UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A method for developing soil management units Zweck von Zweckenburg, Elizabeth Maria Erna 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A6_7 Z94.pdf [ 5.37MB ]
Metadata
JSON: 831-1.0095436.json
JSON-LD: 831-1.0095436-ld.json
RDF/XML (Pretty): 831-1.0095436-rdf.xml
RDF/JSON: 831-1.0095436-rdf.json
Turtle: 831-1.0095436-turtle.txt
N-Triples: 831-1.0095436-rdf-ntriples.txt
Original Record: 831-1.0095436-source.json
Full Text
831-1.0095436-fulltext.txt
Citation
831-1.0095436.ris

Full Text

A METHOD FOR DEVELOPING  SOIL MANAGEMENT UNITS  by  ELIZABETH MARIA ERNA^WECK VON  ZWECKENBURG  B.A., The U n i v e r s i t y .of Western O n t a r i o , 1979.  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE in . THE FACULTY OF GRADUATE STUDIES (Department of S o i l  Science)  We a c c e p t t h i s t h e s i s as conforming to t h e r e q u i r e d standard  THE UNIVERSITY OF BRITISH COLUMBIA JUNE, 1981 ©  ELIZABETH MARIA ERNA ZWECK VON  ZWECKENBURG  In p r e s e n t i n g  this  thesis i n partial  f u l f i l m e n t of the  r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e of B r i t i s h Columbia, I agree that it  freely  the L i b r a r y  a v a i l a b l e f o r r e f e r e n c e and s t u d y .  agree that p e r m i s s i o n for  University  f o r extensive  s c h o l a r l y p u r p o s e s may  for  financial  shall  of  g ^ u  SOie^CJE-  The U n i v e r s i t y o f B r i t i s h 2075 W e s b r o o k P l a c e Vancouver, Canada V6T 1W5  I 9 /7Q ^  thesis  Columbia  my  It is thesis  n o t be a l l o w e d w i t h o u t my  permission.  Department  further  be g r a n t e d by t h e h e a d o f  copying or p u b l i c a t i o n of this  gain  I  make  copying of t h i s  d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . understood that  shall  written  Ii  ABSTRACT  The  purpose of the p r e s e n t  study was  methodology to d e f i n e optimum l a n d use assessed  for capability,  to develop a q u a n t i t a t i v e  systems.  s u i t a b i l i t y and  f e a s i b i l i t y uses to e s t a b l i s h  i n t e r p r e t a t i v e s o i l u n i t s f o r which p l a n n i n g t i o n s c o u l d be made.  The  study was  and management recommenda-  a g r i c u l t u r a l l y o r i e n t e d due  a v a i l a b i l i t y of a g r i c u l t u r a l p r o d u c t i v i t y data from f o u r s o u r c e s : research  plot  s o i l properties.  The  t e c h n i q u e d i d not  procedure i n a s s e s s i n g o v e r l a p p i n g  and  consensus,  group the s o i l s  interdependent  satis-  Canada Land Inventory  the s o i l s d a t a s e t which  i n identifying discriminant s o i l  by parent  m a t e r i a l and  the s o c i o e c o n o m i c a l l y coarse  fraction.  defined  by  separated  feasibility  groups  Comparison of the i n t e r p r e t a - : . ...  t i v e s o i l s c l a s s i f i c a t i o n s revealed  t h a t the c a p a b i l i t y r a t i n g s o v e r -  estimated  t h a t c u r r e n t l a n d use  a c t u a l measured y i e l d and  the f u l l a g r i c u l t u r a l p o t e n t i a l of the l a n d . c a p a b i l i t y and i n land  suitability,  evaluation.  the  parameters.  d e r i v e d c a p a b i l i t y c l a s s e s were separated  the q u a n t i t a t i v e l y d e f i n e d s u i t a b i l i t y c l a s s e s were  by pH and  groups.  more s u c c e s s f u l i n a s s e s s i n g  drainage,  were separated  the  v a r i a b l e s , such as  n e i t h e r a d e q u a t e l y l a r g e nor d i v e r s e to form multimember s o i l Stepwise d i s c r i m i n a n t a n a l y s i s was  The  assessments  to s t a t i s t i c a l l i m i t a t i o n s of  r e s t r i c t i o n s imposed by  i n t e r p r e t a t i v e s o i l s data and  the  c l u s t e r a n a l y s i s on the b a s i s of permanent  f a c t o r i l y f o r management purposes due  s o i l c h a r a c t e r i s t i c s , and  by expert  to  trials-  S o i l s were grouped u s i n g  was  for suitability  farmer survey, d i r e c t e s t i m a t e  s t a t i o n data and  inherent  S o i l survey d a t a were  Feasibility,  s t r e s s e d parameters o t h e r  d i d not  realize  unlike  than s o i l  properties  iii  The s u i t a b i l i t y assessment based upon a c t u a l observed p r o d u c t i v i t y d a t a measured under r e a l market c o n d i t i o n s was recommended as the most q u a n t i t a t i v e l a n d e v a l u a t i o n approach.  Other s o i l s can be added t o the  open ended system and o p t i m a l use can be made of a l l s o i l s u s i n g  guide-  l i n e s developed by key farmers under r e a l market c o n d i t i o n s f o r s o i l s s u i t a b i l i t y groups.  iv  -TABLE OF CONTENTS -Page  ABSTRACT  ii  TABLE OF CONTENTS  iv  LIST OF TABLES  vi  LIST OF FIGURES  vii  LIST OF APPENDICES  viii  ACKNOWLEDGMENT  ix  CHAPTER 1 - INTRODUCTION I n t r o d u c t i o n and Purpose B a s i c Concepts Scope and.Aims Methodology Description:.of  Study A r e a  1 1 2 3 3  CHAPTER 2 - LITERATURE REVIEW S o i l Survey Land E v a l u a t i o n 1. Land C a p a b i l i t y  Assessment  a. USDA Land C a p a b i l i t y C l a s s i f i c a t i o n b. U n i t e d Kingdom c. Canada Land I n v e n t o r y d. Use o f Land C a p a b i l i t y Assessments 2. Land S u i t a b i l i t y Assessment a. P r o d u c t i v i t y Assessments i. Analogue Method ii. S i t e F a c t o r Method iii. Systems A n a l y s i s b. B e h a v i o u r a l Assessment c. Use of Land S u i t a b i l i t y Assessment Summary and C o n c l u s i o n s  8 12 13 15 15 17 18 19 20 20 21 21 22  CHAPTER 3 - METHODS S o i l s Data 1.  2. 3. 4.  Sources o f S o i l s Data a. S o i l s Data Bank b. C o l l e c t e d Data S e l e c t i o n of Parameters Sampling Laboratory Analysis  24 24 26 26 26 29 29  V  Page S o i l Survey I n t e r p r e t a t i v e C l a s s i f i c a t i o n s 1. Land C a p a b i l i t y Data 2. Land S u i t a b i l i t y Data a. Farmer Survey b. D i r e c t E s t i m a t e by E x p e r t Consensus c. Plot Trials d. Research S t a t i o n Data 3. Land F e a s i b i l i t y Data Numerical A n a l y s i s 1. C l u s t e r A n a l y s i s 2. F a c t o r A n a l y s i s 3. Stepwise D i s c r i m i n a n t A n a l y s i s 4. Mann-Whitney Rank Sum T e s t Assessment o f S o i l s Groups and I n t e r p r e t a t i v e S o i l s U n i t s 1. Comparison o f S o i l s Groups 2. Comparison of I n t e r p r e t a t i v e S o i l s Groups 3. Comparison of S o i l s Groups and I n t e r p r e t a t i v e S o i l s U n i t s  30 30 31 33 33 34 34 34 35 35 37 37 38 38 39 39 42  CHAPTER 4 - RESULTS AND DISCUSSIONS Numerical A n a l y s i s of S o i l s Data 1. S o i l s Data 2. D i r e c t C l u s t e r A n a l y s i s 3. I n d i r e c t C l u s t e r A n a l y s i s a. Factor Analysis b. C l u s t e r A n a l y s i s Numerical A n a l y s i s of I n t e r p r e t a t i v e S o i l s Data 1. C a p a b i l i t y Data a. C a p a b i l i t y Groups b. Stepwise D i s c r i m i n a n t A n a l y s i s f o r C a p a b i l i t y 2. S u i t a b i l i t y Data a. S u i t a b i l i t y Groups b. Stepwise D i s c r i m i n a n t A n a l y s i s f o r S u i t a b i l i t y 3. F e a s i b i l i t y Data a. F e a s i b i l i t y Groups b. Stepwise D i s c r i m i n a n t A n a l y s i s f o r F e a s i b i l i t y Assessment o f S o i l s Groups and I n t e r p r e t a t i v e Land Management U n i t s 1. Comparison of S o i l s Groups 2. Comparison o f I n t e r p r e t a t i v e S o i l s C l a s s i f i c a t i o n 3. Comparison of S o i l s Groups and I n t e r p r e t a t i v e S o i l s U n i t s  43 43 44 47 47 47 52 52 52 55 58 58 64 68 68 70 74 74 74 78  CHAPTER 5 - CONCLUSIONS Numerical Techniques Comparison of I n t e r p r e t a t i v e S u i t a b i l i t y Assessment Recommendations  Classifications  81 82 82 83  BIBLIOGRAPHY  84  APPENDICES  88  vi  LIST OF TABLES Page T a b l e 1.1  Study A r e a C l i m a t e  T a b l e 2.1  D e f i n i t i o n of C a p a b i l i t y Comparative B a s i s  7 C l a s s e s A to G on a  T a b l e 3.1 T a b l e 3.2 T a b l e 3.3  S o i l S e r i e s Used i n Study S o i l Parameters Survey Q u e s t i o n n a i r e  T a b l e 4.1 T a b l e 4.2  D i r e c t S o i l s Groups S i g n i f i c a n t D i s c r i m i n a n t Parameters of D i r e c t S o i l s Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t S o r t e d Rotated F a c t o r Loadings I n d i r e c t S o i l s Groups S i g n i f i c a n t D i s c r i m i n a n t Parameters of I n d i r e c t S o i l s Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t S o i l s C a p a b i l i t y Groups C o r r e c t e d S o i l s C a p a b i l i t y Groups C l a s s i f i c a t i o n M a t r i x of S o i l s C a p a b i l i t y Groups S i g n i f i c a n t D i s c r i m i n a n t Parameters of S o i l s C a p a b i l i t y Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t D r a i n a g e C h a r a c t e r i s t i c s of the C a p a b i l i t y Groups P r o d u c t i v i t y Data S o i l s S u i t a b i l i t y Groups C o r r e c t e d S o i l s S u i t a b i l i t y Groups (Based on Corn Index) C l a s s i f i c a t i o n M a t r i x of S o i l s S u i t a b i l i t y Groups (Based on Corn Index) S i g n i f i c a n t D i s c r i m i n a n t Parameters of S o i l s S u i t a b i l i t y Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t Parent M a t e r i a l of the S o i l s S u i t a b i l i t y Groups S o i l s F e a s i b i l i t y Groups C o r r e c t e d S o i l s F e a s i b i l i t y Groups Ranges of D i s c r i m i n a n t Parameters of S o i l s F e a s i b i l i t y Groups C l a s s i f i c a t i o n M a t r i x of S o i l s F e a s i b i l i t y Groups S i g n i f i c a n t D i s c r i m i n a n t Parameters of S o i l s F e a s i b i l i t y Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t Comparison of I n t e r p r e t a t i v e S o i l s C l a s s i f i c a t i o n s S o i l s Group S e p a r a t i o n by S i g n i f i c a n t D i s c r i m i n a n t Parameters of I n t e r p r e t a t i v e Classifications  T a b l e 4.3 T a b l e 4.4 T a b l e 4.5  Table Table Table Table  4.6 4.7 4.8 4.9  Table Table Table Table  4.10 4.11 4.12 4.13  T a b l e 4.14 T a b l e 4.15  Table Table Table Table  4.16 4.17 4.18 4.19  T a b l e 4.20 T a b l e 4.21  T a b l e 4.22 T a b l e 4.23  13 27 28 32 44  46 48 49  51 54 55 56  57 58 60 64 65 65  66 67 70 71 71 72  72 75 79  vii  LIST OF FIGURES Page F i g u r e 1.1 F i g u r e 1.2  Study Methodology L o c a t i o n o f Study A r e a  F i g u r e 2.1  Frequency of Requests f o r S o i l I n t e r p r e t a t i o n s at V a r i o u s Depths i n Comparison w i t h the Depth L i m i t s of S e v e r a l D i a g n o s t i c S o i l Taxonomy C r i t e r i a  Figure Figure Figure Figure  3.1 3.2 3.3 3.4  F i g u r e 4.1 F i g u r e 4.2 F i g u r e 4.3 F i g u r e 4.4 Figure Figure Figure Figure  4.5 4.6 4.7 4.8  Geographical D i s t r i b u t i o n of S o i l s C l u s t e r i n g Procedure Graph Procedure Uneven Case D i s t r i b u t i o n  D i r e c t Grouping Dendrogram I n d i r e c t Grouping Dendrogram Comparison o f Grass P r o d u c t i v i t y Data from Farmer Survey and D i r e c t E s t i m a t e Comparison of Corn P r o d u c t i v i t y Data from Farm Survey and D i r e c t E s t i m a t e A b b o t s f o r d A r e a Land Use Comparison o f C a p a b i l i t y and S u i t a b i l i t y Groups Comparison of C a p a b i l i t y and F e a s i b i l i t y Groups Comparison of S u i t a b i l i t y and F e a s i b i l i t y Groups  4 5  25 36 40 41 45 50 63 63 69 77 77 77  viii  LIST OF APPENDICES  Page  Appendix A  Categorical  Appendix B  S o i l s Data  Appendix C  Soil Limitations  Parameters  88 89  for Agriculture  90  ix  ACKNOWLEDGMENTS  Funding f o r t h e p r e s e n t Grant #35 i s g r a t e f u l l y  study from B r i t i s h Columbia S c i e n c e  Council  acknowledged.  I would l i k e t o thank my T h e s i s Committee, and e s p e c i a l l y t h e Head of my Committee, P r o f e s s o r H. S c h r e i e r , f o r h i s continuous frequent  advice.  S e v e r a l people were a c t i v e i n the p r e s e n t  study and t h e i r  c i p a t i o n and c o o p e r a t i o n was g r e a t l y a p p r e c i a t e d .  H.  (Research A n a l y s i s Branch, Kelowna) i d e n t i f i e d s o i l locations.  The  Luttmerding  series central  R. B e r t r a n d ,  ( M i n i s t r y o f A g r i c u l t u r e , C l o v e r d a l e ) , B. P e t e r s Abbotsford)  parti-  concept  R. B e r t r a n d and C. Wood ( M i n i s t r y of A g r i c u l t u r e , C l o v e r d a l e )  p r o v i d e d a g r i c u l t u r a l management i n f o r m a t i o n .  farmers  enthusiasm and  C. Wood  ( M i n i s t r y of A g r i c u l t u r e ,  and S. Loewen (.Chilliwack C o o p e r a t i v e )  identified  t h e key  t o be i n t e r v i e w e d f o r p r o d u c t i v i t y and management i n f o r m a t i o n .  c o o p e r a t i o n of the farmers  was a l s o a p p r e c i a t e d .  P r o d u c t i v i t y data was a l s o p r o v i d e d  from r e s e a r c h d a t a by G.  Kowalenko ( A g r i c u l t u r e Canada, A g a s s i z ) and Drs. Dobney and Wright ( A g r i c u l t u r e Canada, Vancouver) and through expert consensus from H. Luttmerding  (.Research A n a l y s i s Branch, Kelowna).  M u n i c i p a l O f f i c e ) and L. G i v e r s o n  M. Lagzdins  (Matsqui  (.Central F r a s e r V a l l e y R e g i o n a l  District)  s u p p l i e d c u r r e n t l a n d use i n f o r m a t i o n . S. MacDonald, B. Grant and Y. S t i c h a r e g r a t e f u l l y acknwledged f o r t h e i r help i n s o i l  sample c o l l e c t i o n and l a b o r a t o r y a n a l y s i s .  The a s s i s -  tance o f V. M i l e s , P. C a r b i s and T.D. Nguyen i n t h e l a b was a p p r e c i a t e d . I would l i k e t o thank my p a r e n t s  f o r t h e i r continued  support and  C a r o l Jones and Frank K e l l i h e r f o r t h e i r encouragement throughout t h e  X  project. made my  And l a s t , but not l e a s t , I would l i k e t o thank those people s t a y i n the S o i l  S c i e n c e Department a p l e a s u r a b l e e x p e r i e n c e .  who  1  CHAPTER 1  INTRODUCTION  I n t r o d u c t i o n and An  Purpose  increasing population  and  a rising  standard  of l i v i n g are  i n g s t e a d i l y i n c r e a s i n g demands f o r most n a t u r a l r e s o u r c e s . resource  greatest  demand i s f o r l a n d to be used f o r a wide v a r i e t y of purposes  including agriculture urban s e r v i c e s .  f o r e s t r y , commerce, i n d u s t r y , t r a n s p o r t a t i o n  s  In B r i t i s h Columbia, the p o p u l a t i o n  l i m i t e d number of densely h i g h l y valued  and has  of p l a n n i n g  and  areas.  present  The  p o t e n t i a l f o r s e v e r a l a l t e r n a t i v e uses.  development i s to r e o r g a n i z e  (CLI)  Canada Land Inventory  has  The  classification.  and  l a n d use  b a s i s f o r l a n d use p l a n n i n g  Canada Land Inventory  of l a n d p o t e n t i a l .  i s concentrated  s e t t l e d r e g i o n s , where l a n d i s i n s h o r t  l i m i t e d remaining o p p o r t u n i t i e s f o r l a n d settlement  to be q u a n t i t a t i v e l y assessed  i t s advantages,  systems.  to develop a Soil  survey  A comparison of the  Basic  and planning classi-  l a n d assessment methodology.  E v a l u a t i o n of the i n t e r p r e t a t i v e s o i l s c l a s s i f i c a t i o n s was s m a l l study area  the  realization  for capability, suitability  to r e v e a l the o p t i m a l  are  occupied  f e a s i b i l i t y uses to e s t a b l i s h i n t e r p r e t a t i v e s o i l u n i t s f o r which  f i c a t i o n systems was  supply,  There  i n already  study was  • l a n d use  and management recommendations c o u l d be made.  in a  i n B r i t i s h Columbia i s the  Despite  purpose of the p r e s e n t  and  the main t h r u s t  l i m i t a t i o n s which do not a l l o w f u l l  b e t t e r methodology to d e f i n e optimum data was  The  creat-  i n the Lower F r a s e r V a l l e y i n B r i t i s h  conducted i n a  Columbia.  Concepts G.A.  H i l l s proposed t h a t s o i l s i n t e r p r e t a t i v e c l a s s i f i c a t i o n schemes  2  are o f t h r e e t y p e s : Portelance,  capability,  s u i t a b i l i t y and f e a s i b i l i t y ( H i l l s and  1960; Belknap and F u r t a d o , 1967). C a p a b i l i t y r e f e r s t o the  p o t e n t i a l o f an a r e a t o produce goods and s e r v i c e s o f v a r i o u s k i n d s specified 1977) .  under  types o f economic and t e c h n o l o g i c a l c o n t r o l s ( H i l l s i n G i r t ,  The l a n d c a p a b i l i t y  l e v e l i s defined., by the degree o f l i m i t a t i o n  to s p e c i f i c u s e . S u i t a b i l i t y describes  the r e l a t i v e a b i l i t y o f a s p e c i f i c a r e a t o  produce s p e c i f i c goods and s e r v i c e s ( H i l l s ,  i n G i r t , 1977).  Differences  i n the degree o f s u i t a b i l i t y o f an a r e a a r e determined by the performance or b e h a v i o u r o f the l a n d i n response to s p e c i f i c i n p u t l e v e l s and  (Brinkman  Smythe, 1972). Feasibility  incorporates  socio-economic c o n s i d e r a t i o n s by weighing  the r e l a t i v e advantages o f a l t e r n a t e changes i n l a n d use h a v i n g the c o n s e r v a t i o n welfare  o f renewable n a t u r a l r e s o u r c e s  ( G i r t , 1977).  meters as l a n d tenure, r e n t , market v a l u e  and t o human needs and  The l a n d f e a s i b i l i t y l e v e l location,  regard to  i s d e f i n e d by such  d i s t a n c e t o markets, economic r e n t ,  and farm use v a l u e  ( S t e e l e , 1967; G i r t ,  paraland  1967; Beek,  1978) . In the p r e s e n t  study, i n t e r p r e t a t i v e s o i l s c l a s s i f i c a t i o n s were t o  be developed a t each l e v e l o f H i l l s System t o i d e n t i f y  the best method o f  d e f i n i n g optimum l a n d u s e .  Scope and Aims The  s p e c i f i c o b j e c t i v e s o f the p r e s e n t  study were as f o l l o w s :  1.  To compile a v a i l a b l e s o i l survey i n f o r m a t i o n and i d e n t i f y s o i l p r o p e r t i e s u s e f u l i n c l a s s i f y i n g some s o i l s o f the Lower F r a s e r V a l l e y f o r management purposes.  2.  To group s o i l s u s i n g analogues.  s e l e c t e d s o i l parameters to form  soil  3  3.  To d e r i v e i n t e r p r e t a t i v e s o i l s u n i t s from c a p a b i l i t y , s u i t a b i l i t y and f e a s i b i l i t y assessments o f s o i l survey data using numerical c l a s s i f i c a t i o n .  4.  To compare s o i l s groups and i n t e r p r e t a t i v e s o i l s u n i t s to i d e n t i f y the b e s t l a n d e v a l u a t i o n approach t o o p t i m i z e l a n d use.  Methodology The p r e s e n t study i n v o l v e d the  following:  1.  C o l l e c t i o n of s o i l s  data.  2.  C a p a b i l i t y , s u i t a b i l i t y and f e a s i b i l i t y assessments survey d a t a f o r a g r i c u l t u r a l purposes.  3.  Numerical a n a l y s i s t o q u a n t i f y i n t e r p r e t a t i v e assessments of s o i l survey d a t a and to develop i n t e r p r e t a t i v e s o i l s units.  4.  Comparison o f s o i l s groups and  of  interpretative soils  soil  units.  A d e t a i l e d o u t l i n e o f the a n a l y s e s employed i n the p r e s e n t study i s p r e s e n ted i n a f l o w diagram  i n F i g u r e 1.1.  The  study was  1.  E v a l u a t i o n of s o i l  2.  A n a l y s i s of i n t e r p r e t a t i v e assessments  The r e s u l t i n g s o i l s groups and  The  of s o i l  survey d a t a .  the i n t e r p r e t a t i v e s o i l s u n i t s were compared  study a r e a was  t o l a n d use o p t i m i z a t i o n .  l o c a t e d i n the A b b o t s f o r d area o f the Lower B r i t i s h Columbia  d e s c r i b e d by Comar and K e l l e y , 1962;  areas  ( F i g u r e 1.2).  Runka and K e l l e y , 1964  The a r e a and  (Matsqui P r a i r i e and Sumas P r a i r i e ) and upland areas The  (Langley  lowland Uplands,  lowland Matsqui P r a i r i e i s c o m p a r a t i v e l y f l a t  i s found a t e l e v a t i o n s o f l e s s than 8 meters.  was  Luttmerding  I t i s composed of f o u r d i s t i n c t i v e r e g i o n s i n c l u d i n g  A b b o t s f o r d outwash).  levels:  Area  F r a s e r V a l l e y i n southwestern  (in press).  a t two  survey d a t a .  t o i d e n t i f y the b e s t l a n d e v a l u a t i o n approach  D e s c r i p t i o n of Study  conducted  and  Dykes a l o n g the south bank  Soil Survey Data  D i r e c t Grouping of S o i l s by Cluster Analysis Using a l l Variables  Grouping of S o i l s by Cluster Analysis Using F a c t o r s  I d e n t i f i c a t i o n o f S o i l Parameters S i g n i f i c a n t i n S e p a r a t i n g S o i l s Groups By K r u s k a l W a l l i s One Way A n a l y s i s of V a r i a n c e and Mann-Whitney Rank Sum- T e s t  Comparison o f S o i l s Giroups by Mann-Whitney Rank Sum T e s t  Grouping- o f S o i l s . U s i n g C a p a b i l i t y , S u i t a b i l i t y and F e a s i b i l i t y Data  E v a l u a t i o n and R e c l a s s i f i c a t i o n o f I n t e r p r e t a t i v e Land Management U n i t s ; I d e n t i f i c a t i o n o f S o i l Parameters S i g n i f i c a n t i n S e p a r a t i n g Land Management U n i t s by Stepwise D i s c r i m inant A n a l y s i s  V e r i f i c a t i o n of S i g n i f i c a n t Discriminant Parameters by K r u s k a l - W a l l i s One Way A n a l y s i s o f V a r i a n c e and MannWhitney Rank Sum T e s t  Comparison o f I n t e r p r e t a t i v e Land Management U n i t s by Graph Method  T a b u l a r Comparison o f S o i l s Groups and I n t e r p r e t a t i v e Land Management U n i t s  Optimal Approach t o Land E v a l u a t i o n  F i g u r e 1.1 - Study Methodology  FIGURE 1 . 2 - L O C A T I O N  OF  STUDY A R E A  6  of the F r a s e r R i v e r prevent the F r a s e r R i v e r . g l a c i a l age and floodplain.  f l o o d i n g of the a r e a d u r i n g the f r e s h e t of  S o i l forming  d e p o s i t s i n Matsqui  P r a i r i e are of post  i n c l u d e the l a t e r a l l y a c c r e t e d sediments of the F r a s e r  The  Sumas V a l l e y to the southeast  i s a gently undulating  l a c u s t r i n e d e p o s i t of p o s t g l a c i a l age w i t h o l d beach l i n e s o r s p i t s 2 to 5 metres above the g e n e r a l l e v e l .  The upland  areas are composed of  g l a c i a l d e p o s i t s of P l e i s t o c e n e Age which have r o l l i n g 140 metres above the sea l e v e l .  s u r f a c e s up  The A b b o t s f o r d outwash i s a  to  glaciofluvial  r e c e s s i o n a l d e p o s i t w i t h a v a r i a b l e lcfess,'capping up to 1 metre i n depth. The Whatcom g l a c i o - m a r i n e d e p o s i t of the L a n g l e y Upland was p a r t of an i c e sheet was  pushed out over the sea.  by the u n d e r l y i n g water, b a s a l d e b r i s was  formed when  As the i c e was  r e l e a s e d and  melted  sank to the  sea  bottom. The  c l i m a t e of the study a r e a i s i n s h o r e maritime  and  strongly i n -  f l u e n c e d by the c o a s t mountains to the n o r t h and by the Cascade Range to the south.  R a i n f a l l occurs mainly  from November to F e b r u a r y  and  the  summer months, p a r t i c u l a r l y J u l y and August, u s u a l l y experience^ 'a drdught. Temperature i s f a i r l y c o n s t a n t a c r o s s the study a r e a area boasts  (Table 1.1)  the l o n g e s t f r o s t - f r e e p e r i o d i n Canada (169 chosen as the study r e g i o n f o r t h r e e  the  days).  The  a r e a was  1.  The r e g i o n i s composed of many d i f f e r e n t s o i l forming d e p o s i t s r e s u l t i n g i n a wide range of s o i l p r o p e r t i e s .  2.  The  reasons:  3.  There i s growing p r e s s u r e from the town of C l e a r b r o o k and the c i t y of A b b o t s f o r d to convert the s u r r o u n d i n g a g r i c u l t u r a l l a n d to n o n - a g r i c u l t u r a l u s e s .  The  t h e s i s i s presented  a r e a supports a wide v a r i e t y o f a g r i c u l t u r a l  i n the f o l l o w i n g manner:  and  crops.  Chapter  2 provides  a summary o f background l i t e r a t u r e p e r t i n e n t to the study; Chapter  3  7  describes the methods used to c o l l e c t and analyze the data; Chapter 4 presents and discusses the r e s u l t s of the analyses; and Chapter 5 provides the conclusions of the study. Table 1,1  Station  Study Area. Climate  Temperature (°C) Maximumi Minimum Annual  Elevation (m)  Years of Record  Aldergrove  36  -17  9  84  4  Abbotsford  38  -24  9  60  16  Chilliwack  38  -18  10  79  10  Mission  38  -14  10  56  10  8  CHAPTER 2  LITERATURE REVIEW  I n c r e a s i n g p o p u l a t i o n numbers and a wide range o f human a c t i v i t i e s i s d i r e c t l y a f f e c t i n g our land i n demand f o r a g r i c u l t u r e , disposal  r e s o u r c e base.  f o r e s t r y , hydrology, transportation,  and urban development.  ments o f the n a t u r a l  A s t a t i c supply o f l a n d i s waste  S o i l s a r e one o f the most important  r e s o u r c e base i n f l u e n c i n g  ele-  development o f an a r e a .  D e f i n i t i v e i n f o r m a t i o n r e g a r d i n g the geographic l o c a t i o n o f v a r i o u s k i n d s of s o i l s , the p h y s i c a l , and  c h e m i c a l and b i o l o g i c a l p r o p e r t i e s  o f the s o i l s  the c a p a b i l i t y o f the s o i l s t o support a wide range o f land uses should  serve as the b a s i s t i o n - the s o i l  f o r any l a n d  use d e c i s i o n .  survey and i n t e r p r e t a t i v e  f o r t h i s purpose.  The s t a n d a r d s o i l  r e s o u r c e s o f an a r e a .  Two l e v e l s o f s o i l s  informa-  s o i l s information - are a v a i l a b l e  survey p r o v i d e s an i n v e n t o r y o f s o i l  Interpretative  soils  i n f o r m a t i o n i s used t o r e l a t e  s o i l c h a r a c t e r i s t i c s and i n t r i n s i c b e h a v i o u r o f the s o i l t o t h e u s e r (Bauer, 1979; B e a t t y e t a l . , 1979; M i l l e r and N i c h o l s ,  Soil  1979).  Survey The  properties  basic  objectives  of s o i l  and b e h a v i o u r o f s o i l s  areas o f s i m i l a r s o i l s . form the b a s i s  survey a r e t o :  i n their natural  Soil characteristics  o f the s o i l  f o r each use ( B a r t e l l i ,  i n the a r e a a r e mapped a t the s o i l central  state,  and (2) d e l i n e a t e  i n d i c a t i v e of s o i l  survey which i s p r a c t i c a l l y o r i e n t e d  p l a n n i n g a l t e r n a t i v e uses o f the s o i l practices  (1) measure and observe  concept o f each s o i l  and d e f i n i n g  alternative  1979; M i l l e r and N i c h o l s ,  behaviour toward  management  1979).  s e r i e s l e v e l and a d e s c r i p t i o n  s e r i e s and i t s r e a c t i o n  Soils o f the  t o management a r e  9  provided  by the s o i l  survey ( M i l l e r and  Standard s o i l c u l a r l y with  Nichols,  1979).  surveys have c e r t a i n i n h e r e n t  respect  to v a r i a b i l i t y and mapping u n i t p u r i t y .  across  the landscape v e r t i c a l l y and  parent  m a t e r i a l , c l i m a t e , topography, p h y s i c a l and  vegetation  limitations,  l a t e r a l l y due  and b i o l o g i c a l a c t i v i t i e s .  parti-  Soils  to such f a c t o r s as chemical  processes,  S o i l survey attempts to group  i n t o mapping u n i t s which are l e s s v a r i a b l e than the s o i l s p o p u l a t i o n whole ( C l a r k e , 1951; B i e and cases,  Beckett,  Webster and  1971;  Beckett,  Galloway and Yahn'er  number of s t u d i e s are being b i l i t y of s o i l  and  1978;  as a  and Webster,  Miller,  Nichols,  and Webster, 1971).  performed to assess  survey data f o r use  s u i t a b i l i t y f o r v a r i o u s uses.  The soil  Beckett  soils  1978).  1971;  In many  the v a r i a b i l i t y of s o i l p r o p e r t i e s i s as g r e a t w i t h i n c l a s s e s o f  s o i l s as i t i s between them (Beckett  soil  1968;  vary  in  the accuracy  i n t e r p r e t a t i o n and  (Beckett  An  increasing and  relia-  p r e d i c t i o n of  and Webster, 1971;  Miller  1979).  p u r i t y of the mapping u n i t i s important i n s o i l  series i s defined  f o r a n a t u r a l l y o c c u r r i n g body, but  survey.  l a r g e areas of  homogeneous s o i l s are r a r e l y found and most mapping u n i t s c o n t a i n s i o n s of s o i l s not named i n the mapping u n i t . t h a t mapping u n i t s are 80 - 85%  t i o n s and  1976;  M i l l e r and  originally  pure; however, s o i l map  r a r e l y comprise 50 - 70% of the s o i l d e s i g n a t e d (Miller,  I t was  N i c h o l s , 1979).  response to management do not  The  incluthought  delineations  i n the mapping u n i t name  Inclusions with  similar limita-  a f f e c t the u s e f u l n e s s  o f the  soil  survey; however s i g n i f i c a n t l y d i f f e r e n t s o i l s w i t h i n the mapping u n i t have behavioural  and management i m p l i c a t i o n s ( M i l l e r and  problem i s compounded i n s o i l and  N i c h o l s , 1979).  complexes i n which the dimensions,  i n t e r r e l a t i o n s of d i f f e r e n t s o i l  types are not  specified  This  proportions  (Webster  and  10  B e c k e t t , 1968). u n i t s and  Map  legends s h o u l d r e c o r d l i k e l y  i n c l u s i o n s i n simple  should p r o v i d e a i d s f o r p r e d i c t i n g the l o c a t i o n of d i f f e r e n t  s o i l c l a s s e s w i t h i n a mapped compound u n i t . The p r a c t i c a l a p p l i c a t i o n of s o i l  survey d a t a i s f u r t h e r  by a number of f a c t o r s i n c l u d i n g a b a s i c o r i e n t a t i o n toward the time l a p s e between the a c t u a l s o i l soil  survey d a t a p r e s e n t a t i o n and S o i l s were o r i g i n a l l y  v a r i a t i o n of s o i l p r o p e r t i e s  for  Miller,  1978).  interpretation.  to p r o v i d e i n f o r m a t i o n about  spatial  i n an a r e a to h e l p people s e l e c t s o i l s  were r e s p o n s i v e to farm management systems (Riecken, 1963; 1978;  agriculture,  survey and p u b l i c a t i o n , the form of  the l a c k of s o i l s d a t a  surveyed  restricted  B e c k e t t and Bie;;,  S i n c e t h a t time, the u t i l i t y of s o i l s i n f o r m a t i o n  numerous n o n - a g r i c u l t u r a l a p p l i c a t i o n s has been r e a l i z e d , but  survey s t i l l m a i n t a i n s i t s a g r i c u l t u r a l o r i e n t a t i o n .  e n g i n e e r i n g s o i l s parameters  soil  Engineers o f t e n  r e q u i r e s o i l s d a t a which are not c o l l e c t e d i n the standard s o i l Important  that  survey.  include permeability, surface runoff,  s h r i n k - s w e l l p o t e n t i a l , water t a b l e , d e n s i t y , p o r o s i t y , b e a r i n g c a p a c i t y , c o h e s i o n , s h e a r i n g and compression. t i o n requirements  In a d d i t i o n , e n g i n e e r i n g s o i l s  o f t e n extend beyond the s t a n d a r d two metre s o i l  informa-  profile  s e c t i o n depth r e p r e s e n t i n g the a g r i c u l t u r a l r o o t c o n t r o l zone ( F i g u r e 2.1; Miller,  1978)  (USDA Cons. Serv.; 1971;  p e r i o d between the s o i l be as g r e a t as 15 y e a r s .  survey and  survey date  can  of s o i l  survey data may  change and the  soil  be out of date b e f o r e i t i s p u b l i s h e d .  Once p u b l i s h e d , s o i l form.  the p u b l i c a t i o n of s o i l  The l a g  D u r i n g t h i s time, knowledge and concepts of the  s o i l s and u s e r requirements survey d a t a may  Johannsen e t a l . 1978).  survey d a t a are p r e s e n t e d i n r e p o r t and  map  The r e p o r t p r o v i d e s a c e n t r a l concept d e f i n i t i o n and d e s c r i p t i o n f o r  FIGURE 2.1- FREQUENCY OF REQUESTS FOR SOIL INTERPRETATIONS AT VARIOUS DEPTHS IN COMPARISON WITH THE DEPTH LIMITS OF SEVERAL DIAGNOSTIC SOIL TAXONOMY CRITERIA ( M i l l e r , 1979)  12  each s o i l  s e r i e s which appears on the map.  The mapping u n i t s which are  u s u a l l y d e f i n e d by p l a c e name do not g i v e any or s o i l  s u i t a b i l i t y f o r s p e c i f i c use  survey  i n d i c a t i o n of s o i l q u a l i t y  ( C l a r k e , 1951).  T h i s form of  soil  data p r e s e n t a t i o n i s o f t e n c r y p t i c to the n o n - s o i l s c i e n t i s t  a need e x i s t s f o r a more p r a c t i c a l e x p r e s s i o n of s o i l i n d i c a t e s ] s o i l q u a l i t y and  soil  suitability  survey  and  data which  i n a form t h a t map  users  can  understand. The  t r a n s l a t i o n of s o i l  survey  data to simple  behaviour i s known as i n t e r p r e t a t i v e s o i l s little  soils  i n t e r p r e t a t i o n has  expressions  information.  been c a r r i e d out.  of  soil  To date, too  Interpretation requires  an i n t i m a t e knowledge of the b e h a v i o u r responses of s o i l s and  quite often  i n v o l v e s supplementing the s o i l s d a t a w i t h a d d i t i o n a l i n f o r m a t i o n . i n t e r p r e t a t i o n may  be c a r r i e d out f o r a number of d i f f e r e n t  however, they g e n e r a l l y f a l l and  feasibility.  i n t o three c a t e g o r i e s :  These are d i s c u s s e d  Soils  purposes;  capability,  suitability  i n the f o l l o w i n g s e c t i o n .  Land E v a l u a t i o n Soil any  survey  i s an i n v e n t o r y of s o i l r e s o u r c e s which does not  element of e v a l u a t i o n or i n t e r p r e t a t i o n i n r e s o u r c e  contain  terms (Young, 1973).  Since s o i l s i n f o r m a t i o n i s r e q u i r e d by a wide range of u s e r s , i n c l u d i n g farmers,  ranchers,  engineers,  and  f o r e s t e r s , community d e c i s i o n makers, h y d r o l o g i s t s ,  t e a c h e r s , most of whom have no background i n s o i l  i n t e r p r e t a t i v e maps, which r e l a t e s o i l c h a r a c t e r i s t i c s and b e h a v i o u r of the s o i l i s not new.  intrinsic  to the u s e r , a r e becoming more p o p u l a r .  In the 1930's farmers were p r o v i d e d w i t h  land c a p a b i l i t y c l a s s e s i n colours  ( M i l l e r and  time i n t e r p r e t a t i v e e v a l u a t i o n s of s o i l  survey  science,  The  concept  s o i l maps t h a t showed  N i c h o l s , 1979) .  Since  that  data have been developed  13  f o r a wide range of a g r i c u l t u r a l and n o n - a g r i c u l t u r a l uses. i n t e r p r e t a t i o n s r e p r e s e n t the c u r r e n t u n d e r s t a n d i n g of s o i l istics-  • and how  they r e a c t to management.  These character-  G. Angus H i l l s developed  an  o v e r a l l framework which i n c o r p o r a t e s a l l i n t e r p r e t a t i v e schemes a t t h r e e levels: 1960;  capability,  s u i t a b i l i t y and f e a s i b i l i t y  Belknap and F u r t a d o , 1967).  ( H i l l s and P o r t e l a n c e ,  D e f i n i t i o n s of c a p a b i l i t y ,  and f e a s i b i l i t y were p r o v i d e d i n Chapter 1.  D e s c r i p t i o n s of some-inter-  p r e t a t i v e c l a s s i f i c a t i o n a t each l e v e l of H i l l ' s system  1.  Land C a p a b i l i t y  suitability  follow.  Assessment  Land c a p a b i l i t y i s d e f i n e d by the degree of l i m i t a t i o n t o s p e c i f i c use and by the r e l a t i v e e f f o r t to o b t a i n and m a i n t a i n h i g h i n t e n s i t y (Table 2.1,  Belknap and F u r t a d o , 1967).  TABLE  Land c a p a b i l i t y systems have been  2.1  D e f i n i t i o n of C a p a b i l i t y C l a s s e s A to G on a Comparative B a s i s (Belknap and F u r t a d o ,  1967)  Degree of Limitation  Relative Effort To O b t a i n and Maintain a High I n t e n s i t y Of Use  Very High  Very  Not  High  Low  Relating I n t e n s i t y of Use P o t e n t i a l (1)  Class  L e v e l of Capability  A  Very High  B  High  C  Mod.  D  Moderate  Moderate  Moderate  Moderate  E  Mod.  Mod.  Mod.  High  F  Low  G  Very  High  Low  Mod.  High  Low  Low Low  Very  Low  use  Mod.  Low  Very Low  High  Significant Low  Low,  High  Very High  Very High  Prohibitory  14  developed f o r s i n g l e purpose and f o r m u l t i - p u r p o s e assessments o f the land.  The U n i t e d S t a t e s Department  Classification  (Klingebiel,  of A g r i c u l t u r e  (USDA) Land  Capability  1958; S t e e l e , 1967; Robertson e t a l . 1968;  Young, 1973; S i n g e r , 1978), the U n i t e d Kingdom (UK) A g r i c u l t u r a l  Land  S e r v i c e Scheme and the Land-Use C a p a b i l i t y C l a s s i f i c a t i o n o f the U n i t e d Kingdom s o i l bility  survey (Young, 1973) a r e examples  o f s i n g l e purpose capa-  e v a l u a t i o n s o r i e n t e d toward a g r i c u l t u r e .  The Canada Land I n v e n t o r y  System i s a m u l t i - p u r p o s e scheme which i n c o r p o r a t e s c a p a b i l i t y f o r a g r i c u l t u r e , f o r e s t r y , w i l d l i f e and r e c r e a t i o n 1972; Young, 1973; Coombs and T h i e , 1979). CLI c a p a b i l i t y c l a s s i f i c a t i o n s are given  a.  USDA Land C a p a b i l i t y  assessments  (Environment Canada,  D e s c r i p t i o n s of the- USDA, U.K*  below.  Classification  The USDA Land C a p a b i l i t y C l a s s i f i c a t i o n  i s an i n t e r p r e t a t i v e  f o r a g r i c u l t u r e based on s o i l p r o p e r t i e s and c l i m a t e .  Thirteen  a r e used t o p l a c e s o i l s i n e i g h t c l a s s e s depending upon t h e i r  system  criteria  permanent  l i m i t a t i o n s f o r a g r i c u l t u r e and r i s k s of s o i l damage ( K l i n g e b i e l , 1958; S t e e l e , 1967; Robertson e t a l . 1968; Young, 1973; S i n g e r 1 9 7 8 ) . system.assumes  The  a f a i r l y h i g h l e v e l o f management one t h a t i s w i t h i n the  a b i l i t y o f most farmers but i t does n o t i n d i c a t e the k i n d of management n e c e s s a r y ( S t e e l e , 1967; Robertson e t a l .  1968).  The c a p a b i l i t y  classi-  f i c a t i o n does n o t suggest the most p r o f i t a b l e use o f s o i l s n o r do d i s t a n c e to markets, k i n d s of roads, s i z e and shape of s o i l  areas, l o c a t i o n s w i t h i n  f i e l d s o r farms, s k i l l s o r r e s o u r c e s of i n d i v i d u a l o p e r a t o r s and o t h e r c h a r a c t e r i s t i c s of l a n d ownership on l a n d management p r a c t i c e s c a p a b i l i t y grouping (Steele,  1967).  influence  15  b.  United Kingdom 1.  The A g r i c u l t u r a l Land Service Scheme.  2.  The Land Use C a p a b i l i t y C l a s s i f i c a t i o n of the United Kingdom S o i l Survey.  The A g r i c u l t u r a l Land Service Scheme and the Land-Use C a p a b i l i t y C l a s s i f i c a t i o n of the.UlK.soil survey are oriented  toward a g r i c u l t u r e .  The former i s a system developed to advise on the release of a g r i c u l t u r a l land f o r urban development and divides s o i l s i n t o f i v e classes the degree of l i m i t a t i o n to a g r i c u l t u r a l use (Young, 1973).  describing  The l a t t e r  scheme c l o s e l y follows the USDA Land C a p a b i l i t y C l a s s i f i c a t i o n but reduces the number of classes to seven and s p e c i f i e s the range of each l i m i t a t i o n permitted w i t h i n each c a p a b i l i t y c l a s s (Young, 1973). c.  Canada Land Inventory The Canada Land Inventory i s a comprehensive survey of land capa-  b i l i t y and use designed to provide a basis f o r resource and land use planning, c a p a b i l i t y i s assessed f o r a g r i c u l t u r e , f o r e s t r y ,  recreation  and w i l d l i f e and an o v e r a l l a n a l y s i s i s made of land c a p a b i l i t y by overl a y i n g each of the s p e c i a l purpose maps (Env. Can., 1972; Young, 1973; Coombs and Thie, 1979). evaluation  All"components of the o v e r a l l c a p a b i l i t y  are s i m i l a r i n the f o l l o w i n g respects:  1.  A l l are i n t e r p r e t a t i v e systems which group s o i l types i n t o 7 classes.  2.  A l l systems, except r e c r e a t i o n which presents p o s i t i v e features of the landscape, l i s t the l i m i t i n g factors which progressively r e s t r i c t the land from class 1 to c l a s s 7.  3.  A l l systems are compatible on a nation wide b a s i s .  4.  A l l s i t e factors are used to assess the c a p a b i l i t y r a t i n g .  16  5.  Only inherent p h y s i c a l c h a r a c t e r i s t i c s are assessed.  6. A l l systems are oriented toward planning rather than management,(Coombs and Thie, 1979). The U.K. c a p a b i l i t y c l a s s i f i c a t i o n f o r a g r i c u l t u r e follows the USDA c a p a b i l i t y c l a s s i f i c a t i o n . seven classes according c u l t u r a l use.  Mineral s o i l s are grouped i n t o ,  to t h e i r p o t e n t i a l s and l i m i t a t i o n s f o r a g r i -  Class 1 shows no s i g n i f i c a n t l i m i t a t i o n s f o r common f i e l d  crops; c l a s s 7 shows no a g r i c u l t u r a l p o t e n t i a l (Env. Can. 1972; 1973;  B.C. Land Comm, 1975;  B.C. Min. Env.,  Runka,  1979).  The c a p a b i l i t y c l a s s i f i c a t i o n f o r f o r e s t r y i s based upon p r o d u c t i v i t y classes.  P r o d u c t i v i t y i s assessed according  to the mean annual  increment of the best species or group of species adapted to the s i t e a t , or near, r o t a t i o n age.  Class 1 lands have no important l i m i t a t i o n s to  the growth of commercial f o r e s t s with p r o d u c t i v i t y over 7.8 m /ha per 3  annum; c l a s s 7 lands are not s u i t a b l e f o r the growth of commercial f o r e s t s (Coombs & Thie, 1979). Land c a p a b i l i t y f o r w i l d l i f e i s divided i n t o two categories: ungulate and waterfowl.  In both cases, the c a p a b i l i t y c l a s s l e v e l i s  assessed on the a v a i l a b i l i t y of food, p r o t e c t i v e cover and space to survive, grow and reproduce.  The c a p a b i l i t y c l a s s i f i c a t i o n f o r ungulates assesses  the a b i l i t y of the land t o support or produce w i l d l i f e ; the c l a s s i f i c a t i o n for waterfowl considers both land and water surfaces. The land c a p a b i l i t y c l a s s i f i c a t i o n f o r outdoor r e c r e a t i o n simultaneously  assesses the q u a l i t y of the land f o r r e c r e a t i o n and the  a b i l i t y of the land to s u s t a i n r e c r e a t i o n a l a c t i v i t i e s per u n i t area per year under perfect market conditions.  Areas which can sustain i n t e n s i v e  use have high c a p a b i l i t y r a t i n g s ( i . e . Class 1 to 3); those which lack  17  n a t u r a l a t t r a c t i v e n e s s O E present severe l i m i t a t i o n s t o r e c r e a t i o n a l use have the lowest c a p a b i l i t y r a t i n g s . The map overlay representing the f i v e land c a p a b i l i t y c l a s s i f i c a t i o n r e s u l t s i n a comprehensive resource data base which can be used i n making land use d e c i s i o n s . d.  Use of Land C a p a b i l i t y Assessments Evaluation of land c a p a b i l i t y i s u s e f u l to a wide range of users  i n providing a data base f o r broad-scale resource and land planning based .. upon an understanding of the p h y s i c a l nature of the land's resource capacity to s u s t a i n and support various a c t i v i t i e s .  Despite i t s advant-  ages, the land c a p a b i l i t y c l a s s i f i c a t i o n has inherent l i m i t a t i o n s which restrict its u t i l i t y .  These include the f o l l o w i n g :  1.  The c a p a b i l i t y c l a s s i f i c a t i o n i s based upon l i m i t a t i o n s , mostctf<whichtean.be modified or overcome by management p r a c t i c e s .  2.  C a p a b i l i t y assessments are made at the reconnaissance l e v e l and are designed f o r planning rather than management purposes.  3.  Single purpose maps are use s p e c i f i c and are of l i m i t e d use i n an o v e r a l l planning process; the combination of s i n g l e purpose maps to form a multi-purpose approach i s r e s t r i c t e d by the d i f f e r e n t set of c r i t e r i a used i n each i n t e r p r e t a t i v e scheme.  4.  Land c a p a b i l i t y assessments are q u a l i t a t i v e and bear l i t t l e c o r r e l a t i o n to measured p r o d u c t i v i t y and performance.  A more q u a n t i t a t i v e assessment of land p o t e n t i a l can be made using measured y i e l d or performance data.  This type of evaluation i s known as  land s u i t a b i l i t y . 2.  Land S u i t a b i l i t y Assessment Land s u i t a b i l i t y can be defined e i t h e r by the p r o d u c t i v i t y of the  land expressed by b i o l o g i c a l y i e l d or by s o i l behavioural c h a r a c t e r i s t I C S  18  which a f f e c t p o t e n t i a l land use.  P r o d u c t i v i t y data generally form the  basis f o r a g r i c u l t u r a l or f o r e s t r y r e l a t e d s u i t a b i l i t y assessments due to the a v a i l a b i l i t y of y i e l d data.  Engineering a p p l i c a t i o n s r e l y upon  behavioural i n t e r p r e t a t i o n s . a.  P r o d u c t i v i t y Assessments P r o d u c t i v i t y assessments are made f o r s p e c i f i c crops i n r e l a t i o n  to defined 1958; 1979) .  sets of management practices and l e v e l s of management ( P i e r r e ,  Aandahl, 1960; Steele, 1967; B a r t e l l i , 1979; M i l l e r and Nichols, Many attempts have been made t o r e l a t e p r o d u c t i v i t y to s o i l para-  meters (Clarke, 1951; Nikolayev, 1975; Allgood and Gray, 1978; Mackney i n T r u d g i l l and Briggs, 1979), but there have been three major  difficulties.  F i r s t l y , requirements of plants and, i n p a r t i c u l a r , edaphic needs of s p e c i f i c crops are poorly understood.  Secondly, s o i l - c r o p r e l a t i o n s h i p s  vary with changes i n plant environments i n response to seasonal c l i m a t i c patterns ( T r u d g i l l and Briggs, 1979).  T h i r d l y , s o i l i s only a small  component of b i o l o g i c a l p r o d u c t i v i t y ; management i s f a r more important. Management refers mainly to crop c h a r a c t e r i s t i c s , s o i l and water management p r a c t i c e s , crop p r o t e c t i o n and management s k i l l , rather than to considerations  of s o i l and climate (Steele, 1967).  The r e l a t i o n s h i p s  between s o i l parameters and p r o d u c t i v i t y w i l l never be perfect due to the e f f e c t s of management, but better r e l a t i o n s h i p s than those c u r r e n t l y i n existence should be developed f o r d i f f e r e n t crops i n d i f f e r e n t areas. T r a d i t i o n a l l y , s o i l p r o d u c t i v i t y studies have stressed s o i l chemical properties, p a r t i c u l a r l y potassium, nitrogen and phosphorus (Cooke, 1979), l a r g e l y to the exclusion of s o i l p h y s i c a l properties.  Recently the s i g n i -  ficance of s o i l p h y s i c a l properties has been r e a l i z e d and emphasis has  19  s h i f t e d to measurement of such parameters as s o i l moisture, s o i l  texture  and s o i l structure to observe i n t e r a c t i o n s between s t r u c t u r a l f a c t o r s , c u l t i v a t i o n and water management as controls upon crop growth.  Cooke  argues that a v a i l a b l e water storage capacity i s the most important s i n g l e p h y s i c a l measurement that i s relevant to crop production and that the ' i n a b i l i t y to understand, measure and c o n t r o l s o i l structure through c u l t i v a t i o n , and to quantify i t s e f f e c t on supply of n u t r i e n t s and water, i s a major f a c t o r in.vthe common f a i l u r e to achieve c o n s i s t e n t l y large c e r e a l y i e l d s ' (Cooke, i n T r u d g i l l and Briggs, 1979).' Nix (1968) suggested three approaches to land s u i t a b i l i t y assessment:  analogue method, s i t e f a c t o r method and systems a n a l y s i s .  Descrip-  tions of the methods f o l l o w . i.  Analogue Method The analogue method i s most commonly used.  c o l l e c t e d from experimental s i t e s and extrapolated  P r o d u c t i v i t y data i s to analogous s i t e s  defined by land or s o i l , c l a s s i f i c a t i o n based on the premise that s i m i l a r s o i l s w i l l show s i m i l a r responses f o r any s p e c i f i e d form of use (Nix, 1968; Hoffman, 1971). S o i l s are evaluated using measured or observed s o i l properties and consequently, an a p r i o r i knowledge of the f u n c t i o n a l r e l a t i o n s h i p s between the s o i l parameters and p r o d u c t i v i t y i s not r e quired. Shortcomings of the analogue method include the f o l l o w i n g : 1.  A poor r e l a t i o n s h i p has been observed by several authors i n c l u d i n g Avery, B u t l e r and Gibbons ( i n Hoffman, 1971) .between ...treatment,,. :so,il; parameters , arid t yield;-. (Nix,' 1968; Hoffman, 1971). ;  2.  P r o d u c t i v i t y studies must be c a r r i e d out over a long period of time to obtain: r e l i a b l e estimates of p r o d u c t i v i t y (Nix,  20  3.  ia..  Productivity studies are l i m i t e d to a r b i t r a r i l y defined s o i l s c l a s s e s and a r e o f t e n r e s t r i c t e d by the e x i s t i n g land use ( N i x , 1968).  Site Factor  Method  The s i t e f a c t o r method r e l a t e s key p r o p e r t i e s within  a g i v e n environment.  which.directly variables  influence  against  The s t r e n g t h  of a s i t e to y i e l d  S e l e c t i v e p h y s i c a l and c h e m i c a l parameters  s i t e p r o d u c t i v i t y a r e p l o t t e d as independent  the dependent v a r i a b l e , y i e l d ,  i n a multiple  of the r e l a t i o n s h i p o f independent t o dependent  suggests which of the chosen parameters r e l a t e t o y i e l d .  regression.  variables  Interrelation-  s h i p s between y i e l d and s i t e f a c t o r s may a l s o be i d e n t i f i e d i f the s i t e i s under c o n s t a n t management.  S i t e f a c t o r a n a l y s i s has two l i m i t a t i o n s :  1.  The a n a l y s i s  i s s i t e and use s p e c i f i c .  2.  The r e s u l t s a r e v a l i d only f o r the crop s t u d i e d w i t h i n the chosen range of parameters.  Most of the work done u s i n g in forestry.  the s i t e f a c t o r method t o date has been  The few a g r i c u l t u r a l s t u d i e s  a l i m i t e d number of s o i l p r o p e r t i e s parameters as s i t e f a c t o r s . the  iii.  influence  Systems  analysis  i s a dynamic  on y i e l d .  approach concerned with:.  1.  Resolu-  system i n t o a l a r g e number of simple component p r o c e s s e s ,  subsequent s y n t h e s i s 1968; Hoffman, 1972).  i n t o a mathematical model of the whole system The model attempts t o i d e n t i f y f u n c t i o n a l  pathways and i n t e r a c t i o n s w i t h i n quantify  and a l a r g e number of management  The use o f management f a c t o r s tends t o obscure  of the s o i l p r o p e r t i e s  t i o n o f a complex  (Nix,  concern over the use o f  Analysis  Systems  and 2.  report  a complex  system t o h e l p understand,  and p r e d i c t b e h a v i o u r and response of t h e system.  Although the  21  advent of the computer has the technique i s s t i l l  allowed much p r o g r e s s i n systems a n a l y s i s ,  l i m i t e d by  the c o m p l e x i t y of b i o l o g i c a l  which makes q u a n t i t a t i v e measurement and difficult  b.  to develop  Behavioural  (Nix,  1968;  h o l i s t i c modelling  Assessments  on degree of l i m i t a t i o n t o use. by  the A s p h a l t  e l a s t i c i t y , Atterburg shrinkage and obtained and  very  Hoffman, 1972).  S o i l s u i t a b i l i t y assessments f o r e n g i n e e r i n g  reported  systems  The most important s o i l  I n s t i t u t e (1969'in. B a r t e l l i ,  l i m i t s , cohesion,  s w e l l , and  purposes r a t e  1979)  are  survey d a t a .  permeability,  compressibility,  These d a t a are  from highway t e s t i n g l a b o r a t o r i e s ( M i l l e r and  are used i n support of s o i l  properties  sheaving s t r e n g t h ,  frost susceptibility.  generally  Nichols,  Engineering  1979)  interpretations  are a v a i l a b l e f o r many purposes, i n c l u d i n g b u i l d i n g , maintenance c o n s t r u c t i o n , roads, s a n i t a r y f a c i l i t i e s parameters are for  important f o r each use  the I n t e r p r e t a t i o n of E n g i n e e r i n g  and  dwellings.  soils  and  Different  and manuals, such as the  soil  Guidelines  Uses, o f f e r guide sheets,  which  i d e n t i f y the p e r t i n e n t s o i l p r o p e r t i e s a f f e c t i n g s p e c i f i c u s e s .  c.  Use  of Land S u i t a b i l i t y Assessments Land s u i t a b i l i t y assessment p r o v i d e s  land's  resource  a q u a n t i t a t i v e measure of  c a p a c i t y to produce s p e c i f i c goods and  e v a l u a t i o n i s based upon the p h y s i c a l the r e l a t i o n s h i p between i n p u t s and approach r e l i e s upon a c c u r a t e p r o d u c t i v i t y assessments and  services.  applications.  shows  p r o d u c t i v i t y , on performance.  upon the  management i n f o r m a t i o n  i d e n t i f i c a t i o n of p e r t i n e n t  p r o p e r t i e s f o r the e v a l u a t i o n of l a n d b e h a v i o u r f o r land use engineering  The  parameters of the l a n d and  y i e l d d a t a and  Dynamic c o n s i d e r a t i o n s ,  The for soil  planning  such as l a n d  the  rent,  and  22  market v a l u e and geographic l o c a t i o n do n o t i n f l u e n c e l a n d assessments;  suitability  t h e r e f o r e , the r e s u l t i n g c l a s s i f i c a t i o n have l o n g term  applicability.  3.  Land F e a s i b i l i t y Assessment Land  f e a s i b i l i t y assessments  measure the a b i l i t y of the s o i l t o  produce, y i e l d o r support an a c t i v i t y a t a c o s t expressed i n economic, s o c i a l and environmental u n i t s o f v a l u e u s i n g l a t e s t f e a s i b l e (Bartelli,  1974 i n B a r t e l l i ,  1979).  technology  One o f the e a r l i e s t attempts t o  model l a n d f e a s i b i l i t y was the Van Thunen model which e x p l a i n e d v a r i a t i o n i n l a n d v a l u e i n r e l a t i o n t o d i s t a n c e t o market ( G i r t , r e c e n t e v a l u a t i o n s o f f e a s i b i l i t y have appeared potential ratings.  More  as equations f o r s o i l  V a l u e s i n the e q u a t i o n s r e f l e c t  i n f l u e n c i n g use, c o s t o f t r e a t i n g s o i l  1977).  soil  properties  l i m i t a t i o n s and the c o s t o f  c o n t i n u i n g l i m i t a t i o n s i f n o t removed ( K e l l o g g , 1961; S l u s h e r , 1977 i n Bartelli,  1979).  The e v a l u a t i o n of f e a s i b i l i t y has many shortcomings.  Among these  are the f o l l o w i n g : 1.  The p r i c e s of s u p p l i e s and p r o d u c t s upon which the measures are based do not remain c o n s t a n t to one another over time.  2.  The s e l e c t e d economic c r i t e r i a may i n f l u e n c e f e a s i b i l i t y by a p r i c e d i s t o r t i o n s , such as s u b s i d i e s and t a x breaks which a f f e c t the a c t u a l economics of v a r i o u s l a n d uses; b..a d i f f e r e n t s e t o f c r i t e r i a which a r e important t o the l a n d operator, than t o the p r o f e s s i o n a l economist; c o t h e r c r i t e r i a . w h i c h i n d i r e c t l y a f f e c t the f e a s i b i l i t y o f l a n d use may o r may n o t be measured w i t h those f a c t o r s which have d i r e c t e f f e c t s .  Summary and C o n c l u s i o n s Definitive soils at two l e v e l s : ,  soil  i n f o r m a t i o n f o r l a n d use d e c i s i o n s i s a v a i l a b l e  survey d a t a and s o i l s  interpretations.  Soil  survey  23  data i s an  inventory  has  shown t h a t s o i l s  but  the  that  soil  of s o i l s r e s o u r c e s w i t h i n an a r e a . information  s c i e n t i s t and  the u s e r can  in soil  requires  understand.  fall  feasibility.  survey form i s complex to a l l  t r a n s l a t i o n to simple  expressions  S o i l s i n t e r p r e t a t i o n s have been developed  based upon d i f f e r e n t assumptions and generally  Experience  c r i t e r i a . f o r many purposes,  i n t o three categories:  capability, suitability  Capability i s a q u a l i t a t i v e evaluation  of land  but  and  ability  to s u s t a i n s p e c i f i c uses.. i S u i t a b i l i t y a s s e s s e s the p o t e n t i a l of land  to produce s p e c i f i c goods and  p r a c t i c e s and  levels.  Suitability  s e r v i c e s under d e f i n e d is a quantitative  e i t h e r upon p r o d u c t i v i t y or s o i l performance.  dynamic of the use  three i n t e r p r e t a t i o n s .  w i l l be made of the  Feasibility  In g e n e r a l ,  soils interpretations  management  evaluation  land p o t e n t i a l a c c o r d i n g to socio-economic i n f l u e n c e s .  the  based  evaluates  I t i s the most  the most  efficient  i f users understand:  1.  What s o i l p r o p e r t i e s are and c l a s s i f i e d i n a s o i l  2.  The assumptions i n v o l v e d and different interpretations;  3.  The n a t u r e and v a r i e t y of p o s s i b l e i n t e r p r e t a t i o n s t h a t from s o i l survey d a t a (Wohletz, 1968).  Soil  survey d a t a and  p r e s e n t study f o r a small B r i t i s h Columbia. following  chapter.  The  evaluated, described, survey; the  r e c o r d e d , named  c r i t e r i a established  some i n t e r p r e t a t i o n s are examined i n  test region  i n the Lower F r a s e r  methods employed i n the  Valley  study are o u t l i n e d  for  arise  the of in  the  24  CHAPTER 3  METHODS  S o i l s i n f o r m a t i o n i s one of the most important l a n d e v a l u a t i o n f o r l a n d use d e c i s i o n s .  In the p r e s e n t  survey data was assessed u s i n g c a p a b i l i t y , to i d e n t i f y the b e s t approach t o o p t i m a l  considerations i n study,  soil  s u i t a b i l i t y and f e a s i b i l i t y  l a n d use e v a l u a t i o n .  The study  i n v o l v e d s e l e c t i o n o f s o i l parameters; c o l l e c t i o n of s o i l s d a t a ; a t i o n of c a p a b i l i t y , s o i l s d a t a and s o i l  s u i t a b i l i t y and f e a s i b i l i t y ; n u m e r i c a l survey  evalu-  a n a l y s i s of  i n t e r p r e t a t i o n s and assessment of s o i l s  groups and i n t e r p r e t a t i v e - s o i l s u n i t s .  The methodology f o l l o w s .  S o i l s Data Soil  i s i n t e g r a l t o p l a n t growth and e x e r t s c o n s i d e r a b l e i n f l u e n c e  on b i o l o g i c a l p r o d u c t i v i t y through i n h e r e n t f e r t i l i t y ment.  Consequently, l a n d use s h o u l d be d i c t a t e d t o c e r t a i n degree by  soil quality.  S o i l s i n f o r m a t i o n a t the s o i l  u n i t s of t h e p r e s e n t supported  study.  glacial t i l l ,  The s e l e c t e d m i n e r a l s o i l  series  (Table  3.1)  The s o i l s e v o l v e d from g l a c i o . f l u v i a l d e p o s i t s ,  g l a c i o m a r i n e d e p o s i t s , a l l u v i u m , l a c u s t r i n e d e p o s i t s and  a e o l i a n d e p o s i t s and consequently  1.  s e r i e s l e v e l formed the b a s i i  a wide range o f a g r i c u l t u r a l crops f o r which p r o d u c t i v i t y d a t a  was r e a d i l y a v a i l a b l e .  ties.  and ease o f manage-  e x h i b i t e d a wide range o f s o i l  proper-  The g e o g r a p h i c a l d i s t r i b u t i o n o f s o i l s i s presented, i n F i g u r e 3.1.  Sources of S o i l s Data B a s i c s o i l s data f o r the chosen s e r i e s were c o l l e c t e d from two  sources:.  25  F I G U R E 3.1 -  GEOGRAPHICAL  DISTRIBUTION  OF  SOILS  26  a.  1.  S o i l survey data bank  2.  Sample a n a l y s i s  S o i l s Data Bank The S o i l s Data Bank e s t a b l i s h e d by the Research A n a l y s i s Branch  ( V i c t o r i a ) was o r i g i n a l l y intended to serve as the s o i l s data base f o r the present study, but the required information was l i m i t e d or u n a v a i l able and a d d i t i o n a l data was needed to e s t a b l i s h a complete data set. Consequently the a v a i l a b l e data was used as a b a s i s to which a d d i t i o n a l information, such as s o i l moisture and consistency parameters was added. b.  C o l l e c t e d Data F i e l d sampling and laboratory analysis were performed to provide  data f o r a l l the morphological parameters required f o r the study. 2.  S e l e c t i o n of Parameters The o r i g i n a l group of v a r i a b l e s consisted of t h i r t y f i v e s e l e c t i v e  parameters representative of permanent s o i l p r o p e r t i e s which are expected to remain unaltered when subjected to s o i l management p r a c t i c e s .  The  chosen parameters were predominantly s o i l p h y s i c a l parameters due to the v a r i a b i l i t y of chemical properties i n changing environments.  Engineering  and a g r i c u l t u r a l s o i l s parameters were included to f u l f i l l the o r i g i n a l i n t e n t i o n of designing an optimum multi-purpose land-use system.  The  i n i t i a l t h i r t y f i v e parameters were reduced to nineteen by the removal of v a r i a b l e s that: 1. Described the same parameter ( i . e . l i q u i d l i m i t was chosen t o represent the Atterburg l i m i t s ) , or 2.  Had such a narrow range of values when p l o t t e d on a frequency histogram that they were not u s e f u l i n s o i l s group separation.  TABLE 3.1  S o i l S e r i e s Used In Study  Symbol  Series  AD  Abbotsford  BT  Bates  BL  Beharrel  BK  Buckerfield  F  Fairfield  HT  Hallert  HD  Hazelwood  HJ  Hjorth  KD  Kennedy  LX  Laxton  LK  Lickman  MH  Marble  MQ  Matsqui  M  Monroe  NN  Niven  PE  Page  RD  Ryder  SI  Sim  VD  Vedder  W  Whatcom  Hill  28.:  The r e s u l t i n g group of v a r i a b l e s can be found  i n T a b l e 3.2.  TABLE 3.2  Soil  Parameter  Parameters  Horizon*  Source  C  Measured  S,C  Measured  Sand  S  Measured  Silt  C  Measured  Clay  S,C  Measured  S  Measured  S,C  Measured  S,C  Measured  CEC  S,C  Measured  Drainage  N/A  S o i l s Data Bank  Slope  N/A  S o i l s Data Bank  Perviousness  N/A  S o i l s Data Bank  Upper Parent M a t e r i a l  N/A  S o i l s Data Bank  Lower Parent M a t e r i a l  N/A  S o i l s Data Bank  pH i n C a C l Coarse  Fraction  Organic Liquid  2  Matter Limit  Water Storage  Capacity  *S r e f e r s to s u r f a c e h o r i z o n ( u s u a l l y an Ap h o r i z o n ) C r e f e r s t o the C horizon. N/A i s not a p p l i c a b l e  The m a j o r i t y of v a r i a b l e s can be r e p r e s e n t e d by measured v a l u e s (e.g. 76% c l a y ) ; and  some, such as d r a i n a g e , p e r v i o u s n e s s , upper parent m a t e r i a l  lower p a r e n t m a t e r i a l must be r e p r e s e n t e d by c a t e g o r i c a l  E x p l a n a t i o n s o f the c a t e g o r i e s a r e p r e s e n t e d  i n Appendix A.  data.  29-  3.  Sampling Mr. H. Luttmerding  ( T e r r e s t i a l Studies, Kelowna) i d e n t i f i e d the  l o c a t i o n of the s o i l p i t s which served as the c e n t r a l concepts of the s o i l s e r i e s i n the 1964 S o i l Survey Report. locations to a depth of approximately  P i t s were dug i n these  one metre.  Bulk density was  measured according to the held method (Blake, 1965) f o r the surface horizon and f o r the uppermost C horizon.  Rooting depth, stoniness,  mottling abundance, s t r u c t u r e , slope, aspect and depth to rock, water table on root r e s t r i c t i n g l a y e r were recorded.  S o i l samples were  were obtained from the surface and C horizons f o r laboratory a n a l y s i s . A s i n g l e surface horizon was sampled because the s o i l s under study are a g r i c u l t u r a l s o i l s and f o r the most part have Ap horizons rather than Ah horizons.  The C horizon was sampled to determine inherent s o i l  fertility. 4.  Laboratory A n a l y s i s The s o i l samples were returned to the laboratory and a i r d r i e d .  Aggregates were broken with a wooden r o l l i n g p i n with care not to crush the primary sand and gravel p a r t i c l e s .  The samples were separated using  a 2 mm sieve and the p o r t i o n greater than 2 mm was weighed and as the percent coarse f r a c t i o n .  recorded  The remaining analyses were performed  using the f r a c t i o n l e s s than two m i l l i m e t r e s . pH was measured i n 0,01 CaCl  2  (Peech,. 1965).  M  S o i l organic matter was c a l c u l a t e d from t o t a l carbon  as determined using the Leco Analyzer (Lavkulich, 1977).  The ammonium  acetate method (at pH 7.0) was performed to measure t o t a l c a t i o n exchange capacity (Chapman, 1965).  S o i l water r e t e n t i o n was determined at 3 bar  pressure and 15 bar pressure using the porous p l a t e e x t r a c t i o n method.  30  The difference  i n moisture content at the two pressures comprised the  water storage capacity (Richards, 1965).  L i q u i d l i m i t was assessed  according to the t e s t f o r Atterburg l i m i t s (Sowers, 1965).  The hydro-  meter method was used to determine the p a r t i c l e s i z e d i s t r i b u t i o n (Day, 1965).  Readings were taken at 1 minute, 2 minutes, 5 minutes, 10 minutes,  30 minutes, 60 minutes, 120 minutes, 180 minutes, 360 minutes.and 1440 minutes. S o i l Survey I n t e r p r e t a t i v e C l a s s i f i c a t i o n S o i l series were c l a s s i f i e d i n t o i n t e r p r e t a t i v e s o i l s u n i t s using c a p a b i l i t y , s u i t a b i l i t y and f e a s i b i l i t y assessments of s o i l survey data. D e t a i l s of the assessment and c l a s s i f i c a t i o n procedures f o l l o w . 1.  Land C a p a b i l i t y Data The Canada Land Inventory C a p a b i l i t y C l a s s i f i c a t i o n f o r a g r i c u l t u r e  delineates area of s i m i l a r c a p a b i l i t y f o r the production of a range of common f i e l d crops.  S o i l s are divided  i n t o seven classes that have the  same degree of l i m i t a t i o n or hazard. A recent a p p l i c a t i o n of the Canada Land Inventory i s the A g r i - . ; .. c u l t u r a l Land Reserve l e g i s l a t i o n i n B r i t i s h Columbia.  The l e g i s l a t i o n  i s intended to r e t a i n prime a g r i c u l t u r a l land f o r a g r i c u l t u r a l use. Land with Canada Land Inventory A g r i c u l t u r a l c a p a b i l i t y c l a s s 4 or better i s placed i n t o the A g r i c u l t u r a l Land Reserve which i s zoned to l i m i t land use to a g r i c u l t u r e , thereby e l i m i n a t i n g non- a g r i c u l t u r a l competition f o r the land. Canada Land Inventory A g r i c u l t u r a l C a p a b i l i t y information i s presented i n map form.  The s o i l c a p a b i l i t y map f o r Sumas (map sheet 926/1) was  the source of c a p a b i l i t y data f o r the project.  The mapped c a p a b i l i t y data  31  were o v e r l a i n on a soiiki"..- s e r i e s map  and  the percentage  s e r i e s w i t h i n every c a p a b i l i t y c l a s s was dot c o u n t i n g u s i n g a 0.01  cm g r i d .  the c a p a b i l i t y c l a s s , or range  The  soil  bility  s e r i e s was  2.  by i n t e n s i v e  s o i l s were grouped  grid  based  upon  series units.  The range  i n capa-  e x p l a i n e d by:  1.  V a r i a t i o n i n c a p a b i l i t y due  2.  C a r t o g r a p h i c e r r o r d e r i v e d from o v e r l a y i n g a 1:50,000 s c a l e c a p a b i l i t y map on a reduced 1:25,000 s c a l e s o i l s e r i e s map.  The l a t t e r problem was bility  soil  of c a p a b i l i t y c l a s s e s , which c o n t a i n e d  most of the area w i t h i n pure classes within a s o i l  determined  of each  topography.  Inevitable., but-, .there was - n o r e c o u r s e  d a t a were to be used  Land S u i t a b i l i t y  to the complex  i n the p r e s e n t  if-.existing  capa-  study.  Data  S u i t a b i l i t y assessments  g e n e r a l l y i n v o l v e some measure of  p r o d u c t i v i t y f o r s p e c i f i c crops i n r e l a t i o n to d e f i n e d s e t s of management p r a c t i c e s and  levels  (Pierre,  1958).  P r o d u c t i v i t y d a t a may  be  o b t a i n e d from a number of s o u r c e s , i n c l u d i n g farm o b s e r v a t i o n s , farm r e c o r d d a t a , farmer  survey, e x p e r i m e n t a l r e s u l t s and  o b s e r v a t i o n s of crop growth on d i f f e r e n t d i f f e r e n t s e t s of management may  field  types of s o i l and  be' made by the s o i l  trials. under  s u r v e y o r , but  o b s e r v a t i o n s are l i m i t e d to areas which are c u r r e n t l y c u l t i v a t e d 1967). for  Farm r e c o r d d a t a and  a wide range of s o i l s ,  farmer  Farm  these  (Steele,  survey p r o v i d e crop y i e l d i n f o r m a t i o n  c l i m a t i c c o n d i t i o n s and management p r a c t i c e s .  Farm r e c o r d d a t a i s c o n s i d e r e d p r e f e r a b l e because i t does not r e l y upon the memory of the c u l t i v a t o r  ( O d e l l , 1958;. S t e e l e , 1967).  Experimental  r e s u l t s a r e o f t e n s u b s t i t u t e d where farm r e c o r d d a t a a r e u n a v a i l a b l e . These d a t a are more expensive t o o b t a i n than crop y i e l d d a t a , but r e s u l t s are o f t e n more p r e c i s e .  In g e n e r a l crop y i e l d s tend to be  the lower  /  32:  Table 3.3  Name t Location i 1 Total Area a) tinder cultivation b) type of use c) a l t * history 2 S o i l Series ») type b) proportion 3 Management a) s o i l treatment b) i r r i g a t i o n c) drainage d) t i l e spacing 4 Soil Test a) tine b) parameters 5 Lime Application a) rate b) time c) type 6 Manure Application a) rate b) time c) type d) management 7 F e r t i l i s e r Use a) rate b) time c) type 6 Crop Yield a) tons/ acre b) others c) t of cuttings 9 Animal Production a) type b) # of animals C) milk production 4 ) turn-over 10 Crop Rotation 11 S o i l Problems 12 Productivity due to differences i n s o i l  Survey  Questionnaire  33  (75% to 95%)  on farms than on e x p e r i m e n t a l p l o t s w i t h s i m i l a r  c l i m a t e and management p r a c t i c e s d a t a may  be o b t a i n e d from f i e l d  ( O d e l l , 1958). trials  S h o r t e r term  soils, yield  i n which the performance of  s e l e c t e d crops under s p e c i f i c management c o n d i t i o n s i s measured f o r one or two  seasons  ( O d e l l , 1958;  S t e e l e , 1967).  In g e n e r a l , the l e v e l  accuracy of crop y i e l d e s t i m a t e s depends upon the number of y e a r s  of over  which y i e l d d a t a were c o l l e c t e d and upon the number of l a n d t r a c t s i n the e s t i m a t e  (Odell,  1958).  P r o d u c t i v i t y d a t a f o r the p r e s e n t study were c o l l e c t e d from f o u r sources: trial  a.  farmer  survey, d i r e c t e s t i m a t e s by expert consensus,  plot  and r e s e a r c h s t a t i o n d a t a .  Farmer  Survey  P r o d u c t i v i t y d a t a and crop management i n f o r m a t i o n were c o l l e c t e d f o r a wide range of crops i n c l u d i n g g r a s s , c o r n , r a s p b e r r i e s , s t r a w b e r r i e s , beans, peas, b r o c c o l i , c a u l i f l o w e r , b r u s s e l v s p r o u t s and rhubarb. P e t e r s ( B r i t i s h Columbia M i n i s t r y of A g r i c u l t u r e ) , Mr. C h i l l i w a c k Coop) and B.C.  and  levels  from whom r e l i a b l e y i e l d and management d a t a c o u l d be o b t a i n e d .  farmers were i n t e r v i e w e d u s i n g a q u e s t i o n n a i r e ( T a b l e 3,3) a B r i t i s h Columbia M i n i s t r y of A g r i c u l t u r e form developed  adapted  These from  by Mr. R. ,Bertrand  The q u e s t i o n n a i r e s t r e s s e d s i t e h i s t o r y ,  management p r a c t i c e s , s o i l f e a t u r e s and problems, and  b.  identified  consistently attained high productivity  (B.C. M i n i s t r y of A g r i c u l t u r e ) .  B.  S. Loewen (East  M i n i s t r y of A g r i c u l t u r e p e r s o n n e l  t h i r t y one key farmers who  Mr.  productivity.  D i r e c t E s t i m a t e by E x p e r t Consensus Y i e l d e s t i m a t e s made by a group of a g r i c u l t u r a l e x p e r t s i n  headed by H. Luttmerding  1975  ( p e r s o n a l communication) were o b t a i n e d f o r a  34  v a r i e t y of b e r r y , v e g e t a b l e and f o r a g e crops f o r 10 s e r i e s w i t h i n the study a r e a .  These data were used  to v e r i f y and supplement the farmer  survey i n f o r m a t i o n .  c.  Plot  Trials  The o n l y a v a i l a b l e d a t a from p l o t t r i a l s  f o r s o i l s w i t h i n the study  a r e a were mean y i e l d d a t a f o r g r a s s , b r o c c o l i and sweet c o r n crops on Monroe, M a t s q u i  and Ryder s o i l s .  These d a t a were o b t a i n e d from Dr. G.  Kowlaenko from A g r i c u l t u r e Canada, A g a s s i z .  d.  Research  S t a t i o n Data  Raspberry  y i e l d d a t a from  a v a i l a b l e experimental  the A b b o t s f o r d  soil  s t a t i o n p r o d u c t i v i t y data.  s e r i e s were the o n l y  These were o b t a i n e d  from r e s e a r c h p l o t s a t the Canada A g r i c u l t u r a l Research  Station  (Abbots-  f o r d ) c o u r t e s y of Mr. Dobney ( A g r i c u l t u r e Canada). The y i e l d d a t a from a l l sources was pooled and p r o d u c t i v i t y  indices  were e s t a b l i s h e d u s i n g y i e l d d a t a f o r those crops which c o u l d p o t e n t i a l l y be grown on a l l the s o i l  s e r i e s w i t h i n the study a r e a .  The s o i l  series  were grouped i n t o low, medium and h i g h p r o d u c t i v i t y c l a s s e s on the b a s i s of each crop index.  The range of y i e l d s f o r each c l a s s depended upon the  crop.  3.  Land F e a s i b i l i t y Data Feasibility classifications  with land resource information. feasibility.  i n t e g r a t e socio-economic  considerations  C u r r e n t l a n d use i s a r e f l e c t i o n of  A r e p o r t and a s e r i e s of d e t a i l e d l a n d use maps prepared i n  1977 by the C o r p o r a t i o n s and the D i s t r i c t s of Matsqui the most up-to-date  and A b b o t s f o r d were  source of c u r r e n t l a n d use d a t a a v a i l a b l e .  The  35  i n f o r m a t i o n on the maps was area.  based upon a p l o t by p l o t d e s c r i p t i o n o f the  A s i n g l e l a n d use map  was p r e p a r e d from t h e l a n d use d a t a and  o v e r l a i n oh. a s o i l  s e r i e s base map.  .1 cm dot g r i d was  employed  I n t e n s i v e g r i d dot c o u n t i n g u s i n g a  t o determine the percentage o f each  soil  under e v e r y l a n d use. Numerical A n a l y s i s Numerical a n a l y s i s  included c l u s t e r a n a l y s i s  , factor  stepwise d i s c r i m i n a n t a n a l y s i s and Mann-Whitney Rank Sum test).  1.  Test  A l l a n a l y s e s were performed by the U.B.C. computer  U n i v e r s i t y of C a l i f o r n i a B i o m e d i c a l Programs (BMD,  analysis, (significance  using  Brown and Dixon,  1979).  Cluster Analysis C l u s t e r a n a l y s i s i s an a g g l o m e r a t i v e p r o c e s s which groups cases on  a measure o f a s s o c i a t i o n , o r s i m i l a r i t y , based upon m u l t i p l e of  e q u a l weight.  one member.  Each case i s i n i t i a l l y  considered a c l u s t e r  The c l u s t e r s a r e p r o g r e s s i v e l y j o i n e d i n  u n t i l a l l cases form one c l u s t e r .  parameters containing  a stepwise procedure  An example of t h i s p r o c e d u r e , which i s  known as h i e r a r c h i a l average d i s t a n c e l i n k a g e (Ward, 1963)  i s shown i n  F i g u r e 3.2 u s i n g two paramaters, % c l a y and l i q u i d l i m i t .  Three c a s e s  are  p l o t t e d i n two-dimensional space.  Cases BT and BL a r e c l o s e s t to each  o t h e r and a r e l i n k e d f i r s t by the c l u s t e r i n g the  procedure.  The m i d p o i n t  l i n e c o n n e c t i n g BT t o BL becomes the c e n t r o i d o f the group and  t h i r d case,  AD,  i s l i n k e d to t h i s c e n t r o i d .  The  be extended, from and computer  A hierarchy,  i l l u s t r a t e s the l i n k a g e  and the degree o f s i m i l a r i t y between c a s e s .  the  d i s t a n c e between the  c l u s t e r s a t l i n k a g e d e s c r i b e s the s i m i l a r i t y o f the c a s e s . such as the one presented:, i n F i g u r e 3.2,  of  sequence  The c l u s t e r i n g procedure can  two parameters to m u l t i p l e parameters u s i n g m a t r i x a l g e b r a  analysis  (Ward, 1963;  Sneath and Sokal,1973; Dixon  and Brown,  36  SOIL SERIES  * CLAY  LIQUID  A0  4  13  BT  39  33  BL  52  37  AD 0  LIMIT  10  20 LIQUID  30  40  LIMIT  FIGURE 3.2-CLUSTERING PROCEDURE  50  60  37  1979;  2.  Webster, 1979).  Factor Analysis F a c t o r a n a l y s i s i s a m u l t i v a r i a t e s t a t i s t i c a l procedure which  combines common v a r i a b l e s i n t o f a c t o r s .  The procedure assumes t h a t o n l y  p a r t of t h e v a r i a t i o n i n a g i v e n p o p u l a t i o n i s c o n t a i n e d w i t h i n t h e v a r i a b l e s used t o d e f i n e t h a t p o p u l a t i o n .  Factor analysis u t i l i z e s  information  from a m u l t i p l e c o r r e l a t i o n m a t r i x  i n which each v a r i a b l e i s r e g r e s s e d  a g a i n s t the o t h e r s .  o f the m a t r i x  The d i a g o n a l s  p r o v i d e an e s t i m a t i o n of  the p r o p o r t i o n of the v a r i a n c e o f a v a r i a b l e t h a t i s hed i n common w i t h all  other v a r i a b l e s .  These a r e reduced by t h e i r uniqueness t o the .  communalities, the percentage of v a r i a t i o n due t o common f a c t o r s . communalities r e p l a c e t h e d i a g o n a l s ing . u s i n g a n o n - d e t e r m i n i s t i c The  i n the c o r r e l a t i o n matrix  and f a c t o r -  approach known as varimax r o t a t i o n .  o r i g i n a l p r i n c i p a l components, chosen under the assumption t h a t  represent  The  the s c a t t e r i n the data, a r e r o t a t e d o r t h o g o n a l l y  they  t o new axes  such t h a t each o r i g i n a l v a r i a b l e c o n t r i b u t e s s t r o n g l y t o one f a c t o r and little  t o the o t h e r s .  This i s represented  are as l a r g e as p o s s i b l e and r e p r e s e n t each  by t h e f a c t o r l o a d i n g s which  t h e fewest v a r i a b l e s p o s s i b l e f o r  f a c t o r ( C a t t e l , 1965; Sneath and S o k a l , 1973; Y e a t e s , 1974; Brown  and Dixon, 1979; Webster, 1979).  3.  Stepwise D i s c r i m i n a n t  Analysis  Stepwise d i s c r i m i n a n t a n a l y s i s n u m e r i c a l l y c l a s s i f i e s  soils  using  d i v i s i o n s which a r e o b l i q u e through space and which a r e based on d e s c r i p t i v e parameters o f the group r a t h e r than an i n d i v i d u a l s w i t h i n the groups. In c l a s s i f i c a t i o n s w i t h more than two groups, the d i s c r i m i n a n t space i s d i v i d e d i n t o r e g i o n s , each a s s o c i a t e d w i t h one o f t h e groups.  Each group  38  has a r e f e r e n c e  score.  Midway p o i n t s , h a l f the d i s t a n c e between r e f e r e n c e  s c o r e s , are c a l c u l a t e d f o r each p a i r of groups and d e f i n e s the p l a n e which separates  the r e g i o n s .  The l e n g t h of the l i n e between any two  reference  s c o r e s measured i n d i s c r i m i n a n t f u n c t i o n u n i t s i s the square r o o t of the Mahalanobis D , 2  or the E u c l i d e a n d i s t a n c e .  T h i s d i s t a n c e i s important i n  t e s t i n g whether the group r e f e r e n c e s c o r e s are s i g n i f i c a n t l y  different  ( u s i n g the F - t e s t ) and a l s o i n a s s e s s i n g the d i s c r i m i n a t o r y power of each variable. Stepwise d i s c r i m i n a n t a n a l y s i s i s p r o b a b i l i s t i c  i n that i t gives  some measure t h a t the c l a s s i f i c a t i o n of an i n d i v i d u a l i s c o r r e c t . classified groups.  i n d i v i d u a l s are i d e n t i f i e d and c l a s s i f i e d  S i m i l a r l y , unknown cases can be entered  Mis-  i n t o t h e i r proper  i n t o the open-ended  c l a s s i f i c a t i o n and p l a c e d i n an a p p r o p r i a t e grouping (Sneath and S o k a l , 1973; Webster, 4.  1973;  1973).  Mann-Whitney Rank Sum  Test  The Mann-Whitney Rank Sum  T e s t t e s t s the niillv.- h y p o t h e s i s  that  two independent samples  are d e r i v e d from the same p o p u l a t i o n .  t i o n s from both samples  are ranked i n a sequence and the rank of each  sample i s determined.  The U - s t a t i s t i c r e p r e s e n t s  Observa-  the number of times a  s c o r e from one sample precedes a score from the second sample i n the ranking  (Siegel,  Assessment  1956).  of S o i l s Groups and I n t e r p r e t a t i v e S o i l s  The assessment was  performed i n t h r e e 1.  Units  of the s o i l s groups and i n t e r p r e t a t i v e s o i l s stages:  Comparison of s o i l s groups based upon d i r e c t grouping ( d i r e c t s o i l s groups) w i t h s o i l s groups based upon c l u s t e r a n a l y s i s using f a c t o r s ( i n d i r e c t s o i l s groups).  groups  39  1.  2.  Comparison of soils interpretative units.  3.  Comparison of soils groups and soils interpretative units.  Comparison of Soils Groups The Mann-Whitney analysis tested corresponding direct and indirect  soils groups for significant differences. 2.  Comparison of Interpretative Soils Groups Similarities between the interpretative soils classifications was  assessed using a graph method which plotted each interpretative classification against the others in a series of three graphs.  The graph  method is best explained using the examples presented in Figure 3.3. Figure 3.3a illustrates perfect correlation between CEC and yield.  The  entire soil population is plotted on the diagonal representing on hundred percent agreement. Figure 3.3b illustrates the opposite extreme in which cation exchange capacity bears no relationship to yield.  Every point on the  graph is represented and random distribution is observed. Figure 3.3c represents the intermediate stage between perfect correlation and random distribution.  The cases show a general relation-  ship defined by the diagonal but do not f a l l directly upon the line representing perfect agreement.  No cases are found in the extreme corners  (i.e., low CEC, high yields; high CEC, low yield). distribution toward one axis (see Figure 3.4) overestimates the other.  An.uneven case  indicates that one variable  In Figure 3.4, the distribution indicates that  the CEC rating is high in comparison to yield as described by the relationship defined by the diagonal.  40  3 a - PERFECT DISTRIBUTION O  1  2  3  2  3  2  3  YIELD  3 b - RANDOM DISTRIBUTION 0  1 YIELD  3.C.- INTERMEDIATE DISTRIBUTION 0  1 YIELD  FIGURE 3.3-GRAPH  PROCEDURE  41  YIELD F I G U R E 3.4-  UNEVEN  CASE  DISTRIBUTION  42  3•  Comparison of S o i l s  Groups and I n t e r p r e t a t i v e  The s o i l s groups r e f l e c t  similarities  Soil  Units  i n s o i l properties  c o n t a i n no element of r e s o u r c e e v a l u a t i o n  or i n t e r p r e t a t i o n .  pretative  physical  soils classifications  should a l s o ties  create s o i l s units  stressing that  e v i d e n t i n the s o i l s groups.  reflect  the  relationship  r e s o u r c e parameters  Furthermore, s i m i l a r s o i l  degree of s o i l s group s e p a r a t i o n by s i g n i f i c a n t  parameters of the i n t e r p r e t a t i v e  ficantly  soils classifications  determined the soils  parameters f o r c a p a b i l i t y , s u i t a b i l i t y  test., r e s u l t s .  soil  and  analysis  Only s o i l parameters which  units.  results signi-  s e p a r a t e d two or more of t h e t h r e e i n t e r p r e t a t i v e l a n d management  u n i t s were used. the  parameters  discriminant  f e a s i b i l i t y were o b t a i n e d from the stepwise d i s c r i m i n a n t and the s i g n i f i c a n c e  similari-  I n the p r e s e n t study,  between the s o i l s groups and the i n t e r p r e t a t i v e  Significant discriminant  Inter-  the s o i l p r o p e r t y  should s e p a r a t e the s o i l s groups and s o i l s u n i t s .  and  The degree of s o i l s group s e p a r a t i o n was  expressed as  percentage of s o i l s groups s e p a r a t e d by each s i g n i f i c a n t  parameters. significant  discriminant  F o r example, 80, 72 and 64% s e p a r a t i o n of s o i l s groups by interpretative  emphasis on p h y s i c a l  s o i l s discriminant  parameters i n the s o i l s  low percentage s e p a r a t i o n i n d i c a t e d  parameters i n d i c a t e d interpretation.  a weak r e l a t i o n s h i p  classification.  The r e s u l t s of the d a t a a n a l y s i s  d i s c u s s e d , i n the f o l l o w i n g  c h a p t e r . '.  Conversely,  between  r e s o u r c e parameters and the u n d e r l y i n g assumptions of the  strong  physical  interpretative  are p r e s e n t e d and  43  CHAPTER 4 RESULTS AND DISCUSSIONS In the present study s o i l i n t e r p r e t a t i o n s at a l l l e v e l s of H i l l s ' system of land c l a s s i f i c a t i o n were performed f o r twenty s o i l s e r i e s . S o i l survey data were c o l l e c t e d and assessed f o r c a p a b i l i t y , s u i t a b i l i t y and f e a s i b i l i t y .  Numerical a n a l y s i s , i n c l u d i n g c l u s t e r analysis and  stepwise discriminant  analysis c l a s s i f i e d s o i l s into s o i l s groups and  interpretative s o i l units. f o l l o w i n g order:  Results are presented i n t h i s chapter i n the  numerical analysis  r e s u l t s are presented f i r s t ;  c a p a b i l i t y , s u i t a b i l i t y and f e a s i b i l i t y assessments f o l l o w ; and a comparison of the s o i l c l a s s i f i c a t i o n s ends the section. Numerical Analysis of S o i l s Data S o i l survey i s an inventory  of s o i l s resources of an area and uses  s o i l properties which predict s o i l behaviour. with s i m i l a r properties responses.  Consequently, s o i l s groups  should e x h i b i t s i m i l a r behaviour and management  A c l u s t e r i n g procedure using average distance linkage, grouped  s o i l s on the basis of m u l t i parameter s o i l s data.  Cluster analysis was  performed i n two stages:  1.  1.  d i r e c t grouping of a l l v a r i a b l e s .  2.  i n d i r e c t grouping f o l l o w i n g f a c t o r a n a l y s i s .  S o i l s Data Collected data and s o i l s information  from the S o i l s Data Bank f o r  twenty s o i l series were the basic s o i l s data f o r the present study (Appendix B). Nineteen s o i l parameters i n f l u e n c i n g plant p r o d u c t i v i t y and representing  permanent s o i l properties were selected f o r a n a l y s i s .  44  2.  Direct Cluster  Analysis  Twenty s o i l s  s e r i e s were grouped by c l u s t e r a n a l y s i s u s i n g  s o i l parameters (Table revealed  3.2).  The r e s u l t i n g dendrogram  4.1)  seven s o i l s groups; s i x c o n t a i n e d two members or l e s s (Table  Significance  t e s t i n g of s o i l s group p a i r s i n d i c a t e d  s o i l parameters v a r i e d  a c c o r d i n g to the t e s t e d  the number of d i s t i n g u i s h i n g parameters was (Table  (Figure  nineteen  that  4.1).  discriminant  s o i l s group p a i r and  d i r e c t l y r e l a t e d to group  that size  4.2).  T a b l e 4.1 Group  D i r e c t S o i l s Groups  1  2  3  AD LX  RD W  HD NN  •4 KD LK  5  6  HT VD  BL BK HJ SI MQ M BT PE  I MH  F It i s possible  t h a t c l u s t e r a n a l y s i s was not the most e f f e c t i v e  method of s e p a r a t i n g  soil  s o i l s groups i s t h a t  the m a j o r i t y  the h i e r a r c h y  into classes.  The most obvious f e a t u r e  form one l a r g e group l i n k e d e a r l y i n  and the remaining s o i l s formed one or two member groups.  T h i s phenomenon c o u l d be a f u n c t i o n of the s o i l s d a t a s e t which only  of q u a l i t y s o i l s found.on prime f a r m l a n d .  ties  i s possibly  group.  of the  so small  that  A wide range of s o i l s  might have o f f e r e d b e t t e r It i s also possible cluster analysis  the m a j o r i t y  consists  The range of s o i l p r o p e r -  of the s o i l s f a l l  i n t o one  i n c l u d i n g o r g a n i c s and p o o r e r q u a l i t y  separation  soils  i n t o a l a r g e r number of groups.  t h a t the s t a t i s t i c a l procedure performed by  i s not s u i t e d to the n a t u r e of s o i l s d a t a .  Cluster  45  AMALGAMATED  AD  LX  RD  W  HD  NN  KD  LK  HT  VD  BL  DISTANCE  PE  BK  HJ  SI  F  2.421 2.277 2.335 2.427 2.727 2.920 2.991 2.872  T  6  3.680 3.848 4.137  4  4.180  T5  4.816 4.470 5.452 5.653 5.398 6.243 7.098  FIGURE 4 . 1 - DIRECT GROUPING  Letters refer  to s o i l  DENDROGRAM  s e r i e s ; numbers r e f e r  to s o i l s  groups  MQ  L  Table 4.2  S i g n i f i c a n t D i s c r i m i n a n t Parameters of D i r e c t S o i l s Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t CD '  g  Group  All 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6  vs vs vs vs vs vs vs vs vs vs vs vs vs vs vs vs vs vs vs vs vs  2 3 4 5 6 7 3 4 5 6 7 4\ 5 6 7 5 6 7 6 7 7  IS  g  CD CO 4-1  CD •H CO 4-1  >H  cd cd  u  cd cd  M  O  r4 p, . uO [n cOj M  X  X X  X X  ^ CJ  N—'  -a a Cd cd oo  X X X X X X X X  X  X X X  X X  X X  ^ o !>>  cd  r-l I-I CJ  X X X X X X X X X X X  X X X  X  X  X  X  X X  X X X X X X  o  '—\  v—'  4J 4-1 i—1 -H •H C/3  c-  /—s CO ^—'  >N >,  cd  r-l i—i CJ  X  N  CO  .. o r4 C4 4-i C 5 JD cd 00 cd 4-1 U Cd u o g ^— 0'  •H  X X X X X X  X X X X X  X X  •—\  CO  '—s  •H 4-J 3-H  e  zr -H -,H •i-l <H rJ rH  X X  X X X  X X  X = s i g n i f i c a n t d i s c r i m i n a n t parameters  /—N  CJ  —'  T) _ •rH 4J *rj S •rH  p cr -,H a -,H •I-I •r-l (J I-H  X X X X  C 5D 4-1  X X X X X X X  X X  O  3  Cd cd  X  X X  u  X X X X X X X X  P.  Cd  CO CO CD  cd cj  U  2  >,  4J -H  W  •r-l  X  X X  o? > + .>  4-1 CO 4J  X  X X X  X X X X X X  r-l  X X  X X X X  CD  cd co  r-l  O  3c5  4J Cd  X X X X X X X X  X  X X  X  X  X  X  ft  Cd  /CO —\ —'  V  —'  CJ  CJ  CJ  CJ  w  X X X X X X X X X X  X X  X  ^—s CJ  w X X X X X X X X  6 0 ctf  X X X X  o •I-I  c cd r-l o  o r-l CO  PM  X X  X  X X  •H  X X X X  CD  ft  X  >  r-l CD  X X X  X  4-)  <U rJ  CD  C  cd r-l cd  PH  M CD  X  X  X X  X X X  X  X X X  X X X X  u  CD 4-1  ftcd ft g  X  X X  X X  X X  •I-I  iD  X X  X X X X X  c CO  CD  4J  c M  cd rH cd  (3-1  •iH r4 u CD CD 4-1  o  rJ  cd  g  X X X X X X X X X X X  X  X  X  X  X X  X X  4>» ON  47-  a n a l y s i s attempts t o a s s i g n cases space which a r e o r t h o g o n a l  t o groups along p l a n e s  t o the p r o p e r t y  dependent p r o p e r t i e s , such as s o i l orthogonal  axes which adequately  axes.  through c h a r a c t e r  Overlapping  and i n t e r -  c h a r a c t e r i s t i c s , do n o t c o n t r i b u t e t o  d i v i d e the p o p u l a t i o n i n t o groups  (Webster, 1975).  3.  Indirect Cluster Analysis The  to  same data  s e t (Appendix B) was s u b j e c t e d  to f a c t o r a n a l y s i s  i d e n t i f y parameters which have a s i g n i f i c a n t e f f e c t on t o t a l  and  t o determine i n t e r r e l a t i o n s h i p s between the parameters.  a n a l y s i s was subsequently the s o i l s a.  into soils  variance  Cluster  performed based on the f a c t o r s c o r e s t o c l a s s i f y  groups.  Factor Analysis F a c t o r a n a l y s i s was performed t o e l i m i n a t e over-emphasis o f  c o r r e l a t e d parameters and t h e 19 v a r i a b l e s ( T a b l e 3.2) were reduced t o six  f a c t o r s (Table 4.3). The f i r s t f a c t o r , d e s c r i b i n g t e x t u r e i n the C  h o r i z o n and d r a i n a g e  c h a r a c t e r i s t i c s accounted f o r 38 p e r c e n t  v a r i a t i o n among the parameters.  Another 20 p e r c e n t was e x p l a i n e d by the  second f a c t o r which d e s c r i b e s t e x t u r e and water h o l d i n g of the s u r f a c e h o r i z o n .  The remaining  characteristics  f a c t o r s d e s c r i b e d the water  c a p a c i t y of the C h o r i z o n , parent m a t e r i a l , pH and coarse surface horizon  (Table 4.3). Texture  accounted f o r most of the t o t a l v a r i a n c e  soil  population.  b.  f r a c t i o n of the  (over 70%) w i t h i n the t o t a l  These parameters were d e s c r i b e d by the f i r s t  The remaining  soil  storage  and m o i s t u r e c h a r a c t e r i s t i c s o f the  soil  factors.  of the  three  parameters accounted f o r l e s s than 30%.  Cluster Analysis C l u s t e r a n a l y s i s was performed based on the f a c t o r s c o r e s .  The  Table  Variables  4.3  Factor 1 (Texture i n C Horizon and Drainage Factor)  Clay (C Horizon) 0.942 Clay (S) 0.909 Drainage 0.895 L i q u i d L i m i t (C) 0.847 CEC (C) 0.797 Sand (C) - 0.714 Slope - 0.682 Perviousness 0.625 CEC (S) 0.554 S i l t (S) 0.0 Organic M a t e r i a l (S) 0.0 Water Storage C a p a c i t y ( S ) 0.0 L i q u i d L i m i t (S) 0.550 Water Storage Capacity(C) 0.0 Coarse F r a c t i o n (C) - 0.293 Upper Parent M a t e r i a l 0.0 Lower Parent M a t e r i a l - 0.433 PH 0.0 Coarse F r a c t i o n (S) 0.0 VP 6.170 Percent E x p l a n a t i o n 37.7 S = surface horizon  C = C horizon  Sorted Rotated Factor 2 (Texture and Water H o l d i n g Capacity i n S Horizon Factor) 0.0 0.0 0.0 0.0 0.0 - 0.310 0.0 ' 0.392 0.283 0.861 0.823 0.782 0.663 0.509 0.344 0.0 0.0 0.0 0.0 3.243 19.8  F a c t o r Loadings Factor 3 (Water Storage C a p a c i t y of C Horizon Factor) 0.0 0.0 0.0 0.0 - 0.344 0.566 0.0 0.0 0.337 0.0 0.0 0.0 0.310 - 0.812 0.800 0.0 0.0 0.0 0.0 2.178 13.3  Factor 4 (Parent Material Factor  Factor 5 (pH Factor)  0.0 0.0 0.0 0.0 0.0 0.0 0.317 0.0 0.0 0.0 0.0 0.356 0.0 0.0 0.0 0.925 0.863 0.0 0.0 2.052 12.5  0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.456 - 0.479 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.838 0.0 1.507 11.3  Factor 6 (Coarse Fraction : S Horizon Factor) 0.0 0.0 0.0 0.0 0.0 0.0 - 0.294 - 0.268 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.900 1.218 9.1  49  r e s u l t i n g dendrogram ( F i g u r e 4.2) r e v e a l e d contained  e i g h t groups, two which  two members and f i v e which were s i n g l e member c l a s s e s  (Table  4.4).  T a b l e 4.4 Group  I n d i r e c t S o i l s Groups  I AD LX  _ VD  . BL PE BK  3  4 NN HT  5 HD  6 RD  7  _  _  W  MH  H'J SI LK KD F M MQ PT  The  s i g n i f i c a n c e of the three multi-member groups was a s s e s s e d by the  Mann-Whitney Rank Sum T e s t representing  and numerous d i s c r i m i n a t i n g parameters.,  a l l f a c t o r s except the pH-p f a c t o r , were r e v e a l e d  (Table 4.5).  A comparison o f the r e s u l t s from d i r e c t and i n d i r e c t soils..grouping revealed  t h a t the l a r g e groups l i n k e d e a r l y i n the c l a s s i f i c a t i o n  (group  6 i n d i r e c t grouping and group 3 i n i n d i r e c t grouping) were s i m i l a r . s o i l s not contained  within  the l a r g e groups comprised s i n g l e o r double  member groups l i n k e d l a t e i n the c l a s s i f i c a t i o n . different associations age  These groups showed  a t h i g h e r l e v e l s i n the h i e r a r c h y .  The e a r l y  o f the l a r g e groups i n d i c a t e d t h a t these s o i l s e x h i b i t e d  similar s o i l properties management  responses.  best management large s o i l s The  The  link-  the most  and, c o n s e q u e n t l y the most s i m i l a r b e h a v i o u r and Optimum use c o u l d be made o f these s o i l s  p r a c t i c e s and uses were d e f i n e d  i f the  by key farmers f o r the  groups. s i n g l e and double member groups were too small  and t o o  50  AMALGAMATED DISTANCE  AD  LX  VD  BL  PE  BK  HJ  SI  LK  KD  F  M  MQ  BT  NN  HT  HD  RD  U  1.002 1 045 1.052 0.941 1.439 1.538 1.540 1.560 1.735 1.781 2.609 2  2.892 2.917 3.037 2.987 3.277  6 _i  3.406 3.406 4.086  FIGURE 4 . 2 - INDIRECT GROUPING DENDROGRAM  Letters  refer  to s o i l  series;  numbers r e f e r  to s o i l s  groups  i—  < cn OQ 3  1  <O C  <1 CO  -C-  Gr up  X  o  CO  Ml  3 Coarse Fraction  co o l-{ gH* 3 Co 3  Coarse Fraction X  x  g  (S)  Cu W I-'  (C)  Sand (C)  s i l t (s)  3 fD fD CO  X  x  C l a y (S)  x  x  C l a y (C) Organic M a t t e r (S) Liquid L i m i t (S) Liquid L i m i t (C) Water Storage C a p a c i t y (S)  X X  X  X  Water Storage C a p a c i t y (C)  X  X  CEC (S)  X  X  CEC  X  X  Slope Perviousness  X  Upper Parent Material  ^ X  (C)  Drainage  X  X  H  Lower Parent Material  fD -C~  Ul o CO Ho CTQ P 3 X) ( -•• CO Hi HM O a. Cu fD 3 3 rt rt H- t) hh H* P- co fD O CH* 3 H-3 Cu Cu 3 3 rt 3 1 hd Cu i-i -? H- Cu rt 3 3 fD n> rt ^ fD l-i CO Cu 3 o ! ^ i-h C/l M £B 3 (HH H fD fD CO O rt rt CO o Hr— CO 1  52  d i s s i m i l a r to j u s t i f y u s i n g the groups f o r management purposes. In summary, s o i l s groups were formed by variables  and  by  grouping s o i l s by  The  d i r e c t grouping of a l l  cluster analysis using factors. cluster analysis  The  advantages  using s o i l properties  of  were:  1.  The groups were o b j e c t i v e l y d e f i n e d properties.  based upon s o i l  2.  No a p r i o r i knowledge of the f u n c t i o n a l r e l a t i o n s h i p between the s o i l p r o p e r t i e s and the s o i l s groups was not r e q u i r e d s i n c e s o i l s w i t h s i m i l a r p r o p e r t i e s are assumed to e x h i b i t s i m i l a r b e h a v i o u r and responses to management.  3.  The s o i l s groups can be used f o r management purposes and the b e s t management p r a c t i c e s and uses can be d e f i n e d by key farmers.  d i s a d v a n t a g e s were: 1.  The c l u s t e r a n a l y s i s r e s u l t e d i n one l a r g e group „• c o m p r i s i n g V- the most s i m i l a r s o i l s of the e n t i r e d a t a s e t and a number of s i n g l e and double member groups c o m p r i s i n g the remaining and l e s s s i m i l a r s o i l s .  2.  Only the purposes.  Numerical A n a l y s i s The tested  by  - large  group c o u l d  of I n t e r p r e t a t i v e  r e l i a b i l i t y of the  be used f o r management  S o i l s Data  s o i l s groups formed by  r e l a t i n g c a p a b i l i t y , s u i t a b i l i t y and  cluster analysis  was  f e a s i b i l i t y evaluations  to  them. 1.  C a p a b i l i t y Data  a.  Capability The  Groups  Canada Land I n v e n t o r y a s s e s s e s c a p a b i l i t y f o r a g r i c u l t u r e u s i n g  t h i r t e e n l i m i t a t i o n s (Appendix C):and d i v i d e s the  same r e l a t i v e degree of l i m i t a t i o n or h a z a r d .  classified the  soils  into c a p a b i l i t y classes  s o i l mapping u n i t s .  u s i n g the  into classes The  study a r e a  that have was  s o i l survey i n f o r m a t i o n  Soil capability for a l l soils  i n the  and  area ranged  53  between c l a s s e s  two  and  counting revealed that  six.  two  soil  group d e f i n i n g  the  and  soil  pure s o i l  series  appear as  pure u n i t s w i t h i n the  (Table 4.6)..  The  f o r a l l s o i l s except Monroe and study a r e a .  deep and  can  be managed and  the  range o f c r o p s u s u a l l y  key  soil limitations  restrict  (Env.  cropped f a i r l y  Can.,  easily.  special conservation practices,  class  o r both.  more r e s t r i c t i v e p r o p e r t i e s .  c u l t i v a t i o n of medium c a p a b i l i t y  on The  i n some  3 and  s o i l s are  severe l i m i t a t i o n s .  and  range c r o p s ,  per-  require  generally  limited  l i m i t a t i o n s which r e s t r i c t  6 soils.  C l a s s 4 s o i l s may  range of crops under s p e c i a l c o n s e r v a t i o n p r a c t i c e s ;  the  have m o d e r a t e l y  s o i l s i n c l u d e combinations of  c l a s s 4,5  "  characteristics.  These s o i l s are The  and/or low  4 s o i l s that  the  areas  Cultivation  support a  •  droughtiness,  topography.  capability  r e s t r i c t e d by  soils  Restrictions  undesirable soil structure  severe to severe l i m i t a t i o n s which r e s t r i c t  Low  The  crops  f o r h i g h c a p a b i l i t y s o i l s i s excess water r e s u l t i n g  Medium c a p a b i l i t y s o i l s are  s t o n i n e s s and  soil have  the. range o f  m e a b i l i t y , o r a combination of c u l u l a t i v e minor adverse  or  these  3 s o i l s and  1972).  not  e v o l v e from a s i n g l e h a z a r d or l i m i t a t i o n .  range of crops i s r e s t r i c t e d by  two  which d i d  which the named  from inadequate s o i l drainage or a h i g h water t a b l e but  by  based  area within  groups f o r  c l a s s 2 and  moderate to moderately severe l i m i t a t i o n s t h a t or r e q u i r e moderate c o n s e r v a t i o n p r a c t i c e s  Sim  Capability  High c a p a b i l i t y s o i l s are  are  or  c a p a b i l i t y groups were a s s e s s e d u s i n g  s e r i e s were determined from s o i l complexes i n dominated.  dot  s e r i e s were p l a c e d  c a p a b i l i t y range of most of the  series  series  grid  Three c a p a b i l i t y groups were e s t a b l i s h e d  each s o i l  units  intensive  s e r i e s o f t e n ranged over two  or t h r e e c o n s e c u t i v e c a p a b i l i t y c l a s s e s  i n t o the  soil  r e s u l t s of the  individual  three c a p a b i l i t y c l a s s e s . on  The  is  limited  cultivation is  54  T a b l e 4.6  C a p a b i l i t y Grouping  Soils Capability  S o i l Series  Groups  % Area Within Assigned C a p a b i l i t y Grouping  Low  LX MQ RD W  67 80 78 82  Medium  AD KD M*  78 81 80  High  BT BL BK F HT HD HJ LK MH NN PE SI* VD  94 100 79 90 100 100 100 86 81 92 90 100 70  *These s o i l s e r i e s d i d n o t appear as pure u n i t s w i t h i n the study a r e a . C a p a b i l i t y groupings were a s s e s s e d from s o i l complexes i n which the named s o i l s e r i e s dominated.  55  r e s t r i c t e d to p e r e n n i a l f o r a g e  crops on c l a s s 5 and 6 s o i l s .  of low c a p a b i l i t y s o i l s i n c l u d e combinations o f topography,  Limitations droughtiness,  i n u n d a t i o n by streams o r l a k e s , excess water, c u m u l a t i v e minor adverse c h a r a c t e r i s t i c s and adverse s o i l b.  Stepwise D i s c r i m i n a n t  characteristics,  Analysis f o r Capability  Stepwise d i s c r i m i n a n t a n a l y s i s was performed on the t h r e e  capability  groups o f s o i l s to determine parameters r e s p o n s i b l e f o r s e p a r a t i n g low, medium and h i g h c a p a b i l i t y c l a s s e s . The  Resource A n a l y s i s Branch ( M i n i s t r y of the Environment,  1979)  s p e c i f i e s poor d r a i n a g e and f l o o d i n g as the s i n g l e most important tion i n  s u b s t a n t i a l p a r t s o f the Lower F r a s e r V a l l e y .  limita-  Drainage was  i d e n t i f i e d by stepwise d i s c r i m i n a n t a n a l y s i s as the d i s t i n g u i s h i n g c h a r a c t e r i s t i c o f t h e c a p a b i l i t y c l a s s i f i c a t i o n f o r s o i l s w i t h i n the study area.  Four m i s c l a s s i f i e d s o i l s were p l a c e d  (Table 4.7).  The a c c u r a c y  are p r e s e n t e d  i n Table  Table  4.7  Group:...  into their appropriate  groups  l e v e l s o f the groups p r i o r to r e c l a s s i f i c a t i o n  4.8.  Corrected  S o i l s . C a p a b i l i t y Groups  Low LK MQ M RD ">vW  Medium AD KD LX MH  .  High BT BL BK F HT HD HJ NN PE SI VD  56  Table  4.8  Group.  Classification Groups  M a t r i x of. S o i l s  Capability  _% : C o r r e c t .•- Number, of. S o i l s C l a s s i f i e d . i n t o Group i Low Medium High 1  f  Low  84.6  11  1  1  Medium  66.7  0  2  1  High  75.0  0  1  3  TOTAL  80.0  11  4  5  Significance  t e s t i n g o f the  corrected c l a s s i f i c a t i o n revealed that  s o i l parameters - d r a i n a g e , CEC separated a l l  t h r e e groups.  r e p r e s e n t i n g the  t e x t u r e and  (C. h o r i z o n ) and  clay  (C h o r i z o n ) -  These s o i l parameters were common drainage f a c t o r  Drainage c h a r a c t e r i s t i c s  o f the  (Table  lower p a r t of the  medium c a p a b i l i t y  subsoil  i n low  variables  4.3).  t h r e e groups (Table 4.10)  than d r a i n a g e problems are most severe i n h i g h c a p a b i l i t y to the  soils,  c a p a b i l i t y s o i l s and  analysis  the  Canada Land I n v e n t o r y were t e s t e d  to determine. . the  problems throughout the  the  low  l a n d p l a n n i n g and  The  stepwise d i s c r i m i n a n t  r e v e a l e d as  the  only  s o i l s were l i m i t e d by  the  distinguishing by  severe ^drainage  p r o f i l e , medium c a p a b i l i t y s o i l s e x h i b i t e d  capability  lower s u b s o i l .  by  classes  s o i l parameters s i g n i f i c a n t i n s e p a r a t i n g  High c a p a b i l i t y s o i l s were c h a r a c t e r i z e d  d r a i n a g e and  limited  soils.  c a p a b i l i t y groups. Drainage was variable.  indicate  absent i n  In summary, t h r e e c a p a b i l i t y groups based upon c a p a b i l i t y a s s i g n e d by  three  good  imperfect drainage i n  advantages of u s i n g s o i l s c a p a b i l i t y groups f o r  management i n c l u d e d :  1. .VLand p o t e n t i a l i s measured based upon the p h y s i c a l a s p e c t s o f the l a n d and c o n s e q u e n t l y , the c l a s s i f i c a t i o n has r e l a t i v e l y long-term v a l i d i t y .  57  T a b l e 4.9  S i g n i f i c a n t D i s c r i m i n a n t Parameters of S o i l s C a p a b i l i t y Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t  Medium Coarse F r a c t i o n ( C ) , C l a y (S & C ) , L i q u i d L i m i t (S & C ) , Water Storage C a p a c i t y ( S ) , CEC (S & C ) , Drainage, Slope  Low C l a y ( C ) , Water Storage C a p a c i t y ( C ) , CEC ( C ) , Drainage  Coarse F r a c t i o n ( C ) , C l a y (S & C) L i q u i d L i m i t (S & C ) , Water Storage C a p a c i t y ( S ) , CEC (S & C ) , Drainage, Slope  Medium  58  T a b l e 4.10  Grouping High  Limitation  :Affected  Soil  Series  1.  Ground water t a b l e a t o r near surface during winter  BT,BL,BK,F,HT,HD,HJ,NN,PE,SI,VD  2.  Ground water t a b l e a t or near s u r f a c e d u r i n g f r e s h e t of Fraser River  F,HJ,PE  3.  S u r f a c e ponding d u r i n g prolonged r a i n s  BL,BK,HT,HD,HJ,NN,PE,SI,VD  Medium  Low  Drainage C h a r a c t e r i s t i c s of the S o i l s C a p a b i l i t y Groups  heavy,  Nil  1.  ground water t a b l e i n lower p a r t of s u b s o i l d u r i n g h i g h stream or r i v e r l e v e l s  LK,MQ,M  2.  Ground water t a b l e i n lower p a r t of s u b s o i l d u r i n g heavy, prolonged r a i n s  LK,MQ,M,W  3.  Temporary perched water t a b l e s above compact dense s u b s o i l d u r i n g heavy, p r o l o n g e d r a i n s  W  4.  L a t e r a l seepage above compact, dense s u b s o i l d u r i n g heavy, prolonged r a i n s  RD  5.  F l o o d i n g o f areas o u t s i d e dykes d u r i n g f r e e z i n g  • \ .. MQ,M  59  2.  The c a p a b i l i t y groups can be used f o r l a n d management and the b e s t management p r a c t i c e s and uses can be d e f i n e d by key farmers.  3.  The e s t a b l i s h e d groups can be used as a d a t a t r a i n i n g set f o r the grouping of a d d i t i o n a l unknown s o i l s .  The disadvantages  include:  1.  The c a p a b i l i t y r a t i n g s a s s i g n e d by the Canada Land Inventory a r e based upon l i m i t a t i o n s which can o f t e n be m o d i f i e d or overcome through management.  2.  C a p a b i l i t y i s a s s e s s e d a t the r e c o n n a i s s a n c e l e v e l and i s designed f o r p l a n n i n g r a t h e r than management purposes.  3.  C a p a b i l i t y i s a q u a l i t a t i v e assessment of l a n d p o t e n t i a l .  4.  C a p a b i l i t y assessments are use specific and are not e a s i l y integrated f o r multipurpose evaluations.  5.  The c a p a b i l i t y r a t i n g s may cartographic error.  2.  S u i t a b i l i t y Data  a.  Suitability  be of l i m i t e d v a l u e due  to  Groups  S u i t a b i l i t y was analogue method and from e x p e r i m e n t a l  a s s e s s e d u s i n g an approach i n t e r m e d i a t e between the  site factor analysis.  P r o d u c t i v i t y data was  s i t e s to be e x t r a p o l a t e d to analogous s i t e s  to the analogue approach.  The  s i t e f a c t o r method was  collected  according  f o l l o w e d to d e t e r -  mine the r e l a t i o n s h i p s between key p r o p e r t i e s of the s i t e and y i e l d w i t h i n the study a r e a .  The  r e s u l t i n g assessment assumes an, . a ' p r i o r i knowledge of ;  the f u n c t i o n a l r e l a t i o n s h i p s between the s o i l parameters and  productivity  and a l l o w s the e x t r a p o l a t i o n of t h i s i n f o r m a t i o n to analogous s i t e s i f a l l ; the s i t e parameters which d i r e c t l y t r a i n i n g area and analysis. was  i n f l u e n c e p r o d u c t i v i t y i n both  the t e s t a r e a have been i n c o r p o r a t e d i n the  the  initial  I n the p r e s e n t study, c l i m a t i c f a c t o r s were i g n o r e d s i n c e c l i m a t e  assumed to be f a i r l y c o n s t a n t over the s m a l l study a r e a ; however,  parameters would have to be c o n s i d e r e d i n s t u d i e s i n c o r p o r a t i n g l a r g e r  these  s  *• NJ  s b  SB  SC O  OJ  OJ  Ul  Ui 1 Ul  Ul 1 Ul  Ul 1 »J  f  s  XD  !*  f X  1  ON  i  •  •  Ul  1  NJ •vj  1  NJ NJ 1 NJ  1  *-  NJ NJ 1 NJ 4>  Ul  Ul  Ul  I  •  NJ  NJ Ul  NJ NJ  |  Ul  •  o1  NJ  NJ I1 NJ Ul  o1  1  NJ Ul  Soil Series  w H  1  Ul ON  1  1—'  Ul  NJ  Ul  NJ r—*  03 tr  OJ Ul  Ul  S3 N J r-» 1 O NJ Ul  «  TI  SC H  NO NJ U l 1 OJ  NJ Ul  o  Ul  ON  1 rNJ  I  -j NJ  o1  1  1  oo I  NJ NJ  H 03  Grass  ro 4>  r->  NJ  OJ • Ul  rUl  Corn  1  1  OJ Ul  TJ  I-I  o  Cu  Ul  Ul  I  ON  Ul  I  z  I  CO  ON  Ul  Ul  I  OJ  Ul  Ul  I  NJ  NJ  NJ  Ul  Ul  I  I  I  I  I I  I I  i  i  I  I  PI  I  i  I  Tl  I  O  I  ON  o oo  i  ON  I  I  r-  I  1  ON  NJ  O  ro  o rr  Tl  3  ro I-I  tn co W cn C H-  a  o>  ro  vs  i  I  ~ J  NJ Ul  ~~J NJ NJ • 1 NJ Ul  ON  TI  ro 3 rt w  CO  If  S  03  I  I  I  i  i  i  i  I  i  o  I  I  I  W  I  ro  NJ  H  Tl 01  o>  3  3  ro n  ON  ON  Tl  ro  Tl  Tl  pi pj 3  ro I-I  3  ro  I-I  CO  CO  co  CO  CO  < vs  <  <ro vs  <  <  c »1 ro  c •1  ro  vs  c  c •1  ro  c  ro  VS  I  I  NJ NJ  •1 I-  •  I  ON  O 00  NJ  I  I  ON  ~ - J1  ON  a  I  I  ON  H 1  I  I  i  Tl  Ul  I  Ul  I I  O  Ul  4>  I I  i  i  Ul  I  ON  I 1 ON  Ul  o  ON 1 1 ON  ON 1 1 «-J  1 1  00  a  B  a ro  ro o  CO  CO  ro vs  ro vs  c >1 <J  C  <  I-I  rt m  CO  Tl 03  9  ro n CO  <  s ro 03 vs ro  I  OJ  i  z  NJ  Ul  I  I  NJ  V©  Ul  NJ  •  I  ON  Ul I  Ul  I  OJ  4>  U l NJ  CO  I  I  I I  I I  I  I I  I I  I  I I  I I  I  oo  c rt >1 rt  I  NJ  1  Ui  I  Ul  Ul Ul  NJ NJ •  •  NJ NJ  Ul I  00  Ul  I  I  I  I  I  I  Tl  I  M  l  ON  ON  o oo  »J NJ NJ 1  1  1  vO ON  a Tl 03 11 3 ro 3 o ro rt i PJ CO  CO  c  rr 11 H- <J  B ro 03 vs rt ro  09  I  I  I ON  OJ  NJ  Tl 03  ro i  •O  ON  Tl 03  3  CO  ON  ON  oo o OoJ OJ 3  z  CO  I  Ul  o  oo  z  Ul  Ul  a 1 ro o  rt PI CO  oo o OJ  OJ  B  ro H CO  c  rt n H3 ro 03  rt ro  <  I  oo  Tt  NJ  Beans  Peas  Cauliflower ]ole ^rops Brussel Sprouts Rhubarb  I  I  I  Milk  ON  1 ro o  rt PI CO  rt H-  a  03  rt ro  Tl 03  3 3  ro ii CO  c  <ro vs  >  Brocoli  vO  a  a  7? 00  -~J NJ NJ 1 1 - J  3  Ui  I  o  Raspberries  ON  ON  Tl 03  I  c  Strawberries  50 O ro  CO  ro  PJ  i  \ *  zr  CO  rt  03  rt O  Tl 03  H  ro o rt  ro •I  PJ CO  c  rt  a  '.3  ro  03 v:  rt ro  Data Source  VS H  < oo  s: II  II  M  OJ ON  <^ i  ro ii-- a. i-t ro  i  r  o  r-"  o  1  3  soil  3  s  Series  II  O  X O Cu 2 S _•  rt  pah rdo a53 M Z  t  • ON *-  I  ro (,—*  ho  On  On  i  i  i —• i tOi too1i  1i  ,t o ^  to „  M t 1oi  Corn  On  i  I O N I  Strawberries  i o n i  ON  1  i i " ^  1  i  i  i  i  i o n i On  i  i  i  i  i  i on i  i  i  i • i oi  i  i  i  i  i  to On  ' ui  i T  i  ui  I  Ul  1  i  i  i  i  i  " «  I  I  I I I  1  ON VO I-  '  1  o> ' iIi -~J -vl M  a ^  P- CU  rj  On  I  i  i  o• oo i  i  i  I I I  i  i  i o  I  I  i  ON ~ J  ON O  ON  I  rl 1 1  1  i  1  1  to to  ^  ON  r-  1  1  CO  Cauliflower  i  C o l e Crops Brussel Sprouts Rhubarb  00  OO  ON 1  hjj a O 1] TJ  >TJ  Brocoli  ON O  00  O  ' ^  Milk r-> ON  to  I— P ' £0 l-'H'CU  i  I O I  ON  C U to  Peas  I I I  i  00  ON  Uj *rJ nj  CD fu  i .>  ' ^  1  r-> - i »j  »vl  On  1  Raspberries  Beans  to  •I  °  Grass  oo 0 1  ui  I  l  On i  OO  ^  W  On  I  o *» • ui On  IO .,, On On • • •On • On1i  On  to  i  Oo  On • On  w  oo  to  o  •  OO  M  Oo  On . 1i On  to  to  iTjOhrj  r-*H'(U  M 3 3 3 3g o g g g g 3 S S g ort i-lro Hro roCi-lD rortHri rfro o r Ho r oH Hnr r o no rro 4 ti-l l-t H t i-t M oo CO co CO co PH w n CO co oo oo P. M O O Di w coC C C C c c to c C e to cn e 0) I-I rt M rt H n <i-t H prt ^ i-t p r t i i H- < < P-. < <J <j H . <J < Bror< o r o< B rro ororo Bro 3 ro ro to ^< ^ ^ cu ^ CO too-v-^ rt  ro  ro  T9  D  a  t  a  Source  62  test regions.  The  The advantages of such a system are that:.  1.  i t i s an open-ended c l a s s i f i c a t i o n which w i l l and group unknown c a s e s , and  2.  r e l a t i o n s h i p s between s i t e f a c t o r s and can be determined.  approach r e q u i r e s knowledge and  parameters over the e n t i r e f i n a l site  accept  productivity  i n c o r p o r a t i o n of s i t e and  yield  t e s t area t o overcome the l i m i t a t i o n of  specificity. P r o d u c t i v i t y d a t a f o r the p r e s e n t study from a l l i n f o r m a t i o n  sources a r e p r e s e n t e d  i n T a b l e 4.11.  The  farmers  survey data showed  m a r g i n a l agreement w i t h the l i m i t e d r e s e a r c h s t a t i o n d a t a and p l o t  trial  estimates.  esti-  The  r e l a t i o n s h i p between farmer  survey d a t a and d i r e c t  mates by expert consensus f o r c o r n and g r a s s are p r e s e n t e d 4.3  and  4.4.  The  farmer  i n Figures  survey d a t a r e v e a l e d a wide range of y i e l d s ,  but the m a j o r i t y of the d a t a l a y w i t h i n a narrow band of the d i a g o n a l r e p r e s e n t i n g p e r f e c t c o r r e l a t i o n between the data s o u r c e s .  Some farmer  r e p o r t s of g r a s s p r o d u c t i v i t y data were h i g h e r than the d i r e c t by expert consensus.  In g e n e r a l , the e s t i m a t e s of the e x p e r t s were  r e p r e s e n t a t i v e of a c t u a l  yield.  Y i e l d d a t a from farmer sus were used levels.  survey and d i r e c t e s t i m a t e by expert  to e s t a b l i s h s o i l  groups r e p r e s e n t a t i v e of s o i l  upon crop y i e l d  productivity  i n d i c e s which r e f l e c t e d  l e v e l s f o r s p e c i f i c crops.  Only  every s o i l  f o r crop i n d i c e s .  s e r i e s were used  and a g r a s s index were developed. data were used LX,  consen-  S o i l s were p l a c e d i n t o t h r e e groups r e p r e s e n t i n g low, medium and  h i g h p r o d u c t i v i t y based  KD,  estimates  LK,  NN,  crops which had  SI and VD)  a v a i l a b l e y i e l d data f o r  Two  i n d i c e s , a corn  index  Wherever p o s s i b l e , both sources of y i e l d  to a s s e s s the p r o d u c t i v i t y l e v e l ; PE,  yield  o n l y farmers  i n ten cases  (HT, HD,  HJ,  survey d a t a were a v a i l a b l e  and  63  0  1  2  3  4  5  DIRECT  6  7  8  9  10  11  12  ESTIMATE  (T/ACRE)  FIGURE 4.3-COMPARISON OF GRASS PRODUCTIVITY DATA FROM FARMER SURVEY AND DIRECT ESTIMATE  0  10  20 30 DIRECT ESTIMATE (T/ACRE)  40  FIGURE 4.4-COMPARISON OF CORN PRODUCTIVITY DATA FROM FARMER SURVEY AND DIRECT ESTIMATE  64  i n one case  (W), d i r e c t e s t i m a t e by e x p e r t consensus  was used.  Yield  ranges f o r each p r o d u c t i v i t y l e v e l were as f o l l o w s :  Productivity Index Low Medium High  Yield Grass  (Tons/Acre) Corn  3-5  10-20  5.5-6.5  21-23  >6.5  >24  S o i l grouping based upon the grass..and c o r n i n d i c e s a r e p r e s e n t e d i n T a b l e 4.12. b.  Stepwise D i s c r i m i n a n t A n a l y s i s f o r S u i t a b i l i t y Stepwise d i s c r i m i n a n t a n a l y s i s f o r s u i t a b i l i t y was a s s e s s e d u s i n g  both the g r a s s index and the c o r n index t o determine what d i f f e r e n t i a t e d low, medium and h i g h p r o d u c t i v i t y  soils.  The assessment  of s u i t a b i l i t y  by stepwise d i s c r i m i n a n t a n a l y s i s u s i n g the g r a s s index i n d i c a t e d  T a b l e 4.12  S o i l s S u i t a b i l i t y Groups  Index  Low  Medium  High  Grass  AD F HJ LX MH M MQ PE RD  BT BL HT HD KD NN W  BK LK SI VD  Corn  AD LX MH RD VD W  BL F HT HD HJ KD LK MQ M NN PE SI  BT BK  that  65  the s o i l s were not s e p a r a t e d by the s o i l parameters. little  Grass crops r e q u i r e  p r e p a r a t i o n o r i n p u t f o r growth and can be found growing over a  wide range of s o i l s w i t h l i t t l e  variation in yield.  h e r e n t l y s u i t e d to c e r t a i n s o i l  types and shows v a r i a t i o n i n p r o d u c t i v i t y  i n response  to s o i l conditions.  Stepwise  Corn i s more i n -  discriminant analysis  upon the c o r n index r e v e a l e d s e p a r a t i o n by one parameter, lower material.  Three m i s c l a s s i f i e d  groups (4.13). presented  based parent  s o i l s were p l a c e d i n t o t h e i r a p p r o p r i a t e  The accuracy of the groups p r i o r t o r e c l a s s i f i c a t i o n i s  i n T a b l e 4.14.  T a b l e 4.13  C o r r e c t e d S o i l s S u i t a b i l i t y Groups (Based on Corn Index  Low AD LX MH RD W  Medium  High  BT BL F HT HD  BK KD VD  HJ LK MQ M NN PE SI  Table  Group  4.14  C l a s s i f i c a t l b r i M a t r i x of S o i l s Groups (Based on Corn Index)  % Correct  Suitability  Number o f S o i l s C l a s s i f i e d Low Medium  i n t o Groups High  Low  83.3  5  0  1  Medium  91.7  0  11  1  High  50.0  0  1  1  TOTAL  85.0  5  12  3  66  S i g n i f i c a n c e t e s t i n g of s o i l s groups r e v e a l e d t h a t lower material significantly  T a b l e 4.15  parent  s e p a r a t e d a l l s o i l s groups (Table 4.15).  S i g n i f i c a n t D i s c r i m i n a n t Parameters of S o i l s S u i t a b i l i t y Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t .  2  3  Coarse F r a c t i o n (C) Sand ( C ) , C l a y (S & C ) , CEC (C), Drainage, Slope, Upper and Lower Parent M a t e r i a l  Sand ( C ) , C l a y Lower Parent Material  Upper and Lower Parent M a t e r i a l  (S)  2  S o i l s from l a c u s t r i n e p a r e n t m a t e r i a l s showed h i g h e s t y i e l d s (based on c o r n i n d e x ) ; a l l u v i u m - b a s e d s o i l s developed yields  from g l a c i a l  s o i l s e x h i b i t e d moderate y i e l d s  d e p o s i t s w i t h aedian capping p r o v i d e d  summary, s o i l  s u i t a b i l i t y was  mediate between the analogue method and from farmer two  lowest  ( T a b l e 4.16) . In  of  and  a s s e s s e d u s i n g an approach site factor analysis.  inter-  Yield  data  survey and d i r e c t e s t i m a t e by expert consensus were the bases  i n d i c e s used  to p l a c e s o i l s  index d i d not s i g n i f i c a n t l y  into productivity classes.  grass  s e p a r a t e the s o i l s a c c o r d i n g t o p r o d u c t i v i t y ;  the c o r n index r e v e a l e d s e p a r a t i o n by lower parent m a t e r i a l . p r o d u c t i v i t y s o i l s developed s o i l s were a l l u v i u m based  The  and  from  High  l a c u s t r i n e d e p o s i t s , medium p r o d u c t i v i t y ,  low p r o d u c t i v i t y s o i l s e v o l v e d from  glacial  d e p o s i t s w i t h a e o l i a n cappings. Advantages of u s i n g s o i l s management i n c l u d e d :  s u i t a b i l i t y groups f o r l a n d p l a n n i n g  and  67  Table  4.16  Grouping 1 (Low)  (Medium)  3 (High)  Parent  M a t e r i a l s of the S o i l s S u i t a b i l i t y Groups  Soil Series  Parent  Material  AD LX MH RD W  A e o l i a n veneer over g l a c i o f l u v i a l d e p o s i t s Aeolian deposits A e o l i a n veneer over g l a c i o f l u v i a l d e p o s i t s A e o l i a n veneer over m o r a i n a l d e p o s i t s Glaciomarine deposits  BT BL F HT HD HJ LK MQ M NN PE SI  Local Flood Flood Flood Flood Flood Local Flood Flood Flood Flood Local  BK KD VD  Lacustrine deposits Lacustrine deposits Lacustrine deposits  stream d e p o s i t s p l a i n deposits p l a i n deposits p l a i n deposits p l a i n deposits p l a i n deposits stream d e p o s i t s p l a i n deposits p l a i n deposits p l a i n deposits p l a i n deposits stream d e p o s i t s  1.  The c l a s s i f i c a t i o n has r e l a t i v e l y long term a p p l i c a b i l i t y s i n c e i t was developed u s i n g p h y s i c a l parameters.  2.  Suitability data.  3.  I t i s the most p r e c i s e and vity potential.  4.  S o i l s s u i t a b i l i t y groups a r e u s e f u l f o r management s i n c e p r o d u c t i v i t y data are gathered at the l e v e l of the i n d i v i d u a l farm or f i e l d .  5.  The assessment i s based upon p o s i t i v e a s p e c t s of management r a t h e r than l i m i t a t i o n s to l a n d use.  6.  The b e s t management p r a c t i c e s and uses can be d e f i n e d by farmers f o r each s o i l s u i t a b i l i t y group.  7.  Management p r a c t i c e s a r e r e a l i s t i c and p r a c t i c a l s i n c e they were d e f i n e d under r e a l economic market c o n d i t i o n s .  i s a q u a n t i t a t i v e assessment based upon p r o d u c t i v i t y  accurate  estimate  of l a n d p r o d u c t i -  key  68  8.  I n t e r p r e t a t i v e s o i l s u n i t s can be used as a data t r a i n i n g s e t and unknown cases can be c l a s s i f i e d i n t o t h e i r a p p r o p r i a t e groups.  A disadvantage 1.  was:  S o i l s s u i t a b i l i t y groups are defined categories.  3.  Feasibility  Data  a.  Feasibility  Groups  defined  F e a s i b i l i t y v a r i e s from c a p a b i l i t y and are not n e c e s s a r i l y grown on but  by  subjective  pre-  s u i t a b i l i t y i n that,  crops  the most capable o r the most s u i t a b l e  soils,  r a t h e r i n a r e a s which d e r i v e the most economic or s o c i a l b e n e f i t s .  r e l a t i o n s h i p between l a n d use  and  the p h y s i c a l a t t r i b u t e s o f the  land  e x i s t s due  to s o i l requirements of the c r o p , but  due  i n f l u e n c e o f socio-economic parameters i n a l l o c a t i n g l a n d  to the  various  uses.  C u r r e n t l a n d use  data from a s e r i e s of maps and M a t s q u i and 4.5)  and  to a s i n g l e l a n d use map  forage,  Nine l a n d use  Intensive  g r i d dot  c o u n t i n g e s t a b l i s h e d how  c o n t a i n e d : w i t h i n each l a n d use  of  categories specia 1  r e c r e a t i o n a l l a n d , urban  urban r e l a t e d uses, r e p r e s e n t e d a l l the a c t i v i t i e s w i t h i n  use  (Figure  hobby farms, market g a r d e n i n g ,  farms, f o r e s t and  to  Land  r e p o r t s p r e p a r e d f o r the : D i s t r i c t s  used to e s t a b l i s h f e a s i b i l i t y c l a s s e s .  l i z e d a g r i c u l t u r e , berry  always obvious  i s a r e f l e c t i o n of f e a s i b i l i t y .  A b b o t s f o r d were t r a n s c r i b e d  c o n s i s t i n g of p a s t u r e and  i t i s not  A  the study  much df each s o i l s e r i e s  and area. was  category.  A g r i c u l t u r a l l a n d uses showing a d i r e c t r e l a t i o n s h i p w i t h  the  p h y s i c a l l a n d r e s o u r c e base were used as the b a s i s of f e a s i b i l i t y Consequently, s p e c i a l i z e d a g r i c u l t u r e was  excluded as a c a t e g o r y as  s i s t e d o f a c t i v i t i e s such as p o u l t r y farms and upon s o i l requirement f o r t h e i r l o c a t i o n .  classes. i t con-  greenhouses which do not:rely  Hobby,  farms were a l s o o m i t t e d  69  PASTURE AND FORAGE 1*^1  BERRIES  lllllill  MARKET GARDENING (VEGETABLES) SPECIALIZED  AGRICULTURE  HOBBY FARIAS  FIGURE 4.5- ABBOTSFORD AREA LAND USE  (BASEDOW 1977 SURVEY DATA CENTRAL FRASER VALLEY REGION  AND MATSQUI  DISTRICT  PLANNING!  70  s i n c e they were not c o n s i d e r e d s e r i o u s a g r i c u l t u r a l u n d e r t a k i n g s .  The  resulting feasibility  c l a s s e s c o n s i s t e d of combinations  cultural activities:  p a s t u r e and f o r a g e o p e r a t i o n s ( i . e . d a i r y f a r m s ) ,  market  ( i . e . v e g e t a b l e s ) , gardening and b e r r y farms.  c l a s s i f i e d by the combination  T a b l e 4.17  Group  of l a n d uses  S o i l s were  they supported  ( T a b l e 4.17).  S o i l s F e a s i b i l i t y Groups  Pasture  Pasture/ Vegetable/ Berry  Pasture/ Vegetable  BL BK F HT HD HO LX MQ M NN PE SI W  b.  of t h r e e a g r i -  BT KD LK VD  AD MH RD  Stepwise D i s c r i m i n a n t A n a l y s i s f o r F e a s i b i l i t y F e a s i b i l i t y groups were a s s e s s e d by stepwise d i s c r i m i n a n t a n a l y s i s  to i d e n t i f y d i s t i n g u i s h i n g s o i l  f e a t u r e s of areas of d i f f e r e n t  Two v a r i a b l e s , pH and c o a r s e f r a c t i o n f i c a n t d i s c r i m i n a n t parameters.  land use.  (C h o r i z o n ) were r e v e a l e d as s i g n i -  D i s c r i m i n a n t parameter ranges of the  c o r r e c t e d f e a s i b i l i t y groups (Table 4.18) a r e p r e s e n t e d i n T a b l e 4.19. The  accuracy l e v e l s of the groups p r i o r to r e c l a s s i f i c a t i o n are p r e s e n t e d  i n T a b l e 4.20.  S i g n i f i c a n c e t e s t i n g r e v e a l e d t h a t none of the s o i l  meters d i s t i n g u i s h e d a l l t h r e e groups (Table 4.21). e v i d e n t between a g r i c u l t u r a l p o t e n t i a l  para-  No r e l a t i o n s h i p was  d e f i n e d . b y t h e number of crops :  Group  T a b l e 4.18  Corrected Soils  Pasture  Pasture/Vegetable  BL BK F HT HD HJ LX LK M PE W  pH Coarse F r a c t i o n (C)  Groups  Pasture/Vegetable/Berry  BT KD MQ NN RD SI VD  T a b l e 4.19  Parameter.  Feasibility  Ranges of D i s c r i m i n a n t Parameters of S o i l s " F e a s i b i l i t y Groups  : .Pasture 4.8  0-3%  -5.1  Pasture/Vegetable 4.8-5.5  0-1%  Pasture/Vegetable/Berry 4.6-4.7  19.57 - 62.61%  72  T a b l e 4.20  Group  C l a s s i f i c a t i o n M a t r i x of S o i l s Groups  % Correct  Number of Cases C l a s s i f i e d I n t o Group Pasture/ Pasture/ Vegetable/ Vegetable Pasture Berry  Pasture  76.9  Pasture/ Vegetable  75.0  Pasture/ Vegetable/ Berry  66.7  0  TOTAL  35.0  11  Table 4.21  Feasibility  10  S i g n i f i c a n t D i s c r i m i n a n t Parameters of S o i l s F e a s i b i l i t y Groups I d e n t i f i e d by Mann-Whitney Rank Sum T e s t  Medium pH  Coarse F r a c t i o n  ( C ) , pH  pH, Coarse, F r a c t i o n ( C ) , Sand ( C ) , C l a y ( C ) , Water Storage C a p a c i t y ( C ) , CEC (C)  Low Medi  73  c u r r e n t l y grown on the does not  represent  characteristics  s o i l and  optimal  use  ( i . e . greater  dairy/market garden l a n d and d a i r y land and  the r e s u l t i n g - f e a s i b i l i t y of the p h y s i c a l r e s o u r c e  s o i l property  r e f l e c t optimum use  a l l c r o p s ) due  l a n d use were s u b j e c t e d discriminant  Consequently, c u r r e n t  of the p h y s i c a l r e s o u r c e  In summary, t h r e e  to socioeconomic  influences  to which they  land use  patterns  do  and  The  a n a l y s i s to  not  groups, pH  and  advantages of u s i n g  identify  coarse f r a c t i o n soils  feasibility  management a r e :  1.  F e a s i b i l i t y i s a dynamic assessment of l a n d p o t e n t i a l based upon c u r r e n t market v a l u e s .  2.  I t i s a q u a n t i t a t i v e assessment which c o n s i d e r s economic i n f l u e n c e s .  3.  I n t e r p r e t a t i v e f e a s i b i l i t y u n i t s can be used as a d a t a t r a i n i n g set f o r the c l a s s i f i c a t i o n of a d d i t i o n a l unkown c a s e s .  disadvantages  are  base.  to stepwise d i s c r i m i n a n t  (C h o r i z o n ) were s i g n i f i c a n t .  The  observed between  s o i l s f e a s i b i l i t y c l a s s e s based on a g r i c u l t u r a l  s o i l parameters of l a n d use  groups f o r land p l a n n i n g  soil  d a i r y / b e r r y / m a r k e t garden land than between  land s u p p o r t i n g  inherently suited.  base and  v a r i a t i o n was  which have encouraged attempts to grow crops on s o i l s not  classification  socio-  are:  1.  F e a s i b i l i t y c l a s s i f i c a t i o n has r e l a t i v e l y s h o r t term a p p l i c a b i l i t y due to changing market c o n d i t i o n s .  2.  I t i s d i f f i c u l t to measure p r i c e s of s u p p l i e s p r o d u c t s which do not remain constant to each over time.  3.  I t i s important to s e l e c t economic c r i t e r i a ! not a f f e c t f e a s i b i l i t y .  4.  An i n v e n t o r y of c u r r e n t land use i s expensive d i f f i c u l t to e s t a b l i s h and m a i n t a i n .  5.  Current l a n d use d i d not r e f l e c t a r e l a t i o n s h i p between crops grown and l a n d a t t r i b u t e s .  and other  which  do  and  74  Assessment Management  of S o i l s Groups and I n t e r p r e t a t i v e Land Units  D i f f e r e n t c r i t e r i a and assumptions u n d e r l a y the s o i l s g r o u p i n g and the i n t e r p r e t a t i v e l a n d management  units.  Consequently, each  t i o n has s p e c i f i c advantages f o r v a r i o u s o b j e c t i v e s .  classifica-  Quantitative .  i d e n t i f i c a t i o n of the o p t i m a l l a n d use c l a s s i f i c a t i o n was performed by:  1.  1.  S o i l s group  2.  Interpretative soils c l a s s i f i c a t i o n  3.  S o i l s group and i n t e r p r e t a t i v e s o i l s t i o n comparison.  Comparison  comparison  of S o i l s  The major  comparison classifica-  Groups  s o i l s groups  (Group 6 ( d i r e c t grouping) and Group 3  ( i n d i r e c t grouping))were s u b j e c t e d to the Mann-Whitney Rank Sum T e s t t o determine i f the groups were from the same p o p u l a t i o n .  The t e s t  revealed  t h a t the groups were not s i g n i f i c a n t l y d i f f e r e n t based on an absence of d i s c r i m i n a n t parameters.  The s m a l l e r groups were not t e s t e d f o r s i g n i f i -  cance because they d i d n o t form e f f e c t i v e u n i t s f o r management membership s i z e and s o i l p r o p e r t y 2.  Comparison  due to  dissimilarity.  of I n t e r p r e t a t i v e S o i l s  Classifications  Three i n t e r p r e t a t i v e s o i l s c l a s s i f i c a t i o n s were developed i n the p r e s e n t study u s i n g c a p a b i l i t y ,  s u i t a b i l i t y and f e a s i b i l i t y d a t a .  i n t e r p r e t a t i o n s were s i m i l a r i n the f o l l o w i n g  The  respects:  1.  A l l were developed from one s o i l s data base  2.  A l l measured l a n d  3.  A l l p l a c e d s o i l s i n t o three c l a s s e s r e p r e s e n t i n g h i g h , medium and low l a n d p o t e n t i a l .  potential  The l a n d use c a t e g o r i e s of the f e a s i b i l i t y c l a s s i f i c a t i o n can be c o n v e r t e d to l e v e l s of l a n d p o t e n t i a l i f one assumes t h a t each a d d i t i o n a l crops grown  75  represents  i n c r e a s i n g a g r i c u l t u r a l p o t e n t i a l ( i . e . pasture-low, pasture/  vegetables/berries-high). Differences  i n the u n d e r l y i n g  assumptions of each s o i l s i n t e r -  p r e t a t i o n were r e f l e c t e d i n the s o i l parameters t h a t s e p a r a t e d the s o i l s groups (Table  4.22).  c a p a b i l i t y groups; p a r e n t m a t e r i a l and  significantly  Drainage d i s c r i m i n a t e  s e p a r a t e d the s o i l s  suitability  pH and c o a r s e f r a c t i o n , i n combination, d i s t i n g u i s h e d  f e a s i b i l i t y classes.  the s o i l s units;  the s o i l s  Although d r a i n a g e s e p a r a t e d the s o i l c a p a b i l i t y  groups, i t was n o t the s o l e l i m i t i n g f a c t o r d e f i n i n g c a p a b i l i t y l e v e l s . The  s o i l s group w i t h the h i g h e s t  c a p a b i l i t y r a t i n g had the most severe  d r a i n a g e problems, but the lower c a p a b i l i t y s o i l s groups had an number o r degree of l i m i t a t i o n s .  increased  The parameters l i m i t i n g the s o i l s groups  at each l e v e l were n o t n e c e s s a r i l y the same and consequently d i d not appear as d i s c r i m i n a n t  T a b l e 4.22  parameters.  Comparison of I n t e r p r e t a t i v e S o i l s C l a s s i f i c a t i o n s  Interpretation  Capability  Parameters  Drainage  Low R A N G E  Suitability Lower Parent Material  Feasibility A - pH B - Coarse F r a c t i o n (C) A  B  Moderately w e l l to w e l l  G l a c i a l and Aeolian  4.3 - 5.1  0  -  3%  Medium  W e l l to r a p i d  Alluvial  4.8 - 5.5  0  -  1%  High  Imperfect to v e r y poor  Lacustrine  4.6 - 4.7  20  - 63%  Each i n t e r p r e t a t i v e s o i l s c l a s s i f i c a t i o n was u s e f u l f o r s p e c i f i c purposes r e l a t i n g to the u n d e r l y i n g i d e n t i f i c a t i o n of the s o i l s performed u s i n g  objectives  f o r that use.  Quantitative  i n t e r p r e t a t i o n d e f i n i n g o p t i m a l l a n d use was  the graph method.  The f o l l o w i n g r e s u l t s were  revealed.  76  1.  S o i l s groups were d i f f e r e n t f o r each i n t e r p r e t a t i o n and  consequently, tive soils 2.  a p e r f e c t c o r r e l a t i o n d i d n o t e x i s t between the i n t e r p r e t a -  classifications. A l l i n t e r p r e t a t i o n s had a common o b j e c t i v e of measuring l a n d  p o t e n t i a l u s i n g the same s o i l s d a t a base.  Consequently,  a relationship  was e v i d e n t among the c l a s s i f i c a t i o n s and the random d i s t r i b u t i o n ( F i g u r e 3.3b) was n o t observed. 3.  The c a p a b i l i t y / s u i t a b i l i t y comparison  ( F i g u r e 4.6) r e v e a l e d an  intermediate d i s t r i b u t i o n  ( F i g u r e 3.3c) b i a s s e d toward c a p a b i l i t y .  p e r c e n t o f the s o i l s f e l l  above the d i a g o n a l i n d i c a t i n g  t h a t the c a p a b i l i t y  r a t i n g a s s i g n e d t o the m a j o r i t y o f the s o i l s o v e r e s t i m a t e d s u i t a b i l i t y based upon the c o r n 4.  Sixty  their actual  index.  The c a p a b i l i t y / f e a s i b i l i t y comparison ( F i g u r e 4.7) r e v e a l e d an  i n t e r m e d i a t e d i s t r i b u t i o n t e n d i n g toward the cases f e l l  '  randomness.  S i x t y p e r c e n t of  above the d i a g o n a l and t h i r t y f i v e p e r c e n t r e p r e s e n t e d the  extreme case of h i g h c a p a b i l i t y - low p r o d u c t i v i t y .  The overemphasis o f  c a p a b i l i t y i n d i c a t e d t h a t the s o i l s were capable of s u p p o r t i n g a wider range of crops than were c u r r e n t l y b e i n g grown. 5.  The s u i t a b i l i t y / f e a s i b i l i t y comparison ( F i g u r e 4.8) r e v e a l e d an  i n t e r m e d i a t e d i s t r i b u t i o n t e n d i n g toward randomness.  Both extremes were  r e p r e s e n t e d - f i v e p e r c e n t o f the cases r e p r e s e n t e d h i g h  suitability/low  p r o d u c t i v i t y and t e n p e r c e n t r e p r e s e n t e d low s u i t a b i l i t y / h i g h The  d i s t r i b u t i o n was weighted toward s u i t a b i l i t y  cases f e l l  productivity.  ( f i f t y f i v e p e r c e n t of the  above the d i a g o n a l ) i n d i c a t i n g t h a t c u r r e n t l a n d use d i d n o t  r e a l i z e the f u l l productivity  a g r i c u l t u r a l p o t e n t i a l o f the l a n d based upon a c t u a l  levels.  77  78  In summary, a p o s i t i v e r e l a t i o n s h i p e x i s t e d pretative  between the i n t e r -  s o i l s c l a s s i f i c a t i o n due t o the common o b j e c t i v e  land p o t e n t i a l using s o i l s data.  of evaluating  The c a p a b i l i t y and s u i t a b i l i t y  inter-  p r e t a t i o n were most c l o s e l y r e l a t e d i n u n d e r l y i n g assumptions and the i n t e r p r e t a t i v e s o i l s u n i t s were s i m i l a r . comparison r e v e a l e d estimating  actual  that  agricultural potential. evaluation 3.  c a p a b i l i t y o p t i m i z e d land p o t e n t i a l by o v e r -  observed y i e l d .  and s u i t a b i l i t y r e v e a l i n g  The c a p a b i l i t y / s u i t a b i l i t y  F e a s i b i l i t y underestimated c a p a b i l i t y  that current  land use d i d n o t r e a l i z e f u l l  S u i t a b i l i t y offered  the most p r e c i s e  and a c c u r a t e  of l a n d p o t e n t i a l u s i n g p r o d u c t i v i t y d a t a .  Comparison  of S o i l s Groups and I n t e r p r e t a t i v e  Soils Units  S o i l s groups and i n t e r p r e t a t i v e s o i l s u n i t s were developed from a s i n g l e s o i l s d a t a base.  Difference  i n the c l a s s i f i c a t i o n s arose from the  u n d e r l y i n g assumption of the e v a l u a t i o n s :  s o i l s groups were based upon  s o i l p r o p e r t y , s i m i l a r i t i e s and i n t e r p r e t a t i v e s o i l s u n i t s were developed from s o i l  survey d a t a assessments.  The degree t o which  assessments were based upon the p h y s i c a l  interpretative  parameters was r e f l e c t e d i n the  s i m i l a r i t y between t h e i n t e r p r e t a t i v e l a n d management groups, and i n the number of common d i s c r i m i n a n t  units  and t h e s o i l s  parameters.  The percentage  of the s o i l s groups s e p a r a t e d by the s i g n i f i c a n t d i s c r i m i n a n t the  interpretative soils units  (Table 4.23) i n d i c a t e d  the  i n t e r p r e t a t i v e c l a s s i f i c a t i o n s were based upon p h y s i c a l  parameters o f  the degree t o which parameters.  The i n t e r p r e t a t i v e c a p a b i l i t y u n i t s were s e p a r a t e d by the g r e a t e s t of s o i l parameters. eighty  Nine of the t e n parameters e x p l a i n e d from f i f t y two t o  one p e r c e n t o f the s o i l s group s e p a r a t i o n ;  e x p l a i n e d l e s s than 25%. ant  number  o n l y one parameter .  Seventy f i v e p e r c e n t o f the s i g n i f i c a n t d i s c r i m i n -  parameters of the s u i t a b i l i t y c l a s s i f i c a t i o n e x p l a i n e d from s i x t y seven  79  Table 4.23  Parameters  S o i l s Group Separation S i g n i f i c a n t Discriminant Parameters or I n t e r p r e t a t i v e C l a s s i f i c a t i o n s  % of Clusters Separated by Significant Capability Discriminant Parameters  % of Clusters Separated by Significant Suitability Discriminant Parameters  % of Clusters Separated by Significant Feasibility Discriminant Parameters 14  pH* Coarse F r a c t i o n (C)*  24  Clay (C)  81  L i q u i d L i m i t (S)  52  L i q u i d L i m i t (C)  62  Water Storage Capacity (S)  67  CEC (S)  57  CEC (C)  81  Drainage*  67  Slope  57  Clay (S)  71  24  71  Lower Parent Material*  67  Upper Parent Material  33  Sand (C)  67  * S i g n i f i c a n t discriminant s o i l p arameters i d e n t i f ied by stepwise discriminant a n a l y s i s .  80  to severity one percent of the s o i l s group separation; one parameter separated only t h i r t y three percent of the s o i l s groups.  The i n t e r -  p r e t a t i v e f e a s i b i l i t y u n i t s were discriminated by two s o i l parameters. Each explained l e s s than twenty f i v e percent of the s o i l s group separation. The high degree of s o i l s group separation by the c a p a b i l i t y and s u i t a b i l i t y discriminant parameters i n d i c a t e d strong emphasis onv. p h y s i c a l parameters i n evaluation of land p o t e n t i a l . group  separation based upon  emphasis on  Conversely, the poor s o i l s  f e a s i b i l i t y discriminant parameters indicated  parameters other than s o i l p r o p e r t i e s .  In summary, c a p a b i l i t y and s u i t a b i l i t y emphasized s o i l parameters in  land q u a l i t y assessment.  F e a s i b i l i t y stressed other parameters, such  as s o c i a l and economic f a c t o r s .  Optimum land p o t e n t i a l i s best defined  using p h y s i c a l parameters and consequently, c a p a b i l i t y and s u i t a b i l i t y are b e t t e r assessments of land q u a l i t y than i s f e a s i b i l i t y .  8 i :.  CHAPTER 5 CONCLUSIONS A methodology was developed i n the present :study to q u a n t i t a t i v e l y i n t e r p r e t s o i l properties r e l a t e d to s o i l behaviour and performance f o r a g r i c u l t u r a l c a p a b i l i t y , s u i t a b i l i t y and f e a s i b i l i t y .  Conclusions were  drawn from the study i n the f o l l o w i n g areas. Numerical Techniques Cluster and f a c t o r a n a l y s i s have great p o t e n t i a l f o r handling m u l t i parameter data and q u a n t i t a t i v e l y defining:, s o i l s groups by s o i l p r o p e r t i e s ; however these numerical a n a l y s i s were p a r t i a l l y l i m i t i n g i n the present study due t o : 1.  S t a t i s t i c a l l i m i t a t i o n s of the procedure regarding overlapping and interdependent p r o p e r t i e s , such as s o i l c h a r a c t e r i s t i c s , and ....': / . .: . .:•.•.: :: .:.::. . : .:: .:.:'. ':.' :  2.  r e s t r i c t i o n s imposed by the s o i l s data set which was neither adequately large nor diverse to form multimember s o i l s groups.  Stepwise discriminant a n a l y s i s was more successful i n creating i n t e r p r e t a t i v e s o i l s u n i t s and had the added advantage of c l a s s i f y i n g unknown s o i l s using the i n i t i a l s o i l s data t r a i n i n g set.  The method was  l i m i t e d by: 1.  Subjective p r e r e q u i s i t e grouping using a grouping v a r i a b l e , and  2.  the r e l i a n c e upon a l i n e a r r e l a t i o n s h i p f o r group and s o i l r e c l a s s i f i c a t i o n .  separation  Neither numerical a n a l y s i s was s i n g u l a r l y successful i n defining optimal land u n i t s and s i m i l a r studies would merit from a combination of the methods which would remove the s u b j e c t i v e l y defined s o i l s groups and  82  more s t r i c t l y d e f i n e derived  c l u s t e r i n g parameters.  u s i n g both the p r e s e n t method and  compared by  I n t e r p r e t a t i v e s o i l s groups  the proposed method c o u l d  s i g n i f i c a n c e t e s t s to i d e n t i f y the b e t t e r e v a l u a t i o n  be  procedure.  Comparison of I n t e r p r e t a t i v e C l a s s i f i c a t i o n s Each i n t e r p r e t a t i v e c l a s s i f i c a t i o n r e f l e c t e d d i f f e r e n t assumptions and  c r i t e r i a and  consequently a d i f f e r e n t set of  underlying discriminant  s o i l parameters c h a r a c t e r i z e d  each i n t e r p r e t a t i v e c l a s s i f i c a t i o n .  Canada Land I n v e n t o r y d e r i v e d  s o i l s c a p a b i l i t y groups were s e p a r a t e d  drainage; parent m a t e r i a l ( s u i t a b i l i t y ) u n i t s and were s e p a r a t e d by pH  and  s e p a r a t e d the q u a n t i t a t i v e s o i l s  the  socio-economically  c o a r s e f r a c t i o n (C  defined  The by  productivity  feasibility  classes  horizon).  Comparison of the c l a s s i f i c a t i o n s r e v e a l e d  the  following:  1.  The c a p a b i l i t y r a t i n g s o p t i m i z e d l a n d p o t e n t i a l by e s t i m a t i n g a c t u a l observed y i e l d .  over-  2.  the f e a s i b i l i t y r a t i n g s d i d not r e a l i z e the a g r i c u l t u r a l p o t e n t i a l of the l a n d , and  3.  the s u i t a b i l i t y assessment based upon a c t u a l observed y i e l d s was the most q u a n t i t a t i v e l a n d e v a l u a t i o n method.  full  S u i t a b i l i t y Assessment P r o d u c t i v i t y d a t a was  c o l l ected  c o r r e l a t e d r e a s o n a b l y w e l l and which the  soils  provided  from f o u r s o u r c e s . the b a s i s  s u i t a b i l i t y u n i t s were developed.  b i l i t y management c l a s s i f i c a t i o n i n c l u d e d  the  The  data  f o r a c o r n index upon Advantages of the s u i t a -  following:  1.  I t i s the most q u a n t i t a t i v e assessment of l a n d p o t e n t i a l based upon a c t u a l observed p r o d u c t i v i t y d a t a .  2.  P r o d u c t i v i t y d a t a are a c t u a l observed y i e l d s measured under r e a l market c o n d i t i o n s .  3.  P r o d u c t i v i t y a r e r e a d i l y a v a i l a b l e f o r a wide range of crops.  83:".  4.  Optimal use can be made of a l l s o i l s using guidelines established by key farmers f o r s o i l s s u i t a b i l i t y groups.  5.  Other s o i l s can be added to the open-ended s o i l s suitability classification.  A disadvantage of using p r o d u c t i v i t y data to evaluate s o i l s u i t a b i l i t y i s that s u i t a b i l i t y can only be assessed f o r c u r r e n t l y c u l t i v a t e d crops; however, the range of crops can be expanded by research s t a t i o n data and plot t r i a l s . An a l t e r n a t i v e source of i s behavioural data.  q u a n t i t a t i v e s o i l s s u i t a b i l i t y information  To date, work w i t h behavioural data has been l i m i t e d  to engineering a p p l i c a t i o n s , but the p o t e n t i a l e x i s t s to develop guide sheets s t r e s s i n g s o i l behaviour c h a r a c t e r i s t i c s such as s o i l moisture, s o i l s t r u c t u r e , testure and depth to bedrock f o r a wide range of a g r i c u l t u r a l and f o r e s t crops. Recommendations. D i f f e r e n t assumptions and c r i t e r i a underlie the i n t e r p r e t a t i v e classifications changeable.  and consequently, the i n t e r p r e t a t i o n s are not i n t e r -  The s u i t a b i l i t y assessment i s recommended as the most  q u a n t i t a t i v e land q u a l i t y measure.  Need&and p o t e n t i a l e x i s t to develop  the methodology to include a wide range of a g r i c u l t u r a l and f o r e s t crops and to evaluate s o i behaviour to develop f u n c t i o n a l c r o p - s i t e The s o i l s s u i t a b i l i t y c l a s s i f i c a t i o n  i s open-ended and should be tested by  adding unknown cases to the established set.  relationships.  s o i l s s u i t a b i l i t y data t r a i n i n g  84  BIBLIOGRAPHY  Aandahl, A.R. 1960. S o i l p r o d u c t i v i t y - concept and p r e d i c t i o n s . I n t e r . Congress S o i l S c i . V. 51:365 - 370.  7 th  A l l g o o d , F.P., F. Gray. 1978. U t i l i z a t i o n of s o i l c h a r a c t e r i s t i c s i n computing p r o d u c t i v i t y r a t i n g s o f Oklahoma s o i l s . S o i l S c i . 125 (6):359 - 366. B a r t e l l i , L . J . 1979. I n t e r p r e t i n g s o i l d a t a . I n : B e a t t y , M.T., G.W. P e t e r s o n , L.D. Swindale (eds.). P l a n n i n g the uses and management o f l a n d . Agron. 21:91 - 116. Bauer, K.W. 1979. P l a n n i n g m e t r o p o l i t a n l a n d uses i n r e l a t i o n t o n a t u r a l landscape f e a t u r e s . I n : B e a t t y , M.T., G.W. P e t e r s o n , L.D. Swindale ( e d s . ) . P l a n n i n g the uses and management o f l a n d . Agron. 21:91 116. B e a t t y , M.T., G.W. P e t e r s o n , L.D. Swindale. 1979. P l a n n i n g t h e uses and management of l a n d . Agron. 21:91 - 116. B e c k e t t , P.H.T., S.W. B i e . 1978. Use o f s o i l and l a n d system maps t o provide s o i l information i n A u s t r a l i a . D i v . S o i l s Tech Pap 33, CSIRO, A u s t r a l i a , 76. B e c k e t t , P.H.T., R. Webster. Fert. 34 (1):1 - 15.  1971.  Soil variability:  A review.  Soils  Beek, K . J . 1978. Land e v a l u a t i o n f o r a g r i c u l t u r a l development. Intern. I n s t , f o r Land Reclamation and Improvement, IRLI. P u b l . #23. Wageningen. p. 333. Belknap, R.K., J.G. F u r t a d o . 1967. Three approaches t o e n v i r o n m e n t a l r e s o u r c e a n a l y s i s , f o u n d a t i o n , Washington, D.C. Bie,  S.W., P.H.T. B e c k e t t . 1971. Q u a l i t y c o n t r o l i n s o i l s u r v e y : I n t r o duction: 1. The c h o i c e o f mapping u n i t . J . S o i l S c i . 22 (1):32 49.  B l a k e , G.R. 1965. Bulk d e n s i t y . I n : B l a c k , C A . ( e d . ) . Methods o f S o i l s A n a l y s i s , Agron. 9, Am. Soc. Agron. I n c . , Madison, W i s c o n s i n . Brinkman, R., A . J . Smyth. 1973. Land e v a l u a t i o n f o r r u r a l purposes. P u b l . 17, Wageningen. British  Columbia Land Commission. Burnaby, B.C.  IRLI  1975. Keeping t h e o p t i o n s open.  Carmean, N.H. 1975. F o r e s t s i t e q u a l i t y e v a l u a t i o n i n the U n i t e d Adv. Agron. 27:209 - 269.  States.  85  C a t t e l , R.B. 1965. Factor Analysis: metrics. 21:190 - 215.  I n t r o d u c t i o n to E s s e n t i a l s .  Bio-  Chapman, H.D. 1965. C a t i o n exchange c a p a c i t y . I n : B l a c k , C A . (ed.) Methods of S o i l A n a l y s i s , Am. S o c i e t y Agron. I n c . , Madison, Wisconsin. C l a r k e , G.R. 1951. The e v a l u a t i o n of s o i l s and the d e f i n i t i o n o f q u a l i t y c l a s s e s from s t u d i e s of the p h y s i c a l p r o p e r t i e s of the s o i l p r o f i l e i n the f i e l d . J. Soil.Sci. 2 (1):50 - 60. Comar, V.K., C C Kelley. 1962. S o i l survey of Sumas m u n i c i p a l i t y . P r e l i m i n a r y Report #5 B.C. Dept. of A g r i c . Cooke, G.W. 1979. Some p r i o r i t i e s (30):187 - 214.  for British soil  science.  J. Soil Sci.  Coombs, D.B., J . T h i e . 1979. The Canada l a n d i n v e n t o r y system. I n : B e a t t y , M.T., G.W. P e t e r s o n , L.D. Swindale ( e d s . ) . P l a n n i n g the Uses and Management of Land. Agron. 21:909 - 934. Day,  P a u l R. 19 . P a r t i c l e f r a c t i o n a t i o n and p a r t i c l e s i z e Agron. #9, Am. Soc. Agron:545 - 567.  analysis.  Department of the Environment. 1972. Canada Land I n v e n t o r y Report 2: Soil capability classification for agriculture, p. 16. Dixon, W.J., M.B. P-Series.  Brown. 1979. BMDP - 79: B i o m e d i c a l computer programs U n i v e r s i t y of C a l i f o r n i a P r e s s , B e r k e l e y , C a l i f o r n i a .  Galloway, H.M., O.E. Yahner. 1978. S o i l survey e d u c a t i o n : program. J . S o i l Water Cons. 33 (3):110 - 114.  The I n d i a n a  Geyer, W.A., R.O. Marquard and J . F . B a r b e r . 1980. B l a c k walnut s i t e q u a l i t y i n r e l a t i o n to s o i l and t o p o g r a p h i c c h a r a c t e r i s t i c s i n N o r t h e a s t e r n Kansas. J . S o i l Water Cons. 35 (3):135 - 136. G i r t , J . L . 1977. The e v a l u a t i o n of a l t e r n a t i v e methodologies f o r r u r a l land evaluation. P u b l i c a t i o n 82, U n i v . of Guelph. p. 112. Hambridge, A.M. e t a l . 1977. A b b o t s f o r d - M a t s q u i Land Use Study - Manual and Summary R e p o r t . M a t s q u i and A b b o t s f o r d D i s t r i c t , p.33. Hills,  G.A., R. P o r t e l a n c e . 1960. A m u l t i p l e land-use p l a n f o r the Glackmeyer development a r e a . Ont. Dept. Lands F o r e s t s .  Hoffman, D.W. 1971. The assessment o f s o i l p r o d u c t i v i t y f o r a g r i c u l t u r e . Canada Land I n v e n t o r y Program. ARDA Rep. #4. Guelph, O n t a r i o , p. 50. Johannsen, C.J., T.W. Barney, A.A. K l i n g e b i e l . 1979. R e s i d e n t i a l , commerc i a l and l i g h t i n d u s t r i a l l a n d u s e s . I n : B e a t t y , M.T., G.W. P e t e r s o n . L.D. Swindale ( e d s . ) . P l a n n i n g the Uses and Management of Land. Agron. 21:485 - 498.  86  K l l h g e b i e l , A.A. 1958. S o i l survey i n t e r p r e t a t i o n - c a p a b i l i t y g r o u p i n g s . S o i l S c i . Soc. Am. P r o c . 22:160 - 163. L a v k u l i c h , L.M. 1977. O r g a n i c m a t t e r . Methods Manual, Pedology L a b o r a t o r y , U n i v e r s i t y of B r i t i s h Columbia, B.C. Low,  A . J . 1973. S o i l 249 - 259.  s t r u c t u r e and crop y i e l d .  J . Soil Sci.  24 ( 2 ) :  Mader, D.L. 1976. S o i l - s i t e p r o d u c t i v i t y f o r n a t u r a l stands o f white p i n e i n M a s s a c h u s e t t s . S o i l S c i . Soc. Am. P r o c . 40:112 - 115. Miller,  F.P. 1978. S o i l survey under p r e s s u r e : J . S o i l Water Cons. 33 (3):104 - 111.  The Maryland e x p e r i e n c e .  Miller,  F.T., J.D. N i c h o l s . 1978. S o i l s d a t a . I n : B e a t t y , M.T., G.W. P e t e r s o n , L.D. Swindale ( e d s . ) . P l a n n i n g M e t r o p o l i t a n Land Uses i n R e l a t i o n t o N a t u r a l Landscape F e a t u r e s . Agron. 21:67 - 90.  M i n i s t r y o f the Environment-Resource A n a l y s i s Branch. 1979. A g r i c u l t u r a l Land C a p a b i l i t y i n B r i t i s h Columbia. RAB Resource Data 1, ARDA P r o j e c t #89077. N i k o l a y e v , A.V. 1975. Main p h y s i c a l s o i l p r o p e r t i e s i n d i c a t i v e of s o i l productivity. S o v i e t S o i l S c i . 7:707 - 713. Nix,  H.A. 1968. The assessment of b i o l o g i c a l p r o d u c t i v i t y . I n : Stewart, G.A. ( e d . ) . Land E v a l u a t i o n . M a c m i l l a n , A u s t r a l i a , pp. 76 - 87.  O d e l l , R.T. 1958. S o i l survey i n t e r p r e t a t i o n - y i e l d p r e d i c t i o n . S c i e n c e Soc. Am. P r o c . 22:157 - 160.  Soil  Peech, M. 1965. Hydrogen-ion a c t i v i t y . I n : B l a c k , C A . ( e d . ) . Methods of S o i l A n a l y s i s . Am. Soc. Agron. I n c . , Madison, W i s c o n s i n . P i e r r e , W.H. 1958. R e l a t i o n s h i p o f s o i l c l a s s i f i c a t i o n t o o t h e r branches of s o i l s c i e n c e . S o i l S c i . Soc. Am. P r o c . 22:167 - 170. R i c h a r d s , L.A. 1965. P h y s i c a l c o n d i t i o n o f water i n s o i l . In: Black, C A . ( e d . ) . Methods o f S o i l A n a l y s i s , Am. Soc. Agron. I n c . , Madison, Wisconsin. R i e c k e n , F.F. 1963. Some a s p e c t s o f s o i l c l a s s i f i c a t i o n Sci. 96:49 - 61.  i n farming.  Soil  Robertson, V . C , T.N. J e w i t t , A.P.S. F o r b e s , R. Law. 1968. The assessment of l a n d q u a l i t y f o r primary p r o d u c t i o n . In:. Stewart, G.A. ( e d . ) . Land E v a l u a t i o n , M a c m i l l a n , A u s t r a l i a , pp. 88 - 103. Runka, G.G. 1973. Methodology: Dept. A g r i c .  Land C a p a b i l i t y f o r A g r i c u l t u r e . B.C.  87  Runka, G., C.C. K e l l e y . Sumas Mountains.  1964. S o i l survey of Matsqui M u n i c i p a l i t y Report #6. B.C. Dept. A g r i c .  S i e g e l , S. 1956. Nonparametric S t a t i s t i c s McGraw-Hill, New York.  f o r the B e h a v i o u r a l  and  Sciences.  S i n g e r , M.J. 1978. The USDA l a n d c a p a b i l i t y c l a s s i f i c a t i o n and S t o r i e Index r a t i n g : A comparison. J . S o i l Water Cons. 33 (4):178 182. Sneath, P.H.A., R.R. S o k a l . 1973. Numerical Taxonomy: The p r i n c i p l e s and p r a c t i c e of n u m e r i c a l c l a s s i f i c a t i o n . W.H. Freeman and Company, San F r a n c i s c o , pp. 194 - 200, 246 - 248. Sowers, G.F. 1965. Consistency. In: Black, C A . ( e d . ) . Methods of S o i l A n a l y s i s . Am. Soc. Agron. Inc., Madison, W i s c o n s i n . S t e e l e , J.G. 1967. B u l l e t i n 8.  S o i l Survey I n t e r p r e t a t i o n and Rome.  T r u d g i l l , S.T., D.J. B r i g g s . Geog. 4:262 - 275. USDA S o i l C o n s e r v a t i o n Uses of S o i l s .  1979.  Service.  S o i l and  1971.  i t s Use.  FAO  land p o t e n t i a l .  Guide f o r I n t e r p r e t i n g  Soils  Prog. Phys.  Engineering  Ward, J . 1963. H i e r a r c h i a l grouping to o p t i m i z e an o b j e c t i v e f u n c t i o n . American S t a t i s t i c a l A s s o c i a t i o n . 58:236 - 274. Webster, R. 1979. Q u a n t i t a t i v e and n u m e r i c a l methods i n s o i l t i o n and survey. Clarendon P r e s s , 0xford:159 - 218. Webster, R., P.H.T. B e c k e t t . Nature 219:680 - 682.  1968.  Q u a l i t y and u s e f u l n e s s  Wohletz, L.R. 1968. I n t e r p r e t a t i v e s o i l maps f o r l a n d use 9 th I n t e r . Cong. S o i l S c i . Trans:225 - 234.  classifica-  of s o i l maps.  planning.  Y e a t e s , M. 1974. I n t r o d u c t i o n to Q u a n t i t a t i v e A n a l y s i s i n Human Geography. McGraw-Hill, U.S.A.:209 - 230. Young, A. 1973. Rural land e v a l u a t i o n . I n : Dawson, J.A. and J.C. Doornkamp ( e d s . ) . E v a l u a t i n g the Human Environment: Essays i n A p p l i e d Geography:5 - 33.  88  APPENDIX A  CATEGORICAL PARAMETERS  Drainage C a t e g o r i e s 1 1.5 2 2.5 3 4 5 5.5 6 6.5 7  rapid well to rapid well moderately w e l l t o w e l l moderately w e l l imperfect moderately poor moderately poor t o poor poor poor t o v e r y poor v e r y poor  Perviousness 1 2 3 4 5 6 7  Categories  rapid r a p i d t o moderate moderate to r a p i d moderate moderate t o slow slow t o moderate slow  Parent M a t e r i a l 1 2 3 3.5 4 5 6 7 8 9  Categories  colluvium outwash l o c a l stream d e p o s i t s floodplain deposits aeolian lacustrine glaciolacustrine - glaciofluvial glacial t i l l glaciomarine marine  APPENDIX B - SOILS DATA •fc  —\ CO.  CO CD •H  CO  U  cu CO •I-I  o  CO  CTl OO  AD BT BL BK F HT HD HJ KD LX LK MH MQ M NN PE RD SI VD W  CJ  CJ cd  CJ  35 ft 4.6 5.3 4.7 4.6 4.9 4.5 4.3 4.4 5.2 4.9 5.0 4.7 5.1 4.8 5.2 4.7 5.35.1 5.5 4.9  o o CU T H 4-1 CO .4-1 n o u o cd cd cd cd O M o u CU - H CO  U  fn  14° 0 3 0 0 38 5 3 1 0 0 20 1 0 31 4 5 0 0 1  CJ  CJ nj  C J CM  20 0 0 0 0 0 0 0 0 0 0 63 1 0 0 0 1 0 1 3  *S = s u r f a c e h o r i z o n C = C horizon  §°4 4 1 5 3 4 2 3 25 95 64 94 27 4 0 1 6 1 1 28  PP  •i-i  CJ  cd  co  £6 65 87 46 62 55 20 51 49 1 37 64 63 64 25 44 79 46 45 61  cd  r-l CJ  10 33 10 42 35 27 41 39 22 4 10 20 28 31 72 53 9 52 54 17  4° 39 52 39 28 27 61 33 9 3 11 5 17 34 48 45 10 37 56 13  CJ • H r4 (3 CU cr) 60 r l CD OS  4J 4-1 6°  5 9 8 5 9 7 13 6 1 7 15 6 6 6 6 15 12 6 8  Tj  CO N—'  4-1 3 'rH cr a r l r l •rH »rH •i-l  3 36 45 38 38 39 30 45 34 20 30 45 34 37 35 38 29 46 42 38  TJ • H  ^ a ^ 4 J  3 -rH cr B  • H  » H  rJ rJ 13 33 37 32 30 27 46 31 21 20 17 18 22 34 41 33 27 32 37 30  CU 60.—.  CU 60^-N  cd co U W  cd CJ  o 4-i >> O) u -rH rH o cu cd 4J cd  S  cd  U  10 10 10 11 9 13 8 15 10 2 9 13 11 14 ,7 7 15 6 11 16  rH  ^  CU 60 CJ cd  /—s  CJ  ^  J3 co  X o 4J j * . W  to  n  -rH u a cu cd 4J p. cd  2  cd  U  1 9 8 12 12 14 9 13 11 2 8 2 11 13 10 9 20 9 8 11  >s  4-> TH o a •rH CTj 4 -1 ft cd cd CJ  CU 60 CJ cd /-N XI C J CJ ^  x• • W >s 4-1 CJ -rH o o •4-> H cdP. cd  co  o ine /lOO^gm 5.5 2f0 6.0 6.0 11.5 6.5. 10.5 7.0 13.5 4.0 7.5 4.0 15.0 8.5 10.5 5.5 7.5 3.0 2.5 1.5 5.0 3.0 14.5 1.0 7.0 4.0 7.0 4.5 11.5 9.5 15.5 5.5 5.5 3.5 9.0 5.0 6.5 3.0 5.0 4.0 CJ  CJ  CJ  CU 60 cd CJ  •r H cd U  Q  1.5 4.0 5.5 5.5 4.0 6.5 6.0 5.5 2.0 2.0 2.5 2.0 2.5 2.5 6.5 5.5 2.5 6.0 6.0 25.0  co CO CU CJ CO  CU  &  o  r-l  CO  %  2.5 5.5 4.0 2.0 4.0 1.0 1.5 2.5 12.5 15.0 3.0 9.5 5.5 5.0 1.0 2.0 20.0 4.0 1.0 8.5  3 •rH O  >  U  a) CH  2 4 6 5. 4 4 7 4 1 1 3 4 3 4 4 . 7 6 4 5 4  4J CJ CU  u  Cd CH  U  CU  CJ  cu  rH  Cd •rH U  CU  4-1 ft. cd P S Pi  4.0 3-0 3.5 5.0 3.5 3.5 3.5 3.5 5.0 4.0 3.0 4.0 3.5 3.5 3.5 3.5 4.0 3.0 5.0 8.0  VH Cd CM  i-H cd  •rH M CU  U  CU  & 4-1 o cd rH S 6.0 ,0 .5 .0 ,5 ,5 3.5 3.5 5. 4. 3. 6. 3.5 3.5 3.5 3.5 7.0 3.0 5.0 8.0  90  APPENDIX C  SOIL LIMITATIONS FOR AGRICULTURE (as d e f i n e d by the Canada Land I n v e n t o r y )  Limitation  Symbol  Adverse C l i m a t e  C  U n d e s i r a b l e S o i l S t r u c t u r e / o r Low Permeability  D  Erosion  E  Low F e r t i l i t y  F  I n u n d a t i o n by Streams or Lakes  I  Moisture L i m i t a t i o n  M  Salinity  N  Stoniness  P  C o n s o l i d a t e d Bedrock  R  Adverse S o i l C h a r a c t e r i s t i c s - I n c l u d e s Two o r More of D, F, M, N  S  Topography  T  E x c e s s i v e Water  W  Cumulative Minor Adverse C h a r a c t e r i s t i c s  X  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095436/manifest

Comment

Related Items