 1261 pH + 22450 C U j + 33 pH 2 + 18342 l o g 1 0 pH. D pH 0M Log 10 f e D = -72.3 -0.61 x 10-° 0.28 Cu, 0M - 0.42 pH - 71756 Zn y + 968 OM - 4714 0M' + 10.9 logio Z n ~ ° « 6 2 l o 9 l 0 F e - 6 8 « 6 l o 9 l 0 OM. T T \0 C O L o g 1 0 MnD = -3.4 - 1 0 " ~ - 0.17 PH L o g 1 0 Zn n = 3229 - 1 ' 8 X + ^  - ° ' 2 6 X - 1.7 pH - 0.26 x 10 6 Cu T + 0.18 x 10 6 MnT D MnT F e T OM - 59602 F e T + 0.67 x 10 6 Fe^.2 + 23 logio PH + 9 logio C u T " 2 6 6 l o g i n M n T + 2006 logio r"eT Table 32 - Multiple Curvilinear Regression Equations for Logio, Cu D, Fe^, Mnp and Zn Q for G l a c i a l T i l l S o i l s (A Horizon Data). (At a Significance Level of 0.05) 5 •+ Logio Cu D = 5.88 - 0 A 2 X 1 ° ~ + 0 , 9 3 X 1 ° " + 283 Fe T - 9454 F e T 2 + 3.5 logio Zn T Cu T Zn y + 0.27 logio OM Logio F e D = 2.98 + 0 , 1 1 X 1 0 ~ - + 99 OM2 - 5.6 l o g 1 0 pH + 0.84 l o g 1 0 Zn ] MnT _ 3 Logio M n n = - 2 0 ' 5 " °* f^ X + 8 3 " 1 * 2 l o g 1 0 C u T _ 1 0 9 1 0 M n T + 0 , 6 7 1 0 9 1 0 Z n T Mn-j. + 0.47 logio OM. Logio Zn n = - 7.0 x 24.3 OM. Table 33 - Multiple Curvilinear Regression Equations for Log^o* ^UQ» ^E\)' and Zn^ for Aeolian Sand S o i l s (A Horizon Data). (At a Significance Level of 0.05) L o g 1 0 Cu D = -0.20 x 10 6 + 0 , 3 2 X 1 ° 6 + 0 , 1 8 X 1 0 ~ ' - 24273 pH - 0.14 x 10 6 Zn T + 642 pH 2 pH Zn T + 0.35 x 10 6 pH + 24.6 l o g 1 0 Zn y Logio F e D = -5.7 + ^ p 3 - + 0.67 logio 0M L o g i ° 3 5 L o g ^ Mnp = 74.5 + ° ' 3 3 X 1 ° " - ° X 1 ° " - 36643 Mny + 104.6 OM - 1218 OM2 Mn^ . Zn-j. + 21.5 logio M n T - 1«8 logio OM . 7 n v m 6 0.50 x 10 6 0.34 x 10" 3 0.35 x W~k 1 .3 0.78 x 10" 1 Logio Z n n = -0.32 x 10 + + + pH Mny Zn T F e T OM - 37475 pH + 87988 F e T - 1043 OM + 989.4 pH 2 - 0.21 x 10 7 F e ^ 2 + 8955 OM2 + 0.54 x 10 6 logio pH + 7.2 logio Mny - 1384 logio F e T + 40 logio OM. - 101 -CHAPTER V DISCUSSION V.1 General Discussion Total elemental concentrations vary with the changing texture of the parent materials. Lacustrine clay with the highest clay content shows the greatest concentrations of copper, iron, manganese and zinc owing to the a b i l i t y of clays, in p a r t i c u l a r i l l i t e and montmorillonite to adsorb and occlude trace elements onto and within t h e i r structure. In contrast, the aeolian sands with t h e i r high quartz content, have l i t t l e capacity for either s t r u c t u r a l i n c l u s i o n or surface adsorption; l a c u s t r i n e s i l t and g l a c i a l t i l l s o i l s reveal t o t a l elemental values that l i e within these extremes. Analysis of variance supports t h i s with a compositional v a r i a t i o n among parent materials accounting for well over 50% of the t o t a l data v a r i a b i l i t y (Table 16). Also, Duncan's New Multiple Range Test r e s u l t s , further substantiate te x t u r a l groupings, into l a c u s t r i n e c l a y , l a c u s t r i n e s i l t and g l a c i a l t i l l and aeolian sand (Tables 17 to 19). Similar t e x t u r a l groups were found by Doyle (1977, 1979) in the Rosetown region, Haluschak and Russell (1971) in Manitoba and Pawluk and Bayrock (1969) in Alberta. Although, t o t a l elemental concentrations between parent materials d i f f e r , generally s i m i l a r catenary trends are exhibited on a l l four parent materials. Thus surface elemental values increase downslope, ( t h i s being notable for aeolian sand, lac u s t r i n e s i l t and - 102 -g l a c i a l t i l l ) with a concomitant increase in both clay and organic matter content. Variation of t o t a l metal concentrations both within and between s o i l parent materials can therefore be related to t e x t u r a l changes. Accumulation of clays in depressions r e s u l t s from high winds (120 km./hr.), during the summer months when the s o i l i s often moisture d e f i c i e n t and dust storms are prevalent. The wind blown material accumulates in the depressions. La t e r a l translocation possibly plays a secondary role owing to lack of moisture. Also, deeper p r o f i l e s and r e s u l t i n g thicker horizons in the depressions, must be related to the deposition of wind blown material. Increased organic matter content of s o i l s in the depressions i s probably due to the wetter horizon producing greater crop y i e l d s , hence a more lush vegetation occurs in the depressions. Also, wind blown material deposited here contains large amounts of cut wheat. DTPA elemental concentrations vary with parent material type. Fe^, Mn^ and Zn^ concentrations are highest in A horizons of the more developed l a c u s t r i n e s i l t s o i l s of the Elstow s e r i e s . Cu^ concentrations are highest on the Rego Dark Brown Chernozems of the lac u s t r i n e clay s o i l s . Regosols on the aeolian sand have the lowest values as i s the case for t o t a l elemental concentrations. Analysis of variance shows that for Fe n, Mn^ and Zn^, the compositional v a r i a t i o n among parent material accounts for between 50-90% of the t o t a l data v a r i a b i l i t y . Duncan's New Multiple Range test r e s u l t s for DTPA metal concentrations do not show the d i s t i n c t i v e - 103 -groupings detectable for t o t a l elemental values. However, i t i s found that l a c u s t r i n e s i l t s o i l s always l i e within the group with the highest elemental mean concentrations and in contrast, aeolian sand s o i l s are for the most part found in the group with the lowest elemental mean values. G l a c i a l t i l l s o i l s most commonly occur in the same grouping as the l a c u s t r i n e s i l t s o i l s (Tables 17 to 19). Lacustrine s i l t s o i l s are more permeable than t h e i r l a c u s t r i n e clay counterparts. Their higher i n f i l t r a t i o n rate r e s u l t s in greater p r o f i l e development, with the appearance of a Bm horizon and a wider pH range. This increased development and increased weathering presumably accounts for t h e i r increased DTPA extractable iron, manganese and zinc contents in the A horizons, despite t h e i r lower t o t a l contents than the l a c u s t r i n e clay. As a r e s u l t , these elements show l i t t l e c o r r e l a t i o n between DTPA and corresponding t o t a l contents. This lack of c o r r e l a t i o n confirms that t o t a l s are not a r e l i a b l e indicator of available trace elements. In contrast, copper i s the only element studied showing p o s i t i v e c o r r e l a t i o n s between Cup and Cu y for both la c u s t r i n e s i l t and g l a c i a l t i l l s o i l s (Tables 22 to 25) . DTPA metal concentrations increase downslope in the surface horizons for the majority of s i t e s . These increases downslope are most marked for Fe^ and Mn^ on l a c u s t r i n e s i l t s o i l s (Figs. 15-19) and probably respond, as suggested for t o t a l elemental concentrations, to the accumulation of clays and organic matter in the depressions. Furthermore, DTPA extractable metal values are generally less uniform - 104 -than t o t a l values possibly r e f l e c t i n g differences in amounts and type of clay minerals (XRD shows evidence of translocation down p r o f i l e of montmorillonite clays in preference to i l l i t e types) and t h e i r greater s u s c e p t i b i l i t y to influences of pedological f a c t o r s . Thus, r e l a t i v e l y high DTPA extractable values are generally greatest in surface horizons, possibly related to high organic matter content, to the removal of elements from subsurface horizons by successive generations of crops and t h e i r subsequent immobilization i n surface layers and to a higher i n t e n s i t y of weathering than in the subsurface horizons. Both l a c u s t r i n e clay and aeolian sand s o i l s show high p o s i t i v e c o r r e l a t i o n s between Cu n and Fe^ in A horizons (Tables 21, 27). This possibly occurs as the less developed la c u s t r i n e clay s o i l s have a large proportion of t h e i r available copper and iron s t i l l remaining i n the surface horizons having undergone l i t t l e t r a n s location down p r o f i l e , a high percentage of which i s probably complexed by organic matter. Whereas for the aeolian sand s o i l s which have a very low clay content, high percentages of copper and iron are l i k e l y to be associated with organic matter, which i s present in r e l a t i v e l y large amounts. Most of the DTPA elemental concentrations have negative c o r r e l a t i o n s with pH and decrease as pH increases, down p r o f i l e . However, Cu^ concentrations do show s l i g h t increases down several p r o f i l e s (Figs. 10-14) on strongly calcareous l a c u s t r i n e clay s o i l s . In t h i s case, sequential analysis revealed high copper concentrations (25% of t o t a l s o i l copper) with sodium hypochlorite extractions for - 105 -the A horizon (Table 10) whereas copper extracted with 5% HC1 was a greater proportion (48%) of t o t a l s o i l copper in the C horizon. This suggests that adsorption of copper by clays i s playing a greater role lower in the p r o f i l e than i s complexing by organic matter. Sequential analysis, also shows that for g l a c i a l t i l l and aeolian sand s o i l s which have r e l a t i v e l y low clay and s i l t contents, approximately half of the copper in the A horizon i s associated with the organic matter f r a c t i o n . This i s appreciably more than for l a c u s t r i n e clay and l a c u s t r i n e s i l t s o i l s suggesting that in s o i l s low in clay and s i l t , organic matter plays a more s i g n i f i c a n t role in the scavenging of copper. S i m i l a r l y , A p o s t o l a t r i s and Douka (1970) working in Greece found that an increase in extracted copper occurs with an increase in organic matter content in s o i l s having organic matter contents greater than 1%. Further evidence of the important r o l e of organic matter in l a c u s t r i n e s i l t , g l a c i a l t i l l and aeolian sand s o i l s are the high c o r r e l a t i o n of Fe^, Mn^ and with organic matter (Tables 20 to 27). Sequential analysis also reveal high proportions of Fe, Mn and Zn for the ammonium oxalate extraction suggesting that amorphous iron oxides play an i n f l u e n t i a l role governing the a v a i l a b i l i t y of zinc and possibly manganese. This i s e s p e c i a l l y pronounced f o r l a c u s t r i n e s i l t and g l a c i a l t i l l s o i l s . In support of the above r e s u l t s , Shuman (1979) found that there was nearly as much zinc in the iron oxide f r a c t i o n s as in the clay f r a c t i o n . Several workers have p o s i t i v e l y associated zinc with clay - 106 -content and Kalbasi and Racz (1978), working on Manitoba s o i l s , suggested t h i s c o r r e l a t i o n resulted from amorphous iron oxides being clay sized. Oxalate values are high in the surface as well as the Bm horizons. Moore (1973), working on Scottish s o i l s also found that iron extracted with oxalate gave high surface values. This was attributed to more intense weathering of minerals at the surface and retardation of aging of iron oxides in the presence of organic matter (Schwertmann et a l , 1968). From sequential analysis r e s u l t s , (Tables 8-11) manganese extracted with 5% HC1 i s shown to play an important role accounting for up to 27% of t o t a l s o i l manganese. Berrow and M i t c h e l l (1980), working with well drained s o i l s found s i m i l a r r e s u l t s , with more acid soluble manganese than EDTA extractable. This was explained by the manganese being fixed i n an oxide form, rather than as an organic form, as i s the case with poorly drained s o i l s . Sequential analysis shows that about half the t o t a l manganese i s extracted by oxalate from the l a c u s t r i n e clay s o i l s (A horizon) compared to 70% for aeolian sand s o i l s (A horizon). This suggests that the lower clay content, the more important the amorphous iron oxide f r a c t i o n becomes in f i x i n g manganese. For zinc, sequential analysis r e s u l t s show that for aeolian sand s o i l s (A horizon) the amount of zinc extracted with 5% HC1 averages about 21%, whereas, with the other parent materials corresponding values ranged from 9 to 13%. Zinc i s often found to be d e f i c i e n t i n calcareous, high pH s o i l s , aeolian sands have a pH range - 107 -of 5-7 rendering zinc to be more a v a i l a b l e . However, t h i s i s not the case for DTPA r e s u l t s , where the extracting solution i s buffered at pH 7.3. D e f i c i e n c i e s of iron as well as zinc are well known to occur on calcareous s o i l s . Hodgson et a l (1966) , found zinc d e f i c i e n c i e s to be more widespread than copper d e f i c i e n c i e s due to the r e l a t i v e l y low l e v e l of zinc present as organic complexes (60% compared to 98% for copper) (Hodgson et a l , 1966). From Table 34 and 35, assembled by F o l l e t t and Lindsay (1970), a l l s o i l s are found to be amply supplied with available (DTPA extractable) iron and manganese. Lacustrine clay, g l a c i a l t i l l and aeolian sand s o i l s show low to marginal DTPA extractable zinc l e v e l s , and aeolian sand s o i l s also, show low corresponding copper l e v e l s , hence crops grown might respond favourably to treatment with greater y i e l d s and improved q u a l i t y . V.2 Predictions Analysis of variance has shown that the amount of compositional v a r i a t i o n between parent materials account for well over 50% of the t o t a l data v a r i a b i l i t y for both t o t a l s and DTPA elemental concentrations. These differences previously discussed, are probably mainly due to textural and mineralogical v a r i a t i o n s . Duncan's New Multiple Range test r e s u l t s , also, substantiate these te x t u r a l groupings. On the basis of s i m i l a r r e s u l t s , Doyle (1977) suggested that 10 samples per parent material, sampled at the midslope position, are adequate to produce stable geochemical maps. However, he used t o t a l elemental concentrations rather than available (DTPA extractable) metal concentrations. It i s probable, that considerably - 108 -Table 34 - C r i t i c a l Iron and Zinc DTPA S o i l Test Value ( F o l l e t t and Lindsay, 1970) Level Fe ppm Zn ppm low 0.0-2.0 0.0-0.5 marginal 2.0-4.5 0.5-1.0 adequate >4.5 >1.0 Table 35 - Estimated C r i t i c a l Copper and Manganese DTPA S o i l Test Value ( F o l l e t t and Lindsay, 1970) Level Cu ppm Mn ppm may require 0.0 - 0.2 0.0 - 0.1 treatment adequate >0.2 >0.1 - 109 -more than 10 samples per parent material be needed to produce r e l i a b l e maps showing the a v a i l a b i l i t y of trace elements in an area, as DTPA elmental concentrations are not as consistent as t o t a l elemental concentrations. It i s apparent from re s u l t s that the midslope p o s i t i o n provides a r e l i a b l e mean concentration for the o v e r a l l slope, for t o t a l elemental data in the surface horizons, however i t i s less r e l i a b l e for DTPA elemental values as r e l a t i v e l y greater increases occur at the base of the slope. When considering a l l the parent materials together, 73-85% of the t o t a l v a r i a b i l i t y in DTPA elemental concentrations can be accounted for by 8-11 independent variables in the respective regres-sion equations (Tables 28, 29) the highest percentage being for Cu^. However, the Index of Determination ( I 2 ) (Table 28) shows that the v a r i a b i l i t y in DTPA elemental concentrations i s best explained for the less developed lacustrine clay s o i l s , with 96.7% of the t o t a l v a r i a t i o n in Fe^ accounted for by three variables, pH, pH and Cu y. Regression equations for Cu^ and Zn^ for these s o i l s , include pH and organic matter c o e f f i c i e n t s ( s i g n i f i c a n t at the 0.05 level) whereas for Mn^, t o t a l elemental data alone explains 72.7% of the v a r i a t i o n , suggesting that pH and organic matter content probably exert a greater influence on the a v a i l a b i l i t y of Cu^ and Zn^ compared to Mn^. The more well developed enriched surface horizons of the l a c u s t r i n e s i l t s o i l s which show strong trends in DTPA elemental concentrations, reveal that a large amount (96-97%) of the v a r i a t i o n - 110 -in Fe^ and Zn^ can be accounted for. The regression equation for Zn^ comprises c o e f f i c i e n t s for pH, organic matter and Fe T, suggesting that i r o n , as well as, pH and organic matter content, plays an important role possibly influencing the a v a i l a b i l i t y of zin c . Variations in iron, extracted with DTPA, are generally, well explained by a r e l a t i v e l y low number of variables, t h i s i s e s p e c i a l l y so for lacu s t r i n e clay s o i l s where three variables, as mentioned above, account for a large amount of the t o t a l v a r i a t i o n . G l a c i a l t i l l and aeolian sand s o i l s show lower I values (Table 28) and therefore, less of the v a r i a t i o n in DTPA elemental concentrations i s explained, in comparison to the more f e r t i l e l a c u s t r i n e clay and la c u s t r i n e s i l t s o i l s . However, the amount of t o t a l v a r i a t i o n i n DTPA elemental concentrations accounted for in many of the regression equations i s generally found to be high (80-90%). Hence, the independent variables selected appear to answer for a large part of the v a r i a t i o n and should lead to r e l i a b l e prediction as to the a v a i l a b i l i t y of these trace metals. - 111 -CHAPTER VI CONCLUSION Highest t o t a l elemental concentrations are found in the Ap horizon of the Rego Dark Brown Chernozems, developed on lacu s t r i n e clay s o i l s , followed by la c u s t r i n e s i l t and g l a c i a l t i l l s o i l s , with s o i l s on aeolian sand exh i b i t i n g the lowest values. The A horizons of lacu s t r i n e s i l t s o i l s contain the highest amounts of DTPA extractable Fe, Mn and Zn, whereas, maximum extractable concentrations in the C horizon are associated with la c u s t r i n e c l a y s . DTPA extractable Cu values in both the A and C horizons are at a maximum in la c u s t r i n e clay s o i l s . Analysis of variance shows that the compositional v a r i a t i o n among parent materials, for t o t a l elemental data, accounts for well over 50% of the o v e r a l l data v a r i a b i l i t y . Duncan's New Multiple Range Test r e s u l t s , further substantiate these t e x t u r a l groupings into l a c u s t r i n e clay, l a c u s t r i n e s i l t and g l a c i a l t i l l and aeolian sand. Results are less conclusive for DTPA elemental data. Total elemental concentrations display a r e l a t i v e l y greater uniformity when considering both trends downslope and down p r o f i l e . However, at most s i t e s , highest t o t a l and available elemental concentrations occur i n the surface horizons at the base of the slope, being most pronounced for Fe^ and Mn^ in la c u s t r i n e s i l t s o i l s . Furthermore, s i m i l a r increases occur for clay and organic matter down catenas. - 112 -A quarter of t o t a l s o i l copper i s associated with the organic matter f r a c t i o n , i n surface horizons for la c u s t r i n e clay s o i l s , whereas approximately half of t o t a l copper in the C horizon i s associated with s o i l clays and carbonates. For s o i l s low in clay and s i l t , for example, g l a c i a l t i l l and aeolian sand s o i l s , the organic matter f r a c t i o n plays a more s i g n i f i c a n t role in scavenging s o i l copper. High c o r r e l a t i o n s are found between Fe D, MnD, Zn Q and organic matter, t h i s i s e s p e c i a l l y marked for l a c u s t r i n e s i l t and g l a c i a l t i l l s o i l s . Furthermore, a much greater proportion of DTPA extractable Mn and Zn occurs in the organic r i c h surface, compared to the more al k a l i n e C horizon, t h i s i s also true for iron but to a lesser extent. 50% of t o t a l s o i l manganese i s found to be associated with the amorphous iron oxide f r a c t i o n in l a c u s t r i n e clay s o i l s , whereas, in aeolian sand s o i l s the corresponding percentage i s 70%, suggesting that for s o i l s low in clay, the amorphous iron oxides play a more s i g n i f i c a n t r o l e i n f i x i n g manganese. Furthermore, an enrichment of Mn^ and Fe^ occurs in the Bm and/or Bt horizons for l a c u s t r i n e s i l t and g l a c i a l t i l l s o i l s which suggests that amorphous iron oxides possibly influence available s o i l manganese. These s o i l s also exhibit high proportions of zinc extracted with ammonium oxalate in the plough layer. However, iron and zinc are p r i n c i p a l l y found in the more c r y s t a l l i n e oxides and s i l i c a t e s , which contain high percentages of t o t a l s o i l iron and z i n c . - 113 -7. Thus, even though s o i l copper, iron, manganese and zinc are influenced by many pedological factors, operating separately and j o i n t l y , a large percentage of the t o t a l v a r i a b i l i t y , when predicting DTPA elemental concentrations, can be accounted for by the variables included i n the regression equations (Tables 28-33). The Index of Determination (I ) shows that the v a r i a b i l i t y i n DTPA elemental concentrations, i s best accounted for by the regression equations for the lacu s t r i n e clay s o i l s , with 93-98% of the t o t a l v a r i a b i l i t y explained. The more weathered lac u s t r i n e s i l t s o i l s , reveal that a large amount of the v a r i a t i o n i n Fe^ and Zn^, (96-97%), can be accounted for by the respective regression equations, but for Cu^ and Mn^, less of the t o t a l v a r i a b i l i t y can be explained. - 114 -BIBLIOGRAPHY Acton, D.F. and E l l i s , 3.G. 1978. The S o i l s of the Saskatoon Map Area, 73-B Saskatchewan. Inst. Pedology, Publication S4, Univ. of Saskatchewan, Saskatoon. Ahrens, L.H. 1954. The Log Normal D i s t r i b u t i o n of Elements. Geochim. Cosmochim. Acta. 5, 49-73. Apostolakis, C.G. and Douka, C.E. 1970. D i s t r i b u t i o n of Macro - and Micronutrients i n S o i l P r o f i l e s Developed on Lithosequences and under Biosequences i n Northern Greece. S o i l . S c i . Soc. Amer. Proc. 34, 290-296. Archer, F.C. 1963. Trace Elements in some Welsh Upland S o i l s . 0. S o i l S c i . 14, 144-148. Bayrock, L.A. and Pawluk, S. 1966. Trace Elements i n T i l l s of Alberta. Can. 3. of Earth S c i . 4, 597-607. Berrow, M.L. and M i t c h e l l , R.L. 1980. Location of Trace Elements i n S o i l P r o f i l e s : Total and Extractable Contents of Individual Horizons. Trans. Roy. Soc. Edin: Earth Sciences 71, 103-121. Black, C.A., Evans, D.D., White, 3.L. Ensminger, L.E. and Clark, F.E. (Eds.) 1965. Methods of S o i l Analysis. Agronomy, 9. Amer. Soc. Agron. Inc., Madison, Wisconsin, U.S.A. Connor, 3.3., Feder, G.L. Erdman, 3.A. and T i d b a l l , R.R. 1972. Environmental Geochemistry i n Missouri - A M u l t i d i s c i p l i n a r y Study. Proc. 24th Int. Geol. Cong. Symposium 1, 7-14. Christiansen, E.A. 1968. Pleistocene Stratigraphy of the Saskatoon Area, Saskatchewan, Canada. Can. 3. of Earth S c i . 5, 1167-1173. Christiansen, E.A. 1979. The Wisconsin Deglaciation of Southern Saskatchewan and Adjacent Areas. Can. 3. of Earth S c i . 16, 913. Christiansen, E.A. and Meneley. 1971. Geology and Groundwater Resources of the Rosetown Area, Saskatchewan. Sask. Res. Coun., Geol. D i v i s i o n , Map No. 14. de Boer, G.3. and Reisenauer, H.M. 1973. DTPA as an Extractant of Available S o i l Iron. Comm. in S o i l S c i . and Plant Anal. 4, 121-128. Doyle, P.O. 1977. Regional Geochemical Reconnaissance and Compositional Variations in Grain and Forage Crops on the Southern Canadian I n t e r i o r P l a i n , PhD Thesis. U.B.C. Doyle, P.3. and Fletcher, W.K. 1979. Regional Geochemistry Mapping in Areas Lacking Surface Drainages: Cu, Fe, Mn and Zn Content of Overburden and S o i l in South Central Saskatchewan, Can. 3. of Earth S c i . 16, 1086-1093. - 115 -Duncan, D.B. 1955. Multiple Range and Multiple F-tests. Biometrics 7, 1-42. E l l i s , B.G. and Knezek, B.D. 1972. Adsorption Reactions of Micronutrients in S o i l s In Mortvedt, 0.3., Giordano, P.M. and Lindsay, W.L. Micronutrients i n Agriculture, S o i l S c i . Soc. Amer., Madison, Wisconsin. E l l i s , 3.G. Acton, D.F. and Moss, H.C. 1970. The S o i l s of the Rosetown Map Area, Sask. Inst. Pedology, Pub. 53. Univ. of Sask., Saskatoon. E z e k i e l , M. and Fox, K.A. 1961. Methods of Correlation and Regression Analysis. 3ohn Wiley and Sons Inc., New York. 2nd p r i n t i n g . Fleming, G.A., Walsh, T. and Ryan, P. 1968. Some Factors Influencing the Content and P r o f i l e D i s t r i b u t i o n of Trace Elements i n I r i s h S o i l s . 9th Inst. Congr. S o i l S c i . Trans., Adelaide A u s t r a l i a . 2, 341-350. Fletcher, W.K. 1970. Some Applications of Background Correction to Trace Metal Analysis of Geochemical Samples by Atomic Absorption Spectrophotometry. Econ. Geol. 65, 588-591. Fletcher, W.K. 1971. HNO3/HCIO4 Digestion Procedure, Geochemistry Lab Sheet. U.B.C. Fletcher, W.K. 1981. A n a l y t i c a l Methods in Geochemical Prospecting. In Govett, G.V.S., Handbook of Exploration Geochemistry. Volume 1, El s e v i e r S c i e n t i f i c Publishing Co. New York. F o l l e t t , R.H. and Lindsay, W.L. 1970. P r o f i l e D i s t r i b u t i o n of Zn, Fe, Mn and Cu in Colorado S o i l s . Colo. Exp. Stn. Tech. B u l l . 110. Fortescue, 3.A.C. 1974b. Exploration, Geochemistry and Landscape. B u l l . Canadian Inst. Mining and Metallurgy. Nov. Fox, D.3. 1976. Elementary S t a t i s t i c s using MIDAS, Stat. Res. Lab. Univ. Michigan, U.S.A. 2nd E d i t i o n . F u r n i v a l , G.M. 1961. An Index for Comparing Equations Used i n Constructing Volume Tables. Forest S c i . 7, 337-341. Garrett, R.G. 1979. Sampling Considerations for Regional Geochemical Surveys. In Current Research, Part A, Geol. Surv. Can. Paper 79-1 A, 197-205. Geering, H.R. and Hodgson, 3.F. 1969. Micronutrient Cation Complexes in S o i l Solution: I I I Characterization of S o i l Solution Ligands and th e i r Complexes with Z n 2 + and C u 2 + . S o i l S c i . Soc. Amer. 33, 54-59. - 116 -Geering, H.R., Hodgson, G.F. and Sdano, C. 1969. Micronutrient Cation Complexes in S o i l Solution: IV. The Chemical State of Manganese in S o i l Solution. S o i l . S c i . Soc. Amer. Proc. 33, 81-85. Gough, L.P., McNeal, 3.M. and Severson, R.C. 1980. Predicting Native Plant Copper, Iron, Manganese and Zinc Levels Using DTPA and EDTA S o i l Extractants, Northern Great P l a i n s . S o i l S c i . Soc. Amer. 3. 44, 1030-1036. Greig, M. and O s t e r l i n , D. 1978. U.B.C. ANOVAR Manual, Analysis of Variance and Covariance, Computing Centre, U.B.C. Vancouver. Haby, V.A. and Sims, G.R. 1979. A v a i l a b i l i t y of Micronutrient Cations in Montana S o i l s . Montana Agric. Exp. Stn. B u l l . 706, 20pp. Haluschak, P. and Russell, A. 1971. Total Minor Element Content of S o i l s in the Portage Map Area of Manitoba. Paper presented at the Manitoba S o i l S c i . Meeting Dec 8-9th, Univ. of Manitoba, 8pp. Harnett, D.L. 1970. Introduction to S t a t i s t i c a l Methods. Addison-Wesley Publishing Company Inc., New York. Hawkes, H.E. and Webb, G.S. 1962. Geochemistry in Mineral Exploration. Harper and Row, New York 415 pp. Hodgson, G.F. 1963. Chemistry of the Micronutrient Elements in S o i l s . Advances in Agronomy. 15, 119-159. Hodgson, G.F., Geering, H.R. and N o r v e l l , W.A. 1965. Micronutrient Cation Complexes in S o i l Solution: I P a r t i t i o n Between Complexed and Uncomplexed Forms by Solvent E x t r a c t i o n . S o i l S c i . Soc. Amer. Proc. 29, 665-669. Hodgson, G.F., Lindsay, W.L. and T r i e r w e i l e r , G.F. 1966. Micronutrient Cation Complexing in S o i l Solution. II Complexing of Zinc and Copper i n Displaced Solution from Calcareous S o i l s . S o i l S c i . Soc. Amer. Proc. 30, 723-726. Hoffman, S.G. and Fletcher, W.K. 1979. Selective Sequential Extraction of Cu, Zn, Fe, Mn and Mo from S o i l s and Sediments. In Watterson, G.R. and Theobald, P.K. (Eds.), Geochemical Exploration 1978, Assoc. Explor. Geochem., Spec. Publ. 7, 289-299. Gackson, M.L. 1956. S o i l Chemical Analysis, Advanced Course Publ. Dept. of S o i l s , Univ. Wisconsin, Madison, Wisconsin. Genne, E.A. 1968. Controls of Mn, Fe, Co, Ni, Cu and Zn Concentrations in S o i l s and Waters. The S i g n i f i c a n t Role of Hydrous Mn and Fe Oxides. In Trace Inorganics in Water, Adv. Chem. Series, 73, 337-387. - 117 -Jenny, H. 1941. Parent Materials as a S o i l Forming Factor. In Factors of S o i l Formation, McGraw H i l l Co. Inc. New York and London. Denny, H. 1941. Topography as a Factor in S o i l Formation. In Factors of S o i l Formation, McGraw H i l l Co. Inc. New York and London. 3ohn, M.K. 1971. Influence of S o i l Properties and Extractable Zinc on Zinc A v a i l a b i l i t y . S o i l S c i . 113, 222-227. Kalbasi, M. and Racz, G.3. 1978. Association of Zinc with Oxides of Iron and Aluminium in Some Manitoba S o i l s . Can. 3. S o i l S c i . 58, 61-68. Khan, M.I.A. and Ryan, 3. 1978. Manganese A v a i l a b i l i t y of Calcareous S o i l s of Lebanon. Agronomy 3. 70, 411-414. King, O.K. 1976. The Evaluation of S o i l Series in Saskatchewan Landscapes. Masters Thesis, Dept. S o i l S c i . , Univ. Saskatchewan, Saskatoon. Kloosterman, B. and Lavkulich, L.M. 1973. A Method of S t a t i s t i c a l l y Interpreting S o i l Data for A g r i c u l t u r a l and Engineering Land Use. S o i l S c i . Soc. Amer. Proc. 37, 285-290. Lavkulich, L.M. (Ed.) 1981. Methods Manual, Pedology Laboratory, Dept. of S o i l S c i , U.B.C. 3rd p r i n t i n g . Lavkulich, L.M. and Wiens, 3.H. 1970. Comparison of Organic Matter Destruction by Hydrogen Peroxide and Sodium Hypochlorite and Its E f f e c t on Selected Mineral Constituents. S o i l S c i . Soc. Amer. Proc. 34, 755-758. Le Riche, H.H. and Weir, A.H. 1963. A Method of Studying Trace Elements in S o i l Fractions. 3. S o i l . S c i . 14, 225-235. Lindsay, W.L. 1972. Inorganic Phase E q u i l i b r i a of Micronutrients i n S o i l s . In, Mortvedt, 3.3., Giordano, P.M. and Lindsay, W.L. (eds.) Micronutrients in Agriculture, S o i l S c i . Soc. Amer. Wisconsin, U.S.A. Lindsay, W.L. 1978. Chemical Reactions Affecting the A v a i l a b i l i t y of Micronutrients in S o i l s . In Mineral N u t r i t i o n of Legumes i n T r o p i c a l and Subtropical S o i l s - Proc. of a Workshop held at CSIRO, Cunningham Laboratory, Brisbane, Melbourne, A u s t r a l i a . Lindsay, W.L., Hodgson, G.F. and N o r v e l l , W.A. 1966. The Physico-Chemical Equilibrum of Metal Chelates in S o i l s and Their Influence of the A v a i l a b i l i t y of Micronutrient Cations. Int. Soc. S o i l S c i . Aberdeen, Scotland. Trans. Comm. II, IV, 305-316. Lindsay, W.L. and Norvell, W.A. 1969. Equilibrum Relationships of Z n 2 + , F e 2 + , C a 2 + and H+ with EDTA and DTPA in s o i l s . S o i l S c i . Soc. Amer. Proc. 33, 62-68. - 118 -Lindsay, W.L. and Norvell, W.A. 1978. Development of a DTPA Micronutrient Test for Zinc, Iron, Manganese and Copper. S o i l S c i . Soc. Amer. 3. 42, 421-428. McKeague, 3.A. and Day. 1966. D i t h i o n i t e and Oxalate Extractable Iron and Aluminium as Aids in D i f f e r e n t i a t i n g Various Classes of S o i l . Can. 3. S o i l S c i . 46, 13-22. Miesch, A.T. 1967. Methods of Computation for Estimating Geochemical Abundance. U.S. Geol. Survey Prof. Paper, 574B, 15pp. Miesch, A.T. 1976. Geochemical Survey of Missouri: Methods of Sampling, Laboratory Analysis and S t a t i s t i c a l Reduction of the Data. U.S. Geol. Survey Prof. Paper, 954-A, 39pp. M i t c h e l l , R.L. 1955. Trace Elements. In Bear, F.E. (ed.), Chemistry of the S o i l , Reinhold Publishing Corporation, New York. M i t c h e l l , R.L. 1972. Trace Elements i n S o i l s and Factors that affect t h e i r A v a i l a b i l i t y . Geol. Soc. Amer. B u l l . 83, 1069-1076. Moore, T.R. 1973. The D i s t r i b u t i o n of Iron, Manganese and Aluminium in some S o i l s from N.E. Scotland. 3. S o i l S c i . 24, 162-171. Moss, H.C. 1965. A Guide to Understanding Saskatchewan S o i l s , Saskatchewan, Inst, of Pedology, Saskatoon, Sask. 79pp. Munsell Colour Co. 1954. Munsell S o i l Colour Charts. Munsell Colour Co. Inc., Baltimore, md. 21218. Nair, K.P.P. and Cottenie, A. 1971. A S t a t i s t i c a l Evaluation of the Int e r r e l a t i o n s h i p s between P a r t i c l e Size Fractions, Free Iron Oxide and Trace Elements. 3. S o i l S c i . 22, 203-209. Nair, K.P.P. and Cottenie, A. 1971. Parent Material - S o i l Relationships in Trace Elements-A Quantitative Estimation. Geoderma. 5, 81-97. Narrot, V. and Ravikovitch, S. 1969. Zinc A v a i l a b i l i t y i n Calcareous S o i l s I I I . S o i l S c i . 108, 30-37. Norvel l , W.A. 1972. E q u i l i b r i a of Metal Chelates in S o i l Solution. In Mortvedt, 3.3., Giordano, P.M. and Lindsay, W.L. (eds.), Micronutrients in Agriculture, S o i l S c i . Soc. Amer. Wisconsin, U.S.A. Oertel, A.C. 1961. Relation between Trace Element Concentrations in S o i l and Parent Material. 3. S o i l S c i . 12, 119-128. Pawluk, S. and Bayrock, L.A. 1969. Some C h a r a c t e r i s t i c s and Physical Properties of Alberta T i l l s . Research Council of Alberta B u l l . 26, 72pp. - 119 -Pedro, G. and Delmas, A.B. 1970. Les Principes Geochimiques de l a Di s t r i b u t i o n des Elements Traces dans Les Sols. Ann. Agron. 21, 483-518. Pu r i , S.C. and Mullen, K. 1980. Applied S t a t i s t i c s for Food and A g r i c u l t u r a l S c i e n t i s t s . G.K. H a l l Medical Publishers, Boston, Massachusetts. Reddy, M.R. and Perkins, H.F. 1974. Fixation of Zinc by Clay Minerals. S o i l S c i . Soc. Amer. Proc. 38, 229-231. Reddy, M.R. and Perkins, H.F. 1974. Fixation of Manganese by Clay Minerals. S o i l S c i . 121, 21-24. Schwertmann, U., Fischer, W.R. and Papendorf, H. 1968. The Influence of Organic Compounds on the Formation of Iron Oxides. Trans. 9th Int. Congr. S o i l S c i . 1, 645-655. Scott, V.S. 1971. S u r f i c i a l Geology of Rosetown Map Area, Saskatchewan, Geol. Surv. Canada. B u l l . 190, 40pp. Sedberry, Or., O.E., Karim, H. and M i l l e r , B.O. 1978. The P r o f i l e D i s t r i b u t i o n of Total and DTPA Extractable Manganese in Selected S o i l s from the Major Mineral S o i l Areas in Louisiana. Comm. in S o i l S c i . and Plant Analysis, 9, 389-401. Shuman, L.M. 1979. Zinc, Manganese and Copper i n S o i l Fractions. S o i l S c i . 127, 10-17. Shuman, L.M. and Anderson, O.E. 1978. Relationship of Extractable S o i l Manganese to S o i l Properties. S o i l S c i . Soc. Amer. 0. 42, 666-667. S i l l a n p a a , M., 1978. A v a i l a b i l i t y of Secondary and Micronutrients to Crops. FA0 B u l l . ( S o i l s ) No. 37, 51-55. Sinha, M.K., Dhi l l o n , S.K. Dhi l l o n , K.S. and Dyanand, S. 1978. S o l u b i l i t y Relationships of Iron, Manganese, Copper and Zinc i n Alkali n e and Calcareous S o i l s . Aust. 0. S o i l Res. 16, 19-26. Snedecor, G.W. and Cochran, W.G. 1967. S t a t i s t i c a l Methods. Iowa State Univ. Press. 6th e d i t i o n . Soltanpour, P.N., Khan, A. and Lindsay, W.L. 1976. Factors a f f e c t i n g DTPA-Extractable Zn, Fe, Mn and Cu from S o i l s . Comm. in S o i l S c i . and Plant Analysis, 7, 797-821. St. Arnaud, R.0. and Mortland, M.M. 1963. C h a r a c t e r i s t i c s of The Clay Fractions i n a Chernozemic to Podzolic Sequence of S o i l P r o f i l e s i n Saskatchewan. Can. 0. S o i l S c i . 43, 336-349. St. Arnaud, R.0. and Whiteside, E.P. 1964. Morphology and Genesis of a Chernozemic to Podzolic Sequence of S o i l P r o f i l e s in Saskatchewan. Can. 0. S o i l S c i . 43, 88-89. - 120 -Stevenson, F.V. and Ardakani, M.S. 1972. Organic Matter Reactions Involving Micronutrients in S o i l s . In Mortvedt, 3.3., Giordano, P.M. and Lindsay, W.L. (Eds.) Micronutrients in Agriculture, S o i l S c i . Soc. Amer., Madison, Wisconsin. Stewart, 3.W.B. and Tahir, M. 1971. Estimation of Available Zinc i n P r a i r i e S o i l s . Proc. Int. Symposium on S o i l F e r t i l i t y Evaluation, New Delhi. 1, 983-991. Swaine, D.O. and M i t c h e l l , R.L. 1960. Trace Element D i s t r i b u t i o n i n S o i l P r o f i l e s . 0. S o i l S c i . 11, 347-368. Thompson, M. and Howarth, R.3. 1976. Duplicate Analysis i n Geochemical P r a c t i c e . Analyst, 101, 609-698. T i d b a l l , R.R. 1976. Chemical Variation of S o i l s i n Missouri Associated with Selected Levels of the S o i l C l a s s i f i c a t i o n System. U.S. Geol. Survey Prof. Paper, 954-B, 16pp. Udo, E.O., Bohn, H.L. and Tucker, T.C. 1970. Zinc Adsorption by Calcareous S o i l s . S o i l S c i . Soc. Amer. Proc. 34, 405-407. V i e t s , F.G. 1962. Chemistry and A v a i l a b i l i t y of Micronutrients i n S o i l . 0. Agric. Food Chemistry. 10, 174-178. Walmsey, M., Utzig, G., Void, T., Moon, D. and Van Barnevald, 0. (Eds.) 1980. Describing Ecosystems in the F i e l d . RAB Tech. Ppr. 2., Land Management Report No. 7, B.C. Ministry of Environments, B.C. Ministry of Forests. Yaalon, D.H., Oungreis, C. and H.K. Oisky. 1972. D i s t r i b u t i o n and Reorganization of Manganese in Three Catenas of Mediterranean S o i l s . Geoderma. 7, 71-78. APPENDIX A DATA LIST 122 PARENT MATERIAL SITE NO. LOCATION (UTM) PIT NO. MINIMUM HORIZON DEPTH (CM) MAXIMUM HOB 1ZON DEPTH (CM) HORI ZON SAMPLE NO. TOTAL Cu (PP«> TOTAL fm (X) TOTAL Mn (PP") TOTAL Zn (ppm) pH ORGANIC MATTER (X) DTPA Cu (opa) DTPA ft (pp") OTPA Mn ( D O T ) DTPA Zn (po«) LC O170S1 0 10 AP 260 24.41 2.62 2.29 10.57 344.33 9.74 95.28 0.34 7.35 2.85 LC 017061 0 0 AP 105 25.29 2.46 2.38 14.69 306.70 6.24 84.21 0.56 7.40 2.80 LC 017061 10 30 CK 1 291 23.75 2.80 2 .26 • 13.08 299.77 5.04 44 .94 0.39 7 .80 1.63 LC 017O61 10 30 CK1 104 25.62 2.64 1.61 17.14 249.97 4 .78 63.76 0.32 7.80 1.52 LC 017061 30 60 CK2 326 23.56 3. 13 3.26 12 . 52 303.54 5.42 76.40 0.21 7.65 LC 017061 30 60 CK2 151 25.85 3.32 2.50 1 1 .89 264.46 5.08 83.88 0.37 8.05 LC 017061 2 0 8 AP 456 26 . 53 2.81 3 .99 8.59 266.97 9.58 83.33 0.56 7 .40 3.00 LC 017061 2 0 0 AP 050 26.88 2.49 1.81 10.41 251.19 10.90 77 .61 0.53 7.60 3.20 LC 017061 2 a 25 CK1 4 9 9 27.79 3. 15 2.76 10.35 28B.91 5.48 82.61 0.34 7.70 1.81 LC 017061 2 e 25 CK 1 500 27 . 4 3 3. 15 2.76 10.92 274.29 5. 13 82.61 0.60 7.60 1 .67 LC 017061 2 25 60 CK2 293 23.75 2.80 2.42 12.80 306.90 4.70 86.29 0.34 7.90 LC 017061 2 25 60 CK2 003 28. 15 3.02 2.15 16.60 270.23 7.61 0.77 7.80 LC 017061 3 0 s AP 498 27:06 2.97 2.81 6.91 281.60 9.24 82.61 0.60 7.40 2.75 LC 017061 3 0 0 AP 497 28. B9 2.80 2 .98 9.49 274.29 9.24 86.96 0.60 7.35 2.78 LC 017061 3 8 3 5 CK 1 496 27.79 2.97 2.8 1 12 . <3 274.29 5 . 9 9 62.61 0.46 7.35 1.98 LC 017061 3 8 35 CK 1 255 24.49 3. 17 2.32 14 .93 307.05 8.90 86.29 0.40 7.60 1.90 LC 017061 3 35 65 CK2 106 25.63 2.81 2 . 4 7 18.37 294.29 5.77 81 .20 0.32 7.60 LC 017061 3 35 65 CK2 123 24.49 3. 17 2 .64 14.11 257 . 4 7 5.63 65 . 6 1 0.23 7.90 LC 017061 4 0 12 APK 102 25.63 2.64 2 .35 9 . 12 310.25 9.50 61 .80 0.45 7.50 2.75 LC 017061 4 0 0 APK 274 23.58 2.62 3 . 23 10.30 337.89 8.52 89 . 39 0.39 7 .60 2.71 LC 017O61 4 12 45 CK 1 298 24 .74 2.97 2 . 3 9 14.12 318.13 5.57 94 .38 0.69 7 .60 1 .81 LC 0176O1 4 12 45 CK 1 153 25.85 3. 15 2 . 5 3 11 .61 264.46 5 . 9 3 60.31 0.25 7 .75 1.52 LC 0176O1 4 45 70 CK2 152 . 25.85 2.97 2.53 11.33 264.46 5.59 84.77 0.54 7.95 LC 017601 4 45 70 CK2 156 23.53 3. 15 2.51 12 . 1B 289.02 5.76 95.91 0.29 7.80 LC 017601 5 0 12 AP 49S 34.00 3.85 3 .80 15.98 370.07 6 .85 85 .29 0.76 7.20 2.75 LC 017601 5 0 0 AP 4 9 4 29.26 3.50 2.81 13.90 292.57 S SB 117.39 0.72 7.20 3.61 LC 017601 5 12 20 BMK 493 28. S3 3.85 2.72 12 .72 277.94 6.33 88.70 0.76 7.35 2 .57 LC 017601 5 20 45 CK 1 492 28.53 3.67 2.72 12 . 4 3 292.57 4.96 86.96 0.67 7 .35 2.64 LC 017061 5 45 70 CK2 297 25.40 3.50 2.42 13 . 80 336.84 4 .52 89.89 0.30 7 .60 LC 017O61 5 45 70 CK2 103 25.63 3.52 2. 17 16 . 16 263.66 6.60 75. 19 1 .93 7.70 LC 2 935743 ' 0 ' 7 AP 272 23.91 2.60 3 .07 11.41 270.31 4 .87 96.54 0. 34 7.70 1.93 LC 2 935743 1 0 0 AP 082 24 . 16 2.64 1 .93 12.25 239.34 7.42 65.56 0.49 7.60 2.36 LC 2 935743 ' 7 30 CK 1 273 23.58 2.80 2.39 13 . 26 325.96 5 04 87 .60 0-22 7.70 1.76 LC 2 935743 1 7 30 CK 1 352 26. 14 3. 13 2 . 90 11 . 8 8 323.95 5.95 94.92 0.34 8.00 1 .83 LC 2 935743 1 30 60 CK2 202 27 .09 3.32 2 .99 13.88 338.03 4 . 74 89.39 0.21 7.90 LC 2 935743 ' 30 60 CK2 155 25.85 2 .97 2 .53 11 .89 264.46 5.25 82. 10 0.21 7 .95 LC 2 935743 2 0 8 AP 154 25 .85 2.97 2.69 10. 76 272.02 5.93 84.77 0.41 7.65 1 .90 LC 2 935743 2 0 0 AP 457 27 .66 2.64 2.98 7 .70 266.97 5 . 3 1 76.67 0.64 7 .60 2.32 LC 2 935743 2 a 30 CK 1 084 25.77 2.81 1 .96 19.59 230.47 5.77 66. 17 0.36 7.65 1.77 LC 2 935743 2 e 30 CK 1 41 1 25 .87 3. 15 2.07 11.10 340.00 4.72 90.40 0.29 7.70 1.59 LC 2 935743 2 30 60 CK2 484 27 .43 3. 15 2.93 12. 13 274.29 3.77 80.00 0.34 7.B5 LC 2 935743 2 30 60 CK2 244 25. BO ' 1.75 2.29 12.94 292.25 4 .74 77.30 0.22 8.05 LC 2 935743 3 0 10 AP 161 25. 10 3. 15 2.44 11 .33 260.69 5.93 61 .57 0.25 7.65 1 .90 LC 2 935743 3 0 0 AP 162 25. 10 2 .BO 1.83 9 .63 253.13 5 . 59 64.54 0.50 7 .65 2.04 LC 2 935743 3 10 30 . CK 1 27 1 25.85 3. 17 2 . 32 15.79 333.91 7. 19 69.39 0.45 7.70 1.72 LC 2 935743 3 10 30 CK 1 445 27.66 3. 17 3.19 10.96 226.74 4.28 79. 17 0.E1 7.60 1.55 LC 2 935743 3 30 65 CK2 083 27 .36 3. 17 2.50 19.59 288.98 5. 11 84.21 0.49 7.60 LC 2 935743 3 30 65 CK2 303 26.95 3.15 2.06 14 . 75 307.20 7.13 106.97 0.30 7.70 - 123 -PARENT MATERIA SIT L MO. E LOCATIOI <UTM) M PI Nb T. MINIMU HOP. 120 DEPTH (CM) 4 MAX1MU 1 MOB 120 DEPTH (CM) 4 HORIZOf i SAMPL NO. TOTAL Cu (PP») TOTAL Fa (X) TOTAL Mn (PPI>) TOTAL Zn (ppa) pH ORGANIC MATTER (X) OTPA Cu (oon) DTPA F a (rem) DTPA Mn (DD1») OTPA Zn _ (pp«t) LC 2 935743 4 0 15 AP 458 28.46 2.46 3.04 8 OC 260.97 4.62 89.51 0.51 7.5C 2.02 LC 2 B3S743 4 0 0 AP 078 26 . 4 2.64 1 .86 13.71 230.47 6.76 65.56 0.63 7 .5C 2.40 LC 2 93S743 4 15 35 CK 1 085 25.77 2.81 1 .84 16 .66 221.61 5.61 61.95 0.40 7 .45 1 .91 LC 2 935743 4 15 35 CK 1 080 25.77 2.64 1 .84 16. 16 221.61 7 .09 62 .56 0.40 7.50 1.98 LC 2 935743 4 35 58 CK2 471 25.91 2.97 2 .93 11 .54 248.37 6.51 86.49 0.30 7.50 LC 2 935743 4 35 58 CK2 081 2S.77 2.64 2.23 18.61 265.93 5.61 75.79 0.45 7.70 LC 2 935743 5 0 8 AP 327 27 .28 2 .78 2.50 8.67 329.14 6.47 91 .69 0 . 5 1 7.40 1 .98 LC 2 935743 5 0 0 APO 382 68 . 12 2.96 .74 9.31 329.70 6 . 12 89.89 0.55 7.40 1.90 LC 2 935742 5 8 20 BM 305 25.26 2.44 2 .34 10.67 336.46 5.57 86.09 0.47 7.25 2.29 LC 2 835742 5 20 55 CCA 195 23.74 2 . 10 2.49 11.19 304.23 6.82 85.81 0.65 7.50 2.07 LC 2 935742 5 20 55 CCA 196 22.07 2 . 10 .2.39 12.59 300.47 5.77 64 .92 0.47 7.50 LC 2 935742 5 55 65 CK 197 19.39 1 .57 2.02 12.94 262.91 2.27 75.98 0. 17 7.60 LC 3 918113 1 0 8 AP 006 24.91 2 . 58 1.76 18.42 321.26 14.70 69.62 1 .63 6.90 3.72 LC 3 9181 13 1 0 0 AP 031 24 . 18 0.36 1 .65 25.45 296 .00 2 1 . 10 66.87 0.69 7.00 4 .07 LC 3 918113 1 8 20 CCA 1 354 23.46 3.32 2.36 16.30 351.6 1 11 .69 94.92 0.44 7 . 15 2.97 LC 3 918113 1 8 20 CCA 1 140 21 .OO 2.64 1.96 11.47 267.13 4 .75 74 .96 0. 27 7.60 2.31 LC 3 918113 1 20 35 CCA2 473 19.34 2.80 1 . 72 10.95 251.97 2.91 60.54 0.25 7.70 LC 3 918 113 1 35 60 CK 033 23.23 2.49 1 .74 14 .49 324.67 4 .50 66.87 0.43 7.90 LC 3 918113 2 0 8 APK 280 21 .44 2.45 1 . 86 8 . 35 374.27 7.13 76.76 0.65 7 .60 2.92 LC 3 918113 2 0 0 APK 183 22.07 1 .40 1 .88 9.44 394 . 37 6.04 75.96 0.43 7.55 3.07 LC 3 918113 2 8 16 BMK 054 23.00 2.31 1 . 16 11.10 240.58 5.63 52.54 0.24 7.75 2.25 LC • 3 91B1 13 2 16 25 CCA 1 420 18.77 2.27 2.21 10.50 362.26 3.67 64 . 17 0.25 7.60 1.59 LC 3 918 113 2 25 45 CCA2 227 18.29 2.46 1 .69 13 .89 364.95 4 .62 64.36 0.20 7 .60 LC 3 918 113 2 45 60 CK 472 18.24 2. 10 2 . 13 8.28 305.96 2 .05 64.87 0. 25 7 .35 LC 3 918113 3 0 10 AP 357 21 .78 2.36 2 .26 8.45 434.57 1 1 .69 90.40 0. 79 7.50 3.60 LC 3 918113 3 0 0 AP 3 5 3 23 . 4 6 1.91 2.42 8.67 4 3 4 . 5 7 13.99 94 .92 0.76 7.40 3.97 LC 3 918113 3 10 30 CCA 14 1 24 . 55 2.64 2.31 9.12 336.25 10.55 B3.68 0.62 7.50 3.25 LC 3 9 18 113 3 10 30 CCA 108 24.96 3. 17 1 . 6 8 12.94 304 .93 5.60 69. 17 0.36 7.70 2.55 LC 3 918113 3 30 55 CK 474 24 .81 1 .92 3. 19 8.28 287.96 2.40 77 .64 0. 25 7.70 LC 3 918113 3 30 55 CK 032 25.81 2.67 1.81 14 . 19 .328.48 4 . 15 66 .66 0.9S 7.80 LC 3 918113 4 0 8 AP 358 21 . 78 2.62 2.26 7.55 402.96 9 . 4 4 90.40 0.79 7.65 3.04 LC 3 918113 4 0 0 AP 025 26 . 77 1 .96 1.71 9.06 261.70 6.05 62.69 1 .33 7.85 2.66 LC 3 918 113 4 8 30 CK 1 284 23.09 2.80 2 .07 13.08 344.33 S .74 0.34 7.80 2.05 LC 3 918113 4 8 30 CK 1 051 24 .29 3.02 1 .96 13.42 29 1.87 6.86 69.25 0.44 B.OO 2.03 LC 3 918113 4 30 60 CK2 391 23. 12 3. 15 1 .76 11.10 367.15 5.25 65. BB 0.34 8.20 LC 3 9181 13 5 0 15 Ap 169 21 .86 5.42 2.25 45.31 283.35 13.21 8S. 15 0.91 6.60 4 .60 LC 3 9181 13 5 0 0 AP 270 23.26 5.98 2 . 19 4 5 . 14 333.91 15 . 74 98.32 1 .03 6.40 4.35 LC 3 918113 5 15 25 CCAG 039 27. 10 6.93 2.05 19.43 324.87 4 .40 75.22 1 .01 7 . 5 5 1.90 LC 3 918113 5 25 65 CKC 070 27.06 5.51 2. 17 27.76 361.66 1 .58 90.23 0.57 7.50 LC 3 918113 5 25 65 CKG 373 24 .96 4 .90 1.95 16.91 440.58 1 .40 90.40 0.40 7.90 LC 221894 0 12 AP 143 25.85 2.64 2.50 7.94 283.35 7 . 74 64 .77 0.54 7.60 2.62 LC 221894 0 0 AP 282 24.74 2.62 2.55 10.02 306.90 6.26 116.85 0.64 7.45 2.57 LC 221894 12 50 CK 1 076 27.06 2.64 1 .96 15. 18 269.47 5.94 72. IB 0. 72 7.50 2. 15 LC 221894 12 50 CK 1 M7 24.94 2.67 1 .59 14.81 219.35 5.98 65.67 0.8 1 7.80 LC 221894 50 60 CK2 >46 25.59 3.20 1 .50 13.42 192.81 5.80 56.72 1.01 7.60 LC 221894 0 6 JP 343 26.56 2.84 1.81 12.95 245.88 6.51 74.63 0.69 7.70 2 . 5 5 LC (2 1894 : 0 0 IP • IS 24.77 2.80 2.98 7.20 265.66 6.65 1O0.0O 0.7 1 7.50 2.45 LC i 21894 ; 8 SO :KI i K2 26.56 3.20 2.05 12.26 291.87 5.10 77.61 0. 16 7 .90 1.B0 - 124 -.. - . PARENT MATERIAL ISITE luo. LOCATIC* (UTM) PIT NO. MINIMUM HORIZON DEPTH (CM) MAXIMUM HORIZON OEPTH (CM) HORIZON SAMPLE NO. TOTAL Cu ( H>l TOTAL Fa (X) TOTAL Mn (pp»> TOTAL Zn (pp»> PH ORGANIC MATTER (X) DTPA Cu <PP»> DTPA F« (con) DTPA Mn (ppi.) DTPA Zn (ppn) LC 231694 2 30 £5 CK2 328 25.80 3.30 2.SO 1 1 .88 339.39 6.07 96.88 0.30 7.80 LC 221894 2 30 es CK2 41E 26.28 3.32 3.06 11.70 265.66 5.07 87.SO 0.29 7.60 LC 221994 3 0 8 AP 362 34 .80 2.62 3.68 9.66 363.46 8.74 65.88 0.53 7.60 2.59 LC 221894 3 O 0 AP 361 25 . 13 3 .62 3.43 9.06 371.36 9.79 88.59 0.53 7 .55 2 .80 LC 221894 3 8 30 CKI 012 28. 15 2 .84 3.34 15.70 297.80 6.23 81 .£2 1 .59 7 .80 2.46 LC 221894 3 30 60 CK2 011 27 . IB 2.67 1 . 16 14 . 19 297.BO 5.88 87.02 0.52 7.90 2.12 LC 221894 3 30 60 CK2 173 21 .02 3. 15 2.59 11.61 24 1.80 5.59 65. 15 0.41 7.85 LC 221894 4 0 8 AP 172 21 .02 2 .62 2.53 7.93 264.46 6.94 69.84 0.58 7.40 3. »1 LC 221894 4 0 0 AP 436 26 .90 2.64 3 .93 5 .04 265.14 6.33 93.75 0.77 7.50 3.34 LC 221894 4 8 12 B_ 437 26 . 15 2.73 3.89 3.70 277.94 5.31 95.83 0.92 7 .60 2.93 LC 221894 4 12 30 CCA 058 27.21 2. 84 1 .67 1 1 .57 268.88 6.S1 7 1 .64 0.36 7.85 2.34 LC 221894 4 30 SO CK 060 26.24 3.02 3. 17 11 .34 302.49 5.63 81 . 19 0.24 7 .90 LC 221894 4 30 60 CK 059 26.56 3 .02 3.23 13.49 290.11 4 .57 62.39 0.26 8.00 LC 221894 5 0 8 AP 423 24 .40 2.62 2.81 7.80 297.86 7.34 .67.50 0.59 7.30 2.73 LC 221894 S 0 0 AP 422 24.77 2.80 2.76 7 .50 289.81 8.74 63.33 0.67 7.40 2.69 LC 221894 5 8 30 CK 1 182 23.41 2.90 2.36 9 .00 319.25 6 .OO 88.49 0.30 7.50 2. 17 LC 221894 5 30 60 CK2 421 24.02 2.97 2.8S 8.90 277.74 6. 12 83 . 33 0. 38 7 .60 LC 221894 S 30 60 CK2 482 26 . 33 3.50 2.69 1 1 .54 285.26 5. 13 86.96 0.46 7 .90 LC 5 933967 1 0 8 APK 030 26 .45 2.67 3 . 32 13 . 28 324.87 9.34 83.S8 0.95 7 .90 2.77 LC 5 933967 1 0 0 AP 1 13 24 . 16 2.64 2.56 15.18 301.61 7.42 89. 39 0.49 7.60 2..04 LC 5 933967 1 8 30 CKI 186 34 .08 1 .57 2.52 13.64 338.03 6.65 84 .92 0.34 7.70 t .90 LC • 5 933967 1 8 30 CK 1 434 35. IS 3 . 17 2.76 10.07 28 1.76 5.82 79 . 17 0.39 7.85 LC 5 933967 1 30 60 CK2 040 35.48 3 . 20 3.03 14 .81 279.75 5.98 75.23 0.53 8.05 LC 5 933967 2 0 8 APK 459 27.37 3 64 3.B9 7.11 295.16 7 .02 99.46 0.60 7 .50 2.75 LC 5 933967 2 0 0 AP 001 28.4 7 2 .67 1 .85 12 .08 301.4 1 8.48 109.23 0.69 7 .60 LC 5 933967 2 8 30 CK 1 04 1 25.B1 3.20 2. 17 1 1 .34 315.85 5.63 97.91 0.49 7.90 2. 1« LC 5 933967 2 8 30 CKI 07B 34 .80 2.81 . 1 .63 16.65 230.47 5.20 58.35 0.52 7.80 LC 5 933967 2 30 50 CK2 077 25.77 2.81 1 .64 15.67 239.34 4 .95 56.54 0.32 7.90 LC 5 933967 3 0 10 APK 4 12 24 .86 2.97 1 .90 • 9.60 368. OO 7. 17 90.40 0.42 7.40 2.21 LC 5 933967 3 0 0 AP 444 26.53 2.64 3 . 10 7 .70 270.63 6. 16 B7.50 0.47 7.50 2.22 LC S 933967 3 10 30 CK 1 055 23.32 3.02 1 .65 12.03 233.50 6.51 £2 . 10 0.32 7 .85 1.99 LC 5 933967 3 10 30 CKI 159 23.53 3. 15 2 .40 12.74 287. 13 6 . 10 79.78 0.25 7.80 LC 5 933967 3 30 65 CK2 170 23 . 53 3 . 32 2.44 14.16 298.47 5.59 81 .57 0.25 8 .OO LC 5 933967 4 0 10 APK 368 23.58 3. 17 2.42 6.60 373.67 10. 27 95.64 0.40 7 .60 2.31 LC 5 933967 4 0 0 AP 267 32.62 2.99 2 .29 12 .50 365.7 1 9.24 69.39 0.40 7.65 2.24 LC 5 933967 4 10 30 CKI 139 24 .23 3. 17 2.53 12 .94 287. 13 5.80 64.77 0. 36 7 .85 1 .76 LC 5 933967 4 10 30 CKI 265 22.62 3. 17 2.33 15 .97 373.67 7 .87 74 . 19 0. 27 7.90 LC 5 933967 4 30 58 CK2 266 23.91 3.34 2.42 14 .93 353.79 7 .70 B4 .92 O. 36 B.OO LC 5 933967 5 0 10 AP 150 25.85 2 .97 2.53 9. 35 302.34 8.80 89 . 34 0. 50 7.60 2.35 LC 5 933967 5 0 0 AP 451 26.53 2.99 2.98 9. 19 393.57 7 .36 81 .67 0.47 7.50 2.47 LC 5 933967 5 10 30 CKI 487 25.60 3, 15 3.76 11 .83 292.57 5.82 83.61 0.51 7.70 t .88 LC 5 933967 5 10 30 CKI 468 25.60 3.32 2.76 12 .43 310.86 6.85 80. OO 0.51 7.70 LC s 933967 5 30 62 CK2 067 24 .80 3.20 1 .89 16 . 19 2B2.77 7.39 106.77 0.65 7.70 AS 4303B3 1 8 0 AO 516 4.49 0.53 0.53 18 .97 82.79 5. 13 31 .38 1 .63 6.30 2.33 AS 4 30383 1 0 0 AO 121 3.92 0.35 0.55 21 . 17 150.81 6.68 35.75 3.33 6.30 2.59 AS 430383 1 0 20 AC 335 3.03 0. 17 0.49 9.95 75.64 2.97 18 .88 0.25 6.25 O.S2 AS '30383 1 20 52 C_ 004 3.34 0. 1B . 0.24 7 .55 £8.58 2 .42 29.4 1 0.60 6.40 AS 430383 2 6 0 AO 115 3.37 0.35 0.50 19.70 91 .85 5.63 30.39 1 .20 6 .30 3. 18 - 125 -PARENT MATED J A SIT NO. E LOCATIC* (UTH) PIT NO. MINIMU* HORIZOf DEPTH (CM) MAXIMUM 1 HORIZDK DEPTH (CM) HORIZON SAMPLE NO. TOTAL Cu <Ppl»> TOTAL F« (X) TOTAL Mn <PP>|) TOTAL Zn (PPn) PH DRCANIC MATTER (X) DTPA Cu (pwi) DTPA F. (oo«> DTPA Mn <K » > DTPA Zn (oo«) AS 430383 2 0 0 AO 114 3.37 0. 18 0.46 ,-17.63 84.60 6.37 26.82 0.94 6.25 2.34 »s 430382 3 0 20 AC 024 3.23 0. 18 0.40 11 .47 46.93 3 . 11 19. 10 0.69 5.95 AS 430382 2 20 82 C_ 505 2.62 0.35 0 . 4 9 9.77 57.35 3.74 15 . 4 9 0. 17 6.00 AS 430382 3 to 0 AO 5C2 2.46 0.53 0.57 17 .48 70.23 3. 14 17.27 0.46 6.20 1.32 AS 430383 3 0 0 AO 508 4.87 0.35 0.66 13.51 117.71 8.04 26.94 1.54 7.40 3.75 AS 430382 3 0 40 AC 4 38 2.27 0. 1 8 0. 34 12.44 42 .42 2.74 10.OO 0.30 6.20 AS 430382 3 40 53 C_ 242 2.61 0. 18 0.53 6.65 75.54 2.63 17.98 0.04 6. SO AS 430382 4 10 0 AO 374 2.68 0.53 0.50 21 .74 108.31 7.00 24.4 1 1.67 6.25 3.59 AS 430382 4 0 0 AO 127 4.2S 0. 18 0 . 5 4 29.40 117.70 8.36 26.82 3. 16 6.60 4.01 AS 4303B2 4 0 30 AC 075 2.26 0. 18 0.40 9.48 79.76 3.81 15.04 0. 12 6.20 0.67 AS 430383 4 30 50 C_ 348 3.35 0.35 0.60 8 .03 96.97 4.63 19.33 0. 13 6.20 AS 4 30383 5. 10 0 AO 281 3.30 0. 18 0.60 9.46 101.05 4 .35 7 1.91 0.39 6.75 1.25 AS 4 30383 5 0 0 AO 038 3.23 0. 20 0.54 6.00 119.13 3 .00 26.87 0. 10 6.45 2. 12 AS 430383 5 0 25 AC 300 2.97 0.26 0.58 6. 12 69.83 3.61 22.47 0.07 6.BS 0.49 AS 4 30383 5 25 53 C_ 247 3.27 0. 18 0.49 2.80 101.73 1 .75 16.63 OOO 7 .00 AS 2 575304 1 10 0 AO 552 3.50 0.53 0.66 37 . 25 77 .03 4 .95 33. ee 0.97 5.70 1 .64 AS 3 575304 1 0 0 AO 279 2.91 0. 35 0.68 19.48 5.39 1 .42 6.00 1.74 AS 2 575304 1 0 20 AC 521 7 .49 0.35 0.57 12.36 7 1 .99 3.08 17 .87 0. 17 5.90 0.52 AS 2 575304 1 20. 52 C_ 069 1.93 0. 18 0.60 6.48 30.08 3.69 30.08 0. 16 6.50. AS 2 575304 2 10 0 AO 275 1 .94 0.36 0.65 19 76 95.40 3.65 29.32 0.60 6. 10 1.56 AS 2 575304 2 0 0 AO 524 3.74 0. 35 0.6B 21 .84 93.69 5. 13 26. ei 1 .07 6. 10 1 .91 AS 2 575304 2 0 40 AC 536 3.50 0.44 0.76 11.21 75. 19 3.94 20.68 0.21 6.20 0.45 AS 2 575304 2 40 54 C_ 556 3.B7 0. 35 0167 9.46 60.46 3.76 21 .36 0. 13 6.30 AS 2 575304 3 12 0 AO 276 1 .94 0.35 0.66 36 . 17 137.21 5.23 31.29 1 .63 5.70 1.70 AS 2 575304 3 0 0 AO 569 3.52 0.53 0.76 37 .25 91 .79 6. 14 28 . I B 1 .39 5.60 1.81 AS 2 575304 3 0 8 AE 425 • 3.37 0.35 0.75 26.67 84 .53 5.73 33.33 0.60 5.55 1 . 10 AS 2 575304 3 8 70 BMG 02 3 8 .07 0. 36 0.69 36.23 207.56 11 .76 47.76 3.79 6. 10 3.30 AS 2 575304 3 8 70 BMG 404 4 .70 0.53 0.74 28 . 50 135.00 3.94 33.45 0.75 5.70 1.55 AS 2 575304 3 70 83 CG 145 4.20 0. 35 0.53 12.35 98 . 23 3.11 21.42 O.OO 6.25 0 . 4 4 AS 2 575304 4 8 0 AO 532 5.25 0. 35 0.63 25.87 133.03 6 .67 39.91 0. B6 5.90 1.98 AS 2 575304 4 0 0 AO 405 4.70 0.70 0.74 39.00 154 OO 19.34 49.72 2 .60 5.60 3.38 AS 2 575304 4 0 8 AH 1 54 3 3.50 0. 35 0.79 31 .27 139.37 6 .93 31.75 0.60 6.20 1 .60 AS 2 57 5304 4 8 40 AH2 406 3.70 0.35 0.66 12.60 108 .OO 3.50 27 . 12 0.25 6 . 10 1 .24 AS 2 575304 4 40 57 C_ 551 2.91 0.35 0.70 7.61 7 1 .52 1 .88 19.05 0. 13 6.50 AS 2 575304 5 4 0 AO 560 4.57 0.53 0.76 38.66 146.29 5.46 40.91 1 .69 6.30 2.12 AS 2 575304 5 0 0 AO 246 4.25 0.53 0.66 18 OS 133. 16 7.70 38. €5 2. 16 6.60 2.62 AS 2 575304 5 0 40 AH 24 1 5.88 0.35 0.73 38. 1 9 193.37 8 .04 44 .94 1 .57 5.90 2.52 AS 2 575304 5 0 40 AH 553 2 .09 0.39 0.73 33.93 88 .02 3.48 23 .68 0.37 5.70 0.77 AS 2 575304 5 40 72 C_ 015 2.91 0.36 0.55 19.93 97 .46 2.08 18.OO 0.6O 6. 10 AS 3 733442 0 8 AH 390 4.36 0.53 0.68 8 . 1 5 146.86 7 .00 0.92 6.80 1 . 5 5 AS 3 733442 0 0 A_ ' 377 3.03 0. 18 0.67 6.04 114.01 6. 12 27. 12 0.57 7.20 0.96 AS 3 733442 e 20 AE 491 5. 12 0. I B 0.74 5.62 109.71 4.11 18.70 0. 17 6.70 0.66 AS 3 733442 20 50 BH 529 5.24 0.35 0.83 15.81 137.50 5 . 13 24.26 0.47 6.30 1. 18 AS 3 733442 50 85 BC 158 3.77 0.53 0.78 5.95 151.12 2.54 22.41 0.04 6 . BO AS 3 733442 I E5 78 CK 1 002 4 .65 0. 18 0.81 12 .49 223.80 19.21 0.08 7. BO AS 3 733442 2 0 10 AH 144 3 . 6 8 0. 18 0.63 8.62 128.45 5.63 21 .42 0.05 6.40 0.58 AS 3 733442 2 0 10 AH 443 1.90 0. I B 0.81 6.53 90. 70 3.59 20.00 0.26 6 .OO 0.45 AS 3 733442 2 0 0 A_ 442 2.65 0.35 0.83 8.53 124 .34 6. 16 23.33 0.68 6.60 1 . 18 - 126 -( P A R E N T IMATCRIALI JLOCATIONf (UTM) MINIMUM HORIZON DEPTH (CM) MAXIMUM HORIZON DEPTH (CM) SAMPLE NO. ( P P « ) TOTAL (X) T O T A L Mn ( P P > ) ( P P » ) D T P A Cu (PP») O T P A fm (PP"> ( P P " > 4.63 O. 16 0.66 16.30 162.20 9.00 31.051 1.51 0.35 179.96 2.40 17.02T 0.261 2.01 0.09 0 19.94 191.55 7.69 27. 0.901 0<3 0.66 31.52 182.86 8.88 30.46 ' 47l 0-53 0.80 31 .52 201.14 5.97 49.72] 2.271 4 .92 0.35 0.89 17 .77 166.51 2.S6 24.55] 0.34| 2 . 10 0.37 0.79 7.02 126.37 1.37 17.69 0. 13 0.66 22 .92 164.97 8.56 28.66 1 .08 4.25 0. 18 136.88 4.62 26.07 J 0. 0.73 30. 19 197.53 9.09 29.83 0.971 5.63 0.35 2 1 .36 0.08 1 3.02 0. 18 103.58 2.54 19.44| 0. 5.25 0 28.66 223.73 6.83 40.62 1 . S3 I 5 0.35 0.73 18.11 231.88 4 .37 34.35| O 6.00 0.53 0.82 29.89 220.06 9.58 45.35 2. 401 5.60 0.93 10.32 168.71 2.90 27 .21 I 0. 5.03 0.53 146.86 2.97 24.41f 0.81 I 151 .06 9 4.20 0.53 0.87 10.32 50.06 0.401 146.71 7.68 28. 12J O. 4 .66 O. 18 125.8 2.27 28.83 I 0.O4 I 5.61 O. 35 95.03 2.40 22.961 0. 23.491 0. 13 I 4 .53 0.45 0.66 21 .26 162.44 8.74 33.61] 1.12 1 5.31 0.53 0.9 1 19 . 20 149.94 8.43 0.90 14.04 160.91 5.46 38 . IB] 0. 0 12.60 4.69 0.53 37.061 0. 17| 0.78 14 .77 213.33 9.44 44 .94 1 . 101 0.6S 28 . 74 187.18 9.24 O 12.61 164.57 4.61 _0 4 .62 0.53 44.29 I 0. 7.49 0.53 1 19.77 3.57 0.91 40.24 167.16 12 .66 44.94] 0. 55.32 2.01 I 663S00 ' 663500 5.60 0 1 .04 35.35 0.90 27 .78 45.35) 0. 6.40 0.70 0 16. 7Q 242.48 15.Q6 53.631 2. 164.57 5, 35.96] 0. 6 .40 0.78 32.36 0.34 | 5.22 0 0. 78 21 .68 221.97 11.89 0.89 IB .62 232.73 6 .65 44.94 2.501 0.61 23 .76 38.65] 0.68 I 49.44] 2.37 1 10.32 13S.31 2.39 23.64T 0. 1 3 I 3.50 0. ^90. 132.03 2.00; 1 .93 0.53 0.45 19.43 86.64 2.64 16.84| 0. 2.92 Q T 5 0.44 20.36 91.99 3.87 16.72 1 .01 I 0.51 8.96 65.70 1 .57 17 . 16 I 0. 131 2.25 O. 16 4.50 0.35 0.66 5.33 0.58 2 1.93 0.52 36.46 62.79 0.86 68.43 3.77 82.29 7.02 157831 O. 18.25 0.60 20.87 1.31 - 1 2 7 -PARENT MATERIAL SITE NO. LOCATION (UTM) PIT NO. MINIMUM HORIZON DEPTH (CM) MAXIMUM H0R120N DEPTH (CM) HORIZON SAMPLE NO. TOTAL Cu (ppw) TOTAL Fa <%> TOTAL Mn (ppm) TOTAL Zn (ppm) pH ORGANIC MATTER (X) DTPA Cu (pom) DTPA Fa (ppm) DTPA Mn (ppm) DTPA Zn (pom) AS 5 223327 3 25 50 AC 413 3.36 0.35 0.52 10.20 82 CO 1 .57 0. 17 6.40 0.99 AS 5 223327 2 SO 60 C_ 223 2 .00 0. 18 0.43 4 .55 48 .02 1 .22 13.86 0.04 6.40 AS 5 223327 3 0 30 AH 224 2 .66 o.oo 0.45 16.89 84.51 3. 15 19.84 0.70 5.95 1.79 AS 5 223327 3 0 0 A_ 259 2.91 0. 18 0.46 20.83 6.33 44 .69 2 . 16 6. 15 1 .69 AS 5 223327 3 30 45 AC 128 3.27 0. 18 0.45 12.35 77 . 24 2.29 19.67 0.00 6.50 0.89 AS 5 223327 3 45 60 C_ 248 2.29 0. 18 0.46 7.29 59. 19 2.05 16. 18 0.07 7 .00 AS 5 223327 4 0 45 AH 174 4 . 39 0.35 0.56 31 . 15 113.34 5.76 32.27 1 .34 6.40 1.86 AS 5 223327 4 0 45 AH 269 3.88 0. 18 0.60 15.28 115.26 6. 16 28.61 0.40 6.40 1 .20 AS 5 223327 4 0 0 A_ 260 3.23 0.35 0.50 18.05 99.36 9.93 27 .71 1 .89 6. 10 3.07 »S 5 223327 4 45 69 C_ 261 5. 17 0.35 0. 17 12. 15 103.35 6.33 26.37 0.32 6.20 AS 5 223327 5 0 40 AH 262 6. 14 0.53 0.7B 25 .69 99.38 12 .66 44.69 0.40 6.05 2.45 »s 5 223327 5 0 0 A_ 349 8 .04 0.70 0.80 25.69 131.88 11.19 30.88 0.42 6. 10 2. 35 AS 5 223327 5 40 50 AC 350 6.70 0.53 0.79 19.45 128.78 8.35 29.84 0.22 6. 15 1 .45 AS 5 223327 5 50 66 C_ 027 6.45 0.71 0.46 15.70 115.51 9 .69 26.S7 0.90 6.70 LS ' 396549 1 O 10 AP 065 13.93 1 .07 1.13 74 .02 300.72 22 .66 68 .06 2.34 5 .60 4.11 LS 1 396549 ' 0 0 A_ 022 14.64 1 .07 1 .06 72.45 279.75 25.95 63. BE 2.58 6. 10 3.85 LS 1 396549 1 10 21 BMI 064 12.63 1 .07 1 . 38 15.27 201.66 10.73 50.75 0. 18 6.60 1 .69 LS 1 396549 1 21 40 BM2 066 12.31 1 .24 1 . 16 13.42 183.97 •4.57 37. 13 0.36 5.80 1 . 3B LS 1 396S49 1 40 60 CCA 021 16. 18 1 . 78 1 .25 15.70 227.4 1 6 .65 45.01 0.60 8.25 LS ' 396549 2 0 10 AP 249 11.43 0. 88 1 .34 10.42 266.36 23 .96 76.40 1 .OB 6.80 3.28 LS 1 396549 2 0 0 A_ 250 11 . 10 0.53 1 .27 12 .94 270.06 33.22 59.33 0.95 6.65 3. 18 LS ' 396549 2 10 15 BM 4S6 10.61 0.35 1 .40 36.46 206.46 7 .02 46.96 1.31 6.90 1.29 LS 1 396549 2 15 30 BMK 485 12 .43 1 .40 1 .37 8.88 24 1.37 2.23 65.22 0.21 7 .65 1.11 LS 1 396549 2 30 70 CCA 396 13.44 1 .66 1 . 35 10.80 260 .00 3.06 94 .92 0.27 8 . 10 LS 396549 3 0 10 AP 306 13.47 1 .22 1 . 36 16.31 347.43 13.91 75.51 1.63 6.60 3.63 LS 396549 3 0 0 A_ 146 12.92 1 .06 1 . 34 26.46 294.69 24 .6? 72.28 1 .76 6.65 3.49 LS 396549 3 10 20 BMI 304 1 1 .45 1 .05 1 .53 23 . 22 256.00 6.09 67 .42 0.13 6.05 1.01 LS 396549 3 20 30 BM2 194 10.03 0.70 1.41 16.79 2 17.84 7 .00 49. 16 0.09 6.35 1 .OO LS 396549 3 30 70 CCA 149 14 .22 1 .93 1 .49 1 1 . 76 260.69 2.46 58 .90 0.09 7.75 LS 39654 9 4 0 10 AP 455 13 .64 1.41 1.45 77 .04 274.29 29.09 70.83 3 .08 5 .40 4 .30 LS 1 396549 4 0 0 A_ 424 12.01 1 .06 1 .47 71.11 317.99 32 .51 70.83 2.65 5.40 4.38 LS ' 396549 4 10 20 BM 1 384 12.40 1 . 22 1.72 17.51 266.67 10. 14 72.32 0.53 6.45 1 .69 LS 1 396549 4 20 30 BM2 257 11 .79 1 . 58 1.27 10.07 244.47 6.67 46 .06 0.09 7 . 10 1 . 14 LS 1 396549 4 30 45 CCA 483 10.97 1 . 12 1 .25 7.69 230.40 2.57 43.46 0. 17 7 .SS LS 1 396549 4 45 68 CK 381 1 1 .39 1 . 22 1 .20 8.45 251 .51 3. 15 56 .05 0.48 7.85 LS 1 396549 5 O 12 AP 1 11 14.37 1 .06 1 . 18 41 . 16 264.63 29.01 62.57 1 .74 6. 10 2.93 LS 396549 5 0 0 A_ 056 15.55 0.89 1 .03 18.87 240.58 20. 76 53.73 1.51 6 . 70 3.42 LS 396549 5 12 20 BM 057 10.36 1 .07 0.89 B. 10 166.28 4 .04 36.61 0. 24 7 .60 1 .90 LS 396549 5 20 35 BMK 453 12.BB 1 .23 1 .56 8 .00 187.49 3 .42 46.67 0. 26 7.50 1 .39 LS 396549 5 35 45 CCA 4 54 12 .88 1 .23 1 .49 7.41 234 .06 2.74 4 1 .67 0. 17 7.55 LS 396549 5 45 68 CK 408 14.11 1 .75 1.4 1 9.60 256.OO 2 . 45 59.66 0.21 7 .50 LS 2 29436B ' 0 8 AP 215 13.63 0.53 1 . 57 31 .48 345.74 26.23 67 .04 1 .20 5.80 2 .60 LS 2 294366 1 0 0 A_ 216 13.63 0.53 1 .54 25.88 326.53 34 .97 66. 15 0.99 5.90 2.80 LS 2 294366 1 8 20 BMI 217 13.30 0.53 1 .97 13.99 284.27 6.12 67.93 0. 17 6. OS 1 .45 LS 2 294368 ' 20 25 BM2 2 IB 13.30 0.87 1 .54 108.47 280.43 .34 49. 16 0.09 6.65 1 .20 LS 2 294368 1 25 58' C_ 433 15.02 1 .58 1 .45 . 7.41 261.64 2.40 37 .50 0.21 7.80 LS 2 294368 2 0 6 APK 168 17.57 2. 10 1 .66 5.50 279.58 7.96 62.75 0.33 7 .70 2 .45 LS 2 294366 2 0 0 A_ 018 20.06 1 .60 1 .55 9.06 333.90 11 .24 93 .62 1 .20 7.90 3.01 - 128 -PARENT MATERIAL SITE NO. LOCATIOK (UTM) PIT NO MINIMUM HORIZO* DEPTH (CM) MAX I HUH HORIZOK DEPTH (CM) H0RI20I. SAMPLE NO. TOTAL Cu (PPM) TOTAL F* <X> TOTAL Mn (ppn) TOTAL Zn (pp») PH ORSANIC MATTER (X) DTPA Cu (ppn) OTPA fm (pp«) DTPA Mn (ppm) OTPA Zn (pp») LS 2 294366 2 6 16 BMK 020 2 2 . 0 0 2.31 1.26 13.69 243.66 2.77 56.66 1 .96 8. 10 2. 12 LS 2 294366 2 16 30 CCA 1 019 23.94 2.31 1.49 15.70 292.39 3.46 60.02 0.43 B.20 LS 2 294366 2 30 52 CCA2 409 21.84 2.62 1 .90 12.30 380.00 3.32 72.33 0.29 7.80 LS 2 294366 3 0 10 AP 410 21 .84 2.62 1 .90 18.00 420.00 19.24 86.76 1 . 30 6.50 3.70 LS 2 294366 3 0 0 A_ 230 19.28 2.11 1.82 17 .36 403.36 25.67 60.45 1 .98 6.60 3.63 LS 2 294366 3 10 20 BM 091 28 .26 3.69 1.43 22.04 221.61 10.89 54 . 14 0.32 6.25 2. 87 LS 2 294366 3 20 35 CCA 1 090 24 .96 1 .93 1 .38 10.29 248.20 2.64 57 . 14 0. 23 7.65 LS 2 294366 3 35 50 CCA2 166 23.53 1 .92 1.80 9.07 347.58 3.56 62.75 0.08 7.65 1.52 LS 2 294366 4 0 6 AP 165 18.82 1 .92 1 .82 50.97 347.58 36 .94 73.50 1 . 16 6. 10 4.18 LS 2 294366 4 O 0 A_ 164 19.45 2. 10 1.77 53.81 321 . 13 55.87 75.29 1 .53 5.90 4.49 LS 2 294366 4 6 15 AB 163 23.53 1 .75 2.47 10. 14 279.58 5.77 85. 15 0.22 7.55 1 .65 LS 2 294366 4 15 . 30 BM 092 22 .96 1 .85 1 . 18 10.04 202.1 1 2.31 45. 11 0. 20 7 .60 1.2S LS 2 294366 4 30 60 CCA 005 23.30 1 .96 1 .49 11 .77 301.4 1 2.25 58.82 0.52 7.80 LS 2 294366 5 0 10 AP 267 16. 14 1 .57 1.71 20.04 381.75 19. 13 69.89 1 .59 6.50 4.41 LS 2 294368 5 0 0 A_ 288 18 . 14 1 .57 1.7 1 20.87 361.75 16.52 85.39 1 .66 6 .60 4.93 LS 2 294368 5 10 20 ABI 692 04 .51 2.45 .61 13.36 351.81 9.74 66.29 0.66 7 .60 3.06 LS 2 294368 5 20. 28 BM 346 20.78 2.78 1.61 13. 16 329.70 4 .90 82 . 70 0.34 6.75 1.24 LS 2 294366 5 26 70 CCA 1 175 17.88 3.32 1 .80 20.96 287. 13 4 .40 71.71 0.58 9. 10 LS 2 294368 5 70 80 CCA2 176 17.57 3.06 1 .76 15.72 275.80 3.39 67.23 0.21 S. 10 LS 3 093257 1 0 10 AP 094 13.88 0.68 0 . 9 4 4 1 .63 203.88 2 1 . 4 4 51 . 13 0.99 5.75 2. 15 LS 3 09 3257 0 0 A_ 095 13.98 0.86 1 . 17 39. 18 265.93 23 .09 60. 15 0.94 5.60 2.36 LS 3 093257 10 25 BMI 096 12. 9R 1 .06 1 .49 36.74 258.64 8 .25 51 . 13 0. 32 5.66 1 .46 LS 3 093257 25 30 8M2 093 11 .98 1.41 1. 14 26 . 9 4 223.36 5 .94 42 . 1 1 0.23 6.00 1 . 16 LS 3 093257 1 30 65 CCA 177 15.05 1 .92 1 .47 12.46 270.42 3.05 72.40 0, 15 7.50 LS 3 093257 2 0 10 AP 176 12.04 1 .OS 1 .46 31 . 15 300.47 23. 70 68.83 0. 74 6.30 2. 14 LS 3 093257 2 0 0 A_ 439 11.75 1 .06 1 .49 • 23.70 334.06 18. 62 54 . 17 0.94 6 .00 2.36 LS 3 093257 2 10 17 BM1 323 13. 14 1 .57 1 .47 1 1 .56 237.71 8.57 54.83 0.21 6.40 1 .22 LS 3 093257 2 17 25 . BM2 322 13.47 1 .57 1.36 10.60 237.71 5.25 47 .64 0.21 7. 15 1 .06 LS 3 093257 2 25 40 CCA 1 32 1 13.47 1.39 1 .23 6.67 245.03 2 .27 48.54 0.21 7 .70 LS 3 093257 2 40 70 CCA2 179 12.71 1 .40 1 . 4 3 11 .04 247.89 2.54 55.42 0.17 8 .OO LS 3 093257 3 0 8 AP 333 11 . 73 1 . 22 1 . 25 19.26 310.30 20.96 64 .74 0.93 6.30 2.43 LS 3 093257 3 0 0 A_ 101 1 1 .65 1 .06 1 .01 29.40 235.79 32 .53 45.11 0 . 9 9 6. 15 2 .66 LS 3 093257 3 8 20 BMI 203 13.04 1 .05 1 .65 10 . 4 9 244. 13 5 .07 51 .84 0. 13 7. 10 1 .20 LS 3 093257 3 20 30 BM2 073 14.17 1 .76 1.01 10. 18 230.47 4 . 92 33.68 0.12 7.40 1.30 LS 3 093257 3 30 52 CCA 074 1 1 .27 1 .24 0.62 7 .40 166.42 2.11 28 . 27 0.24 7 .80 LS 3 093257 4 0 10 AP 160 11 .70 1 .22 1 .35 36.8 1 307.98 25.40 67 .04 0.63 5.80 2.38 LS 3 093257 4 0 0 A_ 205 10.03 0 . 3 5 1 .35 23.78 307.98 18 .36 62.57 0. 93 5.80 2.52 LS 3 093257 4 10 15 BM 295 11 .68 1 .40 1.5B 11 .97 243.38 10.44 62.92 0. 17 6.35 1 .49 LS 3 093257 4 15 40 BMK 446 13.26 1 .23 1 .72 7 . 70 201.14 3.42 51 .67 0.21 7 .60 0.97 LS 3 093257 4 40 52 CCA 013 13.59 i.24 1 . 18 6. 15 238.24 2 .94 40.21 0.43 8.00 LS 3 093257 5 O 10 AP 4 19 1 1 .64 1 .40 1 .36 51 .CO 322.01 26 . 23 62 .50 2.18 5.60 3.94 LS 3 093257 5 0 0 A^ 4 18 1 1 .26 1 .22 1 .45 4B .00 301.89 29.73 75.00 1 .68 5 .60 3.73 LS 3 093257 5 10 20 AH 235 11 .67 1 .06 1 .43 16.67 345.74 15.06 66. IS 0.14 6.60 1 .62 LS 3 093257 5 20 35 AE 028 13.23 0.89 0.56 13.59 221.99 1 1 .07 50.75 0.52 6.90 1.51 LS 3 093257 5 35 60 BT 029 11 .94 1 . 24 1 . 19 15.70 184.10 3. 29 47.76 1 . 72 7.75 1.34 LS 4 329211 1 O 10 IP • 35 16.89 1.4 1 1 .63 35.56 322.01 32.51 79. 17 1.41 5.60 3.86 LS 4 329211 1 0 0 t_ 564 15.82 1 .50 1 .69 31 .52 365.7 1 25.60 66. 18 1.13 E .OO 3.96 LS 4 329211 1 10 30 3M1 157 14 . 12 1 .22 1.87 13.59 264.46 9.82 68. 12 0.17 6.70 1.41 - 129 -PARENT MATERIAL SITE NO. LOCATION (UTM) PIT NO. MINIMUM HORIZON DEPTH (CM) MAXIMUM HORIZON DEPTH (CM) HORIZON SAMPLE NO. TOTAL Cu (ppm) TOTAL Et) (%) TOTAL Mn (ppm) TOTAL Zn (ppm) PH ORGANIC MATTER (X) DTPA Cu (ppm) DTPA Fa (ppm) DTPA Mn (Ppm) DTPA Zn (ppm) LS 4 329211 1 30 52 BM2 596 14. 16 1 .29 1.94 12.80 237.71 7.85 56.76 0.25 7.00 1.2S LS * 32921 1 1 52 63 CCA 593 20. 18 2.12 2. 11 12.23 347.43 4.35 58.76 0. 17 7 .60 LS 4 329211 2 0 8 AP 594 14 . 16 1 . 39 1 .60 72.53 336.46 39.25 67.80 2.36 5.40 4. 13 LS 4 329211 2 0 0 A_ 511 16.84 1 .57 1 .57 57.49 34 1 .96 4 1.07 76.60 3.31 5.40 3.62 LS 4 329211 2 8 30 BMI 565 13.71 1 .24 1.31 10.03 204.80 9.39 54.55 0. 17 6.40 1.5C LS 4 329211 2 20 40 BMS 507 14 .97 1 .47 1.81 11.50 251.97 6. 16 52.77 0.39 6. SO 1.18 LS 4 329211 2 40 55 CCA 388 16 .08 1.75 1.55 9.30 309.18 4.55 67 .80 0.37 7.75 1. 14 LS 4 329211 2 55 73 CK 481 30. 11 3. 10 1.76 10.65 325.49 2.74 56.53 0.21 7.80 LS 4 329211 3 0 6 AP 016 17. 15 1 .06 1 .28 78.37 3S5.56 37.94 75.62 2.63 5.65 4.7E LS 4 329211 3 0 0 A_ 592 15.93 1 .36 1 .65 71.11 402.29 31 .57 74 . 12 3. 10 5.30 1.01 LS 4 329211 3 6 30 AB 363 14 .07 1 .40 1.43 57.36 383.21 17 .49 75.93 0.97 5.40 3.76 LS 4 329211 3 20 35 BMI 595 13.45 1 .04 2 .24 19.34 256.00 10.41 72.32 0.21 6.30 1.32 LS 4 32921 1 3 35 60 BMS 563 14 .07 1 .59 1.61 14 .90 288.91 6.32 54 .55 0. 13 6.50 1. IS LS 4 3292 11 3 60 68 CCA 417 18.77 3.37 2. 13 9.30 322 .01 3.85 62.50 0. 17 7 .65 LS 4 329211 4 0 8 AP 54 1 13.99 1 .35 1 .76 54 .45 381.43 25.60 76.01 3.02 6.70 6.25 LS 4 329211 4 0 0 A_ 407 15.45 1 .33 1.55 54 .00 436.00 34.97 90.40 3. 16 5.60 6.25 LS 4 32921 1 4 8 31 AB 534 14.69 1 .05 1.87 12.65 337.42 7.70 7 1 .66 1 .46 7.05 4.79 LS 4 3292 1 1 4 21 35 BMI 554 18.99 1 .59 2.20 12.32 290.74 6. 14 68 . 16 0.42 7. 10 3.20 LS 4 329211 4 35 55 BM3 598 15.58 1 .57 1.67 9.96 274.29 3.93 63.28 0.46 7.40 1 .SB LS 4 3292 11 4 55 62 CCA 286 13.54 1 .22 1 .32 6.96 261.99 2 .09 53.93 0.09 7.75 LS 4 329211 5 0 8 AP 597 16.38 1 .23 1 .86 12.52 347.43 13.14 80.45 0. 96 7.30 4 .59 LS 4 329211 5 0 0 A_ 389 16.75 1 .22 1 .46 21 .00 425.12 19.24 95.63 1.51 7 .00 S.05 LS 4 329211 5 8 25 BM IK 401 11 . 76 0.88 1.41 6.O0 296.00 4.20 76.84 0. 29 6.00 1.31 LS 4 329211 5 35 50 BM2K 014 14 .24 1 .07 1 .58 11.47 261.70 4 .50 54 .01 0.52 7.90 2.30 LS 4 329211 S 50 68 CCA 468 14.60 1 .40 1.51 7.99 280.77 1 .88 43.24 0.21 7.75 LS 5 264427 1 0 8 AP 037 13.55 1 .07 1 . 18 57 .83 292.39 23.74 59.70 1 . 74 5.55 3.59 LS 5 264427 1 0 0 A_ 036 13.55 0. 98 1 . 10 57.83 267.12 27 .25 54 .93 1 .64 6.60 3.66 LS 5 264427 8 25 BMI 035 13.55 0.71 1 .74 15.70 281.56 5.88 6S.25 0.65 6.50 1.73 LS 5 264427 35 50 BM3 034 12.90 0.89 1.31 10.26 205.75 4 .67 4 1.79 0.86 7 .00 1.51 LS 5 264427 50 56 CCA 576 14 ,07 1 .42 1 . 5 8 6.88 329.14 2'. 56 47 .27 0.29 7 .60 LS 5 264427 2 0 6 AP 572 15.47 1 . 35 1 .63 42 . 99 292.57 22 . 19 63 .64 1 .09 5.60 2.71 LS 5 264427 2 0 0 A_ 120 13 .06 1 .33 1.45 46.53 272. 18 26 . 39 64 .36 1 .39 5 .80 3. 18 LS 5 264427 2 6 25 AH 1 17 11.10 1 .06 1. 38 26.46 235.40 13.01 55.42 0.4 1 6 . 10 2.45 LS 5 264427 2 35 45 BM 1 19 12.74 1 .06 1 .49 12.35 264.63 7 . 56 57.31 0.05 6.65 1 .59 LS 5 264427 2 45 53 CCA • 1 18 1 1 .43 1 .06 1. 10 6.47 183.91 2.11 4 1.13 0. 14 7.60 LS • 5 264427 3 0 7 AP 1 16 12.4 1 1 .06 1 .32 57.55 294.25 23.92 67.04 1 .64 5.50 3.28 LS 5 264427 3 0 0 A_ 56 1 12.31 1 . 24 1 .64 60. IB 314.51 27 .31 77.27 1 .56 5.50 3.60 LS 5 264427 3 7 35 AH 535 12.59 1 .05 2. 12 18.40 236.40 6.04 67 . 12 0. 36 6.30 1.49 LS 5 264427 3 35 40 BMI 167 11.29 1.40 1.25 12. IB 170.01 3.39 39.44 0.08 6.90 1 . 14 LS S 264427 3 40 55 BM3 299 11.22 1 .05 1.21 9.73 187. 14 2 .44 63.93 0. 13 7.40 0.75 LS 5 264427 3 55 63 CCA 007 13.91 1 .07 1.31 8.76 189.51 1 .73 43.81 0.77 7.90 LS 5 264427 0 8 AP 528 14.97 1 .22 1 .45 77 .61 338.36 35.94 76.60 3.48 5.35 4.10 LS 5 264427 0 0 A_ 237 14 .69 1 .06 1. 36 55.55 355.15 39.36 77.75 3.70 5.40 4 . 18 LS 5 264427 8 35 AH 226 1 1.64 0.35 1.42 15.04 368.79 4 .90 75.08 0. 13 6.65 1.52 LS 5 264427 35 45 BM 1 225 10.97 0. 70 1.82 17 . 14 303.48 2.45 67 .04 0.09 6.60 1 .34 -S 5 364427 45 65 BM2 555 1 1 .96 1 .06 1 .94 15. 19 2B8.92 5.38 54 . 5 5 0.17 6.60 0.87 LS 5 264427 65 80 CCA 531 17 .49 1 .92 1 .87 9,49 306 .08 2 . 74 77. 10 0.31 7.70 LS 5 264427 5 0 6 AP 506 14 .97 1 .22 1 .32 103 47 361.55 29 . 10 85. 1 1 4.7 1 5.40 S. 14 130 PARENT MATERIAL SITE NO. LOCATION tUTM) PIT NO. MINIMUM HORIZON DEPTH (CM) MAXIMUM HORIZON DEPTH (CM) HORIZON SAMPLE NO. TOTAL Cu ( P P « ) TOTAL F « (X) TOTAL Mn ( P P " ) TOTAL Zn ( P P « ) PH ORGANIC MATTER (X) DTPA Cu (pom) DTPA F« (Dom) DTPA Mn (pp") DTPA Zn (PP-) LS S 264427 5 0 0 A_ 5 3 3 19 .74 1.05 1 .58 81 .88 377.77 34 .23 6 6 . 17 4.71 5 . 4 5 5.48 LS 5 264427 5 6 20 AH 512 16.46 1.12 1 .67 51 .74 331.16 7.70 76.60 0.47 5.75 1 .86 LS S 264427 5 20 45 BMI 307 16 . 17 1.05 1 .56 24 .47 362 .06 6.44 69.69 0.26 6. 10 1.58 LS 5 264427 5 45 70 BM2 204 10.03 0.67 1 .68 18.97 270.42 4.63 49. 16 0. 19 6.40 0.93 LS 5 264427 5 70 75 CCA 540 19.24 1 .64 2.00 10.60 271.40 2.56 66.03 0.25 7 .55 GT 1 2S77S2 1 0 10 AP 379 14.74 1 .22 1.27 8.45 297.59 9.09 63.28 0.48 7.85 2.42 GT 1 297792 1 0 0 A_ 378 14 .41 1 .22 1.30 8. 15 309.18 i 9.44 67 .60 0.44 7 .80 2 . 4 9 GT 287792 1 10 30 CCA 233 13.30 2 . 4 6 1.29 13.89 268.91 4 .62 46.46 0. 18 7.90 1.52 GT 297792 1 30 52 CK 126 13.71 1 .41 1 .34 9.99 308.97 3.34 49. 16 0.09 8 . 0 0 GT 297792 2 0 8 APK 308 13.47 1 .39 1 . 14 7.22 248.69 2.96 32.36 0.09 7.60 1.07 GT 297792 2 0 0 A_ 087 13.53 1 .76 0.75 4 . 16 160.63 5 .44 28.27 0.27 7.85 1.32 GT 297792 2 B 20 AB 100 12.81 1 .06 1.09 6. 12 255.29 3.30 35.79 0. 14 7.80 0.70 GT 297792 2 20 35 BMK 1 099 13.31 1 .06 1 .05 10.04 258 .64 2.31 37.29 0. 18 8.30 0.52 GT 297792 2 20 35 BMK2 098 13.65 1 .06 0.99 8.57 248.20 2.97 38.50 0. 18 8.40 0.52 GT 297792 2 35 70 CCA 097 13.65 1 .06 1 .09 9.31 258.84 2.64 38. SO 0.36 8.30 GT 1 297792 3 O 10 APK 320 15. 16 1.57 1 .42 10.60 274.29 4.20 50.34 0. 17 7.35 1.74 GT 297792 3 0 0 A_ 319 13.47 1 .57 1.22 9.31 252.34 5.60 36.65 0.30 7.50 2 . 12 GT 297792 3 10 20 BMK 318 14.62 1.91 1 .09 6.74 256 .00 2.45 32.36 0. 17 7 .55 1 .34 GT 297792 3 20 32 CCA 317 13.47 1 . 74 1 . 10 7.71 263.31 3.32 34. 16 0.30 7.65 0.79 GT 297792 3 32 50 CK 316 14.15 2.26 1.17 8.35 270.63 3.50 34 . 16 0.34 7 .eo GT 297792 4 0 6 APK 315 12.13 0.87 1. 17 8 .03 296.23 9.09 44 . 94 0.64 7.30 3.07 GT 297792 4 0 0 A_ 367 11 . 39 1 .22 1.11 8 . 15 316 .05 6.57 47 .01 0.66 7 .60 2.97 GT 297792 4 6 16 AH 366 1 1.39 1 .02 1 . 16 21 .74 300.25 4 .37 47.91 0.35 7. 10 2 .66 GT . 1 297792 4 16 40 AB 365 10.05 1 .05 1.21 18.72 296.30 6. 12 49 .72 0.26 7 .00 1 . 4 a GT ' 297792 4 40 82 BM 364 14 .07 1 .92 1 .29 13.28 264.69 6 .47 45.20 0.22 6.70 1.24 GT 1 297792 5 0 10 AP 376 15.06 1 .22 1.11 12.08 382.61 10.50 90.40 1.71 7.60 5.05 GT 1 297792 5 0 0 A_ 339 14 . 74 1 .39 1 .37 9.63 372.36 11.19 65.62 1 . 14 7.25 4 .22 GT 1 297792 5 10 25 AH 469 16.78 1 . 75 1 .59 23 08 460.74 2.74 69. 19 0.84 6.70 2.61 GT ' 297792 5 25 80 BM 470 16.24 2.27 2.21 13 .02 460.74 3.08 93 .4 1 0.67 7.00 1 .74 GT 1 297792 5 60 90 CCA 386 16.42 1 .92 1 .56 11.17 436.72 1 .57 90.40 1 .54 6. 10 GT 2 382825 1 0 15 APK 089 9 . 34 0.68 0.93 8 .94 186.15 7.75 35.49 0.36 7.60 1 .67 GT 2 382825 1 0 0 A_ 068 6.70 0.88 0.78 7. 10 163.10 6 .60 36 .09 0.36 7.70 1 .60 GT 2 382825 1 15 35 CCA 017 14.24 1 .42 1 .24 9.96 234.63 4 . 32 110.43 0.43 7 .90 1 .57 GT 2 382825 ' 35 52 CK 109 9.65 0.8B 0.78 7.59 175.51 1 .65 27.07 0.14 6 OO GT 2 382825 1 35 52 CK 107 9.32 0.86 0.85 6.47 162.60 2 . 29 30. OB 0.00 8.20 GT 2 382825 2 0 10 APK 296 11 .66 1 .05 1 . 16 6.66 220.62 7.13 44.94 0. 34 7.65 1.98 GT 2 382825 2 0 0 A_ 397 11.42 1 . 22 1 . 19 6.30 240.00 7 . 34 4 1.56 0.34 7 .90 1.93 GT 2 382825 2 10 25 AHK 398 10.08 1.57 0.90 5.40 160.00 2 . 27 28 .02 0. 17 8.20 1 .07 GT 2 382825 2 25 40 CCA 042 6.72 1 . 16 0.74 7.52 152. 13 2.55 36.42 0. 14 8.00 GT 2 382825 2 40 92 CK 132 15.67 1 .93 1.41 10. 86 331.03 3.52 52.74 0.27 8.40 GT 2 382625 3 0 9 AP 131 8.47 0. 88 1.13 21.76 224 . 37 15.47 44 .69 0.81 6.70 2.97 GT 2 382625 3 0 0 A_ 129 9.47 0.86 1.21 14.70 220.69 1 1 .96 50.06 0.50 6.90 2.5S GT 2 362825 3 9 20 BT1 130 10.45 1 .23 1 . 5 7 21 .76 176.55 5.45 46.48 0.09 6.25 1.31 GT 2 362625 3 20 30 BT2 134 16 .90 3. 17 1 .53 13.53 228.57 6. 15 48.63 0. 14 7.30 1.31 GT 2 382825 3 30 52 CCA 188 16.05 1 .92 1 . 16 7 .06 244. 13 3.05 44 .69 0.41 7.85 GT 2 382625 4 0 8 AP 186 9.70 0.87 1. 13 16 . 12 330.52 13.55 57.21 1 .49 6.95 3.77 GT 2 382825 4 0 0 A_ 187 10.70 0.53 1 . 15 16 . 19 356.8 1 15.74 67 .04 1 .63 6.70 3.80 GT 2 382825 4 8 1B BT 1 256 9.80 1 .06 1 .42 16.75 240.46 9.24 52. 14 0. 14 6.30 1. 38 - 131 -PARENT MATERIAL SITE NO. LOCATION (UTM) PIT NO. MINIMUM HORIZON DEPTH (CM) MAXIMUM HORIZON DEPTH (CM) HORIZON SAMPLE NO. TOTAL Cu <PP») TOTAL F« (X) TOTAL Mn (ppm) TOTAL Zn (ppm) PH ORGANIC MATTER (X) OTPA Cu (Don) DTPA fm (ppm) DTPA Mn (pom) DTPA Zn (ppm) GT 2 382823 4 18 30 8T2 399 9.41 1 .05 1.26 11.10 260.00 6.47 31.64 0. 17 6.75 0.76 GT 2 33282S 4 30 36 CCA 384 13. 10 1 .75 1.03 5.70 220.00 2.62 32 . 54 0. 13 8 . 10 GT 2 383825 5 0 a AP 026 14 . 18 1 .07 0.98 45.28 292.39 17 .30 53.73 2.67 6.80 5.45 GT 2 382825 5 O 0 A_ 399 14 . 19 1 .07 0.98 45.28 292.39 17.30 53.7 3 2 .67 6.80 5.45 GT 2 382625 5 8 20 AH 171 9.41 1 . 22 1.31 50.97 317.36 8.30 58.26 0.95 6.05 2. 17 GT 2 382825 5 20 36 BT 1 207 1 1 . 70 1 .05 1 . 75 16.44 31 1 .74 9.09 62 . 37 0. 13 6.20 1.17 GT 2 382835 5 36 54 BT2 393 12.93 1 .57 1 .55 14.55 276.00 6.65 47.46 0.27 6.80 1 .07 GT 2 382825 5 54 80 CCA 476 14.60 1.75 1 .53 8.28 251.97 3.25 47.57 0.21 7.40 GT 3 443981 0 7 AP 211 10.64 0.53 1.13 41 .97 307.32 1 1 .88 53.63 0.90 5.75 3. 14 GT 3 443931 O 0 A_ 331 11 . 39 1 .04 1 . 15 41.74 306.42 19.24 62.92 1 .52 6.00 0.77 GT 3 443991 7 20 A_ 210 7 .98 0.35 1 . 15 19.59 215.13 7.34 46.48 0. 17 6 00 1 .34 GT 3 443991 20 30 sr 428 11 .26 1 .06 1 .62 12.74 326.04 8.90 56 . 33 0.30 6.25 1.18 GT 3 443991 30 50 e 372 15.08 1 . 22 1 . 44 11.17 304.20 8 .39 74 . 12 0.31 6.80 1 . 34 GT 3 443981 50 56 C_ 37 1 1 1 . 39 1 . 22 1 .48 9.66 276.54 5.07 54 . 24 0.13 7.40 GT 3 443991 2 0 10 AP 461 14 .60 1 .78 1 .45 16 . 86 179.98 5.05 43 . 24 0.27 7.00 2.50 GT 3 4 43991 2 0 0 A_ 460 14.60 1.41 1 .42 9 . 19 194.3B 5.99 44 .97 0.47 7 .00 2.78 GT 3 443991 2 10 35 CCA 133 12.41 1 .76 1 . 10 7.35 217.01 2. 11 4 1.12 0. 27 7.75 1 .83 GT 3 443991 2 10 35 CCA 370 12.06 1 .40 1 .OB 6 .04 237.04 2.27 31 .64 0. 18 8.00 GT 3 443991 2 35 40 CK 369 1 1 .39 1 . 40 1 .06 6.04 268.64 2.62 30. 73 0. 13 6. 10 GT 3 443991 3 O 8 AP 368 9. 72 1 .05 1 .06 54.34 292.35 15.74 49 . 72 1 .56 5.80 4 . 46 GT 3 443991 3 O 0 A_ 467 12.04 1 . 40 1 .30 53.25 215.97 13.69 43 . 24 0. 88 5.65 4 OO GT 3 443991 4 8 30 BM 466 12. 77 1 .05 1 .4t 15.98 172.78 4.11 34.60 0. 2 t 6. 30 1.70 GT 3 443391 4 30 52 CCA 465 15.69 1 .75 1 .23 6.68 230.37 2.40 32.00 0. 17 7.40 GT 3 443881 4 O 10 AP 464 16. 78 1 . 22 1 .24 156.79 345.36 23.96 64.67 3.01 3.40 6.64 GT 3 443881 4 0 0 A_ 463 12.77 1. 14 1 .27 121.29 287.96 22.25 69. 18 2.86 5.40 6. 12 GT 3 443891 4 IO 23 BT 462 10.95 1.05 1 .26 51 .77 197.98 3. 13 50. IS 0.25 5.65 1 .98 GT 3 443881 4 23 50 BMI 351 9.72 0.96 1 .25 32. 1 1 246.24 5.25 54.83 0. 17 5.80 1.31 GT 3 443891 4 50 36 BM2 345 10.05 1 .22 1 .29 21 . 19 246.24 5.23 49.44 0.25 6.00 1 .20 GT 3 443391 5 O 8 AP 294 15.84 1 .57 1 . 15 100.17 389.24 15.65 76.40 4 . 30 5.45 6.57 GT 3 443881 5 0 0 A_ 135 14.54 1 .23 1.21 111.73 358.91 13.82 77 .64 4.07 5.50 6.61 GT 3 443991 5 8 20 A_ 052 10.36 0.71 0.92 SO.89 176.89 7.39 38.81 0.32 5.80 2.90 GT 3 443881 3 20 30 BT 136 8.40 0.70 1.15 19.41 154.90 3.69 31 .23 0.00 6.25 2.50 GT 3 443891 5 30 45 BM 341 13.40 1 .74 1. 29 17.66 213.33 5.51 33.26 0. 25 6.50 1 .38 GT 443991 5 45 56 CCA 342 13.40 1 .74 1.07 8.35 279.27 3. 15 29 .66 0. 13 7 .55 GT * 763830 0 8 APK 3oO 10.72 1 .22 1.27 8.45 296.30 7.34 42 .94 1 .80 7 .90 3.07 GT 4 763B30 0 0 A_ 359 lO.OS 1.22 1.11 9.66 256.79 9.79 49.72 1 . 10 7 .90 3.11 GT 4 • 763830 6 20 BMK 440 9.85 1.41 1 . 10 3.33 230.40 2.40 25.83 0.30 7.65 1.25 GT 4 763830 20 58 CCA 138 8.68 1 .23 0.87 6.76 188.90 2.64 31 .23 0. 14 8.00 GT 4 763630 20 38 CCA 426 8.26 1 .23 1. 19 6.82 217.36 2.23 37. 50 0. 17 8.00 OT 4 763830 2 0 a AP 209 11.30 0.33 1.25 15.79 284.27 15.39 58. 10 1 .89 6.80 4.42 GT 4 763830 2 O 0 A^ 214 11.30 0.35 1.26 13.04 268.12 15.39 64.36 1 .94 6.90 4.60 GT 4 763630 2 a 20 CCA 1 239 14.68 2.11 1 .43 10.07 210.87 3. 13 49.44 0.09 7.50 2.21 GT 4 763830 2 20 46 CCA 414 13.88 1.75 1 .34 6.60 201.26 2.62 60.00 0.21 7.60 GT 4 763630 3 0 6 AP/ 008 12 .94 0.99 1.02 15.09 267. 12 1 1 .42 61 .32 3.03 6.40 4.89 GT 4 763830 3 0 0 A_ 452 11.37 0.88 t .47 21.93 274.29 14 .03 62.50 2.65 6.60 4.66 GT 4 763S 30 3 6 33 AH 448 8.34 0.70 1 . 37 17 . 78 204 . ao 9.58 45.83 0.30 6.20 GT 4 763830 3 6 35 AH 231 13.30 0.88 1 .39 9.03 222.81 6.83 53.63 0.09 7.00 1 . 10 GT 4 763630 3 33 53 BMK 232 14.63 1.41 1 . 75 8.68 303.46 3.31 67.04 0. 14 7.35 1.49 1 3 2 PARENT MATERIA SIT L NO. E LOCATIO (UTM) N PI NO T MINIMU . HORIZO DEPTH (CM) 4 MAX I MU •< HORIZO OEPTH (CM) M HORIZO St M SAMPL NO. E TOTAL Cu (ppm) TOTAL Fa (X) TOTAL Mn (PP") TOTAL Zn (pp») PH ORGANIC MATTER (X) OTPA Cu (DPI.) OTPA Fa (Don) DTPA Mn (ppm) DTPA Zn <PD»> GT 4 763830 3 55 79 CCA 385 11.7: 1.25 1.2! 7.5" 285.9! 2.21 66.a: 0. 3! 7.95 GT 4 763830 4 0 a AP 446 11.75 1 .23 1 .43 62.22 299.as 17 . 1 60. OC 2.14 6. IC 5.73 GT 4 763830 4 0 0 A_ 199 12.75 0.35 1.45 25. IS 360.56 19 . 24 71 .5 2 . 5C 6.5C 5.43 GT 4 763830 4 8 30 AH 347 11.73 1 .04 1 .53 17.34 325.32 10.84 74.6 0. 3C 7. IC 1 .97 GT 4 763S30 4 30 58 BMK 301 13.20 1 . 22 1.60 14.43 291.93 5. 74 60. 90 O 13 7.60 1 .46 GT 4 763830 4 5 9 \ 73 CCA 302 1 1 .79 1 .59 1.63 12.86 288.91 5.39 - 0.22 7 .60 GT 4 763830 S 0 10 AP 142 14.54 2.46 1 . 33 188.IS 2 11.57 19. 34 7 1 .39 2 . 26 6.50 6.33 GT 763830 5 0 0 A_ 236 1 1 .97 2 . 29 1 .35 208 . 32 232.81 25.67 74.19 4 9J 6.30 6.81 GT 763930 5 10 30 AHG 475 14 .60 2.45 1 .63 103.54 165.58 8 .90 77.84 3 .03 6.60 4.41 763830 5 30 45 BG 431 16.69 2.29 2. 13 2 1 .04 132.83 0.68 70.83 0.45 7.50 1.39 763830 S 45 68 CCA 240 16.00 2.11 1.70 23.92 1.71 69.21 0.54 7.75 5 292793 t 0 10 APK 402 13.77 0.70 1 . 22 330.OO 49.72 2 60 7.70 1.31 5 292793 1 0 0 A_ 137 IS. 18 1 .65 1 .20 6.49 368.34 3.87 41 .05 0 05 7 .95 1.4 1 5 292793 1 IO 30 CCA 403 13.44 1 . 40 1.21 6 .90 376.00 3.32 49.72 7.80 0. 76 5 292793 1 30 55 CK 1 340 13.07 1.74 1 . 27 8 .67 339.70 3. 85 48.54 0.21 8. 15 5 292793 1 55 82 CK2 5B9 14.16 1 .46 1 . 49 9.96 335.49 3.93 40.68 0.25 8.30 S 292793 2 0 10 AP 573 15.47 1 .59 1 .60 6.88 35 1.09 8 .53 40.91 1 09 7.50 0.00 5 292793 2 0 0 A_ 480 16.46 1 .92 1.35 7.40 237.71 4 . 28 43.48 0 30 7.60 3.02 5 292793 2 10 40 CCA 479 14.45 1.75 1 .34 7.69 303.54 2 .74 43. 46 0.13 7 . 60 0.80 5 2927S3 2 10 40 CCA 478 22.62 1 .92 1.45 8.28 248.37 2.40 51 .89 0.25 8.00 5 292793 2 40 58 CK 387 14 . 74 1.40 1.30 8.76 316.91 2.80 58 . 76 0.18 8.75 5 292793 3 0 6 . AP 591 14.51 1 .46 1.50 10.67 314.51 1 1 . 26 49.73 0. 59 7 . 40 3.20 5 292793 3 0 0 A_ 337 13.40 1 . 57 1 .34 7. 39 306.42 11.54 50. 34 7.50 2.80 5 292793 3 6 25 AH 254 11.43 1.41 1.30 10.07 277.46 10.61 49.44 0.33 7.30 3.07 5 292793 3 25 45 BMK 253 17.96 2.81 1.42 6.25 347.75 5.13 49.44 7.40 1 . 72 5 292793 3 45 52 CCA 252 16. 33 1 .57 1.27 6.30 314.45 1 . 57 49.44 7.85 GT 5 292793 0 6 AP 559 1 1 .96 1 . 42 1 .49 10.03 292.57 7. 34 45.46 7.40 3.06 GT 5 292793 0 0 A_ 110 17.96 . 1 . 14 1 .35 10. 14 2S3.22 11.25 67 .04 7.50 3.49 5 292793 6 21 AH 251 12.74 1 .22 1.33 9.79 240.46 2.80 44.94 7.40 1.41 GT 3 292793 21 15 BMK 510 14.97 1.75 1 .28 6.05 269.97 2 . 40 39.79 0.17 7.60 1.39 5 292793 15 52 CCA 302 11 .98 1 .57 1. 18 7. 47 25 1 .97 2.05 38.30 7 . 65 GT GT « 3 92793 5 0 7 IP 14 1 16.29 1 .23 1 .58 11.85 347.43 10.27 66.67 7.30 5.63 > d 92793 0 0 >_ 19 16.09 1 .40 1.45 14 .08 4 13.95 13.32 76.60 7 . 10 5.59 GT « GT • ; 92793 7 t 0 IH • 45 17.49 1 . 24 1 .63 25. 70 436.45 1 1 . 36 63.45 3.11 6.90 6. IS 3 92793 7 * 0 >H ! 75 17.23 1.92 1 .65 9 1. 70 482.74 15.02 86.36 6.00 6.81 GT • 92793 ! i A 0 1 0 f M 5 22 18.71 1.91 1.70 201.20 345.56 7 . 70 85. 1 1 4 .80 4 . 10 GT j : 92793 I 1 0 8 2 C CA s 90 15.93 1.50 119.47 314.51 11.61 49. 73 0.42 4.90 Parent Material - Lacustrine Clay - Site 3 NaOCl 5% HC1 NH,,0x HN03/HC10,, Sample (ppm) (ppm) - (ppm) (ppm) Pit No. Horizon No. Cu Fe Mn Cu Fe Mn Zn Fe Mn Zn Cu Fe Mn Zn 1 Ap *C 31 8.10 203.88 18.29 10.63 275.86 96.13 6.29 2640. 159.49 10.78 6.05 *2.6 58.74 51.01 6 8.10 203.88 15.68 17.72 315.27 107.22 6.82 2796. 180.28 14.27 7.48 *1.6 62.64 62.64 Ccaj 354 9.07 256.69 12.18 19.05 275.86 52.88 5.93 3107. 193.75 14.05 8.00 •2.5 74.29 60.58 Cca2 140 10.12 174.76 11.92 31.04 394.09 22.27 7.32 2796. 155.13 10.76 5.75 *2.0 60.73 39.62 473 8.37 117.07 0.02 28.22 423.08 59.39 8.63 3215. 107.02 14.36 6.62 *1.9 75.61 45.10 Ck 33 10.25 145.63 12.54 14.18 354.68 29.59 5.75 3728. 160.87 13.60 7.12 •2.0 82.31 58.17 Apk *C183 9.61 233.01 13.35 6.90 433.50 25.06 5.11 2408. 172.52 8.77 5.75 •1.8 49.32 32.38 2 280 11.74 192.51 9.75 19.05 433.50 32.54 7.11 3573. 206.12 14.22 7.27 *1.9 81.54 57.91 Bmk 54 10.79 233.01 13.59 14.18 433.50 38.45 6.11 3495. 173.35 12.44 5.69 *1.8 92.10 42.95 Ccaj 420 7.27 111.22 17.85 384.62 37.61 5.18 6124. 170.76 15.75 6.87 *2.3 75.23 37.38 Cca2 227 7.59 203.88 11.44 16.55 630.54 65.43 6.47 7379. 161.39 17.54 5.03 *2.0 69.93 32.55 Ck 472 6.23 111.22 6.23 12.85 307.69 41.03 4.07 8421. 154.10 17.67 5.73 *2.3 63.85 33.75 Ap *C353 10.14 256.69 12.18 15.52 315.27 146.44 6.43 3029. 155.28 13.88 8.73 *3.0 62.33 64.14 3 357 10.67 288.77 12.18 16.23 275.86 149.15 6.77 3029. 152.53 13.55 9.09 *2.5 63.42 60.58 Cca 141 9.10 203.88 12.39 11.72 355.00 34.80 3.92 2718. 125.22 9.59 5.75 *1.8 41.22 33.40 Ck 108 10.79 203.88 10.45 14.18 512.32 31.06 6.82 3806. 187.22 16.59 7.48 *1.6 81.59 42.95 474 6.70 111.22 0.02 23.52 423.07 36.33 7.20 6124. 163.34 16.51 6.62 *1.7 73.32 37.29 32 7.01 174.76 12.50 14.18 433.50 26.62 5.93 3806. 166.41 15.76 5.70 *1.7 69.26 38.48 Ap *C 25 9.17 203.88 14.63 12.05 630.54 34.02 - 6.29 3262. 187.22 14.93 7.12 *2.3 84.13 56.38 4 358 10.14 288.77 12.67 19.05 394.09 93.56 7.62 3262. 191.00 14.90 9.09 *2.3 76.10 65.03 Ckx 284 8.54 256.69 8.77 17.64 433.50 21.70 7.11 3611. 193.75 13.88 7.64 *2.3 80.82 60.58 Ck2 51 8.10 174.76 13.07 14.18 472.91 22.18 5.75 3650. 180.28 15.26 7.84 *2.3 105.16 57.27 391 6.75 105.37 5.71 16.42 346.15 23.25 7.03 3522. 174.92 15.40 6.87 *2.3 67.89 39.11 •C270 12.81 224.60 9.26 21.18 827.59 143.73 9.31 5 Ap 169 11.13 233.01 7.15 13.11 Ccag 39 9.71 174.76 13.07 17.72 1379.40 48.07 8.98 3728. 202.47 26.05 5 .34 *2.0 65.27 46.53 Ckg 70 8.09 174.76 12.02 14.88 906.40 26.62 8.08 2874. 192.76 14.10 7.12 *2.8 74.33 66.22 373 9.87 111.22 9 : 3 4 18.56 538.46 25.98 7.40 2909. 224.90 14.35 7.64 *3.9 76.33 64.90 *C - composite sample *Fe concentration in percent (%). Parent Material Lacustrine Silt - Site 5 Sample No. NaOCl (ppm) 5% HC1 (ppm) NH.,0x (ppm) HN03/H (PP CIO., m) Pit No. Horizon Cu Fe Mn Cu Fe Mn Zn Fe Mn Zn Cu Fe Mn Zn 1 Ap Bm Cca *C 36 37 35 34 576 8.09 8.63 7.55 5.93 5.58 203.88 203.88 203.88 203.88 93.66 40.11 15.68 13.07 12.02 0.02 7.09 7.09 6.38 4.25 14.11 315.27 315.27 236.45 354.68 346.15 34.75 36.97 14.79 11.09 34.94 7.18 7.72 5.39 4.31 5.04 2796. 3106. 2796. 2297. 213.56 194.15 146.9 183.06 13.94 15.43 11.61 9.87 5.70 4.99 4.63 3.68 *1.3 *1.0 *1.4 *1.3 47.50 39.52 42.79 76.37 39.82 30.60 27.03 24.28 2 Ap Bm Cca *C120 572 117 119 118 9.10 5.58 8.10 6.07 7.55 233.01 93.66 203.88 233.01 203.88 19.07 0.03 11.50 11 .92 7.84 7.59 13.44 8.51 11.72 7.79 197.04 230.77 354.68 394.09 394.09 20.88 30.04 36.97 13.92 23.66 3.75 8.27 6.47 7.15 5.39 1902. 2679. 2874. 2796. 3262. 119.65 173.20 174.74 173.91 95.69 6.29 12.20 11.28 10.76 11.45 3.59 4.78 6.06 6.47 3.92 0.9 *1.3 *1.5 *0.6 *1.3 22.08 51.93 50.04 40.48 55.84 22.32 33.65 36.24 27.43 22.55 *C561 5.58 105.37 0.03 13.44 230.77 38.43 8.99 2756. 246.43 14.63 5.88 •1.6 61.86 53.77 3 Ap Ah Bm Cca 116 535 167 299 7 7.26 9.61 10.67 5.93 111.22 203.88 224.60 203.88 0.03 9.53 6.82 9.41 15.45 8.28 10.58 7.09 307.69 354.68 236.45 354.68 26.55 6.96 13.56 22.92 6.48 5.11 6.94 4.31 2986. 2641. 3029 3262. 173.20 126.61 123.67 97.08 11.57 9.60 11.51 13.27 6.98 5.03 3.64 3.21 *1.7 •1.4 *1.4 •0.9 58.04 35.33 39.50 45.69 45.10 20.62 20.67 21.75 4 Ap Ah Bm Cca *C237 528 226 225 555 531 9.61 5.58 8.09 7.59 6.14 6.70 203.88 105.37 233.01 233.01 99.50 105.37 13.35 0.03 12.39 10.01 0.02 0.02 9.66 10.08 10.35 8.97 10.75 16.80 354.68 346.15 236.45 394.09 307.69 576.92 38.28 55.90 13.92 11.14 10.48 39.13 8.51 10.97 4.26 5.28 6.48 4.50 2563. 2449. 2641 . 3573. 3139. 3598. 239.30 267.55 243.48 194.78 198.55 137.29 11.91 14.00 9.93 10.76 10.41 15.26 7.19 7.35 8.27 6.47 3.31 5.51 *1.5 *1.4 •1.8 •2.1 •1.1 *1.5 44.16 50.02 57.04 51.52 32.46 77.90 46.86 41.63 61.34 38.77 17.34 26.02 5 Ap Ah Bm Cca •C533 506 512 307 204 540 6.70 7.81 5.02 8.54 7.08 8.37 105.37 111.22 105.37 192.51 203.88 99.51 0.03 0.03 0.02 7.80 10.49 0.02 12.09 12.77 11.42 14.11 4.83 13.44 500.0 307.69 230.77 315.27 472.91 500.0 124.37 90.83 17.47 11.53 9.74 15.37 14.03 12.23 5.40 7.11 4.26 5.76 2526. 2450. 2220. 3262. 3339. 7656. 249.95 232.34 216.85 236.35 166.96 163.34 15.08 15.79 11 .49 17.27 9.10 19.74 7.35 6.98 6.62 7.27 7.19 6.62 *1.5 *1.8 •1.7 *2.0 *1.8 *1.7 58.81 44.30 46.59 52.91 47.84 68.74 52.03 46.83 53.77 62.36 32.20 28.44 *C - composite sample *Fe concentration in percent {%) Parent Material - Glacial T i l l - Site 3 NaOCl 5% HC1 NH^x HNO3/HCIOH (ppm) (ppm) (ppm) (ppm) Sample Pit No. Horizon No. Cu Fe Mn Cu Fe Mn Zn Fe Mn Zn Cu Fe Mn Zn *C331 8.54 256.69 8.77 10.58 275.86 48.14 5.42 2175. 162.83 8.13 5.82 •1.4 36.24 30.74 1 Ap 211 8.60 203.88 9.53 3.45 354.68 20.88 4.26 2175. 182.96 8.60 5.39 *1.4 39.01 32.80 AB 210 8.60 233.01 10.01 6.90 354.68 10.44 3.92 1903. 147.48 6.29 4.32 *1.4 39.01 26.84 Bt 428 7.27 111.22 7.78 8.57 192.31 10.94 4.62 2296. 151.32 8.40 5.73 *1.5 37.80 31.33 Bm 372 10.39 117.07 10.38 12.14 153.85 10.26 3.33 1990. 154.10 10.85 5.73 *1.9 33.40 23.36 C 371 10.14 192.51 9.75 12.70 354.68 12.20 4.74 3029 182.07 9.48 4.36 •1.8 51.46 29.40 •C460 7.27 105.37 7.78 12.85 192.31 38.29 6.47 2220. 104.12 6.30 4.97 •1.7 35.96 21.81 2 Ap 461 8.83 105.37 7.78 7.85 192.31 23.93 4.07 2373. 126.33 8.40 5.73 *1.7 37.43 24.23 Cca 133 9.10 233.01 9.53 13.10 354.68 24.36 5.45 2252. 91.83 7.45 3.60 *1.4 46.00 16.36 370 8.54 256.69 7.80 11.29 236.45 20.34 3.73 1709. 90.69 6.43 3.27 *0.9 40.59 14.25 Ck 369 9.61 288.77 7.31 13.41 275.86 27.12 5.42 2408. 111.30 7.62 3.64 *1.4 56.17 19.78 •C467 7.79 64.39 5.71 8.57 346.15 37.61 6.29 2220. 147.85 8.75 6.11 •1.6 35.96 27.26 3 Ap 368 10.67 288.77 9.75 10.58 315.27 40.68 5.76 2252. 142.91 8.13 4.00 *1.4 26.09 26.46 Bm 466 8.31 105.37 7.27 7.14 118.39 6.84 2.41 2220. 115.92 5.95 5.73 *1.7 31.56 21.63 Cca 465 9.87 64.39 5.71 21.42 307.70 24.62 5.92 956. 77.74 5.07 3.82 0.6 26.42 8.22 *C463 14.03 111.22 8.82 8.57 307.70 86.15 8.51 2488. 202.69 13.30 6.49 *1.7 40.00 36.34 4 Ap 464 12.99 111.22 7.78 7.14 269.20 85.47 7.77 2373. 208.24 13.65 6.49 •1.6 38.53 36.78 Bt 462 9.35 105.37 6.23 8.57 153.85 8.21 3.88 2144. 176.31 8.75 5.73 *2.3 35.23 33.06 Bm 351 8.54 192.51 7.31 8.47 197.04 8.81 5.93 2097., 158.23 8.80 4.36 *1.4 34.79 30.47 345 9.07 256.69 7.31 10.58 275.86 8.14 3.56 2602 144.97 7.62 4.36 *1.6 37.69 30.29 *C135 12.65 233.01 9.53 8.28 512.32 132.28 8.85 2408. 194.78 13.24 5.39 *1.5 38.28 37.91 5 Ap 294 13.34 256.69 7.31 9.17 315.27 105.27 8.13 1942. 166.27 9.14 4.00 *1.2 38.41 31.18 AB 52 8.10 203.88 13.07 6.38 275.86 14.79 3.95 2019. 129.66 5.81 3.92 •1.1 41.34 26.13 Bt 136 5.56 203.88 9.53 13.79 394.09 9.74 5.45 2563. 102.96 6.95 3.60 *1.5 34.96 20.45 Bm 341 8.00 256.69 8.28 11.29 315.27 6.78 2.37 2874. 115.43 7.96 4.36 *1.4 34.43 21.65 Cca 342 9.61 256.69 8.28 11.29 275.86 23.05 4.74 2563. 118.18 6.77 3.64 *1.1 52.55 19.60 *C - composite sample *Fe concentration in percent (%) Parent Material - Aeolian Sand - Site 3 NaOCl 5* HC1 NH40x HNO3/HCIO4 (ppm) (ppm) (ppm) (ppm) odnipie Pit No. Horizon No. Cu Fe Mn Cu Fe Mn Zn Fe Mn Zn Cu Fe Mn Zn •C377 7.27 117.07 2.60 7.14 153.85 13.68 4.07 1646. 84.69 4.37 1.91 5885. 23.49 6.49 1 Ah 390 9.35 105.37 4.15 7.14 192.31 13.68 5.18 1837. 88.85 5.60 2.67 7172. 26.79 9.17 Ae 491 2.79 111.22 0.02 9.41 269.23 10.48 3.96 1914 83.08 5.03 1.84 7494 29.79 10.23 Bh 529 3.35 105.37 0.02 8.06 307.69 8.38 6.12 2144. 107.02 6.46 2.94 8244. 35.89 11.73 BC 158 7.59 203.88 10.01 4.83 275.86 6.26 4.43 1670. 97.39 4.14 2.16 7363. 34.23 12.78 Ck 2 5.39 174.76 7.84 3.54 275.86 22.18 4.49 2097. 124.80 2.49 3.92 9154. 49.70 7.16 •C442 7.79 105.37 6.23 4.99 153.85 8.89 5.18 1531. 79.83 5.60 2.29 6806. 30.09 7.62 2 Ah 144 9.10 203.89 9.53 2.76 197.04 3.48 2.23 1631. 68.17 3.31 1.80 5572. 32.75 9.63 443 5.71 111.22 6.23 3.57 192.31 6.84 4.44 2144. 72.89 4.90 2.67 7540. 30.83 9.35 Bh 49 8.63 174.76 10.45 3.54 315.27 13.31 5.39 1669. 114.41 5.81 1.78 4179. 29.01 10.02 C 523 5.02 111.22 0.02 6.72 192.31 6.98 3.06 1761. 86.60 6.46 2.57 7494. 34.37 10.41 *C579 0.98 3.20 258.33 9.13 7.85 2388. 125.68 9.94 1.93 6949. 40.75 15.61 3 Ah 206 11.13 233.01 9.03 8.28 275.86 11.14 6.81 1864. 200.35 5.96 1.80 6766. 26.87 13.12 Bh 580 1.26 201.82 9.13 7.19 2148. 119.88 10.77 1.61 6141. 32.07 13.60 BC 571 4.47 93.66 0.02 • 7.39 192.31 10.48 2.70 1569. 88.71 5.74 1.47 6183. 33.99 8.50 C 547 6.70 99.51 0.02 8.06 153.85 6.99 3.60 1455. 60.55 3.59 2.21 5246. 22.91 6.76 *C355 9.61 256.69 8.28 8.47 236.45 9.49 6.10 1437 84.51 6.43 1.82 6170. 26.09 10.25 4 Ah 243 9.07 288.77 7.31 11.29 236.45 10.85 6.77 2097. 115.43 8.13 2.91 8936. 35.52 15.15 238 6.07 203.88 9.53 6.21 315.27 9.05 4.77 1941. 112.70 4.96 1.79 7761 . 29.44 15.76 Bm 578 C 375 5.20 117.08 7.27 8.57 153.85 8.89 3.88 2066. 90.24 5.95 2.29 8276. 33.03 9.69 *C538 6.70 99.51 0.03 6.72 230.77 34.94 7.20 1837. 139.41 8.62 2.57 8244. 32.46 16.65 5 Ah 548 7.81 99.51 0.02 7.39 230.77 41.92 6.84 1914. 147.86 9.87 2.57 8431. 34.75 18.73 382 5.71 111.22 4.67 6.43 269.23 12.31 5.55 1990 130.50 7.87 1.91 9931 . 30.80 15.58 Bm 530 3.91 105.37 0.02 6.72 346.15 13.97 2.88 1722. 117.58 5.74 2.21 7494. 29.79 11.71 C 383 6.23 111.22 5.19 5.00 307.69 14.36 4.99 1722. 91.63 6.30 2.29 7540. 22.75 10.56 UJ ON *C - composite sample - 137 -APPENDIX B 1 . DESCRIPTIVE STATISTICS 2 . HISTOGRAMS: EXAMPLES SHOWING THE EFFECT OF THE LOG 1 0 TRANSFORMATION ON THE DATA DISTRIBUTION - 138 -DESCRIPTIVE MEASURES ALL DATA VARIABLE N MINIMUM MAXIMUM MEAN STD DEV SKEWNESS KURTOSIS PH 361 4.9000 9.1000 7.1594 .62236 -.560 - .655 TCU 261 .19300 -5 .34000 -4 .15349 -4 .76704 -5 .011 -1 .021 TMN 260 .30080 -4 .46074 -3 .35533 -3 .87721 -4 -.567 - .233 TZN 258 .13860 -4 .11043 -3 .58695 -4 .23234 -4 -. 152 -.991 DCU 360 0. .69300 -5 .16855 -5 . 10895 -5 .840 1 .481 DEE 260 .38000 -5 .18618 -3 .19133 -4 .22329 -4 3.998 20.313 OMN 259 860O0 -6 .39350 -4 .76333 -5 .71437 -5 2.269 5.343 DZN 361 0. .47100 -5 .67391 -6 .75052 -6 2.319 6. 189 TFE 261 .17000 -3 .39900 - 1 .15192 - 1 .69113 -2 .607 . 148 ORSMATR 153 0. .66400 - 1 .26352 - 1 .13080 -1 I.OC9 .684 DESCRIPTIVE MEASURES <1> PARNTMTL:LC CHEMICAL PROPERTIES BV PARENT MATERIAL VARIABLE PH TCU TMN TZN DCU OFE DMN DZN TFE ORGMATR -3 N MINIMUM 78 6.6000 78 .18240 19281 56540 -4 15700 -5 660O0 -5 15600 -5 16OO0 -6 15000 - 1 15200 -1 MAXIMUM 8.2000 .34000 -4 .43457 -3 .10697 -3 .69300 -5 .45310 -4 .14700 -4 .16300 -5 . 399O0 -1 .48000 - 1 MEAN 7 .6596 .34B25 .39860 .B1342 .29754 .12816 .62666 .48795 .23440 .23974 STD DEV .25888 .26167 -5 .45830 -4 .10843 -4 .75346 -6 .50662 -5 .22656 -5 .27251 -6 .47583 -2 .63907 -2 SKEWNESS - 1.052 - .317 .433 -.359 3.547 3.734 1.115 t .992 . .830 1 . 374 KURTOSIS 2.763 1 .537 1 17 -. lOO 10.737 30.564 2.462 5.443 1 .281 3 .843 DESCRIPTIVE MEASURES <2> PARNTMTL:LS CHEMICAL PROPERT1ES-BV PARENT MATERIAL VARIABLE N MINIMUM MAXIMUM MEAN STD DEV SKEWNESS KURTOSIS PH 61 5.35O0 9. 1000 6.9754 1.0274 - . 122 - 1 . 191 TCU 61 .10970 -4 .24960 -4 .1S365 -4 .35463 -5 1 OOB .275 TMN 61 .16842 -3 .42000 -3 .29422 -3 .53665 -4 - .063 -.373 TZN 61 .28270 -4 .94920 -4 .63495 -4 .13668 -4 -.240 - . 132 DCU 61 .35OO0 -6 .33200 -5 .15064 -5 .55749 -6 1 .008 1 . 328 DFE 6 1 647O0 -5 1034 7 -3 .25737 -4 .335e3 -4 1 .433 1.116 OMN 61 .17 300 -5 .38250 -4 .12700 -4 . 11867 -4 .752 - .823 DZN 61 .80000 -7 .47100 -5 .87525 -6 .95543 -6 1 .744 3. 152 TFE 61 .62000 -2 .31300 -1 .15021 -1 .36306 -2 .281 -. 179 ORGMATR 32 .11400 - i 625O0 - 1 .33144 - 1 .13290 - 1 .242 - .501 - 139 -DESCRIPTIVE MEASURES <3> PARNTMTL:GT CHEMICAL PROPERTIES BT PARENT MATERIAL VARIABLE N MINIMUM MAX I M'JM MEAN STD OEV SKEWNESS KURTOSIS PH £9 4.9000 8.7500 7.3145 .61462 - .960 . 360 TCU GS .79800 -5 .17490 -4 .13071 -4 .23313 -5 - .227 - .865 TMN 68 .152 13 -3 .46074 -3 .37722 -3 .64984 -4 .393 .404 T7.N 68 .27070 -4 .11043 -3 .51679 -4 . 16729 •4 1 .065 1.261 DCU 6B .35000 -6 .24600 -5 .13919 -5 .46108 -6 .223 - .037 OFE 68 .54000 -5 .18818 -3 .33540 -4 .34875 -4 3.070 9.464 DMN 68 .15700 -5 .23960 '4 .69238 -6 .51274 -5 1 . 135 .692 D2N 69 .40000 -7 .43000 -5 .79275 -6 .97329 -6 1 .671 1 .945 TEE 69 .74000 -2 .16300 -1 .12652 -1 .22266 -2 .056 - . 186 ORGMATR 42 0. 664O0 - 1 .30369 - t .18018 - 1 .53 1 -.762 DESCRIPTIVE MEASURES <4> PARNTMTL:AS CHEMICAL PROPERTIES BV PARENT MATERIAL VARIABLE N MINIMUM MAX I MUM MEAN STD DEV SKEWNESS KURTOSIS PH 53 5.T000 7 . 8OO0 6.4330 .46014 1.015 1 . 370 TCU 53 .19300 -5 .73700 -5 . 38604 -5 .13735 -5 .412 - .589 TMN 53 .30060 -4 .23273 -3 .11881 -3 .47407 -4 .671 - -056 T2N 51 .13660 -4 .71910 -4 .27626 -4 .11597 -4 1 . 403 2.38B OCU S3 0. . 7BOO0 -6 .37000 -6 .16926 -6 . 182 - .452 OFE 53 .28000 -5 .38 190 -4 . 15120 -4 .91474 -5 .924 . 1 15 DMN 52 .86000 -6 12660 -4 .46590 -5 .26348 -5 .781 . 114 OZN 53 0. . 19300 -5 .55623 -6 .53 1 13 -6 1 . 122 .295 TFE 53 .17000 -2 . 1O40O - 1 .65566 -2 .17158 -2 -.276 .435 ORGMATR 31 .44000 -2 .4 1300 - 1 18535 - 1 .62690 -2 .762 .698 ( i - 8 0 9 £ 6 ' •HiOIA H A H i l M l ) 60C 1 T 1 0 1 c O N l s s m XXXXt • c 1 C 9 0 » " • -XAXX* • . c 1 8C09>-XXXXXXXXXX* c C •109'• -xxxxxx* > 0 £ 0669'• -xxxxxxxxx* 6 6 c 9 9 6 / . ' • -xxxxxxxxxxxxx* Cl c • C * 6 9 " > -xxxxxxxxxxxxxxxxxx* SI A s 8166 •-xxxxxxxxxxxxxxxxxxxxxxxxxxxxx* SC • 6 • u a o c -xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* • • c Cl 0 1 BIS-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* s SI 9>8C C-xxxxxxxxxxxxxxxxxxxxxxxxxx* 9 C s 9 c c e c c -xxxxxxxxxxxxxxxxxxxxxxxx* •c a I 6 6 1 1 ' ' C-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* CC • 11 C l l S ' S -XXXXXXXXXXXXXXXXXXX* 61 c 9 IS15 C-XXXXXXXXXX* 01 c c t t l l i -XXX* c 0 1 C018 «-• 0 0 61S>6"<.-X* 1 c SS90 9-(I -X HDV3) JNHOVC* 00i iNOOD %ISIII 1NI0J01H v i v a o i o o i J O S N O n n a i u i s i a wvauoisin (OSIOI* -HiOIM 1VAU3JNI) 60C I I V I O I ONISSIH X* I xxx« c XX* Z XXXXXX* 9 XXXXXXXXX* 6 XXXKKXXX* 9 XXXXXXXX* 9 XXXXXXXX* 9 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* c c XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXt t* xxxxifttxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxx* 19 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* Ifi xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* OS ' XXXXXXXXXXXXXXX* Cl •_. XXX* c O, • o "*3~ w. • 9"C 9"C COI 9 C I I ' l l 9 91 £'91 6" • 0 1 o c •sci 6CC9 •0^6 et>6 • SSI 6C3C • o i c eiit • ses 6C69' •008 ' 6106 • 510' 6CCI ' • O C E " 6 i . C C cst-^" e c s c I i - x * o v i ) j j j a v o n o j i w n o j x i s n i I N I O J O I H »i»a o i o o i j o S N O I i n s i m s i a x v a o o i s m 116011' - m a i n I V A B I I N I ) 60C c X* I XXX* c XXX* c XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*' I 9 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXIXXXXXXXXXXXXXXXX* 9* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* I C XXXXXXXXKXXKXXXXXXXXXXXXKXXXXXXXX* t c XXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* • • X X X X X X X X X X * 0 1 xxxxvx* 9 XXXXXXXXXXXXXXXXXXXXI oc XXX* c XXXXXXXXXXXXXXXXXXXXXXX• C C X* I XXXXXXXXXXXXXXX* Cl • 0 « 0 X* I 0 1 6 61 o c i I C l 101 c n c • C o c ( i 0 1 S I c e r o o c 1X101 ONISSIH C6CI S-l O i t s -CIOCS-CC6»•S-I C 0 9 S -I H l S-ISC8S-I0C6 C-OtXO"9-OBfil"9-OC9C9-6<uc o-606f"9-61099-8 C U 9-BCCB »-I K 5 !• 80I-O" 1-n • « i o n ) j r o o i i > o o j i n n o a X i S I H JNIOdOIH » t » o o i o o i J O S N O I I I I B I H I S I O N V U D O I S I I I i c - ivuc • m a i n I X A O J I N I I c o c c 1*1(11 O N I S S I H XX* c 1 I- 0SC6C XX* c 1 »• Cl-CiiC .« o 0 1 • • c i rc x» 1 C • - cirCC VX* c 1 • - 11 COC t-fjr 1 t • -MKXX* • c 1 • - I01CC X . X X X X * 9 0 c r - c r t c c XXX* c 0 1 • - • •MC XXX* C o 1 • - 9C68I xxxx* f C 1 •- 89991 XXXXXXK* i c c • - 6(lrH • X X X X X X X X X X X X X * Cl c • • - ICICI xxxxxxxxxxxxxxxx>xxxx* IC 8 9 s - 6C696' H X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 6r 0 91 s - l f C 9 f xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxvxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx. 88 1 »C c- C91CS XXXXXXXXXXXXXXXXXXX XX XXXX XXX XXX XX <>vx XX X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X . 19 c 8£ s - C8I I C X X K X X X X X X X X X X X * • 1 9 r 9- 00098• 11 - X H 3 T 1 I JNHO OC BOJ X1SIM INindOlM O l i d v i v a i i v « O J S3iia3d0ttd I V S I H I I U H V O O I U S I N l»- 5O60I •IliOIA IVAHUNtl GOC IVtOl I ONISVIH X* 1 c C- 81 8UI * 0 o c - 8C11I 0 o C- IC90I X* 1 t c - tr«.5l 0 0 c - 9cri i 0 0 C- 99CCI 1 c C- C1CCI « 0 o c - CSI 1 1 XX* C o 1 c - • COOl X* 1 C • - 8CO06 X X . • c 1 • - CCI 61 x. 1 c • - BCCB9 XXX* t 9 1 r - • CC1S XXXKXX* 11 9 C • - 61 nr xxxxx* Ol c C • - n c c c X X X X X K X X X X X X X X X X 4 • C 1 01 • • 609 r c XXXXXXXXXXXXXXXXX XXXXX XXX XXXXX XX XXXXX XXXX XXXXXXXXX XXXXXXXXXXXXXXX X X X X X X X X X X X X X X X X X X X X X X X X X I * C8I 1 65 • - 601CI X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * IC c 61 c - 0008C U I O X 1 I J 1 J 0 6C B O J 1 N 0 0 3 X i S I " J N I O d l l l W O J S f l » l » 0 T l » OOJ S 3 l l « J d 0 1 l d I r S I H J I O B X B f O l S I I I 19- S910r' 'H10IA 1YA831NII 60C 1 V 1 0 I O N I S S I H X t I \ • 0 • O • 0 XXXXXX* 9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* 6C X X X X K X X K X X X X X X X X X X X X X X X X X X X X X X X X X X X X I 9C K X X X X X X X X X X X X X X X X X X X X K X X l X X X X * 6C XXKXXXXXXXXXXXXXXX'XXXX* c c X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 6C X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * C9 X X K X X X X X X X X k X X X X * 91 K X X R X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * ! • X X X X X X X X X V X K X X X K X * I I o 0 6 1 1 ' C I I'll • 6 I 1 • 6 s o c C S C 61 c c O O C 6 9 • C C C 9 ' i n 19' I COtS"' •66CS' 9168* lt-8»»" S 9 t o r " B 9 9 9 C " C I 9 C C S I S 8 C C- 6Srre s - c e i o c 5- 90C9I S- 6CCCI ' 9- 6161» 9- S910» I I .< H3»)l jn30'8C B O J 1 1 4 0 0 3 X I S I H l M O J i l I K 0 3 S D T I T O 11< B O J S J I l K I J O a d I O I R J I O H I B U O I S I H ( I - 61908' - i n O l A l f A B J l N I ) 60C l f i O l X X * c X X X X X * S X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * SC X X X X X X X X X X X X X X X X X X X X X X X X X X X X K X X X X X X X X X X X X X X X X * Sf X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * B C X X X X X X X X X X X X X X Xxxxxxxxxxxxxxxxxxxxxxxxxxxx* c» xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* It xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* oc xxxxxxxxxxxxxxxx* 9 1 xxxxxxxxxxxxxxxxxxxxx* IC xxxxxxxxxxxxxxxxxx* ei X X X X X X X X X * 6 X X X X X * c • o • o X * I • 0 X* I 066C I -961* ' I -COOS'I -GO*9' l -s i n i -I COS I -1C08 I -• C96 I -otto-c-9fCI C-CSOt'c-65SC'C-S99C C-I ttt'c-l l » ' c-CB09 C-6899C-9694 t -(I 'X H3Y3) J3J11'9» BOJ 1NI103 XlSIH INIOdOIH »i » 0 o i o o i J O S N O i i n a i a i s m H Y B D O I S I H ( I - 0 6 9 C 1 ' -HiOII" 1 X A B 3 1 N I ) 6 0 C 1 X 1 0 1 X* 1 c 1 8 3 * ' • -xxxxxxxxxxxxxxxxxxxxxxxxxx* 9C t 8 ecu ' • -xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx. 91 9 • »c RSI9 • • -xxxxxxxxxxxxxxxx* 91 c s 9609 ' * -XXXXXXXXXXXXXXKXXXXXXXXXX* SC I ' 8 CC91 • • -XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* et 6 SI 01C8 ' • -xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* SC c ' 11 101 s • • -xxxxxxxxxxxx* Cl 6 c cree ' r -xxxxxx* 9 s • 1 08 SO 6 -XXX* c 0 • 1 11 Cl • s-xxxx* r c • t HOC s-xxxxxxxxxxxx* Cl 8 c IBIC s-xxxxxxxxxxxx* Cl 6' c BCSC s-xxxxxxx* 1 c c S9C»' s-* ~ XXXXXXXXX* ^ XXXXX* 6 8' c coos • s-9 9' 1 6C1S' s-*— xxxx* • E 1 9l>9' s-xxxxxxx* 1 c c Cl C l ' e-( i -x H O T } ) j r m i s> B O J jwios x i s m INIOdOIH fifa o i o o i j o S N O i i n s i a i s i a H Y B O O I S I H (09ECI' -HjaiH lfABSlNII 60C X X * xxxxxxxx* X X X X X X X X X * xxxxxxxxxxxxxxxxxxxxx* xxxxxxx* xxxxxxxxxxxxxxxxxxxxxx* xxxxxxxxxxxxxxxxxxxxx* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx. xxxxxxxxxxxxxxxxxxxxxx* C ONISSIH 1 c 9C9CS-c 1' »B»[ f -9 9' c O M S S -8 6' c 96C9 E-IC 8 9 CS915-1 C c 8068 S-CC C 1 • 910 9-IC 6' 9 OCH 9-IC 1 ' Cl 9/.9C9-If • ' Cl CC6C9-1 • Cl e e i s ' 9 -ec • Cl •••9 9-cc c 1 OOll'9-61 c 9 9S68"9-01 c C Cl to 1-C 0 • 1 19H 1-1 c C C I C I -c 0 ' 1 6 1 6 C I -(I -X H 3 f l l JM101 •• BOJ 111003 XlSIH INIOdOIH V 1 » 0 O I O O I J O SNOIinoIMlSIO K V O T O I S I H IC- 1/fCC •HiOln lfAMJINM COC I f 101 X * 1 t 1- 0066C X * 1 C ' 1 - CS91C • 0 o 1 - 90fSC • 0 0 1- 6SICC xxxxxx* 9 6 1 1- CI60C X X X X X X X X X X X X X * * • 1 s • 1- S998C xxxxxxxxxxxx* Cl 6 c 1- 9I^9C X X X X X X X X X X X X X X X X X X X X X X X X X X X * tc t 9 1 • H i r e X X X X X X X X X X X X X X X X X X X X X oc s 9 1- r c 6 i c xxxxxxxxxxxxxxxxxxxxxx* cc 1 L 1- 91961 X X X X X X X X X X X X X X X X X X X X X X X X X * SC 1 8 i - can xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* If c Cl i - c e i s i X X X X X X X X X X X X X X K X X X X X X X X K X X X X X X X X X X X X X X X X * 0» 6 Cl 1- SC6CI xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* IC 0 01 1 - U890I xxxxxxxxxxxxxxxxxxxxxxxxxxxxx* 6C • 6 C- C I ^ B xxxxxxxxxxxxxxxxxxxxxxxxxxxxx* 6C • 6 C- I » C I 9 X X X X X X X X X * 6 6 c C- l l f B C X X * c 9 C- OOOll II 'X HD f i l t l B O J 1N003 XlSIH INIOdOIH a i s n f i f a l i f B O J s j u a j d o a d H3IHJH3 H I B O O I S I H IS- C898I -HiOM If/VB}1NI) 60C I f 101 X* 1 c • - OOOI-C * 0 0 • - Cl 1 cc • o 0 • - • ccoc X X X X X X X X X X * 01 c e • - SCCBC X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 9f 6 ' •! • - i r r s c xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx* oc 1 6 • - 6SS»C xxxxxxxxxxxxxxxxxxxxxx* cc 1 ' 1 • - I19CC xxxxxx* 9 6 1 • - C910C X X X X X X X X X * 6 6 c • - •6981 X X X K X X X X X X X X X X X X X * 11 s s • - 90011 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 9C 1' 6 • - 81 ISI X X X X X X X X X X X X X X X X X X X K X X X X X X X X X X X X X X X X * 9C 1 11 • - 6CCCI X X X X X X X X X X X X X X K X X X X X X X X X X X X X * BC 1 6 • - 1 fCI 1 xxxxxxxxxxx* 11 9 c s- 6CSC6 X X X X X * s 9 1 s- i»9Si xxxxxxxxxxxxxxxx* 91 c s s- S919S xxxxxxxxxxxxxxxxxxxxxxxxxxxx* BC I 6 s- C8U1C xxxxxxxxxxxxxxxx* 91 t s s- 00061 (I ' X HDfJ) J031 SC BOJ 1N003 XlSIH INIOdOIH OJSfl fl»0 l l f BOJ S3!183d0Bd 1X31H3H3 HxaOOISIM 19- BIICC -HlOlfl l f A B l l N I I 60C I f l O l X * 1 c S- 0O9»S « 0 0 s- 89CIS X* 1 c s- 91I8> * 0 0 s- S96>»' • X* 1 c s- CS1I • * 0 0 s- otic • o 0 s- 6CCSC * X » c 9 s- 91 1 CC X X X * s 9 1 s- 906BC* X X * • c ' 1 s- • 69SC X X X * s 9 ' 1 s- C8I-CC' xxxx* 9 9 C s- 1 1C6I x x x x x x x * • 1 s ' • s- 6S09I' X X X * 9 6 ' 1 s- tract xxxxxxxxxxxxxx* IC 1 8 9- CSC96' x x x x x x x x x x X X * X X X X X X * X X X X X * it B SI 9- SCCF9' j f X x x x x x x w x x x X K x i x x x x x x x i x m x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u x x n x * Ctl c 9» 9- BIICC xxxxxxxxxxxxxxxxxxxxxx* tt 6 Cl 0 IC - X H3TJI JNZO IC B I 1 J 1N003 X1SIH INIOdOIH o j s n m a n » O O J s m a u o H d i x s i m t o H » O D O I S I M 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0095504/manifest

Comment

Related Items