Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Using land resource maps to define habitat for forest birds Scoullar, Kim Arthur 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A6_7 S37.pdf [ 15.61MB ]
Metadata
JSON: 831-1.0095139.json
JSON-LD: 831-1.0095139-ld.json
RDF/XML (Pretty): 831-1.0095139-rdf.xml
RDF/JSON: 831-1.0095139-rdf.json
Turtle: 831-1.0095139-turtle.txt
N-Triples: 831-1.0095139-rdf-ntriples.txt
Original Record: 831-1.0095139-source.json
Full Text
831-1.0095139-fulltext.txt
Citation
831-1.0095139.ris

Full Text

USING LAND RESOURCE MAPS TO DEFINE HABITAT > FOR FOREST BIRDS by KIM ARTHUR SCOULLAR . S c . , The U n i v e r s i t y o f B r i t i s h C o l u m b i a , 197 A THESIS SUBMITTED IN>ARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (The F a c u l t y o f F o r e s t r y ) We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA A p r i l 1980 c ) K i m A r t h u r S c o u l l a r , 1980 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my D e p a r t m e n t o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f F o r e s t r y The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 D a t e A p r i l 2 1 , 1 9 8 0 . ABSTRACT F o r e s t b i r d s l o c a t e d by t h e i r c a l l s were r e l a t e d t o mapping u n i t s o f d i f f e r e n t l a n d r e s o u r c e maps u s i n g a new method* The method i n v o l v e d computer programs which use m a t h e m a t i c a l d e s c r i p t i o n s o f l a n d f o r m , f o r e s t canopy h e i g h t s , and t h e n a t u r e of the b i r d ' s c a l l t o p r e d i c t t h e a r e a censused f o r each b i r d s p e c i e s from each l i s t e n i n g s t a t i o n . Computer programs were a l s o used t o d i s p l a y l o c a t i o n s made from each s t a t i o n , and t o a s s o c i a t e t h e l o c a t i o n s and a r e a s censused w i t h d i f f e r e n t mapping u n i t s . . Y e l l o w - b e l l i e d Sapsucker ( S p h y r a p i c u s v a r i u s ) , C h e s t n u t - b a c k e d C h i c k a d e e (Parus r u f e s e e n s ) , S t e l l e r 1 s Jay ( C y a n o c i t t a s t e l l e r i ) , W i n ter Wren ( T r o g l o d y t e s tr03l0dy_t.es) , V a r i e d Thrush ( I x o r e u s n a e v i u s ) . and Swainson's Thrush ( h y l o c i c h l a u s t u l a t a ) were each r e l a t e d t o both s e r a i s t a g e s and v e g e t a t i o n taxonomic u n i t s ; w h i l e H a i r y Woodpecker (Dendrpcopus y i l l o s u s ) , Common F l i c k e r ( C o l a p t e s c a f e r ) , Red-breasted Nuthatch ( S i t t a c a n a d e n s i s ) , and O l i v e - s i d e d F l y c a t c h e r ( N u t t a l l p r n i s b p r e a l i s ) were each r e l a t e d o n l y t o s e r a i s t a g e s . Most s p e c i e s showed a c o n s i s t e n t p a t t e r n o f s e l e c t i o n f o r mapping t y p e s w i t h r e p e a t e d census. R e s u l t s f o r the S t e l l e r ' s Jay i n d i c a t e d some change i n t h e use o f s e r a i s t a g e s between census periods..However, t h e r e was no c l e a r t r e n d i n use over t i m e , and the observed changes may i n c l u d e e f f e c t s of f l o c k i n g which would v i o l a t e t h e s t a t i s t i c a l i i i a s sumption t h a t l o c a t i o n s were independent..Each s p e c i e s had a unigue p a t t e r n o f s e l e c t i o n o f s e r a i s t a g e s and o f v e g e t a t i o n t y p e s . S p e c i e s w i t h s i m i l a r p a t t e r n s o f s e l e c t i o n were grouped t o form f i v e groups f o r s e r a i s t a g e s and t h r e e groups f o r v e g e t a t i o n t y p e s (groups not m u t u a l l y e x c l u s i v e ) . Only C h e s t n u t - b a c k e d Chickadee w i t h Y e l l o w - b e l l i e d S a p s u c k e r , Swainson's Thrush w i t h Winter Wren, and V a r i e d Thrush w i t h Winter Wren were grouped t o g e t h e r both f o r s e r a i s t a g e s and f o r v e g e t a t i o n t y p e s . A more d e f i n i t e p r e f e r e n c e among s e r a i s t a g e s t h a n v e g e t a t i o n t y p e s was d e t e c t e d f o r most o f the s p e c i e s s t u d i e d . However, the S t e l l e r ' s Jay p r e f e r r e d o n l y two o f the v e g e t a t i o n t y p e s , w h i l e i t used a l l s e r a i s t a g e s somewhat e g u a l l y . Most of t h e s p e c i e s s t u d i e d p r e f e r r e d o l d e r s e r a i s t a g e s . Common F l i c k e r , S t e l l e r ' s J a y , and O l i v e - s i d e d F l y c a t c h e r a l s o used younger s t a g e s ; w h i l e Swainson's Thrush s e l e c t e d f o r s t a g e s o f medium age* Of the s p e c i e s r e l a t e d t o v e g e t a t i o n t y p e s , o n l y C h e s t n u t - b a c k e d Chickadee d i d not show some p r e f e r e n c e f o r taxonomic u n i t s a s s o c i a t e d with h i g h s o i l m o i s t u r e . The p r e f e r e n c e was most pronounced f o r S t e l l e r ' s J a y , which c o n c e n t r a t e d i t s use on t h e two w e t t e s t t y p e s . The p r e f e r e n c e by Y e l l o w - b e l l i e d Sapsucker may be e x p l a i n e d by the o l d e r t r e e s and snags t h a t s u r v i v e d l o g g i n g and f i r e i n wet a r e a s . A l l of the s p e c i e s a l s o used many of the d r i e r t y p e s . The d a t a s u p p o r t the h y p o t h e s i s t h a t l a n d r e s o u r c e maps can be used t o p r e d i c t t h e o c c u r r e n c e of w i l d l i f e . The r e s u l t s suggest t h a t h a b i t a t f o r a w i l d l i f e s p e c i e s can be predicted over vast areas i f the areas have been mapped, and i f s i g n i f i c a n t differences in the habitat value of d i f f e r e n t mapping units have been documented. The r e s u l t s indicate that the prediction can be improved by combining the predictions from two or more maps.. The predicted area and s p a t i a l d i s t r i b u t i o n of high-guality habitat can be compared with management policy objectives for the w i l d l i f e species. The predicted change i n available habitat with planned forest management a c t i v i t i e s can provide c r i t e r i a for habitat management. The same land resource maps may be used for many w i l d l i f e species, thereby f a c i l i t a t i n g multi-species habitat management. V TABLE OF CONTENTS Page A b s t r a c t i i Table of C o n t e n t s v L i s t of T a b l e s v i i L i s t o f F i g u r e s x L i s t of Appendices x i i Ackno wledgements x i i i O b j e c t i v e s 1 I n t r o d u c t i o n ............................................ . 3 Study Area and Animals . . 11 Method 14 I n t r o d u c t i o n ........................................ 14 S t e p s t o R e l a t e One B i r d S p e c i e s t o the Types of One Map 17 #1a. Determine t h e L o c a t i o n s of L i s t e n i n g S t a t i o n s , 17 #1b. D i g i t i z e L o c a t i o n s of L i s t e n i n g S t a t i o n s .. 20 #1c. . P r e p a r e the L i s t e n i n g - S t a t i o n Computer F i l e 21 #2a. P r e p a r e Map of Canopy H e i g h t s 21 #2b. D i g i t i z e Canopy-Height Map ................. 23 #2c. P r e p a r e Computer F i l e s of Canopy-Height P o l y g o n s 23 #2d. T h i n t h e Canopy-Height P o l y g o n s ........... 24 #2e. P r e p a r e Computer F i l e t o R e c e i v e Canopy D e s c r i p t i o n s 24 #2f. Get I n f o r m a t i o n f o r Canopy D e s c r i p t i o n s ... 26 #2g. Order t h e Canopy D e s c r i p t i o n s 29 #3a. P r e p a r e I n f o r m a t i o n f o r t h e D i g i t a l T e r r a i n Model 29 #3b. Record E l e v a t i o n s a t G r i d P o i n t s 29 #3c. . Make t h e D i g i t a l T e r r a i n Model ............. 30 #3d. . L i s t t h e D i g i t a l T e r r a i n Model 30 #3e. P l o t t h e D i g i t a l T e r r a i n Model ............ 30 #3f. Pr e p a r e Landform D e s c r i p t i o n s ............. 30 #3g. Order t h e Landform D e s c r i p t i o n s and Add C l o s e F e a t u r e s 33 #4a. Complete the Canopy-Landform P r o f i l e s ..... . 35 #4b. P l o t P r o f i l e P o l y g o n s f o r Ch e c k i n g ......... 36 #5a. . C o l l e c t F i e l d O b s e r v a t i o n s 36 v i #5b. P r e p a r e t h e Recorded O b s e r v a t i o n s 40 #6a. P r e p a r e F i l e of I n f o r m a t i o n f o r Each S p e c i e s • 40 #6b.. Produce Coverage and L o c a t i o n P o l y g o n s f o r Each S p e c i e s 46 #7. D i g i t i z e , P r e p a r e and Thin Polygon F i l e s f o r each Map t o which Use by B i r d s i s t o be R e l a t e d 53 #8a. P r e p a r e and Empty Computer F i l e ........... . 56 #8b. R e l a t e Use by one B i r d S p e c i e s t o the Type of one Map 56 #9. . Summarize the R e s u l t s and Complete t h e S t a t i s t i c a l A n a l y s i s 58 S t a t i s t i c a l A n a l y s i s of R e s u l t s 59 S t a t i s t i c a l Assumptions ................................. 68 R e s u l t s 71 D i s c u s s i o n . 92 S e r a i Stages Map ................................... . 92 V e g e t a t i o n Types Map 95 The Use of Mapping Types by each B i r d S p e c i e s ....... 98 Common F l i c k e r . 1 0 2 Y e l l o w - b e l l i e d Sapsucker .105 H a i r y Woodpecker ........110 O l i v e - s i d e d F l y c a t c h e r ...........................112 S t e l l e r ' s Jay 115 Chestnu t - b a c k e d C h i c k a d e e ....................... . 119 Red-breasted Nuthatch 123 Wint e r Wren ..............125 V a r i e d Thrush ...............130 Swainson's Thrush ............................... . 134 Comparisons between B i r d S p e c i e s ....................138 Comparisons between Mapping Types 145 Management I m p l i c a t i o n s 151 Summary ......................156 L i t e r a t u r e C i t e d .161 Appendices .....167 v i i LIST OF TABLES Table Page I. I n f o r m a t i o n needed t o P r e d i c t the Area Covered i n Census f o r each B i r d S p e c i e s 42 2.. Comparison o f Sound A t t e n u a t i o n i n F o r e s t Canopy and i n A i r 44 3. Summary of R e s u l t s of I n t e r s e c t i o n s by Rounds as p r i n t e d by Program SOMERIZE 72 4. Common F l i c k e r w i t h S e r a i Stages - Ordered by Use ...... 75 5. Common F l i c k e r w i t h S e r a i Stages - R e s u l t s of t t e s t s 77 6. Common F l i c k e r w i t h S e r a i Stages - R e l a t i v e L e v e l of Use 30 7. Common F l i c k e r w i t h S e r a i Stages - S i g n i f i c a n t D i f f e r e n c e s i n Use .. 80 8. Winter Wren w i t h S e r a i Stages - R e l a t i v e L e v e l of Use ... 83 9. Winter Wren w i t h S e r a i S tages - S i g n i f i c a n t D i f f e r e n c e s i n Use 83 10. Comparison between Common F l i c k e r and Winter Wren .... 84 I I . The Number o f C o n t r a s t s and R e i n f o r c e m e n t s f o r a l l Comparisons between Rounds f o r Each S p e c i e s w i t h S e r a i Stages 87 12. The Number o f C o n t r a s t s and R e i n f o r c e m e n t s f o r a l l Comparisons between Rounds f o r Each S p e c i e s w i t h V e g e t a t i o n Types 87 13. The Number o f C o n t r a s t s and R e i n f o r c e m e n t s f o r a l l Comparisons between S p e c i e s w i t h S e r a i S tages 89 14. The Number o f C o n t r a s t s and R e i n f o r c e m e n t s f o r a l l Comparisons between S p e c i e s w i t h V e g e t a t i o n Types 91 15. D e f i n i t i o n o f S e r a i Stage Numbers 94 16.. D e f i n i t i o n o f V e g e t a t i o n Type Numbers ............... . 96 v i i i 17.. S o i l M o i s t u r e and T o p o g r a p h i c P o s i t i o n T y p i c a l of Each V e g e t a t i o n Type ......101 18. Common F l i c k e r w i t h S e r a i Stages - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s .104 19. Y e l l o w - b e l l i e d Sapsucker wi t h S e r a i Stages R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s 106 20., Y e l l o w - b e l l i e d Sapsucker w i t h V e g e t a t i o n Types R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s ......108 21. H a i r y Woodpecker w i t h S e r a i Stages - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s .111 22. O l i v e - s i d e d F l y c a t c h e r w i t h S e r a i Stages - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s . . . . 1 1 4 23. S t e l l e r ' s Jay w i t h S e r a i Stages - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s .116 24. S t e l l e r ' s J a y w i t h V e g e t a t i o n Types - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s 118 25.. Chestnut-backed Chickadee w i t h S e r a i Stages R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s 120 26. . C h e s t n u t - b a c k e d Chickadee w i t h V e g e t a t i o n Types -R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s 122 27. R e d - b r e a s t e d Nuthatch w i t h S e r a i Stages - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s 124 28. W i n t e r Wren w i t h S e r a i Stages - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s 127 29.. Winter Wren w i t h V e g e t a t i o n Types - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s ....128 30. V a r i e d Thrush w i t h S e r a i Stages - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s 131 31.. V a r i e d Thrush w i t h V e g e t a t i o n Types - R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c e s .133 32. Swainson's Thrush w i t h S e r a i Stages R e l a t i v e Use and S i g n i f i c a n t D i f f e r e n c s .135 33. Swainson's Thrush wi t h V e g e t a t i o n Types - R e l a t i v e Use S i g n i f i c a n t D i f f e r e n c e s 137 34. S e r a i Stages Ordered by Average Use by A l l S p e c i e s . . 146 i x 35. V e g e t a t i o n Types Ordered by Average Use by A l l S p e c i e s 146 36.. Use o f S e r a i Stages by A l l B i r d S p e c i e s . . . . .....147 37. . Use o f V e g e t a t i o n Types by A l l B i r d S p e c i e s 149 X LIST OF FIGURES F i g u r e Page 1. . Map of Study Area. U n i v e r s i t y o f B r i t i s h Columbia Research F o r e s t . Maple Ridge, B.C. 12 2. F l o w c h a r t o f s t e p s r e q u i r e d t o produce t a b l e s r e l a t i n g one b i r d s p e c i e s t o the t y p e s o f one map f o r one ar e a 15 3. Example of canopy h e i g h t s map 22 4. Some examples o f polygons d i g i t i z e d from l a n d maps w i t h number o f p o i n t s b e f o r e and a f t e r t h i n n i n g ..... 25 5. An example i n t e r s e c t i o n of one l i n e segment w i t h one c a n o p y - h e i g h t polygon 27 6. I l l u s t r a t i o n of t h e l i n e segments and can o p y - h e i g h t polygons used t o make t h e s i x t e e n canopy p r o f i l e s f o r l i s t e n i n g s t a t i o n number 1 0 3 . . . . 28 7. Computer p l o t o f t h e d i g i t a l t e r r a i n model or la n d f o r m g r i d f o r the U n i v e r s i t y of B r i t i s h Columbia Research F o r e s t 31 8. I l l u s t r a t i o n o f t h e l i n e segments and l a n d f o r m g r i d used t o make the s i x t e e n l a n d f o r m p r o f i l e s f o r any l i s t e n i n g s t a t i o n 32 9a. An example u s i n g l i n e a r i n t e r p o l a t i o n between p o i n t s o f the l a n d f o r m g r i d t o determine t h e e l e v a t i o n o f the p o i n t of i n t e r s e c t i o n w i t h one l i n e segment 34 9b. . R e c o r d i n g t h e p o s i t i o n o f c l o s e t o p o g r a p h i c f e a t u r e s a t a l i s t e n i n g s t a t i o n 34 10. Landform and f o r e s t canopy p r o f i l e s i n s i x t e e n d i r e c t i o n s from s t a t i o n 103 37 11. Examples u s i n g l a n d f o r m and canopy p r o f i l e s t o deter m i n e i f a b i r d c o u l d be heard a t a g i v e n d i s t a n c e 48 12. An example o f t h e r e c o r d o f coverage and l o c a t i o n p o l y g o n s made by program COVANDLOC 51 13.. Some examples of coverage and l o c a t i o n polygons produced by t h e program COVANDLOC 52 14. Example of map o f s e r a i s t a g e s . ... 54 x i 15.. Example of v e g e t a t i o n t y p e s mapped at the l e v e l of p l a n t s u b - a s s o c i a t i o n s 55 16. Example of the l i s t of polygon i n t e r s e c t i o n s done by program HABDEX 58 17. Example of i n t e r s e c t i n g coverage and l o c a t i o n p o l y g o n s w i t h a l a n d c l a s s i f i c a t i o n p o l y g o n ........ 60 18.. S p e c i e s w i t h s i m i l a r p a t t e r n s of use of s e r a i s t a g e s . 139 19.. S p e c i e s w i t h s i m i l a r p a t t e r n s of use o f v e g e t a t i o n x i i LIST OF APPENDICES Appendix Page A. L i s t of Computer Programs W r i t t e n f o r T h i s Study STOPREP .168 DIGFIX 169 POLYTHIN ............................................ 172 FORAXINIT . .. 176 FORAXUPD 177 FORAXORDER 187 GRIDMAKE ... 189 GRIDLIST .............. 190 PERSPLOT .............................................191 TOPAXMAKE 192 TOPAXORDER 197 FORONTOP ............................................ 199 PROFPLOT 205 S ERORDER .206 COVANDLOC ........................................... 208 HABDEXINIT 229 HABDEX ... 230 SUMERIZE ............................................ 235 COMPARE ............................................. 242 B. T a b l e s R e l a t i n g Use by Ten B i r d S p e c i e s t o S e r a i S t a g e s Common F l i c k e r .249 Y e l l o w - b e l l i e d Sapsucker .251 H a i r y Woodpecker 253 O l i v e - s i d e d F l y c a t c h e r ..............................255 S t e l l e r ' s Jay .257 C h e s t n u t - b a c k e d C h i c k a d e e 259 Re d - b r e a s t e d Nuthatch ...............................261 W i n t e r Wren .26 3 V a r i e d Thrush 265 Swainson's Thrush ................................... 267 C. T a b l e s R e l a t i n g Use by S i x B i r d S p e c i e s t o V e g e t a t i o n Types Y e l l o w - b e l l i e d Sapsucker 271 S t e l l e r ' s Jay .276 Ch e s t n u t - b a c k e d C h i c k a d e e 280 Wi n t e r Wren ...........................283 V a r i e d Thrush .287 Swainson's Thrush .....292 x i i i ACKNOWLEDGEMENTS The f o l l o w i n g o r g a n i z a t i o n s and i n d i v i d u a l s d i r e c t l y c o n t r i b u t e d t o t h i s t h e s i s . To t h e o r g a n i z a t i o n s : I e x p r e s s my g r a t i t u d e and pledge my s u p p o r t . . To t h e i n d i v i d u a l s : I thank you f o r your h e l p , f r e n d s h i p and c o n f i d e n c e . The p e r s o n a l s a t i s f a c t i o n and s c i e n t i f i c c o n t r i b u t i o n o f t h i s t h e s i s i s yours t o shar e . The B r i t i s h Columbia F i s h and W i l d l i f e Branch p r o v i d e d f u n d i n g f o r f i e l d work. The N a t i o n a l Research C o u n c i l of Canada and t h e F a c u l t y o f F o r e s t r y a t t h e U n i v e r s i t y of B r i t i s h Columbia p r o v i d e d f u n d i n g f o r equipment.. The U n i v e r s i t y of B. C. s u p p l i e d computing f a c i l i t i e s . . Canadian F o r e s t P r o d u c t s L t d . , the B. C.. F i s h and W i l d l i f e B r a n c h , the F a c u l t y of F o r e s t r y a t U.B.C, and Kay and A l S c o u l l a r p r o v i d e d me w i t h f i n a n c i a l s u p p o r t f o r gr a d u a t e s t u d y . The U.B.C..Research F o r e s t a t Haney p r o v i d e d t h e stu d y a r e a . J a c k W a l t e r s and t h e s t a f f of t h e Research F o r e s t s u p p l i e d equipment and t e c h n i c a l s u p p o r t . P e t e r Sanders p r o v i d e d c o p i e s o f t h e maps. Fred B u n n e l l , w i t h whom I had p r e v i o u s l y s e r v e d an a p p r e n t i c e s h i p i n computer s i m u l a t i o n o f b i o l o g i c a l systems, c r e a t e d an environment c o n d u c i v e t o p r o b l e m - o r i e n t e d w i l d l i f e r e s e a r c h . As t h e s i s s u p e r v i s o r F r e d h e l p e d t o p l a n the s t u d y , i n t e r p e r t the r e s u l t s , and o r g a n i z e and e d i t t h e w r i t e u p . S t a n l e y Nash, Department of A p p l i e d M a t h e m a t i c s , de v e l o p e d the method of s t a t i s t i c a l a n a l y s i s used t o e v a l u a t e t h e r e s u l t s . . x i v G a i l S c o u l l a r c o l l e c t e d h a l f t h e f i e l d d a t a , r e c o r d e d numbers f o r the d i g i t a l t e r r a i n model, and h e l p e d w i t h p r e p a r a t i o n of t a b l e s , f i g u r e s and t e x t . Don Eastman, Dave S h a c k l e t o n , Tony S i n c l a r e and Doug W i l l i a m s s e r v e d on the t h e s i s committee. They h e l p e d t o o r g a n i z e and word the t h e s i s t e x t , and a s s u r e d a l i v e l y t h e s i s d e f e n s e . Roy S t r a n g c h a i r e d the t h e s i s d e f ense and p r o v i d e d e d i t o r i a l comments. Jamie Smith, K a r e l K l i n k a and R i c k E l l i s a l s o p r o v i d e d e d i t o r i a l comments.. Dale T r o y e r s u p p l i e d a v e c t o r - p o l y g o n i n t e r s e c t i o n r o u t i n e and h e l p e d produce the polygon i n t e r s e c t i o n r o u t i n e . Doug W i l l i a m s p r o v i d e d an a l g o r i t h m f o r t h i n n i n g p o l y g o n s , and a d v i c e on u s i n g p o l y g o n s and d i g i t a l t e r r a i n models. Glen Young s u p p l i e d d i g i t i z e r t i m e f o r map p r e p a r a t i o n . David T a i t p r o v i d e d d i s c u s s i o n and i d e a s i m p o r t a n t t o the d i r e c t i o n of t h e t h e s i s . B i l l Gazey s u p p l i e d t h o u g h t s on the s t a t i s t i c a l method. 1 OBJECTIVES T h i s s t u d y was i n s p i r e d by a d e s i r e t o p r o v i d e c r i t e r i a f o r managing f o r e s t e d l a n d t o s i m u l t a n e o u s l y p r o v i d e h a b i t a t f o r many s p e c i e s of w i l d l i f e . . F o r e s t e d l a n d may be managed f o r w i l d l i f e by m o d i f y i n g p r o j e c t e d p l a n s f o r t i m b e r management and h a r v e s t . F o r e s t e r s use l a n d r e s o u r c e maps as a base f o r management d e c i s i o n s and as a medium f o r r e c o r d i n g management a c t i v i t i e s . The o b j e c t i v e o f t h i s s t u d y was t o demonstrate t h a t such maps a l s o c o u l d be used f o r mapping w i l d l i f e h a b i t a t . That can be r e s t a t e d as the h y p o t h e s i s : l a n d r e s o u r c e maps can be used t o p r e d i c t the o c c u r r e n c e o f w i l d l i f e . B e f o r e a t t e m p t i n g t o e v a l u a t e the h y p o t h e s i s , a method f o r q u a n t i f y i n g t h e o c c u r r e n c e of w i l d l i f e must be s e l e c t e d or d e v e l o p e d . . B i r d s were chosen as t h e s u b j e c t w i l d l i f e group because t h e i r c a l l s are r e a d i l y d e t e c t e d and i d e n t i f i e d . A v a i l a b l e methods of e v a l u a t i n g r e l a t i v e d e n s i t i e s of b i r d s l o c a t e d by sound have proved t o be u n s a t i s f a c t o r y . A f i r s t and major s t e p i n a d d r e s s i n g t h e broad o b j e c t i v e was t o develope a t e c h n i q u e t h a t would p e r m i t comparison of the o c c u r r e n c e of b i r d s i n d i f f e r e n t p a r t s of a l a n d r e s o u r c e map. S p e c i f i c s u b - o b j e c t i v e s t h u s were: 1. To de v e l o p e a r i g o r o u s t e c h n i q u e f o r u s i n g t h e c a l l s of b i r d s t o determine r e l a t i v e d e n s i t i e s of b i r d s i n d i f f e r e n t a r e a s . 2 . To w r i t e computer programs t o implement the t e c h n i q u e employing computer-based mapping systems. . 2 3. To test the method by demonstrating repeatable r e s u l t s f o r a number of b i r d species. 4. To use the results to document and explore habitat rel a t i o n s h i p s for selected bird species.. 3 INTRODUCTION Much o f t h e l a n d i n B r i t i s h Columbia i s f o r e s t e d and has been a l l o c a t e d t o f o r e s t companies f o r t i m b e r p r o d u c t i o n . Many i n v e s t i g a t o r s have a s s o c i a t e d changes i n w i l d l i f e p o p u l a t i o n s w i t h changes i n v e g e t a t i v e s t r u c t u r e t h a t o c c u r when f o r e s t s a r e managed f o r t i m b e r p r o d u c t i o n (e.g. .Odum 1950; J o h n s t o n and Odum 1956; Hager 1960; M a r t i n 1960; Hooven 1969; Bock and Lynch 1970; Conner 1973; Wight 1973; Conner and A d k i s s o n 1975; Meslow and Wight 1975; B u n n e l l and Eastman 1976; Thomas e t a l . .1976; F r a n z r e b 1977). F o r e s t companies r e c o r d t i m b e r h a r v e s t and o t h e r l a n d management a c t i v i t i e s on maps. I f t h e o c c u r r e n c e of a w i l d l i f e s p e c i e s has been shown t o depend on the type and e x t e n t of l a n d management t h a t has o c c u r r e d , then a map of t h e s e a c t i v i t i e s w i l l be u s e f u l f o r p r e d i c t i n g t h e abundance o f t h a t s p e c i e s i n a p a r t i c u l a r a r e a . . Other i n v e s t i g a t o r s have r e p o r t e d a v a r i a t i o n i n v e g e t a t i v e s t r u c t u r e t h a t o c c u r s w i t h i n f o r e s t s t a n d s (e.g. K u c h l e r 1951; Major 1951; Jenny 1958; K r a j i n a 1960; Rowe 1960; K l i n k a 1976). P l a n t s p e c i e s do not grow everywhere w i t h e g u a l v i g o r . . Areas of abundant growth f o r one p l a n t s p e c i e s tend t o be a s s o c i a t e d w i t h a r e a s of abundant growth f o r c e r t a i n o t h e r p l a n t s p e c i e s . These n a t u r a l l y - o c c u r r i n g groups have prompted t h e i n v e s t i g a t o r s t o d e f i n e p l a n t communities as components o f ecosystems. An ar e a i s d e s i g n a t e d as a c e r t a i n community i f t h e s p e c i e s c o m p o s i t i o n f a l l s w i t h i n s e l e c t e d l i m i t s . Maps o f p l a n t communities have been made 4 u s i n g s p e c i e s c o m p o s i t i o n l i m i t s as c r i t e r i a f o r drawing b o u n d a r i e s (ewg. K l i n k a 1976). Man has always been aware of s e l e c t i v e use o f p l a n t s p e c i e s by h e r b i v o r e s and o m n i v o r e s , so i t i s ex p e c t e d t h a t a map based on t h e d i s t r i b u t i o n of p l a n t s p e c i e s would be u s e f u l f o r p r e d i c t i n g the o c c u r r e n c e of p l a n t - e a t i n g w i l d l i f e . A map o f p l a n t communities might a l s o be u s e f u l f o r p r e d i c t i n g t h e d i s t r i b u t i o n of c a r n i v o r e s p e c i e s , i f t h e c a r n i v o r e s were a t t r a c t e d t o areas o f h i g h d e n s i t y o f prey or i f they were r e l a t i n g t o the s t r u c t u r e of the v e g e t a t i o n . . R e l a t i o n s h i p s between the a r e a s used by a w i l d l i f e s p e c i e s and the types of a p l a n t community map c o u l d r e s u l t from a common response t o a b i o t i c f a c t o r s . . I f t h i s were the case then the s p a t i a l o c c u r r e n c e of a w i l d l i f e s p e c i e s might be c o r r e l a t e d w i t h t h a t of c e r t a i n s o i l t y p e s of a s o i l s map o r w i t h c e r t a i n landform c l a s s e s of a l a n d f o r m map. Maps o f s o i l m o i s t u r e , a i r t emperature or snow depth might produce s i g n i f i c a n t c o r r e l a t i o n s f o r some w i l d l i f e s p e c i e s . . I f two o r more of the maps were u s e f u l f o r p r e d i c t i n g the o c c u r r e n c e o f a w i l d l i f e s p e c i e s , t h e n o v e r l a y i n g the maps s h o u l d improve the p r e d i c t i o n . For example, a s p e c i e s might be most abundant on a c e r t a i n s o i l type or i n a v e g e t a t i o n type o n l y i f t h e a r e a was i n a c e r t a i n s e r a i s t a g e or had been s u b j e c t e d t o (or p r o t e c t e d from) c e r t a i n l a n d management p r a c t i c e s . The s i z e of t h e p o p u l a t i o n u s i n g the h a b i t a t s h o u l d f l u c t u a t e i n re s p o n s e t o such f a c t o r s as weather, p r e d a t o r s and p a r a s i t e s . Use of t h e h a b i t a t s h o u l d a l s o vary s e a s o n a l l y w i t h such p r o c e s s e s as r e p r o d u c t i o n and 5 d i s p e r s a l . Land maps a l o n e would not be s u f f i c i e n t f o r p r e d i c t i n g such s h o r t term f l u c t u a t i o n s , but t h e y might p r o v i d e i n f o r m a t i o n on the d i s t r i b u t i o n and r e l a t i v e q u a l i t y o f h a b i t a t a v a i l a b l e t o m a i n t a i n a f l u c t u a t i n g p o p u l a t i o n . The h y p o t h e s i s t h a t l a n d maps can p r e d i c t the o c c u r r e n c e o f w i l d l i f e h a b i t a t , can be t e s t e d by d e m o n s t r a t i n g a s i g n i f i c a n t d i f f e r e n c e i n the use o f two d i f f e r e n t mapping ty p e s by a w i l d l i f e s p e c i e s . To e x p l o r e more c o m p l e t e l y the p o t e n t i a l f o r u s i n g e x i s t i n g f o r e s t l a n d maps i n d e c i s i o n s on managing w i l d l i f e h a b i t a t , i t i s p r e f e r a b l e t o have sampled many of the c l a s s i f i c a t i o n t y p e s of each o f a number of d i f f e r e n t l a n d maps f o r each o f a number of s p e c i e s . The d i f f e r e n t maps c o u l d t h e n be compared f o r t h e i r a b i l i t y t o p r e d i c t h a b i t a t f o r each of the s p e c i e s , and d i f f e r e n c e s between s p e c i e s c o u l d be a s s e s s e d . Many s p e c i e s of f o r e s t w i l d l i f e a r e d i f f i c u l t t o d e t e c t . . R e l a t i n g one such s p e c i e s t o one map type i s a s i z e a b l e p r o j e c t . Success i n r e l a t i n g s e v e r a l s p e c i e s t o more t h a n one map w i l l depend on c h o o s i n g s p e c i e s t h a t can be d e t e c t e d e a s i l y . B i r d s which can be seen o r h e a r d , and s m a l l mammals which can be can be t r a p p e d or heard ( e . g . . s g u i r r e l s , p i k a ) a r e l i k e l y c a n d i d a t e s . B i r d s l o c a t e d by sound were chosen because t h e r e a re many s p e c i e s of b i r d s common t o f o r e s t e d l a n d t h a t can be r e a d i l y i d e n t i f i e d by t h e i r c a l l s . . An o b s e r v e r l i s t e n i n g f o r b i r d c a l l s does not i n t e r f e r e w i t h s u b j e c t s p e c i e s as much as when t r a p p i n g , and he does not have t o d e a l w i t h t h e problem o f e x t r e m e l y l i m i t e d v i s i b i l i t y w i t h i n a f o r e s t canopy., Very few of the b i r d s h e a r d i n 6 f o r e s t e d h a b i t a t a re ever seen. Most methods f o r c e n s u s i n g b i r d s r e l y on s i g h t f o r making p o i n t l o c a t i o n s , a l t h o u g h sound may be i m p o r t a n t i n a t t r a c t i n g t h e o b s e r v e r s a t t e n t i o n to a b i r d (e.g. B r e c k e n r i d g e 1935; Kendeigh 1944; W i l l i a m s o n 1964; W i l l i a m s o n and Homes 1964; Emlen 1971; Bes t 1975). Some methods have a l l o w e d l o c a t i o n s made by sound t o supplement v i s u a l r e c o r d s when the sound a l l o w e d a p o i n t l o c a t i o n . Amman and B a l d w i n (1960: 701) used sound t o de t e r m i n e "...the t r e e i n which a b i r d was l o c a t e d . . . " when c e n s u s i n g woodpeckers i n s p r u c e - f i r f o r e s t s . Colguhoun (1940a: 55) r e c o r d e d a b i r d t h a t was heard but n o t seen o n l y "...when i t c o u l d be l o c a l i z e d i n any one t r e e or group o f s h r u b s . . . " . . I n h i s method, " . . . a l l d i s t a n t songs and c a l l s were i g n o r e d , b u t t h e r e was no d i s t a n c e l i m i t when i d e n t i f i c a t i o n was v i s u a l . " Colguhoun (1940b: 131) l a t e r r e s t a t e d t h a t " . . . c o u n t s were r e s t r i c t e d t o i n d i v i d u a l s c l o s e a t hand..." when i d e n t i f i c a t i o n was v o c a l . P r e v i o u s methods which r e c o r d e d a l l b i r d s i d e n t i f i e d by sound have been used t o show p o p u l a t i o n t r e n d s between y e a r s . The methods r e g u i r e the same l i s t e n i n g r o u t e or s t a t i o n s t o be used each y e a r , and they i n c o r p o r a t e r e c o r d s made over a l a r g e a r e a i n t o a s i n g l e d e n s i t y e s t i m a t e o r r e l a t i v e d e n s i t y i n d e x . . Howell (1951) employed both sound and s i g h t d u r i n g a r o a d s i d e census t o d e t e c t changes i n b i r d p o p u l a t i o n s over y e a r s . H i s d e n s i t y i n d e x , made frcm a moving a u t o m o b i l e , r e p r e s e n t s an average over t h e d i s t a n c e d r i v e n . P e t r a b o r g e t a l . (1953) used drumming c o u n t s t o e s t i m a t e d e n s i t i e s of B u f f e d Grouse (Bonasa umbellus) by d e t e r m i n i n g the average 7 f r e g u e n c y of drumming by a b i r d . They assumed a c i r c u l a r p l o t w i t h a r a d i u s e g u a l t o the mean d i s t a n c e t h a t drumming c o u l d be h e a r d , but averaged the r e s u l t s from ten d i f f e r e n t l i s t e n i n g s t a t i o n s when c a l c u l a t i n g d e n s i t i e s . Thomas e t a l . . (1977: 3) s t a t e d t h a t they were unable t o use t h e r e c o r d s o f b i r d s heard but not seen when c e n s u s i n g p l o t s i n suburban a r e a s : " We found t h a t the d a t a f o r b i r d s censused s o l e l y by sound were not u s e f u l . Some s p e c i e s c o u l d be heard a t g r e a t d i s t a n c e s . S i n c e a l l v e g e t a t i o n a l v a r i a b l e s and many o t h e r v a r i a b l e s were measured on an 8 3 - f o o t r a d i u s p l o t , the p l o t may not have been r e p r e s e n t a t i v e of h a b i t a t of d i s t a n t b i r d s " . They c o n c l u d e d t h a t " . . . o n l y i n a v e r y homogenous h a b i t a t c o u l d b i r d s be censused by sound a l o n e " . They r e c o g n i z e d t h a t t h e s i z e o f t h e p l o t censused by sound would d i f f e r among s p e c i e s , but suggested a c i r c u l a r p l o t w i t h a r a d i u s dependent on the average d i s t a n c e t h a t a song c o u l d be heard ( f o l l o w i n g P e t r a b o r g e t a l . . 1953). Three major problems must be overcome b e f o r e r e c o r d s of b i r d s censused by sound can p r o v i d e a c o m p a r a t i v e i n d e x o f abundance between d i f f e r e n t mapping t y p e s . . D e t e r m i n i n g the s i z e and shape of the a r e a b e i n g censused i s the f i r s t p roblem. The p l o t censused f o r any s p e c i e s w i l l not be c i r c u l a r u n l e s s i n a l e v e l a r e a w i t h homogenous v e g e t a t i v e c o v e r . An i r r e g u l a r shape w i l l r e s u l t from the a t t e n u a t i o n o f sound by heterogenous v e g e t a t i v e c o v e r and the b l o c k i n g of sound by p h y s i c a l o b s t r u c t i o n s such as h i l l s and b u i l d i n g s . I n d i r e c t i o n s where sound i s u n o b s t r u c t e d , the p l o t r a d i u s i s the average maximum d i s t a n c e t h a t a song can heard t h r o u g h 8 s t i l l a i r . Other f a c t o r s such as h i g h background n o i s e reduce t h i s d i s t a n c e , w h i l e some o b s t r u c t i o n s can be av o i d e d i f t h e b i r d or t h e o b s e r v e r seeks an e l e v a t e d p o s i t i o n . The method developed f o r t h i s study d e t e r m i n e s t h e s i z e and shape o f t h e area censused u s i n g a m a t h e m a t i c a l r e p r e s e n t a t i o n o f the p h y s i c a l s i t u a t i o n of a person l i s t e n i n g f o r b i r d s i n a mountain f o r e s t . The lan d f o r m around t h e l i s t e n e r i s r e p r e s e n t e d by a g r i d of p o i n t s i n a t h r e e -d i m e n s i o n a l , r e c t a n g u l a r c o o r d i n a t e system. The e l e v a t i o n o f each p o i n t i s determined from t h e c o n t o u r l i n e s of a t o p o g r a p h i c a l map. The g r i d i s used t o produce c r o s s - s e c t i o n s of t h e l a n d f o r m s u r f a c e i n many d i r e c t i o n s from the l i s t e n e r . The c r o s s - s e c t i o n s a r e t h e n used t o determine i f sound w i l l be b l o c k e d by lan d f o r m f e a t u r e s . The c r o s s - s e c t i o n s a r e expanded t o i n c l u d e f o r e s t canopy on t o p of the l a n d f o r m s u r f a c e u s i n g i n f o r m a t i o n from a map of canopy h e i g h t s . . The f o r e s t canopy c r o s s - s e c t i o n s a r e then used t o det e r m i n e i f sound w i l l be absorbed by t r e e s . The maximum d i s t a n c e a b i r d c o u l d be heard i n any d i r e c t i o n i s determined by t e s t i n g s u c c e s s i v e d i s t a n c e s i n t h a t d i r e c t i o n . Each d i r e c t i o n and maximum d i s t a n c e d e f i n e s one p o i n t of a polygon which p r e d i c t s t h e s i z e and shape o f t h e ar e a censused by sound. T h i s p o l y g o n , which d e s c r i b e s t h e a r e a c o v e r e d by cen s u s , i s h e n c e f o r t h c a l l e d a "coverage p o l y g o n " . . The second problem i s t h a t a s i n g l e p l o t may sample two or more l a n d c l a s s t y p e s . The p l o t or ar e a censused t e n d s t o be l a r g e , r e f l e c t i n g t h e e f f i c i e n c y o f u s i n g sound to d e t e c t and i d e n t i f y c a l l i n g b i r d s . I f an a r e a c l a s s i f i e d as a s i n g l e 9 t y p e i s a l s o l a r g e , t h e o b s e r v e r may be a b l e t o p o s i t i o n h i m s e l f such t h a t the p l o t i s c o n t a i n e d e n t i r e l y w i t h i n the t y p e even f o r b i r d s p e c i e s w i t h l o u d c a l l s . I n t e r p r e t a t i o n o f the r e s u l t s a r e then s t r a i g h t f o r w a r d . For many maps o f l a n d c l a s s i f i c a t i o n , t h e a r e a o f most t y p e s w i l l be s m a l l e r than t h e a r e a c o v e r e d from a s i n g l e s p o t when c e n s u s i n g b i r d s by sound. A s i n g l e p l o t may c o n t a i n examples o f more than one c l a s s i f i c a t i o n t y p e , a l t h o u g h i t i s d i f f e r e n c e s between t y p e s t h a t a r e t o be demonstrated. The method developed r e c o g n i z e s t h a t a r e a s c l a s s i f i e d as being d i f f e r e n t may be censused s i m u l t a n e o u s l y . .Each a r e a t h a t i s mapped as a s i n g l e t y p e i s r e p r e s e n t e d by a polygon d e f i n e d by p o i n t s l o c a t e d a l o n g i t s p e r i m e t e r . . An a r e a c l a s s i f i e d as a s i n g l e type i s h e n c e f o r t h c a l l e d a "type i s l a n d " a s the area w i l l be an " i s l a n d " of t h a t t y p e surrounded by i s l a n d s of d i f f e r e n t t y p e s . P o l y g o n s r e p r e s e n t i n g the ty p e i s l a n d s of a l a n d c l a s s i f i c a t i o n map are h e n c e f o r t h r e f e r r e d t o as " c l a s s i f i c a t i o n p o l y g o n s " . . The are a o f a type i s l a n d t h a t i s censused from a g i v e n p o i n t i s dete r m i n e d by i n t e r s e c t i n g the coverage polygon f o r t h a t p o i n t w i t h t h e c l a s s i f i c a t i o n p o l y gon f o r the type i s l a n d . The a r e a s censused a r e summed f o r each c l a s s i f i c a t i o n t y p e t o g i v e t h e t o t a l a r ea censused of each t y p e . The t h i r d problem concerns t h e n a t u r e of l o c a t i n g a c a l l i n g b i r d . An obs e r v e r cannot p l o t the e x a c t p o s t i o n o f a c a l l i n g b i r d u n l e s s t h e b i r d can be seen. The o b s e r v e r can g i v e a d i r e c t i o n , an e s t i m a t e o f h i s c o n f i d e n c e i n t h e d i r e c t i o n , and l i m i t s on t h e d i s t a n c e t o the b i r d . Because 10 the l o c a t i o n i s d e s c r i b e d as an area which may cover more than one land type, i t w i l l not always be p o s s i b l e to say which type the b i r d was i n . The method developed f o r t h i s study c a l c u l a t e s the c o o r d i n a t e s of the p o i n t s which d e l i n e a t e the area t h a t a b i r d was i n , using the d i r e c t i o n and d i s t a n c e e s t i m a t e s recorded i n the f i e l d . The polygon d e f i n e d by these p o i n t s i s he n c e f o r t h r e f e r r e d t o as a " l o c a t i o n polygon". The method assumes e g u a l p r o b a b i l i t y of the b i r d a c t u a l l y being l o c a t e d anywhere w i t h i n a l o c a t i o n polygon. The area of i n t e r s e c t i o n between a l o c a t i o n polygon and a c l a s s i f i c a t i o n polygon, d i v i d e d by the area of the l o c a t i o n polygon g i v e s the p r o b a b i l i t y t h at the b i r d was a c t u a l l y l o c a t e d i n t h a t type i s l a n d . For example, i f only ten percent of the area of a l o c a t i o n polygon o v e r l a p s with a given c l a s s i f i c a t i o n polygon, then the p r o b a b i l i t y i s ten percent t h a t the b i r d was r e a l l y s i t u a t e d i n t h a t type i s l a n d when i t c a l l e d . . The p r o b a b i l i t i e s determined t h i s way are summed over c l a s s i f i c a t i o n types t o provide the probable number of b i r d s t h a t were l o c a t e d i n each type. The t o t a l , probable number of b i r d s d i v i d e d by the t o t a l area censused of each c l a s s i f i c a t i o n type i s the index of abundance which i s used i n comparisons between types. The same coverage and l o c a t i o n polygons are i n t e r s e c t e d with c l a s s i f i c a t i o n polygons from two d i f f e r e n t maps, and comparisons are made between maps. D i f f e r e n t coverage and l o c a t i o n polygons f o r d i f f e r e n t b i r d s p e c i e s are used with the same maps, and t o make comparisons i n the use of c l a s s i f i c a t i o n types between s p e c i e s . 11 STUDY AREA AND ANIMALS The U n i v e r s i t y o f B r i t i s h Columbia R e s e a r c h F o r e s t i s l o c a t e d i n the mountains a d j a c e n t t o the l o w e r F r a s e r R i v e r V a l l e y about t e n km n o r t h of Haney, B r i t i s h Columbia ( F i g u r e 1 ) . . Measuring about 4 by 13 km, i t s 5,151 ha c o n t a i n 12 l a k e s p l u s a v a r i e t y of l a n d f o r m s , s o i l t y p e s and v e g e t a t i o n communities. Many s e r a i s t a g e s are r e p r e s e n t e d on t h e Research F o r e s t as a r e s u l t o f i t s l o n g h i s t o r y of f i r e s and t i m b e r h a r v e s t . A dense network o f roads and t r a i l s a l l o w s easy a c c e s s t o a l l but t h e most remote p a r t s o f the f o r e s t . The c l i m a t e o f the a r e a r e f l e c t s t h e s t r o n g marine i n f l u e n c e of t h e P a c i f i c Ocean. W i n t e r s a r e c o o l and e x t r e m e l y wet w i t h the p r e c i p i t a t i o n b u i l d i n g up as snow o n l y d u r i n g c o l d s p e l l s . Summers are d r i e r and warm but f r e q u e n t l y c l o u d y . The p o r t i o n o f t h e f o r e s t c o v e r e d i n census by t h i s study ranged i n e l e v a t i o n from about 200 t o 800 m above sea l e v e l . I t i s an a r e a o f h i g h r e l i e f w i t h lower e l e v a t i o n s o c c u r r i n g t o the South. The most common s p e c i e s o f t r e e s a r e D o u g l a s - f i r (Pseudotsuqa m e n z i e s i i ) , western hemlock (Tsuga h e t e r o p h y l l a ) , western r e d c e d a r (Thuja p l i c a t a ) , r e d a l d e r (Ainus r u b r a ) , and a m a b i l i s f i r ( A b i e s a m a b i l i s ) . For a more complete d e s c r i p t i o n o f t h e U.B.C. Research F o r e s t see K l i n k a (1976) . B i r d s were s e l e c t e d i n t h i s s t u d y o f w i l d l i f e h a b i t a t because they p r o v i d e p o t e n t i a l f o r documenting h a b i t a t r e l a t i o n s f o r many s p e c i e s . Of t h e s p e c i e s of b i r d s known t o occur i n the s t u d y a r e a , ten were s e l e c t e d a c c o r d i n g t o the 12 FIGURE 1. MAP OF THE STUDY AREA » i i i t KILOMETERS 0 1 2 3 13 f o l l o w i n g c r i t e r i a : 1. Each s p e c i e s s h o u l d f r e g u e n t l y produce sounds t h a t are r e a d i l y i d e n t i f i e d . 2. Each s p e c i e s s h o u l d be abundant i n a t l e a s t some p a r t s o f t h e s t u d y a r e a . 3.. S p e c i e s chosen s h o u l d r e p r e s e n t a v a r i e t y of l i f e s t y l e s . 4.. Each s p e c i e s s h o u l d have been s t u d i e d p r e v i o u s l y so t h a t c o m p a r a t i v e data would be a v a i l a b l e . 5.. Some o f t h e s p e c i e s s h o u l d be c a v i t y n e s t e r s . Based on t h e s e c r i t e r i a , t h e f o l l o w i n g t en b i r d s p e c i e s were s e l e c t e d : 1. Common F l i c k e r ( C o l a p t e s c a f e r ) 2 . Y e l l o w - b e l l i e d Sapsucker (S£hyrapicus y a r i u s ) 3. H a i r y Woodpecker (Dendrocopus v i l i p s u s ) 4. O l i v e - s i d e d F l y c a t c h e r ( N u t t a l l o r n i s b o r e a l i s ) 5. S t e l l e r ' s Jay (Cy_anocitta s t e l l e r i ) 6. C h e s t n u t - b a c k e d C h i c k a d e e (Parus r u f e s c e n s ) 7. Red-breasted Nuthatch ( S i t t a c a n a d e n s i s ) 8 . Winter Wren ( T r o g l o d y t e s t r o g l o d y t e s ) 9. V a r i e d Thrush ( I x o r e u s n a e v i u s ) 10. Swainson's Thrush ( H y l o c i c h l a u s t u l a t a ) 14 METHOD The method r e q u i r e s d a t a from s i x d i f f e r e n t s o u r c e s t o be p r e p a r e d and e i g h t e e n d i f f e r e n t computer programs t o be run t o produce a t a b l e r e l a t i n g one b i r d s p e c i e s t o t h e t y p e s o f one map f o r one s t u d y a r e a . The r e g u i r e d s t e p s are r e p r e s e n t e d as a f l o w c h a r t i n F i g u r e 2. Steps #1a t o #1c i n v o l v e l o c a t i n g l i s t e n i n g s t a t i o n s i n t h e f i e l d , d e t e r m i n i n g t h e c o o r d i n a t e s of each s t a t i o n , and s t o r i n g t h e i n f o r m a t i o n i n a computer f i l e . S t e p s #2a t o #2d r e q u i r e p r e p a r i n g a map o f t r e e canopy h e i g h t s , d e t e r m i n i n g t h e c o o r d i n a t e s o f p o i n t s which d e f i n e polygons r e p r e s e n t i n g the c a n o p y - h e i g h t t y p e i s l a n d s , s t o r i n g t h e c o o r d i n a t e s i n a computer f i l e , and r u n n i n g a computer program which removes p o i n t s from each p o l y g o n which a r e not i m p o r t a n t t o i t s shape. Steps #2e t o #2g i n v o l v e r u n n i n g programs which use the l o c a t i o n s o f l i s t e n i n g s t a t i o n s and t h e c a n o p y - h e i g h t p o l y g o n s t o produce a c r o s s - s e c t i o n a l d e s c r i p t i o n of t h e f o r e s t canopy around each s t a t i o n . . Steps #3a t o #3c i n v o l v e s u p e r i m p o s i n g a r e g u l a r g r i d on a topography map, r e c o r d i n g t h e e l e v a t i o n a t each g r i d p o i n t , and s t o r i n g t h e i n f o r m a t i o n i n a computer f i l e . The i n f o r m a t i o n i s l i s t e d and p l o t t e d i n s t e p s #3d and #3e so t h a t e r r o r s may be found and c o r r e c t e d . I n s t e p s #3b and #3g computer programs use the l o c a t i o n s of l i s t e n i n g s t a t i o n s and the g r i d of e l e v a t i o n s t o produce a c r o s s - s e c t i o n a l d e s c r i p t i o n of the l a n d f o r m around each s t a t i o n . The c r o s s -s e c t i o n a l d e s c r i p t i o n of t h e f o r e s t canopy i s combined w i t h the l a n d f o r m d e s c r i p t i o n i n s t e p #4a. The r e s u l t i n g canopy 15 FIGURE 2 . FLOWCHART OF STEPS REQUIRED TO PRODUCE TABLES RELATING ONE BIRD SPECIES TO THE TYPES OF ONE MAP FOR ONE AREA. 2a Canopy H e i g h t s Type I s l a n d s 1a S t a t i o n L o c a t i o n s 3a Landform I n f o r m a t i o n 2b D i g i t i ze • 2 c DIGFIX lb D i g i t i ze 3b I Record E l e v a t i o n s 1c STOPREP 2d POLYTHIN r— 2e FORAXINIT 2 f FORAXUPD k 2g | FORAXORDER 3c I GRIDMAKE 3d GRIDLI ST 3e PERSPLOT 3 f I TOPAXMAKE 3g | TOPAXORDER H ha I F0R0NT0P k W\ PROFPLOT U 7a C TN a s s i f i c a t i on ^pe I s l a n d s 7b D i g i t i z e 7c D GFIX 5a F i e l d O b s e r v a t i o n s 5b SERORDER 6a S p e c i e s I n f o . 6b COVANDLOC 7d | POLYTHIN 8a HABDEXINIT 8b I HABDEX 9 SUMERIZE T a b l e s r e l a t i n g O b s e r v e d D e n s i t y o f C a l l s t o Land C l a s s i f i c a t i o n Mapping T y p e s . 16 and l a n d f o r m p r o f i l e s f o r any s t a t i o n may be p l o t t e d f o r c h e c k i n g i n s t e p #4b. . L i s t e n i n g s t a t i o n s a r e v i s i t e d , l o c a t i o n s o f b i r d s r e c o r d e d and the d a t a s t o r e d i n computer f i l e s i n s t e p s #5a and #5b. I n f o r m a t i o n on t h e c a l l and c a l l i n g p o s i t i o n of the b i r d s p e c i e s i s prepared and s t o r e d i n s t e p #6a. That i n f o r m a t i o n , the f i e l d d a t a from s t e p #5, and the canopy and l a n d f o r m p r o f i l e s from s t e p #4 a r e used i n t h e program o f s t e p #6b t o produce polygons d e f i n i n g the a r e a censused and the a r e a s of l o c a t i o n s made a t each s t a t i o n . Steps #7a t o #7d r e q u i r e p r e p a r i n g o r o b t a i n i n g a l a n d c l a s s i f i c a t i o n map, d e t e r m i n i n g the c o o r d i n a t e s o f p o i n t s which d e f i n e polygons r e p r e s e n t i n g type i s l a n d s on t h e map, s t o r i n g t h e c o o r d i n a t e s i n a computer f i l e , and r u n n i n g a program which removes p o i n t s which a r e not i m p o r t a n t t o t h e shape of each p o l y g o n . These c l a s s i f i c a t i o n p olygons a r e used i n s t e p #8, a l o n g with the coverage and l o c a t i o n p o l y g o n s p r e p a r e d i n s t e p #6b, t o c a l c u l a t e an index o f b i r d abundance f o r each mapped t y p e i s l a n d . The r e s u l t s a re combined over i s l a n d s c l a s s e d as t h e same t y p e t o c a l c u l a t e an i n d e x o f b i r d abundance f o r each mapping t y p e by r u n n i n g t h e computer program i n s t e p #9. The t a b l e s produced by t h i s program a r e d i s c u s s e d under " E e s u l t s " . Steps #1 t o #4 need t o be r e p e a t e d o n l y i f a new study a r e a i s s e l e c t e d o r i f t h e r e a r e changes i n the l a n d f o r m , v e g e t a t i v e c o v e r or l o c a t i o n of l i s t e n i n g s t a t i o n s on the o r i g i n a l s t u d y a r e a . T a b l e s r e l a t i n g d i f f e r e n t s p e c i e s t o t h e same map are produced by r e p e a t i n g s t e p s #5, #6, #8 and #9; 17 w h i l e t a b l e s r e l a t i n g the same s p e c i e s t o d i f f e r e n t maps are produced by r e p e a t i n g s t e p s #7, #8 and #9. . I n the f o l l o w i n g s e c t i o n s the purpose and n a t u r e of each s t e p i s d e s c r i b e d as they are numbered on the f l o w c h a r t . For example, t h e d e t a i l s o f l o c a t i n g b i r d s i n the f i e l d i s d e s c r i b e d i n s t e p #5 a l o n g w i t h a d e s c r i p t i o n of the computer program which checks and o r d e r s the da t a . The computer programs used i n the method were w r i t t e n s p e c i f i c a l l y f o r t h i s s t u d y . Four o f t h e s u b r o u t i n e s used by the programs were adapted from o t h e r s o u r c e s as noted i n the t e x t . A l l programs a r e i n FORTRAN, and each program i s s e l f -s u f f i c i e n t so as t o be machine-independent. Programs are l i s t e d i n Appendix A. #1a. Determine t h e L o c a t i o n s of L i s t e n i n g S t a t i o n s . . L i s t e n i n g s t a t i o n s may be l o c a t e d anywhere and by any method, i n c l u d i n g random placement, w i t h o u t v i o l a t i n g the assumptions o f the s t a t i s t i c a l a n a l y s i s employed. However, more r e p r e s e n t a t i v e r e s u l t s w i l l be o b t a i n e d i f some r u l e s f o r s y s t e m a t i c placement a r e f o l l o w e d : 1. S t a t i o n s s h o u l d be p l a c e d so t h a t a v a r i e t y of examples of each c l a s s i f i c a t i o n type w i l l be censused. The f i n a l r e l a t i o n s h i p between one b i r d s p e c i e s and one c l a s s i f i c a t i o n t y p e i s d e r i v e d from t h e examples of t h a t t y p e which a r e w i t h i n h e a r i n g d i s t a n c e of the s t a t i o n s . S p e c i e s t h a t c a l l more s o f t l y r e g u i r e a t y p e i s l a n d t o be c l o s e r t o a s t a t i o n i f the t y p e i s t o be censused. The most r e p r e s e n t a t i v e r e s u l t s a re e x p e c t e d when a v a r i e t y 18 o f examples of the ty p e have been censused..For example, c o n s i d e r r e l a t i n g use by a b i r d s p e c i e s t o s e r a i s t a g e s i n a h a r v e s t e d f o r e s t . I f much o f t h e f o r e s t has been h a r v e s t e d , t h e n a v a i l a b l e examples of o l d growth might be r e s t r i c t e d t o poor q u a l i t y growth t h a t was bypassed by l o g g e r s . L o c a t i n g some s t a t i o n s near good q u a l i t y o l d growth s t a n d s t e n d s t o o f f s e t t h e problem. I f good q u a l i t y examples were not a v a i l a b l e t h e n t h e r e s u l t s must be viewed as a r e l a t i o n s h i p of the s p e c i e s w i t h poor q u a l i t y o l d growth. As a second example, c o n s i d e r r e l a t i n g use by a s p e c i e s w i t h i n d i f f e r e n t v e g e t a t i o n t y p e s . I f one v e g e t a t i o n t y p e o c c u r s i n v a l l e y bottoms, but most of t h e v a l l e y bottoms have been lo g g e d r e c e n t l y , t h e n most examples o f t h a t v e g e t a t i o n t y p e w i l l a l s o be i n an e a r l y s e r a i s t a g e . The problem can be o f f s e t by l o c a t i n g some l i s t e n i n g s t a t i o n s i n unlogged v a l l e y bottoms o r by r e c o g n i s i n g t h e r e s t r i c t i o n i n the r e s u l t s . 2. S t a t i o n s s h o u l d be p l a c e d a v a r i e t y of d i s t a n c e s from t h e examples of any one c l a s s i f i c a t i o n t y p e . There are a number of problems a s s o c i a t e d w i t h l o c a t i o n s made by sound. These a r e d i s c u s s e d i n c o n j u n c t i o n w i t h s t e p #5. F o r now i t i s n e c c e s s a r y o n l y t o c o n s i d e r t h a t an a r e a c l o s e t o a l i s t e n i n g s t a t i o n and an a r e a f a r from the same s t a t i o n (yet s t i l l w i t h i n h e a r i n g d i s t a n c e f o r t h e s p e c i e s ) may not accumulate observed use by the s p e c i e s w i t h t h e same ease. More r e p r e s e n t a t i v e r e s u l t s a re o b t a i n e d when a g i v e n t y p e i s censused from a v a r i e t y o f p o s i t i o n s . F o r example, c o n s i d e r a g a i n r e l a t i n g use by a 19 s p e c i e s t o s e r a i s t a g e s i n a h a r v e s t e d f o r e s t . L o g g i n g r o a d s are common i n t h e younger s t a g e s and r e l a t i v e l y r a r e i n o l d growth a r e a s . I f s t a t i o n s are l o c a t e d o n l y on l o g g i n g roads then o l d growth examples tend t o be c ensused from a d i s t a n c e . More r e p r e s e n t a t i v e r e s u l t s a r e e x p e c t e d i f some of t h e s t a t i o n s are l o c a t e d w i t h i n or a t l e a s t c l o s e t o o l d growth examples. 3. Once the a pproximate l o c a t i o n f o r a l l s t a t i o n s has been s e l e c t e d u s i n g maps, each s t a t i o n s h o u l d be v i s i t e d and t h e l o c a t i o n m o d i f i e d i f n e c e s s a r y t o maximize the a r e a censused per hour i n the f i e l d . The census p e r i o d i s r e s t r i c t e d t o a few hours on s p r i n g mornings d u r i n g good weather, t h u s th e o b s e r v e r s h o u l d minimize time t r a v e l i n g between s t a t i o n s . T h i s can be a c c o m p l i s h e d by l o c a t i n g s t a t i o n s on o r near e s t a b l i s h e d roads but t a k i n g c a r e not t o v i o l a t e the f i r s t two r u l e s f o r s y s t e m a t i c placement j u s t d i s c u s s e d . The s t a t i o n s s h o u l d a l s o be l o c a t e d t o a l l o w the o b s e r v e r t o c o v e r a l a r g e a r e a from each one. F o r example, i t would be i n e f f i c i e n t t o l o c a t e a l i s t e n i n g s t a t i o n b e s i d e a l o u d r i v e r {background n o i s e i s d i s c u s s e d i n s t e p #5) or i n an area where sound i s b l o c k e d from most d i r e c t i o n s by nearby t o p o g r a p h i c f e a t u r e s ( d i s c u s s e d i n s t e p #3g) . A t o t a l o f 163 l i s t e n i n g s t a t i o n s were e s t a b l i s h e d . . T h e i r p o s i t i o n s i n t h e f i e l d were marked w i t h f l a g g i n g t a p e . Most of t h e s t a t i o n s were s i t u a t e d on or near l o g g i n g r o a d s . An attempt was made t o d i s t r i b u t e the s t a t i o n s such t h a t most s p o t s w i t h i n an a rea of about 2000 ha were cov e r e d from one 20 o r more s t a t i o n s f o r a s p e c i e s c a l l i n g a t moderate volume. T h i s a r e a i n c l u d e s a v a r i e t y o f examples of most s e r a i s t a g e s and v e g e t a t i o n t y p e s p r e s e n t on the Research F o r e s t . #1b. D i g i t i z e L o c a t i o n s of L i s t e n i n g S t a t i o n s . The l o c a t i o n s of the l i s t e n i n g s t a t i o n s were marked on a t o p o g r a p h i c map ( s c a l e 1 cm r e p r e s e n t s 100 m) and d i g i t i z e d . The map was a l i g n e d on the d i g i t i z e r t a b l e and the lower l e f t c o r n e r of t h e map was i n i t i a l i z e d as t h e o r i g i n . . The d i g i t i z e r g i v e s an (X rY) c o o r d i n a t e d e f i n i n g the p o s i t i o n o f i t s c u r s o r r e l a t i v e t o the o r i g i n . By t a k i n g c o o r d i n a t e s w i t h the c u r s o r p o s i t i o n e d a known map d i s t a n c e from the o r i g i n , a f a c t o r f o r c o n v e r t i n g d i g i t i z e r u n i t s t o map u n i t s was d e t e r m i n e d . The f a c t o r was used i n s t e p #1c t o c o n v e r t the (X,Y) c o o r d i n a t e s o f each l i s t e n i n g s t a t i o n t o r e a l d i s t a n c e s . As t h e c o o r d i n a t e s o f each s t a t i o n were t a k e n , a t h i r d c o o r d i n a t e - t h e Z c o o r d i n a t e or e l e v a t i o n - was r e c o r d e d manually by i n t e r p r e t i n g the c o n t o u r l i n e s o f t h e map. The map needed t o be r e p o s i t i o n e d as i t was t o o l a r g e f o r t h e d i g i t i z e r t a b l e . The o r i g i n was no l o n g e r a t the lower l e f t c o r n e r of t h e map, so the map l o c a t i o n of t h e r e l o c a t e d o r i g i n was r e c o r d e d f o r use i n s t e p #1c. 21 #1c. P r e p a r e the L i s t e n i n g - S t a t i o n Computer F i l e . The program STOPREP (48 l i n e s ) p r e p a r e d l i s t e n i n g -s t a t i o n l o c a t i o n s f o r use by o t h e r computer programs. The (X,Y) c o o r d i n a t e of l i s t e n i n g s t a t i o n s or " s t o p s " r e c o r d e d i n d i g i t i z e r u n i t s measured from the o r i g i n were c o n v e r t e d t o meters e a s t and n o r t h o f the o r i g i n u s i n g the c o n v e r s i o n f a c t o r from s t e p #1b. I f the d i g i t i z e r o r i g i n was s e t o t h e r t h a n a t t h e lower l e f t c o r n e r o f t h e map, t h e n the amount t h a t t h e o r i g i n was moved i n each d i r e c t i o n was added. The Z c o o r d i n a t e v a l u e s e n t e r e d manually were a s s o c i a t e d w i t h t h e X and Y c o o r d i n a t e s f o r t h e same s t a t i o n . STOPPREP then s t o r e d t h e i n f o r m a t i o n i n a form e a s i l y h a n d l e d by t h e computer..The i n f o r m a t i o n was used i n s t e p s #2e, #2f, #2g, #3f #3g, and #4a. #2a. P r e p a r e Map of Canopy H e i g h t s . A map of canopy h e i g h t s was p r e p a r e d f o r the s t u d y a r e a . A s m a l l p o r t i o n o f t h i s map i s r e p r o d u c e d i n F i g u r e 3. The e x i s t i n g l o g g i n g h i s t o r y and f o r e s t i n v e n t o r y map f o r t h e Research F o r e s t was the base. The type i s l a n d s of the i n v e n t o r y map were m o d i f i e d where n e c c e s s a r y t o p r o v i d e u n i t s of a p p r o x i m a t e l y uniform canopy h e i g h t . The r e s u l t i n g t y p e i s l a n d s were numbered and a canopy h e i g h t was a s s o c i a t e d w i t h each number. E f f e c t i v e canopy h e i g h t s f o r a b s o r b i n g sound, d e f i n e d as the h e i g h t a t which the canopy was h a l f c l o s e d , were e s t i m a t e d v i s u a l l y as b e i n g 80 p e r c e n t o f the average t r e e h e i g h t g i v e n on the i n v e n t o r y map f o r o l d e r s t a n d s . The e f f e c t i v e canopy h e i g h t s of younger s t a n d s f o r which average 22 23 t r e e h e i g h t s were not g i v e n were measured i n the f i e l d . R e s u l t i n g canopy h e i g h t s were keypunched and s t o r e d i n a f i l e f o r use i n s t e p #2g. #2b. D i g i t i z e Canopy-Height Map. The map of canopy h e i g h t s was prepared a t t h e same s c a l e as t h e map of l i s t e n i n g s t a t i o n l o c a t i o n s . . T h e map of canopy h e i g h t s was a t t a c h e d t o t h e d i g i t i z e r t a b l e as d e s c r i b e d i n s t e p #1b. The same c o n v e r s i o n f a c t o r was determined and t h e same procedure f o r moving the map and r e l o c a t i n g the o r i g i n was f o l l o w e d . The b o u n d a r i e s o f each c a n o p y - h e i g h t t y p e -i s l a n d were t r a c e d w i t h the c u r s o r . As t h e c u r s o r was moved alo n g the b o u n d a r i e s , the d i g i t i z e r r e c o r d e d (X,Y) c o o r d i n a t e p a i r s t h a t d e f i n e d the p o s i t i o n s of p o i n t s . When j o i n e d , the p o i n t s d e f i n e d a polygon w i t h t h e same shape and r e l a t i v e p o s i t i o n as the t y p e - i s l a n d t h a t was t r a c e d . The map c o n t a i n e d about 250 p o l y g o n s . #2c. P r e p a r e Computer F i l e s o f Canopy-Height P o l y g o n s . . The program DIGFIX (127 l i n e s ) p r e p a r e d polygon f i l e s f o r use by o t h e r computer programs. The (X,Y) c o o r d i n a t e s o f each p o i n t i n each polygon were c o n v e r t e d from d i g i t i z e r u n i t s t o r e a l d i s t a n c e s . I f the o r i g i n was p o s i t i o n e d o t h e r than a t t h e lower l e f t c o r n e r of t h e map, the n the amount o f d i s p l a c e m e n t was added to each p o i n t . 24 #2d. T h i n the Canopy-Height P o l y g o n s . . Programs which use p o l y g o n s r u n more g u i c k l y when the p o l y g o n s have fewer p o i n t s . P o l y g o n s w i t h fewer p o i n t s can a l s o be s t o r e d i n a s m a l l e r f i l e . The program POLYTHIN (220 l i n e s ) r e t a i n e d o n l y those p o i n t s i m p o r t a n t to d e f i n i n g t h e shape of each polygon. The d i g i t i z e r r e c o r d e d p o i n t s a t r e g u l a r i n t e r v a l s . I t i n c l u d e d many p o i n t s t h a t were i n l i n e and t h u s not i m p o r t a n t to t h e shape of the p o l ygon. The p o i n t t h i n n i n g a l g o r i t h m used i n POLYTHIN was suggested by D. W i l l i a m s 1 (pers. comm.). A t h i n n i n g t o l e r a n c e parameter was s e t t o a d j u s t how much out o f l i n e t h r e e p o i n t s must be i n order f o r the c e n t e r p o i n t t o be r e t a i n e d . Some examples of p o l y gon shapes b e f o r e and a f t e r t h i n n i n g a r e shown i n F i g u r e 4. #2e. P r e p a r e Computer F i l e t o R e c e i v e Canopy D e s c r i p t i o n s . The program F0RAX0PD d e s c r i b e d i n s t e p #2f was d e s i g n e d t o work w i t h one f i l e o f p o l y g o n s at a t i m e , a l t h o u g h t h e p o l y g o n s f o r one c l a s s i f i c a t i o n map may be s t o r e d i n two o r more f i l e s . . FORAXUPD added t h e i n f o r m a t i o n g a i n e d from each p o l y g o n f i l e t o t h e i n f o r m a t i o n a l r e a d y r e c o r d e d from p r e v i o u s polygon f i l e s . When FORAXUPD was run on the f i r s t of the f i l e s i t needed an empty i n f o r m a t i o n f i l e on which t o b u i l d * T h i s empty f i l e was c r e a t e d by the program FORAXINIT (30 l i n e s ) . i A s s i s t a n t P r o f e s s o r , F a c u l t y of F o r e s t r y , U n i v e r s i t y o f B r i t i s h Columbia. . 25 F I G U R E 4. S O M E E X A M P L E S O F P O L Y G O N S D I G I T I Z E D F R O M L A N D M A P S W I T H N U M B E R O F P O I N T S B E F O R E A N D A F T E R T H I N N I N G . r METERS 0 500 - I 1000 26 #2f. Get I n f o r m a t i o n f o r Canopy D e s c r i p t i o n s . The program FORAXUPD (495 l i n e s ) used t h e c a n o p y - h e i g h t p o l y g o n s and l i s t e n i n g - s t a t i o n l o c a t i o n s t o produce a d e s c r i p t i o n of t h e v e g e t a t i v e canopy h e i g h t around each s t a t i o n . The method r e l i e d on a r o u t i n e which determined the i n t e r s e c t i o n s of a l i n e segment w i t h a p o l y g o n . The r o u t i n e was a m o d i f i e d v e r s i o n o f s u b r o u t i n e P I P , a v e c t o r and pol y g o n i n t e r s e c t i o n s u b r o u t i n e w r i t t e n by D. T r o y e r 1 ( p e r s . .comm.). FORAXUPD t r e a t e d t h e i n t e r s e c t i o n of t h e l i n e segment d e f i n e d by the l i s t e n i n g s t a t i o n p o i n t and a p o i n t 1200 m away ( f a r t h e r than t h e maximum a u d i t o r y d i s t a n c e f o r th e b i r d s p e c i e s w i t h the l o u d e s t c a l l ) w i t h each of the ca n o p y - h e i g h t p o l y g o n s w i t h i n range ( F i g u r e 5 ) . I t c a l c u l a t e d and s t o r e d t h e d i s t a n c e s (D1 and D2 of F i g u r e 5) w i t h i n which t h e canopy h e i g h t of each p o l y g o n was o p e r a t i v e . The p r o c e s s was r e p e a t e d f o r each of t h e 16 p o i n t s of the compass (1=N, 2=NNE, 3=NE, 4=ENE, 5=E e t c . ) a t each l i s t e n i n g s t a t i o n (e.g. F i g u r e 6 ) . The program h a n d l e d one f i l e o f about 50 p o l y g o n s a t a t i m e . The i n f o r m a t i o n g a i n e d on any run was added t o t h a t from p r e v i o u s r u n s . i Systems Programmer, B r i t i s h Columbia Systems C o r p o r a t i o n , V i c t o r i a . 27 FIGURE 5. AN EXAMPLE INTERSECTION OF ONE LINE SEGMENT WITH ONE CANOPY-HEIGHT POLYGON. The c a n o p y - h e i g h t o f t h i s p o l y g o n w i l l be used i n the canopy p r o f i l e f o r d i s t a n c e DI and D2 from t h e l i s t e n i n g s t a t i o n . L i s t e n i n g S t a t i o n IGURE 6. ILLUSTRATION OF THE LINE SEGMENTS AND CANOPY-HEIGHT POLYGONS USED TO MAKE THE SIXTEEN CANOPY PROFILES FOR LISTENING STATION NUMBER 103. Canopy h e i g h t s a re g i v e n i n meters. 29 #2g. Order t h e Canopy D e s c r i p t i o n s . I n s t e p #2f the polygons were i n t e r s e c t e d w i t h each l i n e segment i n the or d e r t h a t they were o r i g i n a l l y d i g i t i z e d . The program FORAXORDER (88 l i n e s ) o r d e r e d t h e i n t e r s e c t i o n r e s u l t s by i n c r e a s i n g d i s t a n c e from t h e l i s t e n i n g s t a t i o n . Each of the 16 canopy c r o s s - s e c t i o n s a t each s t a t i o n was o r d e r e d s e p a r a t e l y w i t h a s i n g l e r u n . The canopy h e i g h t f o r each polygon was a s s o c i a t e d w i t h the c a l c u l a t e d d i s t a n c e s (#2f) u s i n g the ca n o p y - h e i g h t i n f o r m a t i o n f i l e from s t e p #2a. #3a. P r e p a r e I n f o r m a t i o n f o r t h e D i g i t a l T e r r a i n Model. T o p o g r a p h i c a l maps can be d e r i v e d from a i r photographs us i n g an o r t h o - p h o t o machine. The i n f o r m a t i o n needed t o make an e l e v a t i o n g r i d i s a v a i l a b l e as p a r t o f the p r o c e s s . N e i t h e r t h e equipment nor the prop e r a i r photographs were a v a i l a b l e f o r t h i s s t u d y , so t h e d i g i t a l t e r r a i n model needed f o r s t e p #3f was produced by hand from a t o p o g r a p h i c a l map of th e s c a l e 1 cm r e p r e s e n t s 50 m. . #3b. Record E l e v a t i o n s at G r i d P o i n t s . . A g r i d w i t h 1 cm s p a c i n g was drawn on a p l a s t i c sheet and p l a c e d over the m a p . . E l e v a t i o n s were i n t e r p o l a t e d from map c o n t o u r s at each p o i n t of t h e g r i d l i n e i n t e r s e c t i o n . The v a l u e s were keypunched and checked. 30 #3c. Make the D i g i t a l T e r r a i n Model. The program GEIDMAKE (47 l i n e s ) used the e l e v a t i o n i n f o r m a t i o n r e c o r d e d i n s t e p #3b t o produce a r e g u l a r g r i d of e l e v a t i o n s , or d i g i t a l t e r r a i n model* The g r i d was s t o r e d i n an i n t e r n a l f o r m a t computer f i l e . #3d. L i s t the D i g i t a l T e r r a i n Model. The g r i d was l i s t e d f o r c h e c k i n g u s i n g t h e program GRIDL 1ST (23 l i n e s ) . . #3e. P l o t the D i g i t a l T e r r a i n Model. The d i g i t a l t e r r a i n model made f o r t h e Research F o r e s t was p l o t t e d u s i n g PERS, a h i d d e n l i n e p e r s p e c t i v e p l o t r o u t i n e r e s i d e n t i n the U.B.C. Computing C e n t r e L i b r a r y . The p l o t i s shown i n F i g u r e 7, reduced t o about o n e - f i f t h t he o r i g i n a l p l o t t i n g s i z e . V e r t i c a l s c a l e i s a p p r o x i m a t e l y i n p r o p o r t i o n t o h o r i z o n t a l s c a l e . The p l o t can be compared w i t h t h e map of F i g u r e 1 as viewed from the southwest c o r n e r . . #3f. P r e p a r e Landform D e s c r i p t i o n s . The program TOPAXMAKE (264 l i n e s ) used t h e d i g i t a l t e r r a i n model t o p r o v i d e a d e s c r i p t i o n of the lan d f o r m around each l i s t e n i n g s t a t i o n . The pr o c e d u r e was analag o u s t o t h a t d e s c r i b e d i n s t e p #2f i n t h a t t h e same 16 l i n e segments were c o n s i d e r e d . Here the segments were i n t e r s e c t e d w i t h t h e l i n e segments d e f i n e d by a d j a c e n t p o i n t s o f t h e e l e v a t i o n g r i d ( F i g u r e 8 ) . The d i s t a n c e from the l i s t e n i n g s t a t i o n a t which the i n t e r s e c t i o n o c c u r r e d was r e c o r d e d , a l o n g w i t h t h e FIGURE 8. ILLUSTRATION OF THE LINE SEGMENTS AND LANDFORM GRID USED TO MAKE THE SIXTEEN LANDFORM PROFILES FOR ANY LISTENING STATION. The s t a t i o n p o i n t has been a r b i t r a r i l y l o c a t e d w i t h i n one g r i d c e l l . 33 e l e v a t i o n as determined by l i n e a r l y i n t e r p o l a t i n g between t h e e l e v a t i o n s of t h e two g r i d p o i n t s ( F i g u r e 9 a ) . .A s i n g l e run of TOPAXMAKE p r e p a r e d l a n d f o r m d e s c r i p t i o n s f o r each o f t h e 16 d i r e c t i o n s from each l i s t e n i n g s t a t i o n . . #3g. Order the Landform D e s c r i p t i o n s and Add C l o s e F e a t u r e s . The i n t e r s e c t i o n s w i t h the g r i d p r e p a r e d i n s t e p #3f were o r d e r e d a c c o r d i n g t o i n c r e a s i n g d i s t a n c e from the l i s t e n i n g s t a t i o n by t h e program TOPAXORDER (99 l i n e s ) A t t h e same t i m e , r a i s e d o b s e r v e r p o s i t i o n and c l o s e t o p o g r a p h i c f e a t u r e s were added t o the l a n d f o r m d e s c r i p t i o n . S t a t i o n s had been l o c a t e d whenever p o s s i b l e t o a v o i d c l o s e t o p o g r a p h i c f e a t u r e s t h a t would o b s t r u c t sound, some o b s t a c l e s were a v o i d e d by s t a n d i n g on a r o c k or v e h i c l e . Remaining o b s t r u c t i o n s were r e p r e s e n t e d by t h e d i g i t a l t e r r a i n model u n l e s s t h e y were s m a l l e r t h a n the s p a c i n g o f g r i d p o i n t s . Small i r r e g u l a r i t i e s i n l a n d f o r m were i m p o r t a n t o n l y when c l o s e t o the o b s e r v e r . To e s t a b l i s h the presence of any c l o s e t o p o g r a p h i c f e a t u r e s t h a t b l o c k e d sound b u t were not r e p r e s e n t e d by the g r i d , i t was n e c c e s s a r y t o check each d i r e c t i o n from each l i s t e n i n g s t a t i o n . I f the o b s e r v e r sought a r a i s e d p o s i t i o n , the i n c r e a s e i n h e i g h t was the r e c o r d e d and the p o s i t i o n o f c l o s e t o p o g r a p h i c f e a t u r e s was measured from the r a i s e d p o s i t i o n . A S i l v a Ranger compass was used t o determine each o f the 16 d i r e c t i o n s i n which l a n d f o r m was b e i n g d e s c r i b e d . . Only f e a t u r e s c l o s e r than 75 m (1.5 t i m e s t h e g r i d s p a c i n g d i s t a n c e o f 50 m) were n o t e d . The s l o p e d i s t a n c e t o each 34 FIGURE 9a. AN EXAMPLE OF USING LINEAR INTERPOLATION BETWEEN POINTS OF THE LANDFORM GRID TO DETERMINE THE ELEVATION OF THE POINT OF INTERSECTION WITH ONE LINE SEGMENT. The e l e v a t i o n E w i l l be used i n the l a n d f o r m p r o f i l e f o r t h i s d i r e c t i o n a t d i s t a n c e D from the l i s t e n i n g s t a t i o n . Top View o f S i d e View o f G r i d Landform G r i d Segment A-B S t a t i o n FIGURE 9b. RECORDING THE POSITION OF CLOSE TOPOGRAPHIC FEATURES AT A LISTENING STATION. D i s t a n c e D and s l o p e S a r e r e c o r d e d i n any o f the s i x t e e n d i r e c t i o n s f o r which sound i s b l o c k e d by l a n d f o r m i r r e g u l a r i t i e s t o o s m a l l t o be r e p r e s e n t e d a c c u r a t e l y by t h e l a n d f o r m g r i d . 35 o b s t r u c t i o n was measured w i t h a long-base r a n g e f i n d e r as i t d i d n o t r e q u i r e t h e o b s e r v e r t o move from the s t a t i o n . A Sunto s l o p e gauge was used t o determine t h e a n g l e i n degrees from h o r i z o n t a l t o t h e top o f t h e f e a t u r e ( F i g u r e 9b) . . #4a. Complete the Canopy-Landform P r o f i l e s . . The program FORONTOP (280 l i n e s ) completed t h e v e g e t a t i v e canopy and l a n d f o r m c r o s s - s e c t i o n p r o f i l e s . The la n d f o r m i n each d i r e c t i o n from each s t a t i o n was d e s c r i b e d i n a t w o - d i m e n s i o n a l r e c t a n g u l a r c o o r d i n a t e system. . The l i s t e n i n g s t a t i o n p o i n t was (0,STOPZ), where STOPZ was the e l e v a t i o n o f the s t a t i o n . The second p o i n t was d e r i v e d from c l o s e t o p o g r a p h i c data i f any such f e a t u r e s had been r e c o r d e d . The remainder of t h e l a n d f o r m p r o f i l e was d e r i v e d from t h e d i s t a n c e - e l e v a t i o n p a i r s p r e p a r e d i n s t e p s #3f and #3g. Two a d d i t i o n a l p o i n t s were added t o complete t h e po l y g o n r e p r e s e n t i n g the la n d f o r m p r o f i l e so t h a t a v e c t o r - p o l y g o n i n t e r s e c t i o n r o u t i n e c o u l d be used i n s t e p #6b. The f i r s t was l o c a t e d a t sea l e v e l , 1300 m h o r i z o n t a l d i s t a n c e from the s t a t i o n ; and the second was at sea l e v e l , d i r e c t l y below the s t a t i o n . The d i s t a n c e - c a n o p y h e i g h t p a i r s p r e p a r e d i n s t e p s #2f and #2g were used i n c o n j u n c t i o n w i t h the c o r r e s p o n d i n g l a n d f o r m p r o f i l e t o produce a t w o - d i m e n s i o n a l p r o f i l e o f the v e g e t a t i v e canopy top i n each d i r e c t i o n from each s t a t i o n . The canopy h e i g h t o p e r a t i v e a t the d i s t a n c e was added t o t h e e l e v a t i o n c o o r d i n a t e of each p o i n t d e f i n i n g the l a n d f o r m p r o f i l e . A d d i t i o n a l p o i n t s were added when a change i n canopy 36 h e i g h t o c c u r e d . The p o l y g o n s r e p r e s e n t i n g t h e c a n o p y - h e i g h t p r o f i l e s were a l s o completed by a d d i n g the two p o i n t s a t sea l e v e l . #4b. P l o t P r o f i l e Polygons f o r C h e c k i n g . The 16 p a i r s of p r o f i l e polygons were p l o t t e d f o r a number of s t a t i o n s f o r c h e c k i n g u s i n g the program PROFPLOT (42 l i n e s ) . , The l a n d f o r m and canopy p r o f i l e s f o r one d i r e c t i o n are p l o t t e d on t o p o f each o t h e r . . I n t h e example f o r s t a t i o n #103 p r e s e n t e d i n F i g u r e 10, t h e lower p a r t o f most of the polygons has been d e l e t e d f o r i l l u s t r a t i v e p u r p oses. #5a. C o l l e c t F i e l d O b s e r v a t i o n s . S i x v i s i t s t o each o f t h e 163 l i s t e n i n g s t a t i o n s were conducted from March 1 to June 8 of 1977. Each round o f v i s i t s r e p r e s e n t e d 40.75 hours o f l i s t e n i n g f o r the c a l l s of b i r d s f o r a t o t a l of 244.5 hours (dates f o r dach round are i n c l u d e d i n Table 3). S t a t i o n s were v i s i t e d o n l y between 6:00 and 10:30 am i n March, c h a n g i n g t o between 4:30 and 9:30 am i n June. V i s i t s were c a n c e l l e d o r c u r t a i l e d d u r i n g f r e g u e n t s p e l l s o f bad weather. O t h e r w i s e the census c o n t i n u e d u n i n t e r r u p t e d over t h e s p r i n g p e r i o d . S t a t i o n s were v i s i t e d i n s c r a m b l e d o r d e r t o average t r e n d s over time w i t h i n a s i n g l e round. Each v i s i t t o one s t a t i o n was 15 minutes l o n g . . The s t a t i o n number and date were r e c o r d e d t o g e t h e r w i t h a s u b j e c t i v e e v a l u a t i o n o f t h e l e v e l of background n o i s e * The FIGURE 10. LANDFORM AND FOREST CANOPY PROFILES IN SIXTEEN DIRECTIONS FROM STOP NUMBER 103. 38 FIGURE 10. (continued) A x i s Number Compass D i r e c t i o n #103 39 c a l l s , songs and/or raps o f 10 d i f f e r e n t s p e c i e s were mon i t o r e d . Opon h e a r i n g a c a l l , t h e o b s e r v e r e s t i m a t e d the d i r e c t i o n of the c a l l i n g b i r d t o t h e n e a r e s t degree, u s i n g a S i l v a Ranger compass. The o b s e r v e r a l s o e s t i m a t e d the degree o f e r r o r i n v o l v e d i n d e t e r m i n i n g the d i r e c t i o n . . " C r i s p " sounds r e p e a t e d t h r e e t i m e s or more c o u l d be l o c a t e d more e x a c t l y than sounds t h a t echoed or were not r e p e a t e d s u f f i c i e n t l y o f t e n t o a l l o w the o b s e r v e r t o o b t a i n a b e a r i n g . Lower f r e g u e n c y sounds w i t h s h a r p b u r s t s c o u l d be l o c a t e d more a c c u r a t e l y t h a n h i g h - p i t c h e d n o t e s t h a t faded g r a d u a l l y . Three a r b i t r a r y e r r o r c l a s s e s were e s t a b l i s h e d . A r a t i n g of 1, 2 or 3 was used t o i n d i c a t e d i r e c t i o n a l e r r o r s of p l u s or minus 5 , 10 and 20 d e g r e e s , r e s p e c t i v e l y . Two o b s e r v e r s l i s t e n i n g t o the same b i r d from the same s t a t i o n a t t h e same ti m e r e c o r d e d d i r e c t i o n s w i t h i n 2 or 3 degrees of each o t h e r when t h e e r r o r had been judged by each as b e i n g C l a s s 1. B i r d s t h a t were seen as w e l l as heard were a s s i g n e d a 2 degree measuring e r r o r . B i r d s t h a t were seen but not heard were not r e c o r d e d . L i m i t s on t h e d i s t a n c e t o b i r d s t h a t were heard but not seen were e s t i m a t e d i n meters. The minimum d i s t a n c e was e s t i m a t e d as the maximum d i s t a n c e t o which v i s u a l s c r u t i n y was p o s s i b l e . T h i s e s t i m a t e might have been i n c r e a s e d i f t h e b i r d sounded p a r t i c u l a r l y f a i n t and thus f a r away. The maximum d i s t a n c e was always l i m i t e d by the maximum d i s t a n c e t h a t a b i r d o f t h a t s p e c i e s c o u l d be h e a r d , as det e r m i n e d i n s t e p #6a. T h i s d i s t a n c e may have been reduced i f t h e b i r d sounded p a r t i c u l a r l y l o u d or was heard t o be c a l l i n g from the 40 t o p s o f a d j a c e n t t r e e s . .The d i s t a n c e t o b i r d s t h a t were seen as w e l l as heard was measured u s i n g a long-base r a n g e f i n d e r o r was e s t i m a t e d u s i n g a map and r e c o g n i z a b l e landmarks. The d i s t a n c e l i m i t s and d i r e c t i o n a l e r r o r were e s t i m a t e d c o n s e r v a t i v e l y such t h a t the o b s e r v e r a l w a y s f e l t c o n f i d e n t t h a t the b i r d was a c t u a l l y l o c a t e d w i t h i n the a r e a t h a t t h e y d e f i n e d . Care was a l s o t a k e n not t o r e c o r d the same b i r d t w i c e i n t h e same p o s i t i o n . I f a b i r d was h e a r d c a l l i n g from t h e same g e n e r a l d i r e c t i o n i n which a l o c a t i o n f o r t h a t s p e c i e s had a l r e a d y been r e c o r d e d , then i t was r e c o r d e d o n l y i f t h e a r e a s of l o c a t i o n d i d not o v e r l a p . The second l o c a t i o n was r e c o r d e d i f i t s d i r e c t i o n d i f f e r e d from t h a t of t h e f i r s t l o c a t i o n by a t l e a s t t h e sum o f the d i r e c t i o n a l e r r o r s e s t i m a t e d f o r the two l o c a t i o n s , or i f the maximum d i s t a n c e f o r one l o c a t i o n was l e s s than t h e minimum f o r t h e o t h e r . #5b. Pr e p a r e t h e Recorded O b s e r v a t i o n s . The d a t a from each round of v i s i t s t o t h e 163 s t a t i o n s was keypunched and checked. The program SERORDER (104 l i n e s ) checked f o r any i l l o g i c a l v a l u e s and ordered the s t a t i o n s by number as was r e g u i r e d by COVANDLOC i n s t e p #6b. . 41 #6a. P r e p a r e F i l e of I n f o r m a t i o n f o r each S p e c i e s . The e s t i m a t e s r e g u i r e d by the program COVANDLOC (step #6b) were p l a c e d i n an i n f o r m a t i o n f i l e which was p r e p a r e d f o r each s p e c i e s (summarized i n T a b l e 1). COVANDLOC r e g u i r e d an e s t i m a t e of t h e maximum d i s t a n c e a t which a b i r d of the s p e c i e s c o u l d be heard t h r o u g h s t i l l a i r ; an e s t i m a t e o f t h e average p o s i t i o n of the b i r d i n the canopy o r above the ground when c a l l i n g ; an e s t i m a t e o f the a b i l i t y of sound t o t r a v e l t h r o u g h a f o r e s t canopy r e l a t i v e t o i t s a b i l i t y t o t r a v e l t h r o u g h a i r ; and an e s t i m a t e o f the e x t e n t t o which t h e maximum d i s t a n c e a t which a b i r d can be heard i s reduced by background n o i s e . . Each s p e c i e s of b i r d was i d e n t i f i e d by an a r b i t r a r i l y a s s i g n e d number i n the i n f o r m a t i o n f i l e . Dates marking the onset and c e s s a t i o n of c a l l i n g were g i v e n f o r m i g r a t o r y s p e c i e s and f o r s p e c i e s t h a t showed s e a s o n a l d i f f e r e n c e s i n c a l l i n g a c t i v i t i e s . The maximum d i s t a n c e a t which a b i r d of each s p e c i e s c o u l d be heard was e s t i m a t e d as the maximum known d i s t a n c e of b i r d s l o c a t e d by both s i g h t and sound. An attempt was made t o i n c r e a s e t h e maximum d i s t a n c e by u s i n g two o b s e r v e r s i n r a d i o c o n t a c t . I n some c a s e s one o b s e r v e r s t a y e d c l o s e t o a c a l l i n g b i r d t o c o n f i r m i t s l o c a t i o n w h i l e t h e o t h e r o b s e r v e r moved away from t h e b i r d u n t i l i t c o u l d no l o n g e r be heard. In o t h e r c a s e s a b i r d heard by o b s e r v e r s s e p a r a t e d by about 200 m was l o c a t e d by t r i a n g u l a t i o n . . An e x p e r i m e n t was performed t o determine the a b i l i t y o f sound t o t r a v e l t h r o u g h a f o r e s t canopy r e l a t i v e t o i t s a b i l i t y t o t r a v e l t h r o u g h a i r . A tape r e c o r d e r was f i t t e d T A B L E 1. I N F O R M A T I O N N E E D E D TO P R E D I C T T H E A R E A C O V E R E D IN C E N S U S FOR E A C H B I R D S P E C I E S . S p e c i e s N a m e A c t i v e P e r i o d ^ 2 T y p i c a l C a l l i n g M a x i m u m 3 D i s t a n c e (1977) P o s i t i o n H e a r d i n O p e n A i r C o m m o n F1 i c k e r M a r c h 1 t o J u l y 30 G0% u p i n c a n o p y 650 m e t e r s Y e l l o w - b e l l i e d S a p s u c k e r M a r c h 1 t o J u l y 30 70% u p - i n c a n o p y 700 H a i r y W o o d p e c k e r M a r c h 1 t o J u l y 30 70% u p i n c a n o p y 700 O l i v e - s i d e d F l y c a t c h e r M a y 22 t o J u l y 30 5 m e t e r s a b o v e c a n o p y 550 S t e l l e r ' s J a y M a r c h 1 t o J u l y 30 60% u p i n c a n o p y 500 C h e s t n u t - b a c k e d C h i c k a d e e Ma r c h 1 t o J u l y 30 60% up i n c a n o p y 150 R e d - b r e a s t e d N u t h a t c h M a r c h 1 t o J u l y 30 50% u p i n c a n o p y 1*00 W i n t e r W r e n M a r c h 1 t o J u l y 30 2 m e t e r s a b o v e g r o u n d 250 V a r i e d T h r u s h M a r c h 1 t o J u l y 30 2 m e t e r s a b o v e c a n o p y 550 S w a i n s o n ' s T h r u s h M a y 15 t o J u l y 30 30% u p i n c a n o p y k50 1. P e r i o d w i t h i n c e n s u s p e r i o d ( M a r c h 1 t o J u l y 30) d u r i n g w h i c h c a l l s we r e c o m m o n 1 y h e a r d . 2. C a n o p y h e i g h t d e f i n e d a s h e i g h t a t w h i c h c a n o p y i s h a l f c l o s e d ( s e e S t e p #2a). 3. M a x i m u m a u d i t o r y d i s t a n c e i n m e t e r s r e c o r d e d f o r a c a l l i n g b i r d o f k n o w n p o s i t i o n . 43 w i t h a s c a l e a l l o w i n g the p o s i t i o n of the volume knob t o be r e c o r d e d and r e s e t . The r e c o r d e r and speaker were l o c a t e d a t one s i d e o f a l a r g e , f l a t a r e a c o v e r e d w i t h a w e l l - d e v e l o p e d canopy of t r e e s and underbrush. One person remained w i t h the r e c o r d e r i n r a d i o c o n t a c t w i t h the second person who p o s i t i o n e d h i m s e l f a t 50, 100, 150, 200, and 250 m from the p l a y b a c k s p e a k e r . At each d i s t a n c e t h e c a l l o f each o f 12 b i r d s p e c i e s was p l a y e d r e p e a t e d l y u n t i l the volume c o n t r o l had been a d j u s t e d so t h a t t h e remote o b s e r v e r c o u l d j u s t hear t h e c a l l . The r e c o r d e r and speaker were t h e n moved t o an open f i e l d . The volume was s e t t o t h e l e v e l s r e c o r d e d i n the f o r e s t , and the o b s e r v e r moved away from t h e speaker u n t i l the c a l l c o u l d j u s t be heard. The r e s u l t i n g d i s t a n c e s a r e d i s p l a y e d i n Table 2.. Note t h a t a t 50 and 100 m t h e r e i s l i t t l e d i f f e r e n c e between f o r e s t canopy and a i r . Matthews (1971) found no s i g n i f i c a n t d i f f e r e n c e s a t d i s t a n c e s up t o 46 m. U n f o r t u n a t e l y he d i d not t r y d i s t a n c e s g r e a t e r t h a n 46 m, f o r a t 150 m and g r e a t e r t h i s s t u d y demonstrated t h a t the f o r e s t canopy was i m p o r t a n t i n a b s o r b i n g sound. C o n s i d e r t h e h y p o t h e s i s t h a t a sound wave w i l l not be s i g n i f i c a n t l y absorbed by a f o r e s t canopy i f t h e r e a r e many passageways through the canopy a l o n g which sound may t r a v e l u n o b s t r u c t e d i n a s t r a i g h t l i n e . The average v i s u a l d i s t a n c e i n t h e canopy was about 50 m, such t h a t two o b s e r v e r s s e p a r a t e d by 100 m c o u l d each see an o b j e c t p l a c e d h a l f w a y between them. The h y p o t h e s i s s u g g e s t s then t h a t a sound wave s h o u l d t r a v e l 50 m from i t s s o u r c e without much a b s o r b t i o n by 44 TABLE 2. COMPARISON OF SOUND ATTENUATION IN FOREST CANOPY AND IN A I R . P l a y b a c k o f r e c o r d e d c a l l s w i t h v o l u m e a d j u s t e d t o be j u s t h e a r d a t d i s t a n c e i n f o r e s t . A l l d i s t a n c e s i n m e t e r s . DISTANCE IN FOREST: 50 100 150 200 250 S P E C I E S DISTANCE IN AIR (D) W i n t e r Wren 59 112 C h e s t n u t - b a c k e d C h i c k a d e e 66 120 — B l a c k - c a p p e d C h i c k a d e e 65 113 261 506 O l i v e - s i d e d F l y c a t c h e r 65 112 253 417 963 V a r i e d T h r u s h 66 108 246 493 950 S w a i n s o n ' s T h r u s h 59 102 279 482 957 R e d - b r e a s t e d N u t h a t c h 66 81 257 424 995 Common F l i c k e r 56 89 293 489 1091 P i l e a t e d W o o d p e c k e r 59 98 286 473 1109 H a i r y W o o d p e c k e r 51 104 273 520 1081 S t e l l e r 1 s J a y 45 149 272 546 1065 Y e l l o w - b e l l i e d S a p s u c k e r 51 121 245 512 1176 ED = 708 1309 2665 4862 9387 ED 2 = 42324 146069 712719 2378584 9841667 S 2 = 50.2 298.1 277.4 1631.1 6378.3 n = 12 12 10 10 9 AVERAGE DISTANCE IN AIR (D~) : 59-0 109.1 266.5 486.2 1043.0 35% CONFIDENCE INTERVAL Lowe r = 54.50 98.13 254.58 457.25 981.61 U p p e r = 63.50 120.07 278.42 515.15 1104.39 i n d i c a t e s i n s u f f i c i e n t p l a y b a c k v o l u m e t o be h e a r d i n t h e f o r e s t . 45 f o r e s t canopy. I t a l s o s u ggests t h a t once a sound wave was w i t h i n 50 m of an o b s e r v e r i t s h o u l d t r a v e l the r e m a i n i n g d i s t a n c e w i t h o u t a s i g n i f i c a n t i n c r e a s e i n a b s o r p t i o n . However, f o r d i s t a n c e s g r e a t e r than 100 m t h e r e s h o u l d be s i g n i f i c a n t a b s o r p t i o n by f o r e s t canopy t h a t i s more t h a n 50 m from the sour c e and the o b s e r v e r . T h i s h y p o t h e s i s e x p l a i n s the observed r e s u l t s and c o u l d form the b a s i s f o r f u r t h e r e x p e r i m e n t a t i o n . . I t has been adopted i n t h i s s t u d y as t h e s i m p l e s t a l t e r n a t i v e . . A n y f o r e s t canopy w i t h i n 50 m of o b s e r v e r or the sour c e was assumed t o conduct sound a t the same r a t e as open a i r . Any a d d i t i o n a l f o r e s t canopy between t h e o b s e r v e r and the s o u r c e was assummed t o conduct sound a t a f i x e d , reduced r a t e r e l a t i v e t o open a i r . The f i x e d r a t e i s d e f i n i t e l y not c o r r e c t . The a d d i t i o n o f another 50 m a t the 150 m s t o p was e q u i v a l e n t t o about an a d d i t i o n a l 150 m i n open a i r ( r a t i o 1:3). At 200 m the a d d i t i o n a l 50 m was e q u i v a l e n t t o ad d i n g about 200 m t o the d i s t a n c e i n open a i r ( r a t i o 1:4), and at 250 m the a d d i t i o n o f 50 m of f o r e s t was e q u i v a l e n t t o an e x t r a 550 m i n a i r ( r a t i o 1:11). . For t h i s s t u d y an average f i x e d r a t i o o f 1:4 was used i n s t e p #6b. I t was c o n s i d e r e d t o be s u f f i c i e n t because few s p e c i e s can be heard a t d i s t a n c e s over 800 m i n open a i r , the v a r i a t i o n i n f o r e s t canopy d e n s i t i e s was not c o n s i d e r e d , and t h e e f f e c t o f canopy edges was not s t u d i e d . Noise from f l o w i n g water or i n t e r n a l combustion e n g i n e s was s u f f i c i e n t l y l o u d a t some l i s t e n i n g s t a t i o n s t o i m p a i r t h e o b s e r v e r ' s a b i l i t y t o hear c a l l i n g b i r d s . . O n l y b i r d s t h a t 46 were c l o s e c o u l d be heard over a h i g h l e v e l of background n o i s e . The o b s e r v e r s u b j e c t i v e l y r a t e d the background n o i s e a t any s t a t i o n . A s c a l e of 0 t o 3 was used, w i t h 0 i n d i c a t i n g no a p p r e c i a b l e n o i s e and 3 i n d i c a t i n g t h a t t h e o b s e r v e r was s t a n d i n g next t o a r o a r i n g r i v e r . A s i m p l e , u n r e p l i c a t e d e xperiment was performed i n which t h e d i s t a n c e a t which a n o i s e o f c o n s t a n t volume c o u l d j u s t be heard was determined f o r each l e v e l o f background n o i s e . The r e s u l t i n g d i s t a n c e s were d i v i d e d by the d i s t a n c e w i t h no background n o i s e and rounded t o a s i n g l e d i g i t . The r e s u l t s a r e 1.0, 0.8, 0.6, and 0.2 f o r n o i s e r a t i n g s 0, 1, 2 and 3, r e s p e c t i v e l y . #6b. Produce Coverage and L o c a t i o n Polygons f o r each S p e c i e s f o r each Round o f V i s i t s t o the L i s t e n i n g S t a t i o n s . The program COVANDLOC (1347 l i n e s ) used t h e canopy and l a n d f o r m p r o f i l e s from s t e p #4 t o p r e d i c t the area c o v e r e d from each s t a t i o n when l i s t e n i n g f o r t h e c a l l s of one b i r d s p e c i e s . The p r e d i c t e d a r e a , or coverage p o l y g o n , was d e f i n e d by 16 p o i n t s . The l o c a t i o n o f each p o i n t was d e f i n e d as the maximum d i s t a n c e t h a t a b i r d c o u l d be heard i n one of t h e 16 d i r e c t i o n s . T h i s d i s t a n c e was determined by t e s t i n g s u c c e s s i v e l y s h o r t e r d i s t a n c e s s t a r t i n g a t the maximum d i s t a n c e a b i r d c o u l d be heard t h r o u g h open a i r ( s t e p #6a) reduced f o r the e f f e c t of any background noise..The t e s t c o n s i s t e d of i n t e r s e c t i n g t h e l i n e segment d e f i n e d by t h e p o s i t i o n o f t h e o b s e r v e r ' s head and the p o s i t i o n of a c a l l i n g b i r d a t the t e s t d i s t a n c e , w i t h the canopy and l a n d f o r m 47 p r o f i l e p o l y g o n s . . The o b s e r v e r p o i n t was l o c a t e d 2 m above the l i s t e n i n g s t a t i o n p o i n t . I f a r a i s e d o b s e r v e r had been s p e c i f i e d , the e l e v a t i o n of the p o i n t was i n c r e a s e d a c c o r d i n g l y . . The p o i n t r e p r e s e n t i n g t h e b i r d was l o c a t e d a t the t e s t d i s t a n c e . .The e l e v a t i o n of t h e b i r d p o i n t was d e f i n e d r e l a t i v e t o the ground s u r f a c e and/or th e canopy top as g i v e n i n the s p e c i e s i n f o r m a t i o n f i l e ( s t e p #6a). I f t h e l i n e i n t e r s e c t e d t h e l andform p r o f i l e p o l y g o n , the o b s e r v e r would not have been a b l e t o hear the b i r d a t t h a t d i s t a n c e ( F i g u r e 11a)..The b i r d p o i n t was then moved one s t e p c l o s e r , p o s i t i o n e d a p p r o p r i a t e l y r e l a t i v e t o the ground and/or canopy t o p a t the new d i s t a n c e , and t h e i n t e r s e c t i o n performed a g a i n . Steps of 50 m were used t o match the r e s o l u t i o n of the landform g r i d . I f t h e l i n e segment d i d not h i t t h e ground i t was n e x t i n t e r s e c t e d w i t h t h e canopy p r o f i l e p o l y gon f o r t h a t d i r e c t i o n from t h a t s t o p . I f t h e segment d i d not h i t the canopy p r o f i l e e i t h e r , then the t e s t d i s t a n c e was a c c e p t e d as the maximum a t which a b i r d of t h a t s p e c i e s c o u l d be heard ( F i g u r e 11b). I f the segment d i d h i t t h e canopy p r o f i l e , then the t o t a l d i s t a n c e t h a t t h e l i n e was i n s i d e the canopy was c a l c u l a t e d ( F i g u r e 11c). The d i s t a n c e through the canopy was c o n v e r t e d t o an a i r - e g u i v a l e n t d i s t a n c e u s i n g the c o n v e r s i o n f a c t o r c a l c u l a t e d i n s t e p #6a. The t o t a l e f f e c t i v e d i s t a n c e was then computed by a d d i n g th e a i r - e g u i v a l e n t d i s t a n c e i n s i d e the canopy p l u s the d i s t a n c e through a i r o u t s i d e the canopy. The t e s t d i s t a n c e was a c c e p t e d i f the e f f e c t i v e 48 FIGURE 11. EXAMPLES OF USING LANDFORM AND CANOPY PROFILES TO DETERMINE IF A BIRD COULD BE HEARD AT A GIVEN DISTANCE. a. L i n e i n t e r s e c t s landform p r o f i l e polygon. Sound w i l l be blocked by the h i l l , so the b i r d c o u l d not be heard. b i r d b. L i n e does not i n t e r s e c t landform polygon. L i n e i n t e r s e c t s f o r e s t canopy polygon o n l y w i t h i n 50 meters of observer and b i r d . The observer w i l l hear the b i r d . c. L i n e segment i s i n s i d e the f o r e s t canopy polygon f o r much of i t s l e n g t h . B i r d w i l l not be heard because i t s sound w i l l be absorbed by the f o r e s t canopy. observer METERS 0 500 1000 49 d i s t a n c e was l e s s than the maximum f o r the s p e c i e s reduced by any background noise e f f e c t . Otherwise the t e s t d i s t a n c e was reduced by one step and the process repeated again. The maximum s u c c e s s f u l t e s t d i s t a n c e and the t e s t d i r e c t i o n were used with the co o r d i n a t e l o c a t i o n of the l i s t e n i n g s t a t i o n (from s t e p #1) to c a l c u l a t e the c o o r d i n a t e s of the p o i n t e s t i m a t i n g the l i m i t of census f o r the b i r d s p e c i e s i n t h a t d i r e c t i o n . The process was repeated f o r each of the 16 d i r e c t i o n s i n which canopy and landform d e s c r i p t i o n s had been prepared. The r e s u l t i n g 16 c o o r d i n a t e p a i r s d e f i n e d the perimeter of a coverage polygon which estimated the boundries of the area censused. , COVANDLOC a l s o p r o j e c t e d any l o c a t i o n s noted f o r the b i r d s p e c i e s at each s t a t i o n . The polygon r e p r e s e n t i n g the area within which a b i r d was l o c a t e d was i n i t i a l l y d e f i n e d by fo u r p o i n t s . The p o s i t i o n of each p o i n t was determined using the d i r e c t i o n and d i s t a n c e e s t i m a t e s f o r the l o c a t i o n with the c o o r d i n a t e s of the l i s t e n i n g s t a t i o n . . Two p o i n t s were p o s i t i o n e d i n the recorded d i r e c t i o n plus d i r e c t i o n a l e r r o r ; one a t the minimum d i s t a n c e and one at the maximum d i s t a n c e l i m i t . The other two p o i n t s were p o s i t i o n e d at these d i s t a n c e s i n the d i r e c t i o n minus d i r e c t i o n a l e r r o r . The r e s u l t i n g wedge-shaped polygon was i n t e r s e c t e d with the coverage polygon t o c o n t a i n the l o c a t i o n w i t h i n the area covered. 50 COVANDLOC p r o v i d e d a computer f i l e c o n t a i n i n g the c o o r d i n a t e s and area of each coverage p o l y g o n , and the c o o r d i n a t e s and areas o f any l o c a t i o n p o l y g o n s , f o r use i n s t e p #8b. I t a l s o p r o v i d e d a r e c o r d of the coverage and l o c a t i o n p o l y g o n s and the ar e a (ha) o f each ( f o r example see F i g u r e 12). F i n a l l y , i t p r o v i d e d a f i l e which c o u l d be sent t o the p l o t t e r . Each area c o v e r e d and i t s a s s o c i a t e d l o c a t i o n s c o u l d be p l o t t e d ( f o r examples see F i g u r e 13). There a r e f o u r a t t r i b u t e s of the a r e a s of l o c a t i o n s made by sound t h a t c o u l d b i a s the r e s u l t s . F i r s t , the minimum d i s t a n c e was l i k e l y t o be e s t i m a t e d more a c c u r a t e l y t h a n the maximum d i s t a n c e . The d i s t a n c e l i m i t s were e s t i m a t e d c o n s e r v a t i v e l y , so the maximum d i s t a n c e was p r o b a b l y p l a c e d f a r beyond the a c t u a l l o c a t i o n of t h e b i r d i n most i n s t a n c e s . The wedge-shape o f the a r e a s o f l o c a t i o n meant t h a t an i n c r e a s e i n maximum d i s t a n c e caused a d i s p r o p o r t i o n a t e i n c r e a s e i n t h e area of l o c a t i o n . The p a r t o f the l o c a t i o n t h a t was near the o b s e r v e r tended t o become a s m a l l e r p r o p o r t i o n of the t o t a l a r e a o f t h e l o c a t i o n , which caused t h e area c l o s e - b y t o be u n d e r - r a t e d r e l a t i v e t o t h e a r e a around the p e r i m e t e r . The second a t t r i b u t e , t h a t t h e pr e s e n c e o f an o b s e r v e r may i n h i b i t b i r d s t h a t a r e c l o s e from c a l l i n g , a l s o caused a r e a s c l o s e - b y t o be u n d e r - r a t e d . . The t h i r d a t t r i b u t e i s t h a t a c a l l i n g b i r d was more l i k e l y t o be d e t e c t e d when i t was c l o s e . . A r e a s t h a t were c l o s e - b y tended t o be o v e r - r a t e d because a b i r d t h a t was c l o s e r d i d not need t o c a l l as l o u d l y t o be heard. Areas c l o s e - b y a l s o tended t o be o v e r - r a t e d because of the f o u r t h FIGURE 1 2 . AN EXAMPLE OF THE RECORD OF COVERAGE AND LOCATION POLYGONS MADE BY PROGRAM COVANDLOC. S t o p = l i s t e n i n g s t a t i o n . Species 1 i s Winter Wren. COVERAGE COMPLETED FOR STOP 1 SPECIES 1 AREA COVERED 6.89 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.08 LOCATION PROJECTED FOR SPECIES I WITH AREA 0. 19 LOCATION PROJECTED FCR SPECIES 1 WITH AREA 0.05 LOCATION PROJECTEO FOR SPECIES 1 WITH AREA 0.04 LOCATION PROJECTED FCR SPECIES 1 WITH AREA 0.08 COVERAGE COMPLETED FOR STOP 2 SPECIES I AREA COVER EO 4.97 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.03 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.19 LOCATION PROJECTED FOR SPECIES I WITH AREA 0.12 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0. 19 COVERAGE COMPLETED FOR STOP 3 SPECIES 1 AREA COVERED 3.64 COVERAGE COMPLETED FOR STOP 4 SPECIES 1 AREA COVERED 6.55 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.20 LOCATION PROJECTED FCR SPECIES 1 WITH AREA 0.32 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.01 LOCATION PROJFCTED FCR SPECIES 1 WITH AREA 0. 18 COVERAGE COMPLETED FOR STOP 5 SPECIES I AREA COVER EC 9.42 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.34 LOCATION PROJECTED FOR SPECIES I W ITH AREA 0.14 LOCATION PROJECTED FOR SPECIES I WITH AREA 0.37 COVERAGE COMPLETED FOR STOP 6 SPECIES 1 AREA COVERED 4.02 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.09 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.29 LOCATION PROJECTEO FOR SPECIES 1 WITH AREA 0. 17 LOCATION PROJECTED FCR SPECIES 1 W ITH AREA 0.01 COVERAGE COMPLETED FOR STOP 7 SPECIES 1 AREA COVERED 4.45 LOCATION PROJECTEO FCR SPECIES 1 W ITH AREA 0.25 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0.06 LOCATION PROJECTED FOR SPECIES 1 WITH AREA 0. 19 LOCATION PROJECTEO FCR SPECIES 1 WITH AREA 0.08 COVERAGE COMPLETED FOR STOP 8 SPECIES 1 AREA COVERED 8.37 LOCATION PROJECTED FOR SPECIFS 1 WITH AREA 0.33 LOCATION PROJECTED FCR SPECIES 1 WITH AREA 0.32 52 FIGURE 13. SOME EXAMPLES OF COVERAGE AND LOCATION POLYGONS PRODUCED BY THE PROGRAM COVANDLOC. P l o t s are l a b e l e d w i t h s p e c i e s name and l i s t e n i n g s t a t i o n number. C h e s t n u t - b a c k e d C h e s t n u t - b a c k e d C h e s t n u t - b a c k e d C h i c k a d e e #14 C h i c k a d e e #39 C h i c k a d e e #95 I I 1 METERS 0 5 0 0 1000 53 a t t r i b u t e . A b i r d t h a t was nearby would not need t o move as f a r t o become a c a n d i d a t e f o r a second l o c a t i o n . For example, a b i r d moving i n a c i r c l e around an o b s e r v e r would need t o move o n l y h a l f as f a r i f i t were a t h a l f t h e d i s t a n c e i n order f o r the o b s e r v e r t o p e r c e i v e the same change i n d i r e c t i o n t o the b i r d . The l a t t e r two e f f e c t s p r o b a b l y more than make up f o r the f o r m e r two, such t h a t o v e r a l l t h e method tends t o be c e n t e r - w e i g h t e d . An attempt was made t o reduce c e n t e r -w e i g h t i n g by r e c o r d i n g b i r d s known t o be c l o s e o n l y when th e y c a l l e d l o u d l y , and by b e i n g more demanding of s e p a r a t i o n when r e c o r d i n g two l o c a t i o n s i n a s i m i l a r d i r e c t i o n when both b i r d s were known t o be r e l a t i v e l y c l o s e . The impact o f any c o n s i s t e n t b i a s e s on the r e s u l t s was reduced by c e n s u s i n g each c l a s s i f i c a t i o n type from a v a r i e t y of d i s t a n c e s as d i s c u s s e d i n s t e p #1a. #7a, #7b, and #7c. D i g i t i z e , P r e p a r e and Thin Polygon F i l e s f o r each Map t o which Use by B i r d s i s t o be R e l a t e d . The p r o c e d u r e d e s c r i b e d i n s t e p s #2b, #2c, and #2d was used t o produce p o l y g o n s r e p r e s e n t i n g the t y p e s of a l a n d c l a s s i f i c a t i o n map. Two maps of t h e Research F o r e s t were d i g i t i z e d . The f i r s t was a map o f s e r a i s t a g e s c o n t a i n i n g 248 p o l y g o n s ( F i g u r e 14). The second was a s y n e c o l o g i c a l map ( K l i n k a , 1976) u s i n g p l a n t a s s o c i a t i o n s and s u b - a s s o c i a t i o n s as mapping u n i t s ( F i g u r e 15). I t c o n t a i n e d over 2000 p o l y g o n s o f which time and r e s o u r c e s a l l o w e d o n l y 499 t o be d i g i t i z e d . A l l b ut a few of t h e v e g e t a t i o n type i s l a n d s t h a t were IGURE 14. EXAMPLE OF MAP OF SERAL STAGES. S e r a i s t a g e s a r e numbered as i n t h e computer o u t p u t and t e x t . F o r ages see T a b l e 15. I 1 i i > 1 1 i 1 1 1 METERS 0 500 1000 55 FIGURE 15. EXAMPLE OF VEGETATION TYPES MAPPED AT THE LEVEL OF PLANT SUB-ASSOCIATIONS (AFTER KLINKA, 1976.) V e g e t a t i o n t y p e s a r e numbered as i n t h e computer o u t p u t and t h e t e x t . F o r names see T a b l e 16. • METERS 0 4 1 I * 500 1000 56 d i g i t i z e d were at the same s e r a i s t a g e (about 42 y e a r s s i n c e l o g g i n g and f i r e ) t o re d u c e c o n f o u n d i n g . F o r each map a f i l e was p r e p a r e d r e l a t i n g the polygon numbers t o t h e a p p r o p r i a t e c l a s s i f i c a t i o n t y p e . #8a. P r e p a r e an Empty Computer F i l e . . The computer program used i n s t e p #8b was d e s i g n e d t o work w i t h one f i l e o f l a n d c l a s s i f i c a t i o n p o l y g o n s a t a t i m e . I t added t h e i n f o r m a t i o n g a i n e d d u r i n g any r u n t o i n f o r m a t i o n g a i n e d i n p r e v i o u s r u n s . When b e i n g r u n f o r t h e f i r s t t i m e w i t h a new map or s p e c i e s , i t r e g u i r e d an empty i n f o r m a t i o n f i l e produced by HABDEXINIT (22 l i n e s ) . . #8b. R e l a t e Use by one B i r d S p e c i e s t o the Types o f one Map. The program HABDEX (973 l i n e s ) i n t e r s e c t e d the coverage and l o c a t i o n p o l y g o n s produced i n s t e p #6b w i t h t h e p o l y g o n s t h a t r e p r e s e n t t h e t y p e s of a l a n d c l a s s i f i c a t i o n map produced i n s t e p #7. HABDEX i n t e r s e c t e d t h e coverage polygon f o r one s t a t i o n w i t h any c l a s s i f i c a t i o n t y p e polygons t h a t were w i t h i n r a n g e , t o determine the e x t e n t t o which each was censused from the s t a t i o n . I t i n t e r s e c t e d any l o c a t i o n p o l y g o n s made from the s t a t i o n w i t h each c l a s s i f i c a t i o n p o lygon t h a t was censused, t o dete r m i n e the p r o b a b i l i t y t h a t any o f t h e b i r d s l o c a t e d were i n the c l a s s i f i c a t i o n p o l y g o n . The l o g i c and mathematics o f t h e i n t e r s e c t i o n s a r e d e s c r i b e d i n d e t a i l under " S t a t i s t i c a l A n a l y s i s o f Results"..HABDEX a l s o p r o v i d e d a l i s t of a l l the c l a s s i f i c a t i o n p o l y g o n s c o v e r e d o r p a r t i a l l y c o v e r e d from each s t a t i o n , complete w i t h 57 areas and areas o f i n t e r s e c t i o n ( F i g u r e 16) . #9. Summarize t h e E e s u l t s and Complete t h e S t a t i s t i c a l A n a l y s i s . . The program SUMEEIZE (898 l i n e s ) brought t o g e t h e r t h e r e s u l t s o f a l l t h e rounds o f v i s i t s f o r one s p e c i e s w i t h one map. As such i t used t h e o u t p u t from many s e r i e s of r u n s of HABDEX, where one s e r i e s r e p r e s e n t e d t h e r e p e a t e d u p d a t i n g of th e i n f o r m a t i o n f i l e f o r one round o f v i s i t s w i t h each o f t h e l a n d c l a s s i f i c a t i o n p o l y g on f i l e s . SUMEEIZE completed the s t a t i s t i c a l a n a l y s i s of r e s u l t s begun i n program HABDEX and d e s c r i b e d i n t h e f o l l o w i n g s e c t i o n . I t p r o v i d e d t a b l e s r e l a t i n g one s p e c i e s t o one map t y p e . A d i s c u s s i o n of the t a b l e s i s i n c l u d e d i n the " E e s u l t s " s e c t i o n . . SUMEEIZE i n c l u d e d the s u b r o u t i n e s PEOBINVE ( G r e i g ,1977), FPROB (Dempster and Halm, 1974) and CADEE (Madderom, 1972) ; a l l from the U.B.C..Computing C e n t r e L i b r a r y . . FIGURE 16. EXAMPLE OF" THE LIST OF POLYGON INTERSECTIONS DONE BY PROGRAM HABDEX. Stop=listening station; Polygon=land c l a s s i f i c a t i o n polygon; Birds=proportion of location that was i n polygon. STOP I AREA COVERED POLYGON NUMBER . 8 9 A R E A CF POLYGON 9 2 . 0 7 AREA "mnrs—O T T O -B I R O S 1 . 0 0 B I R D S 1 . 0 0 -BTRTTS TT0O B I R D S 0 . 1 5 T O T A L B I R D S 3 AREA OF LOCATION OTOTS AREA I N AREA CF LOCATION 0 . 1 9 AREA IN AREA CF LOCATION 0 . 0 5 AREA IN "AR^A O F L O C A T I O N 0 . 0 4 AREA IN AREA OF LOCATION 0 . 0 8 AREA IN C O V E R E D P C L Y G O N P C L Y G O N P C L Y G C N P C L Y G C N P O L Y G O N 4.69 0 . 0 2 0 . I S o . o ; PERCENT COVERED 5 . 1 C 0 . 0 4 0 . 0 1 35 B I R D S PER HECTARE 0 . 7 1 4 POLYGON NUMBER 3TT TOTAL B I R D S 0 POLYGON NUMBER 3 7 0 . 6 4 "BIRDS B I R D S 0 . 8 5 TOTAL BIRDS AREA OF POLYGON 9T9T ARE A COVERED O T T T , 0 B I R D S PER HECTARE 0 . 0 AREA CF PCLYGCN 1 0 1 . 9 2 AREA COVERED 1 . 9 8 A R T A C F LOCATION 0 . 0 8 Aft EA IN PCLYGON 0 . 0 5 AREA CF LOCATION 0 . 0 8 AREA IN PCLYGCN 0 . 0 7 49 B I R O S PER HECTARE 0 . 7 5 1 PERCENT COVERED T759" PERCENT COVERED 1 . 5 5 TTDT" 1 ARPA COVERED V. POLYGON NUMBER 6 BIRDS 1 . 0 0 l . o c r STOP "BTRD5" B I R D S 0 . 9 * BIRDS 1 . 0 0 TOTAL BIRDS POLYGON NUMBER BIROS 0 . 0 5 TOTA L~BTRD 5~ AREA COVERED POLYGON NUMBER AREA CF POLYGON AREA OF LOCATION A R E A O F L O C A T I O N AREA OF LOCATION AREA OF LOCATION 3 7 9 2 0 . 0 3 0 . 1 9 0 . 1 2 0 . 19 B l R C S PER HECTAft AREA OF PCLYGON 101 AREA CF LOCATION 0 . 1 2 0 5 — B I R D S PER HECT Aft 64 . 0 7 AREA AREA IN A R E A I N AREA IK AREA I N I 0 . 8 0 4 . 9 2 AREA AREA IN 0 . 7 9 2 C O V E R E D P C L Y G C N P O L Y G O N P C L Y G C N P O L Y G O N 4 . 9 0 0 . 0 3 0 . I S 0 . 1 1 0 . 1 S PERCENT COVERED 5 . 3 2 C O V E R E D P C L Y G O N 0 . 0 7 0 . 0 1 PERCENT COVERED 0 . 0 7 AREA CF POLYGON 9 2 . 0 7 A R E A C O V E R E D 2 . 4 4 PERCENT COVEREO 2 . 6 6 "STCTP" TOTAL B I R D S — POLYGON NUMBER 4 3 TOTAL BIROS 0 "ARIA "COVERED I POLYGON NUMBER 6 BIRDS 0 . 9 1 BTRTJ5—0T93 TOTAL BIRDS 1 POLYGON NUMBER 3 7 TOTAL B I R D S — 0 POLYGON NUMBER 4 3 B I R D S 1 . 0 0 B I R D S PER HECTAR AREA OF POLYGON 13 , 0 B I R D S PER HECTAR " " AREA OF POLYGON 9 2 AREA CF LOCATION 0 . 2 0 "OTTff E 0 . 0 . 9 8 A R E A E 0 . 0 C O V E R E D 1 . 0 7 PERCENT COVERED 7 . 6 9 "STOP" B T R T J S—r^ J O -BIRDS 0 . 0 1 TOTAL BIROS " A R E A C O V E R F D POLYGON NUMBER BIRDS 0 . 1 6 AREA OF LOCATION .86 B I R D S PER HECTAR AREA CF POLYGON 101 , 0 " B I R D S PER HECTAR AREA CF POLYGON 13 AREA OF LOCATION 0 . 3 2 AREA OF LOCATION OTOT AREA CF LOCATION 0 . 1 8 , C l B I R D S PER HECTAR . ' 4 ? " " AREA CF POLYGON 9 2 AREA OF LOCATION 0 . 3 4 . 0 7 A R E A A R E A IN AREA IN E 3 . 5 1 4 . 9 2 A R E A E 0 . 0 . 9 8 A R E A A R E A I N C O V E R E D P O L Y G O N P C L Y G C N 0 . 5 3 0 . 1 E "orrr PERCENT COVERED 0 . 5 7 C O V E R E D 0 . 4 1 C O V E R E D P C L Y G O N 5 . 5 6 0 . 3 2 PERCENT C O V E R E D 0 . 4 1 PERCENT COVER EO 3 9 . 8 0 A R E A I N A R E A I N E 0 . 3 6 1 . 0 7 A R E A A R E A I N P C L Y G C K P O L Y G O N C O V E R E D P C L Y G C N 0 . 0 1 O.OC 4 . 0 7 0 . 0 5 PERCENT COVERED 4 . 4 2 ui co 59 STATISTICAL ANALYSIS OF RESULTS METHOD OF ANALYSIS Consider f i r s t the observation pertaining to a single c l a s s i f i c a t i o n type island for one bird species from one l i s t e n i n g station during a single round of v i s i t s . The i n t e r s e c t i o n of the polygon defining the area censused from the s t a t i o n , and the polygon defining the land class typ?, i s a polygon defining the area of the type that was censused. . t h This area has been labeled Cj for the • l i s t e n i n g station as i l l u s t r a t e d in the example of Figure 17. The location o f a , t h bird that was heard i s described as the area L j k for the k location at the ' t h s t a t i o n . I f the area of location intersected the area of the class type that was censused ( C j ) , then the bird may have been in that c l a s s i f i c a t i o n type. The r a t i o of the area of intersection (B j k) to the t o t a l area of the location (L;^) i s the p r o b a b i l i t y that the bird, located by sound was i n the c l a s s i f i c a t i o n type. The ratio to L j ^ i s also the proportion of one bird located by sound (Y; k) that was assigned to the type, giving Y i ( < the units cf number of observed c a l l s : B j k i = 1 t o m s t a t i o n s ' k k = 1 t o n . l o c a t i o n s p e r s t a t i o n B u t Y i k = 0 , 0 a n d n i = 1 i f n o l o c a t i o n s w e r e m a d e . The observed density of c a l l s (Dj) from the c l a s s i f i c a t i o n 60 FIGURE 17. EX/AMPLE OF INTERSECTING COVERAGE AND LOCATION POLYGONS WITH A LAND CLASSIFICATION POLYGON. c. Area of locations made from t h i s station. d. Area of locations that h i t the land polygon. 61 t h type (C;) being censused from the i s t a t i o n i s defined as: n . £ Y i k k=1 1 k Dj = with u n i t s of t o t a l observed c a l l s per hectare ( c a l l s / h a ) . The average d e n s i t y of c a l l s f o r a c l a s s i f i c a t i o n type f o r a l l s t a t i o n s i s given as: D = m m n j • ^  C i D i J I Y i k i=1 i=1 k=1 I K m m I C, I Cj i=1 i=1 1 Observations based on p l o t s of equal area should have a 2 2 common variance of cr v. An estimate of t h i s variance (S Y) 2 could be used t o c a l c u l a t e an estimate of the variance (S D) of the observed average density (D). However, each observed de n s i t y of c a l l s (D;) and a s s o c i a t e d proportions Y i k (k=1 to n.)were based on a d i f f e r e n t area (C j) • A t y p i c a l set of data was d i v i d e d i n t o three p a r t s , corresponding to s m a l l , medium and l a r g e values of C j . The estimated variance 2 (S Y) of Y i k increased approximately i n proportion to the average value of C| f o r each group. Since the square of observations i s used i n c a l c u l a t i n g v ariance, Nash (pers. comm.) suggested a transformation (Z i k) of Y i k i n v o l v i n g the square root of the area for each observation: ft 62 The variance of Z i k i s estimated by S z: 1 m n ; I . ( z i k - z ) 2 = ( N - l ) '=1 k=1 (N-l) m n I 14-i=1 k=1 , m n . M - 1 k=1 N i k with (N _ 1) degrees of freedom, where N = I n ; • = 1 The estimated variance of Z i k was c a l c u l a t e d f o r each of the three groups corresponding to s i z e c l a s s e s of Cj . The 2 variance (S z) w a s approximately constant over the groups. The c a l c u l a t i o n was accepted as a t e s t confirming homogeneity of variances. The variance of the average density (D) can then be c a l c u l a t e d . m n . I I Y Since i=1 k=1 D = — m i k n i I c, i = 1 £ y C ; I Z i k i = 1 k= 1  m and since the Z i k are based oa independent l o c a t i o n s : I C : V A R r n V A R ( D ) = i = 1 I Z k=1 i k m I c i = 1 2 n . a i z ( m I C i = 1 ( m I C i = 1 V 63 The VAR(D) i s estimated by: 2 2 m >T I n • C • Z M 1 1 • m ^ W w i t h (N-1) degrees o f freedom. S D = i s the standard e r r o r of the average d e n s i t y i n one c l a s s i f i c a t i o n type f o r one round o f v i s i t s t o the s t a t i o n s . I t i s presented i n the t a b l e s f o r each round of v i s i t s . Now c o n s i d e r s e v e r a l c l a s s i f i c a t i o n types ( h =1 to p ) and s e v e r a l rounds of v i s i t s (r=1 to q ) . He then have Y n r ; ^ C h r , i ' D h r ' Z h r , i k ' N h r ' n h r , i ' W h r a n d S Z , h r • E a c h S Z , h r i s 2 an estimate of the same o z , so an improved estimate i s obtained by p o o l i n g the independent e s t i m a t e s : p q I I h=1 r=1 P q I I h=1 r=1 Nu " 1  M h r N h r " 1 'Z , h r P q w i f c h I I ( N h r - 1 ) h=1 r=1 degrees o f freedom i s the v a r i a n c e w i t h i n t y p e s . S z i s an estimate of the v a r i a n c e w i t h i n one c l a s s i f i c a t i o n type f o r one round of v i s i t s . The variance among c l a s s i f i c a t i o n types f o r each o f the rounds of v i s i t s can be c a l c u l a t e d independently using the d e n s i t i e s f o r each type. 64 Dot notation i s used to denote summing over types ( h=1 to p ) h - i W h r D h r —p h = 1 i s the average d e n s i t y f o r a l l types f o r one round of v i s i t s . p q h=1 r=1 h r k D h r " D - r . q ( p-1 ) with q ( p - l ) degrees of freedom i s the v a r i a n c e between types i n c l u d i n g i n t e r a c t i o n between types and time. The r a t i o F = SQ / i s a proper F s t a t i s t i c t o t e s t whether a l l c l a s s i f i c a t i o n types have the same mean. The probability of exceeding F by chance has been calculated using subroutine FPEOB (Dempster and Halm,1974) obtained from the O.B.C. Computer Library and incorporated into the coding of the s t a t i s t i c a l analysis program. The F value can be used to compare the predictive a b i l i t i e s of two or more maps for a single species i f the maps show s i g n i f i c a n t differences and i f a l l of the variances are associated with a r e l a t i v e l y high number of degrees of freedom. The map with the larger r a t i o w i l l , then account for the observed d i s t r i b u t i o n of birds more completely. The average density for each type ( D h r ) n a s been combined over rounds of v i s i t s ( r ) to give an overall 65 weighted mean density (D h.) f o r the type: q m Dh. = ^ E Chr, i Dhi r = 1 t = 1 * q m ^ , . ^ i Chr, i r=1 i=1 q m nh r , i I I I Y n r j L r=1 i=1 k=1 nr.ik ^ • ^ Chr , i r=1 i=1 ;^ Ahr.l ' Z h r > i k q m ,^ A Chr , i. r=1 i=1 The f " VAR vh r , i I Z k=1 h r , i k = n, . a 7 h r , i Z and the c o e f f i c i e n t of vh r , i 2. Z k=1 h r , i k i s so the J Chr,i q m I I c h r r=1 i=1 n r ' _ q m VAR( Dh.) = I I r=1 i=1 / C hr, i q m I I C r=1 i=l h r , i h r , i Z m a 7 I I n , 7 ^ £ " k - ! Cu *• r = 1 i = 1 hr , i h r , i r q m ^ ^ Chr i r=1 i=1 h r > ' w h . where w r q m ^ E Chr i r=1 i = 1 n r ' 1 q m r=i i=i nr»> nr,i 66 Consider now the q u e s t i o n as to whether two c l a s s i f i c a t i o n types d i f f e r s i g n i f i c a n t l y i n t h e i r observed d e n s i t y of c a l l s . The v a r i a n c e of the d i f f e r e n c e between two types i s the weighted sum of the variance o f each: V A R ( . - D 2 . ) = ° Z so the c o n f i d e n c e i n t e r v a l on the t r u e d i f f e r e n c e between two types i s : ( D , . - D 2 . ) - t a s z / - J l ~ + —— T \j W . . W 2 . 1 ( A , . - A 2 . ) < ( D , . - D 2 . ) + t . S Z + T \j W , . W 2 . where A H R i s the true value which D H R e s t i m a t e s , S z i s the standard e r r o r of Z, and t i s the students t s t a t i s t i c the value of which T has been obtained f o r 95% confidence l e v e l using s u b r o u t i n e FPEOB (Dempster and Halm,1974). The a b i l i t y to r e j e c t the n u l l h ypothesis t h a t two types are used e q u a l l y ( D 1 . = D 2 . ) has been t e s t e d using the t s t a t i s t i c : D T . - D 2 . 67 The p r o b a b i l i t y ( a ) of e x c e e d i n g the t v a l u e by chance i s c a l c u l a t e d u s i n g s u b r o u t i n e TINVR ( G r e i g , 1977) o b t a i n e d from the D.B.C. Computer L i b r a r y and i n c o r p o r a t e d i n t o the c o d i n g . TINVK r e t u r n s t h e c o r r e c t p r o b a b i l i t y f o r t h e two-t a i l e d t e s t w i t h the a l t e r n a t e h y p o t h e s i s t h a t the t y p e s are used d i f f e r e n t l y ( Tt-\ . # D 2 . ) • Nash ( p e r s . comm.) recommended t h a t t h e t v a l u e and i t s a s s o c i a t e d p r o b a b i l i t y be used t o e v a l u a t e each o f the o n e - t a i l e d a l t e r n a t e h y p o t h e s i s ( D j . . > D 2 . and D , . < D 2 . ) . The p r o b a b i l i t y (P) f o r the two-t a i l e d t e s t must be changed a c c o r d i n g l y : A l t e r n a t e h y p o t h e s i s D ^ 5 * D 2 . r i g h t t a i l (PRT) i f t i s p o s i t i v e , PRT = \ P i f t i s n e g a t i v e , PRT = 1 - \ P A l t e r n a t e h y p o t h e s i s !>].< D 2 . l e f t t a i l (PLT) i f t i s p o s i t i v e , PLT = 1 - \ P i f t i s n e g a t i v e , PLT - \ ? The p r o b a b i l i t i e s o f b e i n g c o r r e c t i n r e j e c t i n g the n u l l h y p o t h e s i s i n f a v o u r of each a l t e r n a t i v e w i l l always add t o u n i t y ( PRT + PLT = 1 ). 68 STATISTICAL ASSUMPTIONS The method developed f o r t h i s s t u d y uses the r e l a t i v e d e n s i t y o f observed c a l l s per u n i t t i m e as a measure o f the use by a b i r d s p e c i e s t h a t an a r e a r e c e i v e s . . I t assumes t h a t b i r d s spend more time and/or c a l l more f r e q u e n t l y i n a r e a s t h a t a r e more v a l u a b l e t o t h e i r s u r v i v a l . T h i s assumption has been e v a l u a t e d by l o o k i n q f o r c o n s i s t e n t p a t t e r n s o f c a l l d e n s i t i e s w i t h r e p e a t e d c e n s u s i n g , and by comparing t h e p a t t e r n s w i t h h a b i t a t r e l a t i o n s h i p s noted i n the l i t e r a t u r e . The c a l c u l a t i o n of the v a r i a n c e about Z assumes t h a t the l o c a t i o n s of b i r d s a s s i g n e d t o one t y p e are made i n d e p e n d e n t l y . T h i s assumption would be v i o l a t e d i f b i r d s l o c a t e d by t h e i r c a l l s tended t o o c c u r i n groups f o r r e a s o n s ot h e r t h a n h a b i t a t s e l e c t i o n . Such a c o n t a g i o u s d i s t r i b u t i o n of c a l l s would occur i f a b i r d s p e c i e s moved i n f l o c k s and d i f f e r e n t members o f t h e f l o c k were each l o c a t e d w h i l e the f l o c k remained w i t h i n a s i n g l e t y p e . . Grouping would a l s o occur i f one b i r d c a l l i n g prompted o t h e r s t o c a l l from t h e same a r e a , or i f a s i n g l e b i r d were l o c a t e d r e p e a t e d l y as i t moved about w i t h i n a s i n g l e t y p e . A tape r e c o r d e r p l a y b a c k was used d u r i n g t h e f i r s t two rounds of v i s i t s t o prompt b i r d s t o c a l l . The p r a c t i c e was d i s c o n t i n u e d because i t c o u l d encourage c o n t a g i o u s d i s t r i b u t i o n s . . H o w e v e r , t h e r e s u l t s show no o b v i o u s d i f f e r e n c e s between rounds. The v i o l a t i o n o f assumptions caused by c o n t a g i o u s d i s t r i b u t i o n would be reduced by f o l l o w i n g the r u l e s of never l o c a t i n g members o f a f l o c k w i t h i n the same t y p e , and o f r e c o r d i n g each b i r d o n l y once from any s t a t i o n . 69 U n f o r t u n a t e l y , t h e s e r u l e s cannot be a p p l i e d i n the f i e l d . F i r s t , few o f the b i r d s l o c a t e d were a c t u a l l y seen. U n l e s s t h e movements o f a b i r d c o u l d be f o l l o w e d v i s u a l l y , i t was not p o s s i b l e t o know i f a second b i r d h e a r d c a l l i n g was r e a l l y a second b i r d or t h e same b i r d c a l l i n g a second t i m e . S e c o n d l y , t h e o b s e r v e r was not always be aware o f t h e l o c a t i o n o f b o u n d a r i e s between c l a s s i f i c a t i o n t y p e s . Even i f the b o u n d a r i e s were easy t o r e c o g n i z e as w i t h s e r a i s t a g e s , the o b s e r v e r was seldom a b l e t o see as f a r as he c o u l d hear. T h i r d l y , i t i s i n t e n d e d t h a t t h e same census f o r b i r d s be used w i t h many d i f f e r e n t maps. The d a t a may be used w i t h a mapping system not yet c o n c e i v e d a t the time of census. F i n a l l y , a l l l o c a t i o n s were d e s c r i b e d as a r e a s . , A s i n g l e l o c a t i o n may o v e r l a p w i t h more t h a n one c l a s s i f i c a t i o n t y p e , f u r t h e r c o n f u s i n g any at t e m p t t o make o b s e r v a t i o n s i n d e p e n d e n t . A s e t of r u l e s t h a t c o u l d be r e a d i l y a p p l i e d i n the f i e l d were e s t a b l i s h e d t o a v o i d b l a t a n t v i o l a t i o n s of the re q u i r e m e n t f o r independent o b s e r v a t i o n s . At each l i s t e n i n g s t a t i o n , t h e o b s e r v e r kept t r a c k o f l o c a t i o n s made f o r each s p e c i e s d u r i n g t h a t v i s i t . The f i r s t c a l l o f a s p e c i e s was always l o c a t e d and r e c o r d e d . Subseguent c a l l s of t h a t s p e c i e s were r e c o r d e d o n l y i f the areas o f l o c a t i o n would not o v e r l a p (as d i s c u s s e d i n Methods s e c t i o n #5a). A b i r d t h a t c o u l d be f o l l o w e d v i s u a l l y was r e c o r d e d o n l y once, and then o n l y i f (and where) i t c a l l e d l o u d l y . F l o c k s l o c a t e d by sound were s u b j e c t t o t h e same r e g u i r e m e n t f o r s e p a r a t i o n between i n d i v i d u a l l o c a t i o n s . F l o c k s seen were l o c a t e d as a s i n g l e 70 b i r d w h i l e i n s i g h t . While t h i s caused t h e a b s o l u t e d e n s i t y o f f l o c k i n g b i r d s to be u n d e r - e s t i m a t e d , t h e r e l a t i v e d e n s i t y remained u n b i a s e d because the l a r g e number of l i s t e n i n g s t a t i o n s a l l o w e d each c l a s s i f i c a t i o n t y p e t o be censused from a v a r i e t y of p o s i t i o n s . . The o b s e r v a t i o n s a r e independent i f t h e s e p a r a t i o n o f l o c a t i o n s i s s u f f i c i e n t t o r e g u i r e a b i r d t o move t o a d i f f e r e n t t y pe i n o r d e r t o be counted a g a i n . T h i s i s more l i k e l y t o be t r u e f o r s m a l l t y p e i s l a n d s such as tho s e o f the v e g e t a t i o n map, than f o r t h e l a r g e r t y p e i s l a n d s o f t h e s e r a i s t a g e s map. Any v i o l a t i o n o f the s t a t i s t i c a l a ssumptions s h o u l d appear as c o n f l i c t s i n the s i g n i f i c a n t d i f f e r e n c e s i n t h e use of t y p e s between rounds f o r a s i n g l e s p e c i e s . As i s d i s c u s s e d i n t h e R e s u l t s s e c t i o n , o n l y S t e l l e r ' s J a y w i t h s e r a i s t a g e s and C h e s t n u t - b a c k e d Chickadee w i t h s e r a i s t a g e s show many c o n f l i c t s between rounds of v i s i t s . These a r e t h e o n l y s p e c i e s s t u d i e d t h a t were commonly seen i n f l o c k s . . The c o m b i n a t i o n of f l o c k i n g p l u s t h e l a r g e r t y p e i s l a n d s o f t h e s e r a i s t a g e map l i k e l y c o n s t i t u t e d a v i o l a t i o n of t h e need f o r independent l o c a t i o n s . However, the summary over rounds of v i s i t s t a k e s the v a r i a t i o n between rounds i n t o a c c o u n t . Comparisons between rounds and t h e summary o f rounds do not show many c o n f l i c t s f o r any s p e c i e s . . 71 RESDLTS The broad objective was to demonstrate that land management maps can be used with wildlife inventory data to provide c r i t e r i a for managing the occurrence of habitat for wildl i fe species. The null hypothesis - that wildlife habitat cannot be predicted using land management maps - would be rejected i f the bird species showed significant differences in their use of mapping types. The method of producing tables which relate one bird species to the types of one map has been described..Each time the program SOMERIZE was used i t produced three tables. The f i r s t table (or set of tables) l i s t s the results of a l l the polygon intersections completed by the program HABDEX for the rounds of v i s i t s being analysed. If the information from two or more rounds was combined, then a separate table was printed for each round. The results of the many polygon intersections are grouped by c lass i f icat ion type. For the example of Common Flicker with serai stages see Table 3. Nine columns of information are given: 1. Classi f ication types identified and ordered by number. 2. The number of times that the area covered from a station intersected a polygon of the type. 3.. The number of times an area of location intersected a polygon of the type. T A B L E 3. S U M M A R Y O F R E S U L T S O F I N T E R S E C T I O N S B Y R O U N D S A S P R I N T E D B Y P R O G R A M S U M E R I Z E . POLYGON TYPE 1 2 3 4 5 6 7 8 POLYGON TYPB NUHBEB OP VISITS THAT HIT 28 279 74 178 116 183 72 15 HUHBED OP VISITS THAT HIT SEBAL STAGES BOUND ONE M a r c h 1, 1977 t o A p r i 1 16 , 1977 NUMBER OP TOTAL SAMPLING BIBD DENSITY DENSITY DEGBEES VARIANCE LOCATIONS BIBDS INTENSITY INDEX STANDABD OF ABOUT THAT HIT (HEC-HBS) (BIBDS/HEC-HH) EBBOB FBEEDOH Z 1 0.0 17.3 0.003 0.0233 27 0.0023 3d 15.5 173. 5 0. 089 0.0144 288 0.0083 6 2.8 79.2 0. 036 0.0157 73 0.0049 9 4.8 387.0 0. 012 0.0087 178 0.0073 6 2.9 84.3 0.034 0.0138 116 0.0040 27 10.6 86.0 0. 123 0.0340 189 0.0227 9 1.0 63.9 0. 016 0.0067 73 0.0007 1 0.0 2.2 0. 014 0.0112 14 0.0001 SEBAL STAGES BOUND i TUO A p r i l 17 , 1977 t o May 3 0 , 1977 NUHBEB OF TOTAL SAMPLING BIBD DENSITY DENSITY DEGREES VABIANCE LOCATIONS BIBDS INTENSITY INDEX STANDABO OF ABOUT THAT HIT (HEC-HRS) (BIflDS/HEC-HB) EBBOB FBEEDOH Z 1 30 4 2.8 19.0 0. 146 0.0659 29 2 303 56 26.5 199.5 0. 133 0.0176 316 3 80 15 5.6 97.0 0.057 0.0286 84 4 192 28 21.6 451.5 0. 048 0.0149 195 5 130 17 7.6 95.4 0.080 0.0171 133 6 194 29 12.3 99.9 0. 123 0.0211 198 7 75 13 1.5 70.3 0.021 0.0139 75 8 20 1 0.0 2.5 0. 002 0.0129 19 COMMON FLICKER WITH SEBAL STAGBS BOUND THREE A p r i l 2 , 1977 t o May 1, 1977 POLYGON NUHBEB NUHBEB OF TOTAL SAMPLING BIBD DENSITY OBHSITY DEGBEES TYPE OF V I S I T S LOCATIONS BIBDS INTENSITY INDEX STANDABD OF THAT HIT THAT HIT (HEC-HBS) (aiBDS/HBC-HB) EBBOB FBEEDOH 1 30 0 0.0 18.0 0.0 0.0 29 2 307 18 7.0 204.6 0. 034 0.0096 306 3 82 0 0.0 10 1. 3 0.0 0. 0 81 4 197 1 0.3 478.8 0. 001 0.0006 196 5 132 1 0.8 97.2 0.008 0.0079 131 6 198 7 1. 4 100.8 0. 014 0.0055 197 7 76 4 1.4 70.9 0.020 0.0140 75 B 20 0 0.0 2.5 0. 0 0.0 19 0.0206 0.0138 0.0166 0.0240 0.0065 0.0105 0.0034 0.0001 VARIANCE ABOUT Z -0.0 0.0047 -0.0 0.0000 0.0015 0.0008 0.0035 -0.0 TABLE 3. ( c o n t i n u e d ) d. COHHON FLICKER UITH SERAL STAGES BOUND i FOUB POLYGON NOHBEB NUHBEB OF TOTAL SAMPLING TYPE OF VISITS LOCATIONS BIB OS INTENSITY THAT HIT THAT HIT (HEC-HBS) 1 30 2 1.4 18.9 2 284 1 9 9.3 184. 1 3 77 4 2.0 84.3 4 185 10 7.6 421. 1 5 125 0 0.0 89.4 6 189 1 5 7.9 92.5 7 73 5 0.4 67.4 8 18 1 0. 1 2. 1 COHHON FLICKER NITU SERAL STAGES BOUND i FIVE POLYGON NOHBEB NUHBER OF TOTAL SAMPLING TYPE OF VISITS LOCATIONS B1BDS INTENSITY THAT HIT THAT HIT (HEC- HRS) 1 27 1 0.6 17.2 2 288 36 20.7 190.8 3 75 7 1.9 93.6 4 179 1 1 8.9 380.3 5 126 4 2.2 96- 1 6 186 18 10.5 84.4 7 70 1 0.2 65.4 8 15 1 0.2 1.6 COHHON FLICKER WITH SERAL STAGES BOUND i SIX POLYGON NOHBEB NUHBEB OF TOTAL SAMPLING TYPE OF VISITS LOCATIONS BIRDS INTENSITY THAT HIT THAT HIT (HEC-HBS) 1 29 5 4. 2 17.2 2 29b 21 9.6 192.6 3 80 7 3-9 9 2.2 4 188 17 10.7 434.0 5 126 5 3.0 88.2 b 192 1 4 7.6 93-6 7 74 3 0.6 67.7 6 1* 0 0.0 2.4 A p r i l 18, 1977 to May 27, 1977 BIBD DENSITY DENSITY DEGREES VARIANCE INDEX STANDARD OF ABOUT (BIBDS/HEC—HB) EBBOB FREE DO H Z 0.075 0.0364 30 0.0058 0. 051 0.0111 286 0.0056 0. 023 0.0090 77 0.0017 0. 018 0.0043 185 0.0019 0.0 0. 0 124 -0.0 0.086 0.0201 192 0.0089 0. 007 0.0036 74 0.0002 0. 027 0.0248 17 0.0003 May 25, 1977 to June 8, 1977 BIBD DENSITY DENSITY DEGREES VAfllANCE INDEX STANDABD OF ABOUT (BIBDS/HEC-HB) EBBOB FBEEDOH Z 0.035 0.0254 26 0.0028 0. 109 0.0202 • 299 0.0179 0.021 0.0177 75 0.0072 0.023 0.0069 180 0.0043 0.023 0.0112 126 0.0030 0. 124 0.0285 189 0.0166 0. 003 0.0019 69 0.0001 0. 141 0.1193 14 0.0057 June 9, 1977 to June 15, 1977 BIBO DENSITY DENSITY DEGREES VABIANCE INDEX STANDABD OF ABOUT (BIBDS/HEC-HB) EBBOB FREEDOH Z 0. 244 0. 1090 30 0.0454 0. 050 0.0125 299 0.0072 0. 04 2 0.0123 81 0.0032 0. 025 0.0053 191 0.0029 0. 034 0.0244 126 0.0130 0. 081 0.0226 195 0.0113 0. 009 0.0174 73 0.0051 0. 0 0. 0 18 -0.0 4.. The c u m u l a t i v e p r o b a b i l i t y t h a t a b i r d was i n t h e t y p e , determined by summing the p r o b a b i l i t i e s from each of t h e l o c a t i o n s t h a t i n t e r s e c t e d the t y p e . . 5. . The s a m p l i n g i n t e n s i t y i n h e c t a r e - h o u r s , d e t e r m i n e d by summing t h e a r e a s of i n t e r s e c t i o n of co v e r a g e polygons w i t h the t y p e . 6. The observed d e n s i t y of c a l l s i n c a l l s per h e c t a r e -hour, c a l c u l a t e d by d i v i d i n g t h e c u m u l a t i v e p r o b a b i l i t y by s a m p l i n g i n t e n s i t y . . 7. . The s t a n d a r d e r r o r about the observed d e n s i t y . 8 . . The degrees of freedom a s s o c i a t e d w i t h t h e s t a n d a r d e r r o r . . 9 . The v a r i a n c e about Z on which the s t a n d a r d e r r o r was based. The second t a b l e c o n t a i n s a summary over rounds. For t h e example of Common F l i c k e r w i t h s e r a i s t a g e s see T a b l e 4. Three columns o f i n f o r m a t i o n a r e g i v e n : 1.. The c l a s s i f i c a t i o n t y p e s i d e n t i f i e d by number and o r d e r e d by l e v e l o f use. 2. The observed d e n s i t y of c a l l s per h e c t a r e - h o u r of l i s t e n i n g . I f o n l y one round was a n a l y s e d , t h e n t h e d e n s i t i e s are t h e same as tho s e i n t h e f i r s t t a b l e (eg. T a b l e 3a); o t h e r w i s e they a r e t h e weighted average of t h o s e i n the f i r s t t a b l e s (eg. T a b l e 3a t o 3f) . 75 TABLE 4. . COMMON FLICKER WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY H ABITAT_VALUE 6 0. 107 1. 000 1 0.101 0.9 39 2 0. 087 0. 810 3 0. 036 0. 338 5 0.035 0. 323 8 0. 030 0. 276 4 0. 026 0. 241 7 0.011 0.104 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.01003 (VAR Z) WITH 4575..DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.04215 WITH 35. .. DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 4.2011 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE DEFINITION OF SERAL STAGES STAGE DEFINITION 1 AGE 1 TO 5 YEARS 2 AGE 6 TO 1 5 YEARS 3 AGE 1 6 TO 3 5 YEARS 4 AGE 3 6 TO 7 5 YEARS 5 AGE 7 6 TO 1 5 5 YEARS 6 AGE 1 5 6 AND OVER 7 LAKES 8 MARSH 76 3.. A r e l a t i v e i n d e x o f h a b i t a t v a l u e f o r each t y p e . I t was o b t a i n e d by d i v i d i n g t h e observed d e n s i t y f o r t h e t y p e i n t o the observed d e n s i t y of the t ype which r a t e d h i g h e s t . The r a t i n g ranges from 0 . 0 t o 1 . 0 , with 1 . 0 b e i n g a s c r i b e d t o the t y p e w i t h t h e g r e a t e s t d e n s i t y . For t h e b i r d s sampled, l a k e s s h o u l d r a t e 0 . 0 ; but l a k e s t e n d t o accumulate use because a l l l o c a t i o n s of b i r d s are d e s c r i b e d as a r e a s . The a r e a l o c a t i n g a b i r d t h a t was near a l a k e may o v e r l a p w i t h the l a k e . Any a r e a t h a t i s r e a l l y not used w i l l t e n d t o a ccumulate use, w h i l e a d j a c e n t a r e a s of h i g h h a b i t a t v a l u e are robbed of the f u l l v a l u e of b i r d s t h a t a c t u a l l y were l o c a t e d t h e r e . The F - r a t i o g i v e n i n t h e t a b l e i s used t o d e t e r m i n e th e p r o b a b i l i t y t h a t t h e observed d i f f e r e n c e s i n d e n s i t i e s between t y p e s c o u l d have o c c u r r e d by chance. A p r o b a b i l i t y of 0 . 0 i n t h e t a b l e i n d i c a t e s a p r o b a b i l i t y o f l e s s t h a n 0 . 0 0 0 0 0 0 1 . A t h i r d t a b l e examines a l l p o s s i b l e comparisons between the d e n s i t i e s l i s t e d i n the second t a b l e . For the example of Common F l i c k e r w i t h s e r a i s t a g e s see Table 5. E i g h t columns o f i n f o r m a t i o n a r e g i v e n : 1&2. .The c l a s s i f i c a t i o n t y p e s ("A" and "B") b e i n g compared. 77 TABLE 5. COMMON FLICKER WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE HYPOTHYSIS CONFIDENCE LIMITS FOR A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER ! 2 0. 613 0.2698 0. 7302 -0.030 0. 014 0. 058 1 3 2. 713 0. 0033 0. 9967 0.018 0.064 0.111 1 4 3. 390 0.0004 0.9996 0.032 0.075 0. 118 1 5 2.797 0.0026 0. 9974 0..020 0.066 0. 112 1 6 -0. 275 0. 6084 0.3916 -0.053 -0.007 0. 040 1 7 3.687 0. 0001 0.9999 0.042 0.089 0. . 1 8 1.097 0.1363 0.8637 -0.056 0.071 0. 198 2 3 4. 237 0. 0000 1. 0000 0.027 0.050 0. 074 2 4 7.503 0. 00 00 1.0000 0.045 0.06 1 0. 077 2 5 4. 46 7 0.0000 1. 0000 0.029 0.052 0. 075 2 6 -1.729 0. 9581 0.0419 -0.043 -0.020 0. 003 2 7 5. 833 0.0000 1.0 000 0.050 0. 076 0. 101 2 8 0.930 0.1761 0.8239 -0.063 0.057 0. 3 4 0. 966 0.1670 0.8330 -0.011 0.010 0.032 3 5 0. 121 0.4520 0.5480 -0.025 0.002 0. 028 3 6 -5.150 1.0000 0.0000 -0.098 -0.071 -0.044 3 7 1.698 0.0447 0. 9553 -0.004 0.025 0. 054 3 8 0, 108 0, 4 572 0.5428 -0. 114 0.007 0. 128 4 5 -0.835 0.7980 0.2020 -0.029 -0.009 0. 012 4 6 -7.636 i l . 0000 0. 0000 -0.102 -0.081 -0.060 4 7 1.231 0.1092 0.8908 -0.009 0.015 0. 038 4 8 -0.062 0.5246 0.4754 -0. 124 -0.004 0. 116 5 6 -5.352 1.0000 0.0000 -0.099 -0.072 -o.. 5 7 1.608 0. 0539 0. 9461 -0.005 0.023 0. 052 5 8 0. 081 0.4678 0.5322 -0.116 0.005 0. 126 6 7 6. 540 0.0000 1.0000 0.067 0.096 0. 125 6 8 1. 255 0. 1048 0.8952 -0.044 0.077 0. 198 7 8 -0. 297 0.6169 0.3831 -0.140 -0.018 0. 103 78 3.. The t - v a l u e f o r e v a l u a t i n g t h e n u l l h y p o t h e s i s t h a t t h e two t y p e s a r e used e q u a l l y . 4. The p r o b a b i l i t y of b e i n q wrong i n r e j e c t i n g t h e n u l l h y p o t h e s i s i n f a v o u r of t h e a l t e r n a t e h y p o t h e s i s t h a t t y p e A i s used more than t y p e B.. 5.. The p r o b a b i l i t y o f b e i n g wrong i n r e j e c t i n g t h e n u l l h y p o t h e s i s i n f a v o u r o f the a l t e r n a t e h y p o t h e s i s t h a t type B i s used more th a n type A. 6.. The lower l i m i t of the 95% c o n f i d e n c e i n t e r v a l f o r the d i f f e r e n c e . 7. The observed d i f f e r e n c e i n use ( c a l l s / h a - h r ) of the two t y p e s . 8.. The upper l i m i t of t h e 95% c o n f i d e n c e i n t e r v a l f o r t h e d i f f e r e n c e . T a b l e s o f the second and t h i r d type j u s t d e s c r i b e d f o r th e F l i c k e r (Tables 4 and 5) a r e p r e s e n t e d i n Appendix B f o r t e n d i f f e r e n t s p e c i e s w i t h s e r a i s t a g e s and f o r s i x of t h e s e s p e c i e s w i t h v e g e t a t i o n t y p e s i n Appendix C. Only t h o s e s p e c i e s r e c o r d e d r e g u l a r l y i n the 42-year s e r a i s t a g e can be r e l a t e d t o v e g e t a t i o n t y p e s because t h e v e g e t a t i o n map f o r the r e s t o f t h e s t u d y a r e a was not d i g i t i z e d . . The t a b l e s i n Appendices B and C p r o v i d e t h e e v i d e n c e needed t o r e j e c t t h e n u l l h y p o t h y s i s t h a t l a n d management maps cannot be used t o p r e d i c t use by w i l d l i f e s p e c i e s . R e g a r d l e s s o f which s p e c i e s and which map choosen, each p a i r o f t a b l e s g i v e s an e x t r e m e l y low p r o b a b i l i t y t h a t the r e s u l t s c o u l d have o c c u r r e d by chance. I n every case t h e r e a r e many d i f f e r e n c e s i n the use of two t y p e s t h a t a r e s i g n i f i c a n t a t 79 95% or 99% c o n f i d e n c e . The map o f s e r a i s t a g e s or the map of p l a n t a s s o c i a t i o n s c o u l d be used with t h e a p p r o p r i a t e o bserved d e n s i t i e s o r h a b i t a t i n d e x r a t i n g s f o r a s p e c i e s t o p r e d i c t the s p a t i a l p a t t e r n of use by t h e s p e c i e s over the ar e a mapped. Each o f the 14 computer programs used has been t e s t e d u s i n g an example s e t of d a t a t h a t was a l s o a n a l y s e d by hand. The s t a t i s t i c s have been c a r e f u l l y checked and s t a t i s t i c a l a s s u m p t i o n s have been c o n s i d e r e d . The d e t e r m i n a t i o n o f p l o t shape and the r e p r e s e n t a t i o n of t h e p o s i t i o n o f c a l l i n g b i r d s r e l y on a t h r e e d i m e n s i o n a l model of the r e a l s i t u a t i o n . . A l l t h e i n p u t has been double checked. There i s no r e a s o n t o ex p e c t t h a t the programs are not f u n c t i o n i n g as a n t i c i p a t e d . However, i t i s p o s s i b l e t h a t an e r r o r has gone u n d e t e c t e d and t h a t the o u t p u t i s m i s l e a d i n g . I t can be demonstrated t h a t t h i s p o s s i b i l i t y i s u n l i k e l y by comparing t h e r e s u l t s f o r each s p e c i e s w i t h i n f o r m a t i o n from the l i t e r a t u r e . F i r s t we must d e a l w i t h t h e f a c t t h a t t h e t a b l e s produced by SUMERIZE c o n t a i n so much i n f o r m a t i o n as t o make i n t e r p r e t a t i o n d i f f i c u l t . The program COMPARE p r e s e n t s some of the i n f o r m a t i o n from the t a b l e s i n g r a p h i c form. The r e l a t i v e h a b i t a t v a l u e o f each mapping type i s p r e s e n t e d i n the form of a bar graph w i t h t h e t y p e s ordered by d e c r e a s i n g l e v e l o f use (e.g..Table 6 ) . Note t h a t t h e bar graph does not i n d i c a t e t h e e r r o r a s s o c i a t e d w i t h t h e measurement of the use of each s t a g e . T h i s i n f o r m a t i o n i s d i s p l a y e d i n t h e accompanying t a b l e of s i g n i f i c a n t d i f f e r e n c e s i n use (e.g. Table 7 ) . 80 TABLE 6. COMMON FLICKER WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 6  XX 1 XX XX XX XX 2 XX XX XX -XX-XX-XX XX XX XX XX XX XX XX XX XX XX XX XX -XX-XX-XX XX XX XX XX XX XX XX XX XX 3 5 XX XX XX XX XX 8 -XX-XX-XX-XX-XX-XX 4 XX XX XX XX XX XX XX XX XX XX XX XX XX XX 7 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX-XX-XX-XX-XX-XX-XX-XX TABLE 7. COMMON FLICKER WITH SERAL STAGES SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 6 1 2 3 5 8 4 7 6 1 2 X 3 X X X 5 X X X 8 4 X X X 7 X X X 6 1 2 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 81 Both t h e columns and t h e rows of Table 7 are l a b e l l e d w i t h mapping-type numbers which a r e ordered by d e c r e a s i n g l e v e l of use. I f t h e t y p e r e p r e s e n t e d by a g i v e n column was used s i g n i f i c a n t l y more (p<0.05) th a n the type r e p r e s e n t e d by a g i v e n row, then the p o s i t i o n of i n t e r s e c t i o n of the column w i t h the row w i l l be marked w i t h an "X". For example the F l i c k e r (Table 7) was not observed t o use s t a g e 6 (age 156 years and over) s i g n i f i c a n t l y more than s t a g e 1 (age 1 t o 5 y e a r s ) ; but i t was o b s e r v e d t o use s t a g e 6 s i g n i f i c a n t l y more tha n s t a g e 2 (age 6 t o 15 y e a r s ) , s t a g e 3 (16 t o 35 y e a r s ) , s t a g e 5 {76 t o 155 years) , s t a g e 4 (36 t o 75 years) , and stage 7 ( l a k e s ) . Note t h a t use of s t a g e 8 (marsh) d i d not d i f f e r s i g n i f i c a n t l y from o t h e r s t a g e s because the a v a i l a b l e examples of s t a g e 8 were s m a l l . O b s e r v e r s were w i t h i n h e a r i n g d i s t a n c e o f f l i c k e r s i n marshy a r e a s f o r o n l y 13.3 h e c t a r e -hours d u r i n g a l l rounds ( c a l c u l a t e d from T a b l e 3). That v a l u e compares t o 107.6 ha-hr f o r s t a g e 1, and 2552.7 ha-hr f o r stage 4. Even though stage 8 was observed t o be used a t a low l e v e l , i t may i n f a c t be used more than s t a g e .6 ( p r o b a b i l i t y 0.1048 of b e i n g wrong i n r e j e c t i n g the n u l l h y p o t h e s i s i n f a v o u r of t h e a l t e r n a t e h y p o t h e s i s t h a t s t a g e 6 i s used more tha n s t a g e 8; T a b l e 5 ) . A b a r graph and a s s o c i a t e d s i g n i f i c a n c e t a b l e a r e p r e s e n t e d f o r each o f t e n s p e c i e s w i t h s e r a i s t a g e s and f o r each of s i x s p e c i e s w i t h v e g e t a t i o n t y p e s i n t h e " D i s c u s s i o n " s e c t i o n . COMPARE was designed t o use the o u t p u t from two d i f f e r e n t runs of SOMERIZE at a t i m e . A graph of r e l a t i v e use 82 and a t a b l e o f s i g n i f i c a n t d i f f e r e n c e s was produced w i t h each r u n . For example. T a b l e s 8 and 9 f o r Winter Wren w i t h s e r a i stage were produced at the same time as T a b l e s 6 and 7 f o r Common F l i c k e r w i t h s e r a i s t a g e . The t a b l e s o f s i g n i f i c a n t d i f f e r e n c e s were compared to t e s t t h e premise t h a t t h e two s p e c i e s show t h e same p a t t e r n of Use. When a comparison between the use of two t y p e s i s s i g n i f i c a n t f o r both s p e c i e s , COMPARE c h e c k s t o see i f t h e d i r e c t i o n i s t h e same. The program f i r s t sums tho s e i n s t a n c e s f o r which t h e d i r e c t i o n i s d i f f e r e n t , h e r e termed a " c o n t r a s t " . For example. Common F l i c k e r uses stage 1 (age 1 t o 5 years) s i g n i f i c a n t l y more than i t uses s t a g e 4 (age 36 t o 7 5 y e a r s ) ; w h i l e Winter Wren uses s t a g e 4 s i g n i f i c a n t l y more than s t a g e 1. That o b s e r v a t i o n r e p r e s e n t s one c o n t r a s t . COMPARE next sums s i g n i f i c a n t comparisons f o r which the d i r e c t i o n i s t h e same, here termed a " r e i n f o r c e m e n t " . . For example, both Common F l i c k e r and Winter Wren use stage 6 (age 156 y e a r s and o l d e r ) s i g n i f i c a n t l y more than they use s t a g e 3 (age 16 t o 35 y e a r s ) . That o b s e r v a t i o n r e p r e s e n t s one r e i n f o r c e m e n t . F i n a l l y , t h e r a t i o o f t h e number of c o n t r a s t s t o t h e number o f r e i n f o r c e m e n t s i s c a l c u l a t e d . For the p r e s e n t example see T a b l e 10. T h i s r a t i o e g u a l s 0.0 when use i s i d e n t i c a l ; i s l e s s t h a n 1.0 i f two s p e c i e s have s i m i l a r p a t t e r n s o f use; but g r e a t e r than 1.0 i f t h e s p e c i e s are s e l e c t i n g very d i f f e r e n t l y . S i g n i f i c a n t d i f f e r e n c e s were d e c i d e d at t h e 95% c o n f i d e n c e l e v e l , so about one i n twenty o f t h e d i f f e r e n c e s s h o u l d be i n c o r r e c t l y r e c o r d e d ( i . e . c o n t r a s t - t o - r e i n f o r c e m e n t r a t i o 0.05 by chance when use 83 TABLE 8.. WINTER WREN WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES .75 0. 5 . 25 0.0 1 5-| XX | XX | XX | XX | -XX-| XX 4 i XX XX | XX XX | XX XX 6 I -XX-XX -XX- -- 1 | XX XX XX I XX XX XX 3 | XX XX XX XX 1 | XX XX XX XX XX I -XX-XX -XX- XX-XX- 1 | XX XX XX XX XX 2 I XX XX XX XX XX XX 7| I XX XX XX XX XX XX XX| I XX XX XX XX XX XX XX| j - x x - XX -XX- XX-XX- XX -XX | TABLE 9.. WINTER WREN WITH SERAL STAGES SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 5 4 6 3 1 5 4 X 6 X X 3 X X X 1 X X X 2 X X X X X 7 X X X X X 5 4 6 3 1 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW TABLE 10.. COMPARISON BETWEEN COMMON FLICKER AND WINTER WREN.. CONTRASTS IN OSE OF SERAL STAGES 1 4 1 5 2 3 2 4 2 5 6 4 6 5 REINFORCEMENTS IN USE OF SERAL STAGES 1 7 2 7 3 7 6 2 6 3 6 7 NUMBER OF CONTRASTS 7. NUMBER OF REINFORCEMENTS 6. TOTAL COMPARISONS IN COMMON 13. CONTRAST TO REINFORCEMENT RATIO 1.167 DEFINITION OF SERAL STAGES STAGE DEFINITION 1 AGE 1 TO 5 YEARS 2 AGE 6 TO 15 YEARS 3 AGE 16 TO 35 YEARS 4 AGE 36 TO 75 YEARS 5 AGE 76 TO 155 YEARS 6 AGE 156 AND OVER 7 LAKES 8 MARSH 85 was r e a l l y i d e n t i c a l ) . In f a c t t h e number o f t h e s e t y p e s of e r r o r s s h o u l d be much l e s s because the c o n f i d e n c e l e v e l i s o f t e n g r e a t e r t h a n 95%. The c o n t r a s t - t o - r e i n f o r c e m e n t r a t i o f o r Common F l i c k e r w i t h Winter Wren p r e s e n t e d f o r s e r a i s t a g e s i n T a b l e 10 (1.167) i n c l u d e s s i g n i f i c a n t c omparisons i n v o l v i n g l a k e s (type 7 ) , a l t h o u g h " l a k e s " i s not a s e r a i s t a g e . The s p e c i e s appear t o be more a l i k e when l a k e s a r e i n c l u d e d as n e i t h e r s p e c i e s i s a b l e t o use l a k e s . Four of the s i x r e i n f o r c e m e n t s a r e t h e r e s u l t of both s p e c i e s u s i n g s t a g e s 1, 2, 3 and 6 s i g n i f i c a n t l y more than l a k e s . The r a t i o c a l c u l a t e d w i t h o u t l a k e s (3.500) more a c c u r a t e l y r e p r e s e n t s the obser v e d d i f f e r e n c e i n use o f s e r a i s t a g e s . . The r e m a i n i n g two r e i n f o r c e m e n t s r e s u l t from a common p r e f e r e n c e f o r o l d g r o w t h stage 6 over younger s t a g e s 2 and 3. However, the r e a s o n f o r t h i s p r e f e r e n c e i s d i f f e r e n t f o r each s p e c i e s . . T h e F l i c k e r i s u s i n g o l d g r o w t h snags f o r n e s t i n g , w h i l e t h e Wren l i v e s i n t h e dense underbrush. S i x of the seven c o n t r a s t s i n use o f s e r a i s t a g e s i n v o l v e s t a g e s 4 and 5 v e r s u s s t a g e s 1,2 and 6. Stage 5 d i d not p r o v i d e n e s t i n g snags as d i d stage 6 f o r the F l i c k e r , w h i l e the dense growth of s t a g e 4 d i d not p r o v i d e open a r e a s f o r f e e d i n g as d i d s t a g e s 1 and 2. By c o n t r a s t , t h e Wren was most abundant i n the dense shrub growth of s t a g e s 4 and 5, l e s s abundant i n s t a g e 6, and l e a s t abundant i n the s p a r s e growth o f s t a g e s 1 and 2. The r e m a i n i n g c o n t r a s t c o n c e r n s a s t r o n g p r e f e r e n c e by the F l i c k e r f o r the open f e e d i n g areas of s t a g e 2 over t h e r e g e n e r a t i n g growth of st a g e 3; w h i l e t h e 86 Wren p r e f e r s t h e dense growth o f s t a g e 3 t o t h e more s p a r s e v e g e t a t i v e c o v e r o f s t a g e 2. The method j u s t d e s c r i b e d f o r comparing the use o f mapping t y p e s by two s p e c i e s was a l s o used to compare use o f types by one s p e c i e s between two rounds o f v i s i t s . F o r each s p e c i e s , t h e program SUMEEIZE was run s e p a r a t e l y f o r each round as w e l l as f o r a l l rounds t o g e t h e r . The program COMPABE was t h e n used t o make a l l p o s s i b l e comparisons between rounds t o t e s t the premise t h a t the s p e c i e s was c o n s i s t e n t i n i t s p a t t e r n of use. The number of comparisons i n c o n t r a s t t o and i n r e i n f o r c e m e n t of the premise were each summed t o g i v e a s i n g l e c o n t r a s t - t o - r e i n f o r c e m e n t r a t i o r e p r e s e n t i n g the amount o f change i n t h e use of t y p e s between rounds.. T a b l e s 11 and 12 demonstrate t h a t most s p e c i e s were v e r y c o n s i s t e n t i n t h e i r p a t t e r n of c h o i c e over t h e census p e r i o d . Only one o f the t e n s p e c i e s r e l a t e d t o s e r a i s t a g e s , and none of t h e s i x s p e c i e s r e l a t e d t o v e g e t a t i o n t y p e s , has a c o n t r a s t - t o - r e i n f o r c e m e n t r a t i o g r e a t e r t h a n 0.3 f o r comparisons between rounds.. S t e l l e r ' s J a y , a f l o c k i n g s p e c i e s , has a r a t i o of 0.718 f o r comparisons between rounds w i t h s e r a i s t a g e s (Table 11). The c o n g r e g a t i o n of b i r d s i n f l o c k s would v i o l a t e the s t a t i s t i c a l assumption t h a t l o c a t i o n s of b i r d s a re always independent. The ob s e r v e d c o n t r a d i c t i o n s c o u l d then r e f l e c t f l o c k i n g and not changes i n the use of s t a g e s over t i m e . The Chestnut-backed Chickadee o c c u r r e d i n f l o c k s l e s s f r e q u e n t l y and has r a t i o of 0.267. The r e m a i n i n g s p e c i e s were not observed i n f l o c k s and have r a t i o s l e s s than 0.07 f o r comparisons w i t h s e r a i stages..The 87 TABLE 1 1 . THE NUMBER OF CONTRASTS AND REINFORCEMENTS FOR ALL COMPARISONS BETWEEN ROUNDS FOR EACH S P E C I E S WITH SERAL STAGES. Does n o t i n c l u d e c o m p a r i s o n s i n v o l v i n g l a k e s • S P E C I E S NUMBER OF NUMBER OF TOTAL RATIO CONTRASTS REINFORC. COMPAR. CONT/REIN Common F l i c k e r 2 50 52 0 . 0 4 0 Y e l l o w - b e l l i e d S a p s u c k e r 1 152 153 0 , . 0 0 7 Ha i r y W o o d p e c k e r 3 53 56 0 , . 0 5 7 O l i v e - s i d e d F l y c a t c h e r 0 k h 0 . . 0 0 0 S t e l l e r 1 s J a y 23 32 55 0 . .718 C h e s t n u t - b a c k e d C h i c k a d e e 8 30 38 0 . , 2 6 7 R e d - b r e a s t e d N u t h a t c h 2 51 53 0 . 0 3 9 W i n t e r Wren 0 152 152 0 . 000 V a r i e d T h r u s h 1 7h 75 0 . 013 S w a i n s o n ' s T h r u s h 0 6 6 0 . 000 TABLE 1 2 . THE NUMBER OF CONTRASTS AND REINFORCEMENTS FOR ALL COMPARISONS BETWEEN ROUNDS FOR EACH S P E C I E S WITH VEGETATION T Y P E S . Does n o t i n c l u d e l a k e s o r t y p e s n o t i n f o r t y y e a r s e r a i s t a g e . S P E C I E S NUMBER OF NUMBER OF TOTAL RAT 10 CONTRASTS REINFORC. COMPAR. CONT/REIN Y e l l o w - b e l l i e d S a p s u c k e r 6 51 57 0.118 S t e l l e r 1 s J a y 11 86 97 0. 128 C h e s t n u t - b a c k e d C h i c k a d e e 2 36 38 0.056 W i n t e r Wren 2k 192 216 0.125 V a r i e d T h u r s h 10 91 101 0.110 S w a i n s o n ' s T h r u s h 5 18 23 0.278 88 f l o c k i n g s p e c i e s do not show h i g h e r r a t i o s f o r comparisons w i t h v e g e t a t i o n t y p e s (Table 12). The s m a l l e r s i z e o f the type i s l a n d s means t h a t t h e l o c a t i o n s are more l i k e l y t o be in d e p e n d e n t . . A second r a t i o was c a l c u l a t e d by comparing each round w i t h a l l rounds t o g e t h e r . T h i s r a t i o g i v e s an i n d i c a t i o n of how w e l l t h e summary over a l l rounds t o g e t h e r has r e p r e s e n t e d any d i f f e r e n c e s between i n d i v i d u a l rounds. The second r a t i o has n ot been p r e s e n t e d i n t a b u l a r form because i n e v e r y case t h e r a t i o i s very s m a l l ( l e s s t han 0.07). As e x p e c t e d , t h e summary o v e r a l l rounds i s r e p r e s e n t a t i v e o f t h e rounds from which i t was made. A l l p o s s i b l e comparisons between s p e c i e s were made f o r each map. The t a b l e o f s i g n i f i c a n t d i f f e r e n c e s based on t h e summary o f a l l rounds was used f o r each s p e c i e s as was d e s c r i b e d f o r Common F l i c k e r and Winter Wren (e.g. T a b l e s 7 and 9 compared to produce T a b l e 10). The r e s u l t s f o r s e r a i s t a g e s (Table 13) do not i n c l u d e c o n t r a s t s or r e i n f o r c e m e n t s i n v o l v i n g s t a g e 7 ( l a k e s ) . None of the s p e c i e s use l a k e s , so t h e i n c l u s i o n o f t h i s t y p e , which i s not a s e r a i s t a g e , c o n f u s e s the r e s u l t s of comparisons between s p e c i e s by c o n s i s t a n t l y b o o s t i n g t h e number of r e i n f o r c e m e n t s . . L i k e w i s e , the r e s u l t s f o r v e g e t a t i o n t y p e s (Table 14) do not i n c l u d e t y p e 14 (l a k e s ) or type 39 ( v e g e t a t i o n t y p e s which were d i g i t i z e d but which were not of the 36- to 75-year s e r a i s t a g e ) . 89 TABLE 1 3 - THE NUMBER OF CONTRASTS AND REINFORCEMENTS FOR ALL COMPARISONS BETWEEN S P E C I E S WITH SERAL STAGES. Does n o t i n c l u d e c o m p a r i s o n s i n v o l v i n g l a k e s . S P E C I E S COMPARED NUMBER OF NUMBER OF TOTAL RATIO CONTRASTS REINFORC. COMPAR. CONT/REIN Common F l i c k e r w i t h : Y e l l o w - b e l l i e d S a p s u c k e r H a i r y W o o d p e c k e r O l i v e - s i d e d F l y c a t c h e r S t e l l e r 1 s J a y C h e s t n u t - b a c k e d C h i c k a d e e R e d - b r e a s t e d N u t h a t c h W i n t e r Wren V a r i e d T h r u s h S w a i n s o n ' s T h r u s h Y e l l o w - b e l l i e d S a p s u c k e r w i t h : H a i r y W o o d p e c k e r O l i v e - s i d e d F l y c a t c h e r S t e l l e r ' s J a y C h e s t n u t - b a c k e d C h i c k a d e e R e b - b r e a s t e d N u t h a t c h W i n t e r Wren V a r i e d T h r u s h S w a i n s o n ' s T h r u s h H a i r y W o o d p e c k e r w i t h : O l i v e - s i d e d F l y c a t c h e r S t e l 1 e r 1 s J a y C h e s t n u t - b a c k e d C h i c k a d e e R e d - b r e a s t e d N u t h a t c h W i n t e r Wren V a r i e d T h r u s h S w a i n s o n ' s T h r u s h 2 2 0 2 3 7 6 0 0 5 1 1 5 1 6 0 k 1 1 h 1 6 6 6 2 k 3 2 3 11 2 8 8 7 8 1 i» 2 8 8 7 8 1 8 8 k k 8 6 9 7 11 h 7 3 3 12 9 7 h 6 9 9 11 9 7 0 . 3 3 3 0 . 3 3 3 0 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 3 - 5 0 0 1 . 3 3 3 0 . 0 0 0 0 . 0 0 0 2 . 5 0 0 0 . 1 2 5 0 . 1 2 5 0.714 0 . 1 2 5 6 . 0 0 0 0 . 0 0 0 2 . 0 0 0 0 . 1 2 5 0 . 1 2 5 0 . 5 7 1 0 . 1 2 5 6 . 0 0 0 C o n t i n u e d . 90 TABLE 13 C o n t i n u e d . S P E C I E S COMPARED NUMBER OF NUMBER OF TOTAL RATIO CONTRASTS REINFORC. COMPAR. CONT/REIN O l i v e - s i d e d F l y c a t c h e r w i t h : S t e l l e r ' s J a y C h e s t n u t - b a c k e d C h i c k a d e e R e d - b r e a s t e d N u t h a t c h W i n t e r Wren V a r i e d T h r u s h S w a i n s o n ' s T h r u s h S t e l l e r ' s J a y w i t h : C h e s t n u t - b a c k e d C h i c k a d e e R e d - b r e a s t e d N u t h a t c h W i n t e r V/ren V a r i e d T h r u s h S w a i n s o n ' s T h r u s h C h e s t n u t - b a c k e d C h i c k a d e e w i t h : R e d - b r e a s t e d N u t h a t c h W i n t e r Wren V a r i e d T h r u s h S w a i n s o n ' s T h r u s h R e d - b r e a s e d N u t h a t c h w i t h : W i n t e r Wren V a r i e d - T h r u s h S w a i n s o n ' s T h r u s h W i n t e r Wren w i t h : V a r i e d T h r u s h S w a i n s o n ' s T h r u s h V a r i e d T h r u s h w i t h : S w a i n s o n ' s T h r u s h 1 3 0 5 3 6 6 3 6 6 5 1 2 0 3 1 0 it 4 1 2 1 2 0 0 1 3 1 3 7 9 10 4 8 8 1 10 7 5 3 2 6 5 6 6 9 7 8 8 11 10 7 9 8 5 11 10 0.250 3.000 0.000 5.000 1 .500 3.000 2.000 6.000 1.667 0.143 0.222 0.000 0.750 0.125 0.000 4.000 0.100 0.429 1 .000 91 TABLE 1 4 . THE NUMBER OF CONTRASTS AND REINFORCEMENTS FOR ALL COMPARISONS BETWEEN S P E C I E S WITH VEGETATION T Y P E S . Does n o t i n c l u d e l a k e s o r t y p e s n o t i n f o r t y y e a r s e r a i s t a g e . S P E C I E S COMPARED NUMBER OF NUMBER OF TOTAL. RATIO CONTRASTS REINFORC. COMPAR. CONT/REIN Y e l l o w - b e l l i e d S a p s u c k e r w i t h : S t e l l e r ' s J a y 3 10 13 0 . 3 0 0 C h e s t n u t - b a c k e d C h i c k a d e e 2 11 13 0 . 1 8 2 W i n t e r Wren 12 12 24 1 . 0 0 0 V a r i e d T h r u s h 9 11 20 0 . 8 1 8 S w a i n s o n ' s T h r u s h 7 10 17 0 . 7 0 0 S t e l 1 e r ' s J a y w i t h : C h e s t n u t - b a c k e d C h i c k a d e e 10 3 13 3 - 3 3 3 W i n t e r Wren 10 23 33 0 . 4 3 5 V a r i e d T h r u s h 2 24 26 0 . 0 8 3 S w a i n s o n ' s T h r u s h 1 35 36 0.029 C h e s t n u t - b a c k e d C h i c k a d e e w i t h : W i n t e r Wren 6 12 18 0 . 5 0 0 V a r i e d T h r u s h 11 7 18 1.571 S w a i n s o n ' s T h r u s h 5 4 9 0 . 8 0 0 W i n t e r Wren w i t h : V a r i e d T h r u s h 7 29 36 0 . 2 4 1 S w a i n s o n ' s T h r u s h 8 35 43 0 . 2 2 9 V a r i e d T h r u s h w i t h : S w a i n s o n ' s T h r u s h 2 30 32 O.O67 92 DISCUSSION The r e s u l t s a r e o r g a n i z e d i n t h r e e d i f f e r e n t ways i n t h e f o l l o w i n g d i s c u s s i o n * F i r s t , the use o f mapping t y p e s i s d i s c u s s e d f o r one b i r d s p e c i e s a t a t i m e . The observed l e v e l of use by each s p e c i e s i s compared w i t h any i n f o r m a t i o n from t h e l i t e r a t u r e . . T h e second p a r t examines t h e p a t t e r n of use by d i f f e r e n t s p e c i e s f o r each map. S p e c i e s t h a t show s i m i l a r p a t t e r n s of use a r e i d e n t i f i e d . The t h i r d p a r t c o n s i d e r s the t y p e s of each map; l o o k i n g f o r t y p e s t h a t a r e used commonly by many s p e c i e s as opposed t o t y p e s t h a t a r e a v o i d e d by most s p e c i e s . B e f o r e e n t e r i n g any o f t h e s e d i s c u s s i o n s i t i s i m p o r t a n t t o a p p r e c i a t e t h a t t h e r e s u l t s r e f l e c t the examples a v a i l a b l e i n the s t u d y a r e a . The n a t u r e of examples a v a i l a b l e f o r each map w i l l f i r s t be r e v i e w e d . . S e r a i Stages Map When the F r a s e r V a l l e y was f i r s t s e t t l e d , the a r e a now known as the U n i v e r s i t y o f B r i t i s h Columbia Research F o r e s t had escaped f i r e f o r a t l e a s t 150 y e a r s . The a r e a would have s u p p o r t e d o l d - g r o w t h f o r e s t . I n 1840 and a g a i n i n 1868 f i r e s escaped from e a r l y s e t t l e m e n t s i n t h e v a l l e y below. Much of the western h a l f o f the f o r e s t was burned..Most of t h e o l d growth was c o m p l e t e l y d e s t r o y e d , but some patches of t r e e s and snags s u r v i v e d i n wet a r e a s . When l a r g e , the p a t c h e s were mapped as o l d growth (map s t a g e 6; age 156 y e a r s and o l d e r ) . 93 Some of t h e s e a r e a s c o n t a i n e d many t r e e s about 100 y e a r s o f age growing around l a r g e , o f t e n f i r e - d a m a g e d s u r v i v o r s . O t h e r w i s e the a r e a s were mapped as s t a g e 5 (age 76 t o 155 years) even though they c o n t a i n e d o c c a s i o n a l l o n e snags and t r e e s o f a much o l d e r age. P a r t o f the st a g e 5 f o r e s t was l o g g e d , p r o v i d i n g some examples o f s t a g e 1 (age 1 t o 5) and stage 2 (age 6 t o 15).. Most of the e a s t e r n h a l f o f t h e o l d growth was l o g g e d by r a i l r o a d . I n 1931 the l o g g e d a r e a burned s e v e r e l y . I n some p l a c e s o l d growth a l o n g the edge was burned l e a v i n g s m a l l a r e a s o f hard snags. The a r e a r e g e n e r a t e d n a t u r a l l y but w i t h low s t o c k i n g d e n s i t y i n many p l a c e s , A few o l d t r e e s and snags s u r v i v e d around a s m a l l marsh, but t h i s a r ea was mapped as b e i n g s t a g e 4 (age 36 t o 75 years) a l o n g w i t h t h e s u r r o u n d i n g a r e a j u s t d i s c u s s e d . A f t e r the l o g g i n g and f i r e of 1931, o n l y the c e n t r a l and n o r t h - c e n t r a l p o r t i o n o f t h e f o r e s t remained as an expanse of o l d growth. Most o f t h i s has s i n c e been logged. A major p o r t i o n of i t which was c l e a r c u t i n the 1950's was mapped as stage 3 (age 16 t o 35 years) . The l o g g i n g c o n t i n u e d u n t i l t h e time of t h i s s t u d y , p r o v i d i n g a r e a s which were mapped as sta g e 2 (age 6 t o 15 years) and s t a g e 1 (age 1 t o 5 years) . The r e m a i n i n g o l d growth (type 6) was r e s t r i c t e d t o a few r e s e r v e p a t c h e s , some t h i n s t r i p s around l a k e edges, and some poor g u a l i t y growth on dry r i d g e s . The age range f o r each s e r a i s t a g e number i s l i s t e d i n Table 15 f o r r e f e r e n c e . . 94 TABLE 15.. DEFINITION OF SERAL STAGE NUMBERS SERAL YEARS SINCE CUTTING AGE OF EXAMPLES STAGE OR BURNING CENSUSED 1 1 T 0 5 2 , 3 , 4 , 5 2 6 TO 15 6,7,8,9,10,11,12,13,14,15 3 16 TO 35 16,17,19,20,24 4 36 TO 75 46, 51 5 76 TO 155 109, 137 6 156 AND OVER APPROX 250 7 LAKE 8 MARSH 95 V e g e t a t i o n Types Map The map of v e g e t a t i o n t y p e s , or s y n e c o l o g i c a l map, f o r the Research F o r e s t c o n t a i n e d about 2500 type i s l a n d s ( K l i n k a , 1976).. Only about 500 of t h e s e were d i g i t i z e d and used i n t h i s s t u d y * A l l were l o c a t e d i n t h e area t h a t was h e a v i l y burned i n 1931 t o remove the e f f e c t o f s e r a i s t a g e s . C o n s e q u e n t l y o n l y t h o s e s p e c i e s t h a t a r e r e l a t i v e l y abundant i n s t a g e 4 of t h e s e r a i s t a g e s map (age 36 t o 75 years) can be r e l a t e d t o v e g e t a t i o n t y p e s . I t i s not uncommon f o r one v e g e t a t i o n t y p e , o r taxonomic u n i t , t o be mapped as s m a l l patches w i t h i n an expanse of a second taxonomic u n i t . K l i n k a d i d not r e p r e s e n t the p a t c h e s i n d i v i d u a l l y when they were very s m a l l r e l a t i v e t o the mapping s c a l e . I f t h e combined a r e a s of the very s m a l l p a t c h e s was l e s s than 15 p e r c e n t of the t o t a l a r e a , the p a t c h e s were i g n o r e d . O t h e r w i s e the two t y p e s were mapped u s i n g a composite mapping u n i t . The f i r s t t y p e named i n t h e composite u n i t c o v e r e d more th a n h a l f of the a r e a , w h i l e the second t y p e named covered 16 t o 49 p e r c e n t of the a r e a . The taxonomic u n i t s were mapped as t y p e s 2 t h r o u g h 12 (Table 16). Types 15 t h r o u g h 32 are c o m p o s i t e s of t h e s e . Exposed r o c k was mapped as type 1, but i t i s i n s u f f i c i e n t l y common t o show s i g n i f i c a n t d i f f e r e n c e s i n use f o r any b i r d s p e c i e s . Areas of marsh were mapped as type 13, and l a k e s as type 14. Type 13 i n c l u d e d marshy a r e a s c o n t a i n i n g some o l d t r e e s and snags which s u r v i v e d both l o g g i n g and f i r e . . A few of t h e v e g e t a t i o n type i s l a n d s d i g i t i z e d were w h o l l y or 96 TABLE 16.. DEFINITION OF VEGETATION TYPE NUMBERS VEGETATION TYPES GROUPED AT PLANT ALLIANCE LEVEL. TYPES NAMED AT ASSOCIATION OR SUB-ASSOCIATION LEVEL. . TYPE ECOSYSTEM UNITS 1 EXPOSED ROCK 2 (LICHEN)-GAULTHERIA-DOUGLAS FIR LICHEN-GAULTHERIA-LODGEPOLE PINE-DOUGLAS FIR 3 GAULTHERIA-WESTE8N HEMLOCK-DOUGLAS FIR MAHONIA-GAULTHERIA-WESTERN HEMLOCK-DOUGLAS FIR 4 MOSS-WESTERN HEMLOCK MAHONIA-MOSS-WESTERN REDCEDAR-WESTERN HEMLOCK 5 MOSS-(POLYSTICHUM)-WESTERN REDCEDAR-WESTERN HEMLOCK 6 VACCINIUM-GAULTHERIA-DOUGLAS FIR-WESTERN HEMLOCK VACCINIUM-MOSS-WESTERN HEMLOCK 7 BLECHNUM-AMABILIS FIR-WESTERN HEMLOCK STREPTOPUS-BLECHNUM-AMABILIS FIR-WESTERN HEMLOCK BLECHNUM-WESTERN HEMLOCK-WESTERN REDCEDAR 8 RIBES-VINE MAPLE POLYPODIUM-GAULTHERIA-DOUGLAS FIR-WESTERN REDCEDAR POLYPODIUM-POLYSTICHUM-DOUGLAS FIR-WESTERN REDCEDAR MAHONIA-POLYSTICHUM-DOUGLAS FIR-WESTER REDCEDAR 9 TIARELLA-POLYSTICHUM-WESTERN REDCEDAR RUBUS-POLYSTICHUM-WESTERN REDCEDAR ADIANTUM-POLYSTICHUM-WESTERN REDCEDAR 10 POLYSTICHUM-OPLOPANAX-WESTERN REDCEDAR RIBES-OPLOPANAX-WESTERN REDCEDAR 11 VACCINIUM-LYSICHITUM-WESTERN REDCEDAR VACCINIUM-LYSICHITUM-YELLOW CEDAR-WESTERN REDCEDAR 12 ATHYRIUM-ARUNCUS-RED ALDER-SITKA ALDER 13 MARSH 14 LAKE THE FOLLOWING TYPES ARE COMPOSITES OF ABOVE TYPES THE FIRST REPRESENTS 50% OR MORE OF THE TOTAL AREA 15 2-3 26 7-11 16 3-4 27 8-6 17 MARSH-11 28 6-9 18 1 1-9 29 8-9 19 9-8 30 11-7 20 9-11 31 7-8. 21 6-8 32 2-8 22 2-6 33-38 NOT USED 23 1-2 39 OTHER SERAL STAGES 24 8-5 40 NUMBER NOT USED 25 5-6 97 p a r t i a l l y i n s e r a i s t a g e s o t h e r t h a n age 36 t o 75 y e a r s . These were grouped as type 39. . 98 THE OSE OF MAPPING TYPES BY EACH BIRD SPECIES T h i s s e c t i o n d i s c u s s e s the use of s e r a i s t a g e s by each of the 10 b i r d s p e c i e s , and t h e use of p l a n t a l l i a n c e s by 6 o f t h o s e s p e c i e s . A b r i e f summary of t h e l i f e h i s t o r y of each s p e c i e s i s f i r s t p r e s e n t e d . I t i n c l u d e s o n l y t h a t i n f o r m a t i o n found which p r o v i d e s i n s i g h t on h a b i t a t s e l e c t i o n by t h e s p e c i e s . The main g u e s t i o n t o be answered f o r any b i r d s p e c i e s i s whether e i t h e r of the maps p r o v i d e i n f o r m a t i o n u s e f u l f o r managing the a v a i l a b i l i t y of t h e i r h a b i t a t . One bar graph -s i g n i f i c a n c e t a b l e p a i r has been p r e s e n t e d f o r each map f o r each s p e c i e s . The bar graphs can be used t o f i n d s p e c i e s r e s t r i c t e d t o a few mapping t y p e s as opposed t o t h o s e which use many t y p e s i n d i s c r i m i n a t e l y . . The matching s i g n i f i c a n c e t a b l e can be used t o determine i f the o b s e r v e d d i f f e r e n c e s a re s t a t i s t i c a l l y s i g n i f i c a n t . . For each b i r d s p e c i e s the mapping t y p e s a r e d i s c u s s e d i n d e c r e a s i n g o r d e r of use. The r e l a t i v e l e v e l of use, or " r a t i n g " , of each type (expressed as a p e r c e n t of t h e t y p e used most) has been t a k e n d i r e c t l y from the t a b l e s i n Appendices B and C. A l s o a p p e a r i n g i n these t a b l e s i s an F-r a t i o f o r the v a r i a t i o n between t y p e s , i n c l u d i n g any i n t e r a c t i o n between t y p e s and t i m e . The F - r a t i o i s s e n s i t i v e t o t h e number and s i z e o f the c l a s s i f i c a t i o n t y p e s used and does not p r o v i d e a s i m p l e measure f o r comparing the p r e d i c t i v e v a l u e o f two d i f f e r e n t maps..In every case t h i s r a t i o i s g r e a t e r w i t h s e r a i s t a g e s . N o n e t h e l e s s , the 99 p r o b a b i l i t y of a c h i e v i n g t h e observed F - r a t i o by chance i s always l e s s t h a n 0.01 f o r both maps and f o r a l l s p e c i e s . Lakes and marsh ( s e r a i s t a g e s 7 and 8; v e g e t a t i o n t y p e s 14 and 13) a r e not f o r e s t h a b i t a t t y p e s , and t h e y a r e not i n c l u d e d i n t h e d i s c u s s i o n where numbers of t y p e s have been c o u n t e d . T h i s i s t r u e a l s o f o r v e g e t a t i o n t ype 39 ( v e g e t a t i o n t y p e s not i n 40 year s e r a i s t a g e ) . However, the r e l a t i v e l e v e l of use of l a k e s p r o v i d e s some i n f o r m a t i o n about edge e f f e c t s . Because a l l l o c a t i o n s of b i r d s a r e d e s c r i b e d as a r e a s , the l o c a t i o n of a b i r d t h a t was s i t t i n g near a boundary between two mapping t y p e s w i l l l i k e l y o v e r l a p w i t h both t y p e s . C o n s e q u e n t l y a t y p e t h a t i s never used w i l l t e n d t o a c c u m u l a t e a low l e v e l of use. T h i s phenomenon has been termed " o v e r l a p " i n the d i s c u s s i o n . The amount o f o v e r l a p w i l l be g r e a t e r f o r b i r d s p e c i e s which s e l e c t f o r edges between mapping t y p e s . . However, o v e r l a p w i l l a l s o i n c r e a s e w i t h l o u d n e s s of c a l l , as the average a r e a o f l o c a t i o n s w i l l be g r e a t e r . Maps w i t h many s m a l l mapping p o l y g o n s , o r w i t h much i r r e g u l a r i t y of mapping po l y g o n shapes, w i l l t e n d t o have more o v e r l a p as w e l l . " O v e r l a p " a c t s t o d i l u t e r e a l d i f f e r e n c e s i n t h e use o f mapping t y p e s such t h a t observed d i f f e r e n c e s w i l l a l ways be c o n s e r v a t i v e e s t i m a t e s . " O v e r l a p " may a f f e c t the o r d e r of r a n k i n g of two mapping t y p e s which were used n e a r l y e g u a l l y . Of t h e s p e c i e s s t u d i e d , o n l y t h e O l i v e - s i d e d F l y c a t c h e r was e x p e c t e d t o use t h e a r e a s mapped as l a k e s . The F l y c a t c h e r might c a t c h i n s e c t s i n the a i r over t h e water. However, i t was never observed t o c a l l w h i l e f l y i n g . I t i s u n l i k e l y t h a t 100 t h i s or any o f the b i r d s p e c i e s were a c t u a l l y on or over a l a k e when l o c a t e d by sound.. A l l of the use a t t r i b u t e d t o l a k e s i s t h e r e s u l t o f " o v e r l a p " . The o b s e r v e d l e v e l of use of l a k e s by a s p e c i e s s h o u l d be s m a l l u n l e s s the s p e c i e s was a t t r a c t e d to l a k e edges. The a t t r a c t i o n might be a c h a r a c t e r i s t i c h a b i t a t p r e f e r e n c e f o r l a k e edge, or t h e r e s u l t of a c o i n c i d e n c e as i n t h e case of l o g g e r s l e a v i n g t h i n s t r i p s of o l d growth a l o n g the edge of l a k e s . Use of l a k e s r a t e d from 0.102 t o 0.349 f o r s e r a i s t a g e s , and 0.006 t o 0.233 f o r v e g e t a t i o n t y p e s . . The d i g i t i z e d p a r t o f t h e map o f v e g e t a t i o n t y p e s c o n t a i n e d a s i n g l e l a k e which was l a r g e and r e g u l a r i n shape; w h i l e the map o f s e r a i s t a g e s a l s o c o n t a i n e d many s m a l l , i r r e g u l a r l y -shaped l a k e s . Mapping t y p e s a r e i d e n t i f i e d by a r b i t r a r i l y a s s i g n e d numbers i n a l l computer produced t a b l e s and graphs..Names a r e a s s o c i a t e d w i t h t h e numbers f o r s e r a i s t a g e s i n Table 15, and f o r v e g e t a t i o n t y p e s i n T a b l e 16. . T y p i c a l s o i l m o i s t u r e regime and t o p o g r a p h i c p o s i t i o n a r e l i s t e d f o r each v e g e t a t i o n type i n Ta b l e 17. I t i s easy t o remember s e r a i s t a g e s as t h e y a re numbered by i n c r e a s i n g age. I t i s not so easy t o become f a m i l i a r w i t h the v e g e t a t i o n t y p e s . K l i n k a (1976) mapped v e g e t a t i o n t y p e s a t t h e l e v e l o f p l a n t a s s o c i a t i o n s and s u b - a s s o c i a t i o n s . . T h e t y p e s a re grouped i n t h i s s t u d y a t t h e p l a n t a l l i a n c e l e v e l . T h i s means t h a t a s i n g l e v e g e t a t i o n type r e f e r r e d t o i n t h i s s t u d y may i n c l u d e two or more a s s o c i a t i o n and/or sub-a s s o c i a t i o n names.. For example, v e g e t a t i o n type 8 may be T a b l e 17. S o i l M o i s t u r e and Topographic P o s i t i o n T y p i c a l o f Each V e g e t a t i o n Type. V e g e t a t i o n t y p e s a r e named i n T a b l e 16. Type S o i l M o i s t u r e Topographic P o s i t i o n 2 v e r y d r y h i l l t o p s and s h o u l d e r s ; r i d g e t o p s . 5 medium m i d - s l o p e on h i l l s i d e s . 6 d r y t o h i l l s h o u l d e r s and upper s l o p e medium-dry 7 wet p a t c h e s on h i l l s i d e s t h a t accumulate s o i l seepage. 8 medium t o m i d - s l o p e h i l l s i d e s r e c e i v i n g medium-wet s o i l seepage but w e l l d r a i n e d . 9 wet lower s l o p e s , r e c e i v i n g s o i l seepage and p o o r l y d r a i n e d . 10 wet t o a l o n g banks o f s m a l l c r e e k s v e r y wet and streams. 11 v e r y wet f l a t v a l l e y bottoms. 12 wet a l o n g banks o f l a r g e r streams and r i v e r s . 13 marsh 14 l a k e s Composite t y p e s (The f i r s t t y p e named r e p r e s e n t s more tha n 50% o f area.) 19 9 wet and 8 medium t o medium-wet. 2 0 9 wet and 11 v e r y wet. 21 6 d r y t o medium-dry and 8 medium t o medium-wet. 22 2 v e r y d r y and 6 d r y t o medium-dry. 26 7 wet and 11 v e r y wet. 27 8 medium t o medium-wet and 6 d r y t o medium-dry. 29 8 medium-wet and 9 wet. 39 t y p e s i n s e r a i s t a g e s o t h e r t h a n s t a g e 4. 1 0 2 R i b e s - v i n e maple or Polypodium - G a u l t h e r i a - Douglas f i r -western r e d cedar or Polypodium - P o l y s t i c h u m - Douglas f i r -western r e d c e d a r or Mahonia - P o l y s t i c h u m - Douglas f i r western r e d c e d a r . The problem i s compounded w i t h t y p e s t h a t are c o m p o s i t e s of two p l a n t a l l i a n c e s . The r e a d e r must r e f e r t o T a ble 16 f o r names. Common F l i c k e r ( C o l a p t e s c a f e r ) L i f e H i s t o r y The F l i c k e r was r e p o r t e d t o use open woodlands, burns and s l a s h r a t h e r t h a n heavy c o n i f e r o u s f o r e s t ( G u i g u e t , 1970) . . Conner and A d k i s s o n (1975) found i t common i n r e c e n t c l e a r c u t s and o l d e r c l e a r c u t s but not i n r e g e n e r a t i o n advanced t o the p o l e s t a g e or o l d e r . Jackman and S c o t t (1974) d e s c r i b e d i t to f e e d m a i n l y on t h e ground, t a k i n g m o s t l y a n t s . . F l i c k e r s n e s t i n t r e e c a v i t i e s which t h e y may e x c a v a t e t h e m s e l v e s i n dead snags or even i n l i v e wood. Conner (1973) found t h a t n e s t s were always near c l e a r i n g s . Jackman (1974) r e p o r t e d t h a t they use l a r g e p o s t s or even h o l e s i n d i r t banks i n t h e absence of n e s t i n g snags.. 103 S e r a i Stages The F l i c k e r used 3 of t h e 6 s e r a i s t a g e s (50%) at a r e l a t i v e r a t i n g of 0.50 o r more (Table 18.)..Stages 6, 1 and 2 were used s i g n i f i c a n t l y more than s t a g e s 3, 5 and 4.. The former group r a t e d no l e s s t h a n 0.81, w h i l e the l a t t e r r a t e d no more than 0.34. Lakes (stage 7) r a t e d 0.10 from o v e r l a p , i n d i c a t i n g l i t t l e or no edge e f f e c t . . Stage 6, o l d g r o w t h , p r o v i d e s n e s t i n g snags l a r g e enough f o r t h e F l i c k e r . . S t a g e s 1 and 2 were commonly found a d j a c e n t t o o l d growth on the Research F o r e s t a t t h e time o f t h i s s t u d y . They p r o v i d e open a r e a s i n which t h e F l i c k e r f e e d s on th e ground. A p p a r e n t l y , s t a g e s 3, 4 and 5 were t o o young t o p r o v i d e snags f o r n e s t i n g and y e t too o l d i n terms of canopy development t o p r o v i d e open a r e a s f o r f e e d i n g . For Common F l i c k e r s , t he map o f s e r a i s t a g e s would be a u s e f u l management t o o l . V e g e t a t i o n Types o Common F l i c k e r was not observed r e g u l a r l y i n s e r a i s t a g e 4, so a r e l a t i o n s h i p w i t h v e g e t a t i o n t y p e s c o u l d not be e s t a b l i s h e d . . 104 TABLE 18. COMMON FLICKER WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 6-XX XX XX XX -XX-XX XX XX XX -XX-XX XX XX XX -XX-XX XX XX XX -XX-1 XX XX 2 XX XX •xx-xx XX XX XX XX XX XX XX XX xx-xx XX XX XX XX XX XX 3 5 XX XX XX XX 8 •XX-XX-XX-XX-XX 4 XX XX XX XX XX XX XX XX XX XX XX XX 7 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX-XX-XX-XX-XX-XX-XX SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 6 1 2 3 5 8 4 7 6 1 2 X 3 X X X 5 X X X 8 4 X X X 7 X X X X 6 1 2 3 5 8 4 7 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 105 Y e l l o w - b e l l i e d Sapsucker (S£hy_ramicus y a r i u s ) L i f e H i s t o r y Tree sap forms a l a r g e p a r t of t h e d i e t o f the Sapsucker when t h e sap i s f l o w i n g h e a v i l y i n t h e summer.. I n t h e f a l l t h e y t a k e l a r g e amounts of s m a l l f r u i t s , w h i l e i n w i n t e r t h e y e a t m o s t l y i n s e c t s . I n s p r i n g , when t h i s s t u d y was con d u c t e d , t h e y feed m o s t l y on i n s e c t s found on t r e e t r u n k s and l a r g e branches. They a l s o make s a p w e l l s and eat b a s t from c o n i f e r s ( T a t e , 1973). D u r i n g t h e s t u d y p e r i o d , t h e y were p r o b a b l y b e n e f i t i n g from s p r i n g sap f l o w (Jackman, 1974).. Trees used i n c l u d e hemlock, b i r c h , aspen ( T a t e , 1973), a l d e r , w i l l o w , cedar (Jackman, 1974), f i r and pi n e (Guiguet, 1970).. The Sapsucker e x c a v a t e s a nest c a v i t y i n s t a n d i n g wood.. S e r a i Stages The Y e l l o w - b e l l i e d Sapsucker used 2 of the 6 s e r a i s t a g e s (33%) a t a r e l a t i v e r a t i n g o f 0.50 o r more (Table 19). Stages 6 and 5 were used s i g n i f i c a n t l y more th a n s t a g e s 2, 3, 4 and 1. The former group r a t e d 0.77 or more, w h i l e t h e l a t t e r group r a t e d 0.27 or l e s s . Lakes r a t e d 0.28, i n d i c a t i n g a s t r o n g edge e f f e c t . .Marsh (stage 8 ) , which r a t e d 0.90, was a l s o used s i g n i f i c a n t l y more than o f s t a g e s 2, 3, 4 and 1. S e r a i s t a g e 6 would p r o v i d e n e s t i n g snags as w e l l as f e e d i n g t r e e s f o r the s a p s u c k e r . Marsh l i k e l y r a t e d h i g h because i t p r o v i d e d p r o t e c t i o n f o r t r e e s from l o g g i n g and f i r e . Many o f t h e marshy a r e a s on t h e f o r e s t c o n t a i n e d o l d t r e e s and snags, o f t e n i n c o n t r a s t t o t h e younger s t a g e s 106 TABLE 19. YELLOW-BELLIED SAPSUCKER WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 0.0 6-XX XX 8 XX XX XX XX 5 -XX- XX- XX- — — XX XX XX XX XX XX XX XX XX XX XX XX -XX- XX- XX- - -XX XX XX XX XX XX XX XX XX XX XX XX 7 2 -XX- XX- XX-XX-XX — XX XX XX XX XX XX XX XX XX XX 3 4 1 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX- XX- XX-XX- XX -XX- XX -XX SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 6 8 5 7 2 6 8 5 X 7 X X X 2 X X X 3 X X X X X 4 X X X X X 1 X X X X X 6 8 5 7 2 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 1 0 7 which they f r e g u e n t l y b o r d e r e d . Stage 5 would p r o v i d e f e e d i n g t r e e s and s m a l l snags i n a d d i t i o n t c t h e o c c a s i o n a l l a r g e n e s t i n g snag which s u r v i v e d the f i r e s of the 1800's.. Three n e s t s were found i n s t a g e 5 f o r e s t , a l l i n o l d snags. A number o f t h e a r e a s o f o l d growth (stage 6) form s t r i p s a l o n g the edges of l a k e s . Use o f t h e s e s t r i p s by t h e Y e l l o w - b e l l i e d Sapsucker caused the h i g h edge e f f e c t f o r l a k e s . Stage 2 has p r o b a b l y b e n e f i t t e d from much edge e f f e c t a l s o , a l t h o u g h Sapsuckers were o c c a s i o n a l l y seen u s i n g young a l d e r t r e e s i n t h i s s t a g e . Deciduous t r e e s p e c i e s were used o c c a s i o n a l l y i n s t a g e 3. Deciduous and c o n i f e r o u s t r e e s (mostly hemlock) were used f o r sap f e e d i n g i n s t a g e 4. However, the s m a l l e r t r e e s c o n t a i n e d r e l a t i v e l y few and u n p r o d u c t i v e s a p w e l l s i n c o n t r a s t t o the h i g h d e n s i t y of s a p w e l l s on t h e c i d e r t r e e s of s t a g e s 5 and 6 from which sap poured p r o f u s e l y . A map o f s e r a i s t a g e s would be a v a l u a b l e a i d i n managing an a r e a f o r Y e l l o w - b e l l i e d S a p s u c k e r s . . V e g e t a t i o n Types V e g e t a t i o n type 2 r a t e d h i g h e s t f o r the Sapsucker (Table 2 0 ) , but the r a t i n g i s not s i g n i f i c a n t i n most com p a r i s o n s because the a v a i l a b l e examples of type 2 i n the a r e a d i g i t i z e d were few and s m a l l . Type 2 o c c u r s w i t h t y p e 6 i n c omposite type 22. The f a c t t h a t type 22 r a t e d s i g n i f i c a n t l y low s u p p o r t s the s u s p i c i o n t h a t type 2 r a t e d h i g h by chance.. Type 39, which r a t e s n e x t , i s v e g e t a t i o n t y p e s i n s e r a i s t a g e s o t h e r t h a n s t a g e 4. S e r a i stage 4 r a t e d low f o r t h e Sapsucker, w h i l e type 39 i n c l u d e s s e r a i s t a g e s 5 108 TABLE 20. YELLOW-BELLIED SAPSUCKER WITH VEGETATION TYPES RELATIVE LEVEL OF USE OF TYPES 1.0 XX 39 13 XX XX XX XX XX XX 5 20 XX XX XX XX XX • 75 I -xx -XX- xx- xx- xx- — XX XX xx xx xx 6 XX XX XX XX XX XX XX XX XX XX XX XX 11 XX XX XX XX XX XX XX 12 0 -5| -XX -xx- xx- xx- xx- xx- xx- XX 19-XX xx xx xx xx xx xx XX XX 21 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 10 XX XX XX XX XX XX XX XX XX XX XX 9 29 7 • 25 j -XX -xx- xx- xx- xx- xx- xx- xx- xx- xx- xx- xx- xx- XX 1 4 27-XX xx xx xx xx xx xx xx xx xx xx xx xx XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 26 22 8 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 0 .0 -XX -XX- XX-XX- XX- XX-XX-XX- XX-XX-XX- XX-XX-XX- XX-XX-XX- XX-XX SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0. 05) 2 39 13 5 20 6 11 12 19 21 10 9 29 7 14 27 26 22 8 3 2 39 13 5 20 6 11 12 19 21 10 9 X 29 7 14 X 27 X 26 22 X 8 X 3 2 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ]9 13 5 20 6 11 109 and 6. Marsh (type 13) p r o b a b l y r a t e d h i g h a g a i n because o f t h e snags and o l d e r t r e e s t h a t s u r v i v e d l o g g i n g and f i r e i n wet a r e a s . T h i s p r o t e c t i v e a b i l i t y i s an i m p o r t a n t a t t r i b u t e o f marsh. Type 5 i s then t h e v e g e t a t i o n type most h e a v i l y used. The Y e l l o w - b e l l i e d Sapsucker used 8 of t h e 17 v e g e t a t i o n types (47%) a t a r a t e o f 0.50 o r more r e l a t i v e t o t h a t o f t y p e 5. Types 5, 20, and 6 each r a t e d s i g n i f i c a n t l y h i g h e r than e l e v e n of the r e m a i n i n g t y p e s . Type 2 was used s i g n i f i c a n t l y over f i v e t y p e s , w h i l e type 11 was used s i g n i f i c a n t l y over t h r e e t y p e s . A l t h o u g h the r e m a i n i n g v e g e t a t i o n t y p e s a r e o r d e r e d i n a g r a d u a l l y d e c r e a s i n g f a s h i o n , t h e o n l y s i g n i f i c a n t d i f f e r e n c e s i n use are t h o s e of t y p e s 19 and 21 over type 8. The r e l a t i v e l y low l e v e l o f abundance o f the Y e l l o w -b e l l i e d Sapsucker i n s e r a i s t a g e 4 means t h a t t h e r e were fewer l o c a t i o n s t o work w i t h i n a t t e m p t i n g to show s i g n i f i c a n t d i f f e r e n c e s i n use. The most s t r i k i n g r e s u l t s of r e l a t i n g use by t h e s a p s u c k e r t o t h e v e g e t a t i o n t y p e s map are concerned w i t h the o c c u r r e n c e o f o l d e r s e r a i s t a g e s i n t y p e 39 and i n marsh. Perhaps a r e l a t i o n s h i p w i t h v e g e t a t i o n t y p e s c o u l d be e s t a b l i s h e d more r e a d i l y i n o l d e r s e r a i s t a g e s . The e v i d e n c e from t h i s s t u d y s u g g e s t s t h a t a map o f v e g e t a t i o n t y p e s would be u s e f u l i n managing Y e l l o w - b e l l i e d S a p s u c k e r s o n l y as a supplement t o a map o f s e r a i s t a g e s . 110 H a i r y Woodpecker (Dendrocopus v i l l o s u s ) L i f e H i s t o r y I n s e c t s form 90 p e r c e n t o f t h e d i e t of the H a i r y Woodpecker ( G u i g u e t , 1970). I t f o r a g e s f o r a r t h r o p o d s on t h e bark of t h e t r u n k and l a r g e branches of l i v i n g t r e e s ; and more e x t e n s i v e l y from w i t h i n t h e d e c a y i n g wood of dead t r e e s , stumps and l o g s ( S t a l l c u p , 1968). The s p e c i e s i s g e n e r a l l y a s s o c i a t e d w i t h c o n i f e r o u s t r e e s and w i t h open r a t h e r t h a n dense t i m b e r (Jackman, 1974)..This woodpecker p r e f e r s s t a n d s o f dead t r e e s such as are produced by f i r e , i n s e c t s and d i s e a s e (Jackman, 1974) . Conner (1973) and Conner and A d k i s s o n (1975) found i t t o use r e c e n t l o g g i n g s l a s h . J o h n s t o n and Odum (1956) found i t t o occur i n f o r e s t s of age 60 y e a r s and o v e r , w i t h abundance i n c r e a s i n g w i t h f o r e s t age. Odum (1950) and Conner and A d k i s s o n (1975) found i t t o be most abundant i n mature f o r e s t . I t n e s t s i n a c a v i t y which i t e x c a v a t e s i n s t a n d i n g dead wood (Conner, 1973) . S e r a i Stages The H a i r y used 2 o f t h e 6 s e r a i s t a g e s (33%) a t a r e l a t i v e r a t e o f 0.50 o r more (Table 2 1 ) . . S t a g e s 6 and 5 were used s i g n i f i c a n t l y more than e v e r y o t h e r s t a g e . Stage 6 was used s i g n i f i c a n t l y more th a n s t a g e 5. The r a t i n g of marsh (stage 8) i s n o t s i g n i f i c a n t . Stage 2 r a t e d o n l y s l i g h t l y b e t t e r t h a n l a k e s (stage 7 ) . Lakes show a s t r o n g edge e f f e c t , r a t i n g 0.26 from o v e r l a p . The Research F o r e s t has a number o f examples of o l d growth which a r e s t r i p s a l o n g l a k e edges. 111 TABLE 2 1 . HAIBY WOODPECKER WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 6-XX XX XX XX •XX XX XX XX XX -XX-XX XX XX XX •XX-XX XX XX XX •XX-5-XX XX XX XX XX-XX XX XX XX XX-XX XX XX XX XX-8 XX 2 XX XX 7 xx-xx-xx XX XX XX 4 XX XX XX XX XX XX XX XX 1 3 XX XX XX XX XX XX xx-xx-xx-xx-xx-xx SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 6 5 8 2 6 5 X 8 2 X X 7 X X 4 X X X 1 X X 3 X X X 6 5 8 2 7 4 1 3 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 1 1 2 Stage 2 a l s o commonly bordered on o l d growth. Much of i t s r a t i n g may be a t t r i b u t e d t o o v e r l a p . Stages 4, 1 and 3 r a t e d l e s s t h a n 0.17.. Stage 6 p r o v i d e s the H a i r y Woodpecker w i t h much s t a n d i n g dead wood f o r f e e d i n g and n e s t i n g . Stage 5 p r o v i d e s t h e s e r e s o u r c e s f o r the H a i r y to a l e s s e r e x t e n t . The r e m a i n i n g s t a g e s are t o o young. The H a i r y was seen on o c c a s i o n u s i n g l o g g i n g s l a s h i n c l e a r c u t s , but t h i s c o u l d be e x p e c t e d o n l y f o r t h e f i r s t r o t a t i o n a f t e r c u t t i n g o l d growth or very advanced r e g e n e r a t i o n . . For management p u r p o s e s , the map of s e r a i s t a g e s can be used t o p r e d i c t a r e a s o f h a b i t a t f o r the H a i r y Woodpecker., V e g e t a t i o n Types The H a i r y woodpecker was observed o n l y o c c a s i o n a l l y i n s e r a i s t a g e 4. C o n s e g u e n t l y a r e l a t i o n s h i p w i t h v e g e t a t i o n types c o u l d not be e s t a b l i s h e d . O l i v e - s i d e d F l y c a t c h e r ( N u t t a l l o r n i s b o r e a l i s ) L i f e H i s t o r y The O l i v e - s i d e d F l y c a t c h e r feeds m a i n l y on f l y i n g i n s e c t s . The b i r d makes b r i e f s o r t i e s from a h i g h perch t o c a t c h p a s s i n g i n s e c t s . M a r t i n (1960) found they used t r e e t o p s over 40 f e e t i n h e i g h t . Hagar (1960) found them most common around brushy c l e a r c u t s . . The n e s t i s an open cup 113 u s u a l l y p l a c e d w e l l out on a c o n i f e r b r a n c h , and u s u a l l y a t a c o n s i d e r a b l e h e i g h t (Godfrey, 1966). S e r a i Stages The O l i v e - s i d e d F l y c a t c h e r used 5 of the 6 s e r a i s t a g e s (83%) a t a r e l a t i v e l e v e l of 0.50 or more (Table 2 2 ) . . S t a g e s 2, 6, 5, 1 and 3 were used s i g n i f i c a n t l y more than s t a g e 4. The o n l y s i g n i f i c a n t d i f f e r e n c e i n use w i t h i n the former group o f s t a g e s i s t h a t o f s t a g e 2 over s t a g e 3. Stage 4 r a t e d lower t h a n l a k e s (stage 7) which r a t e d 0.30 from s t r o n g edge e f f e c t . Stages 5 and 6 p r o v i d e t h e h i g h t r e e s needed f o r p e r c h i n g w h i l e f e e d i n g . Stages 2, 1 and t o a l e s s e r e x t e n t stage 3 p r o v i d e open a r e a s over which t o f e e d . Lakes a l s o appear t o p r o v i d e open a r e a s f o r f e e d i n g . The t r e e canopy i s l i k e l y t o o w e l l developed i n st a g e 4 t o p r o v i d e open a r e a s , and i n s u f f i c i e n t l y developed t o p r o v i d e t a l l p e r c h i n g t r e e s . The map of s e r a i s t a g e s p r o v i d e s some i n f o r m a t i o n f o r managing an a r e a f o r O l i v e - s i d e d F l y c a t c h e r s , but more i n f o r m a t i o n on the use of edges between o l d and young s t a g e s i s needed. V e g e t a t i o n Types The O l i v e - s i d e d F l y c a t c h e r was observed o n l y r a r e l y i n s e r a i s t a g e 4, so a r e l a t i o n s h i p w i t h v e g e t a t i o n t y p e s c o u l d n o t be e s t a b l i s h e d . TABLE 22. OLIVE-SIDED FLYCATCHER WITH SERAL STAG RELATIVE LEVEL OF USE OF TYPES 2 6-XX XX 5 XX XX XX XX XX XX 1 XX XX XX XX XX -XX- XX- XX-XX XX XX XX 3 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX- XX- XX-XX-XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 7 4 XX -XX- XX- XX- XX- XX- XX — XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX- XX- XX- XX-XX- XX 8 SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 2 6 5 1 3 2 6 5 1 3 X 7 X X X X X 4 X X X X X 8 2 6 5 1 3 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 115 S t e l l e r ' s Jay ( C y a n o c i t t a s t e l l e r i ) L i f e H i s t o r y Guiguet (1970) r e p o r t e d t h e S t e l l e r ' s Jay t o be abundant a t t h e c o n i f e r o u s f o r e s t edge; around s l a s h e s , r i v e r s and s h o r e - l i n e s . I t e a t s " e v e r y t h i n g g o i n g " a c c o r d i n g t o G u i g u e t , i n c l u d i n g f r u i t s , seeds, i n s e c t s and c a r r i o n . The nest i s an open cup u s u a l l y i n a group of s m a l l c o n i f e r t r e e s and about 8 t o 40 f e e t above t h e ground ( G u i g u e t , 1970).. S e r a i Stages The S t e l l e r ' s Jay used 6 o f the 6 s e r a i s t a g e s (100%) at a r e l a t i v e r a t e o f 0.50 or more (Table 23).. Stages 3 and 1 were used s i g n i f i c a n t l y more t h a n most o t h e r s t a g e s . . S t a g e 4 r a t e d 0.52, which was s i g n i f i c a n t l y l e s s t h a n most o t h e r s t a g e s . Lakes (stage 7) r a t e d 0.27, i n d i c a t i n g a s t r o n g edge e f f e c t . Stage 3 p r o v i d e s n e s t i n g t r e e s f o r t h e Jay. S t e l l e r ' s J a y s were o f t e n seen f e e d i n g on the ground amongst t h e l o g g i n g s l a s h o f s t a g e s 1 and 2, or moving among the t r e e s of s t a g e s 5 and 6..The map of s e r a i s t a g e s would be o f l i m i t e d use f o r p r e d i c t i n g the o c c u r r e n c e of S t e l l e r ' s J a y s because t h e y use a l l of t h e s t a g e s f r e g u e n t l y . TABLE 2 3 . STELLER* S JAY WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 1 . 0 . 7 5 0 , 5 . 2 5 3 1-XX XX XX XX XX XX XX XX - x x - XX 5 2 -x x XX XX XX XX XX XX XX 6 XX XX XX XX XX XX XX XX XX XX 4 - x x - x x - x x - x x - XX - x x -x x x x x x x x XX x x XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 7 - x x - x x - x x - x x - XX - x x - XX x x x x x x x x XX x x XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX- XX- XX- XX- XX -XX- XX SIGNIFICANT DIFFERENCES IN USE OF TYPES ( P = 0 . 0 5 ) 3 1 5 X 2 X X 6 X X 4 X X X X 7 X X X X X X 3 1 5 2 6 4 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 117 V e g e t a t i o n Types The S t e l l e r ' s Jay used 5 of t h e 15 v e g e t a t i o n t y p e s (33%) a t a r e l a t i v e r a t e o f 0.50 or more (Table 24)..However, o n l y 2 o f the 15 t y p e s (13%) were used a t a r a t e of 0.55 or more. .Types 11 and 12 r a t e d s i g n i f i c a n t l y h i g h e r than a l l o t h e r t y p e s , a t n e a r l y t w i c e the r a t i n g o f the next h i g h e s t t y p e . Types 20, 6, 8 and 9 were used from 0.54 t o 0.46. They were used s i g n i f i c a n t l y more th a n most r e m a i n i n g t y p e s . Types 27, 10, 19, 22 and 5 were used a t 0.39 t o 0.34. T h e i r use i s s i g n i f i c a n t o v er r e m a i n i n g t y p e s i n o n l y a few i n s t a n c e s . The S t e l l e r ' s Jay showed s t r o n g p r e f e r e n c e f o r two v e g e t a t i o n t y p e s a s s o c i a t e d w i t h wet s i t e s . Type 11 i s a very wet t y p e o c c u r r i n g i n v a l l e y bottoms (Table 1 7 ) . . I t i s commonly found near l a k e s , marshes and i n a r e a s which r e c e i v e r u n o f f but a r e themselves p o o r l y d r a i n e d . Type 12 i s a wet ty p e found a l o n g the banks of l a r g e r streams and r i v e r s . T h i s a g r e e s w i t h the l i f e h i s t o r y i n f o r m a t i o n t h a t the J a y s are common around r i v e r s and s h o r e - l i n e s . Type 9 i s a wet t y p e o c c u r r i n g on lower s l o p e s ; and type 20 i s a c o m b i n a t i o n o f t y p e s 9 and 11..However, t y p e 8 i s o n l y medium t o medium-wet and i s found mid-slope on h i l l s i d e s ; w h i l e type 6 i s a dry t o medium dry type a s s o c i a t e d w i t h h i l l s h o u l d e r s and upper s l o p e s . M o i s t u r e may be a f a c t o r i n h a b i t a t s e l e c t i o n by S t e l l e r ' s J a y s , but t h e observed p a t t e r n o f use o f v e g e t a t i o n t y p e s cannot be e x p l a i n e d by s o i l m o i s t u r e a l o n e . The map o f v e g e t a t i o n t y p e s c o u l d be u s e f u l i n managing the h a b i t a t o f S t e l l e r ' s J a y s . The J a y shows marked p r e f e r e n c e f o r y a c c i n i u m - L y s i c h i t u m - (yellow c e d a r ) - w e s t e r n 118 TABLE 24. STELLER'S JAY WITH VEGETATION TYPES RELATIVE LEVEL OF USE OF TYPES 12 11-XX XX XX XX XX XX XX XX XX -XX- - -XX XX XX XX XX XX XX XX 20 6 8 XX -XX- XX- XX- XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX- XX- XX- XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX- XX- XX- XX SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0. 05) 2 5 39 7 21 14 13 29 26 12 11 20 6 8 9 27 10 19 12 11 20 X X 6 X X 8 X X 9 X X 27 X X 10 X X 19 X X X X 22 X X 5 X X X 39 X X X X X X 7 X X X 21 X X X X X X X 14 X X X X X X X 13 X X X X X X 29 X X X X X X X X X 26 X X X X X X 12 11 20 6 8 9 27 10 19 5 39 7 21 14 13 29 26 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 119 r e d c e d a r and f o r At h y r i u m - A r u n c u s - r e d a l d e r - s i t k a a l d e r v e g e t a t i o n t y p e s . They a l s o showed many s i g n i f i c a n t d i f f e r e n c e s i n t h e use of t h e o t h e r t y p e s . The map of s e r a i s t a g e s c o u l d a c t t o supplement the map of v e g e t a t i o n t y p e s . C h e s t n u t - b a c k e d Chickadee (Parus r u f e s c e n s ) L i f e H i s t o r y The C h e s t n u t - b a c k e d C h i c k a d e e g l e a n s i n s e c t s and i n s e c t l a r v a e from f o l i a g e and t w i g s . They fe e d mainly from c o n i f e r o u s t r e e s but a l s o use decid u o u s t r e e s . They f e e d more commonly towards the t o p s of t r e e s (Sturman, 1968a and 1968b) but a l s o use f o l i a g e of u n d e r s t o r y brush (Root, 1964). For n e s t i n g t h e y r e g u i r e a s m a l l t r e e c a v i t y which t h e y may e x c a v a t e t h e m s e l v e s i n s o f t , r o t t i n g wood.. S e r a i Stages The Chickadee used 3 of the 6 s e r a i s t a g e s (50%) a t a r e l a t i v e r a t e o f 0.50 o r more (Table 25). Stage 6 was used s i g n i f i c a n t l y more than a l l o t h e r s . Stages 4 and 5 r a t e d 0.60, s i g n i f i c a n t l y h i g h e r than the use of the r e m a i n i n g s t a g e s . . Lakes (stage 7) r a t e d 0.35 from s t r o n g edge e f f e c t , p r o b a b l y as a r e s u l t of t h e many s t r i p s of o l d growth l e f t a long l a k e edges. The map of s e r a i s t a g e s i s u s e f u l f o r p r e d i c t i n g the areas used by Ch e s t n u t - b a c k e d C h i c k a d e e s . Stage 6 p r o v i d e s 120 TABLE 25. CHESTNUT-BACKED CHICKADEE WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 6 XX XX XX XX -XX XX XX 4 XX XX XX XX -XX-XX XX XX XX XX XX XX XX XX -xx-xx XX XX XX XX XX XX XX XX -xx-xx 5 XX •XX XX XX XX 7 3 2 XX XX XX XX •xx-xx-xx-xx XX XX XX XX XX XX XX XX XX XX XX XX 1 XX XX XX XX XX •xx-xx-xx-xx-xx SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 6 4 5 6 4 X 5 X 7 X 3 X X X 2 X X X 1 X X X 6 4 5 7 3 2 1 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 121 many snags f o r n e s t i n g and good f e e d i n g o p p o r t u n i t i e s . Stage 4 has abundant c o n i f e r o u s t r e e f o l i a g e f o r f e e d i n g , but n e s t i n g i s r e s t r i c t e d t o f a s t growing deciduous s p e c i e s . Stage 5 p r o v i d e s both h i g h d e n s i t i e s o f c o n i f e r o u s t r e e f o l i a g e f o r f e e d i n g and c o n i f e r o u s snags l a r g e enough f o r s m a l l n e s t c a v i t i e s . S e r a i s t a g e s 3 and 2 p r o v i d e much l e s s f o l i a g e and no n e s t i n g o p p o r t u n i t y . Stage 1 has n e i t h e r f o l i a g e nor snags to a t t r a c t t h e C hickadee.. V e g e t a t i o n Types The C h e s t n u t - b a c k e d Chickadee used o n l y 3 o f t h e 12 v e g e t a t i o n t y p e s (25%) at a r a t e o f 0.50 o r more (Table 26). Types 21 and 5 were used s i g n i f i c a n t l y more th a n o f a l l o t h e r t y p e s . Type 20 r a t e d 0.57, which was s i g n i f i c a n t l y h i g h e r than t h e f o u r t y p e s used l e a s t . The C hestnut-backed Chickadee has s t r o n g p r e f e r e n c e f o r two v e g e t a t i o n t y p e s a s s o c i a t e d w i t h h i l l s i d e s (Table 17). V e g e t a t i o n type 21 i s a composite of t y p e s 6 (found on dry t o medium-dry h i l l s h o u l d e r s and upper s l o p e s ) and 8 ( o c c u r r i n g on medium t o medium-wet h i l l s i d e s ) . . T y p e 5 i s a l s o t y p i c a l l y found on mesic h i l l s i d e s . By c o n t r a s t , type 20 i s a c o m b i n a t i o n o f wet type 9 (lower s l o p e s ) and v e r y wet t y p e 11 ( v a l l e y b o ttoms). R a t i n g next i s wet type 9 and then d r y t y p e 6. While t h e Chickadee showed d e f i n i t e p r e f e r e n c e s among v e g e t a t i o n t y p e s , the p a t t e r n o f s e l e c t i o n cannot be e x p l a i n e d by m o i s t u r e g r a d i e n t or t o p o g r a p h i c p o s i t i o n a l o n e . The f o l i a g e of t r e e s growing on dry s i t e s must p r o v i d e i n s e c t s f o r f e e d i n g as w e l l as t h a t of t r e e s growing on wet 122 TABLE 26._CHESTNUT-BACKED CHICKADEE WITH VEGETATION TYPES RELATIVE LEVEL OF USE OF TYPES 0.0 21 XX 5 XX XX XX XX XX XX -XX -XX- — — XX XX XX XX XX XX 20 XX XX XX -XX -XX- XX XX XX XX XX XX XX XX XX 6 XX XX XX XX XX 10 11 XX XX XX XX XX XX XX -XX -XX- XX- XX- XX- XX- XX 12 8- — XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 19 7 XX XX XX XX XX XX XX XX XX XX XX 22 XX XX XX XX XX XX XX XX XX XX XX XX -XX -XX- XX- XX- XX- XX- XX -XX- XX-XX- XX-XX SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.Q5) 21 5 20 9 6 21 5 20 X X 9 X X 6 X X 10 X X 1 1 X X 12 X X 8 X X X 19 X X X X X 7 X X X X 22 X X X X 21 5 20 9 6 10 11 12 8 19 7 22 10 11 12 8 19 7 22 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 123 s i t e s . The map of v e g e t a t i o n t y p e s appears t o p r o v i d e i n f o r m a t i o n f o r h a b i t a t management, but t h e reas o n s f o r t h e p r e f e r e n c e s a re not o b v i o u s . R e d - b r e a s t e d Nuthatch ( S i t t a c a n a d e n s i s ) L i f e H i s t o r y The Nuthatch i s a b i r d of mature f o r e s t (Odum, 1950; Hagar, 1960) and p a r t i c u l a r l y of mature c o n i f e r o u s f o r e s t (Bent, 1 9 4 8 ) . . I t feeds m a i n l y on i n s e c t s g l e a n e d from the bark of t r e e t r u n k s and l a r g e r b ranches, though i t w i l l a l s o use s m a l l e r branches (Bent, 1948). C o n i f e r o u s t r e e seeds are a l s o consumed, e s p e c i a l l y i n w i n t e r ( K i l h a m , 1975)..The Nuthatch t y p i c a l l y n e s t s i n a t r e e c a v i t y which i t can e x c a v a t e i t s e l f i n r o t t i n g wood. S e r a i Stages The Red-breasted Nuthatch used 2 of t h e 6 s e r a i s t a g e s (33%) a t a r e l a t i v e r a t e o f 0.50 or more (Table 27).. Stage 5 was used s i g n i f i c a n t l y more than a l l o t h e r s t a g e s . Stage 6 r a t e d o n l y 0.57, w h i l e the r e m a i n i n g s t a g e s r a t e d l e s s t h a n 0.12.. Lakes (stage 7) r a t e d 0.11 i n d i c a t i n g o n l y moderate edge e f f e c t . The Nuthatch was never observed t o be anywhere but w i t h i n a w e l l - d e v e l o p e d f o r e s t canopy, w h i l e the ol d g r o w t h l e f t a l o n g l a k e edges c o n s i s t e d o n l y o f t h i n s t r i p s . TABLE 27.. RED-BREASTED NUTHATCH WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 5 XX XX XX XX -XX XX XX XX XX •XX XX XX XX XX -XX XX XX XX XX -XX 6 XX •XX XX XX XX XX •XX XX XX 2 7 XX XX XX XX XX XX 4 1 3 •xx-xx-xx-xx-xx-xx SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 5 6 2 7 4 1 3 5 6 X 2 X X 7 X 1 X 4 X X 1 X X 3 X X 5 6 2 7 4 1 3 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 125 Stage 5 p r o v i d e s a h i g h d e n s i t y o f t r e e s which have l a r g e stems and many l a r g e branches from which the n u t h a t c h c o u l d g l e a n i n s e c t s . I t a l s o c o n t a i n s snags l a r g e enough f o r the N u t h a t c h t o n e s t i n . Stage 6 p r o v i d e s l a r g e r snags and t r e e s , b u t t h e s e a re more w i d e l y spaced and s u p p o r t fewer b r a n c h e s . The younger s t a g e s o f f e r n e i t h e r of t h e s e r e s o u r c e s . The map of s e r a i s t a g e s i s u s e f u l f o r p r e d i c t i n g the o c c u r r e n c e o f h a b i t a t f o r the Red-breasted Nuthatch because t h e Nuthatch i s r e s t r i c t e d t o the o l d e r s e r a i s t a g e s . V e g e t a t i o n Types The Nuthatch c o u l d n o t be r e l a t e d t o v e g e t a t i o n t y p e s as i t was not observed i n s e r a i s t a g e 4. Winter Wren ( T r o g l o d y t e s t r o g l o d y t e s ) L i f e H i s t o r y The Winter Wren n e s t s i n dense f o r e s t u nderbrush where i t f e e ds on i n s e c t s . Bent (1948) d e s c r i b e d i t t o use the t h i c k t a n g l e of s h r u b s , r o o t s and f a l l e n l o g s i n t h e shade o f l a r g e t r e e s . 126 S e r a i Stages The Winter Wren used 3 of t h e 6 s e r a i s t a g e s (50%) a t a r e l a t i v e l e v e l of 0.50 or more (Table 2 8 ) . . E v e r y comparison between s t a g e s has produced a s i g n i f i c a n t d i f f e r e n c e , e xcept t h e c o m p a r i s o n between s t a g e s 3 and 1. Stage 5 was used the most w h i l e s t a g e 4 r a t e d 0.70 and stage 6 r a t e d 0.53. The younger s t a g e s r a t e d 0.37 or l e s s . Lakes show l i t t l e edge e f f e c t w i t h a r a t i n g o f 0.11. The more open t r e e canopy o f s t a g e s 4 and 6 was o f t e n a s s o c i a t e d w i t h a denser l a y e r of shrubs than s t a g e 5. I n s p i t e o f t h i s , t h e Wren shows marked p r e f e r e n c e f o r s t a g e 5. T h i s p r e f e r e n c e , p l u s the low use of younger s t a g e s which f r e q u e n t l y s u p p o r t e d abundant shrub growth but had no t r e e canopy, s u g g e s t s t h a t the Wren i s s e l e c t i n g not s o l e l y f o r s h r u b s , but f o r shrubs when t h e y form an u n d e r s t o r y . . The p r e f e r e n c e shown by t h e Winter Wren f o r t h e o l d e r s e r a i s t a g e s can be used w i t h t h e map of s e r a i s t a g e s to p r e d i c t t h e o c c u r r e n c e of h a b i t a t f o r the Wren over the a r e a mapped. V e g e t a t i o n Types The Winter Wren used 10 of the 14 v e g e t a t i o n t y p e s (71%) a t a r e l a t i v e l e v e l o f 0.50 or more (Table 29)..Type 5, found on mesic h i l l s i d e s , was used t h e most; w h i l e t y p e 12, o c c u r r i n g on the wet banks of r i v e r s and l a r g e s t r eams, r a t e d 0.90.. D i v i d i n g the 14 t y p e s i n t o two groups of 7, and u s i n g Table 17 t o determine the m o i s t u r e s t a t u s of each t y p e , r e v e a l s a p r e f e r e n c e f o r v e g e t a t i o n t y p e s found i n moist 127 TABLE 28. WINTER WREN WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 1.0 . 75 0.5 . 25 0.0 5 XX XX XX XX -XX XX 4 XX XX XX XX XX XX -XX-XX XX XX XX XX XX XX XX XX -xx-xx XX XX XX XX XX XX XX XX -xx-xx 6 •XX XX XX 3 XX XX 1 XX XX XX •xx-xx-xx XX XX XX 2 XX XX XX XX 7 XX XX XX XX XX XX XX XX XX XX •XX-XX-XX-XX-XX SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 5 4 6 3 1 2 7 5 4 X 6 X X 3 X X X 1 X X X 2 X X X X X 7 X X X X X X 5 4 6 3 1 2 7 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW TABLE 29. WINTER WREN WITH VEGETATION TYPES .RELATIVE LEVEL OF USE OF TYPES 1.01 5 XX XX 12 XX XX 7 XX XX XX .75 j-XX-XX-XX XX XX XX 19 10 20 9 8 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 21 XX XX XX XX XX XX' XX XX XX 6 0 . 5 | - X X - X X - x x - x x - X X - X X - x x - x x - x x - x x XX XX XX XX XX XX XX XX XX XX 29 XX XX XX XX XX XX XX XX XX XX XX 11 22 27 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX .25|-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX 13 39 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 0.0|-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-xx-xx-XX-XX SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 29 11 22 27 13 39 5 12 7 19 10 20 9 8 21 6 5 12 7 19 X X 10 X X 20 X X 9 X X X 8 X X 21 X X X X X 6 X X X X X X X X 29 X X X X X X X X 11 X X X X X X X X X 22 X X X X X X X X X 27 X X X X X X X X X X 13 X X X X X X X X X X X 39 X X X X X X X X X X X 5 12 7 19 10 20 9 8 21 6 29 X 11 22 27 13 39 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 129 p l a c e s . The 7 t y p e s used most i n c l u d e f i v e wet, one medium-wet and one medium t y p e ; w h i l e the 7 t y p e s used l e a s t i n c l u d e one wet, one medium-wet, one medium, two medium-dry and two d r y t y p e s . The d i f f e r e n c e s i n use are s i g n i f i c a n t i n most cases and may r e f l e c t t h e i n c r e a s e d abundance of underbrush on many wet s i t e s . However, the Wren i s by no means r e s t r i c t e d t o moist t y p e s . . D r y type 6 r a t e d 0.50, wet t y p e 11 r a t e d o n l y 0.40, and the t y p e used l e a s t s t i l l r a t e d 0.35. The map of v e g e t a t i o n t y p e s r e v e a l s a r e a s which show s i g n i f i c a n t d i f f e r e n c e s i n use. However, t h e Winter Wren was v e r y abundant i n those s e r a i s t a g e s which i t used, i n c l u d i n g s tage 4. Because of t h i s abundance, r a t h e r s u b t l e d i f f e r e n c e s i n use o f v e g e t a t i o n t y p e s have become s i g n i f i c a n t d i f f e r e n c e s . The Wren used most v e g e t a t i o n t y p e s a t somewhat s i m i l a r l e v e l s . While i t does p r e f e r moist t y p e s , i t does not depend on any one t ype or s m a l l group of t y p e s , nor i s i t t o t a l l y e x c l u d e d from any t y p e s . When used w i t h a map o f s e r a i s t a g e s , t h e map o f v e g e t a t i o n t y p e s does p r o v i d e a r e f i n e d d e f i n i t i o n of h a b i t a t f o r the Winter Wren.. 130 V a r i e d Thrush ( I x o r e u s naeyius) L i f e H i s t o r y A c c o r d i n g t o Guiguet (1964), the V a r i e d Thrush i s commonly found i n mature c o n i f e r o u s f o r e s t , a l d e r bottoms and i n o l d e r second growth s t a n d s . I t f e e d s mostly on the ground, t a k i n g i n s e c t s , seeds and s m a l l f r u i t s . . I t s n e s t i s an open cup p l a c e d a t moderate h e i g h t i n a t r e e (Godfrey, 1966). S e r a i Stages The V a r i e d Thrush used 3 of t h e 6 s e r a i s t a g e s (50%) a t a r e l a t i v e l e v e l o f 0.50 o r more (Table 30).. Of a l l t h e s p e c i e s c e n s u s e d , t h i s Thrush has t h e d i s t i n c t i o n of h a v i n g the s e r a i s t a g e s o r d e r e d by age. However, many of the d i f f e r e n c e s a r e not s i g n i f i c a n t . . Stages 6 and 5 r a t e n e a r l y e g u a l l y a t t h e t o p . T h e i r o b s e r v e d l e v e l of use i s s i g n i f i c a n t l y h i g h e r than t h a t of a l l o t h e r s t a g e s . Stage 4 r a t e d 0.65 and was a l s o used s i g n i f i c a n t l y more th a n t h e younger s t a g e s . The r e m a i n i n g s t a g e s r a t e d 0.29 or l e s s . Lakes r a t e 0.20, i n d i c a t i n g moderate edge e f f e c t . The h i g h r a t i n g of s t a g e s 6 and 5 agrees w i t h t h e l i f e h i s t o r y i n f o r m a t i o n t h a t t h e V a r i e d Thrush i s found commonly i n mature c o n i f e r o u s f o r e s t s . The o l d e r s t a g e 6 does not appear t o p r o v i d e b e t t e r h a b i t a t than does s t a g e 5. Even stage 4 s a t i s f i e d the h a b i t a t r e g u i r e m e n t s , though the Thrush o c c u r r e d t h e r e a t lower l e v e l s . The younger s t a g e s d i d not p r o v i d e good h a b i t a t f o r t h i s s p e c i e s . Using t h e s e r e l a t i o n s h i p s w i t h t h e map of s e r a i s t a g e s p r o v i d e s c r i t e r i a 131 TABLE 30, VARIED THROSH WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES 1 . 0 6 5-XX XX XX XX XX XX XX XX . 75 -xx- xx- — — — xx xx XX XX 4 XX XX XX XX XX XX 0.5 -xx- xx- XX 8-xx xx XX XX XX XX XX XX XX XX XX XX XX XX XX XX 3 2 . 25, -xx- xx- XX -xx- XX -XX- — xx xx XX xx XX XX 7 XX XX XX XX XX XX XX XX XX XX XX XX XX XX 1 XX XX XX XX XX XX XX XX O.Ol -XX- XX- XX -XX- XX -XX- XX -XX SIGNIFICANT DIFFERENCES IN 6 5 4 8 3 2 7 1 6 5 4 X X 8 3 X X X 2 X X X 7 X X X 1 X X X 6 5 4 8 3 2 7 1 (P=0.05) "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 132 f o r p r e d i c t i n g a r e a s o f h a b i t a t f o r V a r i e d Thrush. V e g e t a t i o n Types The V a r i e d Thrush used 8 of the 16 v e g e t a t i o n t y p e s (50%) a t a r e l a t i v e l e v e l of 0.50 or more (Table 31). Type 12 was used s i g n i f i c a n t l y more than t h e 10 t y p e s which r a t e d l o w e s t . Type 5 r a t e d 0.86, s i g n i f i c a n t l y h i g h e r than 9 o f the lower r a t i n g t y p e s . Types 7, 10, 11, 9, and 6 r a t e d 0.80 t o 0.61, s i g n i f i c a n t l y h i g h e r t h a n the 6 l o w e s t r a t i n g t y p e s i n most i n s t a n c e s . Type 22 r a t e d w i t h t h i s group a t 0.67, but i t s use i s s i g n i f i c a n t l y g r e a t e r t h a n t h e l o w e s t r a t i n g t y p e o n l y . . The t o p 8 t y p e s i n c l u d e f i v e wet t y p e s , one medium and two d r y t y p e s . The 8 t y p e s used l e a s t i n c l u d e two wet t y p e s , f i v e medium-wet t o medium-dry, and one type t h a t i s t y p i c a l l y d r y * The V a r i e d Thrush has shown a d e f i n i t e p r e f e r e n c e i n i t s use of v e g e t a t i o n t y p e s , a l t h o u g h i t uses many t y p e s a t moderate l e v e l s . There i s no c l e a r t r e n d over s o i l m o i s t u r e or t o p o g r a p h i c p o s i t i o n . The map o f v e g e t a t i o n t y p e s c o u l d be used t o improve t h e p r e d i c t i o n made u s i n g the map o f s e r a i s t a g e s . 1 33 TABLE 31.. VARIED THRUSH WITH VEGETATION TYPES RELATIVE LEVEL OF USE OF TYPES 1.0 . 75 0.5 . 25 12 XX XX 5 XX XX XX XX -XX -xx- xx 10-XX xx XX XX 22 11 9 XX XX XX XX XX XX XX 6 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX -xx- xx- xx- xx- xx- xx- XX XX xx xx xx xx xx xx XX XX 29 19 39 20 XX XX XX XX XX XX XX XX XX XX XX XX XX 8 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 27 -XX -xx- xx- xx- xx- xx- xx- xx- xx- xx- xx- XX -xx- xx- xx-XX xx xx xx xx xx xx xx xx xx xx XX xx xx xx 13 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 2 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 21 14 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX -XX -xx- XX- XX- XX- XX- XX- XX- XX- XX- XX- XX -XX- XX- XX- XX -XX- XX- XX 0.0 SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0. 05) 12 5 7 10 22 11 9 6 26 29 19 39 20 8 27 13 2 21 14 12 5 7 10 22 11 9 6 26 29 19 39 20 8 27 13 2 2 1 X X X X X X X X X X X X X 1 4 X X X X X X X X X X X X X 8 27 13 2 21 14 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X   X X X X X X X X X  X X X X X X 12 5 7 10 22 11 9 6 26 29 19 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 134 Swainson's Thrash ( H y l o c i c h l a u s t u l a t a ) L i f e H i s t o r y The Swainson's Thrush o c c u p i e s dense f o r e s t growth. . I t p r e f e r s f o r e s t i n t e r i o r r a t h e r t h a n e d g e . . I t f o r a g e s more i n t r e e s than does t h e V a r i e d Thrush (Morse, 1972; S e a l y , 1974). I t e a t s m o s t l y i n s e c t s but t a k e s much s m a l l f r u i t such as t w i n b e r r i e s and s a l m o n b e r r i e s when i n season (Guiguet, 1964). The n e s t i s an open cup t y p i c a l l y b u i l t low i n an e v e r g r e e n t r e e or bush (Godfrey, 1966) . S e r a i Stages The Swainson's Thrush used 2 of t h e 6 s e r a i s t a g e s (33%) a t a r e l a t i v e l e v e l o f 0.50 or more (Table 32). However, o n l y 1 o f the 6 s e r a i s t a g e s (17%) r a t e d 0.53 or more. Stage 4 was used s i g n i f i c a n t l y more than a l l o t h e r s t a g e s , a t n e a r l y t w i c e the r a t i n g o f the n e x t h i g h e s t s t a g e . Stage 3 r a t e d 0.52, s i g n i f i c a n t over the r e m a i n i n g s t a g e s . Stages 6, 2 , 5, and 1 r a t e d l e s s than 0.33. Lakes (stage 7) r a t e d 0.10, i n d i c a t i n g l i t t l e or no edge e f f e c t . The map of s e r a i s t a g e s p r o v i d e s c r i t e r i a f o r managing the h a b i t a t of t h e Swainson's Thrush. High d e n s i t i e s of the Thrush can be expected o n l y i n s t a g e 4. Moderate d e n s i t i e s can be expected i n s t a g e 3. T h i s Thrush s h o u l d b e n e f i t from l o g g i n g a c t i v i t i e s once r e g e n e r a t i o n has advanced t o t h e s e s t a g e s . TABLE 32. SWAINSON'S THRUSH WITH SERAL STAGES RELATIVE LEVEL OF USE OF TYPES XX 3 0.5 -xx- xx- — xx xx XX XX XX XX 6 XX XX XX 2 . 25 -xx- xx- xx- XX 5-xx xx xx XX XX XX XX XX XX XX 7 XX XX XX XX XX XX 1 XX XX XX XX XX XX XX 0.0 -XX- XX- XX- XX- XX-XX- XX SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 4 3 6 2 4 3 X 6 X X 2 X X 5 X X 7 X X X X 1 X X X 4 3 6 2 5 7 1 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 136 V e g e t a t i o n Types The Swainson's Thrush used 10 o f the 14 v e g e t a t i o n t y p e s (71%) a t a r e l a t i v e r a t e o f 0.50 or more (Table 33)..Types 12 and 11 s t a n d out s i g n i f i c a n t l y h i g h e r i n observed use t h a n most o f t h e r e m a i n i n g t y p e s . Types 7, 10, 9, 20, 5, 8, 21 and 6 have r a t e d 0.68 t o 0.50. A l l members of the group were used s i g n i f i c a n t l y more than t h e t h r e e l o w e s t - r a t i n g t y p e s . Lakes (type 14) show no.edge e f f e c t . . A s s o c i a t i n g s o i l m o i s t u r e (Table 17) w i t h t y p e s o r d e r e d by use r e v e a l s t h a t the t o p s i x t y p e s are a l l wet t o v e r y wet t y p e s ; w h i l e t h e e i g h t t y p e s r a t i n g l o w e s t are a l l medium-wet to d r y t y p e s . Not a l l d i f f e r e n c e s are s i g n i f i c a n t , so the p e r f e c t g r o u p i n g of wet t y p e s a t t h e t o p i s t o some e x t e n t t h e r e s u l t of chance. N o n e t h e l e s s , many s i g n i f i c a n t d i f f e r e n c e s s u p p o r t the g e n e r a l i z a t i o n t h a t the Swainson's Thrush uses wet areas i n p r e f e r e n c e s t o dry a r e a s . The map o f v e g e t a t i o n t y p e s s h o u l d be a u s e f u l supplement t o the map of s e r a i s t a g e s f o r managing t h e h a b i t a t of Swainson's Thrush. . W i t h i n medium-age s e r a i s t a g e s t h e Thrush i s s e l e c t i n g f o r v e g e t a t i o n t y p e s a s s o c i a t e d w i t h h i g h s o i l m o i s t u r e . A map o f s o i l m o i s t u r e would l i k e l y be o f s i m i l a r v a l u e i n managing t h i s Thrush s p e c i e s . TABLE 33. SWAINSON'S THRUSH WITH VEGETATION TYPES RELATIVE LEVEL OF USE OF TYPES 1.0 . 75 0.5 . 25 12 XX XX 11 XX XX XX vy XX — Y Y -A A XX A A XX 7 XX XX XX 10 9 XX XX XX XX XX 20 5 XX XX XX XX XX XX XX 8 21 6 XX -xx- xx- xx- xx- xx- XX -xx- xx- xx- — --XX xx xx xx xx xx XX xx xx xx XX XX XX XX XX XX XX XX XX XX 22 XX XX XX XX XX XX XX XX XX XX XX 19 XX XX XX XX XX XX XX XX XX XX XX XX XX -xx- xx- xx- xx- xx- XX -xx- xx- xx- XX -XX 29-XX xx xx xx xx xx XX xx xx xx XX XX XX 27 XX XX XX XX XX XX XX XX XX XX XX XX XX XX 39 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 13 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 14 XX -XX- XX- XX- XX- XX- XX -XX- XX- XX- XX -XX- XX- XX- XX- XX- XX 0.0 SIGNIFICANT DIFFERENCES IN USE OF TYPES (P=0.05) 12 11 7 10 9 20 5 8 21 6 22 19 29 27 39 13 14 12 11 7 10 X 9 X X 20 X X 5 X X 8 X X 21 X X 6 X X 22 X X 19 X X 29 X X 27 X X 39 X X 13 X X 14 X X 12 11 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 7 10 9 20 5 8 21 6 22 19 "X" DENOTES COLUMN SIGNIFICANTLY GREATER THAN ROW 138 COMPARISONS BETWEEN BIRD SPECIES The f i r s t s e c t i o n o f t h i s d i s c u s s i o n p r e s e n t e d t h e p a t t e r n of observed use of mapping t y p e s by each b i r d s p e c i e s . The p a t t e r n s of use of s e r a i s t a g e s by d i f f e r e n t b i r d s p e c i e s were compared i n T a b l e 13. S p e c i e s w i t h s i m i l a r p a t t e r n s of use are i d e n t i f i e d i n F i g u r e 18. S p e c i e s are grouped i n the f i g u r e i f t h e r a t i o o f c o n t r a s t s t o r e i n f o r c e m e n t s f o r a l l comparisons between members o f t h e group i s l e s s than or e g u a l t o 0.50. A s p e c i e s may be a member of more than one group. F i v e groups o f s p e c i e s which use s e r a i s t a g e s s i m i l a r l y were i d e n t i f i e d . The groups are d i s c u s s e d i n o r d e r from top t o bottom of F i g u r e 18..The p r e d i c t e d abundance o f each s p e c i e s w i l l be v a l i d o n l y f o r those a r e a s a l l o w e d t o r e g e n e r a t e n a t u r a l l y or s u b j e c t e d t o l o w - i n t e n s i t y f o r e s t management. GROUP 1: The Swainson's Thrush and Winter Wren are s i m i l a r i n t h a t they use medium age s t a g e 4 h e a v i l y , and medium-young st a g e 3 and o l d g r o w t h stage 6 m o d e r a t e l y . They d i f f e r m a i n l y i n t h a t the Wren a l s o p r e f e r s mature s t a g e 5, w h i l e t h e Thrush c o n c e n t r a t e s i t s use i n m i d d l e age s t a g e s 4 and 3. Both s p e c i e s s h o u l d p r o s p e r w i t h i n t h e i r range i n the P a c i f i c Northwest as n a t u r a l l y r e g e n e r a t i n g c l e a r c u t s age t o s t a g e s 3, 4 and 5. Both s p e c i e s s h o u l d i n i t i a l l y d e c l i n e w i t h l o g g i n g , and b e g i n t o p r o s p e r as r e g e n e r a t i o n advances t o s t a g e 3. 139 FIGURE 18. S p e c i e s w i t h S i m i l a r P a t t e r n s o f Use of S e r a i Stages Grouping based on comparisons i n T a b l e 10. GROUP 2 GROUP 4 Swainson's Thrush W i n t e r Wren V a r i e d Thrush 1 — Che s t n u t - b a c k e d Chickadee R e d - b r e a s t e d N u t h a t c h — H a i r y Woodpecker I— Y e l l o w - b e l l i e d Sapsucker Common F l i c k e r 1 — O l i v e - s i d e d F l y c a t c h e r S t e l l e r ' s J a y GROUP 1 GROUP 3 GROUP 5 S p e c i e s j o i n e d by bar have a c o n t r a s t t o r e i n f o r c e m e n t r a t i o l e s s t h a n o r e q u a l t o 0.50. FIGURE 19. S p e c i e s w i t h S i m i l a r P a t t e r n s o f Use Of V e g e t a t i o n Types Grouping based on comparisons i n T a b l e 11, Che s t n u t - b a c k e d Chickadee Y e l l o w - b e l l i e d Sapsucker — ) S t e l l e r ' s J a y GROUP 1 GROUP 3 Swainson's Thrush — V a r i e d Thrush W i n t e r Wren GROUP 2 S p e c i e s j o i n e d by b a r have a c o n t r a s t t o r e i n f o r c e m e n t r a t i o l e s s t h a n o r e q u a l t o 0.50. 140 GROUP 2: The Winter Wren, V a r i e d Thrush and C h e s t n u t -backed Chickadee show heavy use of s t a g e s 4, 5 and 6..The Thrush p r e f e r s o l d e r s t a g e s 5 and 6 e q u a l l y over medium age s t a g e 4; t h e Wren uses mature s t a g e 5 the most w i t h s t a g e 4 second; w h i l e the Chickadee p r e f e r s o l d g r o w t h s t a g e 6 w i t h s t a g e 4 second. The s p e c i e s of GROUP 2 w i l l n o t be abundant i n ar e a s r e c e n t l y logged. The Thrush and Chi c k a d e e s h o u l d become abundant i n t h e i r range as c l e a r c u t s age to s t a g e s 4 and 5, and i n younger s t a g e s when o l d e r growth i s nearby. The Wren s h o u l d become abundant as c l e a r c u t s age t o s t a g e 3. GROUP 3: The Che s t n u t - b a c k e d C h i c k a d e e , V a r i e d Thrush, R e d - b r e a s t e d N u t h a t c h , H a i r y Woodpecker and Y e l l o w -b e l l i e d Sapsucker s h a r e a p r e f e r e n c e f o r mature s t a g e 5 and o l d g r o w t h s t a g e 6. The Chickadee and Thrush a l s o use s t a g e 4 as d i s c u s s e d w i t h GROUP 2. The Nuthatch p r e f e r s mature s t a g e 5, w h i l e the Woodpecker and Sapsucker p r e f e r o l d g r o w t h stage 6. R e l i a n c e on the two o l d e s t s e r a i s t a g e s by the N u t h a t c h , Woodpecker and Sapsucker means t h a t t h e s e s p e c i e s w i l l s u f f e r g r e a t d e c l i n e s i n t h e P a c i f i c Northwest as ol d g r o w t h t i m b e r becomes i n c r e a s i n g l y r a r e . R e g e n e r a t i n g f o r e s t s w i l l be o f v a l u e t o t h e s e s p e c i e s o n l y i f they a re a l l o w e d t o mature to s t a g e 5 b e f o r e h a r v e s t . Reserve a r e a s o f ol d g r o w t h w i l l h e l p t o p r e s e r v e remnant p o p u l a t i o n s . 141 SRODP 4: The H a i r y Woodpecker and Y e l l o w - b e l l i e d Sapsucker a r e grouped w i t h Common F l i c k e r and O l i v e - s i d e d F l y c a t c h e r because o f a common s e l e c t i o n f o r o l d e r s t a g e s . However, the Woodpecker and Sapsucker a r e more r e s t r i c t e d t o o l d e r s t a g e s as d i s c u s s e d w i t h GROUP 3, w h i l e the F l i c k e r and F l y c a t c h e r a l s o show heavy use of t h e youngest s t a g e s . The F l i c k e r s h o u l d be abundant i n a r e a s r e c e n t l y logged ( s t a g e s 1 and 2) i f i t can f i n d n e s t i n g snags w i t h i n "commuting" d i s t a n c e . I t w i l l become l e s s abundant as r e g e n e r a t i n g c l e a r c u t s age t o s t a g e s 3, 4 and 5. The F l y c a t c h e r s h o u l d abound i n t h e t h r e e youngest s t a g e s i f i t can f i n d a s u f f i c i e n t number o f t a l l t r e e s or snags on which t o perch w h i l e f e e d i n g . I t w i l l become l e s s abundant as r e g e n e r a t i o n advances t o s t a g e 4. The F l y c a t c h e r s h o u l d be most abundant i n l o g g e d a r e a s c o n t a i n i n g many s m a l l p a t c h e s of mature growth. GROUP 5: The O l i v e - s i d e d F l y c a t c h e r and S t e l l e r ' s Jay used most s t a g e s somewhat e q u a l l y . The F l y c a t c h e r uses t h e o l d e r s t a g e s f o r p e r c h i n g , the younger s t a g e s f o r f e e d i n g , but i s mos t l y e x c l u d e d from medium age s t a g e 4. The Jay n e s t s i n medium age s t a g e s and uses a l l s t a g e s f o r f e e d i n g . The Jay s h o u l d remain abundant through l o g g i n g of the o l d growth, perhaps i n c r e a s i n g i n abundance as c l e a r c u t s r e g e n e r a t e t o s t a g e s 3 and 4.. The p a t t e r n s o f use of v e g e t a t i o n t y p e s were compared f o r d i f f e r e n t b i r d s p e c i e s i n T a b l e 14. S p e c i e s w i t h s i m i l a r 142 p a t t e r n s are i d e n t i f i e d i n F i g u r e 19. S p e c i e s a re grouped i f the r a t i o s f o r a l l comparisons a r e l e s s t h a n 0.50. Three groups of s p e c i e s which use v e g e t a t i o n t y p e s s i m i l a r l y were i d e n t i f i e d . Groups a r e d i s c u s s e d i n o r d e r from top t o bottom of t h e f i g u r e : 3ROUP 1: The C h e s t n u t - b a c k e d Chickadee and Y e l l o w -b e l l i e d Sapsucker a r e s i m i l a r i n t h e i r heavy use of t y p e s 5 and 20. They d i f f e r i n t h e use o f t y p e 21, p r e f e r r e d by t h e Chickadee but used o n l y moderately by the Sa p s u c k e r . However, t h e use o f v e g e t a t i o n t y p e s by the Chickadee i s w e l l e s t a b l i s h e d f o r o n l y a few t y p e s . The c a l l of the Ch i c k a d e e i s not l o u d , so t h e a r e a censused by sound from any s t a t i o n was r e l a t i v e l y s m a l l . Fewer t y p e s were censused s u f f i c i e n t l y o f t e n t o be used i n the a n a l y s i s , and fewer s i g n i f i c a n t d i f f e r e n c e s were found between t h e s e . Both s p e c i e s use the t r e e s i n s e r a i s tage 4 f o r f e e d i n g . The Chickadee g l e a n s i n s e c t s from t h e i r f o l i a g e , w h i l e the Sapsucker t a p s the sap produced by the f o l i a g e . The p r e f e r e n c e f o r v e g e t a t i o n t y p e s 5 and 20 may be r e l a t e d t o t h e s e l e c t i o n of f e e d i n g t r e e s . GROUP 2: The Y e l l o w - b e l l i e d Sapsucker and S t e l l e r ' s Jay show a common p r e f e r e n c e f o r t y p e s 6, 11 and 20. The r e a s o n f o r the p r e f e r e n c e , and the r e a s o n s f o r the s i m i l a r i t y , a r e not ap p a r e n t . 143 GROUP 3: The S t e l l e r ' s J a y , Swainson's Thrush, V a r i e d Thrush and Winter Wren show a common p r e f e r e n c e f o r t y p e s 12, 9 and 6. The Jay d i f f e r s i n t h a t i t does not a l s o show heavy use of t y p e s 5, 7 and 10; the V a r i e d Thrush does not use t y p e s 8 and 20 h e a v i l y ; w h i l e t h e Wren does not use t y p e 11 as h e a v i l y as do t h e o t h e r t h r e e s p e c i e s o f GROUP 3. I n s e c t s caught on the ground or i n t h e under b r u s h form t h e major p o r t i o n o f the d i e t o f each s p e c i e s d u r i n g the s p r i n g census p e r i o d . The n i n e v e g e t a t i o n t y p e s used h e a v i l y by t h r e e or a l l of the s p e c i e s may p r o v i d e h i g h e r d e n s i t i e s o f i n s e c t f o o d , but i n f o r m a t i o n i s not a v a i l a b l e t o e v a l u a t e t h i s h y p o t h e s i s . S i x of the n i n e t y p e s used i n common a r e a s s o c i a t e d w i t h h i g h s o i l m o i s t u r e . The g r o u p i n g of s p e c i e s can be compared between maps by c o n s i d e r i n g t h e s i x s p e c i e s f o r which p a t t e r n s of s e l e c t i o n were e s t a b l i s h e d f o r both s e r a i s t a g e s and v e g e t a t i o n t y p e s . I n t h r e e c a s e s , two s p e c i e s were grouped t o g e t h e r f o r both maps (Chestnut-backed C h i c k a d e e w i t h Y e l l o w - b e l l i e d S a p s u cker, Swainson's Thrush w i t h Winter Wren, and V a r i e d Thrush w i t h W i n t e r Wren). I n f i v e c a s e s , two s p e c i e s were not grouped t o g e t h e r f o r e i t h e r map (Chestnut-backed C h i c k a d e e w i t h S t e l l e r ' s J a y , C h e s t n u t - b a c k e d Chickadee w i t h Swainson's Thrush, Y e l l o w - b e l l i e d S apsucker w i t h Swainson's Thrush, Y e l l o w - b e l l i e d Sapsucker w i t h V a r i e d T h r u s h , and Y e l l o w -b e l l i e d Sapsucker w i t h Winter Wren). There were two i n s t a n c e s o f two s p e c i e s grouped t o g e t h e r f o r s e r a i s t a g e s but not f o r v e g e t a t i o n t y p e s (Chestnut-backed C hickadee w i t h V a r i e d 144 Thrush and C h e s t n u t - b a c k e d Chickadee w i t h W i n t e r Wren), and f i v e i n s t a n c e s of two s p e c i e s grouped f o r v e g e t a t i o n t y p e s but not f o r s e r a i s t a g e s ( Y e l l o w - b e l l i e d Sapsucker w i t h S t e l l e r ' s J a y , S t e l l e r ' s J a y w i t h Swainson's Thrush, S t e l l e r ' s Jay w i t h V a r i e d T h r u s h , S t e l l e r ' s J a y w i t h W i n t e r Wren, and Swainson's Thrush w i t h V a r i e d T h r u s h ) . 145 COMPARISONS BETWEEN MAPPING TYPES T h i s s e c t i o n c o n s i d e r s t h e use o f mapping t y p e s by a l l b i r d s p e c i e s , l o o k i n g f o r t y p e s t h a t a r e used by many s p e c i e s and f o r t y p e s t h a t are a v o i d e d by most s p e c i e s . The p o s s i b i l i t y t h a t the b i r d s p e c i e s a r e s e l e c t i n g s e r a i s t a g e s by age and v e g e t a t i o n t y p e s by s o i l m o i s t u r e i s e v a l u a t e d . S e r a i s t a g e s are l i s t e d and d e f i n e d i n o r d e r of average use by a l l s p e c i e s i n T a b l e 34. V e g e t a t i o n t y p e s are s i m i l a r l y l i s t e d and d e f i n e d i n T a b l e 35. S e r a i Stages For each s e r a i s t a g e . T a b l e 36 shows the b i r d s p e c i e s t h a t used the t y p e at a r a t e of 0.50 or more, and l i s t s the average l e v e l o f use of the t y p e by a l l s p e c i e s c a l c u l a t e d from t a b l e s i n Appendix B. B i r d s p e c i e s a r e o r d e r e d as t h e y were grouped i n F i g u r e 18.. S e r a i s t a g e s are o r d e r e d by d e c r e a s i n g age s i n c e l o g g i n g or f i r e . The average l e v e l of use c o u l d be used t o r a t e s e r a i s t a g e s f o r t h e i r v a l u e as w i l d l i f e h a b i t a t i f a more r e p r e s e n t a t i v e sample of w i l d l i f e s p e c i e s had been i n c l u d e d i n t h e s t u d y . I n s t e a d , the r e s u l t s r e p r e s e n t the v a l u e of each s t a g e t o a s e l e c t group of f o r e s t b i r d s p e c i e s . Of the t e n s p e c i e s r e l a t e d to s e r a i s t a g e s , o n l y the Swainson's Thrush and S t e l l e r ' s Jay do not show s t r o n g p r e f e r e n c e f o r t h e o l d e r s t a g e s . The census d i d not i n c l u d e s p e c i e s such as t h e White-crowned Sparrow and Rufus Hummingbird which were most abundant i n the e a r l y s e r a i s t a g e s . Table 36 a l s o summarizes the s t a g e s and number of s t a g e s 146 TABLE 34. S e r a i By A l l Stages Ordered by Average Use S p e c i e s Stage Number Age Age Examples Censused used most used l e a s t 6 5 4 2 3 1 156 p l u s approx. 250 76 t o 155 109, 137 36 t o 75 46, 51 6 t o 15 6, 7, ... 14, 15 16 t o 35 16, 17, 19, 20, 24 1 t o 5 2, 3, 4, 5 TABLE 35. V e g e t a t i o n Types Ordered by Average Use By A l l S p e c i e s V e g e t a t i o n Type S o i l M o i s t u r e and Topographic P o s i t i o n used most 12 wet / a l o n g banks o f l a r g e r streams and r i v e r s 5 medium / m i d - s l o p e on h i l l s i d e s 11 v e r y wet / f l a t v a l l e y bottoms 20 composite 9 and 11 / wet lower s l o p e s and v e r y wet v a l l e y bottoms 6 d r y t o medium d r y / h i l l s h o u l d e r s and upper s l o p e s 9 wet / lower s l o p e s r e c e i v i n g s o i l seepage and p o o r l y d r a i n e d 10 wet t o v e r y wet / a l o n g banks o f s m a l l c r e e k s and f a s t f l o w i n g streams 7 wet / p a t c h e s on h i l l s i d e s t h a t accumulate s o i l seepage 21 composite 6 and 8 / d r y s l o p e s and medium m i d - s l o p e s 8 medium t o medium wet / m i d - s l o p e h i l l s i d e s r e c e i v i n g s o i l seepage but w e l l d r a i n e d 19 composite 9 and 8 / wet lower s l o p e s and medium m i d - s l o p e s 22 composite 2 and 6 / v e r y d r y h i l l t o p s and d r y upper s l o p e s 27 composite 8 and 6 / medium h i l l s i d e s and d r y upper s l o p e s used l e a s t 29 composite 8 and 9 / medium h i l l s i d e s and wet l o w e r s l o p e s T a b l e 36. Use o f S e r a i Stages by A l l B i r d S p e c i e s . B i r d s p e c i e s grouped by s i m i l a r i t y S e r a i s t a g e s o r d e r e d by d e c r e a s i n g age S e r a i Stages S p e c i e s * STR * WWR * VTR * CBC RBN HRY * YBS FLK OSF * SJY Number of s p e c i e s u s i n g s t a g e Average l e v e l o f use o l d X X X X X ,X 0.80 X X X X X X X X 0.73 X X 0.43 X X X 0.43 X X 0.37 young X X 0. 36 l a k e s 0.21 Number o f s t a g e s used by s p e c i e s "*" Denotes s p e c i e s a l s o r e l a t e d t o v e g e t a t i o n t y p e s "X" I n d i c a t e s r e l a t i v e r a t i n g o f 0.50 or more A b b r e v i a t i o n o f b i r d s p e c i e s names: FLK Common F l i c k e r YBS Y e l l o w - b e l l i e d Sapsucker HRY H a i r y Woodpecker OSF O l i v e d - s i d e d F l y c a t c h e r SJY S t e l l e r ' s J a y CBC Chestnut-backed Chickadee RBN Red-breasted N u t h a t c h WWR W i n t e r Wren VTR V a r i e d Thrush STR Swainson's Thrush 148 used h e a v i l y by each s p e c i e s . The t a b l e shows how s p e c i e s w i t h s i m i l a r p a t t e r n s o f use were grouped u s i n g the c o n t r a s t -t o - r e i n f o r c e m e n t r a t i o as c r i t e r i a f o r g r o u p i n g . S c a n n i n g a c r o s s t h e t a b l e from l e f t t o r i g h t , t h e p r e f e r e n c e o f s p e c i e s s h i f t s from medium age s t a g e s towards mature s t a g e s , then towards use of o l d and young s t a g e s , and f i n a l l y t o t h e use o f a l l s t a g e s e q u a l l y . V e g e t a t i o n Types Many of the v e g e t a t i o n t y p e s were n o t s u f f i c i e n t l y abundant i n t h e area censused t o p r o v i d e a good sample. Types which r e c e i v e d l e s s than one h e c t a r e - h o u r of l i s t e n i n g per round were not i n c l u d e d i n t h e a n a l y s i s . For each v e g e t a t i o n t y p e . T a b l e 37 shows the b i r d s p e c i e s t h a t used the type a t a r a t e o f 0.50 or more, and l i s t s the average l e v e l o f use of t h e type by a l l s p e c i e s c a l c u l a t e d from t a b l e s i n Appendix C.. B i r d s p e c i e s a r e o r d e r e d as they were grouped i n F i g u r e 19. . V e g e t a t i o n t y p e s a r e o r d e r e d by d e c r e a s i n g l e v e l of t y p i c a l s o i l m o i s t u r e . The average l e v e l of use c o u l d be used t o r a t e v e g e t a t i o n t y p e s f o r t h e i r v a l u e as h a b i t a t t o t h e s i x s p e c i e s s t u d i e d . However, i t i s u n l i k e l y t h a t t h e s e b i r d s p e c i e s p r o v i d e a r e p r e s e n t a t i v e sample of t h e use by a l l w i l d l i f e s p e c i e s . I n f o r m a t i o n on the r e l a t i v e use o f v e g e t a t i o n t y p e s by a b r o a d e r group of s p e c i e s i s needed b e f o r e a g e n e r a l i z e d i n d e x of w i l d l i f e use c o u l d be c a l c u l a t e d . Table 37 a l s o summarizes th e t y p e s and number of t y p e s T a b l e 37. Use o f V e g e t a t i o n Types by A l l B i r d S p e c i e s . V e g e t a t i o n t y p e s o r d e r e d by d e c r e a s i n g s o i l m o i s t u r e . V e g e t a t i o n Types CBC YBS Specie SJY 2S STR VTR WWR T o t a l S p e c i e s Average l e v e l o f use wet 11 X X X X 4 0.63 20 X X X X X 5 0.60 10 X X X 3 0.51 9 X X X 3 0.53 12 X X X X X 5 0. 78 7 X X X 3 0.49 19 X 1 0.40 29 - 0 0.29 8 X X X 3 0.41 5 X X X X X 5 0.76 27 - 0 0.29 21 X X X 3 0.46 6 X X X X X 5 0.53 d r y 22 X 1 0. 32 Number o f t y p e s used 0.50 o r more by s p e c i e s 3 5 5 10 8 10 "X" I n d i c a t e s a r e l a t i v e r a t i n g o f 0.50 o r more. "-" Means type not censused s u f f i c i e n t l y o f t e n . A b b r e v i a t i o n o f b i r d s p e c i e s names as i n Ta b l e 36. 150 used h e a v i l y by each s p e c i e s . The t a b l e i l l u s t r a t e s g r a p h i c a l l y the r e s u l t of u s i n g the c o n t r a s t - t o - r e i n f o r c e m e n t r a t i o s as c r i t e r i a f o r gr o u p i n g s p e c i e s t h a t show s i m i l a r p a t t e r n s o f use. C o n s i d e r d i v i d i n g the v e g e t a t i o n t y p e s i n t o two e q u a l groups a c c o r d i n g t o s o i l m o i s t u r e . . A t the l e f t s i d e of the t a b l e , t h e Chestnut-backed Chickadee used more dry ty p e s t h a n wet t y p e s , w h i l e the s p e c i e s t o the r i g h t used more wet t y p e s t h a n dry t y p e s . The p r e f e r e n c e f o r s i t e s a s s o c i a t e d w i t h h i g h l e v e l s o f s o i l m o i s t u r e may be common t o many w i l d l i f e s p e c i e s , but i t i s not a g e n e r a l r u l e f o r a l l s p e c i e s . Even s p e c i e s t h a t do appear t o f a v o u r wet t y p e s a l s o use many o f the d r i e r t y p e s . D r i e r t y p e s 5 and 6 were each used f r e g u e n t l y by f i v e o f t h e s i x s p e c i e s . . A l s o , t h e group s e l e c t e d as t e s t s p e c i e s may be b i a s e d towards s p e c i e s t h a t s e l e c t f o r wet s i t e s . 151 MANAGEMENT IMPLICATIONS A map o f s e r a i s t a g e s i s a l s o a map of f o r e s t management a c t i v i t i e s i f the o n l y form of f o r e s t management i s c l e a r c u t l o g g i n g s t a r t i n g w i t h an unbroken expanse of o l d g r o w t h f o r e s t . T h i s was t r u e f o r t h e map o f s e r a i s t a g e s f o r the U n i v e r s i t y of B r i t i s h Columbia Research F o r e s t , w i t h a few e x c e p t i o n s . . Some a r e a s o f mature growth were o r i g i n a l l y burned by f i r e s which escaped from e a r l y s e t t l e m e n t s i n the v a l l e y below, r e g e n e r a t i n g v e g e t a t i o n was advanced i n some areas by r e p l a n t i n g c o n i f e r o u s t r e e s , and r e t a r d e d i n o t h e r s t h r o u g h s o i l d e s t r u c t i o n by l a r g e machinery used f o r l o g r e m o v a l , o r by s l a s h b u r n i n g . Most of t h e f o r e s t b i r d s p e c i e s s t u d i e d were r e s t r i c t e d t o u s i n g c e r t a i n s e r a i s t a g e s . Thus t h e abundance o f h a b i t a t f o r t h e s e s p e c i e s on t h e R e s e a r c h F o r e s t depended mai n l y on the h i s t o r y of c l e a r c u t t i m b e r h a r v e s t i n the a r e a . The f a t e o f t h e s e s p e c i e s depends m a i n l y on p l a n s f o r t i m b e r h a r v e s t i n the f u t u r e . . C o n s i d e r d i v i d i n g t h e l a n d o f t h e Research F o r e s t i n t o two c l a s s e s : h a r v e s t e d areas committed t o t i m b e r p r o d u c t i o n which w i l l be r e p e a t e d l y h a r v e s t e d b e f o r e r e a c h i n g m a t u r i t y ; and a r e a s which have not y e t been c l e a r c u t and which s u p p o r t mature growth. The s p e c i e s of f o r e s t b i r d s s t u d i e d can s i m i l a r l y be d i v i d e d i n t o s p e c i e s t h a t are found i n young, t i m b e r - p r o d u c i n g f o r e s t s ; and s p e c i e s t h a t a r e r e s t r i c t e d t o u s i n g mature or o l d g r o w t h f o r e s t s . T h i s study d i d not i n c l u d e a r e p r e s e n t a t i v e o f t h e many s p e c i e s of m i g r a t o r y b i r d s which r e t u r n t o r e g e n e r a t i n g c l e a r c u t s each year a f t e r the snow has melted. H a b i t a t f o r t h e s e s p e c i e s has expanded g r e a t l y i n the 152 p a s t twenty y e a r s . The Swainson's Thrush a l o n e r e p r e s e n t s s p e c i e s which use o n l y medium-age s e r a i s t a g e s . H a b i t a t f o r t h e s e s p e c i e s w i l l become i n c r e a s i n g l y abundant over t h e next f i f t y y e a r s . The Winter Wren, V a r i e d Thrush, Chestnut-backed C h i c k a d e e , and Y e l l o w - b e l l i e d Sapsucker use medium-age s e r a i s t a g e s a l t h o u g h they p r e f e r mature and o l d g r o w t h s t a g e s . They have e x p e r i e n c e d a d r a s t i c d e c l i n e i n a v a i l a b l e h a b i t a t t h a t w i l l be o n l y p a r t i a l l y o f f s e t by advanced r e g e n e r a t i o n . Management f o r t h e s e s p e c i e s s h o u l d i n c l u d e p r e s e r v i n g mature or o l d g r o w t h s t a n d s , and e x t e n d i n g r o t a t i o n l e n g t h s . Common F l i c k e r and O l i v e - s i d e d F l y c a t c h e r need elements of mature growth near a r e a s r e c e n t l y c l e a r c u t . P r e s e r v i n g p a t c h e s o f o l d g r o w t h f o r e s t spaced t h r o u g h o u t a r e a s h a r v e s t e d f o r t i m b e r s h o u l d a s s u r e the abundance of both s p e c i e s . The R e d - b r e a s t e d Nuthatch and H a i r y Woodpecker were e x c l u d e d from a r e a s managed f o r t i m b e r p r o d u c t i o n . The o n l y way t o p r e s e r v e t h e s e s p e c i e s i s t o p r e s e r v e the mature and o l d g r o w t h f o r e s t they r e g u i r e as h a b i t a t . The S t e l l e r ' s Jay i s a p p a r a n t l y u n a f f e c t e d by c l e a r c u t t i m b e r h a r v e s t . The Jay d i d not show a p p r e c i a b l e d i f f e r e n c e s i n use of s e r a i s t a g e s and t h e r e f o r e cannot be managed by m o d i f y i n g p l a n s f o r t i m b e r h a r v e s t . . The map of v e g e t a t i o n taxonomic u n i t s r e f l e c t e d the n a t u r a l v a r i a t i o n i n h e r e n t t o t h e s t u d y a r e a by u s i n g p l a n t s p e c i e s c o m p o s i t i o n as an i n t e g r a t o r over a l l f a c t o r s which a f f e c t p l a n t growth. A l l b i r d s p e c i e s r e l a t e d t o v e g e t a t i o n types had d e f i n i t e p r e f e r e n c e s among the t y p e s as e x p r e s s e d by v a r i a t i o n i n o b s e r v e d d e n s i t y o f c a l l s from d i f f e r e n t mapping u n i t s . Thus two a r e a s o f e q u a l s i z e and of t h e same 153 s e r a i s t a g e may not be o f e g u a l h a b i t a t v a l u e t o a w i l d l i f e s p e c i e s i f the a r e a s c o n t a i n examples c f d i f f e r e n t v e g e t a t i o n u n i t s . For example, i f an a r e a of mature f o r e s t i s t o be p r e s e r v e d t o p r o v i d e h a b i t a t f o r a g i v e n w i l d l i f e s p e c i e s , t h e n a map o f v e g e t a t i o n t y p e s c o u l d p r o v i d e c r i t e r i a f o r s e l e c t i n g the b e s t area o f mature f o r e s t t o p r e s e r v e i f use o f v e g e t a t i o n mapping u n i t s has been documented f o r t h e s p e c i e s . F o r e s t managers choose v e g e t a t i o n t y p e s a s s o c i a t e d w i t h r a p i d t r e e growth when they s e l e c t a r e a s o f mature f o r e s t f o r h a r v e s t . These t y p e s a r e s u b s e g u e n t l y m a i n t a i n e d i n young and medium-age s e r a i s t a g e s , w h i l e v e g e t a t i o n t y p e s a s s o c i a t e d w i t h scrubby t i m b e r a t h i g h e r e l e v a t i o n s on r o c k y h i l l s i d e s remain as o l d g r o w t h . S t r i p s o f t r e e s p r o t e c t i n g l a k e edges and s t r e a m s i d e s p r o v i d e mature s e r a i s t a g e examples of v e g e t a t i o n t y p e s a s s o c i a t e d w i t h wet v a l l e y bottoms, w h i l e s m a l l t i m b e r p r e s e r v e s and l e a v e - s t r i p s p r o v i d e mature examples o f o t h e r t y p e s . F o r e s t managers a l s o a l t e r t h e n a t u r a l l y - o c c u r r i n g p a t t e r n o f v e g e t a t i o n t y p e s by t h e i r management a c t i v i t i e s . S o i l d e s t r u c t i o n d u r i n g road b u i l d i n g , t r e e removal and s l a s h b u r n i n g may r e n d e r an a r e a unable t o s u p p o r t t h e o r i g i n a l community of p l a n t s ; o r p l a n t s p e c i e s c o m p o s i t i o n may be a l t e r e d d i r e c t l y by p l a n t i n g c r o p t r e e s p e c i e s or by c o n t r o l l i n g t h e growth of competing h e r b s , s h r ubs and t r e e s . . W i t h the change i n v e g e t a t i o n t h e r e w i l l be a change i n t h e h a b i t a t v a l u e of the area f o r most s p e c i e s . The r e s u l t s o f t h i s s t u d y suggest t h a t managing h a b i t a t f o r groups of s p e c i e s might be a u s e f u l approach i f groups 154 w i t h s i m i l a r h a b i t a t r e l a t i o n s h i p s were i d e n t i f i e d . T h i s approach d i f f e r s from t h a t p r e s e n t e d by Thomas e t a l . . (1976), i n which 379 s p e c i e s were grouped i n t o 16 l i f e forms a c c o r d i n g t o p l a c e o f r e p r o d u c t i o n . F o r example, t h e y grouped Y e l l o w - b e l l i e d Sapsucker w i t h Common F l i c k e r but not w i t h C h e s t n u t - b a c k e d C h i c k a d e e ; whereas e v i d e n c e from t h i s s t u d y showed the Sapsucker and C h i c k a d e e were more a l i k e i n t h e i r p a t t e r n o f s e l e c t i o n o f s e r a i s t a g e s than were the Sapsucker and F l i c k e r (Table 13). The r e s u l t s o f t h i s s t u d y s u p p o r t t h e g e n e r a l h y p o t h y s i s t h a t l a n d r e s o u r c e maps can be used t o p r e d i c t the o c c u r r e n c e of w i l d l i f e . The o c c u r r e n c e of h a b i t a t f o r a w i l d l i f e s p e c i e s can be p r e d i c t e d over v a s t a r e a s i f the a r e a s have been mapped and i f one has documented s i g n i f i c a n t d i f f e r e n c e s i n use by t h e s p e c i e s of the mapping u n i t s . The p r e d i c t i o n can be improved by combining the p r e d i c t i o n s from two or more maps. I f a w i l d l i f e s p e c i e s has s p e c i a l needs such as c a v e s , c l i f f s , open water o r n e s t i n g snags, then a map o f a r e a s w i t h i n commuting d i s t a n c e o f t h e s p e c i a l f e a t u r e must be i n c l u d e d . The a c t u a l p r e s e n c e of a s p e c i e s i n i t s h a b i t a t must be determined by spot c h e c k i n g , as i t may depend on such f a c t o r s as p r e s s u r e from h u n t e r s or p r e d a t o r s , or on the o c c u r r e n c e o f extreme weather c o n d i t i o n s . . The p r e d i c t e d amount and s p a t i a l arrangement of h a b i t a t f o r a s p e c i e s can be compared w i t h p o l i c y o b j e c t i v e s t o p r o v i d e c r i t e r i a f o r management. .The amount of h a b i t a t l o s t or g a i n e d w i t h p r o j e c t e d p l a n s f o r t i m b e r h a r v e s t can be p r e d i c t e d and checked f o r v i o l a t i o n o f w i l d l i f e management 155 p o l i c y o b j e c t i v e s . F u t u r e h a b i t a t a v a i l a b i l i t y can be p r e d i c t e d by s i m u l a t i n g s u c c e s s i o n and a p p l y i n g p r o j e c t e d f o r e s t management a c t i v i t i e s . The same maps can be used t o p r e d i c t t h e o c c u r r e n c e of h a b i t a t f o r many d i f f e r e n t w i l d l i f e s p e c i e s . F o r e s t management a c t i v i t i e s can t h e n be e v a l u a t e d i n terms o f a v a i l a b l e h a b i t a t f o r each o f any number o f s p e c i e s . T h i s s t u d y has p r o v i d e d h a b i t a t r e l a t i o n s h i p s f o r s i x w i l d l i f e s p e c i e s w i t h two l a n d r e s o u r c e maps. The d a t a p r o v i d e examples f o r d e v e l o p i n g and t e s t i n g such a m u l t i -s p e c i e s h a b i t a t management system. 156 SUMMARY The s t u d y was d i r e c t e d towards e v a l u a t i n g the h y p o t h e s i s t h a t e x i s t i n g l a n d r e s o u r c e maps c o u l d be used t o p r e d i c t the o c c u r r e n c e o f h a b i t a t f o r many w i l d l i f e s p e c i e s , and t h e r e b y p r o v i d e c r i t e r i a f o r w i l d l i f e management. F o r e s t b i r d s were chosen as the s u b j e c t w i l d l i f e s p e c i e s because of t h e ease w i t h which b i r d s c o u l d be d e t e c t e d and i d e n t i f i e d t o s p e c i e s by t h e i r c a l l s . A r i g o r o u s t e c h n i g u e f o r u s i n g t h e c a l l s of b i r d s t o d e t e r m i n e r e l a t i v e d e n s i t i e s o f b i r d s i n d i f f e r e n t a r e a s was d e v e l o p e d . The t e c h n i g u e i n v o l v e d p r e d i c t i n g the a r e a censused from each l i s t e n i n g s t a t i o n u s i n g a m a t h e m a t i c a l d e s c r i p t i o n o f the l a n d f o r m and f o r e s t canopy around t h e s t a t i o n . A d i f f e r e n t a r e a censused was p r e d i c t e d f o r each b i r d s p e c i e s and f o r d i f f e r e n t l e v e l s of background n o i s e w i t h each v i s i t t o the s t a t i o n . B i r d c a l l s were i d e n t i f i e d and l o c a t e d i n t h e f i e l d d u r i n g e a r l y morning v i s i t s t o the l i s t e n i n g s t a t i o n s . L o c a t i o n s of b i r d s were d e s c r i b e d as are a s w i t h i n which the b i r d c a l l must have o r i g i n a t e d . The e x t e n t t o which t h e a r e a s o f a map were censused was determined by i n t e r s e c t i n g t h e a r e a censused from each s t a t i o n w i t h each area o f t h e map. The p r o b a b l e number of b i r d c a l l s o r i g i n a t i n g from w i t h i n each a r e a o f the map was c a l c u l a t e d by i n t e r s e c t i n g t h e a r e a s of l o c a t i o n from each s t a t i o n w i t h t h e a r e a s of t h e map. The r e s u l t i n g o bserved d e n s i t y o f b i r d c a l l s per h e c t a r e - h o u r o f l i s t e n i n g was used as an i n d e x o f abundance. The r e s u l t s were summed over a r e a s t h a t were c l a s s i f i e d as the same mapping t y p e , and the 157 p r o b a b i l i t y t h a t two mapping t y p e s were used at d i f f e r e n t l e v e l s was c a l c u l a t e d f o r a l l c o m p a r i s i o n s between mapping t y p e s . The t e c h n i q u e can use the same f i e l d o b s e r v a t i o n s w i t h any number o f d i f f e r e n t maps of the census a r e a . . A s e r i e s o f n i n e t e e n computer programs were w r i t t e n i n FORTRAN t o implement the t e c h n i q u e . One program was used t o p r e p a r e a f i l e c o n t a i n i n g d e s c r i p t i o n s of the l i s t e n i n g s t a t i o n s . Two programs were used t o p r e p a r e and s i m p l i f y computer maps, i n c l u d i n g a map o f f o r e s t canopy h e i g h t s . Three programs were i n v o l v e d w i t h u s i n g t h e map o f canopy h e i g h t s t o p r e p a r e a d e s c r i p t i o n of the f o r e s t canopy around each s t a t i o n . Three programs were used t o p r e p a r e , l i s t and p l o t a t h r e e - d i m e n s i o n a l l a n d f o r m g r i d or d i g i t a l t e r r a i n model o f t h e s t u d y a r e a ; w h i l e two programs used the t e r r a i n model t o p r e p a r e a d e s c r i p t i o n of t h e l a n d f o r m around each l i s t e n i n g s t a t i o n . One program combined t h e canopy h e i g h t d e s c r i p t i o n w i t h the l a n d f o r m d e s c r i p t i o n f o r each s t a t i o n t o produce a t h r e e - d i m e n s i o n a l d e s c r i p t i o n of the f o r e s t canopy around each l i s t e n i n g s t a t i o n . A second program p l o t t e d c r o s s s e c t i o n s o f the combined l a n d f o r m and canopy d e s c r i p t i o n s f o r s e l e c t e d s t a t i o n s . One program was w r i t t e n t o check and o r d e r f i e l d o b s e r v a t i o n s which had been keypunched. .Another program used the f i e l d d a t a w i t h the t h r e e - d i m e n s i o n a l d e s c r i p t i o n s of la n d f o r m and f o r e s t canopy t o p r e d i c t t h e area censused from each s t a t i o n f o r one s p e c i e s a t a t t i m e , and t o d i s p l a y the areas l o c a t i n g b i r d s of the s p e c i e s by sound. Two programs i n t e r s e c t e d t h e a r e a s censused and t h e a r e a s o f l o c a t i o n s f o r 158 each s t a t i o n w i t h t h e a r e a s of a computer map of l a n d r e s o u r c e s t o determine the observed d e n s i t y of c a l l s per h e c t a r e - h o u r o f l i s t e n i n g i n each a r e a o f the map. One program summarized t h e r e s u l t s over a r e a s mapped as t h e same t y p e , and c a l c u l a t e d t h e s t a t i s t i c s used t o e v a l u a t e d i f f e r e n c e s i n observed d e n s i t y between mapping t y p e s . . The f i n a l program compared t h e r e s u l t s between two s p e c i e s o r between r e p e a t e d rounds of census f o r one s p e c i e s , and p r e s e n t e d the r e s u l t s i n g r a p h i c a l form. The method was t e s t e d u s i n g the U n i v e r s i t y of B r i t i s h C olumbia Research F o r e s t as t h e stu d y a r e a , A t o t a l of 163 l i s t e n i n g s t a t i o n s were e s t a b l i s h e d . Each s t a t i o n was v i s i t e d f o r f i f t e e n minutes d u r i n g each of s i x rounds o f v i s i t s . The c a l l s of t e n s p e c i e s of b i r d s were l o c a t e d when heard. Computer maps of s e r a i s t a g e s and v e g e t a t i o n taxonomic u n i t s were p r e p a r e d . Of the t e n b i r d s p e c i e s r e l a t e d t o s e r a i s t a g e s , n i n e showed c o n s i s t a n t p a t t e r n s o f s e l e c t i o n , w h i l e t h e t e n t h s p e c i e s ( S t e l l e r ' s Jay) was i n d e s c r i m i n a n t o f s e r a i s t a g e s . A l l o f t h e s i x b i r d s p e c i e s r e l a t e d t o v e g e t a t i o n taxonomic u n i t s were c o n s i s t e n t i n t h e i r p a t t e r n o f s e l e c t i o n . The d e t e c t i o n o f c o n s i s t e n t p a t t e r n s both c o n f i r m s the a c c u r a c y of the method by d e m o n s t r a t i n g r e p e a t a b l e r e s u l t s , and a f f i r m s t h e u t i l i t y o f u s i n g l a n d r e s o u r c e maps as i n d i c a t o r s o f h a b i t a t o c c u r r e n c e by e x p o s i n g the p r e d i c t a b l e n a t u r e of s e l e c t i o n of mapping t y p e s by w i l d l i f e s p e c i e s . The r e l a t i o n s h i p s of t e n f o r e s t b i r d s p e c i e s w i t h s e r a i s t a g e s , and o f s i x of t h o s e s p e c i e s w i t h v e g e t a t i o n mapping 159 u n i t s , have been documented f o r the s p r i n g season a t the U n i v e r s i t y o f B r i t i s h Columbia Research F o r e s t . Each s p e c i e s showed a unique p a t t e r n o f s e l e c t i o n of s e r a i s t a g e s , but comparisons between s p e c i e s exposed f i v e groups w i t h s i m i l a r p a t t e r n s o f s e l e c t i o n (groups n o t m u t u a l l y e x c l u s i v e ) . A l l of the a r e a mapped f o r v e g e t a t i o n t y p e s was a t medium-age s e r a i s t a g e . C o n s e q u e n t l y t h e H a i r y Woodpecker and Re d - b r e a s t e d N u t h a t c h , which were r e s t r i c t e d t o o l d e r s e r a i s t a g e s , and th e Common F l i c k e r and O l i v e d - s i d e d F l y c a t c h e r , which used o n l y t h e o l d e s t and youngest s t a g e s , c o u l d not be r e l a t e d t o v e g e t a t i o n t y p e s . Each o f the r e m a i n i n g s p e c i e s showed a unique p a t t e r n of s e l e c t i o n o f v e g e t a t i o n t y p e s , w i t h comparisons between s p e c i e s e x p o s i n g t h r e e groups w i t h s i m i l a r p a t t e r n s (groups not m u t u a l l y e x c l u s i v e ) . B i r d s p e c i e s were grouped d i f f e r e n t l y f o r s e r a i s t a g e s t h a n f o r v e g e t a t i o n t y p e s , a l t h o u g h i n t h r e e cases two s p e c i e s were grouped t o g e t h e r both t i m e s . Four of the s i x s p e c i e s r e l a t e d t o both maps were more s e l e c t i v e o f s e r a i s t a g e s t h a n o f v e g e t a t i o n t y p e s . . The Y e l l o w - b e l l i e d Sapsucker was most r e s t r i c t e d by i t s dependency on o l d e r s e r a i s t a g e s . Winter Wren and V a r i e d Thrush by t h e i r need f o r medium t o o l d s t a g e s , and Swainson's Thrush by i t s req u i r e m e n t f o r mediuum-age s t a g e s . Each o f these s p e c i e s used many d i f f e r e n t v e g e t a t i o n t y p e s . By c o n t r a s t , S t e l l e r ' s J a y c o n c e n t r a t e d i t s use on two v e g e t a t i o n t y p e s , w h i l e i t used a l l s e r a i s t a g e s at s i m i l a r l e v e l s ; and Chestn u t - b a c k e d Chickadee was about e q u a l l y s e l e c t i v e o f s e r a i s t a g e s and v e g e t a t i o n t y p e s . . 160 The r e s u l t s s u pport t h e h y p o t h e s i s t h a t l a n d r e s o u r c e maps can be used t o p r e d i c t t h e occurence o f w i l d l i f e h a b i t a t o v e r v a s t a r e a s i f the a r e a s have been mapped and i f s i g n i f i c a n t d i f f e r e n c e s i n the h a b i t a t v a l u e o f d i f f e r e n t mapping u n i t s have been documented. The r e s u l t s demonstrate t h a t t h e p r e d i c t i o n can be improved by u s i n g two or more maps. The a v a i l a b l e h a b i t a t f o r a s p e c i e s , p r e d i c t e d b e f o r e and a f t e r a p p l y i n g proposed p l a n s f o r t i m b e r management, can be compared w i t h management o b j e c t i v e s f o r the w i l d l i f e s p e c i e s t o a s s e s s the impact o f t i m b e r management. The same maps can be used f o r many w i l d l i f e s p e c i e s , t h e r e b y p r o v i d i n g c r i t e r i a f o r m u l t i - s p e c i e s h a b i t a t management.. 161 LITERATURE CITED Amman, G. D. and P. H. B a l d w i n . 1960. A comparison of methods f o r c e n s u s i n g woodpeckers i n s p r u c e - f i r f o r e s t s of C o l o r a d o . ECOLOGY. V o l . 41, No. 4. Pp. .699-706. . Bent, A. C. 1948. L i f e h i s t o r i e s of North American n u t h a t c h e s , wrens, t h r a s h e r s and t h e i r a l l i e s . BULL. _ 195. U. S. Nat. .Mus. Best, L. B. 1975. I n t e r p r e t a t i o n a l e r r o r s i n the "Mapping Method" as a census t e c h n i g u e . AUK. V o l . 92. Pp. .452-460. Bock, C. .E. .and J . F. Lynch. 1970. .Breeding b i r d p o p u l a t i o n s o f burned and unburned c o n i f e r f o r e s t i n the S i e r r a Nevada. THE CONDOR. V o l . . 7 2 . Pp. 182-189. B r e c k e n r i d g e , W. J . .1935. A b i r d census method.. THE WILSON BULLETIN. V o l . 47. Pp. 195-197. B u n n e l l , F. . L. And D. S. Eastman. . 1976. E f f e c t s of f o r e s t management p r a c t i c e s on w i l d l i f e i n t h e f o r e s t s o f B r i t i s h Columbia. Pp. 631-689 i n P r o c . Of D i v i s i o n I XV IUFRO World Congress, Norway. Colguhoun, M.. K.. 1940a.. The d e n s i t y o f woodland b i r d s d e t e r m i n e d by t h e sample count method. THE JOURNAL OF ANIMAL ECOLOGY. V o l . 9. Pp. 53-67 . _. 1 9 4 0 b . . V i s u a l and a u d i t o r y c o n s p i c u o u s n e s s i n a woodland b i r d community: A q u a n t i t i v e a n a l y s i s . . PROC. ZOOL. SOC. LOND., SER. A. V o l . 110. .Pp. . 9-148 Connor, R. N. . 1973..Woodpecker u t l i t i z a t i o n o f c u t and uncut woodlands. M.Sc. T h e s i s V i r g i n i a P o l y t e c h n i c and V i r g i n i a S t a t e U n i v e r s i t y . . 8 4 pp. _. . and C. . S. A d k i s s o n . . 1975. , E f f e c t s of c l e a r c u t t i n g on t h e d i v e r s i t y of b r e e d i n g b i r d s . JOURNAL OF FORESTRY. .Pp. . 78 1-785. . 162 C o u l t h a r d , W. J . and S. G. . M a i r . 1 9 7 7 . . P l o t t i n g o r t h o g r a p h i c v iews of s u r f a c e s w i t h h i d d e n l i n e s removed. U n i v e r s i t y o f B r i t i s h Columbia Computing Centre Program and Documentation. .7 pp. D a v i s , R. E. and F. S. , Foote. . 1953. S u r v e y i n g , t h e o r y and p r a c t i c e . M c G r a w - H i l l . F o u r t h e d i t i o n . 494 pp. Dempster, J . R. .H. and J . Halm. 1974. . FPROB - P r o b a b i l i t y of an F or t d i s t r i b u t i o n . . U n i v e r s i t y o f B r i t i s h Columbia Computing C e n t r e Program and Documentation. Emlen, J . T. . 1971. P o p u l a t i o n d e n s i t i e s of b i r d s d e r i v e d from t r a n s e c t c o u n t s . .THE AUK. V o l . .88. .Pp. .323-342. . F r a n z r e b , K. E. 1977. B i r d p o p u l a t i o n changes a f t e r t i m b e r h a r v e s t i n g o f a mixed c o n i f e r f o r e s t i n Arizona..U.S.D.A. FOREST SERVICE RESEARCH PAPER. RM-184..Rocky Mountain F o r e s t and Range Experiment S t a t i o n , F o r t C o l l i n s , C o l o r a d o . .26 pp.. Go d f r e y , W. E. 1966. The b i r d s of C a n a d a . . N a t i o n a l Museum of Canada. B u l l e t i n No. .203. 428 pp. G r e i g , M. . 1977. PROBINVR [ i n c l u d e s TINVR) - I n v e r s e p r o b a b i l i t y f u n c t i o n s . U n i v e r s i t y of B r i t i s h Columbia Computing C e n t r e Program and Documentation. G u i g u e t , C. J . . 1964..The b i r d s of B r i t i s h Columbia.. B. C. P r o v i n c i a l Museum. Book #22..66 pp., . . 1970. The b i r d s of B r i t i s h Columbia. B. C. P r o v i n c i a l Museum. Book #6. 51 pp. Hagar, D. C. 1960. The i n t e r r e l a t i o n s h i p o f l o g g i n g , b i r d s and t i m b e r r e g e n e r a t i o n i n the d o u g l a s - f i r r e g i o n o f No r t h w e s t e r n C a l i f o r n i a . ECOLOGY. V o l . . 41, No.. 1.. Pp. 116-125. Hooven, E. F. 1969. The i n f l u e n c e of f o r e s t s u c c e s s i o n on p o p u l a t i o n s o f s m a l l mammals i n Western Oregon.. Pp. 30-3 4 . . I n : H..C.,Black, ( E d . ) , W i l d l i f e and r e f o r e s t a t i o n i n t h e P a c i f i c Northwest. S c h o o l of F o r e s t r y , Oregon S t a t e U n i v e r s i t y , C o r v a l l i s . 92 pp. 163 H o w e l l , J . C. .1951. . The r o a d s i d e census as a method of measuring b i r d p o p u l a t i o n s . AUK. V o l . .68. .Pp. .335-357. Jackman, S. M. 1974. Woodpeckers o f the P a c i f i c Northwest: t h e i r r o l e i n the f o r e s t s . M.Sc. . T h e s i s Oregon S t a t e U n i v e r s i t y 147 pp. . and J . M. S c o t t . 1975. Common F l i c k e r . I n : L i t e r a t u r e r e v i e w o f t w e n t y - t h r e e s e l e c t e d f o r e s t b i r d s o f the P a c i f i c Northwest, Region 6. .U. . S . . F o r e s t S e r v i c e . 382 pp. Jenny, H. . 1958. Role o f the p l a n t f a c t o r i n the pedogenic f u n c t i o n s . ECOLOGY. V o l . .39, No. 1. Pp. .5-16. . J o h n s t o n , D. W. and E.. P. Odum. 1956. Bree d i n g b i r d p o p u l a t i o n s i n r e l a t i o n t o p l a n t s u c c e s s i o n on the Piedmont o f G e o r g i a . ECOLOGY. V o l . .37, No. .1. Pp. .50-62. . Kendeigh, S. C. 1944. Measurement of b i r d p o p u l a t i o n s . ECOLOGICAL MONOGRAPHS. . V o l . .14, No. 1. .Pp. .67-106. . K u c h l e r , A.. W., 1951. The r e l a t i o n between c l a s s i f y i n g and mapping v e g e t a t i o n . ECOLOGY, V o l . 32, No. 2. .Pp. .275-283. K i l h a m , L. 1964. The r e l a t i o n s of b r e e d i n g Y e l l o w - b e l l i e d S a p s u c k e r s t o wounded b i r c h e s and o t h e r trees..AUK. V o l 8 1, Pp. 520-527. . .1975. A s s o c i a t i o n of Red-brea s t e d Nuthatches w i t h c h i c k a d e e s i n a hemlock cone y e a r . AUK. V o l . 92. Pp..160-1 62. K l i n k a , K. 1976. . Ecosystem u n i t s , t h e i r c l a s s i f i c a t i o n , i n t e r p r e t a t i o n and mapping i n the U n i v e r s i t y of B r i t i s h C o lumbia Research F o r e s t . . PhD. T h e s i s , U n i v e r s i t y o f B r i t i s h C olumbia, V o l . . 1. 341 pp.. K r a j i n a , V. J . 1960. Ecosystem c l a s s i f i c a t i o n o f f o r e s t s . SILVA FENNICA 105. . Pp. . 107-110. . 16a Madderom, P.. 1972. CADBE - I n t e g r a t i o n u s i n g C a u t i o u s A d a p t i v e Romberg E x t r a p o l a t i o n . U n i v e r s i t y of B r i t i s h C o lumbia Computing C e n t r e Program and Documentation. M a j o r , J . 1951.;. A f u n c t i o n a l , f a c t o r i a l approach t o p l a n t e c o l o g y . ECOLOGY. Vol..32, No. 3. Pp. 392-ai2.. M a r t i n , N. D. 1960. . An a n a l y s i s o f b i r d p o p u l a t i o n s i n r e l a t i o n t o f o r e s t s u c c e s s i o n i n A l g o n q u i n P r o v i n c i a l P a r k , O n t a r i o . ECOLOGY. V o l . 41, No. 1. .Pp. . 126-140. . Matthews, R. 1971. An i n v e s t i g a t i o n of sound a t t e n u a t i o n by t r e e s t a n d s . M.F. T h e s i s . U n i v e r s i t y o f B r i t i s h C o l u m b i a , Vancouver. 160 pp. Meslow, E. C..and H. M. Wight. 1975. A v i f a u n a and s u c c e s s i o n i n d o u g l a s - f i r f o r e s t s of t h e P a c i f i c Northwest. Pp. 266-271. I n : P r o c e e d i n g s of the symposium of management o f f o r e s t and range h a b i t a t s f o r nongame b i r d s . May 6-9, 1975. Tucson, Arizona..U.S.D.A.. FOREST SERVICE GENERAL TECHNICAL REPORT WO-1. 343 pp. Morse, D. H. 1972. H a b i t a t d i f f e r e n c e s o f Swainson's and Hermit Thrushes. THE WILSON BULLETIN. V o l . 84, No. 2. Pp. 207-208. Odum, E. P. 1950. B i r d p o p u l a t i o n s o f the H i g h l a n d s (North C a r o l i n a ) P l a t e a u i n r e l a t i o n t o p l a n t s u c c e s s i o n and a v i a n i n v a s i o n . ECOLOGY. V o l . 31, No. .4. Pp. .587-605. . P e t r a b o r g , W. H., E. G. W e l l e i n , and V. E. . Gunvalson. . 1953.. R o a d s i d e drumming c o u n t s : A s p r i n g census method f o r R u f f e d Grouse..JOURNAL OF WILDLIFE MANAGEMENT.. V o l . 17, No. .3. Pp. .292-295. R o h l f , F. J . and R. R. S o k a l . 1969. S t a t i s t i c a l t a b l e s . W. H. Freeman and Company, San F r a n c i s c o . 253 pp. Root, R. B.. 1964. E c o l o g i c a l i n t e r a c t i o n s o f t h e C h e s t n u t -backed Chickadee f o l l o w i n g a range e x t e n s i o n . THE CONDOR. V o l . .66. Pp. . 229-238. . 165 Rowe, J . A. 1960. D e f i n i t i o n and c l a s s i f i c a t i o n of f o r e s t ecosystems..SILVA FENNICA 105. Pp. 110-112. S e a l y , S. . G. . 1 9 7 4 . . E c o l o g i c a l s e g r e g a t i o n o f Swainson's and Hermit Thrushes on Langara I s l a n d , B r i t i s h Columbia. THE CONDOR. V o l . .76 (3) . Pp. . 350-351. . S o k a l , R. . R. and F. . J . . R o h l f . 1969. Bi o m e t r y . W. F. .Freeman and Company, San. F r a n s i s c o . 776 pp. S t a l l c u p , P. L., 1968. S p a t i o - t e m p o r a l r e l a t i o n s h i p s of n u t h a t c h e s and woodpeckers i n ponderosa p i n e f o r e s t s of C o l o r a d o . ECOLOGY. V o l . 49, No. 5. Pp. 832-843. Sturman, W. A..1968a. D e s c r i p t i o n and a n a l y s i s of b r e e d i n g h a b i t a t s of the c h i c k a d e e s , Parus a t r i c a p i l l u s and P*. - r u f esc ens... ECOLOGY. V o l . .49, No. .3. Pp. .418^431. . .__ . . 1968b. The f o r a g i n g e c o l o g y of Parus a t r i c a p i l l u s and P . . r u f e s c e n s i n t h e b r e e d i n g s e a s o n , w i t h comparisons w i t h o t h e r s p e c i e s o f Parus.. THE CONDOR. . V o l . 70. Pp. 309-322. . Tate , J r . , J . 1973. Methods and a n n u a l seguence o f f o r a g i n g by the sap s u c k e r . THE AUK. V o l . 90. Pp. 840-856. Thomas, J . W., R. . J . . M i l l e r , H. B l a c k , J . E . Rodiek and C. Maser. 1976. G u i d e l i n e s f o r m a i n t a i n i n g and enh a n c i n g w i l d l i f e h a b i t a t i n f o r e s t management i n t h e B l u e Mountains o f Oregon and Washington.. I n : T r a n s a c t i o n s F o r t y - f i r s t North American W i l d l i f e and N a t u r a l Resources C o n f e r e n c e . Washington, D. C. Mar. 21-25, 1976. Pp. 452-476. ., R. M. DeGraat and J . C.. Mawson.. 1977. D e t e r m i n a t i o n of h a b i t a t r e g u i r e m e n t s f o r b i r d s i n suburban a r e a s . U.S.D.A. FOREST SERVICE RESEARCH PAPER. NE-357. 15 pp. , Wight, H. M. 1974. Nongame w i l d l i f e and f o r e s t management. Pp. .27-38. IN: B l a c k , H. C. ( E d . ) , W i l d l i f e and F o r e s t Management i n t h e P a c i f i c Northwest. S c h o o l of F o r e s t r y , C o r v a l l i s , Oregon. .236 pp. . 166 W i l l i a m s o n , K. 1964. B i r d census work i n woodland.. BIRD STUDY. V o l 11, No. 1. Pp. 1-23. _. . and R.. C. Homes. . 1964. . Methods and p r e l i m i n a r y r e s u l t s of the Common B i r d s Census, 1962-63. BIRD STUDY. V o l . 11. Pp. 240-256. 167 APPENDIX A LISTING OF COMPUTER PROGRAMS WRITTEN FOR THIS STUDY. PROGRAMS PAGE STOPREP , 168 D I G F I X . , . . . . . . . . . . . . . 169 POLYTHIN................ . 172 FORAXINIT.. .176 FORAXUPD.................177 FORAXORDER. ............. . .187 GRIDMAKE................ . 189 GRIDLIST................ 190 PERSPECALL...............191 TOPAXMAKE.•............. 192 TOPAXORDER.............. . 197 FORONTOP. 199 PROFPLOT................. 205 S ERORDER 206 COVANDLOC................208 HABDEXINIT 229 HABDEX...................230 SUMERIZE .235 COMPARE.................. 242 C STO PEEP C ROUTINE TO PREPARE STOP POINT INFORMATION ARRAY C READS FROM UNIT 3 WRITES ON UNIT 4 C EXPECTS NEGATIVE STOP NUMBER TO END FILE C DEBUG OUTPUT ON UNIT 8 DIMENSION STOPX (200) ,STOPY (200) ,STOPZ (200) CNVRTX=2. 5189 CNVRTY=2.5286 C INPUT NUMBER OF STOPS READ (3,2)NSTOPS 2 FORM AT(14) C PREPARE THE ARRAY DO 4 1=1,200 4 STOPX (I) =-9999. . C OUTPUT HEADINGS WRITE (8,201)NSTOPS 201 FORMAT (• STOPREP FQR»,I5,' STOPS'//) WRITE(8,202) 202 FORMAT (' STOP EAST X NORTH Y ELEVATION Z C LOOP OVER STOP POINTS DO 60 1=1,NSTOPS 5 READ (3,6)ISTOP,IX,IY,IZ 6 F0RMAT(I4,2I5,I4) IST=ISTOP IF (1ST.LT.0)IST = -IST C CONVERT X Y AND Z TO REAL X=IX Y=IY STOPZ (1ST) =IZ C PREPARE RAISED ORIGIN I F ISTOP I S NEGATIVE ORIGX=0.0 ORIGY=0.0 IF (ISTOP. GT.O) GO TO 10 ORIGX=0.0 ORIGY=6000.0 C CONVERT X AND Y TO METERS AND ADD RAISED ORIGIN 10 STOPX (1ST) =X*CNVRTX+ORIGX STOPY (1ST)=Y*CNVRTY+ORI3Y C STOP NOT USED I F IX IS NEGATIVE IF (IX.LT.O) STOPX(IST) =-999 C DEBUG OUTPUT WRITE(8,50) 1ST,STOPX (1ST) ,STOPY (1ST) ,STOPZ (1ST) 50 FORMAT(15,3F10.0) 60 CONTINUE C OUTPUT RESULTING STOP POINT INFORMATION ARRAY C USING UNFORMATTED WRITE 100 WRITE (4)NSTOPS,STOPX,STOPY,STOPZ STOP END 169 C DIGFIX *** MOST SET ORIGIN *** C PROGRAM TO PLOT DIGITIZED OUTPUT AND C PREPARE EASILY USED METRIC POLYGON FILES C READS FROM UNIT 3 - WRITES ON UNIT 4 C MUST RUN PLOT.Q PAR= (BLANK) TO GET POLYS DRAWN C CONSECUTIVELY ON SMALL PAPER DIMENSION INCH(20) , X METER (400) , YMETER (400) DIMENSION XINCH (400) , YINCH (400) C ORIGIN INCREMENT WILL BE IN METERS FROM MAP ORIGIN C USE 0.0 ; 0.0 FOR LOGHIST1 + 2 0.0 ; 6000.0 FOR 3 + 4 + 5 C USE 2000.0 ; 4000.0 FOR KL1 . . . 1 1 OEIGX=2000.0 ORIGY=4000.0 C CONVERSION FACTOR CHANGES DIGITIZER INCHES TO MAP METERS CNVRTX=251.89 CNVRTY=252.86 J = 0 XMIN=999. 0 XMAX=0.0 YMIN=999. . YMAX=0.0 C INPUT ONE DIGITIZER OUTPUT LINE 9 READ(3,10)INCH 10 FORMAT(20I5) C INITIALIZE INPUT LINE POSITION COUNTER 1=1 C LOOP OVER POLYGON POINT COORDINATE PAIRS 20 J=J+1 C CHECK FOR END OF POLYGON IF (INCH (I) . EQ.-9999) GO TO 60 C CHECK FOR BLANKS IF (INCH (I) .NE.O) GO TO 25 J=J-1 GO TO 30 C SAVE POLY COORDINATES IN INCHES 25 XINCH (J) =INCH (I) YINCH (J) =INCH (1 + 1) C CORRECT THE DECIMAL POINT XINCH (J) =XINCH (J) *0. 0 1 YINCH (J) =YINCH (J) *0.01 C CONVERT TO MAP METERS AND INCREMENT FOR RAISED ORIGIN XMETER (J) =XINCH (J) *CNVRTX+ORIGX YMETER(J)=YINCH(J)*CNVRTY+ORIGY C CHECK FOR MAX AND MIN POINTS IF (XINCH (J) .. LT. XMIN) XMIN=XINCH (J) IF (XINCH (J) .GT. XMAX) XMAX = XINCH (J) IF (YINCH (J) . LT. YMIN) YMIN= YINCH (J) I F (YINCH (J) . GT. YMAX) YMAX = YINCH (J) 170 C INCREMENT INPUT LINE POSITION COUNTER 30 1=1+2 C CHECK FOR END OF INPUT LINE I F ( I . GT. 19) GO TO 9 GO TO 20 C CHECK FOR END OF FILE - NEGATIVE POLYGON NUMBER 60 IF (INCH (1 + 1) .LT. 1) GO TO 100 C END OF POLYGON C GET NUMBER OF POINTS NPT=J-1 C DETERMINE MAX AND MIN IN METERS XMETN=XMIN*CNVRTX+ORIGX XMETX=XMAX*CNVRTX+ORIGX YMETN=YMIN*CNVRTY+ORIGY YMETX=YMAX*CNVRTY+ORIGY C C OUTPUT POLYGON INFORMATION - METRIC WRITE (4)INCH (1+1) ,NPT,XMETN,XMETX,YMETN,YMETX C OEJTPUT METRIC POLYGON COORDINATES CALL POLYWR (NPT,XMETER,YMETER) C C PREPARE PLOT FILE - INCHES CALL POLYT (NPT,XINCH,YINCH,XMAX,XMIN,YMIN) C C ZERO POLYGON POINT COUNTER J=0 C PRESET POLYGON RANGE LIMITS XMIN=999.0 XMAX=0.0 YMIN=999.0 YMAX=0.0 GO TO 30 C C END OF INPUT F I L E - PUT MARKER IN METRIC OUTPUT FILE 100 NPOLY=-9999 NPT=0 WRITE(4)NPOLY,NPT,XMIN,XMAX,YMIN,YMAX C TERMINATE PLOT FILE CALL PLOTND STOP END C C SUBROUTINE POLYWR (NPT , XCOOR, YCOOR) C ROUTINE TO FIT AND OUTPUT ARRAY OF POINTS OF A POLYGON DIMENSION XCOOR (400) ,YCOOR (40 0) ,X200 (200) , Y200 (200) DIMENSION X 100 (100) ,1*100 (100) rX50 (50) ,Y5 0 (50) DIMENSION X400(400) ,Y400 (400) ,X25(25) ,Y25 (25) EQUIVALENCE (X400 (1) ,X200 (1) ,X100 (1) ,X50 (1) , X25 (1) ) EQUIVALENCE (Y400 (1) , Y200 (1) , Y 1 00 (1) , Y50 (1) ,Y25(1) ) DO 5 1=1,NPT X400 (I) =XCOOR (I) 5 Y400 (I) =YCOOR(I) IF (NPT. LE. 200) GO TO 10 WRITE (4) XCOOR, YCOOR GO TO 100 171 10 IF (NPT. LE. 100) GO TO 20 WRITE (4) X200,Y200 GO TO 100 20 IF(NPT.LE.50)GO TO 30 WRITE (4) X100,Y100 GO TO 100 30 IF(NPT.LE.25)GO TO 40 WRITE (4) X50,Y50 GO TO 100 40 WRITE (4)X25,Y25 100 RETURN END C C SUBROUTINE POLYT(NPT,XCOOR,YCOOR,XMAX,XMIN,YMIN) C ROUTINE TO PLOT POLYGONS CONSECUTIVELY - EACH SNUG TO AXIS DIMENSION XCOOR (400) , YCOOR (400) , X (4 00) , Y (400) C TRANSLATE POLYGON SNUG TO AXIS DO 20 1=1,NPT X (I) =XCOOR (I) -XMIN 20 Y (I) =YCOOR (I)-YMIN C PREPARE PLOT FI L E CALL LINE(X,Y,NPT,1) C SHIFT THE ORIGIN XMOVE=XMAX-XMIN CALL PLOT (XMOVE,0.0,-3) RETURN END 172 C POLYTHIN C ROUTINE TO THIN MAPPING TYPE POLYGONS AND GIVE AREAS C WRITTEN BY KIM SCOULLAR C READS POLYS ON 3 WRITES THINNED ONES ON 4 DIMENSION AX (400) ,AY (400) ,BX (400) ,BY (400) C SET THINNING TOLERENCE USED 10.0 FOR LH TOL= 5.0 C SET CONVERSION FACTOR FOR PLOTTING CNVRT=1.0/252. 4 C INPUT ONE POLYGON 10 CALL POLYRD(NA,AX,AY,NP0LY,XMIN,XMAX,YMIN,YMAX,IEND) C CHECK FOR END OF POLYGONS I F (IEND.EQ. 1) GO TO 50 C THIN THE POLYGON CALL THIN(AX,AY,NA,BX,BY,NB,TOL) C GET AREA OF THINNED POLYGON CALL AREA (BX,BY,NB,PAREA) C***DEBUG REMOVE (COMMENT) THE PLOTS C PLOT THE ORIGINAL POLYGON C CALL PLOT ( (AX (NA) -XMIN) *CNVRT, (AY (NA) -YMIN) *CNVRT, 3) C DO 60 1=1,NA C60 CALL PLOT ((AX (I)-XMIN) *CNVRT, (AY (I)-YMIN) *CNVRT, 2) C MOVE THE ORIGIN C CALL MAXMX(XMX) C CALL PLOT (XMX+0. 5,0. 0,-3) C PLOT THE THINNED POLYGON C CALL PLOT ( (BX (NB)-XMIN) *CNVRT, (BY (NB)-YMIN) *CNVRT, 3) C DO 70 1=1,NB C70 CALL PLOT ((BX (I)-XMIN) *CNVRT, (BY (I)-YMIN) *CNVRT,2) C MOVE THE ORIGIN C CALL MAXMX(XMX) C CALL PLOT (XMX+0. 5,0. 0,-3) C OUTPUT THE POLYGON 50 CALL POLYWR(NB,BX,BY,NPOLY,XMIN,XMAX, 1 YMIN,Y MAX,PAREA,IEND) C OUTPUT NUMBER OF POINTS BEFORE AND AFTER THINNING AND AREA PHAREA=PAREA/1 0000.0 WRITE(8,80)NPOLY,NA,NB,PHAREA 80 FORM AT (* POLY•,16,5X,•BEFORE',18,5X,•THINNED',18, 15X,'AREA',F7.2,• HECTARES') C LOOP OVER POLYGONS IF (IEND. EQ. 0) GO TO 10 C CALL PLOTND STOP END C C SUBROUTINE THIN(AX,AY,NA,BX,BY,NB,TOL) C ROUTINE TO KEEP ONLY POINTS NECCESSARY TO SHAPE OF POLYGON C WRITTEN BY KIM SCOULLAR DIMENSION AX(NA) , AY (N A) ,BX(NA) , BY (N A) ,KEEP(400) 173 C ZERO THE KEEP ARRAY NM=N A-1 DO 10 1=2,NM 10 KEEP (I) =0 C KEEP FIRST AND LAST POINTS OF POLYGON KEEP (1) =1 KEEP (NA) = 1 C PRESET VALUE OF COUNTER FOR NEXT POINT IN LOOP C OVER PAIRS OF POINTS TO BE KEPT 12 INEXT=1 MOVE=0 C C LOOP OVER PAIRS OF POINTS TO BE KEPT C UPDATE PRESENT COUNTER 15 ITHIS=INEXT C GET NEXT POINT OF POINTS TO BE KEPT 17 INEXT=INEXT+1 I F (INEXT. GT. NA) GO TO 35 IF (KEEP (INEXT) .EQ.O) GO TO 17 C IF POINTS ARE ADJACENT, NEED NOT CHECK BETWEEN IF (INEXT. EQ.ITHIS + 1) GO TO 15 C PRESET LENGTH AND POINT NUMBER OF LONGEST SO FAR BIGEST=-1.0 LONG=0 C CHECK FOR SLOPE OF KEEP LINE UNDEFINED -IS LINE VERTICAL IF (AX (INEXT) .NE. AX (ITHIS) ) GO TO 19 SLP=9999999 (. GO TO 20 C GET SLOPE OF KEEP LINE 19 SLP= (AY (INEXT) -AY (ITHIS) ) /(AX (INEXT) -AX (ITHIS) ) C CHECK FOR PERPENDICULAR SLOPE UNDEFINED 20 IF(SLP.NE.O)GO TO 21 PSLP=9999999. GO TO 22 C GET SLOPE OF PERPENDICULAR LINES 21 PSLP=-1.0/SLP C GET CONSTANT FOR EQUATION OF KEEP LINE 22 CKEEP=AY(ITHIS)-SLP*AX (ITHIS) C LOOP OVER POINTS BETWEEN THOSE TO BE KEPT ITP=ITHIS+1 INM=INEXT-1 DO 25 IP=ITP,INM C GET CONSTANT FOR EQUATION OF TEST LINE CTEST= AY (IP) -PSLP*AX (IP) C GET INTERCEPT POINT COORDINATES XINT= (CTEST-CKEEP)/(SLP-PSLP) YINT=SLP*XINT+CKEEP C GET LENGTH OF TEST SEGMENT TLENG=SQRT ( (AX (IP)-XINT) **2 + (AY (IP) -YINT) **2) C CHECK FOR THIS BEING THE LONGEST SO FAR I F (TLENG. LT. BIGEST) GO TO 25 C UPDATE LENGTH OF LONGEST SO FAR BIGEST=TLENG LONG=IP 25 CONTINUE C 174 C KEEP THE POINT WITH THE GREATEST DISTANCE C I F THE TOLERENCE HAS BEEN EXCEEDED IF(BIGEST.LT.TOL)GO TO 15 KEEP (LONG) = 1 MOVE=1 GO TO 15 C C CHECK FOR AT LEAST ONE BEING KEPT THIS ROUND 35 IF (MOVE.EQ. 0) GO TO 45 GO TO 12 C C TRANSFER POINTS TO BE KEPT 45 J=0 DO 50 1=1,NA IF (KEEP (I) .EQ.O) GO TO 50 J=J+ 1 BX(J) =AX(I) BY (J) =AY (I) 50 CONTINUE C TRANSFER NEW POLYGON SIZE NB=J RETURN END C C SUBROUTINE POLYWR(NPT,XCOOR,YCOOR,NPOLY,XMIN,XMAX, 1 YMIN,YMAX,PAREA,IEND) C ROUTINE TO FIT AND OUTPUT ARRAY OF POINTS OF A POLYGON DIMENSION XCOOR (4 00) , YCOOR (4 0 0) ,X200 (200) , Y200 (200) DIMENSION X 100 (100) ,Y 100 (100) ,X50 (50) ,Y50 (50) DIMENSION X400 (40 0) , Y400 (400) ,X25 (25) ,Y25(25) EQUIVALENCE (X4 00 (1) ,X200 (1) , X100 (1) ,X50 (1) , X2 5 (1) ) EQUIVALENCE (Y400 (1) ,Y200 (1) , Y100 (1) ,Y50 (1) ,Y25 (1) ) C CHECK FOR IEND=1 SIGNEL TO END FILE I F (IEND. EQ. 1) GO TO 100 C OUTPUT INFORMATION FOR THIS POLYGON WRITE (4)NPOLY,NPT,XMIN,XMAX,YMIN,YMAX,PAREA C DO 5 1=1,NPT X400 (I) =XCOOR (I) 5 Y400 (I) = Y CO OR (I) IF(NPT.LE.200)GO TO 10 WRITE (4)XCOOR,YCOOR RETURN 10 IF(NPT.LE.100)GO TO 20 WRITE (4) X200,Y200 RETURN 20 I F (NPT. LE. 50) GO TO 30 WRITE(4)X100,Y100 RETURN 30 I F (NPT. LE. 25) GO TO 40 WRITE (4) X50,Y50 RETURN 40 WRITE (4) X25, Y25 RETURN 175 C EH D THE FILE 100 NPOLY=-9999 NPT=0 WRITE (4)NPOLY,NPT,XMIN,XMAX,YMIN,YMAX, PAREA RETURN END C C SUBROUTINE POLYRD(NPT,XCOOR,YCOOR,NPOLY,XMIN,XMAX, 1 YMIN,Y MAX,IEND) C ROUTINE TO INPUT METRIC POLYGON FILES - READS FROM 9 C END OF FILE CAUSES IEND=1 TO BE RETURNED DIMENSION XCOOR (400) ,YCOOR(400) ,X25(25) ,Y25 (25) DIMENSION X400 (400) ,Y400 (400) ,X200 (200) ,Y200 (200) DIMENSION X100 (100) , 1100 (100) ,X50(50) ,Y50(50) EQUIVALENCE (X400 (1) ,X200 (1) , X1 00 (1) , X50 (1) , X25 (1) ) EQUIVALENCE (Y400 (1) ,Y20 0 (1) ,Y100 (1) ,Y5 0 (1) ,Y25(1) ) IEND=0 READ(3) NPOLY,NPT,XMIN,XMAX,YMIN,YMAX C CHECK FOR END OF FI L E IF (NPOLY. LT. 1) GO TO 100 C FIT POLYGON INTO SMALLEST POSSIBLE ARRAY IF (NPT. LE. 200) GO TO 20 READ (3) X400,Y400 GO TO 60 20 IF (NPT. LE. 100) GO TO 30 READ (3) X200,Y200 GO TO 60 30 IF (NPT. LE. 50) GO TO 40 READ (3) X100,Y100 GO TO 60 40 IF(NPT.LE.25)GO TO 50 READ (3) X50, Y50 GO TO 60 50 READ (3) X25, Y25 60 DO 70 1=1,NPT XCOOR(I)=X400(I) 70 YCOOR (I) =Y400 (I) RETURN 100 IEND=1 RETURN END C C SUBROUTINE AREA (X,Y,N,PAREA) C ROUTINE TO FIND THE AREA OF POLYGON X,Y WITH N POINTS C AREA BY COORDINATES - DAVIS AND FOOT SURVEYING DIMENSION X (N) , Y (N) PAREA=Y (1) * (X (N) -X (2) ) M=N- 1 DO 5 I=2,M 5 PARE A=PAREA+ Y (I) * (X (I-1) -X (1+1) ) PAREA=PAREA + Y (N) * (X (N-1) -X (1) ) PAREA=ABS (0,. 5*PAREA) RETURN END C FD RAXINIT C PROGRAM TO INIT I A L I Z E A FOREST AXIS FILE C C WRITTEN BY KIM SCOOLLAR C C READS STOP POINTS FROM UNIT 3 - WRITES ON UNIT 4 DIMENSION AXD1 (25,16) ,AXD2 (25,16) ,NPOLY (25,15) C***DEBUG STOP ARRAYS SHOULD BE (200) DIMENSION STOPX (200) ,STOPY (200) ,STOPZ (200) C INPUT THE STOP POINT FI L E READ (3) NSTOPS,STOPX,STOPY,STOPZ C LOOP OVER STOPS DO 80 1=1,NSTOPS C CHECK FOR UNUSED STOPS IF (STOPX (I) . LT.O. 0) GO TO 80 C PRESET AXIS VALUES FOR THIS STOP C LOOP OVER AXIS DO 40 J=1,16 C LOOP OVER TYPES DO 30 K=1,25 C ZERO THE VALUES AXD1(K,J)=0.0 AXD2 (K, J) =0.0 30 NPOLY(K,J)=0 40 CONTINUE C OUTPUT THE PREPARED ARRAYS WRITE (4)AXD1,AXD2,NPOLY 80 CONTINUE STOP END 177 C FDRAXUPD C PROGRAM TO UPDATE FOREST AXIS FILE BY INTERSECTING AXIS C WITH ONE FOREST CANOPY-HEIGHT POLYGON FILE C WRITTEN BY KIM SCOULLAR C READS FOREST TYPE POLYGONS FROM 5 READS FOREST AXIS ON 7 C READS STOP POINTS ON 3 WRITES NEW FOREST AXIS ON 4 C TEMPORARY DEBUG OUTPUT ON UNIT 8 DIMENSION STOPX (200) , STOPY (200) , STOPZ (200) ,XINT (30) COMMON AXD1 (25,16),AXD2(2 5,16) ,NPOLY(25, 16) DIMENSION XRINC (16) ,YRINC (16) ,IAXQAD(16) ,AXANGL(16) DIMENSION XCOOR (4 00) , YCOOR (4 00) , XPOLY (8000) ,YPOLY (80 00) DIMENSION NPOLYS(60) ,NPTS (60) ,XMINS(60) ,XMAXS(60) DIMENSION YMAXS (60) , NSIDE (30) ,YINIT(30) ,ISTART(60) DIMENSION YMINS (60) DATA IAXQAD/1,1,1, 1, 1,4,4,4,4,3,3,3,3,2,2,2/ DATA AXANGL/0.0,22.5,45.0,67.5,90.0,6 7.5,45.0,22.5,0.0, 122.5,45.0,67.5,90.0,6 7.5,45.0,22.5/ C INPUT STOP POINT FILE READ (3) NSTOPS,STOPX,STOPY,STOPZ C PREPARE THE ARRAY OF POLYGONS C ZERO THE COUNTERS IP=0 KP=0 C LOOP OVER POLYGONS 5 KP=KP+1 C INPUT ONE POLYGON CALL POLYRD(NPT,XCODR,YCOOR,NPOL,XMIN,XMAX,YMIN,YMAX, 1 PARE A, I END) C CHECK FOR END OF POLYGONS I F (IEND. EQ. 1) GO TO 50 C LOOP OVER POINTS IN POLYGON DO 10 K=1,NPT C PREPARE THE ARRAYS XPOLY (IP+K) =XCOOR (K) 10 YPOLY (IP+K) =YCOOR (K) C PREPARE ARRAYS OF POLYGON INFORMATION ISTART(KP)=IP+1 NPOLYS(KP) =NPOL NPTS(KP)=NPT XMINS (KP) =XMIN XMAXS (KP) =XMAX YMINS (KP) = YMIN YMAXS (KP) =YMAX C INCREMENT POSITION COUNTER IP=IP+NPT GO TO 5 C ON ENDFILE SET NUMBER OF POINTS EQUAL ZERO 50 NPTS(KP)=0 178 C PREPARE REMOTE POINT INCREMENT FOR ANY STOP C TO USE SIMPLY ADD TO STOP POINT DO 7 INC=1,16 7 CALL QAD (0. 0 , 0. 0 , IAXQAD (INC) ,AXANGL(INC) , 1200.0, 1 XRINC(INC) ,YRINC (INC) ) C UPDATE FOREST AXIS C LOOP OVEB STOPS DO 80 IST=1,NSTOPS C CHECK FOR UNUSED STOP IF (STOPX (1ST) .LT. 0. 0) GO TO 80 C INPUT FOREST AXIS FOR THIS STOP READ (7) AXD1,AXD2,NPOLY C INITIALIZE POLYGON COUNTER KP=0 C LOOP OVER FOREST TYPE POLYGONS 9 KP=KP+1 C CHECK FOR END OF POLYGONS IF (NPTS (KP) . EQ. 0) GO TO 70 C SELECT FOR POLYGONS WITHIN RANGE OF THE STOP POINT C REJECT THOSE OUTSIDE THE RANGE RANGE=1200.0 I F (XMINS (KP) .GT. STOPX (1ST) +RANGE) GO TO 60 IF(XMAXS(KP).LT.STOPX(1ST)-RANGE)GO TO 60 I F (YMINS (KP) .GT.STOPY (1ST)+RANGE) GO TO 60 IF (YMAXS (KP) .LT. STOPY (1ST)-RANGE) GO TO 60 C POLYGON WITHIN RANGE HAS BEEN FOUND C LOOP OVER AXIS DO 42 IAX=1,16 C INTERSECT AXIS WITH POLYGON CALL VECPLY (STOPX (1ST) ,STOPY (1ST) ,XPOLY (ISTART (KP) ) , 1 YPOLY (ISTART (KP) ) ,NPTS (KP) ,STOPX (1ST) +XRINC (IAX) , 1STOPY (1ST)+YRINC(IAX) ,XINT,YINT,NSIDE,NINT,INOUT) C INSERT RESULT INTO ARRAYS C DID INTERSECTION OCCUR IF (NINT.EQ.O) GO TO 42 C FIND FIRST EMPTY POSITION IN ARRAYS IAR=0 23 IAR=IAR+1 I F (IAR. GT. 25) GO TO 24 IF (NPOLY (IAR,IAX) .EQ.O) GO TO 25 GO TO 2 3 24: CALL SP ACE (1ST , IAX , I AR) C STORE DISTANCE BOUNDS DEFINING LINE SEGMENTS INSIDE C WAS STOP POINT OUTSIDE THE POLYGON 25: IF (INOUT. NE* -fl) GO TO 31 C FIRST POINT IN ARRAYS STARTS PAIR OF BOUNDS L=1 GO TO 3 9 C WiS STOP POINT INSIDE POLYGON 31 IF (INOUT. NE. 1) GO TO 32 C STOP POINT IS FIRST DISTANCE, BUT CALL IT ONE METER AXD1 (IAR,IAX) =1. . C SECOND BOUND ON FIRST SEGMENT IS FIRST POINT IN ARRAYS CALL SEGLTH (STOPX (1ST) ,STOPY (1ST) ,XINT( 1) , YINT (1) , 1AXD2(IAR,IAX)) NPOLY (IAR,IAX) =NPOLYS (KP) 179 IAR=IAR+1 IF (IAR.GT. 25) CALL SPACE (I ST , I AX , I AR) L=2 GO TO 39 C POINT WAS ON LINE C WAS STOP POINT ON LINE"HEADING IN - EVEN NUMBER OF POINTS 32 IF(NINT/2*2.NE.NINT)GO TO 33 C STOP POINT IS FIRST DISTANCE, BUT CALL IT ONE METER AXD1 (IAR,IAX)=1. C SECOND BOUND ON FIRST SEGMENT IS SECOND POINT IN ARRAYS CALL SEGLTH (STOPX (1ST) ,STOPY (1ST) , XINT (2) , YINT (2) , fl AXD2 (IAR, IAX) ) NPOLY (IAR,IAX) =NPOLYS (KP) IAR=IAR + 1 IF (IAR.GT. 25) CALL SPACE (1ST, IAX, IAR) L=3 GO TO 39 C POINT ON LINE HEADING OUT-START SECOND POINT IN ARRAYS 33 L=2 C STORE REMAINING DISTANCE BOUNDS 39 DO 41 I=L,29,2 C CHECK FOR END OF INTERSECTIONS IF (1 + 1. GT. NINT) GO TO 42 CALL SEGLTH (STOPX(1ST) ,STOPY(IST) ,XINT(I) ,YINT(I) , 1AXD1 (IAR,IAX) ) CALL SEGLTH (STOPX (1ST) ,STOPY (1ST) , XINT (1 + 1) , YINT (1 + 1) , 1 AXD2 (IAR,IAX) ) NPOLY (IAR,IAX) =NPOLYS (KP) IAR=IAR+1 I F (IAR.GT. 25) CALL SP ACE (1ST , IAX , IAR) 41 CONTINUE 42 CONTINUE 60 GO TO 9 C OUTPUT THE ARRAYS FOR THIS STOP 70 WRITE (4)AXD1,AXD2,NPOLY C DO 7 9 KAX=1, 16 C WRITE(8,71) IST,KAX C71 F0RMAT(2I8) C WRITE (8,72) (AXD1 (KAR , KAX) ,KAR=1,20) C WRITE(8,72) (AXD2 (KAR , KAX) , KAR= 1 , 20) C72 FORMAT (20F6. 0) C WRITE(8,73) (NPOLY (KAR, KAX) , KAR= 1 , 20) C73 FORMAT(20I6) WRITE (8,75) 1ST 75 FORM AT ( ' FORAX UPDATED FOR STOP',15) 80 CONTINUE STOP END C C SUBROUTINE SPACE(1ST,IAX,IAR) C ROUTINE TO PUT FARTHEST SEGMENT IN LAST POSITION COMMON AXD1 (25,16),AXD2(2 5,16) ,NPOLY(25,16) C IS LAST POSITION ALREADY CLEAR IF(NPOLY (25,IAX) . EQ.O) GO TO 25 180 C FIND THE FARTHEST IBIG=1 DO 7 1=2,25 7 IF (AXD1 ( I , I AX) . GT. A XD 1 (IBIG,IAX) ) IBIG=I C IS FARTHEST AT THE END ALREADY I F (IBIG. EQ. 25) GO TO 25 C SAVE FARTHEST TEMPORARILY TEMPD1 = AXD1 (IBIG,IAX) TEMPD2= AXD2 (IBIG,IAX) TEMPLY=NPOLY (IBIG,IAX) C PUT END ONE WHERE FARTHEST IS AXD1 (IBIG,IAX) =AXD1 (25,IAX) AXD2 (IBIG, I AX) =AXD2 (25,IAX) NPOLY (IBIG,IAX) =NPOLY (25,1 AX) C PUT FARTHEST IN LAST POSITION AXD1 (25,IAX)=TEMPD1 AXD2(25,IAX)=TEMPD2 NPOLY(25,IAX)=TEMPLY C SET IAR FOR LAST POSITION 25 IAR=25 C OUTPUT A MESSAGE WRITE (6,30) IST,IAX 30 FORM AT (' MAKE SPACE STOP',I4,» AXIS',14) RETURN END C C SUBROUTINE POLYRD (NPT,XCOOR,YCOOR,NPOLY,XMIN,XMAX, 1 YMIN,YMAX,PAREA,IEND) C ROUTINE TO INPUT METRIC POLYGON FILES - READS FROM 5 C END OF FILE CAUSES IEND=1 TO BE RETURNED DIMENSION XCOOR (400) ,YCOOR(400) ,X25(25) ,Y25 (25) DIMENSION X400 (400) ,Y400 (400) ,X200 (200) ,Y200 (200) DIMENSION X100 (100) ,7100 (100) ,X50(50) ,Y50 (50) EQUIVALENCE (X4 00 (1) ,X20 0 (1) , X 100 (1) , X5 0 (1) , X2 5 (1) ) EQUIVALENCE (Y400 (1) ,Y20 0 (1) ,7 100 (1) , 750 (1) ,725 ( 1) ) IEND=0 READ(5) NPOLY,NPT,XMIN,XMAX,YMIN,YMAX,PAREA C CHECK FOR END OF FI L E IF (NPOLY. LT. 1) GO TO 100 C FIT POLYGON INTO SMALLEST POSSIBLE ARRAY IF (NPT. LE.200) GO TO 20 READ (5)X400,Y400 GO TO 6 0 20 IF(NPT.LE. 100) GO TO 30 READ (5) X200, Y200 GO TO 60 30 IF(NPT.LE.50)GO TO 40 READ (5) X100,Y100 GO TO 60 40 IF(NPT.LE.25)GO TO 50 READ (5) X50, Y50 GO TO 60 50 READ(5)X25,Y25 181 60 DO 70 1=1,NPT XCOOR (I) =X400 (I) 70 YCOOR (I) =Y400 (I) RETURN 100 IEND=1 RETURN END C C SUBROUTINE QAD(PT1X,PT1Y,IQUAD,ANGLE,DIST,PT2X,PT2Y) C DETERMINE THE COORDINATES OF A POINT C GIVEN ANGLE, QUADRATE AND DISTANCE FROM A GIVEN POINT C CONVERT DISTANCE TO REAL AND ANGLE TO RADIANS RANGLE=ANGLE*0.01745 C DETERMINE X COORDINATE FROM ZERO PT2X=DIST*SIN(RANGLE) IF(IQUAD. EQ. 2. OR. IQUAD. EQ.3) PT2X=-PT2X C DETERMINE Y COORDINATE FROM ZERO PT2Y = DIST*COS (RANGLE) I F (IQUAD. EQ. 3. OR. IQUAD. EQ. 4) PT2Y=-PT2Y C ADD COORDINATES FROM ZERO TO STARTING POINT PT2X=PT2X+PT1X PT2Y=PT2Y+PT1Y RETURN END C C SUBROUTINE SEGLTH (PT A 1, PTA2, PTB 1 , PTB2 ,RLTH) C FIND THE LENGTH OF A LINE SEGMENT DEFINED BY TWO POINTS IF (PTA1.EQ.PTB1.AND.PTA2.EQ.PTB2)GO TO 5 C DETERMINE LENGTH - HYPOTENUES OF RIGHT TRIANGLE RLTH=SQRT((PTB1-PTA1)**2 +(PTB2-PTA2)**2) RETURN 5 RLTH=0.0 RETURN END C C SUBROUTINE VECPLY(PX,PY,XX,YY,N,XVECT,YVECT, 1XINT,YINT,NSIDE,NINT,INOUT) C INTERSECTS A VECTOR WITH A POLYGON C USES INTEGER COMPARISON - DOES NOT DETECT NARROW CROSSINGS INTEGER NSIDE(30),SDINT,SLENG,SXK,IFIX INTEGER SXP,SYP,SXI,SYI,SXJ,SYJ,SCEPT REAL*4 XLENG, XVECT, YVECT, XINT (30) , YINT(30) REAL*4 VCOS,VSIN,XVEC,YVEC,CEPT,PXKJ,TEMP,FLOAT RE AL*4 XX (N) ,YY (N) , XP , YP, X I , Y I , X J , Y J , PXIJ,PXK J REAL*4 PX,PY,XIS,YIS,XJS,YJS,XK,YKS,XKS,PYIJ, SQRT C * C * WRITTEN BY DALE TROYER C * MODIFIED BY KIM SCOULLAR C * THIS VERSION RETURNS ONLY ONE POINT FOR EACH CROSSING C * 182 C * PIP DETERMINES I F A POINT IS INSIDE OR OUTSIDE OF * C * k POLYGON. C * THE POINT IN QUESTION IS (PX, PY) . . C * THE POLYGON IS DEFINED BY ARRAY OF COORDINATE PAIRS C * XX AND YY. . C * N I S THE NUMBER OF POINTS IN XX AND YY.. C * INOUT IS SET TO 1 I F THE POINT IS INSIDE THE POLYGON.. C * INOUT IS SET TO -1 I F POINT IS OUTSIDE THE POLYGON. . C * INOUT SET TO 0 IF POINT PX PY IS ON A BOUNDARY LINE. . C * XVECT, YVECT DEFINES VECTOR ON WHICH TEST IS MADE. C * XVECT, YVECT CAN BE ANY COODINATE NOT = TO PX, PY. . C * XINT, YINT ARE THE POINTS AT WHICH POLYGON INTERSECTS C * THE SEGMENT DEFINED BY THE TWO POINTS. C * VECTOR STARTS AT POINT PX,PY ; CONTINUES TO INFINITY.. C * NSIDE IS SIDE NUMBER ON WHICH INTERSECTION OCCURRED. . C * I F VECTOR INTERSECTS MORE THAN 1 SIDE INTERSECTIONS C * ARE SORTED SUCH THAT THE INTERSECTIONS NEAREST C * PX,PY ON THE VECTOR COME FIRST. C * THE INTERSECTION FARTHEST FROM PX,PY ALONG C * THE VECTOR WILL BE LAST. .  C * C ' C * THE POLYGON IS TRANSLATED SUCH THAT THE POINT PX,PY IS C * AT THE ORIGIN BY SUBTRACTING PX,PY FROM EVERYTHING. C * THE POLYGON IS THEN ROTATED SUCH THAT THE VECTOR C * DEFINED BY XVECT YVECT LIES ON THE Y AXIS. . C * THIS IS DONE INITIALLY FOR THE FIRST TWO SIDES C * AND FOR EACH SIDE AFTER 1 AT A TIME. „ C * THIS AVOIDS STORING POLYGON (WHICH MAY BE LARGE) TWICE. C * C * WE FIRST ASSUME THE POINT IS OUTSIDE.. C * c XVEC = XVECT - PX YVEC = YVECT - PY XLENG = SQRT (XVEC*XVEC+YVEC*YVEC) VSIN = XVEC / XLENG VCOS = YVEC / XLENG NINT = 0 XIS=XX(1) - PX YIS=YY(1) - PY XJS=XX(2) - PX YJS=YY(2) - PY XI = XIS * VCOS - YIS * VSIN YI = XIS * VSIN + YIS * VCOS C XJ = XJS * VCOS - YJS * VSIN YJ = XJS * VSIN + YJS * VCOS J=2 INOUT=-1 SXI=2.0*XI-FLOAT(IFIX(XI)) IF (SXI. NE.O) GO TO 32 183 C POLYGON STARTS ON VECTOR - WHICH SIDE DOES IT COME FROM K=N+1 30 K=K-1 XKS=XX (K) -PX YKS=YY (K) -PY XK=XKS*VCOS-YKS*VSIN SXK=2.0*XK-FLOAT(IFIX (XK) ) IF(SXK.EQ.0)GO TO 30 C c * C * THE PROGRAM COUNTS THE NUMBER OF TIMES A POLYGON LINE C * SEGMENT CROSSES THE POSITIVE Y AXES.. C * I F AN ODD NUMBER OF SEGMENTS CROSS THE POSITIVE Y AXES C * THE POINT I S INSIDE. . C * IF AN EVEN NUMBER OF SEGMENTS CROSS THE POSITIVE Y AXES C * THE POINT IS OUTSIDE. C * c 32 DO 2 I = 1, N IF (SXI.NE. 0) XK=XI XI = XJ YI = YJ J = 1 + MOD ( J , N) C *******PERFORM TRANSLATION OF AXES****** XJS = XX (J) - PX YJS = YY (J) - PY C ******PERFORM ROTATION OF AXES ****** XJ = XJS * VCOS - YJS * VSIN YJ = XJS * VSIN + YJS * VCOS c * C * HERE WE RULE OUT ALL SEGMENTS WHOS END POINTS HAVE C * X COORDINATES WITH THE SAME SIGN. C * I . E . . X I * X J > ZERO.. C * c SXI=2.0*XI-FLOAT(IFIX(XI)) SXJ=2.0*XJ-FLOAT(IFIX(XJ) ) PXIJ=FLOAT (SXI) *FLOAT(SXJ) IF (PXIJ.GT.0.15) GO TO 2 c * C * HERE WE RULE OUT ALL SEGMENTS THAT HAVE BOTH Y VALUES C * LESS THAN ZERO. C * C * THESE WILL NOT INTERSECT THE POSITIVE Y AXIS.. C * C SYI=2.0*YI-FLOAT(IFIX(YI) ) SYJ=2.0*YJ-FLOAT (IFIX (YJ) ) I F (SYI.LT.O.AND. SYJ.LT. 0) GO TO 2 184 C C ******************************************************** c * C * WE NOW MUST RESORT TO CALCULATION OF THE Y INTERCEPT. C * BUT FIRST MUST ENSURE THAT DENOMENATOR OF CALCULATION C * WILL NOT BE ZERO. C * C * THIS WILL OCCUR I F XI = XJ = 0. C * IF THIS IS TRUE AND YP IS LESS THAN ZERO, POINT IS ON C * THE SEGMENT. .OTHERWISE SEGMENT COINCIDES WITH Y AXES C * BUT DOES NOT GO THRU ORIGIN.. THIS IS NOT COUNTED AS C * AN INTERSECTION WITH THE Y AXES. C * Q ******************************************************** c IF (SXI.EQ.O .AND. SXJ.EQ.O) GO TO 7 I F (SXI. EQ. SXJ) GO TO 2 C DO NOT COUNT SECOND POINT OF THIS SEGMENT ON VECTOR C IT WILL BE TAKEN AS FIRST POINT OF NEXT SEGMENT IF(SXJ.EQ.O)GO TO 2 C C **** CALCULATE Y INTERCEPT ***** C 8 CEPT = (YI * XJ - XI * YJ) / (XJ - XI) SCEPT=2.0*CEPT-FLOAT(IFIX(CEPT)) C CHECK FOR INT NOT ON VECTOR PART OF LINE IF (SCEPT.LT. 0) GO TO 2 C CHECK FOR A PROPER INTERSECTION OF VECTOR WITH SEGMENT IF (SCEPT .GT. 0) GO TO 5 C VECTOR STARTS ON POLY SEGMENT GO TO 2 C POLY SEGMENT LIES ALONG THE VECTOR C CHECK FOR VECTOR STARTING ON THE SEGMENT 7 PYIJ=FLOAT(SYI) *FLOAT(SYJ) IF(PYIJ.GT.O. 15)GO TO 2 IF(SYJ.EQ.O)GO TO 2 C RECORD THE INTERSECTION NINT=NINT+1 XINT (NINT)=0.0 YINT (NINT) =0.0 NSIDE (NINT) =MOD (J + N-2,N) + 1 GO TO 2 C DO NOT COUNT CROSSING I F BOUNDRY FOLLOWED OR TOUCHED ONLY C LOOK FOR FIRST POINT OF SEGMENT ON VECTOR 5 SXK=2.0*XK-FLOAT (IFIX (XK) ) PXKJ=FLOAT(SXK)*FLOAT(SXJ) I F (SXI.EQ.O. AND.PXKJ.GT.O. 15) GO TO 2 C RECORD THE INTERSECTION NINT=NINT+1 XINT (NINT) =0.0 YINT (NINT) =CEPT NSIDE (NINT) =MOD (J+N-2, N) +1 INOUT = -INOUT 2 CONTINUE 185 C Q ***************************************************** C * C * SORT THE INTERSECTIONS BY INCREASING Y VALUE.. C * THE X VALUES ARE ZERO BECAUSE OF THE ROTATION. C * C ****************************************************** C I F (NINT. LT. 2) GO TO 69 ISI Z E = NINT - 1 DO 10 I = 1, ISIZE K = I + 1 DO 10 J = K, NINT IF (YINT (J) .LT. YINT (I)) GO TO 11 GO TO 10 11, TEMP = YINT (J) YINT (J) = YINT (I) YINT (I) = TEMP ITEM P = NSIDE (J) NSIDE (J) = NSIDE (I) NSIDE (I) = ITEMP 10^  CONTINUE C C CHECK FOR CLOSE INTERSECTIONS 66 IF (NINT.LT. 2) GO TO 69 NN=NINT-1 DO 67 1=1,NN INTY = 2.0*YINT(I) -FLOAT ( I F I X (YINT (I) ) ) INTYP=2.0*YINT (1 + 1) -FLOAT (IFIX (YINT (1 + 1) ) ) IF (INTY. NE. INTYP) GO TO 67 C REMOVE TWO INTERSECTIONS THAT ARE EQUAL IN INTEGER NINT=NINT-2 IF (NINT.EQ. 0) GO TO 12 IF(I.GT.NINT)GO TO 69 DO 68 J=I,NINT YINT (J) =YINT (J + 2) 68 NSIDE (J) =NSIDE (J+2) GO TO 66 67 CONTINUE C CHECK FOR VECTOR STARTING ON POLY SEGMENT 69 I F (NINT.LT. 1) GO TO 12 INTY = 2. 0*YINT(1) -FLOAT (I F I X (YINT (1) ) ) IF (INTY. EQ. 0) INOUT=0 C Q ******************************************************** c * C * THE FOLLOWING TRANSLATES AND ROTATES THE AXES FOR C * THE INTERSECTING POINTS.. C * THE SECOND TERM OF EACH ROTATION EQUATION IS ZERO C * BECAUSE THE X VALUES OF THE INTERSECTIONS ARE ZERO C * THERFORE TO SAVE COMPUTATION THEY HAVE BEEN REMOVED. . C * Q ********************************************************* C I F (NINT .EQ. 0) RETURN DO 9 I = 1, NINT XJS = YINT (I) * VSIN YJS = YINT (I) * VCOS XINT (I) = XJS + PX YINT (I) = YJS + PY CONTINUE RETURN END 187 C FO RAXORDER C ORDER AND JOIN INTERSECTIONS OF FOREST AXIS WITH FOREST C TYPE ISLANDS AND INSERT VISUAL COVERAGE AND CANOPY HEIGHTS C WRITTEN BY KIM SCOULLAR C READS STOP POINTS ON 3 READS FOREST AXIS ON 7 C WRITES NEW FOREST AXIS 4 READS FOREST CANOPY HEIGHTS 9 DIMENSION STOPX(200) , STOPY (200) , STOPZ (200) ,DAVE (25) DIMENSION AXD1(25,16),AXD2(25,16),NPOLY (25,16) DIMENSION FDIST (25, 16) ,FHGT (25, 16) ,DJOIN (25) , JTYPE (2 5) DIMENSION CANHGT(250) ,IHT(10) ,KOR(25) C INPUT CANOPY HEIGHT FILE C LOOP OVER EVERY TEN CANOPY POLYGONS DO 11 KST=1,25 C INPUT CANOPY HEIGHT FOR TEN POLYGONS READ (9,9) (IHT (JST) , JST=1, 10) 9 FORMAT(10I4) C INSERT INTO CANOPY HEIGHT ARRAY DO 10 JST=1, 10 10 CANHGT(KST*1 0-10 +JST) =IHT (JST) 11 CONTINUE C INPUT STOP POINT FILE READ (3) NSTOPS,STOPX,STOPY,STOPZ C LOOP OVER STOPS DO 80 IST=1,NSTOPS C CHECK FOR UNUSED STOPS IF (STOPX (1ST) .LT. 0. 0) GO TO 80 C INPUT FOREST AXIS FOR THIS STOP READ (7) AXD1,AXD2,NPOLY C LOOP OVER AXIS DO 4 0 IAX=1,16 C INITIALIZE AN ARRAY FOR KEEPING TRACK OF ORDER DO 17 J=1,2 5 17 KOR(J)=J C GET AVERAGE DISTANCE FOR EACH DISTANCE PAIR DO 18 1=1,25 18 DAVE(I) = (AXD1 ( I , I AX) +AXD2 ( I , I AX) ) /2. 0 C SORT INTERSECTION SEGMENTS BY THEIR AVERAGE DISTANCE IFIND=1 DO 25 ISORT=1,24 IF (IFIND. EQ. 0) GO TO 26 IFIND=0 DO 24 J=1,24 IF (DAVE (KOR (J+1) ) .EQ.0.0) GO TO 25 IF (DAVE (KOR (J) ) . LT. D A VE (K OR (J + 1) ) ) GO TO 24 KTEMP=KOR (J) KOR(J)=KOR(J + 1) KOR(J+1)=KTEMP IFIND=1 24 CONTINUE 25 CONTINUE 26 CONTINUE C ZERO THE JOIN AXIS DO 30 N=1,25 30 JTYPE (N)=0 C JOIN AND ORDER AXIS DO 31 1=1,24 IF (NPOLY (KOR (1+1) , IAX) . EQ. 0) GO TO 32 DJOIN (I) = ( AXD2 (KOR (I) ,IAX) +AXD1 (KOR (1 + 1) ,IAX) ) /2. 31 JTYPE (I) =NPOLY (KOR (I) ,IAX) 1=25 32 DJOIN (I) =AXD2 (KOR (I) ,IAX) JTYPE (I) =NPOLY (KOR(I) ,IAX) C MA, KE NEW FOREST AXIS - INSERT CANOPY HEIGHT 35 DO 36 JF=1,25 I F ( J T Y P E ( J F ) .LE.O) GO TO 37 FDIST (JF,IAX) =DJOIN (JF) 36 FHGT(JF,IAX)=CANHGT(JTYPE(JF) ) GO TO 39 37 DO 38 JG=JF,25 FDIST (JG,IAX)=9999. 38 FHGT(JG,IAX)=0.0 39 CONTINUE C*** DEBUG 6 LINES C WRITE (8,301)1ST,IAX C301 FORM AT(' 1ST',14,' IAX 1,14) C WRITE(8,302) (FDIST(L,IAX) ,L=1,20) C302 FORMAT(20F6.0) C WRITE(8,302) (FHGT (L, IAX) , L=1, 20) 40 CONTINUE C OUTPUT FOREST AXIS FOR THIS STOP WRITE (4) FDIST,FHGT WRITE(8,305) 1ST 305 FORM AT (* FORAX ORDERED FOR STOP',15) 80 CONTINUE STOP END 189 C GRIDMAKE C PROGRAM TO INSERT ELEVATION DATA INTO A GRID C EACH WEST TO EAST ROW MUST START ON A NEW CARD C WITH THE -X,-Y OF THE FIRST POINT GIVEN FIRST C END OF GRID DATA MARKED BY ROW OF -999-999 C WRITTEN BY KIM SCOULLAR C READS FROM UNIT 3 WRITES ON UNIT 4 DIMENSION EGRID (120, 260) ,ICARD(20) C PRESET THE ARRAY DO 5 1=1,120 DO 5 J=1,260 5 EGRID ( I , J) =-999. C READ REFERENCE COORDINATES AND GRID SPACING READ (3,6)IREFX,IREFY,ISPACE 6 F0RMAT(2I8,I4) C READ ELEVATION DATA 61 READ (3,7) (ICARD (I) ,1=1,20) 7 FORMAT(20I4) C CHECK FOR NEW ROW OR LAST ROW I F (ICARD (1) .LT. 0) GO TO 10 C SET THE POSITION COUNTER NUH= 1 C CHECK FOR END OF ROW 8 I F (ICARD(NUM) . EQ. 0) GO TO 61 C INSERT POINTS IN GRID AND GO TO NEXT POINT EGRID (IX,IY) =ICARD (NUM). NUM=NUM+1 IX=IX+1 IF (IX. GT. 120) GO TO 98 IF (NUM. GT. 20) GO TO 6 1 GO TO 8 C CHECK FOR END OF ELEVATION DATA 10 IF(ICARD(1) .EQ.-999) GO TO 100 C INITIALIZE START POINT FOR NEW ROW IX=(-10000*ICARD(1)+ICARD(2)-IREFX)/ISPACE+1 IY= (-10000+ICARD (3) +ICARD (4) -IREFY) /ISPACE+1 NUM=5 GO TO 8 C ERROR IN GRID DATA 98 WRITE (6 ,99) (ICARD (I) ,1=1 , 4) 99 FORMAT(* ERROR IN GRID DATA AT ',214,2X,214,' E====') C OUTPUT GRID ARRAY, GRID SPACING AND REFERENCE COORDINATES 100 WRITE(4)ISPACE,IREFX,IREFY,EGRID STOP END 190 C GRIDLIST C PROGRAM TO LIST GRID OF ELEVATION DATA C C WRITTEN BY KIM SCOULLAR C DIMENSION EGRID (120, 260) C READS FROM UNIT 3 WRITES ON UNIT 6 READ (3)ISPACE,IREFX,IREFY,EGRID WRITE (6, 1) ISPACE,IREFX,IREFY 1 FORM AT(* GRID SPACING',13,5X,'EAST',18,3X,'NORTH',18) C OUTPUT WILL BE IN FIVE PARTS DO 4 1=1,5 WRITE (6 , 2) I 2 FORM AT( • 1 • ,12) 1X1=1*24-23 1X2=1*24 DO 4 J=1,260 IY=261-J WRITE(6,3) (EGRID (IX,IY) ,IX=IX1,IX2) 3 FORMAT (' ',24F5, 0) 4 CONTINUE STOP END 191 C PEBSPLOT DIMENSION EGBID (120, 260) , FGBID (199, 1 1 7) BEAD(3)ISPACE,IBEFX,IBEFY,EGBID DO 7 1=2, 118 L=I-1 DO 7 J=48,246 K=24 7-J FGBID (K, L) =EGBID ( I , J) 7 IF (FGBID (K,L) . LT. 0. 0) FGRI D (K, L) =0. 0 CALL PEBS(FGBID,199,199,117,1.0,0.16,45.,32.,18.,18.) - CALL PLOTND STOP END 192 C TDPAXMAKE C PRODUCE AXIAL TOPOGRAPHIC DESCRIPTIONS FROM A POINT C C WRITTEN BY KIM SCOULLAR C C READS ELEVATION GRID, SPACING AND REFERENCE POINT ON 9 C READS STOP POINT COORDINATES ON 3 - NEG STOP NO. MARKS END C OUTPUTS AXIAL TOPOGRAPHIC DESCRIPTIONS ON UNIT 4 C****TEMPORARY DEBUG OUTPUT ON UNIT 8 DIMENSION EGRID (120,260) , TDIST (35, 1 6) ,TELEV (35,16) DIMENSION AXANGL (16) ,HZLINE (4,4 8) , VTLINE (4 , 48) DIMENSION STOPX(200) ,STOPY (200) ,STOPZ (200) ,IAXQAD(16) DATA IAXQAD/1, 1, 1, 1, 1,4,4,4,4,3,3,3,3,2,2,2/ DATA AXANGL/0.0,22.5,45.0,67.5,90.0,6 7.5,45.0,22.5,0.0, 122.5,45.0,6 7.5,90.0,67.5,45.0,22.5/ C OUTPUTS UNORDERED AXIS INFORMATION ON UNIT 4 C READ GRID INFORMATION READ (9)ISPACE,IREFX,IREFY,EGRID C CONVERT SPACING TO REAL SPACE=ISPACE C READ STOP POINT INFORMATION READ (3)NSTOPS,STOPX,STOPY,STOPZ C LOOP OVER STOP POINTS DO 85 ISTOP=1,NSTOPS C CHECK FOR UNUSED STOP IF (STOPX (ISTOP) . LT. 0. 0) GO TO 85 C GET LOCATION OF POINT ON GRID ISTX = STOPX (ISTOP) ISX=ISTX/ISPACE+1 ISTY=STOPY(ISTOP) ISY=ISTY/ISPACE+1 C DETERMINE GRID SEGMENT ARRAY BOUNDS FOR INTERSECTION IX!=ISX-23 IF(1X1.LT.1)1X1=1 IX2=ISX+24 I F (1X2. GT. 120) 1X2 = 12 0 IY1=ISY~23 I F (IY1.LT. 1) IY1=1 IY2=ISY+24 I F ( I Y 2 . GT. 260) IY2=260 C PREPARE GRID LINE SEGMENT COORDINATES FOR INTERSECTION C FOUR POINTS ARE X1 Y1 X2 Y2 NUM=0 DO 15 I=IY1,IY2 NUM=NUM+1 IM=I-1 HZLINE (1,NUM)= (1X1-1) *ISPACE HZLINE(2,NUM)=IM*ISPACE HZLINE (3, NUM)= (1X2-1 ) *ISPACE 15 HZLINE(4,NUM)=IM*ISPACE 193 NUM=0 DO 16 1=1X1,1X2 NUM=NUM+1 IM=I-1 VTLINE( 1, NUM) =IM*ISPACE VTLINE (2,NUM)= (IY1-1) *ISPACE VTLINE (3,NUM)=IM*ISPACE 16 VTLINE (4, NUM) = (IY2-1) *ISPACE C LOOP OVEB AXIS DO 84 IAX=1,16 C CONSTRUCT THE OBSERVATION LINE SEGMENT - GET REMOTE POINT CALL QAD(STOPX(ISTOP) ,STOPY (ISTOP) ,IAXQAD(IAX) , 1 AXANGL (IAX) , 1200. 0,RMTX,RMTY) C DETERMINE LINE RANGE FOR INTERSECTION LNXMN=IX1 LNXMX=IX2 LNYM N=IY1 LNYMX=IY2 C REDUCE RANGE AS POSSIBLE IQU AD=IAXQAD (IAX) IF (IQUAD. EQ. 1.0R.IQUAD.EQ.4) LNXMN=ISX IF (I QUAD. EQ. 2. OR. IQU AD. EQ. 3) LNXMX=ISX IF (IQU AD. EQ. 1.0R. IQU AD. EQ. 2) LNYMN=ISY IF (IQUAD. EQ. 3. OR. IQU AD. EQ,4) LN YMX=IS Y C ZERO THE AXIS POINT PAIR COUNTER IPAR=0 C C PERFORM INTERSECTION WITH VERTICAL GRID LINES C LOOP OVER LINES DO 82 LX=LNXMN,LNXMX C CALCULATE LINE NUMBER FOR PRESENT LINE LN0=LX-IX1+1 C DO THE INTERSECT CALL INTSCT (STOPX (ISTOP) ,STOPY (ISTOP) ,RMTX,RMTY, 1 VTLINE (1 ,LNO) , VTLINE (2 , LNO) , VTLINE (3,LNO) , 1 VTLINE (4,LNO),PTINTX,PTINTY,ISIT) C WAS INTERSECTION WITHIN BOTH SEGMENTS IF (I S I T . NE. 1) GO TO 82 C GET GRID POINTS AROUND INTERSECTION INTPTY=PTINTY MG1Y=INTPTY/ISPACE+1 MG2Y=MG1Y+1 GRF 1 Y= (MG1Y-1) *ISPACE GRF2Y=GRF1Y+SPACE C INTERPRET LINEARLY BETWEEN THE GRID POINTS C COMPUTE ELEVATION OF POINT OF INTERSECTION ELVINT=EGRID(LX,MGflY) + (EGRID (LX , MG1Y) -EGRID (LX , HG2 Y) ) * 1 (GRF 1Y-PTINTY) /SPACE C COMPUTE DISTANCE FROM STOP POINT TO INTERSECT POINT CALL SEGLTH (STOPX (ISTOP) , STOPY (ISTOP) , 1 PTINTX,PTINTY,DIST) " C DO NOT INSERT I F DISTANCE IS LESS THAN MINIMUM IF (DIST.LT. 30.0) GO TO 82 C CHECK FOR OUTSIDE GRID DATA IF (ELVINT. LT. 2.0) ELVINT=2.0 194 C INSERT DISTANCE AND ELEVATION INTO AXIS ARRAY IPAR=IPAR+1 I F (IPAR. GT. 35) GO TO 82 TDIST (IPAR,IAX) = DIST TELEV (IPAR,IAX) =ELVINT 82 CONTINUE C C PERFORM INTERSECTION WITH HORIZONTAL GRID LINES C LOOP OVER LINES DO 83 L Y=LNYMN,LNYMX C CALCULATE LINE NUMBER FOR PRESENT LINE LN0=LY-IY1+1 C DO THE INTERSECT CALL INTSCT (STOPX (ISTOP),STOPY (ISTOP) ,RMTX,RMTY, 1 HZLINE(1,LNO) ,HZLINE(2,LNO) ,HZLINE(3,LNO) , 1 HZLINE (4,LNO) ,PTINTX,PTINTY,ISIT) C WAS THE INTERSECTION WITHIN BOTH SEGMENTS I F ( I S I T . N E . 1) GO TO 83 C GET GRID POINTS ABOUND INTERSECTION INTPTX=PTINTX MG1X=INTPTX/ISPACE+1 MG2X=MG1X+1 GRF1X=(MG1X-1)*ISPACE GRF2X=GRF1X+SPACE C INTERPRET LINEARLY BETWEEN THE GRID POINTS C COMPUTE ELEVATION OF POINT OF INTERSECT ELVINT=EGRID (MG 1X , LY) + (EGRID(MG1X,LY) -EGRID (MG2X , LY) ) * 1(GRF1X-PTINTX)/SPACE C COMPUTE DISTANCE TO POINT OF INTERSECTION FROM STOP POINT CALL SEGLTH (STOPX(ISTOP) ,STOPY (ISTOP) , 1 PTINTX,PTINTY,DIST) C DO NOT INSERT I F DISTANCE IS LESS THAN MINIMUM IF (DIST. LT. 30. 0) GO TO 83 C CHECK FOR OUTSIDE ELEVATION DATA I F (ELVINT.LT.2.0) ELVINT=2.0 C INSERT DISTANCE AND ELEVATION INTO AXIS ARRAY IPAR=IPAR+1 I F (IPAR,GT. 35) GO TO 83 TDIST (IPAR,IAX) =DIST TELEV (IPAR,IAX)=ELVINT 83 CONTINUE C RESET REST OF ARRAYS 87 IPAR=IPAR+1 I F (IPAR. GT. 35) GO TO 88 TDIST (IPAR,IAX) =9999. . TELEV (IPAR,IAX) =0.0 GO TO 87 88 CONTINUE C***DEBUG 6 LINES C WRITE (8,90)ISTOP,IAX C90 FORMAT(• ISTOP',14,' IAX',14) C WRITE(8,91) (TDIST (M, I AX) ,M=1,35) C91 FORMAT(* ',20F5.0) C WRITE(8,91) (TELEV (M,IAX) ,M=1,35) 84 CONTINUE 195 C WRITE RESULTS IN UNFORMATTED FORM WRITE (4)TDIST,TELEV WRITE (8,93) ISTOP 93 FORMAT (• TOPAX MADE FOR STOP',15) 85 CONTINUE STOP END C c SUBROUTINE INTSCT (L1P1X,L1P1Y,L1P2X,L1P2Y,L2P1X,L2P1Y, 1L2P2X,L2P2Y,XINTPT,YINTPT,ISIT) IMPLICIT REAL (L) C INTERSECT TWO LINE SEGMENTS C I S I T = 1 ONLY I F INTERSECTION IS ON BOTH SEGMENTS ISIT=0 C FIRST CHECK FOR VERTICAL LINES - SLOPE UNDEFINED IF(L1P1X.EQ.L1P2X.AND.L2P1X.EQ.L2P2X)RETURN IF(L1P1X.EQ.L1P2X)GO TO 50 I F (L2P1X. EQ.L2P2X) GO TO 51 C NEITHER LINE IS VERTICAL OR UNDEFINED C GET SLOPE AND INTERCEPT FOR EACH LINE LN1SLP= (L1P1Y-L1P2Y) / (L1 P 1X-L 1 P2X) LN1C=L1P1Y-L1P1X*LN1SLP LN2SLP= (L2P1Y-L2P2Y) / (L2P 1X-L2P2X) LN2C=L2P1Y-L2P1X*LN2SLP C CHECK FOR PARALLEL LINES IF(LN1SLP.EQ.LN2SLP)RETURN C DETERMINE POINT OF INTERSECTION XINTPT= (LN2C-LN1C)/(LN1SLP-LN2SLP) YINTPT=XINTPT*LN1SLP+LN1C C INTERSECTION POINT HAS BEEN FOUND - IS I T WITHIN SEGMENTS MAYBE=0 C IS I T ON LINE SEGMENT ONE I F (LilPIX. L E. XINTPT. AND. XINTPT. LE. L 1P2X. 0R. . 1L1P2X.LE.XINTPT.AND. XINTPT.LE.L1P1X)MAYBE=MAYBE+1 C 15 I T ON LINE SEGMENT TWO IF (L2P1X.LE. XINTPT. AND. XINTPT. LE.L2P2X. OR. 1L2P2X.LE.XINTPT.AND. XINTPT.LE.L2P1X)MAYBE=MAYBE+1 C IS IT ON BOTH I F (MAYBE. EQ. 2) ISIT=1 RETURN C ONE OF THE LINES MAY BE VERTICAL C LINE ONE MAY BE VERTICAL - CHECK FOR UNDEFINED LINE 50 I F (L1P1Y. EQ.L1P2Y) RETURN C FIND INTERSECTION OF VERTICAL LINE ONE WITH LINE TWO XINTPT=L1P1X LN2SLP= (L2P1Y-L2P2Y) /(L2P1X-L2P2X) LN2C=L2P1Y-L2P1X*LN2SLP YINTPT=XINTPT*LN2SLP+LN2C C INTERSECTION POINT HAS BEEN FOUND - IS I T ON LINE SEGMENTS MAYBE=0 C IS IT ON THE VERTICAL SEGMENT - LINE ONE I F (L1P1Y. LE. YINTPT. AND. YI NTPT. LE.L1P2Y. OR. . 1L1P2Y.LE.YINTPT.AND.YINTPT.LE.L1P1Y)MAYBE=MAYBE+1 196 C IS IT ON LINE SEGMENT TWO IF(L2P1 X. LE, XINTPT. AND. XINTPT. LE.L2P2X. OR. . 1L2P2X.LE. XINTPT. AND. XINTPT. LE. L2P1X) MAYBE=MAYBE+ 1 C IS IT ON BOTH IF(MAYBE.EQ.2)ISIT=1 RETURN C LINE TWO MAY BE VERTICAL - CHECK FOR UNDEFINED LINE 51 IF(L2P1Y.EQ.L2P2Y)RETURN C FIND INTERSECTION OF LINE ONE WITH VERTICAL LINE TWO XINTPT=L2P1X LN1SLP= (L1P1Y-L1P2Y) / (L 1P 1X-L 1P2X) LN1C=L1P1Y-L1P1X*LN1SLP YINTPT=XINTPT*LN1SLP+LN1C C INTERSECTION POINT HAS BEEN FOUND - IS IT ON LINE SEGMENTS MAYBE=0 C IS IT ON LINE SEGMENT ONE IF (L1P1X.LE. XINTPT. AND. XINTPT. LE.L1P2X. OR. . 1L1P2X.LE.XINTPT.AND.XINTPT.LE.L1P1X)MAYBE=MAYBE+1 C IS IT ON THE VERTICAL SEGMENT - LINE TWO IF (L2P1 Y. LE. YINTPT. AND. YINTPT. LE. L2P2Y. OR. 1L2P2Y.LE.YINTPT.AND.YINTPT.LE.L2P1Y)MAYBE=MAYBE+1 C IS IT ON BOTH IF (MAYBE. EQ. 2) ISIT=1 RETURN END C C SUBROUTINE QAD(PTIX,PT1Y,IQUAD,ANGLE,DIST,PT2X,PT2Y) C DETERMINE THE COORDINATES OF A POINT DEFINED BY A C GIVEN ANGLE, QUADRATE AND DISTANCE FROM A GIVEN POINT SEE PROGRAM FORAXUPD FOR LISTING OF SUBROUTINE QAD RETURN END C c SUBROUTINE SEGLTH(PTA1,PTA2,PTB1,PTB2,RLTH) C FIND THE LENGTH OF A LINE SEGMENT DEFINED BY TWO POINTS IF (PTA1. EQ. PTB1. AND. PTA2, EQ.PTB2) GO TO 5 C DETERMINE LENGTH - HYPOTENUES OF RIGHT TRIANGLE RLTH=SQRT((PTB1-PTA1)**2+(PTB2-PTA2)**2) RETURN 5 RLTH=0.0 RETURN END 197 C TOP AX OR DEB C BOITTINE TO INSEBT CLOSE TOPOGBAPHIC FEATURES DATA C INTO TOPOGRAPHIC AXIS C WRITTEN BY KIM SCOULLAR C READS STOP POINTS 3 READS AXIAL TOPO DESCRIPTIONS 5 C READS CLOSE TOPO DATA 7 WRITES NEW AXIAL TOPO DESCRP 4 C****DEBUG OUTPUT ON UNIT 8 DIMENSION STOPX (200) , STOP Y (200) , STOPZ (2 00) DIMENSION TDIST(35,16) , TELEV ( 35 , 16) C INPUT THE STOP POINT INFORMATION READ (3)NSTOPS,STOPX,STOPY,STOPZ C INPUT FIRST LINE OF CLOSE TOPO DATA READ (7,10)ICLOS,IDIRCT,IANGLE,IDIST 10 F0RMAT(4I3) C LOOP OVER STOPS DO 80 IST=1,NSTOPS C CHECK FOR UNUSED STOP I F (STOPX (1ST) .LT. 0.0) GO TO 80 C INPUT TOPO AXIS FOR THIS STOP READ (5) TDIST,TELEV C ZERO RAISED OBSERVER RAISOB=0.0 C IS CLOS TOPO DATA FOR THIS STOP 19 I F (ICLOS. GT.IST) GO TO 75 IF (ICLOS. LT..IST) WRITE (6,3 1) 31 FO RM AT(* ERROR IN CLOSE TOPO FILE') C CHECK FOR RAISED OBSERVER DATA IF (IDIRCT. EQ. 0) GO TO 50 C DETERMINE CHANGE IN ELEVATION C FIRST CHOOSE QUADRATE BY SIGN IQUAD=1 IF(IANGLE.LT.0)IQUAD=-1 C CONVERT ANGLE TO REAL AND CHANGE SIGN I F NEGATIVE A=IANGLE A=ABS (A) C CONVERT DISTANCE TO REAL DIST=IDIST C DETERMINE OBSERVER HEIGHT OBHT=STOPZ (1ST)+4.0 + RAISOB C CONVERT ANGLE TO RADIANS RA=A*0,. 01745 C COMPUTE DISTANCE AND ELEVATION - INSERT POINT AT END TDIST (35,IDIRCT)=DIST*COS (RA) TELEV (35,IDIRCT) =OBHT+DIST*SIN (RA) *IQUAD GO TO 7 0 C RAISED OBSERVER C INSERT IT INTO ARRAY 50 RAISOB=IDIST C INPUT ONE LINE OF CLOSE TOPO DATA 70 READ (7,10)ICLOS,IDIRCT,IANGLE,IDIST C CHECK FOB END OF FI L E IF (ICLOS. LT. 0) ICLOS = 9999 GO TO 19 198 C OR DEE THE TOPO AXIS FOR THIS STOP C LOOP OVER AXIS 75 DO 18 IAX=1,16 C SORT N-1 TIMES DO 17 ITIMES=1,34 MOVE=0 C LOOP OVER POINTS GO OUT AXIS DO 16 IP=1,34 C CHECK FOR UNORDERED PAIR IF(TDIST (IP ,IAX) . LT. TDIST (IP+1 ,IAX) ) GO TO 16 C CHECK FOR END OF DATA IF(TDIST(IP,IAX).GT. 9 993..AND.TDIST(IP+1,IAX) .3T.9998.) 1GO TO 16 C CHECK FOR EQUAL DISTANCE AND SEPARATE BY ONE I F NECCESSARY IF (TDIST (IP,IAX).EQ. TDIST(IP+1,IAX) ) TDIST(IP, IAX) = 1 TDIST (IP,IAX) +1.0 C REVERSE ORDER OF PAIR SAVE FIRST ONE DIST=TDIST(IP,IAX) ELEV = TELEV (IP,IAX) C PUT SECOND ONE IN FIRST PLACE TDIST(IP,IAX)=TDIST(IP+1,IAX) TELEV ( I P , IAX) =TELEV (IP+1, IAX) C PUT THE OLD FIRST POINT IN THE SECOND POSITION TDIST (IP+ 1 , IAX) =DIST TELEV(IP+1,IAX)=ELEV C RECORD THE MOVE MOVE=1 16 CONTINUE C STOP SORT IF NO MOVES MADE IF (MOVE.EQ. 0) GO TO 18 17' CONTINUE C****DEBUG 6 LINES PLUS ABOVE GO TO 89 BECOMES GO TO 18 *** C89 WRITE (8,90)1ST,IAX C90 FORMAT (' ISTOP',14,• IAX',14) C WRITE(8,91) (TDIST (M,IAX) ,M=1,26) C91 FORMAT (• ',26F5.0) C WRITE(8,91) (TELEV (M, IAX) , M= 1, 26) 18 CONTINUE C OUTPUT TOPO AXIS FOR THIS STOP WRITE (4)TDIST,TELEV,RAISOB WRITE(8,93) 1ST 93 FORMAT(• TOPAX ORDERED FOR STOP',15) 80 CONTINUE STOP END 199 C FOBONTOP C PROGRAM TO PRODUCE TOPOGRAPHY AXIS PEOFILES C AND FOBEST CANOPY PBOFILES C WRITTEN BY KIM SCOULLAR C C READS STOP POINTS ON 3 READS TOPO AXIS ON 5 C READS FOREST AXIS ON 7 WRITES MATRIXES ON 4 C WRITES DEBUG OUTPUT ON UNIT 8 DIMENSION STOPX (200) , STOPY (200) ,STOPZ (200) , TELEV (35, 16) DIMENSION FDIST (25,16) ,FHGT(25,16) ,TD1ST (35,16) DIMENSION TOPD(25,15) ,TOPZ(25,16) ,NTOP(16) ,TTD(38) DIMENSION FORD (40,16) ,F0RZ(40, 16) ,NFOR(16) ,TFD(80) DIMENSION TD (38) ,TZ (3 8) ,FD(80) ,FZ (80) ,TTZ (38) ,TFZ (80) C SET PROFILE THINNING TOLERENCE TOL=2„ 0 C INPUT STOP POINT INFORMATION READ(3)NSTOPS,STOPX,STOPY,STOPZ C LOOP OVER STOPS DO 80 IST=1,NSTOPS C CHECK FOR UNUSED STOP IF(STOPX(IST).LT.0.0)GO TO 80 C INPUT TOPO AXIS FOR THIS STOP READ (5)TDIST,TELEV,R AISOB C INPUT FOREST AXIS FOR THIS STOP READ (7) FDIST,FHGT C LOOP OVER AXIS DO 75 IAX=1,16 C C MAKE TOPOGRAPHY POLYGON C FIRST POINT IS STOP POINT TD(1)=0.0 TZ(1)=STOPZ (1ST) C POINTS FROM CLOSE TOPO AND GRID ARE NEXT DO 20 1=1,35 C CHECK FOR END OF POINTS I F (TDIST ( I , IAX) . GT. 9998. ) GO TO 25 C INSERT ONE POINT FROM TOPOG AXIS TD (1 + 1) =TDIST (I,IAX) 20 TZ (1 + 1) =TELEV (I,IAX) C COMPLETE THE POLYGON WITH TWO BOTTOM CORNER POINTS C FIRST THE FAR LOWER CORNER 25 TD(I + 1) =1300.0 TZ (1 + 1) =0.0 C SECOND POINT UNDER STOP POINT TD (1 + 2) =0.0 TZ (1+2) =0. 0 C RECORD NUMBER OF POINTS IN POLYGONS NT=I+2 C 200 C MAKE FOSEST CANOPY POLYGON C INITIALIZE TOP AXIS AND FOR AXIS ARRAY COUNTERS ITOP=1 IFOR=1 C GO TO NEXT TOPO POINT I F FIRST DISTANCE IS TEN M OR LESS 30 IF(TDIST(ITOP,IAX).GT.10.)GO TO 35 ITOP=ITOP+1 IF(ITOP.GT. 5)GO TO 200 IF(TDIST(ITOP,IAX).GT. 9998.0) GO TO 200 GO TO 30 C GO TO NEXT CANOPY HGT I F FIRST ONE ENDS AT TEN M OR LESS 35 IF(FDIST(IFOR,IAX).GT.10,)GO TO 40 IFOR=IFOR+1 I F (IFOR. GT. 5) GO TO 200 IF(FDIST (IFOR,IAX) . GT. 9998.0) GO TO 200 GO TO 35 C SAVE PRESENT CANOPY. HGT 40 PRESHT=FHGT(IFOR,IAX) C FIRST POINT IS STOP POINT FD(1)=0.0 FZ(1)=STOPZ(1ST) C SECOND POINT IS CANOPY HGT ABOVE TOPOG AT TEN METERS C GET TOPOG AT TEN METERS BY LINEAR INTERPOLATION ZT=TZ (ITOP) + (TZ (ITOP+ 1) -TZ (ITOP) ) * 1 (TD (ITOP) -1 0.0) / (TD (ITOP) -TD (ITOP+1) ) C ADD TWO POINTS TO MATRIX FD(2)=10.0 FZ (2) =ZT C INITIALIZE POLYGON POSITION COUNTER JFOR=3 C DO NOT ADD SECOND UNLESS IT IS DIFFERENT IF (PRESHT.LT.O. 5) GO TO 39 FD (3) =10. 0 FZ (3) =ZT+PRESHT JFOR=4 C FIND WHICH AXIS HAS CLOSEST POINT 39 IF(TDIST(ITOP,IAX).LT.FDIST (IFOR,IAX) )30 TO 60 IF(FDIST(IFOR,IAX).LT.TDIST(ITOP,IAX))GO TO 50 C THEY ARE EQUAL - TOPOG POINT IS NOT NEEDED ITOP=ITOP+1 IF (ITOP.GT. 35) GO TO 70 IF(TDIST(ITOP,IAX).GT.9998.0)GO TO 70 C INSERT TWO POINTS FOR CANOPY HGT CHANGE C FIRST GET TOPOG AT THIS DISTANCE BY LINEAR INTERPOLATION 50 ZT=TZ (ITOP) + (TZ (ITOP+1) -TZ (ITOP) ) * fl (TD(ITOP) -FDIST (IFOR,IAX) ) / (TD (ITOP) - TD (ITOP+1) ) C FIRST OF TWO POINTS AT PRESENT CANOPY HGT FD (JFOR) =FDIST (IFOR, IAX) FZ (JFOR)=ZT + PRESHT JFOR=JFOR+1 C CHECK FOR NO MORE ROOM IF (JFOR.GE. 78) GO TO 70 C INCREMENT FOREST AXIS COUNTER IFOR=IFOR+1 I F (IFOR. GT. 25) GO TO 70 IF(FDIST(IFOR,IAX).GT.9998.0)GO TO 39 20 1 C SECOND OF TWO POINTS ONLY IF A CHANGE IN CANOPY HGT OCCURS IF (FHGT (IFOR,IAX) .EQ.PRESHT)GO TO 39 PRESHT=FHGT (IFOR rIAX) FD (JFOR)=FDIST(IFOR-1,IAX) FZ (JFOR) =ZT + PRESHT JFOR=JFOR+1 GO TO 39 C C TOPOG POINT I S CLOSER - INSERT POINT AT CANOPY HGT ABOVE IT 60 FD (JFOR) =TDIST (ITOP, IAX) FZ (JFOR) = TELEV (ITOP,IAX) +PRESHT C INCREMENT BOTH COUNTERS JFOR=JFOR+1 C CHECK FOR NO MORE ROOM IF (JFOR.GT. 78) GO TO 70 ITOP=ITOP+1 I F (ITOP. GT. 35) GO TO 70 I F (TDIST (ITOP, I A X ) . 3T. 9998.0) GO TO 70 GO TO 39 C C COMPLETE CANOPY POLYGON WITH TWO BOTTOM POINTS C FIRST THE FAR LOWER CORNER 70 FD (JFOR) = 1300. 0 FZ (JFOR) =0. 0 JFOR=JFOR+1 C LAST POINT UNDER STOP POINT FD (JFOR) =0. 0 FZ (JFOR) =0. 0 C RECORD NUMBER OF POINTS IN POLYGON NF=JFOR C***DEBUG 9 LINES C WRITE (8,409) 1ST,IAX C409 FORMAT(* STOP',14,' AXIS',13) C WRITE(8,410) (TD (I) ,1=1,NT) C WRITE (8,410) (TZ (I) ,1 = 1 ,NT) C WRITE(8,410) (FD(I) , I = 1,NF) C WRITE(8,410) (FZ(I) ,I=1,NF) C410 FORMAT(1X,15F6. 0) C C THIN THE PROFILE POLYGONS FOR THIS AXIS C FIRST THE TOPOG PROFILE PTOL=TOL 71 CALL PRTHIN(TD,TZ,NT,TTD,TTZ,NTT,PTOL) C THIN AGAIN I F STILL TOO BIG TO FIT IF (NTT. LE. 25)GO TO 73 DO 72 1=1,NTT TD(I) =TTD (I) 72 TZ(I)=TTZ(I) NT=NTT PTOL=PTOL+1. 0 GO TO 71 C TRANSFER THE THINNED POLYGON 73 DO 74 1=1,NTT TOPD (I,IAX) =TTD (I) 74 TOPZ (I,IAX) =TTZ (I) NTOP (IAX) =NTT 202 C C THIN THE CANOPY PROFILE PTOL=TOL 81 CALL PRTHIN(FD,FZ,NF,TFD,TFZ,NTF,PTOL) C THIN AGAIN I F STILL TOO BIG TO FIT I F (NTF. LE. 40) GO TO 83 DO 82 1=1,NTF FD(I)=TFD(I) 82 FZ ( I ) = T F Z ( I ) NF=NTF PTOL=PTOL+1.0 GO TO 81 C TRANSFER THE THINNED POLYGON 83 DO 84 1=1,NTF FORD (I,IAX) =TFD (I) 84 FORZ ( I , IAX) =TFZ (I) NFOR (IAX) =NTF 75 CONTINUE C OUTPUT THE POLYGON MATRIXES AND RAISED OBSERVER DATA WRITE (4)TOPD,TOPZ,NTOP,FORD,FORZ,NFOR,RAISOB WRITE(8,77) 1ST 77 FORMAT (• PROFILE POLYGONS COMPLETED FOR STOP',15) 80 CONTINUE STOP C ERROR MESSAGES 200 WRITE (6,201)1ST,IAX,ITOP,IFOR 201 FORMAT(' ERROR IN INPUT ARRAYS',416) STOP END C C SUBROUTINE PRTHIN(AX,AY,NA,BX,BY,NB,TOL) C MODIFIED ESPECIALLY FOR FORONTOP C ROUTINE TO KEEP ONLY POINTS NECCESSARY TO SHAPE OF POLYGON C C WRITTEN BY KIM SCOULLAR C DIMENSION AX (NA) , AY (NA) ,BX(NA) , BY (NA) ,KEEP(400) C ZERO THE KEEP ARRAY NM=NA-1 DO 10 1=2,NM 10 KEEP (I)=0 C KEEP FIRST TWO AND LAST TWO POINTS OF POLYGON KEEP (1) =1 KEEP (2) =1 KEEP (NA-1)=1 KEEP (NA) = 1 C PRESET VALUE OF COUNTER FOR NEXT POINT IN LOOP C OVER PAIRS OF POINTS TO BE KEPT 12 INEXT=1 MOVE=0 C C LOOP OVER PAIRS OF POINTS TO BE KEPT C UPDATE PRESENT COUNTER 15 ITHIS=INEXT 203 C GET NEXT POINT OF POINTS TO BE KEPT 17 INEXT=INEXT+1 I F (INEXT. GT. NA) GO TO 35 IF (KEEP(INEXT) . EQ.O) GO TO 17 C IF POINTS ARE ADJACENT, NEED NOT CHECK BETWEEN IF (INEXT. EQ» ITHIS + 1) GO TO 15 C PRESET LENGTH AND POINT NUMBER OF LONGEST SO FAR BIGEST=-1.0 LONG=0 C CHECK FOR SLOPE OF KEEP LINE UNDEFINED -IS LINE VERTICAL IF(AX(INEXT) .NE.AX(ITHIS) ) GO TO 19 SLP=9999999. GO TO 20 C GET SLOPE OF KEEP LINE 19 SLP= (AY (INEXT) - AY (ITHIS) ) / (AX (INEXT) - AX (ITHIS) ) C CHECK FOR PERPENDICULAR SLOPE UNDEFINED 20 IF (SLP.NE.O) GO TO 21 PSLP=9999999. GO TO 22 C GET SLOPE OF PERPENDICULAR LINES 21 PSLP=-1.0/SLP C GET CONSTANT FOR EQUATION OF KEEP LINE 22 CKEEP=AY(ITHIS)-SLP*AX (ITHIS) C LOOP OVER POINTS BETWEEN THOSE TO BE KEPT ITP=ITHIS+1 INM=INEXT-1 DO 25 IP=ITP,INM C GET CONSTANT FOR EQUATION OF TEST LINE CTEST=AY(IP) -PSLP*AX (IP) C GET INTERCEPT POINT COORDINATES XINT= (CTEST-CKEEP)/(SLP-PSLP) YINT=SLP*XINT+CKEEP C GET LENGTH OF TEST SEGMENT TLENG=SQRT ( (AX (IP)-XINT) **2+ (AY (IP) -YINT) **2) C CHECK FOR THIS BEING THE LONGEST SO FAR IF (TLENG. LT. BIGEST) GO TO 25 C UPDATE LENGTH OF LONGEST SO FAR BIGEST=TLENG LONG=IP 25 CONTINUE C C KEEP THE POINT WITH THE GREATEST DISTANCE C IF THE TOLERENCE HAS BEEN EXCEEDED IF(BIGEST.LT.TOL)GO TO 15 KEEP (LONG) = 1 MOVE=1 GO TO 15 C C CHECK FOR AT LEAST ONE BEING KEPT THIS ROUND 35 IF (MOVE.EQ. 0) GO TO 45 GO TO 12 C TRANSFER POINTS TO BE KEPT 45 J=0 DO 50 1=1,NA IF (KEEP (I) .EQ.O) GO TO 50 J=J+1 BX (J) =AX (I) BY (J) =AY (I) 50 CONTINUE C TRANSFER NEW POLYGON SIZE NB=J RETURN END 205 C PROFPLOT C PROGRAM TO PLOT THE TOPOGRAPHY AND FOREST CANOPY PROFILES C FOR A SINGLE STOP C WRITTEN BY KIM SCOOLLAR C C READS STOP POINTS ON 3 READS PROFILES ON 5 C RON PLOT:Q PAR= TO GET PLOTS DIMENSION STOPX (200) DIMENSION TOPD (25,16) ,TOPZ (2 5,16) ,NTOP( 1 6) DIMENSION FORD(40,16),FORZ(40,16),NFOR(16) C SET STOP NUMBER TO BE PLOTTED IST=15 C SET CONVERSION FACTOR FOR PLOTS CNVRT=1.0/252. 4 C INPUT STOP POINT INFORMATION READ (3) NSTOPS, STOPX C LOOP OVER STOPS DO 2 1=1,1ST C CHECK FOR UNUSED STOP IF (STOPX (I) . LT.O. 0) GO TO 2 C INPUT PROFILE POLYGONS READ (5) TOPD,TOPZ,NTOP,FORD,FORZ,NFOR,RAISOB 2 CONTINUE C LOOP OVER AXIS DO 10 IAX=1,16 C LOOP OVER POINTS OF TOPOG PROFILE POLYGON NT=NTOP (IAX) DO 4 IPT=1,NT C PLOT TOPOG POLYGON 4 CALL PLOT (TOPD (IPT,IAX) *CNVRT,TOPZ (IPT, I AX) *CNVRT,2) C LOOP OVER POINTS OF FOREST CANOPY PROFILE POLYGON NF=NFOR (IAX) DO 6 IPT=1,NF C PLOT FOREST CANOPY POLYGON 6 CALL PLOT (FORD (IPT,IAX) *C NVRT,FO RZ(IPT,I AX) *CNVRT,2) C MOVE PLOT AXIS IN PREPARATION FOR NEXT PLOT CALL MAXMX(XMX) 10 CALL PLOT (XMX+1.0,0. 0,-3) CALL PLOTND STOP END GT.163)GO TO 16 GT.9)GO TO 16 C SERORDER C PROGRAM TO ORDER ONE SERIES OF STOP POINTS C READS STOP INFO ON 3 READS DATA ON 5 C OUTPUTS ORDERED DATA ON 4 DIMENSION IHEAD (5,20 0) ,IOBS (7,20 00) ,IHD (5) ,IOB (7) DIMENSION STOPX (200) , IO (200) C INPUT STOP INFORMATION READ (3) NSTOPS,STOPX C PRESET POSITION COUNTER AND ERROR DETECTOR IL=1 IERR=1 C PRESET STOP NUMBERS DO 10 1=1,NSTOPS 10 IHEAD (1 ,I)=-9 C INPUT HEADER LINE 14 READ (5, 15) (IHD (I) ,1= 1 ,5) 15 FORMAT (213,17,12,13) C GET STOP NUMBER IST=IHD (1) C CHECK FOR END OF FI L E IF (IST.LT.O) GO TO 50 C CHECK FOR UNEXPECTED VALUES IN HEADER LINE I F (IHD (1) .LT. 1.0R.IHD(1) IF (IHD (2) .LT.O.OR.IHD (2) IF (IHD (3) .LT. 770301.OR.IHD (3) .GT. 770701) GO TO 16 IF (IHD (4) .LT. 0.OR.IHD (4) . GT. 3) GO TO 16 IF (IHD (5) .LT.O.OR.IHD (5) . GT. 30) GO TO 16 GO TO 18 WRITE(6,17) IHD(2) ,IHD(1) FORMAT(* ERROR IN DATA *** SERIES',14,' STOP',14 •1 « IN HEADER <===•) IERR=-1 CONTINUE C INSERT HEADER INFO INTO ARRAYS DO 20 1=1,5 20 IHEAD (1,1ST) =IHD (I) C GET NUMBER OF OBSERVATIONS NOB=IHD (5) C CHECK FOR NO OBSERVATIONS IF(NOB.LT.1)GO TO 14 C SET POINTER TO START OF LOC OBS FOR THIS STOP IO(IST)=IL C LOOP OVER OBSERVATIONS DO 30 1=1,NOB C INPUT ONE LINE OF DATA READ(5,25) (IOB (J) , J= 1 ,7) 25 F0RMAT(2I2,I3,I2,2I4,I2) C CHECK FOR UNEXPECTED VALUES IN OBSERVATIONS I F (IOB (1) .LT. 1. OR. IOB (1) I F (IOB (2) .LT. 1. OR. IOB (2) IF(IOB(3) .LT.0.OR.I0B (3) 1 6 17 18 GT.12)GO TO 26 GT. 9) GO TO 26 GT.90)GO TO 26 207 IF(IOB(4) .LT. 1.0R.IOB (4) .GT.4) GO TO 26 IF (IOB (5) .LT.O) GO TO 26 I F (IOB (6) .LT.O) GO TO 26 IF (IOB (7) .LT.O.OR.IOB (7) . GT. 1) GO TO 26 GO TO 28 26 WRITE (6,27) IHD (2) ,IHD (1) ,1 27 FORM AT(• ERROR IN DATA *** SERIES•,14, 1 STOP',14, 1' LOCATION NUMBER',13,' <===') IERR= - 1 28 CONTINUE C TRANSFER LOCATION INFO INTO ARRAY DO 2 9 J=1,7 29 IOBS ( J , I L ) =IOB (J) IL=IL+1 IF (IL.GT. 2000) GO TO 40 30 CONTINUE GO TO 14 C C ERROR MESSAGE 40 WRITE(6,41) 41 FORM AT ( 1 ERROR ** INSUFFICIENT ROOM IN IOBS ** < = ==') STOP 50 CONTINUE C DO NOT OUTPUT I F ERRORS OCCURRED IF(IERR.LT.O) STOP C C OUTPUT THE ORDERED STOP VISITS C LOOP OVER STOPS DO 60 ISTP=1,NSTOPS C CHECK FOR UNUSED STOP I F (STOPX (ISTP) . LT.O. 0) GO TO 60 C CHECK HEADER LINE FOR HAVING BEEN SET IF (IHEAD ( 1 , ISTP) .LT. 0.0) GO TO 100 C OUTPUT HEADER LINE WRITE(4,54) (IHEAD ( J , ISTP) ,J=1,5) 54 FORMAT (213,17,12,13) C CHECK FOR OBSERVATIONS NOB=IHEAD(5,ISTP) I F (NOB. LT. 1) GO TO 60 C OUTPUT OBSERVATIONS ISTART=IO (ISTP) ISTOP=ISTART+NOB-1 DO 58 I=ISTART,ISTOP WRITE(4,56) (IOBS(J,I) , J= 1 ,7) 56 F0RMAT(2I2,I3,I2,2I4,2I2) 58 CONTINUE 60 CONTINUE STOP C ERROR MESSAGE - MISSING DATA 100 WRITE(6,101) ISTP 101 FORMAT (» ERROR ** DATA MISSING FOR STOP',14,' ** <===») STOP END 208 C COVANDLOC C PROGRAM TO SIMULATE AREA COVERED FOR A SPECIES AND C TO PROJECT LOCATIONS FOR THAT SPECIES C WRITTEN BY KIM SCOULLAR C READS TOPO AND FOR CANOPY PROFILES 2 READS FIELD DATA 5 C READS SPECIES INFO ON 7 READS STOP INFO ON 3 C WRITES COVERAGE AND LOCATIONAL POLYGONS ON 4 C TEMPORARY DEBUG OUTPUT ON UNIT 8 C NEGATIVE STOP IN DATA MEANS NOT VISITED THAT SERIES DIMENSION IAXQAD(16) ,AXANGL(16) ,STOPX (200) , STOPY (200) DIMENSION TOPD(25,16) ,TOPZ(25,16) ,NTOP(16) ,ERR(9) DIMENSION FORD(40,16),FORZ(40,16),NFOR(16),NTSIDE(30) DIMENSION BNOISE(3) , TD (2 5) ,TZ (2 5) ,FD (40) ,FZ (4 0) DIMENSION TDINT (30) ,TZINT (30) , FDINT (30) ,FZINT (30) DIMENSION NFSIDE(30) ,COVX (16) ,COVY(16) ,OBX(16) ,OBY(16) DIMENSION XLOCAT(4) , YLOCAT (4) ,XLOC(16) ,YLOC(16) REAL *8 SEGLTH DATA IAXQAD/1,1,1,1,1,4,4,4,4,3,3,3,3,2,2,2/ DATA AXANGL/0.0,22.5,4 5.0,6 7.5,9 0.0,6 7.5,45.0,22.5,0.0, 122.5,45.0,6 7.5,90.0,67.5,45.0,22.5/ DATA ERR/5.0,10.0,20.0,20.0,20.0,20.0,2.0,20.0,2.0/ C***DEBUG CONVERSION FACTOR FOR PLOTTING CNVRT=1.0/252. 4 C SET CANOPY DENSITY FACTOR - HALF DISTANCE OF NO REDUCTION DFREE=50.0 C SET STEP SIZE FOR INCREMENTING TEST DISTANCES ISTEP=50 STEP=ISTEP HSTEP=STEP/2.0 C INITIALIZE TIME RANGE MDATE1=999999 MDATE2=111111 C INPUT SPECIES INFO READ(7,6)NSPEC,IDATE1,IDATE2,MXDAIR,IPOS,CPOS 6 FORMAT (13,217,15, 12, F4. 1) C CONVERT MAX DISTANCE BIRD COULD BE HEARD XDAIR=MXDAIR C INPUT CANOPY ABSRBTION AND BACKGROUND NOISE FACTORS C CANOPY IS AIR EQUIVALENT OF ONE METER OF FOREST C BNOISE ACTS MULTIPLICATIVELY TO REDUCE MXDAIR READ (7,7) CANOPY, (BNOISE (K) , K= 1 ,3) 7 FORMAT (4F5. 2) C INPUT STOP POINT INFO READ (3) NSTOPS,STOPX, STOPY C LOOP OVER STOP VISITS DO 19 IST=1,NSTOPS C CHECK FOR UNUSED STOP IF (STOPX (IST).LT. 0. 0) GO TO 19 C INPUT TOPO AND CANOPY PROFILES READ (2)TOPD,TOPZ,NTOP,FORD,FORZ,NFOR,RAISOB C INPUT STOP VISIT INFORMATION READ(5,20)ISTP,ISER,IDATE,NOISEB,NOB 20 FORM AT(213,17,12,13) 209 C CHECK FOR STOP NOT VISITED IF (ISTP.LT. 0) GO TO 19 C CHECK DATE TO SEE I F SPECIES WAS ACTIVE I F (I DATE. GEilDATEI.AND.IDATE. LE, ID ATE 2) GO TO 24 C SPECIES NOT ACTIVE ON THIS DATE - SKIP SIGHTINGS IF(NOB.EQ.0)GO TO 19 DO 22 1=1,NOB 22 READ (5,23)ISPEC,IERR,IANGL,IQUAD,MIND,MAXD,IRAP 23 F0RMAT(2I2,I3,I2,2I4,I2) GO TO 19 C C SPECIES ACTIVE ON THIS DATE - PRODUCE COVERAGE POLYGON C REDUCE AUDIBLE DISTANCE IN AIR FOR BACKGROUND NOISE 24 DAIR=XDAIR I F (NOISEB.LT. 1) GO TO 25 DAIR=DAIR*BNOISE(NOISEB) C CHECK I F DATE EXPANDS RANGE 25 I F (IDATE.LT. MDATE 1) MD ATE 1 =IDATE IF (IDATE. GT. MDATE2) MDATE2=IDATE C GET OBSERVATION POINT - CONSIDER RAISED OBSERVER OBSERZ=TOPZ (1, 1) + 2. 0 + RAISOB C INITIALIZE COVERAGE POLYGON LIMITS XMX=0.0 XMN=99999.0 YMX=0.0 YMN=99999.0 C MAKE COVERAGE POLYGON C LOOP OVER AXIS DO 70 IAX=1, 16 C GET TOPO AND CANOPY PROFILE POLYGONS NT=NTOP (IAX) DO 31 J=1,NT TD (J) =TOPD (J,IAX) 31 TZ(J)=TOPZ(J,IAX) NF=NFOR (IAX) DO 32 J=1,NF FD (J) =FORD (J,IAX) 32 FZ(J)=FORZ(J,IAX) C INITIALIZE TEST DISTANCE TO MAX DIST IN AIR TESTD=XDAIR+HSTEP C LOOP OVER TEST DISTANCES 9 TESTD=TESTD-STEP IF(TESTD.LE.HSTEP)GO TO 60 C GET NUMBER OF POINTS IN EACH PROFILE POLYGON JT=NT JF=NF C GET SECTION OF TOPOG PROFILE THAT CONTAINS TEST DIST 10 JT=JT-1 IT=JT-1 IF (IT. LT. 1) GO TO 33 IF(TESTD.LT.TD(IT) ) GO TO 10 C GET SECTION OF CANOPY PROFILE THAT CONTAINS TEST DIST 11; JF=JF-1 IF=JF-1 I F (IF. LT. 1) GO TO 33 IF(TESTD.LT.FD (IF))3O TO 11 210 C GET TOPOG AT TEST DIST BY LINEAR INTERPOLATION ZT=TZ (IT) + (TZ (JT)-TZ (IT) ) * 1 (TD (IT) -TESTD) / (TD (IT) -TD (JT) ) C GET CANOPY AT TEST DIST BY LINEAR INTERPOLATION ZF=FZ (IF) +(FZ (JF) -FZ (IF) ) * 1 (FD (IF) -TESTD) / (FD (IF) -FD (JF) ) GO TO 35 C ERROR MESSAGE 33 WRITE (6,34) 1ST,IAX,IT,IF 34 FORMAT(* ERROR IN P R O F I L E S 4 1 4 ) C GET SPECIES CALLING ELEVATION 35 IF (IPOS. EQ. 1) TESTZ=ZT+CPOS IF (IPOS.EQ. 2) TESTZ=ZF+CPOS I F (IPOS. EQ. 3) TESTZ=ZT+ (ZF-ZT) *CPOS C MINIMUM HEIGHT FOR ANY SPECIES IS ONE METER IF(TESTZ. LT.ZT+1.0)TESTZ=ZT+1.0 C CHECK FOR TOPOGRAPHIC CUT OFF AT THIS TEST DISTANCE CALL VECPLY (TESTD,TESTZ,TD,TZ,NT,0.0,OBSERZ,TDINT, 1TZINT,NTSIDE,NTINT,INTOUT) C TEST DIST NOT SUCCESSFUL IF ANY INTERSECTION WITH GROUND IF(NTINT. GE. 1) GO TO 9 C CHECK TO SEE I F TEST DIST EXCEEDS MAX DIST FOR SOUND C CONSIDER INTERSECTIONS WITH FOREST CANOPY CALL VECPLY(0.0,OBSERZ,FD,FZ,NF,TESTD,TESTZ,FDINT, 1FZINT,NFSIDE,NFINT,INFOUT) C WORK OUT THE VECTOR OF INTERSECTION C START IN AIR MEDIUM AT OBSERVER 1 IS AIR -1 IS CANOPY MED= 1 C INITIALIZE EFFECTIVE DISTANCE EFECTD=0.0 C INITIALIZE PRESENT POINT D=0. 0 Z=OBSERZ C INITIALIZE TEST DISTANCE DTEST=SEGLTH (D,Z, TESTD, TESTZ) C CHECK FOR NO INTERSECTIONS IF (NFINT. LT,. 1) GO TO 40 C LOOP OVER INTERSECTIONS DO 37 INT=1,NFINT C GET DISTANCES DTEST=SEGLTH (D,Z,TESTD,TESTZ) DINT=SEGLTH(D,Z,FDINT(INT) ,FZINT(INT) ) C CHECK FOR TEST POINT BEING CLOSER THAN NEXT INTERSECTION IF (DTEST. LE.DINT) GO TO 40 C INCREMENT EFFECTIVE DISTANCE FOR THIS SEGMENT IF(MED.GT.0)GO TO 36 C DO NOT COUNT FOREST NEAR BIRD OR OBSERVER DST=DFREE-SEGLTH (0.0, OBSERZ, D,Z) IF(DST.LT.O.0)DST=0.0 DFIN = DFREE-SEGLTH (FDINT (INT) ,FZINT(INT) , TESTD , TEST Z) IF (DFIN.LT. 0.0) DFIN=0.0 DCAN=DINT-(DST+DFIN) IF (DCAN.LT. 0. 0) DCAN = 0.0 DFR=DINT-DCAN EFECTD= EFECTD+DFR +DCAN*CANOPY GO TO 4 2 211 36 EFECTD=EFECTD+DINT C SWITCH MEDIUMS 42 MED=MED*(-1) C ADVANCE THE PRESENT POINT D=FDINT (INT) 37 Z=FZINT(INT) C LAST POINT I S TEST POINT 40 IF(MED.GT.O)GO TO 44 C DO NOT COUNT FOREST NEAR OBSERVER OR BIRD DST=DFREE-S EGLTH (0.0,OBSERZ,D,Z) IF(DST.LT.0.0)DST=0.0 DCAN=DTEST-(DST+DFREE) IF (DCAN. LT. 0.0) DCAN=0.0 DFR= DT EST - DC AN EFECTD=EF ECTD + DFR +DCA N*CA NOPY GO TO 45 44 EFECTD=EFECTD+DTEST C WAS DISTANCE SUCCESSFUL 45 I F (EFECTD.LT.DAIR) GO TO 60 GO TO 9 C C HAVE GREATEST SUCCESSFUL DISTANCE 60 SUCESD=TESTD+HSTEP IF (SUCESD. LT.HSTEP) SUCESD=HSTEP C GET POINT AT SUCCESSFUL DISTANCE, THIS AXIS FROM THIS STOP CALL QAD (STOPX (1ST) ,STOPY(IST) ,IAXQAD(IAX) , AXANGL (IAX) , 1SUCESD,X,Y) C CHECK FOR MINS AND MAXES IF(X.GT.XMX) XMX=X IF(X.LT.XMN) XMN=X IF (Y. GT. YMX) YMX=Y IF(Y.LT.YMN)YMN=Y C STORE POINT IN COVERAGE POLYGON ARRAY COVX (IAX) =X 70 COVY(IAX)=Y C PREPARE NUMBER OF POINTS NCOV=-16 C GET AREA OF COVERAGE POLYGON CALL AREA (COVX,COVY, 16, AREAC) C OUTPUT THE COVERAGE POLYGON AND INFORMATION WRITE(4)NCOV,COVX,CDVY,XMX,XMN,YMX,YMN,AREAC,1ST C***DEBUG 6LINES AREAHC=AREAC/10000. . WRITE(8,711)1ST,NSPEC,AREAHC 711 FORM AT (' COVERAGE COMPLETED FOR STOP',15,' SPECIES', 115,' AREA COVERED',F8.2) C WRITE (8,712) (COVX (I) ,1=1, 16) C WRITE (8,712) (COVY (I) ,1=1 , 16) C712 FORMAT (1X, 16F8. 1) C***DEBUG REMOVE PLOTS 12 LINES XPL=STOPX (1ST) -XDAIR YPL=STOPY (1ST) -XDAIR 212 C PLOT AXIS ON STOP POINT CALL PLOT((STOPX (1ST)-XPL)*CNVRT,XDAIR*2.0*CNVET,3) CALL PLOT ( (STOPX (1ST)-XPL) *CNVRT,0. 0 , 2) CALL PLOT (0.0, (STOPY (1ST) -YPL) *CNVRT, 3) CALL PLOT(XDAIR*2.0*CNVRT, (STOPY (1ST) -YPL) *CNVRT, 2) C PLOT COVERAGE POLYGON CALL PLOT ((COVX (16) -XPL) *CNVRT, (COVY(16) -YPL) *CNVRT,3) DO 701 1=1,16 701 CALL PLOT ( (COVX (I) - X PL) *CNVRT, (COVY(I)-YPL) *CNVRT,2) C C MAKE LOCATION POLYGONS C ARE THERE ANY LOCATIONAL OBSERVATIONS I F (NOB. EQ..0) GO TO 18 C LOOP OVER LOCATIONAL OBSERVATIONS DO 90 IOB=1,NOB C IN POT ONE OBSERVATION READ(5,75)ISPEC,IERR,IANGL,IQUAD,MIND,MAXD,IRAP 75 F0RMAT(2I2,I3,I2,2I4,I2) C CHECK FOR THIS SPECIES IF(ISPEC.NE.NSPEC)GO TO 90 C CHECK FOR RANGEFINDER DATA IF ( I ERR* EQ. 7) GO TO 79 C GET AND CHECK MINIMUM DISTANCE D MIN=MIND IF (DMIN. LT. 1.0) DMIN=1.0 C GET AND CHECK MAXIMUM DISTANCE DMAX = M AXD IF (MAXD.EQ.0)DMAX=XDAIR IF(DMAX.LT.DMIN+10.0)DMAX=DMIN+10.0 GO TO 78 C RANGEFINDER DATA - GET SLOPE DISTANCE 79 DSLO PE=MIND I F (DSLOPE.LT. 6. 0) DSLOPE=6.0 C GET SLOPE DISTANCE ERROR - BASE OF RANGEFINDER IS 0.5 M ERRD=ABS(DSLOPE-TAN(ATAN(DSLOPE/0.5) -0. 0 5)*0.5) IF(ERRD.LT.5.0) ERRD=5.0 C GET SLOPE DISTANCE PLUS ERROR AND MINUS ERROR DSLMAX= DSLOPE+ERRD DSLMIN=DSLOPE-ERRD C CORRECT FOR SLOPE - FIRST CONVERT PERCENT SLOPE TO RADIANS SLOPE=MAXD SLOPE=ATAN(SLOPE/100.0)*0.01745 DMIN=COS(SLOPE)*DSLMIN DMAX=COS(SLOPE)*DSLMAX C EXPAND ANGLE FOR VERY CLOSE DISTANCES C GET THE ANNGLE 78 ERRANG=ERR(IERR) C GET AVERAGE DISTANCE DAVE=(DMIN + DMAX)/2.Q C GET ANGLE FOR 10 METERS THICKNESS AT AVERAGE DISTANCE AMIN=(ATAN(10.0/DAVE)/2.0)*57.30 C INCREASE ANGLE IF NECESSARY I F (ERRANG.LT.AMIN)ERRANG = AMIN C GET ANGLE PLUS ERROR APLUS=IANGL APLUS=APLUS+ERRANG 213 C INITIALIZE ANGLE PLUS EEROR QUADRAT IQPLUS=IQUAD C CHECK FOR ANGLE GREATER THAN 90 DEGREES I F (APLUS.LE.90. 0) GO TO 77 C GET AMOUNT OF OVERSHOOT OVERSH=APLUS-90.0 C GET NEW ANGLE APLUS=90.0-OVERSH C GET NEW QUADRAT IQPLUS=4 IF (IQUAD. EQ. 2) IQPLUS = 3 IF (IQUAD. EQ. 3) IQPLUS = 2 IF (IQUAD. EQ. 4) IQPLUS=1 C GET ANGLE MINUS ERROR 77, AMIN US=I ANGL AMINUS=AMINUS-ERRANG C INITIALIZE ANGLE MINUS ERROR QUADRAT IQMNUS=IQUAD C CHECK FOR ANGLE LESS THAN 0 DEGREES IF (AMINUS.GE. 0. 0) GO TO 80 C GET AMOUNT OF OVERSHOOT OVERSH=0.0-AMINUS C GET NEW ANGLE AMINUS=OVERSH C GET NEW QUADRAT IQMNUS=2 IF (IQUAD. EQ. 2) IQMNUS=1 IF (IQUAD. EQ. 3) IQMNUS = 4 IF (IQUAD. EQ. 4) IQMNUS = 3 C PREPARE LOCATION POLYGON C FIRST POINT AT DMIN, ANGLE PLUS 80 CALL QAD(STOPX (1ST),STOPY (1ST) ,IQPLUS,APLUS,DMIN, 1XL0CAT(1) ,YLOCAT(1) ) C SECOND POINT AT DMAX, ANGLE PLUS CALL QAD(STOPX (1ST) ,STOPY (1ST) ,IQPLUS,A PLUS,DMAX, 1XLOCAT (2) , YLOCAT (2) ) C THIRD POINT AT DMAX, ANGLE MINUS CALL QAD(STOPX (1ST) ,STOPY (1ST) ,IQMNUS,AMINUS,DMAX, 1XLOCAT (3) , YLOCAT (3) ) ' C FOURTH POINT AT DMIN, ANGLE MINUS CALL QAD(STOPX (1ST) ,STOPY (1ST) ,IQMNUS,AMINUS,DMIN, 1XLOCAT(4) ,YLOCAT (4) ) C***DEBUG 4 LINES C WRITE(8, 713) (XLOCAT(I) ,1=1,4) C WRITE(8,713) (YLOCAT(I) ,1=1,4) C713 FORMAT (1X,4F8. 1) C REDUCE LOCATION POLYGON FOR COVERAGE LIMITS CALL INTPLY (XLOCAT,YLOCAT,4,COVX,COVY,16,XLOC,YLOC, 1NLOC,1,16,AREAL,NINTPY) C CHECK FOR NO INTERSECTION - BAD DATA IF (NINTPY. LT. 1) GO TO 90 C INIT I A L I Z E LOCATION POLYGON LIMITS XMX=0.0 XMN=99999.0 YMX=0.0 YMN=99999.0 214 C GET MAX AND MIN VALUES DO 81 1=1,NLOC IF (XLOC (I) . GT. XMX) XMX=XLOC (I) IF (XLOC (I) . LT. XMN) XMN=XLOC (I) IF (YLOC (I) . GT. YMX) YMX=YLOC (I) 81 IF (YLOC (I) . LT. YMN) YMN=YLOC (I) C OUTPUT THE LOCATION POLYGON AREAHL=AREAL/10 00 0. IF (AREAHL.LT. 0.001) GO TO 90 WRITE(4)NLOC,XLOC,YLOC,XMX,XMN,YMX,YMN,AREAL,1ST WRITE(8,731)NSPEC,AR EAHL 731 FORMAT (• LOCATION PROJECTED FOR SPECIES', 115, • WITH AREA' ,F8. 2) C***DEBUG REMOVE PLOTS 4 LINES CALL PLOT ( (XLOC (NLOC) -XPL)*CNVRT, 1 (YLOC(NLOC)-YPL)*CNVRT,3) DO 7 02 1=1,NLOC 702 CALL PLOT ( (XLOC (I) - XPL) *CNVRT , (YLOC (I) - YPL) *CNVRT , 2) 90 CONTINUE C***DEBUG 3 LINES 18 CALL MAXMX(XMXPL) CALL PLOT(XMXPL+1.0,0.0,-3) 19 CONTINUE C C END FILE WITH A ZERO NPOLY 500 NLOC=0 WRITE(4)NLOC,XLOC,YLOC,XMX,XMN,YMX,YMN,AREAL,1ST WRITE(4)NSPEC,ISER,MDATE1,MDATE2 C***DEBUG 2 LINES CALL PLOTND STOP END . C C SUBROUTINE QAD(PT1X,PT1Y,IQUAD,ANGLE,DIST,PT2X,PT2Y) C DETERMINE THE COORDINATES OF A POINT DEFINED BY A C GIVEN ANGLE, QUADRATE AND DISTANCE FROM A GIVEN POINT SEE PROGRAM FORAXUPD FOR LISTING OF SUBROUTINE QAD RETURN END C C SUBROUTINE VECPLY(PX,PY,XX,YY,N,XVECT,YVECT, 1XINT,YINT,NSIDE,NINT,INOUT) C INTERSECTS A VECTOR WITH A POLYGON SEE PROGRAM FORAXUPD FOR LISTING OF SUBROUTINE VECPLY RETURN END C c 2 1 5 SUBROUTINE INTPLY (A A X , A AY , NA , BBX , BBY , NB , ABX , AB Y , NAB, 1 NAB 1,NAB2,ABAREA,NINTPY) C INTEGER VERSION USING REAL FOR CALCULATIONS C ROUTINE TO INTERSECT TWO POLYGONS C AX,AY IS FIRST POLYGON WITH NA POINTS C BX,BY IS OTHER POLYGON WITH NB POINTS C ABX,ABY IS INTERSECTION POLYGONS EACH WITH NAB POINTS C THERE MAY BE NAB1 INTERSECTION POLYGONS C EACH MAY HAVE AS MANY AS NAB2 POINTS C TO BE SURE, NAB2=NA+NB C THE LARGEST NAB 1 POLYGONS ARE RETURNED C FASTER I F AX,AY IS SMALLEST C C WRITTEN BY KIM SCOULLAR C REAL* 4 A AX (N A) , AAY(NA) ,BBX (NB) ,BBY (NB) , A BARE A (NAB1) REAL*8 BX (400) , BY (40 0) , AX (400) , AY (400) , FX 1 ,FX2, FY 1 ,FY2 REAL*4 ABX(NAB 1,NAB2) ,ABY (NAB 1,NAB2) REAL*4 POLYX (800) ,POLYY (800) REAL *8 XINT (30) ,YINT (30) ,X,Y,RESTRX,RESTRY,TOL,SEGLTH INTEGER NAB (NAB1) ,NSIDE (30) TOL=0.5 NSHIFT=0 C TBANSFER POLYGONS A AND B TO WORKING ARRAYS DO 80 1=1,NA AX (I) =AAX (I) 80 AY(I)=AAY(I) DO 81 1=1,NB BX(I)=BBX(I) 81 BY(I)=BBY(I) GO TO 78 C POINT MOVED HAS CAUSED INCONSISTENT RESULTS C SHIFT ONE POLYGON AND TRY AGAIN 71; X=0.0 Y=0. 0 CALL MOVEPT (X,Y,NSHIFT) X=X*3.0 Y=Y*3.0 DO 73 1=1,NA AX (I) =AX(I) +X 73 AY (I) =AY (I)+Y C CHECK FOR FIRST POINT OF A BEING ON LINE 78 NMVE=0 82 CALL PIP(AX (NA) ,AY(NA) , BX , BY , NB, AX (1) ,AY (1) , 1XINT,YINT,NSIDE,NINT,INOUT,0) I F (INOUT. NE. 0) GO TO 84 C FIRST POINT IS ON LINE - MOVE IT AND CHECK AGAIN CALL MOVEPT(AX(1) ,AY (1) ,NMVE) GO TO 82 C INITIALIZE COUNTER FOR POLYGON INTERSECTION 84 NINTPY=0 C INITIALIZE POSITION COUNTER FOR A KA=0 C LOOP OVER POINTS IN A 2 KA=KA+1 216 C CHECK FOE END OF A WITH NO INTERSECTIONS - ALWAYS OUT IF(KA. GT. NA) GO TO 160 C PREPARE NEXT POINT COUNTER LA=K A+1 IF (LA.GT. NA) LA= 1 I F (INOUT. EQ.-1) GO TO 86 C FIRST POINT IS INSIDE - PREPARE TO START AN INTPLY X=AX (KA) Y=AY (KA) LINE=0 GO TO 9 C FIRST POINT OUTSIDE—INTERSECT SEGMENT OF A WITH POLYGON B 86 NMVE=0 88 CALL PIP(AX (KA) ,AY(KA),BX,BY,NB,AX(LA),AY(LA) , 1XINT,YINT,NSIDE,NINT,INOUT,0) IF(INOUT.NE.0)GO TO 89 C SECOND POINT I S ON LINE - MOVE IT AND CHECK AGAIN CALL MOVEPT(AX(LA),AY(LA),NMVE) GO TO 88 C CHECK FOR INTERSECTION 89 IF (NINT.LT. 1) GO TO 2 C PREPARE TO START INTERSECTION POLYGON X = XINT (1) Y=YINT (1) LINE=1 C C START AN INTERSECTION POLYGON C SAVE STARTING POINT—FIRST INTERSCTN WITH B OR START OF A 9 FX1=X-T0L FX2=X+TOL FY 1 = Y-TOL FY2=Y+TOL L=1 GO TO 96 C CHECK FOR COMPLETED POLY—NO INTERSCTNS OR ALWAYS ON LINE 99 IF (FX1. LT. X. AND.FX2. GT. X. AND. . 1 FY1.LT. Y. AND. FY2.GT. Y) GO TO 120 C CHECK FOR POLYGON ALREADY DONE AS FIRST ONE IF (KA.GT. NA) GO TO 130 C LOOK FOR INTERSECTION WITH B ON THIS SEGMENT 96 NMVE=0 98 CALL PIP(X,Y,BX,BY,NB,AX(LA) ,AY(LA) , 1XINT,YINT,NSIDE,NINT,INOUT,LINE) IF(INOUT.NE.0)GO TO 10 C HAVE SECOND POINT ON LINE - MOVE IT AND TRY AGAIN CALL MOVEPT(AX(LA),AY(LA),NMVE) GO TO 98 C CHECK FOB AN INTEESECTION 10 IF(NINT.LT.1)GO TO 13 C HAVE AN INTERSECTION C PREPARE TO MAKE AN INT POLY C RECORD FIRST POINT OF SEGMENT POLYX (L) =X POLYY (L) =Y L=L+ 1 IF (L.GT.800) GO TO 71 217 12 X=XINT(1) Y=YINT (1) C PREPARE TO FOLLOW B RESTRX=X RESTRY=Y IB=NSIDE (1) C GET DIRECTION ON B OR ABORT FOLLOW B CALL OPDOWN (X,Y,IB,BX,BY,NB,A X,AY,NA,IDIR,JB) I F (IDIR.EQ. 0) GO TO 71 LINE=1 GO TO 19 C NO USEABLE INTERSECTIONS ON THIS SEGMENT C RECORD FIRST POINT OF SEGMENT 13 POLYX(L)=X POLYY(L)=Y L=L+ 1 I F (L.GT.800)GO TO 71 C GO TO NEXT SEGMENT LINE=0 KA=KA+1 X=AX (LA) Y=AY (LA) L A=K A+ 1 IF (LA. GT. NA) LA=1 GO TO 99 C C C FOLLOW B ADDING POINTS C LOOK FOR FIRST INTERSECTION WITH A 19 NMVE=0 21 CALL PIP(X,Y,AX,AY,NA,BX(JB) ,BY (JB) , 1XINT,YINT,NSIDE,NINT,IN0UT,LINE) I F (INOUT. NE. 0) GO TO 18 C HAVE SECOND POINT ON LINE - MOVE IT AND TRY AGAIN CALL MOVEPT(BX(JB) ,BY (JB) ,NMVE) GO TO 21 C CHECK FOR AN INTERSECTION 18 IF (NINT.LT. 1) GO TO 23 C RECORD FIRST POINT OF SEGMENT POLYX (L) =X POLYY (L) =Y L=L+1 I F (L.GT. 800) GO TO 71 17 X=XINT(1) Y=YINT(1) C PREPARE TO SWITCH TO A 22 IA=NSIDE(1) C GET DIRECTION ON A OR ABORT SWITCH TO A CALL UPDOWN(X,Y,I A,AX,AY,NA,BX,BY,NB,IDIR,JA) I F (IDIR. EQ. 0) GO TO 71 LINE=1 GO TO 30 218 C NO INTERSECT ON THIS SEGMENT - ADD FIRST POINT 23 POLYX(L)=X POLYY (L) =Y L=L+ 1 IF(L.GT.800)GO TO 71 C GO TO NEXT SEGMENT LINE=0 X=BX (JB) Y=BY (JB) IB=JB JB=JB+IDIR IF (JB. LT. 1) JB=NB IF (JB. GT. NB) JB= 1 GO TO 19 C C CHECK FOR END OF INTERSECT POLYGON 30 I F (FX 1. LT. X. AND.FX2. GT. X. AND. . 1 FY1.LT.Y.AND.FY2.GT. Y) GO TO 100 C CHECK FOR POLYGON ALREADY DONE EARLIER I F ( I A.LT.KA) GO TO 110 IF(IA.EQ. KA. AND. SEGLTH (AX (KA) , AY (KA) ,X,Y) . LT. . 1SEGLTH(AX (KA), AY(KA) ,FX1+TOL,FY1+TOL) )GO TO 110 C C FOLLOW A ADDING POINTS C CHECK FOR STARTING POINT 33 IF(FX1.LT.X.AND. FX2.GT.X. AND. 1 FY1.LT. Y. AND.FY2.GT. Y) GO TO 100 C CHECK FOR POLYGON ALREADY DONE AS FIRST ONE IF (NINTPY.GT.0. AND.IA.EQ. 1) GO TO 110 C LOOK FOR INTERSECTION WITH B NMVE=0 34 CALL PIP(X,Y,BX,BY,NB,AX(JA) ,AY(JA) , 1XINT,YINT,NSIDE,NINT,INOUT,LINE) IF (INOUT. NE. 0) GO TO 35 C HAVE SECOND POINT ON LINE - MOVE IT AND TRY AGAIN CALL MOVEPT(AX(JA),AY(JA),NMVE) GO TO 34 C CHECK FOR INTERSECTION 35 IF (NINT. LT. 1) GO TO 40 C INTERSECT HAS BEEN FOUND C CHECK FOR START POINT I F (FX1.LT. XINT (1) . AND. FX2.GT. XINT (1) . AND. . 1FY1. LT. YINT (1) . AND. FY2. GT. YINT (1) ) GO TO 100 C RECORD FIRST POINT OF SEGMENT POLYX (L) =X POLYY(L)=Y L=L+ 1 IF(L.GT.800)GO TO 71 42 X=XINT(1) Y=YINT (1) C PREPARE FOR SWITCH TO B IB=NSIDE(1) C GET DIRECTION ON B OR ABORT SWITCH TO B CALL UPDOWN(X,Y,1B,BX,BY,NB,AX,AY,NA,IDIR,JB) I F (IDIR. EQ. 0) GO TO 7 1 LINE=1 GO TO 19 C NO INTERSECTION ON THIS SEGMENT - ADD FIRST POINT 40 POLYX(L)=X POLYY (L)=Y L=L+ 1 IF(L.GT.800) GO TO 71 C GO TO NEXT SEGMENT LINE=0 IA=JA X=AX (JA) Y= AY (JA) JA=JA+IDIR IF (J A. LT. 1) JA=N A IF (JA. GT. NA) JA= 1 GO TO 3 3 C C E3 D OF AN INTERSECT POLYGON HAS BEEN FOUND C GET NUMBER OF POINTS IN POLYGON 100 NPTS=L-1 C GET AREA OF POLYGON CALL AREA (POLYX,POLYY,NPTS,PAREA) C DO NOT BOTHER I F AREA IS LESS THAN MINIMUM IF (PAREA. LT. 10. 0) GO TO 170 C CHECK FOR ROOM IN ARRAY OF INTERSECTION POLYGONS IF(NINTPY.GE.NAB1)GO TO 103 C INCREMENT POLYGON COUNTER NINTPY=NINTPY+1 C STORE THE INTERSECTION POLYGON MPTS=0 DO 102 1=1,NPTS C DO NOT KEEP POINT I F CLOSE TO NEXT POINT IPLS=I+1 IF (IPLS.GT. NPTS) IPLS= 1 IF (SQRT ( (POLYX (IPLS) -POLYX (I) ) **2+ (POLYY (IPLS) 1 -POLYY (I) ) **2) . LT. 1. 0) GO TO 102 MPTS=MPTS+1 ABX (NINTPY, MPTS) =POLYX (I) ABY(NINTPY,MPTS)=POLYY(I) 102 CONTINUE C ABORT I F LESS THAN THREE POINTS KEPT IF(MPTS.GT. 2)GO TO 126 NINTPY=NINTPY-1 GO TO 170 C STORE AREA AND NUMBER OF POINTS 126 ABAREA(NINTPY)=PAREA NAB (NINTPY) =MPTS C CONTINUE SEARCH FOR INTERSECT POLYGONS GO TO 170 C NO ROOM - MUST REPLACE ONE WITH LESS AREA 103 NINTPY=NINTPY+1 220 C FIND ONE WITH LEAST AREA ISMALL= 1 DO 104 I=1,NAB1 104 IF (ABAREA (I) .LT. ABAREA (ISMALL) ) ISMALL=I C I F PRESENT POLYGON IS SMALLEST THEN FORGET IT IF (ABAREA (ISMALL) .GE. ABAREA (NINTPY) ) GO TO 170 C REPLACE SMALLEST WITH PRESENT INTERSECTION POLYGON DO 105 1=1,NPTS ABX(ISMALL,I)=POLYX(I) 105 ABY(ISMALL,I)=POLYY (I) C REPLACE AREA AND NUMBER OF POINTS ABAREA(ISMALL)=PAREA NAB(ISMALL)=NPTS C CONTINUE SEARCH FOR INTERSECTION POLYGONS GO TO 170 C C ABORT INTERSECTION POLYGON - IT HAS BEEN DONE ALREADY C CONTINUE SEARCH FOR MORE 110 GO TO 170 C C INTERSECT POLYGON IS A - A INSIDE B OR A AND B IDENTICAL 120 NINTPY=1 NPTS=L-1 DO 121 1=1,NPTS ABX (1,1) =POLYX (I) 121 ABY ( 1 ,1) =POLYY (I) C STORE AREA AND NUMBER OF POINTS CALL AREA (POLYX,POLYY,NPTS,PAREA) ABAREA (1)=PAREA NAB (1) =NPTS C END ROUTINE RETURN C C ABORT INTERSECT POLYGON AND END ROUTINE 130 RETURN C C END OF A WITH NO INTERSECTIONS - A ALWAYS OUTSIDE C CHECK FOR B INSIDE A - RETURN I F NO INTERSECTION 160 CALL PIP(BX (1) ,BY(1:> ,AX,AY,NA,BX (2) ,BY(2) , 1XINT,YINT,NSIDE,NINT,INOUT,0) IF (INOUT.EQ.-1) RETURN C B IS INSIDE - IT IS THE ONLY INTERSECT POLYGON 161 NINTPY=1 C INSERT B INTO INTERSECT POLYGON ARRAY DO 162 1=1,NB ABX (1 ,1) =BBX (I) 162 ABY (1,1) =BBY (I) C STORE AREA AND NUMBER OF POINTS CALL AREA(BBX,BBY,NB,PAREA) ABAREA (1) =PAREA NAB (1) =NB RETURN C 221 C CONTINUE SEARCH FOR INTERSECT POLYGONS 170 NMVE=0 171 CALL PIP (RESTRX,RESTRY,BX,BY,NB,AX(LA) ,AY(LA) , 1XINT,YINT,NSIDE,NINT,INOUT,1) I F (INOUT. NE. 0) GO TO 173 C HAVE SECOND POINT ON LINE - MOVE IT AND TRY AGAIN CALL MOVEPT(AX(LA),AY(LA),NMVE) GO TO 171 C CHECK FOR AN INTERSECTION 173 IF (NINT.LT. 1) GO TO 172 C START AN INTERSECTION POLYGON 174 X=XINT(1) Y=YINT (1) LINE=1 GO TO 9 C NO INTERSECTION - CONTINUE TO SEARCH C LOOP OVER POINTS IN A 172 KA=K A+1 C CHECK FOR END OF A I F (K A. GT. NA) RETURN C PREPARE NEXT POINT COUNTER LA=KA+1 IF (LA. GT. N A) LA=1 C INTERSECT THIS SEGMENT OF A WITH POLYGON B NMVE=0 175 CALL PIP (AX (KA) ,AY(KA) ,BX,BY,NB,AX (LA) , AY (LA) , 1XINT,YINT,NSIDE,NINT,INOUT,0) IF (INOUT. NE. 0) GO TO 178 C HAVE SECOND POINT ON LINE - MOVE IT AND TRY AGAIN CALL MOVEPT (AX(LA) ,AY (LA) , NMVE) GO TO 175 C CHECK FOR AN INTERSECTION 178 IF (NINT.LT. 1) GO TO 172 C PREPARE TO START AN INTERSECTION POLYGON 176 X=XINT(1) Y=YINT(1) LINE=1 GO TO 9 C END OF ROUTINE END C c SUBROUTINE PIP(XVECI,YVECT,XX,YY,N,PX,PY, 1XINT,YINT,NSIDE,NINT,INOUT,LINE) C INTERSECTS A VECTOR WITH A POLYGON INTEGER NSIDE(30),IGNOR,LINE REAL*8 XLENG,XVECT,YVECT,XINT (30) ,YINT(30) ,SEGLTH REAL*8 VCOS,VSIN,XVEC,YVEC,CEPT,TEMP,EPT,DIFF REAL*8 XX (N) ,YY (N) ,XP,YP,XI,YI,XJ,YJ,DSQRT,XCEPT REAL*8 PX,PY,XIS,YIS,XJS,YJS,XK,YKS,XKS,TEST REAL*8 PXIJ,PYIJ,PXKJ,DIST,RADIUS,DABS,CLOS Q *********************************** c * C * WRITTEN BY DALE TROYER C * MODIFIED BY KIM SCOULLAR C * o s A * n + s o o A * r x = s r x 1 *o-=cx (z "0 ' i r r x l a i L'0=CX (0 *0 * 3 9 T X ) 31 i£ M i o d l a v i s a m SAON - a c i o a A NO s i a v i s nosxioa D o i o s ( s I ' O ' i s ' r r a o ' s ' o - ' i T f x ) ai a o i o a A a H i a v s N 9Niag N o s n o d a c i N i o a i s a i a aoa H D 3 H D D i - = i n o N i i = r S O D A * SCX + NISA * STX = CX N I S A * SCX - SODA * SPX = PX Id - U)XL=SCX xa - ( i ) x x = s r x 0 = ININ OE 9N31X / D3AI = SODA S N 3 1 X / 03AX = NISA (D3AI*D3AI+D3AX*D3AX)ia5S(3 = 9N31X Xd - ID3AI = D3AI Xd - I D 3 A X = D3AX D D * D " ' s a i s i n o s i i N i o a S H I swnssv i s a i a SM * D * D ' °3DIMI (39HV1 3 9 XVW HDIHM) NOOIlOd 9NI80IS SCIIOAV SIHI * D " " a w n v i v t H3iav a a i s HDva aoa <INV * D s a a i s O M i s a i a a H i aoa I T I V I I I N I a N o a s i S I H I * D •SIXV x 3 H i NO s a n ID3AX ID3AX XQ a s N i a s c * D 30ID3A 3HI IVHI HDDS dSIVIOH N 3 H I S I NOOIlOd 3 H I * D * EN i m z a a A a w o a a i d ' x d o N i i o v a i g n s XQ N i o i a o a m I V * D SI I d ' X d INIOd 3 H I I V H I HDDS d3IVTSNVai S I N09I*I0d 3HI * D D ?{c 3JC 3JC 3JC 3(t 3JC 5jt >jc 3flC 3JC 3JC 3^ C 3JC sQc 3JC 3jC 3^ C 3flC 3$C 3JC ^flc 3JC 3fC 3jC 3JC jQc 3$J 3JC S$T S{C 2$C sflc 3JC 3}j 3JC 3}C 3$C !$C 3$C 30* 3JC 2$C 5flC 0 * D • ISVT a g " I U M IN3W93S 3 H I * D 9N01V Xd ' Xd 01 IS3S01D N0I ID3S83INI 3 H I * D • i S a i a 3W0D IN3W93S 3 H I NO I D 3 A I ' I D 3 A X * D I S 3 8 V 3 N SN0I ID3Sa3INI 3 H I I V H I HDDS (I3iaOS 3HV * D S N C I I D 3 S H 3 M I '3C3IS I NVHI 330W S ID3Sa3INI IN3W93S 31 * D • a a a a n o o o N o n o a s a a i N i HDIHM NO a s s w n N a a i s s i a a i s N * D ' " I I I N I 3 N I 01 S309 ONV Id Xd IN ICd IV S I3V IS 30ID3A * D " "SINIOd 0 M I 3 H I XQ d3NIJ3d IN3W93S 3 H I * D SID3S33INI N09I10d HDIHM IV SINIOd 33V INIX ' I N I X * D ' " Id 'Xd 01 = ION 3IVNId00D M V 39 NVD ID3AI ' ID3AX * D " °3aVK SI I S 3 I HDIHM NO 80ID3A S3Nia3d ID3AI 'ID3AX * D aaAow 39 T I I M I I 3 N i i l a v d N n o g v NO S I xa xa i N i o d a i * D " ' N o o x i o d 3 H i a a i s i n o s i i N i o d a i i - 01 u a s s i i n o N i * D " 'ROSIIOd 3 H I 3d ISN I SI INIOd 3 H I 31 I 01 I 3 S SI I f lONI * D mxx ONV x x N I s i N i o d ao a a g w n N a H i s i K * D '  MXX ( J N V x x * D s a i v d a i v N i a a o o D a o i v a a v XQ a a N i a a o s i N o o n o d S H I * D M i d 'Xd ) SI N O I I s a f i O NI I N I O d 3 H I * D • H o s n o d V * D * a o a a i s i n o ao S O I S N I s i i N i o d v a i s a N i w a a i a a d i d * D s a a v M M D v g y a o M o x a a N o i s s a - No isaaA n d i N i * D zzz 2 2 3 YJS=YJ*VCOS-XJ*VSIN XX (J)=XJS+PX YY (J) =YJS + PY GO TO 3 0 C C ************************************ c * C * THE PROGRAM COUNTS THE NUMBER OF TIMES A POLYGON LINE C * SEGMENT CROSSES THE POSITIVE Y AXES. . C * C * I F AN ODD NUMBER OF SEGMENTS CROSS THE POSITIVE Y AXES C * THE POINT I S INSIDE. . C * C * IF AN EVEN NUMBER OF SEGMENTS CROSS THE POSITIVE Y AXES C * THE POINT IS OUTSIDE.. C * Q ******************************************************* C 3 2 DO 2 I = 1, N XI = XJ YI = YJ J = 1+1 I F (J.GT.N) J=1 C *******PERFORM TRANSLATION OF AXES****** XJS = XX (J) - PX YJS = YY (J) - PY C ******PERFORM ROTATION OF AXES****** XJ = XJS * VCOS - YJS * VSIN YJ = XJS * VSIN + YJS * VCOS C CHECK FOR SECOND POINT OF SEGMENT BEING NEAR THE VECTOR IF (XJ.LT. - 0 . 5.OR. XJ. GT. 0 . 5) GO TO 34 C SECOND POINT IS NEAR VECTOR - MOVE IT GO TO 31 C * C * HERE WE RULE OUT ALL SEGMENTS WHOS END POINTS HAVE C * X COORDINATES WITH THE SAME SIGN. . C * I.E. X I * X J > ZERO. C * Q ******************************************************** c 3 4 PXIJ=XI * XJ I F ( P X I J . G T . 0 . 1 5 ) GO TO 2 £ "ijc jflc *J^ C ?{c sflc ?}c ?{c j{< jjc ?^}c ?}c jflc jfrc jj^c sflc jjc ?{*. iflc ?fc .fr ?jc 3ft *{c ffi^ffifjtijgTJtifeifeijc.Tfcffi'jfcife ffiijtffi^ffi^?fr?{cifcffi7{c^:iflc:){c c * C * HERE WE RULE OUT ALL SEGMENTS THAT HAVE BOTH Y VALUES C * LESS THAN ZERO. C * C * THESE WILL NOT INTERSECT THE POSITIVE Y AXIS. . C * Q ******************************************************** c I F (YI.LT.-O. 7 . AND. Y J . L T . - 0 . 7 ) GOTO 2 C 224 c * C * WE NOW MUST RESORT TO CALCULATION OF THE Y INTERCEPT. C : * C C CALCULATE Y AND X INTERCEPTS C EPT=YI*XJ-XI*YJ 8 CEPT=EPT / (XJ-XI) DIFF=YJ-YI IF(DIFF.NE.0.0)GO TO 53 XCEPT=999.. GO TO 56 53 XCEPT=EPT/DIFF 56 DIST=DSQRT(CEPT*CEPT+XCEPT*XCEPT) IF (DIST.NE. 0.0) GO TO 54 RADIUS=0.0 GO TO 57 54 RADIUS=CEPT*XCEPT/DIST C CHECK FOR VECTOR STARTING ON LINE 57 I F (RADIUS.LT.-0.5. OR. RADIUS. GT.0.5)GO TO 58 NINT=NINT+1 YINT(NINT)=0.0 NSIDE (NINT) =1 GO TO 2 C CHECK FOR INT NOT ON VECTOR PART OF LINE 58 IF (CEPT. LT.O, 0) GO TO 2 C HAVE A PROPER INTERSECTION OF VECTOR WITH SEGMENT C RECORD THE INTERSECTION NINT=NINT+1 YINT (NINT)=CEPT NSIDE (NINT) =1 INOUT = -INOUT 2 CONTINUE C £ SjJC S^C S{C 30C 2*}C J^C 3{C 3JC j j c 3^ C 3{C 3{c jfiC 3^ C Q^c 3*}c 3JC 3^ C 3 f t ^ ^ " ^ 3 j C 3 0 C 3 t J C 3 f C < > j C 3 { C 3 ( C 3}C3{ C c * C * SORT THE INTERSECTIONS BY DECREASING Y VALUE.. C * THE X VALUES ARE ZERO BECAUSE OF THE ROTATION.. C * £ J 3JC 3JC j{C s{C «JC 3{C 3JC 3JC jjt S{C J J C 2JC 3JC 2$C 3JC «JC 3{C 3JC ){C 3JC 3JC l { C )0C 3JC iQc J^C 3JC 30C 3fC *$C j(C 3JC «{C « j ( 3J6 •"!"£ S(C 2JC sQc 3JC DjC 3(JC ?fc ?jt IJC J J C "•{** c I F (NINT.LT. 2) GO TO 64 ISIZE = NINT - 1 DO 10 I = 1, IS I Z E K = I + 1 DO 10 J = K, NINT I F (YINT (J) . GT. . YINT (I)) GO TO 1 1 GO TO 10 11 TEMP = YINT (J) YINT (J) = YINT (I) YINT (I) = TEMP ITEMP = NSIDE (J) NSIDE (J) = NSIDE (I) NSIDE (I) = ITEMP 225 10 CONTINUE C CHECK FOE VECTOR STARTING ON POLY SEGMENT 64 IF (NINT.LT. 1) GO TO 12 IF(YINT (NINT) .GT.0.2) GO TO 13 INOUT=0 C C GET THE INT CLOSEST TO THE SECOND POINT 13 IGNOR=0 CLOS=9999. DO 14 1=1,NINT C LOOK FOR INT CLOSEST TO SECOND POINT TEST = DABS (YINT (I)-XLENG) IF (TEST. GT. CLOS) GO TO 14 C THIS IS CLOSEST TO DATE IGNOR=I CLOS=TEST 14 CONTINUE C Q * ****************** ********** *************************** C * C * THE FOLLOWING TRANSLATES AND ROTATES THE AXES FOR C * THE INTERSECTING POINTS.. C * THE SECOND TERM OF EACH ROTATION EQUATION IS ZERO C * BECAUSE THE X VALUES OF THE INTERSECTIONS ARE ZERO' C * THERFORE TO SAVE COMPUTATION THEY HAVE BEEN REMOVED. C * C ******************************************************** c 12 I F (NINT .EQ. 0) RETURN J=0 DO 9 I = 1, NINT C CHECK FOR SECOND POINT ON LINE TO BE IGNORED IF (LINE. EQ. 0) GO TO 67 IF(I.EQ.IGNOR)GO TO 9 C CHECK FOR INTS AT OR BEYOND END OF SECOND POINT 67 IF(YINT (I) .GT.XLENG) GO TO 9 J=J+ 1 XJS = YINT (I) * VSIN YJS = YINT (I) * VCOS XINT (J) = XJS + PX YINT (J) = YJS + PY NSIDE (J) =NSIDE(I) 9 CONTINUE NINT=J C***DEBUG 3 LINES PLUS GO TO 15 ABOVE INSTEAD OF RETURN C15 WRITE (8, 16) PX, PY , XVECT, YV ECT , NINT , INOUT , XINT (1) ,YINT (1) C16 FORMAT (' PIP « ,4F10. 2, 214, 2F 10. 2) RETURN END C C SUBROUTINE AREA (X ,Y, N, PAREA) C ROUTINE TO FIND THE AREA OF POLYGON X,Y WITH N POINTS C AREA BY COORDINATES - DAVIS AND FOOT SURVEYING DIMENSION X (N) ,Y (N) IF(N.GT.2)GO TO 3 226 PAREA=0.0 RETURN 3 PAREA=Y (1) * (X (N)-X (2) ) M=N-1 DO 5 1=2, M 5 PARE A=P AREA+Y (I) * (X ( I - 1) -X (1+ 1) ) PAREA=PAREA+ Y (N) * (X (N- 1) -X (1) ) PAREA=ABS (0. 5*PAREA) RETURN END C C FUNCTION SEGLTH(P1X,P1Y,P2X,P2Y) C FIND THE DISTANCE BETWEEN TWO POINTS REAL*8 DSQRT,SEGLTH,P1X,P1Y,P2X,P2Y IF(P1X. EQ.P2X.AND.P1Y.EQ. P2Y) GO TO 5 C LENGTH IS HYPOTENUES OF RIGHT TRIANGLE SEGLTH=DSQRT { (P2X-P1X) **2+(P2Y-P1Y) **2) RETURN 5 SEGLTH=0. 0 RETURN END C c SUBROUTINE UPDOWN(X,Y,J2,X2,Y2,N2,X1,Y1,N1,IDIR,JB) INTEGER NS(30),IFIX REAL*8 X2 (N2) ,Y2(N2) ,XT(30) , YT(30) , X, Y REAL*8 SEGLTH,X1 (N1) ,Y1 (Nl) REAL*4 FLOAT C ROUTINE TO PREPARE INFORMATION FOR INTERSECTION DECISIONS C X,Y IS POINT OF INTERSECTION ON SIDE J2 OF POLYGON 2 C IDIR IS DIRECTION CHOSEN - JB IS NEXT POINT C C GET INOUT UP AND DOWN FROM INTERSECTION ON POLY 2 20 K2=J2+1 IF (K2.GT. N2) K2=1 C MOVE POINT TO INT I F IT IS CLOSE I F (SEGLTH (X,Y,X2(K2) ,Y2(K2) ) .GT.0.2) GO TO 21 X2 (K2) =X Y2 (K2) =Y K2=K2+1 I F (K2. GT. N2) K2=1 21 I2=J2 IF (SEGLTH (X,Y,X2(I2) ,Y2(I2) ) .GT.0.2) GO TO 18 X2 (12) =X Y2 (12) =Y 12=12-1 IF (12.LT. 1) I2=N2 C TRY POINT UP 18 NMVE=0 22 CALL PIP(X,Y,X1,Y1,N1,X2(K2) ,Y2(K2) , 1XT,YT,NS,NT,IOU,1) IF (IOU.NE.0) GO TO 23 C POINT UP IS ON LINE - MOVE IT AND TRY AGAIN 19 CALL MOVEPT (X2(K2) ,Y2 (K2) ,NMVE) 227 C CHECK FOE MIN DISTANCE IF (SEGLTH (X, Y,X2 (K2) ,Y2 (K2) ) .GT. 0. 2) 30 TO 22 GO TO 19 C BEVEBSE INOUT FOB EACH INTEESECTION 23 IF (NT. LT. 1) GO TO 25 DO 24 1=1,NT 24 IOU=-IOU C C TBY POINT DOWN 25 NMVE=0 26 CALL PIP(X,Y,X1 ,Y1,N1,X2(I2) ,Y2(I2) , 1XT,YT,NS,NT,IOD,1) IF(IOD.NE.O)GO TO 28 C POINT DOWN IS ON LINE - MOVE IT AND TBY AGAIN 27 CALL MOVEPT(X2(12),Y2 (12) ,NMVE) C CHECK FOB MIN DISTANCE IF (SEGLTH (X,Y,X2(I2) f Y 2 (I 2) ) .GT.0.2) GO TO 26 GO TO 27 C BEVEBSE INOUT FOB EACH INTEESECTION 28 I F (NT.LT. 1) GO TO 30 DO 29 1=1,NT 29 IOD=-IOD C C ESTABLISH DISECTION AND NEXT POINT 30 IF (IOU. EQ. IOD) GO TO 35 IF (IOD. EQ. 1) GO TO 33 C DIEECTION IS FOBWABD FOB IN IDIB=1 JB=K2 GO TO 50 C DISECTION IS BACK FOB IN 33 IDIB=-1 JB=I2 GO TO 50 C ABANDON SWITCHING 35 IDIE=0 50 CONTINUE EETUEN END C C SUBEOUTINE MOVEPT (X, Y, NMVE) C EOUTINE TO MOVE A POINT THAT WOULD OTHERWISE FALL ON LINE C N IS THE NUMBER OF TIMES THIS WILL BE THAT YOU HAVE MOVED C CALL WITH NMVE PRESET TO ZERO REAL*8 X,Y DIMENSION M(48) DATA M (1) ,M (2) ,M (3) , M (4) , M (5) / 1 , 2,3,3,4/ DATA M(6) ,M(7) ,M(8) , M (9) , M (10)/4, 1, 1, 1, 2/ DATA M (11) ,M (12) , M(1 3) , M (14) , M (15) /2, 2, 3, 3,3/ DATA M (16) ,M (17) , M(1 8) , M (19) ,M (20) /3,4, 4,4,4/ 228 DATA M (21) ,M (22) ,M (23) ,M (24) ,M (25) /1 , 1, 1 , 1, 1/ DATA M(26) ,M(27) , M(2 8) , M(29) , M(30) /2,2, 2, 2,2/ DATA M(31) ,M(32) ,M(33) ,M(34) ,M(35)/3,3,3,3,3/ DATA M (36) ,M (37) , M(3 8) , M (39) ,M (4 0) /3,4,4 r 4 f 4/ DATA M(41) ,M(42) ,M(4 3) ,M(44) ,M(4 5)/4,4, 1,1,1/ DATA M (46) ,M(47) , M(48)/1, 1, 1/ C NMVE=NMVE+1 MVE=M (NMVE) GO TO (10, 11, 12,13),MVE 10 X=X+0.35 BETUEN 11 Y=Y+0.35 BETUEN 12 X=X-0.35 BETUEN 13 Y=Y-0.35 BETUEN END 229 C HA BDEXINIT C PROGRAM TO ESTABLISH INITIAL COVERAGE AREA C AND SITING VALUE ARRAYS C WRITTEN BY KIM SCOULLAR C C WRITES ON UNIT 4 DIMENSION TOTCOV (500) ,TOTBRD (500) ,NCOVS(500) ,NLOCS (500) DIMENSION SUMZ (50 0) , SUMZSQ (500) ,NZ (50 0) , SUMNC (50 0) C ZERO THE ARRAYS DO 10 1=1,50 0 TOTCOV (I) =0.0 TOTBRD (I) =0. 0 SUMZ (I) =0.0 SUMZSQ (I) =0. 0 NZ (I) =0 SUMNC (I) =0. 0 NCOVS (I) =0 10 NLOCS(I)=0 WRITE (4)TOTCOV,TOTBRD,NCOVS,NLOCS,SUMZ,SUMZSQ,NZ,SUMNC STOP END 230 C HABDEX C MUST RUN HABDEXINIT FIRST C PROGRAM TO INTERSECT AREAS OF COVERAGE AND LOCATION FOR A C SPECIES WITH TYPE ISLANDS OF A CLASSIFICATION MAP AND TO C DETERMINE A USE INDEX OF EACH TYPE ISLAND BY THE SPECIES C WRITTEN BY KIM SCOULLAR C READS CLASSIFICATION TYPE POLYGONS ON 3 C READS COVERAGE AND LOCATIONS ON 7 C READS ARRAYS OF INT AND RATING ON 5 C WRITES ARRAYS OF COV AND LOC ON 4 C OUTPUTS RESULTS ON 8 DIMENSION XCOOR(400) ,YCOOR(400) ,XPOLY (8000) ,YPOLY(8000) DIMENSION NPOLYS (60) ,NPTS (60) ,XMINS (60) ,XMAXS (60) DIMENSION YMINS (60) , YMAXS (60) ,COVX(16) ,COVY(16) DIMENSION NLOC(20) ,XMXL(20) ,XMNL(20) ,YMXL(20) ,YMNL(20) DIMENSION AREAL (20) , ABX (5,40 0) , ABY (5, 40 0) ,NAB (5) DIMENSION TOTCOV(500) ,TOTBRD(500) ,XL(16) ,YL(16) DIMENSION PAREAS(60) ,NCOVS(500) ,NLOCS (500) ,XLOC(20,16) DIMENSION SUMZ (50 0) , SUMZSQ (500) ,NZ (50 0) , SUMNC (50 0) DIMENSION I START(60) ,X (1 6) ,Y(16) ,ABAREA (5) ,YLOC(20,16) C INITIALIZE END SWITCH IFIN=0 C INPUT ONE FILE OF CLASSIFICATION TYPE ISLANDS POLYGONS C PREPARE THE ARRAY OF POLYGONS C ZERO THE COUNTERS IP=0 KP=0 C LOOP OVER POLYGONS 5 KP=KP+1 C INPUT ONE POLYGON CALL POLYRD(NPT,XCODR,YCOOR,NPOL,XMIN,XMAX, 1 YMIN,YMAX,PAREA,IEND) C CHECK FOR END OF POLYGONS IF (IEND. EQ. 1)GO TO 15 C LOOP OVER POINTS IN POLYGON DO 10 K=1,NPT C PREPARE THE ARRAYS XPOLY (IP + K) =XCOOR (K) 10 YPOLY (IP + K) = YCOOR (K) C PREPARE ARRAYS OF POLYGON INFORMATION ISTART (KP)=IP+1 NPOLYS(KP) =NPOL NPTS (KP) =NPT XMINS (KP) =XMIN XMAXS (KP) =XMAX YMINS (KP) =YMIN YMAXS (KP) = YM AX PAREAS (KP)=PAREA C INCREMENT POSITION COUNTER IP=IP+NPT GO TO 5 231 C OM ENDFILE SET # POINTS = ZERO AND SAVE # OF CLASS POLYS 15 NPTS(KP)=0 KPLYS=KP-1 C INPUT THE ARRAYS OF AREAS OF INT FOR EACH CLASS POLY READ (5) TOTCOV,TOTBRD,NCOVS,NLOCS,SUMZ,SUMZSQ,NZ,SUMNC C INPUT FIRST COVERAGE POLYGON READ (7)NCOV,COVX,COVY,CXMX,CXMN,CYMX,CYMN,AREAC,1ST C RESET NUMBER OF POINTS 19 NCOV=16 C OUTPUT STOP AND AREA COVERED AREACH=AREAC/10 000.0 WRITE (8,17) 1ST, AREACH 17 FORMAT(* STOP',14, 1 AREA COVERED',F7.2) C LOOP OVER LOCATION POLYGONS - INITIALIZE COUNTER L=0 C READ LOCATION POLYGONS 21 READ(7)N,X,Y,XMX,XMN,YMX,YMN,AREAXY,1ST C CHECK FOR END OF FI L E IF (N.EQ.O)GO TO 26 C CHECK FOR END OF LOCATION POLYGONS IF (N.LT.O) GO TO 30 C THIS IS NEXT LOCATION POLYGON - INCREMENT COUNTER L=L + 1 C INSERT IT INTO ARRAY DO 23 1=1,N XLOC (L,I) =X (I) 23 YLOC (L,I) =Y (I) C INSERT REST OF INFORMATION NLOC (L) =N XMXL (L) =XMX XMNL (L) =XMN YMXL (L) =YMX YMNL (L) =YMN AREAL (L) =AREAXY GO TO 21 C END OF CENSUS DATA FILE - SET END SWITCH 26 IFIN=1 C C INTERSECT COVERAGE AND LOCATIONS WITH CLASSFCTN POLYGONS 30 CONTINUE C LOOP OVER CLASSIFICATION POLYGONS DO 38 KP=1,KPLYS C SELECT FOR POLYS WITHIN RANGE OF COVERAGE C REJECT THOSE OUTSIDE THE RANGE - GO TO NEXT ONE IF(CXMX.LT. XMINS (KP) ) GO TO 38 IF (CXMN. GT. XMAXS (KP) ) GO TO 38 IF(CYMX.LT. YMINS (KP) ) GO TO 38 IF(CYMN.GT. YMAXS (KP) ) GO TO 38 C CLASS POLY IN RANGE OF COVERAGE POLY - DO INTERSECTION CALL INTPLY (COVX, COV Y, NCOV , XPOLY (ISTART (KP) ) , 1 YPOLY (ISTART (KP) ),NPTS (KP) , ABX,ABY, 1 NAB, 5, 400, ABAREA,NINTPY) C CHECK FOR NO INTERSECTIONS - GO TO NEXT ONE IF(NINTPY.LT.1)GO TO 38 232 C SUM THE AREAS OF INTERSECTION ARC=0.0 DO 33 1=1,NINTPY 33 ARC=ARC+ABAREA(I) C DISREGARD VERY SMALL INTERSECTIONS TO AVOID ROUNDOFF ERROR ARCH=ARC/10000.0 I F (ARCH.LT. 0.0 1) GO IO 38 NPOL=NPOLYS(KP) TOTCOV(NPOL)=TOTCOV(NPOL)+ARCH C INCREMENT COVERAGE COUNTER NCOVS (NPOL) =NCOVS (NPOL) +1 C OUTPUT INFO ON CLASSIFICATION POLYGON IN RANGE PAREAH=PAREAS (KP) /10 000. 0 PARC=ARC/PAREAS (KP)* 100.0 WRITE (8,312)NPOL,PAREAH,ARCH,PARC 312 FORMAT(10X,'POLYGON NUMBER',15,* AREA OF POLYGON', 1 F8.2,' AREA COVER ED',F7.2, il ' PERCENT COVERED ' , F7. 2) C ZERO BIRDS PER UNIT AREA AND NUMBER OF LOCATIONS TBIRDS=0.0 NLCS=0 C CHECK FOR LOCATION POLYGONS IF (L. LT. 1) GO TO 315 C LOOP OVER LOCATION POLYGONS 313 DO 36 1=1,L C CHECK FOR CLASS POLY WITHIN RANGE OF LOCATION POLY IF (XMXL (I) . LT. XMINS (KP) ) GO TO 36 IF (XMNL (I) . GT. XMAXS (KP) ) GO TO 36 IF (YMXL (I) .LT. YMINS (KP) ) GO TO 36 IF (YMNL (I) . GT. YMAXS (KP) ) GO TO 36 C CLASS POLY IS WITHIN RANGE OF LOCATION POLY C GET THE LOCATION POLYGON NLC=NLOC(I) DO 34 J=1,NLC XL (J) =XLOC ( I , J) 34 YL(J)=YLOC ( I , J ) C DO THE INTERSECT CALL INTPLY(XL,YL,NLOC(I) ,XPOLY(ISTART(KP) ) , 1 YPOLY (ISTART (KP) ) ,NPTS (KP) , ABX, ABY, 1 NAB,5,400,ABAREA,NINTPY) C CHECK FOR NO INTERSECTIONS - GO TO NEXT LOCATION IF (NINTPY.LT. 1) GO TO 36 C SUM THE AREAS OF INTERSECTION ARL=0.0 DO 35 K=1,NINTPY 35 ARL=ARL +ABAREA (K) BIRDS= ARL/AR EAL(I) C TRANSFORM THE OBSERVATIONS USING ROOT OF AREA COVERED Z=BIRDS/SQRT(ARCH) C SUM THE Z AND SQUARES OF Z SUMZ (NPOL) =SUMZ (NPOL)+Z SUMZSQ(NPOL)=SUMZSQ(NPOL)+Z*Z TBIRDS=TBIRDS+BIRDS C OUTPUT INFO ON LOCATION POLY IN RANGE AREALH=AREAL (I)/10000.0 IF (AREALH. LT. 0. 001) AREALH = 0. 001 233 ARLH=ARL/10000.0 IF (ARLH.LT. 0.001) ARLH=0.001 WRITE(8,314)BIRDS,AREALH,ARLH 314 FORM AT(15X, 1BIR DS*,F6 f2," AREA OF LOCATION* ,¥1,2, 1* AREA IN POLYGON * ,F7. 2) C UPDATE NUMBER OF LOCATIONS IN RANGE NLOCS (NPOL) =NLOCS (NPOL) +1 NLCS=NLCS+1 36 CONTINUE C OUTPUT BIRD DENSITY FOR THIS POLY THIS STOP 315 TBIRDH=TBIRDS/ARCH WRITE (8,3 16)TBIRDS,TBIRDH 316 . FORMAT(15X,'TOTAL BIRDS',F6.2,5X, 1 'BIRDS PER HECTARE',F7.3) C SfJM THE SITINGS AND RECORD NUMBER C SITING IS AREA OF INTERSCTN OF LOCATN POLY WITH CLASS POLY C DIVIDED BY TOTAL AREA OF LOCATION POLYGON TOTBRD(NPOL)=TOTBRD(NPOL)+TBIRDS I F (NLCS.LT. 1) NLCS=1 NZ (NPOL) =NZ (NPOL) +NLCS SUMNC(NPOL)=SUMNC (NPOL) +NLCS*ARCH C GO TO NEXT CLASS POLY 38 CONTINUE C C END OF CLASS POLY ARRAYS - CHECK FOR END OF FIELD DATA 70 IF(IFIN.EQ. 1)GO TO 100 C PREPARE COVERAGE POLYGON DO 72 M=1,16 COVX (M) =X (M) 72 COVY(M)=Y(M) CXMX=XMX CXMN=XMN CYMX=YMX CYMN=YMN AREAC=AREAXY GO TO 19 C C END OF BOTH FILES - OUTPUT ARRAYS OF COVERAGE AND SITINGS C INPUT INFO ON DATA SET 100 READ (7)ISPEC,ISER,IDATE1,IDATE2 C L4BEL THE OUTPUT WRITE (8,101)ISPEC,ISER,IDATE1,IDATE2 101 FORMAT(* 1 SPECIES',14,5X,'SERIES',14,5X, 1 * TIME PERIOD',219//) WRITE(8,110) 110 FORMAT(' POLYGON TOTAL AREA NUMBER NUMBER OF', 1' TOTAL BIRDS PER') WRITE (8,111) 111 FORMAT(' NUMBER COVERED OF VISITS LOCATIONS', 1' BIRDS HECTARE'/) C SUMMARISE RESULTS TO DATE - LOOP OVER CLASS POLYS DO 105 KP=1,KPLYS NP=NPOLYS (KP) BPHEC=0.0 IF (TOTCOV (NP) .LT. 0.Q01) GO TO 102 BPHEC=TOTBRD (NP) /TOTCOV (NP) 234 10 2 WRITE (8, 104) NP, TOTCOV (NP) , NCOVS (NP) , NLOCS (NP) , 1 TOTBRD (NP) ,BPHEC 104 FORMAT (17, F l 1.2,111,11 1,F 12. 2, F1 1.3) 105 CONTINUE C OUTPUT UPDATED ARRAYS WRITE (4)TOTCOV,TOTBRD,NCOVS,NLOCS,SUMZ,SUMZSQ,NZ,SUMNC STOP END C C SUBROUTINE POLYRD(NPT,XCOOR,YCOOR,NPOLY,XMIN,XMAX, 1 YMIN,YMAX,PAREA,IEND) C ROUTINE TO INPUT METRIC POLYGON FILES - READS FROM 3 C END OF FILE CAUSES IEND=1 TO BE RETURNED DIMENSION XCOOR (4 00) , YCOOR (400) , X25 (2 5) , Y25 (25) DIMENSION X400 (400) ,Y400 (400) ,X200 (200) ,Y200 (200) DIMENSION X 100 (100) , Y 100 (100) ,X50 (50) ,Y50 (50) EQUIVALENCE (X400 (1) ,X200 (1) , X 100 (1) , X50 (1) ,X25 (1) ) EQUIVALENCE (Y400 (1) ,Y200 (1) ,Y100(1) ,Y50 (1) ,Y25(1) ) IEND=0 READ (3) NPOLY,NPT,XMIN,XMAX,YMIN,YMAX,PAREA C CHECK FOR END OF FILE IF (NPOLY. LT. 1) GO TO 100 C FIT POLYGON INTO SMALLEST POSSIBLE ARRAY IF(NPT.LE. 200) GO TO 20 READ (3)X400,Y400 GO TO 60 20 IF(NPT.LE.100)GO TO 30 READ (3) X200,Y200 GO TO 60 30 IF (NPT.LE. 50) GO TO 40 READ(3)X100,Y100 GO TO 60 40 IF(NPT.LE.25)G0 TO 50 READ (3) X50, Y50 GO TO 60 50 READ (3) X25, Y25 60 DO 70 1=1,NPT XCOOR (I) =X400 (I) 70 YCOOR (I) =Y400 (I) RETURN 100 IEND=1 RETURN END C c SUBROUTINE INTPLY(AAX,A AY,NA,BBX,BBY,NB,ABX,ABY,NAB, 1NAB1,NAB2,ABAREA,NINTPY) C ROUTINE TO INTERSECT TWO POLYGONS SEE PROGRAM COVANDLOC FOR SUBROUTINE INTPLY AND ASSOCIATED SUBROUTINES P I P , AREA, SEGLTH, UPDOWN AND MOVEPT RETURN END 235 C StJMERIZE C PROGRAM TO SUMERIZE RESULTS OF ALL SERIES C FOR ONE SPECIES BY CLASS TYPES C INPUTS HABITAT DATA ON 5 INPUTS POLYGON TYPES ON 7 C OUTPUTS TABLE ON 8 DIMENSION IPT (10) ,ITYPE (500) ,TYPCOV(40) ,TYPBRD(40) DIMENSION TOTCOV(500) ,TOTBRD(500) ,NCOVS(500) ,NLOCS (500) DIMENSION NTYPC (40) , NTYPL (40) ,SUMZ (5 0 0) , SUMZSQ (500) DIMENSION NZ(500) ,SUMNC(500) ,TYPZSQ(40) ,NTYPZ(40) DIMENSION DCELL(40, 20) ,WCELL (40,20) , NCELL (40 , 20) DIMENSION SERBRD (40,20) ,KSER(20) , KTYP (40) , SAMPLE (40 , 20) DIMENSION PROBR(40,40) , PROBL (40 , 40) ,DWTAVE(40) ,NORD(40) DIMENSION WTYPE (4 0) ,WSUMC (40,20) ,WSUMNC (40,20) DIMENSION TYPZ(40) ,TYPNC (40) , VZCELL (40, 20) ,SUMBRD(20) C C PRESET DATA SET COUNTER NSER=0 C PRESET ARRAY OF POLYGON TYPES DO 5 1=1,50 0 5 ITYPE(I)=-99 C INPUT POLYGON CLASSIFICATION TYPES C LOOP OVER EVERY TEN POLYGONS DO 15 KP=1,50 C INPUT TYPE FOR TEN POLYGONS READ(7,12) (IPT (I) ,1=1 , 10) 12 FORMAT(10I3) C INSERT INTO POLYGON TYPE ARRAY DO 14 JP=1,10 14 ITYPE (KP*10-10 + JP) =IPT(JP) C CHECK FOE END OF DATA IF (IPT (10) .LT.-97) GO TO 20 15 CONTINUE C C INPUT ABBAYS OF COVEBAGE AND SITINGS 20 BEAD(5,END=120)TOTCOV,TOTBSD,NCOVS,NLOCS, 1 SUMZ,SUMZSQ,NZ,SUMNC C PBEPABE ABBAYS (TYPE,SERIES) C INCREMENT DATA SET COUNTER NSER=NSER+1 C PRESET SUMMARY ARRAYS DO 25 1=1,40 TYPCOV (I) =0. 0 TYPBRD (I) =0.0 NTYPC (I) =0 NTYPL (I) =0 TYPZ (I)=0.0 TYPZSQ (I) =0. 0 NTYPZ (I) =0 25 TYPNC(I)=0.0 C C ASSIGN DATA ON EACH POLYGON TO ITS TYPE C LOOP OVER POLYGONS DO 80 1=1,500 ITY=ITYPE (I) C CHECK FOE END OF POLYGONS IF (ITY. LT.-97) GO TO 90 C ADD DATA TO APEOPEIATE TYPE TYPCOV (ITY) =TYPCOV(ITY) +TOTCOV (I) TYPBRD (ITY) =TYPBED (ITY) +TOTBED (I) NTYPC (ITY) =NTYPC (ITY) +NCOVS (I) NTYPL (ITY) =NTYPL (ITY) +NLOCS (I) TYPZ (ITY) =TYPZ (ITY) + SUMZ (I) TYPZSQ (ITY) =TYPZSQ (ITY) +SUMZSQ (I) NTYPZ (ITY) =NTYPZ (ITY) +NZ (I) 80 TYPNC (ITY) =TYPNC (ITY) +SUMNC (I) C C c 90 92 93 94 95 POLYGON SAMPLING DEGBEES TYPE INTENSITY NUMBER NUMBER BIRD DENSITY 1, VARIANCE•) OF' OF OF VISITS INDEX 1 , ABOUT') LOCATIONS' THAT HIT ', (BIRDS/HEC-HR)' Z',/) IN HEC-HR OUTPUT SUMMARY OF TYPES FIRST PRINT HEADINGS WRITE(8,92) FORM AT('1',/////) WRITE(8,93) FORMAT (8X,' ' TOTAL • DENSITY WRITE (8,94) FORMAT(8X,' » BIRDS « STANDARD WRITE(8,95) FORMAT(19X,'THAT HIT • (HEC-HRS) • ERROR FREEDOM LOOP OVER TYPES DO 98 IT=1,40 COMPUTE SAMPLING INTENSITY SAMPL=TYPCOV (IT) /4. 0 SAMPLE(IT,NSER)=SAMPL ZERO SUMMARY VARIABLES DC ELL (IT, NSER) =0. 0 WCELL (IT, NSER) =0. 0 SAVE TOTAL BIRDS FOR THE CELL SERBRD(IT,NSER)=TYPBRD(IT) BDENS=0.0 DENSE=0.0 NDOF=0 VARD=0.0 VARZ=0.0 IF (SAMPL.LT.0.0 1) GO TO 96 COMPUTE BIRD DENSITY INDEX BDENS=TYPBRD (IT) /SAMPL COMPUTE VARIANCE ABOUT Z IF (NTYPZ (IT) .LT. 2) GO TO 96 VARZ=(TYPZSQ (IT)-TYPZ(IT) **2/NTYPZ(IT))/ (NTYPZ(IT) VARD=VARZ*TYPNC(IT)/TYPCOV(IT)**2 237 C COMPUTE STANDARD ERROR IN BIRDS PER HEC-HR DENSE=SQRT(VARD)*4.0 NDOF=NTYPZ (IT) -1 C TRANSFER RESULTS TO SUMMARY ARRAYS C UNITS ARE BIRDS PER HEC-15 MIN DCELL (IT, NSER) =TYPBRD (IT) /TYPCOV (IT) WCELL (IT, NSER) = TYPCOV (IT) **2/TYPNC (IT) WSUMC (IT,NSER) =TYPCOV (IT) WSUMNC(IT,NSER)=TYPNC (IT) 96 NCELL (IT,NSER) =NTYPZ (IT) VZCELL(IT,NSER)=VARZ C OUTPUT DATA WRITE (8,97) I T , NTYPC (IT) , NTYPL (IT) , 1TYPBRD(IT),SAMPL,BDENS,DENSE,NDOF,VARZ 97 FORMAT (8 X, 15,112, I I 2, F M . 1 , F 10. 1 , F 1 3. 3, F 1 3. 4 ,11 0 , F 10 . 4) 98 CONTINUE GO TO 20 C ARRAYS(TYPE,SERIES) HAVE BEEN PREPARED 120 CONTINUE C C ELIMINATE LOW SERIES AND TYPES WITH LITTLE DATA C LOOP OVER SERIES TO FIND ONE WITH MOST BIRDS BIGB RD=0.0 DO 130 IS=1,NSER SUMBRD(IS) =0.0 DO 129 IT=1,40 129 SUMBRD(IS) =SUMBRD(IS) +SERBRD (IT, IS) 130 I F (SUMBRD (IS).GT. BIGBRD) BIGBRD=SUMBRD (IS) C KEEP ALL SERIES THAT HAVE AT LEAST ONE-FIFTH OF BIGGEST IKEEP=0 BIGBRD=BIGBRD*0. 2 DO 140 IS=1,NSER IF(SUMBRD (IS) .LT. BIGBRD) GO TO 140 IKEEP=IKEEP+1 KSER (IKEEP) =IS 140 CONTINUE NSER=IKEEP C KEEP TYPES WITH G. E. . 8 D.F. AND SAMP INTENS G. E. . 1 .BPH-HR IKEEP=0 DO 150 IT=1,40 C CHECK FOR LITTLE OR NO DATA FOR THIS TYPE DO 145 1=1,NSER IS=KSER (I) IF (NCELL (IT,IS) .LT. 9) GO TO 150 IF (SAMPLE (IT,IS) . LT. 1 .0) GO TO 150 145 CONTINUE IKEEP=IKEEP+1 KTYP (IKEEP) =IT 150 CONTINUE NTYP=IKEEP 238 C CALCULATE THE POOLED VARIATION ABOUT Z C AND ASSOCIATED DEGREES OF FREEDOM DFPOOL=0.0 SUM=0.0 DO 160 I=1,NTYP IT=KTYP (I) DO 155 J=1,NSER IS=KSER (J) IF (VZCELL (IT,IS) .LT.O.001) GO TO 155 DFCELL= NCELL (IT,IS) -1 DFPOOL=DFPOOL+DFCELL SUM=SUM+DFCELL*VZCELL(IT,IS) 155 CONTINUE 160 CONTINUE VZPOOL=SUM/DFPOOL RTVZ=SQRT(VZPOOL) C C COMPUTE DEGREES OF FREEDOM FOR COMBINED PROBABILITIES DFCOMB=2*NSER C C COMPUTE WEIGHTED AVERAGE DENSITY FOR TYPES OVER SERIES C AND CONFIDENCE INTERVAL ON THE DIFFERENCE BETWEEN TYPES DWTMAX=0.0 DWTMIN=9999,0 DO 190 I=1,NTYP IT=KTYP (I) WN=0.0 WD=0.0 DWT=0.0 DO 185 J=1,NSER IS=KSER (J) WN=WN+WSUMC (IT,IS) WD=WD+WSUMNC (IT,IS) DWT=DWT+SERBRD (IT,IS) 185 CONTINUE WTYPE(IT)=WN*WN/WD DWTAVE(IT) =DWT/WN IF (DWTAVE(IT). GT. DWIMAX) D WTMAX=DWTAVE (IT) IF (DWTAVE (IT) . LT. DWTMIN) DWTMIN=DWTAVE (IT) 190 CONTINUE C C COMPUTE F STATISTIC FOR EFFECT OF TYPES C AND INTERACTION OF TYPES WITH TIME C GET VARIANCE AMOUNG TYPES - LOOP OVER SERIES VZTYPS=0.0 DO 200 1=1,NSER IS=KSER (I) C GET THE WEIGHTED MEAN D FOR THAT SERIES SOMWD=0.0 SUMW=0.0 DO 203 J=1,NTYP IT=KTYP(J) SUMWD = SUMWD+DCELL (IT,IS) *WCELL (IT,IS) 203 SUMW = SUMW+WCELL (IT,IS) DBAR=SUMWD/SUMW 239 C SUM THE SQUARES OF THE DIFFERENCES TO GET VARIANCE DO 205 J=1,NTYP IT=KTYP(J) 20 5 VZTYPS=VZTYPS+WCELL(IT,IS)*(DCELL(IT,IS)-DBAR)**2 200 CONTINUE C COMPUTE DEGREES OF FREEDOM AND VARIANCE DFTYPS=NSER* (NTYP-1) VZTYPS=VZTYPS/DFTYPS C COMPUTE F STATISTIC F=VZTYPS/VZPOOL C GET PROBABILITY OF EXCEEDING THE OBSERVED F VALUE EXCEED=FPROB (F,DFTYPS,DFPOOL) C C OUTPUT WEIGHTED AVE DENSITY AND HABITAT RATING FOR TYPES C PRINT HEADINGS WRITE(8,210) 210 FORMAT (• 1',//////, 8X,' CLASSIFICATION TYPES ORDERED', 1» BY WEIGHTED AVERAGE DENSITY',/) WRITE(8,211) 21sl FORMAT (8X,' CLASSIFICATION AVERAGE RELATIVE') WRITE(8,212) 212 FORMAT(17X,'TYPE',8X,'DENSITY HABITAT_VALUE',/) C PRODUCE RELATIVE RATING BY SORTING C PREPARE ARRAY OF ORDER DO 9 13 I=1,NTYP 913 NORD (I) =KTYP (I) NTIMES=NTYP-1 DO 9 15 I=1,NTIMES MOVE=0 DO 914 J=1,NTIMES IF(DWTAVE(NORD(J)). GE.DWTAVE(NORD (J+1)) ) GO TO 914 MOVE=1 NTEMP=NORD (J+1) NORD (J+1) =NORD(J) NORD (J) =NTEMP 914 CONTINUE IF(MOVE.EQ.0)GO TO 2 13 915 CONTINUE C OUTPUT RATINGS OF TYPES 213 DO 220 I=1,NTYP IT=NORD (I) C CALCULATE RELATIVE HABITAT INDEX HABDEX=DWTAVE(IT)/DWTMAX DWTHHR=DWTAVE(IT)*4. 0 WRITE (8,215)IT,DWTHHR,HABDEX 215 F0RMAT(8X,I13,F14.3,F1 1.3) 220 CONTINUE C OUTPUT VARIANCES AND DGREES OF FREEDOM WRITE (8,221)VZPOOL,DFPOOL 22(1 FORMAT (//,8X, ' VARIANCE WITHIN CELLS (SERIES, TYPES) ' , 1F9.5,' (VAR Z) •,/,13X,'WITH',F8.0,• DEGREES OF FREEDOM') WRITE (8,222) 222 FORMAT(13X,'USED IN ALL T TESTS AND DENOMINATOR', 1 • OF F RATIO ') 240 WRITE(8,223)VZTYPS,DFTYPS 223 FORMAT (/, 8X, • VARIANCE AMOUNG TYPES WITHIN SERIES', 1F9.5,/,13X,•WITH 1,F8.0,• DEGREES OF FREEDOM') WRITE(8,224) 224 FORMAT (13X,'USED IN NUMERATOR OF F RATIO') C OUTPUT F AND PROBABILITY OF EXCEEDING ITS VALUE WRITE(8,225) F 225 FORMAT(/,8X,• F RATIO',F8.4, 1 • FOR VARIATION BETWEEN TYPES ',/,13X, il 'INCLUDING INTERACTION BETWEEN TYPE AND TIME') IF(EXCEED.LT.0.0000001)EXCEED=0.0 WRITE (8,226) EXCEED 226 FORM AT(13X,'PROBABILITY',F10.7, 1 • OF EXCEEDING BY CHANCE') C C OUTPUT LEVELS OF SIGNIFICANT DIFFERENCES C FIRST OUTPUT HEADINGS WRITE(8,230) 230 FORMAT (' 1 • ,/////) WRITE (8,231) 231 FORMAT(8X,' RESULTS OF T TESTS FOR ALL COMPARISONS', 1' BETWEEN TYPES',/,8X,• WITH CONFIDENCE FOR REJECTING', 1' NULL HYPOTHYSIS A_EQ_B',/,8X,' AND 95% CONFIDENCE', 1' INTERVAL FOR ALL DIFFERENCES',/) WRITE (8,232) 232 FORMAT(8X,' TYPE TYPE T ALTERNATE_HYPOTHYSIS*, 1' CONFIDENCE_LIMITS_FOR') WRITE (8,233) 233 FORMAT(8X,' A B VALUE A_GT_B A_LT_B', 1' LOWER A_MINUS_B UPPER',/) C GET ALL COMPARISONS DO 240 J=2,NTYP IT1 = KTYP (J-1) DO 238 K=J,NTYP IT2 = KTYP (K) C CALCULATE DIFFERENCE BETWEEN TYPES C AND CONFIDENCE INTERVAL FOR THE DIFFERENCE IN BPH-HR DIFF=DWTAVE (IT1) -DWTAVE (IT2) SZRW=RTVZ*SQRT(1.0/WTYPE(IT1)+1.0/WTYPE(IT2)) T025=TINVR (DFPOOL,0. 025) DIFMN=(DIFF-T025*SZRW)*4.0 DIFMX=(DIFF+T025*SZRW)*4.0 C CALCULATE T VALUE AND PROBABILITY T=DIFF/SZRW TPROB=FPROB (T*T,1.0,DFPOOL) C NULL HYPOTHESIS D1 EQUALS D2 C ALTERNATE HYPOTHESIS D1 GT D2 RIGHT TAIL PRT=0.5*TPROB IF (T.LT.0.0)PRT=1.0-PRT C ALTERNATE HYPOTHESIS D1 LT D2 LEFT TAIL PLT=0.5*TPROB IF (T.GT.0.0)PLT=1.0-PLT C CONVERT DIFFERENCE TO BPH-HR DIFF=DIFF*4.0 241 C OUTPUT EESULTS WRITE(8,235)IT1,IT2,T,PRT,PLT,DIFMN,DIFF,DIFMX 235 FORMAT (8X ,14 ,15 , F9. 3 , 2F9. 4,3F9. 3) 238 CONTINUE 240 CONTINUE WRITE(8,249) 249 FORM AT('1') STOP END C c FUNCTION FPROB (EF,EFNUM,EFDEN) C RETURNS PROBABILITY OF A VALUE AS HIGH AS •EF' IN AN C F-DISTRIBUTION WITH 'EFNUM' DEGREES OF FREEDOM IN THE C NUMERATOR AND 'EFDEN' IN THE DENOMINATOR., U.B.C. COMPUTING CENTER LIBRARY ROUTINE. RETURN END C FUNCTION TINVR(DF,P) C RATIONAL APPROXIMATION TO THE INVERSE T DISTRIBUTION U.B.C..COMPUTING CENTER LIBRARY ROUTINE.. RETURN END 2 4 2 C COMPARE C PROGRAM TO COMPARE SUMMARIES OUTPUT ON UNIT 8 C READS T A B L E S A ON 5 READS T A B L E S B ON 7 D I M E N S I O N K O R D ( 4 0 ) , LORD ( 4 0 ) , A S I G ( 4 0 , 4 0) , B S I G (4 0,4 0) D I M E N S I O N I N D E X A ( 4 0 ) , I N D E X B ( 4 0 ) , 0 U T (40) , S ( 4 0 ) ,W ( 4 0 ) DATA C , E L , B L A N K , R , E , E X / ' C , 'L« , i i , ' R ' r ' E' , 'X' / DATA S ( 1 ) ,S (2) ,S (3) ,S ( 4 ) / • 1', i 2* , ' 3' 1 1 4» / DATA S ( 5 ) ,S (6) , S ( 7 ) , S ( 8 ) / • 5 » , • 6', ' 7* 1 1 8' / DATA S ( 9 ) , S ( 1 0 ) , S ( 1 1 ) , S ( 1 2 ) / ' 9', • 10' , • 1 1 ' , t 1 2 ' / DATA S ( 1 3 ) ,S (14) , S ( 1 5 ) /' 13' , ' 14« ,• 15- / DATA S ( 1 6 ) , S ( 1 7 ) , S ( 1 8 ) , S ( 1 9 ) /• 16 ' ,' 17' i t 1 8 ' i 1 9 ' / DATA S (20 ) ,S (21) ,S (2 2) ,S (2 3 ) / ' 20« ,' 2 1 ' • i 2 2 ' i 2 3 ' / DATA S ( 2 4 ) ,S (2 5 ) ,S (2 6) ,S ( 2 7 ) /» 2 4 ' ,• 25' i t 2 6 ' i r 21W DATA S ( 2 8 ) ,S (29) , S ( 3 0 ) /' 2 8 ' , ' 29 ' ,• 3 0 " / DATA S ( 3 1 ) ,S ( 3 2 ) , S ( 3 3 ) ,S(34)/« 31 • , • 3 2 ' i i 3 3 ' 1 r 3 4 ' / DATA S ( 3 5 ) ,S (36) , S ( 3 7 ) , S ( 3 8 ) /' 3 5 ' 3 6 ' i r 3 7 ' i 3 8 ' / DATA S ( 3 9 ) ,S (40) ,W(1) ,W(2) /• 39 i i 40 ', • 0. 0', ' . 2 5 ' / DATA W (3) ,W (4) ,W (5) /• 0.5' , ' . 7 5 * , ' 1 . 0 ' / c DATA B A R , D A S H , B X X , D X X , B L 3 N K / ' |' i _ i i i XX • • — XX • i c P R E P A R E TO I N P U T ORDER c ZERO VECTOR OF ORDER AND ARRAYS OF S I G N I F I C A N C E DO 5 0 1 = 1 , 4 0 KORD ( I ) =0 LORD ( I ) =0 DO 50 J = 1 , 4 0 A S I G ( I , J ) = B L A N K B S I G ( I , J) =BLANK 50 C O N TINUE C Id PUT L I N E S L O O K I N G FOR H E A D I N G OF T A B L E A 55 READ ( 5 , 5 6 ) C T , E L T 56 F O R M A T ( 9 X , A 1 , A 1 ) I F ( C T . N E . C . O R i E L T . N E . EL) GO TO 55 C I N P U T L I N E S L O OKING FOR H E A D I N G OF T A B L E B 60 READ ( 7 , 6 1 ) C T , E L T 61 FORMAT ( 9 X , A 1 ,A1) I F ( C T . N E . C . O R . E L T . N E . EL) GO TO 60 C LOOP TO START OF T A B L E A DO 6 5 1=1,4 READ ( 5 , 6 1 ) C T , E L T 6 5 C O N T I N U E C LOOP TO START OF T A B L E B 67 DO 6 7 1=1,4 READ ( 7 , 6 1 ) C T , E L T C O N T I N U E 243 C INPUT OEDEB OF TYPES FOE TABLE A NA=0 DO 80 1=1,40 BEAD (5,70)IT,DWTHHE,HABDEX 70 F0BMAT(8X,I13,F14.3,F11.3) IF (IT. LT. 1. OB. IT. GT. 40) GO TO 85 KOBD (I) =IT INDEXA(I) = (HABDEX+0. 049)/0.05 NA=N A+1 80 CONTINUE IF (NA. GT. 30) NA=30 C INPUT OBDEB OF TYPES FOB TABLE B 85 NB=0 DO 90 1=1 ,40 BEAD(7,88)IT,DWTHHE,HABDEX 88 F0BMAT(8X,I13,F14.3,F11.3) IF (IT.LT. 1. OB.IT. GT. 40) GO TO 95 LOBD (I) =IT INDEXB(I)=(HABDEX+0.049)/O.O5 NB=NB+1 90 CONTINUE IF (NB.GT. 30) NB=30 C C 13 PUT LINES LOOKING FOB HEADINGS OF SECOND TABLE A 95 BEAD(5,96)ET,ET 96 FOBMAT(9X,A1 ,A1) IF (ET. NE. E. OB* ET. NE. E) GO TO 95 C INPUT LINES LOOKING FOB HEADINGS OF SECOND TABLE B 105 BEAD(7,106)ET,ET 106 FOBMAT (9X,A1 ,A1) IF (ET.NE. B.OE. ET. NE. E) GO TO 105 C LOOP TO STABT OF SECOND TABLE A DO 110 1=1,6 BEAD (5,96)BT,ET 110 CONTINUE C LOOP TO STABT OF SECOND TABLE B DO 112 1=1,6 BEAD (7,96)RT,ET 112 CONTINUE C C FILL SIGNIFICANCE TABLE A 120 BEAD (5,121,END=150)IT1,IT2,T,PLT,PET 121 F0BMAT(8X,I4,I5,F9.3,2F9. 4) C CHECK FOB IT1 SIGNIFICANTLY GBEATEE IF(PLT.GE.0.05)GO TO 125 ASIG(IT1,IT2)=EX GO TO 120 C CHECK FOE IT2 SIGNIFICANTLY GREATEB 125 IF (PET. GE.0.05) GO TO 120 ASIG (IT2,IT1)=EX GO TO 120 244 C F I L L SIGNIFICANCE TABLE B 150 READ (7, 15(1, END= 160) IT 1, IT2, T, PLT, PRT 151 FORMAT(8X,I4,I5,F9.3,2F9. 4) C CHECK FOR IT 1 SIGNIFICANTLY GREATER IF(PLT.GE.O.05)GO TO 155 BSIG (IT1,IT2) =EX GO TO 150 C CHECK FOR IT2 SIGNIFICANTLY GREATER 155 IF(PRT.GE.O.05)GO TO 150 BSIG (IT2,IT1)=EX GO TO 150 160 CONTINUE C C OUTPUT RELATIVE HABITAT INDEX GRAPH A WRITE(8,171) 17(1 FORMAT (' 1',/////, 8X, ' RELATIVE LEVEL OF USE OF TYPES',/) C PRINTER BAR GRAPH 20 LINES HIGH IDONE=0 DO 174 1=1,21 IM=21-I IMT=IM/5*5 DO 172 J=1,NA IF ( J . LE. I DONE) GO TO 972 OUT (J) =BL3NK IF (IM. EQ. IMT) OUT (J) =DASH IF(INDEXA (J) .NE.IM) GO TO 172 OUT (J) =S (KORD(J) ) IDONE=J GO TO 172 972 OUT(J)=BXX IF (IMT. EQ-IM)OUT(J) =DXX 172 CONTINUE AX=BLANK IF (IMT. EQ. IM) AX=W (IM/5 + 1) WRITE(8,173) AX,BAR, (OUT(K) ,K=1,NA) , BAR 173 FORMAT(8X,A3, A1,40A3) 174 CONTINUE C C OUTPUT SIGNIFICANCE TABLES C TABLE A TOP LABELS WRITE (8, 164) 164 FORMAT(//,8X,' SIGNIFICANT DIFFERENCES IN USE', 1 ' OF TYPES (P=0.05) 1 ,/) WRITE (8, 165) (KORD (I) ,1=1 ,NA) 165 FORMAT(11X,40I3) C LOOP OVER LINES DO 170 1=1,NA WRITE (8, 167) KORD (I) , (ASIG (KORD (J) , KORD (I) ) , J= 1, N A) 167 FORMAT(9X,12,40(2X,A1)) 170 CONTINUE WRITE(8,165) (KORD(I) ,I=1,NA) 245 C OUTPUT RELATIVE HABITAT INDEX GRAPH B WRITE(8, 181) 181 FORMAT (' 1 ',/////, 8X, • RELATIVE LEVEL OF USE OF TYPES',/) IDONE=0 DO 184 1=1,21 IM=21-I IMT=IM/5*5 DO 182 J=1,NB IF ( J . LE. IDONE) GO TO 982 OUT(J)= BL 3NK IF (IMT. EQ.IM) OUT (J) = DASH IF (INDEXB (J) . NE. IM) GO TO 182 OUT ( J) = S (LORD (J) ) IDONE=J GO TO 182 982 OUT(J)=BXX IF (IMT. EQ. IM) OUT (J) =DXX 182 CONTINUE AX=BLANK IF (IMT. EQ.IM) AX=W (IM/5 + 1) WRITE (8, 18 3) AX,BAR, (OUT (K) ,K=1,NB) , BAR 183 FORM AT(8X,A3 ,A1,40A3) 184 CONTINUE C C TABLE B TOP LABELS WRITE(8,974) 974 FORMAT(//,8X,' SIGNIFICANT DIFFERENCES IN USE', 1 • OF TYPES (P=0.05)',/) WRITE(8,175) (LORD (I) ,1=1,NB) 175 FORMAT(11X,40I3) C LOOP OVER LINES DO 180 1=1,NB WRITE (8, 177) LORD (I) , (BSIG (LORD (J) ,LORD (I) ) , J = 1 , NB) 177 FORMAT(9X,I2,40 (2X,A1) ) 180 CONTINUE WRITE(8,175) (LORD (I) ,I=1,NB) C COMPARISONS C FIND ALL CONTRASTS WRITE(8,185) 185 FORM AT(•1',8X,'CO NTR ASTS') CONT=0.0 DO 190 1=1,40 DO 190 J=1,40 I F (ASIG ( I , J) .NE.EX. OR. BSIG ( J , I ) . NE. EX) GO TO 190 WRITE (8, 187) I , J 187 F0RMAT(9X,2I4) CONT=CONT+1.0 190 CONTINUE C C FIND ALL REINFORCEMENTS WRITE (8, 195) 195 FORMAT(/,9X,'REINFORCEMENTS•) REIN=0.0 DO 200 1=1,40 DO 200 J=1,40 IF (ASIG ( I , J) .NE.EX. OR. BSIG ( I , J) . NE. EX) GO TO 200 WRITE (8,1 97) I , J (197 F0RMAT(9X,2I4) REIN=REIN+1.0 200 CONTINUE C C CONTRAST TO REINFORCEMENT RATIO RATIO=0.0 IF(REI N . GT. 0.001)RATIO = CONT/REIN WRITE(8,208)CONT 208 FORMAT(/,8X,• NUMBER OF CONTRASTS•,F5.0) WRITE (8,209)REIN 209 FORM AT (8X,' NUMBER OF REINFORCEMENTS«,F5.0) TOTCOM=CONT+REIN WRITE(8,212)TOTCOM 212 FORMAT (8X, 1 TOTAL COMPARISONS IN COMMON»,F5.0) WRITE(8,210)RATIO 210 FORM AT (8X,' CONTRAST TO REINFORCEMENT RATIO 1,F7. WRITE (8,220) 220 FORM AT (• 1 ') STOP END APPENDIX B TABLES RELATING USE BY TEN BIRD SPECIES TO SERAL STAGES. BIRD SPECIES PAGE COMMON FLICKER.. . . , .24 9 YELLOW-BELLIED SAPSUCKER............, .251 HAIRY WOODPECKER. - 253 OLIVE-SIDED FLYCATCHER „ . .255 STELLER'S JAY.......................,257 CHESTNUT-BACKED CHICKADEE , .. , 259 RED-BREASTED NUTHATCH 261 WINTER WREN .........263 VARIED THRUSH........ 265 SWAINSON'S THRUSH .267 248 TABLE 7. DEFINITION OF SER AL STAGE NUMBERS SERAL YEARS SINCE CUTTING AGE OF EXAMPLES STAGE OR BURNING CENSUSED 1 1 TO 5 2, 3, 4, 5 2 6 TO 5 6,7,8,9,10,11,12,13,14,15 3 16 TO 5 16,17,19,20,24 4 36 TO 5 46, 51 5 76 TO 5 109, 137 6 155 TO 5 APPROX 250 7 LAKE 8 MARSH COMMON FLICKER WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALUE 6 0. 107 1.000 1 0.101 0.939 2 0.087 0.810 3 0.036 0.338 5 0.035 0. 323 8 0.030 0. 276 4 0.026 0. 241 7 0.011 0.104 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.01003 (VAR Z) WITH 4575..DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.04215 WITH 35. DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 4.2011 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 250 COMMON FLICKER WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE, HYPOTHYSIS CONFIDENCE LIMITS FOR A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER ! 2 0. 613 0.2698 0.7302 -0.030 0. 014 0. 058 1 3 2. 7 13 0. 0033 0.9967 0.018 0. 064 0. 111 1 4 3.390 0.0004 0.9996 0.032 0. 075 0.118 d 5 2.797 0.0026 0.9974 0.020 0. 066 0. 112 1 6 -0.275 0. 6084 0.3916 -0.053 -0.007 0. 040 1 7 3.687 0.0001 0.9999 0.042 0.089 0. 137 1 8 1.097 0.1363 0.8637 -0.056 0.071 0. 198 2 3 4. 237 0. 0000 1. 0000 0.027 0.050 0. 074 2 4 7.503 0.0000 1.0000 0.045 0.061 0. 077 2 5 4. 467 0.0000 1.0000 0.029 0.052 0. 075 2 6 -1.729 0. 9581 0.0419 -0.043 -0.020 0.003 2 7 5. 833 0.0000 1. 0000 0.050 0.076 0. 101 2 8 0. 930 0.1761 0.8239 -0.063 0.057 0. 177 3 4 0.966 0.1670 0. 8330 -0.011 0.010 0. 032 3 5 0. 121 0.4520 0.5480 -0.025 0. 002 0. 028 3 6 -5.150 1. 0000 0.0000 -0.098 -0.071 -0.044 3 7 1. 698 0.0447 0. 9553 -0.004 0. 025 0. 054 3 8 0. 108 0.4572 0.5428 -0.114 0.007 0. 128 4 5 -0.835 0.7980 0.2020 -0.029 -0.009 0.0 12 4 6 -7.636 1.0000 0.0000 -0. 102 -0.081 -0. 060 4 7 1. 231 0. 10 92 0.8908 -0.009 0.015 0. 038 4 8 -0,06 2 0.5246 0.4 754 -0.124 -0. 004 0. 116 5 6 -5.352 1.0000 0.0000 -0.099 -0.072 -0.046 5 7 1.608 0.0539 0. 9461 -0.005 0.023 0. 052 5 8 0. 081 0.4678 0.5322 -0. 116 0.005 0. 126 * 6 7 6. 540 0.0000 1.0000 0.067 0.096 0. 125 6 8 1. 255 0.1048 0.8952 -0.044 0.077 0. 198 7 8 -0. 297 0. 6169 0. 3831 -0. 140 -0.018 0. 103 YELLOW-BELLIED SAPSUCKER WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALUE 6 0.334 1.000 8 0.299 0.895 5 0.258 0.774 7 0.092 0. 277 2 0.090 0. 269 3 0.043 0. 130 4 0.042 0.127 1 0.0 37 0. 1 1 1 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.01853 (VAR Z) WITH 6935..DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.36654 WITH 42.,DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 19. 7829 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 252 YELLOW-BELLIED SAPSUCKER WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE HYPOTHYSIS CONFIDENCE LIMITS FOR A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER (, 2 -2. 118 0. 9829 0.0171 -0. 101 -0.053 -0. 004 1 3 -0.240 0.5949 0.4051 -0,05 7 -0.006 0. 045 1 4 -0.220 0.5870 0.4130 -0.052 -0.005 0. 042 1 5 -8.382 1. 0000 0.0000 -0.273 -0.221 -0. 169 1 6 - 11.325 1. 00 00 0. 0000 -0.348 -0.297 -0.245 1 7 -2.023 0.9784 0.0216 -0.109 -0.055 -0.002 1 8 -3. 553 0.9998 0.0002 -0.406 -0.262 -0. 117 2 3 3.353 0.0004 0. 9996 0.019 0. 046 0. 073 2 4 5. 048 0.0000 1.0000 0.029 0. 047 0. 066 2 5 -11.735 1.0000 0.0000 -0.197 -0.169 -0.140 2 6 -17.431 1. 00 00 0.0000 -0.271 -0.244 -0.217 2 7 -0. 164 0. 5650 0.4350 -0.034 -0.003 0. 029 2 8 -2. 977 0. 9985 0.0015 -0.347 -0.209 -0.071 3 4 0. 080 0. 4683 0.5317 -0.023 0.001 0. 025 3 5 -13.065 1.0000 0.0000 -0.247 -0.215 -0. 183 3 6 -17.999 1. oooo. 0.0000 -0.322 -0.290 -0.259 3 7 -2.741 0.9969 0.0031 -0. 084 -0.049 -0. 014 3 8 -3.613 0.9998 0. 0002 -0.394 -0.255 -0. 117 4 5 -16.677 1.0000 0.0000 -0. 241 -0.216 -0.191 4 6 -23. 237 1.0000 0.0 -0.316 -0.291 -0.267 4 7 -3. 398 0. 9997 0. 0003 -0.079 -0.050 -0.021 4 8 -3.665 0.9999 0. 000 1 -0.393 -0.256 -0. 119 5 6 -4.54 1 1. 0000 0.0000 -0. 108 -0.075 -0.043 5 7 9.079 0.0000 1.0000 0. 130 0. 166 0. 202 5 8 -0.571 0.7161 0. 2839 -0.179 -0.040 0. 098 6 7 13.415 0.0000 1. 0000 0.206 0.241 0. 277 6 8 0. 494 0. 3105 0.6895 -0. 104 0.035 0. 174 7 8 -2.902 0.9981 0.0019 -0.346 -0.206 -0.067 HAIRY WOODPECKER WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITZ HABITAT_VALUE 6 0, 069 1. 000 5 0.048 0.702 8 0,025 0.358 2 0.023 0.335 7 0. 018 0. 261 4 0.011 0.164 1 0.007 0. 100 3 0.005 0.072 VARIANCE WITHIN CELLS (SERIES,TYPES) 0. 00576 (VAR Z) WITH 5779. DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.02239 WITH 42. DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 3. 8896 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 254 HAIRY WOODPECKER WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE_HYPOTHYSIS CONFIDENCE_LIMITS_FOR A B VALUE A GT B A LT B LOWER A.MINUS B UPPER 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 5 6 7 8 6 7 8 7 8 8 •1. 189 0. 138 •0. 329 •2. 896 •4.346 •0.747 •0. 444 2. 495 2. 372 •3. 404 •6. 259 0. 618 •0.042 •0. 970 •5.096 •7.589 •1.399 •0. 515 •5. 557 •8.791 •0.876 •0. 354 •2. 397 3. 228 0. 618 5. 455 1. 154 0. 175 0. 8828 0. 4452 0.6290 0. 99 81 1.0000 0.77 24 0.6716 0. 0063 0.0089 0. 9997 1.0000 0.2683 0.5166 0, 83 39 1.0000 1. 00 00 0.9190 0. 6968 1.0000 1.0000 0.8093 0. 6382 0.9917 0.0006 0.2682 0.0000 0.1243 0. 5693 0.1172 0.5548 0.3710 0.0019 0.0000 0.2276 0.3284 0. 9937 0. 9911 0. 0003 0.0000 0. 7317 0.4834 0. 1661 0. 0000 0. 0000 0.0810 0. 3032 0.0000 0.0000 0. 1907 0.3618 0.0083 0. 9994 0.7318 1.0000 0.8757 0.4307 •0.043 •0.026 •0.030 •0.070 •0.090 •0.040 •0.096 0.004 0.002 •0.040 •0.060 •0.011 •0.076 •0.019 •0.060 •0.080 •0.031 •0.095 •0.050 •0.070 •0.022 •0.088 •0.037 0.012 •0.051 0.033 •0.031 0.082 -0.016 0. 002 -0.004 -0.041 -0.062 -0.011 -0.018 0.018 0.012 -0.025 -0.046 0.005 -0.002 -0.006 -0.043 -0.064 -0.013 -0.020 -0.037 -0.058 -0.007 -0.013 -0.021 0.030 0. 024 0.051 0.044 -0.007 0. 011 0. 030 0. 022 -0.013 -0.034 0. 018 0. 061 0. 032 0. 022 -0. 011 -0.031 0. 021 0. 073 0. 006 -0.027 -0.047 0. 005 0. 055 -0.024 -0.045 0. 008 0. 061 -0.004 0. 049 0. 099 0. 069 0. 119 0. 069 OLIVE-SIDED FLYCATCHER WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALOE 2 0.177 1.000 6 0. 172 0. 974 5 0. 162 0, 917 1 0.150 0.848 3 0. 123 0.693 7 0.053 0. 299 4 0.045 0.257 8 0.0 0.0 VARIANCE WITHIN CELLS (SERIE S, TYPES) 0.02175 (VAR Z) WITH 2064..DEGREES OF FREEDOM OSED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.12682 WITH 14. DEGREES OF FREEDOM OSED IN NUMERATOR OF F RATIO F RATIO 5. 8299 FOR VARIATION BETWEEN TYPES INCLODING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 256 OLIVE-SIDED FLYCATCHER WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTEBNATE_HYPOTHYSIS CONFIDENCE_LIMITS_FOR A B VALUE A GT B A LT B LOWER A MINUS B UPPER 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 5 6 7 8 6 7 8 7 8 8 -0. 514 0. 497 2.061 -0. 222 •0. 408 1. 69 9 0. 985 1. 885 6. 824 0. 531 0. 169 3. 798 1. 220 2.961 -1. 202 •1.522 1. 88 1 0. 840 •4,. 678 •5. 155 •0. 246 0. 315 •0.319 3.010 1. 112 3. 310 1. 181 0.360 0.6964 0.3095 0.0197 0.5877 0.6583 0.0448 0.1625 0.0298 0. 0000 0.2977 0.4328 0.0001 0. 11 13 0.0016 0. 8853 0. 9359 0.0300 0.2006 1.0000 1.0000 0.5970 0. 3765 0. 6250 0.0013 0.1332 0. 0005 0.1188 0.3593 0.3036 0. 6905 0.9803 0.4123 0.3417 0.9552 0. 8375 0. 9702 1.0000 0.7023 0.5672 0.9999 0.8887 0.9984 0. 1 147 0.0641 0.9700 0.7994 0.0000 0.0000 0. 4030 0.6235 0.3750 0.9987 0.8668 0.9995 0.8812 0.6407 •0.129 •0.081 0.005 •0. 119 0. 129 •0.015 •0.149 •0.002 0.094 •0.040 •0.049 0.060 •0. 108 0.026 •0. 104 •0. 114 •0.00 3 •0. 164 •0. 166 •0. 175 •0.067 •0.238 •0.072 0.038 •0.124 0.049 •0. 114 •0.235 •0. 027 0.027 0. 105 •0.012 -0.022 0.097 0. 150 0. 054 0. 131 0.015 0.005 0. 124 0. 177 0.077 •0.039 •0. 050 0. 070 0. 123 •0. 117 •0. 127 •0.007 0.045 •0.010 0. 109 0. 162 0. 119 0. 172 0.053 0. 076 0. 135 0. 204 0. 095 0. 084 0. 209 0. 449 0.111 0. 169 0. 069 0. 058 0. 188 0. 461 0. 128 0. 025 0. 014 0. 143 0. 409 -0.068 -0.079 0. 052 0. 329 0. 052 0. 180 0. 448 0. 190 0. 458 0. 341 STELLER'S JAY WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALUE 3 0. 271 1.000 1 0.271 0. 998 5 0. 197 0.727 2 0. 191 0. 704 6 0. 167 0.616 4 0.141 0.520 7 0.074 0. 272 VARIANCE WITHIN CELLS (SERIES ,TYPES) 0.02442 (VAR Z) WITH 5139..DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.11932 WITH 36. DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 4. 8863 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 258 STELLEB'S JAY WITH SERAL STAGES EESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES PE TYPE T ALTERNATE HYPOTHYSIS CONFIDENCE_LIMITS _F0R A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER ! 2 1. 807 0. 0354 0. 9646 -0.007 0.080 0. 166 1 3 -0. 014 0. 5053 0.4947 -0,. 092 -0.001 0. 091 1 4 2. 982 0.0014 0.9986 0. 044 0. 130 0. 215 1 5 1. 602 0.0546 0.9454 -0.016 0.073 0. 163 1 6 2. 260 0.0119 0. 9881 0.014 0. 103 0. 193 1 7 4. 195 0. 0000 1.0000 0. 105 0. 197 0. 289 2 3 -3. 571 0. 9998 0.0002 -0. 124 -0.080 0. 036 2 4 3. 345 0. 0004 0.9996 0.021 0. 050 0. 079 2 5 -0. 302 0.6186 0.3814 -0.047 -6.006 0. 035 2 6 i l . 146 0.1260 0. 8740 -0.017 0.024 0. 064 2 7 5. 056 0.0000 1.0000 0.072 0. 117 0. 163 3 4 6. 149 0. 0000 1 . 0 0 0 0 0.089 0. 130 0. 172 3 5 2 , 883 0.0020 0. 9980 0.024 0.074 0. 124 3 6 4. 066 0.0000 1. 0000 0.054 0. 104 0. 154 3 7 7. 150 0.0000 1. 0000 0. 143 0. 198 0. 252 4 r-3 -2. 897 0. 99 81 0. 0019 -0.094 -0.056 0. 018 4 6 -1. 357 0. 9126 0.0874 -0.064 -0.026 0. 012 4 7 3. 074 0.00 11 0. 9989 0.024 0. 067 0. 110 5 6 1. 244 0.1068 0.8932 -0.017 0.030 0. 077 5 7 4. 698 0.0000 1. 0000 0.07 2 0. 123 0. 175 6 7 3. 568 0.0002 0.9998 0.042 0.093 0. 145 CHESTS UT-BACKED CHICKADEE WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALUE 6 0.762 1.000 4 0.459 0.603 5 0.456 0. 598 7 0,266 0. 349 3 0.252 0.330 2 0.250 0. 327 1 0,048 0.063 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.06919 (VAR Z) WITH 2423. DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.22183 WITH 36..DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 3.2063 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 260 CHESTNUT-BACKED CHICKADEE WITH SEBAL STAGES BESULTS OF T TESTS FOB ALL COMPABISONS BETWEEN TYPES WITH CONFIDENCE FOB BEJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOB ALL DIFFEBENCES TYPE TYPE T ALTEBNATE_HYPOTHYSIS CONFIDENCE_LIMITS_FOB A B VALUE A GT B A LT B LOWEB A MINUS B UPPEB 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6 2 3 4 5 6 7 3 4 5 6 7 4 5 6 7 5 6 7 6 7 7 •1. 421 •1.345 •2.919 •2.716 •4.546 •1. 1 39 •0.028 •4. 367 •2. 919 •6.070 •0. 118 •2.908 •2. 314 •5. 12 3 •0.096 0. 051 •3. 646 1. 414 •3.128 1. 298 3. 232 0. 9223 0. 9106 0. 9982 0.9967 1.0000 0. 8725 0. 5112 1. 0000 0. 9982 1. 0000 0. 5468 0.9982 0. 9896 1. 0000 0.5382 0.4798 0. 9999 0.0788 0.9991 0.0972 0.0006 0. 0777 0.0894 0.0018 0.0033 0.0000 0. 1275 0.4888 0.0000 0.0018 0.0000 0.4532 0. 0018 0. 0 104 0.0000 0.4618 0.5202 0.000 1 0.9212 0.0009 0.9028 0. 9994 •0.480 -0.500 -0.688 -0.703 -1.022 -0.593 •0. 145 -0.304 •0.345 •0.678 -0.287 •0.348 -0.378 -0.706 -0.304 -0.132 -0.466 -0.075 -0.498 -0.097 0. 195 -0.202 -0.204 -0.411 -0.408 -0.714 -0.218 -0.002 -0.210 -0.206 -0.513 -0.016 -0.208 -0.204 -0.511 -0.014 0.003 -0.303 0.194 -0.306 0.190 0.497 0. 077 0. 093 -0. 135 -0. 113 -0.406 0. 157 0. 141 -0. 116 -0.068 -0.347 0. 254 -0.068 -0.031 -0.315 0. 275 0. 139 -0. 140 0. 462 -0. 114 0. 478 0. 798 RED-BREASTED NUTHATCH WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVER AGE RELATIVE TYPE DENSITY HABITAT_VALUE 5 0. 2 25 1. 000 6 0. 129 0. 574 2 0. 025 0. 113 7 0. 0 24 0. 108 4 0. 0 11 0. 049 1 0. 010 0. 044 3 0. 009 0. 041 VARIANCE WITHIN CELLS (SERIES,TYPES) 0. 01500 (VAR Z) WITH 2628. DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.12113 WITH 30. DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 8. 0753 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 262 RED-BREASTED NUTHATCH WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE_HYPOTHYSIS CONFIDENCE_LIMITS_FOR A B VALUE A GT B A LT B LOWER A MINUS B UPPER 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6 2 3 4 5 6 7 3 4 5 6 7 4 5 6 7 5 6 7 6 7 7 -0.406 0.017 -0. 029 -5.331 -2. 946 -0.340 0.815 1.011 -9.757 -4. 996 0.038 -0.094 -9.029 -4. 963 -0.549 •10.952 -5. 946 -0.560 3,870 7. 128 3. 694 0.6576 0.4932 0.5115 1.0000 0.9984 0. 6330 0. 20 74 0. 1561 1.0000 1. 0000 0.4848 0. 5374 1,0000 1. 0000 0. 7086 1. 0000 1.00 00 0.7121 0. 00 01 0.0000 0.0001 0.3424 0.5068 0. 4885 0.0000 0. 0016 0.3670 0.7926 0.8439 0.0000 0.0000 0.5152 0.4626 0.0000 0.0000 0.2914 0.0000 0.0000 0.2879 0.9999 1.0000 0.9999 •0.090 •0.078 •0.075 •0.294 •0.199 •0.098 • 0, 02 3 •0.014 •0.240 •0. 145 •0.048 •0.039 •0. 263 •0. 167 •0.069 •0.252 •0.157 •0.060 0.047 0. 145 0.049 •0.015 0.001 •0.001 •0.215 •0. 119 -0.015 0.016 0.014 -0.200 -0. 104 0.001 -0.002 •0.216 •0.120 •0.015 -0.214 •0. 118 •0.013 0.096 0. 201 0. 105 0. 059 0. 079 0. 073 -0. 136 -0. 040 0. 069 0. 055 0. 042 -0. 160 -0.063 0. 049 0. 035 -0. 169 -0.073 0. 039 -0. 176 -0. 079 0. 034 0. 144 0. 256 0. 161 WINTER WREN WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALUE 5 2.880 1. 000 4 2.019 0. 701 6 1.515 0. 526 3 1. 058 0. 367 1 0.872 0. 303 2 0.560 0. 194 7 0.312 0. 108 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.10805 (VAR Z) WITH 4071. DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 3.49067 WITH 36..DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 32.3066 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 2 6 4 WINTER WREN WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 9 5 % CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE HYPOTHYSIS CONFIDENCE LIMITS FOR A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER 1 2 1 . 9 8 0 0 . 0 2 3 9 0 . 9 7 6 1 0 . 0 0 3 0 . 3 1 2 0 . 621 1 3 - 1 . 1 1 3 0 . 8 6 7 2 0 . 1 3 2 8 - 0 . 5 1 5 - 0 . 1 8 7 0 . 142 1 4 - 7 . 1 9 3 1 . 0 0 0 0 0 . 0 0 0 0 - 1 . 4 6 0 - 1 . 1 4 7 - 0 . 8 3 4 1 5 - 1 1 . 497 1 . 0 0 0 0 0 . 0 0 0 0 - 2 . 3 5 0 - 2 . 0 0 8 - 1 . 6 6 6 1 6 - 3 . 7 4 1 0 . 9 9 9 9 0 . 0 0 0 1 - 0 . 9 8 1 - 0 . 6 4 4 - 0 . 3 0 6 1 7 3 . 071 0 . 0 0 11 0 . 9 9 8 9 0 . 2 0 2 0 . 5 5 9 0 . 9 1 6 2 3 - 6 . 3 5 8 1 . 0 0 0 0 0 . 0 0 0 0 - 0 . 6 5 2 - 0 . 4 9 8 - 0 . 3 4 5 2 4 - 2 4 . 6 7 3 1 . 0 0 0 0 0 . 0 - 1 . 5 7 5 - 1 . 4 5 9 - 1 . 3 4 3 2 5 - 2 5 . 0 5 4 1 . 0 0 0 0 0 . 0 - 2 . 5 0 1 - 2 . 3 2 0 - 2 . 1 3 8 2 6 - 1 0 . 9 1 5 1 . 0 0 0 0 0 . 0 0 0 0 - 1 . 1 2 7 - 0 . 9 5 5 - 0 . 7 8 4 2 7 2 . 3 3 5 0 . 0 0 9 8 0 . 9 9 0 2 0 . 0 4 0 0 . 2 4 8 0 . 4 5 5 3 4 - 1 1 . 6 8 5 1 . 0 0 0 0 0 . 0 0 0 0 - 1 . 122 - 0 . 9 6 0 - 0 . 7 9 9 3 5 - 1 6 . 7 4 4 1 . 0 0 0 0 0 . 0 0 0 0 - 2 . 0 3 5 - 1 . 8 2 1 - 1 . 6 0 8 3 6 - 4 . 3 7 3 1 . 0 0 0 0 0 . 0 0 0 0 - 0 . 6 6 2 - 0 . 4 5 7 - 0 . 2 5 2 3 7 6 . 195 0 . 0 0 0 0 1. o o o o 0 . 5 1 0 0 . 7 4 6 0 . 9 8 2 4 5 - 8 . 9 8 4 1 . o o o o 0 . o o o o - 1 . 0 4 9 - 0 . 8 6 1 - 0 . 6 7 3 4 6 5 . 536 0 . 0 0 0 0 1 . 0 0 0 0 0 . 3 2 5 0 . 5 0 3 0 . 6 8 2 4 7 1 5 . 6 7 7 0 . 0 0 0 0 1 . o o o o 1 . 4 9 3 1 . 7 06 1 . 9 2 0 5 6 1 1 . 8 0 9 0 . 00 00 1 . 0 0 0 0 1 . 138 1 . 3 6 4 1. 591 5 7 1 9 . 7 3 4 0 . 0 1 . o o o o 2 . 3 1 2 2 . 5 6 7 2 . 8 2 2 6 7 9 . 5 0 6 0 . 0 0 0 0 1 . 0 0 0 0 0 . 9 5 5 1 . 2 0 3 1. 451 VARIED THRUSH WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALUE 6 0. 177 1. 000 5 0. 172 0. 972 4 0.115 0.647 8 0.082 0.464 3 0.051 0. 290 2 0.049 0.277 7 0.035 0. 199 1 0.018 0.101 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.01407 (VAR Z) WITH 5485. DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.09960 WITH 42..DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 7. 0766 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 266 VAEIED THRUSH WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE_HYPOTHYSIS CONFIDENCE^LIMITS_FOR A B VALUE A GT B A LT B LOWER A MINUS B UPPER 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 5 6 7 8 6 7 8 7 8 8 •1. 266 •1. 297 •4.030 •5. 945 •6.18 1 •0. 646 •0. 865 •0. 178 •7.082 •9. 106 •9.737 0.894 •0. 468 •5.240 •7. 750 •8.236 0. 934 •0. 432 •4. 584 •5. 14 1 5. 501 0. 461 0. 315 7. 836 1.263 8. 253 1. 333 •0.653 0.8972 0. 9027 1. 0000 1. 0000 1.0000 0. 74 08 0.8064 0. 5706 1.0000 1. 0000 1. 0000 0. 18 55 0. 68 00 1. 0000 1.0000 1. 0000 0. 1753 0. 6672 1.0000 1. 0000 0.0000 0.3225 0.6238 0. 0000 0.1033 0. 00 00 0.0912 0.7431 0.1028 0. 0973 0.0000 0. 0000 0.0000 0. 2592 0.1936 0.4294 0.0000 0.0000 0.0000 0. 8145 0.3200 0.0000 0. 0000 0.0000 0. 8247 0.3328 0.0000 0.0000 1.0000 0.6775 0. 3762 1. 0000 0. 8967 1. 0000 0.9088 0.2569 -0.079 -0.084 -0.144 -0.205 -0.210 -0.070 -0.210 -0.028 -0.084 -0. 150 -0.154 -0.016 -0.172 -0.087 -0.152 -0.156 -0.018 -0. 171 -0.082 -0.086 0.051 -0. 106 -0.036 0. 103 -0.050 0. 108 -0.045 -0.188 -0.031 -0.033 -0.097 -0.154 -0.159 -0.017 -0.064 -0.002 -0.066 -0. 123 -0.128 0.014 -0.033 -0.063 -0. 121 -0.126 0.016 -0.031 -0.058 -0.063 0.079 0.033 -0.005 0. 137 0.090 0. 142 0. 095 -0.047 0. 017 0. 017 -0.050 -0. 104 -0. 109 0. 035 0. 081 0. 023 -0.048 -0. 097 -0. 102 0. 044 0. 106 -0. 040 -0.090 -0. 096 0.050 0. 109 -0.033 -0. 039 0. 108 0. 171 0. 026 0. 171 0. 230 0. 176 0. 235 0. 094 SWAINSON'S THRUSH WITH SERAL STAGES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALUE 4 0.525 1.000 3 0. 273 0. 519 6 0.167 0.319 2 0. 141 0. 268 5 0. 131 0. 249 7 0.054 0. 102 1 0.032 0,062 VARIANCE WITHIN CELLS (SERIES, TYPES) 0. 02343 (VAR Z) WITH 1534. DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.53240 WITH 12..DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 22.7269 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 268 SWAINSON'S THRUSH WITH SERAL STAGES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES* TYPE TYPE T ALTERNATE HYPOTHYSIS CONFIDENCE LIMITS FOR A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER ! 2 -1. 53 6 0. 9376 0.0624 -0.247 -0.108 0. 030 (1 3 -3. 186 0. 9993 0.0007 -0.388 -0.240 -0.092 1 4 -7.000 1.0000 0.0000 -0.631 -0.493 -0.355 1 5 -1 , 32 6 0. 90 74 0.0926 -0.244 -0.098 0. 047 1 6 -1. 804 0.9643 0.0357 -0.281 -0.135 0.012 1 7 -0.274 0.6079 0.3921 -0. 172 -0.021 0. 130 2 3 -3. 264 0.9994 0.0006 -0.21 1 -0.132 -0.053 2 4 -12. 829 1. 0000 0.0000 -0.443 -0.384 -0.325 2 5 0. 257 0.3987 0.6013 -0.065 0.010 0. 085 2 6 -0.677 0. 7508 0.2492 -0.103 -0.026 0. 050 2 7 2.012 0. 0222 0.9778 0.002 0.087 0. 172 3 4 -6, 28 2 1. 0000 0.0000 -0.331 -0.252 -0. 174 3 5 3.036 0.0012 0.9988 0.050 0. 142 0. 233 3 6 2. 227 0. 0131 0. 9869 0.013 0. 105 0. 198 3 7 4.303 0.0000 1.0000 0. 119 0.219 0. 319 4 5 10. 370 0.0000 1.0000 0. 320 0.394 0. 469 4 6 9.216 0.0000 1. 0000 0. 282 0.358 0. 434 4 7 10.940 0.0000 1.0000 0.387 0.471 0. 556 5 6 -0.797 0.7872 0.2128 -0.126 -0.036 0. 053 5 7 1. 571 0.0582 0.9418 -0.019 0. 077 0. 174 6 7 2.279 0.01 14 0.9886 0.016 0. 114 0. 212 APPENDIX C TABLES RELATING USE BY SIX BIRD SPECIES TO VEGETATION TYPES. BIRD SPECIES PAGE YELLOW-BELLIED SAPSUCKER .271 STELLER'S JAY. ........., 276 CHESTNUT-BACKED CHICKADEE , 280 WINTER WREN .., ...,,.283 VARIED THRUSH 287 SWAINSON'S THRUSH. .292 270 TABLE 8. DEFINITION OF VEGETATION TYPE NUMBERS VEGETATION TYPES GROUPED AT PLANT ALLIANCE LEVEL. . TYPES NAMED AT ASSOCIATION OR SUB-ASSOCIATION LEVEL. TYPE ECOSYSTEM UNITS 1 EXPOSED ROCK 2 (LICHEN)-GAULTHERIA-DOUGLAS FIR LICHEN-GAULTHERIA-LODGEPOLE PINE-DOUGLAS FIR 3 GA ULTHERIA-WESTERN HEMLOCK-DOUGLAS FIR MAHONIA-GAULTHERIA-WESTERN HEMLOCK-DOUGLAS FIR 4 MOSS-WESTERN HEMLOCK MAHONIA-MOSS-WESTERN REDCEDAR-WESTERN HEMLOCK 5 MOSS- (POLYSTICHUM) -WESTERN REDCEDAR-WESTERN HEMLOCK 6 VACCINIUM-GAULTHERIA-DOUGLAS FIR-WESTERN HEMLOCK VACCINIUM-MOSS-WESTERN HEMLOCK 7 BLECHNUM-AMABILIS FIR-WESTERN HEMLOCK STREPTOPUS-BLECHNUM-AMABILIS FIR-WESTERN HEMLOCK BLECHNUM-WESTERN HEMLOCK-WESTERN REDCEDAR 8 RIBES-VINE MAPLE POLYPODIUM-GAULTHERIA-DOUGLAS FIR-WESTERN REDCEDAR POLYPODIUM-POLYSTICHUM-DOUGLAS FIR-WESTERN REDCEDAR MAHONIA-POLYSTICHUM-DOUGLAS FIR-WESTER REDCEDAR 9 TIARELLA-POLYSTICHUM-WE STERN REDCEDAR RUB US-POLYSTICHUM-WESTERN REDCEDAR ADIANTUM-POLYSTICHUM-WESTERN REDCEDAR 10 POLYSTICHUM-OPLOPANAX-WESTERN REDCEDAR RIBES-OPLOPANAX-WESTERN REDCEDAR 11 VACCINIDM-LYSICHITUM-WESTERN REDCEDAR VACCINIUM-LYSICHITUM-YELLOW CEDAR-WESTERN REDCEDAR 12 ATHYRIUM-ARUNCUS-RED ALDER-SITKA ALDER 13 MARSH 14 LAKE THE FOLLOWING TYPES ARE COMPOSITES OF ABOVE TYPES THE FIRST REPRESENTS 50% OR MORE OF THE TOTAL AREA 15 2-3 26 7-11 16 3-4 27 8-6 17 MARSH-11 28 6-9' 18 11-9 29 8-9 19 9-8 30 11-7 20 9-11 31 7-8 21 6-8 32 2-8 22 2-6 33-38 NOT USED 23 1-2 39 OTHER SERAL STAGES 24 8-5 40 NUMBER NOT USED 25 5-6 YELLOW-BELLIED SAPSUCKER WITH VEGETATION TYPES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT VALUE 2 0.091 1. 000 39 0.084 0. 927 1 3 0.083 0. 915 5 0. 0 76 0. 835 20 0.073 0. 809 6 0.062 0.686 1 1 0,0 53 0.587 12 0.046 0. 507 19 0.041 0. 457 21 0.038 0.420 10 0.031 0. 344 9 0.025 0.277 29 0.025 0. 276 7 0.0 25 0.271 14 0.021 0. 233 27 0. 019 0. 214 26 0.013 0. 140 22 0.011 0. 122 8 0.011 0. 118 3 0.0 0.0 VARIANCE WITHIN CELLS (SERIES ,TYPES) 0.00675 (VAR Z) WITH 7441..DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0,00915 WITH 114..DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 1. 3558 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0073623 OF EXCEEDING BY CHANCE 272 YELLOW-BELLIED SAPSUCKER WITH VEGETATION TYPES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE_HYPOTHYSIS CONFIDENCE_LIMITS_FOR A B VALUE A GT B A LT B LOWER A MINUS B UPPER 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 3 5 6 7 8 9 10 11 !2 13 14 19 20 21 22 26 27 29 39 5 6 7 8 9 1 0 11 12 13 14 19 20 21 22 26 27 29 39 6 7 8 9 10 11 12 13 1. 485 0.377 0. 743 1. 489 2.074 1.711 1. 446 0. 933 1.038 0. 180 1. 746 1. 260 0. 447 1. 332 1.74 0 1. 573 1.663 1. 57 5 0. 159 -1. 524 -1.279 -0.459 -0.21 9 -0. 517 -0.613 -1. 06 3 -0.876 -1.584 -0.423 -0.841 -1.501 -0. 768 -0.202 -0.219 -0.372 -0.487 -1.631 0. 931 1.916 4. 283 3. 493 2. 136 1. 194 1. 215 -0.297 0. 0687 0. 3532 0. 2288 0.0683 0.0191 0.0435 0.0741 0.1755 0. 1498 0. 4284 0.0404 0.1039 0. 3273 0.0914 0.04 10 0. 0578 0.0482 0.0576 0.4369 0.9363 0. 8996 0.6770 0.5867 0.6974 0.7301 0. 8560 0.8093 0.9434 0.6639 0. 7999 0.9333 0.7787 0. 5800 0.5866 0.6450 0.6868 0. 9485 0. 1758 0.0277 0. 0000 0.0002 0.0163 0.1163 0. 1122 0.6166 0. 9313 0. 6468 0. 7712 0.9317 0. 9809 0. 9565 0. 9259 0. 8245 0.8502 0.5716 0. 9596 0.8961 0.6727 0.9086 0. 9590 0. 9422 0.9518 0.9424 0.5631 0.0637 0. 1004 0. 3230 0.4133 0.3026 0.2699 0. 1440 0. 1907 0.0566 0.3361 0.2001 0. 0667 0. 2213 0.4200 0.4134 0.3550 0.3132 0.0515 0. 8242 0. 9723 1. 0000 0.9998 0. 9837 0.8837 0.8878 0.3834 -0.029 -0.063 -0.047 -0.021 0.004 -0.010 -0.021 -0.041 -0.040 -0.077 -0.009 -0.027 -0.059 -0.025 -0.010 -0.019 -0,013 -0.016 -0.076 -0. 173 -0.158 -0, 130 -0.107 -0.121 -0.131 -0.152 -0.149 -0. 186 -0, 119 -0.138 -0. 169 -0. 135 -0. 118 -0.126 -0.122 -0.126 -0.185 -0.015 -0.001 0.035 0.022 0.004 -0.014 -0.018 -0.055 0.091 0.015 0.028 0.066 0.080 0. 066 0. 060 0.037 0. 045 0.008 0.070 0.049 0.017 0. 053 0. 080 0. 078 0.071 0.066 0.007 •0.076 •0.062 •0.025 •0.01 1 •0. 025 •0.031 •0.053 •0.046 •0. 083 •0.021 •0.041 -0.073 -0.038 -0.01 1 •0.013 •0.019 •0.025 •0.084 0.014 0.051 0.065 0. 051 0.045 0. 023 0.030 -0.007 0. 211 0. 093 0. 104 0.153 0. 156 0. 141 0. 140 0. 116 0. 129 0. 092 0. 148 0. 126 0. 093 0. 130 0. 170 0. 175 0. 155 0. 148 0. 089 0. 022 0. 033 0. 080 0. 085 0. 070 0. 069 0. 045 0. 057 0. 020 0. 077 0. 055 0. 022 0. 059 0. 096 0. 101 0. 083 0. 076 0.017 0. 042 0. 104 0.095 0. 079 0. 086 0. 060 0. 078 0. 040 273 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 14 19 20 21 22 26 27 29 39 7 8 9 10 11 12 13 14 19 20 21 22 26 27 29 39 8 9 10 11 12 13 14 19 20 21 22 26 27 29 39 9 10 11 12 13 14 19 20 21 22 26 27 29 39 3. 005 2. 085 0. 153 2. 166 2. 235 1.820 2. 342 2. 312 •0.370 1. 526 4. 586 3. 610 1.707 0. 567 0. 730 •0.942 2.734 1.611 -0. 973 1.715 1. 889 1.497 1. 966 1.917 -1. 096 0.555 -0.022 •0. 229 -1. 044 •0.676 -1. 859 0. 130 •0.651 -1. 939 -0. 509 0,386 0. 298 0. 165 -0.013 •1.984 -1. 290 -1. 095 -2. 585 -1.552 •3. 220 •0.663 -2. 251 -5.092 •1. 853 -0.013 -0,. 059 •0. 394 •0. 718 -3. 598 0.0013 0.0186 0.4392 0.0152 0. 0127 0.0344 0. 0096 0. 0104 0. 6445 0.0635 0.0000 0.0002 0.0440 0.2853 0.2328 0.8269 0.0031 0.0536 0.8348 0.0432 0.0294 0.0673 0.0247 0.0277 0.8635 0. 2895 0.5085 0.5904 0.8517 0.7505 0.9685 0.4484 0. 7425 0.9737 0. 6946 0.3499 0. 3828 0.4344 0.5051 0.9764 0. 9014 0.8633 0. 9951 0.9396 0. 9994 0.7464 0.9878 1.0000 0.9680 0.5049 0.5237 0.6532 0. 7635 0.9998 0. 9987 0.9814 0.5608 0.9848 0. 9873 0.9656 0.9904 0.9896 0.3555 0. 9365 1.OOOO 0.9998 0. 9560 0.7 147 0.7672 0.1731 0. 9969 0.9464 0. 1652 0. 9568 0. 9706 0.9327 0. 9753 0.9723 0.1365 0.7105 0.4915 0.4096 0.1483 0. 2495 0.0315 0.5516 0.2575 0.0263 0.3054 0.6501 0.6172 0.5656 0.4949 0. 0236 0.0986 0. 1367 0.0 04 9 0.0604 0. 0006 0.2536 0.0122 0.0000 0.0320 0.4951 0.4763 0.3468 0. 2365 0. 0002 0.019 0.002 -0.028 0.004 0.008 -0.005 0.009 0.008 -0.052 -0.011 0.030 0.017 -0.005 -0.022 -0.027 -0.064 0.012 -0.005 -0»034 -0.003 -0.002 -0.015 0.000 -0.001 -0.061 -0.035 -0,04 9 -0.063 -0.083 -0.083 -0. 120 -0.049 -0.068 -0.098 -0.065 -0.055 -0.067 -0.056 -0.059 -0.118 -0.036 -0.057 -0.075 -0.080 -0. 116 -0.041 -0.058 -0.087 -0. 056 -0.054 -0.068 -0.052 -0.053 -0. 113 0. 055 0.034 0. 002 0.038 0.065 0.063 0.056 0.051 -0.008 0.038 0. 052 0.037 0.031 0.009 0.016 -0.021 0.041 0.021 -0.011 0.024 0.051 0.050 0.043 0.037 -0.022 0.014 -0.001 -0.007 -0.029 -0.021 -0.058 0. 004 -0.017 -0.049 -0.013 0.014 0.012 0.005 -0.000 -0.059 -0.014 -0.021 -0.043 -0. 035 -0.072 -0.010 -0.031 -0.063 -0.027 -0.000 -0.002 -0.009 -0.014 -0.073 0. 090 0. 067 0. 033 0. 072 0. 122 0. 131 0. 104 0. 094 0. 036 0. 086 0. 074 0. 057 0. 067 0. 040 0. 060 0. 022 0. 071 0. 046 0. 011 0. 052 0. 104 0.115 0. 086 0. 075 0.017 0. 063 0. 048 0. 050 0. 025 0. 041 0.003 0. 056 0. 034 0.001 0. 038 0. 083 0. 090 0. 066 0. 058 •0.001 0. 008 0. 016 •0.010 0. 009 •0. 028 0. 020 •0.004 •0. 039 0. 002 0. 054 0. 064 0. 035 0. 025 •0. 033 274 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 10 11 12 13 14 19 20 21 22 26 27 29 39 11 12 13 14 19 20 21 22 26 27 29 39 12 13 14 19 20 21 22 26 27 29 39 13 14 19 20 21 22 26 27 29 39 14 19 20 21 22 26 27 29 -0. 334 •1.777 -0.935 -2.631 0.269 -1. 266 •4. 218 -0.920 0. 520 0. 376 0. 262 0. 007 -2. 964 -1.011 -0. 550 -1. 945 0.476 -0.518 -2. 237 -0. 334 0.651 0.510 0.445 0.253 -2. 122 0. 287 -1. 185 1. 669 0. 669 -1.213 0. 819 1. 424 1.151 1. 359 1. 236 -1.325 -1. 251 1.001 0. 192 •1.201 0. 325 1.041 0. 863 0. 902 0. 757 -1.358 2.518 1. 780 0. 423 1.871 2. 157 1.831 2.177 2. 110 0. 6307 0.9622 0.8252 0.9957 0.3940 0. 8972 1. 0000 0.8213 0.3014 0.3533 0.3968 0. 4973 0.9985 0. 8440 0.7088 0.9741 0.3171 0.6977 0. 9873 0.6309 0.2575 0.3052 0. 3282 0. 4002 0.9831 0.3869 0.8820 0.0476 0.2517 0.8873 0.2064 0. 0773 0.1248 0.0871 0. 1082 0.9074 0.8945 0.1584 0.4239 0.8851 0. 3725 0. 1489 0. 19 40 0.18 35 0. 2246 0. 91 28 0.0059 0.0375 0.3362 0.0307 0.0155 0. 0336 0. 0148 0.0175 0.3693 0. 0378 0.1748 0.0043 0. 6060 0. 1028 0.OOOO 0.1787 0.6986 0.6467 0.6032 0.5027 0.0015 0.1560 0.2912 0.0259 0.6829 0.3023 0.0127 0.3691 0. 7425 0.6948 0. 6718 0.5998 0.0169 0.6 131 0.1180 0. 9524 0. 7483 0. 1127 0. 7936 0. 9227 0. 8752 0. 9129 0.8918 0.0926 0.1055 0.8416 0. 5761 0. 1 149 0.6 275 0.851 1 0. 8060 0. 8165 0.7754 0.0872 0.9941 0. 9625 0.6638 0.9693 0. 9845 0.9664 0.9852 0. 9825 -0.042 -0.059 -0.065 •0.101 -0,.02 5 -0.042 •0.071 •0.041 •0.039 •0.052 •0.037 -0.038 -0.098 -0.06 5 •0.067 -0. 104 •0.032 -0.049 -0.079 •0.047 •0.041 -0.053 •0.040 -0.042 •0. 102 -0.042 •0.079 -0.006 •0.023 -0.053 •0.021 -0.016 •0.029 -0.015 •0.017 •0.076 •0.095 •0.024 •0.042 •0.072 •0.04 0 •0.031 •0.042 •0.031 •0.033 •0.093 0.014 •0.004 •0.035 •0.002 0.007 •0.005 0.006 0.004 -0.006 -0.028 -0.021 -0.058 0.004 -0.016 -0.048 -0.013 0.014 0.012 0.006 0.000 -0.059 -0.022 -0.015 -0. 052 0.010 -0.010 -0.042 -0.007 0.020 0.019 0.012 0. 006 -0.053 0.007 -0.030 0.032 0.012 -0.020 0.015 0.042 0.041 0.034 0.028 -0.031 -0.037 0.025 0.005 -0.027 0.008 0.035 0.033 0.027 0.021 -0. 038 0.062 0.042 0.010 0. 045 0.072 0.070 0.064 0.058 0.030 0. 003 0. 023 -0.015 0. 033 0. 009 -0.026 0. 015 0. 067 0. 077 0. 048 0. 038 -0.020 0. 021 0. 038 0. 000 0. 052 0. 029 •0.005 0. 033 0. 081 0. 090 0. 064 0. 054 -0.004 0. 057 0. 019 0. 070 0. 046 0. 012 0. 052 0. 100 0. 110 0. 083 0. 073 0.015 0. 021 0. 074 0. 051 0. 017 0. 056 0. 101 0. 109 0. 084 0. 075 0.017 0.110 0. 087 0. 054 0. 092 0. 137 0. 146 0. 121 0. 112 275 13 39 14 19 (14 20 14 21 14 22 14 26 14 27 14 29 14 39 19 20 19 21 19 22 19 26 19 27 19 29 19 39 20 21 20 22 20 26 20 27 20 29 20 39 21 22 21 26 21 2 7 21 29 21 39 22 26 22 27 22 29 22 39 26 27 26 29 26 39 27 29 27 39 29 39 -0.039 -1.201 -3. 297 -0.951 0. 344 0.241 0.068 -0.175 -2.772 -2. 307 0.209 1.078 0.846 0. 952 0.786 -1.995 2.362 2.263 1.813 2. 415 2. 412 -0. 518 0. 94 0 0.737 0.783 0.603 -2. 082 -0.039 -0.253 -0.440 -2. 282 -0. 177 -0.333 -1.917 -0.204 -2.338 -2. 287 0. 5157 0.8852 0.9995 0.8292 0. 3654 0.4046 0.4729 0.5694 0.9972 0.9895 0.4171 0.1404 0.1989 0. 1707 0.2160 0.9770 0.0091 0.01 18 0.0349 0. 0079 0.0079 0.6979 0.1735 0. 2307 0. 2168 0.2731 0. 9813 0.5157 0. 5999 0.6701 0.9887 0.5702 0.6305 0.9724 0.5806 0. 9903 0. 9889 0.4843 0. 1148 0. 0005 0.1708 0.6346 0.5954 0. 5271 0.4306 0.0028 0. 0 105 0.5829 0. 8596 0. 8011 0.8293 0.7840 0.0230 0.9909 0. 9882 0. 9651 0.9921 0.9921 0.3021 0. 8265 0. 7693 0.7832 0.7269 0.0187 0.4843 0.4001 0.3299 0.0 11 3 0.4298 0. 3695 0.0276 0.4194 0.0097 0. 0111 -0.056 -0.054 -0.08 3 -0.052 -0.047 -0.060 -0.046 -0.048 -0.108 -0.059 -0.028 -0.025 -0.038 -0.023 -0.025 -0.085 0.006 0.008 -0.005 0.010 0.009 -0.051 -0.029 -0.042 -0.028 -0.029 -0.089 -0.083 -0.074 -0.076 -0.136 -0.082 -0.085 -0.144 -0.059 -0. 119 -0. 110 -0.001 -0.020 -0.052 -0.017 0.010 0.008 0.002 -0.004 -0.063 -0.032 0.003 0.030^ 0.029 0.022 0.016 -0.043 0.035 0. 062 0.061 0.054 0.048 -0.01 1 0.027 0.025 0.019 0.013 -0.046 -0.002 -0.008 -0.014 -0.073 -0.007 -0.012 -0.071 -0.006 -0.065 -0.059 0. 053 0. 013 -0. 021 0. 018 0. 067 0. 077 0. 049 0. 040 -0.018 -0.005 0. 035 0. 086 0. 096 0. 067 0. 057 -0.001 0. 065 0. 116 0. 127 0. 098 0. 088 0. 030 0. 083 0. 093 0. 065 0. 056 -0.003 0. 080 0. 057 0.048 -0.010 0. 068 0. 060 0. 002 0. 048 -0.010 -0.008 STELLES'S JAY WITH VEGETATION TYPES CLASSIFICATION TYPES OEDEEED BY WEIGHTED AVEEAGE DENSITY CLASSIFICATION AVEEAGE EELATIVE TYPE DENSITY HABITAT VALOE 12 0.329 1.000 1 1 0,3 13 0. 951 20 0. 179 0. 544 6 0. 167 0. 508 8 0. 166 0.505 9 0. 151 0.459 27 0. 128 0. 390 10 0. 119 0.362 19 0. 1 14 0. 347 22 0.1 13 0. 344 5 0. 113 0. 344 39 0.081 0. 246 7 0.079 0. 239 21 0.047 0. 142 14 0. 045 0. 138 13 0.037 0. 112 29 0.026 0. 078 26 0.012 0. 037 VABIASCE WITHIN CELLS (SEBIES, TYPES) 0.01662 (VAE Z) WITH 5413. DEGBEES OF FEEEDOM USED IN ALL T TESTS AND DENOMINATOE OF F BATIO VABIANCE AMONG TYPES WITHIN SEBIES 0.03380 WITH 102..DEGBEES OF FEEEDOM USED IN NUMEBATOB OF F BATIO F BATIO 2.0329 FOB VABIATION BETWEEN TYPES INCLUDING INTEBACTION BETWEEN TYPE AND TIME PBOBABILITY 0.0 OF EXCEEDING BY CHANCE 277 STELLER'S JAY WITH VEGETATION TYPES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE ALTERNATE HYPOTHYSIS A B VALUE A_GT_B A_LT_B LOWER A_MINUS 5 6 -1.598 0. 9449 0. 0551 -0. 120 -0.054 5 7 0. 567 0. 2854 0.7146 -0.085 0.034 5 8 -1.419 0.9220 0.0780 -0.126 -0.053 5 9 -1. 117 0.8679 0.1321 -0. 104 -0.038 5 10 -0.1 19 0.5473 0.4527 -0. 101 -0.006 5 11 -4.368 1. 0000 0.0000 -0. 289 -0.200 5 12 -3.659 0.9999 0. 0001 -0.331 -0.216 5 13 1. 383 0.0834 0.9166 -0.032 0.076 5 1 4 1. 665 0.0480 0. 9520 -0.012 0.068 5 19 -0.027 0. 5108 0.4892 -0.077 -0.001 5 20 -1. 845 0. 9675 0.0325 -0.136 -0.066 5 21 1.563 0.0591 0.9409 -0.017 0.066 5 22 -0.000 0.5000 0.5000 -0. 114 -0.000 5 26 1. 208 0. 1135 0. 8865 -0.063 0.101 5 27 -0.275 0. 6083 0. 3917 -0. 122 -0.015 5 29 1.910 0. 0281 0. 9719 -0.002 0. 088 5 39 0.674 0.2501 0.7499 -0.062 0.032 6 7 1. 571 0. 0581 0. 9419 -0,022 0.088 6 8 0.026 0.4894 0.5106 -0.057 0.001 6 9 0. 657 0. 2558 0.7442 -0.032 0.016 6 10 1. 122 0. 1311 0. 8689 -0.036 0. 048 6 11 -3. 702 0. 9999 0.0001 -0. 223 -0. 146 6 12 -2.988 0.9986 0. 0014 -0.268 -0. 162 6 13 2. 595 0.0047 0.9953 0.032 0. 130 6 14 3.627 0.0001 0. 9999 0.056 0. 122 6 19 1. 692 0.0454 0.9546 -0.008 0.053 6 20 -0.446 0.6720 0.3280 -0.065 -0.012 6 21 3. 377 0.0004 0. 9996 0.050 0, 120 6 22 1.007 0. 1570 0.8430 -0.051 0.054 6 26 1. 927 0.0270 0. 9730 -0.003 0. 155 6 27 0.785 0. 21 61 0.7839 -0.058 0.039 6 29 3. 573 0. 0002 0.9998 0.064 0.141 6 39 2. 047 0.0203 0. 9797 0.004 0. 086 7 8 -1. 496 0.9327 0. 0673 -0.202 -0.087 7 9 -1.283 0.9003 0.0997 -0.182 -0.072 7 (10 -0. 607 0.7281 0.2719 -0.170 -0.040 7 1 1 -3.653 0.9999 0.0001 -0.360 -0.234 7 12 -3. 375 0. 99 96 0.0004 -0.395 -0.250 7 13 0. 590 0.2777 0.7223 -0.098 0.042 7 14 0. 551 0.2907 0. 7093 -0.085 0.033 7 19 -0.597 0.7249 0.2751 -0.152 -0.035 7 20 -1. 748 0.9597 0.0403 -0. 213 -0. 100 7 21 0. 51 7 0.3027 0.6973 -0.089 0.032 7 22 -0.468 0. 6802 0.3198 -0. 179 -0.034 7 26 0.701 0.2416 0.7584 -0. 119 0.067 CONFIDENCE_LIMITS_FOR UPPER 0.012 0. 153 0. 020 0. 028 0. 090 -0. 110 -0. 100 0. 185 0. 148 0. 075 0. 004 0. 150 0. 114 0. 265 0. 092 0. 177 0. 127 0. 198 0. 058 0. 064 0. 132 -0.069 -0.056 0. 229 0. 187 0. 114 0. 041 0. 190 0. 158 0. 312 0. 136 0. 219 0. 169 0. 027 0. 038 0. 090 -0. 108 -0. 105 0. 182 0. 152 0. 081 0. 012 0. 153 0. 110 0. 252 278 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 1 1 1: 1 1 1 1 1 1 1 1 12 27 29 39 9 10 1 1 12 13 14 19 20 21 22 26 27 29 39 10 11 12 1 3 14 19 20 21 22 26 27 29 39 1 1 12 13 14 19 20 21 22 26 27 29 39 12 13 14 19 20 21 22 26 27 29 39 13 -0.699 0. 827 •0.031 0. 52 1 1. 032 •3. 442 •2.876 2. 454 3. 245 1. 479 •0. 407 3. 053 0. 950 1. 879 0. 731 3,288 1. 893 0. 744 •4. 104 •3.282 2. 27 1 3. 139 1. 172 •1. 035 2.918 0.705 1.726 0. 459 3. 161 1.662 -3. 672 -3.250 1. 342 1. 516 0. 101 -1. 353 1. 443 0. 090 1. 218 •0. 152 1. 76 4 0.696 •0.256 4.683 5. 863 4. 523 3. 250 5. 643 3. 236 3.494 3. 170 5. 720 4. 443 4. 190 0.7578 0.2040 0.5123 0.3011 0. 1511 0.9997 0.9980 0. 0071 0. 0006 0.0696 0.6580 0.0011 0. 1712 0.0301 0.2323 0. 0005 0.0292 0.2284 1.0000 0. 9995 0.01 16 0.0009 0.1207 0.8496 0.0018 0.2405 0.0422 0.3232 0.0008 0.0483 0. 9999 0.9994 0. 0898 0.0648 0.4599 0.91 19 0.0746 0.4640 0. 1117 0.5604 0,03 89 0.2432 0.6010 0.OOOO 0.0000 0. OOOO 0.0006 0.0000 0.0006 0.0002 0. 0008 0.0000 0. OOOO 0.0000 0.2422 0. 7960 0.4877 0.6989 0.8489 0.0003 0.0020 0.9929 0.9994 0. 9304 0.3420 0.9989 0.8288 0.9699 0. 7677 0.9995 0. 9708 0.7716 0.0000 0. 0005 0.98 84 0. 9991 0.8793 0. 1 504 0.9982 0.7595 0. 9578 0.6768 0.9992 0.9517 0.0001 0.0006 0.9102 0. 9352 0.5401 0.0881 0.9254 0.5360 0.8883 0. 4396 0.9611 0. 7568 0. 3990 1. OOOO 1.0000 1.0000 0.9994 1.OOOO 0.9994 0.9998 0. 9992 1. OOOO 1. OOOO 1.oooo •0.188 •0.073 •0.131 •0.042 0,042 •0.230 •0.273 0.026 0.048 •0.017 •0.075 0.043 •0.056 •0.007 •0.064 0.057 •0.003 •0.052 •0.239 •0.284 0.016 0.040 •0.025 •0.082 0.034 •0.067 •0.019 •0.074 0.048 •0.013 •0.297 •0.336 •0.038 •0.022 •0.087 •0. 147 •0,026 •0. 120 •0.065 •0. 128 •0.010 •0.069 •0. 138 0. 161 0. 178 0.113 0.053 0, 174 0.079 0. 132 0.070 0. 189 0. 130 0. 155 -0.049 0.053 -0.002 0.015 0.047 -0. 147 -0.163 0. 129 0.121 0.052 -0.013 0. 119 0.053 0. 154 0.038 0. 141 0.085 0. 032 -0. 152 -0.178 0.114 0. 106 0.037 -0.028 0. 104 0.038 0. 139 0. 023 0. 125 0. 070 -0.194 -0.210 0. 082 0.074 0.005 -0.060 0.072 0. 006 0. 107 -0.009 0.093 0.038 -0.016 0.276 0.268 0. 199 0. 134 0.266 0.200 0.301 0. 185 0.287 0.232 0. 292 0. 089 0. 179 0. 127 0. 073 0. 137 •0. 063 •0.052 0. 233 0. 194 0. 121 0. 049 0. 196 0. 162 0. 314 0. 140 0. 224 0. 174 0-116 •0. 085 •0. 072 0. 213 0. 171 0. 098 0. 025 0. 174 0. 142 0. 296 0. 120 0. 203 0. 153 •0.090 •0. 083 0. 202 0. 169 0. 097 0. 027 0. 170 0. 131 0. 279 0. 110 0. 197 0. 146 0. 106 0. 392 0. 357 0. 285 0. 214 0. 358 0. 321 0. 469 0. 299 0. 386 0. 334 0. 429 279 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 19 19 19 19 19 19 19 20 20 20 20 20 20 21 21 21 21 2 1 22 22 22 22 26 26 26 27 27 29 14 19 20 21 22 26 27 29 39 14 19 20 21 22 26 27 29 39 19 20 21 22 26 27 29 39 20 21 22 26 27 29 39 21 22 26 27 29 39 22 26 27 29 39 26 27 29 39 27 29 39 29 39 39 4. 81 7 3. 729 2.700 4. 696 2. 993 3.377 2. 903 4. 853 3. 868 •0. 155 -1. 440 •2. 759 •0. 179 •1.107 0.268 •1.38 5 0. 188 •0.725 -1.780 •3. 758 •0.036 •1. 168 0.396 •1. 522 0. 430 •0. 740 -1. 943 1. 664 0.018 1.235 •0. 263 2.012 0.722 3. 525 1.204 2.055 1.002 3. 715 2. 247 •1.119 0.410 -1. 459 0. 448 -0.687 1. 082 •0. 21 9 1. 417 0. 51 1 -1. 274 -0.156 -0.785 1. 757 0.788 -1.054 0. 0000 0.0001 0.0035 0.0000 0.0014 0.0004 0.0019 0.0000 0.0001 0.5616 0.9251 0. 9971 0. 5709 0.8657 0,. 39 44 6. 9169 0.4255 0.7657 0.9624 0. 9999 0. 5144 0.8785 0. 3461 0. 9359 0.3338 0.7703 0.9740 0.0481 0.4927 0.1085 0.6037 0.0222 0.2352 0.0002 0. 11 43 0. 0200 0.1582 0.0001 0.0124 0.8683 0. 3409 0. 9277 0. 3271 0.7541 0. 13 96 0.5866 0.0783 0.3048 0. 8986 0.5620 0.7838 0. 0395 0.2153 0.8539 1.0000 0. 9999 0. 9965 1. OOOO 0. 9986 0.9996 0.9981 1.0000 0. 9999 0.4384 0.0749 0.0029 0.4 291 0.1343 0.6056 0.0831 0. 5745 0.2343 0.0376 0. 0001 0.4856 0.1215 0.6539 0.0641 0.6662 0.2297 0.0260 0.9519 0.5073 0.8915 0.3963 0.9778 0. 7648 0.9998 0.8857 0. 9800 0.8418 0.9999 0. 9876 0.1317 0.6591 0.0723 0.6729 0. 2459 0.8604 0.4134 0.9217 0.6952 0. 1014 0.4380 0.2162 0. 9605 0. 7847 0. 1461 0. 168 0. 102 0.041 0. 164 0.074 0. 133 0.065 0. 18 1 0. 122 •0.117 •0. 183 •0. 243 •0.121 •0.212 •0. 155 •0. 221 •0. 105 •0. 163 •0. 145 •0.203 •0.085 •0.182 •0.131 •0. 190 •0.070 •0. 129 •0.130 •0.012 •0, 110 •0.060 •0. 118 0.002 •0.057 0. 059 •0.041 0.008 •0;.Q4 9 0.072 0.013 •0. 183 •0.131 •0.191 -0.071 •0.131 •0.082 -0. 149 •0.034 -0.092 -0.294 -0.182 •0.240 -0.012 •0.070 -0. 158 0.283 0. 215 0. 150 0. 282 0.216 0.317 0.201 0.303 0.248 -0.009 -0.077 -0.142 -0.010 -0.076 0.025 -0.091 0.01 1 -0.044 -0.069 -0.134 -0.002 -0.068 0.033 -0.083 0.020 -0.035 -0.065 0. 067 0.001 0. 102 -0.014 0. 089 0.033 0. 132 0.066 0. 167 0.051 0. 153 0. 098 -0.066 0.035 -0.081 0.021 -0.034 0. 101 -0.015 0.088 0.032 -0. 116 -0.013 -0.069 0. 103 0.047 -0.055 0. 399 0. 327 0. 259 0. 400 0. 357 0. 500 0. 336 0. 426 0. 374 0. 100 0. 028 -0.041 0. 101 0. 059 0. 204 0.038 0. 127 0.075 0. 007 -0.064 0. 082 0. 046 0. 197 0. 024 0. 109 0. 059 0. 001 0. 147 0. 112 0. 264 0. 090 0. 175 0. 124 0. 206 0. 173 0. 326 0. 150 0. 234 0. 184 0. 050 0. 200 0. 028 0.114 0. 063 0. 284 0. 119 0. 209 0. 157 0. 063 0. 155 0. 103 0. 217 0. 165 0.047 CHESTNUT-BACKED CHICKADEE WITH VEGETATION TYPES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY H ABITAT_VALUE 21 1.012 1.000 5 0.957 0. 946 20 0.574 0. 567 9 0.491 0. 486 6 0.387 0.383 10 0.339 0.335 11 0.327 0.324 12 0.252 0.249 8 0.237 0. 234 19 0. 146 0. 144 7 0. 106 0. 104 22 0.093 0.091 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.06841 (VAR Z) WITH 1717..DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.12779 WITH 66. DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 1.8681 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0000419 OF EXCEEDING BY CHANCE 2 8 1 CHESTNUT-BACKED CHICKADEE WITH VEGETATION TYPES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE HYPOTHYSIS CONFIDENCE LIMITS FOR A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER 5 6 4.086 0.0000 1.0000 0. 296 0. 569 0. 843 5 7 3.632 0. 00 01 0.9999 0.391 0.851 1.310 5 8 3.980 0.0000 1. 0000 0.365 0.720 1. 074 5 9 3. 529 0. 0002 0. 9 998 0.207 0.465 0.724 5 10 3. 1 15 0.0009 0.9991 0. 229 0.617 1. 006 5 11 3. 390 0.0004 0.9996 0.265 0.629 0. 993 5 12 3. 259 0.0006 0.9994 0.280 0.704 1. 128 5 19 5. 630 0.0000 1. 0000 0. 528 0.811 1.093 5 20 2. 66 5 0.0039 0. 9961 0. 101 0.383 0. 665 5 21 -0. 269 0. 6059 0.3941 -0*457 -0.055 0. 347 5 22 3. 809 0.0001 0.9999 0.41 9 0. 864 1. 309 6 7 1. 274 0.1014 0. 8986 -0.152 0.281 0. 715 6 8 0. 921 0.1786 0.8214 -0. 170 0. 150 0. 470 6 9 -0.981 0.8366 0.1634 -0. 312 -0.104 0. 104 6 10 0.262 0.3965 0.6035 -0.309 0.048 0. 405 6 11 0.355 0. 3615 0.6385 -0.270 0.060 0. 390 6 12 0.670 0.2516 0.7484 -0.260 0. 135 0. 530 6 19 1. 995 0.0231 0. 9769 0.004 0. 241 0. 479 6 20 -1.545 0. 9388 0.0612 -0.423 -0.186 0.050 6 21 -3. 296 0.9995 0. 0005 -0.996 -0.624 -0. 253 6 22 1. 383 0.0833 0.9167 -0.123 0. 295 0. 712 7 8 -0.527 0.7010 0. 2990 -0.620 -0.131 0. 357 7 9 -1.784 0.9627 0.0373 -0.810 -0.386 0. 038 7 10 -0. 892 0.8137 0. 1863 -0.747 -0.234 0. 280 7 11 -0.878 0.8100 0.1900 -0.717 -0.222 0. 274 7 12 -0.531 0.7023 0.2977 -0.687 -0.146 0. 395 7 19 -0.179 0.5711 0.4289 -0.479 -0.040 0. 399 7 20 -2. 092 0.9817 0.0183 -0;906 -0.468 -0.029 7 21 -3.392 0. 9996 0.0004 -1.430 -0.906 -0.382 7 22 0.046 0.4815 0.5185 -0. 544 0.013 0. 571 8 9 -1. 623 0.9477 0.0523 -0.562 -0.254 0. 053 8 10 -0.475 0.6826 0.3174 -0.525 -0.102 0. 320 8 1 1 -0.444 0.6713 0.3287 -0.490 -0.090 0. 309 8 12 -0.065 0.5260 0.4740 -0.470 -0.015 0. 440 8 19 0. 546 0.2925 0.7075 -0.236 0.091 0. 419 8 20 -2. 018 0.9781 0.0219 -0.664 -0.337 -0.009 8 21 -3. 494 0.9998 0.0002 -1.209 -0.775 -0.340 8 22 0.597 0.2753 0. 7247 -0.330 0. 145 0. 619 9 10 0. 861 0.1946 0.8054 -0.194 0. 152 0. 498 9 11 1.011 0.1562 0.8438 -0. 154 0. 164 0.482 9 12 1. 218 0.1118 0.8882 -0.146 0.239 0. 624 9 19 3.078 0.0011 0. 9989 0. 125 0.346 0. 566 9 20 -0. 735 0.7689 0.2311 -0.302 -0.082 0. 137 9 21 -2. 828 0. 9976 0.0024 -0.881 -0.520 -0.159 9 22 1.916 0.0278 0. 9722 -0.009 0.399 0. 807 282 10 11 0.054 0.4784 0.5216 -0.419 0.012 0. 442 10 12 0.355 0.3615 0.6385 -0.395 0.087 0. 569 10 19 1.042 0. 1487 0.8513 -0.171 0. 194 0. 558 10 20 -1. 263 0.8966 0. 1034 ^0.598 -0.234 0. 130 10 21 -2.848 0.9978 0.0022 -1.135 -0.672 -0. 209 10 22 0.967 0. 1669 0.8331 -0.254 0.247 0. 748 11 (12 0. 319 0.3748 0.6252 -0.387 0.075 0. 538 11 19 1. 055 0.1457 0. 8543 -0.156 0. 182 0. 519 11 20 -1. 431 0.9238 0.0762 -0.583 -0.246 0. 091 11 21 -3.032 0. 9988 0.0012 -1.127 -0.684 -0.242 11 22 0. 956 0. 1695 0. 8305 -0.247 0.235 0.717 12 19 0. 519 0.3018 0.6982 -0.295 0. 106 0. 508 12 20 -1 . 571 0.9418 0. 0582 -0.72 3 -0.321 0. 080 12 21 -3.021 0. 9987 0.00 13 -1.252 -0.759 -0.266 12 22 0. 592 0. 2769 0.7 231 -0.369 0. 160 0. 688 19 20 -3.396 0. 9996 0.0004 -0.675 -0.428 -0. 181 19 21 -4.489 1. 0000 0.OOOO - 1. 24 4 -0.866 -0.487 19 22 0.247 0.4026 0.5974 -0.370 0.053 0. 477 20 21 -2. 274 0.9884 0.0116 -0.816 -0.438 -0. 060 20 22 2. 229 0.0130 0.9870 0.058 0.481 0. 904 21 22 3. 526 0.0002 0. 9998 0.408 0.919 1. 430 WINTER WREN WITH VEGETAION TYPES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT VALUE 5 3.158 1.000 12 2.830 0. 896 7 2. 671 0,. 84 6 19 2. 1 94 0.695 10 2. 181 0. 691 20 2. 121 0. 672 9 2. 109 0.668 8 2. 108 0.667 21 1.740 0. 551 6 1.584 0.502 29 1.410 0. 446 1 1 1.263 0. 400 22 1. 146 0. 363 27 1. 1 12 0.352 13 0. 756 0. 240 39 0. 664 0.210 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.14886 (VAR Z) WITH 3458._DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.53872 WITH 90. DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 3.6189 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 2 8 4 WINTER WREN WITH VEGETATION TYPES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 9 5 % CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE HYPOTHYSIS CONFIDENCE LIMITS FOR A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER 5 6 7 . 2 5 8 0 . 0 0 0 0 1 . o o o o 1 . 1 4 9 1 . 5 7 4 1 . 9 9 9 5 7 •1- 3 2 7 0 . 0 9 2 4 0 . 9 0 7 6 - 0 . 2 3 3 0 . 4 8 7 1 . 2 0 6 5 8 4 . 0 4 8 0 . 0 0 0 0 1 . 0 0 0 0 0 . 5 4 1 1 . 0 5 0 1 . 5 5 9 5 9 4 . 8 6 9 0 . 0 0 0 0 1 . 0 0 0 0 0 . 6 2 7 1 . 0 4 9 1 . 4 7 1 5 1 0 5. 3 8 2 0 . 0 0 0 4 0 . 9 9 9 6 0 . 4 1 1 0 . 9 7 7 1 . 5 4 4 5 1 1 7 . 4 8 3 0 . 0 0 0 0 1 . 0 0 0 0 1 . 3 9 8 1 . 8 9 4 2 . 3 9 1 5 1 2 1 . 0 1 7 0 . 1 5 4 7 0 . 8 4 5 3 - 0 . 3 0 4 0 . 3 2 8 0 . 9 6 0 5 1 3 7. 3 8 9 0 . 0 0 0 0 1 . 0 0 0 0 1 . 7 6 4 2 . 4 0 1 3 . 0 3 9 5 1 9 3 . 9 3 2 0 . 0 0 0 0 1 . 0 0 0 0 0 . 4 8 3 0 . 9 6 4 1 . 4 4 4 5 2 0 4 . 3 7 1 0 . 0 0 0 0 1 . 0 0 0 0 0 , 5 7 2 1 . 0 3 7 1 . 5 0 2 5 2 1 5 . 1 7 6 0 . o o o o 1 . 0 0 0 0 0 . 8 8 1 1 . 4 1 8 1 . 9 5 5 5 2 2 6 . 0 5 8 0 . o o o o 1 . 0 0 0 0 1 . 3 6 1 2 . 0 1 2 2 . 6 6 3 5 2 7 6 . 6 9 2 0 . o o o o 1 . 0 0 0 0 1 . 4 4 7 2 . 0 4 6 2 . 6 4 6 5 2 9 5 . 8 9 8 0 . 0 0 0 0 1 . 0 0 0 0 1 . 1 6 7 1 . 7 4 8 2 . 3 2 9 5 3 9 8 , . 9 6 7 0 . 0 0 0 0 1 . 0 0 0 0 1 . 9 4 8 2 . 4 9 4 3 . 0 3 9 6 7 - 3 . 2 8 6 0 . 9 9 9 5 0 . 0 0 0 5 - 1 . 7 3 6 - 1 . 0 8 7 - 0 . 4 3 9 6 8 - 2 . 5 5 5 0 . 9 9 4 7 0 . 0 0 5 3 - 0 . 9 2 6 - 0 . 5 2 4 - 0 . 1 2 2 6 9 - 3 . 6 0 6 0 . 9 9 9 8 0 . 0 0 0 2 - 0 . 8 1 1 - 0 . 5 2 5 - 0 . 2 4 0 6 1 0 - 2 . 4 7 3 0 . 9 9 3 3 0 . 0 0 6 7 - 1 . 0 7 0 - 0 . 5 9 7 - 0 . 1 2 4 6 1 1 1 . 6 2 5 0 . 0 5 2 1 0 . 9 4 7 9 - 0 . 0 6 6 0 . 3 2 0 0 . 7 0 7 6 1 2 - 4 . 4 3 9 1 . 0 0 0 0 0 . 0 0 0 0 - 1 . 7 9 7 - 1 . 2 4 6 - 0 . 6 9 6 6 1 3 2 . 9 1 8 0 . 0 0 1 8 0 . 9 9 8 2 0 . 2 7 1 0 . 8 2 7 1 . 3 8 3 6 1 9 - 3 . 2 7 0 0 . 9 9 9 5 0 . 0 0 0 5 - 0 , 9 7 7 - 0 . 6 1 1 - 0 . 2 4 5 6 2 0 - 3 . 0 4 6 0 . 9 9 8 8 0 . 0 0 1 2 - 0 . 8 8 3 - 0 . 5 3 7 - 0 . 1 9 1 6 2 1 - 0 . 7 0 0 0 . 7 5 7 9 0 . 2 4 2 1 - 0 . 5 9 4 - 0 . 1 5 6 0 . 2 8 2 6 2 2 1 . 5 0 1 0 . 0 6 6 7 0 . 9 3 3 3 - 0 . 1 3 4 0 . 4 3 8 1 . 0 1 0 6 2 7 1 . 8 0 6 0 . 0 3 5 5 0 . 9 6 4 5 - 0 . 0 4 0 0 . 4 7 2 0 . 9 8 4 6 2 9 0 . 6 9 5 0 . 2 4 3 6 0 . 7 5 6 4 - 0 . 3 1 7 0 . 1 7 4 0 . 6 6 4 6 3 9 4 . 0 2 8 0 . 0 0 0 0 1 . 0 0 0 0 0 . 4 7 2 0 . 9 2 0 1 . 3 6 7 7 8 1 . 5 6 4 0 . 0 5 9 0 0 . 9 4 1 0 - 0 . 1 4 3 0 . 5 6 3 1 . 2 6 9 7 9 1 . 7 0 4 0 . 0 4 4 2 0 . 9 5 5 8 - 0 . 0 8 5 0 . 5 6 2 1 . 2 0 9 7 1 0 1 . 2 8 4 0 . 0 9 9 6 0 . 9 0 0 4 - 0 . 2 5 9 0 . 4 9 0 1 . 2 3 9 7 1 1 3 . 9 5 7 0 . 0 0 0 0 1 . 0 0 0 0 0 . 7 1 0 1 . 4 0 8 2 . 1 0 5 7 1 2 - 0 . 3 8 9 0 . 6 5 1 5 0 . 3 4 8 5 - 0 . 9 5 9 - 0 . 1 5 9 0 . 6 4 1 7 1 3 4 . 6 7 0 0 . 0 0 0 0 1 . 0 0 0 0 1 . 1 1 1 1 . 9 1 5 2 . 7 1 8 7 1 9 1 . 3 6 2 0 . 0 8 6 6 0 . 9 1 3 4 - 0 . 2 0 9 0 . 4 7 7 1 . 1 6 3 7 2 0 1 . 5 9 7 0 . 0 5 5 2 0 . 9 4 4 8 - 0 . 1 2 5 0 . 5 5 0 1 . 2 2 6 7 2 1 2 . 5 1 1 0 . 0 0 6 0 0 . 9 9 4 0 0 . 2 0 4 0 . 9 3 1 1 . 6 5 8 7 2 2 3 . 6 7 0 0 . 0 0 0 1 0 . 9 9 9 9 0 . 7 1 0 1 . 5 2 5 2 . 3 4 0 7 2 7 3 . 9 4 9 0 . 0 0 0 0 1 . 0 0 0 0 0 . 7 8 5 1 . 5 5 9 2 . 3 3 3 7 2 9 3 . 2 5 3 0 . 0 0 0 6 0 . 9 9 9 4 0 . 5 0 1 1 . 2 6 1 2 . 0 2 1 7 3 9 5 . 3 6 8 0 . 0 0 0 0 1 . 0 0 0 0 1 . 2 7 4 2 . 0 0 7 2 . 7 4 0 8 9 - 0 . 0 0 5 0 . 5 0 1 8 0 . 4 9 8 2 - 0 . 4 0 0 - 0 . 0 0 1 0 . 3 9 8 8 1 0 - 0 . 2 6 0 0 . 6 0 2 4 0 . 3 9 7 6 - 0 . 6 2 2 - 0 . 0 7 3 0 . 4 7 7 8 1 1 3 . 4 7 3 0 . 0 0 0 3 0 . 9 9 9 7 0 . 3 6 8 0 . 8 4 4 1 . 3 2 1 2 8 5 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 12 13 19 2 0 21 22 27 2 9 39 10 11 12 13 19 2 0 21 22 2 7 2 9 39 1 1 12 1 3 19 2 0 21 22 2 7 29 39 12 13 19 20 21 22 2 7 29 39 13 19 2 0 21 22 27 29 39 19 20 21 2 2 27 29 39 - 2 . 2 9 4 4 . 2 5 9 - 0 . 3 6 8 • 0 . 0 5 7 1 . 3 9 0 2 . 96 4 3 . 3 4 8 2 . 42 5 5 . 3 6 6 • 0 . 2 9 9 4 . 3 2 3 • 2 . 5 7 8 4 . 788 • 0 . 4 6 2 • 0 . 0 6 8 1. 6 6 3 3 . 3 1 3 3 . 8 3 3 2 . 8 0 7 6 . 3 6 5 3 . 3 4 2 • 1 . 9 1 2 4 . 166 • 0 . 0 5 1 0 . 2 3 0 1 . 5 0 0 2 . 9 6 8 3 . 3 0 3 2 . 4 4 9 5 . 0 9 5 • 5 . 0 5 9 1 . 6 2 4 • 4 . 086 - 3 . 9 0 8 • 1 . 8 4 2 0 . 3 6 8 0 . 5 1 9 • 0 . 5 1 9 2 . 2 7 8 5 . 5 9 3 2 . 0 9 7 2 . 3 8 9 3 . 3 3 5 4 . 4 6 7 4 . 8 5 4 4 . 106 6 . 5 5 6 • 4 . 704 - 4 . 5 5 6 - 2 . 9 8 7 • 1 . 0 2 7 • 0 . 9 9 8 - 1 . 8 7 7 0 . 2 7 7 0 . 9 8 9 1 0 . 0 0 0 0 0 . 6 4 3 6 0 . 5 2 2 7 0 . 0 8 2 3 0 . 0 0 1 5 0 . 0 0 0 4 0 . 0 0 7 7 0 . 0 0 0 0 0 . 6 1 7 5 0 . o o o o 0 . 9 9 5 0 0 . 0 0 0 0 0 . 6 7 7 8 0 . 5 2 7 2 0 . 0 4 8 2 0 . 00 05 0 . 0 0 0 1 0 . 0 0 2 5 0 . 0 0 0 0 0 . 00 04 0 . 9 7 2 0 0.OOOO 0 . 5 2 0 4 0 . 4 0 9 0 0 . 0 6 6 8 0 . 0 0 1 5 0 . 0 0 0 5 0 . 0 0 7 2 0 . 0 0 0 0 1 . OOOO 0 . 0 5 2 2 1 . 0 0 0 0 1 . 0 0 0 0 0 . 9 6 7 2 0 . 3 5 6 3 0 . 3 0 1 9 0 . 6 9 8 1 0 . 0 1 1 4 0 . 0 0 0 0 0 . 0 1 8 0 0 . 0 0 8 5 0 . 0 0 0 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0 1 . o o o o 0 . 9 9 8 6 0 . 8 4 7 7 0 . 8 4 0 8 0 . 9 6 9 7 0 . 3 9 0 8 0 . 0 1 0 9 1.OOOO 0 . 3 5 6 4 0 . 4 7 7 3 0 . 9 1 7 7 0 . 9 9 8 5 0 . 9 9 9 6 0 . 9 9 2 3 1.OOOO 0 . 3 8 2 5 1.OOOO 0 . 0 0 5 0 1.OOOO 0 . 3 2 2 2 0 . 4 7 2 8 0 . 9 5 1 8 0 . 9 9 9 5 0 . 9 9 9 9 0 . 9 9 7 5 1 . 0 0 0 0 0 . 9 9 9 6 0 . 0 2 8 0 1.OOOO 0 . 4 7 9 6 0 . 5 9 1 0 0 . 9 3 3 2 0 . 9 9 8 5 0 . 9 9 9 5 0 . 9 9 2 8 1.OOOO 0 . 0 0 0 0 0 . 9 4 7 8 0.OOOO 0.OOOO 0 . 0 3 2 8 0 . 6 4 3 7 0 . 6 9 8 1 0 . 3 0 1 9 0 . 9 8 8 6 1 . 0 0 0 0 0 . 9 8 2 0 0 . 9 9 1 5 0 . 9 9 9 6 1 . OOOO 1. OOOO 1.OOOO 1. OOOO 0.OOOO 0 . 0 0 0 0 0 . 0 0 1 4 0 . 1 5 2 3 0 . 1 5 9 2 0 . 0 3 0 3 0 . 6 0 9 2 • 1 . 3 3 9 0 . 7 2 9 - 0 . 5 4 7 • 0 . 4 5 7 • 0 . 1 5 1 0 . 3 2 6 0 . 413 0 . 134 0 . 9 1 6 • 0 . 5 4 3 0 . 4 6 2 • 1 . 2 6 9 0 . 7 9 9 - 0 . 4 4 8 • 0 . 3 5 4 • 0 . 0 6 6 0 . 3 9 3 0 . 4 8 7 0 . 2 1 1 1 . 0 0 0 0 . 3 7 9 • 1 . 3 1 5 0 . 7 5 4 • 0 . 5 3 7 • 0 . 4 5 0 • 0 . 135 0 . 3 5 1 0 . 434 0 . 154 0 . 9 3 3 • 2 . 174 • 0 . 1 0 5 • 1 . 3 7 7 - 1 . 2 8 7 • 0 . 9 8 4 - 0 . 5 0 9 • 0 . 4 2 1 - 0 . 7 0 0 0 . 0 8 4 1 . 3 4 7 0 . 0 4 1 0 . 127 0 . 4 4 9 0 . 9 4 5 1 . 0 2 4 0 . 742 1 . 5 1 8 • 2 . 0 3 7 • 1 . 9 5 1 • 1 . 6 2 9 • 1 . 1 3 2 • 1 . 0 5 4 • 1 . 3 3 6 • 0 . 5 6 0 - 0 . 7 2 2 1 . 3 5 1 - 0 . 0 8 6 - 0 . 0 1 3 0 . 3 6 8 0 . 9 6 2 0 . 9 9 6 0 . 6 9 8 1 . 4 4 4 - 0 . 0 7 2 0 . 8 4 5 - 0 . 7 2 1 1 . 3 5 2 - 0 . 0 8 5 - 0 . 0 1 2 0 . 3 6 9 0 . 9 6 3 0 . 9 9 7 0 . 6 9 9 1 . 4 4 5 0 . 9 1 7 - 0 . 6 4 9 1 . 4 2 4 - 0 . 0 1 4 0 . 0 6 0 0 . 4 4 1 1 . 0 3 5 1 . 0 6 9 0 . 7 7 1 1 . 5 1 6 - 1 . 5 6 6 0 . 5 0 7 - 0 . 9 3 1 - 0 . 8 5 7 - 0 . 4 7 6 0 . 1 1 8 0 . 152 - 0 . 1 4 6 0 . 5 9 9 2 . 0 7 3 0 . 6 3 6 0 . 7 0 9 1 . 0 9 0 1 . 6 8 4 1 . 7 1 8 1 . 420 2 . 166 - 1 . 4 3 8 - 1 . 3 6 4 - 0 . 9 8 3 - 0 . 3 8 9 - 0 . 3 5 5 - 0 . 6 5 4 0 . 0 9 2 • 0 . 1 0 5 1. 9 7 3 0 . 374 0 . 431 0 . 887 1 . 5 9 9 1 . 579 1. 2 6 2 1 . 971 0 . 3 9 9 1 . 229 • 0 . 173 1 . 9 0 6 0 . 277 0 . 3 3 0 0 . 8 0 4 1 . 5 3 3 1 . 507 1 . 187 1 . 8 9 0 1 . 4 5 5 0 . 0 1 6 2 . 0 9 4 0 . 5 1 0 0 . 5 6 9 1 . 0 1 7 1 . 7 1 8 1. 7 0 3 1 . 388 2 . 100 0 . 9 5 9 1 . 119 • 0 . 4 8 4 • 0 . 4 2 7 0 . 0 3 1 0 . 744 0 . 7 2 4 0 . 4 0 7 1 . 115 2 . 8 0 0 1 . 230 1. 291 1 . 7 3 1 2 . 4 2 3 2 . 4 1 2 2 . 0 9 8 2 . 8 1 3 • 0 . 8 3 9 • 0 . 7 7 7 • 0 . 3 3 8 0 . 3 5 4 0 . 3 4 3 0 . 0 2 9 0 . 7 4 5 286 19 20 0.350 0.3632 0.6368 -0.338 0. 073 0. 485 19 21 1. 812 0. 03 50 0.9650 -0.037 0.454 0. 946 19 22 3. 347 0. 0004 0. 9996 0.434 1.049 1. 663 19 27 3. 796 0.0001 0.9999 0. 523 1.082 1.641 19 29 2. 852 0.0022 0.9978 0.245 0.784 1. 324 19 39 5. 994 0.0000 1.0000 1.030 1. 530 2. 030 20 21 1. 567 0.0587 0, 9413 -0.096 0.381 0. 858 20 22 3, 174 0.0008 0.9992 0.373 0. 975 1. 577 20 27 3. 623 0. 0001 0.9999 0*463 1 .009 1. 555 20 29 2. 652 0.0040 0.9960 0. 185 0.71 1 1. 236 20 39 5. 879 0.0000 1.OOOO 0. 971 1.457 1.942 21 22 1. 767 0.0387 0.9613 -0.065 0. 594 1. 254 21 27 2. 024 0.0215 0.9785 0.020 0.628 1. 236 21 29 1. 096 0*1365 0.8635 -0.260 0.330 0. 920 21 39 3. 800 0. 0001 0.9999 0. 521 1.076 1.631 22 27 0. 093 0.4628 0.5372 -0.677 0.034 0. 745 22 29 -0. 745 0.77 18 0. 2282 -0. 960 -0.264 0. 431 22 39 1. 41 7 0.0782 0.9218 -0. 185 0.481 1. 148 27 29 -0. 903 0.8167 0. 1833 -0.946 -0.298 0. 349 27 39 1. 42 6 0.0770 0.9230 -0.168 0.448 1. 063 29 39 2. 447 0. 0072 0.9928 0. 148 0.746 1. 343 VARIED THRUSH WITH VEGETATION TYPES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT_VALUE 12 0. 250 1.000 5 0.216 0.863 7 0. 199 0.798 10 0.175 0.702 22 0.168 0.672 11 0.165 0.662 9 0. 165 0.660 6 0. 153 0. 61 1 26 0. 1 16 0. 464 29 0. 108 0.430 19 0. 106 0.425 39 0.105 0.422 20 0.103 0.413 8 0.093 0.371 27 0.073 0. 29 1 13 0.050 0.201 2 0.028 0. 11 1 21 0.022 0.087 14 0.021 0.083 VARIANCE WITHIN CELLS(SERIES,TYPES) 0.01562 (VAR Z) WITH 5946. .DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.02964 WITH 90..DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 1. 8970 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0000009 OF EXCEEDING BY CHANCE 288 VARIED THRUSH WITH VEGETATION TYPES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATE_HYPOTHYSIS CONFIDENCE_LIMITS_FOR A B VALUE A GT B A LT B LOWER A MINUS B UPPER 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 5 6 7 8 9 10 1 1 12 13 14 19 20 21 22 26 27 29 39 6 7 8 9 1 0 1 1 12 13 14 19 20 21 22 26 27 29 39 7 8 9 10 1 1 12 13 14 19 20 •2. 256 •1. 548 •1. 889 •0. 796 •1.696 •1. 705 •1. 628 •2. 435 •0. 249 0.085 •0.950 •0. 927 0. 071 •1. 526 •0.883 •0.504 •0. 916 •0. 909 2. 155 0. 320 3. 874 1. 711 0. 940 1. 299 •0. 666 3. 391 5. 256 3. 217 3. 655 5. 449 0. 900 1.512 2. 991 2. 462 2. 728 -1.002 2. 473 -0. 572 •0. 603 -0. 390 -2.053 2. 316 4. 267 1. 712 2. 155 0. 9879 0.9392 0.9706 0.7871 0.9551 0.9559 0. 9482 0. 9925 0.5983 0. 4663 0.8288 0. 8231 0.4716 0.9365 0.81 13 0.6929 0. 8200 0.8183 0.0156 0.3745 0.0001 0.0436 0.1737 0.0970 0.7473 0.0003 0.0000 0.0007 0.0001 0.0000 0.1841 0.0653 0.0014 0.0069 0.0032 0. 8419 0.0067 0.7162 0.7267 0.6516 0.9799 0. 0103 0.0000 0. 0435 0.0156 0.0 121 0. 0608 0.0294 0. 2129 0.0449 0.0441 0. 0518 0.0075 0.4017 0.5337 0.1712 0. 1769 0.5284 0.0635 0. 1887 0. 3071 0.1800 0.1817 0. 9844 0.6255 0. 9999 0. 9564 0.8263 0.9030 0.2527 0. 9997 1.0000 0.9993 0. 9999 1. 0000 0.8159 0.9347 0. 9986 0.9931 0. 9968 0. 1581 0.9933 0.2838 0.2733 0.3484 0. 0 201 0.9897 1.0000 0. 9565 0. 9844 -0.351 -0.283 -0.349 -0.225 -0.296 -0.317 -0.303 -0.401 -0.198 -0. 157 -0.240 -0.235 -0.157 -0. 320 -0.284 -0.220 -0.250 -0.245 0.006 -0.083 0.061 -0.007 -0.044 -0.026 -0.135 0.070 0. 122 0.043 0.052 0. 124 -0.056 -0.030 0.049 0.022 0.031 -0.138 0.012 -0.054 -0.096 -0.077 -0. 190 0.016 0.071 -0.007 0.004 •0. 188 -0. 125 •0. 172 •0.065 •0. 137 •0. 148 •0. 138 •0.222 -0.022 0.007 -0.078 -0.075 0. 006 -0. 140 -0. 088 -0. 045 -0. 080 -0.078 0.063 0.016 0. 123 0.051 0. 040 0.050 -0. 034 0. 165 0. 195 0. 109 0.112 0. 1 94 0.048 0. 100 0. 143 0. 108 0. 110 -0.047 0.060 -0.012 -0.023 -0.013 -0.097 0. 103 0.132 0.047 0.050 -0. 025 0. 033 0. 006 0.095 0. 021 0. 022 0. 028 -0.043 0. 153 0. 172 0. 083 0. 084 0. 169 0. 040 0. 108 0. 130 0. 091 0. 090 0. 120 0. 116 0. 185 0. 109 0. 124 0. 126 0. 067 0. 261 0. 268 0. 176 0. 173 0. 263 0. 151 0. 229 0. 236 0. 194 0. 189 0.045 0. 107 0. 030 0. 051 0. 051 -0.004 0. 189 0. 193 0. 100 0. 095 289 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 21 22 26 27 29 39 8 9 10 11 12 13 14 19 20 21 22 26 27 29 39 9 10 1 1 12 13 14 19 20 21 22 26 27 29 39 10 11 12 13 14 19 20 21 22 26 27 29 39 11 12 13 14 19 20 -0 4. 498 0.315 0. 586 1. 853 1. 163 1. 358 2. 213 0.735 0. 427 0. 640 0. 803 2. 456 3. 446 1. 875 2. 024 3.497 0. 488 1. 108 2,112 1.613 1. 731 2. 918 2. 086 2.077 3. 210 0. 928 2. 164 0. 448 0. 397 2. 244 1. 498 0.36 4 0. 44 7 0.361 0. 341 0.275 0. 016 1. 785 2. 576 4.604 2. 127 2.628 4. 849 064 0. 779 2. 122 1.467 1. 692 0. 219 1.313 2.309 3.515 1. 669 1. 86 0 0.0000 0.6237 0.27 90 0.0320 0. 1224 0.0873 0.0135 0.2312 0.3346 0.2611 0, 7890 0.0070 0.0003 0.0304 0,0215 0.0002 0.3127 0. 1339 0.0174 0.0534 0.0417 0.9982 0. 9815 0.9811 0.9993 0,1767 0.0152 0.6731 0.6543 0.0124 0.9329 0.6421 0.3274 0.64 11 0. 6335 0.6084 0.5060 0.9628 0.0050 0.00 00 0.0167 0.0043 0. 0000 0.5254 0.2180 0,0169 0.07 13 0.0454 0.4133 0,9054 0.0105 0.00 02 0. 0476 0.0315 1. OOOO 0.3763 0. 7210 0. 9680 0. 8776 0.9127 0. 9865 0.7688 0.6654 0.7389 0.2110 0.9930 0.9997 0.9696 0. 9785 0.9998 0. 6873 0.8661 0. 9826 0.9466 0. 9583 0.0018 0. 0185 0.0189 0.0007 0.8233 0.9848 0.3269 0. 3457 0.9876 0.0671 0.3579 0.6726 0.3589 0. 3665 0.3916 0.4940 0. 0372 0. 9950 1. OOOO 0.9833 0. 9957 1. OOOO 0. 4746 0.7820 0.9831 0. 9287 0.9546 0.5867 0.0946 0. 9895 0. 9998 0. 9524 0.9685 0.074 -0.111 -0.086 -0.005 -0.031 -0.021 0,012 -0.057 -0.086 -0.070 -0. 174 0.030 0.077 -0.004 0.003 0.078 •0.094 -0.064 0.009 -0.020 -0.012 -0.121 -0. 160 -0.141 -0.253 -0.047 0.007 -0.072 -0,062 0.009 -0.174 -0.148 -0.068 -0.095 -0.085 -0.085 -0.065 -0.178 0.027 0.083 0.005 0.016 0.085 -0.099 -0.074 0.007 -0.019 -0.009 -0.079 -0.186 0.019 0.068 -0.012 -0.004 0. 131 •0.015 0.037 0.080 0.045 0.047 0. 107 0.034 0.024 0.034 •0.051 0. 149 0,179 0.093 0.096 0. 177 0.031 0.083 0. 127 0. 092 0. 094 •0.072 •0.083 -0.073 •0. 157 0. 043 0.072 -0.013 -0.010 0.071 -0.075 -0.023 0.020 -0.015 •0.013 -0.010 -0.001 -0.085 0. 115 0. 144 0.059 0.062 0. 143 -0.003 0.049 0,092 0.057 0.060 0.010 -0.075 0. 125 0.155 0.069 0.072 0. 188 0. 080 0. 159 0. 165 0. 121 0.116 0. 201 0, 126 0. 134 0. 138 0. 073 0. 268 0. 280 0. 190 0. 189 0. 277 0. 157 0. 231 0. 244 0. 203 0. 200 •0. 024 •0. 005 •0. 004 •0.061 0. 133 0. 137 0. 045 0. 041 0. 133 0. 023 0. 102 0. 108 0. 065 0. 060 0. 064 0. 064 0. 008 0. 202 0. 206 0. 113 0. 108 0. 201 0. 093 0. 172 0. 177 0. 134 0. 128 0. 099 0.037 0. 232 0. 241 0. 150 0. 148 290 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 19 19 19 19 19 19 19 20 20 20 21 22 26 27 29 39 12 13 14 19 20 21 22 26 27 29 39 13 14 19 20 21 22 26 27 29 39 14 19 20 21 22 26 27 29 39 19 20 21 22 26 27 29 39 20 21 22 26 27 29 39 2 1 22 26 3. 593 0. 126 0. 848 1. 92 5 1. 360 1. 494 -1.574 2. 262 3. 626 1.598 1. 825 3. 729 -0. 047 0. 732 1. 854 1. 251 1. 396 3.253 4.358 2. 848 3.036 4. 426 1. 266 1. 769 2. 924 2. 472 2.628 0. 590 -1. 178 -1.170 0. 580 -1.889 -0.893 -0.388 -1.042 -1.056 -2.407 -2.543 -0.032 -2. 740 -1.431 -1.065 -1. 927 -2. 033 0.105 2. 486 -1. 196 -0. 152 *0.719 -0.032 0.020 2.651 -1.307 -0.203 0. 00 02 0.4497 0.1983 0.0271 0.0869 0.06 76 0.9422 0.01 19 0.0001 0.0550 0.0340 0.0001 0.5189 0.2320 0. 0319 0.1055 0.0814 0.0006 0. 0000 0.0022 0.0012 0.0000 0.1027 0.0384 0.0017 0.0067 0.0043 0.2776 0.8805 0,8789 0. 2811 0. 9705 0.8141 0.6510 0.8513 0.8545 0.99 19 0.9945 0. 5126 0. 9969 0. 9237 0.8565 0. 9730 0.9789 0. 4582 0.0065 0. 8842 0.5602 0.2362 0.5126 0. 4922 0.0040 0.9044 0. 5805 0. 9998 0.5503 0. 8017 0. 9729 0.9131 0. 9324 0. 0578 0. 9881 0.9999 0.9450 0. 9660 0.9999 0. 4811 0.7680 0.9681 0. 8945 0.9186 0. 9994 1. OOOO 0. 9 978 0. 9988 1.OOOO 0. 8973 0.9616 0.9983 0.9933 0.9957 0. 7224 0. 1 195 0. 1211 0.7189 0. 0295 0. 1859 0. 3490 0.1487 0. 1455 0.0081 0.0055 0.4874 0.0031 0. 0763 0. 1435 0.0270 0.0211 0.5418 0.9935 0.1158 0.4398 0.7638 0.4874 0.5078 0.9960 0.0956 0.4 195 0.070 •0. 106 •0.078 •0.002 •0.030 •0.022 •0. 190 0.015 0.066 •0.013 •0.005 0.068 •0. 110 •0.083 •0.005 •0.033 •0.024 0.079 0. 126 0.045 0.052 0. 127 •0.045 •0.014 0.058 0.029 0.037 •0.068 •0. 149 •0. 142 •0.067 •0.240 0. 211 •0. 137 •0. 165 •0. 158 •0. 155 •0. 146 •0.074 •0.253 0.226 •0.148 •0. 175 •0. 166 •0.054 0.018 •0. 163 •0. 137 •0.058 •0.085 •0.076 0.021 •0. 162 •0. 137 0. 153 0.007 0,059 0. 103 0.068 0.070 -0.084 0. 115 0. 145 0. 059 0.062 0. 144 -0.003 0.049 0.093 0. 058 0.060 0.200 0.229 0. 144 0. 147 0.228 0,082 0. 134 0. 177 0. 142 0. 144 0.029 -0.056 -0.053 0.028 -0. 118 -0.066 -0.023 -0.057 -0.055 -0.085 -0.082 -0.001 -0.147 -0.095 -0.052 -0.087 -0.085 0.003 0. 084 -0.062 -0.010 0.033 -0.001 0.001 0. 081 -0.065 -0.013 0. 237 0. 121 0. 196 0,. 207 0. 166 0. 162 0. 021 0. 215 0. 223 0. 132 0. 129 0.219 0. 105 0. 182 0. 191 0. 149 0. 144 0. 320 0. 332 0. 243 0. 242 0. 329 0. 209 0. 282 0. 296 0. 255 0. 252 0. 127 0. 037 0. 036 0. 124 0. 004 0. 079 0. 092 0.051 0. 047 •0.016 •0.019 0. 071 •0. 042 0. 035 0. 0 44 0. 002 •0. 003 0. 060 0. 151 0. 040 0. 1 18 0. 125 0. 082 0. 077 0. 141 0.032 0. 111 291 20 27 0.688 0.2458 0.7542 -0.056 0.030 0. 117 20 29 -0. 109 0.5435 0.4565 -0.083 -0.004 0. 074 20 39 -0.062 0.5248 0.4752 -0.073 -0.002 0. 069 21 22 -2.772 0.9972 0.0028 -0.250 -0.146 -0.043 21 26 -1.431 0.9238 0.0762 -0. 223 -0. 094 0. 035 21 27 -1.066 0.8568 0. 1432 -0.144 -0.051 0. 043 21 29 -1.955 0.9747 0. 0253 -0.172 -0.086 0. 000 21 39 -2.072 0. 9808 0.0 192 -0.163 -0.084 -0.005 22 26 0.680 0.2483 0.7517 -0.098 0.052 0. 202 22 27 1. 546 0.0610 0. 9390 -0.026 0. 095 0.216 22 29 1.031 0.1512 0.8488 -0.055 0.061 0. 176 22 39 1. 116 0.1322 0.8678 -0.047 0.063 0. 173 26 27 0.592 0. 27 68 0.7232 -0. 100 0.043 0. 187 26 29 0. 120 0.4521 0. 5479 -0. 130 0.009 0. 147 26 39 0. 155 0. 4384 0.5616 -0. 124 0.011 0. 145 27 29 -0. 642 0. 7396 0.2604 -0.141 -0.035 0. 071 27 39 -0.636 0.7375 0.2625 -0.133 -0.033 0. 068 29 39 0.044 0.4823 0.5177 -0.092 0.002 0. 096 SWAINSON'S THRUSH WITH VEGETATION TYPES CLASSIFICATION TYPES ORDERED BY WEIGHTED AVERAGE DENSITY CLASSIFICATION AVERAGE RELATIVE TYPE DENSITY HABITAT VALUE 12 1.046 1.000 1 1 0.902 0.862 7 0.710 0.679 10 0.645 0. 617 9 0. 632 0.604 20 0.593 0. 567 5 0.579 0. 553 8 0.560 0. 535 21 0.556 0. 532 6 0.527 0.503 22 0.370 0.353 19 0. 333 0. 318 29 0.219 0. 209 27 0. 200 0. 191 39 0. 157 0. 150 13 0.063 0.060 14 0.006 0.006 VARIANCE WITHIN CELLS (SERIES ,TYPES) 0. 04190 (VAR Z) WITH 1753..DEGREES OF FREEDOM USED IN ALL T TESTS AND DENOMINATOR OF F RATIO VARIANCE AMONG TYPES WITHIN SERIES 0.18477 WITH 32..DEGREES OF FREEDOM USED IN NUMERATOR OF F RATIO F RATIO 4.4096 FOR VARIATION BETWEEN TYPES INCLUDING INTERACTION BETWEEN TYPE AND TIME PROBABILITY 0.0 OF EXCEEDING BY CHANCE 293 SWAINSON'S THRUSH WITH VEGETATION TYPES RESULTS OF T TESTS FOR ALL COMPARISONS BETWEEN TYPES WITH CONFIDENCE FOR REJECTING NULL HYPOTHYSIS A_EQ_B AND 95% CONFIDENCE INTERVAL FOR ALL DIFFERENCES TYPE TYPE T ALTERNATEHYPOTHYSIS CONFIDENCELIMITS _FOR A B VALUE A_GT_B A_LT_B LOWER A_MINUS_B UPPER 5 6 0. 48 2 0.3149 0.6851 -0. 160 0.052 0. 264 5 7 -0.650 0.7422 0.2578 -0.527 -0.131 0. 265 5 8 0. 152 0. 4394 0.5606 -0.226 0.019 0. 264 5 9 -0.494 0.6892 0.3108 -0. 264 -0.053 0. 158 5 10 -0.418 0. 66 21 0. 3379 -0.379 -0.067 0. 246 5 1 1 -2.086 0.9815 0.0185 -0.626 -0.323 -0.019 5 12 -2. 329 0. 9900 0.0100 -0.861 -0.468 -0.074 5 13 3. 104 0.0010 0.9990 0. 190 0.516 0. 841 5 14 4. 534 0.0000 1. 0000 0. 325 0.572 0. 820 5 1 9 2.017 0.0219 0. 9781 0.007 0. 246 0. 485 5 20 -0.124 0. 54 91 0.4509 -0.247 -0.015 0. 217 5 21 0. 16 8 0.4332 0.5668 -0.241 0.023 0. 286 5 22 1. 084 0. 1392 0. 8608 -0. 169 0.209 0. 587 5 27 2. 250 0.0123 0. 9877 0.049 0.378 0. 708 5 29 2.293 0.0110 0. 9890 0.052 0.360 0. 668 5 39 2.852 0.0022 0.9978 0. 132 0. 422 0. 712 6 7 -0. 969 0.8338 0. 1662 -0.554 -0.183 0. 188 6 8 -0.321 0. 6258 0.3742 -0.235 -0.033 0. 169 6 9 -1. 292 0. 9018 0.0982 -0.265 -0.105 0. 055 6 10 -0.831 0.7969 0.2031 -0.399 -0. 119 0. 161 6 11 -2. 721 0.9967 0. 0033 -0.645 -0.375 -0. 105 6 12 -2. 764 0.9971 0.0029 -0.888 -0.520 -0. 151 6 13 3. 08 1 0.0010 0.9990 0. 168 0.464 0. 759 6 14 4. 963 0.0000 1. 0000 0. 31 5 0.520 0. 726 6 19 1.946 0.0259 0.9741 -0.002 0. 194 0. 390 6 20 -0.701 0.7584 0.2416 -0.253 -0.067 0. 120 6 21 -0.258 0.6016 0.3984 -0.254 -0.029 0. 195 6 22 0. 874 0.1910 0.8090 -0.195 0. 157 0. 509 6 27 2. 136 0.0164 0. 9836 0.027 0. 326 0. 626 6 29 2. 194 0. 0142 0.9858 0.033 0.308 0. 583 6 39 2.84 1 0. 0023 0.9977 0. 115 0.370 0. 625 7 8 0. 754 0.2254 0.7746 -0.240 0. 150 0. 541 7 9 0. 413 0.3397 0.6603 -0. 292 0.078 0. 448 7 10 0. 291 0.3857 0.6143 -0.371 0.065 0. 501 7 11 -0.874 0. 8090 0.1910 -0.621 -0. 1 92 0. 238 7 12 -1.326 0.9075 0.0925 -0.834 -0.336 0. 161 7 1 3 2. 846 0.0022 0.9978 0. 201 0.647 1.093 7 14 3. 517 0.0002 0.9998 0. 311 0.703 1. 096 7 19 1.911 0.0281 0.9719 -0.010 0.377 0. 764 7 20 0.597 0.2752 0.7248 -0.266 0. 117 0. 499 7 21 0. 749 0.2269 0.7731 -0.249 0. 154 0. 556 7 22 1. 375 0. 0847 0.9153 -0. 145 0. 340 0. 825 7 27 2. 227 0. 01 30 0. 9870 0.061 0.510 0.959 7 29 2. 225 0.0131 0. 9869 0.058 0.491 0. 924 7 39 2. 580 0.0050 0.9950 0.133 0.553 0. 974 294 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 9 10 1 1 12 13 14 19 20 21 22 27 29 39 10 1 1 12 13 14 1 9 20 21 22 27 29 39 11 12 13 14 19 20 21 22 27 29 39 12 13 14 19 20 21 22 27 29 39 13 14 19 20 21 22 27 29 •0.703 •0. 549 •2. 260 -2. 457 3. 048 4. 535 1. 930 -0. 296 0. 028 1. 000 2. 177 2. 220 2. 791 -0.094 •1. 962 -2. 207 3. 788 5. 993 3. 015 0.407 0. 664 1. 46 3 2. 830 2. 951 3.659 •1.418 -1.811 3. 055 4.068 2.035 0. 345 0. 54 5 1.287 2. 313 2. 335 2. 792 •0. 664 4.488 5.^ 871 3. 819 2. 1 11 2. 169 2. 52 3 3. 716 3. 820 4. 358 4.343 5. 226 3.635 2. 334 2.400 2. 744 3. 71 1 3. 765 0.7590 0.7085 0. 9880 0.9929 0.0012 0.0000 0.0269 0.6163 0. 4890 0. 1587 0.0148 0. 0133 0.0027 0.5376 0.9750 0.9863 0.0001 0.0000 0.0013 0.3420 0.2534 0. 0718 0.0024 0.0016 0.0001 0.9218 0.9649 0.0011 0.0000 0. 0 210 0.3652 0.2929 0. 0992 0.0104 0. 0098 0. 0026 0.7465 0. OOOO 0.0000 0. 0001 0. 0174 0.0151 0.0059 0.00 01 0. 0001 0. OOOO 0.0000 0. oooo 0.0001 0.0099 0.0083 0.0031 0.0001 0.0001 0.2410 0.2915 0.0120 0.0071 0. 9988 1. OOOO 0.9 731 0. 3837 0.5 110 0. 8413 0.9852 0. 9867 0. 9973 0.4624 0. 0250 0. 0137 0.9 999 1.OOQO 0.9987 0.6580 0.7466 0. 9282 0. 9976 0. 9984 0. 9999 0.0782 0.0351 0.9989 1.0000 0.9790 0.6348 0. 7071 0. 9008 0.9896 0.9902 0.9974 0.2535 1.0000 1.0 000 0.9999 0.9826 0. 9849 0.9941 0.9999 0. 9999 1. OOOO 1.0000 1.0000 0.9 999 0. 9901 0.9917 0. 9 96 9 0. 9999 0. 9999 •0.273 -0.391 •0.638 •0.875 0. 177 0. 314 •0.004 •0.257 -0.252 •0. 183 0.036 0.040 0. 120 •0.293 •0. 539 •0.783 0. 274 0.421 0. 105 •0.147 •0. 148 •0.089 0. 132 0.139 0. 221 •0.611 •0.835 0.208 0.331 0.011 •0.244 0. 232 •0. 144 0.068 0.068 0. 145 •0.573 0.472 0. 596 0. 277 0.022 0.033 0. 118 0. 331 0. 332 0.410 0. 539 0.650 0.329 0.072 0.090 0. 193 0.399 0,. 396 -0.072 -0.086 -0.342 -0.487 0. 497 0.553 0.227 -0.034 0.004 0. 190 0.359 0. 341 0. 403 -0.013 -0.270 -0.414 0.569 0.625 0. 299 0. 039 0.076 0.262 0.432 0.413 0. 475 -0.256 -0.401 0.582 0.639 0. 313 0. 052 0. 089 0. 276 0.445 0.427 0.489 -0.145 0.838 0.895 0.569 0. 308 0.345 0.532 0.701 0.683 0.745 0.983 1.040 0.714 0.453 0.490 0.6 77 0.846 0.828 0. 129 0. 220 -0.045 -0. 098 0.816 0. 792 0. 458 0. 190 0. 259 0. 562 0. 683 0. 642 0. 686 0. 266 -0.000 -0.046 0. 863 0. 830 0. 494 0. 224 0. 300 0. 613 0. 731 0. 688 0. 730 0. 098 0. 033 0. 956 0. 947 0. 614 0. 348 0. 410 0. 695 0. 822 0. 785 0. 832 0. 283 1. 205 1. 194 0. 861 0. 594 0. 658 0. 945 1. 071 1. 033 1. 080 1. 427 1. 430 1.099 0. 834 0. 891 1. 160 1. 293 1. 259 295 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 19 19 19 19 19 19 20 20 20 20 20 21 21 21 21 22 22 22 27 27 29 39 14 19 20 21 22 27 29 39 19 20 21 22 27 29 39 20 21 22 27 29 39 21 22 27 29 39 22 27 29 39 27 29 39 29 39 39 4. 167 0.345 •1.676 •3. 356 •2.894 -1. 399 •0. 692 •0.825 •0. 516 -2.73 7 -5.088 •4. 171 •1.904 -1. 166 -1.372 -1.031 •2.355 -1.749 •0.198 0. 812 0. 752 1. 239 0.300 1.204 2. 453 2.52 5 3. 145 0. 949 2.064 2. 089 2. 615 0.767 0. 71 1 1. 03 5 -0.097 0. 238 0.360 0.0000 0.3650 0.9531 0.9996 0.9981 0.9190 0.7556 0. 7954 0.6970 0. 9969 1. 0000 1.OOOO 0.9714 0, 87 82 0.9149 0. 84 86 0. 9907 0.9598 0.5783 0. 2085 0.2261 0.1078 0.3822 0.1144 0.0071 0. 0058 0. 0008 0.17 14 0.0196 0. 0184 0.0045 0.2215 0.2387 0. 1504 0.5387 0.4059 0.3596 1.0000 0.6350 0.0469 0.0004 0.0019 0.0810 0.2444 0.2046 0.3030 0.0031 0.0000 0.0000 0. 0286 0.1218 0.0851 0.1514 0.0093 0.0402 0.4217 0.7915 0.7739 0.8922 0.6 178 0.8856 0. 9929 0.9942 0.9992 0. 8286 0.9804 0.9816 0. 9955 0. 7785 0. 7613 0.8496 0.4613 0.5941 0.6404 0.471 0.265 •0.585 •0.840 •0. 827 •0.737 •0. 526 0.526 •0. 449 •0.560 •0.813 •0.808 •0. 738 •0.520 •0.516 •0.436 •0.478 •0.474 •0. 406 0. 187 •0. 183 •0. 103 •0.206 •0.141 0.079 0.084 0. 164 •0.199 0.018 0.021 0. 100 •0.264 •0.266 •0.191 •0.392 •0.316 •0.277 0.890 0.057 •0.270 •0.530 •0.493 •0.307 -0. 137 -0.156 •0.094 -0. 326 -0. 587 -0.550 -0.363 •0.194 -0.212 •0.150 •0.261 •0.224 •0.037 0. 132 0. 1 14 0. 176 0.037 0. 224 0.393 0.375 0. 437 0. 186 0.356 0. 337 0.399 0. 170 0.151 0. 213 •0.019 0.044 0.062 1. 30 8 0. 378 0. 046 -0.220 -0.159 0. 123 0. 251 0. 214 0. 262 -0.092 -0.361 -0.291 0.011 0. 132 0.091 0. 136 -0.044 0. 027 0. 332 0. 452 0. 41 1 0. 455 0. 281 0. 588 0. 707 0. 666 0. 709 0. 571 0. 694 0. 654 0. 699 0. 603 0. 568 0. 617 0. 355 0. 403 0. 40 1 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0095139/manifest

Comment

Related Items