UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Genetic structure in populations of steelhead trout in British Columbia Parkinson, Eric A. 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A6_7 P37.pdf [ 5.49MB ]
Metadata
JSON: 831-1.0095439.json
JSON-LD: 831-1.0095439-ld.json
RDF/XML (Pretty): 831-1.0095439-rdf.xml
RDF/JSON: 831-1.0095439-rdf.json
Turtle: 831-1.0095439-turtle.txt
N-Triples: 831-1.0095439-rdf-ntriples.txt
Original Record: 831-1.0095439-source.json
Full Text
831-1.0095439-fulltext.txt
Citation
831-1.0095439.ris

Full Text

GENETIC STRUCTURE IN POPULATIONS  OF STEELHEAD TROUT I N B R I T I S H  COLUMBIA by ERIC A. B.SC  PARKINSON  U.B.C.  1973  A THESIS SUBMITTED I N PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in  THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We a c c e p t t h e t h e s i s a s c o n f o r m i n g required standard  to the  THE UNIVERSITY OF B R I T I S H COLUMBIA . December 15 1980 E r i c A.  P a r k i n s o n , 1980  In presenting this thesis  in partial  fulfilment of the requirements for  an advanced degree at the University of B r i t i s h Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this for  thesis  scholarly purposes may be granted by the Head of my Department or  by his representatives.  It  is understood that copying or publication  of this thesis for financial gain shall not be allowed without my written permission.  Department of  "Zoology  The University of B r i t i s h Columbia  2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5  i i  ABSTRACT  Rainbow  trout  locations  in  (Salmo  gairdneri)  British  Columbia  e l e c t r o p h o r e s i s t o examine g e n e t i c M o s t c o l l e c t i o n s were f r o m gene  flow  is  possible  Repeated sampling of t h e  o f a number of  was  IDH-3,4)  scored  clear genetic SDH  f o u r enzyme  Each  of t h e s e  b a s i s by o t h e r  fry  which  to  The  which  an  estimate  for a  small  (LDH-4,  SOD,  AGP-1  locus  highly variable in  I n a d d i t i o n , t h e ME cutthroat  cannot  easily  be  two  been shown t o h a v e a  distinguish  often  in  frequencies.  systems  s y s t e m s has  workers.  using  locations.  screened  were c o n s i s t e n t l y v a r i a b l e .  s y s t e m s were u s e d  trout  allozyme  when p o s s i b l e b e c a u s e i t was  populations.  separated  locations provided of  63  populations.  populations,  were i n i t i a l l y  number of p o p u l a t i o n s , o n l y  from  studied  s t r u c t u r i n g of  between w i d e l y  20-30 enzyme l o c i  MDH-3,  were  anadromous  intrapopulation variability  Although  collected  and  and  rainbow  distinguished  morphologically.  The highly  variability  significant  This v a r i a b i l i t y between Genetic  each year  can  frequencies  f o r e a c h of t h e  was  locations, drift,  in allozyme  not  clearly  year  a result  classes  of the  w i t h i n streams  was  f o u r enzyme s y s t e m s s t u d i e d . associated or  life  with  differences  history  s m a l l numbers o f a d u l t s  a c c o u n t f o r a l l of t h e w i t h i n s t r e a m  stages. spawning  variability.  A h i e r a r c h i c a l ANOVA was area  in  which  gairdneri.  were  streams adjacent coastline.  frequencies  i n areas  one  i n t h r e e out  exception  were u n i f o r m  discontinuity  and  a  to  similar  this  i n LDH-4 and  River  regions.  A  i s considered  SOD  Evidence  against  coincidence  of  similar  the  implying  large  United  between  in  the  the  last  includes  discontinuity  in  frequencies  locus. an is  fixed  PEP  r e s p e c t i v e l y , and in  the  of  Columbia large  lack the  of more  noncoincident and  physiological  v a r i a t i o n a t t h e LDH-4 transplanted  lake to a c o a s t a l lake approximately  f o r t h e SOD(IOO) a l l o z y m e  and  i n the F r a s e r  evidence  A s i n g l e non-anadromous p o p u l a t i o n  interior  the  the  AGP-1  selection,  tributaries  glaciation.  discontinuity  implying  measured  t h e b o u n d a r y b e t w e e n two  LDH-4/S0D  over  coastal  on  the p r e s e n c e of  effects,  ocean  States.  Skeena r i v e r s ,  Columbia r i v e r s ,  or  previously  frequencies  contention  and  Salmo genetic  river  n o r t h e r l y Dean and in  in  of  of f o u r systems between  to  isolated during this  present  discontinuity  to represent  groups of p o p u l a t i o n s  size  large scale uniformity i s a  of the F r a s e r R i v e r a t t h e boundary interior  the  gene f r e q u e n c i e s a v e r a g e d  of the n o r t h w e s t e r n  exception  is  differences,  to each other along  W i t h one  l a r g e r areas  sharp  found  determine  structuring  Significant  structuring,  The  genetic  used t o  v a r i a n t and  40 y e a r s  shows no  from ago  obvious  iv  change  in  therefore locus.  the  frequency  provides  no  of  the  evidence  LDH-4(100) of  allozyme  s e l e c t i o n a c t i n g on  and this  V  TABLE OF CONTENTS  ABSTRACT  i i  L I S T OF TABLES  vi  L I S T OF FIGURES  v i i  ACKNOWLEDGEMENTS  viii  INTRODUCTION  1  General L i f e History MATERIALS AND METHODS  12  Sample C o l l e c t i o n Sample P r e p a r a t i o n  12 and E l e c t r o p h o r e s i s  R e v i e w o f Enzyme S y s t e m s RESULTS Within  10  13 15 19  Stream V a r i a b i l i t y  Variability  Between S t r e a m s  25 28  DISCUSSION  52  APPLICATIONS TO STEELHEAD MANAGEMENT  78  LITERATURE CITED  86  L I S T OF TABLES  Table  1.  The  Buffer  Systems,  Staining  Solutions  And  R e f e r e n c e s F o r I n h e r i t a n c e S t u d i e s F o r Enzymes U s e d  In  T h i s Study Table  2.  15  Variabiltiy  Between L o c a t i o n s I n V a r i o u s  Sized  Streams Table  3.  26 Summary  Of  The  Significance  Of  Variability  Between S a m p l e s W i t h i n S t r e a m s Table  4.  27  Number Of P a r e n t s E x p e c t e d F o r P o i n t S a m p l e s Of  Fry Table  31 5.  Summary  Of  The  Results  Of  The  Overall  H e i r a r c h i c a l ANOVA Table  6.  Correlation  32 M a t r i x Of F r e q u e n c y  D i f f e r e n c e s At  Different Loci  45  T a b l e 7. LDH-4 And SOD A l l o z y m e F r e q u e n c i e s And  Penask Lakes  T a b l e 8. A v e r a g e Stein  And  Interior Table  In H e n r i e t t e  9.  51  LDH-4 And SOD A l l o z y m e F r e q u e n c i e s I n The Nahatlatch  Rivers  And  The  Coastal  And  Regions A  Comparision  61 Of  LDH-4  And  F r e q u e n c i e s I n B. C. And The N o r t h w e s t e r n  SOD U. S.  Allozyme 71  L I S T OF FIGURES  Figure  1.  Diagramatic  Representation  Of  S t e e l h e a d And  C u t t h r o a t T r o u t P h e n o t y p e s A t The SDH And ME L o c i Figure  2. Map Of S t u d y A r e a  Figure  3. S o u r c e s Of V a r i a t i o n I n The A l l o z y m e  20 29  Frequencies  Of The F o u r V a r i a b l e Enzyme S y s t e m s  34  Figure  4. Mean LDH-4(76) A l l o z y m e F r e q u e n c i e s  37  Figure  5. Mean SOD(152) A l l o z y m e F r e q u e n c i e s  39  Figure  6. Mean MDH-3(71) A l l o z y m e F r e q u e n c i e s  41  Figure  7.  Mean  IDH-3,4(72)  And  IDH-3,4(.48) '  Allozyme  Frequencies Figure  43  8. D e n d r o g r a m Of The R e l a t i o n s h i p s Between  Coastal  Populations Figure  46  9. E x a m p l e s Of A l l o z y m e  Frequency  Differences  At  Two L o c i Figure  10.  49 An  Example  Of  Two  Possible  Between The P a t t e r n Of V a r i a t i o n Of  The  Relationships Allozymes  At  Two L o c i Figure  11.  68 Large Scale Geographic  SOD Gene F r e q u e n c i e s  V a r i a t i o n I n LDH-4 And 73  vi ii  ACKNOWLEDGEMENTS  I would l i k e t o McPhail,  Judy  thank  my  committee  and  editing  the manuscript.  thank  Fred Utter f o r h i s technical  and  Lloyd  as f o r  I would a l s o l i k e t o assistance  J o e F e l s e n s t e i n a n d S t a n l e y Nash f o r t h e i r Steinberg  Don  for their  f i v e years as w e l l  reviewing  Jerry  Drs.  M y e r s , Con Wehrhahn a n d H e n r y T s u y u k i  a d v i c e a n d a s s i s t a n c e o v e r the' l a s t  Dr.  members  and D r s .  s t a s t i s t i c a l advice.  Hildebrand provided assistancei n  b o t h t h e l a b a n d t h e f i e l d a n d B i n g S a n s o n a n d Aenea  Parkinson  typed  o f B.  the f i r s t  draft.  through  the Salmonid  support  for this  Finally  Enhancement  dialectical  Program,  Branch  provided  C,  financial  project.  I w o u l d l i k e e x p r e s s my s i n c e r e g r a t i t u d e t o R u t h  W i t h l e r who was a l w a y s ambiguous  The F i s h a n d W i l d l i f e  g e l or  to  blunders.  ready  to  comment  palaver on  my  over latest  a  particularly  s t a t i s t i c a l and  1  INTRODUCTION  Recently  i t has  of p o p u l a t i o n s  i s an  species  plants  of  differentiation changes  (eg.  become c l e a r t h a t g e n e t i c important  aspect  and  i n the  animals  differentiation  ecology  (Endler,  i s often associated with obvious heavy  metal r e s i s t a n c e i n grasses ( J a i n and  B r a d s h a w , 1966;  1971),  in  colour  living  on  In other and  the soils  is  the  in  living  on  and  Antonovics,  (Blair,  differentiation  was  at  of  1950)).  first  selective the  either  explanation.  thought  forces,  pattern  are  An  s h e l l pigment v a r i a t i o n i n  A t r e m e n d o u s amount o f work o v e r t h e  discontinuities  to last  but  remain  be  entirely  25 y e a r s  has  number  of  a  unexplained  (Clarke,  Jones et a l . , 1977).  Restriction differentiation.  of  subspecies  speciation  gene  Total  b a r r i e r s a p p e a r s t o be of  of  complex p a t t e r n  various  Such  some s m a l l mammals  t o document o r h a v e d e f i e d a d e q u a t e  implicated  1978;  of  1977).  o b v i o u s e n v i r o n m e n t a l change i s i n v o l v e d causes  (Cepea) w h i c h  random.  coat  sharply contrasting colour  underlying  difficult  snails  of  s i t u a t i o n s no  the  example  change  many  environmental  o f f of o l d mine t a i l i n g s or  of  is  restriction the  complexes  ( M a y r , 1963)  flow  basis and  but,  a  key  o f gene f l o w by  f o r the  formation  i s the c l a s s i c a l in  element  the  absence  geographic  of a  number  explanation of  in  for  geographic  2  barriers,  i s o l a t i o n may  occur  b e c a u s e o f r e s t r i c t e d movement  individuals.  Endler  the  o f movements made by  two  types  defined  as  numbers of  "the  relatively  individuals.  the  same  time  and  return migration". Despite  migrants,  the  is the  w i t h i n a few  b r e e d . I n one  m e t e r s of  of hundreds of m i l e s other  their  at  f o l l o w e d by  i s severely to  a by  restricted  return  to  their bred  migration  e_t a l . , 1 9 6 5 ) . D i s p e r s a l , on  usually  do  not  return. Endler  p o i n t s out  distances  the d i s t r i b u t i o n of d i s p e r s a l d i s t a n c e s  the  individuals indication  differences  dispersing  severely  microhabitat individuals.  restricted  t o d i s p e r s a l and  the  moving the necessary  In  indicate  because  d i s p e r s i n g l o n g d i s t a n c e s a r e not n e c e s s a r i l y  of h i g h d i s p e r s a l i n t h e  in  that d i s p e r s a l  i s l e p t o k u r t i c . Thus, a  s p e c i e s as a  a d d i t i o n , post-movement m e c h a n i s m s s u c h as  of  direction  birthplace following .a  i s o f t e n l e s s t h a n mean d i s p e r s a l  an  large  example g u i l l e m o t s t y p i c a l l y  (Southern  is  h a n d , i n v o l v e s r a n d o m l y d i r e c t e d movements of i n d i v i d u a l s  which  few  Migration  l o n g d i s t a n c e s moved  i n many s p e c i e s b e c a u s e i n d i v i d u a l s t e n d to  same  usually  gene f l o w b e t w e e n p o p u l a t i o n s  birthplace  d i s p e r s a l as  l o n g d i s t a n c e movements of  i n d i v i d u a l s in approximately  approximately regular  (1977) d e f i n e d m i g r a t i o n and  by  anadromous  social  t o l e r a n c e s may Gene  flow,  even though t h e r e a r e  whole.  osctracism  reduce the  therefore, no  In or  success can  be  obvious b a r r i e r s  i n d i v i d u a l s i n v o l v e d are q u i t e capable  of.  distances.  salmonids  gene  flow  i s p o s s i b l e between  3  populations Juveniles  separated can  disperse  gene f l o w b e t w e e n often migrate return  to  by  within  populations  any  natal  river in  stream,  i n s t a n c e s of s t r a y i n g t o (Hardin-Jones,  both  streams.  there  nearby  are and  this  apparent  opportunity  separated  many  documented  distant  locations  Deschutes  and  f o r gene f l o w  myxosporidian  steelhead  Clearwater  Columbia drainage. on  parasite  1973).  between  a p p e a r s t o be common among  rivers  upper Columbia R i v e r t r i b u t a r i e s ) d i s p l a y e d a a  they u s u a l l y  by l a r g e g e o g r a p h i c  s t r o n g s e l e c t i v e g r a d i e n t s . Summer  to  Adults  1968; S h a p a v a l o v and T a f t , 1954; E v e r e s t ,  populations  Washougal,  distance.  s y s t e m s , and so p r o v i d e  tributary  populations, genetic d i f f e r e n t i a t i o n salmonid  geographic  many h u n d r e d s o f m i l e s a n d , a l t h o u g h  their  Despite  almost  that  d i s t a n c e s or  stocks  from  the  ( l o w e r , mid and high  resistance  i s common t h r o u g h o u t t h e Siletz  River  t h e O r e g o n c o a s t , where t h e p a r a s i t e i s n o t p r e s e n t ,  lacked  resistance stocks  In c o n t r a s t , a stock  (Buchanan,  also  resisted  1975).  The  infection  from t h e  Deschutes  stock  was  only  t o t h e same two d i s e a s e s a t t e m p e r a t u r e s b e l o w a b o u t  62°F. T h i s d i f f e r e n c e differences  i s presumably  related  to  between t h e n a t i v e e n v i r o n m e n t s o f t h i s  instance of genetic d i f f e r e n t i a t i o n salmonid  Clearwater  by two b a c t e r i a l d i s e a s e s a t  t e m p e r a t u r e s b e l o w 68°F w h e r e a s t h e W a s h o u g a l resistant  and  species i n which the  a d u l t s spawn i n b o t h  inlet  over  f r y rear  temperature s t o c k . One  a short distance in  lakes  while  is in the  a n d o u t l e t s t r e a m s o f t h e same l a k e .  4  Outlet migrate  f r y migrate  downstream. A l t h o u g h  influence  this  component outlet  upstream t o reach  to  behavior,  the  stocks  environmental there  migrational  (Bowler,  t h e l a k e whereas i n l e t f r y f a c t o r s can s t r o n g l y  a l s o a p p e a r s t o be a g e n e t i c  difference  between  inlet  and  1975; c u t t h r o a t t r o u t ; R a l e i g h , 1971;  sockeye salmon; N o r t h c o t e ,  This  genetic  by s t r o n g s e l e c t i o n  i n spite  of c o n s i d e r a b l e gene f l o w b e t w e e n t h e two p o p u l a t i o n s .  Riddell  (1979)  genetic  divergence  i s probably  recently  differentiation system.  provided  Atlantic  few  cases  despite  a  lack  of  of  genetic obvious  anadromous  salmon: Smith,  completely  the  1969; same  different  September)  steelhead, Summer  from a s t e e p e r , c o l d e r  and  (which  differentiation selective  s t o c k s commonly salmonids  steelhead time  river  tributary  tributary  and 90  of  (which  are often present enter  winter  occur  trout). year  freshwater  stocks d i f f e r  in  a  occurred  enter  i s well  number  1967;  Seasonal  but  enter  has  .forces or b a r r i e r s t o  (Saunders,  times. This habit  s t e e l h e a d . Summer s t e e l h e a d and  single,  f r o m a l o w g r a d i e n t , warmer  i n t e r b r e e d i n g . Seasonal  at  of  downstream.  a  spawn  example  i n New B r u n s w i c k h a d s l i m m e r b o d i e s  parr  In  species  another  salmon p a r r River  f i n s than  kilometers  maintained  b e t w e e n two p o p u l a t i o n s w i t h i n a  of t h e M i r a m i c h i larger  1969; rainbow t r o u t ) .  of  Atlantic  stocks a l l freshwater at developed  freshwater  in  b e t w e e n May  i n t h e same s t r e a m a s w i n t e r b e t w e e n November significantly  and May).  i n a number o f  5  morphometric c h a r a c t e r i s t i c s . Smith some  of  these  differences  thus i n d i c a t i n g r e s t r i c t i o n winter  populations.  appears t o  be  obstructions  an in  the  the  i n gene  before  between  some r i v e r s e a r l y e n t r y to  other  reason f o r e n t e r i n g  months  flow  genetic  the  that  control  summer to  presence  and  freshwater  of  physical  stream which a r e insurmountable at other  In  ocean and f e e d i n g  demonstrated  a r e under p a r t i a l  adaptation  times of the year. obvious  In  (1969)  rivers,  however,  freshwater  to  is  no  i n s t e a d of remaining i n  a n d g r o w i n g f o r an  returning  there  spawn.  extra  s i x to  Genetic  eight  differentiation  w i t h i n a s i n g l e d r a i n a g e h a s a l s o been d e m o n s t r a t e d f o r k o k a n e e salmon  ( V e r n o n , 1 9 5 7 ) , brown t r o u t  1978), A r c t i c char whitefish  (Kirkpatric  slight  i n the  species  level  From  brown  and  Filipsson,  trout  and  kokanee  preceeding  examples  can  be  i n some c a s e s d i f f e r e n t i a t i o n  river  species  as a whole, however, s i n c e o n l y  populations,  system.  can  data  It  be  involved  under can  is difficult  compared  problems  characteristics allozyme  but  and  approaches  i t appears  single  logistic  1972)  lake  and S e l a n d e r , 1979). D i f f e r e n t i a t i o n i s  i n anadromous s a l m o n i d s  since  and S t a h l ,  the  i n t h e A r c t i c char and l a k e w h i t e f i s h .  the  structuring scale,  (Nilsson  (Ryman, A l l e n d o r f  be  in in  genetic  very  takes place  fine  within a  to generalize  each  t o each  most  three  study because of t h e  making  from  a  two, o r a t  p a r t i a l polygenic collected  on  that  comparisons  of  c o n t r o l . In c o n t r a s t , a  large  number  of  6  populations genetic  and  u s e d t o b u i l d up a more c o m p l e t e p i c t u r e o f  structuring  allozyme  data  difficult  to  is  probable  measure  of  outlet  persistently  of  the  however, t o e s t i m a t e for  good  selective  is  it  the  is  probably  frequency  indication  of  cost  the on  known,  the  difficult  to  f r y emerging i n i n l e t  and  also  is  very  easy  to  see  that  wrong - d i r e c t i o n  of  It  is  temporary  induced  fry  will  more  not  difficult,  mistakes  or  to  corrections in fry with  observation  of  a  genetically  or b e h a v i o r a l d i f f e r e n c e between more  difference the  forces  by  act  generation.  Simple  morphological  populations allozyme  in  the  are  Although  c h a r a c t e r i s t i c s i s often  lake,  next  involved  identified.  which  environmentally  genotypes.  controlled  be  forces  swimming to  incorrect  through  a  forces  of  i n most c a s e s e v e n t h e m e c h a n i s m  example, i n the c a s e of  streams  account  selective  cannot  selective  For  contribute  and  or b e h a v i o r a l  the  estimate.  the  act  mechanism  morphological size  w i t h i n a s p e c i e s . A major d i s a d v a n t a g e that  which these f o r c e s  the  informative  than  but  i s able  selective  neither  importance  a  of  two  similar to give  a  such  a  di f ference.  Electrophorectic scale genetic  studies  differentiation  i n many u n r e l a t e d  have  of p a r t i a l l y  species. Extensive  reveals  differentiation  s m a l l as  100  meters  provided  work  isolated on  i n gene f r e q u e n c i e s  (Richmond,  1978).  e v i d e n c e of  fine  populations  Drosophila  spp.  over d i s t a n c e s  Drosophila  are  as  quite  7 0  capable do  of m o v i n g much f a r t h e r t h a n t h i s  so v e r y  o f t e n and/or very  but  apparently  successfully. Semi-isolated  populations  such those i n S a r d i n i a n mountain v i l l a g e s  e t a l , 1979)  or A m e r i n d i a n s  (Smouse and  Ward, 1978;  a l s o show d i f f e r e n c e s o v e r d i s t a n c e s  much  than  primitive  peoples.  structuring  can  1975), mussels eelpout  be  have  by  greater in  .53  and  that  scale  (Selander  and  are of  genetic Kaufman,  done.  species  Most  have  studies  samples from  been  a  are  .18  (Sockeye  LDH;  significant  areas.  For  Miramichi  r i v e r s enter  .25  genetic  based  on  e_t  can  gene  be  marked  separated frequency  (Pink  s a l m o n , G-6-PDH;  LDH;  Hodgins  al. ,  1970)  Allendorf,  1975).  differences  occur  the  northwest  same e s t u a r y  a  geographical  et  t r a n f e r r i n ; M o l l e r , 1971),  Utter  example, the  are  Maximum  salmon,  salmon,  transferrin;  smaller  miles.  studied  of  large  indicate that there  species  the  1974).  r e a l l y d e t a i l e d analyses  t h a n 100  trout,  stastistically  fine  (Workman  distances  anadromous s a l m o n i d p o p u l a t i o n s  (Atlantic  salmon,  (Steelhead  no  various  A s p i n w a l l , 1974), 1969),  but  these studies  between  differences  of  snails  salmonid  been  differences distances  in  Frydenberg,  s m a l l number o f  Generally  (Coho  found  of  electrophoretically  relatively  examples  dispersal  human  ( K o e h n , 1 9 7 8 ) , n e w t s ( H e d g e c o c k , 1 9 7 8 ) , and  number  structure  potential  Other  ( C h r i s t i a n s e n and  A  area.  the  not  Workman  N i s w a n d e r , 1970) shorter  do  but  and Smaller  within and  s a m p l e s of  al, .67 .71 but much  southwest Atlantic  8  s a l m o n f r o m t h e s e two frequency  of  transferrin  samples from  two  differed  .2  by  in  gene  had  the  .15  the  (1975)  The  of  an  sampling true  significance  estimate  of  of  by  the  these  using  population  therefore  the  c a n n o t be  determined.  the  within  populations,  within  structuring  t h e management o f  insignificant.  extensive depleted  transferrin-c allele  reports  miles  fine  a  number  i n the  binomial  population  which  of each  scale  of  .1 t o  variance,  has  the  differences  is  sampling variance variance.  not  .2  other.  as  Repeated  i s necessary to estimate  can  steelhead.  be  For  an  important  been  done,  the and  Attempts  fish  on  an  transplantation stocks.  differentiation  were  and  programs  isolation  differences  were c o n s i d e r e d  to  made t o manage p o p u l a t i o n s  individual  Accumulating  consideration in.  many y e a r s g e n e t i c  between anadromous s a l m o n i d p o p u l a t i o n s  of  River  t r u e s i g n i f i c a n c e of t h e s e f i n e s c a l e d i f f e r e n c e s  Genetic  stocks)  the  samples from r i v e r s e n t e r i n g e i t h e r  C o l u m b i a R i v e r w i t h i n 100  determined  in  Columbia  of v a r i o u s a l l e l e s  ocean or the  usually  lower  frequency of the  frequencies  difference  ( M o l l e r , 1 9 7 1 ) . Coho s a l m o n  of  Allendorf  range between s t e e l h e a d  a  alleles  tributaries  ( U t t e r et a l , 1970). different  rivers  demographic were  used  evidence  of  between  stocks  basis to  some  be (ie. but  replenish genetic  i n a number o f  9  salmonid policy  s p e c i e s has  of  policy,  lead to a general  extensive  more  transplantation.  information  differentiation  d i s s a t i s f a c t i o n with  is  takes place  needed and  To on  on  clarify the  the  the  transplant  scale  on  which  importance  of  that  differentiation.  Estimating  the  scale  geographic d i s t a n c e s over take  place,  is  the  of  which  first  differentiation, genetic  step  in  d i s t a n c e over which t r a n s p l a n t s w i l l present If  this  p a t t e r n of g e n e t i c scale  coefficients, populations  is  defined  differentiation  separated  for  separated  differentiate  at  occur  loci  e f f e c t on  similarity by  smaller  where  small  selective  a t most l o c i  between  (given that s t r a y i n g  between  rather  environments).  distances  relatively  the  species.  the d i s t a n c e between p o p u l a t i o n s  example,  Populations  can  can  to e s t a b l i s h the  w i t h i n the  with  by g r e a t e r d i s t a n c e s  r a t e s a r e d e p e n d e n t on than,  trying  have l i t t l e  loci  the  differentiation  differentiation using  i.e.  strong  could  only  selection  was  operating.  Once t h e the  size  of  different  the  selective  e n v i r o n m e n t s has  importance does not  s c a l e of g e n e t i c  of g e n e t i c  to  differentiation  established,  advantage of d i f f e r e n t be  measured  s t r u c t u r i n g . Genetic  n e c e s s a r i l y imply  is  that environmental  to  stocks  determine  isolation  by  in the  itself  differences  are  10  large  enough  to  a d a p t a t i o n . The  primary  allozyme  variation  steelhead  trout.  General  Life  produce  biologically  o b j e c t i v e of  to estimate  the  main  but  study  reported  mostly  concerned  termed s t e e l h e a d  a l l  and  a r e most common e a s t  is  generally almost  accessible  to migrate  up  coastal the F r a s e r  to f i v e years;  from 2 t o 3 years  L a r k i n , 1955;  the  and  sea  1973). and,  the  spawn and  R i v e r as  populations, and  rear  in  and  are  streams  f a r as  P r i n c e George  1967). J u v e n i l e s t e e l h e a d can h o w e v e r , i n B.C.  the  ( W i t h l e r , 1966;  a t a s i z e o f 150 four years and  i n the  t o 210 sea  majority Maher  and  downstream mm  before  and  spend  returning 1968;  A f t e r s p a w n i n g , some a d u l t s s u r v i v e t o  return  s p e n d i n g one  L y o n s , 1968;  live  Wallis,  after  (Peterson  o c e a n , r e t u r n t o spawn a g a i n .  repeat  which  i n freshwater  June  into  throughout  1969). Smolts u s u a l l y migrate  months and  n a t a l stream  Everest, to the  Narver,  March  to t h e i r  in  g e n e r a l l y termed  anadromous  rivers  i n s t r e a m s f o r one  b e t w e e n a few  use  of the Coast M o u n t a i n c r e s t .  trout,  Lindsey,  between  to  classified  streams  with  ( C a r l , C l e m e n s and  live  usually  g r o u p s . Non-anadromous p o p u l a t i o n s ,  province,  is  s c a l e of d i f f e r e n t i a t i o n  are  r a i n b o w t r o u t , o c c u p y many l a k e s  My  thesis  local  History  Salmo g a i r d n e r i p o p u l a t i o n s two  this  important  o r two The  a d d i t i o n a l summers i n  reported  spawning i n B r i t i s h Columbia r i v e r s  incidence  r a n g e s f r o m 4.4  of %  to  11  31.3  % ( W i t h l e r 1966) b u t J o n e s  repeat  spawning  the main a d u l t appears  to  be  (1974) r e p o r t e d  of 42% i n P e t e r s b u r g  run i s under  highly  and  September  in  "summer" s t e e l h e a d . between  Creek, A l a s k a .  variable  (Withler,  some d e g r e e o f g e n e t i c  1973; Wagner, 1 9 6 7 ) . F i s h t h a t e n t e r sexually  an i n c i d e n c e o f  immature  1966),  control  freshwater condition  "winter"  are  steelhead.  but  (Everest,  between  Sexually maturing f i s h entering  O c t o b e r a n d May a r e t e r m e d  Timing of  June termed  freshwater  12  MATERIALS AND METHODS  Sample C o l l e c t i o n  Collections  were  made i n s t r e a m s i n s o u t h w e s t e r n  C o l u m b i a on d a t e s d e t a i l e d indicate occurred  that  i n these  considered were  few  to  sampled  i n Appendix  transplants  or  be  essentially  repeatedly  to  Stocking  test  between y e a r  c l a s s e s and between l i f e  operations  locations  for differences  (usually captured. be  by  electroshocking  l e s s t h a n 100 m e t e r s ) In sparse  in  h i s t o r y stages.  until  populations  gene  apart, Although  anadromous  F r y and  parr  a small s e c t i o n of stream 40-50  individuals  were  40 i n d i v i d u a l s c o u l d n o t a l w a y s  f o u n d . F r y a n d p a r r w e r e e a s i l y d i f f e r e n t i a t e d by s i z e , b u t  p a r r were n o t a g e d a n d p r o b a b l y  contained  groups.  in  Smolts  differentiated appearance.  were  captured  from  parr  by  their  Adults  were  obtained  two  or  three  rainbow  samples  were  streams w i t h access mm  obtained  size from  and angler  slim,  silvery  catches  and  Resident  by a n g l i n g a n d g i l l n e t t i n g . I n  to the sea, only  were c o n s i d e r e d  age  t r a p s o r g i l l n e t s a n d were  h a t c h e r i e s which u t i l i z e d w i l d a d u l t s as brood s t o c k .  400  be  rivers  more t h a n one k i l o m e t e r  c o n s i s t e d o f f r y o r p a r r , some s m o l t ,  collected  have  can t h e r e f o r e  a d u l t a n d r e s i d e n t a d u l t s a m p l e s were a l s o t a k e n . were  records  p u r e n a t i v e s t o c k . Some  between  samples  rearing  streams and t h e p o p u l a t i o n s  frequencies  most  1.  British  f i s h between  220  r e s i d e n t s . S a m p l e s were u s u a l l y  mm  and  frozen  13  on  d r y i c e o r b r o u g h t back a l i v e and i m m e d i a t e l y  samples  were  refrigerated  activity  preserved  Sample P r e p a r a t i o n  Groups  of  banding  could  not  ( e s p e c i a l l y i n IDH) was  fish, particularly  noted  in fry.  And E l e c t r o p h o r e s i s  fish  frozen  t h e n e a c h f i s h was r e f r o z e n Tissue  fish  being  f o r up t o 12 h o u r s a f t e r d e a t h . Some l o s s i n  and s u p e r f l u o u s  in poorly  Some,  p r e s e r v e d on i c e f o r up t o 12 h o u r s b e f o r e  f r o z e n . A n g l e r - c a u g h t a d u l t s a n d some r e s i d e n t be  frozen.  i n a s i n g l e block  to f a c i l i t a t e  were t h a w e d a n d  removal  of  livers.  e x t r a c t s o f l i v e r a n d m u s c l e were p r e p a r e d by c o m b i n i n g  a p p r o x i m a t e l y e q u a l amounts o f t i s s u e a n d d i s t i l l e d w a t e r 12  x  75  and  then c e n t r i f u g i n g t h e  before  the  during  Centrifuging, had  no n o t i c e a b l e  at tubes  lOOOxg were  preparation  e f f e c t on t h e i n t e n s i t y  for kept  and  or  o f t h e enzymes u s e d i n t h i s  methods d e s c r i b e d  electrode  g e l . Test  sample  Electrophoretic  Two b u f f e r  samples  5  minutes  immersed i n  gel  loading.  h o m o g e n i z i n g and r e p e a t e d f r e e z i n g of t h e sample  banding patterns  and  a  mm t e s t t u b e , f r e e z i n g t h i s m i x t u r e f o r up t o a week  loading  icewater  in  analyses  were  quality  of  study.  conducted using  by May e t a _ l . 1979 a n d U t t e r  equipment  e t a l . 1974.  s y s t e m s were u s e d : 1) A f t e r R i d g e w a y e t a _ l . , buffer  .06M L i O H ,  .3M b o r i c a c i d  the  1970,  (pH 8 . 3 ) , g e l b u f f e r  14  .005M  citric  acid,  P r a s s a r d , 1970,  .155M  full  for  strength  distilled detailed  water in  .03M tris,  scored  (LDH-4,  1,  gel  were  SOD,  systems,  acid  buffer. adapted  were  MDH-3,  f o r each p o p u l a t i o n .  enzyme trout  .043M c i t r i c  the  A l t h o u g h a number o f l o c i systems  (pH 8 . 3 ) , and 2) a f t e r (pH  ME  and  Staining from  initially AGP-1,  Shaw and  7.0)  t h e e l e c t r o d e b u f f e r and d i l u t e d  for  Table  tris  1:15  with  solutions,  Allendorf,  screened  1975.  only  IDH-3,4) were  five  regularly  In a d d i t i o n , the phenotypes SDH,  used  of  two  were u s e d t o s e p a r a t e c u t t h r o a t  from rainbow t r o u t . A l l of the p o l y m o r p h i c l o c i  in  this  a  s i m p l e M e n d e l i a n i n h e r i t a n c e o f v a r i a n t s h a s been d o c u m e n t e d  (see  s t u d y have been u s e d by o t h e r w o r k e r s and  described  references  given  in  Table  1).  corresponding a b b r e v i a t i o n s are l i s t e d  Review  of the  LDH  system  names  and  1.  i n s a l m o n i d s c o n s i s t s of a complex  ( M o r r i s o n and W r i g h t , 1966;  1973;  i n Table  case  Of Enzyme S y s t e m s  The loci  Complete  i n each  Bailey,  these l o c i only  Mendelian gairdneri  LDH  (1974, c i t e d allozyme  and  five  Hodgins,  T s u y u k i and W i l s o n , 1 9 7 6 ) . The most p o l y m o r p h i c i s LDH-4. I t i s e x p r e s s e d i n most t i s s u e s , . b u t i s locus  inheritance was  Utter, Allendorf  of  strongly of  expressed  variants  at  in  the  this  e s t a b l i s h e d by U t t e r e t a l . (1973) by K l a r e t a l . 1 9 7 9 a ) . The  frequencies  at  this  liver.  locus  i n Salmo  and  Stilling  spatial distribution  l o c u s was  The  r e p o r t e d by Huzyk  of and  T a b l e 1.  D e t a i l s o f e l e c t r o p h o r e t i c methods and s t a i n s f o r t h e enzyme systems used i n t h i s study i n c l u d i n g r e f e r e n c e s documenting the g e n e t i c nature o f t h e v a r i a t i o n i n each system.  Enzyme Locus  LDH-4 (Lactate  Tissue  Buffer System  Reference f o r Inheritance Studies  Stain Solution*  Liver  10 mis .5 m P L - N a - l a c t a t e 5 mg NAD  Allendorf  SOD (Superoxide Dimutase)  Liver  S t a i n a d j u s t e d t o pH 8.5  Cedarbaum and Y o s h i d a (1972)  SDH ( S o r b i t o l Dehydrogenase)  Liver  1.5 g. s o r b i t a l 5 mg. NAD  ME (Malic Enzyme)  Liver  II  10 mis .5 m Na-Malate 5 mg NADP  AGP-1 (Alpha-glycerophosphate Dehydrogenase) ,  White Muscle  II  1.5 g a g l y c e r o p h o s p h a t e 5 mg NAD  Allendorf  IDH-3,4  Liver  II  50 mg N a - l s o c i t r a t e 5 mg NADP  A l l e n d o r f (1975) Ropers et al. (1973) R e i n t z (1977)  White Muscle  II  10 mis .5 m Na-malate 5 mg NAD  B a i l e y et al. (1970) A l l e n d o r f (1975)  Dehydrogenase)  ( I s o c i t r a t e Dehydrogenase) MDH-3, 4 (Malate Dehydrogenase) *all  s t a i n s c o n t a i n 5 mg PMS, 15 mg MTT, and a r e mixed i n 100 mis o f B u f f e r  I g e l buffer.  (1973)  (1975)  16  Tsuyuki  (1974)  Allendorf states, and  f o r 14  locations  ( 1 9 7 5 ) f o r 35 l o c a t i o n s and  by  in  the  i n the k i n e t i c  behavioral  traits  have  and Schreck  The  Yoshida  of  this  of  (1973). V a r i o u s  been  ( U t t e r e t a_l. ,  and  A  allozyme  wider  et  a l . (1979a,b)  1973).  The  cytoplasmic  Mendelian  (1973)  and  frequencies was  the  in  35  reported  geographical locations by  in  Allendorf this  (1977).  form  ( C l a y t o n e_t a_l. , 1 9 7 5 ; B a i l e y e t a l . ( 1 9 7 0 ) . system  expressed p r i m a r i l y loci  variable  i n a c y t o p l a s m i c form and a m i t o c h o n d r i a l  locus expressed p r i m a r i l y  muscle  (1977).  d i s t r i b u t i o n a l map f o r v a r i a n t s a t b o t h  i n Salmo g a i r d n e r i The  physiological  t h e LDH-4 l o c u s i s g i v e n by U t t e r a n d A l l e n d o r f  MDH o c c u r s  were  v a r i a t i o n was c o n f i r m e d by C e d a r b a u m a n d  Washington and s u r r o u n d i n g s t a t e s (1975).  Columbia.  a s s o c i a t e d w i t h one o r t h e  l o c u s by K l a r  (1972) and U t t e r e t a l .  distribution  British  i n s t e e l h e a d c o n s i s t s of a s i n g l e  l o c u s i n Salmo g a i r d n e r i inheritance  of  (1979) a n d T s u y u k i a n d W i l l i s c r o f t  SOD s y s t e m  by  above  p r o p e r t i e s o f t h e two v a r i a n t s  other of the allozymes at t h i s Redding  Columbia;  i n Washington and s u r r o u n d i n g  interior  f o u n d by T s u y u k i a n d W i l l i s c r o f t and  British  N o r t h c o t e e t a _ l . (1970) f o r 2 l o c a t i o n s  below a w a t e r f a l l  Differences  in  consists in liver  i n muscle  of  and another  tissue.  (MDH-3) i s p o l y m o r p h i c  four l o c i ,  At  a duplicated  duplicated  least  one  but the observed  of  locus the  phenotypes  17  in  this  study  polymorphism provide  provided  no  a t the other  evidence  locus  for  (MDH-4). C l a y t o n  populations. Utter  et  a l . (1973),  ( 1 9 7 5 ) a n d B a i l e y e t a _ l . (1970) a l l p r e s e n t alleles  are  distribution reported  inherited of allozyme  by  frequencies  Allendorf  frequencies (1975).  allele,  since  p o p u l a t i o n s . The f r e q u e n c i e s a l s o pooled  because they  a t both  Clayton  loci  eta l .  evidence that  these  i n a M e n d e l i a n manner. The g e o g r a p h i c a t 35 l o c a t i o n s  In  o f t h e MDH-3(118) a l l e l e  MDH-3Q00)  against)  e t a l . (1975)  evidence that a l l four a l l e l e s are present  in t h e i r  the  (or  t h e ANOVA  o f MDH-3(67)  w i t h those  was and  been  a n a l y s i s , the  were p o o l e d  MDH-3(118)  has  rare  of  in  a l l  MDH-3(72)  were  were n o t d i s t i n g u i s h e d f r o m e a c h  other  in a l l populations.  Although  breeding  the Mendelian  and  al.  system i s s t i l l  appeared  to  (AGP-1)  may  be  but  an a r t i f a c t .  detected  These late  Allendorf  (1975)  the  reports  two  loci  i n the study  detected  ( A G P - 2 ) . May e t  that the presence of  this  second  A f a s t e r zone o f weak a c t i v i t y may  i n d i c a t e an a d d i t i o n a l two l o c i , variable.  system,  unclear. E a r l i e r  be a s e c o n d i n v a r i a n t l o c u s  (1979) r e c e n t l y r e p o r t e d  locus  confirm  H o d g i n s , 1 9 7 2 ) i n d i c a t e d t h a t AGP was e n c o d e d by a  single variable locus what  ( U t t e r e t a l . , 1973),  i n h e r i t a n c e o f v a r i a n t s i n t h e AGP  g e n e t i c model f o r t h i s (Utter  studies  were  both of  which  not scored  appear  to  because they  be  were  and d i s p l a y e d i n c o n s i s t a n t a c t i v i t y .  18  The appears share  IDH  system i n the  to  consist  of  two  f o u r common a l l e l e s .  variation  is  U t t e r , 1973; authors  inherited  liver  tissue  polymorphic  Breeding  enzyme  Salmo  loci  (lDH-3,4) which  fashion  Reinitz, is  a  Because  of  s a m p l e s and other  of  individual  superfluous phenotypic  authors,  IDH  bands  fish  1977). Although  dimer,  v a r i a t i o n w h i c h has was  considered  the  f i v e enzymes. Because of t h e s e  the  four a l l e l e s are  frequencies  of  Reinitz  the  groups.  poorly  not  (1977)  preserved  been r e p o r t e d  by  t h e most u n s t a b l e  of  frequencies  of  r e p o r t e d s e p a r a t e l y i n A p p e n d i x 1, but  the  the  two  f a s t a l l e l e s and  i n t h e a n a l y s i s . T h i s was  number  each  definitely  t o be  in  most  affect  genotypic  problems the  were p o o l e d of  into  present  this  ( A l l e n d o r f and  b e l i e v e s i t t o be a monomer. T h i s c o n f u s i o n d o e s n o t classification  gairdneri  studies indicate that  i n a Mendelian  R o p e r s e t a l . , 1973;  agree that t h i s  of  allele  determined.  done  t h e two  slow  because  i n each i n d i v i d u a l c o u l d not  the  alleles exact  always  be  19  RESULTS  F o u r enzyme s y s t e m s variable  enough  to  addition  one l o c u s  (LDH-4,  be  used  SOD,  MDH-3,  i n the large  (<.05) o v e r most o f t h e s p e c i e s  in  frequency  high  locus,  slightly  i n t h e C h i l c o t i n and B r i d g e r i v e r s .  Another  and c o u l d  The IDH-3,4 s y s t e m was h i g h l y difficult  to  be  variable  interpret,  in  differences 1977;  a  simple  i n patterns  F i g . 3).  determination  of  This  but  resolved,  n o t be f i t t e d  was  particularly showed  Mendelian  to a genetic  in  phenotypic  often  preserved  some  to  be  phenotypic  (see a l s o  variation  only  model.  variants  fashion,  genotypes d i f f i c u l t  used  were  poorly  the  seemed t o be p r e s e n t  not  was u s u a l l y  v a r i a b l e but p a t t e r n s  samples. Although mating s t u d i e s inherited  low  present  n o t be c o n s i s t e n t l y  variable  consistently  r a n g e b u t was  IDH-1,2, was f o u n d t o  because i t c o u l d  were  scale analyses. In  (AGP-1) was v a r i a b l e a t a  frequency  IDH-3,4)  Reinitz,  made  precise  i n about 5 % of t h e  fish  examined.  Two o f t h e p r o b l e m s i n s a m p l i n g j u v e n i l e Salmo i n Columbia steelhead  streams  are  distinguishing  cutthroat  t r o u t , and d i s t i n g u i s h i n g anadromous  non-anadromous  rainbow  trout.  trout  steelhead  A c o m b i n a t i o n o f two l o c i  SDH) was u s e d t o d i s t i n g u i s h c u t t h r o a t 1 ) . Each of t h e t h r e e d i f f e r e n t  British  SDH  from from (ME,  from rainbow t r o u t ( F i g . phenotypes  in  steelhead  20  Figure  1. D i a g r a m a t i c r e p r e s e n t a t i o n of s t e e l h e a d and c u t t h r o a t t r o u t p h e n o t y p e s a t t h e SDH and ME l o c i  .  V  Steelhead  Cutthroat SDH  Steelhead  Cutthroat  M E  22  could  be d i s t i n g u i s h e d  from the i n v a r i a n t c u t t h r o a t  phenotype.  O c c a s i o n a l p r e s u m e d h e t e r o z y g o t e s were f o u n d a t b o t h the  results  parr  f r o m t h e K e o g h , Bhrom, B e r t r a n d , and  identified  of  s u c h f i s h were d i s c a r d e d . M i x e d s a m p l e s  morphologically  and  species  proved  because  a  there  useful  system  was  large  a  to  s p e c i e s . The  of  ensured  enzyme  m i s a s s i g n e d due pattern  systems  to  an  The  the  combination  i n d i v i d u a l s were n o t  from  (steelhead,  is  more  Schmidt  Lee and  t r o u t , B o h l i n , 1975;  and  in  Atlantic  s p e c i e s , ' m a l e s may  interpretation  difficult.  and  Power,  In  H o u s e , 1979; 1976;  males  s u r v i v e and  and  addition,  populations  most  species  1979;  sockeye,  spawning  to the salmon, brown McCart,  (Robertson,  p r o b a b l y i n o t h e r Salmo  smolt a f t e r  sometimes spawning  Atlantic  Riddell,  can s u r v i v e  salmon,  anadromous  without migrating  spawning  1969). In a l l these s p e c i e s p r e c o c i o u s males a t t e n d i n g and  many  c h i n o o k , R o b e r t s o n , 1957;  1 9 7 0 ) . I n c h i n o o k salmon  In  i n allozyme  p r o b l e m o f d i s t i n g u i s h i n g non-anadromous r a i n b o w  O s t e r d a h l , 1969;  1957)  a  these  system.  s a l m o n i d p o p u l a t i o n s some m a l e s m a t u r e ocean  agreed.  the  anadromous s t e e l h e a d  in  that  In a l l  of  for a single  error  use o f  40  were  distinguish  difference  but of  rivers  identifications  f r e q u e n c i e s b e t w e e n t h e two three  Salmon  electrophoretically.  c a s e s m o r p h o l o g i c a l and e l e c t r o p h o r e t i c IDH-3,4 a l s o  loci  (Osterdahl,  h a v e been o b s e r v e d  w i t h l a r g e anadromous f e m a l e s .  include  totally  non-anadromous  t h a t o c c u r i n l o c a t i o n s where a c c e s s t o t h e s e a i s  23  limited  or  absent.  anadromous  sockeye  populations  l a k e where b o t h be  In  given  occur  racial  salmon  non-anadromous  i n t e r b r e e d e x t e n s i v e l y i n a t l e a s t one  and, t h e r e f o r e , such  status  (McCart,  populations  1970). True  r a i n b o w t r o u t p o p u l a t i o n s c a n t h e r e f o r e o n l y be occur  where  females.  there  are  significant  Such p o p u l a t i o n s occur  some i n t e r i o r  non-anadromous  anadromy  rainbow  in  i n d i c a t e s t h a t anadromy basis  for racial  I juvenile  the  have  precocious  are  system,  r a c e s . The  evidence  facultative  nature  of  s p e c i e s and t h e e v i d e n c e f o r and  non-anadromous  i s a poor c h a r a c t e r i s t i c  to distinguish  smaller  take  most  than  place  males. Although  than  those  River  to  sockeye  use  as  a  rainbow and s t e e l h e a d i n  streams  I  believe  anadromous  rainbow  s t e e l h e a d p o p u l a t i o n s , and t h a t  between  the  two  populations  no r e l i a b l e e s t i m a t e s  adults.  In  via  are available,  i n most c o a s t a l s t r e a m s non-anadromous a d u l t s p r o b a b l y numerous  to  distinction.  not t r i e d  gene f l o w may  Cowichan  the  anadromous  samples because i n  populations  particularly  two d i f f e r e n t  i n m a l e s o f many s a l m o n i d between  considered  sympatrically with steelhead i n  i s not strong s i n c e  interbreeding  non-anadromous  (1944) b e l i e v e d t h a t t h e s t e e l h e a d  Vancouver I s l a n d , represented for t h i s view  cannot  numbers o f non-anadromous  streams and c o a s t a l streams,  a s s o c i a t e d w i t h l a k e s . Neave and  and  are less  an e x t e n s i v e s u r v e y o f  s t r e a m s i n t h e c o a s t a l r e g i o n , Hartman and  Gill  few  t h a t i n d i c a t e d non-  rainbow  trout  of  a  size  and  age  (1968)  found  24  anadromomy, a l t h o u g h p r e c o c i o u s m a l e s were f o u n d s t r e a m s . Many o>f t h e non-anadromous t r o u t appear  t o be p r e c o c i o u s m a l e s .  greater  t h a n 220  1978,  mm  in  i n a number o f  coastal  I n a s a m p l e o f 28 r a i n b o w  t a k e n from the  Chilliwack  and  5  could  n o t be s e x e d . O n l y  They were b o t h o n l y s l i g h t l y  two  in  4 were  immature  f i s h were  females.  g r e a t e r t h a n 220 mm  July  and had  indicating  that  spring.  In i n t e r i o r  s t r e a m s , where r a i n b o w  to  l a r g e r , good e s t i m a t e s o f r e l a t i v e p o p u l a t i o n s i z e s  a g a i n u n a v a i l a b l e , b u t t h e 4.5:1 non-anadromous  trout  i n d i c a t e s that the  in  have s m o l t e d t h e  small  gonads  be  they might  trout  River  17 were m a t u r i n g m a l e s ( e n l a r g e d g o n a d s ) ,  males  streams  male  angler  to  populations  female  catches  non-anadromous  following appear  ratio  are  among  ( A n t i f e a u , 1977  population  is  MS)  still  much  s m a l l e r than t h e anadromous p o p u l a t i o n .  In  two  genotypes  loci  i n each  the assumption Rohlf,  1969).  consisted  of  each genotype  (LDH-4 and  SOD)  the observed d i s t r i b u t i o n  s a m p l e were c o m p a r e d w i t h t h o s e e x p e c t e d  of Hardy-Weinberg e q u i l i b r i u m The  other  pairs  two  of l o c i  systems  and  The (Gj for  sum 8 )  SOD  a  c o u l d n o t be g e n e r a t e d . O n l y  total  o f 47  s a m p l e s f o r SOD  of the i n d i v i d u a l  G's  = 10.4, ' o e ^ g  1 5 . 5 ) . The  was  0 5  significant  -j=  for  a t o C = .05  and  and  IDH-3,4)  t h e r e f o r e e x p e c t e d numbers o f  e x p e c t e d number i n t h e s m a l l e s t c l a s s was tested;  from  (G-test; Sokal  (MDH-3  of  LDH sum  (G^-j  samples i n which g r e a t e r than  and was  the  5  were  8 samples f o r not  LDH.  significant  of t h e i n d i v i d u a l = 71.7,  (x  2  ^  G's 0  5  j =  25  64.0)  indicating  a  s i g n i f i c a n t departure  e x p e c t a t i o n s . There was heterozygotes:  25  and,  no c o n s i s t a n t excess or  p o p u l a t i o n s had an excess,  d e f i c i e n c y . Samples migrating  of  smolts  therefore,  and  are  p o p u l a t i o n s from d i f f e r e n t areas showed 11.3,  no  deviation  (x (7 Q 5 ) 2  heterozygotes  adults  made of  up  the  deficiency  of  22 p o p u l a t i o n s a were  of  taken  a  same  stream.  • Of the 7 samples, 3 had  when  mixture  from Hardy-Weinberg e x p e c t a t i o n s  =  and  from Hardy-Weinberg  an  of  These (G ^  =  excess  of  4 had a d e f i c i e n c y .  Within Stream V a r i a b i l i t y  For  the purposes of t h i s study, a stream  continuous separated habitat  was  d e f i n e d as a  area of h a b i t a t s u i t a b l e f o r j u v e n i l e s t e e l h e a d , and from other areas of j u v e n i l e h a b i t a t by poor  juvenile  (such as the ocean, a very l a r g e r i v e r , or an e s t u a r y ) .  Streams c o u l d population  thus  which  be may,  considered or may  p o p u l a t i o n s i n adjacent  to  contain  a  continuous  not, be s u b d i v i d e d . In c o n t r a s t ,  streams are separated by long s t r e t c h e s  of i n a p p r o p r i a t e h a b i t a t with very low p o p u l a t i o n d e n s i t i e s .  Differences history  stages  between are  the  locations, three  year  classes  life  sources of v a r i a t i o n w i t h i n a  stream. Fry samples were c o l l e c t e d from more than one in  and  a number of streams, i n c l u d i n g a l a r g e stream  location  (Chilliwack),  26  a m i d - s i z e d stream Significant  differences  all  four l o c i  for  samples  smaller  (Coquitlam) and  small  from  larger  by s a m p l i n g  two  consecutive  considered; the to  time  (Weaver).  rivers  versa  consistent  (Table  2 ) . Year  f r y a t t h e same l o c a t i o n  years.  Four  but i f tendency  t o be more h e t e r o g e n o u s  TABLE 2. V a r i a b i l i t y b e t w e e n l o c a t i o n s i n of d i f f e r e n t s i z e s . WATERSHED MEAN STREAM AREA FLOW LDH SOD (sq km) (cu m/s) ** NS Chilliwack G 37 658 15.6 3.1 df (4) (4) G /df NS NS Coquitlam G 236 3.4 5 1.4 df (3) (3) G /df NS Weaver G 41 2 Fixed 0.1 df (2) G /df  in  stream  occurred i n a l l three streams,  a r e c o n s i d e r e d t h e r e i s no  r i v e r s or vice  compared  a  life  in eight  streams  MDH  IDH  TOTAL  * 13.7 (4)  NS 3.5 (8)  * 12.5 (3)  NS 9.6 (6)  ** 10.2 (2)  NS 0.7 (2)  * 35.9 (20) 1.79 * 26.9 (15) 1.79 * 10.9 (6) 1.82  history  smolts  stages  Most  s t a g e s were t a k e n  of  these  samples  i n v o l v e d a comparison  i n t h e same (12  out  of  (during migration  year  from  15  degrees  of  12  life  streams.  o f freedom)  of t r u e s t e e l h e a d ( a d u l t s or smolts) w i t h  freshwater populations (parr or f r y ) that progeny  were  (one y e a r o l d t o  t h e o c e a n ) , a n d a d u l t s . S a m p l e s o f two o r more o f t h e s e  history  were  streams  f r y ( l e s s t h a n one y e a r o l d ) , p a r r of m i g r a t i o n t o the ocean),  classes  than  non-anadromous  rainbow  may  have  trout. Although  contained significant  27  differences comparison  between  life  TABLE 3.  these d i f f e r e n c e s  SOD ** 40.0 (13)  MDH * 25.1 (15)  IDH * 20.3 (10)  NS 7.2 (8)  * 15.9 (8)  ** 30.3 (8)  * 16.6 (8)  * 26.7 (13)  NS 13.9 (13)  ** 49.2 (13)  NS 14.4 (10)  G df  ** 56.5 (36)  ** 69.8 (34)  ** 104.6 (36)  NS 49.3 (28)  and  locations  G df G/df  YEAR CLASSES  G df G/df  LOCATIONS  G df G/df  TOTAL WITHIN  of  classes  four  of  loci  At is  was  within  within  within  stream  a  river.  variability  s t r e a m s were h i g h l y  (Table 3 ) . D i f f e r e n c e s  4 a n d MDH-3 l o c i square  a  i n Table  An  deleted  samples w i t h i n  three the  smolt  that  b e t w e e n s a m p l e s a t t h e LDH-  were w e l l d i s t r i b u t e d , a n d  with  overall  indicated  the  t h e r e s u l t o f a l a r g e number o f s m a l l  associated  TOTAL ** 108.0 (53) 2.04 ** 70.0 (32) 2.18 ** 104.2 (49) 2.12  s i g n i f i c a n t i n three out  t h e SOD l o c u s , h o w e v e r , most o f t h e w i t h i n  samples a r e  found,  a r e s i m i l a r t o t h o s e between  LDH NS 22.6 (15)  L I F E HISTORY STAGE  differences  were  Summary o f t h e s i g n i f i c a n c e o f v a r i a b i l i t y between samples w i t h i n s t r e a m s •  SOURCE OF VARIABILITY  assessment  stages  of t h e C h i - s q u a r e r d e g r e e s of freedom r a t i o  3 indicates that  year  history  samples.  calculated  overall Chidifferences.  stream When  Chi-square  variation these  three  between a l l  s t r e a m s i s 55.9 ( d f =48, p =.2) a s c o m p a r e d t o a  28  v a l u e o f 104.6  If is  ( d f = 5 1 , p =.001) when t h e y a r e  juvenile dispersal  low,  some  can  be e x p e c t e d .  return  f r o m t h e o c e a n , and  l o n g term  different  T h i s i s so e v e n i f a d u l t d i s p e r s a l a v a r i a b l e age  differentiation  areas  number  between  of  between  adults  whose  = 2/2n(x /(df-l))  progeny  number o f p a r e n t s  of p a r e n t s the  observed  is given  One 43  of the  Chi-square  up  Bodmer,  s a m p l e , and  s a m p l e . The  to  the  the  fry  1971)  Np  expected the  is  the  numbers  basis  of  between f r y samples w i t h i n s t r e a m s  and  Streams  o r more s a m p l e s were c o l l e c t e d and i n southwestern  d a t a were a n a l y z e d  analyzed  B r i t i s h Columbia  using a 5 l e v e l  random  square root t r a n s f o r m a t i o n suggested  from  each  (Fig. 2).  effect,  h e i r a r c h i c a l ANOVA. Gene f r e q u e n c i e s were t r a n s f o r m e d arcsin  amount  4.  Between  streams  The  equation:  f r y s a m p l e s were c a l c u l a t e d on  i n Table  Variability  of  f o r my  make  by t h e  Where n i s t h e a v e r a g e number o f f r y p e r  occupying  related  ( C a v a l l i - S f o r z a and  2  expected  is  upon  preclude  populations  samples  p o p u l a t i o n at each p o i n t i n the stream Np  of m a t u r i t y ,  o r t r i b u t a r i e s o f t h e same s t r e a m .  of h e t e r o g e n i t y e x p e c t e d average  the d e n s i t y of a d u l t s  h e t e r o g e n e i t y between j u v e n i l e samples w i t h i n a  stream  any  i s l i m i t e d and  included.  The  completely using  by S o k a l and  the  Rohlf  29  F i g u r e 2. Map  of s t u d y a r e a  showing h i e r a r c h i c a l  subdivision.  30  LEGEND  31  TABLE  4.  Number o f p a r e n t s e x p e c t e d f o r p o i n t s a m p l e s of f r y c a l c u l a t e d from the heterogeneity i n t h e a l l o z y m e f r e q u e n c i e s o f 4 enzyme s y s t e m s . LOCUS  G  df  LDH SOD MDH IDH  33.9 29.8 79.5 31.0  21 21 21 18  ( 1 9 6 9 ) . The streams.  bottom  The  outlined  level  second  other,  steelhead group.)  level  i n F i g . 2. A s m a l l  3 streams e n t e r i n g each  in this  The  between level  lines  natural  features  The  two  last  regions treated were  that  no  as a l e v e l  may  because  large differences  interior  populations  parallel  analyses  the small  groups  streams  large  obstruct  within  a  small  term  meant  gene f l o w within  the  region  of  (one f o r e a c h l o c u s )  groups. and  the  i n F i g . 2 were  indicated  between  results  in a  follow  between  outlined  studies  The  to  regions  a  for  g r o u p s were a s s i g n e d  i n gene f r e q u e n c i e s  of s t e e l h e a d .  significant  i n the c o a s t a l  regions  previous  to  groups of streams w i t h i n  outlined  two  as 2 or  adjacent  with  b u t were g e n e r a l l y  The  within  river,  streams  two  l e v e l s are l a r g e groups  themselves.  samples  i s a loosely defined  between  somewhat a r b i t a r y f a s h i o n  large  i s small  large geographic subdivisions 2. D i v i d i n g  is  i s streams w i t h i n  are  l a r g e r group. A l a r g e group  Fig.  260 373 62 373  group of streams i s d e f i n e d  ( i e . there  third  80.2 78.6 85.9 135.0  heirarchy  the ocean, or a  populations  Np  n  there  coastal  and  the  four  of  a r e summarized  i n Table  32  5.  Since  t h e v a r i a n c e component due t o l a r g e  TABLE 5.  LDH  SOD  ** REGIONS POOLED LARGE GROUPS SMALL GROUPS N.S. ** STREAMS ** SAMPLES ** p<.01 * p<.05  zero  variation the  f o r a l l four  MDH  ** POOLED N.S. ** **  enzymes,  group  sum o f s q u a r e s .  N.S. POOLED N.S. N.S. N.S.  t h e sum o f s q u a r e s due t o in  each  (LDH-4, MDH-3  differences three  loci.  among  homogeneity of  2.42,  was  between  The  added  (x  2  sample  variance  was a l s o s i g n i f i c a n t pooled  due  i n these  groups  was  A Barlett's  variance  the  indicated  I f IDH was a d d e d t o  variance  same not  that  test f o r  between  sample (;x  f o r the three heterogeneous l o c i  = 21.42,  to  The v a r i a n c e component due t o a r e a s  f o r heterogeneity  significant  with  f o r 3 out of  a t t h e SOD a n d LDH-4 l o c i .  similar  df = 2.0).  square  streams  in a l l 4 loci.  significant  variance  SOD).  The a d d e d v a r i a n c e due t o  significant was  and  case  In the previous analyses the  v a r i a n c e among s a m p l e s was f o u n d t o be s i g n i f i c a n t 4 loci  less  IDH  POOLED POOLED N.S. * **  b e t w e e n l a r g e g r o u p s were p o o l e d  small  was  Summary o f t h e r e s u l t s o f t h e n e s t e d ANOVA's of t h e a r c s i n t r a n s f o r m e d a l l o z y m e f r e q u e n c i e s f o r f o u r enzyme s y s t e m s .  SOURCE OF VARIATION  than  groups  of  df  =  the  sample  analysis,  variances  3). This  f o r IDH was l o w e r  than  =  the C h i -  was  suggests  2  highly  that  the  f o r the other  33  three  loci.  The o v e r a l l p a t t e r n o f v a r i a t i o n  f o r a l l four  loci  illustrated  i n F i g . 3. To make t h e c o m p a r i s i o n s  the  y-axis  i s expressed  than  t h e r e s p e c t i v e v a r i a n c e s . The mean among v a r i a n c e w i t h i n a  level  i n terms of s t a n d a r d  meaningful  deviations rather  i s t h e w e i g h t e d mean o f t h e v a r i a n c e s o f t h e component o f  each l e v e l .  For  calculated  f o r each  example,  a  group  variance  variance useful  of  a l l such  a  level  the  variance  c a l c u l a t e d i n the nested  that  can  be  of  be  the  gene f r e q u e n c i e s a n d a r e  variance  due  the  effect  a  of  measure a  values are approximations  expected levels are  retransformed  ANOVA o f a r c s i n  tranformed  retransformed  mean  i f t h e v a r i a n c e components a t lower  to  can  one s t r e a m a n d t h e  weighted  i g n o r e d . The v a r i a n c e c o m p o n e n t s a r e t h e those  streams  g r o u p s . The mean among v a r i a n c e s a r e a  r e p r e s e n t a t i o n of the  within  among  w i t h more t h a n  mean among v a r i a n c e o f s t r e a m s i s  of  more  is  of  single  values  square the  level.  calculated  using  root added These the  equation: p = ( s i n 8) and  i t s derivative. dp/dG = 2 s i n e c o s 6  Here  p  is  calculate value. the  t h e mean gene f r e q u e n c y  t h e v a r i a n c e component,  I f 0-2 i s s m a l l t h e n  of t h e p o p u l a t i o n s used t o  and  6  is  i t s  transformed  dp/d8 c a n be assumed t o be l i n e a r i n  r e g i o n of 9 and t h e r e f o r e  34  Figure  3. S o u r c e s o f v a r i a t i o n i n t h e a l l o z y m e f r e q u e n c i e s t h e f o u r v a r i a b l e enzyme s y s t e m s .  of  35  36  *  where  a o  i s the variance  2  four  loci  a  2  i n radians  t e r m s o f gene f r e q u e n c i e s . all  (dp/de)  2  and o P 2  The g e n e r a l  trend  group  different  levels.  This  gene f r e q u e n c i e s  results  a region.  interior  and  .644 v s .  nearly and  regions .996,  the various  level  the  large  or  steams w i t h i n a group t o to  other  i n patterns  These  between  i n the  loci  coastal  (.931 v s . .471  contrast  a n d IDH l o c i  groups  with  the  (.870 v s . .862  gene  frequencies  l e v e l s are represented graphically i n Figs. w i t h i n each l e v e l  at higher  i s well  distributed  l e v e l and t h e u n i f o r m i t y  o f gene  l e v e l s i s r e a d i l y apparent.  loci  that  were v a r i a b l e a t t h e w i t h i n  stream  a s i m p l e c o r r e l a t i o n a n a l y s i s was p e r f o r m e d t o d e t e r m i n e  large differences  differences not  by  similar  respectively).  between t h e components of t h a t  the three  a r e a s and l e s s  a t t h e LDH-4 a n d SOD l o c i  4 t o 7. The v a r i a b i l i t y  For  at  the tendency of the  .690 v s . .696, r e s p e c t i v e l y ) . The a c t u a l  frequencies  f o r frequencies  between t h e f r e q u e n c i e s  i d e n t i c a l v a l u e s a t t h e MDH  within  if  is  The m a j o r d i f f e r e n c e  is the large difference and  from  i n adjacent  a v e r a g e o u t t o a mean v a l u e t h a t within  in  i s t o be more v a r i a b l e o v e r s m a l l  v a r i a b l e between t h e l a r g e r a r e a s d e l i n e a t e d small  i s the variance  at  the  a t one l o c u s  o t h e r two l o c i .  s i g n i f i c a n t i n d i c a t i n g that  be d e m o n s t r a t e d  were  (Table 6 ) .  associated  with  large  A l l t h e c o r r e l a t i o n s were  s u c h an a s s o c i a t i o n  could  not  37  F i g u r e 4. Mean L D H - 4 ( 7 6 ) a l l o z y m e f r e q u e n c i e s w i t h i n e a c h l e v e l i n t h e h i e r a r c h i c a l ANOVA a n a l y s i s . P o i n t s j o i n e d by l i n e s i n t h e s a m p l e a n d s t r e a m l e v e l s a r e p o o l e d i n t h e s t r e a m a n d g r o u p l e v e l s r e s p e c t i v e l y . R e g i o n a l means a r e t h e mean o f a l l s a m p l e s f r o m e a c h r e g i o n . Numbers r e f e r t o r i v e r s l i s t e d i n A p p e n d i x 2.  GENE  FREQUENCY  INTERIOR REGION  COASTAL Lower Fraser Valley  8e  Inner Coast  REGION East Coast Van. Island  Outer Coast  39  F i g u r e 5. Mean SOD(152) a l l o z y m e f r e q u e n c i e s w i t h i n e a c h l e v e l i n t h e h i e r a r c h i c a l ANOVA a n a l y s i s . P o i n t s j o i n e d by l i n e s i n t h e sample a n d s t r e a m l e v e l s a r e p o o l e d i n t h e s t r e a m a n d g r o u p l e v e l s r e s p e c t i v e l y . R e g i o n a l means a r e t h e mean o f a l l s a m p l e s f r o m e a c h r e g i o n . Numbers r e f e r t o r i v e r s l i s t e d i n A p p e n d i x 2.  INTERIOR  REGION  GENE FREQUENCY COASTAL REGION  41  F i g u r e 6. Mean MDH-3(71) a l l o z y m e f r e q u e n c i e s w i t h i n e a c h l e v e l i n t h e h i e r a r c h i c a l ANOVA a n a l y s i s . P o i n t s j o i n e d by l i n e s i n t h e sample a n d s t r e a m l e v e l s a r e p o o l e d i n t h e s t r e a m a n d g r o u p l e v e l s r e s p e c t i v e l y . R e g i o n a l means a r e t h e mean o f a l l s a m p l e s f r o m e a c h r e g i o n . Numbers r e f e r t o r i v e r s l i s t e d i n A p p e n d i x 2.  42  43  F i g u r e 7. Mean I D H - 3 , 4 ( 7 2 ) a n d I D H - 3 , 4 ( 4 8 ) a l l o z y m e f r e q u e n c i e s w i t h i n e a c h l e v e l i n t h e h i e r a r c h i c a l ANOVA a n a l y s i s . P o i n t s j o i n e d by l i n e s i n t h e s a m p l e a n d s t r e a m l e v e l s a r e p o o l e d i n t h e s t r e a m and group l e v e l s r e s p e c t i v e l y . R e g i o n a l means a r e t h e mean o f a l l s a m p l e s f r o m e a c h r e g i o n . Numbers r e f e r t o r i v e r s l i s t e d i n A p p e n d i x 2.  GENE INTERIOR REGION  O  '-'  Lower Fraser Valley K) w  <3  'to  FREQUENCY COASTAL  Inner  REGION East Coast Van. Island  Coast  <  3  S  3  '-•  ro  Outer Coast (D  mm-  "  •s ft  id  &  \ f T • i  \ /  O  cn  co  CO  { { C  ro  a  •  T - v  *  p  <J  a>  o  6  cn co  £ .  K  6  D  RIVERS  1  SMALL GROUPS  1  within groups  C  =3  within regions  ,  IT  •:•:•:•:•:•:•:•:•:•:•:-:•:•:-:-:•>:•:«  i  ro  ro  ro  1 KJ  <  2 >  = ' £ •  aa  loo  1 c*> 1^ 1 • -J  CO CO  VP  V  w  45  TABLE  6.  C o r r e l a t i o n m a t r i x of d i f f e r e n c e s i n allele f r e q u e n c i e s between a d j a c e n t streams w i t h s i m i l a r d i f f e r e n c e s at a n o t h e r l o c u s . E a c h has 35 degrees degrees of freedom. LDH 1.00 .071 .218  LDH SOD MDH  One  consequence  of  this  SOD  MDH  1.00 .01  1.00  p a t t e r n of v a r i a b i l i t y  g e o g r a p h i c a l l y c l o s e p o p u l a t i o n s a r e not dendrogram  based  calculated using distance  and  t h e UMPGA  on  these  analysis  frequencies  loci. coast  (1973)  In the  of  Sneath  and and  r e s u l t i n g dendrogram  do n o t  for  minimum  Sokal  (1973).  MDH-4 l o c i  ( F i g . 8)  identified  by  using  Only  the  were' u s e d b e c a u s e  s t r e a m s on solid  form a s i n g l e group, but a r e  a  genetic  a v a i l a b l e for a l l populations at  of V a n c o u v e r I s l a n d a r e  t h a t they  formula  in  d i s t a n c e s were  were u s e d t o c o n s t r u c t a d e n d r o g r a m  a t t h e LDH-4, SOD  f r e q u e n c i e s were n o t  grouped together  genetic distances. Genetic  Nei's  i s that  the  IDH  the  east  lines  t o show  s c a t t e r e d amongst  streams from the whole c o a s t a l r e g i o n .  The appear to Alouette  d i f f e r e n c e s reported here are be  real.  r i v e r s are  The  Salmon,  small, nevertheless  North  three t r i b u t a r i e s  Alouette  of the  lower  and  they South  Fraser.  The  46  Figure  8. D e n d r o g r a m o f t h e r e l a t i o n s h i p s between c o a s t a l p o p u l a t i o n s u s i n g a l l o z y m e f r e q u e n c i e s a t t h e LDH-4, SOD a n d MDH-3 l o c i and N e i ' s f o r m u l a f o r g e n e t i c d i s t a n c e .  47  2 54 42 52 13 22 31 32 46 36 5 17 59  .1  1  H  SAIvlPLES  FROM East  Other  6  CC LU CD  9 23 26 50 .1 48 49 1 9 4  coast  Vancouver  Is.  large  g r o u p s of s t r e a m s  • I I  IO  29 51 45H < LU CC  r-  38 47r 16 37 24 40 8 53 62 63 15 61 44 60 20 27 .01 GENETIC  .02 DISTANCE  .0 3  48  junction  of  kilometers  the  North  and  below  the  upper  Salmon R i v e r e n t e r s away.  Each  frequency samples  of  the  these  South limit  Fraser rivers  c o n t r a s t , SOD similar.  at  least  frequencies  The  other  allele  frequencies  was  Creek  and  the  Harrison River only a examples  are  in  year  loci  few  kilometers  streams,  even  frequencies  A number o f taken  from  given  outside  (Abuntlet Lake, McClinchney  Lake  and  sample,  determine  from  from  i n LDH  Henriette  i f allozyme  transplanted  B.  and  River,  the  C.(Lat.  interior  49  and  Lake  frequencies  H e n r i e t t e Lake i s a t y p i c a l Woodfibre,  the  of  coast  had  of  Weaver lower these  cases  of  adjacent  be  found  by  2.  rainbow  trout area.  Skeena  were  Some of  River,  Loon  L a k e ) were u s e d t o l o o k more c l o s e l y a t  macrogeographic v a r i a t i o n One  pairs  In  quite  Although  the main sampling  these  Pennask  were  stream, can  i n Appendix  samples of s t e e l h e a d  locations  ( F i g . 9).  rivers  apart.  single  gene  between  i n samples from  d i f f e r e n c e s between v a r i o u s a  the  9 i s the comparison  gene f r e q u e n c y  comparing the  s a m p l e d and  t h a n m o s t , numerous o t h e r  within  few  kilometers  R i v e r . These streams e n t e r  more s t r i k i n g  and  20  classes  same  Fig.  same two  Chehalis  a  l o c u s were c o n s i s t a n t  these  example  only  i n f l u e n c e and  repeatedly  three  in  at the  of t i d a l  is  approximately  d i f f e r e n c e s a t t h e LDH covering  Alouette  SOD  allozyme  was  taken  frequencies.  i n an  changed i n  the  a  attempt  to  population  r e g i o n to the c o a s t a l r e g i o n . mountain lake  3 8 ' , L o n g . 123  18').  situated B e t w e e n 1934  near and  49  F i g u r e 9. E x a m p l e s o f a l l o z y m e l o c i i n s a m p l e s f r o m two lower F r a s e r V a l l e y .  f r e q u e n c y d i f f e r e n c e s a t two s e t s of a d j a c e n t streams i n the  r  50  .60  .50  n _  •40 1 CN U">  Q O CO  .30  .20  UJ >-  U N ^  o _j =J o  .10  -J UJ  < a. u.  .30  X  •o I Q  .20  x  .10 4  N. A l o u e t t e  S. A l o u e t t e  Salmon  Weaver  Chehalis  51  1942 t h i s Branch  l a k e was s t o c k e d  using  rainbow  by  the  trout  from  i n t e r i o r . No a u t h o r i z e d  stocking  unauthorized  i s unlikely  stocking  B.  C.  Fish  Pennask  has  taken  end of t h e road.  L a k e i n t h e B. C. place  hour  Table 7 i n d i c a t e s that a l l e l e  a t t h e LDH-4 l o c u s h a v e c h a n g e d l i t t l e , fixed  f o r t h e SOD-100 a l l e l l e  i n both  Wildlife  since  and  because Woodfibre i s o n l y  a c c e s s i b l e by f e r r y a n d H e n r i e t t e L a k e i s a 3 the  and  and t h e  SOD  hike  from  frequencies locus  is  populations.  TABLE 7. LDH a n d SOD a l l o z y m e f r e q u e n c i e s i n s a m p l e s t a k e n f r o m P e n n a s k a n d H e n r i e t t e L a k e s i n t h e summer o f 1 9 7 8 . LAKE Henriette Pennask  GENE FREQUENCY (N) LDH SOD .80 ( 2 0 ) 1.00 ( 2 0 ) .73 ( 2 6 ) 1.00 ( 2 6 )  52  DISCUSSION  The  term  population  structure is usually associated  the m a t h e m a t i c a l models of W r i g h t Kimura  and  Selander less  Weiss  and  (1964),  Kaufman, 1975;  precise  other  of  of d e p a r t u r e  be  defined  i n d i v i d u a l s , and methods  are  The  first  of  the  is direct species  dispersal  of  can  examined i n d i r e c t l y  a l s o be  allele between  frequencies populations  consequences  of  differentiation structuring but  or  study  does not  by  a  one  observations  c y c l e and  is  the  structured  always r e s u l t  i n d i c a t e that  ecology  the d i s t r i b u t i o n s  and  the  success  the  genetic  of  i t i s a p r e r e q u i s i t e for genetic  My  life  observing  quantitative  structuring within  of the  of p o p u l a t i o n s t r u c t u r e .  t h e i r progeny. P o p u l a t i o n  since  structure  Two  individuals  i n d i v i d u a l s and  to a  c a r r y , between p o p u l a t i o n s .  particularly  dispersing  describe  reference  sense, p o p u l a t i o n  a  of  observations  distances  1974;  t h e movement  f o r the  in question;  and  have used  s t r u c t u r e to  r e s t r i c t i o n s on  the genes they  available  (eg. S o k a l ,  from p a n m i x i a w i t h o u t  i n terms of the  (1967),  Ward, 1978)  population  p r e c i s e m a t h e m a t i c a l model. In t h i s can  Malecot  authors  Smouse and  definition  v a r i o u s types  but  (1943),  with  the  of  structure  variation  in  characteristics most  important  tendency toward species.  in genetic  of  genetic  Population  differentiation,  differentiation.  steelhead  populations  are  53  structured small  (ie.  genetically  geographic  populations  are  differences coastal  On  strikingly  similar  except  gene  frequencies  interior  w i t h , but  could  steelhead  b i o l o g y and  behavioral  One life  is  of  the  rate  is  of  extent  the  e f f e c t i v e n e s s of v a r i o u s  the  apparent  from,  negligible,  homing  homing.  behavior of  lack  of  particularly  between in  the  large  between  the  consistant  is  known  of  physical  and  the  steelhead  dispersal  between  i n d i f f e r e n t streams.  in  streams  impossible  s p e e d and  a t t e m p t s t o measure  main p r o b l e m i n e s t i m a t i n g  to check  probability  of  the  and  o r on  recovery  streams is  greater  (1968) ( 2 % )  numerous s i m i l a r  s t u d i e s on  the  research on  d i r e c t i o n of  ocean  accuracy i s that  well.  stream a_l.  salmon are various  of  i t is  Usually  native  Stasko et  for Atlantic  in  concentrated  the  i n the by  straying  accuracy  equally  straying rates reported  Carlin  There are  a l l  concerning  Most of t h e  has  but  entering  controversy  streams.  salmonids  orientation  r a t h e r t h a n on The  therefore  what  scales,  j u v e n i l e d i s p e r s a l b e t w e e n s t r e a m s i s unknown  literature)  mechanisms  low.  predicted  o f a d u l t d i s p e r s a l ( r e f e r r e d t o as  fisheries  (0.1%)  be  i n t o the ocean. There i s s t i l l  migration  for  These f i n d i n g s are  that are p h y s i c a l l y separated  probably  into  regions.  geographic  t h e most o b v i o u s c h a r a c t e r i s t i c s o f  cycle  directly  not  SOD  relatively  b a r r i e r s to d i s p e r s a l .  populations The  and  larger  over  distances.  i n t h e LDH  and  differentiated)  the and  (1972) probably  anadromous  54  salmonid of  species,  i n no c a s e i s t h e r e  the a c t u a l p r o p o r t i o n  proportion  of marked f i s h  o f unmarked f j s h t h a t  Hardin-Jones of  but  1968;  Stasko,  are  c l e a r documentation  i n other strays  Taft  similar  (1954) e s t i m a t e  creeks  steelhead  on  and  the  16.5  both  to  since  nearby  complication they  case  released  as  Everest Ricker points  enter. an  not  flow  was  is  o f t e n not  not since as  t o be  of  lower  fish  is  stray  A  further  river  captured  is  As  equivalent immigrant  Endler to  in i t s  cited  by  (1977)  individuals  r e d u c e d by  by  d i s p e r s a l of  s u c c e s s f u l as n a t i v e s .  gene  and  presented  in references  used t o r e p r e s e n t  that  ( 1 9 5 4 ) document a t was  salmonid species.  i n many s p e c i e s  i f they are  Taft  behavior and  nearby  results  subsequently recaptured  similar  for  as o p p o s e d t o d i s t a n t  steelhead  s t r a y i n g r a t e s , t h e r e f o r e , h a v e t o be factor  these  a l w a y s spawn i n t h e  adult  but  (1971) f o r v a r i o u s  progeny are  2.6%  conditions.  S h a p a v a l o v and  stray  gene  from  environmental  ( 1 9 7 3 ) f o r summer s t e e l h e a d  out,  small,  substantially  similar character  f i s h do  where a  Shapavalov  be  known what p r o p o r t i o n  s t r e a m . E v i d e n c e of  individuals their  of  i s that  l e a s t one  native  Extrapolation  different  initially  to  by  incidence  s t r a y i n g r a t e b e t w e e n two  s i z e a p p e a r e d t o be  i t i s not  streams  streams w i t h  known.  coast  the  review  % f o r coho. S t r a y i n g r a t e s t o other  species.  impossible  the  mid-California  s t r e a m s of d i s s i m i l a r for  (see  1 9 7 1 ) . I n some c a s e s t h e  s t r a y i n g t o a s i n g l e nearby t r i b u t a r y i s  and  streams or  some flow.  and  Apparent unknown  55  The that  only  but  distant  priori  the  amount and  streams  T h e r e i s no  high  large  that  genetic  in  be  drawn f r o m t h e s e d a t a  streams are of  known. T h e r e f o r e we population  s e l e c t i v e pressures  less  c a n n o t make a  structures  of  these  s t r a y i n g r a t e s are  w o u l d be  between s t o c k s  t h a t even s m a l l  probably  is  s t r a y i n g between nearby  c l e a r evidence that  differentiation  low  pattern  i s not  p r e d i c t i o n s about the  species.  so  t h a t can  s t r a y i n g r a t e s between a d j a c e n t  t h a n 10%, and  conclusion  required  to. induce  i n adjacent streams,  s e l e c t i v e f o r c e s or d r i f t  so  or  would r e s u l t  differentiation.  The  other  a priori  i n d i c a t i o n of p o p u l a t i o n  anadromous s a l m o n i d s i s the reviewed  i n the  establish  the  obvious  m e a n i n g of  single  s t r u c t u r i n g i n the  small  be  associated  the  results  generally  are  not  Thus,  while  the  in adjacent  d e t a i l e d enough within  d i f f e r e n c e s between  s t r e a m s may  be  of are  to a the  significant  b a s i s o f a C h i - s q u a r e t e s t most o f t h e s e d i f f e r e n c e s with w i t h i n stream v a r i a t i o n .  the  differences.  l o c a l d i f f e r e n c e s from d i f f e r e n c e s  samples from p o p u l a t i o n s the  are  to  c o n c e r n e d . Most  i n t e r m s o f gene f r e q u e n c y  studies  population.  on  differences  species  i n terms of  f o r c e s a c t i n g i n s p e c i a l s i t u a t i o n s and  to quantify  Electrophoretic distinguish  such d i f f e r e n t i a t i o n  or b e h a v i o r a l  selective  impossible  differentiation  i n t r o d u c t i o n to t h i s paper. I t i s d i f f i c u l t  amount o f p o p u l a t i o n morphological  examples of g e n e t i c  structuring in  may  56  The  classical  differentiation disruptive and  model  involves  s e l e c t i o n and  of  a  interpopulation  balance  genetic  between  drift  the  fostering  the o p p o s i n g f o r c e s of s t a b i l i z i n g ' s e l e c t i o n  Heterogeneity migration and  of  i s not  able  disruptive  f o r c e s of d r i f t therefore similar.  and  selection. and  of  the  are  allele  frequencies  there  alleles will  population  are  selective  coefficients  those  with  vary  unknown,  Alleles would  strong  the  a l l loci  and  should  loci  also  vary  be  widely  between the  loci.  If  frequencies  of  p i c t u r e s of t h e d e g r e e with  suggest  stabilizing  disruptive  restricted selective  which a l l e l e s are  variance  flow,  coefficients  be  used  to  frequencies  give  i n t e r p r e t a t i o n depends  on  sampled.  models such as  i n the  the  Neutral  gene  could  same p o p u l a t i o n and  flow.  strong  of  i n d i c a t e a m o d e r a t e amount o f gene f l o w . A l l o f t h e a b o v e  Using  gene  selection,  would  i n the  extensive  drift  alleles  occur  indicate  to  give d i f f e r e n t  structuring.  of  i s a t e n d e n c y f o r t h e amount of  heterogeneity  coefficients  migration.  implies that  forces  for  of  heterogeneity and  absence of  similar  forces  locus  the combined  In  migration  therefore  frequency  different  would  to o f f s e t  a t any  S e l e c t i v e c o e f f i c i e n t s at d i f f e r e n t  selection  while  frequencies  heterogeneity  however, allele  allele  genetic  a  t h a t o f K i m u r a and of s e l e c t i v e l y  precise  estimate  Weiss  (1964),  neutral alleles of  gene f l o w  if  the can sub-  57  population  s i z e s (or d e n s i t y  form of the  migration  equilibrium  can  real  be  i n a continous  distance' assumed.  population)  distribution  are  Koehn,  1978)  or  not  very  because i t i s i m p o s s i b l e available alleles) this  alleles  or t o s a t i s f y  situation  provide  are  we  informative  to  decide  neutral  Eanes  (eg. Hedgecock,  which,  if  c o n d i t i o n s of  forced  to  a l e s s p r e c i s e but s t i l l  and  models t o  (eg.  any,  (or not l i n k e d t o  the other  are  known  Attempts to f i t these  s i t u a t i o n s have been e i t h e r u n s u c c e s s f u l  and t h e  and 1978)  of  the  non-neutral model.  In  use l e s s s u i t a b l e l o c i  to  useful  the  model  of  population  structure.  In in  s u c h a model p o p u l a t i o n  terms of t h e  instead will  movement  i s defined  pressures  p a t t e r n of a l l e l e  frequency  A  species  d e f i n e d by the only  a  movement o f structure involved  vary  heterogeneity  t h u s h a s a number o f g e n e t i c  population  individuals. rather  than  but  heterogeneity.  also  at a  defined  populations  between l o c i ,  p a t t e r n of v a r i a b i l i t y  single  between  structure to describe  selection  loci.  genes  i n t e r m s o f gene f r e q u e n c y  use t h e term g e n e t i c  Since  of  s t r u c t u r e i s no l o n g e r  this  I  concept.  t h e amount a n d varies  between  s t r u c t u r e s each  single  locus,  but  s t r u c t u r e d e f i n e d by t h e p a t t e r n o f In  using  population  in estimating population rates are avoided  the  concept  structure  sizes,  selective  and  migration  not  assumed. Measurements of t h e d e g r e e of g e n e t i c  of the  genetic problems  coefficients  a n d an e q u i l i b r i u m c o n d i t i o n i s structuring  58  in an  a  species are s t i l l  u s e f u l i n understanding  organism since genetic  important  consequence  structure  without  heterogeneity of  difficult  of  to  the  of  from  essentially  frequencies  (Lewontin,  provide  the  variation  best  between  electrophoretic  is  genetic  i n h e r i t a n c e and  preclude  the  and t h a t  important  role  inherited environmental  measurement  of  1974). E l e c t r o p h o r e t i c a l l e l e s available  means  populations.  alleles  of  by H e d r i c k  allele probably  estimating  Selection  a r e , however,  a l l n e u t r a l (see reviews  1973)  relatively  structuring are  genetic  coefficients  difficult  There i s i n c r e a s i n g e v i d e n c e t h a t e l e c t r o p h o r e t i c not  Population  quantitatively  c h a r a c t e r i s t i c s because p o l y g e n i c influence  most  g e n e t i c s p o i n t of view.  amount  obtain  the  structure.  differentiation  u n i m p o r t a n t from a p o p u l a t i o n  Estimates  i s probably  population  genetic  the b i o l o g y of  of  t o measure. alleles  are  e t a l . , 1976; J o h n s o n ,  l i n k a g e d i s e q u i l i b r i u m a n d e p i s t a s i s may p l a y an i n the maintenance of coadapted  gene  complexes  ( A l l a r d and K a h l e r ,  1972; H e d r i c k  of.  t h e r e f o r e u n w a r r a n t e d even t h o u g h i t may be  neutrality  valid  is  i n some c a s e s .  absolute  certainty  It  is  systems.  heterogeneity under s t r o n g  possible  to  determine  i f t h e s e l e c t i v e c o e f f i c i e n t s of  variants are generally larger locus  not  e_t a l . , 1 9 7 8 ) . The a s s u m p t i o n  If  they  of allozyme  or  smaller  are  larger  frequencies  selection will  exhibit  than than  genetic  allozyme  other  single  average,  implies that only  with  then  alleles  structuring. If  59  selective  coefficients  s m a l l e r than indicates drift  of  allozyme  v a r i a n t s are  average, then h e t e r o g e n e i t y  that  plus  migration  selection  heterogeneity  of  individual  loci  depending  on  is  at  a l l  most  allele  relative  their  small r e l a t i v e loci.  frequencies  to the  This  same o r  f o r c e s of  does  not  imply  frequencies since frequencies  c o u l d be e i t h e r  the  of  the  homogeneous  or  at  heterogeneous  s t r e n g t h of s t a b i l i z i n g  selection  at  the locus i n q u e s t i o n .  Most s p e c i e s structuring among l o c i  although  involves  heterogeneity or s i m p l e  can  to this  within species.  generally  allele  seem  exhibit  some  varies  greatly  Quantifying  the  use  s u c h as W r i g h t ' s  Chi-square  of  statistics  be  used  to  1978).  include other Smouse  and  this  to  measure  Occasionally  this  l e v e l s of s t r u c t u r i n g Ward, 1978;  Smith,  into  the v a r i a n c e  N i s w a n d e r , 1969;  (Avise  Langley  and  p a t t e r n of g e n e t i c  s i z e of a r e a over  populations  is  and  s t r u c t u r e . Of  then  extended Felley,  on  the  be  and to 1979;  Johnson, 1978).  w h i c h gene f r e q u e n c i e s can  t h i s area  inter-  Eanes  particular  of  analyses  and  be u s e d i s i n t h e e x a m i n a t i o n  be homogeneous. I f m i g r a t i o n r a t e s d e p e n d  between  genetic  coefficients  intra-  heirarchy  and  structure of  inbreeding  apportion v a r i a b i l i t y  i n f o r m a t i o n can  geographic the  genetic  f r e q u e n c i e s between p o p u l a t i o n s . These t y p e s of  Koehn,  is  genetic  w h i c h d e p e n d on  p o p u l a t i o n c o m p o n e n t s (Workman and  way  of  among s p e c i e s  of  some  (1966)  degree  of  One the  interest assumed distance  presumably represents  the  60  maximum  area  extensive on t h e  then  different  migration  selective  shift.  the  can  may  be  because  it  due  measuring  the  identified  no  generally  size  of  an  a  Koehn,  homogeneous  frequencies.  concluded  either  s i z e of  an  agreed  and  these  on  where  analysis. between  may  areas  bisect  problem  are probably  lower  because  similarity. best  boundary between the  is size  for  (1976)  i n s p e c t i o n of  simply allozyme  homogeneous  levels  in  and  the  areas  analysis  areas.  Probably  Stein River, a tributary the  the  areas  the  most  the  serious  a r e a s a r e somewhat a r b i t r a r y and of  about  technique  Mitton  u n i t s by v i s u a l  ANOVA  boundaries  of  stabilizing  T h e r e a r e a number o f p r o b l e m s i n i n t e r p r e t i n g such  areas  a r e a of homogeneity. S e l a n d e r  Milkman  encompass s m a l l e r g e o g r a p h i c  of  two  the s p e c i e s i s d i v i d e d .  I c h o s e t o m e a s u r e t h e s i z e of  nested  for  homogeneity  to  i n t o which  is  Kaufman ( 1 9 7 5 ) and  the  are  p r o v i d e s a minimum e s t i m a t e o f t h e  number o f s u b p o p u l a t i o n s there  of  be of  similar  is  drift  coefficients  boundaries  Nothing  variation  At p r e s e n t  populations  s i z e of t h i s a r e a s h o u l d be  o r e x t e n s i v e gene f l o w . The  important  using  If  of gene f l o w w i t h i n a r e a s of  selection  between  t h e e f f e c t s of s e l e c t i o n and  question.  even though  may  possibility lack  in the  loci  homogeneity  and  which  enough t o c o u n t e r  allele  similar  the  over  The  illustrated  consequences  and  is  i s very  coastal  that  therefore of . t h i s  u s i n g the example of  of t h e F r a s e r w h i c h interior  results  close  the to  r e g i o n s . Because  61  it  i s a steep,  coastal  region  glacially  downstream.  frequencies  revealed  loci  to interior  (Table  river  i t was  and p a i r e d w i t h t h e a d j a c e n t  kilometers  similar  turbid  Subsequent  assigned  to the  Nahatlatch  R i v e r 35  examination  of the a l l e l e  that the Stein River population than c o a s t a l p o p u l a t i o n s  8 ) . The  result  of  this  was  more  a t t h e LDH a n d SOD  "mistake"  i s that the  TABLE 8. A c o m p a r i s i o n o f a l l o z y m e f r e q u e n c i e s a t t h e LDH-4 a n d SOD l o c i i n the Stein and Nahatlatch rivers versus t h e mean frequencies of c o a s t a l and interior populat ions. LDH SOD Interior .53 .99 Stein .68 1.00 Nahatlatch .89 .74 Coastal .93 .65  difference coastal  between  regions  geographically estimate be can  of  the  geographically  a l s o appears as part  very  small adjacent  the  t h e average s i z e of the areas of homogeneity  will  the  boundaries  is  over  which  o f t h e a r e a s i n t h e ANOVA  to  imagine  A n o t h e r way  of  visualizing  t h a t by j u d i c i o u s p a i r i n g o f  s t r e a m s we have e l i m i n a t e d many o f t h e d i f f e r e n c e s between a d j a c e n t to  the  homogeneity  not c o i n c i d e with the n a t u r a l boundaries of areas  of gene f r e q u e n c y s i m i l a r i t y . problem  and  stream l e v e l . G e n e r a l l y  because  analysis will  interior  of the d i f f e r e n c e a t the  somewhat l e s s t h a n t h e maximum a r e a occur  large  streams and a p p o r t i o n e d  group l e v e l .  The r e s u l t may be a b e t t e r  adjacent  that  much o f t h i s  the  occur  variation  representation  62  of t h e t r u e p o p u l a t i o n populations probably occur  structure  the  the conclusion  between a d j a c e n t the  This not  this  size  of  the  I  or  (inbreeding  devise  believe of  of  only in  three  terms  were  of  populations.  results  effects  are  either  and  F e l l e y (1979) have  the  the  the real  marginally  F-statistics  1966) and a n e s t e d  results  was  and  distinct  each  simplified level  geographical  i n my s t u d y only  marginally  analyzed  ANOVA. because  was c l e a r l y features.  b e c a u s e two l o c i  duplicated loci  h a v e t h e same m o b i l i t y c a n n o t be  approach.  reflect  t o mine u s i n g b o t h  levels  from  sophisticated  Avise  Wright,  unsuitable  Data  p r i m i t i v e b u t I am  the  d u p l i c a t e d a n d one l o c u s was many  incidence  that  coefficients,  were  statistics  the  homogeneity,  more  similar  i n t e r p r e t a t i o n of  definable  which  of  of  a  insignificant.  dealt with a situation  there  areas  of a n a l y s i s i s a d m i t t e d l y  s i n c e few  significant  Their  b u t i t would  i s significant.  method  situation,  similar  s t r e a m s . The ANOVA a n a l y s i s , i n s t e a d  actual  i n a position to  Despite  that  t h a t d i f f e r e n c e s c a n (and do)  d e t e r m i n e s t h e s i z e o f a r e a s between differences  sense  w o u l d be g r o u p e d more c l o s e l y t o g e t h e r  obscure  defining  in  polymorphic whose  using  Fwere in  allozymes  F-statistics  b e c a u s e g e n o t y p e s c a n n o t a l w a y s be d e t e r m i n e d f r o m t h e zymogram p h e n o t y p e s . An i n d i v i d u a l w i t h e q u a l either  be  a  double  homozygote  d o s e s o f two a l l o z y m e s c a n  or a double heterozygote.  a l t e r n a t i v e method h a s been d e v e l o p e d by C o c k e r h a m  An  (1969,1973)  63  and  used  binary  by  data.  Smith  This  assumptions  et  a l . (1978) w h i c h i n v o l v e s  method i s more . s o p h i s t i c a t e d b u t some o f i t s  are questionable,  i t does  not avoid  p r o b l e m s o u t l i n e d a b o v e a n d i t h a s n o t been method  o f Smouse a n d Ward (1978)  unbalanced  My  an ANOVA o f  t h e major  widely  i snot d i r e c t l y  used.  applicable to  designs.  results  heterogeneity  show  between  that  there  samples  is  within  a  often  significant  stream  a n d between  a d j a c e n t s t r e a m s w i t h i n a g r o u p . The d i f f e r e n c e s  within  may be due e i t h e r t o p e r m a n e n t s t r u c t u r i n g w i t h i n a to temporary d r i f t . because  adults  panmictic  Temporary  within  population  drift  could  by  chance,  n o t have  of a small  to  be  differences drift. less  Dispersal than  low enough  could  be  B. C. c o a s t a l salmon  that  most  their  would  w h i c h may,  typical  allozyme  first  meters Powell  summer  f r y planted  ( J . Hume  of the  densities frequency  can  of  average  i n the spring  p e r . comm.) a n d  a n d S m i t h , 1 9 8 0 ) i n two s m a l l  s t r e a m s by t h e t i m e o f a  f r y , planted  stream  d i s p e r s a l r a t e s and a d u l t  of f r y during  (Slaney,  a  A sample o f  number o f a d u l t s  500 m e t e r s . N e w l y - h a t c h e d  meters  or  generation  a c c o u n t e d f o r by a s i n g l e g e n e r a t i o n  moved an a v e r a g e o f c a . 4 0 0 ca.200  within  the allozyme frequencies  stream as a whole. J u v e n i l e appear  stream  occur each  b u t j u v e n i l e s do n o t d i s p e r s e .  be t h e p r o g e n y  streams  a s t r e a m spawn a s a s i n g l e l o w d e n s i t y  juveniles collected at a single point therefore  The  fall  census.  Atlantic  a s e g g s , moved an a v e r a g e o f c a . 1 5 0  meters  64  by  t h e end o f  1973).  their  Greater  first  summer  winter in  1973)  habitat  place  streams,  exacerbated years.  adults/km and  circumstances  in intermittant  tributaries  o r where t h e s t r e a m d o e s n o t c o n t a i n  unproductive  have a low d e n s i t y of a d u l t  recent  Shackley,  suitable  ( B j o r n , 1 9 7 1 ) . A l t h o u g h d e n s i t i e s may be  interior  been  and  d i s p e r s a l h a s been n o t e d i n some  s u c h a s where s p a w n i n g t a k e s (Everest,  (Egglishaw  by  c o a s t a l streams  spawners,  overfishing  a  situation  and  logging  higher  generally which  activities in  T y p i c a l d e n s i t i e s i n c o a s t a l r i v e r s a r e about  i n the B i g Qualicum River  20 a d u l t s / k m  i n t h e Keogh R i v e r  (Peterson  50 a d u l t s / k m t h e n v i r t u a l l y  will  the  progeny  skewed, p o o r l y  defined  and put  be  variation an e x a c t  expected  in  ( P . S l a n e y p e r . comm.).  (Table  4)  parents  calculated  the  i s much  Although  approximately  distribution  50  parents  greater from  estimated  from  than  i s not proof  and  probably  than  that  also in  the variance of  distances  same  stream  and  adult  that temporary d r i f t i s i t does  indicates a  the  t h e a p p r o x i m a t e numbers o f  f r y dispersal  this  explanation  greater  distances  Nevertheless  between f r y samples from t h e  s u b d i v i s i o n of the p o p u l a t i o n variation  adults. A highly  of f r y d i s p e r s a l  cause of the v a r i a t i o n w i t h i n streams  plausible  density  t h e d e n s i t y o f a d u l t s makes i t d i f f i c u l t t o  of  allozyme frequencies  If  a l l of t h e f r y a t a s i n g l e p o i n t  f i g u r e on t h e number o f a d u l t s .  number  densities.  of  45  a n d L y o n s , 1968)  over-summer d i s p e r s a l a v e r a g e s 500 m e t e r s a n d t h e a d u l t is  has  stream  observed.  that should  Temporal  c a u s e d by s e l e c t i o n , h a s been r e p o r t e d  provide long  a  term  result  in  variation,  i n some  species  65  ( D a p h n i a H e b e r t , 1974; V o l e s , K r e b s e t a l . 1973) r u l e d out as a cause of p a r t of the w i t h i n s t e e l h e a d . D i f f e r e n c e s between the  same way  because  to  a  i n a l l c a s e s samples of f r y a r e  juvenile the  smolt or a d u l t  random  sample  history  from the whole  s a m p l e s . The  variance  within  stages  i n t h i s c a s e s h o u l d be l e s s  but  observation  was  to determine i f t h i s  y e a r c l a s s e s of a d u l t  i n d i c a t e t h a t not a l l  made  receives  the  river  yearly  although  electrophoretic  population subdivision within  variation  does  The  Riddell,  variation  d i f f e r e n c e s between variance  1979;  among  Raleigh,  streams  adjacent streams  migration  is  not  As  in  discussed  large  which large noted  indicate  enough  since  the  to long-term among  stream  component o f v a r i a n c e  addition earlier to  previously  1971).  h a s t o be due  i s made up o f a s i g n i f i c a n t  streams.  Their  s t r e a m s i t does n o t p r e c l u d e i t .  t o the e f f e c t of streams a l o n e within  be  not  A number o f c a s e s o f s u b d i v i s i o n h a v e been m e n t i o n e d ( S m i t h , 1969;  in  p l a n t s of  numbers o f f o r e i g n h a t c h e r y r e a r e d s m o l t s . I t s h o u l d that  steelhead  i s the r e s u l t of temporary d r i f t .  f i n d i n g s a r e c o n f o u n d e d , however b e c a u s e this  compared,  with  by C h i l c o t e e t a l . (1980)  stream v a r i a t i o n  were  compared.  s t r e a m were c o m p a r e d  is insufficient  i s s o . The d i f f e r e n c e s between found  in  samples, which p r o b a b l y r e p r e s e n t c l o s e  number o f c o m p a r i s o n s  samples  stream v a r i a t i o n  be  y e a r c l a s s e s c a n be e x p l a i n e d i n  I n most s i t u a t i o n s where l i f e however,  and c a n n o t  to  this  prevent  the  due  variance  suggests  that  differentiation  66  b e t w e e n s t r e a m s even i f t h e in  question  are  small.  However,  s e l e c t i o n c o e f f i c i e n t s are convergent to  s e l e c t i o n can  determine  whether  s e l e c t i o n c o e f f i c i e n t s at the it  also  l a r g e enough occur  drift  to  implies  or  selection  force  gene f r e q u e n c i e s  a t e q u i l i b r i u m depends s o l e l y  of  the o n l y  immigrants per  forces acting.  dimensional  stepping  generation Using  an  model,  The  allele the  could  if drift  selective  spatial o f one either  to occur  effective population only conclusion s t r e a m s i s on and  Founder  be  of  or  adult  to the  t h a t can  or  of  the  meaningless  habitat  l e v e l s that are  be  average smaller  made  is  that  of  because smaller  drift  and  generations  as and  failure  deterioration  would not  for per  b o t t l e n e c k s a r e not  term  are one  immigrants  j u v e n i l e h a b i t a t s . The short  of  absolute  migration  migration,  e f f e c t s and  classes  juvenile  the  c o u l d be much l a r g e r o r  s e p a r a t i o n o f a d u l t and  the  and  of  in a species with overlapping  or two-year  on  c a l c u l a t e d from the observed v a r i a n c e  the a c t u a l combination  forces.  major  w h i c h w o u l d seem a p p r o p r i a t e  number o f m i g r a n t s  d e p e n d i n g on  impossible the  approximation  f r e q u e n c i e s . T h i s number w o u l d  actual  likely  be  drift,  expected variance  s t r e a m s on a c o a s t l i n e , t h e a v e r a g e number generation  It is is  differentiating  number  at t h i s l e v e l .  that i f  counteract  i n some c a s e s .  locus  of  reduce  the  r e q u i r e d . Thus,  the  migration  between  t h a n t h e c o m b i n e d f o r c e s of  drift  selection.  Within  groups,  large  frequency  d i f f e r e n c e s a t one  locus  67  between  adjacent  differences loci  at  streams other  are  loci.  not This  i m p l i e s t h a t most a d j a c e n t  their  loci  their  r a t h e r than  rather  than  that  stream l e v e l  because  peculiar  to  and  restriction  differentiation these  larger  indicated  between  polymorphisms rather  than  Similar  a  and  Lewontin  between  few  of  a t most of  in  Fig.  10B  result  of a few  special  This  the  cases their  been e l i m i n a t e d by  t a k e s p l a c e on a l a r g e r  geographic  at the  stream l e v e l  and  adjacent  Instead,  includes  a  situation  flow  probability  the  consequent  s t r e a m s on  the  degree  data  the sharp  the boundaries of  frequency  that  reflects  isolation,  of as  differentiation,  streams.  This  from  result  additional  would i n d i c a t e a d d i t i o n a l p o p u l a t i o n  structuring  confirm pre-existing patterns.  gene f r e q u e n c i e s o v e r  u s e d by a number o f a u t h o r s at  situation  f o r most p a i r s o f a d j a c e n t  the  a  streams d i f f e r i n g  t h e amount o f a l l o z y m e  appears s i m i l a r increases  gene  areas.  by  at  the  heterogeneity  of  differ  Population s t r u c t u r i n g at  the  circumstances.  the  between  b e t w e e n them has  where p o p u l a t i o n s t r u c t u r i n g scale  l a c k of c o r r e l a t i o n  s t r e a m s h a v e d i f f e r e n t i a t e d a t most o f  dispersal  s e t of  large  the  F i g . 10A.  i s t h e r e f o r e not  in which adjacent loci  in  with  streams  o n l y a few  l o c i . This corresponds  associated  particlar  l o c u s . At  wide  as e v i d e n c e the  geographic for selection  same t i m e K i m u r a and  ( 1 9 7 4 ) e m p h a s i z e t h a t s m a l l amounts  populations  can  maintain  areas  this  operating  Ohta  of  similarity  are  (1971)  migration even  if  68  F i g u r e 1 0 . An e x a m p l e o f two p o s s i b l e r e l a t i o n s h i p s b e t w e e n t h e p a t t e r n o f v a r i a t i o n o f t h e a l l o z y m e s a t two l o c i .  69  AREAS  OF SIMILARITY —  —  Locus 1 Locus  2  70  a l l e l e s a r e n e u t r a l . As L e w o n t i n rate  in  the  order  i r r e s p e c t i v e of t o t a l differentiation  of  (1974) p o i n t s o u t a  10  individuals  per  that  similarities  are  p o p u l a t i o n s . Through a McKechnie,  conclude areas  of  the  the  result  careful Ehrlich  migration  that  prevent  i f t h e o n l y f o r c e a c t i n g on t h e p o p u l a t i o n s i s  Two g e n e r a l a p p r o a c h e s a r e u s e d t o c o u n t e r  possibility  generation,  p o p u l a t i o n s i z e , can e f f e c t i v e l y  drift.  butterfly  migration  of  study  of  and White  between  similarity  argument  migration  between  the  ecology  of  a  (1975) e l i m i n a t e d t h e  populations  of a l l e l e  i s the r e s u l t of s e l e c t i o n .  the  and  therefore  f r e q u e n c i e s over  In s p e c i e s such as  wide  steelhead  where o c c a s i o n a l l o n g d i s t a n c e d i s p e r s a l i s known t o o c c u r , b u t with  an  evidence  unknown of  frequencies  frequency,  lack  of  local  dispersal.  differentiation  The  similarity  in  for  southwestern  northwestern  SOD one  loci  (1971),  t o those  within  regions,  the  i n t h e c o a s t a l and i n t e r i o r  y e t a t t h e MDH  Ayala  et  a  measured i n t h e  9) I n c o n t r a s t t o t h e between and  two p o p u l a t i o n s a r e i s o l a t e d  from  a n d IDH l o c i  a l . (1979),  indicates  Average  r e g i o n s a t t h e LDH  lack  frequencies  are  very  A y a l a , P o w e l l and Dobzhansky  C h r i s t i a n s e n and F r y d e n b e r g  loci  streams.  differences  (1974) and Richmond  have argued t h a t i f l o c a l d i f f e r e n t i a t i o n other  allele  p o p u l a t i o n s of s t e e l h e a d  ( A l l e n d o r f , 1975, Table  i n d i c a t e that these  another,  similar.  c o a s t a l and i n t e r i o r  B.C. a r e a l s o s i m i l a r  U.S.  similarities populations  of  be  between groups w i t h i n t h e c o a s t a l r e g i o n a r e s m a l l  i n c o m p a r i s o n t o d i f f e r e n c e s between a d j a c e n t frequencies  may  (1978)  or d i f f e r e n t i a t i o n a t  o f gene f l o w t h e n  similarities  71  TABLE 9. Average allele frequencies for coastal and i n t e r i o r p o p u l a t i o n s o f s t e e l h e a d i n s o u t h w e s t e r n B.C. and n o r t h w e s t e r n U n i t e d S t a t e s B.C. LDH-4 1.0 SOD 1.0 MDH-3,4 1.0 IDH-1,2 1.0  .931 .646 .870 .690  between w i d e l y selection w i t h both White their years  Coastal  .874 .663 .886 .660  separated  for  some  (1975)  populations  is  are  .433 .930 .985 .676  due  electrophoretic alleles. t h a t of  to The  convergent main p r o b l e m  McKechnie,  Ehrlich  t h e a s s u m p t i o n t h a t f r e q u e n c i e s have  e q u i l i b r i u m v a l u e s . C l i m a t i c changes i n the  extensive  wide  areas  years  ago.  represent  r e c e n t l y , and at  some  time  last  10,000  of vacant  ago.  adjacent  the  recent  The a  h a b i t a t t h a t were i n v a d e d  pattern  of  combination  founder The  variation  of  founder  It is difficult  argument. D i f f e r e n c e s w i t h i n of  in  may  have  streams  e f f e c t s that occurred  same i s p r o b a b l y  streams.  Although  true  today and  for  left  obviously  may  formerly  t o know where t o s t o p are  been  6,000 t o 10,000  observed effects  their  past. This i s  t r u e i n s t e e l h e a d , where r e t r e a t i n g g l a c i e r s  extensive dispersal.  result  that d i s p e r s a l  and  reached  mean t h a t many s p e c i e s h a v e e x p a n d e d o r c o n t r a c t e d  particularly  years  .471 .996 .862 .696  t h i s c o n c l u s i o n and  ranges r e l a t i v e l y more  Interior B.C. U.S.  U.S.  not  this the  some 5,000 t o 10,000 differences  between  i t c a n n o t be p r o v e n , I b e l i e v e t h a t  72  f o r m e r l y e x t e n s i v e d i s p e r s a l i s not  the cause f o r  similarities  between g r o u p s .  Allendorf the  sharp  the  (1975) and  U t t e r and  A l l e n d o r f (1977) a r g u e  c h a n g e i n gene f r e q u e n c i e s a t t h e LDH  Cascade  represents  Crest a  populations  (between  major into  t h e c o a s t a l and  taxonomic  coastal  and  and  division  rainbow  trout  of  i n l a n d forms. A p p a r e n t l y  maintained  The  r e q u i r e s t h a t the otherwise  c o u l d be p r e s e n t  frequencies  SOD(152)  frequencies  same g e o g r a p h i c  LDH-4 River  (76)  allele  s t e e l h e a d and  frequencies  of  (typical (typical  l o c a t i o n as  are not  coincident  have  this  since  hypothesis  selectively  and  these  neutral,  s i n c e the  SOD  loci  the  of the  coast)  interior)  the change  from  to  the  in a l l e l e  and  low  to  at  in  high Skeena  SOD(152) a l l e l e s .  frequencies  low  should occur  shown i n F i g . 11 b o t h  LDH(76)  high  very  u p p e r Dean R i v e r r e s i d e n t r a i n b o w h a v e  both  last only.  i s t h a t the change from  of  f r e q u e n c i e s . As  i n d i c a t e s t h a t the c l i n e s loci  be  a t t h e LDH  p r e d i c t i o n of t h i s h y p o t h e s i s  SOD(152)  the  involved  of  t h i s s u b d i v i s i o n c o u l d have developed  g l a c i a t i o n and One  alleles  proof  at  region)  l a s t g l a c i a t i o n and  isolation.  loci  interior  f o r m s were i s o l a t e d d u r i n g t h e their  SOD  that  these  low This two  c o i n c i d e n t i n a l l l o c a t i o n s . Lack of c o n s i s t e n t l y  clines  p o p u l a t i o n s a r e not  suggests cohesive  that taxonomic  interior groups.  and  coastal  73  F i g u r e 11. Large s c a l e geographic v a r i a t i o n in LDH-4 and gene f r e q u e n c i e s in B r i t i s h Columbia s t e e l h e a d .  SOD  74  75  Another  prediction  of . t h i s  hypothesis  changes i n a l l e l e  frequencies at other  at  Crest. In at least  the  Cascade  (MDH-3 a n d IDH-3,4) coastal  and  these  loci  there  i sa  there  interior  are,  i s no  populations.  difference  in  steelhead  populations  the F r a s e r  (Thompson a n d C h i l c o t i n  between  the  should  of  major  take  place  subdivision  The a l l e l e  loci into  frequencies at  s i m i l a r . A t t h e AGP-1 l o c u s allele  frequencies  i n t h e two m a i n i n t e r i o r  Thompson  that  two o t h e r p o l y m o r p h i c sign  i n s t e a d , remarkably  major  loci  is  Rivers)  but  between  t r i b u t a r i e s of no  difference  p o p u l a t i o n a n d c o a s t a l p o p u l a t i o n s . The  d i f f e r e n c e b e t w e e n t h e Thompson a n d C h i l c o t i n p o p u l a t i o n s i s almost as l a r g e as t h e  coast-interior  LDH-4  .45 a n d .30 r e s p e c t i v e l y ) . U t t e r a n d  a n d SOD l o c i  (about  Allendorf  (1977)  Columbia  with  addition,  the Abuntlet  possesses .10.  report allele  populations  fundamental d i v i s i o n  at  a  in  the  peptidase  the than  upper  locus. In River  a t t h e LDH-4 l o c u s a t a f r e q u e n c y o f that  the  subdivision  of  steelhead  C a s c a d e C r e s t may n o t be a n y more o f a a n y o f a number o f o t h e r s u b d i v i s i o n s  the species.  Recent differences al.,  situation  at the  L a k e p o p u l a t i o n on t h e u p p e r Dean  suggests  along  similar  frequencies  a unique a l l e l e  A l l of t h i s  within  a  differences  (.27)  evidence  behavioral  and  physiological  b e t w e e n LDH p h e n o t y p e s i n Salmo g a i r d n e r i ( K l a r e t  1 9 7 9 a , 1979b;  Williscroft,  of  1977)  Redding  and  Schreck,  1979; Tsuyuki  a l s o reduces the value of t h i s  and  l o c u s a s an  76  indicator  of  subdivision  historical  of  the  patterns  species  of  since  dispersal  inferences  and  former  in this  regard  d e p e n d h e a v i l y on t h e a s s u m p t i o n o f n e u t r a l i t y . The  increasing  evidence  non-neutral  casts the  that  some  s e r i o u s d o u b t s on t h e v a l i d i t y assumption  even i f t h e r e in  electrophoretic  of  argument  invoking  f o r any e l e c t r o p h o r e t i c v a r i a n t the  locus  A c e r t a i n l a c k of c o r r e l a t i o n of i n t r a p o p u l a t i o n  differences  in  characteristics from  selection  o f any  are  i s no e v i d e n c e f o r n o n - n e u t r a i l i t y a t  question.  resulted  neutrality  alleles  both  electrophoretic  (Sokal,  1974;  different  at  Avise,  strengths  different  and 1974)  and  loci.  In  morphological has  spacial some  probably  patterns  cases  of  extensive  d i f f e r e n t i a t i o n has taken p l a c e  at e l e c t r o p h o r e t i c a l l y detected  loci  morphological  without  (Drosophila, 1979)  In  corresponding Ayala  other  (Drosophila,  et  cases  al., the  1 9 7 0 ; brown t r o u t , Ryman e t a l . ,  opposite  Carson 1978; d e s e r t  C a l i f o r n i a minnow s p e c i e s , A v i s e , recent  report  that  electrophoretically earlier  distinct  morphological  differentiation dangers i n v o l v e d systematic  In  summer  (Smith,  situation  has  occurred  p u p f i s h , T u r n e r , 1974 a n d two Smith and A y a l a ,  and  winter  (Chilcote et and  1975).  steelhead al.,  behavioral  1969) i s a n o t h e r  i n using  differentiation  case  1980)  a r e not despite  evidence in  The  point.  of The  a s m a l l subset of c h a r a c t e r i s t i c s f o r  purposes are c l e a r .  h i s review  of t h e problem of s p e c i e s  definition  Sokal  77  (1974) h a s patterns  emphasized of  the  variations  lack  of  (1969)  selection  is  more i m p o r t a n t  similarity  between p o p u l a t i o n s seem  to  demes  that  into  differ  biological  single  species.  a  similarity  argued  that  Both  i n steelhead, large  genetically  natural  i n maintaining  species.  a  the  number  of a of  the these  species semi-  from  each other t o  a basic  morphological  which warrants t h e i r  inclusion in a  v a r y i n g degrees, but t h a t s t i l l and  have  t h a n gene f l o w of  between  characteristics within a  f i t the s i t u a t i o n  t h a t a p p e a r s t o be s u b d i v i d e d isolated  congruence  various  s p e c i e s . E h r l i c h a n d Raven  statements  of  maintain  78  APPLICATIONS TO STEELHEAD MANAGEMENT  Steelhead heavy  and o t h e r  commercial  and  anadromous s a l m o n i d s sport  as  a  are  habitat degradation,  and  intensively  non-domesticated  Because  managed  they  are  as  fisheries  easily  result  cultured,  are  w e l l as  the  in  major  to  extensive  among  species a  subject  most  the world.  part  of  this  i n t e n s i v e management i n v o l v e s r e l e a s i n g h a t c h e r y - r e a r e d  fish in  addition  fishing  to  the  more  t r a d i t i o n a l management t h r o u g h  regulations. Fish culture operations genetic  variability  transplanting intentional  of  through  fish  selection  between  streams.  or u n i n t e n t i o n a l , takes  a s u b j e c t of c o n c e r n s i n c e f i s h hatchery  disrupt  environment  seem  place  that  the  pattern  and  extensive  Selection,  either  i n h a t c h e r i e s and i s  become  adapted  t o b e , i n some unknown way,  to  Flick  and Webster,  The e f f e c t  (Reisenbichler  and  Mclntyre,  the  poorly  adapted t o the r i g o u r s of the n a t u r a l environment i n which must s u r v i v e upon r e l e a s e  of  they 1977;  1964).  o f t r a n s p l a n t s i s t o i n c r e a s e gene f l o w b e t w e e n  s t r e a m s i n d i r e c t p r o p o r t i o n t o t h e numbers o f f i s h t r a n s f e r r e d and  t h e number o f y e a r s  streams other native  were  i n which t r a n s f e r s take  formerly  the population environment  isolated,  i n each and  be  or s e m i - i s o l a t e d , from each  stream at  p l a c e . I f these  a  may  be  adapted  disadvantage  in  to i t s foreign  79  e n v i r o n m e n t s . As progeny  will  situations  a result neither transplanted  survive  this will  production  of  the  as  well  as  result  in  a  stream  as  the  native  fish fish  reduction  t o t h a t u s e d by  Stearns  native  the poor s u r v i v a l i n freshwater small  freshwater enough  adapted  population  pressure species  towards has  of g e n e t i c  gene p o o l  As  genetic  threshold.  consequences between the exceeds the  only  for  local  adaptation  occurs  by  even though  to adapt t o  Felsenstein  my  data  structure)  exceeds a  concerned  forces  as  migration  on  streams  and  the  i s that  streams i s such  that  even i n c h a r a c t e r i s t i c s w i t h v e r y  has  local  serious  taken  place  transplant  rate  s t r u c t u r i n g b r e a k s down.  electrophoretic alleles  small, probably  in  freshwater  ( 1 9 7 6 ) most m o d e l s  d i f f e r e n t a t i o n has  from  the  in  genetic  conclusion  selective  the  if  relatively  the  p r e d i c t a sudden c o l l a p s e  t h r e s h o l d at which genetic  p r e s u m e d t o be  to  l a r g e and  between  selective  a  brackish  the  a p p e a r s t o be  from  continually  prevent  Transplants  populations  the  adjacent  Sage ( 1 9 8 0 ) t o a c c o u n t  adjacent,  out  differentiation (ie.  is  large  local adaptation  pointed  becomes  arguement  a  a demonstrated a b i l i t y  adaptation  If  to  natural  o f p r o g e n y of G a m b u s i a  from  environment. This  environment.  certain  migrants  their i n some  the  stream i n Texas. This p o p u l a t i o n  received  freshwater  and  and  of  contaminated w i t h maladapted f o r e i g n genes. T h i s similar  nor  t h e most  isolation  between  differentiation small  are  interesting populations will  occur  selective coefficients.  80  Quantitative  c h a r a c t e r s s u c h a s body s i z e ,  r e t u r n a r e o f t e n t h o u g h t t o be i m p o r t a n t the  influence  of  relatively  c o n c l u s i o n may n o t be v a l i d often  the case,  are d i f f e r e n t . extensive This  large  selective  Very  small  selective when  f r y from  where t h e means t h r o u g h whole  question  of  inlet  such  and o u t l e t spawning  i s and  what  is  is  not  d i f f e r e n c e b e t w e e n two s t o c k s h a s t o be e x a m i n e d often,  important  differences  assumed t o be  synonymous  differences  can  experimentation if  any,  of  be  there  when more  many  reality  rheotactic populations  obvious. an  closely.  differences  Too are  subtle  Without  differences  The  important  seemingly  , important.  observed  populations are being maintained  gene  in  obvious  in  small.  further  i s no c l e a r way o f d i s t i n g u i s h i n g  the  are being maintained  and  result  the  is  streams  i s a l s o very  which s e l e c t i o n a c t s  what  can  as  This  f o r i t , as  i n nearby  forces  gene f l o w  under  forces.  i f the only evidence  i s t r u e even f o r c h a r a c t e r i s t i c s of  characteristics  i s the fact that populations  differentiation  response  egg s i z e o r t i m e o f  which,  between  by s t r o n g s e l e c t i o n a n d  two which  by weak s e l e c t i o n a c t i n g i n t h e a b s e n c e o f  flow.  Even  i f  electrophoretic importance populations  of  the or  observation otherwise,  each  of  gives  difference,  genetic no  differences,  indication  i t does  imply  i n q u e s t i o n a r e t o some d e g r e e g e n e t i c a l l y  from each o t h e r . I n i t s e l f  t h i s would simply  of  the  that  the  isolated  i n d i c a t e t h a t some  81  caution The  should  be e x e r c i s e d  problem i s that  i n planning  i tis difficult  to e x e r c i s e c a u t i o n . Genetic to  a  differentiation  has  occurred  due  wide v a r i e t y of e n v i r o n m e n t a l d i f f e r e n c e s and not a l w a y s  which  live  at  i d e n t i c a l LDH reaction  different  isozymes  but  similar  depths  genetic  difference  these  enzymes  Schaffer  maintain and E l s o n  age  of f i r s t  an  adaptive  freshwater grounds.  i n the a b i l i t y  generally imprinting  from a  pressures  to  ability to  process  (Ihssen  lake  the  to  home  be  mainly  until  salmon  richness to  Bams  a  the  populations  of  ocean  were  predict  particular  s t r e a m was  result  a  of  similarity  learned  propensity  pink for  than f i s h c a r r y i n g f o r e i g n genes. In  a priori  differentiation.  are  feeding  (1976) d e m o n s t r a t e d t h a t  o n c e i t h a s been d e m o n s t r a t e d . I t w o u l d  environmental  the  and T a i t , 1974).  i t i s e a s y t o s e e why t h e d i f f e r e n c e h a s  to  of  d i f f e r e n c e s i n t h e harshness of t h e  and  homing t o t h e Tsolum R i v e r  genetic  cause  deeper  s a l m o n c a r r y i n g n a t i v e g e n e s h a d a much h i g h e r  however,  their  ( S i e b e n a l l e r and Somers,  between A t l a n t i c  environment  case  in  (1975) c o n c l u d e d t h a t d i f f e r e n c e s i n a v e r a g e  response  thought  species  o f two l a k e t r o u t s t o c k s t o  since f i s h  higher  maturity  The  differ  i s a l s o i m p l i c a t e d as the  r e t a i n gas under p r e s s u r e to  rockfish  have e l e c t r o p h o r e t i c a l l y  rates at d i f f e r e n t pressures  1 9 7 8 ) . Water p r e s s u r e  each  program.  t o know when, a n d when n o t ,  i n o b v i o u s ways. Two m o r p h o l o g i c a l l y  able  any t r a n s p l a n t  have  been  difficult,  t h e o c c u r r e n c e and mechanism o f  The i m p l i c a t i o n i s t h a t between  u s e d a s an a r g u m e n t f o r g e n e t i c  occurred,  two  the  apparent  s t r e a m s a l s o c a n n o t be  similarity  since the  important  82  h a b i t a t d i f f e r e n c e s may superficial  survey.  be more s u b t l e than those detected  Given  the  lack  of  gene  flow  by a  and  p o s s i b i l i t y of s u b t l e environmental d i f f e r e n c e s i t would be  surprising  between a l l , again  if  important  or even most, p o p u l a t i o n s  i t i s impossible  This  lack  management.  of i n f o r m a t i o n  However,  Mclntyre, e f f e c t s of  The  have 1977)  made  this discussion  major  of  will  be  selection  limited  maintained by  goal  of  any  transplant  to  .policy should  in and the  in  s e l e c t i v e f o r c e s ranging  migration  Such v a r i a t i o n may  transplanted  rates  from  variability  weak  ( i . e . transplants)  have l i t t l e  stocks but  be  to  i r r e v e r s i b l e l o s s , of u s e f u l  to  V a r i a b i l i t y maintained by weak f o r c e s i s v u l n e r a b l e  it.  a  becomes  (e.g. R e i s e n b i c h l e r  v a r i a b i l i t y . D i f f e r e n t types of g e n e t i c  increases  proceed  transplants.  prevent the l o s s , p a r t i c u l a r l y the genetic  fisheries  information  effects  elsewhere  occur.  i s a need to develop  be added to as on  but  to develop a  f i s h e r i e s management w i l l  comments  been and  streams  makes i t d i f f i c u l t  p o l i c y , there  of g u i d e l i n e s which can  hatcheries  i n adjacent  were found  i m p l i c a t i o n s of salmonid  since  with or without a genetic  a v a i l a b l e . Speculative  differences  still  to p r e d i c t where d i f f e r e n c e s w i l l  sound p o l i c y on the genetic  set  genetic  the  e f f e c t on the  strong.  since will  are  small  destroy  viability  of  i n c l u d e s c h a r a c t e r i s t i c s such as c o l o r  83  patterns  or  susceptability  preserving other  end  strong the  for of  their  the  whole  of  acting  on  by  a  p r o b a b a l y be will  transplants. but  aid  absence  two  the  assumed  of  only  be  I t s l o s s should higher  always  involves  of  times  My  be  maintained  by  less vulnerable  to  imply  the are  of  support.  history  and  depleted  adjacent forces  relatively  small.  be  maintained  its  loss  strong  will  selective  scale, continuous  partially  reversible  transplanted  their  s t o c k s and  existing  is  fish  and  steelhead  are  to  t o augment  stocks,  numbers.  greater  for  than  R e c o v e r y s t o c k i n g can  i s generally short  the c a r r y i n g c a p a c i t y of reason  the  selective  and to  that  at the  only  large  at l e a s t  by on  present  that  the  impact  results  be  At  Augmentation  p l a n t i n g s m o l t s on a c o n t i n u i n g , y e a r l y  e n v i r o n m e n t can  the  will  mortalities  s i n c e the d e s i r e d p o p u l a t i o n  stage,  worth  occur.  recovery by many  be  have a d r a m a t i c  transplants  be  is  main reasons f o r t r a n s p l a n t i n g  usually  case  that  variability  destroyed  may  management v a l u e .  i r r e v e r s i b l e . V a r i a t i o n due  progeny w i l l  The  be  can  which  t o weak s e l e c t i v e f o r c e s can  continuing  their  migration.  electrophoretic  complete  forces  f i s h but  variability  i f i t can  V a r i a t i o n due  or  which w i l l  transplanted increased  stream l e v e l  aesthetic  forces  d i s r u p t i o n by range  angling  scale i s v a r i a b i l i t y  selective  s u c c e s s of  to  the  freshwater  t e r m and  the  basis  freshwater  i n v o l v e any does not  environment.  t r a n s p l a n t i n g foreign stock  life  exceed  In  rather  each than  84  using and  native rear  smaller to  fish  fish  i s economic. in  facilities.  raise  eggs  because  each  one l a r g e  stock  from  is  Since  a  terminal  such as s t e e l h e a d  chronic stocks to  overharvesting  be  stock  will  would  should  be  in  Strongly production probably  these  disease  to  protect  selected, genetic v a r i a t i o n . i s i n t h e form of term s i n c e  streams  a  harvest  fishery  occurs,  be a p r o b l e m a n d t h e u s e o f n a t i v e since  recovery  stocking  I f augmentation  will  but  conserved  in  have  i s limited to a be  used.  t h a t weak s e l e c t i v e d i f f e r e n t i a t i o n  selected  The  w o u l d be  unstocked  areas.  d i f f e r e n c e s may r e s u l t i n a l o s s o f n a t u r a l  i n some s t r e a m s b u t t h e be  of  used  of streams, f o r e i g n f i s h c o u l d  be  reluctant  i n v o l v e s a l a r g e number  where h a r v e s t  e s s e n t i a l l y continuous.  result  stocking  s a l m o n where a m i x e d  may n o t be p r a c t i c a l  small proportion  lost  I n coho  are  source  f i s h e r y s u c h s t o c k i n g c a n be s h o r t  c a n be r e g u l a t e d .  eggs  a number o f d i f f e r e n t s t r e a m s  u s e f u l , but not s t r o n g l y  In s p e c i e s  collect  t h a n t o u s e a number o f  possible  recovery  of d i f f e r e n t s t r e a m s , n a t i v e possibly  facility  to  Managers of l a r g e h a t c h e r i e s  collected  contamination.  I t i s cheaper  offset  by  the  cost  of  this  loss  would  economies  of  s c a l e of a l a r g e r  hatchery.  Most o f t h e above i s s p e c u l a t i v e and n o t r e a l l y is  new  is  t h e g e o g r a p h i c s c a l e on w h i c h management  h a v e t o be made. G e n e t i c function  new.  of d i s t a n c e  distinctiveness  since populations  is  not  What  decisions  entirely  a  i n a d j a c e n t streams can  85  be more d i s t i n c t miles.  The  t h a n t h o s e i n s t r e a m s s e p a r a t e d by h u n d r e d s  of  p o s s i b i l i t y o f l o c a l a d a p t a t i o n h a s t o be c o n s i d e r e d  at the s c a l e of a s i n g l e , r e l a t i v e l y a s on a b r o a d r e g i o n a l  basis;  small  river  system as  well  86  LITERATURE CITED A l l a r d , R. W. and R. L. K a h l e r . 1972. P a t t e r n s of m o l e c u l a r v a r i a t i o n i n p l a n t p o p u l a t i o n s , p. 238-254. P r o c . I I B e r k e l e y Sym. M a t h . S t a t , and P r o b . V o l . V D a r w i n i a n and Non-Darwinian E v o l u t i o n , U n i v . of C a l i f . P r e s s . A l l e n d o r f , F. W. 1973. G e n e t i c v a r i a t i o n , i n h e r i t a n c e and p r e l i m i n a r y p o p u l a t i o n d i s t r i b u t i o n o f some p r o t e i n s of Salmo g a i r d n e r i . M.Sc. T h e s i s , U n i v e r s i t y o f W a s h i n g t o n . A l l e n d o r f , F. W. 1975. G e n e t i c v a r i a b i l i t y i n a s p e c i e s p o s s e s s i n g e x t e n s i v e gene d u p l i c a t i o n : G e n e t i c i n t e r p r e t a t i o n o f d u p l i c a t e l o c i and e x a m i n a t i o n o f g e n e t i c v a r i a t i o n i n p o p u l a t i o n s of r a i n b o w t r o u t . Ph.D. T h e s i s . U n i v e r s i t y of W a s h i n g t o n . A n t i f e a u , T. 1977MS. Thompson R i v e r s t e e l h e a d s u r v e y . U n p u b l i s h e d m a n u s c r i p t p r e p a r e d f o r t h e B. C. F i s h W i l d l i f e Branch.  and  A n t o n o v i c s , J . 1971. The e f f e c t s o f a h e t e r o g e n e o u s e n v i r o n m e n t on t h e g e n e t i c s of n a t u r a l p o p u l a t i o n s . Amer. S c i . 59: 593-599. A s p i n w a l l , N. 1974. G e n e t i c a n a l y s i s o f N o r t h A m e r i c a n p o p u l a t i o n s of t h e p i n k s a l m o n , O n c o r h y n c h u s g o r b u s c h a , p o s s i b l e evidence f o r the n e u t r a l mutation-random d r i f t h y p o t h e s i s . E v o l . 28: 2 9 5 - 3 0 5 . A v i s e , J . C. 1974. S y s t e m a t i c v a l u e o f e l e c t r o p h o r e t i c d a t a . S y s t . Z o o l . 23: 4 6 5 - 4 8 1 . A v i s e , J . C. and J . F e l l e y . 1979. P o p u l a t i o n s t r u c t u r e o f f r e s h w a t e r f i s h e s . I . G e n e t i c v a r i a t i o n of b l u e g i l l ( L e p o m i s m a c r o c h i r u s ) p o p u l a t i o n s i n manmade r e s e r v o i r s . E v o l . 33: 15-26. A v i s e , J . C , J . J . S m i t h and F. J . A y a l a . 1975. Adaptive d i f f e r e n t i a t i o n w i t h l i t t l e g e n e t i c c h a n g e b e t w e e n two C a l i f o r n i a minnows. E v o l . 29: 4 1 1 - 4 2 6 .  87  A y a l a , F. J . , C. A. M a u r a o , S. P e r e z - S a l a s , R. R i c h m o n d a n d T. D o b z a h n s k y . 1 9 7 0 . Enzyme v a r i a b i l i t y i n t h e D r o s o p h i l a w i l l i s t o n i g r o u p . I . G e n e t i c d i f f e r e n t i a t i o n among s i b l i n g s p e c i e s . P r o c . N a t . A c a d . S c i . 67: 2 2 5 - 2 3 2 . A y a l a , F. J . , F. R. P o w e l l a n d T. D o b z h a n s k y . 1 9 7 1 . Polymorphisms i n c o n t i n e n t a l and i s l a n d p o p u l a t i o n s of D r o s o p h i l a . P r o c . N a t . A c a d . S c i . U. S..A. 68:• 2 4 8 0 - 2 4 8 3 . A y a l a , F. J . , M. L. T r a c e y , L. G. C a r r , J . F. M c D o n a l d a n d S'. P e r e z - S a l a s . 1979. G e n e t i c v a r i a t i o n i n n a t u r a l p o p u l a t i o n s of f i v e D r o s o p h i l a s p e c i e s and t h e h y p o t h e s i s o f s e l e c t i v e n e u t r a l i t y . G e n e t i c s . 77: 343-384. B a i l e y , G. S., A. C. W i l s o n , J . E. H a l v e r a n d C. L. J o h n s o n . 1970. M u l t i p l e f o r m s o f s u p e r n a t a n t malate. d e h y d r o g e n a s e i n s a l m o n i d f i s h e s . J . B i o . Chem. 2 4 5 : 5 9 2 7 - 5 9 4 0 . B a i l e y , G., H. T s u y u k i a n d A. W i l s o n . 1 9 7 6 . The number o f g e n e s for l a c t a t e dehydrogenase i n salmonid f i s h e s . J . F i s h . ' R e s . Bd. C a n . 3 3 : 7 6 0 - 7 6 7 . Bams, R. A. 1 9 7 6 . S u r v i v a l a n d p r o p e n s i t y f o r h o m i n g a s a f f e c t e d by p r e s e n c e o r a b s e n c e o f l o c a l l y a d a p t e d p a t e r n a l g e n e s i n two t r a n s p l a n t e d p o p u l a t i o n s o f p i n k s a l m o n ( O n c o r h y c h u s g o r b u s c h a ) . J . F i s h . R e s . Bd. C a n . 33: 2 7 1 6 - 2 7 2 5 . B j o r n n , T. 1 9 7 1 . T r o u t a n d s a l m o n movements i n two I d a h o streams as r e l a t e d t o temperature, food, stream f l o w , c o v e r , a n d p o p u l a t i o n d e n s i t y . T r a n s . Am. F i s h . S o c . 1 0 0 ( 3 ) : 423-438. B l a i r , W. F. 1 9 5 0 . E c o l o g i c a l f a c t o r s i n s p e c i a t i o n o f P e r o m y s c u s . E v o l . 4: 2 5 3 - 2 7 5 . B o h l i n , T. 1 9 7 5 . A n o t e on t h e a g g r e s s i v e b e h a v i o u r o f a d u l t male sea t r o u t toward " p r e c o c i o u s " males d u r i n g spawning. I n s t . F r e s h w a t e r R e s . D r o t t . 54: 1 1 8 . B o w l e r , B. 1 9 7 5 . F a c t o r s i n f l u e n c i n g g e n e t i c c o n t r o l i n lakeward m i g r a t i o n s of c u t t h r o a t t r o u t f r y . Trans. F i s h . S o c . 104: 4 7 4 - 4 8 2 .  Am.  88  B u c h a n a n , D. V. 1 9 7 5 . W i l l a m e t t e R i v e r s t e e l h e a d , A n n . C l o s i n g Rep. O r e . D e p t . o f F i s h a n d W i l d l i f e P r o j . No. 8 8 2 7 5 0 0 8 , 50p. C a r l , G. C , W. A. C l e m e n s a n d C. C. L i n d s a y . 1 9 6 7 . The f r e s h w a t e r f i s h e s o f B r i t i s h C o l u m b i a . B. C. D e p t . o f R e c r e a t i o n a n d C o n s e r v a t i o n , Handbook No. 5. 1 9 2 p . C a r l i n , B . 1968. M i g r a t i o n s of Salmon. I n : S e r i e s of l e c t u r e s , A l t . S a l . A s s o c . Spec. Pub., M o n t r e a l , Canada. C a r s o n , H. L. 1 9 7 8 . S p e c i a t i o n a n d S e x u a l S e l e c t i o n i n H a w a i i a n D r o s o p h i l a . p. 9 3 - 1 0 , I n , P, F. B r u s s a r d ( e d . ) , E c o l o g i c a l G e n e t i c s : The I n t e r f a c e , S p r i n g e r - V e r l a g , New York. C a v a l l i - S f o r z a , L. L. a n d W. F. Bodmer. 1 9 7 1 . The G e n e t i c s o f Human P o p u l a t i o n s . W. H. Freeman a n d Co., San F r a n c i s c o . 965 p . Cederbaum, S. a n d A. Y o s h i d a . 1 9 7 2 . T e t r a z o l i u m o x i d a s e p o l y m o r p h i s m i n r a i n b o w t r o u t . Gen. 72: 3 6 3 - 3 6 7 . C h i l c o t e , M., B. C r a w f o r d a n d S. L e i d e r . 1 9 8 0 . A g e n e t i c c o m p a r i s o n o f s y m p a t r i c p o p u l a t i o n s o f summer a n d w i n t e r s t e e l h e a d s . T r a n s . Am. F i s h . S o c . 1 0 9 : 2 0 3 - 2 0 6 . C h r i s t i a n s e n , F. B. a n d 0. F r y d e n b e r g . 1 9 7 4 . G e o g r a p h i c a l p a t t e r n s of four polymorphisms i n Zoarces V i v i p a r u s as e v i d e n c e o f s e l e c t i o n . Gen. 7 7 : 765-770. C l a r k e , B. 1 9 7 8 . Some c o n t r i b u t i o n s o f s n a i l s t o t h e d e v e l o p m e n t o f e c o l o g i c a l g e n e t i c s , p. 1 5 9 - 1 7 2 , I n P. F. B r u s s a r d ( e d . ) , E c o l o g i c a l G e n e t i c s : The I n t e r f a c e . S p r i n g e r - V e r l a g , New Y o r k . C o c k e r h a m , C. C. 1 9 7 3 . A n a l y s i s o f gene f r e q u e n c i e s . Gen. 74:679-700. C o c k e r h a m , C. C. 1 9 6 9 . V a r i a n c e 72-84.  o f gene f r e q u e n c i e s . E v o l . 2 3 :  89  E a n e s , W. F. a n d R. K. R o e h n . 1978. An a n a l y s i s o f g e n e t i c s t r u c t u r e i n t h e monarch b u t t e r f l y , D a n a s i s p l e x i p p u s E v o l . 32: 784-797.  L.  E g g l i s h a w , H. J . and P. E. S h a c k l e y . 1973. An e x p e r i m e n t on f a s t e r g r o w t h o f s a l m o n Salmo s a l a r ( L . ) i n a S c o t t i s h s t r e a m . J . F i s h B i o l . 5: 1 9 7 - 2 0 4 . E h r l i c h , P. R. and P. R a v e n . 1969. The d i f f e r e n t i a t i o n p o p u l a t i o n s . S c i . 163: 1 1 2 8 - 1 1 3 2 .  of  E n d l e r , J . A. 1977. G e o g r a p h i c V a r i a t i o n , S p e c i a t i o n and C l i n e s . P r i n c e t o n U n i v . P r e s s , P r i n c e t o n , New J e r s e y . 239 p. E v e r e s t , F. H. 1973. E c o l o g y and management o f summer s t e e l h e a d i n t h e Rogue R i v e r . F i s h e r y R e s e a r c h R e p o r t No. 7, O r e . S t . Game Comm. C o r v a l l i s , O r e . . 48p. F e l s e n s t e i n , J . 1976. The t h e o r e c t i c a l p o p u l a t i o n g e n e t i c s o f v a r i a b l e s e l e c t i o n and m i g r a t i o n . Ann. Rev. Gen. 10: 253280. F l i c k , W. A. and D. A. W e b s t e r . 1964. C o m p a r a t i v e f i r s t y e a r s u r v i v a l and p r o d u c t i o n i n w i l d and d o m e s t i c s t r a i n s o f b r o o k t r o u t ( S a l v e l i n u s f o n t i n a l i s ) . T r a n s . Am. F i s h . S o c . 93: 58-69. Harden-Jones, London.  F. R.  1968.  F i s h M i g r a t i o n . Edward  Arnold,  H a r t m a n , G. and C. G i l l . 1968. D i s t r i b u t i o n s o f j u v e n i l e s t e e l h e a d and c u t t h r o a t t r o u t (Salmo g a i r d n e r i and S. c l a r k i c l a r k i ) w i t h i n streams i n southwestern B r i t i s h C o l u m b i a . J . F i s h . R e s . Bd. Can. 25: 33-48. H e d g e c o c k , D. 1978. P o p u l a t i o n s u b d i v i s i o n and g e n e t i c d i v e r g e n c e i n t h e r e d - b e l l i e d newt, T a r i c h a r i v u l a r i s E v o l . 32: 2 7 1 - 2 8 6 . H e d r i c k , P. W., M. E. G i n e v a n and E. P. E w i n g . 1976. G e n e t i c p o l y m o r p h i s m i n h e t e r o g e n e o u s e n v i r o n m e n t s . Ann. Rev. E c o l . S y s t . 7: 1-32.  .  90  H e d r i c k , P. W. , S. J a i n a n d L. H o l d e n . 1 9 7 8 . M u l t i l o c u s i n e v o l u t i o n . E v o l . B i o l . 1 1 : 101-184.  systems  H e r b e r t , P.. D. N. 1 9 7 4 . Enzyme v a r i a b i l i t y i n n a t u r a l p o p u l a t i o n s o f D a p h n i a magna. I I . G e n o t y p e f r e q u e n c i e s i n p e r m a n e n t p o p u l a t i o n s . Gen. 77: 323-334. H o d g i n s , H., W. Ames a n d F. U t t e r . 1 9 6 9 . V a r i a n t s o f l a c t a t e dehydrogenase isozymes i n s e r a of sockeye salmon ( O n c o r h y n c h u s n e r k a ) . J . F i s h . R e s . Bd. C a n . 26: 15-19. H u z y k , L. a n d H. T s u y u k i . 1 9 7 4 . D i s t r i b u t i o n o f LDH-B 2 gene r e s i d e n t and anadromous rainbow t r o u t (Salmo g a i r d n e r i ) f r o m s t r e a m s i n B r i t i s h C o l u m b i a . J . F i s h . R e s . Bd. C a n . 31: 106-108. I h s s e n , P. a n d J . S. T a i t . 1 9 7 4 . G e n e t i c d i f f e r e n c e s i n r e t e n t i o n o f s w i m b l a d d e r g a s between two p o p u l a t i o n s o f l a k e t r o u t . S a l v e l i n u s n a m a y c u s h . J . F i s h . R e s . Bd. C a n . 31: 1351-1354. Jain,  S. K. a n d A. b. B r a d s h a w . 1 9 6 6 . E v o l u t i o n a r y divergence among c l o s e l y a d j a c e n t p l a n t p o p u l a t i o n s . I . The e v i d e n c e and i t s t h e o r e t i c a l a n a l y s i s . H e r e d . 2 1 : 4 0 7 - 4 1 1 .  J o h n s o n , G. B. 1 9 7 3 . Enzyme p o l y m o r p h i s m a n d m e t a b o l i s m . S c i e n c e . 184: 28-37. J o n e s , D. E. 1 9 7 4 . The s t u d y o f c u t t h r o a t - s t e e l h e a d i n A l a s k a . A n n u a l P e r f o r m a n c e R e p t . , Study AFS-42, A l a s k a Dept. F i s h and Game. 51 p. J o n e s , J . S., B. H. L e i t h , a n d P. R a w l i n g s . 1 9 7 7 . P o l y m o r p h i s m i n C e p a e a : A P r o b l e m w i t h Too Many S o l u t i o n s ? A n n . Rev. E c o l . Syst." 8: 1 0 9 - 1 4 3 . K i m u r a , M. a n d G. H. W e i s s . 1 9 6 4 . The s t e p p i n g s t o n e model o f p o p u l a t i o n s t r u c t u r e and t h e d e c r e a s e of g e n e t i c c o r r e l a t i o n w i t h d i s t a n c e . Gen. 4 9 : 5 6 1 - 5 7 6 . K i m u r a , M. a n d T. O h t a . 1 9 7 1 . P r o t e i n p o l y m o r p h i s m a s a p h a s e of m o l e c u l a r e v o l u t i o n . N a t . 229: 4 6 7 - 4 6 9 .  91  K i r k p a t r i c k , M. a n d R. K. S e l a n d e r . 1 9 7 9 . G e n e t i c s o f speciation i n lake whitefishes i n the Allegash Basin. E v o l . 33: 478-485. K l a r , G., C. S t a l n a k e r a n d T. F a r l e y . 1 9 7 9 a . C o m p a r a t i v e p h y s i c a l and p h y s i o l o g i c a l p e r f o r m a n c e o f r a i n b o w t r o u t , Salmo g a i r d n e r i o f d i s t i n c t l a c t a t e d e h y d r o g e n a s e B 2 p h e n o t y p e s . Comp. B i o c h e m . P h y s i o l . 63A: 2 2 9 - 2 3 5 . K l a r , G., C. S t a l n a k e r a n d T. F a r l e y . 1979b. C o m p a r a t i v e b l o o d l a c t a t e response t o low oxygen c o n c e n t r a t i o n s i n rainbow t r o u t , Salmo g a i r d n e r i , LDH-B 2 P h e n o t y p e s . Comp. B i o c h e m . P h y s i o l . 63A: 2 3 7 - 2 4 0 . K o e h n , R. K. 1 9 7 8 . P h y s i o l o g y a n d b i o c h e m i s t r y o f enzyme v a r i a t i o n : The i n t e r f a c e o f e c o l o g y a n d p o p u l a t i o n g e n e t i c s , p . 5 1 - 7 2 , I n , P. F. B r u s s a r d , ( e d . ) , E c o l o g i c a l G e n e t i c s : The I n t e r f a c e . S p r i n g e r - V e r l a g , New Y o r k . K o e h n , R. K., R. M i l k m a n a n d J . B. M i t t o n . 1 9 7 6 . P o p u l a t i o n g e n e t i c s of marine pelecypods. IV. S e l e c t i o n m i g r a t i o n and g e n e t i c d i f f e r e n t i a t i o n i n t h e b l u e m u s s e l M y t i l u s e d u l i s . E v o l . 30: 2-32. K r e b s , C. J . , M. S. G a i n e s , B. L. K e l l e r , J . H. M y e r s a n d R. H. Tamarin. 1973. P o p u l a t i o n c y c l e s i n s m a l l r o d e n t s . S c i . 179: 3 5 - 4 1 . Lee,  R. L. G. a n d G. P o w e r . 1 9 7 6 . A t l a n t i c s a l m o n ( S a l m o s a l a r ) . of t h e Leaf R i v e r , Ungava. J . F i s h . R e s . Bd. Can. 33: 2 6 1 6 - 2 6 2 1 .  L e w o n t i n , R. C. 1 9 7 4 . The G e n e t i c B a s i s o f E v o l u t i o n a r y C o l u m b i a U n i v e r s i t y P r e s s , New Y o r k . 346 p .  Change.  M a h e r , F. P. a n d P. A. L a r k i n . 1 9 5 5 . L i f e h i s t o r y o f t h e s t e e l h e a d t r o u t of t h e C h i l l i w a c k R i v e r , B r i t i s h C o l u m b i a . T r a n s . Amer. F i s h S o c . 84: 27-38. M a l e c o t , G. 1 9 6 7 . I d e n t i c a l l o c i a n d r e l a t i o n s h i p . B e r k . Sym. M a t h . S t a t . P r o b . 4: 3 1 7 - 3 3 2 .  Proc.  Fifth  92  May,  B., J . E. W r i g h t and M. S t o n e k i n g . 1979. J o i n t S e g r e g a t i o n of b i o c h e m i c a l l o c i i n s a l m o n i d a e : R e s u l t s from e x p e r i m e n t s w i t h S a l v e l i n u s and r e v i e w o f t h e l i t e r a t u r e on o t h e r s p e c i e s . J . F i s h . R e s . Bd. Can. 36: 1 1 1 4 - 1 1 2 8 .  M a y r , E. 1963. A n i m a l S p e c i e s and E v o l u t i o n . The of H a r v a r d U n i v e r s i t y , Cambridge, Mass. M c C a r t , P. J . 1970. A p o l y m o r p h i c n e r k a i n B a b i n e L a k e , B. C. V a n c o u v e r , B. C.  Belknap  Press  p o p u l a t i o n of O n c o r h y n c h u s Ph.D. T h e s i s U. B. C,  M c K e c h n i e , S. N., P. R. E h r l i c h and R. R. W h i t e . 1975. P o p u l a t i o n g e n e t i c s of E u p h y d r y a s b u t t e r f l i e s . I . v a r i a t i o n and t h e n e u t r a l i t y h y p o t h e s i s . Gen. 8 1 : 594.  Genetic 571-  M o l l e r , D. 1971. G e n e t i c d i v e r s i t y i n A t l a n t i c s a l m o n . i n s a l m o n management i n r e l a t i o n t o g e n e t i c f a c t o r s . I n t . A t l . S a l . F o u n d . , S p e c . Pub. S e r . I : 7-29. M o r r i s o n , W. J . and J . E. W r i g h t . 1966. G e n e t i c a n a l y s i s of t h r e e l a c t a t e dehydrogenase isozyme systems i n t r o u t ; e v i d e n c e f o r l i n k a g e o f g e n e s c o d i n g sub u n i t s A and B. J . E x p . Z o o l . 163: 259-270. N a r v e r , D. W. 1969. Age and s i z e o f s t e e l h e a d t r o u t i n t h e B a b i n e R i v e r , B r i t i s h C o l u m b i a . J . F i s h . R e s . Bd. Can. 26: 2 7 5 4 - 2 7 6 0 . N e a v e , F. 1944. R a c i a l c h a r a c t e r i s t i c s and m i g r a t o r y h a b i t s i n . Salmo g a i r d n e r i . J . F i s h . R e s . Bd. Can. 6: 2 4 5 - 2 5 1 . N e i , M. 1973. The t h e o r y and e s t i m a t i o n o f g e n e t i c d i s t a n c e . G e n e t i c S t r u c t u r e o f P o p u l a t i o n s , p 4 5 - 5 2 , I n , N. E. M o r t o n , ed., G e n e t i c D i s t a n c e , U n i v . of H a w a i i P r e s s , Honolulu. N i l s s o n , N. A. and 0. F i l i p s s o n . 1972. C h a r a c t e r i s t i c s o f two d i s c r e t e p o p u l a t i o n s of A r c t i c char ( S a l v e l i n u s a l p i n u s ) i n a n o r t h S w e d i s h l a k e . I n s t . F r e s h w a t e r R e s . D r o t t . 51: 90-108.  93  N o r t h c o t e , T. G. 1969. P a t t e r n s and m e c h a n i s m s i n l a k e w a r d m i g r a t o r y b e h a v i o u r of j u v e n i l e t r o u t , p. 1 8 3 - 2 0 4 . I n G. N o r t h c o t e , e d . , S a l m o n and T r o u t i n S t r e a m s , H. R. M a c M i l l a n L e c t u r e s i n F i s h e r i e s , U n i v . of B. C.  T.  N o r t h c o t e , T. G., S. N. W i l l i s c r o f t and H. T s u y u k i . 1970. M e r i s t i c and LDH g e n o t y p e d i f f e r e n c e s i n s t r e a m p o p u l a t i o n s of r a i n b o w t r o u t b e l o w and a b o v e a w a t e r f a l l . J . F i s h . Res. Bd. Can. 27: 1 9 8 7 - 1 9 9 5 . O s t e r d a h l , L. 1969. The s m o l t run of a s m a l l S w e d i s h r i v e r , p. 2 0 5 - 2 1 6 , I n , T. G. N o r t h c o t e ( e d . ) , Salmon and T r o u t i n S t r e a m s , H. R. M a c M i l l a n L e c t u r e s i n F i s h e r i e s , U n i v . of B. C. P e t e r s o n , G. R. and J . C. L y o n s , 1965. A p r e l i m i n a r y s t u d y s t e e l h e a d i n t h e B i g Q u a l i c u m R i v e r . B. C. F i s h and W i l d l i f e B r . , F i s h . Mgmt. R e p t . 56, 46 p.  of  R a l e i g h , R. F. 1971. I n n a t e c o n t r o l of m i g r a t i o n s of s a l m o n and t r o u t f r y from n a t a l g r a v e l s t o r e a r i n g a r e a s . E c o l o g y 52: 2 9 1 - 2 9 7 . R e d d i n g , J . M. and C. B. S c h r e c k . 1979. Possible adaptive s i g n i f i c a n c e of c e r t a i n enzyme p o l y m o r p h i s m s i n s t e e l h e a d t r o u t ( S a l m o g a i r d n e r i ) . J . F i s h . Res. Bd. Can. 36: 544551. R e i n i t z , G. L. 1977. I n h e r i t a n c e of m u s c l e and l i v e r t y p e s of s u p e r n a t a n t NADP-dependant i s o c i t r a t e d e h y d r o g e n a s e i n r a i n b o w t r o u t ( S a l m o g a i r d n e r i ) . B i o c h e m . Gen. 15: R e i s e n b i c h l e r , R. R. and J . D. M c l n t y r e . 1977. Genetic d i f f e r e n c e s i n g r o w t h and s u r v i v a l of j u v e n i l e h a t c h e r y and w i l d s t e e l h e a d t r o u t . Salmo g a i r d n e r i . J . F i s h . Res. Bd. Can. 34: 1 2 3 - 1 2 8 . R i c h m o n d , R. C. 1978. M i c r o s p a t i a l g e n e t i c d i f f e r e n t i a i o n i n n a t u r a l p o p u l a t i o n s o f D r o s o p h i l a . p . 1 2 7 - 1 4 4 , I n , P. F. B r u s s a r d ( e d . ) , E c o l o g i c a l G e n e t i c s : The Interface. S p r i n g e r - V e r l a g , New York. R i c k e r , W. E. 1971. H e r e d i t a r y and e n v i r o n m e n t a l f a c t o r s a f f e c t i n g c e r t a i n s a l m o n i d p o p u l a t i o n s , p. 1 9 - 1 6 0 . I n , C. Simon and P. A. L a r k i n ( e d . ) , The S t o c k C o n c e p t i n  R.  94  P a c i f i c S a l m o n , H. R. M a c M i l l a n U n i v . o f B. C.  Lectures  in Fisheries,  R i d d e l l , B.E. 1 9 7 9 . E n v i r o n m e n t a l a n d g e n e t i c s o u r c e s o f g e o g r a p h i c a l v a r i a t i o n i n p o p u l a t i o n s of A t l a n t i c salmon, Salmo s a l a r l i n n a e u s . Ph.D. T h e s i s M c G i l l U n i v e r s i t y . R i d g e w a y , G. J . , S. W. S h e l b u r n e a n d R. D. L e w i s . 1 9 7 0 . Polymorphism i n the e s t e r a s e s of A t l a n t i c h e r r i n g . Am. F i s h . S o c . 99: 1 4 7 - 1 5 1 .  Tran.  R o b e r t s o n , 0. M. 1 9 5 7 . S u r v i v a l o f p r e c o c i o u s l y m a t u r e k i n g salmon male p a r r (Oncorhynchus t s h a w y t s c h a ) a f t e r s p a w n i n g . C a l i f . F i s h Game D e p t . B u l l . 4 3 : 1 1 9 - 1 3 0 . R o p e r s , H. H., N. E n g e l a n d U. W o l f . 1 9 7 3 . I n h e r i t a n c e o f t h e S - f o r m o f NADP-dependant i s o c i t r a t e d e h y d r o g e n a s e p o l y m o r p h i s m ' i n r a i n b o w t r o u t , p. 319-327. I n , J . H. S c h r o d e r , ( e d . ) , G e n e t i c s and M u t a g e n e s i s i n F i s h . S p r i n g e r - V e r l a g , New Y o r k . Ryman, N., F. W. A l l e n d o r f a n d G. S t a h l . 1 9 7 9 . R e p r o d u c t i v e i s o l a t i o n with l i t t l e genetic divergence i n sympatric p o p u l a t i o n s o f brown t r o u t ( S a l m o t r u t t a ) . Gen. 92: 2 4 7 262. S a u n d e r s , R. . I . 1 9 6 7 . S e a s o n a l p a t t e r n o f r e t u r n o f A t l a n t i c s a l m o n i n t h e n o r t h w e s t M i r a m i c h i R i v e r , New B r u n s w i c k . J . F i s h . R e s . Bd. C a n . 24: 2 1 - 3 2 . S c h a f f e r a n d P. F. E l s o n . 1 9 7 5 . The a d a p t i v e s i g n i f i c a n c e o f v a r i a t i o n s i n l i f e h i s t o r y among l o c a l p o p u l a t i o n s o f A t l a n t i c s a l m o n i n N o r t h A m e r i c a . E c o l . 56: 5 7 7 - 5 9 0 . S c h m i d t , S. P. a n d E. W. H o u s e . 1 9 7 9 . P r e c o c i o u s s e x u a l development i n h a t c h e r y r e a r e d and l a b o r a t o r y m a i n t a i n e d m a l e s t e e l h e a d t r o u t . J . F i s h R e s . Bd. C a n . 36: 9 0 - 9 3 . S e l a n d e r , R. K. a n d D. W. K a u f m a n . 1 9 7 5 . G e n e t i c s t r u c t u r e o f p o p u l a t i o n s o f t h e brown s n a i l ( H e l i x a s p e r s a ) . I . M i c r o g e o g r a p h i c v a r i a t i o n . E v o l . 29: 3 8 5 - 4 0 1 .  95  S h a p o v a l o v , L. and A. C. T a f t . 1954. The l i f e h i s t o r i e s o f t h e s t e e l h e a d r a i n b o w t r o u t (Salmo g a i r d n e r i g a i r d n e r i ) and s i l v e r salmon' ( O n c o r h y c h u s k i s u t c h ) . C a l i f . F i s h and Game, F i s h B u l l . No. 98, 375 p g s . Shaw, C. R. and R. P r a s a r d . 1970. S t a r c h g e l e l e c t r o p h o r e s i s o f enzymes - A c o m p i l a t i o n o f r e c i p e s . B i o c h e m . Gen. 4: 297320. S i e b e n a l l e r , J . and G. N. Somero, 1978. Pressure-adaptive d i f f e r e n c e s i n l a c t a t e d e y h y d r o g e n a s e s of c o n g e n e r i c f i s h e s l i v i n g a t d i f f e r e n t d e p t h s . S c i . 201: 255-257. S l a n e y , P. A., S. J . P o w e l l and H. A. S m i t h . 1980. Experimental s t o c k i n g of s t e e l h e a d f r y a b o v e b a r r i e r s i n a h i g h g r a d i e n t t r i b u t a r y o f t h e t h e Keogh R i v e r . F i s h , and W i l d . B r . , F i s h . Tech. C i r c . 41. S m i t h , D. B., C. H. L a n g l e y and F. M. J o h n s o n . 1978. Variance component a n a l y s i s o f a l l o z y m e f r e q u e n c y d a t a f r o m e a s t e r n p o p u l a t i o n s of D r o s p h i l a m e l a n o g a s t e r . G e n e t i c s 88: 1 2 1 - 1 3 7 . S m i t h , S. B. 1969. R e p r o d u c t i v e i s o l a t i o n i n summer and w i n t e r r a c e s o f s t e e l h e a d t r o u t , p. 2 1 - 3 8 , I n , T. G. Northcote ( e d . ) , Salmon and T r o u t i n S t r e a m s , H. R. M a c M i l l a n L e c t u r e s i n F i s h e r i e s , U n i v . of B.C. Smouse, P. E. and R. H. Ward. 1978. A c o m p a r i s o n o f t h e g e n e t i c i n f r a s t r u c t u r e o f t h e Y e c u a n a and t h e Yanomama: A l i k e l i h o o d a n a l y s i s o f g e n o t y p i c v a r i a t i o n among p o p u l a t i o n s . Gen. 88: 6 1 1 - 6 3 1 . S n e a t h , P. H. and R. San F r a n c i s o .  R.  S o k a l . 1973.  N u m e r a l Taxonomy. F r e e m a n ,  S o k a l , R. R. 1974. The s p e c i e s p r o b l e m r e c o n s i d e r e d . Z o o l . 22: 360-374. S o k a l , R. R. and F. J . R o h l f . 1969. B i o m e t r y . W. Company, San F r a n c i s c o , C a l i f . 776p.  H.  Syst.  Freeman  and  S o u t h e r n , H. N., R. C a r r i c k , and W. G. P o t t e r . 1965. n a t u r a l h i s t o r y o f a p o p u l a t i o n of g u i l l e m o t s . E c o l . 34: 6 4 9 - 6 6 5 .  The J . Anim.  S t a s k o , A. B. 1971. R e v i e w o f f a i l e d s t u d i e s o f f i s h o r i e n t a t i o n . Ann. N. Y. A c a d . S c i . 188: 1 2 - 2 9 . S t a s k o , A. B., A. M. S u t t e r l i n , S. A. Rommel J r . and P. F. E l s o n . 1972. M i g r a t i o n o r i e n t a t i o n of A t l a n t i c s a l m o n ( S a l m o s a l a r ) . A t l . S a l . F o u n d . S p e c . Pub. S e r i e s 4: 119138. S t e a r n s , S. C. and R. D. S a g e . 1980. M a l a d a p t i o n i n a m a r g i n a l p o p u l a t i o n of t h e m o s q u i t o f i s h , G a m b u s i a a f f i n i s . E v o l . 34: 6 5 - 7 5 . S t i l l i n g s , G. A. 1974. The g e n e t i c s o f l a c t a t e d e h y d r o g e n a s e p o l y m o r p h i s m i n r a i n b o w t r o u t , Salmo g a i r d n e r i . M.Sc. T h e s i s , Utah S t a t e U n i v . , Logan , U t a h . T s u y u k i , H. and S . N . W i l l i s c r o f t . 1973. The pH a c t i v i t y r e l a t i o n s o f two LDH h o m o t e t r a m e r s f r o m t r o u t l i v e r t h e i r p h y s i o l o g i c a l s i g n i f i c a n c e . J . F i s h . Res. Bd. 30: 1 0 2 3 - 1 0 2 6 .  and Can.  T s u y u k i , H. and S. W i l l i s c r o f t . 1977. Swimming s t a m i n a d i f f e r e n c e s between g e n o t y p i c a l l y d i s t i n c t f o r m s o f r a i n b o w t r o u t (Salmo g a i r d n e r i ) and s t e e l h e a d t r o u t . J . F i s h . Res. Bd. Can. 34: 9 9 6 - 1 0 0 3 . T u r n e r , B. J . 1974. G e n e t i c d i v e r g e n c e o f d e a t h v a l l e y p u p f i s h species: Biochemical versus morphological evidence. E v o l u t i o n . 28: 281-284. U t t e r , F. M. and F. W. A l l e n d o r f . 1977. D e t e r m i n a t i o n o f t h e b r e e d i n g s t r u c t u r e o f s t e e l h e a d p o p u l a t i o n s t h r o u g h gene f r e q u e n c y a n a l y s i s , p. 4 4 - 5 4 , I n , T. J . H a s s l e r and R. R. Van K i r k ( e d . ) , G e n e t i c I m p l i c a t i o n s o f S t e e l h e a d Management, C a l i f . Coop. F i s h . U n i t S p e c . Rep. 77-1. U t t e r , F. M. and H. 0. H o d g i n s . 1972. B i o c h e m i c a l v a r i a t i o n a t s i x l o c i i n f o u r s t o c k s o f r a i n b o w t r o u t . T r a n . Amer. F i s h . S o c . 101: 4 9 4 - 5 0 2 .  97  U t t e r , F. M., F. W. A l l e n d o r f a n d H. 0. H o d g i n s . 1 9 7 3 . G e n e t i c v a r i a b i l i t y and r e l a t i o n s h i p s i n P a c i f i c salmon and r e l a t e d t r o u t b a s e d on p r o t e i n v a r i a t i o n . S y s t . Z o o l . 2 2 : 257-270. U t t e r , F. M., H. 0. H o d g i n s a n d F. W. A l l e n d o r f . 1 9 7 4 . B i o c h e m i c a l genetic s t u d i e s of f i s h e s : P o t e n t i a l i t i e s and l i m i t a t i o n s , p . 2 1 3 - 2 3 6 . I n , D. C. M a l i n s a n d J . R. Sargent (ed.), B i o c h e m i c a l and B i o p h y s i c a l Perspectives i n M a r i n e B i o l o g y , V o l . I . A c a d e m i c P r e s s , New Y o r k . U t t e r , F., F. A l l e n d o r f a n d H. H o d g i n s . 1 9 7 3 . G e n e t i c v a r i a b i l i t y and r e l a t i o n s h i p s i n P a c i f i c salmon and r e l a t e d t r o u t b a s e d on p r o t e i n v a r i a t i o n s . S y s t . Z o o l . 22: 2 5 7 - 2 7 0 . U t t e r , F., W. Ames a n d H. H o d g i n s . 1 9 7 0 . T r a n s f e r r i n p o l y m o r p h i s m i n coho salmon (Oncorhynchus k i s u t c h ) . J . F i s h . R e s . E d . C a n a d a . 27: 2 3 7 1 - 2 3 7 3 . V e r n o n , E. H. 1 9 5 7 . M o r p h o m e t r i c c o m p a r i s o n o f t h r e e r a c e s o f k o k a n e e ( O n c o r h y n c h u s nerka.) w i t h i n a l a r g e B r i t i s h Columbia l a k e . J . F i s h . Res. Bd. Can. 14: 573-598. Wagner, H. H. 1 9 6 7 . A summary o f i n v e s t i g a t i o n s o f t h e u s e o f h a t c h e r y r e a r e d s t e e l h e a d i n t h e management o f a s p o r t f i s h e r y . F i s h . R e s . R e p . No. 5, O r e . S t . Game Comm. 6 2 p . W a l l i s , J . 1 9 6 8 . Recommended t i m e , s i z e a n d age f o r r e l e a s e o f h a t c h e r y r e a r e d s a l m o n a n d s t e e l h e a d t r o u t . F i s h Comm. o f Ore., Res. D i v . R e p o r t , Clackamas, Oregon. 61p. W i t h l e r , J . L. 1966. V a r i a b i l i t y i n l i f e h i s t o r y c h a r a c t e r i s t i c s of the steelhead trout along the P a c i f i c c o a s t o f N o r t h A m e r i c a . J . F i s h . Res. Bd. Can. 23: 365393. Workman, P. L . , P. L u c a r e l l i , R. A g o s t i n o , R. S c a r a b i n o , R. S c a c c h i , E. C a r a p e l l a , R. P a l m a r i n o a n d E. B o t t i n i . 1 9 7 9 . G e n e t i c d i f f e r e n t i a t i o n among S a r d i n i a n v i l l a g e s . Am. J . Phys. A n t h r o p . 4 3 : 165-176. Workman, P.L. a n d J . D. N i s w a n d e r . 1 9 7 0 . P o p u l a t i o n s t u d i e s on southwestern Indian t r i b e s . I I . Local genetic d i f f e r e n t i a i o n i n t h e P a p a g o . Amer. J . Human G e n e t i c s .  98  22:  24-49.  W r i g h t , S. 1 9 4 3 . I s o l a t i o n by d i s t a n c e .  Gen. 28:  114-138.  W r i g h t , S. 1966. The i n t e r p r e t a t i o n o f p o p u l a t i o n s t r u c t u r e by F - s t a t i s t i c s w i t h s p e c i a l r e g a r d t o systems of matings. E v o l . 1 9 : 395-420.  Appendix 1.  G e n e r a l i n f o r m a t i o n on samples taken SM .= smolt, AD = a d u l t s t e e l h e a d , RE Canada. Dashes i n the space f o r the the two f r e q u e n c i e s have been summed i s given.  d u r i n g the course o f the study. Under the LHS ( l i f e h i s t o r y stage) heading: FR = f r y , PA = p a r r , = a d u l t r e s i d e n t rainbow. L o c a t i o n i s g i v e n i n terms o f the g r i d system used by the G a z e t t e e r o f MDH 3,4-72 a l l e l e i n d i c a t e t h a t i t c o u l d not be d i s t i n g u i s h e d from the MDH 3,4-67 a l l e l e and t h e r e f o r e and the two a l l e l e s t r e a t e d as one. In two a l l e l e systems o n l y the frequency o f the most common a l l e l e S  No.  Name  LHS  Date  A  M  P  Location  LDH 4--100  L  E  SOD-100  S  I  Z  E  MDH 3--100  /  A  L  L  67  O 72  Z  Y  M  L18  E  F  R  E  Q  U  AGP- 100 IDH 3,4-100  E  N  C  72  I  E  48  S 124  1.  Abuntlet  RE  Aug  15/78  52 125 NE  47/0, .84 .10*  47/1, .0  42/0, .881  0 .119  0..000  0 .000  47/1 .0  47/0.735  0 .260  0 .005  0.000  2.  Atnarko  AD  Nov/77-Apr/78  52 125 SW  73/0. .986  66/0, .727  73/0, .925  0,.068  -  0 .007  29/0, .940  54/0.597  0 .282  0 .056  0.065  3.  Babine  SM  May/79  55 127 NW  28/0. .982  28/0, .982  25/0, .920  0 .040  0..000  0 .000  28/1 .000  20/0.687  0 .150  0 .150  0.013  4.  Big  FR  J u l y 15/78  49 124 SW  63/0. .897  58/0, .647  60/0. .875  0 .100  0.,025  0..000  27/1, .000  5.  Bertrand  1  FR  Sept 1/77  42 122 SW  21/0. .857  21/0, .762  20/0, .700  0 .300  0..000  0 .000  10/1, .000  20/0.750  0 .125  0 .125  0.000  Bertrand 2  FR  Sept 1/77  35/0. .971  35/0, .614  35/0. .857  0,.143  -  0 .000  17/1. .000  0/0.000  0 .000  0 .000  0.000  Brohm  FR  Aug  12/77  39/1.000  38/0. .737  39/0, .808  0,.192  -  0,.000  12/1. .000  38/0.671  0 .171  0 .158  0.000  Brohm  FR  Aug  21/78  34/0. .956  34/0, .779  35/0. .843  0,.086  0.,014  0..057  0/0..000  Brohm  FR  Sept 26/77  37/1. .000  35/0. .729  36/0. .833  0,.139  0.,000  0..028  5/1..000  28/0.688  0 .205  0 .107  0.000  Brohm  PA  Aug  69/0. .993  69/0. .783  69/0. .913  0..065  0. 014  0..007  16/1. .000  67/0.701  0 .179  0 .112  0.007  7.  Bridge  SM  May 30/77  50 121 NW  30/0. .500  30/1. .000  30/0. .867  0..100  0. 017  0,.017  55/0, .780  8.  Chapman  FR  Aug  49 123 SW  40/1. ,000  39/0. .449  40/0. .900  0..025  0. 075  0..000  20/1. .000  9.  Cheakamus  FR  Sept 26/77  49 123 NE  48/0. ,958  43/0. .744  41/0. .890  0..085  0. 024  0..000  9/1..000  42/0.649  0..185  0 .107  0.060  6.  Qualicum  *LDH-4(123)  49 123 NE  12/77  24/78  10.  Chehailas  FR  Aug 29/78  Chehailas  FR  Aug  Chehailas  49 121 SW  38/0 .908  37/0 .608  38/0 .921  0 .066  0 .000  0.013  9/78  29/0 .862  29/0 .638  29/0 .897  0 .086  0 .017  0.000  12/0.980  21/0 .643  0 .262  0 .095  0 .000  SM  May 15/77  29/0 .776  29/0 .517  29/0 .914  0 .052  0 .034  0.000  13/0.962  7/0 .679  0 .214  0 .071  0 .036  Chilko 1  FR  Sept 13/78  40/0 .637  40/0 .962  40/0 .800  0 .200  0 .000  0.000  20/0.7l2  40/0 .544  0 .106  0 .106  0 .244  Chilko 2  FR  Sept 13/78  38/0 .618  40/1 .000  40/0 .700  0 .300  0 .000  0.000  20/0.750  38/0 .572  0 .086  0 .125  0 .217  Chilko  AD  Oct/77-Feb/78  12/0 .708  12/1 .000  7/0 .643  0 .357  - - -  0.000  3/0.714  11/0 .477  0 .227  0 .091  0 .205  Chilliwack  AD  Jan/78-Apr/78  19/1 .000  16/0 .563  16/0 .906  0 .094  -  0.000  4/1.000  17/0 .603  0 .103  0 .074  0.221  Chllliwack 4  PA  Sept 17/77  32/0..984  32/0..734  32/0 .891  0 .031  0..063  0.016  5/0.864  32/0 .781  0 .148  0,.070  0 .000  Chilliwack  RE  J u l y 8/78  10/0..850  10/0.700  10/0,.800  0..150  -  0.050  Chilliwack 1  FR  Sept 13/77  51/0..912  51/0..676  51/0,.863  0..069  0..039  0.029  7/1.000  50/0..680  0..190  0.075  0,.055  Chilliwack 2  FR  Sept 14/77  60/0..875  60/0..700  60/0..958  0..042  0..000  0.000  11/0.977  59/0.,733  0..178  0.,076  0..013  Chilliwack  3  FR  Sept 13/77  20/1..000  20/0.,700  20/0..875  0.,075  0.000  0.050  10/1.000  20/0..750  0.,137  0. 112  0.,000  Chilliwack 4  FR  Aug 11/77  34/0. 971  32/0. 578  34/0.,809  0. 118  0. 074  0.000  6/0.923  34/0. 713  0. 213  0. 074  0. 000  Chilliwack 5  FR  Sept 13/77  104/0. 957  96/0. 677  105/0. 843  0. 067  0. 076  0.014  31/0.992  92/0. 688  0. 193  0.090  0. 030  13.  China  FR  J u l y 30/78  49 124 SW  38/0. 974  36/0. 486  38/0. 803  0. 092  0. 105  0.000  19/1.000  14.  Copper  SM  May/79  54 128 NE  21/1. 000  21/0. 938  21/1. 000  0. 000  0.000  0.000  21/1.000  20/0. 624  0. 150  0. 150  0. 038  15.  Cougar  FR  J u l y 28/78  49 124 NW  38/0. 974  37/0. 311  38/0. 868  0. 105  0.026  0.000  19/1.000  38/0. 605  0. 178  0. 178  0. 039  16.  Coquihalla  AD  Oct/78  49 121 SE  12/0. 792  12/0. 917  12/0. 917  0. 042  - --  0.042  6/0.958  11/0. 500  0. 261  0. 196  0. 043  Coquihalla  FR  Sept 8/78  39/0. 782  39/0. 821  39/0. 962  0. 038  0. 000  0.000  19/0.962  37/0. 709  0. 115  0. 128  0.047  Coquitlam 1  PA  Sept 15/77  44/0. 852  35/0. 700  44/0. 852  0. 148  -  0.000  22/1.000  Coquitlam  SM  May/77  46/0. 902  43/0. 558  46/0. 859  0. 141  - - _  0.000  23/1.000  11.  12.  17.  52 123 SE  49 121 SW  49 127 SW  o o  Coquitlam 1  FR  Aug  Coquitlam 1  FR  Coquitlam 1  8/77  38/0 .908  38/0 .842  38/0 .776'  0 .224  - - -  0 .000  19/1 .000  Sept 15/77  40/0 .887  40/0 .650  40/0 .850  0 .150  - - -  0 .000  20/1 .000  FR  Aug 15/78  40/0 .912  40/0 .650  40/0 .925  0 .075  0 .000  0 .000  0/0 .000  Coquitlam 2  FR  Aug 15/77  60/0 .825  59/0 .695  57/0 .772  0 .228  - - -  0 .000  Coquitlam 3  FR  ~ Sept 15/77  40/0 .837  39/0 .731  39/0 .756  0 .205  -  Coquitlam 4  FR  Sept 18/77  37/0 .905  37/0 .716  37/0 .946  0 .054  Coquitlam 1  PA  Jun 24/78  39/0.897  39/0, .705  37/0 .919  Deadman  FR  Aug  43/0, .407  43/1, .000  Deadman  PA  Aug 17/77  53/0, .425  19.  Dean  AD  Aug/78-Oct/78  52 126 NW  20.  Englishman  FR  J u l 29/78  21.  French  FR  22.  Gold  38/0 .553  0 .270  0 .171  0.007  30/1 .000  59/0 .653  0 .182  0 .131  0.034  0 .038  20/1 .000  36/0 .639  0 .222  0 .125  0.014  -  0 .000  18/1 .000  36/0 .667  0 .160  0 .167  0.007  0,.054  0 .027  0 .000  19/1 .000  42/0, .869  0,.131  - - -  0 .000  21/1 .000  41/0 .622  0 .116  0 .232  0.030  53/1, .000  53/0. .943  0..057  -  0 .000  26/1, .000  49/0, .658  0,.122  0,.199  0.020  45/1. .000  42/0. .821  26/0, .981  0..000  0 .019  0,.000  11/1. .000  32/0, .664  0,.164  0..047  0.125  49 124 SE  33/0. .985  25/0, .540  33/0. .788  0,.152  0,.061  0..000  J u l y 6/78  49 124 SE  51/0. .990  50/0, .580  51/0. .902  0..010  0..088  0,.000  25/1. ,000  AD  Jan/77-Apr/77  49 126 NE  47/0.957  41/0. .622  46/0. ,957  0.,043  - - -  0..000  10/1. ,000  11/0. .591  0.,068  0.,273  0.068  Gold  FR  Sept 6/77  60/0. ,917  60/0. ,692  60/0. ,867  0. 117  0..017  0..000  30/0. ,992  58/0. .733  0.,134  0. 116  0.017  Gold  PA  Sept 6/77  19/0. 895  19/0. 684  19/0.921  0. 079  0..000  0..000  9/1.000  17/0. ,721  0. 132  0.,132  0.015  23.  High F a l l s  FR  Aug 21/78  49 123 NE  37/0. 973  34/0. 794  40/0. 887  0. 100  0..012  0. 000  24.  Headquarters  FR  Aug 26/77  49 125 NE  64/0. 906  54/0. 657  61/0. 770  0. 213  0. 016  0. 000  28/0. 973  49/0. 694  o: 219  0.046  0.041  Headquarters  FR  J u l 4/78  40/0. 987  39/0. 885  38/0. 605  0. 184  0. 211  0. 000  20/0. 962  25.  Henriette  PA  J u l 1/77  49 123 NE  20/0. 800  20/1. 000  70/0. 80  0. 000  0. 000  0. 20  20/1. 00  20/0. 662  0. 163  0. 175  0.0  26.  Keogh  PA  May/77  50 127 NE  53/0. 972  11/0. 864  53/0. 811  0. 189  -  0.000  20/1. 000  Keogh 1  FR  Oct 21/77  40/0. 962  40/0. 750  39/0. 769  0. 115  0. 103  0. 013  0/0. 000  37/0. 669  0. 155  0.162  0.014  Keogh 2  FR  Oct 21/77  20/0. 900  19/0. 658  17/0. 794  0. 000  0. 206  0. 000  0/0. 000  19/0. 750  0.053  0. 197  0.000  18.  8/77  50 120 NW  56/0,955  55/0 .782  53/0.802  0,,038  0,,132  0,028  20/0,938  54/0,665  0. 161  0 .165  0,.009  48 123 SW  21/0.810  17/0 .559  19/0 .632  0. 263  0.,026  0,.079  10/1 .000  20/0.700  0.150  0 .075  0,.075  May/79  55 127 SW  26/1..0  26/0 .923  26/0, .981  0. 019  0.,000  0,.000  26/1 .0  19/0.658  0. 158  0 .184  0..0  FR  Aug 24/78  49 123 NE  46/0. .880  6/0 .583  46/0, .891  0. 011  0. 098  0,.000  4/0 .938  Lakelse  FR  Aug/79  54 128 SW  13/1..000  13/0 .923  13/0, .923  0. 077  0. 000  0,.000  13/1, .000  9/0.694  0. 167  0,.111  0.,028  L.  Campbell  SM  May/77  49 122 SW  39/0. .910  39/0. .679  39/0, .885  0. 115  -- -  0..000  19/0, .974  L.  Campbell  FR  J u l 13/78  37/0. .932  37/0. .595  37/0. .986  0. 014  0. 000  0..000  18/0, .986  34/0.640  0. 191  0,.147  0..022  32.  L.  Qualicum  FR  J u l 27/78  49 124 SE  40/0. .900  31/0, .694  40/0. .925  0. 075  0. 000  0..000  20/1, .000  40/0.650  0. 162  0,.150  0..037  33.  Loon Lk.  RE  J u l 4/78  50 121 SE  22/0. .43  22/1.0  20/0. .25  0. 05  0. 000  0..000  17/1, .0  34.  Louis  FR  Oct 1/78  51 120 SE  54/0. .250  56/1. .000  56/0. .964  0.036  0. 000  0..000  6/1.000  43/0.590  0. 272  0..116  0.,023  35.  McClinhney  FR  Aug  52 125 SE  40/0. .75  40/0. .20  20/0. .700  0. 300  36.  Nahatlatch  SM  May/77  49 121 NW  19/0. .868  19/0. .816  19/0. .974  0. 026  -  0,.000  Nahatlatch 1  FR  Sept 30/77  41/0. .878  41/0. .683  42/1. .000  0. 000  -  0.,000  21/0. .976  41/0.604  0. 226  0..134  0..037  Nahatlatch 2  FR  Sept 11/78  39/0. .910  39/0. .795  39/0. .923  0. 077  -  0..000  17/0.985  39/0.654  0. 167  0..109  0.,071  N. A l o u l e t t e  FR  Aug  40/0. .775  37/0. .703  39/0. ,923  0. 077  -  N. A l o u l e t t e  PA  May 15/77  36/0. ,639  37/0. .716  37/0. ,892  0. 068  - - -  0.,041  11/1.000  18/0.681  0. 167  0..139  0.,014  N. A l o u l e t t e  PA  Jun 28/78  22/0. .750  21/0. ,595  22/0. ,909  0. 091  - - -  0.,000  6/1.000  N. A l o u l e t t e  FR  Aug  33/0. 803  33/0. ,576  33/0. 818  0. 152  -  0. 030  16/1. ,000  23/0.707  0. 141  0.,141  0. 011  38.  Nanaimo.  FR  Aug 15/78  49 124 SE  40/1. 000  40/0. ,512  40/0. 938  0. 037  0. 025  0. 000  20/0. ,975  32/0.628  0. 140  0.,147  0. 085  39.  Nicola  FR  Oct 2/77  50 121 SE  36/0. 514  36/1. ,000  36/0.819  0. 181  -  0. 000  18/1.000  34/0.684  0. 103  0. 213  0. 000  Nicola  PA  Oct 2/77  41/0. 500  41/1. ,000  41/0. 890  0. 110  -  0. 000  20/1. ,000  25/0.680  0. 120  0. 200  0. 000  Nile  FR  J u l 29/78  37/1. 000  39/0. ,821  39/0. 667  0. 269  0. 064  0. 000  19/1. 000  Keogh 3  FR  Oct 21/77  27.  K i r by  FR  . Aug 27/77  28.  Kispiox  SM  29.  Kleindale  30. 31.  37.  40.  16/78  21/78  49 122 SW  *  16/77  49 124 SW  o to  41.  Pennask  RE  Jul  42.  Puntledge  AD  43.  puinsam  50 120 SE  26/0 .730  26/1 .000  Mar/77  49 125 NW  35/0 .986  35/0.671  35/0 .943  0,.014  0 .043  0 .000  16/0 .953  33/0 .576  0 .227  0 .152  0 .045  AD  Mar/77  49 125 NW  110/0 .955  98/0 .587  107/0 .869  0,.075  0 .056  0 .000  53/1 .000  42/0 .637  0 .155  0 .107  0 .101  Quinsara  FR  Jul  29/1..000  26/0,.538  29/0 .914  0,.052  0 .034  0 .000  14/0.893  Quinsam  FR  Sept 6/77  44/0 .977  44/0,.602  45/0 .911  0,.056  0 .033  0 .000  0/0 .000  42/0 .613  0 .196  0 .107  0 .083  44.  Roberts  FR  Aug 24/78  49 123 SW  40/0 .975  36/0,.472  40/0 .837  0,.112  0 .050  0 .000  20/0 .950  45.  Rosewall  FR  Jul  28/78  49 124 SE  36/0..917  34/0..574  40/0 .887  0..112  -  0 .000  20/1 .000  46.  Ruby  FR  Aug 26/78  49 121 SW  39/0,.897  39/0..705  39/0,.910  0..064  0,.026  0 .000  19/0 .962  47.  S. A l o u e t t e  AD  Apr/78  49 122 SW  13/0,.885  13/0..615  13/0,.962  0..038  -  0,.000  S. A l o u e t t e  FR  Aug 17/77  64/0.938  64/0..563  64/0,.969  0..008  - - -  0.023  32/1,.000  55/0,.705  0..186  0,.109  0,.000  S. A l o u e t t e  FR  Sept 20/77  28/0..911  27/0.593  28/1..000  0.,000  -  0,.000  14/1..000  25/0..680  0..210  0,.100  0..010  S. A l o u e t t e  SM  May/77  35/0..886  35/0.,786  35/0..914  0.,086  - - -  0..000  17/0.943  S. A l o u e t t e  PA  May/77  40/0.,887  40/0.,650  40/0..938  0. 063  -  0..000  20/1..000  S. A l o u e t t e  PA  Jun 28/77  41/0.,927  41/0. 524  40/0.,950  0. 050  - - -  0.,000  19/1..000  32/0..586  0.,188  0..172  0.,055  Salmon  FR  Jul  39/1.,000  38/0. 803  39/0.,718  0. 192  0.,090  0.,000  19/1.,000  Salmon  PA  May/77  93/0. 984  60/0. 775  92/0..853  0. 120  0.,022  0.,005  32/0.,977  52/0. 668  0.,168  0..149  0.,014  Salmon  SM  May/77  59/1.,000  58/0. 534  59/0.,771  0. 212  0.,008  0.,008  29/1.,000  52/0. 635  0.,221  0.,139  0.,005  Salmon  FR  J u l 29/77  50/1. 000  39/0. 872  40/0.,787  0. 188  0. 012  0.,012  20/0. 950  33/0. 705  0. 212  0. 083  0. 000  49.  Sarita  FR  J u l 29/78  49 124 NW  40/1.000  40/0. 750  41/0. 768  0. 110  0. 122  0. 000  20/0. 987  37/0. 669  0. 162  0. 128  0. 041  50.  Seymour  FR  Aug 16/77  49 122 SW  22/0. 909  6/0. 750  21/0. 881  0. 071  0. 048  0. 000  8/1. 000  12/0. 688  0. 083  0. 208  0. 021  Seymour  FR  Aug 28/78  40/0. 950  40/0. 737  40/0. 813  0. 063  0. 125  0. 000  20/1. 000  38/0. 671  0. 072  0. 197  0. 059  Silverhope  FR  Sept 13/78  40/0. 837  40/0. 587  40/0. 850  0. 112  0. 037  0. 000  20/0. 975  40/0. 631  0. 188  0. 087  0. 094  48.  51.  3/78  7/78  13/78  49 122 SW  49 121 SE  26/1 .0  o  f  52.  Sliamon  FR  Aug 27/77  49 124 NW  39/1 .000  38/0.421  39/0.897  0.103  53.  Sooke  FR  Oct 5/78  48 123 SE  40/0 .975  40/0.662  40/0.900  0.075  0.025  0.000  54.  Stamp  FR  J u l 28/78  49 124 SE  40/0.987  38/0.724  40/0.975  0.025  0.000  0.000  55.  Stawamus  PA  Aug 12/77  49 123 NW  30/1 .000  30/0.583  30/0.883  0.117  56.  Stein  SM  May/77  50 121 SW  36/0 .681  36/1.000  30/0.883 •  0.117  57.  Thompson  AD  Oct/76-Feb/77  50 121 SW  50/0.440  50/1.000  49/0.857  0.143  58.  Trent •  FR  J u l 4/78  49 124 NW  52/0,.913  52/0.452  50/0.820  0.070  59.  Tugwell  FR  Aug 24/77  48 123 SW  48/0.875  43/0.709  48/0.792  60.  Weaver  SM  May/77  49 121 SW  55/0..909  55/0.545  Weaver 1  FR  Sept 21/77  40/1..000  Weaver 1  PA  Sept 21/77  Weaver 2  FR  Weaver 2  0.000  18/0.986 31/0.694  0.153  0.129  0.024  20/1.000  36/0.618  0.208  0.153  0.021  0.000  15/1.000  30/0.633  0.208  0.142  0.017  0.000  18/0.958  0.000  0.000  25/0.980  0.110  0.000  26/1.000  0.208  0.000  19/1.000  41/0.701  0.177  0.122  0.000  55/0.855  0.145  0.000  27/1.000  39/0.474  40/0.975  0.000  0.025  0.000  20/1.000  26/0..962  26/0.346  26/0.750  0.096  0.115  0.038  13/1.000  Aug 9/77  40/0.,975  40/0.512  40/0.787  0.037  0.175  0.000  20/1.000  38/0.626  0.226  0.077  0.071  FR  Sept 21/77  36/1.,000  35/0.486  36/0.819  0.028  0.153  0.000  18/1.000  '33/0.720  0.205  0.076  0.000  Weaver 3  FR  Sept 21/77  56/0.,973  54/0.398  47/0.702  0.074  0.223  0.000  26/1.000  46/0.663  0.212  0.114  0.011  Weaver 3  FR  Aug 17/78  40/0. 987  39/0.538  40/0.938  0.000  0.063  0.000  20/1.000  61.  Wilfred  FR  J u l 28/78  49 124 NW  40/1. 000  37/0.378  39/0.821  0.103  0.077  0.000  19/0.947  36/0.674  0.146  0.125  0.056  62.  Wilson  FR  Aug 24/78  49 123 SW  36/1. 000  34/0.382  37/0.932  0.054  0.014  0.000  16/1.000  31/0.573  0.250  0.097  0.081  63.  Wolfson  FR  Aug 24/78  49 124 NW  10/1. 000  10/0.350  10/0.900  0.000  0.100  0.000  5/1.000  10/0.600  0.275  0.050  0.075  O  105  Appendix 2. Expected Mean Square (EMS) and Anova tables f o r the h i e r a r c h i c a l a n a l y s i s of square foot arc sine transformed a l l e l e frequencies a t four l o c i .  LDH-4 EMS TABLE EMS (Regions)  a  2  EMS (Groups)  a  2  EMS (Streams) EMS (Samples)  e  a e e a e 2  +  2.193  a  2  +  2.105  a  2  +  1.688  a  2  s s  +  3.839  a  +  3.110  a g • g  + 1 7 .701  2  a  2  r  2  s  2  ANOVA TABLE Source of Variation  DF  Regions  1  Sum of Squares  Mean Square  True F (DF)  2.2233  2.2233  58.05 ( 1, 17)  Level of Significance  Groups  24  . 7399  .0308  .83 (24, 16)  Streams  17  .5593  .0329  6.22 (17, 44)  Samples  44  .2326  .0053  Variance Component  **  2.194  N.S.  0.0  **  .0151  SOD EMS TABLE EMS (Regions)  a  2  EMS (Groups)  a  2  EMS (Streams) EMS (Samples)  e  a e e a e 2  +  1.058  a  2  +  2.372  a  2  +  1.620  a  2  s s  +  1.113  a  +  4.015  a g g  +  2  3.920  o  2  r  2  s  2  ANOVA TABLE Sum of Squares  Mean Square  1  0.6342  0.63426  Groups  23  1.2769  0.05551  Streams  25  0.5523  0.02220  Samples  50  0.3784  0.00757  Source of Variation Regions  DF  True F (DF)  Level of Significance  Variance Component  **  0.4108  1.91 (23, 20)  N.S.  0.00584  2.93 (25, 50)  **  0.00895  69.4  ( 1, 19)  106 MDH - 3 (Region and Groups  Pooled)  EMS TABLE EMS (Groups)  a  2  EMS (Streams)  a  2  EMS (Samples)  a  2  e e  +  2.224  a  2  +  1.586  a  2  +  s s  3.803  a  2  c  ,  1  e  1  ANOVA TABLE Source o f Variation Groups  DF  Sum o f Squares  Mean Square  26  0.4748  0.01826  True F (DF)  Streams  27  0.4807  0.01780  Samples  51  0.4236  0.00830  0.845 2.143  Level of Significance  (26, 20)  N.S.  (27, 51)  *  Variance Component  <0 0.00598  IDH - 3, 4  EMS TABLE EMS (Regions) ^ EMS (Groups)  o  2  a  2  EMS (Streams)  a  2  EMS (Samples)  o  2  e e e  +  1.806  a  2  +  2.151  a  2  +  0.685  s s  +  4.359  a  2  +  3.130  a  2  g  +  10.780 a  2  r  g  g  ANOVA TABLE Source o f Variation  DF  Sum o f Squares  Mean Square  1  0.00645  0.00664  1. 198 ( 1,  4)  N.S.  0.00009  Groups  16  0.09288  0.00580  1.085 (16,  4)  N.S.  0.00120  Streams  12  0.03332  0.00278  1. 763 (12, 29)  N.S.  0.00175  Samples  29  0.04565  0.00157  Regions  True F (DF)  Level of Significance  i  Variance Component  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095439/manifest

Comment

Related Items