UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A digital whole-body vibration exposure recorder for monitoring heavy equipment in the field Kindsvater, André 1982

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1982_A7 K56.pdf [ 8.84MB ]
Metadata
JSON: 831-1.0095330.json
JSON-LD: 831-1.0095330-ld.json
RDF/XML (Pretty): 831-1.0095330-rdf.xml
RDF/JSON: 831-1.0095330-rdf.json
Turtle: 831-1.0095330-turtle.txt
N-Triples: 831-1.0095330-rdf-ntriples.txt
Original Record: 831-1.0095330-source.json
Full Text
831-1.0095330-fulltext.txt
Citation
831-1.0095330.ris

Full Text

DIGITAL WHOLE-BODY VIBRATION  EXPOSURE RECORDER  FOR MONITORING HEAVY EQUIPMENT IN THE F I E L D  by  ANDRE KINDSVATER B.C.S., C o n c o r d i a  University,  1976  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED  SCIENCE  in THE FACULTY OF GRADUATE (Department  We a c c e p t to  of E l e c t r i c a l  this  thesis  the r e q u i r e d  as  STUDIES  Engineering)  conforming  standard  THE UNIVERSITIY OF BRITISH COLUMBIA. August  1982  © A n d r e ' K i n d s v a t e r 1982  In p r e s e n t i n g  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the  requirements f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make it  f r e e l y a v a i l a b l e f o r reference  and study.  I further  agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by t h e head o f my department o r by h i s o r her r e p r e s e n t a t i v e s .  It is  understood t h a t copying o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l gain  s h a l l n o t be allowed without my  permission.  Department o f  ^LB^T/Z-I^AIL-  E u&/K>££  The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date  29.  JUL.?  19 BZ  JZ/AJq  written  11  ABSTRACT A self-contained whole-body  vibration  been d e v e l o p e d , Two  vibration exposure  using d i g i t a l  s e t s of d i g i t a l  Whole-body  for  The  The  from  1 t o 80  supported  designed:  according  f o r analogue filters  conforming  to  to  the  ISO  2631  t h e E v a l u a t i o n o f Human E x p o s u r e  to  band  filters  covering  the  Hz. was  based  on  a low  by a s t a c k - o r i e n t e d  accelerometer  The  has  techniques.  and  outputs  power 8 b i t m i c r o -  arithmetic  instrument processes 3 analogue  straingage signal  were  order octave  implementation  processor,  of  Vibration)  b) a s e t o f s e c o n d range  filtering  filters  (Guide  evaluation  o f heavy e q u i p m e n t o p e r a t o r s  filters  a) a s e t of w e i g h t i n g standard  a n a l y z e r f o r the  processor.  i n p u t s from a  the  filtered  triaxial  rms  (10  sec)  recording. can  the  be  ISO  selected 2631  in  standard  the  field  o r t o be  as  either  1 of 6  octave  filters. The field  instrument  measurements  h a r v e s t i n g . On that set  the by  scope  ISO rms  the  under  production machine  vibration  2631  from  standard.  levels shock  But  laboratory  and  conditions investigated,  exposure  standard.  vibration  contribution of  e v a l u a t e d i n the  the p a r t i c u l a r  operator  the  measured energy  was  i s well high  indicate  used  in  forest  i t was  below t h e  variations  the presence  impulses, which a r e  for  found limits  in  of a  outside  the large the  iii  TABLE OF CONTENTS 1. Introduction 2. Whole-Body V i b r a t i o n And I t s E f f e c t s On Man Introduction V i b r a t i o n Measurements The Human Body As A M e c h a n i c a l S y s t e m C o n s i d e r a t i o n s Of F i e l d Measurements Standards ISO 2631 S t a n d a r d VDI 2057 E f f e c t s Of WBV M e c h a n i c a l B e h a v i o u r o f P a r t s o f t h e Body P h y s i o l o g i c a l Reactions Damage To H e a l t h Conclusion 3. S y s t e m D e s i g n Hardware Software 4. D i g i t a l F i l t e r D e s i g n ISO Whole-Body F i l t e r s Octave Bandpass F i l t e r s Design Scaling BILIN.C Coefficient Quantisation Arithmetic Noise Limit Cycles 5. P e r f o r m a n c e Laboratory Tests P e r f o r m a n c e Improvement Field Trials Data E v a l u a t i o n Results 6. C o n c l u s i o n F u t u r e Work And Recommendations 7. R e f e r e n c e s Appendix A Hardware Software Appendix B I n t e r n a t i o n a l S t a n d a r d ISO 2631  1 3 3 5 .. 7 11 16 16 17 19 19 20 23 23 25 25 27 32 , 32 34 35 38 41 41 41 44 46 46 58 67 67 72 83 84 86 89 89 115 148 148  LIST  OF FIGURES  F i g . 2.1 S i m p l e Model o f t h e Human Body 8 Fig. 2.2 Simplified Mechanical System Representing the Human Body 8 F i g . 2.3 Impedance of one S u b j e c t S i t t i n g a n d S t a n d i n g .... 10 F i g 2.4 Impedance o f 8 S u b j e c t s Sitting Erect (median, 20th and 80th P e r c e n t i l e ) 10 F i g . 2.5 Equipment and Methods F o r R e c o r d i n g a n d A n a l y z i n g Random V i b r a t i o n 13 F i g 2.6 V i b r a t i o n i n T h r e e D i r e c t i o n s o f Two T r a c t o r S e a t s W h i l e D r i v i n g on a bad Road 14 F i g . 2.7 K - v a l u e s a f t e r VDI 2057 18 F i g . 2.8 ISO 2631 v s . VDI 2057 18 F i g 3.1 V i b r a t i o n A n a l y s i s S y s t e m 29 F i g 3.2 Flow C h a r t 30 F i g 3.3 S t r u c t u r e o f a 2nd O r d e r F i l t e r S e c t i o n 31 F i g 3.4 D a t a Flow w i t h i n a 2 n d - o r d e r F i l t e r S e c t i o n 31 F i g 4.1a ISO 2631 Whole-Body F i l t e r ; x- a n d y - d i r e c t i o n ... 33 F i g 4.1b ISO 2631 Whole-Body F i l t e r ; z - d i r e c t i o n 33 F i g 4.2 O c t a v e Bandpass F i l t e r a f t e r ANSI S1.11 34 F i g 4.3a D e s i g n P a r a m e t e r s i n t h e s - P l a n e 37 F i g 4.3b D e s i g n P a r a m e t e r s i n t h e z - P l a n e 37 F i g 4.4 S i m p l i f i e d G a i n M o d e l o f a S e c o n d O r d e r F i l t e r .... 40 F i g 4.5 D e t a i l e d Model f o r S c a l i n g o f a S e c o n d O r d e r F i l t e r 40  F i g 4.6 I d e a l F i x e d P o i n t M u l t i p l i c a t i o n a n d T r u n c a t i o n ... 43 F i g 4.7 F u l l w o r d T r u n c a t i o n i n I n t e g e r M u l t i p l i c a t i o n 43 F i g . 5.1 I S O ( x , y ) F i l t e r R e s p o n s e from Function Generator Input 48 F i g 5.2 ISO(z) Filter Response from F u n c t i o n G e n e r a t o r Input 49 F i g . 5.3 #1 F i l t e r Response from F u n c t i o n G e n e r a t o r I n p u t . 50 F i g . 5.4 #2 F i l t e r R e s p o n s e from F u n c t i o n G e n e r a t o r I n p u t . 51 F i g . 5.5 #3 F i l t e r Response from F u n c t i o n G e n e r a t o r I n p u t . 52 F i g . 5.6 #4 F i l t e r R e s p o n s e from F u n c t i o n G e n e r a t o r I n p u t . 53 F i g . 5.7 #5 F i l t e r Response from F u n c t i o n G e n e r a t o r I n p u t . 54 F i g . 5.8 #6 F i l t e r R e s p o n s e from F u n c t i o n G e n e r a t o r I n p u t . 55 F i g . 5.9 A c c e l e r a t i o n Range o f S c o t c h Yoke 56 F i g . 5.10 #4 F i l t e r R e s p o n s e W i t h Shaker I n p u t 56 F i g . 5.11a Sample Waveform o f S c o t c h Yoke 57 F i g . 5.11b F r e q u e n c y C o n t e n t o f S c o t c h Yoke 57 F i g . 5.12a Z e r o - P o l e - Z e r o - P o l e S t r u c t u r e 60 F i g . 5.12b Z e r o - P o l e - P o l e - Z e r o S t r u c t u r e 60 F i g . 5.13a F i l t e r #1 Z-P-Z-P 61 F i g . 5.13b F i l t e r #1 Z-P-P-Z 61 F i g . 5.14a F i l t e r #2 Z-P-Z-P 62 F i g . 5.14b F i l t e r #2 Z-P-P-Z ..' 62 F i g . 5.15a F i l t e r #3 Z-P-Z-P 63 F i g . 5.15b F i l t e r #3 Z-P-P-Z 63 F i g . 5.16a F i l t e r #4 Z-P-Z-P 64 F i g . 5 . 1 6 b F i l t e r #4 Z-P-P-Z .. 64 F i g . 5.17a F i l t e r #5 Z-P-Z-P 65 F i g . 5.17b F i l t e r #5 Z-P-P-Z 65 F i g . 5.18a F i l t e r #6 Z-P-Z-P66 F i g . 5.18b F i l t e r #6 Z-P-P-Z 66  V  Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.  5.20 M a d i l l - 0 4 4 G r a p p l e Y a r d e r 5.21 I n s t a l l a t i o n of t h e F u l l D a t a A c q u i s i t i o n System 5.22 A t t a c h m e n t o f t h e S e n s o r t o t h e Cab S t r u c t u r e ... 5.23 A t t a c h m e n t of t h e S e n s o r t o t h e S e a t 5.24 E q u i v a l e n t E x p o s u r e T i m e s 5.25a X - A x i s V i b r a t i o n Measurement Day #1 5.25b X - A x i s D i s t r i b u t i o n Day #1 5.26a Y - A x i s V i b r a t i o n Measurement Day #1 5.26b Y - A x i s D i s t r i b u t i o n Day #1 5.27a Z - A x i s V i b r a t i o n Measurement Day #1 5.27b Z - A x i s D i s t r i b u t i o n Day #1 5.28a X - A x i s V i b r a t i o n Measurement Day #2 5.28b X - A x i s D i s t r i b u t i o n Day #2 .'— 5.29a Y - A x i s V i b r a t i o n Measurement Day #2 5.29b Y - A x i s D i s t r i b u t i o n Day #2 5.30a Z - A x i s V i b r a t i o n Measurement Day #2 5.30b Z - A x i s D i s t r i b u t i o n Day #2 5.31a X - A x i s V i b r a t i o n Measurement Day #3 5.31b X - A x i s D i s t r i b u t i o n Day #3 5.32a Y - A x i s V i b r a t i o n Measurement Day #3 5.32b Y - A x i s D i s t r i b u t i o n Day #3 5.33a Z - A x i s V i b r a t i o n Measurement Day #3 5.33b Z - A x i s D i s t r i b u t i o n Day #3  69 69 70 70 71 74 74 75 75 76 76 77 77 78 78 79 79 80 80 81 81 82 82  vi  L I S T OF  TABLES  T a b l e 2.1 F r e q u e n c y Ranges P r o d u c e d by Common Sources of Vibration 4 T a b l e 2.2 Items M e a s u r e d i n F i e l d T e s t s 11 T a b l e 2.3 Mean V a l u e o f Oxygen U p t a k e 22 T a b l e 2.4 Mean V a l u e of H e a r t R a t e 22 T a b l e 4.1 ANSI S1.11 F i l t e r s 34 T a b l e 4.2 M u l t i p l i c a t i o n N o i s e 44 T a b l e 4.3 C a l c u l a t e d DC L i m i t C y c l e L e v e l s ..45 T a b l e 5.1 C a l c u l a t e d and M e a s u r e d DC L i m i t C y c l e L e v e l s ... 59 T a b l e 5.2 E q u i v a l e n t E x p o s u r e Times 72  vii  ACKNOWLEDGEMENT  I his  would  support  like  t o thank my s u p e r v i s o r D r . P.D. Lawrence f o r  and p a t i e n c e  I would a l s o l i k e and  the opportunity  on-going I  research  thank  the course  of t h i s  t o thank D r . P.L. C o t t e l l  t o conduct  ergonomic also  throughout  t h i s work  i n forest  Amaury De Souza  work.  f o r h i s support  i n the context  of the  harvesting. f o r h i s help with  the f i e l d  wor k. I am g r a t e f u l forest  harvesting  This British and  work  Columbia  Engineering  to MacMillan  Bloedel  f o r the  use  of  their  facilities. has  been  (Grant  by t h e S c i e n c e  No. 79 RC-3) and  Research  A 6422 a n d A 9 3 4 1 ) .  supported  Council  the  of B r i t i s h  C o u n c i l of  Natural Columbia  Sciences (Grants  1  1.  INTRODUCTION  In Canada, t h e F o r e s t I n d u s t r i e s contributor  to  manufacturing higher, total  as  i n 1976).  in B r i t i s h  increased  productivity  level  s l o w i n g . The  f o r the  One  area  w h i c h has  potential  31%  of  total  be  where t h e p e r c e n t a g e  was  51%  of  with  an  to  areas and  'environmental'  measurement  even  limits  with  not  and  only  use  of  gain  more  insight  machinery,  a recent project  and  was  layout) relating  to  identify  variables  productivity  h a r v e s t i n g u s i n g heavy to  in  undertaken  of e r g o n o m i c  equipment.  monitor  and  s u c h as n o i s e , t e m p e r a t u r e ,  record  vibration,  relating  each  time r e f e r e n c e . 2  vibration  (or  more  has  been w i d e l y  investigated  agent  extensively  documented  is also  reflected  respect  improves  costs.  wide v a r i e t y  variables,  VDI  to  increases in e f f i c i e n c y  along with operator task execution,  the  seems  f a r , i s t h e human f a c t o r  developed  variables  I t s importance 3  a  was  as a s t r e s s - i n d u c i n g  2631  To  in forest  Whole-Body V i b r a t i o n ) ,  ISO  improving  t h i s development  investment  control  to a s i n g l e  of  but  ignored thus  assess  environment,  humidity  been s t e a d i l y  a c h i e v e t h e more e f f i c i e n t  system  One  larger  f o r improvement  human f a c t o r s A  has  interaction.  measure  (operator  as  or  single  can  a l s o demands c o n t i n u e d  been l a r g e l y  man-machine  2).  Billion  trend to higher mechanisation  1  t o compensate  and  largest  contribution  of m e c h a n i s a t i o n ,  but  and  ($6.4  Regionally this  Columbia,  productivity,  to  earnings  the  manufacturing. Overall  be  export  are  2057", to  which  'reduced  in d e f i n i t e state  specifically and  i t s role  (see  chapter  standards  such  frequency-dependent  comfort', 'fatigue-decreased  2  proficiency' In  and  the  'hazard  ergonomic  studies ,  simultaneous  and  measured p r o d u c t i o n and  relationships  stress  and  of  5  the  etc.)  to h e a l t h  safety'.  w h i c h t h i s work  forms a  between measured v i b r a t i o n  variables  (in-haul  variables  (e.g.  time,  heart  part, levels  out-haul  rate)  time,  are  being  investigated. The  objective  measurement  of  of  this  vibration  suitable vibration analysis whole-body v i b r a t i o n d a t a The  s y s t e m had  data-logger  and  simultaneously useful be  in a  to  survey  with  of  commercially  instrument  of  s y s t e m and  i n the  other  available Meter  by  ergonomic  The  environment of  an  available the  to  the  design  system  to  a  gather  existing  to  recorded  be  the  Also,  power  equipment  and  Kjaer.  axis  at  a  and  to  supply. some  but  that  none  instrument  2512  Human  The  battery  time  be  indicated  sophisticated i s the  to  i n s t r u m e n t had  external  Bruel  display  already  requirements,  most  one  consider  variables.  1981)  for a d i g i t a l  the  data  (since  processes only  based, except  use  compatible  meet some o f  to  humans,  e a s i l y w i t h an  independent  all.  is  field.  interface  commercially  could  fulfill  Vibration  exposure  forest harvesting  systems t h a t could  work  provide  r u g g e d , compact and A  thesis  and  IEC-625 bus  is  Response powered analogue  interface.  3  2. WHOLE-BODY VIBRATION AND  ITS EFFECTS ON  MAN  INTRODUCTION Awareness is  increasing  and  space  workplace working safety  i n our  technological  transportation create  (Tablel  and,  in  quite  Most v i b r a t i o n e n c o u n t e r e d random n a t u r e w i t h i n  laboratory data  and  realistic  interfere  extreme  water,  with  air  at the  comfort,  circumstances, health  dealt  from  working  a  industrial  and  the e a r l y  but  been  1930's . 6  i s of  with  sinusoidal  variety  of  the field  a  f o r t h e sake of  v i b r a t i o n e f f e c t s the m a j o r i t y  Complementing  conditions.  e x p o s u r e has  environment  f r e q u e n c y band,  quantifying have  (WBV)  regularly since  i n an  a broad  conditions.  derived  can  o f whole-body v i b r a t i o n  i n the l i t e r a t u r e  investigations  s o c i e t y . Ground,  2.1).  problem  determining  and v i b r a t i o n  v e h i c l e s , as w e l l as machinery  v i b r a t i o n s that  efficiency  The noted  o f t h e e f f e c t s o f m e c h a n i c a l shock  vibration laboratory  measurements  of  under data are under  4  SOURCE  icr  io°  1  F r e q u e n c y (Hz) 1,0" 10 110 110 _i  infrasonic k—  1  2  audible  3  ultrasonic  WBV—H  Aircraft manoeuvers gust responses p i s t o n engines propellers r o t a t i n g wings jet engines Air cushion craft surface responses power s o u r c e s Bridges struct.responses to wind a n d t r a f f i c Land v e h i c l e s earthmoving, a g r i cultural + military road t r a n s p o r t r a i l transport Machine t o o l s stationary portable  i  i i-  t-  Ships sea movement power s o u r c e s Space v e h i c l e s aerodynamic effects power s o u r c e s Table  2.1 F r e q u e n c y  ranges  produced  vibration  by common  s o u r c e s of  5  This of  survey  is restricted  whole-body v i b r a t i o n o n l y ,  Frequencies sickness,  below  which  operation. which are  1  i s not  Not  of  a  WBV),  with 1Og  frequency are  not  In  the  more t h a n  on  t o o l s are  differs  in  from t h a t  Hz  100  with  heavy  clinical  and  Hz.  motion  equipment above  5g  studies.  picture  (see  formed when, f o r local  7  1000  to  accelerations  o p e r a t e d . Hence  to  effects  accident-damage  specific  that  1  associated  problem  reports  rather  contents  range No  1-20  140dB t h e r e  induced chest  loss  wall  required  heavy e q u i p m e n t  Hz  e f f e c t on  (disorientation,  levels  are  from  the  vibrations  accelerations  of  up  to  included.  .(infrasound). of  range  t o m i l i t a r y and  one  example, p n e u m a t i c  phenomena and  usually  apparent  discussed  produces  i n the  are  an  more r e l e v a n t  WBV Effects  Hz  to the  and  noise  and  hearing  occurs,  i s e v i d e n c e of of  vibration  b a l a n c e and  but  for  seems of  minor  disturbance  nausea), a u r a l  importance  pain,  to  6  this  intensities  vestibular  whole-body v i b r a t i o n . Due  overlap  the  i n the  and high  case  of  operators.  VIBRATION MEASUREMENTS Sine-wave visualize  Thus,  equations. frequency,  maximum  purposes,  other  periodic  because they can  mathematical specifying  and  be  a s i n e - w a v e can  of  the  sine-wave  be  can  amplitude,  i s c a l c u l a b l e . The  by  described  They  acceleration,  an  be and  are  easy  g r a p h i c a l l y or completely phase  important  by  to  simple  defined  by  characteristics. parameter  for test  instantaneous a c c e l e r a t i o n  produced  d e t e r m i n e d by  equation:  vibrations  taking  the  second d e r i v a t i v e  6  A=4ir fDsin2fff t 2  from t h i s ,  2  maximum  acceleration  a=0.04024f D  c a n be c a l c u l a t e d a s : where:  2  a=max a c c e l e r a t i o n f=frequency  i n Hertz  D=displacement Random because  vibrations , 8  they  unpredictably. specific  Neither  must  be  If observed standard  be  acceleration used  probability  band,  the a c c e l e r a t i o n a  deviation  for  long  several  picture  limited  to  a  frequencies  nor  by  instantaneous  random v i b r a t i o n s . and  instantaneous  period,  to  change m a g n i t u d e  often  statistical  rms a c c e l e r a t i o n  produced  i n cm  i n t h e band a r e p o s s i b l e .  i s indeterminate,  f o r any s p e c i f i c  over  though  velocities  predicted  to c a l c u l a t e  difficult  contains  and a l l f r e q u e n c i e s  can  are  wave forms t h a t  A random v i b r a t i o n ,  instantaneous  displacements maximum  have n o n p e r i o d i c  frequency  simultaneously,  however,  in g  a  Thus, theory  and t o p r e d i c t t h e  acceleration. random  vibration  t h e mean, t h e v a r i a n c e ,  c a n be measured and c a l c u l a t e d .  is  and t h e  7  THE  HUMAN  BODY AS A MECHANICAL SYSTEM  From a p u r e l y m e c h a n i c a l be c o n s i d e r e d a s a complex and a  masses. E a r l y standing  lead as  or  system  investigations sitting  unit  (Fig.  mass.  Resonant  2.3a, 2.3b) s u g g e s t  system  spring  f o r multiple - single  vertical  system .  whole body  can  single  systems (Fig. be  spring were  might  dampers  impedance  p e a k s a p p e a r i n g between  order  model  of springs,  Below 2 Hz t h e  9  resonances  mass  t h e human body  of the mechanical  t h e damped  o f F i g . 2.1. H i g h e r  account  o f view  consisting  man under  to a simple mass-spring a  point  of  vibration body  acts  4 a n d 5 Hz  - single  developed  mass 1 0  to  2.2), but the s i n g l e  used  as  a  fairly  good  best f o r v i b r a t i o n s  below  approximation. Moreover 10 Hz w h i c h from  the  approximation  coincides  w i t h t h e range  t h e 4 Hz r e s o n a n c e  further shoulder  resonance  fits  in  of primary  f o r t h e thorax-abdomen t h e 20 - 30 Hz range  interest. system  Apart  there i s a  from t h e head-neck-  system.  Other  resonant  experimentally  f r e q u e n c i e s f o r p a r t s o f t h e body have  determined:  Hand:  30  t o 40 Hz  Arm,leg:  2 t o 6 Hz  Jaw:  100  Eyeball:  60  t o 200 Hz t o 90 Hz  been  8  m  r F i g 2.1 Simple model o f t h e human body  UPPER TORSO  MMSHOULDER SYSTEM STIFF ELASTICITY^ or SPINAL COLUMM  THORAXABDOMEN SYSTEM (SIMPLIFIED)  HIPS • FORCE APPLIEO I TO SITTING * SUBJECT  LEGS  FORCE APPLIED TO STANDING SUBJECT  F i g 2.2 S i m p l i f i e d m e c h a n i c a l system r e p r e s e n t i n g t h e human body a t low f r e q u e n c i e s  9  It to  was  difficult  to assign d e f i n i t e  t h e e l e m e n t s o f t h e model, s i n c e t h e y  the  body  test.  graph  type,  posture  and  A homogeneous sample o f  exhibits  the  found  fairly  muscle tone 8  large variations  i n F i g . 2.3b. E s t i m a t e s  healthy  Spring  Damping  32.7  N/cm  12.8 Nsec/cm  Damper: factor:  critically  of the subject young  f o r the values  75.2 kg constant:  values  males  0.258  on  under  already  a s shown by t h e u p p e r and  s i n g l e mass model a r e : Mass:  depend  numerical  lower  of the elements i n  10  Fig  2.3  Impedance  of one s u b j e c t  Frequency  (Hz)  sitting  and  Frequency  Fig  2.4  Impedance  of 8 s u b j e c t s 80th  sitting  percentile)  erect  standing  (Hz)  (median,  2 0 t h and  11  CONSIDERATIONS OF F I E L D MEASUREMENTS An  extensive  National Using at  Institute  on  equipped  5 points, physiological 2.2) were r e c o r d e d  was t h e n  analysed  range  of  WBV  was  forOccupational  a specially  (Table  a  study  Hz  a  1 1  levels  vehicle  a FM t e l e m e t r y  i n blocks  with  test  the  (NIOSH) .  truck, v i b r a t i o n  parameters and through  through  S a f e t y and H e a l t h  ex-Ambulance  (off-line)  0-25  conducted  link.  motion The d a t a  of 1024 s a m p l e s a n d  Hewlett-Packard  Digital  over  Fourier  Analyzer.  Vibration acceleration at: Target v e h i c l e f l o o r [ v e r t i c a l a x i s ) Man/seat i n t e r f a c e ( i . e . w o r k e r ' s b u t t o c k s , axes) Worker's k n e e ' ( v e r t i c a l a x i s ) Worker's s h o u l d e r ( v e r t i c a l a x i s ) W o r k e r ' s head ( v e r t i c a l a x i s )  a l l three  Environment N o i s e Tat t h e w o r k e r ' s e a r l e v e l ) T e m p e r a t u r e and r e l a t i v e h u m i d i t y ( m a n u a l l y Physiology E l e c t r o c a r d i o g r a m (EKG) E l e c t r o m y o g r a m (EMG, 2 s p i n a l i s muscles)  channels,  obtained)  bilateral  sacro-  Other: Road profiles traversed by t h e t a r g e t v e h i c l e a n d continuous observation of the operator and h i s v e h i c l e motion (video tape) T a r g e t - v e h i c l e speed ( D o p p l e r r a d a r ) T a r g e t - v e h i c l e t i r e p r e s s u r e (where a p p l i c a b l e ) Two-way radio communication between t a r g e t - v e h i c l e o p e r a t o r and mobile r e c o r d i n g u n i t Table  From 21 r u n s different  2.2 Items m e a s u r e d  by one o f  types)  about  four  in field  drivers  150 s p e c t r a l  on  22  p l o t s were  tests  machines generated.  (of  11  1 2  The  main c o n c l u s i o n s  - the  majority  direction - there  from t h e d a t a a r e : level  vibration  appears  i n the z-  (vertical), difference  between  (weights: -  of high  is little  levels  drawn  in  operators  the of  measured  vibration  different  body  mass  180-230 l b s )  i t appears that  there  the  upper t o r s o from  operator's  i s a single  transmission  path  to  the v e h i c l e through the  seat. -  f o r a l o g skidder, vibration and  15Hz w i t h  levels  Unfortunately data  occurred  no e v a l u a t i o n was made of recorded).  At  the  Norwegian  Institute  Sjoflot  and  coworkers with  self-propelled  between  1.0  from 0.07 t o 0. 130g ( p e a k ) .  (EKG and EMG's were  investigations  mostly  have  machines  of A g r i c u l t u r a l  carried  particular  the p h y s i o l o g i c a l  out  reference  Engineering,  a  series  of  t o t h e WBV c a u s e d by  i n a g r i c u l t u r e and f o r e s t r y  1 2  1 3  .  Their  main aims were: a)  to develop vibration  b)  to  methods o f m e a s u r i n g , a n a l y s i n g a n d e v a l u a t i n g t h e e x p o s u r e o f machine o p e r a t o r s  evaluate  investigations The action,  vibrotechnical concerning  vibration i . e on  the  directions driving  seat  different  acceleration  beneath the  aspects  irregular  seats.  according  experiments  was  The  just types also  in  a n d random  a c c e l e r a t i o n was r e c o r d e d  e x p e r i m e n t s where vibration  in practical  under of  at  the  driver.  seats  were  place In  of some  evaluated,  measured on t h e v e h i c l e body  acceleration  various  laboratory  oscillations.  the  was  measured  t o ISO 2631. The v i b r a t i o n with  work a n d  types  during  in  three  practical  of machinery,  various  13  speeds,  e t c . , was  r e c o r d e d on m a g n e t i c  t a p e and a n a l y z e d  in  the  laboratory. The to  frequency  110 Hz. The f r e q u e n c y s p e c t r a  amplitude period was  of  to  sample  2.8 m i n u t e s .  speed  the average  25  for  Hz,  was  frequency  spectra,  o f 0.1  anotfter  tope  H  Hz and a  recordings.  T  V.100, Nolte frequ«cj|  O—D  and  frequencies  frequence tronfformotton  To.pt recorder  speed  for analysis. A  o f 1OOsamples/sec f o r t h e a n a l o g u e  ; A. Anotoooui  recorder  FM PI 6200  Compensol ion poper recorder •Amplifier  experimental  for  a l s o made w i t h a r e s o l u t i o n  FM MAS  0.3  acceleration  l o o p a t a low t a p e  of the frequency  < Dote transport, I recorcwq on top* loop,  lAmplltler  i i  * j  4  Amplitude spectrum  Oirtcl paprr recorder  Colibrotion '/ana control \  1  Fig  an  100 t i m e s h i g h e r when r e p l a y i n g  calculation  t h e range  A technique of frequency transformation  i . e . r e c o r d i n g on a t a p e  a  computer  showed  out over  i n f r e q u e n c y bands 0.06 Hz wide  used,  using  up  a n a l y s i s was c a r r i e d  Acceleration  2.5 E q u i p m e n t and methods f o r r e c o r d i n g and a n a l y z i n g random vibration . 1 2  14  Vehicle II  12 k m / h  •Vehicle body beneath the seat Seat B |  O  o &  e  s e a t u n  40  60  a  e r  th«> driver  -Seat C Z-axis RMS  —1,87  —1,40 — 1.33  m/s m/s, m/s' 2  '29  X-axis  Z  RMS s  •if •  J  i 1' M  2 2  o  A.  ,i  A  .•rt  III  ICO H 120  80  i 1  2  *  10  6  >1  1*  IS  '8  20  Y-axis  0.2  OA RMS  .—-1.90 m/s? 0.2  U-K-4  r ,  ~  1  1  l,50m/s. 0.90 m/'s K»1S_ •  0  20  40  a m y  60  00  100  11 >3Hx20 Frequency  Fig  2.6 V i b r a t i o n  i n t h r e e d i r e c t i o n s o f two t r a c t o r d r i v i n g on a bad r o a d . 1 2  seats  while  1 5  The  frequency  spectra  VDI-guidelines  2057  were  (K-value)".  - v i b r a t i o n s above 20 interfere - on  with  2.5  and  are  4.5  usually  from 0.3  t o 2.5  influence  on  amplitude dominant  the  with  to c o l l e c t field  Institute  a Bruel  and  accelerations 70%)  drawn:  did  the  not  frequency  with  dominant  direction)  and  direction). (8,12,16  km/h)  distribution,  with  between  horizontal directions  (right-to-left  speed  dominating  appeared  vertical  (chest-to-back  speed,  had  however  particularly  t o be  was  conducted  of C a n a d a " 1  only,  l o a d e r s . The Kjaer  (B+K)  of more t h a n  the  exposed  no the  at  to  the  values  by  the  (FERIC).  from  three  weighted  (rms)  for  Forest  D a t a was  collected,  operators  Level  front-end  Engineering  s i g n a l (ISO)  Statistical 2g  greater  ones.  r e p r e s e n t a t i v e v i b r a t i o n data  direction  different  (about  the  s t r e s s e s than h e a v i e r  vertical  four  vehicles  d r i v e r s appeared  i n the  Research  seat,  German  frequencies  vibration  loaders  of  driving  the  the  (z) d i r e c t i o n  1 t o 4 Hz  increased  lightweight  study  1/2  Hz  in  main c o n c l u s i o n s  V i b r a t i o n i n the  to  to the  operation.  tired  Hz.  from  - variation  A  vehicle  1/4  The  measured on  for v e r t i c a l  frequencies  -  Hz,  pneumatically  frequencies  interpreted in r e l a t i o n  working was  in on  analyzed  Analyzer.  Peak  were o b s e r v e d . More commonly  c l u s t e r e d around  0.05  to  0.3g  rms.  1 6  STANDARDS  ISO  2631  The  Standard  standard  of e x p o s u r e human body B).  It  d e f i n e s and g i v e s n u m e r i c a l  for vibration  i n the frequency  defines  vibration  transmitted  the  in relation x-axis:  range  three  Separate is  in  limits  the  direction. for  respect Three  The  allow  (z)  and the  limits  reduced  (right  according  direction  one  for  expression  Appendix  subjects,  to l e f t ) (foot  t o head)  t o whether  or  the  horizontal  f o r two w e i g h t i n g the  z-axis,  of the l e v e l  on man by a s i n g l e  the v i b r a t i o n (x,y)  n e t w o r k s , one  are  given.  The  of v i b r a t i o n  with  quantity.  are set according  t o the  to i n t e r f e r e n c e with  basic  criteria:  comfort  boundary;  such as e a t i n g ,  fatigue-decreased  limits;  relates  reading, w r i t i n g .  proficiency  working e f f i c i e n c y  the  and s t a n d i n g  as a f u n c t i o n of f r e q u e n c y  operations  - exposure  1 t o 80 Hz ( s e e  vertical  characteristics  to i t s effects  t h r e e main human  -  are s p e c i f i e d  x- and y - a x e s  networks  -  longitudinal,  vertical  s u r f a c e s t o the  (back t o c h e s t )  y-axis: anteroposterior z-axis:  from  solid  for limits  m a j o r a x e s i n w h i c h t o measure t h e  to s i t t i n g  lateral  from  values  may be  exceeding  boundary;  above  which  the  impaired. these  limits  s a f e t y and/or h e a l t h of t h e s u b j e c t .  c a n pose a t h r e a t  to  17  VDI  2057  The  K-Factor  f o r a German  a s d e v e l o p e d by Dieckmann p r o v i d e d  national standard  (VDI 2057)  h a r m f u l e f f e c t s of v i b r a t i o n . K i s d e f i n e d the  amount  ( i . e . power)  of  the  concerned  the b a s i s with  the  as the c o e f f i c i e n t of  physiological  stress  during  exposure t o v i b r a t i o n . Thus: K=0.1  threshold  of s e n s i t i v i t y  to v i b r a t i o n  K=0.3-1.0  v i b r a t i o n a c t i n g over a long  p e r i o d may  be  unpleasant K=1.0-3.0  v i b r a t i o n i s unpleasant  K=3.0-10  serious  disorders  but  bearable  appear d u r i n g  several  hours  exposure K=l0-30  work  K=30-100  human p r e s e n c e  The  K-factor  frequency  is  i s hardly  calculated  possible i s impossible  from  amplitude  i n cm)  ( f , i n Hz) a s :  horizontal  vert ical to  For  (d,  5Hz  R=d*f  2  t o 2Hz  K=2*d*f  5-40HZ  K=5*d*f  2-25HZ  K=4*d*f  40-100Hz  K=200*d  25-100HZ  K=l00*d  simultaneous  a c t i o n s K = ( K + K + K ] + . . . )> 2  2  y  2  2  and  Pa-  «*  loteroricc  o te prion tt  Travel in vehicles for short time efiretnety Physical work with longer interruptions. Travel in vehicles during longer lime Physical' work with short interruptions  H G  F K  strong!/ Physical work vrithaul interruptions perceptable  definitelyPresent* in housings with longer interruptions • perrephbl* Presence in housings with c perceptebte short or no interruptions  O  t hordly B percepletii hot A perctprable  Fig  2.7 K - v a l u e s a f t e r  VDI-2057  1.0 r  /  — 0.1 t—\  in E  f  00.1  y  0.001  /  // /  J  10  Fig  /f / / J/  Hz  25  2.8 ISO 2631 v s . VDI 2057  50  80  19  EFFECTS OF As  WBV  with  most  physiological  other  field,  it  emotional  situations  may  the  strain It  1 5  may .  is difficult  s p i t e of  single  this,  WBV  also  c o n c e r n s not  lead  to  These p s y c h o l o g i c a l  human o r g a n i s m and  influence  to d i v i d e m e t h o d i c a l l y  physiological-objective In  stresses  and  most of  physiological,  the  the  only  different  psycho-  reactions  together  proficiency. the  effects into  psychological-subjective  experimental  psychological,  the  reports  field.  describe  pathological  or  the  only  physical  react ions. The  reported  effects  fall  mostly  into  the  following  classes: Acute: a)  mechanical behaviour  b)  physiological muscular  subjective  d)  decrease  p a r t i c u l a r parts  reactions  system or  c)  of  nervous  i n t e n s i t y of  of  of  the  circulation,  body  respiration,  system  vibration  perception  i n performance  Chronic: e)  damages t o  Mechanical The  Behaviour  in is 8-10  large  the highly Hz  of  Parts  d i f f e r e n t r e s o n a n c e s of  been n o t e d . The other  health  input  force  of  the  selected  is also  the  c a v i t y , which a l l o w s  susceptible  to v i b r a t i o n  have been o b s e r v e d . The  limbs  transmitted  body o r g a n s . B e c a u s e of  thoracic  Body  1 6  to  have the  arrangement i t to  heart  and  of  the  heart  "recoil",  the  heart  . Resonances at  swing of  already  the  heart  3-4 in  Hz  and  response  20  to  vibration  producing  may  further  parameter  the  change  of  mean  dynamics  of  reaction  central  of  fluid the  nervous  pressure  a  first  and  computer  contribution  i n the a r t e r i a l of  thereby  flow. A  model  lumped  of  flow, and  organism,  the  the  hormonal  from  flows  was  remaining  the to  was  due  via  the  system  and  were  with  as  due  75%  metabolic  experiments  and  t h a t of  25%  findings  was  fluid  i . e . mechano-receptors  the  approximation  the  suggested  approximately  v e s s e l s and  system,  of  p r e s s u r e s and  the data  p s y c h o - p h y s i o l o g i c a l mechanisms. T h e s e to  ejection,  the p a s s i v e c a r d i o v a s c u l a r system  analysis  aortic  the  ventricular  in blood  relative  i n d o g s . The  in  left  analogue  system t o changes  measured  to  aspects  to estimate  vessel'  changes  closed-loop  hydrodynamic used  also affect  confirmed  anaesthetized  animals.  Physiological The range  most  are  typical  c o n s e q u e n c e s of WBV  disorders  particular, and  Reactions  in  symptoms  electro-encephalographic shows p r e d o m i n a n t  with  of  frequency/low  a  nervous  neurasthenic  examination  changes  i n the  i.e. considerable  amplitude  central  frequency  s y s t e m and,  vegetative dysfunction with angiodystonic,  cardiac  brain;  the  i n the h i g h  depression  t h e waves and  cerebral  background .  of  prevalence  activity  by  activity  WBV  of  the alpha-rhythm, of  An  5  of p a t i e n t s a f f e c t e d  bioelectric  in  the lower  with  high  amplitude.  Confirming  other  significant  increase  displacement  (0.625  reports, in  cm)  Sharp  oxygen sinusoidal  et  uptake  a l .  1  7  under  vibration.  As  recorded  a  constant Table  2.3  21  shows, no  significant  at  and  rest  during  however, t h e r e increasing  and  an  2.4).  The  declined  frequencies control  rest  increase  results  d i f f e r e n c e that  (Tablel  v i b r a t i o n at  obtained  2 and  which  4 Hz. was  with  the  At  8 and  6,  fairly  subject 10  linear  Hz, with  frequency.  Similar the  was  d i f f e r e n c e was  the  heart  period.  f o u n d by  heart  observed  towards  the  were  the  rate  measuring heart seems  i n c r e a s e was end  rate during  of  the  to  greatest  rate,  with  adapt  somewhat  after  5 minutes  v i b r a t i o n p e r i o d . At a l l  recovery  was  lower  than  in  the  22  Recovery  at Rest  a f t e r 5 min vibrat ion  a f t e r 10 min vibrat ion  0.299 0.278 0.280 0.317 0.277  0.301 0.274 0.388 0.472 0.525  0.270 0.271 0.390 0.476 0.505  0.302 0.274 0.272 0.292 0.260  0.313 0.287 0.282 0.302 0.278  0.283 0.270 0.372 0.476 0.518  0.278 0.274 0.332 0.509 0.531  0.272 0.261 0.269 0.272 0.274  Frequency of v i b r a t i o n (Hz)  1  RESTRAINED 2 4 6 8 10 UNRESTRAINED 2 4 6 8 10  Table  Frequency of v i b r a t i o n (Hz)  2.3 Mean v a l u e  at Rest  o f oxygen  a f t e r 5 min vibration  uptake  a f t e r 10 min v i b r a t ion  Recovery  RESTRAINED 2 4 6 8 10  84. 1 79. 1 81.2 84.6 84.8  82.5 78.0 86.3 89.2 97.0  81 .3 75.5 78.9 85.2 92.3  80. 1 76.7 77.5 79.5 82.6  82.2 81.0 83.4 85.0 84.0  84.6 79.5 86.0 89.3 96.2  80. 1 80.2 79.2 84.7 92.2  79.5 77.4 78.4 80.0 80. 1  UNRESTRAINED 2 4 6 8 10  Table  2.4 Mean v a l u e  of heart  rate  23  Damage To It  appears that  little  or  no  vibration lead  Health  to  blood  of  direct  large  functional  pressure, As  common  of  equipment  operators  tentative  indications  2 0  A  the  of  marked  78  changes  changes  The  to  pain,  high  definite  statistical  c l a i m s of  heavy  extract  only  could with  switch  due  and  velocity.  establish  (primarily  hand,  weakness,  services  study  poses  other  a complex  prostatitis),  to  to  i n the  discs  designed  contributes  concrete  less  the  workers  i n bone s t r u c t u r e  intervertebral  well  vibration  as  discomfort  Russian  intervertebral  "A  i n WBV,  operators w i l l  of  the  nerve c o n d u c t i n g  difficult  a pattern  onset  On  muscular  3900 h e a l t h  the  .  WBV  exposed  vibrational  .  deformations, of  of  show t h a t  study  showed  is  showed.  1 9  1 8  to  p r o d u c e a n n o y a n c e and  s u c h as  relationships  the  2 1  it  exposure  health  decreased  approximately  with  disease  and  before,  analysis  jobs  to  alterations  effect  i t could  level)  m a g n i t u d e can  c a u s e and  but  risk  fatigue  noted  (low  to  thoracic  Schmorl's  German  project  gastric  disorders  and  involving  osteochondritis and  lumbar  exposed  and  nodes  2 2  vertebrae."  WBV  spondylitis  calcification .  suggests and  to  that  tractor  premature  bone  2 3  CONCLUSION The range of the  simulations interest  human  are  and  f o r WBV  complex  laboratory i s from  and  1 to  not  effects  result  partly  reaction  of  neuro-physiological  the  from t h e  experiments 80  merely  energy  Hz,  and  show t h a t its effects  mechanical,  input  system.  and  partly  the on  i.e.  the  from  the  24  Therefore flexible indices and  in  the  quantities  the  order  relating  at  human  an i n s t r u m e n t to  same  time  frequency  vibrations  provide  to frequency,  and p o s s i b l e  are  f o r t h e measurement o f WBV  could  i t t o changes indicators.  dependent be  computation  exposure-duration  relate stress  for  be  of v i b r a t i o n and  amplitude  i n other  The  must  ergonomic  effects  on  the  and i t would be a d v a n t a g e o u s i f  examined  within  narrower  frequency  bands. As  a  result  determined a)  of t h i s  study  f o r the v i b r a t i o n  I t should  measure  three primary  monitor  vibrations  requirements  system: along  a l l three  axes  simultaneously; b)  it  should  meet  t h e ' ISO  2631  whole-body  filter  requirements; c)  i t should exposure result  be a b l e  index  t o be reprogrammed  ( s e t of frequency  of i n v e s t i g a t i o n s  vibration.  on t h e  t o a new  weighting effects  vibration  filters) of  as a  whole-body  were  25  3.  SYSTEM DESIGN  HARDWARE To  be  vibration some  a n a l y z e r had  preprocessing.  based' i.e.  compatible  sampling,  a value  new  value  allows  time  period,  frequency For chosen  and  The  by  capacity  would as  processing  the  accordance  range.  to The  against  is  be  time  raw  from  To digital  with  'difference-  recorded the  with  relative  the  ISO  high  the  2631  value.  over  a  longer higher  standard.  was  linearity  capacity  overloads.  i f the  rms-value  force,  To measure t h e  transducer  sufficient  only  previous  p r o p o r t i o n a l to the  operator.  sampling;  preprocessing  signal  was  The and  rms hence  acceleration,  chosen with  over  the  a  1Og  frequency  a l s o gave some p r o t e c t i o n  The  resulting  a c c e l e r a t i o n s were q u i t e s m a l l  of  incorporate  data.  vibration  piezoresistive attain  vibration  amplified using a d i f f e r e n t i a l  a gain  are  necessitate  directly  destructive  actual  works  the  and  to r e c o r d slowly v a r y i n g s i g n a l s  but  triaxial,  data-logger  t h e more u s u a l t i m e - b a s e d  a p r e s e t amount  energy, d e l i v e r e d to the a  existing  data-logger  i t s corresponding  one  acceleration  already  t o have a n a l o g u e o u t p u t s  i n p u t s such  in  the  r a t h e r than  differs  This  with  voltages  (0.125 mV/lOg) and  instrumentation  from had  amplifier  to  with  2000.  implement route  flexibility,  the  was  freedom  filtering chosen.  and  The  from d r i f t  signal  processing  advantages  and  were  insensitivity  (rms) low  to  the  power, external  noise. The from t h e  voltages,  proportional  a c c e l e r a t i o n transducers  to the a b s o l u t e a c c e l e r a t i o n , ( F i g . 3.1)  are  band  limited  to  26  the N y q u i s t  frequency  filtering,  the  analogue t o resolution to  full  signals  digital  results  scale,  The  by a 3 r d o r d e r  The  i n a conversion is sufficient  processing  conversion  for this  of the d i g i t a l  signal  i s handled  and  flow,  a n d a 16 b i t s t a c k - o r i e n t e d a r i t h m e t i c  f o r t h e p r o g r a m and t h e f i l t e r  random a c c e s s cannot  memory h o l d s  the data  8 bit  by a d u a l control processor  EPROM s e r v e s  coefficients  as  a n d 1/4 K o f  and i n t e r m e d i a t e  values  that  be h e l d on t h e APU s t a c k .  An different  external filter  switch  allows  the s e l e c t i o n  o f one o f s e v e n  sets.  The  computed  analogue  signals  presented  t o the data-logger,  and  f o r the  relative  f o r the  f o r the a r i t h m e t i c o p e r a t i o n s . A 2 K byte  storage  After  application.  s y s t e m : an 8 b i t CMOS m i c r o - p r o c e s s o r  (APU)  with  n o i s e o f -59 dB(rms)  processor data  filter.  a r e sampled a t 160 Hz a n d h e l d  conversion.  which  Butterworth  rms v a l u e s with  the corresponding  (over  10  sec)  are  converted  to  an 8 b i t d i g i t a l - a n a l o g u e c o n v e r t e r a n d  time  which on  an  records  the changing  incremental  samples  cassette  tape  recorder. The a the  full  complete  data  w o r k i n g d a y , c a n be removed a n d f u r t h e r a n a l y z e d i n  laboratory  graphs.(Also  c a s s e t t e , w h i c h c a n h o l d t h e combined d a t a o f  with  a  computer  to  see A p p e n d i x A: Hardware)  produce  statistics  and  27  SOFTWARE The  program  channels  implements  the d i g i t a l  ( x - , y - and z - d i r e c t i o n )  implemented  filters  filters  sequentially  a r e o f t h e same g e n e r a l  f o r a l l three  (Fig.  form  3.2). A l l  with a  cascaded  structure: z -1  z -1  2  2  G(z) =  * z +pz+q  z +rz+s  2  Having all  t h e same form  filters  changed filter  selecting  the  filter-calculations  for  the next  channel  converted The CPU  By  value task  and  hardware  time  at  a t the  the  be  channel  APU. The CPU h a n d l e s  time  switch. the conversion  i s , the conversion  beginning  the f i l t e r s  t h e APU e x e c u t e s  that  calculation  f o r the f o l l o w i n g  while  initialization  o f t h e A/D c o n v e r t e r  of  is  a  filter  finished  the  between  the  i s ready. i s divided  the c o n t r o l  ( s u c h a s A/D's and DAC's) a n d  shifts),  easily  c o e f f i c i e n t s . The a p p r o p r i a t e  are interleaved;  of c a l c u l a t i n g  the  can then  of the e x t e r n a l s e l e c t i o n  i s started  the  response  selected  low speed  and  calculation.  frequency  are  on t h e s e t t i n g to  t h e use o f t h e same program f o r  different  coefficients  Due  allows  and t h e f i l t e r  by  depending  2  the  of the a u x i l i a r y  data  flow  (delay-  the a r i t h m e t i c operations ( F i g .  3.3). At  t h e end o f a f i l t e r  and  summed  CPU  waits  for  'interrupt' interval beginning  for  calculation  t h e rms c a l c u l a t i o n . an  interrupt  t h e program f a l l s  from through  has e l a p s e d . I f n o t , t h e of the f i l t e r  the outputs After  the  sampling  and checks  program  calculations.  a full  loops  are  squared  sequence t h e clock.  On  i fa full  rms-  back  to  the  28  If  a  calculated external  full and  interval  the  switch  results  is  change h a s o c c u r r e d , segment  of  resumed w i t h Software)  the the  has  passed,  output  scanned  for  to  the the  a change  rms  same  if  (Also  then  the  in setting  not, the f i l t e r  coefficients.  are  DAC's;  the program branches t o the  program;  values  and i f a  initialisation  c a l c u l a t i o n s are see  Appendix  A:  29  i i  Fig  3.  1  Vibration  Analysis  System  30  Reset Initialize Convert Scan  x-input  ext. Switch  F  1—I  Set Coeff.1  3_i  Convert  t  Set C o e f f .7  L E  y-input  1 x-filter S q u a r e and Sum Convert  z-input  1  y-filter S q u a r e and Sum Convert  x-input  z-filter S q u a r e and Sum ,  <T RMS  1  > lOsec T  vf"  wait  ?/—  interrupt  calculation  .  Fig.  3.2  LI  <(change of e x t . S w i t c h  Output  Flow  Chart  V  T  ? /—  3 . 3 Structure  Fig.  <  of a 2nd o r d e r  Filter  Section  x(n)  t  J J  }  Data Constant Operation  Fig.  3.4 D a t a  flow  w i t h i n a 2nd o r d e r  Filter  Section  32  4. DIGITAL The  design  a) whole  to  g o a l was t o implement  body  defined  filters  in  arrive  at a v i b r a t i o n bandpass  examination  guideline  DESIGN two s e t s o f  f o r the v e r t i c a l  t h e ISO 2631  b) a s e t of o c t a v e field  FILTER  t h e ANSI  and h o r i z o n t a l  s t a n d a r d . These exposure  index.  filters,  which  of the v i b r a t i o n S1.11 s t a n d a r d  filters:  filters  would  axes as a r e used  allow  the  i n n a r r o w e r b a n d s . As a was c h o s e n .  ISO WHOLE-BODY FILTERS The filter for  of  2631  with c u t - o f f  the  1OdB/dec for  ISO  standard frequecy  horizontal rolloff  axes  respectively,  the  are allowed  than  4  8 Hz. F o r b o t h  passband  and  i n the standard  Hz  roll-off  filter  with a -  and  -20dB/dec  filters,  the  a lowpass  dB/dec  (x+y) and a b a n d p a s s  for frequencies less  in  f o r two f i l t e r s ;  o f 2 Hz and a -20  f r e q u e n c i e s g r e a t e r than ±1dB and ±2dB  calls  deviations  transition  (Fig.  4.1).  band,  0.1 Fig  0.5  02  4.1a  Fig  2  ISO 2631 Whole-Body  02  Q1  1  4.1b  0.5  1  ISO 2631  2  5  10  Filter;  5  Whole-Body  20 x- and  10 Filter;  20  50 Hz y-direction  50  Hz  z-direction  34  OCTAVE BANDPASS  FILTERS  Specifications the  ANSI  Band  extrapolated  lower  Sets" ". 2  The  f o r t h e low f r e q u e n c y r a n g e  form  of a  t o 80 Hz  standard  octave  f i l t e r s a r e s e t out i n  Octave  recommended  t h e r a n g e f r o m 0.1  limits  graphic  o c t a v e bandpass  S1.1l Standard "Octave, H a l f  Filter  covering  for  and  center  in 6  #1 #2 #3 #4 #5 #6 Table  f  filter  are  0.71 1.41 2.82 5.60 11.2 22.4 4.1  f  l  ANSI  1 .0 2.0 4.0 8.0 16.0 32.0 S I . 11  4.2 O c t a v e Bandpass  Filter  filters  reproduced  u  1 .41 2.82 5.60 1 1.2 22.4 44.7  Filters  -45dB  Fig  were  4 . 1 ) . The u p p e r and  i n f i g 4.2. Filter  Octave  frequencies  resulting  (table  Third  after  ANSI  S1.11  in  35  DESIGN The  Bilinear  Transform  (BLT)  was  chosen  t r a n s f o r m s s u c h a s " t h e matched z" and i m p u l s e The  BLT i s v e r s a t i l e  view.  It  guarantees  stable d i g i t a l mapped i n t o If  and easy a stable  filter  the unit  the  BLT  since  2 5  circle  i s used  the design parameters, factor(s)  damping and  the  approximation  inspection  and  to  digital  filter  filter  full  to project  filter  by  point  i f started  left  hand  the l i n e s  of  from a  s-plane  is  onto  inspection. design  to  corresponding to  frequency  (t^.) a n d  the z-plane  coefficients  extent predict  stages as  method.  of the z - p l a n e .  of the f i n a l  a certain  the  the s-plane  f i g 4.3b) t h e d i g i t a l  first  analogue  other  invariant  t o u s e from an a l g e b r a i c  namely t h e b r e a k  from  over  ( f i g 4.3a  c a n be f o u n d  The mapping  further  to  overshoot,  gain  a  allows  i n t e r m s o f p o l e s and the behaviour  the  zeroes  of the d i f f e r e n t and  coefficient  quantisation. As decided  already  mentioned  in  the  t o have t h e same g e n e r a l  2  *  G(z)= z +pz+q  z +rz+s  2  both  filter The  a  2  a l l f i l t e r s t o keep t h e p r o g r a m l o g i c l o w ) . Hence  band  i t was  z -1  2  time  chapter,  form  z -1  for  previous  t h e same a p p r o a c h  simple  was t a k e n  (and  the  run  i n t h e d e s i g n of  sets.  ISO low p a s s pass  filter,  filter  ( x - and y - a x e s )  but having  outside  t h e range  specified  filter  (z-axis)  was  by  t h e lower the  transformed  by  was implemented  as  corner frequency f a r  standard. placing  The  band  t h e lower  pass corner  36  frequency, specified The way BLT.  using  trial  roll-off ANSI  and  error,  o f 10/dB w i t h i n  bandpass  from the analogue  filters  so  as  to  the s p e c i f i e d  were f o u n d  in a  form by p r e w a r p i n g and t h e n  result  in  the  range. straightforward applying  the  37  38  SCALING Because arithmetic, digital the  of  the  limited  s p e c i a l a t t e n t i o n was  signal  at  each p o i n t  largest possible ratio  due  i t s large distortion  To  find  arithmetic  and  amplifier band  signal  the  on  the  a gain  and  equal  l e s s than  The  numerator  the  difference  represents Hence  the  scaling  denominator  after  the  summation  The the  of  inputs  input  was  the had  of  the  one  hand  signal  to  be  to  avoided  contribution.  the  a  the  first  input  any  each  approximation  represented  point  the  number  the  as  (G^G™)  maximum g a i n at  to  an  within digital M:  < M  (4.1)  where: w(n)=cfj*x(n)  (4.2)  y(n)=GJy*w(n)  (4.3)  poses  two  denominator  summation and  consists  keep  point  no  problem,  closely following w i t h a max.  inserted  gain  between  since  it  involves  s i g n a l s . Further of  at  1/2  the  it  0=0^/2.  numerator  and  for overflow  were  stage.  the  The  to  factors  if  y(n)  stage of  scaling  largest expressible  a differentiator  the  In  to  fixed  s t r u c t u r e . On  f o r e a c h s t a g e was  w(n),  only  noise  0 < u < u ^ ( f i g . 4 . 4 ) . Then,  must be  the  the  e x a m i n e d . As  denominator  with  to  of  hand o v e r f l o w  scaling  was  range  desired  other  optimal  operation  numerator  the  high,  paid  within  s i g n a l was  noise to  dynamic  stage p o t e n t i a l p o i n t s  after multiplication. again  was  quite  alternate additions  were l i m i t e d so  was  has  t o be  limited.  and  the  m u l t i p l i c a t i o n involves  safe  since  subtractions  in and  reality as  it  long  as  output.  known c o n s t a n t s  ( r , s ) and  only  39  Thus  (with  reference  to f i g . 4 . 5 ) :  4*y(n)*max(p,q) < M y(n)=x(n)*G^*c  *  (4.4)  ;  (4.5)  *G™  c=M/[x(n)*G^*G™*max(p,q)*4]  (4.4+4.5)  where: M=max. e x p r e s s i b l e x(n)=max.  O^o^u^  r,s=denominator  that  argument  holds  the input  x(n) i s a l r e a d y  for a l l following attenuated  1  input  (^max.(G(o));  A similar  number=2-2" "  coefficients  stages  ( k ) , only  by  k-1 IT  «£!* c. *  G'::  'Di  )  (4.6)  i =1  ^A correction factor integer multiplication Arithmetic Noise)  of 4 i s required for fixed point  b e c a u s e o f t h e use of m u l t i p l i c a t i o n (see  40  w(n)  F i g . 4 . 4 S i m p l i f i e d G a i n Model  Y(n)  o f a Second O r d e r  Filter  points of overflow  Fig.4.5 Detailed  Model  for Scaling  of a Second O r d e r  Filter  41  BILIN.C To  c a l c u l a t e the  p r o g r a m was  w r i t t e n . The  coefficients frequencies direct  for  for  the  stage  coefficients a general  program  second  scaling  first  order  coefficients  zeroes  and  is  calculated  filter  and  scaling the  are  from t h e  found, The  the  break  are  and  the then  poles  are  maximum g a i n  scaling  converted response  given  which  the  analogue  transform  zeroes  find  frequency  the  bilinear  and  f a c t o r s are  final  the  stages  to  f a c t o r s a FORTRAN  calculates  poles.  i n 2 second order  check  and  prewarping). Using  filter  'reassembled' each  a  (after  digital  solved  coefficients  for  factors.  to binary  The  and  as  is calculated.  COEFFICIENT QUANTISATION After length  the  the  coefficients  solution  characteristic can  corresponding  to the  is  (0.5%), the  error  quite  small but  real  the  equation,  respectively,  The  of  are  only  quantized  f o r most of  increases  the  variables r  to a p p r e c i a b l e  2  and  within  and  poles,  by  a  2rcos(o). filter the  i n the  word  denominator  given  t o the  levels  limited  and  locations  region  a  zeroes  a p p l i e s only the  with  numerator  i . e . the  access  introduced  expressed  grid 2 6  shape. I t  unit  circle  band c l o s e  to  axis.  ARITHMETIC NOISE The execution and  effects of  of  finite  arithmetic  s u b t r a c t i o n s are  w o r d l e n g t h a r e most n o t i c e a b l e operations.  accurate  as  long  The as  no  in  the  fixed-point additions over-  or  underflow  42  occurs.  In  numbers  multiplication  i s truncated  multiplication 2=1.  show  2 7  to  noise  that  the  N  2N-bit  bits.  and  The  increased  f o r a second  product  order  error as  was  the  filter  of  two  N-bit  evident  poles  as  approached  the v a r i a n c e  of  the  error i s : 2q  1+b  2  g  l  12  The reduces  the e f f e c t i v e  processor  actually that  noise  point  processes  point  Thus expect  relative  from  In  This  binary  that  fixed-point  by t h e u s e r , leads  i s assumed f i x e d  multiplication  while  to  relative  multiplication  o f two r e a l  set  the to the  numbers R ,R^we t  E b  b  2  the product  bits.  imagined  E=R, *R =I*2- * I * 2 " yet  by an e f f e c t  t o t h e number.  the  the product  2  integers.  point  word, b u t t h e m e c h a n i c s o f  binary  by  i s only  the b i n a r y  (4.7)  2  i s compounded  wordlength  the binary  discrepancy the  2  multiplication  arithmetic the  (!-b)[(b+l) -a ]  returned  =1,1/2"  2 b  by t h e p r o c e s s o r  P = I * I * 2 - *2"" returned  E  _L P  i s too small  II*2"  2 b  -  _2 ' N  ii_*2- *2b  is ( f i g 4.6)  b  Hence t h e p r o d u c t  ( f i g 4.5)  N  b  by a f a c t o r of E/P  A3  0 0 0 0 0 0  0 0 0 0 0 0  N  N  0 0 0 0 0 0 0 0 0 0 0 0 N truncate (b)  Fig  4.6  Ideal  fixed  point  multiplication  and  truncat  ion  b 1 0 0 0  1 0 0 0 0 0 0 1  0 0 0  N  N  0 0  0  0 0 0 0 0 0 0 0 0 0  N truncate (N) error  Fig  4.7  Fullword  truncation  in integer  multiplication  44  This  'implicit  result bits  by 2  c a n be  corrected  by  , b u t t h e i n f o r m a t i o n o f t h e N-b  are lost  increases for  division'  and t h e e f f e c t i v e  to  q=2" .  Table  1 2  the v a r i o u s f i l t e r s  0.8 1.2 1 .6 2.4 3.2 4.9 6.4 9.8 13.0  19.9  26.3 39.9 Table  4.2  least  the  significant  error  therefore  shows t h e m u l t i p l i c a t i o n  noise  implemented. •  damped f req.  multiplication  multiplying  r  I coef f ic i e n t s  noise [dB]  s  -37.1 -43.7 -46.0 -52.6 -54.9 -61 .2 -63.6 -69.7 -72.0 -77.3  0.985682 0.976332 0.971518 0.953066 0.944346 0.909841 0.890938 0.827710 0.788489 0.688553 0.585946 0.515266  -1 .984795 -1 .973893 -1 .968009 -1 .943436 -1 .930540 -1.872726 -1.837728 -1.686829 -1.590760 -1.184247 -0.918180 0.065113  4.2 M u l t i p l i c a t i o n  Noise  -79.4  -81.7  (Equation  4.7)  LIMIT CYCLES After filters  displayed  truncation poles steady  an i n i t i a l  latching  behaviour,  i n the m u l t i p l i c a t i o n s  approached state  quantisation determined  a  d i s t u r b a n c e f o l l o w e d by a z e r o  and  z=1. By s o l v i n g  q/2, t h e l e v e l  and  assuming  of the l i m i t  was  increased  the c h a r a c t e r i s t i c  [y(n-2)=y(n-1)=y(n)] of  again  which  input  cycle  the  due as  to the  equation at an  average  output  ^ was  as: y(n)=6(n)-Q[r*y(n-1)]-Q[s*y(n-2)] y(n)=[r*y(n-1)-q/2]-[s*y(n-2)-q/2] y(n)(1+r+s)=q q y = 1  1+r+s  (4.8)  45  The the  DC  limit  c y c l e outputs  i n t r o d u c t i o n of s m a l l  small zero  inputs input  remains  the output  limit  m a g n i t u d e o f t h e DC  effect  remains e s s e n t i a l l y is  until  the i d e a l  limit  c y c l e . Above  approaches the i d e a l  output  4.3  0.8 1 .2 1 .6 2.4 3.2 4.9 6.4 9.8 13.0 19.9 26.3 39.9 Table  - 1 2  with  )  output  approaches the  level  smaller  the  and  levels  filter as the  smaller. f o r the  filters.  calc [dB]  coef f i c i e n t s s r -1 .984795 -1 .973893 -1 .968009 -1 .943436 -1 .930540 -1 .872726 -1 .837728 -1 .686829 -1 .590760 -1 .184247 -0 .918180 0 .065113  output  the  more and more c l o s e l y  i  damped f req.  is,  0.985682 0.976332 0.971518 0.953066 0.944346 0.909841 0.890938 0.827710 0.788489 0.688553 0.585946 0.515266  4.3 C a l c u l a t e d DC L i m i t C y c l e  to  t h e same a s f o r t h e  this  shows t h e c a l c u l a t e d ( q = 2  of t h e implemented b a n d p a s s  respect  That  increased  filter  of t r u n c a t i o n becomes r e l a t i v e l y  Table stages  t o the f i l t e r .  c y c l e . As t h e i n p u t  unchanged  output  inputs  are stable with  -17. 2 -26. 0 -29. 2 -38. 0 -41 . 1 -49. 7 -52. 8 -61 . 3 -64. 2 -72. 3 -74. 8 -82. 2  Levels  (Equation  4.8)  two  46  5.  PERFORMANCE  LABORATORY TESTS No  suitable  constant found  shake-table  amplitude  over  i n the u n i v e r s i t y  (pure,  the  and  sinusoidal  range  the  from  testing  acceleration  0.1  had  t o 80  t o be  with  Hz)  could  be  done  in  two  DAC's  and  phases. First  the  software)  and  digital  the d i g i t a l  sinusoidal  input  that  performance  the  specifications t h e ANSI however to the  #3  from  of  filters  would  have t o be  analysis  Sensor Diff.  (thermal Amplifier  Amp  The output)  octave  f o r the  of  the  judged  modified noise were  low  results  filters  the  filters  conform  to  stopband  performance  frequency  filters  for f i e l d  to give b e t t e r  sources the  show  meet  suitable  indicated  digital  #1  use,  stopband that  filters  the (see  (output  Magnitude  noise)  -88  (output  noise)  noise)  (injection  noise)  (conversion noise)  Digital DAC  The  whole-body  Source  Sample/Hold A/D  ISO  The  Improvements). Noise  Op  generator.  Although  p o i n t f o r improvement  Performance  p e r f o r m a n c e were t e s t e d u s i n g a  the 5.2).  processors,  w i t h i n the passbands, the  to 5.7).  p e r f o r m a n c e . An  to  filter  short, especially  ( F i g . 5.3  (A/D,  a function  ( F i g . 5.1,  standard falls  primary  system  Filter  (DC  Limit  -17  (conversion noise) second at  phase t e s t e d the complete  rms  -68  dB  -130  dB  -72  dB  -59 Cycle)  dB  dB  t o -82  -59  dB  system  some p o s s i b l e f r e q u e n c i e s . A S c o t c h  rms dB rms (accelerometer yoke  shaking  47  apparatus  was  Department  available  which  resulting  in  had  an  ( F i g . 5.9).  changing  the  factor  10. The  frequencies harmonic The  gains  one  with  Mechanical Engineering  large,  possible  fixed in  content  testing  to  function  for  allowed  of t h e  n o t be c a l i b r a t e d the manufacturer's of t h e a n a l o g u e  and  be  this  with  apparatus  higher  generator  use  system  of  specified  and  Thus  digital  by  a  lower  due  to the 5.11b).  shaker  for  rendered  it  the  full  system  c o n s t a n t s were  transducer s e n s i t i v i t y and  by  the  5.11a, the  only  purposes.  at input  (Fig.  the c a l i b r a t i o n  amplifiers  acceleration  t o use  the  full  calibration  displacement,  instrumentation amplifiers  tended the  UBC  increase  g a i n of the  results  than  harmonic  inapplicable  from  fixed  I t was  the  c o n t e n t of t h e s h a k i n g a p p a r a t u s  qualitative  could  only  exponential  frequency  of  from  filters.  found  and  the  dB  dB  Fig  5.4  #2  Filter  Response  from  Function Generator  Input  Fig.  5.10  #4  Filter  Response w i t h Shaker  Input  57  i  Fig  Q33 s  5.11a Sample Waveform  1  of S c o t c h  Yoke  4Hz  8Hz  12 Hz  Fig  5.11b F r e q u e n c y  Content  of S c o t c h  Yoke  58  PERFORMANCE To  IMPROVEMENT  investigate  the  inherent,  digital  the  fixed point  actual  Fortran  was  noise-sources arithmetic  programs c o v e r e d  A/D  conversion  represented  by 2 -1 a n d  from  and  by  which r e s u l t e d  a l l operations  were  8  i n the  was  were  handled  checked  o u t p u t s were c o n v e r t e d  desired  executed  the a r i t h m e t i c  multiplication  a l l operations  results  showed t h a t  ( F i g . 5.13a  attenuation  the  i n the  processor. through  for  to real  output  over-  byte and  numbers a n d  level  chapter  indicated was  a  one-sample  on t o a DC l i m i t  c o r r e l a t e d to the distance  (Table 5.1).  due  that the to the  stage.  after  locked  5.20a)  the passband  of t h e l a s t  the output  state  to  outside  a n d i n c l o s e agreement w i t h  previous  the input  b i t A/D  were c a l c u l a t e d . Done.  Examining  z=1  input  multiplying  c y c l e behaviour  steady  including  simulated  Thereafter  insufficient limit  system  8  truncation  The  digital  domain, a s t h e y would be w i t h  values  in  S I N ( X ) f u n c t i o n . The  u n d e r f l o w . The f i l t e r rms  the  by t h e F o r t r a n  the r e s u l t to integer,  extraction  was w r i t t e n  and t h e rms c a l c u l a t i o n . The a n a l o g u e  converting  The  of  470 (SIMI16 a n d SIMI16D). The  the f u l l  was  integer  effects  implementation  converter  truncation.  and  more c l o s e l y , a s i m u l a t i o n o f  and r u n on t h e UBC Amdahl  simulation the  characteristics  the  levels  impulse  cycle  input  with  the  of t h e p o l e s  from  calculated  i n the  59  i  Table  5.1  C a l c u l a t e d and M e a s u r e d DC L i m i t C y c l e  Reasoning DC,  the stages  last The  stage  over  the  order. not  kept  a differentiator  were r e a r r a n g e d  was  a numerator  The  the  implementation  filters with  by  by t h e A/D in  assumption inputs.  mind  t h e A/D c o n v e r s i o n converter that  that  showed  a  the  marked  ( F i g . 5.12b t o 5.19b) a  zero-pole-zero-pole structure did  I t seems t h a t a f l o o r  n o i s e . The t h e o r e t i c a l  i s a t -59 dB  this  residual  (= d i f f e r e n t i a t o r ) .  performance of the improved  improve b e y o n d t h e 50-55 dB l i m i t .  Levels  remove any  zero-pole-pole-zero  implementation  stopband  would  i n the s i m u l a t i o n such  f o r t h e low f r e q u e n c y  previous  established set  that  simulation with  improvement  -17.3 -25.8 -27.4 -37.7 -41 . 1 -48.2 t o -51.0 -44.5 -64.3 -66.2 -70.2 t o -78.3 -78.3 (-inf.)  -17.2 -26.0 -29.2 -38.0 -41 . 1 -49.7 -52.8 -61 .3 -64.2 -72.3 -74.8 -82.2  0.985682 0.976332 0.971518 0.953066 0.944346 0.909841 0.890938 0.827710 0.788489 0.688553 0.585946 0.515266  -1.984795 -1.973893 -1.968009 -1.943436 -1.930540 -1.872726 -1.837728 -1.686829 -1.590760 -1.184247 -0.918180 0.065113  0.8 1 .2 1 .6 2.4 3.2 4.9 6.4 9.8 13.0 19.9 26.3 39.9  found [dB]  calc. [dB]  coef f i c i e n t s s r  Damped Freq.  (rms),  but  i s for uncorrelated,  w h i c h does not h o l d c o m p l e t e l y  for  it  is  limit  should  be  random i n p u t , an pure  sine  wave  Fig  5.12a  Zero-Pole-Zero-Pole  Structure  Fig  5.12b  Zero-Pole-Pole-Zero  Structure  dB  Fig  Fig  5.14a F i l t e r  5.14b F i l t e r  #2  #2  Z-P-Z-P  Z-P-P-Z  dB 0-10-  ,20'  -?0-  -AO-  -50-  ,  QI  1  02  1 — — — i  05  1  Fig  2  — — i  1  5  1—  10  5.18a F i l t e r  #6  20  Z-P-Z-P  dB 0-10-20-30-  -AO-50-I  0.1  Q2  05  1  Fig  5.18b F i l t e r  5  10  #6  20  Z-P-P-Z  67  F I E L D TRIALS The used  vibration  analyzer  t o o b t a i n some d a t a  complete (Fig.  system  5.20,  was  under  machine  used  to  haul  felling  site  to  an  is a  (MacMillan harvesting a.s.l.) uphill  site  and and  The  rubber  Vibration to  the  cab  the  suspension  weighting including  cab  was  shift  by  the  operator that  the  area  the  production  Logging  Division  Island.  The  (800-1000  done  ( F i g . 5.23). D a t a during rest  or  i n both  m the  an  a  integral  adjusted  to  the  spring. the  t o the  full  s t r u c t u r e by  had  be  with  was  three  tower  seat  could  p r e - t e n s i o n i n g the  s t r u c t u r e ( F i g . 5.22)  hr  l o g s from  normal  was  from t h e  measurements were t a k e n  1/2  a  Shawnigan  isolated  and  filters a  Yarder  harvesting  near Duncan on V a n c o u v e r  suspension  weight  The  directions.  mat  damper-spring  was  measurements  l o c a t e d i n a mountainous  downhill  operator's  the  Grapple  forest  During  within  logger  conditions.  de-branched  y a r d i n g during a working  operator  one-inch  road.  at  Ltd.)  was  and  operated  Bloedel  field  data  in a Madill-044  cut  access  environment, h a u l i n g logs  the  track-mounted  the  machine  with  actual  installed  5.21), w h i c h  harvesting  together  sensor  operator  collected working  attached seat  with shifts  after  the of  ISO  8 hrs,  period.  DATA EVALUATION The  collected  acceleration limits  valid  measurements  levels, at  that  against  vibration which time. the  data  showed  perodically Comparing ISO  the  Standard  widely  exceeded the straight exposure  varying exposure vibration  limits  would  68  indicate  that  the exposure  limits  d o e s not  take  i n t o account  the  have been e x c e e d e d ,  'rest  periods'  but  of lower  this  vibration  levels. A  better  reference outlined based a  procedure  level  and  calculate  i n t h e ISO  level  A'  'equivalent  that  a vibration  tj i s e q u i v a l e n t  t o an e x p o s u r e  f o r a time  where  exposure (Fig.  the  limits  t' ;  valid  for  The  exposure  levels  as  procedure i s  at l e v e l  Tj" and  and  to a  time'  at a s e l e c t e d  t ' = t ( V<j-')  the  levels  exposure  s t a n d a r d ( p a r a g r a p h 4.4.3).  on t h e a s s u m p t i o n  time  i s t o c o n v e r t the v a r y i n g  Aj f o r  reference Tare  the  Aj and  A',  respectively  d a t a A'  was  selected  5.24). For  0. 03g  the e v a l u a t i o n  (the  'equivalent operator  8  vibration  exposure  exposure  instance,  short  was  exceeded  that  level,  together  1 . e.  cumulative  the  s e t by  The  t h e ISO  fulfilled.  than  8  to  weighted  give  some  a  was  loss  total  then  the  method  the  information.  levels,  that  method  detailed  and  the  time  limits  data  can  then  be  s h o u l d be  Standard f o r a l l l e v e l s  could  for  picture:  time the measured  calculated  time  hrs,  of  with  exposure  the  averaging  A second  more  of the t o t a l  if  as  the s t a n d a r d .  are l o s t .  a given l e v e l  levels.  t o be  a  hence  b u r s t s of h i g h v i b r a t i o n  used  vibration  greater  time' e n t a i l e d  cumulative d i s t r i b u t i o n level  and  exceeded  the s t a n d a r d l i m i t s ,  evaluation  limits  limit)  t i m e ' was  essentially  'equivalent  exceed  exposure  exposure  Being  For  hr  of t h e a c q u i r e d  plotted valid  evaluated below t h e  the the  vibration against for  the  visually exposure  i-f t h e s t a n d a r d i s  F i g . 5.20  Madill-044 Grapple Yarder  Data Logger  Recording U n i t  •Vibration A n a l y z e r  F i g . 5.21  I n s t a l l a t i o n of the F u l l Data A c q u i s i t i o n  System  70  F i g . 5.23  Attachment  of the Sensor to the Seat  71  Fig  5.24 E q u i v a l e n t  Exposure  Times  72 RESULTS F i g u r e s 5.25a to 5.33a show the a c c e l e r a t i o n x-,  y-  the  and z - d i r e c t i o n f o r each of the three days with the ISO  ' f a t i g u e decreased p r o f i c i e n c y superimposed  on  boundary'  the graphs. The  8  hr  exposure  possibility  limit.  and  exposure  limits  10 sec rms a c c e l e r a t i o n  vary widely (from O.Olg to 0.l2g rms) the  l e v e l s in  The  and  levels  periodically  sudden  variations  of s i g n i f i c a n t energy c o n t r i b u t i o n  exceed  indicate a  t o the rms  value  exposure  time'  from shock impulses. The  results  calculations  are  from  the  tabulated  in  'equivalent Table  5.2.  The  values  from  d i f f e r e n t days vary due to d i f f e r e n t machine-down times, but a l l are  well  the  below  the 8 hr l i m i t . A l l v a l u e s are a p p r o x i m a t e l y i n  same range, except f o r the higher value from the z - d i r e c t i o n  measured at the cab, which seat  i n d i c a t e s the  effectiveness  the  i n that d i r e c t i o n .  Sensor  Date Day Day Day  #1  #2 #3  @ Seat @ Seat <§• Cab  X  z  y  168.9 181 .7 171.6 . 175.0 17 1.4 184. 1  1 66.0 1 66.6 203.7  Table 5.2 E q u i v a l e n t Exposure Times The vibration shows limit  of  [min]  cumulative d i s t r i b u t i o n of the t o t a l  time the measured  l e v e l exceeded a given l e v e l  5.25b  that  the  exposure  (Fig.  time i s w e l l below  and the f a t i g u e decreased p r o f i c i e n c y  to  5.33b)  both the exposure  boundary,  for a l l  levels. • • A  comparison  of the d i s t r i b u t i o n s from measurements taken  73 at  t h e c a b and a t  removes  the  seat  show  t h e low l e v e l v i b r a t i o n  directions.  that  (0.001  the  seat  effectively  t o 0.005 g) i n a l l t h r e e  0  30  60  90  130  150  180  210  TIME  Fig  240  5.25a x - A x i s V i b r a t i o n  0  Fig  2?0  300  330  360  390  420  450  480  Cmln]  Measurement Day  Crres]  5.25b x - A x i s D i s t r i b u t i o n  Day  #1  #1  Fig  5.26a y - A x i s V i b r a t i o n  Fig  5.26b y - A x i s  Measurement  Distribution  Day  Day  #1  #1  Fig  5.27a z - A x i s V i b r a t i o n  Fig  Measurement  5.27b z - A x i s D i s t r i b u t i o n  Day  Day  #1  #1  0  30  60  90  120  150  180 TIME  Fig  210  240  2?0  5.28a x - A x i s V i b r a t i o n  g  Fig  300  330  360  390  420 450 4 30  Cmin]  Measurement  Day  [rms]  5.28b x - A x i s D i s t r i b u t i o n  Day  #2  #2  .200 r  0  30  60  90  120  15B  180 TIME  Fig  210  240  5.29a y - A x i s V i b r a t i o n  Fig  2?0  300  330  3S0  390  420 458 480  Cmin]  Measurement  5.29b y - A x i s D i s t r i b u t i o n  Day  Day  #2  #2  Fig  5.30a  z-Axis V i b r a t i o n  Measurement  Day  g [rmsD  Fig  5.30b z - A x i s D i s t r i b u t i o n  #2  +  Day  #2  Fig  5.31b  x-Axis D i s t r i b u t i o n  Day  #3  • 2B0  r  0  30  60  90  120  150  160  2 10 3 4 0  TIME  Cmtn]  270  300  330  360  390  420  456  490  i  Fig  5.32a y - A x i s V i b r a t i o n  g  Fig  5.32b y - A x i s  Measurement  Day  [rms]  Distribution  Day  #3  #3  Fig  5.33a  Fig  z-Axis V i b r a t i o n  Measurement  5.33b z - A x i s D i s t r i b u t i o n  Day  Day  #3  #3  83  6.  A  whole-body  filtering as  programmable as  The  and  field  vibration  e l i m i n a t e s the  'industrial The  the by  results  results.  the  need  Finally,  the  First,  sudden  large  contribution  w h i c h may inducing  observed  in  be  research  the  used  during the  of  be The  being  standard  applied  is  for  with full  the  it  whole-body recording  system  telemetry 'stand  under  e n v i r o n m e n t ; and  tool  the  the  is  of  self-  moving v e h i c l e s links.  alone'  The  for  Secondly,  vibration  same  long-term  The  shock  ISO  work  the  levels  results  l e v e l s along  i n the  impulses an  is  rms  showed z-axis.  vibration  indicate  (high c r e s t role  valid  allowed  also the  field)  important  Standard  showed  machine i n v e s t i g a t e d ,  i n t h e measured  shock b e h a v i o u r  play  field  i s w e l l below t h e  variations  from  initial  particular  exposure  themselves  factors.  production  Since  on  attenuates  (and  i t can  monitoring.  obtained  levels  filter  in size.  the  l a b o r a t o r y and  a  I n t e r n a t i o n a l Standard. seat  that  flexibility  c h a n g e d as  for expensive  easily  vibration  the  are  s u i t a b l e f o r measurements on  health'  operator  that  as  be  digital  analogue  smaller  conjunction  variables. is  could  in  tested, using  is  the  whole-body  research.  i t s u s e f u l n e s s as a  it  and  t e s t e d i n the in  and  2631  available  also  ongoing  measurements  contained,  system  of  ISO  processing  s y s t e m can  conditions  ergonomic  three  currently  has  the  a result  demonstrated  and  to  manufacture  s y s t e m was  actual  other  to  the  been d e v e l o p e d  implementation  modified  meeting  a d v a n t a g e s of d i g i t a l  expensive  present  has  opposed  s y s t e m s . The less  filter,  standard  filters  CONCLUSION  only  a  factor),  as for  stress crest  84  factors  of l e s s  operator the  than  exposure  3 and, i n t h e i n s t a n c e in forest  scope of t h e s t a n d a r d .  method  showing  perfectly high  safe  speed  harvesting,  The  'lethal  problem  accelerations  of  heavy  equipment  the problem  i s outside  of  the  from  shock  (and v i c e v e r s a ) ' has appeared  boat  travel  and  alternate  existing  in  rms  impulses as  the  evaluations  case  of  have  been  order)  was  proposed . 28  An  estimate  calculated  the  frequency  that  forpractical  of  These  ongoing will  operators,  - Examination relation  the  of  and  main-line  Also  the using  with  incorporate during  i n an  using  the  forth-coming  working c o n d i t i o n s ,  such  as  distribution  in  v e h i c l e s and t e r r a i n s .  the  vibration  level  t o t h e work c y c l e .  cable  t h e system,  regard  aspects  between v i b r a t i o n  levels  tension.  vibration  Modifications  light  investigations  I n v e s t i g a t i o n of the c o r r e l a t i o n  seat  frequency.  and i n c l u d e :  5  different  evaluated,  i t by p o l e - z e r o  purposes the lowest  be r e p o r t e d  - Measurements under d i f f e r e n t  -  (zero  RECOMMENDATIONS  analyzer.  Thesis  cycle  exceed 20% of the Nyquist  should  T h e r e a r e a number vibration  limit  was f o u n d t o m i n i m i z e  I t was f o u n d  FUTURE WORK AND  Ph.D.  DC  and a t e c h n i q u e  reordering. break  of  within  the  to pinpoint  octave the  bands  can  be  effectiveness  of  to attenuation. to  the  present  system  a r e recommended t o  o f o n - s i t e v i b r a t i o n a n a l y s i s w h i c h came  t h e development  and e v a l u a t i o n  of t h e system:  to  85  - Recording values of  of  of  field - Use  an  of  exposure  to decide  in forest  vibration,  or  if  the  the  harvesting  peak  problem is  really  i f i t r e l a t e s more t o  the  shock measurements. piezoelectric  (subject  to  the  frequency  range,  l e v e l s : measurement of  investigator  vibration  whole-body  of  low  vibration  would a l l o w  operator  one  peak  will  instead  of  availability  response),  strain  gage  of a s e n s o r  which,  accommodate h i g h ,  having  transient  transducers  with a  sufficiently  larger  dynamic  peak v a l u e s  without  clipping. - D i s p l a y of the  i n p u t peak  levels  together  p r e a m p l i f i e r s to monitor  adjust  the  gains  best  possible  the  with  v a r i a b l e gains  inputs while  a c c o r d i n g l y . T h i s would a l l o w S/N  ratios  under  for  o n - s i t e and to a t t a i n  different  to the  measurement  conditions. A l a r g e p r o p o r t i o n of handling;  w i t h i n a second order  instructions  are  data  from t h e A/D  t o and  b a s e d on the  devices  inception  processor  be  and  delay  APU.  shifts  and  and  use  this  25%  for 35%  of a l l  to  moving  project,  available dedicated problem  'switched  improvements c o u l d be automatic  since signal  of  memory r e f e r e n c e o p e r a t i o n s . A n o t h e r  of a  data  A r e - d e s i g n would p o s s i b l y be  the  the  and  w h i c h have become c o m m e r c i a l l y of  used  s e c t i o n about  (INTEL 2920), w h i c h would a v o i d I/O  operation.  to the  filter  is  as  Other clock  related  time  such  consuming could  processor  time  approach  capacitor' device. the a d d i t i o n  shut-down  for  of  a  week-long,  real  time  unattended  86  7.  REFERENCES  P.L. C o t t e l l and P.D. L a w r e n c e E l e c t r o n i c D a t a l o g g e r f o r Man-Machine S t u d i e s i n F o r e s t r y A paper p r e s e n t e d a t t h e Annual Meeting o f t h e Human Factors A s s o c i a t i o n o f Canada a t Lake o f B a y s , O n t a r i o , S e p . 1980. Human F a c t o r s A s s o c i a t i o n o f Canada,1980 1  K. H u s c r o f t F o r e s t H a r v e s t i n g O p e r a t i o n s Data Logger I n t e r n a l Report Dept. of E l e c . E n g i n e e r i n g U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1979 2  ISO 2631-1978 Guide f o r the Vibration 3  International  Evaluation  of  Human  Exposure  to  Whole-body  S t a n d a r d s O r g a n i s a t i o n , Geneva, 1978  • VDI 2057 B e u r t e i l u n g der Einwirkung mechanischer Schwingungen a u f den Menschen DIN V e r z e i c h n i s , Normen und N o r m e n t w u e r f e B e u t h V e r l a g GmbH, B e r l i n , 1976 A. De Souza Study of Production and E r g o n o m i c F a c t o r s i n G r a p p l e Yarding O p e r a t i o n s u s i n g a D a t a L o g g e r System Ph. D. T h e s i s ( i n p r o g r e s s ) F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia 5  C. Zenz Occupational Medicine Yearbook M e d i c a l P u b l i s h e r s , C h i c a g o , [WA 400 023; Woodw] 6  1975  T.P. A s a n o v a C l i n i c a l Aspects of V i b r a t i o n D i s e a s e s V i b r a t i o n a n d Work Proc. of the F i n n i s h - S o v i e t - S c a n d i n a v i a n Vibration 1 975 I n s t , o f O c c u p a t i o n a l H e a l t h , H e l s i n k i , 1976 7  R.R. Coermann The Mechanical Impedance o f t h e Human S t a n d i n g P o s i t i o n a t Low F r e q u e n c i e s Human F a c t o r s 4:227,1962 [BF1 H8; M a i n ]  Symposium,  8  Body  i n S i t t i n g and  D. Dieckmann M e c h a n i s c h e M o d e l l e f u e r den s c h w i n g e n d e n m e n s c h l i c h e n I n t . Z e i t s c h r i f t f u e r angew. P h y s i o l o g i e 17:67,1958 [QP1 168; Woodw] 9  Koerper  87  C. H a r r i s and C. C r e d e Shock a n d V i b r a t i o n Handbook M c G r a w - H i l l , 1976 [TA355 H35; MechR] 1 0  D.E. Wasserman e t a l . Whole-body V i b r a t i o n E x p o s u r e o f W o r k e r s d u r i n g Heavy Equipment Operat ion US D e p t . o f H e a l t h , E d u c a t i o n a n d W e l f a r e , C i n c i n n a t i , 1978 1 1  L. S j ^ f i o t Measuring and E v a l u a t i n g Low F r e q u e n c y V i b r a t i o n s A c t i n g on Machine O p e r a t o r s i n A c r i c u l t u r e and F o r e s t r y R e p o r t No. 19 N o r w e g i a n I n s t i t u t e o f A g r i c u l t u r a l E n g i n e e r i n g , A, 1970 1 2  ibid Some Methods a n d R e s u l t s f r o m T r a c t o r V i b r a t i o n Methods i n E r g o n o m i c R e s e a r c h i n F o r e s t r y INFRO D i v i s i o n 3, P u b l . No. 2, 1973 1 3  • M.G. Mowat Exposure of Front-end Log Loader Operators V i b r a t ion FERIC T e c h . Note TN 25, December 1978  Studies  1  to  Whole-body  H. D u p u i s Human E x p o s u r e t o Whole-body V i b r a t i o n i n M i l i t a r y V e h i c l e s a n d E v a l u a t i o n by A p p l i c a t i o n o f ISO 2631 AGARD (NATO) C o n f e r e n c e P r o c e e d i n g s No. 145 on V i b r a t i o n and Combined S t r e s s e s i n A n v a n c e d S y s t e m s , O s l o , A p r i l 1974 [WD735 N67; WCB] 1 5  C.F. Knapp Models o f t h e C a r d i o v a s c u l a r System under Whole Body V i b r a t i o n Stress AGARD (NATO) C o n f e r e n c e P r o c e e d i n g s No. 145 on V i b r a t i o n and Combined S t r e s s e s i n A n v a n c e d S y s t e m s , O s l o , A p r i l 1974 1 6  G.R. S h a r p The Respiratory and M e t a b o l i c Whole-body V i b r a t i o n i n Man AGARD (NATO), O s l o , 1976 1 7  Effects  of C o n s t a n t Amplidude  R e p o r t o f W o r k i n g Group 79 The E f f e c t s o f Whole-body V i b r a t i o n on H e a l t h N a t i o n a l Academy o f S c i e n c e , W a s h i n g t o n DC, 1979 1 8  T.H. M i l b y e t a l . R e l a t i o n s h i p s between Whole-body among Heavy Equipment O p e r a t o r s NIOSH, 1974 1 9  Vibration  and M o r b i d i t y  Patters  88  R.C. S p e a r M o r b i d i t y S t u d i e s of W o r k e r s e x p o s e d t o Whole-body A r c h i v e s of E n v i r o n m e n t a l H e a l t h ( C a l i f o r n i a ) , May 2 0  R.C. Spear e t a l . M o r b i d i t y P a t t e r n s among Heavy E q u i p m e n t Whole-body V i b r a t i o n ( F o l l o w - u p S t u d y t o NIOSH, 1975  Vibration 1976  2 1  1  Operators ")  exposed  to  D.E. Wasserman e t a l . V i b r a t i o n and i t s R e l a t i o n t o O c c u p a t i o n a l H e a l t h and S a f e t y B u l l e t i n of t h e New York Academy of M e d i c i n e , V o l 49, O c t 1973 2 2  Editorial Whole-Body V i b r a t i o n The L a n c e t , May 1977 2 3  ANSI SI.11-1966 O c t a v e , H a l f - o c t a v e and T h i r d - o c t a v e F i l t e r S e t s A m e r i c a n N a t i o n a l S t a n d a r d s I n s t i t u t e , I n c . , 1979 2 W  K. S t e i g l i t z The E q u i v a l e n c e of D i g i t a l and A n a l o g S i g n a l P r o c e s s i n g I n f o r m a t i o n C o n t r o l , V o l . 8 , pp. 455-467, 1965 2 5  0. Herrmann On t h e A c c u r a c y P r o b l e m i n t h e D e s i g n of N o n - r e c u r s i v e Filters D i g i t a l S i g n a l P r o c e s s i n g , I E E E P r e s s , pp. 385-386,1972 2 6  Digital  A. Oppenheim and R.W. Shaefer D i g i t a l Signal Processing P r e n t i c e - H a l l , p. 246, 1975 2 7  P.R. Payne Method t o Q u a n t i f y R i d e C o m f o r t and A l l o w a b l e A c c e l e r a t i o n s A v i a t i o n , S p a c e , and E n v i r o n m e n t a l M e d i c i n e , 4 9 ( 1 ) , pp 262-269, J a n 1978 2 8  APPENDIX A  HARDWARE  90  Layout  [DRWG #13  CHIP #  PART #  FUNCTIONS  SOURCE  I 1 12 13 14 15 16 17(D) I8(D1) I9(D2)  Discrete LH0038CD LH0038CD LH0038CD LM324 LM324 Discrete Discrete Discrete  -  NS NS NS NS NS  110 I1 1 112 I1 3 114 I1 5 I1 6 117 118 119  D i f f . Amp D i f f . Amp D i f f . Amp Op-Amp Op-Amp  -  -  —  —  IH5111-JE IH5111-JE IH5111-JE HD14011-BP HD14016-BP MC14023-BC AD0808-CCN MC14020B-PC MC14520 CP MC14001B-CP  S/H S/H S/H Quad (2)NAND Hex I n v e r t e r T r i (3)Nand A/D C o n v e r t e r Freq.Divider D i v i d e by N Quad (2)NOR  Intersil Intersil Intersil Hitachi Hitachi Motorola NS Fairchild Motorola Motorola  120 121 122 123 124 125 126 127 128 129  MC14504B-CP D271 6 MC14528B-CP MC14584B-CP Discrete CD4012-BE Discrete CD4012-BE AM9511-1DC  Levelshi f t EPROM(2K) Dual One-shot Schmitt T r i g g e r  Motorola INTEL Motorola Motorola  Dual  RCA  130 131 132 134 135 136 137 138 139 140 141 142 143 145  -  (4)NAND  -  -  D u a l (4)NAND Arith.Proc.Unit Spare  RCA AMD  CDP1802-D CD4042-BE HD14011-BP MWS5101-DL MWS5101-DL MCI4028-CP MWS5101-DL MWS5.101-DL AD558KN  CPU Quad Quad RAM RAM Port RAM RAM DAC  RCA RCA Hitachi RCA RCA Motorola RCA RCA Analog Devices  AD558KN AD558KN UA7805 UA7810 Discrete  DAC DAC +5V R e g u l a t o r +10V R e g u l a t o r  —  -  Latch (2)NAND Select  —  Analog Devices Analog Devices Fairchild Fairchild  -  42  DRWG #1 Layout  A3  92  Analogue The  Inputs  acceleration  (KYOWA AS-TB, arranged the  and S i g n a l  C o n d i t i o n i n g [DRWG #2; #2A]  i s measured w i t h a t r i a x i a l  l O g ) . The s e n s o r  consists  o r t h o g o n a l l y . The s t r a i n  vibration/acceleration  of 3 l i n e a r  gage b a s e d  into  a  accelerometer transducers  transducers convert  proportional  electrical  signal. Each of the three t r a n s d u c e r outputs conditioning the  signals The  circuit  The frequency filter also for  i t s own  up t o t h e A/D c o n v e r t e r a f t e r  signal  which p o i n t  are multiplexed.  transducer outputs  instrumentation coupling  has  amplifier  i s necessary  are with  Hz)  i s implemented  a  fixed  t o e l i m i n a t e output  pre-amplified signal (80  AC-coupled  with  a  i s band 3rd  to  a  differential  g a i n o f 2000. The ACdue t o g r a v i t y .  limited  to  the  order Butterworth  i n two s t a g e s , where t h e f i r s t  i n c l u d e s an o f f s e t  input to o f f s e t  t h e u n i p o l a r A/D c o n v e r t e r .  the s i g n a l  Nyquist  f i l t e r . The order  by 2.5  stage volts  DRWG # 2 A Transducers  95  Analogue t o D i g i t a l The  sample  and  sample c l o c k p u l s e system are  clock.  Conversion hold  [DRWG #3; #4]  f o r each  (SCLK) w h i c h  On  is  the p o s i t i v e  derived  going  i s controlled directly  signals  contains channel  an  are converted  integral  i s selected  8  channel  and  gated The  with  data  conversion. Conversion time  enables  select  i s decoded  line  from  (Q)  i s ready  t o memory t h r o u g h  t h e A/D t r i - s t a t e  the data register  signals  pulse.  The  l i n e s D0-D2, through  the  t h e N - l i n e s (OUT CHANL) timing.  controls  t a k e s up t o 100  the converted value  transferred  from  t h e TPB p u l s e f o r p r o p e r  serial  the  m u l t i p l e x e r . The a p p r o p r i a t e  which a r e l a t c h e d i n t o the channel p u l s e . The ALE p u l s e  by a  w i t h an 8 - b i t A/D c o n v e r t e r , w h i c h  under CPU c o n t r o l  ALE  from  edge t h e a n a l o g u e  sampled a n d l a t c h e d a t t h e n e g a t i v e edge o f t h e  sampled  is  channel  the  micro-sec,  i n the data  start  of  after  register.  the which  The d a t a  INP DATA, w h i c h d e c o d e d a s SEL4  drivers.  •»|  xsn Ui-zc)  pi-z)  -t/f -ri  ft"  (svt)-L 7-n  _ ->r  7  2,-SJ: J'J>-  2f»  J2  L -If  DRWG #3 Sample and H o l d cn  aw  raisr  136-1}  b  »»  JM>A AW* •fp*  (M-W  2 t  VOL-  Ate lit / — — —  I*  Z-SH  It  • *,  Lib  Ti  if  1  • »s  A  T  A  7  If 23  n  SoaHx.  lo  - CUL  use.  J»  Kl-t)  if  (Zi-zo)  1  (21-H?  K it  3y  Ii  3 V  2t>  0&-O  Di  EX 7  ZC • T»o  *•$»  a.  tw-/*••>  Jfr  V  6*& ty  "77777-  DRWG #4 A/D C o n v e r s i o n  ^1  98  Central  Processor  The  [DRWG #5]  control  of  data  CD1802E m i c r o p r o c e s s o r access can  and  be d e s i g n a t e d  accumulator, and  an  timing can  modify  and  . Within  16 g e n e r a l  as index  a Flip-Flop  interrupt-enable c a n be c o n t r o l l e d ,  program  flow  i t s architecture registers  register  interface  the  user  o r program c o u n t e r ,  (Q) t o c o n t r o l Flip-Flop.  a To  since the f u l l  by a can  (16 b i t ) e a c h o f w h i c h  serial a  an 8 b i t  output  certain  operation  be s u s p e n d e d and resumed t o w i t h i n a c l o c k To  i s handled  line,  extent the  of  the  CPU  cycle.  with e x t e r n a l systems the f o l l o w i n g l i n e s a r e  available: 8 D a t a L i n e s (D0-D7) An 8 b i t b i - d i r e c t i o n a l d a t a b u s . T h e s e l i n e s a r e used f o r data transfer between t h e memory, t h e p r o c e s s o r and t h e I/O devices. 8 A d d r e s s s L i n e s (A0-A7) The h i g h e r o r d e r b y t e o f a 16 b i t memory a d d r e s s appears on t h e a d d r e s s bus f i r s t . The b i t s r e q u i r e d f o r t h e memory s p a c e are strobed into an e x t e r n a l a d d r e s s l a t c h by t h e t i m i n g p u l s e TPA. The lower order byte i s then presented after negation o f TPA. U s i n g a l l eight high order address b i t s a l l o w s a d d r e s s i n g o f up t o 65K b y t e s . I/O  S e l e c t i o n L i n e s (N0-N2) T h e s e l i n e s a l l o w t h e s e l e c t i o n o f up t o 7 I/O d e v i c e s . The N-lines a r e low u n t i l an I/O i n s t r u c t i o n i s e x e c u t e d , a t w h i c h t i m e t h e y r e f l e c t i n b i n a r y form t h e n u m e r i c a l operand of t h e I/O i n s t r u c t i o n ( i . e . INP 3, OUT 7 ) . The d i r e c t i o n o f t h e d a t a f l o w i s i n d i c a t e d by t h e MRD l i n e .  E x t e r n a l F l a g s (EF1-EF4) The f o u r l i n e s a r e i n t e n d e d f o r e x t e r n a l s t a t u s - o r control inputs. The instruction s e t i n c l u d e s c o n d i t i o n a l branches d e p e n d i n g on t h e s t a t u s o f t h e l i n e s . The l i n e s are active low and a r e i n t e r n a l l y i n v e r t e d , i . e . BN3 w i l l c a u s e t h e program t o branch i f the E F 3 - l i n e i s h i g h . T i m i n g P u l s e s (TPA,TPB) P o s i t i v e p u l s e s t h a t o c c u r e v e r y machine c y c l e . They a r e u s e d t o t i m e t h e i n t e r a c t i o n w i t h t h e d a t a - and a d d r e s s b u s . TPA signals t h a t t h e h i g h o r d e r b y t e i s a v a i l a b l e on t h e a d d r e s s bus. D u r i n g TPB h i g h , d a t a i s t r a n s f e r r e d from t h e d a t a bus t o t h e CPU.  99  Memory W r i t e (MWR) During e x e c u t i o n o f a memory-write o r o u t p u t i n s t r u c t i o n , a f t e r t h e a d d r e s s l i n e s have s t a b i l i z e d , a n e g a t i v e p u l s e on t h e MWRline i s u s e d t o l a t c h d a t a from t h e d a t a bus i n t o memory o r t h e selected device register Memory Read (MRD) MRD goes low d u r i n g a memory r e a d c y c l e , i t a l s o indicates the d i r e c t i o n o f t h e d a t a t r a n s f e r d u r i n g I/O i n s t r u c t i o n s : MRD=0: D a t a from I/O t o CPU a n d memory MRD=1: D a t a from memory t o I/O It should be n o t e d t h a t t h e M R D - l i n e i s a l w a y s h i g h d u r i n g t h e f i r s t 2 c l o c k p e r i o d s o f an e x e c u t e c y c l e , w h i c h c a n l e a d to g l i t c h e s . S e r i a l o u t p u t (Q) A s i n g l e b i t o u t p u t t h a t c a n be s e t and r e s e t under software c o n t r o l . The s t a t e t r a n s i t i o n o c c u r s a b o u t h a l f w a y d u r i n g t h e execute c y c l e . S t a t e Codes (SC0,SC1) The lines indicate operating  in  what  Cycle  SCO  Fetch(SO) Execute(S1) DMA(S2) Interupt(S3) C o n t r o l (WAIT,CLR) The l i n e s p r o v i d e  state  SC1  0 0 1 1  4 modes t o c o n t r o l  CLEAR WAIT 1 1 1 0  1 0 0 0  (cycle) the processor i s  0 1 0 1  t h e CPU o p e r a t i o n :  Mode Run Pause Reset Load  * R e s e t : R e g i s t e r s I and N and t h e Q flip-flop are reset, interrupt i s enabled and a l l O's a r e p u t on t h e d a t a b u s . A f t e r l e a v i n g t h e r e s e t mode, t h e f i r s t machine c y c l e i s an initialisation cycle, during w h i c h t h e CPU r e m a i n s i n a S1 s t a t e and X, P and RO a r e s e t t o 0. I n t e r r u p t s a n d DMA requests a r e suppressed. The n e x t cycle i s SO i f no DMA requests a r e pending. * P a u s e : A l l i n t e r n a l CPU o p e r a t i o n s a r e s u s p e n d e d , b u t t h e c l o c k continues to run. *Run: The r u n mode c a n be e n t e r e d e i t h e r from t h e p a u s e o r w a i t mode. If initiated from p a u s e t h e CPU resumes o p e r a t i o n on  100  t h e f i r s t h i - l o t r a n s i t i o n of t h e c l o c k . From t h e r e s e t mode t h e f i r s t c y c l e w i l l be an i n i t i a l i s a t i o n c y c l e , f o l l o w e d by a DMA c y c l e or a f e t c h from l o c a t i o n OOOO(HEX). *Load: The CPU i s h e l d i n an d e v i c e t o l o a d memory.  IDL  execute  l o o p and  allows  A s y n c h r o n o u s I/O (INT, DMA-IN, DMA-OUT) A s s e r t i o n of e i t h e r l i n e w i l l c a u s e t h e CPU t o e n t e r s t a t e upon e x e c u t i o n of t h e p r e s e n t i n s t r u c t i o n .  an  S2  or  I/O  S3  * I n t e r r u p t : X and P ( t h e i n d e x and p r o g r a m c o u n t e r designators) are stored in T; X and P are then set to 2 and 1, r e s p e c t i v e l y . F u r t h e r i n t e r r u p t s a r e d i s a b l e d (IE=0) and the next i n s t r u c t i o n i s f e t c h e d from M[R1]. *DMA: After finishing the current instruction, data is t r a n s f e r r e d between t h e bus and t h e memory location pointed to by RO, then RO is incremented. The priorities for simultaneous requests are in decreasing order: DMA-IN, DMAOUT, interrupt. Address-  and  Four  I/O  Decode  of  the  demultiplexed  with  [1-31]  8 the  resulting  s p a c e of  high TPA  order pulse  in address  2048 b y t e s  control  00 512 1024 1536 2048  511 - 1024 - 1535 - 2047 - 2559 Table  The decoder, select the  three  I/O  giving  lines  are  appropriate  instruction.  lines the  used I/O  bits  (PA0-PA3) a r e  i n t o a quad D - t y p e  b i t s A8-A11. The  the data  RAM. Bytes  address  access  usable  i n the  Type  Start  End  ROM ROM ROM ROM RAM  0000 0200 0400 0600 0800  01FF 03FF 06FF 07FF 09FF  2 Memory  to enable,  address  EPROM  and  Map  N0-N2 a r e d e c o d e d  device control  register  in a  lines  together  SEL1  with  device during execution  binary-to-BCD t o SEL7. MRD  of an  and INP  or  The MWR OUT  101 Function  Port  Mnemonic  0 1 2 3 4 5 6 7  i l l e g a l ; quiescent state INP 1 not u s e d INP 2 not u s e d INP 3 not u s e d e n a b l e c o n v e r t e d d a t a t o bus INP DATA INP 5 not u s e d INP APU r e t r i e v e r e s u l t s from APU INP CMND r e a d APU s t a t u s  0 1 2 3 4 5 6 7  i l l e g a l ; quiescent state s e l e c t 1 s t DAC s e l e c t 2nd DAC s e l e c t 2 r d DAC not u s e d s e l e c t 1 o f 8 A/D C h a n n e l s l o a d d a t a o n t o APU s t a c k i s s u e APU command Table The  the  PAUSE l i n e  ripples The  wait l i n e  TPB p u l s e  which  in  turn  by a  instruction  single-step  putting  cycle  the wait l i n e  by a 4 MHz c l o c k ,  of 4 micro-seconds  b r a n c h e s a n d NOP's). A p u l s e d e r i v e d (see  Clock  Circuit)  exact  synchronisation  drives  resets  the interrupt  r u n mode.  the  second  and c a u s e s t h e  the clock. which  results  (6 m i c r o - s e c o n d s  from  and  step button  t h e CPU i n t o  instruction  negates  circuit  from t h e s i n g l e  execution without stopping  CPU i s d r i v e n  DAC 1 DAC 2 DAC 3 4 CHANL APU CMND  Assignments  from t h e APU. A p u l s e  a t t h e end o f an  t o suspend The  i s controlled  t h r o u g h two f l i p - f l o p ' s ,  flip-flop, CPU  3 I/O P o r t  OUT OUT OUT OUT OUT OUT OUT  i n an f o r long  the processor line  clock  and p r o v i d e s t h e  of t h e program e x e c u t i o n t o  the  sampling  frequency. The and  Q-line  i s tied  i s used t o i n i t i a t e  t o t h e START p i n o f t h e A/D c o n v e r t e r  the conversion.  It.-  <**-»»> I*  m 1 te  At  s  Jet*  r*  tex.i  Z » J ' t  S*d.<l SuC  »  *  DRWG #5  Central  Processing  «*»  <»-»)  Unit o to  1 03  The  Arithmetic All  Processing  arithmetic  Arithmetic  Unit  (APU) [DRWG #6]  operations  Processing  Unit  are  handled  (APU). The s t a c k  executes  16 b i t and 32 b i t i n t e g e r s and 32  numbers  depending  bytes  over  result data  for  32  the i n s t r u c t i o n s .  an 8 b i t d a t a  of  The  on  the l a s t  stack  bus,  operation  proper  according  t o the r u l e s of r e v e r s e is  command/status  p o r t s . The d a t a  with  the  instruction  least  OUT APU w i l l  select  (SHMRD)  which w i l l register THE  APU  execution  b i t floating  onto  into the  transfer  the  point  i s loaded, i n  the  stack.  The  processor  stack  execute  byte  with  accessed  over  and  the a s two  an 8 b i t  entered  data  first.  The  the  data  enable  clocked  with  the shortened  After  the  operands  i s initiated  appropriate  can  device  i n bytes  register.  words  notation.  data  i s then  4  numbers. By p l a c i n g t h e  I/O  the c h i p  arithmetic operation  command  with to  are  an OUT CMND, the  command  (C/D h i g h ) . is  driven  by a 2MHz c l o c k  resulting  i n the f o l l o w i n g  times: and F u n c t i o n  Time  of i n t e g e r  multiplication  42-47  h i - b y t e of i n t e g e r  multiplication  40-48  Mnemonic FIXMULLO: l o b y t e FIXMULHI:  the  significant  MRD  the  an  i s entered  (C/D l o w ) . The d a t a  loaded  processor  to the depth of the stack)  polish  as  and  register pulse  the  (limited  configured  register  point  sequence,  operand o p e r a t i o n s  bus,  oriented  i s a v a i l a b l e on t o p o f t h e s t a c k .  multiple  separate  AM9511A  i s 8 words d e e p f o r 16 b i t i n t e g e r s and  operands i n the  APU  a  The d a t a  directly  b i t i n t e g e r s and f l o a t i n g  The  by  FIXADD: i n t e g e r a d d i t i o n  8-9  (usee)  104  FIXSUB: i n t e g e r  subtraction  FIXFLT: convert  integer  FIXCOPY: d u p l i c a t e FLTMUL: m u l t i p l y FLTADD: add  top  stack  floating  point  FLTFIX: convert No most inputs an the  to the  arithmetic CPU  of  under hardware c o n t r o l  to  from t h e For  APU  difference  between a CPU  APU  software.  an  are  are  provided,  immediately  operations, CPU  APU  completely and  45-107  integer  capabilities  from t h e  of  i n the  point  s u s p e n d e d . The  operation  ignored  the  391-435  exceeds the  is  10  (f.p.)  root  operation.  operation  execution  77-92  stack  square  results  next  73-82 27-184  processing  the  8  (integer)  division  floating  parallel  cases  top  point  31-78  point  point  point  FLTCOPY: d u p l i c a t e SQRT: f l o a t i n g  floating  of  floating  FLTDIV: f l o a t i n g  to  15-16  APU  where the  instruction suspension (PAUSE).  transparent execution  since  in  needed  as  time  cycle of  This  time,  the  CPU  makes  and cycle  for  the can  is the time be  18  AcUK  CS  an  (ti- »•) -  /A  'T) /2  1  X2g Zl  T A  ze>  IV- »»)•  <*-'*>  OK.  IS  PAUSE  k_JL  v.Ese.r \22~~  TPS  DRWG #6 A r i t h m e t i c P r o c e s s i n g U n i t  (APU)  -carl*;  106 Clock  Circuit The  [DRWG  processor  is  divided  the  A/D  down  #7] c l o c k , which to give  converter  and t h e  pulse.  The  clock  further  division  The 2  1 3  is  ",  APU  timing  13  into  the  t h e SCLK l i n e  An  interrupt  8  to give  and  division  S/H  by 2. A  o f 500 KHz.  are created  by a "modulo 3" c o u n t e r ;  crystal,  s i g n a l s f o r t h e APU,  by a s i m p l e  t h e A/D c l o c k  Hz.  from a 4 MHz  clock  for  i s obtained  by 8 g i v e s  4 MHz/(2 *3)=162.76  polarity.  the proper  S/H and i n t e r r u p t p u l s e  followed  inserted  i s derived  by  a  "divide  the r e s u l t i n g  micro-second  frequency  one-shot  t h e needed p u l s e  by  is  w i d t h and  *£</ *fr  US-2V  u  +1*  Ol  J/8  Ui 0, tTAC  r 0<L  I"  DRWG #7 C l o c k  /«<b  r  f*>k»t 1 ZfOkJh.  6  em  Circuit  xsr  1  3  I  108  Memory  [DRWG #8]  The  a d d r e s s a b l e memory s p a c e  consists  of  2048  bytes  of  EPROM and 256 b y t e s o f RAM. The  2K  EPROM  coefficients. byte  holds  A11 A10 s e l e c t s  the  program  t h e c h i p and AO  and to  the f i l t e r  A9  access  a  w i t h i n t h e ROM. For  the  variables,  implemented  with  lower  bytes  256  t h e upper going  (121)  516  bytes  o f RAM  (1-34 t o 1-37) a r e  f o u r 256 by 4 b i t c h i p s . A11 A8 (2 c h i p s i n p a r a l l e l ) ,  256 b y t e s . The d a t a  low; t h e r e a d i n g o f d a t a  w h i l e A11 A8  i s clocked into i s enabled  addresses  addresses  t h e memory by  by t h e MRD  the  line.  MWR  (CM  2±-  1111  s\ >J »1 ni al  i n  »l al al  iw *A n\  h..  ex.1  JL  (JM)  upnvt 'At*.  LT L T  4r  *  T'8  <9  *l *l "\ \ \^\"] *\ a  a  /  _u_ 3<  Ob*?.  DRWG #8 Random A c c e s s Memory  «UI  4Sr  <M-<«3  L  '  DRWG #8A  Read O n l y Memory  111  Digital  to Analogue Conversion  Each  of  interface  with  appropriate clocked is  channels  t h e TPB  driver  #9] has  i t s own  logger. A converter  line  immediately  output  connectors.  three  the data  select  in with  almost  integral  the  [DRWG  (SEL1,SEL2,SEL3)  p u l s e . The (20  and  connect  (139-141) t o  i s selected and  corresponding  nsec) a v a i l a b l e .  DAC  The  directly  the  by  the  value  analogue  value  DAC's c o n t a i n to  the  is  an  output  Sen  •flV  (it-*)  TP/i  lf-12)  Sett  -  a  0.1/if  Hi—  lO (to-io) •  if  {*>-*)  . MSB  DRWG #9 D i g i t a l  t o Analogue C o n v e r s i o n  NJ  11 3 Function  Selection  The  external  switch, flag of  flags  whose 8 p o s i t i o n s  inputs  the  [DRWG  are  different  then  #10] EF1-EF3 are  binary  are  encoded  s o f t w a r e d e c o d e d and  filters.  controlled  by  [ 1 2 7 ] . The  used  f o r the  a  rotary  external selection  £20  2ifc  MS  Mi  j i  22 k  13  BfZ  1 I 7*7T BXT. SW"  Hi.  i£j_G J  *F3  DRWG #10 F u n c t i o n  Selection  115 SOFTWARE The  program  (x,y,z).  Due  analogue  to  the  to d i g i t a l  execution  and  initialized the  implements long  runs  conversion  at the beginning  value  filters  conversion  conversion  the  calculations  converted  the  for  the  i s ready  in time  concurrent  for  t h e next  of a f i l t e r present  sequential (100 with  usee), the  the  channel  s e q u e n c e . By  channel  order  program  i s always the  time  a r e executed, the  f o r the f o l l o w i n g channel  (fig.  1).  Sample Pulse A/D Conversion  Program  Fig F o r most bit  efficient  memory  coefficients  1 A/D and P r o g r a m S y n c h r o n i z a t i o n  address  use of t h e i n s t r u c t i o n registers,  the  data  set  and  (delayed  and APU commands) a r e s t o r e d i n c o n t i g u o u s  The  data  can then  the  indirect,  be a c c e s s e d  auto-increment  through  the  16  samples, blocks.  dedicated p o i n t e r s using  memory  reference  and  I/O  instructions. At  initialization,  0000 a n d t h e f i r s t 'fake  return'.  the  instruction  Then  the  program s t a r t s  a t memory  disables  interrupt  workspace  the i n RAM  location with  a  i s c l e a r e d and t h e  1 16 p o i n t e r s common t o a l l f i l t e r s a r e input the  from  filter  first  the  external flags)  selected  coefficient  set. A  binary  i s travelled,  and s e t s t h e c o e f f i c i e n t  tree  which  pointer  of the a p p r o p r i a t e c o e f f i c i e n t  (with  determines (R6) t o t h e  block  (fig.  2).  EF3  EF2  EF 1  EF2  EF1  °/\ °l\  CHECK  #6  Fig In a  case  small  through  #4  2 Filter  which  EF 1  ° | \  °  #3  #2  Selection  'CHECK' i s s e l e c t e d  routine,  puts  l  \  #1  ISO  Tree  (EF1-EF3=111) t h e p r o g r a m the values  from  t h e A/D  t o t h e DAC's and b r a n c h e s back t o t h e s t a r t .  the c h e c k i n g input  #5  EF1  of the sensors  and t h e o f f s e t  runs  straight  This  adjustments  allows of  the  amplifiers. The  filtering  program  proper  reads  the data  from  t h e A/D  (INP DATA) a n d s t o r e s i t i n memory f o r t h e d e l a y - s h i f t s and D-register. stack  From t h e r e g i s t e r  (OUT A P U ) . Then  subtracted,  the r e s u l t  Before  further  filter  channel  is initialized.  the  the value  x(n-2)  (still  i s loaded  value  on t h e s t a c k )  calculations  is  also  on t o t h e APU loaded  i s multiplied  the conversion  the  and  by C1.  f o r t h e next  1 17  The  denominator c a l c u l a t i o n s  executed  in  for  correct  the  output  shifts.  placement of  The  Using bytes)  the  t h e APU  R8  R9  output stack,  running Two  of  as  samples a r e  time  delay,  rms  and  synchronized waiting  for  through'  and  In  case  squares'  are  is multiplied result,  APU)  by  which  f o r the  4 is  delay-  above.  shifted  by  one  location  i . e . x(n-1) to x ( n - 2 ) ,  selection.  reset  the  s t a g e ) , which  to f l o a t i n g  sequences  x(n)  is s t i l l  p o i n t , squared,  value  (2 to  added  on to  r e - s t o r e d i n memory.  implement  the  filtering  the  filtering  sequences  to the b e g i n n i n g has  sample  to the  not  elapsed  pointer  sample c l o c k by clock  p u l s e . On  (R7)  that a f u l l  rms  retrieved  for  rms  the  rms  I f no  the  are  has  memory  of  The  interrupt  the program the  and 'falls  program.  passed, and  program i s  the  the to  'sum  rms  of  values  the  DAC's  f o r a change of t h e  filter  o c c u r r e d the program branches t o  sequence,  program.  calculations  v a l u e s have been o u t p u t  change has  interrupt'  If  i s reset.  interrupt  - DAC3), t h e p r o g r a m c h e c k s  of  the  pointers block.  e n a b l i n g the  interval from  the  of e a c h d a t a  b r a n c h e s back t o t h e b e g i n n i n g  After  for  beginning  (second  t h e new  three  interval  are  calculated. DAC1  filter  identical  all  sec  skipped  the  (SSQX) and  (R6,R12,R14) a r e  'wait  the  (INP  ]  z-channel.  After  (OUT  result  i s saved  i s executed  i s converted  sum  more,  t h e y- and  10  stage,  stage  the  the  of t h e b i n a r y p o i n t . The  first  and  d1*y(n-1)+d2*y(n-2)  etc.  The  the  manner and  second  to e f f e c t  x(n-1),  the  a similar  [  otherwise  i t branches to  the the  1 2 3 4 5 6 7 8 9 10 1 1 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 ' 56 57 58 59 60  TITLE ' * * RCA.2B * * 06.NOV 1981' ; * RCA.2B * , ********** ;* 4MHZ CLOCK 4MICSEC/INSTR (6MICSEC/LBR+N0P) ;* DOUBLE PRECISION, 2 S COMPLEMENT, AM9511 ARITHM.PROCESSING UNIT ;* EXT.FLAGS 1 TO 3 SELECT 1 OF 8 FILTERS ;* 3 CHANNELS LABELED X,Y & Z ; CASCADED FORM ;W = = = = ( 1 ) = >< + > = (C1)=>< + > = = = (4) = = = = = = = = = = ( 1 ) = = >.< + > = (C2)=>< + } = = = (4) = = = = = > V ; ; ; ; ;  I  1  [T]  <=(-d1)=[T]  [T]  <=(-d1)=[T]  | [T]=(-1)=>  <=(-d2)=[T]  [T]=(-1)=>  <=(-d2)=[T]  1  '  DEFINITIONS ; APU COMMANDS FIXMULLO EOU 6EH FIXMULHI EOU 76H FIXADD EOU 6CH F i ' x S U B E O U 6 D H FIXFLT EOU 1DH FIXCOPY EOU 77H FLTCOPY FLTMULT FLY ADD FLTDIV SORT FLT F I X E  EOU 17H EOU 12H E O U 1 0 H EOU 13H EOU 01H O U 1FH  I/O PORT DEFINITIONS DAC 1 DAC2 DAC3 DATA CHANL APU CMND  EOU EOU EOU EOU EOU EOU EOU  1 2 3 4 5 6 7  ; REGISTER DEFINITIONS PC ISPC SP TIMER COUNT ;R5 ;R6 ;R7 ;R8 ;R9  EOU EOU EOU EOU EOU EOU EOU EOU EOU EOU  0 1 2 3 4 5 6 7 8 9  ;PROGRAM COUNTER ;INTRPT-SERVICE PC ;STACK POINTER GENERAL PURPOSE SAMPLE PTR COEFFICIENTS PTR DELAY POINTER DELAY POINTER 1  oo  61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 82 83 85 86  R10 R11 R12 R13 R14 R15  0AH 0BH 0CH ODH OEH OFH  EOU EOU EOU EOU EOU EOU  ;SUM SQUARES PTR ;COMMAND-POINTER :GENERAL PTR  ; CONSTANTS INTRV.HI INTRV.LO WASTE.HI WASTE.LO ; ;  EOU EOU EOU EOU  06H 5CH 3H 2EH ===  ;SUMMING INTERVAL ;WASTE INTERVAL  FOR 10 SEC  FOR 5 SEC  START OF PROGRAM =======================  INITIALISATION  ; ON POWER-UP RO IS PC AND RX ;DISABLE INTERUPTS DIS 10H ;[X,P]-ARGUMENTS FOR FAKE-RETURN BYTE REO J POINTERS . START LDI HI (W01X.LO)  88 89  LDI PLO  L0(WO1X.LO) R6  91 92  LDI PHI  HI(CHSEL) R5  PLO  R5  PHI LDI  R12 LO(SSQX)  LDI PHI LDI PLO  HI (BAND) RIO LO(BAND) R10  ;R10 > BAND SELECTED  LDI PHI LDI PLO  HI(SCRTCH) R1 1 LO(SCRTCH) R1 1  ;R11  > SCRATCH PAD  LDI PHI LDI PLO  HI(INSTR) R14 LO(INSTR) R14  ;R14  > THE FIRST APU-INSTR  LDI PHI LDI PLO  HI(ENDWS) R15 LO(ENbWS) R15  94 95  ;  103 104 106 107 108 109 1 10 1 12 1 13 1 14 115 1 16 117 118 1 19 120  ;R5 > CHANEL SELECTED  ;  97 98 100 101  ;R6 > LO BYTE OF FIRST X-SAMPLE  ;  ;  ;R12  > LSB OF SUM OF SQUARES ACCUMULATOR  vO  ;R15  > END OF WORKSPACE  121 122 123  .  ; SET COUNTERS LDI  INTRV.HI  125 126  LDI PLO  INTRV.LO  128 129  LDI PHI  WASTE.HI  131 132  PLO  TIMER  134 135 137 138  ;  INITIAL: R15 LDI STXD  0  140 141  XRI BNZ  08H  143 144  XRI BNZ  01H  146 147  L00P1  ; START FIRST CONVERSION  149 150  LDI STR  0 R5  152 153  DEC  R5  155 156 158 159 161 162  REO  ;START CONVERSION  ; DEPENDING ON ; CORRESPONDING FILTER SEQUENCE.(FLAGS LOW ACTIVE)  164 165  BN2 BN1  F10X FILTR1  167 168  F10X  BN1  FILTR3  170 171  FOXX  BN2  FOOX  173 174  BR  FILTR4  176 177  BR  FILTR6  179 180  ;TIMER=(495*SAMPLING)=3 SEC  ISO  LDI  HKC1XI.L0)  •  18 1 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 21 1 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240  PHI LDI PLO  R7 L0(C1XI.LO) R7  LDI STR BR  1 R10 OFILTER  ;R7 > FIRST COEFFICIENT  J  ;BAND = 1  ;  ; SET FILTER #2 COEFF-POINTERS FILTR1  LDI PHI LDI PLO  HI(CIX1.LO) R7 L0(C1X1.LO) R7  LDI STR BR  2 R10 OFILTER  ;R7 > FIRST COEFFICIENT ;BAND = 2  J  ; SET FILTER #3 COEFF-POINTERS FILTR2  LDI PHI LDI PLO  HI(C1X2.LO ) R7 L0(C1X2.LO) R7  LDI STR BR  3 R10 OFILTER  ;R7 > FIRST COEFFICIENT  ;  ;  ;BAND = 3  ; SET FILTER #4 COEFF-POINTERS FILTR3  LDI PHI LDI PLO  HI (C1X3.LO) R7 L0(C1X3.L0) R7  LDI STR BR  4 R10 OFILTER  ;R7 > FIRST COEFFICIENT ;BAND = 4  ; SET FILTER #5 COEFF-POINTERS FILTR4  LDI PHI LDI PLO  HI(C1X4.LO) R7 L0(C1X4.L0) R7  LDI STR BR  5 RIO OFILTER  ;R7 > FIRST COEFFICIENT ;BAND = 5  ; SET FILTER #6 COEFF-POINTERS FILTR5  LDI PHI LDI PLO  HI(C1X5.Lbj R7 L0(C1X5.L0) R7  LDI  6  ;  ;R7 > FIRST COEFFICIENT  24 1 " 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 . 291 292 293 294 295 296 297 298 299 300  STR BR  ;  ; SET FILTER FILTR6  R10 OFILTER  #7 COEFF- POINTERS  LDI PHI LDI PLO  HI (C1X6 .LO) R7 L0(C1X6 .LO) R7  LDI STR BR  7 R10 OFILTER  LDI PHI LDI PLO  00 R15 25 R15  DEC GLO BNZ  R15 R15 C0N1  SEX INP OUT DEC  R1 1 DATA DAC 1 R1 1  J ; CHECK J CHECK  ;BAND = 6  ;R7 > FIRST  COEFFICIENT  ;BAND = 7  ;SET TIMER TO ABOUT  120 uSEC  ;  C0N1 ;  LDI STR  1 R5  R5 CHANL  SEX OUT DEC  ;GET DATA ;AND DUMP IT  ;SELECT Y-CHANNEL  R5 SEO REQ  C0N2  LDI PHI LDI PLO  00 R15 30 R15  DEC GLO BNZ  R15 R15 C0N2  SEX INP OUT DEC  R11 DATA DAC2 R1 1  LDI STR  ;SET TIMER TO ABOUT  ;GET DATA ;AND DUMP IT  2 R5  ;  R5 CHANL  SEX OUT DEC ;  R5  ;SELECT Z-CHANNEL  120 uSEC  SEO REO  301 302 303 304 305 306 307 308  LDI PHI LDI PLO C0N3  00 R15 30 R15  310 31 1  DEC GLO LBNZ  R15 R15 C0N3  313 314  SEX INP DEC  R1 1 DATA DAC3 R1 1  LBR  RECHCK  316 317  J  ;  X-CHANNEL  *********************  322 323  ;  -(Y1*D1)-(Y2*D2)  325 326  ; V=OUTPUT; W= INPUT D=DENOMINATOR ;  328 329  334 335  ;GET DATA ;AND DUMP IT  *  319 320  331 332  ;SET TIMER TO ABOUT 120 uSEC  ; '  INITIAL: R5 > CHAN2 R7 > C1X LO R14 > FIXSUB  ; ; ;  INPUT v  »  337 338  LDI STR  0 R6  ;SET LO BYTE TO ZERO  340 341  INC INP  R6 DATA  ;R6 > HI BYTE ;READ SAMPLE FROM ADC  343 344  SHR STR  R6  346 347  BNF LDI STR  NEXTX 80H R6  349 350  ;  352 353 354 355 356  NEXTX  358 359 360  ;SHIFT RIGHT ;STORE AT HI BYTE ;R6 > LO BYTE ;IF NO OVERFLOW LEAVE LO BYTE ;ELSE SET LO BYTE TO 80H  = 0  ; SUM=(W01-W21)*C1 SEX OUT OUT  R7 APU APU  SEX  R6 APU APU  •;LOAD C1 to  ;  OUT IRX  ;LOAD W01X LO-BYTE ; " W01X HI-BYTE  361 362 363 364 365 366 367 368 369 370 37 1 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 . 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 41 1 412 413 414 415 416 417 418 419 420  IRX OUT OUT  APU APU  ; SKIP OVER W11X ; LOAD W21X LO BYTE ; LOAD W21X HI BYTE  SEX OUT OUT  R14 CMND CMND  ;SUBTRACT :MULT I PLY  : START NEXT CONVERSION  ;  LDI STR SEX OUT DEC  1 R5 R5 CHANL R5  ; SELECT A/D CHANNEL tt\  SEQ REQ ; SUM =SUM-(V11*D11) SEX IRX IRX OUT OUT  R6 APU APU  ;SKIP OVER V01X HI&LO ;LOAD V11X LO BYTE ;LOAD V11X HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD D11X LO-BYTE ;LOAD D11X HI-BYTE  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  *  ; SUM= SUM-(V21*D21) SEX OUT OUT  R6 APU APU  ;LOAD V21X LO-BYTE ;LOAD V21X HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD COEFFICIENT ; " "  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  ;  ;  ; MULTPLY BY 4 .  OUT OUT  APU CMND  ;LOAD 4 ;MULLO  ; SAVE 1ST STAGE OUTPUT ; ;  INITIAL: R6 > V12X LDI PLO  LO-BYTE  L0(VWOX.HI) R6  ;R6 > V01X  HI-BYTE  LO BYTE HI BYTE  421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480  J  ;  NOTE DATA BLOCK MUST NOT LIE ACROSS A PAGE BOUNDARY SEX INP  R6 APU  ;GET HI-BYTE  DEC INP  R6 APU  ;GET LO-BYTE  ;  ;  ; 2ND STAGE  (X)  ;  ; SUM=(W02-W22)*C2 '  ; INITIAL: R7 > C2X J R6 > W02X( =V01X) LO-BYTE SEX OUT OUT  R7 APU APU  SEX OUT OUT  R6 APU APU  ;LOAD W02X LO-BYTE ; " W02X HI-BYTE  IRX IRX OUT OUT  APU APU  ;SKIP OVER W12X ;LOAD W22X LO BYTE ;LOAD W22X HI BYTE  SEX OUT OUT  R14 CMND CMND  ;SUBTRACT ;MULTIPLY  ;LOAD C2  j  j  j  ; SUM=SUM-(V12*D12) SEX OUT OUT  R6 APU APU  ;LOAD V12X LO BYTE ;LOAD V12X HI BYTE  SEX OUT OUT  R7 APU APU  ;LOAD D12X LO-BYTE ;LOAD D12X HI-BYTE  SEX OUT OUT  R14 CMND CMND  ;MULT I PLY ;SUBTRACT  ;  j  ;  ; SUM =SUM-(V22 *D22) SEX OUT OUT  R6 APU APU  ;LOAD V22X LO-BYTE ;LOAD V22X HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD D22X LO-BYTE ;LOAD D22X HI-BYTE  SEX OUT  R14 CMND  ;MULTIPLY  ;  j  481 482 483  OUT CMND J ; MULTPLY BY 4  485 486  OUT OUT  488 489  ;  491 492  ; V12 TO V22  ; SUBTRACT  CMND APU  ;FIRST COPY FOR SSOX ;LOAD 4  ; DELAY-SHIFT THE SAMPLES . •  494 495  LDI PHI  HI (V12X.HI ) R8  PLO  R8  PHI LDI  R9 L0(V22X.HI)  SEX  R9  506 507  STXD DEC  R8  509 510  STXD DEC  R8  512 513  ; V02 (ON TOS) TO V 12  515 516  ;  497 498  503 504  j  DEC INP ; ;  533 534 536 537 539 540  R9-1  ;STORE IT,  R9-1  HI-BYTE  R9 APU  ;GET LO BYTE  INITIAL: R9 > V12X LO-BYTE RX =R9  ;  527 528 530 531  INITIAL.R9 > V12X  ;STORE IT,  ;  518 519  524 525  ;R8 > V12X.HI  ;  500 501  521 522  -  •  DEC DEC  R8 R9  ;R8 > VW1X HI-BYTE ;R9 > VW2X HI-BYTE  LDN STXD  R8  ;GET VW1X HI-BYTE ;STORE @ VW2X HI-BYTE  LDN STXD  R8  ;GET VW1X LO-BYTE ;STORE @ VW2X LO-BYTE  R8  ; GET VWOX HI-BYTE ;STORE @ VW1X HI-BYTE  ; VWO TO VW1 LDN STXD  —  541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600  DEC LDN STXD DEC  R8 R8  ;GET VWOX LO-BYTE ;STORE 9 VW1X LO-BYTE  R8  *  ; W1 1 TO W21 DEC DEC DEC DEC LDN STXD DEC LDN STXD DEC ;  ;R8 > W11X  HI-BYTE  ;R9 > W21X HI-BYTE ;GET W11X HI-BYTE ;STORE 9 W21X HI-BYTE  R8 R8  ;GET W11X LO-BYTE ;STORE 9 W21X LO-BYTE  R8  W01 TO W1 1 LDN STXD DEC LDN STXD DEC  ; FOR START-UP  ;  R8 R8 R9 R9 R8  R8 R8 R8  ;GET W01X LO-BYTE ;ST0RE 9 W11X LO-BYTE  R8 (TIMER.GT .0)  GHI BNZ GLO BNZ  SKIP SUM OF SQUARES  TIMER YYY TIMER YYY  ; SUM OF SQUARES ; INITIAL:  ;GET W01X HI-BYTE ;ST0RE 9 W1IX HI-BYTE  (X)  R14 > CONVERT R12 > SUM OF SQUARES; (SSQX)  SEX OUT OUT OUT  R14 CMND CMND CMND  ;CONVERT TO FLOATING POINT ;COPY TOS (FLOATING) ;FLOATING MULT (SQUARE)  SEX OUT OUT OUT OUT DEC  R12 APU APU APU APU R12  ;LOAD PREVIOUS SUM ;R12 > MSB OF SSQX  SEX OUT  R14 CMND  ;FLOATING ADD  SEX INP DEC INP DEC INP  R12 APU R12 APU R12 APU  ;STORE NEW SSQX AND CONTINUE  601 602 603 604 605 606 607 608 609 610 61 1 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660  DEC INP  ;  R12 APU  ;R12 > LSB OF  SSOX  ; FILTER FOR Y-CHANNEL *********************  ; ;  1ST STAGE  V0=(W0-W2)*C1 - ( Y 1 * D 1 ) - ( Y 2 * D 2 )  ; V=OUTPUT; W= INPUT ; N=NUMERATOR; D=DENOMINATOR J ; I N I T I A L : R5 > CHAN3 ; R6 > W01Z.L0 ; R7 > D22X.HI+1 R14 > FIXSUB ; SET POINTERS YYY  ;  GLO SMI PLO  R7 12 R7  ;OFFSET BACK ;R7 > C1X.L0  ** NOTE! C O E F F I C I E N T BLOCK MUST NOT  L I E ACROSS A PAGE BORDER  HI(INSTR) R14 LO(INSTR) R14 ;R14 > FIRST OF  LDI PHI LDI PLO  COMMANDS  *  ;  INPUT SEX LDI STR  R6 0 R6  ;SET LO BYTE TO ZERO  INC INP  R6 DATA  ;R6 > HI BYTE ;READ SAMPLE FROM  SHR STR DEC BNF LDI STR  R6 R6 NEXTY 80H R6  ;SHIFT RIGHT ; STORE AT HI BYTE ;R6 > LO BYTE ; I F NO OVERFLOW SKIP TO N4 ;ELSE SET LO BYTE TO 80H  ; SUM=(Wbl-W2i)*C1 NEXTY  ;  ADC  SEX OUT OUT  R7 APU APU  SEX OUT OUT  R6 APU APU  ;LOAD W01Y ; " W01Y  LO-BYTE HI-BYTE  IRX IRX OUT OUT  APU APU  ;SKIP OVER ;LOAD W21Y ;LOAD W21Y  W11Y LO BYTE HI BYTE  ; LOAD CI  661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 71 1 712 713 714 715 716 717 718 719 720  SEX OUT OUT  R14 CMND CMND  J ; START NEXT CONVERSION  ;  LDI STR SEX OUT DEC  2 R5 R5 CHANL R5  ;SUBTRACT ;MULT IPLY  ; SELECT A/D CHANNEL Ir2  SEO REO ; SUM =SUM-(V11*D11) SEX IRX IRX OUT OUT  R6 APU APU  ;SKIP OVER V01Y HI&LO ;LOAD V11Y LO BYTE ;LOAD V11Y HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD D1 IY LO-BYTE ;LOAD D11Y HI-BYTE  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  ;  ;  ; SUM =SUM-(V21*D21)  ;  j  SEX OUT OUT  R6 APU APU  ;LOAD V21Y LO-BYTE ;LOAD V21Y HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD COEFFICIENT ; " "  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  j ; MULTPLY BY 4 OUT OUT  APU CMND  LO BYTE HI BYTE  ;LOAD 4 ;MULLO  ; SAVE 1ST STAGE OUTPUT ;  INITIAL: R7 > V12Y LO-BYTE LDI PLO  L0(VWOY.HIj R6  ;R6 > V01Y HI-BYTE  ;  ; * * NOTE DATA BLOCK MUST NOT LIE ACROSS A PAGE BOUNDARY ;  SEX  R6  721 722 723 724 725 726 727 728 729 730 731 732 733 734 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780  INP  APU  ;GET  HI-BYTE  DEC INP  R6 APU  ;GET  LO-BYTE  ;  2ND STAGE  (Y)  ;  SUM= ( W 0 2 - W 2 2 ) * C 2  ;  INITIAL:  ;j — ~ ~ —  ;  R7 R6  > C2Y > W02Y(=V01Y)  SEX OUT OUT  R7 APU APU  SEX OUT OUT  LO-BYTE  ;LOAD  C2  R6 APU APU  ;LOAD ; "  W02Y L O - B Y T E W02Y H I - B Y T E  IRX IRX OUT OUT  APU APU  ;SKIP ;LOAD ;LOAD  OVER W12Y W22Y LO B Y T E W22Y H I B Y T E  SEX OUT OUT  R14 CMND CMND  ;SUBTRACT ;MULTIPLY  ;  ; ;  ;;  SUM = S U M - ( V 1 2 * D 1 2 ) SEX OUT OUT  R6 APU APU  ;LOAD ;LOAD  V12Y V12Y  SEX OUT OUT  R7 APU APU  ;LOAD ;LOAD  D12Y LO-BYTE D12Y H I - B Y T E  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  LO HI  BYTE BYTE  SUM= S U M - ( V 2 2 * D 2 2 ) SEX OUT OUT  R6 APU APU  ;LOAD ;LOAD  V22Y LO-BYTE V22Y HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD ;LOAD  D22Y D22Y  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  J  •  J ;  .  MULTIPLY  BY  4  LO-BYTE HI-BYTE  o  oo oo 03 00 00 00 00 00 00 00 co CO 00 00 00 oo co oo co co 00 oo oo oo oo oo co co 00 00 oo co oo oo oo co 00 00 03 00 00 ^1 ~1 ~4 - J ~4 ^1 ^1 ^1 ~J -~l -J -J -J -J -J -J U CO CO CO CO CO CO CO CO to to to to to to to to to to O O CO CO CO CO CO CO CO CO CO CO 00 oo 00 CO co oo 00 CO IO -•• O CO CO -J cn Ul CO 00 - J cn Ol •b CO to CO 00 ^1 cn Ul u CO to O CO CO cn o i A CO to - » O (D 00 ~4 cn Ol CO to o CO 00 ~1 CT) Ol CO  o  o oo o oo o o  -* o  •H  Z  CO r~ o  to  r-  O  X  Z  H a m H o X z o  o  70 TO  1 < 1 £ 1 ^  70  00 oo  CO  n  X z  H o m  o  x z  TO  oo  r  O CO r - O  -m  n  o  TO 70 oo CO  oo  -  —1 o  7}  oo  o  o  o  o  o  o  m m m  71 73  CO oo oo  ••  i i  < £  1 < 1 £  70 70 1 tO  00 CO V V  <<  o  to ro •< -< I X (—1  HH  o  m  z  TI o  1—<  z  70 > > •o CO TJ c  c  o  TO m  ©  CD m H  < £  o  X  < r~ £ -k o < C1O r™ -< o  -1  CD -I m O -1  CD H m  CO  CO  o  TO m < ©  70 m  £  o  < £ -<  X  < I £ 1—1 -< 1  CO X < 1—  -1  -1  < £ P" to o -< 1 CO r~ -< o H  CD H m  CD m H  TO m  V V  I  o  —1  < £  •© — t  •<  < £ *-H I to < C1O X -< »—1 -1  < £ < £ to -< < X I 1—1 —*  l-H  1  •3 00 -< -< m  m  to -<  C I 2 i -1  i a  O Z  H  1 1 < 1 1 M  CO r o m -i o m O O  -  X z  o  o  -1  X Z  •  73 73  00  oo O m  CO r -  X  73 7)  00 00  03 CO  TI I- T3 I  -  r- O X ,—1 o o  « »H  73 r - 70 I  co a CO (—1•  < ro  ro -< I l-H  a  T3 rr- a x o o  73 r - 73  oo .—. o 00  < ro  ro -< X  <  to  ro  X  t—1  l-H  I l-H  <L. <  O  O  2 z o  c  2  r- oo  C C  1—1  O  C  TI 2 z o  < I  l-H  m -n  -• TO 70 CO CO  CO  <  < H  ••  00 -1  J>  CO CO  00 CO  CO 00 -< < -1 -1 m m -• -•  ^  1 o  1 1  -•  1 1 -1 1 o 1 C/l V CO 1 w  TO  I 1—1  -  o  -•  --  •.  CD m  > -o c  »• * •  CD H m  CO  Ta  TO  CO  -1  o  -1  o  1—<  I  m ra  CO -<  CO  -1  m  m  -  -(  < -1  -  1  CO -c  -1 73 m  CO 1  -1  o  »*  »•  »•  CD m  73  7)  -1  m I HH  1—f \  —1 00  -< H  »  7) m  CO 1  CO  00  V  V  < to  <  to  to  X 1—1  l-H  -<  < X  c o r -- > r o O  > <  m o  71 00 C O  O  841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900  ;  ; W1 1 TO W21 DEC DEC DEC DEC LDN STXD DEC LDN STXD DEC  •  R8 R8 R9 R9 R8  ;R8 > W11Y  HI-BYTE  ;R9 > W21Y HI-BYTE ;GET W11Y HI-BYTE ;STORE 0 W21Y HI-BYTE  R8 R8  ;GET W11Y LO-BYTE ;STORE 0 W21Y LO-BYTE  R8  ;  ;  ;  W01 TO W1 1 LDN STXD DEC LDN STXD DEC  ; FOR START-UP  R8  ;GET W01Y HI-BYTE ;ST0RE 0 W11Y HI-BYTE  R8 R8  ;GET W01Y LO-BYTE ;STORE 0 W11Y LO-BYTE  R8 (TIMER.GT .0)  ,GHI BNZ GLO BNZ  TIMER  zzz  TIMER ZZZ  ; SUM OF SQUARES ; INITIAL: ; ;  SKIP SUM OF SQUARES  (Y)  R14 > CONVERT R12 > LSB OF SUM OF SQUARES; (SSQX)  SEX OUT OUT OUT  R14 CMND CMND CMND  SEX IRX IRX IRX IRX OUT OUT OUT OUT DEC  R12  APU APU APU APU R12  ;LOAD PREVIOUS SUM ;R12 > MSB OF SSQY  SEX OUT  R14 CMND  ;FLOATING ADD  SEX INP DEC INP DEC INP  R12 APU R12 APU R12 APU  ;CONVERT TO FLOATING POINT ;COPY TOS (FLOATING) ;FLOATING MULT (SQUARE)  j  ;  ;  ;R12  > LSB OF SSQY  ;STORE NEW SSQX AND CONTINUE  901 902 903 904 905 906 907 908 909 910 91 1 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960  DEC INP  R12 APU  ;R12  > LSB OF SSQY  ; FILTER FOR Z-CHANNEL . ********************* ;  1ST STAGE  V0=(W0-W2)*C1- (Y1*D1 )-(Y2*D2)  ; V=OUTPUT; W= INPUT ; ENUMERATOR; D=DENOMINATOR J  ; INITIAL: R5 > CHAN3+1 ; R6 > W01X LO ; R7 > D22X.HI+1 = C1Z.L0 ; R14 > FIXSUB ; SET POINTERS ZZZ  HI(INSTR) R14 L0(INSTR) R14 ;R14  LDI PHI LDI PLO  > FIRST OF COMMANDS  J  ; INPUT SEX LDI STR  R6 0 R6  ;SET LO BYTE TO ZERO  INC INP  R6 DATA  ;R6 > HI BYTE ;READ SAMPLE FROM ADC  SHR STR DEC BNF LDI STR  R6 R6 NEXTZ 80H R6  ;  ;SHIFT RIGHT ;STORE AT HI BYTE ;R6 > LO BYTE ;IF NO OVERFLOW SKIP TO NEXTZ ;ELSE SET LO BYTE TO 80H  ; SUM=(W01-W21)*C1 NEXTZ  SEX OUT OUT  R7 APU APU  SEX OUT OUT  R6 APU APU  ;LOAD W01Z LO-BYTE ; " W01Z HI-BYTE  IRX IRX but OUT  APU APU  ;SKIP OVER W1 1Z ;LOAD W21Z LO BYTE ;LOAD W21Z HI BYTE  SEX OUT OUT  R14 CMND CMND  ;SUBTRACT ;MULTIPLY  ;LOAD C1  ;  ;  ; START NEXT ;  CONVERSION  -  961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995  LDI STR SEX OUT DEC  ;SELECT A/D CHANNEL #0  SEQ REO ; SUM=SUM-(V11 *D1 1 ) SEX IRX IRX OUT OUT  R6 APU APU  ;SKIP OVER V01Z HI&LO ;LOAD V11Z LO BYTE ;LOAD V11Z HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD D11Z LO-BYTE ;LOAD D11Z HI-BYTE  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  ; SUM=SUM-(V21 *D21 ) SEX OUT OUT  R6 APU APU  ;LOAD V21Z LO-BYTE ;LOAD V21Z HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD COEFFICIENT ; " "  R14 CMND CMND  ;MULTIPLY ^SUBTRACT  OUT OUT  997 998 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 101 1 1012 1013 1014 1015 1016 1017 1018 1019 1020  00 R5 R5 CHANL R5  v  LO BYTE HI BYTE  ; MULTIPLY BY 4 OUT OUT  APU CMND  ; LOAD 4 ;MULLO  ;  : SAVE 1ST STAGE OUTPUT ;  INITIAL: R7 > V12Z LO-BYTE LDI PLO  L0(VWOZ.HI) R6 ;R6 > V01Z HI-BYTE ; NOTE DATA BLOCK MUST NOT LIE ACROSS A PAGE BOUNDARY  SEX INP  R6 APU  ;GET HI-BYTE  DEC INP  R6 APU  ;GET LO-BYTE  ;  ;  J ; 2ND STAGE (Z) ;  ====-=======  1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080  SUM=(W02-W22)*C2 INITIAL: R7 > C2Z R6 > W02Z(=V01Z) LO-BYTE SEX OUT OUT  R7 APU APU  SEX OUT OUT  R6 APU APU  ;LOAD W02Z LO-BYTE ; " - W02Z HI-BYTE  IRX IRX OUT OUT  APU APU  ;SKIP OVER W12Z ;LOAD W22Z LO BYTE ;LOAD W22Z HI BYTE  SEX OUT OUT  R14 CMND CMND  ;SUBTRACT ;MULTIPLY  ;LOAD C2  SUM=SUM-(V12*D12) SEX OUT OUT  R6 APU APU  ;LOAD V12Z LO BYTE ;LOAD V12Z HI BYTE  SEX OUT OUT  R7 APU APU  ;LOAD D12Z LO-BYTE ;LOAD D12Z HI-BYTE  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  SUM=SUM-(V22*D22) SEX OUT OUT  R6 APU APU  ;LOAD V22Z LO-BYTE ;LOAD V22Z HI-BYTE  SEX OUT OUT  R7 APU APU  ;LOAD D22Z LO-BYTE ;LOAD D22Z HI-BYTE  SEX OUT OUT  R14 CMND CMND  ;MULTIPLY ;SUBTRACT  MULT if PLY' BY 4 OUT OUT OUT  CMND APU CMND  DELAY-SHIFT THE SAMPLES V12 TO V22  ;FIRST SAVE FOR SSOZ ; LOAD 4 ;MULLO  1081 1082 1084 1085  PHI LDI  P.8 L0(V12Z.HI)  1087 1088  LDI  HI(V22Z  1090 1091  LDI PLO  L0(V22Z.HI ) R9  ;R9 > V22Z.HI  1093 1094  SEX LDN  R9 R8  ;GET HI-BYTE  1096 1097  DEC LDN  R8 R8  ;GET LO-BYTE  1099 1 100  DEC  R8  1 102 1 103  • V02 IS  1 105 1 106 1 108 1 109 1111 1112 1114 1115  ;  {AS SUM} ON T0S;0F APU INP  APU  ;GET HI BYTE  INP  APU  ;GET LO BYTE  INITIAL: R9 > V12Z LO-BYTE DEC  R8  1117 1 1 18  DEC  R9  1 120 1121  STXD DEC  R8  1 123 1 124  STXD DEC  R8  1 126 1 127  HI)  ; STORE <a VW2Z HI-BYTE  ; VWO TO VW1  1 129 1 130  STXD DEC  R8  1 132 1 133  sfxb DEC  R8  1 135 1 136  ; W11 TO W21  1 138 1 139 1 140  DEC DEC DEC  -  R8 R9 R9  .  ;R9 > W21Z HI-BYTE  UJ ON  1 1 1 1 1 1  141 142 143 144 145 146  LDN STXD DEC LDN STXD DEC  1 148 1 149  ;  .  154 155 156 157 158  LDN STXD DEC LDN STXD DEC  R8 R8  :GET W11Z LO-BYTE :STORE «> W21Z LO-BYTE  R8  R8  ;GET WOiZ HI-BYTE ;STORE # W11Z HI-BYTE  R8 R8  ;GET W01Z LO-BYTE ;STORE 9 W1 1Z LO-BYTE  R8  ;  ; FOR START-UP  1 160 1 161 1 163 1 164 1 165 1 166 1 167 1 168 1 169 1 170 1 171 1 172 1 173 1 174 1 175 1 176 1 177 1 178 1 179 1 180 1 181 1 182 1 183 1 184 1 185 1 186 1 187 1 188 1 189 1 190 1 191 1 192 1 193 1 194 1 195 1 196 1 197 1 198 1 199 1200  ;GET W11Z HI-BYTE ;STORE 9 W21Z HI-BYTE  W01 TO W1 1  1151 1 152 1 1 1 1 1  R8  ;  CDOWN ;  (TIMER.GT .0)  GHI LBNZ GLO BZ  TIMER CDOWN TIMER SQZ  DEC LBR  TIMER RESET  ; SUM OF SQUARES ; INITIAL: j  soz  (Z)  R14 > CONVERT R12 > SUM OF SQUARES;  (SSQX)  SEX OUT OUT OUT  R14 CMND CMND CMND  SEX  R12  IRX IRX IRX IRX OUT OUT OUT OUT DEC  APU APU APU APU R12  ;LOAD PREVIOUS SUM ;R12 > MSB OF SSQZ  SEX OUT  R14 CMND  ;FLOATING ADD  SEX INP DEC INP DEC INP DEC INP DEC  R12 APU R12 APU R12 APU R12 APU COUNT  ; ;  SKIP SUM OF SQUARES  ;CONVERT TO FLOATING POINT ;CbPY TOS (FLOATING) ;FLOATING MULT (SQUARE)  ;R12  ;  > LSB OF SSQZ  ;  ;STORE NEW SSQX AND CONTINUE  ;R12  > LSB OF SSQZ  1201 1202 1203 1204 1205  ; RESET ALL POINTERS LDI PHI LDI PLO  HI(WOIX.LO) R6 LO(WOIX.LO) R6  LDI PHI LDI PLO  HI(INSTR) R14 L0(INSTR) R14  1213 1214  LDI  HI (SSQX)  1216 1217  LDI PLO  LO(SSQX) R12  1207 1208 1209 1210 1211  1219 1220  RESET  ;R6 > FIRST SAMPLE  J  ;R14  ;R12  > THE FIRST APU-INSTR  > LSB OF SSOX  •  ; CHECK FOR END OF INTERVAL BNZ GLO  1222 1223  WAIT COUNT  ;IF  1225 1226  ;  1228 1229  ; INITIAL: R12 > LSB OF SSOX RMSX SEX R12  NOT ZERO SKIP RMS CALCULATION  ; RMS CALCULATION AND OUTPUT  1231 1232  OUT OUT  APU APU  1234 1235  SEX  PC  1237 1238  BYTE OUT  INTRV.LO APU  1240 1241  OUT BYTE  CMND FIXFLT  1243 1244  BYTE OUT  FLTDIV CMND  1246 1247  SEX OUT  R7 APU  1249 1250  OUT OUT  APU APU  1252 1253  SEX  OUT  PC CMND  1255 1256  OUT BYTE  CMND FLTFIX  ;CONVERT TO FIXPOINT  1258 1259 1260  SEX INP OUT  R1 1 APU DAC 1  ;GET HI BYTE OF RMSX ;AND DUMP ON DAC1  -  ; GET TOTAL SUM OF SQUARES  ; LOAD INTERVALUb) ;LOAD INTERVAL(HI) ;CONVERT TO FLOATING PT ;MEAN OF SQUARES  ; LOAD FACTOR  (X)  1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289' 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 131 1 1312 1313 1314 1315 1316 1317 1318 1319 1320  RMSY  DEC INP  R1 1 APU  ;WASTE LO BYTE  SEX OUT OUT OUT OUT  R12 APU APU APU APU  ;GET TOTAL SUM OF SQUARES (Y)  SEX OUT BYTE OUT BYTE OUT BYTE OUT BYTE OUT BYTE SEX DEC DEC DEC DEC OUT OUT OUT OUT  PC APU INTRV.LO ;LOAD INTERVAL(LO) APU ;LOAD INTERVAL(HI) INTRV.HI CMND FIXFLT jCONVERT TO FLOATING PT CMND FLTDIV ;MEAN OF SQUARES CMND SORT R7 R7 R7 R7 R7 ;RESET FOR CORRX APU APU APU APU ;LOAD FACTOR  SEX OUT BYTE OUT BYTE  PC CMND FLTMULT CMND FLTFIX  SEX INP OUT DEC INP  R1 1 APU DAC2 R1 1 APU  SEX OUT OUT OUT OUT  R12 APU APU APU APU  SEX OUT BYTE OUT BYTE OUT BYTE OUT BYTE OUT BYTE SEX  PC APU INTRV.LO APU INTRV.HI CMND FIXFLT CMND FLTDIV CMND SORT R7  ;CONVERT TO FIXPOINT ;GET HI BYTE OF RMSX ;AND DUMP ON DAC2 ;WASTE LO BYTE  •  RMSZ  ;GET TOTAL SUM OF SQUARES (Z)  •  ; LOAD INTERVAL  ;CONVERT TO FLOATING PT ;MEAN OF SQUARES  OUT OUT OUT OUT  APU APU APU APU  1327 1328  OUT BYTE  CMND FLTMULT  1330 1331  BYTE  FLTFIX  ;CONVERT TO FIXPOINT  1333 1334  INP OUT  APU DAC3  ;GET HI BYTE OF RMSX ;AND DUMP ON DAC3  1336 1337  INP  APU  ;WASTE LO BYTE  132 1 1322 1324 1325  ;LOAD FACTOR  1339 1340  LDI  INTRV. HI  1342 1343  LDI PLO  INTRV. LO COUNT  SEX LDI  R12 0  1348 1349  GHI XRI  R12 HI(SSOBGN)  1351 1352  GLO XRI  R12 LO(SSOBGN)  1354 1355  IRX  1345 1346  1357 1358 1360 1361 1363 1364  LOUPE  N3 N2  LDI  1  ADI B2  4 N2  B1 ADI  N1 1  ;D=D+4  ;D=D+1 ;PRESENT FILTER - PREVIOUS FILTER  SD  ;NEW FILTER: GO TO START  1369 1370 1372 1373  1378 1379 1380  > SSOX  .  1366 1367  1375 1376  ;R12  GLO  R7  PLO  R7  ;SAME FILTER, OFFSET FOR USED CORR.FACTORS ;OFFSET BACK ;R7 > LAST COEFF +1 MSEC) TO SYNCRONIZE  WAIT  GLO  R7  PLO  R7  ;R7 > LAST COEFF+1 ;RESET ;R7 > FIRST COEFF  ;  ; **  NOTE! COEFFICIENT BLOCKS MUST NOT LIE  ACROSS PAGE BORDERS  138 1 1382  LDI  HI (ISR)  1384 1385  LDI PLO  LO(ISR) ISPC  1387 1388  SEX RET  PC  1390 1 39 1  IDL  1393 1394  PHI LDI  PC LO(OFILTER)  1396 1397  SEX  ISPC  1399 1400  BYTE  OOH  1402 1403  PAGE  ;WAIT FOR INPTHS  1405 1406  ; * DATA -AREA  1408 1409  ; ROM  1411 1412  SPAZE CHAN1  BYTE BYTE  OOH OOH  1414 1415  CHAN3  BYTE  02H  1417 1418  INSTR  BYTE BYTE  FIXSUB FIXMULHI  1420 1421  BYTE BYTE  FIXSUB FIXMULHI  1423 1424  BYTE BYTE  4H FIXMULLO  1426 1427  BYTE BYTE  FIXSUB FIXMULHI  1429 1430  BYTE BYTE  FIXSUB FIXMULHI  1432 1433  BYTE BYTE  FIXCOPY 4H  1435 1436  BYTE  FIXFLT  1438 1439 1440  ;SET INTERUPT-PC (ON INPT ISPC BECOMES PC)  FLTMULT BYTE FLTADD BYTE ; COEFFICIENTS FROM BILIN C16 OF NOV 3. 81  —  1441 1442 1444 1445  ; ISO FILTER COEFFICIENTS BYTE OCDH C1XI.LO  1447 1448  D11XI.LO D11X1.HI  BYTE BYTE  OAEH 85H  1450 1451  D21XI.HI  BYTE  3AH  ;0.9150...  1453 1454  C2XI.HI D12XI.LO  BYTE BYTE  40H OOH  ; 10  1456 1457  D22XI.LO D22XI.HI  BYTE BYTE  OOH OCOH  1459 1460  C1ZI.LO C1ZI.HI  BYTE BYTE  OBH 09H  1462 1463  D11ZI.HI D21ZI.LO  BYTE BYTE  93H 0E8H  1465 1466  C2ZI.LO  BYTE  OOH  1468 1469  D12ZI.LO D12ZI.HI  BYTE BYTE  OOH OOH  1471 1472  D22ZI.HI  BYTE  OCOH  1474 1475  CORXI.MM CORXI.MS  BYTE BYTE  28H 0B8H  1477 1478  CORZI.LS CORZI.MM  BYTE BYTE  OOH 0D2H  1480 1481  CORZI.EX  BYTE  02H  1483 1484  C1X1.LO C1X1.HI  BYTE BYTE  OEEH OOH  1486 1487  D1 1X1.HI D21X1.LO  BYTE BYTE  80H 15H  1489 1490  C2X1.LO  BYTE  OADH  1492 1493  D12X1.LO D12X1.HI  BYTE BYTE  OABH 81H  1495 1496  D22X1.HI  BYTE  3EH  1498 1499 1500  C1Z1.HI D11Z1.LO D11Z1.HI  BYTE BYTE BYTE  OOH OF AH 80H  ;-1 .91 12. . .  ;-1.0 ;0. 1413. . .  ;0.0 ;-1 .0  ;2*0.007277 . . .  ;-1.973...  ;-1.984...  .  —  •  1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560  D21Z1.LO D21Z1.HI  BYTE BYTE  15H 3FH  C2Z1 .LO C2Z1.HI D12Z1 .LO D12Z1.HI D22Z1 .LO D22Z1.HI  BYTE BYTE BYTE BYTE BYTE BYTE  OADH OOH OABH 81H 7CH 3EH  C0RX1.LS C0RX1.MM C0RX1.MS C0RX1.EX C0RZ1.LS C0RZ1.MM C0RZ1.MS C0RZ1.EX  BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE  1BH 42H 0D4H 04 H 1BH 42H 0D4H 04H  ;0.9856... ;0.0105 ;0.0105... ;-1.9738... ;0.9763...  ; 13.266  ;13.266  ; FILTER 02 COEFFICIENTS ( 1 41-2 82 HZ) C1X2.LO BYTE ODFH ;2*0.0146... C1X2.HI BYTE 01H D1 1X2.LO BYTE OCH D1 1X2.HI BYTE 82H D21X2.L0 BYTE 2DH 3EH D21X2.HI BYTE C2X2.LO C2X2.HI D12X2.LO D12X2.HI D22X2.LO D22X2.HI  BYTE BYTE BYTE BYTE BYTE BYTE  057H 01H 9EH 83H OFFH 3CH  C1Z2.L0 C1Z2.HI D1 1Z2 . LO D1 1Z2.HI D21Z2.LO D21Z2.HI  BYTE BYTE BYTE BYTE BYTE BYTE  ODFH 01H OCH 82H 2DH 3EH  C2Z2.L0 C2Z2.HI D12Z2.LO D12Z2.HI D22Z2.LO D22Z2.HI  BYTE BYTE BYTE BYTE BYTE BYTE  057H 01H 9EH 83H OFFH 3CH  C0RX2.LS C0RX2.MM C0RX2.MS C0RX2.EX C0RZ2.LS C0RZ2.MM C0RZ2.MS C0RZ2.EX  BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE  54H 003H 0D2H 04H 54H 03H 0D2H 04H  ;  ;0.4211...  ;2*0.0146...  ;0.04211...  ;13.125  ;13.125  ; FILTER 03 COEFFICIENTS (2 82-5 6 HZ) OBAH C1X3.LO BYTE 03H ;0.02923... C1X3.HI BYTE  1561 1562  D11X3.LO D11X3.HI  BYTE BYTE  72H 84H  1564 1565  D21X3.HI  BYTE  3CH  1567 1568  C2X3.HI D12X3.LO  BYTE BYTE  02H 25H  1570 1571  D22X3.L0 D22X3.HI  BYTE BYTE  03AH 3AH  1573 1574  C1Z3.LO C1Z3.HI  BYTE BYTE  ODAH 03H  1576 1577  D11Z3.HI D21Z3.LO  BYTE BYTE  84H 070H  1579 1580  C2Z3.LO  BYTE  075H  1582 1583  D12Z3.LO D12Z3.HI  BYTE BYTE  25H 88H  1585 1586  D22Z3.HI  BYTE  3AH  1588 1589  C0RX3.MM C0RX3.MS  BYTE BYTE  0C7H 0D7H  1591 1592  C0RZ3.LS C0RZ3.MM  BYTE BYTE  OABH 0C7H  1594 1595  C0RZ3.EX  BYTE  04H  1597 1598  C1X4.LO C1X4.HI  BYTE BYTE  ODCH 03H  1600 1601  D11X4.HI D21X4.LO  BYTE BYTE  8AH OFEH  1603 1604  C2X4.LO  BYTE  OCDH  1606 1607  D12X4.LO D12X4.HI  BYTE BYTE  25H 94H  1609 1610  D22X4.HI  BYTE  34H  1612 1613  C1Z4.HI D11Z4.LO  BYTE BYTE  03H 6AH  1615 1616  D21Z4.LO D21Z4.HI  BYTE BYTE  OFEH 38H  1618 1619 1620  C2Z4.LO C2Z4.HI D12Z4.L0  BYTE BYTE BYTE  OCDH 09H 25H  ;0.03844...  ;0.02923  ;3.5587  ;0.0603. . .  ;-1.6852. . .  ;0.8905... ;0.1531  145  in O  CO CO CO  co 01  O O  Ol m  i  6  •-  ro co CO t-  Ol CO  O  O  CD CO oo  o CO  i  CM CO co CD  cn CD CO  6  O  in O  01 LO  ,_ i •-  CO CO co i>  01 CD  O  O  CD CO co ^~  o CO  r  i •*  **  •*  .  CM 00 CO co  o  in in  CO 00 CM CM  CM  CM  6  CO  CD  O  CO CM CN 01  6  IO 00  in O  Ni I  I I I CO LU co  o  LU LU LU H r- 1 >- > > 03 CO CD  I  i o »-l -1  I  I  I  o  <  o  I I I i O CM  I I I: O iCJ CN CN: :  : < _ > o oit Q o ;o O  Oi  i  I-  I I I I t z < 00 O CO U i 03 CJ  1 1  < T CM o O CO  O  LU LU LU LU LU iLU LU LU 1- 1- i i - 1- 1- i l - h h  O  CO 03 CO  in co 00 CO CO CO CO  > >  > > :> >  >  CO :C0 03 CO  (/) E ic/1 X (/) E _ l E i s LU _1 j S  cn x S Ui  1i f •3X X X N : N N N N IM N Or or :or or or i or or or CM CM CM o o io o a io o o CM CM Q Q Q i •- CJ c j iCJ CJ CJ iCJ CJ o  LU LU LU LU :LU LU CJ K r- rr- i l - H  >->->- •>•  0£ UJ  O l-t I  O  —I •  M  >  i o i-<  I i-J  I  • in ini m in •~* in in x x i x X *U- X x CJ  o  iCM CM  oiO Q •  •X  I I I Ii iio CO u . t o o i< — CO co CN  ;o  o  o  LU LU UI iLU UJ LU i l - 1— 1- i l - 1- H  :> >- > ••>• >  >  CO CO CO : 00 0 0 CO  io  i_l ;  o I  -J i l  O -J  1 1 I I I < oo 1 < ca O CO 01  O  I  in in in in in in X X X X  X X CM : CM CM CM iCM CM i * - CN CM iCJ CJ a i O O D :  t-  UJ UJ iLU UJ LU LU 1 - r- i l - 1 - 1 - i l — > >- :> > > :>co caICQ co CO ica  HH  o  -i  i o w o : i—I « i — 1 1 —J i l i  iin in in iio in in ;IM N N ; N IM IM  •- O CJ:o a  i l l I X o CO U - T o CO 00 O CM  f  X X I  o o  O  UJ iLU UJ UJ iLU LU 1- i K 1 - i H t-  > ••>• > > > > ca ica CO ca CO CO o  _j i l  o •~i i o -J  I i-J  in in iin in in :in IM IM :|M N  in CD ••- CN co i in ID r- co cnO »- CN co f in CO t - 00 01 O *- CM CO f in CD i - oo cn O *- CM CO •* f t t t •a- i- in in in in in in in in CM CN CN CM CM CN CM CM CM CO CO CO co co co CO CO CO CD CD CD CO CD CO CD CD CD CD CD CD CO CD co CD CD IP Id CD ID ID CD ID CD CD CD CD CD CD CD CD CO CD CD CO CD  oi O O h o  < O  o  •  in I-  I  I X X X I I CJ CO f co in O O u . O r~ CM  z o -LU O M  CJ  Id  O  o  o  UJ LU 1- i l V ;> CO CO  iLU UJ LU LU LU LU iLU LU i l - r- 1 - i l — K - 1—i l - 1-  LU :U1 io i O O h ilor >- :> ^CD O CO i CO in  LU 1> CO  il/) s 00 i x cn s t/> X i-> s E ;LU -1 E i E UJ  :QT :LU  O " io - 1 1 :_l  :> > > >- > > >- > ica ca ca i CO CO 03 ica ca  « x  N :IM CM CM :CM CM CN iCM CN iCM iCM CM O i o •- CJ i C J O a ;a o  I X I I I CN O 0 ) CO CN  il-  im LO in iin in in i m in ;_i :x X X : X IM IM :|M N or iu_ :OT O. a.-.a aioc a. iO O o io o o io o i o CJ o i U U O iCJ CJ •  O  _l i l  CD COiCD 1 0 iCD X X i X X iX iCN ^~  o io o  o :o  in ID I N co oi O co oi O — CM co f in CD t" 00 01 O *- CM co tn in CD CD CO CD CD CD CD CD CD CD IN t- t~ t~ f~ i-~ r— t— i> r- co co co CD CD CD CD CD CD CD CO CO 10 CD CD CD CD ID CD CO CD CD CD CD  1681 1682  C2X6 . LO C2X6 . HI  BYTE BYTE  OOH 20H  1684 1685  D12X6 .HI D22X6 . LO  BYTE BYTE  04H ODBH  1687 1688  C1Z6 . LO  BYTE  0D1H  1690 1691  01 1Z6 . LO D1 1Z6 .HI  BYTE BYTE  0F3H 0C4H  1693 1694  D21Z6 .HI  BYTE  25H  ;0.5851...  1696 1697  C2Z6 . HI D12Z6 . LO  BYTE BYTE  20H 20H  ;0.5  1699 1700  D22Z6 . LO D22Z6 .HI  BYTE BYTE  ODBH 20H  1702 1703  C0RX6 . LS C0RX6 .MM  BYTE BYTE  OOH OOH  1705 1706  C0RX6 .EX C0RZ6 .LS  BYTE BYTE  01H OOH  1708 1709  C0RZ6 .MS C0RZ6 . EX  BYTE BYTE  OCOH 01H  1711 1712  ; RAM  1714 1715  BAND SCRTCH  1717 1718  ; X-SAMPLES  1720 1721  W01X. HI W1 1X . LO  BYTE BYTE  0 0  1723 1724  W21X. LO W21X .HI  BYTE BYTE  0 0  1726 1727  VWOX . LO VWOX .HI  BYTE BYTE  0 0  1729 1730  VW1X . HI VW2X . LO  BYTE BYTE  0 0  1732 1733  V12X . LO  BYTE  0  1735 1736  V22X . LO V22X . HI  BYTE BYTE  0 0  1738 1739 1740  ; Y-SAMPLES W01Y . LO BYTE W01Y .HI BYTE  0 0  ;0.5 ;0.0644...  ;-0.9226...  ;0.0644... ;0.5133...  ; 1 .5  ;1 5  ; — BYTE BYTE  0 0  ;V01 = W02 ;VI 1 = W12  1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754  W1 1 YLO W1 1Y HI W2 IY I n W21Y HI  BYTE BYTE BYTE BYTE  0 0 0 0  i n HI LO HT LO HI  BYTE BYTE BYTE BYTE BYTE BYTE  0 0 0 0 0 0  V12Y LO V12Y HI  BYTE BYTE  0 0  1756 1757  V22Y HI  BYTE  0  1759 1760  W01Z LO W01Z HI  BYTE BYTE  0 0  1762 1763  W1 1Z HI W21Z LO  BYTE BYTE  0 0  1765 1766  vwoz  LO  BYTE  0  1768 1769  VW1Z LO VW1Z HI  BYTE BYTE  0 0  ; V1 1 = W12  1771 1772  VW2Z HI  BYTE  0  ;V21  1774 1775  V12Z HI V22Z LO  BYTE BYTE  0 0  1777 1778  SSQBGN  BYTE  0  1780 1781  SSQY SSQZ  BLOCK BLOCK  4 4  1783 1784  ENDWS LAST  BYTE ORG  End of  ;  VWOY VWOY VW1Y VW1Y VW2Y VW2Y  ; V01 = W02 ; V1 1 = W12 ; V21 = W22  ; V01 = W02  .  = W22  ;  0 9FFH  File  4>  148 APPENDIX B INTERNATIONAL STANDARD ISO 2631 For  reasons of c o p y r i g h t  Evaluation  t h e ISO s t a n d a r d  o f Human E x p o s u r e t o Whole-body  be r e p r o d u c e d  'Guide t o t h e  V i b r a t i o n ' can not  here.  C o p i e s c a n be o b t a i n e d  from:  International  Standard  Organisation  Central Secretariat 1 Rue de Varembe CH-1211  Geneva  Switzerland  In Canada c o p i e s  c a n be o r d e r e d  from:  S t a n d a r d s C o u n c i l o f Canada Foreign  Standard  2000 A r g e n t i n a S u i t e 2-401 Mississauga L5N 1P7  ONT  Sales  Road  Section  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095330/manifest

Comment

Related Items