Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Distribution and variability of some chemical parameters in the soils of a forested hillslope Rollerson, Terrence Paul 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A6_7 R64.pdf [ 8.41MB ]
Metadata
JSON: 831-1.0094962.json
JSON-LD: 831-1.0094962-ld.json
RDF/XML (Pretty): 831-1.0094962-rdf.xml
RDF/JSON: 831-1.0094962-rdf.json
Turtle: 831-1.0094962-turtle.txt
N-Triples: 831-1.0094962-rdf-ntriples.txt
Original Record: 831-1.0094962-source.json
Full Text
831-1.0094962-fulltext.txt
Citation
831-1.0094962.ris

Full Text

DISTRIBUTION AND VARIABILITY OF SOME CHEMICAL PARAMETERS IN THE SOILS OF A FORESTED HILLSLOPE by TERRENCE PAUL ROLLERSON A th e s i s submitted i n p a r t i a l f u l f i l l m e n t of the requirements f o r the degree of Master of Science i n the Department of S o i l Science We accept t h i s thesis as conforming to the required standard (c^ Terrence Paul Rollerson THE UNIVERSITY OF BRITISH COLUMBIA March 1981 In presenting t h i s thesis i n p a r t i a l f u l f i l l m e n t of the requirements for an advanced degree at The U n i v e r s i t y of B r i t i s h Columbia, I agree that the Library s h a l l make i t f u l l y a v a i l a b l e for reference and study. I further agree that purposes may be granted by the Head of my Department or by h i s representative. It i s understood that copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of S o i l Science The University of B r i t i s h Columbia 2075 Westbrook Place Vancouver, B. C. v6T 1W5 permission for extensive copying of th i s thesis for scholarly i i ABSTRACT Trends i n s o i l chemistry are studied on a 300 meter long h i l l s l o p e i n the Cascade Mountain Range of southwestern B r i t i s h Columbia. Although trends are not wholly consistent from horizon to horizon, the following general statements can be made: pH tends to increase downslope; exchangeable calcium, exchangeable magnesium and cation exchange capacity decrease noticeably downslope; carbon may decrease s l i g h t l y downslope; nitrogen, carbon/nitrogen r a t i o , percent base saturation, exchangeable sodium and exchangeable potassium remain e f f e c t i v e l y constant downslope. S o i l chemistry i s shown to be r e l a t e d to horizon, slope p o s i t i o n and parent material. V a r i a b i l i t y among chemical species increases i n the sequence: pH, percent base saturation, carbon/nitrogen r a t i o , cation exchange capacity, nitrogen, exchangeable calcium, percent carbon, exchangeable potassium, exchangeable sodium, exchangeable magnesium. V a r i a b i l i t y fluctuates among s o i l horizons but not so noticeably with slope p o s i t i o n . A s l i g h t increase i n v a r i a b i l i t y with the s i z e of the area sampled i s evident. i i i ACKNOWLEDGEMENTS I should l i k e to express p a r t i c u l a r gratitude to Jean Heineman who helped with the f i e l d work. Valuable assistance and advice i n the laboratory were received from J u l i e Lansiquot and Bernie von Spindler. Special thanks are due to both Dr. Hanspeter Schreier and Mark Sondheim for t h e i r valuable advice, c r i t i c i s m and continuing encouragement. I am indebted also to my committee for t h e i r patience and to my thesis advisor, Dr. Les Lavkulich f o r h i s guidance and encouragement. F i n a l l y , appreciation i s expressed to Pamela Olson f or e d i t o r i a l assistance. Terry Rollerson i v TABLE OF CONTENTS ABSTRACT i ACKNOWLEDGEMENTS i i 1.0 INTRODUCTION 1 2.0 OBJECTIVES 3 3.0 HILLSLOPE DESCRIPTION 4 3.1 General description of the s o i l s 6 3.2 Topographical survey 7 4.0 SAMPLING DESIGN 8 4.1 Sampling programme 10 5.0 LABORATORY MEASUREMENT 11 6.0 STATISTICAL ANALYSIS 12 6.1 Differences between plots as determined by t-tests 13 6.1.1 Exchangeable calcium 14 6.1.2 Exchangeable magnesium 17 6.1.3 Exchangeable sodium 20 6.1.4 Exchangeable potassium 23 6.1.5 Cation exchange capacity 26 6.1.6 pH 29 6.1.7 Percent carbon 32 6.1.8 Nitrogen 35 6.1.9 Carbon/nitrogen r a t i o 38 6.1.10 Base saturation 41 V 6.2 Comparisons between horizons 44 6.3 Separation of groups as determined by stepwise discriminant analysis 47 6.4 Correlation of chemical values with the factors horizon, topographic position and parent material as determined by three-way analysis 60 6.5 Trends i n s o i l v a r i a b i l i t y 63 6.6 Summary and conclusions 68 SELECTED BIBLIOGRAPHY 70 APPENDIX A Data summary 74 APPENDIX B S o i l chemical data 83 APPENDIX C General s o i l data 89 APPENDIX D Three-way analysis of variance summary data 95 APPENDIX E Analysis for soluble cations 99 v i LIST OF TABLES 6.1.1 Exchangeable calcium. Levels of significance for interplot comparisons of means by t-tests 16 6.1.2 Exchangeable magnesium. Levels of significance for interplot comparisons of means by t-tests 19 6.1.3 Exchangeable sodium. Levels of significance for interplot comparisons of means by t-tests 22 6.1.4 Exchangeable potassium. Levels of significance for in t e r p l o t comparisons of means by t-tests 25 6.1.5 Cation exchange capacity (C.E.C.). Levels of significance for interplot comparisons of means by t-tests 28 6.1.6 pH. Levels of significance for int e r p l o t comparisons of means by t-tests 31 6.1.7 Percent carbon. Levels of significance for interplot comparisons of means by t-tests 34 6.1.8 Nitrogen. Levels of significance for interplot comparisons of means by t-tests 37 6.1.9 Carbon/nitrogen (C/N) r a t i o . Levels of significance for interplot comparisons of means by t-tests 40 6.1.10 Percent base saturation. Levels of significance for interplot comparisons of means by t-tests 43 v i i 6.2.1 Significant differences between horizons for a l l variables 45 6.4.1 Levels of significance for three-way analysis of variance (U.B.C. Genlin) 62 6.6.1 S o i l chemical trends for several selected studies 66 E.4.1 Soluble calcium. Levels of significance for interplot comparisons of means by t-tests 106 E.4.2 Soluble magnesium. Levels of significance for interplot comparisons of means by t-tests 108 E.4.3 Soluble sodium. Levels of significance for interplot comparisons of means by t-tests 110 E.4.4 Soluble potassium. Levels of significance for interplot comparisons of means by t-tests 112 v i i i LIST OF FIGURES 4.0.1 H i l l s i d e p r o f i l e and plot positions 9 6.1.1 Exchangeable calcium values by plot and horizon 15 6.1.2 Exchangeable magnesium values by plot and horizon 18 6.1.3 Exchangeable sodium values by plot and horizon 21 6.1.4 Exchangeable potassium values by plot and horizon 24 6.1.5 Cation exchange capacity values by plot and horizon 27 6.1.6 pH values by plot and horizon 30 6.1.7 Percent carbon values by plot and horizon 33 6.1.8 Nitrogen values by plot and horizon 36 6.1.9 Carbon/nitrogen ration by plot and horizon 39 6.1.10 Percent base saturation values by plot and horizon 42 6.3.1 Separation of s i x slope positions by discriminant analysis ^9 6.3.2 Separation of three slope positions by discriminant analysis 50 6.3.3 Separation of four slope positions by discriminant analysis 51 6.3.4 Separation of three horizon groups by discriminant analysis 53 i x 1 1.0 INTRODUCTION The purpose of this study i s to investigate the spatial chemical v a r i a b i l i t y of the s o i l and the possible existence of downslope nutrient gradients in the s o i l of a hillslope located in the eastern Cascade Range of southwestern British Columbia. The literature of topographical s o i l sequences is reviewed carefully by Schreier (1976), hence only a brief overview i s given here. Generally, s o i l sequence studies are carried out to develop an understanding of the particular slope and s o i l forming processes that may be operating on a specific hillslope. Often, these studies attempt to determine the degree to which such processes may have altered the original chemical and physical character of the landscape. Often, measurement or observation of hillslope processes i s d i f f i c u l t , thus the existence of a process i s generally inferred from the measurement of the distribution of those parameters which are assumed to be affected. As a result, the distribution of particular chemical variables in the landscape i s discussed in some detail in the literature. Five forms of distribution are reported: decreases, increases and no change downslope, concentrations in particular landscape positions and fi n a l l y , distributions too variable to allow inference of any trend or pattern. Often, several factors or potential processes are juxtaposed in time and space, for instance, differing parent materials, vegetation, climate, subsurface hydrology and surface transport processes. Therefore, the partitioning of the v a r i a b i l i t y of a measured paramenter into i t s component parts can be d i f f i c u l t . Consequently, although studies can 2 show that portions of the landscape may vary, explanations as to why these differences occur are not always possible. Another concern i s that studies which report differences i n the landscape frequently cannot be v e r i f i e d by r e a l i s t i c s t a t i s t i c a l analysis. Many times, single p r o f i l e analyses are given as proof that geometrically d i f f e r i n g portions of the landscape vary chemically. However, Bracewell, et a l . (1979) report that a l l the properties examined i n their study exhibited "considerable v a r i a t i o n over short distances, many showing the major portion of thei r t o t a l variance at a distance of 0.5 meters. This markedly l i m i t s the interpretation of data from single samples." The l i t e r a t u r e concerning the s p a t i a l v a r i a b i l i t y of s o i l chemistry i s reviewed thoroughly by Beckett and Webster (1971) . Schreier (1976) summarizes succinctly the p r a c t i c a l consequences of t h i s v a r i a b i l i t y . Generally, v a r i a b i l i t y can be expected to increase with an increase i n the size of the area studied. However, according to Beckett and Webster, at least half the t o t a l variance i n an area i s often present i n the f i r s t few meters. Furthermore, v a r i a b i l i t y i s observed frequently to fluctuate between s o i l s formed from different parent materials. Drees and Wilding (1973) demonstrate that v a r i a b i l i t y increases i n the order lacustrine, t i l l , outwash. Beckett and Webster report that s o i l v a r i a b i l i t y frequently i s greater for cultivated s o i l s than for s i m i l a r areas under natural conditions. F i n a l l y , several studies indicate that the r e l a t i v e v a r i a b i l i t y between different chemical species can be great. 3 2.0 OBJECTIVES The primary objective of the study i s to determine i f there are detectable and s i g n i f i c a n t changes i n the pH, i n the cation exchange capacity and i n the concentrations of carbon, nitrogen and the major exchangeable cations of the s o i l , e i t h e r downslope or within unique morphological positions on the h i l l s l o p e . A second objective i s to determine i f changes i n the parent materials forming the s o i l have a s i g n i f i c a n t e f f e c t on the s o i l chemistry. The f i n a l objective i s to determine the s p a t i a l v a r i a b i l i t y of the concentrations of the chemical parameters studied. 4 3.0 HILLSLOPE DESCRIPTION The h i l l s l o p e studied i s located i n the eastern Cascade Range, latitude 49° 16' and longitude 120° 36'. The area i s approximately 20 kilometers south of Princeton, B r i t i s h Columbia. Facing south-west, the slope l i e s above the north fork of Sunday Creek, a tributary of the Similkameen River. This h i l l s l o p e has a v e r t i c a l r e l i e f of 100 meters and a slope length of 300 meters. The elevation at the base of the slope is 1300 meters above sea l e v e l . A coarse textured and s l i g h t l y a c i d i c t i l l , 30-40 centimeters thick, derived from volcanic and sedimentary sources, covers the agglomerate bedrock on the crest of the h i l l and gradually thickens downslope to a depth greater than 1 meter. In some slope positions, the t i l l i s underlain by a medium textured, dark olive-green c o l l u v i a l material which appears to be developed from the agglomerate. This colluvium probably predates gl a c i a t i o n but no analysis i s undertaken to test this hypothesis. A shallow, 10-20 centimeter thick aeolian deposit (inferred from the low percentage of coarse fragments i n the Ae horizon) covers, and i s mixed with, the surface portion of the t i l l . This aeolian capping tends to thicken down the h i l l s l o p e , suggesting that there has been some f l u v i a l reworking of this material. The microtopography of the h i l l s l o p e i s quite smooth. A few, small hummocks scattered over the slope are l i k e l y the result of i n d i v i d u a l windthrown trees. A short crest slope of 10 degrees gives way to a long,midslope of 20-22 degrees and an inc i p i e n t toeslope of 15-18 degrees, with a 24 degree erosional scarp immediately below. (Figure 4.0.1) The erosional scarp appears to have been formed by the downcutting of the north fork of Sunday Creek. 5 Between the stream and the scarp l i e s a narrow flood p l a i n . Several i n c i p i e n t g u l l i e s have formed low on the h i l l s l o p e , the material eroded from them creating minor fans on the f l o o d p l a i n below. A medium dense forest of lodgepole pine (Pinus  contorta) and i n t e r i o r Douglas f i r (Pseudotsuga menzesii) covers the h i l l s l o p e ; the understory species are p r i m a r i l y pine grass (Calamagrostis sp.) and lupine (Lupinus sp.) 6 3.1 GENERAL DESCRIPTION OF THE SOILS A l l the s o i l s appear to be Orthic Grey L u v i s o l s , the general horizon sequence being Ae, AB, Bt, BC; however no analysis f o r s o i l c l a s s i f i c a t i o n was c a r r i e d out. While the s o i l s are developing generally i n the t i l l , the Ae i s forming i n the shallow aeolian capping which has been intermixed with the uppermost portion of the t i l l . The lower horizons (Bt and BC) of the s o i l s on the mid and upper slope p o s i t i o n s , i n many cases, are developing i n the colluvium. Examination of the pebble l i t h o l o g y of a l l horizons shows occasional horizons dominated by c o l l u v i a l materials overlying t i l l - r i c h horizons. The pebbles of the colluvium derive p r i m a r i l y from the agglomerate bedrock while the pebbles of the t i l l have a very diverse l i t h o l o g y . This inversion of the normal s t r a t i g r a p h i c sequence suggests some type of s o i l flow, perhaps minor debris flows or s o l i f l u c t i o n , on the h i l l s l o p e following d e g l a c i a t i o n . 7 3.2 TOPOGRAPHICAL SURVEY In June 1978, a survey of the h i l l s l o p e was made, using compass, clinometer and chain. A simple topographic map was then produced at a scale of 1:500 with a 2-meter contour i n t e r v a l . This map was used to s e l e c t the most s u i t a b l e locations f o r the transect and to locate p l o t positions on the h i l l s l o p e . 8 4.0 SAMPLING DESIGN A s t r a t i f i e d systematic random design was used f o r sampling the h i l l s l o p e . Six 50 by 15 meter pl o t s were l a i d out along the f a l l l i n e of the slope. The long axis of each plo t was normal to the f a l l l i n e . Locations f o r the plo t s were determined on the basis of slope p o s i t i o n and distance downslope. (Figure 4.0.1) Plots were located on the crest, the upperslope, the midslope, the lowerslope, the toeslope and on the erosional scarp. Each p l o t was further subdivided i n t o f i f t e e n sub-plots using a 10 by 5 meter g r i d ; one s o i l p i t was located randomly with i n each sub-plot. No p i t was allowed to be closer than 1 meter to any tree w i t h i n the p l o t . 9 10 4.1 SAMPLING PROGRAMME Over a period of two and a half weeks i n August 1978, a t o t a l of ninety s o i l p i t s were examined with four horizons (Ae, AB, Bt, BC) being sampled i n each p i t . When a l l samples had been collected, they were taken to the Department of S o i l Science at The University of B r i t i s h Columbia where they were a i r dried at approximately 20° C. for ten days, and then stored. 11 5.0 LABORATORY MEASUREMENTS Analyses of the s o i l samples were conducted using procedures which have been adopted by the Pedology Laboratory of the Department of S o i l Science at The University of B r i t i s h Columbia for routine examinations. Total carbon i s determined with the Leco Carbon Analyser (Leco, 1953), and t o t a l nitrogen, c o l o r i m e t r i c a l l y with a Technicon Autoanalyser I I (Black, et a l . , 1965). Exchangeable cations are extracted from the samples with 1.0 N N H 4 O A C adjusted to pH7 (Black et a l . , 1965), and concentrations determined by atomic absorption on an Instrumentation Laboratories Model 151 (IL 151) single-beam spectrophotometer. The cation exchange capacity i s determined by extraction of adsorbed ammonium with 1.0 N KC1 followed by analysis of the NH4 concentration of the extract with a Technicon Autoanalyser I I (Black et a l . , 1965). A l l the above procedures are detailed i n Methods  Manual: Pedology Laboratory (Lavkulich, 1977). The pH of the samples i s determined for a l l samples using a 1:2 soil-water solution and a Radiometer PHM62 Standard pH meter. For a l l the samples from the Ae and the Bt horizons, and one half the samples from the AB and BC horizons, 1:2 soil-water solutions for the determination of the concentrations of water soluble cations are prepared and analysis by atomic absorption made on the IL 151 spectrophotometer. A b r i e f discussion of the method and the results of this analysis can be found i n Appendix E. 12 6.0 STATISTICAL ANALYSES A number of d i f f e r e n t kinds of s t a t i s t i c a l analyses, both univariate and mu l t i v a r i a t e , are applied to the data i n order to answer the p a r t i c u l a r questions posed i n the study objectives. 13 6.1 DIFFERENCES BETWEEN PLOTS AS DETERMINED BY T-TESTS A series of standard t - t e s t s (BMD-P3D)X are conducted to determine the extent to which i n d i v i d u a l plots representing s p e c i f i c slope or topographic posi t i o n s can be considered s i g n i f i c a n t l y d i f f e r e n t from one another. These tests are c a r r i e d out on each i n d i v i d u a l chemical v a r i a b l e for each horizon sampled. The analysis also a s s i s t s i n the v a l i d a t i o n of any obvious trends or patterns i n the data. The n u l l hypothesis i s that there i s no d i f f e r e n c e between the means of s p e c i f i c variables for any two compared plots on the h i l l s l o p e . The a l t e r n a t i v e hypothesis i s that there i s a s i g n i f i c a n t d i f f e r e n c e between the means of any two compared p l o t s . Every p l o t i s tested against every other p l o t , r e s u l t i n g i n f i f t e e n comparisons for each v a r i a b l e for each horizon sampled. The following pages summarize the r e s u l t s of the a n a l y s i s . A l l values r e f e r to the less than 2 millimeter f r a c t i o n of the s o i l samples. * B.M.D.P. Biomedical Computer Programs, P-Series. University of C a l i f o r n i a Press: Berkeley, C a l i f o r n i a . 14 6.1.1 EXCHANGEABLE CALCIUM In general, a decrease i s evident i n the concentration of exchangeable calcium i n the downslope d i r e c t i o n , however the relationship i s strongly s i g n i f i c a n t only i n the Bt and BC horizons. (Figure 6.1.1, Table 6.1.1) Significant differences tend to be more frequent between non-adjacent than adjacent plots. The Ae horizon shows s i g n i f i c a n t differences for only three comparisons, with the means of the exchangeable calcium concentrations of plots 4, 5 and 6 being s i g n i f i c a n t l y lower than the mean of plot 1. In the AB horizon, s i g n i f i c a n t differences e x i s t for only four comparisons. In each case, the mean of the upslope plot i s the greater. For the Bt horizon, s i g n i f i c a n t differences exist between the means of a l l plots with the exception of the comparisons between plots 4 and 5. In a l l cases, the mean of the upslope plot i s greater than the mean of the downslope plot. In the BC horizon, s i g n i f i c a n t differences are present for each comparison with the exception of plot 3 versus plot 4 and plot 5 versus plot 6. In a l l cases, the mean of the upslope plot i s greater than that of the downslope plot. 15 Figure 6.1.1 Exchangeable calcium values by p l o t and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC 3* 4 4 3* 34 4* 24 24 2* I* 2* 14 24 14 P L O T I P L O T 2 P L O T 3 P L O T 4 P L O T 5 P L O T 6 16 Table 6.1.1 Exchangeable calcium Levels of significance for interplot comparisons of means by t-tests o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence plot 2 3 4 5 6 1 o o X X X 2 o o o o Ae horizon 3 o o o 4 o o 5 o AB horizon plot 2 3 4 5 6 1 o 0 X X o X X 2 o X o o 3 X 0 o 4 0 o 5 o Bt horizon plot 2 3 4 5 6 1 X X X X X X X X X 2 X X X X X X X 3 X X X X X X 4 0 X 5 X BC horizon plot 2 3 4 5 6 1 X X X X X X X X X X 2 X X X X X X X X 3 o X X X X 4 X X X X 5 o 17 6.1.2 EXCHANGEABLE MAGNESIUM In general, a downslope decrease i n the concentration of exchangeable magnesium i s apparent, however the relationship i s s i g n i f i c a n t only i n the Bt and BC horizons. (Figure 6.1.2, Table 6.1.2) For the Ae horizon, s i g n i f i c a n t differences exist for only four comparisons, plots 1 and 5 being s i g n i f i c a n t l y lower i n exchangeable magnesium than plots 2, 3 and 4. In the AB horizon, s i g n i f i c a n t differences are present for only two comparisons; i n both cases the mean for the downslope plot i s the lesser. For the Bt and BC horizons, s i g n i f i c a n t differences generally do not exist between adjacent p l o t s , however s i g n i f i c a n t differences tend to be present when non-adjacent plots are compared. The downslope plots tend to have lower values than the upslope plots. Figure 6.1.2 Exchangeable magnesium values by plo t and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 19 Table 6.1.2 Exchangeable magnesium Levels of significance for interplot comparisons of means by t-tests o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence plot 2 3 A 5 6 1 X o o o o 2 o o xx o Ae horizon 3 o xx o 4 x o 5 o plot 2 3 4 5 6 1 o o o o o 2 o o o x AB horizon 3 o o x 4 o o 5 o Bt horizon plot 2 3 4 5 6 1 o 0 X X X X X 2 o o X X X X 3 o X X X X 4 o X X 5 xx BC horizon plot 2 3 4 5 6 1 o o o X X X X 2 X X o X X X X 3 0 0 X X 4 X X X X X X 20 6.1.3 EXCHANGEABLE SODIUM In general, exchangeable sodium values appear to be ef f e c t i v e l y constant over the h i l l s l o p e . Significant differences tend to be more frequent between non-adjacent than adjacent plots but indicate no pa r t i c u l a r trend or pattern. (Figure 6.1.3, Table 6.1.3) In the Ae horizon, s i g n i f i c a n t differences exist for eight comparisons, however no trend i s evident i n the data. The AB horizon shows no s i g n i f i c a n t differences for any comparisons indicating the values for exchangeable sodium remain f a i r l y constant downslope. The Bt and BC horizons show s i g n i f i c a n t differences between a few plots but no trend i s apparent. Figure 6 .1.3 Exchangeable sodium values by plot and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 22 Table 6.1.3 Exchangeable sodium Levels of significance for interplot comparisons of means by t-tests o = differences are not significant. x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence plot 2 3 1 xx xx 2 x Ae horizon 3 4 5 4 5 6 X X X X X X o o O X X o o o o plot 2 3 4 5 6 1 o o o o o 2 o o o o AB horizon 3 o 0 o 4 o o 5 o plot 2 3 4 5 6 1 o X X o 0 0 2 o o X 0 Bt horizon 3 0 X X o 4 0 o 5 X BC horizon plot 2 3 4 5 6 1 o X X o X X X 2 0 o X X o 3 o X X o 4 o 0 5 X X 23 6.1.4 EXCHANGEABLE POTASSIUM Significant differences i n exchangeable potassium concentrations tend to be more frequently between non-adjacent than adjacent plots. (Figure 6.1.4, Table 6.1.4) Potassium values are too variable to indicate any trend. The Ae and AB horizons show s i g n i f i c a n t differences for ten and eleven comparisons respectively, however no trend i s evident i n the data. Both the Bt and BC horizons show s i g n i f i c a n t differences between a number of p l o t s , however no clear pattern or trend i s present. Figure 6.1.4 Exchangeable potassium values by plot and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 25 Table 6.1.4 Exchangeable potassium Levels of significance for interplot comparisons of means by t-tests o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence Ae horizon plot 2 3 4 5 6 1 xx xx ;_x o X 2 0 0 x X 3 o X X X 4 X X 5 o AB horizon plot 2 3 4 5 6 1 X X X X X o 2 X X X X X X X X 3 o X X o 4 X X o 5 X Bt horizon plot 2 3 4 5 6 1 X o. X 0 X X 2 o o X X 0 3 0 X X 0 4 X X o 5 X X BC horizon plot 2 3 4 5 6 1 o o 0 X X o 2 o o X X X X 3 o X X o 4 X X X 5 X X 26 6.1.5 CATION EXCHANGE CAPACITY Except for the Ae horizon, a generally s i g n i f i c a n t downslope decrease i n cation exchange capacity (C.E.C.) i s evident, the relationship being most s i g n i f i c a n t i n the Bt and BC horizons. (Figure 6.1.5, Table 6.1.5) The Ae horizon shows no s i g n i f i c a n t differences between any p l o t s , hence C.E.C. i s e f f e c t i v e l y constant downslope. The AB horizon shows s i g n i f i c a n t differences for seven comparisons. Plots 1, 2 and 3 appear to have s i g n i f i c a n t l y higher C.E.C. than plots 4, 5 and 6; no s i g n i f i c a n t differences are obvious within the two groups. For the Bt and BC horizons, s i g n i f i c a n t differences exist between almost a l l plots. In the majority of cases, the mean value of the upslope plot i s greater than that of the downslope pl o t . 27 Figure 6.1.5 Cation exchange capacity values by plot and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = BT 4 = BC PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 28 Table 6.1.5 Cation exchange capacity (C.E.C.) Levels of significance for interplot comparisons of means by t-tests o = differences are not significant x = differences are significant at the 95% level of conficence xx = differences are significant at the 99% level of confidence plot 2 3 4 5 6 1 o o o o o 2 o o o o Ae horizon 3 o o o 4 o o 5 o AB horizon plot 2 3 4 5 6 1 o o X X X X 2 o o X X o 3 X X X X X X 4 o o 5 o Bt horizon plot 2 3 4 5 6 1 o X X X X X X X X 2 X X X X X X X 3 X X X X X X 4 X X X X 5 X X BC horizon plot 2 3 4 5 6 1 o X X X X X X X X 2 X X X X X X X X 3 o X X X X 4 X X X X 5 X X 29 6.1.6 pH For a l l horizons, adjacent plots tend to be more si m i l a r than non-adjacent plots. (Figure 6.1.6, Table 6.1.6) With the exception of the Ae horizon., the downslope increase i n pH i s generally s i g n i f i c a n t . The Ae horizon shows only three comparisons with s i g n i f i c a n t differences i n pH, indicating that pH i s ef f e c t i v e l y constant over the slope i n th i s horizon. The AB horizon shows eleven comparisons which are s i g n i f i c a n t l y d i f f e r e n t , indicating a general but not conclusive trend of increasing pH downslope. For the Bt and BC horizons, s i g n i f i c a n t differences exist between the majority of plots. The general trend i s a downslope increase i n pH. Figure 6.1.6 pH values by pl o t and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 31 Table 6.1.6 pH Levels of significance for interplot comparisons of means by t-tests o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence p l o t 2 3 4 5 6 1 X O X o X X 2 o o o o Ae h o r i z o n 3 o o o 4 o o 5 o AB horizon plot 2 3 4 5 6 1 X X X X X X X X X 2 o X X X X X X 3 X X X X 4 o o 5 o Bt horizon plot 2 3 4 5 6 1 o X X X X X X X X 2 X X X X X X X X 3 xx_ X X X X 4 X o 5 0 BC horizon plot 2 3 4 5 6 1 o o X X X X X X 2 o X X X X X X 3 X X X X X X 4 X X X 5 o 32 6.1.7 PERCENT CARBON The Ae horizon shows s i g n i f i c a n t differences for fi v e comparisons, however no obvious trend i s evident i n the data. (Figure 6.1.7, Table 6.1.7) In the AB horizon, s i g n i f i c a n t differences exist for s i x comparisons and the data indicates a s l i g h t downslope decrease i n carbon concentration. The Bt and BC horizons show s i g n i f i c a n t differences between a majority of the p l o t s , with a general though not wholly consistent trend of decreasing carbon concentrations downslope. 33 Figure 6.1.7 Percent carbon values by p l o t and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 34 Table 6.1.7 Percent carbon Levels of significance for interplot comparisons of means by t"-tests o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence plot 2 3 4 5 6 1 o o X X o X 2 X X o o Ae horizon 3 X o 0 4 0 o 5 o plot 2 3 4 5 6 1 X X X X X X 0 o 2 o o X X AB horizon 3 o o X 4 o o 5 o plot 2 3 4 5 6 1 X X o X X X X X 2 X X 0 X X X X Bt horizon 3 0 X X X X 4 X X X X 5 o plot 2 3 4 5 6 1 X X X X X X o 2 o o X X X X BC horizon 3 0 X X X X 4 X X X X 5 X 35 6.1.8 NITROGEN In general, the v a r i a b i l i t y i n nitrogen concentrations precludes the i d e n t i f i c a t i o n of any obvious pattern i n i t s d i s t r i b u t i o n . (Figure 6.1.8, Table 6.1.8) The Ae and AB horizons show s i g n i f i c a n t differences for one t h i r d of the comparisons. The data indicate the p o s s i b i l i t y of a s l i g h t decrease i n nitrogen concentrations i n the lower portion of the slope. In the Bt horizon, s i g n i f i c a n t differences exist for twelve comparisons, however no obvious trend i n the data i s evident. The BG horizon shows s i g n i f i c a n t differences for seven comparisons; no obvious trend i s apparent i n the data. Figure 6.1.8 Nitrogen values by p l o t and horizon Notes: error bars respresent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC 600 E CL CL 400h 200h PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 37 Table 6.1.8 Levels of significance for means by Nitrogen interplot comparisons of t-tests o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence Ae horizon plot 2 3 4 5 6 1 o o o o X 2 o o X X X X 3 o X X X X 4 0 o 5 o plot 2 3 4 5 6 1 o o o o X 2 o o x x AB horizon 3 o xx xx 4 o o 5 o Bt horizon plot 2 3 4 5 6 1 X X o X X X X X 2 X X X X X X X 3 o X X X X 4 X X X X 5 0 plot 2 3 1 X X 2 o BC horizon 3 4 4 5 6 X X o o o o X X o o X X X X X 38 6.1.9 CARBON/NITROGEN RATIO S t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s are ev ident more f r equen t l y between non-adjacent p l o t s than between adjacent p l o t s . G e n e r a l l y , the carbon/n i t rogen (C/N) r a t i o s are too v a r i a b l e to d i s p l a y any p a r t i c u l a r t r end . (F igure 6.1.9, Table 6.1.9) The Ae h o r i z o n shows s i g n i f i c a n t d i f f e r e n c e s f o r only th ree comparisons; no t rend i s ev ident i n the da ta . The AB h o r i z o n shows s i g n i f i c a n t d i f f e r e n c e s f o r comparisons between p l o t 1 and a l l other p l o t s , however the data i n d i c a t e no obvious t r e n d . In both the Bt and BC h o r i z o n s , s i g n i f i c a n t d i f f e r e n c e s e x i s t f o r e i gh t comparisons, however no t rend i s d i s c e r n i b l e from the da ta . Figure 6.1.9 Carbon/nitrogen r a t i o s by pl o t and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 40 Table 6.1.9 Carbon/nitrogen (C/N) ratio Levels of significance for interplot comparisons of means by t - t e s t s o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence plot 2 3 4 5 6 1 o o X X o o 2 o o o o Ae horizon 3 o o o 4 xx x 5 o AB horizon plot 2 3 4 5 6 1 X X X X X X X X X X 2 o o o 0 3 o 0 o 4 0 o 5 0 Bt horizon plot 2 3 4 5 6 1 X o X X o 0 2 0 o X X X X 3 o X X X X 4 X X X X 5 0 BC horizon plot 2 3 4 5 6 1 X X X X o X X o 2 0 X X X X X X 3 o X X 0 4 X X 0 5 0 41 6.1.10 PERCENT BASE SATURATION The Ae horizon shows only two comparisons which are s i g n i f i c a n t l y d i f f e r e n t ; no trend i s discernible from the data. (Figure 6.1.10, Table 6.1.10) In the AB horizon, nine comparisons exist which are s i g n i f i c a n t l y d i f f e r e n t , however no obvious pattern appears i n the data. The Bt horizon indicates that plot 6 i s s i g n i f i c a n t l y different from a l l other p l o t s ; however no trend i s evident between other plots i n this horizon. The BC horizon shows only four comparisons where si g n i f i c a n t differences exist between means; no trend i s apparent i n the data. Figure 6.1.10 Percent base saturation values by plot and horizon Notes: error bars represent one standard deviation 1 = Ae 2 = AB 3 = Bt 4 = BC PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 43 Table 6.1.10 Percent base saturation Levels of significance for interplot comparisons of means by t-tests o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence plot 2 3 4 5 6 1 0 o o o o 2 o o X X Ae horizon 3 0 o 0 4 0 o 5 0 plot 2 3 4 5 6 1 o XX o XX o 2 XX o XX o AB horizon 3 XX XX X 4 XX o 5 XX plot 2 3 4 5 6 1 o o o o XX 2 0 0 o XX Bt horizon 3 o o XX 4 X XX 5 XX plot 2 3 4 5 6 1 XX XX o XX 0 2 o 0 XX o BC horizon 3 0 o o 4 o o 5 o 44 6.2 COMPARISONS BETWEEN HORIZONS T-tests are conducted on a l l variables to determine i f the morphologically designated horizons are significantly different from a chemical point of view. Table 6.2.1 shows that except for exchangeable sodium, the majority of the differences are significant. Other •. than exchangeable sodium, only six comparisons exist where differences are not significant; in a l l cases these comparisons involve adjacent horizons. A basic tenet of a t-test is that the variability of two compared sample populations should be similar; in many of these comparisons, this criterion is violated. 45 Table 6.2.1 Significant differences between horizons for a l l variables d = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence Exchangeable Calcium Ae AB Bt AB Bt BC XX XX XX XX XX o Exchangeable AB Bt BC Magnesium Ae xx xx xx AB xx xx Bt o Exchangeable Sodium Ae AB Bt AB Bt BC xx xx xx XX XX o Exchangeable AB Bt BC Potassium Ae o o o AB o o Bt o Cation Exchange Ae Capacity AB (C.E.C.) Bt AB Bt BC o xx xx XX XX o continued... 46 Table 6.2.1 Significant differences between horizons for a l l variables (continued) o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence PH Ae AB Bt AB o Bt xx XX BC XX XX o Carbon AB Bt BC Ae xx xx xx AB xx xx Bt XX Nitrogen Ae AB Bt AB xx Bt XX XX BC XX XX XX Carbon/ AB Bt BC Nitrogen (C/N) Ae xx xx xx Ratio AB x xx Bt o Percent Base Ae Saturation AB Bt AB Bt BC XX XX XX XX XX XX 47 6 . 3 SEPARATION OF GROUPS AS DETERMINED BY STEPWISE DISCRIMINANT ANALYSIS Once the question "do i n d i v i d u a l paramenters vary with topographical p o s i t i o n " has been answered, posing the question "can d i f f e r i n g topographical p o s i t i o n s be distinguished on the basis of a combination of chemical v a r i a b l e s " becomes i n t e r e s t i n g . In t h i s study, Stepwise Discriminant Analysis (BMD-P7M) i s used to i d e n t i f y those chemical variables which can be used to separate d i f f e r e n t topographic posi t i o n s as represented by the s i x plot s on the h i l l s l o p e . In addition, this same analysis i s used to f i n d out i f i n d i v i d u a l horizons can be separated on the basis of a combination of v a r i a b l e s . Since the s o i l s on the h i l l s l o p e have been formed from two quite d i s t i n c t materials, t i l l and colluvium, determining i f these two materials can be separated on a basis of several chemical variables i s of further i n t e r e s t . The discriminant analysis w i l l tend to s e l e c t only one of two or more highly correlated variables to aid i n the separation of d i f f e r i n g groups. The analysis w i l l not necessar i l y i d e n t i f y a l l the variables that i n r e a l i t y contribute to the differences between a set of groups. A jack-knifed c l a s s i f i c a t i o n (BMD-P7M) i s used as a test of the p r e d i c t a b i l i t y of the discriminant a n a l y s i s . This c l a s s i f i c a t i o n creates an equation based on a l l but one of the sample population and then tests the excluded sample on the equation. For a l l i n d i v i d u a l samples, the procedure i s repeated and a score of percent correct c l a s s i f i c a t i o n s presented. The score serves as a rough guide to the success of the dis c r i m i n a t i o n . When used to separate the s i x topographical groups 48 (Figure 6.3.1), the analysis indicates that the most relevant grouping variables w i l l be exchangeable potassium, exchangeable calcium, pH and exchangeable magnesium. When a jack-knifed c l a s s i f i c a t i o n i s applied, these four variables give a score of 48.6 percent correct c l a s s i f i c a t i o n s . The analysis further reveals that additional variables i n the order nitrogen, exchangeable sodium, C/N r a t i o and carbon are also useful i n discriminating between the s i x groups. However, with the addition of these variables, the score of the jack-knifed c l a s s i f i c a t i o n increases to only 54.7 percent. The analysis discloses also that a separation into three groups might be a more appropriate method of delineating the topographical units. Plots 2, 3 and 4 tend to be quite s i m i l a r , as do plots 5 and 6 (Figure 6.3.1), while plot 1 i s d i s t i n c t l y separate from a l l other groups. Analysis using only the three groups noted above, gives a score of 61.9 percent correct c l a s s i f i c a t i o n s when the jack-knifed c l a s s i f i c a t i o n i s applied. In t h i s case, the most useful variables prove to be exchangeable calcium, pH, exchangeable magnesium and nitrogen. The addition of C/N r a t i o and percent carbon increases the score to 63.9 percent correct c l a s s i f i c a t i o n s . Interestingly, when the topographic groupings are altered, exchangeable potassium ceases to be of significance. Predictably, the results show considerable overlap between adjacent groups and much less overlap between the two non-adjacent groups. (Figure 6.3.2) The discriminant analysis to separate the four horizons Ae, AB, Bt and BC gives a score of 86.7 percent correct c l a s s i f i c a t i o n s when the jack-knifed c l a s s i f i c a t i o n i s applied. (Figure 6.3.3) Exchangeable magnesium, percent carbon, percent base saturation and pH prove to be the most s i g n i f i c a n t variables. Further, the analysis reveals that OVERLAP OF DIFFERENT GKOUPS IS INDICATED BY * SYMBOLS PLOT 1 PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 F EF FE FD F E E A E A F * A E A F A E EA EAF E F F E D FF A FE A AA A 1 EE E F D5 A ED F A C A E DF F* C E A FE FF E E FEF E E F * F 6 D**F CE D C C ACBB E FF D* FF B * A C CA £ * 0 * C D E A B » C - A - B - C - D - E - F » * F D C C D F B B C»A C B8 F EED FCC F*** CBC B3 CB F E F C F*3 B B S 0 FO E F D BBF E 0 CC 2* A * F C3A» BB* C BB F DD* D C4BE C*DB C C BC C CC D* FB * *B C D C * C D DU D O D 0 D C D B CD c a D D D DB D DD D D D D A BB B B * C 8 * B B B B *A B BB A GROUP MEANS - 1,2,3,4,5,6. - 5 . 5 - 4 . 5 - 3 . 5 - 2 . 5 - 1 . 5 - . 5 0 . 5 0 1.5 2 . 5 3. 5 4 . 5 5 . 5 - 5 . 0 - 4 . 0 - 3 . 0 - 2 . 0 - 1 . 0 0 . 0 1.0 2 . 0 3 . 0 4 . 0 5 . 0 6 CANONICAL VARIABLE 1 CVERLAP OF DIFFERENT GftOCPS IS INDICATED BY « + . . . . + ....•....«•.«..••....••....+....+ 3.75 3.00 TT SYMBOLS PLOT 1 - C PLOTS 2,3,4 - M PLOTS 5,6 - T GROUP MEANS - 1,2,3 ( T 1 MT T C T M T T C MM T M M M M CC C C T MM T T TM MM T M TT T TTCMM C 1M M 3T T M M M T T M T T M M M M M MM MT M M M TMM MMTMM T * M TT * M M TM MM * M M H T T MM M MM NMMM M C 1 N TM M CMMM H. *M CMM CC C MM * CMMM MM * MCM MM M MMM MMM T M M M M M T M M M 2M M MM M M MC MM MMMM TT MM CM CM MMMMM MM TTM M MMMC M MM M T MMMMM CM C MM M* M M *M C C M MMM M M M M M M M T MM 1 M T M M MM M M M MM T M M M CC C M C C C CC M M M MM M M M M - 4 . 5 - 3 . 5 5 . C - 4 . 0 - 3 . 0 • 2 . 5 - 1 . 5 - 2 . 0 -1.0 , 5 0 . 5 0 1 . 5 2 . 5 3 . 5 4 . 5 5 . 5 0 . 0 ! . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 CANONICAL VARIABLE 1 OVERLAP OF CIFFERENI GROUPS IS INDICATED BY » 6.25 • • 5.00 A D CO D 00 0 0 D 0 0 0 0 CD OD DO D D**Q C 00 0 4*C0C* CC 0* D* ** • CC DCCC DC 0 OODO C CC CCCC CC C 0 C**»OOC 30 CCCCCC C C 0 C OCCC* CCC C C CCD 0 0 C • 0 C C c CC C SYMBOLS Ae Horizon AB Horizon Bt Horizon BC Horizon GROUP MEANS A B C D 1,2,3,4. e A B BB B B B B BBBB B B BBBB B BB B B BB B B BB B B B B B2B B BB BB B BSB B BBBBB B B BB B B B B B B B B B B B AA A A A A A A A A A * B A A A AA A A A A AA AA AA t A A A AA A A A A AAA A A AAA A AAA AA A IA A A A A A A A AA A A AAA A A AA A B B -6.15 -5.25 - 3 . 75 -2.25 -. 750 .750 2.25 3.75 5.25 6.75 8.25 -7.50 -6.CC -4.50 -3.00 -1.50 0.00 1.50 3.00 4.50 6.00 7.50 9.00 CANONICAL VARIABLE 1 52 the variables nitrogen, C/N r a t i o , C.E.C, exchangeable potassium, carbon and exchangeable sodium are of some use i n discriminating between horizons. However, as the score of the c l a s s i f i c a t i o n increases to only 89.2 percent with the inclusion of these variables, they are not considered s i g n i f i c a n t . F i n a l l y , the analysis suggests that since the Bt and BC horizons are quite s i m i l a r i n chemistry, they could be grouped as a single horizon. With the variables exchangeable magnesium and percent carbon, analysis of the data using three horizon groupings Ae, AB and Bt plus BC yields a score of 92.2 percent correct c l a s s i f i c a t i o n s . (Figure 6.3.4) Addition of the variables percent base saturation and pH increases the score to 96.9 percent correct c l a s s i f i c a t i o n s . This s l i g h t increase i n p r e d i c t a b i l i t y does not warrant grouping the Bt and BC into a single horizon. The discriminant analysis then i s applied to determine i f a separation of the s o i l into three parent material groupings ( t i l l , colluvium and a mixture of these two) i s possible. The analysis yields a score of 66.7 percent correct c l a s s i f i c a t i o n s for the t o t a l sample population. C.E.C, exchangeable potassium and exchangeable sodium are the most s i g n i f i c a n t variables used i n the discrimination. The analysis indicates also that exchangeable n i t r o g e n , exchangeable magnesium and pH are useful i n the discrimination but, as the score increases to only 69.2 percent, are not considered s i g n i f i c a n t . (Figure 6.3.5) To determine i f parent material differences are easier to discriminate i n the deeper horizons, where pedogenic changes may be smaller, the analysis i s applied to in d i v i d u a l horizons. When the jack-knifed c l a s s i f i c a t i o n i s applied, OVERLAP OF DIFFERENT GROIPS IS INDIC ATt0 BY « CC CC C C C c c c cc cc c c c cc c cccc ccc cc ccc ccc c c cc c c c cc cccc c cc c c C CCC 3C c cccc c c c c cccc cc cc c cc ccccc cccc cc c c cc cc c c c c c c c c c ccc c SYMBOLS Ae Horizon AB Horizon Bt + BC GROUP MEANS C 1,2,3. B B A B B B B B B B B B B B B 3 B B B B B B B B B B B B B B B B B B B B B 2 B B B B B B B B B B B B B B B B B B B 8 B B B B B B A A A A A A A A A A A A AA A AA A A AA A A A l A A AAA AA A A A A AA A AA AA A * A AA AAA A 6 B -5.4 -4.2 -3.0 -l.e -.60 .60 1.3 3.0 4.2 5.4 6.6 -6.0 -4.8 -3.6 -2.4 -1.2 C O 1.2 2.4 3.6 4.8 6.0 7.2 CANONICAL VARIABLE 1 JVERLAP O F D I F F E R E N T G R O U P S I S I N D I C A T E D BY * 3 . 7 5 + C A N 3 N I C A L V A R I A B L E 3 . 0 0 2 . 2 5 1 . 5 0 . 7 5 0 0 . 0 0 - . 7 5 0 - 1 . 5 0 - 2 . 2 5 - 3 . 0 0 - 3 . 7 5 All Samples SYMBOLS COLLUVIUM -TILL - T MIXTURE - M GROUP MEANS s s s ss s s s s T T S S S T S T S M T S S M S S S * T M s M rs s ss M T H * S 2 T S M S T T T » S M S T * S S M S M S M T M H T T T T T M T T fl T T T T T T T T T T T T T M T T T T T M T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T I I I H T T T T T T T T T T T I T T T T T T M T T T T T T T T M T M T T T I S T T T T T T H T T T T T T N T T T * M M S • T Mi U T I N T * T S M M M T M T M T M T T S M » T M T S S T T I T T T S T T T T M T * T T M T M T M S * T M M M I M M T T M M T * T S M M M M M S T M M M 1,2,3 -5.5 -4.5 -3.5 -2.5 - 1 . 5 - .50 -6.0 -5 .0 - 4 . 0 -3.0 -2.0 - 1 . 0 0.0 CANONICAL VARIABLE 1 .50 1 .5 2.5 3. 1 . 0 2.0 3.0 4 . 5 OQ e H fD ON 0 0 O l 5.0 93 ro 1— 1 cu i i tn cu Cu r t B H -O i—• 0 Q cn o >—^ l-h Cu H CD 0 r t 3 fu r t ft) H (-"• fu h-' oo i-i o c T ) cn W V ! P J H -cn o l-i H -3 H * 0 fu r t fu 0 Cu ^ cn cn On 55 using the variables exchangeable magnesium and exchangeable postassium, analysis of the Ae horizon gives a score of 65.5 percent correct c l a s s i f i c a t i o n s . The analysis indicates the mixture i s more sim i l a r i n chemistry to the colluvium than to the t i l l . (Figure 6.3.6) Application of the jack-knifed c l a s s i f i c a t i o n to the AB horizon, using the variables exchangeable potassium and percent carbon i n the discrimination, gives a score of 67.8 percent correct c l a s s i f i c a t i o n s . Again, this horizon indicates that the mixture resembles the colluvium more than the t i l l . (Figure 6.3.7) The Bt and BC horizons give scores of 70 percent and 72.2 percent correct c l a s s i f i c a t i o n s , respectively, when the jack-knifed c l a s s i f i c a t i o n i s applied; the variables used i n both discriminations are pH, exchangeable magnesium and exchangeable potassium. The analyses of the Bt and BC horizons indicate a greater separation between the mixture and the colluvium. The overlap between the mixture and the two homogeneous groups i s greater than the overlap between the two homogeneous groups. (Figures 6.3.8 and 6.3.9) A l l these analyses indicate that with increasing depth i n the s o i l , there i s a s l i g h t but not p a r t i c u l a r l y s i g n i f i c a n t increase i n the discrimination of the different parent materials. An interesting observation at t h i s point i s that on the basis of the chemical parameters, separation of s o i l horizons i s clearer than separation of either slope position or parent materials. This suggests that, when comparing the chemistry of s o i l s from different geographic locations, care must be taken to ensure that s i m i l a r horizons are being compared, otherwise differences which are a function of v e r t i c a l pedogenic development could be construed as geographic differences. 56 Figure 6.3.6 Separation of parent material groups by discriminant analysis (Ae horizon) > + CO m a -UJ t— 1 o I s: to a z z + c i < o N to 1- LU ME •f- _ > 1 cn o 3 • 3 + •S -J -1 h-£ -1 _1 X o a. UJ > o 1—1 oc 3 • 4 to; <-> l - t3 4 -J o 4 ) t I 57 Figure 6.3.7 Separation of parent material groups by discriminant analysis (AB horizon) o < z o z « - o < _ i J 58 Figure 6.3.8 Separation of parent material groups by discriminant analysis (Bt horizon) zc I toj — -i > a 3 eg _j >- o X 5 < LU OVERLAP OF DIFFERENT GR3UPS IS INOICATEO BY * 3.00 BC Horizon 2.25 C 1.50 A H a H I .750 C A L V 0.00 A R I A B -.750 L e 2 -1.50 -2.25 -3.00 S S S S S TS S S SYMBOLS COLLUVIUM - S T I L L - T MIXTURE - M GROUP MEANS - 1,2,3 S S T S S S S S S T S S M T S S T 2 S SS S S S S M T S 3 T S* H T S S * T T T T T T T 1 T T T T T T M T T T -3.75 .. + . . . . + . . . . + . . . . 4 - . . . . + ....>-.. .«-....+.... -4.4 -3.6 -2.8 -2.0 -1.2 -.40 .40 1.2 2.0 2.B 3.6 4.4 -4.0 -3.2 -2.4 -1.6 -.80 0.0 .BO 1.6 2.4 3.2 4.0 CANONICAL VARIABLE 1 09 c • . zn w (t> n 3* i-i o Co l-f rt H' H-N O o 3 3 O l-h XI Cu i-i n> 3 rt 3 Cu rt fl> n H-Cu i— 1 09 H O c XS Co p-CO o i-i H* 3 H-3 p 3 rt CD 3 Co r-1 co H-CO 60 6.4 CORRELATION OF CHEMICAL VALUES WITH THE FACTORS HORIZON, TOPOGRAPHIC POSITION AND PARENT MATERIAL AS DETERMINED BY A THREE-WAY ANALYSIS OF VARIANCE To investigate the dependence of specified chemical variables on v e r t i c a l pedogenic development, slope process, parent material, and possible interactions among these factors, a three-way analysis of variance i s applied to the t o t a l sample population of each variable. Since the three parent materials, t i l l , colluvium and a mixture of t i l l and colluvium, are represented by unequal numbers of samples, application of the s t a t i s t i c a l package "UBC Genlin", which i s suited to analysis of models having unequal c e l l sizes, i s appropriate. The model used tests for s i g n i f i c a n t correlations of each variable with the indivi d u a l factors topographic position, horizon and parent material, and with the possible interactions of plot with horizon, plot with parent material, horizon with parent material, and plot with horizon and parent material. While some of these interactions may be un l i k e l y , a conservative model which considers a l l possible interactions i s believed to be the most reasonable approach. The analysis indicates that horizon i s a s i g n i f i c a n t factor for a l l variables except exchangeable sodium, (Table 6,4.1) Further, topographic position (plot) i s a s i g n i f i c a n t factor for a l l variables; parent-material i s correlated s i g n i f i c a n t l y with only exchangeable magnesium, exchangeable sodium and exchangeable potassium. For a l l variables except nitrogen, the interaction of topographic position and horizon i s s i g n i f i c a n t . F i n a l l y , the interaction of topographic position with parent material i s correlated s i g n i f i c a n t l y with exchangeable magnesium, exchangeable sodium and exchangeable 61 potassium, as w e l l as with the carbon content of the s o i l . For any of the variables considered, the i n t e r a c t i o n s of horizon with parent material and of horizon with topographic p o s i t i o n and parent material are not correlated s i g n i f i c a n t l y . Table 6.4.1 Levels of significance for three-way analysis of variance (UBC Genlin) o = differences are not significant x = differences are significant at the 95% level of confidence xx = differences are significant at the 99% level of confidence Ca Mg Na K C.E.C. pH %C N Horizon xx xx xx o xx xx xx xx Plot xx xx xx xx xx xx xx xx Lithol o x x xx o o o o Plot*Horizon xx x xx xx xx xx xx o Plot*Lithol o xx xx xx o o xx o Horizon*Lithol o o o o o o o o Horizon*Lithol o o o o o o o o *Plot 63 6.5 TRENDS IN SOIL VARIABILITY BASED ON THE COEFFICIENT OF VARIATION The co e f f i c i e n t of var i a t i o n (CV) i s used often as a means of comparing the v a r i a b i l i t y of parameters having different units of measurement. Employing this measure of v a r i a b i l i t y i n this study, the following questions are posed: are there differences i n v a r i a b i l i t y between diverse chemical species, does the degree of v a r i a b i l i t y change with slope position or depth i n the s o i l , and does v a r i a b i l i t y increase with the size of the area sampled? Inspection of the coefficients of va r i a t i o n for each variable i n each horizon, indicates no trends i n v a r i a b i l i t y with regard to slope position. (Appendix A) If the whole sample population i s considered, the variables can be ranked i n order of increasing v a r i a b i l i t y . For this study, the following sequence i s evident: Variable CV (t o t a l sample population) pH 7 percent base saturation 17 C/N r a t i o 23 exchangeable potassium 29 nitrogen 33 C.E.C. 39 exchangeable calcium 41 exchangeable sodium 47 percent carbon 48 exchangeable magnesium 63 The concentrations of certain variables fluctuate considerably with depth; t h i s may explain the extreme values for these variables. If i n d i v i d u a l horizons are evaluated separately, a s l i g h t l y changed pattern emerges. Although the sequence remains s i m i l a r , for some paramenters a noticeable decrease i s evident i n the coefficients of va r i a t i o n . (Appendix A) 64 On the basis of ind i v i d u a l horizons the order i s : Variable CV (mean of indiv i d u a l horizon values) pH 4 percent base saturation 12 C/N r a t i o 17 C.E.C. 18 nitrogen 20 exchangeable calcium 21 percent carbon 28 exchangeable potassium 28 exchangeable sodium 28 exchangeable magnesium 29 Inspection of the data i n Appendix A indicates no consistent trend of either decrease or increase i n the coefficient of va r i a t i o n with depth i n the s o i l . For exchangeable calcium, C.E.C, percent carbon and nitrogen, the v a r i a b i l i t y tends to increase with depth, while for exchangeable sodium, exchangeable potassium and percent base saturation, the v a r i a b i l i t y tends to decrease. No trend i n v a r i a b i l i t y with depth of s o i l i s evident for exchangeable magnesium, pH and C/N r a t i o . A prevalent finding i n many s o i l v a r i a b i l i t y studies i s that the v a r i a b i l i t y tends to increase s l i g h t l y as the size of the area sampled increases. Although the evidence i s not wholly conclusive, this investigation produces a si m i l a r r e s u l t . In this study, for. each variable, the coe f f i c i e n t of va r i a t i o n for the aggregate populatiom of a l l s i x plots i n a given horizon (4500 square meters) i s ranked against the coefficients of v a r i a t i o n for each i n d i v i d u a l plot (750 square meters) i n that horizon; the result i s a t o t a l of forty comparisons. In the Ae horizon, the aggregate co e f f i c i e n t of var i a t i o n i s never the highest value for any single variable, but i s usually ranked higher than the median. The aggregate coe f f i c i e n t of var i a t i o n i n the AB horizon ranks highest i n four comparisons out of ten and i s always greater than the 6 5 median value. For three comparisons out of ten i n the Bt horizon, the aggregate c o e f f i c i e n t of v a r i a t i o n ranks highest; i t never ranks lower than f i f t h on a scale of seven. F i n a l l y , i n the BC horizon, the aggregate c o e f f i c i e n t of v a r i a t i o n ranks highest f o r seven comparisons out of ten. The general conclusion i s that v a r i a b i l i t y w i l l tend to increase with the s i z e of the area sampled. Equally obvious i s the fac t that this r u l e w i l l not hold true i n a l l cases. Further, and quite noticeably, t h i s r e l a t i o n s h i p becomes most s t r i k i n g i n the deepest s o i l horizons. Table 6.6.1 S o i l chemical trends from several selected studlei REFERENCE GEOMORPHIC SETTING FACTORS TENDING TO INCREASE DOWNSLOPE FACTORS TENDING TO DECREASE DOWNSLOPE FACTORS REMAINING CONSISTENT OR SO VARIABLE* AS TO SHOW NO CLEAR TREND FACTORS CHANGING CONCENTRATION OR TREND WITH CHANGES IN SLOPE GEOMETRY Furley, 1974 (31 samples) (II) Furley, 1974 (II) (34 samples) Furley, 1974 (I) (30 samples) Macyk, et. a l . , 1978 (7 s o i l p r o f i l e s ) surface s o i l s on a [slope over p h y l l i t e s (Belize) (surface s o i l s on a slope over granites. (Belize) 'surface s o i l s on a slope over shale and sandstone (Belize) |solls on a t i l l knob (Alberta) pH percent carbon PH pH percent C exch. Ca exch. Mg Runge and Rlecken, 1966 (12 s o i l profiles)! Lepsch and Buol, 1974 (4 s o i l p r o f i l e s ) lloeee s o i l s (Iowa) s o i l on a slope over shale (Brazil) exch. Ca exch. Mg exch. K available F percent C* exch. Ca* exch. K* exch. Mg* exch. Na* exch. K excb. Na Al C.E.C. exch. Na* C.E.C. pH percent C exch. Ca exch. Mg exch. exch. K Na The trend of increasing pH and % C changes to a decrease i n trend in the toeslope. Exch. Ca. exch. Mg and exch. K appear to increase on the lower slope and then to decrease again. Percent C, exch. Ca, and exch. Mg may increase on the toeslope. PH apparently decreases on the lower slope. There may be a sl i g h t decrease i n dit h l o n i t e extractable Fe i n depresslonal sites as compared to other slope positions. The organic P concentrations i n poorly drained toeslope positions average about one-half that of other slope positions. (Several studies with similar findings are cited.) continued... Table 6.6.1 S o i l chemical trends from several selected studies (continued) REFERENCE GEOMORPHIC SETTING FACTORS TENDING TO INCREASE DOWNSLOPE FACTORS TENDING TO DECREASE DOWNSLOPE FACTORS REMAINING CONSISTENT OR SO VARIABLE* AS TO SHOW NO CLEAR TREND FACTORS CHANGING CONCENTRATION OR TREND WITH CHANGES IN SLOPE GEOMETRY Norton and Franzmeier, 1978 (19 s o i l p r o f i l e s ) three toposequences i n s o i l s developed i n loess (S.W. Indiana) Lower slope positions tend to have higher concentrations of CaC03 than upper slope positions. Kleiss, 1970 (8 s o i l p r o f i l e s ) s o i l s on a loess covered h i l l s l o p e (N.W. Iowa) C.E.C. percent organic C percent base-saturation Two high values for percent base saturation on the lower portion of the slope are thought to be due to the presence of calcareous terrace material 1.5 meters below the s o i l surface. F i t z p a t r i c and Le Roux, 1977 (4 s o i l p r o f i l e s ) a toposequence developed over a decomposed d o l e r i t e (Transvall Highveld, South Af r i c a ) pH exch. Ca Mn percent C exch. Na exch. Mg exch. K C.E.C. of the s o i l on the upper slope i s one-half that of the so i l s on the lower slope, and i s thought to r e f l e c t a change i n the clay mineral suite. Yaalon, et. a l . , 1972 (15 s o i l p r o f i l e s ) three catenas on basalt, dolomite and limestone (Upper G a l i l e e , Israel) t o t a l Mn Yaalon, et. a l . , 1974 (7 s o i l p r o files! a catena on basalt (Upper G a l i l e e , Israel) Sr T i Fe Ba V Cu Co Ni Cr ON 68 6.6 SUMMARY AND CONCLUSIONS Several general conclusions can be drawn from t h i s study. Although some horizon-to-horizon v a r i a b i l i t y i s evident, the t-tests indicate the following trends or patterns. Exchangeable calcium, exchangeable magnesium and cation exchange capacity tend to decrease downslope; t h i s trend i s most s i g n i f i c a n t i n the Bt and BC horizons. Conceivably, such trends are a function of changes i n parent material and possibly of higher leaching rates i f a downslope increase exists i n subsurface water f l u x . A downslope increase i n pH i s apparent, the relationship being more s i g n i f i c a n t i n the deeper horizons. Other than a s l i g h t downslope decrease i n organic carbon concentrations, there i s no obvious explanation for t h i s pH increase. Nitrogen concentrations and percent base saturation remain e f f e c t i v e l y constant downslope; exchangeable sodium, exchangeable potassium and the carbon/nitrogen r a t i o are too variable to show any strong pattern or trend. In general, for a l l variables, s i g n i f i c a n t differences tend to be more frequent between non-adjacent than adjacent plots. Inspection of Table 6.6.1 indicates that many aspects of these findings resemble those of previous studies. The table also suggests that with the possible exception of pH, no particular variable can be expected to behave i n a r e l a t i v e l y consistent manner as geographic location varies. The stepwise discriminant analysis indicates that the s o i l horizons are chemically d i s t i n c t e n t i t i e s ; t h i s suggests v e r t i c a l pedogenic development i s an important process on the h i l l s l o p e . Further, t h i s analysis i d e n t i f i e s a gradual downslope change, i n s o i l chemistry. However, separation of t r u l y d i s t i n c t i v e slope segments on the basis of the variables studied 69 i s d i f f i c u l t . As might be expected, the analysis points out that separation of parent material groups i s possible with some chemical variables but not with others. The three-way analysis of variance reveals that s o i l chemistry can be well correlated with horizon and slope p o s i t i o n . However, c o r r e l a t i o n s between s o i l chemistry and parent material or with i n t e r a c t i o n s among two or three of the fa c t o r s , horizon, slope p o s i t i o n and parent material, are r a r e l y s i g n i f i c a n t . V a r i a b i l i t y among chemical species increases i n the sequence: pH, percent base saturation, carbon/nitrogen r a t i o , cation exchange capacity, nitrogen, exchangeable calcium, percent carbon, exchangeable potassium, exchangeable sodium, exchangeable magnesium. Among s o i l horizons, the v a r i a b i l i t y of s p e c i f i c chemical species f l u c t u a t e s ; i t tends to increase with depth f o r exchangeable calcium, cation exchange capacity, percent carbon and nitrogen, and to decrease with depth f o r exchangeable sodium, exchangeable potassium and percent base saturation. For exchangeable magnesium, pH and carbon/nitrogen r a t i o , no trend i n v a r i a b i l i t y with depth i n the s o i l i s apparent. S o i l chemical v a r i a b i l i t y does not appear to be influenced by topographic p o s i t i o n . However, an enlargement i n the s i z e of the area sampled may be accompanied by an increase i n the v a r i a b i l i t y of the chemical species examined. 70 SELECTED BIBLIOGRAPHY Beckett, P. H. T., and Webster, R. 1971. S o i l V a r i a b i l i t y : A review. Soils and F e r t i l i z e r s 34: 1-14. Black, C. A., et a l . 1965. Methods of S o i l Analysis: Part 2. American Society of Agronomy: Madison, Wis. Bracewell, J. M.; Robertson, G. W.; and Logan, J. 1979. V a r i a b i l i t y of Organic Matter and Exchangeable Cations within the A2 Horizon of an Iron Podzol. Journal of  S o i l Science 30: 327-332. Brown, M. B., ed. 1977. B. M.-D. P. Biomedical Computer Programs, P-Series. University of C a l i f o r n i a Press: Berkeley, C a l i f . Cameron, D. R. 1978. V a r i a b i l i t y of S o i l Water Retention Curves and Predicted Hydraulic Conductivities on a Small Plot. S o i l Science 126: 364-371. Campbell, James B. 1978. Spatial Variation of Sand Content and pH within Single Contiguous Delineations of Two S o i l Mapping Units. S o i l Science Society of America  Journal 42: 460-464. C o l l i n s , E". P. Whiteside, and Cress, C. E. 1970 Seasonable Variation of pH and Lime Requirements i n Several Southern Michigan Soils when Measured i n Different Ways. S o i l Science Society of America Proceedings 34: 56-61. Drees, L. R., and Wilding, L. P. 1973. Elemental V a r i a b i l i t y within a Sample Unit. S o i l Science Society of America  Proceedings 37: 82-87. F i t z p a t r i c k , R. W., and Le Roux, J. 1977. Mineralogy and Chemistry of a Transvaal Black Clay Toposequence. Journal of S o i l Science 28: 165-179. Freund, John E. 1973. Modern Elementary S t a t i s t i c s . 4th edition. Prentice-Hall, Inc.: Englewood C l i f f s , N. J. Furley, P. A. 1971. Relationships between Slope Form and S o i l Properties Developed over Chalk Parent Materials. In: Slopes: Form and Process, pp. 141-163. Ins t i t u t e of B r i t i s h Geographers Special Publication No. 3. The I n s t i t u t e : London. 71 Furley, P. A. 1974. Soil-Slope-Plant Relationships i n the Northern Maya Mountains, Belize, Central America. I. The Sequence over Metamorphic Sandstones and Shales. Journal of Biogeography 1: 171-186. Furley, P. A. 1974. Soil-Slope-Plant Relationships i n the Northern Maya Mountains, Belize, Central America. I I . The Sequence over P h y l l i t e s and Granites. Journal  of Biogeography 1: 263-279. Glazovskays, M. A. 1970. Types of Geochemical S o i l Catenas. Soviet Geographical Reviews and Translations 9: 235-245. Greig, Malcolm, and Gjerring, James. 1978. U. B..C. Genlin:  A General Least Squares Analysis of Variance Program. Revised edition. Computing Centre, U. B. C: Vancouver, B. C. Hammond, Robert, and McCallagh, Patrick. 1974. Quantitative  Techniques i n Geography: An Introduction. Clarendon Press: Oxford. Huddleston, J. H., and Reicken, F. F. 1973. Local S o i l -Landscape Relationships i n Western Iowa. I. Distributions of Selected Cheical and Physical Properties. S o i l Science  Society of America Proceedings 37: 264-270. Ives, D. W., and Cutler, E. J. B. 1972. A Toposequence of Steepland Soils i n the Drier High-Country Yellow-Brown Earth (Dry Hydrous Eldefulvie) Region, Canterbury, New Zealand. New Zealand Journal of Science 15: 385-407. K l e i s s , Harold J. 1970. H i l l s l o p e Sedimentation and S o i l Formation i n Northeastern Iowa. S o i l Science Society of  America Proceedings 34: 287-290. Lavkulich, L. M. 1978. Methods Manual: Pedology Laboratory. Department of S o i l Science, U. B. C: Vancouver, B. C. Leco. 1959. Instruction Manual for Operation of Leco Carbon  and Sulfur Analysers. Laboratory Equipment Corporation: St. Joseph, Mich. Lepsch, I. F., and Buol, S. W. 1974. Investigations i n an O x i s o l - U l t i s o l Toposequence i n S. Paulo State, B r a z i l . S o i l Science Society of America Proceedings 38: 491-496. 72 Macyk, T. M.; Pawluk, S.; and Lindsay, J. D. 1978. Relief arid Microclimate as Related to S o i l Properties. Canadian Journal of S o i l Science 58: 421-438. Mader, Donald L. 1963. S o i l V a r i a b i l i t y : A Serious Problem i n S o i l - S i t e Studies i n the North West. S o i l Science  Society of America Proceedings 27: 707-709. McFee, W. W., and Stone, E. L. 1965. Quantity, D i s t r i b u t i o n and V a r i a b i l i t y of Organic Material and Nutrients i n a Forest Podzol i n New York. S o i l Science Society of  America Proceedings 29: 432-436. Norton, L. D., and Franzmeier, D. P. 1978. Toposequences of Loess-Derived Soils i n Southwestern Indiana. S o i l  Science Society of America Journal 42: 622-627. O i l i e r , C. D. 1976. Catenas i n Different Climates. In: Geomorphology and Climate, pp. 137-169. Edited by E. Derbyshire. Wiley-Interscience: New York. Pelisek, J. 1973. V e r t i c a l S o i l Zonality i n the Carpathians of Czechoslovakia. Geoderma 9: 193-211. Reynolds, S. G. 1975. S o i l Property V a r i a b i l i t y i n Slope Studies: Suggested Sampling Schemes and Typical Required Sample Sizes. Z e i t s c h r i f t fur Geomorphologia 19: 191-208. Ruhe, R. V., and Walker, P. H. 1968. H i l l s l o p e Models and S o i l Formation. I: Open Systems. Transactions of the  Ninth International Congress of S o i l Science 4: 551-560. Ruhe, R. V., and Walker, P. H. 1968. H i l l s l o p e Models and S o i l Formation. I I : Closed Systems. Transactions of  the Ninth International Congress of S o i l Science 4: 561-567. Runge, E. C. A., and Riecken, F. F. 1966. Influence of Natural Drainage on the D i s t r i b u t i o n and Forms of Phosphorus i n Some Iowa P r a i r i e S o i l s . S o i l Science  Society of America Proceedings 30: 624-630. Ruxton, G. P. 1958 Weathering and Subsurface Erosion i n Granite at the Piedmont Angle, Balos, Sudan. Geology  Magazine 95: 353-377. 73 . Schreier, Hanspeter. 1976. "Chemical Terrain V a r i a b i l i t y : A Geomorphological Approach Using Numerical and Remote Sensign Techniques." Ph. D. dissertation, The University of B r i t i s h Columbia. Tardy, Y.; Bocquier, G.; Paquet, H.; and M i l l u t , G. 1973. Formation of Clay from Granite and i t s D i s t r i b u t i o n i n Relation to Climate and Topography. Geoderma 10: 271-284. Ti d b a l l , Ronald R. 1976. Chemical Variation of Soils i n Missouri Associated with Selected Levels of the S o i l C l a s s i f i c a t i o n System. Geological Survey Professional Paper 952-4. United States Department of the Inte r i o r : Washington. Troeh, F. R. 1964. Landform Parameters Connected to S o i l Drainage. S o i l Science Society of America Proceedings 28: 808-812. Wagenet, R. J . , and Jurinak, J. J. 1978. Spatial V a r i a b i l i t y of Soluble Salt Content i n a Mancos Shale Watershed. S o i l Science 126: 342-349. Webster, R. 1977. Quantitative and Numerical Methods i n S o i l  C l a s s i f i c a t i o n and Survey. Clarendon Press, Oxford. Yaalon, D. H.; Brenner, I.; and Koyumdjisky, H. 1974. Weathering and Mobility Sequence of Minor Elements on a Basaltic Pedomorphic Surface, Ga l i l e e , I s r a e l . Geoderma 12: 233-244. Yaalon, D. H.; Jungreis, Chauva; and Koyumdjisky, Hanna. 1972. Dis t r i b u t i o n and Reorganization of Manganese i n Three Catenas of Mediterranean S o i l s . Geoderma 7: 71-78. 74 Appendix A Data Summary VALUES FOR TOTAL SAMPLE POPULATION (ALL PLOTS, ALL HORIZONS) VARIABLE STANDARD ST.ERR. COEPF. OF HC. NAME BEAU DEVIATION OF MEAN VARIATION 1 CA 10.577 4.426 0.2332 0.41842 2 BG 3.718 2.357 0.1242 0.63396 3 HA 0. 160 0.075 0.0040 0.46959 4 K 0.932 0. 273 0.0144 0.29246 5 CEC 22.372 8.764 0.4619 0.39174 6 EH 6.411 0.477 0.0251 0.07438 7 C 0.652 0.315 0.0166 0.48369 8 N 369.394 122.046 6.4324 0.33039 10 CkRATIO 17.036 3.869 0.20 39 0.22711 It EASISAT 0.681 0.113 0.0059 0. 16540 S N A L L E S T L A B G E S T TOTAL VALUE Z-SCORE VALOE Z-SCOBE RANGE FREQUENCY 3.000 -1.71 23.750 2.98 20. 750 360 0.500 - 1 . 37 9.750 2.56 9.250 360 0.033 -1.62 0.375 2.86 0. 337 360 0.325 -2.23 2.350 5.20 2.025 360 10.200 -1.39 52.100 3.39 4 1.900 360 5.300 -2.34 7.440 2. 15 2. 140 360 0. 150 -1.59 1.870 3.86 1. 720 360 129.000 -1.97 828.000 3.76 699.000 360 6.977 -2.60 32.3 66 3.96 25. 388 360 0.313 -3.26 1.014 2.95 0.700 360 AGGREGATE HORIZON VALUES (ALL PLOTS) VABIAELI STANDA ED ST.ERR. COEFF. OF NO. NAhE BEAN DEVIATION OF MEAN VARIATION 1 CA 6.044 1.239 0.1306 0.20506 m 2 HG 1.22a 0. 386 0.0407 0.31538 cc 3 Ni 0.091 0.027 0.0028 0.29832 § 4 K 0.S74 0.364 0.0384 0.37359 N 5 CIC 15.350 1.913 0.2017 0.12464 § 6 f l 5.885 0.262 0.0276 0.04451 7 C 1.082 0.219 0.0231 0.20252 e s 515.162 83. 165 8.7663 0.16143 10 CNHAHO 21.083 3.234 0.3409 0.15340 11 EASESAl 0.546 0. 104 0.0109 0.19003 S H A L L E S T L A B G E S T TOTAL VALUE Z-SCORE VALUE Z-SCORE RANGE FREQUENCY 3.000 -2.46 9.075 2.45 6. 075 90 0.500 - 1.88 2.700 3.82 2. 200 90 0.038 - 1.94 0. 173 3.05 0. 135 90 0.325 -1.78 2.350 3.78 2.025 90 10.800 -2.38 21.600 3.27 10.800 90 5.300 -2.23 6.440 2. 12 1.140 90 0. 721 -1.65 1.870 3.60 1. 149 90 365.000 - 1.81 828.000 3.76 463.000 90 14.774 -1.95 31.757 3.30 16.983 90 0. 313 -2.24 0.869 3. 12 0.556 90 1 CA 8.217 1. 248 0.1316 0. 15188 5.925 -1.84 11.625 2.73 5. 700 90 2 HG 2.133 0.532 0.0561 0.24950 0.750 -2.60 3.750 3.04 3.000 90 3 NA 0. 113 0.034 0.0036 0.30023 0. 048 -1.92 0.212 2.92 0. 164 90 4 K 0.892 0. 287 C.0302 0.32123 0.450 -1.54 1.850 3.34 1. 400 90 5 etc 15.137 2.172 0.2289 0. 14348 10.200 -2.27 20.300 2.38 10. 100 90 6 EH 6.228 0.269 0.0283 0.04318 5.590 -2.37 6.800 2.13 1.210 90 7 C 0.626 0.181 0.0191 0.28872 0. 307 -1.77 1.204 3.19 0. 897 90 a N 380.806 79.430 8.37 26 0.20858 204.000 -2.23 555.000 2.19 351.000 90 10 CNBA1I0 16.582 3.847 0.4055 0.23197 6.977 -2.50 32.366 4. 10 25. 388 90 i i EASISA1 0.754 0.081 0.00 86 0. 10802 0.617 - 1.69 1.014 3.19 0. 397 90 i CA 14.017 3.365 0.3547 0.24008 7.500 - 1.94 22.500 2.52 15.000 90 2 HG 5.589 1.387 0.1462 0.24813 2.250 -2.41 8.500 2.10 6.250 90 3 NA 0.220 0.058 0.0061 0.26236 0. 100 -2.08 0.375 2.69 0.275 90 4 K 0.958 0.221 0.0233 0.23065 0.475 -2 . 19 1.900 4.27 1.425 90 5 CIC 29.319 7.098 0.7482 0.24210 12.600 -2.36 52.100 3.21 39.500 90 6 EH 6.673 0. 305 0.0322 0.04576 6. 150 -1.71 7.280 1.99 1. 130 90 7 C 0.527 0. 149 0.0157 0.28293 0. 193 -2. 24 0.809 1.89 0.616 90 8 N 338.151 74.007 7.8010 0.21836 165.000 -2.34 501.000 2.20 336.000 90 10 CNBATIO 15.413 2.023 C.2133 0.13126 10.604 -2.38 20.881 2.70 10. 277 90 11 EASISA1 0.717 0.078 0.0082 0. 10840 0.527 -2.44 0.976 3.33 0.449 90 O N 1 CA 14.030 3.761 0.3965 0.26808 2 HG 5.925 1.660 0.1750 0.28013 3 NA 0.217 0.060 0.0063 0. 27423 4 K 0.905 0.178 0.0188 0. 19657 5 CIC 29.684 6.734 0.7099 0.22687 6 E H 6.871 0. 294 0.0310 0.04282 7 C 0.371 0. 122 0.0128 0.32724 8 N 243.521 52.546 5.5388 0.21578 10 C KR ATIC 15.069 2. 77b 0.2926 0.18419 11 EASiSAT C.7C8 0.044 0.0046 0.06191 8.500 -1.47 23.750 2.58 15. 250 90 2.750 -1.91 9.750 2.30 7. 000 90 0. 100 -1.97 0.375 2.65 0. 275 90 0.450 -2.56 1.300 2.22 0. 850 90 16.400 -1.97 45.600 2.36 29.200 90 6. 310 - 1.91 7.440 1 .93 1. 130 90 0. 150 -1.82 0.801 3.54 0. 651 90 129.000 -2 . 18 389.000 2.77 260.000 90 8.523 -2.36 20.591 1.99 12.069 90 0. 579 -2.95 0.843 3.08 0. 264 90 PLOT 1 VAEIAELE STANDABD S T . E B B . COEFF. OF NO. NAME BEAN DEVIATION OF MEAN VABIATION i CA 6 . 6 8 8 1. 151 0 .2972 0 .17210 2 BG 1.135 0 . 2 6 9 0 . 0 6 9 6 0 .23735 3 NA 0 . 0 6 8 0 . 0 1 9 0 .0048 0 .27499 n 4 K 1. 105 0 . 3 3 6 0 .0868 0 .30428 5 CEC 15 .647 2 . 6 5 7 0 . 6 8 6 0 0 .16981 i 6 EH 5 .671 0 .251 0 .0648 0 .04425 7 C 1. 169 0 . 180 0 . 0 4 6 5 0 .15388 8 B 520 .866 4 4 . 1 5 5 11.40 08 0 .08477 10 CNEATIO 2 2 . 5 2 5 3 . 6 0 0 0 .9294 0 .15981 11 BA3ESA1 0 . 5 8 9 0 . 134 0 . 0 3 4 7 0 .22797 S N A L L E S T L A B G E S T TOTAL VALUE 2-SCOBE VALUE 2-SCOBE BANGE FBEQUENCY 4 . 7 2 5 - 1 . 7 1 9 . 0 7 5 2 .07 4 .350 15 0 .725 - 1 . 5 2 1 .725 2 . 19 1.000 15 0 .038 - 1 . 6 0 0 .097 1.57 0 .059 15 0 . 5 7 5 - 1 . 5 8 1 .725 1.84 1. 150 15 10. 800 - 1.82 19 .100 1.30 8. 300 15 5 . 300 - 1 . 4 8 6 . 2 0 0 2 .11 0 .900 15 0 .911 - 1.44 1.518 1.94 0 . 607 15 448 .000 - 1.65 6 0 7 . 0 0 0 1.95 159.000 15 17 .880 - 1 . 2 9 3 1 . 7 5 7 2 . 5 6 13 .877 15 0 .40 3 - 1.39 0 .86 9 2 .08 0 . 4 6 7 15 CA 6 . 8 2 7 1.097 0 .28 32 0 .12425 6 . 3 7 5 - 2 . 2 4 11 .000 1.98 4. 625 15 BG 2 .113 0 . 2 9 9 0 .0773 0 .14159 1.700 - 1 . 3 8 2 . 7 2 5 2 . 0 4 1.025 15 NA 0 .1 18 0 . 0 3 3 0.0O86 0.28341 0 .065 - 1 . 5 8 0 . 1 7 3 1.65 0 . 108 15 K 0 .987 0 .251 0 . 0 6 4 7 0 .25390 0 .650 - 1 . 3 4 1.450 1.85 0 .800 15 CEC 16 .073 2 . 108 0 .5442 0 .13112 13.400 - 1.27 2 0 . 3 0 0 2 .01 6 .900 15 EH 5 . 9 6 2 0 . 190 0 . 0 4 9 2 0 .03195 5 .590 - 1 . 9 5 6 . 2 8 0 1.67 0. 690 15 C 0 .497 0 .085 0 .0220 0 . 17154 0 .346 - 1 . 7 7 0 .614 1.38 0. 268 15 N 393 .866 5 9 . 4 9 9 15 .3625 0 .15106 283 .000 - 1 . 8 6 4 9 1 . 0 0 0 1.63 208 .000 15 CNBAIIC 12 .657 1.601 0 .4134 0 .12651 10 .765 - 1. 18 16 .290 2 . 2 7 5 . 524 15 EASISAT 0 . 7 5 3 0 .069 0 . 0 1 7 7 0 .09099 0 .617 - 2 . 0 0 0 . 8 3 5 1.19 0 . 219 15 1 CA 18 .350 2 .478 0 .6398 0 .13505 2 BG 6 .583 1.C21 0 . 26 35 0 .15503 3 NA 0 . 2 3 8 0 . 0 4 3 0 .0111 0 .18111 4 K 1. 105 0 .341 C.0881 0 .30882 5 CEC 3 7 . 4 8 0 5 .881 1.5184 0 .15690 6 EH 6 . 3 5 8 0 . 0 8 5 0 .0220 0 .01343 7 C 0 .521 0 . 096 0 .0249 0 .18477 8 N 348 .266 4 3 . 9 8 6 11.3571 0. 12630 10 CNBAIIO 14 .938 2 . 0 2 5 0 .5228 0 .13554 11 EASESAI 0 .706 0 . 0 6 1 0 .0157 0 .08588 13.750 - 1 . 8 6 2 2 . 5 0 0 1.67 8. 750 15 4 .500 - 2 . 0 4 8 . 5 0 0 1.88 4 . 0 0 0 15 0. 175 - 1 . 4 7 0 .300 1.43 0. 125 15 0. 800 - 0 . 8 9 1 .900 2 . 3 3 1. 100 15 26 .400 - 1 . 8 8 5 2 . 1 0 0 2 .49 2 5 . 7 0 0 15 6. 190 - 1 . 9 7 6 . 5 3 0 2 .01 0 . 340 15 0. 305 - 2 . 2 5 0 . 6 8 7 1.72 0. 382 15 236 .000 - 2 . 5 5 4 1 5 . 0 0 0 1.52 179 .000 15 12. 362 - 1 . 2 7 2 0 . 8 8 1 2 .94 8. 519 15 0 .619 - 1 . 4 2 0 .873 2 . 7 5 0 . 253 15 1 CA 19.5 33 2 . 3 8 3 0 .6152 0 .12198 2 BG 7 .400 1. 202 0 .3103 0.16242 3 NA 0 .230 0 . 0 4 7 0 . 0 1 2 2 0 .20624 4 K C.860 0 . 0 9 0 0 .0231 0 . 10412 5 CEC 3 7 . 5 3 3 4 . 089 1.0559 0 .10896 6 EH 6 .652 0 . 119 0 . 0 3 0 8 0 .01793 7 C C.319 0 . 091 0 .0234 0 .28387 8 N 220 .533 45 .C09 11.6214 0 .20409 10 CNHATIC 14 .352 2 . 147 0 .5544 0 .14963 11 EASISAT 0 .746 0 .027 0 .0071 0 .03668 16.250 - 1 . 3 8 23 .750 1.77 7. 500 15 5 .000 - 2 . 0 0 9 .750 1.96 4 .750 15 0. 150 - 1.69 0 . 3 2 5 2 . 0 0 0. 175 15 0. 725 - 1 . 5 1 1. 100 2 .68 0. 375 15 31 .600 - 1 . 4 5 4 5 . 6 0 0 1.97 14 .000 15 6 .520 - 1 . 1 1 6 . 8 9 0 2 . 0 0 0. 370 15 0. 190 - 1 . 4 3 0 .456 1.51 0 .266 15 152.000 - 1 . 5 2 311 .000 2 .01 159.000 15 10.044 - 2 . 0 1 18 .612 1.98 8. 568 15 0 .704 - 1 . 5 4 0 . 7 9 5 1.76 0. 090 15 PLOT 2 VAEIAELE NO. MAtiE 1 C» B 2 BG MA K CEC tti C 10 CNBATIO 11 BASESAT STANDASO ST.EBB. COEFF. OF S H A L L E S T L A B G E S T DEAN DEVIATION OF MEAN VARIATION VALUE Z-SCOBE VALUE Z-SCOHE BANGE 6.383 1. 040 0.2685 0.16289 4. 125 -2. 17 8.225 1.77 4. 100 1.342 0. 269 0.0695 0.20065 1.000 -1.27 1.925 2. 17 0.925 0.089 0.024 0.0063 0.27467 0.055 -1. 39 0. 132 1.75 0.077 0.813 0.251 0.0648 0.30844 0.475 -1. 35 1.550 2.94 1.075 14.873 1.826 0.4715 0.12278 11. 600 -1.79 18.800 2. 15 7.200 5.981 0.242 0.0626 0.04054 5.480 -2.07 6.440 1.89 0. 960 1. 180 0.296 0.0763 0.25055 0.758 ' -1.43 1.870 2.33 1.112 572.933 93.312 24.0931 0.16287 430.000 -1.53 722.000 1.60 292.000 20.553 3.502 0.9042 0.17037 14.774 -1.65 27.646 2.03 12.872 0.581 0.070 0.0182 0. 12115 0.417 -2. 33 0.706 1.78 0.289 TOTAL FREQUENCY 15 15 15 15 15 15 15 15 15 15 1 CA •> 2 BG 6 3 NA g « I g 5 CEC g 6 EH z 7 C 8 H 10 CNBATIO 11 EASISAT 8.492 1. 064 0.2746 0.12525 6.775 -1.61 10.425 1.82 3. 650 2.268 0.567 0.1463 0.24761 1.550 -1.30 3.375 1.92 1.825 0.113 0.033 0.0085 0.27825 0.082 -1.09 0. 187 2.11 0. 105 0.612 0. 103 0.0265 0.16771 0.450 -1.58 0.825 2.08 0. 375 15.533 2.029 0.5240 0.13064 13.400 - 1.05 18.800 1.61 5.400 6.094 0. 141 0.0363 0.02306 5.880 -1.52 6.310 1.54 0. 430 0.724 0. 157 0.0406 0.21741 0.534 -1.21 1.068 2.19 0. 534 404.932 71.900 18.5645 0.17756 301.000 -1.45 549.000 2.00 248.000 17.957 2.658 0.6862 0. 14801 13.985 -1.49 23.117 1.94 9. 132 0.743 0.053 0.0133 0.07184 0.635 -2.01 0.817 1.39 0. 181 15 15 15 15 15 15 15 15 15 15 CA 16.417 1. 281 0.3306 0.07800 13.500 -2. 28 18.750 1.82 5.250 15 BG 6.400 1.206 0.31 13 0.18838 4. 500 -1.58 8.500 1.74 4.000 15 NA 0.215 0.046 0.0119 0.21441 0. 125 -1.95 0.275 1.30 0. 150 15 K 0.915 0. 108 0.0280 0.11856 0.750 - 1.52 1. 100 1.71 0.350 15 CEC 34.127 3.304 0.8530 0.09681 29.000 -1.55 40.400 1.90 1 1.400 15 EH 6.350 0. 121 0.0313 0.01909 6. 150 -1.65 6.570 1.81 0. 420 15 C 0.668 0.091 0.0234 0.13568 0.531 -1.51 0.797 1.43 0. 266 15 N 408.399 46.039 1 1.8871 0.11273 341.000 -1.46 473.000 1.40 132.000 15 CNEAIIO 16.342 1.047 0.2703 0.06407 14.877 -1.40 17.645 1.24 2. 768 15 EASESAT 0.706 0.083 0.0215 0. 11801 0.618 - 1.05 0.976 3.24 0.358 15 1 CA 17.117 1.476 0.3810 0.08621 2 hG 7.233 1.116 0.2881 0. 15427 3 NA 0.205 0.046 0.0120 0.22675 4 K C.928 0. 137 0.0353 0. 1U710 5 CEC 36.047 2.980 0.7693 0.08266 6 EH 6.674 0. 271 0.0700 0.04062 7 C 0.46B 0. C99 C.0256 0.21139 8 N 263.1J3 50.360 13.0029 0.19139 10 CKKAHO 17.754 1.141 0.2945 0.06425 11 EASESA1 C.7C8 0. 035 0.00 91 0.04980 14.250 -1.94 19.750 1.78 5. 500 15 5.250 -1.78 9.250 1.81 4. 000 15 0. 125 -1.72 0.275 1.51 0. 150 15 0.750 -1.31 1.125 1.44 0. 375 15 30.600 -1.83 41.600 1.86 1 1.000 15 6. 310 -1.34 7.240 2.09 0. 930 15 0. 301 -1.69 0.636 1.69 -0. 335 15 185.000 - 1. 55 356.000 1.84 171.000 15 16.183 -1.38 19.867 1.85 3. 684 15 0.633 -2.12 0.765 1.62 0. 132 15 PLOT 3 VAhlAELE SC. SAME MEAN STANDABD DEVIATION ST.EBB. OF BEAN 1 CA E.367 1.045 0.2697 2 BG 1.347 0.385 0.0995 3 NA 0.104 0.0 16 0.0041 4 K 0.832 0. 197 0.0508 5 CEC 15.407 1.040 0.2686 6 EH 5.991 0. 337 0.0869 7 C 1.112 0.161 0.04 16 8 N 544.799 57.143 14.7543 10 CNBATIO 20.550 3. 203 0.8271 11 EASES AT 0.560 0.076 0.0196 1 CA 8.472 1. 302 0.3361 2 MG 2.268 0.453 0.1169 3 NA 0.110 0. 0 26 0.0068 4 K 0.822 0. 195 0.0503 5 CEC 16.853 1.842 0.4757 6 PH 6.177 0. 201 0.0518 7 C 0.697 0.C97 0.0251 8 N 422.399 39.569 10.2166 10 CNBA1IC 16.530 2.014 0.5200 11 EASISAT 0.690 0.040 0.0102 1 CA 14.850 2.352 0.6074 2 hG 6.000 1. 142 0.2948 3 NA 0. 192 0.051 0.0131 4 K 0.9C8 0.221 0.0571 5 CEC 3 1.600 3.051 0.7878 6 EH 6.564 0. 136 0.0352 7 C 0.572 0.062 0.0161 8 N 349.9S9 36.359 9.3879 10 CNBATIO 16.392 1. 298 0.3353 11 EASESAT 0.691 0.066 0.0171 COEFF. OF S (1 A L L E S T L A B G E S T VARIATION VALOE Z-SCOBE VALOE Z-SCOBE 0. 16407 4.050 -2.22 7.950 1.52 0.28621 0.500 -2.20 1.950 1.57 0. 15264 0.077 - 1.72 0.140 2.23 0.23655 0.550 -1.43 1.200 1.87 0.06752 13.200 - 2 . 12 17.300 1.82 0.05617 5. 320 -1.99 6.430 1.30 0.14482 0. 840 -1.69 1.374 1.62 0.10489 446.000 - 1.73 661.000 2.03 0.15589 16.157 -1.37 26.525 1 .87 0.13537 0.365 -2.58 0.700 1.84 0.15365 0. 19967 0.23909 0.23704 0.10931 0.03248 0.13942 0.09368 0.12184 0.05751 0. 15841 0. 19029 0.26396 0.24345 0.09655 0.02075 0. 10914 0.10388 0.07921 0.09575 6. 125 1.500 0.080 0. 450 13.400 5.900 0.496 346.000 14.313 0.622 8.750 3.250 0.125 0.475 23.900 6.360 0. 460 298.000 14.566 0.527 -1.80 -1.70 -1.14 -1.91 -1.87 -1.38 -2.07 -1.93 -1. 10 -1.72 -2.59 -2.41 - 1.32 -1.96 -2.52 - 1.50 -1.80 -1.43 -1.41 -2.48 10.450 3.275 0. 170 1. 150 19.100 6.530 0.840 481.000 20.000 0.764 18.250 8.000 0.275 1.250 34.900 6.890 0.724 411.000 18.479 0.831 1.52 2.22 2.29 1.69 1.22 1.76 1.47 1.48 1.72 1.87 1.45 1.75 1.65 1.55 1.08 2.39 2.43 1.68 1.61 2.11 RANGE 3. 900 1. 450 0.063 0. 650 4. 100 1. 110 0. 534 215.000 10. 367 0. 335 4.325 1. 775 0.090 0. 700 5.700 0. 630 0. 344 135.000 5. 687 0. 143 9.500 4. 750 0. 150 0.775 1 1.000 0. 530 0. 264 113.000 3. 913 0.304 TOTAL FREQUENCY 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1 C A 2 MG NA K C E C P H C 8 N 10 C N H A H O 11 E A S I S A T 13.233 5.767 0. 182 0.840 28.220 6.633 0.443 262.532 16.640 0.708 1.877 1. 132 0.055 0. 164 3. 620 0.114 0. 143 52.690 2.516 0.042 0. 48 46 0.2922 0.0141 0.O425 0.9346 0.0295 0.O370 13.6045 0.6497 0.0108 0.14182 0.19626 0.30090 0.19574 0.12826 0.01721 0.32337 0.20070 0. 15121 0.05903 9.000 3. 500 0. 100 0.600 22. 300 6.400 0.267 204.000 12. 5*4 0.600 -2. 26 -2.00 -1.49 - 1. 46 -1.64 -2.04 - 1. 23 -1.11 - 1.61 -2.59 16.500 8.000 0.275 1.125 35.600 6.750 0.801 389.000 20.591 0.767 1.74 1.97 1.7 1 1.73 2.04 1.02 2.49 2.40 1.57 1.42 7.500 4. 500 0. 175 0.525 1 3. 300 0. 350 0. 534 185.000 7. 997 0. 167 15 15 15 15 15 15 15 15 15 15 PLOT 4 VABIAELE STANDARD ST.ERR. COEFF. OF NO. NAME DEAN DEVIATION OF MEAN VARIATION i CA 5.568 1. 261 0.3257 0.22652 > 2 MG 1.393 0.569 0.1469 0.40845 PC 3 HA 0. 108 0.014 0.0036 0.12835 5 5*3 4 K 0.810 0. 370 0.0956 0.45702 H N 5 CEC 15.047 2.685 0.6933 0.17845 6 EH 5.941 0.219 0.0566 0.03688 7 C 0.953 0.230 0.O594 0.24147 8 N 498.932 115.330 29.7781 0.23115 10 CNBATIO 19.150 1.954 0.5046 0.10205 11 BASESAT 0.526 0. 110 0.0285 0.20933 1 CA 7.517 1.090 0.2814 0. 14499 > CO 2 OG 2.298 0.656 0.1693 0.28533 CC 3 NA 0.126 0.044 0.01 13 0.34817 3 4 K 0.800 0. 235 0.0607 0.29410 R 5 CEC 14.513 2.026 0.5230 0.13956 § 6 EH 6.437 0.276 0.0712 0.04281 7 C 0.667 0. 2 19 0.0564 0.32785 8 N 363.466 101.911 26.3133 0.26576 10 CNR m o 17.865 5.407 1.3961 0.30266 11 EASESAT 0.738 0.047 0.0121 0.06371 1 CA 12. 183 2. 032 0.5247 0.16679 rt 2 NG 5.683 1.294 0.3340 0.22764 3 NA 0.215 0.063 0.0163 0.29417 o pa 4 K 0.895 0. 144 0.0372 0.16088 M M 5 CEC 28.353 3.411 0.8808 0.12031 o as 6 EH 6.842 0. 198 0.0511 0.02893 7 C 0.614 0. 131 0.0337 0.21289 8 N 364.933 69.011 17.8185 0.18911 10 CNBA1I0 16.7S4 1.705 0.4402 0.10152 11 BASESAT 0.666 0.057 0.0146 0.08503 1 CA 13.150 2.544 0.6568 0.19345 o 2 NG 6.550 1. 489 0.3844 0.22727 g 3 NA 0.228 0.080 0.0207 0.35082 M 4 K G.900 0. 161 0.0416 0. 17910 O 5 CEC 30.053 5.464 1.4109 0. 18182 53 6 EH 6.94 3 0. 240 0.0620 0.03457 7 C 0.413 0. 103 0.0267 0.25049 8 N 274.666 55.946 14.4451 0.20369 10 CNRAUC 14.971 2.083 0.5378 0.13913 11 EASESAT 0.693 0.043 0.0111 0.06220 S M A L L E S T L A B G E S T TOTAL VAL0B Z-SCOBE VALUE Z-SCOBE RANGE FREQUENCY 3.000 -2.04 8.425 2.26 5.425 15 0.500 -1.57 2.700 2.30 2. 200 15 0.087 -1.51 0. 132 1.73 0. 045 15 0. 325 -1.31 1.675 2.34 1.350 15 1 1.900 -1.17 21.600 2.44 9.700 15 5.650 -1.33 6.380 2.01 0.730 15 0.759 -0.84 1.518 2.45 0.759 15 365.000 - 1. 16 828.000 2.85 463.000 15 16.660 -1.27 22.877 1.91 6.216 15 0.313 -1.93 0.689 1.48 0. 376 15 5.925 - 1.46 9.150 1.50 3. 225 15 1.225 - 1.64 3.750 2.21 2.525 15 0.075 - 1. 16 0.212 1.96 0. 137 15 0.525 -1.17 1.275 2.02 0. 750 15 11.600 - 1.44 17.900 1.67 6. 300 15 5.910 -1.91 6.720 1.03 0.810 15 0. 307 -1.65 1.075 1.87 0.768 15 231.000 - 1.50 517.000 1.31 286.000 15 6.977 -2.01 28.268 1.92 21. 291 15 0.668 - 1.48 0.851 2.40 0. 182 15 8.500 -1.81 15.500 1.63 7.000 15 3.500 -1.69 8.250 1.98 4.750 15 0. 125 - 1.42 0.350 2. 13 0. 225 15 0.700 -1.35 1. 100 1.42 0. 400 15 22.100 - 1.83 33.700 1.57 1 1. 600 15 6.590 -1.27 7.230 1.96 0.640 15 0. 38 5 -1.75 0.809 1.50 0. 424 15 279.000 - 1.25 478.000 1.64 199.000 15 13.604 -1.87 20.000 1.88 6. 396 15 0. 561 -1.87 0.748 1.45 0. 188 15 8.500 -1.83 19.000 2.30 10. 500 15 4. 500 -1.38 9.500 1.98 5. 000 15 0. 150 -0.98 0.375 1.83 0. 225 15 0. 650 -1.55 1. 175 1.71 0.525 15 19.800 -1.88 43.800 2.52 24.000 15 6.530 - 1.72 7.440 2.07 0. 910 15 0. 190 -2.16 0.608 1.89 0, 418 15 157.000 -2 . 10 378.000 1.85 221.000 15 12. 102 - 1.38 19.826 2.33 7.724 15 0.617 -1.78 0.780 2.00 0. 163 15 OO o PLOT 5 VARIABLE STANDAEE ST.EBB. COEFP. OF BC. HAHE BEAN DEVIATION OF MEAN VARIATION 1 CA 5.592 1.450 0.3744 0.25933 2 BG 1.002 0. 183 0.0471 0.18230 3 NA 0.082 0. 022 0.0058 0.27285 4 K 1. 157 0.476 0.1230 0.41192 5 CEC 15.247 1.705 0.4402 0.11183 6 EH 5.830 0.217 0.0561 0.03726 7 C 1.052 0. 181 0.0468 0.17240 8 N 484.066 61.410 15.8560 0.12686 10 CNBAIIO 21.688 2.034 0.5251 0.09378 11 EASISAT 0.511 0.094 0.0243 0.18438 S M A L L E S T L A B G E S T TOTAL VALOE Z-SCOBE VALOE Z-SCOBE RANGE FREQUENCY 3.375 -1.53 8.000 1.66 4. 625 15 0.625 -2.06 1.250 1.36 0. 625 15 0.053 -1.29 0. 122 1.81 0. 069 15 0.600 - 1 . 17 2.350 2.50 1. 750 15 12.900 - 1. 38 19. 100 2.26 6.200 15 5.510 -1.47 6.420 2.72 0.910 15 0.790 -1.45 1.393 1.88 0. 603 15 404.000 - 1. 30 636.000 2.47 232.000 15 19.128 -1.26 26.726 2.48 7. 598 15 0.354 -1.66 0.668 1.67 0. 314 15 1 CA 8.2S8 1.396 0.3604 0.16822 6.550 -1.25 11.625 2.38 5.075 15 2 HG 1.980 0.419 0.1081 0.21150 1. 325 -1.56 2.775 1.90 1.450 15 3 NA 0. 106 O.032 0.0083 0.30417 0.048 -1.80 0. 165 1.82 0. 117 15 4 K 1. 198 0. 283 0.0732 0.23649 0.725 -1.67 1.850 2.30 1. 125 15 5 CEC 13.420 1.815 0.4687 0.13525 10.200 -1.77 16.000 1.42 5. 800 15 6 EH 6.343 0.239 0.0617 0.03770 5. 910 -1.81 6.800 1.91 0. 890 15 7 C 0.595 0.210 0.0543 0.35337 0.337 -1.23 1.204 2.89 0. 867 15 8 N 350.199 61.363 15.8439 0.17522 279.000 - 1 . 16 509.000 2.59 230.000 15 10 CNBAIIO 16.912 4.847 1.2516 0.28661 12.079 -1.00 32.366 3. 19 20. 287 15 11 EASISAT 0.868 0.091 0.0236 0. 10534 0.724 -1.57 1.014 1.59 0.289 15 0 0 1 CA 11.800 1.019 0.2630 0.08632 10.000 -1.77 13.250 1.42 3. 250 15 2 HG 4.967 0.533 0. 1377 0. 10740 4.250 -1.34 5.750 1.47 1.500 15 3 NA 0.257 0.062 0.0161 0.24272 0. 175 -1.31 0.375 1.90 0. 200 15 4 K 1.093 0. 122 0.0316 0.11184 0. 875 - 1.79 1.325 1.89 0. 450 15 5 CEC 25.233 1.727 0.4458 0.06842 22.600 -1.53 29.100 2.24 6.500 15 6 EH 6.988 0. 184 0.0474 0.02629 6.660 -1.79 7.280 1.59 0. 620 15 7 C 0.412 0.071 0.0183 0.17234 0. 309 -1.45 0.540 1.81 0. 231 15 8 N 294.599 29.337 7.5748 0.09958 247.000 -1.62 355.000 2.06 108.000 15 10 CNBATIO 13.946 1.765 0.4557 0.12655 10.957 -1.69 17.075 1.77 6. 117 15 11 EASESAT 0.721 0.073 0.0188 0.10108 0.607 -1.56 0.849 1.76 0. 242 15 CA 10.817 1. 136 0.2932 0.10500 8.750 -1.82 13.500 2.36 4.750 15 HG 4.633 0.661 0.1705 0.14256 3.500 - 1.72 5.750 1.69 2. 250 15 NA 0.265 0.041 0.0106 0.15461 0.225 -0.98 0.375 2.68 0.150 15 K 1. 130 0. 115 0.0296 0.10145 0.875 -2.22 1.300 1.48 0. 425 15 CEC 24.327 2.470 0.6377 0.10153 20.400 -1.59 31.400 2.86 1 1. 000 15 FH 7.204 0.092 0.0238 0.01282 7. 040 -1.78 7.340 1.47 0. 300 15 C 0.262 0.058 0.0150 0.22249 0. 150 -1.92 0.374 1.93 0. 224 15 N 228.800 43.484 11.2276 0.19005 176.000 -1.21 322.000 2.14 146.000 15 CKRAT10 11.455 1.725 0.4455 0. 15061 8.523 -1.70 14.396 1.70 5.873 15 EASESAT 0.693 0.036 0.0093 0.05137 0. 650 -1.21 0.775 2.27 0. 125 15 PLOT 6 VABIAELE NO. NAME CA MG NA K CEC EH C 8 N 10 CNEA1I0 11 EASESAT STANDAED ST.EBB. COEFF. OF S B A L L E S T L A B G E S T BEAN DEVIATION OP BEAN VARIATION VALUE Z-SCOBE VALUE Z-SCOBE I RANGE 5.665 1.131 0.2919 0.19957 3.675 -1.76 7.425 1.56 3.750 1. 127 0.104 0.1041 0.35882 0.600 -1.30 1.975 2.10 1.375 0.092 O.040 0.0102 0.42921 0.045 -1.19 0.173 2.04 0. 128 1.130 0.325 0.0838 0.28727 0.675 -1.40 1.925 2.45 1. 250 15.680 0.961 0.2481 0.06050 14.500 -1.44 18.500 2.73 4.000 5.893 0. 168 0.0435 0.02857 5. 410 -2.87 6.140 1.46 0.730 1.025 0.179 0.0462 0.17445 0.721 -1.70 1.367 1.91 0.646 169.399 69.722 18.0023 0.14854 368.000 -1.45 613.000 2.06 245. 000 22.032 3.855 0.9952 0.17495 17.891 -1.07 27.853 1.51 9. 962 0.508 0. 108 0.0280 0.21343 0.331 -1.63 0.674 1.54 0.343 TOTAL FREQUENCY 15 15 15 15 15 15 15 15 15 15 5 1 CA 7.6S7 1. 169 0.3017 0.15184 2 BG 1.848 0.6 26 0.1616 0.33866 3 NA 0.101 0.032 0.0083 0.31829 4 X 0.937 0.255 0.0657 0.27179 5 CEC 14.427 1.502 0.3878 0. 10412 6 EH 6.355 0.233 0.0602 0.03672 7 C 0.579 0. 189 0.04 88 0.32655 8 N 329.9S9 96. 152 24.8264 0.29137 10 CKRA1IC 17.570 2.486 0.6419 0.14149 11 E1SESAT 0.731 0.056 0.0144 0.07609 6.400 -1.11 10.725 2.59 4.325 15 0.7 50 -1.75 3.250 ' 2.24 2. 500 15 0. 067 - 1.05 0.167 2.07 0. 100 15 0.525 -1.62 1.650 2.80 1. 125 15 12.100 -1.35 17.700 2. 18 5.300 15 6.010 - 1.35 6.750 1.69 0. 710 15 0.309 -1.43 1.081 2.65 0.772 15 204.000 -1.31 555.000 2.34 351.000 15 13.754 -1.53 22.367 1.93 8.613 15 0.633 -1.75 0.852 2.19 0.219 15 1 CA 10.500 2.087 0.5390 0.19880 2 NG 3.900 1.021 0.26 37 0.26185 3 NA 0.203 0.061 0.0158 0.30069 4 K 0.830 0. 168 0.0434 0.20244 5 CEC 19.120 4.342 1.1211 0.22709 6 EH 6.935 0. 195 0.0504 0.02813 7 C 0.376 0. 166 0.0429 0.4421 1 8 S 262.732 96.840 25.0040 0.36859 10 CNEA1IO 14.067 2. 153 0.5559 0.15305 11 EASESAT 0.811 0.040 0.0104 0.04970 7.500 - 1.44 14.750 2.04 7.250 15 2. 250 -1.62 5.500 1.57 3. 250 15 0. 100 - 1.69 0.275 1. 17 0. 175 15 0.475 -2 . 11 1.075 1.46 0.600 15 12.600 -1.50 27.800 2.00 15.200 15 6.550 -1.97 7.190 1.31 0. 640 15 0. 193 - 1. 10 0.772 2.39 0.579 15 165.000 -1.01 501.000 2.46 336.000 15 10.604 - 1.6 1 20.532 3.00 9.927 15 0.709 -2.53 0.876 1.61 0. 167 15 1 CA 10.333 0.967 0.2496 0.09355 2 BG 3.967 0.619 0.1597 0. 15596 3 NA 0. 193 0.047 0.0121 0.21175 4 K 0. 772 0. 167 0.O430 0.21590 5 CEC 2 1.927 2.569 0.66 34 0.11718 6 EH 7. 1 19 0. 199 0.0513 0.02789 7 C 0.323 0.073 0.0189 0.22715 8 N 2 1 1.4E7 38. 155 9.85 17 0. 18013 10 C N H A I 1 C 15.246 2.113 0.5455 0.13857 11 EASESAT C.700 0.057 C O 116 0.08087 8.500 -1.90 11.500 1.21 3.000 15 2.750 -1.97 5.000 1.67 2. 250 15 0. 100 -2.00 0.275 1.75 0. 175 15 0.450 -1.93 1.025 1.52 0. 575 15 16.400 -2. 15 26.000 1.59 9.600 15 6. 670 -2.26 7.430 1.56 0. 760 15 0. 190 -1.81 0.457 1.83 0. 267 15 129.000 -2. 16 286.000 1.95 157.000 15 1 1. 232 - 1.90 18.963 1.76 7. 731 15 0. 579 -2. 14 0.843 2.53 0. 264 15 83 Appendix B S o i l Chemical Data Horizon Codes: Ae = 1 AB = 2 Bt = 3 BC = 4 Note: The units for exchangeable cations and C.E.C. are meq/100 g. 84 PLOT PROFILE NUMBER HORIZON EXCH. Ca EXCH. Mg EXCH. Na EXCH. K C.E.C. PH PERCENT CARBON N (ppm) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 L O C O 1.000 1.000 1.000 1.000 1 .000 1.000 1.000 2.000 2.000 2. 000 2.000 2.COO 2.000 2.000 2. COO 2.000 2.000 2.000 2.000 2.00C 2.000 2.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3. COO 3.000 u.COO 4.000 4. 000 4.000 4.000 4.000 4.COO 4.COO 4. COO 4.000 4.000 4.000 4.000 4.000 4.000 5.000 5.000 5. 000 5.000 5.000 5.000 5.000 5.000 5. COO 5.000 5.000 5.000 5.000 5.000 5.000 6.000 6.000 6. COO 6.000 6.000 1.000 2.000 3.000 4. 000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000 30.000 31.000 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000 41.000 42.000 43.000 44.000 45.000 46.000 47.000 48.000 49.000 50.000 51.000 52.000 53.000 54.000 55.000 56.000 57.000 58.000 59.000 60.000 61.000 62.000 63.000 64.000 65.000 66.000 67.000 68.000 69.000 7C.00O 71.000 72.000 73.000 74.000 75.000 76.000 77.000 76.000 79.000 80.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 000 1.000 1.000 000 1.000 1. 1, 6.375 8.675 9.075 6.875 6.825 5.725 7.700 6.825 5.925 6.275 7. 125 5.600 4.725 6.800 5.800 5.350 6.775 6.575 8.225 7.675 7.350 6.250 6.400 6.775 6.350 6.400 6.825 4. 125 5.675 5.000 6.825 7.300 5.450 5.775 5.975 7.050 6.725 7.950 4.050 7.775 7.300 5.450 6.225 6.025 5.625 5.000 5.200 5.975 5.450 4.925 3.000 5.875 3.875 5.625 8.425 7. 100 6.050 4.925 6.200 5.900 5.575 7. 100 4.450 7.250 7.675 5.950 5.075 8.000 4.550 4.575 4.675 6.500 3.625 3.375 5.500 5.950 6.450 7.425 6.600 6.425 0.950 1.600 1.725 1.050 1.025 0.975 0. 875 1.275 1. 175 1.025 0.950 1.075 0. 725 1.225 1. 375 1. 100 1.350 1.050 1.400 1.825 1.925 1.275 1.000 1.250 1.450 1.450 1.225 1.000 1. 400 1.425 1.225 1.750 1.425 1. 150 1.300 1.850 1.925 1.950 0. 500 1.200 1.325 1.200 1.200 1.100 1. 100 0.675 1.125 1.425 1.500 1.550 0.500 1.650 0. 700 1.125 2.7 00 2.000 1.975 1.125 1.375 1.475 1. 150 1.075 0. 975 1. 100 1.250 0.900 0. 750 1. 175 0.625 0.800 1.000 1.200 0.925 0. 925 1. 175 1.650 1.750 1.975 1.200 1.050 0.080 0.067 0.087 0.090 0.062 0.097 0.070 0.097 0.048 0.060 0.038 0.062 0.053 0.057 0.048 0. 107 0.067 0.085 0.055 0.075 0. 102 0.060 0.067 0.062 0. 100 0. 130 0. 097 0. 105 0.092 0.132 0.095 0.100 0.112 0. 125 0. 100 0.077 0. 140 0.097 0. 102 0.105 0. 122 0. 115 0.092 0.095 0.090 0. 115 0. 107 0.090 0.097 0.087 0. 125 0.105 0. 107 0. 132 0. 122 0. 127 0. 107 0.100 0.092 0.107 0.072 0.055 0.080 0.062 0.053 0.062 0.080 0.087 0. 122 0.080 0. 122 0.060 0.090 0.095 0. 105 0. 115 0. 125 0.173 0.117 0. 100 0. 775 1.400 1.075 1.725 1.475 1. 175 1.050 0.750 1.350 0.925 1.450 0.675 0.575 0.925 1.250 0.550 0.775 0.650 1.550 0.850 0. 950 0.825 0.725 0.975 0.925 0.700 0.700 0.650 0.900 0.475 0.800 0.700 0. 850 0.550 1.000 0.625 0.600 1.200 0.600 0.800 0.775 1.050 1.075 0.950 0.900 0.625 0. 800 1.675 1.025 1. 100 0.325 0.575 0.375 0.550 0.750 0.550 0.625 0 . 750 1. 325 1.100 1.250 1.650 0. 650 1.700 2. 350 1. 125 0.850 1.250 0.600 0.675 0. 625 1.275 1.075 1. 125 1.150 1.025 0. 825 0. 675 1. 475 1.325 18.400 19.100 19.100 12.600 10.800 16.600 13. 900 15. 100 14.900 12.300 14.000 16.000 15.100 18.000 18.800 14.000 16.000 15.100 18.000 18.800 15. 300 14.000 11.600 14.400 14.400 16. 200 14. 200 14. 100 14. 100 12.900 14.400 16.200 15.000 13.200 16.300 15. 200 15.700 16.000 14. 400 17.300 16.300 15.000 15.300 16.300 14.500 15. 300 14. 900 14.800 14.200 13. 400 12.600 11.900 13.400 12.500 21.600 19.100 13.700 18.300 14.SOO 15.500 13.800 14.800 12.900 16. 100 17.600 16. 100 14.800 19.100 13.400 15.200 13.000 16.600 14.600 15. 600 15.100 16.300 16.000 15.200 15.900 16. 800 5.390 5.460 5.300 5.650 5.730 5.340 5.670 5.660 6.010 5.720 6.200 5.960 5.580 5.790 5.610 5.480 5.840 5.860 6.040 5.660 6.050 6.110 5.880 5.810 6. 170 6. 180 6.440 6.090 6.230 5.880 6.010 6.200 6.430 5.700 5.700 6.410 6.220 6.210 6.130 5.560 5.590 5. 320 6.050 6.070 6.270 5.870 5.750 5.810 5.930 5.870 5.700 5.820 5.810 5.910 6.070 6.380 6.200 5.650 6.330 6.010 5.980 6.420 5.970 5.770 5.950 5.590 5.740 5.730 5.610 5.700 5.510 5.880 5.870 5.900 5.830 5.870 5.950 6. 140 5.940 5.840 1. 101 1.329 1.101 1. 405 0. 949 1. 215 1.518 1. 329 0. 987 1. 329 1. 139 0. 911 0. 987 1. 101 1. 139 1. 374 1. 526 1.412 1. 870 1.412 1 . 336 0. 954 1.068 1.068 1 . 068 0. 992 0. 954 0. 99 2 0. 916 0. 758 1. 150 1. 303 1. 145 1. 374 0.954 0. 954 1. 183 0. 954 1. 183 1. 374 1.030 0. 840 1. 183 1.068 0.992 0.801 0. 878 1. 107 0.763 1.030 0.797 0. 949 0.797 0. 759 1. 367 1.518 0. 835 1.063 0. 873 0. 759 0. 94 1 1. 054 0. 366 1. 280 1. 393 1. 167 0. 866 1. 355 0.790 1.09 2 0. 903 0. 973 0. 973 1.048 1.086 1. 36 7 1. 139 0. 987 0.721 1.215 572. 607. 552. 509. 470. 542. 478. 533. 473. 532. 479. 448. 552. 519. 547. 497. 666. 631. 697. 722. 686. 462. 458. 553. 547. 54 6. 512. 567. 620. 430. 555. 601. 551. 538. 555. 513. 476. 547. 446. 623. 538. 462. 546. 661. 560. 428. 527. 498. 444. 520. 412. 549. 464. 430. 634. 828. 365. 552. 420. 413. 404. 506. 441. 5 84. 636. 4 7 7 . 444. 507. 413. 474. 439. 478. 454. 506. 498. 608. 613. 516. 403. 466. 85 PLOT PROFILE NUMBER HORIZON EXCH. Ca EXCH. Mg EXCH. EXCH. K C.E.C. pH PERCENT CARBON N (ppm) 6.000 6.000 6.000 6.000 6.COO 6.000 6.000 6.C0C 6.000 6.OOO 1 .000 1.000 1.000 1.000 1 .000 1.000 1.000 1.C00 1 .000 1.0C0 1 .000 1.000 1.000 1 .000 1.C00 2.000 2 .000 2.000 2.OOO 2.000 2.000 2.000 2.000 2.OOO 2.000 2.000 2.000 2.000 2.0CC 2.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.00C 3.000 3.000 4.000 4.000 4.000 4.000 4.COO 4.000 4.OOO 4.0C0 4.000 4.000 4.000 4.000 4.COO 4.COO 4.000 5.000 5.000 5.00C 5.000 S.OOC 5.000 5.000 5.OOO S.OOC 5.000 81.000 82.000 83.000 84.000 85.000 86. 000 87.000 88.000 89.000 90.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 S.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17. 000 18.000 19.000 20.000 21.000 22.000 23.000 24. OOO 25.000 26. 000 27. 000 28.000 29. 000 30.000 31.000 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000 4 1.000 42.000 43.000 44.000 45.000 46.000 47.00C 48.COO 49.000 50.000 51.000 52.000 53.000 54.000 55.000 56.000 57.000 5E.0OO 59.000 60.000 61.000 62.000 £3.000 64.000 65.000 66.000 67.COO 66.000 69.000 70.000 1.000 1.000 1.000 1.000 1.000 1.000 000 000 000 ooo ooo 000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.OOO 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2. O O O 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 3.675 5.900 5.800 4. 150 6.450 S.400 4.500 6.700 5.675 3.875 9.500 1 1.000 9.100 9.725 8.625 9.450 8.275 9.375 9.850 8.450 8.250 7.950 8.850 7.625 6.375 6.775 8.950 7.675 7.550 10.425 9.450 8.600 9.075 8.000 7.450 8.025 8.025 7.725 10.150 9.500 10.450 9.900 8.250 6. 125 9.400 6.400 7.250 8.600 9.600 9.050 9.875 7.500 8.225 8.875 7.575 7.975 7.975 7.550 7.425 5.975 6. 300 6.225 5.925 6.875 9. 125 7.825 9. 150 8.675 8.500 7.250 7.500 8.250 8.150 1 1.625 9.650 9. 375 8.525 9.250 7. 175 6. 350 0. 600 1. 125 0.925 0.725 1.325 0.900 0. 700 1.125 1. 100 0.750 1.975 2.225 1.775 2.225 1.950 2.2 50 1.775 2.650 2.725 2.275 1.700 2.075 1.925 2.225 1.950 2.250 2.875 1.550 2.050 3.250 3.375 1.950 1.675 1.775 2.025 2.075 1.875 2.150 2.700 2.750 2.275 2.425 2.000 1.500 2.600 1.750 2.550 2.800 2.450 2.075 .275 .200 .225 .225 .675 .250 2.7 00 2.025 2. 150 1.775 1.300 1.800 1.225 2.050 3.000 2.600 3.750 2.725 2.650 2.475 1.925 1.650 2. 275 2.775 1.400 1.900 1.575 1.725 1.325 2.0 00 0.097 0. 142 0.107 0. 100 0.045 0.048 0.045 0.057 0.062 0.050 0. 137 0.137 0.097 0. 152 0.112 0.145 0.070 0. 173 0. 122 0. 155 0.065 0. 135 0.082 0.085 0.100 0. 175 0. 132 0.087 0. 135 0.145 0.187 0.082 0.082 0.090 0.097 0. 120 0. 100 0. 120 0.092 0. 122 0.090 0.082 0.087 0. 120 0.080 0. 105 0.170 0. 120 0. 100 0. 115 0. 152 0. 125 0.122 0.082 0.097 0.210 0.212 0. 162 0.085 0.080 0. 100 0.075 0.087 0.105 0.130 0.117 0. 162 0. 142 0. 107 0. 115 0.080 0. 087 0. 165 0. 132 0.048 0. 102 0.082 0. 082 0.082 0. 105 0. 850 1.475 1.225 1. 150 1.925 1.225 1.025 1.000 0.900 0.850 0. 750 1.200 1.200 1.450 1. 100 1.250 0.900 0.800 1.200 0. 825 1. 175 0.900 0.650 0. 700 0.700 0.500 0. 600 0.450 0.825 0.625 0.600 0.675 0.600 0.725 0.600 0.525 0.525 0.550 0.775 0.600 0.725 0.675 0.650 0.625 0.950 0.450 0.700 0. 925 1. 150 0.650 0. 950 1. 150 0.800 0.950 0.775 0.925 0.675 1.275 0.750 0.700 0.625 0.600 0.650 0.525 0.675 0.600 0.775 1.050 1.250 0. 925 1. 200 1.275 0.825 0. 975 1.850 1.275 1.075 1. 375 1. 425 1.050 15.500 15.100 14.500 15.800 16.100 15.300 18.500 15. 400 15.100 16.700 18.600 20. 300 17. 600 16.400 15.700 17.100 13. 400 15.600 18.800 14. 300 13. 400 13. 900 16.700 14.500 14.800 14.400 18.200 14. 000 15.400 18.800 17. 700 14.200 14. 000 13.600 13. SOO 13.900 13.400 16.600 18.700 16.600 18.700 18.700 16.500 13.400 18.600 14.000 15. 600 18.700 17. 400 17.700 19. 100 16.700 16.000 17.200 14.500 15.400 15.700 14.700 13.800 12.400 11.600 13.000 11.800 12.600 17.200 15.300 17.500 17.900 14.700 14.100 10. 800 12.200 12.200 15.300 15.500 14.300 13. 600 16.000 11.600 10.200 5.S70 5.410 6.090 5.930 6.080 5.800 5.810 5.900 5.920 5.850 5.940 5.86 0 5.790 5.690 5.910 6.180 6.050 6.120 5.830 6.080 6.280 6.130 5.590 6.060 5.920 5.900 5.950 5.880 5.980 5.950 6.160 6.310 6.190 6.180 6.040 6.220 6.220 6.030 6.270 6.130 6.270 6.170 6.350 5.910 5.960 6.310 6.440 6.010 6.410 6.080 6.530 6.130 5.900 6.020 6. 170 6.610 6.700 6.350 6.650 6.080 6.190 5.910 6.000 6.430 6.550 6.560 6.700 6.720 6.710 6.390 6.540 6.440 6.800 6.420 6.530 6.490 6.070 6.110 6.150 5.910 0. 987 1.063 1. 215 0.797 0. 797 1. 139 0. 911 1. 101 1.025 0.911 0. 538 0.538 0. 614 0.538 0.461 0. 538 0. 346 0.384 0.614 0.422 0.461 0.422 0. 576 0.576 0.422 0. 687 0. 878 1. 068 0.687 0.725 0.572 0.611 0.725 0.725 0.611 0.725 0. 534 0. 572 1.030 0.706 0. 801 0. 840 0. 840 0. 496 0.649 0.61 1 0.611 0.763 0.801 0.687 0.687 0. 649 0.649 0.725 0.649 0. 695 0.733 0.772 0.618 0.653 0.307 0.730 0. 499 0.538 0.960 1.075 0.768 0.883 0.347 0.422 0.562 0.562 0. 524 0. 449 0.636 0.866 0. 565 1. 204 0.602 0.414 495. 485. 453. 432. 424. 421. 475. 404. 368. 478. 453. 419. 491. 415. 360. 352. 314. 336. 435. 392. 283. 389. 475. 431. 363. 301. 480. 462. 375. 513. 409. 337. 382. 389. 341. 421. 307. 405. 549. 403. 415. 470. 420. 346. 413. 405. 414. 481. 402. 431. 480. 359. 400. 448. 452. 448. 445. 405. 346. 231. 440. 263. 255. 293. 509. 517. 482. 505. 303. 310. 350. 374. 432. 283. 400. 509. 346. 372. 318. 289. 86 PLOT PROFILE HORIZON EXCH. EXCH. EXCH. EXCH. C.E.C. pH PERCENT N (ppm) NUMBER Ca Mg N» K CARBON 5.000 71.000 2.000 7.875 2.675 0. 152 0.725 12. 300 6. 180 0. 337 279. 5.000 72.000 2.000 9.425 2.275 0.100 1.550 15.200 6.280 0.524 318. 5.000 73.000 2.000 6.625 2. 125 0. 135 1.075 13.400 6.640 0.412 313. 5.000 74.000 2.000 6.600 1.925 0. 100 1.225 13.600 6.340 0.674 332. 5.000 75.000 2.000 7.900 2. 150 0. 142 1.075 15. 100 6.250 0. 599 338. 6.000 76.000 2.000 9.700 2.725 0. 120 0.975 17. 700 6.440 1.081 555. 6.000 77.000 2.000 10.725 3.250 0. 167 0.775 17.500 6.740 0.888 530. 6.000 78. 000 2.000 7.700 2.250 0. 152 0.650 15.000 6.750 0.463 323. 6.000 79.000 2.000 8.625 1.925 0.070 0. 675 13.800 6.400 0.463 207. 6.000 80.000 2.000 6.400 1.400 0.070 0.975 12. 400 6.300 0.579 286. 6.000 81.000 2.000 6.800 0.750 0.075 0.925 13. 500 6.070 0.502 314. 6.000 82.000 2.000 7.450 1.825 0. 115 1.025 14.000 6.040 0.502 294. 6.000 83.000 2.000 7. 100 1.575 0.097 0.525 12. 400 6.150 0.309 204. 6.000 64.000 2.000 6.600 1.300 0.085 0.975 13.600 6.190 0.618 318. 6.000 85.000 2.000 7. 175 1.725 0.067 1.650 14. 300 6.530 0.618 294. 6.000 86.000 2.000 7.350 1.450 0.085 1.025 14.000 6.250 0.425 309. 6.000 87.000 2.000 7.350 1.275 0.060 1.075 14. 200 6.200 0.502 311. 6.000 66.000 2.000 7.025 1.975 0.092 0.900 14. 200 6.200 0. 502 300. 6.000 89.000 2.000 7.775 2.375 0. 145 0.875 14. 800 6.680 0.618 345. 6.000 9C.0O0 2.000 7.675 1.925 0.090 1.025 15. 000 6.380 0.6 18 360. 1.000 1.000 3.000 20.000 6.500 0.300 0.900 40.600 6.340 0.534 384. 1 .000 2.000 3.000 18.750 5. 250 0. 225 1. 250 36. 300 6.270 0. 572 378. 1.000 3.000 3.000 21.J00 6.250 0.275 0.900 4 1.200 6.300 0. 572 348. 1.000 4.000 3.000 19.000 6.250 0.275 1.900 38.900 6.350 0.534 379. 1.000 5.000 3.000 19.000 6. 500 0.275 1.500 37.500 6.370 0.572 359. 1.000 6.000 3.000 20.250 6.750 0.275 1.700 33. 200 6.420 0.687 329. 1.000 7.000 3.000 13.750 4.500 0.200 1.000 26.400 6.380 0. 572 371. 1.000 6.000 3.000 18.750 7.500 0.275 0.875 35.400 6.530 0.305 236. 1.000 9.000 3.000 22.500 8.500 0.200 1.075 52. 100 6.290 0.572 415. 1.000 10.000 3.000 19.500 7.500 0.250 0.800 39.800 6.330 0.420 296. 1.000 11.000 3.000 14.000 5.750 0. 175 1. 175 32. 700 6.470 0.458 344. 1.000 12.000 3.000 19.000 7. 250 0.275 0.925 13. 400 6.300 0. 496 330. 1.000 13.000 3.000 16.000 5.750 0. 175 0.875 32. 600 6. 190 0. 382 309. 1.000 14.000 3.000 15.750 7.000 0. 200 0.800 34.200 6.400 0.611 379. 1.000 15.000 3.000 18.000 7.500 0.200 0.900 37. 900 6.430 0. 534 367. 2.000 16.000 3.000 16.250 7.750 0.275 0.850 36.100 6.150 0.607 406. 2.000 17.00C 3.000 16.500 7.750 0.225 1.025 40.400 6.210 0. 569 362. 2.000 18.000 3.000 17.500 5.750 0. 125 1.000 32.000 6.320 0.607 384. 2.000 19.000 3.000 15.500 6.750 0.275 0.850 33.200 6.290 0.607 344. 2.000 20.000 3.000 18.750 8.500 0.275 0.775 29.000 6.210 0.607 349. 2.000 21.000 3.000 16.500 7.750 0.275 0.750 37. 300 6.220 0.531 341. 2.000 22.000 3.000 15.100 4.500 0.150 0.950 30.000 6.570 0.797 466. 2.000 23.000 3.000 15.750 4.750 0. 175 1.050 31. 100 6. 540 0.797 467. 2.000 24.000 3.000 16.250 6.000 0. 225 1. 100 34.700 6.400 0.721 473. 2.000 25.00C 3.000 13.50C 5.250 0.200 0.775 31.900 6.410 0.607 408. 2.000 26.000 3.000 15.750 5.500 0.200 0.850 32. 300 6.360 0.721 415. 2.000 27.000 3.000 16.500 5.500 0.200 0.900 33.000 6.450 0.797 464. 2. C0C 28.000 3.000 17.500 6.750 0.225 0.925 39. 100 6.330 0. 759 433. 2.000 29. 000 3.000 18.000 7.000 0. 200 1.025 35. 300 6.390 0. 683 411. 2.000 30.000 3.000 17.000 6.500 0.200 0.900 36. 500 6.400 0.607 403. 3. COO 31.COO 3.000 15.500 5.250 0.125 0.700 32.000 6.570 0.613 392. 3.000 32.000 3.000 18.250 6.000 0. 125 0.700 34. 300 6.650 0. 460 301. 3.000 33.000 3.000 16.000 5.750 0.125 0.725 33.900 6.550 0.536 298. 3.000 34.000 3.000 14.250 6.250 0.200 0.875 33. 400 6.420 0.575 366. 3.000 35.000 3.000 12. 750 5. 250 0.200 0. 775 29. 200 6.370 0. 575 385. 3.000 36.000 3.000 8.750 3.250 0. 125 0.475 23.900 6.360 0. 724 411. 3.000 37.000 3.000 17.000 8.000 0.250 0.925 31.500 6.460 0.571 392. 3.000 38.000 3.000 15.000 6.750 0.275 0.875 31.700 6.650 0.647 351. 3.000 39.000 3.000 14.300 6.000 0.225 1.250 32.000 6.890 0.533 322. 3.000 40.000 3.000 15.750 7.000 0.250 1. 100 34.900 6.640 0. 495 328. 3.000 41.000 3.000 16.000 7.250 0.225 1.050 34.400 6.610 0.571 343. 3.000 42.000 3.000 13.250 5.500 0.225 1. 225 28.600 6.640 0.571 309. 3.000 43.000 3.000 17.250 6.500 0.175 1.075 34.500 6.640 0.533 318. 3.000 44.000 3.000 16.250 6.500 0. 175 1. 100 31. 700 6.480 0. 57 1 373. 3.000 45.000 3.000 12.750 4.750 0.175 0.775 28.000 6.530 0.609 361. 4.000 46.000 3.000 13. 750 6.250 0.350 1.050 31. 200 6.920 0.616 339. 4.000 47.000 3.000 10.750 5. 750 0.275 0.725 28. 300 6.950 0. 578 363. 4.000 48.000 3.000 8.500 3.500 0.250 0.700 23. 100 7.040 0.693 478. 4.000 49.000 3.000 10.500 4.750 0. 175 0.750 28.800 6.870 0.616 355. 4.000 50.000 3.000 9.750 4.250 0. 150 0.725 23. 900 6.750 0.501 319. 4.000 51.000 3.000 12.000 4.750 0. 200 1. 100 27. 300 6. 760 0. 385 283. 4.000 52.000 3.000 14.250 6.000 0. 150 0. 775 30. 700 6.620 0.809 429. 4.000 53.000 3.000 10.000 4.000 0.175 1.025 22. 100 6.620 0. 462 279. 4.000 54.000 3.000 13. 250 5.750 0. 175 0.875 30. 200 6.690 0.616 353. 4.000 55.000 3.000 1 1.000 5.250 0. 125 0. 925 25. 600 6.660 0.6 16 359. 4.000 56.000 3.000 14.000 6.250 0. 175 0.775 32.300 6.590 0.809 473. 4.000 57.000 3.000 12.000 6.250 0.225 0.900 27. 900 6.830 0.770 477. 4.000 58.000 3.000 15.500 8.250 0.300 1.075 33. 700 7.230 0.732 366. 4.000 59.000 3.000 14.000 7.250 0.250 1.025 30. 100 7.150 0.539 294. 4.000 60.000 3.000 13.500 7.000 0.250 1.000 30. 100 6.950 0.462 307. 87 PLOT PROFILE HORIZON EXCH. EXCH. EXCH. EXCH. C.E.C. pH PERCENT N (ppm) NUMBER Ca Mg Na K CARBON 5.000 61.000 3.000 13. 250 5.750 0.275 0.875 26.700 7.070 0.540 327. 5. COG 62.000 3.000 1 1.750 4.750 0.250 1. 175 25.000 7.130 0.463 317. 5.000 63.000 3.000 12.750 5.500 0.350 0.950 27. 400 7.240 0.063 338. 5.000 64.000 3.000 10.250 4. 250 0.225 1. 100 25. 400 6.930 0.347 263. 5.000 65.000 3.000 10.250 4.250 0. 175 1.050 24. 200 6.950 0. 309 282. 5.000 66.000 3.000 12.000 4.500 0.225 1. 100 25. 100 6.970 0. 463 355. S.OOC 67.000 3.000 13.000 5.000 0.250 1. 250 25. 200 6.660 0.347 288. 5.000 68.000 3.000 1 1.750 4.500 0.200 1.225 29. 100 6.860 0.309 247. 5.000 69.000 3.000 12.500 4.500 0. 175 1.325 24. 300 6.760 0.386 280. 5.000 70.000 3.000 10.000 4.750 0.250 1.000 25.700 6.910 0.425 288. 5.000 71.000 3.000 12.250 5.750 0.275 1.075 26. 500 6.950 0.425 280. 5.000 72. 000 3.000 1 1.250 4.750 0.200 1. 175 25. 100 6.780 0. 386 263. 5.000 73.000 3.000 11.500 5.500 0.275 0.950 23.000 7.130 0. 347 299. 5.000 74.0C0 3.000 12.750 5.500 0.375 1.075 23. 200 7.280 0.463 298. 5.000 75.000 3.000 1 1.750 5.250 0.350 1.075 22. 600 7.200 0.502 294. 6.000 76.000 3.000 14.750 5.500 0.275 1.075 27.800 7.050 0.772 501. 6.000 77.000 3.000 13.750 5.000 0.250 1.000 24.400 7.190 0.618 460. 6.000 78.000 3.000 12.000 4.500 0.250 0.900 21.600 7. 110 0.618 301. 6.000 79.0CO 3.000 9.500 3.000 0.125 0.475 16.000 6.900 0.193 182. 6.000 8C.O0O 3.000 7.500 2.500 0. 100 0.800 12. 600 6.840 0. 270 227. 6.000 81.000 3.000 8.000 2.250 0. 125 0.800 13. 900 6.550 0.232 173. 6.000 82.000 3.000 1 1.000 4.500 0.225 0.875 20. 200 7.000 0.386 256. 6.000 83. 000 3.000 9.750 3.500 0. 175 0.550 17. 000 6.600 0.270 212. 6.000 84.000 3.000 8.000 2.500 0. 150 0.775 13.400 6.910 0. 270 191. 6. COO 85.000 3.000 10.300 4.000 0.225 0.850 18. 500 7.090 0.347 240. 6.000 86.000 3.000 11.500 4.250 0.250 1.000 19.400 7.090 0.347 263. 6.000 87.000 3.000 8.500 3.250 0. 150 0.625 15. 900 6.680 0.232 165. 6.000 88.000 3.000 1 1.250 5.000 0.275 0.900 21.600 7.030 0.347 249. 6.000 89.000 3.000 1 1.500 0.750 0.275 0.925 22. 500 7.090 0.386 272. 6.000 90.000 3.000 10.500 4.000 0.200 0.900 22.000 6.890 0.347 249. 1.000 1.000 4.000 21.750 7.000 0.325 0.725 39.900 6.520 0.456 280. 1.000 2.000 4.000 17.250 5.000 0.200 0.875 32. 200 6.630 0.342 256. 1.000 3.000 4.000 21.000 6.500 0.275 0.825 40.100 6.540 0.380 217. 1.000 4.000 4.000 20.000 7.500 0.250 1.100 38. 000 6.550 0. 304 241. 1.C00 5.000 4.000 23.7S0 9.000 0.225 0.900 45. 600 6.640 0.304 215. 1.000 6.000 4.000 17.000 6.250 0.200 0.875 31.600 6.620 0.342 239. 1.000 7.000 4.000 17.750 6.500 0.275 0.900 36. 100 6.710 0. 190 155. 1.000 8.000 4.000 21.000 8.500 0.225 0.800 40.900 6.880 0. 190 152. 1.000 9.000 4.000 23.000 8.250 0.225 0.900 43. 200 6.540 0.228 227. 1.000 10.000 4.000 20.750 8.250 0.225 0.900 38.000 6.600 0.342 219. 1.000 11.000 4.000 20.500 9.750 0. 175 0.800 39.300 6.890 0. 266 188. 1.C00 12.000 4.000 18.750 7.250 0.300 0.825 35. 900 6.690 0. 304 202. 1.000 13.000 4.000 17. 250 6.750 0.150 0.725 32.700 6.790 0.228 161. 1.000 14.000 4.000 16.250 7.000 0. 200 0.850 33.600 6.560 0.456 311. 1.000 15.0C0 4.COO 17.000 7.500 0.200 0.900 35. 900 6.620 0.456 245. 2.000 16.000 4.000 15.500 7.500 0.275 0.825 33.200 6.350 0.376 225. 2.000 17.000 4.000 17.000 8.000 0.250 0.850 39. 100 6. 310 0.452 261. 2.000 18.000 4.000 17.000 5.250 0. 125 0.800 36. 600 6.490 0.602 335. 2.000 19.000 4.000 18.250 8.750 0.225 0.850 41.600 6.430 0.489 271. 2.000 20.000 4.000 16.500 8.500 0.275 0.750 35.900 6.550 0. 301 186. 2.000 21.000 4.000 17.500 9.250 0.250 0.825 38.000 6.660 0.339 209. 2.000 22.000 4.000 19. 750 6.750 0. 150 1.050 37.600 6.920 0.489 291. 2.000 23.000 4.000 17.500 6.000 0. 150 1. 125 34. 200 7.000 0.565 306. 2.000 24.000 4.000 14. 750 6.250 0.225 0.800 30.600 6.640 0. 339 185. 2.000 2J.000 4.000 16.500 6.500 0.175 0.775 34.000 6.710 0.565 295. 2.OOO 26.000 4.000 18.000 7.250 0. 175 1.050 39.000 6.720 0. 487 260. 2.000 27.000 4.000 18.750 7.000 0.200 1.050 35.300 7.240 0.636 356. 2.000 28.000 4.000 18.250 8.000 0.225 1.075 36. 700 7.050 0.487 264. 2.000 29.000 4.000 14.250 6.250 0.200 1.000 31.500 6.550 0.449 226. 2.000 30.000 4.000 17.250 7.250 0. 175 1. 100 37.400 6.490 0. 449 277. 3.000 31.000 4.000 13.000 5.750 0.125 0.675 23. 600 6.660 0. 343 204. 3.000 32.000 4.000 14.750 5.750 0. 100 0.650 30.000 6.680 0.267 212. 3.000 33.000 4.000 13.750 5.500 0.125 0.675 27.500 6.720 0.305 234. 3.000 34.000 4.000 15.000 6.750 0.225 0.975 31.900 6.440 0.687 370. 3.COO 35.000 4.000 9.000 3.500 0.175 0.700 22. 300 6.400 0.801 389. 3.000 36.000 4.000 10.250 4.000 0. 125 0.600 22.300 6.500 0.422 241. 3.COO 37.000 4.000 16.SOO 8.000 0.275 0.875 35. 600 6.530 0.575 282. 3.000 3E.0O0 4.000 13.000 7.000 0.250 0.775 29.400 6.640 0.383 257. 3.000 39.000 4.000 13.000 6.000 0.250 1.050 30. 800 6.700 0. 422 275. 3.000 40.000 4.000 14.500 6.750 0.225 1.025 30. 700 6.660 0. 383 221. 3.000 41.000 4.000 12.500 5.500 0.200 0.925 27. 100 6.610 0.496 243. 3.000 42.000 4.000 12.750 5.750 0.200 1. 125 27. 800 6.720 0. 420 278. 3.000 43.000 4.000 14.250 5.750 0. 150 0.950 27. 500 6.750 0. 382 241. 3.000 44.000 4.000 14. 250 5. 750 0. 150 0.850 28.600 6.750 0.382 238. 3.000 45.000 4.000 12.000 4.750 0. 150 0.750 23. 200 6.740 0. 382 253. 4 .000 46.000 4.000 12. 750 6.500 0. 300 0. 850 28. 800 6.940 0. 342 246. 4.000 47.000 4.000 16.750 8.500 0.300 0.800 33.800 7.250 0.456 271. 4.000 48.000 4.000 12.000 5.750 0.375 0.800 26. 400 7.130 0.456 315. 4.000 49.000 4.000 13.250 6.750 0.225 0.900 30. 600 7.020 0.456 230. 4.000 50.000 4.000 11.250 5.500 0. 150 0.800 27.600 6.720 0.456 305. 88 PROFILE NUMBER HORIZON EXCH. Ca EXCH. Mg EXCH. Na EXCH. K C.E.C. pH PERCENT CARBON N (ppm) «.C00 4.000 4.COO 4.000 4.000 4.000 4.000 4.000 4.000 4.000 5.000 5.000 5.000 5.000 5.000 5.OO0 5.000 5.000 5.000 5.00C 5.00C 5.000 5.000 5.00C 5.000 6.COO 6.000 6.00C 6.COO 6 .000 6.000 6.COO 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 51.000 52. 000 53.000 54.000 55.000 56.000 57.000 56.000 59.000 60.000 6 1.000 62.000 63.000 64.000 65.000 66.000 67.000 68.000 69.000 70. 000 7 1. 000 72.000 73.000 74.CC0 75.000 76.000 77. 000 78.000 79.000 80.000 81.000 82.000 83.000 84.000 85.000 66.000 67.000 88.000 89.000 90.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 14.000 19.000 13.250 13.000 12.750 10.000 8.500 15.250 13.500 12.000 13.500 1 1.250 1 1.500 9.000 8.750 12.000 10.750 10.500 10.500 10.750 10.500 10.500 1 1.000 1 1.500 10.250 1 1.500 8.500 9.750 10.500 10.000 9.500 1 1.500 10.500 1 1.250 1 1.500 10.500 9.250 1 1.000 10.750 9.000 6.000 9.500 5.500 6.250 6.500 4.750 4.500 9.250 7.0 00 6.000 5.750 4.750 4.750 3.500 4.000 4.750 4. 250 3.750 3.750 5.000 5.250 4. 750 5.000 5.500 4.7 50 4.250 3.750 3. 500 2.750 3. 500 3. 250 4.750 3.750 3.750 5.000 4.000 3.750 4.750 4.500 4.250 0. 175 0. 150 0. 175 0.150 0.175 0. 150 0.200 0.350 0. 325 0.225 0. 275 0.250 0.275 0.225 0.225 0.250 0.225 0.225 0.225 0.275 0. 300 0.275 0.275 0.375 0.300 0.225 0.200 0.200 0.125 0. 100 0. 150 0.225 0. 150 0.175 0.225 0.200 0.200 0.275 0.250 0.200 1. 100 0. 850 1. 175 0.800 0.800 0.650 0.750 0. 975 1. 150 1. 100 1.025 1. 300 0. 875 1. 150 1. 125 .1.050 1.275 1.250 1. 125 1.075 1. 150 1. 175 1. 125 1.250 1.000 0.900 0.750 0.775 0.450 0.725 0.575 0.800 0.575 0.825 0.775 0.750 0.650 1.025 0.975 1.025 29.600 43.800 30.200 30.200 32.800 22.200 19.800 33. 600 32.U00 29. 000 31.400 26.400 25.100 20.400 21. 700 23. 300 23.000 23.000 23. 200 25.000 23. 700 24.200 25.500 24.600 24.400 24.600 22.800 20.300 16.400 20.000 19.000 23. 800 20.300 21. 700 24.900 22. 300 20.300 26.000 24.000 22.500 6.730 6.750 6.530 6.820 6.790 6.830 7.060 7.440 7.180 6.960 7.320 7.200 7. 300 7.160 7.220 7.190 7. 180 7.070 7.04 0 160 270 140 140 340 330 7.400 7.430 7.320 7.320 7.130 6.670 7.060 7.020 6.960 7.150 7.070 6.960 7. 170 7.160 6.970 0.380 0. 608 0.418 0. 330 0.570 0.4 18 0.418 0. 190 0.266 0. 380 0. 300 0.374 0. 300 0. 187 0. 300 0.262 0. 225 0.225 0. 150 0.262 0. 223 0. 261 0.223 0. 298 0. 335 0. 343 0.343 0. 228 0. 190 0.381 0. 267 0. 343 0.267 0.343 0.381 0.381 0.305 0. 381 0.457 0. 228 282. 378. 270. 256. 325. 344. 294. 157. 207. 240. 311. 322. 262. 190. 246. 238. 219. 215. 176. 225. 176. 190. 218. 207. 237. 286. 233. 175. 129. 220. 167. 232. 196. 197. 239. 238. 187. 229. 241. 203. 89 Appendix C General S o i l Data Horizon codes: Ae = 1 AB = 2 Bt = 3 BC = 4 Parent material codes: T i l l = 1 Colluvium = 2 Mixtures of t i l l and colluvium = 3 90 PLOT PROFILE HORIZON HORIZON NUMBER DEPTHS (cm.) 1.000 1.000 1.000 000 010 1 .000 2.000 1.000 000 010 1 .000 3.000 1.000 000 007 1 .000 4.COO 1.000 000 012 1 .00 0 5.000 1.000 000 010 1.CO0 6.000 1.000 000 012 1 .000 7.000 1.000 000 011 1 .GOO 8.000 1. 000 000 012 1 .000 9.000 1.000 000 010 1.000 10.000 1.000 000 014 1 .000 11.000 1.000 000 015 1 .000 12.000 1.000 000 012 1.000 13.000 1.000 000 0 12 1.000 14.000 1.000 000 010 1 .000 15.000 1. 000 000 013 2.COO 16.000 1.000 000 013 2.000 17.000 1.000 000 012 2.000 18.000 1.000 000 007 2.COO 19.000 1.000 000 018 2.000 20.000 1.000 000 013 2.000 21.000 1.C00 000 012 2 .000 22.000 1.000 000 015 2.000 23.000 1.000 000 015 2.000 24.000 1.000 000 0 17 2.000 25.000 1.000 000 012 2.000 26.000 1.000 000 010 2.000 27.000 1.000 COO 017 2.000 28.000 1.000 000 0 12 2.000 29.000 1.000 000 017 2 .000 30.000 1.000 000 010 3.00 0 31.000 1.000 000 015 3.COO 32.000 1.000 000 011 3.000 33.000 1.0C0 COO 012 3.000 34.000 1.000 000 012 3.000 35.000 1.000 000 012 3.000 36.0C0 1.000 000 010 3.000 37.000 1.000 000 014 3.000 38.000 1.000 000 010 3.000 39.000 1.000 000 014 3.000 40.000 1.000 000 013 3.000 4 1.000 1. ooc 000 010 3.000 42.000 1.000 000 014 3.G0C 43.000 1.000 000 015 3.000 44.000 1.000 000 011 3.000 45.000 1.000 000 010 4.000 46.000 1.000 000 032 4.000 47.000 1. 000 000 021 4.000 48.000 1.000 000 024 4.000 49.000 1.000 000 016 4.000 50.000 1.000 000 015 4.C0C 51.000 1.000 000 020 4.000 52.000 1.000 000 009 4.000 53.000 1.000 000 022 4.000 54.000 1.000 000 020 4.000 55.000 1.000 000 013 4.000 56.0C0 1.000 000 011 4.000 57.00C 1.000 000 015 4.000 58.000 1.000 000 013 4.COO 59.000 1.000 000 014 4.000 60.000 1.000 000 018 5.C0C 6 1.000 1.000 000 015 5.000 62.000 1.000 000 025 5.000 63.00G 1.000 000 020 5.000 64.000 1.000 000 023 5.00C 65.000 1.0C0 000 024 5.000 66.000 1.000 000 016 5.000 67.000 1.000 000 015 5.000 68.000 1.000 000 019 5.000 69.000 1.000 000 017 5.000 70.000 1.000 000 016 5.000 71.000 1.000 000 020 5.000 72.000 1.000 000 017 5.000 73.000 1.CC0 000 013 5.000 74.000 1.000 000 018 5.000 75.000 1.000 000 021 6.COO 76.000 1.000 000 014 6.000 77.000 1.000 000 014 6.GOO 78.000 1.000 COO 019 6.000 79.000 1.000 000 017 6.000 80.000 1.000 000 017 PARENT < 2mm. > 2mm. DISTANCE MATERIAL FRACTION FRACTION DOWNSLOPE 590 219 000 728 242 000 545 145 000 613 243 000 856 380 000 681 257 000 662 441 000 707 469 000 675 180 00 0 645 146 00 0 699 254 000 626 145 000 699 138 000 644 252 000 552 130 000 872 327 075 459 38 075 673 294 075 591 256 075 580 216 075 568 196 075 763 215 075 633 249 075 570 155 075 816 314 075 746 102 075 636 167 075 668 40 075 598 30 075 715 81 075 599 192 150 564 131 150 608 200 150 551 138 150 570 145 150 62 1 131 150 595 83 150 515 95 150 581 79 150 544 55 150 538 137 150 562 196 150 619 36 150 645 123 150 676 167 150 720 185 215 701 211 215 77 0 208 21 5 762 255 215 803 249 215 732 263 215 710 242 21 5 717 281 215 723 186 215 805 216 215 709 240 21 5 679 157 215 678 87 215 848 247 215 721 230 215 702 279 275 682 333 275 700 405 275 638 244 275 571 317 275 656 259 275 768 255 275 717 423 275 730 314 275 724 258 275 79 1 209 275 677 270 275 704 142 275 804 245 275 697 171 27 5 699 258 30 5 737 347 30 5 764 328 305 852 224 305 679 269 30 5 91 PLOT PROFILE HORIZON NUMBER 6 . 0 0 0 8 1 . 0 0 0 1 . 0 0 0 6 . C O O 8 2 . 0 0 0 1 . 0 0 0 6 . 0 0 0 8 3 . 0 0 0 1 . 0 0 0 6 . 0 0 0 8 4 . 0 0 0 1 . 0 0 0 6 . 0 0 0 8 5 . 0 0 0 1 . 0 0 0 6 . 0 0 0 8 6 . 0 0 0 1. 0 0 0 6 . 0 0 0 8 7 . 0 0 0 1 . 0 0 0 6 . 0 0 0 8 8 . 0 0 0 1 . 0 0 0 6 . 0 0 0 8 9 . 0 0 0 1 . 0 0 0 6 . 0 0 0 9 0 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 . 0 0 0 1 . 0 0 0 2 . 0 0 0 2 . 0 0 0 1 . 0 0 0 3 . 0 0 0 2 . 0 0 0 1 . C 0 0 4 . 0 0 0 2 . 0 0 0 1 . 0 0 0 5 . 0 0 0 2 . 0 0 0 1 . 0 0 0 6 . 0 0 0 2 . 0 0 0 1 . 0 0 0 7 . 0 0 0 2 . 0 0 0 1 . 0 0 0 8 . 0 0 0 2 . 0 0 0 1 . 0 0 0 9 . 0 0 0 2 . 0 0 0 1 . 0 0 0 1 0 . 0 0 0 2 . 0 0 0 1 . 0 0 0 1 1 . 0 0 0 2 . 0 0 0 1 . 0 0 0 1 2 . 0 0 0 2 . 0 0 0 1 . 0 0 0 1 3 . 0 0 0 2 . 0 0 0 1 . 0 0 0 1 4 . 0 0 0 2 . 0 0 0 1 . 0 0 0 1 5 . O O C 2 . 0 0 0 2 . 0 0 0 1 6 . 0 0 0 2 . 0 0 0 2 . 0 0 0 1 7 . 0 0 0 2 . 0 0 0 2 . 0 0 0 1 8 . 0 0 0 2 . 0 0 0 2 . 0 0 0 1 9 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 0 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 1 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 2 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 3 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 4 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 5 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 6 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 7 . O O C 2 . 0 0 0 2 . 0 0 0 2 8 . 0 0 0 2 . 0 0 0 2 . 0 0 0 2 9 . 0 0 0 2 . 0 0 0 2 . 0 0 0 3 0 . 0 0 0 2 . 0 0 0 3 . 0 0 0 3 1 . 0 0 0 2 . 0 0 0 3 . 0 0 0 3 2 . 0 C 0 2 . 0 0 0 3 . 0 0 0 3 3 . 0 0 0 2 . 0 0 0 3 . 0 0 0 3 4 . 0 0 0 2 . 0 0 0 3 . C O O 3 5 . O O C 2 . 0 0 0 3 . 0 0 0 3 6 . 0 C 0 2 . 0 0 0 3 . 0 0 0 3 7 . O O C 2 . 0 0 0 3 . 0 0 0 3 8 . 0 0 0 2 . 0 0 0 3 . O O C 3 9 . 0 C C 2 . 0 0 0 3 . 0 0 0 4 0 . 0 0 0 2 . 0 0 0 3 . 0 0 0 4 1 . 0 0 0 2 . 0 0 0 3 . 0 0 0 4 2 . 0 0 0 2 . 0 0 0 3 . 0 0 0 4 3 . 0 0 0 2 . 0 0 0 3 . 0 0 0 4 4 . 0 0 0 2 . 0 0 0 3 . 0 0 0 4 5 . 0 0 0 2 . 0 0 0 4 . 0 0 0 4 6 . 0 0 0 2 . 0 0 0 4 . 0 0 0 4 7 . 0 0 0 2 . 0 0 0 4 . 0 0 0 4 8 . O O C 2 . 0 0 0 4 . 0 0 0 4 9 . 0 0 0 2 . 0 0 0 4 . COO 5 0 . 0 0 0 2 . 0 0 0 4 . 0 0 0 5 1 . 0 0 0 2 . 0 0 0 4 . 0 0 0 5 2 . 0 0 0 2 . 0 0 0 4 . 0 0 0 5 3 . 0 0 0 2 . 0 0 0 4 . C O O 5 4 . 0 0 0 2 . 0 0 0 4 . 0 0 0 5 5 . 0 0 0 2 . 0 0 0 4 . 0 0 0 5 6 . 0 C 0 2 . 0 0 0 4 . 0 0 0 5 7 . 0 0 0 2 . 0 0 0 4 . 0 0 0 5 8 . 0 0 0 2 . 0 0 0 4 . 0 0 0 5 9 . 0 0 0 2 . 0 0 0 4 . 0 0 0 6 0 . 0 0 0 2 . 0 0 0 5 . 0 0 0 6 1 . 0 0 0 2 . 0 0 0 5 . 0 0 0 6 2 . O O C 2 . 0 0 0 5 . 0 0 0 6 3 . 0 0 0 2 . 0 0 0 5 . 0 0 0 £ 4 . 0 0 0 2 . 0 0 0 5 . 0 0 0 6 5 . 0 0 0 2 . 0 0 0 5 . 0 0 0 6 6 . 0 0 0 2 . 0 0 0 5 . 0 0 0 6 7 . 0 0 0 2 . 0 0 0 5 . 0 0 0 6 8 . 0 0 0 2 . 0 0 0 5 . 0 0 0 6 9 . 0 0 0 2 . 0 0 0 5 . O O C 7 0 . 0 C 0 2 . 0 0 0 HORIZON PARENT DEPTHS (cm.) MATERIAL 0 0 0 0 1 7 0 0 0 0 1 7 0 0 0 0 1 9 0 0 0 0 2 1 0 0 0 0 2 0 0 0 0 0 1 6 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 2 1 0 0 0 0 1 8 0 1 0 0 2 0 0 1 0 0 1 5 0 0 7 0 1 7 C 1 2 0 3 0 0 1 0 0 2 4 0 1 2 0 2 8 0 1 1 0 2 6 0 1 2 0 2 9 0 10 0 2 0 C 1 4 0 4 0 0 15 0 3 2 C 1 2 0 3 0 0 12 0 2 5 0 1 0 0 2 2 0 1 3 0 2 3 3 0 1 3 0 2 8 3 C 1 2 0 2 0 3 0 0 7 0 2 0 3 C 1 8 0 3 8 1 0 1 3 0 2 4 3 C 1 2 0 2 4 3 0 1 5 0 3 0 3 0 1 5 0 3 1 3 0 17 0 3 4 1 0 1 2 0 2 4 3 0 1 0 0 2 7 3 0 1 7 0 3 2 3 0 1 2 0 2 3 2 0 1 7 0 2 6 2 0 1 0 0 2 0 2 C 1 5 0 2 5 3 0 1 1 0 2 4 2 0 1 2 0 3 2 2 0 1 2 0 2 4 3 0 1 2 0 2 5 3 0 1 0 0 2 4 2 C 1 4 0 3 5 3 0 10 0 1 9 3 C 1 4 0 2 5 3 0 1 3 0 2 5 3 C 1 0 0 2 2 3 0 1 4 0 3 0 1 C 1 5 0 3 0 1 0 1 1 0 2 6 1 0 1 0 0 2 5 1 0 3 2 0 6 1 1 0 2 1 0 4 1 3 C 2 4 0 4 4 1 0 1 6 0 3 8 3 C 1 5 0 4 3 3 0 20 0 5 0 3 0 0 9 0 2 0 2 0 2 2 0 5 0 3 C 2 0 0 3 8 3 0 1 3 0 2 5 3 0 1 1 0 2 1 3 0 1 5 0 2 0 3 Q 1 3 0 3 0 3 0 1 4 0 3 5 1 C 1 8 0 4 0 1 0 1 5 0 4 0 1 0 2 5 0 6 5 1 0 2 0 0 4 4 1 0 2 3 0 4 6 1 0 2 4 0 4 9 1 0 1 6 0 3 3 1 0 1 5 0 4 4 1 0 1 9 0 4 5 1 0 1 7 0 3 7 1 C 1 6 0 4 0 1 < 2mm. > 2mm. DISTANCE FRACTION FRACTION DOWNSLOPE 7 4 2 2 3 1 3 0 5 7 0 4 2 2 7 3 0 5 7 3 0 2 1 3 3 0 5 7 6 5 2 9 7 3 0 5 7 4 6 2 4 8 3 0 5 6 7 6 2 8 0 3 0 5 6 6 6 3 2 5 3 0 5 8 3 7 3 0 6 3 0 5 8 1 6 2 5 3 3 0 5 7 5 7 1 9 6 3 0 5 5 5 7 2 2 0 0 0 0 9 0 0 3 1 8 0 0 0 7 6 9 5 0 8 0 0 0 6 3 9 7 1 3 0 0 0 6 8 6 6 0 1 0 0 0 7 8 2 5 5 7 0 0 0 8 3 6 5 8 5 0 0 0 9 3 3 9 7 7 0 0 0 6 4 4 3 0 6 0 0 0 9 7 9 6 8 4 0 0 0 7 7 7 4 3 0 0 0 0 1 0 4 3 3 8 0 0 0 0 7 0 4 4 7 7 0 0 0 5 7 8 3 7 7 0 0 0 7 3 2 3 3 5 0 0 0 8 9 9 2 5 5 0 7 5 7 2 2 1 7 3 0 7 5 6 4 4 2 2 8 0 7 5 6 9 3 3 0 7 0 7 5 6 7 6 3 4 0 0 7 5 7 9 9 1 6 8 0 7 5 9 6 9 3 0 9 0 7 5 6 7 8 2 1 0 0 7 5 7 2 0 5 5 9 0 7 5 7 4 7 3 1 3 0 7 5 9 1 2 2 6 3 0 7 5 7 8 5 3 0 7 0 7 5 8 6 3 1 3 2 0 7 5 7 6 4 9 1 0 7 5 7 0 8 1 1 9 0 7 5 6 4 7 3 0 8 1 5 0 5 8 8 4 5 0 1 5 0 7 3 4 2 8 3 1 5 0 7 1 9 1 9 6 1 5 0 7 5 5 2 2 7 1 5 0 7 3 9 3 8 2 1 5 0 7 6 7 2 8 8 1 5 0 6 2 5 1 3 1 1 5 0 8 2 8 3 2 7 1 5 0 7 9 7 1 7 9 1 5 0 5 1 8 1 7 2 1 5 0 5 7 8 2 8 9 1 5 0 8 6 6 3 6 9 1 5 0 8 6 5 4 2 1 1 5 0 6 5 9 4 8 1 1 5 0 7 5 1 2 2 2 2 1 5 7 8 9 2 8 7 2 1 5 8 6 0 2 3 9 2 1 5 8 6 6 3 3 1 2 1 5 8 5 9 6 3 7 2 1 5 8 5 7 4 8 6 2 1 5 7 3 2 2 8 1 2 1 5 8 1 0 3 9 5 2 1 5 7 7 8 4 4 1 2 1 5 8 3 2 2 1 5 2 1 5 7 2 5 3 4 0 2 1 5 6 5 4 3 2 9 2 1 5 7 4 2 2 0 9 2 1 5 7 4 2 3 3 9 21 5 7 6 7 4 3 2 2 1 5 8 0 9 3 6 9 2 7 5 7 2 5 1 1 3 2 7 5 7 3 7 2 8 7 2 7 5 7 1 9 6 4 9 2 7 5 7 5 1 4 2 5 2 7 5 7 9 9 3 4 5 2 7 5 8 0 4 3 4 2 2 7 5 6 1 9 5 2 2 2 7 5 8 5 8 3 4 4 2 7 5 7 2 3 6 3 5 2 7 5 92 PLOT PROFILE HORIZON NUMBER 5.000 71.000 2.000 5.000 72.000 2.000 5.000 73.000 2.000 5.000 74.000 2.000 5.000 75.000 2.000 6.000 76.000 2.000 6.000 77.000 2.000 6.000 78.000 2.000 6.000 79.000 2.000 6.000 80.000 2.000 6.000 81.000 2.000 6.000 82.000 2.000 6.COO 83.000 2.000 6.000 84.000 2.000 6.000 85.000 2.000 6.000 86.000 2.000 6.000 87.000 2.000 6.000 83.000 2.000 6.000 89.000 2.000 6.000 90.000 2.OOO 1.000 1.000 3.000 1.000 2.000 3.000 1.000 3.000 3.000 1.000 4.000 3.000 1.000 5.000 3.000 1.000 6.000 3.000 1.000 7.000 3.000 1.000 8.000 3.000 1.000 9.000 3.000 1.000 10.000 3.000 1.000 11.000 3.000 1.C00 12.000 3.000 1.000 13.000 3.000 1.000 14.000 3.000 1.000 15.000 3.000 2.000 16.000 3.000 2.000 17.000 3.000 2.000 18.000 3.000 2.000 19.000 3.000 2.000 20.000 3.000 2.000 21.000 3.000 2.000 22.000 3.000 2.000 23.000 3.000 2.000 24.000 3.000 2.000 25.000 3.000 2.000 26.000 3.000 2.000 27.00C 3.000 2.000 28.000 3.000 2.000 29.000 3.000 2.000 30.000 3.000 3.000 31.000 3.000 3.000 32.000 3.000 3.000 33.000 3.000 3.000 34.000 3.000 3.000 35.000 3.000 3.000 36.000 3.000 3.000 37.000 3.000 3.000 38.000 3.000 3.000 39.000 3.000 3.000 40.000 3.000 3.000 41.000 3.000 3.000 42.000 3.000 3.000 43.000 3.000 3.000 44.000 3.000 3.00C 45.000 3.000 4.000 46.000 3.000 4.000 47.000 3.000 4.000 48.000 3. 000 4.000 49.000 3.000 4.000 50.000 3.000 4.CC0 51.000 3.000 4.000 52.000 3.000 4.000 53.000 3.000 4.000 54.000 3.000 4.00C 55.000 3.000 4.000 56.000 3.000 4.000 57.0OC 3.000 4.000 58.000 3.000 4.000 59.000 3.000 4.000 60.000 3.000 HORIZON PARENT DEPTHS (cm.) MATERIAL 0 20 040 1 017 037 1 013 037 1 CIS 039 1 021 036 1 014 0 30 1 014 031 1 019 035 1 017 055 1 017 052 1 017 049 1 017 042 1 019 044 1 C21 045 1 020 055 1 016 050 1 0 20 045 1 C20 042 1 021 051 1 C18 043 1 0 20 050 2 015 054 3 017 057 2 030 045 1 024 045 1 C28 045 1 0 26 056 1 029 055 2 020 035 2 C40 060 2 032 055 1 030 060 2 025 040 2 022 037 2 023 046 2 C28 044 2 020 040 2 020 0 35 2 038 054 2 024 049 2 024 048 2 0 30 052 3 031 053 1 034 049 1 C24 045 3 027 045 2 C32 052 3 023 050 3 C26 046 2 020 040 2 025 040 2 024 045 2 032 052 2 024 070 3 C25 060 3 024 045 2 035 065 3 019 045 3 C25 050 3 025 050 022 052 030 050 030 055 026 046 C25 050 061 096 041 085 044 084 C38 090 043 088 050 100 020 070 2 C50 080 1 038 085 2 025 050 2 021 055 2 02O 043 1 030 060 2 035 07C 1 040 070 1 < 2mm. > 2mm. DISTANCE FRACTION FRACTION DOWNSLOPE 841 422 275 763 435 275 921 295 275 777 431 275 809 345 275 698 423 305 732 366 305 715 1026 305 858 501 305 922 389 305 944 359 305 715 390 305 695 472 305 868 411 305 851 402 305 821 413 305 795 426 305 919 343 305 864 308 '305 729 316 305 853 066 000 666 172 000 752 109 000 583 439 000 514 124 000 531 270 000 586 550 000 817 151 000 671 037 000 688 071 000 647 223 000 1022 124 000 604 181 000 638 180 000 619 066 000 619 113 075 604 116 075 434 141 075 634 040 075 792 123 075 622 092 075 732 155 075 603 232 075 402 512 075 609 18 1 075 779 165 075 667 136 075 694 131 075 601 104 075 642 173 075 745 289 150 608 307 150 662 137 150 592 179 150 698 176 150 535 470 150 656 83 150 795 133 150 680 198 150 634 101 150 663 105 150 775 336 150 776 173 150 620 211 150 628 374 150 690 237 215 659 195 215 718 300 215 681 216 215 817 468 215 683 431 215 715 279 215 788 437 215 493 501 215 680 273 215 628 285 215 706 280 215 725 100 215 682 353 215 656 367 215 93 PLOT PROFILE HORIZON HORIZON NUMBER DEPTHS (cm.) 5.000 61.000 3.000 C40 080 5.000 62.000 3.000 065 095 5.000 63.000 3.000 C44 085 5.000 64.000 3.000 046 095 5.000 65.000 3.000 C49 095 5.000 66.000 3. 000 033 090 5.000 67.000 3.000 044 095 5.000 68.000 3.000 045 095 5.000 69.000 3.000 037 080 5.000 70.000 3.000 040 090 5.00C 71.000 3.OOO C40 090 5.000 72.000 3.000 037 090 5.000 73.000 3.000 C37 085 5.000 74.000 3.000 039 084 5.00C 75.000 3.000 036 085 6.000 76.000 3.000 030 085 6.000 77.000 3.000 031 090 6.000 78.000 3.000 035 090 6.000 79.000 3.000 055 100 6.000 80.000 3.000 052 095 6.000 81.000 3.000 049 090 6.000 82.000 3.000 C42 090 6.000 E3.000 3.000 044 090 6.000 84.000 3.000 045 100 6.000 85.000 3.000 055 100 6.000 86.000 3.000 C50 095 6.000 87.000 3.000 045 100 6.000 88.000 3.000 C42 090 6.000 89.000 3. 000 051 095 6.000 90.000 3.000 043 085 1 .000 1.000 4.000 050 060 1.000 2.000 4. 000 054 065 1.000 3.000 4.000 057 065 1.000 4.000 4.000 045 055 1 .000 5.OOO 4.000 045 050 1.000 6.000 4.OOO 045 055 1 .000 7.000 4.000 056 060 1.000 8.000 4.000 055 060 1 .000 9.000 4.000 035 060 1.000 10.000 4.000 C60 080 1 .000 11.000 4.000 055 070 1.CO0 12.000 4.000 060 070 1.000 13.000 4.000 040 050 1.000 14.000 4.000 C37 052 1 .000 15.000 4.000 046 050 2.COO 16.000 4.000 044 050 2.000 17.000 4.000 040 050 2.000 18.000 4.000 035 045 2.000 19.000 4.000 054 060 2.000 20.000 4.000 049 060 2.000 21.000 4.000 048 060 2.000 22.000 4. 000 052 060 2.GOO 23.000 4.000 053 055 2.000 24.000 4.000 C49 060 2.000 25.000 4.000 045 060 2.000 26.000 4.000 C45 055 2.000 27.000 4. OOO 052 060 2.000 28.000 4.000 050 060 2.000 29.000 4.000 046 055 2.000 30.000 4.000 040 050 3.COO 31.000 4.000 040 050 3.000 32.0C0 4.000 045 055 3.000 33.000 4.000 052 075 3.000 34.000 4.000 070 090 3.000 35.000 4.000 060 080 3.000 36.000 4.000 045 050 3.000 37.000 4.000 065 070 3.000 38.000 4.000 045 060 3.000 39.000 4.000 050 070 3.000 40.000 4.000 050 080 3.000 41.000 4.000 052 065 3.000 42.000 4.000 C50 070 3.000 43.000 4.000 055 065 3.000 44.000 4.000 046 060 3.000 45.000 4.000 0 50 070 4.000 46.000 4.000 096 105 4.COO 47.000 4.000 085 090 4.000 48.000 4.000 084 088 4.000 49.000 4.000 090 095 4.000 50.000 4.000 088 095 PARENT < 2mm. > 2mm. DISTANCE MATERIAL FRACTION FRACTION DOWNSLOPE 1 527 588 275 1 626 366 275 1 760 314 275 1 657 368 275 1 738 298 275 1 775 272 275 1 709 437 275 1 853 292 275 1 694 298 275 1 657 500 275 1 765 359 275 1 674 509 275 1 795 338 275 1 757 299 275 1 848 266 275 1 650 343 30 5 1 607 434 305 1 599 825 30 5 1 840 417 305 1 928 557 30 5 1 979 498 305 1 369 336 30 5 1 851 340 305 1 919 531 305 1 949 350 30 5 1 697 569 305 1 850 503 ' 305 1 839 334 30 5 1 611 667 30 5 1 697 670 305 2 587 043 000 2 726 103 000 2 721 129 000 2 647 061 000 2 656 097 000 2 801 247 000 2 688 138 000 2 887 098 000 2 815 163 000 2 541 163 000 2 548 030 000 2 952 027 ooo 2 724 085 000 2 524 29 2 00 0 2 326 150 000 2 696 114 075 2 634 220 075 2 506 24 1 075 2 1019 081 075 2 745 170 075 2 730 255 075 1 637 297 075 1 630 166 075 2 789 031 075 2 672 187 075 2 680 178 075 3 624 174 075 2 702 118 075 2 765 313 075 2 64 2 190 07 5 2 597 370 150 2 813 335 150 2 675 542 150 1 423 744 150 2 734 1134 150 2 300 596 150 1 793 494 150 2 656 130 150 3 708 152 150 3 611 156 150 3 654 145 150 3 592 221 150 1 577 181 150 1 607 316 150 1 522 438 150 1 747 219 215 1 794 379 215 1 792 467 215 1 742 206 215 3 726 353 215 94 PLOT PROFILE HORIZON HORIZON NUMBER DEPTHS (ct 4.000 51.000 4.000 100 105 4.000 52.000 4.000 070 075 4.000 53.000 4.000 080 093 4.000 54.000 4.000 085 093 4.000 55.000 4.000 050 055 4.000 56.000 4.000 055 060 4.000 57.000 4. 000 043 044 4.000 58.000 4.000 060 085 4.COO 59.000 4.000 070 087 4.000 60.000 4.000 070 080 5.000 61.000 4.000 080 090 5.000 62.000 4.000 095 105 5.OOC 63.000 4.000 085 100 5.000 64.000 4.000 095 115 5.000 65.000 4. 000 095 115 5.000 66.000 4.000 090 110 5.OOC 67.000 4.000 095 105 5.OOC 68.000 4. 000 095 105 5.000 69.000 4.000 080 100 5.000 70.000 4.000 090 105 5.000 71.000 4.000 090 097 5.000 72.000 4.OOC 090 105 5.000 73.000 4. 000 085 100 5.000 74.000 4. 000 084 095 5.000 75.000 4.000 085 100 6.000 76.000 4.000 085 095 6.COO 77.000 4.000 090 105 6.000 78.000 4.000 090 105 6.000 79.000 4.000 100 110 6.000 80.000 4.000 095 105 6.000 81.000 4.000 090 100 6.000 82.000 4.000 090 105 6 .000 83.000 4.000 090 105 6.000 84.000 4.000 100 120 6.000 85.000 4. 000 100 105 6.000 86.000 4.000 095 105 6.000 87.000 4. 000 100 115 6.000 88.000 4. 000 090 105 6.000 89.000 4.000 095 105 6.000 90.000 4.000 085 100 PARENT < 2mm. > 2mm. DISTANCE MATERIAL FRACTION FRACTION DOWNSLOPE 1 694 939 215 2 826 4 37 215 1 844 378 215 2 752 440 215 2 736 520 215 2 668 789 21 5 2 168 934 215 2 906 129 215 3 995 173 215 1 823 375 215 1 725 459 275 1 831 473 275 1 883 602 275 1 899 456 275 1 1 047 466 27 5 1 847 276 275 1 888 526 275 1 785 477 275 1 1012 449 275 1 906 429 275 1 891 377 27 5 1 929 446 27 5 1 934 422 275 1 850 486 275 1 944 459 275 1 652 745 30 5 1 1031 863 305 1 370 589 305 1 992 437 305 1 838 674 30 5 1 844 770 30 5 1 939 257 305 1 946 463 305 1 784 423 305 1 917 454 305 1 699 875 305 1 827 724 305 1 944 546 305 1 630 984 305 1 605 859 305 95 Appendix D THREE-WAY ANALYSIS OF VARIANCE SUMMARY DATA a n a l y s i s f c r C l A n a l y s i s o f v a r i a n c e t a b l e Sum c f dean Source s q u a r e s DF sq u a r e F - r a t i o P r o b a b i l i t y T e s t t e r n dOBIZ 2743.7 3. 914.58 371.77 0.0 BESIDUAL E1CT 465.24 5. 93.046 37.823 0.00000 BESIDUAL HOBIZ*ELCT 296.16 15. 19.877 8.0799 0.00000 BESIDUAL LITHCL 0. 37666 2. 0.18943 0.77001E-01 0.92591 BESIDUAL HCBI2»I1THCL 26.619 6. 4.4365 1.8034 0.09 796 BESIDOAL EL01«LITHCL 10.779 6. 1.7965 0.73026 0.62555 BESIDUAL H06I2«ELCI«IITH0L 30.548 12. 2.5456 1.0348 0.41643 BESIDUAL B e s i d u a l 762.63 310. 2.4601 T o t a l 7031.4 359. A n a l y s i s f o r NG A n a l y s i s o f v a r i a n c e t a b l e Sum of Mean Source s q u a r e s DF s q u a r e F - r a t i o P r o b a b i l i t y T e s t t e r n dOBIZ 968.66 3. 322. 95 516.92 0.0 BESIDUAL ELC1 38.423 5. 7.6846 12.300 0.00000 BESIDUAL HOEI2*IL01 37.331 15. 2.4888 3.9835 0.00000 BESIDUAL LITHCL 4. 4724 2. 2. 2362 3.5793 0.02905 BESIDUAL HCB1Z*IITHCL 1.634b 6. 0.27243 0.43605 0.85456 BESIDOAL IICT*LITHCL 14.720 6. 2.4533 3.9267 0.00085 BESIDUAL a C B I Z * E L C T « L I T H O L 10.5(4 12. 0.68034 1.4091 0. 16015 BESIDUAL B e s i d u a l 193.68 310. 0. 62477 I c t a l 1994.1 359. A n a l y s i s f c r HI A n a l y s i s o f v a r i a n c e t a b l e Sum c f Mean Source s q u a r e s DF sg u a r e F - r a t i o P r o b a b i l i t y T e s t t e r a dOBIZ 0.97918 3. 0.32639 180.49 0.00000 BESIDUAL PLCI 0.47333E-•01 5. 0.94667E-02 5.2348 0.00012 RESIDUAL dOBIZ*ELCT 0.626661- 01 15. 0.41778E-02 2.3102 0.00396 RESIDUAL LITHCL C.150S2E- 01 2. 0.75462E-02 4.1728 0.01628 BESIDUAL HOB12*IITKCl 0. 14010E-•02 6. 0.23350E-03 0. 12912 0.99263 BESIDUAL E I O T U I T H C L 0.43402E-•01 6. 0.72337E-02 4.0000 0.00071 RESIDUAL HOB12*ELCT»LITHCL 0. 22660E- 01 12. 0. 19050E-02 1.0534 0.39964 BESIDUAL B e s i d u a l 0. 56061 310. 0. 18084E-02 I o t a l 2.0314 359. A n a l y s i s f c i K A n a l y s i s c f v a r i a n c e t a b l e Sua c f Mean S o u r c e s q u a r e s DF square HOHIZ 0.23C84 3. 0.76948E-•0 1 ELOT 2.0415 5. 0.40869 dOBIZ»ILCl 2.1009 15. 0.14006 LITHCL 1.9696 2. 0.98491 UGEIZ*1I1HCL 0.28543 6. 0.47571E-•01 ELCT'lITHCL 0.91421 6. 0.15237 d O H I Z * E L O U I T H O L 0.22179 12. 0. 18483E-•0 1 S e s i d u a l 15.498 310. 0.49992E-•01 T o t a l 26.698 359. A n a l y s i s f o r CIC A n a l y s i s o f v a r i a n c e t a b l e Sua of Dean S o u r c e s q u a r e s DF sq u a r e HOBIZ 10705. 3. 3568.2 PL 01 1133.7 5. 226.74 HOBIZ«ELCI 1336.4 15. 89.097 LITHCL 30.322 2. 15.161 HCB1Z»II1HCL 24.662 6. 4.1103 PL C l ' L I T H C I 73.490 6. 12.248 BOEIZ*ILCT*LITHOL 53.317 12. 4.4431 H e s i d u a l 2756.2 310. 8.8974 T o t a l 27572. 359. A n a l y s i s f c r PH A n a l y s i s o f v a r i a n c e t a b l e Sun c f Mean Sou r c e sq uares DF square HOSIZ 45. 361 3. 15. 120 EIC1 5. 1224 5. 1.0245 BOBIZ*ELCl 2.3302 15. 0. 15535 LITHCL C.19060 2. 0.95300E-•01 dOElZ*IITHCL 0.43342 6. 0. 72237E-•01 PLCT*LITHCL 0. 27262 6. 0.45436E-01 HOBIZ*tLCT*LITHCL C.69661 12. 0.58051E-•01 R e s i d u a l 12.445 310. 0.40147E-•01 T o t a l 81.6S8 359. F - r a t i o P r o b a b i l i t y T e s t t e r a 1.5392 0.20432 BESIDUAL 8. 1792 0.00000 BESIDOAL 2.8017 0.00042 BESIDUAL 19.701 0.00000 BESIDUAL 0.95158 0. 45834 BESIDUAL 3.0479 0.00653 BESIDUAL 0.36971 0.97324 BESIDUAL F - r a t i o P r o b a b i l i t y T e s t t e r a 401.04 0. 0 BESIDUAL 25.484 0.00000 BESIDUAL 10.014 0.00000 BESIDUAL 1.7040 0. 18366 BESIDUAL 0.46197 0.83624 BESIDUAL 1.3766 0.22354 BESIDUAL 0.49937 0.91454 BESIDUAL F - r a t i o P r o b a b i l i t y T e s t t e r a 376.63 0.0 BESIDUAL 25.518 0.00000 BESIDUAL 3.8695 0.00000 RESIDUAL 2.3738 0.09482 BESIDUAL 1.7993 0.09877 BESIDUAL 1.1318 0.34356 BESIDUAL 1.4460 0. 14391 BESIDUAL a n a l y s i s f o r C A r a l y s i s of v a r i a n c e t a b l e S o u r c e SUI c f s q u a r e s DF Mean -squ a r e F - r a t i o P r o b a b i l i t y T e s t t e n H0B1Z £ LCI dOEIZ»IL01 LIIHCL HGEIZ*1IJHC1 ILCT*HTHGL dOBIZ*lLCT»LITHOL a e s i d u a l I c t a l 20.591 1.0577 0. 79915 0.50708E-02 0.10159 0. 30898 0.22386 7.2219 35.677 3. 5. 15. 2. 6. 6. 12. 310. 359. 6.8636 0. 21153 0.53277E-01 0.25354E-02 0.16931E-01 0.51497E-01 0.18655E-01 0. 23306E-01 294.50 9.0763 2.2860 0. 10879 0.72646 2.2096 0.80042 0.0 0.00000 0.0044 1 0.89696 0.62859 0.04201 0.65005 BESIDUAL BESIDOAL BESIDUAL BESIDOAL BESIDUAL BESIDOAL BESIDUAL A n a l y s i s f c r H Analy s i s c f v a r i a n c e t a i l s S o u r c e SUB c f squ a r e s DF Mean squ a r e F - r a t i o P r o b a b i l i t y T e s t t e r a HOBIZ £LOT iiOEIZ»£LCT LITbCL H0EIZ*II1HC1 PLC1*LITHCL a O E I Z » E L C T * L I T H C L a e s i d u a l T o t a l 0.26487E*07 0.24714E*06 57318. 1407.1 13129. 24450. 57649. 0.13602E+07 0.53463E+07 3. 5. 15. 2. 6. 6. ' 12. 310. 359. 0. 88290E+06 49427. 3821.2 703.69 2188.2 4074.9 4804.1 4387.8 201.22 11.265 0.87087 0.16037 0.49869 0.9287 0 1.0949 0.00000 0.00000 0.59754 0.85190 0.80923 0.47445 0.36371 BESIDUAL BESIDUAL BESIDUAL BESIDOAL BESIDOAL BBSIDOAL BBSIDOAL co 99 Appendix E ANALYSIS FOR SOLUBLE CATIONS 100 E.1.0 INTRODUCTION Analysis of the soluble cations, calcium, magnesium, sodium and potassium, i s c a r r i e d out to determine i f any patterns or trends are evident i n the concentrations of these chemical species on the h i l l s l o p e , and to determine t h e i r v a r i a b i l i t y . Samples taken from the Ae and Bt horizons of a l l p l o t s and from the AB and Be horizons of plo t s 1, 3 and 5 are examined. 101 E.2.0 LABORATORY METHODOLOGY E.2.1 REAGENTS a. D i s t i l l e d water b. Toluene E.2.2 PROCEDURE a. Place 15 grams of s o i l and 30 m i l l i l i t e r s of d i s t i l l e d water i n a 50 m i l l i l i t e r acid-washed centrifuge tube. b. Shake the mixture gently for 30 minutes and then allow to stand for 20 hours. c. Centrifuge the mixture for 15 minutes at approximately 7,000 revolutions per minute. d. F i l t e r the supernate and c o l l e c t the f i l t r a t e i n a 60 m i l l i l i t e r acid-washed bottle. e. Analysis for soluble cation concentrations i s by atomic adsorption. If analysis i s not immediate, a drop of toluene i s added to the f i l t r a t e which then i s refrigerated. 102 E.3.0 STATISTICAL ANALYSIS To determine the degree to which i n d i v i d u a l p l o t s d i f f e r from one another and to v a l i d a t e any trends observable i n the data, t - t e s t s are applied. Then, c o e f f i c i e n t s of v a r i a t i o n are calculated to study the v a r i a b i l i t y of the soluble cations and to compare t h i s v a r i a b i l i t y with that of the exchangeable cations. 103 E.4.0 RESULTS AND CONCLUSIONS The analysis indicates that values for soluble calcium f l u c t u a t e greatly and that no obvious s p a t i a l pattern or trend e x i s t s on the h i l l s l o p e . However, the data do show: ' that concentrations of soluble calcium are highest i n the surface horizons and tend to decrease with depth. This trend i s completely opposite to that for exchangeable calcium which tends to increase with depth. (Figure E.4.1, Table E.4.1) For soluble magnesium-concentrations, general patterns of downslope increases on the upper pl o t s (1, 2 and 3) and downslope decreases on the lower pl o t s (4, 5 and 6) are v e r i f i e d by the t - t e s t s . The data do not show any obvious trend with depth for soluble magnesium values. (Figure E.4.2, Table E.4.2) The analyses c l e a r l y demonstrate that no s p a t i a l pattern or trend over the h i l l s l o p e i s apparent i n soluble sodium values. Further, these values are quite v a r i a b l e . The data do suggest, however, that soluble sodium concentrations increase s l i g h t l y with depth. (Figure E.4.3, Table E.4.3) Soluble potassium concentrations are so v a r i a b l e as to show no clea r pattern or trend on the h i l l s l o p e . A general, though not wholly consistent, trend of decreasing soluble potassium values with depth i s evident. However, because of high v a r i a b i l i t y , t h i s trend probably i s not s i g n i f i c a n t . (Figure E.4.4, Table E.4.4) Calculations of the c o e f f i c i e n t s of v a r i a t i o n f or each chemical species by horizon i n d i c a t e that v a r i a b i l i t y between horizons for a single v a r i a b l e i s equivalent to v a r i a b i l i t y between chemical species. 104 Ae AB Bt BC C o e f f i c i e n t s of v a r i a t i o n by soluble cation and horizon Calcium Magnesium Sodium Potassium 33 38 48 34 44 46 37 29 37 31 26 30 44 39 53 24 Number of samples 90 45 90 45 Generally, no obvious trend of increasing or decreasing v a r i a b i l i t y with depth i n the s o i l i s evident. Soluble magnesium, for which a decrease i n v a r i a b i l i t y with depth can be observed, i s a possible exception. Inspection of the c o e f f i c i e n t s of v a r i a t i o n f o r i n d i v i d u a l p l o t s does not show any c o n t r o l of v a r i a b i l i t y by slope p o s i t i o n . Further, a s l i g h t increase i n v a r i a b i l i t y generally occurs with increases i n the s i z e of the area sampled. In general, c o e f f i c i e n t s of v a r i a t i o n f or the soluble cations are higher than those for t h e i r corresponding exchangeable cations. Figure E.4.1 Soluble calcium P L O T I P L O T 2 P L O T 3 P L O T 4 P L O T 5 P L O T 6 106 Table E.4.1 Soluble calcium Levels of significance for i n t e r p l o t comparisons of means by t - t e s t s o - differences are not s i g n i f i c a n t x = differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx - differences are s i g n i f i c a n t at the 99% l e v e l of confidence Ae horizon plot 2 3 4 5 6 1 X X o X X o XX 2 XX o XX o 3 XX o XX 4 XX o 5 X AB horizon plot 3 5 1 o x plot 2 1 o 2 Bt horizon 3 4 5 plot 1 BC horizon 3 4 5 6 X X X X XX o X X X X X X o XX o XX XX XX XX 3 5 o o X 107 Figure E.4.2 Soluble magnesium .07 3 + CD O o o-.05r E 3 t 3 * LU - J m _ 1 O OT.03l 1 * 2 * 3 t 2 * 3 4 PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 108 Table E.4.2 Soluble magnesium Levels of s i g n i f i c a n c e f or i n t e r p l o t comparisons of means by t - t e s t s o => differences are not s i g n i f i c a n t x • differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx • differences are s i g n i f i c a n t at the 99% l e v e l of confidence p l o t 2 3 1 o xx 2 xx Ae horizon 3 4 5 4 5 6 o o o o o o O X X o o o AB horizon p l o t 3 5 1 XX XX Bt horizon p l o t 2 3 4 5 6 1 o X XX o XX 2 o XX XX XX 3 XX XX XX 4 XX X X 5 o p l o t 3 5 1 XX o BC horizon Figure E.4.3 Soluble sodium PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 110 Table E.4.3 Soluble sodium Levels of s i g n i f i c a n c e f or i n t e r p l o t comparisons of means by t - t e s t s o « differences are not s i g n i f i c a n t x = differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx » differences are s i g n i f i c a n t at the 99% l e v e l of confidence p l o t 2 3 4 5 6 1 XX X o XX X 2 XX o XX 0 Ae horizon 3 XX o XX 4 XX o 5 XX p l o t 3 5 1 XX XX AB horizon 3 o p l o t 2 3 4 5 6 1 o o o o o 2 o o 0 0 Bt horizon 3 o o o 4 o o 5 o p l o t 3 5 1 o X BC horizon I l l Figure E.4.4 Soluble potassium PLOT I PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 112 Table E.4.4 Soluble potassium Levels of significance for i n t e r p l o t comparisons of means by t-tests o = differences are not s i g n i f i c a n t x - differences are s i g n i f i c a n t at the 95% l e v e l of confidence xx « differences are s i g n i f i c a n t at the 99% l e v e l of confidence plot 2 3 4 5 6 1 o O O O X 2 x o o o Ae horizon 3 o o o 4 o x 5 o AB horizon plot 3 5 1 XX xx plot 2 3 1 XX o 2 xx Bt horizon 3 4 5 4 5 6 XX o o XX XX XX XX 0 o XX XX o BC horizon plot 3 5 1 XX XX 113 E.5.0 SOLUBLE CATIONS DATA SUMMARY Note: The units f o r soluble cations are meq/100 g. 114 U 3G w o ca E-4 Cn O o o o cn en cn cn in in I D in CT CT CT o o o o CT> CT* CT> C7i un in in in =* =y =* ^ I N vfi \Q cr \Q CN CN o o o *-co cr co CN cr cr vo o o o o • • • • o o o o iTl CN GO r- cn o o o o »-— cr cr co «— in rj o o o o o cn u (N vO 00 cn \© \fi as • • • • CN rn fN m M fN fN W in in p» »-*- vo in rn • • t • ( N rN rn rn CD i- O (N f N cn CO vO • • • • fN *- m CN -a *4 -o s M ty m r— rn -n •<* ~5 ~5 O J . t , . ,J << O O o O (*n un in co "3 n o J o o o o p» as cr OT <- cn ',0 fN "3 -> -3 *-<- m cr o o o E-i W 09 to O I O O CO CN OOOO OOOO p» o fN cr o «— **' o o o o I • * • o o o o <- fN fN O O »- *- fN OOOO • • • • OOOO rn \D CO CD o *- *- *-OOOO t • f • o o o o o a S 8 . , n * N ft* -J: <N cr P - cr pa ca O ~s Q5 < 09 W 6H &4 tn o o o o o cf cr p* cr o *— o fN o o o o o o o o • • • • o o o o p* r* - » « - N •* T * -y -n o co 0^ «- cn m cr m rn • • • • o o o o o cr fN «- »- t- fN O ° O O o o o o • • t • o o o o *~ cn -*n un -3 .n n .n * 7v K co P * in CN cr **n f N m • • t • o o o o * p* o> *o O *- O fN o o o o o o o o • • I t o o o o n o cn -n N i- £5 T> O N Tl i"l CO o <"n m f N rn <N • • • • o o o o o o Q o o o o o a o Q <4 cn m *J0 m o t- o CN o o o o t • * * o o o o o o o o & p- cn i n O »- O fN OOOO • • • • o o o o m cn o p<-o o ^  o o o o o 6-t W r» c7> r— o CN CN «- m o o o o • • • * o o o o p* co cn r-f N CN rn o o o o co cr rn \Q o cr m =r o o o o co f N rn co o m m CN o o o o * * * t o o o o CO «c «s u •* u s SB &e o o o o in to to in \o P** co cn Ae HORIZON -* w •< u r aa « .-J J _ J _ J o o o o in ui in ui r- co cn AB H0RIZ0H t 15 < CJ E 25 « J - J J J O O O O in ui m ui J3 r» co cn BC HORIZON *c o «a .-i *j *j O O O O to to tn m vo p" co cn BC H0RIZ0H 115 i-i tD m in m in - B O r- f- — *~ EH U o m in in in m m m in m i n * o o fM fn (N 00 O O O O • • • • O O O O SO * sO V0 O O O O • t • • O O O O CO CO © fM O m CM m O O O O • • O N * — fN fN >^ O o o o • • • • O O O O H QJ O Ul U Ul w *- o co n o N m so co so * sr fM cn o o o o • • t • o o o o r* (N m m co so f*> m n ^ co o fM fM rM m o o o o t • • • o o o o rsi fsj fM rsi r~ sO ST m O O O O *- *- r» in o m r* cn • • • • fn so O fM *- en -» m O O O O O O O O ir* W cd o o in in Ul O so rn r- fM a* r-U • • • • • • • • M Ul J M l t t 1 i ' l eu CO fM CO SO fx O N » O *- «- o O •-3 o o o O o o o o <* • • • • t • • Ul > o o o o o o o o Pu. 5E O O fM so in •=t r» o^ co M fM so m fM CO co CM cn • « - r- r- =t CO o co m h «« U * l « 0 fM in r» * en ft-H fM m m in rn fM CM m W ca * • • • « • • • o O O O o o o o o u > o =* & cn m fM * in • CN <N in T - «- fM «* O O O o o O O O 03 O O O o o O O O W £ • • 1 • • • • • • O O O o o o o o H Ul O co cn m m m m >n o 3G o o o fM o o o *-Q o o o o O o o o o IS w fl • • * -* • * • < E-t o o o o o o o o Q S5 < > W Q o * r» =r r» i— cn m fM «- *— r- (\| (\J o o o o o o o o 55 • • • • • • • t o o o o o o o o O fM fM fM O O O O • * 3 H O r*. cn so o & r~ 00 rn fM *- fM • • • * o o o o pv fM =t * O fM fM O O O O o o o o • • • • o o o o cn in cn o o o o o o o o • • t • o o o o ( n o m a o a rn m o o o o • • I t o o o o fn sD CO s o «- «-o o o o • • • • o o o o r* o r* co o r- ao cn o so «- co o cn en <N <- * -• • t • o o o o oo m fM O «- *-o o o o o o o o rn n* so m o o o o o o o o r» r» o m o fM m fM o o o o «* w w U «; SB •J *J *J J J OJ <e O CJ CJ o *C z in ui ui ui H • so r - ao cn o > SB Ae HORIZON «s u «* •« o •*! o « « U o a M U C z K (j "3 so ae J ^ J J J ! j hi _J _J _J _) u o u o O O U C J O O CJ CJ uiu iu im u iu imui u iu iu im so co cn vo co cn so p* co cn AB HORIZON Bt HORIZON BC HORIZON PLOT 2 VAEIAELE NO. NAME J- 6 SOLCA _ 7 SCLBG | 8 SCLNA g 9 SOLK STANDARD ST.ERR. COEFP. OF S N A L L E S T L A B G E S T TOTAL MEAN DEVIATION OP MEAN VARIATION VALUE Z-SCOBE VALUE Z-SCOBE RANGE FBEQUEBCI 0.021 0.007 0.0013 0.33817 0. 010 -1.56 0.033 1.64 0.023 15 0.025 0.009 0.0022 0.34550 0.012 -1.50 0.044 2.21 0.032 15 0.012 0.004 0.0010 0.31440 0.008 -1.08 0.022 2.59 0.014 15 0.000 0.014 0.0036 0.34522 0. 020 -1.44 0.074 2.48 0. 054 15 • 6 SCLCA _ 7 SCLMG 8 SCLNA 9 SOLK 0.007 0.049 0.031 0.060 0.004 0.016 0.005 0.028 0.0009 0.0040 0.00 14 0.0071 0.51039 0.32122 0. 17269 0.46005 0. 001 0. 030 0.022 0.030 -1.62 -1.19 -1.71 -1.08 0.013 0.076 0.040 0. 118 1.80 1.75 1.63 2. 11 0. 012 0. 046 0. 018 0. 088 15 15 15 15 PLOT 3 VAEIAELE NO. NAME MEAN STANDARD DEVIATION ST.EBB. OF MEAN CO EF F. OF VABIATION S M A L L E S T VALUE Z-SCOBE L A B G E S T VALUE Z-SCOBE BANGS TOTAL FBEQUENCT SCLCA SCLMG SCLNA SOLK 0.034 0.038 0.022 0.053 0.009 0.017 0.006 0.016 0.0024 0.0043 0.00 17 0.0041 0.27482 0.43316 0. 29225 0.29765 0.022 0.018 0.014 0.0 34 •1.34 •1.22 •1.23 •1.21 0.052 0.066 0.032 0.090 1.87 1.69 1.59 2.32 0.030 0.048 0.018 0.056 15 15 15 15 £ 6 « 7 S 9 SCLCA SCLMG SOLNA SOLK 0.018 0.03S 0.032 0.043 0.007 0.01 1 0.007 0.010 0.00 17 0.0028 0.0018 0.0026 0.36002 0.28473 0.21709 0.23351 0.009 0. 020 0.022 0.026 •1.36 •1.68 •1.47 •1.68 0.030 0.056 0.048 0.062 1.87 1.61 2.25 1.92 0.021 0.036 0.026 0.036 15 15 15 15 6 SCLCA 7 SCLMG 8 SCLNA 9 SCLK 0.0 11 0.048 0.031 0.039 0.004 0.009 0.006 0.022 0.0009 0.0023 0.00 14 0.0054 0.32730 0.19305 0.17853 0.54886 0.00 1 0.036 0.022 0.026 -2.73 - 1. 29 -1.61 -0.62 0.017 0.074 0.042 0.118 1.50 2.81 2.02 3.64 0. 015 0.038 0.020 0. 092 16 16 16 16 S 6 SOLCA „ 7 SCLMG 2 8 SCLNA 5 9 SCIK 0.009 0.039 0.031 0.031 0.002 0.008 0.008 0.007 0.0006 0.0022 0.0021 0.0019 0.26156 0.21361 0.26147 0.23214 0.006 0.022 0.020 0.020 -1.39 -2.05 -1.39 - 1.55 0.014 0.050 0.044 0.046 2.05 1.31 1.52 2.04 0. 008 0. 028 0. 024 0.026 15 15 15 15 11.8 w D •B O EH W O CB EH 04 in irun in CD (N fN CO f »fl r- Ifl OOOO MO O O sO O * rn p* OOOO « - CM CM r- m en CN cn so o t— • • • • t- (N CM Cd O sO fM fM m r- fM p* o o o o J «« o o o o r» ao so co o co in CM o o o tn o u DJ in in m *- #» cn p- o so • • • • o «-fM 3> O * O «- w v~ OOOO • • • • OOOO CO SO fM o =t fM in o o o o t • • • o o o o • IH OH -t W 03 fM r- & ** a in in CM m o p* o co m fM in fM rn • • • • o o o o =* p- o *o m co co ^ in m o o =r r* * SO «— fM fM • • • • o o o o t SB cd < 09 W 10 o * m o m o o o o o o o o • • • • o o o o in i - in w o rn fM in o o o o o o o o • • * • o o o o o o o o fM fM O O O «- *"* fM OOOO rn =» so OOOO • I • • OOOO rn cn so in O rn co o o o o <; U <i rj *G g c Z i£ u u 3S K d J - l d j «q j CJUUO u o o o so p» co cn Ae HORIZON Bt HORIZON 119 W me ot e- w O 03 E-t PM I T in in m in m in m a vc o ^ o o o *-• • • f o o o o CD <C st o CN ci rn 3^ o o o o cn O rg fM o o o o cn co co co ONSi-o o o o • • • • o o o o OJ H M ^ yj »~ ( N cf cn co co CN cn fN cn m CM n O r* <- CN m m cr m \o r* fN r* p* r- un cr <n u • « • • • • • • • • • • tn (N *— *N fN fN «- fN CN fN *- fN ( U 1 N CJ m «- \0 =T CO in co rN \o o «r co Cf ID CN 0 0 w m u rn fn m =r in co «-in«on »- cr p* m -s s o o o ~ o o o o o o o o o o o o • t • • • t • t • • t • • • • t o o o o o o o o o o o o o o o o > • f-l w ed «- «- o o cn \o »- r* «- =r «- CN P * in fN tn o cf cr cn m o cr m cr r* in CN in o cr o u • • • • • • • • • « • • cc tn V V T T »- *- i- fN l •J N t i l l l i l t t i l l «c cu p- o cf ( N r- fN fN fN P » O fN vO in co cr o » O <- fN fN O fN fN fN o *- fN fN o o o o o o o o OOOO o o o o •< • • • • • a • • t • • • tn t* o o o o OOOO OOOO o o o o Pu 95 O O rn CO CO fN vo CN P* co CN oo cn co co n> u*i r* M =f o rn cn cr CN cn cr p* rn \o p* cn in • E-t m r» fN fN o =r in p- P - CO P * P » M«-no CM -< O rn »- T - COOvO* M vfl fN t- m co *n P * DL, M rn cf fN \0 m cr fN m CN CN CO r- fn CN m w aa • t • • • • • t • • fl t \ t • • • o •< OOOO OOOO OOOO o o o o u t» rn cn rn m co o fn cn r— m o \£J fM cr m t as rN CN cn r- m fN m o fN fn r- o CN fn »-OS OOOO OOOO o o o o o o o o cn w o o o o OOOO o o o o o o o o W S3 • • • • t • a < • a • • • • a • • o o o o OOOO o o o o o o o o tn o cn *- m vo r* CN cn m fn cn fN cr CN cn <*n m S3 o «- o rn o *- o «- o o *- o o o *~ o Q O o o o o OOOO oo o o o o o o ca H » • • f • • • • • • • • 1 • t t -a H o o o o o o o o o o o o o o o o Q •< X M -a E » H W tn Q cn \o rn cn co cn cr m CN cr P * fN p» *- cn «-fN fN fN in f- CN m cr o m rn rn o o o o o o o o o o o o o o o o 33 • • i • • * • • t t • • • « • • o o o o o o o o o o o o o o o o w W uu CL) < < cj u c z ^  -j j j o u u o tn tn vi tn as t p* co cn > » Ae HORIZOH «t o -a u « =o M j J j j u u u o tn w m in \Q r- cu cn AB HORIZOH i < CJ ^ tJ j -j o o o o tn tn tn tn \o p- co cn Bt HORIZON -c rj •« w z: as ^ J ^ j o cj <j o tn to tn tn ^ p** co cn BC HORIZON •< Of T - »- «- r-E-t W m * a »o o o o o o r- rsi * co o m rn o* o o o o H H OHj r» cn r* co O O O CO (s) vi U • • • • « rsi CN rsi ps) H I ca rn & & rsi W n ^ <N o •« o o o o «-• • • • «•* o o o o CN « SO m r» m r* CN •» »- r-rsi * to co o o o o • t • • o o o o « w o o w m i ' c * rsi in in m cn co cn • o o — I I I CQ O O so T~ rsi ~» rsi o o o o • • • • o o o o co co co fn m r- co cn in rsi rsi o © »- «— c\j o o o o ca at o -« u > m in en r* O CN *~ * co cn co ON ^ rsi CM • • • • OOOO *^ cn \o co *- o cn r» *- * cn co m m rsi *-IN m m esi • • • • o o o o on w to o «- CN w sr o o o o o o o o • • • t o o o o m & r- o o rsi rsi CN o o o o o o o o I f • • o o o o a o aa H •< H * CO CO O O O o o o o rg cn o co o o «~ o o o o o E-4 W VI o a- r* m f-rsi rsi so o o o o • • • • o o o o co co CN in o m m en OOOO * C5 * «c cs •< WW U « 3 S 0 a e O » 35 M hJ« J l-t *J g g J J UJ«< O O O O o o o o *s =B cocotnin ui ui ui in -B O \Q r- cc cn so r* co cn A« HORIZON Bt HORIZON 121 E.6.0 SOLUBLE CATIONS CHEMICAL DATA Horizon codes: Ae - 2 AB = 3 Bt - 4 BC - 5 Note: The units for soluble cations are meq/100 g. 122 LOT PROFILE HORIZON SOLUBLE NUMBER CALCIUM 1. 2. 0.027 1 # 2. 2. 0.023 1. 3. 2. 0.018 1. 4. 2. 0.043 1. 5. 2. 0.040 1. 6. 2. 0.032 1. 7. 2. 0.038 1. 8. 2. 0.019 1. 9. 2. 0.029 1. 10. 2. 0.022 1. 11. 2. 0.030 1. 12. 2. 0.030 1. 13. 2. 0.033 t. 14. 2. 0.030 1. 15. 2. 0.038 2. 16. 2. 0.019 2. 17. 2. 0.022 2. 18. 2. 0.031 2. 19. 2. 0.025 2. 20. 2. 0.026 2. 21. 2. 0.030 2. 22. 2. 0.016 2. 23. 2. 0.017 2. 24. 2. 0.033 2. 25. 2. 0.021 2. 26. 2. 0.015 2. 27. 2. 0.026 2. 28. 2. 0.016 2. 29. 2. 0.010 2. 30. 2. 0.011 3. 31. 2. 0.028 3. 32. 2. 0.045 3. 33. 2. 0.052 3. 34. 2. 0.043 3. 35. 2. 0.027 3. 36. 2. 0.052 3. 37. 2. 0.034 3. 38. 2. 0.035 3. 39. 2. 0.035 3. 40. 2. 0.028 3. 41. 2. 0.034 3. 42. 2. 0.027 3. 43. 2. 0.029 3. 44. 2. 0.027 3. 45. 2. 0.022 4. 46. 2. 0.020 n. 47. 2. 0.030 4. 48. 2. 0.016 a. 49. 2. 0.028 <t. 50. 2. 0.020 4. 51. 2. 0.017 4. 52. 2. 0.026 4. 53. 2. 0.018 4. 54. 2. 0.023 4. 55. 2. 0.026 4. 56. 2. 0.024 4. 57. 2. 0.012 4. 58. 2. 0.014 4. 59. 2. 0.023 4. 60. 2. 0.015 5. 61. 2. 0.030 5. 62. 2. 0.037 5. 63. 2. 0.028 5. 64. 2. 0.034 5. 65. 2. 0.051 5. 66. 2. 0.030 5. 67. 2. 0.018 5. 68. 2. 0.025 5. 69. 2. 0.017 5. 70. 2. 0.017 5. 71. 2. 0.024 5. 72. 2. 0.038 5. 73. 2. 0.029 5. 74. 2. 0.030 5. 75. 2. 0.03 1 6. 76. 2. 0.027 6. 77. 2. 0.026 6. 78. 2. 0.025 6. 79. 2. 0.021 6. 80. 2. 0.027 SOLUBLE SOLUBLE SOLUBLE MAGNESIUM SODIUM POTASSIUM 0.024 0. 024 0.032 0.024 0.016 0.042 0.038 0.028 0.060 0.036 0.024 0.078 0.028 0.018 0.056 0.014 0.012 0.022 0.012 0.008 0.018 0.020 0.018 0.026 0.024 0.014 0.058 0.018 0.018 0.032 0.018 0.014 0.0 54 0.016 0. 012 0.016 0.022 0.020 0.032 0.024 0.014 0.034 0.046 0.020 0.096 0.023 0.016 0.020 0.034 0.012 0.048 0.028 0. 012 0.032 0.028 0.008 0.074 0.034 0.014 0.042 0.044 0. 022 0.052 0.022 0.010 0.044 0.014 0.008 0.022 0.030 0.010 0.048 0.022 0.010 0.048 0.018 0.014 0.028 0.024 0.012 0.032 O.016 0.010 0.040 0.012 0.008 0.040 0.020 0.016 0.028 0.013 0.014 0.034 0.066 0.020 0.050 0.050 0.016 0.070 0. 044 0.030 0.044 0.034 0.022 0.090 0.064 0.032 0.038 0.058 0.032 0.034 0.048 0. 020 0.062 0.013 0.016 0.038 0.024 0.022 0.043 0.044 0. 030 0.056 0.024 0.022 0.052 0.026 0.014 0.058 0.032 0.022 0.074 0.022 0.016 0.050 0.020 0.014 0.038 0.0 36 0.014 0.046 0.024 0. 010 0.072 0.034 0. 010 0.056 0.028 0.010 0.058 0.014 0.016 0.014 0.036 0.016 0.036 0.016 0.012 0.022 0.022 0.012 0.028 0.076 0.022 0.054 0.062 0.020 0.044 0.040 0. 018 0.042 0.026 0.016 0.053 0.023 0.010 0.060 0.032 0.010 0.066 0.040 0. 024 0.080 0.028 0.0 14 0.058 0.028 0.022 0.034 0.028 0.018 0.074 0.046 0. 024 0. 138 0.026 0.024 0.054 0.016 0.028 0.034 0.016 0.022 0.038 0.012 0. 034 0.022 0.018 0.028 0.0 34 0.0 10 0.020 0.0 12 0.030 0.026 0.060 0.028 0.022 0.080 0.046 0.028 0. 124 0.018 0.018 0.036 0.044 0. 016 0.062 0.042 0.016 0.048 0.040 0.024 0.026 0.020 0.012 0.062 0.024 0. 010 0.060 123 'LOT PROFILE HORIZON SOLUBLE SOLUBLE SOLUBLE SOLUB NUMBER CALCIUM MAGNESIUM SODIUM POTASS 2. 26. 4. 0.005 0.044 0.026 0.052 2. 27. 4. 0.008 0.046 0.036 0.054 2. 28. 4. 0.002 0.072 0.034 0.098 2. 29. 4. 0.002 0.076 0. 028 0. 110 2. 30. 4. 0.001 0.074 0. 026 0. 1 18 3. 31. 4. 0.016 0.042 0. 026 0.030 3. 32. 4. 0.012 0.042 0.022 0.028 3. 33. 4. 0.014 0.036 0.024 0.028 3. 34. 4. 0.009 0.050 0.034 0.038 3. 35. 4. 0.009 0.036 0. 032 0.030 3. 36. 4. 0.012 0.040 0. 030 0.032 3. 37. 4. 0.010 0.058 0.042 0.032 3. 38. 4. 0.010 0.042 0. 036 0.026 3. 39. 4. 0.014 0.050 0.034 0.038 3. 40. 4. 0.008 0.046 0. 032 0.042 3. 41. 4. 0.0 10 0.052 0.032 0.038 3. 42. 4. 0.013 0.048 0.038 0.044 3. 43. 4. 0.011 0.050 0.026 0.036 3. 44. 4. 0.013 0.050 0.026 0.038 3. 45. 4. 0.0 17 0.052 0.034 0.032 4. 46. 4. 0.001 0.076 0. 050 0.088 4. 47. 4. 0.001 0.074 0.052 0.098 4. U8. 4. 0.002 0.048 0.056 0.064 4. 19. 4. 0.001 0.060 0.028 0.080 4. 50. 4. 0.001 0.074 0.026 0.112 4. 51. 4. 0.00 1 0.064 0.030 0.096 4. 52. 4. 0.004 0.084 0.032 0.O98 4. 53. 4. 0.002 0.056 0. 028 0.090 4. 54. 4. 0.002 0.088 0.030 0. 128 4. 55. 4. 0.005 0.070 0.032 0.082 4. 56. 4. 0.007 0.082 0.030 0.084 4. 57. 4. 0.007 0.068 0.038 0.066 4. 58. 4. 0.004 0.074 0. 042 0.076 4. 59. 4. 0.003 0.056 0.032 0.058 4. 60. 4. 0.004 0.054 0.030 0.052 5. 61. 4. 0.016 0.038 0. 042 0.026 5. 62. 4. 0.015 0.028 0.036 0.030 5. 6 3. 4. 0.0 16 0.034 0.042 0.026 5. 64. 4. 0.0 10 0.020 0.032 0.028 5. 65. 4. 0.013 0.024 0.026 0.030 5. 66. 4. 0.014 0.028 0. 034 0.032 5. 67. 4. 0.014 0.030 0.028 0.034 5. 68. 4. 0.009 0.024 0.024 0.028 5. 69. 4. 0.010 0.028 0. 022 0.038 5. 70. 4. 0.011 0.038 0.036 0.032 S. 71. 4. 0.0 10 0.036 0.038 0.030 5. 72. 4. 0.010 0.034 0.028 0.034 5. 73. 4. 0.007 0.048 0. 042 0.036 5. 74. 4. 0.010 0.046 0. 060 0.034 5. 75. 4. 0.011 0.050 0.064 0.036 6. 76. 4. 0.0 12 0.044 0.044 0.036 6. 77. 4. 0.008 0.040 0.042 0.0 36 6. 78.. 0.007 0.034 0.032 0.034 6. 79. 4. 0.005 0.022 0.016 0.020 6. 80. 4. 0.007 0.016 0.012 0.026 6. 81. 4. 0.006 0.012 0.020 0.030 6. 82. 4. 0.008 0.032 0.036 0.038 6. 83. 4. 0.005 0.020 0.026 0.026 6. 84. 4. 0.008 0.020 0.030 0.038 6. 85. 4. 0.007 0.034 0.038 0.040 6. 86. 4. 0.008 0.030 0.038 0.040 6. 87. 4. 0.0 10 0.022 0.024 0.026 6. 88. 4. 0.006 0.036 0.046 0.040 6. 89. 4. 0.007 0.032 0.042 0.042 6. 90. 4. 0.008 0.030 0.030 0.048 1. 1. 5. 0.006 0.024 0.038 0.022 1. 2. 5. 0.007 0.026 0.032 0.032 1. 3. 5. 0.003 0.036 0.040 0.030 1. 4. 5. 0.004 0.036 0.028 0.028 1. 5. 5. 0.006 0.036 0.028 0.024 1. 6. 5. 0.009 0.030 0.028 0.028 1. 7. 5. 0.005 0.024 0.026 0.020 1. 8. 5. 0.005 0.026 0.032 0.020 1. 9. 5. 0.006 0.022 0.030 0.020 1. 10. 5. 0.011 0.022 0.032 0.020 1. 11. 5. 0.010 0.034 0.026 0.020 1. 12. 5. 0.006 0.016 0.026 0.018 1. 13. 5. 0.008 0.018 0.018 0.018 1. 14. 5. 0.013 0.034 0.033 0.026 1. 15. 5. 0.011 0.024 0.026 0.020 124 LOT PROFILE HORIZON SOLUBLE SOLUBLE SOLUBLE SOLUBI NUMBER CALCIUM MAGNESIUM SODIUM POTASS] 6. 81. 2. 0.027 0.024 0.012 0.066 6. 82. 2. 0.022 0.024 0.016 0.064 6. 83. 2. 0.033 0.026 0.010 0.070 6. 84, 2. 0.026 0.026 0.012 0.080 6. 85, 2. 0.018 0.023 0.010 0.102 6. 86. 2. 0.018 0.020 0.010 0.056 6. 87. 2. 0.025 0.024 0.010 0.070 6. 88. 2. 0.019 0.020 0.012 0.038 6. 89. 2. 0.018 0.022 0.014 0.044 6. 90. 2. 0.025 0.026 0.014 0.068 1. 1. 3. 0.013 0.014 0.026 0.014 1. 2. 3. 0.013 0.020 0.028 0.034 1. 3. 3. 0.012 0.020 0.026 0.034 1. 4. 3. 0.019 0.024 0.026 0.034 1. 5. 3. 0.010 0.012 0.014 0.018 1. 6. 3. 0.007 0.012 0.018 0.020 1. 7. 3. 0.0 16 0.016 0.014 0.024 1. 8. 3. 0.008 0.016 0.026 0.022 1. 9. 3. 0.019 0.016 0.018 0.024 1. 1 0. 3. 0.01 1 0.012 0.018 0.014 1. 11. 3. 0.023 0.024 0.022 0.050 1. 12. 3. 0.009 0.018 0.026 0.024 1. 13. 3. 0.019 0.014 0.020 0.020 1. 14. 3. 0.009 0.010 0.012 0.014 1. 15. 3. 0.0 14 0.022 0. 022 0.028 3. 31. 3. 0.024 0.036 0.030 0.038 3. 32. 3. 0.026 0.050 0.032 0.044 3. 33. 3. 0.030 0.050 0. 032 0.046 3. 34. 3. 0.012 0.022 0.028 0.030 3. 35. 3. 0.020 0.036 0. 022 0.052 3. 36. 3. 0.023 0.040 0. 034 0.026 3. 37. 3. 0.017 0.046 0. 042 0.032 3. 38. 3. 0.017 0.042 0.032 0.044 3. 39. 3. 0.027 0.052 0.028 0.062 3. 40. 3. 0.013 0.034 0.038 0.044 3. 41. 3. 0.014 0.056 0.048 0.056 3. 42. 3. 0.014 0.028 0.030 0.042 3. 43. 3. 0.014 0.034 0.038 0.044 3. 44. '3. 0.011 0.030 0.028 0.050 3. 45. 3. 0.009 0.020 0.022 0.032 5. 61. 3. 0.0 18 0.044 0.028 0.054 5. 62. 3. 0.021 0.032 0.028 0.042 5. 63. 3. 0.021 0.046 0. 056 0.030 5. 64. 3. 0.014 0.026 0.034 0.028 5. 65. 3. 0.028 0.024 0.022 0.082 5. 66. 3. 0.035 0.048 0. 038 0.052 5. 67. 3. 0.018 0.018 0. 024 0.030 5. 68. 3. 0.014 0.020 0.024 0.046 5. 69. 3. 0.01 1 0.0 12 0. 028 0.040 5. 70. 3. 0.011 0.018 0.032 0.034 5. 71. 3. 0.007 0.016 0. 040 0.022 5. 72. 3. 0.0 18 0.028 0.032 0.054 5. 73. 3. 0.020 0.040 0. 044 0.046 5. 74. 3. 0.023 0.040 0. 038 0.054 5. 75. 3. 0.018 0.026 0.038 0.034 1. 1. 4. 0.008 0.024 0.036 0.020 1. 2. 4. 0.01 1 0.034 0.034 0.036 1. 3. 4. 0.007 0.040 0. 042 0.030 1. 4. 4. 0.007 0.046 0.036 0.052 1. 5. 4. 0.009 0.048 0.034 0.040 1. 6. 4. 0.007 0.036 0. 02 8 0.03H 1. 7. 4. 0.007 0.040 0.032 0.044 1. 8. 4. 0.004 0.040 0. 036 0.028 1. 9. 4. 0.004 0.062 0.030 0.046 1. 10. 4. 0.006 0.034 0.030 0.024 1. 11. 4. 0.008 0.046 0. 030 0.044 1. 12. 4. 0.004 0.040 0. 038 0.032 1. 13. 4. 0.012 0.032 0.022 0.028 1. 14. 4. 0.012 0.036 0.038 0.024 1. 15. 4. 0.010 0.036 0.024 0.026 2. 16. 4. 0.007 0.030 0. 034 0.034 2. 17. 4. 0.008 0.032 0.036 0.0 36 2. 18. 4. 0.009 0.038 0.022 0.050 2. 19. 4. 0.007 0.042 0.040 0.044 2. 20. 4. 0.006 0.030 0.034 0.030 2. 21. 4. 0.008 0.036 0.038 0.034 2. 22. 4. 0.012 0.054 0. 024 0.062 2. 23. 4. 0.013 0.060 0.028 0.062 2. 24. 4. 0.010 0.050 0.032 0.056 2. 25. 4. 0.005 0.046 0.030 0.058 125 PLOT PROFILE HORIZON NUMBER 3. 31. 5. 3. 32. 5. 3. 33. 5. 3. 34. 5. 3. 35. 5. 3. 36. 5. 3. 37. 5. 3. 38. 5. 3. 39. 5. 3. 40. 5. 3. 41. 5. 3. 42. 5. 3. 43. 5. 3. 44. 5. 3. 4 5. 5. 5. 61. 5. 5. 62. 5. 5. 63. 5. 5. 64. 5. 5. 65. 5. 5. 66. 5. 5. 67. 5. 5. 68. 5. 5. 69. 5. 5. 70. 5. 5. 71. 5. 5. 72. 5. 5. 73. 5. 5. 74. 5. 5. 75. 5. SOLUBLE SOLUBLE CALCIUM MAGNESIU1 0.0 11 0.044 0.009 0.032 0.009 0.036 0.009 0.050 0.011 0.040 0.008 0.038 0.006 0.046 0.006 0.042 0.008 0.050 0.007 0.043 0.010 0.034 0.0 11 0.044 0.007 0.022 0.012 0.023 0.014 0.032 0.010 0.026 0.010 0.024 0.014 0.032 0.006 0.018 0.006 0.024 0.007 0.023 0.005 0.024 0.007 0.028 0.006 0.020 0.006 0.044 0.005 0.036 0.007 0.034 0.007 0.042 0.006 0.046 0.006 0.0 36 SOLUBLE SOLUBLE SODIUM POTASSIUM 0.028 0.030 0.022 0.028 0.020 0.030 0.044 0.044 0.038 0.046 0.026 0.034 0.036 0.026 0.044 0.0 28 0. 042 0.034 0.034 0.036 0.030 0.02S 0.032 0.036 0. 020 0.020 0.024 0.024 0. 032 0.024 0.032 0.020 0.028 0.024 0.042 0.028 0.024 0.026 0.030 0.028 0. 038 0.0 36 0. 030 0.030 0.032 0.030 0.026 0.028 0.052 0.038 0.040 0.032 0.038 0.030 0. 046 0.0 36 0.072 0.038 0.056 0.034 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094962/manifest

Comment

Related Items