Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Analysis and integration of soil parameters and vegetation of a Cariboo-Chilcotin wetland in British… Jones, Carol Elizabeth 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A6_7 J66.pdf [ 4.66MB ]
Metadata
JSON: 831-1.0095246.json
JSON-LD: 831-1.0095246-ld.json
RDF/XML (Pretty): 831-1.0095246-rdf.xml
RDF/JSON: 831-1.0095246-rdf.json
Turtle: 831-1.0095246-turtle.txt
N-Triples: 831-1.0095246-rdf-ntriples.txt
Original Record: 831-1.0095246-source.json
Full Text
831-1.0095246-fulltext.txt
Citation
831-1.0095246.ris

Full Text

ANALYSIS AND INTEGRATION OF SOIL PARAMETERS AND VEGETATION OF A CARIBOO-CHILCOTIN WETLAND IN BRITISH COLUMBIA  by  CAROL ELIZABETH JONES B . S c , Simon Fraser U n i v e r s i t y , 1975  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of S o i l Science)  We accept t h i s t h e s i s as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA A p r i l 1981 Carol Elizabeth Jones, 1981  In p r e s e n t i n g  this thesis i n partial  f u l f i l m e n t of the  r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e of B r i t i s h Columbia, I agree that it  University  t h e L i b r a r y s h a l l make  f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y .  agree t h a t p e r m i s s i o n f o r extensive f o r s c h o l a r l y p u r p o s e s may  of  Soil  Science  The U n i v e r s i t y o f B r i t i s h 2075 W e s b r o o k P l a c e V a n c o u v e r , Canada V6T 1W5 Date • A p r i l  21,  1981  Columbia  my  It is thesis  s h a l l n o t be a l l o w e d w i t h o u t my  permission.  Department  thesis  be g r a n t e d by t h e h e a d o f  copying or p u b l i c a t i o n of t h i s  for f i n a n c i a l gain  further  copying of t h i s  d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . understood that  I  written  ii  ABSTRACT The  objective  of  this  project  was  to  investigate  r e l a t i o n s h i p s which e x i s t between s o i l parameters and distribution  in a wetland in the C h i l c o t i n  a g r i c u l t u r e and  wildlife  the management of these The  p r o j e c t was  and  as an  i n c r e a s i n g the  need  for  i n t e n s i v e study  soil  Soil  samples  nutrient  levels, The  assisted  of  non-soil  of a s i n g l e  d i s t r i b u t i o n . S i x t y s i t e s were sampled for both  computer  were salt  classifications in  were  content,  vegetation  techniques;  evaluated  distinguishing  factors  analyzed  c l u s t e r a n a l y s i s , and a d i s s i m i l a r i t y  utility  from  the  to  influence  organic matter content. three  yet pressure  on  vegetation.  relating  These  wetlands.  designed  wetland, to reduce the vegetation  i n t e r e s t s are  vegetation  region of B.C.  r e l a t i o n s h i p s are p r e s e n t l y p o o r l y understood,  the  soil  was a  for  parameters  r e a c t i o n , and  classified  tabular  analysis.  using  analysis, The  resulting  f o r ease of i d e n t i f i c a t i o n  significant  a  variation  in  and soil  properties. The  vegetation  distribution  appeared  to  be  c o n t r o l l e d by the water l e v e l , which i s r e f l e c t e d pH, of  high s a l t content  of the d r i e r  organic matter production  regions.  The  extremes  of  and the  accumulation gradient  d i s t i n c t v e g e t a t i o n communities and statistically  separated  factors.  intermediate  separated  The into  various  on  r e g i o n s , and  the region  community  of  in  the  high  the high  levels  in  wetter  the  are c h a r a c t e r i z e d by  by s o i l basis  dominantly  types which  of the  types,  method employed. A s i m p l i f i e d p a t t e r n of four  these  can  be  controlling  gradient depending  can  be  upon the  vegetation  types  occurring  on  parameters  shown  developed  soils  for this  The  control  vegetation  distribution  based  i n t o four groups,  can  on t h o s e p a r a m e t e r s  resulting  indicated  t o be i m p o r t a n t . The d i s t r i b u t i o n o f s i n g l e  c o m m u n i t y t y p e s were f o u n d t o be p o o r groupings.  i n those be  wetland.  s o i l s were c l a s s i f i e d  a cluster analysis analysis  to  which a r e s i g n i f i c a n t l y d i f f e r e n t  indicators  of  by  from  factor  s p e c i e s and these  soil  iv  TABLE OF CONTENTS Page Abstract  i i  Table of C o n t e n t s  iv  List  of Tables  vi  List  of F i g u r e s  v i i  Acknowledgement  viii  Chapter 1 I n t r o d u c t i o n  1  1.1 The n e e d t o d e v e l o p m e t h o d s o f i n v e s t i g a t i n g r e l a t i o n s h i p s e x i s t i n g between s o i l p a r a m e t e r s and v e g e t a t i o n d i s t r i b u t i o n  1  1.2  2  Intensive  versus extensive  studies  1.3 S o i l p a r a m e t e r s b e l i e v e d t o i n f l u e n c e d i s t r i b u t i o n i n wetlands  vegetation  1.4 O b j e c t i v e s  6  Chapter 2 Methods 2.1 D e s c r i p t i o n  7 of study a r e a  7  2.2 S a m p l i n g p l a n 2.2.1 V e g e t a t i o n 2.3 A n a l y s i s  3  9 and s o i l  of s o i l  sampling  9  samples  2.4 N u m e r i c a l a n a l y s i s o f s o i l  11 and v e g e t a t i o n  2.4.1 C o m p u t e r a s s i s t e d c l a s s i f i c a t i o n o f  data  14  vegetation  data  14  2.4.2 C o m p u t e r a s s i s t e d c l a s s i f i c a t i o n o f s o i l  data  16  2.4.3 C o r r e l a t i o n a n a l y s i s  17  2.4.4  17  Significance tests  Chapter 3 Results  of V e g e t a t i o n  Analysis  18  3.1 T a b u l a r a n a l y s i s  .18  3.2 C l u s t e r a n a l y s i s 3.3 C o e n o s a n a l y s i s  21 .26  Chapter 4 Results 4.1  Correlation  4.2  Factor  4.3  Cluster  of  Soil Analysis  30  analysis  30  analysis  30  analysis  35  C h a p t e r 5 D i s c u s s i o n of R e l a t i o n s h i p s V e g e t a t i o n and S o i l A n a l y s i s  Between  5.1  Correlation  analysis  5.2  S o i l parameters which d i s t i n g u i s h groupings  5.3  C o m p a r i s o n of t h e d i s t r i b u t i o n of vegetation w i t h t h e u n i t s f o r m e d by s o i l a n a l y s i s  39 vegetation  Chapter 6 Conclusions 6.1  6.2  40 52 55  R e l a t i o n s h i p s which e x i s t between p a t t e r n s and s o i l p a r a m e t e r s i n a wetland  vegetation single  55  M e t h o d s of v e g e t a t i o n a n a l y s i s r e s u l t i n g i n g r o u p i n g s w h i c h can be e a s i l y i d e n t i f i e d and reflect  6.3  39  significant variation in soil  Management i m p l i c a t i o n s  properties  56 57  Literature cited  59  Appendix 1 Species l i s t  62  Appendix 2 S o i l  63  data  Appendix 3 C o r r e l a t i o n  matrix  65  vi  List  of T a b l e s Page  Table 1  Braun-Blanquet  c o v e r abundance s c a l e  12  Table 2  Tabular analysis  19  Table 3  Cluster  24  Table 4  Coenos a n a l y s i s  Table 5  V a r i a n c e of s o i l  Table 6  Sorted rotated  Table 7  Soil  analysis  27 factors  factor  parameters  33  loadings  which d i s t i n g u i s h  34 soil  groupings Table 8  38  Species-parameter  correlations  40  Table 9  S o i l p a r a m e t e r s which d i s t i n g u i s h community t y p e s formed by t a b u l a r a n a l y s i s T a b l e 10 S o i l p a r a m e t e r s w h i c h d i s t i n g u i s h a m a l g a m a t e d c o m m u n i t y t y p e s f o r m e d by tabular analysis T a b l e 11 S o i l p a r a m e t e r s w h i c h d i s t i n g u i s h t y p e s formed by c l u s t e r a n a l y s i s T a b l e 12 S o i l p a r a m e t e r s w h i c h amalgamated'community cluster analysis  45 by  parameters  T a b l e 16 O c c u r r e n c e o f m a j o r c l u s t e r groupings  48 by  i n community  species  47  community  T a b l e 14 S o i l p a r a m e t e r s w h i c h d i s t i n g u i s h amalgamated community t y p e s formed Coenos a n a l y s i s T a b l e 15 Range o f s o i l  44  community  distinguish t y p e s formed  T a b l e 13 S o i l p a r a m e t e r s w h i c h d i s t i n g u i s h t y p e s f o r m e d by Coenos a n a l y s i s  42  50 types51  in soil  T a b l e 17 O c c u r r e n c e o f c o m m u n i t y t y p e s i n s o i l c l u s t e r groupings  53 54  vii  List  of  Figures Page  Figure  1  Study area  Figure  2  Sampling  Figure  3  Flow  Figure  4  Vegetation  Figure  5  Correlation  Figure  6  Soil  location  8  plan  10  diagram  15  cluster  cluster  of s o i l  22 parameters  31 37  Acknowledgement The  financial  Engineering Columbia Ministry  Council  Science  of  (Canada)  Council  the  Grant  GREAT  National  A4463,  Award  their  t h e s i s a d v i s o r Dr.  and Les  the  supported  t o t h a n k t h e members of  advice  Sciences  and  of F o r e s t s R e s e a r c h B r a n c h , i s g r a t e f u l l y  I would l i k e for  assistance  my  by  and  British the  B.C.  acknowledged.  thesis  committee  guidance, w i t h a s p e c i a l thank-you to L a v k u l i c h for h i s optimism throughout  my the  project. A t h a n k - y o u i s e x t e n d e d t o Mr. in planning her  the  sampling  valuable assistance  of the  study.  tables,  and  concerning help  t o Mrs.  i n both the  f i e l d and  Ms.  advice Chris  wetlands.  and  computing  Blazecka  centre.  A  special  soils.  Dr.  Marcus B e l l ,  who  figures  thank-you  her  thank-you  thesis. Finally,  first  advised  von and  have  had  for  her  c h e e r f u l company i n  f o r h i s a s s i s t a n c e w i t h d r a f t i n g of t h e  e n c o u r a g e m e n t t h r o u g h o u t my  thank  a  for  phases  E l i z a b e t h Zweck  f o r t h e d i s c u s s i o n s we  Susan P h e l p s ,  advice  Miles  laboratory  a s s i s t a n c e w i t h the  Mayall  To Ms.  Valerie  t o t h a n k Ms.  w i t h v a r i o u s c o m p u t e r p r o g r a m s and  the  his  scheme, and  I would a l s o l i k e  Zweckenberg f o r her  Mark S o n d h e i m f o r h i s  me ^  to  Mr.  Michael  f i g u r e s and  for  I would l i k e  to  to take a course  in  1  CHAPTER 1 INTRODUCTION  1.1 The Need To D e v e l o p M e t h o d s Of Existing  Between  Soil  Investigating  Parameters  Relationships  And V e g e t a t i o n D i s t r i b u t i o n  Patterns It plant  h a s been g e n e r a l l y ecologists,  vegetation. and  that  Classical  Braun-Blanquet  accepted  correlations  (1932)  dependence  development  soil  Clements  the  (1898) s t a t e d t h e  landscape  vegetation  of t h e f a c t o r s of c l i m a t e , p a r e n t m a t e r i a l , t o p o g r a p h y ,  examined  the  conjunction  parallelism  development  (Jenny,1941).  to d e s c r i b e  vegetation  soil  and  function  In  that  (1916)  r e l a t i o n s of p l a n t  Dokuchaev  on  s o i l s and  Jenny  time.  proposed  between  and  zones.  b i o t a and  (1941)  pedologists  (1909)  emphasized  habitats, while  both exist  w o r k s o f Warming  communities t o t h e i r of  by  with  between  development  is a  Braun-Blanquet,  plant  succession  Jenny  and s o i l  M a j o r (1951) e x p a n d e d J e n n y ' s c o n c e p t  development  i n terms of  the  same  state  factors. The c o r r e l a t i o n s e x i s t i n g often  been  infer  soil  employed  by p e d o l o g i s t s  information  species.  appear  a to  large have  the  as r e c o g n i t i o n f e a t u r e s t o  relationships  distribution  scale perspective, strong  to  classifications,  chernozemic  soils  generalized with  f o r example,  grassland  between  have r a r e l y been  correlations  vegetation  under  have  infer  c o n c e r n i n g the growth r e q u i r e m e n t s of  However  parameters and v e g e t a t i o n At  s o i l s and v e g e t a t i o n  p r o p e r t i e s when m a p p i n g , a n d by e c o l o g i s t s  autecological plant  between  vegetation.  defined.  s o i l groupings  equally the  soil  general  development of At  a  smaller  2  scale, of  l o c a l compensating  both  soils  and  f a c t o r s may  vegetation  r e l a t i o n s h i p s observed at the smaller  scale  vegetation  data  can  be  sufficiently  large scale.  defined  only  have been a n a l y z e d  b o t h s o i l s and  vegetation  p u r p o s e of t h e  i n v e n t o r y and  i n f l u e n c e the  distort  the  C o r r e l a t i o n s at  the  after  to  detailed soils  to produce c l a s s i f i c a t i o n s  which are a p p r o p r i a t e are  distribution  t o the  r e l a v e n t t o the  scale  systems  and of and  under  study. Existing detailed  studies  vegetation weighting soil  or  classes  plant  variation  and  vegetation  those  the  attributes,  between  vegetation  r a n g e of  s o i l s and  However,  the  hydrology, In  an  are  reduced  i n t e n s i v e study  and the  restricting  in  methods  the h i g h e s t resulting  of  assessments  These methods a t t e m p t  in assessing  soils.  to s o i l  important  proportion groups  do  to of not  Studies  taken  vegetation  microclimate,  by  data.  and by  unbiased  attribute.  and  be  for  defined  Numerical  particular  variation  attributed entirely  to  the  be  soils  generally  therefore  a p p r o a c h e s may  often unsuitable between  offer  i n d i v i d u a l s with  Intensive Versus Extensive Two  are  succession.  within  n e c e s s a r i l y , s h a r e any  1.2  are  relationships  their  both s o i l  group together shared  the  schemes  c e r t a i n c h a r a c t e r i s t i c s thought  genesis  the  of  because  classifying of  classification  An  extensive  which  observed  in  gradients parent effect the  occur  the study within  vegetation  since  other  m a t e r i a l are of  these  extent  interactions examines a  the  region.  cannot  be  factors  of  not c o n t r o l l e d .  compensating f a c t o r s of  the  study  area.  3  Although  the  can not  be  defined  can  variation  1.3  entire assessed, be  those  Parameters  Di s t r i b u t i o n I n Although  the  investigated, conditions  gradients  greater  which  reliability,  To  Influence  environmental Chilcotin  have  been  United  gradients  region  which  B.C  occur  studied States.  of  in  in  Vegetat ion  have  Walker  in  somewhat  and C o u p l a n d  which  were  generally  Canada  and  (1968)  i n an  in  Saskatchewan  to wetlands  regarded  importance i n the e c o l o g y of w e t l a n d s . regime, s a l i n i t y ,  in  and d i s t u r b a n c e . other the  than  factor  composition  responsible  f o r most  these  s l o u g h s was  water.  They f o u n d a c h a n g e i n  effect  on  water  the  the f l u c t u a t i n g  water  depth  d e p t h was chemistry  i n w a t e r d e p t h had  had  greater. showed  f r o m a c h a n g e i n pH  Their  little  were  study  that  species  level  of the  greatest  water depth  was  e f f e c t when t h e changes  a s i m i l a r community r e s p o n s e from  the  in  its  i n v e s t i g a t i o n s of  f r o m low t o h i g h a s  of  quantitatively,  variation  s p e c i e s c o m p o s i t i o n when t h e i n i t i a l  s h a l l o w , l a r g e changes initial  not measured  of  being  competition,  These a u t h o r s c o n c l u d e d f r o m t h e i r  d i s t u r b a n c e , w h i c h was  of  plant  the  revealed  as  These f a c t o r s  the edaphic complex,  been  analagous  g r a s s l a n d zone o f Canada a n d n o r t h e r n U n i t e d S t a t e s and factors  the  not  southcentral  s l o u g h s , reviewed the l i t e r a t u r e p e r t a i n i n g  water  to the  occuring  a n a l y s i s of v e g e t a t i o n - e n v i r o n m e n t r e l a t i o n s h i p s  five  are  soils.  Believed  wetlands  northcentral  with  distribution  Wetlands the  of  and v e g e t a t i o n  vegetation  attributed,  determined i n the  Soil  wetlands  range of s o i l  low  in  resulting  salinity  to  4  high was  salinity.  However, they e s t i m a t e d the e f f e c t  t h r e e t i m e s as  observe  a  important  gradient  c o n t e n t , or s o i l In a n o t h e r  of  was  t h e most v a r i a b l e of  vegetation  disturbance  the-  data  was  and  the  finally  species  nutrient  s t a t u s and  and  Millar  occur  major  water to  regime.  led  to  to  distribution regime  (1973)  elimination  of  of  that  affecting  s t a t u s and  the  that this  indicated  the range  of  water  salinity  a f f e c t e d more by  the  effect  of  the  the  i n the aspen  prairie  concluded  disturbance  the after  parkland  p r o v i n c e s under  t h a t two  wetlands  on  v e g e t a t i o n changes  emergent s p e c i e s .  when  salinity measured,  gradient  was  investigated  He  gradients  conclusion  o r more  f l o o d i n g o r r e p e a t e d autumn r e f l o o d i n g  reestablished  an  years  resulted  in  Changes i n s p e c i e s were  cultivation  grazed but  no  or  as  changes  f o l l o w i n g mowing o r b u r n i n g .  A s s o c i a t i o n a n a l y s i s of t h e w e t l a n d  formation  matter  factors.  z o n e s of t h e C a n a d i a n  vegetation  and  not  Their analysis  the  They f e l t  tolerant  assess  occurred  grove  to organic  factors  environmental  were  composition  occurred  did  (1971) f o u n d  f o l l o w e d by n u t r i e n t  improving moisture regime. of c o n t i n u o u s  They  environmental  i n t h e s h a l l o w marsh w e t l a n d s  grassland  complete  water  however,  i n t h e s t u d y and  wetlands,  response  environmental  by s a l i n i t y .  present  I n an a t t e m p t  which  the  s t a t u s and  distribution,  occurring  pH.  w e t l a n d s , W a l k e r and Wehrahahn  f o l l o w e d by n u t r i e n t  regime,  community  of  s t u d y o f v e g e t a t i o n and  similar  species  that  salinity  texture.  in  the  as  of  grassland regions of  27  vegetation  of  v e g e t a t i o n i n the  Saskatchewan groups,  resulted  distinct  in  aspen the  on t h e b a s i s o f  5  species present the to  (Walker  and C o u p l a n d , 1970).  be o f c o n s i d e r a b l e of  variance  correlate first  these  importance in  the  divisions  division,  since  data,  with on  Hordeum  s e p a r a t i o n on t h e b a s i s  of  water  disturbance  playing  syz igachne.  subgroups  indicated  regime  important  on  Carex atherodes a  subdivisions any  of  shallow  of  the  environmental  the  organic  c a p a c i t y of the s o i l . appeared  to  environmental and  partly In  be  governing  initial  subgroups  based  t h e s a l i n e and deep marsh  stands  non-saline  meadows.  attempt soil  content,  water  holding  than  those  considered  in this  study,  succession.  portion  of  was made t o c l a s s i f y soil  or  be e x p l a i n e d  h a b i t a t t y p e s was a t t r i b u t e d p a r t l y t o  a wet meadow c l a s s i f i c a t i o n  pH,  Further  t o a s e p a r a t i o n on t h e b a s i s o f  matter  f a c t o r s other  south-central  salinity  Some o v e r l a p o f v e g e t a t i o n g r o u p s i n what  similar  to plant  two  One o t h e r d i v i s i o n ,  d i d not correspond  texture,  first  gradient  one o f t h e t h r e e m a j o r g r a d i e n t s n o r c o u l d t h e y soil  with  Bechmannia  related gradient, while  subgroup.  , separated  the  important  a n d t h a t i n one o f  i n the other  group  salinity,  two d i v i s i o n s , one  of both  The  coincided with a  and  The n e x t  within  was an i m p o r t a n t  was  from  that  felt major  gradients.  jubatum,  ranges  at  i t may be p o s s i b l e t o  regime  d i s t u r b a n c e was t h e ' m o s t  species composition, water  and  were  represent  two s u b g r o u p s were b o t h made on  Averages  measurements  and  a minor r o l e .  each of t h e f i r s t  they  environmental  based  by  divisions  h i g h e s t l e v e l s of t h e h i e r a r c h i c a l c l a s s i f i c a t i o n  lines  in  The  British the  study  of  Columbia  meadows  wetlands  of the  ( M c L a r e n , 1 9 7 3 ) an  according  to  yeild,  t y p e , dominant v e g e t a t i o n , and a c o m b i n a t i o n of  6  soil  pH a n d s o i l  parameters  type.  were  Classifications  not  found  to  of the r e s u l t i n g  parameter.  However  a  combination  of  i n t o seven  groups  and  between t h e s e g r o u p s ,  a  these  since the only  scheme  type and s o i l fairly  single  g r o u p s was t h e d i a g n o s t i c  classification soil  on  be s a t i s f a c t o r y  common c h a r a c t e r i s t i c  both  based  good  based  pH d i v i d e d  on  a  t h e meadows  correlation  was  found  y i e l d and t h e dominant v e g e t a t i o n .  1.4 O b j e c t i v e s The subject  wetlands of  a  agricultural  manual on d a t a  land and  management o f  in  use  interests  areas.  collected  in a  1979).  is poorly understood,  one  conflict,  wildlife  these  C h i l c o t i n 'region a r e a t present the  A  and  the  pressure  i s increasing  preliminary  relationships  wetland  survey  made  wetland  S i n c e t h e e c o l o g y of these w e t l a n d  systems  the  was  between  area t o determine  of  this  project  whether, and w i t h  what  the  development of a c l a s s i f i c a t i o n of s o i l  variation  to  t h e s o i l s and t h e v e g e t a t i o n i n  c o n d i t i o n s c a n be p r e d i c t e d f r o m v e g e t a t i o n .  indicative  i n part Canada  soil  field.  managers  Agriculture  objective  by  from  t h e need f o r  (Runka a n d L e w i s , 1 9 8 0 ) h a s been p r e p a r e d , b a s e d  (Slavinski,  examine  the  and  accuracy,  This requires  of v e g e t a t i o n which  easily  identifiable  i s both i n the  7  CHAPTER 2 METHODS  2.1 D e s c r i p t i o n Of S t u d y The  study area  Williams  Lake,  Pinegrass,  i s located approximately  B.C.  (Figure  northern  Biogeoclimatic  Area  phase  1)  within  in the Fraser plateau, a region t y p i f i e d  The  the  saline,  (Holland,  mesisols i n the outer  edge  but approach  distinct  of  central the  The a r e a  by f l a t  To  near  lying  lava  constant.  the  the  and  grade  wetland.  the s o i l s are s l i g h t l y  the centre.  The v e g e t a t i o n  rings  extending  a  effect  of  environmental  i t i s necessary  complexes, Therefore  experiences  of  g r a s s e s , and r u s h e s ,  concentric  vegetation distribution  while  the  relatively  to vary  maintaining  study  displaying  out  from  a  area  was  i s lost  underlying  mineral s o i l .  possibility  of i n f l o w i n g water  these  a l l other chosen  factors  because  T h i s p a t t e r n of h y d r o l o g y modifying  regime v a r i e s  salinity  i t  relatively  constant.  was s a m p l e d i n t h e s t u d y  into  reduces t h e  and  nutrient  s e a s o n a l l y , measurements  were t a k e n o v e r a v e r y s h o r t t i m e p e r i o d (4 d a y s ) ,  of t h e w e t l a n d  factors,  o n l y t o e v a p o t r a n s p i r a t i o n and seepage  S i n c e the water  remained  f a c t o r s on  c o n s t a n t h y d r o l o g i c draw-down p a t t e r n  s i n c e water  levels  i s located  body.  investigate  factor  portion  wetland  neutrality  zonation i n  c e n t r a l water  levels.  F i r -  1964).  i s composed p r i m a r i l y o f s e d g e s ,  or  Douglas  s o i l s o f t h e s t u d y a r e a a r e humic g l e y s o l s w h i c h  into terric Near  rocks  the  of  Subzone of t h e I n t e r i o r Douglas F i r  Zone (Annas a n d C o u p e , 1 9 7 9 ) .  some s e d i m e n t a r y  60 km s o u t h w e s t  Only  while  water  the organic p o r t i o n  i n an a t t e m p t  to  reduce  FIGURE  I  9  variation  resulting  encountered this  from  i n mineral  region  t e x t u r a l and other  soils.  Undisturbed  reduce  the modifying  a wetland mowing had  and  pressure.  to  mowing  (1973) t o h a v e l i t t l e wetlands,  the  undisturbed  each  with  the  was  study  should  of  disturbance,  with  this  composition be s i m i l a r  a n d s o i l s was  an  location  of  t o an  15  defined  The  sites  by  a  The s t u d y  Vegetation  conducted  increasing  of  the f i r s t  soil  on  moisture  distances  from  t r a n s e c t chosen  meter  intervals  and  from e i t h e r s i d e o f t h e t r a n s e c t s a d i s t a n c e of transects per  transect  minimum area  e l e v a t i o n of each sample  2.2.1  along  ( F i g u r e 2 ) . The o u t e r  material.  species  Sample s i t e s were l o c a t e d a t 2  up t o 10 m e t e r s .  sampled  on  of t h e v e g e t a t i o n oriented  offset  therefore  by s e l e c t i n g  h a v e been shown by M i l l a r  T h e s e t r a n s e c t s were l o c a t e d a t e q u a l  other,  randomly  this  to  Plan  transects  randomly.  necessary  steady-state  and b u r n i n g  in  intensities  a n d where t h e s y s t e m s have  into  o r no e f f e c t  wetland  The s a m p l i n g  gradient.  come  form  in  site.  2.2 S a m p l i n g  four  constant  f o r many y e a r s  time  Since  i t was  i n f l u e n c e of s i t e disturbance  burning,  sufficient  to varying  Therefore  which has r e c e i v e d a  factors  wetlands are rare  s i n c e most h a v e been s u b j e c t  of g r a z i n g , mowing a n d b u r n i n g .  modifying  And S o i l  were  30  meters  or  60  sites  circumference depth  of  10  in  in total  of t h e cm  length,  study  of o r g a n i c  were area soil  was s u r v e y e d t o d e t e r m i n e t h e r e l a t i v e site.  Sampling  10  11  The in  v e g e t a t i o n was s a m p l e d by l i s t i n g  the  a one s q u a r e m e t e r q u a d r a t a n d v i s u a l l y  species  e s t i m a t i n g the cover  of each s p e c i e s u s i n g t h e B r a u n - B l a n q u e t c o v e r (Table  1).  Hitchcock  Species  names  and C r o n q u i s t  according  to  Taylor  (Appendix  MacBryde  species collected are deposited S o i l p i t s were e x c a v a t e d sample q u a d r a t . site  and  a  collected. returned  composite  sample  These samples  of  were  a  listed  Herbarium.  beneath  the  vegetation  d e s c r i p t i o n was made a t e a c h organic  sealed  in  soil  m a t e r i a l was  plastic  bags  then  s o i l m a t e r i a l was d e t e r m i n e d by  approximately  caused  some  local  1500 c m .  .The v o l u m e o f t h e  3  compaction  fill  plastic,  i t .  Since  i n the organic  soil  some e r r o r was i n c u r r e d . soil  s a m p l e s were r e t u r n e d oven  and  weighed  information  was  used  The r e m a i n i n g  to the laboratory,  d r i e d a t 105° C f o r 12 h o u r s ,  desiccator,  a  to  Samples  hole  subsamples  basis.  are  removed was d e t e r m i n e d by l i n i n g t h e h o l e w i t h  excavation  The  according  Specimens of p l a n t  m e a s u r i n g t h e volume of water r e q u i r e d t o  material  scale  t o t h e l a b o r a t o r y f o r sample p r e p a r a t i o n and a n a l y s i s .  excavating  and  (1977).  directly  Bulk d e n s i t y of t h e o r g a n i c  and  are  i n t h e U.B.C.  A complete p r o f i l e  2.3 A n a l y s i s Of S o i l  material  1)  abundance  ( 1 9 7 3 ) a n d t h e common names and  present  to soil  wooden r o l l i n g p i n t h e n  to  determine  correct  other  moisture values  cooled loss.  passed through  a 2 mm s t a i n l e s s  R o o t s a n d r h i z o m e s n o t b r o k e n up by t h i s  ground  in  m i l l , f i t t e d w i t h a 2 mm  in a This  t o an oven d r y  was a i r d r i e d a t 25° C, c r u s h e d  sieve.  a Wiley  weighed,  procedure  sieve.  This  with steel were ground  TABLE 1 BRAUN-BLANQUET COVER-ABUNDANCE SCALE ( a f t e r M u e l l e r - D o m b o i s and E l l e n b e r g , 1 9 7 4 )  5  -any n u m b e r , w i t h c o v e r more t h a n 3/4 o f the reference area  4  -any  number, w i t h 1/2-3/4 c o v e r  3  -any  number, w i t h 1/4-1/2  2  -any  number, w i t h 1/20-1/4  1  - n u m e r o u s , b u t l e s s t h a n 1/20 c o v e r o r s c a t t e r e d , w i t h c o v e r up t o 1/20  +  -few,  -  -solitary,  with small  cover  cover  with small  cover  coyer  13  p l a n t m a t e r i a l was t h e n t h o r o u g h l y m i x e d material.  S a m p l e s were s t o r e d  Values  f o r pH  were  in air-tight  measured  Radiometer  saturated  soil  pH  meter.  was  Autoanalyzer  conductivity  Carbon  the  NaOH ( A l l i s o n of  oven  dried  supernatant  using  the  Technicon  f o r m was d e t e r m i n e d by  105°  The r e s i d u a l  thoroughly  C  and  reweighed.  ignition  by  The  was  weight  dividing  (Broadbent, 1965). neccesary  loss  the  organic  T h i s method o f because  high  chlorides  present  method  from  was  water  Organic  matter  carbon  concentrations  organic of  carbon  carbonates  methods,  and t h e method o f  A v a i l a b l e c a l c i u m , magnesium, a n d p o t a s s i u m  (Greweling  &  g  subsamples  Peech,  by  1965) • and  was  c o n t e n t by 1.724  determining  combustion  t o l o s s on  i n t e r f e r e d w i t h t h e wet c o m b u s t i o n  10.00  and  desiccator,  attributed  (Hesse,1971).  t h e use of s i m p l e d r y  extracted  distilled  free  The s a m p l e s were t h e n h e a t e d t o  prohibited  Walkey-Black.  material,  i n a muffle furnace, cooled i n a  of o r g a n i c matter  calculated  with  soil  o v e r n i g h t , c o o l e d i n a d e s i c c a t o r , and  w e i g h e d t o t h e n e a r e s t 0.001 g. 400° C f o r 8 h o u r s  HCl and  t o a p h e n o l p h t h a l e i n end p o i n t w i t h  & Moodie, 1965).  at  type  The ammonium i n s o l u t i o n  i n the carbonate  c a r b o n a t e , was r i n s e d  a  t o convert the  g e n t l y h e a t i n g a 5.00 g s u b s a m p l e w i t h 50 ml o f 0.48 N titrating  a  of  Radiometer  K j e l d a h l procedure  colourimetrically  II.  using  T o t a l n i t r o g e n was m e a s u r e d on a 1.00  i n t o ammonium ( B r e m n e r , 1 9 6 5 ) .  determined  containers.  suspension  Electrical  g subsample u s i n g a semi-micro nitrogen  CaC12  soil  a 1:6 s o i l : w a t e r  p a s t e e x t r a c t was m e a s u r e d by a  CDM2E c o n d u c t i v i t y m e t e r .  organic  plastic  i n both  s u s p e n s i o n a n d i n a 1:6 s o i l : 0 . 0 1 M PHM62  with the  a Morgan's analyzed  were  extraction by  atomic  14  absorption  spectrophotometry.  s o d i u m c a r b o n a t e was (Olsen on  and  5 cm  Survey  measured  Dean, 1 9 6 5 ) .  subsamples  3  of  analyses,  a  Turner  spectrophotometer  P y r o p h o s p h a t e i n d e x was  moist  except  performed in d u p l i c a t e r e s u l t s are  listed  on  organic  material  The  vegetation  the  'various  ability  to p r e d i c t  represents  electrical  each  i n Appendix  Numerical Analysis  then  The  on  in  determined  (Canada  Soil  conductivity,  were  Committee,1978).  All  2.4  A v a i l a b l e phosphorus s o l u b l e  Of and  Soi1  sample.  The  means  of  these  2.  And  Vegetation  Data  s o i l s d a t a were c l a s s i f i e d  classifications  were  separately,  evaluated  soil  and  vegetation  schematically  the  proceedure followed  for  relationships. in  their  Figure  3  determining  these r e l a t i o n s h i p s .  2.4.1  Computer A s s i s t e d C l a s s i f i c a t i o n Of The  first,  vegetation  tabular  d a t a was  a n a l y s i s , was  classified  performed  program f o r i d e n t i f y i n g s p e c i e s - r e l e v e 1971) to  . the  performs the  This  program s o r t s v e g e t a t i o n  traditional  European  simultaneous  Q  t a b l e those species  corresponding a l s o be The cluster  groups  dictated  and  method  Vegetation by  three  using  which  tables of  Braun-Blanquet.  optimally  or p l o t s .  i n t o the  table to  form groups of  analysis,  using  the  the  Roemer,  i n s i m i l a r manner  releves,  to  The  Ceska-Roemer  g r o u p s ( C e s k a and  of  s e c o n d method a p p l i e d  methods.  the  R t y p e a n a l y s i s and  groups  Data  extracts  program contained  from  differentiate  Single  vegetation  It  species  can  releves. data i n UBC  was  a  C-Group  FIGURE 3  WETLAND ANALYSIS VEGETATION  SOIL CORRELATIONS AMONGST SOIL PARAMETERS  CLASSIFICATION OF VEGETATION BY  CLASSIFICATION OF SOILS BY FACTOR AND CLUSTER ANALYSIS  Z  DIRECT CORRELATIONS  EVALUATION OF CLASSIFICATION USING SIGNIFICANCE TESTS  r  TABULAR CLUSTER COENOS ANALYSIS ANALYSIS ANALYSIS .2 2r il EVALUATION OF CLASSIFICATIONS USING SIGNIFICANCE TESTS OF SOIL PARAMETERS  Lit JEAR REGRI]SSION  RELATING VEGETATION DATA TO SOIL GROUPS  DETERMINE TYPE, ACCURACY, AND USEFULNESS OF VEGETATION-SOIL RELATIONSHIPS  16  (Patterson  and W h i t a k e r , 1971).  This analysis  parameter  technique,  i t performs a c l a s s i f i c a t i o n of  that  releves, a Q technique. hierarchical  grouping  The c l u s t e r r o u t i n e  at  function,  some  is  p a r t i c u l a r arrangement This  objective  squares  stage  measure  calculates of  the  one-  on  the  successively an  objective  similarity  of the  o f t h e i t e m s i n g r o u p s a t a n y one  function  stage.  i s t h e sum o f t h e w i t h i n g r o u p sum o f  methods, d i s s i m i l a r i t y  program  package  defining  for determining plotgroups. Q  Coenos employs  groups of r e l e v e s , species  R  was  one-  Coenos,  analysis for  or p l o t g r o u p s , and c l u s t e r  order  analysis  analysis  dissimilarity  and  order  I t h a s been s u g g e s t e d t h a t  and  two  a n a l y s i s and c l u s t e r a n a l y s i s .  used t o p e r f o r m t h i s  ( C e s k a , e_t a l , 1 9 7 5 ) .  of  analysis  releves  within  i n some c a s e s t h e use o f  superimposed  a p p r o x i m a t e t h e r e s u l t s o f two p a r a m e t e r al,  based  t h i r d method o f v e g e t a t i o n a n a l y s i s c o m b i n e s  parameter  these  each  a  ( S n e a t h and S o k a l , 1 9 7 3 ) .  The  The  is  m e t h o d o f Ward (1963) w h i c h  groups each i t e m and which  is  employs  on t h e f i n a l techniques  table  may  (Ceska,  et  1975) .  2.4.2 Computer A s s i s t e d C l a s s i f i c a t i o n Of S o i l Soils  data  were  classified  those parameters  shown  important  independent.  and  hierarchical, using  Euclidean  from  by c l u s t e r a n a l y s i s , b a s e d on  factor  analysis  A  to  sequential,  be  the  distance Principle a  as  the  distance  components  correlation  matrix  were  most  agglomerative,  n o n o v e r l a p p i n g method o f c l u s t e r i n g was  Engelman,1979). factors  by  Data  employed,  m e a s u r e (BMDP 2M, used  (BMDP  4M,  to  extract  Fran  and  17  Jennrich.,1979) .  2.4.3  Correlation  Analysis  As a m e a s u r e o f vegetation all  the  parameters  interdependency  a correlation  both  t o perform t h i s a n a l y s i s .  r e g r e s s i o n s were d e t e r m i n e d significant  2.4.4.  correlation  BBDP  (BMDP 6D, C h a s e n ,  which  using  8D  ( D i x o n and Brown,1979).  f o r those parameters  and  was  Linear  showed  a  1979).  Signi f icance Tests  The  Mann-Whitney  (Siegel,  v a r i a n c e by r a n k s t e s t was u s e d soil  soils  m a t r i x was c a l c u l a t e d  a c c e p t a b l e v a l u e s i n t h e c o m p u t a t i o n , program  used  parameters  groupings  formed  exhibit by  the  to  1956)  various  one  determine  significant  m e t h o d s a n d by c l u s t e r a n a l y s i s 3S  of  way which  vegetation  of  individual  differences  between  classification  of the s o i l s d a t a .  ( D i x o n a n d Brown,1979) was u s e d  analysis  t o perform t h i s  P r o g r a m BMDP analysis.  18  CHAPTER 3 RESULTS OF  3.1  Tabular The  i n 41  p l o t s may the  Analysis  Ceska-Roemer model i d e n t i f i e d one  occurred  in  be  to the  of  dominant  composition,  species-poor  a  table  was  dictated  pensylvanica, contained  10  and  By  information which was  and  to  the  species  the  jubatum, Taraxacum  rather  than  program  officinale.  The  Juncus  therefore  low  t a b l e two  Carex  arcticus  contributed  cover  and  cover  areas 1974)  treated  each were  ,  Carex  Potentilla  resulting table one  which  or  species,  had  broad  l i t t l e discriminating Potentilla  norvegica  in scattered distribution, i t only  5  releve  2) . praegracilis  releve  o c c u r e n c e of C a r e x p r a e g r a c i 1 i s b u t jubatum,  in  dominant  p o s s i b l e to generate a t a b l e which contained  A  complete  them c o n t a i n i n g o n l y  classification,  occured with very  type's ( T a b l e  the  the  praegracilis, arct icus,  the  encountered  Seven s p e c i e s  Juncus  removing from the  of  Ellenberg,  which  group. Carex  many o f  which  s y s t e m s b a s e d upon  ( M u e l l e r Dombois and  neglecta,  T a r a x a c u m o f f i c i n a l e and distributions  species,  into  releve types,  releves.  number o f  as a s i n g l e s p e c i e s  Hordeum  group,  h a v e been s u c c e s s f u l l y a p p l i e d  Calamagrost i s  rostrata,  species  inadequate d i v i s i o n  classification  vegetation  dominant s p e c i e s  This  restricted  Since  of  two  60 p l o t s .  area.  distribution floristic  of t h e  due  study  used,  VEGETATION ANALYSIS  Calamagrostis  neglecta  type i t can and  was  defined  also contain  by  the  Hordeum  Juncus a r c t i c u s at  lower  values. The  second r e l e v e type,  t h e Hordeum j u b a t u m  ,  was  defined  TABLE 2 TABULAR ANALYSIS  Community Types  Carex praegracilis 0 i 0 1  NO. OF SSP.  GROUP 3  CAREX  GROUP 7  2  4  PRAEGRACILIS  0 0 0 0 0 1111 1 0 0 0 0 0 4 5 6 8 7  0 0 0 0 0 0 2 2 2 2 3 1 0 0 1 10 0 7 8 1 3-1 9  0 o o o o o o o o o o 2 2 3 3 4 4 1 3 2 4 4 1 0 0 0 0 0 1 0 1 0 0 0 9 2 3 1 2 0 6 2 3 4  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 3 4 4 5 5 3 4 4 3 4 6 6 5 4 4 5 4 4 4 4 4 5  o  0 0 0 4 3 2 3 0 0 10 5 5 6 4  0 0 0 0 0 3 3 3 3 4 0 0 0 10 7 8 9 16  0 0 0 0 4 2 1 3 0 1 1 1 8 7 1 0  0 2 1 4  0 2 1 5  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 5 5 4 5 4 4 6 4 5 5 4 4 4  5 4 3  2 2 1 2  1+1  3  CALAMAGROSTIS NEGLECTA  GROUP  0 1 0 3  1  HORDEUM JUBATUM  GROUP  0 i 0 2  C a l a m a g r o s t i s --Carex r o s t r a t a  Calamaqrostis  Horde um  1 3 3 2 3 3 2 3 2 3 3 2 3 2 3 3 3 3 2 3 3 3 3  3 3 2 2 3 1 2 2 31 + 1 1 2 3  4 + + + + + 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4  CAREX ROSTRATA  ACCOMP.SPEC. 8 14 10 9 16  dUNCUS ARCTICUS TARAXACUM OFFICINALE POTENT ILLA PENSYLVANICA POTENT ILLA NORVEGICA SOLIDAGO SPATHULATA  2 1 1 2 12 3 3 3 2 3 3 + 2 3 31 +  - + 1 - 2 1 2 2 1  -  2 1 + * + 1 1 + 2 1  - - -  - -  + 2 2 3 1 3 2 2 3 2 2 2 1 3 3 3 3 3 1  3 3 3  1+ 1 + + + 1 + + + + + 2 + +  1  TABLE 2 CONT. T»PIII AP ANAI YSIS  Carex  rostrata  oooooooooooooooooooo 1 1 4 4 1 1 2 2 2 3 3 3 3 4 4 4 4 4 4 2 1 1 1 1 1 1 1 1 2 1 1 1 1 0 0 1 1 1 1 2 2 5 2 4 3 4 8 9 1 2 3 4 5 7 9 0 1 3 5 0  O O O O O O O O O O O O O O O O O O O O 2 2 2 1 2 1 4 2 1 2 2 1 1 3 3 1 1 1 1 1  NO. OF SSP.  GROUP 3  GROUP 7  3  CALAMAGROSTIS NEGLECTA  GROUP 4  2  HORDEUM JUBATUM  GROUP 2  1  CAREX PRAEGRACILIS  4  CAREX ROSTRATA  3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5  ACCOMP.SPEC. 8  JUNCUS ARCTICUS  14  TARAXACUM OFFICINALE  10  POTENTILLA  9 16  PENSYLVANICA  POTENTILLA NORVEGICA SOLIDAGO  SPATHULATA  2 3  31  21  by  the occurence  neqlecta.  both  Hordeurn  jubatum  Other species which occurred  arcticus,  T a r a x a c u m o f f i c i n a l e , and  The  occurrence  the o t h e r  Potenti11a  in this  neglecta  Calamagrostis  type  and  were J u n c u s  pensylvanica. i n the absence  s p e c i e s d e f i n e d the t h i r d  T a r a x a c u m of f i c i n a l e ,  norvegica,  and  Potenti11a  of C a l a m a g r o s t i s  differentiating  Juncus a r c t i c u s ,  in t h i s  of  Potentilla  releve  of  type.  pensylvanica,  R a n u n c u l u s inamoenous c a n  also  occur  type.  The  f o u r t h r e l e v e t y p e was  Calamagrostis always occur  n e g l e c t a and i n t h i s type  of f i c i n a l e . species  Since  distinct  community  Carex  Carex r o s t r a t a are  this  i t is likely  that  d e f i n e d by  Juncus  type  .  Other  arct icus  contains  i t represents  two  species and  both which  Taraxacum  differentiating  an e c o t o n e ,  and  not  a  type.  rostrata  dominated r e l e v e s d e f i n e d the  type.  None o f t h e o t h e r d i f f e r e n t i a t i n g  type,  although  arct icus,  t h e o c c u r e n c e of  a few  Potentilla  fifth  species occur  releve  in  this  o c c u r e n c e s of Taraxacum o f f i c i n a l e , Juncus norvegica,  and  Stellaria  longipes  were  observed. These  releve  types,  since  they  species, strongly reflect  the p a t t e r n  vegetation types  apparent  3.2  visually  were d e f i n e d by of  i n the  concentric  dominant rings  of  field.  Cluster Analysis The  clustering  dendrogram l i n k i n g similarity cover  values  (Figure  routine  g r o u p s of 4).  resulted releves  This  of s p e c i e s , n o t  in  the p r o d u c t i o n  exhibiting  classification  s i m p l y p r e s e n c e or  the  a  greatest  i s b a s e d on absence  of  as  the in  FIGURE 4  PLOT  Caro» pratgrocilit  Colamagrostii  I  , 2 4 4 1 3 3 3 3 3 4 4  I  I  Hordtum  Calamagrost is  Juncul  Calamagrottii  Care» rostrata  C. r o s t r a t a 1  ? 8 8|3 8 8 ? 8?S % S S 3 8 8  I I 2 2 2 4 I 2 2 2 O O I I I 0 i 0 0 I 7 8 0 3 2 3 0 9 7 1  I  1 4 4 2 3 3  I  2  I  2  3  3  4  4  4  11 1.1 l l I  U  1  2  2  4  3  2  4  '2  u  3  3  4  2  4  3  4  3  3  u  23  t h e o t h e r two groupings  vegetation analysis  chosen  the s m a l l e s t  is subjective,  number  of  routines. based  classes  possible  the groups minimal  between g r o u p s .  F i v e g r o u p s were s e l e c t e d  type  g r o u p was  formed  identical  and  t h e u p p e r end  of T r a n s e c t One  dryer  of  areas  and  while  maximizing  t o the Carex  by t a b u l a r a n a l y s i s .  number of  upon a d e s i r e  variation within  One  The  The is  to produce  keeping the  the  variation  (Table 3). p r a e g r a c i 1 i s community  These t h r e e p l o t s o c c u r e d a p p e a r t o be  the w e t l a n d which  similar  were n o t s a m p l e d .  g r o u p s f o r m e d by c l u s t e r a n a l y s i s a r e q u i t e u n l i k e of t a b u l a r  final  to The  the  at the  other results  analysis.  second  formed  of  Calamagrost i s  group,  the Calamagrostis-Hordeum  plots  with  neglecta, cover  moderately  moderate  arct icus,  low  values  occurences  of Hordeum j u b a t u m ,  high  cover  community cover  values  values of  Carex  rostrata  of  Juncus  of T a r a x a c u m o f f i c i n a l e , and  type,  and  with  some  low  to  moderate cover v a l u e s . The is  third  characterized  Calamaqrostis Juncus with  group, by  moderately  neglecta,  arcticus. cover  the Calamagrostis-Juneus  values in  ranging  occurs  generally  low t o m o d e r a t e . fourth  moderately  50%  group,  of  the  from  moderate  Juncus  cover  high  the  Carex  a r c t icus occur  values.  type,  values  of  c o v e r v a l u e s of  in a l l plots  v e r y low  to moderate.  releves  with  rostrata  r e l e v e s w i t h h i g h c o v e r v a l u e s of C a r e x n e g l e c t a and  cover  Taraxacum,of f i c i n a l e o c c u r s  rostrata  The  and  high  community  cover  but Carex  values  type, consists  rostrata.  Calamagrostis  i n a b o u t 25% of t h e p l o t s  Taraxacum o f f i c i n a l e  of  occurs  i n 50%  at of  TABLE CLUSTER  3  ANALYSIS Coiran u n i t y Types  Carex  0 1 0 1  0 i 0 2  0 1 0 3  0 1 0 4  0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 3 3 3 3 3 0 0 0 1 0 0 0 0 0 0 5 6 9 1 8 1 2 3 5 6  0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 3 4 4 6 5 4 4 4 4 4 4  NO. OF SSP.  1  ACHILLEA MILLEFOLIUM  2  CALAMAGROSTIS NEGLECTA  3  CAREX  4  CAREX ROSTRATA  5  ERIGERON LONCHOPHYLLUS  6  GEUM MACROPHYLLUM  7  HORDEUM JUBATUM  2 1 2 1 +  8  JUNCUS ARCTICUS  2 1 1 2 1 2 2  9  POTENTILLA NORVEGICA  PRAEGRACILIS  10  POTENTILLA  1 1  RANUNCULUS INAMOENOUS  PENSYLVANICA  12  RANUNCULUS OCCIDENTALIS  13  STELLARIA  14  TARAXACUM OFFICINALE  15  VICIA AMERICANA  16  SOLIDAGO  Carex  -Juncus  Hordeum  racilis  0 4 0 1  0 4 0 2  0 4 0 3  0 4 0 4  0 1 0 7  0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 4 0 10 0 1 1 1 1 0 8 0 7 9 0 1 2 3 5  0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 4 5 5 5 4 3 5 6 4 4 3 4  1 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 2 3 3 3  1 3 3 2 2  Calamagrostis-  Calamagrostis  Calamagrostis-  praeg-  0 2 1 4  0 0 2 3 10 5 8  0 3 0 9  rostrata 0 0 0 0 0 0 3 3 4 4 3 4 1 1 0 0 10 0 1 6 8 3 7  V  u 2 2 1 1 6 7  0 0 0 0 0 0 0 0 0 0 4 4 5 4 4 4 6 4 2 3  0 0 5 5  2 3 1 2 1 2 3 1  2 +  5 4 3 - 4  + +  1  21 + + 2 2  + -  2  2 4 4 3 3 4 3 3 3 4 4  3 4  +  1 2 + 1 + 2 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 3 3  2 1  +  LONGIPES  SPATHULATA  - + + 21  _ 1 1 + + + + + 1 + + 1 • + 1 1 1 - 1 1 2 1 2 2 2 2 + +  + + +  TABLE CLUSTER  3 CONT.  ANALYSIS  Carex 0 3 0 4  0 1 1 3  0 0 1 1 1 4 5  0 1 1 8  0 2 1 9  0 2 2 0  0 2 2 1  0 2 1 2  0 3 1 4  0 3 1 5  0 3 0 9  0 4 1 0  0 4 1 1  0 4 1 2  0 4 1 3  0 4 1 4  0 4 4 1 5  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 2 2 1 2 4 2 1 1 2 1 1 3 1 1 2 1 1 1  NO. OF SSP.  GROUP  0 0 3 1 0 1 7 2  rostrata  1  t  ACHILLEA  2  CALAMAGROSTIS  MILLEFOLIUM  3  CAREX  4  CAREX ROSTRATA  5  ERIGERON LONCHOPHYLLUS  6  GEUM MACROPHYLLUM  7  HOROEUM JUBATUM  8  JUNCUS ARCTICUS  9  POTENTILLA NORVEGICA  NEGLECTA  PRAEGRACILIS  10  POTENTILLA  11  RANUNCULUS INAMOENOUS  12  RANUNCULUS  13  STELLARIA  t4  TARAXACUM OFFICINALE  15  VICIA  16  SOLIDAGO  3 3 3 4 4 3 4 4 5 4 4 4 4 4 4 4 3 4 3 5  PENSYLVANICA  OCCIDENTALS LONGIPES  AMERICANA SPATHULATA  + + + -  - 4 +  26  t h e r e l e v e s a t low c o v e r v a l u e s . The  fifth  rostrata  community  of C a r e x cover  group  of  releves,  Calamagrostis  arcticus, neglecta  Taraxacum of f i c i n a l e o c c u r s  3.3  with in  moderate  80%  of  values  to  the  high  releves.  i n most p l o t s w i t h low c o v e r v a l u e s .  Coenos A n a l y s i s The  dissimilarity  formation  presence simplify  grouping  of s i x groups.  f o u r p l o t s and of  One  they d i f f e r e d  The  rather  Juncus  unique  arcticus while  this  g r o u p was  Carex  of  only  group  by  the  plots  with  b u t a f o u r t h p l o t was  type,  Juncus  added t o  and  Hordeum  arct icus  plot  jubatum plots.  values  of  t o moderate cover v a l u e s  of  high  cover  arcticus.  in  i n t h e g r o u p and  Taraxacum o f f i c i n a l e  low  was  each  v a l u e s r a n g i n g f r o m v e r y low t o m o d e r a t e . one  the  type,  the Calamagrostis-Juneus-"Carex  community, c o n t a i n s Juncus  also  i n a l l of t h e s e p l o t s a t  moderately v e r y low  To the  was  community t y p e , t h e C a l a m a g r o s t i s - J u n e u s  third  cover values.  the  (Table 4 ) .  praegracilis  b o t h T a r a c a c u m of f i c i n a l e and  a l l but  in  amalgamated w i t h  praegrac i 1 i s  occured  Carex  C a l a m a g r o s t i s n e g l e c t a and  The  group  i n 75% and C a l a m a g r o s t i s n e g l e c t a i n 50% o f t h e  A second formed  resulted  of t h e s e g r o u p s c o n s i s t e d o f o n l y  r o s t r a t a community type  cover v a l u e s , occured  Coenos  from a l a r g e r  d e l i n e a t e d by t h i s a n a l y s i s , group.  of  T a r a x a c u m o f f i c i n a l e a t v e r y low c o v e r v a l u e s .  the c l a s s i f i c a t i o n  l a r g e r Carex  in  ^ C a l a m a g r o s t i s-Carex  t y p e , i s c h a r a c t e r i z e d by h i g h c o v e r  r o s t r a t a and J u n c u s of  the  plot,  Carex  a l s o has  occured with  rostrata  with  cover  rostrata  occurs  a wide range low  cover  of in  27  (3 PI — tn <D CN —  CN  ta-  Doom D tt O P) DV O N Dn o n  . *  DtOin  M •U in 0  o p> o oi  ui 3 u  u  On-"  3 hi  X  u  O«  —  V  o n - «  rd u  O  PI *- P>  O 1 O  o  T  O  ex  O  N  N  o at — f~  O  O- - -  1  tis  o«-o OV o-  CO Ul  ONOO  0  3 X 0 cu o ord 3 r3 O Pi E hi U re OV U  CP C  -o o oi —  10  o^  Cal  O Pi O eo ovou O - O iO — O 03 i i O Pi O 00 CP re Ul Ul O N -~ P> g -H 3 O rO -P O  O  CN  O  N  -  r-  iH re Ul 0 c 3 o - o » U U hi O—OW O -  OV  O - O Pi Ul O - O M  1  *H  X CricH 0) (D •H  p>  •»  co  PJ  CN  n  r»  CN  CN  n  CN  CN  o«  m  4  CN  CN  CD  CN  r>  CN  PI  4  CN  p>  O  4  CN  tn  CO  4  -  n  f)  4  P)  4  O in O T O <r O t  o« o •» o •»  c  CU  Ot On O T O«  o -o-  O PI O PI O PI O Pi O in  4  1  P)  1  CN P» 4  P)  4 4  4  4  o •» O  *  CN  CN  4  4  -tn  Ul  o to  1  O in O in O <r O to O in o in om o to O in O in O T O PI O P>  CN  i 1  *"  CN  t  -  CN  4  CN  4  P)  -  CN  t n  m  CN  -p>  r> p>  P)  4  4  "~ 4  1  P) P)  1  r>  CN  1  p>  P)  CN  P)  CN  P)  r>  —  CN  +  -  CO «  rt  1  4  CN CN 1  CN 4  CN  1  CN  CN  —  "~  CN  *~  in  1  4  P3  1  -  4  CN 1  1  4  4  P>  PJ  o«  1  4  CN  CN  O 1 O t O PI O T O PI  CN  o  CN  o •»  t  P)  CN  0 ra M ra c_> a i-i  X  >,  _J  JJ  o  •H Ul  c 3 g ui  >  Ii.  CU  _J _J  >1  x  £  c0 E-*  —  u  o  COE  Ifl  SON  < z <  f—  3  i  <  u _) I  a 3  o  QC  CJ  4  « UJ  Z l/j  tV) oa a x  < <  w  <  tn  <  _j (J 4  >-  I0. 4 <  tt O ofcUJ 4  a a X UJ  4  u w  <  _) _j  i/)  i/) o  QC X Ul  ac < o  s o z o _l  z  o  QC Ul  a  QC UJ  If)  Z 3  _l _J >-  Ia.  o QC (J 4  z z  3 Ul  U ID  X  tn  3 r—  O  4  00 3 "3  X 3 Ul  a  Of a z  3  o  QC  < 3 U  z  3  a  UJ  > o azc <  _J _J  t— z UJ  t-  z <  > >  3 O  z  _J  4 tz  Ul  Ul  1/1 UJ  UJ  z4  CJ  3 z  4  I/I 3 .J 3 U  v>  z  a. -J  z  Ul  o  K O a.  0)  O  Q.  V)  tn o X  z  <  QC  a u  o 3 _l 3 U  a  4  4  _l QC  CJ  4 4  CN  P)  QC  Z u. u. O  4  1  4  (J  o  _l _J UJ H-  z  UJ _J  l/>  X 3 4  Z  i  O  4 tn  X  o a  QC  4  4 4  4 t—  >  X  4 f4 _J  QC  4 O  _J  o  to  t/>  TABLE 4 CONT. COENOS .ANALYSIS  Carex r o s t r a t a O 3 0 7  0 3 0 3  0 2 2 0  0 3 0 1  0 4 1 5  0 4 1 0  0 0 0 0 0 0 0 0 14 3 3 4 2 4 4 112 11 1 1 1 4 3 5 4 1 14 2  0 1 1 3  0 1 1 5  0 1 1 2  0 2 1 9  1  1  ACHILLEA MILLEFOLIUM  2  CALAMAGROSTIS NEGLECTA  3  CAREX PRAEGRACILIS  4  CAREX ROSTRATA  5  ERIGERON LONCHOPHYLLUS  6  GEUM  7  HORDEUM JUBATUM  8  JUNCUS ARCTICUS  9  0 3 0 2  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 4 4 4 4 4 1 1 1 1 1 1  NO. OF SSP.  GROUP  0 3 0 6  3 3 3 3 3  6 5 4 4 4 4 4 4 4 3 3 4 3 3 4  3 1 + +  MACROPHYLLUM 1 1 1 + +  POTENTILLA NORVEGICA  tO  POTENTILLA PENSYLVANICA  11  RANUNCULUS  12  RANUNCULUS OCCIOENTALIS  13  STELLARIA LONGIPES  14  TARAXACUM  15  VICIA  16  SOLIDAGO SPATHULATA  INAMOENOUS  OFFICINALE  AMERICANA  •+  + + + +  1  +  •29.  most of t h e p l o t s , w h i l e C a l a m a g r o s t i s n e g l e c t a was m o d e r a t e t o low c o v e r A  fourth  i n a p p r o x i m a t e l y 80% of t h e  community  c o n s i s t e d of p l o t s which of f i c i n a l e , and values. plots  The  fifth  amalgamating  rostrata-Juncus type,  a l l c o n t a i n e d Carex  arcticus  occured  with  plots.  rostrata,  Taraxacum  C a l a m a g r o s t i s n e g l e c t a a t low t o m o d e r a t e  Juncus  i n the  t y p e , the Carex  found  w i t h moderate c o v e r  cover i n most  group. community t h e C a r e x two  groups  moderate t o h i g h cover w i t h v e r y low c o v e r  r o s t r a t a t y p e was  dominated  values.  by  Carex  Taraxacum  in approximately  20%  formed  rostrata  of f i c i n a l e  of t h e  plots.  by with  occured  30  CHAPTER 4 RESULTS OF SOIL ANALYSIS  4.1 C o r r e l a t i o n The  Analysis  correlation  intercorrelated  analysis  soil  showed  parameters  two  (Figure  major  soil  calcium,  reaction;  pH  parameters  and  less  strongly  intercorrelated nitrogen,  correlated,  conductivity  correlated.  parameters  and p o t a s s i u m .  conductivity.  positively  electrical  was  strongly  positively  correlated.  Bulk d e n s i t y  and  but n e g a t i v e l y  of  two p a r a m e t e r s were  the  of  group  carbon,  while  other,  positively,  organic  correlated,  each  these  e x c e p t t h e two pH  second  composed  The f i r s t  t o t h i s group s i n c e  content  Most o f  w h i c h were  The  positively  related  salt  One  w a t e r , pH i n CaC12, c a r b o n a s C 0 3 ,  magnesium, a n d e l e c t r i c a l  parameters are strongly  but  in  of  5, A p p e n d i x 3 ) .  g r o u p was composed o f t h o s e p a r a m e t e r s r e l a t e d t o and  groups  latter  was  less  and e l e v a t i o n  they a r e p o s i t i v e l y correlated  with  strongly  a p p e a r t o be  correlated  both organic  with carbon  nitrogen. The p y r o p h o s p h a t e i n d e x , w h i c h s h o u l d r e f l e c t , t h e d e g r e e o f  d e c o m p o s i t i o n of t h e o r g a n i c m a t t e r , organic  matter group but i s n e g a t i v e l y  r e a c t i o n - s a l t content group. correlation correlated salt  i s not c o r r e l a t e d  with with  content  4.2 F a c t o r  the  Phosphorus  organic  matter  many o f t h e c o n s t i t u e n t s  correlated shows  with  with  only  the  the s o i l a  slight  group but i s n e g a t i v e l y of t h e  soil  reaction-  group.  Analysis  The a i m o f f a c t o r a n a l y s i s  i s to explain  observed  relations  32  among  variables  in  valuable application  terms  of  simpler  (Cattell,  variables  proportion  are  factors of  the  i n T a b l e 5.  Table  6,  and  not  where  easily  shows  were  calculated,  total  the  first  than  0.5000  four  The f i r s t variation  in  for  and  composed  factors  explain  the data s e t .  factor  C03,  loadings, given  while  and  nitrogen  elevation  correlated.  and  Factor  potassium, phosphorus, fourth To  factor  The p a r a m e t e r s factor,  over  are bulk three  pH  relating  in  have  loadings  CaC12,  the  density is  Factor  toal  to s o i l  one  is  reaction  and  calcium,  magnesium,  Factor  parameters.  strongly positively are  dominated depth  of  by t h e two s o i l  weighting  of  some  assessing data with c o r r e l a t e d p r o p e r t i e s , s e l e c t e d which r e f l e c t e d  of  conductivity.  very  and t h e  the  77%  intercorrelated.  electrical  i s dominated  reduce  in  L o a d i n g s l e s s t h a n 0.2500  f o r m e d m a i n l y by two g r o u p s o f c o r r e l a t e d and  factor i s  The p a r a m e t e r s w h i c h c o n t r i b u t e t o  of parameters  s a l t c o n t e n t ; pH i n w a t e r , as  cumulative  zero.  four  primarily  the  successive  first.  factor are often highly  carbon  upon  factors arranged i n decreasing  each  appear  have been r e p l a c e d by  carbon  conceptually  v a r i a n c e e x p l a i n e d by e a c h  The s o r t e d r o t a t e d  been a r r a n g e d s u c h t h a t  each  the  l o c a t e d and a g r e e d  o r d e r o f v a r i a n c e e x p l a i n e d by t h e f a c t o r s .  greater  most  1965).  Fifteen  given  Its  i s i n t h o s e s c i e n c e s where a g r e a t a r r a y o f  phenomena a r e m u l t i p l y d e t e r m i n e d independent  relations.  strongly  two i s Organic  correlated negetively  by t h r e e p a r a m e t e r s , the depth  Om  layer.  parameters.  characteristics f i v e parameters  the groupings r e s u l t i n g  The  by were  from t h e f a c t o r  33  TABLE 5 VARIANCE OF SOIL FACTORS  Factor  Variance Explained (Eigenvalue)  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  6.094186 2.752069 1.601303 1.135096 0.906300 0.769852 0.469233 0.366441 0.287583 0.255575 0.1,95958 0.086842 0.042498 0.024027 0.012036  Cumulative P r o p o r t i o n of T o t a l V a r i a n c e 0.406279 0.589750 0.696504 0.772177 0.832597 0.883920 0.925203 0.939632 0.958804 0.975843 0.988906 0.994696 0.997529 0.999131 1.000000  34  TABLE 6 SORTED ROTATED FACTOR LOADINGS*  Factor 1  Parameter C03 Mg pH(CaC12) Ca pH(H20) E.C. Org. C N Elev. B.D. P Om K Of I ndex  * factor  0 .906 0 .899 0 .860 0 .853 0 .850 0 .829 0 .0 0 .0 0 .0 0 .0 -0 .326 0 .0 -0 .309 0 .0 0 .0  loadings  Factor 0. 0 0. 0 0. 0 0. 0 0. 0 -0. 259 0. 924 0. 913 -0. 721 -0. 713 0. 0 0. 0 0. 454 0. 0 0. 458  2  Factor3 0. 0 0. 0 0. 0 -0. 296 -0. 323 0. 0 0. 0 0. 0 0. 424 0. 0 0. 794 -0. 686 0. 624 0. 0 0. 0  Factor  4  0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 .0'. 0 0. 0 0. 0 0. 0 0..533 0. 0 0. 930 0. 0  l e s s t h a n 0.2500 have been r e p l a c e d by z e r o .  35  analysis. because the  The it  carbon  was  two  was  not  and  this  was  selected  to  represent  analysis  Sokal,  1973).  must be  divided  and  relationship  The  analysis  a  is  (1973) m a i n t a i n  and  subject that  in  of  regions  of  the  that  selected  to  Phosphorus  depth of  the  Of  These f i v e the  soils  was  layer  parameters  data.  methods  resulting  entities  need  too  few the  much d i s c u s s i o n .  s o i l s d a t a was  b a s e d on  systems  same number o f reduced to  analysis  t o be  the  since  grouping  five the  cluster Sokal  boundaries  comparable  seems  flexible  a  too  enough  S n e a t h and  space under  it  in  contain in  number o f  taxonomic  i n t o g r o u p s s h o u l d be the  would not boundaries  p o s i t i o n and  the  for  i n t o g r o u p i n g s w h i c h meet t h e  t h e y must be  ecological  factor  numerical  of  division  by  two  dendrogram  in  f o r m e d by  to  The  However,  shown  and  factor.  factor four.  p o s i t i o n i n g of  i s a r b i t r a r y , but  The  were  t o o many g r o u p i n g s w o u l d r e s u l t s  classification  not  parameters.  d e f i n i n g groups of m u t u a l l y e x c l u s i v e  classification,  information.  are  elevation  refers  (Sneath  a l l  and  c l u s t e r a n a l y s i s of  and  a  other  f a c t o r s e x i s t i n f a c t o r two,  factor three,  establishing  fine  one  Analysis  Cluster  of t h e  factor  other parameters i n  all  c o r r e l a t e d groups i n t h i s  to represent  Cluster  the  from  These p a r a m e t e r s r e p r e s e n t the p o s i t i v e l y  were t h e n u s e d i n t h e  4.3  selected  correlated with  carbon,  factor.  negatively  selected  was  g r o u p s of c o r r e l a t e d  parameters, organic reflect  C03  highly correlated with  f a c t o r , yet  Since  as  criteria  consideration.  the  criteria  a l l the  for  groupings  steps.  parameters  which  most i m p o r t a n t b e f o r e  were the  36  c l u s t e r a n a l y s i s was p e r f o r m e d . divided  into  four  showed t h e s o i l 95% in  confidence  groups  (Figure  limit  magnesium, n i t r o g e n  is  significantly  distinguished nitrogen, three  organic  water,  phosphorus,  pH  in  four  carbon,  is significantly  different three  by  and  from  carbon  significant elevation.  nitrogen, organic  as  the i n pH  as  7).  C03,  G r o u p two  g r o u p t h r e e , b u t c a n be  d i f f e r e n t from the group  CaC12,  was  at  groups  c o n d u c t i v i t y , carbon  and e l e v a t i o n ( T a b l e  different  from group  dendrograph  The M a n n - W h i t n e y t e s t  from t h a t of t h e other  w a t e r , pH i n CaC12, e l e c t r i c a l  not  6).  i n g r o u p one i s s i g n i f i c a n t l y  calcium,  in  The r e s u l t i n g  differences The s o i l four  C03, c a l c i u m ,  c a r b o n and e l e v a t i o n .  in  of group  soil  in  pH  magnesium,  FIGURE  PLOT  I I I I I I I I 0 0 0 1 0 0 0 0 3 6 7 0 9 8 54  AMALG. DISTANCE 0.476 0.545  4 0 8  14  2 . 5 4 19  1.  6R0UP 3  GROUP 4  GROUP 2  GROUP I  6  3  2 4 4 3  2  2 2 3 4 3 4 2  » i M 5 i I § 1?  iii I  3  3 2 3 3 3 3 3 2  15 8 § 8 1  ! 6  u  ?8  A88  I  1 4 4 2 4 2 2 4 3 3 2 2 1  3  3 4 o  I  I  2  u  0.582 0.720 0.777 0.613 0.896 0.926 0.938 1.008 1.039  Lf  0. 988 1.063 1.067 1. 149 1.307 I. 320 I. 388 1.308 1.446 1.638 I. 658  I. 807 I. 83*5 1. 869 2. 191 2. 377 2. 840  OJ  38  TABLE 7 SOIL PARAMETERS WHICH DISTINGUISH SOIL GROUPINGS ( M a n n - W h i t n e y Rank Sum T e s t , * = 0 . 0 5 )  Group 2 pH(H20) p H ( C a C 1 2 ) E.C. C03-C Ca Mg Org-C N E l e v .  Group 3 pH(H20)pH(CaC12) E.C. C03-C Ca Mg Org-C N E l e v . K P Index  Group 4 pH(H20) pH(CaC12) Group 1 E.C. C03-C Ca Mg K P E l e v . N Index N Org-C  Elev  Group 2  pH(H20) p H ( C a C l 2 ) Group 3 C03-C Ca Mg P Org-C N E l e v  39  CHAPTER  5 DISCUSSION OF RELATIONSHIPS BETWEEN VEGETATION  AND  SOIL ANALYSIS  5 .1 C o r r e l a t i o n A n a l y s i s The r e s u l t s species the  and  of  the  individual  correlation  soil  parameters  v e g e t a t i o n z o n a t i o n which  showed  any s i g n i f i c a n t  was  with  than  the  one p r o p e r t y .  organic matter  grouping  correlations.  Carex  nitrogen  organic  and  Only  correlation with s o i l  3) a n d o f t h e s e o n l y C a r e x  plant  species (Table  is  correlated  T h i s s p e c i e s appears  to reflect  in  i s positively  carbon  4  parameters,  rostrata  observed  rostrata  between  d i d n o t e x p l a i n much o f  observed.  8, A p p e n d i x more  analysis  the  soil  parameter  correlated with  both  while negatively correlated  with  elevat ion. The l o w number o f o c c u r e n c e s o f many o f t h e s p e c i e s , six  species  distribution the  lack  occured  in  more  f i v e p l o t s ) and t h e b r o a d  ranges of t h e dominant s p e c i e s  of  correlations  p a t t e r n of s i s p e c i e s and s o i l An a t t e m p t those  than  t o determine  species  and  soil  (only  observed  may  between  contribute  to  the d i s t r i b u t i o n  parameters. predictive  parameters  which e x h i b i t e d  significant  was  appropriate  because of t h e d i s c o n t i n u o u s form of t h e v e g e t a t i o n  classes.  from t h e  Vegetation  more s u i t a b l e  Regression  between  correlation  data r e s u l t i n g  unsuccesful.  relationships  estimation  data  assessed  of  analysis  cover  in  is  broad  not  cover  as p e r c e n t cover would  f o r such n u m e r i c a l t e c h n i q u e s .  be  40  TABLE 8 SPECIES-PARAMETER  CORRELATIONS*  Number of Occurences  Parameter  Correlat ion Coef f i c i e n t  Calamagrost i s neglecta  38  pH(CaC12)  -0.4444  Carex rostrata  47  Nitrogen  0.3836  Organic C  0.4087  Elevation  -0.6372  Spec i e s  Hordeum j ubatum Taraxacum officinale  7  D e p t h o f Om  0.9452  43  D e p t h o f Om  -0.4386  * s i g n i f i c a n t a t 95% c o n f i d e n c e  limit.  41  5.2  Soil  Parameters Which D i s t i n g u i s h  Those s o i l different,by  Vegetation Groupings  p a r a m e t e r s w h i c h were shown t o be  statistically  t h e M a n n - W h i t n e y t e s t a t t h e 95% c o n f i d e n c e l e v e l ,  b e t w e e n t h e g r o u p s d e f i n e d by vegetation  classification  parameters  of t h e s e g r o u p s .  each  of  the  three  were c o n s i d e r e d t o be Similar  groups  of  methods  distinguishing distinguishing  p a r a m e t e r s were f o u n d i n a l l o f t h e c l a s s i f i c a t i o n s , degree  to  which  the  classes  be d i s t i n g u i s h e d  varied.  parameters  were f o u n d t o be s i m i l a r t o t h e g r o u p s o f  by  correlation  intercorrelated. calcium, is  the  of  usefulness The  of  analysis  formed  o f pH  by  soil  distinguishing  to  parameters be  highly  i n w a t e r , pH i n CaC12,  and e l e c t r i c a l  reaction-salt  content  conductivity group.  The  o f n i t r o g e n and o r g a n i c c a r b o n , i s r e f e r r e d  t o as  Another parameter,  in distinguishing  three d i s t i n g u i s h i n g method  factor  soil  o r g a n i c matter group.  successful  groups  c a r b o n as C03,  t o a s the  formed  and group,  magnesium,  referred  other,  One  major  however t h e  parameters  shown  Two  could  of  g r o u p s was  elevation.  p a r a m e t e r s , or groups of  vegetation  found t o  be  very  Using these  parameters,  each  c l a s s i f i c a t i o n c a n be a s s e s s e d a s t o i t s  i n grouping s i m i l a r  soils.  f i v e community t y p e s r e s u l t i n g  from  tabular  analysis  are  shown i n T a b l e 9 w i t h t h o s e s o i l  p a r a m e t e r s w h i c h were f o u n d  to  distinguish  The  could  be  distinguished  reaction-salt The from  between the t y p e s .  content  from group  Carex p r a e g r a c i l i s type  a l l other of  types  p a r a m e t e r s , and by  Hordeum j u b a t u m c o m m u n i t y t y p e c o u l d a l s o the  other  commmunity  types  c o n t e n t g r o u p b u t n o t by e l e v a t i o n .  by  the  soil  elevation.  be  distinguished  soil  reaction-salt  by  the  The  o r g a n i c m a t t e r group of  42  TABLE 9 SOIL PARAMETERS WHICH D I S T I N G U I S H COMMUNITY TYPES FORMED BY TABULAR ANALYSIS (Mann-Whitney Rank Sum T e s t , * = 0 . 0 5 )  Hordeum  Calamagrost i s  p H ( C a C 1 2 ) pH(H20) E.C. C03-C Mg pH(CaC12) C03-C Mg Elev. Elev. C03-C E.C. Ca K  Calamagrostis /C. r o s t r a t a  Carex rostrata  pH(H20) E.C. pH(CaC12) K Mg Ca C03-C Elev.  pH(H20) E.C. C a r e x praegracilis pH(CaCl2) Ca K I n d e x N Org-C Elev.  pH(H20) E.C. pH(CaC12) K Ca Mg C03-C N Org-C P  pH(H20) E.C. Hordeum pH(CaC12) C03-C Mg Ca K P Org-C E l e v .  Org-C  N Org-C Elev.  Calamagrost i s  N Org-C E l e v E.C. P  Calamagrost i s /C. r o s t r a t a  parameters, community  and e l e v a t i o n can type  from  the  community t y p e and t h e types  can  only  parameter,  the  conclusion,  be  others.  carbon  on rostrata  the  the Calamaqrostis  This  supports  properties,  i s an  ecotone  distinguished  the  distinguished reaction-salt  from from  the  content  other  resulting  types  (Table  praegracilis  group,  and f r o m  r e a c t i o n - s a l t content  group.  The  Carex  the  Carex  the s o i l  rostrata  and  group  10).  type  of  cluster  elevation.  11 w i t h t h e s o i l  distinguished group and  of  from  and  the  elevation  index does not a c t as  same  habitat.  the  a  matter  analysis found  community  types  on t h e b a s i s type  reaction-  can  salt  distinguishing  be  content  community  Since the  t y p e s c a n be i n t e r p r e t e d  both  group.  t y p e c a n be d i s t i n g u i s h e d  consistent  soil,  w h i c h were  community  index.  be  from the  cluster  The C a l a m a g r o s t i s - H o r d e u m  and t h e p y r o p h o s p h a t e  t h e s e two c o m m u n i t y  A l l of  praegracilis  the Calamagrostis-Juneus  the  organic  parameters  t h e o t h e r s by t h e s o i l  parameters.  can  I t c a n be  by  a n a l y s i s c o u l d be d i s t i n g u i s h e d  The C a r e x  rostrata  t y p e c a n be d i s t i n g u i s h e d  d i s t i n g u i s h between t h e t y p e s . by  not  t h e Hordeum t y p e by  The v e g e t a t i o n c o m m u n i t y t y p e s f o r m e d by  formed  the  does  group  a m a l g a m a t e d C a l a m a g r o s t i s t y p e by t h e o r g a n i c m a t t e r  shown i n T a b l e  the  that  C a l a m a g r o s t i s and t h e C a l a m a g r o s t i s - C a r e x amalgamated  to  community  type.  community t y p e s a r e  are  rostrata  rostrata  content.  type  Carex  b e t w e e n on t h e b a s i s o f one  floristic  r e p r e s e n t a d i f f e r e n t community If  However  distinguished  based  the  Calamagrostis-Carex  organic  Calamagrostis-Carex  distinguish  only  type by  pyrophosphate parameter,  t o be o c c u p y i n g  T h e r e f o r e t h e s e two t y p e s were r e g r o u p e d  the  into a  TABLE 10 SOIL PARAMETERS WHICH DISTINGUISH AMALGAMATED COMMUNITY TYPES FORMED BY TABULAR ANALYSIS (Mann-Whitney Rank Sum T e s t ,o(=0 . 05)  Hordeum pH(CaC12) C03-C Mg K Elev.  Calamagrost i s  Carex rostrata  pH(H20) E.C. pH(CaC12) C03-C Ca K Mg E l e v .  pH(H20) E.C. pH(CaC12) Carex C03-C Ca Mg p r a e g r a c i l i s K Index N Org-C E l e v .  pH(H20) E.C. pH(CaC12) C03-CCa Mg K N Org-C  pH(H20) E.C. pH(CaC12) Hordeum C03-C Ca Mg K P Org-C Elev. E.C. P Org-C N Elev.  Calamagrost i s  45  TABLE 11 SOIL PARAMETERS WHICH DISTINGUISH COMMUNITY TYPES FORMED BY CLUSTER ANALYSIS (Mann-Whitney Rank Sum T e s t , 0(=0. 05)  Calamagrostis / Hordeum  Calamagrost i s / Juncus  Calamagrostis /C. r o s t r a t a  Carex rostrata  pH(H20) E.C. pH(CaC12) C03-C Mg Ca E l e v .  pH(H20) E.C. pH(CaC12) C03-C Mg Elev.  pH(H20) E.C. pH(CaC12) C03-C Mg Ca K E l e v .  pH(H20) pH(CaC12) C a r e x C03-C Ca praegracilis Org-C N Mg E.C. K Index E l e v  Elev. I ndex  Org-C K  N Org-C E l e v E.C. C a l a m a g r o s t i s /Hordeum  Elev.  N Org-C Ca K Elev.  pH(H20) E.C pH(CaCl2) C a l a m a g r o s t i s N Org-C /Juncus Index E l e v . pH(CaC12) E.C. K P Elev.  Calamagrostis /C. r o s t r a t a  46  s i n g l e C a l a m a g r o s t i s type, which  can  p r o p e r t i e s that are s i g n i f i c a n t l y  different  (Table the  12).  limits  level  set  on  the  since  original  these  reaction-salt  distinguished Carex  form  rostrata  types  to  soil  from t h e o t h e r  types  other  the  except the  Although  some s i g n i f i c a n t  the  organic  of  and  type  elevation. rostrata  parameters  and  and  Calamagrost is-Carex  differences  c o n d u c t i v i t y were f o u n d  group  of  that  these  two community  the  elevation.  t y p e c a n be d i s t i n g u i s h e d  matter  on  It is  from  rostrata  parameters.  i n e l e v a t i o n , pH i n CaC12 to  distinguish  between  t h e s e two t y p e s , t h e l a c k o f t h e two m a j o r d i s t i n g u i s h i n g suggests  the  Calamagrostis  praegracilis  Calamagrostis-Carex  type  electrical  by  T h i s new  parameters  r o s t r a t a community types  analysis  of  are joined together at a  from t h e Carex  content  community  and  two  t y p e s by o r g a n i c m a t t e r  The C a r e x all  have  cluster  of the h i e r a r c h y ( F i g u r e 4 ) .  t y p e c a n be d i f f e r e n t i a t e d soil  shown  T h i s r e g r o u p i n g c a n be c o n s i d e r e d an a d j u s t m e n t  communities, lower  be  types occur  groups  in similar  soil  The v e g e t a t i o n c o m m u n i t y t y p e s f o r m e d by a n a l y s i s w i t h  the  conditions.  Coenos which  program were f o u n d  are  shown i n T a b l e 13 w i t h t h e s o i l  t o d i s t i n g u i s h between t h e t y p e s .  o t h e r methods o f a n a l y s i s , could  be d i s t i n g u i s h e d  r e a c t i o n - s a l t content rostrata  Calamagrostis-Juncus differentiated  As  in  the  p r a e g r a c i l i s community  type  f r o m a l l o t h e r s on t h e b a s i s o f t h e  soil  group  and  upon  elevation.  c o m m u n i t y t y p e c a n be d i s t i n g u i s h e d  the organic matter  be  the Carex  parameters  group  of  parameters  type and t h e Carex by b o t h t h e s o i l  and  The  Carex  f r o m t h e o t h e r s by elevation.  The  r o s t r a t a - J u n c u s type can  r e a c t i o n - s a l t content  group  TABLE 12 SOIL PARAMETERS WHICH D I S T I N G U I S H AMALGAMATED COMMUNITY TYPES FORMED BY CLUSTER ANALYSIS (Mann-Whitney Rank Sum T e s t ,oC=0 . 05)  Calamagrost i s  Calamagrostis / C. r o s t r a t a  pH(H20) E.C. pH(CaC12) C03-C Ca Mg E l e v .  pH(H20) E.C. pH(CaC12) C03-C Ca Mg K E l e v .  pH(H20) E.C. pH(CaC12) Carex C03-C Ca praegracilis K Org-C N Elev.  N Org-C K Elev.  N Org-C E.C. E l e v .  Calamagrostis  pH(CaC12) E.C. P K Elev.  Calamagrostis /C. r o s t r a t a  Carex rostrata  48  TABLE 13 SOIL PARAMETERS WHICH DISTINGUISH COMMUNITY TYPES FORMED BY COENOS (Mann-Whitney Rank Sum T e s t , oC=0 . 05 )  Carex rostrata /Juncus  Carex rostrata  Calamaggrost i s / Juncus  Calamaggrost i s / Juncus /C. r o s t r a t a  pH(CaC12) E.C. C03-C Mg E l e v .  pH(H20) E.C. pH(CaC12) C03-C Ca Mg K E l e v .  pH(H20) E.C. pH(CaC12) C03-C Ca Mg K I n d e x Elev.  pH(H20) E.C. Carex pH(CaC12) C03-C Ca K praegrac i 1 i s Mg I n d e x N Org-C E l e v  K  pH(H20) E.C. pH(CaC12) Ca Mg N Org-C K P  pH(H20) K pH(CaC12) Ca C03-C N Org-C Index E l e v  K  N Org-C Index E l e v  E.C. C03-C Ca K P Org-C E l e v  Calamagrost i s / Juncus  Calamagrost i s / Juncus / C. r o s t r a t a Carex rostrata / Juncus  49  of  parameters  and  the  organic  Calamagrostis-Juneus-Carex from e i t h e r Juncus  matter  rostrata  type  the Calamagrostis-Juneus  by e i t h e r  of t h e s e groups  group.  or  by  this to  to  type  be  elevation  new  separable,  rostrata-  differences.  r o s t r a t a community  together with the Calamagrostis-Juneus  Calamagrostis  in  terms  of  type,  soil  i t can  parameters,  be  from a l l o t h e r  T h i s new t y p e c a n be d i f f e r e n t i a t e d f r o m t h e  praegracilis  t y p e on t h e b a s i s o f t h e s o i l  of  parameters  from t h e Carex content  a n d by e l e v a t i o n .  group and t h e o r g a n i c m a t t e r  reaction-salt  I t c a n be  r o s t r a t a - J u n c u s t y p e by  the  matter  s a l t content  parameters,  elevation,  of  the  soil  parameters  used  t y p e s a r e p r e s e n t e d i n T a b l e 1.5.  are  useful  the  in predicting  overlap  differences  in  rostrata  type  by  the  reaction-  in  of  ranges  these  which  parameters  occur. were in  to  distinguish  Most community  v a l u e s of s o i l  suggests that despite high v a r i a b i l i t y trends  content  The C a r e x  a n d some s o i l  community  of  Carex  parameters..  The r a n g e s  not  types  reaction-salt  t y p e c a n be d i f f e r e n t i a t e d f r o m t h e C a l a m a g r o s t i s organic  type  distinguished  soil  group.  If  statistically  (Table 14).  group  type  a t r a n s i t i o n a l or ecotonal v e g e t a t i o n type.  i s grouped  form a  the  c a n n o t be s e p a r a t e d  type-or the Carex  Therefore the Calamagrostis-Juneus-Carex appears  However,  parameters Since  types  because  significant  o b s e r v e d however, t h i s chemical  parameters,  t h e c h e m i s t r y o f t h e s e s o i l s a r e more i m p o r t a n t  than  individual values. Since the s o i l does  display  reaction  and  unique salt  of t h e ranges  Carex  praegracilis  of those parameters  content,  predictions  community  type  relating to s o i l regarding  these  TABLE 14 SOIL PARAMETERS WHICH DISTINGUISH AMALAGAMATED COMMUNITY TYPES FORMED BY COENOS ANALYSIS ( M a n n - W h i t n e y Rank Sum Test<K=0.05)  Calamagrostis  Carex r o s t r a t a Carex / Juncus  pH(H20) E.C. pH(CaC12) C03-C Ca Mg E l e v .  pH(H20) E.C. pH(CaC12) C03-C Ca Mg K I n d e x Elev.  pH(H20) E.C. pH(CaC12) C03-C Ca Mg K I n d e x N Org-C E l e v .  pH(H20) pH(CaC12) C03-C Ca K N Org-C  pH(H20) E.C. pH(CaC12) N Org-C Index E l e v .  rostrata  N Org-C Index E l e v .  Carex praegracilis  Calamagrostis  Carex r o s t r a t a / Juncus  TABLE 15 RANGE OF SOIL PARAMETERS IN COMMUNITY TYPES  C03-C  Ca ppm  Mg ppm  N  Org-C  %  %  7.9-8 . 1 2.1-2.5  2 7-2 .8  3000035000  12000 16000  1 2-1 4  20-25  7.5-7 . 7  1 .5-2 .4  1 3-2 .2  180032000  5000 7000  0 7-1 5  10-25  15-55  6.3-7.8  0.7-1.9  O 3-2 .0  200035000  3000- 0 9-2 2 9000  13-47  0-30  6.7-7.6  0.5-2.0  6 o 4- 1 .  200028000  2500- 1 0-2 3 7000  15-44  Carex praegrac i 1 i s  50-60  7.9-8.1  2. 1-2.5  2 7-2 .8  3000035000  13000- 1 2- 1 4 16000  20-25  Ca1amagrost i s  20-55  6.3-7.8  0.8-2.4  0 2-2 .2  300035000  2500- 0 7-2 9000  1  10-40  Carex ros t r a t a  0-40  6.7-7.6  0.5-2.0  6 0 3- 1 .  300028000  2500- 1 0-2 3 7000  15-45  Ca t amagrost i s / C. r o s t r a t a  25-35  7.0-7.6  1.0-1.9  0 4-0 8  30006000  3000- 1 2-2 2 6000  17-48  Carex praegrac i 1 i s  45-60  7.7-8.1  2.1-2.5  1 8-2 8  2900034000  8000- 0 8- 1 4 16000  12-25  Ca1amagrost i s  25-45  6.7-7.6  0.5-2.4  0 3-2 2  30003500  25O0- 0 7-2 4 8000  10-44  Carex rostrata  0-25  6.8-7.6  0.7-2.0  0 4- 1 2  400020000  3000 7000  0 7-2 0  25-41  C. r o s t r a t a / JUNCUS  5-55  6.3-7.9  0.8-1 .9  0 3-2 0  300035000  Ana 1ys i s Amma1gamated Commun i ty Type  ' Elev. (mm)  Carex praegraci1i s  50-60  Hordeum  35-45  Ca1amagrost i s Carex rostrata  Tabu 1ar  C1uster  Coenos  pH (CaC12)  E.C. mmhos/ cm  2000- 1 9-2 . 4 6000  14-47  parameters  could  community  5.3 By  be  occured  The  Vegetation  the d i s t r i b u t i o n  i n more t h a n two  the  (Table  upon  the o c c u r r e n c e  cluster 16),  P a t t e r n W i t h The  p a t t e r n of those  is  the  range  restricted  soil  occurences w i t h i n s o i l broad  type  distribution  b e t w e e n two  soil  of to  distribution  only one  one  soil  T a b l e 17  soil  community  a n a l y s i s , are  range  and  or are  types,  possibly  Hordeum  defined  g e n e r a l l y poor  Carex  86%  of  distributed  exception  of  jubatum,  of much  the  value  by  in  The  soil  vegetation groupings. within  C a r e x p r a e g r a c i l i s and  the  are  only communities to  be  restricted  G e n e r a l l y , the community t y p e s distributed  the v a r i o u s  of t h e c o m m u n i t y t y p e s  types  methods.  the  i n d i c a t o r s of these  groupings.  groupings than are  seen  Hordeum  with  rather equally with  cluster  are  be  s p e c i e s have e i t h e r  Therefore,  soil  grouping.  formed  groupings.  g i v e s the occurrence  the  range,  i s not  which  species, grouping.  Most o t h e r  p a t t e r n of s i n g l e s p e c i e s  p r e d i c t i n g these The  one.  groupings.  praegracilis  analysis  this  Formed  units  p r o p e r t i e s , i t can  jubatum a l s o d i s p l a y s a r a t h e r r e s t r i c t e d  Carex  Units  plant species  p l o t s i s compared t o the  a n a l y s i s of the  that  praegracilis  a  of  Analysis  When  by  based  type.  C o m p a r i s o n Of Soi1  made  more  the community  closely types  to  d e f i n e d by  Hordeum  one the  by  the  soil  tabular  t o the p a t t e r n of defined  the  soil other  53  TABLE 16 OCCURRENCE OF MAJOR SPECIES I N SOIL CLUSTER GROUPINGS  Spec i e s Calamagrost i s neglecta Carex rostrata Carex praegrac i 1 i s  Group 1  Group 2  22% 4%  8%  Group 3  Group 4  11%  67%  35%  51%  100%  Hordeum jubatum  86%  Juncus arcticus  23%  14% 2%  Potent i11a norveg i c a Potent i11a pensylvanica  37%  Taraxacum of f i c i n a l e  14%  14%  60%  40%  60% 63%  5%  19%  62%  54 TABLE 17 OCCURRENCE OF COMMUNITY TYPES IN SOIL CLUSTER GROUPINGS A. T a b u l a r A n a l y s i s B. C l u s t e r Analysis C. C o e n o s A n a l y s i s Commun i t y types A.Carex praegrac i 1 i s  Group 2  Group 3  Group 4  100% 100%  Hordeum Calamagrost i s C a l a m a g r o s t i sCarex r o s t r a t a Carex  Group 1  17%  17%  67%  7%  7%  85%  70%  10%  20%  rostrata  B.Carex praegrac i 1 i s  100%  CalamagrostisHordeum  27%  C a l a m a g r o s t i sJuncus  30%  73% 10%  60%  C a l a m a g r o s t i sCarex r o s t r a t a  11%  22%  66%  Carex  14%  62%  24%  10%  10%  rostrata  C.Carex praegrac i 1 i s  100%  C a l a m a g r o s t i sJuncus  80%  C a l a m a g r o s t i sJuncus-Carex  20%  80%  Carex r o s t r a t a Juncus  6%  22%  72%  Carex  21%  71%  8%  rostrata  CHAPTER 6 CONCLUSIONS  6 . I R e l a t i o n s h i p s Which E x i s t  Between V e g e t a t i o n  P a t t e r n s And  Soi1 Parameters In A S i n g l e Wetland One o f t h e m a j o r f a c t o r s c o n t r o l l i n g v e g e t a t i o n this  wetland  reflects  the height  flooding the  during  type  of  distinguish the  appears  to  be  the e l e v a t i o n of the s i t e ,  above t h e water  periods  vegetation between  patterns i n  table  and  the  of h i g h water l e v e l s . classification  used,  t h e two c o m m u n i t y t y p e s  degree  of  D e p e n d i n g upon elevation  could  a t the extremes of  g r a d i e n t , o r a s i n t h e g r o u p i n g s f o r m e d by c l u s t e r a n a l y s i s ,  e l e v a t i o n c o u l d d i s t i n g u i s h between a l l of t h e community The and  group of parameters which a r e r e l a t e d t o s o i l  salt  content;  pH  in  water,  c a l c i u m , magnesium, a n d e l e c t r i c a l be  which  important  of v e g e t a t i o n dryer  in controlling  c o n d u c t i v i t y , a l s o appear pattern.  important,  end of t h e g r a d i e n t , t h e s o i l s  combination  vegetation  of the  Carex  from a l l o t h e r s  to  be  related  to  praegracilis s o i l s b a s e d on  c o u l d a l s o be  b a s e d on t h i s g r o u p o f p a r a m e t e r s .  t h i r d major f a c t o r c o n t r o l l i n g  appears  The method  In the t a b u l a r a n a l y s i s of the  t h e s o i l s o f t h e Hordeum c o m m u n i t y t y p e  distinguished The  of parameters.  to  but i n a l l cases t h e  c o m m u n i t y t y p e , c o u l d be d i s t i n g u i s h e d f r o m o t h e r this  reaction  pH i n CaC12, c a r b o n a s C 0 3 ,  the vegetation  a n a l y s i s was a g a i n  types.  the  the  organic  vegetation  pattern  matter content  of t h e  soils.  This  factor,  carbon  and  n i t r o g e n parameters, could d i s t i n g u i s h the s o i l s of  the  lower  types  end o f t h e  from a l l other  f o r m e d by t h e c o m b i n a t i o n  gradient, soils.  the  Carex  of  the  rostrata  organic  community  56  Therefore controlled pH,  high  the  vegetation  p a t t e r n a p p e a r s t o be  by t h e w a t e r l e v e l , w h i c h i s r e f l e c t e d s a l t content  of the d r i e r  matter production  and  accumulation  regions.  The  the  gradient  distinct  vegetation  statistically  of  c o m m u n i t i e s a n d by s o i l  separated  on  the  in  the  r e g i o n s , and t h e h i g h  of o r g a n i c  extremes  dominantly  basis  in  the  high levels wetter  a r e c h a r a c t e r i z e d by types  of  which  these  can  be  controlling  factors. The into  intermediate  various  employed. can  be  community  types,  shown  to  occur  on  significantly different  i n those  the v e g e t a t i o n  upon  separated the  method  defined  significantly different types,  be c o n t r o l l i n g  be  c a n be  system of f o u r v e g e t a t i o n  are  can  depending  G e n e r a l l y , two c o m m u n i t y t y p e s  simplified which  r e g i o n of the g r a d i e n t  occurring  soils. on  A  soils  p a r a m e t e r s shown t o  p a t t e r n , c a n be d e v e l o p e d .  6-. 2 M e t h o d s Of V e g e t a t i o n A n a l y s i s R e s u l t i n g I n G r o u p i n g s Can Be E a s i l y  which  I d e n t i f i e d And W h i c h R e f l e c t S i g n i f i c a n t  Which  Variation  In S o i 1 P r o p e r t i e s The  groups  c o u l d be e a s i l y or  absence  resulting  from t a b u l a r a n a l y s i s of  i d e n t i f i e d i n the f i e l d ,  of  four  dominant  formed  distributed  by  more  d e r i v e d by f a c t o r Cluster appear  to  this  method  closely  to  and c l u s t e r  analysis show  the  of  soil have  the  units. also  pattern  presence  The  been of  community  shown soil  to  be  groupings  analysis.  vegetation  greatest  the  s p e c i e s , a n d h a v e been shown t o  delineate- s i g n i f i c a n t l y d i f f e r e n t types  b a s e d on  vegetation  delineated  sensitivity  to  groups which water  level  variations. and  However,  overall  be  Groups  every  was  formed  in soil  by  Coenos  properties  analysis  along  found  difference  in  the  other  classification  of  delineated  the  in soil  methods types  of which  by  tabular  identification Due  to  parameters  analysis  overlapping  systems.  Field  since  community  type,  the a key  simply.  classifying  vegetation  correspond  to  the  has  significant the s o i l  classification  systems.  ranges  groupings i t i s not p o s s i b l e , with  of s o i l  This  w o u l d be more s u i t a b l e f o r f i e l d  w h i c h show s i g n i f i c a n t  praegracilis  related  d a t a and t h e r e f o r e  However,  than would t h e other the  In  occurs.  p r o p e r t i e s , a n d e a c h method r e f l e c t s  parameters s l i g h t l y d i f f e r e n t l y . defined  elevation  be d e v e l o p e d r e l a t i v e l y  community  variation  these  well.  i n the properties  n o t be d i f f i c u l t  was b a s e d upon i n c i d e n c e  to the types could  very  classification  i d e n t i f i c a t i o n of these u n i t s should  Each  of  appear t o e x p l a i n the  the gradient  r e a c t i o n and s a l t c o n t e n t and  not  values  identification  values  difficult.  group, a s i g n i f i c a n t  to s o i l  g r o u p i n g s a r e b a s e d on c o v e r  p l o t s i m i l a r i t y and f i e l d  units could  variation  the  to  chemical properties  of  many  of  d i f f e r n c e s between the exception  of  make a c c u r a t e  the  soil  vegetation the  Carex  p r e d i c t i o n s of  associated  with  vegetation  s t u d y show d i s t i n c t  plant  communities  communities.  6 . 3 Management The growing chemical  Implications  results in  of t h i s  soils  properties  which  exhibit  occurring  significant  differences  in  w i t h i n an e l e v a t i o n r a n g e o f o n l y  58  6 cm.  The p a t t e r n o f t h e s e c o m m u n i t i e s  by t h e w a t e r duration  level,  of  distribution elevated  t h e r e f o r e any m o d i f i c a t i o n  flooding  should  have  of p l a n t s p e c i e s .  pH  appears  appears  to  a  high  related  to  m o i s t u r e g r a d i e n t , a l o w e r i n g of the water result  T h i s c o u l d cause  praegracilis,  types.  A  salt  and  practice  for agricultural  the  of  result,  of  water  purposes, uses,  type  addition, others, wetland features  as f i s h and w i l d l i f e  few o f t h e w e t l a n d s therefore  will of  could  a  Although  in  time,  i n the of t h e  be  very  rostrata  the  water  of the Carex modifications  for agricultural to  other  land  r e a r i n g and f e e d i n g a r e a s .  modification  wetlands  relation  i n t h i s area  e f f e c t many o t h e r s . these  soils  Raising  a p p e a r t o be u s e f u l  t h e y must be c o n s i d e r e d  such  end o f t h e  p r o d u c t i o n because Carex  t y p e b e c o m i n g more e x t e n s i v e . may  and  t a b l e may, o v e r  over time, i n the d i s t r i b u t i o n  table  content  C a l a m a g r o s t i s community  this  rostrata the  the  the d r i e r  i s a p r e f e r r e d s p e c i e s f o r hay p r o d u c t i o n . may  and  on  a increase i n the d i s t r i b u t i o n  Hordeum  management  deleterious  table  effect  i n an i n c r e a s e i n t h e s a l t c o n t e n t o f t h e  wetland. Carex  to the l e v e l  marked  Since  be  t o be c o n t r o l l e d  of  are  the  water  F u r t h e r study  will  be  independent  of  i n one  i n t o t h e dynamic  necessary  management r e c o m m e n d a t i o n s s h o u l d be made.  level  In  before  such  59  LITERATURE CITED A l l i s o n , L . E . a n d C. D. M o o d i e . 1 9 6 5 . C a r b o n a t e . p. 1 3 7 9 - 1 3 9 6 . In: C.A. B l a c k ( e d ) M e t h o d s o f s o i l a n a l y s i s . P a r t 2. C h e m i c a l a n d m i c r o b i o l o g i c a l p r o p e r t i e s . ASA M o n o g r a p h s 9. Madison Wisconsin. Annas, R.M. a n d Coupe, R. 1 9 7 9 . B i o g e o c l i m a t i c zones and subzones of the C a r i b o o f o r e s t region. British Columbia. M i n i s t r y o f F o r e s t s . I n f o r m a t i o n S e r v i c e s B r a n c h . 103 p. Braun-Blanquet, J . 1932. P l a n t s o c i o l o g y ; t h e study of p l a n t communities. ( T r a n s l . by G.D. Fuller and H.S.Conard.) Transl. o f 1 s t e d . o f P f l a n z e n s o z i o l o g i e ( 1 9 2 8 ) . McGrawH i l l , New Y o r k a n d L o n d o n . 438 p. B r e m n e r , J.M. 1 9 6 5 . T o t a l N i t r o g e n , p . 1 1 4 9 - 1 1 7 8 . I n : C.A. Black (ed) Methods of s o i l a n a l y s i s . Part 2. C h e m i c a l a n d microbiological p r o p e r t i e s . ASA M o n o g r a p h 9. Madison, Wisconsin. Broadbent, F.E. 1 9 6 5 . O r g a n i c m a t t e r , p . 1 3 9 7 - 1 4 0 0 . I n : C.A. B l a c k ( e d ) M e t h o d s o f s o i l a n a l y s i s . P a r t 2. C h e m i c a l a n d microbiological p r o p e r t i e s . ASA M o n o g r a p h 9. M a d i s o n , Wisconsin. Canada Soil Survey Committee, Subcommittee on classification. 1978. The Canadian system of c l a s s i f i c a t i o n . Can. Dept. A g r i c . P u b l . 1646. Supply S e r v i c e s C a n a d a , O t t a w a , O n t . 164 p. Cattell, R.B. 1 9 6 5 . F a c t o r B i o m e t r i c s 21: 190-210.  analysis:  purpose  and  soil soil and  models.  C e s k a , A., M.A.M. B e l l , J.W. v a n B a r n e v e l d , E.M. H a g m e i e r , J.W. Arlidge a n d M. K o v a t s . 1 9 7 5 . Coenos 1. P r o c e e d u r e s f o r v e g e t a t i o n data processing in British Columbia. Biocon R e s e a r c h L t d . , V i c t o r i a , B.C. Mimeo 31 p. Ceska, A. a n d H. Roemer, identifying species-releve V e g e t a t i o 23:255-277.  1971. A computer program f o r groups i n vegetation studies.  Chasen, S. 1 9 7 9 . BMDP 6D B i v a r i a t e ( s c a t t e r ) p l o t s , p 230-243. I n : W.J. D i x o n a n d M.B. Brown ( e d s ) BMDP-79 Biomedical c o m p u t e r p r o g r a m s P - s e r i e s . 880 p . Clements, F.E. 1 9 1 6 . P l a n t succession. An a n a l y s i s o f t h e d e v e l o p m e n t o f v e g e t a t i o n . C a r n e g i e I n s t . , W a s h i n g t o n . 512 PDixon, W.J. a n d M.B. Brown (ed) 1979. C o m p u t e r P r o g r a m s P - S e r i e s . 880 p . D o k u c h a e v , V.V. 1 8 9 8 , W r i t i n g s  BMDP-79  Biomedical  ( i n R u s s i a n ) V o l . 6, p 3 8 1 , 1 9 5 1 .  60  A k a d , Nauk, Moscow, f r o m J e n n y , H. 1 9 8 0 . The s o i l o r i g i n a n d b e h a v i o r . S p r i n g e r - V e r l a g New Y o r k  resource,  E n g e l m a n , L. 1 9 7 9 . BMDP 2M C l u s t e r a n a l y s i s o f c a s e s , p 633-642 In: W.J. D i x o n a n d M.B. Brown ( e d s ) BMDP-79 B i o m e d i c a l c o m p u t e r p r o g r a m s P - s e r i e s . 880 p. F r a n e , J . a n d R. J e n r i c k 1 9 7 9 . BMDP 4M F a c t o r a n a l y s i s p 656684. I n : W.J. D i x o n a n d M.B. Brown ( e d s ) BMDP-79 B i o m e d i c a l c o m p u t e r p r o g r a m s P - s e r i e s . 880 p. Greweling,T. a n d M. P e e c h . 1 9 6 5 . C h e m i c a l s o i l t e s t s . New S t a t e C o l l e g e o f A g r i c u l t u r e B u l l . 960 O c t o b e r 47 p.  York  H e s s e , P.R. 1 9 7 1 . A t e x t b o o k o f M u r r a y L t d . L o n d o n 520 p.  John  soil  chemical  analysis.  Hitchcock, C.L. a n d A. C r o n q u i s t 1973. F l o r a of t h e P a c i f i c Northwest. University of Washington Press, Seattle, W a s h i n g t o n . 730 p. Holland, S.S. 1964. Landforms of p h y s i o g r a p h i c o u t l i n e . B.C. D e p t . o f R e s o u r c e s , B u l l . No. 48 138 p . Jenny, H. 1 9 4 1 . F a c t o r s Y o r k . 281 p.  of  soil  British Columbia:A Mines and Petroleum  f o r m a t i o n . M c G r a w - H i l l , New  M c L a r e n , K.A. 1 9 7 3 . Wet meadow c l a s s i f i c a t i o n s t u d y ( C o o p e r a t i v e with D r . B r i n k , U.B.C.) A g r i c u l t u r e Canada, Research S t a t i o n , K a m l o o p s , B.C. A n n u a l r e p o r t . Mimeo 7 p. Major, J . 1951. A ecology. Ecology  functional, facrorial 32: 392-412.  approach  to plant  M i l l a r , J.B. 1973. V e g e t a t i o n changes i n s h a l l o w marsh wetlands under improving moisture regimes. Can. J . B o t . 51:14431457. Mueller-Dombois, vegetation P.  D. a n d H. E l l e n b e r g . 1 9 7 4 . A i m s a n d methods o f e c o l o g y . J o h n W i l e y a n d S o n s , I n c . New Y o r k 547  O l s e n , S.R. a n d L.A. Dean. 1 9 6 5 . P h o s p h o r u s p. 1 0 3 5 - 1 0 4 9 . I n : C.A. B l a c k ( e d ) M e t h o d s o f s o i l a n a l y s i s . P a r t 2. C h e m i c a l and m i c r o b i o l o g i c a l p r o p e r t i e s . ASA M o n o g r a p h 9 Madison, Wisconsin. P a t t e r s o n , J.M. a n d R.A. W h i t a k e r . 1 9 7 1 . UBC-CGROUP H i e r a r c h i c a l grouping analysis with optional contiguity constraint. U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B.C. 21 p. P r i c e , W.J. 1 9 7 8 . A n a l y t i c a l atomic absorption H e y s o n a n d Son L t d . , L o n d o n . 239 p . Runka,  G.G.  and  T.  Lewis  spectrometry.  1980. P r e l i m i n a r y w e t l a n d  managers  61  manual. Resource A n a l y s i s Environment. Unpublished.  Branch,  B.C.  Ministry  of  the  Siegel, S. 1956. Nonparametric s t a t i s t i c s f o r the b e h a v i o r a l s c i e n c e s . McGraw H i l l Book Co. I n c . New Y o r k . 312 p. S l a v i n s k i , H.C. Chilcotin.  1979. R e g i o n a l w e t l a n d c l a s s i f i c a t i o n , A g r i c u l t u r e Canada. U n p u b l i s h e d .  Cariboo-  Sneath, P.H. and R.R. Sokal. 1973. N u m e r i c a l t a x o n o m y . The principles and practice of n u m e r i c a l taxonomy. W.H. Freedman and Co. San F r a n c i s c o . 573 p. Taylor, R.L. a n d B. M a c B r y d e . 1977. V a s c u l a r p l a n t s of B r i t i s h Columbia - a d e s c r i p t i v e resource inventory. Technical Bull. No. 4. The B o t a n i c a l G a r d e n s , U n i v e r s i t y o f B r i t i s h C o l u m b i a . U.B.C. P r e s s , V a n c o u v e r , B.C. 754 p. W a l k e r , B.H. a n d R.T. C o u p l a n d . 1968. An a n a l y s i s o f v e g e t a t i o n e n v i r o n m e n t r e l a t i o n s h i p s i n S a s k a t c h e w a n s l o u g h s . Can. J. Bot. 46:509-522. Walker, B.H. and R.T. Coupland. 1970. Herbaceous wetland v e g e t a t i o n i n the aspen grove and grassland r e g i o n s of S a s k a t c h e w a n . Can. J . B o t . 4 8 : 1 8 6 1 - 1 8 7 8 . Walker, B.H. and CF. Wehrhahn. 1971 R e l a t i o n s h i p s between derived vegetation gradients and measured e n v i r o n m e n t a l v a r i a b l e s i n Saskatchewan w e t l a n d s . E c o l o g y 52:85-95. Ward,  J.H., J r . 1973. Hierarchical g r o u p i n g t o o p t i m i z e an o b j e c t i v e f u n c t i o n . J . Amer. S t a t i s t . A s s . 58:236-244.  W a r m i n g , E. 1909. O e c o l o g y o f p l a n t s . An introduction to the study of plant communities. Oxford University Press, L o n d o n . 422 p. ( M o d i f i e d E n g l i s h e d i t i o n o f o r i g i n a l D a n i s h p u b l i c a t i o n : P l a n t e s u m f u n d . 1895.) S e c o n d i m p r e s s i o n . 1925.  62  APPENDIX 1 SPECIES  Achillea millefolium Calamagrostis  L.  neglecta  C a r e x p r a e g r a c i l i s W. Carex  rostrata  Eriqeron  Yarrow  ( E h r h . ) G.M.&S. S l i m s t e m s m a l l r e e d Boott  Stokes  Clustered Beaked  l o n c h o p h y l l u s Hook.  Geum m a c r o p h y l l u m  LIST  Willd.  Spear-leaved  fleabane  Large-leaved  avens  Foxtail  Juncus a r c t i c u s  Arctic  barley rush  Potentilla  n o r v e g i c a L.  Rough  Potentilla  p e n s y l v a n i c a L.  Pennsylvania  Ranunculus  inamoenous  Unlovely  Ranunculus  occ i d e n t a l i s N u t t .  Greene  cinquefoil  Western  cinquefoil  buttercup buttercup  S o l i d a g o s p a t h u l a t a DC.  Spike-like  S t e l l a r ia longipes Goldie  Long-stalked  Taraxacum  Common d a n d e l i o n  Vicia  offic inale  americana  Muhl.  Weber  sedge  sedge  Hordeum j u b a t u m L. Willd.  field  grass  American  goldenrod starwort  vetch  APPENDIX 2 SOIL DATA  Plot No.  pH H20  101 102 103 104 105 106 107 108 109 1 10 1 1 1 1 12 1 13 1 14 1 15 207 208 209 210 211 212 213 2 14 2 15 216 217 218 2 19 220 221  8 72 8 88 8 41 8 07 8 85 8 02 8 55 8 48 8 50 8 61 8 35 8 13 8 04 8 26 8 1 1 7 92 7 59 . 7 .52 7 53 8 .22 7 .89 8 09 8 . 17 8 .08 7 .82 7 .98 7 .71 7 . 33 7 . 26 7 . 22  N pH E c. CaC12 mmhos/cm % 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 7 7 7 7 7 7 7 7 6 6 6  14 12 79 62 75 53 85 70 87 81 88 46 47 64 62 20 08 10 97 50 45 58 .61 59 .32 .45 .22 .83 .70 . 75  2 2 2 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0  51 10 30 20 50 40 90 75 80 60 30 OO 80 90 65 00 05 10 15 30 35 35 05 20 80 25 80 70 55 55  O r g - -c  C03-C  %  %  1 4 25 0 1 2 20 5 24 0 1 3 12 8 0 8 09 6 0 7 1 5 25 5 1 1 . 17 6 16 1 1 0 1 3 20 7 1G 3 0 9 1 9 31 1 2 0 40 8 41 5 2 3 1 5 27 9 1 5 28 4 14 6 1.0 1 4 20 8 1 .3 22 1 1 2 19 1 13 6 0 9 1 .4 21 3 24 4 1. 4 1. 1 17 3 36 6 2 .2 1. 7 28 9 1. 3 20 5 1 .8 33 6 1 .6 25 7 1 .7 29 8 38 1 2 .0  2 2 2 1 1 2 2 2 1 1 1 1 1 1 1 0 0  o 0 0 0 0 0 0 0 0 0 0 0 0  83 79 80 85 35 23 05 00 65 97 35 17 01 64 19 45 50 55 46 63 55 67 51 87 52 48 47 48 45 52  Ca ppm  Mg ppm  K ppm  29750 31250 34500 31250 25500 18000 33000 35250 24000 35000 18500 15250 1 1250 28750 20000 05075 04200 04200 03925 05575 04075 04925 04075 04700 05500 04525 04575 03825 03625 05125  16150 14875 12725 08125 07800 05200 08300 07000 06750 07200 09350 07175 06750 06950 06025 03525 03975 04050 03375 03700 03525 04975 03250 06100 03675 03925 04575 03425 03775 04050  0662 0612 0726 0600 0550 0475 0637 0575 0700 0725 0822 0737 0825 0725 0637 0725 0800 0812 0850 0700 1062 0837 0800 1 100 0875 0987 0887 0662 0812 1000  P ppm 47 25 34 18 07 27 10 14 18 10 20 29 37 27 28 22 38 34 52 19 63 40 20 39 55 38 36 18 34 41  6 2 2 5 5 2 7 0 5 7 5 5 7 2 5 7 5 2 3 7 9 6 5 8 7 6 5 5 0 8  B D. g/cm3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 "l 0 0 1 0 0  5 7 6 1 4 7 7 8 8 7 5 9 3 7 4 1 2 4 6 0 5 7  0 5 0 3 1 1 0 3 0 3 O 4  Of cm  Om cm  03 09 05 03 05 01 01 02 01 01 05 01 08 05 01 03 03 01 04 01 07 01 06 02 02 10 01 07  18 23 12 31 28 16 25 1 1 13 10 13 14 10 12 28 10 1 1 09 09 15 09 12 12 12 15 17 18 15 22 16  Index  Elev mm  -2 -3 01 00 01 00 -1 00 01 00 01 01 01 00 00 02 00 00 00 00 01 00 02 00 01 01 00 00 02 02  61 58 49 46 40 38 36 35 29 20 19 10 07 03 00 43 45 38 35 34 23 23 20 19 18 15 05 04 04 OO  Soil  Data  Plot No.  pH H20  pH CaC12  EC. N mmhos/cm %  . 75 . 94 .80 .43 .94 .06 .45 . 43 . 79 . 48 . 74 . 22 .47 09 48 72 90 95 85 1 1 36 53 87 35 67 44 37 18 19 07  6 .28 6 .44 6 . 34 7 . 12 6 .58 6 .71 7 . 19 7 . 15 7 .42 7 . 24 7 46 6 82 7 14 6 69 7 . 00 6 . 34 6 . 55 6 . 60 6 . 51 6 . 78 7 . 01 7 . 17 7 . 48 6 . 97 7 . 22 7 . 06 7 . 02 6 . 76 6 . 78 6 . 70  . 10 .00 .00 . 15 . 30 .40 30 60 90 80 75 0 95 1 30 0 55 0 75 0 . 80 25 10 90 50 10 10 45 55 05 0 . 95 0 . 75 0 . 80 0 . 90 1 .05  301 302 303 304 305 306 307 308 309 310 31 1 312 313 314 315 401 402 403 404 405 406 407 408 409 410 41 1 4 12 4 13 414 4 15  Continued  .3 .0 .9 .6 . 1 . 4 . 5 . 4 . 5 . 3 6 7 6 0 6 3 7 1 6 9 4 2 2 2 0 2 5 6 7 0  Org-C  % 18.8 14.0 15 25 39 20 23 22 22 23 26 31 29 42 26 20 29 16.8 27 .9 35 24 4 1 47 25 39 . 0 44 . 1 24 . 7 2 .82 2.89 1.51  C03-C  % 0 .31 0 . 33 0 .32 0 .39 0 .73 0 .34 0 40 0 41 0 46 0 44 0 46 0 48 0 47 0 70 0 41 0 26 0 40 0 38 0 24 0 48 0 40 0 82 0 . 63 0 . 39 0 . 69 0 . 63 0 . 44 0 . 58 0 . 46 0 . 36  Ca ppm 03475 03200 03125 04050 04600 03650 03825 04250 03800 03625 04700 04350 04075 04225 04 100 03875 03900 03690 03575 04500 03775 04825 05550 03175 05125 04750 03925 04200 04050 03225  Mg ppm 04625 02350 02025 03650 04200 03925 04025 03800 03250 03825 03575 04 125 04200 04050 03550 03175 03700 02925 03625 04400 02800 04900 05950 03075 05300 05200 03625 03950 03850 02700  K  ppm 1 175 0850 0750 0962 1300 1012 1037 1075 1025 1025 1 187 0850 1112 1112 0850 0687 1025 0762 0675 1037 0850 09 12 1075 1025 1075 0987 0825 0800 0800 0737  P ppm 44 . 1 39 .8 54 . 7 43 . 0 74 . 7 54 . 7 36 . 5 53 . 0 27 . 2 46 . 5 55 7 26 2 54 5 4 1 O 25 0 33 0 47 6 32 0 60 7 60 1 30 7 39 8 51 0 63 8 20 7 27 . 5 19. 7 23 . 0 2 1 .7 08 . 7  B.D. g/cm3 0 .6 0. 8 0 .6 0. 5 0. 3 0 8 0 5 1 0 0 6 0 5 0 5 0 5 0 5 0 4 0 4 0 8 0 4 0 8 0 4 0 4 0. 4 0. 4 0. 5 0. 4 0. 4 0. 4 0. 5 0. 6 0. 5  Of cm  Om cm  I ndex  E lev mm  03 05 03 06 07 03 06 04 07 03 05 03 10 03 01 04 08 04 07 05 07 01 08 01 04 01 05 01 13  08 12 15 10 10 12 1 1 13 12 12 1 1 1 1 16 16 16 10 13 10 15 10 18 09 1 1 15 20 10 20 18 2 1  01 01 00 -1 03 01 00 01 - 1 01 01 00  4 1 42 40 39 40 27 29 30 22 24 14 14 13 00 02 57 42 48 42 36 33 27 31 23 22 16 16 08 07 OO  oo 01 01  oo  01 01 01 00 01 01 02 02 02 02 02 01 02 02  APPENDIX CORRELATION  PHA PHA PHB EC N CORG CCO CA MG K P BD OF OM INDEX ELEV ACHMIL CALNEG CARPRA CARROS ERILON GEUMAC HORJUB JUNARC POTNOR POTPEN RANINA RANOCC STELON TAROFF VICAME SOLSPA  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  1 0 0 -0  -o  0 0 0 -0 -O 0 -0 0 -0 0 0 -0 0 0 0 0 0 0 0  -o  0 0 0 -0 0 0  2 0000 9692 6634 2427 1973 7834 7947 7273 4740 4523 3908 1634 3568 3973 1065 0 3249 2660 0918 0 0 4018 2136 6252 1430 O O 0 0806 O 0  PHB  3  1 0000 0 6926 -0 1276 -o 0949 0 7478 0 7228 0 7140 -0 3561 -0 3623 0 2677 -0 1556 0 2720 -0 4053 0 0617 0 0 -0 4444 0 3728 0 1425 0 0 0 0 0 1262 0 3005 0 6204 -o 0893 0 0 0 0 0 0 -0 0931 0 0 0 0  EC  4  1 0000  -o 2179 -0 0 0 0  -o -o  0 -0 0 -0 0 0 -0 0 -0 0 0 0 0 -0 -0 0 0 0 -0 0 0  1666 7522 7027 6667 2732 0531 2774 0538 1294 4423 3650 0 221 1 221 1 1223 0 0 4056 0835 1057 4732 0 0 0 1862 0 0  N  5  1.0000 0 9655 -0 1880 -0 3285 -0 0294 0 5064 0 3221 -0 6279 0 0344 -0 2198 0 2620 -0 4181 0 0 -0 1297 0 1284 0 3836 0 0 0 0 -0 8408 0 1644 0 1641 0 4799 0 0 0 0 0 0 -0 0936 0 0 0 0  CORG  6  1 0000 -0 1 193 -0 2504 0 0229 0 4670 0 3105 -0 6207 0 0147 -0 1586 0 2835 -0 4191 0 0 -0 1682 0 0569 0 4087 0 0 0 0 -0 61 15 ' 0 1578 0 2588 0 4157 0 0 0 0 0 0 -0 1439 0 0 0 0  3 MATRIX  CCO  1 0 0 -0 -0 0 -0 0  -o  0 0 -0 0 -0 0 0 0 -0 0 -0 0 0 0 -0 0 0  7  0000 9342 8986 5425 3565 1991 1563 3208 4697 3027 0 1485 0221 0466 0 0 4052 0339 0875 3127 0 0 0 1 1 18 0 0  CA  8  1 0000 0 8100 -o 5946 -0 4505 0 3114 -0 1213 0 3709 -0 4276 O 2497 0 0 -0 0715 -o 2305 -0 1 141 0 0 0 0 0 5335 -0 031 1 0 0416 -0 3513 0 0 0 0 0 0 -0 1562 0 0 0 0  MG  9  1 0000 -0 3780 -0 2323 0 1243 -0 1218 0 3044 -0 4763 0 3222 0 0 -0 1901 0 6273 0 0259 0 0 0 0 0 4795 -0 1260 0 1 120 -0 2114 0 0 0 0 0 0 -0 0661 0 0 0 0  K  10  1 0000 0 6384 -0 3971 0 0767 -0 4239 0 3649 -0 2116 0 0 -0 1 135 -0 1773 0 1579 0 0 0 0 -o 2294 0 0678 -0 1781 0 2941 0 0 0 0 0 0 0 1453 0 0 0 0  P  11  1 oooo -0 3556 0 0928 -o 3878 0 1 194 0 1572 0 0 0 0931 0 4304 -0 1975 0 O 0 0 -0 0349 -0 0876 -0 0604 0 6555 0 0 0 0 O 0 0 1730 0 0 0 0  BD  12  1 0000 -0 2153 0 1785 -0 1651 0 3732 0 0 -0 0634 -0 1984 -0 2191 0 0 0 0 0 5744 -0 1456 1 0243 -O 6814 0 0 0 0 0 0 0 1 195 0 0 0 0  Correlation Matrix OF  Continued OM  13 OF OM INDEX ELEV ACHMIL CALNEG CARPRA CARROS ERILON GEUMAC HORJUB JUNARC POTNOR POTPEN RANINA RANOCC STELON TAROFF VICAME SOLSPA  13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  1 0 0 O 0 0 0 -o 0 0 0 0 -0 0 0 0 O -0 0 0  0000 2902 0667 0229 0 1205 0 0094 0 0 7802 1 151 6401 4781 0 0 0 3063 0 0  JUNARC 24 JUNARC POTNOR POTPEN RANINA RANOCC STELON TAROFF VICAME SOLSPA  24 25 26 27 28 29 30 31 32  1 -0 -0 O 0 0 0 O O  0000 6694 2646 0 0 0 2829 0 0  1 -o -0 O 0 O 0 0 0 0 -0 0 0 0 0 0 -0 0 0  INDEX 14 OOOO 1343 1079 0 0750 5840 2823 0 0 9452 2268 5865 1 180 0 0 0 4386 0 0  POTNOR 25 1 0 0 0 0 -0 0 O  0000 0 0 0 0 2077 0 0  ELEV  1 OOOO -0 3587 0 0 -0 1716 - 1 4254 0 2043 0 0 0 0 -0 7408 0 0295 0 0867 0 3360 0 O 0 0 O 0 0 0437 0 0 O O POTPEN 26  1 0 0 0 -0 0 0  16  15  OOOO 0 0 0 3447 0 0  1 0 0 0 -0 0 0 0 -0 -0 -0 0 0 0 0 0 0  OOOO 0 2672 3709 6372 0 0 6622 1444 9367 3934 0 0 0 2187 0 0  RANINA 27  0 0 0 0 0 0  0 0 0 0 0 0  ACHMIL 17  O 0 0 0 0 0 0 0 0 0 O 0 O 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  RANOCC 28  0 0 0 0 0  0 0 0 O 0  CALNEG 18  1 OOOO 0 0 -0 4099 0 0 0 0 0 8137 -0 1 113 - 1 32 13 -0 2466 0 0 0 0 0 0 0 0525 0 0 0 0 STELON 29  0 0 0 0  0 0 0 0  CARPRA 19  1 0 0 0 -0 0 0 0 0 0 0 0 0 0  OOOO 0 0 0 1336 5238 0 0 0 0 0 0 0 0  TAROFF 30  1 OOOO 0 0 0 O  CARROS 20  1 0 0 0 0 0 0 0 0 0 -0 0 0  OOOO 0 0 0 1008 4992 8919 0 0 0 3215 0 0  ERILON 21  0 0 0 0 0 0 O 0 0 O 0 0  0 O 0 0 0 0 0 0 0 0 O 0  VICAME 31  SOLSPA 32  0 0 0 0  0 0  GEUMAC 22  0 0 0 0 0 0 O O 0 0 0  0 0 0 0 0 0 0 0 0 0 0  HORJUB 23  1 -0 0 0 0 0 0 -0 0 0  OOOO 3016 0 0 0 0 0 9567 0 0  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095246/manifest

Comment

Related Items