Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Generic limits and systematics of boykinia and allies (Saxiferagaceae) Gornall, R. J. 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1980_A1 G67.pdf [ 18.26MB ]
Metadata
JSON: 831-1.0095225.json
JSON-LD: 831-1.0095225-ld.json
RDF/XML (Pretty): 831-1.0095225-rdf.xml
RDF/JSON: 831-1.0095225-rdf.json
Turtle: 831-1.0095225-turtle.txt
N-Triples: 831-1.0095225-rdf-ntriples.txt
Original Record: 831-1.0095225-source.json
Full Text
831-1.0095225-fulltext.txt
Citation
831-1.0095225.ris

Full Text

GENERIC LIMITS AND SYSTEMATICS OF BOYKINIA AND ALLIES (SAXIFRAGACEAE) by RICHARD JOHN GORNALL B . S c , The U n i v e r s i t y of St. Andrews, 1 9 7 5 M.Sc., The U n i v e r s i t y of Birmingham, 1 9 7 6 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department of Botany) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA June 1 9 8 0 © Richard John G o r n a l l , 1 9 8 0 In presenting th i s thes i s in pa r t i a l fu l f i lment of the requirements f o r an advanced degree at the Univers i ty of B r i t i s h Columbia, I ag ree that the L ibrary shal l make it f ree ly ava i l ab le for r e f e r e n c e and s tudy . I further agree that permission for extensive copying of th is thesis for scho lar ly purposes may be granted by the Head of my Department o r by his representat ives. It is understood that copying o r p u b l i c a t i o n o f th is thes is for f inanc ia l gain sha l l not be allowed without my writ ten permission. Department of BOTANY ' The Univers i ty of B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 Date 21st J u l y 1980 i i ABSTRACT The goals of the study were to define the l i m i t s of the genus Bo y k i n i a and to c l a r i f y i t s i n f r a g e n e r i c taxonomy. As circumscribed by Engler, B o y k i n i a contained nine species i n three s e c t i o n s . Three segregate genera have been described however, and at i t s most fragmented, Engler's B o y k i n i a would comprise: B o y k i n i a , Neoboykinia, P e l t o b o y k i n i a and Tel e s o n i x . The s i t u a t i o n i s complicated by other c l o s e l y r e l a t e d genera, whose l i m i t s a l s o need c l a r i f i c a t i o n . Narrowly d e f i n e d , they i n c l u d e S u k s d o r f i a , Hemieva, Hieronymusia, Bolandra and S u l l i v a n t i a . Methods of approach i n c l u d e d an examination of a wide range of herbarium m a t e r i a l to al l o w morphological comparisons of a l l t a x a . L i v e p l a n t s of almost a l l species were maintained i n c u l t i v a t i o n and some anatomical observations were made, and an i n t r a - and i n t e r - g e n e r i c h y b r i d -i z a t i o n programme was conducted, on these. The trichome complements of each genus were i n v e s t i g a t e d . P o l l e n grains and seeds were examined by l i g h t and scanning e l e c t r o n microscopy. Chromosome numbers were confirmed or e s t a b l i s h e d f o r the f i r s t time f o r a l l but three s p e c i e s . A complete f l a v o n o i d a n a l y s i s of r e p r e s e n t a t i v e s of a l l genera, i n c l u d i n g a l l species of B o y k i n i a s . l . , was conducted. General e c o l o g i c a l observations were made during f i e l d work i n Alaska and the Western C o r d i l l e r a of Canada and the U.S.A. The r e s u l t s of these i n v e s t i g a t i o n s confirmed that the genera form a c l o s e l y r e l a t e d group. However, much of the evidence combined to suggest the f o l l o w i n g conclusions: 1) B o y k i n i a comprises nine species i n three s e c t i o n s ( s e c t i o n B o y k i n i a i n c l u d e s B. a c o n i t i f o l i a , B. intermedia, B. l y c o c t o r i i f o l i a , B.  o c c i d e n t a l i s , B. r o t u n d i f o l i a and B. liia j or; s e c t i o n R e n i f o l i u m i n c l -udes B ^ r i c l i a ^ d ^ o j r i i _ ; and a new s e c t i o n , T e l e s o n i x , i n c l u d e s i i i B. jamesii and B_. heucherif ormis I 2) Peltoboykinia tellimoides i s recognised as a d i s t i n c t monotypic genus, with as much a f f i n i t y with Saxifraga as with Boykinia. I t has two subspecies: ssp. tellimoides and ssp. watanabei. 3) Suksdorfia i s expanded to include Hemieva and Hieronymusia, making a t o t a l of three species: S_. ranunculif o l i a , S. v i o l a c e a and S.  alchemill o i d e s. The range of v a r i a t i o n i n Suksdorfia i s s i m i l a r to that i n Boykinia and the two genera are considered to have evolved i n p a r a l l e l . 4) Bolandra i s p r o v i s i o n a l l y retained as a separate genus. I t i s very close to Suksdorf i a , and further work on B_. c a l i f o r n i c a , which i s closes t i n terms of gross morphology, may lead to a merging of these genera. 5) S u l l i v a n t i a i s a d i s t i n c t genus. Geographical d i s t r i b u t i o n s , together with the taxonomic data, allowed some speculation on the evolutionary r e l a t i o n s h i p s of the genera. Boykinia i s probably a T e r t i a r y r e l i c t , since i t has a disjunct d i s t r i b u t i o n between Japan, western North America and eastern North America. I t may share a common ancestor (a Sax i f r a g a - l i k e plant) with Peltoboykinia, which i s endemic to Japan. The-, remaining;Hgenera*have<'probably evolved from Boykinia stock by adaptive r a d i a t i o n into d i f f e r e n t h a b i t a t s . S u l l i v a n t i a , an i n -habitant of wet c l i f f faces, probably diverged f i r s t . Suksdorfia and Bolandra. c h a r a c t e r i s t i c of open and shaded, spring-wet, summer-dry habitats r e s p e c t i v e l y , probably evolved l a t e r , i n response to the onset of such a climate i n the l a t e Pliocene. i v Table of Contents Page Ab s t r a c t • i i L i s t of Tables i x L i s t of Figures and I l l u s t r a t i o n s x i Acknowledgements . . . . . . . x i v I . INTRODUCTION . . . . . . . . . . . 1 I I . RHIZOMES 5 Root p a r a s i t i s m 10 I I I . LEAVES AND STIPULES . . . . . . . . . . . . . 11 Basal leaves 11 Shape and o u t l i n e 11 Texture 21 Venation 21 Stomata . 25 Cauline leaves and s t i p u l e s 26 IV. TRICHOMES • . 35 Developmental r e l a t i o n s h i p s 36 Observations 43 Taxonomic inferences 46 Environmental m o d i f i c a t i o n of v e s t i t u r e i n B o y k i n i a o c c i d e n t a l i s 49 Function of the glandular trichomes 51 V. INFLORESCENCE STRUCTURE ' 52 Environmental m o d i f i c a t i o n of i n f l o r e s c e n c e s t r u c t u r e . 59 VI. . THE FLOWER 63 Calyx 63 C o r o l l a 63 P e t a l movements 71 V Table of Contents cont'd. Page VI . . -THE FLOWER cont'd. Androecium 71 Stamen movements 72 Gynoecium 72 F l o r a l anatomy 81 Embryology 82 Taxonomic inferences 85 T e r a t o l o g i c a l phenomena 86 V I I . POLLEN . . . . . . . • • . . ; • • ' • • • • • • • 87 M a t e r i a l s and methods 87 Microsporogenesis 87 Shape and s i z e 88 Apertures 89 Tectum 91 Taxonomic inferences . . . 96 V I I I . SEEDS . . . . . . . ' . • . . ' • . • . . . . .98 Observations . . . . . . . . . . . . . . . 98 Taxonomic inferences 109 IX. SEEDLINGS AND EARLY DEVELOPMENT • . . .112 M a t e r i a l s and methods 112 Observations 112 X. CYTOLOGY 118 Methods . . . . . • 118 Results 119 I n f r a s p e c i f i c geographical v a r i a t i o n 126 Karyotypes 126 Di s c u s s i o n 126 v i Table of Contents cont'd. Page XI. BREEDING STUDY 130 M a t e r i a l s and methods 130 Experimental p o l l i n a t i o n s 131 Seed germination . . 132 I n t r a - s p e c i f i c cross p o l l i n a t i o n s . . . 132 S e l f p o l l i n a t i o n s 135 Nature of the s e l f - i n c o m p a t i b i l i t y system . . . . . 135 Inbreeding depression . . . . . 136 I n t e r - s p e c i f i c p o l l i n a t i o n s 137 I n t e r - s p e c i f i c crosses i n B o y k i n i a 141 Hybrid i n v i a b i l i t y and morphology . . . . . . . . 143 I n t e r - s p e c i f i c crosses i n Suks d o r f i a . . . . . . . 144 In t e r - g e n e r i c crosses 147 X I I . FLAVONOID CHEMISTRY . . . . . . 149 Previous chemical i n v e s t i g a t i o n s of B o y k i n i a and a l l i e s . 149 Methods 150 P l a n t m a t e r i a l 150 Chromotography and spectroscopy . . . . . . . 150 E x t r a c t i o n and i s o l a t i o n 152 I d e n t i f i c a t i o n of f l a v o n o i d s 153 I d e n t i f i c a t i o n of a c y l a t e d f l a v o n o i d s 154 Results 156 Di s c u s s i o n 170 Disease r e s i s t a n c e . . . 170 S t a b i l i t y of expression 172 Taxonomic conclusions . . . . . 172 vii Table of Contents cont'd. Page XII. FLAVONOID CHEMISTRY cont'd. Evolutionary i n t e r p r e t a t i o n 175 P a r a l l e l i s m . . . . 176 XIII. ECOLOGY . . . . . . . . . . . . . . . . . . 178 Habitats . . . . . . . . . 178 Boykinia . . . . 178 Peltoboykinia 180 Suksdorfia 180 Bolandra 181 S u l l i v a n t i a 181 Discussion . . 181 Seed Dispersal 183 Phenology and p o l l i n a t i o n . . . . . 184 Disease and predators 190 XIV. GENERIC LIMITS AND TAXONOMY . • . . . . 1 9 2 Taxonomic approach 192 Synopsis of the genera and species . . . . . . . 194 Peltoboykinia . . • • . 194 Boykinia 198 Suksdorfia 224 Bolandra 230 XV. PHYTOGEOGRAPHY AND EVOLUTION . . . . 234 Methods of approach 234 The c l a d i s t i c approach 235 Summary of some important T e r t i a r y events i n the northern hemisphere . 235 Evolution of Boykinia and a l l i e s . ' . . . . . . . 238 v i i i Table of Contents cont'd. Page XV. PHYTOGEOGRAPHY AND EVOLUTION cont'd. B o y k i n i a . . . . . . . . . . 240 P e l t o b o y k i n i a 248 Bolandra . . . . . . . 248 Suksd o r f i a 249 XVI. ETHNOBOTANY . . . . . . . . 254 H o r t i c u l t u r e . . 254 Medicine . . . . . . 255 References 256 Appendices 270 1. D e t a i l s of c o l l e c t i o n s and herbarium l o c a t i o n s of p l a n t m a t e r i a l c i t e d i n the study . . . . . . . . 270 2. Solvent systems and media used i n the t h i n - l a y e r chromatographic a n a l y s i s of f l a v o n o i d compounds . . . 276 3. UV S p e c t r a l absorption maxima (nm) of some of.the f l a v o n o i d s encountered i n B o y k i n i a and a l l i e s . . . . 2 7 7 i x L i s t of Tables Table Page I . L i s t of taxa recognised and inc l u d e d i n the main body of the study 2 I I . Frequency of v e i n l e t terminations and areolae i n species of B o y k i n i a , P e l t o b o y k i n i a , S u k s d o r f i a , Bolandra and S u l l i v a n t i a 25 I I I . Stomatal s i z e s and frequency on upper surfaces of leaves . . . . . . , 27 IV. L i s t of m a t e r i a l used i n the trichome,study . . . 36 V. D i s t r i b u t i o n of trichome s t r u c t u r a l types among B o y k i n i a , P e l t o b o y k i n i a , S u k s d o r f i a , Bolandra, S u l l i v a n t i a , P e l t i p h y l l u m and Jepsonia 44 VI. Trichome s t r u c t u r e s i n i n f l o r e s c e n c e branches of Sa x i f r a g a species 47 V I I . V a r i a t i o n i n trichome d e n s i t y among e i g h t populations of B o y k i n i a o c c i d e n t a l i s grown i n a growth chamber . 50 V I I I . Protandry and n e c t a r i e s i n some species c u l t i v a t e d i n a growth room . 79 IX. P a r t i a l summary of f l o r a l anatomy i n S a x i f r a g i n a e species w i t h a x i l e p l a c e n t a t i o n 83 X. M a t e r i a l used i n the p o l l e n study 88 XI . Sizes of a i r - d r i e d p o l l e n grains mounted i n Hoyer's Medium 90 X I I . L i s t of m a t e r i a l used i n the seed study 99 X I I I . Seed c o l o u r , shape and s i z e , and t u b e r c l e length i n B o y k i n i a , P e l t o b o y k i n i a , S u k s d o r f i a , Bolandra, Jepsonia, P e l t i p h y l l u m and S u l l i v a n t i a 100 XIV. Chromosome numbers p r e s e n t l y and p r e v i o u s l y found i n the genera B o y k i n i a , P e l t o b o y k i n i a , S u k s d o r f i a , Bolandra and S u l l i v a n t i a 123 XV. Tentative karyotypes f o r species of B o y k i n i a , P e l t o b o y k i n i a , Bolandra and S u l l i v a n t i a . . . . 127 XVI. L i s t of c u l t i v a t e d m a t e r i a l 131 XVII. Seed set and c o m p a t i b i l i t y from i n t r a - s p e c i f i c and cross and s e l f p o l l i n a t i o n s 133 X V I I I . Seed set and g e r m i n a b i l i t y from i n t e r - s p e c i f i c and i n t e r - g e n e r i c cross p o l l i n a t i o n s 138 X L i s t of Tables cont'd. Table Page XIX. Populations sampled, and dry weights of t i s s u e used, f o r f l a v o n o i d analyses 151 XX. Flavonoid behaviour i n UV l i g h t 154 XXI. The d i s t r i b u t i o n of f l a v o n o i d s i n B o y k i n i a , Suks-d o r f i a , P e l t o b o y k i n i a , Bolandra and S u l l i v a n t i a . 157 XXII. P a r t i a l summary of Table XXI, showing the taxo-nomic d i s t r i b u t i o n of some important f l a v o n o i d s t r u c t u r a l features . • 171 XXIII. Flowering times i n B o y k i n i a , P e l t o b o y k i n i a , S u k s d o r f i a , Bolandra and S u l l i v a n t i a 185 XXIV. Summary of flower v i s i t o r s ( p o l l i n a t o r s ? ) of the Sax i f r a g i n a e 185 XXV. Flower v i s i t o r s ( p o l l i n a t o r s ? ) of some B o y k i n i a and S u k s d o r f i a species 188 XXVI. Summary of the d i s t r i b u t i o n of some important taxonomic characters among the genera 195 XXVII. Characters supposedly d i a g n o s t i c of taxa segregated from B o y k i n i a o c c i d e n t a l i s T. & G. . . 216 XXVIII. Morphological v a r i a t i o n between B o y k i n i a j a m e s i i and B_. heucheriformis 222 XXIX. F l o r a l d i f f e r e n c e s separating S u k s d o r f i a r a n u n c u l i f o l i a , S. a l c h e m i l l o i d e s and S_. v i o l a c e a . 226 XXX. Morphological v a r i a t i o n i n Bolandra •. 233 XXXI. P u t a t i v e l y e v o l u t i o n a r y i n t e r p r e t a t i o n of some character s t a t e sequences, together w i t h a h y p o t h e t i c a l e v o l u t i o n a r y t r e e 236 x i L i s t of Figures and I l l u s t r a t i o n s Figure Page 1. Rhizome morphology i n P e l t o b o y k i n i a and B o y k i n i a . . 6 2. Rhizome morphology i n B o y k i n i a , Bolandra and Suk s d o r f i a 8 3. Basal l e a f shapes and o u t l i n e s of B o y k i n i a o c c i d e n t a l i s 12 4. Basal l e a f shapes and o u t l i n e s of B o y k i n i a species . . 13 5. Basal l e a f shapes and o u t l i n e s of B o y k i n i a ma.jor . . .14 6. Basal l e a f shapes and o u t l i n e s of B o y k i n i a species . . 15 7. Basal l e a f shapes and.outlines of B o y k i n i a s e c t i o n T e l e s o n i x , and Suk s d o r f i a 16 8-. Ba s a l l e a f shapes and o u t l i n e s of Bolandra . . . . 17 9. Basal l e a f shapes and o u t l i n e s of P e l t o b o y k i n i a  t e l l i m o i d e s 18 10. Leaf venation v i s i b l e to the naked eye i n species of Bo y k i n i a 23 11. Leaf venation v i s i b l e to the naked eye i n species of P e l t o b o y k i n i a , S u k s d o r f i a , Bolandra and S u l l i v a n t i a . 24 12. S t i p u l e morphology i n B o y k i n i a s e c t i o n B o y k i n i a . . . 29 13. S t i p u l e morphology i n B o y k i n i a s e c t i o n s Telesonix and Re n i f o l i u m ; and i n P e l t o b o y k i n i a 31 14. S t i p u l e morphology i n S u k s d o r f i a and Bolandra . . . 33 15. Semi-diagrammatic i l l u s t r a t i o n s of m u l t i c e l l u l a r g landular trichomes i n B o y k i n i a . . . 37 16. Semi-diagrammatic i l l u s t r a t i o n s of m u l t i c e l l u l a r g landular trichomes i n B o y k i n i a 38 17. Semi-diagrammatic i l l u s t r a t i o n s of m u l t i c e l l u l a r glandular trichomes i n P e l t o b o y k i n i a t e l l i m o i d e s . . 39 18. Semi-diagrammatic i l l u s t r a t i o n s of m u l t i c e l l u l a r g landular trichomes i n Suksdorfia and Bolandra . . . 40 19. Semi-diagrammatic i l l u s t r a t i o n s of m u l t i c e l l u l a r g landular trichomes i n S u l l i v a n t i a , Jepsonia and P e l t i p h y l l u m 41 20. Semi-diagrammatic i l l u s t r a t i o n s of eglandular trichomes . . . . . 42 x i i L i s t of Figures and I l l u s t r a t i o n s cont'd. Figure Page 21. I n f l o r e s c e n c e s t r u c t u r e i n some species of Bo y k i n i a s e c t i o n B o y k i n i a 53 22. I n f l o r e s c e n c e s t r u c t u r e i n species of B o y k i n i a and P e l t o b o y k i n i a 55 23. I n f l o r e s c e n c e s t r u c t u r e i n Suks d o r f i a and Bolandra . . 57 24. In f l o r e s c e n c e s of droughted and watered clones of Bo y k i n i a o c c i d e n t a l i s 61 25. P e t a l shapes i n B o y k i n i a s e c t i o n B o y k i n i a 65 26. P e t a l shapes i n Bo y k i n i a s e c t i o n s Telesonix and Reni f o l i u m ; and i n P e l t o b o y k i n i a 67 27. P e t a l shapes i n Suks d o r f i a and Bolandra 69 28. L o n g i t u d i n a l s e c t i o n s of flowers of some species of Boy k i n i a 73 29. L o n g i t u d i n a l s e c t i o n s of flowers of some species of Bo y k i n i a and P e l t o b o y k i n i a 75 30. L o n g i t u d i n a l s e c t i o n s of flowers of Suks d o r f i a and Bolandra • 77 31. Scanning e l e c t r o n micrographs of p o l l e n grains of species of B o y k i n i a s e c t i o n B o y k i n i a . . 92 32. Scanning e l e c t r o n micrographs of p o l l e n grains of species of B o y k i n i a s e c t i o n s R e n i f o l i u m and Te l e s o n i x , and of P e l t o b o y k i n i a , Bolandra and Su k s d o r f i a . . . . 9 4 33. Scanning e l e c t r o n micrographs of seeds of species of Bo y k i n i a s e c t i o n B o y k i n i a 101 34. Scanning e l e c t r o n micrographs of seeds of species of Bo y k i n i a s e c t i o n s R e n i f o l i u m and T e l e s o n i x , and of Suksdorf i a and Bolandra • 103 35. Scanning e l e c t r o n micrographs of seeds of species of P e l t o b o y k i n i a . S u l l i v a n t i a , Peltiphyllunu.and Jepsonia . 105 36. S i x week o l d seedlings of a) B o y k i n i a o c c i d e n t a l i s ; b) B_. intermedia; c) B_. major and d) B_. r o t u n d i f o l i a . . 113 37. S i x week o l d seedlings of a) B o y k i n i a h e u c h e r i f o r m i s ; b) B_. r i c h a r d s o n i i ; and c) P e l t o b o y k i n i a t e l l i m o i d e s ssp.watanabei . . . . 115 x i i i L i s t of Figures and I l l u s t r a t i o n s cont'd. Figure Page 38. Chromosomes of some species of Boykinia and Suksdorfia . 120 39. Somatic chromosomes of some species of Boykinia and Peltoboykinia 121 40. Crossing r e l a t i o n s h i p s between species and genera, expressed i n terms of Over a l l Compatibility 142 41. The Boykinia r o t u n d i f o l i a x B_. maior hybrid 145 42. Basal l e a f shapes of hybrids and parent species i n Boykinia 146 43. Key to flavonoid structures and abbreviations referred to i n the text and tables 169 44. V a r i a t i o n i n characters used to d i s t i n g u i s h Boykinia  turbinata from B_. a c o n i t i f o l i a 211 45. The d i s t r i b u t i o n of some Boykinia species 241 46. The d i s t r i b u t i o n s of Boykinia major, B_. intermedia and Bolandra 242 47. The d i s t r i b u t i o n s of Boykinia l y c o c t o n i f o l i a , P e l t o - boykinia tellimoides and S u l l i v a n t i a 243 48. The d i s t r i b u t i o n of the genus Suksdorfia . . . . • . . 250 x i v Acknowledgements I should l i k e to thank my thesis committee for a s s i s t i n g i n various ways during the course of t h i s study: my supervisor, Prof. B.A. Bohm for h i s continual i n t e r e s t and generous f i n a n c i a l support of f i e l d work; Prof. W.B. Schofield for advice on nomenclatural matters and, together with Prof. F.R. Ganders, for reading c r i t i c a l l y and c a r e f u l l y an e a r l i e r d r a f t of t h i s manuscript. I should also l i k e to thank the following people who k i n d l y r e p l i e d to my l e t t e r s and provided me with various b i t s and pieces of information: Dr. R. Haywood, Alpine Garden Society; Prof. W.C. Martin, University of New Mexico; Dr. B. Mathew, Kew Gardens; Dr. D.F. Murray, Univ e r s i t y of Alaska; Prof. J.G. Packer, University of Alberta; Mr. D.E. S o l t i s , Indiana U n i v e r s i t y ; and Dr. S.A. Spongberg, Arnold Arboretum of Harvard University. Plant material was generously provided by Dr. M. Wakabayashi, Tokyo Metropolitan U n i v e r s i t y ; the Director of the J.W. Goethe Univ e r s i t y Botanic Garden, Frankfurt; and the Director of the Nippon Shinyaku I n s t i t u t e f or Botanical Research, Oyake. Herbarium specimens were kind l y loaned by the curators of the herbaria l i s t e d i n Chapter 1, and I thank Prof. J . Maze for w r i t i n g the numerous loan requests. I am g r a t e f u l to Dr. M. Weintraub ( D i r e c t o r ) , Ms. B. Schroeder and Mr. S.W. DeBeer f o r making a v a i l a b l e to me the scanning electron microscope f a c i l i t y at A g r i c u l t u r e Canada, Vancouver, and for i n s t r u c t i n g me i n i t s operation. Thanks also go to L e s l i e Bohm for her drawings of flowers, seedlings and s t i p u l e s . F i n a l l y , f i n a n c i a l support throughout t h i s study was provided by an Izaak Walton Ki l l a m Fellowship, which i s g r a t e f u l l y acknowledged. 1 I . INTRODUCTION The present work focuses on the l i m i t s and d i v e r s i t y of the genus B o y k i n i a Nutt. As t r e a t e d by Engler (1928), the genus contains nine species i n North America and Japan and belongs to the s u b - t r i b e S a x i f r a g i n a e . Both s e c t i o n a l and generic boundaries are problematic and much d e t a i l e d i n f o r m a t i o n i s needed to determine the l i m i t s and homo-geneity of the genus (Spongberg 1972). The problem concerning l i m i t s stems from the existence of two small segregate genera (Neob o y k i n i a and Pe1toboykinia) and seven other c l o s e l y r e l a t e d ones (Bolandra, Hemieva, Hieronymusia, S a x i f r a g a , S u k s d o r f i a , S u l l i v a n t i a and T e l e s o n i x ) . The taxa recognised and i n c l u d e d i n the main body of the study are shown i n Table I . S u l l i v a n t i a i s being monographed by Mr. D. S o l t i s of Indiana U n i v e r s i t y , and i n order to avoid d u p l i c a t i o n of e f f o r t , t h i s genus i s represented mainly by S_. oregana and o c c a s i o n a l l y by S_. hapemanii i n the present study. Most of the species t r e a t e d here were o r i g i n a l l y assigned to the genus S a x i f r a g a L. However, as more and more members of the S a x i f r a g -inae were discovered, a greater a p p r e c i a t i o n of the patterns of v a r i a b i l i t y r e q u i red that the broadly conceived genus S a x i f r a g a be broken up i n t o more coherent groups. There was no immediate agreement on the l i m i t s of the r e s u l t a n t segregate genera and many of the species have been assigned to d i f f e r e n t genera at one time or another. A h i s t o r y of these d i v e r s e alignments i s given i n Table I . Regional f l o r a s show no consensus regarding taxonomic treatment. There are s e v e r a l sources of the confused s i t u a t i o n apparent from Table I . F i r s t , morphological p a r a l l e l i s m and the general p a u c i t y of b i o l o g i c a l i n f o r m a t i o n i n e v i t a b l y l e d the many f l o r a w r i t e r s to incomplete and/or c o n t r a d i c t o r y views concerning the r e l a t i o n s h i p s of the various taxa. Second, at about the turn of the century, North American taxonomy s u f f e r e d 2 TABLE I . L i s t of taxa recognised and inc l u d e d i n the main body of the study. A b r i e f h i s t o r y of t h e i r v a r i ous generic alignments i s g i v e n ; only the combining authors are referenced. Taxon BOYKINIA NUTT. (nom. conserv.) s e c t i o n B o y k i n i a a c o n i t i f o l i a Nutt. intermedia (Piper) G.N. Jones l y c o c t o n i f o l i a (Maxim.) E n g l . major A. Gray O c c i d e n t a l i s Torr. & Gray r o t u n d i f o l i a P arry i n Gray s e c t i o n R e n i f o l i u m Rosendahl r i ch ards o n i i (Hook.) Rothrock s e c t i o n T e l e s o n i x (Raf.) G o r n a l l j a m e s i i (Torr.) E n g l . heucheriformis (Rydb.) Rosend. PELTOBOYKINIA (ENGL.) HARA t e l l i m o i d e s (Maxim.) Ear a ssp. t e l l i m o i d e s ssp. watanabei (Yatabe) G o r n a l l SUKSDORFIA A. GRAY (nom. conserv.) r a n u n c u l i f o l i a (Hook.) Engl. Assigned Genus B o y M n i a ( N u t t a l l 1834) ; S a x i f r a g a ( F i e l d i n g & Gardner 1844). B o y k i n i a ( P i p e r 1899). S a x i f r a g a (Maximowicz 1886); B o y k i n i a (Engler 1891); Neoboykinia (Hara 1937). B o y k i n i a (Gray 1876). S a x i f r a g a ( N u t t a l l i n Torrey & Gray 1840); B o y k i n i a (Torrey & Gray 1840). B o y k i n i a (Parry i n Gray 1878). S a x i f r a g a (Hooker 1832); Hemieva (Rafinesque 1838); B o y k i n i a (Rothrock 1868). Saxifraga (Hooker 1832); T e l e s o n i x (Rafinesque 1838) ; B o y k i n i a (Engler 1891) . B o y k i n i a (Rydberg 1897); T e l e s o n i x (Rafinesque 1838); S a x i f r a g a (Jones 1910). S a x i f r a g a (Maximowicz 1871); Boy-k i n i a (Engler 1919); P e l t o b o y k i n i a (Hara 1937). S a x i f r a g a (Yatabe 1892); B o y k i n i a (Engler 1919) ; P e l t o b o y k i n i a (Hara 1937). S a x i f r a g a (Hooker 1832); Hemieva (Rafinesque 1838); S u k s d o r f i a (Engler 1891); B o y k i n i a (Greene 1891). 3 TABLE I cont'd. Taxon Assigned Genus v i o l a c e a A. Gray S u k s d o r f i a (Gray 1879); Hemieva (Wheelock 1896). a l c h e m i l l o i d e s (Griseb.) E n g l . S a x i f r a g a (Grisebach 1879); Suks-d o r f i a (Engler 1891) ; Hieronymusia (Engler 1918) BOLANDRA A. GRAY c a l i f o r n i c a A. Gray Bolandra (Gray 1867). oregana Wats. Bolandra (Watson 1879a). SULLIVANTIA TORR. & GRAY IN GRAY* 2 - 6 spp. assigned o c c a s i o n a l l y to S a x i f r a g a (Torrey & Gray 1840; Fedde 1906); Heuchera ( C o u l t e r & Fi s h e r 1892); B o y k i n i a (Brandegee 1899); but mainly to S u l l i v a n t i a (Gray 1842; Watson 1879b; Coult e r 1892; Small 1905; Rosendahl 1927). * c u r r e n t l y being monographed by Mr. D. S o l t i s of Indiana U n i v e r s i t y . a p e r i o d of excessive " s p l i t t i n g " . Many i n f r a s p e c i f i c taxa were eleva t e d to s p e c i f i c s t a tus and the numbers of genera were p r o p o r t i o n a l l y increased. This legacy of an i n f l a t e d number of genera and species has o f t e n tended to obscure patt e r n s of v a r i a b i l i t y and has hindered taxonomic s y n t h e s i s . T h i r d , apart from Engler (1891, 1928) and Dandy (1927), there has been no attempt to deal w i t h the various genera i n a world-wide p e r s p e c t i v e . A con s i s t e n t taxonomy w i t h i n the f a m i l y depends on adopting broader horizons than those u s u a l l y shown by r e g i o n a l f l o r a w r i t e r s . I t i s against t h i s background that the gathering of s o r e l y -needed in f o r m a t i o n on the genus B o y k i n i a and i t s a l l i e s was considered h i g h l y d e s i r a b l e . By using evidence from anatomy, morphology, palynology, cytology, breeding behaviour, chemistry, ecology and phytogeography the v a r i o u s genera are r e d e f i n e d and t h e i r e v o l u t i o n a r y r e l a t i o n s h i p s commented on. The i n f r a g e n e r i c c l a s s i f i c a t i o n of B o y k i n i a i s a l s o r e v i s e d . The study i s based on l i v i n g m a t e r i a l and on pressed specimens 4 from the f o l l o w i n g h e r b a r i a ( a b b r e v i a t i o n s as i n Holmgren and Keuken 1974): ALA, ALTA, AUA, BM, CAN, CM, COLO, DAO, F, GA, GH, ID, K, MIN, MO, MONTU, NCU, ND, NDG, NY.OSC, P, RM, RSA, SD, TENN, TI, UBC, UNA, UTC, US, UVIC, V, WILLU, WS, WTU. 5 I I . RHIZOMES Among the taxa s t u d i e d there i s some v a r i a t i o n i n the nature of t h e i r underground storage organs. B o y k i n i a and P e l t o b o y k i n i a have t h i c k , s c a l y rhizomes ranging from 5 - 20mm i n diameter ( F i g s . 1, 2). B o y k i n i a intermedia i s of p a r t i c u l a r i n t e r e s t because large p a r t s of i t s rhizome f r e q u e n t l y can be found creeping over the surface of the ground. These above-ground segments are s t r o n g l y pigmented w i t h anthocyanins, q u i t e f l e s h y and not at a l l s c a l y . Roots and leaves emerge from each node ( F i g . l d ) . I t seems reasonable to i n t e r p r e t these organs as s t o l o n s , although the internodes are q u i t e s h o r t . These organs are u s u a l l y missing from herbarium specimens and the taxon has never been recorded as being s t o l o n i f e r o u s . Some herbarium specimens of the Japanese B. l y c o c t o n i f o l i a also show signs of being s t o l o n i f e r o u s ( F i g . I f ) , and indeed, Maximowicz (1886) o r i g i n a l l y described i t as such, although t h i s f e a t u r e seems to have been ignored subsequently. I n d i c a t i o n s of tendencies toward a s u r f a c e -creeping rhizome can a l s o be found i n B. major and B_. a c o n i t i f o l i a ( F i g s . I c , e) . Both S u k s d o r f i a and Bolandra have b u l b i f e r o u s rhizomes ( F i g . 2 ) . Each b u l b i l i s a simple reduced shoot a x i s and can vary from white, pale y e l l o w , pink to brown or bla c k . S i m i l a r b u l b i l s are found i n L i t h o -phragma (Taylor 1965). Engler (1891, 1918) reported that S. a l c h e m i l l o i d e s lacked a b u l b i f e r o u s rhizome, and t h i s f e a t u r e may have i n f l u e n c e d him i n the c r e a t i o n of the segregate genus Hieronymusia (Engler 1918) f o r t h i s s p e c i es. However, a l l herbarium specimens examined i n t h i s study d e f i n i t e -l y have b u l b i l s ( F i g . 2 f ) , but these are u s u a l l y obscured by s o i l caked around the r o o t s t o c k s . Grisebach (1879), i n h i s protologue, described the rhizome of S. a l c h e m i l l o i d e s as "tuberiforme". Subterranean b u l b i l s are g e n e r a l l y recognised to be adaptations 6 FIGURE 1 . Rhizome morphology i n Peltoboykinia and Boykinia. A) P_. tellimoides ssp. t e l l i m o i d e s ; B) Underground portion of the rhizome of B_. major; C) Above-ground portion of the rhizome of B_. ma.jor; D) Stolon production i n B_. intermedia; E) Tendency toward stolon production i n B_. a c o n i t i f o l i a : F) Suggestion of stolon production i n a herbarium specimen of B_. l y c o c t o n i f o l i a . 7 8 FIGURE 2. Rhizome morphology i n B o y k i n i a , Bolandra and S u k s d o r f i a . A)'- B o y k i n i a o c c i d e n t a l i s ; B) B o y k i n i a r o t u n d i f o l i a ; C) B o y k i n i a  r i c h a r d s o n i i : D) B o y k i n i a heucheriformis; E) B u l b i f e r o u s rhizome, of S u k s d o r f i a r a n u n c u l i f o l i a ; F) B u l b i f e r o u s rhizome of Su k s d o r f i a  a l c h e m i l l o i d e s : G) B u l b i f e r o u s rhizome of Bolandra oregana. SCALE BAR A - D 2 c m E - G 0-5 c m 10 f o r reproduction during adverse environmental c o n d i t i o n s or as an escape from sexual s t e r i l i t y ( D a r l i n g t o n 1939). In the present case they are c o r r e l a t e d w i t h x e r i c h a b i t a t s . Both Bolandra and S u k s d o r f i a grow t y p i -c a l l y i n spring-wet, summer-dry h a b i t a t s . They flower during the s p r i n g snow-melt, and then d i e back completely. L i k e B o y k i n i a , S u l l i v a n t i a a l s o produces rhizomes, but they are much more slender. Only i n S. oregana does v e g e t a t i v e reproduction occur, but t h i s i s i n the form of slender s t o l o n s w i t h long i n t e r n o d e s , which are q u i t e d i f f e r e n t i n appearance from those of B_. intermedia. Root P a r a s i t i s m Orobanche u n i f l o r a L. p a r a s i t i z e s the roots of the North Amer-i c a n species of S u k s d o r f i a . The a s s o c i a t i o n of 0_^  u r i i f l o r a w i t h the Sax-i f ragaceae has been recorded by Munz (1959) , F e r r i s (1960) and Tay l o r (1965). 11 I I I . LEAVES AND STIPULES Leaf morphology more than any other s i n g l e f a c t o r c o n t r i b u t e s to the o v e r a l l appearance of these p l a n t s , and t h i s has i n f l u e n c e d the assignment of generic l i m i t s and the arrangement of the i n f r a g e n e r i c taxon-omy of B o y k i n i a (Engler 1891; Rosendahl 1905). I n the present study, the morphology of both l i v e and pressed leaves has been examined, i n c l u d i n g the use of c l e a r e d specimens. The leaves of a l l genera:are produced i n a 3/8 p h y l l o t a c t i c s p i r a l . Two categories of l e a f may be i d e n t i f i e d : b a s a l and c a u l i n e . B a s a l leaves are produced i n a r o s e t t e at the base of a p l a n t , and c a u l i n e leaves, v a r i a b l e i n number, s i z e and shape, form an a c r o p e t a l s e r i e s show-in g progressive morphological r e d u c t i o n from the b a s a l l e a v e s , becoming minute b r a c t s i n the upper branches of the i n f l o r e s c e n c e . Those on the stem i t s e l f are a s s o c i a t e d w i t h v a r i o u s kinds of s t i p u l e s . Each l e a f category i s discussed i n t u r n . BASAL LEAVES B o y k i n i a the b a s a l leaves are evergreen w i t h two exceptions: B. r i c h a r d s o n i i and B_^  r o t u n d i f o l i a . These two s p e c i e s , together w i t h P e l t o b o y k i n i a , S u k s d o r f i a and Bolandra are r h i z o c a r p i c . I n nature, the b a s a l leaves of S u k s d o r f i a and Bolandra o f t e n d i e before a n t h e s i s . Shape and O u t l i n e Leaf shapes and o u t l i n e s are v a r i a b l e w i t h i n i n d i v i d u a l s p e c i e s , a r e p r e s e n t a t i v e array f o r each i s shown i n F i g s . 3 - 9 . At l e a s t p a r t of the v a r i a t i o n w i t h i n many of the species r e s u l t s from h e t e r o b l a s t y . The phenomenon i s most n o t i c e a b l e i n B o y k i n i a s e c t i o n B o y k i n i a where the e a r l y leaves i n the b a s a l r o s e t t e tend to be more reniform than l a t e r l e a v e s , and t h e i r t e e t h tend to be rounded-ovate, r a t h e r than acute or l a n c e o l a t e , as i n the l a t e r leaves. This s i t u a t i o n i s i l l u s t r a t e d f o r B. o c c i d e n t a l i s 12 FIGURE 3. Basal l e a f shapes and o u t l i n e s of Boykinia o c c i d e n t a l i s (xJg). a - h) V a r i a t i o n between populations. i - 1) Heteroblasty, ( i ) being the f i r s t l e a f and (1) being the l a s t . 1 3 FIGURE 4. Basal l e a f shapes and outlines of Boykinia species (xlg) . a - c) B. intermedia; d - e) B^ l y c o c t o n i f o l i a ; f - j ) B _ . a c o n i t i -f o l i a . 15 FIGURE 6. Basal l e a f shapes and outlines of Boykinia species a - c) B_. r o t u n d i f o l i a ; d - f) B_. r i c h a r d s o n i i . 16 FIGURE 7. Basal l e a f shapes and o u t l i n e s of B o y k i n i a s e c t i o n Telesonix and S u k s d o r f i a ( x 3 / 4 ) . a - d) B_. j a m e s i i and B_. heucheriformis (both species show s i m i l a r v a r i a t i o n ) ; e - j ) S_. r a n u n c u l i f o l i a ; k - o) S_. v i o l a c e a ; p - r ) S. a l c h e m i l l o i d e s . w^w!^  f^^ 3 h i j k 18 F I G U R E 9. Ba sa l l e a f shapes and o u t l i n e s of P e l t o b o y k i n i a  t e l l i m o i d e s (x%) . a - d) s sp . watanabe i ; e - h) s sp. t e l l i m o i d e s . a,e) mature f i r s t l e a f ; b , f ) mature second l e a f ; c,g) young t h i r d l e a f ; d,h) mature t h i r d l e a f . 19 i n F i g . 3, but i t a l s o occurs i n many other s p e c i e s , i n c l u d i n g B^ . a c o n i t -i f o l i a . A segregate species has been described from the l a t t e r (B. turfa- i n at a Rydberg) p a r t l y on the b a s i s of i t s having rounded-ovate r a t h e r than acute t e e t h . However, i n view of the h e t e r o b l a s t y i n v o l v i n g t h i s character and the f a c t that there i s i n t e r g r a d a t i o n between the two extremes ( F i g . 4 ) , i t cannot be used to support formal taxonomic s e p a r a t i o n . Leaf shapes i n B o y k i n i a s e c t i o n B o y k i n i a are r e l a t i v e l y homo-genous, w i t h the exception of B. r o t u h d i f o l i a , although B. o c c i d e n t a l i s i s somewhat t r a n s i t i o n a l between t h i s species and the r e s t of the s e c t i o n . B o y k i n i a O c c i d e n t a l i s i s a l s o t r a n s i t i o n a l to s e c t i o n t e l e s o n i x i n i t s a b i l i t y to produce doubly crenate leaves. B o y k i n i a r i c h a r d s b n i i of s e c t i o n R e n i f o l i u m could be l i n k e d to s e c t i o n B o y k i n i a by way of B_j_ r o t u n d i f o l i a as suggested by Spongberg (1972) i n view of the s i m i l a r s h a l l o w l y - l o b e d , h i g h l y - t o o t h e d l e a v e s , although p a r a l l e l i s m i s the more l i k e l y e x p l a n a t i o n ( F i g . 6 ) . Hooker (1832) and Rosendahl (1905) based t h e i r suggestion of an a l l i a n c e between B_^  r i c h a r d s o n l j and s e c t i o n T e l e s o n i x p a r t l y on l e a f shape although, as w i l l be seen l a t e r , there i s good reason to mainta i n two s e c t i o n s f o r these taxa. A s i m i l a r s i t u a t i o n to that i n B. a c o n i t i f o l i a e x i s t s i n Bolandra. Here, part of the h i s t o r i c a l d i s t i n c t i o n between B o r e g a n a and B. c a l i f o r i i i c a has been made on the b a s i s of l e a f shape and o u t l i n e . Bolandra oregana was considered to be 9 - 13 lobed w i t h acute t e e t h , and B. c a l i f o r n i c a was described as being 5 - 7 lobed w i t h rounded-ovate, mucronate t e e t h ( B a c i g a l u p i 1944). Yet, i f a range of m a t e r i a l i s examined, e s p e c i a l l y i n c l u d i n g p l a n t s from eastern Oregon and Idaho, which seem to be e s p e c i a l l y v a r i a b l e , i t i s seen that there i s an overlap between the C a l i f o r n i a n and the more n o r t h e r l y m a t e r i a l , the l a t t e r i n t e r g r a d i n g w i t h the former ( F i g . 8). The character of l e a f shape and o u t l i n e cannot be 20 used to support a s p e c i f i c d i s t i n c t i o n between the two taxa. In Pe11oboykinia the i n i t i a l metaphylls of both subspecies are q u i t e prominently lobed and dentate during the e a r l y p a r t of t h e i r d e v e l -opment, but as they age and enlarge the lobes broaden l a t e r a l l y to reach the mature o r b i c u l a t e , very s h a l l o w l y lobed c o n d i t i o n ( F i g . 9 ) . I n ssp. t e l l i m o i d e s there i s l i t t l e or no h e t e r o b l a s t y , a l l b a s a l leaves behaving as j u s t described. However, i n ssp. watanabei, although the e a r l i e s t b a s a l leaves are o r b i c u l a t e and s h a l l o w l y lobed when mature, the l a t e r b a s a l leaves do not undergo the l a t e r a l growth i n the lobes to such an extent as seen i n the e a r l y leaves. Rather, the l a t e r leaves adopt a prominently 5 - 9 lobed c o n d i t i o n , each lobe e l o n g a t i n g and becoming longer than wide. This h e t e r o b l a s t y i n ssp. watanabei i s not apparent from her-barium specimens, s i n c e b a s a l leaves are e a r l y deciduous and u s u a l l y only one or two of the youngest are present at f l o w e r i n g . The f a c t that l e a f morphology presents the only d i s c o n t i n u i t y that e x i s t s between the two taxa, and that the e a r l y leaves i n both are so s i m i l a r , supports t h e i r c o n s p e c i f i c s t a t u s (Makino 1901) . ^ n S u k s d o r f i a , S. v i o l a c e a and a l c h e m i l l o i d e s are s i m i l a r i n l e a f shape and o u t l i n e . S u k s d o r f i a r a n u n c u l i f o l i a i s d i s t i n c t i v e i n the genus i n having t e r n a t e l y parted b a s a l l e a v e s , although t h i s c o n d i t i o n can be approached i n some S_» v i o l a c e a populations ( F i g . 7 ). I n S u l l i v a r i t i a there i s the same k i n d of v a r i a t i o n t h a t i s found i n B o y k i n i a and Bolandra, and i t i s l i k e l y t hat some of the s i x species recognised by Rosendahl (1927) could be reduced to synonymy. The s e r i e s of l e a f shapes, from crenate to deeply-parted, can be found i n a l l the genera under study and i t i s l i k e l y that t h i s phenom-enon has i t s b a s i s i n homologous v a r i a t i o n . The adaptive s i g n i f i c a n c e of parted leaves has been l i n k e d e x perimentally to more e f f e c t i v e temperature 21 c o n t r o l under c o n d i t i o n s of drought and high l i g h t i n t e n s i t y (Lewis 1969; W i l k i n s and Lewis 1969) . Texture Leaves of P e l t o b o y k i n i a and B o y k i n i a s e c t i o n s B o y k i n i a and R e n i f o l i u m are c a n a l i c u l a t e on t h e i r upper surfaces and costate on t h e i r lower su r f a c e s . In s e c t i o n T e l e s o n i x and S u k s d o r f i a the upper l e a f sur-face i s canaliculate-smooth and the lower surface i s somewhat ribbed. Bolandra i s t r a n s i t i o n a l between these two c o n d i t i o n s , a c o n d i t i o n a l s o shown by B o y k i n i a o c c i d e n t a l i s . S u l l i v a n t i a leaves are smooth on both s i d e s . Leaves i n P e l t o b o y k i n i a , B o y k i n i a , S u k s d o r f i a and Bolandra bear glandular trichomes (Ch. IV) and t h e i r eglandular d e r i v a t i v e s . They occur i n v a r y i n g d e n s i t i e s s c a t t e r e d over the laminae, o f t e n a s s o c i a t e d w i t h the v e i n r e t i c u l u m and a l s o on the l e a f margins. This l a t t e r c o n d i t i o n i s e s p e c i a l l y pronounced i n B o y k i n i a s e c t i o n Telesonix. S u l l i v a n t i a leaves are sub-glabrate to g l a b r a t e and not at a l l v i s c i d . Leaves of P e l t o b o y k i n i a are s t r i k i n g l y l u s t r o u s on t h e i r lower surfaces ( c . f . Ohwi (1965) who stated, that the upper surface i s l u s t r o u s ) , a c o n d i t i o n not found i n the other genera, although B o y k i n i a o c c i d e n t a l i s does approach i t sometimes. Leaves i n B o y k i n i a s e c t i o n T e l e -sonix and i n S u k s d o r f i a are q u i t e succulent, a c o n d i t i o n probably r e l a t e d to t h e i r x e r i c h a b i t a t s . Venation Study of l e a f venation i n a l l taxa was based on c l e a r e d b a s a l l e a v e s , f o l l o w i n g the method of Payne (1969), which i n v o l v e s b o i l i n g the m a t e r i a l i n methanol to e x t r a c t the c h l o r o p h y l l and then soaking i n 10% KOH f o r one to three days at about 30°C. In most cases f r e s h m a t e r i a l was used and supplemented w i t h herbarium m a t e r i a l . The terminology i s that 22 of Hickey (1973). I l l u s t r a t i o n s of the va r i o u s venation patterns are shown i n F i g s . 10 and 11. A l l species examined are very s i m i l a r , having actinodromous venation w i t h the primary veins a r i s i n g from the b a s a l p o s i t i o n . The primary veins are branched and f a i r l y s t r a i g h t , or somewhat sinuous, i n a l l s p e c i e s . Secondaries a r i s e w i t h an acute angle of divergeance (45 -80°), and branch from a s t r a i g h t or somewhat sinuous course. T e r t i a r y venation i n B o y k i n i a , S u k s d o r f i a , S u l l i v a n t i a and Bolandra i s random r e t i c u l a t e but tends to be orthogonal r e t i c u l a t e i n P e l t o b o y k i n i a . Quaternary venation i n a l l genera i s orthogonal r e t i c u l a t e . Higher order venation forms a r e t i c u l u m i n which the i n d i v i d u a l l e v e l s cannot be d i s t i n g u i s h e d . In Bolandra and B o y k i n i a s e c t i o n s B o y k i n i a and Re n i f o l i u m t h i s corresponds to l e v e l 5 or 6. I n s e c t i o n T e l e s o n i x , S u k s d o r f i a , S u l l i v a n t i a and P e l t o b o y k i n i a i t i s l e v e l 4 or 5. Marginal u l t i m a t e ven-a t i o n i s incomplete i n a l l taxa, v e i n l e t s ending f r e e l y adjacent to the l e a f margin. Larger veins (primary and secondary) converge at the t i p of each l a r g e l e a f lobe to produce a hydathode, s t r u c t u r e s common i n the Sa x i f r a g i n a e (Metcalfe and Chalk 1950). The higher order venation forms a network of imperfect a r e o l a e , v a r i a b l e i n s i z e . The areolae are i r r e g u l a r l y polygonal and randomly o r i e n t e d . D e t a i l s of the de n s i t y of areolae and v e i n l e t terminations are given i n Table I I . S t r i k i n g d i f f e r e n c e s among taxa occur i n the prominence of the venation patterns v i s i b l e to the naked eye. This i s a r e f l e c t i o n of l e a f texture and the s i z e and number of v e i n orders present. Bolandra and B o y k i n i a s e c t i o n s B o y k i n i a and R e n i f o l i u m have more l e v e l s of venation than the other taxa and correspondingly the r e t i c u l u m appears more compli-cated. D i f f e r e n c e s between species e x i s t i n the d e n s i t y of areolae and of v e i n l e t t erminations. I n p a r t i c u l a r , P e l t o b o y k i n i a i s unique i n the 23 FIGURE 10 . Leaf venation v i s i b l e to the naked eye i n species of Boykinia. A l l drawings prepared from cleared specimens (x%). a) B_. intermedia; b) B_. major; c) B_. a c o n i t i f o l i a ; d) B_. occidentalis; e) B_. heucheriformis; f) B_. r ichardsonii ; g) B_. rotundifol ia . 24 FIGURE 11 . Leaf venation v i s i b l e to the naked eye i n species of Peltoboykinia, Suksdorfia, Bolandra and S u l l i v a n t i a . A l l drawings prepared from cleared specimens, xJg except where noted, a) P_. tellimoides ssp. t e l l i m o i d e s ; b) Suksdorfia ranunculif o l i a ; c) S^ alchemilloides ( x l ) ; d) S_. vi o l a c e a ( x l ) ; e) B^ oregana; f) S u l l i v a n t i a oregana. 25 TABLE I I . Frequency of v e i n l e t terminations and areolae i n species of B o y k i n i a . P e l t o b o y k i n i a , S u k s d o r f i a , B o l j n j r a and S u l l i v a n t i a . Mean No. Mean No. v e i n l e t Mean No. v e i n l e t 2 2 Taxon areolae/mm endings/areola endings/mm B o y k i n i a a c o n i t i f o l i a 3.0 + 0.2* 1.0 + 0.2 3.0 + 0.6 B. intermedia 3.3 + 0.3 0.9 + 0.1 2.8 + 0.5 B. major 4.6 + 0.3 1.3 + 0.1 5.9 + 0.6 B. o c c i d e n t a l i s 2.4 + 0.5 0.8 + 0.2 1.9 + .0.6 B. r o t u n d i f o l i a 2.5 + 0.5 1.5 + 0.4 3.5 + 0.4 B. r i c h a r d s o n i i 3.0 + 0.4 1.2 + 0.1 3.3 + 0.6 B. heucheriformis 6.1 + 0.1 1.0 + 0.1 5.9 + 0.4 Suk s d o r f i a v i o l a c e a 5.8 + 0.3 1.3 + 0.1 7.7 0.6 S. a l c h e m i l l o i d e s 1.4 + 0.3 0.9 + 0.2 1.2 ± 0.3 S. r a n u n c u l i f o l i a 3.5 + 0.4 2.8 + 0.4 9.9 ± 1,0 Bolandra oregana 1.3 + 0.1 1.6 ± 0.1 2.0 ± 0.2 S u l l i v a n t i a oregana 1.4 ± 0.5 0.5 + 0.1 0.6 ± 0.1 P e l t o b o y k i n i a t e l l i m - 0.5 0.3 0.5 oides ssp. t e l l i m o i d e s + 1.3 + 0.5 ± 0.2 * standard d e v i a t i o n . l a r g e s i z e of i t s areolae. Otherwise no d e f e n s i b l e taxonomic groupings are suggested on the b a s i s of higher order ven a t i o n , nor are there any c l e a r e c o l o g i c a l i n t e r p r e t a t i o n s to be made from the data. Stomata The stomata of the S a x i f r a g i n a e have been the subject of stud i e s by Moreau (1971, 1976), Gorenflot and Moreau (1970) and Gor e n f l o t (1971). Stpmatal c h a r a c t e r i s t i c s were claimed to be of taxonomic s i g n i f -icance although i t i s not c l e a r , from these s t u d i e s , q u i t e what t h i s con-s t i t u t e s . Stomatal development was i n v e s t i g a t e d i n a wide range of genera, i n c l u d i n g B o y k i n i a o c c i d e n t a l i s and P e l t o b o y k i n i a t e l l i m o i d e s (Moreau 1976). Terminology i s that of Radford et a l . (1974). Moreau (1976) reported that B o y k i n i a o c c i d e n t a l i s had both anomocytic and a n i s o c y t i c , mesoperigenous stomata as w e l l as c y c l o c y t i c perigenous types ("anomocytique perigene avec couronnes de c e l l u l e s compag."). P e l t o b o y k i n i a t e l l i m o i d e s was reported 26 to possess both mesoperigenous and perigenous anomocytic stomata. I n both s p e c i e s , stomatal development occurs non-synchronously over the whole l e a f ("type melange"). I n the present study no attempt was made to observe stomatal development, r a t h e r the d i s t r i b u t i o n of mature s t r u c t u r e s on both upper and lower surfaces of the b a s a l leaves was examined. Epidermal peels of f r e s h leaves were used whenever p o s s i b l e , and when not, herbarium m a t e r i a l was s u b s t i t u t e d . A l l species s t u d i e d had anomocytic stomata s c a t t e r e d i n a dense array over the lower surface of t h e i r b a s a l leaves. O c c a s i o n a l l y one or two adjacent epidermal c e l l s were somewhat smaller and i n these cases the stomata could be described as a n i s o c y t i c . No c y c l o c y t i c stomata were observed. V a r i a t i o n between species occurs i n the presence or absence of stomata on the upper surfaces of the b a s a l leaves (Table I I I ) . I n S u k s d o r f i a and B o y k i n i a s e c t i o n s R e n i f o l i u m and Telesonix anomocytic s t o -mata can be found commonly on the upper b a s a l l e a f s u r f a c e . I n Peltoboy- k i n i a , S u l l i v a n t i a and some species of s e c t i o n B o y k i n i a such stomata are very infrequent and u s u a l l y absent. I n the remaining species of s e c t i o n B o y k i n i a ( o c c i d e n t a l i s , r o t u n d i f o l i a and a c o n i t i f o l i a ) and i n Bolandra they are present i n low numbers. Species w i t h small leaves tend to have stomata common on both l e a f s u r f a c e s , and those w i t h l a r g e leaves tend to l a c k stomata on the upper s u r f a c e . There are s e v e r a l exceptions to t h i s , however, e.g. S u l l i v a n t i a oregana and B o y k i n i a r i c h a r d s o n i i . Stomatal s i z e s are also given i n Table I I I . There i s no c l e a r c o r r e l a t i o n w i t h chromosome number ( c f . Ch. X ) . CAULINE LEAVES AND STIPULES Cauline leaves form a r e d u c t i o n s e r i e s , beginning from the 27 TABLE I I I . Stomatal s i z e s and frequency on upper surfaces of leaves. Taxon Stomatal frequency on Mean + SD upper l e a f s u r f a c e . Stomatal length,^urn. B o y k i n i a B. intermedia Absent/v. rare 95 + 11 B. a c o n i t i f o l i a Occasional 86 + 11 B. l y c o c t o n i f o l i a Absent/v. r a r e 122 + 22 B. o c c i d e n t a l i s Moderate 106 + 7 B. maj or Absent/v. rare 114 + 21 B. r o t u n d i f o l i a Moderate 109 + 9 B. r i c h a r d s o n i i Common 153 ± 15 B. heucheriformis Common 121 + 7 B. j a m e s i i Common 127 ± 14 P e l t o b o y k i n i a P. t e l l i m o i d e s ssp. t e l l i m o i d e s Absent/v. r a r e 144 + 15 P. t . ssp. watanabei Absent/v. r a r e 123 + 19 S u k s d o r f i a S. r a n u n c u l i f o l i a Common 134 ± 17 S. v i o l a c e a Common 110 + 12 S. a l c h e m i l l o i d e s Common 119 + 13 Bolandra B. oregana Occasional 133 + 13 S u l l i v a n t i a S. oregana Absent/v. r a r e 128 + 10 l a r g e r b a s a l l e a v e s , and becoming s m a l l b r a c t s i n the higher l e v e l s of the i n f l o r e s c e n c e . Lower leaves are p e t i o l a t e and the upper ones become i n c r e a s i n g l y s e s s i l e . I n a l l s p e c i e s , s t i p u l e s subtend the leaves. The lower s t i p -ules are composed of w i n g - l i k e extensions of the base of the p e t i o l e . Genera vary i n the morphology of the upper s t i p u l e s . In S u k s d o r f i a , Bolaridra, B o y k i n i a major and B_j_ intermedia the upper s t i p u l e s are 28 f o l i a c e o u s ( F i g s . 12, 14) and o f t e n become adnate to the c a u l i n e l e a v e s , obscuring the l e a f - s t i p u l e d i s t i n c t i o n . In a l l other species of B o y k i n i a , S u l l i v a n t i a and P e l t o b o y k i n i a the upper s t i p u l e s are s i m i l a r to the lower s t r u c t u r e s , or are represented by small f l a p s ( F i g s . 12, 13). In B o y k i n i a s e c t i o n B o y k i n i a the s t i p u l e s are f r i n g e d w i t h brown b r i s t l e s . 29 FIGURE 12. Stipule morphology i n Boykinia section Boykinia ( a l l x a - c) _B_. major, i n b a s i p e t a l sequence; d - f) B_. intermedia, i n ba s i p e t a l sequence; g) _B_. l y c o c t o n i f o l i a ; h) B_. a c o n i t i f o l i a (B^ . r o t u n d i f o l i a s i m i l a r ) ; i ) B_. o c c i d e n t a l i s . 30 31 FIGURE 13. S t i p u l e morphology i n B o y k i n i a s e c t i o n s Telesonix and R e n i f o l i u m ; and i n P e l t o b o y k i n i a . a) heucheriformis ( x l % ) ; b) _B_L r i c h a r d s o n i i ( x l ) ; c) P_. t e l l i m o i d e s ssp. watanabei ( x l ) . 32 33 FIGURE 14. S t i p u l e morphology i n Suksdorfia and Bolandra ( a l l a,b) S. r a n u n c u l i f o l i a , i n b a s i p e t a l sequence; c) S. v i o l a c e a d) S. a l c h e m i l l o i d e s ; e,f) B. oregana, i n b a s i p e t a l sequence. 34 35 IV. TRICHOMES The trichomes i n the S a x i f r a g i n a e were o r i g i n a l l y s t u d i e d by Engler (1891, 1916-1919) and Rosendahl (1905) . These researchers observed four main categ o r i e s of trichome: a) m u l t i c e l l u l a r , m u l t i s e r i a t e g l a n d u l a r ; b) m u l t i c e l l u l a r , u n i s e r i a t e g l a n d u l a r ; c) m u l t i c e l l u l a r , s e s s i l e g l a n d u l a r ; and d) u n i c e l l u l a r , eglandular. Engler (1916), Rosendahl (1905) and Huber (1963) attached considerable importance to h a i r types i n the i n f r a g e n e r i c taxomony of S a x i f r a g a , a c l a s s i f i c a t i o n which has been supported e s s e n t i -a l l y by p o l l e n exine s t u d i e s (Ferguson & Webb 1970). Rosendahl (1905), i n a study of North American genera, observed a s i m i l a r i t y i n trichome s t r u c -ture between Mite11a, Heuchera, T e l l i m a , Tiare11a and Tolmiea, between Bolandra and S u k s d o r f i a , and between B o y k i n i a and S u l l i v a n t i a . These are a l l groups which are recognizable i n terms of gross morphology, so the .evidence i n d i c a t e s that the trichome complement may provide a r e l i a b l e guide to taxonomic r e l a t i o n s h i p s . Moreau (1976) examined the trichomes i n a number of herbaceous Saxifragaceae, i n c l u d i n g P e l t o b o y k i n i a and B o y k i n i a o c c i d e n t a l i s , but h i s study d i d not encompass a l l organs of the p l a n t and the r e s u l t s were c l e a r l y incomplete. I n stu d i e s of plan t h a i r s i t i s important to examine the e n t i r e p l a n t ( C a r l q u i s t 1961);. M a t e r i a l used i n the present study i s l i s t e d i n Table IV. Trichome s t r u c t u r e s from a l l organs were observed. S i x categories of trichome were i d e n t i f i e d : a) m u l t i c e l l u l a r , m u l t i s e r -i a t e g l a n d u l a r ; b) m u l t i c e l l u l a r , m u l t i s e r i a t e eglandular w i t h many brown, dead c e l l s (brown c h a f f ) ; c) m u l t i c e l l u l a r , u n i s e r i a t e g l a n d u l a r ; d) mult-i c e l l u l a r , u n i s e r i a t e eglandular w i t h many brown, dead c e l l s (brown c h a f f ) ; e) m u l t i c e l l u l a r , u n i s e r i a t e eglandular; and f) u n i c e l l u l a r , e glandular. Trichome s t r u c t u r e i n herbarium m a t e r i a l was compared w i t h that i n c u l t i v a t e d m a t e r i a l , and no d i f f e r e n c e was found. I l l u s t r a t i o n s 36 TABLE IV. L i s t of m a t e r i a l used i n the trichome study. F u l l c o l l e c t i o n d e t a i l s and hebarium l o c a t i o n s are given i n Appendix 1. C o l l e c t i o n s by G o r n a l l are p r e f i x e d by 'G'. B o y k i n i a a c o n i t i f o l i a : G342; H a r v i l l and Segars 11, K r a i 35423. B. intermedia: G23; G24; Jones 8411. B. l y c o c t o n i f o l i a : Sato s.n.; Ohba et a l . 73099; K-anai s.n. B. major: G45; G335; G337. B. o c c i d e n t a l i s : G2; G8; G22; G86; G216; G255; G256; S t r a l e y 1753. B. r o t u n d i f o l i a : G98; G101; G105. B. h e u c h e r i f o r m i s : G115; G194; G344. B. j a m e s i i : Payson 1564; G i l l e t t & Mosquin 12114; Jones 955. B. r i c h a r d s o n i i : G272; G302; G306. Su k s d o r f i a r a n u n c u l i f o l i a : G15; G245; G332. S. v i o l a c e a : G248; G330; Bohm 1112. S. a l c h e m i l l o i d e s : F i e b r i g 3161; V e n t u r i 3296. P e l t o b o y k i n i a t e l l i m o i d e s ssp. t e l l i m o i d e s : G328; Maekawa s.n. P. t . ssp. watanabei: G343; Yamazaki s.n. Bolandra oregana: G260; G262; G340. S u l l i v a n t i a oregana: G261. S. hapemanii: Hapeman s.n. Jepsonia heterandra: Ornduff 5072. J . p a r r y i : Cromwell 709; Mulroy s.n. P e l t i p h y l l u m peltatum: Bohm 1201; G66; G67; G80; Guppy s.n.; Steward 7438. of the trichome complement i n each species are shown i n F i g s . 15-20. Developmental R e l a t i o n s h i p s Observations of young p l a n t s of B o y k i n i a o c c i d e n t a l i s and P e l t o b o y k i n i a t e l l i m o i d e s ssp. watanabei i n d i c a t e that the brown chaffy trichomes are derived developmentally from the m u l t i s e r i a t e and u n i s e r i a t e glandular types of the r e s p e c t i v e s p e c i e s . There i s a l o s s of the gland-u l a r head followed by progressive b a s i p e t a l c e l l death. The dead c e l l s t u rn brown, c u r l and t w i s t . This process i s l e s s marked i n B^ r o t u n d i f o _ l i a , where only a few m u l t i s e r i a t e glands normally degenerate l e a v i n g the stem v i s c i d - h i r s u t e . Some herbarium specimens, however, possess q u i t e a number of brown chaffy h a i r s . 37 FIGURE 15. Semi-diagrammatic i l l u s t r a t i o n s of m u l t i c e l l u l a r glandular trichomes i n B o y k i n i a . A l l drawings x l 8 5 . a,b) B_. l y c o c t o n i f o l i a ; c) B_. a c o n i t i f o l i a ; d) B_. intermedia; e) J^. o c c i d e n t a l i s ; f - h) B_. major. 38 FIGURE 16. Semi-diagrammatic i l l u s t r a t i o n s of m u l t i c e l l u l a r g l a n d u l a r trichomes i n B o y k i n i a . Drawings a - e x l 8 5 , f x70. a>b) B_. heu c h e r i f o r m i s ; c,d) B_. r i c h a r d s o n i i ; e,f) B_. r o t u n d i f o l i a . 39 FIGURE 17. Semi-diagrammatic i l l u s t r a t i o n s of mult icel lular glandular trichomes i n Peltoboykinia tellimoides. Drawings a - c xl85, d x70, e - g x490. a,b) ssp. watanabei; c,d) ssp. tellimoides; e,f) gland heads of ssp. tellimoides; g) gland head of ssp. watanabei. 40 FIGURE 18. Semi-diagrammatic i l l u s t r a t i o n s of mult icel lular glandular trichomes i n Suksdorfia and Bolandra. A l l drawings xl85. a - d) S. ranunculifol ia; e - g) S_. violacea; h) S. alchemilloides; i , j ) B_. oregana. 41 FIGURE 19. Semi-diagrammatic i l l u s t r a t i o n s of m u l t i c e l l u l a r glandular trichomes i n S u l l i v a n t i a , Jepsonia, and Peltiphyllum. A l l drawings xl85. a) J3_. hapemanii; b) S_. oregana; c - e) J_. heterandra; f) J_. p a r r y i ; g - i ) P_. peltatum. 42 FIGURE 20. Semi-diagrammatic i l l u s t r a t i o n s of eglandular trichomes. a,h) Brown, c h a f f y , m u l t i s e r i a t e trichome (x70). b - g) U n i c e l l u l a r trichomes ( x l 8 5 ) . i ) U n i s e r i a t e trichome, found only on anthers and stigmata of S u k s d o r f i a  a l c h e m i l l o i d e s (x750). 43 Observations The v a r i a t i o n i n trichome s i z e among the species i s continuous, and has a considerable i n t r a - i n d i v i d u a l component. Therefore l i t t l e t a x -onomic s i g n i f i c a n c e can be attached to i t . I t i s the s t r u c t u r e s which are important and which w i l l be emphasized. A summary of the r e s u l t s i s given i n Table V. Boy^kinia s e c t i o n B o y k i n i a i s c h a r a c t e r i z e d by a trichome com-plement of m u l t i s e r i a t e glands, brown c h a f f , and u n i c e l l u l a r eglandular h a i r s . Sections R e n i f o l i u m and T e l e s o n i x are s i m i l a r except that they normally (but not always) l a c k the brown c h a f f . The brown chaff i s most common at the base of the stem, b a s a l l e a f p e t i o l e s , and around the lower stem nodes. This trichome type i s e s p e c i a l l y common i n B. o c c i d e n t a l i s and some specimens can look q u i t e v i l l o u s . On the upper p a r t of the stem toward the i n f l o r e s c e n c e , the m u l t i c e l l u l a r , m u l t i s e r i a t e glands become i n c r e a s i n g l y frequent. They reach t h e i r maximum den s i t y on the p e d i c e l s and hypanthium. The m u l t i c e l l u l a r gland head i s u s u a l l y s p h e r i c a l or o v a l , but o c c a s i o n a l l y has p r o t r u d i n g p a p i l l a e (as i n BoJLandra and Suks- d o r f i a ) . The u n i c e l l u l a r eglandular trichomes occur densely on the i n -f l o r e s c e n c e branches j p e d i c e l s and upper b r a c t s . They form an understory to the m u l t i s e r i a t e glandular h a i r s . On the l e a v e s , trichomes o f t e n are a s s o c i a t e d w i t h the veins and a l s o occur along the l e a f margins, being e s p e c i a l l y prominent here i n s e c t i o n T e l e s o n i x . The laminae are g e n e r a l l y l e s s densely pubescent than are the stem or p e t i o l e s . A l l three h a i r types are present, w i t h the mult-i s e r i a t e glands and chaff being the commonest. U n i c e l l u l a r h a i r s become more frequent on the leaves nearer to the stem apex. In B. r o t u n d i f o l i a , an o c c a s i o n a l l e a f a l s o possessed a very s m a l l number of u n i s e r i a t e glandular trichomes. 44 TABLE V. D i s t r i b u t i o n of trichome s t r u c t u r a l types among Boykinia, P e l t o - boykinia, Suksdorfia, Bolandra, S u l l i v a n t i a , Peltiphyllum and Jepsonia. U n i c e l l u l a r M u l t i c e l l u l a r Uniseriate M u l t i c e l l u l a r Eglandular Gland. Chaff Egland.• Gland. Chaff Boykinia o c c i d e n t a l i s + - — _ + + intermedia + - - — + major + - — _ + + a c o n i t i f o l i a + - — + + l y c o c t o n i f o l i a + — — + + r o t u n d i f o l i a + — • _ _ + (+) r i c h a r d s o n i i + - - - + - (+) jamesii + - — _ + - (+) heucheriformis + - - - + - (+) Peltoboykinia tellimoides ssp. tellimoides <- (+) _ ssp. watanabei - +* (+) - - C+)* Suksdorfia r a n u n c u l i f o l i a - (+) - (+)* — +* v i o l a c e a + - (+)*• — _ +* alchemilloides + - - + + Bolandra oregana - - (+)* - - +* S u l l i v a n t i a oregana - - — — + _ hapemanii (+) - - - + -Peltiphyllum peltatum <- +*a - -Jepsonia heterandra - + - — + ' p a r r y i + - - . + * ; trichomes occur which are t r a n s i t i o n a l between m u l t i - and u n i s e r i a t e . a : some of these may be sub-sessile. ( ) : Only entry bracketed = always occurring but i n very low numbers. Alte r n a t i v e entry bracketed = a rare condition, not always encoun-tered. The genus Peltoboykinia has m u l t i c e l l u l a r , u n i s e r i a t e glandular trichomes. Some glands, however, are m u l t i s e r i a t e below and un i s e r i a t e above, and thus may be regarded as t r a n s i t i o n a l types. The trichomes 45 occur most prominently on the stem, p e t i o l e s , i n f l o r e s c e n c e branches and p e t a l s , but are a l s o present on the leaves. In o l d e r p l a n t s , the lower nodes bear brown, c h a f f y , u n i s e r i a t e , eglandular trichomes. I n Bolandra, the trichomes are m u l t i c e l l u l a r , m u l t i s e r i a t e and g l a n d u l a r , although t r a n s i t i o n s to a u n i s e r i a t e c o n d i t i o n o f t e n occur. I n t r a n s i t i o n a l cases, the trichome i s m u l t i s e r i a t e below but u n i s e r i a t e above; much v a r i a t i o n occurs and almost a l l stages between the m u l t i - and u n i s e r i a t e s t a t e s can be found. The glands occur on the l e a v e s , o f t e n associated w i t h the v e i n s , and on the p e t i o l e s , stem and i n f l o r e s c e n c e branches. The hypanthium, however, i s u s u a l l y glabrous. The m u l t i c e l l u l a r gland heads u s u a l l y have from one to three prominent p a p i l l a e . S u k s d o r f i a possesses m u l t i c e l l u l a r , m u l t i s e r i a t e glands, t o -gether w i t h types t r a n s i t i o n a l to the u n i s e r i a t e c o n d i t i o n . The m u l t i -c e l l u l a r gland heads have from one to three p a p i l l a e , although these are l e s s marked i n S_. a l c h e m j l l o i d e s . U n i c e l l u l a r h a i r s are densely arrayed on the peduncles and p e d i c e l s of S_. v j o l a c e a and S_j_ a l c h e m j l l o i d e s . They are very r a r e , and u s u a l l y absent from S^ r a n u n c u l i f o l i a . The d i s t r i b u t i o n of a l l these h a i r types over the p l a n t f o l l o w s the p a t t e r n found i n Boy- k i n i a . S u k s d o r f i a a l c h e m j l l o i d e s i s a unique species i n having c h a r a c t e r -i s t i c red, s l e n d e r , m u l t i c e l l u l a r , u n i s e r i a t e eglandular h a i r s . They occur on the anthers and sometimes among the s t i g m a t i c p a p i l l a e . I n the two S u l l i v a n t i a species examined, the leaves and pet-i o l e s are very s p a r i n g l y puberulent w i t h m u l t i c e l l u l a r , m u l t i s e r i a t e gland-u l a r trichomes. They become i n c r e a s i n g l y common i n the i n f l o r e s c e n c e r e g i o n , but are r a t h e r sparse on the hypanthium. The m u l t i c e l l u l a r gland heads are s p h e r i c a l or o y a l as i n B o y k i n i a , w i t h no d i s t i n c t p a p i l l a e . I n S. hapemanii the peduncles and p e d i c e l s a d d i t i o n a l l y have a very sparse complement of u n i c e l l u l a r , eglandular trichomes. These seem to be absent 46 f rom _S_. oregana, at l e a s t i n the m a t e r i a l examined (Rosendahl 1927). The leaves and p e t i o l e s of Jepsonia bear m u l t i c e l l u l a r , mult*-i s e r i a t e glandular trichomes, again a s s o c i a t e d w i t h veins i n the laminae. Toward the top of the stem, u n i s e r i a t e glands become i n c r e a s i n g l y common. They comprise the only h a i r type i n the i n f l o r e s c e n c e r e g i o n . The gland heads are o v a l . P e l t i p h y l l u m has a mixed array of both u n i s e r i a t e and m u l t i -s e r i a t e glandular trichomes, i n c l u d i n g t r a n s i t i o n a l types. A l l occur on the l e a v e s , the stem, i n f l o r e s c e n c e branches and hypanthia. Many of the trichomes have very short s t a l k s and some may be described as s u b - s e s s i l e . The gland heads are s p h e r i c a l or o v a l . Engler (1928) and Moreau (1976) d i d not rep o r t the presence of m u l t i s e r i a t e glands i n t h i s genus, but they were present i n a l l c o l l e c t i o n s examined i n the present study. Taxonomic Inferences Trichome complements c l e a r l y i n d i c a t e a very c l o s e r e l a t i o n -ship between B o y k i n i a , S u k s d o r f i a , S u l l i v a n t i a and Bolandra. B o y k i n i a can be c h a r a c t e r i z e d by the r e g u l a r occurrence of a dense array of u n i c e l l u l a r , eglandular trichomes, together w i t h m u l t i c e l l u l a r , m u l t i s e r i a t e trichomes w i t h s p h e r i c a l or ov a l glandular heads, and i n s e c t i o n B o y k i n i a , by the brown, chaffy d e r i v a t i v e s . I n the pas t , species of s e c t i o n T e l e s o n i x have been placed i n the genus S a x i f r a g a (e.g. Jones 1910; Harr i n g t o n 1954). However, the trichome complement argues against such a placement, s i n c e S a x i f r a g a has never been reported to possess the u n i c e l l u l a r trichomes, and a survey of 26 species from ten s e c t i o n s (Table VI) d i d not r e v e a l any. Furthermore, the occurrence of the brown, chaffy h a i r (although rare) a l s o supports an a l l i a n c e w i t h B o y k i n i a rather than S a x i f r a g a . B o y k i n i a l y c o c t o n i f o l i a i s obviously a member of s e c t i o n Boy-k i n i a (Table V) on the b a s i s of i t s trichomes, which do not support i t s 47 TABLE VI. Trichome s t r u c t u r e s i n i n f l o r e s c e n c e branches of S a x i f r a g a species. C o l l e c t i o n s by G o r n a l l are p r e f i x e d by 'G'. I n f r a g e n e r i c category S e c t i o n Micranthes Grex Punctatae punctata (G298, 318) mertensiana ( M i l l e r 764)* Grex Davuricae l y a l l i i (G294, 297) Grex N i v a l i - v i r g i n i e n s i s r e f l e x a (G287) h i e r a c i f o l i a (G292) c a l i f o r n i c a ( M i l l e r 766) o c c i d e n t a l i s (G334) Grex S t e l l a r e s f e r r u g i n e a (G324) bryophora (Sharsmith 4556A) Grex Intermediae t o l m i e i (Bohm 1372) S e c t i o n H i r c u l u s Grex Sediformes chrysantha (Pennard s.n.) Grex Hemisphaericae e s c h s c h o l t z i i (G291) Se c t i o n T r i d a c t y l i t e s n u t t a l l i i (Bohm 1289) adscendens (Pojair 1/8/75) Sec t i o n Nephrophyllum Grex S i b i r i c a e cernua (G288, 319) Se c t i o n D a c t y l o i d e s Grex Caespitosae caespitosa (G325) Sectio n Trachyphyllum tr i c u s p i d a t a . ( G 2 8 6 , 316) b r o n c h i a l i s (G289) Se c t i o n Xanthizoon a i z o i d e s (Beamish et a l . 730369) Se c t i o n Euaizoonia Grex Peraizooniae aizoon (Garton 15349) Grex Cotyledoniae cotyledon (Alava et a l . 9517) Se c t i o n Kabschia Grex Squarrosae c a e s i a (Frey s.n.) Trichome S t r u c t u r e ( w i t h m u l t i -c e l l u l a r g landular heads except where noted). Uniseriate M u l t i s e r i a t e Uniseriate Uniseriate Uniseriate + brown chaff Uniseriate Uniseriate M u l t i s e r i a t e M u l t i s e r i a t e M u l t i s e r i a t e M u l t i s e r i a t e Glabrous M u l t i s e r i a t e , t r a n s i t i o n a l to u n i s e r i a t e U n i s e r i a t e U n i s e r i a t e U n i s e r i a t e M u l t i s e r i a t e , t r a n s i t i o n a l to u n i s e r i a t e M u l t i s e r i a t e U n i s e r i a t e , u n i c e l l u l a r head M u l t i s e r i a t e M u l t i s e r i a t e , t r a n s i t i o n a l to u n i s e r i a t e U n i s e r i a t e , some w i t h u n i c e l l u l a r heads 48 TABLE VI, cont'd. I n f r a g e n e r i c category Trichome S t r u c t u r e Cwith m u l t i -c e l l u l a r g landular heads except where noted). S e c t i o n Porphyrion Grex O p p o s i t i f o l i a e o p p o s i t i f o l i a (G284) M u l t i s e r i a t e * M u l t i s e r i a t e trichomes i n S_. mertensiana s t r o n g l y support i t s t r a n s f e r to grex S t e l l a r e s , a move advocated by S a v i l e (1975) on the b a s i s of f l o r a l morphology. segregation as the monotypic Neoboykinia (Hara 1937) . Suk s d o r f i a and Bolandra are very s i m i l a r i n the s t r u c t u r e of t h e i r m u l t i c e l l u l a r glands. In both, t r a n s i t i o n a l types between a u n i s e r -i a t e and a m u l t i s e r i a t e c o n d i t i o n occur, and the glandular heads u s u a l l y possess from one to three prominent p a p i l l a e . Two Su k s d o r f i a s p e c i e s , S. v i o l a c e a and S_. a l c h e m i l l o i d e s , possess u n i c e l l u l a r h a i r s i n the i n f l o r -escence. This feature supports the abandonment of the monotypic Hierony- musia to which S_. a l c h e m i l l o i d e s had been elevated (Engler 1918) although the p e c u l i a r u n i s e r i a t e , eglandular trichomes on i t s anthers and stigmata c l e a r l y d i s t i n g u i s h i t . The usual absence of u n i c e l l u l a r h a i r s from S. r a n u n c u l i f o l i a (formerly i n the monotypic Hemieva) does not j e o p a r d i z e i t s p o s i t i o n because somewhat s i m i l a r v a r i a t i o n e x i s t s i n S u l l i v a n t i a w i t h respect to t h i s trichome type. The presence of these u n i c e l l u l a r h a i r s i n both S u k s d o r f i a and S u l l i v a n t i a i n d i c a t e s a very c l o s e r e l a t i o n -ship w i t h B o y k i n i a . The r e c o g n i t i o n of P e l t o b o y k i n i a at a generic l e v e l (Hara 1937) i s supported by i t s trichome complement (Moreau 1976). I t l a c k s both the u n i c e l l u l a r and the m u l t i s e r i a t e trichomes of B o y k i n i a , having in s t e a d u n i s e r i a t e types. I t i s p o s s i b l e , however, that the rare occurrence i n B_. r o t u n d i f o l i a of u n i s e r i a t e glands may i n d i c a t e some r e l a t i o n s h i p . P e l t o b o y k i n i a i s al s o the only genus i n the group that possesses glandular 49 p e t a l s . The u n i s e r i a t e glands suggest an a f f i n i t y w i t h s i m i l a r l y -endowed S a x i f r a g a s p e c i e s , or w i t h P e l t i p h y l l u m (Engler 1891) and indeed, Jepsonia. The presence i n Jepsonia of both m u l t i - and u n i s e r i a t e glands i m p l i e s an a l l i a n c e w i t h P e l t i p h y l l u m , although the l a t t e r a l s o has sub-s e s s i l e types. S e s s i l e glands occur i n Bergenia, Mukenia and the p e l t a t e -leaved A s t i l b o j d e s (Moreau 1976). A l l four genera share the chromosome number 2n = 34 (Hamel 1953). This i s an unusual chromosome number i n the Sa x i f r a g i n a e and thus both trichome and chromosome features suggest a close r e l a t i o n s h i p , notwithstanding the f a c t that Engler. (1928) placed A s t i l b o i d e s i n s u b - t r i b e A s t i l b i n a e r a t h e r than S a x i f r a g i n a e . Environmental M o d i f i c a t i o n of V e s t i t u r e i n B o y k i n i a o c c i d e n t a l i s B o y k i n i a o c c i d e n t a l i s i s a v a r i a b l e species w i t h segregate v a r i e t i e s and even species having been described on the b a s i s of v a r i a t i o n i n trichome density (Rydberg 1905; Rosendahl 1905). A s e r i e s of observa-t i o n s was made on the amount of pubescence on e i g h t populations of p l a n t s , sampled from Vancouver I s l a n d to C a l i f o r n i a , and grown under uniform e n v i r -onmental c o n d i t i o n s (17-20°C, 16hr photoperiod) (Table V I I ) . A f t e r the p l a n t s had been c u l t i v a t e d f o r two years, during which time they flowered at l e a s t t w i c e , a s e r i e s of measurements was made: 1) trichome d e n s i t y on the p e t i o l e s of two b a s a l leaves (one young and one old) of each p l a n t ; 2) length of three r e p r e s e n t a t i v e trichomes on each p e t i o l e examined i n ( 1 ) ; 3) trichome d e n s i t y on the hypanthium. Since the impression of h a i r i n e s s on the p e t i o l e s owes much tp the tangled nature of the trichomes, a t h i r d parameter, p e t i o l e h a i r i n e s s index, was c a l c u l a t e d by m u l t i p l y i n g (1) by the mean of (2). The r e s u l t s are presented i n Table V I I . The data show f i r s t t hat a l l measures of trichome d e n s i t y have TABLE V I I . V a r i a t i o n i n trichome d e n s i t y among e i g h t populations of Bo y k i n i a o c c i d e n t a l i s grown i n a growth chamber. Mean P e t i o l e Mean P e t i o l e Mean P e t i o l e Mean Hypanthium Trichome Density Trichome Length H a i r i n e s s Index Trichome Density -2 -2 mm mm mm Pop u l a t i o n // Young Old Young Old Young Old G8 ( 3 ) ; Vancouver I s . 10.3 4.7 2.3 1.5 23.5 7.4 35.0 + 12.3 (1.2)* (2.3) (0.1) (0.3) (3.2) (4.4) G2 ( 4 ) ; Vancouver, B.C. 14.8 7.0 2.2 1.9 30.5 13.6 28.0 + 11.8 C2.2) (0.8) ( l . D (1.1) (11.2) (9.8) G22 ( 2 ) ; J e f f e r s o n Co., Wash. 16.0 8.5 2.9 1.9 46.2 15.6 19.0 + 9.9 (2.8) (3.5) (0.1) (0.1) (5.9) (5.9) G216 ( 2 ) ; K i n g Co., Wash. 14.5 6.0 1.9 1.2 26.2 6.6 29.0 + 1.4 (6.4) (2.8) (0.2) (0.2) (8.7) (2.0) G255 ( 2 ) ; L i n c o l n Co., Oreg. 12.5 4.0 3.1 1.6 39.8 7.0 25.7 ± 2.5 (3.5) (1.4) (0.9) (0.9) (22.3) (5.7) G256 ( 3 ) ; Curry Co., Oreg. 13.3 10.3 3.5 3.2 46.8 33.2 11.0 + 2.7 (4.0) (2.1) (0.4) (1.7) (13.2) (21.6) S1753 ( 5 ) ; Del Norte Co., C a l . 17.8 8.2 3.5 2.5 61.2 21.1 47.6 + 21.8 (5.5) (1.6) (1.2) (0.7) (22.6) (9.2) G86 ( 8 ) ; Humboldt Co., C a l . 9.8 3.9 2.4 1.7 24.5 6.7 12.8 + 8.1 (3.5) (1.3) (0.8) (0.4) (14.1) (2.8) # C o l l e c t i o n numbers are those of G o r n a l l (G) or S t r a l e y ( S ) . The number of pl a n t s i s given i n brackets. * Standard Deviations are given i n bra c k e t s . 51 completely continuous d i s t r i b u t i o n s , and that there i s no geographical c o r r e l a t i o n w i t h t h i s v a r i a t i o n . Second, young p e t i o l e s are more pubescent than o l d p e t i o l e s . This demonstration of glabrescence v i n d i c a t e s Torrey and Gray's (1840) s u s p i c i o n that the " c h a f f y h a i r s " , which were o r i g i n a l l y thought to d i s t i n g u i s h N u t t a l l ' s S a x i f r a g a e l a t a from t h e i r own B o y k i n i a  o c c i d e n t a l i s , were deciduous. The r e s u l t s support the r e c o g n i t i o n of a s i n g l e species o n l y . Function of the Glandular Trichomes The glandular p o r t i o n of the h a i r s c o n s i s t s of a m u l t i c e l l u l a r g l o b u l a r head which o f t e n contains anthocyanins, and at l e a s t i n B o y k i n i a and Jepsonia. the s p i c y , aromatic p r i n c i p l e s (somewhat l i k e coriander) which help c h a r a c t e r i z e these genera, ge1toboykinia. S u k s d o r f i a . Bolandra and S u l l i v a n t i a have no odour detectable by humans. The s p i c y smell may serve to a t t r a c t p o l l i n a t o r s . The s t i c k y glands a l s o have the property of trapping i n s e c t s , p a r t i c u l a r l y s m all d i p t e r a , and a p r o t e c t i v e r o l e against feeding and/or egg l a y i n g i s l i k e l y ( L e v i n 1973). The dense array of glands i n the i n -f l o r e s c e n c e region also has the e f f e c t of trapping seeds a f t e r they have been shed from the capsules. This obviously i n h i b i t s d i s p e r s a l to a l a r g e extent and presumably a f f e c t s the g e n e t i c a l s t r u c t u r e of p o p u l a t i o n s , but the long-term s i g n i f i c a n c e i s obscure. 52 V. INFLORESCENCE STRUCTURE The genera B o y k i n i a . P e l t o b o y k i n i a , S u k s d o r f i a , Bolandra and S u l l i v a n t i a a l l have monotelic (cymose) i n f l o r e s c e n c e s , w i t h a t e r m i n a l flower and b a s i p e t a l development of successive p a r a c l a d i a . I n a l l taxa the i n f l o r e s c e n c e i s i n i t i a l l y h i g h l y congested and i t i s only a f t e r anthe-s i s and e s p e c i a l l y during f r u i t i n g , f o l l o w i n g peduncle growth, that i t s s t r u c t u r e becomes r e a d i l y apparent. The f o l l o w i n g d e s c r i p t i o n s apply to t h i s stage. Diagrammatic rep r e s e n t a t i o n s of t y p i c a l branching patterns are shown i n F i g s . 21-23. Each paracladium i s subtended by a b r a c t or ca u l i n e l e a f . In many cases the i n f l o r e s c e n c e c o n s i s t s of f i r s t order p a r a c l a d i a o n l y , although i n well-developed i n d i v i d u a l s second-order para-c l a d i a may be present, again subtended by b r a c t s . A l l species of B o y k i n i a s e c t i o n B o y k i n i a have s i m i l a r i n f l o r -escence shapes and branching p a t t e r n s , They have l a x p a n i c l e s w i t h each paracladium c o n s i s t i n g of a t e r m i n a l flower borne at the j u n c t i o n of a dichotomous branch p a i r , each branch of which bears s e v e r a l flowers i n a t y p i c a l l y h e l i c o i d arrangement. The t e r m i n a l flower i s o f t e n d i s p l a c e d to one s i d e of the branch j u n c t i o n , and o c c a s i o n a l l y i t i s absent. B o y k i n i a  major i s unique i n the s e c t i o n i n having a corymbiform i n f l o r e s c e n c e , although B. intermedia can approach t h i s c o n d i t i o n . B o y k i n i a r i c h a r d s o n i i of s e c t i o n R e n i f o l i u m has a s i m i l a r b a s i c s t r u c t u r e to th a t i n s e c t i o n B o y k i n i a ; however i t r a r e l y , i f ever, bears second-order p a r a c l a d i a and i t has a d i f f e r e n t i n f l o r e s c e n c e shape. Instead of a l a x p a n i c l e , the para-c l a d i a are t i g h t l y organized i n t o a contracted t h r y s o i d s t r u c t u r e , each paracladium comprised of a three-flowered d i c h a s i a l cyme. Species of sec-t i o n T e l e s o n i x have a s i m i l a r i n f l o r e s c e n c e shape to that of B^ r i c h a r d - s o n i i but t h e i r p a r a c l a d i a are represented by a te r m i n a l flower w i t h typ-i c a l l y only one l a t e r a l f lower. 53 FIGURE 21. I n f l o r e s c e n c e s t r u c t u r e i n some species of B o y k i n i a s e c t i o n B o y k i n i a . a) B_. l y c o c t o n i f o l i a ; b) B_. o c c i d e n t a l i s ; c) B_. intermedia; d) B_. major. O Flower • Terminal flower C Bract or l e a f 55 FIGURE 22. I n f l o r e s c e n c e s t r u c t u r e i n species of B o y k i n i a and P e l t o b o y k i n i a . a) B_. r o t u n d i f o l i a ; b) B_. r i c h a r d s o n i i ; c) B_. heucherif ormis; d) P_^  t e l l i m o i d e s (both subspecies) . O Flower • Terminal flower /" Bract or l e a f 56 57 FIGURE 23. I n f l o r e s c e n c e s t r u c t u r e i n S u k s d o r f i a and Bolandra. a) S_. r a n u n c u l i f o l i a ; b) j3_. v i o l a c e a ; c) S_. a l c h e m i l l o i d e s ; d) B_. oregana. O Flower • Terminal flower /*" Bract or l e a f 59 A s e r i e s s i m i l a r to that i n B o y k i n i a i s found i n S u k s d o r f i a . Thus the i n f l o r e s c e n c e s t r u c t u r e of S_. r a n u n c u l i f o l i a i s very s i m i l a r to that of B o y k i n i a s e c t i o n B o y k i n i a . S u k s d o r f i a a l c h e m j l l o i d e s has fewer second-order p a r a c l a d i a and fewer flowers per branch so that i t s i n f l o r -escence s t r u c t u r e i s intermediate between that of B o y k i n i a r i c h a r d s o n i i and that of B o y k i n i a s e c t i o n T e l e s o n i x . The s i m p l e s t c o n d i t i o n i s seen i n S u k s d o r f i a v i o l a c e a whose shoots have very few p a r a c l a d i a , each of which c o n s i s t s of a t e r m i n a l flower w i t h a s i n g l e l a t e r a l bloom. Some pl a n t s have but a s i n g l e t e r m i n a l f l o w e r . In Bolandra and P e l t o b o y k i n i a , the i n f l o r e s c e n c e s t r u c t u r e i s as i n B o y k i n i a s e c t i o n B o y k i n i a , although the number of flowers per para-cladium i s fewer. This i s e s p e c i a l l y true of Bolandra where the very l a x , open p a n i c l e t y p i c a l l y has p a r a c l a d i a w i t h a t e r m i n a l and two l a t e r a l flowers o n l y , but second-order p a r a c l a d i a are q u i t e frequent. The i n f l o r e s c e n c e of S u l l i v a n t i a was described and i l l u s t r a t e d by Rosendahl (1927). I t i s a l s o very s i m i l a r to the p a t t e r n found i n B o y k i n i a s e c t i o n B o y k i n i a . However i t does d i f f e r i n that the p a r a c l a d i a are o f t e n composed of " t r i c h a s i a l cymes", i . e . t h r e e , many-flowered branches, the c e n t r a l one of which bears the t e r m i n a l flower at i t s base. Environmental M o d i f i c a t i o n of I n f l o r e s c e n c e S t r u c t u r e B o y k i n i a o c c i d e n t a l i s i s e s p e c i a l l y v a r i a b l e i n i t s i n f l o r -escence s t r u c t u r e . A segregate species has even been described on t h i s b a s i s ; Therophon (Boykinia) cincinnatum Rosendahl et Rydberg (1905). These i n d i v i d u a l s have p a r a c l a d i a formed as i n B_. r o t u n d i f o l i a ( F i g . 22), i . e . comprised of flowers w i t h curved p e d i c e l s borne i n h i g h l y r e g u l a r h e l i c o i d cymes. I n other i n d i v i d u a l s of B. o c c i d e n t a l i s , the i n f l o r e s c e n c e s t r u c t u r e i s l e s s r e g u l a r and the flowers are l e s s secund, some w i t h s t r a i g h t p e d i c e l s . Observation has shown th a t the r e g u l a r i t y of an 60 i n f l o r e s c e n c e increases w i t h age. I n d i v i d u a l s from d i f f e r e n t populations grown i n the growth chamber were a l l c i n c i n n a t e by the time t h e i r capsules had ripened. Examination of herbarium specimens showed that the v a r i a t i o n i s continuous, w i t h no apparent geographical c o r r e l a t i o n . Indeed, on s i n g l e p l a n t s , some p a r a c l a d i a had flowers on s t r a i g h t p e d i c e l s and others bore secund f l o w e r s . P i p e r (1906) concluded that T_. cincinnatum was only " f e e b l y d i s t i n g u i s h a b l e by a l a r g e r i n f l o r e s c e n c e w i t h the branches more or l e s s racemiform and curved p e d i c e l s " . I n the present study some attempts were made to a l t e r e x p e r i -mentally both i n f l o r e s c e n c e s t r u c t u r e and p e d i c e l curvature. I n the f i r s t experiment, cloned i n d i v i d u a l s of each of three populations ( G o r n a l l 22, 256, S t r a l e y 1753) were d e l i b e r a t e l y underwatered. In each case they dev-eloped very small b a s a l leaves and produced a h i g h l y depauperate and i r r e g -u l a r shoot system when compared w i t h t h e i r well-watered counterparts w i t h i d e n t i c a l genotypes ( F i g . 24). In the second experiment, one i n d i v i d u a l of po p u l a t i o n G o r n a l l 86 had i t s developing shoot system t i e d w i t h cotton i n such a way that one fl o w e r i n g stem was o r i e n t e d h o r i z o n t a l l y and the other v e r t i c a l l y . Devel-opment of the flowers from bud to f r u i t was then observed. In the v e r t i c a l stem, where the p a r a c l a d i a developed at about 60° to the h o r i z o n t a l , the flowers began w i t h s t r a i g h t p e d i c e l s . As they aged and set seed, many of them, e s p e c i a l l y those at the proximal ends of the p a r a c l a d i a , developed somewhat curved p e d i c e l s ; those nearer the d i s t a l ends u s u a l l y r e t a i n e d t h e i r s t r a i g h t p e d i c e l s . I n the h o r i z o n t a l stem, w i t h the p a r a c l a d i a o r i e n t e d e i t h e r upward or downward, a l l the flowers on the i n v e r t e d para-c l a d i a developed curved p e d i c e l s very r a p i d l y , some becoming completely r e f l e x e d . The upright p a r a c l a d i a developed flowers w i t h only s t r a i g h t p e d i c e l s . I t was concluded that p e d i c e l curvature i n v o l v e s the photo-61 FIGURE 24. Inflorescences of droughted (left) and watered (right) clones of Boykinia occidentalis (x3/5). 62 and/or geotropic responses of; the plant. Since v a r i a t i o n i n both pe d i c e l curvature and inflorescence structure i n B. o c c i d e n t a l i s has a considerable environmental component, these characters cannot be used r e l i a b l y f o r taxonomic purposes,. This kind of environmental m o d i f i c a t i o n of inflorescence structure was also ob-served i n i n d i v i d u a l s of B_. major that had suffered attack by weevils. The plants developed greatly reduced shoot systems compared with those produced by unmolested specimens. In nature i t was also noticed that plants of a l l taxa, when growing i n apparently unfavourable conditions, produced shoots with very simple or no branching. 63 VI. THE FLOWER The flowers of B o y k i n i a , P e l t o b o y k i n i a , S u k s d o r f i a , S u l l i v a n t i a and Bolandra are re g u l a r and are composed of four or f i v e whorls of p a r t s , v i z . c a l y x , c o r o l l a , a one or two-whorled androecium, and a b i c a r p e l l a t e gynoecium. The flowers are t y p i c a l l y actinomorphic, although some asymmetry i s o c c a s i o n a l l y seen. V a r i a t i o n i n t h i s general morphology does occur and i s discussed i n a s p e c i a l s e c t i o n on t e r a t o l o g i c a l phenomena. Calyx I n a l l species the ca l y x i s composed of f i v e sepals which are fused w i t h the b a s a l p o r t i o n s of the p e t a l s and stamens to form the fr e e hypanthium. The apices of the sepals are t r i a n g u l a r and f r e e . The hypan-thium i s clothed i n glandular h a i r s , and sometimes, s m a l l e r u n i c e l l u l a r trichomes as w e l l (Ch. iv) i n a l l genera except Bolandra, where i t i s g l a -brous . I n S u l l i v a n t i a and B o y k i n i a l y c o c t o n i f o l i a the sepals are imbricate at t h e i r bases. The sepals i n S u l l i v a n t i a a l s o have w h i t i s h margins, a co n d i t i o n not found i n the other genera. C o r o l l a Most species have white p e t a l s , but some have other c o l o u r s , e.g. yellow-green i n B o y k i n i a l y c o c t o n i f o l i a , white w i t h rose veins i n B. r i c h a r d s o n i i , crimson-purple i n B_. j a m e s i i , v i o l e t or almost white i n Suk s d o r f i a v i o l a c e a , rose or white i n S_. a l c h e m j l l o i d e s . In P e l t o b o y k i n i a p e t a l colour i n both subspecies i s i d e n t i c a l , c . f . Ohwi (1965): newly-emergent p e t a l s are a cream colour which darkens to a pale y e l l o w at anthe-s i s , and subsequently fades back to a cream c o l o u r . Bolandra i s als o somewhat v a r i a b l e i n p e t a l colour: most populations have red p e t a l s , but i n some they can be yellow-green w i t h red margins and o c c a s i o n a l l y j u s t yellow-green. Some populations of B_j_ major have flowers w i t h purple 64 b l o t c h e s at the base of the p e t a l s (e.g. Kruckeberg 3722, from the T r i n i t y A l p s , N. C a l i f o r n i a ) . P e t a l margins are u s u a l l y e n t i r e , except i n P e l t o b o y k i n i a which produces toothed p e t a l s . However, i n some populations of major some i n d i v i d u a l s have toothed or s e r r a t e d p e t a l s . In the s i n g l e case where t h i s phenomenon was encountered i n nature, almost a l l the p l a n t s had p e t a l s w i t h e i t h e r s e r r a t e d margins or w i t h e n t i r e margins. Only a "Very few i n d i v i d u a l s had flowers of both k i n d s . The b a s i s f o r t h i s p o l y -morphism i s unknown. I t occurs i n both the B i t t e r r o o t Mountains and the Oregon Cascades. A s i m i l a r polymorphism apparently e x i s t s i n S u k s d o r f i a  V i o l a c e a , although I have never observed i t (Suksdorf, i n l e t t e r w i t h h o l o -type; Rydberg 1905). P e t a l shape v a r i e s among the species s t u d i e d and the i l l u s t r a -t i o n s i n F i g s . 25 - 27 should be consulted. Some species show a pronounced claw on the p e t a l , i n others i t i s reduced and i n s t i l l others i t i s ab-sent. P e l t o b o y k i n i a i s unique i n the group i n i t s possession of glandular p e t a l s , and Bolandra i s d i s t i n c t w i t h i t s subulate p e t a l s . S u l l i v a n t i a i s a l s o d i f f e r e n t , i n that i t s p e t a l s are c h a r a c t e r i s t i c a l l y undulate, a c o n d i t i o n approached only s l i g h t l y by B o y k i n i a major. Anatomically, each p e t a l possesses a s i n g l e v a s c u l a r bundle i n the f r e e p a r t of i t s b a s a l p o r t i o n . Various numbers of traces diverge from t h i s p r i n c i p a l bundle i n d i f f e r e n t species ( F i g s . 25 - 2 7 ) . I n nature, marcescent p e t a l s occur i n S u l l i v a n t i a and B o y k i n i a  l y c o c t o n i f o l i a . They occur also i n some growth-room-maintained popula-t i o n s of B o y k i n i a o c c i d e n t a l i s , B. intermedia and B_. major. I n t h i s pro-tected environment, the a b s c i s s i o n l a y e r at the base of the p e t a l s f a i l s to develop f u l l y , and the p e t a l s p e r s i s t on the f l o w e r s , r e s i s t i n g even vigorous disturbance. This i s important because the character has been 65 FIGURE 25. P e t a l shapes i n B o y k i n i a s e c t i o n B o y k i n i a ( a l l x l O ) . a,b) B^ intermedia; c - e) B_. a c o n i t i f o l i a ; f,g) B_. major; h , i ) B^ o c c i d e n t a l i s ; j ,k) B_. r o t u n d i f o l i a ; 1) B^ l y c o c t o n i f o l i a . 67 FIGURE 26. P e t a l shapes i n B o y k i n i a s e c t i o n s Telesonix and R e n i f o l i u m ; and i n P e l t o b o y k i n i a . a) B. j a m e s i i (xl3) ; b,c) B_. heucheriformis (xl3) ; d) B.  r i c h a r d s o n i i ( x l O ) ; e,f) P^ t e l l i m o i d e s (both ssp.) (x3). 69 FIGURE 27. P e t a l shapes i n Suk s d o r f i a and Bolandra ( a l l x l O ) . a - c) _S_. r a n u n c u l i f o l i a ; d) S_. a l c h e m j l l o i d e s ; e,f) S_. v i o l a c e a ; g) B_. oregana. 70 71 considered taxonomically v a l u a b l e i n the past (Hara 1937). P e t a l s are deciduous i n growth-room m a t e r i a l of P e l t o b o y k i n i a . P e t a l Movements In B o y k i n i a ma.1 or and B_. intermedia, the p e t a l s c l o s e around the s t y l e s as the flower ages, forming a tube, at the centre of one end of which s i t the stigmata. The stamens are no longer v i s i b l e , being s h i e l d e d from view by the i m b r i c a t e p e t a l laminae. These p e t a l movements i n o l d , p o s s i b l y unreceptive or already f e r t i l i z e d f l o w e r s , may s i g n a l p o l l i n a t o r s to keep away. I n other species w i t h p e t a l s longer than the se<-< p a l s , e.g. B o y k i n i a o c c i d e n t a l i s , B. r i c h a r d s o n i i , B. j a m e s i i , B. a c o n i t - l f o l i a . S u l l i v a n t i a oregana, Bolandra oregana, S u k s d o r f i a and P e l t o b o y k i n i a . the p e t a l s become i n c r e a s i n g l y r e f l e x e d as the flower opens and ages. Species w i t h s h o r t , or included p e t a l s ( B o y k i n i a r o t u n d i f o l i a . B. heucher-i f o r m i s ) show l i t t l e or no movement of these organs. Androecium A l l stamens are f r e e and are i n two whorls of f i v e each i n P e l t o b o y k i n i a and B o y k i n i a s e c t i o n T e l e s o n i x , and i n a s i n g l e whorl of f i v e i n a l l the other species. I n the diplostemonous species the outer whorl i s anti-sepalous and dehisces e a r l i e r than the a n t i - p e t a l o u s inner whorl. In the haplostemonous species the stamens are a n t i - s e p a l o u s . The stamen whorls are adnate to and a r i s e from the hypanthium. A s i n g l e veined, c o n i c a l f i l a m e n t bears the anther which i s cordate at the base and i n B o y k i n i a s e c t i o n B o y k i n i a , P e l t o b o y k i n i a and S u k s d o r f i a a l c h e m i l l o i d - es , possesses a s m a l l a p i c a l awn. This awn i s u s u a l l y most marked i n young undehisced anthers. I t becomes l e s s d i s t i n c t and may disappear as the anther ages. Each anther has two thecae, each of which contains two microsporangia. Dehiscence i s by l a t e r a l l o n g i t u d i n a l s l i t s , the l a t e r a l p o r t i o n s of each theca becoming completely r e f l e x e d so as to present the 72 p o l l e n both i n t r o r s e l y and e x t r o r s e l y , almost In a 360° a r c . In many cases, p o l l e n p r e s e n t a t i o n i s very close to the stigmata ( B o y k i n i a o c c i - d e n t a l i s . B. r o t u n d i f o l i a , B. l y c o c t o n i f o l i a , S u k s d o r f i a v i o l a c e a and jT. alchemjlloides') . Most species examined are protandrous, although the extent v a r i e s from species to species (Table V I I I ) . The anthers of P e l t o - b o y k i n i a change from pale cream to b l a c k j u s t before dehiscence. In a l l other species the anthers remain yel l o w . Stamen Movements I n i t i a l l y the anthers form a close r i n g around the young s t y l e s . A s the flower ages and the ovary and s t y l e s elongate, the p e t a l s and sepals spread out, p u l l i n g the stamens away from the s t y l e s . Anther de-hiscence u s u a l l y occurs before flower reaches i t s maximum spread. There are no independent stamen movements as are found i n S a x i f r a g a (Spongberg 19 72), a l l p o s i t i o n a l changes being dependent on hypanthium shape a l t e r -a t i o n s mediated by ovary growth. Gynoecium A l l genera stu d i e d have a x i l e p l a c e n t a t i o n , u s u a l l y w i t h two carpels forming a b i l o c u l a r ovary. Carpel f u s i o n v a r i e s among the species from p a r t i a l to complete ( F i g s . 28 - 30). I n those species w i t h the upper pa r t s of t h e i r ovaries f r e e , the p l a c e n t a t i o n i n t h i s r e gion i s c o r r e c t l y termed marginal. In species w i t h almost complete c a r p e l f u s i o n , the s t y l e s are j o i n e d by a d e l i c a t e membrane which o f t e n ruptures along some of i t s length a l l o w i n g the s t y l e s to separate. As a taxonomic character i t i s thus p o t e n t i a l l y v a r i a b l e and should be used w i t h care, e s p e c i a l l y i n herbarium specimens. Ovary p o s i t i o n v a r i e s between the species from n e a r l y i n f e r i o r to n e a r l y s u p e r i o r . The v a r i a t i o n has a developmental component because as a flower ages the ovary elongates, becoming l e s s i n f e r i o r . The len g t h of the f r e e hypanthium a l s o v a r i e s between s p e c i e s , 73 FIGURE 28. L o n g i t u d i n a l s e c t i o n s of flowers of some species of B o y k i n i a . a) B_. o c c i d e n t a l i s ( x l O ) ; b) J3_. intermedia (x8); c) B_. major (x7); d) B_. a c o n i t i f o l i a (x8). 74 75 FIGURE 29. L o n g i t u d i n a l s e c t i o n s of flowers of some species of B o y k i n i a and P e l t o b o y k i n i a . a) B_. r o t u n d i f o l i a ( x l 4 ) ; b) B_. l y c o c t o n i f o l i a ( x l 4 ) ; c) B. h e u c h e r i -formis (x8); d) P_. t e l l i m o i d e s ssp. watanabei (x5); e) B_;_ r i c h a r d s o n i i (x5) . 76 77 FIGURE 30. L o n g i t u d i n a l s e c t i o n s of flowers of S u k s d o r f i a and Bolandra. a) S_. a l c h e m i l l o i d e s ( x l 3 ) ; b) S_. r a n u n c u l i f o l i a (x8); c) S_^  v i o l a c e a (x8) ; d) B_. oregana (x8) . 78 79 TABLE V I I I . Protandry and n e c t a r i e s i n some species c u l t i v a t e d i n a growth room. Taxon Approx. degree Nectary t i s s u e of protandry, h r s . B o y k i n i a o c c i d e n t a l i s 96 I n s i g n i f i c a n t ; Y e l l o w i s h -Green B. intermedia 96 Prominent; Yellow B. major 96 Prominent; Y e l l o w B. r o t u n d i f o l i a 48 Absent S u k s d o r f i a r a n u n c u l i f o l i a 108 Prominent; Yellow S. v i o l a c e a 12 Absent P e l t o b o y k i n i a t e l l i m o i d e s * 72 I n s i g n i f i c a n t ; Green S u l l i v a n t i a oregana 96 I n s i g n i f i c a n t ; Green * both subspecies although t h i s character i s more or l e s s constant throughout the l i f e of a flower; i t i s thus of value taxonomically, e s p e c i a l l y i n species d e l i m i t -a t i o n . Ovary p o s i t i o n to a l a r g e extent d i c t a t e s hypanthium shape: t u r b i n a t e to campanulate i n B o y k i n i a , S u k s d o r f i a , and S u l l i v a n t i a ; t u b u l a r -campanulate i n P e l t o b o y k i n i a and Bolandra. As seeds r i p e n the ovary s w e l l s and the capsule becomes ur c e o l a t e i n a l l taxa except S u l l i v a n t i a , where i t remains campanulate (Rosendahl 1927), and i n some populations of B o y k i n i a  a c o n i t i f o l i a whose capsules remain t u r b i n a t e . I n many species a nectary occurs i n a band around the s t y l e base where the f r e e hypanthium and the ovary w a l l meet (Table V I I I ) . The band i s d i s c - l i k e i n S u k s d o r f i a r a n u n c u l i f o l i a . The nectary i s composed of y e l l o w , green, or yellow-green glandular t i s s u e and secretes a sugary s o l -t i o n s e v e r a l hours p r i o r to the stigmata becoming r e c e p t i v e . F o l l o w i n g p o l l i n a t i o n , as the flower ages, the s t y l e s , stigmata and p e t a l s become flushed w i t h anthocyanins. The amount i s v a r i a b l e and u s u a l l y not apparent i n the genus P e l t o b o y k i n i a . I f the p o l l i n a t i o n i s s u c c e s s f u l , 80 the carpels elongate and expand, an event n o t i c e a b l e a f t e r about two weeks. Developing ovules remain enclosed i n the ovary i n a l l genera. As the seeds r i p e n , the s t y l e s i n species w i t h l i t t l e c a r p e l f u s i o n become i n -c r e a s i n g l y divergent ( B o y k i n i a . P e l t o b o y k i n i a and S u k s d o r f i a ) . I n other species the s t y l e s remain cl o s e together u n t i l dehiscence when they r e f l e x ( S u l 1 i v a n t i a and Bolandra). In a l l species the capsules dehisce by a l o n g i t u d i n a l s l i t between the s t y l e s . The stigmata are c a p i t a t e w i t h u n i c e l l u l a r p a p i l l a e i n B o y k i n i a , Peltoboykjnia, Bolandra and i n S u k s d o r f i a r a n u n c u l i f o l i a , but truncate i n Suk s d o r f i a v i o l a c e a . S. a l c h e m i l l o i d e s , and S u l l i v a n t i a . Recent cyto-chemical and p h y s i o l o g i c a l i n v e s t i g a t i o n s of the angiosperm stigma have r e s u l t e d i n i t s c l a s s i f i c a t i o n i n t o two main types: wet and dry (Heslop-ffarrison 1975) . Wet types show a d i s t i n c t surface s e c r e t i o n during t h e i r r e c e p t i v e p e r i o d , whereas dry types do not. W i t h i n each type f u r t h e r sub-d i v i s i o n s have been made based on the morphology of the r e c e p t i v e s u r f a c e . A broad survey of the angiosperms has shown that many f a m i l i e s are homo-geneous i n stigma type, but some ( i n c l u d i n g Saxifragaceae s . s . ) , are not. Thus wet (group I I I ) genera i n c l u d e Mukdenia, Bergenia, P e l t i p h y l l u m , Heuchera, T e l l i m a and T i a r e l l a . Dry (group IIB) genera i n c l u d e A s t i l b e , Lithophragma, and Rodgersia (Heslop-Harrison and Shivanna 1977) . Taylor (1965) however, described Lithophragma as having wet stigmata. S a x i f r a g a i s unique i n possessing both types: 14 species had dry stigmata and only one had wet stigmata (Heslop-Harrison and Shivanna 1977). These authors suggested that f u r t h e r heterogeneous genera w i l l be found as s t u d i e s pro-ceed but that "those encountered i n the survey so f a r serve mainly to emphasize the remarkable consistency of stigma surface type as a generic c h a r a c t e r i s t i c " . I n the present study, wet (group I I I ) stigmata were ob-served i n B o y k i n i a , P e l t o b o y k i n i a , S u k s d o r f i a , S u l l i v a n t i a and Bolandra. 81 S o l t i s ( i n l i t t . ) reported that a l l S u l l i v a n t i a species have wet stigmata. The s t y l e s i n a l l species s t u d i e d have a canal which, w i t h the exception of S u l l i v a n t i a oregana, i s l i n e d w i t h t r a n s m i t t i n g t i s s u e . I n the case of P e l t o b o y k i n i a . both subspecies have canals completely f i l l e d w i t h t h i s t i s u e . I t i s probable that a l l species of S u l l i v a n t i a l a c k t r a n s -m i t t i n g t i s s u e s i n c e Bensel and P a l s e r (1975) a l s o report i t s absence from S. r e n i f o l i a . S u l l i v a n t i a i s al s o r a t h e r d i f f e r e n t from the other genera i n the l a r g e s i z e of i t s s t y l a r c a n a l . I t s s t y l e s could more a c c u r a t e l y be described as hollow. F l o r a l Anatomy On the b a s i s of a d e t a i l e d study of 26 species of Engler's Saxifragoideae, i n c l u d i n g Ribes, Bensel and P a l s e r (1975) concluded that the sub-family was remarkably homogeneous i n terms of both f l o r a l anatomy and morphology. They provided the f o l l o w i n g d e s c r i p t i o n : "The v a s c u l a r c y l i n d e r i n the p e d i c e l g e n e r a l l y c o n s i s t s of s e v e r a l to many d i s c r e t e bundles from which diverge ten compound traces at the base of the r e c e p t a c l e , l e a v i n g an inner c y l i n d e r of v a s c u l a r strands that coalesce at a higher l e v e l i n t o e i t h e r as many v e n t r a l bun-dles as carpels or twice that number. I n the former case, each v e n t r a l bundle c o n s i s t s of one-half of the v a s c u l a r supply to each adjacent car-p e l and separates i n t o i n d i v i d u a l v e n t r a l strands i n the d i s t a l h a l f of the ovary. The v e n t r a l bundles provide v a s c u l a r traces to the ovules and, along w i t h the d o r s a l s , extend up the s t y l e to the stigma. Each tra c e d i v e r g i n g i n a sepal plane t y p i c a l l y s u p p l i e s one or more c a r p e l - w a l l bundles, a median sep a l bundle, and a stamen bundle. Each p e t a l plane tra c e u s u a l l y provides one or more c a r p e l - w a l l bundles, a l a t e r a l t r a c e to each adjacent s e p a l , a p e t a l bundle and, i n flowers w i t h ten stamens, a stamen bundle. Dor s a l c a r p e l bundles are u s u a l l y recognizeable and 82 may o r i g i n a t e from traces i n e i t h e r p e r i a n t h plane", A p a r t i a l summary of Bensel and F a l s e r ' s (1975) anatomical ob-s e r v a t i o n s on herbaceous taxa w i t h a x i l e p l a c e n t a t i o n (the group of i n t e r -e st here) i s given i n Table IX. D i f f e r e n c e s between the species of Boykin- ia,, P e l t o b o y k i n i a and S u l l i v a n t i a s t u d i e d i n v o l v e mainly the v a s c u l a r i z a -t i o n of the c a r p e l s . I n v e s t i g a t i o n of other species i n these genera and i n S u k s d o r f i a and Bolandra may r e v e a l c o n s i s t e n t taxonomic d i f f e r e n c e s of value i n generic d e l i m i t a t i o n i Embryology According to Davis (1966) the usual ovule c o n d i t i o n i n Engler's Saxifragoideae ( i n c l u d i n g Ribes) i s anatropous,bitegmic and c r a s s i n u c e l -l a t e . P e l t i p h y l l u m and S a x i f r a g a s e c t i o n Micranthes, however, have u n i t e g -mic ovules. The embryo sac i s uniformly of the Polygonum type and Davis (1966) reported the embryogeny as conforming to the Soland type. While t h i s i s true of P e l t i p h y l l u m (Lebegue 1952), most Saxifragoideae have the Caryophyllad type of embryo development (Johansen 1950; Lebegue 1952; Kaplan 1976). The sub-family i s thus heterogeneous and embryological i n v e s t i g a t i o n of the genera at hand may prove u s e f u l i n t h e i r d e l i m i t a t i o n . Further v a r i a t i o n between the genera occurs w i t h respect to endosperm formation. Dahlgren (1930) has shown that endosperm formation i s ab i n i t i o C e l l u l a r i n A s t i l b e (2 spp.), Heuchera (2 spp.), P e l t i p h y l l u m , T e l l i m a . M i t e l l a pentandra and B o y k i n i a o c c i d e n t a l i s ; and that i t i s H e l o b i a l i n Chrysosplenium (2 spp.), S a x i f r a g a (6 spp., 1 h y b r i d and 1 d o u b t f u l sp.) , M i t e l l a d i p h y l l a and P e l t o b o y k i n i a t e l l i m o i d e s . Kaplan (1976) also reported H e l o b i a l endosperm i n S a x i f r a g a . Although the data are sparse, they provide f u r t h e r support f o r the s e p a r a t i o n of Peltoboy- k i n i a from B o y k i n i a . Although the genus M i t e l l a i s a l s o heterogeneous i n endosperm type, t h i s i s not s u f f i c i e n t evidence by i t s e l f f o r the recog-TABLE IX. P a r t i a l summary of f l o r a l anatomy i n S and F a l s e r (1975)) . Anatomical Feature* tn • r l CO rH cd 0) cd •A x i u C •H e •r( o cu f3 cd x) •H •H -A O rH fl <-> 4 3 rH • r l o o CU A ; O 4-1 4-1 •H o cu w No, v a s c u l a r bundles i n p e d i c e l 9-11 many small Y"entral v a s c u l a r supply ( i n n e r r i n g of bundles) 1 cont c y l No, compound p e r i p h e r a l bundles 9-10 9-10 No. bundles at base of free s e p a l 3,5 3 O r i g i n of stamen bundles s s+p T o t a l No. bundles/carpel 13-15 8-20 Dorsal bundle d i s t i n c t - -V e n t r a l bundle arrangement same cpd adj cpd L e v e l of se p a r a t i o n of cmp. v e n t r a l bundles mid ovary d i s t h of ov V e n t r a l bundle branch i n c a r p e l w a l l + + No. intermediate c a r p e l - w a l l 11-13 18-20 bundles/carpel i f r a g i n a e species w i t h a x i l e p l a c e n t a t i o n , (from Bensel Cd - r l •A rH 4-1 O fl M-l Cd 'A > fl • r l CU rH U rH 3 c/i 2-3 1 8-12 1-3 s 4-5 + adj cmp d i s t h of ov 1-2 cd S-t e „ XI s e fl rH P) cd rH 4-1 cd u !>, Cd • r l cu . f l 4J Pi 4-1 P. rH o CU •rt CU cn rC 4J Pu eu rH cu CU Pu cont 4-6 c y l 1 5-6 8-10 10 3 3 s+p s+p 6-10 16-20 + +.. adj simp cmp top of -l o c + 3-7 13-17 CD cd • r l •H CO rH C cd CU •H •H cd. Xi C 6 0 O •H cd fl 6 0 u o U M-l S-t • r l " •rj 4 = !> cd • cn in ^ cont 3 c y l 1 3-9-10 8-10 3 2-3 s+p s+p 3-11 5-8 + + adj simp cmp d i s t h -of ov 0-9 2-5 cd cd •A • r l rH rH O o 4-1 <4-4 ' r l Cd vi cn •A X I cn C U cd cu o S-4 6 0 O CJ S-t CU * pq pq 10-12 9-10 cont cont c y l c y l 8-10 8-10 3 3 s+p s+p 10-15 9-10 - + simp simp + + 8-13 6-7 TABLE IX, cont'd. Anatomical Feature* No, intermediate c a r p e l - w a l l bundles i n s t y l e base to • r l CO r H ca cu ca ca ca u e 4-1 C "r-C ca -i-c 3 g C • H O Ti i H fi r H 3 4-1 O ca r H 4-> ca >» Ti fi 4-1 ca u >, ca •H i H O r H ca - K t-i a) r f i 4-> s o ,0 - H > fi fi 4J PH r H •H O O CJ • r l CJ o CJ Ti CJ o 4J 4-> r H M cn ,e 4-1 O , r - l r H &. r H Q CD 3 CJ CJ pof CM. C/3 C U 1-11 16-20 0 0 9-15 * adj .= adjacent cont c y l = continuous c y l i n d e r cpd = compound P = p e t a l plane s = sepal plane simp = simple d i s t = d i s t a l ov = ovary l o c = l o c u l e m . p i ca Ti CO ca - r l r H fi - n i r H CS Q) r H O • r l i - l O 4-| U X fi 4-4 i H oo o Ti ca Ti co ca fi oo - r i T J co u o u fi u ca 4-4 5-1 i - l CJ O U TI xi > 60 o a K u CB • CJ • W M M pq 0 0 5-9 4-7 85 n i t i o n of segregates. I t may, however, lead to a n a t u r a l i n f r a g e n e r i c taxonomy. Taxonomic Inferences As noted by Bensel and P a l s e r (1975) f l o r a l anatomy and morph-ology i n the Saxifragiodeae are r e l a t i v e l y homogeneous and consequently they are of l i m i t e d a s s i s t a n c e i n the d e l i m i t a t i o n of genera. Although v a r i a t i o n e x i s t s i t appears to be taxonomically u s e f u l only at the l e v e l of s p e c i e s . However, aspects of f l o r a l morphology do c o n t r i b u t e to the o v e r a l l f a c i e s of some genera, and i n these cases i t i s q u i t e v a l u a b l e . Thus the c h a r a c t e r i s t i c tubular-campanulate flowers of Bolandra w i t h t h e i r unique subulate red p e t a l s and glabrous hypanthia set the genus apart from i t s close r e l a t i v e s , i n c l u d i n g B o y k i n i a and S u k s d o r f i a . S i m i l a r l y , P e l t o b o y k i n i a i s d i s t i n c t i n i t s tubular-campanulate flowers w i t h gland-u l a r , toothed p e t a l s . In t h i s case, i t s H e l o b i a l r a t h e r than C e l l u l a r endosperm al s o adds f u r t h e r support f o r i t s r e c o g n i t i o n as a separate-genus. The remaining genera i n t h i s study, B o y k i n i a , S u k s d o r f i a , and S u l l i v a n t i a a l l show s i m i l a r v a r i a t i o n i n t h e i r f l o r a l morphology. S u l l i v a n t i a may be d i s t i n g u i s h e d however, by i t s l a c k of s t y l a r t r a n s m i t t i n g t i s s u e . This feature would appear to be one of the few r e l i a b l e generic characters a v a i l a b l e i n t h i s c l o s e l y - r e l a t e d group of genera. B o y k i n i a and S u k s d o r f i a cannot be separated by f l o r a l morphology, both showing s i m i l a r trends i n f l o r a l v a r i a t i o n , v i z . l a r g e flowers w i t h prominent n e c t a r i e s to s m a l l flowers w i t h no n e c t a r i e s ; h a l f s u p e r i o r to n e a r l y i n f e r i o r o v a r i e s ; f r e e vs. u n i t e d s t y l e s ; awned vs. unawned anthers; polymorphism f o r toothed v s . e n t i r e p e t a l s ; crimson or pink to white p e t a l c o l o u r ; stamens w i t h long f i l a m e n t s to those w i t h short f i l a m e n t s . Some of t h i s p a r a l l e l v a r i a t i o n probably can be a t t r i b u t e d to changes i n the breeding system from out-Breeding to inbreeding. 86 T e r a t o l o g i c a l Phenomena Abort i o n of par t or a l l of the androecium was observed i n growth-room populations of B o y k i n i a o c c i d e n t a l i s and B_. major so that some flowers (but not a l l ) on a p l a n t were e f f e c t i v e l y male s t e r i l e . Aberrant v a r i a t i o n i n p e t a l , stamen and c a r p e l number, u s u a l l y an increase of one, was observed o c c a s i o n a l l y i n a l l B o y k i n i a species and much more commonly i n S u k s d o r f i a . N u t t a l l (1834) noted the tendency of B o y k i n i a  a c o n i t i f o l i a to produce three r a t h e r than two carpels i n some fl o w e r s . S u k s d o r f i a e s p e c i a l l y showed weak c o n t r o l over the numbers of i t s f l o r a l p a r t s , flowers w i t h 4 to 7 p e t a l s and 2 to 4 carpels being not uncommon. In some flowers of S_. v i o l a c e a one p a i r of p e t a l s are i m b r i c a t e w h i l e the others are separate,bestowing a degree of zygomorphism. The p o s s i b l e e f f e c t of t h i s on p o l l i n a t o r fauna i s obscure s i n c e f i e l d observations i n d i c a t e d that i n s e c t v i s i t o r s were e q u a l l y rare on both actinomorphic and zygomorphic flo w e r s . On one occasion, an i n d i v i d u a l of B o y k i n i a  o c c i d e n t a l i s from Oregon ( G o r n a l l 256) developed one or two s m a l l , y e l l o w -orange spots on the p e t a l s of some of i t s f l o w e r s , not u n l i k e those found i n some S a x i f r a g a species. Subsequently, flowers on t h i s p l a n t lacked these spots. 87 VTI> POLLEN The p o l l e n morphology of the Saxifragaceae has Been examined many times (AgaBaByan 1961; WakaBayashi 1970; Pastre and Pons 1973; Hideux and Ferguson 1976). The present study of B o y k i n i a , Bolandra and S u k s d o r f i a was- undertaken to complement the Broader survey conducted By Hideux and Ferguson (1976) who examined B o y k i n i a a c o n i t i f o l i a . B. o c c i d e n t a l i s , BiT  major, B. l y c o c t o n i f o l i a , B. r i c h a r d s o n i i . P e l t o B o v k i n i a t e l l i m o i d e s . S u k s d o r f i a r a n u n c u l i f o l i a , S. a l c h e m i l l o i d e s , Bolandra oregana and S u l l i v a n - t i a o h i o n i s . as w e l l as r e p r e s e n t a t i v e s of a l l other genera i n the S a x i f r a g -inae. These workers oBserved v a r i a t i o n i n tectum and aperture s t r u c t u r e s which has p o t e n t i a l taxonomic s i g n i f i c a n c e . M a t e r i a l s and Methods D e t a i l s of specimens s t u d i e d are given i n TaBle X. P o l l e n was examined By Both l i g h t and scanning e l e c t r o n microscopy. For l i g h t micro-scopy, the p o l l e n was acetolysed f o l l o w i n g Erdtman (1960) and mounted i n Hbyer's Medium. For e l e c t r o n microscopy, dry anthers were soaked i n d i s -t i l l e d water w i t h a w e t t i n g agent f o r 48 hours and then t r e a t e d w i t h a 1;1 mixture of 2% OsO^J.lM phosphate b u f f e r , pH 7.2, f o r one hour. They were d r i e d down through an ethanol s e r i e s and i n f i l t r a t e d w i t h amyl acetate p r i o r to c r i t i c a l p o i n t d r y i n g w i t h C02« A f t e r d r y i n g , they were mounted on stubs and the p o l l e n grains d i s s e c t e d out. P o l l e n was gold-coated and viewed on a H i t a c h S-500 scanning e l e c t r o n microscipe. A l l s i z e measure-ments were made w i t h a l i g h t microscope on a i r - d r i e d grains mounted i n Hoyer's Medium. Microsporogenesls was stud i e d according to the method o u t l i n e d i n Chapter X, Microsporogenesls In those B o y k i n i a and Suksdorfja species examined (B. Occident-88 TABLE X. M a t e r i a l used i n the p o l l e n study. F u l l c o l l e c t i o n d e t a i l s are given i n Appendix 1. C o l l e c t i o n s by G o r n a l l are p r e f i x e d by 'G'. B o y k i n i a a c o n i t i f o l i a : G342; H a r v i l l & Segars 25; i b i d .48; "Massey 3522; Radford 449.52; Shanks et a l . 4348. B. intermedia: G23; O t i s 1317; Wiggins 9453. B:, l y c o c t o n i f o l i a : Nagai s.n.; Ohba et a l . 73099; Sato s.n. ;R. major: D e t l i n g 3469; E v e r e t t & B a l l s 22043; G45; G337; Hitchcock & Muhlick 1539.1; Parks 24191; Wilson 116. B_, o c c i d e n t a l i s : G86; G256; Howe s.n.; Meyer 1000; Szczawinski s.n. B,, r o t u n d i f o l i a : G98; G105; P a r i s h 7147; Sprout s.n.; Thome et a l . 40871. B,, heucheriformis: Clokey 7963; G198; Hitchcock 18016; Macguire 14046; McCalla 7084; Taylor & G i l l e t t 4726. B.. j a m e s i i ; G i l l e t t & Mosquin 12114; Jones 955; Payson 1564. B:, r i c h a r d s o n i i (Alaska Range):' Anderson & Brown 10120; G306; Greene 333; P o r s i l d & P o r s i l d 1367; Spetzman 5038. B.. r i c h a r d s o n i i (Brooks Range): Argus & Chunys 5195; Packer 2099; Parmelee 2819; Spetzman 689; Spetzman 2739. S u k s d o r f i a a l c h e m i l l o i d e s : F i e b r i g 3161; V e n t u r i 3296; Sparre 9613; Sleumer 3533. S\ r a n u n c u l i f o l i a : Beamish & Vrugtman 60358; Beamish & Vrugtman 60827; Bohm 1092; Bohm 1096; G15; G245; G253; H a i n a u l t 8008; L u i t j e n s & Campbell 8; Nagy & Blaas 943a. S?„ v i o l a c e a ; Bohm 1112; Bohm 1118; Bohm 1122; Calder & S a v i l e 11306; C".. :der & S a v i l e 8732; Calder & S a v i l e 7682; Eastham 32; G248; G252; M c C a l l a 6535; Taylor s.n. Bolandra c a l i f o r n i c a : Sharsmith 3676. B. oregana: G340; Nelson 2552; Ownbey & Keck 3153; Ownbey & Ownbey 2752. P e l t o b o y k i n i a t e l l i m o i d e s ssp. t e l l i m o i d e s : G328; I t o s.n.; Maekawa s.n. ssp. watanabei; G343; Yamazaki s.n.; Shimozono s.n. a l l s . B. r o t u n d i f o l i a , B. major, B. he u c h e r i f o r m i s , B. r i c h a r d s o n i i , S.  r a n u n c u l i f o l i a and S. v i o l a c e a ) , c y t o k i n e s i s of the p o l l e n mother c e l l s i s simultaneous. I n species of a l l genera s t u d i e d , the p o l l e n g r a i n s are b i -nucleate and are disseminated as monads. Shape and S i z e P o l l e n grains are i s o p o l a r w i t h a r a d i a l order three symmetry 89 throughout the S a x i f r a g i n a e , i n c l u d i n g the genera s t u d i e d here, I n p o l a r view the grains of the species vary somewhat i n the amount of i n f l u e n c e the apertures have on p o l l e n shape. Generally the a p e r t u r a l angle i s obtuse and the i n t e r - a p e r t u r a l zone convex, although i n f r a s p e c i f i c v a r i a t i o n e x i s t s such that some populations of S-uksdorfia r a n u n c u l i f o l i a , S. y i o l a c e a , Bolandra oregana and B o y k i n i a r i c h a r d s o n l i may have an i n t e r - a p e r t u r a l zone which i s more lpbate than convex. I n e q u a t o r i a l view, p o l l e n shape v a r i e s depending on the treatment. Thus, when untreated grains are mounted i n Eoyer's Medium they appear oblate s p h e r o i d a l i n a l l species. Acetolysed grains mounted i n Hoyer's Medium however, vary from s p h e r o i d a l to subpro-l a t e , the shapes reported by Ikuse (1956) and Hideux and Ferguson (1976). I n m a t e r i a l prepared f o r e l e c t r o n microscopy,.Peltoboykinia, Bolandra and a l l B o y k i n i a species save one, have p r o l a t e grains i n e q u a t o r i a l view; The exception i s B o y k i n i a l y c o c t o n i f o l i a which, l i k e S u k s d o r f i a . has spher-o i d a l g r a i n s . P o l l e n s i z e s are shown i n Table X I . There i s no c l e a r cor-r e l a t i o n w i t h chromosome number. Although p o l l e n of the 14-ploid cytodeme of B o y k i n i a r i c h a r d s o n l i has a s i g n i f i c a n t l y l a r g e r mean e q u a t o r i a l diameter than that of the hexaploid cytodeme, the range of v a r i a t i o n obscures any u s e f u l d i s t i n c t i o n . Apertures I n t h i s and the next s e c t i o n , s e l e c t e d r e s u l t s from Hideux and Ferguson (1976) w i l l be incorporated s i n c e these have yet to be i n t e r p r e t e d i n terms of generic r e l a t i o n s h i p s w i t h i n the s m a l l group at hand. The p o l l e n grains of a l l species i n S u k s d o r f i a , Bolandra and B o y k i n i a s e c t i o n B o y k i n i a are 3-colporate. The r e p o r t by Ikuse (1956) of c o l p o r o i d a t e p o l l e n i n B o y k i n i a l y c o c t o n i f o l i a i s erroneous. S u l l i v a n t i a species have 3-colporate p o l l e n but with, two or three orae a s s o c i a t e d w i t h each colpus (Agababyan 19.61; Hldenx and Ferguson 1976). Species of 90 TABLE X I . Sizes of a i r ^ d r i e d p o l l e n grains mounted i n Rover's Medium. Ten re p r e s e n t a t i v e grains per c o l l e c t i o n were measured, r e s u l t s Being expressed as the mean + one standard d e v i a t i o n . Taxon N B o y k i n i a a c o n i t i f o l i a intermedia l y c o c t o n i f o l i a major o c c i d e n t a l i s r o t u n d i f o l i a r i c h a r d s o n l i * Alaska Range Brooks Range heucheriformis j a m e s i i P e l t o b o y k i n i a t e l l i m o i d e s ssp. t e l l i m o i d e s ssp. watanabei S u k s d o r f i a a l c h e m i l l o i d e s r a n u n c u l i f o l i a 100 v i o l a c e a 100 Bolandra c a l i f o r n i c a 10 oregana 30 P#/<m E yum 50 14.8 ± 1.3 16.2 ± 1.3 30 17.2 + 1.0 18.4 + 1.2 30 18.0 + 0.7 19.2 + 1.2 50 17.9 + 1.5 20.2 + •1.5 50 14.9 + 0.8 16.5 + 0.9 50 16.1 + 1.0 18.1 + 0.9 50 27.0 + 1.3 29.0 + 2.0 50 27.4 + 1.2 30.9 + 1.5 50 21.0 + 1.0 24.2 + 1.0 20 20.3 ± 1.6 22.8 + 1.4 30 22.7 + 1.2 23.9 + 1.3 30 22.0 ± 1.0 24.4 + 1.1 20 17.1 + 1.2 14.5 + 1.1 16.9 + 1.2 16.6 +'1.2 23.4 + 1.6 23.0 +1.8 P =. p o l a r diameter; E = e q u a t o r i a l diameter. 17.1 + 1.5 18.0 + 1.3 26.8 +1.5 25.4 + 2.1 There i s no s i g n i f i c a n t d i f f e r e n c e i n mean p o l a r diameter between c o l l e c t i o n s from the Alaska Range (2n = 36) and those from the Brooks Range (2n = 84): F Q = 2.56, P>5%. Mean e q u a t o r i a l diameter i s x, y o s i g n i f i c a n t l y l a r g e r i n pl a n t s from the Brooks Range P < 1%. F l f 9 8 = 28.88, P e l t o b o y k i n i a and B o y k i n i a s e c t i o n s T e l e s o n i x and R e n i f o l i u m have 3-colpor-broidate p o l l e n . Hideux and Ferguson (1976) reported that i n a l l the gen-era considered here, the endexine i s thickened i n the area around each colpus. 91 Tectum A l l genera have a homogeneous tectum but i t s s t r u c t u r e v a r i e s between the species. Scanning e l e c t r o n micrographs are shown i n F i g s . 31 and 32. I n a l l three S u k s d o r f i a s p e c i e s , Bolandra oregana and B o y k i n i a  r i c h a r d s o n l i ("Fig. 32), the tectum i s p a r t i a l l y continuous and c o a r s e l y r e t i c u l a t e . The luminae vary i n shape and s i z e , a measure of the l a t t e r being the r a t i o of muri and lumina widths. This r a t i o i s u s u a l l y l e s s than one ( i . e . l a r g e luminae) at the equator but increases at the poles where the tectum becomes p e r f o r a t e r a t h e r than r e t i c u l a t e . W i t h i n the luminae s c u l p t u r a l elements may be seen. The columellae i n S u k s d o r f i a  a l c h e m l l l o i d e s are longer, r e l a t i v e to tectum t h i c k n e s s , than they are i n the other species (Hideux and Ferguson 1976). I n B o y k i n i a s e c t i o n B o y k i n i a ( F i g . 31) , B_. a c o n i t i f o l i a . B.  intermedia, B. l y c o c t o n i f o l i a and B_. o c c i d e n t a l i s are a l l very s i m i l a r , w i t h a densely r e t i c u l a t e , p a r t i a l l y continuous (foveolate) tectum. The r a t i o of muri and luminae widths i s about one, but as before there i s an increase i n t h i s r a t i o , towards the p o l e s . B o y k i n i a r o t u n d i f o l i a i s d i f f e r e n t from the preceding species i n t h a t , although i t s tectum shows signs of being densely r e t i c u l a t e to p e r f o r a t e , most of the luminae are occluded such that the tectum i n continuous over much of the g r a i n . Boy- k i n i a ma.jor i s intermediate i n t h i s respect between B_. r o t u n d i f o l i a and the r e s t of s e c t i o n B o y k i n i a . I n B o y k i n i a s e c t i o n T e l e s o n i x , B_. heucheriformis has p o l l e n very s i m i l a r to those species of s e c t i o n B o y k i n i a w i t h a f o v e o l a t e tectum. There i s some i n f r a s p e c i f i c v a r i a t i o n i n that the sample from A l b e r t a ( F i g . 32g) had a t y p i c a l e q u a t o r i a l murl/lumina width r a t i o of l e s s than one, whereas i n the sample from Montana ( F i g s , 32h, i ) t h i s r a t i o was more than one." B o y k i n i a .Iamesji has p o l l e n s i m i l a r to that of Bj_ r o t u n d i f o l i a . 92 FIGURE 31. Scanning e l e c t r o n micrographs of p o l l e n grains of species of B o y k i n i a s e c t i o n B o y k i n i a . a - c) B_. a c o n i t i f o l i a , G o r n a l l 342. d - f ) _B_. l y c o c t o n i f o l i a , Sato s.n. g - i ) B_. intermedia, G o r n a l l 23. j - 1) B_i major, G o r n a l l 337. m - o.) B_. r o t u n d i f o l i a , m: G o r n a l l 98; n,o: G o r n a l l 105. p - r) B_. o c c i d e n t a l i s , G o r n a l l 86. Scale bar = 5yum i n a,b,d,e,g,h,j,k,m,n,p,q. = 1^m i n c , f , i , l , o , r . 93 94: FIGURE 32. Scanning electron micrographs of pollen grains of species of Boykinia sections Renifolium and Telesonix, and of Peltoboykinia, Bolandra and Suksdorfia. a - c) Boykinia richardsonii. Gornall 306. d - f) B_. jamesii, G i l l e t t & Mosquiri 12114. g - i) B_. heucheriformis, g: Gornall 344; h , i : Gornall 198. j - 1) J?_. tellimoides ssp. watanabei, Gornall 343. m - o) Bolandra oregana, Gornall 340. p - r) _S_. violacea, Bohm 1122. s - u) S_. ranunculif o l i a , s: Gornall 245; t,u: Nagy & Blaas 943a. v) JS_. alchemjlloides. (from Hideux and Ferguson (1976) who cited Sleumer 3533 and Sparre 9613). Scale bar = 5 yum in a,b,d,e,g,h,j,k,m,n,p,s. = 1 yum in c,f,i,l,o,q,r,t,u,v. 96 i n that the luminae of i t s densely r e t i c u l a t e tectum are occluded so that the tectum i s continuous. I n both subspecies of P e l t o b o y k i n i a t e l l i m o i d e s the tectum i s p a r t i a l l y continuous and p e r f o r a t e , s p a r i n g l y so i n ssp. watanabei. The muri/lumina width r a t i o i s very l a r g e , i . e . the p e r f o r a t i o n s are minute. Regarding exine t h i c k n e s s , Hideux and Ferguson (1976) reported values of about one micron i n a l l the genera s t u d i e d here, although i t can Be as much as two microns i n S u k s d o r f i a a l c h e m i l l o i d e s . Taxonomic Inferences Although many of the species i n the present study, e s p e c i a l l y those of B o y k i n i a s e c t i o n T e l e s o n i x , have been considered as belonging to S a x i f r a g a , p o l l e n morphology provides strong support f o r t h e i r e x c l u s i o n . Thus a l l S a x i f r a g a species so f a r s t u d i e d have colpate g r a i n s , l a c k i n g endoapertures (Hideux and Ferguson 1976). This i s not the case here, where endoapertures are uniformly present. S u l l i v a n t i a i s w e l l separated from the other genera by i t s p e c u l i a r apertures w i t h two or three orae per colpus. B o y k i n i a shows some v a r i a t i o n w i t h both colporate and col p o r o i d a t e p o l l e n . The l a t t e r occurs i n s e c t i o n s R e n i f o l i u m and T e l e s o n i x , supporting t h e i r p o s i t i o n outside the core of the genus. P e l t o b o y k i n i a a l s o has co l p o r o i d a t e p o l l e n , a c o n d i t i o n shared by Mukdenia, Oresitrophe, Jepsonia and P e l t i p h y l l u m , of the genera w i t h a x i l e p l a c e n t a t i o n (Hideux and Ferguson 1976) . Colporate p o l l e n i s uniformly present i n s e c t i o n B o y k i n i a and t h i s supports the i n c l u s i o n of Ji,. l y c o c t o n i f o l i a i n the genus. S u k s d o r f i a species are a l l colporate and thus no support i s given to the r e c o g n i t i o n of segregate genera. Bolandra has colporate p o l l e n , supporting i t s c l o s e a s s o c i a t i o n w i t h S u k s d o r f i a and B o y k i n i a . Of the S a x i f r a g i n a e w i t h a x i l e p l a c e n t a t i o n , colporate p o l l e n also occurs i n Bergenia and Saxjfragodes (Hideux and 97 Ferguson 1976). I n terms of tectum s t r u c t u r e , S u k s d o r f i a i s again a homogene-ous group, and shows an a f f i n i t y w i t h Bolandra and, more s u r p r i s i n g l y , w i t h B o y k i n i a r l c h a r d s o n j i . P e l t o b o y k i n i a i s al s o very d i s t i n c t i v e w i t h i t s p e r f o r a t e tectum. W i t h i n s e c t i o n B o y k i n i a , the intermediacy of B^ major between B. r o t - u n d i f o l i a and the r e s t of the s e c t i o n provides support f o r the hypothesis that one of the genome donors of B. major was a B_. rotund- i f o i l a - l i k e p l a n t . The s i m i l a r i t y of B^ l y c o c t o n i f o l i a , B. intermedia and B. a c o n l t l f o l i a f u r t h e r supports the former's i n c l u s i o n i n B o y k i n i a . The d i f f e r e n c e s i n tectum s t r u c t u r e between B_. j a m e s i i and B_. heucheriforails support t h e i r r e c o g n i t i o n as separate s p e c i e s . 98 V I I I . SEEDS Engler (1891:, 1928) and Rosendahl (1905) noted the v a r i e t y of . s i z e s and shapes of seeds i n the s u b - t r i b e S a x i f r a g i n a e , and made some p r e l i m i n a r y d e s c r i p t i o n s of the t e s t a surfaces i n d i c a t i n g that some species were t u b e f c u l a t e and others smooth. More recent s t u d i e s of the seed coat have confirmed the d i v e r s i t y i n t e s t a ornamentation (Conolly 1972, 1976; Kaplan 1976; Krach 1976; M i l l e r and Thompson 1979). Perhaps the g r e a t e s t V a r i a t i o n i s found i n the genus S a x i f r a g a where the seeds possess or l a c k f o l d s i n the t e s t a , and the surface can be made up of s t r o n g l y b u l g i n g outer w a l l s of seed coat c e l l s , or elaborated i n t o long t u b e r c l e s or i n t o s h o r t , s h a r p l y - d e f i n e d p a p i l l a e . The outer w a l l s of the epidermal c e l l s may be mono- or p l u r i p a p i l l o s e . C o n f i g u r a t i o n of the mature seed coat f r e q u e n t l y d i f f e r s c o n s i s t e n t l y between species ( M i l l e r and Thompson 1979) , although a c e r t a i n amount of i n f r a - s p e c i f i c v a r i a t i o n occurs (Conolly 1972, 1976) . Other genera a l s o show some i n t e r - s p e c i f i c v a r i a t i o n i n t h e i r t e s t a ornamentation, thus i n Lithophragma.(Taylor 1965), Chrysosplenium (Hara 1957) and Heuchera (Rosendahl et a l . 1936) the species vary from tubercu-l a t e to smooth, each p a t t e r n o f t e n c h a r a c t e r i z i n g a species or species group. D i f f e r e n c e s between genera seem to l i e i n the d i s t r i b u t i o n patterns of the t u b e r c l e s , or o r i e n t a t i o n and shape of the t e s t a epidermal c e l l s . I n the present study, a survey of the morphology of.the seeds of B o y k i n i a and r e l a t e d genera was made i n order to document the range of v a r i a t i o n . C o l l e c t i o n s used i n the study are given i n Table X I I . Observations Seeds of the species s t u d i e d vary i n shape and s i z e , features which apparently can be i n f l u e n c e d somewhat by the degree of crowding i n the ovary. In B o y k i n i a . P e l t o b o y k i n i a . S u l l i v a n t i a and S u k s d o r f i a the seeds range i n shape from n e a r l y s p h e r i c a l to e l l i p s o i d ; i n Bolandra they 99 TABLE X I I . L i s t of m a t e r i a l used i n the seed study. F u l l c o l l e c t i o n d e t a i l s and herbarium l o c a t i o n s are given i n Appendix 1. C o l l e c t i o n s by G o r n a l l are p r e f i x e d By !G'. Bo y k i n i a a c o n i t i f o l i a ; Barksdale et a l , 3172; Cloyd s.n.; K a r v i l l et a l . 11; K r a i 35423; McFarland s.n. B. l y c o c t o n i d o l i a ; Kanai s.n. B. major: G45; Howell 983; P i p e r s.n. B. o c c i d e n t a l i s : GI; G22; G86; G256; S t r a l e y 1753. B. r o t u n d i f o l i a : G98; G101; G105. B. heucheriformia: G115; G193; G344. B. r i c h a r d s o n l i : G272; G302; Raup 12796. Su k s d o r f i a r a n u n c u l i f o l i a : Bohm 1096; Bohm 1132. S. v i o l a c e a : Bohm 1112; G248. S, a l c h e m i l l o i d e s : F i e b r i g 3161. P e l t o b o y k i n i a t e l l i m o i d e s ssp. t e l l i m o i d e s : G343; I t o s.n.; Mizushima s.n. ssp, watanabei: G328; Nippon Shinyaku Bot Gard.; Yamazaki s.n. Bolandra oregana: G340; Henderson s.n.; P i p e r 5721. S u l l i v a n t i a h a l m l c o l a : S o l t i s et a l . 1029. Jepsonia p a r r y l : Cromwell 709; Mulroy s.n. P e l t i p h y l l u m peltatum: G66; G67; G80. are narrowly e l l i p s o i d , w h i l e i n P e l t i p h y l l u m they are somewhat rectangu-l a r , and i n Jepsonia they vary from e l l i p s o i d to narrowly t r i a n g u l a r . A raphe i s prominent i n P e l t o b o y k i n i a and S u k s d o r f i a but l e s s so i n the other genera. Table X I I I shows the seed s i z e s and shapes of the d i f f e r e n t s p e c i e s , together w i t h t e s t a colour and c o n f i g u r a t i o n . A feat u r e most important i n sepa r a t i n g species and species groups i s the t e s t a s u r f a c e , and i t i s t h i s to which most a t t e n t i o n has been d i r e c t e d . Gold-coated seeds were examined using a H i t a c h i S-500 scanning electrom microscope. I n a l l cases, very l i t t l e i n f r a - s p e c i f i c V a r i a t i o n was seen. Photomicrographs of seeds of the va r i o u s species are shown i n F i g s . 33 r- 35. TABLE XIII. Seed colour, shape and size, and tubercle length In Boykinia. Peltoboykinia. Suksdorfia, Bolandra, Jepsonia. Peltiphyllum and Sullivantia. A l l measurements are in microns and are expressed as the mean + one standard deviation, with a sample size of 24. Sullivantia data are from Rosendahl (1927).. Taxon Length (L) Width (W) Shape (L/W) Tubercle Length Testa Colour Boykinia aconitifolia 524 + 57 311 + 31 1.69 + .22 13 + 3 Black or Dk. B. intermedia 552 + 51 350 + 33 1.59 .21 11 + 2 Black B. lycoctonifolia 520 + 34 271 + 15 1.93 ± .16 11 + 1 Black or Dk. B. major 643 + 56 351 + 33 1.84 + .16 13 + 4 Black or Dk. B. occidentalis 567 + 48 378 + 47 1.52 + .21 8 + 2 Black B. rotundifolia 514 + 41 301 + 34 1.72 + ; .22 10 + 2 Black B. heucheriformis 1121 + 213 543 + 94 2.08 + .34 smooth Dk. Brown B. richardsonii 1493 ± •112 720 + 99 2.10 ± .29 4 + .3 Dk. Brown Peltoboykinia tellimoides 746 ± 60 446 + 51 1.68 + .17 51 + 15 Dk. Brown ssp. tellimoides ssp. watanabei 685 + 34 458 + 18 1.50 ± .09 45 + 18 Dk. Brown Suksdorfia alchemilloides 429 + 27 250 + 10 1.72 + .12 10 + 2 Dk. Brown S. ranunculifolia 771 + 100 343 + 41 2.24 + .42 4 + 2 Dk. Brown S. violacea 462 + 60 234 + 40 1/95 + .15 9 + 2 Dk. Brown Bolandra oregana 719 + 50 245 + 33 2.98 + • .43 8 + 2 Dk. Brown Jepsonia parryi 893 + 111 465 + 36 1.92 + .18 smooth Brown Peltiphyllum peltatum 1900 + 240 1090 + 120 1.76 + .25 21 + 3 Brown Sullivantia s u l l i v a n t i i S. renifo l i a S. hapemanii ' S. halmicola S. oregana 590 (570-620) 600 (530-650) 700 (560-770) 860 (800-960) 650 (580-720) 360 (320-400) 360 (330-380) 480 (400-520) 570 (480-680) 470 (430-530) 1.64 1.67 1.46 1.51 1.38 smooth smooth smooth smooth smooth Dk. Brown Dk. Brown Dk. Brown Dk. Brown Dk. Brown 101 FIGURE 33. Scanning e l e c t r o n micrographs of seeds of species of Boy k i n i a s e c t i o n B o y k i n i a . a - c) B^ a c o n i t i f o l i a , Cloyd s.n. d - f ) J3_. l y c o c t o n i f o l i a , Kanai s.n. g - 1) B_. intermedia, G o r n a l l 23. j - 1) B_. maj or, G o r n a l l 45. m - o) B^ , r o t u n d i f o l i a , m,o: G o r n a l l 105; n: G o r n a l l 101. p - r ) B_. o c c i d e n t a l i s , p: G o r n a l l 256; q: G o r n a l l 22; r : S t r a l e y 1753. Scale bar = 50ya.ni i n a,b,d,e,g,h, j ,k,m,n,p,q. = 5y»t.m i n c , f , i , l , o , r . 102 103 FIGURE 34. Scanning electron micrographs of seeds of species of Boykinia sections Renifolium and Telesonix, and of Suksdorfia and Bolandra. a - c) Boykinia r i c h a r d s o n l i , Gornall 302. d - f) B_. heucheriformis, d,f: Gornall 193; e: Gornall 344. g - i ) S_^  ranunculif o l i a , Bohm 1132. j - 1) S_. vi o l a c e a , Bohm 1112. m - o) S_. alchemjlloides, F i e b r i g 3161. p - r) Bolandra oregana, Gornall 340. Scale bar = 500yttm i n a,d. = 50yum i n b,e,g,h,j,k,m,n,p,q. = 5 urn i n c , f , i , l , o , r . 104 105 FIGURE 35. Scanning electron micrographs of seeds of species of Peltoboykinia, S u l l i v a n t i a . Peltiphyllum and Jepsonia. a-;- c) Peltoboykinia tellimoides ssp. t e l l i m o i d e s , Mizushima s.n. d - f) P^ tellimoides ssp. watanabei, Gornall 343. g - i ) S± halmicola, S o l t i s & Hammond-Soltis 1029. j - 1 ) Peltiphyllum peltatum, Gornall 80. m - o) J\ p a r r y i , Cromwell 709.• Scale bar = 500juxa. i n a,d,g,j,m. = 50 jum i n b , c , e , f , h , i , k , l , n . = 5 yum i n o. 106 107 In Boykinia section Boykinia ( F i g . 33) the seeds are s t r i k i n g -l y uniform i n t h e i r t e s t a ornamentation and colour. The t e s t a , which i s usually black, has no creases or f o l d s , and has very prominent, evenly-spaced tubercles arranged l o n g i t u d i n a l l y , more or l e s s i n rows. The height and s p a t i a l arrangement of these tubercles show very l i t t l e v a r i a -t i o n between the species. The epidermal c e l l s are polygonal and the outer wall of each forms the tubercle, one per c e l l . Much of the outer c e l l w all i s involved i n this way, so that only the small area around i t s edge i s v i s i b l e at the surface, the ce n t r a l portion being raised i n t o a d i s t i n c t dome. Boykinia r i c h a r d s o n i i ( F i g . 34) d i f f e r s but mostly only i n degree. I t s dark brown testa i s often creased or folded but i s also covered i n tubercles. They are smaller than i n section Boykinia, and pro-trudes only a l i t t l e above the surrounding surface. Moreover, less sur-face area of the outer c e l l w all i s devoted to tubercle formation, and hence the polygonal c e l l perimeter i s c l e a r l y v i s i b l e . Boykinia heucheriformis ( F i g . 34) d i f f e r s somewhat from the previous taxa. I t lacks tubercles of any kind but instead the outer walls of the dark brown seed coat c e l l s bulge s l i g h t l y . These epidermal c e l l s are oblong rather than polygonal and the testa surface thus appears f i n e l y s t r i a t e . I t may also be rather creased or folded. Peltoboykinia ( F i g . 35) shows another kind of t e s t a ornament-ation. I t s two subspecies are very s i m i l a r . The dark brown t e s t a i s uncreased and most of i t s tubercles are very long, s p i n e - l i k e structures. Over much of the seed they are arranged i n 14 - 20, h i g h l y d i s t i n c t , long-i t u d i n a l rows, with a d i s t i n c t gap between each row. The tubercles are formed i n the same way as before except that the component epidermal c e l l s are narrowly transversely oblong. The outer c e l l walls are distended into 108 t a l l spines i n t h e i r centres, leaving large areas on e i t h e r side at sur^-face l e v e l . There can Be some v a r i a t i o n i n 1 t u b e r c l e length and arrange^ ment within i n d i v i d u a l seeds. Thus i n some places on a seed the tubercles are shorter and they lose t h e i r regimented pattern; the l a t t e r r e f l e c t s the shape of the component c e l l s here, which are polygonal rather than transversely oblong. The affected area has an appearance very s i m i l a r to that described f o r Boykinia section Boykinia. In Suksdorfia ( F i g . 34) the dark brown testa i s often creased or folded, usually with three ridges running the length of the seed, although sometimes there can be more. Tubercles are arranged longitud-i n a l l y i n rows and arise from i r r e g u l a r l y polygonal epidermal c e l l s . The rows are more regimented i n S_. alchemjlloides than i n the other two species. Surface v a r i a t i o n also can involve parts of the t e s t a on any seed being more or less smooth. In S_. ranunculif o l i a the tubercles are low domes, s i m i l a r to those i n B_. r i c h a r d s o n l i but d i f f e r i n g i n that each i s composed of an e n t i r e outer c e l l w a l l , making the tubercles more t i g h t l y packed. In S_. v i o l a c e a the' tubercles are v a r i a b l e i n s i z e , even on a s i n g l e seed, from low domes to much t a l l e r , p a p i l l a - l i k e protruber-ances. The t a l l e r tubercles are often associated with the sides of the ridges, whereas the domes tend to occur on the seed face between the ridges. The occurrence of intermediates obscures t h i s pattern. As i n section Boykinia, much of the surface of each outer c e l l i s used i n the formation of the low domes, leaving only the area around the edges v i s i b l e on the surface. In the case of the t a l l e r tubercles, however, the e n t i r e outer wall of each c e l l i s used and very l i t t l e of the seed surface remains v i s -i b l e . The arrangement and s i z e of the tubercles i n S. alchemjlloides are s i m i l a r to the pattern i n Boykinia section Boykinia. In Bolandra oregana•(Fig. 34) the tubercles are also arranged 109 as i n B o y k i n i a s e c t i o n B o y k i n i a , although, they are somewhat smaller and t h e i r parent c e l l s are more elongated. S u l l i v a n t i a ( F i g . 35) i s unique i n t h a t the dark brown t e s t a i s extended l a t e r a l l y to form "wings", The epidermal c e l l s are polygonal to t r a p e z o i d and t h e i r outer w a l l s Bulge only s l i g h t l y . The o v e r a l l appearance i s thus one of smoothness. Jepsonia ( F i g . 35) has a smooth mid-brown t e s t a which i s creased, o f t e n w i t h about three prominent r i d g e s . The epidermal c e l l s are polygonal w i t h only s l i g h t l y b u l g i n g outer w a l l s . P e l t i p h y l l u m ( F i g . 35) i s somewhat s i m i l a r although i t s mid-brown seeds are much l a r g e r . The seeds have three or four ridges and u s u a l l y have c h a r a c t e r i s t i c squared ends. The epidermal c e l l s are polygonal and the outer w a l l s bulge very s t r o n g l y to give the seed a verrucate. appearance. Taxonomic Inferences I n view of the v a r i a t i o n found i n S a x i f r a g a , Chrysosplenium and Lithophragma, i t i s impossible to use seed characters alone to d e l i m i t genera. However, they can be used to support groupings made on other grounds. Thus B o y k i n i a s e c t i o n B o y k i n i a i s a homogeneous u n i t c h aracter-i z e d by seeds of f a i r l y uniform s i z e , shape and c o l o u r , w i t h uncreased seed coats and a remarkably constant t e s t a ornamentation. B o y k i n i a l y c o c - t o n i f o l i a thus f i t s w e l l i n the core s e c t i o n of the genus and no support i s given to i t s r e c o g n i t i o n as Neoboykinia (Hara 1937). B o y k i n i a r i c h a r d - s o n l i d i f f e r s s l i g h t l y i n i t s l a r g e r , dark brown seeds w i t h creased coats and much smaller t u b e r c l e s . This sequence i s continued i n B. heucheriformis which also has l a r g e , dark brown, creased seeds, but l a c k s any t u b e r c l e s . The seed coat c e l l s are a l s o oblong, r a t h e r than p o l y g o n a l , as i n other B o y k i n i a species. These d i f f e r e n c e s support the e x c l u s i o n of these two species from s e c t i o n Boykinia and t h e i r assignment to two separate s e c t i o n s , 110 Renifolium and Telesonix, Although Boykinia i s heterogeneous i n i t s seed characters, the v a r i a t i o n can be understood i n terms of an evolutionary trend. jMany other genera i n the Saxifraginae show the t r a n s i t i o n from smooth to tuberculate seeds, e.g. Chrysosplenl-um, Llthophragma, Heuchera and Saxifraga. Hara (1957) suggested that i n Chrysosplenium the smooth condition was p r i m i t i v e and tubercles derived, a proposal also compatible with other evolutionary trends i n Heuchera (Wells 1977). In Boykinia there i s no reason to suppose that the d i r e c t i o n of evolution has been d i f f e r e n t , indeed the smooth-seeded B_j_ heucherjformis retains other p r i m i t i v e features such as ten s t a -mens and colporoidate p o l l e n . The long, s p i n e - l i k e , highly-regimented tubercles with trans-versely oblong component c e l l s i n Peltoboykinia help d i s t i n g u i s h i t as a separate genus. However, the occurrence on some seeds of polygonal com-ponent c e l l s with much shorter tubercles, indicates a possible r e l a t i o n -ship with Boykinia. The c h a r a c t e r i s t i c a l l y narrow e l l i p s o i d seed shape i n Bolandra helps define i t as a genus, although i t s testa surface pattern i s remark-ably s i m i l a r to that i n Boykinia section Boykinia. Although there are some d i s t i n c t differences i n t e s t a surface pattern between the three species of Suksdorfia. they involve mostly tuber-cle s i z e and i t may be that the conditions i n Suksdorfia represent e a r l y stages of d i f f e r e n t i a t i o n according to the evolutionary trend discussed above. In the past the three species have been assigned to separate mono-ty p i c genera. S i m i l a r i t i e s i n many respects tp the v a r i a t i o n i n testa sur-face pattern i n Boykinia are quite marked, and i t i s l i k e l y that the two genera represent p a r a l l e l l i n e s of evolution. Winged seeds with smooth testas d i s t i n g u i s h S u l l i v a n t i a as a I l l d i s t i n c t genus. I t might be noted however, that winged seeds- a l s o occur i n some S a x i f r a g a s p e c i e s , Engler (1928) has suggested that the c o n d i t i o n i s merely an extreme form of t e s t a f o l d i n g , a phenomenon most r e a d i l y apparent i n S u k s d o r f i a among the genera s t u d i e d here. S a v i l e (1975) l i n k e d the wings to a chasmophilous h a b i t and a e r i a l d i s p e r s a l , s i n c e S u l l i v a n t i a t y p i c a l l y grows on c l i f f s . The verrucate t e s t a i n P e l t i p h y l l u m , together w i t h i t s . very l a r g e seeds, c o n t r i b u t e s f u r t h e r to the d i s t i n g u i s h i n g characters of the genus. I t does nothing to suggest an a l l i a n c e w i t h P e l t o b o y k i n i a as has been proposed i n the past (Engler 1891). Jepsonia has u n s p e c i a l i z e d smooth seeds and i t s r e l a t i o n s h i p s are ambiguous i n t h i s r e s p e c t . 112 IX. SEEDLINGS AND EARLY DEVELOPMENT M a t e r i a l s and Methods Germination and e a r l y development were stud i e d i n the f o l l o w -ing s p e c i es: B o y k i n i a o c c i d e n t a l i s , B. intermedia. B. major, B. rotund- i f o l i a . B. r i c h a r d s o n i i , B. heucheriformis and P e l t o b o y k i n i a t e l l i m o i d e s . Seeds were germinated i n pots of s o i l , or on beds of agar enriched w i t h Hoagland's s o l u t i o n , at 17°C under a 16hr photoperiod. Germination occur-red t y p i c a l l y a f t e r about three weeks i n both, i f f r e s h seed were used. The germination success r a t e was 70 - 90%. L i g h t i s ther e f o r e probably not a s i g n i f i c a n t f a c t o r i n germination. A s i m i l a r c o n c l u s i o n was reached by Taylor (1965) f o r Lithophragma, where temperature was found to be a c o n t r o l l i n g v a r i a b l e . Observations Germination i s e p i g e a l w i t h the r a d i c l e emerging f i r s t f ollowed by the h y p o c t y l and the two, r a r e l y three, cotyledons. The r a d i c l e t i p Is pigmented red w i t h anthocyanins, a c o n d i t i o n found i n a l l a c t i v e l y growing r o o t s , whether i n the l i g h t or dark. I n B o y k i n i a s e c t i o n s B o y k i n i a and T e l e s o n i x and i n P e l t o b o y k i n i a the cotyledons are ovate, whereas i n B. r i c h a r d s o n i i of s e c t i o n R e n i f o l i u m they are narrowly ovate. They may be up to 3mm long at m a t u r i t y , the e n t i r e s e e d l i n g being about 3mm t a l l . I n B o y k i n i a the shoot apex produces the f i r s t e o p h y l l which i s e n t i r e i n the b a s a l region but s e r r a t e to v a r y i n g degrees toward i t s apex. This i s q u i c k l y followed by a second e o p h y l l , a l t e r n a t e to the f i r s t , and also s e r r a t e i n the a p i c a l r e g i o n . Subsequent f o l i a g e leaves are produced i n a 3/8 p h y l l o t a c t i c s p i r a l to form a r o s e t t e from which the f l o r a l a x i s l a t e r a r i s e s . In species whose metaphylls are lobed or otherwise d i v i d e d , successive leaves show a sequence from the i n i t i a l l y e n t i r e or p a r t i a l l y s e r r a t e c o n d i t i o n to the t y p i c a l d i v i d e d c o n d i t i o n ( F i g s . 36, 37). 113 FIGURE 36. S i x week o l d seedlings of a) Bo y k i n i a o c c i d e n t a l i s ; b) intermedia; c) B_. major; and d) B_. r o t u n d i f o l i a ; ( a l l x2) . 114 115 FIGURE 37. Six week o l d seedlings of a) Boykinia heucheriformis; b) JB r i c h a r d s o n l i ; and c) Peltoboykinia tellimoides ssp. watanabei; ( a l l x 116 117 In Peltoboykinia the eophylls are not p e l t a t e , but show the o r b i c u l a r lamina with basal p e t i o l e t y p i c a l of a l l the other Boykinia species ( F i g . 37). From the fourth or f i f t h l e a f on however, the peltate nature becomes in c r e a s i n g l y apparent. I t i s i n t e r e s t i n g that eophylls and often young, spring leaves of Peltiphyllum also lack the peltate syndrome (Jepson 1936). In Peltoboykinia the f i r s t metaphylls have lobes which are almost l a c i n i a t e i n t h e i r young stage. These lobes subsequently undergo extensive l a t e r a l growth to reach the t y p i c a l , broadly t r i a n g u l a r condition. Development of l a t e r basal leaves i n the two subspecies i s discussed i n Ch. I ' l l . P h y l l o t a x i s and l e a f arrangement are as i n Boykinia. 118 X. CYTOLOGY Chromosome numbers of some of the taxa i n t h i s study have been previously reported (Hamel 1953), although confusion surrounds some of these counts. In the present study populations were examined from as wide a geographical range as possible. Chromosome numbers are reported for the f i r s t time for Boykinia intermedia, B. major, Peltoboykinia t e l l i m o i d e s . ssp, watanabei and Suksdorfia r a n u n c u l i f o l i a ; and counts are confirmed for other species i n Boykinia, Peltoboykinia and Suksdorfia. Boykinia l y c o c - t o n l f o l i a and Suksdorfia alchemilloides were not available for study. S u l l i v a n t i a spp. have been counted by Mr. D. S o l t i s of Indiana University. Methods Both meiotic and m i t o t i c events were observed. For meiosis, buds were f i x e d i n 3:1 absolute alcohol: g l a c i a l a c e t i c a c i d for at l e a s t 24 hours. Poll e n mother c e l l s were dissected out, stained and squashed i n 1% acetocarmine (Darlington and LaCour 1976) . Mitosis was observed i n root t i p s . A c t i v e l y growing root t i p s were excised into v i a l s of cold water. One drop of eC-monobromonaphthalene was added to each v i a l which was then kept at 5°C for eight hours. This pretreatment i n h i b i t e d spindle formation and contracted the chromosomes. The root t i p s were then rinsed i n water and hydrolyzed for ten minutes at 60°C i n IN HC1. A f t e r r i n s i n g i n water again, the roots were stained with leuco-basic fuchsin (Feulgen's Solution) for two to three hours i n the dark at 20°C. Root t i p s were then squashed i n 45% a c e t i c acid. The method i s that of Darlington and La Cour (1976). Drawings or photographs were made of s u i t a b l e preparations. The chromosomes of Boykinia and Suksdorfia are small, and clumping commonly occurred at m i t o t i c metaphase, making counts d i f f i c u l t to i n t e r p r e t . Hamel (1953) also reported t h i s d i f f i c u l t y . However, at l e a s t three c e l l s 119 per c o l l e c t i o n were counted. Results I l l u s t r a t i o n s of the chromosomes of the various species are shown i n Figs. 38 and 39, and a l l counts, both previously and presently made, are given i n TaBle XIV. There are two Basic chromosome numbers i n Boykinia: 6 and 7. Section Boykinia contains both, section Renifolium has x = 6, and section Telesonix has x = 7. The genera Suksdorfia. Bolandra and S u l l i v a n t i a a l l have x = 7, and i n Peltoboykinia x = 11. The confusion surrounding the counts made by Hamel (1953) for Boykinia rotundif o l i a and B_. e l at a var. cincinnata (B. oc c i d e n t a l i s ) re-s u l t s from the fac t that h i s drawings and text assigned 2n = 14 to B. ro- tundif o l i a and 2n = 26 to B_. e l a t a , while i n h i s summary table .these num-bers were transposed. A l l subsequent works quoting counts for Boykinia have apparently used the summary table as t h e i r source. Thus Munz and Keck (1959) reported 2n = 26 for B_. r o t u n d i f o l i a and 2n = 14 for B_j_ e l a t a . Hitchcock et a l . (1961) also claimed n = 7 for Bj, e l a t a . I t i s fortunate, i f i r o n i c , that B_. o c c i d e n t a l i s (elata) does indeed have 2n = 14 i n a l l c o l l e c t i o n s counted. Boykinia r o t u n d i f o l i a however most d e f i n i t e l y i s not 2n =26 as i n Hamel's (1953) table, but rather 2n =14 as i n h i s text and i l l u s t r a t i o n . This leaves the problem of where Hamel (1953) got h i s 2n = 26 count. I t seems l i k e l y that he m i s i d e n t i f i e d B. major, whose i n f l o r -escence i s often more c l e a r l y cincinnate than i s that of B^ o c c i d e n t a l i s , as B_. e l a t a var. cincinnata. A l l populations of B^ major counted have 2n =26. Both species of Boykinia section Telesonix haye 2n R 14 chro-mosomes. The report of 2n = 28 for B_j. jamesji (Spongberg 1972) i s an erroneous c i t a t i o n of Hamel's (1953) count of 2n = 14 (Spongberg i n l i t t . ) . 120 FIGURE 38. Chromosomes of some species of Boykinia and Suksdorfia. 5,1 a> Boykinia occidentalis (Bohm 1293X, pollen mother c e l l (PMC), n = 7. b) Boykinia intermedia (Gornall 23), root t i p c e l l , 2n = 14. c) Boykinia richardsonii (Gornall 271), PMC, n = 18 d) Boykinia heucheriformis (Gornall 193), PMC, n = 1 e) Suksdorfia r a n u n c u l i f o l i a (Gornall 332), PMC, n = 7. f) Suksdorfia violacea (Gornall 329), PMC, n = 7. 121 FIGURE 39. Somatic chromosomes of some species of Boykinia and Peltoboykinia. A) Boykinia r o t u n d i f o l i a (G105); B) Boykinia a c o n i t i f o l i a (G342); C). Boykinia major (G45); D) Peltoboykinia tellimoides ssp. watanabei (G343). Scale bar = 5 microns. 122 123 TABLE XIV. Chromosome numbers presently and previously found i n the genera Boykinia, Peltoboykinia, Suksdorfia. Bolandra and S u l l i v a n t i a . : BOYKINIA SECTION BOYKINIA ... X R 6, 7 B. ACONITIFOLIA ... 2N =12 Hamel 0-953) ex Royal Botanic Garden, Edinbutgh, 2n = 12; Gornall 342, Chatooga River, Macon Co., North Carolina (UBC), 2n = 12. B„ INTERMEDIA ... 2N =14 Gornall 23, Humptulips, Grays Harbor Co., Washington (UBC), 2n = 14. B, OCCIDENTALIS ... 2N =14 Hamel (1953) ex Copenhagen Botanic Garden, 2n = 26*; R. L. Taylor (unpub.) Taylor 64C-17, ex Rancho Santa Ana Botanical Garden, C a l i f o r n -i a (DAO), 2n = 14; R, L. Taylor (unpub.) Taylor 63C-176, ex Botanic Garden Hauniensis, Denmark (DAO), 2n = 14; Gornall 1, Capilano Canyon, North Vancouver, B.C. (UBC), n = 7; Gornall 216, Snoqualmie F a l l s , King Co., Washington (UBC), 2n = 7^; Bohm 1293, Saddle Mt., Clatsop Co., Oregon (UBC), 2n = 7^; R. L. Taylor (unpub.) Taylor & G l l l e t t 4658, Glenwood, Tillamook Co., Oregon (DAO), 2n = 14; Taylor (unpub.) Taylor & G i l l e t t 4669, Diamond Creek, Douglas Co., Oregon (DAO), 2n = 14; Straley 1753, Gasquet, Del Norte Co., C a l i f o r n i a (UBC), n = 7; Gornall 65, Happy Camp,. Siskiyou C o . , . C a l i f o r n i a (UBC), 2n = 7^; R. L. Taylor (unpub.) Taylor, Baker et a l . 4449, 46 mi SW of Happy Camp, Siskiyou Co., C a l i f o r n i a (DAO), 2n = 14. B. ROTUNDIFOLIA ... 2N = 14 Hamel (1953) ex M. de Vilmorin, Verrieres-le-Buisson, 2n = 14; R. L. Taylor (unpub.) Taylor 63C-175, ex University of Uppsala Botanic Garden, Sweden (DAO), 2n = 14; Gornall 98, Cry s t a l Lake, Los Angeles Co., C a l i f o r n i a (UBC), 2n = 14; Gornall 101, hwy 39 bridge over N. Fork San Gabriel R., Los Angeles Co . , , C a l i f o r n i a (UBC), 2n =14; Gornall 105, Icehouse Canyon, San Bernardino Co., C a l i f o r n i a (UBC), 2n =14. B. MAJOR ... 2N R 26 Gornall 335, 337, R a c k l i f f Creek by Selway R., Idaho Co., Idaho (UBC), 2n = i 3 ! ! ? Gornall 202, Lolo Pass, Missoula Co., Montana (UBC), 2n = 26; Gornall "38, upper reaches of Rogue R., Douglas Co., Oregon (UBC), 2n = 26; Gornall 45, Rogue R., Jackson Co., Oregon (UBC), 2n = 26; 124 TABLE XIV, cont'd. B. MAJOR ... 2N =• 26 Gornall 92, Kyburz, Eldorado Co., C a l i f o r n i a (UBC), 2n . = 26, BOYKINIA SECTION RENIFOLIUM ... X = 6 B. RICHARDSONII ... 2N =. 36, 84 Knaben (1968) G j a e r v o l l 1407, Rainbow Mt., Alaska Range, Alaska (TRH), 2n = 36; Gornall 271, Mt. Wright, McKinley National Park, Alaska (UBC), 2n =. 18 I T; Gornall 302, mile 63,7 Denali Highway, Alaska (UBC), 2n = 1 8 i r Johnson & Packer (1968) Packer 2099, Ogoturuk Creek, northwestern Alaska (ALTA) , 2n = 84; Packer & McPherson (1974) McPherson 72-411, Meade River, Alaska (ALTA). 2n = c, 84. BOYKINIA SECTION TELESONIX ... X = 7 B. HEUCHERIFORMIS ... 2N = 14 R. L. Taylor (unpub.) Calder & Spicer 33811, Miette Hot Springs, Jasper National Park, Alberta (DAO), 2n - 14; Packer (1968) Packer 2725, Miette Hot Springs, Jasper National Park, Alberta (ALTA), 2n = 14; Gornall 193, Pine Creek Lake, Park Co., Montana (UBC), 2n = 7^; Gornall 132, Mt. Magog, Cache Co.., Utah (UBC), 2n = 7^; R. L. Taylor (unpub.) Taylor & G i l l e t t 4726, 1.2mi NE of Shoshone National Forest boundary, on hwy 28, Fremont Co., Wyoming (DAO), 2n =14; Gornall 115, Charleston Peak, Clark Co., Nevada (UBC), 2n = 7 . B. JAMESII ... 2N = 14 Hamel (1953) ex Ingwersen Nurseries, 2n = 14. PELTOBOYKINIA ... X = 11 P, TELLIMOIDES SSP. TELLIMOIDES ... 2N = 22 Skovsted (1934) ex Copenhagen Botanic Garden,.2n ='11 ; Hamel (1948) ex Jardin Alp i n du Museum National d'Histoire Naturelle, P a r i s , 2n = 22, 2n = HJ-J-J Hamel (1953) ex Copenhagen Botanic Garden, Denmark, 2n = 22, 2n p Gornall 343, ex J . W. Goethe'University Botanic Garden, Frankfurt, F.D.R. (UBC), 2n =. 22. P. TELLIMOIDES SSP. WATANABEI ... 2N = 22 Gornall 328, ex J . W, Goethe U n i v e r s i t y Botanic Garden, Frankfurt, F.D.R. 125 TABLE XIV, cont'd. P. TELLIMOIDES SSP. WATANABEI ... 2N = 22 (UBC) , 2n = 22. SUKSDORFIA ... X =7. S, VIOLACEA ... 2N = 14 Bohm 1112, Crawford Bay, Kootenay Lake, B.C. (UBC), 2n = 7 T T _ 7 . R, L. Taylor (unpub.) Taylor & Sherk 4878, Corra Linn Dam, Kootenay R., B.C. (DAO), 2n = 14; Gornall 329, 22mi W of Sheep Lake, Rossland, B.C. (UBC), n = 7; Gornall 330, 19mi W of Sheep Lake, nr. Rossland, B.C. (UBC), n = 7; R. L, Taylor (unpub.) Calder & Spicer 32855, Yahk, B.C. (DAO), 2n' = 14; Packer (1968) Packer 2814, Blakiston Mt., Water-ton Lakes National Park, Alberta (ATLA), 2n = 14; R. L. Taylor (unpub.) Taylor & G i l l e t t 4605, Bad Rock Canyon, Flathead R., Flathead Co., Montana (DAO), 2n = 14, 2n ~ 7-j.^ . S. RANUNCULIFOLIA ... 2N = 14 Gornall 332, 6mi N of Fauquier, N end Lower Arrow Lake, B.C. (UBC), n =• 7; Gornall 331, 19mi W of Sheep Lake, nr. Rossland, B.C. (UBC), n = 7; Bohm 1132, Saddle Rock, nr. Yale, Fraser Canyon, B.C. (UBC), n = 7; Bohm 1144, Blackwall Mt., Manning P r o v i n c i a l Park, B.C. (UBC), 2n = IJJ. , n = 7. BOLANDRA ... X = 7 B. OREGANA ... 2N i= 14 Hamel (1958) ex "English Nursey", 2n = 14; Ornduff (1962) Ornduff 6240, Elowah F a l l s , McCord Creek, Multnomah Co., Oregon (UC), n = 7; R. L. Taylor (unpub.) Taylor & G i l l e t t 4625, Buford Creek Canyon, Asotin Co., Washington (DAO), 2n - 14; R. L. Taylor (unpub.) Taylor & G i l l e t t 4640, K l i c k i t a t , K l i c k i t a t Co,, Washington (DAO), 2n - 7 . SULLIVANTIA ... X = 7. A l l species are 2N F 14 (Hamel 1953; S o l t i s i n l i t t . ) *Hamel's (1953) count of 2n = 26 for Boykinia o c c i d e n t a l i s was almost c e r t a i n l y based on m a t e r i a l of B_. -major. 126 I n f r a - s p e c i f i c Geographical V a r i a t i o n With the exception of Boykinia r i c h a r d s o n i i . a l l species have constant chromosome numbers, at l e a s t i n the material studied so f a r . Boykinia r i c h a r d s o n i i possesses 2n = 6x = 36 i n c o l l e c t i o n s from the Alaska Range, but 2n = 14x F 84 i n c o l l e c t i o n s from the a r c t i c slope of the Brooks Range. This s i t u a t i o n deserves further study, although examin-ation of specimens from both areas revealed no obvious morphological d i f f e r -ences. P o l l e n s i z e i s very s i m i l a r between the two cytodemes (Ch. VII). No formal taxonomic recognition i s warranted. According to Hulten (1945), B_. r i c h a r d s o n i i i s a T e r t i a r y r e l i c t . This r a i s e s the question of where i t survived the i c e ages. Both the a r c t i c slope and parts of the Alaska Range remained unglaciated during the l a s t i c e age (Hulten 1968), and the two cytodemes conceivably could have evolved independently i n t h e i r respec-ti v e r e f ugia, rather than one being derived from the other. I t would be in t e r e s t i n g to e s t a b l i s h the chromosome numbers of populations from the Yukon T e r r i t o r y since i c e - f r e e r e f u g i a also existed there (Hulten 1968). Karyotypes In most cases, m i t o t i c preparations were inadequate for d e t a i l e d karyotype analysis. The chromosomes are small i n Bolandra, S u l l i v a n t i a (Hamel 1958, 1953), Boykinia and Suksdorfia ( 1 - 3 / i m ). However, by exam-inin g a large number of preparations, tentative karyotypes have been pro-duced for many of the species (Table XV). Generally the longer chromosomes are sub-metacentric and the shorter ones are metacentric. Discussion In the context of the Saxifraginae as a whole, the base number x = 7 i s very common and probably ancestral (Skovsted 1934; Hamel 1953). Base numbers of 6 and 11 are found only i n Saxifraga and Chrysosplenium. A haploid number of thi r t e e n is- reasonably common but confined to the TABLE XV. Tentative karyotypes for species of Boykinia, Peltoboykinia, Bolandra and S u l l i v a n t i a . Taxon Metacentric Boykinia r o t u n d i f o l i a • 5 B. intermedia 5 B. a c o n i t i f o l i a 4 B. major 9 B. j a m e s i i * 5 (1 SAT) Peltoboykinia tellimoides 4 ssp. tellimoides ssp. watanabei 4 Bolandra oregana* 4 (ISAT) S u l l i v a n t i a s u l l i v a n t i i * 5 * data from Hamel (1958, 1953). + SAT = s a t e l l i t e d p a i r . using the nomenclature of Levan et a l . (1965). Chromosome Pairs Sub-metacentric Acrocentric T e l o c e n t r i c 2 0 0 2 0 0 2 0 0 4 0 0 2 0 0 4 (1 SAT) 2 1 4 (1 SAT) 2 1 3 0 0 2 0 0 128 genus Saxifraga. There i s no corroborating evidence to support the grouping of Boykinia species according to chromosome base number, v i z . two groups with x = 6 and 7 respectively, Rather, Bdykjnla shares with Saxifraga and Chrysosplenium the property of aneuploid v a r i a t i o n . The numbers 6 and 13 have probably been derived from 7 and 14, r e s p e c t i v e l y . Hamel (1953) suggested a possible heteroploid o r i g i n for the n = 13 condition i n Boykinia, although he recognized that the geographical assumptions involved made i t questionable. Taxa with x = 6 are the Appalachian B_;_ a c o n i t i f o l i a (2n = 12) and the a r c t i c B^ r i c h a r d s o n j i (2n = 36, 84); those with x = 7 are the western North American B_. o c c i d e n t a l i s , B. intermedia, B. r o t u n d i f o l i a , B. heucheriformis and B_. jamesii (2n = 14). On morphological, chemical and p a l y n o l o g i c a l grounds (Chs. IT - VIT, XII) the two genome contributors were probably 1) a B_. intermedia-l i k e plant and 2) a plant s i m i l a r to B_. r o t u n d i f o l i a and B^ o c c i d e n t a l i s ( t h e i r common ancestor?) which on phytogeographical grounds (Ch. XV) may i t s e l f have been s i m i l a r to B_. intermedia. A segmental a l l o p o l y p l o i d o r i g i n i s therefore envisaged from an x = 7 by x = 7 h y b r i d i z a t i o n followed by aneuploidy to give 2n = 26. Karyotypes could support the hypothesis of a d i b a s i c a l l o t e t r a -p l o i d o r i g i n for major, although they are equally compatible with a simple a l l o t e t r a p l o i d o r i g i n followed by the loss of a metacentric p a i r , a loss i n c i d e n t a l l y which seems also to have occurred i n B_. a c o n i t i f o l i a . The base number of x.= 11 i n Peltoboykinia together with i t s d i s t i n c t i v e asymmetrical karyotype supports i t s separation from Boykinia. The o r i g i n of t h i s number j s obscure, and r e l a t i o n s h i p s may p o s s i b l y l i e i n the d i r e c t i o n of Saxifraga where some sections (MiscopetaTum, Tri d a c t y -l i t e s , Nephybphyllum, Dactyloides and Diptera) have x = 11 as a common, 129 i f not the only, base number. Like Peltoboykinia, many of these also haye uniser i a t e glandular trichomes. Other peltate-leaved genera, Peltiphyllum and A s t i l b o i d e s , have 2n = 34 (Earner 1948, 1953). S u l l i v a n t i a , the two Suksdorfia species counted, and Bolandra possess 2n = 14 chromosomes. The l a t t e r two genera can reproduce vegeta-t i v e l y v i a t h e i r bulbiferous rhizomes. The apparent c y t o l o g i c a l constancy contrasts with Lithophragma, a saxifragaceous genus which also reproduces -yegetatively by b u l b i l s and grows i n s i m i l a r summer-dry habit a t s . I t shows extensive polyploidy, including t r i p l o i d y , pentaploidy and the presecence of 'B' chromosomes (Taylor 1965). The great s i m i l a r i t y i n the karyotypes of Bolandra, Boykinia and S u l l i v a n t i a supports a close r e l a t i o n s h i p between these genera (Hamel 1958). Indeed, the s a t e l l i t e d p a i r of chromosomes i n both Bolandra oregana and Boykinia heucheriformjs might be homologous. 1 3 0 XI', BREEDING STUDY Materials and methods A l i s t of a l l c u l t i v a t e d material i s given i n Table XVI. Plants were e i t h e r transplanted from the wild or grown from seed, and kept i n a growth chamber with a 16'hour daylength at 15 - 20 PC. Problems were encountered i n getting some of the species to flower, and also i n ensuring that d i f f e r e n t species flowered synchronously. These d i f f i c u l t i e s l a r g e l y account f or the small number of cross p o l l i n a t i o n s of each type attempted. Generally, Boykinia o c c i d e n t a l i s , S u l l i v a n t i a oregana and to some extent Boykjnla r o t u n d i f o l i a , were w e l l disposed toward flowering on an approxi-mately 25 week cycle. However a f t e r two successive flowering periods, the plants became, and remained, vegetative. Of the Boykinia major and B. Intermedia plants i n c u l t i v a t i o n , only a few i n d i v i d u a l s flowered. Fortun-ately many flowers are produced on each plant. No plants of B_. heucheri- formis or Bj, a c o n i t i f o l i a flowered i n c u l t i v a t i o n , despite allowing them to overwinter outside during 1978 <-' 1979. Boykinia r i c h a r d s o n i j material, Both transplanted and grown from seed, also remained vegetative. Perhaps a 24 hour daylength may have promoted flowering i n t h i s species although i t was not t r i e d . P o l l i n a t i o n s i n v o l v i n g B_. r j c h a r d s o n i i and B_. heucheri-formis used fresh material c o l l e c t e d from the w i l d . This r e l a t i v e lack of success at coaxing plants i n t o flower, however, mirrored a s i m i l a r s i t u a t i o n i n the w i l d . In populations of the r e c a l c i t r a n t western species, i t was observed that only about a t h i r d of the i n d i v i d u a l s a c t u a l l y flower i n a given year. Suksdorfia presented the worst problems f or c u l t i v a t i o n . I t was,not possible to maintain th.e two North American species a l i v e under growth chamber conditions for more than one generation. Best success was had i n transplanting i n d i v i d u a l s i n t o clay pots and keeping them i n an 131 TABLE XVI:. L i s t of c u l t i v a t e d m a t e r i a l . F u l l ^ c o l l e c t i o n d e t a i l s and herbarium locations are given i n Appendix 1. Collect i o n s by Gornall are' prefixed by 'G'. Roykinia a c o n i t i f o l i a ; G342. R, intermedia: G23; G24, B, major: G38; G45; G92; G202; G335; G337. R, o c c i d e n t a l i s : G l; G8; G22; G25; G27; G29; G54; G65; G86; G'216; G227; G255; G256; Straley 1753. R. r o t u n d i f o l i a : G98; 610.1; G105. H. heucheriformis: '6115; 6132; 6193; 6194; 6198; G344. B'v r i c h a r d s o n i i : 6271; G272; G302; G306. S/uksdorfia ranunculif o l i a : Bohm 1096; Bohm, 1132; G332. S. v i o l a c e a : G329; 6330. Peltoboykinia tellimoides ssp, t e l l i m o i d e s : G328. ssp. watanabei: G343, Rolandra oregana: G260; G340. S u l l i v a n t i a oregana; G261. Jepsonia heterandra: Ornduff 5072. J, p a r r y i : Cromwell 709; Mulroy s.n. M i t e l l a d i p h y l l a : Radford et a l . 9085. ;M, t r i f i d a : Bohm 1129. outdoor cold frame, where a few plants once and then remained vegetative or died. Experimental P o l l i n a t i o n s A l l species are protandrous to varying degrees (Ch. VI). Flowers were emasculated before any anthers had dehisced, and p o l l i n a t i o n s were made by rubbing an excised anther of one desired parent on the recep-t i v e stigmata of the other. Stigmata were judged receptive when t h e i r p a p i l l a e appeared hyaline under a xlO hand lens and t h e i r surfaces become covered i n a wet exudate. Control flowers, emasculated But not p o l l i n a t e d , were run. with any set of experimental p o l l i n a t i o n s . I n i t i a l l y , small muslin hoods with cottorn drawstrings were placed over every experimental flower to prevent 132 contamination, and under these conditions no seed was ever set i n the emasculated control flowers. Autonomous agamospermy i s therefore absent from the species under study; indeed, i t has not been reported i n the Saxifraginae. The use of muslin hoods was time consuming, the numerous flowers on some inflorescences being congested. I t was decided to abandon the p r a c t i c e and subsequent work showed that less than one i n twenty control flowers was ever contaminated with s e l f p o l l e n . To check the pos-s i b i l i t y of contaminant s e l f i n g s i n subsequent i n t r a - and i n t e r - s p e c i f i c p o l l i n a t i o n s , seeds of every-mating were sown and grown up to determine t h e i r i d e n t i t y . Those not corresponding to t h e i r intended parentage were excluded from the r e s u l t s . A seri e s of i n t r a - s p e c i f i c cross p o l l i n a t i o n s was run for each species to e s t a b l i s h a set of control data with which to compare both s,eifings and i n t e r - s p e c i f i c matings. Seed Germination In those experiments i n v e s t i g a t i n g the germinablity of seeds from any given cross, three batches of f i f t y seeds each (when possible) were sown evenly i n p e t r i dishes containing s t e r i l e agar enriched with Hoagland's s o l u t i o n . Germination was scored a f t e r s i x weeks. Otherwise, seeds were scattered on the surface of s o i l i n pots and kept moist. I n t r a - s p e c i f i c Cross P o l l i n a t i o n s In only Boykinia o c c i d e n t a l i s and B_. r o t u n d j f o l i a was i t possible to compare intra-population with inter-population c r o s s - p o l l i n a -tions. There was l i t t l e difference i n seed set between the two crossing regimes (Table XVII). The germination of F l seed was about 80% a f t e r s i x weeks from sowing. P o l l e n f e r t i l i t i e s of both parental stock and F l gener-ations 'averaged Between 80 - 97%, as judged from s t a i n a B i l i t y i n 1% aceto-carmine. TABLE XVII. Seed set and compatibility from i n t r a - s p e c i f i c cross- and s e l f - p o l l i n a t i o n s . The Genetic Compatibility Index (C.I.) i s the mean seed set from a given p o l l i n a t i o n expressed as a percentage of the mean seed set obtained i n intra-population crosses of the mother species. The Seed V i a b i l i t y Index (V.I.) i s an analogous quotient using mean germinability. The Overa l l Compatibility Index i s a product of the Genetic Compatibility and Seed V i a b i l i t y Indices. P o l l i n a t i o n Seed Set Genetic % Germ. Seed O v e r a l l Mean + SE c . i . % Mean + SE V , l . % C.I.% Boykinia o c c i d e n t a l i s intra-popln. outx. 5 57 + 14 100 81 + 4 100 100 ^nterr-popln, outx. 10 62 + 12 109 83 + 3 .102 111 s e l f 58 3 3 + 5 62 58 + 8 70 43 B, r o t u n d i f o l i a intra-^popln, outx. 2 296 + 46 100 89 + 2 100 100 Inter-popln. outx. 3 293 + 70 99 86 + 5 97 96 s e l f 21 291 + 16 98 90 + 3 101 99 B. intermedia intra-popln. outx. 5 167 + 37 100 82 + 4 100 100 s e l f 14 0 + - 0 - - 0 B., major intra-popln. outx. 5 97 + 46 100 78 + 8 100 100 s e l f 21 5 + 2 5 5 + 5 6 0 Peltoboykinia tellimoides ssp. watanabei intra-popln. outx. 3 235 + 30 100 76 + 9 100 100 s e l f 7 143 + 69 61 78 + 11 103 63 Suksdorfia r a n u n c u l i f o l i a intra-popln. outx. 1 93 + - 100 * - -s e l f 7 49 + 13 53 * — — TABLE XVII, cont'd. P o l l i n a t i o n N Suksdorfia violacea s e l f (autogamy) 3 S u l l i y a n t j a oregana intra-popln. outx. 1 s e l f 5 Bolandra oregana intra-popln. outx. 1 s e l f 2 Jepsonia p a r r y i intra-popln. outx. 3 s e l f 2 Number of p o l l i n a t i o n s attempted. Seed Set Genetic % Germ Seed O v e r a l l Mean + SE C.I.% Mean + SE V.I.% C.I.% 5 5 + 7 * * 34 + - 100 71 + - 100 100 31 + 4 91 65 + 8 92 84 52 + - 100 * 44 +17 85 * - -7 3 + 4 100 7 2 + 9 100 100 8 + 3- 11 26 + 1 36 4 135 Self P o l l i n a t i o n s Results of s e l f p o l l i n a t i o n s are shown i n Table XVII. A s e l f -compatibility index was calculated by expressing average s e l f seed set as a percentage of the average intrar-specif i c cross p o l l i n a t e d seed set. Table XVII shows that the d i p l o i d Boykinia intermedia and the t e t r a p l o i d B, major are both strongly self-incompatible (SI), whereas the d i p l o i d B, r o t u n d i f o l i a , Suksdorfia v i o l a c e a and S u l l i v a n t i a oregana are f u l l y s e l f compatible CSC). Boykinia o c c i d e n t a l i s , Peltoboykinia t e l l i m o i d e s ssp. watanabei and Suksdorfia r a n u n c u l i f o l i a were found to be p a r t i a l l y s e l f compatible CPSC). Peltoboykinia was unique among the genera studied i n the,nature of i t s response to incompatible p o l l i n a t i o n s . Instead of merely producing no seeds and s l i g h t l y withering, a f t e r about two weeks the e n t i r e flower would absciss, the p e d i c e l breaking 2 - 3mm below the base of the flower. Genetic s e l f i n c o m p a t i b i l i t y i n the Saxifraginae occurs at the d i p l o i d l e v e l i n Heuchera (Wells 1980), Lithophragma (Taylor 1965) and Jepsonia where i t i s accompanied by d i s t y l y (Ornduff 1969^).. At the poly-p l o i d l e v e l , SI i s found i n Tolmiea (Correns 1928), Lithophragma (Taylor 1965) and Bergenia (Yeo 1966). Although few Saxifraga species have been investigated for t h e i r breeding system, no case of SI has been reported, a l l being p a r t i a l l y or f u l l y SC (Spongberg 1972). Dioecy, however, occurs In some species, e.g. S_. e s c h s c h o l t z i i (Chambers 1964). Many species i n other genera of the sub-tribe have been found to be SC, including Tellima (Ornduff, pers. comm.), T j a r e l l a spp. (Kern 1966) , Heuchera spp. (Wells 1980) and ^Mitella (personal observation), Nature of the S e l f Incompatibility System SI systems can be divided into those c o n t r o l l e d gametophytically and those controlled sporophytically. A l l known distylous systems are 136 governed sporophytically and t h i s includes Jepsonia. In homomorphic sys-tems i t i s impossible to t e l l conclusively which type of c o n t r o l e x i s t s without conducting a series of d i a l l e l crosses and backcrosses i n FI hybrid f;amilies and parents. However there are a number of c o r r e l a t i o n s which ha,ye Been observed between the type of c o n t r o l and c e r t a i n c y t o l o g i c a l and p h y s i o l o g i c a l features, i n c l u d i n g number.of p o l l e n n u c l e i , mode of PMC cytokinesis, the s i t e of male gametophyte i n h i b i t i o n i n the carpel, and the type of stigmatic surface (Keslop-Harrison 1975). In the present case, Boykinja, PeltoBoyklnia, Suksdorfia, S u l l i v a n t i a and Bolandra a l l have b i -nucleate p o l l e n with simultaneous cytokinesis of PMC's and wet, group I I I Stigmata. The s i t e of p o l l e n i n h i b i t i o n was not investigated. The scanty evidence a v a i l a b l e therefore indicates that gametophytic SI i s operating. Taylor (1965) postulated gametophytic SI for Lithophragma. The f a c t that SI does not break down i n the t e t r a p l o i d Boykinia major, nor i n p o l y p l o i d species i n some other genera of the sub-tribe, suggests that a multi-locus system i s operating i n the Saxifraginae (Lundqvist 1975). This hypothesis i s further supported by the high l e v e l of cross-compatibility within F l sibships of Tolmiea menziesii (Correns 1928; Lundqvist 1975). It would be i n t e r e s t i n g to discover the number of l o c i involved and.to f i n d out how the sporophytic, s i n g l e - l o c u s , d i s t y l i c condition i n Jepsonia arose. I t i s however, i n t r i g u i n g that i n the genus Saxifraga, almost a l l of whose species are p o l y p l o i d , no case of SI has been reported. This would suggest e i t h e r that SI has never been present, or that a s i n g l e locus system once operated i n t h i s genus. Inbreeding Depression Evidence of inbreeding depression was found i n the SI genera-t i o n of Boykinia major and B^ o c c i d e n t a l i s . I t was manifested very e a r l y on i n the form of a.reduced seed germinabllity (Table XVII). In surviving 137 plants, aberrant l e a f development was quite common i n B. major but much less so i n B_. o c c i d e n t a l i s . The SI generation from B. ma j or did not flower, but that from \B_. o c c i d e n t a l i s did and showed normal p o l l e n f e r t i l i t y , 82 -95% po l l e n stainable i n 1% acetocarmine. Boykinia r o t u n d j f o l i a showed no evidence of inbreeding depression i n i t s SI generation, e i t h e r i n seed germinability, development or p o l l e n f e r t i l i t y . The r e s u l t s agree with what would be expected based on the breeding systems of the species. I n t e r - s p e c i f i c P o l l i n a t i o n s The crossing programme was concerned mainly with Boykinia species, both t h e i r r e l a t i o n s h i p s to each other and to species i n other genera. Where possible, species were crossed r e c i p r o c a l l y . Seed set i s shown i n Table XVIII. A genetic c r o s s a b i l i t y index was calculated by expressing the seed set from a given hybrid cross as a percentage of the mother species. Three kinds of s i t u a t i o n arose from the hybrid crosses. In the f i r s t case,' no seed was set and the capsules contained many, l i g h t brown, u n f e r t i l i z e d ovules. In the second case, seed was set and they appeared of normal s i z e and shape. In the t h i r d case however, although seeds were set, they appeared smaller than usual and frequently somewhat s h r i v e l l e d . D i s s e c t i o n of these seeds showed that both endosperm and embryo were shrunken, and occasionally the embryo was e n t i r e l y lacking. There was sometimes a complete range of v a r i a t i o n within a sin g l e capsule, from u n f e r t i l i z e d ovules, to varying sizes of small seeds, to good seeds. In cases where the ovules had c l e a r l y developed to some extent,.they were counted as seeds. Germination tests were conducted on a l l hybrid seed batches to te s t for good seeds and to check f or contaminant s e l f i n g s . The l a t t e r were excluded from the data. Germination r e s u l t s are shown i n Table XVII'I, where a seed v i a b i l i t y index was calculated i n the same manner as for the genetic c o m p a t i b i l i t y index, but using germinability rather than TABLE XVIII. Seed set and germinability from i n t e r - s p e c i f i c and inter-generic cross p o l l i n a t i o n s . The Genetic C r o s s a b i l i t y Index (C.I.%) i s the mean seed set from a given hybrid cross expressed as a percentage of the mean seed set obtained i n i n t r a - s p e c i f i c crosses of the mother species. The Seed V i a b i l i t y Index (V.I.) i s an analogous quotient using mean germinability. The Overall Compatibility Index i s a product of the Genetic C r o s s a b i l i t y and Seed V i a b i l i t y Indices. P o l l i n a t i o n ( ?xo*) N* Seed Set Genetic % Germ. Seed Overa l l C.I.% jMeari + SE C.I.% Mean + SE V.I.% Boykinia o c c i d e n t a l i s x B. intermedia 11 54 + 8 95 81 + 6 100 95 x B. r o t u n d i f o l i a 12 28 + • 7 49 56 + 16 69 34 x B. major 11 53 + 9 93 53 + 17 65 60 x B. heucheriformis 7 2 ± 2* 4 23 ± 23 28 1 x B, xi c h a r d s o n i i 1 0 - 0 - - 0 x S u l l i v a n t i a oregana 14 1 + 0.3* 2 0 - 0 0 x Suksdorfia r a n u n c u l i f o l i a 10 5 + 3* 9 0 - 0 0 x S, v i o l a c e a 2 10 ± 6 * 18 0 - 0 0 x Bolandra oregana 1 27 - 47 0 - 0 0 x Peltoboykinia tellimoides 8 0 - 0 - - 0 ssp. watanabei x Jepsonia p a r r y i 5 0 - 0 - - 0 x J . heterandra 5 1 ± 1 2 0 - 0 0 x M i t e l l a d i p h y l l a 4 0 - 0 - - 0 x M. t r i f i d a 4 0 - 0 - - 0 r o t u n d i f o l i a x~B. intermedia 6 184 + 24* 62 1 + 1 1 1 x B. o c c i d e n t a l i s 12 164 + 30* 55 16 + 12 18 10 x B, maj or 2 169 £ 158* 57 23 ± 11 26 15 x S u l l i v a n t i a oregana 2 0 - 0 - - 0 TABLE XVIII, cont'd. P o l l i n a t i o n (? x $) i N # Seed Set Mean + SE B. intermedia X B. o c c i d e n t a l i s 10 161 X B. r o t u n d i f o l i a 3 85 X B. major 10 170 X B. heucheriformis 8 17 X Suksdorfia r a n u n c u l i f o l i a 1 0 X Jepsonia p a r r y i 10 0 X J . heterandra 10 0 B.. major + 12 ± 1 8 * + 14 + 9* X B. o c c i d e n t a l i s 12 81,+ X B. r o t u n d i f o l i a 6 102 + X B, intermedia 6 88 + X S u l l i y a n t i a oregana 3 0 X Suksdorfia r a n u n c u l i f o l i a 4 0 X Bolandra oregana 7 0 24 Peltoboykinia t e l l i m o i d e s ssp. t e l l i m o i d e s x Boykinia o c c i d e n t a l i s 6 0 -x S u l l i y a n t i a oregana 2 0 -Soil l i y a n t i a oregana x Boykinia o c c i d e n t a l i s 3 4 £ 3* x E. intermedia 1 0 -x B. r o t u n d i f o l i a 4 0 -x Peltoboykinia tellimoides 2 0 -ssp. watanabei Suksdorfia r a n u n c u l i f o l i a x S. v i o l a c e a 3 0 -x Boykinia o c c i d e n t a l i s 3 0 ' -Genetic % Germ. Seed Overa l l C.I.% C.I.% Mean +'SE V.I.% 96 '. 79 + 1 96 92 51 0 0 0 102 65 + 10 79 81 10 0 0 0 0 - 0 0 - 0 0 - 0 84 80 + 3 103 87 105 9 + 4 1 2 1 3 91 65 +13 79 72 0 0 0 - - 0 0 - 0 0 - 0 0 0 0 - 0 0 - 0 0 - 0 0 0 0 0 0 0 TABLE XVIII, cont'd. P o l l i n a t i o n ( £ x c?) Suksdorfia v i o l a c e a x S, r a n u n c u l i f o l i a 1 Bolandra oregana x Boykinia o c c i d e n t a l i s 3 x B. maj or 4 Jepsonia p a r r y i x Boykinia o c c i d e n t a l i s 10 x B. intermedia 10 J 1, heterandra x Boykinia o c c i d e n t a l i s 10 x B, intermedia 10 N = number of p o l l i n a t i o n s attempted. * Includes some small or s h r i v e l l e d seeds Genetic % Germ. Seed Overa l l C.I.% C.I.% Mean + SE V.I.% 0 - 0 0 - - 0 0 0 0 - 0 3 0 0 0 141 seed set. An o v e r a l l compatibility index was then calculated as the product of the genetic and seed c o m p a t i b i l i t i e s CTable XVIII and F i g . 40). I n t e r - s p e c i f i c Crosses i n Boykinia The : r e s u l t s (Table XVIII and F i g , 40) show there i s a s i g n i f -icant l e v e l of o v e r a l l compatibility between the species of section Boykin-; l a , confirming the group as a natural u n i t . Boykinia major, B_. o c c i d e n t a l - Is-, and B_. intermedia a l l show a high l e v e l of p o t e n t i a l gene exchange and rform a well-defined group , to which B. . a c o n j t i f o l i a and B_. l y c o c t o n i f o l i a also belong on morphological grounds. I t may be predicted that these l a t t e r two species w i l l also prove to be cross compatible both with each other, and with t h e i r P a c i f i c northwestern couterparts. Boykinia r o t u n d i f o l i a also shows a degree of compatibility with the other members of section Boykinia, although the b a r r i e r s to hy-b r i d i z a t i o n are somewhat stronger than between the others. In crosses with;B_. major there i s some evidence of SI x SC u n i l a t e r a l i n c o m p a t i b i l i t y although t h i s i s only revealed i n hybrid seed germinability experiments. Boykinia rotundif o l i a i s almost cross-incompatible with B_. intermedia and again there i s evidence of SI x SC u n i l a t e r a l i n c o m p a t i b i l i t y , both i n p o l l i n a t i o n and i n hybrid seed germination. In f a c t no hybrids with B.  intermedia as female parent were produced, and only a very few were made i n the r e c i p r o c a l d i r e c t i o n . Crosses 1 of B_. rotundif o l i a with B_. occident- a l i s were more successful with the l a t t e r as female parent. ALthough more seeds were produced with a female B. r o t u n d i f o l i a , t h e i r germinability was lower than i n the r e c i p r o c a l combination. O v e r a l l , crossing b a r r i e r s are less extensive between K. rotundif o l i a and B. o c c i d e n t a l i s or B_. major than- between B. r o t u n d l f o l i a and "Jl. intermedia. The Increased genetic i s o -l a t i o n of B_. r o t u n d l f o l i a from the other species of section Boykinia i s r e f l e c t e d i n i t s d i s t i n c t i v e morphology. 142 FIGURE 40. Crossing r e l a t i o n s h i p s between species and genera, expressed i n terms of Ov e r a l l Compatibility (the product of i n t e r s p e c i f i c c r o s s a b i l i t y and hybrid seed v i a b i l i t y ) . A l l crosses are r e c i p r o c a l except where noted. Arrows i n d i c a t e the d i r e c t i o n of p o l l e n t r a n s f e r . Overall Compatibility 71 - 100 — 31-70 ov — 1-30 / o O 143 Only a s i n g l e cross with B_. r l c h a r d s o n i i was made and t h i s Involved B. o c c i d e n t a l i s as the female parent. I t was unsuccessful. I t i s d i f f i c u l t to assess the s i g n i f i c a n c e of this because f a i l u r e may have resulted from one or more of the following f a c t o r s : 1) p o l y p l o i d p o l l e n being rejected on a d i p l o i d s t y l e ; t h i s i s a r e l a t i v e l y common phenomenon i n such crosses (e.g. Rajhathy and Thomas 1974); 2) i n t e r - s p e c i f i c cross-i n c o m p a t i b i l i t y ; or 3) environmental e f f e c t s . In section Telesonix, only p o l l e n of B_. heucherif ormis was a v a i l a b l e . This was dusted on the stigmata of o c c i d e n t a l i s and B. i n t e r - media. In both cases a c e r t a i n percentage of the crosses y i e l d e d rather small, somewhat underdeveloped seeds. A l l those produced by B_. intermedia f a i l e d , to germinate, but some of those from the B_^  o c c i d e n t a l i s x heucher-i f ormis crosses did. The seedlings grew up to be vegetatively vigorous F l hybrids. This r e s u l t strongly supports the i n c l u s i o n of B_. heucheri-formis and B_. jamesii i n Boykinia rather than i n Saxifraga or the segregate genus Telesonix. e s p e c i a l l y i n view of the f a i l u r e at some stage of a l l other intergeneric h y b r i d i z a t i o n s . Hybrid I n v i a b i l i t y and Morphology Seed i n c o m p a t i b i l i t y , an e a r l y expression of hybrid i n v i a b i l i t y , i s a well-known phenomenon and has been reported i n many genera, e.g. Primula (Valentine 1953) where.the symptoms of aberrant endosperm and em-bryo development are very s i m i l a r to those found here. Valentine suggested that the p h y s i o l o g i c a l basis for seed i n c o m p a t i b i l i t y was the lack of syn-chronous exchange of hormones and metabolites between the embryo and endo-sperm, leading to t h e i r -mutual degeneration, Eaton (1973) considered that i t arose as a correlated response to s e l e c t i o n for d i f f e r i n g p h y s i o l o g i c a l a t t r i b u t e s i n d i f f e r e n t species', rather than Being selected for s p e c i f i c a l l y as- a postT-zygotic B a r r i e r to h y b r i d i z a t i o n . 144 The only hybrids to flower during the course of the study were, those derived from the B. rotundif o l i a x maj or crosses. They had a mean pol l e n s t a i n a b i l i t y i n 1% acetocarmine of 1.3%, with some plants producing no p o l l e n at a l l . This high l e v e l of s t e r i l i t y i s p a r t l y or wholly a r e s u l t of the t r i p l o i d status of these plants (2n = 20). An i l l u s t r a t i o n of t h i s hybrid i s shown i n F i g . 41. I t i s i n t e r e s t i n g to note that large flower s i z e Is dominant over small flower si z e i n t h i s cross, as the hybrid f l o r a l morphology i s very close to that of B. major. In some cases developmental anomalies were observed i n the basal l e a f complement of some pl a n t s . In ohe of the r o t u n d i f o l i a x maj or hybrids, the flowering stem f a i l e d to develop cauline leaves properly ( F i g . 41). A comparison of basal l e a f shapes of the hybrids with t h e i r respective parents' i s shown i n F i g . 42. No differences were observed i n hybrids r e s u l t i n g from r e c i p r o c a l p o l l i n a t i o n s , and a l l hybrid vegetative morphologies were intermediate between those of t h e i r parents. No instance of natural h y b r i d i z a t i o n has been found i n the w i l d . The geographical proximity of the P a c i f i c Northwestern species could allow c r o s s - p o l l i n a t i o n i n some l o c a l i t i e s , so the absence of natural hybrids may be a t t r i b u t e d to any or a combination of the following f a c t o r s : subtle e c o l o g i c a l differences between the parents, pre-zygotic genetic i s o l a t i o n , seed i n c o m p a t i b i l i t y , and i n some cases to hybrid developmental i n s t a b i l i t y . I n t e r - s p e c i f i c Crosses i n Suksdorfia A very few c r o s s - p o l l i n a t i o n s were attempted between the two North American species, Suksdorfia ranunculif o l i a and _S\_ -violacea. A l l crosses f a i l e d . This c r o s s ^ i n c o m p a t i b i l i t y i s i n t e r e s t i n g because the two species have Been placed i n separate genera i n the past, Hemjeya and Suks- d o r f i a , r e s p e c t i v e l y (Ch. XIV). However, rather than r e f l e c t i n g generic 145 FIGURE 41. The Boykinia rotundifolia x B_. major hybrid. a) Hybrid i n v i a b i l i t y . Occasional hybrids showed developmental abnormalities. In this case the cauline leaves have fai l e d to develop properly, although the plant went on to flower. b) Longitudinal section of a flower. Floral morph-ology tends strongly toward that of Boykinia  major. c) Upper stipule and cauline leaf. Stipule morphology is much more l i k e that of Boykinia rotundifolia than B_. major. 147 status for each, the c r o s s - i n c o m p a t i b i l i t y may merely ind i c a t e the e x i s t -ence of two B i o l o g i c a l species. They are sympatric over most of t h e i r ranges, have very s i m i l a r e c o l o g i c a l preferences, and i n many places i t i s possiBle to ifind them growing i n adjacent or even s l i g h t l y mixed populations. Although perennials, they are proBaBly s h o r t - l i v e d as t h e i r BulBiferous rhizome system i s not s u b s t a n t i a l . In these circumstances, strong breeding B a r r i e r s between related species are common and to be expected (Grant 1971). In mixed or contiguous populations, S_. v i o l a c e a begins flower-ing about two weeks e a r l i e r than S_. ranunculif o l i a , although there i s ob-v i o u s l y a great deal of overlap once the bulk of both populations are i n flower. No instances of natural h y b r i d i z a t i o n have been discovered. D i f -ferences i n p o l l i n a t o r fauna may e x i s t (Ch. XIII) but the data are too few to be c e r t a i n . Inter-generic Crosses The r e s u l t s of the i n t e r - g e n e r i c crosses are given i n Table XVIII and F i g . 40. Genera tested included Suksdorfia, Boykinia, S u l l i v a n - t i a , Bolandra, Jepsonia, Peltoboykinia and M i t e l l a . In no case did the hybridizations succeed. In some cases, however, the ovules developed into small, sometimes s h r i v e l l e d , non-germinable seeds. This seed incompatibil-i t y occurred as a r e s u l t of crosses of Boykinia o c c i d e n t a l i s with Suksdorfia (both spp.), S u l l i v a n t i a oregana and Jepsonia heterandra (Table XVIII). I t also occurred i n crosses of Boykinia intermedia with Jepsonia p a r r y i . S o l t i s ( i n l i t t . ) reported the same phenomenon i n crosses between Boykinia  a c o n l t i f o l j a and S u l l i v a n t i a spp. The c r o s s ^ i n c o m p a t i b i l i t y of the genera studied supports t h e i r separate i n t e g r i t i e s , e s p e c i a l l y i n view of the f a c t that i n t r a - g e n e r i c , i n t e r s p e c i f i c hybrids are e a s i l y formed i n many of the Saxifraginae, including B'oyklnla, Jepsonia (Ornduff 1969a), S u l l i v a n t i a ( S o l t i s i n l i t t . ) , Bergenia (Yeo 1966) , Lithophragma (Taylor 1965) and Heuchera (Wells 1980). 149 XII. FLAVONOID CHEMISTRY Previous Chemical Investigations of Boykinia and A l l i e s The Saxifragaceae s . l . were the subject of extensive polyphenol surveys by Plouvier 0-965) , Jay and Lebreton (1965) and Jay (1969). The family was also included i n the dicotyledon survey by Bate-Smith (1962) who found quercetin and kaempferol i n Boykinia a c o n i t i f o l i a . Jay (1969) l i s t e d the presence of leucocyanidin, quercetin and kaempferol i n B. a c o n i t i f o l i a , ;B"... o c c i d e n t a l i s and B, r o t u n d i f o l i a . For Peltoboykinia tellimoides he re-ported leucocyanidin, quercetin, kaempferol and e l l a g i c a c i d . He consid-ered the occurrence of e l l a g i c acid i n support Hara's (1937) recognition of Peltoboykinia at the generic l e v e l . - Jay (1969) also studied S u l l i v a n t i a  s u l l l v a n t i j which he found to contain leucodelphinidin, leucocyanidin, quercetin, kaempferol and e l l a g i c acid. Recently, S o l t i s (1980) i n v e s t i -gated a l l s i x species of S u l l i v a n t i a using paper chromatography and r e -ported quercetin-3-0-mono-, d i - , and t r i g l y c o s i d e s (some of which contained glucuronic a c i d ) , pedalitin-6-0-mono-.and diglycosides, and a trace of l u t e o l i n . On the basis of t h e i r r e s u l t s , Jay (1969) and Jay et a l . (1970) proposed three taxonomic groups: a "c e r c l e e l l a g i q u e " composed of Mukdenia, Agtilboides, Saxifraga sect. Micranthes, Bergenia and Peltoboykinia; a "ce r c l e Heuchera" which included Tellima, Tolmiea, T i a r e l l a , M i t e l l a ,  Heuchera, S u l l i v a n t i a and possibly Peltiphyllum and Bensoniella; and a tentative " c e r c l e Saxjfraga M comprising Saxifraga, Rodgersja, A s t j l b e and Boykinia. The conclusions-must be regarded with scepticism because the techniques used and the philosophy- behind the i n t e r p r e t a t i o n of the r e s u l t s were p r i m i t i v e . Regarding other phytochemical studies on these genera, Izawa et a l . (1973) reported o i-peltoboykinolic acid and p - p e l t o b o y k i n o l i c acid 150 ( t r i t e r p e n i c acids) and bergenin Ca C-glycosylated g a l l i c acid deriyatiye) from Boykinia t e l l i m o i d e s . fi -Peltoboykinolic acid alone was found i n B. l y c o c t o n i f o l i a . They concluded that these r e s u l t s supported the recog-n i t i o n of section Peltoboykinia at the generic l e v e l (Kara 1937). I t may be noted, however, that fi -peltoboykinolic acid, i t s monoacetate and a s t i l b i c acid (6- fi - 0 R 7 r > ^ —peltoboykinolic acid) have also been i s o l a t e d from As t i l b e r i v u l a r i s Ham. (Sastry and Rao 1977). The family i s gradually being reworked, using modern chroma-tographic and spectroscopic methods. Genera studied so far include Tellima ( C o l l i n s and Bohm 1974; C o l l i n s et a l . 1975), Heuchera CWilkins and Bohm 1976; Bohm and Wllkins' 1978a), Elmera CBohm and Wllkins 1978b), Tdlmlea CBohm 1979), Chrysosplenjum CBohm and C o l l i n s 1979), Peltiphyllum CBohm and Wllkins 1976), Jepsonia (Bohm and Ornduff 1978), Leptarrhena CMiller and Bohm 1979) and Saxifraga CMiller and Bohm 1980). The present i n v e s t i g a t i o n forms part of this r e v i s i o n , and reports flavonoid data on Boykinia, Peltoboykinia, Suksdorfia, S u l l i v a n t i a and Bolandra. METHODS Wj;th some modifications, the phytochemical methods used i n thi s study follow Wilkins & BohmC1976). Plant Material D e t a i l s of c o l l e c t i o n s and amounts of tissue used are given i n Table XIX. Material of almost a l l the c o l l e c t i o n s was also grown under uniform conditions i n an experimental growth room Cat 15 - 20°C and 16hr daylength). Apart from some quantitative d i f f e r e n c e s , the flavonoid pro-f i l e s of flowering, growth-^room material were q u a l i t a t i v e l y s i m i l a r to those found i n material c o l l e c t e d from nature. Chromatography and Spectroscopy ' Analytical thin^layer chromatography CTLC) was car r i e d out 151 TABLE XIX. Populations sampled and dry weights of tissue used f o r f l a y -onoid analyses. Collections By Gornall are prefixed By ?G'. F u l l d e t a i l s are given i n Appendix 1, Boykinia a c o n i t i f o l i a (urceolate capsules): G342j' 19.9g; S o l t i s 1046, 25. 8g. B. a c o n i t i f o l i a CturBinate capsules): H a r v i l l & Segars 143, O.lg. B. intermedia: G23, 77.7g; G24, 49.1g. B. l y c o c t o n i f o l i a : OhBa et a l . 73099, O.lg; Sugawara s.n. 18.7g. B. major: G38, 27.2g; G45, 28.3g; G55, 15.6g; G60, 49.6g; G92, 38.5g; G202, 117.1g; G207, 60.2g; G212, 49.2g; G335, 25'.Ig. B. o c c i d e n t a l i s : Bohm 1102, 46.Og; Bohm and Schofleld 1293, 1.6g; G l , 4.5g; G8, . 27.3g; G22, 22,6g; G25, 7.5g; G27, 25.7g; G29, 31.8g; G54, 6.0g; G65, 7.0g; G86, 28.3g; G216, 25.1g; G227, 307.8g; G255, 12.5g; G256, 5.2g; S t r a l e y 1 7 5 3 , 11.2g. B. r o t u n d i f o l i a : G98, 184.8g; G101, 102.4g; G105, 66.6g. B. r i c h a r d s o n i i : G271, 9.8g; G272, 13.6g; G302, 19.4g; G303, 18.2g; G306, 19.Og; Guppy s.n., 68.4g. B.. heucheriformis: G115, 22.2g; G132, 27.2g; G193, 40.Og; G194, 2.6g; G198, 77.2g; G344, 25.4g. B. jamesii: G i l l e t t & Mosquin 12114, O.lg. Suksdorfia alchemilloides: F i e B r i g 3161, O.lg. S. r a n u n c u l i f o l i a : Bohm 1092, 3.4g; Bohm 1096, 3.3g; Bohm 1132, 2.2g; Bohm 1144, 1.3g; G15, 4.1g; G245, 4.8g; G253, 8.8g. S, v i o l a c e a : Bohm 1112, l.Og; Bohm 1118, 0.3g; Bohm 1122, l.Og; G248, 1.4g; G252, 0.4g. Kolandra oregana: G260, 0.5g; G262, 2,0g; G340, 8.5g. S u l l i v a n t i a oregana: G261, 4.0g. PeltoBoykinia tellimoides ssp. t e l l i m o i d e s : G328, l.Og. ssp. watanabei: G343, 1.8g. with "Polygram" 0.25mm s i l i c a gel and "Polygram" 0.1mm c e l l u l o s e MN300 commercially prepared sheets, and with laboratory prepared .33mm MN Poly-amide DC.6 pl a t e s . For preparative TLC, three types of pl a t e were used: 1) 0.5mm Av i c e l m i c r o c r y s t a l l i n e c e l l u l o s e ; 2) 0.33mm MN-silica gel G; and 3) 0.33mm MN Polyamide DC 6,6. Two standard eluents f o r polyamide plates were r o u t i n e l y used;. 1) "aqueous" C w a t e r : Nr^Butanol ; acetone : dloxane i n the r a t i o 70:15:1055), and 2) "organic" ' C l,2-dichloroethane :. methanol ; butanone : water i n the r a t i o 50:25:21:4). S p e c i a l eluents for comparative Rf data are described i n Appendix 2. U l t r a - v i o l e t spectra 152 were recorded i n methanol. Ext r a c t i o n and I s o l a t i o n From each population of each taxon (Table XIX) samples of sev-e r a l whole plants were blended with 500ml methanol and them warmed for one hour. The s l u r r y was f i l t e r e d and the methanol extract evaporated to dry-ness. About 5g C e l i t e A n a l y t i c a l F i l t e r Aid and 50 - 100ml d i s t i l l e d water were added to dissolve the extract. This was then f i l t e r e d and the f i l t r a t e extracted four times with 125ml portions of water-saturated n-butanol. The combined butanol extract was evaporated to dryness i n vacuo and the residue was taken up i n 20% methanol ( i n water) for loading onto a Sephadex LH-20 column, which had been previously swollen. The column was eluted with successive 400ml aliquots of 20%, 30%, 40%, 50%, 60%, 80% and 100% methanol, and f i n a l l y 100% acetone. The column was examined during e l u t i o n with an u l t r a v i o l e t (UV) lamp (360nm). Fractions of 100 -200ml were co l l e c t e d and monitored on polyamide TLC, using the "aqueous" and "organic" solvent systems. Similar f r a c t i o n s were combined. F i n a l p u r i f i c a t i o n of i n d i v i d u a l flavonoids was achieved by banding the relevant column f r a c t i o n s onto TLC p l a t e s , using a s u i t a b l e medium and eluent system. I f the quantity of polyphenol material was too great for t h i s , and p u r i f i c a t i o n was possible using polyamide, then a 9g Polyamide SC-6 column was run, e l u t i n g i t with a s u i t a b l e eluent system. Flavonoids were detected on TLC plates by spraying with 0.1% fi -amino-ethyl diphenylborinate ( A l d r i c h Chem. Co.) and examining under UV l i g h t . Dark brown, green, yellow or orange colours i n d i c a t e d flavon-oids.' Blues indicated other poly-phenols. The s e n s i t i v i t y of the colour reactions on polyamide DC 6.6 TLC plates was found to be p a r t i c u l a r l y h e l p f u l as a preliminary i n d i c a t o r of flavonoid structure. This i s d i s -cussed i n the next section, 15 3 I d e n t i f i c a t i o n of Flavonoids Mabry et a l . (1970) described the re l a t i o n s h i p s between f l a v -onoid structure and appearance on paper, i n UV l i g h t and i n the presence of ammonia. Some u s e f u l inferences can be made when viewing flavonoids on Polyamide DC-6.6 i n UV l i g h t , before and after spraying with 0.1% P -amino-et h y l diphenyl borinate. A b r i e f outline of some of the colour reactions was given by Wllkins and Bohm (1976) who dealt with the common flavonols and l u t e o l i n (a flavone). Table XX shows the s t r u c t u r a l information which could be drawn from UV behaviour and spray reactions of the 144 flavonoids i s o l a t e d i n the present study. UV s p e c t r a l data using s h i f t reagents allowed i d e n t i f i c a t i o n of the aglycone and the p o s i t i o n of the attachment of the sugars (Mabry et a l . 1970; Mears and Mabry 1972). Inferences about structures provided by UV l i g h t and borinate spray reactions were confirmed by the s p e c t r a l data (Appendix 3). Hydrolyses were conducted i n about 2ml of 20% methanol i n water, using s i x drops of t r i f l u o r a c e t i c acid at 80 - 100°C. During hydros l y s i s of diglycosides and t r i g l y c o s i d e s , the hydrolysates were monitored by TLC at 10 minute i n t e r v a l s . This allowed conclusions to be reached both as to the nature of the inner sugar and also i t s p o s i t i o n . When hydrolysis was complete (1.5 - 2hrs), the hydrolysate was evaporated to dryness i n vacuo and taken up i n e t h y l acetate and water. The organic phase was.used for sugar analysis. The aqueous extract was evaporated to dryness and the residue taken up i n one or two drops- of water and spotted along with stand-ards on s t r i p s of c e l l u l o s e TLC sheet. Chromatography was conducted using two developments with e t h y l acetate : pyridine : water (10;3.2;2), The sugars were located By spraying with p-r-anisidine phthalate and heating the s t r i p s at 110°C for about f i v e minutes. 154 TABLE XX. Flavonoid behaviour i n UV l i g h t , before and a f t e r spraying with 0.1% >8-aminoethyl dlphenylBorinate. Flavonoid Spot'Colour UV Light Dark purple or dark Brown Dark purple or dark Brown Dark purple or dark brown D u l l yellow or pale Brown D u l l yellow or pale Brown Eorinate Spray + UV Light Yellow to dark B r i c k red Green Dark purple or dark Brown Yellow to dark Brick red Green S t r u c t u r a l Inference CR f- H; X F anything) 3'4'-COH)2; 3-OR or 3-H or 3,6-COH)2. Not 3'4'-COH)2; 6-H; 3-OR; or 3-H Not 3'4'-C0H)2; 6-OX; 3-H or 3-OR or 3,6-C0H) 2. 3'4'-(OH) 2; 3-0H. Not 3'4'-C0H)2; 3-0H; 6-H or 6-OR. In many cases, t r i g l y c o s i d e s were hydrolyzed under three re-gimes: at room temperture f o r 5 minutes, at 80°C for 5 minutes, and a t o t a l hydrolysis (1.5 to 2hr at 100°C). The sugars from each of these procedures were converted to t h e i r a l d i t o l acetates and analyzed gas-chro-matographically following the method of Jones and AlBershiem C1972) . This method allowed not only the sequence of sugars to Be determined, But also t h e i r r e l a t i v e amounts. A standard mixture of d e r i v a t i z e d araBinose, xylose, galactose, glucose, rhamnose and mannose i n equal amounts was run for comparison. I d e n t i f i c a t i o n of Acylated Flayonolds-Three kinds of flavonoid presented i d e n t i f i c a t i o n proBlems. The f i r s t kind showed Rf values of n i l , or streaking from the o r i g i n , i n a l l n e u t r a l solvent systems But Behaved as- normal flavonoid -monoglycosides i n a c i d i f i e d - solvent 'systems., UV spectra"ihdicated the 'normal flavonoid 155 monoglycosides, and acid hydrolysis gave the common flavonols Ckaempferol, quercetin, or isorhamnetin) with no Blue-fluorescing, phenolic acids appearing. The sugar chromatograms showed only glucose or galactose. A l k a l i n e hydrolysis of parent compounds, using 1 drop of cone. NK^OH, llB e r a t e d the corresponding f l a v o n o l monoglycosides. I n j e c t i o n of the reaction mixture i n t o an HPLC (C-18 acylated s i l i c a g e l , reverse phase) revealed only two peaks: the parent acylated compound and i t s correspond-ing monoglycoside. These r e s u l t s suggest that the charged acyl group i s not glucuronic acid, nor a phenolic acid, nor a sulphate group. I t must therefore Be an a l i p h a t i c acid. The second kind of acylated flavonoid was that which, i n the organic solvent system, .had an value higher than was expected from an i d e n t i t y Based on UV s p e c t r a l and acid hydrolysis data. UV s p e c t r a l data indicated the common fla v o n o l monoglycosides. Acid hydrolysis yielded only kaempferol, quercetin or isorhamnetin. No Blue-fluorescing compounds appeared and the sugar chromatograms showed only glucose or galactose. In the aqueous solvent systems the compounds Behaved as the common fl a v o n o l monoglycosides. HPLC Behaviour confirmed this oBservation. As Before, a l k a l i n e hydrolysis l l B e r a t e d the corresponding flavonol monoglycosides. These r e s u l t s suggest that there i s an acyl group attached to the sugar moiety i n the parent glycoside. Unlike the f i r s t case, the ac y l function i s not charged. The evidence indicates that i t i s a l i p h a t i c rather than aromatic. Since i t s e f f e c t i s to increase R^'s i n the organic system, the li k i h o o d i s that the ac y l moiety i s an acetate group. Chromatography of the kaempferol variant with a standard kaempferol-3<-0-acetylglucoside confirmed t h i s hypothesis, The t h i r d kind of acylated flavonoid was.that whose R^ values In Both organic and aqueous- solvent systems was roughly h a l f the expected 156 value based on i d e n t i t i e s i n f e r r e d from UV s p e c t r a l data which indicated kaempferol and quercetin-3-0-glycosides. Acid hydrolysis y i e l d e d kaempr-f e r o l or quercetin as the only phenolic product. The sugar analyses y i e l d e d glucose and a d u l l grey^coloured compound with high R^ (ca. .95). This was concluded to be the acyl group; i t s nature was not determined. Results The r e s u l t s of the flavonoid survey are given i n Table XXI where the d i s t r i b u t i o n of 144 flavonoids among 17 taxa i s shown. Apart from Suksdorfia. the d i f f e r e n t populations of each taxon showed, q u a l i t a t i v e l y , remarkably s i m i l a r p r o f i l e s . The flavonoid complement of flowering, growth room-grown material was the same as that found i n material c o l l e c t e d from the f i e l d . Furthermore, differences i n the stage of plant development had only quantitative e f f e c t s . With the exception of Suksdorfia, populations sampled from nature i n successive years also showed q u a l i t a t i v e l y invariant p r o f i l e s . Only i n Suksdorfia did i n t r a - s p e c i f i c q u a l i t a t i v e v a r i a t i o n occur. Some S_. r a n u n c u l i f o l i a populations possessed the charged acylated fl a v o n o l glycosides; others did not. In vi o l a c e a there was some i n t e r -populational v a r i a t i o n i n the t r i g l y c o s i d e complement where two of the three quercetin-3-0-rhamnosylglucoside-7-0-glucoside isomers were not uni-formly present. I t i s unfortunate that t h i s genus proved to be m o s t . d i f f i -c u l t to maintain i n c u l t i v a t i o n and so flavonoid information from popula-tions grown under uniform conditions was not a v a i l a b l e . The•inter-popula-t i o n a l v a r i a t i o n may be a r e s u l t of phenotypic p l a s t i c i t y rather than the r e s u l t of any genetic differences because i n S_. r a n u n c u l i f o l i a , a second sampling two years l a t e r of one of the populations (Bohm 1092 and Gornall 245) showed that the charged compounds-, undetected at f i r s t , were present the se cond ' time. LO LO e CD ~J ri 1 O .O fD — S rt 1 fD (a o A OQ s ro CD rt 1 0 LO I O. I o LO LO LO Lo <J Lo JO pi ta <• i -1 i c (T> .6 o 1 fD B *• 1 -s •S O M Co O ro (D g n Mi -i 1 fD fD ro 1 i fD «o ..O ) rt Hi o o 1 JO H-o S g , 0 0 M e-Q e-Q 3 H O fD rt H* 0 > OQ M O o 0 fD CD o o &. cn r 1 H fD P-I co rt H-C o pl o Hi 1 I I OP OQ I 1 1 1 I 1 1 I 1 1 I 1 1 1 + 1 I I I + I I + I I + + I I + + + + + + + + + + + + + I + I I + I OQ OQ OQ + I I I 1 + + 1 1 1 1 1 I 1 + 1 1 + + I I OQ OQ + + + + + I I I I I I + + 1 1 + 1 + I + I + 1 + + + Boykinia + i e l a t a n. 4- i nia j or -I- 1 intermedia + OQ a c o n i t i f o l i a (ureceolate) + OQ a c o n i t i f o l i a (turbinate) + i l y c o c t o n i f o l i a + 1 r o t u n d i f o l i a + 1 r i c h a r d s o n l i -+ 1 jamesii t heucheriformis Peltoboykinia tellimoides i -+• 1 tellimoides i + i watanabei Suksdorfia i + i r a n u n c u l i f o l i a i + i v i o l a c e a i + i alchemilloides Bolandra i OQ OQ oregana S u l l i v a n t i a i + i oregana < o 0 o H-Cu CO H-0 W O H-0 H-CO & CO Cu O H Hi CU O C o •< H-3 W O M B n Co B CU B rt PJ £51 f OJ OJ OJ OJ OJ OJ OJ OJ •X) 1 c >• .H" O rt ox ox Ox Ox VI OX <j 00 n> *» 1 fD fD o -p- -E> OJ 6 0 J 1 ) H> Ox 1 o •C- O 1 1 1 w 1 — o S O O o '1 O 1 S fD 1 rF S •S Q fD 1 o i fD fD W rt > 1 •S 1 O s 1 1 1 ^— f fD 1 O rt Gt rt e-Qt rt /O rt rt /O rt CO o o + 1 1 ) 1 1 • 1 1 1 I I I I I 1 I I 1 I + 1 + + 00 1 1 1 1 1 1 + 1 1 1 I 1 1 1 1 1 1 1 1 1 I + 00 + + + •+ I I I I 1 I I 1 1 ) 1 1 1 1 + I I I I 1 1 + I 1 I I I I I I I I I I I 1 1 1 1 1 + 1 1 1 1 1 1 + + + I + I 1 I I 1 1 I 1 + 0 0 I I I I 1 + -1 + + 1 1 i i i i 1 1 OP 1 1 1 1 1 1 I 1 1 1 I 1 1 1 1 1 I I Boykinia e l a t a major intermedia a c o n i t i f o l i a (ureceolate) a c o n i t i f o l i a (turbinate) l y c o c t o n i f o l i a r o t u n d i f o l i a r i c h a r d s o n i i . .a, b jamesxi heucheriformis Peltoboykinia tellimoides tellimoides watanabei Suksdorfia r a n u n c u l i f o l i a v i o l a c e a 3 3. alchemilloides Bolandra oregana S u l l i v a n t i a oregana 851 JO •O - o /O s ON J 1 1 1 J 1 J 1 1 I 1 o w Co OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ .0 1 1 1 1 1 I 1 1 1 •i 1 o o o o o o o o o o o o OP 1 1 1 1 1 1 1 1 J J J t-1 6 oo Cu CU PJ fo cu PJ [U 00 i-i OP •S cu- O O o o o o n H P4 M n ft> M X X fD ft) fD fD e fi e o 1 Cu M H rt rt rt rt h-1 o R o CO c/> O 00 00 .X 00 o o H- o rt H h-» h-1 h-1 h-1 H 1—1 CO o CD Cu 0 O 0 e 00 00 00 00 0 H- CD H> fD CO o O h-1 H n Cu V- Cu CD )-•• o O C •c 0 C o fD Cu fD Cu CD CD. o o o O CD fD n> H- H- o o o O H-Cu Cu CO CO CD CD CU ft) fD H> H' H- H- fD H- cu Cu Cu Cu fD ro fD fD fD o n W > OX J o if j cn n c > 00 (-« o o 0 fD CO h-1 cu < o 0 o H> Cu CO o t-< o o 0 Boykinia 1 1 I 1 J 1 1 + 1 1 1 1 e l a t a 1 1 1 1 + + + + 1 1 1 1 major 1 + + 1 + 1 + + 1 1 1 1 intermedia 1 . . . 1 + + 1 + 1 J a c o n i t i f o l i a (ureceolate) 1 1 1 1 1 + + 1 + 1 1 a c o n i t i f o l i a (turbinate) 1 1 1 1 + 1 + + 1 1 1 1 l y c o c t o n i f o l i a 1 1 1 + 1 1 + + 1 1 •+. + r o t u n d i f o l i a 1 1 I 1 1 1 1 + 1 1 ) 1 r i c h a r d s o n i i 1 1 + 1 1 1 + + 1 i 1 1 . . a, b jamesii + 1 + 1 1 1 + + 1 1 1 1 heucheriformis Peltoboykinia tellimoides 1 1 I 1 1 + + J 1 1 1 tellimoides 1 1 1 1 1 + + 1 1 1 1 watanabei Suksdorfia I 1 1 1 1 + 0 * + 1 1 1 1 r a n u n c u l i f o l i a a 1 1 1 1 1 1 + 1 1 1 1 v i o l a c e a 1 1 1 1 1 1 1 + 1 1 1 1 alchemilloides I + + 1 I + I I Bolandra oregana S u l l i v a n t i a oregana 651 Lo LO Lo Lo LO JO . O JO JO JO 'J 1 1 -•* ;l 1 1 1 Lo LO LO ' o 1 1 1 i 1 LO LO Lo I '\ 1 1 1 O O O o o 1 1 I Lo P> O O O ro •S S •3 o O O O ) < "J 1 1 i fD (D fD fD fD 1 1 1 ] O O Pl Co OQ . O 1 1 1 ] 1 OQ X Co rj 1 PI o o h-1 1 JO X> -o .JO H rl pr* PJ O ro C LO 1 1 1 1 1 fi M Co po n H-rt. o 1 Lo LO Lo Lo Lo o O Q 4 X CU X OQ o O 1 J 1 1 J O CD H- § M CO h-1 H CO 1 O O O O O CO H- 3 O OQ o 00 fi H- OQ 1 1 1 1 1 H- Cu O CO (0 r-1 Cu M Co OQ Co Co OQ CU fD CD H> r-1 fi o fD C o fo O n r-1 ft> H- Cu Co O CD O vs H ro fi Cu fD n o H- o M Co rt h-1 n fD rt CO Cu Cfl- OQ o *•<: OQ o O fD H- Co rt h-1 I-1 CO CO cu fD Cu 1—1 O OQ C ro fD ac si lu CO de de > toside' de coside CD H> Cu ro ro fD I"1 n o 3 Boykinia 1 + 1 1 1 ) 1 1 1 1 1 1 1 e l a t a + + > 1 + + + + « + + 1 + major + + + + I + + I ) 1 1 + intermedia + + 1 1 1 + 1 1 a c o n i t i f o l i a (ureceolate) + + 1 1 1 1 1 1 1 + 1 J a c o n i t i f o l i a (turbinate) + + 1 ' 1 1 1 1 1 1 + 1 1 l y c o c t o n i f o l i a + + 1 1 1 1 1 1 1 1 1 + 1 r o t u n d i f o l i a 1 + 1 1 ' 1 1 1 1 1 1 1 1 r i c h a r d s o n l i + + + 1 . . 1 1 I 1 1 1 J j a m e s i i 3 ' ^ + + + ' ' I 1 + + 1 I 1 1 heucheriformis Peltoboykinia tellimoides + + 1 1 1 1 1 1 1 1 I tellimoides + + 1 1 1 1 1 1 1 watanabei Suksdorfia + 3 -+ 1 ' ' 1 ' 1 1 ] 1 c l r a n u n c u l i f o l i a 1 + 1 1 1 1 1 1 1 v i o l a c e a 3 1 + 1 ' 1 1 1 1 1 ] 1 alchemilloides Bolandra 1 + 1 . 1 1 ' 1 1 1 1 + 1 oregana S u l l i v a n t i a i i i i i i oregana 09T Boykinia + 1 + 1 1 i i i i i i l 1 - 4 e l a t a 1 i i i i i i i i 1 + 1 1 1 major i i i i l ) i i i + + i + + intermedia i i i + i i 1 + l i i i i j a c o n i t i f o l i a (ureceolate) 1 1 1 + 1 1 1 + 1 1 1 1 1 1 a c o n i t i f o l i a (turbinate) 1 1 1 1 ) 1 1 + 1 1 1 1 1 + l y c o c t o n i f o l i a + + 1 1 1 1 1 1 + 1 1 1 1 1 r o t u n d i f o l i a + • 1 1 1 1 1 1 1 1 1 1 1 1 1 r i c h a r d s o n l i A ..a, b I I I I I + ] I I I I I I + jamesii i l i i i + + i l i 1 + 1 + heucheriformis Peltoboykinia tellimoides I i i I i i i i i i i i i i tellimoides i i i i I i i i i i i i i i watanabei Suksdorfia + i i i + i i i i i i i i i r a n u n c u l i f o l i a + i i i + i i i i i i l i i v i o l a c e a EL i i i i i + i i i i i i i i alchemilloides Bolandra I i i i i i i i i t i i i i oregana Sullivantia + i i i i i i i i i i i i i oregana T9T .O JO JO JO o ox > > VI VI 1 1 1 i 1 1 1 I ] T 1 J u> U> Co Co CO CO Co OP o 4> v i •O 1 1 1 1 1 1 ] r- 1 s -~ i o O o o o o o ff I o fF fD 1 1 1 I 1 1 1 O I O i I 1 M t-S a H OP OP O 1 OP ox Ox P* P* p4 p* c M H cn o OP h-1 l 1 fa Cu CD S rt P c H- c M C o o 3 H- o o Cu 1 C o P P P P P o o fD V I o o A O O o O o cn CO cn 1 o cn t-i' \T> cn CO cn cn cn o cn H- I 1 H- M 1 H» CU Ox ox h-1 M M h-" cu OP OP OP CU fD I 1 CM CM OP OP fD t-1 M h-1 fD o o r- 1 h- 1 h- 1 M c P 0 1 1 C P e c o n o cu OP o o O o o o o o o o O cn cn cn fD 0 cn cn cn cn H- H- H» rt o H- H- H' H- Cu cu CU o Cu Cu cu cu fD fD fD h-> cn fD fD fD fD OP H-tJCJ W > H Cu O o c fD o o cn H» Cu fD i r o 1 OP r- 1 P o o cn >>• Cu fD *1 h-1 CU <1 O P o H-CU cn n r 1 o o P rt Boykinia 1 1 + + 1 1 1 1 + 1 1 + e l a t a 1 1 1 + I 1 1 1 1 1 1 1 major 1 + 1 + 1 + 1 1 1 1 1 1 intermedia 1 1 1 + 1 1 1 1 1 1 I 1 a c o n i t i f o l i a (ureceolate) ) I 1 + 1 1 1 1 1 1 1 1 a c o n i t i f o l i a (turbinate) 1 1 1 + 1 ] 1 1 1 1 1 1 l y c o c t o n i f o l i a 1 1 1 + 1 1 + 1 1 1 1 1 r o t u n d i f o l i a - r + + + + + 1 1 + 1 1 1 r i c h a r d s o n i i ) 1 1 ) 1 + 1 1 1 I 1 1 . ..a, b jamesix 1 1 1 1 1 + 1 1 1 1 1 1 heucheriformis Peltoboykinia.tellimoides 1 1 1 1 1 1 t i l l I 1 tellimoides 1 I 1 1 1 1 1 1 1 1 1 watanabei Suksdorfia 1 1 1 + 1 1 1 + + 1 1 + r a n u n c u l i f o l i a 1 1 + + 1 I 1 1 + 1 1 + •violacea 3 1 1 1 + 1 1 1 1 1 1 1 1 alchemilloides Bolandra 1 1 1 + 1 1 1 1 1 1 1 1 oregana S u l l i v a n t i a 1 1 1 1 1 + 1 1 1 + + 1 oregana Z91 Co Co 1 1 o O fD fD 1 1 <o , 0 1 1 CJ CO 1 1 o 1 O 1 I-i 1 H p4 P 4 1 1 o o CO CO •<! V! M M ^ CN •<! CU H 1—1 O cu CD o H- rt Cu o fD CO Cu fD 1 o 8= i .O I Co 1 o I rs P P o CO H-Cu fD JO . O JO «o JO I 1 I 1 1 Co ] CO 1 CO 1 CO I Co 1 o o o o o 1 1 ] 1 1 X! CD H 00 00 1-f P 4 CO H h-1 SL CU h-1 c o cf CU n CO H- p n o H- P o rt CO Cu o CO O H-fD CD H- CD Cu 1 H- CU H- fD v i Cu fD Cu 1 1 fD 1 fD v i O 1 V I 1 1 1 v j 1 v i O 00 1 O 1 1 M o 1 o 00 P 1 oo 1 M n 00 00 0 o H c h-1 n CO P o c o H" n o o CO Cu o CD o H« fD CD H- CD Cu H- Cu H- fD Cu fD Cu fD fD JO JO 1 1 1 1 CO i Co 1 CO • Co 1 i o o i o J o 1 1 1 I JO JO 1 J 3 3 3 -si o o CO CD 00 cu M Co o rt O CD H-S4 fD OO M 0 O o CO Pr CU fD O CD H- 1 00 M 0 O o cn H* Cu fD O cn h-1 00 h-1 0 D O CO H-Cu fD Cl td > Co 1 o 1 Cu n §• H-0 O CD h-1 00 H 0 O o CD H-Cu fD CO J o 1 1-i p4 p? o CD M 00 CO I—1 Cu o rt O CD H-Cu fD-r-> CO < o 0 o H-Cu CO n o 0 Boykinia i + i + + I + + i 1 + 1 + 1 1 1 1 1 1 1 1 e l a t a + 1 1 1 1 1 1 1 1 + major 1 1 + 1 + + + + 1 + intermedia + 1 1 + 1 1 1 1 1 + aconitifolia';. (ureceolate) + 1 1 + 1 1 1 1 1 + a c o n i t i f o l i a ( t u r b i n a t e ) 3 1 1 1 1 1 1 1 1 1 1 l y c o c t o n i f o l i a + 1 1 1 1 1 1 1 1 1 r o t u n d i f o l i a 1 1 I 1 1 + 1 1 1 1 r i c h a r d s o n i i 1 ) 1 1 1 + 1 I I 1 . ..a, b jamesxi t i l l I + 1 1 1 1 heucheriformis Peltoboykinia tellimoides 1 1 1 1 1 1 1 I 1 1 tellimoides 1 1 1 1 1 1 1 1 1 1 watanabei Suksdorfia 1 1 1 1 1 1 1 1 1 1 r a n u n c u l i f o l i a 1 1 1 1 1 1 1 1 1 1 v i o l a c e a 3 1 1 1 1 1 1 1 1 1 + alchemilloides Bolandra 1 1 1 1 1 + 1 1 + + oregana S u l l i v a n t i a 1 1 1 1 1 1 1 1 1 1 oregana e9i 7 Lo 1 O I 00 P o o co H» CU fD I •vj I o J oo e O O cn H-Cu fD Lo I . O I P4 O cn h-1 3 O cn H> Cu fD 1 1 Lo LO 1 I O A O cn X I—1 00 Co M Co n rt O CD H-Cu fD O J H-1 O cn ? 7 Lo Lo J L C o o cn Cu fD O CD 00 00 c o o CD eu fD o I Co rt & Cr H-P o CD h-> 00 H C o o CD >*• Cu tn LO ) o ) H P4 Co O CD h-1 00 Co t—' Co o rt O CD r1-CU fD LO 1 O J H P4 Co O. CD 00 C o o cn Cu fD 7. LO 1 O 1 M P4 Co O cn h-1 00 M e o o cn H» Cu fD W Lo 1 O I H P4 CD o CO-M 00 H P o o CO H* Cu ro Lo 1 O I i-i c p o cn H-Cu fD Lo I O I OO H C n o cn C a o CD Cu ro w LO 1 o 1 oo r-1 C n o CO oo oo c o o co H-Cu ro 1 o ff 1 JO I LO 1 o 1 00 H s o o CO h-1 OO M 0 n o co H' Cu fD M CO < O P o H-Cu CD O 15 O O P Boykinia ) ] 1 1 1 1 +. + + + 1 1 1 e l a t a 1 + 1 1 1 1 + 1 1 1 + 1 1 1 maj or 1 1 + + + 1 + 1 + 1 + + + 1 intermedia + 1 1 1 1 1 + J 1 1 + 1 1 1 a c o n i t i f o l i a (ureceolate) + 1 1 1 1 1 + 1 1 1 + 1 1 1 a c o n i t i f o l i a (turbinate) 1 1 1 1 1 1 1 1 1 + 1 1 + l y c o c t o n i f o l i a 1 1 1 1 1 ] 1 1 1 1 + 1 1 1 r o t u n d i f o l i a 1 1 1 1 1 1 1 1 + + 1 1 1 r i c h a r d s o n l i 1 ) 1 1 + 1 I 1 1 1 1 + 1 1 . ..a, b jamesii 1 1 1 1 + 1 1 l l l l + 1 + heucheriformis Peltoboykinia tellimoides 1 1 1 1 1 1 ' 1 1 1 1 1 1 1 tellimoides 1 1 ] 1 1 1 l l l l 1 1 1 watanabei Suksdorfia 1 1 1 1 1 1 > 1 1 1 + 1 1 1 SL r a n u n c u l i f o l i a 1 1 1 1 1 1 1 1 + 1 1 1 v i o l a c e a 3 1 1 1 1 1 + 1 1 1 + 1 1 1 alchemilloides Bolandra 1 1 1 1 + H h + 1 1 1 + 1 1 1 oregana S u l l i v a n t i a i i i i i i i i i i oregana +791 T LO LO Lo JO JO JO «<3 JO •I 1 I 1 I 1 i 1 LO 1 I 1 Lo LO LO LO LO Lo Lo ) 1 O o o V 1 1 1 1 1 1 o o 3 3 3 o O O O O O 1 ) ~0P ro OP ro OQ ro J 1 J J 1 1 1 OP OP i M i M 1 O l-i X % H H h-1 M ; c X5 P X ) e . O 1 P 4 V! P * P * 0 c o ] o 1 o 1 rt Co M M h-1 Co Co o n . o LO o LO o Lo rl O o o o o '.CO 1 CO 1 CO 1 r 1 - p CO CD CO 3 p CO CD O H- O r 1 - O O O o O ro CU 1 Cu 1 Cu 1 CO CD H 1 r- 1 h-1 CD CD M ro % ro l-i ro OQ H> OQ OQ OP OP P * Co Cu Co h-1 h-1 H M g h-1 ro rt P c OQ OP P OP O Co CO P * Co O o Co H O M CO p n Co O o o H C O P O rt rt CO CO Co o CO o r- 1 CO O cj p O H» H> O o H* o OP CD p O CD Cu Cu rt CO CU CD Co M CD H- ro ro O H-ro ro H OP h-1 Cu H- Cu i i CO CL. i SB CO OQ ro CU ro ~ J H» ro D 1— 1 he p ro i i i Cu 1 I i-f rt Co P rt i ~ j o o ro o p* O o n H» i i 1 1 1 I PJ CD rt o Hi i o OQ OP o OP H- O CD H> o i M M 1 1 M p Cu CD H- ro 1 OQ P P o OP c O ro H- Cu Cu OQ M n o 1 M o CD 1 Cu ro ^ ' M e o o OP p o ro ro 1 0 o CD CD I—1 o CO ^—' 1 J O o n. p o H' o J o CD Cu Cu o CO Cu 1 1 o CD >* ro ro o ri-ro o 1 id de w > CO de > ro de a + + I 1 I + I + I I I 1 + I + I 1 + I + I + 1 1 1 1 1 + I I I 1 I I I I I I I I I + I I + 1 I 1 I I I I I I + M Co < O P o H* Cu CO H< O o p rt Boykinia e l a t a major intermedia a c o n i t i f o l i a (ureceolate) a c o n i t i f o l i a ( t u r b i n a t e ) 3 l y c o c t o n i f o l i a r o t u n d i f o l i a r i c h a r d s o n i i . .a, b jamesxx heucheriformis Peltoboykinia tellimoides tellimoides watanabei Suksdorfia r a n u n c u l i f o l i a v i o l a c e a 3 alchemilloides Bolandra oregana S u l l i v a n t i a oregana C9T Ox Ox 7 ? ? 1 1 1 1 J •i 1 ) 1 o O LO Lo Lo LO Lo Lo LO Lo g. s. 1 1 1 1 J 1 1 1 fD fD O O o O O O O O OQ 1 00 1 1 1 J 1 1 1 1 ) \-*JD * >i I-i i-i »-f i-i »i OO e rt P rt X X p 4 P 4 P 4 P 4 P 4 CU o i o 1 H M CU cu cu Cu M o LO LO O O ' S3 g cu CO J to 1 CO CO p p p p p o H- O H- O X o . O o o O rt Cu 1 'CU 'fD 1 ' K-1 co CD CD CO CD o fD M oo 00 X CD P 4 cu M h-1 M h-1 H M h-1 P 00 00 oo oo 00 I—1 O 3 cu o cu M h-1 M 00 CO P O o h-1 C P c P h-1 O rt co fu o o o O c M CO O H- O o o o o n OO X CO Cu rt CO CO CD CD o H h-> H- fD O H" H- H- H* CO C 00 Cu 1 CO Cu Cu CU Cu H-o h-1 fD v j H- fD fD fD fD Cu o P 1 1 Cu 1 1 1 1 fD CO o V I o fD ~ J v i v i v j 1 r 1 ' o 1 1 I 1 1 1 1 v i Cu CO O 00 v i O O O O 1 fD r1- 1 H-1 1 ) I J 1 O 1 Cu 00 C O 00 00 00 00 1 v l ft) r-1 n 1 1—1 H M M 00 1 1 P o 00 p P P P O V I CO M o o o o P I 1 o H- p o o o o o o CO Cu o CD CO CD CO o 1 H- fD o H- H> H- r 1 ' CD Cu CD CU Cu CU CU H> fD Cu fD fD a fD n fD W fD > de Lo 1 O 1 00 r-> p o o CO M 00 h-1 p o o CO H-Cu fD I v l 1 O 1 00 h-1 P O o CO H-Cu fD td M < O P O H-Cu CO o tr1 o o p Boykinia + + + i i i i i 1 + + + 1 -+ e l a t a I 1 1 1 + 1 major I 1 1 i +• -J intermedia 1 1 1 1 1 1 a c o n i t i f o l i a (ureceolate) 1 1 1 . 1 '1 a c o n i t i f o l i a (turbinate) 1 1 1 1 1 J l y c o c t o n i f o l i a 1 1 1 1 1 1 r o t u n d i f o l i a I 1 1 1 I 1 r i c h a r d s o n i i . ..a, b 1 1 1 1 1 1 jamesn 1 I > I 1 1 heucheriformis Peltoboykinia tellimoides 1 . 1 1 •1 1 tellimoides 1 1 1 ) 1 1 watanabei Suksdorfia 1 1 1 1 1 1 r a n u n c u l i f o l i a + 1 1 + 1 1 v i o l a c e a 3 . 1 1 1 -4- 1 1 c l alchemilloides Bolandra 1 1 1 1 I I oregana S u l l i v a n t i a 1 1 1 1 ] I oregana 991 JO JO •O <o H O J O J O J ON 1 1 I 1 1 i 1 H 1 V 1 LO O J O J O J O J O J O J p. o C7> ON o 1 1 1 1 1 1 1 OQ g I o o o o o o o h-1 fD -o o ro 1 1 1 1 1 ] 1 1 — ** g -1 H H OQ., OQ It OQ n ON ) •O fD pr pr pr Co M M t—* o 1 o — 1 It CO CD PJ P F- P CO o g 1 JO J Co O O o F- fD O i t L o p p P O O CO o P L 1 1 g 1 1 o o o It CD F- CO fD Q fD O J O CO cn CO O P L fD CO i i t 1 I ] ^ CD r-1 fD V ON 1 - O o OQ M h- 1 M OQ CD 1 ON r t 1 M OQ OQ OQ M M o 1 1 H P M h-1 1—1 OQ P / N OQ 1 o O J pr n P P P F> O P h- 1 OQ 1 Pi o O O O P o P P I-1 OQ 1 CO o O o o CO F- n P M o p F-cn CO CD o F- P L o o P 1 O C L F- H* F- CO P L fD CO o o OQ CO ro P L P L P L F- fD P fD CD o 1—1 1 fD fD ro P L 1 r t w CO P F" ~ J ) 1 i n> •^ J F- h-1 o OQ J ~ j I 1 rt) 1-f OQ o M o 1 1 i ~ J O F- pr M OQ CO P 1 o O o I 1 fD Pi P H O OQ 1 1 I o OQ P L O C I—1 o H OQ OQ OQ I F 1 p O o OQ CD P h- 1 h- 1 h- 1 OQ P O CD o M F- O P P P h- 1 O CD F- CD P P L o O O O P O fD P L F- O fD CD O O o O CD fD P L o F-cn CO CD O F- fD CO C L H- F- F- CO P L F' fD P L P L P L F- ro CL fD fD fD P L fD fD o W > + + + I I + I I I I I I I + + 1 + + 1 I I I + I 1 + 1 + + 1 1 I I I I I I I I 1 I + I I LO 1 O 1 n pr Cp o co F-P L fD 1 -J 1 O 1 OQ h-1 P o o cn. H-P L fD + r J Co <! o p o F-PL cn o tr 1 O O P i t Boykinia e l a t a major intermedia a c o n i t i f o l i a (ureceolate) a c o n i t i f o l i a (turbinate) l y c o c t o n i f o l i a r o t u n d i f o l i a r i c h a r d s o n l i . . a, b • jamesi i heucheriformis Peltoboykinia tellimoides tellimoides watanabei Suksdorfia r a n u n c u l i f o l i a a v i o l a c e a 3 alchemilloides Bolandra oregana S u l l i v a n t i a oregana a L91 TABLE XXI, cont'd. a Not grown i n growth chamber. b Flavonoids i d e n t i f i e d by co-chromatography only, owing to the small amount of material; the l i s t of compounds may therefore be incomplete, c Abbreviations and structures are given i n F i g . 43. d '-' = not detected; '+' = present; 'g' = found only i n g l y c o s i d i c form, e .Charged a l i p h a t i c acylating function. f Acyl group appears as a grey spot (Rf = .95) on sugar chromatograms. h Absent from c o l l e c t i o n s Bohm 1092, 1096, 1132, 1144. j Absent from c o l l e c t i o n s Bohm 1112, 1118, 1122. 00 169 FIGURE 43. Key to flavonoid structures and abbreviations r e f e r r e d to i n the text and Tables. M = My r i c e t i n (R^R^R^OH; R4=H) Gt = Ga l e t i n (R3=R^=OH; R^R^H) Q = Quercetin (R^R^OH; R2=R4=H) L = L u t e o l i n (Rj=OH; R2=R3=R^=H) K = Kaempferol (R3=OH; R^R^R^H) A = Apigenin ( R ^ R ^ R ^ R ^ H ) Qt = Quercetagetin (R1=R3=R^=OH; R2=H) Sc = S c u t e l l a r e i n (R^OH; R 1 = R 2 = R 3 = H ) OMe = methyl ether Examples: 3'-0Me-Q = quercetin-3'-methyl ether; 3,7-OMe-Q = quercetin-3,7-dimethyl ether. 170 A set of poly-Orvmethylated flayonols and flayones was found i n many taxa. They are noteworthy not only f o r t h e i r taxonomic s i g n i f i c a n c e But also Because they were often not represented as glycosides i n the flavonoid p r o f i l e , unlike the'other aglycones. Experience with glycosides of s i m i l a r compounds from Chrysosplenlum (Bohm and C o l l i n s 1979) has shown that hydrolysis does not occur during the ex t r a c t i o n and p u r i f i c a t i o n pro-cedures. I t seems therefore, that these compounds often occur free i n the plant. In order to s i m p l i f y TaBle XXI for taxonomic purposes, import-ant s t r u c t u r a l features have Been selected and t h e i r d i s t r i B u t i o n shown i n TaBle XXII. Several points are worth mentioning. 6-0xygenation i s aBsent from Suksdorfia, PeltoBoykinia, Boykinia intermedia, and possiBly B_. jam e s i i . 6^0xygenated flayones occur i n Both Boykinia r o t u n d i f o l i a and S u l l i v a n t i a . The charged acylated flavonoids are, with one exception, r e s t r i c t e d to Boykinia. Acetylated flavonoids occur only i n Boykinia (sporadically) and/ S u l l i v a n t i a oregana. Glycosylation at the diglycoside l e v e l , i n v o l v i n g arabinose and/or xylose, occurs only i n Boykinia and Bolandra. 3,7-0-Polygl y c o s y l a t i o n occurs throughout Boykinia, Suksdorfia, and possiBly Bolandra, But i t i s aBsent from S u l l i v a n t i a and PeltoBoykinia. The flavon-oid syndrome i n PeltoBoykinia i s remarkaBly simple. DISCUSSION Disease Resistance The occurrence of unglycosylated polymethylated f l a v o n o l s and flavones I n many of the species I s I n t e r e s t i n g since t h e i r presence i n t h i s form makes them good candidates:for a r o l e i n the protection of the plant against chronic disease (McClure 1975). As- circumstantial e v i d e n c e , i t i s notaBle that the only Boykinia species subject to i n f e s t a t i o n By red-spider I o I rt i-i H-O cn H" Cu fD ft 0 O 3 H O cn cn O cn H -Cu fD cn rT 0 O cn cn ro ro o cn fD fD cu 0 H» O 0 o cn H* CU ro cn 1 o I OQ 0 O o cn H " Cu fD cn (D cn I O J OQ h-1 O O cn (-"• Cu f? 9 fD pj M fD CU Cu o OQ H O o cn H -Cu fD cn CO I i-i < C JQ O 1 fD 0 3 Cu fD fD cn H l-ti I—1 Co rt H* O 0 ON OJ OQ ro Co rt H -O 0 rt P< O 0 5 rt P-O fD rt H -0 i-i C O rt C l-i Co fD PJ rt 0 CD CO L-1 PJ >-i rt Co cn 0 Co H Boykinia + 1 1 1 + 1 1 + I + 4- 1 e l a t a + + + 1 •1 + + 1 + + • + 1 major + + 1 1 1 •+ + 1 1 1 1 1 intermedia + + + 1 1 ] + 1 1 + 1 + a c o n i t i f o l i a (urceolate) + + + 1 1 1 + 1 1 + 1 a c o n i t i f o l i a (turbinate) + + + 1 1 + + 1 + + + 1 l y c o c t o n i f o l i a + + 1 1 1 + + + + + r o t u n d i f o l i a + + 1 1 1 1 1 + 1 + 1 l r i c h a r d s o n i i + + 1 1 1 + + 1 1 1 1 1 jamesii + + 1 + 1 + + 1 + + + 1 heucherif ormis Peltoboykinia tellimoides I 1 1 1 1 1 + 1 1 1 1 1 tellimoides 1 1 1 1 1 I + I 1 ] 1 1 watanabei Suksdorfia + 1 1 1 + 1 + + + 1 + 1 r a n u n c u l i f o l i a + 1 1 1 + 1 1 + 1 1 + 1 y i o l a c e a + 1 1 1 1 1 1 1 1 1 1 1 alchemilloides Bolandra + + 1 1 1 1 1 + + + + oregana S u l l i y a n t i a 1 1 1 + 1 + 1 + 1 + 1 1 oregana H cn P 4 o S3 H -0 OQ rt P4 fD O P o 3 o Cu cn rt l-i H -cr 0 rt H -O 0 o Mi cn O 8 I O i-i rt B rt Ml h-1 Co < O 0 o H> Cu UT 172 mites i n the growth chamber were -JL. r i c h a r d s o n l i , B_. a c o n i t i f o l i a , and B.  intermedia. These taxa lack the polymethylated flavonoid aglycones. S t a b i l i t y of Expression Populational sampling on a wide geographical scale, coupled with studies of the same m a t e r i a l from the uniform enviroment of the growth chamber, and samples of i n d i v i d u a l populations taken i n successive years, have revealed that, except i n the genus Suksdorfia, the flavonoid p r o f i l e s of each taxon are q u a l i t a t i v e l y constant. Inter-populational v a r i a t i o n i n Suksdorfia species i s minor and there i s some evidence to suggest that i t may be environmentally c o n t r o l l e d . The important conclu-sions to be drawn.from these r e s u l t s o v e r a l l , i s that flavonoids are suitable for taxonomic use, Taxonomic Conclusions The major conclusion i s that many and various flavonoid s i m i -l a r i t i e s e x i s t among the taxa, suggesting somewhat r e t i c u l a t e r e l a t i o n -ships. They are obviously a group a c l o s e l y r e l a t e d species. Much of t h i s kind of v a r i a t i o n r e s u l t s from evolutionary p a r a l l e l i s m , a phenomenon common i n the Saxifraginae. The group i s d i s t i n c t from Heuchera and i t s a l l i e s (Bohm and Wilkins 1978a, b), and from Jepsonia and Peltiphyllum CBohm and Ornduff 1978; Bohm and Wilkins 1976) i n possessing 3<-0-methyl-ation, 6-oxygenation, charged a c y l a t i n g functions, and a c e t y l a t i o n of glycosides i n various combinations. 3-0-Methylation and 6-oxygenation are shared by Saxifraga ( M i l l e r and Bohm 1980) and Chrysosplenjum CBohm and C o l l i n s 1979.) . Dealing wjtth i n f r a s p e c i f i c taxonomy, the common s i t u a t i o n i n the Saxifraginae i s for species^ to show" q u a l i t a t i v e l y i n v a r i a n t p r o f i l e s Ce. g. Bohm and Wilkins 1978b) ,:- This pattern -'is maintained- i n Boykinia  o c c i d e n t a l i s where populations- sampled throughout its^ range displayed 173 i d e n t i c a l flavonoids. Thus no support i s given to the recognition of segregate species CRydBerg 1905). S i m i l a r l y , Boykinia a c o n i t i f o l i a shows a constant flavonoid p r o f i l e ; t h i s argues against recognition of variants from AlaBama and Georgia, with turbinate rather than campanulate capsules, at s p e c i f i c l e v e l as B, turBihata CRydBerg 1905). Third, the recognition of B_, intermedia at s p e c i f i c l e v e l Cones 1936) rather than as a v a r i e t y of B_. major C^iper 1899; Hitchcock et a l . 1961) i s supported By flavonoid data. Thus B. intermedia lacks 3-0-methylation, 4'-0-methylation and 6-oxygenation, a l l of which charac-t e r i z e B_. major. Boykinia intermedia has Been suggested to have had a hyBrtd o r i g i n , derived from B. major and B. o c c i d e n t a l i s CPiper 1899). However, i t s flavonoid p r o f i l e does not represent a summation of those of i t s putative parents. The synthesized hyBrid B_. major x B_, o c c i d e n t a l i s does show such a d d i t i v e inheritance. A hybrid o r i g i n f o r B_. intermedia Is therefore rejected. Fourth, i t i s clear that Boykinia jamesii has a s i m i l a r f l a v -onoid complement to that of B_. heucheriformis. However, the small, amount of material a v a i l a b l e did not reveal d e f i n i t e l y whether the polymethylated flavonoids were present or not i n B_. jamesii. I f t h e i r absence i s genuine, i t would support the recognition of both taxa at s p e c i f i c l e v e l (Rydberg 1897), rather than as two v a r i e t i e s CEngler 1928). With regard to species r e l a t i o n s h i p s and generic l i m i t s , the flavonoid data are ambiguous, Thus, v a r i a t i o n within the very natural Boykinia section Boykinia i s such that some of the other taxa studied could Be comfortaBly accommodated within i t . I t does, however, support the placement of ff. jamesil and;K,.heucheriformis i n Boykinia, rather than i n Saxifraga as suggested By Jones O-910) and Harrington C1954). Saxifraga 174 has so far not been reported to contain the charged or acetylated flavon-oids which are found i n Boykinia. Engler .(1928) placed R. jamesii and B. heucheriformis i n section Renifolium along with B_. r i c h a r d s o n i i . However, the flavonoid data suggest that they represent the end points of two separate l i n e s of evolution, traceable back to section Boykinia. One l i n e , whose chief chemical trend has been reduction, leads to the f l a v o n e - r i c h B_. r i c h a r d - s o n i i , endemic to the Yukon and Alaska. The other l i n e , which has under-gone much chemical d i v e r s i f i c a t i o n , leads to the polymethylated f l a v o n o l -bearing B_. heucheriformis i n the Rocky Mountains. The species are thus best considered as belonging to two separate sections within Boykinia. Flavonoid data also suggest that B^ l y c o c t o n i f o l i a i s w e l l -placed i n section Boykinia, rather than i n a montypic genus Neoboykinia (Hara 1937). Flavonoid data support the recognition of Peltoboykinia as a d i s t i n c t genus. The s i m p l i c i t y of i t s flavonoid p r o f i l e i s unique i n t h i s group of genera, although the presence of charged flavonoids c e r t a i n l y i n d i c a t e that i t i s related. Flavonoid data do not suggest any close r e l a t i o n s h i p with Peltiphyllum (Bohm and Wilkins 1976), a genus which also has peltate leaves, and with which an association has been postulated i n the past (Engler 1891). The two North American Suksdorfia species show very many sim-i l a r i t i e s , i n c l u d i n g for example 4'-0r-glycosylation. Although the two species haye sometimes- been put i n separate'genera, Hamjeya and Suksdorfia, Engler (1891) , on the §asl;s- of; t h e i r -vegetative s i m i l a r i t y , united them under Suksdorfia; flavonoids unquestionably- support a congeneric alignment. The thj-rd 'Suksd6rf 1 a species, SV alchemilloides-. lacks the flavones t y p i c a l of the other two species-, although i n view of the v a r i a t i o n 175 found i n the rela t e d Boykinia, t h i s absence i s not necesartly of import-ance. Indeed, the s i m i l a r flayonol t r i g l y c o s i d e components i n both S. viol a c e a and S_. alchemjlloides suggests a close r e l a t i o n s h i p , at le a s t i n th i s respect. The separation of Suksdorfia from Boykinia, c h i e f l y on.the Basis of the former's bulbiferous rhizome, i s supported by the absence of both 6-oxygenation and diglycosides involving arabihose and/or xylose from a l l Suksdorfia species but t h e i r presence i n almost a l l Boykinia species. S u l l i v a n t i a i s c l o s e l y r e l a t e d to Boykinia both morphologically and chemically. S i m i l a r i t i e s i n flavonoids include 6-oxygenation and acetylated monoglycosides. S o l t i s (1980) did not report the l a t t e r i n h i s study of the genus based on the use of paper chromatography. Differences between the genera include the absence of both 3,7-polyglycosides and charged acylated flavonoids from S u l l i v a n t i a . I t i s i n t e r e s t i n g that S o l t i s (1980) reported a f l a v o n o l glucuronide from S u l l i v a n t i a . This i s a charged compound but obviously d i f f e r s from those found i n t h i s study. Indeed, no charged compounds were found i n my material of S_. oregana. Evolutionary I n t e r p r e t a t i o n The twin trends of reduction and d i v e r s i f i c a t i o n appears to be operating i n t h i s group of genera. Thus, there i s a loss of myricetin, retained only i n Boykinia a c o n i t i f o l i a and Bolandra oregana, and a tend-ency towards development of flavones i n B_. o c c i d e n t a l i s , B. r o t u n d i f o l i a , B. r i c h a r d s o n l i , Suksdorfia and S u l l i v a n t i a . Superimposed on t h i s reduc-t i o n i s the d i v e r s i f i c a t i o n of the flayonoid p r o f i l e by the development of 6^oxygenation and Ormethylation •Cespecially at p o s i t i o n 3) f Bearing i n nijnd the dreadful p i t f a l l s - awaiting purveyors of flavonoid phylogeny (Gornall and. Bohm 1978) the most p r i m i t i v e p r o f i l e s are probably exhibited by Boykinia a c o n i t i f o l i a . B. intermedia, Peltoboykinia and to some extent 176 Bolandra oregana. Sugar evolution may or may not be matched with that i,n aglycones, and the i n t e r p r e t a t i o n of whether a predominance of glucose and rhamnose over other sugars is- p r i m i t i v e or advanced i s l e f t to the reader (see Gornall and Bohm 1978), P a r a l l e l i s m The genera studied e x h i b i t flavonoid p r o f i l e s which show large amounts of p a r a l l e l v a r i a t i o n . Probably the most remarkable example of th i s p a r a l l e l i s m i s the d i s t r i b u t i o n of 3-0-methylation and 6-oxygenation i n the Saxifraginae. One or both of these s t r u c t u r a l features occurs i n Chyrsosplenium (Bohm and C o l l i n s 1979) , Saxifraga ( M i l l e r and Bohm 1980) S u l l i v a n t i a ( S o l t i s 1980) and now Boykinia, Bolandra, and Suksdorfia (the present study). I t i s d i f f i c u l t to say whether these features evolved independently or whether some of the genera did indeed evolve from a common ancestor which also possessed them. The absence or r a r i t y of these s t r u c t u r a l features from p u t a t i v e l y p r i m i t i v e syndromes, v i z , i n B_. i n t e r - media, B. a c o n i t i f o l i a and Peltoboykinia, suggests an independent o r i g i n . P a r a l l e l i s m has i t s basis i n an ancestral gene pool; the more cl o s e l y r e l a t e d the taxa are, the greater i s the resemblance i n the nature of t h e i r v a r i a t i o n . I t c l e a r l y supports the i n c l u s i o n of Chrysosplenium, whose p o s i t i o n has been i n doubt, i n the subtribe Saxifraginae. The d i s t r i b u t i o n of 3-0-methylation and 6-oxygenation cuts across the t r a d i t i o n a l l y - r e c o g n i z e d d i v i s i o n of the subtribe based on placentation; Chrysosplenium, along with Heuchera and a l l i e s , have p a r i -e t a l placentation, whereas the Boykinia^?axlfraga group of genera have a x i l e placentation. Howeyer, the flayonoids i n question have so f a r been reported only from taxa with^monotelic inflorescences. ChrysospTe'nl-um,' therefore, with lts> p a r i e t a l placentation coupled with a monotelle i n f l o r -escence and polymethylated flayonoids, makes a good bridge between the 177 ' p o l y t e l i c - p a r i e t a l ' tteucheroid genera, lacking polymethylated flavonoids, and the 'monotelic-axlle' Saxifragoid genera, some of which have polymethr-yla t e d flavonoids. 178 XIII, ECOLOGY In this- chapter, habitat preferences, seed d i s p e r s a l mechan-isms , p o l l i n a t i o n syndromes and re l a t i o n s h i p s with diseases and predators w i l l Be discussed. • The information i s based on my own f i e l d observations i n western North America and on data on annotated herbarium specimens. HABITATS' Boykinia In North America, species of section Boykinia grow i n wet, woodland habitats along the margins of streams, r i v e r s , ponds and lakes i n the Western C o r d i l l e r a and the Appalachian Mountains. The species do not grow i n deep shade but favour semi-open or green shade s i t u a t i o n s . They are d i f f e r e n t i a t e d somewhat i n t h e i r a l t i t u d i n a l tolerances: thus, B. a c o n i t i f o l i a occurs between 300 - 1000m; _B_. intermedia i s usually found below 700m; B_. o c c i d e n t a l i s ranges from sea l e v e l to 1400m,^exceptionally 1700m; B. r o t u n d i f o l i a occurs between 800 - 2000m; and B^ major usually grows above 1000m but below 2200m, being '"commonest at around 1700m. Boykinia intermedia has a large moisture requirement, and i s r e s t r i c t e d to coastal areas of Washington and northern Oregon where the r a i n f a l l exceeds 250cm per annum•. One population (Gornall 24) was found growing i n running water. Both B_. oc c i d e n t a l i s and B_. r o t u n d i f o l i a show some preference f o r disturbed, bare s o i l , e.g. t r a i l sides and mud s l i d e s . The remaining species of section Boykinia, B. l y c o c t o n i f o l i a , inhabits seasonally wet, snow-bed grassland i n the alpine zone of mountains i n northern Japan (Ohwi 1965; Ishizuka 1974). I t i s usually found between 2000 - 2800m, on volcanic s o i l s (Kara 1959) . Boykjnia r i c h a r d s o n l i (section Renifolium), an Alaska - Yukon endemic, grows i n stream-side g u l l i e s and snow-bed grassland communities i n protected depressions where snow l i e s frequently into mid-June. I t s 1 7 9 habitat appears to be very s i m i l a r to that of B_. l y c o c t o n i f o l j a . Boykinia  r i c h a r d s o n i i i s found i n open s i t u a t i o n s , although i t often occurs with a pa r t i a l l y - s h a d i n g woody f l o r a comprised c h i e f l y of S a l i x species. The hexaploid cytodeme (2n = 6x = 36) of B_. r i c h a r d s o n i i inhabits the Alaska Range and i s found between 1000 - 1700m i n basic s o i l s and flushes. The 14-ploid cytodeme (2n = 14x = 84), occurring on the a r c t i c slope of the Brooks Range, grows c h i e f l y on east and north-east facing slopes that are also r i c h i n bryophytes and l i c h e n s . I t grows from near sea l e v e l up to 400m. Regarding edaphic preferences, Prof. J . G. Packer (in. l i t t . ) r e-ported that B^ r i c h a r d s o n i i i s a c a l c i c o l e wherever he has found i t . How-ever Dr. D. F. Murray ( i n l i t t . ) stated that: "In the Brooks Range, i t i s hard not to be around calcareous substrates, since the backbone of that range i s a serie s of limestones. Nevertheless when we do f i n d something approaching an acid s i t e , Boykinia i s there also. In f a c t , i t i s my r e c o l -l e c t i o n that Boykinia i s less common on the most strongly calcareous s i t e s , but this may be due to other aspects of the substrate: that these highly calcareous limestones are often fractured and r e t a i n l i t t l e surface moist-ure so that the habitats are exceedingly dry. In such instances then, Boykinia would be r e s t r i c t e d to only the most*moist and sheltered s i t e s . Therefore, I have concluded that i t i s moisture rather than carbonates that determines the d i s t r i b u t i o n of the species". Species of section Telesonix, B_. jamesii and B. heucheriformis, grow i n crevices of rock faces and among stones of talus slopes i n high alpine s i t u a t i o n s , mainly i n the Rocky Mountains between Alberta and C o l -orada. The habitat can be. an exceedingly dry one, since the substratum retains very l i t t l e Jnoisture, and t h i s " p o s s i b l y accounts for the species rather succulent leaves. Like B. r i c h a r d s o n i i , both species grow i n the open, although there can be a p a r t i a l canopy of coniferous tree species. 180 Boykinia jamesii and B_. heucherif ormis are commonest between 2500. r- 3500m, although the l a t t e r can be found as low as 1500m i n the more northerly parts of i t s range (Alberta) and i n places with s u i t a b l y cold microclimates. Boykinia heucheriformis i s a c a l c i p h i l e throughout i t s range, whereas B. jamesii has been found only on granite outcrops. Peltoboykinia Peltoboykinia tellimoides grows among the herbaceous under-growth of the broad-leaved, deciduous Fagus crenata forests at low eleva-tions i n the mountains of Japan (Hara 1959; Ohwi 1965). It s upper a l t i t u d -i n a l l i m i t i s 1500m (Hara 1959). The 10°C isotherm correlates w e l l with the d i s t r i b u t i o n of ssp. tellimoides on Honshu, while the d i s t r i b u t i o n of ssp. watanabei on Kyushu and Shikoku i s bounded by the 15°C isotherm (Hara 1958, 1959). Suksdorfia Suksdorfia species are found i n the r a i n shadow areas of the mountains of the Western and Andean C o r d i l l e r a s of North and South America. The habitats have the s p e c i a l c h a r a c t e r i s t i c of being seepy, wet places i n e a rly spring, from the rains and snow-melt, but becoming dry by summer. The two North American species grow on mossy, rocky outcrops but appear to avoid those which face north. F i e l d observations suggest that S. violacea s i t e s tend to dry out e a r l i e r than those of S_. r a n u n c u l i f o l i a . I t i s , however, possible to f i n d the two species growing i n adjacent and even s l i g h t l y mixed populations, so close are t h e i r e c o l o g i c a l preferences. Both species are usually found i n the open, although;S. v i o l a c e a can also be found under a p a r t i a l canopy of Plnus ponderosa or Pseudotsuga menziesli, growing up through'layers of duff. Nothing has been reported of the de-t a i l e d e c o l o g i c a l behaviour of the Andean S. alchemjlloides, and the herb-arium labels are disappointinglyuninformative. 181 The two North American species can be found on both a c i d i c and bas i c s o i l s or flushes. Kermode (1918) reported that r a n u n c u l i f o l i a i s found very close to s a l t water i n the B e l l a Coola coastal area of B r i t i s h Columbia. This i s another example of a montane plant growing on the coast i n the northern part of i t s range. A l t i t u d i n a l l y the North American species range from near sea l e v e l to 3000m. Suksdorfia a l c h e m j l l -oides has been c o l l e c t e d between 3000 and 3800m. Bolandra Bolandra i s found on mossy rocks i n shaded, humid places i n woodland habita t s , usually close to a water course. The mlcrohabitat i s t y p i c a l l y well-drained and can be quite dry between r a i n f a l l s , a condition e s p e c i a l l y marked i n summer months. Bolandra oregana i s frequently found on b a s a l t i c rock, and according to Jepson (1936), B_. c a l i f o r q i c a always occurs on granite. A l t i t u d i n a l l y , IL oregana grows from about sea l e v e l i n the ''Columbia River Gorge to about 1400m i n the B i t t e r r o o t Mountains of Idaho. Bolandra c a l i f o r n i c a i s found between 1600 - 2800m i n the S i e r r a Nevada of central C a l i f o r n i a . S u l l i v a n t i a Rosendahl (1927) reported that a l l S u l l i v a n t i a species grow on dripping wet c l i f f s or canyon walls. At l e a s t the eastern species are c a l c i p h i l e s . From observations of S_. oregana i n the Columbia River Gorge, i t seems that deep shade and a constant high humidity, e.g. the spray of w a t e r f a l l s , i s a requirement. The associated f l o r a i s r e s t r i c t e d c h i e f l y to various mosses and liverworts. I t may be that S u l l i v a n t i a cannot t o l -erate competition from other vascular plants. Discussion In general terms the habitats of the species studied can be grouped' i n t o s i x categories: 182 1) ;/ r i p a r i a n woodland, becoming snow-bed grassland'above the tree l i n e . . . . . . . . . . Boykinia sects. Boykinia and Renfolium 2) alpine rock faces and talus . . . . . Boykinia sect. Telesonix 3) spring-wet, summer-dry b l u f f s . . . . . . . Suksdorfia 4) shaded, humid rocks, tending to be summer-dry . . Bolandra 5) f o r e s t f l o o r . . . . . . . Peltoboykinia 6) dripping wet c l i f f s S u l l i v a n t i a These groups correlate quite w e l l with generic l i m i t s , and the p o s s i b i l i t y of evolution from a common ancestral stock by adaptive r a d i a t i o n into d i f -ferent habitats appears an a t t r a c t i v e proposition. Savile (1961) proposed that evolution i n the family was linked to a ser i e s of radiations following delayed and l i m i t e d penetration of physiographic or c l i m a t i c b a r r i e r s . He recognized, too, that most genera have d i f f e r e n t i a t e d through adaptation to p a r t i c u l a r h a b i t a t s , and he re l a t e d t h i s to seed d i s p e r s a l and p o l l i n a -t i o n mechanisms, although each genus often has a c h a r a c t e r i s t i c vegetative facies as w e l l . E c o l o g i c a l d i f f e r e n t i a t i o n at the generic l e v e l i s a phenomenon which has not been commonly reported (Stebbins 1974: 181). Discussing the e c o l o g i c a l basis of taxonomic d i v e r s i t y , Stebbins (1974) hypothesized that groups having primary adaptations to marginal environments or ecotones gave r i s e on the one hand to taxa adapted to more mesic conditions, and on the other to taxa suited to more extreme si t u a t i o n s l i k e deserts or a r c t i c -alpine h a b i t a t s . According to t h i s proposal, the most p r i m i t i v e genera (presumably closest to the ancestral stock) are l i k e l y to occupy marginal habita t s , and radiations toward more mesic, or toward harsher, environments should be correlated with morphological s p e c i a l i z a t i o n . In the present case, . i n the Saxifraginae there i s some tendency for the most p r i m i t i v e genera, Heuchera and Saxifraga, to occupy the more marginal environments (steep 1 8 3 slopes and rocks with thin s o i l cover and areas previously denuded by l a n d s l i d e s , e t c . ) . Admittedly, Saxifraga has a wide e c o l o g i c a l amplitude, but i t i s nevertheless true thatmore s p e c i a l i z e d genera grow e i t h e r i n more mesic woodland or i n more x e r i c , summer-dry habi t a t s . Tentative support i s thus given to Stebbin's hypothesis. SEED DISPERSAL Savile (19 75), reviewing the seed d i s p e r s a l syndromes i n some members of the herbaceous Saxifragaceae, noted that the two North American Suksdorfia species and Boykinia section Telesonix have a censer mechanism whereby the f l e x i b l e stems wave i n the wind and throw out t h e i r seeds. In f a c t , a l l Boykinia, Pe1toboykinia, Suksdorfia, Bolandra and S u l l i v a n t i a species have t h i s mechanism, the commonest i n the family. In some very dwarf specimens of Boykinia jamesii and B_. heucherif ormis the stems are rather more r i g i d and d i s p e r s a l i s better described as the v i b r a t o r type where the wind induces a resonant v i b r a t i o n , bouncing the seeds out. This mechanism i s e s p e c i a l l y well-developed i n some Saxifraga species (Savile 1975). Other d i s p e r s a l mechanisms i n the family include the splash-cup type, found i n Chrysosplenium, Tellima and M i t e l l a , and the spring-board type found i n T i a r e l l a . These adaptations are thought to have evolved under the canopies of humid forests where large drops of water exerted a great s e l e c t i v e stimulus (Savile and Hayhoe 1978). The e c o l o g i c a l function of seed coat ornamentation i s d i f f i -c u l t to i n t e r p r e t . Savile'(1975) regarded the winged seeds i n S u l l i v a n t i a as an adaptation to c l i f f habitats and"presumably, therefore, a e r i a l trans-port. He also suggested that the h o r i z o n t a l l y - f l a r e d capsules withCprom-in e n t l y tuberculate seeds of Tolmiea are adaptations to b i r d or mammal transport (the seeds presumably catching i n feathers or f u r , rather than 184 being ingested). However, th i s explanation scarcely seems u n i v e r s a l l y applicable. There seems to be l i t t l e c o r r e l a t i o n between.?testa ornament-ation, seed d i s p e r s a l mechanism and habitat; indeed, many things, other than d i s p e r s a l mode, could be important i n a f f e c t i n g the type of testa surface, i n c l u d i n g for example, moisture retention and surface area/volume r a t i o . I t was observed that on being shed from the capsules, the seeds (tuberculate or not) frequently s t i c k to the dense array of glandular trichomes found on the inflorescneces i n a l l species studied. This obviously severely r e s t r i c t s the d i s p e r s a l p o t e n t i a l . PHENOLOGY AND POLLINATION Details of flowering' times'of a l l species are given i n Table XXIII. Suksdorfia and Bolandra oregana flower i n the spring, coinciding with the r a i n f a l l and snow-melt. A l l the other species flower i n the summer. Various members of the herbaceous Saxifragaceae have been the subject of anthecological studies, and the main r e s u l t s of these observa-tions are shown i n Table XXIV. Flower v i s i t o r s ( p o l l i n a t o r s ? ) to some of the species i n the present study have been c o l l e c t e d and p a r t i a l l y ident-i f i e d . In most cases c o l l e c t i o n s were made during the e a r l y afternoon i n sunshine; populations of Boykinia r i c h a r d s o n i i and Bolandra oregana were seen only during rainy weather and no flower v i s i t o r s were ever observed. Table XXV shows that the v i s i t o r s are a diverse group. Yeo (1971) reported that Bergenia species show some p o l l i n a t o r s p e c i a l i z a t i o n , and Savile C1975) noted that the green-yellow flowered species of M j t e l l a are v i s i t e d mainly by mosquitoes and other lower Diptera while the white-flowered species are v i s i t e d by the higher Diptera. Thus, closer.studies of the v i s i t o r s to Boykinia and a l l i e s may reveal some i n t e r s p e c i f i c or i n t e r -185 TABLE XXIII. Flowering times i n Boykinia, Feltoboyklnia, Suksdorfia, Bolandra and S u l l i v a n t i a . Species Boykinia a c o n i t i f o l i a B. intermedia B. l y c o c t o n i f o l i a B. major B. o c c i d e n t a l i s B. r o t u n d i f o l i a B. r i c h a r d s o n l i B. heucheriformis B. jamesii Peltoboykinia tellimoides ssp. tellimoides ssp. watanabei Suksdorfia alchemilloides S.' r a n u n c u l i f o l i a * S. v i o l a c e a * Bolandra oregana B. c a l i f o r n i c a S u l l i v a n t i a oregana Flowering Period* June - August June - August July - August June - August (- September) June - August June - Ju l y June. - August June - August July - August May - Ju l y June - July January - A p r i l May - June (- August) (March -) May - June May - June June - July (May -) June - J u l y A l t i t u d e can a f f e c t the flowering period, populations of a species at lower elevations flowering e a r l i e r than those at higher elevations. In contiguous or mixed populations of Suksdorfia v i o l a c e a and S_. r a n u n c u l i f o l i a , the former begins flowering about two weeks e a r l i e r than the l a t t e r . Plant Genus Bergenia* Order Hymenoptera TABLE XXIV. Summary of flower v i s i t o r s ( p o l l i n a t o r s ? ) of the Saxifraginae. Reference leads are given as superscripts where appropriate. Flower V i s i t o r s Family Eumenidae Andrenidae Megachilidae Anthophoridae Apidae NymptLalidae Pieridae Lepidoptera Genus ( i f known) Odynerus"* Andrena"''"'" Osmia Anthophora Apis~\ Bombus"* Aglais"''^ C o l i a s ^ 186 TABLE XXIV, cont'd. Plant Genus Jepsonia Saxifraga C a l l r e f . 5 except where noted) Order Diptera Hymenoptera Coleoptera Diptera Flower V i s i t o r s Family Syrphidae H a l i c t i d a e Apidae Dermestidae N i t i d u l i d a e Curculionidae Chironomidae Empididae Dolichopodidae Syrphidae Anthomyiidae Muscidae Calliphoridae' Hymenoptera Cephidae Ichneumonidae Formicidae^ Eumenidae Sphecidae H a l i c t i d a e Andrenldae Megachilidae Apidae Genus Cif known) D i a l i c t u s ^ Apis"*" Anthrenus Meligethes Miarus Lymnophyes^, 4 Smittia Empis 4 Ascia, Carposcalls , Ch e i l o s i a , E r i s t a l i s , Helophilus, Melangy-4 na , Melanostoma, Melithreptus, Spheg-ina , S y r i t t a * , Syr-phus. Scatophaga* 9 A r i c i a , Spilogona 4 Borellus , C a l l i -phora"', Lucilia"* Cephus Hemiteles, Orthocen-trus Odynerus Hal i c t u s Andrena Megachile Apis, Bombus '^'^ Lepidoptera Trichoptera Phryganeidae 187 TABLE XXIV, cont'd. Plant Genus Chrysosplenium• Lithophragma 10 Order Pulmonata (Gastropoda) Coleoptera Diptera Hemlptera Hymenoptera Lepidoptera Thysanoptera Hymenoptera Lepidoptera 'Flower V i s i t o r s Family Succineidae Staphylinidae Phalacridae L a t h r i d i i d a e Co c c i n e l l i d ae Curculionidae Chironomidae Simuliidae Mycetophilidae Sciaridae Cecidomyiidae Lonchop teridae Syrphidae Sepsidae Sciomyzidae Chloropidae Muscidae Ichneumonidae Cynipidae Formicidae Andrenidae Moths H a l i c t i d a e Andrenidae Megachilidae Apidae Incurvaritdae Genus ( i f known) Succinea Lathrimaeum, Tachy-porus Olibrus C o r t i c a r i a C o c c i n e l l a Apion Chironomus Simulium Exechia S c i a r a Cecidomyia Lonchoptera Melanostoma Sepsis Sciomyza Chlorops Mus ca E u c o i l a Lasius, Myrmica Andrena C h l o r a l i c t u s Andrena Osmia Apis Lampronia 188 TABLE XXIV, cont'd. Plant Genus Heuchera . Tellima*" M i t e l l a Order Kymenoptera Kymenoptera Lepidoptera Diptera Kymenoptera Flower V i s i t o r s Family Co l l e t i d a e H a l i c t i d a e Apidae Apidae Pieridae Culicidae Syrphidae Apoidea^ 7,8 Genus ( i f known) 2 Colletes H alictus Apis* Apis P i e r i s * observations made on plants i n c u l t i v a t i o n away from n a t u r a l habitat, References: 1. Ganders i n l i t t . ; 2. Graenicher 1907; 3. Hadac 1961; 4. Kevan 1972; 5. Knuth 1908; 6. Ornduff 1971; 7. Sa v i l e 1975; 8. Spongberg 1972; 9. Swales 1979; 10. Taylor 1965; 11. Yeo 1966. TABLE XXV. Flower v i s i t o r s ( p o l l i n a t o r s ? ) of some Boykinia and Suksdorfia species. Flower V i s i t o r s Plant* Order Family Genus ( i f known) B. intermedia Diptera Empididae B. major Coleoptera Coccinellidae Hymenoptera Formicidae Myrmica H a l i c t i d a e Apidae Bomb us B. o c c i d e n t a l i s Coleptera Staphylinidae Diptera Empididae Syrphidae O t i t i d a e Muscidae Hymenoptera Apidae Bombus B. heucheriformis Diptera Empididae S.' r a n u n c u l i f o l i a Diptera Empididae Trichoptera Phryganeidae S. vi o l a c e a Diptera Syrphidae No. Collected me hour 1 1 2 6 1 a Qb 1 1 0 1 0 11 1 1 8 9 TABLE XXV, cont'd. * Populations studied: ,B_. intermedia - Gornall 23; B. major - Gornall .212; B^ o c c i d e n t a l i s - a: Gornall 227; b: Gornall 216; ;B. heucheri- formis - Gornall 344; S. ranunculif o l i a - Gornall 332; S_. -yiolacea -B m 1112. generic p o l l i n a t o r s t r a t i f i c a t i o n . F l y i n g v i s i t o r s u s ually a l i g h t on the edge of a flower where the anthers are located, and drink the nectar. After a short while many proceed to crawl over the flower and i t i s then that p o l l i n a t i o n i s presum-ably e f f e c t e d . Flowers with a more tubular hypanthium, e.g. Boykinia  o c c i d e n t a l i s , enforce a more precise posture on the larger insects, i f the nectar i s to be reached than do the more bowl-shaped flowers, e.g. Boykinia  major and Suksdorfia r a n u n c u l i f o l i a . Flower colour and scent are obvious candidates for a r o l e i n d i f f e r e n t i a t i n g a p o l l i n a t o r fauna. In the present study, petals of a l l species r e f l e c t u l t r a - v i o l e t l i g h t (UV). The r i n g of yellow anthers, and i n some species, the yellow nectariferous d i s c , seem to be the only honey guides, although these too r e f l e c t UV l i g h t . Regarding the scent of the western North American species, only i n Boykinia major, B_. intermedia and Suksdorfia ranunculif o l i a i s f l o r a l odour detectable by human beings. In t h i s connection the odour produced by the glandular trichomes should be mentioned. I t i s quite spicy, s i m i l a r to coriander, and e s p e c i a l l y pronounced j u s t a f t e r a shower of r a i n . As f a r as can be judged, i t i s s i m i l a r , but not i d e n t i c a l , i n a l l species of Boykinia. In Suksdorfia, Bolandra, Peltoboykinia and S u l l i v a n t i a oregana i t i s barely perceptible, i f at a l l , Jepsonia also produces a strong odour from i t s trichomes although i t i s a l i t t l e d i f f e r e n t from that i n Boykinia. The aromatic p r i n c i p l e s are located i n the glandular heads of the trichomes and may serve as an a d d i t i o n a l attractant to i n s e c t v i s i t o r s , 190 the glands being e s p e c i a l l y dense on the flower p e d i c e l s . The s t i c k y trichomes c e r t a i n l y function as e f f e c t i v e i n s e c t traps: many small dead f l i e s have been seen glued to the pedicels and stems of the plants. Glandular trichomes are.not the only ins e c t traps found on the plants. At l e a s t i n Boykinia major and Suksdorfia r a n u n c u l i f o l i a . Golden Rod Spiders (Mlsumena v a t l a Clerck) p o s i t i o n themselves atop the stigmata or among the anthers and capture s u i t a b l e flower v i s i t o r s . During the ensuing struggles p o l l i n a t i o n appears to be f a r more c e r t a i n than i f the v i s i t o r s were allowed to drink the nectar undisturbed. DISEASE AND PREDATORS The use of parasites i n i d e n t i f y i n g host r e l a t i o n s h i p s has been discussed by Davis and Heywood (1963: 256) and by Savile (1979). Savile (1961, 1975, 1976) has recorded a lineage of short-cycled, heteroecious rusts (Puccinia spp., Uredinales) on 11 genera and 87 species of herbaceous Saxifragaceae, in c l u d i n g M i t e l l a , T i a r e l l a , Bergenia, Saxifraga, Chryso- splenium, Heuchera, Tolmiea, Elmera, Tellima, Lithophragma and Conimitella. However, Puccinia has not yet been recorded on Boykinia and i t s a l l i e s . Pests of the herbaceous Saxifragaceae include l e a f miners. Five species of Phytomyza (Agromyzidae, Diptera) are known to attack the family ( G r i f f i t h s 1972). Three species are confined to Saxifraga and two others occur on T i a r e l l a , Tolmiea and M i t e l l a . Although none have been recorded from the genera under study here, they should be sought. Saxifraga i s also host to larvae of the Incurvariidae (Lepidoptera) and to some Coleoptera (Huber 1963). L i t t l e information i s available on the grazing of herbaceous Saxifragaceae by birds or mammals, and i t seems that these plants are generally unimportant i n supporting such w i l d l i f e . The following observa-tions are of i n t e r e s t however. 191 In Alaska and the Yukon, Boykinia r i c h a r d s o n i i i s reported to be a favourite of the G r i z z l y Bear (Ursus h o r . r i b i l i s Ord.), fragments having been found i n i t s droppings (Murie 1944; White 1974). My own obser-vations of these animals i n Alaska showed that they move s i n g l y , or i n groups of up to four, slowly across the tundra, grazing rather l i k e c a t t l e . They graze mainly on newly-emergent green shoots and dig for fleshy roots, e s p e c i a l l y those of Hedysarum alpinum L. Although I did not see Boykinia r i c h a r d s o n i i being eaten, i t would seem to be an obvious candidate. I t s bright green leaves are quite succulent and are very conspicuous against the ochres of the tundra l i c h e n s . Boykinia r i c h a r d s o n i i may provide food f o r other animals. I often observed that the seed capsules had holes punched i n t h e i r bases, and th i s could be a t t r i b u t a b l e to small passerine birds eating the seeds. A l t e r n a t i v e l y , i t might be caused by insec t larvae eating t h e i r way out a f t e r hatching i n the ovaries of the flowers. The only other species i n the present study for which there i s any information are Boykinia jamesii and B^ heucheriformis. According to Craighead et a l . (1963) there i s evidence that these species are eaten by elk (Cervus canadensis Erxleben) and deer (Odocoileus spp.), when the plants are accessible. My own observations suggest that Big Horn Sheep (Ovis canadensis Shaw) occasionally may also feed on these plants. 192 XIV. GENERIC LIMITS AND TAXONOMY Taxonomic Approach The taxa i n the present study have been assigned to nine d i f -ferent genera at one time or another. These are: Saxifraga, Boykinia, Peltoboykinia. Neoboykinia, Telesonix. Hemieva, Suksdorfia, Hieronymusia and Bolandra. A further genus, S u l l i v a n t i a , i s also close enough that one of i t s species was o r i g i n a l l y described i n Boykinia. Six of these genera have been considered to be monotypic, depending on where the l i n e between v a r i e t y and species has been drawn. The obvious question i s why so few taxa should have been assigned to so many genera. At l e a s t one reason, and possibly the major, has been the b e l i e f that genera should be defined on the basis of f l o r a l and seed characters, vegetative characters taking a secondary r o l e . This dogma was held by Rafinesque (1837) and has p e r s i s t e d u n t i l comparatively recently. Thus i n the present case, where v a r i a t i o n i n f l o r a l morphology between the species i s widespread, i t i s not s u r p r i s i n g that so many genera were recognized. P a r t i c u l a r l y v a r i a b l e are characters such as ovary p o s i t i o n , stamen number, free hypan-thium length, hypanthium shape and p e t a l shape and colour. S a v i l e (1961) suggested that t h i s v a r i a t i o n i n f l o r a l morphology involved adaptations i n seed d i s p e r s a l or p o l l i n a t i o n mechanism, and that therefore i t might hide r e l a t i o n s h i p s or suggest them i n convergent forms. He suggested that vegetative characters might provide the best guides to r e l a t i o n s h i p s . Indeed, the present work c e r t a i n l y emphasizes vegetative characters f a r more than has been customary i n the group, but i t does not ignore f l o r a l features i f they seem u s e f u l . The approach i s conventional i n modern day systematics i n that i t draws on evidence from a v a r i e t y of sources and attempts to integrate i t to produce a defensible c l a s s i f i c a t i o n . An i n t e r e s t i n g viewpoint on generic d e l i m i t a t i o n which has 193 been found to be very useful was suggested by Burtt .(1964). He discussed s i t u a t i o n s where some groups are defined on the basis of a s i n g l e charac-t e r , the composition of the group varying with the character chosen. Crowson (1953) c a l l e d t h i s the "non-congruence p r i n c i p l e " . The problem i s c l e a r l y relevant to s i t u a t i o n s where evolutionary p a r a l l e l i s m i s widespread as i s the case i n the Saxifraginae. Burtt (1964) suggested that there might be a b i o l o g i c a l d e f i n i t i o n of a genus as "a group of species d i s t i n -guished from r e l a t e d groups by a change i n emphasis i n the characters of s p e c i f i c d i f f e r e n t i a t i on". Thus i f species were separated mostly on f l o r -a l characters then i t might be rewarding to emphasize vegetative charac-ters i n dealing with generic delimination. The reverse would also hold true. Three p r i n c i p l e s were followed i n " treating the genera. The f i r s t p r i n c i p l e emphasizes that the focus of the modem genus concept i s naturalness, a genus being defined by the mutual r e l a t i o n s h i p s of i t s constituent species. I t also acknowledges, however, that taxonomy deals with d i v e r s i t y : i t i s therefore unnecessary to maximize the homogeneity of every taxon. As Burtt (1964) has explained, an appreciation of the pattern of v a r i a b i l i t y i n a genus i s the key to understanding. The second p r i n c i p l e , a convention of convenience, i s that the degree of difference between two taxonomic groups should be inversely proportional to the s i z e of the groups (Davis and Heywood 1963). This serves as a guard against the needles recognition of too many small or monotypic genera. T h i r d l y , due regard i s given to t r a d i t i o n and the u n d e s i r a b i l i t y of unnecessary nomenclatural changes. Regarding i n f r a - g e n e r i c c l a s s i f i c a t i o n , three categories are used: section, species and subspecies. Species are separated by discon-tinuous correlated v a r i a t i o n i n at l e a s t two characters (one of which must 194 be morphological) and often by s t a t i s t i c a l differences i n others (Hedberg 1958; Davis 1978). Subspecies are used f o r those parts of a species which are separated by discontinuous v a r i a t i o n i n one character, or by incomplete d i s c o n t i n u i t i e s i n others, and which have a cer t a i n geographical coherence. Although the genus Boykinia i s small, sections have been recognized p a r t l y because of h i s t o r i c a l precedent and p a r t l y to emphasize groups of c l o s e l y r e l a t e d species. The r e l a t i v e usefulness of the various taxonomic characters i s commented on i n the appropriate chapter. The u t i l i t y of a p a r t i c u l a r fea-ture may vary depending on context, and each case i s judged i n d i v i d u a l l y . A summary of the d i s t r i b u t i o n of the most important characters among the genera recognized i s given i n Table XXVI. Synopsis of the Genera and Species PELTOBOYKINIA Peltoboykinia (Engler) Hara, Bot. Mag. Tokyo 51: 250-253. 1937. Boykinia sect. Peltoboykinia Engler i n Engler & P r a n t l , Nat. Pflanzenfam, ed. 2. 18a: 120. 1928. Type species: Saxifraga tellimoides Maximowicz, B u l l . Acad. Imp. S c i . St. Petersb. 15: 215-216. 1871. (= Peltoboykinia t e l l i m o i d e s (Maxim.) Hara. The two taxa i n t h i s genus were o r i g i n a l l y described i n Sax- i f r a g a (Maximowicz 1871; Yatabe 1892) where they remained u n t i l 1919 when Engler transferred them to Boykinia. In 1928, Engler created the section Peltoboykinia to•• accomodate them. Later, Hara (1937) elevated the section to generic rank, Peltoboykinia, on the basis of i t s glossy, p e l t a t e leaves and yellowish, glandular, dentate p e t a l s . The genus Peltoboykinia can be recognized i n i t s own ri g h t because i t d i f f e r s from Saxifraga i n possessing a free hypanthium and has TABLE XXVI. Summary of the d i s t r i b u t i o n of some Character Rhizome Trichomes glandular u n i c e l l u l a r chaffy Hypanthium shape Petal shape Stamens Stylar trans-mitting t i s s u e Pollen - . apertures tectum Seeds shape Peltoboykinia Thick Uniseriate + Tuberular-campanulate Spatulate, toothed 10 + Colporoidate Perforate Ovoid Boykinia Thick M u l t i s e r i a t e + + Campanulate Spatulate/ o r b i c u l a r -clawed 5/10 + Colporoidate/ colporate Reticulate/ occluded Ovoid testa Echinate Tuberculate/ smooth Chromosome base 11 6/7 number Flavonoids 6-oxygenation - 7/9 spp. diglycosides with - 8/9 spp. arabinose or xylose rtant taxonomic characters among the genera. Bolandra Suksdorfia S u l l i v a n t i a Bulbiferous Bulbiferous Slender Uni/Multiseriate Uni/Multiseriate M u l t i s e r i a t e +/- (+)/-Tubular-campanulate Subulate 5 + Campanulate Ovoid/spatu-la t e /orbicular-clawed 5 + Campanulate Spatulate Colporate Reticulate Colporate Reticulate Colporate (2 orae/colpus) Reticulate Narrowly e l l i p s o i d Tuberculate Ovoid Tuberculate Ovoid-winged Smooth + + + 196 coloporoidate p o l l e n with a perforate tectum. I t can also be w e l l separ-ated from Boykinia by i t s peltate leaves which are glossy on t h e i r lower surfaces, yellowish glandular p e t a l s , u n i s e r i a t e glandular trichomes, lack of u n i c e l l u l a r eglandular trichomes, i t s seeds with t h e i r regular rows of t a l l spines, a very simple flavonoid p r o f i l e based on monoglycosides of quercetin and kaempferol, and i t s chromosome base number of 11. I t i s also cross-incompatible with Boykinia o c c i d e n t a l i s , the only h y b r i d i z a t i o n at-tempted. Maximowicz (1871) and Engler (1891: 61) both suggested a pos-s i b l e a f f i n i t y of Peltoboykinia with Peltiphyllum. presumably on the basis of peltate leaves and ten stamens i n both taxa. Although the genera also share glandular, u n i s e r i a t e trichomes they are probably not very c l o s e l y r e l a t e d . Peltiphyllum has a base chromosome number of x = 17, compared with x = 11 i n Peltoboykinia. This would suggest the a l l i a n c e of P e l t i -phyllum with Bergenia and Mukdenia which also have x = 17. Peltiphyllum also lacks a free hypanthium, has free carpels and a s i n g l e integument, conditions quite opposite to those found i n Peltoboykinia. Peltoboykinia instead"shows "some :.af finlties,'with'Boykinia- r (stamen ,number, p o l l e n and flower morphology and charged flavonoids) and some with Saxifraga (stamen number, trichome complement and chromosome number), and an intermediate p o s i t i o n between the two genera therefore best r e f l e c t s i t s r e l a t i o n s h i p s . Synopsis and Key to the Species of Peltoboykinia The genus i s monotypic. 1. Peltoboykinia tellimoides (Maxim.) Hara, Bot. Mag. Tokyo 51: 250-253. 1937. Two s ub specites-'-aref recognized. 1. Leaf lobes ovate-deltoid, broader than l o n g . l a . ssp. t e l l i m o i d e s l a . Leaf lobes narrowly cuneate-ovate, longer 197 than broad l b . ssp. watanabei l a . Peltoboykinia tellimoides (Maxim.) Hara ssp. te l l i m o i d e s Saxifraga tellimoides Maximowicz, B u l l . Acad. Imp. S c i . St. Petersb. 15: 215, 216. 1871. Boykinia tellimoides (Maxim.) Engler i n Engler & Irmscher, Pflanzenreich 69: 675. 1919. Type: C o l l e c t o r unknown to me, "In p r o v i n c i a Owari Nippon meridi o n a l i s " (LE?). l b . Peltoboykinia tellimoides (Maxim.) Hara ssp. watanabei (Yatabe) Gornall s t a t . nov. Saxifraga watanabei Yatabe, Bot. Mag. Toyko 6: 7, 43, 44. t. 2. 1892. Saxifraga tellimoides Maxim, var. watanabei (Yatabe) Makino, Bot. Mag. Tokyo 15: 12. 1901. Boykinia tellimoides (Maxim.) Engl. var. watanabei (Yatabe) Engler i n Engler & Irmscher, Pflanzenreich 69: 675. 1919. Boykinia watanabei (Yatabe) Makino, Journ. Jap. Bot. 3: 13, 14. 1926. Peltoboykinia tellimoides (Maxim.) Hara var. watanabei (Yatabe) Hara, D i s t r i b . Maps Flow. Plants Jap. 1. Map 17. Inoue Book Co., Tokyo. 1958. Type: Kano Watanabe s.n., 12th July 1889, "At Nanokawa-mura i n the province of Tosa", Japan ( ? ) . Peltoboykinia contains two taxa which have been treated e i t h e r as separate species (e.g. Ohwi 1965) or as v a r i e t i e s of a sin g l e species (Makino 1901; Matsumura 1912; Engler 1919; Hara 1958). Characters report-edly useful i n d i s t i n g u i s h i n g the two taxa include the extent of l e a f lobing, p e t a l colour and shape. Populations from ce n t r a l and northern 198 Honshu (ssp. tellimoides) are reported to have leaves with the lobes wider than long, and flowers with creamy-white, broadly-oblanceolate p e t a l s . Populations from the islands of Shikoku and Kyushu i n the south (ssp. watanabei) are reported to have leaves with the lobes longer than wide and flowers with pale yellow, narrowly-oblanceolate p e t a l s . However, i t has been shown that there i s a c t u a l l y no difference i n p e t a l colour between the two taxa, and that there i s complete intergradation i n p e t a l shape (Ch. XI). Investigation of the length of the free hypanthium, a character h i t h e r t o overlooked, revealed that i t tended to be shorter i n ssp. watan-abei than i n ssp. t e l l i m o i d e s , but again there i s complete intergradation. I t was also found that the difference i n l e a f lobing applies only to the last-formed: basal, leaves (Ch..III). Both taxa have 11 p a i r s of chromosomes. In view of the f a c t that the two taxa show discontinuous v a r i a t i o n i n one character only (leaf lobing) and have an a l l o p a t r i c d i s t r i b u t i o n pattern, i t seems best to treat them as subspecies. Their c o n s p e c i f i c status i s strongly supported by t h e i r i d e n t i c a l flavonoid p r o f i l e s . The Saxifrag-inae t y p i c a l l y show l i t t l e or no i n f r a s p e c i f i c q u a l i t a t i v e v a r i a t i o n (Bohm and Wilkins 1978b). BOYKINIA Taxonomic Treatment Boykinia N u t t a l l (nom. cons.), Journ. Acad. Nat. S c i . Philad. 7: 113, 114. 1834. Therofon Rafinesque, Neophyt. Bot. 1828 (?); New F l . N. Am. IV. Neobot. 66. ("1836"), 1838. Telesonix Rafinesque. F. T e l l . 2: 69. ("1836"), 1837. Neoboykinia Hara, Bot. Mag. Toyko 51: 253. 1937. Non Boykinia Rafinesque, Rev. Pursh. 1817; Neogenyton 2. 1825. Non Boykinia N u t t a l l ex Arnott, Hook. Journ. Bot. 3: 276. 1840. 199 Type species: Boykinia a c o n i t i f o l i a N u t t a l l , Journ. Acad. Nat. S c i . Philad. 7: 113, 114. 1834. The genus was named a f t e r Dr. Samuel Boykin (1786 - 1848), a planter, physician and n a t u r a l i s t from M i l l e d g e v i l l e , Georgia, U.S.A. He must have been a very popular man because h i s name has been given to gen-era i n the Lythraceae and Cucurbitaceae as well as the Saxifragaceae, thereby causing considerable confusion. According to Rafinesque'(1840) the name Boykinia was f i r s t published for a species of the Lythraceae, as Boykinia humilis (Rafinesque 1817). The name was l a t e r misprinted as Boykiana humilis (Rafinesque 1825). The species i s now placed i n Ammannia L. (syn. Rotala L., c.f. Hulten (1945) who gives "Rotoea L.", sphalm. ?). Boykinia Nutt. was pub-l i s h e d eleven years l a t e r ( N u t t a l l 1834) and was conserved against i t s e a r l i e r homonym, Boykinia Raf. (Green 1940; Lanjouw et a l . 1952). The nomen rejiciendum was c i t e d as the misprinted Boykiana of Rafinesque (1825). Boykinia Nutt. was established to accommodate a new saxifrage species, B. a c o n i t i f o l i a . However, Rafinesque (1838) claimed that he had previously published t h i s species i n the new genus Therofon, as T_. napelloides (Rafinesque 1828). The work he referred to was most l i k e l y h i s "Neophy-ton Botanikon or New Plants of North America" (Kuntze 1891). Unfortunately I have not been able to trace any copies of this book, and even F i t z p a t -r i c k (1911) i n h i s d e t a i l e d bibliography of Rafinesque's w r i t i n g s , could give no i n d i c a t i o n of i t s whereabouts. U n t i l a copy turns up, the p u b l i -cation date of 1828 for Therofon Raf. should be viewed with suspicion. Rafinesque (1838), i n h i s "New F l o r a of North America", provided a second (?) d e t a i l e d d e s c r i p t i o n of Therofon and i t s species T_. napelloides, c i t i n g Boykinia a c o n i t i f o l i a Nutt. as a synonym. I t i s t h i s work (dated 1836 but a c t u a l l y issued i n 1838 (Barnhart 1907) which i s usually c i t e d 200 as the o r i g i n a l place of p u b l i c a t i o n of Therofon ( M e r r i l 1949) , as i t was when Boykinia Nutt. was conserved against that name (Dandy 1935; Green 1940). I f the o r i g i n a l v a l i d p u b l i c a t i o n of Therofon was i n 1838 then conservation of Boykinia Nutt. (1834) was unnecessary, and indeed a l l mention of Therofon has been dropped from the "Nomina generica conservanda et r e j i c i e n d a " i n International Codes of Botanical Nomenclature from 1961 onwards. However, should the p u b l i c a t i o n of Therofon turn out to be 1828, Boykinia Nutt. would probably not need to be conserved against i t because there i s evidence that the names may be based on the same type. N u t t a l l (1834) credited the discovery of h i s Boykinia a c o n i t i f o l i a to "the l a t e arduous and e c c e n t r i c Prussian c o l l e c t o r , Mr. Kin", whose specimen was stated to be i n Muhlenberg's herbarium, where i t was apparently l a b e l l e d as a Heuchera. Rafinesque (1838) also stated that the species was discov-ered by "Kin" and c i t e d a specimen l a b e l l e d Heuchera palmata i n C o l l i n ' s herbarium. I t i s known that Kin d i s t r i b u t e d h i s c o l l e c t i o n s to C o l l i n s , as w e l l as to Muhlenberg (Stuckey 1971) and i t i s therefore e n t i r e l y pos-s i b l e that N u t t a l l and Rafinesque based t h e i r descriptions on isotypes. The fa c t that both specimens are l a b e l l e d as Heuchera could support such a view. A comparison of the two c o l l e c t i o n s would be u s e f u l . Muhlenberg's specimen i s now at PH and there i s a s l i m chance that C o l l i n ' s specimen, i f not l o s t , may be at P where the remains of h i s herbarium are lodged (Stuckey 19 71). According to A r t . 14, note 3 of the Code, having already been conserved once against Boykinia Raf., Boykinia Nutt. i s automatically also conserved.against Therofon Raf. i f , as seems l i k e l y , they are based on the same type. I f i t can be shown that Rafinesque described Therofon i n 1828 201 rather than 1838, there i s an unfortunate consequence for the name of the type species. Under Arts. 63 and 67 of the Code, the s p e c i f i c epithet napelloides should be used when T. napelloides i s put i n the genus Boykinia since i t i s the e a r l i e s t legitimate epithet a v a i l a b l e at that rank. N u t t a l l ' s (1834) epithet a c o n i t i f o l i a i s nomenclaturally superfluous. How-ever, since the p r i o r i t y of T_. napelloides i s i n doubt, and since the book where i t was published may no longer e x i s t , i t i s advisable to r e t a i n the f a m i l i a r and commonly-used name Boykinia a c o n i t i f o l i a Nutt. f o r the type species. Should v a l i d p u b l i c a t i o n of T_. napelloides Raf. p r i o r to 1834 be demonstrated, the combination Boykinia napelloides ought to be made. U n t i l such time, i t i s probably better to l e t sleeping dogs l i e . Possibly aware that Rafinesque's Therofon of 1828 made h i s Boykinia of 1834 a synonym, N u t t a l l (1840) described another Boykinia for a species of Cucurbitaceae. This was Boykinia t r i s p o r a Nutt. ex Am. In fa c t Rafinesque (1838) was already aware of th i s name, although he attr i b u t e d i t to Wray and N u t t u a l l but as yet unpublished. Since Boykinia Nutt. has been conserved, Boykinia Nutt. ex Am. i s a l a t e r homonym and i s therefore to be rejected (Art. 64 of the Code). The Cucurbitaceous species i n now'placed i n Cayaponia S. Manso. Boykinia i s a genus d i f f i c u l t to define, since i t approaches a number of others i n the range of i t s v a r i a t i o n . I t can be characterized by i t s thick, scaly rhizome; presence of both m u l t i s e r i a t e glandular and u n i c e l l u l a r eglandular trichomes; campanulate or turbinate f l o r a l cup with a free hypanthium; spatulate or clawed eglandular p e t a l s ; a s t y l e with transmitting t i s s u e ; p o l l e n with a r e t i c u l a t e exine (sometimes occluded) and colporate or colporoidate apertures; and a flavonoid p r o f i l e which usually includes diglycosides i n v o l v i n g arabinose or xylose, charged monoglycosides and 6-oxygenated aglycones. 202 Many of the species were f i r s t described i n Saxifraga, but because of t h e i r f i v e stamens, a free hypanthium and a d i f f e r e n t appear-ance they have since been removed. The presence on a l l taxa of the u n i -c e l l u l a r eglandular trichomes (absent from Saxifraga), and colporate or colporoidate p o l l e n (colpate i n Saxifraga) provides further strong support for t h e i r separation as a d i s t i n c t group. Only with the two species of Boykinia section Telesonix has there been any l i n g e r i n g doubt, owing to the presence of ten stamens (as i n Saxifraga), purple flowers, and chasmo-p h i l i c habit. O r i g i n a l l y put i n Saxifraga (Torrey 1827), occasional f l o r a s s t i l l prefer to keep the species there (Jones 1910; Weber 1953; Harrington 1954). Most, however, e i t h e r followed Rosendahl (1905) or Engler (1919, 1928) i n placing them i n Boykinia, or as seems more popular recently, i n following Rafinesque (1838) by assigning them to t h e i r own genus, Telesonix (e.g. Hitchcock et a l . 1961; Scoggan 1978). Since the species have a l l the characters of Boykinia i n c l u d i n g a very t y p i c a l flavonoid p r o f i l e , they must c e r t a i n l y be placed here. The f a c t that synthetic hybrids with B. o c c i d e n t a l i s have been made adds powerful support to t h i s conclusion. The two species of section Telesonix, B_. jamesii and B_. heucheriformis. d i f f e r from the core members of the genus i n section Boykinia by having ten rather than f i v e stamens, crimson-purple rather than white flowers, a simpler inflorescence, smooth seeds, colporoidate p o l l e n and a chasmo-p h i l i c habit. The simpler inflorescence, and colporoidate p o l l e n are reminiscent of the conditions found i n B. r i c h a r d s o n i i , a species whose p o s i t i o n i n Boykinia has never s e r i o u s l y questioned. In f a c t i n f l o r e s c -ence and l e a f shape led botanists from the beginning to postulate a close r e l a t i o n s h i p between B^ r i c h a r d s o n i i and the two species of section T e l e -sonix (Hooker 1832). Rosendahl (1905) even erected a s p e c i a l section, sect. Renifolium, to accommodate the three species, an arrangement which 203 Engler (1928) followed. However, evidence suggests that JL r i c h a r d s o n i i and the species i n section Telesonix evolved independently. Boykinia  r i c h a r d s o n i i i s characterized by a flavonoid p r o f i l e emphasizing flavones, chromosome numbers of 36 and 84, f i v e stamens, and minutely tuberculate seeds. Complex flav o n o l s , a chromosome number of 14, ten stamens and smooth seeds are found i n B_. .j amesii and B_. heucherif ormis. I t seems preferable to regard the two groups as separate lineages and thus assign them to separate sections. Boykinia r i c h a r d s o n i i should remain i n section Renifolium and B_. jamesii and JL heucherif ormis are put i n the new section, Telesonix, based on the genus described by Rafinesque (1838) Following i t s o r i g i n a l d e s c r i p t i o n as a Saxifraga (Hooker 1832), Boykinia r i c h a r d s o n i i has been separated from Boykinia on only one previous occasion (Rafinesque 1837), and t h i s i s s u r p r i s i n g i n view of the e c c e n t r i c p u l v e r i s a t i o n of genera and species p r a c t i s e d by Small and Rydberg (1905). Rafinesque (1837) assigned i t to Hemieva (here considered synonymous with Suksdorfia) on grounds of f l o r a l morphology, but t h i s treatment has not been adopted since. The trichome complement, rhizome morpholoby, p o l l e n morphology and flavonoid p r o f i l e argue for i t s p o s i t i o n i n Boykinia. The other species of Boykinia whose generic p o s i t i o n has been i n doubt i s B_. l y c o c t o n i f o l i a . O r i g i n a l l y described i n Saxifraga (Maximowicz 1886), i t was soon recognized as a Boykinia (Engler 1891). However, because of the customary separation of S u l l i v a n t i a and Suksdorfia from Boykinia, Hara (1937) elevated J B ^ l y c o c t o n i f o l i a to generic rank, Neoboykinia. on grounds of consistency. His new monotypic genus was based on i t s small, greenish, persistent p e t a l s , and i t s very short free hypan-thium. As has been shown (Ch. VI), p e t a l marcescence i s environmentally l a b i l e and i s exhibited by Boykinia species i n growth chamber c u l t i v a t i o n . 204 Furthermore, Boykinia i s quite v a r i a b l e i n i;ts?:fLoral morphology, c e r t a i n l y enough to accommodate B. l y c o c t o n i f o l i a . Boykinia l y c o c t o n i f o l i a also has a t y p i c a l Boykinia flavonoid p r o f i l e . In fact the species belongs to the core of the genus i n section Boykinia based on i t s inflorescence structure, p o l l e n , anther and seed morphology, i t s trichome complement, le a f shape and i t s general appearance. No one has followed Hara's (1937) treatment, not even himself (e.g. Hara 1959). Regarding the d i s t i n c t i o n of Boykinia from S u l l i v a n t i a , i t i s s u r p r i s i n g that so few exchanges of taxa between such s i m i l a r genera have been proposed. The only case was when S u l l i v a n t i a p u r p u s i i was o r i g i n a l l y described as a Boykinia (Brandegee 1899). Rydberg (1905) stated that S u l l i v a n t i a d i f f e r e d form Boykinia i n i t s marcescent petals and imbricate sepals. However, i t has been demonstrated (Ch. VI) that p e t a l marcescence i s environmentally l a b i l e . Furthermore, Boykinia l y c o c t o n i f o l i a has im-b r i c a t e sepals (Maximowicz 1886). These p e t a l and sepal characters c l e a r l y cannot be used i n any generic d i s t i n c t i o n , and neither do flavon-oids nor chromosome numbers support separate recognition. The two genera are morphologically v e r y . s i m i l a r indeed, and Rosendahl (1927) noted that they were e a s i l y confused. He declined to unite them, however, c i t i n g the following d i s t i n g u i s h i n g c h a r a c t e r i s t i c s : winged seeds, campanulate capsules, lack of brown, chaffy trichomes and very sparse occurrence of u n i c e l l u l a r trichomes i n S u l l i v a n t i a vs. wing-less seeds, urceolate seed capsules, brown chaffy h a i r s and dense array of u n i c e l l u l a r trichomes i n Boykinia. He also noted a tendency for the lower paracladia of the inflorescence i n S u l l i v a n t i a to develop as t r i -c h a s i a l h e l i c o i d cymes. Boykinia has t h i s tendency much less w e l l devel-oped. To t h i s l i s t can be added an important p a l y n o l o g i c a l feature. Thus while the p o l l e n i n Boykinia i s colporate or colporoidate, i n 205 S u l l i v a n t i a each colpus i s associated with, not one, but two or three orae (Hideux and Ferguson 1976). Furthermore, there i s a d i f f e r e n c e i n f l o r a l anatomy i n that S u l l i v a n t i a lacks s t y l a r transmitting t i s s u e , a condition unique among the genera investigated here. In addition, species of S u l l i v a n t i a are intercrossable ( S o l t i s i n l i t t . ) but cross-incompatible with those of Boykinia, although the ovules sometimes do swell following i n t e r - g e n e r i c p o l l i n a t i o n . Leaf texture i n the two genera i s d i f f e r e n t , with the lower surfaces of Boykinia leaves having prominent v e i n ridges; S u l l i v a n t i a leaves are smooth. Based upon h i s t o r i c a l precedent and the above c o l l e c t i o n of d i f f e r e n c e s , i t seems j u s t i f i a b l e , therefore, to keep the two genera separate. Probably the greatest d i f f i c u l t y i n the d e l i m i t a t i o n of Boykinia l i e s i n i t s r e l a t i o n s h i p with Suksdorfia. Like most Boykinia species, the p o l l e n i n Suksdorfia i s 3-colporate, the seeds are r e l a t i v e l y s i m i l a r to those of Boykinia, and i n two of i t s species (S^ v i o l a c e a and S_. alchemjl-loides) the inflorescence bears a dense array of u n i c e l l u l a r trichomes. The l a t t e r feature e s p e c i a l l y , emphasizes the close a f f i n i t y between the two genera. Chromosome numbers (x = 7 i n Suksdorfia; x = 6, 7 i n Boykinia) provide l i t t l e help i n determining generic l i m i t s . Furthermore, the a p i c a l awns on the anthers of species i n Boykinia section Boykinia are also found on the anthers of _S_. alchemjlloides. The s i m i l a r i t y i n f l o r a l morphology between Boykinia major and Suksdorfia r a n u n c u l i f o l i a i s quite s t r i k i n g and Jepson (1925, 1936) included the two species i n the same subgenus, Hemleva. of Boykinia. In view of these s i m i l a r i t i e s i t i s not s u r p r i s i n g that S.  r a n u n c u l i f o l i a was considered e a r l y as a possible Boykinia (Torrey and Gray 1840; Gray 1842). Gray (1876) l i s t e d i t as a probable synonym of B. o c c i d e n t a l i s . Greene (1891) l a t e r made the formal combination Boykinia 206 r a n u n c u l i f o l i a , but few authors have followed him (Engler 1919; Jepson 1925, 1936, Jones 1938). F l o r a l morphology also Ted Rafinesque (1838) to include Boykinia r i c h a r d s o n i i with Suksdorfia r a n u n c u l i f o l i a i n h i s genus Hemieva (here regarded as synonymous with Suksdorfia). Despite these morphological s i m i l a r i t i e s , none of the three Suksdorfia species would f i t comfortably i n Boykinia. Thus Suksdorfia  r a n u n c u l i f o l i a would.have to be put i n section Boykinia on grounds of i n -florescence structure and p o l l e n morphology. However, i t lacks the chaffy trichomes and awned anthers t y p i c a l of that section. Indeed, i t lacks the u n i c e l l u l a r trichomes found i n a l l Boykinia species. Suksdorfia alchemil- loides and S. v i o l a c e a could be put i n section Renifolium or section T e l e -sonix on the basis of inflorescence structure although they do not have the same pol l e n and seed morphologies as those sections. They would be equally out of place i n section Boykinia because they lack chaffy trichomes, and _S_. v i o l a c e a lacks awned anthers as w e l l . Thus i n order to accommodate the three Suksdorfia species i n Boykinia, the proposed i n f r a g e n e r i c d i v i s -ion of Boykinia would have to be abandoned and replaced e i t h e r by no div-i s i o n at a l l , i . e . an amorphous array of species, or by a subgeneric d i v -i s i o n with subgenus Boykinia .on the one hand with i t s present sections and subgenus Suksdorfia on the other. E i t h e r way, the v a r i a t i o n pattern i n Boykinia would be d i s t o r t e d , e s p e c i a l l y by the i n c l u s i o n of a species lacking u n i c e l l u l a r trichomes. The intergeneric breeding r e l a t i o n s h i p s also provide no support for the i n c l u s i o n of Suksdorfia i n Boykinia. In Boykinia, i n t r a - s e c t i o n a l hybrids are e a s i l y made and i n t e r s e c t i o n a l ones somewhat less so. At least i n the North American Suksdorfia species, i n t r a - g e n e r i c crosses f a i l , as do crosses with Boykinia section Boykinia. The i n c l u s i o n of Suksdorfia i n Boykinia i s inconsistent with the l a t t e r ' s pattern of in t r a g e n e r i c breeding r e l a t i o n s h i p s . 207 Furthermore, Boykinia and Suksdorfia have a d i s t i n c t appear-ance such that both are c l e a r l y recognizable i n the f i e l d as separate groups. The features contributing most to the appearance of Suksdorfia are i t s general slenderness, basal leaves with r e l a t i v e l y uncomplicated venation and cauline leaves which are often adnate to prominent foliaceous s t i p u l e s . Boykinia i s much more robust, and i t s leaves have a more com-plex venation pattern; a l l but two species lack foliaceous s t i p u l e s . Flavonoid data also suggest a d i v i s i o n between genera: a l l but two Boy- k i n i a species have 6-oxygenated flavonoids, and a l l but one have d i g l y c o -sides i n v o l v i n g arabinose or xylose; these substances are absent from Suksdorfia. E c o l o g i c a l l y , the spring-wet, summer-dry Suksdorfia habitat i s d i f f e r e n t from the r i p a r i a n woodland or c l i f f face"habitats character-i s t i c of Boykinia. I t i s to the more x e r i c conditions that Suksdorfia presumably owes i t s bulbiferous rhizome. This character i s the most im-portant one i n separating Suksdorfia from Boykinia, which has a thick, scaly rhizome. How much weight should be given to t h i s character? In both Boykinia and Suksdorfia, species are separated from each other l a r g e l y on grounds of f l o r a l morphology. Burtt (1964) suggested that i n t h i s kind of s i t u a t i o n , evolutionary, or " b i o l o g i c a l " , genera might be recognized on the basis of characters d i f f e r e n t from those which are used i n separ-ating the species of the respective genera. In the present case, there-fore, the rhizome difference may r e f l e c t a genuine evolutionary schism between Boykinia and Suksdorfia. Thus, many of the s i m i l a r i t i e s i n f l o r a l morphology and inflorescence structure can be att r i b u t e d to p a r a l l e l i s m . Both genera show the same ranges of v a r i a t i o n i n f l o r a l morphology, some species having large, showy flowers with prominent nectaries (e.g. Boy- k i n i a ma.jor and Suksdorfia r a n u n c u l i f o l i a ) , and some having inconspicuous 208 flowers with included petals and no nectaries (e.g. B_. r o t u n d i f o l i a and S. alchemjlloides). V a r i a t i o n i n inflorescence structure i s also s i m i l a r : S. r a n u n c u l i f o l i a has the same kind of branching pattern as i n section Boykinia, and the simpler structures i n S. alchemjlloides and S. v i o l a c e a are mirrored by s i m i l a r patterns i n Boykinia sections Renifolium and Tele -sonix, r e s p e c t i v e l y . Bolandra can be distinguished from Boykinia by i t s minute, elongate seeds, tubular-campanulate flowers with subulate p e t a l s , a bulb-iferous rhizome, absence of u n i c e l l u l a r trichomes and i t s cross-incompat-i b i l i t y at least with section Boykinia. The s i z e of the gap between Bolan- dra and Boykinia i s s i m i l a r to that separating S u l l i v a n t i a and Boykinia. Synopsis and Key to the Sections and Species of Boykinia 1. Inflorescence composed of paracladia i n the form of many-flowered, usually h e l i c o i d , d i c h a s i a l cymes; brown, chaffy trichomes present at l e a s t on the lower stem nodes; seeds f i n e l y tuberculate, anthers with a p i c a l awns Section Boykinia 3. l a . Inflorescence composed of paracladia i n the form of simple d i c h a s i a , or reduced to one or two flowers; brown chaffy trichomes usually absent; seeds + smooth; anthers without .apical awns 2. 2. Flowers preddminently white (rose veins may be present); stamens 5 . . . Section Renifolium: 1L r i c h a r d s o n i i 2a. Flowers purple-crimson; stamens 10 . . . . Section Telesonix 8. 3. Upper s t i p u l e s £ foliaceous, often adnate to the cauline leaves or bracts; nectary prominent, yellow 4. 3a. Upper s t i p u l e s reduced to small f l a p - l i k e extensions of the p e t i o l e , fringed with brown b r i s t l e s ; nectary obscure, greenish . . . 5. 4. Petals ovate to o r b i c u l a r , narrowed abruptly to short claws; i n f l o r -209 escence somewhat corymbiform; not st o l o n i f e r o u s ; 2n =26 . . . . B_. major 4a. Petals obovate to spatulate, attenuate to the claws;.inflorescence more pyramidal than corymbiform; sto l o n i f e r o u s ; 2n = 14 B. intermedia 5. ' Petals white, much longer than sepals 6. 5a. Petals white or greenish, about e q u a l l i n g or shorter than sepals . 7. 6. Leaves reniform, c l e f t to deeply divided; 2n = 12 . B. a c o n i t i f o l i a 6a. Leaves o r b i c u l a r , crenate to c l e f t ; 2n = 14 . . B^ o c c i d e n t a l i s 7. Petals greenish; leaves reniform, c l e f t to deeply divided; free hypanthium shorter than filament length; stoloniferous B^ l y c o c t o n i f o l i a 7a. Petals white; leaves o r b i c u l a r , crenate-dentate; free hypanthium longer than filament length; not stoloniferous . B_. rotundif o l i a 8. Petals crimson-purple, only j u s t exceeding sepals ( i f at a l l ) ; s t y l e s connate about % t h e i r length B_. heucheriformis 8a. Petals crimson, about twice as long as sepals; s t y l e s connate at least 3/4 t h e i r length B_. jamesii I. Section Boykinia Rosendahl ex Engler i n Engler & P r a n t l , Nat. P f l a n -zenfam. ed. 2. 18a: 120. 1928. ("Euboykinia"). Euboykinia Rosendahl, Bot. Jahrb. 37, B e i b l . 83: 61. 1905. Nomen nudum. 1. Boykinia a c o n i t i f o l i a N u t t a l l , Journ. Acad. Nat. S c i . P h i l a . 7: 113, 114. 1834. 210 Therofon napelloides Rafinesque, Neophyt. Bot. 1828?; New F l . Am. IV. Neobot. 66. ("1836"), 1838. Saxifraga a c o n i t i f o l i a (Nutt.) F i e l d i n g & Gardner, Sert. P l . p l . 57. 1844. Therofon a c o n i t i f o l i a (Nutt.) Millspaugh, B u l l . West V i r g . Univ. Agric. Exp. Sta. 2: 361. 1892. Type: Kin s.n. "In the v a l l e y s of the Alleghany mountains" (Holotype PH). Rafinesque (1838) gives the type l o c a l i t y as "Unaka Mts. or Iron Mts. of North Carolina". Therophon turbinatum Rydberg, N. Am. F l . 22: 124. 1905. Boykinia turbinata (Rydb.) Fedde, Just. Bot. Jahresb. 33(1): 607. ("1905"), 1906. Type: S. B. Buckley s.n., September 1840, Banks of a stream among mountains, N. Alabama, United States (Holotype NY!). The nomenclatural problems associated with Boykinia a c o n i t i -f o l i a have been discussed e a r l i e r . The species i s v a r i a b l e i n l e a f shape and d e n t i t i o n i n the same manner as many of the other species i n section Boykinia (Ch. I l l ) ; i t also varies i n the shape of i t s seed capsule, which may range from turbinate to urceolate. Rydberg (1905) described a new species from northern Alabama, Therophon turbinatum. based on t h i s charac-ter" and on the shape of the l e a f teeth. Therophon turbinatum was des-cribed as having rounded-ovate l e a f teeth and a turbinate capsule up to 8mm long. Boykinia a c o n i t f o l i a was distinguished by i t s lanceolate, ovate or t r i a n g u l a r l e a f teeth and a s p h e r i c a l or rounded capsule up to 4mm long (Rydberg 1905). A group of f r u i t i n g specimens was measured for sev-e r a l l e a f and hypanthium dimensions and the r e s u l t s p l o t t e d on a scatter diagram ( F i g . 44). The r e s u l t s show that l e a f and capsule shape are not always c o r e l l a t e d and that both characters show a continuous range of 211 FIGURE 44. Variation in characters used to distinguish Boykinia turbinata from B. aconitifolia. 6-5 CU U 3 4-1 z 3 U O o cfl 24 20 16 12 90 O L> O o o o o-O • o-v. o-O o A-Q-o o o o 1-2 3-4 5-6 7-8 Hypanthium length • -A-100 110 120 — i — 130 140 150 160 Capsule base angle Plant origins • Alabama • Georgia • South Carolina O Tennessee • North. Carolina V Kentucky A Virginia capsule base angle leaf tooth curvature = a/b x 100% 212 v a r i a t i o n . Moreover although there i s some tendency for plants having turbinate capsules to be found i n Alabama and Georgia they occur also i n North; Carolina and V i r g i n i a . S i m i l a r l y , plants with urceolate capsules can be found i n Alabama. The v a r i a t i o n i n leaf shape has been discussed i n chapter I I I , and has been shown to have some developmental component. In view of these r e s u l t s , no recognition of a segregate species, or even an i n f r a s p e c i f i c taxon, from a c o n i t i f o l i a i s warranted. 2. Boykinia intermedia (Piper) G. N. Jones, Univ. Wash. Pub. B i o l . 5: 168. 1936. Boykinia major intermedia Piper, Erythea 7: 172, 173. 1899. Therofon intermedium (Piper) H e l l e r , Muhlenbergia 1: 53. 1904. Therofon majus intermedium (Piper) Piper, Contrib. U.S. Nat.: Herb. 11: 311. 1906. Type: Frank H. Lamb 1176, 10th June 1897,.New London, Chehalis Co., Washington (Lectotype US!, Isotype F!), Piper (1899) c i t e d F. H. Lamb 1267 as the type. Two s p e c i -mens e x i s t , one at US and one at F. The one at F, however, i s c l e a r l y marked "F. H. Lamb 1167", not 1267; on the specimen at US the c o l l e c t i o n number i s ambiguous and could read 1167 or 1267. The US specimen also bears the annotation "Boykinia major Gray var. intermedia Piper. Type specimen." and i s therefore chosen as the lectotype. I t s c o l l e c t i o n number should properly be interpreted as 1167 i n view of the clear anno-t a t i o n on the isotype at F. Although o r i g i n a l l y described as an i n f r a s p e c i f i c taxon under Boykinia major (Piper (1899) used a tr i n o m i a l i n the protologue), there are s u f f i c i e n t reasons to follow H e l l e r (1904), Piper and Beattie (1915) and Jones (1936) i n recognizing B. intermedia as a d i s t i n c t species. F i r s t , the chromosome number of B. intermedia i s 2n = 14 whereas that of 213 B. major i s 2n = 26. Second, B. intermedia has stolons, petals more spat-ulate than clawed, much smaller fbliaceous s t i p u l e s and a d i f f e r e n t i n f l o r -escence shape from B_. major. T h i r d i t lacks the polymethylated flavonols t y p i c a l of B. major. Piper (1899) suggested that B. intermedia was the possible product of h y b r i d i z a t i o n between B. major and B_. o c c i d e n t a l i s . H e l l e r (1904) queried t h i s view, and i n the present study, evidence from cytology and the comparative morphology and chemistry of the synthetic B_. major x B. o c c i d e n t a l i s hybrid combine emphatically to r e j e c t a hybrid hypothesis. 3. Boykinia l y c o c t o n i f o l i a (Maxim.) Engler, i n Engler & P r a n t l . Nat. Pflanzenfam. I I I . 2a: 52. 1891. Saxifraga l y c o c t o n i f o l i a Maximowicz, B u l l . Acad. Imp. S c i . St. Petersb. 31: 41, 42. 1886. Therophon l y c o c t o n i f o l i a (Maxim.) Takeda, Jour. Bot. (Lond.) 49: 114. 1911. Neoboykiiiia l y c o c t o n i f o l i a (Maxim.) Hara, Bot. Mag. Toyko 51: 253. 1937. Type; Yatabe s.n., 2nd August 1882, "Senano prov. alpe Komaga-take, Nippon" (TI?). In f l o r a l structure, Boykinia l y c o c t o n i f o l i a i s rather d i f f e r -ent from i t s v i c a r i o u s r e l a t i v e s . B. intermedia and B. a c o n i t i f o l i a . I t has small greenish p e t a l s , a very reduced free hypanthium with an almost f u l l y i n f e r i o r ovary, and imbricate sepals. I t was these differences which led Hara (1937) to elevate the species to generic rank. As has been discussed, however, B_. l y c o c t o n i f o l i a possesses a l l the characters necessary for membership i n section Boykinia. 214 4. Boykinia o c c i d e n t a l i s Torrey & Gray, F l . Ni' Am. 1: 577, 698. 1840. Therofon o c c i d e n t a l i s (T. & G.) Kuntze, Rev. Gen. 1: 227. 1891. Boykinia e l a t a var. o c c i d e n t a l i s Rosendahl, Bot. Jahrb. 37, B e i b l . 83: 36. 1905. Nomen nudum. Boykinia e l a t a (Nutt.) Greene var. o c c i d e n t a l i s (T. & G.) Rosendahl ex Engler, i n Engler & P r a n t l Nat. Pflanzenfam. ed. 2. 18a: 120. 1928. Type: Douglas s.n. C a l i f o r n i a or Oregon (Holotype GH!) Torrey & Gray (1840) give the date of Douglas' c o l l e c t i o n as 1835, and the place as Oregon. Douglas died i n 1834, however. Saxifraga e l a t a N u t t a l l i n Torrey & Gray, F l . N. Am. 1: 575. 1840. Boykinia o c c i d e n t a l i s T. & G. var. e l a t a (Nutt.) A. Gray, Proc. Am. Acad. Arts S c i . 8: 383. . 1872. Boykinia e l a t a (Nutt.) Greene, F l . Fran. 190. 1891. Therofon elatum (Nutt.) Greene, Man. Bot. Reg. San Fran. Bay 121. 1894. Boykinia n u t t a l l i i J. M. Macoun, Can. Rec. S c i . 6: 408. 1896. Type: N u t t a l l s.n., Columbia River by Chinhook i n very wet place (Rolotype BM!). The date of the c o l l e c t i o n i s almost c e r t a i n l y 4th July 1835 (Graustein 1967: 312). Therophon cincinnatum Rosendahl & Rydberg i n Rydberg, N. Am. F l . 22: 124. 18/12/1905. Boykinia o c c i d e n t a l i s T. & G. var. cincinnata (Rosend. & Rydb.) Rosendahl, Bot. Jahrb. 37, B e i b l . 83: 61. 22/12/1905. ("var. cincinnata (Rvdb. & Rosend.) n. comb."). Boykinia cincinnata (Rosend. & Rydb.) Fedde, Just Bot. Jahresb. 33(1): 607. ("1905"), 1906. 215 Boykinia e l a t a (Nutt.) Greene var. cincinnata (Rosend. & Rydb.) Engler, i n Engler & P r a n t l Nat. Pflanzenfam. ed. 2. 18a:.120. 1928. ("var. cincinnata (Rosend.) n. comb."). Type: C. G. Pr i n g l e , July 1882, rocky banks of streams, Santa Cruz, C a l i f o r n i a (CAN'.). Therophon vancouverense Rydberg, N. Am. F l . 22: 125. 1905. Boykinia vancouverensis (Rydb.) Fedde, Just. Bot. Jahresb. 33(1): 607. ("1905"), 1906. Type: Harry Edwards w.n., August 1874, Vancouver Island (Holotype NYl). Rydberg (1905) gave the c o l l e c t i o n date as "Aug. 1st, 1874". The taxonomic h i s t o r y of Boykinia o c c i d e n t a l i s i s complex. Most of the d i f f i c u l t i e s are the r e s u l t both of i t s great v a r i a b i l i t y and the f a c t that i t was described simultaneously as two d i f f e r e n t species i n separate genera: Saxifraga e l a t a N u t t a l l i n Torrey and Gray (1840) and Boykinia o c c i d e n t a l i s Torrey and Gray (1840). A l l subsequent works have treated the plants as belonging to Boykinia (or Therofon). As more material was c o l l e c t e d , the range of v a r i a t i o n increased such that Rydberg (1905) f e l t compelled to recognize four species, and Rosendahl (1905) two,, one with two v a r i e t i e s . A comparison of these c l a s s i f i c a t i o n s and the d i s t r i b u t i o n of supposedly diagnostic characters i s shown i n Table XXVII. U n t i l now, experimental evidence on the species has been lacking. The observations i n the present work on the amount of pubescence, the degree of pe d i c e l curvature, inflorescence structure, cross-compatib-i l i t y , p o l l e n and seed morphology, cytology and flavonoid p r o f i l e i n pop-ulations from Vancouver Island to C a l i f o r n i a are reviewed here. The flavonoid p r o f i l e s of a l l populations were q u a l i t a t i v e l y s i m i l a r , a condition common i n many other wide l y - d i s t r i b u t e d species of Saxifraginae (Bohm and Wilkins 1978b). Conversely, d i f f e r e n t species 216 TABLE XXVII. Characters supposedly diagnostic of taxa segregated from Boykinia o c c i d e n t a l i s Torr. & Gray, inc l u d i n g a comparison of the c l a s s i -f i c a t i o n s of Rydberg (1905) and Rosendahl (1905). The key i s based on Rydberg (1905). Rydberg Inflorescence dichotomous-cymose, pedicels curved . . . 2. 2. Hypanthium densely glandular, cincinnatum p u r p l i s h ; l e a f blades firm; p e t i o l e s h i r s u t e 2a. Hypanthium sparingly gland-u l a r , green; l e a f blades t h i n ; p e t i o l e s glabrous or with a few scattered h a i r s l a . Inflorescnece i r r e g u l a r l y cymose, pedicels s t r a i g h t 3. 3. Sepals i n f r u i t reflexed or spreading; inflorescence puberulent, green 3a. Sepals i n f r u i t erect or ascending; inflorescence densely glandular, p u r p l i s h o c c i d e n t a l i s vancouverense elatum Rosendahl o c c i d e n t a l i s var. cincinnatum o c c i d e n t a l i s e l a t a e l a t a 217 often have d i f f e r e n t p r o f i l e s . No s i g n i f i c a n t differences were found be-tween populations i n terms of seed and p o l l e n morphology. Leaf shape i s highly v a r i a b l e , p a r t l y a r e s u l t of heteroblasty. Lowermost basal leaves are often less divided than those formed l a t e r . There i s a complete intergradation i n shape and o u t l i n e between populations. In terms of leaf thickness, i t i s common for shaded.plants to have thinner leaves than those growing i n brighter l i g h t , and for t h i s character tp be pheno-t y p i c a l l y p l a s t i c (e.g. Evans and Hughes 1961). A l l crosses between d i f -ferent populations were highly successful, and the progeny were f u l l y f e r t i l e . A l l populations studied were uniformly d i p l o i d with 2n = 14 chromosomes. Density of pubescence has been shown to be f u l l y continuous i n i t s v a r i a t i o n and v a r i a b l e with age. Sepal r e f l e x i o n shows s i m i l a r v a r i a t i o n . Inflorescence structure i s also environmentally l a b i l e , and continuous v a r i a t i o n makes i t impossible to recognize d i s c r e e t groups. Piper's (1906) comment that the variant cincinnatum i s only "feebly d i s -tinguishable" and not worthy of recognition i s endorsed here. The c o l -ouring of the inflorescence branches and hypanthium i s v a r i a b l e often between plants of the same population, and there i s a complete i n t e r g r a -dation from red to green. Sometimes only one side of the stem i s coloured. The colouration i s a t t r i b u t a b l e to anthocyanins whose concentration i n a plant i s greatly affected by both environment and age. The data presented here ind i c a t e that a s i n g l e , v a r i a b l e spe-cies^ should be recognized, a path followed by a l l recent regional f l o r a s (Hitchcock et a l . 1961; Peck 1961; Munz 1959). Regarding the correct name for the species, the e a r l i e s t names were published simultaneously (Torrey and Gray 1840): Saxifraga e l a t a N u t t a l l and Boykinia o c c i d e n t a l i s Torrey and Gray. In t h i s circumstance the choice of epithet i s the perogative of the f i r s t author who combines 218 the names (Art. 57 of the Code). In the supplement to t h e i r f l o r a , Torrey and Gray (1840) commented that N u t t a l l ' s S. e l a t a "proves to be a true Boykinia" and strongly implied that i t was synonymous with t h e i r B.  o c c i d e n t a l i s . Indeed, Gray (1842) stated that _§_. e l a t a was referred to B. o c c i d e n t a l i s i n the supplement. However, i t was not u n t i l 1872 that a formal combination was made, whereby S. e l a t a Nutt. was given v a r i e t a l status under _B_. o c c i d e n t a l i s (Gray 1872) . Unhappily, the specimen c i t e d ( E l i h u H a l l 158) a c t u a l l y belongs to Boykinia major, a f a c t l a t e r recog-nized by Gray (1876). His d i f f i c u l t y stemmed from uncertainty over whet-her B^ major graded into J B . o c c i d e n t a l i s i n Oregon, and i f so, he thought that plants there might be r e f e r r a b l e to N u t t a l l ' s taxon (Gray 1876). However, he continued to regard S. e l a t a as "wholly or p a r t l y synonymous" with B_. oc c i d e n t a l i s (Gray 1876). Macoun (1883) unequivocally reduced S. e l a t a to complete synonymy under JB_. o c c i d e n t a l i s . although he l a t e r changed h i s mind (Macoun 1896) when he renamed N u t t a l l ' s S_. e l a t a as Boykinia N u t t a l l i i . The new name was deemed necessary because Greene (1891) had made the combination Boykinia e l a t a with o c c i d e n t a l i s as a synonym. Although almost a l l recent treatments have used Boykinia  elata-(Nutt.) Greene (Hitchcock et a l . 1961; Peck 1961; Munz 1959), the correct name i s Boykinia o c c i d e n t a l i s Torr. & Gray, which i s the name used i n the inventory of the B r i t i s h Columbia f l o r a (Taylor and MacBryde 1977). 5. Boykinia r o t u n d i f o l i a Parry i n Gray, Proc. Am. Acad. Arts S c i . 13: 371. 1878. Therofon r o t u n d i f o l i a Wheelock, B u l l . Torr. Bot. Club 23: 70. 1896. Type: C. C. Parry and J . G. Lemmon 113, 1876, San Bernardino Co., 219 C a l i f o r n i a (Holotype GH!). The t y p e ' l o c a l i t y i s apparently i n Waterman Canon on the southern slopes of the San Bernardino Mountains (Parish 7147, 8 July 1909, specimens at OSC and CAN). 6. Boykinia major A. Gray, Bot. C a l i f . 1: 196. 1876. Therofon major (Gray) Kuntze, Rev. Gen. 1: 227. 1891. Type: W. H. Brewer 2166?, 1863, Robinson's F l a t , N. C a l i f o r n i a , 4000 f t (Lectotype GHl); Syntypes: Thomas Bridges 126, C a l i f o r n i a (GHl), H. N. Bolander 4982, 1866, Meadows, Big-tree Grove Yo-semite (GH!), i b i d , C a l i f o r n i a (GH!)'-, i b i d , Mariposa Sequoia Grove, C a l i f o r n i a ( F l ) , E l i h u H a l l 158, 1871, In the rocky bed of S i l v e r Creek or margins, Oregon (GHl F!). In h i s protologue, Gray (1876) c i t e d four specimens. Ca r e f u l comparison of the d e s c r i p t i o n with these specimens shows that they were a l l used i n i t s construction,,although only Bolander 4982'("Yosemite") at GH i s annotated "Boykinia major Gray n. sp.". There appear to be two isosyntypes of Bolander's c o l l e c t i o n . Uncertainty e x i s t s because both are i d e n t i f i e d as Boykinia o c c i d e n t a l i s T. & G. and yet bear the number 4982 as i n the specimen i d e n t i f i e d as IS_. maj or. The putative isosyntype at GH has the c o l l e c t i o n number entered i n p e n c i l rather than the black ink of the r e s t of the l a b e l . The handwriting of the number also seems d i f f e r e n t . The suspected isosyntype at F bears an authentic c o l l e c t i o n number, 4982, but the l o c a t i o n i s given as "Mariposa Sequoia Grove" rather than "Big-tree Grove" as i n the GH syntype. The general s i m i l a r -i t y of the specimens suggests that they do represent the same c o l l e c t i o n . The syntypes i n best condition are those of Brewer and H a l l . Selection of a lectotype should preferably be from these two, e s p e c i a l l y i n view of the differences i n the annotation of Bolander's c o l l e c t i o n . The E. H a l l c o l l e c t i o n was c i t e d following the published combination of Boykinia 220 o c c i d e n t a l i s T. & G. var. e l a t a (Nutt.) Gray (1872), and i s therefore a possible source of confusion should i t be chosen as the lectotype of B. major. The best c o l l e c t i o n to serve as the lectotype i s therefore W.H. Brewer's from Robinson's F l a t , C a l i f o r n i a . The c o l l e c t i o n number appears to be 2166 but the handwriting i s unclear. Boykinia major i s the largest species i n the genus. I n f l o r e s c -ence structure can vary somewhat, rather as i n B. o c c i d e n t a l i s , with some populations having regular dichotomous branching while i n others i t i s less so. No i n f r a s p e c i f i c taxa have been described on t h i s b a s i s , nor are they warranted. In a few populations there i s a polymorphism for e n t i r e vs. toothed p e t a l s . Some populations also have flowers with purple blotches at the base of the p e t a l s . Taxonomic recognition at the l e v e l of forma could be given, although one might merely be l a b e l l i n g s i n g l e genes. I therefore prefer simply to record the existence of these variants rather than give them formal status. I I . Section Renifolium Rosendahl ex Engler i n Engler & P r a n t l , Nat. P f l a n -zenfam. ed. 2. 18a: 120. 1928. Renifolium Rosendahl, Bot. Jahrb. 37, B e i b l . 83: 62. 1905. Nomen nudum. 7. Boykinia r i c h a r d s o n i i (Hook.) Rothrock, Ann. Rep. Board Reg. Smiths. Inst. 1867: 447. 1868. Saxifraga Richardsonii Hooker, F l . Bor. Am. 1: 247. 1832. Hemieva r i c h a r d s o n i i (Hook.) Rafinesque, F l . T e l l . 2: 70. ("1836"), 1837. Therofon Richardsonii (Hook.) Kuntze, Rev. Gen. 1: 227. 1891. Saxifraga Nelsoniana auct non D. Don: Hooker & Arnott, Bot. Beechey's Voy. 124. t.29. 1832. 221 Type: Lay and C o l l i e s.n., Imarook, Kotzebue's Sound (Isosyntypes GH, K'.). Dr. Richardson s.n., A r c t i c Sea shore (Syntype Kl) . Hooker (1832) reported that Richardson's specimen came from between the Mackenzie and Coppermine Rivers.. Lay and C o l l i e ' s specimen at K bears the name "Beechey" rather than t h e i r own, but must have been c o l l -ected by them as they were the expedition's n a t u r a l i s t s . Their c o l l e c t i o n s were made between July and September, 1826 (Hooker and Arnott1832). A l l current works dealing with, the A r c t i c f l o r a c r e d i t Gray (1876) with the transfer of the species into Boykinia. although i t was Rothrock (1868) who f i r s t made th i s combination. I I I . Section Telesonix (Raf.) Gornall, s t a t . nov. Telesonix Rafinesque, F l . T e l l . 2: 69. ("1836"), 1837. Reasons for t r e a t i n g the two taxa as members of a separate sect-ion i n Boykinia, rather than i n section Renifolium or i n Saxifraga or Tele- sonix have already been discussed. The problem remaining i s what rank should be a t t r i b u t e d to each of them. O r i g i n a l l y they were confused with each other and treated as a s i n g l e , v a r i a b l e species (Hooker 1832). Ryd-berg (1897) was the f i r s t to describe t h e i r differences and recognised both variants at s p e c i f i c l e v e l with the epithets jamesii and heucheriformis ("heucheraeforme"). The d i s t i n c t i o n i s based on the much la r g e r petal s i z e , d i f f e r e n t p e t a l colour and greater carpel fusion i n jamesii than i n heuch-eriformis . These d i s t i n c t i o n s were apparently not so impressive to Engler (1891) or to Bacigalupi.(1947) who reduced heucheriformis to v a r i e t a l status under jamesii. Examination.of a wide range of herbarium material has rev-ealed that the two e n t i t i e s show discontinuous v a r i a t i o n i n p e t a l s i z e and show s t a t i s t i c a l differences i n carpel fusion and anther/filament length r a t i o (Table XXVIII). Furthermore, populations with small petals have p o l l -222 TABLE XXVIII. Morphological v a r i a t i o n between Boykinia jamesii and B.  heucheriformis. Data are given as the mean + one standard deviation, and the range ( i n brackets). B. jamesii (N = 10) B. heucheriformis (N Fetal/Sepal 2.15 + 0.48 1.04 + 0.18 length r a t i o (1.78 - 3.33) (0.67 - 1.31) Petal/Sepal 2.01 + 0.56 0.86 + 0.21 width r a t i o (1.18 - 2.90) (0.53 - 1.29) Degree of carpel 0.13 + 0.06 0.40 + 0.10 freedom* (0.06 - 0.24) (0.20 - 0.49) Pe t a l claw angle 0** 122 + 10 148 + 12 (110 - 140) (130 - 170) Free hypanthium 1.8 + 0.3 2.3 +0.4 length i n mm (1.4 - 2.5) (1.9 - 3.4) Anther/Filament 0.96 + 0.21 1.40 + 3.4 length r a t i o (0.60 - 1.22) (0.90 - 1.83) * Carpel freedom = free carpel l e n g t h / t o t a l carpel length. ** Claw angle = a en with a densely r e t i c u l a t e tectum. Those with large petals have a tectum with occluded luminae such that i t appears to be continuous (Ch. VI I ) . The ec o l o g i c a l and geographical ranges of the two variants do not overlap, B.  jamesii being r e s t r i c t e d to the granite peaks of Colorado and New Mexico, and B_. heucherif ormis being more widespread on calcareous substrates from Alberta to Wyoming, South Dakota and Utah, and disjunct i n southern Nevada. Therefore, I propose to treat the variants as separate species based on correlated discontinuous v a r i a t i o n i n two characters and quantitative d i f f -erences i n others. 8. Boykinia jamesii (Torr.) Engler i n Engler & P r a n t l , Nat. Pflanzenfam. I I I . 2a: 51. 1891. Saxifraga Jamesii Torrey, Ann. Lyc. Nat. H i s t . New York 2: 204. ' 1827. Telesonix jamesii (Torr,) Rafinesque, F l . T e l l . 2: 69. ("1836"), 223 1837. ( i n p a r t ) . Therofon Jamesii (Torr.) Wheelock, B u l l . Torr. Bot. Club 23: 70. 1896. Type: Dr. James.8, Rocky Mountains (Lectotype NY'. Isotypes K'. COLO'.). The NY specimen comes from Torrey's herbarium and i s annotated "n. sp.". I t i s therefore designated as the lectotype. James' c o l l e c t i o n was made on 14th July 1820 at Pike's Peak, Colorado (Osterhout 1920). 9. Boykinia heucheriformis (Rydb.) Rosendahl, Bot. Jahrb. 37, B e i b l . 83: 62. 1905. ("heucheriforme"). Therofon heucheraeforme Rydberg, B u l l . Torr. Bot. Club 24: 247, 248. 1897. Telesonix jamesii (Torr.) Rafinesque, F l . T e l l . 2: 69. ("1836"), 1837. ( i n p a r t ) . Telesonix heucheriformis (Rydb.) Rydberg, N. Am. F l . 22: 126. 1905. Boykinia Jamesii var. heucheriformis Rosendahl. Bot. Jahrb. 37, B e i b l . 83: 34. 1905. Nomen nudum. Saxifraga heucheriforme M.E. Jones, B u l l . Univ. Mont. 61: 32. 1910. Boykinia Jamesii (Torr.) Engl. var. heucheriformis (Rydb.) Engler i n Engler & P r a n t l , Nat. Pflanzenfam. ed. 2. 18a: 120. 1928. Telesonix Jamesii (Torr.) Raf. var. heucheriforme (Rydb.) Bacigalupi, L e a f l . West. Bot. 5: 71. 1947. Saxifraga Jamesii auct. non Torrey: Hooker, F l . Bor. Am. 1: 247. t.84. 1832. Syntypes: Flodman 514, 28th July 1896, Bridger Mountains, Montana (NY); 224 Rydberg 2677, 23rd July 1895, Bozeman Canon, Montana (NY); F. Tweedy 255, 1887, East Boulder, Montana (NY). The specimen on which Hooker's (1832) d e s c r i p t i o n was based i s "Drummond s.n., Rocky Mountains" (K'.). I t was almost,certainly c o l l e c t e d i n the Canadian Rockies.(Graustein 1967: 218, 273). SUKSDORFIA Taxonomic Treatment Suksdorfia A. Gray (nom. cons.), Proc. Am.. Acad. Arts S c i . 15: 41, 42. 1879. Hemieva Rafinesque. F l . T e l l . 2: 70. ("1836"), 1837. Hieronvmusia Engler, Not. Kon. Bot. Gart. Mus. Berlin-Dahlem 7: 265-267. 1918. Type species: Suksdorfia v i o l a c e a A. Gray, Proc. Am. Acad. Arts S c i . 15: 41, 42. 1879. Suksdorfia, as circumscribed here, i s composed of three former monotypic segregate genera: Hemieva, Suksdorfia and Hieronymusia. Their h i s t o r y began i n 1832.when Hooker described some plants from the K e t t l e F a l l s of the Columbia River as Saxifraga r a n u n c u l i f o l i a . He noted that the species d i f f e r e d greatly from a l l other Saxifraga species but he was reluctant to speculate which might be i t s nearest a l l y . Rafinesque (1837) erected the genus Hemieva to accommodate the species. He also included Saxifraga r i c h - a r d s o n i i Hook..in h i s new genus, considering that the f i v e stamens and the f l o r a l d i s c were important characters which suggested a f f i n i t i e s with T e l l - ima and Heuchera rather than with Saxifraga. Torrey and Gray (1840) however, suggested that S_j_ r a n u n c u l i f o l i a could belong to Boykinia, and Gray (1842) wrote to Hooker that both _S_. r i c h a r d s o n i i and S. r a n u n c u l i f o l i a "would be more c o r r e c t l y transferred. to Boykinia";. Rothrock (1868) and Greene (1891) respe c t i v e l y made the necessary combinations. 225 In 1878, Suksdorf c o l l e c t e d from the Columbia Gorge i n Washing-ton a saxifrage which he assigned doubtfully to Boykinia (Suksdorf, i n note with holotype), but which Gray (1879) recognised as belonging to a new genus, naming i t Suksdorfia v i o l a c e a . Gray, however, did note a possible r e l a t i -onship with Boykinia, i n which he presumably included' S. r a n u n c u l i f o l i a . In the same year, Grisebach (1879) described Saxifraga alchem- i l l o i d e s from the Andes of northern Argentina. Later, Engler (1891) con-sidered Saxifraga r a n u n c u l i f o l i a , S. alchemilloides and Suksdorfia v i o l a c e a to have s u f f i c i e n t vegetative s i m i l a r i t y to warrant t h e i r u n i f i c a t i o n under Suksdorfia. Wheelock (1896) transferred the North American species i n t o Hemieva, on grounds of p r i o r i t y . Suksdorfia was l a t e r conserved against Hemieva (Briquet 1906). Engler (1918) then elevated _S_. alchemilloides to generic rank as Hieronymusia, on grounds of f l o r a l morphology. Because of the absence of any coordinated study of t h e i r respe-c t i v e b i o l o g i e s , twentieth century works dealing with _S_. v i o l a c e a and S.  r a n u n c u l i f o l i a have treated them i n d i f f e r e n t ways. Rydberg (1905), Baci-galupi (1944, 1952), Peck (1961) and Moss (1959) retained them i n separate monotypic genera (Suksdorfia and Hemieva), whereas others regarded them as congeneric, e i t h e r i n Hemieva (Heller 1900; Howell 1903; Piper 1906; Henry 1915 and Peck 1941) or i n Suksdorfia (Rosendahl 1905; Dandy 1927; Hitchcock et a l . 1961; Scoggan 1978). Jepson (1925, 1936) retained S. r a n u n c u l i f o l i a i n Boykinia i n h i s treatment of the C a l i f o r n i a f l o r a ; JS^ v i o l a c e a was not considered because i t does ,not occur i n C a l i f o r n i a . Hieronymusia alchemi- l l o i d e s has continued to be recognised as a monotypic genus since i t s i n -ception (Dandy 1927; Engler 1928). Is there any j u s t i f i c a t i o n f o r the recognition of the three monotypic genera? H i s t o r i c a l l y . t h e y have been separated on the basis of f l o r a l characters alone (Table XXIX). These characters are the same ones 226 TABLE XXIX. F l o r a l differences separating Suksdorfia r a n u n c u l i f o l i a , S. alchemjlloides and S. v i o l a c e a . Character P e t a l colour Petal shape Pet a l length Nectary d i s c Anthers Stigmata Ovary S. r a n u n c u l i f o l i a White, sometimes pu r p l i s h at base, fading to yellow-white Spatulate, clawed Longer than calyx Present Awnless, on filaments Capitate Ca. i n f e r i o r Species S. alchemilloides Rose, sometimes white Oval, clawless Less than, or equalling caylx Absent Awned, on filamnets Capitate I n f e r i o r S. v i o l a c e a P ink, s ome times white Spatulate, clawed Longer than caylx Absent Awnless, almost s e s s i l e Truncate Ca. 2/3 or more i n f e r i o r which are used to separate d i f f e r e n t species of Boykinia, and indeed the trends i n f l o r a l v a r i a t i o n are s i m i l a r i n the two genera. Differences i n filament lengths, nectary and p e t a l shape and colour could be r e l a t e d to changes i n breeding system and p o l l i n a t o r fauna. A d i f f e r e n t p i c t u r e emerges i f vegetative characters are exam-ined. Beginning with the rhizome, i t i s i n t e r e s t i n g that although i n the protologue of Saxifraga alchemilloides, Grisebach (1879) described i t as "tuberiforme", Engler (1891, 1918) believed that b u l b i l s were la c k i n g . Presumably t h i s influenced h i s decision to create the monotypic Hieronymu-s i a . Examination of a v a i l a b l e material of S_. alchemilloides i n the present study has revealed that the species d e f i n i t e l y possesses a bulbiferous r h i -zome, thereby c l e a r l y supporting a l i n k with i t s North American counterparts. Further evidence of a close a f f i n i t y comes from the trichome complement. A l l three species possess m u l t i s e r i a t e glandular trichomes. In addition, 227 both jS_. v i o l a c e a and alchemilloides have the u n i c e l l u l a r trichomes so common i n Boykinia. They provide good support for the congeneric status of v i o l a c e a and S_. alchemilloides. Perhaps the most obvious s i m i l a r i t y between the three species i s t h e i r uniformity of h a b i t . They are slender, with crenate to deeply-divided , cordate to reniform basal leaves ( s i m i l a r v a r i a t i o n occurs i n Boykinia) and f o l i a c e o u s , s t i p u l e s which are often adnate to t h e c a u l i n e leaves. The species also share very s i m i l a r p o l l e n and seed morphologies and e c o l o g i c a l preferences. C y t o l o g i c a l l y only the North Ame-ri c a n species are known, both with 2n = 14 chromosomes. In the inflorescence there i s a progression from the complex structure with paracladia of d i c h -otomous h e l i c o i d cymes i n r a n u n c u l i f o l i a , to a simpler version i n S. a l -chemi1loides, d own to the very simple condition i n S. v i o l a c e a . I n f l o r e s c -ence v a r i a t i o n thus p a r a l l e l s that i n Boykinia. In terms of flavonoid pro-f i l e , ranunculif o l i a and S_. v i o l a c e a are very s i m i l a r indeed, possessing flavones and polymethylated f l a v o n o l s . Suksdorfia alchemilloides i s some-what d i s t i n c t i n lacking flavones, 3-0- and 4'-0- methylation and 4'-0-glycosides. I t does however, share 7-0-methylation and an array of t r i g l y -cosides s i m i l a r to those, i n ^ v i o l a c e a . Again, s i m i l a r t o t a l v a r i a t i o n occurs i n Boykinia.* Altogether, therefore, the evidence indicates an a f f i n i t y betw-een the three species. Admittedly they are very d i s t i n c t i v e but the.range of v a r i a t i o n i n morphology and chemistry i s s i m i l a r to, and p a r a l l e l s that, i n Boykinia. V a r i a t i o n i n . p o l l e n and seed morphology i s le s s than that i n Boykinia. The r e l a t i o n s h i p s between S^ alchemilloides; S. r a n u n c u l i f o l i a and v i o l a c e a are therefore best treated by the recognition of a s i n g l e genus, Suksdorfia (Engler 1891)•. In. view of the v a r i a t i o n within Suksdorfia. three monotypic sections could be recognised, commensurate with the t r e a t -ment of the same v a r i a t i o n i n Boykinia. However, rather than c l u t t e r the 228 nomenclature, i t seems s u f f i c i e n t to r e a l i s e that the three species are d i s t i n c t . The separation of Suksdorfia from Boykinia has already been discussed. The d i s t i n c t i o n s between Suksdorfia and Saxifraga are the same as those which d i s t i n g u i s h Boykinia from Saxifraga. Suksdorfia i s separated from S u l l i v a n t i a on the bases of rhizome morphology, seed and p o l l e n morph-ology, s t y l e anatomy, ecology and general appearance. The d i s t i n c t i o n between Suksdorfia and Bolandra i s le s s c l e a r - c u t j and i n many ways Bolandra i s intermediate between Suksdorfia and Boykinia. The d i s t i n c t i o n i s d i s -cussed under Bolandra. Synopsis and Key to the Species of Suksdorfia 1. Basal leaves ternately divided; u n i c e l l u l a r trichomes lacking; flowers white with prominent nectary d i s c 1. r a n u n c u l i f o l i a l a . Basal leaves 1-2 times crenate; u n i c e l l u l a r trichomes present; flowers usually pink or rose, without a nectary . . . . . . . . . 2 V 2. : Petals equalling or shorter than sepals; anthers and stigmata with u n i s e r i a t e eglandular h a i r s ; anthers awned, on filaments . . 2. S^ alchemilloides 2a. Petals about twice as long as sepals; anthers and stigmata l a c k i n g u n i s e r i a t e eglandular h a i r s ; anthers unawned, + s e s s i l e . S^ v i o l a c e a 1. Suksdorfia r a n u n c u l i f o l i a (Hook.) Engler i n Engler & P r a n t l , Nat. P f l a -nzenfamilien I I I . 2a: 52. 1891. Saxifraga r a n u n c u l i f o l i a Hooker, Fl.Bor. Am. 1: 246, 247. t.83. 1832. Hemieva r a n u n c u l i f o l i a (Hook.) Rafinesque; F l . T e l l . 2: 70. ("1836"), 1837. Boykinia ranunculifolia.(Hook.) Greene, F l . Fran. 190, 191. 1891. 229 Type: Douglas s.n., 1826, Wet rocks on the mountains near K e t t l e F a l l s on the Columbia (Lectotype BM! Isotype K'.). Only on the BM specimen does the annotation match that given i n the protologue, and t h i s i s therefore designated the lectotype. The K sheet i s a mixed c o l l e c t i o n . The top f i v e plants a r e . i d e n t i f i e d as "Sax- i f r a g a r a n u n c u l i f o l i a Hook., Torr. Gr. F l . N. Am. 1. 575" which r e f e r s to the same Douglas c o l l e c t i o n c i t e d by Hooker (1832). These plants are, therefore, probably isotypes. The remaining plants on the sheet (the bottom two) are from.a second'collection by Douglas: "Douglas 1830, Columbia Riv-er", and are not types. 2. Suksdorfia alchemilloides (Griseb.) Engler i n Engler & P r a n t l , Nat. Pflanzenfam. I I I . 2a: 52. 1891. Saxifraga alchemilloides Grisebach, Abhandl. Kon. Ges. Wiss. Gott. 24: 142, 143. 1879. Hieronymusia alchemilloides (Griseb.) Engler, Not. Kon. Bot. Gart. Mus. Berlin-Dahlem 7: 265-267. 1918. Type: G. Hieronymus & P.G. Lorentz s.n., January 1874, La Cienega i n der S i e r r a de Tucuman, Argentina (Lectotype K'. Isotype US'.). The specimen at K was sent by Grisebach himself and i s annotated by him; i t i s therefore designated the lectotype. The holotype at B was destroyed i n 1943, but an isotype from the B e r l i n Herbarium e x i s t s at US, the c o l l e c t i o n d e t a i l s conforming i n a l l respects with those i n the proto-logue . 3. Suksdorfia v i o l a c e a A. Gray, Proc. Am. Acad. Arts S c i . 15: 41, 42. 1879. Hemieva v i o l a c e a (Gray) Wheelock, B u l l . Torr. Bot. Club 23: 71. 1896. Type: Suksdorf 19, A p r i l 1878, Washington. T e r r i t o r y (Holotype GH'.) . 230 Howeli s.n., June 1879, Wasco-Co., Oregon, near the Columbia (Paratype GH'. F'.) . Gray (1879) gave the precise type l o c a l i t y as " wet rocks on the Columbia River, i n Washington T e r r i t o r y , near the junction of the White Salmon River". BOLANDRA Taxonomic Treatment Bolandra A.. Gray, Proc. Am. Acad. Arts S c i . 7: 341, 342. 1867. Type species: Bolandra c a l i f o r n i c a A. Gray, Proc. Am. Acad. Arts. S c i . 7: 341, 342. 1867. Bolandra c a l i f o r n i c a was described (Gray 1867) to accommodate a new saxifrage c o l l e c t e d by Bolander. Watson (1879a) described a second species, B^ oregana, but.did not.comment on generic r e l a t i o n s h i p s . Conven-t i o n a l l y , the genus has been a l l i e d with those which share a x i l e placen-t a t i o n , e s p e c i a l l y with Boykinia, Suksdorfia and S u l l i v a n t i a (Engler 1891; Rosendahl 1905). The present study has confirmed such an a l l i a n c e . The separation of Bolandra from Boykinia has already been d i s -cussed. The problem of d i s t i n g u i s h i n g Bolandra and Suksdorfia remains. Firm conclusions cannot be reached yet because the v a r i a t i o n within Bolandra has not been assessed completely: more information i s needed on B^ c a l i f - ornica which was included only occasionally i n the present study. Both genera have bulbiferous rhizomes, and they also share a s i m i l a r p o l l e n morphology, seed testa ornamentation and foliaceous s t i p u l e s . Also they both have m u l t i s e r i a t e trichomes with p a p i l l o s e glandular heads. The lack of u n i c e l l u l a r trichomes i n B. oregana i s matched by t h e i r absence i n S.  r a n u n c u l i f o l i a . Leaf shape and out l i n e i n B. c a l i f o r n i c a . i s s i m i l a r i n many respects to that i n Suksdorfia, although, l e a f venation (at least i n B. oregana) i s more complex. 231 The most.striking,differences--.between the. genera..are i n f l o r a l morphology.. Bolandra-has a tubular-campanulate .hypanthium. and subulate pet a l s , whereas, i n Suksdorfia, the hypanthium -is campanulate ..and the petals ovoid, spatulate or or b i c u l a r and - c l a w e d B o l a n d r a also has .narrowly e l l i -psoid seeds rather than, the ovoid ones i n Suksdorfia. Chemically, Bolandra  oregana possesses 6-oxygenated flavonoids, compounds absent from Suksdorfia. The two genera also have d i s t i n c t i v e general appearances. Do the differences outweigh the s i m i l a r i t i e s ? The differences i n hypanthium shape r e f l e c t l a r g e l y ovary p o s i t i o n which i s superior i n Bolandra and i n f e r i o r . t o . varying degrees i n Suksdorfia. I do not consider t h i s character to be important because i t varies greatly within other genera, of the Saxifraginae. However, general appearance, supported by the differences in.seed and p e t a l shape, and chemistry may be used to d i s t -inguish the.genera. Ornduff (1969b) observed that many genera of the Sax-if r a g i n a e are separated by "somewhat weak and a r b i t r a r y morphological c r i t e r i a 1 ' , although the recognition that the subtribe i s i n . the process of active evolution can be used as j u s t i f i c a t i o n for t h i s (Savile 1961). Therefore, u n t i l the v a r i a t i o n within Bolandra i s described better, I marginally prefer to continue to recognise Bolandra. as a separate genus. Synopsis and Key to the Species of Bolandra (after Bacigalupi 1944) . 1. Lobes and teeth of leaves rounded, mucronulate; sepals 3-4mm long; carpels connate 1/3 t h e i r length . . 1. B_. c a l i f o r n i c a . l a . Lobes and teeth of leaves t r i a n g u l a r , acute; sepals 6-10mm long; carpels connate at most 1/4 t h e i r length . . . . 2. B_. oregana. 1. Bolandra c a l i f o r n i c a A. Gray, Proc. Am. Acad.' Arts S c i . 7: 341, 342. 1867. 232 Type: H.N. Bolander 4898, 1st July 1866, On rocks, Mariposa t r a i l , Yosemite Va l l e y , C a l i f o r n i a (Holotype GH'.) ; Toxrey s.n., F o o t h i l l s of the S i e r r a Nevada (Paratype, whereabouts unknown). 2. Bolandra oregana S. Watson, Proc. Am. Acad. Arts S c i . 14: 292. 1879. Hemieva oregana (Wats.) Nelson and Macbride, printed annotation on specimen c o l l e c t e d by Henderson s.n., 29th July 1896 (RM) . Type: J . Howell s.n., June 1877, Wet rocks, Milwaukee, Oregon (Holo-type GH'.). Watson (1879a) gave the precise l o c a l i t y as ''Willam-ette River, near Oregon C i t y , Oregon". Bolandra imnahaensis Peck, Rhodora 36: 266. 1934. Bolandra oregana Wats. var. imnahaensis (Peck) Peck, Man. High. Plants Oregon 371. 1941. Type: Peck 18495, 4th July 1933, Wet c l i f f i n small canyon along Imnaha River, 3 miles above Imnaha, Wallowa Co., Oregon (Isotypes GH'. WS'.) . I h e s i t a t e to recognise the two taxa here as d i s t i n c t species. Measurements of a l i m i t e d number of specimens show that the diagnostic characters given by Rydberg (1905) and Bacigalupi (1944) intergrade between the two taxa (Table XXX). I t i s l i k e l y , therefore, that only an i n f r a - \ s p e c i f i c d i s t i n c t i o n i s warranted. However, a f i n a l decision should await further measurements and other taxonomic data on B_. c a l i f o r n i c a . A t h i r d species, Bolandra imnahaensis. was described by Peck (1934) » He stated i t was c l o s e l y r e l a t e d t o J . oregana and claimed that i t differed, i r i its."more numerous.flowers, a narrower calyx tube not becoming urceolate, and i n the nearly separate carpels". It i s clear from Table XXX that v a r i a t i o n i n these and other characters i s continuous with B_. oregana, and that even v a r i e t a l status (Peck 1941, 1961) i s unwarranted. Populations of B_. oregana from Idaho and eastern Oregon are more va r i a b l e than from e l s e -233 TABLE XXX. Morphological v a r i a t i o n i n Bolandra. Populations from C a l i f o r n i a have been recognized as B_. c a l i f ornica A. Gray, those from the Columbia River Gorge area as B^ oregana Wats, and those from the Snake and Salmon River drainages as both JB^ oregana Wats, and B. imnhaensis Peck. Values are given as the mean + one standard deviation, with the range i n brackets. C a l i f o r n i a * Snake - Salmon* Columbia Gorge* Basal l e a f 52 + 6' 56 + 11 59 + 3 division/# (50 - 61) (38 - 68) (56 - 63) Leaf tooth 22 + 4 12 + 6 5 ± 3 curvature ## (17 - 29) (5 - 29) (0 - 8) Number of 5 + 2 17 + 10 12 + 4 flowers (3 - 8) (5 - 37) (8 - 20) Sepal length 3.8 0.9 5.4 + 0.9 7.0 + •1.2 mm (2.4 - 4.7) (3.9 - 6.5) (5.5 - 9.2) Petal/Sepal 1.86 + 0.76 1:35 + 0.14 1.33 + 0.13 length r a t i o (1.40 - 3.2) (1.10 1.54) (1.21 - 1.57) Anther Filament 0.33 + 0.08 0.38 + 0.09 0.29 + 0.50 length r a t i o (0.27 - 0.47) (0.29 - 0.60) (0.29 - 0.50) Free hypanthium 3.3 + 0.3 4.4 + 0.7 5.3 + 0.6 length mm (2.8 - 3.6) (3.5 - 5.4) (4.3 - 5.8) Degree of carpel 0.64 + .0.07 0.68 + 0.04 0.71 + 0.06 freedom** (0.56 - 0.72) (0.61 - 0.75) (0.63 - 0.78) * Number of c o l l e c t i o n s measured: 5 from C a l i f o r n i a , 12 from the Snake - Salmon area and 6 from the Columbia Gorge area. ** Free carpel l e n g t h / t o t a l carpel length. Basal l e a f d i v i s i o n = b/a x:100% where b i s the shortest i n t e r -sinus length on ^ a l e a f . where, and B_. imnahaensis should be considered simply as part of t h i s v a r i a t i o n ; i t i s not a d i s t i n c t taxon. ## Leaf tooth curvature i s defined as i n F i g . 44, p.211. 234 XV. PHYTOGEOGRAPHY AND EVOLUTION In t h i s chapter the d i s t r i b u t i o n s and evolutionary r e l a t i o n -ships of the d i f f e r e n t genera and species are discussed. Much of what i s sai d has to be speculative i n view of the poor f o s s i l record. The aim i s to propose hypotheses against which the taxonomic conclusions can be viewed. Methods of Approach In the determination of hypothetical evolutionary r e l a t i o n -ships, two approaches have been used here. The f i r s t i s a c l a d i s t i c ap-proach whereby the branching patterns of p h y l e t i c l i n e s are traced back to a common ancestor. Two general methods of analysis have been proposed for the construction of such evolutionary trees. In the f i r s t method, taxa are grouped together on the basis of shared advanced character states; i t assumes that evolution proceeds by the simplest route, i . e . that p a r a l -lelisms and reversals have been minimal (the parsimony p r i n c i p l e ) . The sec-ond method i s based on character compatibility analysis and assumes that the most probable evolutionary tree i s the one supported by the most char-acters. Both methods make assumptions about the p r i m i t i v e vs. advanced nature of character states. Some of the concepts behind the c l a d i s t i c approach have been discussed by Estabrook (1978). The various a n a l y t i c a l procedures have been reviewed by Funk and Steussy (1978). The c l a d i s t i c approach has generated much controversy, especi-a l l y i n the pages of "Systematic Zoology" and, most e n t e r t a i n i n g l y , i n "Nature" (Halstead 1978; Gardiner et a l . 1979; Fink and Wiley 1979; Hal-stead et a l . 1979; and Panchen 1979). The second approach has a phytogeographic emphasis. I t i s axiomatic of Neo-Darwinist theory that speciation i s most l i k e l y to occur during periods of environmental i n s t a b i l i t y , e.g. during c l i m a t i c and/or 235 orogenic events. The phytogeographic approach uses the palaeontological record to explain present d i s t r i b u t i o n patterns and hence to suggest r e l a -tionships between species and genera. The C l a d i s t i c Approach F i f t e e n characters were i d e n t i f i e d which showed v a r i a t i o n be-tween the genera. Sequences of character states were i d e n t i f i e d (Table XXXI). I t was not possible to assign p r i m i t i v e or advanced states to f i v e of the character sequences because of i n s u f f i c i e n t evidence. Only f o r p o l l e n aperture type was f o s s i l evidence available to support the evolution-ary i n t e r p r e t a t i o n of the sequence. For the remaining ten characters two kinds of evidence were used to assign phylogenetic grades to the character states: 1) developmental evidence, whereby the ea r l y stages of a charac-ter's development are interpreted to represent a p r i m i t i v e condition, and the l a t e r stages an advanced condition. The evidence f o r th i s assumption has been reviewed by Stebbins (1974); 2) the common ground plan, by which the p r i m i t i v e condition i s possessed by most taxa (Estabrook 1977). One must be sure to conduct a s u f f i c i e n t l y wide taxonomic survey, outside the group at hand, f o r the approach to be v a l i d (Stebbins 1974). The analysis used here i s the very simple, manual method des-cribed by Johnson and Briggs (1975). Although i t could be classed as one of the "minimum evolution" methods, i t has the advantage of not nec e s s a r i l y accepting the most parsimonious tree i f there are grounds for b e l i e v i n g that an al t e r n a t i v e could be better j u s t i f i e d . I t thus has a ce r t a i n f l e x i b i l i t y . The re s u l t s of the c l a d i s t i c approach are shown i n Table XXXI. They w i l l now be discussed with reference to phytogeographical and palaeontological data to discover whether any inconsistencies a r i s e . Summary of Some Important T e r t i a r y Events i n the Northern Hemisphere The Rocky Mountains u p l i f t e d i n the Eocene - ea r l y Oligocene 236 TABLE XXXI. Puta t i v e l y evolutionary i n t e r p r e t a t i o n of some character state sequences; t h e i r d i s t r i b u t i o n among the genera are shown, together with a hypothetical evolutionary tree constructed on the basis of the most par-simonious sharing of advanced character states. Character 1. Rhizome 2. Stipules Character State Sequence* Bulbiferous (a) Not bulbiferous 3. Trichomes 4. Ovary 5. Free hypanthium 6. Stamens 7. Seeds 8. Po l l e n aper-tures 9. Flavonoids: myricetin 10. Chromosomes 11. Inflorescence (cyme) 12. Nectary 13. Petals 14. P o l l e n tectum 15. Flavonoids: extra oxygena-t i o n , methyla-t i o n Foliaceous (a) B r i s t l e s or ex-panded p e t i o l e bases M u l t i s e r i a t e (a) Uniseriate I n f e r i o r (a) Present (a) 5 (a) Tuberculate (a) Colporate (a) Absent (a) Polyp l o i d (a) Complex, h e l i -coid Present Large Reticulate Present Superior Absent 10 Smooth Colporoidate or colpate Present D i p l o i d Simple Absent Small Perforate Absent Comment or Evidence** D, CGP4 4 CGP D, CGP 4 CGP CGP 4 CGP4 2 D .6 D, CGP D, CGPJ L Reversible No data L Reversible c Reversible" Reversible (a) = advanced state, the a l t e r n a t i v e i s p r i m i t i v e . D = developmental evidence; CGP = common ground plan; F = f o s s i l evidence. I f the same putative trend occurs i n the angiosperms, or e s p e c i a l l y i n the Saxifragaceae, a reference i s provided: 1. Gornall and Bohm (1978); 2. Hara (1957); 3. Stebbins (1971); 4. Stebbins (1974); 5. Walker and Doyle (1975); 6. Wolfe, Doyle and Page (1975). 237 TABLE XXXI, cont'd. Genus Saxifraga Peltoboykinia Boykinia S u l l i v a n t i a Bolandra Suksdorfia Advanced Character States-Present Throughout 5, 7, 9, 10 3, 4, 5 3, 5, 6, 8, 9 1, 2, 3, 5, 6, 7, 8 1, 2, 3, 4, 5, 6, 7, 8, 9 cd •H cd cd •rl cd •rl •rl 4J 00 >> cd cd m 3 cd o • r l u r l cd 5-i ti o > MH o • r l ti •rl •H 4-1 cd CO rH rH rH rH crj CU o o 3 3 pq CO ANCESTOR Hypothetical Evolutionary Tree (ca. 38 m.y. BP) (Eisbacher 1977). At about the same time there was a s i g n i f i c a n t drop i n the mean annual temperature (MacGinitie 1974; Wolfe 1978; Rouse & Mathews 1980) which resulted i n the e x t i n c t i o n of many elements of the formerly widespread p a r a t r o p i c a l / s u b t r o p i c a l r a i n f o r e s t . A mixed mesophytic forest had replaced i t by the Oligocene (Wolfe and Leopold 1967). This temperate broad-leaved forest was continuous between eastern Asia and eastern North America (Wolfe 1969; Rouse and Mathews 1980) u n t i l the l a t e Miocene (10 - 14 m.y. BP). In the l a t e Miocene there was a sharp f a l l i n summer temperatures nearly everywhere (Rouse 238 and Mathews 1980), a boreal forest formed In Alaska (Wolfe and Leopold 1967; Wolfe 1969) and the Bering S t r a i t s opened for the f i r s t time (Hulten 1968) . Thus the mixed mesophytic forest became disjunct between eastern Asia and North America. In Pliocene times (2 - 10 m.y. BP) there was a general cooling and a marked summer-dry climate evolved i n the P a c i f i c Northwest (Wolfe 1969) . The summer dryness was probably accentuated by r a i n shadow e f f e c t s generated by the u p l i f t of the Coast and S i e r r a Nevada - Cascade Ranges (Coney 1972). The Boreal forest degenerated i n the north i n response to the cooling, and a tundra vegetation formed (Johnson and Packer 1967). The progressive cooling culminated i n the Pleistocene g l a c i a t i o n s (2 m.y. -10,000 y. BP). Evolution of Boykinia and A l l i e s S a v i le (1975) has suggested a scenario for the evolution and biogeography of the Saxifraginae using information from the rust p a r a s i t e s . He proposed an o r i g i n i n eastern A s i a during the Oligocene or l a t e r , and then e a r l y migrations i n t o the Himalyas and western North America. The l a t t e r migration was suggested to have given r i s e to the various North American genera by extensive r a d i a t i o n . Saxifraga was considered to have begun l i f e i n North America as a "proto-Saxifraga" which re-crossed the Bering S t r a i t s back into Japan before becoming d i f f e r e n t i a t e d . Radiations occurred from here p a r t l y into the Himalayas (again) and on into Europe, and p a r t l y back in t o North America across Beringia. I t i s beyond the scope of t h i s t hesis to discuss the p l a u s i b i -l i t y of t h i s scenario, but i t s chief problem would seem to be i n r e c o n c i l -ing the timing of a l l this saxifragaceous t r a f f i c with the timing of oro-genic and c l i m a t i c events. 23? Boykinia, together with genera l i k e T i a r e l l a , M i t e l l a and some sections of Saxifraga show disjunct d i s t r i b u t i o n s between the Appalachians, the Western C o r d i l l e r a , Alaska and Japan. This and s i m i l a r disjunctions (Wood 1970, 1972) probably resulted from the disruption of the widespread mixed mesophytic forest by c l i m a t i c change, vulcanism and brogenic events (Graham 1972). Thus these genera of the Saxifraginae had probably evolved at l e a s t by l a t e Miocene times when the forest became disjunct between eastern A s i a and North America. Herbs do not appear i n the f o s s i l record u n t i l e a r l y Miocene times and so Boykinia probably had i t s o r i g i n between 10 and 24 m i l l i o n years ago. Hara (1959) suggested that Boykinia and Peltoboykinia share a common Miocene ancestor. By Miocene times Japan had become a peninsula following the Oligocene formation of the Japan Sea (Maekawa 1974). In the middle Miocene there was a phase of orogenic a c i t i v i t y i n eastern Asia which coincided with the invasion by the sea of the Japan peninsula, s p l i t -t i n g the land mass in t o a s e r i e s of small islands (Maekawa 1974). I t was probably at t h i s time that Peltoboykinia and Boykinia became d i f f e r e n t i a t e d from t h e i r common ancestor, probably a taxori which had diverged l i t t l e from a p r i m i t i v e Saxifraga (Table XXXI). Subsequent evolution was based on radiations from the Boykinia gene pool i n North America. The present d i s t r i b u t i o n of S u l l i v a n t i a ( F i g . 47) as a s e r i e s of highly disjunct populations across the U.S.A. suggests a formerly continuous d i s t r i b u t i o n , quite possibly as a component of the Miocene mixed mesophytic f o r e s t . An e a r l y d i f f e r e n t i a t i o n of S u l l i -v a n t ia i s thus envisaged. Suksdorfia and Bolandra most probably evolved i n the Pliocene i n response to the new summer-dry climate i n the P a c i f i c Northwest and the new habitats created by the u p l i f t of the Coast and S i e r r a - Cascade Ranges. The bulbiferous rhizomes may be seen as an adapt-240 ation to the new environments. In view of i t s woodland ha b i t a t , i t s f l a v -onoid p r o f i l e and i t s o v e r a l l appearance, Bolandra retains more Boykinia-l i k e features than does Suksdorfia. However, the l a t t e r has the t y p i c a l u n i c e l l u l a r trichomes of Boykinia and a s i m i l a r f l o r a l morphology. Rela-tionships between the three genera are somewhat r e t i c u l a t e and I suggest that both Bolandra and Suksdorfia evolved at about the same time i n the Pliocene from a common Boy k i n i a - l i k e ancestor (Table XXXI). Generally, therefore, phytogeographical considerations support and complement the hypothetical evolutionary tree produced by the c l a d i s t i c approach. In the following discussion, each genus w i l l be examined i n more d e t a i l . Boykinia D i s t r i b u t i o n s of Boykinia species are shown i n Figs. 45 - 47. Since Boykinia section Boykinia i s disjunct between Japan and North Amer-i c a , i t presumably had evolved by l a t e Miocene times, when t h i s d i s j u n c t i o n occurred i n the mixed mesophytic f o r e s t . I suggest that the ancestor of section Boykinia e x i s t s today, i n a very much modified form, as section Telesonix. This section retains the most p r i m i t i v e features (colporoidate p o l l e n , ten stamens, smooth seeds) i n the genus. The two species of section Telesonix, B_. jaroesii and B. heu- cheriformis . have become d i f f e r e n t i a t e d edaphically as w e l l as morpholog-i c a l l y . At present, B_. heucheriformis grows on calcareous substrates i n the Rocky Mountains from Alberta south to Wyoming and d i s j u n c t l y i n the Black H i l l s of South Dakota and the Charleston Mountains of southern Nev-ada; A formerly continuous range i s therefore indicated. Although mostly eliminated from the Canadian Rockies by the Pleistocene g l a c i a t i o n s there i s good evidence that at l e a s t one population managed to survive,there, i n the Mountain Park area, near Jasper, Alberta (Packer and V i t t 1974). 241 242 FIGURE 46. The d i s t r i b u t i o n s of Boykinia major, B_. intermedia and Bolandra. 243 FIGURE 47 . The d i s t r i b u t i o n s of Boykinia l y c o c t o n i f o l i a , Peltoboykinia  tellimoides (from Hara (1958)), and S u l l i v a n t i a (from Wood (1971)). 244 I t i s l i k e l y that present populations i n t h i s part of Alberta derive from t h i s r e f u g i a l gene pool. A s i m i l a r refugium may have existed for B_. heu- cheriformis i n the Waterton Lakes area of southern Alberta (Packer 1971). Aft e r the Pleistocene ended, a warm Hypsithermal period ensued during which B_. heucherif ormis retreated northwards, leaving behind the disjunct populations. R e l i c t populations may s t i l l be discovered In the mountains of the Utah Plateaux. Boykinia jamesii grows on the high granite peaks of the Colo-rado Front Range, v i z . Pikes Peak and the mountains of "the neighbouring P l a t t e River drainage and Rocky Mountain National Park, and d i s j u n c t l y i n the Santa Fe mountains of New Mexico. As with B_j, heucherif ormis, the d i s j u n c t i o n suggests a formerly continuous d i s t r i b u t i o n southwards, pos-s i b l y as a r e s u l t of migration i n response to the Pleistocene climates (Whitehead 1972). As before, the warm Hypsithermal period probably elim-inated most of these southernmost populations. Boykinia r i c h a r d s o n i i of section Renifolium i s presently endemic to Alaska and the Yukon, where i t i s part of the alpine-tundra f l o r a . I t i s not possible to be very s p e c i f i c about i t s o r i g i n s although one may speculate that i t evolved e i t h e r as a component of the boreal forest i n l a t e Miocene times (Tolmachev 1959) or as a component of the tundra f l o r a following the degeneration.?of the boreal forest i n the P l i o -cene. Boykinia r i c h a r d s o n i i almost c e r t a i n l y survived the Pleistocene g l a c i a t i o n s i s o l a t e d i n the unglaciated areas of Alaska and the Yukon (Huit en 1968). I t may have been at t h i s time that i t d i f f e r e n t i a t e d i n t o two cytodemes, one i n the Alaska Range (2ri = 6x = 36) and one i n the Brooks Range (2n = 14x = 84). Chromosome numbers have yet to be counted i n pop-ulations from the Yukon. The high polyploidy may be interpreted as an adaptation toward the r e c o l o n i z a t i o n of habitats a f t e r the i c e retreated; 245 indeed, the 14x cytodeme has invaded far more glaci a t e d t e r r i t o r y than has the 6x cytodeme ( F i g . 45). I t i s not possible to say whether one cytodeme gave r i s e to the other, and i t i s simpler to suggest that they evolved indepently. At present, B_. r i c h a r d s o n i i has a U-shaped d i s t r i b u t i o n i n Alaska and the Yukon T e r r i t o r y , i n h a b i t i n g the Alaska Range, the Porcupine River drainage and the Brooks Range. Rydberg (1905) and Engler (1928) re-ported B_. r i c h a r d s o n i i from eastern S i b e r i a ; Hulten (1945, 1968) did not record i t from Asia, although he admitted that the occurrence of such pop-ulations seemed "very probable". However the species i s not l i s t e d i n the F l o r a S.S.S.R. (Lozina-Lozinskaya 1939) nor i n the more recent Siberian F l o r a (Tolmachev 1966). Dealing with section Boykinia i n more d e t a i l , as noted e a r l i e r , B. l y c o c t o n i f o l i a i n Japan has probably been i s o l a t e d from the rest of the genus since l a t e Miocene times. I t s closest r e l a t i v e s on morphological grounds ( e s p e c i a l l y i n l e a f morphology and stolon production) are B. i n t e r -media i n the Olympic Penisula and B_. a c o n i t i f o l i a i n the Appalachians. The three species probably constitute the remnants of the formerly wide-ranging ancestral stock of section Boykinia, and can be considered as v i c a r i a d s . There have been few changes i n the Japanese f l o r a since P l i o -cene times (Wolfe and Leopold 1967); the Pliocene cooling and Pleistocene g l a c i a t i o n s did not a f f e c t Japan as much as they did North America or Europe. Even,during maximum g l a c i a t i o n , g l a c i e r s were r e s t r i c t e d to a few high peaks i n central Honshu and Hokkaido (Hara 1959). Boykinia lycoc- t o n i f o l i a became adapted to volcanic substrates and adopted i t s present d i s t r i b u t i o n i n the mountains of ce n t r a l and northern Honshu and Hokkaido (F i g . 47). Boykinia a c o n i t i f o l i a ranges at present through the Appala-chians from the V i r g i n i a s south to Georgia and Alabama. I t presumably 246 became i s o l a t e d from the rest of the genus by the drying of the Great Plains and by Pleistocene extinctions but has survived i n the mesic east-ern American f o r e s t s . I t probably ranged further north i n pre-Pleistocene times but was eliminated as the g l a c i e r s advanced. In western North America, the three d i p l o i d (2n = 14) species, B. intermedia. B. o c c i d e n t a l i s and B^ r o t u n d i f o l i a probably began t h e i r d i f f e r e n t i a t i o n i n response to the Pliocene mountain b u i l d i n g . Boykinia  intermedia has the most p r i m i t i v e morphology and chemistry and the other two species have probably evolved from i t s gene pool. A further stimulus to the evolution of B^ o c c i d e n t a l i s and B. r o t u n d i f o l i a was probably pro-vided by the southward vegetational s h i f t i n the Pleistocene, when many new niches were opened as species from various o r i g i n s came i n t o contact (whitehead 1972). Boykinia intermedia i s presently endemic to the western side of the Olympic Peninsula i n Washington and the Coast Range of northern Oregon. I t probably possessed a wider, more northerly range preceding the Pleistocene g l a c i a t i o n s , although why i t did not survive south of the i c e sheets i n greater numbers, as did r e l a t e d species, i s a problem, although i t s present requirement of a high r a i n f a l l may be relevant i n t h i s respect. The report of the occurrence of B_j intermedia i n northern Idaho (Bacigalupi 1952) i s erroneous and was probably prompted by the mis-quotation of the type l o c a l i t y by Rydberg (1905) as being i n Idaho. A l l c o l l e c t i o n s from Idaho belong to B. major. Boykinia o c c i d e n t a l i s i s a wide-ranging but e s s e n t i a l l y coastal element, presently occurring on the western slopes of the Coast Ranges from northern Vancouver Island to southern C a l i f o r n i a . Some populations have managed to p e r s i s t i n the S i e r r a - Cascade axis c h i e f l y i n c e n t r a l Oregon, the Klamath Ranges and the Yuba and American River drainages. 247 The disjunctions between the Coast and S i e r r a - Cascade Ranges may be of recent o r i g i n , and r e s u l t from the Hypsithermal warming (ca.. 6000 y. BP) causing increased drying between the two mountain ranges. Rain shadow e f f e c t s may have contributed also to the e l i m i n a t i o n of mesic elements. Populations of B_^  o c c i d e n t a l i s i n the North Washington Cascades, the south-ern B r i t i s h Columbia Coast Range and Vancouver Island also may be of re-cent o r i g i n , invading a f t e r the Pleistocene i c e retreated, although coastal ref u g i a on Vancouver Island during the Pleistocene are a p o s s i b i l i t y . Boykinia o c c i d e n t a l i s has not been found on the Queen Charlotte Islands, although they form a very l i k e l y refugium (Calder and Taylor 1968). Boykinia r o t u n d i f o l i a i s a narrow endemic, and with ;one excep-t i o n i s presently r e s t r i c t e d to the southern slopes of the San Gabriel Mountains i n the Transverse Ranges of southern C a l i f o r n i a . The exception i s a s i n g l e plant discovered i n San Diego County, about 130km further south. This may be the r e s u l t of a chance long-distance d i s p e r s a l or i t might suggest a formerly wider d i s t r i b u t i o n southwards i n the Peninsula Ranges of Baja C a l i f o r n i a . The species i s morphologically very d i s t i n c t i v e i n section Boykinia.but i t s closest r e l a t i v e i s B. o c c i d e n t a l i s , ' a species with s i m i -l a r l y o r b i c u l a r leaves and with which i t shows greatest cross-compatibil-i t y . I t may therefore be hypothesized that B_. r o t u n d i f o l i a and B_. o c c i -dentalis share a common ancestor which became d i f f e r e n t i a t e d i n t o the present two species during the Pliocene mountain b u i l d i n g and during the Pleistocene southward migrations. Boykinia r o t u n d i f o l i a now survives as a r e l i c t i n the Transverse Ranges. Boykinia major grows on the western slopes of the S i e r r a -Cascade axis from c e n t r a l Oregon to c e n t r a l C a l i f o r n i a , and d i s j u n c t i v e l y i n the B i t t e r r o o t Mountains of Idaho and Montana. In places i t has man-248 aged to p e r s i s t i n the Coast Ranges, e.g. the Salmon Mountains of northern C a l i f o r n i a . Like many other species, Boykinia major probably suffered elimination from the northerly parts of i t s range during the Pleistocene, the present day dis j u n c t i o n being one r e s u l t of t h i s . Boykinia major i s t e t r a p l o i d (2n = 26) and one of the genome contributors was probably a plant l i k e B_. intermedia (Ch. X). The second contributor may have been the common ancestor of I K o c c i d e n t a l i s and B.  r o t u n d i f o l i a , i . e . a plant s i m i l a r to B^ intermedia (Ch. X). Boykinia  major would thus q u a l i f y as a segmental a l l o t e t r a p l o i d (Stebbins 1950). The time of o r i g i n of B_. major presumably must have been a f t e r the d i f f e r -e n t i a t i o n of the ancestor of B_. intermedia into two taxa, i . e . probably la t e Pliocene or l a t e r . Reports of B_. major from the Juneau area of the Alaska pan-handle (Cooley 1892) are erroneous. A l l of Cooley's specimens belong to Heuchera glabra W i l l d . Peltoboykinia Peltoboykinia i s endemic to Japan ( F i g . 47). I t s possible Miocene o r i g i n has already been discussed. Hara (1959) believes that i t was during the c l i m a t i c f l u c t u a t i o n s and topographic changes of the P l e i s -tocene that many Japanese plant groups d i f f e r e n t i a t e d i n t o new taxa. I t could have been at th i s time that Peltoboykinia tellimoides s p l i t into i t s two subspecies. Subspecies watanabei d i f f e r e n t i a t e d i n the Shikoku and Kyushu mountains and became i s o l a t e d from ssp. t e l l i m o i d e s by the formation of the Seto (Inland) Sea. Ssp. tell i m o i d e s presently grows i n centr a l and northern Honshu. Bolandra The d i s t r i b u t i o n of Bolandra i s shown i n F i g . 46. I t i s sim-i l a r i n many respects to that of Boykinia major and probably has a s i m i l a r 249 explanation. One may envisage a formerly continuous d i s t r i b u t i o n along the S i e r r a - Cascade axis crossing i n t o the mountains of Idaho i n the more northerly part of i t s range. Pleistocene c l i m a t i c and g l a c i a l events l i k e l y eliminated the northernmost populations and caused disjunctions between the r e s t . The genus now occupies three areas. Bolandra oregana i s d isjunct between the Columbia River Gorge and the Snake and Salmon River drainages of the Wallowa and B i t t e r r o o t Mountains i n eastern Oregon, and northern Idaho; Bolandra c a l i f o r n i c a i s r e s t r i c t e d to high elevations on the western slopes of the c e n t r a l S i e r r a Nevada i n C a l i f o r n i a . Bolandra  c a l i f ornica i s not very d i s t i n c t from B_. oregana and probably owes i t s taxonomic recognition to the Pleistocene e x t i n c t i o n of intermediate pop-ulations i n the S i e r r a - Cascade axis. Suksdorfia The d i s t r i b u t i o n s of Suksdorfia species are shown i n F i g . 48. The genus shows a remarkable d i s j u n c t i o n between the C o r d i l l e r a s of North and South America. The two North American species are discussed f i r s t . The major problem i n t r a c i n g the h i s t o r y of Suksdorfia r a n u n c u l i f o l i a and S. v i o l a c e a i s i n explaining how they became d i f f e r e n t i a t e d . At present they show a considerable overlap i n t h e i r d i s t r i b u t i o n s , and unless s p e c i -ation was sympatric (an uncommon phenomenon (Stebbins 1950: 238)) one must assume that at some time they have occupied l a r g e l y a l l o p a t r i c ranges. Some i n d i c a t i o n of t h e i r former a l l o p a t r i c d i s t r i b u t i o n s i s given by the f a c t that S_. ranunculif o l i a r etains populations i n the coast-a l b e l t , from the Skeena River i n northern B r i t i s h Columbia to the Klamath Ranges i n northern C a l i f o r n i a . These occur west of the area inhabited' -by _S. v i o l a c e a which predominates i n the Monashee, S e l k i r k and P u r c e l l Ranges of B r i t i s h Columbia and t h e i r extensions i n adjacent Washington, Idaho and Montana. The present large degree of overlap of the two spe-250 251 cies probably r e s u l t s from southward migrations during the Pleistocene and from subsequent northward invasions of formerly g l a c i a t e d t e r r i t o r y i n post-Pleistocene times. Suksdorfia r a n u n c u l i f o l i a may have survived the g l a c i a t i o n s to the north of the i c e sheets as w e l l as to the south. I t presently has two disjunct populations on the B r i t i s h Columbian coast: one i n the Skeena River v a l l e y , and one i n the B e l l a Coola River v a l l e y . These may have been derived from a now e x t i n c t population on the Queen Charlotte Islands, a place where several species probably survived the Pleistocene (Calder and Taylor 1968). I t i s i n t e r e s t i n g that a somewhat s i m i l a r d i s t r i b u t i o n pattern i s shown by Heuchera chlorantha Piper (Calder and S a v i l e 1959). Suksdorfia v i o l a c e a can have survived the i c e ages only south of the g l a c i a l boundary i n Idaho and Washington. Although stations i n the north Washington Cascades were at the l i m i t s of the i c e sheets and there-fore presumably very inhospitable, there i s some evidence that r e f u g i a sep-arated by v a l l e y g l a c i e r s may have existed here, e.g. i n the Wenatchee Mountains (Calder and Savile 1959). The highly disjunct Suksdorfia alchemilloides i s presently found on the high eastern slopes of the Andean C o r d i l l e r a i n northern Argentina and southern B o l i v i a . According to Raven (1963) many amphitrop-i c a l disjunctions between North and South America can be a t t r i b u t e d to long-distance d i s p e r s a l . Although he was concerned p r i m a r i l y with coastal and desert plant species, h i s generalizations nevertheless seem to be a p p l i c -able to Suksdorfia. In summary his arguments were that 1) North and South American populations are c l o s e l y r e l a t e d . The closest r e l a t i v e of _S_j_ a l - chemilloides i s _S_. v i o l a c e a (both have s i m i l a r l e a f shapes and i n f l o r e s -cnece structures, pink petals and u n i c e l l u l a r trichomes). 2) The plants are almost without exception self-compatible and often autogamous. Judging 252 by f l o r a l morphology, the close j u x t a p o s i t i o n - o f anthers and stigmata i n S. alchemilloides suggest that i t i s self-compatible and possibly autogam-ous. Suksdorfia v i o l a c e a i s both (Ch. XI). Establishment a f t e r long-distance d i s p e r s a l would thus be f a c i l i t a t e d (Baker 1955). 3) The species constitute an unbalanced assemblage e n t i r e l y unrepresentative of the two e x t r a t r o p i c a l areas. In t h i s case"the primary associations of the sub-t r i b e Saxif raginae are with the Northern Hemisphere. 4) The plants grow almost e x c l u s i v e l y i n open communities, e.g. sea coast or seasonally wet h a b i t a t s , rather than i n scrub or woodland associations. Suksdorfia v i o -lacea i s found i n open, spring-wet hab i t a t s . Since S_. alchemi 1 loides occupies high eastern mountain slopes, i t too may be subject to a spring snow-melt, summer-dry environment; and growing above 3000m means that i t i s above the tree l i n e and i n the open. 5) There are no corresponding cases among t e r r e s t r i a l vertebrates and very few among .the i n s e c t s . F i n -a l l y , 6) the f l o r a s of the two areas have been d i s t i n c t at least since the middle Cretaceous and are s t i l l very d i f f e r e n t eat present. The only explan-ation that accounts for a l l these facts seems to be that most of the plants reached t h e i r disjunct areas r e l a t i v e l y recently by long distance d i s p e r s a l . For temperate species l i k e S. a l c h e m i l l o i d e s . the l a t e Pliocene or P l e i s -tocene would be the most l i k e l y time, j u s t a f t e r the Pliocene u p l i f t of the Andes (Raven 1972). Such information as i s a v a i l a b l e , therefore, suggests that the properties of S. v i o l a c e a and_S. alchemilloides conform with Raven's (1963) generalizations favouring long-distance•dispersal. One may therefore hy-pothesize that the common ancestor of the two species was transported by birds from the Rocky Mountains sometime i n the l a t e Pliocene or e a r l y Pleistocene and became established i n the B o l i v i a n and Argentinian Andes, where i t has evolved i n i s o l a t i o n f o r the l a s t 2 - 4 m i l l i o n years, and 253 i s presently recognized as S_. alchemilloides. In view of the seasonally wet habitat, there i s a good chance that b i r d s of the order Charadiiformes, which comprises about 70% of the species migrating between the continents (Cruden 1966), could have been the d i s p e r s a l vectors (Raven 1963). Although evidence for predation on Suksdorfia by birds i s lacking, circumstantial evidence does e x i s t f o r the relat e d B o y k i n i a . r i c h a r d s o n i i (Ch. X I I I ) . I t might be noted that Suksdorfia i s a better candidate for long-distance d i s p e r s a l than some other genera because i t can be transported both as seeds and/or as b u l b i l s . As t e s t i - . mony to i t s mo b i l i t y , i t i s also the only genus which has recolonized gla c i a t e d t e r r i t o r y to any great extent. 254 XVI. ETHNOBOTANY Ho r t i c u l t u r e Many species of the Saxifraginae, e s p e c i a l l y of Saxifraga and Bergenia, are popular as garden ornamentals. Some, l i k e Tolmiea, are favoured as house plants. Of the species i n the present study, only B. -j amesii has been widely grown. I t has been j u s t l y admired for i t s beauti-f u l pink-purple flowers and a t t r a c t i v e f o l i a g e . There has been some de-bate i n the past over i t s readiness to flower i n the garden (Heath 1964), and s p e c i a l conditions, i n c l u d i n g r e s t r i c t i n g the roots are required (Preece 1937). Hitchcock et a l . (1961) reported that B_. jamesii does w e l l i n Great B r i t a i n but i s u n t h r i f t y i n gardens i n the P a c i f i c Northwest. This difference may be simply a confusion of IK jamesii with JK_ heucheri- formis by gardeners. Boykinia heucheriformis i s apparently not grown i n B r i t a i n at a l l (B. Mathew, Kew Gardens, i n l i t t . ) whereas i t i s grown i n western North America. Prof. J . G. Packer ( i n l i t t . ) reported that B.  heucheriformis, transplanted from Miette Hot Springs, near Jasper, flowers r e g u l a r l y but does not f l o u r i s h i n h i s Edmonton garden. Perhaps better r e s u l t s would be had i n the northwest i f IK jamesii were to be more widely grown. Although discovered i n 1820 (Torrey 1827), i n t e r e s t i n the h o r t i c u l t u r a l p o t e n t i a l of IK jamesii was not roused u n t i l the 1930's, when i t was shown for the f i r s t time by Dr. Guiseppi i n 1935 (B. Mathew i n l i t t . ) . Other species have been suggested to h o r t i c u l t u r a l promise, including Boykinia a c o n i t i f o l i a (Gray 1842), JK major, B. o c c i d e n t a l i s , Suksdorfia r a n u n c u l i f o l i a and_S. v i o l a c e a (Hitchcock et a l . 1961). To t h i s l i s t I would add Peltoboykinia tellimoides (both subspecies) and Boykinia r i c h a r d s o n i i . Peltoboykinia has a t t r a c t i v e p e l t a t e leaves and 255 showy, del i c a t e l y - c o l o u r e d , yellow flowers. Boykinia r i c h a r d s o n i i i s a t r u l y handsome plant with i t s deep green leaves and large white flowers, often with red veins i n the petals. However, i t would probably be r e l u c -tant to flower i n gardens at a more southerly l a t i t u d e than i t s native a r c t i c . Medicine The leaves of Boykinia o c c i d e n t a l i s are eaten by the Quileute Indians of the Olympic Peninsula, Washington, as a treatment f o r tubercu-l o s i s (Gunther 1973). None of the other species i n the present study has been reported to have medicinal properties. 256 REFERENCES Agababyan, V.C. 1961. Mat e r i a l f o r the palynosystematic study of the family Saxifragaceae s . l . ( i n Russian). Acad. S c i . Rep. Arm., S c i B i o l . , Erivan 14(2): 45-61. Bacigalupi, R. 1944. Saxifragaceae. In: Abram's i l l u s t r a t e d f l o r a of the P a c i f i c states 2: 349-384. Stanford Univ. Press, C a l i f o r n i a . Bacigalupi, R. 1947. A new combination i n the genus Telesonix. L e a f l . West. Bot. 5: 71. Bacigalupi, R. 1952. Saxifragaceae. In: R.J. Davis, F l o r a of Idaho. W.C. Brown Co., Dubuque, Iowa. Baker, H.G. 1955. S e l f - c o m p a t i b i l i t y and establishment a f t e r "long distance" d i s p e r s a l . Evolution 9: 347-348. Barnhart, J.H. 1907. The dates.of Rafinesque's New F l o r a and F l o r a T e l l u r i -ana. Torreya 7: 177-182. Bate-Smith, E.C. 1962. vThe phenolic constituents of plants and t h e i r taxo-nomic s i g n i f i c a n c e . 1. Dicotyledons. J . Linn. Soc. (Bot.) 58: 95-173. Bensel, CR. and B.F. Palser. 1975. F l o r a l anatomy i n the Saxifragaceae sensu l a t o . I I . Saxifragoideae and Iteoideae. Amer. J . Bot. 62: 661-675. Bohm, B.A. 1979. Flavonoids.of Tolmiea menziesii. Phytochem. 18: 1079-1080. Bohm, B.A. and F.W. C o l l i n s . 1979. Flavonoids of some species of Chryso- splenium. Biochem..Syst. E c o l . 7: 195-201. Bohm, B.A. and R. Ornduff. 1978. Chemotaxonomic studies i n the Saxifragaceae s . l . 9. Flavonoids of Jepsonia. Madrono 25: 39-43. Bohm, B.A. and C.K. Wilkins. 1976. Flavonoids and g a l l i c acid d e r i v a t i v e s from Peltiphyllum peltatum. Phytochem. 15: 2012-2013. Bohm, B.A. and C.K. Wilkins. 1978a. Chemotaxonomic studies i n the Saxifrag-aceae s . l . 10. The flavonoids of Heuchera c y l i n d r i c a . Can. J . Bot. 56: 1174-1176. Bohm, B.A. and C.K. Wilkins. 1978b. Chemosystematic studies i n the Saxifrag-aceae sensu l a t o . 8. The flavonoids of Elmera racemosa (Watson) Rydberg. B r i t t o n i a 30: 327-333. Brandegee, T.S. 1899. New species of western plants. Bot. Gaz. 27: 447-448. Briquet, J . 1906. Regies internationales de l a nomenclature botanique adopt-ees par l e congres i n t e r n a t i o n a l de botanique de Vienne 1905. Verlag von G. Fischer, Jena. Burtt, B.L. 1964. Angiosperm taxonomy i n p r a c t i c e . Syst. Assoc. Publ. 6: 5-16. 257 Calder, J.A. and D.B.O. S a v i l e . 1959. Studies i n Saxifragaceae. 1. The Heuchera c y l i n d r i c a complex i n and adjacent to B r i t i s h Columbia. B r i t t o n i a 11: 49-67. Calder, J.A. and R.L. Taylor. 1968. F l o r a of the Queen Charlotte Islands. V o l . 1. Systematics of the vascular plants. Queen's P r i n t e r , Ottawa. C a r l q u i s t , S. 1961. Comparative plant anatomy. Holt, Rinehart & Winston, New York. Chambers, K.L. 1964. Saxifraga e s c h s c h o l t z i i Sternb. Madrono 17: 203-204. C o l l i n s , F.W. and B.A. Bohm. 1974. Chemotaxonomic studies i n the Saxifrage: .•-aceae s . l . 1. The flavonoids of Tellima g r a n d i f l o r a . Can. J . Bot. 52: 307-312. C o l l i n s , F.W., B.A. Bohm and C K . Wilkins. 1975; Flavonol glycoside g a l l a t e s from Tellima g r a n d i f l o r a . Phytochem. 14: 1099-1102. Coney, P.J. 1972. C o r d i l l e r a n tectonics, and North American p l a t e motion. ' Amer; J . S c i . 22: 603-628. Conolly, A.P.. 1972. Scanning e l e c t r o n microscope photographs of saxifrage seeds. Watsonia 9: 58. Conolly, A.P. 1976. Use of the scanning electron microscope f or the i d e n t i -f i c a t i o n of seeds with s p e c i a l reference to Saxifraga and Papaver. F o l i a Quat. 47: 29-38. Cooley, G.E. 1892. Impressions of Alaska. B u l l . Torr. Bot. Club 19: 178-189. Correns, C. 1928. Neue Uhtersuchungen an s e l b s t s t e r i l e n Pflanzen. 1. Tolmiea  menziesii. B i o l . Z b l . 48: 759-768. Coulter, J.M. 1892. S u l l i v a n t i a Hapemani. Bot. Gaz. 17: 421. Coulter, J.M. and E.M. Fisher. 1892. Some new North American plants 1. Bot. Gaz. 17: 348-352. Craighead, J . J . , F.C. Craighead and R.J. Davis. 1963. A f i e l d guide to Rocky Mountain wildflowers. Houghton M i f f l i n Co., Boston. Crowson, R.A. 1953. A possible new p r i n c i p l e i n taxonomy, and i t s evolution-ary i m p l i c a t i o n s . Nature 171: 883. Cruden, R.W. 1966. Birds as agents of long distance d i s p e r s a l f o r disjunct plant groups of the temperate western hemisphere. Evolution 20: 517-532. Dahlgren, K.V.O. 1930. Zur embryologie der Saxifragoideen. Svensk. Bot. Tidskr. 24: 429-448. Dandy, J.E. 1927. The genera of Saxifragaceae. Pp. 107-118 i n J . Hutchinson, Contributions towards a phylogenetic c l a s s i f i c a t i o n of flowering plants: VI. B u l l . Misc. Inf. Kew 1927: 100-118. 258 Dandy, J.E. 1935. Boykinia. P. 87 i n J.S.L. Gilmour et a l . V. Additions and ammendments to the i n t e r n a t i o n a l rules of bot a n i c a l nomenclature. B u l l . Misc. Inf. Kew 1935: 65-92.-Darlington, C.D. 1939. Evolution of genetic systems. O l i v e r & Boyd, Edinburgh. Darlington, C.D. and L.F. La Cour. 1976, The handling of chromosomes. 6th ed. A l l e n & Unwin, London. Davis, G.L. 1966. Systematic embryology of the angiosperms. Wiley, New York. Davis, P.H. 1978. The moving s t a i r c a s e : a discussion of taxonomic rank and a f f i n i t y . Notes R. Bot. Gard. Edinb. 36: 325-340. • Davis, P.H. and V.H. Heywood. 1963. P r i n c i p l e s of angiosperm taxonomy. Ol i v e r & Boyd, Edinburgh. Eaton, R.D. 1973. The evolution of seed i n c o m p a t i b i l i t y i n Primula. New Phytol. 72: 855-860. Eisbacher, G.H. 1977. Mesozoic-Tertiary basin models for the Canadian Cord-i l l e r a and t h e i r geological c o n s t r a i n t s . Can. J . Earth S c i . 14: 2414-2421. Engler, A. 1891. Saxifragaceae. In: A. Engler and K. P r a n t l , Die natur-l i c h e n Pflanzenfamilien I I I . 2a: 41-93. Engler,.A. 1918. Hieronymusia Engl., eine neue Gattung der Saxifragaceen. Notiz. Konigl. Bot. Gart. Mus. Berlin-Dahlem 7: 265-267. Engler, A. 1928. Saxifragaceae. In: A. Engler and K. P r a n t l , Die natur-l i c h e n Pflanzenfamilien (ed. 2) 18a: 74-226. Engler, A. and E. Irmscher. 1916-1919. Saxifragaceae - Saxifraga. Das Pflanzenreich 67 (1916) and 69 (1918-1919). Erdtman, G. 1960. The a c e t o l y s i s method. A revised d e s c r i p t i o n . Svensk. Bot. Tidskr. 54: 561-564. Estabrook, G.F. 1977. Does -common equal primitive? Syst. Bot. 2: 36-42. Estabrook, G.F. 1978. Some concepts f or the estimation of evolutionary r e l a t i o n s h i p s i n systematic botany. Syst. Bot. 3: 146-158. Evans, G.C. and A.P. Hughes. 1961. Plant growth and the ae r i a l , environment. 1. E f f e c t of a r t i f i c i a l shading on Impatiens p a r v i f l o r a . New Phytol. 60: 150 Fedde, F. 1906. Novorum generum, specierum, varietatum, formarumque, Siphon-ogamarum Index. Just's Bot. Jahresber. 33 (1): 361-643. 1905. Ferguson, I.K. ;and D.A. Webb. 1970. Pollen morphology i n the genus Saxifraga and.its taxonomic s i g n i f i c a n c e . Bot. J . Linn. Soc. 63: 295-311. F e r r i s , R.S. 1960. Orobanchaceae. In: Abram's I l l u s t r a t e d f l o r a of the P a c i f i c states 4: 3-10. Stanford Univ. Press, C a l i f o r n i a . 259 F i e l d i n g , J . and G. Gardner. 1844. Saxifraga a c o n i t i f o l i a . Sert. P l . t57. Fink, W.L. and E.O. Wiley. 1979. Cladism defended. Nature 280: 542. F i t z p a t r i c k , T.J. 1911. Rafinesque: a sketch of h i s l i f e with bibliography. H i s t o r i c a l Dept. of Iowa, Des Moines. Funk, V.A. and T.F. Stuessy. 1978. C l a d i s t i c s f o r the p r a c t i c i n g plant taxonomist. Syst. Bot. 3: .159-178. Gardiner, B.G. et d . 1979. The salmon, the lu n g f i s h and the cow: a reply. Nature 277: 175-176. Gorenflot, R. 1971. Interet taxinomique et phylogenique des caracteres stomatiques ( a p p l i c a t i o n a l a t r i b u des Saxifragees). B o i s s i e r a 19: 181-192. Gorenflot, R. and F. Moreau. 1970. Types stomatiques et phylogenie des Saxifraginees (Saxifragacees). C.R. Acad. S c i . , Paris 270: 2802-2805. Gornall, R.J. and B.A. Bohm. 1978. Angiosperm flavonoid evolution: a re a p p r a i s a l . Syst. Bot. 3: 353-368. Graenicher, S. 1907. Wisconsin flowers and t h e i r p o l l i n a t i o n . II.- Saxifrag-aceae and Grossulariaceae. B u l l . Wis. Nat. H i s t . Soc. I I . 5: 84-95. Graham, A. 1972. Outline of the o r i g i n and h i s t o r i c a l recognition of f l o r -i s t i c a f f i n i t i e s between Asia and eastern North America. In: A. Graham (ed.) F l o r i s t i c s and p a l e o f l o r i s t i c s of Asi a and eastern North America. E l s e v i e r , New York. Grant, V. 1971. Plant s p e c i a t i o n . Columbia Univ. Press, New York. Graustein, J.E. 1967. Thomas N u t t a l l , n a t u r a l i s t ; explorations i n America 1808-1841. Harvard Univ. Press, Cambridge. Gray, A. 1842. Notes of a botanical excursion.to the mountains of North Carolina etc.; with some remarks on the botany of the higher Alleghany Mountains. Amer. J . S c i . 42: 1-49. Gray, A. 1867. Characters of new plants of C a l i f o r n i a and elsewhere p r i n c i -p a l l y of those c o l l e c t e d by H.N. Bolander i n the State Geological Survey. Proc. Amer. Acad. Arts S c i . 7: 327-401. Gray, A. 1872. Botanical contributions I I . Determination of a c o l l e c t i o n of plants made i n Oregon by E l i h u H a l l during the summer of 1871, with char-acters of some new species and various notes. Proc. Amer. Acad. Arts S c i . 8: 365 - 4 1 2 . Gray, A. 1876. Saxifragaceae. In: Botany of C a l i f o r n i a 1. Welch, Bigelow & Co., Univ. Press, Cambridge, Mass. Gray, A. 1878. Contributions to the botany of North America. Proc. Amer. Acad. Arts S c i . 13: 361-374. 260 Gray, A. 1879. Botanical contributions. Proc. Amer. Acad. Arts S c i . 15: 25-52. Green, M.L. 1940. XII. A d d i t i o n a l nomina generica conservanda (Pteridophyta and phanerogamae). Kew B u l l . 1940: 81-132. Greene, E.L. 1891. F l o r a franciscana. San Francisco. Greene, E.L. 1894. Manual of the botany of the region of San Francisco Bay. Cubery & Co., San Francisco. G r i f f i t h s , G.C.D. 1972. Studies on boreal Agromyzidae (Diptera) 1. Phytomyza miners on Saxifragaceae. Quaest. Entomol. 8: 67-80. Grisebach, A.H.R. 1879. Symbolae ad floram argentiniam. Zweite bearbeitung argentinischer pflanzen. Abhandl. Kon. G e s e l l . Wiss. Gottingen 24.: 3-345. Gunther, E. 1973. Ethnobotany of western Washington. The knowledge and use of indigenous plants by native Americans. Revised ed., Univ. Washington Press, Se a t t l e . Hadac, E. 1961. Ants as p o l l i n a t o r s of pl a n t s . Treatises concerning the Tatra National Park, B r a t i s l a v a 4: 255-256. Halstead, L.B. 1978. The c l a d i s t i c revolution - can i t make the grade? Nature 276: 759-760. Halstead, L.B., E.I. White and G.T. Maclntyre. 1979. Reply to "The salmon, the l u n g f i s h and the cow: a re p l y " . Nature 277: 176. Hamel, J.L. 1948. Notes preliminaires a une etude .caryologique des Saxif-: v;.ragaeees. 1. Les chromosomes de Peltiphyllum peltatum (Torr.) Engl, et de Boykinia tellimoides (Maxim.) Engl. B u l l . Mus. H i s t . Nat. Pa r i s I I . 20: 198-200. Hamel, J.L. 1953. Contribution a l'etude cyto-taxinomique des Saxifragacees. Rev. C y t o l . et B i o l . Veg. 14: 113-313. Hamel, J.L. 1958. Materiaux pour I* "etude caryo-taxinomique des Saxif ragacees. 5. Le noyau et les chromosomes somatiques du Bolandra oregana S. Wats. B u l l . Mus. H i s t . Nat; Paris I I . 30: 522-524. Hara, H. 1937. Two new genera of Saxifragaceae i n Japan. Bot. Mag., Tokyo 51: 250-253. Hara, H. 1957. Synopsis of the genus Chrysosplenium L. J , Fac. S c i . Univ. Tokyo I I I . 7: 1-90. Hara, H. 1958. D i s t r i b u t i o n maps of flowering plants i n Japan 1. Inoue Book Co., Tokyo. Hara, H. 1959. An out l i n e of the phytogeography of Japan. In: H. Hara, D i s t r i b u t i o n maps of flowering plants i n Japan.2. Inoue Book Co., Tokyo. Harrington, H.D. 1954. Manual of the plants of Colorado. Sage Books, Denver. Heath, R.A. 1964. C o l l e c t o r s ' a l p i n e s . C o l l i n g r i d g e , London. 261 Hedberg, 0. 1958. The taxonomic treatment of v i c a r i o u s taxa. Uppsala Univ. Arsskr. 6: 186-195. H e l l e r , A.A. 1900.. Catalogue of North American plants north of Mexico, exclusive of the lower cryptogams, ed. 2. H e l l e r , A.A. 1904. Western species, new and old - I I . Muhlenbergia 1: 47-62, Henry, J.K. 1915. F l o r a of southern B r i t i s h Columbia and Vancouver Island. W.J. Gage & Co., Toronto. Heslop-Harrison, J . 1975. Incompatibility and the pollen-stigma i n t e r a c t i o n . Ann. Rev. Plant P h y s i o l . 26: 403-425. Heslop-Harrison, Y. and K.R. Shivanna. 1977.. The receptive surface of the angiosperm stigma. Ann. Bot. 41: 1233-1258. Hickey, L.F. .1973. C l a s s i f i c a t i o n of the architecture of dicotyledonous leaves. Amer. J . Bot. 60: 17-33. Hideux, M.J. and I.K. Ferguson.'1976. The stereostfucture of the exine and i t s evolutionary s i g n i f i c a n c e i n Saxifragaceae sensu l a t o . In: I.K. Ferguson and J . Muller . (eds.) The evolutionary s i g n i f i c a n c e of the exine. Linn. Soc. Symp. Ser. 1. Academic Press, London. Hitchcock, C.L., A. Cronquist, M. Ownbey and J.W. Thompson. 1961. Vascular plants of the P a c i f i c Northwest 3. Univ. Washington Press, S e a t t l e . Holmgren, P.K. and W. Keuken. 1974. Index herbariorum. Part 1: The herbaria of the world. 6th ed. Oosthoek, Scheltema & Holkema, Utrecht. Hooker, W.J; 1832. F l o r a Boreali-Americana 1. Hooker, W.J. and G.A.W. Arnott. 1832. The botany of Captain Beechey's voyage. 1841. J . Cramer, Weinheim (r e p r i n t 1965). Howell, T. 1903. A f l o r a of northwest America. 1. Phanerogamae. Portland, Oregon. Ruber, H. 1963. Saxifragaceae. In: G. Hegi, I l l u s . F l . Mittel-Europa (ed.2) 4: 126-224. Hulten, E. 1945. F l o r a of Alaska and the Yukon 5. Gleerup, Lund. Hulten, E. 1968. F l o r a of Alaska and neighbouring t e r r i t o r i e s . Stanford Univ. Press, C a l i f o r n i a . Ikuse, M. 1956. P o l l e n grains of Japan. Hirokawa Publ. Co., Tokyo. Ishizuka, K. 1974. Mountain vegetation. In: M. Numata (ed.) The f l o r a and vegetation of Japan. E l s e v i e r , New York. Izawa, K., M. Nagai and T. Inoue. 1973. Triterpene acids and bergenin i n Peltoboykinia watanabei and Boykinia l y c o c t o n i f o l i a . Phytochem. 12: 1508. 262 Jay, M. 1969.. Recherches chimiotaxinomiques sur l e s plantes v a s c u l a i r e s . XV. D i s t r i b u t i o n des flavonoides chez.les Saxifragacees sensu s t r i c t o . Trav. Lab. J a y s i n i a , Museum Nat. Paris 3: 111-165. Jay, M. and P. Lebreton. 1965. Recherches chimiotaxinomiques sur l e s plantes v a s c u l a i r e s . I I I . D i s t r i b u t i o n des flavonoides dans l e genre Saxifraga. Mem. B u l l . Soc. Bot. France 1965: 125-139. Jay, M., P. Lebreton.and S. Poncet. 1970. Analyse f a c t o r i e l l e et chimio-taxinomie: a p p l i c a t i o n aux flavonoides des Saxifragacees. Biometrie-Praximetrie 11: 21-33. Jepson, W.L. 1925. A manual of the flowering plants of C a l i f o r n i a . A ssoci-ated Students Store, Univ. C a l i f o r n i a . Jepson, W.L. 1936. A f l o r a of C a l i f o r n i a 2. C a l i f o r n i a School. Book Deposit-ory, San Francisco. Johansen, D.A. 1950. Plant embryology. Chronica Botanica, Waltham, Mass. Johnson, A.W. and J.G. Packer. 1967. D i s t r i b u t i o n , ecology and cytology of the Ogotoruk Creek.flora and the h i s t o r y of Beringia. In: D.M. Hopkins (ed.) The Bering land bridge. Stanford Univ. Press, C a l i f o r n i a . Johnson, A.W. and J.G. Packer. 1968. Chromosome numbers i n the f l o r a of Ogotoruk Greek, NW Alaska. Bot. Notiser 121: 403-456. Johnson, L.A.S. and B.G. Briggs. 1975. On the Proteaceae - t h e evolution and c l a s s i f i c a t i o n of a southern family. Bot. J . Linn. Soc. 70: 83-182. Jones, G.N. 1936. A botanical survey of the Olympic Peninsula, Washington. Univ. Wash. Publ. B i o l . 5: 1-286. Jones, G.N. 1938. The flowering plants and ferns of Mount Ra i n i e r . Univ. Wash. Publ. B i o l . 7: 1-192. Jones, M.E. 1910. Montana botany notes: Saxifraga Jamesii. B u l l . B i o l . S c i . Montana State Univ. 15: 32. Jones, T.M. and P. Albersheim. 1972. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant c e l l w a l l polysaccharides. Plant P h y s i o l . 49: 926-936. Kaplan, K. 1976. Zur Embryologie und Systematik der Gattung Saxifraga. Bot. Jahrb. Syst. 97: 61-71. Kermode, F. 1918- Botany. Rep. Prov. Mus. Nat. H i s t . B.C. 1917: 15-28. Kern, P. 1966. The genus T i a r e l l a i n western North America. Madrono 18: 152 -160. Kevan, P.G. 1972. Insect p o l l i n a t i o n of high a r c t i c flowers. J . E c o l . 60: 831-847. Knaben, G. 1968. Chromosome numbers of flowering plants from Central Alaska. Nytt. Mag. Bot. 15: 240-254. 263 Knuth, P. 1908. Handbook of flower p o l l i n a t i o n , based upon Herman Muller's work "The f e r t i l i s a t i o n of flowers by i n s e c t s " . Translated by J.R.A. Davis. Volume 2. Clarendon Press, Oxford. Krach, J.E. 1976. Samenanatomie der R o s i f l o r e n 1. Die Samen der Saxifragaceae. Bot. Jahrb. Syst. 97: 1-60. Kuntze, 0. 1891. Revisio genera plantarum 1. Lanjouw, J. .et al_. 1952. International code of botanical nomenclature adopted by the seventh i n t e r n a t i o n a l b o t a n i c a l congress, Stockholm, July 1950. Reg. Veg. 3: 1-228. Lebegue, A. 1952. Recherches embryoginiques sur quelques dicotyledones d i a l y p e t a l e s . Ann. S c i . Nat. Bot. XI. 13: 1-160. Levan, A., K. Fredga.and A.A. Sandberg. 1965. Nomenclature for centromeric p o s i t i o n on chromosomes. Hereditas 52: 201-220. Levin, D.A. 1973. The r o l e of trichomes i n plant defense. Quart. Rev. B i o l . 48: Lewis, M.C. 1969. Genecological d i f f e r e n t i a t i o n of l e a f morphology i n Geranium sanguineum L. New Phytol. 68: 481-503. Lozina-Lozinskaya, A.S. 1939. Saxifragoideae. In: V.L. Komarov (ed.) F l o r a of the U.S.S.R. 9: 106-169. Izd. Akad. Nauk SSSR, Moscow. Lundqvist, A. 1975. Complex s e l f - i n c o m p a t i b i l i t y systems i n angiosperms. Proc. R. Soc. Lond. B. 188: 235-245. Mabry, T.J., K.R. Markham and M.B. Thomas. 1970. The systematic i d e n t i f i -cation of flavonoids. Springer-Verlag, New York. MacGinitie, H.D. 1974. An early middle eocene f l o r a from the Yellowstone-Absaroka volcanic province, northwestern Wind River Basin, Wyoming. Univ. C a l i f . Publ. Geol. S c i . 108: 1-103. Macoun, J.M. 1883. Catalogue of Canadian plants. Part 1: Polypetalae. Dawson Bros., Montreal. Macoun, J.M. 1896. Contributions to Canadian botany. Can. Rec. S c i . 6: 405-415. Maekawa, F. 1974. O r i g i n and c h a r a c t e r i s t i c s of Japan's f l o r a . In: M. Numata (ed.) The f l o r a and vegetation of Japan. E l s e v i e r , New York. Makino, T. 1901.' Saxifraga tellimoides Maxim, var. Watanabei (Yatabe) Makino Bot. Mag., Tokyo 15: 12. Makino, T. 1926. Boykinia Watanabei (Yatabe) Makino. J . Jap. Bot. 3: 13-14. Matsumura, J . 1912. Boykinia l y c o c t o n i f o l i a . Ind. P l . Jap. I I . 2: 172. Maximowicz., C.J. 1871. Saxifraga t e l l i m o i d e s . B u l l . Acad. Imp. S c i . St. Petersb. I I I . 16: 215-216. 264 Maximowicz, C.J. 1886. . Saxifraga. l y c o c t o n i f o l i a . B u l l . Acad. Imp. S c i . St. Petersb. 31: 41-42. McClure, J.W. 1975. Physiology and functions of flavonoids. In: J.B. Harborne e_t aJL. (eds.) The flavonoids. Chapman & H a l l , London. Mears, J.A. and T.J. Mabry. 1972. A procedure for the UV detection of hydroxyl and methoxyl groups at C6 i n flavones and 3-0-substituted f l a v o n o l s . Phyochem..11: 411-412. M e r r i l l , E.D. 1949. Index Rafinesquianus. Arnold Arboretum, Mass. Metcalfe, C.R. and L. Chalk. 1950. Anatomy of the dicotyledons 2. Clarendon Press, Oxford. M i l l e r , J.M. and B.A. Bohm. 1979. Flavonoids of Leptarrhena p y r o l i f o l i a . Phytochem. 18: 1412-1413. M i l l e r , J.M. and B.A. Bohm. 1980. Flavonoid v a r i a t i o n i n some North American Saxifraga species. Biochem. Syst. E c o l . 8: ( i n press). M i l l e r , N.G; and G.G. Thompson. 1979. Boreal and western North American plants i n the l a t e Pleistocene of Vermont. J . Arnold Arb. 60: 167-218. Millspaugh, C F . 1892. -Preliminary catalogue of the f l o r a of West V i r g i n i a . B u l l . W. Va.' Univ. A g r i c . Exp. Sta. 2: Moreau, F. 1971. Apport des caracteres stomatiques a l a taxinomie et 5.1a phylogenie des Saxifragees. B u l l . Soc. Bot. France 118: 381-428. Moreau, F. 1976. Types stomatiques et trichome f o l i a i r e des Saxifragoid^es (Saxifragacies). Rev. C y t o l . et B i o l . V6g. 39: 329-341. Moss, E.H. 1959. F l o r a of Alberta. Univ. Toronto Press, Toronto. Munz, P.A. 1959. A C a l i f o r n i a f l o r a . Univ. C a l i f o r n i a Press, Berkeley. Murie, A. 1944. The wolves of Mount McKinley. Fauna of the Nat. Parks of U.S., Fauna Series No. 5, U.S. Govt. P r i n t i n g O f f i c e , Washington. N u t t a l l , T. 1834. Boykinia. J . Acad. Nat. S c i . P h i l a d . 7: 113-114. N u t t a l l , T. 1840. Boykinia t r i s p o r a Nutt. ex Am. Hook. J . Bot. ,3: 276. Ohwi, J . 1965. F l o r a of Japan. Smithsonian Inst., Washington. Omduff, R. 1962. Documented chromosome nunbers of pl a n t s . Madrono 16: 266-268. Ornduff, R. 1969a. Ecology, morphology, and systematics of Jepsonia (Saxifragaceae). B r i t t o n i a 21: 286-298. Ornduff, R. 1969b. Reproductive biology i n r e l a t i o n to systematics. Taxon 18: 121-133. Ornduff, R. 1971. The reproductive system of Jepsonia heterandra. Evolution 25: 300-311. 265 Osterhout, G.E. 1920. Rocky Mountain botany and the Long Expedition of 1820. B u l l . Torr. Bot. Club 47: 555-562. Packer, J.G. 1968. I.O.P.B. Chromosome number reports XVII. Taxon 17: 287. Packer, J.G. 1971. Endemism i n the f l o r a of western Canada. Can. (Que.) 98: 131-144. Packer, J.G. and G.D. McPherson. 1974. Chromosome numbers i n some vascular plants from northern Alaska. Can. J. Bot. 52: 1095-1099. Packer, J.G. and D.H. V l t t . 1974. Mountain Park: a plant refugium i n the Canadian Rocky Mountains. Can. J . Bot. 52: 1393-1409. Panchen, A.L. 1979. The c l a d i s t i c debate continued. Nature 280: 541. Pastre, A. and A. Pons. 1973. Quelques aspects de l a systematique des Saxifragacees § l a lumiere des donnees de l a palynologie. Pol l e n et Spores 15: 117-133. Payne, W.W. 1969. A quick method for c l e a r i n g leaves. Ward's B u l l . 8: 4-5. Peck, M.E. 1934. Three i n t e r e s t i n g new plants from Wallowa County, Oregon. Rhodora 36: 266-268. Peck, M.E. 1941. A manual of the higher plants of Oregon. Binfords & Mort, Portland. Peck, M.E. 1961. A manual of the higher plants of Oregon. Ed. 2. Binfords & Mort, Portland. Piper, C.V. 1899. New and noteworthy northwestern plants - I I I . Erythea 7: 171-174. Piper, C.V. 1906. F l o r a of the state of Washington. Contrib. U.S. Nat. Herb. 11: 1-637. Piper, C.V. and R.K. Beattie. 1915. F l o r a of the northwest coast. New Era P r i n t i n g Co., Lancaster, Pa. Plouvier, V. 1965. Etudes chimiotaxinomiques sur les Saxifragacees. Mem. B u l l . Soc. Bot. France 1965: 150-161. Preece, W.H.A. 1937. North American rock plants (1st s e r i e s ) . Macmillan, New York. Radford, A.E., W.C. Dickison, J.R. Massey and CR. B e l l . 1974. Vascular plant systematics. Harper & Row, New York. Rafinesque, C S . 1817. Review of Pursh's f l o r a . P h i l a d e l p h i a . Rafinesque, C S . 1825. Neogenyton 2. Phil a d e l p h i a . Rafinesque, C S . 1828. Neophyton botanikon. or; new plants of North America. Rafinesque, C S . 1837. F l o r a T e l l u r i a n a . Part 2. 1836. P h i l a d e l p h i a . 266 Rafinesque, C S . 1838. New f l o r a of North America. IV. Neobotanon 1. 1836. P h i l a d e l p h i a . Rafinesque, C S . 1840. Autikon botanikon. Phi l a d e l p h i a . Rajhathy, T. and H. Thomas. 1974. Cytogenetics of oats (Avena L . ) . Misc. Publ. Genet. Soc. Canada, No.2: 1-90. Raven, P.H. 1963. Amphitropical r e l a t i o n s h i p s i n the f l o r a s of North and South America. Quart. Rev. B i o l . 38: 151-177. Raven, P.H. 1972. Plant species di s j u n c t i o n s : a summary. Ann. Missouri Bot. Gard. 59: 234-246. Rosendahl, CO. 1905. Die nordamerikanischen Saxifraginae und ihre Verw-andtschafts-verhaltnisse i n Beziehung zu. i h r e r geographischen V e r b r e i -tung. Bot. Jahrb. Syst. 37, B e i b l . 83: 1-87. Rosendahl, CO. 1927. A r e v i s i o n of the genus S u l l i v a n t i a . Res. Publ. Univ. Minn. Stud. B i o l . S c i . 6: 401-427. Rosendahl, CO., F.K. Butters and 0. Lakela. 1936. A monograph on the genus Heuchera. Minn. Stud. Plant S c i . 2. Rothrock, J.T. 1868. Sketch of the f l o r a of Alaska. Ann. Rep. Board Reg. Smithsonian Inst. 1867: 433-463. Rouse, G.E. and W.H. Mathews. 1980. T e r t i a r y geology and palynology of the Quesnel area, B r i t i s h Columbia, ( i n press). Rydberg, P.A. 1897. R a r i t i e s from Montana - I I . B u l l . Torr. Bot. Club 24: 243-258. Rydberg, P.A. 1905. Saxifragaceae (pars) . N. Am. F l o r a 22: 81-158. Sastry, B.S. and E.,V. Rao. 1977. Chemical examination of A s t i l b e r i v u l a r i s . Ind. J . Chem. 15B: 494-495. Sav i l e , D.B.O. 1961. Evolution of Saxifragaceae from a mycologists's viewpoint. Rec. Adv. Bot. 1: 169-172. Sav i l e , D.B.O. 1975. Evolution and biogeography of Saxifragaceae with v guidance from t h e i r rust p a r a s i t e s . Ann. Missouri Bot. Gard. 62: 354 -361. Savile, D.B.O. 1976. Conimitella (Saxifragaceae) and i t s r u s t . Can. J . Bot. 54: 1977-1978. Sav i l e , D.B.O. 1979. Fungi as aids i n higher plant c l a s s i f i c a t i o n . Bot. Rev. 45: 377-503. Sav i l e , D.B.O. and H.N, Hayhoe. 1978. The p o t e n t i a l e f f e c t of drop s i z e on e f f i c i e n c y of splash-cup and springboard d i s p e r s a l devices. Can. J. Bot. 56: 127-128. Scoggan, H.J. 1978. The f l o r a of Canada 3. Nat. Mus. Canada, Ottawa. 267 Skovsted, A. 1934. C y t o l o g i c a l studies i n the t r i b e Saxifrageae. Dansk. Bot. Ark. 8: 1-52. Small, J.K. 1905. Saxifragaceae (pars). N. Am. F l o r a 22: 81-158. Small, J.K. and P.A. Rydberg. 1905. .Saxifragaceae. N. Am. F l o r a 22: 81-158. S o l t i s , D.E. 1980. Flavonoids.of S u l l i v a n t i a : taxonomic implications at the generic l e v e l within the Saxifraginae (Saxifragaceae). Biochem. Syst. E c o l . 8: ( i n press). Spongberg, S.A. 1972. The genera of Saxifragaceae i n the southeastern United States. J . Arnold Arb. 53: 409-498. Stebbins, G.L. 1950. Variation, and evolution i n plants. Columbia Univ. Press, New York. Stebbins, G.L. 1971. Chromosomal v a r i a t i o n i n higher plants. Arnold, London. Stebbins, G.L. 1974. Flowering plants. Evolution above the species l e v e l . Belknap Press, Cambridge, Mass. Stuckey, R.L. 1971. The f i r s t p u blic auction of an American herbarium including an account of the fate.of the Baldwin, C o l l i n s and Rafinesque herbaria. Taxon 20: 443-459. Swales, D.E. 1979. Nectaries of c e r t a i n a r c t i c and sub-arctic plants with notes on p o l l i n a t i o n . Rhodora 81: 363-407. Takeda, H. 1911.. The saxifrages of Yezo and the K u r i l e Islands. Lond. J . Bot. 49: 109-115. Taylor, R.L. 1965. The genus Lithophragma (Saxifragaceae). Univ. C a l i f . Publ. Bot. 37: 1-122. Taylor, R.L. and B. MacBryde. 1977. Vascular plants of B r i t i s h Columbia: a d e s c r i p t i v e resource inventory. Bot. Gard. U.B.C., Tech. B u l l . 4., U.B.C. Press, Vancouver. Tolmachev, A.I. 1959. Der autochthone Grundstock der arktischen F l o r a und ihre Beziehung zu den Hochgebirgsfloren Nord- und Zentralasiens. Bot. Tiddskr. 55: 269-276. Tolmachev, A.I. 1966, (Ed.). Vascular plants of the Siberian north and the northern f a r east. Izd. Nauk, Moscow (Transl. 1969, I s r a e l Prog. S c i . Trans., Jerusalem). Torrey, J . 1827. Plants c o l l e c t e d during a journey to.the Rocky Mountains. Ann. Lyc. Nat. H i s t . New York 2: 204. Torrey, J . and A. Gray. 1840. A f l o r a of North America 1. C a r v i l l & Co., New York. 268 Valentine, D.H. 1953.. Evolutionary aspects of species differences i n Primula. Symp. Soc. Exp. B i o l . 7: 146-158. Wakabayashi, M. 1970. On the a f f i n i t y i n Saxifragaceae s. l a t o with s p e c i a l reference to the po l l e n morphology. Acta Phytotax. Geobot. 24: 128-145. Walker, J.A. and J.A. Doyle. 1975. The bases of angiosperm phylogeny: palynology. Ann. Missouri Bot. Gard. 62: 664-723. Watson, S. 1879a. Contributions to American botany I I . Descriptions of some new species of North American plants. Proc. Amer. Acad. Arts S c i . 14: 288-303. (Bolandra oregana). Watson, S. 1879b. as 1879a - ( S u l l i v a n t i a oregana). Weber, W.A. 1953. Handbook of plants of the Colorado Front Range. Univ. Colorado Press, Boulder. Wells, E.F. 1977. A taxonomic study of the genus Heuchera i n eastern North America. Ph.D. thesi s , Univ. North Carolina, Chapel H i l l . Wells, E.F. 1980. I n t e r s p e c i f i c h y b r i d i z a t i o n i n eastern North American Heuchera. Syst. Bot. ( i n press). Wheelock, W.E. 1896. A l i s t of species of the smaller herbaceous genera of North American Saxifragaceae. B u l l . Torr. Bot. Club 23: 67-78. White, H.A. 1974, (ed.) The Alaska-Yukon wild flowers guide. Alaska N.W. Publ. Co., Anchorage. Whitehead, D.R. 1972. Approaches to disjunct populations: the contribution of palynology. Ann. Missouri Bot. Gard. 59: 125-137. Wilkins, C K . and B.A. Bohm. 1976. Chemotaxonomic studies i n the S a x i f r -agaceae s . l . 4. The flavonoids of Heuchera micrantha var. d i v e r s i f o l i a . Can. J . Bot. 54: 2133-2140. Wilkins, D.A. and M.C. lewis. 1969. An a p p l i c a t i o n of ordination to genecology. New Phytol. 68: 861-871. Wolfe, J.A. 1969. Neogene f l o r i s t i c and vegetational h i s t o r y of the P a c i f i c Northwest. Madrono;20: 83-110. Wolfe, J.A. 1978. A paleobotanical i n t e r p r e t a t i o n of T e r t i a r y climates i n the northern hemisphere. Amer. Sci.. 66: 694-703. Wolfe, J.A., J.A. Doyle and V.M. Page. 1975. The bases of angiosperm phylogeny: paleobotany. Ann. Missouri Bot. Gard. 62: 801-824. Wolfe, J.A. and E.B. Leopold. 1967. Neogene and early quaternary vegetat-ion of northwestern North America, and northeastern A s i a . In: D.M. Hopkins (ed.) The Bering land, bridge. Stanford Univ. Press, C a l i f o r n i a . 269 Wood, C E . 1971. Some f l o r i s t l c r e l a t i o n s h i p s between the' southern Appalachians and western North America. In: P.C. Holt (ed.) The d i s t r i b u t i o n a l h i s t o r y of the b i o t a of the southern Appalachians. I I . F l o r a . Res. Div. Monogr. 2, V i r g i n i a Polytech. Inst. State Univ., Blacksburg, V i r g i n i a . Wood, C E . 1972. Morphology and.phytogeography: the c l a s s i c a l approach to the study of di s j u n c t i o n s . Ann. Missouri Bot. Gard. 59: 107-124. Yatabe, R. 1892. New or l i t t l e known plants of Japan. Bot. Mag., Tokyo 6: 6-8, 43-45. Yeo, P.F. 1966. A r e v i s i o n of the genus Bergenia Moench (Saxifragaceae). Kew B u l l . 20: 113-148. Yeo, P.F. 1971. Further observations on Bergenia i n c u l t i v a t i o n . Kew B u l l . 26: 47-56. 270 APPENDIX 1. D e t a i l s of c o l l e c t i o n s and herbarium locations of plant material c i t e d i n the study. A l l c o l l e c t i o n s are housed at UBC except where noted. Bolandra c a l i f o r n i c a A. Gray Sharsmith 3676, 24 July 1938, Jack Main Canyon, Tuolumne Co., C a l i f o r n i a (WS). Bolandra oregana Wats. Gornall 260, 18 May 1978, Oneonta Gorge, Multnomah Co., Oregon. Gornall 262, 18 May 1978, Multnomah F a l l s , Multnomah Co., Oregon. Gornall 340, 21 June 1979, Meadow Creek, 2ml S of Selway F a l l s , Idaho Co., Idaho. Henderson s.n., 29 July 1896, Hood River, Oregon (WS). Nelson 2552, 24 May 1919, Oswego Lake, Clackamas Co., Oregon (WS). Ownbey & Keck 3153, 30 May 1948, Buford Creek, Asotin Co., Washington (WS). Ownbey & Ownbey 2752, 10 June 1946, Grave Creek Canyon, near Cottonwood, Idaho Co., Idaho ;(WS). Piper 5721, 26 June 1904, Cape Hows, Washington (WS) Boykinia a c o n i t i f o l i a Nutt. Barksdale & Jennison 3172, 28 July 1936, Bushnell-Proctor Rd., Ravensford, Swain Co., Tennessee (TENN). Cloyd s.n., 8 July 1951, Morgan Co., Tennessee (TENN). Gornall 342, 8 July 1977, Chatooga River, Macon Co., North Carolina. H a r v i l l & Segars 11, 27 June 1949, 5mi E of Double Springs, Winston Co., Alabama (UNA). H a r v i l l & Segars 25, 3 July 1949, Dismal F a l l s , F r a n k l i n Co., Alabama (UNA). H a r v i l l & Segars 48, 10 July 1949, Curry, Walker Co., Alabama (UNA). H a r v i l l & Segars 143, 29 August 1949, Kinlock F a l l s , Lawrence-Winston Co. boundary, Alabama (UNA). K r a i 35423, 11 July 1969, Williams Creek, Marion Co., Alabama (UNA). Massey 3522, 29 June 1973, 3mi N of Mountain Lake B i o l o g i c a l Station, G i l e s Co., V i r g i n i a (UNC). McFarland & James s.n., 27 July 1941, Cumberland F a l l s , McCreary Co., Kentucky (TENN). Radford 44952, 12 July 1966, Blue Ridge Parkway x NC 18 junction, Alleghany Co., North Carolina (UNC). Shanks et a l . 4348, 27 June 1947, Richland Creek v a l l e y above Dayton, Rhea Co., Tennessee (UNC). S o l t i s 1046, 26 June 1978, B i o l o g i c a l Station, Mountain Lake, Gil e s Co., V i r g i n i a (IND). Boykinia heucheriformis (Rydb.) Rosend. Clokey 7963, 3 August 1938, Charleston Mts., Clark Co., Nevada (UTC). Gornall 115, 19 June 1977, Charleston Peak, Clark Co., Nevada. Gornall 132, 22 June 1977, White Pine Lake, Cache Co., Utah. Gornall 193, 24 June 1977, Pine Creek Lake, Park Co., Montana. Gornall 194, 24 June 1977, Pine Creek F a l l s , Park Co., Montana. Gornall 198, 25 June 1977, Gibson Dam, Lewis & Clark Co., Montana. Gornall 344, 31 July 1979, Miette Hot Springs, near Jasper, A l b e r t a . Hitchcock 18016, 4 July 1948, Gibson Dam, Lewis & Clark Co., Montana (RM). Macguire 14046, 17 July 1936, White Pine Lake, Cache Co., Utah (RM). McCalla 7084, 4 July 1942, Miette Hot Springs, Jasper, Alberta (ALTA). Taylor & G i l l e t t 4726, 29 June 1962, 28mi NE of A t l a n t i c C i t y , Fremont Co., Wyoming (DAO). 271 Boykinia intermedia (Piper) G.N. Jones Gornall 23, 22 July 1978, Humptulips River, Grays Harbor Co., Washington. Gornall 24, 1 June 1977, Nemah, P a c i f i c Co., Washington. Jones 8411, 9 September 1935, Stevens Creek, Grays Harbor Co.,-Washington (WS) . Otis 1317, 27 July 1924, Clearwater t r a i l , Jefferson Co., Washington (WS). Wiggins 9453, 23 June 1940, Hoh River, Jefferson Co., Washington (RM). Boykinia jamesii (Torr.) Engl. G i l l e t t & Mosquiri 12114, 23 July 1963, Pikes Peak, E l Paso Co., Colorado (DAO). Jones 955, Chiann Canyon, Colorado (UTC). Payson 1564, 1 August 1919, Mt. Manitou, Colorado (RM). Boykinia l y c o c t o n i f o l i a (Maxim.) Engl. Kanai s.n., 3 September 1954, Azumi-mura, Minamiazumi-gun, Nagano Pref., Honshu (TI). Nagai s.n., 2 August 1956, Mt. Zogatake, Kurobe-shi, Toyama Pref., Honshu (TI) . Ohba et a l . 73099, 6-9 August 1973, Iide Mt. range, Honshu (TI). Sato s.n., 10 August 1977, Oshirakawa, Shirakawa —mura, Ohno—gun, Gifu Pref., Honshu (TI). Sugawara s.n., 31 July 1979, Mt. Iide-san, Yamagata Pref., Honshu (MAK). Boykinia major A. Gray Detling 3469, 6 August 1938, Lake Creek, Lane Co., Oregon (WS). Everett & B a l l s 22043, 11 July 1956, Arnold, Calaveras Co., C a l i f o r n i a (WS). Gornall 38, 4 June 1977, upper Rogue River, Douglas Co., Oregon. Gornall 45, 5 June 1977, Rogue River, Jackson Co., Oregon. Gornall 55, 7 June 1977, lmi W of Bolan Lake, Josephine Co., Oregon. Gornall 60, 7 June 1977, Bolan Lake, Josephine Co., Oregon. Gornall 92, 13 June 1977, S Fork American River, Eldorado Co., C a l i f o r n i a . Gornall 202, 26 June 1977, Lolo Pass, Missoula Co., Montana. Gornall 207, 27 June 1977, Lochsa River, Powell, Idaho Co., Idaho. Gornall 212, 27 June 1977, Confluence of Three Devils Creek with Clearwater River, Idaho Co., Idaho. Gornall 335/337, 20 June 1979, Confluence of R a c k l i f f Creek with Selway River, Idaho Co., Idaho. Hitchcock & Muhlick 15391, 14 August 1946, Trappers Peak, R a v a l l i Co., Montana (WS). Howell 983, September 1886, near S i l v e r t o n , Oregon (WS). Parks 24191, August 1941, S Fork Smith River, Del Norte Co., C a l i f o r n i a (WS). Piper s.n., 6 August 1918, S i l v e r t o n , Oregon (WS). Wilson 116, 10 July 1941, St. Maries River, Shoshone Co., Idaho (WS). Boykinia o c c i d e n t a l i s Torr. & Gray Bohm 1102, Mt. Fromme, North Vancouver, B.C. Bohm & Schofield 1293, 4 June 1979, Saddle Mt., Clatsop Co., Oregon. Gornall 1, 19 October 1976, Capilano Canyon, North Vancouver, B.C. Gornall 2, 2 January 1977, Mountain Highway, North Vancouver, B.C. Gornall 8, 4 May 1977, Second Lake, Nanaimo Lakes, Vancouver Island, B.C. Gornall 22, 31 May 1977, Hoh River, Jefferson Co., Washington. Gornall 25, 1 June 1977, Ecola State Park, Clatsop Co., Oregon. Gornall 27, 2 June 1977, Cape Meares, Tillamook Co., Oregon. Gornall 29, 2 June 1977, Cape Perpetua, L i n c o l n Co., Oregon. 272 Boykinia o c c i d e n t a l i s Torr. & Gray cont'd. Gornall 54, 6 June 1977, Oregon Caves, Josephine Co., Oregon. Gornall 65, 7 June 1977, Indian Creek, Happy Camp, Siskiyou Co., C a l i f o r n i a . Gornall 86, 10 June 1977, King Mts., near Mendocino Co. boundary, Humboldt Co., C a l i f o r n i a . Gornall 216, 29 June 1977, Snoqualmie F a l l s , King Co., Washington. Gornall 227, 21 July 1977, Mt. Fromme, North Vancouver, B.C. Gornall 255, 16 May 1978, Cape Perpetua, L i n c o l n Co., Oregon. Gornall 256, 16 May 1978, Elk River, Curry Co., Oregon. Howe s.n., 22 June 1952, Santa Lucia Mts., Monterey Co., C a l i f o r n i a (SD). Meyer 1000, 6 August 1937, Mt. Colonel Bob, Grays Harbor Co., Washington (WS). Straley 1753, 13 May 1978, Gasquet, Del Norte Co., C a l i f o r n i a . Szczawinski s.n., 19 June 1963, Tlupana River, Nootka, Vancouver I s . , B.C. Boykinia r i c h a r d s o n i i (Hook.) Rothrock Anderson & Brown 10120, 7 July 1946, Clearwater Creek, Slana-Tok hwy, Alaska (CAN). Argus & Chunys 5195, 14 July 1966, Meade River, Alaska (CAN). Gornall 271, 15 June 1978, Mt. Wright, McKinley Park, Alaska. Gornall 272, 16 June 1978, Highway Pass, McKinley Park, Alaska. Gornall 302, 23 June 1978, mi 64 Denali Hwy., Alaska. Gornall 303, 24 June 1978, mi 90 Denali Hwy., Alaska. Gornall 306, 24 June 1978, Canyon.Creek, Denali Hwy., Alaska. Greene 333, 5 July 1973, 90mi NW of Dawson C i t y , Yukon (ALTA). Guppy s.n., 17 July 1976, mi 98 Denali Hwy., Alaska. Packer 2099, 10:July 1962, Ogotoruk.Creek, NW Alaska (ALTA). Parmelee 2819, 16 J u l y 1963, Komakuk Beach, Yukon. P o r s i l d & P o r s i l d 1367, 6-10 August 1926, A n v i l Mt., Nome, Alaska (CAN). Raup & Raup 12796, 12 August 1944, Nutzotin Mts., Alaska (CAN). Spetzman 689, 14 July 1948, Lake Peters, Alaska (CAN). Spetzman 2739, 14 J u l y 1949, 151 25'W x 68 17'N, Alaska (CAN). Spetzman 5038, 8 July 1963, Kechumstuk Mt., near Chicken, Alaska (CAN). Boykinia r o t u n d i f o l i a Parry Gornall 98, 16 June 1977, near C r y s t a l Lake, Los Angeles Co., C a l i f o r n i a . Gornall 101, 16 June 1977, hwy 39 bridge over N Fork San Gabriel River, Los Angeles Co., C a l i f o r n i a . Gornall 105, 16 June 1977, Icehouse Canyon, near Mt. Baldy, San Bernardino Co., C a l i f o r n i a . Parish 7147, 8 July 1909, Waterman Canon, San Bernardino Mts., C a l i f o r n i a (OSC). Sproul s.n., May 1976, Agua T i b i a Mts., San Diego Co., C a l i f o r n i a (SD). Thome et a l . 40871, 7 July 1971, Grapevine Spring, San Gabriel Mts., San Bernardino Co., C a l i f o r n i a (SD). Jepsonia heterandra Eastw. Ornduff 5072, Bagby, Mariposa Co., C a l i f o r n i a (UC). Jepsonia p a r r y i (Torr.) Small Cromwell 709, 15 February 1972, Los Alamos Canyon, Riverside Co., C a l i f o r n i a (RSA) . Mulroy s.n., spring 1973, Baja C a l i f o r n i a , Mexico (RSA). 273 M i t e l l a d i p h y l l a L. Radford et a l . 9085, 29 A p r i l 1967, near Hotsprings, Madison Co., North Carolina. M i t e l l a t r i f i d a Graham Bohm 1129, 3 June 1977, Clanwilliam Lake, B.C. Peltiphyllum peltatum (Torr.) Engl. Bohm 1201, 16 May 1978., F a l l Creek, L i n c o l n Co., Oregon. Gornall 66, 7 June 1977, Indian Creek, Happy Camp, Siskiyou Co., C a l i f o r n i a . Gornall 67, 7 June 1977, Scott River, Scott Bar, Siskiyou Co., C a l i f o r n i a . Gornall 80, 9 June 1977, Rattlesnake Creek, Forest Glen, T r i n i t y Co., C a l i f o r n i a . Guppy s.n., May 1971, Sixmile Creek near I l l i n o i s River, Oregon. Steward 7438, 11 May 1958, 7mi W of Selma, Josephine Co., Oregon. Peltoboykinia tellimoides (Maxim.) Hara ssp. tellimoides Gornall 328, 30 A p r i l 1980, ex J.W. Goethe Uni v e r s i t y Botanic Garden, Frankfurt, Germany. Ito s.n., 1931, Mt. Nahimushi-yama, Tochigi Pref., Honshu (TI). Maekawa s.n., May 1935, Mt. Mitake, Tokyo (TI). Mizushima s.n., 12 August 1952, Hanaishi-Urami F a l l s , Nikko, Tochigi Pref., Honshu (TI). Peltoboykinia tellimoides ssp. watanabei (Yatabe) Gornall Gornall 343, 30 A p r i l 1980, ex J.W. Goethe Uni v e r s i t y Botanic Garden, Frankfurt, Germany. Nippon Shinyaku Botanic Garden (ungerminated seeds) . Shimozono s.n., 19 July 1970, Tengu-kogen, Higashitsuno-mura, Kochi Pref., Shikoku (TI). Yamazaki s.n., 17 October 1955, Mt. Kujyu, Miyazaki Pref., Kyushu (TI). Saxifraga adscendens L. Pojar s.n., 19 July 1975, Gladys Lake, B.C. Saxifraga aizoides L. Beamish et a l . 730369, 9 Ju l y 1973, Good Hope Lake near Cassiar, B.C. Saxifraga aizoon Jacq. Garton 15349, 15 October 1972, Ouimet Canyon, Thunder Bay, Ontario. Saxifraga b r o n c h i a l i s L. Gornall 289, 22 June 1978, Rainbow Mt., 26mi N of Paxson, Alaska. Saxifraga bryophora A. Gray Sharsmith 4556A, 31 July 1955, Deadhorse Lake, Madera Co., C a l i f o r n i a . Saxifraga caesia L. Frey s.n., 28 July 1967, mons Kopienic W i e l k i , Tatra Mts., Poland. 274 Saxifraga caespitosa L. Gornall 325, 22 July 1978, Hurricane Ridge, Clallam Co., Washington. Saxifraga c a l i f o r n i c a Greene M i l l e r 766, 19 A p r i l 1979, Lower Kings River Canyon, Fresno Co., C a l i f o r n i a . Saxifraga cernua L. Gornall 288, 22 June 1978, Rainbow Mt., 26mi N of Paxson, Alaska. Gornall 319, 26 June 1978, Hatcher Pass area, near Palmer, Alaska. Saxifraga chrysantha A. Gray Pennard s.n., summer 1891, Colorado. Saxifraga cotyledon L. Alava & Alho 9517, 20 July 1971, S l e t t a f j e l l t f j e l d , Mo-i-Rana d i s t r i c t , Nordland, Norway. Saxifraga e s c h s c h o l t z i i Sternb. Gornall 291, 22 June 1978, Rainbow Mt., 26mi N of Paxson, Alaska. Saxifraga ferruginea Graham Gornall 324, 28 June 1978, Penguin Peak, 25mi S of Anchorage, Alaska. Saxifraga h i e r a c i f o l i a Waldst. Gornall 292, 22 June 1978, 10ml W of Paxson, Alaska. Saxifraga l y a l l i i Engl. Gornall 294, 22 June 1978, Rainbow Mt., 26mi N of Paxson, Alaska. Gornall 297, 23 June 1978, mi 63.7 Denali Hwy., Alaska. Saxifraga mertensiana Bong. M i l l e r 764, 14 A p r i l 1979, Mayer State Park, Wasco Co., Oregon. Saxifraga n u t t a l l i i Small Bohm 1289, 4 June 1979, Saddle Mt., Clatsop Co., Oregon. Saxifraga o c c i d e n t a l i s Wats. Gornall 334, 27 A p r i l 1979, Saddle Rock, near Yale, B.C. Saxifraga o p p o s i t i f o l i a L. Gornall 284, 21 June 1978, Donelly Creek, 36mi S of Delta Jet., Alaska. Saxifraga punctata auct. non L. Gornall 298, 23 June 1978, mi 63.7 Denali Hwy, Alaska. Gornall 318, 26 June 1978, Hatcher Pass area, near Palmer, Alaska. Saxifraga r e f l e x a Hook. Gornall 287, 22 June 1978, Rainbow Mt., 26mi N of Paxson, Alaska. 275 Saxifraga t o l m i e l Torr. & Gray Bohm 1372, Mt. Strachan, Cypress P r o v i n c i a l Park, B.C. • Saxifraga t r i c u s p i d a t a Rottb. Gornall 286, 22 June 1978, Rainbow Mt., 26mi N of Paxson, Alaska. Gornall 316, 26 June 1978, Hatcher Pass area, near Palmer, Alaska. Suksdorfia alchemilloides (Griseb.) Engl. F i e b r i g 3161, 22 March 1904, southern B o l i v i a (GH). Sleumer 3533 (LIL) - c i t e d by Hideux & Ferguson (1976) . Sparre 9613 (LIL) - c i t e d by Hideux & Ferguson (1976) . Venturi 3296, 12 March 1924, C h i c l i g a s t a Dept., Tucuman Prov., Argentina (US). Suksdorfia r a n u n c u l i f o l i a (Hook.) Engl. Beamish & Vrugtman 60358, 15 May 1960, K e t t l e F a l l s of, the Columbia River, Washington. Beamish & Vrugtman 60827, 14 July 1960, Blackwall Mt., Manning P r o v i n c i a l Park, B.C. Bohm 1092, 22 May 1976, 12mi E of Stevens Pass, Chelan Co., Washington. Bohm 1096, 6 June 1976, 24mi W of Twisp, Okanogan Co., Washington. Bohm 1132, 4 June 1977, Saddle Rock, 5mi N of Yale, B.C. Bohm 1144, 21 June 1977, Blackwall Mt., Manning P r o v i n c i a l Park, B.C. Gornall 15, 19 May 1977, L i l l o o e t Lake, 16mi S of Mount Currie, B.C. Gornall 245, 14 May 1978, 12mi E of Stevens Pass, Chelan Co., Washington. Gornall 253, 14 May 1978, lower I c i c l e Creek Canyon, Chelan Co., Washington. Gornall 332, 9 May 1979, 6mi N of Fauquier, Lower Arrow Lake, B.C. Hainault 8008, 11 August 1976, Lake Quiniscoe, Cathedral P r o v i n c i a l Park, B.C. Luitjens & Campbell 8, 21 May 1975, Yale Tunnel, Hwy. 1, B.C. Nagy & Blaas 943a, 10 June 1969, Mt. Rowe, Waterton Lakes National Park, Alberta. Suksdorfia v i o l a c e a A. Gray Bohm 1112, 31 May 1977, Crawford Bay, Kootenay Lake, B.C. Bohm 1118, 1 June 1977,.Monroe Lake, S of Cranbrook, B.C. Bohm 1122, 1 June 1977, Fort Steele, B.C. . Calder & Savile 7682, 13 May 1953, Lumberton on Cranbrook-Creston hwy, B.C. Calder & Savile 8732, 5 June 1953, Mara Lake, Sicamous, B.C. Calder & Savile 11306, 1 August 1953, Paradise Mine, 15mi W of Windermere,B.C. Eastham 32, 30 May I960,. Hwy 6 between Fauquier and Burton, B.C. Gornall 248, 14 May 1978, upper I c i c l e Creek Canyon, Chelan Co., Washington. Gornall 252, 14 May 1978, lower I c i c l e Creek Canyon, Chelan Co., Washington., Gornall 330, 7 May 1979, 19rai W of Sheep Lake, B.C. McCalla 6535, 1 June 1941, Mt. Maple, Waterton Lakes National Park, Alberta. Taylor s.n., 24 A p r i l 1958, Nelson, B.C. S u l l i v a n t i a halmicola A. Nelson S o l t i s & Hammond-Soltis 1029, Five Springs F a l l s , Big Horn Co., Wyoming (IND). S u l l i v a n t i a hapemanii (Coulter & Fisher) Coulter Hapeman 3186, 9 September 1906, near Sheridan, Wyoming. S u l l i v a n t i a oregana Wats. Gornall 261, 18 May 1978, Multnomah F a l l s , Multnomah Co., Oregon. 276 APPENDIX 2. Solvent systems and media used i n the thi n - l a y e r chromato-graphic analysis of flavonoid compounds; Ratios are by volume. Polyamide DC 6.6 a) water 70: ethanol 20: n-butanone 10. b) water 70: n-butanol 15: acetone 10: dioxane 5. c) benzene 55: n-butanone 22: methanol 20: water 3. d) dichloroethane 50: n-butanone 25: methanol 21: water 4. e) chloroform 50: a c e t i c acid 20: n-butanone 15: isopropanol 15. f) e t h y l formate 50: cyciohexane 25: n-butyl acetate 23: formic acid 2. S i l i c a Gel a) n-butanone 85: a c e t i c acid 12: water 3. b) n-butyl acetate 60: n-butanone 25: a c e t i c acid 12: water 3.. Cell u l o s e a) water 90: a c e t i c a c i d 10. b) water 85: a c e t i c acid 15. c) et h y l acetate 5: pyridine 1.6: water I f ( f o r sugars on l y ) . 277 APPENDIX 3. UV Spectral absorption maxima (nm) of some of the flavonoids encountered i n Boykinia and a l l i e s . Myrieetin (M) MeOH: NaOAc: A1C1 : Quercetin (Q) MeOH: NaOAc: A1C1 3: 3'-OMe-Q MeOH: NaOAc: A1C1„: 7-OMe-Q MeOH: NaOAc A1C1„ 254 270s 300s 374 : 270 335dec : 270 316s 450 255 270s 303s 370 : 258s 274 329 390dec : 270 303s 333 458 254 270s 291s 326 365 : 274 317 380dec : 264 304s 360s 430 256 270s 295s 370 : 256 292s 385 420s : 272 300s 330s 450 NaOMe: 265s 285s 322 424dea H3B03/NaOAc: 260 304s 392 HC1/A1C1- : 268 275s 308s 360s 428 NaOMe: 249s 321dec H3B03/NaOAc: 261 303s 388 HC1/A1C1,: 265 300s 359 428 NaOMe: 250s 272 323 427dec H3B03/NaOAc: 255 270s 294s 328s 367 HC1/A1C13: 250s 262 273s 302s 357 428 NaOMe: 240 286 330 430dec H3B03/NaOAc: 260 390 HC1/A1C1.: 270 300s 362s 420 3-OMe-Q MeOH: NaOAc: A1C1 3: 3,7-OMe-Q MeOH: NaOAc: A1C1 3: 3,7,3'-OMe-Q MeOH: NaOAc: A1C1 3: 3,7,4'-OMe-Q MeOH: NaOAc: A1C1„: 255 270s 290s 358 : 273 320s 398 : 275 302s 346 390s 438 HC1/A1C1 NaOMe: 274 322 402 H3B03/NaOAc: 264 310s 364 3' 275 302s 349 392 256 270s 290 354 : 262 293s 376 : 270 308 438 253 271s 290s 352 NaOMe: 269 277s 333 396 H3B03/NaOAc: 262 293s 376 HC1/A1C1 •. 270 305 364 400 NaOMe: 271 308s 404 253 271s 290s 352 420s -I^BOg/NaOAc: 253 270s 290s 354 270 307s 352 396 254 268s 294s 352 254 268s 294s 352 266 300s 368 406 HC1/A1C1-: 270 307s 350 396 MaOMe: 272 326s 390 H3B03/NaOAc: 254 268s 294s 352 HC1/A1C1,: 266 299s 356 403 278 Kaempferol (K) MeOH: 255s 268 294s 320s 367 NaOAc: 274 303 388 A1C1 3: 270 303s 350 424 7-OMe-K 3-0Me-K MeOH: 257s 268 305s 360 NaOAc: 268 325s 368 420s A1C1 : 268 306s 355 420 MeOH: 265 284s 350 NaOAc: 270 308 376 A1C1 : 270 300 342 394 3,7-OMe-K MeOH: 268 284s 347 NaOAc: 268 284s 366 407s A1C1 3: 269 305s 353 400 3,7,4'-OMe-K MeOH: 255s 267 285s 350 NaOAc: 255 267 285s 350 A1C1 3: 270 305s 347 395 6-OMe-Quercetagetin MeOH: 258 272s 295s 370 NaOAc: 258s 275s 340 395s A1C1 3: 238 275 305s 325s 460 3.6- OMe-Qt-MeOH: 258 270s 290s 354 NaOAc: 274 320s 390 A1C1 : 278 310s 350s 440 3.7- OMe-Qt MeOH: 260 285 347 NaOAc: 269s 279 327 374s A1C1 : 275 300s 405 NaOMe: 278 316 416dec H3B03/NaOAc: 268 298s 320s 370 HC1/A1C13: 270 303s 350 424 NaOMe: 245 268 335s 425dec H3B03/NaOAc: 265s 323s 366 HC1/A1C1,: 268 305s 348 420 NaOMe: 270 322 396 H3B03/NaOAc: 265 278s 360 HC1/A1C1,: 272 300 344 396 NaOMe: 274 306s 406 H3B03/NaOAc: 268 284s 350 HC1/A1C1-: 269 305s 351 398 NaOMe: 255s 275 285s 330s 380 H3B03/NaOAc: 255 267 285s 350 HC1/A1C13: 270 305s 340 390 NaOMe: 251s 295s 336 410s dec H3B03/NaOAc: 264 395 HC1/A1C1,: 240 268 300s 380s 425 NaOMe: 274 330 410 H3B03/NaOAc: 266 378 HC1/A1C13: 272 300s 378 NaOMe: 270 304 404dec H3B03/NaOAc: 267s 286 364 HC1/A1C1-: 270 290 380 279 3,6,3'-OMe-Qt MeOH: 254 274 347 NaOAc: 276 320 400 A1C1 : 267 298s 378 3,7,3'-OMe-Qt. MeOH: 256s 280 348 NaOAc: 260s 275s 352 403s A1C1 3: 242s 265 294 382 3,7,4'-OMe-Qt MeOH: 257 277 348 NaOAc: 254s 275s 287 345 A1C1 3: 244s 270 295 384 3,6,7-OMe-Qt MeOH: 258 272s 350 NaOAc: 265 274s 374 A1C1 : 270 308s 345s 438 3,6,7,4'-0Me-Qt MeOH: '256 272 348 NaOAc: 256 272 348 A1C1 : 240s 270 300s 377 3,6,7-OMe-Galetin MeOH: 258s 272 339 NaOAc: 260s.274 340 410s A1C1„: 270 305s 370 NaOMe: 275 335 406 H3B03/NaOAc: 254s 274 350 HC1/A1C13: 267 296s 361 NaOMe: 260 390dec H3B03/NaOAc: 255s 284 343 HC1/A1C1„: 240s 265 293 378 NaOMe: 256s 265s 275s 302s 366dec H3B03/NaOAc: 254s 275s 287 340 HC1/A1C1,: 244s 268 293 370 NaOMe.: 278 302s 412 H3B03/NaOAc: 264 274s 372 HC1/A1C13: 270 300s 370 NaOMe: 275 302s 364 H3B03/NaOAc: 256 272 348 HC1/A1C1 : 240s 268 297s 366 404s NaOMe: 248s 275 285s 305s 385 H3B03/NaOAc: 257s 273 339 HC1/A1C1,: 270 305s 358 3,7,4'-OMe-Gt MeOH: 260 305s 347 NaOAc: 261 302s 347 A1C1„: 270 325 378 NaOMe: 272 305s 364dec H3B03/NaOAc: 261 302s 347 HC1/A1C1,: 270 370 3,6,7,4'-OMe-Gt MeOH: 255s 273 336 NaOAc: 255s 273 336 A1C1 3: 270 287s 305s 365 403s NaOMe: 253s 288 327s 380 H3B03/NaOAc: 255s 273 336 HC1/A1C1-: 270 287s 305s 354 402s 280 L u t e o l i n (L) MeOH:'254 269 350 NaOAc: 269 32.6a 385 A1G1 3: 273 300s 330 425 7-OMe-6-OH-L MeOH: 250s 284 346 NaOAc: 270 376 A1C1 3: 250s 270 300 340 424 Apigenin MeOH: 268 336 NaOAc: 274 300 376 A1C1 3: 275 300 348 380 6-OMe-Scutellarein MeOH: 274 300s 335 NaOAc: 275 299 308s 329s 378 A1C1„: 270 303 361 NaOMe: 266 330s 402 H3B03/NaOAc: 263 304s 376 430s HC1/A1C1_: 274 295s 355 385 NaOMe: 265 310s 392dec H3B03/NaOAc: 258 280 358 HC1/A1C1,: 240s 258 296 374 NaOMe: 275 324 390 H 3 B ° 3 : 268 300s 338 HC1/A1C1,: 275 300 340 380 NaOMe: 276 326 394 H3B03/NaOAc: 277 327s 340 HC1/A1C1-: 270 285s 300 350 6,4'-OMe-Scu MeOH: 253s 273 333 NaOAc: 275 300s 310s 350 A1C1„: 270 304 356 NaOMe: 275 290s 308s 364 H3B03/NaOAc: 253s 275 335 HC1/A1C1-: 270 302 346 M-3-0-glucoside MeOH: 257 267s 305 364 NaOAc: 274 323 392 A l C l y 270 313s 421 Q-3-O-glucoside MeOH: 257 268s 298s 360 NaOAc: 273 324'399 A1C1 3: 272 305s 330s 435 Q-3-0-acylglucoside (charged) MeOH: 256 268s 298s 352 NaOAc: 272 322s 388 A1C1 3: 268 302s 358s 414 NaOMe: 268 330 400s H3B03/NaOAc: 260 302 384 HC1/A1C13: 270 309s 365s 402 NaOMe: 268 330 410 H3B03/NaOAc: 262 296 380 HC1/A1C1,: 270 300 370s 405 NaOMe: 272 326 406 H3B03/NaOAc: 260 300s 364 HC1/A1C1,: 268 302s 352 399 281 Q-3-0-acetylglucoside A MeOH: 257 268s 290s 355 NaOAc: 274 318 380 A1C1 3: 272 304s 436 Q-3-0-acylglucoside MeOH: 257s 267 283s 305s 358 NaOAc: 275 318 390 A1C1 : 272 307s 438 Q-3-0-galactoside MeOH:'256 268s 300s 360 NaOAc: 275 324 380 A1C1 : 272 305s 330s 438 Q-3-0-rhamnoside MeOH: 256 265s 300s 3.50 NaOAc: 272 320s 372 A1C1 3: 275 305s 330 430 Q-3-0-arabinoside MeOH: 256 267s 290s 355 NaOAc: 270 376 AlCX,: 271 300s 401 NaOMe: 268s 280 332s 406 H 3B0 3/NaOAc: 264 271s-295. 308s 373. H C l / A l C l , : 272 300s 356 402 NaOMe: 268s 274 330s 408 H 3B0 3/NaOAc: 263 283s 305s 380 HC1/A1C1„: 270 303s 360 400 NaOMe: 272 325 410 H 3B0 3/NaOAc: 262 300s 375 HC1/A1C1.: 268 300s 365s 405 NaOMe: 270 325 395 H 3B0 3/NaOAc: 260 300s 365 •HC1/A1C1,: 272 305s 350 400 NaOMe: 273 326 413 H BO / N a O A c : 262 290s 374 HC1/A1C1,: 270 298s 365s 403 3 1-OMe-Q-3-0-glucoside MeOH: 254 268s 300s 354 NaOAc: 274 320 388 A1C1„: 268 300 368s 404 NaOMe: 272 330 412 H 3B0 3/NaOAc: 255 268s 300s 359 HC1/A1C1 •. 267 296 360s 402 3'-OMe-Q-3-acetylglucoside , MeOH: 254 268s 353 NaOAc: 275 318 378 A1C1 : 271 300s.-362s 404-3 1-OMe-Q-3-0-galactoside MeOH: 255 268s 301s 356 NaOAc: 275 316 388 A1C1 3: 270 300s 365s 405 NaOMe: 275 330 410 H 3B0 3/NaOAc: 255 268s 356 HC1/A1C1_: 271 300s 372s 404 NaOMe: 272 325 415 H 3B0 3/NaOAc: 257 268s 305s 361 HC1/A1C1 3: 268 300s 356 402 282 7-OMe-Q-3-0-glucoside MeOH: 257 268s 290s 350 NaOAc: 264 330s 376 403s A1C1 : 270 306s 435 K-3-0-glucoside MeOH: 265 284s 350 NaOAc: 270 310 380 A1C1„: 272 300 346 396 NaOMe: 247s 275 330s 416 H3B03/NaOAc: 264 295s 376 HC1/A1C1,: 268 304s 350 400 NaOMe: 272 326 400 H3B03/NaOAc: 266 282s 354 HC1/A1C1.: 273 302 344 396 K-3-0-acylglucoside (charged) MeOH: 267 300 350 NaOAc: 275 303 374 A1C1 3: 273 298s 308 355 K-3-0-acylglucoside MeOH: 268 285s 300s 350 NaOAc: 275 310 377 A1C1 3: 273 303 352 397 K-3-0-rhamnoside MeOH: 265 292s 318s 345 NaOAc: 273 300s 368 A1C1 3: 273 303 347 396 K-7-0-glucoside MeOH: 268s 273 283s 315s NaOAc: 268s 275 283s 380 A1C1„: 269 305s 356 420 NaOMe: 275 325 396 H3B03/NaOAc: 268 300 351 HC1/A1C1-: 273 303 347 395 NaOMe: 277 325 398 H3B03/NaOAc: 268 300 354 HCl/AlCl,: 273 305s 347 397 NaOMe: 274 323 390 H3B03/NaOAc: 265 290s 318s 345 HC1/A1C1-: 273 301s 340 392 364 NaOMe: 274 283s 424dec 415s H3B03/NaOAc: 268s 273 283s 318s 366 HCl/AlCl,: 269 304s 350 420 7-OMe-K-3-0-glucoside MeOH: 267 295s 349 NaOAc: 267 356 405s /-A1C1 : 270 305 350 394 3,6,3'-0Me-Qt-7-0-glucoside MeOH: 240 251s 274 340 NaOAc: 272 350 400s A1C1 : 267 297s 370 NaOMe: 246s 275 305s 398 H3B03/NaOAc: 267 295s 350 HC1/A1C1.: 270 303s 346 394 NaOMe: 240 269 305s 390 H3B03/NaOAc:. 252s 274 340 HC1/A1C1„: 267 297s 356 283 L-7-O-glucpside MeOH: 255 268s 349 NaOAc: 260 265s 365s 405 A1C1 3: 275 300s 330 430 L-4 1-O-glucoside MeOH: 243s 271 340 NaOAc: 276 325s 372 A1C1 3: 278 298s 350 386 7-OMe-6-OH-L-6-0-glucoslde MeOH: 255s 272 346 NaOAc: 267 376 A1C1 3: 272 302s 335 424 7-OMe-6-OH-L-6-0-acetylglucoside MeOH: 255s 272 347 NaOAc: 270 410 A1C1 : 271 303s 335 424 A-7-0-glucoside MeOH: 270 333 NaOAc: 255s 268 355 385 A1C1 3: 275 300 348 386 A-4'-O-glucoside MeOH: 271 285s 332 NaOAc: 275 320 356 A1C1 3: 270 294 350 380 6-OMe-Scu-7-0-glucoside MeOH: 273 333 NaOAc: 272 337 386 A1C1 3: 270 300 360 Q-3-0-glucosylglucoside A MeOH: 256 268s 355 NaOAc: 270 320s 380 A1C1 3: 272 307s 332s 430 NaOMe: 265 300s 395 H3B03/NaOAc: 260 372 HC1/A1C13: 275 295s 358 390 NaOMe: 270 302s 386 H3B03/NaOAc: 272 344 HC1/A1C13: 278 291s 344 386 NaOMe: 270 300s 392 H3B03/NaOAc: 265 374 HC1/A1C13: 260 294s 366 NaOMe: 270 394 H3B03/NaOAc: 268 384 HG1/A1C1 : 269 298s 366 NaOMe: 245s 270 300s 386 H3B03/NaOAc: 265 340 HC1/A1C13: 275 300 340 380 NaOMe: 271 295 366 H3B03/NaOAc: 270 300s 333 HC1/A1C13: 270 294 342 376 NaOMe: 240s 274 304s 380 H3B03/NaOAc: 273 338 HC1/A1C13: 270 297s 348 390s NaOMe: 268 332 406 -H3B03/NaOAc: 262 377 HC1/A1C13: 272 302s 36.8a 404 284 Q-3-O-rutinoside MeOH: 259 266s 300s 359 NaOAc: 272 325 392 A1C1 3: 272 305s 430 Q-3-0-rhamnosylglucoside A MeOH: 255 266s 305s 356 NaOAc: 271 316 394 A1C1 3: 272 300s 340s 430 Q-3-0-glucoside-7-0-glucoside MeOH: 256 268s 355 NaOAc: 261 295s 370 425s A1C1 3: 272 300s 335 440 Q-3-0-arabinoslde-7-0-glucoside MeOH: 258 267s 352 NaOAc: 262 360 425s A1C1 3: 270 303s 430 Q-3-0-xylosylglucoside C MeOH:'256 268s 295s 356 NaOAc: 274 321 384 A1C1 3: 273 305s 432 3'-OMe-Q-3-0-rutlnoslde MeOH: 254 265s 305s 356 NaOAc: 271 320 395 A1C1 3: 268 275s 300s 370s K-3-0-rutlnoside MeOH: 266 300s 350 NaOAc: 273 306 388 A1C1 3: 272 302 348 400 K-3-0-xylosylglucoside A MeOH: 267 295 323s 350 NaOAc: 275 305 380 A1C1 3: 273 305 350 396 NaOMe: 271 325 410 H3B03/NaOAc: 262 295 385 HC1/A1C1,: 271 300 365s 402 NaOMe: 272 325 404 H3B03/NaOAc: 260 300 370 HC1/A1C1,: 270 356 394 NaOMe: 268 300s 395 H3B03/NaOAc: 261 380 HC1/A1C13: 270 300s 365s 402 NaOMe: 271 305s 396 H3B03/NaOAc: 262 370 HC1/A1C1 : 270 351 400 NaOMe: 272 328 406 H3B03/NaOAc: 262 298s 378 HCl/AlC'l : 270 3.00s 358 400 NaOMe: 270 328 415 H3B03/NaOAc: 254 265s 305s 360 400 HC1/A1C1,: 267 275s 300s 360s 400 NaOMe: 272 326 400 H3B03/NaOAc: 266 296s 354 HC1/A1C13: 272 302 348 398 NaOMe: 275 325 396 H BO /NaOAc: 268 303 353 HC1/A1C1„: 273 304s 344 395 285 7-OMe-6-OH-L-6-0-glucosylglucoside MeOH: 257s 272 347 NaOMe: 274 400 NaOAc: 266 374 H3B03/NaOAc: 265 374 A1C1 : 271 304s 335 422 HC1/A1C13: 267 298s 361 Q-3-0-rhamnosylglucoside-7-0-glucoside A MeOH: 257 268s 356 NaOMe: 278 425 NaOAc: 261 285s 408 H3B03/NaOAc: 260 374 A1C1 3: 269 300s 440 HC1/A1C13: 269 357 404 Q-3-0-xylosylglucoside-7-0-glucoside B MeOH: 258 268s 358 NaOMe: 248s 274 410 NaOAc: 262 288s 399 H 3 B ° 3 / N a 0 A c : 2 6 2 3 7 8 A1C1 3: 268 300s 442 HC1/A1C13: 268 361 404 Q-3-0-rhamnosylrhamnoside-7-0^glucoslde MeOH:.255 265s 350 NaOMe: 243s 269 386 NaOAc: 260 293s 370 402s H3B03/NaOAc: 260 293s 370 A1C1 3: 272 300s 435 HC1/A1013: 270 352 395 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0095225/manifest

Comment

Related Items