Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Distribution and fluxes of sodium and hydrogen in crustacean muscle cells Menard, Michael Reald 1980

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1980_A1 M46.pdf [ 12.25MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0095196.json
JSON-LD: 1.0095196+ld.json
RDF/XML (Pretty): 1.0095196.xml
RDF/JSON: 1.0095196+rdf.json
Turtle: 1.0095196+rdf-turtle.txt
N-Triples: 1.0095196+rdf-ntriples.txt
Original Record: 1.0095196 +original-record.json
Full Text
1.0095196.txt
Citation
1.0095196.ris

Full Text

DISTRIBUTION AND  FLUXES  OF SODIUM AND HYDROGEN IN CRUSTACEAN MUSCLE' CELLS by MICHAEL REALD MENARD B.Sc,  University of B r i t i s h  M.Sc, University M.D.,  Columbia,  o f Toronto,  1971  1972  U n i v e r s i t y o f B r i t i s h Columbia, 1979  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department o f Anatomy We a c c e p t t h i s  t h e s i s as  to the r e q u i r e d  conforming  standard  THE UNIVERSITY OF BRITISH COLUMBIA February,  1980  © M i c h a e l R e a l d Menard, 1980  In p r e s e n t i n g t h i s  thesis  an advanced degree at  further  fulfilment  of  the  requirements  the U n i v e r s i t y of B r i t i s h Columbia, I agree  the L i b r a r y s h a l l make it I  in p a r t i a l  freely  available  for  agree t h a t p e r m i s s i o n for e x t e n s i v e copying o f  of  this  representatives. thesis for  It  financial  this  thesis  of  gain s h a l l not be allowed without my  Anatomy  The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5  Date  A p r i l 22, 1980  or  i s understood that copying or p u b l i c a t i o n  written permission.  Department  that  reference and study.  f o r s c h o l a r l y purposes may be granted by the Head of my Department by h i s  for  ABSTRACT A new efflux  technique was  d e v i s e d f o r measurement o f the u n i d i r e c t i o n a l sodium  from s i n g l e s t r i a t e d muscle c e l l s  nubilus.  It involves  the  the myoplasm w i t h an  calculated It  barnacle,  can  same c e l l  i n s i d e the be  by a s t a n d a r d method.  c e l l , which are  calculated  directly.  s o l u t i o n i s the  that  the  d e t e c t e d by  the  I t was  was  muscle c e l l s  several  normal R i n g e r ' s s o l u t i o n was content.  used to l o a d  cell  However, s a t u r a t i o n  the myoplasm o f  new not  The  results.  regions.  Saturation  of the  efflux  into  apparent even i n c e l l s w i t h v e r y h i g h sodium  o f the  e f f l u x into potassium-free s o l u t i o n  and  l e v e l s of i n t r a -  sodium. e f f l u x i n t o sodium-free s o l u t i o n was  Ringer's s o l u t i o n .  The  decline  i n the  workers to occur i n t h i s s i t u a t i o n was of the  longitud-  sodium e f f l u x from i n t a c t s i n g l e  i n t o o u a b a i n - c o n t a i n i n g s o l u t i o n o c c u r r e d a t r e l a t i v e l y low cellular  single  from i n j e c t e d t o n o n i n j e c t e d  technique to measure the  revealed  the  glycocalyx.  n e c e s s a r y to take i n t o account the  i n a l d i f f u s i o n of t r a c e r i n s i d e the new  with  i n t r a c e l l u l a r sodium-specific microelectrode  Intracellular microinjection  o f the  l i t e r a t u r e , are  sodium a s s o c i a t e d  e x t r a c e l l u l a r space i n a s s o c i a t i o n w i t h the  c e l l s w i t h radiosodium.  extracellular  S e v e r a l experiments  t o g e t h e r w i t h r e s u l t s from the  w i t h the h y p o t h e s i s that most of the  i n the  Use  can  only pool of i n t r a c e l l u l a r  sodium i n s o l u t i o n i n the myoplasm.  which t e s t t h i s assumption,  resides  been ..  sodium e f f l u x  sodium o f a p p r e c i a b l e s i z e which exchanges r a p i d l y w i t h the  c e l l y e t not  Changes  l a r g e r than had  Thus the  the  accurately.  i s assumed i n these c a l c u l a t i o n s  consistent  Balanus  i n t r a c e l l u l a r sodium-specific microelectrode, during  i n the s p e c i f i c a c t i v i t y  be  giant  continuous measurement of the a c t i v i t y of sodium i n  c o l l e c t i o n o f r a d i o s o d i u m from the  thought p r e v i o u s l y ,  o f the  s i m i l a r to t h a t  i n t o normal  sodium e f f l u x r e p o r t e d by found to be  sodium content o f the myoplasm which o c c u r s .  due No  to the  other  rapid  decline  'sodium-sddium  iii  exchange' was appears  found.  to be due  Most of the sodium e f f l u x under normal c o n d i t i o n s  t o a mechanism which i s not s e n s i t i v e t o e x t e r n a l ouabain  or  potassium. The  sodium e f f l u x i n b a r n a c l e muscle was  shown to be e l e c t r o g e n i c .  c o r r e l a t i o n between the measured v a l u e s of the a c t i v e sodium e f f l u x and e l e c t r o g e n i c p o r t i o n o f the membrane p o t e n t i a l was was  found.  c o n s i s t e n t w i t h the p r e d i c t i o n s o f a phenomenological  l e a d i n g model f o r the membrane p o t e n t i a l ,  The  the  correlation  e x t e n s i o n o f the  the Goldman-Hodgkin-Katz e q u a t i o n .  The e f f l u x o f hydrogen ions from the c e l l can o n l y be measured from changes i n the i n t r a c e l l u l a r pH.  A  indirectly,  Measurements o f the i n t r a c e l l u l a r  w i t h an i n t r a c e l l u l a r p H - s p e c i f i c g l a s s m i c r o e l e c t r o d e r e v e a l e d no  pH  'pH  t r a n s i e n t s ' of the type r e p o r t e d by o t h e r workers i n d i f f e r e n t p r e p a r a t i o n s of b a r n a c l e muscle.  Measurements of the i n t r a c e l l u l a r pH made w i t h the  e l e c t r o d e and w i t h an i n d i c a t o r method were i n c l o s e agreement. d i s t r i b u t i o n o f the i n d i c a t o r DMO unusual  micro-  However, the  (5,5-dimethyl-2,4-oxazolidinedione) e x h i b i t e d  b e h a v i o r not p r e v i o u s l y r e p o r t e d .  which takes t h i s b e h a v i o r i n t o account  A refinement o f the DMO  i s described.  method  iv  TABLE OF CONTENTS , 11  Abstract L i s t o f Tables  ..vi  L i s t o f Figures  .vn  Acknowledgements S e c t i o n 1.  S e c t i o n 2.  ..x  General  Introduction: A. Scope o f the t h e s i s B. H i s t o r i c a l notes  ...4  Transmembrane Fluxes o f Sodium and Hydrogen Ions: A. G e n e r a l c o n s i d e r a t i o n s B. S t a t e s o f water and ions i n c e l l s C. The sodium e f f l u x ( i ) normal R i n g e r ' s s o l u t i o n ( i i ) potassium-free s o l u t i o n ( i i i ) sodium-free s o l u t i o n (iv) ouabain-containing s o l u t i o n D. Membrane p o t e n t i a l E. Summary o f problems t o be addressed F. Summary o f models ( i ) sodium e f f l u x from a whole c e l l ( i i ) steady s t a t e d i s t r i b u t i o n o f c a t i o n s ( i i i ) e l e c t r o g e n i c membrane p o t e n t i a l  S e c t i o n 3.  The  S t a t e s o f Sodium i n C e l l s ; Introduction G e n e r a l methods A. Increase o f c e l l sodium B. Decrease o f c e l l sodium  S e c t i o n 4.  M i c r o i n j e c t i o n o f Radiosodium i n t o S i n g l e Muscle Methods Results Discussion  S e c t i o n 5.  Survey o f the Sodium E f f l u x from S i n g l e Muscle Methods Results: ( i ) normal R i n g e r ' s s o l u t i o n ( i i ) potassium-free s o l u t i o n ( i i i ) sodium-free s o l u t i o n (iv) ouabain-containing s o l u t i o n Discussion  S e c t i o n 6.  Comparison o f Sodium E l e c t r o d e Methods Results Discussion  S e c t i o n 7,  E l e c t r o g e n i c Sodium Methods Results Discussion  Transport  ,10 .19 .31 .33 .34 .36 .44 .48 .56 .59 .69 .71  ...75 ...77 .. .85 ...95 Cells  Cells  ..100 ..107 ..117 ..133 . .137 . .138 ..141 ..145 ..148 ..153 ..157  and Radiosodium Measurements ..172 ..173 ..174 ..184 ..187 ..189 ..189 ..196  V  S e c t i o n 8.  D i s t r i b u t i o n o f Hydrogen Ions D u r i n g Steady C o n d i t i o n s Methods Results Discussion  ...201 ...2 02 ...204 ...212  S e c t i o n 9.  Comparison o f the I n t r a c e l l u l a r pH Measured by DMO and by m i c r o e l e c t r o d e s Methods Results Discussion  ...217 ...218 ...223 ...230  S e c t i o n 10. S i g n i f i c a n c e o f the R e s u l t s F u r t h e r Work Bibliography  and Suggestions f o r ...237 ...242  LIST OF TABLES Table I  Composition o f s o l u t i o n s .  Table I I  a. Summary o f measurements on loaded c e l l s  passively-  b. Ion content o f the myoplasmic and nonmyoplasmic compartments. Table I I I  I n t r a c e l l u l a r pH and membrane p o t e n t i a l i n c r u s t a c e a n muscle.  Table IV  Mean water and e l e c t r o l y t e  Table V  Calculation  Table VI  S e n s i t i v i t y o f pH(DMO) to e r r o r s  of flux j  m  content o f t e s t  cells,  from the data o f F i g . 29. i n measurement.  LIST OF FIGURES F i g u r e 1.  Models o f the c e l l used fluxes.  i n calculation of ion  F i g u r e 2.  Insertion  F i g u r e 3.  Changes i n the sodium content o f c e l l s d u r i n g immersion i n sodium-free lithium-substituted Ringer's s o l u t i o n .  F i g u r e 4.  Microinjection  F i g u r e 5.  Perfusion  F i g u r e 6.  Vacuum  F i g u r e 7.  E f f l u x o f m i c r o i n j e c t e d radiosodium i n t o normal R i n g e r ' s s o l u t i o n .  F i g u r e 8.  'Slope R a t i o ' f o r a c e l l versus myoplasmic sodium activity.  F i g u r e 9.  E f f l u x o f p a s s i v e l y - l o a d e d radiosodium c e l l i n t o normal Ringer's s o l u t i o n .  F i g u r e 10.  Summary o f the raw data and reduced r e s u l t s f o r a t y p i c a l experiment.  F i g u r e 11.  E f f l u x o f sodium from a c e l l i n t o normal R i n g e r ' s s o l u t i o n , uun c o r r e c t e d f o r Na£^.^, versus myoplasmic sodium a c t i v i t y .  F i g u r e 12.  E f f l u x o f sodium from a c e l l i n t o normal R i n g e r ' s s o l u t i o n , c o r r e c t e d f o r Na* versus myoplasmic \cell sodium a c t i v i t y .  of microelectrodes into  cell.  apparatus.  apparatus.  system. from a c e l l  from a  J  r  F i g u r e 13.  E f f l u x o f sodium from a c e l l i n t o p o t a s s i u m - f r e e a solution, uncorrected f o r versus myoplasmic ce sodium a c t i v i t y .  F i g u r e 14.  E f f l u x o f sodium from a c e l l i n t o p o t a s s i u m - f r e e s o l u t i o n , c o r r e c t e d f o r Na" v e r s u s myoplasmic cell sodium a c t i v i t y .  ® n>  1  l  5  J  F i g u r e 15.  The e f f e c t o f sodium-free  solutions  on  M^  F i g u r e 16.  E f f l u x o f sodium from a c e l l i n t o sodium-free s o l u t i o n , uu n c o r r e c t e d f o r ^ ' ^ > v e r s u s myoplasmic sodium a c t i v i t y .  a<  a  ce  F i g u r e 17.  E f f l u x o f sodium from a c e l l i n t o sodium-free s o l u t i o n , c o r r e c t e d f o r Na* ,., versus myoplasmic j. • • c e l l sodium a c t i v i t y .  Vlll  LIST OF F i g u r e 18.  FIGURES  (cont'd)  E f f l u x o f sodium from a c e l l i n t o normal R i n g e r ' s s o l u t i o n which c o n t a i n s ouabain, versus myoplasmic sodium a c t i v i t y .  ...155  F i g u r e 19.  Summary of r e s u l t s  ...162  F i g u r e 20.  F a l l of the myoplasmic sodium a c t i v i t y upon exposure of the c e l l to sodium-free l i t h i u m substituted solution.  ...175  S i z e of the r a p i d f a l l i n the myoplasmic sodium a c t i v i t y upon exposure o f the c e l l to sodiumfree lithium-substituted s o l u t i o n .  ...177  Rate of f a l l o f the myoplasmic sodium a c t i v i t y immediately a f t e r exposure o f the c e l l to sodiumf r e e s o l u t i o n , versus the myoplasmic sodium a c t i v i t y .  ...178  R a t i o o f the sodium e f f l u x to the r a t e o f l o s s o f sodium from the myoplasm, f o r e f f l u x i n t o sodiumfree s o l u t i o n .  ...182  Change i n membrane p o t e n t i a l on exposure o f the c e l l to p o t a s s i u m - f r e e or o u a b a i n - c o n t a i n i n g solution.  ...190  R e l a t i o n s h i p between the change i n membrane p o t e n t i a l and the change i n sodium e f f l u x which o c c u r i n response to ouabain.  ...193  R e s t i n g membrane p o t e n t i a l o f c e l l s loaded w i t h sodium by m i c r o i n j e c t i o n , v e r s u s myoplasmic sodium a c t i v i t y .  ...195  Response o f membrane p o t e n t i a l and Ringer's s o l u t i o n .  pH^  ...207  Response of membrane p o t e n t i a l Ringer's s o l u t i o n .  pH.  F i g u r e 21.  F i g u r e 22.  F i g u r e 23.  F i g u r e 24.  F i g u r e 25.  F i g u r e 26.  F i g u r e 27.  F i g u r e 28.  F i g u r e 29.  Relationship pH  and  the  F i g u r e 31.  Uptake of i n d i c a t o r solution.  F i g u r e 34.  to  C02  NH^...208 of  transmembrane d i s t r i b u t i o n of DMO.  ...211 ...220  compounds i n normal R i n g e r ' s ...224  Uptake of i n d i c a t o r compounds i n CO^ solution.  Ringer's  Uptake o f i n d i c a t o r solution.  Ringer's  Correlation  _  r e s t i n g membrane p o t e n t i a l .  Model of the  F i g u r e 33.  and  to  between transmembrane g r a d i e n t  F i g u r e 30.  F i g u r e 32.  f o r e f f l u x experiments.  compounds i n NH^  between pH(DMO) and  .. .226  . . .227 pH(electrode).  ...229  LIST OF SYMBOLS A ( ^ ) a  a  c(x) cpm dpm E m F  m  2 a r e a o f membrane (cm ) myoplasmic sodium a c t i v i t y  Page f i r s t us (mM)  c o n c e n t r a t i o n o f c a t i o n a t d i s t a n c e x from o r i g i n counts p e r minute o f r a d i o a c t i v i t y d i s i n t e g r a t i o n s per minute o f r a d i o a c t i v i t y membrane p o t e n t i a l ( m i l l i v o l t s ) charge o f a mole o f e l e c t r o n s (96,520 coulomb/mole) c o n d u c t i v i t y t o potassium ions (coulomb2/joule-cm^-sec)  I  c u r r e n t o f potassium ions (coulomb/cm^-sec) K. j(x) i o n f l u x a t d i s t a n c e x from o r i g i n ; j^=passive, j = a c t i v e k r a t e c o n s t a n t ( u n i t s depend on context, u s u a l l y min"-'-) M„ u n i d i r e c t i o n a l sodium e f f l u x (mole/cm2-sec) Na M n e t c a t i o n e f f l u x i n e l e c t r o g e n i c t r a n s p o r t (mole/cm -sec] m „ ,m„,m • n e t p a s s i v e f l u x a c r o s s membrane (mole/cm^-sec) Na K C l mc m i l l i c u r i e of r a d i o a c t i v i t y mV millivolt "k 22 Na moles Na c o l l e c t e d i n 5 min i n an e f f l u x experiment * 22 Na „ moles Na i n s i d e the c e l l cell * 22 Na .moles Na i n s o l u t i o n i n the myoplasm m Na ,, moles Na i n s i d e the c e l l cell (Na) , = Ba , ., /V : apparent c o n c e n t r a t i o n o f Na i n c e l l 'cell cell o.d. o u t s i d e diameter (mm o r |j) pes picomoles/cm^-sec P^ p e r m e a b i l i t y o f membrane to s p e c i e s x (cm/sec) m  2  2  3  r  (R. c o u p l i n g r a t i o o f o u a b a i n - s e n s i t i v e Na-K exchange R gas c o n s t a n t per mole (8.3 x lO'' erg/mole-°K) SA s p e c i f i c a c t i v i t y o f sodium Slope R a t i o T a b s o l u t e temperature (°K) t time u m o b i l i t y (erg-cm/mole-sec) U numerator o f l n term o f Goldman-Hodgkin-Katz e q u a t i o n V volume o f r e g i o n i n d i c a t e d by s u b s c r i p t W denominator o f l n term o f Goldman-Hodgkin-Katz e q u a t i o n z valence o f i o n 6 p a r t i t i o n c o e f f i c i e n t between s o l u t i o n and membrane y mean i o n i c a c t i v i t y c o e f f i c i e n t +  X "j u pi $ ( )  microlitre e l e c t r o c h e m i c a l p o t e n t i a l (erg/mole) micrometre microlitre e l e c t r i c a l p o t e n t i a l (joule/coulomb) concentration (mole/litre)  subscripts: i = intracellular o,e = e x t r a c e l l u l a r m = myoplasmic  X  ACKNOWLEDGEMENTS  The work d e s c r i b e d  i n this  t h e s i s was c a r r i e d out i n 1973-1976 as p a r t  of a combined M.D.-Ph.D. program. Dr. J.A.M. Hinke f o r the a d v i c e course o f t h i s program. Dr. V. P a l a t y  I w i s h t o thank my t h e s i s  and encouragement  supervisor  he o f f e r e d throughout the  I a l s o wish t o thank Dr. S.M. Friedman and  f o r t h e i r a s s i s t a n c e , and f o r the support they p r o v i d e d  Dr. Hinke moved to the U n i v e r s i t y o f Ottawa,,  Skilled  after  technical assistance  w i t h the DMO experiments and some o f the flame photometry was p r o v i d e d by Ms. Edwina Nee Wong and Mr. L a u r i e N i c o l .  1  SECTION 1.  A.  GENERAL INTRODUCTION  SCOPE OF THE THESIS  A p r i n c i p a l f u n c t i o n o f the c e l l and  molecules.  membrane i s the t r a n s l o c a t i o n o f ions  I t has been e s t i m a t e d t h a t between o n e - f i f t h and o n e - t h i r d  o f the r e s t i n g energy p r o d u c t i o n which t r a n s p o r t s  o f the c e l l  i s devoted t o the mechanism  sodium and potassium ions a l o n e ( B r i n l e y & M u l l i n s 1968;  Whittam 1975; but see Chinet,  Clausen, & G i r a r d i e r 1977).  The transmembrane  d i s t r i b u t i o n o f ions and molecules i s f a r d i f f e r e n t from t h a t which would occur i f they a l l were i n e q u i l i b r i u m . medium i s poor i n s o l u b l e o r g a n i c medium.  Altogether,  there  I n p a r t i c u l a r , the e x t r a c e l l u l a r  molecules r e l a t i v e t o the i n t r a c e l l u l a r  i s always present  water and e l e c t r o l y t e s i n t o t h e c e l l .  a f o r c e which tends t o move  For c e l l s which l a c k r i g i d  walls,  the amount o f o s m o t i c a l l y a c t i v e i n t r a c e l l u l a r s o l u t e must be r e g u l a t e d i f osmotic l y s i s The  i s t o be prevented and the c e l l  a c t i v e e x t r u s i o n o f sodium i s f e l t  content o f the c e l l The  t o be the major c o n t r o l o f the water  (eg. T o s t e s o n 1964; MacKnight & L e a f 1977).  transmembrane d i s t r i b u t i o n o f sodium i s a l s o a s t o r e o f energy,  s u i t a b l e f o r u t i l i z a t i o n by e n e r g y - r e q u i r i n g c e l l membrane.  order  r e a c t i o n s and processes a t the  Important examples a r e those processes which e f f e c t t r a n s -  p o r t o f substances a c r o s s transmit  i s t o be enabled t o e x i s t .  the c e l l membrane, and those which r a p i d l y  s i g n a l s t o another p a r t o f t h e c e l l  or to a d i f f e r e n t c e l l i n  t o t r i g g e r chemical r e a c t i o n s . Of course, whatever the other  functions  i t serves,  the r e g u l a t e d  c o m p o s i t i o n o f the i n t e r i o r o f the c e l l appears t o be r e q u i r e d  ionic  f o r the  e f f e c t i v e f u n c t i o n i n g o f the m e t a b o l i c machinery o f the c e l l . This  t h e s i s i s concerned w i t h the e x p e r i m e n t a l measurement o f i o n  2  t r a n s p o r t , and w i t h ions  c e r t a i n aspects  o f the t r a n s p o r t of sodium and  i n whole c e l l s o f s t r i a t e d muscle.  i s much more s t r a i g h t f o r w a r d w i t h whole c e l l s .  However, w i t h  t h a t i n t a c t membranes can be  techniques,  isolated  the t r a n s p o r t p r o p e r t i e s o f these two  and  data  than w i t h  i t i s o n l y from a few  f o r study: red blood c e l l s ,  g i a n t axons such as t h a t o f the s q u i d .  differences.  Interpretation of transport  i s o l a t e d membrane p r e p a r a t i o n s  current  hydrogen  and  There are many s i m i l a r i t i e s c e l l types,  but  cells  between  t h e r e are a l s o many  Of n e c e s s i t y , then, whole c e l l s must be examined so the n a t u r e  importance of the v a r i o u s  t r a n s p o r t processes  can be  discovered.  In a d d i t i o n , t h e r e are p o s i t i v e reasons f o r examining membrane t r a n s p o r t p r o p e r t i e s i n whole c e l l s .  The  c e l l s of a s p e c i a l i z e d t i s s u e w i l l  possess a r e p e r t o i r e o f t r a n s p o r t mechanisms s u i t a b l e f o r the t i s s u e ' s function.  A p a r t i c u l a r t r a n s p o r t mechanism, present  might be prominent i n a p a r t i c u l a r c e l l  type and  i n most c e l l  types,  so be more e a s i l y  studied  there. The o n l y be  chemical  s p e c i e s which mediates a g i v e n aspect  identified  in isolation  i f i t s behavior  must be deduced from study o f the behavior d e t a i l e d p r o p e r t i e s o f an plays  of ion transport  i s known.  This  o f the whole c e l l .  behavior Once the  i d e n t i f i e d s p e c i e s are known, the p a r t t h a t  i n the complete t r a n s p o r t system o f the c e l l can be deduced.  behavior  due  to other  to i s o l a t e them.  Eventually  to ion transport w i l l concert  t r a n s p o r t s p e c i e s can be deduced and  can  species  Then the  an attempt made  i t i s hoped t h a t a l l s p e c i e s which c o n t r i b u t e  be c h a r a c t e r i z e d , and  t h e i r behavior  when a c t i n g i n  understood.  F i n a l l y , abnormalities  o f the t r a n s p o r t systems can be a cause o f or a  f e a t u r e of pathology of the t i s s u e ( B o l i s , Hoffman, &•Leaf 1976). o t h e r areas of p h y s i o l o g y , mechanisms can  a d e t a i l e d knowledge of c e l l u l a r  l e a d to the f o r m u l a t i o n  As  with  transport  o f a r a t i o n a l treatment p l a n .  An  3  example i s the u s e i n the treatment o f c h o l e r a o f one t r a n s p o r t mechanism to bypass another which i s deranged ( F i e l d  1977).  There a r e many reasons, then, why the c a p a b i l i t y to study t r a n s p o r t i n whole c e l l s and m u l t i c e l l u l a r p r e p a r a t i o n s Several  should  be developed.  problems a r e addressed i n t h i s t h e s i s .  The f i r s t  i s the t e c h -  n i c a l problem o f measuring the trans-membrane f l u x i n whole c e l l s . main concern i s the measurement o f sodium f l u x e s . hydrogen i o n f l u x e s p r e s e n t s p r a c t i c a l nature. In order  The  The measurement o f  d i f f e r e n t problems, o f both a c o n c e p t u a l  and a  I t i s o f secondary concern here.  t o r e s o l v e the t e c h n i c a l problem o f measuring the f l u x , an  i n v e s t i g a t i o n o f the s t a t e s o f water and ions c a r r i e d out.  The  This  i n s i d e the c e l l had t o be  i s an a c t i v e area o f r e s e a r c h  i n i t s own r i g h t .  t e c h n i q u e developed f o r f l u x measurement, which i n v o l v e s  neous use o f an i o n - s p e c i f i c i n t r a c e l l u l a r m i c r o e l e c t r o d e  simulta-  and r a d i o i s o t o p e s ,  was a p p l i e d t o a b r i e f overview o f the k i n e t i c s o f sodium t r a n s p o r t  ina  whole c e l l . Then, two s p e c i f i c problems were i n v e s t i g a t e d : the sodium e f f l u x i n t o sodium-free s o l u t i o n s , o f the type p r e v i o u s l y seen i n f r o g s k e l e t a l muscle; and  the e l e c t r o g e n i c properties Finally,  and  o f t h e sodium t r a n s p o r t .  i n d i r e c t measurements o f t h e e x t r u s i o n o f a c i d by the c e l l  o f the h e t e r o g e n e i t y  o f the i n t r a c e l l u l a r pH were made.  In t h i s  the use o f an i n d i c a t o r f o r the measurement o f pH was e v a l u a t e d . is a question The  cell  o f great  The l a t t e r  practical interest.  chosen f o r t h i s work i s t h e v e r y  of the g i a n t b a r n a c l e  context,  Balanus n u b i l u s .  Darwin i n 1854, but i t was o n l y neuromuscular p h y s i o l o g y  This crustacean  cell  was d e s c r i b e d by  i n 1963 t h a t Hoyle and Smyth d e s c r i b e d i t s  and suggested t h a t  t i o n f o r f u r t h e r such study.  l a r g e s t r i a t e d muscle  Since  i t would be a v a l u a b l e  then,, work has been p u b l i s h e d  preparaon i t s  4  u l t r a s t r u c t u r e , on the s t a t e s of i t s water and and  e l e c t r i c a l properties  i o n s , on the  o f i t s membranes, and  on  i t s ion  permeability transport  mechanisms. Its  l a r g e s i z e makes i t e s p e c i a l l y s u i t a b l e f o r impalement by  electrodes I t was  (which i t t o l e r a t e s f o r long p e r i o d s )  d e s i r e d t o use  t i v e l y and  B.  for microinjection.  these techniques to sample the c e l l  to l o a d the c e l l  be e x p l a i n e d  and  more f u l l y  interior selec-  i n t e r i o r with radioisotope s e l e c t i v e l y ,  as  will  later.  HISTORICAL NOTES  The  study o f the movement o f substances  as o l d as  the c e l l  theory  l i g h t microscope, but demonstrated.  itself.  The  1855).  i n t o and  out  of c e l l s  i s almost  c e l l membrane cannot be seen w i t h  permeation o f s o l u t e s and  i n f e r r e d the presence of a  permeability  ( N a g e l i & Cramer  P f e f f e r (1877) proposed from h i s work w i t h a r t i f i c i a l  semipermeable  films that a f i l m with s i m i l a r properties  surrounded the c e l l .  (1899) measured the p e r m e a b i l i t y  to many substances, and  of c e l l s  t h a t a l a y e r o f l i p i d on the s u r f a c e of the c e l l was  Overton proposed  the p r i n c i p a l b a r r i e r  penetration. I t was  the p l a n t p h y s i o l o g i s t s who  single cells. substances, and respect  l e d the way  i n these s t u d i e s  on  They found t h a t p l a n t c e l l s a c t u a l l y accumulated c e r t a i n seemed to e x i s t i n a  (Hoagland & Davis 1929;  the Donnan e f f e c t as  'non-equilibrium  Brooks 1929).  the  osmotic e f f e c t s are r e a d i l y  N a g e l i , a student o f S c h l e i d e n ' s ,  c e l l membrane from h i s s t u d i e s of p l a n t c e l l  to  micro-  condition' i n this  Osterhout (1931) r e j e c t e d  the cause o f the a c c u m u l a t i o n o f ions, and  proposed  5  t h a t the continuous p r o d u c t i o n  o f a c i d by t h e c e l l  l e d t o the p a s s i v e  inflow  o f p o t a s s i u m and c h l o r i d e . Brooks (1938) appears t o have been the f i r s t t o employ r a d i o i s o t o p e s i n 1 the study o f i o n a c c u m u l a t i o n by i n d i v i d u a l c e l l s .  He employed a r a d i o i s o -  tope o f p o t a s s i u m t o q u a n t i t a t e t h e a c c u m u l a t i o n o f p o t a s s i u m by a c e l l , and expressed t h e i n t r a c e l l u l a r c o n c e n t r a t i o n  i n terms o f the t o t a l c e l l  water  (the d i f f e r e n c e between the wet and d r y weights o f the 'protoplasm').  He  observed a r a p i d p e n e t r a t i o n o f potassium a g a i n s t the g r a d i e n t o f p o t a s s i u m concentration.  He a t t r i b u t e d t h i s t o i o n exchange (Brooks 1940).  (1940) noted t h a t the p o t a s s i u m a c c u m u l a t i o n t h e o r i e s then c u r r e n t low  permeability  trates the c e l l  t o sodium, w h i l e quite r e a d i l y .  mechanism p r e s e n t plasm."  He f e l t  "physico-chemical  The  -He remarked t h a t " t h e r e must be some  f o r pumping out t h e sodium which wanders i n t o the p r o t o t h a t the i o n d i s t r i b u t i o n as a whole was due t o a balance between t h e p r o t o p l a s m and the medium, w i t h the  o f a r a d i o i s o t o p e o f sodium was measured by L e v i  (1949) and l a t e r by o t h e r s .  which should  be obeyed by p a s s i v e  that according nerve  subordinate  role."  e f f l u x from c e l l s  and U s s i n g  required  experiments had shown t h a t sodium pene-  p e r m e a b i l i t y c h a r a c t e r i s t i c s o f the membrane p l a y i n g o n l y a structural  Steinbach  Ussing  fluxes.  to Ussing's r e l a t i o n ,  (1949) d e r i v e d a r e l a t i o n  Hodgkin and Keynes (1954) found  sodium was a c t i v e l y e x p e l l e d  from  cells.  """The f i r s t use o f r a d i o i s o t o p e i n uptake s t u d i e s was much e a r l i e r . Hevesy (1923) measured the uptake by p l a n t s o f an i s o t o p e o f l e a d o b t a i n e d as a n a t u r a l breakdown p r o d u c t , o f thorium. The use o f r a d i o i s o t o p e s became more common a f t e r the development o f the c y c l o t r o n and r a d i o a c t i v a t i o n i n about 1936. I t was E.O. Lawrence o f the U n i v e r s i t y o f C a l i f o r n i a at B e r k e l e y and N i e l s Bohr o f t h e I n s t i t u t e o f T h e o r e t i c a l P h y s i c s i n Copenhagen who s u p p l i e d l o c a l p h y s i o l o g i s t s w i t h r a d i o i s o t o p e s o f phosphorous and potassium.  6  Keynes and Lewis (1951) e x p l i c i t l y animal c e l l  formulated  the 'bag model' of the  f o r f l u x s t u d i e s , wherein the i n t r a c e l l u l a r r e g i o n was  to comprise a s i n g l e homogeneous compartment w i t h i n a c l o s e d permeable membrane.  assumed  selectively-  The r e s u l t s o f t h e i r experiments on s q u i d axon seemed  to be c o n s i s t e n t w i t h t h i s  formulation,  but the r e s u l t s  f o r muscle c e l l s  were more d i f f i c u l t  to i n t e r p r e t .  c a t e d models h a v i n g  s e v e r a l c e l l u l a r compartments among which ions can move  ( f o r example, Keynes & S t e i n h a r d t  The t r e n d has been to employ more compli-  1968; Rogus & Z i e r l e r 1973).  An enzymatic b a s i s f o r the a c t i v e t r a n s p o r t o f sodium and potassium across  the c e l l membrane was d i s c o v e r e d by Skou (1957) i n the form o f a  sodium- and p o t a s s i u m - a c t i v a t e d ,  magnesium-dependent  phosphohydrolase (the (Na + K)ATPase).  triphosphate  T h i s enzyme has come t o be c a l l e d  "the sodium pump" (Glynn & K a r l i s h 1975).  Other mechanisms  p o r t o f sodium have been p o s t u l a t e d , as w i l l mechanisms  adenosine  be d i s c u s s e d  f o r the t r a n s -  l a t e r , and many  f o r the t r a n s p o r t o f o t h e r s p e c i e s have been p o s t u l a t e d .  The a b i l i t y o f t i s s u e s to generate an e l e c t r i c p o t e n t i a l d i f f e r e n c e has been r e c o g n i z e d Reymond 1843). and  f o r w e l l over a hundred years  ( M a t t e u c c i 1840; Du B o i s -  The e a r l y work i n v o l v e d r a t h e r gross  the p o t e n t i a l d i f f e r e n c e s were c a l l e d  i n j u r y to the t i s s u e s ,  'injury potentials'.  They were  thought to be due to the f r e e i n g o f i n o r g a n i c ions through chemical i n the i n j u r e d t i s s u e .  The e q u i l i b r i u m theory o f Donnan (1910) p r o v i d e d  one model f o r the o r i g i n o f the p o t e n t i a l d i f f e r e n c e a c r o s s membrane, w h i l e the t h e o r e t i c a l d e s c r i p t i o n by T e o r e l l Sievers  the c e l l  (1935) and Meyer and  (1936) o f the p o t e n t i a l d i f f e r e n c e a t the boundary between  s o l u t i o n s o f d i f f e r e n t composition Osterhout  reactions  or c o n c e n t r a t i o n p r o v i d e d  two  another.  (1931) measured e l e c t r i c a l p o t e n t i a l d i f f e r e n c e s a c r o s s the  'protoplasm' of s i n g l e p l a n t c e l l s ,  and formulated  as d i f f u s i o n p o t e n t i a l s c h i e f l y due to potassium.  a model f o r t h e i r He f e l t  t h a t phase  origin  7  boundary p o t e n t i a l s for  and the Donnan p o t e n t i a l would be too s m a l l t o account  h i s measured v a l u e s , and that o x i d a t i o n - r e d u c t i o n  be measured w i t h h i s apparatus. and  Henderson d e s c r i b i n g  tial  differences  that  diffusion potentials  the equations o f Nernst  "enable us t o p r e d i c t  w i t h s u f f i c i e n t a c c u r a c y t o j u s t i f y t h e i r use q u i t e  from a l l o t h e r c o n s i d e r a t i o n s . " ities  He s t a t e d  p o t e n t i a l s would n o t  as the key f e a t u r e  He i d e n t i f i e d d i f f e r e n c e s  of d i f f u s i o n potentials,  model by measuring the m o b i l i t i e s o f the ions  potenaside  i n i o n i c mobil-  and s e t . o u t t o t e s t the  i n the "nonaqueous  layers"  (membranes) o f c e l l s . In the t h e o r e t i c a l d e s c r i p t i o n and  Sievers  formulated by T e o r e l l  (1936) f o r the c o n c e n t r a t i o n p o t e n t i a l developed a c r o s s  membranes s e p a r a t i n g  two e l e c t r o l y t e s o l u t i o n s , therewas a Donnan p o t e n t i a l  a t each i n t e r f a c e and a d i f f u s i o n p o t e n t i a l S t e i n b a c h (1940) noted t h a t requires  (1935) and Meyer  i n the membrane.  the maintenance o f a d i f f u s i o n p o t e n t i a l  " c o n t i n u e d p r o d u c t i o n o f e l e c t r o l y t e s , and as such i s l i n k e d t o  the metabolism o f the c e l l . " B o y l e and Conway (1941) a n a l y z e d the a c c u m u l a t i o n o f potassium by muscle and concluded t h a t sodium p e r m e a b i l i t y  i t must be due t o a Donnan e q u i l i b r i u m ,  w h i l e the  o f the muscle c e l l membrane must be extremely low.  Goldman (1943) a p p l i e d  the theory o f d i f f u s i o n p o t e n t i a l s  to s i m p l i f i e d  models o f the c e l l membrane, and o b t a i n e d a good q u a l i t a t i v e d e s c r i p t i o n o f the r e c t i f i c a t i o n and membrane p o t e n t i a l  i n squid  axon.  Hodgkin and Katz (1949) used Goldman's equations under the assumption that  the r e s t i n g s q u i d  axon membrane was more permeable t o potassium than  to sodium, w h i l e the sodium p e r m e a b i l i t y  could  increase  g r e a t l y to bring  about the r e v e r s a l o f p o l a r i z a t i o n o f the membrane which occurs d u r i n g an action potential.  The passage o f sodium a c r o s s the membrane was proposed  to occur " i n combination w i t h a l i p o i d - s o l u b l e c a r r i e r i n the membrane  8  which i s o n l y  f r e e t o move when the membrane i s d e p o l a r i z e d . "  regarded t h e i r e x p r e s s i o n  f o r the v a l u e  more than a rough a p p r o x i m a t i o n . "  They  o f the membrane p o t e n t i a l as "no  However, i t was s u f f i c i e n t l y simple and  f l e x i b l e that  i t c o u l d be a p p l i e d t o almost any r e s u l t under q u i t e r e a s o n a b l e  assumptions.  Goldman's e q u a t i o n and v a r i a t i o n s o f i t c o n t i n u e t o be used t o  describe  the membrane p o t e n t i a l (eg. Schwartz 1971).  C e l l water came under s c r u t i n y v e r y of c e l l s felt  e a r l y on, because o f the f a i l u r e  t o a c t as p e r f e c t osmometers ( f o r example, Overton 1902).  t h a t "a c o n s i d e r a b l e  I t was  p o r t i o n o f the water i n the c e l l o r body i s  physically  'bound' i n the c o l l o i d a l s t r u c t u r e o f the p r o t o p l a s m and must be  considered  an i n t e g r a l p a r t o f the l i v i n g system" (Sharp 1934).  The  presence o f 'bound i o n s ' was i n d i c a t e d by t h e presence o f s l o w l y - e x c h a n g i n g fractions  i n i o n uptake and d e p l e t i o n s t u d i e s .  i o n - s p e c i f i c electrodes  small  & Whitaker 1927; C a l d w e l l  With t h e c o n s t r u c t i o n o f  enough t o be p l a c e d  into single c e l l s  (Taylor  1954; Hinke 1959; Walker 1971) i t became p o s s i b l e  to study the i n t e r i o r o f the c e l l d i r e c t l y , and i t was apparent t h a t not all  o f the ions measured by chemical a n a l y s i s o f the c e l l were present i n  f r e e s o l u t i o n i n s i d e the c e l l . asymmetrical  Some workers have concluded t h a t the  i o n d i s t r i b u t i o n s and osmotic b e h a v i o r o f the c e l l a r e due t o  the a s s o c i a t i o n o f the ions w i t h f i x e d charge groups i n c y t o p l a s m i c macromolecules and t o o r g a n i z a t i o n o f the c e l l water, w i t h the membrane p l a y i n g only a passive Ochsenfeld  r o l e ( T r o s c h i n 1961; L i n g 1962; L i n g , M i l l e r &  1973).  A problem addressed by many present-day i n v e s t i g a t o r s i s the e l u c i d a t i o n o f the d e t a i l e d mechanism o f i o n t r a n s p o r t  in cells.  Most a t t e n t i o n  i s a d d r e s s e d t o the c e l l membrane, but f o r the i n t e r p r e t a t i o n o f s t u d i e s o f the t r a n s p o r t p r o p e r t i e s o f the membrane i n whole c e l l s ,  i t i s necessary t o  9  characterize  the s t a t e s o f the  so i s d e s c r i b e d  i n the next  i n t r a c e l l u l a r water and  section.  ions.  Why  this  is  10  SECTION 2.  A.  TRANS-MEMBRANE FLUXES OF SODIUM AND HYDROGEN IONS  GENERAL CONSIDERATIONS  Almost a l l o f the observed passage o f sodium ions and indeed o f a l l l i p i d - i n s o l u b l e i n o r g a n i c ions a c r o s s the c e l l membrane p r o t e i n s . sodium  membrane i s a s s o c i a t e d w i t h  The p e r m e a b i l i t y o f a pure p h o s p h o l i p i d b i l a y e r t o  i s s e v e r a l o r d e r s o f magnitude lower than t h a t o f a c e l l  ( J a i n 1972; Lauger & Neumcke 1973).  membrane  The t r a n s l o c a t i o n o f the ions can thus  be regarded as an enzyme-mediated r e a c t i o n i n which one product i s the translocated ion. The e f f l u x o f sodium from c e l l s n o r m a l l y i n v o l v e s a c o n s i d e r a b l e i n c r e a s e i n the e l e c t r o c h e m i c a l p o t e n t i a l o f the t r a n s l o c a t e d ions, and so r e q u i r e s energy.  T h i s energy must come u l t i m a t e l y from metabolism.  (Exchange and the p a s s i v e u n i d i r e c t i o n a l  f l u x a r e c o n s i d e r e d below.)  In  theory, the d i r e c t source o f energy f o r sodium e f f l u x c o u l d be o t h e r ions (or  sodium) which pass spontaneously t o a r e g i o n o f lower  electrochemical  p o t e n t i a l , o r i t c o u l d be the h y d r o l y s i s o f 'high-energy' phosphate compounds or the  o t h e r p r o d u c t s o f metabolism.  A mechanism i n v o l v i n g the cytochromes o f  e l e c t r o n t r a n s p o r t system d i r e c t l y has a l s o been proposed  (Mitchell  1969). Experiments have i n d i c a t e d t h a t most and perhaps a l l o f the metabolismdependent for  energy  sodium e f f l u x depends d i r e c t l y on adenosine t r i p h o s p h a t e (ATP) (Dunham 1957; Whittam 1958; C a l d w e l l 1960; Hoffman  1960).  I n o s i n e t r i p h o s p h a t e (ITP), guanosine t r i p h o s p h a t e (GTP), u r i d i n e  triphos-  phate (UTP), p h o s p h o a r g i n i n e (PA), c y t i d i n e t r i p h o s p h a t e (CTP), a c e t y l phosphate  (AcP), phospho(enol) p y r u v a t e (PEP), D-glyceraldehyde-3-phosphate  (G-3-P), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) do  11  not support sodium e f f l u x , w h i l e deoxyadenosine t r i p h o s p h a t e supports about h a l f o f the normal sodium e f f l u x  (d-ATP)  (Hoffman 1960; B r i n l e y &  M u l l ins 1968). When the ATP c o n c e n t r a t i o n i n s q u i d axon i s reduced t o v e r y low l e v e l s by i n t e r n a l d i a l y s i s ,  the sodium e f f l u x approaches the r a t e expected from  p a s s i v e mechanisms ( B r i n l e y & M u l l i n s 1968). c y a n i d e (2 mM.  CN f o r 1 - 3  I f the axon i s t r e a t e d w i t h  hours) and then d i a l y z e d ,  the ATP c o n c e n t r a t i o n  i s reduced t o about 2 JAM. and t h e sodium e f f l u x i s reduced t o the v a l u e e s t i m a t e d f o r p a s s i v e movement ( B r i n l e y & M u l l i n s 1967). little  immediate e f f e c t on t h e sodium e f f l u x  & Keynes  CN a l o n e has  (Keynes & M a i s a l 1954; Hodgkin  1956; Carey, Conway, 6c Kernan 1959).  An ATPase  found i n the c e l l membrane and a c t i v a t e d by sodium and  p o t a s s i u m has come t o be regarded as being l a r g e l y s i b l e f o r the metabolism-dependent sodium e f f l u x  i f not e n t i r e l y respon-  (Skou 1965), a t l e a s t i n  1 red blood c e l l s . (Glynn & K a r l i s h  I t i s c u r r e n t l y b e i n g r e f e r r e d t o as " t h e " sodium pump 1975).  F i v e modes o f b e h a v i o r have been d e s c r i b e d f o r t h i s  (Na+K)ATPase:  ( i ) exchange o f i n t e r n a l sodium f o r e x t e r n a l potassium, r e q u i r i n g ATP and accompanied by a n e t h y d r o l y s i s o f ATP; ( i i )  reversal of ( i ) ;  (iii)  exchange  o f i n t e r n a l sodium f o r e x t e r n a l sodium, r e q u i r i n g ATP and ADP but accom-  ^Sodium has a l s o been a l l e g e d t o be i n v o l v e d i n the e f f l u x o f c a l c i u m from n e r v e and muscle, where i n t e r n a l c a l c i u m i s exchanged f o r e x t e r n a l sodium w i t h no n e t h y d r o l y s i s o f ATP (Baker 1972; Requena, D i P o l o , B r i n l e y , & M u l l i n s 1977), and i n the e f f l u x o f magnesium, where once a g a i n sodium e n t e r s and t h e r e i s no n e t h y d r o l y s i s o f ATP (Baker 6e Crawford 1972; A s h l e y 6c E l l o r y 1972; M u l l i n s , B r i n l e y , Spangler, 6c Abercrombie 1977). Sodium e f f l u x a p p a r e n t l y i s a s s o c i a t e d w i t h the t r a n s p o r t o f sugars ( S c h u l t z 6e C u r r a n 1970; Kimmich 1972) and amino a c i d s ( C o l o m b i n i 6c Johnstone 1974; Johnstone 1974). A sodium-hydrogen exchange has been suggested but i s not c l e a r (Keynes " 1965; B i r o 1965; B i t t a r e t a l . 1973, 1976). An a s s o c i a t i o n o f sodium and i o d i d e t r a n s p o r t has a l s o been suggested (Skou 1965).  12  panied by no net h y d r o l y s i s o f ATP; (a s e p a r a t e sodium-sodium found i n nerve and muscle i s d i s c u s s e d l a t e r ;  exchange  i t i s thought t o comprise as  much as h a l f o f the sodium e f f l u x in. muscle c e l l s and i s i n s e n s i t i v e t o inhibitors);  ( i v ) exchange o f i n t e r n a l p o t a s s i u m f o r e x t e r n a l potassium,  r e q u i r i n g i n o r g a n i c phosphate and ATP but accompanied by no n e t h y d r o l y s i s of ATP; t h i s a p p a r e n t l y i s a s s o c i a t e d w i t h o p e r a t i o n i n mode ( i ) ;  and (v)  e f f l u x o f sodium w i t h o u t c o u p l i n g t o i n f l u x o f another i o n , r e q u i r i n g ATP and p r o b a b l y accompanied by a n e t h y d r o l y s i s o f ATP ( o r much l e s s tively,  CTP, ITP, o r UTP: t h i s mode i s much l e s s  others)  (Glynn & K a r l i s h 1974, 1975).  effec-  f a s t i d i o u s than the  The c o n t r i b u t i o n o f a g i v e n mode o f the (Na+K)ATPase o r o f o t h e r t r a n s p o r t mechanisms t o the n e t f l u x might be d i f f i c u l t  t o deduce from simple  experiments, s i n c e a l t e r a t i o n o f the s u b s t r a t e c o n c e n t r a t i o n s s h o u l d cause a r e d i s t r i b u t i o n among a l l  o f the modes, r a t h e r than s i m p l y  an a l t e r a t i o n o f the c o n t r i b u t i o n o f a s i n g l e mode. literature  (ions and ATP)  An example  from the  i s . t h a t i n the absence but n o t i n the presence o f e x t e r n a l  potassium, both the i n f l u x and e f f l u x o f sodium i n f r o g s k e l e t a l muscle a r e reduced by ouabain (Keynes & S t e i n h a r d t 1968).  That i s , removal o f e x t e r n a l  p o t a s s i u m d i s a b l e s the sodium-potassium exchange but unmasks a ouabains e n s i t i v e sodium-sodium exchange n o t apparent i n s o l u t i o n s which c o n t a i n potassium.  T h i s type o f o c c u r r e n c e must be acknowledged  i n the i n t e r p r e t a -  t i o n o f experiments. Nevertheless,  experiments i n which the i n t r a - o r e x t r a c e l l u l a r  sodium  or p o t a s s i u m i o n c o n c e n t r a t i o n i s a l t e r e d and the e f f e c t on the sodium e f f l u x i s observed a r e o f v a l u e i n t h e study o f the sodium e f f l u x .  Results  from such experiments and v a r i a t i o n s on them a r e known f o r many c e l l s , and by c o n s i d e r a t i o n o f t h i s abundance  o f d a t a i t i s hoped t h a t t h e g e n e r a l  f e a t u r e s o f the d i f f e r e n t routes o f sodium e f f l u x can be deduced.  13  L i k e the e f f l u x o f sodium, t h e e f f l u x o f hydrogen ions from c e l l s i n v o l v e s an i n c r e a s e  i n the electrochemical  ions, and so r e q u i r e s  energy.  v i n c i n g evidence f o r s p e c i f i c  p o t e n t i a l o f the t r a n s l o c a t e d  I t i s o n l y r e l a t i v e l y r e c e n t l y t h a t cont r a n s p o r t mechanisms has been found.  study o f the e f f l u x mechanism f o r hydrogen ions  i s more d i f f i c u l t  the case f o r sodium because processes e q u i v a l e n t appear t o be o p e r a t i n g , Also,  the c e l l  difficulties Mitchell  i n a d d i t i o n t o the e x p u l s i o n  i s not c o n s e r v a t i v e  with respect  o f a more t e c h n i c a l n a t u r e w i l l  o f protons  than i s o f protons  themselves.  t o hydrogen i o n s .  be d i s c u s s e d  (1969) proposed a model, o r i g i n a l l y  the e l e c t r o n t r a n s p o r t  (Further  later.)  f o r m i t o c h o n d r i a , wherein  system o f a e r o b i c metabolism was embedded i n t h e  membrane, and t h e energy d e r i v e d system was used d i r e c t l y t o expel He  to the expulsion  The  from t h e flow o f e l e c t r o n s protons t o t h e outer  through  this  s i d e o f the membrane.  assumed t h a t t h e r e was a membrane-bound ATPase which had t h e c a p a b i l i t y  of e x p e l l i n g protons as i t hydroly.zed  ATP.  wards' as protons passed i n t o t h e c e l l from ADP and i n o r g a n i c phosphate.  I t was thought to 'run back-  through i t , and ATP was thus formed  This  i s c a l l e d t h e chemiosmotic  hypothesis. Rehm (1972) proposed t h a t t h e a c i d i f i c a t i o n o f the lumen o f the stomach was  due t o an e l e c t r o g e n i c hydrogen i o n pump d i r e c t e d toward t h e lumen.  I n a d d i t i o n , a c h l o r i d e pump was thought t o be d i r e c t e d toward t h e lumen and  a sodium pump toward t h e blood.  A c i d i f i c a t i o n would occur when t h e  hydrogen i o n pump became a c t i v e and t h e sodium pump became i n a c t i v e . Coupling  o f t h e pumps was n o t r i g i d .  The r e s p i r a t o r y c h a i n was invoked  d i r e c t l y t o pump protons, as i n t h e M i t c h e l l model, and i t was thought ATP  was n o t d i r e c t l y  that  involved.  S t o e c k e n i u s and co-workers ( O s t e r h e l t & Stoeckenius 1973; Danon & S t o e c k e n i u s 1974; S t o e c k e n i u s 1976) found t h a t t h e 'purple membrane' o f the  14  bacterium Halobacterium  h a l o b i u m c o u l d e x p e l protons  from the b a c t e r i u m  when exposed t o l i g h t , and t h a t the a c t i o n spectrum f o r ATP p r o d u c t i o n i n response  t o l i g h t was s i m i l a r t o the a b s o r p t i o n spectrum o f the p u r p l e  membrane. conditions.  The b a c t e r i u m c o u l d a l s o expel protons Stoeckenius  i n the dark under a e r o b i c  proposed t h a t the b a c t e r i u m c o n t a i n e d t h r e e membrane-  bound systems c a p a b l e o f e x p e l l i n g p r o t o n s ;  ( i ) a p u r p l e membrane p r o t e i n  which c o u l d e x p e l protons when exposed t o l i g h t ;  ( i i ) a respiratory  chain  which c o u l d e x p e l protons u s i n g the energy from a e r o b i c metabolism; and (iii)  an ATPase which c o u l d e x p e l protons u s i n g the energy from the hydro-  lysis  o f ATP, but which u s u a l l y operated  ATP  i n the o p p o s i t e sense, s y n t h e s i z i n g  from ADP and i n o r g a n i c phosphate u s i n g the energy s t o r e d i n the 'proton  g r a d i e n t ' c r e a t e d by the o t h e r two systems. but  i t p r o v i d e d evidence  per se e x i s t s . of  T h i s seems t o be a unique case,  t h a t an ATPase c a p a b l e o f c a u s i n g p r o t o n t r a n s p o r t  Nature has tended  t o employ extended and improved v e r s i o n s  p r i m i t i v e c e l l u l a r mechanisms i n the more s o p h i s i t i c a t e d c e l l s which  evolved l a t e r .  I t would not be too s u r p r i s i n g i f the 'proton pump' o f  nucleated c e l l s  i s found  t o be b u i l t  on these mechanisms.  A sodium-hydrogen exchange was suggested 1965;  by many workers  (Keynes  B i r o 1965; B i t t a r e t a l . 1973, 1976) but o n l y r e c e n t l y has the  dependence o f t h e a l k a l i n i z a t i o n o f the c e l l  on e x t r a c e l l u l a r sodium been  demonstrated, i n mouse s k e l e t a l muscle c e l l s  ( A i c k i n & Thomas 1977),  neurone (Thomas 1977), and b a r n a c l e muscle c e l l s  snail  (Boron & Ross 1978).  F i n a l l y , a c h l o r i d e - b i c a r b o n a t e exchange has been proposed.  The  exchange o f i n t e r n a l c h l o r i d e f o r e x t e r n a l b i c a r b o n a t e would be e q u i v a l e n t to  the e x t r u s i o n o f HC1, s i n c e a t a g i v e n CC^ t e n s i o n excess  bicarbonate  would q u i c k l y combine w i t h a p r o t o n t o y i e l d c a r b o n i c a c i d and then, c a t a l y s i s by c a r b o n i c anhydrase, water and CC^cell  passively.  under  The CC^ would l e a v e the  S i m i l a r systems had been proposed f o r the c e r e b r o s p i n a l  15  fluid  (eg. review by S i e s j o 1972).  Good e v i d e n c e f o r c h l o r i d e - b i c a r b o n a t e  exchange has been found i n s n a i l neurone (Thomas 1976), s q u i d axon (Boron & DeWeer 1976a), mouse s k e l e t a l muscle ( A i c k i n & Thomas 1977), and b a r n a c l e muscle  (Boron & Roos 1978).  A p a r t i c u l a r mechanism f o r sodium or hydrogen t r a n s p o r t by i t s k i n e t i c b e h a v i o r . kinetics  i s characterized  Much more work has been done on the sodium e f f l u x  than on the p r o t o n e f f l u x k i n e t i c s .  The c o n n e c t i o n between the  e f f l u x and the k i n e t i c s o f each o f the sodium t r a n s p o r t systems w i l l discussed  i n part  (C) o f t h i s  be  section.  I n the g e n e r a l case, the c o n n e c t i o n i s made v i a a chemical r e a c t i o n model  i n which the s u b s t r a t e S binds w i t h an enzyme E t o form a complex ES,  which then d i s s o c i a t e s  i n t o enzyme and products P r , w i t h no back r e a c t i o n : k  k-  1  E + S V  T  s.  ES  2  E + Pr  -1  The o v e r a l l r a t e , and hence the e f f l u x r a t e i f t h i s models mechanism f o r sodium e x t r u s i o n , complex,  (ES).  the dominant  i s p r o p o r t i o n a l to the c o n c e n t r a t i o n o f the  I t i s assumed t h a t the d i s s o c i a t i o n o f t h i s complex to y i e l d  products i s so much slower than t h e - r e a c t i o n s which form i t t h a t the reactions preceding t h i s d i s s o c i a t i o n are e s s e n t i a l l y at e q u i l i b r i u m (steady s t a t e assumption). The r e a c t i o n mechanism f o r the (Na+K)ATPase has been c h a r a c t e r i z e d i n some d e t a i l through the use o f ixi v i t r o p r e p a r a t i o n s o f the enzyme, but a s i m p l i f i e d model w i l l  be adopted here.  i s assumed t o be v a r i a b l e , and the r e s t In t h i s ,  Only one parameter, (S) = (Na), i s c o n c e a l e d i n the r a t e c o n s t a n t s .  the elementary 'Michaelis-Menten' model o f enzyme k i n e t i c s ,  (ES) can be expressed i n terms o f (S) and the e q u i l i b r i u m c o n s t a n t  f o r the  r e a c t i o n which forms the complex, and the o v e r a l l r a t e , eg. o f sodium e f f l u x M^ , a  depends  on (Na) as  16  M  =  M  'Na  / (1 +  k  )  max  For t h r e e sodium ions b i n d i n g s u c c e s s i v e l y to E a t e q u i v a l e n t dent  sites, a realistic  a similar  treatment  model o f the (Na+K)ATPase (Glynne & K a r l i s h  1975),  yields (Na)  (Na)  where k of course has a meaning d i f f e r e n t  (Na)  the r e l a t i o n i s  a different  be d e s c r i b e d l a t e r .  t h a t the e f f e c t i v e number o f b i n d i n g s i t e s  case.  3  ( M u l l i n s & Frumento 1963), where a g a i n k has More c o m p l i c a t e d v e r s i o n s w i l l  (Na)  from t h a t i n the p r e v i o u s  I f the t h r e e sodium ions b i n d s i m u l t a n e o u s l y ,  concentrations,  indepen-  is different  significance. I t i s conceivable at d i f f e r e n t  sodium  f o r example.  I t s h o u l d be noted a t t h i s p o i n t t h a t Baker, B l a u s t e i n , Keynes et al_. (1969) and Garay and Garrahan (1973) appeared to take a d i f f e r e n t i n t h a t they assumed i n s t e a d t h a t t h r e e sodium ions had lent  independent s i t e s on the enzyme, and  to b i n d to e q u i v a -  t h a t the e f f l u x was  proportional  to the f r a c t i o n o f the independent enzyme u n i t s which were f u l l y by t h r e e sodium i o n s . probability  o c c u p i e d w i t h sodium a t one  is  (E) but they took  +  (ES)  +  (ES )  +  2  (ES ) 3  i t to be  (E) for k = (S)(E)/(ES).  occupied  T h i s f r a c t i o n they took to be the cube o f the  of h a v i n g an enzyme u n i t  This p r o b a b i l i t y  approach,  IES1 + (ES)  Since  1  +  k/(S)  site.  17  k  (S)  =  (E)  (S) (ES)  =  (ES)  (S)  (ES )  (ES„)  (ES )  2  3  then (E)  +  (ES)  +  (ES )  +  2  (E) Writing  (ES) =  (ES )  =  3  T l + x§I L k  (S) (E) / k, one  +  (  X§1 ) k  2  +  sees t h a t the p r o b a b i l i t y  ( isi  )  k  3 J  is actually  1 k (S) f o r h a v i n g one  +  1  <£t  +  k  +  ( <£L " k  )  2  s i t e o c c u p i e d by sodium, w h i l e the p r o b a b i l i t y o f h a v i n g a l l  three s i t e s occupied i s  (ES3) (E)  +  (ES)  +  (ES )  +  2  (ES ) 3  1 1  +  JL. (S)  or j u s t as f o r the M i c h a e l is-Menten had  +  ( JL_  (S)  )  +  2  ( Ji_ )  3  (S)  case f o r t h r e e e q u i v a l e n t s i t e s .  to be so, of course, s i n c e the assumptions were e q u i v a l e n t .  t h a t a good f i t t o the experimental  data was  o b t a i n e d w i t h the  The  This fact  incorrect  model i l l u s t r a t e s  the ease w i t h which a smooth curve can be approximated  a p o l y n o m i a l , and  the l i m i t a t i o n s of t h i s s o r t of m o d e l l i n g .  by  C o n t i n u i n g i n t h i s v e i n , the a p p l i c a b i l i t y of t h i s type o f model to the (Na+K)ATPase can be c o n s i d e r e d .  In r e a l i t y ,  the steps f o l l o w e d by  the  enzyme t o t r a n s p o r t sodium out o f the c e l l v i a the (Na+K)ATPase i n v o l v e the b i n d i n g of ATP, phosphorylated  magnesium, and and  "n" sodium i o n s .  The  enzyme becomes  the c o n f o r m a t i o n a l changes r e q u i r e d t o make the  sodium a v a i l a b l e t o the o u t s i d e o f the c e l l  occur.  I t has g e n e r a l l y  been assumed t h a t these steps of c o n f o r m a t i o n a l change w i l l limiting,  so t h a t the steady s t a t e a p p r o x i m a t i o n  R e c e n t l y , Mardh and P o s t  (1977) found evidence  l i g a n d t o E, the c o n f o r m a t i o n  be r a t e  can be a p p l i e d .  t h a t w i t h each b i n d i n g of  s h i f t e d s i g n i f i c a n t l y towards the  "potent"  18  complex which can proceed to p h o s p h o r y l a t i o n r a t e of p h o s p h o r y l a t i o n magnesium, and  of the enzyme was  o f E.  That i s , the  increased  over t h a t when  sodium were a l l made a v a i l a b l e a t once, i f one  l i g a n d s were added f i r s t , and  then the m i s s i n g  initial ATP,  or two  l i g a n d s were added.  suggests t h a t the s t e a d y s t a t e assumption cannot be a p p l i e d w i t h  of  the  This  impunity  i n the case of the sodium e f f l u x . Nevertheless,  i t should  be p o s s i b l e to o b t a i n s e m i - q u a n t i t a t i v e  ment w i t h the data i f the b a s i c n o t i o n o f a ions b i n d i n g  'dominant mode' w i t h n sodium  is correct.  Thus, the approach has sodium t r a n s p o r t out such as the above. it  been to compare the k i n e t i c curves of  range.  the  of c e l l s w i t h the curves produced by k i n e t i c models Even w i t h j u s t two  adjustable  parameters, k  and  i s u s u a l l y easy to get a r e a s o n a b l e f i t f o r data over most o f  concentration  agree-  I t i s a t low  substrate  the  (sodium) c o n c e n t r a t i o n  that  d i f f e r e n c e s between models are most apparent. It  i s important, then, t o measure as a c c u r a t e l y as p o s s i b l e  concentration  o f the r e a c t a n t  the  (eg. sodium) i n the t r a n s p o r t r e a c t i o n .  (In  f a c t , the q u a n t i t y o f i n t e r e s t i s the chemical p o t e n t i a l , but  discussion  o f such refinements w i l l  concentration  at  the  point  not  be p r e s e n t e d here.)  i n t e r n a l r e a c t i o n s i t e s o f the t r a n s p o r t that a complication  As  i s the  enzymes, and  i t i s on  this  arises.  noted above, the c e l l  found t h a t the water and  This  i s a heterogeneous s t r u c t u r e , and  solutes  i n s i d e the c e l l  do not  i t has  behave as  been  i f they  were i n a simple aqueous s o l u t i o n bounded by a p r o t e i n - l i p i d membrane. B e f o r e the e x p e r i m e n t a l work on current barnacle  notions  f l u x e s c o u l d be done, i t was  about the s t a t e s o f water and  muscle c e l l had  to be c l a r i f i e d .  sodium ions  felt  inside  that the  In p a r t i c u l a r , the amount  d i s t r i b u t i o n of the c e l l u l a r sodium which w i l l  the  and  participate in flux studies,  19 and the c o n c e n t r a t i o n of sodium i n the s o l u t i o n which bathes the i n t e r n a l s u r f a c e o f the c e l l membrane must be known.  This i n t e r e s t i n g  general  problem i s reviewed next.  B.  STATES OF WATER AND  IONS IN CELLS  The c u r r e n t wiew o f the s t a t e o f water and ions i n s i d e l i v i n g c e l l s be summarized  b r i e f l y as f o l l o w s  ( T a i t & Franks 1971; Hinke, C a i l l e ,  Gayton 1973; P a l a t y & Friedman 1973; Cooke & Kunta 1974;  Berendsen  can  &  1975;  Lee & Armstrong 1974; Edzes & Berendsen 1975; Lev & Armstrong 1975). Water i n c e l l s behaves of  l a r g e l y as i t does i n bulk s o l u t i o n s .  75 to 90%  the water has normal l i q u i d p r o p e r t i e s as f a r as d i f f u s i o n o f ions and  molecules, osmotic e f f e c t s , and s o l v a t i o n a r e concerned, and responds b u l k water i n NMR, studies.  like  i n f r a r e d s p e c t r o s c o p y , and x - r a y and neutron d i f f r a c t i o n  About 1% i s t i g h t l y bound to macromolecules as ' s t r u c t u r a l water'.  The r e m a i n i n g 8 - 24% i s i n f l u e n c e d by the macromolecules and the s t r u c t u r a l water, a p p a r e n t l y through the f o r m a t i o n o f s h o r t - l i v e d extended c l u s t e r s of water m o l e c u l e s , by means o f hydrogen bonding, i n the s o - c a l l e d 'hydrophobic interaction'.  This  f r a c t i o n i s of s p e c i a l  that i t s behavior i s d i f f e r e n t about i t s exact s i z e .  interest  i n that i t i s conceivable  from t h a t o f b u l k water.  Techniqes which r e f l e c t  i n d i v i d u a l water m o l e c u l e s , such as NMR  yield  There i s disagreement  the freedom o f motion o f the lower e s t i m a t e s , w h i l e  measurements o f s o l v e n t p r o p e r t i e s y i e l d the h i g h e r e s t i m a t e s . Water passes the c e l l u l a r membranes v e r y r e a d i l y , and q u i c k l y flows t o or  from any r e g i o n o f the c e l l where i t s c h e m i c a l p o t e n t i a l d e v i a t e s  t h a t o f the r e s t o f the c e l l , the  or indeed o f the v i c i n i t y o f the c e l l .  from Because  c e l l membranes can t r a n s p o r t substances and are s e l e c t i v e l y - p e r m e a b l e ,  however, t h i s  i s not the case f o r the major i n o r g a n i c i o n s .  They can be  20  c o n f i n e d w i t h i n or b a r r e d i n s i d e the c e l l .  from the c e l l  Further,  or membrane d e l i m i t e d  organelles  i n a given compartment i n s i d e the c e l l  or i n the  e x t r a c e l l u l a r space they can be i n f r e e s o l u t i o n , o r a s s o c i a t e d w i t h or s m a l l o r g a n i c r j n o l e c u l e s v i a s p e c i f i c or n o n s p e c i f i c b i n d i n g .  large  Finally,  even though an i o n can pass from a f r e e s t a t e t o one o f the n o n - f r e e s t a t e s listed,  i n response t o a n o n - u n i f o r m i t y i n i t s chemical p o t e n t i a l , the  c h a r a c t e r i s t i c time o f the exchange might be v e r y other  cell  processes,  notably  slow r e l a t i v e t o that o f  d i f f u s i o n i n bulk s o l u t i o n and transmembrane  transport. The  a c t i v i t y o f some ions  s p e c i f i c microelectrodes. o f the i o n i n s i d e the c e l l , ion  i n s i d e the c e l l  can be measured w i t h i o n -  These a c t u a l l y r e f l e c t  the chemical p o t e n t i a l  but the a c t i v i t y and c o n c e n t r a t i o n  o f the f r e e  can be e s t i m a t e d under r e a s o n a b l e assumptions about the s o l v e n t  t i e s o f t h e water i n which the f r e e i o n i s thought t o r e s i d e .  proper-  I f the volume  o f d i s t r i b u t i o n o f t h e f r e e i o n can be estimated, then t h e amount o f f r e e ion  i n the c e l l This  can be c a l c u l a t e d .  i s the conceptual  heart  o f the question.  The ions  i n solution  a r e no more f r e e than those p a r t i c i p a t i n g i n i o n p a i r i n g , d u r i n g conditions, groups.  i n the sense t h a t the c h e m i c a l p o t e n t i a l i s the same f o r the two  The d i s t i n c t i o n i s made because both a r e measured by chemical  a n a l y s i s , w h i l e o n l y the s o l v a t e d trode  steady  studies.  i o n i s assumed to be measured i n m i c r o e l e c -  The assumption i n v o l v e d  i s t h a t a l l o f the f r e e i o n i s i n  a homogeneous compartment as f a r as c o n c e n t r a t i o n  i s concerned, a l t h o u g h i t  i s c l e a r that near charge inhomogeneities on membranes or macromolecules, considered  as a group, the c o n c e n t r a t i o n  w i l l be d i f f e r e n t from t h a t i n the  b u l k even though the chemical p o t e n t i a l i s the same. The  total  i o n content o f the c e l l ,  i n c l u d i n g that  l o c a t i o n s , can be determined q u i t e a c c u r a t e l y  in extracellular  from chemical a n a l y s i s o f the  21  ashed t i s s u e .  The  i o n content  to determine, because f i x e d  o f the e x t r a c e l l u l a r space i s o f t e n  negatively-charged  the p o l y s a c c h a r i d e - r i c h g l y c o c a l y x . then by s u b t r a c t i o n one i n t r a c e l l u l a r but not sodium, which has The  If this  i o n f r a c t i o n can be  i n free solution.  This  a h i g h e x t r a c e l l u l a r but  low  than o u t s i d e  the c e l l ) .  intracellular  i n turn.  membrane, but a t v e r y d i f f e r e n t  the chemical  estimated,  is especially d i f f i c u l t  for  concentration.  They a l l can pass  (that i s , during  steady  p o t e n t i a l f o r sodium ions i s lower i n s i d e the No  have been found i n a n a l y s e s  local  the  rates.  Sodium i s a c t i v e l y e x p e l l e d from the c e l l conditions  s i t e s abound i n .  can c a l c u l a t e the amount o f i o n which i s t r u l y  i n d i v i d u a l ions can be c o n s i d e r e d  resting cell  difficult  cell  i n t r a c e l l u l a r accumulations of sodium  of s u b c e l l u l a r f r a c t i o n s .  (This w i l l  below.)  However, a l a r g e amount i s thought to be a s s o c i a t e d w i t h  negative  s i t e s on  i n t r a c e l l u l a r macromolecules, i n c o m p e t i t i o n  be  reviewed  fixed  with  other  cations. Hydrogen i s a c t i v e l y e x p e l l e d from the c e l l . b u f f e r e d by the  i n t r a c e l l u l a r p r o t e i n s , and  Hydrogen ions a r e a l s o produced and  The  by phosphate and  o f the c e l l  potential  bicarbonate.  consumed i n many r e a c t i o n s  P o t a s s i u m i s a c t i v e l y accumulated by the c e l l , bility  i n t r a c e l l u l a r pH i s  cell.  but because the permea-  membrane to potassium i s r e l a t i v e l y h i g h the  f o r p o t a s s i u m ions  i n the  i s about the same i n s i d e and  chemical  o u t s i d e many  cells.  A q u a n t i t y of potassium which i s s m a l l r e l a t i v e to the amount o f p o t a s s i u m i n s o l u t i o n probably  associates with  fixed negative  C a l c i u m i s a c t i v e l y e x p e l l e d from the c e l l . sequestered  i n mitochondria  and  sites  i n s i d e the  cell.  It is also actively  i n the s a r c o p l a s m i c  r e t i c u l u m o f muscle.  An a d d i t i o n a l b u f f e r i n g mechanism o f v e r y l a r g e c a p a c i t y appears to e x i s t (Brinley, T i f f e r t ,  Scarpa, & M u l l ins 1977).  Magnesium i s a c t i v e l y e x p e l l e d from the c e l l .  About, h a l f of  the  22  i n t r a c e l l u l a r magnesium i s bound to ATP & Tiffert  i n b a r n a c l e muscle ( B r i n l e y , Scarpa,  1977).  The s i t u a t i o n w i t h c h l o r i d e i s not c l e a r .  M i c r o e l e c t r o d e measurements  i n d i c a t e t h a t t h e r e i s a s l i g h t a c c u m u l a t i o n o f c h l o r i d e i n s i d e the c e l l (see a l s o B o l t o n & Vaughan Jones 1977; Dulhunty 1978). show l i t t l e  chloride associated with fixed  bound f r a c t i o n s have been r e p o r t e d .  Diffusion  intracellular sites,  C h l o r i d e , l i k e sodium,  studies  but l a r g e  i s abundant i n  the e x t r a c e l l u l a r space, and t h i s makes a c c u r a t e a l l o c a t i o n o f c h l o r i d e to compartments  difficult.  The s i t u a t i o n i n a g i v e n c e l l generalizations.  This thesis  i n b a r n a c l e muscle  type o f t e n  differs  in detail  from these  i s p r i m a r i l y concerned w i t h sodium and hydrogen  cells.  The hydrogen i o n e x e m p l i f i e s the problems o f i n t e r p r e t a t i o n o f measurements o f the c h e m i c a l p o t e n t i a l .discussed above. in several First,  The hydrogen i o n d i f f e r s  fundamental r e s p e c t s from the sodium i o n i n l i v i n g  the c e l l  systems.  i s not c o n s e r v a t i v e w i t h r e s p e c t to hydrogen: hydrogen  p a r t i c i p a t e as r e a c t a n t and product i n many c h e m i c a l r e a c t i o n s  ions  i n the c e l l .  Changes i n these r e a c t i o n s might occur w i t h any m a n i p u l a t i o n o f the c e l l or i t s environment.  Second, hydrogen i s b u f f e r e d by the bicarbonate-C02  system and, more i m p o r t a n t l y i n s i d e the c e l l , the p r o t e i n system. s o l u t i o n a t pH 7.0  Only 0.001% o f the a v a i l a b l e hydrogen i o n i s f r e e i n (Waddell & Bates 1969).  To c a l c u l a t e changes  amount o f hydrogen ions w i t h any m a n i p u l a t i o n , measure o n l y pH changes.  i n the  i t i s not s u f f i c i e n t to  The. b u f f e r i n g c a p a c i t y a t each s t a g e o f the  m a n i p u l a t i o n must be known. solvent  by the phosphate system and  T h i r d , hydrogen i s a l a b i l e p a r t o f the  (water) i n which the e n t i r e c e l l u l a r system i s embedded.  The  e f f e c t i v e t r a n s l o c a t i o n o f hydrogen ions can o c c u r by the forming and b r e a k i n g o f hydrogen bonds and hydrogen-oxygen  bonds i n the water.  This i s  23  much more r a p i d than the s e l f - d i f f u s i o n o f hydrogen, and means t h a t no r a d i o i s o t o p e can be used t o measure f l u x e s . hydrogen ions i n s o l u t i o n i n the c e l l  Finally,  the c o n c e n t r a t i o n o f  i s u s u a l l y about 10^ times  smaller  than t h a t o f sodium. The defined  q u e s t i o n o f the r e l a t i o n s h i p between measurements o f pH (which i s i n terms o f the p o t e n t i a l d i f f e r e n c e developed  chemical chemists, all  electro-  c e l l ) and 'hydrogen i o n c o n c e n t r a t i o n ' t r o u b l e s even the p h y s i c a l and they m a i n t a i n t h a t the q u a n t i t y o f p r a c t i c a l  contexts  processes  i n a standard  i s the.chemical  potential  (Waddell & Bates  interest  1969).  i n almost  Nevertheless,  e q u i v a l e n t t o the movement o f hydrogen ions do occur a c r o s s the  c e l l membrane, and i t i s r e a s o n a b l e hydrogen ions i n v o l v e d .  t o c a l c u l a t e the e f f e c t i v e q u a n t i t y o f  The r e a s o n a b l e approximation  t h a t pH i s the  n e g a t i v e o f the l o g a r i t h m o f the hydrogen i o n a c t i v i t y w i l l be adopted i n these q u a l i t a t i v e d i s c u s s i o n s . The  q u e s t i o n o f the inhomogeneity o f the pH i n s i d e t h e c e l l  e a r l y because measurement o f the d i s t r i b u t i o n o f an i n d i c a t o r or weak base) was the u s u a l technique  arose  (weak a c i d  f o r measuring pH (Fenn & Maurer 1935).  When these measurements i n d i c a t e d t h a t the pH was too h i g h i n s i d e  cells,  the e x i s t e n c e o f a l k a l i n e o r g a n e l l e s was suggested  Otherwise  the a c t i v e e x t r u s i o n o f protons  as t h e cause.  from the c e l l would have had t o be  postulated. R e c e n t l y , Garthwaite by a c i d i c  (1977) examined the d i f f e r e n c e i n t h e pH measured  (DM0 - see s e c t i o n 9) and b a s i c ( n i c o t i n e ) i n d i c a t o r s  t i s s u e s , w i t h r e f e r e n c e t o t h e number o f m i t o c h o n d r i a  present.  i n various A weak a c i d  w i l l y i e l d a pH v a l u e c l o s e r t o the h i g h e r pH i n the inhomogeneous  tissue,  and a weak base w i l l y i e l d a pH v a l u e c l o s e r t o the lower pH (Waddell Bates  1969).  The d i f f e r e n c e ( p H  a c i d  - pH  b a s e  )  &  i n the pH r e s u l t s o f the two  i n d i c a t o r s was 1.0 i n brown f a t , which has many m i t o c h o n d r i a ,  about 0.8 i n  24  most c e l l s , organelles. cells DNP  and about 0.08  In mature r e d blood c e l l s , which have no  M i t o c h o n d r i a a r e thought  t o have a h i g h pH.  the d i f f e r e n c e i n the measured pH v a l u e s was  (dinitrophenol).  T h i s would uncouple  F u r t h e r , i n most  reduced  by exposure t o  oxidative phosphorylation i n  m i t o c h o n d r i a and presumably prevent them from m a i n t a i n i n g a h i g h P  internal  H. For b a r n a c l e muscle c e l l s ,  DMO  has  the pH measured w i t h the a c i d i c  indicator  been r e p o r t e d t o be h i g h e r than t h a t measured w i t h the b a s i c i n d i -  c a t o r methylamine by about 0.1  (Boron & Roos 1976).  These v a l u e s were  lower  than the v a l u e measured w i t h an i n t r a c e l l u l a r e l e c t r o d e , which i s c o n s i s t e n t w i t h the e x i s t e n c e o f an a c i d i c  intracellular  compartment.  T h i s phenomenon p r e s e n t s a p r a c t i c a l problem, i n t h a t the pH  intracellular  f o r most t i s s u e s can o n l y be measured w i t h i n d i c a t o r s , and the meaning  of what they measure i s not c e r t a i n .  For t h i s reason,  done, as p a r t o f the work p r e s e n t e d ' i n t h i s t h e s i s , measured w i t h DMO,  experiments  were  i n which the pH  as a measure o f the pH o f the whole c e l l  i n the  was  sense  d i s c u s s e d above, and w i t h a pH m i c r o e l e c t r o d e , as a measure o f the pH o f the major aqueous i n t r a c e l l u l a r compartment, over a wide range of c e l l u l a r pH,  i n i d e n t i c a l l y - p r e p a r e d b a r n a c l e muscle c e l l s .  d i s c u s s e d i n s e c t i o n 9, was pH(electrode).  t h a t pH(DMO) was  This i n i t s e l f  The  c o n s i s t e n t l y higher  intraresult, than  i s c o n s i s t e n t w i t h the e x i s t e n c e of an  a l k a l i n e i n t r a c e l l u l a r compartment, but the t e c h n i c a l d i f f i c u l t i e s i n d i c a t o r method a r e such t h a t t h i s cannot  o f the  be s t a t e d w i t h any degree of  certainty. A t t e n t i o n w i l l now  be turned t o the s t a t e s o f water and sodium i n  b a r n a c l e muscle. Hinke (1970) adopted c e l l s wherein  a working h y p o t h e s i s  the i n t r a c e l l u l a r water was  f o r s i n g l e b a r n a c l e muscle  divided  i n t o two  fractions:  one  25  ( " i d e a l water") was c o m p l e t e l y l i k e bulk water; the o t h e r was n o t behaving as b u l k water i n t h a t i t d i d n o t a c t as s o l v e n t f o r sodium, p o t a s s i u m o r c h l o r i d e , and was not o s m o t i c a l l y a c t i v e .  H i s experiments i n d i c a t e d  the b u l k water comprised about 68% o f the water i n a b l o t t e d c e l l ,  that  which i s  about 73%, o f the i n t r a c e l l u l a r water s i n c e about TL o f the c e l l water i n t h e e x t r a c e l l u l a r space.  lies  The measured s i z e o f the e x t r a c e l l u l a r space  depends on the t e c h n i q u e o f b l o t t i n g . .  I n the same study, i t was found t h a t  the mean i o n i c a c t i v i t y c o e f f i c i e n t  i n the myoplasm was 0.65, the v a l u e  i n a bulk s o l u t i o n a t the i o n i c s t r e n g t h o f normal b a r n a c l e R i n g e r ' s solution.  A s i m i l a r v a l u e can be deduced from the data o f Hagiwara,  C h i c h i b u , and Naka (1964). The volume o f d i s t r i b u t i o n o f the f r e e i o n was assumed t o be t h e volume o f " i d e a l water", so f r e e i o n contents c o u l d be determined from m i c r o e l e c trode measurements.  I t was found t h a t o n l y a p a r t o f the i n t r a c e l l u l a r  sodium, potassium, and c h l o r i d e measured is  by chemical a n a l y s i s o f whole  cells  i n f r e e s o l u t i o n i n the " i d e a l water" (McLaughlin & Hinke 1966; Hinke,  C a i l l e , & Gayton 1973).  The " m i s s i n g f r a c t i o n s " were t y p i c a l l y 13% o f the  potassium, 73% o f the sodium, and 31% o f t h e c h l o r i d e One e s t i m a t e was t h a t  fully  (Hinke e t al.  1973).  83% o f the i n t r a c e l l u l a r sodium c o u l d be  i n a c c e s s i b l e t o the sodium m i c r o e l e c t r o d e (Hinke 1969b). The r e s u l t s o f m i c r o e l e c t r o d e s t u d i e s by o t h e r workers i n other have been s i m i l a r  (reviewed by L e v & Armstrong 1975).  allowance f o r 'bound water' i s seldom made.  However,  cells  explicit  L e e & Armstrong (1972;1974)  made no a l l o w a n c e f o r 'bound water' i n t h e i r c a l c u l a t i o n s o f f r e e i o n concentrations  i n f r o g s k e l e t a l muscle, a l t h o u g h they acknowledge  and the p h y s i c a l meaning o f the c a l c u l a t e d c o n c e n t r a t i o n s .  the concept  They based t h e i r  c o n c l u s i o n s about t h e e x i s t e n c e o f s e q u e s t e r e d sodium and p o t a s s i u m on t h e observed changes  i n the apparent a c t i v i t y c o e f f i c i e n t  ( a ) / ( N a ) i when the N a  26  sodium c o n t e n t o f the c e l l was sodium deduced of  a l t e r e d , where ( a ^ )  the a c t i v i t y o f  1 S  a  from the m i c r o e l e c t r o d e measurement and (Na)^ i s the q u o t i e n t  the t o t a l a n a l y z e d c e l l u l a r sodium and the t o t a l water c o n t e n t o f the  cell,  e x c l u d i n g the e x t r a c e l l u l a r space. The l o c a t i o n o f the 'missing sodium' i n b a r n a c l e muscle c e l l s  i s not  c e r t a i n , but some c o n c l u s i o n s can be drawn from a c r i t i c a l review o f m o r p h o l o g i c a l and p h y s i o l o g i c a l s t u d i e s . muscle c e l l was  examined  The u l t r a s t r u c t u r e o f the b a r n a c l e  by Hoyle et ai.(/9?3).The s t r u c t u r e i s q u a l i t a t i v e l y  s i m i l a r to t h a t o f v e r t e b r a t e s t r i a t e d muscle, but t h e r e are s e v e r a l unusual features.  The c e l l membrane i s deeply furrowed by an e x t e n s i v e , unordered  system o f c l e f t s .  These were c l a s s i f i e d as "major c l e f t s " ,  deep furrows  opening d i r e c t l y i n t o the b a t h i n g s o l u t i o n a l l a l o n g t h e i r l e n g t h ,  and  "minor c l e f t s " , branches opening i n t o the major c l e f t s or the b a t h i n g s o l u t i o n o n l y a t t h e i r ends.  The c l e f t s c o n t a i n e d " m u c o p o l y s a c c h a r i d e - l i k e "  m a t e r i a l , and comprised about 8% o f the t o t a l c e l l volume as measured micrographs.  from  A system o f f l a t t e n e d t u b u l e s o r i e n t e d both l o n g i t u d i n a l l y  and r a d i a l l y , and d e v o i d o f the 'mucopolysaccharide', comprised l e s s than 17o o f the t o t a l volume. of  The l a t t e r system was  i d e n t i f i e d as the analogue  the t r a n s v e r s e t u b u l a r system (TTS) o f v e r t e b r a t e s t r i a t e d muscle.  t u b u l e s open i n t o c l e f t s or t o the exposed s u r f a c e o f the c e l l .  The  s a r c o p l a s m i c r e t i c u l u m i s s m a l l , c o m p r i s i n g about 0.57 o f the t o t a l o  volume.  By comparison,  s a r t o r i u s muscle  cell  i t i s about 13% of the t o t a l c e l l volume f o r f r o g  (Peachey 1965).  elements, and d i a d i c  The  (rarely:  There a r e l o n g i t u d i n a l and  cisternal  t r i a d i c ) c o n t a c t s a r e made w i t h TTS.  M i t o c h o n d r i a and n u c l e i a r e l o c a t e d j u s t under the exposed and the membrane o f the major c l e f t s .  Together the l a t t e r  sarcolemma  organelles  p r o b a b l y comprise l e s s than 1% o f the c e l l volume. The remaining almost 90% o f the c e l l volume i s o c c u p i e d by the  27  c o n t r a c t i l e p r o t e i n s and the myoplasmic It  solution.  i s among a l l of these s t r u c t u r e s t h a t the compartments o f a  flux  model s h o u l d f i n d c o u n t e r p a r t s . I f the sodium not d e t e c t e d i n the myoplasm by the m i c r o e l e c t r o d e i s isolated  i n the other i n t r a c e l l u l a r compartments, v e r y h i g h c o n c e n t r a t i o n s  must be a t t a i n e d . available.  Few  s t u d i e s on the i o n i c content o f o r g a n e l l e s a r e  S i z e a l o n e was  c o n s i d e r e d t o r u l e out the n u c l e i and  mitochondria  2 o f b a r n a c l e muscle c e l l s as s i g n i f i c a n t r e p o s i t o r i e s of sodium. membrane i t s e l f  i s probably s l i g h t l y more important,  The  s i n c e sodium,  potassium,  magnesium, and c a l c i u m i n t e r a c t c o m p e t i t i v e l y w i t h the membrane p o l a r The  cleft  system i s d i r e c t l y open t o the b a t h i n g s o l u t i o n , and  solution f i l l i n g solution.  The  cell  groups.  so the  i t w i l l have the s o d i u m - r i c h c o m p o s i t i o n o f the b a t h i n g  s o l i d m a t e r i a l i n the c l e f t s  i s the n e g a t i v e l y - c h a r g e d  p o l y s a c c h a r i d e o f the g l y c o c a l y x and w i l l have sodium a s s o c i a t e d w i t h i t , perhaps i n l a r g e q u a n t i t i e s 1977).  ( H a r r i s & S t e i n b a c h 1956;  B r a d i n g & Widdicombe  The amount o f sodium a s s o c i a t e d or adsorbed w i l l  c o n c e n t r a t i o n o f sodium i n the b a t h i n g s o l u t i o n . p r o t e i n i n b a r n a c l e c e l l s has not been determined. b i n d i n g c a p a c i t y can be found  i n experiments  the  The amount of g l y c o An  i n d i c a t i o n of i t s  on smooth muscle, where a t  l e a s t h a l f of the e x t r a c e l l u l a r space c a t i o n content was s o l u t i o n i n the s u c r o s e space  depend on  found not to be i n  ( B r a d i n g & Widdicombe 1977).  C o r r e c t i o n o f the t o t a l a n a l y z e d c e l l  sodium by assuming t h a t a l l  e x t r a c e l l u l a r sodium i s i n a volume o f f l u i d equal to the i n u l i n  (or o t h e r  o  Some sodium i s sequestered i n the n u c l e i and m i t o c h o n d r i a of f r o g s k e l e t a l muscle ( S o r o k i n a & Kholodova 1970) and i n the n u c l e i o f r a t hepatocytes (Hooper & Dick 1976). However, e l e c t r o n microprobe a n a l y s i s has shown t h a t n u c l e a r and c y t o p l a s m i c sodium c o n c e n t r a t i o n s a r e the same i n toad oocytes (Dick 197 8), and some accumulation of sodium i n n u c l e i and m i t o c h o n d r i a o f thymus and l i v e r c e l l s has been r e p o r t e d i n d i f f e r e n t s p e c i e s ( I t c h & Schwarta 1957; T h i e r s , Reynolds, & V a l e e 1960).  28  marker) space, is  a t the c o n c e n t r a t i o n of the b a t h i n g s o l u t i o n ,  caused  of c r a y f i s h muscle has  T h i s occurs when the e x t r a c e l l u l a r c h l o r i d e or potassium  t i o n i s reduced  so t h a t potassium  not d u r i n g an osmotic t i o n s i s kept  c h l o r i d e i s caused  s t r e s s when the product  constant so t h a t potassium  conditions. indeed  I t appears to open d i r e c t l y  307„ o f the c e l l c h l o r i d e , and  (K)bath (^-'-)bath °^ x  sucrose.  volume under some  i n t o the e x t r a c e l l u l a r  solution,  i n d i c a t e d t h a t 15 -  1967,  1968;  Vinogradova,  Nikolsky, & Troshin  Rogus & Z i e r l e r 1973) However, N e v i l l e  (1979) has  s a r c o p l a s m i c r e t i c u l u m , and Somlyo, Shuman, & Somlyo (1977a) found  shown be no  o f sodium i n the s a r c o p l a s m i c r e t i c u l u m on e l e c t r o n microprobe  a n a l y s i s o f t o a d f i s h s t r i a t e d muscle.  I t i s p o s s i b l e t h a t the  compartments o f f l u x s t u d i e s a r e a r t i f a c t s In any case, the TTS  special  o f analysis..  o f the b a r n a c l e c e l l s used i n the experiments  i n t h i s t h e s i s were s u b j e c t e d to treatment  s w e l l i n g i n o n l y a few  The  1967;  indicated that  from the k i n e t i c behavior o f t h i s " s p e c i a l r e g i o n " t h a t i t cannot  the TTS  sucrose  The work o f B i r k s and Davey p l u s , t h a t o f many  the s a r c o p l a s m i c r e t i c u l u m .  described  cell.  a " s p e c i a l r e g i o n " f r e e l y a c c e s s i b l e to sodium,  S p e r e l a k i s , Shigenobu, & Rubio 1978;  accumulation  but  concentra-  c h l o r i d e does not l e a v e the  F l u x s t u d i e s by H a r r i s (1963) had  volume was  (Vinogradova  t h i s was  concentra-  i n f r o g s k e l e t a l muscle i s a c c e s s i b l e to e x t r a c e l l u l a r  ( B i r k s & Davey 1969).  Grundfest  to l e a v e the c e l l ,  t h e r e f o r e might comprise more than VL o f the c e l l  TTS  others  been shown to s w e l l when c h l o r i d e i s  to e n t e r i t from the myoplasm ( G i r a r d i e r , Reuben, Brandt, &  1963).  and  probably  inadequate. The TTS  The  thus  s p e c i a l cases.  which would cause  Altogether, i t i s very u n l i k e l y that  i n b a r n a c l e c o n t a i n s much of the  'missing sodium'.  c o n t r a c t i l e p r o t e i n s form a l a r g e compartment, and have not yet  been c o n s i d e r e d here.  I t might r e a s o n a b l y  be expected  t h a t most of the  29  i n t r a c e l l u l a r sodium not d e t e c t e d by the e l e c t r o d e i s a s s o c i a t e d as c o u n t e r ion  w i t h the f i x e d a n i o n i c s i t e s on the p r o t e i n s i n t h i s compartment  e_t al_. 1973) . 1947;  Myosin i s known t o a s s o c i a t e  with cations  Fenn 1957; Lewis & S a r o f f 1957), and i s unique  p r o t e i n s o f the c e l l potassium.  (Hinke  (Szyent-Gyorgi  among the major  i n showing a modest p r e f e r e n c e f o r sodium over  S t u d i e s o f the d i f f u s i o n o f ions and molecules  inside barnacle  muscle c e l l s have i n d i c a t e d t h a t the muscle p r o t e i n has s i t e s which can s e q u e s t e r c a t i o n s but admit t o v e r y r a p i d exchange w i t h the c a t i o n s which are free i n s o l u t i o n The  i n s i d e the c e l l  t o t a l c a p a c i t y o f these s i t e s  ( C a i l l e & Hinke 1972, 1973, 1974).  f o r sodium and potassium was e s t i m a t e d t o  be about 68 m i l l i m o l e s per k i l o g r a m o f d r y weight. w i t h o n l y v e r y r a p i d l y exchanging  Again, a simple model,  s i t e s , was assumed, so t h e c a p a c i t y might  be l a r g e r i f some s i t e s have l o n g e r r e s i d e n c e times. Experiments  with a d i f f e r e n t  time r e s o l u t i o n ,  i n which the c e l l  membrane  was d e s t r o y e d and t h e p r o t e i n a l l o w e d t o e q u i l i b r a t e v i a a j a c k e t o f porous glass, with bathing solutions of d i f f e r e n t  sodium and potassium  y i e l d e d c a p a c i t i e s about twice as l a r g e (Fenn 1957; McLaughlin e t al_. 1973).  1968; Hinke  About h a l f o f the d r y weight o f a b a r n a c l e muscle  a p p a r e n t l y i s due t o s o l u b l e o r g a n i c molecules  cell  (M.E. C l a r k , p e r s o n a l  communication), a c c o u n t i n g f o r the l a r g e r apparent experiments  content,  c a p a c i t y , but the  w i t h membrane-damaged c e l l s might r e f l e c t  compartmentalization  w i t h l e s s - r a p i d exchange. From these m o r p h o l o g i c a l and p h y s i o l o g i c a l s t u d i e s , then, r e a s o n a b l e t o conclude  t h a t , i n b a r n a c l e muscle c e l l s ,  the c e l l  i t seems membrane  and membrane-delimited o r g a n e l l e s ' w h i c h s e q u e s t e r sodium and a r e not d i r e c t l y open t o the e x t r a c e l l u l a r space c o n t a i n o n l y a s m a l l p o r t i o n o f the i n t r a c e l l u l a r sodium not d e t e c t e d by the m i c r o e l e c t r o d e ( i n the model o f the cell  o u t l i n e d above).  Most o f t h i s s m a l l p o o l o f sodium should.engage i n  30  r a p i d exchange w i t h sodium i n f r e e s o l u t i o n i n the c e l l and f l u x experiments, but  i t appears t h a t a c c u r a t e  c e l l u l a r sodium might be a more s i g n i f i c a n t The was  so  influence  measurement of the  extra-  problem.  p l a n o f e x p e r i m e n t a l i n v e s t i g a t i o n o f t h i s problem f o r t h i s  thesis  to f o l l o w changes i n the sodium content o f the compartment measured  the m i c r o e l e c t r o d e , I t was  found t h a t  as the t o t a l sodium content o f the c e l l was indeed a great  d e a l o f the  r e s i d e i n the e x t r a c e l l u l a r space, but s e q u e s t e r e d i n s i d e the c e l l section  as w e l l .  'missing  manipulated.  sodium' appears to  t h a t there appears to be some These experiments are d e s c r i b e d  in  3.  I t was  concluded from these experiments t h a t the  a c t i v i t y measured by a s o d i u m - s p e c i f i c  microelectrode  parameter a g a i n s t which the sodium e f f l u x should studies.  by  An  a d d i t i o n a l advantage o f the use  w i t h the m i c r o e l e c t r o d e a c t i v i t y c o u l d be  was  followed.  was  sodium  the most s u i t a b l e  be compared i n k i n e t i c  o f continuous measurements  t h a t r a p i d changes i n the I t was  intracellular  intracellular  sodium  a n t i c i p a t e d that these might occur i n  sodium-free s o l u t i o n s under c e r t a i n c o n d i t i o n s ,  as they had  in frog skeletal  muscle (White & Hinke 1976). I t was  a l s o concluded t h a t an attempt should  o f the c e l l w i t h r a d i o s o d i u m s e l e c t i v e l y , c e l l u l a r space would not  conceal  & Hinke 1976), a l t h o u g h t h i s  any  i s not  be made to l o a d the  so t h a t e f f l u x from the  this  i s described  information later.  i n s e c t i o n 4.  extra-  p a r t of the transmembrane f l u x (White the o n l y way  to accomplish t h i s  T h i s meant t h a t a study o f the e f f e c t s o f m i c r o i n j e c t i o n had and  inside  end.  to be done,  M i c r o i n j e c t i o n s t u d i e s can a l s o  about the s t a t e s of sodium i n s i d e the c e l l ,  as w i l l  be  yield  described  31  C.  THE SODIUM EFFLUX  As noted above, the g e n e r a l has  e x p e r i m e n t a l approach t o the sodium e f f l u x  been t o compare the data w i t h the p r e d i c t i o n s o f k i n e t i c models i n hope  o f d e t e r m i n i n g the g e n e r a l systems.  k i n e t i c p r o p e r t i e s o f the sodium t r a n s p o r t  The b e h a v i o r o f the t r a n s p o r t systems when the c e l l s a r e i n  p h y s i o l o g i c a l s a l i n e i n v i t r o should is  l i k e l y t h a t there  be c l o s e t o t h a t i n v i v o .  However, i t  i s more than one t r a n s p o r t mode, so the r e s u l t s i n the  p h y s i o l o g i c a l s a l i n e (normal R i n g e r ' s s o l u t i o n ) p r o b a b l y r e f l e c t the contributions  o f s e v e r a l modes.  I t has been o f i n t e r e s t to compare the k i n e t i c s i n normal Ringer's s o l u t i o n w i t h the k i n e t i c s i n s o l u t i o n s where one p o s s i b l e mode has been altered.  For example, a sodium-potassium exchange mode should  be markedly  reduced i f potassium i s omitted from the s a l i n e , and the c o n t r i b u t i o n o f other  modes t o the sodium e f f l u x seen i n t h i s I t bears r e p e a t i n g  situation will  be g r e a t e r .  t h a t t h i s maneuver p o s s i b l y does not j u s t reduce  the sodium-potassium exchange mode, but r a t h e r causes i n a d d i t i o n a change i n the c o n t r i b u t i o n o f the other  modes t o the e f f l u x .  Neither  the s i z e o f  the sodium-potassium exchange mode nor t h e s i z e o f the c o n t r i b u t i o n o f the other  modes i n normal R i n g e r ' s s o l u t i o n can be measured.  i s possible to obtain  information  from experiments such as these.  example from t h e l i t e r a t u r e i s t h e f i n d i n g t h a t the r e d u c t i o n  Nevertheless, i t An  i n i n v e r t e b r a t e g i a n t axons,  i n the sodium e f f l u x which f o l l o w s removal o f e x t e r n a l  sium can be a p p r e c i a b l y  greater  potas-  than the s i z e o f the potassium i n f l u x .  This  was s t r o n g support f o r the h y p o t h e s i s t h a t potassium ions a c t as a c t i v a t o r s o f the sodium e f f l u x as w e l l as engaging i n exchange f o r sodium (Hodgkin & Keynes 1955a; S j o d i n & Beauge 1967; M u l l i n s & B r i n l e y 1967, 1969; Baker, B l a u s t e i n , Keynes, M a n i l ,  Shaw & S t e i n h a r d t  1969).  32  Examination o f the k i n e t i c s o f the t o t a l sodium e f f l u x has  been done f o r e f f l u x i n t o sodium-free  traditionally  s o l u t i o n s , because some e x p e r i -  ments i n d i c a t e d t h a t a g r e a t d e a l o f sodium-for-sodium  exchange o c c u r r e d  a c r o s s the c e l l membrane (Keynes & Swan 1959, but see M u l l i n s & Frumento 1963).  T h i s was c o n s i d e r e d t o be e n t i r e l y s e p a r a t e from the ' a c t i v e  which was t h e e f f l u x o f most i n t e r e s t h a r d t 1968).  Such experiments  efflux',  (Keynes 1966, but see Keynes & S t e i n -  d e f i n e d the problem  o f the dependence o f the  e f f l u x on t h e i n t e r n a l sodium c o n c e n t r a t i o n , so they w i l l  be reviewed  b r i e f l y here w i t h r e f e r e n c e t o t h i s q u e s t i o n . Keynes and Swan (1959) found t h a t a p l o t ,  f o r s e l e c t e d experiments, o f  the e f f l u x o f r a d i o s o d i u m from f r o g s k e l e t a l muscle versus t h e t o t a l amount 23 of radiosodium remaining out i n t o sodium-free  i n t h e muscle, as r a d i o s o d i u m and  Na were washed  l i t h i u m - s u b s t i t u t e d Ringer's s o l u t i o n ,  i m p l i e d a power  law r e l a t i o n s h i p between e f f l u x and sodium c o n t e n t . the c a r r i e r  They suggested  i n the membrane can o n l y operate when "n" sodium ions were  bound t o i t , where n appeared  t o be t h r e e .  dent o f the sodium-sodium exchange seen  T h i s was assumed t o be indepen-  i n normal Ringer's s o l u t i o n .  model was a t t r a c t i v e because i t r e q u i r e d o n l y one i n t r a c e l l u l a r hence no c o m p l i c a t e d exchanges o f sodium between i n t r a c e l l u l a r and y e t e x p l a i n e d t h e data f a i r l y w e l l . account  o f s a t u r a t i o n o f t h e t r a n s p o r t system,  compartment, compartments,  and should f i t best a t v e r y  Keynes and Swan found d e v i a t i o n s  a t low r a t h e r than a t h i g h l e v e l s o f sodium. these experiments  This  Of course, a power law takes no  low v a l u e s o f the c e l l u l a r sodium c o n t e n t .  extended  that  M u l l i n s and Frumento (1963)  t o h i g h e r v a l u e s o f sodium c o n t e n t .  They  found  a "cube law" f i t best a t low sodium c o n c e n t r a t i o n , but t h a t the 'power decreased as t h e sodium content  i n c r e a s e d , and t h a t s a t u r a t i o n o c c u r r e d .  (At v e r y h i g h sodium content, a v e r y r a p i d e f f l u x was seen. d i s c u s s e d w i t h t h e sodium-free  1  e f f e c t below.)  T h i s w i l l be  They used a r e l a t i o n v e r y  33  s i m i l a r t o the M i c h a e l i s - M e n t e n taneously,  case o f t h r e e sodium ions b i n d i n g s i m u l -  d i s c u s s e d above, but d i d not use the M i c h a e l is-Menten model.  L a t e r , Keynes and S t e i n h a r d t because t h e l a r g e s a r c o p l a s m i c described  (1968) r e c a n t e d on the power law model  r e t i c u l u m o f the f r o g muscle c e l l had been  (Peachey 1965), p r o v i d i n g a m o r p h o l o g i c a l  ment models.  b a s i s f o r two-compart-  I n a d d i t i o n , the l a r g e f r a c t i o n o f the i n t r a c e l l u l a r  sodium  not d e t e c t e d by m i c r o e l e c t r o d e s had been d e s c r i b e d f o r f r o g muscle (Lev 1964). and  A " s e r i e s - p a r a l l e l " model w i t h  f i r s t - o r d e r k i n e t i c s was proposed,  e x p l a i n e d some o f the o b s e r v a t i o n s . However, t h e p r o p e r t i e s o f t h e (Na+K)ATPase had been f u r t h e r e l u c i d a t e d  i n t h e meantime, and i t appeared t h a t about t h r e e sodium ions were t r a n s p o r t e d per ATP molecule h y d r o l y z e d Sen & Post  1961, 1964).  c o u l d n o t be ignored. verified  The mechanism suggested  by Keynes and Swan thus  (eg. Glynn & K a r l i s h 1975), but attempts t o c l a r i f y t h e k i n e t i c s  the sodium e f f l u x  to  r e v e a l added c o m p l i c a t i o n s  Sodium e f f l u x The  1963;  The k i n e t i c s o f the v a r i o u s modes o f the ATPase were  of  (i)  (Glynn 1962; Bonting & Caravaggio  from i n t a c t c e l l s o t h e r than e r y t h r o c y t e s tended i n s t e a d (eg. White & Hinke 1976).  i n t o normal Ringer's  e f f l u x o f sodium M^  a  solution.  i n t o normal R i n g e r ' s  solution,  t h a t i s , where  the e x t r a c e l l u l a r sodium c o n c e n t r a t i o n has n o t been reduced, has been measured i n s e v e r a l c e l l  types, and the q u e s t i o n o f how the e f f l u x v a r i e s  w i t h the i n t e r n a l sodium c o n c e n t r a t i o n (Na) In the s q u i d axon, M^  a  is a strict  has been c o n s i d e r e d .  l i n e a r f u n c t i o n o f the i n t r a c e l l u l a r  sodium c o n c e n t r a t i o n over t h e range o f 1 t o 220 mM S j o d i n & Beauge 1967; B r i n l e y & M u l l i n s 1968).  (Hodgkin & Keynes 1956;  No s a t u r a t i o n was seen.  It  i s known t h a t nerve c e l l s have h i g h c o n c e n t r a t i o n s o f the (Na+K)ATPase (eg. Bonting,  Simon, & Hawkins 1961), but i t i s n o t c l e a r why such a l a r g e  34  pumping c a p a c i t y i s needed by s q u i d axon. In s n a i l neurones, t h e r a t e o f f a l l (ajj ) f o l l o w i n g i o n t o p h o r e t i c  i n j e c t i o n o f sodium ions i s an a f f i n e  a  o f (a ) , that Na v  o f the i n t r a c e l l u l a r sodium a c t i v i t y function  i s , l i n e a r above a t h r e s h o l d v a l u e o f (a, ) (Thomas 1972b). Na' T  v  7  In f r o g v e n t r i c u l a r muscle, no s a t u r a t i o n was seen over the range o f sodium content s t u d i e d , but M^  a  r o s e as (Na)? f o r n between 1.0 and 1.6 i n  d i f f e r e n t experiments (Van d e r K l o o t & Dane 1964). In r e d b l o o d c e l l s  (Garay & Garrahan 1973) and i n f r o g s k e l e t a l  ( H a r r i s 1965) the r e l a t i o n s h i p between Mjj In b a r n a c l e muscle c e l l s ,  Brinley  a  muscle  and (Na) ^ i s s i g m o i d a l .  (1968) found s a t u r a t i o n o f M^  a  at  h i g h (Na)^, w i t h t h e s h o u l d e r a t c a . 20mM. The experiments t o be d e s c r i b e d i n s e c t i o n 5 of. t h i s t h e s i s  revealed  t h a t the t r u e b e h a v i o r o f the sodium e f f l u x from b a r n a c l e muscle i n t o normal R i n g e r ' s s o l u t i o n i s s i m i l a r t o t h a t from the s q u i d axon and s n a i l  neurone.  S a t u r a t i o n does n o t occur a t t h e low l e v e l found by B r i n l e y (1968).  ( i i ) Sodium e f f l u x i n t o p o t a s s i u m - f r e e s o l u t i o n . S t e i n b a c h (1940).showed  t h a t when f r o g s k e l e t a l muscle i s soaked i n  potassium-free Ringer's s o l u t i o n ,  i t l o s e s p o t a s s i u m and gains  Return o f p o t a s s i u m t o the s o l u t i o n enables the c e l l s accumulated sodium. efflux  t o e x t r u d e some o f the  The e f f e c t was a s c r i b e d t o a r e d u c t i o n i n t h e sodium  i n p o t a s s i u m - f r e e media.  c e l l s by H a r r i s and M a i z e l s (1954).  A s i m i l a r e f f e c t was found i n r e d blood  (1951), and i n g i a n t axons by Hodgkin and Keynes  I t was n o t due t o p e r m e a b i l i t y changes o r t o changes  potential.  sodium.  H a r r i s and M a i z e l s  i n the membrane  (1952)-proposed t h a t the p o t a s s i u m i n f l u x and  the sodium e f f l u x i n r e d c e l l s were l i n k e d .  As d e s c r i b e d above,  linked  sodium and p o t a s s i u m t r a n s p o r t was found t o be the p r i n c i p a l mode o f the 'sodium pump' under normal c o n d i t i o n s .  The s t o i c h i o m e t r y o f t h e c o u p l i n g  35  appears  to be f i x e d  i n red c e l l s  i n f r o g s k e l e t a l muscle  (Garrahan & Glynn 1967c) but t o be v a r i a b l e  (Cross, Keynes, Rybova 1965)  ( M u l l i n s & B r i n l e y 1969).  and  i n s q u i d axon  However, the decrease i n the sodium e f f l u x  from  s q u i d axon upon removal o f the e x t e r n a l potassium can f a r exceed the magnitude o f the p o t a s s i u m i n f l u x , as d i s c u s s e d  by S j o d i n  that potassium ions a c t as a c t i v a t o r s f o r sodium In b a r n a c l e results  muscles,  E l e v a t i o n o f the p o t a s s i u m c o n c e n t r a t i o n between 8 (the normal v a l u e ) and 40 mM,  ( B r i n l e y 1968;  o f the b a t h i n g  A s i m i l a r e f f e c t was (1965a,b),  1972). value  efflux  greater  than  caused  efflux.  found i n f r o g s k e l e t a l muscle by Horowicz  and  and they proposed t h a t the i n c r e a s e i n sodium e f f l u x  was  by the c o i n c i d e n t a l t e r a t i o n s o f the membrane p o t e n t i a l due t o the  that f o r f r o g s k e l e t a l muscle  cells  Beauge and S j o d i n  i n which E  m  changes i n the e x t e r n a l p o t a s s i u m c o n c e n t r a t i o n potassium-rich  almost i d e n t i c a l sium-activated stimulated  (1976) have shown  i s made u n r e s p o n s i v e to by prolonged i n c u b a t i o n i n  s o l u t i o n s , changes i n the e x t e r n a l potassium  between 0 and 10 mM  concentration  a c t i v a t e the sodium e f f l u x a l o n g an a c t i v a t i o n c u r v e  to t h a t o b t a i n e d  for untreated  sodium e f f l u x a l s o was  control cells.  shown t o d i f f e r  sodium e f f l u x , which a l s o was  independent  The potas-  from the a z i d e o f membrane p o t e n t i a l  Beauge and S j o d i n suggest t h a t e x t e r n a l p o t a s s i u m a c t i v a t e s the  sodium pump i n f r o g muscle least  s o l u t i o n , to a  had no e f f e c t on the sodium  change i n the potassium c o n c e n t r a t i o n .  changes.  B i t t a r et,.al.  However, f u r t h e r i n c r e a s e s above 40 mM  a marked s t i m u l a t i o n o f the sodium  mediated  transport.  even though the c e l l s c o n t r a c t a t c o n c e n t r a t i o n s  20mM. ( B i t t a r et a l . 1972).  Gerber  I t i s implied  too, removal o f the e x t r a c e l l u l a r potassium  i n a decrease i n the sodium e f f l u x  in barnacle,  (1971).  by a l t e r i n g the t r a n s p o r t enzyme d i r e c t l y , a t  f o r external potassium concentrations  between 0 and 10 mM.  a t which a c t i v a t i o n by potassium occurs i s d i s t i n c t  The  from the c a t a l y t i c  site site  36  for potassium transport.  The a c t i v a t i o n a t v e r y h i g h c o n c e n t r a t i o n s o f  e x t e r n a l p o t a s s i u m remains t o be e x p l a i n e d . Only the e f f e c t o f r e d u c t i o n o f the e x t e r n a l p o t a s s i u m c o n c e n t r a t i o n was  examined e x p e r i m e n t a l l y i n the p r e s e n t work, as d e s c i r b e d i n s e c t i o n 5.  I t was  found t h a t the e f f l u x i n t o p o t a s s i u m - f r e e s o l u t i o n s behaved much  l i k e the e f f l u x i n t o o u a b a i n - c o n t a i n i n g R i n g e r ' s s o l u t i o n .  ( i i i ) Sodium e f f l u x  i n t o sodium-free s o l u t i o n .  The removal o f sodium from the e x t r a c e l l u l a r medium r e v e r s e s the g r a d i e n t o f e l e c t r o c h e m i c a l p o t e n t i a l which i s the d r i v i n g f o r c e f o r ' p a s s i v e ' sodium i o n movement a c r o s s the c e l l membrane. o f sodium from the c e l l  T h i s should make the e f f l u x  l e s s c o s t l y i n terms o f energy, and so r e s u l t  i n c r e a s e both i n the p a s s i v e and i n the a c t i v e e f f l u x .  i n an  However, f o r enzyme-  mediated t r a n s p o r t o f i n t r a c e l l u l a r sodium t o occur, sodium might be r e q u i r e d a t an e x t e r n a l n o n t r a n s p o r t s i t e .  I t has a l s o been suggested t h a t  an exchange o f i n t e r n a l f o r e x t e r n a l sodium ions might occur, w i t h no net f l u x o f ions and no net consumption o f energy. There a r e two c l a s s e s o f 'sodium-free e f f e c t s ' on the b a s i s o f the time course.  The d i f f e r e n c e between the steady sodium e f f l u x  i n t o normal  Ringer's s o l u t i o n and the s t e a d y sodium e f f l u x i n t o sodium-free s o l u t i o n has been the one more s t u d i e d .  There i s a l s o a t r a n s i e n t r a p i d l o s s o f  sodium from the myoplasm o f f r o g s k e l e t a l muscle and c r a b s t r i a t e d  muscle  and from the s n a i l neurone upon removal o f sodium from the b a t h i n g  solution.  The better-known e f f e c t w i l l Ussing  (1947, 1949)  be reviewed f i r s t .  first  suggested the p o s s i b i l i t y t h a t a one-for-one  exchange o f i n t r a c e l l u l a r sodium f o r e x t r a c e l l u l a r sodium c o u l d occur, w i t h no net e x p e n d i t u r e o f m e t a b o l i c energy. t a t i o n of radiosodium fluxes.  T h i s would c o m p l i c a t e the i n t e r p r e -  Subsequently i t was  found (Keynes & Swan  37  1959)  t h a t the r a d i o s o d i u m e f f l u x from f r o g s k e l e t a l . m u s c l e was r e v e r s i b l y  reduced t o about h a l f when the e x t e r n a l sodium was r e p l a c e d by l i t h i u m o r choline, with  e x t e r n a l potassium unchanged.  l e s s when t h e sodium content appropriate  The f r a c t i o n a l r e d u c t i o n was  o f the muscle was e l e v a t e d by i n c u b a t i o n i n an  s o l u t i o n , but c o u l d be r e s t o r e d by l o w e r i n g  a g a i n by a f u r t h e r i n c u b a t i o n .  the sodium  content  E x t e r n a l potassium d i d n o t a f f e c t the  sodium-free response. In s q u i d axon, however, c h o l i n e - o r l i t h i u m - s u b s t i t u t e d sodium-free s o l u t i o n s caused an i n c r e a s e i n t h e e f f l u x o f r a d i o s o d i u m (Hodgkin & Keynes 1955;  M u l l i n s e t a l . 1962).  Mullins  (appendix t o M u l l i n s & Frumento 1963)  suggested t h a t a c c u m u l a t i o n o f incoming sodium near t h e i n t e r n a l s i t e o f an a c t i v e t r a n s p o r t enzyme, due t o r e s t r i c t e d d i f f u s i o n from t h i s l o c a t i o n t o t h e b u l k cytoplasm, c o u l d account f o r both o f these o b s e r v a t i o n s , the  i n t r a c e l l u l a r sodium c o n c e n t r a t i o n  (Na)  was t h e d e t e r m i n i n g  where  factor.  Subsequently i t was shown t h a t removal o f e x t e r n a l sodium does  indeed  cause a decrease i n the r a d i o s o d i u m e f f l u x from s q u i d axons o f low sodium content  (lowered  by s t i m u l a t i o n o f the axon i n l i t h i u m s o l u t i o n )  (Frumento  & M u l l i n s 1967; M u l l i n s & B r i n l e y 1967; S j o d i n & Beauge 1968a), and an i n c r e a s e i n t h e r a d i o s o d i u m e f f l u x from f r o g s k e l e t a l muscle o f h i g h content  (loaded by s o a k i n g  f o r 20 hours a t 2 deg.C i n p o t a s s i u m - f r e e  s o l u t i o n ) ; (Keynes 1965; Beauge & S j o d i n 1968). of the e f f e c t d i f f e r s  content  (The g l y c o s i d e  sensitivity  i n t h e two t i s s u e s ( S j o d i n & Beauge 1968b; Baker,  B l ^ u s t e i n , Keynes, M a n i l , t h e r e was l i t t l e  sodium  Shaw & S t e i n h a r d t  1969)).  I n toad oocyte,  however,  e f f e c t o f removal o f e x t e r n a l sodium, whatever the sodium  (Dick & L e a 1964).  A c a r d i a c g l y c o s i d e - s e n s i t i v e sodium-sodium exchange o f the type seen i n r e d blood  cells  (Garrahan & Glynn 1967) ( t h e r e i s no g l y c o s i d e i n -  s e n s i t i v e sodium-sodium exchange i n r e d b l o o d  c e l l s ) was thought t o be  38  responsible  f o r o n l y p a r t o f the e x t e r n a l sodium-dependent e f f l u x seen i n  muscle s i n c e the e f f e c t s o f g l y c o s i d e s appeared t o be  independent and  & Beauge 1968a). about  the removal o f e x t e r n a l  a d d i t i v e (Horowicz 1965;  1968;  by g l y c o s i d e  decreased both sodium e f f l u x and  Keynes 1966), as  f o r red blood  s k e l e t a l muscle i n the same way (Beauge & S j o d i n 1968).  influx  The  cells  was  the a c t i v e sodium e f f l u x from f r o g  t h a t potassium, rubidium, and  s t i m u l a t i o n was  abolished  cesium  by c a r d i a c  do  glycosides.  sodium  proposed: (a) removal of- e x t r a c e l l u l a r sodium prevents the  dependent e f f l u x , and  (b)  l i t h i u m stimulates  l i k e potassium e x t e r n a l l y . pump r a t e w i l l Eventually  by  (Garrahan & Glynn 1967).  e f f e c t " o f l i t h i u m - s u b s t i t u t e d sodium-free s o l u t i o n s on  e f f l u x was  Sjodin  i n p o t a s s i u m - c o n t a i n i n g s o l u t i o n (Keynes & S t e i n -  L i t h i u m appeared to s t i m u l a t e  A "dual  sodium  Keynes 1966;  207» i n f r o g muscle i n potass ium-free s o l u t i o n but the i n f l u x  unaffected hardt  Glycoside  and  r i s e , and  efflux will  acting  i n t e r n a l sodium content r i s e s ,  so the s t i m u l a t o r y  this stimulated  l a c k of e x t e r n a l  Thus as the  the sodium e f f l u x by  sodium-  e f f e c t of l i t h i u m w i l l  surpass the  the  increase.  i n h i b i t o r y e f f e c t of  the  sodium.  A complication  o f these s t u d i e s  i n whole muscle p r e p a r a t i o n s  i n p o t a s s i u m - f r e e s o l u t i o n s , potassium which leaves  the c e l l s p a s s i v e l y  accumulate i n the e x t r a c e l l u l a r space i n s u f f i c i e n t amounts to sodium e f f l u x a p p r e c i a b l y  ( S j o d i n & Beauge 1973).  i s that can  stimulate  Beauge (1975) e s t i m a t e d  t h a t almost h a l f of t h e - s t i m u l a t i o n o f the sodium e f f l u x seen i n sodiumf r e e , p o t a s s i u m - f r e e , l i t h i u m - s u b s t i t u t e d s o l u t i o n i n f r o g muscle was  due  to t h i s r e a c c u m u l a t i o n of potassium. Sachs (1977) has e x t r u s i o n by r e d blood end  competitive  the  (Na+K)ATPase.  shown t h a t the e f f e c t s o f e x t e r n a l sodium on  sodium  c e l l s are c o n s i s t e n t with' sodium a c t i n g as a "dead-  i n h i b i t o r and  as a h e t e r o t r o p i c a l l o s t e r i c  e f f e c t o r " on  39  I t was  found t h a t a s m a l l  g l y c o s i d e - s e n s i t i v e increase  e f f l u x from f r o g s k e l e t a l muscle was  obtained  i n the sodium  i f c a l c i u m or magnesium were  used to r e p l a c e e x t e r n a l sodium, a s . w e l l as when l i t h i u m was (Horowicz, T a y l o r , & Waggoner 1970).  I t was  so used  concluded t h a t most o f the  g l y c o s i d e - i n s e n s i t i v e sodium e f f l u x r e q u i r e d e x t e r n a l sodium, but o f the g l y c o s i d e - s e n s i t i v e sodium e f f l u x , p a r t can be i n h i b i t e d by e x t e r n a l  sodium  (?sodium-sodium exchange).  The former p a r t o f the g l y c o s i d e - s e n s i t i v e e f f l u x  appears when (Na)^ i s h i g h ,  and the l a t t e r when (Na)^ i s low.  r e s u l t s were o b t a i n e d  by another worker  ( S j o d i n 1971).  Similar  That the g l y c o s i d e -  s e n s i t i v e e f f e c t s a r e due to the (Na+K)ATPase i s supported by r e s u l t s on the i s o l a t e d enzyme (Robinson 1975).  Further,  demonstrated a s t r o p h a n t h i d i n - s e n s i t i v e  Kennedy and DeWeer (1976) have  increase  i n sodium e f f l u x r e q u i r i n g  e x t e r n a l sodium but not potassium, i n f r o g s k e l e t a l muscle i n which the ATP/ADP r a t i o had been lowered by p o i s o n i n g .  A  strophanthidin-sensitive  sodium i n f l u x o f s i m i l a r s i z e a l s o occurs under t h e s e c o n d i t i o n s . In s q u i d axons, Baker, B l a u s t e i n , Keynes sodium exchange under c o n d i t i o n s r e s u l t s o f Frumento and M u l l i n s Poisoning  w i t h CN or DNP,  et a l . (1969) saw  of p a r t i a l poisoning, (1964).  sodium-  c o n t r a r y t o the  The exchange was g l y c o s i d e - s e n s i t i v e .  or i n j e c t i o n o f apyrase (which h y d r o l y z e s  ATP) a l l  g i v e r r i s e t o an e x t e r n a l - p o t a s s i u m - i n d e p e n d e n t , external-sodium-dependent sodium e f f l u x (DeWeer 1970, concentrations r e d blood Since  cells  1974).  i s the c r i t i c a l  A p p a r e n t l y the presence o f ADP  factor.  This  i s s i m i l a r t o the r e s u l t s i n  (Garrahan & Glynn 1967b; Glynn & Hoffman  1971).  the p o t a s s i u m - f r e e and s o d i u m - f r e e e f f e c t s a r e h i g h l y c o r r e l a t e d  ( S j o d i n & Beauge 1969; DeWeer 1970), i t was  concluded t h a t the 98% o f the  sodium e f f l u x from s q u i d axon which i s not p a s s i v e stimulated  i n high  sodium e f f l u x , i n h i b i t e d by e x t e r n a l  i s due t o : (a) potassium-  sodium ( a s c r i b e d to the  sodium-potassium exchange mode o f the pump), and (b) e x t e r n a l - s o d i u m -  40  s t i m u l a t e d sodium e f f l u x ,  i n h i b i t e d by e x t e r n a l p o t a s s i u m ( a s c r i b e d  sodium-sodium exchange mode p l u s a d i f f e r e n t ,  to the  glycoside-insensitive  mechanism) . Sodium-sodium exchange c o n c e i v a b l y c o u l d occur by a mechanism other than a c l o s e l y - l i n k e d  one-for-one exchange.  measured sodium i n f l u x i n t o calculated  For example,  i f from the  f r o g muscle one s u b t r a c t s the p a s s i v e  influx  i n the c o n s t a n t f i e l d a p p r o x i m a t i o n , t h e r e remains a component  of the sodium i n f l u x which i s about 38% o f the t o t a l ( i n normal R i n g e r ' s solution)  (Venosa 1974).  I f the c e l l  i s maintaining a constant  content, t h i s must be b a l a n c e d by sodium e x t r u s i o n , flux).  I f this  influx  sodium  (as i s the p a s s i v e i n -  i s v i a an enzyme, the net r e s u l t  i s enzyme-mediated  sodium-sodium exchange c o m p r i s i n g 38% o f the t o t a l sodium e f f l u x , need not be one-for-one exchange by. one enzyme.  The n o t i o n o f one-for-one  exchange o f sodium ions e l i m i n a t e s the need t o s p e c i f y but  c l e a r l y c r e a t e s other d i f f i c u l t i e s .  a c o u n t e r i o n motion,  I t might be t h a t one enzyme mediates  sodium i n f l u x and a nearby enzyme mediates sodium e f f l u x . i s how  f a r a p a r t can such a p a i r o f d i f f e r e n t  'thermodynamically p e r m i s s i b l e  The key q u e s t i o n  enzymes be y e t o p e r a t e i n a  manner.  1  Perhaps another i n d i c a t i o n  o f the e x i s t e n c e o f a s e p a r a t e sodium  t r a n s p o r t enzyme i s the e f f e c t o f e t h a c r i n i c a c i d appears to i n h i b i t  acid  on muscle.  e x t e r n a l - p o t a s s i u m - s e n s i t i v e sodium  ( E r l i j & L e b l a n c 1971), but o n l y i n g l y c o s i d e - t r e a t e d muscles: a c i d a l o n e s t i m u l a t e s the sodium e f f l u x . sodium e f f l u x  Ethacrinic  efflux  ethacrinic  a c i d has no e f f e c t  on  from b a r n a c l e muscle normally, but p r e v e n t s the i n c r e a s e  i n sodium e f f l u x which u s u a l l y 1972).  Ethacrinic  the external-sodium-dependent sodium i n f l u x w i t h o u t  r e d u c i n g the g l y c o s i d e - s e n s i t i v e ,  the  but i t  f o l l o w s exposure t o  ( D a n i e l s o n et^ a l .  41  In summary, i t appears t h a t  i n nerve (under some c o n d i t i o n s ) and i n  muscle ( n o r m a l l y ) , t h e r e p r o b a b l y i s a component o f the sodium e f f l u x which r e q u i r e s e x t e r n a l sodium. exchange o f i n t e r n a l  I t i s u s u a l l y regarded as s t r i c t one-for-one  f o r e x t e r n a l sodium.  On the b a s i s o f the e f f e c t o f  p o i s o n s , i t would appear t h a t much o f t h i s exchange proceeds by a mechanism o t h e r than the (Na+K)ATPase, ase  a l t h o u g h sodium"sodium exchange o f the (Na+K)ATP-  type can be demonstrated under some c o n d i t i o n s .  S i n c e removal o f  e x t e r n a l sodium causes a decrease i n t h e sodium e f f l u x when (Na) but  i s low,  an i n c r e a s e when (Na)^ i s h i g h , t h e r e appears t o be a mechanism by which  e x t e r n a l sodium can i n h i b i t  the sodium e f f l u x .  p o t a s s i u m mode o f the (Na+K)ATPase.  T h i s c o u l d be the sodium-  The sodium-free e f f e c t i s the combined  r e s u l t o f ( a t l e a s t ) these two e f f e c t s , and the net e f f e c t observed i n experiments i n v i t r o depends on t h e e x p e r i m e n t a l c o n d i t i o n s  ( S j o d i n 1971).  In f r o g s k e l e t a l muscle, 20 t o 507=, o f the sodium e f f l u x under normal conditions the  i s o f the sodium-sodium exchange type.  I n s q u i d axon, none o f  sodium e f f l u x under normal c o n d i t i o n s i s o f the sodium-sodium  type.  The s i t u a t i o n  i n b a r n a c l e muscle was not c l e a r .  exchange  Brinley,(1968)  found t h a t replacement o f e x t e r n a l sodium by l i t h i u m reduced the r a d i o s o d i u m e f f l u x by 677  OJ  w h i l e replacement by sucrose reduced i t by 477o.  f r e e s o l u t i o n s reduce the r a d i o s o d i u m e f f l u x by 517».)  (Potassium-  In c e l l s with higher  sodium content, an i n c r e a s e i n e f f l u x was seen, but the absence o f e x t e r n a l sodium always caused a c o n t r a c t u r e , so the e f f e c t s c o u l d not be measured. Experiments on t h i s type o f sodium-free e f f e c t a r e d e s c r i b e d i n s e c t i o n 5.  Both an i n h i b i t o r y and a s t i m u l a t o r y e f f e c t o f the removal o f e x t e r n a l  sodium were seen i n b a r n a c l e muscle c e l l s , characteristics  but on t h e whole t h e k i n e t i c  o f the e f f l u x i n t o sodium-free s o l u t i o n were the same as  those o f the e f f l u x i n t o normal R i n g e r ' s s o l u t i o n . 'sodium-free e f f e c t s '  That i s , much o f the  i n b a r n a c l e muscle i s due t o changes i n t h e sodium  42  content o f the c e l l s which occur when they a r e p l a c e d  i n sodium-free  solution. A second 'sodium-free e f f e c t - has been r e p o r t e d . s k e l e t a l muscle t o sodium-free s o l u t i o n s causes a l a r g e r a p i d f a l l  ( s u b s t i t u t e d w i t h l i t h i u m or t r i s )  of the i n t r a c e l l u l a r sodium a c t i v i t y measured w i t h  an i n t r a c e l l u l a r m i c r o e l e c t r o d e (White & Hinke 1976). has.  Exposure o f f r o g  A similar rapid  r e c e n t l y been r e p o r t e d i n c r a b muscle (Vaughan-Jones  effect  1977), and a  s i m i l a r but slower e f f e c t e n t i r e l y c o n s i s t e n t w i t h the c o n t i n u a t i o n o f the normal sodium e f f l u x  i n the absence o f i n f l u x , was  found i n s n a i l  neurone  (Thomas 1972b). For  f r o g muscle (White & Hinke 1976), the time c o u r s e o f the f a l l  be f i t t e d by a sum o f two e x p o n e n t i a l terms. unchanged  The two r a t e c o n s t a n t s were  by ouabain treatment, but the ' c a p a c i t y ' o f the k i n e t i c reduced.  to  i d e n t i f i e d as " p a s s i v e " leakage.  more r a p i d r a t e was c o n s t a n t was the  The slower r a t e was  compartment  d e f i n e d by the more r a p i d r a t e was t h a t f o r sodium i n f l u x , and was  could  comparable The  i d e n t i f i e d as a c t i v e sodium e x t r u s i o n , and the r a t e  the same as t h a t found f o r the washout o f l a b e l l e d sodium from  e x t r a c e l l u l a r space. With a muscle which had been loaded w i t h r a d i o s o d i u m by p a s s i v e uptake,  the  washout o f r a d i o s o d i u m from the e x t r a c e l l u l a r space would mask such a  r a p i d e f f l u x u n l e s s the e x t r a c e l l u l a r space was b e f o r e the muscle was  cleared of radiosodium  exposed t o sodium-free s o l u t i o n  (White & Henke 1976).  Chemical a n a l y s i s o f the muscles i n d i c a t e d t h a t the f a l l sodium a c t i v i t y  i n myoplasmic  i s due to movement o f sodium ions out o f the c e l l  Hinke 1976), but t h i s has not been c o n f i r m e d . some s i g n i f i c a n c e to the i n i t i a l  (White &  Some e a r l i e r workers a t t a c h e d  r a p i d exchange o f r a d i o s o d i u m i n whole  f r o g muscle (Carey & Conway 1954).  Others d i s c a r d e d the f i r s t  twenty  minutes o f the i s o t o p e e f f l u x data from s i n g l e muscle c e l l s , which they  43  q u i t e r e a s o n a b l y assumed to r e p r e s e n t washout of the e x t r a c e l l u l a r space almost e x c l u s i v e l y  (Hodgkin & Horowicz 1959).  The s i t u a t i o n i n crab muscle i s q u i t e d i f f e r e n t The r a p i d  fall  (Vaughan-Jones  1977).  o f the myoplasmic sodium a c t i v i t y on exposure o f the c e l l to  sodium-free l i t h i u m - s u b s t i t u t e d or t r i s - s u b s t i t u t e d s o l u t i o n was  unaffected  by ouabain, the removal o f e x t r a c e l l u l a r potassium, c a l c i u m , or magnesium, or  by changes  i n the e x t r a c e l l u l a r pH.  I t was  b l o c k e d by manganese, c o b a l t ,  and lanthanum, which a r e known t o b l o c k the movement o f d i v a l e n t  cations  a c r o s s membranes, but not by D600 or Verapamil, which b l o c k c a l c i u m f l u x e s in  nerve.  However, lanthanum and, t o a l e s s e r extent, manganese themselves  o f t e n caused a r a p i d f a l l of  external If  nor  o f the myoplasmic  sodium a c t i v i t y  sodium.  the r a p i d e f f l u x o f sodium i s not accompanied by p o t a s s i u m i n f l u x ,  by c h l o r i d e e f f l u x  (the myoplasmic c h l o r i d e a c t i v i t y  low e x t e r n a l sodium s o l u t i o n s ) ,  the  found.  i s not changed i n  one would expect a c o n s i d e r a b l e e l e c t r o g e n i c  c o n t r i b u t i o n t o the membrane p o t e n t i a l to occur. t i o n was  i n the presence  Only a s l i g h t  depolariza-  Perhaps t h e r e i s some c o u n t e r i o n or c o - i o n t r a n s p o r t , or  p e r m e a b i l i t y to l i t h i u m might be g r e a t e r than t h a t t o sodium and a  c o n c u r r e n t d e p o l a r i z a t i o n thus r e s u l t  i n the r e s t i n g membrane p o t e n t i a l ,  a p p r o x i m a t e l y c o u n t e r i n g the e l e c t r o g e n i c  effect.  C a l c i u m i n f l u x i s suggested by the r e s u l t s w i t h manganese, c o b a l t , and lanthanum, and by the s i m i l a r time c o u r s e o f the r i s e o f ( C a ) ^ i n c r a b muscle and s q u i d axon under s i m i l a r c o n d i t i o n s .  Removal o f e x t e r n a l  calcium  prevents the r i s e o f the sodium e f f l u x n o r m a l l y seen i n s q u i d axon when exposed t o l i t h i u m s o l u t i o n s  (Baker, B l a u s t e i n , Hodgkin et a l .  1969).  However, w i t h c r a b muscle removal o f e x t r a c e l l u l a r c a l c i u m and/or magnesium had no e f f e c t .  F u r t h e r , a sudden r a p i d  c o n t r a c t i o n , and t h i s d i d not occur.  i n f l u x o f c a l c i u m would t r i g g e r a  I t might be t h a t the e x t r a c e l l u l a r  44  space o f the whole-muscle p r e p a r a t i o n used was not c o m p l e t e l y c l e a r e d o f c a l c i u m o r potassium, but t h i s i s u n l i k e l y because l o n g washout used.  times were  The s i m i l a r i t y o f the response t o lanthanum and removal o f e x t e r n a l  sodium was noted above.  Lanthanum can d i s p l a c e q u i t e l a r g e q u a n t i t i e s o f  membrane-bound c a l c i u m , and i n t r a c e l l u l a r c a l c i u m s t i m u l a t e s sodium e f f l u x from b a r n a c l e muscle ( B i t t a r et a l . 1972, 1973).  A l t o g e t h e r , though, the  p r o c e s s e s which l e a d t o a d e c l i n e i n the myoplasmic sodium a c t i v i t y remain unknown. Measurements  w i t h the i n t r a c e l l u l a r m i c r o e l e c t r o d e can o n l y d e t e c t  l o s s o f sodium from the major i n t r a c e l l u l a r compartment. the f a t e o f the l o s t sodium.  They cannot r e v e a l  T h e r e f o r e an experiment i n which the micro-  e l e c t r o d e measurements were combined w i t h r a d i o s o d i u m e f f l u x measurements was d e v i s e d , as d e s c r i b e d i n s e c t i o n 6.  I t was found t h a t a r a p i d f a l l i n  the myoplasmic sodium a c t i v i t y s i m i l a r t o t h a t  i n f r o g and crab muscle  occurs i n b a r n a c l e muscle under c e r t a i n c o n d i t i o n s , and t h a t i t i s accompanied by a r a p i d l o s s o f sodium from t h e c e l l .  As w i t h s n a i l neurone,  t h i s was found t o be due t o the c o n t i n u i n g normal o p e r a t i o n o f the sodium e f f l u x i n t h e absence o f sodium  influx.  ( i v ) The e f f e c t o f ouabain on the e f f l u x o f sodium. C a r d i a c g l y c o s i d e s , p r i n c i p a l l y ouabain ( g - s t r o p h a n t h i n ) and i t s aglycone s t r o p h a n t h i d i n , have l o n g been known t o i n h i b i t the t r a n s p o r t o f sodium and p o t a s s i u m i n r e d b l o o d c e l l s and f r o g s k e l e t a l muscle 1953; M a t c h e t t & Johnson 1954).  (Schatzmann  Some such a c t i o n had been suspected because  t o x i c doses o f the drugs were known t o cause a l o s s o f p o t a s s i u m from h e a r t muscle  (Schatzmann & W i t t 1954).  I t was found l a t e r t h a t c a r d i a c  glycosides  a l s o i n h i b i t t h e a c t i v i t y o f t h e (Na+K)ATPase (Skou 1965). The c u r r e n t theory o f the a c t i o n o f c a r d i a c g l y c o s i d e s  (Schwartz e t a l .  45  1975;  Glynn & K a r l i s h 1975)  on the  (Na+K)ATPase which i s s e p a r a t e  binding s i t e and  i s t h a t they b i n d s p e c i f i c a l l y to a s i n g l e s i t e  there  from the c a t a l y t i c s i t e s .  The  i s exposed o n l y a t the e x t e r n a l s u r f a c e of the c e l l membrane,  i s a p a r t i c u l a r c o n f o r m a t i o n o f the enzyme which favours  o f the g l y c o s i d e . t i o n of the  The  binding i s very strong.  i s o l a t e d enzyme-glycoside complex  The  h a l f time f o r d i s s o c i a -  a t 37°C i s about 2.5  a l t h o u g h the p h y s i o l o g i c a l e f f e c t o f g l y c o s i d e s can be r e v e r s e d rapidly.  The  binding  b i n d i n g does not render the enzyme c o m p l e t e l y  hours  much more  inactive.  A l t h o u g h the sodium-potassium exchange appears to be prevented, some p a r t i a l or s i d e r e a c t i o n s can s t i l l  occur  (Glynn  et a l . 1974).  t h a t the e f f e c t s o f g l y c o s i d e are d i f f e r e n t  f o r the  It is  conceivable  i s o l a t e d and  the  in  s i t u enzyme, however. In whole c e l l s , In squid.axons w i t h sodium e f f l u x  c a r d i a c g l y c o s i d e s can promote some modes of i o n low ATP  content,  strophanthidin  ( B r i n l e y & M u l l i n s 1968).  i n c r e a s e d the r a t e o f  Strophanthidin  p o t a s s i u m e f f l u x from f r o g s k e l e t a l muscle ( H a r r i s 1957; 1968a) and The  flux.  a l s o increases  the  S j o d i n & Beauge  s q u i d axons ( M u l l i n s & B r i n l e y 1969).  i n h i b i t i o n o f the sodium e f f l u x by s t r o p h a n t h i d i n  increases  with  i n c r e a s i n g sodium content  i n 'aged' f r o g s a r t o r i u s muscle ( S j o d i n & Beauge  1968a) but  i n c r e a s i n g sodium content  decreases w i t h  in freshly-dissected  f r o g s a r t o r i u s muscle (Horowicz et al_. 1970) . Dependence o f f l u x e s on ATP tivity  to g l y c o s i d e s  does not always c o r r e l a t e w i t h  ( M u l l i n s & B r i n l e y 1969).  the s e n s i -  In ATP-depleted s q u i d axon,  s t r o p h a n t h i d i n causes a marked i n c r e a s e i n the sodium e f f l u x , a g a i n s t gradient of electrochemical  p o t e n t i a l , while  the  l e a v i n g the sodium i n f l u x  unchanged ( M u l l i n s 1972). Recent experiments on red blood  c e l l ghosts (Bodeman & Hoffman  1976)  r e v e a l e d t h a t i n the presence o f e x t e r n a l potassium, the r a t e a t which  46  ouabain  bound decreased when e i t h e r the i n t e r n a l sodium o r t h e i n t e r n a l  potassium was r a i s e d . variations  When e x t e r n a l potassium was not present,  i n i o n content had no e f f e c t on ouabain  experiments,  the f i n a l amount o f ouabain  In other  bound was n o t a f f e c t e d by such  (Schwartz eit a l . 197 5), and i t i s n o t known i f an i n c r e a s e i n  manipulations the i n t e r n a l  binding.  such  i o n c o n c e n t r a t i o n s can promote the d i s a s s o c i a t i o n from the  enzyme o f ouabain which i s a l r e a d y bound t o the enzyme. The  e f f e c t s o f s t r o p h a n t h i d i n on t h e sodium e f f l u x from b a r n a c l e muscle  c e l l s were s t u d i e d by B r i n l e y  (1968).  He found  t h a t t h e r e was l i t t l e  or no  -8 i n h i b i t i o n a t 10  M. s t r o p h a n t h i d i n and t h a t as the c o n c e n t r a t i o n o f s t r o p h -  a n t h i d i n was i n c r e a s e d t o 10 ^M, the percent  i n h i b i t i o n i n c r e a s e d . The  maximum i n h i b i t i o n was about 907 and o c c u r r e d f o r c o n c e n t r a t i o n s o f s t r o p h o  a n t h i d i n g r e a t e r than o r equal t o 10 "'M. content,  t h e r e was a delayed  I n one c e l l o f v e r y h i g h sodium  i n c r e a s e i n the sodium e f f l u x a f t e r an i n i t i a l  -4 fall  a t 10  M strophanthidin.  effective. content.  Ouabain appeared t o be s l i g h t l y  The i n h i b i t i o n was l e s s  i n c e l l s which had a l a r g e r sodium  S t r o p h a n t h i d i n produced a g r e a t e r r e d u c t i o n o f sodium e f f l u x  than d i d removal o f e x t e r n a l sodium and/or potassium, sodium and potassium treated The  less  and removal o f e x t e r n a l  d i d not i n c r e a s e the i n h i b i t i o n i n s t r o p h a n t h i d i n -  cells. e f f e c t s o f ouabain  on t h e sodium e f f l u x from b a r n a c l e muscle  were s t u d i e d by B i t t a r e t a l . (1973). by exposing  isolated cells  They o b t a i n e d dose-response  cells  curves  t o i n c r e a s i n g c o n c e n t r a t i o n s o f ouabain, as  B r i n l e y had done, and o b t a i n e d a s i m i l a r c u r v e but w i t h a maximum i n h i b i t i o n of  about 707o.  They used t h e r e d u c t i o n i n the f r a c t i o n o f r a d i o s o d i u m  lost  per u n i t time as t h e i r measure o f i n h i b i t i o n , w h i l e B r i n l e y had c a l c u l a t e d  _3 the s i z e o f the sodium e f f l u x u s i n g an e s t i m a t e d v a l u e f o r (Na)^. a f t e r about twenty minutes o f exposure t o ouabain,  A t 10  M,  the e f f l u x o f radiosodium  47  began t o r i s e a g a i n . The i n h i b i t i o n was g r e a t e r i n c e l l s which had " s l o p e r a t i o s " c l o s e t o 1, t h a t  i s , i n c e l l s h a v i n g a lower sodium content  t i o n 4 ) . I n j e c t i o n o f ouabain i n t o the c e l l s  (see sec-  caused no change i n the sodium  e f f l u x . The i n c r e a s e i n the sodium e f f l u x caused by d e p o l a r i z a t i o n o f the c e l l s , by r a i s i n g the e x t e r n a l p o t a s s i u m c o n c e n t r a t i o n or by i n j e c t i n g C a C ^ , was not i n h i b i t e d by ouabain. treatment.  Nor was the i n c r e a s e i n the sodium e f f l u x caused by C O 2  B i t t a r et a l .  concluded t h a t t h e r e a r e a t l e a s t two s e p a r a t e  sodium e x t r u s i o n systems, l o c a t e d i n d i f f e r e n t p a r t s o f the membrane. The e f f e c t s o f s e v e r a l c a r d i a c aglycones on the sodium e f f l u x muscle c e l l s have a l s o been s t u d i e d  ( B i t t a r & Brown 1977). They a l l  i n barnacle appear t o  b i n d t o the c a r d i a c g l y c o s i d e s i t e and t o have the same e f f e c t s as c a r d i a c glycosides.  Only the potency d i f f e r s .  Three a s p e c t s o f the e f f e c t o f ouabain on the sodium e f f l u x muscle were examined First,  i n this  thesis.  the e f f e c t on the dose-response c u r v e o f the use o f the sodium e l e c t r o d e  to measure the r i s i n g was i n v e s t i g a t e d . sult  e x p e r i m e n t a l l y as p a r t o f the work r e p o r t e d  i n barnacle  i n t r a c e l l u l a r sodium a c t i v i t y a f t e r ouabain begins t o a c t  Impariment  i n an immediate  o f the e x t r u s i o n mechanism by ouabain s h o u l d r e -  i n c r e a s e i n the sodium content o f the c e l l as the p a s s i v e  i n f l u x c o n t i n u e s unchanged,  and t h e i n c r e a s e d sodium content s h o u l d be r e f l e c t e d  i n the measured sodium e f f l u x .  Second, the k i n e t i c c h a r a c t e r i s t i c s o f the  sodium e f f l u x i n c e l l s which a r e maximally i n h i b i t e d by ouabain were t o be measured. I t turned out t h a t t h i s  f l u x i s an i n c r e a s i n g f u n c t i o n o f the i n t r a -  c e l l u l a r sodium a c t i v i t y a t low l e v e l s o f i n t e r n a l sodium, but reaches a p l a t e a u at higher l e v e l s .  These two a s p e c t s a r e d e s c r i b e d  i n s e c t i o n 5. T h i r d , an  e l e c t r o g e n i c c o n t r i b u t i o n o f the sodium f l u x t o the membrane p o t e n t i a l was sought. tial  Experiments which demonstrate t h e e x i s t e n c e o f an e l e c t r o g e n i c poten-  i n b a r n a c l e muscle w i l l  be d e s c r i b e d  i n s e c t i o n 7.  A l t h o u g h the membrane p o t e n t i a l has o n l y now been mentioned i n c o n n e c t i o n  48  w i t h the i o n f l u x e s , of  i t i s o f course i n t i m a t e l y i n v o l v e d w i t h them.  the e a r l y work on i o n i c c u r r e n t s ,  adopted o p e r a t i o n a l l y . and c i r c u i t to  I n much  the models o f e l e c t r i c a l c i r c u i t s were  The r e s u l t has been a mixture o f m o l e c u l a r p h y s i c s  theory, w i t h emphasis on t h e l a t t e r .  I t was f e l t  t o be worthwhile  review t h e o r i g i n s o f the most commonly used models o f the membrane poten-  t i a l and i o n i c c u r r e n t s , and t o i n d i c a t e how they c o u l d be improved. review i s p r e s e n t e d i n t h e next p a r t o f t h i s s e c t i o n , and completes duction.  I t i s f o l l o w e d by a summary o f t h e problems  t h e s i s , and a d e s c r i p t i o n o f t h r e e models used l a t e r of  D.  experiments  a l l cells  Almost always,  measurable  the e l e c t r i c a l p o t e n t i a l measured  i s n e g a t i v e w i t h r e s p e c t t o t h a t measured i n  bulk s o l u t i o n bathing the c e l l . In  a number o f c e l l s  pump i s suddenly a l t e r e d , brane p o t e n t i a l . t i o n o f ouabain,  the  i n the i n t e r p r e t a t i o n  t h e r e i s an e l e c t r i c a l p o t e n t i a l d i f f e r e n c e  in the i n t e r i o r o f the c e l l  An  t o be addressed i n t h i s  but gathered t o g e t h e r f o r the convenience o f the r e a d e r .  a c r o s s the c e l l membrane.  the  the i n t r o -  THE TRANSMEMBRANE DIFFERENCE IN ELECTRICAL POTENTIAL  In  the  This  i t has been found t h a t t h e r e i s an immediate  i s accompanied  interior,  by a d e p o l a r i z a t i o n o f the c e l l .  That i s ,  becomes l e s s n e g a t i v e w i t h r e s p e c t t o the o u t s i d e .  i n c r e a s e i n t h e pump r a t e ,  Kernan  change i n t h e r e s t i n g mem-  A decrease i n t h e pump r a t e , caused f o r example by a p p l i c a -  i n s i d e o f the c e l l  cell  i f t h e r a t e o f t h e sodium  caused  i s accompanied  f o r example by i n j e c t i o n o f sodium  by a h y p e r p o l a r i z a t i o n  (see reviews by  1970; Thomas 1972; a l s o DeWeer & G e d u l d i g 1973; DeWeer 1974).  D i f f e r e n t modes o f the pump appear  t o have d i f f e r e n t degrees o f  into  49  electrogenicity  (DeWeer 1974).  The s t o i c h i o m e t r y o f the net sodium-  potassium exchange by t h e t r a n s p o r t enzymes appears t o be f i x e d f o r r e d b l o o d c e l l s a t 3Na : 2K, but to vary K a r l i s h 1975).  from 1:1 t o 3:1 i n s q u i d axon (Glynn &  A s e p a r a t i o n o f charge such as i s i m p l i e d by t h i s c o u l d  be e f f e c t e d w i t h a v e r y l a r g e investment o f energy. the charge s e p a r a t i o n necessary  only  The q u e s t i o n o f how  t o produce t h e observed change i n membrane  p o t e n t i a l comes about i s e s s e n t i a l l y t h e same as t h e q u e s t i o n o f how a c t i v e sodium e x t r u s i o n comes about. The  development o f ideas on t h e e l e c t r o g e n i c i t y o f t h e sodium pump has  been reviewed by Thomas (1972).  Theories  o f the o r i g i n o f the c o n t r i b u t i o n  of the e l e c t r o g e n i c sodium pump to t h e r e s t i n g membrane p o t e n t i a l a r e phenomenological extensions and  Katz (1949).  o f the approach o f Goldman (1943) and Hodgkin  The n o t i o n s  o f i o n i c p e r m e a b i l i t y and conductance, and  the i o n i c mechanisms i n v o l v e d i n t h i s approach, o f t e n a r e employed i n other contexts. It  i s generally f e l t  that t h e membrane p o t e n t i a l E  m  can be regarded  as b a s i c a l l y a d i f f u s i o n p o t e n t i a l , which a r i s e s i n nerve and s t r i a t e d muscle because o f t h e s e l e c t i v e p e r m e a b i l i t y o f t h e c e l l membrane to p o t a s s i u m and the e l e v a t e d i n t r a c e l l u l a r potassium c o n c e n t r a t i o n  created  by a c t i v e t r a n s p o r t o f ions.  (Other  value are considered  KC1 tends t o l e a k out o f the c e l l a c r o s s t h e  below.)  l i k e l y c o n t r i b u t i o n s t o the measured  membrane, but s i n c e the m o b i l i t y i n the membrane o f the potassium ions i s g r e a t e r than t h a t o f the c o u n t e r i o n c h l o r i d e (the m o b i l i t i e s a r e almost equal  i n bulk s o l u t i o n ) , a s m a l l l o c a l charge s e p a r a t i o n o c c u r s .  charge s e p a r a t i o n r e s u l t s ion  i n an e l e c t r i c a l  This  f o r c e which r e t a r d s the potassium  movement and promotes t h e c h l o r i d e i o n movement.  A steady  a t t a i n e d where the u n i d i r e c t i o n a l e f f l u x o f K and C l a r e e q u a l .  state i s This i s  j u s t d i k e _the f a m i l i a r l i q u i d j u n c t i o n - o r d i f f u s i o n p o t e n t i a l (eg. • „ Lakshminarayanaiah 1969), but there  i s no n e t l o s s o f K because o f the  50  sodium-potassium exchange pump, there, i s no v a l u e o f the by  resting.potential,  the membrane, l i k e the  and  net  loss-of Cl at'the  steady  the d i f f u s i o n f r o n t i s f i x e d i n space  "constrained  liquid junction"  of P l a n c k  (Lakshminarayanaiah 1969). From a model of the c e l l membrane as a homogeneous l a m e l l a , t e r i z e d by m o b i l i t i e s d r i v i n g force)  i n which the  an e x p r e s s i o n f o r the  over the  electric  The  i n t e g r a t i o n can  and  when the  _ m  RT F  J K (_P  •  P  l  n  K  e x t r a c e l l u l a r , and  i o n by  integrating,  f l u x and  the  f o r sodium, potassium, and  chloride  o f Na . (K)i + P ( K )  ?  ' < o . (Na)i  C1 " + P  N a )  P  +  N a  permeability  i 1 . (Cl)  ( C 1 )  C 1  0  J  i r e f e r s to i n t r a c e l l u l a r and of the membrane t o the  (This w i l l be r e f e r r e d  to as  the  'GHK  ion  o to (essen-  equation .) 1  C l e a r l y t h i s model o f d i f f u s i o n through a homogeneous s l a b does c o i n c i d e w i t h the  s i t u a t i o n i n a r e a l membrane.  the membrane o n l y a t c e r t a i n l o c a t i o n s , At  o f the  e q u a t i o n must d e s c r i b e  The states  ions  seen i n d i f f u s i o n i n a bulk s o l u t i o n .  -the membrane p o t e n t i a l v e r y w e l l .  basis  that  the  In r e a l i t y ,  the  ie. in association with  the m o l e c u l a r l e v e l the movement o f the  to that  ions,  i s zero,  P i s the  the m o b i l i t y ) .  mobilities  i n the membrane (the N e r n s t - P l a n c k e q u a t i o n ) .  be c a r r i e d out  t o t a l current  to  i s c o n s t a n t , Goldman (1943)  transmembrane f l u x o f an  (Hodgkin & Katz 1949), where s u b s c r i p t  tially  field  t h i c k n e s s of the membrane, a r e l a t i o n between the  d r i v i n g f o r c e at each p o i n t  E  r a t i o s of average d i f f u s i o n v e l o c i t y  f o r each major i o n which are much lower than the  i n bulk s o l u t i o n and derived  (empirical  charac-  bears no Yet  T h e r e f o r e the  what i s o c c u r r i n g  the  ions  not pass  proteins.  simple r e l a t i o n  equation describes  essential physical a t the m o l e c u l a r  basis  level.  o f the e q u a t i o n i s the N e r n s t - P l a n c k e q u a t i o n , which s i m p l y f l u x of an  ion is proportional  to the d r i v i n g f o r c e .  The  51  d r i v i n g f o r c e f o r a system a t c o n s t a n t and u n i f o r m p r e s s u r e and  temperature  can be deduced from an e x p r e s s i o n f o r the energy change accomplished the r e s u l t i n g flow, the flow b e i n g easy to d e f i n e . (where G i s the Gibbs i s -^/u,  wherey^=  f o r the i o n .  by  The energy change i s -dG  f r e e energy) and the f o r c e conjugate to a flow o f ions +  RT"ln(a)  +  zF<f> i s the e l e c t r o c h e m i c a l p o t e n t i a l  (a) = a c t i v i t y o f the i o n , <f> = e l e c t r i c a l p o t e n t i a l .  (The  d r i v i n g f o r c e can a l s o be deduced i n the framework o f i r r e v e r s i b l e thermodynamics,  from the entropy p r o d u c t i o n - eg. see K a t c h a l s k y & Curran 1967.)  T h i s "phenomenological  f o r c e " i s an approximation, u s e f u l i n a macroscopic  r e p r e s e n t a t i o n o f a system i n which  ' a l l gradients are s u f f i c i e n t l y gradual.'  The thermodynamic f u n c t i o n s cannot a c t u a l l y be d e f i n e d a t each p o i n t i n space, s i n c e they r e p r e s e n t the i n t e r a c t i o n s o f a l a r g e number o f p a r t i c l e s , and u n l e s s the system can be regarded as an aggregate o f m a c r o s c o p i c a l l y s m a l l volume elements,  each c o n t a i n i n g a l a r g e number o f p a r t i c l e s ,  the  r e p r e s e n t a t i o n s t a t e d above cannot be a p p l i e d w i t h any e x p e c t a t i o n o f success.  Goldman (1943) s t a t e d t h a t "the c u r r e n t c a r r i e r s pass  more or l e s s randomly d i s t r i b u t e d which i s assumed u n i f o r m normal was  interstices  i n the s t r u c t u r e  to the d i r e c t i o n o f f l o w . "  through (membrane),  The  integration  a l o n g a d i r e c t i o n p a r a l l e l to the d i r e c t i o n o f flow, p a s s i n g through a  pore.  In the pore the ions were regarded as d i f f u s i n g as they do i n bulk  s o l u t i o n , but i n one dimension and w i t h much lower m o b i l i t y . not s u r p r i s i n g l y , was junction . 1  The  result,  s i m i l a r t o t h a t o f P l a n c k f o r a. ' c o n s t r a i n e d l i q u i d  Hodgkin and Katz wrote the s o l u t i o n f o r the major ions and  s o l v e d f o r the transmembrane p o t e n t i a l d i f f e r e n c e a t zero net c u r r e n t , as s t a t e d above. A m e c h a n i s t i c model a t the m o l e c u l a r l e v e l f o r the o r i g i n o f the membrane p o t e n t i a l can be envisaged.  The p h y s i c a l o r i g i n o f the p o t e n t i a l  d i f f e r e n c e i s indeed s i m i l a r to t h a t i n the case o f a l i q u i d j u n c t i o n .  In  52  the c e l l membrane, the p r o t e i n channels thought  through which c a t i o n s pass a r e  to be l i n e d w i t h e l e c t r o n e g a t i v e m o i e t i e s , such as c a r b o n y l o r  c a r b o x y l groups,  so t h a t the c a t i o n i c charge can be p a r t i a l l y or c o m p l e t e l y  balanced when i t i s i n the channel.  (These models a r e c a l l e d the " n e u t r a l  p o l a r pore" (Eisenman 1968; M u e l l e r & Rudin pore"  (Eisenman 1968)).  channel.  There  1967) and the " f i x e d  charge  i s a f i n i t e c o n c e n t r a t i o n o f c a t i o n i n the  When a c a t i o n e n t e r s the channel,  i t l e a v e s i t s c o u n t e r i o n behind.  T h i s can occur o n l y o c c a s i o n a l l y on the m o l e c u l a r s c a l e o f space and time, s i n c e a l o c a l c o n c e n t r a t i o n o f n e g a t i v e charge would r e t a r d f u r t h e r of c a t i o n  ( v i a the channel o r o t h e r w i s e ) .  Such an inhomogeneity  egress  o f charge  c o u l d be b a l a n c e d by a movement o f c a t i o n s from the r e g i o n t o which the cations  i n t h e channel a r e heading,  i n a one-for-one  but i t i s more l i k e l y t h a t the anions w i l l path i s a v a i l a b l e .  exchange on average,  be drawn a f t e r the c a t i o n s i f a  The a n i o n c l e a r l y cannot  r e a d i l y f o l l o w through the  c a t i o n c h a n n e l , so t h e r e i s assumed t o be an a n i o n channel nearby. anions n o r m a l l y would pass through the channel  i n a manner s i m i l a r t o t h a t  o f the c a t i o n s , but the c a t i o n s can do so more r e a d i l y the membrane"). difference  The  ("higher m o b i l i t y i n  A s e p a r a t i o n o f charge o c c u r s , and an e l e c t r i c a l  potential  results.  The GHK e q u a t i o n has proved  t o be a good q u a l i t a t i v e and q u a n t i t a t i v e  or s e m i q u a n t i t a t i v e d e s c r i p t i o n o f the membrane p o t e n t i a l  i n many s i t u a t i o n s .  However, t h e r e a r e s e v e r a l ways i n which a q u a n t i t a t i v e r e l a t i o n between the p o t e n t i a l d i f f e r e n c e a c r o s s the membrane and the d r i v i n g f o r c e f o r t h e flow o f ions c o u l d be formulated.  The n e t e f f e c t a l o n e can be c o n s i d e r e d ,  so t h a t the membrane channels a r e regarded as 'black boxes' c h a r a c t e r i z e d by a r e s i s t a n c e or m o b i l i t y .  Then t h e c u r r e n t equals the q u o t i e n t o f the  v o l t a g e and a r e s i s t a n c e , o r the f l u x v e l o c i t y equals t h e product o f the net d i f f e r e n c e i n chemical p o t e n t i a l and a p e r m e a b i l i t y ( o r m o b i l i t y ,  53  denoted u ) .  Such a r e l a t i o n u n d e r l i e s the u s u a l d e f i n i t i o n o f membrane  conductance (Hodgkin & Horowicz 1959b) and the u s u a l c o n c e p t i o n  o f the  ' e l e c t r o g e n i c component' o f t h e r e s t i n g membrane p o t e n t i a l (Hodgkin & Keynes 1955a). I f one regards  the potassium f l u x i n t h i s manner, f o r example,  then  2 Mj, (moles/cm sec)  =  -u  R  . (K) ^ . &jui  =  -u  K  . ( K ) . ( R-T-In ( ) i + R  ±  09 2 Ij, (coulomb/cm sec) = g£ • ( m  while  E  = S  • (m E  K  F E  m  )  o  ~ K ) E  " ^  F  *  l  > (K)i  n  2 and  s i n c e Ij^ =  Mjr . F, the conductance g ^ would be F  Ujr ( K ) ^ .  In fact,  Hodgkin and Horowicz (1959b) r e l a t e d g£ t o Pj^ by s u b s t i t u t i n g from t h e constant  field  s o l u t i o n f o r Ijr i n Ijr = gjr ( E  m  - E  K  ).  They mixed t h e i r  models, i n a sense, and t h e r e s u l t i n g r e l a t i o n s h i p between g^ and P^ i s a complicated  function of E  m  and the c o n c e n t r a t i o n s .  the pure " n e t e f f e c t " model i s a l s o a c o m p l i c a t e d concentrations, process  Thus the m o b i l i t y i n function of E  m  and the  as might have been expected when the c o m p l i c a t i o n s  o f the  a r e f o r c e d i n t o the m o b i l i t y as a p r o p o r t i o n a l i t y f a c t o r .  The Goldman-Hodgkin-Katz (GHK) treatment, as a l r e a d y s t a t e d , the ions as d i f f u s i n g through a regime o f reduced but c o n s t a n t a f t e r e n t e r i n g the channel by an u n s p e c i f i e d p r o c e s s .  regards  mobility,  The e n t r y i n t o the  channel i s i n c l u d e d i n t h e p e r m e a b i l i t y P as a p a r t i t i o n c o e f f i c i e n t  (^ ) :  the c o n c e n t r a t i o n o f i o n i n the membrane i s (3 times the c o n c e n t r a t i o n i n the b u l k s o l u t i o n .  A more d e t a i l e d model would t r e a t e n t r y i n t o and e x i t  from t h e channel as a m a s s - a c t i o n s i t u a t i o n , to occur  i n the channel.  Donnan e q u i l i b r i u m .  a g a i n w i t h d i f f u s i o n assumed  F o r example, T e o r e l l  (1935) regarded  t h i s as a  54  T h i s s o r t o f treatment was ion  used by Eisenman et a l . (1968) to  t r a n s p o r t v i a n e u t r a l mobile c a r r i e r s i n the membrane, but  can be taken over to the channel model almost i n t a c t . GHK  r e s u l t i s the  by N i c o l s k y  s u r f a c e s , which p r o v i d e m a t r i x of the g l a s s separately,  i n Eisenman 1967).  the s e l e c t i v i t y ,  and  ( d e s c r i b e d by a constant  A still  occurs v i a an e x t e r n a l  The  ( a r t i c l e s by Doremus, i n t e r a c t i o n s at  the d i f f u s i o n through m o b i l i t y ) are  to y i e l d a r e l a t i o n l i k e the GHK  transport  The  ;  type e q u a t i o n would s t i l l  further characterized,  be o b t a i n e d .  The  expression  counter-  "single-file"  Lakshminarayanaiah  but a l i q u i d - j u n c t i o n -  e s s e n t i a l feature of a l l of  models i s the d i f f e r e n t m o b i l i t y o f the c a t i o n and The u s u a l  the  circuit.  b e t t e r r e p r e s e n t a t i o n would take i n t o account the  m o b i l i t y would be  approach taken to i n c l u d e e l e c t r o g e n i c pumping i n the  for E  m  has  been to i n c l u d e the  f l u x e s are d e s c r i b e d  Noda 1963; arises  Moreton 1969;  i n the same way  a sense, the is  f l u x o f ions which occurs through  Schwartz 1971).  The  t h a t the r e s t o f the membrane p o t e n t i a l a r i s e s .  ' m o b i l i t y ' o f sodium ions  &  e l e c t r o g e n i c p o t e n t i a l then In  i n the membrane ( f o r outward movement) i s an apparent net  o f c a t i o n s , a p o t e n t i a l develops i n the manner d e s c r i b e d  If  the  by the N e r n s t - P l a n c k e q u a t i o n (eg. M u l l i n s  enhanced by the pump, so t h a t when t h e r e  movement  the  anion.  the sodium pump as a phenomenological term i n a f l u x balance wherein passive  the  treated  equation,' a l t h o u g h the  e f f e c t s which must occur i n a pore (Hodgkin & Keynes 1955; 1969).  been  Perhaps a b e t t e r example i s the model proposed  the p o t e n t i a l developed i n a g l a s s m i c r o e l e c t r o d e  by Eisenman, and  ion  the r e s u l t  e q u a t i o n plus an e x t r a term, where the p a r t i t i o n c o e f f i c i e n t has  characterized e x p l i c i t l y . for  The  describe  expulsion  above as  counterion  occurs. t h i s h y p o t h e s i s f o r the o r i g i n of the e l e c t r o g e n i c c o n t r i b u t i o n to  the r e s t i n g membrane p o t e n t i a l i s e s s e n t i a l l y c o r r e c t , a measurement o f  the  55  e l e c t r o g e n i c p o t e n t i a l i s a measurement o f the n e t i o n c u r r e n t sodium pump. to keep E pump.  Similarily,  i n a voltage-clamped c e l l ,  the current  steady i s a measurement o f the n e t i o n c u r r e n t  m  With t h e simultaneous use o f r a d i o i s o t o p e s  electrodes,  through t h e required  through t h e sodium  and i n t r a c e l l u l a r micro-  i t i s p o s s i b l e t o measure t h e sodium f l u x and the membrane  p o t e n t i a l s i m u l t a n e o u s l y , and t o d e t e c t  t h e simultaneous changes i n t h e two  when t h e sodium pump i s s e l e c t i v e l y impaired by exposure o f the c e l l t o ouabain.  Such experiments a r e d e s c r i b e d  i n s e c t i o n 7, and i t i s shown t h a t  the two measurements can .be r e l a t e d i n a t h e o r e t i c a l model l i k e described  above, t o y i e l d measurements o f p e r m e a b i l i t i e s  r a t i o o f the sodium pump. described  by o t h e r workers a r e a l s o  t h i s d i s c u s s i o n o f the membrane p o t e n t i a l , f u r t h e r  must be made o f the c o n t r i b u t i o n o f other p o t e n t i a l s t o the  measured v a l u e o f the membrane p o t e n t i a l . p o t e n t i a l s of micropipette problems.  or o f the c o u p l i n g  i n s e c t i o n 7.  Before concluding mention  V o l t a g e .clamp s t u d i e s  those  electrodes  The l i q u i d j u n c t i o n and t i p  a r e w e l l known, and a r e t e c h n i c a l  S e v e r a l workers have found t h a t an e l e c t r i c a l p o t e n t i a l d i f f e r e n c e  q u a l i t a t i v e l y and q u a n t i t a t i v e l y l i k e a Donnan p o t e n t i a l can be measured i n muscle c e l l s which have been ' c h e m i c a l l y g l y c e r o l or with detergent J.A.  Hinke - p e r s o n a l  s k i n n e d ' by e x t r a c t i o n w i t h  ( C o l l i n s & Edwards 1971; Pemrick & Edwards 1974;  communication).  The Donnan p o t e n t i a l due t o f i x e d  charges on t h e l a t t i c e o f c o n t r a c t i l e p r o t e i n s  must be c o n f i n e d  to a region  o f a t most a few hundred Angstroms diameter around t h e charges, y e t i t appears t o i n f l u e n c e the i n t r a c e l l u l a r The  microelectrode.  membrane p o t e n t i a l measured w i t h i n t r a c e l l u l a r t n i c r o e l e c t r o d e s  thus  might be d i f f e r e n t from the e l e c t r i c a l p o t e n t i a l d i f f e r e n c e between the bulk i n t r a c e l l u l a r s o l u t i o n and the e x t e r n a l Tasake and S i n g e r  solution.  (1968) review s e v e r a l problems i n v o l v e d  in electrical  56  measurements  o f b i o l o g i c a l systems.  electrochemist  They remark t h a t "no r i g h t - m i n d e d  would even attempt to p e r f o r m meaningful measurements  the complex c o n d i t i o n s which a r e r e q u i r e d t o m a i n t a i n l i v i n g systems,!' but conclude t h a t meaningful measurements "proper p r e c a u t i o n s  E.  under  biological  can be made i f the  a r e observed."  SUMMARY OF THE PROBLEMS TO BE ADDRESSED  The p r i n c i p a l o b j e c t  of  this  t h e s i s i s the measurement  and i n t e r p r e t a -  t i o n o f the sodium and hydrogen i o n e f f l u x from whole c e l l s .  Hydrogen i o n  e f f l u x can o n l y be measured i n d i r e c t l y ; most o f the work t o be  described  concerns t h e sodium e f f l u x . It  i s c u r r e n t l y b e l i e v e d t h a t i t i s mainly the c e l l membrane which  c o n t r o l s the i o n content o f the c e l l , and  by i t s p a s s i v e  i t s a b i l i t y t o t r a n s l o c a t e ions a g a i n s t  permeability  properties  the f o r c e s which e f f e c t p a s s i v e  flow. The membrane t r a n s p o r t  r e a c t i o n s can be viewed as enzyme r e a c t i o n s and  c h a r a c t e r i z a t i o n of the t r a n s p o r t  can be c a r r i e d out i n the context  of  enzyme k i n e t i c s . One enzyme system, the (Na+K)ATPase, has been i s o l a t e d i n an a c t i v e form.  D i s c u s s i o n o f sodium t r a n s p o r t tends t o be dominated by d i s c u s s i o n  of the (Na+K)ATPase,  but t h e r e appear t o be other membrane mechanisms  which sodium can be t r a n s p o r t e d  i n whole c e l l s .  the a c t i v i t y o f the enzyme i n the whole c e l l  by  The c h a r a c t e r i z a t i o n o f  i s required before  a  component  of the measured f l u x can be a s c r i b e d t o a p a r t i c u l a r enzyme which has been e x t r a c t e d and s t u d i e d  in isolation.  57  The a c t u a l measurement o f the sodium e f f l u x from whole c e l l s s e v e r a l problems. characterized,  The s t a t e of^sodium i n s i d e the c e l l has not been w e l l  a prominent problem b e i n g the e s t i m a t i o n  sodium which r e s i d e s  i n e x t r a c e l l u l a r regions,  the c e l l membrane per se.  that  o f the amount o f  i s , i n regions  The sodium c o n c e n t r a t i o n  bathes .the i n t e r n a l s u r f a c e it  involves  outside  i n the s o l u t i o n which  o f the c e l l membrane should be measured,  because  i s the c o r r e c t parameter t o use f o r the i n t e r p r e t a t i o n o f experiments i n  the c o n t e x t o f the enzyme k i n e t i c s model. microelectrode  An i n t r a c e l l u l a r  sodium-specific  w i l l measure t h i s parameter, even when i t changes r a p i d l y .  In the l a s t p a r t o f t h i s s e c t i o n i s d e s c r i b e d  a r e v i s e d e q u a t i o n by  which the sodium e f f l u x from whole b a r n a c l e muscle c e l l s can be c a l c u l a t e d from simultaneous m i c r o e l e c t r o d e  and r a d i o i s o t o p e  measurements.  Two  other  models, r e l a t e d to the steady s t a t e c a t i o n d i s t r i b u t i o n and t o the r e l a t i o n between t h e sodium e f f l u x and the membrane p o t e n t i a l , a r e a l s o  described  there. In s e c t i o n 3 a r e d e s c r i b e d sodium-specific altered.  microelectrode  measurements made w i t h an  on c e l l s whose sodium content had been  The r e s u l t s and those o f o t h e r workers a r e c o n s i s t e n t w i t h a simple  model o f the s t a t e s o f sodium i n the c e l l which i n c l u d e d and e x t r a c e l l u l a r p o o l s o f s e q u e s t e r e d In s e c t i o n 4 i s d e s c r i b e d microinjection.  T h i s was  An a l t e r n a t e  M i c r o i n j e c t i o n was the  intracellular  sodium.  an i n v e s t i g a t i o n o f the use o f i n t r a c e l l u l a r  b a r n a c l e muscle c e l l s  interpreted  i n terms o f a model  the s t a t e s o f sodium i n the c e l l which c o n t r a d i c t s  i n s e c t i o n 3.  both  c a r r i e d out because o t h e r workers had  t h e i r r e s u l t s on m i c r o i n j e c t e d for  intracellular  the model  described  i n t e r p r e t a t i o n of t h e i r r e s u l t s i s presented.  a l s o s t u d i e d because i t was  i n t e r i o r of c e l l s with radioisotope  desired  t o use i t to l o a d  r a p i d l y and s e l e c t i v e l y , as a  convenience i n c a r r y i n g out e f f l u x experiments.  M i c r o i n j e c t i o n i s shown t o  58  be r e l a t i v e l y , cell  a l t h o u g h not e n t i r e l y benign as  i s concerned.  f a r as the b a r n a c l e muscle  I t i s shown t o be e q u i v a l e n t to a p a s s i v e method f o r  l o a d i n g the c e l l w i t h r a d i o i s o t o p e , a s i d e from i t s f a i l u r e to l o a d the e x t r a c e l l u l a r space,  once c e r t a i n c o r r e c t i o n s a r e a p p l i e d .  In s e c t i o n 5 a survey o f the sodium e f f l u x from b a r n a c l e muscle c e l l s i s presented.  I t i s shown t h a t the dependence of the sodium e f f l u x on  the  i n t r a c e l l u l a r sodium c o n c e n t r a t i o n i s s i m i l a r to t h a t i n s q u i d axon and s n a i l neurone. not occur over sodium-free Ringer's and  S a t u r a t i o n o f the e f f l u x  i n t o normal Ringer's  the wide range o f sodium content  studied.  The  efflux  into  s o l u t i o n i s shown to be v e r y s i m i l a r to t h a t i n t o normal  solution.  The  b e h a v i o r of the sodium e f f l u x i n t o  potassium-free  i n t o o u a b a i n - c o n t a i n i n g s o l u t i o n s i s shown to be almost  results  s o l u t i o n does  f o r barnacle d i f f e r  identical.  The  i n s e v e r a l r e s p e c t s from those of p r e v i o u s  workers because o f d i f f i c u l t i e s w i t h the m i c r o i n j e c t i o n and r a d i o i s o t o p e techniques which have not been r e c o g n i z e d b e f o r e . In s e c t i o n 6 the measurements w i t h the s o d i u m - s p e c i f i c m i c r o e l e c t r o d e and w i t h r a d i o s o d i u m a r e compared f o r e f f l u x i n t o sodium-free C o n s i s t e n c y o f the model and i s demonstrated, and  techniques  developed  the nature of the sodium-free  solutions.  i n the p r e c e d i n g s e c t i o n s effect  is considerably  clarified. In s e c t i o n 7 an e l e c t r o g e n i c c o n t r i b u t i o n to the membrane p o t e n t i a l b a r n a c l e muscle i s demonstrated. membrane p o t e n t i a l and  of  The c o r r e l a t i o n between the e l e c t r o g e n i c  the a c t i v e sodium e f f l u x i s measured, and  p r e t e d i n terms o f an e x t e n s i o n of the GHK  is inter-  model f o r the membrane p o t e n t i a l .  In s e c t i o n 8 the r e s u l t s of measurement of the i n t r a c e l l u l a r pH u s i n g p H - s p e c i f i c g l a s s m i c r o e l e c t r o d e s a r e presented.  I t i s shown t h a t i n the  b a r n a c l e muscle c e l l p r e p a r a t i o n used i n the p r e s e n t work, there a r e no t r a n s i e n t s " o f the type r e p o r t e d by o t h e r workers.  Also, a relationship  "pH  59  between t h e steady d i s t r i b u t i o n o f hydrogen ions and the r e s t i n g membrane potential ion  i s d e s c r i b e d , and an e s t i m a t e o f the s i z e o f t h e a c t i v e hydrogen  e f f l u x i s made. In  s e c t i o n 9 i s p r e s e n t e d a d i r e c t comparison  o f measurements o f the  i n t r a c e l l u l a r pH made w i t h the m i c r o e l e c t r o d e and w i t h an i n d i c a t o r method Such a comparison  can r e v e a l the e x i s t e n c e o f s u b c e l l u l a r compartments  h a v i n g a r e l a t i v e l y low o r h i g h pH, but the most important r e s u l t s o f t h i s study turned out t o be those c o n c e r n i n g t h e a p p l i c a b i l i t y o f the i n d i c a t o r method. In  s e c t i o n 10 i s p r e s e n t e d a b r i e f d i s c u s s i o n o f the s i g n i f i c a n c e o f  the r e s u l t s and some suggestions f o r f u r t h e r work.  F.  SUMMARY OF MODELS  P a r t o f the development o f the models p r e s e n t e d here r e l i e s on r e s u l t s which have not y e t been d e s c r i b e d .  The r e a d e r might wish t o proceed  d i r e c t l y t o s e c t i o n 3 and t o r e f e r back t o t h i s s e c t i o n when r e f e r e n c e s t o these models a r e encountered.  (i)  E f f l u x o f sodium from a whole c e l l . I t was d e s i r e d t o formulate an e x p r e s s i o n by which the sodium e f f l u x  from a whole c e l l In  c o u l d be c a l c u l a t e d  from experimental measurements.  the model o f the c e l l used by e a r l y workers  (Keynes & Lewis 1951;  Keynes 1951), i t was assumed t h a t the i n t r a c e l l u l a r medium i s a simple s o l u t i o n o f s a l t s and o r g a n i c molecules b a t h i n g the i n t e r n a l s u r f a c e o f the cell  membrane, and t h a t o n l y a n e g l i g i b l y s m a l l f r a c t i o n o f the transmembrane  60  passage o f ions occurs by simple d i f f u s i o n .  I n such a s i t u a t i o n ,  i f one  c o u l d r e p l a c e some o f the i n t r a c e l l u l a r sodium w i t h l a b e l l e d sodium i o n s , the  unidirectional  e f f l u x o f sodium ions from the c e l l  from the net e f f l u x )  c o u l d be deduced from the e f f l u x o f the l a b e l l e d  into a large bathing solution assumed t h a t the l a b e l l e d as  (which i s d i f f e r e n t  c o n t a i n i n g no l a b e l l e d  sodium i o n s .  Thus: the s p e c i f i c a c t i v i t y o f sodium i n t h e c e l l  A  22 Na 23 moles Na 22 A moles Na moles N a _ moles  -  2 3  N a = N a  i n the c e l l i n the c e l l in cell in cell  +  moles  can be approximated  Na i n the c e l l  . „  cell 22  (moles o f  c e l  (moles o f N a 2 3  Na i n the c e l l ) i s much s m a l l e r than N a - Q ce  i n the c e l l ) i n p r a c t i c e .  A s h o r t i n t e r v a l o f time " t " i s c o n s i d e r e d . discrete  22  22 23 Na and Na.  cell  * where N a  It is  i o n behaves j u s t as the abundant i o n does as f a r  i o n movements a r e concerned, an assumption s a t i s f i e d by  ^ cell  ions  collection intervals  any i n s t a n t  used i n p r a c t i c e  (The e x t e n s i o n from the  to a function a p p l i c a b l e a t  i s assumed i m p l i c i t l y i n t h i s development.)  I f , i n time t , Na  moles o f r a d i o s o d i u m l e a v e the c e l l w i t h no b a c k f l u x o f radiosodium, then the  t o t a l number o f moles o f sodium l e a v i n g the c e l l  the  efflux density i s Mjj (moles/cm -sec) = a  Na SA  .  1 A  c e l l  .  i s Na  / S A - Q and ce  1  t  ...(1)  where A i s the area o f the membrane a c r o s s which the sodium ions pass. I f V i s tMh e volume = _JL_ o •f_ £ the S _ i n t r a•c ev»«v l l u l ell ar fluid, Na A-t * cell Y_ • Na* . (Na) C  N  where ( N a )  c e l l  = 'Na  w a  cell  then  n i  /V.  ...(2)  61  In an a c t u a l experiment, Mjj c o l l e c t i o n o f Na •^ cell a  a  t  t  *  a  as a f u n c t i o n o f time i s determined  f o r each of a s u c c e s s i o n  b e g i n n i n g o f each c o l l e c t i o n p e r i o d  i e  *  a d d i t i o n " o f the Na  values  o f the experiment.  not  change much d u r i n g a c o l l e c t i o n  this off  It is required  that  The  i s found by  to the r a d i o a c t i v i t y l e f t  end  The  o f time p e r i o d s .  by  value  of  "back-  i n the c e l l a t  ( N a ) - Q be known, and  the  that i t  C£  period.  r e s u l t s o f experiments on s q u i d axons seemed to be c o n s i s t e n t w i t h  formulation.  The  r a t e a t which r a d i o s o d i u m came out of the c e l l  as a s i m p l e e x p o n e n t i a l  w i t h time, and was  fell  a p p r o x i m a t e l y equal t o  the  i n f l u x r a t e , which can be measured d i r e c t l y from s e p a r a t e i s o t o p e uptake experiments (Keynes & Lewis 1951; c e l l s are more d i f f i c u l t complicated  to i n t e r p r e t .  illustrated  r e s u l t s f o r muscle been t o employ more exchange  (eg. Keynes &  Steinhardt  been c o m p l e t e l y s u c c e s s f u l ,  but  i n p a r t the c u r r e n t view o f the heterogeneous s t r u c t u r e o f  the  the s t a t e o f ions and water i n s i d e the c e l l which would seem to  make the above model u n t e n a b l e f o r most The  t r e n d has  i n F i g . 1(b)  These i n t e r p r e t a t i o n s have not  recognize c e l l and  The  The  models h a v i n g s e v e r a l c e l l u l a r compartments which can  sodium i o n s , such as t h a t 1968).  Keynes 1951).  cells.  f e a t u r e s which p r o b a b l y g i v e r i s e to e r r o r are as  the r e l e v a n t c o n c e n t r a t i o n s  a r e those o f the  follows.  First,  'myoplasm', the l a r g e aqueous  compartment i n s i d e the c e l l which i s much l i k e a bulk aqueous s o l u t i o n and which i s assumed t o bathe the s t r u c t u r a l l a y e r deep to the p a r t o f the concentration  i n t e r n a l s u r f a c e o f the c e l l membrane. 'bimolecular  ' f u n c t i o n a l membrane'.)  l e a f l e t ' w i l l be assumed t o  ( N a ) | ^ must be r e p l a c e d  by  c e  o f sodium i n f r e e s o l u t i o n i n the myoplasm (Na)  .  (Any be  the The  latter  m can be measured r e l i a b l y as to be 0.65.  This  (Na)  m  = (ajja)m / tf+ •  The  value  for y  i s taken  i s j u s t i f i e d by the concept o f the myoplasmic compartment  as a s o l u t i o n l i k e a bulk s o l u t i o n , and  by an e x p e r i m e n t a l  determination  62  F i g u r e 1,  Models o f the c e l l used i n c a l c u l a t i o n  of i o n fluxes.  (A) Model on which e q u a t i o n ( 2 ) i s based. A l l of the i n t r a c e l l u l a r sodium i s i n s o l u t i o n i n a l l o f the i n t r a c e l l u l a r water, and can only exchange w i t h the e x t r a c e l l u l a r compartment (arrows). (B) Current model. I n t r a c e l l u l a r sodium can r e s i d e i n a nonmyoplasmic compartment exchanging only w i t h the myoplasmic compartment, or i n a nonmyoplasmic compartment which a l s o exchanges w i t h the e x t r a c e l l u l a r compartment. ' N o n p a r t i c i p a t o r y ' sodium and water a r e not shown, nor a r e a l l p o s s i b l e exchanges f o r a multicompartment system.  63  (Hinke  1970).  It  i s suggested by p r e v i o u s work (and c o n f i r m e d by the p r e s e n t e x p e r i -  ments) t h a t Mj^  a  ing of ( a j j ) a  changes,  m  i s a nondecreasing  function of ( a j j ) . a  d u r i n g e f f l u x experiments,  Continuous  m  e s p e c i a l l y those i n which  s h o u l d y i e l d a more r e l i a b l e measurement o f M^  a  monitor(aj\j ) a  m  than i s p o s s i b l e  from c h e m i c a l a n a l y s i s o f t o t a l c e l l u l a r sodium and b a c k - a d d i t i o n o f changes due  to transmembrane t r a n s p o r t . Na*  i s r e a d i l y and u n e q u i v o c a l l y measured as the amount o f r a d i o i s o t o p e  collected  i n the s o l u t i o n ..bathing the c e l l d u r i n g a g i v e n time  However, N a ^ n  i s a problem.  As  interval.  f a r as can be measured w i t h the p r e s e n t  t e c h n i q u e s , i n j e c t e d r a d i o s o d i u m i s d e p o s i t e d o n l y i n the myoplasm and  in a  s m a l l compartment which exchanges sodium w i t h the myoplasm v e r y q u i c k l y . T h i s was  concluded from the c l o s e s i m i l a r i t y o f the sodium e f f l u x from c e l l s  loaded w i t h r a d i o s o d i u m by m i c r o i n j e c t i o n and from c e l l s loaded by  immersion  i n normal R i n g e r ' s s o l u t i o n which c o n t a i n e d radiosodium, as d e s c r i b e d i n section  4.  M o r p h o l o g i c a l and p h y s i o l o g i c a l s t u d i e s r u l e out the o r g a n e l l e s as important s i t e s o f s e q u e s t r a t i o n o f sodium. a l a r g e enough c a p a c i t y , nor. b a r n a c l e muscle  membrane-delimited They do not have  r a p i d enough exchange w i t h the myoplasm i n  cells.  The c o n t r a c t i l e p r o t e i n s a r e known t o b i n d sodium and to exchange r a p i d l y w i t h the myoplasm.  T h e i r t o t a l c a p a c i t y , ca. 68 m i l l i m o l e s per kg 3  d r y weight  f o r r a p i d l y exchanging  potassium and hydrogen  sites,  would l a r g e l y be taken up  by  s i n c e they show o n l y a modest p r e f e r e n c e f o r sodium  over p o t a s s i u m and the i n t r a c e l l u l a r c o n c e n t r a t i o n o f potassium i s much  moles Na kg dry weight  moles Na kg c e l l water  ,  7 water 1 - 7 water 0  0  64  g r e a t e r than t h a t o f sodium. From experiments c e l l s was  altered  They c e r t a i n l y s h o u l d b i n d some sodium,  though.  i n which the t o t a l sodium content o f b a r n a c l e muscle  (section 3 ) ,  i t was  concluded t h a t o f the t o t a l amount o f  sodium a s s o c i a t e d w i t h the c e l l a f t e r account had been taken o f e x t r a c e l l u l a r sodium by the u s u a l t e c h n i q u e s , a l a r g e amount o f e x t r a c e l l u l a r sodium was still  included.  I f this  i s taken i n t o account, then about  c e l l u l a r sodium i s not a c c e s s i b l e t o the m i c r o e l e c t r o d e .  3 0 7  The most generous  p r o b a b l y l e s s than 1 0 7 o )  e s t i m a t e was  intra-  207o  experiments  t h a t l e s s than 1 5 7 o  (and  o f the i n t r a c e l l u l a r sodium i s i n r a p i d exchange  w i t h the f r e e sodium, where the f r e e sodium r e p r e s e n t s about sodium which i s t r u l y  o f the  About  exchanges so s l o w l y as t o be n o n p a r t i c i p a t o r y i n the f l u x d i s c u s s e d here.  o  707°  o f the  intracellular.  More important i s the e x i s t e n c e o f an e f f e c t i v e i n t r a c e l l u l a r s i n k o f i n j e c t e d r a d i o s o d i u m due t o l o n g i t u d i n a l d i f f u s i o n o f r a d i o s o d i u m i n i n j e c t e d c e l l s , . a s d i s c u s s e d i n s e c t i o n 4. c o n t e n t was  For the c e l l s  not r a i s e d by m i c r o i n j e c t i o n o f NaCl s o l u t i o n s ,  r a d i o s o d i u m a s s o c i a t e d w i t h the c o n t r a c t i l e p r o t e i n s , appears  to be e q u i v a l e n t t o about  ments r e p o r t e d here.  The e f f e c t  157  D  t h i s plus  i n a r e a l i s t i c estimate,  o f i n j e c t e d r a d i o s o d i u m i n the e x p e r i -  i s g r e a t e r when NaCl  is injected.  However, the amount l o s t t o the s i n k i s d i f f e r e n t and  i n which the sodium  in different  i n c r e a s e s from the i n i t i a l v a l u e o f z e r o as the experiment  Thus a v a l u e Na* of N a J  e l l  cells,  progresses.  f o r the 'myoplasmic r a d i o s o d i u m ' s h o u l d be used i n p l a c e  .  A c o r r e c t i o n can be a p p l i e d t o the data to account d e f i n i t i o n o f the e f f l u x d e n s i t y ( e q u a t i o n ( 1 ) ) amount o f sodium which comes out o f the c e l l  for this.  In the  i t i s assumed t h a t  the  i n u n i t time i s r e l a t e d t o the  amount o f r a d i o s o d i u m which comes out i n u n i t time, Na  , v i a the  specific  a c t i v i t y o f r a d i o s o d i u m i n a homogeneous i n t r a c e l l u l a r compartment c o n t a i n -  65  ing  o n l y exchangeable  assumption appears  sodium.  An e q u i v a l e n t  statement o f t h i s  o f the t r a c e r method i s t h a t the r a t e a t which  i n t h e bath, Na*/t,  exchangeable  radiosodium  i s d i r e c t l y p r o p o r t i o n a l t o the amount o f  radiosodium i n s i d e the c e l l , Na . m  via  fundamental  Thus  t  membrane  under steady c o n d i t i o n s , where the i n t e r i o r o f the c e l l  i s w e l l - m i x e d and  the s i z e o f the e f f l u x doesn't change too much over a c o l l e c t i o n p e r i o d t = 5 minutes.  Note t h a t i t i s assumed i n a d d i t i o n t h a t the c o n t i n u i n g  loss of  r a d i o s o d i u m from the myoplasmic compartment t o the i n t r a c e l l u l a r s i n k i s entirely The  independent o f the l o s s o f r a d i o s o d i u m a c r o s s the c e l l  membrane.  'constant' k i s then the i n s t a n t a n e o u s s l o p e o f the p l o t o f InNa  time.  I t bears r e p e a t i n g  t h a t the a p p r o x i m a t i o n w i l l  versus  be c l o s e s t t o r e a l i t y  where the s e m i l o g p l o t ( I n Na* v e r s u s time) i s l i n e a r and n o t too s t e e p , for  then i t i s most l i k e l y  t h a t the myoplasmic compartment  and t h a t the u s e o f a time r e s o l u t i o n o f 5 minutes w i l l  i s well-mixed,  n o t i n t r o d u c e too  much e r r o r . The e f f e c t o f the c o n t r a c t i l e p r o t e i n s c o u l d be c o r r e c t e d  for v i a a  model f o r the c o m p e t i t i o n o f sodium and p o t a s s i u m f o r the s i t e s on the protein,  i f such a r e l a t i v e l y s m a l l c o r r e c t i o n were f e l t  Another problem a r i s e s w i t h V/A. i s s i m i l a r t o t h a t a t the s u r f a c e the s y n c y t i a l  muscle  fibre  t o be n e c e s s a r y .  The membrane i n the c l e f t s  presumably  ( t h e two develop from the same source as  i s formed,  and f u n c t i o n a l l y i t i s r e a s o n a b l e  t h a t they s h o u l d have s i m i l a r p r o p e r t i e s , a l t h o u g h the membrane o f the TTS p r o b a b l y i s d i f f e r e n t - G i r a r d i e r e t a l . 1963). cleft  I f t h e f u n c t i o n o f the  system is_ t o ensure t h a t a l l p a r t s o f t h e i n t e r i o r o f the c e l l a r e  within a c e r t a i n distance  from some p a r t o f the c e l l membrane, the s u r f a c e -  66  to-volume r a t i o might w e l l be  independent  o f the diameter  of the c e l l .  A  f u r t h e r c o m p l i c a t i o n i s t h a t the volume r e p r e s e n t e d by V s h o u l d be t h a t o f the myoplasmic compartment, as d i s c u s s e d above and I t was  concluded  i n the  t h a t r e a s o n a b l e approximations  i n the f o r m u l a t i o n o f a p r a c t i c a l e q u a t i o n .  introduction.  would have to be made  Thus: conductance measurements  i n d i c a t e t h a t the v a l u e s f o r the membrane c a p a c i t a n c e and r e s i s t a n c e f o r the b a r n a c l e muscle c e l l  can l a r g e l y be r e c o n c i l e d w i t h those  membranes of o t h e r c e l l s  i f the e f f e c t i v e a r e a o f homogeneous c e l l  i s about ten times  the apparent  (Hagiwara et a l . 1964;  f o r the  s u r f a c e a r e a of the c y l i n d r i c a l  B r i n l e y 1968).  membrane  cell  For a c y l i n d e r of r a d i u s r , V/A  =  r/2 so here V/A w i l l be taken t o be equal to r/20. Thus: M  / i / 2 \ (moles/cm^sec)  =  =  i  r 20  1 300sec  2.56  x 10"  1 0  Na* —— Na  v  m  (a„ ) Na m 0.65  litre cm  r  3  where r (cm)  i s taken to be the average  perpendicular directions, i n moles/cm -sec.  Na / N a  and m  (a^ ) a  m  of the c e l l  V  .  ...(4)  r a d i i measured i n  is in millimoles/litre,  i s the r a t i o of counts  p e r f u s a t e sample t o c a l c u l a t e d counts  Na*_ Na*  to y i e l d  per minute i n a 300  M^  a  second  per minute i n the c e l l a t the s t a r t  of  the c o l l e c t i o n p e r i o d f o r those c e l l s which have a " s l o p e r a t i o " c l o s e to unity,  i e . i n essence  those c e l l s not m i c r o i n j e c t e d and some o f  i n j e c t e d w i t h s o l u t i o n s of v e r y low sodium c o n c e n t r a t i o n . Na*/Na* s h o u l d be c a l c u l a t e d time,  =  k  5  For o t h e r  from the s l o p e k of a p l o t of l n Na*  i d e a l l y o n l y where such a p l o t  Na  those  minutes.  i s l i n e a r and not too steep,  cells,  versus as  67  This l i m i t s effluxes.  the use o f m i c r o i n j e c t e d c e l l s  Such w i l l  occur  i n t o normal Ringer's  i n t o sodium-free s o l u t i o n , but s o l u t i o n s the c e l l w i l l (a^ ) a  m  i n c r e a s e s , and  cases,  s o l u t i o n , and  i n potassium-free  or  g a i n sodium c o n t i n u o u s l y .  A reasonable  but  steady  i n most  cases  ouabain-containing The  the s l o p e of the p l o t o f In Na  z e r o or even p o s i t i v e . made i n these  to measurements of  e f f l u x increases versus  as  time can become  e s t i m a t i o n o f Na*/Na* u s u a l l y can  the r e s u l t i n g c a l c u l a t e d v a l u e o f Mjj  a  be  i s more  u n c e r t a i n than i t i s f o r steady e f f l u x e s . Nevertheless, convenience, and  m i c r o i n j e c t i o n does have some v i r t u e s .  economy o f the m i c r o i n j e c t i o n technique  degree the u n c e r t a i n t y due  to l o n g i t u d i n a l d i f f u s i o n .  i n t r a c e l l u l a r compartments appear to be loaded, but  the e x t r a c e l l u l a r space i s not  loaded.  i s o t o p e i s r e q u i r e d f o r each experiment. a f t e r d i s s e c t i o n , when they should be The  determination  of N a  m  The  selectivity,  o f f s e t to some  A l l 'participatory'  j u s t as w i t h p a s s i v e  loading,  Only a s m a l l amount o f r a d i o Finally,  c e l l s can be used s h o r t l y  i n a s t a t e most l i k e t h a t i n v i v o .  would be more a c c u r a t e  p a r t o f a l o n g segment of i n j e c t e d c e l l were p e r f u s e d experiments.  The  s t r a t e g y adopted i n the present  i f o n l y the c e n t r a l in microinjection  experiments was  to  perfuse  o n l y a l o n g i n j e c t e d segment o f the c e l l r a t h e r than o f p e r f u s i n g a l o n g cell ful  o n l y p a r t o f which had  T h i s was  only p a r t i a l l y  i n e l i m i n a t i n g the problem o f l o n g i t u d i n a l d i f f u s i o n .  e l i m i n a t e d by the use d e a l o f i s o t o p e and and  been i n j e c t e d .  of p a s s i v e l o a d i n g , but  long periods  'time constant  problem i s  t h i s method r e q u i r e s a great  o f i n c u b a t i o n o f the c e l l a f t e r d i s s e c t i o n ,  loads the e x t r a c e l l u l a r space w i t h The  The  success-  isotope.  f o r exchange' Na*/Na* ^^ has e  been taken to r e f l e c t  the o p e r a t i o n o f the t r a n s p o r t systems o f the membrane most d i r e c t l y  (eg.  Dick & Lea  efflux  1967;  B r i n l e y 1968).  should be c a l c u l a t e d .  I t can be asked why  the s i z e of the  Q u i t e a s i d e from the problems o f u s i n g Na  /Na£ ;Q e  68  for microinjected c e l l s ,  i t can be seen  from e q u a t i o n (4) t h a t the sodium  content o f the myoplasm must be taken i n t o account  i f the a c t i v i t y o f the  t r a n s p o r t mechanisms i s t o be deduced from i s o t o p e measurements. v a l u e s of Na*/Na* i n c e l l s /pumping r a t e s ' .  o f d i f f e r e n t sodium content r e f l e c t  Identical  different  As can be seen from the manner i n which e q u a t i o n  (2) i s  d e r i v e d from the d e f i n i t i o n o f f l u x d e n s i t y ( e q u a t i o n ( 1 ) ) , the appearance o f the  'time c o n s t a n t ' i n the e f f l u x e q u a t i o n i s i n i n t i m a t e a s s o c i a t i o n  w i t h the s p e c i f i c a c t i v i t y o f r a d i o s o d i u m Similarily, misleading. Mjj  a  this  on  a  m  i s not so.  cell.  the appearance o f (aNa)m e x p l i c i t l y  I t might appear t h a t t h i s  (ajj ) .  i n s i d e the  Again, M^  a  examination  and  ( ^ )  imposes a s p u r i o u s dependence o f  o f equations  (1) and  (2) r e v e a l s t h a t  m u t u a l l y dependent i n s e v e r a l ways i n  a  a  i n e q u a t i o n (4) i s  m  the c o n t e x t of a l i v i n g c e l l d u r i n g an e f f l u x experiment (4) simply s e p a r a t e s  f o u r measurable q u a n t i t i e s  in vitro.  from which M^  a  Equation  can  be  calculated. I t must be asked a t t h i s p o i n t what advance a l l o f t h i s method o f Keynes and Lewis (1951). . r e a l i s t i c model of the c e l l and  Conceptually,  i s over  the  i t i s c e r t a i n l y a more  the i o n movements.  The main advance i s the  i n t r o d u c t i o n o f the s o d i u m - s p e c i f i c m i c r o e l e c t r o d e .  T h i s permits measure-  ment o f the t r u e s p e c i f i c a c t i v i t y  The  a l s o enables one  i n s i d e the c e l l .  t o measure the e f f l u x i n experiments  microelectrode  where ( a j j ) a  m  changes  rapdily. S e v e r a l fundamental problems remain, to-volume r a t i o cannot  however.  be taken f u r t h e r without  m o r p h o l o g i c a l measurements, which themselves  The  the performance of e x a c t i n g  a r e plagued w i t h u n c e r t a i n t i e s  i n the form of changes i n c e l l volume d u r i n g f i x a t i o n . s i g n i f i c a n t and d i f f i c u l t  q u e s t i o n of s u r f a c e -  The much more  q u e s t i o n o f the homogeneity of the c e l l  w i t h r e s p e c t to t r a n s p o r t p r o p e r t i e s has not been pursued  at a l l .  membrane In  69  practice,  the best  strategy  i s t o use c e l l s o f about the same s i z e , as was  done here, so any e r r o r due t o these f a c t o r s w i l l be about the same f o r each c e l l .  Finally,  the q u e s t i o n  of film-controlled d i f f u s i o n  l a y e r s " ) has not been addressed, a s i d e  from the e x p l i c i t  assumption t h a t boundary l a y e r s a r e c o n s i d e r e d membrane'.  ("unstirred  statement o f the  t o be p a r t o f the ' f u n c t i o n a l  I f a r e a l l y good e s t i m a t e o f the magnitude o f the sodium e f f l u x  i s t o be o b t a i n e d , these d i f f i c u l t  problems must be s o l v e d .  In the remainder o f t h i s t h e s i s , e q u a t i o n (4) i s used t o c a l c u l a t e the sodium e f f l u x from b a r n a c l e muscle c e l l s , whether loaded w i t h  radio-  sodium by m i c r o i n j e c t i o n o r by immersion i n a s o l u t i o n c o n t a i n i n g  radio-  sodium.  The a p p r o p r i a t e  c o r r e c t i o n should be a p p l i e d  i n the former case.  ( i i ) Steady s t a t e d i s t r i b u t i o n o f c a t i o n s . In the experiments d e s c r i b e d o f hydrogen ions measured d u r i n g  i n s e c t i o n 8 c o n c e r n i n g the d i s t r i b u t i o n steady c o n d i t i o n s  (the use o f the term  'steady s t a t e ' i n t h i s c o n t e x t has been c r i t i c i z e d ) ,  a r e l a t i o n s h i p between  the membrane p o t e n t i a l and the transmembrane d i f f e r e n c e i n pH was found. Such a r e l a t i o n s h i p had been sought by o t h e r workers, but had n o t been found.  I n t h e d i s c u s s i o n o f t h e r e s u l t s , the r e l a t i o n s h i p d e r i v e d here from  elementary t h e o r y w i l l  be employed.  ions as w e l l as hydrogen  These c o n s i d e r a t i o n s  a p p l y t o sodium  ions.  Assume the c e l l membrane i s a l a m e l l a u n i f o r m i n the y and z d i r e c t i o n s of a Cartesian  coordinate  to the membrane s u r f a c e . density jP(x)  system h a v i n g the x a x i s d i r e c t e d  A t a p o i n t x, i n the membrane, the n e t f l u x  j ( x ) (moles/cm sec)  i s assumed t o be the sum o f a f l u x  due t o d i f f u s i o n o f hydrogen ions as d e s c r i b e d  equation, and an a d d i t i o n a l f l u x d e n s i t y specified.  Thus  perpendicular  density  by t h e N e r n s t - P l a n c k  j ( x ) which i s not f u r t h e r m  70  j(x)  =  j ( x ) - u(x) • c(x) |R • T 9_  I n c(x) + F 9 p(x) j  m  where u(x) and c ( x ) a r e the m o b i l i t y and c o n c e n t r a t i o n hydrogen ions  (or a c t i v i t y ) o f  f r e e t o d i f f u s e a t x, (6(x) i s the e l e c t r i c a l p o t e n t i a l a t x,  R i s the gas content, T i s the a b s o l u t e constant.  ...(5)  temperature, and F i s t h e Faraday  Note t h a t an e f f l u x i s p o s i t i v e i n s i g n .  To o b t a i n a r e l a t i o n  between the net transmembrane f l u x d e n s i t y and the transmembrane d i f f e r e n c e o f c and p, e q u a t i o n (5) must be i n t e g r a t e d across steady c o n d i t i o n s  are considered  the membrane.  here, so t h e t o t a l  independent o f x i n t h e membrane, a l t h o u g h j  m  Only  flux density j i s  need not be.  Multiplying  both s i d e s by £exp(Fp(x)/RTj)^i(x) and making use o f the i d e n t i t y  £—\  ^*  c(x) exp(F(6(x)/RT/  =  L  one f i n d s  j = _ 1 _ £ M - RT £ c ( a ) - c(0) e x p ( F E / R T ) J j m  where  * Q  "  exp[_JL  I x=b %  M  exp(Fp(x)/RT) U_c(x) + c ( x ) F ? (6(x) 1** R-T ^x" -  .  ( p(x) - p(a) )]  J  I RT  . dx  j ( x ) e x p f ^ . ( p ( ) -.(6(a) .)] = j l_RT J_ . dx * u(x) x=o ' m  x  v  and  E  m  = (6(0) - (6(a) i s the membrane p o t e n t i a l , and i s g e n e r a l l y  Also, Q>0  and i f j ( x ) r e p r e s e n t s  an e f f l u x , M>0.  m  negative.  ( T h i s r e l a t i o n has  been d e r i v e d by Schwartz (1971) ) . I f a t l e a s t one compartment vanish  is finite,  i n the steady s t a t e , so M = RT \_ c(a)  the net t o t a l f l u x d e n s i t y - c(0) exp F (6/RTj .  must  (Note  t h a t t h i s argument c o u l d have been a p p l i e d a t e q u a t i o n (6).) I f the i n t e r n a l pH i s pH^ = -log^Q c ( 0 ) and the e x t e r n a l pH i s p H arrangement y i e l d s  Q  = -log-^Q c ( a ) , r e -  71  P  H  - p  e  - log  H l  1 0  Note t h a t the c o n s t r a i n t taken to be  M,  and  with  on M i s now  - _I_  E  0<M<RT'c(a).  i n the e x t e r n a l  be c o n s i d e r e d w i t h r e s p e c t  the v a l u e s of  (pH  - pH^)  Q  m  ( 6 )  Also,  x = 0 can  o f the membrane,  and  b a t h i n g s o l u t i o n , so s u r f a c e  to (6 or c except i n the  and  be  E  evaluation  i n e q u a t i o n (6) are  m  effects of  those measured  microelectrodes. The  c o r r e s p o n d i n g r e l a t i o n s h i p f o r sodium ions i s :  - log  logoff.)!  (iii)  - —Hj-]  i n the myoplasm, away from the s u r f a c e  x = a s i m i l a r i l y to be need not  fl  1 0 ( H  Electrogenic  a)  -  o  log  contribution  1 0  (l - —M-^)  to the  „  I  0  i  n  f  E  The  usual strategy  i s t o c a r r y out a d e r i v a t i o n o f  membrane p o t e n t i a l as a d i f f u s i o n p o t e n t i a l , w i t h the b a l a n c e of an e x t r a  f l u x o f ions due  of Moreion (1969) w i l l  in section  i n the a n a l y s i s  The  transmembrane f l u x e s  (m^)  = -  calculated  f o r sodium ( n ^ ) > p o t a s s i u m (m^),  approximation: Na  . u F  mjr, VOQ-^ s i m i l a r i l y .  d dx  of  7.  from the N e r n s t - P l a n c k e q u a t i o n i n the c o n s t a n t  m  flux  derivation  o f the r e s u l t s  Moreton (1969) adopted the Goldman-Hodgkin-Katz model, and the p a s s i v e  by  the  i n c l u s i o n i n the  to a c t i v e t r a n s p o r t .  be adapted f o r use  the experiments d e s c r i b e d  chloride  electrogenic  to the r e s t i n g membrane p o t e n t i a l have been made (see review  Thomas 1972a).  ( 7 )  r e s t i n g membrane p o t e n t i a l .  A number o f p h y s i o c h e m i c a l models o f the c o n t r i b u t i o n of transport  ...  m  (  -  }  '  (  }  .  d N  a  0  dx  and  field  72  I f t h e r e a r e no f l u x e s but these, then i t must happen t h a t  "^a  +  s i n c e t h e c e l l cannot  =  k  m  0  accumulate a n e t charge.  The r e s u l t  i s t h e Goldman-  Hodgkin-Katz equation, as d i s c u s s e d above. I f t h e r e i s an a d d i t i o n a l component M o f i o n f l u x due, f o r example, t o an a c t i v e exchange o f sodium f o r potassium which i s not one-for-one,  then  the sum o f t h i s and t h e p a s s i v e f l u x e s i s z e r o :  ^Na and  +  m  K  "  ""Cl  +  =  M  0  the f o l l o w i n g expression i s obtained  P  Em  = E l  (K)  K  D  + P  N a  (Na)  (Moreton 1969)  Q  + P  In L  P  00 i + P a (  K  N a  N  c l  (Cl)i + R T F E„ m  > i + C 1 < >o + f - | P  U + — F  S  E  This  R_T  In  -c.  m  W +  E  m  JL1  F E m.  E  or  M  C1  F  M  m  M M  for  convenience.  i s t h e f a m i l i a r GHK equation, w i t h an a d d i t i o n a l term r e p r e s e n t i n g t h e  net pumped c a t i o n e f f l u x . the membrane p o t e n t i a l  When t h e n e t e f f l u x i n c r e a s e s , t h e magnitude o f  i n c r e a s e s because t h e n u m e r i c a l v a l u e o f t h e numera-  t o r i s l e s s than t h a t o f t h e denominator. This  i s not p r e s e n t e d as an exact d e s c r i p t i o n o f what occurs  but r a t h e r i s developed approximations  i n the s p i r i t  can be made t o f a c i l i t a t e comparison o f t h i s  w i t h experimental r e s u l t s . due  o f the GHK f o r m u l a t i o n .  t o t h e pump, i e . U «  Some f u r t h e r  relationship  Most o f t h e r e s t i n g membrane p o t e n t i a l W, so i t i s a good approximation  pump term i n t h e denominator t o y i e l d  in reality,  i s not  to neglect the  73  U  +  RJL M  , In  W When the c e l l i s exposed to ouabain, the pump term changes from M to a new value M ' , and the membrane potential changes from E  4E  E'  s  "m M  RT  ln  U  +  R T  U  +  R Tm  F E'  Thus:  F E„  M' M  >  0,  where i t i s assumed that U and W are unchanged complete the measurement of E^. R T In  4E. m  to E'.  'm  m =  M  Upon rewriting this as R T ln  M'l  1 +  UFE;  i n the time i t takes to  R-T  1 +  U  j  F Em  Ml  i t i s seen that the second term i n the argument of each of the logarithmic functions i s much less than unity.  I t i s thus a reasonable approximation  to expand each of the logarithmic functions i n a Taylor series and r e t a i n only terms to f i r s t order i n the small quantities R T U  F Em.  4E  where  m  AM  IF/ =  /R T\^  and  I  U/  UF E i  This yields:  M.  }  M  1  uE M <  M m  0  i *  . M' and  R T  /R TN^  has been assumed to be equal to /  O - E ;  h  1 '  ( F / U -  I  m  as  j  a matter of convenience. With one further step, the measured change i n the sodium efflux on exposure of the c e l l to ouabain can be introduced.  I f the coupling r a t i o  of sodium to potassium transported by the pump i s introduced:  74  (R*  -_^a  o  >  then the n e t pumped c a t i o n  M  AE  and  = =  ^ a  *K  +  flux is  "  ( 1  /R T\ . 1  -P  "  ^ a  . (1 - 1).  2  . . . (8) ..  4M  m This  the change i n membrane p o t e n t i a l 4 E  approximate e x p r e s s i o n r e l a t e s  to t h e change i n sodium e f f l u x  AMj^  a  m  i n a r e l a t i v e l y simple manner, i n the  context o f the u s u a l f o r m u l a t i o n f o r the o r i g i n o f the membrane p o t e n t i a l . r a t i o (R. o r the p e r m e a b i l i t i e s  E i t h e r the c o u p l i n g  i n U can be e v a l u a t e d  from e x p e r i m e n t a l data i f one or the o t h e r i s a l r e a d y known from independent measurements. The  proportionality  f a c t o r between the unbalanced c a t i o n e f f l u x and  the change i n E i s decreased i f the c e l l m c o n c e n t r a t i o n g r a d i e n t s a r e reduced. o f the pumped f l u x e s  This  on the Nernst-Planck  to oppose the charge s e p a r a t i o n  balance.  r e f l e c t s the  equation.  imposition  The f o r c e s which tend l i k e w i s e oppose t h e  because o f how the l a t t e r has  mobility  the e x i s t e n c e o f t h i s e f f l u x i s f i r s t  boundary c o n d i t i o n  or i f the  Although mechanistically  pumped c a t i o n e f f l u x i s l i k e an i n c r e a s e d the c e l l ,  feature  which a r i s e s p a s s i v e l y  unbalanced f l u x added phenomenological-ly; been imposed i n t h e c u r r e n t  i s hyperpolarized  the unbalanced  f o r sodium going out o f  apparent o n l y as a s o r t o f  o f the steady s t a t e p a s s i v e f l u x e s .  A b e t t e r and  p o t e n t i a l l y v e r y u s e f u l model would s p e c i f y some d r i v i n g f o r c e a c t i v e e f f l u x , such as the a f f i n i t y o f a chemical r e a c t i o n ,  f o r the  and would  acknowledge the i n t e r a c t i o n between the a c t i v e and p a s s i v e f l u x e s . repeating  that  active cation  such a model would r e f l e c t transport.  I t bears  the mechanism which b r i n g s about  75  SECTION 3.  THE STATES OF SODIUM IN CELLS  The c e l l  i s known t o be composed o f s e v e r a l d i s t i n c t  compartments.  These were d e s c r i b e d i n the I n t r o d u c t i o n .  i n t h e c e l l a r e d i s t r i b u t e d among these compartments.  morphological The sodium i o n s  I f i n an experiment  some l a b e l l e d sodium ions a r e i n t r o d u c e d i n t o one compartment, of  the exchange  sodium ions v i a d i f f u s i o n a l and n o n - d i f f u s i o n a l processes which occurs  c o n t i n u o u s l y between communicating compartments  will  tend t o b r i n g about a  steady d i s t r i b u t i o n i n which the s p e c i f i c a c t i v i t y o f sodium i s t h e same i n every  compartment. The r a t e a t which sodium exchange occurs i s n o t the same f o r every  communicating p a i r o f compartments.  One can c o n c e i v e o f a v e r y r a p i d  exchange, as between sodium ions i n the myoplasmic compartment  and t h e  sodium ions which a r e a c t i n g as c o u n t e r i o n s t o the f i x e d n e g a t i v e  charges  on a macromolecule i n a p r o t e i n m a t r i x immersed  compart-  ment.  On the o t h e r hand, one can c o n c e i v e o f a v e r y slow exchange, as  between myoplasmic  sodium ions and sodium ions which a r e c o u n t e r i o n s  i s o l a t e d by t h e hydrophobic In  i n the myoplasmic  b a r r i e r o f a c o i l e d and f o l d e d macromolecule.  the l a t t e r case, the exchange r a t e i s p r o b a b l y so slow t h a t , as f a r as  in v i t r o  i s o t o p e f l u x experiments a r e concerned,  such sodium ions a r e non-  participatory. Between these extremes a r e known t o l i e most o f the i o n t r a n s p o r t and exchange p r o c e s s e s o f the c e l l membrane. experiments,  In order to i n t e r p r e t  one would l i k e t o know the exchange r a t e s between  i n t r a c e l l u l a r compartments, c o n t a i n e d i n each  flux communicating  as w e l l as the f r a c t i o n o f the c e l l  sodium  compartment.  I o n - s p e c i f i c g l a s s m i c r o e l e c t r o d e s o f t h e type used t o make c e l l u l a r measurements a r e assumed t o sample the myoplasmic  intra-  compartment.  76  T h i s i s the i n t r a c e l l u l a r compartment  which behaves v e r y much l i k e a bulk  S o l u t i o n and i s not e n c l o s e d by s u b c e l l u l a r membranes, (see, f o r example, Hinke, C a i l l e , & Gayton 1973 and the d i s c u s s i o n f o l l o w i n g i t , and Edzes & Berendsen 1975). of  M i c r o e l e c t r o d e measurements have i n d i c a t e d t h a t o n l y a p a r t  the i n t r a c e l l u l a r sodium, potassium, and c h l o r i d e measured by chemical  a n a l y s i s o f whole c e l l s  i s i n f r e e s o l u t i o n i n the bulk water o f the  myoplasm (McLaughlin & Hinke 1966; D i c k & M c L a u g h l i n 1969; Lee & Armstrong 1972; Hinke et a l . not  1973; L e v & Armstrong 1975).  The s i z e o f the f r a c t i o n  a c c e s s i b l e t o the m i c r o e l e c t r o d e i n each case i s not c e r t a i n , because of  u n c e r t a i n t y about the volume o f the myoplasmic compartment for  and,  especially  sodium, because o f g r e a t u n c e r t a i n t y about the p o r t i o n o f the ions  which i s e x t r a c e l l u l a r ,  i n s o l u t i o n or s e q u e s t e r e d  One extreme e s t i m a t e i s t h a t f u l l y  (Lev & Armstrong 1975).  837, o f the i n t r a c e l l u l a r sodium can be  i n a c c e s s i b l e t o the sodium m i c r o e l e c t r o d e  (Hinke 1969b).  The sodium content o f the b a r n a c l e muscle c e l l can be i n c r e a s e d by immersion o f the c e l l  i n a potassium-free s o l u t i o n  (Beauge & S j o d i n 1967),  and can be decreased by immersion i n a sodium-free s o l u t i o n ( A l l e n & Hinke 1971).  I t was  expected t h a t the d i s t r i b u t i o n o f sodium i n s i d e the c e l l  would a l s o change d u r i n g such m a n i p u l a t i o n s . of the  myoplasmic and  'nonmyoplasmic'  Thus, changes i n the amount  i n t r a c e l l u l a r sodium were measured as  t o t a l sodium content o f the c e l l was  changed.  77  METHODS  Specimens. The specimens Georgia S t r a i t . Sound.  used i n a l l o f t h e Na experiments were o b t a i n e d from  Those used i n t h e pH experiments were o b t a i n e d from Puget  The morphology  d e s c r i b e d by P i l s b r y  o f t h e d i f f e r e n t s p e c i e s o f g i a n t b a r n a c l e s has been  (1916).  He s t a t e s t h a t t h e o v e r a l l form i s h i g h l y  v a r i a b l e , and t h a t t h e shape o f t h e o p e r c u l a r v a l v e s , the d e t a i l s o f t h e s t r u c t u r e o f t h e p l a t e s o f the w a l l , and t h e s t r u c t u r e o f t h e f e e t a r e t h e important c h a r a c t e r i s t i c s .  The l a r g e s t specimens, which a r e s p e c i f i c a l l y  chosen f o r m i c r o i n j e c t i o n work, a r e Balanus n u b i l i s , and o c c a s i o n a l l y B. aquila.  (These a r e t h e l a r g e s t N o r t h American  water.)  As noted by P i l s b r y ,  shell  b a r n a c l e s found i n s h a l l o w  these l a r g e r b a r n a c l e s a r e o l d , so t h e i r  i s worn and o f t e n r i d d l e d by b o r i n g animals.  affect  T h i s does n o t appear t o  t h e h e a l t h o f t h e b a r n a c l e , but makes the' i d e n t i f i c a t i o n o f a s p e c i e s  difficult.  B. n u b i l i s  i s unique i n t h a t as i t grows i t i n c r e a s e s i t s  i n t e r n a l volume by e x c a v a t i o n o f t h e b a s i s , and t h i s e x c a v a t i o n i s e a s i l y seen d u r i n g d i s s e c t i o n . between t h e muscle  A p p a r e n t l y t h e r e i s no p h y s i o l o g i c a l  difference  f i b r e s o f these two s p e c i e s .  Specimens were o b t a i n e d by d i v e r s , and kept i n a h o l d i n g tank a t t h e Vancouver P u b l i c Aquarium. the  tank c o n t i n u o u s l y .  Seawater  drawn from B u r r a r d I n l e t was r u n through  The o s m o l a r i t y o f t h i s seawater v a r i e d somewhat  over t h e year, (950+50 mOsm on a F i s k e osmometer). the  tank was n o t c l o s e l y monitored, but never exceeded t h r e e months.  B a r n a c l e s were moved t o a c o n t r o l l e d a r t i f i c i a l Ocean) a t t h e l a b o r a t o r y 1-3 weeks p r i o r t o use. was  The r e s i d e n c e time i n  seawater aquarium The a r t i f i c i a l  (Instant seawater  made up t o 960 mOsm (the v a l u e f o r normal R i n g e r ' s s o l u t i o n ) and main-  t a i n e d a t 10-12° C.  The b a r n a c l e s a c t i v e l y extended t h e i r c i r r i i n both  78  aquaria.  Dissection. Great c a r e was fibres.  taken t o minimize  The b a r n a c l e was  q u i c k l y k i l l e d by c u t t i n g through the o p e r c u l a r  adductor and removing the c i r r i , mass.  This l e f t  the trauma e x p e r i e n c e d by the muscle  and  the d i g e s t i v e and r e p r o d u c t i v e organ  the s i x l a r g e depressor muscles a t t a c h e d t o the o p e r c u l a r  p l a t e s and t o the b a s i s .  In the e a r l y experiments  w i t h bone shears to i s o l a t e each muscle bundle its  f i b r e s a t t a c h e d a t one  end d i r e c t l y  the s h e l l was  intact  cracked  (Hoyle 1963), w i t h  (without v i s i b l e tendon) t o a  fragment of the b a s i s , and a t the other end v i a tendons to a fragment o f the o p e r c u l a r p l a t e . saw was  used.  For most o f the experiments,  T h i s was  however, a  f a r s u p e r i o r , and enabled one  lapidarist's  to i s o l a t e a muscle  bundle v e r y quickly,, w i t h a minimum o f m a n i p u l a t i o n , on a compact of the b a s i s .  The  i s o l a t e d bundle was  immediately  fragment  suspended by the fragment  of operculum, i n a beaker o f normal b a r n a c l e R i n g e r ' s a t 5 - 10° C. muscles used.were the Depressor t e r g a l depressor was  Scutorum L a t e r a l i s and R o s t r a l i s .  to  S i n g l e muscle c e l l s were t y p i c a l l y 1.0  another,  To f a c i l i t a t e  a bundle was  The  not used because i t s f i b r e s were h e a v i l y i n v e s t e d w i t h  c o n n e c t i v e t i s s u e and were more d i f f i c u l t  cm i n l e n g t h .  The  isolate. - 1 ^,5 mm  i n diameter  and  the s e p a r a t i o n of these s i n g l e f i b r e s  4-5  from  one  a t t a c h e d by the o p e r c u l a r and b a s a l fragments to a  frame which h e l d the bundle h o r i z o n t a l l y a t about the r e s t i n g l e n g t h , i n a dish of c o l d Ringer's s o l u t i o n .  Fat and c o n n e c t i v e t i s s u e were c a r e f u l l y  removed w i t h j e w e l l e r ' s f o r c e p s and  i r i d e c t o m y s c i s s o r s , under a d i s s e c t i o n  microscope.  the tendon o f an a c c e s s i b l e , f i b r e  To  i s o l a t e the f i b r e s ,  grasped w i t h the f o r c e p s and cut from the operculum. the other f i b r e s  The connections  ( c o n n e c t i v e t i s s u e and a few s m a l l nerve  was with  f i b r e s ) were then  79  cut,  p r o c e e d i n g from tendon t o b a s i s .  (Damage t o the f i b r e membrane would  become apparent immediately as a l o c a l c o n t r a c t i o n . ) c a r r i e d out to as c l o s e to the b a s i s as was  This d i s s e c t i o n  was  p o s s i b l e , and the f i b r e was  left  a t t a c h e d t o the b a s i s , s i n c e removal  from the b a s i s w i t h o u t c a u s i n g damage  to  the c e l l membrane i s i m p o s s i b l e .  T h i s procedure was  of  the f i b r e s  at  5 - 10° C f o r 1 - 3  i n the bundle, and then the bundle was  repeated f o r each  left  i n normal R i n g e r ' s  hours b e f o r e b e i n g used.  T h i s procedure a s s u r e d t h a t any damaged f i b r e s would be even i f the damage was (ie.  slight.  identified,  Only f i b r e s which were u n i f o r m i n contour  w i t h o u t c o n t r a c t u r e s ) and u n i f o r m i n t r a n s l u c e n c y were chosen f o r  experiments.  F i b r e s were o n l y removed from the b a s i s a t the end o f the  experiment, when they were taken f o r weighing and chemical a n a l y s i s . use o f i n t a c t (Hagiwara,  fibres  is different  C h i c h i b u , & Naka 1964;  Tong 1972), who  This  from the p r a c t i c e o f o t h e r workers B r i n l e y 1968;  B i t t a r , Chen, D a n i e l s o n , &  c u t the c e l l s o f f a t the b a s i s and then c a n n u l a t e d the cut  end o f the c e l l .  Solutions. The a r t i f i c i a l seawater was to  960 mOsm.  prepared from I n s t a n t Ocean i n g r e d i e n t s ,  The R i n g e r ' s s o l u t i o n s were as i n T a b l e I.  (Schwartz-Mann) s t o c k s o l u t i o n (100 mM) all  solutions  was  A ouabain  prepared and used t o prepare  f o r ouabain experiments, by a d d i t i o n o f the a p p r o p r i a t e  amount o f ouabain s t o c k s o l u t i o n i n making up one o f the s o l u t i o n s shown i n T a b l e I.  80  TABLE I COMPOSITION OF SOLUTIONS A l l v a l u e s a r e mM.  Normal  Na  450  K  Zero-K  458  Li  Li-%C1  Choline  --  --  8  A l l s o l u t i o n s a r e 960±5 mOsm.  --  8  16  8  Tris**  Sucrose  Rinse  8  --  -8  Ca  20  20  20  20  20  20  20  20  Mg  10  10  10  10  10  10  10  10  Cl  543  543  522  269  543  543  93  85  Tris  25  25  25  25  25  475  25  25  Li  --  429  421  --  --  --  --  Choline  —  --  --  --  450  Sucrose  --  --  --  117  117  675  665  --  --  268  --  --  --  --  CH„S0. 3 4  Tris  --  i s tris-hydroxymethyl  --  aminomethane  T r i s C l i s not completely d i s s o c i a t e d : a t pH 7.6 t h e r e a r e 19 mM C l " f o r 25 mM T r i s C l (Gayton & Hinke 1968).  Microelectrodes. Sodium-specific  g l a s s m i c r o e l e c t r o d e s were c o n s t r u c t e d and c a l i b r a t e d  by the method o f Hinke (1967; 1969a), except  t h a t the s e n s i t i v e g l a s s was  drawn by hand, and the f i n a l g l a s s - t o - g l a s s s e a l a t the t i p was performed w i t h t h e e l e c t r o d e h e l d h o r i z o n t a l l y i n the m i c r o f o r g e and the h e a t e r  wire  brought i n h o r i z o n t a l l y t o touch and melt the t i p o f the s e n s i t i v e g l a s s .  81  The  heat was s u f f i c i e n t t o make the g l a s s - t o - g l a s s s e a l , and when the h e a t e r  w i r e was then withdrawn h o r i z o n t a l l y the s e n s i t i v e g l a s s was drawn i n t o a f i n e t i p and s e a l e d .  The o u t s i d e diameter o f the i n s u l a t i n g g l a s s a t the  s e a l was t y p i c a l l y 2 0 - 2 5 ^ , and the l e n g t h o f the s e n s i t i v e t i p was  typi-  c a l l y 75^u.  before  they l o s t  These e l e c t r o d e s were q u i t e durable,  t h e i r Na s e l e c t i v i t y .  and u s u a l l y broke  With use, the response time lengthened,  but an e l e c t r o d e c o u l d be ' r e - a c t i v a t e d ' by a 10 sec. immersion o f the t i p i n 0.1 M h y d r o f l u o r i c a c i d . * T h i s treatment made.the trips more Conventional puller,  micropipette  fragile.  e l e c t r o d e s were p u l l e d on a mechanical  e i t h e r from the same l e a d g l a s s used i n the c o n s t r u c t i o n of the Na  e l e c t r o d e , o r from b o r o s i l i c a t e g l a s s between 0.2 M NaCl and 0.2 M KC1 was f o r use ( A d r i a n 1956).  New  (Hinke 1969).  The p o t e n t i a l change  l e s s than 2 mV  f o r electrodes  e l e c t r o d e s were c o n s t r u c t e d  accepted  the day b e f o r e o r  the day o f each experiment. Potassium-specific the method o f Walker  i o n exchanger m i c r o e l e c t r o d e s  were c o n s t r u c t e d  (1971), and t e s t e d by the method o f Hinke  by  (1969a).  For most o f the experiments, the sodium or potassium e l e c t r o d e was r e f e r r e d to an e x t r a c e l l u l a r calomel e l e c t r o d e . was measured by a Cary 401 e l e c t r o m e t e r , The  micropipette  The p o t e n t i a l d i f f e r e n c e  and recorded  on a c h a r t  recorder.  e l e c t r o d e was a l s o r e f e r r e d to the calomel e l e c t r o d e , and  the p o t e n t i a l d i f f e r e n c e was monitored by a V i b r o n 33B e l e c t r o m e t e r a K i e t h l e y 616 e l e c t r o m e t e r .  For a few experiments the sodium e l e c t r o d e  was r e f e r r e d d i r e c t l y t o the i n t r a c e l l u l a r m i c r o p i p e t t e Electrical  o r by  i n t e r f e r e n c e was more o f a problem w i t h  electrode.  the l a t t e r method, but  the two methods y i e l d e d s i m i l a r r e s u l t s . The and  experimental  a l l electrometers,  apparatus was housed i n a s m a l l m e t a l - w a l l e d recorders,  l i g h t sources,  room,  and power s y r i n g e s were  o u t s i d e the room, except f o r the pre-amp o f the Cary e l e c t r o m e t e r .  The  82  s e p a r a t i o n o f the above equipment from the e x p e r i m e n t a l chamber was  less  than one metre.  through  Leads,  t u b i n g , and  f i b r e o p t i c c o n d u i t were passed  s m a l l p o r t s c u t i n the w a l l o f the s h i e l d e d room.  With t h i s  arrangement  and a p p r o p r i a t e grounding, the e l e c t r o m e t e r r e a d i n g s were v e r y s t a b l e throughout. The a x i a l  i n s e r t i o n o f the i o n - s p e c i f i c e l e c t r o d e i n t o the c a n n u l a t e d  c e l l and the r a d i a l i n F i g . 2. activities was  i n s e r t i o n o f the m i c r o p i p e t t e e l e c t r o d e a r e d e p i c t e d  The c a l c u l a t i o n o f the i n t r a c e l l u l a r sodium and from the p o t e n t i a l d i f f e r e n c e s  by the method o f Hinke  potassium  i n the m i c r o e l e c t r o d e c i r c u i t s  (1969a).  Chemical A n a l y s i s . In  a p a r t i c u l a r experiment, a c e l l was  basis, rinsed paper. the  cut near i t s c o n n e c t i o n t o the  f o r 30 sec i n s u c r o s e r i n s e s o l u t i o n , and b l o t t e d on  A s h o r t segment o f the c e l l was  cut from the tendon end and  o t h e r end, and the remaining c e n t r a l p a r t was  stoppered v i a l .  The wet weight was  measured a f t e r d r y i n g o f the c e l l was  then wet  tion  ashed  for analysis  pre-weighed  measured, and the d r y weight  fragment  was  i n an oven o v e r n i g h t .  f o r sodium and potassium by atomic  The  cell  absorp-  Space.  The volume o f the e x t r a c e l l u l a r space was same l o t as those used 3 of  placed i n a  from  spectrophotometry.  Extracellular  the  filter  ( H ) i n u l i n or (  measured f o r b a r n a c l e s from  i n the experiments as the volume o f d i s t r i b u t i o n  14 C)sorbitol  The c o m p o s i t i o n o f the f l u i d  (New  England N u c l e a r ) , by s t a n d a r d methods.  i n t h i s volume was  assumed t o be t h a t o f the  b a t h i n g s o l u t i o n , and the t o t a l sodium and potassium c o n t e n t s o f the  cell  as determined by c h e m i c a l a n a l y s i s were c o r r e c t e d f o r the c o n t r i b u t i o n o f  83  cation - selective microelectrode micropipette electrode glass  cannula  silk t i e tendon  single  muscle  cell  F i g u r e 2. C o n f i g u r a t i o n of the m i c r o e l e c t r o d e s an experiment. Not to s c a l e .  and  cannulated  cell  during  84  this extracellular  fluid  i n the u s u a l manner.  Myoplasmic and Nonmyoplasmic For  a given c e l l ,  Intracellular  Sodium.  the myoplasmic sodium a c t i v i t y ( a j \ j ) a  m  i n millimoles/  l i t r e and the i n t r a c e l l u l a r sodium c o n c e n t r a t i o n (Na)^ i n ( m i l l i m o l e s c e l l u l a r s o d i u m ) / ( k i l o g r a m i n t r a c e l l u l a r water) were measured. amount o f i n t r a c e l l u l a r sodium i s thus (Na)^ x of  i n t r a c e l l u l a r water.  i s the weight  i n t h e e x t r a c e l l u l a r space i s  The myoplasmic sodium content i s ( /. ) x (a, ) x V , where «Y+ t Na' m m A T  J  i s taken as 0.65  and V , the volume o f the myoplasmic s o l v e n t water, i s  taken as the s o l v e n t water f r a c t i o n (0.73  The t o t a l  T h i s amount i s u n c e r t a i n i n s o f a r as t h e f r a c t i o n  o f the c h e m i c a l l y a n a l y z a b l e sodium r e s i d i n g uncertain.  where  intra-  measured  x V ^ ) , r a t h e r than the h i g h e r f i g u r e  general figure  for cells.  The c a l c u l a t e d  might be an underestimate.  for. the barha'cle (Hirike 1970),  quoted i n the I n t r o d u c t i o n as a myoplasmic sodium content thus  A similar calculation  can be done f o r potassium.  The form i n which the sodium content o f each compartment  w i l l be  p r e s e n t e d , f o r the purpose o f d i r e c t comparison o f the amount,rather than the  c o n c e n t r a t i o n , i n each compartment,  of water i n the c e l l  i s a r r i v e d a t as f o l l o w s .  i s V = (wet weight) - (dry w e i g h t ) .  space i s assumed t o be 67o o f t h e t o t a l water. normal R i n g e r ' s s o l u t i o n extracellular  i s 450 mM.  space i s thus 0.06  The weight  The e x t r a c e l l u l a r  The sodium c o n c e n t r a t i o n i n  The sodium content i n s o l u t i o n  i n the  x V ( k g ) x 0 . 4 5 0 ( m o l e / l i t r e ) . The t  t a b u l a t e d t o t a l i n t r a c e l l u l a r sodium c o n c e n t r a t i o n (Na)^ = (mmoles i n t r a c e l l u l a r Na)/(kg i n t r a c e l l u l a r water ) = [ ( t o t a l a n a l y z e d Na) - ( e x t r a c e l l u l a r Na)J/(0.94 x V ) . fc  'Analyzed' r e f e r s  t o flame photometry.  The v a l u e s i n T a b l e I I p a r t b and i n F i g . 6 as 'sodium c o n t e n t ' have been n o r m a l i z e d by d i v i s i o n by V t  compartment  Thus the sodium content o f the myoplasmic  i s (moles Na i n myoplasm)/V  t  = ( a ^ ) 0 . 6 8 / 0 . 6 5 and the sodiumconteht a  m  85  of the nonmyoplasmic compartment i s (moles Na myoplasm)/V  Two  t  i n s i d e c e l l but not i n  = 0.94(Na)^ - (sodium content o f the myoplasmic compartment).  s e p a r a t e experiments  w i l l be d e s c r i b e d i n t u r n .  Methods, R e s u l t s , and D i s c u s s i o n f o r each experiment  For c l a r i t y ,  the  w i l l be p r e s e n t e d  separately.  A.  INCREASE OF CELL SODIUM  Methods. C e l l s were loaded w i t h sodium by immersion o v e r n i g h t i n p o t a s s i u m - f r e e Ringer's s o l u t i o n . dissected  Four muscle bundles  as d e s c r i b e d above.  to be c o n t r o l s . from each group.  ( N )m' ( a  a  N a  )i>  Two  from the same b a r n a c l e were  were a s s i g n e d to be e x p e r i m e n t a l and  (a ) , K  m  a n  d  ( K ) ^ were measured on s i x c e l l s  The r e m a i n i n g e x p e r i m e n t a l c e l l s were then p l a c e d i n  p o t a s s i u m - f r e e R i n g e r ' s s o l u t i o n a t 2° C f o r 20 hours. c o n t r o l c e l l s were kept A f t e r 20 hours,  remaining  the e x p e r i m e n t a l c e l l s were t r a n s f e r r e d  ( K ) ^ were measured f o r s i x more c e l l s . six control  The  i n normal Ringer's s o l u t i o n a t 2° C.  f r e e R i n g e r ' s s o l u t i o n a t room temperature  for  and  (ajj ) , a  m  to  potassium-  (Na) ^, ( a j r ) , m  and  S i m i l a r measurements were a l s o done  cells.  H a l f of the r e m a i n i n g e x p e r i m e n t a l c e l l s were then s e t i n normal R i n g e r ' s s o l u t i o n a t 10° C f o r 18 hours, and h a l f were s e t i n normal R i n g e r s s o l u t i o n to which had been added ouabain t o 10  M,  and  l e f t at  o 10  two  C f o r 18 hours.  The remaining c o n t r o l c e l l s were kept o R i n g e r s s o l u t i o n a t 10 C.  i n normal  86  At the end o f 18 hours, measurements o f (a.. ) , (Na)., (a„) , and ( K ) . ' Na'm' ' 1' K'm' ' i x  were performed  on c e l l s  from each  v  v  s  group.  The sodium and potassium content o f the two i n t r a c e l l u l a r were c a l c u l a t e d  compartments  f o r each c e l l as d e s c r i b e d i n Methods.  T h i s procedure was modelled a f t e r a method f o r measurement o f a sodium e x t r u s i o n dependent on e x t e r n a l potassium ( K ) ( S t e i n b a c h 1940; Beauge & S j o d i n 1967).  Q  and i n h i b i t e d  by.ouabain  The f e a t u r e s r e l e v a n t t o the  p r e s e n t problem a r e the changes i n i o n content o f the myoplasmic and nonmyoplasmic compartments.  Results. The r e s u l t s o f t h i s experiment w i t h sodium by immersion  i n which c e l l s were ' p a s s i v e l y loaded'  i n p o t a s s i u m - f r e e s o l u t i o n i n the c o l d and then  were a l l o w e d t o r e c o v e r i n normal Ringer's s o l u t i o n , a r e d e t a i l e d  i n Table  II. The c o n t r o l c e l l s , which were m a i n t a i n e d i n normal R i n g e r ' s throughout  the ca. 40 hours o f the experiment,  underwent a continuous  i n sodium c o n t e n t , amounting t o almost 407, o v e r a l l . was  unchanged over the f i r s t  over the f i n a l 20 hours.  rise  The potassium content  22 hours, but showed an i n c r e a s e o f about 47o  I t had been a n t i c i p a t e d t h a t a d e c l i n e i n the  potassium content o f the c e l l s would accompany the r i s e  i n t h e sodium  content.  The membrane p o t e n t i a l was v e r y c l o s e t o the potassium  potential  f o r b a r n a c l e muscle c e l l s  change d u r i n g t h i s  solution  l o n g experiment.  equilibrium  (Hinke & Gayton 1971), and i t showed no The water content o f a l l c e l l s i n -  c r e a s e d s l i g h t l y over the f i n a l 20 hours o f the experiment. The changes i n t h e t o t a l amount o f sodium and potassium i n the e x p e r i mental  cells  (where c o r r e c t i o n was made f o r e x t r a c e l l u l a r sodium and  potassium on t h e b a s i s o f an e x t r a c e l l u l a r space c o n t a i n i n g 67, o f the c e l l  87  TABLE  Ha  SUMMARY OF MEASUREMENTS ON PASSIVELY-LOADED CELLS  Condition  % wat:er  ( Na)m  (Na) . l  (a ) m  Control n = 6  7.08 (1.00)  14. 57 (1- 82)  158. 07 (16. 99)  195. 75 (4. 47)  72.3 (1.2)  74. 5 (0. 3)  Experiment n = 6  10.12 (2.45)  13. 05 (1. 7 8)  139. 47 (21. 58)  193. 88 (2. 25)  71.4 (2.7)  74. 9 (0. 3)  a  (K)  K  i  E  m  Initial:  Loaded: Control n = 6  7.82 (2.30)  16. 98 (2. 56)  149. 68 (24. 28)  194. 47 (6. 21)  72.5 (4.4)  74. 4 (0. 4)  Experiment n = 6  15.47 (4.18)  25. 82 (4. 44)  113. 68 (37. 41)  178. 17 (1. 91)  88.6 (9.4)  74. 8 (0. 2)  Control n = 4  9.58 (4.09)  20. 35 (3. 45)  127. 85 (34. 74)  202. 45 (5. 88)  60.6 (15.0)  75. 1 (0. 3)  Experiment n = 4  5.83 (0.79)  12. 60 (1. 21)  136. 30 (10. 28)  196. 05 (5. 11)  69.1 (2.1)  75. 5 (0. 1)  Ouabain n = 4  25.48 (7.20)  50. 48 (9. 93)  106. 83 (22. 89)  159. 98 (12. 97)  55.4 (12.0)  75. 5 (0. 4)  Recovered:  (a,, ) Na'm v  and (a ) K'm x  v  a r e m i l l i m o l e s / l i t r e myoplasmic water. • J  (Na)^ and ( K ) ^ a r e m i l l i m o l e s / k g c e l l water, c o r r e c t e d f o r e x t r a c e l l u l a r space ions as d e t a i l e d i n Methods. E  m  i s membrane p o t e n t i a l , i n - m i l l i v o l t s . Loaded-Experiment c e l l s was  The numbers i n p a r e n t h i s e s values,  Note t h a t the measurement on the  c a r r i e d out i n p o t a s s i u m - f r e e s o l u t i o n .  a r e the s t a n d a r d  and n i s the number o f c e l l s  d e v i a t i o n o f the measured  examined.  88  TABLE l i b ION CONTENT OF THE MYOPLASMIC AND NONMYOPLASMIC COMPARTMENTS  Condition  Myopl asmic Na  K  Nonmyoplasmic Na  Total  K  Na  K  Initial: Control Experiment  7.4  165  6.3  19  13.7  184  10.6  146  1.7  36  12.3  182  8.2  157  7.8  26  16.0  183  16.2  119  8.1  49  24.3  168  4.8  -19  4.9  6  9.7  -14  10.0  134  9.1  56  19.1  190  6.1  143  5.7  41  11.8  184  -11.9  47  -3.7  -38  -15.6  9  26.6  112  20. 8  38  47.4  150  8.6  16  -41  20.0  -25  Loaded: Control Experiment Change  Recovered: Control Experiment Change Ouabain Change  11.4  A l l v a l u e s a r e m i l l i m o l e s / k g t o t a l c e l l water, as d e t a i l e d i n Methods. The change i n t h e i o n content o f the e x p e r i m e n t a l c e l l s was c o r r e c t e d by s u b t r a c t i o n o f the c o r r e s p o n d i n g change i n t h e c o n t r o l  cells.  89  water, as determined  by i n u l i n and s o r b i t o l uptake  on b a r n a c l e s from the  same l o t u s i n g t h e same b l o t t i n g technique) were s i m i l a r t o those found by Beauge and S j o d i n (1967) i n a s i m i l a r experiment o n l y chemical a n a l y s i s was done.  on b a r n a c l e muscle where  When the changes i n i o n content o f the  c o n t r o l c e l l s were s u b t r a c t e d from t h e changes i n t h e e x p e r i m e n t a l over t h e c o r r e s p o n d i n g time p e r i o d , i t was found t h a t t h e t o t a l and p o t a s s i u m l o s s was about potassium-free s o l u t i o n .  one-for-one  cells  sodium g a i n  on i n c u b a t i o n o f t h e c e l l s i n  When c e l l s which had been i n c u b a t e d i n potassium-  f r e e s o l u t i o n were a l l o w e d t o r e c o v e r i n normal R i n g e r ' s s o l u t i o n ,  sodium  was l o s t and p o t a s s i u m gained, a g a i n v e r y r o u g h l y on a one-for-one  basis.  When companion c e l l s which a l s o had been immersed i n p o t a s s i u m - f r e e  solution  were s e t t o 'recover' i n normal Ringer's s o l u t i o n t o which ouabain had been -4 added ( t o 10  M), t h e r e was no r e c o v e r y .  Rather, a f u r t h e r g a i n o f sodium  and l o s s o f potassium o c c u r r e d , a g a i n on about a one-for-one  basis.  The changes i n t h e sodium and potassium content o f t h e myoplasmic compartment, c a l c u l a t e d cellular  from t h e measurements made w i t h i o n - s p e c i f i c  e l e c t r o d e s as d e s c r i b e d i n Methods, were f o r t h e most p a r t j u s t  T i k e those f o r t h e e n t i r e c e l l . free solution,  On immersion o f the c e l l s  i n a potassium-  sodium was gained and potassium l o s t by the myoplasmic  compartment on about a 4Na:IK b a s i s .  When c e l l s which had been immersed i n  a p o t a s s i u m - f r e e s o l u t i o n were a l l o w e d t o r e c o v e r i n normal Ringer's tion, but  intra-  solu-  sodium was l o s t and potassium gained by t h e myoplasmic compartment,  i n t h i s case on about a lNa:4K b a s i s .  i n t h e s o l u t i o n which c o n t a i n e d ouabain,  F o r those c e l l s s e t t o 'recover' sodium was not l o s t ,  but r a t h e r a  further gain occurred.  The potassium content o f the myoplasmic compartment  a l s o showed an apparent  i n c r e a s e , but i t s h o u l d be noted that t h e r e was a  rather large correction applied This  f o r the behavior of the c o n t r o l  cells.  i s t h e o n l y i n s t a n c e i n which the c o r r e c t i o n f o r changes i n t h e i o n  90  content o f the c o n t r o l c e l l s caused a change i n the q u a l i t a t i v e r e s u l t f o r the e x p e r i m e n t a l c e l l s .  The u n c o r r e c t e d data show a r o u g h l y  one-for-one  sodium g a i n and potassium l o s s by the myoplasmic compartment f o r c e l l s which were s e t t o r e c o v e r i n a normal Ringer's s o l u t i o n which c o n t a i n e d  ouabain.  The changes i n the sodium and potassium content o f the nonmyoplasmic compartment, c a l c u l a t e d as the d i f f e r e n c e between the change i n i o n content o f the whole c e l l and different.  On  t h a t o f the myoplasmic compartment, were q u a l i t a t i v e l y  immersion i n p o t a s s i u m - f r e e s o l u t i o n ,  t h e r e was  an equal  g a i n o f sodium and o f potassium by the nonmyoplasmic compartment. r e c o v e r y i n normal Ringer's s o l u t i o n ,  t h e r e was  a l o s s both o f sodium and  potassium by the nonmyoplasmic compartment, on about-a  lNa:10K b a s i s .  those c e l l s s e t to 'recover' i n the s o l u t i o n which c o n t a i n e d sodium was  On  For  ouabain,  gained and potassium l o s t by the nonmyoplasmic compartment, on '  r o u g h l y a lNa:4K b a s i s . The different  initial  sodium d i s t r i b u t i o n i n the e x p e r i m e n t a l group was  from t h a t  i n the c o n t r o l group.  quite  Large r e c i p r o c a l d i f f e r e n c e s i n  the sodium and potassium content o f b a r n a c l e muscle c e l l s have been noted b e f o r e (McLaughlin & Hinke 1966).  T h i s and  the d i f f e r e n c e s  i n the t o t a l i o n  c o n t e n t o f b a r n a c l e s from d i f f e r e n t , p o p u l a t i o n s ( B r i n l e y 1968; A l l e n , & Hinke 1969)  a p p a r e n t l y a r e normal.  I t i s c e r t a i n l y c o r r e c t to t r y  to i s o l a t e changes i n the e x p e r i m e n t a l c e l l s which a r e due e x p e r i m e n t a l m a n i p u l a t i o n , but the unexpected c o n t r o l c e l l s over the f i n a l 20 hours  bility  s o l e l y to the  g a i n o f potassium by  o f the experiment  suggests  p o s s i b i l i t y o f a s i m i l a r c a p r i c e by the e x p e r i m e n t a l c e l l s , to the e x p e r i m e n t a l m a n i p u l a t i o n .  Gayton,  For t h i s reason,  i t was  the  the  quite unrelated felt  that  credi-  s h o u l d be assumed o n l y f o r the q u a l i t a t i v e changes d e s c r i b e d here.  Thus: the myoplasmic compartment behaved, l i k e the c e l l s as a whole. The b e h a v i o r i s c o n s i s t e n t w i t h the model o f the myoplasmic compartment as  91  a compartment whose i o n content i s governed by a sodium-potassium mechanism which ouabain.  exchange  i s s t i m u l a t e d by e x t r a c e l l u l a r p o t a s s i u m and i n h i b i t e d by  The nonmyoplasmic  compartment, on the o t h e r hand, gains sodium  and potassium t o g e t h e r i n the absence o f e x t e r n a l potassium, so t h e r e must i n e f f e c t be a s h i f t o f p o t a s s i u m from t h e myoplasmic compartment.  The nonmyoplasmic  t o the nonmyoplasmic  compartment l o s e s sodium and p o t a s s i u m  t o g e t h e r when e x t e r n a l p o t a s s i u m i s r e s t o r e d .  Finally,  t h e nonmyoplasmic  compartment g a i n s sodium but l o s e s p o t a s s i u m on exposure t o R i n g e r ' s s o l u t i o n which c o n t a i n s ouabain but i s o t h e r w i s e normal.  Discussion. The main problem o f concern here i s t h e l o c a t i o n o f t h e sodium not d e t e c t e d by the s o d i u m - s p e c i f i c i n t h e above c a l c u l a t i o n s ,  i n t r a c e l l u l a r electrode.  The model  i n terms o f s o l v e n t water and p a r t i t i o n o f ions,  i s due t o Hinke (McLaughlin & Hinke 1966; Hinke e t a l . 1973). t h a t the nonmyoplasmic barnacle  employed  ions were a s s o c i a t e d w i t h p r o t e i n s  He proposed  i n s i d e the  cell.  Experiments on i n t a c t c e l l s and on membrane-damaged c e l l s t h a t t h i s compartment has a maximum c a p a c i t y  indicate  f o r ions o f about 68 m i l l i -  e q u i v a l e n t s / k i l o g r a m d r y weight o f i n t a c t c e l l  (Hinke e t a l . 1973),^ and a  b i n d i n g p r e f e r e n c e f o r sodium ions over p o t a s s i u m i o n s .  In e a r l i e r  experi-  ments, i t was assumed that a l l o f the p o t a s s i u m was f r e e i n the myoplasm (Hinke 1970), but f u r t h e r experiments i n d i c a t e d t h a t some p o t a s s i u m was  The membrane-damaged p r e p a r a t i o n has l o s t s o l u b l e o r g a n i c molecules, which account f o r about h a l f o f the d r y weight o f the b a r n a c l e c e l l . The b i n d i n g c a p a c i t y found i n experiments on membrane-damaged c e l l s i s r o u g h l y twice t h a t found f o r i n t a c t c e l l s , when no account i s taken o f the d i f f e r ence i n t h e d r y weight i n t h e two s i t u a t i o n s .  92  'bound' as w e l l  (Hinke et a l .  associated with fixed the  though, because the myoplasmic p o t a s s i u m  i s much g r e a t e r than the myoplasmic sodium a c t i v i t y .  t o t a l amount o f nonmyoplasmic proteins  The a c t u a l amount o f potassium  i n t r a c e l l u l a r a n i o n i c s i t e s should be g r e a t e r than  amount o f sodium so bound,  activity  the  1973).  i n whole c e l l s .  nonmyoplasmic  c a t i o n was  However, the  about twice the c a p a c i t y o f the  Thus t h e r e p r o b a b l y i s an a d d i t i o n a l component o f  compartment,  which c o n t a i n s more sodium than potassium.  Experiments i n which the water content o f the b a r n a c l e c e l l was by exposure o f the c e l l  t o h y p e r t o n i c or h y p o t o n i c s o l u t i o n s  most o f the nonmyoplasmic  sium was unchanged when the c e l l water was  to  c e l l water was  indicated  that  sodium i n b a r n a c l e muscle c e l l s remained immobile  d e s p i t e l a r g e changes i n c e l l water (Hinke 1969b).  the  changed  decreased.  The myoplasmic p o t a s -  i n c r e a s e d , but decreased when  C o m p e t i t i v e b i n d i n g o f sodium and p o t a s s i u m  i n t r a c e l l u l a r p r o t e i n s s h o u l d f o l l o w a mass a c t i o n r u l e , so s h o u l d not  be changed by a change i n the amount o f water i n the myoplasmic  compartment.  It  differently  i s i n t e r e s t i n g , however, t h a t the p o t a s s i u m behaved s l i g h t l y  from the sodium i n these experiments, as i t d i d i n the p r e s e n t experiments. The e f f e c t of p o t a s s i u m - f r e e s o l u t i o n on the myoplasmic sodium and potassium c o n t e n t o f f r o g s k e l e t a l muscle has been r e p o r t e d Lee 1971; Lee & Armstrong 1974).  The r e s u l t s d i f f e r e d from those found here  i n b a r n a c l e muscle, i n t h a t the nonmyoplasmic  compartment  l o s t p o t a s s i u m on i n c u b a t i o n i n p o t a s s i u m - f r e e s o l u t i o n . of  the myoplasmic and nonmyoplasmic  t a t i v e l y the same.  (Armstrong &  However, i t was  compartments found t h a t  o f f r o g muscle Thus the b e h a v i o r  i n f r o g muscle was  i f the p o t a s s i u m - f r e e  used f o r i n c u b a t i o n c o n t a i n e d much l e s s c a l c i u m than f r o g R i n g e r ' s does, then a l l o f the sodium gained by the c e l l compartment,  a l t h o u g h p o t a s s i u m was  and nonmyoplasmic  compartments.  still  lost  qualisolution  solution  entered the myoplasmic from both the myoplasmic  F u r t h e r , exposure t o the c a l c i u m - p o o r  93  solution resulted compartment.  i n a decrease i n the c a p a c i t y o f the  F i n a l l y , when the l o a d i n g p e r i o d was  the myoplasmic compartment  nonmyoplasmic  extended to 48 hours,  accounted f o r most o f the a c c u m u l a t i o n o f sodium  over the f i n a l 24 hours, as i f the nonmyoplasmic  compartment  had become  saturated. A s i d e from t h e p o t a s s i u m l o s s by t h e nonmyoplasmic the b e h a v i o r o f f r o g muscle was  compartment,  the same as t h a t of b a r n a c l e muscle on  exposure t o p o t a s s i u m - f r e e s o l u t i o n .  The e f f e c t s o f c a l c i u m a r e p a r t i c u l a r l y  r e l e v a n t to the second l i k e l y s i t e o f r e s i d e n c e o f nonmyoplasmic the p o l y s a c c h a r i d e s  then,  sodium,  i n the e x t r a c e l l u l a r space.  The p o s s i b i l i t y t h a t the sodium not d e t e c t e d by the m i c r o e l e c t r o d e might be e x t r a c e l l u l a r was mentioned by C a l d w e l l  (1968).  S t e i n b a c h (1956) had measured- c a t i o n b i n d i n g by sugars.  H a r r i s and B r a d i n g and  Widdicombe (1977) r e c e n t l y p u b l i s h e d a c a r e f u l study o f the c a p a c i t y o f the e x t r a c e l l u l a r cation-exchanging s i t e s used the t r i v a l e n t  i n mammalian smooth muscle.  They  i o n lanthanum to d i s p l a c e sodium, potassium, magnesium,  and c a l c i u m from the t i s s u e , and c a l c u l a t e d the c o n t r i b u t i o n o f the i n t r a c e l l u l a r and e x t r a c e l l u l a r space t o the e f f e c t . f o r a n i o n i c b i n d i n g s i t e s o u t s i d e the c e l l . cation displaced  These c a t i o n s a l l compete  The amount o f e x t r a c e l l u l a r  from s p e c i f i c s i t e s by lanthanum s h o u l d be l e s s than the  t o t a l amount o f c a t i o n bound t o e x t r a c e l l u l a r s i t e s . 4 mmole.potassium weight  I t amounted to about  per kg d r y weight, and about 60 mmole sodium per kg d r y  (assuming 807* water) .  I t was  a l s o found t h a t lanthanum reduced t h e  p a s s i v e sodium and ( t o a l e s s e r extent) p o t a s s i u m movement a c r o s s the c e l l membrane, but d i d not appear t o a f f e c t the a c t i v e i o n movements. suggested t h a t the b i n d i n g o f c a t i o n s t o e x t r a c e l l u l a r s i t e s p a s s i v e transmembrane  I t was  i s a stage o f  passage o f the c a t i o n s , and t h a t p o t a s s i u m behaves  q u i t e d i f f e r e n t l y from sodium i n i t s p a s s i v e passage o f the c e l l membrane.  94  If  the e x t r a c e l l u l a r p o l y s a c c h a r i d e i s s i m i l a r  seems l i k e l y , compartment,  i n b a r n a c l e muscle, as  t h e r e i s then a c r e d i b l e second component to the c o n t a i n i n g mostly sodium and h a v i n g an i o n - b i n d i n g  s i m i l a r t o t h a t o f the i n t r a c e l l u l a r p r o t e i n s .  sodium (mostly e x t r a c e l l u l a r ) and p o t a s s i u m (mostly i s not c l e a r how  o f the  potassium i n  b a r n a c l e muscle can be accounted f o r w i t h b i n d i n g t o these  compartment  i n the transmembrane  from t h a t  p o t a s s i u m i s removed  t o the TTS  transport of  f o r sodium, but t h i s  c o u l d not be c o n c l u d e d from the present experiments a l o n e . l i k e l y that potassium s h i f t s  compartments  I t might be t h a t the e x t r a c e l l u l a r  i s indeed i n v o l v e d d i r e c t l y  p o t a s s i u m by a method d i f f e r e n t  nonmyoplasmic  intracellular).  the b e h a v i o r o f the nonmyoplasmic  a c c o r d i n g t o the mass a c t i o n r u l e .  capacity  Together, these two compo-  nents appear t o have a c a p a c i t y adequate t o c o n t a i n a l l  It  nonmyoplasmic  certainly  I t seems more  from the myoplasm when e x t e r n a l  ( B i r k s & Davey 1969), w h i l e b i n d i n g o f p o t a s s i u m t o  f i x e d charges i s l e s s important. The b e h a v i o r o f the nonmyoplasmic of  the nonmyoplasmic  compartment  sodium i s accounted f o r by a model  as two r e g i o n s which can b i n d sodium,  i n t r a c e l l u l a r and c o n t a i n i n g r e l a t i v e l y l i t t l e  one  sodium i n comparison w i t h  potassium, and one e x t r a c e l l u l a r , c o n t a i n i n g r e l a t i v e l y l i t t l e  potassium i n  comparison w i t h sodium. At  l e a s t some o f t h i s e x t r a c e l l u l a r sodium s h o u l d engage i n r a p i d  exchange w i t h the sodium i n the b a t h i n g s o l u t i o n , a l t h o u g h i n smooth these c a t i o n s were m o b i l i z e d o n l y when lanthanum was  introduced.  muscle  Such  exchange might be r e v e a l e d i n an experiment i n which the e f f l u x o f sodium i n t o sodium-free s o l u t i o n s are  d e s c r i b e d next.  i s measured.  The r e s u l t s o f such an experiment  95  B.  DECREASE OF CELL SODIUM  Methods. In a s e p a r a t e s e r i e s o f experiments, d e p l e t e d o f sodium by immersion Ringer's s o l u t i o n  i n i s o t o n i c sodium-free  as d e s c r i b e d  and (Na). were performed on s e v e r a l  a t room temperature.  above, and measurements o f i n normal R i n g e r ' s  solution  The bundle was then immersed i n a sodium-free  lithium-  1  substituted  lithium-substituted  (Table.I).  A muscle bundle was d i s s e c t e d ) am  s i n g l e b a r n a c l e muscle c e l l s were  cells  R i n g e r ' s s o l u t i o n f o r 30 seconds,  volume o f t h i s s o l u t i o n .  Measurements o f ( a  then t r a n s f e r r e d N a  )  m  and ( N a )  i  to a large  were performed  on each o f a s u c c e s s i o n o f c e l l s over the next t h r e e hours. This  procedure was c a r r i e d out on t h r e e d i f f e r e n t muscle bundles,  b a r n a c l e s from the same l o t . a f t e r 16 hours o f immersion  from  I n one case, some measurements were made  i n sodium-free s o l u t i o n , where the c e l l s were  k e p t a t 10° C between t h e t h i r d and s i x t e e n t h  hours.  The sodium c o n t e n t o f the myoplasmic and nonmyoplasmic compartments was c a l c u l a t e d ,  as d e s c r i b e d  above.  Results. The r e s u l t s a r e p r e s e n t e d i n F i g . 3 as the change i n the sodium c o n t e n t o f the myoplasmic ( c l o s e d symbols)  and nonmyoplasmic (open symbols)  partments w i t h time, w h i l e the c e l l s were immersed i n sodium-free substituted of  Ringer's s o l u t i o n .  immersion.  com-  lithium-  The zero o f time corresponds t o the moment  The l i n e s were drawn by eye as a v i s u a l a i d .  Under c e r t a i n c o n d i t i o n s ,  a large rapid  a c t i v i t y can o c c u r i n f r o g s k e l e t a l muscle c r a b s t r i a t e d muscle  (Vaughan-Jones 1977).  f a l l o f the myoplasmic  sodium  (White 6c Hinke 1976) and i n Such an e f f e c t had been sought  96  o 14« »  12 o E 10 E  "E o o o z  •  8 t  •  o •a  o O  a o •  30  60  90  120  150  f80  210  240  1000  time (min.)  F i g u r e 3. Changes i n the sodium content o f c e l l s d u r i n g i n c u b a t i o n i n sodium-free l i t h i u m - s u b s t i t u t e d s o l u t i o n . Correction for extracellular sodium, by standard methods (see t e x t ) , was made f o r the c e l l s a t zero time (normal R i n g e r ' s s o l u t i o n ) . Each p o i n t r e p r e s e n t s one c e l l , where the c l o s e d symbol a t a g i v e n time r e p r e s e n t s the myoplasmic sodium, and the open symbol a t t h a t time r e p r e s e n t s the nonmyoplasmic i n t r a c e l l u l a r sodium. The three d i f f e r e n t symbol shapes r e p r e s e n t t h r e e d i f f e r e n t experiments. The i r r e g u l a r l y broken l i n e r e p r e s e n t s the myoplasmic i n t r a c e l l u l a r sodium, and the r e g u l a r l y broken l i n e r e p r e s e n t s the nonmyoplasmic sodium. The l i n e s were drawn by eye to summarize the t h r e e e x p e r i m e n t a l runs.  97  and found i n b a r n a c l e s t r i a t e d muscle, and i s d e s c r i b e d i n s e c t i o n  6.  However, i t i s o n l y seen i n b a r n a c l e muscle c e l l s which have an e l e v a t e d sodium c o n t e n t .  Two  o f the muscle bundles used i n t h i s experiment had  r e l a t i v e l y low sodium content  ( t r i a n g u l a r and square symbols  i t was not expected t h a t the e f f e c t would be seen i n them. initial  fall  i n F i g . 3), and The  i n the c a l c u l a t e d sodium content o f the..myoplasmic  small compartment,  shown i n F i g . 3, might r e f l e c t a r a p i d e f f l u x from the t h i r d muscle bundle (round symbols), whose i n i t i a l  sodium content was  A s i d e from t h i s v a r i a t i o n , myoplasmic compartment  higher.  the d e c l i n e o f the sodium c o n t e n t o f the  w i t h time was  r a t h e r slow.  Even a f t e r 16 hours o f  immersion i n the sodium-free s o l u t i o n (much o f which time was as  noted above), the myoplasmic compartment  spent a t 10° C  had r e t a i n e d h a l f o f i t s i n i t i a l  sodium. The d e c l i n e o f the sodium content o f the nonmyoplasmic markedly d i f f e r e n t . of  There was  a l a r g e f a l l over the f i r s t  muscle c e l l s on b r i e f has been measured 1971).  sodium a c t i v i t y  ( l e s s than 60 min)  30 to 40 minutes  by o t h e r workers  They found t h a t  ( ^ ) a  a  m  for  (ajj ) a  m  i n barnacle  immersion i n sodium-free s o l u t i o n  (McLaughlin & Hinke 1968; A l l e n & Hinke  increased i n i t i a l l y ,  However, the l i t h i u m s o l u t i o n they used was  then decreased.  prepared by s u b s t i t u t i n g L i C l  NaCl on a one-for-one b a s i s ( M c L a u g h l i n & Hinke 1968, T a b l e I ) .  s o l u t i o n i s h y p e r t o n i c , so the i n i t i a l '  b e h a v i o r o f (a. ) Na'm  J t r  movement o f water out o f the myoplasm. to  was  immersion, but then almost no l o s s over the next 15 hours. The v a r i a t i o n o f the myoplasmic  a  compartment  v  T  reflects  the  T h i s by i t s e l f has been found not  a f f e c t the sodium content o f the myoplasmic and nonmyoplasmic  ments (Hinke 1969b).  Such  compart-  A s i m i l a r experiment o f 25 minutes' .duration u s i n g  i s o t o n i c sodium-free s u c r o s e - s u b s t i t u t e d R i n g e r ' s s o l u t i o n showed b e h a v i o r s i m i l a r to that  i n F i g . 3 (Hinke 1969b).  98  A rough a p p r o x i m a t i o n o f the s i z e o f the v a r i o u s sodium can be made from F i g . myoplasmic  3.  I f the r a p i d l y - l o s t  fractions of c e l l u l a r f r a c t i o n o f t h e non-  sodium i s a s s i g n e d t o the e x t r a c e l l u l a r space, t h e r e remains  about 307o o f the i n t r a c e l l u l a r sodium n o t a c c e s s i b l e t o the m i c r o e l e c t r o d e (in  the model d e s c r i b e d e a r l i e r ) .  T h i s i s about 10 m i l l i m o l e / k g d r y weight.  The d a t a f o r v e r y l o n g time o f immersion suggest t h a t  i n b a r n a c l e muscle  perhaps 207 o f the c e l l u l a r sodium i s both not a c c e s s i b l e t o the microo  e l e c t r o d e and so slow t o exchange as t o be n o n p a r t i c i p a t o r y i n the type o f i n v i t r o experiments d e s c r i b e d i n t h i s  thesis.  I t has o f t e n been found t h a t a f r a c t i o n o f the c e l l  sodium exchanges  o n l y v e r y s l o w l y w i t h r a d i o a c t i v e l y - l a b e l l e d sodium i n t h e b a t h i n g  solution  (Conway & Cary 1955; T r o s c h i n 1961; Dunham & G a i n e r 1968; A l l e n & Hinke 1970).  I n p a r t i c u l a r , A l l e n and Hinke (1970)  agreement  found good  quantitative  i n b a r n a c l e muscle f o r the amount o f c e l l u l a r sodium which ex-  changes s l o w l y as c a l c u l a t e d f r o m i s o t o p e f l u x s t u d i e s w i t h t h e amount o f 'bound'  (nonmyoplasmic)  sodium c a l c u l a t e d  from m i c r o e l e c t r o d e s t u d i e s .  Discussion. In  the f i r s t experiment, where the sodium content o f the c e l l was  i n c r e a s e d by immersion o f the c e l l  i n potassium-free s o l u t i o n ,  i t was found  t h a t the b e h a v i o r o f the nonmyoplasmic  sodium c o u l d be accounted f o r by a  model o f the nonmyoplasmic  as two r e g i o n s which can b i n d  sodium: one i n t r a c e l l u l a r , and one e x t r a c e l l u l a r ,  compartment  c o n t a i n i n g a r e l a t i v e l y s m a l l amount o f sodium;  containing a r e l a t i v e l y  The second experiment showed t h a t can  be washed out v e r y r a p i d l y  l a r g e amount o f sodium.  indeed much o f the nonmyoplasmic  sodium  i n sodium-free s o l u t i o n , w h i l e some cannot  be washed out even w i t h l o n g immersion i n s o d i u m - f r e e s o l u t i o n .  I t seems  r e a s o n a b l e t o a s s i g n the former t o the e x t r a c e l l u l a r component o f the non-  99  myoplasmic compartment, the  nonmyoplasmic  and the l a t t e r t o the i n t r a c e l l u l a r component  compartment,  a l t h o u g h some o f the e x t r a c e l l u l a r  of  sodium  p r o b a b l y i s t i g h t l y - b o u n d , as i n smooth muscle. To summarize  the rough q u a n t i t a t i v e e s t i m a t e s , about 307> o f the sodium  which i s t r u l y i n t r a c e l l u l a r i s not a c c e s s i b l e to the m i c r o e l e c t r o d e . of t h i s  (about 207>) cannot be washed out d u r i n g l o n g immersion o f the c e l l  i n sodium-free s o l u t i o n . the  cell  Most  I f t h i s 207. i s i d e n t i f i e d w i t h the f r a c t i o n o f  sodium which exchanges v e r y s l o w l y w i t h r a d i o i s o t o p i c  then the amount o f nonmyoplasmic  sodium,  i n t r a c e l l u l a r sodium which exchanges  r a p i d l y w i t h the myoplasmic sodium i s p r o b a b l y l e s s than 107 o f the i n t r a o  c e l l u l a r sodium.  T h i s c o n c l u s i o n i s important because i t a l l o w s the model  f o r the measurement o f the sodium e f f l u x from b a r n a c l e muscle c e l l s to be r e l a t i v e l y simple, as d i s c u s s e d  i n section  2.D.  The p o s s i b i l i t y t h a t the e x t r a c e l l u l a r nonmyoplasmic p o t a s s i u m i s w i t h i n the o v e r a l l mechanism membrane was  raised  by which these ions pass the c e l l  i n the d i s c u s s i o n o f the f i r s t experiment.  p o s s i b l e t h a t some o f the e x t r a c e l l u l a r nonmyoplasmic d i r e c t l y w i t h the myoplasmic sodium. the  sodium and  s i m p l e r h y p o t h e s i s f i r s t , and t e s t  next two s e c t i o n s support t h i s  choice.  It is  sodium can exchange  However, i t seems prudent to adopt i t in practice.  The r e s u l t s  o f the  100  SECTION 4.  MICROINJECTION OF RADIOSODIUM INTO SINGLE MUSCLE CELLS  In the p r e p a r a t i o n o f a c e l l  f o r an experiment  i n which the e f f l u x o f  r a d i o s o d i u m i s t o be measured, i t i s u s u a l l y necessary to immerse the f o r some time i n a s o l u t i o n which c o n t a i n s radiosodium. c e l l u l a r and experiment  the e x t r a c e l l u l a r sodium become l a b e l l e d , and  intra-  i n the  subsequent  both the i n t r a c e l l u l a r and the e x t r a c e l l u l a r sodium c o n t r i b u t e to  the measured r a d i o s o d i u m The  Both the  cell  efflux.  e x t r a c e l l u l a r r a d i o s o d i u m i s l o s t v e r y r a p i d l y , and a f t e r a s h o r t  p e r i o d o f time o n l y the i n t r a c e l l u l a r r a d i o s o d i u m c o n t r i b u t e s a p p r e c i a b l y to the observed  efflux.  i n t e r i o r o f the c e l l It  However, the b e h a v i o r o f the e f f l u x from the  immediately  i s not a simple matter  a f t e r the experiment  In l a r g e c e l l s , by m i c r o i n j e c t i o n .  begun i s masked.  to s u b t r a c t the e s t i m a t e d c o n t r i b u t i o n o f the  e x t r a c e l l u l a r sodium to the t o t a l r a d i o s o d i u m e f f l u x , from e x t r a c e l l u l a r s i t e s  has  because the  i s not always simple (eg. Rogus & Z i e r l e r  the i n t e r i o r can be loaded w i t h r a d i o s o d i u m As  efflux  first  selectively  d e s c r i b e d by Hodgkin and Keynes (1956;  a l s o C a l d w e l l & W a l s t e r 1963), a f i n e c y l i n d r i c a l g l a s s needle was axially  i n t o a s q u i d axon, and  the t i p .  The  injected  fluid  then removed w h i l e f l u i d was  filled  the space v a c a t e d by the  1973).  see inserted  e j e c t e d from withdrawing  needle. The  technique i s o f i n t e r e s t here i n two  respects.  First,  the  distri-  b u t i o n o f the i n j e c t e d r a d i o s o d i u m among i n t r a c e l l u l a r p o o l s o f sodium can p r o v i d e a t e s t o f the model f o r the c e l l u l a r sodium d e s c r i b e d i n s e c t i o n The  i n t e r p r e t a t i o n by B i t t a r and coworkers o f sodium m i c r o i n j e c t i o n  ments i n b a r n a c l e muscle seems t o be a t v a r i a n c e w i t h the model Chen, D a n i e l s o n , Hartmann, & Tong 1972), as w i l l Second, the t e c h n i q u e i s convenient  3.  experi-  (Bittar,  be d e s c r i b e d f u l l y below.  i n t h a t the c e l l can be loaded w i t h  101  radiosodium quickly,  the e x t r a c e l l u l a r sodium p o o l can be bypassed,  sodium content o f the c e l l All of  and the  can be r a i s e d by i n j e c t i o n o f sodium s o l u t i o n s .  o f t h i s can be done w i t h p a s s i v e techniques as w e l l ,  but a t the expense  l o n g immersion times, o f t e n i n n o n p h y s i o l o g i c a l s o l u t i o n s . Of course, the e f f e c t s o f m i c r o i n j e c t i o n on t h e c e l l and i n p a r t i c u l a r  on the sodium t r a n s p o r t out o f the c e l l must be known b e f o r e the technique can be adopted In  as a convenience  t h e remainder  of this  in efflux  experiments.  i n t r o d u c t o r y passage,  the r e s u l t s o f o t h e r  workers on the q u e s t i o n s o f the e f f e c t o f m i c r o i n j e c t i o n on b a r n a c l e muscle cells,  and the d i s t r i b u t i o n o f i n j e c t e d r a d i o s o d i u m among i n t r a c e l l u l a r  sodium pools a r e d i s c u s s e d . c o n s i s t s o f the comparison  The e x p e r i m e n t a l p o r t i o n o f t h i s  o f the e f f l u x o f r a d i o s o d i u m from c e l l s  by m i c r o i n j e c t i o n , w i t h t h a t  from c e l l s  M i c r o i n j e c t i o n was f i r s t used and Naka (1964).  loaded  loaded p a s s i v e l y .  i n b a r n a c l e muscle by Hagiwara, C h i c h i b u ,  A l a r g e needle was used  (200 - 500yU o.d.),  i n j e c t e d as the n e e d l e was advanced down t h e a x i s o f the c e l l , f l u i d was i n j e c t e d t o double the diameter o f the c e l l . e x c i t a b i l i t y o f the c e l l  section  membrane was unimpaired,  f l u i d was and enough  Even so, the  and the r e s t i n g membrane  p o t e n t i a l showed a dependence on the transmembrane d i f f e r e n c e i n t h e potassium concentration s i m i l a r to that of i n t a c t , noninjected barnacle cells  (Hagiwara Brinley  e t a l . 1964; Hinke 1970).  (1968) used the technique o f Hodgkin and Keynes, but w i t h a  m i c r o i n j e c t o r n e e d l e which s e r v e d as an open-tipped for  i n t r a c e l l u l a r electrode  measurement o f the membrane p o t e n t i a l as the needle was b e i n g advanced  down the a x i s o f the c e l l  ( B r i n l e y & M u l l i n s 1965).  He found t h a t t h e r e  was a t r a n s i e n t membrane p o t e n t i a l d e p o l a r i z a t i o n o f 2 o r 3 m i l l i v o l t s (mV) w i t h each advance o f the i n j e c t o r needle, w i t h r e c o v e r y o c c u r r i n g  102  w i t h i n a few seconds  a f t e r the advance was  halted.  He  interpreted  this  as b e i n g due t o the t e a r i n g and r a p i d r e s e a l i n g o f the c l e f t s and t r a n s v e r s e t u b u l e s , which a r e open to the b a t h i n g s o l u t i o n and p e n e t r a t e deeply the c e l l  (Hoyle 1973).  B r i n l e y found  i t difficult  into  to o b t a i n s t a b l e membrane  p o t e n t i a l r e a d i n g s i n h i s p r e p a r a t i o n , even when u s i n g c o n v e n t i o n a l micropipette electrodes.  The mean v a l u e he found was  v a r y w i t h temperature  (16 t o 22° C).  (1964) r e p o r t e d -73.5  mV;  on s e l e c t e d McLaughlin  ( C a l d w e l l & W a l s t e r 1963).  Hagiwara et a l .  from the muscle bundle; on i n t a c t  and  original  Brinley,  from the b a s i s a t the p o i n t o f They found t h a t  the  u s u a l l y u n a f f e c t e d by the process o f m i c r o i n j e c t i o n ,  a l t h o u g h t h e i r mean v a l u e f o r the r e s t i n g p o t e n t i a l was t o -72  mV  cells.  L i k e Hagiwara e t al_. and  to the b a s i s , and c a n n u l a t e d the c u t end.  membrane p o t e n t i a l was  -42  i t d i d not  Chen, D a n i e l s o n , Hartmann, and Tong (1972) used the  they c u t s i n g l e b a r n a c l e muscle c e l l s attachment  and  (1963) r e p o r t e d -74 t o -96  and Hinke (1966) r e p o r t e d -71 mV  Bittar, technique  By comparison,  Hoyle and Smith  i n t a c t c e l l s not d i s s e c t e d  -68 mV,  o n l y -56 mV  (range  mV).  B i t t a r et: a_l. found t h a t the e f f l u x o f i n j e c t e d r a d i o s o d i u m from the cell  i n t o normal Ringer's s o l u t i o n d e c l i n e d e x p o n e n t i a l l y w i t h time.  f r a c t i o n o f the t o t a l  i n t r a c e l l u l a r r a d i o s o d i u m l o s t p p e r u n i t time  s l o w l y over the f i r s t  60 minutes i n the m a j o r i t y o f the c e l l s  but was  more s t a b l e t h e r e a f t e r .  The  declined  they s t u d i e d ,  They found t h a t the s l o p e o f the s e m i l o g  p l o t versus time o f the amount o f r a d i o s o d i u m l o s t  from the c e l l  per u n i t tiVe  ,d_ l n . d „ * . . was g r e a t e r than the s l o p e o f the s e m i l o g p l o t versus Mt ' ' W e e l l " time o f the amount o f r a d i o s o d i u m l e f t i n the c e l l /d « * \, as Mt cell did  Hodgkin and Keynes.(1956) i n i n j e c t e d s q u i d axon.  That  i s , the amount  of  r a d i o s o d i u m i n the c e l l  d i d not d e c l i n e w i t h time a t a r a t e commensurate  to  the d e c l i n e w i t h time o f the r a t e a t which r a d i o s o d i u m appeared  i n the  103  bath.  T h i s was  not expected under the c o n d i t i o n s o f the experiment.  the r a t e o f u n i d i r e c t i o n a l sodium e f f l u x occurs  i n s i d e the c e l l ,  dependence o f t h i s the f a l l nential and  i s c o n s t a n t , and r a p i d  mixing  then whatever the k i n e t i c r e l a t i o n d e s c r i b i n g the  e f f l u x r a t e on the i n t r a c e l l u l a r c o n c e n t r a t i o n o f sodium,  o f the t o t a l r a d i o s o d i u m content o f the c e l l f u n c t i o n o f time.  That  i s , the t o t a l  i s a simple  i s i n normal R i n g e r ' s  s o l u t i o n , but the p o o l o f r a d i o s o d i u m p r e s e n t a t the i n i t i a l 22  expo-  i n t r a c e l l u l a r sodium content  d i s t r i b u t i o n s h o u l d be constant, w h i l e the c e l l  d e p l e t e d as.  If  time i s  23 Na  exits with  Na by a random process which i s slow r e l a t i v e 22  to  diffusion  i n bulk s o l u t i o n s .  D i l u t i o n o f the i n t r a c e l l u l a r  Na  by  23 to  Na occurs (where mixing i n s i d e the c e l l i s assumed to be r a p i d compared the e f f l u x r a t e ) , and the r a t e a t which the t o t a l r a d i o a c t i v i t y Na* cell  due to  to r a d i o s o d i u m  i n the c e l l  the amount p r e s e n t a t t h a t dNa* -I -i ce_L_L dt  The  d e c l i n e s a t each i n s t a n t  is proportional  instant:  = -k-Na* ,, . cell  r a t e c o n s t a n t k depends on the r a t e o f u n i d i r e c t i o n a l sodium e f f l u x ,  which i n t u r n depends, i n p a r t i c u l a r ,  on the a c t i v i t y o f sodium i n the  s o l u t i o n b a t h i n g the i n t r a c e l l u l a r s i t e s o f the t r a n s p o r t mechanisms. Thus: Na* and  d_  s i n c e dk dt (^_ dt  =  e l l  l  n  N  a  *  Na* e  U  e l l  (t=0)  =  _  i s assumed t o be z e r o .  In N a * e l l ) / ( — In — Na^ n)' dt dt  . exp(-kt)  = d_  k  l  n  d _  B i t t a r et: al. w  h  i  c  e  h  t  h  e  y  a  *  e  U  r e f e r to the " s l o p e r a t i o "  found  Hodgkin and Keynes (1956) c o n s i d e r e d and e x p l a n a t i o n t h a t the sodium e f f l u x was  N  to be l e s s than u n i t y ,  r e j e c t e d as a p o s s i b l e  not v e r y s e n s i t i v e to changes i n  104  the i n t r a c e l l u l a r sodium c o n c e n t r a t i o n to  raise  (Na)^,  (Na)± caused an a p p r e c i a b l e r i s e  considered  i n the sodium e f f l u x .  a  was d i r e c t l y p r o p o r t i o n a l t o ( N a ) ^  each i n s t a n t but the p r o p o r t i o n a l i t y c o n s t a n t  slowly declined with  They demonstrated t h a t a t any g i v e n time the sodium e f f l u x strict  They  i t p o s s i b l e t h a t t h e i r p r e p a r a t i o n was s l o w l y d e t e r i o r a t i n g , so  t h a t the u n i d i r e c t i o n a l sodium e f f l u x M^ at  s i n c e i n j e c t i o n o f sodium  time.  increased i n  p r o p o r t i o n t o the amount o f sodium i n j e c t e d i n t o the axon.  B i t t a r e t al_. (1972) mentioned the p o s s i b i l i t y t h a t the "sodium pump" was r u n n i n g  down i n t h e i r p r e p a r a t i o n , but argued t h a t t h e s m a l l  slope  r a t i o was a c t u a l l y due t o damage done t o the " i n t e r n a l membrane system" by the passage o f the m i c r o i n j e c t o r .  An examination o f i n j e c t e d f i b r e s  w i t h the e l e c t r o n microscope had r e v e a l e d l o c a l d i s r u p t i o n o f the s a r c o plasmic  r e t i c u l u m and c l e f t s a l o n g the i n j e c t i o n t r a c k .  t h a t sodium and c a l c i u m were compartmentalized c r e a t e d by t h e i n j e c t i o n . sodium be sequestered  hypothesized  i n microsome-like v e s i c l e s  T h i s r e q u i r e s t h a t some o f the i n j e c t e d r a d i o -  a t the time o f i n j e c t i o n and exchange o n l y v e r y  w i t h the f r e e i n t r a c e l l u l a r sodium. out,  They  As Dick  t h i s would cause the r a t i o o f d_ i  n  slowly  and L e a (1967) have p o i n t e d  Na* ll e  t  o  iL_ l n i l _ Na* n  t  o  e  c  l  u  a  i  dt ' dt dt the f r a c t i o n o f the i n t r a c e l l u l a r r a d i o s o d i u m which i s f r e e i n the myoplasm c  (assuming t h a t d_ Na* i i ^ dt c  e  l  s  li  n  e  a  r  ly  i  p r o p o r t i o n a l t o the amount o f f r e e  From such a c a l c u l a t i o n , . B i t t a r jet aT. conclude  t h a t on average about 30%. o f the i n j e c t e d r a d i o s o d i u m  i s sequestered,  some experiments an average o f about 75% i s sequestered.  they p o s t u l a t e t h a t the c e l l s  w i t h time, form two d i s t i n c t p o p u l a t i o n s Some p h a r m a c o l o g i c a l  and  In addition,  i n which the f r a c t i o n o f i n j e c t e d  l o s t per u n i t time does n o t f a l l w i t h time, and those  workers.  i  1  l a b e l , as d i s c u s s e d above).  in  e  radiosodium  i n which i t does  o f normal b a r n a c l e muscle  fall  cells.  experiments were a l s o done by B i t t a r and co-  They were i n t e r p r e t e d i n terms o f bound sodium, and so w i l l be  105  d i s c u s s e d here.  B i t t a r and T a l l i t s c h  (1975, 1976)  showed t h a t exposure  to  a l d o s t e r o n e o f muscles from a b a r n a c l e which had been exposed to a l d o s t e r o n e over the p r e v i o u s n i g h t r e s u l t s  i n a h a l t o f the d e c l i n e o f the f r a c t i o n o f  the i n j e c t e d r a d i o s o d i u m l o s t per u n i t time. the f r a c t i o n resuming  T h i s e f f e c t was  i t s d e c l i n e when a l d o s t e r o n e was  b a t h i n g s o l u t i o n a f t e r an exposure  of less  reversible,  removed from the  than 30 minutes.  They  t h a t , a f t e r the pretreatment w i t h a l d o s t e r o n e , acute exposure to  a l d o s t e r o n e caused a r e v e r s i b l e r e l e a s e o f r a d i o s o d i u m from  binding  proposed  o f the  cell  intracellular  sites.  The a c t o f i n j e c t i n g s o l u t i o n s o f NaCl a f t e r r a d i o s o d i u m had injected  been  ( i n t o a l d o s t e r o n e - p r e t r e a t e d c e l l s ) a l s o caused a c e s s a t i o n o f  the d e c l i n e o f the f r a c t i o n o f the i n j e c t e d r a d i o s o d i u m l o s t per u n i t even w i t h s o l u t i o n s o f NaCl t r a t i o n was  so d i l u t e t h a t the i n t r a c e l l u l a r sodium  r a i s e d by o n l y 1 mM.  Subsequent acute exposure  had no e f f e c t u n l e s s the i n j e c t e d NaCl had c e l l u l a r sodium c o n c e n t r a t i o n .  concen-  to a l d o s t e r o n e  c o n s i d e r a b l y i n c r e a s e d the  steady  level.  i n the o v e r n i g h t pretreatment w i t h a l d o s t e r o n e a c t i n o m y c i n D  included,  i t was  found t h a t no c e l l  a c u t e exposure It  was  showed a d e c l i n e w i t h time o f the  f r a c t i o n o f i n j e c t e d r a d i o s o d i u m l o s t per u n i t time. o n l y w i t h a l d o s t e r o n e was  intra-  In the l a t t e r case, the r a t e o f l o s s o f  r a d i o s o d i u m r o s e s l o w l y t o a new If  time,  I f a c e l l pretreated  exposed a c u t e l y t o s p i r o n o l a c t o n e , subsequent  t o a l d o s t e r o n e was  i s i n t e r e s t i n g that  without  effect.  in a later publication, Bittar,  Chambers,  and  S h u l t z (1976) found t h a t the f r a c t i o n o f i n j e c t e d r a d i o s o d i u m l o s t per u n i t time was  c o n s t a n t i n almost a l l cases  the f i g u r e s ) .  ( j u d g i n g from the data p r e s e n t e d i n  T h e i r specimens were o b t a i n e d from Puget Sound, w h i l e f o r  the p r e v i o u s work b a r n a c l e s both from Puget Sound and used.  D i f f e r e n c e s i n the i o n content o f these two  from C a l i f o r n i a were  p o p u l a t i o n s have been  106  reported The  ( B r i n l e y 1968; Gayton, A l l e n , & Hinke 1969). acute.exposure t o a l d o s t e r o n e  a l s o caused a delayed  of aldosterone-pretreated  cells  t r a n s i e n t s t i m u l a t i o n o f the r a d i o s o d i u m e f f l u x .  T h i s e f f e c t was a b o l i s h e d by a c u t e treatment w i t h a c t i n o m y c i n DPH ( d i p h e n y l h y d a n t o i n ) ,  D, ouabain,  or i n j e c t e d e t h a c r y n i c a c i d , but was  by maneuvers which would i n c r e a s e the i n t r a c e l l u l a r supply  stimulated  o f ATP.  To account f o r these f i n d i n g s , B i t t a r and coworkers suggested t h a t aldosterone  induces s y n t h e s i s  muscle c e l l ,  o f new p r o t e i n r e c e p t o r s  i n the barnacle  some o f which cause the r e v e r s i b l e r e l e a s e o f "bound" i n t r a -  c e l l u l a r sodium ( a l l e g e d i n the e a r l i e r paper t o be sequestered  i nvesicles  c r e a t e d by the m i c r o i n j e c t o r ) and some o f which cause a delayed  stimulation  o f the ATP-dependent sodium e f f l u x , upon subsequent exposure t o a l d o s t e r o n e . A d i f f e r e n t explanation  f o r the observed " s l o p e r a t i o " ,  i n terms o f  an e f f e c t i v e i n t r a c e l l u l a r s i n k f o r i n j e c t e d radiosodium, w i l l be d e s c r i b e d i n the d i s c u s s i o n o f the experimental  portion of this section.  account f o r the e f f e c t s o f a l d o s t e r o n e but  I t cannot  r e p o r t e d by B i t t a r and coworkers,  i t seems l i k e l y t h a t the main e f f e c t o f a l d o s t e r o n e  i s on t h e t r a n s p o r t  systems i n the membrane r a t h e r than on the s t a t e o f t h e i n t r a c e l l u l a r sodium.  The s u g g e s t i o n  t h a t over h a l f o f the exchangeable  sodium can be r e v e r s i b l y sequestered  does not seem reasonable,  knowledge o f t h e morphology and i o n - s e q u e s t e r i n g It  intracellular  i s p o s s i b l e t h a t i n some c e l l s  the supply  g i v e n our  p r o p e r t i e s o f the c e l l . of metabolic  energy i n a  s u i t a b l e form f o r u t i l i z a t i o n by the sodium t r a n s p o r t systems i s n o t o p t i m a l , so that the system i s indeed  'running  down'.  Aldosterone  specifically  promotes the t r a n s p o r t o f sodium i n some c e l l s by a mechanism which the s y n t h e s i s  o f new p r o t e i n by the c e l l .  involves  T h i s c o u l d cause a c t i v a t i o n o f  the t r a n s p o r t enzymes, p r o v i d e a d d i t i o n a l energy f o r the t r a n s p o r t enzymes, provide  a d d i t i o n a l t r a n s p o r t enzymes, o r y i e l d a combination o f these  107  effects  (Feldman,  Funder, & Edelman 1 9 7 2 ) .  METHODS  D i s s e c t i o n o f b a r n a c l e muscle bundles has been d e s c r i b e d P r e v i o u s work on the sodium e f f l u x from b a r n a c l e muscle  i n s e c t i o n 3.  c e l l s was  w i t h c e l l s which had been c u t o f f a t the b a s i s , as mentioned  done  above.  Since  t h i s cannot be done w i t h o u t damaging the c e l l membrane, s p e c i a l measures were r e q u i r e d to prevent the r a p i d o c c u r r a n c e o f d e t e r i o r a t i o n o f the c e l l . Brinley oil  (1968)  immersed the t e r m i n a l 5 - 1 0 mm  f o r a t l e a s t 3 0 minutes  o f the c u t end o f the c e l l i n  b e f o r e c a n n u l a t i o n and  a l . a p p a r e n t l y adopted a s i m i l a r procedure  injection.  (Bittar 1966).  B i t t a r et  In the p r e s e n t  work the c e l l s were kept i n t a c t throughout, w i t h the tendon a l o n e b e i n g cannulated. or  The c e l l  membrane was  the sodium e l e c t r o d e through the tendon end, and by the m i c r o p i p e t t e  e l e c t r o d e r a d i a l l y about 2 0 mm ing  from the tendon end  ( F i g . 2 ) . No  o i l was-used, y e t o n l y r a r e l y d i d these m a n i p u l a t i o n s cause  damage t o the c e l l ^ N a C l was t i l l e d water. the  breached o n l y by the i n j e c t i o n n e e d l e  22  (and thereby cause the c e l l  o b t a i n e d from New  NaCl r e d i s s o l v e d i n d i s t i l l e d  visible  t o be d i s c a r d e d ) .  England N u c l e a r , c a r r i e r - f r e e ,  B e f o r e use f o r i n j e c t i o n ,  insulat-  the water was  water or i n  23 NaCl  in dis-  evaporated o f f and solution.  I n j e c t i o n Apparatus. A H a m i l t o n m i c r o s y r i n g e was of the  1.0 m i c r o l i t r e  used throughout.  ( A ) , a Chaney adaptor, and a metal c o l l a r  p r o x i m a l p a r t o f the n e e d l e (model NCH  from 4 mm  o.d.  T h i s had a nominal volume  7001).  protecting  A f i n e n e e d l e was  drawn  l e a d g l a s s , on a mechanical m i c r o p i p e t t e p u l l e r w i t h a l o n g  108  throw (Hinke 1969a).  S u f f i c i e n t l y d u r a b l e needles had c y l i n d r i c a l  shaft  w i t h o.d. 110-120yU and l e n g t h from t h e top o f t h e s h o u l d e r t o t h e t i p o f 38 mm. was  The t i p was broken o f f t o t h i s  beveled s l i g h t l y .  l e n g t h i n such a manner t h a t t h e t i p  New g l a s s needles were made each day.  The g l a s s n e e d l e was a t t a c h e d t o t h e s y r i n g e n e e d l e w i t h s t i c k y wax as f o l l o w s  (Fig. 4).  With t h e p l u n g e r withdrawn from t h e t i p s l i g h t l y ,  a s m a l l c o l l a r o f h o t s t i c k y wax was put on t h e metal s y r i n g e needle the t i p , and a l l o w e d t o harden.  near  D i s t i l l e d water was then drawn up i n t o the  s y r i n g e t o 0 . 9 A , t h e t i p was d r i e d by b l o t t i n g , and t h e p l u n g e r withdrawn to  0 . 9 5 ^ so no water was a t the t i p .  The metal n e e d l e was then  i n t o t h e g l a s s n e e d l e , up t o t h e s h o u l d e r .  inserted  The s h o u l d e r (where t h e wax  c o l l a r c o n t a c t e d the i n s i d e o f the g l a s s ) was b r i e f l y passed through a g e n t l e flame so t h a t the s t i c k y wax melted,  and t h e g l a s s needle was then  g e n t l y pushed f u r t h e r onto the metal needle, u n t i l stopped by t h e t a p e r i n g s h o u l d e r o f the g l a s s . s e a l the needles t o g e t h e r w i t h o u t bubbles. which extends  t h e metal needle was  The s t i c k y wax flowed to  The stem o f t h e g l a s s needle,  i n s i d e t h e metal p r o t e c t i v e c o l l a r , was then f i x e d t o the  metal c o l l a r w i t h d e n t a l i m p r e s s i o n compound. e x p e l l e d i n t o t h e g l a s s needle, and u s u a l l y  The d i s t i l l e d water was then  filled  i t w i t h o u t bubbles.  all  a i r had been e x p e l l e d from t h e g l a s s n e e d l e , the assembled  was  mounted v e r t i c a l l y on t h e i n j e c t o r  n e e d l e submerged i n d i s t i l l e d The  injector  ( F i g . 4)  water.  c o n s i s t e d o f a brace which f i r m l y h e l d the micromanipulator  so t h a t t h e e n t i r e m i c r o s y r i n g e c o u l d be moved i n t h e v e r t i c a l  direction  ( ' p o s i t i o n i n g ' ) , and so t h a t t h e b a r r e l o f t h e m i c r o s y r i n g e c o u l d  be moved r e l a t i v e t o the p l u n g e r ( ' i n j e c t i n g ' ) . used  microsyringe  (see below) w i t h t h e t i p o f t h e g l a s s  m i c r o s y r i n g e by t h e b a r r e l and by t h e plunger, and a P r i o r rebuilt  When  to p o s i t i o n  the glass needle i n the c e l l ,  The former movement was and t h e l a t t e r t o withdraw  F i g u r e 4. M i c r o i n j e c t o r . The b a s i c f e a t u r e s are shown, not to s c a l e . I n s e t : d e t a i l of the c o n n e c t i o n of the g l a s s i n j e c t i o n needle to the Hamilton s y r i n g e n e e d l e . Not to s c a l e .  110  the needle w h i l e clamp h o l d i n g  e x p e l l i n g a column of i n j e c t i o n f l u i d  the s y r i n g e was  adjustable  i n two  t h a t the g l a s s n e e d l e c o u l d be a l i g n e d w i t h  i n t o the c e l l .  The  h o r i z o n t a l d i r e c t i o n s , so  the v e r t i c a l d e f i n e d by  the  motion of the m i c r o m a n i p u l a t o r .  C a l i b r a t i o n of the M i c r o i n j e c t o r . To  t e s t the u n i f o r m i t y o f the d e l i v e r y of f l u i d  from the s y r i n g e ,  a  22 solution of and  ejected  NaCl i n water was  drawn up  i n t o gamma counter g l a s s c o u n t i n g  d i s t i l l e d water, i n a l i q u o t s n o m i n a l l y a l i q u o t s c o u l d be e j e c t e d b e f o r e total  f o r each of the p r e c e d i n g  m i x i n g o f the working f l u i d w i t h which i t was  of 0 . 1 ^ .  , of  F i v e s u c c e s s i v e 0.1  "X  the counts i n the tube dropped below tubes.  The  d r o p o f f presumably was  from (nominally)  0.05/\  the  due  to  the c a l i b r a t e d f l u i d  In s e v e r a l such t e s t s , and to 0.5^,  trial  ejections  the e j e c t e d volume  from the amount o f r a d i o s o d i u m e j e c t e d agreed w i t h  volume to w e l l w i t h i n the u n c e r t a i n t y due than 47o) .  ^  tubes c o n t a i n i n g 5 ml  ( d i s t i l l e d water) w i t h  i n contact.  o f amounts v a r y i n g calculated  i n t o the s y r i n g e , to 0.75  to c o u n t i n g  the nominal  of the i s o t o p e  I n j e c t i o n s i n t o c e l l s d u r i n g experiments were c a r r i e d out  (less within  these l i m i t s o f u n i f o r m d e l i v e r y . The  absolute value  of the i n j e c t e d volume was  a s o l u t i o n of known r a d i o a c t i v i t y , and was value  to w i t h i n the u n c e r t a i n t y o f  C o l l e c t i o n of The  but  found to agree w i t h  the nominal  counting.  Isotope.  chamber used d u r i n g  p e r f u s i o n f l u i d was  t e s t e d by e j e c t i o n s o f  i n j e c t i o n of i n t a c t  s i m i l a r to t h a t d e s c r i b e d  considerably modified  ( F i g . 5).  The  held v e r t i c a l l y at i t s r e s t length, with  f i b r e s and  of  by A l l e n and Hinke (1970)  cannulated the  collection  fibre  (see below)  was  fragment o f the b a s i s r e s t i n g  Ill  F i g u r e 5. Apparatus The moveable b l o c k s , the o u t f l o w channel, fragment of b a s i s i s  f o r i s o l a t i o n of a segment of a c e l l f o r p e r f u s i o n . one c o n t a i n i n g the i n f l o w channel and the other c o n t a i n i n g a r e shown i n the opened p o s i t i o n . A c e l l a t t a c h e d to a outlined.  112  on the f a l s e f l o o r o f the lower chamber.  The h e i g h t o f the f a l s e f l o o r was  a d j u s t e d so t h a t the c a n n u l a t e d tendon was a t the d e s i r e d h e i g h t above the top  o f the chamber w h i l e undue t e n s i o n was not e x e r t e d on the f i b r e .  The  movable P l e x i g l a s b l o c k s were r e t r a c t e d and t h e chamber f i l l e d w i t h R i n g e r ' s s o l u t i o n f o r i n j e c t i o n o f i s o t o p e and placement  of microelectrodes.  The  movable b l o c k s were then brought t o g e t h e r by t u r n i n g the thumb screws, while the displaced grooves m i l l e d  f l u i d was withdrawn  through the s u c t i o n tubes.  The  i n the movable b l o c k s formed a c y l i n d r i c a l chamber around  the  f i b r e when the b l o c k s were brought t o g e t h e r .  the  lower chamber, c o n t a i n i n g t h e fragment o f b a s i s , by a s e a l o f p e t r o l e u m  jelly  (Vaseline).  T h i s was s e p a r a t e d from  V a s e l i n e was a l s o used t o s e a l the movable b l o c k s t o the  s t a t i o n a r y p a r t s o f the chamber.  The grease s e a l which s e p a r a t e d the upper  and lower chambers was r o u t i n e l y t e s t e d by r a i s i n g the f l u i d lower chamber and o b s e r v i n g the f a i l u r e o f f l u i d or  by f i l l i n g  level  i n the  t o e n t e r the upper chamber,  the upper chamber and o b s e r v i n g no l e a k i n t o t h e lower  chamber. P e r f u s i o n f l u i d was d e l i v e r e d  from a Braun s y r i n g e pump, f i t t e d w i t h  a 50 ml s y r i n g e ( o r two 50 ml; s y r i n g e s i n p a r a l l e l ) , 1 ml/min.  at a constant rate of  Two such pumps were used a l t e r n a t e l y , so t h a t s o l u t i o n  changes  were accomplished by d i s c o n n e c t i n g t h e d e l i v e r y tube from one s y r i n g e and c o n n e c t i n g i t t o the o t h e r . the  T h i s s w i t c h takes l e s s than two seconds, so  i n t e r r u p t i o n o f the p e r f u s i o n was n e g l i g i b l e . P e r f u s i o n f l u i d was drawn o f f through t h r e e exhaust p o r t s l o c a t e d near  the  top o f the upper chamber, and c o l l e c t e d d i r e c t l y  i n a g l a s s gamma  c o u n t i n g tube ( F i g . 6 ) . The c o l l e c t i o n p e r i o d was 5 min. tube was changed manually.  This  The c o l l e c t i o n  i n t e r r u p t e d the c o l l e c t i o n f o r 2 t o 3  seconds, but caused no l o s s o f f l u i d . The volume o f the upper chamber, which housed  the i n j e c t e d p o r t i o n o f  113  bleeder suction  from washout chamber rubber stopper  glass gamma counter tube  F i g u r e 6. Vacuum system. The p e r f u s a t e from the washout chamber i s c o l l e c t e d i n the g l a s s gamma-counter tube.  ( F i g . 5)  114  the f i b r e , was  1.0 ml.  The washout time o f the chamber was t e s t e d , w i t h a  g l a s s r o d p l a c e d where the f i b r e would n o r m a l l y be, and was 87% complete w i t h i n 2 minutes, exponential loss  found  to be  c o r r e s p o n d i n g to a time constant f o r  o f l a b e l o f about 1 min. ^.  The e f f e c t o f the f i n i t e washout time o f the chamber can be e s t i m a t e d from a simple model. and  For the myoplasm  the c o l l e c t i o n tube  •ic (Na^), the washout chamber  ic (Na2),  ic (Na^) c o n s i d e r e d as t h r e e compartments i n s e r i e s  w i t h no b a c k f l u x , and n  _l  =  -k  2  =  k  1  3  =  k  2  Na*  x  dt d N a  Na*  -  k  Na*  2  dt d N a  Na*  dt ic  ic  where a t t = 0, Na-^ — (Na^)^ and N a  s 2  Na-j = 0. The g e n e r a l s o l u t i o n f o r  t h i s simple l i n e a r system i s Na (t) x  = (NaJ)  Na*(t) =  Q  expC-^t)  ^ ^ f J ^ C  1  "  e x  P(" lt)) k  " k ( l - exp(-k t))] . x  2  That i s , ic ^ f i dt while  =  k ^ N a ^ o exp(-k ) l t  k.k^Na?),) r  dNao  so i f dNa^/dt (which must be much l e s s  ~\  i s measured) i s to approximate -dNa^/dt c l o s e l y ,  than k . 2  S i n c e k^ i s t y p i c a l l y 0.01 min"- - and k  about 1 m i n " , t h i s c o n d i t i o n i s w e l l - s a t i s f i e d , 1  1  and except  2  k^  is  f o r the i n t e r v a l  115  j u s t a f t e r t = 0 the f a l l approximates  the f a l l  i n the amount o f l a b e l c o l l e c t e d w i t h time  closely  i n the amount o f l a b e l l e a v i n g the muscle c e l l w i t h  time. The 5 ml samples  o f p e r f u s i o n f l u i d were counted on a w e l l - t y p e gamma  counter (Nuclear Chicago). d u r i n g the experiment c o u n t i n g was  I n i t i a l c o u n t i n g f o r 1 min. per sample was  t o monitor the p r o g r e s s o f the e f f l u x .  r e p e a t e d a t 20 min. per  Later,  done  the  sample.  Sample tubes were r e - u s e d a f t e r washing w i t h d e t e r g e n t and then chromic sulfuric acid.  Backgrounds f o r each tube were determined by a 10  min.  count and s u b t r a c t e d i n d i v i d u a l l y from the c o r r e s p o n d i n g sample count. T h i s economy was  p o s s i b l e because glassware c l e a n i n g and u n l i m i t e d counter  time were a v a i l a b l e . background  Sample counts were almost always more than 10 times  (the e x c e p t i o n s b e i n g samples  o f low a c t i v i t y a t the end of a  l o n g e f f l u x experiment), and the background was  equal t o t h a t o f new  o f the c h e m i c a l l y c l e a n e d tubes  tubes.  M i c r o i n j ec t ion. C a n n u l a t i o n o f the tendon o f the muscle  fibre  w i t h o u t a f f e c t i n g the c e l l membrane ( F i g . 2 ) . positioned v e r t i c a l l y the  s i l k t i e was  chambers.  accomplished  The c a n n u l a t e d f i b r e  was  i n the P l e x i g l a s chamber as d e s c r i b e d above, so t h a t  about 3 mm  The cannula was  The P l e x i g l a s chamber was  above the l e v e l o f the f l u i d held v e r t i c a l l y ,  form o f a second Palmer  screw stand.  down through the cannula and  the  by a P r i o r m i c r o m a n i p u l a t o r .  p o s i t i o n e d on the h o r i z o n t a l The g l a s s n e e d l e was  i n t o the muscle  the l o n g a x i s o f the f i b r e .  a b i n o c u l a r microscope,  filling  p o s i t i o n e d on the h o r i z o n t a l p l a t f o r m o f a Palmer  screw stand, and the m i c r o i n j e c t o r was  to  is readily  plat-  then  advanced  f i b r e , as c l o s e as  possible  The advance o f the needle was  viewed  through  from the f r o n t and, v i a a s m a l l m i r r o r p o s i t i o n e d  116  at  a 45 degree angle near the muscle f i b r e ,  diameters  of the f i b r e i n these  micrometer.  I l l u m i n a t i o n was  two  from the s i d e .  The  views were measured w i t h an  q u i t e v i s i b l e i n the opaque muscle f i b r e , and was  the c e n t r a l a x i s o f the muscle The  the needle w h i l e e x p e l l i n g the i n j e c t i o n f l u i d 22 mm  long, corresponding  t i o n was of  terminated  the f l u i d was  having  5 mm  t o 0.4^,  then used to withdraw  i n t o the c e l l .  i n most cases, but  injection  was  f a r enough down  the t i p d e v i a t e from the a x i a l l i n e .  i n s i d e the  With the more c o n c e n t r a t e d  Injec-  cell.  i n j e c t i o n s o l u t i o n s , t h e r e would o f t e n be a  the i n j e c t e d r e g i o n , and  by the time the m i c r o e l e c t r o d e s were put continued.  The  from the p o i n t of impalement, to ensure t h a t a l l  deposited  s l i g h t c o n t r a c t u r e over  needle  always kept c l o s e to  s h o r t e r when i t proved i m p o s s i b l e to advance the needle the muscle c e l l w i t h o u t  The  fibre.  i n j e c t i n g movement o f the m i c r o i n j e c t o r was  t r a c k was  eyepiece  p r o v i d e d by a 500 watt lamp ( V o l p i ) , d i r e c t e d  o b l i q u e l y at the muscle f i b r e by a f i b r e o p t i c l i g h t c o n d u i t . was  outside  i f t h i s had not  i n t o p l a c e , the experiment was  I n most cases, and w i t h the more d i l u t e  almost always, the i n j e c t i o n was  disappeared  injection  not  fluids  w e l l t o l e r a t e d by the muscle f i b r e , as f a r  as c o u l d be d e t e c t e d by o b s e r v a t i o n through the microscope. The m i c r o i n j e c t o r was was  removed and  p l a c e d i n the c e l l a x i a l l y ,  the s o d i u m - s p e c i f i c  through the cannula,  via  manipulations  s i m i l a r to those used f o r p o s i t i o n i n g the i n j e c t o r needle. tip of  o f the e l e c t r o d e was the muscle f i b r e .  microelectrode  The  sensitive  p l a c e d i n about the c e n t r e o f the i n j e c t e d  The m i c r o p i p e t t e e l e c t r o d e t i p was  region  passed o b l i q u e l y  a c r o s s the c e l l membrane so i t r e s t e d a t the l e v e l o f the sodium e l e c t r o d e . The movable b l o c k s were then brought t o g e t h e r the grease  s e a l was  t e s t e d , and  to form the e f f l u x chamber,  the p e r f u s i o n was  these maneuvers, the f i r s t p e r f u s i o n f l u i d was  started.  W i t h a l l of  c o l l e c t e d 10 to 12 minutes  117  a f t e r the a c t u a l  injection.  Passive Loading  Experiments.  From a s i n g l e d i s s e c t e d muscle bundle, c e l l s were i s o l a t e d ,  t h r e e s m a l l groups o f muscle  each group on a fragment  o f the b a s i s .  These were 22  p l a c e d i n a v e s s e l w i t h 10 ml o f normal R i n g e r ' s s o l u t i o n t o which had been added, t o 20,930 cpm per m i c r o l i t r e , The next day,  and kept a t 5° C o v e r n i g h t .  two o f the s m a l l groups were used  d e s c r i b e d above f o r m i c r o i n j e c t e d c e l l s , t h i r d group was  NaCl  f o r e f f l u x experiments,  but they were not i n j e c t e d .  loaded f o r 48 hours b e f o r e b e i n g used  as The  f o r e f f l u x measurement.  RESULTS  E f f e c t s o f m i c r o i n j e c t i o n on the The cell  cell.  e f f l u x o f m i c r o i n j e c t e d r a d i o s o d i u m from a s i n g l e b a r n a c l e muscle  i s shown i n F i g . 7.  A similar plot  for a c e l l  loaded p a s s i v e l y ,  immersion i n a s o l u t i o n which c o n t a i n e d radiosodium, (page 128).  The  by  i s p r e s e n t e d as F i g . 9  f a l l of the r a d i o s o d i u m content o f the i n j e c t e d c e l l  time and the f a l l o f the e f f l u x o f r a d i o s o d i u m w i t h time can each be matched by a simple e x p o n e n t i a l f u n c t i o n . from the p a s s i v e l y - l o a d e d c e l l ,  A f t e r the i n i t i a l r a p i d  a s c r i b e d to the e x t r a c e l l u l a r space  with closely  efflux as  d i s c u s s e d below, the p l o t s can each be matched by a simple e x p o n e n t i a l f u n c t i o n d u r i n g the e f f l u x  i n t o normal R i n g e r ' s s o l u t i o n  r a t e constants are s i m i l a r  f o r the two  cases.  The  ( F i g . 9).  The.  'slope r a t i o ' e f f e c t i s  d i s c u s s e d below. In  F i g . 10  (page 140)  i s p r e s e n t e d a summary o f the raw data and  reduced  118  F i g u r e 7. S e m i l o g a r i t h m i c p l o t of the amount o f r a d i o s o d i u m c o l l e c t e d i n the p e r f u s a t e from a c e l l loaded w i t h i s o t o p e by m i c r o i n j e c t i o n (upper t r a c e ) , and the amount of r a d i o s o d i u m remaining i n the c e l l a t the s t a r t o f each c o l l e c t i o n p e r i o d , c a l c u l a t e d by b a c k - a d d i t i o n (lower t r a c e ) , v e r s u s time. The c e l l was p e r f u s e d w i t h normal R i n g e r ' s s o l u t i o n . L i n e s r e p r e s e n t the ^ l i n e a r r e g r e s s i o n l n y = l n a + bx. Upper: a = 23,112 cpm, b = -0.00928 m i n , r = 0.97. Lower: a = 548,947 cpm, b = -0.00786 m i n " , r = 1.00. -  ?  1  2  119  results  for a typical  experiment  i n the present  series.  Measurements w i t h the s o d i u m - s p e c i f i c m i c r o e l e c t r o d e show t h a t myoplasmic sodium a c t i v i t y  (afj ) a  m  r i s e s a f t e r the i n j e c t i o n i n most  sometimes t a k i n g 30 minutes to r e a c h a steady v a l u e . in noninjected c e l l s was  i s t y p i c a l l y about  l e s s marked i n c e l l s o f a l a r g e r Further,  10 mM  cells,  (The v a l u e o f  - see T a b l e I I ) .  (a^ ) a  This r i s e  immersion o f a b a r n a c l e muscle  1968;  sodium content almost unchanged (McLaughlin & Hinke 1966;  Brigden, S p i r a , & Hinke 1971;  sodium-loaded  the  ' r a p i d ' sodium-free  c e l l s has been mentioned i n s e c t i o n 2 and  in s e c t i o n 6).  When a c e l l was  kept  Ringer's s o l u t i o n immediately  experiments that  after  much l e s s marked.  injection,  is discussed f u l l y  a  a  used  The o b s e r v a t i o n by B r i n l e y  m  after  i n a number o f the  I t s h o u l d be mentioned  no data was  used  for calculation  had become steady, except where noted  m  i n normal  the r i s e o f ( a j j )  T h i s maneuver was  i n the p r e s e n t s e r i e s o f experiments, (a^j )  Brinley  i n sodium-free s u c r o s e - s u b s t i t u t e d  t o o b t a i n data a t low sodium l e v e l s ;  of fluxes u n t i l  intra-  effect in  R i n g e r ' s s o l u t i o n f o r 5 to 10 minutes p r i o r to i n j e c t i o n , and  i n j e c t i o n was  cell  s u c r o s e - s u b s t i t u t e d R i n g e r ' s s o l u t i o n f o r 5 t o 10 minutes  washes out most o f the e x t r a c e l l u l a r sodium w h i l e l e a v i n g the t o t a l cellular  m  diameter.  i t has been r e p o r t e d that  i n sodium-free  the  (1968) o f a s l i g h t t r a n s i e n t  explicitly. depolarization  o f the membrane p o t e n t i a l w i t h each advance o f the i n j e c t o r n e e d l e was i n the I n t r o d u c t i o n .  B i t t a r ejt al_.  (1972) r e p o r t e d t h a t the t o t a l  content o f the c e l l was  r a i s e d by i n j e c t i o n but not by c a n n u l a t i o n .  suggested  due  t h a t t h i s was  noted  sodium  to damage to the membrane o f the c l e f t s  They along  the i n j e c t i o n t r a c k , c a u s i n g e x t r a c e l l u l a r sodium t o be r e l e a s e d i n t o  the  myoplasm. In F i g . 7 i t can be seen t h a t the f i r s t  two p o i n t s i n the p l o t o f the  measured amount o f r a d i o s o d i u m l e a v i n g the c e l l per u n i t time  (upper  plot)  120  seem h i g h .  In many experiments, the  c o n c e i v a b l y c o u l d be  due  f i r s t few  t o a s m a l l l o s s of  injection fluid  c l e f t s d u r i n g the a c t u a l  injection.  s l i g h t d e l a y between the  i n j e c t i o n i t s e l f and  B i t t a r et a l . (1972) noted that o f the  e f f l u x of previously  r e p o r t e d that  the  p o i n t s were lower.  This  i n t o damaged  I t a l s o c o u l d s i m p l y be due the  to  i n i t i a t i o n of  a second i n j e c t i o n d i d not  the  perfusion.  a l t e r the  i n j e c t e d radiosodium, a l t h o u g h B r i n l e y  c e l l would not  t o l e r a t e a second  course  (1968)  injection.  3 The  e x t r a c e l l u l a r space marker ( H ) i n u l i n does not  pass the  intact  cell  3  membrane. no  When a s o l u t i o n c o n t a i n i n g ( H ) i n u l i n was  l a b e l was  d e t e c t e d subsequently i n the  hand, f o l l o w i n g  i n j e c t i o n of  bathing solution.  bathing solution.  I t was  readily,  sodium (and  On  the  the  cell, other  l a b e l appeared  concluded t h a t any  sodium through damaged membrane d u r i n g m i c r o i n j e c t i o n Altogether,  into a  (^CJDMO, ( 5 , 5 - d i m e t h y l - 2 , 4 - o x a z o l i d i n e d i o n e ) ,  which i s known t o c r o s s the c e l l membrane q u i t e promptly i n the  injected  i t seems almost c e r t a i n t h a t  c a l c i u m - B i t t a r et. a_l. 1972)  the  loss of  must be  radio-  quite  small.  increase i n i n t r a c e l l u l a r  seen a f t e r  i n j e c t i o n i s due  to a  t r a n s i e n t i n f l u x of e x t r a c e l l u l a r f l u i d d u r i n g i n j e c t i o n . The membrane p o t e n t i a l E i s the most s e n s i t i v e i n d i c a t o r o f m  the  i n t e g r i t y of the  10  to  minutes)  to  r  c e l l membrane.  As  a rule, E  m  was  d e p o l a r i z e d by  m i l l i v o l t s a f t e r i n j e c t i o n , then r e c o v e r e d s l o w l y (20 assume a s t e a d y v a l u e c l o s e the  pre-injection  tials  for several Altogether,  benign, the  value.  t o but  Injected  generally cells  s l i g h t l y more p o s i t i v e  hours a t room temperature i n normal Ringer's i t was  concluded t h a t w h i l e m i c r o i n j e c t i o n  for several  hours a f t e r  than  then showed s t a b l e membrane poten-  injected c e l l s recover quickly  i n j e c t e d c e l l s do  to 30  15  and  solution.  i s not  appear to behave as  injection.  entirely non-  121  The  'slope r a t i o ' .  For  the experiment  In Na  and In  ^  a c e  p r e s e n t e d i n F i g . 7, the l i n e a r r e g r e s s i o n s o f  n on time i n d i c a t e that almost a l l o f the s c a t t e r can be 2 i n the sampling and c o u n t i n g ( r =0.97  accounted f o r by random e r r o r 1.00  r e s p e c t i v e l y ) , and y i e l d e d time c o n s t a n t s 0.00928 min"-'" and 0.007 86  min "'" r e s p e c t i v e l y . -  d_ ^ j d_ i d_ dt dt dt ' s l o p e s ' y i e l d e d by the l i n e a r r e g r e s s i o n s ,  The s l o p e r a t i o  c a l c u l a t e d as the r a t i o o f the is  and  n  n  0.85. The range o f 'slope r a t i o s '  i n F i g . 8. cell.  f o r a number o f experiments  is indicated  They a r e p l o t t e d versus the myoplasmic sodium a c t i v i t y  U s u a l l y the d u r a t i o n o f exposure  f o r the  t o normal R i n g e r ' s s o l u t i o n  was  o  s h o r t e r than i n F i g . 7 (50 minutes) and the v a l u e f o r r (0.90 to 0.95  i n almost a l l c a s e s ) .  Overall,  was  slightly  lower  these 'slope r a t i o s ' were  c l o s e r to u n i t y than those r e p o r t e d by B i t t a r et a l . (1972). With r e s p e c t to the 'slope r a t i o s ' as i n t e r p r e t e d by B i t t a r el: a_l., p r i n c i p a l q u e s t i o n i s how cell.  the i n j e c t e d r a d i o s o d i u m d i s t r i b u t e s  For convenience, the assumptions  employed i n t h i s t h e s i s w i l l A fundamental  assumption  be  adopted  the  i n s i d e the  i n the model o f the  cell  restated.  o f t h i s model i s t h a t the  c o n c e n t r a t i o n s which a r e o f d i r e c t  importance  intracellular  f o r transmembrane e f f l u x a r e  those o f the myoplasm ( g i v e n c o n s t a n t e x t r a c e l l u l a r c o n d i t i o n s ) .  By  "membrane" i s meant the b a r r i e r t o d i f f u s i o n , and any boundary.layer o f g l y c o c a l y x or o f water which  is  strongly  i n f l u e n c e d by the p r o t e i n - l i p i d  lamina can be i n c l u d e d as p a r t o f the membrane. differ tial  i n the myoplasm and the boundary  cannot,  (sodium)  l a y e r , but e l e c t r o c h e m i c a l poten-  i t b e i n g assumed t h a t transmembrane t r a n s p o r t  slow r e l a t i v e to m i x i n g i n s i d e the c e l l . ion  Ion c o n c e n t r a t i o n s can  activities  do not d i f f e r  i s almost  always  I t can be demanded f o r m a l l y  i n the myoplasm and the  boundary  that  122  1.2  slope ratio 1.0 0.8 0.6 0.4 0.2  20 Na>m  (a  F i g u r e 8.  'Slope R a t i o '  i s the r a t i o  ( —  40 (mM)  In N a  60  c e l l  )/( —  ln —  Na  c g l l  ),  which i s the r a t i o of the s l o p e o f the lower l i n e to t h a t o f the upper l i n e i n F i g . 7. Each p o i n t r e p r e s e n t s one e f f l u x experiment i n normal R i n g e r ' s solution. Not a l l o f the experiments done i n the p r e s e n t s e r i e s are represented. P o i n t s o m i t t e d f o r c l a r i t y f e l l i n the lower range o f (a ) .  123  l a y e r , as The across  l o n g as  t h i s conception  myoplasm bathes the  i n t e r n a l s u r f a c e o f t h i s membrane, and  t h i s membrane, v i a v a r i o u s  e f f l u x from the c e l l  occurs.  sodium e f f l u x i n t o the TTS R e c a l l that  i t was  i f and  mechanisms, t h a t the bulk of the  i t is sodium  That i s , f o r the moment i t i s assumed t h a t  and  the SR  i s unimportant under most c o n d i t i o n s .  s t a t e d above t h a t  — In Na i dt cell  In — dt  —  dt  Na cell  only i f  4-  Na*  dt where d  „  =  The  ,  -k Na*  cell  k = 0.  plasmic  cell  '  s l o p e r a t i o statements must be made to r e f e r to  parameters: the amount of r a d i o s o d i u m i n the myoplasm N a  stituted tuted  of the "membrane" i s kept i n mind.  f o r Na^ -Q, and e  f o r the  the myoplasmic sodium a c t i v i t y  i n t r a c e l l u l a r sodium c o n c e n t r a t i o n  r a t e o f u n i d i r e c t i o n a l sodium e f f l u x . i t was  postulated  as  (  a  j T  a  )  m  m  myo-  is  sub-  is substi-  the determinant o f  Given previous  the  experimental r e s u l t s ,  t h a t the r a t e o f u n i d i r e c t i o n a l sodium e f f l u x i s an  i n c r e a s i n g f u n c t i o n o f the myoplasmic sodium a c t i v i t y over a wide range. Thus as  l o n g as  constant,  the net  model d e s c r i b e d The  the r a t e o f u n i d i r e c t i o n a l sodium e f f l u x i s found to f l u x o f sodium must be  i n the p r e c e d i n g  r a t e constant  I t has cell  been s t a t e d t h a t  the s l o p e r a t i o w i l l conditions If  do not  there  1  the  T h i s r e l a t i o n s h i p i s u s u a l l y expressed as  a  concentration.  i f the r a d i o s o d i u m i s well-mixed i n s i d e the  the r a t e of u n i d i r e c t i o n a l sodium e f f l u x i s  be equal to u n i t y .  o b t a i n can be  i s a net  'membrane-flux  paragraph.  i n t r a c e l l u l a r sodium  at a l l times, and  g i v e n the  k i s , i n p a r t i c u l a r , a f u n c t i o n of the r a t e o f  u n i d i r e c t i o n a l sodium e f f l u x . p o l y n o m i a l i n the  zero,  be  increase  The  constant,  s i t u a t i o n s i n which these  listed.i n the sodium content of the myoplasm w i t h  124  time, the s p e c i f i c a c t i v i t y o f the myoplasm S A  m  will  fall  more q u i c k l y  would be expected a c c o r d i n g t o t h e observed e f f l u x o f radiosodium. of  SA w i l l  A  than fall  decrease d w * , s i n c e a s m a l l e r f r a c t i o n o f the u n i d i r e c t i o n a l ~T~ m dt sodium e f f l u x w i l l c o n s i s t of radiosodium. On the o t h e r hand, as ( a j j ) m  a  M  a  m  r i s e s t h e r a t e o f u n i d i r e c t i o n a l sodium e f f l u x w i l l r i s e , and t h e r e w i l l be an i n c r e a s e i n d — dt specified In  Na* • m  The n e t e f f e c t on the s l o p e r a t i o cannot be  i n the absence  o f a s p e c i f i c model f o r the sodium e f f l u x .  any event, the sodium c o n t e n t o f i n j e c t e d c e l l s has been monitored  w i t h a s o d i u m - s p e c i f i c m i c r o e l e c t r o d e , as noted above. sodium content i n c r e a s e s upon i n j e c t i o n , extracellular stabilize,  fluid,  The i n t r a c e l l u l a r  due t o a t r a n s i e n t  influx of  but t h e sodium content takes a t most 30 minutes t o  and u s u a l l y much l e s s .  T h i s cannot account  f o r the observed  slope r a t i o s . It might  i s c o n c e i v a b l e t h a t the r a t e o f the u n i d i r e c t i o n a l sodium e f f l u x  change i n d e p e n d e n t l y .  energy  from metabolism  F o r example, i t might  i n the i s o l a t e d c e l l  fall  i s depleted.  as the s u p p l y o f The c o n d i t i o n o f  the 'pump' can be i n f e r r e d from o b s e r v a t i o n o f the e f f l u x over a l o n g p e r i o d i n normal  Ringer's  solution.  I t was found t h a t t h e r e was no obvious d e v i a t i o n from l i n e a r i t y " i n the s e m i l o g p l o t s d e p i c t i n g t h e l o s s o f r a d i o s o d i u m from i n j e c t e d c e l l s i n experiments the  o f l o n g d u r a t i o n ( f o r example, F i g . 7 ) .  This indicates  that  'pump' i s n o t r u n n i n g down. The  final possibility  i s t h a t t h e i n j e c t e d r a d i o s o d i u m becomes com-  p a r t m e n t a l i z e d i n s i d e the c e l l .  B i t t a r e_t al_.  (1972) adopted  t h e model o f  D i c k and L e a (1967), wherein some o f the r a d i o s o d i u m i n s i d e t h e c e l l was s e q u e s t e r e d and exchanged w i t h the f r e e i n t r a c e l l u l a r r a d i o s o d i u m o n l y a t a n e g l i g i b l y slow r a t e .  As noted above, t h e s l o p e r a t i o i s equal t o the  f r a c t i o n o f the r a d i o s o d i u m l e f t  i n the c e l l which i s f r e e .  This i s not a  125  c o n s t a n t , but r a t h e r d e c l i n e s w i t h time as the f r e e r a d i o s o d i u m out of the Fig.  i s washed  cell. 7 i n d i c a t e s t h a t the s l o p e d_ i dt  n  jj *  does not d e c l i n e n o t i c e a b l y  a  c  e  l  1  w i t h time, c o n t r a r y t o the D i c k and Lea model i f the s i z e of the f r a c t i o n i s not t o be n e g l i g i b l e .  Indeed, B i t t a r e_t a l . c a l c u l a t e d  f r a c t i o n as up t o 707 o f the i n j e c t e d o  The a l t e r n a t i v e  sequestered this  radiosodium.  i s a compartmental model i n which the i n t e r n a l  ments can exchange sodium.  Many mathematical  treatments  compart-  o f such models  have been p u b l i s h e d , but q u a l i t a t i v e c o n s i d e r a t i o n s can narrow the range o f poss i b i l i t i e s . The rapidly.  i n j e c t i o n loads the myoplasmic compartment, s e l e c t i v e l y and  very  I f t h e r e were an i n t r a c e l l u l a r compartment o f f i n i t e s i z e which  exchanged sodium w i t h the myoplasm w i t h a r a t e c o n s t a n t f o r exchange comparable to the rate- c o n s t a n t f o r the transmembrane-flux, then the  efflux  curve f o r i n j e c t e d c e l l s would not be so c l o s e t o a s i m p l e e x p o n e n t i a l f o r all  times  from near z e r o .  The  compartment would l o a d from, then empty  the myoplasm i n the course of the  into  experiment.  C o n s i d e r a t i o n of both the s i z e o f the h y p o t h e t i c a l compartment and r a t e a t which i t exchanges sodium w i t h the myoplasm i s important  the  i n drawing  this conclusion. For the range o f e f f l u x r a t e c o n s t a n t s found experiments, (as of  i n the present s e r i e s  any such compartment o f a p p r e c i a b l e but not too l a r g e a  e x p l a i n e d i n the next paragraph) whose r a t e c o n s t a n t was  of  size  w i t h i n an o r d e r  magnitude o f the r a t e c o n s t a n t f o r the transmembrane f l u x would  be  d e t e c t a b l e as a d e v i a t i o n from l i n e a r i t y i n a s e m i l o g p l o t such as F i g . 7. A s m a l l compartment which exchanges sodium r a p i d l y w i t h the myoplasm would not be seen as a d e v i a t i o n from l i n e a r i t y , the p r e s e n t c o n t e x t .  The  and  i s o f no concern i n  c o n s i d e r a t i o n s o f s e c t i o n 3 suggest  t h a t the  126  sodium a s s o c i a t e d w i t h i n t r a c e l l u l a r ment.  fixed anionic sites  i s such a compart-  A l a r g e r compartment which exchanges v e r y s l o w l y w i t h the myoplasm  would not be loaded w i t h i n j e c t e d r a d i o s o d i u m i n experiments whose d u r a t i o n was  a few hours, a l t h o u g h i t might be loaded i n an experiment whose d u r a t i o n  was  tens o f hours.  The sodium which exchanges o n l y v e r y s l o w l y , such as  t h a t r e p o r t e d f o r b a r n a c l e muscle by A l l e n and Hinke termed  (1971), and the sodium  " i n e x c h a n g e a b l e " i n s e c t i o n 3, which p r o b a b l y i s the same p o o l ,  should be such a compartment.  I t a l s o i s o f no concern i n the p r e s e n t  context. A v e r y l a r g e compartment would l o a d w i t h i n j e c t e d r a d i o s o d i u m from the myoplasmic compartment throughout  the d u r a t i o n o f the experiment,  not be seen as a d e v i a t i o n from l i n e a r i t y i n the s e m i l o g p l o t  and  might  i fits  exchange w i t h the myoplasm can be d e s c r i b e d by a simple e x p o n e n t i a l f u n c t i o n o f time, even i f the exchange were r e l a t i v e l y r a p i d .  I t would c o n s t i t u t e  an i n t r a c e l l u l a r s i n k f o r radiosodium, and the t o t a l amount o f r a d i o s o d i u m i n the c e l l would not d e c l i n e w i t h time a t a r a t e commensurate t o the d e c l i n e w i t h time o f the r a t e a t which r a d i o s o d i u m appeared  i n the bath.  That  i s , the two s l o p e s would each be c o n s t a n t , but the s l o p e r a t i o would be  less  than u n i t y . In t h i s c o n n e c t i o n , comparison  that  from c e l l s  loaded w i t h r a d i o s o d i u m by immersion  contains radiosodium i s relevant. cells  o f the e f f l u x from i n j e c t e d c e l l s w i t h i n a s o l u t i o n which  Three e f f l u x experiments were done on  from a s i n g l e b a r n a c l e which were loaded w i t h r a d i o s o d i u m by  a t l e s s than 5° C i n normal  Ringer's s o l u t i o n which c o n t a i n e d some r a d i o -  sodium, as d e s c r i b e d i n Methods.  Two  experiments were done a f t e r a 24  l o a d i n g p e r i o d , and one a f t e r a 48 hour n a t i o n was  hour  l o a d i n g . p e r i o d . The e f f l u x d e t e r m i -  c a r r i e d out as f o r i n j e c t e d c e l l s ,  The s e m i l o g p l o t s  immersion  but no  i n j e c t i o n was  f o r the e f f l u x from p a s s i v e l y loaded c e l l s  done. differed  127  from those f o r i n j e c t e d c e l l s . shown i n F i g . 9.  The p l o t s  f o r the second experiment a r e  They were l i n e a r f o r time g r e a t e r than 50 minutes when  p e r f u s i o n was w i t h normal R i n g e r ' s s o l u t i o n .  A l i n e a r r e g r e s s i o n was per-  formed on the p a r t o f the c u r v e from 50 t o 135 minutes.  The r e g r e s s i o n  l i n e was e x t r a p o l a t e d back t o z e r o time, and t h e d i f f e r e n c e between t h e data and t h i s l i n e over the i n t e r v a l shown i n F i g . 9.  from 0 t o 50 minutes was r e - p l o t t e d , as  This operation y i e l d e d a simple exponential.  It is  r e a s o n a b l e t o a s c r i b e t h i s r a p i d e f f l u x t o the washout o f r a d i o s o d i u m from the e x t r a c e l l u l a r space, as w i l l  be d i s c u s s e d below.  An e f f l u x o f comparable  r a t e from the i n t e r i o r o f t h e c e l l has been i m p l i e d by measurements i n f r o g and c r a b muscle, as noted i n s e c t i o n 2, but o n l y i n sodium-free s o l u t i o n . No such r a p i d e f f l u x i n t o normal R i n g e r ' s s o l u t i o n has ever been r e p o r t e d . The s l o p e r a t i o s o b t a i n e d i n the t h r e e experiments were 1.30 and 0.98 f o r a 24 hour l o a d i n g p e r i o d , and 0.99 f o r a 48 hour l o a d i n g p e r i o d . was noted a t the c o n c l u s i o n o f the f i r s t slightly  i r r e g u l a r i n appearance.  It  experiment t h a t the c e l l was  The c o r r e s p o n d i n g s l o p e r a t i o f o r f r o g  s k e l e t a l muscle loaded p a s s i v e l y i s a l s o u n i t y  (Keynes & Swan  1959).  There i s one d i f f e r e n c e between t h e two l o a d i n g methods which might account f o r t h e r e s u l t s .  P a s s i v e l o a d i n g loads the e n t i r e c e l l , w h i l e  i n j e c t i o n d e p o s i t s t h e r a d i o s o d i u m a l o n g a t r a c k which does not extend r i g h t t o the tendon end o f the c e l l and which p o r t i o n o f the c e l l which extends beyond sodium ions  i n b a r n a c l e muscle c e l l s  i s a c c e s s i b l e t o the u n i n j e c t e d t h e grease s e a l .  Diffusion of  i s about as r a p i d as t h a t  s o l u t i o n ( C a i l l e & Hinke 1972), but t h e d i f f u s i o n f r o n t s t i l l hours t o t r a v e l one c e n t i m e t r e .  i n a bulk takes s e v e r a l  There i s thus a slow continuous d i l u t i o n  o f r a d i o s o d i u m throughout even t h e l o n g e s t e f f l u x experiment on i n j e c t e d cells.  The r e s u l t s h o u l d be a s l i g h t l y more r a p i d  f a l l o f f o f the r a d i o -  sodium e f f l u x as t h e i n t r a c e l l u l a r d i f f u s i o n p r o g r e s s e s .  S i n c e the t o t a l  128  t  0  i • \' •  30  •  i • «  60  «  i  I I  i  90 120 time (min.)  I  l l  I  150  I — l I—I—  180  210  F i g u r e 9. S e m i l o g a r i t h m i c p l o t of the amount of r a d i o s o d i u m c o l l e c t e d i n the p e r f u s a t e from a c e l l loaded w i t h i s o t o p e by i n c u b a t i o n o v e r n i g h t ('passive l o a d i n g ' ) , and the amount of r a d i o s o d i u m remaining i n the c e l l , v e r s u s time. The c e l l was p e r f u s e d w i t h normal R i n g e r ' s s o l u t i o n i n i t i a l l y . At c a . 140 minutes p e r f u s i o n was begun w i t h sodium-free l i t h i u m - s u b s t i t u t e d solution. At c a . 180 minutes t h i s was r e p l a c e d w i t h p o t a s s i u m - f r e e s o l u t i o n (Table I ) . R e s o l u t i o n o f the lower curve i n t o the sum of two e x p o n e n t i a l s is indicated: y = A exp(-ax) + B exp(-bx) ; A = 22,837 cpm, a = 0.125 m i n ~ l , B = 12,830 cpm, b = 0.0072 m i n ~ l . L i n e a r r e g r e s s i o n o f upper c u r v e , 55 - 135 minutes, as y = B exp(-bx) i s shown: B = 460 cpm, b = 0.0073 min "'". -  129  i n t r a c e l l u l a r r a d i o s o d i u m a t each i n s t a n t of the  radiosodium c o l l e c t e d  taken i n t o account. fall  too  than u n i t y ,  unity  perfusate,  the  s l o p e r a t i o was  e s p e c i a l l y when h y p e r t o n i c s o l u t i o n s  to r a i s e  than i n the  tend through the  grease s e a l and i n j e c t e d and  (ajr ) a  m  (see  c a p t i o n to F i g .  l e n g t h , and successively methods and  often  somewhat l e s s  8), but  o v e r a l l was  experiments r e p o r t e d by B i t t a r et a l . (1972).  i n j e c t i o n track  i n the  p r e s e n t experiments was  e n t i r e p e r f u s e d l e n g t h of the  i n t o the  few  millimetres  which were kept above the  (1972) i n j e c t e d o n l y a 1 cm  c e l l whenever  c o l l e c t e d the  column of  r a d i o s o d i u m by  into a s e r i e s of v i a l s difference  fluid,  as noted above.  The  i n t e r i o r of the  cell.  Bittar  entire  in  intra-  results  loaded  injected  i s d e p o s i t e d i n the  cells.  cells.  myoplasm,  e f f l u x o f t h i s r a d i o s o d i u m r e p r e s e n t s e f f l u x from It exhibits  a s i m p l e e x p o n e n t i a l dependence on  f o r e f f l u x i n t o normal R i n g e r ' s s o l u t i o n s e m i l o g p l o t f o r the  (Fig.  the time  7).  e f f l u x o f sodium from p a s s i v e l y  i n t o normal R i n g e r ' s s o l u t i o n  i s more c o m p l i c a t e d  F i g . 9), as noted above.  initial  The  £t  in  proposal that between the  the  cell  This difference  loaded and  ex-  not  i n t o c e l l s 3 to 5 cm  difference  cell  explained  c e l l past  perfusate.  support to the  to  possible.  those o b t a i n e d w i t h p a s s i v e l y  i n t o the  As  made to  o f the  immersion o f the  C o m p a r a b i l i t y of sodium e f f l u x i n p a s s i v e l y radiosodium i n j e c t e d  closer  tendon end which were  of perfusate.  i n r e s u l t s lend  o b t a i n e d w i t h i n j e c t e d c e l l s and  a t the  part  l e v e l o f the  c e l l u l a r d i f f u s i o n i s r e s p o n s i b l e f o r the  The  not  of sodium c h l o r i d e were  I n t r a c e l l u l a r d i f f u s i o n would thus occur i n t o the  The  d i l u t i o n effect is  measured r a d i o s o d i u m c o n t e n t o f the myoplasm w i l l  p r e s e n t experiments, the  i n Methods, the  al.  from b a c k - a d d i t i o n  slowly.  In the  injected  The  i n the  is calculated  loaded  (time 0 to 135  r a p i d e f f l u x was  ascribed  cells  minutes i n to the wash-  130  out o f r a d i o s o d i u m from the e x t r a c e l l u l a r  space, and the slower e f f l u x t o  the e f f l u x o f r a d i o s o d i u m from the i n t e r i o r o f the c e l l . s e p a r a t i n g the two  components, known as  The process o f  'curve p e e l i n g ' ,  i s commonly used,  and q u i t e r e a s o n a b l e as l o n g as one can be a s s u r e d t h a t the components o f the net e f f l u x which i s measured can each be d e s c r i b e d by a simple exponential,  and t h a t the r a t e c o n s t a n t s f o r the two  components d i f f e r by a t l e a s t  an o r d e r o f magnitude. Indeed,  application  o f the procedure  t o any smooth curve o f a p p r o x i -  mately the shape o f a washout curve (no i n f l e c t i o n p o i n t s , and decrease  i n the magnitude o f the slope) w i l l y i e l d a sum  terms whose r a t e c o n s t a n t s d i f f e r by about  steady  of exponential  an order o f magnitude.  The  process i s i n essence the d e t e r m i n a t i o n by a process o f s u c c e s s i v e a p p r o x i mations o f the power s e r i e s  expansion o f the p l o t t e d  function.  I t s success  i n a p a r t i c u l a r case does not i n i t s e l f c o n s t i t u t e p r o o f o f the nature o f the e x p e r i m e n t a l system, model, i t can be v e r y  but as a t e s t o f a model, e s p e c i a l l y a simple  useful.  The model i n the c o n t e x t o f which the e f f l u x curve i n F i g . 9 i s to be t e s t e d i s t h a t the r a d i o s o d i u m i s washed out from two the i n t e r i o r o f the c e l l ,  and the e x t r a c e l l u l a r  space.  be some exchange between the i n t e r i o r o f the c e l l and space,  e s p e c i a l l y deep i n the c l e f t system.  correction'  takes account  refinement here. rapid  The  of t h i s  independent Actually, the  q u e s t i o n s to. be,addressed  1960)  'Huxley  but i s an  compartment which g i v e s r i s e to the r a p i d the e x t r a c e l l u l a r Very r a p i d  unnecessary  a r e whether the r a t e o f the  component i s c o n s i s t e n t w i t h e f f l u x from an e x t r a c e l l u l a r  not w i t h e f f l u x from an i n t r a c e l l u l a r s i t e ,  t h e r e must  extracellular  The well-known  (A.F. Huxley  pools:  s i t e but  and whether the s i z e o f the  e f f l u x i s s i m i l a r t o the s i z e o f  space as measured by o t h e r means.  e f f l u x from the i n t e r i o r o f the c e l l has been seen i n f r o g  131  s k e l e t a l muscle (White & Hinke 1976) and c r a b s t r i a t e d muscle (Vaughan-Jones 1977),  but o n l y d u r i n g e f f l u x i n t o sodium-poor s o l u t i o n .  observed  A c t u a l l y , what was  i n these two cases was r a p i d d i s a p p e a r a n c e o f sodium from the  myoplasm and t h e r a t e c o n s t a n t s f o r t h i s process have a d i f f e r e n t cance -- see s e c t i o n 6. muscle,  The demonstration t h a t , a t l e a s t  signifi-  i n barnacle  such a r a p i d disappearance o f myoplasmic sodium i s indeed accompanied  by a r a p i d e f f l u x o f sodium from the c e l l  i s d e s c r i b e d i n s e c t i o n 6.  In  normal R i n g e r ' s s o l u t i o n , o n l y e f f l u x e s w i t h r a t e c o n s t a n t o f o r d e r 0.01 min  ^ a r e seen.  Yet t h i s  f i g u r e i s the product o f p r e c i s e l y t h e model i t  is desired to test. I t c a n be argued, however, t h a t t h e assignment r a p i d e f f l u x t o the i n t r a c e l l u l a r p o o l ,  o f a component o f the  f o r e f f l u x i n t o normal  s o l u t i o n , w h i l e the t o t a l sodium c o n t e n t o f the c e l l  Ringer's  i s steady,  requires  t h a t the i n f l u x and e f f l u x r a t e s change t o g e t h e r when t h e l o a d i n g b a t h 22 (normal Ringer's s o l u t i o n c o n t a i n i n g  Na) i s r e p l a c e d by a bath  i n a l l r e s p e c t s except f o r t h e absence  o f radiosodium.  exhibit a similar  initial  Influx  identical  experiments  r a p i d component, so t h e same argument can be  a p p l i e d t h e r e , and the c e l l  supposed  t o sense and respond t o the i n c l u s i o n 22  i n or o m i s s i o n from the b a t h i n g s o l u t i o n o f  Na.  T h i s does not seem  reasonable. The s i z e o f the compartment which y i e l d s  the r a p i d e f f l u x o f radiosodium  i n t o normal R i n g e r ' s s o l u t i o n i n F i g . 9 i s a p p r o x i m a t e l y 5.5% o f the volume of  the p o r t i o n o f the c e l l which was b e i n g p e r f u s e d .  T h i s i s an u n d e r e s t i -  mate, s i n c e a p o r t i o n o f the tendon end o f t h e c e l l was n o t w e l l p e r f u s e d , and because  t h e l o s s o f r a d i o s o d i u m from t h e e x t r a c e l l u l a r space  is diffu-  s i v e , but agrees w e l l w i t h the v a l u e s o f 6 to. 1% found by v a r i o u s techniques for  the s i z e o f t h e e x t r a c e l l u l a r space  i n s e c t i o n 3.  i n b a r n a c l e muscle c e l l s ,  as noted  132  Altogether,  i t seems r e a s o n a b l e to a s c r i b e  r a d i o s o d i u m e f f l u x e n t i r e l y to the nent to the  c e l l s can the  loaded c e l l s and  thus be compared.  r a t e constant  (0.00729 min  .  However, the  account f o r the  the  lower t r a c e  function  a  loaded c e l l  too The  rate  In F i g . 12  (ca. 20 mM  (page 143)  seen to l i e i n the r e g i o n  was  versus 12 mM),  a  calculated  from  and  are p r e s e n t e d the  the  caclulated  i n normal R i n g e r ' s s o l u t i o n , as  o f the myoplasmic sodium a c t i v i t y loaded c e l l s are  injected c e l l  difference.  for a l l injected c e l l s ,  three passively  is declining  l a r g e r than the  b e s t comparison i s of the sodium e f f l u x Mjj  r a d i o s o d i u m e f f l u x data.  be  s i n g l e component i n i n j e c t e d  sodium content o f the  t h i s alone could  v a l u e s o f Mjr  slow  slow e f f l u x i n t o normal R i n g e r ' s s o l u t i o n i n F i g . 9  o f the p a s s i v e l y  can  r a t e c o n s t a n t s f o r the  i s comparable to but  h i g h e r than t h a t  The  the  slow compo-  i n t r a c e l l u l a r s i n k o f r a d i o s o d i u m noted above.  (0.00928 min  c o n s t a n t f o r the  The  the  the  In F i g . 7 i t i s the upper t r a c e which r e f l e c t s  e f f l u x a c r o s s the membrane, s i n c e  s l o w l y because o f the  r a p i d component o f  e x t r a c e l l u l a r space, and  i n t r a c e l l u l a r compartments.  component i n p a s s i v e l y  the  included defined  (ajj ) . a  m  The  r e s u l t s from  as open diamond symbols. by  the  a the  They  results for injected  cells  o f comparable sodium content. Brinley passively but  (1968) mentioned t h a t  loaded c e l l s was  d i d not  report  the  within  the magnitude o f the  the range observed w i t h i n j e c t e d  r e s u l t s on p a s s i v e l y  (1970) r e p o r t e d an average r a t e c o n s t a n t sodium e f f l u x from p a s s i v e l y 15°  C.  loaded c e l l s .  f o r the  cells,  A l l e n and  slower component o f  loaded b a r n a c l e muscle c e l l s  Hinke the  o f 0.0085 min  B i t t a r e_t al_. (1972) r e p o r t e d an average r a t e c o n s t a n t f o r t h i s -1  component o f about 0.010 muscle  sodium e f f l u x from  cells.  to 0.015  min  o a t 23  C for injected  barnacle  -1  at  133  DISCUSSION  B i t t a r and coworkers b a r n a c l e muscle c e l l s  (1972) found that the amount o f r a d i o s o d i u m i n  loaded by m i c r o i n j e c t i o n d i d not d e c l i n e w i t h time a t  a r a t e commensurate t o t h e d e c l i n e w i t h time o f the r a t e a t which appeared  i n the bath.  They i n t e r p r e t e d t h i s  i n terms o f a model i n which a  l a r g e p o r t i o n o f the i n j e c t e d r a d i o s o d i u m was s e q u e s t e r e d from fragments injector. the c e l l of  radiosodium  in vesicles  formed  o f t h e c e l l membrane c r e a t e d by t h e i n s e r t i o n o f t h e micro-  T h i s sodium d i d not exchange a t a l l w i t h t h e f r e e sodium i n s i d e over t h e c o u r s e o f t h e experiment,  the c e l l  but c o u l d be r e l e a s e d by  exposure  to aldosterone.  That so much o f the i n j e c t e d sodium c o u l d be s e q u e s t e r e d a t the moment 23 of  injection,  (so  t h a t a concomitant  the apparent  'bound' sodium),  amount o f  Na c o u l d a l s o be s e q u e s t e r e d  f r a c t i o n o f 'bound' r a d i o s o d i u m r e f l e c t e d t h e f r a c t i o n of and t h a t t h e c e l l membrane fragments  which form these  v e s i c l e s c o u l d become so impermeable t o sodium t h a t sodium exchange a c r o s s them i s n e g l i g i b l y slow compared t o sodium exchange a c r o s s the r e s t o f the cell  membrane, were not c o n s i d e r e d t o be r e a s o n a b l e  hypotheses.  On t h e o t h e r hand, i t seems v e r y r e a s o n a b l e t h a t l o n g i t u d i n a l of  diffusion  i n j e c t e d r a d i o s o d i u m i s r e s p o n s i b l e f o r t h e observed s l o p e r a t i o s .  s l o p e r a t i o s were f a r l e s s than u n i t y i n c e l l s  The  i n which the l e n g t h o f the  i n j e c t i o n t r a c k was much l e s s than the l e n g t h o f the c e l l which was p e r f u s e d ( B i t t a r et a l . 1972). u n i t y when an attempt  The s l o p e r a t i o s were c l o s e r t o but s t i l l  than  was made t o p e r f u s e o n l y t h e r e g i o n o f the c e l l which  c o n t a i n e d the i n j e c t i o n t r a c k ( p r e s e n t s t u d y ) . to u n i t y i n c e l l s  less  The s l o p e r a t i o s were equal  loaded w i t h r a d i o s o d i u m by immersion,  l o n g i t u d i n a l d i f f u s i o n o f r a d i o s o d i u m i s expected  i n which no n e t  t o occur ( p r e s e n t study  and r e s u l t s o f o t h e r workers f o r f r o g s k e l e t a l muscle).  Finally,  the s l o p e  134  o f the semilog p l o t s of sodium e f f l u x versus time a r e c o n s t a n t over e n t i r e d u r a t i o n o f l o n g experiments  in injected c e l l s ,  the  c o n t r a r y t o the  e x p e c t a t i o n t h a t the magnitude o f the s l o p e should d e c l i n e i f a f i x e d amount o f the i n j e c t e d r a d i o s o d i u m The  i s sequestered.  e f f e c t s o f a l d o s t e r o n e remain t o be e x p l a i n e d , but p r o b a b l y  reflect  an a c t i o n on the t r a n s p o r t systems i n the c e l l membrane. The b e h a v i o r o f the sodium e f f l u x microinjected c e l l s cells  ( F i g . 12,  i n t o normal Ringer's  solution  i s i n d i s t i n g u i s h a b l e from t h a t from p a s s i v e l y  page 143).  A d e t a i l e d study of the response  component i n p a s s i v e l y loaded c e l l s  loaded  o f the slow  t o ouabain and t o changes i n the  c o m p o s i t i o n of the b a t h i n g s o l u t i o n was  not c a r r i e d out, but i n the e x p e r i -  ments which were done the b e h a v i o r o f the p a s s i v e l y loaded c e l l s q u a l i t a t i v e l y and  from  q u a n t i t a t i v e l y the same as f o r i n j e c t e d  was  cells.  The use o f m i c r o i n j e c t i o n leads to a c o m p l i c a t i o n i n the measurement o f the sodium e f f l u x , however, due q u a n t i t y which appears i s Na*/Na* m  t o the l o n g i t u d i n a l d i f f u s i o n .  The  i n the e f f l u x equation, e q u a t i o n (4) o f s e c t i o n  the r a t i o o f the amount o f r a d i o s o d i u m which leaves the  2.F,  cell  d u r i n g a c o l l e c t i o n i n t e r v a l t o the amount o f r a d i o s o d i u m i n the myoplasmic compartment a t the s t a r t o f t h a t i n t e r v a l .  The myoplasm i s c o n t i n u o u s l y  l o s i n g r a d i o s o d i u m t o l o n g i t u d i n a l d i f f u s i o n as w e l l as to the b a t h i n g i  solution. The r a t i o Na*/Na* would be equal t o the s l o p e of the p l o t o f In versus  time i f the l o s s of r a d i o s o d i u m by l o n g i t u d i n a l d i f f u s i o n from  myoplasm b e i n g p e r f u s e d were e n t i r e l y  independent  o f the l o s s a c r o s s  Na* the the  c e l l membrane, and the r a t e o f the l o s s a c r o s s the c e l l membrane was p r o p o r t i o n a l t o the amount o f r a d i o s o d i u m Then the s l o p e o f a l i n e drawn through  i n the myoplasm a t each  instant.  the data p o i n t s o f the s e m i l o g  c o u l d be assumed t o be equal t o Na*/Na*!, and used  i n equation  (4) to  plot  135  c a l c u l a t e Mjj , but o n l y over time a  very l i t t l e  i n t e r v a l s d u r i n g which the s l o p e changed  ( i e . dk = 0 ) . dt  T h i s has  been done f o r the e f f l u x  the experiment d e p i c t e d i n F i g . 10  i n t o normal Ringer's  (page 140).  curve averages out s m a l l v a r i a t i o n s  i n the raw  The data.  solution for  drawing of a smooth The  net e f f e c t  is a  v a l u e f o r Mjj which i s about 107o h i g h e r than the average o f the v a l u e s a  calculated directly was  0.95.  The  from e q u a t i o n  (4).  slope r a t i o f o r t h i s  e f f e c t of i g n o r i n g the i n t r a c e l l u l a r s i n k due  d i f f u s i o n w i l l be g r e a t e r i n c e l l s r a t i o tends  The  to be lower  to  experiment longitudinal  loaded w i t h sodium, f o r which the s l o p e  ( F i g . 8).  T h i s c o r r e c t i o n to the c a l c u l a t e d s i z e o f the sodium e f f l u x from i n jected c e l l s i n the raw  i s s y s t e m a t i c , and  data b e f o r e M^  employ e q u a t i o n  a  i n v o l v e s a severe a v e r a g i n g of  can be c a l c u l a t e d .  (4) as w r i t t e n , and  u n c e r t a i n t y i n Na* and m J  results  data.  i n V /A d u r i n g d i s c u s s i o n s to which the a b s o l u t e m ° r a t h e r than to a p p l y c o r r e c t i o n s  However, comparison o f the u n c o r r e c t e d and  of most experiments r e v e a l e d a profound  on the data, as w i l l be d i s c u s s e d i n d e t a i l Finally,  the apparent  by the e f f l u x curves value obtained  I t would be p r e f e r a b l e to  then c o n s i d e r the e f f e c t s of the  s i z e o f the sodium e f f l u x i s important, to the raw  fluctuations  the c o r r e c t e d  e f f e c t o f the above e f f e c t s  later.  s i z e of the e x t r a c e l l u l a r p o o l o f sodium y i e l d e d  f o r the p a s s i v e l y loaded c e l l s must be mentioned.  (about  5.57») was  s i m i l a r to the i n u l i n space.  However, the  p o o l of r a p i d l y exchanging e x t r a c e l l u l a r sodium might be expected much l a r g e r than t h i s .  The  s i z e o f the r a p i d l y exchanging  The  to appear  extracellular  sodium f r a c t i o n proposed i n s e c t i o n 3 i s about 12 m i l l i m o l e s Na/kg c e l l water ( F i g . 3 ) . if  the l a t t e r  0.06  The  amount o f sodium i n s o l u t i o n i n the e x t r a c e l l u l a r  i s taken as 67, o f the c e l l volume, i s a p p r o x i m a t e l y  or 27 m i l l i m o l e s Na/kg c e l l water.  Thus one might expect  450  space, mM  the s i z e  x of  the  e x t r a c e l l u l a r space deduced  larger occur.  than the i n u l i n space. First,  free d i f f u s i o n , is the  free  the l o s s  from the r a d i o s o d i u m washout to be somewhat There a r e two main reasons why  o f r a d i o s o d i u m from the e x t r a c e l l u l a r space i s by  the same process which mixes the e x t r a c e l l u l a r sodium  i n solution.  T h i s causes the y - i n t e r c e p t  s i z e o f the e x t r a c e l l u l a r  i n F i g . 9 t o be low,  space to be u n d e r e s t i m a t e d .  e x t r a c e l l u l a r nonmyoplasmic c a t i o n s are not a l l h i g h l y experiments on smooth muscle, the  t h i s does not  lanthanum was  z e r o o f time i s not p r e c i s e l y  f o r the e x t r a c e l l u l a r  definable.  Second,  mobile.  used t o f r e e  them.  which and  the  I n the In  addition,  In a l l , the v a l u e o b t a i n e d  space i s not u n r e a s o n a b l e .  137  SECTION 5.  SURVEY OF THE SODIUM EFFLUX FROM SINGLE MUSCLE CELLS  In t h i s s e c t i o n ,  the dependence  o f the sodium e f f l u x from s i n g l e whole  b a r n a c l e muscle c e l l s on t h e myoplasmic sodium a c t i v i t y serves f i r s t  i s surveyed.  o f . a l l as a t e s t o f the techniques d e s c r i b e d  measuring the sodium e f f l u x , b a r n a c l e muscle c e l l s  This  i n s e c t i o n 2.F f o r  s i n c e the r e s u l t s o f s i m i l a r experiments on  loaded w i t h r a d i o s o d i u m by m i c r o i n j e c t i o n a r e a v a i l -  a b l e f o r comparison ( B r i n l e y 1968; B i t t a r £t aT. 1972). The r e s u l t s o f s e c t i o n 3 suggest t h a t t h e a p p l i c a t i o n o f the new t e c h n i q u e w i l l not y i e l d r e s u l t s markedly d i f f e r e n t  from those found w i t h  the u s u a l t e c h n i q u e s , because most o f the nonmyoplasmic exchange r a p i d l y w i t h the myoplasmic the s o d i u m - s p e c i f i c  sodium.  sodium does not  T h i s means t h a t the use o f  i n t r a c e l l u l a r e l e c t r o d e w i l l o n l y improve the e s t i m a t e  o f the s i z e o f t h e i n t e r n a l sodium c o n c e n t r a t i o n on which t h e e f f l u x The n a t u r e o f the dependence  depends.  should be t h e same w i t h e i t h e r method.  However, t h e use o f m i c r o i n j e c t i o n has been shown t o g i v e r i s e t o a s i g n i f i c a n t uncertainty, injected  into a c e l l  i n t h a t most but not a l l o f the r a d i o s o d i u m  i s a v a i l a b l e f o r exchange w i t h e x t r a c e l l u l a r  when the u s u a l techniques a r e employed.  sodium  There w i l l be an u n d e r e s t i m a t e o f  the s i z e o f t h e sodium e f f l u x , as e x p l a i n e d  i n s e c t i o n s 2.F and 4.  Further,  t h i s u n d e r e s t i m a t e w i l l be g r e a t e r i n m i c r o i n j e c t e d c e l l s w i t h an e l e v a t e d sodium content, as i n d i c a t e d by F i g . 8. T h e r e f o r e , t h e n a t u r e o f the dependence sodium content o f the c e l l  o f the sodium e f f l u x on t h e  found by o t h e r workers u s i n g m i c r o i n j e c t e d  cells  might be i n c o r r e c t . The dependence o f the sodium e f f l u x Mjj activity  (ajj ) a  m  i n muscle c e l l s .  reflects  a  on t h e myoplasmic  sodium  the c o n t r i b u t i o n o f more than one t r a n s p o r t system  The prominent systems a r e thought t o be the  (Na+K)ATPase,  138  and a system which mediates  sodium-sodium exchange. The b e h a v i o r o f t h e  e f f l u x can r e a s o n a b l y be expected t o be d i f f e r e n t d u r i n g c o n d i t i o n s which favour one o r another t r a n s p o r t mode. The dependence o f M ^  a  on ( a j * ) a  m  was measured i n normal Ringer's  solu-  t i o n , which s h o u l d correspond c l o s e l y t o t h e normal c o n d i t i o n s o f t h e c e l l in vivo;  i n p o t a s s i u m - f r e e s o l u t i o n , where t h e major mode o f t h e (Na+K)ATPase  s h o u l d be d i s a b l e d ;  i n sodium-free  s o l u t i o n s , where t h e sodium-sodium  exchange mode r e p o r t e d i n muscle should be d i s a b l e d ; and i n t h e presence o f ouabain, where almost a l l o f t h e r e a c t i o n s o f the (Na+K)ATPase should be disabled. I t was found t h a t a p p l i c a t i o n o f t h e c o r r e c t i o n t o N a £ - Q f o r c e l l s e  loaded w i t h r a d i o s o d i u m by m i c r o i n j e c t i o n changed t h e r e s u l t s a p p r e c i a b l y .  METHODS  The method o f p r e p a r i n g c e l l s and t h e use o f the s o d i u m - s p e c i f i c m i c r o e l e c t r o d e t o measure (a, ) were d e s c r i b e d i n s e c t i o n 3. Na m T  The method  o f i n j e c t i n g , c o l l e c t i n g , and c o u n t i n g t h e r a d i o s o d i u m was d e s c r i b e d i n s e c t i o n 4. The c a l c u l a t i o n o f t h e sodium e f f l u x Mjr (4) o f s e c t i o n 2.F, both w i t h and w i t h o u t i n s e c t i o n s 2.F and 4. reasons.  First,  a  was c a r r i e d out v i a e q u a t i o n  t h e c o r r e c t i o n t o Na* -Q d e s c r i b e d e  Steady c o n d i t i o n s a r e o f i n t e r e s t here f o r two  t h e response  time o f t h e t r a n s p o r t mechanisms t o changes  i n t h e myoplasmic sodium a c t i v i t y  i s n o t known, so t h e most r e l i a b l e  s h o u l d be o b t a i n e d d u r i n g steady c o n d i t i o n s .  data  Second, t h e c o r r e c t i o n t o  ic N c e l l can o n l y be made w i t h c o n f i d e n c e d u r i n g steady c o n d i t i o n s , as exa  139  plained  i n s e c t i o n s 2.F and 4.  ness o f (^a),^ over a t l e a s t  L i n e a r i t y o f t h e s e m i l o g p l o t and s t e a d i -  f o u r c o l l e c t i o n p e r i o d s was the c r i t e r i o n f o r  the s e l e c t i o n o f d a t a . Experiments  i n which  the sodium e f f l u x  i s impaired, as by removal o f  e x t r a c e l l u l a r p o t a s s i u m o r by exposure t o ouabain, r e s u l t i n t h e myoplasmic sodium a c t i v i t y as the sodium  i n a steady r i s e  i n f l u x i s no l o n g e r adequ-  a t e l y c o u n t e r e d by sodium e x t r u s i o n ( f o r example, F i g . 10 o f t h i s  section).  T h i s u s u a l l y caused no problem but i n a few cases the e f f l u x f e l l  to a  minimum, then r o s e s l o w l y as ( a j j ) a  be made about to r e f l e c t  the v a l u e o f M^  m  rose.  to extract  a  A s u b j e c t i v e judgment then had t o for analysis.  The v a l u e judged  the maximum e f f e c t o f t h e e x p e r i m e n t a l m a n i p u l a t i o n was e x t r a c t e d ,  a l o n g w i t h the v a l u e o f ( a ^ ) a  m  was q u i t e s m a l l , but the e f f e c t  a t t h a t time.  The u n c e r t a i n t y due t o t h i s  i s o f i n t e r e s t , as w i l l  be d i s c u s s e d below  i n c o n n e c t i o n w i t h the dose-response curve f o r ouabain.  Use o f Day-old  Cells.  For some experiments,  such as l o a d i n g w i t h r a d i o s o d i u m by i n c u b a t i o n  i n r a d i o s o d i u m - c o n t a i n i n g s o l u t i o n s , measurements on t h e d i s s e c t e d cannot be performed u n t i l 24 t o 48 hours a f t e r the d i s s e c t i o n .  cell  Dissected  c e l l s kept i n normal R i n g e r ' s s o l u t i o n a t l e s s than 5° C a r e found t o maint a i n t h e i r i o n g r a d i e n t s and membrane p o t e n t i a l : f o r s e v e r a l days Table I I ) .  In p i l o t  experiments,  ( f o r example,  t h e b e h a v i o r o f the e f f l u x o f i n j e c t e d  r a d i o s o d i u m from b a r n a c l e muscle c e l l s was not n o t i c e a b l y d i f f e r e n t i n c e l l s which were i n j e c t e d 24 hours a f t e r d i s s e c t i o n from t h a t were i n j e c t e d a few hours a f t e r d i s s e c t i o n . was noted i n a few c e l l s cells  in cells  Some d i f f e r e n c e (enhanced  t e s t e d a t 48 hours a f t e r d i s s e c t i o n .  which M^ ) a  The use o f  from a b a r n a c l e d i s s e c t e d t h e p r e c e d i n g day makes much more e f f i c i e n t  use o f the a v a i l a b l e specimens,  and saves a c o n s i d e r a b l e amount o f time.  140  E  30  normol  I  | K-free |  normal  |  I0" M. ouabain 4  Q.  O  •o  ••  20 10  •  0>  o 10>  ••••  0.5  tt> o o 0.2H 26  I  I  I  I  I.  I  ••••••  18 10 2H |  24  «E  201-  o  3  r  16 1  0  1  30  60  90  120 150 time (min.)  180  210  240  F i g u r e 10. Summary o f the raw d a t a and reduced r e s u l t s f o r a t y p i c a l experiment. Upper t r a c e : l o g a r i t h m of the amount of r a d i o s o d i u m c o l l e c t e d i n each 5 minute c o l l e c t i o n p e r i o d , i n counts per minute; lower t r a c e : myoplasmic sodium a c t i v i t y as measured by a s o d i u m - s p e c i f i c g l a s s m i c r o e l e c t r o d e , i n mM; m i d d l e t r a c e : sodium e f f l u x deduced from the data v i a e q u a t i o n ( 4 ) , p l o t t e d i n picomoles/cm sec ( p e s ) . For the i n t e r v a l i n normal R i n g e r ' s s o l u t i o n , the c o r r e c t e d v a l u e o f M ^ i s i n d i c a t e d as a dashed l i n e .  141  About h a l f o f the experiments cells.  The  r e p o r t e d on here were done on such  data o b t a i n e d from such c e l l s  is indicated  s i m i l a r b e h a v i o r of f r e s h and d a y - o l d c e l l s  'day-old'  i n the f i g u r e s .  (eg. F i g . 11)  The  is. discussed  below.  RESULTS  In Fig.- 10 a summary o f the raw experiment  i s presented.  data and reduced  Reference w i l l be made t o t h i s  (a) Sodium e f f l u x i n t o normal R i n g e r ' s The  results  as p l o t s o f M  Na  from 58 experiments versus  result  (a- ) . N a  m  for a  figure  typical  later.  solution.  are presented  In F i g . 11, M^  a  i n F i g . 11 and F i g . 12  was  c a l c u l a t e d a c c o r d i n g to  ic equation  (4) u s i n g ^  a c e  ic  n'  i  c o r r e c t e d v a l u e o f Na / N a In F i g . 11,  the same data was  m  was  used  (ajj )  a  (1968) used  s a t u r a t i o n appears (Na)^ r a t h e r than  ducted h i s experiments  employed but  the  i n equation (4).  the r e l a t i o n s h i p between Mjj and  s l i g h t l y sigmoidal: Brinley  In F i g . 12,  ***  a t 0° C.  a  appears  m  to be  to occur a t h i g h e r v a l u e s of  (Na)  m  i n c a l c u l a t i n g Mj^,  and  (ajj ) . a  m  con-  I t had been a n t i c i p a t e d t h a t the p r e s e n t  r e s u l t s would be s i m i l a r to h i s ( a f t e r c o r r e c t i o n f o r s u r f a c e a r e a by a f a c t o r o f 10), but s h i f t e d t o lower v a l u e s on the a b s c i s s a s i n c e ( a j j ) a  used due  i n s t e a d o f (Na)  T h i s was  r e l a t i o n s h i p i s shown as a broken l i n e  I t appears  was  , and w i t h a l a r g e r e f f l u x a t a g i v e n sodium c o n t e n t  t o the h i g h e r temperature.  In F i g . 12,  m  as was  found  Brinley's empirical  i n F i g . 11.  the r e l a t i o n s h i p between  t o be a f f i n e ,  found.  and  (  a  j T  a  )  m  i  s  quite different.  i n s n a i l neurone by Thomas  (1972).  142  F i g u r e 11. Sodium e f f l u x i n t o normal Ringer's s o l u t i o n , c a l c u l a t e d from e q u a t i o n (4), w i t h o u t c o r r e c t i o n f o r Na* , ., . S o l i d c i r c l e s : c e l l s dissected ——— cell on the day o f the experiment. S o l i d diamonds; c e l l s d i s s e c t e d on the day b e f o r e t h a t o f the experiment. Open t r i a n g l e s : c e l l s loaded w i t h radiosodium by immersion o v e r n i g h t i n l a b e l l e d s o l u t i o n . S o l i d c u r v e : model c a l c u l a t i o n f o r t h r e e sodium ions b i n d i n g s u c c e s s i v e l y to e q u i v a l e n t independent s i t e s per c y c l e o f the t r a n s p o r t enzyme (k = 15.75 mM, = 45 p e s ) . Dashed curve: e x p e r i m e n t a l data o f B r i n l e y (1968) as M„  Ma  versus  i  (Na)., where  x  (Na). i s on the same n u m e r i c a l s c a l e as 'i  (a„ ) . Na m  143  F i g u r e 12. Sodium e f f l u x i n t o normal R i n g e r ' s s o l u t i o n , c a l c u l a t e d from equation (4), with c o r r e c t i o n f o r * -QSymbols as i n F i g . 11. Solid l i n e : curve to which k i n e t i c models were f i t t e d by t r i a l and e r r o r . Dashed l i n e : e x p e r i m e n t a l d a t a o f B r i n l e y (1968), as i n F i g . 11. Elevation of (a„ ) above the normal range ( c a . 10 mM) was accomplished by i n j e c t i o n of Na m NaCl i n t o the myoplasm. Na  e  144  No  s a t u r a t i o n i s evident.  difficult  to o b t a i n .  A c c e p t a b l e data a t h i g h e r sodium content  The v a l u e of (ajyj ) u s u a l l y d i d not become steady a  m  when l a r g e amounts o f 5 M NaCl were i n j e c t e d , so i t was p e r m e a b i l i t y o f the c e l l membrane had been compromised. were seen  i n such cases.  concluded  t h a t the  Very r a p i d  High v a l u e s o f (Na)^ (about 70 mM)  a l l e g e d to unmask pre-formed  have been  i t i s hard to imagine  t h a t such a  c h a l l e n g e would ever occur i n a l i v i n g animal.  In one a c c e p t a b l e  at  found  a  a  prolonged  m  = 70 mM,  a r e l a t i v e l y h i g h e f f l u x was  immersion o f the c e l l s  not  however, t h a t w h i l e F i g . 10 suggests  that ( a j ^ ) a  m  note,  m  over  20  s o l u t i o n i s not v e r y g r e a t .  ( s o l i d diamonds) c e l l s  the dependence o f the response  for fresh ( s o l i d  i n F i g . 12.  circles)  I t has been r e p o r t e d t h a t  o f f r o g s k e l e t a l muscle to ouabain on  sodium content o f the c e l l d i f f e r s  i n f r e s h and  T a y l o r , & Waggoner 1970), as does the response (Keynes 6c Swan 1959;  of  can be r a i s e d e a s i l y i n a  No d i f f e r e n c e i s seen between the r e s u l t s  of  In t h i s c o n n e c t i o n ,  s o l u t i o n , T a b l e I I shows t h a t the i n c r e a s e i n ( a ^ )  hours i n p o t a s s i u m - f r e e  Fig.  The use  i n v e s t i g a t e d , but s h o u l d be a  b e t t e r method f o r l o a d i n g the c e l l w i t h sodium.  and d a y - o l d  ( F i g . 11).  experiment  i n p o t a s s i u m - f r e e s o l u t i o n as a means o f  p a s s i v e l y r a i s i n g the sodium content was  potassium-free  effluxes  t r a n s p o r t enzymes i n f r o g s k e l e t a l muscle  ( E r l i j & G r i n s t e i n 1976a,b), a l t h o u g h  ( N )  was  'aged' c e l l s  the  (Horowicz,  t o removal o f e x t e r n a l sodium  Keynes 6c S t e i n h a r d t 1968) .  12 does not r e v e a l any d e f i n i t i v e  i n f o r m a t i o n about the k i n e t i c s  the e x t r u s i o n o f sodium from the c e l l , because o f the s c a t t e r o f the  d a t a but more i m p o r t a n t l y because o f the u n a v a i l a b i l i t y of data f o r low values of ( ^ ) a  a  m  w i t h the p r e s e n t t e c h n i q u e s .  the behavior r e v e a l e d w i t h the new u s u a l method.  I t i s c l e a r , however, t h a t  method d i f f e r s  from t h a t o b t a i n e d w i t h  the  145  (b) Sodium e f f l u x i n t o p o t a s s i u m - f r e e s o l u t i o n . The r e s u l t s o f 20 experiments  i n which the sodium e f f l u x i n t o  potassium-  f r e e s o l u t i o n was measured a r e p r e s e n t e d i n F i g s . 13 and 14 as p l o t s o f M^ versus  C -^)^ 3  I  n  F i g - 13,  was c a l c u l a t e d  from e q u a t i o n (4) w i t h o u t  the c o r r e c t i o n t o N a * ^ , w h i l e i n F i g . 14, Mjj was c a l c u l a t e d w i t h e  a  a  this  correction. The b e h a v i o r o f M^  a  i s similar  i n the two p l o t s , a s i d e from the  c o r r e c t i o n i n F i g . 14 o f the underestimate o f the s i z e o f M^ The d e f i n i t e p l a t e a u i s markedly Ringer's s o l u t i o n ,  F i g . 12.  different  i n F i g . 13.  a  from the b e h a v i o r found i n normal  The sodium e x t r u s i o n mechanism which does not  r e q u i r e e x t e r n a l p o t a s s i u m appears  t o have a l i m i t e d c a p a c i t y ,  over the ' p h y s i o l o g i c a l range' o f ( a ^ ) a  m  i t responds  although  t o an i n c r e a s e i n  (a. ) by i n c r e a s i n g i t s r a t e . Na'm ° v  T  3  Further,  i t appears  t h a t the sodium e x t r u s i o n mechanism which does  r e q u i r e e x t e r n a l potassium does n o t s a t u r a t e a t myoplasmic sodium a c t i v i t i e s up t o 70 mM.  By comparison,  Keynes and Swan (1959) found i n f r o g  muscle t h a t the r e d u c t i o n i n t h e sodium e f f l u x caused by removal  striated of external  potassium was g r e a t e r as (Na)^ was r a i s e d . Two o t h e r o b s e r v a t i o n s on.the can be made.  e f f e c t o f removal  of external  As i l l u s t r a t e d by F i g . 10, the e f f e c t o f removal  p o t a s s i u m i s r e v e r s e d by r e s t o r a t i o n o f e x t e r n a l potassium. noted that B i t t a r ejt al_.  potassium  of external  I t s h o u l d be  (1972) d e s c r i b e a r i s e o f the sodium e f f l u x t o a  l e v e l above t h a t o b t a i n e d b e f o r e e x t e r n a l p o t a s s i u m was removed i f e x t e r n a l potassium i s subsequently r e s t o r e d .  This occurred only f o r c e r t a i n  cells,  those f o r which they c a l c u l a t e d a l a r g e " s e q u e s t e r e d f r a c t i o n " o f sodium by the s l o p e r a t i o method.  Such c e l l s a r e found t o have h i g h myoplasmic  sodium a c t i v i t y , as d i s c u s s e d i n s e c t i o n 4.  B i t t a r e t al_. r e p o r t e d no  a p p r e c i a b l e change i n the i o n content o f c e l l s  incubated i n p o t a s s i u m - f r e e  146  50k  ^ i J m  (  m  M  )  F i g u r e 13. Sodium e f f l u x from the c e l l i n t o a p o t a s s i u m - f r e e b a t h i n g s o l u t i o n , c a l c u l a t e d from e q u a t i o n (4) w i t h o u t c o r r e c t i o n f o r Na* ^^, v e r s u s myoplasmic g  sodium a c t i v i t y a t the time >of the change from p o t a s s i u m - c o n t a i n i n g t o potassium-free s o l u t i o n . C i r c l e s : c e l l s d i s s e c t e d the day o f the experiment. Diamonds: c e l l s d i s s e c t e d the day b e f o r e t h a t o f the experiment. S o l i d l i n e drawn by eye. Dashed l i n e r e p r e s e n t s the sodium e f f l u x i n t o normal R i n g e r ' s s o l u t i o n c a l c u l a t e d i n a s i m i l a r manner ( F i g . 11). Note: the o r d i n a t e i s d i f f e r e n t from that i n F i g . 11 and F i g . 12. (  147  F i g u r e 14. Sodium e f f l u x from the c e l l i n t o a p o t a s s i u m - f r e e b a t h i n g s o l u t i o n c a l c u l a t e d from e q u a t i o n (4) w i t h c o r r e c t i o n f o r N a * ^ , versus myoplasmic e  sodium a c t i v i t y a t the time o f the change from p o t a s s i u m - c o n t a i n i n g to potassium-free s o l u t i o n . Symbols as i n F i g . 13. S o l i d l i n e : k i n e t i c model f o r three sodium ions b i n d i n g s u c c e s s i v e l y t o e q u i v a l e n t independent s i t e s per c y c l e o f the t r a n s p o r t enzyme (k = 15 mM, ^ ^0 p e s ) . Dashed l i n e : =  m  efflux  i n t o normal Ringer's  solution,  a  x  from F i g . 12.  148  s o l u t i o n f o r 50 t o 70 minutes, (Na)^ must r i s e , and treatment.  a l t h o u g h i t i s c l e a r from T a b l e I I that  from F i g . 10 t h a t  B i t t a r et a l . a s s e r t  sodium e f f l u x i s a l t e r e d ,  that  (ajj ) a  m  will  be i n c r e a s e d  i n these c e l l s  but i t seems c l e a r t h a t  by  such  the b e h a v i o r o f the  the " e x t r a  e f f l u x " can  r e a s o n a b l y be a t t r i b u t e d to the r a i s e d myoplasmic sodium a c t i v i t y . have not demonstrated external As  that  changes i n the sodium e f f l u x caused by removal  potassium a r e not  (page 190),  the membrane p o t e n t i a l does  p o t a s s i u m i s removed.  steady i s a d e p o l a r i z a t i o n  The  e f f e c t when E  in this particular c e l l ,  although  m  becomes immediately  a f t e r the s o l u t i o n change t h e r e i s a t r a n s i e n t h y p e r p o l a r i z a t i o n . the c e l l s cells  tested,  the net e f f e c t was  i n which ( a ^ ) a  s  w a m  i n p o t a s s i u m - f r e e s o l u t i o n t o that 1.05  for ( a j j )  the r a t i o was  0.06).  g r e a t e r than or equal t o 40 mM  (Note:  times was  t h e r e a r e fewer than 22 p o i n t s  s t a b l e when M^  a  was  solutions  i n normal  (n = 11, SD = 0.02) 1.10  while  (n = 11, SD =  i n F i g . 13 because E  some-  m  not.)  (c) Sodium e f f l u x i n t o sodium-free Sodium-free  For  p r i o r t o the s o l u t i o n change, the  R i n g e r ' s s o l u t i o n p r i o r t o the change was m  I n most o f  found t o be a h y p e r p o l a r i z a t i o n .  l e s s than 40 mM  r a t i o o f the membrane p o t e n t i a l  a  of  reversible.  i l l u s t r a t e d by F i g . 24  change when e x t e r n a l  They  substituted  s u c r o s e were employed ( T a b l e I ) .  solution. with lithium,  tris,  choline,  or  The e f f e c t s on the sodium e f f l u x o f r e -  placement  o f the normal Ringer's s o l u t i o n b a t h i n g a c e l l by one o f the above  solutions  a r e shown i n F i g . 15.  out c o r r e c t i o n  M^  f o r Na* -Q, s i n c e  a  was  i s the r a t i o o f M^  from e q u a t i o n (4) w i t h -  the c o r r e c t i o n cannot be a p p l i e d  e  c o n f i d e n c e when the e f f l u x i s not steady. value plotted  calculated  a  To make comparison  with  easier,  the  a t each time t o the s t e a d y v a l u e o f  H^  found b e f o r e the change from normal R i n g e r ' s s o l u t i o n .  Both  a  i n h i b i t o r y and  149  0.50r •  0  i  i  20  1  i  i  40  time after solution change  •  •  60 (min.)  F i g u r e 15. The e f f e c t on the sodium e f f l u x o f removal o f sodium from the e x t r a c e l l u l a r medium. A t time zero minutes (arrow), the e x t r a c e l l u l a r s o l u t i o n was changed from normal R i n g e r ' s s o l u t i o n t o a sodium-free s o l u t i o n , substituted as i n d i c a t e d . Sodium e f f l u x has been n o r m a l i z e d to 1.0, so each c e l l s e r v e s as i t s own c o n t r o l . I t can be seen from F i g . 16 that the c e l l - t o - c e l l v a r i a t i o n i n the s i z e o f the e f f l u x i n t o normal R i n g e r ' s s o l u t i o n and i n t o the v a r i o u s sodium-free s o l u t i o n s i s so g r e a t t h a t the d i f f e r e n t response to d i f f e r e n t sodium-free s o l u t i o n s i s obscured.  150  s t i m u l a t o r y e f f e c t s can be seen, and the t r a n s i e n t e f f e c t s appear to be different  f o r the d i f f e r e n t s u b s t i t u t e i o n s .  Lithium. in  a  i n 17 o f 22 experiments.  f o l l o w i n g the s o l u t i o n change, M^ an i n i t i a l abrupt f a l l .  a  changed  In the time  fall  immediately  e r r a t i c a l l y , y e t t h e r e was  The r e l a t i v e r e d u c t i o n was  T h i s almost always s e t t l e d It  i n turn.  The replacement o f e x t e r n a l sodium by l i t h i u m caused a  the v a l u e o f M^  17).  They can be c o n s i d e r e d  by 0.30  always  (SD = 0.17,  n =  i n t o a slow d e c l i n e as ( a ^ ^ f e l l .  seemed l i k e l y t h a t both a t r a n s i e n t s t i m u l a t o r y and a  sustained  i n h i b i t o r y e f f e c t r e s u l t e d from the replacement o f the e x t e r n a l sodium by lithium.  The p o r t i o n s o f F i g . 15 which d e a l w i t h the time p e r i o d  immediately  a f t e r the change t o sodium-free s o l u t i o n a r e o n l y p r e s e n t e d as q u a l i t a t i v e results. in  The t r a n s i e n t s i n the sodium e f f l u x w i l l  s e c t i o n 6.  Only the s u s t a i n e d  be d e s c r i b e d  i n h i b i t o r y e f f e c t w i l l be c o n s i d e r e d  I n one experiment, a t v e r y h i g h  ( jr ) , a  as was  here.  the s o l u t i o n change was  a  m  f o l l o w e d by an abrupt drop and then a marked i n c r e a s e t r a c t i o n o f the c e l l ,  separately  found by B r i n l e y (1968).  i n M^,  p l u s a con-  R e t u r n o f the c e l l  t o normal R i n g e r ' s s o l u t i o n seemed t o reduce the e f f l u x o f radiosodium, but M^j  a  c o u l d not be c a l c u l a t e d because the c o n t r a c t i o n d i s l o d g e d  Baker, B l a u s t e i n , Hodgkin  ejt al.  the e l e c t r o d e s .  (1969) have suggested t h a t c o n t r a c t i o n s i n  t h i s s i t u a t i o n might be due to an i n c r e a s e d e n t r y o f c a l c i u m  i n t o the c e l l  via  to i t s usual  the sodium-calcium exchange mechanism o p e r a t i n g o p p o s i t e  manner due t o the absence o f e x t e r n a l sodium. in  squid  They observed such an  effect  axon.  Choline. s o l u t i o n was  I n f i v e experiments where c h o l i n e - s u b s t i t u t e d sodium-free used, the i n i t i a l b e h a v i o r was  abrupt drop i n M^,  again e r r a t i c .  There was  f o l l o w e d by a r i s e to a l e v e l above the i n i t i a l  ( r e l a t i v e i n c r e a s e by 0.17,  SD = 0.14,  n = 5).  Again, the s u s t a i n e d  an  level effect  151  was  a slow d e c l i n e  Tris. was  of the e f f l u x .  I n two experiments where t r i s - s u b s t i t u t e d sodium-free  used, t h e r e was an abrupt r i s e  i n Mj- ( r e l a t i v e i n c r e a s e by 0.36 on a  average), w h i l e a g a i n t h e s u s t a i n e d e f f e c t was a slow d e c l i n e  Sucrose.  solution  I n two experiments where s u c r o s e - s u b s t i t u t e d  o f the e f f l u x .  sodium-free  s o l u t i o n was used, t h e r a d i o s o d i u m e f f l u x r o s e a f t e r t h e s o l u t i o n Measurements o f ( a ^ )  change and  then d e c l i n e d  slowly.  experiments.  The q u a l i t a t i v e b e h a v i o r o f the sodium e f f l u x p r o b a b l y can be  a  m  were n o t done i n these two  deduced from examination o f t h e r a d i o s o d i u m e f f l u x a l o n e i n t h i s case.  As the  indicated  i n Fig.  15, M^  removal o f e x t e r n a l sodium.  decline  t o the f a l l  solution.  of ( a j j ) a  a  seldom a t t a i n e d  a low steady v a l u e  I t seems r e a s o n a b l e t o a t t r i b u t e  as c e l l u l a r sodium i s l o s t  m  i n F i g . 16.  s e c t i o n s 2.F and 4.  a  a t high values o f  Note, however, that  and  solutions.  free solution  f o r Na -Q, and the r e s u l t s ce  (ajr ) , a  m  This  the  (ajr ) a  m  a  choline,  i s t h e b e h a v i o r a f t e r l o n g immersion i n sodium-  (beyond 30 minutes) w h i l e F i g .  v a r i a t i o n o f M^  than the  t h e b e h a v i o r i s t h e same f o r l i t h i u m ,  15 shows i n a d d i t i o n t h e  b e h a v i o r immediately a f t e r t h e change t o sodium-free  range o f  as e x p l a i n e d i n  The v a l u e s a t 30 and 35 mM a r e l e s s c e r t a i n  others.  The  to the bathing  The r e s t r i c t i o n s o f t h i s c o r r e c t e d c a l c u l a t i o n make i t  i m p o s s i b l e t o e s t i m a t e Mjj  tris  t h i s slow  The s i z e o f t h e sodium e f f l u x d u r i n g t h i s slow d e c l i n e was  e s t i m a t e d from e q u a t i o n (4) u s i n g t h e c o r r e c t i o n plotted  after  with  (a^ ) a  m  solution.  c a n be p r e s e n t e d over a s l i g h t l y w i d e r  i f e q u a t i o n (4) i s employed w i t h o u t c o r r e c t i o n .  e f f l u x o f sodium i n t o sodium-free l i t h i u m - s u b s t i t u t e d  p r e s e n t e d as t h e change i n M^  a  I n F i g . 17,  solution i s  o f i n d i v i d u a l c e l l s as sodium i s l o s t  them i n t o t h e sodium-free b a t h i n g s o l u t i o n .  T h i s i s an approximate  from calcula-  152  50 A**  (pes) 25  A nl  0  9 o  •,.<> 0 I  10  20 (° ) N a  30  "40  (mM)  m  F i g u r e 16. Sodium e f f l u x from the c e l l i n t o a sodium-free s o l u t i o n , c a l c u l a t e d from e q u a t i o n (4) w i t h c o r r e c t i o n f o r Na* -^, versus myoplasmic sodium a c t i v i t y a t the time the e f f l u x was c a l c u l a t e d . e  Diamonds: l i t h i u m - s u b s t i t u t e d s o l u t i o n . Circles: Tris-substituted solution. Open symbols: c e l l s d i s s e c t e d on the day o f the experiment. C l o s e d symbols: c e l l s d i s s e c t e d on the day b e f o r e t h a t o f the experiment. Dashed l i n e : e f f l u x i n t o normal Ringer's s o l u t i o n , from F i g . 12. Note: s c a l e i s d i f f e r e n t from F i g . 12.  153  t i o n because o f the time c o n s t a n t s i n v o l v e d and t h e use o f N a £ - Q , £  been d i s c u s s e d i n s e c t i o n 2.F.  A p p l i c a t i o n of the c o r r e c t i o n f o r Na -Q ce  would r a i s e t h e e s t i m a t e o f M^ , a  The range o f C  3  as has  ^ ^ remains  e s p e c i a l l y a t h i g h e r sodium c o n t e n t . j u s t s h o r t o f the r e g i o n o f most  interest,  about 40 mM, a t which  the e f f l u x into potassium-free s o l u t i o n e x h i b i t s a  shoulder.  i n t o sodium-free s o l u t i o n seems not t o have a s h o u l d e r ,  The e f f l u x  and so t o be s i m i l a r t o t h e e f f l u x i n t o normal R i n g e r ' s s o l u t i o n ,  F i g . 12,  but u n f o r t u n a t e l y t h i s cannot be a l l e g e d w i t h c e r t a i n t y on the b a s i s o f t h i s d a t a over t h e f u l l range i n which s o l u t i o n has been measured. ^ N a ^ i t o ( £[ ) i ^ dt a  a  n  a  the e f f l u x i n t o normal R i n g e r ' s  A s i m i l a r i t y between t h e r e l a t i o n s h i p o f  sodium-free and s o d i u m - c o n t a i n i n g s o l u t i o n has been  found i n s n a i l neurone by Thomas (1972b). b a r n a c l e muscle  i s quite s i m i l a r to that  The b e h a v i o r found here f o r found i n s n a i l  (d) Sodium e f f l u x i n t o s o l u t i o n s c o n t a i n i n g In was  t e s t e d on a p a r t i c u l a r c e l l . in (a^)^,  In sodium  a  a  s h o u l d i n c r e a s e as ( a ^ )  r a p i d d e c l i n e i n M^  (a ) c o u l d Na m  t o ouabain causes a  e f f l u x depended on ( ^ ) a  e x p l a i n e d i n Methods, a v a l u e f o r M^  initial of  a  Exposure o f t h e c e l l  as shown i n F i g . 10, and i t was n o t known how  o u a b a i n - i n s e n s i t i v e sodium  submaximal i n h i b i t i o n , M^ As  ouabain.  t h e p r e s e n t s e r i e s o f experiments, o n l y one c o n c e n t r a t i o n o f ouabain  continuing r i s e the  neurone.  a  &  m  m  l  n  increases  the case o f ( F i g . .12).  c o u l d be c a l c u l a t e d o n l y a f t e r t h e  was completed,  so data a t low c o n c e n t r a t i o n s  not. he o b t a i n e d .  F i g . 18, t h e dependence o f t h e sodium e f f l u x on the myoplasmic activity  i n t h e presence o f ouabain i s p r e s e n t e d .  from e q u a t i o n (4) w i t h t h e c o r r e c t i o n f o r Na -Q. ce  ouabain (,- .r c i r c l e s ) ,  Mjj was c a l c u l a t e d a  I n the presence o f 10  t h e sodium e f f l u x i n t o normal R i n g e r ' s s o l u t i o n i s  s i m i l a r t o but s m a l l e r than t h a t i n t o normal R i n g e r ' s s o l u t i o n  which  M  154  F i g u r e 17. Sodium e f f l u x from the c e l l i n t o sodium-free s o l u t i o n , c a l c u l a t e d from e q u a t i o n (4) w i t h o u t c o r r e c t i o n  lithium-substituted f o r N a * ^ , versus e  myoplasmic sodium a c t i v i t y . Each l i n e r e p r e s e n t s a s i n g l e c e l l , and the change i n the sodium e f f l u x as the myoplasmic sodium a c t i v i t y d e c l i n e d d u r i n g immersion o f the c e l l i n the sodium-free s o l u t i o n . T h i s i s an approximate c a l c u l a t i o n , as e x p l a i n e d i n the t e x t . The dashed l i n e i s the c o r r e s p o n d i n g approximate c a l c u l a t i o n f o r e f f l u x i n t o normal R i n g e r ' s s o l u t i o n ( F i g . 11).  155  F i g u r e 18.  Sodium e f f l u x from the c e l l i n t o normal R i n g e r ' s s o l u t i o n t o -6 -4 which had been added 10 M ( c i r c l e s ) o r 10 M (diamonds) ouabain, v e r s u s myoplasmic sodium a c t i v i t y . Open symbols r e p r e s e n t c e l l s d i s s e c t e d on the day o f the experiment. C l o s e d symbols r e p r e s e n t c e l l s d i s s e c t e d the day before t h a t o f the experiment. S o l i d l i n e : k i n e t i c model f o r three sodium ions b i n d i n g s u c c e s s i v e l y to e q u i v a l e n t independent s i t e s per c y c l e o f the t r a n s p o r t enzyme (k = 15 mM, M = 5 5 p e s ) . Dashed l i n e : e f f l u x i n t o normal max  *  R i n g e r s s o l u t i o n , from F i g u r e 12. i n s t a n c e i s e x p l a i n e d i n the t e x t .  C o r r e c t i o n f o r Na  used i n t h i s  156  c o n t a i n s no ouabain ( F i g . 12 and broken l i n e  i n F i g . 18).  I n the presence  -4 of  10  M ouabain ('  diamonds  ), the sodium e f f l u x d i f f e r s  b e i n g much reduced a t h i g h e r sodium  markedly,  concentrations.  The sodium e f f l u x i n t o normal R i n g e r ' s s o l u t i o n i n the presence o f 10 M ouabain shows o n l y a weak dependence on ( a j j ) . I t i s v e r y s i m i l a r to a  -4  m  -4 the  e f f l u x i n t o p o t a s s i u m - f r e e s o l u t i o n ( F i g . 14).  almost t o t a l which  I f 10  M ouabain y i e l d s  i n h i b i t i o n o f the (Na+K)ATPase, F i g . 18 shows the sodium  i s mediated by o t h e r t r a n s p o r t mechanisms. The c o n s t r u c t i o n o f a dose-response curve i s made d i f f i c u l t  f a c t t h a t the e f f l u x depends q u i t e s t r o n g l y on ( £ j ) a  a  m  sodium t r a n s p o r t system can r e s u l t  i n h i b i t i o n of  i n appreciable increases i n ( a j j ) . a  A dose-response curve c o u l d be c o n s t r u c t e d by comparing for  by the  a t ouabain c o n c e n t r a -  t i o n s which y i e l d submaximal i n h i b i t i o n , w h i l e even p a r t i a l the  a  curve s h o u l d r e p r e s e n t c e l l s so much s c a t t e r  m  the e f f l u x measured  i n the data, t h i s endeavour was  dose-response  Because  there i s  thwarted by the absence o f  i n a s m a l l range o f (ajja^m"  Q u a l i t a t i v e o b s e r v a t i o n s can be made. c o n t a i n i n g 10"^,  The e n t i r e  o f s i m i l a r sodium c o n t e n t .  a l a r g e number o f e x p e r i m e n t a l p o i n t s  10"**, or 10"^ M ouabain.  There was  no e f f e c t o f s o l u t i o n s  The e f f e c t o f 10"^ M ouabain i s  seen i n F i g . 18 t o be s l i g h t , w h i l e the e f f e c t o f 10"^ M ouabain was The b i n d i n g o f ouabain to an enzyme r e n d e r s i t unable to t r a n s p o r t  marked. sodium,  the many enzymes which do not have ouabain bound t o them c o n s t i t u t e a  v e r y l a r g e f u n c t i o n a l r e s e r v e o f sodium e x t r u s i o n . responded o n l y t o the myoplasmic of  m  a g i v e n c o n c e n t r a t i o n o f ouabain w i t h the e f f l u x i n t o normal R i n g e r ' s  s o l u t i o n a t the same v a l u e o f (a-j| ) > v i a F i g . 12.  but  efflux  ( ^ ) a  a  m  sodium a c t i v i t y ,  Yet i f the enzyme the e f f l u x a t a g i v e n v a l u e  i n the presence o f enough ouabain t o b i n d t o the enzymes a p p r e c i -  ably should r e s u l t case i n F i g . 18.  i n a lower t o t a l sodium e f f l u x .  T h i s appears t o be  I n o r d e r to c h a r a c t e r i z e the dose-response t o ouabain  the  157  p r o p e r l y , more data Brinley  f o r 10 ° M and  10  3  (1968) used the technique  M ouabain must be o f exposing  obtained.  the c e l l  to a s e r i e s o f  s o l u t i o n s each w i t h a g r e a t e r c o n c e n t r a t i o n of s t r o p h a n t h i d i n than the preceding  one.  He  a l s o d i d experiments i n which o n l y a s i n g l e c o n c e n t r a t i o n  of s t r o p h a n t h i d i n was maximal i n h i b i t i o n  used on a c e l l ,  (about  5 x 10 ~* M) .  of the sodium e f f l u x to be g r e a t e r content for  (Na) „  This  a t the c o n c e n t r a t i o n judged to y i e l d  i s confirmed  He  found the f r a c t i o n a l  in cells  of lower estimated  by F i g . 18.  inhibition sodium  B r i n l e y found t h a t the dose  half-maximal i n h i b i t i o n o f the sodium e f f l u x by s t r o p h a n t h i d i n v a r i e d  from about 1 x 10 ^ M f o r c e l l s  B i t t a r at al.  to about 5 x 10 ^ M  cells  for  half-maximal i n h i b i t i o n by ouabain o f about 5 x 10 ^ f o r b a r n a c l e 18  sodium content.  sodium content  for  Fig.  of h i g h e r  of low  (1973) r e p o r t e d a dose  i n d i c a t e s t h a t the a c t u a l dose o f ouabain f o r half-maximal  i s g r e a t e r than 10  -6  M except a t r e l a t i v e l y low sodium  muscle.  inhibition  content.  DISCUSSION  Microinjection. I t was  noted i n s e c t i o n 4 t h a t m i c r o i n j e c t i o n causes o n l y t r a n s i e n t  changes i n the p e r m e a b i l i t y , b a r n a c l e muscle c e l l . NaCl a r e  An  i o n content,  and  e x c e p t i o n might be when c o n c e n t r a t e d  t e c h n i c a l problem has  been i d e n t i f i e d ,  l o n g i t u d i n a l d i f f u s i o n of i n j e c t e d radiosodium  the c e l l  Mixing  (a^ ) . a  m  i n what appears to  i n t o non injected?;-, r e g i o n s  i n the r a d i a l d i r e c t i o n s a l o n g the  appears to be q u i t e r a p i d .  the  s o l u t i o n s of  i n j e c t e d , as t h i s o f t e n r e s u l t e d i n a s u s t a i n e d r i s e i n  A significant  the c e l l .  t r a n s p o r t p r o p e r t i e s of  i n j e c t e d portion of  be of  158  An  attempt was made t o i n j e c t a l o n g segment o f the c e l l ,  radiosodium only along t h i s longitudinal  region.  T h i s reduced the e f f e c t o f  d i f f u s i o n , but d i d not e l i m i n a t e i t .  A correction This  injected  and t o c o l l e c t  f o r the e f f e c t o f l o n g i t u d i n a l  d i f f u s i o n has been d e s c r i b e d .  i n v o l v e s no assumptions beyond those i m p l i c i t i n the statement o f the 23  r e l a t i o n between the f l u x o f r a d i o s o d i u m and the f l u x o f fundamental assumption o f the t r a c e r the  technique.  Na, that  I t can o n l y be a p p l i e d i n  form p r e s e n t e d when the r a t e a t which sodium i s e x p e l l e d  is constant.  i s , the  from the c e l l  C o r r e c t i o n a t other times r e q u i r e s a c a l c u l a t i o n  o f the r a t e  o f change o f the sodium e f f l u x . Calculation  o f t h e sodium e f f l u x was a v o i d e d d u r i n g t h e i n t e r v a l s i n  which the sodium content o f the c e l l was changing r a p i d l y ,  such as immed-  i a t e l y a f t e r c e r t a i n changes i n the c o m p o s i t i o n o f the e x t e r n a l because i t was not c l e a r whether the i n t e r i o r o f the c e l l to be w e l l - m i x e d a t such times.  Similarly,  c o u l d be assumed  the a p p l i c a b i l i t y o f the f l u x  model when the sodium e f f l u x was v e r y r a p i d was not known. that limit  an ' u n s t i r r e d  i n such c i r c u m s t a n c e s .  In t h i s c o n n e c t i o n , the data o f F i g s .  (Fig.  I t i s thought  l a y e r ' a t the i n t e r n a l s u r f a c e o f the c e l l membrane c o u l d  the sodium e f f l u x  flux calculated  a t each i n s t a n t  16 and 17 a r e o f i n t e r e s t .  conditions  a  a  ( F i g . 16).  o f the e f f l u x by an u n s t i r r e d  layer  a  a  lithium  m  s h o u l d l a g as w e l l  m  calculated  I f t h e r e were a p p r e c i a b l e  limitation  a t the i n t e r n a l s u r f a c e o f the c e l l  membrane, the former should be l e s s than t h e l a t t e r . value of ( j g )  The  d u r i n g r e l a t i v e l y r a p i d changes i n ( ] ; j )  17) appears i f a n y t h i n g t o exceed the c o r r e s p o n d i n g f l u x  during steadier  solution,  Of course, the measured  during f i l m - c o n t r o l l e d  d i f f u s i o n , and  i s thought t o be a b l e t o s t i m u l a t e the sodium e f f l u x as potassium  does, but a l t o g e t h e r i t appears that which i s d i f f u s i v e ,  r a d i a l mixing o f ions i n s i d e  the c e l l ,  i s n o t a g r e a t problem w i t h t h e t i m e . r e s o l u t i o n a t t a i n -  159  able  i n the p r e s e n t The  implications of this,  the d i s t a n c e is  small.  so.  flux studies. to continue t h i s s p e c u l a t i o n further, i s that  from any p o i n t i n the i n t e r i o r o f the c e l l  t o the c e l l  I t i s known t h a t the c l e f t system i n b a r n a c l e  Further,  membrane  muscle makes t h i s  i t i s i m p l i e d t h a t the t r a n s p o r t p r o p e r t i e s  o f the membrane  l i n i n g the deep c l e f t s a r e s i m i l a r t o those o f the r e s t o f the c e l l membrane. T h i s seems r e a s o n a b l e from a f u n c t i o n a l p o i n t o f view, but o f course cannot be  concluded w i t h c e r t a i n t y from these  considerations.  In p r a c t i c a l terms, one c o u l d attempt t o reduce the e f f e c t s o f l o n g i t u d i n a l d i f f u s i o n f u r t h e r by i n j e c t i n g a longer r e g i o n o f the c e l l and c o l l e c t i n g i s o t o p e o n l y a t the c e n t r e  of the i n j e c t e d region.  t e c h n i q u e o f m i c r o i n j e c t i o n more d i f f i c u l t , of l o n g i t u d i n a l d i f f u s i o n n e g l i g i b l e .  T h i s would make the  and might not make the e f f e c t  O v e r a l l , passive  l o a d i n g seems  p r e f e r a b l e f o r sodium e f f l u x s t u d i e s , even though i t r e q u i r e s  prolonged  immersion o f the d i s s e c t e d c e l l s p r i o r t o the performance o f the experiment. The  c o r r e c t i o n devised  here f o r the m i c r o i n j e c t i o n t e c h n i q u e i s as f u l l y  j u s t i f i e d as t h e use o f the t r a c e r t e c h n i q u e i t s e l f . rule,  i t seems d e s i r a b l e  to design  experiments so t h a t the l e a s t manipula-  t i o n o f the raw data must be done b e f o r e i n v e s t i g a t i o n can be  Aged The  However, as a g e n e r a l  an answer t o the q u e s t i o n  under  obtained.  cells. maintenance o f d i s s e c t e d b a r n a c l e  muscle c e l l s  s o l u t i o n has been shown t o a f f e c t the c e l l s but l i t t l e .  i n normal R i n g e r ' s The c e l l s  tend t o  g a i n sodium and l o s e potassium, but t h e membrane p o t e n t i a l and water c o n t e n t remain constant  (eg. T a b l e I I ) .  I n the e f f l u x experiments i t has been  found t h a t the b e h a v i o r o f f r e s h and day-old 14;  16 w i t h l e s s c e r t a i n t y ; and 18).  cells  i s t h e same ( F i g s . 11;  The d i f f e r e n c e i n the response o f  160  ' f r e s h ' and  'aged' f r o g s k e l e t a l muscle c e l l s noted above i s p r o b a b l y due to  differences  i n the sodium content, as noted f o r example by Keynes and  S t e i n h a r d t (1968).  . Modes o f sodium e x t r u s i o n . The dependence o f the sodium e f f l u x on the sodium content o f the b a r n a c l e muscle, f o r e f f l u x  i n t o normal Ringer's s o l u t i o n ,  i s s i m i l a r to  t h a t r e p o r t e d i n s n a i l neurone (Thomas 1972b) and i n s q u i d axon (Hodgkin & Keynes 1956; S j o d i n & Beauge 1967; B r i n l e y & M u l l i n s 1968). from t h a t r e p o r t e d  i n r e d blood c e l l s  s k e l e t a l muscle ( H a r r i s 1965)  (Garay & Garrahan 1973) and i n f r o g  i n the f a i l u r e to d e t e c t s a t u r a t i o n even a t  r e l a t i v e l y h i g h l e v e l s o f i n t r a c e l l u l a r sodium content. from the r e s u l t s o f B r i n l e y muscle c e l l s ,  It is different  (1968) and o f B i t t a r e t al.  I t also  differs  (1972) f o r b a r n a c l e  almost c e r t a i n l y because o f the problems i n v o l v e d i n working  w i t h m i c r o i n j e c t i o n , as d i s c u s s e d a t l e n g t h above and i n s e c t i o n 4. The s t r i k i n g  f e a t u r e o f the dependence  i s the apparent absence o f  s a t u r a t i o n a t myoplasmic sodium a c t i v i t i e s up t o 50 mM and perhaps up to 70 mM.  I t i s not clear-why the b a r n a c l e muscle c e l l  l a r g e f u n c t i o n a l r e s e r v e f o r sodium e x t r u s i o n .  s h o u l d have such a  A c t i o n p o t e n t i a l s do not  propagate i n the b a r n a c l e muscle c e l l membrane under o r d i n a r y c o n d i t i o n s , so  t h i s cannot be a l a r g e source o f sodium i n f l u x _in v i v o .  Perhaps a  sodium-calcium exchange a c r o s s the c e l l membrane i s r e q u i r e d f o r r e l a x a t i o n of  the muscle, s i n c e i t s s a r c o p l a s m i c r e t i c u l u m i s so s m a l l .  Frog  striated  muscle, by comparison, shows s a t u r a t i o n a t r e l a t i v e l y low sodium content ( s h o u l d e r a t about 10 m i l l i m o l e sodium per kg t i s s u e - H a r r i s  1965).  The e f f l u x i n t o normal R i n g e r ' s s o l u t i o n i s thought t o be composed o f s e v e r a l components.  The dominant ones a r e thought to be sodium-potassium  exchange v i a the (Na+K)ATPase and sodium-sodium exchange v i a some other  161  mechanism, as noted i n t h e I n t r o d u c t i o n .  A s m a l l c o n t r i b u t i o n appears to  be made by t h e sodium-sodium exchange mode o f t h e (Na+K)ATPase i n potassiumf r e e s o l u t i o n and i n e n e r g y - d e p l e t e d c e l l s , sodium exchange has been r e p o r t e d conditions  (Keynes & S t e i n h a r d t  since a ouabain-sensitive  sodium-  i n f r o g s k e l e t a l muscle under these  1968; Kennedy & De Weer 1976).  Thus the  i n t e r p r e t a t i o n o f F i g . 12 must be c a r r i e d out by comparison w i t h the c o r r e s ponding p l o t s when one o r another o f t h e sodium e x t r u s i o n mechanisms i s disabled.  For t h i s purpose, t h e curves f i t t e d  by eye t o F i g s . 12, 14, 16,  and 18 a r e c o l l e c t e d i n F i g . 19. The dependence  o f M^  on ( ^ ) a  a  a  i  n  t  n  m  e  absence o f e x t e r n a l p o t a s s i u m  and t h a t i n the.presence o f 10"^ M ouabain a r e c l o s e l y c o r r e l a t e d , but d i f f e r from t h e dependence saturation.  This  i n normal R i n g e r ' s s o l u t i o n i n t h a t they show a d e f i n i t e  i s c o n s i s t e n t w i t h t h e h y p o t h e s i s t h a t a dominant mode o f  sodium e x t r u s i o n i s t h e sodium-potassium exchange mode o f t h e (Na+K)ATPase. The e f f l u x which remains i n the presence o f ouabain o r i n t h e absence of external potassium r e f l e c t s  t h e maximum c o n t r i b u t i o n t h a t other mechan-  isms can make t o the t o t a l sodium e f f l u x . great- as. t h e e f f l u x range'.  T h i s appears t o be almost as  i n t o normal R i n g e r ' s s o l u t i o n over t h e ' p h y s i o l o g i c a l  However, i t i s w i d e l y h e l d t h a t t h i s  i s mostly t i g h t l y - l i n k e d  sodium-sodium exchange, and so i n e f f e c t u a l as f a r as sodium r e g u l a t i o n i s concerned.  Further,  seems t o f a l l the  influx.  even i f t h i s were a l l e f f e c t i v e sodium e x t r u s i o n , i t  s h o r t o f what i s needed under normal c o n d i t i o n s  Thus exposure t o ouabain o r removal o f e x t e r n a l p o t a s s i u m w i l l  cause the sodium e f f l u x t o f a l l  below t h e sodium i n f l u x .  s t e a d i l y , and t h e s p e c i f i c a c t i v i t y o f t h e myoplasm w i l l will  to balance  cause a r e d u c t i o n This reduction  ( Na^m ' a  w:  ii  be reduced.  r  i  i n the e f f l u x o f r a d i o s o d i u m c o u l d be i n t e r p r e t e d as i n the sodium e f f l u x ,  i f the myoplasmic  e  This  i n the e f f l u x o f radiosodium.  representative of a f a l l  s  sodium  162  F i g u r e 19. Summary o f sodium e f f l u x from the c e l l i n t o v a r i o u s s o l u t i o n s , e x t r a c t e d from F i g u r e s 12 (normal Ringer's s o l u t i o n - s o l i d c u r v e ) , 14 ( p o t a s s i u m - f r e e s o l u t i o n - lower dashed c u r v e ) , 16 (sodium-free s o l u t i o n upper dashed curve, r e p r e s e n t i n g c h o l i n e ) , and 18 (ouabain i n normal Ringer's s o l u t i o n a t 10 ^ M - l i n e as f o r p o t a s s i u m - f r e e s o l u t i o n ) . The r e l a t i v e p o s i t i o n o f the d i f f e r e n t curves over the p h y s i o l o g i c a l range, (approx. 10 - 20 mM) was deduced form the b e h a v i o r o f a c e l l compared t o i t s e l f as c o n t r o l , f o r a g i v e n t e s t s o l u t i o n . The s c a t t e r o f the grouped data does not permit the r e l a t i v e p o s i t i o n s t o be d i s t i n g u i s h e d over t h i s range. Thus; the e f f l u x a t a g i v e n v a l u e o f (a., ) i n c r e a s e s when the ° Na m e x t e r n a l s o l u t i o n i s changed from normal R i n g e r ' s s o l u t i o n to sodium-free c h o l i n e - s u b s t i t u t e d s o l u t i o n , but decreases when i t i s changed t o a p o t a s s i u m - f r e e s o l u t i o n or to one c o n t a i n i n g ouabain. The curves f o r the -4 l a t t e r two cases (with 10 M ouabain) are almost i n d i s t i n g u i s h a b l e i n the p r e s e n t s e r i e s o f experiments, and the e f f l u x i n t o p o t a s s i u m - f r e e ouabainc o n t a i n i n g s o l u t i o n was not examined. The curve f o r sodium-free l i t h i u m s u b s t i t u t e d s o l u t i o n would be p a r a l l e l t o the c h o l i n e curve, but below the normal curve. b  163 activity  i s not monitored f o r the purpose o f c a l c u l a t i n g the sodium e f f l u x  from r a d i o i s o t o p e movement.  That i s ,  the f a l l  i n the sodium e f f l u x due t o  i n h i b i t i o n o f the pump might have been o v e r e s t i m a t e d i n the p a s t . If  the mechanism which remains o p e r a t i o n a l i n the absence o f e x t e r n a l  potassium and i n the presence o f ouabain does indeed r e p r e s e n t exchange,  sodium-sodium  then i t s h o u l d be markedly reduced, i f n o t e l i m i n a t e d , by the  removal o f sodium from the b a t h i n g s o l u t i o n .  I t has been found by o t h e r  workers, however, t h a t removal o f e x t e r n a l sodium and potassium, even when combined w i t h exposure t o ouabain, does n o t reduce the sodium e f f l u x t o the l e v e l expected i f o n l y p a s s i v e f l u x e s a r e p r e s e n t  (eg. B r i n l e y 1968).  Only  when ATP i s almost c o m p l e t e l y removed from the c e l l and i n h i b i t o r s o f metabolism a r e a p p l i e d a r e the f l u x e s reduced t o the p a s s i v e r a t e s , as d i s c u s s e d i n s e c t i o n 2. It  appears from F i g . 19 t h a t f o r b a r n a c l e muscle c e l l s  the e f f l u x o f  sodium i n t o sodium-free s o l u t i o n i s v e r y s i m i l a r to the e f f l u x i n t o normal Ringer's s o l u t i o n .  Further,  t h i s appears t o be independent o f the c a t i o n  used i n p l a c e o f sodium i n the b a t h i n g s o l u t i o n but  hardly l i k e l y  ( F i g . 16).  t h a t these c a t i o n s c o u l d each s u b s t i t u t e  Is i s c o n c e i v a b l e f o r sodium i n a  sodium-sodium exchange, o r e n t e r the c e l l by some other path, t o y i e l d the b e h a v i o r observed. solution reflects  I f i t i s assumed t h a t the e f f l u x i n t o normal R i n g e r ' s  the normal o p e r a t i o n o f the c e l l ,  i t appears t h a t a sodium  e f f l u x which depends on e x t e r n a l sodium c o n t r i b u t e s l i t t l e in  b a r n a c l e muscle  to the normal  flux  cells.  Through the use o f the i n t r a c e l l u l a r s o d i u m - s p e c i f i c m i c r o e l e c t r o d e , the net  r e d u c t i o n i n the sodium e f f l u x seen when the b a t h i n g s o l u t i o n i s changed  from one c o n t a i n i n g sodium to one n o t c o n t a i n i n g sodium has been r e v e a l e d to be due t o the consequent f a l l of  (a„ ) and somewhat beyond. Na'm v  J  in ( ^ ) ' ° a  a  m  v  e  r  the ' p h y s i o l o g i c a l range'  That the e f f l u x  i n t o sodium-free s o l u t i o n  seems t o be s l i g h t l y  g r e a t e r i n magnitude  than the e f f l u x  into  sodium-  containing solutions  i s c o n s i s t e n t w i t h the f i n d i n g o f o t h e r workers  164  t h a t e x t e r n a l sodium can i n h i b i t l i t h i u m probably r e f l e c t  the sodium e f f l u x .  i n a d d i t i o n the a b i l i t y  l i k e potassium (eg. Beauge  The  first  o f l i t h i u m to s t i m u l a t e  1975).  The e x i s t e n c e o f sodium-sodium exchange was (1949).  The r e s u l t s w i t h  first  suggested by U s s i n g  evidence i n f a v o u r o f i t s e x i s t e n c e i n muscle c e l l s  was  p r e s e n t e d by Keynes and Swan (1959) and t h e i r r e s u l t s demand c l o s e r c o n s i d e r a tion.  In t h e i r experiments, whole muscles  o f f r o g s were loaded w i t h r a d i o -  24 sodium  (  Na)  by immersion  f o r about 3.5  s o l u t i o n which c o n t a i n e d radiosodium. 5 o r 10 minute  muscle d u r i n g each i n t e r v a l  The muscle was  f r o g Ringer's  then t r a n s f e r r e d a t  The amount of r a d i o a c t i v i t y  ( c a l l e d Na*  c o r r e c t e d f o r decay o f t h i s s h o r t - l i v e d a g a i n s t time.  i n normal  i n t e r v a l s through a s u c c e s s i o n o f t e s t - t u b e s c o n t a i n i n g  i n a c t i v e R i n g e r ' s or other s o l u t i o n . the  hours  i n t h i s t h e s i s ) was  i s o t o p e , and p l o t t e d  leaving  measured,  logarithmically  T h e i r e s t i m a t e o f changes i n t h e . r a t e o f l o s s o f sodium,  23 that i s , of of  Na,  from the muscle c e l l s were c a l c u l a t e d from displacements  t h i s curve caused by changes i n the i o n i c c o m p o s i t i o n o f the medium. They found t h a t the s l o p e "k£" o f the p l o t o f l n Na  c o n s t a n t d u r i n g e f f l u x i n t o normal s l o p e "k|" of the p l o t o f l n N a * was  frog Ringer's s o l u t i o n . versus time was  c a l c u l a t e d by b a c k - a d d i t i o n as was  experiments —l/—1  e l l  W  a  S  v  e  on b a r n a c l e muscle r  y  c  l°  s e  versus time t o be L i k e w i s e , the  c o n s t a n t , where N a *  done i n the p r e s e n t s e r i e s o f  (see Methods, s e c t i o n 4 ) .  The s l o p e r a t i o  to u n i t y , as expected f o r p a s s i v e l y - l o a d e d  When the e x t e r n a l s o l u t i o n was  e l l  changed from normal  t i o n to sodium-free l i t h i u m - s u b s t i t u t e d s o l u t i o n ,  cells.  frog Ringer's s o l u -  the v a l u e o f Na  decreased.  The p l o t o f In Na* versus time assumed a s t e a d i e r , almost l i n e a r s l o p e ii  "k^" a f t e r about 20 minutes. time e x h i b i t e d a break, substituted solution.  The s l o p e o f the p l o t o f l n N a  to a new  c e  ii  s m a l l e r s l o p e " ^ " f o r sodium-free  Keynes and Swan found t h a t k^/loj was  versus lithium-  c l o s e t o 3.  165  I t was t h i s d i s c r e p a n c y  t h a t gave r i s e t o t h e i r enquiry  models f o r the n a t u r e o f the sodium e f f l u x . Na*  into different  They c o n s i d e r e d  the p l o t o f  v e r s u s Na* -Q f o r e f f l u x i n t o sodium-free s o l u t i o n , which i s l i k e a e  power f u n c t i o n w i t h power t h r e e , and f i n a l l y s e t t l e d on a model i n which sodium i s t r a n s p o r t e d at  the r e a s o n f o r the v a l u e  i s q u i t e simple.  as  from a s i n g l e homogeneous compartment,  a r a t e p r o p o r t i o n a l t o t h e cube o f the sodium content o f the c e l l . In f a c t ,  the  out o f t h e c e l l  2 2  2 4  2  transported  Then no matter what the mechanism by which sodium i s  out o f the compartment, as l o n g as the r a t e o f sodium t r a n s p o r t  amount o f t r a c e r l e f t  i n the compartment  be p r o p o r t i o n a l o n l y t o the  (assuming no b a c k f l u x ) .  = -k x Na* where k i s a p o s i t i v e constant. cell ^  the e x p o n e n t i a l constant  than u n i t y  i s i n a w e l l - m i x e d compartment, and behaves j u s t  i s steady the r a t e o f e f f l u x o f t r a c e r w i l l  dNa -z—cell at  greater  The fundamental assumption o f the t r a c e r technique i s t h a t  t r a c e r ( N a o r N a) the - % a does.  o f k^/k^ being  function :  This equation ^  Na* -Q = N a * ^ ^ ( t = 0 ) . e x p ( - k t ) . e  Thus,  e  defines  The 'rate  k f o r r a d i o s o d i u m e f f l u x i s determined by t h e r a t e o f the sodium  1  efflux.  When t h i s r a t e i s steady, k i s c o n s t a n t  versus time i s l i n e a r . s o l u t i o n f o r frog,as  and the p l o t o f In Na ;Q ce  T h i s occurs f o r e f f l u x i n t o normal Ringer's  i t does f o r b a r n a c l e  muscle, but n o t f o r sodium-free  solution. If  t h e r a t e o f mixing i n the compartment i s always r a p i d compared t o  the r a t e o f t r a n s p o r t out o f the compartment  (which i s an assumption o f  the t r a c e r method), then a s i m i l a r s i t u a t i o n should o f time even when the r a t e o f sodium t r a n s p o r t Na*  e l l  (t)  =  i s changing:  Na* (t=0)-exp(-k(t)-t)  where now the 'rate c o n s t a n t ' The  occur a t each i n s t a n t  e U  k i s a f u n c t i o n o f time. •k  r a t e o f change o f N a - Q must r e f l e c t both the r a t e o f sodium ce  166  t r a n s p o r t and for  the r a t .  o f change o f the sodium t r a n s p o r t , and  e  the v a l u e o f ^ 2 ^ 2  f° d  dNa* dt  =  e l l  then  ic  d dt  versus  i  n  experimentally  of  'pseudo-calculus' • ic  time  i s a p l o t o f In d N a e l l versus dt C  dNa* -Q; t h i s dt e  is collected  - Na*/dt  where a g a i n the shorthand Na  i n s i d e the c e l l i s  i n i n t e r v a l A t of time an amount o f r a d i o s o d i u m Na*  i n the b a t h i n g s o l u t i o n ,  accounts  i n frog.  u n  More f o r m a l l y , i f the t o t a l amount of r a d i o s o d i u m N ^ c e l l ' and  this  i s "k"' of Keynes and Swan.  i s employed. time, and  A plot of l n  i t s slope is  A p l o t of l n N a * l l e  versus  ic  time has forward  s l o p e d_ In dt  ^ ' nl a  this  ce  i s "k" o f Keynes and Swan.  Straight-  d i f f e r e n t i a t i o n o f the above e x p r e s s i o n f o r N a - ^ ^ ( t ) r e v e a l s : ce  ( k ( t ) ..+ t ^ , ) dt  2  ( k(t) and  k  =  ( k(t)  +  t ^ dt  "  ( 2 ^ + dt  +  t ^ )  )  ) .  When k ( t ) i s c o n s t a n t , as i n normal Ringer's  s o l u t i o n , where (Na)^ i s  steady,  been noted  then k' = k = k and k'/k  = 1, as has  However, when the muscle i s i n sodium-free r o u g h l y as an e x p o n e n t i a l f u n c t i o n o f time 1976), and  so k ( t ) w i l l  fall. (  k'/v  It  = "  solution,  (Na)^ w i l l  fall  i n f r o g muscle (White & Hinke  Then dk  ?  before.  d k 2  1  i s not unreasonable  (  k  ( t )  +  t f )  2  *  to assume s o l e l y f o r the purposes of t h i s d i s c u s s i o n  t h a t the d e c l i n e o f k ( t ) i s a l s o d e s c r i b a b l e by an e x p o n e n t i a l f u n c t i o n :  167  k(t)  k  Q  exp(-bt) where b i s a p o s i t i v e c o n s t a n t , r o u g h l y equal t o  min"''" a f t e r the f i r s t  0.01  20 minutes f o r f r o g muscle (White & Hinke 1976).  Then k'/  ~  k  1  -  b ( b-t - 2 ) k ( 1 - b-t )  and k'/k. w i l l  exceed u n i t y w h i l e b-1<  t a t i v e example i s d u r i n g the f i r s t  2  2, which i n t h i s v e r y rough,  200  The c o n c l u s i o n t o be drawn, then,  semiquanti-  minutes. i s t h a t the " d i s c r e p a n c y " which l e d  Keynes and Swan (1959) and Keynes and S t e i n h a r d t (1968) to p o s t u l a t e the e x i s t e n c e o f more than one of  i n t r a c e l l u l a r compartment was  a misinterpretation  the t r a c e r data. Similarily,  the " p l a t e a u s " found by M u l l i n s and  Frumento (1963) f o r  r a d i o s o d i u m e f f l u x from f r o g s k e l e t a l muscle i n t o sodium-free be accounted  f o r by the above e x p r e s s i o n f o r k',  they proposed  need not be  and  which occur as  can  the e l e c t r i c a l c o u p l i n g  invoked.  F u r t h e r , a l l o f the r e s u l t s on the sodium-free can be accounted  solution  effect  i n f r o g muscle  f o r i n terms o f the changes i n the r a t e o f sodium e f f l u x  (Na) ^ changes.  I t i s i n t e r e s t i n g t h a t Keynes and Swan (1959)  and Keynes and S t e i n h a r d t (1968) t r i e d t o account  for their results  by  p o s t u l a t i n g t h a t sodium-sodium exchange o c c u r r e d a t low v a l u e s o f (Na)^ but not a t h i g h v a l u e s .  That  l a t i o n s o f the muscle c e l l sodium e x p u l s i o n on  i s , they acknowledged the e f f e c t o f t h e i r manipuon  (Na)^, and the dependence o f the r a t e o f  (Na)^, but d i d not take these f e a t u r e s i n t o account  t h e i r a n a l y s i s o f t h e i r t r a c e r data. (Na). c o u l d d e c l i n e so p r e c i p i t o u s l y R e c o g n i t i o n o f t h i s e f f e c t has  A p p a r e n t l y they d i d not f e e l i n sodium-free  1977).  that  (Keynes 1965).  come from measurements w i t h s o d i u m - s p e c i f i c  i n t r a c e l l u l a r m i c r o e l e c t r o d e s (Thomas 1972bJones  solution  in  White & Hinke 1976;  Vaughan-  168  The r e s u l t s  imply t h a t the b e h a v i o r o f the sodium t r a n s p o r t  i s much more s t r a i g h t f o r w a r d than p r e v i o u s l y had been thought. sodium-sodium exchange which was  The  linked  supposed to be o u a b a i n - i n s e n s i t i v e and to  comprise almost h a l f o f the sodium t r a n s p o r t measured occur i n b a r n a c l e muscle.  i n muscle  i n muscle does not  Evidence p r e v i o u s l y presented f o r i t s existence  i n f r o g muscle has been shown t o be i n c o r r e c t .  In t h i s connection, i t i s  i n t e r e s t i n g t h a t when (Na)^ was m a i n t a i n e d by i n t e r n a l d i a l y s i s  i n squid  axon, sodium-free s o l u t i o n s caused no r e d u c t i o n i n the sodium e f f l u x as l o n g as ATP was  i n c l u d e d i n the d i a l y s i s  s o l u t i o n ( M u l l i n s & B r i n l e y 1967).  The v a r i o u s e f f e c t s on the sodium e f f l u x o f ouabain or changes i n the i o n i c c o m p o s i t i o n o f the e x t e r n a l s o l u t i o n , r e p o r t e d h e r e f o r b a r n a c l e and by o t h e r s f o r f r o g muscle, appear almost a l l o f F i g . 19.  Most o f the r e s u l t s  I t . almost-seems  t o be e x p l a i n e d by the curves  i n nerve can be e x p l a i n e d  t h a t the overwhelming dominant mode o f sodium t r a n s p o r t  i n muscle and nerve, and perhaps i n most c e l l s ,  under normal c o n d i t i o n s , i s  the sodium-potassium exchange mode o f the (Na+K)ATPase.  However, i t would  have to be proposed i n a d d i t i o n t h a t exposure o f the c e l l s cannot i n h i b i t a l l  i n l i k e manner.  t o ouabain  o f the t r a n s p o r t enzymes i n the c e l l membrane, as  suggested, for.example, by B r i n l e y which l e a k s out o f the c e l l  (1968), and t h a t  ' r e c y c l i n g ' o f potassium  i n t o p o t a s s i u m - f r e e s o l u t i o n can occur, as  s u g g e s t e d , J f o r example, by. Beauge (1975).  The c o n t r i b u t i o n o f sodium t r a n s -  p o r t modes i n v o l v i n g c a l c i u m , amino a c i d s ,  e t c . , should be r e l a t i v e l y  normally.  C e r t a i n l y no p r o o f o f t h i s h y p o t h e s i s  small  i s c l a i m e d here, but these  c o n s i d e r a t i o n s seem to be a worthwhile b a s i s on which to p l a n  further  experiments t o f i n d the mechanism o f sodium e x p u l s i o n i n t o p o t a s s i u m - f r e e and i n t o o u a b a i n - c o n t a i n i n g  solutions.  169  Kinetics. Much of the c o n t r i b u t i o n o f the (Na+K)ATPase t o the sodium e f f l u x be e l i m i n a t e d s e l e c t i v e l y by exposure o f the c e l l s e f f l u x can be assumed to be due mostly mation,  and  to ouabain.  The  to one mechanism as a f i r s t  i t s k i n e t i c c h a r a c t e r i s t i c s examined.  Of course,  can  remaining approxi-  t h i s might  r e p r e s e n t more than one mechanism, but t h e r e i s no good reason to assume this  now. I f a simple two-parameter model o f the type d i s c u s s e d i n s e c t i o n 2 i s  a p p l i e d to the experimental data, a r e a s o n a b l e v a l u e s o f the parameters.  f i t can be found  f o r some  S e l e c t i o n o f the most a p p l i c a b l e model  then  depends on a knowledge o f the v a l u e s these parameters can assume, s i n c e each has a p h y s i c a l  interpretation.  MJJ^JJ i s the maximum v a l u e the e f f l u x can a t t a i n , and can be q u i t e w e l l from the data a t h i g h e r v a l u e s o f ( a ^ ) a  I f s a t u r a t i o n cannot any degree o f  be d e t e c t e d i n the data, M  the apparent  sodium complex when used  cannot  be e s t i m a t e d w i t h  d i s s o c i a t i o n c o n s t a n t o f the enzyme-  i n t h i s context, r e f l e c t s  the b i n d i n g  can be q u i t e h i g h s i n c e the b i n d i n g r e s u l t s  i n the c o n f o r m a t i o n  are complicated  energy.  in a slight  o f the enzyme, as d i s c u s s e d i n s e c t i o n  For a c y c l i c a l c a r r i e r system, the apparent  reactions  i f s a t u r a t i o n occurs.  assurance.  The v a l u e o f k,  T h i s energy  m a x  m  estimated  change  2.  dissociation  constants  f u n c t i o n s o f the r a t e c o n s t a n t s which d e s c r i b e the v a r i o u s  i n the c y c l i c sequence.  actual a f f i n i t i e s  ( C a l d w e l l 1969).  t i o n c o n s t a n t s a t one  They can be v e r y d i f f e r e n t I t appears  from  t h a t the apparent  s u r f a c e o f the membrane a r e independent  the  dissocia-  of changes i n  the c o m p o s i t i o n of the s o l u t i o n b a t h i n g the o p p o s i t e s u r f a c e under most c o n d i t i o n s , even though such changes would a l t e r some o f the r e a c t i o n r a t e s i n the c y c l i c sequence (Hoffman & T o s t e s o n  1971;  Garay & Garrahan  1973;  170  C h i p p e r f i e l d & Whittan  1976).  It is likely,  then,  t h a t the  apparent  a f f i n i t i e s o b t a i n e d v i a a good model w i l l r e f l e c t the t r u e a f f i n i t i e s o f the sodium s i t e s . From s t u d i e s of the a c t i o n of sodium i n p r o t e c t i n g the (NaH-K)ATPase from i n a c t i v a t i o n by DCCD ( d i c y c l o h e x y l c a r b o d i - i m i d e ) , Robinson (1974) a b l e to estimate the d i s s o c i a t i o n c o n s t a n t  f o r the enzyme-sodium complex.  In the absence o f o t h e r l i g a n d s , the v a l u e was  2.3  mM.  In the c e l l ,  sium w i l l compete w i t h sodium f o r the sodium s i t e s , and so the d i s s o c i a t i o n c o n s t a n t w i l l be too l a r g e . sodium s i t e f o r potassium  was  potas-  apparent  However, s i n c e the a f f i n i t y of the  i s much l e s s than t h a t f o r sodium, the  apparent  v a l u e w i l l probably be of the c o r r e c t order of magnitude. With r e s p e c t to the models d i s c u s s e d i n s e c t i o n 2, f o r "n" ions b i n d i n g b e f o r e t r a n s p o r t occurs, the v a l u e o f k which gives a good f i t to the data is  lower The  f o r h i g h e r v a l u e s of n. data f o r ouabain  potassium-free 1/M^  solution  y i e l d s k = 105  mM,  ( F i g . 18) a r e almost  ( F i g . 14). M^^  = 116  10"^ M oubain,  and k = 116 mM,  free solution.  These v a l u e s  \  i a K  i d e n t i c a l to the data f o r  A l i n e a r regression of l / ( ^ ) a  a  pes  pes.  M  '  =60  max  = 124 pes  f o r the e f f l u x i n t o  f o r k a r e too l a r g e , however.  pes.  r  For f o u r ions i t was  For t h r e e ions i t was  k = 15 mM,  above d i s c u s s i o n , as a f i r s t  on  f o r the e f f l u x i n the presence  b i n d i n g s u c c e s s i v e l y , the best f i t to the data, by t r i a l and w i t h k = 20 mM,  m  approximation  = 55 pes.  potassium-  For two error,  k = 15 mM,  of  ions was  M „„ = max  60  On the b a s i s of the  only, the data a r e f i t t e d best  by  a model w i t h a t l e a s t t h r e e sodium ions b i n d i n g s u c c e s s i v e l y to e q u i v a l e n t independent s i t e s .  The key  low l e v e l s of ( f j ) j a  a  i n normal Ringer's saturation.  m  a s  to a more p r e c i s e c o n c l u s i o n i s good data a t  d i s c u s s e d p r e v i o u s l y , plus e x t e n s i o n o f the data  s o l u t i o n and  sodium-free  s o l u t i o n to the r e g i o n o f  171  C o n t i n u i n g i n t h i s r a t h e r s p e c u l a t i v e v e i n , i t can be noted a g a i n t h a t the e f f l u x  i n t o sodium-free  normal Ringer's  solution  s o l u t i o n i s v e r y s i m i l a r t o the e f f l u x  ( F i g . 19).  into  I f i t i s assumed t h a t the dominant  mode o f sodium t r a n s p o r t n o r m a l l y  i s sodium-potassium exchange, the two-  parameter models can be a p p l i e d .  There i s no good i n d i c a t i o n o f M ^ ^  a good f i t can be a c h i e v e d pes;  f o r one i o n b i n d i n g w i t h k = 200 mM, M^.^ = 400  f o r two ions w i t h k = 50 mM,  w i t h k = 30 mM, 200 pes.  That  but  M^^j = 225 pes; f o r t h r e e ions b i n d i n g  = 175 pes; and f o r four ions w i t h k = 27.5 mM,  M^^  =  i s , t h e f i t i s b e t t e r f o r h i g h e r numbers o f ions b i n d i n g  successively. Thus the two modes d e f i n e d o p e r a t i o n a l l y here appear t o d i f f e r i n their kinetic characteristics  i n the c o n t e x t o f the two-parameter models.  For no v a l u e o f n i s i t found  t h a t k i s the same but M  i s lower  for cells  i n normal  Ringer's  max i n which the (Na+K)ATPase i s i n h i b i t e d compared t o c e l l s solution. and  T h i s suggests  t h a t t h e e f f l u x observed  i n the absence o f e x t e r n a l potassium  o f fewer t r a n s p o r t enzymes. o f ( N a ) can be o b t a i n e d , m  i n the presence  o f ouabain  i s not simply due t o the o p e r a t i o n  When more data a t v e r y low and v e r y h i g h  i t will  levels  be i n t e r e s t i n g t o perform a more d e t a i l e d  k i n e t i c a n a l y s i s i n terms o f i n h i b i t i o n o f d i f f e r e n t  types.  172  SECTION 6.  Two  COMPARISON OF SODIUM ELECTRODE AND  RADIOSODIUM MEASUREMENTS  'sodium-free' e f f e c t s have been r e p o r t e d i n sodium e f f l u x  i n muscle, as summarized The better-known e f f e c t sodium i s removed  i n s e c t i o n 2.C.  They d i f f e r  i n t h e i r time course.  i s a s u s t a i n e d r e d u c t i o n i n the sodium e f f l u x when  from the b a t h i n g s o l u t i o n .  I n the l a s t s e c t i o n ,  r e p o r t e d t h a t t h i s e f f e c t appears to be due t o the f a l l sodium a c t i v i t y a l o n e , a t l e a s t  i n b a r n a c l e muscle  The second 'sodium-free e f f e c t '  i t was  i n the myoplasmic  cells.  is a large rapid f a l l  c e l l u l a r sodium a c t i v i t y measured w i t h an i n t r a c e l l u l a r microelectrode.  studies  i n the i n t r a -  sodium-specific  T h i s e f f e c t has been observed i n f r o g s k e l e t a l  muscle  (White & Hinke 1976) and i n c r a b s t r i a t e d muscle (Vaughan-Jones  1977).  s l i g h t l y different rapid This rapid f a l l  f a l l was  in (ajq ) a  m  A  found i n s n a i l neurone (Thomas 1972b).  c o i n c i d e s r o u g h l y w i t h the t r a n s i e n t  stimula-  t i o n o f the sodium e f f l u x seen i n F i g . 15 w i t h c h o l i n e and t r i s , and w i t h the to the  'biphasic t r a n s i e n t ' with l i t h i u m .  The change from s o d i u m - c o n t a i n i n g  sodium-free s o l u t i o n i s not i n s t a n t a n e o u s , and as noted i n s e c t i o n 4, e x p e r i m e n t a l apparatus was  However, i t was  felt  not d e s i g n e d to measure t r a n s i e n t phenomena.  t o be worthwhile t o compare the i n f o r m a t i o n from the  i n t r a c e l l u l a r m i c r o e l e c t r o d e and the r a d i o i s o t o p e , p a r t i c u l a r l y d u r i n g the p e r i o d where the t r a n s i e n t s In  occur.  the experiments on f r o g muscle, c h e m i c a l a n a l y s i s i n d i c a t e d  the  fall  i n the myoplasmic sodium a c t i v i t y  out  o f the c e l l  (White & Hinke 1976).  that  i s due to movement o f sodium ions  S t u d i e s o f the e f f l u x o f r a d i o s o d i u m  from f r o g muscle i n t o sodium-free s o l u t i o n have r e v e a l e d some t r a n s i e n t r a p i d f l u x e s , but these were u s u a l l y a s c r i b e d t o the e x t r a c e l l u l a r space and ignored (eg. Hodgkin & Horowicz 1959). Measurements  w i t h the i n t r a c e l l u l a r m i c r o e l e c t r o d e a l o n e can o n l y  173  r e v e a l a l o s s o f sodium from the major i n t r a c e l l u l a r compartment, myoplasm.  They cannot r e v e a l the f a t e o f the l o s t sodium.  the  d a t a was  are  combined,  the  A treatment o f  thus d e v i s e d i n which m i c r o e l e c t r o d e and r a d i o i s o t o p e  results  so t h a t changes i n the sodium content o f the myoplasm c o u l d be  compared w i t h the simultaneous l o s s o f sodium from the c e l l . ments were conducted p r i o r to the p u b l i c a t i o n o f the r e s u l t s  The  experi-  f o r crab  muscle. I t was to  found t h a t a r a p i d f a l l  i n the myoplasmic sodium a c t i v i t y  t h a t seen i n s n a i l neurone and i n f r o g and crab muscle occurs  muscle under c e r t a i n c o n d i t i o n s , and t h a t  similar  i n barnacle  i t i s accompanied by a commensu-  r a t e l o s s o f sodium from the c e l l . The t r a n s i e n t changes  i n the sodium e f f l u x which occur immediately  a f t e r the-change t o sodium-free s o l u t i o n appear to r e f l e c t a d i r e c t  effect  on the t r a n s p o r t mechanism, as w e l l as an e f f e c t due t o r a p i d changes i n the  sodium content, o f the c e l l s .  METHODS  D i s s e c t i o n o f s i n g l e muscle c e l l s ,  i n j e c t i o n and c o l l e c t i o n o f r a d i o -  sodium, and measurements w i t h m i c r o e l e c t r o d e s have been d e s c r i b e d i n p r e v i o u s sections. latter  The f l u i d  injected contained  22  NaCl and, sometimes,  i n o r d e r to r a i s e the myoplasmic sodium a c t i v i t y .  23  NaCl, the  174  RESULTS  In  F i g . 20 i s p r e s e n t e d the time course o f the d e c l i n e i n ( a ^ ) a  three c e l l s of d i f f e r e n t sodium-free  initial  sodium content, d u r i n g immersion i n a  lithium-substituted solution.  The b e h a v i o r  d i f f e r e n t f o r c e l l s of d i f f e r e n t sodium c o n t e n t . mic.  A simple e x p o n e n t i a l f a l l o f ( j j ) a  initial  t h a t seen  v a l u e of ( . ^ ) a  A  m  plot  m  rapid  initial  Jones 1977), was  seen  and  a  i n c e l l s having a higher i n i t i a l  c e l l s h a v i n g low i n i t i a l  f a l l of ( a  by M c L a u g h l i n  v a l u e of  )  M  s i m i l a r to  i n t h e i r experiments ^  discussed i n section  i n frog  was  (% ) a  m  seen even i n  Ul  is different  from t h a t r e p o r t e d  and Hirtke (1968) and by A l l e n and Hinke (1971).  they had used a h y p e r t o n i c sodium-free  s o l u t i o n , and  However,  the i n i t i a l  behavior of  i n c l u d e d the e f f e c t s of water movement, as '  3.B.  time c o u r s e o f the f a l l  in (ajj ) a  m  i n the c e l l s h a v i n g a h i g h  sodium content c o u l d be f i t t e d q u i t e w e l l by the sum but f o r the c e l l s h a v i n g a lower or  m  having  v a l u e s of (a„ ) . Na m  T h i s b e h a v i o r of b a r n a c l e muscle c e l l s  The  in cells  f a l l , of (aji ) >  IN a ,  v  seen  i n c r a b s t r i a t e d muscle (Vaughan-  f r o g and crab muscle, a l a r g e i n i t i a l  (a„ ) Na'm  is semilogarith-  i n s n a i l neurone (Thomas 1972b) but not u n l i k e t h a t seen  s k e l e t a l muscle (White & Hinke 1976)  In  The  is qualitatively  w i t h time was  a  a lower  for  m  initial  of two  initial  exponentials,  sodium content a s i n g l e e x p o n e n t i a l  o c c a s i o n a l l y even a l i n e a r f u n c t i o n s u f f i c e d . The hazards  of 'curve p e e l i n g ' were mentioned i n s e c t i o n 4.  no r e a s o n to propose t h a t the b e h a v i o r o f the c e l l s c o n t e n t r e f l e c t s the sum likely  o f two  independent  There i s  of h i g h i n i t i a l  processes.  sodium  I t seems e q u a l l y  t h a t a s i n g l e mechanism i s o p e r a t i n g but the r a t e c o n s t a n t  p l a y i n g a dependence on the g r a d i e n t o f the c h e m i c a l p o t e n t i a l When r a t e c o n s t a n t s f o r the r a p i d e f f l u x were c a l c u l a t e d by  is dis-  f o r sodium.  'curve p e e l i n g ' ,  175  0  20  40  60  time (min.)  F i g u r e 20. F a l l o f the myoplasmic sodium a c t i v i t y upon exposure o f the c e l l to sodium-free l i t h i u m - s u b s t i t u t e d s o l u t i o n . S o l u t i o n change from normal R i n g e r ' s s o l u t i o n o c c u r r e d a t time 5 minutes. P r i o r to t h a t time, the steady v a l u e o f the myoplasmic sodium a c t i v i t y o f each c e l l i n normal R i n g e r ' s s o l u t i o n i s shown. The p l o t i s s e m i l o g a r i t h m i c . For the c e l l which s t a r t e d w i t h the h i g h e s t sodium c o n t e n t (upper c u r v e ) , i t i s shown how the ' s i z e of the i n i t i a l r a p i d f a l l was c a l c u l a t e d f o r F i g . 21, by e x t r a p o l a t i o n back t o zero time o f the l i n e a r t a i l of the c u r v e . 1  176  the v a l u e s were found t o show c o n s i d e r a b l e s c a t t e r and t o be p o o r l y c o r r e l a t e d with the i n i t i a l  value o f ( ^ ) a  a  m  I t appeared  t h a t above a c e r t a i n  t h r e s h o l d v a l u e o f (a„ ) o f about 15 mM t h e f a s t r a t e was p r e s e n t , w h i l e ^ Na m T  y  below t h i s t h r e s h o l d i t was not. was  The mean v a l u e o f t h e l a r g e r r a t e c o n s t a n t  comparable t o t h e v a l u e which d e s c r i b e s the washout o f t h e e x t r a c e l l u l a r  space  (0.15 min"-'-, SD = 0.06 min"''' f o r 9 c e l l s  f i t t e d by two e x p o n e n t i a l s ; a  s i m i l a r v a l u e was r e p o r t e d by White & Hinke 1976 f o r f r o g muscle). d i f f e r e n t s i g n i f i c a n c e o f the r a t e constant sidered  i n t h e two cases w i l l be con-  i n the Discussion.  Vaughan-Jones (1977) noted of  The  t h a t t h e change o f ( j j )  d u r i n g 15 minutes  a  a  m  immersion o f crab muscle i n sodium-poor s o l u t i o n c o r r e l a t e d w e l l w i t h the  initial  v a l u e o f (a^ ) T  i n the c e l l s .  A s i m i l a r r e s u l t was found i n  b a r n a c l e muscle, as shown i n F i g . 21.  The / s i z e o f t h e r a p i d  was  i n F i g . 20 top t r a c i n g .  c a l c u l a t e d by t h e method i n d i c a t e d  j u s t confirms  t h e i m p r e s s i o n gained  sodium-free  solution.  This  fall  really  i s 'switched o f f when  t o ca. 15 mM d u r i n g immersion o f t h e c e l l  x  i n mM  from F i g . 20 t h a t , whatever t h e i n i t i a l  v a l u e o f (ajjg^jjj above about 15 mM, t h e r a p i d the v a l u e o f (a ) f a l l s Na'm  fall'  The ' t h r e s h o l d ' v a l u e o f ( - ^ ) a  a  m  i  n  i n the  crab muscle was  about 2 mM (Vaughan-Jones 1977). A d i f f e r e n t and b e t t e r approach i s t o measure t h e i n i t i a l tracings of ( j j ) a  a  fall.  m  v e r s u s time,  to y i e l d a s i n g l e rate d e s c r i b i n g the rapid  When t h i s r a t e i s p l o t t e d versus r  the f a l l ,  a c o r r e l a t i o n i s seen  slope o f the  the v a l u e o f (a, ) a t t h e s t a r t o f Na m  ( F i g . 22).  T  The dependence i s v e r y  similar,  even i n t h e s l i g h t d i f f e r e n c e i n s l o p e f o r d i f f e r e n t c e l l s a t a g i v e n v a l u e of ( j j ) J t o t h a t d i s p l a y e d i n F i g . 17 f o r t h e e f f l u x M^ ( c a l c u l a t e d from e q u a t i o n (4) w i t h o u t c o r r e c t i o n f o r Na* ,,) versus (a„ ) . T h i s i n t u r n * cell Na m a  a  m  a  n  is  s i m i l a r t o t h e c o r r e c t e d v a l u e F i g . 16, as noted In  i n s e c t i o n 5.  theory, t h e r e l a t i o n s h i p between t h e two i s V * ^ ^ ^ m = A-M^ , a  m  a  177  (o  N o  )  m  (mM.)  F i g u r e 21. S i z e o f the r a p i d f a l l i n the myoplasmic sodium a c t i v i t y upon exposure o f the c e l l to sodium-free l i t h i u m - s u b s t i t u t e d s o l u t i o n (see F i g . 20 and t e x t ) , v e r s u s the steady v a l u e o f the myoplasmic sodium a c t i v i t y i n the c e l l p r i o r to the change from normal R i n g e r ' s to sodium-free s o l u t i o n . One data p o i n t was excluded from the l i n e a r r e g r e s s i o n r e p r e s e n t e d by the l i n e , and i s shown i n p a r e n t h e s e s .  178  0.7 0.6 c E  2  0.5  E  0.4  o  0.3 3 0.2 0.1  i_ 10  20 Na'm  30 (mM.)  40  F i g u r e 2 2 . Rate o f f a l l o f the myoplasmic sodium a c t i v i t y immediately a f t e r exposure o f the c e l l t o sodium-free l i t h i u m - s u b s t i t u t e d s o l u t i o n , versus the s t e a d y v a l u e of the myoplasmic sodium a c t i v i t y i n normal R i n g e r ' s s o l u t i o n p r i o r to the change to sodium-free s o l u t i o n . The p o i n t i n parentheses i s from the c e l l excepted i n F i g . 21. C i r c l e s ; c e l l s d i s s e c t e d on the day o f the experiment. Diamonds; c e l l s d i s s e c t e d on the day b e f o r e t h a t o f the experiment. T r i a n g l e s : c e l l s d i s s e c t e d on the day o f the experiment and s u b j e c t e d only to m i c r o e l e c t r o d e experiments, not m i c r o i n j e c t i o n .  179  where A i s the a r e a o f the s u r f a c e e n c l o s i n g V , and a c r o s s which the e f f l u x m of  sodium o c c u r s .  values of ( N ) a  a  m  The two a r e n o t c o m p l e t e l y appear i n both.  by the i s o t o p e e f f l u x .  However, M^  independent, s i n c e measured i s determined  a  inaddition  A check o f c o n s i s t e n c y i s t o e l i m i n a t e  (a^ ) a  between F i g s . 17 and 22.  The c e l l s used were o f about the same s i z e .  p l o t o f Mjj v s . d _ ( M ) dt m  i  a  a  a  m  s  m  A  l i n e a r , and the s l o p e V /J(.A i s 0.004 cm. m  This  m  s h o u l d equal 0.68 r , so the mean v a l u e o f the c e l l r a d i i s h o u l d be 0.0765 0.65 20 cm.  The a c t u a l mean v a l u e o f the c e l l r a d i i f o r the experiments u s i n g  s