Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Distribution and variability of some chemical parameters in the soils of a forested hillslope Rollerson, Terrence Paul 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A6_7 R64.pdf [ 8.41MB ]
Metadata
JSON: 831-1.0094962.json
JSON-LD: 831-1.0094962-ld.json
RDF/XML (Pretty): 831-1.0094962-rdf.xml
RDF/JSON: 831-1.0094962-rdf.json
Turtle: 831-1.0094962-turtle.txt
N-Triples: 831-1.0094962-rdf-ntriples.txt
Original Record: 831-1.0094962-source.json
Full Text
831-1.0094962-fulltext.txt
Citation
831-1.0094962.ris

Full Text

DISTRIBUTION AND VARIABILITY OF SOME CHEMICAL  PARAMETERS  IN THE SOILS OF A FORESTED HILLSLOPE  by TERRENCE PAUL ROLLERSON  A t h e s i s submitted i n p a r t i a l f u l f i l l m e n t o f the requirements f o r t h e degree o f Master o f S c i e n c e in the Department of S o i l S c i e n c e  We accept t h i s t h e s i s as conforming required  standard  (c^ Terrence P a u l  THE UNIVERSITY  t o the  Rollerson  OF BRITISH COLUMBIA  March 1981  In p r e s e n t i n g  this thesis i n p a r t i a l  fulfillment  of the requirements f o r an advanced degree at The of B r i t i s h Columbia, I agree t h a t the L i b r a r y fully  a v a i l a b l e for reference  and  study.  University  s h a l l make i t  I f u r t h e r agree  that  permission f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may  be  representative.  granted by  the Head of my  I t i s understood t h a t copying or  of t h i s t h e s i s f o r f i n a n c i a l g a i n my  written  permission.  Department of S o i l Science The U n i v e r s i t y of B r i t i s h Columbia 2075 Westbrook Place Vancouver, B. C.  Department or by  v6T  1W5  s h a l l not  his  publication  be allowed without  ii  ABSTRACT  Trends i n s o i l long h i l l s l o p e  c h e m i s t r y a r e s t u d i e d on a 300 meter  i n the Cascade Mountain Range o f southwestern  B r i t i s h Columbia.  Although t r e n d s a r e not w h o l l y c o n s i s t e n t  from h o r i z o n to h o r i z o n , the f o l l o w i n g g e n e r a l statements can be made:  pH tends t o i n c r e a s e downslope;  exchangeable magnesium and c a t i o n exchange n o t i c e a b l y downslope;  exchangeable  calcium,  capacity decrease  carbon may d e c r e a s e s l i g h t l y  n i t r o g e n , c a r b o n / n i t r o g e n r a t i o , p e r c e n t base  downslope;  saturation,  exchangeable sodium and exchangeable p o t a s s i u m remain effectively  c o n s t a n t downslope.  S o i l c h e m i s t r y i s shown to  be r e l a t e d to h o r i z o n , s l o p e p o s i t i o n and p a r e n t m a t e r i a l . Variability  among c h e m i c a l s p e c i e s i n c r e a s e s i n the sequence:  pH, p e r c e n t base s a t u r a t i o n , c a r b o n / n i t r o g e n r a t i o , exchange  cation  c a p a c i t y , n i t r o g e n , exchangeable c a l c i u m , p e r c e n t  carbon, exchangeable potassium, exchangeable exchangeable magnesium.  Variability  sodium,  f l u c t u a t e s among s o i l  h o r i z o n s b u t not so n o t i c e a b l y w i t h s l o p e p o s i t i o n .  A  slight  i n c r e a s e i n v a r i a b i l i t y w i t h the s i z e o f the a r e a sampled i s evident.  iii  ACKNOWLEDGEMENTS  I should  l i k e t o express p a r t i c u l a r g r a t i t u d e t o  Jean Heineman who h e l p e d w i t h a s s i s t a n c e and a d v i c e J u l i e Lansiquot  t h e f i e l d work.  Valuable  i n t h e l a b o r a t o r y were r e c e i v e d  and B e r n i e von S p i n d l e r .  from  S p e c i a l thanks a r e  due t o b o t h Dr. Hanspeter S c h r e i e r and Mark Sondheim f o r t h e i r valuable advice, indebted  c r i t i c i s m and c o n t i n u i n g encouragement.  a l s o to my committee f o r t h e i r p a t i e n c e  I am  and to my  t h e s i s a d v i s o r , Dr. Les L a v k u l i c h f o r h i s guidance and encouragement.  F i n a l l y , a p p r e c i a t i o n i s expressed t o Pamela  Olson f o r e d i t o r i a l  assistance.  Terry  Rollerson  iv  TABLE OF CONTENTS  ABSTRACT  i  ACKNOWLEDGEMENTS  i i  1.0  INTRODUCTION  1  2.0  OBJECTIVES  3  3.0  HILLSLOPE DESCRIPTION  4  3.1  General d e s c r i p t i o n of the s o i l s  6  3.2  Topographical survey  7  4.0  SAMPLING DESIGN 4.1  8  Sampling programme  10  5.0  LABORATORY MEASUREMENT  11  6.0  STATISTICAL ANALYSIS  12  6.1  Differences between p l o t s as determined by t - t e s t s  13  6.1.1  Exchangeable calcium  14  6.1.2  Exchangeable magnesium  17  6.1.3  Exchangeable  20  6.1.4  Exchangeable potassium  23  6.1.5  Cation exchange capacity  26  6.1.6  pH  29  6.1.7  Percent carbon  32  6.1.8  Nitrogen  35  6.1.9  Carbon/nitrogen r a t i o  38  6.1.10  Base s a t u r a t i o n  41  sodium  V  6.2  Comparisons between horizons  44  6.3  Separation of groups as determined by stepwise discriminant a n a l y s i s  47  C o r r e l a t i o n of chemical values w i t h the factors h o r i z o n , topographic p o s i t i o n and parent m a t e r i a l as determined by three-way a n a l y s i s  60  6.5  Trends i n s o i l v a r i a b i l i t y  63  6.6  Summary and conclusions  68  6.4  SELECTED BIBLIOGRAPHY  70  APPENDIX A  Data summary  74  APPENDIX B  S o i l chemical data  83  APPENDIX C  General s o i l data  89  APPENDIX D  Three-way a n a l y s i s of variance summary data  95  A n a l y s i s f o r soluble cations  99  APPENDIX E  vi  LIST OF TABLES  6.1.1  6.1.2  6.1.3  6.1.4  6.1.5  6.1.6  6.1.7  6.1.8  6.1.9  Exchangeable calcium. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  16  Exchangeable magnesium. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  19  Exchangeable sodium. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  22  Exchangeable potassium. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  25  Cation exchange capacity (C.E.C.). Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  28  pH. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t-tests  31  Percent carbon. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t-tests  34  Nitrogen. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t-tests  37  Carbon/nitrogen (C/N) r a t i o . Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  40  6.1.10 Percent base saturation. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  43  vii  6.2.1 6.4.1 6.6.1 E.4.1  E.4.2  E.4.3  E.4.4  S i g n i f i c a n t d i f f e r e n c e s between horizons f o r a l l v a r i a b l e s  45  Levels of s i g n i f i c a n c e f o r three-way a n a l y s i s of variance (U.B.C. Genlin)  62  S o i l chemical trends f o r several selected studies  66  Soluble calcium. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  106  Soluble magnesium. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  108  Soluble sodium. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  110  Soluble potassium. Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s  112  viii  LIST OF FIGURES  4.0.1  H i l l s i d e p r o f i l e and p l o t p o s i t i o n s  9  6.1.1  Exchangeable calcium values by p l o t and horizon  15  Exchangeable magnesium values by p l o t and horizon  18  Exchangeable sodium values by p l o t and horizon  21  Exchangeable potassium values by p l o t and horizon  24  6.1.2 6.1.3 6.1.4 6.1.5  Cation exchange capacity values by p l o t and horizon  27  6.1.6  pH values by p l o t and horizon  30  6.1.7  Percent carbon values by p l o t and  6.1.8  horizon  33  Nitrogen values by p l o t and horizon  36  6.1.9  Carbon/nitrogen r a t i o n by p l o t and horizon 6.1.10 Percent base s a t u r a t i o n values by p l o t and horizon 6.3.1 Separation of s i x slope p o s i t i o n s by discriminant a n a l y s i s 6.3.2 6.3.3 6.3.4  39 42 ^9  Separation of three slope p o s i t i o n s by discriminant a n a l y s i s  50  Separation of four slope p o s i t i o n s by discriminant a n a l y s i s  51  Separation of three horizon groups by discriminant a n a l y s i s  53  ix  1  1.0  INTRODUCTION  The purpose of t h i s study i s to investigate the s p a t i a l chemical v a r i a b i l i t y of the s o i l and the possible existence of downslope nutrient gradients i n the s o i l of a h i l l s l o p e located i n the eastern Cascade Range of southwestern B r i t i s h Columbia. The l i t e r a t u r e of topographical s o i l sequences i s reviewed c a r e f u l l y by Schreier (1976), hence only a b r i e f overview i s given here.  Generally, s o i l sequence studies are  carried out to develop an understanding  of the p a r t i c u l a r  slope and s o i l forming processes that may be operating on a specific hillslope.  Often, these studies attempt to determine  the degree to which such processes may have altered the o r i g i n a l chemical and physical character of the landscape. Often, measurement or observation of h i l l s l o p e processes i s d i f f i c u l t , thus the existence of a process i s generally inferred from the measurement of the d i s t r i b u t i o n of those parameters which are assumed to be affected.  As a  r e s u l t , the d i s t r i b u t i o n of p a r t i c u l a r chemical variables i n the landscape i s discussed i n some d e t a i l i n the l i t e r a t u r e . Five forms of d i s t r i b u t i o n are reported: decreases, increases and no change downslope, concentrations i n p a r t i c u l a r positions and f i n a l l y ,  landscape  d i s t r i b u t i o n s too variable to allow  inference of any trend or pattern. Often, several factors or p o t e n t i a l processes are juxtaposed i n time and space, f o r instance, d i f f e r i n g parent materials, vegetation, climate, subsurface hydrology and surface transport processes.  Therefore, the p a r t i t i o n i n g of  the v a r i a b i l i t y of a measured paramenter into i t s component parts can be d i f f i c u l t .  Consequently, although studies can  2  show that portions of the landscape may vary, explanations as to why these differences occur are not always p o s s i b l e . Another concern i s that studies which report differences i n the landscape frequently cannot be v e r i f i e d by r e a l i s t i c s t a t i s t i c a l a n a l y s i s .  Many times, s i n g l e p r o f i l e  analyses are given as proof that geometrically d i f f e r i n g portions of the landscape vary chemically.  However, Bracewell,  et a l . (1979) report that a l l the properties examined i n t h e i r study exhibited "considerable v a r i a t i o n over short distances, many showing the major p o r t i o n of t h e i r t o t a l variance at a distance of 0.5 meters.  This markedly l i m i t s the i n t e r p r e t a t i o n  of data from s i n g l e samples." The l i t e r a t u r e concerning the s p a t i a l v a r i a b i l i t y of s o i l chemistry  i s reviewed thoroughly by Beckett and  Webster (1971) . Schreier (1976) summarizes s u c c i n c t l y the p r a c t i c a l consequences of t h i s v a r i a b i l i t y .  Generally,  v a r i a b i l i t y can be expected to increase with an increase i n the s i z e of the area studied.  However, according to Beckett  and Webster, at l e a s t h a l f the t o t a l variance i n an area i s often present i n the f i r s t few meters.  Furthermore, v a r i a b i l i t y  i s observed frequently to f l u c t u a t e between s o i l s formed from d i f f e r e n t parent m a t e r i a l s .  Drees and Wilding (1973) demonstrate  that v a r i a b i l i t y increases i n the order l a c u s t r i n e , t i l l , outwash.  Beckett and Webster report that s o i l v a r i a b i l i t y  frequently i s greater f o r c u l t i v a t e d s o i l s than f o r s i m i l a r areas under n a t u r a l conditions.  F i n a l l y , s e v e r a l studies  i n d i c a t e that the r e l a t i v e v a r i a b i l i t y between d i f f e r e n t chemical species can be great.  3  2.0  OBJECTIVES  The primary if  o b j e c t i v e of the study  t h e r e a r e d e t e c t a b l e and  significant  the c a t i o n exchange c a p a c i t y and carbon, soil,  n i t r o g e n and  i s to determine  changes i n the pH,  i n the c o n c e n t r a t i o n s  the major exchangeable c a t i o n s of  e i t h e r downslope o r w i t h i n unique  in  of the  morphological  p o s i t i o n s on the h i l l s l o p e . A second o b j e c t i v e i s to determine i f changes i n the parent m a t e r i a l s forming on the s o i l  studied.  effect  chemistry.  The variability  the s o i l have a s i g n i f i c a n t  final  o b j e c t i v e i s to determine the  of the c o n c e n t r a t i o n s of the chemical  spatial parameters  4  3.0  HILLSLOPE DESCRIPTION  The h i l l s l o p e studied i s located i n the eastern Cascade Range, l a t i t u d e 49° 16' and longitude 120° 36'.  The  area i s approximately 20 kilometers south of P r i n c e t o n , B r i t i s h Columbia.  Facing south-west, the slope l i e s above the north  fork of Sunday Creek, a t r i b u t a r y of the Similkameen River. This h i l l s l o p e has a v e r t i c a l r e l i e f of 100 meters and a slope length of 300 meters. is  The e l e v a t i o n at the base of the slope  1300 meters above sea l e v e l . A coarse textured and s l i g h t l y a c i d i c t i l l , 30-40  centimeters t h i c k , derived from v o l c a n i c and  sedimentary  sources, covers the agglomerate bedrock on the c r e s t of the h i l l and gradually thickens downslope to a depth greater than 1 meter.  In some slope p o s i t i o n s , the t i l l i s underlain by a  medium textured, dark olive-green c o l l u v i a l m a t e r i a l which appears to be developed  from the agglomerate.  This colluvium  probably predates g l a c i a t i o n but no a n a l y s i s i s undertaken test t h i s hypothesis.  A shallow, 10-20  to  centimeter t h i c k  aeolian deposit ( i n f e r r e d from the low percentage of coarse fragments i n the Ae horizon) covers, and i s mixed w i t h , the surface p o r t i o n of the t i l l .  This a e o l i a n capping tends to  thicken down the h i l l s l o p e , suggesting that there has been some f l u v i a l reworking of t h i s m a t e r i a l . The microtopography of the h i l l s l o p e i s q u i t e smooth.  A few, small hummocks scattered over the slope are  l i k e l y the r e s u l t of i n d i v i d u a l windthrown t r e e s . A short crest slope of 10 degrees gives way  to a  long,midslope of 20-22 degrees and an i n c i p i e n t toeslope of 15-18  degrees, with a 24 degree e r o s i o n a l scarp  below. (Figure 4.0.1)  immediately  The e r o s i o n a l scarp appears to have been  formed by the downcutting of the north fork of Sunday Creek.  5  Between the stream  and  the s c a r p l i e s a narrow f l o o d  S e v e r a l i n c i p i e n t g u l l i e s have formed low on the the m a t e r i a l eroded  plain.  hillslope,  from them c r e a t i n g minor fans on  the  f l o o d p l a i n below. A medium dense f o r e s t of l o d g e p o l e p i n e c o n t o r t a ) and  i n t e r i o r Douglas f i r (Pseudotsuga  covers the h i l l s l o p e ; pine grass  (Pinus  menzesii)  the u n d e r s t o r y s p e c i e s a r e p r i m a r i l y  ( C a l a m a g r o s t i s sp.)  and  l u p i n e (Lupinus  sp.)  6  3.1  GENERAL DESCRIPTION OF THE SOILS  All  the s o i l s appear t o be O r t h i c Grey  Luvisols,  the g e n e r a l h o r i z o n sequence b e i n g Ae, AB, B t , BC; however no analysis f o r s o i l  c l a s s i f i c a t i o n was c a r r i e d o u t .  While the s o i l s a r e d e v e l o p i n g g e n e r a l l y i n the t i l l , the Ae i s forming i n the s h a l l o w a e o l i a n capping which has been i n t e r m i x e d w i t h t h e uppermost p o r t i o n o f t h e t i l l . lower h o r i z o n s  The  (Bt and BC) o f t h e s o i l s on the mid and upper  s l o p e p o s i t i o n s , i n many c a s e s , a r e d e v e l o p i n g i n t h e c o l l u v i u m . Examination  o f the pebble  l i t h o l o g y of a l l horizons  shows o c c a s i o n a l h o r i z o n s dominated by c o l l u v i a l m a t e r i a l s overlying t i l l - r i c h horizons.  The pebbles  of the colluvium  d e r i v e p r i m a r i l y from the agglomerate bedrock w h i l e the pebbles  o f t h e t i l l have a v e r y d i v e r s e l i t h o l o g y .  This  i n v e r s i o n o f the normal s t r a t i g r a p h i c sequence suggests type o f s o i l  some  flow, perhaps minor d e b r i s flows o r s o l i f l u c t i o n ,  on the h i l l s l o p e  following deglaciation.  7  3.2  TOPOGRAPHICAL SURVEY  In June 1978, a survey o f the h i l l s l o p e was made, u s i n g compass, c l i n o m e t e r and c h a i n . map was then produced contour  A simple topographic  a t a s c a l e o f 1:500 w i t h a 2-meter  interval. T h i s map was used t o s e l e c t t h e most s u i t a b l e  l o c a t i o n s f o r the t r a n s e c t and t o l o c a t e p l o t p o s i t i o n s on the h i l l s l o p e .  8  4.0  SAMPLING DESIGN  A s t r a t i f i e d systematic sampling the h i l l s l o p e . out along the f a l l  random d e s i g n was used f o r  S i x 50 by 15 meter p l o t s were  l i n e of the s l o p e .  p l o t was normal t o the f a l l  line.  laid  The l o n g a x i s o f each  Locations  f o r the p l o t s  were determined on the b a s i s o f s l o p e p o s i t i o n and d i s t a n c e downslope.  ( F i g u r e 4.0.1) P l o t s were l o c a t e d on the c r e s t , the u p p e r s l o p e ,  m i d s l o p e , the l o w e r s l o p e , scarp.  Each p l o t  the  the t o e s l o p e and on the e r o s i o n a l  was f u r t h e r s u b d i v i d e d  into fifteen  sub-plots  u s i n g a 10 by 5 meter g r i d ; one s o i l p i t was l o c a t e d randomly w i t h i n each s u b - p l o t .  No p i t was allowed  1 meter to any t r e e w i t h i n the p l o t .  to be c l o s e r than  9  10  4.1  SAMPLING PROGRAMME  Over a period of two and a h a l f weeks i n August 1978, a t o t a l of ninety s o i l p i t s were examined w i t h four horizons (Ae, AB, Bt, BC) being sampled i n each p i t .  When a l l samples  had been c o l l e c t e d , they were taken to the Department of S o i l Science at The U n i v e r s i t y of B r i t i s h Columbia where they were a i r d r i e d a t approximately 20° C. f o r ten days, and then stored.  11  5.0  LABORATORY MEASUREMENTS  Analyses of the s o i l samples were conducted using procedures which have been adopted by the Pedology Laboratory of the Department of S o i l Science at The U n i v e r s i t y of B r i t i s h Columbia f o r routine examinations. T o t a l carbon i s determined with the Leco Carbon Analyser (Leco, 1953), and t o t a l nitrogen, c o l o r i m e t r i c a l l y with a Technicon Autoanalyser I I (Black, et a l . , 1965). Exchangeable cations are extracted from the samples with 1.0 N  NH4OAC  adjusted to pH7 (Black  et a l . , 1965), and  concentrations determined by atomic absorption on an Instrumentation Laboratories Model 151 (IL 151) single-beam spectrophotometer.  The cation exchange capacity i s determined  by e x t r a c t i o n of adsorbed ammonium w i t h 1.0 N KC1 followed by analysis of the NH4 concentration of the extract w i t h a Technicon Autoanalyser I I (Black et a l . , 1965). A l l the above procedures are d e t a i l e d i n Methods Manual: Pedology Laboratory (Lavkulich, 1977). The pH of the samples i s determined f o r a l l  samples  using a 1:2 s o i l - w a t e r s o l u t i o n and a Radiometer PHM62 Standard pH meter. For a l l the samples from the Ae and the Bt horizons, and one h a l f the samples from the AB and BC horizons, 1:2 s o i l - w a t e r solutions f o r the determination of the concentrations of water soluble cations are prepared and analysis by atomic absorption made on the IL 151 spectrophotometer.  A brief  discussion of the method and the r e s u l t s of t h i s a n a l y s i s can be found i n Appendix E.  12  6.0  STATISTICAL ANALYSES  A number o f d i f f e r e n t k i n d s o f s t a t i s t i c a l a n a l y s e s , both u n i v a r i a t e and m u l t i v a r i a t e , a r e a p p l i e d t o the d a t a i n o r d e r t o answer the p a r t i c u l a r q u e s t i o n s posed i n the study  objectives.  13  6.1  DIFFERENCES BETWEEN PLOTS AS BY T-TESTS  DETERMINED  A s e r i e s of s t a n d a r d t - t e s t s  (BMD-P3D) are  conducted to determine the  X  extent to which i n d i v i d u a l  r e p r e s e n t i n g s p e c i f i c s l o p e or  topographic p o s i t i o n s  c o n s i d e r e d s i g n i f i c a n t l y d i f f e r e n t from one t e s t s are  c a r r i e d out  on  v a l i d a t i o n of any The  The  analysis  between the means o f s p e c i f i c v a r i a b l e s plots  on  the h i l l s l o p e .  The  compared p l o t s .  f o r any  two  the  data. difference compared  a l t e r n a t i v e hypothesis i s  there i s a s i g n i f i c a n t d i f f e r e n c e two  These  also assists i n  t h e r e i s no  that  between the means of  Every p l o t i s t e s t e d  be  variable  obvious t r e n d s or p a t t e r n s i n the  n u l l hypothesis i s that  can  another.  each i n d i v i d u a l c h e m i c a l  f o r each h o r i z o n sampled.  plots  any  a g a i n s t every o t h e r  p l o t , r e s u l t i n g i n f i f t e e n comparisons f o r each v a r i a b l e  for  each h o r i z o n sampled. The analysis.  following  A l l v a l u e s r e f e r to the  f r a c t i o n of the  *  pages summarize the  soil  r e s u l t s of  l e s s than 2  the  millimeter  samples.  B.M.D.P. B i o m e d i c a l Computer Programs, P - S e r i e s . U n i v e r s i t y of C a l i f o r n i a P r e s s : Berkeley, C a l i f o r n i a .  14  6.1.1  EXCHANGEABLE CALCIUM  In general, a decrease i s evident i n the concentration of exchangeable calcium i n the downslope d i r e c t i o n , however the r e l a t i o n s h i p i s strongly s i g n i f i c a n t only i n the Bt and BC horizons.  (Figure 6.1.1, Table 6.1.1) S i g n i f i c a n t d i f f e r e n c e s  tend to be more frequent between non-adjacent than adjacent plots. The Ae horizon shows s i g n i f i c a n t d i f f e r e n c e s f o r only three comparisons, w i t h the means of the exchangeable calcium concentrations of p l o t s 4, 5 and 6 being s i g n i f i c a n t l y lower than the mean of p l o t 1. In the AB h o r i z o n , s i g n i f i c a n t d i f f e r e n c e s e x i s t f o r only four comparisons.  In each case, the mean of the  upslope p l o t i s the greater. For the Bt h o r i z o n , s i g n i f i c a n t d i f f e r e n c e s e x i s t between the means of a l l p l o t s w i t h the exception of the comparisons between p l o t s 4 and 5.  In a l l cases, the mean of  the upslope p l o t i s greater than the mean of the downslope plot. In the BC h o r i z o n , s i g n i f i c a n t differences are present f o r each comparison w i t h the exception of p l o t 3 versus p l o t 4 and p l o t 5 versus p l o t 6.  In a l l cases, the  mean of the upslope p l o t i s greater than that of the downslope plot.  15  F i g u r e 6.1.1  Exchangeable c a l c i u m v a l u e s by p l o t and h o r i z o n Notes: e r r o r b a r s r e p r e s e n t one s t a n d a r d d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  3*  44 3*  34 4 *  24  24  2* 24  2*  P L O T  I  P L O T  2  P L O T  3  14  14  I*  P L O T  4  P L O T  5  P L O T  6  16  Table 6.1.1 Exchangeable calcium Levels of significance f o r i n t e r p l o t comparisons of means by t - t e s t s o = differences x = differences xx = differences  Ae horizon  AB horizon  Bt horizon  BC horizon  are not s i g n i f i c a n t are s i g n i f i c a n t at the 95% l e v e l of confidence are s i g n i f i c a n t at the 99% l e v e l of confidence  plot 1 2 3 4 5  2 o  plot 1 2 3 4 5  2 o  plot 1 2 3 4 5  plot 1 2 3 4 5  3 o  4  5  X  X  o  3 0  o  o o o  4 X  5 o o  X  0 0  2 X  3  4  X  o  o  XX  6  5  o o o o  6 XX  o o o o  6  XX  XX  XX  XX  X  XX  XX  XX  XX  XX  XX  0  X X  2 XX  3  4  5  6  XX  XX  XX  XX  XX  XX  XX  XX  o  XX  XX  XX  XX  o  17  6.1.2  EXCHANGEABLE MAGNESIUM  In general, a downslope decrease i n the concentration of exchangeable magnesium i s apparent, however the r e l a t i o n s h i p i s s i g n i f i c a n t only i n the Bt and BC horizons.  (Figure 6.1.2,  Table 6.1.2) For the Ae h o r i z o n , s i g n i f i c a n t differences e x i s t f o r only four comparisons, p l o t s 1 and 5 being s i g n i f i c a n t l y lower i n exchangeable magnesium than p l o t s 2, 3 and 4. In the AB h o r i z o n , s i g n i f i c a n t differences are present f o r only two comparisons; i n both cases the mean f o r the downslope p l o t i s the l e s s e r . For the Bt and BC h o r i z o n s , s i g n i f i c a n t differences generally do not e x i s t between adjacent p l o t s , however s i g n i f i c a n t differences tend to be present when non-adjacent p l o t s are compared.  The downslope p l o t s tend to have lower  values than the upslope p l o t s .  F i g u r e 6.1.2  PLOT  I  Exchangeable magnesium v a l u e s by p l o t and h o r i z o n Notes: e r r o r b a r s r e p r e s e n t one standard d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  PLOT 2  PLOT 3  PLOT 4  PLOT 5  PLOT 6  19  Table 6.1.2 Exchangeable magnesium Levels of significance for i n t e r p l o t comparisons of means by t - t e s t s o = differences x = differences xx = differences  Ae horizon  AB horizon  Bt horizon  BC horizon  are not s i g n i f i c a n t are s i g n i f i c a n t at the 95% l e v e l of confidence are s i g n i f i c a n t at the 99% l e v e l of confidence plot 1 2 3 4 5  2  3 o o  A o o o  5 o xx xx x  6 o o o o o  plot 1 2 3 4 5  2 o  3 o o  4 o o o  5 o o o o  6 o x x o o  plot 1 2 3 4 5  2 o  3 0 o  plot 1 2 3 4  2 o  X  4  5  6  X  XX  XX  o o  XX  XX  XX  XX  o  XX  xx  3 o XX  4 o o 0  5  6  XX  XX  XX  XX  0  XX  XX  XX XX  20  6.1.3  EXCHANGEABLE SODIUM  In general, exchangeable  sodium values appear to be  e f f e c t i v e l y constant over the h i l l s l o p e . differences  Significant  tend to be more frequent between non-adjacent  than adjacent p l o t s but i n d i c a t e no p a r t i c u l a r trend or pattern.  (Figure 6.1.3, Table 6.1.3) In the Ae h o r i z o n , s i g n i f i c a n t d i f f e r e n c e s e x i s t f o r  eight comparisons, however no trend i s evident i n the data. The AB h o r i z o n shows no s i g n i f i c a n t d i f f e r e n c e s f o r any comparisons  i n d i c a t i n g the values f o r exchangeable  sodium  remain f a i r l y constant downslope. The Bt and BC horizons show s i g n i f i c a n t d i f f e r e n c e s between a few p l o t s but no trend i s apparent.  Figure 6.1.3  PLOT  I  Exchangeable sodium v a l u e s by p l o t and h o r i z o n Notes: e r r o r b a r s r e p r e s e n t one s t a n d a r d d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  PLOT 2  PLOT 3  PLOT 4  PLOT 5  PLOT 6  22  Table 6.1.3 Exchangeable sodium Levels of significance f o r i n t e r p l o t comparisons of means by t - t e s t s o = differences x = differences xx = differences  Ae horizon  AB horizon  Bt horizon  BC horizon  are not s i g n i f i c a n t . are s i g n i f i c a n t at the 95% l e v e l of confidence are s i g n i f i c a n t at the 99% l e v e l of confidence  plot 1 2 3 4 5  2 xx  plot 1 2 3 4 5  2 o  plot 1 2 3 4 5  2 o  plot 1 2 3 4 5  2 o  3 xx x  4  5  6  XX  X  X  XX  o  O  XX  o o o o  o  3 o o  4 o o o  5 o o 0 o  6 o o o o o  3  4 o o 0  5 0  6 0 0 o o  XX  o  X  XX  0  X  3 XX  0  4 o o o  5  6  XX  X  XX  o o 0  XX  o  XX  23  6.1.4  EXCHANGEABLE POTASSIUM  S i g n i f i c a n t differences i n exchangeable potassium concentrations  tend to be more frequently between non-adjacent  than adjacent p l o t s .  (Figure 6.1.4, Table 6.1.4)  Potassium  values are too v a r i a b l e to i n d i c a t e any trend. The Ae and AB horizons show s i g n i f i c a n t differences for ten and eleven comparisons r e s p e c t i v e l y , however no trend i s evident i n the data. Both the Bt and BC horizons show s i g n i f i c a n t differences between a number of p l o t s , however no c l e a r pattern or trend i s present.  Figure 6.1.4 Exchangeable potassium values by p l o t and horizon Notes: e r r o r bars represent one standard d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  PLOT  I  PLOT 2  PLOT 3  PLOT 4  PLOT  5  PLOT 6  25  Table 6.1.4 Exchangeable potassium Levels of significance for i n t e r p l o t comparisons of means by t - t e s t s o = differences x = differences xx = differences  Ae horizon  AB horizon  Bt horizon  BC horizon  are not s i g n i f i c a n t are s i g n i f i c a n t at the 95% l e v e l of confidence are s i g n i f i c a n t at the 99% l e v e l of confidence  plot 1 2 3 4 5  plot 1 2 3 4 5  plot 1 2 3 4 5  plot 1 2 3 4 5  2 xx  3 xx 0  4 ;_x 0 o  5 o x  X  6  X  XX  X  X  X  o  2 XX  3  4  5  X  X  X  XX  XX  XX  XX  XX  o o  o  XX  6 o  X  2 X  3 o. o  4 X  o 0  5 0 XX XX XX  6 XX  0 0 o XX  2 o  3 o o  4 0 o o  5 XX  6 o  XX  XX  XX  o  XX  X  XX  26  6.1.5  CATION EXCHANGE CAPACITY  Except f o r the Ae h o r i z o n , a generally s i g n i f i c a n t downslope decrease i n cation exchange capacity (C.E.C.) i s evident, the r e l a t i o n s h i p being most s i g n i f i c a n t i n the Bt and BC horizons.  (Figure 6.1.5, Table 6.1.5)  The Ae horizon shows no  s i g n i f i c a n t differences  between any p l o t s , hence C.E.C. i s e f f e c t i v e l y  constant  downslope. The AB horizon shows s i g n i f i c a n t differences f o r seven comparisons.  P l o t s 1, 2 and 3 appear to have  s i g n i f i c a n t l y higher C.E.C. than p l o t s 4, 5 and 6; no s i g n i f i c a n t differences are obvious w i t h i n the two groups. For the Bt and BC horizons, s i g n i f i c a n t differences e x i s t between almost a l l p l o t s .  In the majority of cases,  the mean value of the upslope p l o t i s greater than that of the downslope p l o t .  27  F i g u r e 6.1.5  PLOT  I  C a t i o n exchange c a p a c i t y v a l u e s by p l o t and h o r i z o n Notes: e r r o r bars r e p r e s e n t one standard d e v i a t i o n 1 = Ae 2 = AB 3 = BT 4 = BC  PLOT  2  PLOT 3  PLOT 4  PLOT 5  PLOT  6  28  Table 6.1.5 Cation exchange capacity (C.E.C.) Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s o = differences are not s i g n i f i c a n t x = differences are s i g n i f i c a n t at the 95% l e v e l of conficence xx = differences are s i g n i f i c a n t at the 99% l e v e l of confidence  Ae horizon  AB horizon  Bt horizon  BC horizon  plot 1 2 3 4 5  2 o  3 o o  plot 1 2 3 4 5  2 o  3 o o  plot 1 2 3 4 5  2 o  plot 1 2 3 4 5  2 o  4 o o o  4  5 o o o o  5  X  XX  o  XX  XX  XX  o  3  4  5  6 o o o o o  6 X  o XX  o o  6  XX  XX  XX  XX  X  XX  XX  XX  XX  XX  XX  XX  XX XX  3  4  5  6  XX  XX  XX  XX  XX  XX  XX  XX  o  XX  XX  XX  XX XX  29  6.1.6  pH  For a l l horizons, adjacent p l o t s tend to be more s i m i l a r than non-adjacent p l o t s .  (Figure 6.1.6, Table  6.1.6) With the exception of the Ae horizon., the downslope increase i n pH i s generally s i g n i f i c a n t . The Ae horizon shows only three comparisons w i t h s i g n i f i c a n t d i f f e r e n c e s i n pH, i n d i c a t i n g that pH i s e f f e c t i v e l y constant over the slope i n t h i s horizon. The AB horizon shows eleven comparisons which are s i g n i f i c a n t l y d i f f e r e n t , i n d i c a t i n g a general but not conclusive trend of i n c r e a s i n g pH downslope. For the Bt and BC horizons, s i g n i f i c a n t d i f f e r e n c e s e x i s t between the majority of p l o t s . downslope increase i n pH.  The general trend i s a  F i g u r e 6.1.6  PLOT  I  pH v a l u e s by p l o t and h o r i z o n Notes: e r r o r bars r e p r e s e n t one standard d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  PLOT 2  PLOT 3  PLOT 4  PLOT 5  PLOT 6  31  Table 6.1.6 pH Levels of significance f o r i n t e r p l o t comparisons of means by t - t e s t s o = differences x = differences xx = differences  are not s i g n i f i c a n t are s i g n i f i c a n t at the 95% l e v e l of confidence are s i g n i f i c a n t at the 99% l e v e l of confidence  plot  1 Ae h o r i z o n  2  3  4  5  6  X  O  X  o  XX  o  2 3  o o  4 5  AB horizon  Bt horizon  BC horizon  plot 1 2 3 4 5  2 X  3 XX  o  plot 1 2 3 4 5  2 o  plot 1 2 3 4 5  2 o  3  4  o o o  5  6  XX  XX  XX  XX  XX  XX  XX  X  X  o  o o  4  XX  XX  XX  5  6  XX  XX  XX  XX  XX  xx_  XX  XX  X  3 o o  o o o o  4  5  o 0  6  XX  XX  XX  XX  XX  XX  XX  XX  XX  XX  X  o  32  6.1.7  PERCENT CARBON  The Ae horizon shows s i g n i f i c a n t d i f f e r e n c e s f o r f i v e comparisons, however no obvious trend i s evident i n the data.  (Figure 6.1.7, Table 6.1.7) In the AB h o r i z o n , s i g n i f i c a n t differences e x i s t  for s i x comparisons and the data i n d i c a t e s a s l i g h t downslope decrease i n carbon concentration. The Bt and BC horizons show s i g n i f i c a n t differences between a majority of the p l o t s , w i t h a general though not wholly consistent trend of decreasing carbon concentrations downslope.  33  F i g u r e 6.1.7  PLOT  Percent Notes:  I  PLOT  carbon v a l u e s by p l o t and h o r i z o n e r r o r b a r s r e p r e s e n t one s t a n d a r d d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  2  PLOT 3  PLOT 4  PLOT 5  PLOT  34  Table 6.1.7 Percent carbon Levels of significance for i n t e r p l o t comparisons of means by t"-tests o = differences x = differences xx = differences  Ae horizon  AB horizon  Bt horizon  BC horizon  are not s i g n i f i c a n t are s i g n i f i c a n t at the 95% l e v e l of confidence are s i g n i f i c a n t at the 99% l e v e l of confidence  plot 1 2 3 4 5  plot 1 2 3 4 5  plot 1 2 3 4 5  plot 1 2 3 4 5  2 o  4  3 o  XX  X  X X  2 XX  2 XX  3  4  XX  XX  o  o o  3 o XX  5 o o o 0  5 0  6 X  o 0 o o  6 o  X  X  o o  X  o o  4  5  X  XX  XX  6  0 0  XX  XX  XX  XX  XX  XX  o  2 XX  3  4  5  XX  X  X  6 o  o  o 0  XX  XX  XX  XX  XX  XX X  35  6.1.8  NITROGEN  In general, the v a r i a b i l i t y i n nitrogen concentrations precludes the i d e n t i f i c a t i o n of any obvious pattern i n i t s d i s t r i b u t i o n .  (Figure 6.1.8, Table 6.1.8)  The Ae and AB horizons show s i g n i f i c a n t differences for one t h i r d of the comparisons.  The data i n d i c a t e the  p o s s i b i l i t y of a s l i g h t decrease i n nitrogen concentrations i n the lower p o r t i o n of the slope. In the Bt horizon, s i g n i f i c a n t differences e x i s t for twelve comparisons, however no obvious trend i n the data i s evident. The BG h o r i z o n shows s i g n i f i c a n t differences f o r seven comparisons; no obvious trend i s apparent i n the data.  F i g u r e 6.1.8  N i t r o g e n v a l u e s by p l o t and h o r i z o n Notes: e r r o r b a r s r e s p r e s e n t one standard d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  600  E  CL CL  400h  200h PLOT  I  PLOT 2  PLOT 3  PLOT 4  PLOT 5  PLOT 6  37  Table 6.1.8 Nitrogen Levels of s i g n i f i c a n c e for i n t e r p l o t comparisons of means by t - t e s t s o = differences are not s i g n i f i c a n t x = differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx = differences are s i g n i f i c a n t at the 99% l e v e l of confidence  Ae horizon  plot 1 2 3  2 o  3 o o  4  4 o o o  5 o XX  XX  XX  XX  0  o o  5 o x xx o  6  5  AB horizon  plot 1 2 3  2 o  3 o o  4  4 o o o  5  Bt horizon  plot 1 2 3  2 XX  3 o XX  4  5  4  6  XX  XX  X  XX  XX  o  XX  XX  XX  XX  0  5  BC horizon  X  x xx o o  X  4  plot 1 2 3  6 X  2  3  X  X  o  4 XX  o o  5 o o o X  6 o XX XX XX  38  6.1.9  CARBON/NITROGEN RATIO  S t a t i s t i c a l l y significant differences  are  e v i d e n t more f r e q u e n t l y between n o n - a d j a c e n t p l o t s between a d j a c e n t p l o t s . (C/N) trend.  G e n e r a l l y , the  than  carbon/nitrogen  r a t i o s a r e too v a r i a b l e to d i s p l a y any p a r t i c u l a r (Figure  6 . 1 . 9 , Table 6.1.9)  The Ae h o r i z o n shows s i g n i f i c a n t d i f f e r e n c e s  for  o n l y t h r e e c o m p a r i s o n s ; no t r e n d i s e v i d e n t i n t h e d a t a . The AB h o r i z o n shows s i g n i f i c a n t d i f f e r e n c e s comparisons between p l o t 1 and a l l o t h e r p l o t s , however  for the  d a t a i n d i c a t e no o b v i o u s t r e n d . In b o t h the Bt and BC h o r i z o n s ,  significant  d i f f e r e n c e s e x i s t f o r e i g h t c o m p a r i s o n s , however no t r e n d d i s c e r n i b l e from the d a t a .  is  F i g u r e 6.1.9  PLOT  I  C a r b o n / n i t r o g e n r a t i o s by p l o t and h o r i z o n Notes: e r r o r b a r s r e p r e s e n t one standard d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  PLOT  2  PLOT  3  PLOT 4  PLOT 5  PLOT 6  40  Table 6.1.9 Carbon/nitrogen (C/N) r a t i o Levels of s i g n i f i c a n c e for i n t e r p l o t comparisons of means by t - t e s t s o = differences are not s i g n i f i c a n t x = differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx = differences are s i g n i f i c a n t at the 99% l e v e l of confidence  Ae horizon  AB horizon  Bt horizon  BC horizon  plot 1 2 3 4 5  plot 1 2 3 4 5  plot 1 2 3 4 5  plot 1 2 3 4 5  2 o  3 o  4 o  o o  2 X X  3 X X  o  5 o  X X  4 X X  o o  o o xx  5 X X  6 o o o x o  6 X X  o  0  0  o o  0  0  2 X  3 o 0  4 X X  o o  5 o  6 0  X X  X X  X X  X X  X X  X X  0  2 X X  3 X X  0  4 o X X  o  5 X X  6 o  X X  X X  X X  0  X X  0 0  41  6.1.10  PERCENT BASE SATURATION  The Ae horizon shows only two comparisons which are s i g n i f i c a n t l y d i f f e r e n t ; no trend i s d i s c e r n i b l e from the data.  (Figure 6.1.10, Table 6.1.10) In the AB h o r i z o n , nine comparisons e x i s t which  are s i g n i f i c a n t l y d i f f e r e n t , however no obvious pattern appears i n the data. The Bt horizon i n d i c a t e s that p l o t 6 i s s i g n i f i c a n t l y d i f f e r e n t from a l l other p l o t s ; however no trend i s evident between other p l o t s i n t h i s h o r i z o n . The BC horizon shows only four comparisons where s i g n i f i c a n t d i f f e r e n c e s e x i s t between means; no trend i s apparent i n the data.  Figure  6.1.10 P e r c e n t base s a t u r a t i o n v a l u e s by p l o t and h o r i z o n Notes:  PLOT  I  PLOT  e r r o r b a r s r e p r e s e n t one standard d e v i a t i o n 1 = Ae 2 = AB 3 = Bt 4 = BC  2  PLOT 3  PLOT 4  PLOT  5  PLOT 6  43  Table 6.1.10 Percent base saturation Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s o = differences are not s i g n i f i c a n t x = differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx = differences are s i g n i f i c a n t at the 99% l e v e l of confidence  Ae horizon  AB horizon  Bt horizon  BC horizon  plot 1 2 3 4 5  2 0  4 o o  5 o  6 o  X  X  0  o  0  0  o 0  plot 1 2 3 4 5  2 o  plot 1 2 3 4 5  2 o  plot 1 2 3 4 5  3 o o  3 XX XX  4 o o XX  5 XX XX XX XX  6 o o X  o XX  3 o 0  4 o 0  o  5 o o o X  6 XX XX XX XX XX  2  3  XX  XX  o  4 o  XX  5  0  6  0  XX  0  o o  o o o o  44  6.2 COMPARISONS BETWEEN HORIZONS T-tests are conducted on a l l variables to determine i f the morphologically designated horizons are s i g n i f i c a n t l y different from a chemical point of view. Table 6.2.1 shows that except for exchangeable sodium, the majority of the differences are significant. Other•.than exchangeable sodium, only s i x comparisons exist where differences are not significant; i n a l l cases these comparisons involve adjacent horizons. A basic tenet of a t-test i s that the v a r i a b i l i t y of two compared sample populations should be similar; i n many of these comparisons, this criterion i s violated.  45  Table 6.2.1 Significant differences between horizons f o r a l l variables  d = differences are not s i g n i f i c a n t x = differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx = differences are s i g n i f i c a n t at the 99% l e v e l of confidence  Exchangeable Calcium  Exchangeable Magnesium  Exchangeable Sodium  Exchangeable Potassium  Cation Exchange Capacity (C.E.C.)  Ae AB Bt  Ae AB Bt  Ae AB Bt  Ae AB Bt  Ae AB Bt  AB  Bt  BC  XX  XX XX  XX XX  o  AB xx  Bt xx xx  BC xx xx o  AB xx  Bt xx  BC xx  XX  XX  o  AB o  Bt o o  BC o o o  AB o  Bt xx  BC xx  XX  XX  o  continued...  46  Table 6.2.1 Significant differences between horizons for a l l variables (continued)  o = differences are not s i g n i f i c a n t x = differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx = differences are s i g n i f i c a n t at the 99% l e v e l of confidence  PH  Ae AB Bt  Carbon Ae AB Bt  Nitrogen Ae AB Bt  Carbon/ Nitrogen (C/N) Ratio  Percent Base Saturation  Ae AB Bt  Ae AB Bt  AB o  Bt xx XX  BC XX XX  o  AB xx  Bt xx xx  BC xx xx XX  AB xx  Bt  BC  XX XX  XX XX XX  Bt xx x  BC xx xx o  AB  Bt  BC  XX  XX  XX  XX  XX  AB xx  XX  47  6.3  SEPARATION OF GROUPS AS DETERMINED BY STEPWISE DISCRIMINANT ANALYSIS  Once the q u e s t i o n "do i n d i v i d u a l paramenters v a r y with topographical  p o s i t i o n " has been answered, p o s i n g t h e  q u e s t i o n "can d i f f e r i n g on  the b a s i s  topographical  p o s i t i o n s be  distinguished  o f a combination o f c h e m i c a l v a r i a b l e s " becomes  interesting. In t h i s s t u d y , Stepwise D i s c r i m i n a n t  Analysis  (BMD-P7M) i s used t o i d e n t i f y those c h e m i c a l v a r i a b l e s  which  can be used t o s e p a r a t e d i f f e r e n t t o p o g r a p h i c p o s i t i o n s as r e p r e s e n t e d by t h e s i x p l o t s on the h i l l s l o p e . In a d d i t i o n , if  t h i s same a n a l y s i s  i s used t o f i n d out  i n d i v i d u a l h o r i z o n s can be s e p a r a t e d on t h e b a s i s  combination o f v a r i a b l e s .  S i n c e t h e s o i l s on the h i l l s l o p e  have been formed from two q u i t e d i s t i n c t m a t e r i a l s , colluvium,  d e t e r m i n i n g i f these two m a t e r i a l s  on a b a s i s  of several The  one  chemical v a r i a b l e s  discriminant  o f two o r more h i g h l y  separation  contribute  analysis w i l l  can be s e p a r a t e d  tend t o s e l e c t  t o a i d i n the  that i n r e a l i t y  t o the d i f f e r e n c e s between a s e t o f groups. classification  (BMD-P7M) i s used as  a t e s t o f the p r e d i c t a b i l i t y o f the d i s c r i m i n a n t c l a s s i f i c a t i o n creates  of the sample p o p u l a t i o n on  only  The a n a l y s i s w i l l n o t  i d e n t i f y a l l the v a r i a b l e s  A jack-knifed  This  t i l l and  i s of further i n t e r e s t .  correlated variables  o f d i f f e r i n g groups.  necessarily  of a  the e q u a t i o n .  analysis.  an e q u a t i o n based on a l l b u t one  and then t e s t s the excluded  sample  F o r a l l i n d i v i d u a l samples, the p r o c e d u r e  i s r e p e a t e d and a s c o r e o f p e r c e n t c o r r e c t c l a s s i f i c a t i o n s presented.  The s c o r e s e r v e s as a rough guide t o the s u c c e s s  of the d i s c r i m i n a t i o n . When used t o s e p a r a t e the s i x t o p o g r a p h i c a l  groups  48  (Figure 6.3.1), the a n a l y s i s indicates that the most relevant grouping v a r i a b l e s w i l l be exchangeable potassium, exchangeable calcium, pH and exchangeable magnesium.  When a j a c k - k n i f e d  c l a s s i f i c a t i o n i s applied, these four v a r i a b l e s give a score of 48.6  percent correct c l a s s i f i c a t i o n s .  The analysis f u r t h e r  reveals that a d d i t i o n a l v a r i a b l e s i n the order nitrogen, exchangeable sodium, C/N  r a t i o and carbon are also u s e f u l i n  d i s c r i m i n a t i n g between the s i x groups.  However, w i t h  the  a d d i t i o n of these v a r i a b l e s , the score of the j a c k - k n i f e d c l a s s i f i c a t i o n increases to only 54.7  percent.  The analysis d i s c l o s e s also that a separation i n t o three groups might be a more appropriate method of d e l i n e a t i n g the topographical u n i t s .  P l o t s 2, 3 and 4 tend to be q u i t e  s i m i l a r , as do p l o t s 5 and 6 (Figure 6.3.1), while p l o t 1 i s d i s t i n c t l y separate from a l l other groups. Analysis using only the three groups noted above, gives a score of 61.9  percent correct c l a s s i f i c a t i o n s when  the j a c k - k n i f e d c l a s s i f i c a t i o n i s applied.  In t h i s case, the  most u s e f u l v a r i a b l e s prove to be exchangeable calcium, exchangeable magnesium and nitrogen.  The a d d i t i o n of  r a t i o and percent carbon increases the score to 63.9 correct c l a s s i f i c a t i o n s .  pH, C/N  percent  I n t e r e s t i n g l y , when the topographic  groupings are a l t e r e d , exchangeable potassium ceases to be of significance.  P r e d i c t a b l y , the r e s u l t s show considerable  overlap between adjacent groups and much l e s s overlap between the two non-adjacent groups.  (Figure 6.3.2)  The discriminant a n a l y s i s to separate the four horizons Ae, AB, Bt and BC gives a score of 86.7  percent  correct c l a s s i f i c a t i o n s when the j a c k - k n i f e d c l a s s i f i c a t i o n i s applied.  (Figure 6.3.3)  Exchangeable magnesium, percent  carbon, percent base s a t u r a t i o n and pH prove to be the most significant variables.  Further, the analysis reveals that  OVERLAP  OF  DIFFERENT  GKOUPS  IS INDICATED  BY *  A E  A  F * E  FD F  EF EE  FE  SYMBOLS  -5.5  - A  PLOT 2  - B  PLOT 3  - C  PLOT 4  - D  PLOT 5  - E  PLOT 6  - F  GROUP MEANS  - 1,2,3,4,5,6.  -3.5 -4.0  -2.5 -3.0  A E  A FE A AA A 1 F E E E F D5 A ED F A C A E DF F* C E A F E FF E E F E F E E F * F 6 D**F CE D C C ACBB E F F D* FF B * A C CA A B * £ * 0 * C D E A B » C BB B » * F D C C D F B B C»A C B8 F EED FCC F*** CBC B3 CB B BB F E F C F*3 B B S 0 FO E F D BBF E 0 CC 2* A A C 8 * F C3A» BB* C BB * B B F DD* D C4BE C*DB C C BC B B C CC D* F B * *B C D C * C D *A DU D O D 0 D C D B CD c a D D D DB D DD D D D D  PLOT 1  -4.5 -5.0  F EAF E F F E D FF  A A EA  -1.5 -2.0  -.50 -1.0  .50 0.0  CANONICAL VARIABLE 1  1.5 1.0  2.5 2.0  3. 5 3.0  4.5 4.0  5.5 5.0  6  CVERLAP  OF DIFFERENT GftOCPS IS INDICATED BY «  + . . . . + ....•....«•.«..••....••....+....+  3.75  3.00  TT (  1  T  MT T  C T  M  T T C MM MM T T TM MM T T M M M M TT T TTCMM M C 1M M 3T TM M M CC MTTMTTMMMM M C C MM MT M M M TMM MMTMM T * M TT *MM TM MM * M M HT T MM M MM NMMM M C 1 N TM M CMMM H. * M CMM CC C MM * CMMM MM * MCM MM M MMM MMM TMMMMM T M M M 2M M M M M M MC MM MMMM TT MM CM CM MMMMM MM TTM M MMMC M MM M T MMMMM CM C MM M* M M *M C C M MMM M M M M M M M T MM 1 M T M M MM M M M M M MM T M M M T  SYMBOLS PLOT 1  - C  PLOTS 2,3,4 - M PLOTS 5,6  CC  M  MM M  M  M  - T  CC C M CC C  M  GROUP MEANS - 1,2,3  -4.5 5.C  •2.5  - 3 . 5 - 4 . 0  - 3 . 0  - 1 . 5 -2.0  1.5  . 50  ,50  -1.0  0.0  ! . 0  CANONICAL VARIABLE 1  3  2. 5 2.0  3.0  4.5  . 5  4. 0  5.5 5.0  6.0  OVERLAP 6.25  OF C I F F E R E N I  GROUPS I S I N D I C A T E D BY » •  •  5.00  A  D 00 0  CO D 0 0 D 0 0 0 CD OD DO D D**Q C 00 0 4 * C 0 C * CC 0* D* * * • CC DCCC DC 0 OODO C CC CCCC CC C 0 C * * » O O C 30 CCCCCC C C 0 C OCCC* C C C C C CCD 0 0 C • 0 C C  c  e B  -6.15 -7.50  A  AB Horizon  B  Bt Horizon  C  BC Horizon  D  GROUP MEANS  1,2,3,4.  A B  B B B BBBB B B BBBB B BB B B BB B B BB B B B B B2B B BB BB B BSB B BBBBB B B BB B B B B B B B B B B B  CC C  SYMBOLS Ae Horizon  BB  B  A A A AA A A A A AA AA AA t A A A AA A A A A AAA A A AAA A AAA AA A IA A A A A A A A AA A AA AAA AA A A A A A AA A AA A A A  *  B  B  -5.25 - 3 . 75 -2.25 - . 750 .750 2.25 3.75 5.25 6.75 8.25 -6.CC -4.50 -3.00 -1.50 0.00 1.50 3.00 4.50 6.00 7.50 9.00 CANONICAL VARIABLE 1  52  the v a r i a b l e s nitrogen, C/N r a t i o , C.E.C, exchangeable potassium, carbon and exchangeable sodium are of some use i n d i s c r i m i n a t i n g between horizons.  However, as the score of the  c l a s s i f i c a t i o n increases to only 89.2 percent with the i n c l u s i o n of these v a r i a b l e s , they are not considered  significant.  F i n a l l y , the analysis suggests that since the Bt and BC horizons are quite s i m i l a r i n chemistry, they could be grouped as a s i n g l e horizon. With the v a r i a b l e s exchangeable magnesium and percent carbon, a n a l y s i s of the data using three  horizon  groupings Ae, AB and Bt plus BC y i e l d s a score of 92.2 percent correct c l a s s i f i c a t i o n s .  (Figure 6.3.4) A d d i t i o n of the  v a r i a b l e s percent base s a t u r a t i o n and pH increases the score to 96.9 percent correct c l a s s i f i c a t i o n s .  This s l i g h t  increase  i n p r e d i c t a b i l i t y does not warrant grouping the Bt and BC i n t o a s i n g l e horizon. The discriminant analysis then i s applied to determine i f a separation of the s o i l i n t o three parent m a t e r i a l groupings ( t i l l , colluvium and a mixture of these two) i s possible.  The analysis y i e l d s a score of 66.7 percent correct  c l a s s i f i c a t i o n s f o r the t o t a l sample population.  C.E.C,  exchangeable potassium and exchangeable sodium are the most s i g n i f i c a n t v a r i a b l e s used i n the d i s c r i m i n a t i o n .  The a n a l y s i s  i n d i c a t e s also that exchangeable n i t r o g e n , exchangeable magnesium and pH are u s e f u l i n the d i s c r i m i n a t i o n but, as the score increases to only 69.2 percent, are not considered significant.  (Figure 6.3.5)  To determine i f parent m a t e r i a l differences are easier to d i s c r i m i n a t e i n the deeper horizons, where pedogenic changes may be smaller, the a n a l y s i s i s applied to i n d i v i d u a l horizons. When the j a c k - k n i f e d c l a s s i f i c a t i o n i s a p p l i e d ,  OVERLAP OF D I F F E R E N T GROIPS  I S INDIC ATt0 BY «  A A  AA A AA  A  A AA  CC A  CC C C cc cc  C c c c cc c c c c cccc ccc cc ccc ccc c c cc c c c cc cccc c cc c c C CCC 3C c cccc c c c c cccc cc cc c cc ccccc cccc cc c c cc cc c c c c c c c c c ccc c  A A A A AA A AA  A  A A A  B  B  * A B  B B  B B  B B  3  B B  B  2  B B  B B  B  B  B  BB  B B B  BB  SYMBOLS  B  B  B  B  B  BB  Ae Horizon  B B  B  B B  BB  B  BB  BB  B  B  B B  A  B  B  B  A Al A A AAA AA A A A A AA A AA  A  B  B  A  AAA A  8  B B BB  BB  AB Horizon Bt + BC  C  GROUP MEANS  1,2,3. 6  -6.0  -5.4  -4.8  -4.2  -3.6  -3.0  -2.4  B  -l.e -.60 -1.2  .60 CO  1.2  CANONICAL VARIABLE 1  1.3  2.4  3.0  3.6  4.2  4.8  5.4  6.0  6.6  7.2  JVERLAP 3.75  OF  DIFFERENT  GROUPS  IS  INDICATED  BY *  +  OQ  e  H  fD  All Samples  3.00  ON 00 Ol  2 . 2 5  ro  93  H A  3 .750  A L  H*  V A  S  S »SM  R  S  SM T  I  TTT  TT *  TT  TTT  TT  T  M  M  S  T  T  TTT *  B U  - . 7 5 0  I  TI  S  T  S T M  - 1 . 5 0 S M M  T MM  N  TT  S  •  M  T  T  TT T  TM  T  3  fu rt ft) H (-"• fu h-'  TI  T  TT  T  MT*T  M  T M  T M  T  oo  T  i-i  o  M I  c  M  T) cn  M  M  T*  TS  W  S M  TILL - T  V!  TMMM  PJ Hcn  MIXTURE - M GROUP MEANS  - 3 . 0 0  o l-h  rt  T  I  Mi  *  0  0  T  T  T  cu ii cu rt HO  Cu H CD  T  T T T  T T  M  T  TTT  TTH  TMTM  T *TM  T  T  TTT T  TTTT  TT  T  SM»  S  TT  M  >—^  TT T T  Q cn  T  T TT  TT  IH  i—•  T T  TTTT T  B  TT  TT  TT  TTTT  N  MM M T  - 2 . 2 5  M  M T  S  COLLUVIUM -  I I TT  T  T  T  TTTT  M  S  SYMBOLS  T  T  T  T  T  T  M  E  T T  A L  T T  M  ST SM  T  M  T  M  0.00  T  M  S2  T T  T  T  S T S M T s ss S S M ss s SSS * T s M rs s s s ss M T s  I  T  fl  S S  N  M  T  S  1  tn Cu  T T T T  1.50  N  C  T  T  C  1—  o  l-i H-  1,2,3  3 0 fu  H*  - 3 .  rt  75  fu  0 Cu -6.0  -5.5  -5.0  -4.5  -3.5 -4.0  -3.0  -2.5  -.50  -1.5  -2.0  -1.0  0.0  CANONICAL VARIABLE 1  .50  1.5 1.0  2.0  2.5  3.0  3.  4.5  5.0  ^cn cn  On  55  using the v a r i a b l e s exchangeable magnesium and exchangeable postassium, a n a l y s i s of the Ae horizon gives a score of percent correct c l a s s i f i c a t i o n s .  65.5  The analysis i n d i c a t e s the  mixture i s more s i m i l a r i n chemistry to the colluvium than to the t i l l .  (Figure 6.3.6)  A p p l i c a t i o n of the j a c k - k n i f e d c l a s s i f i c a t i o n to the AB horizon, using the v a r i a b l e s exchangeable potassium and percent carbon i n the d i s c r i m i n a t i o n , gives a score of percent correct c l a s s i f i c a t i o n s .  67.8  Again, t h i s horizon i n d i c a t e s  that the mixture resembles the colluvium more than the  till.  (Figure 6.3.7) The Bt and BC horizons give scores of 70 percent and 72.2 percent correct c l a s s i f i c a t i o n s , r e s p e c t i v e l y , when the j a c k - k n i f e d c l a s s i f i c a t i o n i s a p p l i e d ; the v a r i a b l e s used i n both d i s c r i m i n a t i o n s are pH, exchangeable magnesium and exchangeable potassium.  The analyses of the Bt and BC  i n d i c a t e a greater separation between the mixture and colluvium.  The overlap between the mixture and the  horizons the  two  homogeneous groups i s greater than the overlap between the two homogeneous groups.  (Figures 6.3.8  and 6.3.9) A l l these  analyses i n d i c a t e that w i t h increasing depth i n the s o i l , is  there  a s l i g h t but not p a r t i c u l a r l y s i g n i f i c a n t increase i n the  d i s c r i m i n a t i o n of the d i f f e r e n t parent m a t e r i a l s . An i n t e r e s t i n g observation at t h i s point i s that on the b a s i s of the chemical parameters, separation of s o i l is  horizons  c l e a r e r than separation of e i t h e r slope p o s i t i o n or parent  materials.  This suggests t h a t , when comparing the chemistry  of s o i l s from d i f f e r e n t geographic l o c a t i o n s , care must be taken to ensure that s i m i l a r horizons are being compared, otherwise differences which are a function of v e r t i c a l pedogenic development could be construed as geographic differences.  56 Figure 6.3.6  Separation of parent material groups by discriminant a n a l y s i s (Ae horizon)  > +  CO  m a  -  UJ  t— o a  z  I +  c o N •f-  +  a. 3  4  -J  •  •S UJ  4  to  _ o  £  > to;  1-  >3  -J -1 o <->  1 -1 _1  to  i LU  z<  cn  • 3 h-  1—1 l-  s:  ME  1  X  ooc  t3  o  t  4) I  57  Figure  6.3.7  S e p a r a t i o n of parent m a t e r i a l (AB h o r i z o n )  o<zoz«-o<_i  J  groups by d i s c r i m i n a n t  analysis  58 Figure  6.3.8  S e p a r a t i o n of parent m a t e r i a l groups by d i s c r i m i n a n t (Bt h o r i z o n )  zc  I  toj  -i  a eg >-  <  —  > 3 _j o  LU  X  5  analysis  OVERLAP  OF D I F F E R E N T  GR3UPS  IS INOICATEO  BY *  09  c  3.00  BC Horizon  •  . 2.25 zn  C A  T  1.50  H  a H I C A L V A R I A B L  S S S  S T S  S  S  *  w (t> n 3* i-i Co o l-f  T  rt  H ' HN O  T T  3 o 3  T  O l-h  .750 S S 0.00  S  S S  2  S  S M  T  S  S TS S  1  n 3>  T  M  T  T S  S*  T  Cu  T  3 T  T  rt 3 rt n  S  S  -.750  e  XI Cu i-i  T  S S  S  T  T  SS S  S T  T  M  fl>  T  T  HCu i—  T  H  1  T 2  09  -1.50  SYMBOLS COLLUVIUM  -2.25  TILL  H O  S S  c  XS Co  - S  - T  pCO  MIXTURE - M -3.00  GROUP MEANS  o i-i  - 1,2,3  H*  3 H3 p 3  -3.75  rt 3 CD  . . + . . . . + . . . . + . . . . 4 - . . . . + ....>-..  -4.4  -3.6 -4.0  -2.8 -3.2  -2.0 -2.4  Co  .«-....+....  -1.2 -1.6  -.40 -.80  .40 0.0  CANONICAL VARIABLE 1  1.2 .BO  2.0 1.6  2.B 2.4  3.6 3.2  4.4 4.0  r-  1  co HCO  60  6.4 CORRELATION OF CHEMICAL VALUES WITH THE FACTORS HORIZON, TOPOGRAPHIC POSITION AND PARENT MATERIAL AS DETERMINED BY A THREE-WAY ANALYSIS OF VARIANCE To i n v e s t i g a t e the dependence of s p e c i f i e d chemical v a r i a b l e s on v e r t i c a l pedogenic development, slope process, parent m a t e r i a l , and possible i n t e r a c t i o n s among these f a c t o r s , a three-way a n a l y s i s of variance i s applied to the t o t a l sample population of each v a r i a b l e . Since the three parent m a t e r i a l s , t i l l ,  colluvium  and a mixture of t i l l and colluvium, are represented by unequal numbers of samples, a p p l i c a t i o n of the s t a t i s t i c a l package "UBC Genlin", which i s suited to a n a l y s i s of models having unequal c e l l s i z e s , i s appropriate.  The model used  t e s t s for s i g n i f i c a n t c o r r e l a t i o n s of each v a r i a b l e with the i n d i v i d u a l f a c t o r s topographic p o s i t i o n , horizon and parent m a t e r i a l , and w i t h the p o s s i b l e i n t e r a c t i o n s of p l o t with horizon, p l o t with parent m a t e r i a l , horizon with parent m a t e r i a l , and p l o t with horizon and parent m a t e r i a l .  While  some of these i n t e r a c t i o n s may be u n l i k e l y , a conservative model which considers a l l possible i n t e r a c t i o n s i s believed to be the most reasonable approach. The a n a l y s i s indicates that horizon i s a s i g n i f i c a n t f a c t o r for a l l v a r i a b l e s except exchangeable sodium, 6,4.1)  (Table  Further, topographic p o s i t i o n (plot) i s a s i g n i f i c a n t  f a c t o r f o r a l l v a r i a b l e s ; parent-material i s correlated s i g n i f i c a n t l y with only exchangeable magnesium, exchangeable sodium and exchangeable potassium.  For a l l v a r i a b l e s except  nitrogen, the i n t e r a c t i o n of topographic p o s i t i o n and horizon i s s i g n i f i c a n t . F i n a l l y , the i n t e r a c t i o n of topographic p o s i t i o n with parent m a t e r i a l i s correlated s i g n i f i c a n t l y with exchangeable magnesium, exchangeable sodium and exchangeable  61  potassium,  as w e l l as w i t h the carbon content of the  soil.  For any of the v a r i a b l e s c o n s i d e r e d , the i n t e r a c t i o n s o f h o r i z o n w i t h parent m a t e r i a l and of h o r i z o n w i t h t o p o g r a p h i c p o s i t i o n and parent m a t e r i a l a r e not c o r r e l a t e d  significantly.  Table 6.4.1  Levels of s i g n i f i c a n c e for three-way analysis of variance  o = differences are not  (UBC  Genlin)  significant  x = differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx = differences are s i g n i f i c a n t at the 99% l e v e l of confidence  Ca  Mg  Na  K  C.E.C.  pH  %C  N  Horizon  xx  xx  xx  o  xx  xx  xx  xx  Plot  xx  xx  xx  xx  xx  xx  xx  xx  o  x  x  xx  o  o  o  o  xx  x  xx  xx  xx  xx  xx  o  Plot*Lithol  o  xx  xx  xx  o  o  xx  o  Horizon*Lithol  o  o  o  o  o  o  o  o  Horizon*Lithol *Plot  o  o  o  o  o  o  o  o  Lithol Plot*Horizon  63  6.5 TRENDS IN SOIL VARIABILITY BASED ON THE COEFFICIENT OF VARIATION The c o e f f i c i e n t of v a r i a t i o n (CV) i s used often as a means of comparing the v a r i a b i l i t y of parameters having d i f f e r e n t u n i t s of measurement.  Employing t h i s measure of v a r i a b i l i t y i n  t h i s study, the f o l l o w i n g questions are posed:  are there  differences i n v a r i a b i l i t y between diverse chemical species, does the degree of v a r i a b i l i t y change with slope p o s i t i o n or depth i n the s o i l , and does v a r i a b i l i t y increase w i t h the s i z e of the area sampled? Inspection of the c o e f f i c i e n t s of v a r i a t i o n f o r each v a r i a b l e i n each h o r i z o n , i n d i c a t e s no trends i n v a r i a b i l i t y w i t h regard to slope p o s i t i o n .  (Appendix A)  I f the whole sample population i s considered, the v a r i a b l e s can be ranked i n order of i n c r e a s i n g v a r i a b i l i t y . For t h i s study, the f o l l o w i n g sequence i s evident: Variable pH percent base s a t u r a t i o n C/N r a t i o exchangeable potassium nitrogen C.E.C. exchangeable calcium exchangeable sodium percent carbon exchangeable magnesium  CV ( t o t a l sample population) 7 17 23 29 33 39 41 47 48 63  The concentrations of c e r t a i n v a r i a b l e s f l u c t u a t e considerably with depth; t h i s may e x p l a i n the extreme values f o r these variables. I f i n d i v i d u a l horizons are evaluated separately, a s l i g h t l y changed p a t t e r n emerges.  Although the sequence  remains s i m i l a r , f o r some paramenters a n o t i c e a b l e decrease i s evident i n the c o e f f i c i e n t s of v a r i a t i o n .  (Appendix A)  64  On the basis of i n d i v i d u a l horizons the order i s : Variable pH percent base s a t u r a t i o n C/N r a t i o C.E.C. nitrogen exchangeable calcium percent carbon exchangeable potassium exchangeable sodium exchangeable magnesium  CV (mean of i n d i v i d u a l h o r i z o n values) 4 12 17 18 20 21 28 28 28 29  Inspection of the data i n Appendix A indicates no consistent trend of e i t h e r decrease or increase i n the c o e f f i c i e n t of v a r i a t i o n w i t h depth i n the s o i l .  For  exchangeable calcium, C.E.C, percent carbon and nitrogen, the v a r i a b i l i t y tends to increase w i t h depth, w h i l e f o r exchangeable sodium, exchangeable potassium and percent base s a t u r a t i o n , the v a r i a b i l i t y tends to decrease.  No trend i n v a r i a b i l i t y w i t h  depth of s o i l i s evident f o r exchangeable magnesium, pH and C/N r a t i o . A prevalent f i n d i n g i n many s o i l v a r i a b i l i t y studies i s that the v a r i a b i l i t y tends to increase s l i g h t l y as the s i z e of the area sampled increases.  Although the evidence i s not  wholly conclusive, t h i s i n v e s t i g a t i o n produces a s i m i l a r r e s u l t . In t h i s study, for. each v a r i a b l e , the c o e f f i c i e n t of v a r i a t i o n f o r the aggregate populatiom of a l l s i x p l o t s i n a given horizon (4500 square meters) i s ranked against the c o e f f i c i e n t s of v a r i a t i o n f o r each i n d i v i d u a l p l o t (750 square meters) i n that h o r i z o n ; the r e s u l t i s a t o t a l of f o r t y comparisons. In the Ae h o r i z o n , the aggregate c o e f f i c i e n t of v a r i a t i o n i s never the highest value f o r any s i n g l e but i s usually ranked higher than the median.  variable,  The aggregate  c o e f f i c i e n t of v a r i a t i o n i n the AB h o r i z o n ranks highest i n four comparisons out of ten and i s always greater than the  65  median v a l u e .  For t h r e e comparisons out of t e n i n the Bt  h o r i z o n , the aggregate c o e f f i c i e n t o f v a r i a t i o n ranks h i g h e s t ; i t never ranks lower than f i f t h  on a s c a l e o f seven.  Finally,  i n the BC h o r i z o n , the aggregate c o e f f i c i e n t of v a r i a t i o n highest  ranks  f o r seven comparisons out o f t e n . The g e n e r a l c o n c l u s i o n i s t h a t v a r i a b i l i t y w i l l  to i n c r e a s e w i t h is  the s i z e o f the a r e a sampled.  tend  E q u a l l y obvious  the f a c t t h a t t h i s r u l e w i l l not h o l d t r u e i n a l l c a s e s .  F u r t h e r , and q u i t e n o t i c e a b l y , t h i s r e l a t i o n s h i p becomes most s t r i k i n g i n the deepest s o i l  horizons.  Table 6.6.1  F u r l e y , 1974 (31 samples)  FACTORS TENDING TO INCREASE DOWNSLOPE  GEOMORPHIC SETTING  REFERENCE  (II)  surface s o i l s on a [slope over p h y l l i t e s (Belize)  pH percent  F u r l e y , 1974 ( I I ) (surface s o i l s on a slope over g r a n i t e s . (34 samples) (Belize)  F u r l e y , 1974 (I) (30 samples)  'surface s o i l s on a slope over shale and sandstone ( B e l i z e )  Macyk, e t . a l . , 1978 (7 s o i l p r o f i l e s )  |solls on a t i l l (Alberta)  Runge and Rlecken, lloeee s o i l s 1966 (12 s o i l p r o f i l e s ) !  Lepsch and Buol, 1974 (4 s o i l p r o f i l e s )  S o i l chemical  knob  PH  trends from s e v e r a l s e l e c t e d studlei  FACTORS TENDING TO DECREASE DOWNSLOPE  FACTORS REMAINING CONSISTENT OR SO VARIABLE* AS TO SHOW NO CLEAR TREND  exch. Ca exch. Mg exch. K available F  carbon  exch. Na*  The trend o f i n c r e a s i n g pH and % C changes to a decrease i n trend i n the t o e s l o p e . Exch. Ca. exch. Mg and exch. K appear to i n c r e a s e on the lower slope and then t o decrease again.  pH  percent C* exch. Ca* exch. K* exch. Mg* exch. Na*  percent C exch. Ca exch. Mg  exch. K excb. Na  Percent C, exch. Ca, and exch. Mg may i n c r e a s e on the toeslope. PH apparently decreases on the lower slope.  Al C.E.C.  There may be a s l i g h t decrease i n d i t h l o n i t e e x t r a c t a b l e Fe i n d e p r e s s l o n a l s i t e s as compared to other slope p o s i t i o n s .  The organic P concentrations i n poorly drained toeslope p o s i t i o n s average about one-half that of other slope p o s i t i o n s . (Several s t u d i e s with s i m i l a r f i n d i n g s are c i t e d . )  (Iowa)  s o i l on a s l o p e over shale ( B r a z i l )  FACTORS CHANGING CONCENTRATION OR TREND WITH CHANGES IN SLOPE GEOMETRY  C.E.C. exch. K pH exch. Na percent C exch. Ca exch. Mg  continued...  Table 6.6.1 REFERENCE  GEOMORPHIC SETTING  S o i l chemical trends from s e v e r a l s e l e c t e d s t u d i e s  FACTORS TENDING TO INCREASE DOWNSLOPE  Norton and Franzmeier, 1978 (19 s o i l profiles)  three toposequences i n s o i l s developed i n l o e s s (S.W. Indiana)  K l e i s s , 1970 (8 s o i l p r o f i l e s )  s o i l s on a l o e s s covered h i l l s l o p e (N.W. Iowa)  C.E.C. percent o r g a n i c C  F i t z p a t r i c and Le Roux, 1977 (4 s o i l p r o f i l e s )  a toposequence developed over a decomposed d o l e r i t e ( T r a n s v a l l Highveld, South A f r i c a )  pH exch. Ca Mn  Yaalon, e t . a l . , 1972 (15 s o i l profiles)  three catenas on b a s a l t , dolomite and limestone (Upper Galilee, Israel)  t o t a l Mn  Yaalon, e t . a l . , a catena on b a s a l t 1974 (Upper G a l i l e e , (7 s o i l p r o f i l e s ! I s r a e l )  (continued)  FACTORS REMAINING CONSISTENT OR SO VARIABLE* AS TO SHOW NO CLEAR TREND  FACTORS TENDING TO DECREASE DOWNSLOPE  FACTORS CHANGING CONCENTRATION OR TREND WITH CHANGES IN SLOPE GEOMETRY  Lower slope p o s i t i o n s tend to have higher concentrations of CaC03 than upper slope p o s i t i o n s .  percent basesaturation  Two high values f o r percent base s a t u r a t i o n on the lower p o r t i o n of the slope are thought to be due to the presence of calcareous t e r r a c e m a t e r i a l 1.5 meters below the s o i l s u r f a c e .  percent C exch. Na exch. Mg exch. K  Sr Ti Fe  Ba  V Cu  Co Ni Cr  C.E.C. of the s o i l on the upper s l o p e i s one-half that of the s o i l s on the lower s l o p e , and i s thought to r e f l e c t a change i n the c l a y mineral s u i t e .  ON  68  6.6  SUMMARY AND CONCLUSIONS  Several general conclusions can be drawn from t h i s study.  Although some horizon-to-horizon v a r i a b i l i t y i s evident,  the t - t e s t s i n d i c a t e the f o l l o w i n g trends or patterns. Exchangeable calcium, exchangeable magnesium and c a t i o n exchange capacity tend to decrease downslope; t h i s trend i s most s i g n i f i c a n t i n the Bt and BC horizons.  Conceivably,  such trends are a f u n c t i o n of changes i n parent m a t e r i a l and p o s s i b l y of higher leaching rates i f a downslope increase e x i s t s i n subsurface water f l u x . A downslope increase i n pH i s apparent, the r e l a t i o n s h i p being more s i g n i f i c a n t i n the deeper horizons.  Other than a  s l i g h t downslope decrease i n organic carbon concentrations, there i s no obvious explanation f o r t h i s pH increase. Nitrogen concentrations and percent base s a t u r a t i o n remain e f f e c t i v e l y constant downslope; exchangeable sodium, exchangeable potassium and the carbon/nitrogen r a t i o are too v a r i a b l e to show any strong pattern or trend. In general, f o r a l l v a r i a b l e s , s i g n i f i c a n t d i f f e r e n c e s tend to be more frequent between non-adjacent than adjacent p l o t s . Inspection of Table 6.6.1  i n d i c a t e s that many aspects  of these f i n d i n g s resemble those of previous s t u d i e s . also suggests that with the p o s s i b l e exception of pH,  The table no  p a r t i c u l a r v a r i a b l e can be expected to behave i n a r e l a t i v e l y consistent manner as geographic l o c a t i o n v a r i e s . The stepwise discriminant a n a l y s i s i n d i c a t e s that the s o i l horizons are chemically d i s t i n c t e n t i t i e s ; t h i s suggests v e r t i c a l pedogenic development i s an important process on the hillslope.  Further, t h i s a n a l y s i s i d e n t i f i e s a gradual downslope  change, i n s o i l chemistry.  However, separation of t r u l y  d i s t i n c t i v e slope segments on the basis of the v a r i a b l e s studied  69  is difficult.  As might be expected,  the a n a l y s i s p o i n t s out  t h a t s e p a r a t i o n o f parent m a t e r i a l groups i s p o s s i b l e w i t h some c h e m i c a l v a r i a b l e s but not w i t h o t h e r s . The  three-way a n a l y s i s of v a r i a n c e r e v e a l s t h a t  soil  c h e m i s t r y can be w e l l c o r r e l a t e d w i t h h o r i z o n and s l o p e p o s i t i o n . However, c o r r e l a t i o n s between s o i l c h e m i s t r y and parent m a t e r i a l or w i t h i n t e r a c t i o n s among two o r t h r e e of the f a c t o r s , h o r i z o n , s l o p e p o s i t i o n and parent m a t e r i a l , a r e r a r e l y Variability  significant.  among c h e m i c a l s p e c i e s i n c r e a s e s i n the  sequence: pH, p e r c e n t base s a t u r a t i o n , c a r b o n / n i t r o g e n  ratio,  c a t i o n exchange c a p a c i t y , n i t r o g e n , exchangeable c a l c i u m , p e r c e n t carbon, exchangeable potassium, magnesium.  exchangeable sodium, exchangeable  Among s o i l h o r i z o n s , the v a r i a b i l i t y o f s p e c i f i c  c h e m i c a l s p e c i e s f l u c t u a t e s ; i t tends t o i n c r e a s e w i t h depth f o r exchangeable c a l c i u m , c a t i o n exchange c a p a c i t y , p e r c e n t  carbon  and n i t r o g e n , and to decrease w i t h depth f o r exchangeable sodium, exchangeable potassium  and p e r c e n t base s a t u r a t i o n .  F o r exchangeable magnesium, pH and c a r b o n / n i t r o g e n r a t i o , no t r e n d i n v a r i a b i l i t y w i t h depth i n the s o i l i s apparent.  Soil  c h e m i c a l v a r i a b i l i t y does n o t appear t o be i n f l u e n c e d by topographic p o s i t i o n .  However, an enlargement i n t h e s i z e o f  the a r e a sampled may be accompanied by an i n c r e a s e i n the v a r i a b i l i t y o f the c h e m i c a l s p e c i e s examined.  70  SELECTED BIBLIOGRAPHY Beckett, P. H. T., and Webster, R. 1971. S o i l V a r i a b i l i t y : A review. S o i l s and F e r t i l i z e r s 34: 1-14. Black, C. A., et a l . 1965. Methods of S o i l A n a l y s i s : Part 2. American Society of Agronomy: Madison, Wis. Bracewell, J . M.; Robertson, G. W.; and Logan, J . 1979. V a r i a b i l i t y of Organic Matter and Exchangeable Cations w i t h i n the A2 Horizon of an Iron Podzol. Journal of S o i l Science 30: 327-332. Brown, M. B., ed. 1977. B. M.-D. P. Biomedical Computer Programs, P-Series. U n i v e r s i t y of C a l i f o r n i a Press: Berkeley, C a l i f . Cameron, D. R. 1978. V a r i a b i l i t y of S o i l Water Retention Curves and Predicted Hydraulic C o n d u c t i v i t i e s on a Small P l o t . S o i l Science 126: 364-371. Campbell, James B. 1978. S p a t i a l V a r i a t i o n of Sand Content and pH w i t h i n Single Contiguous Delineations of Two S o i l Mapping Units. S o i l Science Society of America Journal 42: 460-464. C o l l i n s , E". P. Whiteside, and Cress, C. E. 1970 Seasonable V a r i a t i o n of pH and Lime Requirements i n Several Southern Michigan S o i l s when Measured i n D i f f e r e n t Ways. S o i l Science Society of America Proceedings 34: 56-61. Drees, L. R., and Wilding, L. P. 1973. Elemental V a r i a b i l i t y w i t h i n a Sample Unit. S o i l Science Society of America Proceedings 37: 82-87. F i t z p a t r i c k , R. W., and Le Roux, J . 1977. Mineralogy and Chemistry of a Transvaal Black Clay Toposequence. Journal of S o i l Science 28: 165-179. Freund, John E. edition.  1973. Modern Elementary S t a t i s t i c s . 4th P r e n t i c e - H a l l , Inc.: Englewood C l i f f s , N. J .  Furley, P. A. 1971. Relationships between Slope Form and S o i l P r o p e r t i e s Developed over Chalk Parent M a t e r i a l s . In: Slopes: Form and Process, pp. 141-163. I n s t i t u t e of B r i t i s h Geographers Special P u b l i c a t i o n No. 3. The I n s t i t u t e : London.  71  Furley, P. A. 1974. Soil-Slope-Plant Relationships i n the Northern Maya Mountains, B e l i z e , Central America. I. The Sequence over Metamorphic Sandstones and Shales. Journal of Biogeography 1: 171-186. Furley, P. A. 1974. Soil-Slope-Plant Relationships i n the Northern Maya Mountains, B e l i z e , Central America. I I . The Sequence over P h y l l i t e s and Granites. Journal of Biogeography 1: 263-279. Glazovskays, M. A. 1970. Types of Geochemical S o i l Catenas. Soviet Geographical Reviews and Translations 9: 235-245. Greig, Malcolm, and G j e r r i n g , James. 1978. U. B..C. Genlin: A General Least Squares A n a l y s i s of Variance Program. Revised e d i t i o n . Computing Centre, U. B. C : Vancouver, B. C. Hammond, Robert, and McCallagh, P a t r i c k . 1974. Quantitative Techniques i n Geography: An Introduction. Clarendon Press: Oxford. Huddleston, J . H., and Reicken, F. F. 1973. Local S o i l Landscape Relationships i n Western Iowa. I . D i s t r i b u t i o n s of Selected Cheical and P h y s i c a l P r o p e r t i e s . S o i l Science Society of America Proceedings 37: 264-270. Ives, D. W., and C u t l e r , E. J . B. 1972. A Toposequence of Steepland S o i l s i n the D r i e r High-Country Yellow-Brown Earth (Dry Hydrous E l d e f u l v i e ) Region, Canterbury, New Zealand. New Zealand Journal of Science 15: 385-407. K l e i s s , Harold J . 1970. H i l l s l o p e Sedimentation and S o i l Formation i n Northeastern Iowa. S o i l Science Society of America Proceedings 34: 287-290. Lavkulich, L. M. 1978. Methods Manual: Pedology Laboratory. Department of S o i l Science, U. B. C : Vancouver, B. C. Leco.  1959. I n s t r u c t i o n Manual f o r Operation of Leco Carbon and Sulfur Analysers. Laboratory Equipment Corporation: St. Joseph, Mich.  Lepsch, I. F., and Buol, S. W. 1974. Investigations i n an O x i s o l - U l t i s o l Toposequence i n S. Paulo State, B r a z i l . S o i l Science Society of America Proceedings 38: 491-496.  72  Macyk, T. M.; Pawluk, S.; and Lindsay, J . D. 1978. Relief arid Microclimate as Related to S o i l P r o p e r t i e s . Canadian Journal of S o i l Science 58: 421-438. Mader, Donald L. 1963. S o i l V a r i a b i l i t y : A Serious Problem i n S o i l - S i t e Studies i n the North West. S o i l Science Society of America Proceedings 27: 707-709. McFee, W. W., and Stone, E. L. 1965. Quantity, D i s t r i b u t i o n and V a r i a b i l i t y of Organic M a t e r i a l and Nutrients i n a Forest Podzol i n New York. S o i l Science Society of America Proceedings 29: 432-436. Norton, L. D., and Franzmeier, D. P. 1978. Toposequences of Loess-Derived S o i l s i n Southwestern Indiana. S o i l Science Society of America Journal 42: 622-627. O i l i e r , C. D. 1976. Catenas i n D i f f e r e n t Climates. In: Geomorphology and Climate, pp. 137-169. Edited by E. Derbyshire. Wiley-Interscience: New York. P e l i s e k , J . 1973. V e r t i c a l S o i l Z o n a l i t y i n the Carpathians of Czechoslovakia. Geoderma 9: 193-211. Reynolds, S. G. 1975. S o i l Property V a r i a b i l i t y i n Slope Studies: Suggested Sampling Schemes and T y p i c a l Required Sample Sizes. Z e i t s c h r i f t f u r Geomorphologia 19: 191-208. Ruhe, R. V., and Walker, P. H. 1968. H i l l s l o p e Models and S o i l Formation. I : Open Systems. Transactions of the Ninth I n t e r n a t i o n a l Congress of S o i l Science 4: 551-560. Ruhe, R. V., and Walker, P. H. 1968. H i l l s l o p e Models and S o i l Formation. I I : Closed Systems. Transactions of the Ninth I n t e r n a t i o n a l Congress of S o i l Science 4: 561-567. Runge, E. C. A., and Riecken, F. F. 1966. Influence of Natural Drainage on the D i s t r i b u t i o n and Forms of Phosphorus i n Some Iowa P r a i r i e S o i l s . S o i l Science Society of America Proceedings 30: 624-630. Ruxton, G. P. 1958 Weathering and Subsurface Erosion i n Granite at the Piedmont Angle, Balos, Sudan. Geology Magazine 95: 353-377.  73  . Schreier, Hanspeter. 1976. "Chemical Terrain V a r i a b i l i t y : A Geomorphological Approach Using Numerical and Remote Sensign Techniques." Ph. D. d i s s e r t a t i o n , The U n i v e r s i t y of B r i t i s h Columbia. Tardy, Y.; Bocquier, G.; Paquet, H.; and M i l l u t , G. 1973. Formation of Clay from Granite and i t s D i s t r i b u t i o n i n R e l a t i o n to Climate and Topography. Geoderma 10: 271-284. T i d b a l l , Ronald R. 1976. Chemical V a r i a t i o n of S o i l s i n Missouri Associated w i t h Selected Levels of the S o i l C l a s s i f i c a t i o n System. Geological Survey P r o f e s s i o n a l Paper 952-4. United States Department of the I n t e r i o r : Washington. Troeh, F. R. 1964. Landform Parameters Connected to S o i l Drainage. S o i l Science Society of America Proceedings 28: 808-812. Wagenet, R. J . , and Jurinak, J . J . 1978. S p a t i a l V a r i a b i l i t y of Soluble S a l t Content i n a Mancos Shale Watershed. S o i l Science 126: 342-349. Webster, R. 1977. Quantitative and Numerical Methods i n S o i l C l a s s i f i c a t i o n and Survey. Clarendon Press, Oxford. Yaalon, D. H.; Brenner, I . ; and Koyumdjisky, H. 1974. Weathering and M o b i l i t y Sequence of Minor Elements on a B a s a l t i c Pedomorphic Surface, G a l i l e e , I s r a e l . Geoderma 12: 233-244. Yaalon, D. H.; Jungreis, Chauva; and Koyumdjisky, Hanna. 1972. D i s t r i b u t i o n and Reorganization of Manganese i n Three Catenas of Mediterranean S o i l s . Geoderma 7: 71-78.  74  Appendix A Data Summary  VALUES FOR TOTAL SAMPLE POPULATION  VARIABLE HC. NAME 1 2 3 4 5 6 7 8 10  CA BG HA K CEC EH C N CkRATIO It EASISAT  BEAU  STANDARD DEVIATION  10.577 3.718 0. 160 0.932 22.372 6.411 0.652 369.394 17.036 0.681  4.426 2.357 0.075 0. 273 8.764 0.477 0.315 122.046 3.869 0.113  ST.ERR. OF MEAN 0.2332 0.1242 0.0040 0.0144 0.4619 0.0251 0.0166 6.4324 0.20 39 0.0059  (ALL PLOTS, ALL HORIZONS)  COEPF. OF VARIATION 0.41842 0.63396 0.46959 0.29246 0.39174 0.07438 0.48369 0.33039 0.22711 0. 16540  S N A L L E S T Z-SCORE VALUE 3.000 0.500 0.033 0.325 10.200 5.300 0. 150 129.000 6.977 0.313  -1.71 - 1 . 37 -1.62 -2.23 -1.39 -2.34 -1.59 -1.97 -2.60 -3.26  L A B VALOE 23.750 9.750 0.375 2.350 52.100 7.440 1.870 828.000 32.3 66 1.014  G E S T Z-SCOBE 2.98 2.56 2.86 5.20 3.39 2. 15 3.86 3.76 3.96 2.95  RANGE 20. 750 9.250 0. 337 2.025 4 1.900 2. 140 1. 720 699.000 25. 388 0.700  TOTAL FREQUENCY 360 360 360 360 360 360 360 360 360 360  AGGREGATE HORIZON VALUES  VABIAELI NO. NAhE 1 CA 2 HG cc 3 Ni § 4K N 5 CIC § 6 fl 7 C e s 10 CNHAHO 11 EASESAl m  1 2 3 4 5 6 7  CA HG NA K etc EH C N 10 CNBA1I0 i i EASISA1  a  BEAN  STANDA ED DEVIATION  ST.ERR. OF MEAN  COEFF. OF VARIATION  (ALL PLOTS)  S H AL L E S T Z-SCORE VALUE  L A B VALUE  G E S T Z-SCORE  RANGE  TOTAL FREQUENCY  6.044 1.22a 0.091 0.S74 15.350 5.885 1.082 515.162 21.083 0.546  1.239 0. 386 0.027 0.364 1.913 0.262 0.219 83. 165 3.234 0. 104  0.1306 0.0407 0.0028 0.0384 0.2017 0.0276 0.0231 8.7663 0.3409 0.0109  0.20506 0.31538 0.29832 0.37359 0.12464 0.04451 0.20252 0.16143 0.15340 0.19003  3.000 0.500 0.038 0.325 10.800 5.300 0. 721 365.000 14.774 0. 313  -2.46 - 1.88 - 1.94 -1.78 -2.38 -2.23 -1.65 - 1.81 -1.95 -2.24  9.075 2.700 0. 173 2.350 21.600 6.440 1.870 828.000 31.757 0.869  2.45 3.82 3.05 3.78 3.27 2. 12 3.60 3.76 3.30 3. 12  6. 075 2. 200 0. 135 2.025 10.800 1.140 1. 149 463.000 16.983 0.556  90 90 90 90 90 90 90 90 90 90  8.217 2.133 0. 113 0.892 15.137 6.228 0.626 380.806 16.582 0.754  1. 248 0.532 0.034 0. 287 2.172 0.269 0.181 79.430 3.847 0.081  0.1316 0.0561 0.0036 C.0302 0.2289 0.0283 0.0191 8.37 26 0.4055 0.00 86  0. 15188 0.24950 0.30023 0.32123 0. 14348 0.04318 0.28872 0.20858 0.23197 0. 10802  5.925 0.750 0. 048 0.450 10.200 5.590 0. 307 204.000 6.977 0.617  -1.84 -2.60 -1.92 -1.54 -2.27 -2.37 -1.77 -2.23 -2.50 - 1.69  11.625 3.750 0.212 1.850 20.300 6.800 1.204 555.000 32.366 1.014  2.73 3.04 2.92 3.34 2.38 2.13 3.19 2.19 4. 10 3.19  5. 700 3.000 0. 164 1. 400 10. 100 1.210 0. 897 351.000 25. 388 0. 397  90 90 90 90 90 90 90 90 90 90  2.52 2.10 2.69 4.27 3.21 1.99 1.89 2.20 2.70 3.33  15.000 6.250 0.275 1.425 39.500 1. 130 0.616 336.000 10. 277 0.449  90 90 90 90 90 90 90 90 90 90  2.58 2.30 2.65 2.22 2.36 1 .93 3.54 2.77 1.99 3.08  15. 250 7. 000 0. 275 0. 850 29.200 1. 130 0. 651 260.000 12.069 0. 264  90 90 90 90 90 90 90 90 90 90  ON  CA HG NA K CIC EH C N CNBATIO EASISA1  14.017 5.589 0.220 0.958 29.319 6.673 0.527 338.151 15.413 0.717  3.365 1.387 0.058 0.221 7.098 0. 305 0. 149 74.007 2.023 0.078  0.3547 0.1462 0.0061 0.0233 0.7482 0.0322 0.0157 7.8010 C.2133 0.0082  0.24008 0.24813 0.26236 0.23065 0.24210 0.04576 0.28293 0.21836 0.13126 0. 10840  7.500 2.250 0. 100 0.475 12.600 6. 150 0. 193 165.000 10.604 0.527  - 1.94 -2.41 -2.08 - 2 . 19 -2.36 -1.71 - 2 . 24 -2.34 -2.38 -2.44  22.500 8.500 0.375 1.900 52.100 7.280 0.809 501.000 20.881 0.976  CA HG NA K CIC 6 EH 7 C 8 N 10 C KR ATIC 11 EASiSAT  14.030 5.925 0.217 0.905 29.684 6.871 0.371 243.521 15.069 C.7C8  3.761 1.660 0.060 0.178 6.734 0. 294 0. 122 52.546 2. 77b 0.044  0.3965 0.1750 0.0063 0.0188 0.7099 0.0310 0.0128 5.5388 0.2926 0.0046  0.26808 0.28013 0. 27423 0. 19657 0.22687 0.04282 0.32724 0.21578 0.18419 0.06191  8.500 2.750 0. 100 0.450 16.400 6. 310 0. 150 129.000 8.523 0. 579  -1.47 -1.91 -1.97 -2.56 -1.97 - 1.91 -1.82 - 2 . 18 -2.36 -2.95  23.750 9.750 0.375 1.300 45.600 7.440 0.801 389.000 20.591 0.843  i 2 3 4 5 6 7 8 10 11 1 2 3 4 5  PLOT 1  VAEIAELE NO. NAME  BEAN  STANDABD DEVIATION  ST.EBB. OF MEAN  COEFF. OF VABIATION  S N A L L E S T VALUE 2-SCOBE  L A B VALUE  G E S T 2-SCOBE  BANGE  TOTAL FBEQUENCY  CA BG NA K CEC EH C B CNEATIO BA3ESA1  6.688 1.135 0.068 1. 105 15.647 5.671 1. 169 520.866 22.525 0.589  1. 151 0.269 0.019 0.336 2.657 0.251 0 . 180 44.155 3.600 0 . 134  0.2972 0.0696 0.0048 0.0868 0.6860 0.0648 0.0465 1 1 . 4 0 08 0.9294 0.0347  0.17210 0.23735 0.27499 0.30428 0.16981 0.04425 0.15388 0.08477 0.15981 0.22797  4.725 0.725 0.038 0.575 10. 800 5 . 300 0.911 448.000 17.880 0.40 3  -1.71 -1.52 -1.60 -1.58 - 1.82 -1.48 - 1.44 - 1.65 -1.29 - 1.39  9.075 1.725 0.097 1.725 19.100 6.200 1.518 607.000 31.757 0.86 9  2.07 2 . 19 1.57 1.84 1.30 2.11 1.94 1.95 2.56 2.08  4.350 1.000 0.059 1. 150 8. 300 0.900 0 . 607 159.000 13.877 0.467  15 15 15 15 15 15 15 15 15 15  CA BG NA  CEC EH C N CNBAIIC EASISAT  6.827 2.113 0 . 1 18 0.987 16.073 5.962 0.497 393.866 12.657 0.753  1.097 0.299 0.033 0.251 2 . 108 0 . 190 0.085 59.499 1.601 0.069  0 . 2 8 32 0.0773 0.0O86 0.0647 0.5442 0.0492 0.0220 15.3625 0.4134 0.0177  0.12425 0.14159 0.28341 0.25390 0.13112 0.03195 0 . 17154 0.15106 0.12651 0.09099  6.375 1.700 0.065 0.650 13.400 5.590 0.346 283.000 10.765 0.617  -2.24 -1.38 -1.58 -1.34 - 1.27 -1.95 -1.77 -1.86 - 1. 18 -2.00  11.000 2.725 0.173 1.450 20.300 6.280 0.614 491.000 16.290 0.835  1.98 2.04 1.65 1.85 2.01 1.67 1.38 1.63 2.27 1.19  4 . 625 1.025 0 . 108 0.800 6.900 0 . 690 0 . 268 208.000 5 . 524 0 . 219  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA BG NA K CEC EH C N CNBAIIO EASESAI  18.350 6.583 0.238 1. 105 37.480 6.358 0.521 348.266 14.938 0.706  2.478 1.C21 0.043 0.341 5.881 0.085 0 . 096 43.986 2.025 0.061  0.6398 0 . 26 35 0.0111 C.0881 1.5184 0.0220 0.0249 11.3571 0.5228 0.0157  0.13505 0.15503 0.18111 0.30882 0.15690 0.01343 0.18477 0. 12630 0.13554 0.08588  13.750 4.500 0. 175 0 . 800 26.400 6 . 190 0 . 305 236.000 12. 362 0.619  -1.86 -2.04 -1.47 -0.89 -1.88 -1.97 -2.25 -2.55 -1.27 -1.42  22.500 8.500 0.300 1.900 52.100 6.530 0.687 415.000 20.881 0.873  1.67 1.88 1.43 2.33 2.49 2.01 1.72 1.52 2.94 2.75  8. 750 4.000 0 . 125 1. 100 25.700 0 . 340 0 . 382 179.000 8. 519 0 . 253  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA BG NA K CEC EH C N CNHATIC EASISAT  1 9 . 5 33 7.400 0.230 C.860 37.533 6.652 C.319 220.533 14.352 0.746  2.383 1. 202 0.047 0.090 4 . 089 0 . 119 0 . 091 45.C09 2 . 147 0.027  0.6152 0.3103 0.0122 0.0231 1.0559 0.0308 0.0234 11.6214 0.5544 0.0071  0.12198 0.16242 0.20624 0 . 10412 0.10896 0.01793 0.28387 0.20409 0.14963 0.03668  16.250 5.000 0. 150 0 . 725 31.600 6.520 0. 190 152.000 10.044 0.704  -1.38 -2.00 - 1.69 -1.51 -1.45 -1.11 -1.43 -1.52 -2.01 -1.54  23.750 9.750 0.325 1. 100 45.600 6.890 0.456 311.000 18.612 0.795  1.77 1.96 2.00 2.68 1.97 2.00 1.51 2.01 1.98 1.76  7. 500 4.750 0 . 175 0 . 375 14.000 0 . 370 0.266 159.000 8. 568 0 . 090  15 15 15 15 15 15 15 15 15 15  i 2 3 4 5 i 6 7 8 10 11  n  K  PLOT 2  VAEIAELE NO. MAtiE  DEAN  STANDASO DEVIATION  ST.EBB. OF MEAN  C O E F F . OF VARIATION  S H A L L E S T Z-SCOBE VALUE  1. 040 0. 269 0.024 0.251 1.826 0.242 0.296 93.312 3.502 0.070  0.2685 0.0695 0.0063 0.0648 0.4715 0.0626 0.0763 24.0931 0.9042 0.0182  0.16289 0.20065 0.27467 0.30844 0.12278 0.04054 0.25055 0.16287 0.17037 0. 12115  4. 125 1.000 0.055 0.475 11. 600 5.480 0.758 430.000 14.774 0.417  L A B VALUE  G E S T Z-SCOHE  BANGE  TOTAL FREQUENCY  - 2 . 17 -1.27 - 1 . 39 - 1 . 35 -1.79 -2.07 -1.43 -1.53 -1.65 - 2 . 33  8.225 1.925 0. 132 1.550 18.800 6.440 1.870 722.000 27.646 0.706  1.77 2. 17 1.75 2.94 2. 15 1.89 2.33 1.60 2.03 1.78  4. 100 0.925 0.077 1.075 7.200 0. 960 1.112 292.000 12.872 0.289  15 15 15 15 15 15 15 15 15 15  10 11  CNBATIO BASESAT  6.383 1.342 0.089 0.813 14.873 5.981 1. 180 572.933 20.553 0.581  1 •> 2 3 g « g 5 g 6 7 8 10 11  CA BG NA I CEC EH C H CNBATIO EASISAT  8.492 2.268 0.113 0.612 15.533 6.094 0.724 404.932 17.957 0.743  1. 064 0.567 0.033 0. 103 2.029 0. 141 0. 157 71.900 2.658 0.053  0.2746 0.1463 0.0085 0.0265 0.5240 0.0363 0.0406 18.5645 0.6862 0.0133  0.12525 0.24761 0.27825 0.16771 0.13064 0.02306 0.21741 0.17756 0. 14801 0.07184  6.775 1.550 0.082 0.450 13.400 5.880 0.534 301.000 13.985 0.635  -1.61 -1.30 -1.09 -1.58 - 1.05 -1.52 -1.21 -1.45 -1.49 -2.01  10.425 3.375 0. 187 0.825 18.800 6.310 1.068 549.000 23.117 0.817  1.82 1.92 2.11 2.08 1.61 1.54 2.19 2.00 1.94 1.39  3. 650 1.825 0. 105 0. 375 5.400 0. 430 0. 534 248.000 9. 132 0. 181  15 15 15 15 15 15 15 15 15 15  CA BG NA K CEC EH C N CNEAIIO EASESAT  16.417 6.400 0.215 0.915 34.127 6.350 0.668 408.399 16.342 0.706  1. 281 1.206 0.046 0. 108 3.304 0. 121 0.091 46.039 1.047 0.083  0.3306 0.31 13 0.0119 0.0280 0.8530 0.0313 0.0234 1 1.8871 0.2703 0.0215  0.07800 0.18838 0.21441 0.11856 0.09681 0.01909 0.13568 0.11273 0.06407 0. 11801  13.500 4. 500 0. 125 0.750 29.000 6. 150 0.531 341.000 14.877 0.618  - 2 . 28 -1.58 -1.95 - 1.52 -1.55 -1.65 -1.51 -1.46 -1.40 - 1.05  18.750 8.500 0.275 1. 100 40.400 6.570 0.797 473.000 17.645 0.976  1.82 1.74 1.30 1.71 1.90 1.81 1.43 1.40 1.24 3.24  5.250 4.000 0. 150 0.350 1 1.400 0. 420 0. 266 132.000 2. 768 0.358  15 15 15 15 15 15 15 15 15 15  CA hG NA K CEC EH C N CKKAHO EASESA1  17.117 7.233 0.205 C.928 36.047 6.674 0.46B 263.1J3 17.754 C.7C8  1.476 1.116 0.046 0. 137 2.980 0. 271 0. C99 50.360 1.141 0. 035  0.3810 0.2881 0.0120 0.0353 0.7693 0.0700 C.0256 13.0029 0.2945 0.00 91  0.08621 0. 15427 0.22675 0. 1U710 0.08266 0.04062 0.21139 0.19139 0.06425 0.04980  14.250 5.250 0. 125 0.750 30.600 6. 310 0. 301 185.000 16.183 0.633  -1.94 -1.78 -1.72 -1.31 -1.83 -1.34 -1.69 - 1. 55 -1.38 -2.12  19.750 9.250 0.275 1.125 41.600 7.240 0.636 356.000 19.867 0.765  1.78 1.81 1.51 1.44 1.86 2.09 1.69 1.84 1.85 1.62  5. 500 4. 000 0. 150 0. 375 1 1.000 0. 930 -0. 335 171.000 3. 684 0. 132  15 15 15 15 15 15 15 15 15 15  1 C» B 2 BG MA K CEC tti C  6  z  1 2 3 4 5 6 7 8 10 11  '  PLOT 3  VAhlAELE SC. SAME  MEAN  STANDABD DEVIATION  ST.EBB. OF BEAN  COEFF. OF VARIATION  S (1 A L L E S T Z-SCOBE VALOE  L A B VALOE  G E S T Z-SCOBE  RANGE  TOTAL FREQUENCY  1 2 3 4 5 6 7 8 10 11  CA BG NA K CEC EH C N CNBATIO EASES AT  E.367 1.347 0.104 0.832 15.407 5.991 1.112 544.799 20.550 0.560  1.045 0.385 0.0 16 0. 197 1.040 0. 337 0.161 57.143 3. 203 0.076  0.2697 0.0995 0.0041 0.0508 0.2686 0.0869 0.04 16 14.7543 0.8271 0.0196  0. 16407 0.28621 0. 15264 0.23655 0.06752 0.05617 0.14482 0.10489 0.15589 0.13537  4.050 0.500 0.077 0.550 13.200 5. 320 0. 840 446.000 16.157 0.365  -2.22 -2.20 - 1.72 -1.43 - 2 . 12 -1.99 -1.69 - 1.73 -1.37 -2.58  7.950 1.950 0.140 1.200 17.300 6.430 1.374 661.000 26.525 0.700  1.52 1.57 2.23 1.87 1.82 1.30 1.62 2.03 1 .87 1.84  3. 900 1. 450 0.063 0. 650 4. 100 1. 110 0. 534 215.000 10. 367 0. 335  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10  11  CA MG NA K CEC PH C N CNBA1IC EASISAT  8.472 2.268 0.110 0.822 16.853 6.177 0.697 422.399 16.530 0.690  1. 302 0.453 0. 0 26 0. 195 1.842 0. 201 0.C97 39.569 2.014 0.040  0.3361 0.1169 0.0068 0.0503 0.4757 0.0518 0.0251 10.2166 0.5200 0.0102  0.15365 0. 19967 0.23909 0.23704 0.10931 0.03248 0.13942 0.09368 0.12184 0.05751  6. 125 1.500 0.080 0. 450 13.400 5.900 0.496 346.000 14.313 0.622  -1.80 -1.70 -1.14 -1.91 -1.87 -1.38 -2.07 -1.93 - 1 . 10 -1.72  10.450 3.275 0. 170 1. 150 19.100 6.530 0.840 481.000 20.000 0.764  1.52 2.22 2.29 1.69 1.22 1.76 1.47 1.48 1.72 1.87  4.325 1. 775 0.090 0. 700 5.700 0. 630 0. 344 135.000 5. 687 0. 143  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA hG NA K CEC EH C N CNBATIO EASESAT  14.850 6.000 0. 192 0.9C8 3 1.600 6.564 0.572 349.9S9 16.392 0.691  2.352 1. 142 0.051 0.221 3.051 0. 136 0.062 36.359 1. 298 0.066  0.6074 0.2948 0.0131 0.0571 0.7878 0.0352 0.0161 9.3879 0.3353 0.0171  0. 15841 0. 19029 0.26396 0.24345 0.09655 0.02075 0. 10914 0.10388 0.07921 0.09575  8.750 3.250 0.125 0.475 23.900 6.360 0. 460 298.000 14.566 0.527  -2.59 -2.41 - 1.32 -1.96 -2.52 - 1.50 -1.80 -1.43 -1.41 -2.48  18.250 8.000 0.275 1.250 34.900 6.890 0.724 411.000 18.479 0.831  1.45 1.75 1.65 1.55 1.08 2.39 2.43 1.68 1.61 2.11  9.500 4. 750 0. 150 0.775 1 1.000 0. 530 0. 264 113.000 3. 913 0.304  15 15 15 15 15 15 15 15 15 15  13.233 5.767 0. 182 0.840 28.220 6.633 0.443 262.532 16.640 0.708  1.877 1. 132 0.055 0. 164 3. 620 0.114 0. 143 52.690 2.516 0.042  0. 48 46 0.2922 0.0141 0.O425 0.9346 0.0295 0.O370 13.6045 0.6497 0.0108  0.14182 0.19626 0.30090 0.19574 0.12826 0.01721 0.32337 0.20070 0. 15121 0.05903  9.000 3. 500 0. 100 0.600 22. 300 6.400 0.267 204.000 12. 5*4 0.600  - 2 . 26 -2.00 -1.49 - 1. 46 -1.64 -2.04 - 1. 23 -1.11 - 1.61 -2.59  16.500 8.000 0.275 1.125 35.600 6.750 0.801 389.000 20.591 0.767  1.74 1.97 1.7 1 1.73 2.04 1.02 2.49 2.40 1.57 1.42  7.500 4. 500 0. 175 0.525 1 3. 300 0. 350 0. 534 185.000 7. 997 0. 167  15 15 15 15 15 15 15 15 15 15  1 CA 2 MG NA K  CEC PH C 8 N 10 C N H A H O 11 E A S I S A T  PLOT 4  VABIAELE NO. NAME  g M  O 53  COEFF. OF VARIATION  S M A L L E S T VAL0B  Z-SCOBE  L A B VALUE  G E S T Z-SCOBE  RANGE  TOTAL FREQUENCY  CEC EH C N CNBATIO BASESAT  0.3257 0.1469 0.0036 0.0956 0.6933 0.0566 0.O594 29.7781 0.5046 0.0285  0.22652 0.40845 0.12835 0.45702 0.17845 0.03688 0.24147 0.23115 0.10205 0.20933  3.000 0.500 0.087 0. 325 1 1.900 5.650 0.759 365.000 16.660 0.313  -2.04 -1.57 -1.51 -1.31 -1.17 -1.33 -0.84 - 1. 16 -1.27 -1.93  8.425 2.700 0. 132 1.675 21.600 6.380 1.518 828.000 22.877 0.689  2.26 2.30 1.73 2.34 2.44 2.01 2.45 2.85 1.91 1.48  5.425 2. 200 0. 045 1.350 9.700 0.730 0.759 463.000 6.216 0. 376  15 15 15 15 15 15 15 15 15 15  CA OG NA K CEC EH C N CNR m o EASESAT  7.517 2.298 0.126 0.800 14.513 6.437 0.667 363.466 17.865 0.738  1.090 0.656 0.044 0. 235 2.026 0.276 0. 2 19 101.911 5.407 0.047  0.2814 0.1693 0.01 13 0.0607 0.5230 0.0712 0.0564 26.3133 1.3961 0.0121  0. 14499 0.28533 0.34817 0.29410 0.13956 0.04281 0.32785 0.26576 0.30266 0.06371  5.925 1.225 0.075 0.525 11.600 5.910 0. 307 231.000 6.977 0.668  - 1.46 - 1.64 - 1. 16 -1.17 - 1.44 -1.91 -1.65 - 1.50 -2.01 - 1.48  9.150 3.750 0.212 1.275 17.900 6.720 1.075 517.000 28.268 0.851  1.50 2.21 1.96 2.02 1.67 1.03 1.87 1.31 1.92 2.40  3. 225 2.525 0. 137 0. 750 6. 300 0.810 0.768 286.000 21. 291 0. 182  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA NG NA CEC EH C N CNBA1I0 BASESAT  12. 183 5.683 0.215 0.895 28.353 6.842 0.614 364.933 16.7S4 0.666  2. 032 1.294 0.063 0. 144 3.411 0. 198 0. 131 69.011 1.705 0.057  0.5247 0.3340 0.0163 0.0372 0.8808 0.0511 0.0337 17.8185 0.4402 0.0146  0.16679 0.22764 0.29417 0.16088 0.12031 0.02893 0.21289 0.18911 0.10152 0.08503  8.500 3.500 0. 125 0.700 22.100 6.590 0. 38 5 279.000 13.604 0. 561  -1.81 -1.69 - 1.42 -1.35 - 1.83 -1.27 -1.75 - 1.25 -1.87 -1.87  15.500 8.250 0.350 1. 100 33.700 7.230 0.809 478.000 20.000 0.748  1.63 1.98 2. 13 1.42 1.57 1.96 1.50 1.64 1.88 1.45  7.000 4.750 0. 225 0. 400 1 1. 600 0.640 0. 424 199.000 6. 396 0. 188  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA NG NA K CEC EH C N CNRAUC EASESAT  13.150 6.550 0.228 G.900 30.053 6.94 3 0.413 274.666 14.971 0.693  2.544 1. 489 0.080 0. 161 5.464 0. 240 0. 103 55.946 2.083 0.043  0.6568 0.3844 0.0207 0.0416 1.4109 0.0620 0.0267 14.4451 0.5378 0.0111  0.19345 0.22727 0.35082 0. 17910 0. 18182 0.03457 0.25049 0.20369 0.13913 0.06220  8.500 4. 500 0. 150 0. 650 19.800 6.530 0. 190 157.000 12. 102 0.617  -1.83 -1.38 -0.98 -1.55 -1.88 - 1.72 -2.16 - 2 . 10 - 1.38 -1.78  19.000 9.500 0.375 1. 175 43.800 7.440 0.608 378.000 19.826 0.780  2.30 1.98 1.83 1.71 2.52 2.07 1.89 1.85 2.33 2.00  10. 500 5. 000 0. 225 0.525 24.000 0. 910 0, 418 221.000 7.724 0. 163  15 15 15 15 15 15 15 15 15 15  1 2 3 CC 3 4 R 5 § 6 7 8 10 11  o  ST.ERR. OF MEAN  1. 261 0.569 0.014 0. 370 2.685 0.219 0.230 115.330 1.954 0. 110  > CO  o pa M M o as  STANDARD DEVIATION  5.568 1.393 0. 108 0.810 15.047 5.941 0.953 498.932 19.150 0.526  i  > 2 3 PC 5 4 5*3 H 5 N 6 7 8 10 11  rt  DEAN  CA MG HA K  K  OO o  PLOT 5  VARIABLE BC. HAHE  BEAN  STANDAEE DEVIATION  ST.EBB. OF MEAN  COEFP. OF VARIATION  S M A L L E S T Z-SCOBE VALOE  L A B VALOE  G E S T Z-SCOBE  RANGE  TOTAL FREQUENCY  1 2 3 4 5 6 7 8 10 11  CA BG NA K CEC EH C N CNBAIIO EASISAT  5.592 1.002 0.082 1. 157 15.247 5.830 1.052 484.066 21.688 0.511  1.450 0. 183 0. 022 0.476 1.705 0.217 0. 181 61.410 2.034 0.094  0.3744 0.0471 0.0058 0.1230 0.4402 0.0561 0.0468 15.8560 0.5251 0.0243  0.25933 0.18230 0.27285 0.41192 0.11183 0.03726 0.17240 0.12686 0.09378 0.18438  3.375 0.625 0.053 0.600 12.900 5.510 0.790 404.000 19.128 0.354  -1.53 -2.06 -1.29 - 1 . 17 - 1. 38 -1.47 -1.45 - 1. 30 -1.26 -1.66  8.000 1.250 0. 122 2.350 19. 100 6.420 1.393 636.000 26.726 0.668  1.66 1.36 1.81 2.50 2.26 2.72 1.88 2.47 2.48 1.67  4. 625 0. 625 0. 069 1. 750 6.200 0.910 0. 603 232.000 7. 598 0. 314  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA HG NA K CEC EH C N CNBAIIO EASISAT  8.2S8 1.980 0. 106 1. 198 13.420 6.343 0.595 350.199 16.912 0.868  1.396 0.419 O.032 0. 283 1.815 0.239 0.210 61.363 4.847 0.091  0.3604 0.1081 0.0083 0.0732 0.4687 0.0617 0.0543 15.8439 1.2516 0.0236  0.16822 0.21150 0.30417 0.23649 0.13525 0.03770 0.35337 0.17522 0.28661 0. 10534  6.550 1. 325 0.048 0.725 10.200 5. 910 0.337 279.000 12.079 0.724  -1.25 -1.56 -1.80 -1.67 -1.77 -1.81 -1.23 - 1 . 16 -1.00 -1.57  11.625 2.775 0. 165 1.850 16.000 6.800 1.204 509.000 32.366 1.014  2.38 1.90 1.82 2.30 1.42 1.91 2.89 2.59 3. 19 1.59  5.075 1.450 0. 117 1. 125 5. 800 0. 890 0. 867 230.000 20. 287 0.289  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA HG NA K CEC EH C N CNBATIO EASESAT  11.800 4.967 0.257 1.093 25.233 6.988 0.412 294.599 13.946 0.721  1.019 0.533 0.062 0. 122 1.727 0. 184 0.071 29.337 1.765 0.073  0.2630 0. 1377 0.0161 0.0316 0.4458 0.0474 0.0183 7.5748 0.4557 0.0188  0.08632 0. 10740 0.24272 0.11184 0.06842 0.02629 0.17234 0.09958 0.12655 0.10108  10.000 4.250 0. 175 0. 875 22.600 6.660 0. 309 247.000 10.957 0.607  -1.77 -1.34 -1.31 - 1.79 -1.53 -1.79 -1.45 -1.62 -1.69 -1.56  13.250 5.750 0.375 1.325 29.100 7.280 0.540 355.000 17.075 0.849  1.42 1.47 1.90 1.89 2.24 1.59 1.81 2.06 1.77 1.76  3. 250 1.500 0. 200 0. 450 6.500 0. 620 0. 231 108.000 6. 117 0. 242  15 15 15 15 15 15 15 15 15 15  CA HG NA K CEC FH C N CKRAT10 EASESAT  10.817 4.633 0.265 1. 130 24.327 7.204 0.262 228.800 11.455 0.693  1. 136 0.661 0.041 0. 115 2.470 0.092 0.058 43.484 1.725 0.036  0.2932 0.1705 0.0106 0.0296 0.6377 0.0238 0.0150 11.2276 0.4455 0.0093  0.10500 0.14256 0.15461 0.10145 0.10153 0.01282 0.22249 0.19005 0. 15061 0.05137  8.750 3.500 0.225 0.875 20.400 7. 040 0. 150 176.000 8.523 0. 650  -1.82 - 1.72 -0.98 -2.22 -1.59 -1.78 -1.92 -1.21 -1.70 -1.21  13.500 5.750 0.375 1.300 31.400 7.340 0.374 322.000 14.396 0.775  2.36 1.69 2.68 1.48 2.86 1.47 1.93 2.14 1.70 2.27  4.750 2. 250 0.150 0. 425 1 1. 000 0. 300 0. 224 146.000 5.873 0. 125  15 15 15 15 15 15 15 15 15 15  00  PLOT 6  5  TOTAL FREQUENCY  3.750 1.375 0. 128 1. 250 4.000 0.730 0.646 245. 000 9. 962 0.343  15 15 15 15 15 15 15 15 15 15  CA MG NA K CEC EH C 8 N 10 CNEA1I0 11 EASESAT  5.665 1. 127 0.092 1.130 15.680 5.893 1.025 169.399 22.032 0.508  1.131 0.104 O.040 0.325 0.961 0. 168 0.179 69.722 3.855 0. 108  0.2919 0.1041 0.0102 0.0838 0.2481 0.0435 0.0462 18.0023 0.9952 0.0280  0.19957 0.35882 0.42921 0.28727 0.06050 0.02857 0.17445 0.14854 0.17495 0.21343  3.675 0.600 0.045 0.675 14.500 5. 410 0.721 368.000 17.891 0.331  -1.76 -1.30 -1.19 -1.40 -1.44 -2.87 -1.70 -1.45 -1.07 -1.63  7.425 1.975 0.173 1.925 18.500 6.140 1.367 613.000 27.853 0.674  1 2 3 4 5 6 7 8 10 11  CA BG NA X CEC EH C N CKRA1IC E1SESAT  7.6S7 1.848 0.101 0.937 14.427 6.355 0.579 329.9S9 17.570 0.731  1. 169 0.6 26 0.032 0.255 1.502 0.233 0. 189 96. 152 2.486 0.056  0.3017 0.1616 0.0083 0.0657 0.3878 0.0602 0.04 88 24.8264 0.6419 0.0144  0.15184 0.33866 0.31829 0.27179 0. 10412 0.03672 0.32655 0.29137 0.14149 0.07609  6.400 0.7 50 0. 067 0.525 12.100 6.010 0.309 204.000 13.754 0.633  -1.11 -1.75 - 1.05 -1.62 -1.35 - 1.35 -1.43 -1.31 -1.53 -1.75  10.725 3.250 0.167 1.650 17.700 6.750 1.081 555.000 22.367 0.852  2.59 ' 2.24 2.07 2.80 2. 18 1.69 2.65 2.34 1.93 2.19  4.325 2. 500 0. 100 1. 125 5.300 0. 710 0.772 351.000 8.613 0.219  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA NG NA K CEC EH C S CNEA1IO EASESAT  10.500 3.900 0.203 0.830 19.120 6.935 0.376 262.732 14.067 0.811  2.087 1.021 0.061 0. 168 4.342 0. 195 0. 166 96.840 2. 153 0.040  0.5390 0.26 37 0.0158 0.0434 1.1211 0.0504 0.0429 25.0040 0.5559 0.0104  0.19880 0.26185 0.30069 0.20244 0.22709 0.02813 0.4421 1 0.36859 0.15305 0.04970  7.500 2. 250 0. 100 0.475 12.600 6.550 0. 193 165.000 10.604 0.709  - 1.44 -1.62 - 1.69 - 2 . 11 -1.50 -1.97 - 1. 10 -1.01 - 1.6 1 -2.53  14.750 5.500 0.275 1.075 27.800 7.190 0.772 501.000 20.532 0.876  2.04 1.57 1. 17 1.46 2.00 1.31 2.39 2.46 3.00 1.61  7.250 3. 250 0. 175 0.600 15.200 0. 640 0.579 336.000 9.927 0. 167  15 15 15 15 15 15 15 15 15 15  1 2 3 4 5 6 7 8 10 11  CA BG NA K CEC EH C N  10.333 3.967 0. 193 0. 772 2 1.927 7. 1 19 0.323 2 1 1.4E7 15.246 C.700  0.967 0.619 0.047 0. 167 2.569 0. 199 0.073 38. 155 2.113 0.057  0.2496 0.1597 0.0121 0.O430 0.66 34 0.0513 0.0189 9.85 17 0.5455 C O 116  0.09355 0. 15596 0.21175 0.21590 0.11718 0.02789 0.22715 0. 18013 0.13857 0.08087  8.500 2.750 0. 100 0.450 16.400 6. 670 0. 190 129.000 1 1. 232 0. 579  -1.90 -1.97 -2.00 -1.93 - 2 . 15 -2.26 -1.81 - 2 . 16 - 1.90 - 2 . 14  11.500 5.000 0.275 1.025 26.000 7.430 0.457 286.000 18.963 0.843  1.21 1.67 1.75 1.52 1.59 1.56 1.83 1.95 1.76 2.53  3.000 2. 250 0. 175 0. 575 9.600 0. 760 0. 267 157.000 7. 731 0. 264  15 15 15 15 15 15 15 15 15 15  CNHAI1C  EASESAT  BEAN  STANDAED DEVIATION  ST.EBB. OP BEAN  COEFF. OF VARIATION  S B A L L E S T VALUE Z-SCOBE  L A B VALUE  RANGE  G E S T Z-SCOBE I 1.56 2.10 2.04 2.45 2.73 1.46 1.91 2.06 1.51 1.54  VABIAELE NO. NAME  83  Appendix B S o i l Chemical Data  Horizon Codes: Ae = 1 AB = 2 Bt = 3 BC = 4  Note:  The u n i t s f o r exchangeable cations and C.E.C. are meq/100 g.  84 PLOT  1.000 1.000 1.000 1.000 1.000 1.000 1.000 LOCO 1.000 1.000 1.000 1.000 1 .000 1.000 1.000 2.000 2.000 2. 000 2.000 2.COO 2.000 2.000 2. COO 2.000 2.000 2.000 2.000 2.00C 2.000 2.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3. COO 3.000 u.COO 4.000 4. 000 4.000 4.000 4.000 4.COO 4.COO 4. COO 4.000 4.000 4.000 4.000 4.000 4.000 5.000 5.000 5. 000 5.000 5.000 5.000 5.000 5.000 5 . COO 5.000 5.000 5.000 5.000 5.000 5.000 6.000 6.000 6. COO 6.000 6.000  PROFILE NUMBER  HORIZON  EXCH. Ca  1.000 2.000 3.000 4. 000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000 30.000 31.000 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000 41.000 42.000 43.000 44.000 45.000 46.000 47.000 48.000 49.000 50.000 51.000 52.000 53.000 54.000 55.000 56.000 57.000 58.000 59.000 60.000 61.000 62.000 63.000 64.000 65.000 66.000 67.000 68.000 69.000 7C.00O 71.000 72.000 73.000 74.000 75.000 76.000 77.000 76.000 79.000 80.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1, 000 1.000  6.375 8.675 9.075 6.875 6.825 5.725 7.700 6.825 5.925 6.275 7. 125 5.600 4.725 6.800 5.800 5.350 6.775 6.575 8.225 7.675 7.350 6.250 6.400 6.775 6.350 6.400 6.825 4. 125 5.675 5.000 6.825 7.300 5.450 5.775 5.975 7.050 6.725 7.950 4.050 7.775 7.300 5.450 6.225 6.025 5.625 5.000 5.200 5.975 5.450 4.925 3.000 5.875 3.875 5.625 8.425 7. 100 6.050 4.925 6.200 5.900 5.575 7. 100 4.450 7.250 7.675 5.950 5.075 8.000 4.550 4.575 4.675 6.500 3.625 3.375 5.500 5.950 6.450 7.425 6.600 6.425  EXCH. Mg 0.950 1.600 1.725 1.050 1.025 0.975 0. 875 1.275 1. 175 1.025 0.950 1.075 0. 7 2 5 1.225 1. 3 7 5 1. 100 1.350 1.050 1.400 1.825 1.925 1.275 1.000 1.250 1.450 1.450 1.225 1.000 1. 400 1.425 1.225 1.750 1.425 1. 150 1.300 1.850 1.925 1.950 0. 500 1.200 1.325 1.200 1.200 1.100 1. 100 0.675 1.125 1.425 1.500 1.550 0.500 1.650 0. 700 1.125 2.7 00 2.000 1.975 1.125 1.375 1.475 1. 150 1.075 0. 975 1. 100 1.250 0.900 0. 750 1. 175 0.625 0.800 1.000 1.200 0.925 0. 925 1. 175 1.650 1.750 1.975 1.200 1.050  EXCH. Na 0.080 0.067 0.087 0.090 0.062 0.097 0.070 0.097 0.048 0.060 0.038 0.062 0.053 0.057 0.048 0. 107 0.067 0.085 0.055 0.075 0. 102 0.060 0.067 0.062 0. 100 0. 130 0. 097 0. 105 0.092 0.132 0.095 0.100 0.112 0. 125 0. 100 0.077 0. 140 0.097 0. 102 0.105 0. 122 0. 115 0.092 0.095 0.090 0. 115 0. 107 0.090 0.097 0.087 0. 125 0.105 0. 107 0. 132 0. 122 0. 127 0. 107 0.100 0.092 0.107 0.072 0.055 0.080 0.062 0.053 0.062 0.080 0.087 0. 122 0.080 0. 122 0.060 0.090 0.095 0. 105 0. 115 0. 125 0.173 0.117 0. 100  EXCH. K  0. 775 1.400 1.075 1.725 1.475 1. 175 1.050 0.750 1.350 0.925 1.450 0.675 0.575 0.925 1.250 0.550 0.775 0.650 1.550 0.850 0. 950 0.825 0.725 0.975 0.925 0.700 0.700 0.650 0.900 0.475 0.800 0.700 0. 850 0.550 1.000 0.625 0.600 1.200 0.600 0.800 0.775 1.050 1.075 0.950 0.900 0.625 0. 800 1.675 1.025 1. 100 0.325 0.575 0.375 0.550 0.750 0.550 0.625 0 . 750 1. 325  1.100  1.250 1.650 0. 650 1.700 2. 350 1. 125 0.850 1.250 0.600 0.675 0. 625 1.275 1.075 1. 125 1.150 1.025 0. 825 0. 675 1. 475 1.325  C.E.C.  PH  18.400 19.100 19.100 12.600 10.800 16.600 13. 900 15. 100 14.900 12.300 14.000 16.000 15.100 18.000 18.800 14.000 16.000 15.100 18.000 18.800 15. 300 14.000 11.600 14.400 14.400 16. 200 14. 200 14. 100 14. 100 12.900 14.400 16.200 15.000 13.200 16.300 15. 200 15.700 16.000 14. 400 17.300 16.300 15.000 15.300 16.300 14.500 15. 300 14. 900 14.800 14.200 13. 400 12.600 11.900 13.400 12.500 21.600 19.100 13.700 18.300 14.SOO 15.500 13.800 14.800 12.900 16. 100 17.600 16. 100 14.800 19.100 13.400 15.200 13.000 16.600 14.600 15. 600 15.100 16.300 16.000 15.200 15.900 16. 800  5.390 5.460 5.300 5.650 5.730 5.340 5.670 5.660 6.010 5.720 6.200 5.960 5.580 5.790 5.610 5.480 5.840 5.860 6.040 5.660 6.050 6.110 5.880 5.810 6. 170 6. 180 6.440 6.090 6.230 5.880 6.010 6.200 6.430 5.700 5.700 6.410 6.220 6.210 6.130 5.560 5.590 5. 320 6.050 6.070 6.270 5.870 5.750 5.810 5.930 5.870 5.700 5.820 5.810 5.910 6.070 6.380 6.200 5.650 6.330 6.010 5.980 6.420 5.970 5.770 5.950 5.590 5.740 5.730 5.610 5.700 5.510 5.880 5.870 5.900 5.830 5.870 5.950 6. 140 5.940 5.840  PERCENT CARBON  1. 101 1.329 1.101 1. 405 0. 949 1. 215 1.518 1. 329 0. 987 1. 329 1. 139 0. 911 0. 987 1. 101 1. 139 1. 374 1. 526 1.412 1. 870 1.412 1 . 336 0. 954 1.068 1.068 1 . 068 0. 992 0. 954 0. 99 2 0. 916 0. 758 1. 150 1. 303 1. 145 1. 374 0.954 0. 954 1. 183 0. 954 1. 183 1. 374 1.030 0. 840 1. 183 1.068 0.992 0.801 0. 878 1. 107 0.763 1.030 0.797 0. 949 0.797 0. 759 1. 367 1.518 0. 835 1.063 0. 873 0. 759 0. 94 1 1. 054 0. 366 1. 280 1. 393 1. 167 0. 866 1. 355 0.790 1.09 2 0. 903 0. 973 0. 973 1.048 1.086 1. 36 7 1. 139 0. 987 0.721 1.215  N (ppm)  572. 607. 552. 509. 470. 542. 478. 533. 473. 532. 479. 448. 552. 519. 547. 497.  666.  631. 697. 722. 686. 462. 458. 553. 547. 54 6. 512. 567. 620. 430. 555. 601. 551. 538. 555. 513. 476. 547. 446. 623. 538. 462. 546. 661. 560. 428. 527. 498. 444. 520. 412. 549. 464. 430. 634. 828. 365. 552. 420. 413. 404. 506. 441. 5 84. 636. 477. 444. 507. 413. 474. 439. 478. 454. 506. 498. 608. 613. 516. 403. 466.  85 PLOT  PROFILE NUMBER  HORIZON  6.000 6.000 6.000 6.000 6.COO 6.000 6.000 6.C0C 6.000 6.OOO 1 .000 1.000 1.000 1.000 1 .000 1.000 1.000 1.C00 1 .000 1.0C0 1 .000 1.000 1.000 1 .000 1.C00 2.000 2 .000 2.000 2.OOO 2.000 2.000 2.000 2.000 2.OOO 2.000 2.000 2.000 2.000 2.0CC 2.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.00C 3.000 3.000 4.000 4.000 4.000 4.000 4.COO 4.000 4.OOO 4.0C0 4.000 4.000 4.000 4.000 4.COO 4.COO 4.000 5.000 5.000 5.00C 5.000 S.OOC 5.000 5.000 5.OOO S.OOC 5.000  81.000 82.000 83.000 84.000 85.000 86. 000 87.000 88.000 89.000 90.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 S.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17. 000 18.000 19.000 20.000 21.000 22.000 23.000 24. OOO 25.000 26. 000 27. 000 28.000 29. 000 30.000 31.000 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000 4 1.000 42.000 43.000 44.000 45.000 46.000 47.00C 48.COO 49.000 50.000 51.000 52.000 53.000 54.000 55.000 56.000 57.000 5E.0OO 59.000 60.000 61.000 62.000 £3.000 64.000 65.000 66.000 67.COO 66.000 69.000 70.000  1.000 1.000 1.000 1.000 1.000 1.000 000 000 000  ooo ooo  000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.OOO 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2. O O O 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000  EXCH. Ca  3.675 5.900 5.800 4. 150 6.450 S.400 4.500 6.700 5.675 3.875 9.500 1 1.000 9.100 9.725 8.625 9.450 8.275 9.375 9.850 8.450 8.250 7.950 8.850 7.625 6.375 6.775 8.950 7.675 7.550 10.425 9.450 8.600 9.075 8.000 7.450 8.025 8.025 7.725 10.150 9.500 10.450 9.900 8.250 6. 125 9.400 6.400 7.250 8.600 9.600 9.050 9.875 7.500 8.225 8.875 7.575 7.975 7.975 7.550 7.425 5.975 6. 300 6.225 5.925 6.875 9. 125 7.825 9. 150 8.675 8.500 7.250 7.500 8.250 8.150 1 1.625 9.650 9. 375 8.525 9.250 7. 175 6. 350  EXCH.  Mg  0. 6 0 0 1. 125 0.925 0.725 1.325 0.900 0. 700 1.125 1. 100 0.750 1.975 2.225 1.775 2.225 1.950 2.2 50 1.775 2.650 2.725 2.275 1.700 2.075 1.925 2.225 1.950 2.250 2.875 1.550 2.050 3.250 3.375 1.950 1.675 1.775 2.025 2.075 1.875 2.150 2.700 2.750 2.275 2.425 2.000 1.500 2.600 1.750 2.550 2.800 2.450 2.075 .275 .200 .225 .225 .675 .250 2.7 00 2.025 2. 150 1.775 1.300 1.800 1.225 2.050 3.000 2.600 3.750 2.725 2.650 2.475 1.925 1.650 2. 275 2.775 1.400 1.900 1.575 1.725 1.325 2.0 00  EXCH.  0.097 0. 142 0.107 0. 100 0.045 0.048 0.045 0.057 0.062 0.050 0. 137 0.137 0.097 0. 152 0.112 0.145 0.070 0. 173 0. 122 0. 155 0.065 0. 135 0.082 0.085 0.100 0. 175 0. 132 0.087 0. 135 0.145 0.187 0.082 0.082 0.090 0.097 0. 120 0. 100 0. 120 0.092 0. 122 0.090 0.082 0.087 0. 120 0.080 0. 105 0.170 0. 120 0. 100 0. 115 0. 152 0. 125 0.122 0.082 0.097 0.210 0.212 0. 162 0.085 0.080 0. 100 0.075 0.087 0.105 0.130 0.117 0. 162 0. 142 0. 107 0. 115 0.080 0. 087 0. 165 0. 132 0.048 0. 102 0.082 0. 082 0.082 0. 105  EXCH. K  0. 850 1.475 1.225 1. 150 1.925 1.225 1.025 1.000 0.900 0.850 0. 750 1.200 1.200 1.450 1. 100 1.250 0.900 0.800 1.200 0. 825 1. 175 0.900 0.650 0. 700 0.700 0.500 0. 600 0.450 0.825 0.625 0.600 0.675 0.600 0.725 0.600 0.525 0.525 0.550 0.775 0.600 0.725 0.675 0.650 0.625 0.950 0.450 0.700 0. 925 1. 150 0.650 0. 950 1. 150 0.800 0.950 0.775 0.925 0.675 1.275 0.750 0.700 0.625 0.600 0.650 0.525 0.675 0.600 0.775 1.050 1.250 0. 925 1. 200 1.275 0.825 0. 975 1.850 1.275 1.075 1. 375 1. 425 1.050  C.E.C.  pH  15.500 15.100 14.500 15.800 16.100 15.300 18.500 15. 400 15.100 16.700 18.600 20. 300 17. 6 0 0 16.400 15.700 17.100 13. 400 15.600 18.800 14. 300 13. 400 13. 900 16.700 14.500 14.800 14.400 18.200 14. 000 15.400 18.800 17. 700 14.200 14. 000 13.600 13. SOO 13.900 13.400 16.600 18.700 16.600 18.700 18.700 16.500 13.400 18.600 14.000 15. 600 18.700 17. 400 17.700 19. 100 16.700 16.000 17.200 14.500 15.400 15.700 14.700 13.800 12.400 11.600 13.000 11.800 12.600 17.200 15.300 17.500 17.900 14.700 14.100 10. 800 12.200 12.200 15.300 15.500 14.300 13. 600 16.000 11.600 10.200  5.S70 5.410 6.090 5.930 6.080 5.800 5.810 5.900 5.920 5.850 5.940 5.86 0 5.790 5.690 5.910 6.180 6.050 6.120 5.830 6.080 6.280 6.130 5.590 6.060 5.920 5.900 5.950 5.880 5.980 5.950 6.160 6.310 6.190 6.180 6.040 6.220 6.220 6.030 6.270 6.130 6.270 6.170 6.350 5.910 5.960 6.310 6.440 6.010 6.410 6.080 6.530 6.130 5.900 6.020 6. 170 6.610 6.700 6.350 6.650 6.080 6.190 5.910 6.000 6.430 6.550 6.560 6.700 6.720 6.710 6.390 6.540 6.440 6.800 6.420 6.530 6.490 6.070 6.110 6.150 5.910  PERCENT CARBON  0. 987 1.063 1. 215 0.797 0. 797 1. 139 0. 911 1. 101 1.025 0.911 0. 538 0.538 0. 614 0.538 0.461 0. 538 0. 346 0.384 0.614 0.422 0.461 0.422 0. 576 0.576 0.422 0. 687 0. 878 1. 068 0.687 0.725 0.572 0.611 0.725 0.725 0.611 0.725 0. 534 0. 572 1.030 0.706 0. 801 0. 840 0. 840 0. 496 0.649 0.61 1 0.611 0.763 0.801 0.687 0.687 0. 649 0.649 0.725 0.649 0. 695 0.733 0.772 0.618 0.653 0.307 0.730 0. 499 0.538 0.960 1.075 0.768 0.883 0.347 0.422 0.562 0.562 0. 524 0. 449 0.636 0.866 0. 565 1. 204 0.602 0.414  N (ppm)  495. 485. 453. 432. 424. 421. 475. 404. 368. 478. 453. 419. 491. 415. 360. 352. 314. 336. 435. 392. 283. 389. 475. 431. 363. 301. 480. 462. 375. 513. 409. 337. 382. 389. 341. 421. 307. 405. 549. 403. 415. 470. 420. 346. 413. 405. 414. 481. 402. 431. 480. 359. 400. 448. 452. 448. 445. 405. 346. 231. 440. 263. 255. 293. 509. 517. 482. 505. 303. 310. 350. 374. 432. 283. 400. 509. 346. 372. 318. 289.  86  PLOT  5.000 5.000 5.000 5.000 5.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2 . C0C 2.000 2.000 3 . COO 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000  PROFILE NUMBER  HORIZON  71.000 72.000 73.000 74.000 75.000 76.000 77.000 78. 000 79.000 80.000 81.000 82.000 83.000 64.000 85.000 86.000 87.000 66.000 89.000 9C.0O0 1.000 2.000 3.000 4.000 5.000 6.000 7.000 6.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.00C 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.00C 26.000 27.000 28.000 29. 000 30.000 31.COO 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000 41.000 42.000 43.000 44.000 45.000 46.000 47.000 48.000 49.000 50.000 51.000 52.000 53.000 54.000 55.000 56.000 57.000 58.000 59.000 60.000  2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000  EXCH. Ca  7.875 9.425 6.625 6.600 7.900 9.700 10.725 7.700 8.625 6.400 6.800 7.450 7. 100 6.600 7. 175 7.350 7.350 7.025 7.775 7.675 20.000 18.750 21.J00 19.000 19.000 20.250 13.750 18.750 22.500 19.500 14.000 19.000 16.000 15.750 18.000 16.250 16.500 17.500 15.500 18.750 16.500 15.100 15.750 16.250 13.50C 15.750 16.500 17.500 18.000 17.000 15.500 18.250 16.000 14.250 12. 750 8.750 17.000 15.000 14.300 15.750 16.000 13.250 17.250 16.250 12.750 1 3 . 750 10.750 8.500 10.500 9.750 12.000 14.250 10.000 13. 250 1 1.000 14.000 12.000 15.500 14.000 13.500  EXCH. Mg  2.675 2.275 2. 125 1.925 2. 150 2.725 3.250 2.250 1.925 1.400 0.750 1.825 1.575 1.300 1.725 1.450 1.275 1.975 2.375 1.925 6.500 5. 250 6.250 6.250 6. 500 6.750 4.500 7.500 8.500 7.500 5.750 7. 250 5.750 7.000 7.500 7.750 7.750 5.750 6.750 8.500 7.750 4.500 4.750 6.000 5.250 5.500 5.500 6.750 7.000 6.500 5.250 6.000 5.750 6.250 5. 250 3.250 8.000 6.750 6.000 7.000 7.250 5.500 6.500 6.500 4.750 6.250 5. 750 3.500 4.750 4.250 4.750 6.000 4.000 5.750 5.250 6.250 6.250 8.250 7.250 7.000  EXCH. N»  0. 152 0.100 0. 135 0. 100 0. 142 0. 120 0. 167 0. 152 0.070 0.070 0.075 0. 115 0.097 0.085 0.067 0.085 0.060 0.092 0. 145 0.090 0.300 0. 225 0.275 0.275 0.275 0.275 0.200 0.275 0.200 0.250 0. 175 0.275 0. 175 0. 200 0.200 0.275 0.225 0. 125 0.275 0.275 0.275 0.150 0. 175 0. 225 0.200 0.200 0.200 0.225 0. 200 0.200 0.125 0. 125 0.125 0.200 0.200 0. 125 0.250 0.275 0.225 0.250 0.225 0.225 0.175 0. 175 0.175 0.350 0.275 0.250 0. 175 0. 150 0. 200 0. 150 0.175 0. 175 0. 125 0. 175 0.225 0.300 0.250 0.250  EXCH. K  0.725 1.550 1.075 1.225 1.075 0.975 0.775 0.650 0. 675 0.975 0.925 1.025 0.525 0.975 1.650 1.025 1.075 0.900 0.875 1.025 0.900 1. 250 0.900 1.900 1.500 1.700 1.000 0.875 1.075 0.800 1. 175 0.925 0.875 0.800 0.900 0.850 1.025 1.000 0.850 0.775 0.750 0.950 1.050 1. 100 0.775 0.850 0.900 0.925 1.025 0.900 0.700 0.700 0.725 0.875 0. 775 0.475 0.925 0.875 1.250 1. 100 1.050 1. 225 1.075 1. 100 0.775 1.050 0.725 0.700 0.750 0.725 1. 100 0. 775 1.025 0.875 0. 925 0.775 0.900 1.075 1.025 1.000  C.E.C.  12. 300 15.200 13.400 13.600 15. 100 17. 700 17.500 15.000 13.800 12. 400 13. 500 14.000 12. 400 13.600 14. 300 14.000 14. 200 14. 200 14. 800 15. 000 40.600 36. 300 4 1.200 38.900 37.500 33. 200 26.400 35.400 5 2 . 100 39.800 32. 700 13. 400 32. 600 34.200 37. 900 36.100 40.400 32.000 33.200 29.000 37. 300 30.000 3 1 . 100 34.700 31.900 32. 300 33.000 3 9 . 100 35. 300 36. 500 32.000 34. 300 33.900 33. 400 29. 200 23.900 31.500 31.700 32.000 34.900 34.400 28.600 34.500 31. 700 28.000 3 1 . 200 2 8 . 300 23. 100 28.800 2 3 . 900 27. 300 3 0 . 700 22. 100 30. 200 25. 600 32.300 27. 900 33. 700 3 0 . 100 30. 100  pH  6. 180 6.280 6.640 6.340 6.250 6.440 6.740 6.750 6.400 6.300 6.070 6.040 6.150 6.190 6.530 6.250 6.200 6.200 6.680 6.380 6.340 6.270 6.300 6.350 6.370 6.420 6.380 6.530 6.290 6.330 6.470 6.300 6. 190 6.400 6.430 6.150 6.210 6.320 6.290 6.210 6.220 6.570 6. 540 6.400 6.410 6.360 6.450 6.330 6.390 6.400 6.570 6.650 6.550 6.420 6.370 6.360 6.460 6.650 6.890 6.640 6.610 6.640 6.640 6.480 6.530 6.920 6.950 7.040 6.870 6.750 6. 760 6.620 6.620 6.690 6.660 6.590 6.830 7.230 7.150 6.950  PERCENT CARBON  0. 337 0.524 0.412 0.674 0. 599 1.081 0.888 0.463 0.463 0.579 0.502 0.502 0.309 0.618 0.618 0.425 0.502 0. 502 0.618 0.6 18 0.534 0. 572 0. 572 0.534 0.572 0.687 0. 572 0.305 0.572 0.420 0.458 0. 496 0. 382 0.611 0. 534 0.607 0. 569 0.607 0.607 0.607 0.531 0.797 0.797 0.721 0.607 0.721 0.797 0. 759 0. 683 0.607 0.613 0. 460 0.536 0.575 0. 575 0. 724 0.571 0.647 0.533 0. 495 0.571 0.571 0.533 0. 57 1 0.609 0.616 0. 578 0.693 0.616 0.501 0. 385 0.809 0. 462 0.616 0.6 16 0.809 0.770 0.732 0.539 0.462  N (ppm)  279. 318. 313. 332. 338. 555. 530. 323. 207. 286. 314. 294. 204. 318. 294. 309. 311. 300. 345. 360. 384. 378. 348. 379. 359. 329. 371. 236. 415. 296. 344. 330. 309. 379. 367. 406. 362. 384. 344. 349. 341. 466. 467. 473. 408. 415. 464. 433. 411. 403. 392. 301. 298. 366. 385. 411. 392. 351. 322. 328. 343. 309. 318. 373. 361. 339. 363. 478. 355. 319. 283. 429. 279. 353. 359. 473. 477. 366. 294. 307.  87  PLOT  PROFILE  HORIZON  NUMBER 5.000 5. COG 5.000 5.000 5.000 5.000 S.OOC 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6. COO 6.000 6.000 6.000 6.000 6.000 1.000 1.000 1.000 1.000 1.C00 1.000 1.000 1.000 1.000 1.000 1.000 1.C00 1.000 1.000 1.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.OOO 2.000 2.000 2.000 2.000 3.000 3.000 3.000 3.000 3.COO 3.000 3.COO 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4 .000 4.000 4.000 4.000 4.000  61.000 62.000 63.000 64.000 65.000 66.000 67.000 68.000 69.000 70.000 71.000 72. 000 73.000 74.0C0 75.000 76.000 77.000 78.000 79.0CO 8C.O0O 81.000 82.000 8 3 . 000 84.000 85.000 86.000 87.000 88.000 89.000 90.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.0C0 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 2J.000 26.000 27.000 28.000 29.000 30.000 31.000 32.000 33.000 34.000 35.000 36.000 37.000 3E.0O0 39.000 40.000 41.000 42.000 43.000 44.000 45.000 46.000 47.000 48.000 49.000 50.000  3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.COO 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000  EXCH. Ca  13. 250 1 1.750 12.750 10.250 10.250 12.000 13.000 1 1.750 12.500 10.000 12.250 1 1.250 11.500 12.750 1 1.750 14.750 13.750 12.000 9.500 7.500 8.000 1 1.000 9.750 8.000 10.300 11.500 8.500 1 1.250 1 1.500 10.500 21.750 17.250 21.000 20.000 23.7S0 17.000 17.750 21.000 23.000 20.750 20.500 18.750 17. 250 16.250 17.000 15.500 17.000 17.000 18.250 16.500 17.500 19. 750 17.500 14. 750 16.500 18.000 18.750 18.250 14.250 17.250 13.000 14.750 13.750 15.000 9.000 10.250 16.SOO 13.000 13.000 14.500 12.500 12.750 14.250 14. 250 12.000 1 2 . 750 16.750 12.000 13.250 11.250  EXCH. Mg  5.750 4.750 5.500 4. 250 4.250 4.500 5.000 4.500 4.500 4.750 5.750 4.750 5.500 5.500 5.250 5.500 5.000 4.500 3.000 2.500 2.250 4.500 3.500 2.500 4.000 4.250 3.250 5.000 0.750 4.000 7.000 5.000 6.500 7.500 9.000 6.250 6.500 8.500 8.250 8.250 9.750 7.250 6.750 7.000 7.500 7.500 8.000 5.250 8.750 8.500 9.250 6.750 6.000 6.250 6.500 7.250 7.000 8.000 6.250 7.250 5.750 5.750 5.500 6.750 3.500 4.000 8.000 7.000 6.000 6.750 5.500 5.750 5.750 5. 750 4.750 6.500 8.500 5.750 6.750 5.500  EXCH. Na  0.275 0.250 0.350 0.225 0. 175 0.225 0.250 0.200 0. 175 0.250 0.275 0.200 0.275 0.375 0.350 0.275 0.250 0.250 0.125 0. 100 0. 125 0.225 0. 175 0. 150 0.225 0.250 0. 150 0.275 0.275 0.200 0.325 0.200 0.275 0.250 0.225 0.200 0.275 0.225 0.225 0.225 0. 175 0.300 0.150 0. 200 0.200 0.275 0.250 0. 125 0.225 0.275 0.250 0. 150 0. 150 0.225 0.175 0. 175 0.200 0.225 0.200 0. 175 0.125 0. 100 0.125 0.225 0.175 0. 125 0.275 0.250 0.250 0.225 0.200 0.200 0. 150 0. 150 0. 150 0. 300 0.300 0.375 0.225 0. 150  EXCH. K  0.875 1. 175 0.950 1. 100 1.050 1. 100 1. 250 1.225 1.325 1.000 1.075 1. 175 0.950 1.075 1.075 1.075 1.000 0.900 0.475 0.800 0.800 0.875 0.550 0.775 0.850 1.000 0.625 0.900 0.925 0.900 0.725 0.875 0.825 1.100 0.900 0.875 0.900 0.800 0.900 0.900 0.800 0.825 0.725 0.850 0.900 0.825 0.850 0.800 0.850 0.750 0.825 1.050 1. 125 0.800 0.775 1.050 1.050 1.075 1.000 1. 100 0.675 0.650 0.675 0.975 0.700 0.600 0.875 0.775 1.050 1.025 0.925 1. 125 0.950 0.850 0.750 0. 850 0.800 0.800 0.900 0.800  C.E.C.  26.700 25.000 2 7 . 400 25. 400 24. 200 2 5 . 100 2 5 . 200 2 9 . 100 24. 300 25.700 2 6 . 500 2 5 . 100 23.000 23. 200 2 2 . 600 27.800 24.400 21.600 16.000 12. 600 13. 900 2 0 . 200 17. 000 13.400 18. 500 19.400 15. 900 21.600 22. 500 22.000 39.900 32. 200 40.100 38. 000 4 5 . 600 31.600 36. 100 40.900 4 3 . 200 38.000 39.300 3 5 . 900 32.700 33.600 35. 900 33.200 39. 100 36. 600 41.600 35.900 38.000 37.600 34. 200 30.600 34.000 39.000 35.300 36. 700 31.500 37.400 23. 600 30.000 27.500 31.900 22. 300 22.300 35. 600 29.400 3 0 . 800 3 0 . 700 27. 100 2 7 . 800 2 7 . 500 28.600 23. 200 2 8 . 800 33.800 2 6 . 400 30. 600 27.600  pH  7.070 7.130 7.240 6.930 6.950 6.970 6.660 6.860 6.760 6.910 6.950 6.780 7.130 7.280 7.200 7.050 7.190 7. 110 6.900 6.840 6.550 7.000 6.600 6.910 7.090 7.090 6.680 7.030 7.090 6.890 6.520 6.630 6.540 6.550 6.640 6.620 6.710 6.880 6.540 6.600 6.890 6.690 6.790 6.560 6.620 6.350 6. 310 6.490 6.430 6.550 6.660 6.920 7.000 6.640 6.710 6.720 7.240 7.050 6.550 6.490 6.660 6.680 6.720 6.440 6.400 6.500 6.530 6.640 6.700 6.660 6.610 6.720 6.750 6.750 6.740 6.940 7.250 7.130 7.020 6.720  PERCENT CARBON  0.540 0.463 0.063 0.347 0. 309 0. 463 0.347 0.309 0.386 0.425 0.425 0. 386 0. 347 0.463 0.502 0.772 0.618 0.618 0.193 0. 270 0.232 0.386 0.270 0. 270 0.347 0.347 0.232 0.347 0.386 0.347 0.456 0.342 0.380 0. 304 0.304 0.342 0. 190 0. 190 0.228 0.342 0. 266 0. 304 0.228 0.456 0.456 0.376 0.452 0.602 0.489 0. 301 0.339 0.489 0.565 0. 339 0.565 0. 487 0.636 0.487 0.449 0. 449 0. 343 0.267 0.305 0.687 0.801 0.422 0.575 0.383 0. 422 0. 383 0.496 0. 420 0. 382 0.382 0. 382 0. 342 0.456 0.456 0.456 0.456  N (ppm)  327. 317. 338. 263. 282. 355. 288. 247. 280. 288. 280. 263. 299. 298. 294. 501. 460. 301. 182. 227. 173. 256. 212. 191. 240. 263. 165. 249. 272. 249. 280. 256. 217. 241. 215. 239. 155. 152. 227. 219. 188. 202. 161. 311. 245. 225. 261. 335. 271. 186. 209. 291. 306. 185. 295. 260. 356. 264. 226. 277. 204. 212. 234. 370. 389. 241. 282. 257. 275. 221. 243. 278. 241. 238. 253. 246. 271. 315. 230. 305.  88  «.C00 4.000 4.COO 4.000 4.000 4.000 4.000 4.000 4.000 4.000 5.000 5.000 5.000 5.000 5.000 5.OO0 5.000 5.000 5.000 5.00C 5.00C 5.000 5.000 5.00C 5.000 6.COO 6.000 6.00C 6.COO 6 .000 6.000 6.COO 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000  PROFILE NUMBER  HORIZON  51.000 52. 000 53.000 54.000 55.000 56.000 57.000 56.000 59.000 60.000 6 1.000 62.000 63.000 64.000 65.000 66.000 67.000 68.000 69.000 70. 000  4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000  7 1. 000 72.000 73.000 74.CC0 75.000 76.000 77. 000 78.000 79.000 80.000 81.000 82.000 83.000 84.000 85.000 66.000 67.000 88.000 89.000 90.000  EXCH. Ca 14.000 19.000 13.250 13.000 12.750 10.000 8.500 15.250 13.500 12.000 13.500 1 1.250 1 1.500 9.000 8.750 12.000 10.750 10.500 10.500 10.750 10.500 10.500 1 1.000 1 1.500 10.250 1 1.500 8.500 9.750 10.500 10.000 9.500 1 1.500 10.500 1 1.250 1 1.500 10.500 9.250 1 1.000 10.750 9.000  EXCH. Mg 6.000 9.500 5.500 6.250 6.500 4.750 4.500 9.250 7.0 00 6.000 5.750 4.750 4.750 3.500 4.000 4.750 4. 250 3.750 3.750 5.000 5.250 4. 750 5.000 5.500 4.7 50 4.250 3.750 3. 500 2.750 3. 500 3. 250 4.750 3.750 3.750 5.000 4.000 3.750 4.750 4.500 4.250  EXCH. Na 0. 175 0. 150 0. 175 0.150 0.175 0. 150 0.200 0.350 0. 325 0.225 0. 275 0.250 0.275 0.225 0.225 0.250 0.225 0.225 0.225 0.275 0. 300 0.275 0.275 0.375 0.300 0.225 0.200 0.200 0.125 0. 100 0. 150 0.225 0. 150 0.175 0.225 0.200 0.200 0.275 0.250 0.200  EXCH. K 1. 100 0. 850 1. 175 0.800 0.800 0.650 0.750 0. 975 1. 150 1. 100 1.025 1. 300 0. 875 1. 150 1. 125 .1.050 1.275 1.250 1. 125 1.075 1. 150 1. 175 1. 125 1.250 1.000 0.900 0.750 0.775 0.450 0.725 0.575 0.800 0.575 0.825 0.775 0.750 0.650 1.025 0.975 1.025  C.E.C.  pH  29.600 43.800 30.200 30.200 32.800 22.200 19.800 33. 600 32.U00 2 9 . 000 31.400 26.400 25.100 20.400 2 1 . 700 23. 300 23.000 23.000 23. 200 25.000 23. 700 24.200 25.500 24.600 24.400 24.600 22.800 20.300 16.400 20.000 19.000 2 3 . 800 20.300  6.730 6.750 6.530 6.820 6.790 6.830 7.060 7.440 7.180 6.960 7.320 7.200 7. 300 7.160 7.220 7.190 7. 180 7.070 7.04 0  2 1 . 700 24.900 22. 300 20.300 26.000 24.000 22.500  160 270 140 140 340 330 7.400 7.430 7.320 7.320 7.130 6.670 7.060 7.020 6.960 7.150 7.070 6.960 7. 170 7.160 6.970  PERCENT CARBON 0.380 0. 608 0.418 0. 330 0.570 0.4 18 0.418 0. 190 0.266 0. 380 0. 300 0.374 0. 300 0. 187 0. 300 0.262 0. 225 0.225 0. 150 0.262 0. 223 0. 261 0.223 0. 298 0. 335 0. 343 0.343 0. 228 0. 190 0.381 0. 267 0. 343 0.267 0.343 0.381 0.381 0.305 0. 381 0.457 0. 228  N (ppm)  282. 378. 270. 256. 325. 344. 294. 157. 207. 240. 311. 322. 262. 190. 246. 238. 219. 215. 176. 225. 176. 190. 218. 207. 237. 286. 233. 175. 129. 220. 167. 232. 196. 197. 239. 238. 187. 229. 241. 203.  89  Appendix C General S o i l  Horizon  Data  codes:  Ae = 1 AB = 2 Bt = 3 BC = 4  Parent m a t e r i a l codes: Till = 1 Colluvium = 2 Mixtures of t i l l  and c o l l u v i u m = 3  90 PLOT  1.000 1 .000 1 .000 1 .000 1 .00 0 1.CO0 1 .000 1 .GOO 1 .000 1.000 1 .000 1 .000 1.000 1.000 1 .000 2.COO 2.000 2.000 2.COO 2.000 2.000 2 .000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2 .000 3.00 0 3.COO 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.G0C 3.000 3.000 4.000 4.000 4.000 4.000 4.000 4.C0C 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.COO 4.000 5.C0C 5.000 5.000 5.000 5.00C 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 6.COO 6.000 6.GOO 6.000 6.000  PROFILE NUMBER  1.000 2.000 3.000 4.COO 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000 30.000 31.000 32.000 33.000 34.000 35.000 36.0C0 37.000 38.000 39.000 40.000 4 1.000 42.000 43.000 44.000 45.000 46.000 47.000 48.000 49.000 50.000 51.000 52.000 53.000 54.000 55.000 56.0C0 57.00C 58.000 59.000 60.000 6 1.000 62.000 63.00G 64.000 65.000 66.000 67.000 68.000 69.000 70.000 71.000 72.000 73.000 74.000 75.000 76.000 77.000 78.000 79.000 80.000  HORIZON  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000 1. 0 0 0 1.000 1.000 1.000 1.000 1.000 1.C00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0C0 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1. ooc 1.000 1.000 1.000 1.000 1.000 1. 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0C0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.CC0 1.000 1.000 1.000 1.000 1.000 1.000 1.000  HORIZON DEPTHS (cm.)  000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 COO 000 000 000 000 000 COO 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 COO 000 000  010 010 007 012 010 012 011 012 010 014 015 012 0 12 010 013 013 012 007 018 013 012 015 015 0 17 012 010 017 0 12 017 010 015 011 012 012 012 010 014 010 014 013 010 014 015 011 010 032 021 024 016 015 020 009 022 020 013 011 015 013 014 018 015 025 020 023 024 016 015 019 017 016 020 017 013 018 021 014 014 019 017 017  PARENT MATERIAL  < 2mm. FRACTION  590 728 545 613 856 681 662 707 675 645 699 626 699 644 552 872 459 673 591 580 568 763 633 570 816 746 636 668 598 715 599 564 608 551 570 62 1 595 515 581 544 538 562 619 645 676 720 701 77 0 762 803 732 710 717 723 805 709 679 678 848 721 702 682 700 638 571 656 768 717 730 724 79 1 677 704 804 697 699 737 764 852 679  > 2mm. FRACTION  219 242 145 243 380 257 441 469 180 146 254 145 138 252 130 327 38 294 256 216 196 215 249 155 314 102 167 40 30 81 192 131 200 138 145 131 83 95 79 55 137 196 36 123 167 185 211 208 255 249 263 242 281 186 216 240 157 87 247 230 279 333 405 244 317 259 255 423 314 258 209 270 142 245 171 258 347 328 224 269  DISTANCE DOWNSLOPE  000 000 000 000 000 000 000 000 00 0 00 0 000 000 000 000 000 075 075 075 075 075 075 075 075 075 075 075 075 075 075 075 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 215 215 21 5 215 215 215 21 5 215 215 215 21 5 215 215 215 215 275 275 275 275 275 275 275 275 275 275 275 275 275 275 27 5 30 5 30 5 305 305 30 5  91 PLOT  PROFILE NUMBER  HORIZON  HORIZON DEPTHS (cm.)  PARENT MATERIAL  < 2mm. FRACTION  > 2mm. FRACTION  DISTANCE DOWNSLOPE  6.000  81.000  1 . 0 0 0  000  017  742  231  6.COO  82.000  1.000  000  017  704  227  305  6.000  83.000  1 . 0 0 0  000  019  730  213  305  6.000  84.000  1 . 0 0 0  000  021  765  297  305  6.000  85.000  1.000  000  020  746  248  305  6.000  86.000  000  016  676  280  305  6.000  87.000  1 . 0 0 0  000  0 20  666  325  305  6.000  88.000  1 . 0 0 0  000  020  837  306  305  6.000  89.000  1.000  000  021  816  253  305  6.000  90.000  1.000  1. 0 0 0  305  1.000  000  018  757  196  305  1 . 0 0 0  2.000  010  020  557  220  000  2.000  2.000  010  015  900  318  000  1.000  3.000  2.000  007  017  769  508  000  1.C00  4.000  2.000  C12  030  639  7 1 3  1.000  5.000  2.000  010  024  686  601  000  1.000  6.000  2.000  012  028  782  557  000 000  1.000  000  1.000  7.000  2.000  011  026  836  585  1.000  8.000  2. 000  012  029  933  9 7 7  000  1.000  9.000  2.000  0 10  020  644  306  000  1.000  10.000  2.000  C14  040  979  684  000  1.000  11.000  2.000  0 15  032  777  430  000  1.000  12.000  2.000  C12  030  1043  380  000  1.000  13.000  2.000  0 12  025  704  477  000  1.000  14.000  2.000  010  022  578  377  000  1.000  15.OOC  2.000  013  023  3  732  335  000  2.000  16.000  2.000  013  028  3  899  255  075  2.000  17.000  2.000  C12  020  3  722  173  075  2.000  18.000  2.000  007  020  3  644  228  075  2.000  19.000  2.000  C18  038  1  693  307  075  2.000  20.000  2.000  013  024  3  676  340  075  2.000  21.000  2.000  C12  024  3  799  168  075  2.000  22.000  2.000  015  030  3  969  309  075  2.000  23.000  2.000  015  031  3  678  210  075  2.000  24.000  2.000  0 17  034  1  720  559  075  2.000  25.000  2.000  012  024  3  747  313  075  2.000  26.000  2.000  010  027  3  912  263  075  2.000  017  032  3  785  307  075  023  2  863  2.000  27.OOC  2.000  28.000  2.000  012  132  075  2.000  29.000  2.000  017  026  2  764  91  075  2.000  30.000  2. 000  010  020  2  708  119  075  3.000  31.000  2.000  C15  025  3  647  308  150  3.000  32.0C0  2.000  011  024  2  588  450  150  3.000  33.000  2.000  012  734  283  150  34.000  2.000  012  032 024  2  3.000  3  719  196  150  3 . COO  35.OOC  2.000  012  025  3  755  227  150  3.000  36.0C0  2.000  010  024  2  739  382  150  3.000  37.OOC  2.000  C14  035  3  767  288  150  3.000  38.000  2.000  0 10  019  3  625  131  150  3.OOC  39.0CC  2.000  C14  025  3  828  327  150  3.000  40.000  2.000  013  025  3  797  179  150  3.000  41.000  2.000  C10  022  3  518  172  150  3.000  42.000  2.000  014  030  1  578  289  150  3.000  43.000  2.000  C15  030  1  866  369  150  3.000  44.000  2.000  011  026  1  865  421  150  3.000  45.000  2. 000  010  1  659  481  150  4.000  46.000  2.000  032  025 061  1  751  222  215  4.000  47.000  2.000  021  041  3  789  287  215  4.000  48.OOC  2.000  C24  044  1  860  239  215  4.000  49.000  2.000  016  038  3  866  331  215  4 . COO  50.000  2.000  C15  043  3  859  637  215  4.000  51.000  2.000  0 20  050  3  857  486  215  2.000  2 3  732  281  215  810  395  215  3 3  778  441  215  832  215  215  725  340  215  4.000  52.000  4.000  53.000  4.COO  54.000  009  020  2.000  022  050  2. 000  C20  038  4.000  55.000  2.000  013  025  4.000  56.0C0  2.000  011  021  4.000  57.000  2.000  015  020  3 3  654  329  215  4.000  58.000  2.000  Q13  030  3  742  209  215  4.000  59.000  2.000  014  035  1  742  339  21 5  4.000  60.000  2.000  C18  040  1  767  432  215  5.000  61.000  2. 000  015  040  1  809  369  275  5.000  62.OOC  2.000  025  06 5  1  725  113  275  5.000  63.000  2.000  020  044  1  737  287  275  023 024  046  1  719  649  275  049  1  751  425  275  5.000  £4.000  2.000  5.000  65.000  2.000  5.000  66.000  2.000  016  033  1  345  275  015  044  1  804  342  275  1  619  522  275  799  5.000  67.000  2.000  5.000  68.000  2.000  019  045  5.000  69.000  2.000  017  037  1  858  344  275  5.OOC  70.0C0  2.000  C16  040  1  723  635  275  92  PLOT  5.000 5.000 5.000 5.000 5.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.COO 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.C00 1.000 1.000 1.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.00C 4.000 4.000 4.000 4.000 4.000 4.CC0 4.000 4.000 4.000 4.00C 4.000 4.000 4.000 4.000 4.000  PROFILE NUMBER 71.000 72.000 73.000 74.000 75.000 76.000 77.000 78.000 79.000 80.000 81.000 82.000 83.000 84.000 85.000 86.000 87.000 83.000 89.000 90.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.00C 28.000 29.000 30.000 31.000 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000 41.000 42.000 43.000 44.000 45.000 46.000 47.000 48.000 49.000 50.000 51.000 52.000 53.000 54.000 55.000 56.000 57.0OC 58.000 59.000 60.000  HORIZON  2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.OOO 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3. 0 0 0 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000  HORIZON DEPTHS (cm.) 0 20 017 013 CIS 021 014 014 019 017 017 017 017 019 C21 020 016 0 20 C20 021 C18 0 20 015 017 030 024 C28 0 26 029 020 C40 032 030 025 022 023 C28 020 020 038 024 024 0 30 031 034 C24 027 C32 023 C26 020 025 024 032 024 C25 024 035 019 C25 025 022 030 030 026 C25 061 041 044 C38 043 050 020 C50 038 025 021 02O 030 035 040  040 037 037 039 036 0 30 031 035 055 052 049 042 044 045 055 050 045 042 051 043 050 054 057 045 045 045 056 055 035 060 055 060 040 037 046 044 040 0 35 054 049 048 052 053 049 045 045 052 050 046 040 040 045 052 070 060 045 065 045 050 050 052 050 055 046 050 096 085 084 090 088 100 070 080 085 050 055 043 060 07C 070  PARENT MATERIAL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 3 1 1 3 2 3 3 2 2 2 2 2 3 3 2 3 3 3  2 1 2 2 2 1 2 1 1  < 2mm. FRACTION 841 763 921 777 809 698 732 715 858 922 944 715 695 868 851 821 795 919 864 729 853 666 752 583 514 531 586 817 671 688 647 1022 604 638 619 619 604 434 634 792 622 732 603 402 609 779 667 694 601 642 745 608 662 592 698 535 656 795 680 634 663 775 776 620 628 690 659 718 681 817 683 715 788 493 680 628 706 725 682 656  > 2mm. FRACTION 422 435 295 431 345 423 366 1026 501 389 359 390 472 411 402 413 426 343 308 316 066 172 109 439 124 270 550 151 037 071 223 124 181 180 066 113 116 141 040 123 092 155 232 512 18 1 165 136 131 104 173 289 307 137 179 176 470 83 133 198 101 105 336 173 211 374 237 195 300 216 468 431 279 437 501 273 285 280 100 353 367  DISTANCE DOWNSLOPE 275 275 275 275 275 305 305 305 305 305 305 305 305 305 305 305 305 305 '305 305 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 075 075 075 075 075 075 075 075 075 075 075 075 075 075 075 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215  93  PLOT  5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.00C 5.000 5.000 5.000 5.00C 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1 .000 1.000 1.000 1.000 1 .000 1.000 1 .000 1.000 1 .000 1.000 1 .000 1.CO0 1.000 1.000 1 .000 2.COO 2.000 2.000 2.000 2.000 2.000 2.000 2.GOO 2.000 2.000 2.000 2.000 2.000 2.000 2.000 3.COO 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.COO 4.000 4.000 4.000  PROFILE NUMBER  61.000 62.000 63.000 64.000 65.000 66.000 67.000 68.000 69.000 70.000 71.000 72.000 73.000 74.000 75.000 76.000 77.000 78.000 79.000 80.000 81.000 82.000 E3.000 84.000 85.000 86.000 87.000 88.000 89.000 90.000 1.000 2.000 3.000 4.000 5.OOO 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000 30.000 31.000 32.0C0 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000 41.000 42.000 43.000 44.000 45.000 46.000 47.000 48.000 49.000 50.000  HORIZON  3.000 3.000 3.000 3.000 3.000 3. 000 3.000 3.000 3.000 3.000 3.OOO 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3. 000 3.000 4.000 4. 000 4.000 4.000 4.000 4.OOO 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4. 000 4.000 4.000 4.000 4.000 4. OOO 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000  HORIZON DEPTHS (cm.)  C40 080 065 095 C44 085 046 095 C49 095 033 090 044 095 045 095 037 080 040 090 C40 090 037 090 C37 085 039 084 036 085 030 085 031 090 035 090 055 100 052 095 049 090 C42 090 044 090 045 100 055 100 C50 095 045 100 C42 090 051 095 043 085 050 060 054 065 057 065 045 055 045 050 045 055 056 060 055 060 035 060 C60 080 055 070 060 070 040 050 C37 052 046 050 044 050 040 050 035 045 054 060 049 060 048 060 052 060 053 055 C49 060 045 060 C45 055 052 060 050 060 046 055 040 050 040 050 045 055 052 075 070 090 060 080 045 050 065 070 045 060 050 070 050 080 052 065 C50 070 055 065 046 060 0 50 070 096 105 085 090 084 088 090 095 088 095  PARENT MATERIAL  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 3 2 2 2 2 2 2 1 2 2 1 2 3 3 3 3 1 1 1 1 1 1 1 3  < 2mm. FRACTION  > 2mm. FRACTION  527 626 760 657 738 775 709 853 694 657 765 674 795 757 848 650 607 599 840 928 979 369 851 919 949 697 850 839 611 697 587 726 721 647 656 801 688 887 815 541 548 952 724 524 326 696 634 506 1019 745 730 637 630 789 672 680 624 702 765 64 2 597 813 675 423 734 300 793 656 708 611 654 592 577 607 522 747 794 792 742 726  588 366 314 368 298 272 437 292 298 500 359 509 338 299 266 343 434 825 417 557 498 336 340 531 350 569 503 334 667 670 043 103 129 061 097 247 138 098 163 163 030 027 085 29 2 150 114 220 24 1 081 170 255 297 166 031 187 178 174 118 313 190 370 335 542 744 1134 596 494 130 152 156 145 221 181 316 438 219 379 467 206 353  DISTANCE DOWNSLOPE  275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 30 5 305 30 5 305 30 5 305 30 5 305 305 30 5 305 ' 305 30 5 30 5 305 000 000 000 000 000 000 000 000 000 000 000 ooo 000 00 0 000 075 075 075 075 075 075 075 075 075 075 075 075 075 075 07 5 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 215 215 215 215 215  94  PLOT  4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.COO 4.000 5.000 5.000 5.OOC 5.000 5.000 5.000 5.OOC 5.OOC 5.000 5.000 5.000 5.000 5.000 5.000 5.000 6.000 6.COO 6.000 6.000 6.000 6.000 6.000 6 .000 6.000 6.000 6.000 6.000 6.000 6.000 6.000  PROFILE NUMBER 51.000 52.000 53.000 54.000 55.000 56.000 57.000 58.000 59.000 60.000 61.000 62.000 63.000 64.000 65.000 66.000 67.000 68.000 69.000 70.000 71.000 72.000 73.000 74.000 75.000 76.000 77.000 78.000 79.000 80.000 81.000 82.000 83.000 84.000 85.000 86.000 87.000 88.000 89.000 90.000  HORIZON  4.000 4.000 4.000 4.000 4.000 4.000 4. 000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4. 000 4.000 4.000 4. 000 4.000 4.000 4.000 4.OOC 4. 000 4. 000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4. 000 4.000 4. 000 4. 000 4.000 4.000  HORIZON DEPTHS (ct 100 070 080 085 050 055 043 060 070 070 080 095 085 095 095 090 095 095 080 090 090 090 085 084 085 085 090 090 100 095 090 090 090 100 100 095 100 090 095 085  105 075 093 093 055 060 044 085 087 080 090 105 100 115 115 110 105 105 100 105 097 105 100 095 100 095 105 105 110 105 100 105 105 120 105 105 115 105 105 100  PARENT MATERIAL 1 2 1 2 2 2 2 2 3  1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  < 2mm. FRACTION 694 826 844 752 736 668 168 906 995 823 725 831 883 899 1 047 847 888 785 1012 906 891 929 934 850 944 652 1031 370 992 838 844 939 946 784 917 699 827 944 630 605  > 2mm. FRACTION 939 4 37 378 440 520 789 934 129 173 375 459 473 602 456 466 276 526 477 449 429 377 446 422 486 459 745 863 589 437 674 770 257 463 423 454 875 724 546 984 859  DISTANCE DOWNSLOPE 215 215 215 215 215 21 5 215 215 215 215 275 275 275 275 27 5 275 275 275 275 275 27 5 27 5 275 275 275 30 5 305 305 305  30 5 30 5 305 305 305 305 305 305 305 305 305  95  Appendix D THREE-WAY ANALYSIS OF VARIANCE SUMMARY DATA  analysis  f c rC l Analysis  of variance  table  Source  Sum c f squares  DF  dOBIZ E1CT HOBIZ*ELCT LITHCL HCBI2»I1THCL EL01«LITHCL H06I2«ELCI«IITH0L Besidual Total  2743.7 465.24 296.16 0. 37666 26.619 10.779 30.548 762.63 7031.4  3. 5. 15. 2. 6. 6. 12. 310. 359.  Analysis  914.58 93.046 19.877 0.18943 4.4365 1.7965 2.5456 2.4601  F-ratio  Probability  Test  tern  371.77 37.823 8.0799 0.77001E-01 1.8034 0.73026 1.0348  0.0 0.00000 0.00000 0.92591 0.09 796 0.62555 0.41643  BESIDUAL BESIDUAL BESIDUAL BESIDUAL BESIDOAL BESIDUAL BESIDUAL  F-ratio  Probability  Test  516.92 12.300 3.9835 3.5793 0.43605 3.9267 1.4091  0.0 0.00000 0.00000 0.02905 0.85456 0.00085 0. 16015  BESIDUAL BESIDUAL BESIDUAL BESIDUAL BESIDOAL BESIDUAL BESIDUAL  F-ratio  Probability  Test  180.49 5.2348 2.3102 4.1728 0. 12912 4.0000 1.0534  0.00000 0.00012 0.00396 0.01628 0.99263 0.00071 0.39964  BESIDUAL RESIDUAL RESIDUAL BESIDUAL BESIDUAL RESIDUAL BESIDUAL  f o r NG Analysis  Source dOBIZ ELC1 HOEI2*IL01 LITHCL HCB1Z*IITHCL IICT*LITHCL aCBIZ*ELCT«LITHOL Besidual Ictal Analysis  dean square  of variance  table  Sum o f squares  DF  968.66 38.423 37.331 4. 4724 1.634b 14.720 10.5(4 193.68 1994.1  3. 5. 15. 2. 6. 6. 12. 310. 359.  Mean square 322. 95 7.6846 2.4888 2. 2362 0.27243 2.4533 0.68034 0. 62477  tern  f c r HI Analysis  of variance  Source  Sum c f squares  dOBIZ PLCI dOBIZ*ELCT LITHCL HOB12*IITKCl EIOTUITHCL HOB12*ELCT»LITHCL Besidual Iotal  0.97918 0 . 4 7 3 3 3 E -•01 0 . 6 2 6 6 6 1 - 01 C . 1 5 0 S 2 E - 01 0. 14010E-•02 0 . 4 3 4 0 2 E -•01 0. 2 2 6 6 0 E - 01 0. 56061 2.0314  table  DF 3. 5. 15. 2. 6. 6. 12. 310. 359.  Mean sguare 0.32639 0.94667E-02 0.41778E-02 0.75462E-02 0.23350E-03 0.72337E-02 0. 19050E-02 0. 18084E-02  tera  Analysis  f c iK Analysis  cf variance  table  Source  Sua c f squares  DF  HOHIZ ELOT dOBIZ»ILCl LITHCL UGEIZ*1I1HCL ELCT'lITHCL dOHIZ*ELOUITHOL Sesidual Total  0.23C84 2.0415 2.1009 1.9696 0.28543 0.91421 0.22179 15.498 26.698  3. 5. 15. 2. 6. 6. 12. 310. 359.  Analysis  0.76948E-•0 1 0.40869 0.14006 0.98491 0.47571E-•01 0.15237 0. 18483E-•0 1 0.49992E-•01  F-ratio  Probability  Test  tera  1.5392 8. 1792 2.8017 19.701 0.95158 3.0479 0.36971  0.20432 0.00000 0.00042 0.00000 0. 45834 0.00653 0.97324  BESIDUAL BESIDOAL BESIDUAL BESIDUAL BESIDUAL BESIDUAL BESIDUAL  F-ratio  Probability  Test  401.04 25.484 10.014 1.7040 0.46197 1.3766 0.49937  0. 0 0.00000 0.00000 0. 18366 0.83624 0.22354 0.91454  BESIDUAL BESIDUAL BESIDUAL BESIDUAL BESIDUAL BESIDUAL BESIDUAL  F-ratio  Probability  Test  0.0 0.00000 0.00000 0.09482 0.09877 0.34356 0. 14391  BESIDUAL BESIDUAL RESIDUAL BESIDUAL BESIDUAL BESIDUAL BESIDUAL  f o r CIC Analysis  Source HOBIZ PL 01 HOBIZ«ELCI LITHCL HCB1Z»II1HCL PLCl'LITHCI BOEIZ*ILCT*LITHOL Hesidual Total Analysis  Mean square  of variance  table  Sua o f squares  DF  10705. 1133.7 1336.4 30.322 24.662 73.490 53.317 2756.2 27572.  3. 5. 15. 2. 6. 6. 12. 310. 359.  Dean square 3568.2 226.74 89.097 15.161 4.1103 12.248 4.4431 8.8974  tera  f c r PH Analysis  of variance  table  Source  Sun c f sq u a r e s  DF  HOSIZ EIC1 BOBIZ*ELCl LITHCL dOElZ*IITHCL PLCT*LITHCL HOBIZ*tLCT*LITHCL Residual Total  4 5 . 361 5. 1224 2.3302 C.19060 0.43342 0. 27262 C.69661 12.445 81.6S8  3. 5. 15. 2. 6. 6. 12. 310. 359.  Mean square 15. 120 1.0245 0. 15535 0.95300E-•01 0. 72237E-•01 0.45436E-01 0.58051E-•01 0.40147E-•01  376.63 25.518 3.8695 2.3738 1.7993 1.1318 1.4460  tera  analysis  forC Aralysis  of variance  SUI  Source  cf squares  H0B1Z £ LCI dOEIZ»IL01 LIIHCL HGEIZ*1IJHC1 ILCT*HTHGL dOBIZ*lLCT»LITHOL aesidual Ictal  20.591 1.0577 0. 79915 0.50708E-02 0.10159 0. 30898 0.22386 7.2219 35.677  Analysis  table  DF 3. 5. 15. 2. 6. 6. 12. 310. 359.  Mean square 6.8636 0. 21153 0.53277E-01 0.25354E-02 0.16931E-01 0.51497E-01 0.18655E-01 0. 2 3 3 0 6 E - 0 1  F-ratio  Probability  Test  t e n  294.50 9.0763 2.2860 0. 10879 0.72646 2.2096 0.80042  0.0 0.00000 0.0044 1 0.89696 0.62859 0.04201 0.65005  BESIDUAL BESIDOAL BESIDUAL BESIDOAL BESIDUAL BESIDOAL BESIDUAL  F-ratio  Probability  Test  201.22 11.265 0.87087 0.16037 0.49869 0.9287 0 1.0949  0.00000 0.00000 0.59754 0.85190 0.80923 0.47445 0.36371  BESIDUAL BESIDUAL BESIDUAL BESIDOAL BESIDOAL BBSIDOAL BBSIDOAL  f c rH Analy s i s  Source HOBIZ £LOT iiOEIZ»£LCT LITbCL H0EIZ*II1HC1 PLC1*LITHCL aOEIZ»ELCT*LITHCL aesidual Total  cf variance t a i l s  SUB  cf squares 0.26487E*07 0.24714E*06 57318. 1407.1 13129. 24450. 57649. 0.13602E+07 0.53463E+07  DF  Mean square  0. 88290E+06 3. 49427. 5. 3821.2 15. 703.69 2. 2188.2 6. 6. ' 4 0 7 4 . 9 4804.1 12. 4387.8 310. 359.  tera  co  99  Appendix E  ANALYSIS FOR SOLUBLE CATIONS  100  E.1.0  INTRODUCTION  A n a l y s i s o f t h e s o l u b l e c a t i o n s , c a l c i u m , magnesium, sodium and potassium,  i s c a r r i e d out t o determine i f any  p a t t e r n s o r t r e n d s a r e e v i d e n t i n t h e c o n c e n t r a t i o n s o f these c h e m i c a l s p e c i e s on t h e h i l l s l o p e , and t o determine t h e i r variability. Samples taken from the Ae and Bt h o r i z o n s o f a l l p l o t s and  from t h e AB and Be h o r i z o n s of p l o t s 1, 3 and 5 a r e examined.  101  E.2.0  LABORATORY METHODOLOGY E.2.1  a.  Distilled  b.  Toluene  water  E.2.2 a.  REAGENTS  PROCEDURE  Place 15 grams of s o i l and 30 m i l l i l i t e r s of d i s t i l l e d water i n a 50 m i l l i l i t e r acid-washed centrifuge tube.  b.  Shake the mixture gently f o r 30 minutes and then allow to stand f o r 20 hours.  c.  Centrifuge the mixture f o r 15 minutes a t approximately 7,000 revolutions per minute.  d.  F i l t e r the supernate and c o l l e c t the f i l t r a t e i n a 60 m i l l i l i t e r acid-washed b o t t l e .  e.  Analysis f o r soluble cation concentrations i s by atomic adsorption.  I f a n a l y s i s i s not immediate,  a drop of toluene i s added to the f i l t r a t e which then  i s refrigerated.  102  E.3.0  STATISTICAL  ANALYSIS  To determine the degree to which i n d i v i d u a l p l o t s differ  from one another and to v a l i d a t e any t r e n d s o b s e r v a b l e  i n the d a t a , t - t e s t s a r e a p p l i e d .  Then, c o e f f i c i e n t s of v a r i a t i o n  are c a l c u l a t e d to study the v a r i a b i l i t y of the s o l u b l e  cations  and t o compare t h i s v a r i a b i l i t y w i t h t h a t o f the exchangeable cations.  103  E.4.0  The  RESULTS AND  CONCLUSIONS  a n a l y s i s i n d i c a t e s that values f o r soluble  c a l c i u m f l u c t u a t e g r e a t l y and or t r e n d e x i s t s  t h a t no obvious s p a t i a l p a t t e r n  on the h i l l s l o p e .  However, the data do show: '  t h a t c o n c e n t r a t i o n s of s o l u b l e c a l c i u m are h i g h e s t i n the h o r i z o n s and completely  tend to decrease w i t h depth.  surface  This trend i s  o p p o s i t e to t h a t f o r exchangeable c a l c i u m which  tends to i n c r e a s e w i t h depth.  ( F i g u r e E.4.1, Table  E.4.1)  For s o l u b l e magnesium-concentrations, g e n e r a l of downslope i n c r e a s e s on the upper p l o t s ( 1 , 2 and downslope decreases on the lower p l o t s ( 4 , 5 and by the t - t e s t s .  The  d a t a do not show any  depth f o r s o l u b l e magnesium v a l u e s . The  3)  6) are  obvious t r e n d  patterns and verified with  ( F i g u r e E.4.2, Table  a n a l y s e s c l e a r l y demonstrate t h a t no  E.4.2)  spatial  p a t t e r n or t r e n d over the h i l l s l o p e i s apparent i n s o l u b l e sodium v a l u e s .  F u r t h e r , these v a l u e s are q u i t e v a r i a b l e .  data do suggest, however, t h a t s o l u b l e sodium i n c r e a s e s l i g h t l y w i t h depth.  concentrations  ( F i g u r e E.4.3, Table  S o l u b l e potassium c o n c e n t r a t i o n s  c o n s i s t e n t , t r e n d of d e c r e a s i n g  potassium v a l u e s w i t h depth i s e v i d e n t . high v a r i a b i l i t y ,  t h i s trend probably  ( F i g u r e E.4.4, Table  E.4.3)  are so v a r i a b l e as  to show no c l e a r p a t t e r n or t r e n d on the h i l l s l o p e . though not w h o l l y  A general,  soluble  However, because of  i s not  significant.  E.4.4)  C a l c u l a t i o n s of the c o e f f i c i e n t s of v a r i a t i o n f o r each chemical  s p e c i e s by h o r i z o n i n d i c a t e  between h o r i z o n s  that v a r i a b i l i t y  for a single v a r i a b l e i s equivalent  v a r i a b i l i t y between chemical  species.  The  to  104  C o e f f i c i e n t s of v a r i a t i o n by s o l u b l e c a t i o n and h o r i z o n Calcium  Magnesium  Sodium  Potassium  Number of samples  Ae  33  44  37  44  90  AB  38  46  31  39  45  Bt  48  37  26  53  90  BC  34  29  30  24  45  G e n e r a l l y , no obvious t r e n d of i n c r e a s i n g or decreasing  v a r i a b i l i t y w i t h depth i n the s o i l i s e v i d e n t .  S o l u b l e magnesium, f o r which a decrease i n v a r i a b i l i t y depth can be observed, i s a p o s s i b l e  with  exception.  I n s p e c t i o n of the c o e f f i c i e n t s o f v a r i a t i o n f o r i n d i v i d u a l p l o t s does not slope p o s i t i o n .  show any  c o n t r o l of v a r i a b i l i t y  by  Further, a s l i g h t increase i n v a r i a b i l i t y  g e n e r a l l y occurs w i t h i n c r e a s e s i n the s i z e of the  area  sampled. In g e n e r a l , c o e f f i c i e n t s of v a r i a t i o n f o r the s o l u b l e c a t i o n s are h i g h e r cations.  than those  f o r t h e i r corresponding  exchangeable  Figure E.4.1  P L O T  I  P L O T  2  P L O T  Soluble calcium  3  P L O T  4  P L O T  5  P L O T  6  106  Table E.4.1 Soluble calcium Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s o - d i f f e r e n c e s are not s i g n i f i c a n t x = d i f f e r e n c e s are s i g n i f i c a n t at the 95% l e v e l of confidence xx - d i f f e r e n c e s are s i g n i f i c a n t at the 99% l e v e l of confidence  Ae horizon  plot 1 2 3 4 5  2 XX  3 o XX  4 XX  o XX  5 o XX  o XX  6 XX  o XX  o X  plot 1  3 o  5 x  AB horizon  Bt horizon  plot 1 2 3 4 5  plot 1 BC horizon  2 o  3  4  5  XX  XX  XX  XX  XX  XX  XX  o XX  6 o o XX XX XX  3 o  5 o X  107  F i g u r e E.4.2  S o l u b l e magnesium  .07  O  3+  CD  o  o-.05 E  3 t  r  3 *  LU -J  1*2*  m  3 t  _1  O  .03l  OT  2*  PLOT  I  PLOT 2  PLOT  3  PLOT 4  PLOT  3 4  5  PLOT 6  108  T a b l e E.4.2 S o l u b l e magnesium L e v e l s o f s i g n i f i c a n c e f o r i n t e r p l o t comparisons o f means by t - t e s t s  o => d i f f e r e n c e s a r e not s i g n i f i c a n t x • d i f f e r e n c e s a r e s i g n i f i c a n t a t the 95% l e v e l o f xx • d i f f e r e n c e s a r e s i g n i f i c a n t a t the 99% l e v e l o f  Ae h o r i z o n  plot 1 2 3 4 5  2 o  Bt  3  5 o o  6 o o  X  X  o  o o  5  XX  XX  horizon  horizon  plot 1 2 3 4 5  plot 1 BC  4 o o O  plot 1 AB  3 xx xx  confidence confidence  horizon  2 o  3  4  5 o  6 XX  X  XX  o  XX  XX  XX  XX  XX  XX  XX  XX  o  3 XX  5 o  F i g u r e E.4.3 S o l u b l e sodium  PLOT  I  PLOT 2  PLOT 3  PLOT 4  PLOT 5  PLOT 6  110  T a b l e E.4.3 S o l u b l e sodium L e v e l s o f s i g n i f i c a n c e f o r i n t e r p l o t comparisons o f means by t - t e s t s  o « d i f f e r e n c e s are not s i g n i f i c a n t x = d i f f e r e n c e s a r e s i g n i f i c a n t a t the 95% l e v e l o f xx » d i f f e r e n c e s a r e s i g n i f i c a n t a t the 99% l e v e l o f  Ae  horizon  plot 1 2 3 4 5  2  3  XX  X  XX  horizon  Bt h o r i z o n  horizon  5  6  XX XX  X  XX  o  plot 1 2 3 4 5  0 XX  o XX  3  5  XX  XX  3  plot 1 BC  4 o o  XX  plot 1 AB  confidence confidence  o  2 o  3 o o  3 o  4 o o o  5 o  6 o  0  0  o o  o o o  5 X  Ill  F i g u r e E.4.4  PLOT  I  PLOT 2  S o l u b l e potassium  PLOT  3  PLOT 4  PLOT 5  PLOT 6  112  Table E.4.4 Soluble potassium Levels of s i g n i f i c a n c e f o r i n t e r p l o t comparisons of means by t - t e s t s o = differences are not s i g n i f i c a n t x - d i f f e r e n c e s are s i g n i f i c a n t at the 95% l e v e l of xx « d i f f e r e n c e s are s i g n i f i c a n t at the 99% l e v e l of plot 1 Ae horizon  2  2 o  3  4  5  6  O  O  O  X  x  o o  o o  o o x o  4 5  3  plot 1 AB  3  confidence confidence  o  5 xx  XX  horizon  plot 1 2  Bt horizon  3  3 o xx  4 5  plot 1 BC horizon  2 XX  4 XX  5  6  o  o  XX  XX  XX  XX  0 XX  XX  o o  3 XX  5 XX  113  E.5.0  SOLUBLE CATIONS DATA SUMMARY  Note:  The u n i t s f o r s o l u b l e c a t i o n s a r e meq/100 g.  114  U  3G  w  cn en cn cn  O o o  o  in in in ID  CT CT CT  o ca E-4  Cn  vfi \Q cr \Q o o o *IN  o cn u  cocr crcr covo o•o•o o• • oooo CN  CN CN  (N vO 00  cn \© \fi as • • • •  CN rn fN m -a *4 -o s M ty m — r rn -n •<* ~5 ~5 O J t ,o .O ,J << O. O  M fN fN W  oooo CT> CT* CT> C7i  o ro con »o-  — cr cr co « o—o oinorj  in p » rn »*-• in vo in •t •  CDcni- C O (N • • O• vO• fN *- m  iTl  (N  CN GO  rN rn rn  (*n un in co "3 n o oooo  p» as cr OT <- cn ',0 f N "3 -> -3 *-  p »— o fN * cr o o o« o o *' oIo•o o* •  <fN O »- fN *- O fN OOOO • •• • OOOO  p* r* T* -y -n o c o 0m «- rn cn m• ^ cr • • oooo •  *~ cn -*n un .n n .n ccro ***n7vin m o•o•o to •  o cr fN «- »- t- fN O°OO o•o•o to • ooo o  * p* o> *o O *- O fN o o•o oo oo o o o•oIo t & p- cn i n O »- O fN OOOO • •• •  J  u n in in in =* =y =* ^  fN  CN  <- m cr o oo  E-i 0W 9 to O I  O O CO OOOO OOOO o. a ,  ft* S  8  pa ca O ~s  n -J:  CN  * cr P - cr N  <N  o oo o cf cr p* cr * — oofN Q < o o 095 W o•oo•ooo• ooo o • 6H &4 n m *J0 m tn o c o otot-•ooo* * a o oooo Q <4 CN  6-t W r» c7> — r o o•o•« o-•om * o oo o CN CN  CO «c  «s u •* u s SB &e oooo in to to in \o  P**  co cn  Ae HORIZON  - » « - N •*  oooo  p* co cn rrn oooo f N CN  -* w •< u r aa « .-J J _J _J oooo in ui in ui  r- co cn  AB H0RIZ0H  -3  P*  fN  K CN  oooo co cr rn \Q o cr m =r oooo  t 15 < C J E 25 J -J J  « J  OOOO in ui m ui  J3 r» co cn  BC HORIZON  rn \D o *- *- *OOOO oto•o of • CO CD  n o cn -n N iT> O N Tl i"l o < m rn"n o• o•o•o• £5  CO fN  <N  o oo oQ o oo m cn o p<o o oo o^ oo co rn co o o*om*om o o o o*o t fN  CN  *c o «a .-i *j *j OOOO to to tn m  vo p" co cn BC H0RIZ0H  115  i-i tD -BO  EH  U  m in m i n rf- — *~  in in in m  m m in m  i n * o o fM fn (N 00 O O O O • • •• O O O O  SO * sO V0 O O O O  CO CO © O m CM  o m  H QJ O Ul U Ul  *- o co n o N  •  t  •  •  O O O O  fM m O O O O  r* (N m m co so f*> m  n ^ co o fM fM rM m o o o o  o o o o  o o o o  •  ir* W  cd Ul O U M Ul J M  Ul  eu O •-3 <* >  Pu. 5E O O • M h  ««  H ft-ca W  o > u •  «*  03 £  W  •  H Ul O 3G  Q o IS w < E-t Q S5  <  •  t  •  o o in so• rn•r-• fM• l  t  t  in  •  fM CO SO *- «- o o• o •o • O o  fM so in •=t fM so m fM « - r- r- =t U * l « 0 fM fM* m• m in • •  •  rsi fsj fM rsi r~ sO ST m O O O O  fn so O fM *- en -» m O O O O O O O O  • •  ' l  fx O N O o o o o •  •  • •• •  O O O O  a* r -  • •  1 i  CO  o o o  t  — fN fN ^> O o o o  *- *- r » i n o m r* cn • • • •  w  m so co so * sr fM cn o o o o  • • O N *  t  •  o o o o  »  •  O fM fM fM O O O O  fn sD CO s  o «- «o o o o  • • • •  o o o o  r* o r* co o r - ao cn o so «- co o cn en <N <- * -  O O O o  r» ^o co co CM cn o co m in r» * en rn fM CM m « • • • o o o o  o =* & cn CN <N in O O O o O• O •O 1 o•  m fM * in T - «- fM o O O O o• O O O  pv O O o  o o o o  o o o o  co cn m m o o o fM o o o O* fl • • o o o o  m m >n o o o o *o-* o • o *o •  cn in cn o o o o o o o o  o o o o  o o o o  o * r» m fM «o• o •o • o• o o o o  =r r» i— cn *— r- (\| (\J o o o o  (noma o a rn m o o o o  «* U «; SB *J J J O CJ CJ o in ui ui ui  «s u «* U o a M J ^ J J u o u o uiuiuim  •« o •*! UC z K J ! j hi OOUCJ uiuimui  o «« ( j "3 so ae _J _J _J _) O O CJ CJ uiuiuim  so  vo  so p* co cn  O O O o  CO CO  •  • •  • * 3 H O  r*. cn so o & r~ 00 rn fM * - fM • • • * o o o o fM =t * fM fM O O O o o o  • • • •  •  •  t  •  •  •  t  o o o o  •  oo m fM O «- *o o o o o o o o  rn n* so m o o o o o o o o  >  W  Q 55  w w •J *J OJ <e *C z H • o > SB  so r - ao cn Ae HORIZON  • •  •  o o o o  t  co cn  AB HORIZON  •  •  I  o o o o  t  co cn  Bt HORIZON  r» r» o m o fM m fM o o o o  BC HORIZON  PLOT 2  VAEIAELE NO. NAME J_ | g  6 SOLCA 7 SCLBG 8 SCLNA 9 SOLK  • 6 SCLCA _ 7 SCLMG 8 SCLNA 9 SOLK  STANDARD ST.ERR. DEVIATION OP MEAN 0.007 0.0013 0.021 0.025 0.009 0.0022 0.012 0.004 0.0010 0.000 0.014 0.0036  MEAN  0.007 0.049 0.031 0.060  0.004 0.016 0.005 0.028  0.0009 0.0040 0.00 14 0.0071  COEFP. OF VARIATION 0.33817 0.34550 0.31440 0.34522  0.51039 0.32122 0. 17269 0.46005  S N A LL E S T VALUE Z-SCOBE -1.56 0. 010 0.012 -1.50 0.008 -1.08 0. 020 -1.44  0. 001 0. 030 0.022 0.030  -1.62 -1.19 -1.71 -1.08  LAB G E S T VALUE Z-SCOBE 1.64 0.033 0.044 2.21 0.022 2.59 0.074 2.48  0.013 0.076 0.040 0. 118  1.80 1.75 1.63 2. 11  RANGE 0.023 0.032 0.014 0. 054  TOTAL FBEQUEBCI 15 15 15 15  0. 012 0. 046 0. 018 0. 088  15 15 15 15  PLOT 3  VAEIAELE NO. NAME SCLCA SCLMG SCLNA SOLK  SCLCA SCLMG SOLNA S 9 SOLK £ «  S „ 2 5  STANDARD ST.EBB. CO EF F. OF MEAN DEVIATION OF MEAN VABIATION 0.034 0.009 0.0024 0.27482 0.038 0.017 0.0043 0.43316 0.022 0.006 0.00 17 0. 29225 0.053 0.016 0.0041 0.29765  SMALLEST VALUE Z-SCOBE 0.022 •1.34 0.018 •1.22 0.014 •1.23 0.0 34 •1.21  L ABGES T VALUE Z-SCOBE 0.052 1.87 0.066 1.69 0.032 1.59 0.090 2.32  BANGS 0.030 0.048 0.018 0.056  TOTAL FBEQUENCT 15 15 15 15  0.018 0.03S 0.032 0.043  0.007 0.01 1 0.007 0.010  0.00 17 0.0028 0.0018 0.0026  0.36002 0.28473 0.21709 0.23351  0.009 0. 020 0.022 0.026  •1.36 •1.68 •1.47 •1.68  0.030 0.056 0.048 0.062  1.87 1.61 2.25 1.92  0.021 0.036 0.026 0.036  15 15 15 15  6 SCLCA 7 SCLMG 8 SCLNA 9 SCLK  0.0 11 0.048 0.031 0.039  0.004 0.009 0.006 0.022  0.0009 0.0023 0.00 14 0.0054  0.32730 0.19305 0.17853 0.54886  0.00 1 0.036 0.022 0.026  -2.73 - 1. 29 -1.61 -0.62  0.017 0.074 0.042 0.118  1.50 2.81 2.02 3.64  0. 015 0.038 0.020 0. 092  16 16 16 16  6 7 8 9  0.009 0.039 0.031 0.031  0.002 0.008 0.008 0.007  0.0006 0.0022 0.0021 0.0019  0.26156 0.21361 0.26147 0.23214  0.006 0.022 0.020 0.020  -1.39 -2.05 -1.39 - 1.55  0.014 0.050 0.044 0.046  2.05 1.31 1.52 2.04  0. 008 0. 028 0. 024 0.026  15 15 15 15  6  7  SOLCA SCLMG SCLNA SCIK  11.8  w  •B O in irun in O 04CB D  EH  W  EH  C D»f(lNr-fNIflCO fOOOO  « - CM CM  M O *OrnOp*sO O OOOO  rcn•ms•oen•oCNt— • t( N CM  Cd J ««  O sO fM fM m o or-ofMo p* oooo  in M- 3> Ov~* O fOOOO « ••• • OOOO w  fMa r-in & **m o pin* • IH fMoincofMmrn ••• • -t o o o o W 03 *mom t SB o oo oo o o•o c09 d< W o o•o•o • CM  OH  10  CM  in m *- #» cn p- o so • •• • o «-  tn o u DJ  a o co o osino co oo r»  o  SO fM o oto=t•ofM oin• • oooo CO  =* cpo *o m in mo ocoo^ =r r* * SO « •— • •fM •fM oooo  in i - in w  o rn fMo in o oo oo oo • • * •  oooo fO M« fM- *O "* O fM OOOO  oooo rn =» so OOOO  rn cn so in O o o ornoco  • I • •  OOOO  <; U g c Z i£ d J-ld CJUUO  <i rj *G u u 3S K j «q j u o o o  so p» co cn Ae HORIZON  Bt HORIZON  119  W ot e- w me  IT  in in m  in m in m  03 E-t PM O  OJ HO M <ntnu N C mJ -s w s (U  1  >  a vc o ^ o o o *• •• f oooo  CN D <C C ci rnst^o 3 oooo  (N  ^ r* yj » <~•* «• • — *N fN  cf cm n ccr o cm o m fN «- fN CN  =T CO m o•outorn ~fn o o o•o •  in co rN m ro in o•o= o co o oto•o t  \o o « r co «-in«on o•o•oto • •o o o o  Cf ID CN » o•-ocr•o•po* m oooo t  con cr\o m »-cr  r* «- =rin«r* in • »- *-• i-• • lilt  C oNcr inofN • « •fN• till  O fN vO O fN fN fN OOOO • a• • OOOO  in co cr o o o*- ofNofN o ot o•o•o • copn *>cnu*iinr* M«-no m fn com*n \ oto•o•o • £ \J fM cr m o o oCN ofno»oooo o•o•oao •  (N CN  «- \0  f-l w d « «- con om tn eo cf- cr u • •• • cc tn l till •J «cNcu p- o cf »  (N  oooo tn t* o•o•o•o • •<  Pu OMO • E-t w aa o < u• t»  VVT T  r- fN fN fN O N fN o o<-o fo OOOO  cn O rg fM oooo  cn co co co ONSio• o•o• o• oooo  cn fN fNr* r* ••• •  cn* m p r- un ncr fN• *-• f•N •  CN  \o  CN  P»  CM  00  P*  95  rn OrnCOcnfN = fC o m r » fN O cf rn fN » - \0fN rn • t • OOOO • rn cn rn m t as rOOOO N CN cn OS c n w o ooo W • o•o•o•o • tn o cn *- m vo o Q O o»o«•-oo•ornf cQ-aa•H < oooo X M -a HW tn Q cn \o rn cn fNofNo fo N in o • • i • w oooo  vcro CNCN cP*n co o =r in pCOOvO* m cr fN m • •• t OOOO co o fn cn r- m fN m OOOO OOOO t •a < OOOO  opo* crn n c\oo cr C O CNvflCNfNCOt- r• •flt OOOO — r m o o fNofnoroo o•oao•o • oooo  r* CN cn m o *- o «OOOO o•o•o•o •  fn cn fN cr o *- o o o•oo•o o o o•o •  u< ccj z ^ W uu -oj uj u oj tn tn vi tn CL) < as t p* co cn  uj o « -=ao M J j j u tn uwumo in \Q r- c u cn  CM DL,  -< M  T-  S3  S3  H  CN  PM  P*  P»  P*  CN  cn <*n m o o1oo•o*~to ot oooo CN  E»  33  > »  Ae HORIZOH  cf-oCNcnmcrcrm oooo o•o*o•o •  «t  AB HORIZOH  cr fN oooo ototo•o • CN  i< CJ  P*  ^  tJ j -j oooo tn tn tn tn \o p- co cn Bt HORIZON  p » *- cn «o o omorno rn o•o«o•o •  -c w rjz: •«as ^ J ^ j o j otn tn cjto<tn  ^ p** co cn  BC HORIZON  •< Of E-t W  T-  »- «- r-  o  m * a »o oooo  H HO OHj vi «U  r» O cn Cr* co O O •(s) • • • rsi CN rsi ps)  H I  ca  •«Wo «•*  rn & & rsi no^o<N oo« o• o• o•o •  «o *mrsicnincoincn wo w im •oo — I  '  c  rrsi * coo* o o omorn o  CN «  SO  m r» m r* CN • » »- rrsi * to co o•oto•o • oooo c o cr-o ccoo cfn m n  I I  CQ O O so T~ rsi ~ » rsi oooo  in rsi rsi—o c\j © o o»o- o«  • • ••  coa -«at u> on  w  to o aaaoH •< H E4 - W VI o  oooo m in en r* O CN *~ * c cnCMco ON ^o• rsi •• • OOOO «- CN w sr oooo oooo • •• t oooo * CO O OC O O oooo a- r* m  f-  rsi rsi so oooo o• o•o•o•  * C5 * U«3S0ae  hJ« J l-t *J UJ«< O O O O *s =B \Qcocotnin r- cc cn -B O A« HORIZON WW  ^*ocncn\or»co **m*mcnrsico*IN m m esi o•o•o •o • & r- o o rsi rsi CN o oIo ofo o •o o oooo •  m  rg cn o co o o oo o«~o o c co m CN in oom en OOOO  cs •< JJ oooo uir*uico uicn in so «c O » 35 M g g  Bt HORIZON  121  E.6.0  SOLUBLE CATIONS  CHEMICAL DATA  Horizon codes: Ae - 2 AB = 3 Bt - 4 BC - 5  Note:  The u n i t s f o r soluble cations are meq/100 g.  122  LOT  1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. t. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4.  #  n.  4. a. <t. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6.  PROFILE NUMBER 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80.  HORIZON  SOLUBLE CALCIUM  SOLUBLE MAGNESIUM  SOLUBLE SODIUM  SOLUBLE POTASSIUM  2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.  0.027 0.023 0.018 0.043 0.040 0.032 0.038 0.019 0.029 0.022 0.030 0.030 0.033 0.030 0.038 0.019 0.022 0.031 0.025 0.026 0.030 0.016 0.017 0.033 0.021 0.015 0.026 0.016 0.010 0.011 0.028 0.045 0.052 0.043 0.027 0.052 0.034 0.035 0.035 0.028 0.034 0.027 0.029 0.027 0.022 0.020 0.030 0.016 0.028 0.020 0.017 0.026 0.018 0.023 0.026 0.024 0.012 0.014 0.023 0.015 0.030 0.037 0.028 0.034 0.051 0.030 0.018 0.025 0.017 0.017 0.024 0.038 0.029 0.030 0.03 1 0.027 0.026 0.025 0.021 0.027  0.024 0.024 0.038 0.036 0.028 0.014 0.012 0.020 0.024 0.018 0.018 0.016 0.022 0.024 0.046 0.023 0.034 0.028 0.028 0.034 0.044 0.022 0.014 0.030 0.022 0.018 0.024 O.016 0.012 0.020 0.013 0.066 0.050 0. 044 0.034 0.064 0.058 0.048 0.013 0.024 0.044 0.024 0.026 0.032 0.022 0.020 0.0 36 0.024 0.034 0.028 0.014 0.036 0.016 0.022 0.076 0.062 0.040 0.026 0.023 0.032 0.040 0.028 0.028 0.028 0.046 0.026 0.016 0.016 0.012 0.018 0.0 10 0.030 0.028 0.046 0.018 0.044 0.042 0.040 0.020 0.024  0. 024 0.016 0.028 0.024 0.018 0.012 0.008 0.018 0.014 0.018 0.014 0. 012 0.020 0.014 0.020 0.016 0.012 0. 012 0.008 0.014 0. 022 0.010 0.008 0.010 0.010 0.014 0.012 0.010 0.008 0.016 0.014 0.020 0.016 0.030 0.022 0.032 0.032 0. 020 0.016 0.022 0. 030 0.022 0.014 0.022 0.016 0.014 0.014 0. 010 0. 010 0.010 0.016 0.016 0.012 0.012 0.022 0.020 0. 018 0.016 0.010 0.010 0. 024 0.0 14 0.022 0.018 0. 024 0.024 0.028 0.022 0. 034 0.028 0.020 0.026 0.022 0.028 0.018 0. 016 0.016 0.024 0.012 0. 010  0.032 0.042 0.060 0.078 0.056 0.022 0.018 0.026 0.058 0.032 0.0 54 0.016 0.032 0.034 0.096 0.020 0.048 0.032 0.074 0.042 0.052 0.044 0.022 0.048 0.048 0.028 0.032 0.040 0.040 0.028 0.034 0.050 0.070 0.044 0.090 0.038 0.034 0.062 0.038 0.043 0.056 0.052 0.058 0.074 0.050 0.038 0.046 0.072 0.056 0.058 0.014 0.036 0.022 0.028 0.054 0.044 0.042 0.053 0.060 0.066 0.080 0.058 0.034 0.074 0. 138 0.054 0.034 0.038 0.022 0.0 34 0.0 12 0.060 0.080 0. 124 0.036 0.062 0.048 0.026 0.062 0.060  123  'LOT 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. S. 5. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.  PROFILE NUMBER 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. U8. 19. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 6 3. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.  HORIZON  SOLUBLE CALCIUM  SOLUBLE MAGNESIUM  4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.  0.005 0.008 0.002 0.002 0.001 0.016 0.012 0.014 0.009 0.009 0.012 0.010 0.010 0.014 0.008 0.0 10 0.013 0.011 0.013 0.0 17 0.001 0.001 0.002 0.001 0.001 0.00 1 0.004 0.002 0.002 0.005 0.007 0.007 0.004 0.003 0.004 0.016 0.015 0.0 16 0.0 10 0.013 0.014 0.014 0.009 0.010 0.011 0.0 10 0.010 0.007 0.010 0.011 0.0 12 0.008 0.007 0.005 0.007 0.006 0.008 0.005 0.008 0.007 0.008 0.0 10 0.006 0.007 0.008 0.006 0.007 0.003 0.004 0.006 0.009 0.005 0.005 0.006 0.011 0.010 0.006 0.008 0.013 0.011  0.044 0.046 0.072 0.076 0.074 0.042 0.042 0.036 0.050 0.036 0.040 0.058 0.042 0.050 0.046 0.052 0.048 0.050 0.050 0.052 0.076 0.074 0.048 0.060 0.074 0.064 0.084 0.056 0.088 0.070 0.082 0.068 0.074 0.056 0.054 0.038 0.028 0.034 0.020 0.024 0.028 0.030 0.024 0.028 0.038 0.036 0.034 0.048 0.046 0.050 0.044 0.040 0.034 0.022 0.016 0.012 0.032 0.020 0.020 0.034 0.030 0.022 0.036 0.032 0.030 0.024 0.026 0.036 0.036 0.036 0.030 0.024 0.026 0.022 0.022 0.034 0.016 0.018 0.034 0.024  4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.  SOLUBLE SODIUM 0.026 0.036 0.034 0. 028 0. 026 0. 026 0.022 0.024 0.034 0. 032 0. 030 0.042 0. 036 0.034 0. 032 0.032 0.038 0.026 0.026 0.034 0. 050 0.052 0.056 0.028 0.026 0.030 0.032 0. 028 0.030 0.032 0.030 0.038 0. 042 0.032 0.030 0. 042 0.036 0.042 0.032 0.026 0. 034 0.028 0.024 0. 022 0.036 0.038 0.028 0. 042 0. 060 0.064 0.044 0.042 0.032 0.016 0.012 0.020 0.036 0.026 0.030 0.038 0.038 0.024 0.046 0.042 0.030 0.038 0.032 0.040 0.028 0.028 0.028 0.026 0.032 0.030 0.032 0.026 0.026 0.018 0.033 0.026  SOLUB POTASS 0.052 0.054 0.098 0. 110 0. 1 18 0.030 0.028 0.028 0.038 0.030 0.032 0.032 0.026 0.038 0.042 0.038 0.044 0.036 0.038 0.032 0.088 0.098 0.064 0.080 0.112 0.096 0.O98 0.090 0. 128 0.082 0.084 0.066 0.076 0.058 0.052 0.026 0.030 0.026 0.028 0.030 0.032 0.034 0.028 0.038 0.032 0.030 0.034 0.036 0.034 0.036 0.036 0.0 36 0.034 0.020 0.026 0.030 0.038 0.026 0.038 0.040 0.040 0.026 0.040 0.042 0.048 0.022 0.032 0.030 0.028 0.024 0.028 0.020 0.020 0.020 0.020 0.020 0.018 0.018 0.026 0.020  124  LOT  PROFILE NUMBER  6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.  81. 82. 83. 84, 85, 86. 87. 88. 89. 90. 1. 2. 3. 4. 5. 6. 7. 8. 9. 1 0. 11. 12. 13. 14. 15. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.  HORIZON  SOLUBLE CALCIUM  SOLUBLE MAGNESIUM  SOLUBLE SODIUM  SOLUBI POTASS]  2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. '3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.  0.027 0.022 0.033 0.026 0.018 0.018 0.025 0.019 0.018 0.025 0.013 0.013 0.012 0.019 0.010 0.007 0.0 16 0.008 0.019 0.01 1 0.023 0.009 0.019 0.009 0.0 14 0.024 0.026 0.030 0.012 0.020 0.023 0.017 0.017 0.027 0.013 0.014 0.014 0.014 0.011 0.009 0.0 18 0.021 0.021 0.014 0.028 0.035 0.018 0.014 0.01 1 0.011 0.007 0.0 18 0.020 0.023 0.018 0.008 0.01 1 0.007 0.007 0.009 0.007 0.007 0.004 0.004 0.006 0.008 0.004 0.012 0.012 0.010 0.007 0.008 0.009 0.007 0.006 0.008 0.012 0.013 0.010 0.005  0.024 0.024 0.026 0.026 0.023 0.020 0.024 0.020 0.022 0.026 0.014 0.020 0.020 0.024 0.012 0.012 0.016 0.016 0.016 0.012 0.024 0.018 0.014 0.010 0.022 0.036 0.050 0.050 0.022 0.036 0.040 0.046 0.042 0.052 0.034 0.056 0.028 0.034 0.030 0.020 0.044 0.032 0.046 0.026 0.024 0.048 0.018 0.020 0.0 12 0.018 0.016 0.028 0.040 0.040 0.026 0.024 0.034 0.040 0.046 0.048 0.036 0.040 0.040 0.062 0.034 0.046 0.040 0.032 0.036 0.036 0.030 0.032 0.038 0.042 0.030 0.036 0.054 0.060 0.050 0.046  0.012 0.016 0.010 0.012 0.010 0.010 0.010 0.012 0.014 0.014 0.026 0.028 0.026 0.026 0.014 0.018 0.014 0.026 0.018 0.018 0.022 0.026 0.020 0.012 0. 022 0.030 0.032 0. 032 0.028 0. 022 0. 034 0. 042 0.032 0.028 0.038 0.048 0.030 0.038 0.028 0.022 0.028 0.028 0. 056 0.034 0.022 0. 038 0. 024 0.024 0. 028 0.032 0. 040 0.032 0. 044 0. 038 0.038 0.036 0.034 0. 042 0.036 0.034 0. 02 8 0.032 0. 036 0.030 0.030 0. 030 0. 038 0.022 0.038 0.024 0. 034 0.036 0.022 0.040 0.034 0.038 0. 024 0.028 0.032 0.030  0.066 0.064 0.070 0.080 0.102 0.056 0.070 0.038 0.044 0.068 0.014 0.034 0.034 0.034 0.018 0.020 0.024 0.022 0.024 0.014 0.050 0.024 0.020 0.014 0.028 0.038 0.044 0.046 0.030 0.052 0.026 0.032 0.044 0.062 0.044 0.056 0.042 0.044 0.050 0.032 0.054 0.042 0.030 0.028 0.082 0.052 0.030 0.046 0.040 0.034 0.022 0.054 0.046 0.054 0.034 0.020 0.036 0.030 0.052 0.040 0.03H 0.044 0.028 0.046 0.024 0.044 0.032 0.028 0.024 0.026 0.034 0.0 36 0.050 0.044 0.030 0.034 0.062 0.062 0.056 0.058  125  PLOT  3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.  PROFILE NUMBER  31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 4 5. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75.  HORIZON  5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.  SOLUBLE CALCIUM 0.0 11 0.009 0.009 0.009 0.011 0.008 0.006 0.006 0.008 0.007 0.010 0.0 11 0.007 0.012 0.014 0.010 0.010 0.014 0.006 0.006 0.007 0.005 0.007 0.006 0.006 0.005 0.007 0.007 0.006 0.006  SOLUBLE MAGNESIU1 0.044 0.032 0.036 0.050 0.040 0.038 0.046 0.042 0.050 0.043 0.034 0.044 0.022 0.023 0.032 0.026 0.024 0.032 0.018 0.024 0.023 0.024 0.028 0.020 0.044 0.036 0.034 0.042 0.046 0.0 36  SOLUBLE SODIUM  SOLUBLE POTASSIUM  0.028 0.022 0.020 0.044 0.038 0.026 0.036 0.044 0. 042 0.034 0.030 0.032 0. 020 0.024 0. 032 0.032 0.028 0.042 0.024 0.030 0. 038 0. 030 0.032 0.026 0.052 0.040 0.038 0. 046 0.072 0.056  0.030 0.028 0.030 0.044 0.046 0.034 0.026 0.0 28 0.034 0.036 0.02S 0.036 0.020 0.024 0.024 0.020 0.024 0.028 0.026 0.028 0.0 36 0.030 0.030 0.028 0.038 0.032 0.030 0.0 36 0.038 0.034  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094962/manifest

Comment

Related Items