UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Forest floors near Port Hardy, British Columbia, Canada Quesnel, Harold 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A6_7 Q48.pdf [ 8.87MB ]
Metadata
JSON: 831-1.0094948.json
JSON-LD: 831-1.0094948-ld.json
RDF/XML (Pretty): 831-1.0094948-rdf.xml
RDF/JSON: 831-1.0094948-rdf.json
Turtle: 831-1.0094948-turtle.txt
N-Triples: 831-1.0094948-rdf-ntriples.txt
Original Record: 831-1.0094948-source.json
Full Text
831-1.0094948-fulltext.txt
Citation
831-1.0094948.ris

Full Text

FOREST FLOORS NEAR PORT HARDY, BRITISH COLUMBIA, CANADA by HAROLD JOSEPH QUESNEL B.Sc. (Agr.), The U n i v e r s i t y of B r i t i s h Columbia, 1977 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of S o i l Science) We accept t h i s t h e s i s as conforming to the req u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA APRIL 1980 Harold Joseph Quesnel In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make i t freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department n f *S o > \ S C l ' The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 D E - 6 B P 75-5 I I E / i i ABSTRACT The f o r e s t f l o o r s of three biogeocoenoses, from northern Vancouver I s l a n d , were s t r a t i f i e d i n t o LF and H h o r i z o n s , sampled by use of a s t r a t i f i e d random sampling procedure, and analyzed f o r a number of chemical p r o p e r t i e s . The biogeocoenoses represent X e r i c , Mesic, and Hygric s i t e s . The o b j e c t i v e s of the study i n c l u d e d : c h a r a c t e r i z a t i o n of the f o r e s t f l o o r s i n terms of chemical p r o p e r t i e s , e s t i m a t i o n of property v a r i a t i o n and sample requirements, s e l e c t i o n of p r o p e r t i e s best s u i t e d f o r d i s t i n g u i s h i n g the f o r e s t f l o o r s and organic horizons of each s i t e , and examination of n u t r i e n t r e l a t i o n s h i p s w i t h i n the f o r e s t f l o o r s . To assess v a r i a b i l i t y of chemical parameters,28 p r o p e r t i e s were used. The values f o r t o t a l n i t r o g e n , i r o n , manganese, and exchangeable aluminum were found t o increase from X e r i c to Hygric s i t e s . Increased l e a c h i n g l o s s e s of potassium and calcium and accumulations of i r o n , aluminum, and manganese occur as the f o r e s t f l o o r m a t e r i a l s decompose. The l e a s t v a r i a b l e h o r i z o n i n terms of o v e r a l l sample requirements was the Mesic LF, while the most v a r i a b l e was the Hygric H. The LF horizons on a l l three s i t e s tended to be l e s s v a r i a b l e than the corresponding H horizons. The chemical p r o p e r t i e s found to have the l e a s t v a r i a b i l i t y were considered to have the best p o t e n t i a l f o r c l a s s i f y i n g f o r e s t f l o o r s . These were pHfH^O), water content of an oven-dried sample, pH (0.01 M C a C l ? ) , l o s s on i g n i t i o n , t o t a l carbon, / i i i pH (1 N NaCl), and c a t i o n exchange c a p a c i t y measured at pH 7. Least value f o r p r e d i c t i o n o f v a r i a b i l i t y and thus f o r c l a s s i f i c a t i o n were p r o p e r t i e s such as t o t a l manganese, aluminum, i r o n , calcium, sodium, t h i c k n e s s , exchange-able calcium and magnesium d i s p l a c e d by 1 N NaCl and 1 N NH^OAc. The second phase of the study s e l e c t e d p r o p e r t i e s that were best s u i t e d f o r s e p a r a t i n g the organic horizons and f o r e s t f l o o r s of the three s i t e s . The p r o p e r t i e s examined included those measured i n the v a r i a b i l i t y study as w e l l as 12 derived or c a l c u l a t e d parameters. Two-way a n a l y s i s of variance i n combination w i t h the Student-Newman-Keuls range t e s t was u t i l i z e d to determine which parameters would best d i s t i n g u i s h the f o r e s t f l o o r s o f s i t e s , the LF and H horizons o v e r a l l , and the horizons of i n d i v i d u a l s i t e s . The best p r o p e r t i e s found to separate X e r i c , Mesic, and Hygric f o r e s t f l o o r s were t o t a l potassium, exchangeable sodium measured at pH 7, and the r a t i o o f l o s s on i g n i t i o n to t o t a l carbon. The best parameters f o r s e p a r a t i n g LF and H horizons were t o t a l potassium, t o t a l z i n c , exchangeable calcium d i s p l a c e d by 1 N NH^OAc, exchangeable potassium d i s p l a c e d by 1 N NH^OAc and 1 N_ NaCl, pH measured i n water and 0.01 M CaC^, l o s s on i g n i t i o n , base s a t u r a t i o n at pH 7, the r a t i o of t o t a l calcium to t o t a l magnesium, and the r a t i o of t o t a l calcium to t o t a l potassium. The horizons of the i n d i v i d u a l s i t e s could not a l l be separated by any i n d i v i d u a l parameter. The u n i v a r i a t e a n a l y s i s i n d i c a t e d that the order of i n c r e a s i n g d i f f i c u l t y o f c h a r a c t e r i z a t i o n was the LF and H horizons o v e r a l l , the f o r e s t f l o o r s of s i t e s , and the horizons o f i n d i v i d u a l s i t e s . / i v A m u l t i v a r i a t e a n a l y s i s was performed to f i n d the combination of v a r i a b l e s which best d i s t i n g u i s h e s the horizons of i n d i v i d u a l s i t e s . Stepwise d i s c r i m i n a n t analyses using nine, f i v e , and two v a r i a b l e s c o r r e c t l y c l a s s i f i e d 94%, 81%, and 71%, r e s p e c t i v e l y , of the cases examined. The best approach f o r using m u l t i v a r i a t e c h a r a c t e r i z a t i o n would be to use a minimum number of v a r i a b l e s and to i n c l u d e the parameters t o t a l n i t r o g e n , potassium, phosphorus, the r a t i o of l o s s on i g n i t i o n to t o t a l carbon, and c a t i o n exchange ca p a c i t y measured at pH 4. The f i n a l phase of the study examined n u t r i e n t r e l a t i o n s h i p s i n the f o r e s t f l o o r horizons as w e l l as the impact of decaying wood and f i n e roots on f o r e s t f l o o r p r o p e r t i e s . A c o r r e l a t i o n matrix was produced f o r the LF and H horizons. The c o r r e l a t i o n matrices i n d i c a t e d that c e r t a i n groups of p r o p e r t i e s were h i g h l y c o r r e l a t e d and that only one form of the n u t r i e n t s calcium, magnesium, and potassium need to be measured. The i r o n , aluminum, and manganese values were h i g h l y c o r r e l a t e d , which shows that these elements are i n v o l v e d i n s i m i l a r processes, such as b i o c y c l i n g and podzol formation. Several other h i g h l y s i g n i f i c a n t c o r r e l a t i o n s i n d i c a t e that the n u t r i e n t s calcium, magnesium, and potassium are predominantly i n exchangeable forms and that calcium i s the dominant c a t i o n i n these f o r e s t f l o o r systems. .Time a v a i l a b l e f o r decomposition i s the main f a c t o r d i s t i n g u i s h i n g LF from H horizons. A f i n a l r e l a t i o n s h i p to be examined /v was the pH-dependent c a t i o n exchange c a p a c i t y . The values f o r t h i s property increased s i g n i f i c a n t l y downslope and s i g n i f i c a n t l y greater values were found i n the H horizons o f each s i t e - a r e s u l t of increased f u n c t i o n a l groups a s s o c i a t e d w i t h the formation of humus. The t o t a l n u t r i e n t concentrations of decaying wood were measured and compared t o the concentrations found i n the corresponding LF and H horizons. The decaying wood was found t o be a n u t r i e n t -d e f i c i e n t m a t e r i a l that i s d i s t i n c t from both LF and H horizons. Bulk d e n s i t y measurements demonstrated that the f o r e s t f l o o r and decaying wood m a t e r i a l s are not s i g n i f i c a n t l y d i f f e r e n t , although the l a t t e r m a t e r i a l i s more v a r i a b l e . .Therefore, decaying.wood . represents a s u b s t a n t i a l input of n u t r i e n t - d e f i c i e n t biomass to the f o r e s t f l o o r . The n u t r i e n t concentrations of f i n e (<2mm) roots were compared w i t h the values obtained f o r the a s s o c i a t e d decomposing organic matter. The f i n e roots were found to be r e l a t i v e l y d e f i c i e n t i n n i t r o g e n i n comparison to the f o r e s t f l o o r . Elements such as i r o n , aluminum, magnesium, and sodium were found to be concentrated i n or near f i n e r o o t s . Thus, decomposing f i n e roots y i e l d a s i g n i f i c a n t input o f n i t r o g e n d e f i c i e n t biomass, cause an increase i n the concentration and v a r i a b i l i t y o f c e r t a i n elements, and p l a y an important r o l e i n processes such as b i o c y c l i n g and pedogenesis. / v i TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS v i LIST OF TABLES v i i i LIST OF ABBREVIATIONS AND SYMBOLS USED IN THE TEXT x i ACKNOWLEDGEMENTS x i v INTRODUCTION 1 CHAPTER I. NUTRIENT STATUS AND VARIABILITY OF THE FOREST FLOORS 3 In t r o d u c t i o n 3 M a t e r i a l s and Methods 8 Results and D i s c u s s i o n 16 P r o p e r t i e s of the Forest F l o o r s 16 V a r i a b i l i t y o f the Forest. F l o o r s 32 Summary and Conclusions 36 I I . DISTINGUISHING FOREST FLOORS USING CHEMICAL PROPERTIES 39 In t r o d u c t i o n 39 Methods 43 Results and D i s c u s s i o n 46 Derived V a r i a b l e s 46 Separation of S i t e s and Horizons with U n i v a r i a t e A n a l y s i s 49 Separation of the Horizons of Each S i t e with M u l t i v a r -i a t e A n a l y s i s 57 Summary and Conclusions 66 I I I . NUTRIENT RELATIONSHIPS OF THE FOREST FLOORS 70 In t r o d u c t i o n 70 M a t e r i a l s and Methods 73 LF and H Horizons 73 Decaying Wood 74 Fine Roots 75 Results and Dis c u s s i o n 76 Some N u t r i e n t R e l a t i o n s h i p s i n the LF and H Horizons 76 Nu t r i e n t Status of Decaying Wood 90 E f f e c t s o f Fine Roots on the Forest F l o o r s . . 99 Summary and Conclusions 103 SUMMARY AND CONCLUSIONS 108 / v i i Table of Contents (cont'd) Page LITERATURE CITED 112 APPENDICES 1-1 D e s c r i p t i o n and a n a l y s i s o f the modal s o i l s 125 1- 2 Data f o r the LF and H horizons of the X e r i c , Mesic, and Hygric s i t e s 132 2- 1 Data f o r the derived v a r i a b l e s of the LF and H horizons of the X e r i c , Mesic, and Hygric s i t e s 139 2- 2 Basic s t a t i s t i c s f o r the derived v a r i a b l e s o f the LF and H horizons of the X e r i c , Mesic, and Hygric s i t e s 142 3- 1 The ACEC/ApH values f o r the LF and H horizons of the X e r i c , Mesic, and Hygric s i t e s 145 3-2 Data f o r decaying wood 147 3-3 Data f o r f i n e roots and decomposing organic matter 150 / v i i i LIST OF TABLES Table Page 1-1 General S i t e C h a r a c t e r i s t i c s 17 1.-2 V a r i a t i o n due t o Subsampling and A n a l y t i c a l E r r o r 18 1-3 Basic S t a t i s t i c s and Sample Requirement f o r the LF and H Horizons of the X e r i c , Mesic, and Hygric s i t e s 20 1- 4 Sample Requirements to Achieve Mean Value f o r n^ and n^ Levels of Accuracy 33 2- 1 The F-values f o r Two-way ANOVA with I n t e r a c t i o n f o r S i t e s and Horizons 50 2-2 The Results of the Student-Newman-Keuls Range Test f o r S i t e s where the S i t e - H o r i z o n I n t e r a c t i o n i s not S i g n i f i c a n t 51 2-3 The Results of the Student-Newman-Keuls Range Test f o r Horizons where the S i t e - H o r i z o n I n t e r a c t i o n i s not S i g n i f i c a n t 54 2-4 The Results of the Student-Newman-Keuls Range Test f o r the Horizons o f Each S i t e where the S i t e -Horizon I n t e r a c t i o n i s S i g n i f i c a n t 56 2-5 The C l a s s i f i c a t i o n M a t r i x f o r Stepwise Dis c r i m i n a n t A n a l y s i s I n v o l v i n g Nine V a r i a b l e s 58 2-6 The J a c k k n i f e d C l a s s i f i c a t i o n M a t r i x f o r Stepwise Di s c r i m i n a n t A n a l y s i s I n v o l v i n g Nine V a r i a b l e s 29 / i x List of Tables (cont'd) Table Page 2-7 The C l a s s i f i c a t i o n M a t r i x f o r Stepwise Dis c r i m i n a n t A n a l y s i s I n v o l v i n g Five V a r i a b l e s 60 2-8 The J a c k k n i f e d C l a s s i f i c a t i o n M a t r i x f o r Stepwise Disc r i m i n a n t A n a l y s i s I n v o l v i n g Five V a r i a b l e s 61 2-9 The C l a s s i f i c a t i o n M a t r i x f o r Stepwise D i s c r i m i n -ant A n a l y s i s I n v o l v i n g Two V a r i a b l e s 62 2- 10 The J a c k k n i f e d C l a s s i f i c a t i o n M a t r i x f o r Stepwise Disc r i m i n a n t A n a l y s i s I n v o l v i n g Two V a r i a b l e s 63 3- 1 C o r r e l a t i o n s f o r LF Horizons where the Absolute Value f o r the C o r r e l a t i o n C o e f f i c i e n t i s Greater than 0.7 77 3-2. C o r r e l a t i o n f o r H Horizons where the Absolute Value of the C o r r e l a t i o n C o e f f i c i e n t i s Greater than 0.7 79 3-3 Summary of ACEC/ApH f o r Each Sampling ..Unit 87 3-4 The F-Values f o r Two-way ANOVA with I n t e r a c t i o n f o r S i t e s and Horizon: ACEC/ApH 88 3-5 The Results o f the Student-Newman-Keuls Range Test f o r S i t e s and Horizons: ACEC/ApH 89 3-6 The Results of the Mann-Whitney U Test f o r Comparing the P r o p e r t i e s of Decaying Wood and LF Horizons 91 3-7 The Results, of the Mann-Whitney U Test f o r Comparing the P r o p e r t i e s of Decaying Wood and H Horizons 92 /x L i s t of Tables (cont'd) Table. Page 3-8 The Results of the Bulk Density Measurements f o r Decaying Wood 96 3-9 The Results of Bulk Density Measurements f o r Forest F l o o r s 97 3-10 The Results o f the Mann-Whitney U Test f o r Comparing the P r o p e r t i e s of Fine Roots and Decomposing Organic Matter 100 / x i LIST OF ABBREVIATIONS AND SYMBOLS USED IN TEE TEXT AE Allowable sampling e r r o r (%) A l T o t a l aluminium (%) Al(4) Exchangeable aluminium d i s p l a c e d by 1 N NaCl (meq/lOOg) BS Base s a t u r a t i o n (%) BS(4) Base s a t u r a t i o n at f i e l d pH (%) BS(7) Base s a t u r a t i o n at pH 7 (%) C T o t a l carbon (%) C/N Ratio of t o t a l carbon to t o t a l n i t r o g e n C/P R a t i o o f t o t a l carbon to t o t a l phosphorus Ca T o t a l calcium (%) Ca(4) Exchangeable calcium d i s p l a c e d by 1 N NaCl (meq/lOOg) Ca(7) Exchangeable calcium d i s p l a c e d by 1 N NH^OAc at pH 7 (meq/lOOg) Ca/K Ratio o f t o t a l calcium to t o t a l potassium Ca/Mg Ra t i o of t o t a l calcium to t o t a l magnesium CEC Cation exchange c a p a c i t y (meq/lOOg) CEC(4) Cation exchange c a p a c i t y at f i e l d pH (meq/lOOg) CEC(7) Cation exchange c a p a c i t y at pH 7 (meq/lOOg) Cu T o t a l copper (%) C V . C o e f f i c i e n t of v a r i a t i o n (%) ExCa(4) Exchangeable calcium, d i s p l a c e d by 1 N NaCl, as a percent of the t o t a l calcium (%) ExK(4) Exchangeable potassium, d i s p l a c e d by 1 N NaCl, as a percent of the t o t a l potassium (%) / x i i ExMg(4) Exchangeable magnesium,displaced by 1 N NaCl, as a percent of the t o t a l magnesium (%) F An organic h o r i z o n c h a r a c t e r i z e d by an accumulation of p a r t l y decomposed organic matter derived mainly from leaves, t w i g s , and woody m a t e r i a l s (Canada S o i l Survey Committee, 1978) Fe T o t a l i r o n (%) H An organic h o r i z o n c h a r a c t e r i z e d by an accumulation of decomposed organic matter i n which the o r i g i n a l s t r u c t u r e s are i n d i s c e r n a b l e (Canada S o i l Survey Committee, 1978). K T o t a l potassium (%) K(4) Exchangeable potassium d i s p l a c e d by 1 N NaCl (meq/lOOg) K(7) Exchangeable potassium d i s p l a c e d by 1 N NH^OAc at pH 7 (meq/lOOg) L An organic h o r i z o n that i s c h a r a c t e r i z e d by an accumulation of organic matter derived mainly from leaves, twigs, and woody m a t e r i a l s i n which the o r i g i n a l s t r u c t u r e s are e a s i l y d i s c e r n a b l e (Canada S o i l Survey Committee, 1978). LF A composite h o r i z o n formed by combining the L and H horizons LOI Loss on i g n i t i o n at 450°C f o r 16 hours (%) LOI/C R a t i o o f l o s s on i g n i t i o n to t o t a l carbon Mg T o t a l magnesium (%) / x i i i Mg(4) Exchangeable magnesium d i s p l a c e d by 1 N NaCl (meq/lOOg) Mg(7) Exchangeable magnesium d i s p l a c e d by 1 N NH^OAc at pH 7 (meq/lOOg) Mg/K Ratio of t o t a l magnesium to t o t a l potassium Mn T o t a l manganese (%) N T o t a l n i t r o g e n (%) N/P Ra t i o of t o t a l n i t r o g e n to t o t a l phosphorus Na T o t a l sodium (%) Na(7) Exchangeable sodium d i s p l a c e d by 1 N NH^OAc at pH 7 (meq/lOOg) P T o t a l phosphorus (%) pHfCaCl^) pH measured i n a 0.01 M C a C ^ s o l u t i o n pHCr^O) pH measured i n a d i s t i l l e d water s o l u t i o n pH(NaCl) pH measured i n a 1 N NaCl s o l u t i o n SD Standard d e v i a t i o n SNK Student-Newman-Keuls (range t e s t ) t Value of Student's t d i s t r i b u t i o n f o r the appropriate degrees o f freedom Zn T o t a l z i n c (%) ACEC/ApH Change i n c a t i o n exchange c a p a c i t y per u n i t change i n pH, a measure of pH-dependent c a t i o n exchange c a p a c i t y (meq/lOOg/pH u n i t ) 0w Water content of an oven-dried sample on a weight per weight b a s i s (kg-kg *) / x i v ACKNOWLEDGEMENTS The f i n a n c i a l a s s i s t a n c e of the N a t i o n a l Sciences and Engineering C o u n c i l (Canada) i s acknowledged (Grant A-4463). Dr. K a r l K l i n k a , Robert Scagel, and Dermot McCarthy provided v a l u a b l e a s s i s t a n c e f o r l o c a t i n g p l o t s , i d e n t i f y i n g v e g e t a t i o n s p e c i e s , and c o l l e c t i n g s o i l samples, r e s p e c t i v e l y . The l a b o r a t o r y a n a l y s i s could not have been completed without the advice and cooperation of J u l i e Armanini, P a t r i c i a C a r b i s , V a l e r i e M i l e s , and B i l l Cheang. S p e c i a l thanks i s extended to Beverly Herman, P a c i f i c S o i l s A n a l y s i s Incorporated f o r performing the atomic absorption a n a l y s i s . Dr. Hanspeter S c h r e i e r and Mark Sondheim provided v a l u a b l e a s s i s t a n c e and advice during the s t a t i s t i c a l a n a l y s i s of the data. I would l i k e to thank my committee members f o r t h e i r advice and guidance. The as s i s t a n c e and encouragement of my t h e s i s a d v i s o r , Dr. Les L a v k u l i c h , i s g r a t e f u l l y acknowledged. F i n a l l y , I would l i k e to extend a s p e c i a l thanks to my f i a n c e e , Sonya F r e i t a g , f o r reviewing the manuscript and f o r her encouragement during the v a r i o u s stages of the research. A INTRODUCTION The term f o r e s t f l o o r i s commonly used to designate a l l decaying organic matter, i n c l u d i n g l i t t e r r e s t i n g on the mineral s o i l surface of f o r e s t s o i l s ( P r i t c h e t t , 1979). The importance o f f o r e s t f l o o r s i n s i l v i c u l t u r a l and e c o l o g i c a l s tudies has been recognized by many authors (Metz, 1954; Reiners and Reiners, 1970; Van Lear and Goebel, 1976). The old-growth f o r e s t s of northern Vancouver I s l a n d have s i g n i f i c a n t accumulations o f f o r e s t f l o o r m a t e r i a l . A reconnaissance study during the summer of 1978 revealed that the accumulations are commonly greater than 10 cm i n t h i c k n e s s . The f o r e s t f l o o r s o f t h i s area have not been i n t e n s i v e l y s t u d i e d . Basic data c h a r a c t e r i z i n g these f o r e s t f l o o r s would be d e s i r a b l e . This i n f o r m a t i o n would be u s e f u l f o r understanding the r o l e played by f o r e s t f l o o r s i n the ecosystems of northern Vancouver I s l a n d . A study was undertaken to c h a r a c t e r i z e the f o r e s t f l o o r s o f a few r e p r e s e n t a t i v e ecosystems or biogoecoenoses (Mueller-Dombois and E l l e n b e r g , 1974). A f o r e s t f l o o r study w i t h i n the framework o f an ecosystem c l a s s i f i c a t i o n was considered d e s i r a b l e since the f o r e s t f l o o r i s an important component i n the f u n c t i o n i n g of these systems. An ecosystematic c l a s s i f i c a t i o n should i n t e g r a t e these f a c t o r s (Mueller-Dombois and E l l e n b e r g , 1974). In order to p r o p e r l y conduct ecosystematic c l a s s i f i c a t i o n s the e n t i r e system must be understood. To date l i t t l e a t t e n t i o n has been p a i d to the ch a r a c t e r , v a r i a b i l i t y and c l a s s i f i c a t i o n 12 of f o r e s t f l o o r s i n the P a c i f i c Northwest. A number of o b j e c t i v e s were considered important f o r a study of t h i s type. The r e p r e s e n t a t i v e f o r e s t f l o o r s should be c h a r a c t e r i z e d i n terms of chemical p r o p e r t i e s that r e l a t e to s i t e f e r t i l i t y . The obvious v a r i a b i l i t y of these s i t e s made i t necessary to estimate the magnitude of property v a r i a t i o n . An estimate o f property v a r i a t i o n was necessary to a s c e r t a i n that adequate sampling had been performed f o r p r o p e r t i e s which would be used to c h a r a c t e r i z e the f o r e s t f l o o r s of s i t e s . Once property v a r i a t i o n was e s t a b l i s h e d , the next step was to determine i f these p r o p e r t i e s could d i s t i n g u i s h the s i t e s and f o r e s t f l o o r horizons. The f i n a l o b j e c t i v e of the study was to examine n u t r i e n t r e l a t i o n s h i p s w i t h i n the f o r e s t f l o o r s . An i n i t i a l study i n d i c a t e d that decaying wood and f i n e roots are components which should be examined f o r a more complete understanding of the f o r e s t f l o o r s of northern Vancouver I s l a n d . This t h e s i s i s presented i n three p a r t s . The f i r s t p a r t describes the area o f study on northern Vancouver I s l a n d and the n u t r i e n t status and v a r i a b i l i t y of f o r e s t f l o o r s found on X e r i c , Mesic and Hygric s i t e s , along a topographic sequence. This i s followed by a d i s c u s s i o n of the f o r e s t f l o o r s among s i t e s and horizons w i t h i n s i t e s . In the f i n a l s e c t i o n , n u t r i e n t r e l a t i o n s h i p s of the f o r e s t f l o o r s are assessed and compared to decaying wood and composited f i n e root samples separated from the f o r e s t f l o o r . /3 CHAPTER I NUTRIENT STATUS AND VARIABILITY OF THE FOREST FLOORS Introduction Forest land c l a s s i f i c a t i o n i s an important step i n the development of i n t e n s i v e f o r e s t management programs ( P r i t c h e t t , 1979). K r a j i n a (1969) has proposed a b i o g e o c l i m a t i c c l a s s i f i c a t i o n system f o r the province of B r i t i s h Columbia. The b a s i c u n i t of h i s system i s the biogeocoenosis (Daniel et al., 1979; Mueller-Dombois and E l l e n b e r g , 1974). Several researchers are applying t h i s system to f o r e s t management i n B r i t i s h Columbia (Annas and Coupe, 1979; K l i n k a , 1977). An important component of a biogeocoenose i s the type of s o i l developed w i t h i n the biogeocoenose. The s o i l component in c l u d e s the as s o c i a t e d f o r e s t f l o o r (Mueller-Dombois and E l l e n b e r g , 1974; K l i n k a , 1977). Wilde (1958) o u t l i n e d the importance of f o r e s t humus i n s i l v i c u l t u r a l p r a c t i c e s . B l y t h and Macleod (1978) noted that r e l a t i o n s h i p s between t r e e growth and s o i l n u t r i e n t status may not be detec t a b l e because of short range s o i l v a r i a b i l i t y . B a l l and Williams (1968) s t a t e t h a t the v a r i a b i l i t y o f a property i s as important as the mean value f o r p e d o l o g i c a l and e c o l o g i c a l s t u d i e s . Thus the s o i l component of a f o r e s t s i t e cannot be p r o p e r l y c h a r a c t e r i z e d unless s u f f i c i e n t samples are c o l l e c t e d . I n t e r e s t i n f o r e s t f l o o r c h a r a c t e r i z a t i o n makes i t d e s i r a b l e to determine the v a r i a b i l i t y of chemical p r o p e r t i e s . This i s important when c o n s i d e r i n g which s o i l p r o p e r t i e s w i l l be used to c h a r a c t e r i z e and c l a s s i f y the f o r e s t f l o o r of r e p r e s e n t a t i v e biogeocoenoses. /4 A number of st u d i e s have c h a r a c t e r i z e d f o r e s t f l o o r s i n western North America (Alban, 1967; Gessel and B a l c i , 1965; W i l l i a m s and Dyrness, 1967; Wooldridge, 1970; Youngberg, 1966). Gessel and B a l c i (1965) studied old-growth coniferous f o r e s t s i n the Cascade and Olympic mountain regions of Washington S t a t e . They found that the two main f o r e s t f l o o r types were mor •  and d u f f m u l l as defined by Hoover and Lunt (1952). The mor f o r e s t f l o o r s could be d i s t i n g u i s h e d from d u f f mull f o r e s t f l o o r s by greater l o s s on i g n i t i o n values and l a r g e r carbon-nitrogen r a t i o s . Gessel and B a l c i (1965) noted great v a r i a t i o n - i n the depths and weights of the f o r e s t - f l o o r s . They emphasized that a large number of. samples would be needed to describe these f o r e s t f l o o r s properly.. They a t t r i b u t e d the v a r i a b i l i t y of f o r e s t f l o o r weight and depth to f a c t o r s such as uneven d i s t r i b u t i o n of t r e e s on a s i t e , v a r i a t i o n i n t r e e ages, heterogeneous species composition, topographic i r r e g u l a r i t i e s , windthrow, occurrence of woody m a t e r i a l s , and random l o c a t i o n of samples i n a heterogeneous p o p u l a t i o n . Youngberg (1966) examined f o r e s t f l o o r p r o p e r t i e s of ei g h t understory p l a n t communities a s s o c i a t e d w i t h second growth D o u g l a s - f i r (Pseudotsuga menziesii (Mirb.) Franco) stands growing i n western Oregon. He observed that decaying wood has widespread occurrence w i t h i n f o r e s t f l o o r horizons. S u b s t a n t i a l accumulations were observed on moist s i t e s not subject to burning. Youngberg found considerable v a r i a t i o n between s i t e s i n f o r e s t f l o o r dry weight and i n chemical p r o p e r t i e s . There was no apparent r e l a t i o n s h i p between l e v e l s of a v a i l a b l e calcium (Ca), magnesium (Mg), potassium (K), and phosphorus /5 (P) and the t o t a l concentrations of these elements i n the f o r e s t f l o o r . Youngberg f e l t t h a t these r e s u l t s were expected because exchangeable and a v a i l a b l e n u t r i e n t s are i n f l u e n c e d by separate f a c t o r s . These f a c t o r s i n c l u d e c a t i o n and anion exchange p r o p e r t i e s , r a t e and stage of f o r e s t f l o o r decomposition, and uptake of n u t r i e n t s by p l a n t s . W i l l i a m s and Dyrness (1967) studied f o r e s t f l o o r s and s o i l s under true fir-hemlock stands i n the Cascade Range of Washington and Oregon. These were undisturbed, old-growth f o r e s t s . They found considerable v a r i a t i o n among p l o t s f o r exchangeable Ca, Mg, and K. V a r i a t i o n i n n u t r i e n t mass per u n i t area was presumed to be a f u n c t i o n of v a r i a t i o n i n f o r e s t f l o o r weight and depth as w e l l as v a r i a t i o n i n n u t r i e n t concentrations. No c o r r e l a t i o n s were detected between f o r e s t f l o o r c h a r a c t e r i s t i c s , p l o t e l e v a t i o n , p l o t aspect, and understory v e g e t a t i o n . W i l l i a m s and Dyrness noted that l a r g e r sample s i z e s would be needed to detect p o s s i b l e c o r r e l a t i o n s i n such a h i g h l y v a r i a b l e m a t e r i a l . Alban (1967) s t u d i e d the i n f l u e n c e of western hemlock (Tsuga heterophylla Sarg.) and western redcedar (Thuja plicata D. Don) t r e e s on f o r e s t f l o o r and mineral s o i l p r o p e r t i e s . He sampled the f o r e s t f l o o r s and s o i l s under o l d , l a r g e i n d i v i d u a l t r e e s growing i n Washington and Oregon. These t r e e s occurred i n mixed stands. The thickness and weight of f o r e s t f l o o r were s i g n i f i c a n t l y greater f o r cedar t r e e s . This was a t t r i b u t e d to slower decomposition r a t e s of t h i s species. Calcium concentrations and pH values f o r the f o r e s t f l o o r s were n o t i c e a b l y -greater under cedar than under hemlock t r e e s . The hemlock f o r e s t f l o o r m a t e r i a l had a p p r e c i a b l y greater manganese (Mn) concentrations. /6 These d i f f e r e n c e s were al s o expressed i n the f o l i a g e of the t r e e species. Other n u t r i e n t s d i d not show la r g e or s i g n i f i c a n t d i f f e r e n c e s between spe c i e s . This study i n d i c a t e s that i t i s important to consider the r o l e of i n d i v i d u a l trees and the r o l e of d i f f e r e n t t r e e species when studying f o r e s t f l o o r s . A l a r g e number of s t u d i e s have d e a l t w i t h the s p a t i a l and seasonal v a r i a b i l i t i e s o f s o i l s without s p e c i f i c a l l y i n v e s t i g a t i n g f o r e s t f l o o r s ( B a l l and W i l l i a m s , 1968; Beckett and Webster, 1971; Belobrov, 1976; Bracewell et al., 1979; Campbell, 1978; C o l l i n s et al., 1970; Ike and C l u t t e r , 1968; Metz et al., 1966; S l a v i n s k i , 1977; Weaver and F o r c e l l a , 1979). Fewer stu d i e s have examined f o r e s t f l o o r v a r i a b i l i t y ( G r i e r and M c C o l l , 1971; Mader, 1963; Lowe, 1972; MeFee and Stone, 1965). Mader (1963) s t u d i e d s o i l v a r i a b i l i t y o f red pine (Pinus resinosa A i t . ) p l a n t a t i o n s i n Massachusetts, He found that the c o e f f i c i e n t of v a r i a t i o n (CV.) f o r c a t i o n exchange c a p a c i t y (CEC) was much l e s s than the C V . f o r i n d i v i d u a l exchangeable bases. Mader s t a t e d that q u a n t i f y i n g the v a r i a b i l i t y of exchangeable bases would r e q u i r e a l a r g e number of samples. He noted that compositing samples would be necessary when examining h i g h l y v a r i a b l e p r o p e r t i e s . McFee and Stone (1965) s y s t e m a t i c a l l y sampled the f o r e s t f l o o r of eight 0.1 acre p l o t s i n New York S t a t e . They s t a t e d that most of the v a r i a b i l i t y of f o r e s t f l o o r s could be a t t r i b u t e d to three f a c t o r s : • wind a c t i v i t y , p e r s i s t e n c e of stumps and l o g s , and the accumulation of bark and limbs around the base o f t r e e s . They found that p r o p e r t i e s such as weight and depth of f o r e s t f l o o r s were h i g h l y v a r i a b l e . McFee and Stone concluded that a minimum of 25 observations n was needed to p l a c e reasonable confidence l i m i t s on the mean values f o r f o r e s t f l o o r weights and depths. They al s o noted that 50 observations would be necessary to reduce standard e r r o r s t o 10% of the mean. G r i e r and McColl (1971) studied the v a r i a b i l i t y of s e v e r a l chemical p r o p e r t i e s measured i n a 40-year-old D o u g l a s - f i r p l a n t a t i o n i n western Washington. They found that the mean values of p r o p e r t i e s such as t o t a l carbon, t o t a l n i t r o g e n and s o i l pH could be adequately estimated w i t h l e s s than 30 samples f o r a sampling e r r o r o f 10% or l e s s , w i t h 95% confidence. Many of the property means could be adequately estimated w i t h 15 samples or l e s s . Lowe (1972) stud i e d the v a r i a b i l i t y of organic c o n s t i t u e n t s i n the L, F, and H horizons (Canada S o i l Survey Committee, 1978) of a mature western hemlock and western red cedar stand. He found that fewer samples were necessary to c h a r a c t e r i z e the organic c o n s t i t u e n t s o f these horizons than were necessary to estimate p r o p e r t i e s based on hor i z o n t h i c k n e s s . I t was decided to q u a n t i f y the v a r i a b i l i t y of chemical p r o p e r t i e s measured w i t h i n r e p r e s e n t a t i v e X e r i c , Mesic, and Hygric biogeocoenoses. A topographic sequence was s e l e c t e d which contained three old-growth b i o -geocoenoses. A topographic sequence was used i n order to minimize the v a r i a b i l i t y a s s o c i a t e d w i t h c l i m a t e , aspect and l i t h o l o g y ( B i r k e l a n d , 1974). The main o b j e c t i v e o f t h i s p a r t of the study was to determine the number o f samples r e q u i r e d to estimate the mean value of commonly measured chemical p r o p e r t i e s . The p r o p e r t i e s s e l e c t e d were those which might be u t i l i z e d f o r c h a r a c t e r i z i n g and c l a s s i f y i n g the f o r e s t f l o o r s o f biogeocoenoses. / 8 Materials and'Methods The sampling area i s l o c a t e d on northern Vancouver I s l a n d approximately 35 kil o m e t e r s southwest of Port Hardy, B r i t i s h Columbia (50° 35'N/127° 50'W). The area occurs w i t h i n the wet subzone o f the Coastal Western Hemlock Zone ( K r a j i n a 1969). The l o c a l bedrock i s Bonanza V o l c a n i c s . This formation i s composed of lower J u r a s s i c , a n d e s i t i c to r h y o d a c i t i c l a v a s , t u f f s and b r e c c i a s ( M u l l e r et al. 1974). The sampling program was undertaken during August, 1978. Three sampling p l o t s were e s t a b l i s h e d on a northwest-facing slope w i t h a 40% mean gradient. The sample p l o t s were s e l e c t e d to represent three p o i n t s along the hygrotopic gradient u t i l i z e d by K r a j i n a to de f i n e biogeocoenoses. The hygrotopic p o s i t i o n s s e l e c t e d were x e r i c , mesic and h y g r i c (Daniel et al, 1979; Mueller-Dombois and E l l e n b e r g 1974). These p o s i t i o n s correspond approximately to the s o i l drainage c l a s s e s of very r a p i d l y drained, moderately w e l l drained, and poor l y drained ( K l i n k a 1977). The x e r i c , mesic and h y g r i c p o s i t i o n s were located r e s p e c t i v e l y at the upper slope, mid-slope and lower slope p o s i t i o n s of the h i l l s i d e . The p l o t s w i l l simply be r e f e r r e d to as the x e r i c , mesic and h y g r i c p l o t s . A 30m x 10m p l o t was e s t a b l i s h e d at each h i l l s l o p e p o s i t i o n . Vegetation species judged to have c o n t r i b u t e d s i g n i f i c a n t q u a n t i t i e s of l i t t e r were noted and are included i n Table I. Species were i d e n t i f i e d by r e f e r r i n g to Hitchcock and Cronquist (1973) and S c h o f i e l d (1969). A modal s o i l sampling p i t was e s t a b l i s h e d w i t h i n each p l o t . The s o i l parent m a t e r i a l and s o i l sub group were determined (Canada S o i l Survey Committee 1978). The f o r e s t f l o o r was c l a s s i f i e d by the system of B e r n i e r (1968). /9 A s t r a t i f i e d random sampling procedure was u t i l i z e d to s e l e c t 15 sampling p o i n t s w i t h i n each p l o t f o r c l o s e r examination of the f o r e s t f l o o r (Husch et al., 1972). Each p l o t was subdivided i n t o three 10m x 10m subplots to f a c i l i t a t e l o c a t i o n of sampling p o i n t s and to o b t a i n a more even d i s t r i b u t i o n of p o i n t s throughout the p l o t s . Webster (1977) discusses the advantages of t h i s method over simple random or systematic sampling. This method was used i n order to avoid t r e e s , stumps, rock s , and other objects not c h a r a c t e r i s t i c of the f o r e s t f l o o r . A p r i o r examin-a t i o n of the f o r e s t f l o o r s w i t h i n each p l o t revealed that the L h o r i z o n (Canada S o i l Survey Committee, 1978) forms a t h i n and discontinuous l a y e r and i s a minor component of the t o t a l f o r e s t f l o o r accumulation. I t was a l s o noted p r i o r to sampling that i t would be u s e f u l f o r f u t u r e genesis s t u d i e s to be able to s t r a t i f y the f o r e s t f l o o r i n t o smaller components based on degree of decomposition. This might a l s o reduce the amount of v a r i a b i l i t y l a t e r detected. Thus i t was decided to s t r a t i f y the f o r e s t f l o o r i n t o LF and H.horizons (Canada S o i l Survey Committee, 1978). This s t r a t i f i c a t i o n a l s o approximates the 01 and 02 horizons of the S o i l Survey S t a f f (1975). At each sampling p o i n t a sharp k n i f e or pruning saw was used to cut around the edge of a 30cm x 30cm template. The t o t a l f o r e s t f l o o r sample was removed and separated i n t o LF and H h o r i z o n s . The depth of the LF and H horizons was measured at the midpoint of the northern face of the excavation created when the f o r e s t f l o o r sample was removed. Decaying wood,when present, was separated. Decaying wood was defined as decomposing woody m a t e r i a l whose source can be discerned AO w i t h the naked eye. Three random samples per p l o t of bulk f o r e s t f l o o r m a t e r i a l were c o l l e c t e d f o r e s t i m a t i n g the n u t r i e n t content of r o o t s . Five random samples per p l o t were c o l l e c t e d by an excavation technique f o r measuring bulk d e n s i t y . The analyses and r e s u l t s of the decaying wood, root and bulk d e n s i t y samples w i l l be discussed i n a l a t e r s e c t i o n of t h i s r e p o r t . A l l samples were placed i n p l a s t i c bags and sealed. The samples were then taken to the U n i v e r s i t y o f B r i t i s h Columbia Pedology Laboratory f o r sample p r e p a r a t i o n and a n a l y s i s . The mineral s o i l samples were a i r - d r i e d at 25°C, passed through a 2mm s i e v e , and stored i n a i r - t i g h t p l a s t i c c o n t a i n e r s . Water content of the a i r - d r i e d samples was determined by oven-drying a l.OOOg subsample at 105°C f o r 16 hours, c o o l i n g i n a d e s i c c a t o r , and weighing to determine moisture l o s s . This i n f o r m a t i o n was used to c o r r e c t other values to an oven-dry b a s i s . T o t a l carbon (C) was estimated on a 0.500g subsample by use of a.'.\Leco Induction Furnace (Bremner and Tabatabai, 1971) . P r e l i m i n a r y examination of rock samples p l u s m i n e r a l o g i c a l data provided by M u l l e r et al. (1974) i n d i c a t e s that carbonates are.not s i g n i f i c a n t i n these s o i l s . Thus the t o t a l C determined by the Leco i s e s s e n t i a l l y organic C. Organic matter content was c a l c u l a t e d by m u l t i p l y i n g the C content by 1.724 (Broadbent, 1965). T o t a l n i t r o g e n (N) was measured on a 4.00g subsample by using a semi-micro K j e l d a h l procedure to convert the N i n t o ammonium (Bremner, 1965). The ammonium i n s o l u t i o n was determined c o l o r i m e t r i c a l l y by use of the Technicon Autoanalyzer I I (Anonymous, 1974b). The carbon-nitrogen r a t i o was c a l c u l a t e d from the above values. /II Exchangeable Ca, Mg, K, and aluminium (Al) were determined on a 5.00g subsample by d i s p l a c i n g the c a t i o n s w i t h 1.0 N NaCl. The 1.0 N NaCl was used i n place of the 1.0 N NH^OAc o u t l i n e d i n Chapman (1965). The n e u t r a l s a l t was used to o b t a i n the CEC c h a r a c t e r i s t i c of f i e l d pH. The d i s p l a c e d c a t i o n s were analyzed by atomic absorption spectrophotometry f o l l o w i n g procedures o u t l i n e d i n P r i c e (1978). CEC was determined by leach i n g the sodium-saturated s o i l w i t h normal KC1 (Chapman, 1965). The d i s p l a c e d sodium (Na) was determined by atomic absorption spectrophotometry ( P r i c e , 1978). Values f o r pH using lOg subsamples were measured i n both a 1:1 s o i l : w a t e r suspension and i n a 1:2 s o i l : 0 ; 0 1 M CaC^ suspension by use of a Radiometer PH M62 Standard pH Meter. E x t r a c t a b l e i r o n (Fe) and A l was evaluated by e x t r a c t i n g a l.OOOg subsample w i t h 0.1 M sodium pyrophosphate (Bascomb, 1968) and d e t e c t i n g the metals w i t h atomic absorption spectrophotometry ( P r i c e , 1978). T o t a l .pyrophosphate e x t r a c t a b l e metals were c a l c u l a t e d by summing the ex t r a c t e d Fe and A l . P a r t i c l e s i z e a n a l y s i s was by the hydrometer method of Day (1950). A few s o i l samples had s i g n i f i c a n t coatings of amorphous sesquioxides. These samples were t r e a t e d w i t h c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e to ensure complete separation o f a l l primary p a r t i c l e s (Mehra and Jackson, 1960). The organic samples were a i r - d r i e d at 25°C, ground i n a Wiley M i l l to pass through a 20-mesh s i e v e , and stored i n a i r - t i g h t p l a s t i c c o n t a i n e r s . Water content of the a i r - d r i e d samples was determined by oven-drying a l.OOOg subsample at 105°C f o r 16 hours, c o o l i n g i n . a d e s i c c a t o r , and weighing to determine moisture l o s s . This i n f o r m a t i o n was used to c o r r e c t other values to an oven-dry b a s i s . Loss on i g n i t i o n (LOI) was evaluated by ashing a l.OOOg subsample at 450°G f o r 20 hours, c o o l i n g i n a d e s i c c a t o r , and weighing to determine l o s s of v o l a t i l e matter (Chapman and P r a t t , 1961). T o t a l C was estimated by use of a Leco Induction Furnace to combust a O.lOOg subsample (Bremner and Tabatabai, 1971). Many subsamples were h i g h l y v o l a t i l e . I t was necessary to add two small scoops (~0.1g) of o v e n - f i r e d quartz sand to the combustion c r u c i b l e s i n order to slow the combustion c y c l e . This prevented e x p l o s i v e combustion. P e r i o d i c blanks were run to ensure that the quartz sand was f r e e of organic matter. T o t a l N was measured on a 2.00g subsample by the methods used f o r the mineral samples. CEC and exchangeable bases were analyzed by two methods. The f i r s t method employed the NaCl displacement technique p r e v i o u s l y o u t l i n e d f o r the mineral s o i l s . T i s d a l e and Nelson (1975) note that e x t r a c t i o n of a s o i l w i t h a n e u t r a l s a l t should y i e l d a CEC value more c h a r a c t e r i s t i c of f i e l d c o n d i t i o n s . A 2.00g subsample was u t i l i z e d . T o t a l CEC and exchangeable Ca, Mg, K, and A l were evaluated by t h i s method. The second method of a n a l y z i n g CEC and exchangeable bases was to u t i l i z e n e u t r a l , normal NH^OAc as the d i s p l a c i n g s o l u t i o n . The d i s p l a c e d c a t i o n s were analyzed by atomic absorption spectrometry ( P r i c e , 1978). CEC was determined by leach i n g the ammonium-saturated s o i l w i t h normal KC1 (Chapman, 1965). The d i s p l a c e d ammonium was determined by use of the Technicon. Autoanalyzer I I (Anonymous, 1974b). The exchangeable values were c a l c u l a t e d as percent of dry weight as w e l l as m i l l i e q u i v a l e n t s per lOOg. These values are A3 used i n a l a t e r s e c t i o n f o r comparing exchangeable and t o t a l n u t r i e n t concentrations. Three methods were used f o r e v a l u a t i n g pH. The f i r s t two methods i n v o l v e d the commonly used s o l u t i o n s of d i s t i l l e d water and 0.01 M CaCl^. The pH of a 1:5 s o i l : d i s t i l l e d water suspension and a 1:5 s o i l : 0 . 0 1 M CaCl^ suspension was measured with a Radiometer PH M62 Standard pH Meter. A 5.00g subsample was used f o r each of these measurements. The t h i r d method i n v o l v e d measuring the pH of a 1:10 s o i l : l N NaCl suspension u s i n g a 2.00g subsample of s o i l . This method was used i n order to examine the pH of the 1 N NaCl s o l u t i o n used f o r e s t i m a t i n g the f i e l d CEC. This pH measurement should represent the c o n d i t i o n s under which f i e l d CEC i s estimated. T o t a l elemental a n a l y s i s of the f o r e s t f l o o r samples was performed by use of a s u l f u r i c acid-hydrogen peroxide procedure proposed by L i n d e r and Harley (1942) and r e c e n t l y modified by Parkinson and A l l e n (1975). The procedure was s l i g h t l y modified to meet the needs of t h i s study. The l i t h i u m s u l f a t e - s e l e n i u m d i g e s t i o n mixture was omitted since t o t a l N had p r e v i o u s l y been analyzed by a semi-micro K j e l d a h l procedure. Parkinson and A l l e n noted that mineral elements are more r e a d i l y r e l e a s e d than N during the o x i d a t i o n of organic m a t e r i a l s . A 0.500g subsample was weighed i n t o a d i g e s t i o n tube, 15 ml of concentrated s u l f u r i c a c i d was added, and the s o l u t i o n was mixed on a vortex blender. A f t e r a b r i e f 30 second heating i n a block d i g e s t o r , 10 to 15 ml of 30% hydrogen peroxide was s l o w l y added i n 2.5 ml a l i q u o t s . The d i g e s t i o n tubes were then placed i n the block d i g e s t o r f o r 60 minutes at 420°C. The samples were removed from the block d i g e s t o r and allowed to cool f o r IQ to 20 minutes. A few /14 samples were not c l a r i f i e d at t h i s time. These samples were subjected to an a d d i t i o n a l a l i q u o t of 2.5 ml of 30% hydrogen peroxide and digested on the block d i g e s t o r f o r an a d d i t i o n a l 15 minutes. This procedure was s u f f i c i e n t to ensure c l a r i f i c a t i o n of a l l samples. The cooled d i g e s t s o l u t i o n s were then t r a n s f e r r e d i n t o 100 ml vo l u m e t r i c f l a s k s and made to volume w i t h d i s t i l l e d water. T o t a l P was determined c o l o r i m e t r i c a l l y by use of the Technicon Autoanalyzer I I (Anonymous, 1974a). This method i s based on the r e d u c t i o n o f the ammonium molybdiphosphate complex by asc o r b i c a c i d (Watanabe and Olsen, 1965). The method has been adapted f o r use w i t h block d i g e s t o r a c i d d i g e s t s (Anonymous, 1974a). T o t a l Ca, Mg, K, Na, Fe, A l , Mn, Zn, and Cu were measured by use of atomic absorption spectrophotometry ( P r i c e , 1978). The t o t a l C a n a l y s i s was performed i n t r i p l i c a t e on each sample because of the small subsample s i z e . P e r i o d i c d u p l i c a t i o n s were r o u t i n e l y c a r r i e d out to check the p r e c i s i o n of the other methods employed. This approach was u t i l i z e d to reduce the time and resources necessary to d u p l i c a t e or t r i p l i c a t e a l l the a n a l y s i s f o r such a l a r g e number o f samples. This approach was p r e v i o u s l y u t i l i z e d by Lewis (1976) and B a l l and Williams (1968). The c o e f f i c i e n t s of v a r i a t i o n a s c r i b a b l e to subsampling and a n a l t y i c a l e r r o r w i l l be presented i n the Results and Disc u s s i o n s e c t i o n . The mean ( x ) , standard d e v i a t i o n (SD), and the c o e f f i c i e n t of v a r i a t i o n (CV.) were c a l c u l a t e d f o r each property w i t h i n the appropriate sampling u n i t . These c a l c u l a t i o n s are o u t l i n e d in.Zar (1974). /15 The maximum and minimum values f o r each property were a l s o noted i n order to demonstrate the range i n values found f o r each property w i t h i n each sampling u n i t . The data were f u r t h e r analyzed to determine the number o f samples necessary to o b t a i n the mean value of a property w i t h a s p e c i f i e d a llowable e r r o r and confidence l e v e l . The c a l c u l a t i o n s were performed by use of an equation presented i n Husch et at. (1972): t 2 ( n - p ; ^.v.) 2 n = __S. ( A : E : ) Z where n i s the number of sampling u n i t s needed to estimate the mean w i t h a s p e c i f i e d a llowable e r r o r and p r o b a b i l i t y ; t f j i - l ) t n e v a ^ u e °^ Student's t d i s t r i b u t i o n w i t h n-1 degrees of freedom; C V . i s the c o e f f i c i e n t of v a r i a t i o n ; and A . E . i s the allowable sampling e r r o r i n percent. This type of a n a l y s i s has p r e v i o u s l y been a p p l i e d to s o i l data by G r i e r and McColl (1971), Lewis (1976) and I S l a v i n s k i (1977). The data were analyzed f o r two allowable e r r o r s (10% and 25%) at two confidence l e v e l s (95% and 90%). Although e s t i m a t i o n of the mean value w i t h an allowable e r r o r of 10% at 95% confidence i s normally given as an acceptable value ( B l y t h and Macleod, 1978), i t was decided to i n c l u d e the number of samples r e q u i r e d f o r l e s s e r confidence and greater a l l o w a b l e e r r o r . These values were determined because i t may not always be p r a c t i c a l to c o l l e c t the number of samples necessary to o b t a i n an estimate of the mean w i t h the p r e v i o u s l y mentioned accuracy. I t would be /16 u s e f u l to know the number of samples necessary to meet the lower c r i t e r i o n . This may not be as d e s i r a b l e , although i t may be necessary when economic c o n s t r a i n t s are placed on sampling programs. These values should a l s o prove u s e f u l f o r e a r l i e r workers i n t h i s area who d i d not possess v a r i a b i l i t y data. This i n f o r m a t i o n should enable them to estimate the r e l i a b i l i t y of e a r l i e r data. Results and Discussion  Properties of the Forest Floors General s i t e c h a r a c t e r i s t i c s have been summarized i n Table 1-1. D e t a i l e d p r o f i l e d e s c r i p t i o n s and r e s u l t s of the mineral s o i l analyses f o r each modal p i t are i n c l u d e d i n Appendix 1-1. The maximum, minimum and mean c o e f f i c i e n t o f v a r i a t i o n f o r subsample and a n a l y t i c a l e r r o r i n v o l v i n g f o r e s t f l o o r m a t e r i a l has been in c l u d e d i n Table 1-2. The r e s u l t s f o r LOI, t o t a l C, t o t a l N, pH i n 0.01 M C a C l 2 ( p H ( C a C l 2 ) ) , pH i n water (pHfr^O)), and exchangeable bases are comparable to r e s u l t s given by B a l l and Williams (1968), Lewis (1976), and S l a v i n s k i (1977). The Cu and Zn measurements were c l o s e to d e t e c t i o n l i m i t s and thus the CV. r e s u l t s were meaningless f o r t h i s type of a n a l y s i s . The r e s u l t s f o r t o t a l Cu and t o t a l Zn have been included i n l a t e r t a b l e s and c a l c u l a t i o n s , although most of the v a r i a b i l i t y i s probably a s s o c i a t e d w i t h instrumental or a n a l y t i c a l e r r o r . S i t e v a r i a b i l i t y would be d i f f i c u l t to evaluate f o r these elements. Thus r e s u l t s f o r Cu and Zn w i l l be i n t e r p r e t e d w i t h c a u t i o n . TABLE 1-1: GENERAL SITE CHARACTERISTICS Site A l t i t u t e Xeric Mesic 375 340 Hygric 290 Parent Material* S o i l Great Group Forest Floor C l a s s i f i c a t i o n * Organic overlying bed- Typic F o l i s o l rock C o l l u v i a l blanket Orthic Ferro-Humic Podzol F l u v i a l veneer (Thin mudflow covering dissected bedrock) Gleyed Ferro-Humic Podzol +Canada Soil Survey Committee (1978) *Bernier (1968) 5Hitchcock and Cronquist (1973) and Schofield (1969) granulo fibri-Humimor, xeri c conifero humi-Fibrimor conifero-granulo f i b r i -Humimor, hydric P r i n c i p a l overstory vegetation^ P r i n c i p a l understory vegetation^ Tsuga heterophylla (Raf.) Sarg. Chamaecyparis nootkatensis (D. Don) Spach Thuja plicata Donn. Abies amabilis (Dougl.) Forbes Tsuga heterophylla (Raf.) Sarg. Thuja plicata Donn. Abies amabilis (Dougl.) Forbes Tsuga heterophylla (Raf.) Sarg. Vaccinium parvifolium Smith Vaccinium ovalifolium Smith Rhytidiadelphus loreus (Hedw.) Warnst. Vaccinium parvifolium Smith Blechnum spicant (L.) Roth Vaccinium alaskaense Howell Streptopus roseus Michx. Mnium glabrescena Kindb. Vaccinium parvifolium Smith Tiarella trifoliata L. Oplopanax horridus (Smith) Miq. Polystichum munitum (Kaulf.) Presl Sphagnum girgeneohnii Russ. /18 TABLE 1-2: V a r i a t i o n due to Subsampling and A n a l y t i c a l E r r o r Range i n Mean c o e f f i c i e n t c o e f f i c i e n t Subsample of v a r i a t i o n of v a r i a t i o n s i z e Property % (g) LOI (%) 0.0-8.8 1.4 1.000 9w (kg-kg- 1) 0.0-3.4 1.1 1.000 C (%) 0.7-7.1 3.7 0.100 N (%) 0.1-6.5 1.5 2.00 P (%) 0.2-8.2 3.7 0.500 Ca (%) 0.0-6.7 1.4 0.500 Mg (%) 0.0-7.2 2.3 0.500 K (%) 0.0-8.8 2.8 0.500 Na (%) 0.0-12.9 4.1 0.500 Fe (%) 0.0-9.8 3.2 0.500 A l (%) 0.0-6.3 2.6 0.500 Mn (ppm) Cu (ppm) + Zn (ppm) + 0.0-10.9 3.1 0.500 N.D.* N.D. 0.500 N.D. N.D. 0.500 CEC(4) (meq/lOOg) 0.3-5.4 1.8 2.00 Ca(4) (meq/lOOg) 0.0-5.5 1.4 2.00 Mg(4) (meq/lOOg) 0.0-4.7 1.7 2.00 K(4) (meq/lOOg) 0.0-6.2 2.5 2.00 Al(4) (meq/lOOg) 0.0-15.7 4.9 2.00 CEC(7) (meq/lOOg) 0.2-5.1 2.6 2.00 Ca(7) (meq/lOOg) 0.0-6.4 2.0 2.00 Mg(7) (meq/lOOg) 0.0-3.6 1.7 2.00 K(7) (meq/lOOg) 0.0-8.8 2.8 2.00 Na(7) (meq/lOOg) 0.0-8.4 3.0 2.00 pH(H 20) 0.0-1.0 0.3 5.00 pH(CaCl 2) 0.0-0.8 0.3 5.00 pH(NaCl) 0.0-0.5 0.2 2.00 + Measurements c l o s e to d e t e c t i o n l i m i t s * Not determined /19 The raw data f o r chemical analyses of the f o r e s t f l o o r samples are tabulated i n Appendix 1-2. Data f o r g r a v i m e t r i c water content of a i r - d r i e d samples (0w) and f o r thickness of horizons has a l s o been included i n Appendix 1-2. The b a s i c s t a t i s t i c s and sample requirements f o r the LF and H horizons of each p l o t have been included i n Table 1-3. The t o t a l N r e s u l t s f o r the Mesic LF and Mesic H horizons are comparable to r e s u l t s found by W i l l i a m s and Dyrness (1967) on s i m i l a r s i t e s i n the Mount R a i n i e r and Mount Baker E c o l o g i c a l Provinces of Washington. However, i t must be remembered that they composited the L> F, and H horizons which may i n v a l i d a t e comparisons made w i t h the present study. W i l l i a m s and Dyrness found that the Mount R a i n i e r E c o l o g i c a l Province had t o t a l N values ranging from 0.871% to 1.266% w i t h an o v e r a l l mean of 1.054. The Mount Baker E c o l o g i c a l Province was found to have t o t a l N values ranging from 0.815% to 1.395% with an o v e r a l l mean of 1.026%. In t h i s study, Hygric LF h o r i z o n has s l i g h t l y higher !N values while the Hygric H h o r i z o n has n o t i c a b l y greater mean (1.419%), maximum (1.848%), and minimum (1.067%) values when compared to the r e s u l t s of Williams and Dyrness. The X e r i c LF and H horizons appear to have t o t a l N values lower than the s i t e s studied by W i l l i a m s and Dyrness. The mean values f o r the X e r i c LF and H horizons are 0.920% and 0.828%, r e s p e c t i v e l y . These values are lower than those found by Lowe (1972) on s i m i l a r s i t e s at the U n i v e r s i t y of B r i t i s h Columbia Research Forest. Thus there appears to be a trend of i n c r e a s i n g t o t a l N as one progresses downslope from the X e r i c p l o t to the Hygric p l o t . The t o t a l C r e s u l t s f o r the X e r i c LF and H horizons are s l i g h t l y lower than the values found by Lowe (1972) f o r corresponding /20 TABLE 1-3: Basic S t a t i s t i c s and Sample ^Requirements f o r the LF and H horizons of the X e r i c , Mesic and Hygric S i t e s No. of samples1'" Property S i t e Horizon Range Mean SD + C V. + n l n 2 n 3 n4 LOI X e r i c LF 91.6-96.3 95.3 1.26 1 .32 1 1 1 1 (%) H 87.7-96.4 92.8 2.54 2 74 1 1 1 1 Mexic LF 92.4-96.8 95.4 1.14 1 .19 1 1 1 1 H 88.4-96.8 93.6 2.34 2 50 1 1 1 1 Hygric LF 60.7-97.3 91.5 9.62 10 51 6 1 4 1 H 62.4-94.2 83.0 10.40 12 53 8 2 5 1 6w X e r i c LF 0.101-0.110 0.105 0.003 2 85 1 1 1 1 (kg-kg" 1) H 0.095-0.119 0.109 0.007 6 42 2 1 2 1 Mesic LF 0.101-0.131 0.112 0.009 8 04 3 1 3 1 H 0.121-0.141 0.130 0.005 3 85 1 1 1 1 Hygric LF 0.118-0.140 0.124 0.006 4 84 2 1 1 1 H 0.108-0.152 0.132 0.013 9 84 5 1 4 1 C X e r i c LF 45.8-50.9 48.8 1.29 2 63 1 1 1 1 (%) H 44.8-50.9 47.7 1.56 3 26 1 1 1 1 Mesic LF 46.5-50.4 48.0 1.19 2 48 1 1 1 1 H 44.1-50.7 47.9 1.70 3 56 1 1 1 1 Hygric LF 31.7-49.0 45.4 4.45 9 78 5 1 3 1 H 30.2-47.7 41.1 5.70 13 88 9 2 6 1 N X e r i c LF 0.712-1.073 0.910 0.095 10 43 6 1 4 1 (%) H 0.634-0.999 0.992 0.105 12 84 8 2 6 1 Mesic LF 0.907-1.103 0.992 0.054 5 44 2 1 1 1 H 0.803-1.264 1.006 0.134 13 32 9 2 6 1 Hygric LF 0.814-1.396 1.082 0.150 13 86 9 2 6 1 H 1.048-1.818 1.394 0.238 17 07 14 3 10 . 2 P X e r i c LF 0.060-0.107 0.085 0.015 17 64 15 3 10 2 (%) H 0.049-0.099 0.067 0.014 20 90 21 4 14 3 Mesic LF 0.068-0.093 0.077 0.006 7 79 3 1 2 1 H 0.039-0.093 0.056 0.013 23 21 25 4 17 3 Hygric LF 0.062-0.162 0.087 0.030 34 48 55 9 37 6 H 0.065-0.201 0.124 0.054 43 55 88 14 59 10 continued. Table 1-3: (cont'd) S i t e Horizon R a n § e Property • — X e r i c LF 0.216-0.616 r\ i r \ 7 f \ 7 1 Q Ca (%) H 0.10/-0. / i y Mesic LF 0.319-0.byo - ^ i i n H 0.133-0.3oo „ - l o / i n c i ^ n Hygric LF 0.124-0.DJU r\n A n 7 81 H 0 .074-U./oi X e r i c LF 0.068-0.138 n r\s o n 1 AO, Mg H 0.068-0.ioy r> n Q 9 f i 1^3 (-0 Mesic LF 0 . OoZ-U . f\ nnn n 9R1 H o.uyy-u• r\ r\£iC\ n 1 ^ ^ Hygric LF 0 . 0 6 y - u . l j jH 0 . 0 / o-U . J - 0 3 X e r i c LF 0.091-0.233 K f o,~\ H 0 . 068-U.las r \ A A O . n 1 3Q O J Mesic LF 0. 0oy-u • J-- 3 3 r\ r\ A 1 n 1 H 0.043-U.iuo „ n - 7 n n 1 7S Hygric LF 0.078-0.l/o H 0.052-U. i J-•> X e r i c LF 0.026-0.049 r> r \ t c n flQO Na H 0. 035-U.uyu «-\ m o n (-6) Mesic LF 0 . u l o - u . U D J ^ r \ o r n 0.7 A H 0.025-0.u /o/ i i o n i A 7 Hygric LF 0 . O l o - U . l i - ' n n 7 Q A 935 H 0. 0oy-u • ^ •3° X e r i c LF 0.035-0.170 Fe H 0.035-U.JJO n ntn n 179 ("0 Mesic LE 0 . 0 3 / - u . l / » r. r \ i o n 9 H 0 . 038-0.i»z r \ 1 C 1 cm Hygric LF 0 .035-1.QUI H 0 . 201 -4- • DDt A 1 X e r i c LF 0.070-0.286 A l (%) H 0 . 084-U.ozo /21 No. of samples* Mean S D ^ ^ V ^ 1 1 0 7 27.72 36 6 24 4 i n 0.3( io v i« f "1 1 4 2 44.65 92 15 62 9 0. $ r\ A l o l T O ( "i 0 7 5 17.12 14 3 1 0 0.4 r\ -7 3 b I 7 Q | j . u / ~> °l 121 31.93 47 8 32 A 1 D 7 0. o / y 1 J • X ^  J-n i n s 36.49 61 10 42i r~ ""7 96 0.2 0 2 9b 1 :63 U . J . VJO 0 . 1 8 7 71.10 233 38 1 5 7 r\ r n 018 18.37 16 2 11 o n 2 4 0 .c jyo C\ o n D97 25.00 29 5 ZU o 9 0. ] L 0 O I c\ r u . u ^. / n m 6 15.24 11 2 O Q 0.-L05 1 C / 1 U . U X D 0 4 4 28.57 38 7 2 6 1 o 3 0.. i rt-z 0 0 2 5 24.27 28 5 i y O 9 4 0. o l U o 114 0.030 26.32 32 6 ZZ 1 / 1 7 fl 0 ^ 6 25.35 30 5 20 1 Q 4 3 0. 142 T (~\ A . u j VJ n D95 24.04 27 5 l o 9 0. 1 0 4 i U • \J J n oi 8 16.98 14 3 9 Li 4 0. 1UO ns 1 n 0 1 6 26.23 32 6 ZZ i /i 3 0. O o l 1 1 7 VJ . W X VJ D 0 2 4 21.24 21 4 1 4 1 c 3 0. n , 11 J . 0 7 9 0 . 0 1 7 21.52 22 4 l b VJ i r \ i £ * n 0 0 7 19.44 18 3 12 O /I 2 4 0 . Uoo A T I U • Vj w / n ni 4 27 .45 35 6 0 . 0 5 1 n 1 7 U . U i t 0 0 0 9 33.33 52 9 3 5 1 9 5 0 . 0 Z / n / l 1 n o i 3 31.71 47 8 3 Z 3 6 0 . 0 4 1 n /i n \J • w J-n 0^4 85.00 333 54 Z Z b 1 1 7 1 9 0 fl . 0 4 U i . 0 8 5 0 . 0 5 2 61.18 1 7 3 28 1 1 / VJ » r \ O n n^9 51.61 1 2 3 20 8 3 1 A /I 1 4 94 c ) . 0 6 2 ^ 1 1 7 n 0 8 f I 68.38 2 1 6 35 1 4 6 n o 1 6 ( ) . 11 / i 56.06 1 4 5 24 y o 3 3 ( ) . 0 6 c i i nc \ o 08£ 5 80.73 300 48 2 0 3 "7 C A 1 2 1 ( J . I v J -n ZS/ L n 56i 5 1 5 6 . 0 4 1121 1 8 0 / DO 1 A C X J-5 6 1 13. o o ' i .21: 5 1.27' 9 1 0 5 . 4 4 5 1 2 82 3 4 b r\ i n ' 7 n 05 2 48.60 1 0 9 18 7 4 1 1 2 2 1 0 . 10 0.19' / U . U . J 9 0.12 7 63.82 188 30 111 „ 4-SI -1/71 J. continued. / 2 2 Table 1-3: (cont'd) No. of samples Property S i t e Horizon Range Mean SD + C. V. n l n 2 "3 n4 Mesic LF 0.070- 0.163 0. 104 0. .024 23. ,08 25 4 17 3 H 0.091- 0.402 0. ,190 0. .081 42. ,63 84 14 57 10 Hygric LF 0.074-•2.640 0. ,468 0. ,764 163. ,25 1227 197 827 133 H 0.312-•4.366 1. ,240 1. ,151 94. ,82 397 64 268 43 Mn X e r i c LF 48. .4-•794.5 273. ,8 202. ,7 74. .04 253 41 171 28 (ppm) H 10. .7-•521.7 90. ,3 132. .6 146. ,82 999 159 669 107 Mesic LF 55. .0-•176.7 98. ,8 34. .8 35. .25 53 10 39 7 H 4. .1-•46.8 14. ,3 11. .3 78. .90 287 46 194 31 Hygric LF 69. .0-•5519.4 829. ,6 1078. .1 205. .90 1951 313 1315 211 H 11. .1-•9906.2 1208. ,4 3008. .7 248. .98 2853 457 1923 308 Cu X e r i c LF 1. .3-•5.8 4. ,3 1. .36 31. .84 47 8 32 6 (ppm) H 1. .3-•3.6 2. ,5 1. .14 45, .50 96 16 65 11 Mesic LF 3, .5-•8.1 5. .5 1, .42 46. .63 101 17 68 11 H 1, .3-•1.4 1. .4 0, .001 0. .52 1 1 1 1 Hygric LF 3, .6-•10.3 5. .7 1, .98 34. .76 56 9 38 6 H 1. .4-•6.0 4. .1 1, .29 31. .68 47 8 32 5 Zn X e r i c LF 3, .8-•23.6 15. .0 4, .67 31, .26 45 8 31 5 (ppm.) H 3, .7-•19.3 11. .3 4, .45 39, .28 71 12 48 8 Mesic LF 12, .6-•24.2 18. .3 3 .27 17, .84 15 3 10 2 H 10, .5-•17.5 13, .2 2. .69 20, .42 20 4 13 3 Hygric LF 12, .7-•30.7 17, .5 4 .75 27, .19 35 6 23 4 H 10 .6-•33.8 16, .3 6 .60 40, .60 76 13 52 9 CEC(4) X e r i c LF 119 .7-•145.8 129, .2 8 .03 6 .22 2 1 2 1 H 96 .6-•118.7 107, .9 6 .95 6 .44 2 1 2 1 Mesic LF 117 .7-•138.0 127 .2 5 .73 4 .50 1 1 1 1 H 110 .3--136.4 122 .8 7 .18 5 .84 2 1 2 1 Hygric LF 79 .7-•130.8 116 .0 12 .62 10 .88 6 1 4 1 H 63 .9-•146.3 105 .4 22 .56 21 .40 22 4 15 3 continued. /23 Table 1-3: (cont'd) Property No. of samples S i t e Horizon Range Mean SD + C .V.+ n i n 2 n 3 n4 X e r i c LF 9.73-29.53 18.33 5.16 28 .15 37 6 25 4 Mesic H 4.39-36.66 15.62 7.48 47 .91 106 17 72 12 LF 15.56-27.16 20.77 3.47 16 .69 13 3 9 2 Hygric H 6.64-29.57 19.10 5.79 30 .33 43 7 29 5 LF 4.56-23.77 12.93 5.71 44 .05 90 15 61 10 H 0.81-35.96 10.85 9.72 89 .53 369 60 249 40 X e r i c LF 5.62-11.59 7.88 1.49 18 .85 17 3 12 2 H 4.46-13.25 8.42 2.31 27 .49 35 6 24 8 4 Mexic LF 6.73-10.89 8.40 1.32 15 .78 12 2 2 Hygric H 8.65-23.19 12.61 3.49 27 .69 36 6 24 4 LF 2.49-12.75 7.72 2.51 32, .50 49 8 33 6 H 1.80-16.40 7.12 4.22 59, .22 162 26 109 18 X e r i c LF 2.23-5.78 3.49 0.96 27, .62 36 6 24 4 H 1.41-2.95 2.08 0.52 24, .92 29 5 20 4 Mesic LF 1.51-3.18 2.51 0.43 17. .16 14 3 10 2 Hygric H 0.76-2.03 1.19 0.32 27. ,07 34 6 23 4 LF 0.96-3.66 2.54 0.61 24. ,03 27 5 18 3 H 0.75-1.58 1.15 0.23 19. ,90 19 3 13 2 X e r i c LF 0.34-5.03 1.19 1.11 93. 18 400 64 270 44 Mesic H 0.34-6.60 1.47 1.56 106. 13 519 83 350 56 LF 0.60-1.11 0.86 0.16 18. 87 17 3 12 3 Hygric H 0.85-1.98 1.21 0.36 29. 93 42 7 28 5 LF 0.72-7.91 2.73 2.39 87. 72 355 57 239 39 H 1.37-16.73 8.27 4.56 55. 10 140 23 95 16 X e r i c LF 126.9-150.4 139.3 6.68 4. 80 2 1 1 1 H 126.1-158.0 142.1 9.22 6. 49 2 1 2 1 Mesic LF 133.7-164.2 146.0 8.57 5. 87 2 1 2 1 H 154.4-190.2 174.2 11.49 6. 59 2 1 2 1 Hygric LF 130.3-160.6 143.6 8.79 6. 12 2 1 2 1 H 120.4-201.8 161.5 21.51 13. 32 9 2 6 1 continued.. Ca(4) (meq/lOOg) Mg(4) (meq/lOOg) K(4) (meq/lOOg) Al(4) (meq/lOOg) CEC(7) (meq/lOOg) / 2 4 Table 1-3: (cont'd) No. of samples"'" Prop e r t y S i t e Horizon Range Mean SD + C.V.+ n 2 n 3 n 4 Ca(7) X e r i c LF 8. 59-27.42 (meq/lOOg) H 4. 28-31.15 Mesic LF 13. 75-25.74 H 4. 98-25.12 Hygric LF 4. 05-22.61 H 0. 70-29.69 Mg(7) X e r i c LF 5. 44-10.97 (meq/lOOg) H 4. 55-13.31 Mesic LF 6. 60-11.18 H 8. 50-21.98 Hygric LF 2. ,53-12.49 H 1. ,66-13.92 K(7) X e r i c LF 1. ,86-5.31 (meq/lOOg) H 1. ,14-3.69 Mesic LF 1. ,57-3.24 H 0. ,81-1.96 Hygric LF 1, .09-3.55 H 0. ,90-1.83 Na(7) X e r i c LF 0, .90-1.75 (meq/lOOg) H 0, .91-1.69 Mesic LF 0, .78-1.33 H 0, .93-1.68 Hygric LF 0 .30-1.55 H 0 .38-1.32 pH(H 0) Xe r i c LF 3 .63-4.03 H 3 .54-4.01 Mesic LF 3 .40-3.98 H 3 .28-3.78 Hygric LF 3 .45-4.86 H 3 .49-4.84 16.66 4. 81 28. 86 39 7 26 5 13.61 6. 45 47. 35 104 17 70 12 19.60 3. 53 17. 98 15 3 11 2 16.29 5. 35 32. 86 50 8 34 6 12.28 5. 36 43. 62 88 15 60 10 9.05 8. 08 89. 22 367 59 247 40 7.67 1. ,47 19. 18 17 3 12 2 8.28 2. ,30 27. 75 36 6 24 4 8.32 1. ,39 16. 70 13 3 9 2 12.21 3. ,37 27. ,63 36 6 24 4 7.56 2. ,42 31. ,99 48 8 32 6 6.70 3. ,76 56. ,01 145 24 98 16 3.32 0. ,93 27. ,84 36 6 25 4 2.17 0. ,73 33. ,84 53 9 36 6 2.60 0, ,44 16, .78 13 3 9 2 1.32 0, ,31 23, .11 25 4 17 3 2.62 0, ,58 22, .10 23 4 16 3 1.33 0, .29 22, .03 23 4 16 3 1.30 0, .26 20, .31 19 4 13 3 1.26 0, .23 18, .35 16 3 11 2 0.97 0, .16 16 .74 13 3 9 2 1.18 0, .20 16 .93 14 3 9 2 0.89 0, .33 36 .84 63 10 43 7 0.81 0 .31 38 .63 69 11 47 8 3.83 0 .13 3 .29 1 1 1 1 3.68 0 .13 3 .51 1 1 1 1 3.77 0 .13 3 .56 1 1 1 1 3.57 0 .18 3 .28 1 1 1 1 3.86 0 .40 10 .26 5 1 4 1 3.88 0 .39 10 .07 5 1 4 1 continued... /25 Table 1-3: (cont'd) No. o f samples Property S i t e Horizon Range Mean SD + C, ,V.+ n l n 2 n 3 n4 P H ( C a C l 2 ) X e r i c LF 3.31-3.70 3.48 0.12 3, .48 1 1 1 1 H 3.17-3.69 3.30 0.14 4. .30 1 1 1 1 Mesic LF 3.03-3.66 3.41 0.14 3. .99 1 1 1 1 H 2.863.42 3.71 0.13 4. .10 1 1 1 1 Hygric LF 3.10-4.28 3.47 0.37 10. .63 6 1 4 1 H 3.07-4.41 3.47 0.38 11. .08 6 1 4 1 pH(NaCl) X e r i c LF 3.06-3.43 3.22 0.17 3. .61 1 1 1 1 H 2.94-3.45 3.09 0.14 4. .50 1 1 1 1 Mesic LF 2.76-3.44 3.17 0.15 4. .73 2 1 1 1 H 2.58-3.27 2.94 0.17 5. .61 2 1 1 1 Hygric LF 2.86-4.20 3.25 0.40 12. .38 8 2 5 1 H 2.86-4.34 3.33 0.44 13. ,27 9 2 6 1 Thickness X e r i c LF 23-113 66.4 26.6 39. ,99 74 12 50 8 (mm) H 20-210 80.0 59.9 74. ,85 258 42 174 28 Mesic LF 38-186 88.7 41.1 46. ,37 99 16 67 11 H 22-150 71.5 39.9 54. ,56 137 22 93 15 Hygric LF 25-125 66.5 26.7 40. ,14 75 12 50 8 H 8-120 46.3 33.2 71. 66 237 38 160 26 + S t a n d a r d d e v i a t i o n and c o e f f i c i e n t o f v a r i a t i o n , r e s p e c t i v e l y ^Estimate o f the number of samples to achieve: n X ± 10% w i t h 95% confidence TL2 X ± 25% w i t h 95% confidence n 3 X ± 10% w i t h 90% confidence n4 X ± 25% w i t h 90% confidence / 2 6 horizons. The mean t o t a l C value f o r the Mesic LF hor i z o n (47.9%) i s almost i d e n t i c a l to the mean values l i s t e d by Gessel and B a l c i (1965) f o r the L and F horizons of mor f o r e s t f l o o r s . The mean t o t a l C value f o r the Mesic H ho r i z o n (47.9%) i s s l i g h t l y greater than the H hor i z o n value l i s t e d f o r mor by Gessel and B a l c i . The Hygric LF and H h o r i z o n values f o r t o t a l C are c l o s e r to the d u f f mull f o r e s t f l o o r described by Gessel and B a l c i , although the f o r e s t f l o o r of t h i s p l o t was c l a s s i f i e d as a mor. These values are a l s o lower than the corresponding values f o r the X e r i c and Mesic s i t e s . This i n d i c a t e s that the lowest p l o t i s r e c e i v i n g inputs of mineral m a t e r i a l from slope wash, a process common to a l l u v i a l fan dep o s i t s (Bloom, 1978). The LOI r e s u l t s p a r a l l e l the t o t a l C r e s u l t s which i s expected i f one assumes that LOI i s a good measure of organic matter where c l a y s are not s i g n i f i c a n t (Hesse, 1971). The GEC values measured w i t h 1 N NaCl (CEC(4)) are c o n s i s t e n t l y lower than the values f o r CEC determined w i t h 1 N NH OAc (CEC(7)). These r e s u l t s are c o n s i s t e n t w i t h Wells and Davey (1966). They found that CEC increases p r o p o r t i o n a l l y w i t h the pH of the s a t u r a t i n g s o l u t i o n . There i s a l s o a c o n s i s t e n t trend i n pH values measured by the three methods. The pH (H 20) was always greater than the pH ( C a C l 2 ) . The l a t t e r pH was always gr e a t e r than.the pH measured i n 1 N NaCl (pH(NaCl)). These r e s u l t s support the e a r l i e r f i n d i n g s of Peech (1965) and Vezina (1965). They found that the pH of a suspension decreases w i t h i n c r e a s i n g concentrations of a n e u t r a l s a l t . The CEC(7) of the LF horizon was l e s s than the CEC(7) o f the corresponding H ho r i z o n f o r a l l three s i t e s . I t i s i n t e r e s t i n g to note I l l that the pH (H 20) of the LF hor i z o n was greater than the pH (H 20) of the corresponding H ho r i z o n f o r the X e r i c and Mesic p l o t s . The mean pH (H 20) values of the Hygric LF and H horizons are almost i d e n t i c a l . These r e s u l t s appear to c o n t r a d i c t the f i n d i n g s of Wildung et al. (1965). They found that the CEC of s o i l humic m a t e r i a l s increases w i t h i n c r e a s i n g pH. They a l s o found that humified m a t e r i a l s have a greater CEC than unhumified m a t e r i a l s such as p l a n t l i g n i n s . H horizons are composed o f h i g h l y humified m a t e r i a l s (Canada S o i l Survey Committee, 1978). Thus i t appears that the increased degree of h u m i f i c a t i o n going from a LF to a H horizon causes an increase i n the CEC which more than compensates f o r a decrease i n CEC that would be expected from a decrease i n pH. The values f o r exchangeable Ca, Mg, and K determined by both methods were almost i d e n t i c a l . The only d i f f e r e n c e was the s l i g h t l y l a r g e r exchangeable Ca values obtained by the NaCl method. P o s s i b l e r e l a t i o n s h i p s between these two e x t r a c t i o n methods w i l l be examined i n a l a t e r s e c t i o n of t h i s r e p o r t . Since most previous research has reported values f o r exchangeable bases d i s p l a c e d by NH^OAc, the values obtained f o r t h i s method i n the present study w i l l be compared to other work. The exchangeable potassium (K(7)) data i n d i c a t e t h a t the H hori z o n of each p l o t has lower values than the a s s o c i a t e d LF h o r i z o n . I t appears that the more h i g h l y decomposed H horizons are s u f f e r i n g greater lo s s e s than the l e s s decomposed LF ho r i z o n s . W i l l i a m s and Dyrness (1967) found exchangeable K(7) values ranging from 1.44 meq/lOOg to 3:48 meq/lOOg /28 wi t h a mean value, of 2.62 meq/lOOg i n the Mount R a i n i e r E c o l o g i c a l Province. They found s i m i l a r values i n the Mount Baker E c o l o g i c a l Province, where exchangeable K(7) values ranged from 1.47 meq/lOOg to 4.18 meq/lOOg w i t h an o v e r a l l mean of 2.56 meq/lOOg. In the present study, the exchangeable K(7) values f o r the H horizons have lower values than reported by Wil l i a m s and Dyrness and the exchangeable K(7) values f o r the LF h o r i z o n appear to be grea t e r . This i n d i c a t e s t h a t i f the LF and H horizons of the present study had been composited, the values obtained f o r both s t u d i e s would be comparable. Exchangeable magnesium (Mg(7)) values i n LF horizons are l e s s than the H hor i z o n values f o r the X e r i c and Mesic s i t e s . Exchangeable Mg(7) values f o r the Hygric s i t e are s l i g h t l y greater i n the LF h o r i z o n than the values found i n the Hygric H h o r i z o n . This i n d i c a t e s a l a c k of apparent trends between LF and H horizons when a l l three s i t e s are examined simultaneously, although i n d i v i d u a l l y the s i t e s may possess s i g n i f i c a n t d i f f e r e n c e s . W i l l i a m s and Dyrness (1967) found exchangeable Mg(7) values ranging from 3.5 meq/lOOg to 7.0 meq/lOOg w i t h a mean value of 5.1 meq/lOOg i n the Mount R a i n i e r E c o l o g i c a l Province and values ranging from 3.3 meq/lOOg to 6.2 meq/lOOg w i t h a mean value of 4.6 meq/lOOg i n the Mount Baker E c o l o g i c a l Province. The exchangeable Mg(7) values i n the present study appear to be grea t e r . This may be a r e f l e c t i o n of the s i t e l i t h o l o g y , which i s predominantly a n d e s i t i c b a s a l t . This formation has a s i g n i f i c a n t component of mafic or magnesium-containing minerals (Muller et al., 1974). /29 LF horizons of a l l three s i t e s have values greater f o r exchangeable calcium d i s p l a c e d by NH^OAc (Ca(7)) than the corresponding H horizons. This trend i n d i c a t e s that there are increased Ca(7) l o s s e s as decomposition increases. W i l l i a m s and Dyrness (1967) found values whose range was comparable to values found i n t h i s study. However, they composited the LF and H horizons and i t i s not p o s s i b l e to determine i f they found increased Ca(7) l o s s e s with i n c r e a s i n g degrees of decomposition. Exchangeable Ca(7) was one of the most v a r i a b l e p r o p e r t i e s measured. For the Hygric H h o r i z o n , i t i s estimated that 367 samples would be r e q u i r e d to estimate exchangeable Ca(7) w i t h an allowable e r r o r of 10% and a confidence l e v e l of 95%. This i s c o n s i d e r a b l y greater than the number r e q u i r e d f o r p r o p e r t i e s such as t o t a l C and t o t a l N. This w i l l be discussed f u r t h e r i n a l a t e r s e c t i o n of t h i s chapter. The exchangeable aluminium d i s p l a c e d by 1 N NaCl(Al(4)) has lowest values i n the Mesic LF and H h o r i z o n s , intermediate values i n the X e r i c LF and H h o r i z o n s , and highest values i n the Hygric LF and H h o r i z o n s . The H horizons tend to have greater Al(4) values than the corresponding LF horizon of each p l o t . This i s most n o t i c e a b l e i n the Hygric H h o r i z o n where s e v e r a l values i n the 10 to 16 meq/lOOg range were detected. K i s e l e v a (1976) measured exchangeable A l ( 4 ) w i t h 1 N NaCl and found an i n v e r s e r e l a t i o n s h i p between exchangeable Al( 4 ) and exchangeable calcium measured w i t h the same d i s p l a c i n g s o l u t i o n (Ca(4)). The r e s u l t s o f the present study tend to confirm K i s e l e v a and are p a r t i c u l a r l y s t r i k i n g i n some of the Hygric H h o r i z o n samples., At /30 sampling p o i n t Hygric I I (8,8), the Ca(4) value was only 0.81 meq/lOOg while the Al(4) value was 13.33 meq/lOOg. This appears to be s i g n i f i c a n t as the p l o t mean f o r Ca(4) i s 9.72 meq/lOOg. This suggests that the p o l y v a l e n t Al(4) may be p r e f e r e n t i a l l y d i s p l a c i n g the d i v a l e n t Ca(4). This helps to e x p l a i n some of the apparently low Ca(4) values found at other sampling p o i n t s . Messenger et al. (1972) and Messenger (1975) measured Al( 4 ) as p a r t of a podzol genesis study. They found high Al(4) values i n the upper humic horizons developed under white pine (Tinas strobus L.) and eastern hemlock (Tsuga canadensis (L.) Carr.) stands. Values up to 2,500 ppm as Al-O^ occurred under hemlock. These va l u e s , i n conjunction w i t h the production of the c h e l a t i n g agent c r e n i c a c i d , suggested an important mechanism f o r A l c y c l i n g and the subsequent development of an i l l u v i a l h o r i z o n c h a r a c t e r i s t i c of a podzol. In the present study, pyrophosphate e x t r a c t a b l e A l values of up to 2.8% were found i n the modal p i t B horizons of the Mesic and Hygric s i t e s (Appendix 1-1). Since western hemlock forms a s i g n i f i c a n t component of the o v e r s t o r y v e g e t a t i o n , i t appears that t h i s species may be p l a y i n g a s i m i l a r r o l e i n c y c l i n g A l . The r e s u l t s of the t o t a l a n a l y s i s y i e l d a number of trends. The mean t o t a l P values f o r a l l horizons except the Hygric H are lower than the values of 0.098% to 0.122% l i s t e d by Gessel and B a l c i (1965). The mean Hygric H value f o r t o t a l P i s almost i d e n t i c a l to the value Gessel and B a l c i l i s t f o r the H horizon of a d u f f m u l l . The X e r i c and Mesic LF have t o t a l P values that are greater than the values f o r the corresponding H horizons. The reverse r e l a t i o n s h i p holds f o r the Hygric /31 s i t e . An obvious h o r i z o n trend i s not apparent although the X e r i c and Mesic s i t e s may be P l i m i t i n g . T o t a l Ca values are s i m i l a r to the values found by Alban (1967) on S i t e I I I of h i s study while the t o t a l K and t o t a l Mg values are comparable to Alban's S i t e s I and I I . The mean t o t a l Ca and K values f o r the LF horizons are a l l greater than the corresponding H horizons. The LF horizons have l e s s t o t a l Mg than the corresponding H horizons. The trends f o r t o t a l Ca, Mg and K are i n general agreement w i t h the exchangeable n u t r i e n t values discussed e a l i e r . The p o s s i b l e exception i s that the trend f o r t o t a l Mg i s more obvious than f o r exchangeable Mg(7). The t o t a l Fe values f o r the H horizons are c o n s i s t e n t l y greater than the values f o r the corresponding LF horizons. Alban (1967) found a s i m i l a r r e s u l t f o r h i s S i t e s I and I I . There i s al s o a s i g n i f i c a n t c o ncentration of Fe i n both the Hygric LF and H horizons w i t h mean values of 0.364% and 1.213%,respectively. P r i t c h e t t (1979) s t a t e s that increased concentrations of Fe, A l , arid Mn i n f o r e s t f l o o r s may be due to mineral s o i l contamination. This appears to be happening on the present s i t e s as the LOI values are low where Fe, A l , and Mn r e s u l t s are high. Western hemlock may a l s o be important i n c y c l i n g Fe as pyrophosphate e x t r a c t a b l e Fe values of 7% to 8% are found i n the B-horizons of the p l o t s where t h i s species i s pre v a l e n t . Horizon trends f o r t o t a l Mn are not as obvious as the. trends f o r Fe. However, the Hygric LF and H horizons have values of 830 and 1208 ppm, r e s p e c t i v e l y . These are gr e a t e r than the values f o r the corresponding horizons of both the X e r i c and Mesic p l o t s . Thus a number of important trends are /32 present i n the r e s u l t s f o r both t o t a l and exchangeable n u t r i e n t s . N u t r i e n t r e l a t i o n s h i p s w i l l be examined i n more d e t a i l i n the t h i r d chapter. Variability of the Forest Floors A summary of the sample requirements f o r each sampling u n i t i s given i n Table 1-4. The r e s u l t s r e v e a l a few co n t r a s t s between s i t e s and horizons. The Mesic LF hor i z o n was the l e a s t v a r i a b l e as only 145 samples were necessary to c h a r a c t e r i z e a l l the p r o p e r t i e s measured f o r an allowable e r r o r of 10% at the 95% confidence l e v e l . Under these c o n s t r a i n t s , the most v a r i a b l e h o r i z o n was found to be the Hygric H hori z o n which r e q u i r e d 2853 samples to achieve the d e s i r e d accuracy f o r a l l of the p r o p e r t i e s measured. I t i s i n t e r e s t i n g to note that the minimum sampling requirement f o r thickness i s 74 samples f o r the X e r i c LF hor i z o n and the maximum sampling requirement i s 258 samples f o r the X e r i c H h o r i z o n . McFee and Stone (1965) a l s o found that t h i c k n e s s i s a h i g h l y v a r i a b l e property. Thickness was more v a r i a b l e than p r o p e r t i e s such as t o t a l C and t o t a l N i n the present study. I t i s debatable whether thickness i s a good c r i t e r i o n to use f o r c l a s s i f y i n g f o r e s t f l o o r s . Bernier (1968) has proposed such a c l a s s i f i c a t i o n f o r mor f o r e s t f l o o r s . I t appears, o v e r a l l , that the LF horizons are l e s s v a r i a b l e than the H horizons f o r the p r o p e r t i e s examined i n t h i s study. The number of samples r e q u i r e d to estimate the mean values f o r most p r o p e r t i e s of the LF horizons are l e s s than the number r e q u i r e d f o r the corresponding H horizons. This appears to hold f o r a l l three s i t e s . /33 TABLE 1-4 : Sample Requirements to Achieve Mean Value f o r n^ and n^ Levels of Accuracy S i t e Horizon Property n^ n4 Property n 4 Property n l n 4 Property n i n 4 X e r i c LF LOI 1 1 6w I 1 C 1 1 N 6 1 H 1 1 2 1 1 1 8 1 Mesic . LF 1 1 3 1 1 1 2 1 H 1 1 1 1 1 1 9 1 H y g r i c LF 6 1 2 1 5 1 9 1 H 8 1 5 1 9 1 14 2 X e r i c LF P 15 2 Ca 36 4 Mg 16 2 K 30 4 H 21 2 92 10 29 4 27 3 Mesic LF 3 1 14 2 11 2 14 2 H 25 3 47 6 38 5 32 4 Hyg r i c LF 55 6 61 7 28 3 21 3 H 88 10 233 26 32 4 22 3 X e r i c LF Na 18 2 Fe 123 14 A l 109 • 12 Mn 253 28 H 35 4 216 24 188 21 992 107 Mesic LF 52 6 145 16 25 3 58 7 H 47 5 300 33 84 10 287 31 Hy g r i c LF 333 36 1121 121 1227 133 1951 211 H 173 19 512 56 397 43 2853 308 X e r i c LF Cu 47 6 Zn 45 5 CEC(4) 2 1 Ca(4) 37 4 H 96 11 71 8 2 1 106 12 Mesic LF 101 11 15 2 1 1 13 2 H 1 1 20 3 2 1 43 5 Hy g r i c LF 56 6 35 4 6 1 90 10 H 47 5 76 9 22 3 369 40 X e r i c LF Mg(4) 17 2 K(4) 36 4 Al(4) 400 44 CEC(7) 2 1 H 35 4 29 4 519 56 2 1 continued. Table 1-4: (continued). / 3 4 S i t e Horizon Property Property Mesic Hygric X e r i c Mexic Hygric X e r i c Mesic Hygric LF H LF H LF H LF H LF H LF H LF H LF H Mg(4] Ca(7) pH(H 90) 12 2 36 4 49 2 162 18 39 5 104 12 15 2 50 6 88 10 367 40 1 1 1 1 1 1 1 1 5 1 5 1 K(4) Mg(7) pH(CaCl 2) n l n 4 Property n l n 4 14 2 Al(4) 17 2 34 4 42 5 27 3 355 39 19 2 140 16 17 2 K(7) 36 4 36 4 53 6 13 2 13 2 36 4 25 3 48 6 23 3 145 16 23 3 1 1 pH(NaCl) 1 1 1 1 1 1 1 1 2 1 1 1 2 1 6 1 8 1 6 1 9 1 Proper t y n, CEC(7) Na(7) Thickness 1 2 2 9 19 16 13 14 63 69 74 258 99 137 75 237 1 1 1 1 3 2 2 2 28 11 15 26 E s t i m a t e of the number of samples to achieve: n x x ± 10% with 95% confidence x ± 25% with 90% confidence / 3 5 I t i s d e s i r a b l e to give a p r a c t i c a l p e r s p e c t i v e to the number of samples r e q u i r e d f o r e s t i m a t i n g property means. This author found that one could c o l l e c t 15 samples of LF and H m a t e r i a l w i t h i n a s i n g l e 30m x 10m p l o t during a normal working day. I t would be i n t e r e s t i n g to determine which p r o p e r t i e s were adequately sampled i n one day. I t i s assumed that i t i s d e s i r a b l e to p r o p e r l y sample a s i n g l e s i t e i n one day in.... order to avoid v a r i a b i l i t y a s s o c i a t e d w i t h time. The r e s u l t s of t h i s study show that 15 samples would be s u f f i c i e n t to estimate LOI, t o t a l C, t o t a l N, CEC(7), pH(H 20), pH(CaCl 2), pH(NaCl), and 6w f o r a l l three s i t e s w i t h an allowable e r r o r of 10% at the 95% confidence l e v e l . This would a l s o be true f o r CEC(4) i n a l l horizons except f o r the Hygric H. Ten samples would be s u f f i c i e n t to estimate the mean value of a l l these p r o p e r t i e s except f o r t o t a l N and CEC(4) i n the Hygric H horizon. F i f t e e n samples would not be adequate f o r estimating p r o p e r t i e s such as t h i c k n e s s , exchangeable bases and most t o t a l n u t r i e n t s f o r a l l three s i t e s . I t was noted e a r l i e r that Mader (1963) found that the CV. f o r CEC was much l e s s than the CV. f o r exchangeable bases. Thus more samples would be r e q u i r e d to estimate exchangeable bases with the same l e v e l of confidence as< the CEC The present research confirms the f i n d i n g s of t h i s e a r l i e r study. When the allowable e r r o r i s increased to 25% and the confidence l e v e l i s reduced to 90%, 15 samples i s now s u f f i c i e n t to estimate P, Mg, K, Cu, Zn, CEC(4), K d i s p l a c e d by NaCl [ K ( 4 ) ] , K(7), and Na d i s p l a c e d by NH 40Ac [Na(7)] i n a d d i t i o n to the p r e v i o u s l y l i s t e d p r o p e r t i e s . At t h i s lower l e v e l of accuracy and /36 confidence, i t would s t i l l be necessary to c o l l e c t more than 40 samples f o r Mn, Fe, A l , A l ( 4 ) , Ca(4), and Ca(7) i n order to o b t a i n the d e s i r e d l e v e l of accuracy. The mean values f o r Na, Ca, t h i c k n e s s , Mg(7) and Mg d i s p l a c e d by NaCl [Mg(4)] could be adequately estimated w i t h 16 to 39 samples. B l y t h and Macleod (1978) noted that i.the.most u s e f u l p r o p e r t i e s are those whose v a r i a b i l i t y remains low over f a i r l y extensive areas. They a l s o noted that h i g h l y v a r i a b l e f a c t o r s are of l i t t l e p r e d i c t i v e value f o r studying t r e e growth. The present study showed that o f the p r o p e r t i e s s t u d i e d , the best f o r c h a r a c t e r i z i n g or c l a s s i f y i n g the f o r e s t f l o o r of biogeocoenoses would be, i n order of i n c r e a s i n g v a r i a b i l i t y over a l l s i t e s , pH(H 0 ) , 9w, pH(CaCl 2), LOI, t o t a l C, pH(NaCl), CEC(7), and t o t a l N. These p r o p e r t i e s could be adequately sampled i n one day at an acceptable l e v e l of accuracy. This study a l s o shows that the l e a s t p r e d i c t i v e value would be obtained by u t i l i z i n g p r o p e r t i e s such as Mn, A l , Fe, A l ( 4 ) , Ca(4), Ca(7), Na, t h i c k n e s s , Ca, Mg(4), and Mg(7). Summary and Conclusions The importance of adequate sampling f o r e s t i m a t i n g the mean and the v a r i a b i l i t y o f s o i l p r o p e r t i e s has been discussed. Adequate sampling would a l s o be necessary f o r chemical p r o p e r t i e s to be used f o r c h a r a c t e r i z i n g o r c l a s s i f y i n g f o r e s t f l o o r s . S everal authors c h a r a c t e r i z e d f o r e s t f l o o r s i n Washington and Oregon. They a l l noted the inherent /37 v a r i a b i l i t y of f o r e s t f l o o r m a t e r i a l and estimated the probable causes o f the v a r i a b i l i t y . Factors such as decaying wood, species, wind a c t i v i t y , and stand composition are i n d i c a t e d as important i n c r e a t i n g f o r e s t f l o o r v a r i a b i l i t y . In these studies n u t r i e n t r e l a t i o n s h i p s were e i t h e r not detected or r e s u l t s had to be i n t e r p r e t e d w i t h c a u t i o n because of inadequate sampling. A few v a r i a b i l i t y s t u d i e s have focussed on f o r e s t f l o o r s . P r o p e r t i e s such as t h i c k n e s s and exchangeable bases were found to be more v a r i a b l e than p r o p e r t i e s such as CEC, t o t a l N, t o t a l C, and pH. I t was noted t h a t adequate sampling u s u a l l y i n v o l v e s up to 50 samples per s i t e depending on the property to be measured. A sampling program i n v o l v i n g three biogeocoenoses and two h o r i z o n u n i t s was completed. F i f t e e n samples were c o l l e c t e d by a s t r a t i f i e d random procedure i n each of the sampling u n i t s . A number of chemical p r o p e r t i e s were measured on each sample. The mean values of most p r o p e r t i e s are comparable to values found i n the l i t e r a t u r e . A few s i t e and h o r i z o n trends were noted. Values f o r t o t a l N, Fe, Mn, and Al(4) were found to increase downslope. Dramatic increases i n the c o n c e n t r a t i o n of these n u t r i e n t s were detected i n the Hygric H h o r i z o n . Increased leac h i n g l o s s e s of K(7) and Ca(7) were found i n the H horizons. The values f o r Fe, A l , and Mn were greater i n these horizons. This i n d i c a t e s increased leaching losses of bases and accumulations of some metals as f o r e s t f l o o r decomposition proceeds. The Fe, A l , and Mn increases may be p a r t l y a t t r i b u t e d to mineral s o i l contamination. The r o l e of western hemlock i n c y c l i n g A l (4) and Fe was i n d i c a t e d . An important i n t e r a c t i o n between Ca(4) and Al(4) was a l s o noted. 738 The l e a s t v a r i a b l e h orizon i n terms of o v e r a l l sample requirements was the Mesic LE while the most v a r i a b l e was the Hygric H. The LF horizons on a l l three s i t e s tended to be l e s s v a r i a b l e than the corresponding H h o r i z o n s . I t was noted that p r o p e r t i e s such as thickness and exchangeable bases were more v a r i a b l e than CEC, t o t a l C, or t o t a l N. Since t h i c k n e s s i s r e l a t i v e l y v a r i a b l e , i t s use f o r c l a s s i f y i n g f o r e s t f l o o r s i s questionable. A number of p r o p e r t i e s were found to possess l e s s v a r i a b i l i t y and thus to have b e t t e r p o t e n t i a l f o r p r e d i c t i o n . The p r o p e r t i e s considered to have the best p o t e n t i a l f o r c l a s s i f y i n g f o r e s t f l o o r s were pH(H„0), 6w, pHfCaCl^), LOI, t o t a l C, pH(NaCl), and CEC(7). The samples needed to evaluate these p r o p e r t i e s could be adequately c o l l e c t e d i n one day. Least value f o r p r e d i c t i o n and thus f o r c l a s s i f i c a t i o n was a t t r i b u t e d to p r o p e r t i e s such as Mn, A l , Fe, A l ( 4 ) , Ca(4), Ca(7), Na, t h i c k n e s s , Ca, Mg(4), and Mg(7). /39 CHAPTER II DISTINGUISHING FOREST FLOORS USING CHEMICAL PROPERTIES Intvoduction The h i s t o r i c a l development of c l a s s i f i c a t i o n systems f o r f o r e s t f l o o r s or f o r e s t humus has been reviewed by Romell and Heiberg (1931), Remezov and Pogrebnyak (1969), and P r i t c h e t t (1979). C l a s s i f i c a t i o n systems have been proposed by a number of researchers i n c l u d i n g M u l l e r (1879) as c i t e d i n Romell and Heiberg (1931), Romell and Heiberg (1931), Hoover and Lunt (1952), Bernier (1968), and Wilde (1971). These c l a s s i f i c a t i o n proposals were based p r i m a r i l y on those morphological features which were perceived to r e f l e c t the genesis of f o r e s t f l o o r s . This approach i s j u s t i f i e d as the cost and time f o r c o l l e c t i n g morphological information i s much l e s s than the e f f o r t r e q u i r e d f o r measuring p h y s i c a l and chemical p r o p e r t i e s (Beckett, 1967). Thus a l a r g e number of areas could be described and c l a s s i f i e d i n a reasonable time p e r i o d . I t was recognized that c h a r a c t e r i z a t i o n of the p h y s i c a l , chemical, and m i c r o b i o l o g i c a l p r o p e r t i e s of the v a r i o u s f o r e s t f l o o r c l a s s e s would be necessary f o r a more comprehensive understanding of these systems. The d e t a i l e d a n a l y s i s would f u r t h e r a i d i n the s e l e c t i o n of morphological p r o p e r t i e s used f o r subsequent c l a s s i f i c a t i o n purposes (Mader, 1953). C h a r a c t e r i z a t i o n of the p h y s i c a l and chemical p r o p e r t i e s of f o r e s t f l o o r s o f t e n preceded or occurred i n conjunction w i t h c l a s s i f i c a t i o n s t udies ( M u l l e r , 1879; Rommel and Heiberg, 1931; /40 B e r n i e r , 1968). Forest f l o o r c h a r a c t e r i z a t i o n has a l s o been the object of a number of studies p r i m a r i l y concerned with understanding f o r e s t f l o o r s w i t h i n the framework of a proposed c l a s s i f i c a t i o n scheme (Mader, 1953; Minderman, 1960; Gessel and B a l c i , 1965). Most c l a s s i f i c a t i o n proposals have d e a l t w i t h c l a s s i f y i n g f o r e s t f l o o r s without attempting to make the scheme compatable w i t h s o i l or e c o l o g i c a l c l a s s f i c a t i o n s . Wilde (1971) s t a t e s that s o i l s c i e n t i s t s had t r a d i t i o n a l l y overlooked the f o r e s t humus i n t h e i r c l a s s i f i c a t i o n s or had included i t as an afterthought. He considered t h i s unfortunate as s o i l development i n boreal f o r e s t s i s l a r g e l y governed by processes a s s o c i a t e d w i t h humus formation. This i n d i c a t e s t h a t f o r e s t f l o o r c l a s s i f i c a t i o n w i t h i n the framework of a s o i l , e c o l o g i c a l or other land c l a s s i f i c a t i o n scheme would be d e s i r a b l e . This type of approach would focus on the r o l e or f u n c t i o n s of the f o r e s t f l o o r w i t h i n a more complete system. This would be more d e s i r a b l e than f o c u s s i n g on an i s o l a t e d component of the l a r g e r f o r e s t system. This approach should y i e l d a more complete understanding of the o v e r a l l system. The r e s u l t would be a b e t t e r understanding of the r o l e played by f o r e s t f l o o r s i n various s i l v i c u l t u r a l and management p r a c t i c e s . A few studies have u t i l i z e d f o r e s t f l o o r and s o i l p r o p e r t i e s as a n c i l l a r y c h a r a c t e r i s t i c s f o r d e s c r i b i n g the u n i t s of a vege t a t i o n c l a s s i f i c a t i o n (Youngberg, 1966; P f i s t e r et al., 1977). The assumption i n these studies i s that c o r r e l a t i o n s between v e g e t a t i o n and s o i l types are too weak to enable p r e d i c t i o n of vegetation communities from s o i l /41 types or v i c e v e r s a ( P f i s t e r et al., 1977). K l i n k a et al. (1979) are developing a humus-form c l a s s i f i c a t i o n system w i t h i n the framework of K r a j i n a ' s b i o g e o c l i m a t i c system (Daniel et al., 1979; Mueller-Dombois and E l l e n b e r g , 1974). Kimmins (1977) has o u t l i n e d the need f o r an ecosystem or e c o l o g i c a l c l a s s i f i c a t i o n i n order to b e t t e r understand and manage f o r e s t s . The main o b j e c t i v e of K l i n k a et al. i s to organize the knowledge about humus forms, t h e i r formation and p r o p e r t i e s i n r e l a t i o n to an ecosystem or biogeocoenose. They f e e l that an ecosystematic approach to humus c l a s s i f i c a t i o n i s j u s t i f i e d because humus forms can then be r e l a t e d to other ecosystem components. R e l a t i o n s h i p s between humus forms and other ecosystem components can then be u t i l i z e d to understand humus formation as w e l l as to i n d i c a t e the r o l e and s i g n i f i c a n c e of humus i n d i f f e r e n t ecosystems. The end product should be a b e t t e r understanding of the r o l e of humus i n a biogeocoenose. This approach would a l s o avoid the problem of developing f o r e s t f l o o r or humus c l a s s i f i c a t i o n schemes that are not compatable w i t h s o i l or ecosystem c l a s s i f i c a t i o n s . The c l a s s i f i c a t i o n of K l i n k a et al. (1979) i s p r i m a r i l y based on morphological c h a r a c t e r i s t i c s . Chemical c h a r a c t e r i z a t i o n of the f o r e s t f l o o r s of a few biogeocoenoses would appear to be d e s i r a b l e . The next phase of the present study w i l l examine those p r o p e r t i e s , i f any, which w i l l d i s t i n g u i s h horizons and p l o t s of a few r e p r e s e n t a t i v e biogeocoenoses. The p l o t s and p r o p e r t i e s of the e a r l i e r v a r i a b i l i t y study w i l l be used. I t i s d e s i r a b l e to note p r o p e r t i e s which w i l l d i s t i n g u i s h LF and H horizons and p r o p e r t i e s which w i l l separate the /42 f o r e s t f l o o r s of X e r i c , Mexic and Hygric s i t e s . These p r o p e r t i e s would have value i n c h a r a c t e r i z i n g and c l a s s i f y i n g f o r e s t f l o o r s as w e l l as p o s s i b l e value i n separating biogeocoenoses or other e c o l o g i c a l u n i t s . This type of a n a l y s i s w i l l be attempted by using s i n g l e v a r i a b l e and m u l t i v a r i a b l e s t a t i s t i c a l techniques. A number of der i v e d or c a l c u l a t e d p r o p e r t i e s w i l l be u t i l i z e d i n the a n a l y s i s i n a d d i t i o n to the p r o p e r t i e s p r e v i o u s l y u t i l i z e d i n the v a r i a b i l i t y study. The derived p r o p e r t i e s w i l l be included because they may have p o s s i b l e value f o r understanding the f e r t i l i t y of a s i t e and p o s s i b l e value f o r c h a r a c t e r i z i n g a s i t e . They would then have p o t e n t i a l value f o r c l a s s i f i c a t i o n purposes. The derived v a r i a b l e s w i l l be b r i e f l y discussed and an attempt w i l l be made to use these v a r i a b l e s to d i s t i n g u i s h the s i t e s and horizons. P o s s i b l e f e r t i l i t y r e l a t i o n s h i p s i n v o l v i n g these v a r i a b l e s w i l l be examined i n more d e t a i l i n the f i n a l phase of t h i s study. The derived p r o p e r t i e s and the r a t i o n a l e f o r t h e i r i n c l u s i o n were determined by c o n s u l t i n g a number of s o i l f e r t i l i t y r eferences. Ratios i n v o l v i n g t o t a l C, t o t a l N and t o t a l P w i l l be c a l c u l a t e d . P r i t c h e t t (1979), T i s d a l e and Nelson (1975), and Richards (1974) have discussed the importance of r a t i o s i n v o l v i n g these elements f o r determining the m i n e r a l i z a t i o n and"immobilization of N and P. Ratios i n v o l v i n g t o t a l Ca, t o t a l Mg and t o t a l K w i l l be estimated. Hesse (1971) and T i s d a l e and Nelson (1975) have reported f e r t i l i t y r e l a t i o n s h i p s i n v o l v i n g these n u t r i e n t s . Although these authors p r i m a r i l y d i s c u s s exchangeable v a l u e s , t o t a l s w i l l be u t i l i z e d i n order to examine /43 p o t e n t i a l r e l a t i o n s h i p s . Lewis (1976) has discussed the value of estimating base s a t u r a t i o n (BS) at f i e l d pH f o r f o r e s t systems. Thus the BS determined f o r both the NaCl method and the NH.OAC method 4 w i l l be i n c l u d e d . As noted p r e v i o u s l y , Youngberg (1966) found that the exchangeable bases were not r e l a t e d to t o t a l s i n the f o r e s t f l o o r s of D o u g l a s - f i r stands. This i m p l i e s that the r a t i o s of exchangeable to t o t a l n u t r i e n t s are not constant. I t would be i n t e r e s t i n g to see i f these r a t i o s could be u t i l i z e d f o r d i s t i n g u i s h i n g the f o r e s t f l o o r s of various biogeocoenoses. Thus the r a t i o s of exchangeable Ca(4), Mg(4), and K(4) to the corresponding t o t a l n u t r i e n t s are to be c a l c u l a t e d . The f i n a l r a t i o to be included w i l l be the r a t i o of LOI to t o t a l C. Hesse (1971) s t a t e s that when LOI i s used as a measure of organic matter, a r a t i o of 1.724 i s o f t e n used. He notes that t h i s r a t i o i s not that r e l i a b l e nor constant. Thus i t would be u s e f u l to determine i f t h i s r a t i o i s constant and i f i t could be u t i l i z e d f o r d i s t i n g u i s h i n g s i t e s and h o r i z o n s . D e t a i l e d c a l c u l a t i o n s of the derived v a r i a b l e s w i l l be o u t l i n e d i n the Methods s e c t i o n . Methods The p r o p e r t i e s measured and discussed i n the v a r i a b i l i t y study were used i n the s t a t i s t i c a l analyses f o r c l a s s i f i c a t i o n (Appendix 1-2). Several derived v a r i a b l e s were c a l c u l a t e d and were included i n the s t a t i s t i c a l analyses. The f o l l o w i n g r a t i o s i n v o l v i n g 744 t o t a l n u t r i e n t s were c a l c u l a t e d : t o t a l C to t o t a l N (C/N), t o t a l C to t o t a l P (C/P), t o t a l N to t o t a l P (N/P), t o t a l Ca to t o t a l Mg (Ca/Mg), t o t a l Ca to t o t a l K (Ca/K), t o t a l Mg to t o t a l K (Mg/K), and LOI to t o t a l C (LOI/C). Three r a t i o s i n v o l v i n g the exchangeable n u t r i e n t as a percentage of the t o t a l n u t r i e n t were estimated as f o l l o w s : exchangeable Ca(4) as a percentage of t o t a l Ca (ExCa(4)), exchangeable Mg(4) as a percentage of t o t a l Mg (ExMg(4)), and exchangeable K(4) as a percentage of t o t a l K (ExK(4)). The percent base s a t u r a t i o n f o r the NH^OAc method (BS(7)) was determined by summing the exchangeable Ca(7), Mg(7), K(7), and Na(7), d i v i d i n g by the t o t a l CEC (7) , and m u l t i p l y i n g by 100%. The percent base s a t u r a t i o n w i t h the NaCl method (BS(4)) was c a l c u l a t e d by summing the exchangeable Ca(4), Mg(4), K(4), and Na(7), d i v i d i n g by the t o t a l CEC (4) and m u l t i p l y i n g by 100%. I t was assumed that the value f o r exchangeable Na was the same f o r both methods. I t was p r e v i o u s l y noted that the other exchangeable bases had s i m i l a r r e s u l t s f o r both methods and t h e r e f o r e t h i s assumption should not c o n t r i b u t e a s i g n i f i c a n t e r r o r to the c a l c u l a t i o n . A u n i v a r i a t e or s i n g l e v a r i a b l e a n a l y s i s was performed to determine which v a r i a b l e s , on an i n d i v i d u a l b a s i s would d i s t i n g u i s h the s i t e s , the LF and H h o r i z o n s , and the horizons o f each s i t e . Two-way a n a l y s i s of v a r i a n c e , w i t h horizons and s i t e s as f a c t o r s , was performed on the v a r i a b l e s (Sokal and Rohlf, 1973). The Student-Newman-Keuls (SNK) Range t e s t was a p p l i e d when s i g n i f i c a n c e at the f i v e percent l e v e l was noted f o r s i t e s , LF and H h o r i z o n s , and the horizons of each s i t e . /45 This range t e s t was u t i l i z e d to determine which property means are s i g n i f i c a n t l y d i f f e r e n t at the f i v e percent l e v e l (Zar, 1974). Procedures f o r a n a l y s i s of variance and range t e s t s w i t h t h i s system have been o u t l i n e d by Greig and O s t e r l i n (1978). A m u l t i v a r i a t e a n a l y s i s was a l s o performed to determine which v a r i a b l e s , i n combination, would best d i s t i n g u i s h the horizons of each s i t e . There were s i x c l a s s e s or treatments i n t h i s a n a l y s i s . The s i x treatments were X e r i c LP, X e r i c H, Mesic LF, Mesic H, Hygric LF, and Hygric H. A stepwise d i s c r i m i n a n t a n a l y s i s was performed to maximize the separation of the s i x groups (Jennrich and Sampson, 1977). Halm (1976a) has o u t l i n e d procedures f o r o b t a i n i n g a stepwise d i s c r i m i n a n t a n a l y s i s w i t h t h i s system. The output from t h i s computer package includes a l i s t o f v a r i a b l e s , a c l a s s i f i c a t i o n m a t r i x , and a j a c k k n i f e d c l a s s i f i c a t i o n m a t r i x . The l i s t o f v a r i a b l e s includes those v a r i a b l e s which were used to maximize the separation of the groups. The c l a s s i f i c a t i o n matrix i s a t a b u l a t i o n of the number of cases c o r r e c t l y c l a s s i f i e d i n each group by use of a s e r i e s of c l a s s i f i c a t i o n f u n c t i o n s derived from the input v a r i a b l e s . The j a c k k n i f e d c l a s s i f i c a t i o n matrix i s created by c l a s s i f y i n g each case with a s e r i e s o f c l a s s i f i c a t i o n f u n c t i o n s computed from a l l the data except f o r the case being c l a s s i f i e d . The j a c k k n i f e d c l a s s i f i c a t i o n y i e l d s a system l e s s subject to b i a s due to anomalous observations (Halm, 1976). The stepwise d i s c r i m i n a n t a n a l y s i s u t i l i z e d nine of the o r i g i n a l 40 v a r i a b l e s to maximize group separations. Reasonable c l a s s i f i c a t i o n accuracy with fewer v a r i a b l e s would be d e s i r a b l e . i n terms /46 of the reduced time and e f f o r t r e q u i r e d f o r a n a l y t i c a l work. Therefore, i t was decided to evaluate how w e l l the groups are c l a s s i f i e d by stepwise d i s c r i m i n a n t a n a l y s i s when fewer v a r i a b l e s are i n v o l v e d . Thus the v a r i a b l e s N, P, K, LOI/C, and CEC(4) were s e l e c t e d and subjected to a stepwise d i s c r i m i n a n t a n a l y s i s . These v a r i a b l e s were separated i n the o r i g i n a l stepwise d i s c r i m i n a n t a n a l y s i s , they were p r e v i o u s l y found to be l e s s v a r i a b l e than many of the other parameters, and they should a l l have important s i t e f e r t i l i t y values. T o t a l K was used in s t e a d of K(4) so that the N, P, and K n u t r i e n t s could be determined by a s i n g l e a n a l y s i s i f the c l a s s i f i c a t i o n accuracy should prove to be acceptable. I t w i l l be demonstrated i n the next chapter that K(4) and K are h i g h l y cor-r e l a t e d and should y i e l d s i m i l a r r e s u l t s f o r c l a s s i f i c a t i o n purposes. The f i n a l step i n the m u l t i v a r i a t e a n a l y s i s was to s e l e c t three v a r i a b l e s and subject them to a stepwise d i s c r i m i n a n t a n a l y s i s . This step was used to estimate how w e l l the groups could be d i s t i n g u i s h e d w i t h a minimum number of v a r i a b l e s . The three v a r i a b l e s were N, P, and K. Results and Discussion Derived Variables The values f o r the derived v a r i a b l e s are included i n Appendix 2-1. The b a s i c s t a t i s t i c s f o r these v a r i a b l e s w i t h i n each sampling u n i t have been l i s t e d i n Appendix 2-2. The C V . f o r many of these v a r i a b l e s i s n o t i c a b l y greater than the C V . values estimated f o r t o t a l C and t o t a l N i n the previous study. Sokal and Rohlf (1973) /47 have noted that r a t i o s could be subject to s i g n i f i c a n t e r r o r because they incorporate the v a r i a t i o n of a l l p r o p e r t i e s used i n t h e i r d e r i v a t i o n . The derived v a r i a b l e w i t h the smallest C V . i s the LOI/C r a t i o . The C V . f o r LOI/C i s c l o s e to 2% f o r a l l sampling u n i t s . The minimum value f o r a l l sampling u n i t s i s 1.85 while the o v e r a l l mean i s 1.98. This i n d i c a t e s that the value of 1.724 c i t e d by Hesse (1971) would not be a p p l i c a b l e to the organic m a t e r i a l of the present study s i t e s . A value c l o s e r to 1.98 would be more appropriate. The derived v a r i a b l e s w i t h the l a r g e s t c o e f f i c i e n t s of v a r i a t i o n over a l l sampling u n i t s are the Ca/Mg, Ca/K, and Mg/K r a t i o s . This i n d i c a t e s that r e l a t i o n s h i p s between these n u t r i e n t s would not be obvious or r e a d i l y detected. These v a r i a b l e s should have the l e a s t value f o r c l a s s i f i c a t i o n purposes because o f t h e i r l a r g e inherent v a r i a t i o n . The C/N, C/P, N/P, BS(7), and BS(4) v a r i a b l e s have c o e f f i c i e n t s o f v a r i a t i o n that are not as l a r g e as the c o e f f i c i e n t s of v a r i a t i o n f o r Ca/Mg, Ca/K, and Mg/K. The BS(4) values are always greater than the BS(7) values. This i m p l i e s that the f i e l d n u t r i e n t status i s b e t t e r than would be i n f e r r e d by using the values obtained at pH 7. The mean C/N r a t i o s are comparable to values found by Gessel and B a l c i (1965) and Ovington (1954) on s i m i l a r s i t e s . Although C/N and base s a t u r a t i o n are o f t e n measured i n f e r t i l i t y s t u d i e s , the C V . values i n d i c a t e that these v a r i a b l e s are best s u i t e d f o r i n d i c a t i n g general trends r a t h e r than s p e c i f i c f e r t i l i t y r e l a t i o n s h i p s . The ExCa(4), ExMg(4), and ExK(4) v a r i a b l e s have n o t i c e a b l y l a r g e r c o e f f i c i e n t s of v a r i a t i o n f o r the Hygric s i t e than f o r the X e r i c /48 and Mesic s i t e s . This r e s u l t i s compatable with the e a r l i e r v a r i a b i l i t y study which i n d i c a t e d that the Hygric s i t e i s the most v a r i a b l e s i t e . The mean values f o r these parameters are g e n e r a l l y greater than 60%. This i n d i c a t e s that most of the Ca, Mg, and K found on the study s i t e s are i n exchangeable forms. This may have important s i l v i c u l t u r a l i m p l i c a t i o n s s i n c e P r i t c h e t t (1979) s t a t e s that f o r e s t f l o o r s s t o r e r e l a t i v e l y l a r g e q u a n t i t i e s of n u t r i e n t s . The values f o r ExCa(4) and ExMg(4) i n d i c a t e a p o s s i b l e a n a l y t i c a l e r r o r . The samples Mesic I I 0,1H and Hygric I I I 3,9LF had ExCa(4) and ExMg(4) r e s u l t s which were n o t i c e a b l y greater than 100%. These r e s u l t s do not appear to be w i t h i n normal experimental e r r o r . I t was observed i n the f i e l d t hat a l o t of decaying wood was found and sampled at these two l o c a t i o n s . I t w i l l be demonstrated i n the next chapter t h a t woody m a t e r i a l s have lower Ca and Mg contents than normal f o r e s t f l o o r m a t e r i a l s . Thus some f i n e woody m a t e r i a l has p o s s i b l y been incorporated i n these samples. A subsampling e r r o r has probably occurred. The subsamples used f o r t o t a l a n a l y s i s r e c e i v e d a l a r g e r p r o p o r t i o n of woody m a t e r i a l than the subsample used f o r exchangeable n u t r i e n t s . I t i s a l s o p o s s i b l e that t h i s type of e r r o r would be more n o t i c e a b l e when a smaller subsample i s used f o r t o t a l a n l a y s i s than i s used f o r exchangeable n u t r i e n t s . This problem could be overcome by g r i n d i n g samples to f i n e r than 20 mesh and by u s i n g l a r g e r samples f o r t o t a l a n a l y s i s . This procedure i s recommended f o r f u t u r e studies i n v o l v i n g f o r e s t f l o o r m a t e r i a l s . /49 Separation of Sites and Horizons with Univariate Analysis The F - t e s t values from the two-way a n a l y s i s of vari a n c e have been summarized i n Table 2-1. The F-test values f o r the s i t e f a c t o r , the h o r i z o n f a c t o r , and the s i t e - h o r i z o n i n t e r a c t i o n of each v a r i a b l e are included i n t h i s t a b l e . Sokal and Rohlf (1973) re p o r t that statements about the i n d i v i d u a l f a c t o r s i n a two-way a n a l y s i s of variance can be made l a r g e l y independent of each other when the i n t e r a c t i o n between the two f a c t o r s i s not s i g n i f i c a n t . They a l s o note that an o v e r a l l statement f o r each i n d i v i d u a l f a c t o r would have l i t t l e meaning when the i n t e r a c t i o n i s s i g n i f i c a n t . Thus those v a r i a b l e s which do not possess a s i g n i f i c a n t i n t e r a c t i o n w i l l be discussed w i t h reference to d i s t i n g u i s h i n g s i t e s and horizons by the SNK range t e s t r e s u l t s . For those v a r i a b l e s w i t h a s i g n i f i c a n t i n t e r a c t i o n , the SNK range t e s t r e s u l t s f o r comparing the means of the s i x s i t e - h o r i z o n groups w i l l be i n t e r p r e t e d . The SNK range t e s t r e s u l t s f o r comparing s i t e means when the i n t e r a c t i o n i s hot s i g n i f i c a n t have been included i n Table 2-2. The v a r i a b l e s K, Na(7), and LOI/C separate the three s i t e s i n t o three d i s t i n c t groups. These v a r i a b l e s would be the best f o r d i s t i n g u i s h i n g the f o r e s t f l o o r s o f the three biogeocoenoses. The v a r i a b l e s p r ^ t ^ O ) , pHfCaCl^), and pH(NaCl) do not separate any of the s i t e means i n t o d i s t i n c t groups. These v a r i a b l e s would have the l e a s t value f o r d i s t i n g u i s h i n g the f o r e s t f l o o r s of the present study. The v a r i a b l e t hickness d i d not have a s i g n i f i c a n t s i t e - h o r i z o n i n t e r a c t i o n . I t a l s o d i d not have a s i g n i f i c a n t s i t e o r . h o r i z o n f a c t o r . .Therefore, t h i s /50 TABLE 2-1: The F-Values f o r Two-Way ANOVA w i t h I n t e r a c t i o n f o r S i t e s and Horizons F-values F-values Prop e r t y S i t e Horizon S i t e X Horizon Property S i t e Horizon S i t e X Horizon c 23 .0936** 7 .5703** 3 .6472* N 53 .7553** 6 .8185* 16 .3800** P 16 .9272** 0. .0048 N S 10 .7732** Ca 7 .6100** 3 .9542* 0 .1530 NS Mg 7 .3016** 15 .9437** 4 .8343* K 21 .9766** 61, .9814** 0 .4219 N S Na 8 .6269** 19, . 1828** 3 .1033* Fe 14 .8946** 6, .8144* 4 .8590* A l 15 .3860** 7, .0122** 3 .6226* Mn 4 .0962* 0. ,0153NS 0 .3371 N S Cu 12 .1991** 78. .3653** 8 .3120** Zn 5 .2254** 11. .8224** 1 .4102 N S CEC(7) 19 .6537** 40. .9445** 8 .3136** Ca(7) 12 .1561** 6. .9117** 0 .0040 N S Mg(7) 11 .6326** 4. ,9016* 6 .5485** K(7) 17. .2921** 98. ,9355** 0 .1228 N S Na(7) 21 .4383** 0. ,357lNS 2, .8713 N S Ca/K 13, .4511** 8. ,4755** 1, .7512 N S Mg/K 16, .5737** 45. 9996** 9, .3260** LOI/C 23, .3042** 1. 4170 N S 2, .3720 N S CEC(4) 10. .6332** 22 .8099** 3, .7763* Ca(4) 11. ,6078** 2. .4834 N S 0, .0483 N S Mg(4) 10. ,2639** 5, .6594* 6, .2081** K(4) 27. ,6050** 132, .9260** 0, .0467NS Al ( 4 ) 37. ,0099** 18, .8552** 13, .5196** pH(H 20) 4. ,9752** 4, .1727* 1, .5702 N S pH(CaCl 2) 4. ,0608* 7, .3338** 1. ,7708 N S pH(NaCl) 5. 7369** 2, .5725 N S 2. ,5771 N S LOI 13. ,8535** 11, .3375** 2. ,8792 N S 0w 52. 8282** 35, .2597** ,9172 N S 6. .3789** Thickness 2. 8 7 9 9 N S 0. 1. ,6938 N S C/N 54. 3702** 2. ,4158 N S 10. .9059** C/P 20. 7698** 6. .0062* 13. .7868** N/P 21. 3917** 19. .6260** 11. .1577** ,9489 N b BS(7) 25. 7930** 27. .6822** 0. BS(4) 19. 3400** ' 0. ,0243 N S 2. ,1311 N S Ca/Mg 3. 9053* 16. .6952** 0. ,8970 N S ExCa(4) 14. 2073** 0. ,1198 N S 3. ,8112* ExMg(4) 10. 1483** 4. .7897* 3. ,9332* ExK(4) 17. 3371** 103. .6494** 3. ,8424* S i g n i f i c a n c e : ** - at one percent, * - at f i v e percent, NS - not s i g n i f i c a n t i /51 TABLE 2-2: The Results of the Student-Newman-Keuls Range Test f o r S i t e s where the S i t e - H o r i z o n I n t e r a c t i o n i s not S i g n i f i c a n t Property S i t e s +t§ Property S i t e s Ca Hy X M pH(CaCl 2) M X Hy K M Hy X pH(NaCl) M X Hy Mn M X HY LOI Hy X M Zn X M Hy Thickness NS1T Ca(7) Hy X M BS(7) Hy X M K(7) M Hy X BS(4) Hy X M NaC.7) Hy M X Ca/Mg Hy M X Ca(4) Hy X M Ca/K Hy X M K(4) M Hy X LOI/C X M H pH(H 20) M X Hy + Mean values increase from l e f t to r i g h t $ X = X e r i c , M = Mesic, Hy = Hygric § Underlined values do not d i f f e r s i g n i f i c a n t l y at f i v e percent 11 S i t e f a c t o r of two-way ANOVA not s i g n i f i c a n t at f i v e percent /52 v a r i a b l e should a l s o be included with the group o f v a r i a b l e s w i t h l e a s t value f o r separating the f o r e s t f l o o r s of biogeocoenoses. Several of the remaining v a r i a b l e s of Table 2-2 w i l l separate one s i t e mean from the mean values of the other two s i t e s . The X e r i c s i t e i s d i s t i n g u i s h e d by the v a r i a b l e s Zn, K(7), and K(7). The v a r i a b l e Ca/K w i l l separate the Mesic s i t e . The Hygric s i t e i s c h a r a c t e r i z e d by the v a r i a b l e s Ca, Mn, Ca(7), Ca(4), LOI, BS(7), BS(4),and Ca/Mg. Although these v a r i a b l e s do not separate the f o r e s t f l o o r s of a l l three s i t e s , they have value because they w i l l d i f f e r e n t i a t e the f o r e s t f l o o r s of i n d i v i d u a l s i t e s . Thus these v a r i a b l e s could be used to c h a r a c t e r i z e the f o r e s t f l o o r s of i n d i v i d u a l biogeocoenoses. The Hygric f o r e s t f l o o r was p r e v i o u s l y found to be the most v a r i a b l e and the concentrations o f some n u t r i e n t s were n o t i c e a b l y g r e a t e r . Thus i t i s not s u r p r i s i n g to note that more parameters w i l l d i s t i n g u i s h the f o r e s t f l o o r of the Hygric s i t e from the f o r e s t f l o o r s of the other two s i t e s . The Mesic f o r e s t f l o o r has the fewest v a r i a b l e s separating i t from the f o r e s t f l o o r s of the other two s i t e s . This i s expected si n c e t h i s s i t e i s i n a t r a n s i t i o n a l p o s i t i o n with respect to two moisture extremes. I t i s a l s o t r a n s i t i o n a l w i t h respect to n u t r i e n t s such as t o t a l N. The Mesic f o r e s t f l o o r groups with the X e r i c f o r e s t f l o o r more than with the Hygric f o r e s t f l o o r f o r those v a r i a b l e s which do not separate the Mesic f o r e s t f l o o r . Thus the Mesic f o r e s t f l o o r has a c l o s e r resemblance to the X e r i c f o r e s t f l o o r although i t occupies an intermediate slope p o s i t i o n . This may be important f o r 753 management p r a c t i c e s such as f e r t i l i z a t i o n where the n u t r i e n t regime of a s i t e i s to be manipulated. The SNK range t e s t r e s u l t s f o r comparing the o v e r a l l means of the LF and H horizons where the i n t e r a c t i o n i s not s i g n i f i c a n t have been l i s t e d i n Table 2-3. The LF h o r i z o n can be d i s t i n g u i s h e d from the H hor i z o n by the f o l l o w i n g v a r i a b l e s : K, Zn, Ca(7), K(7), K(4), pH(H 20), pH(CaCl 2), LOI, BS(7), Ca/Mg, and Ca/K. The v a r i a b l e Ca d i d not d i s t i n g u i s h LF and H horizons although i t had a s i g n i f i c a n t h o r i z o n f a c t o r . The a n a l y s i s of vari a n c e i s known to be a more d i s c r i m i n a t i n g t e s t than the non-parametric range t e s t (Sokal and Rohlf, 1973). Seven v a r i a b l e s d i d not have a s i g n i f i c a n t h o r i z o n f a c t o r when the s i t e - h o r i z o n i n t e r a c t i o n was not s i g n i f i c a n t . These v a r i a b l e s i n c l u d e Mn, Na(7), Ca(4), pH(NaCl), t h i c k n e s s , BS(4), and LOI/C. This l a s t group of v a r i a b l e s , i n a d d i t i o n to Ca, would have l e s s value f o r d i s t i n g u i s h i n g LF and H horizons than the previous group of v a r i a b l e s . There were three v a r i a b l e s able to d i s t i n g u i s h the f o r e s t f l o o r s of a l l three s i t e s w h i le 11 v a r i a b l e s could separate the LF and H horizons where the s i t e - h o r i z o n i n t e r a c t i o n was not s i g n i f i c a n t . This i n d i c a t e s that the members of the two c l a s s h o r i z o n system are e a s i e r to separate than the members of the three c l a s s s i t e system. I t i s p o s s i b l e that s t r a t i f y i n g the f o r e s t f l o o r i n t o L, F, and H horizons would have y i e l d e d fewer v a r i a b l e s f o r d i s t i n g u i s h i n g these horizons than was found f o r separating LF and H horizons. Thus compositing L and F horizons may have s i m p l i f i e d the separation of horizons r e p r e s e n t i n g d i f f e r e n t stages of decomposition. /54 TABLE 2-3: The Results o f the Student-Newman-Keuls Range Test f o r Horizons where the S i t e - H o r i z o n I n t e r a c t i o n i s not S i g n i f i c a n t + *3 Property Horizons Property Horizons Ca H LF pH(CaCl 2) H LF K H LF pH(NaCl) NS Mn LOI H LF Zn H LF Thickness NS Ca(7) H LF BS(7) H LF K(7) H LF BS(4) NS Na(7) NS Ca/Mg H LF Ca(4) NS Ca/K LF H K(4) H LF LOI/C NS pH(H 20) H LF + Mean values increase from l e f t to r i g h t * LF, H: Canada S o i l Survey Committee (1978) § Underlined values do not d i f f e r s i g n i f i c a n t l y at f i v e percent 11 Horizon f a c t o r of two-way ANOVA not s i g n i f i c a n t at f i v e percent / 5 5 The f i n a l group of v a r i a b l e s to be considered are those w i t h a s i g n i f i c a n t s i t e - h o r i z o n i n t e r a c t i o n . The SNK range t e s t r e s u l t s f o r comparing the means of the s i x s i t e - h o r i z o n treatments are included i n Table 2-4. The X e r i c LF and Mesic LF horizons were not d i s t i n g u i s h e d by any of the v a r i a b l e s . The Hygric LF ho r i z o n was only d i s t i n g u i s h e d by the v a r i a b l e 0w while the X e r i c H ho r i z o n was separated by Cu and C/P. The Mesic and Hygric H horizons were separated by considerably more v a r i a b l e s . The Mesic H ho r i z o n could be d i f f e r e n t i a t e d by Mg, Cu, CEC(7), Mg(7), Mg(4), C/P, N/P, and Mg/K. The Hygric H h o r i z o n was d i s t i n g u i s h e d by the mean values f o r C, N, P, Na, Fe, A l , CEC(7), A l ( 4 ) , C/N, ExCa(4), ExMg(4), and ExK(4). The only v a r i a b l e of Table 2-4 which d i d not separate any of the s i x ho r i z o n means was CEC(4). Thus a l l members of the s i x c l a s s system f o r s i t e - h o r i z o n treatments could not be separated by use of a s i n g l e v a r i a b l e . I t would be p o s s i b l e to separate a l l the groups by an i n d i r e c t method. The f i r s t step would be to d i s t i n g u i s h the s i t e w i t h v a r i a b l e s that were p r e v i o u s l y found to separate s i t e s . The next step would be to separate the horizons with the v a r i a b l e s which most r e a d i l y separated the LF and H horizons. However, t h i s would i n v o l v e a d d i t i o n a l time and e f f o r t which may not be d e s i r a b l e . There are no p r e f e r r e d v a r i a b l e s f o r d i s t i n g u i s h i n g the horizons o f a l l s i t e s . Some v a r i a b l e s may have value f o r separating a few i n d i v i d u a l horizons and the horizons of c e r t a i n s i t e s are more r e a d i l y separated than others. This r e s u l t i s i n agreement with an e a r l i e r observation that the members of the two c l a s s LF and H h o r i z o n TABLE 2-4: The Results o f the Student-Newman-Keuls Range Test f o r Horizons of Each S i t e where the S i t e - H o r i z o n I n t e r a c t i o n i s S i g n i f i c a n t Property Horizons+*§ Property Horizons C HyH HyLF XH MH MLF XLF Mg(4) HyH HyLF XLF MLF XH MH N HX XLF MLF MH HyLF HyH A l ( 4 j MLF XLF MH XH HyLF HyH P MH XH MLF XLF HYLF HyL 6w XLF XH MLF HYLF MH HyH Mg ' XLF HyLF MLF XH HYH MH C/N HyH HyLF MH MLF XLF XH Na XLF XLF HyLF MH XH HyH C/P HyH HyLF XLF MLF XH MH Fe XLF MLF MH XH HYLF HyH N/P XLF XH HyH MLF HyLF MH A l MLF XLF MH XH HyLF HyH Mg/K XLF HyLF MLF XH HyH MH Cu MH XH HyH XLF MLF HyLF ExCa(4) HyH HyLF XLF MLF XH MH CEC(7) XLF XH HyLF MLF HyH MH ExMg(4) HyH HyLF XH XLF MLF MH Mg(7) HyH HyFL XLF XH MLF MH ExK(4) HyH MH XH HyLF MLF XLF CEC(4) HyH XH HyLF MH MLF XLF + Mean values increase from l e f t to r i j ght * XLF = X e r i c LF, XH = X e r i c H, MLF = Mesic LF, MH = Mesic H, HyLF = Hygric LF, HyH = Hygric H § Underlined values do not d i f f e r s i g n i f i c a n t l y at f i v e percent /57 system are e a s i e r to separate than the more complex three c l a s s s i t e system. I t appears t h a t the d i f f i c u l t y i n separating c l a s s e s w i t h u n i v a r i a t e a n a l y s i s increases as the number of groups i n the f o r e s t f l o o r system in c r e a s e s . Thus the order of i n c r e a s i n g d i f f i c u l t y f o r d i s t i n g u i s h i n g c l a s s e s i s LF and H h o r i z o n s , s i t e s , and the horizons of i n d i v i d u a l s i t e s . Separation of the Horizons of Each Site with Multivariate Analysis The c l a s s i f i c a t i o n matrices produced by the stepwise d i s c r i m i n a n t a n a l y s i s f o r 40 v a r i a b l e s , f i v e v a r i a b l e s , and three v a r i a b l e s are reproduced i n Tables 2-5, 2-7, and 2-9, r e s p e c t i v e l y . The j a c k k n i f e d or l e s s biased c l a s s i f i c a t i o n matrices f o r the same sets of v a r i a b l e s are reproduced i n Tables 2-6, 2-8, and 2-10. The d i s c r i m i n a n t a n a l y s i s w i t h 40 v a r i a b l e s only used nine of these v a r i a b l e s to maximize the sep a r a t i o n of the s i x groups. This a n a l y s i s w i l l henceforth be c a l l e d the nine v a r i a b l e a n a l y s i s . The v a r i a b l e s and the order i n which they were u t i l i z e d are K(4), Cu, 0w, CEC(4), N/P, LOI/C, P, A l ( 4 ) , and Mn. The v a r i a b l e s are l i s t e d i n order of decreasing value f o r separating the s i x horizons. The v a r i a b l e N was used i n the e a r l y p a r t of the d i s c r i m i n a t e a n a l y s i s but was l a t e r removed from the c l a s s i f i c a t i o n f u n c t i o n s . Some of these v a r i a b l e s are more d e s i r a b l e than others i n terms of v a r i a b i l i t y and f e r t i l i t y . P r o p e r t i e s such as N/P, Al(4) and Mn were p r e v i o u s l y found to be h i g h l y v a r i a b l e and would r e q u i r e more i n t e n s i v e sampling. The n u t r i e n t Cu i s suspect, because i t i s c l o s e to a n a l y t i c a l d e t e c t i o n l i m i t s and more subject to TABLE 2-5: The C l a s s i f i c a t i o n M a trix f o r Stepwise Discriminant A n a l y s i s I n v o l v i n g Nine V a r i a b l e s Percent Correct Number of cases c l a s s i f i e d i n t o group Group"1" XLF MLF HLF XH MH HH XLF 93.3 14 0 0 1 0 0 MLF 93.3 0 14 1 0 0 0 HLF 100.0 0 0 15 0 0 0 XH 100.0 0 0 0 15 0 0 MH 100.0 0 0 0 0 15 0 HH 80.0 0 0 1 0 2 12 T o t a l 94.4 14 14 17 16 17 12 + XLF = X e r i c LF, MLF = Mesic LF, HLF = Hygric LF, XH = X e r i c H , MH = Mesic H, HH = Hygric H TABLE 2-6: The J a c k k n i f e d C l a s s i f i c a t i o n Matrix f o r Stepwise Discriminant A n a l y s i s I n v o l v i n g Nine V a r i a b l e s Group"1" Percent Correct Number of cases c l a s s i f i e d i n t o group XLF MLF HLF XH MH HH XLF 86.7 13 1 0 1 0 0 MLF 93.3 0 14 1 0 0 0 HLF 86.7 0 0 13 0 0 0 XH 100.0 0 0 0 15 0 0 MH 100.0 0 0 0 0 15 0 HH 80.0 0 0 1 0 2 12 T o t a l 91.1 13 15 15 16 17 14 +XLF = X e r i c LF, MLF = Mesic LF, HLF = Hygric LF, XH = X e r i c H, MH = Mesic H, HH = Hygric H TABLE 2-7: The C l a s s i f i c a t i o n M a trix f o r Stepwise Discriminant A n a l y s i s I n v o l v i n g Five V a r i a b l e s Percent Number of cases c l a s s i f i e d i n t o group Group + c o r r e c t XLF MLF HLF XH MH HH XLF 86.7 13 1 0 1 0 0 MLF 66.7 2 10 2 0 1 0 HLF 66.7 2 1 10 2 0 0 XH 100.0 0 0 0 15 0 0 MH 93.3 0- 0 1 0 14 0 HH 73.3 0 0 0 0 4 11 T o t a l 81.1 17 12 13 18 19 11 +XLF = X e r i c LF, MLF = Mesic LF, HLF = Hygric LF, XH = X e r i c H, MH = Mesic H, HH = Hygric H TABLE 2-8: The J a c k k n i f e d C l a s s i f i c a t i o n M a trix f o r Stepwise Discriminant A n a l y s i s I n v o l v i n g Five V a r i a b l e s Group + Percent Number of cases c l a s s i f i e d i n t o group c o r r e c t XLF MLF HLF XH MH HH XLF 86.7 13 1 0 1 0 0 MLF 66.7 2 10 2 0 1 0 HLF 46.7 2 2 7 3 0 1 XH 100.0 0 0 0 15 0 0 MH 86.7 0 1 1 0 13 0 HH 66.7 0 0 0 0 5 10 T o t a l 75.6 17 14 10 19 19 11 +XLF = X e r i c LF, MLF = Mesic LF, HLF = Hygric LF, XH = X e r i c H, MH = Mexic H, HH = Hygric H TABLE 2-9: The C l a s s i f i c a t i o n M a trix f o r Stepwise Discriminant A n a l y s i s I n v o l v i n g Two V a r i a b l e s Percent Number of cases ; c l a s s i f i e d i n t o group Group + c o r r e c t XLF MLF HLF XH MH HH XLF 73, ,3 11 1 0 3 0 0 MLF 73, ,3 1 11 2 0 1 0 HLF 53, .3 2 1 8 1 2 1 XH 53, .3 4 3 0 8 0 0 MH 86, .7 0 0 1 0 13 1 HH 86, ,7 0 0 0 0 2 13 T o t a l 71, ,1 18 16 11 12 18 15 +XLF = X e r i c LF, MLF = Mesic LF, HLF = Hygric LF, XH = X e r i c H, MH = Mesic H, HH = Hygric H TABLE 2-10: The J a c k k n i f e d C l a s s i f i c a t i o n M atrix f o r Stepwise Discriminant A n a l y s i s I n v o l v i n g Two V a r i a b l e s + Group Percent c o r r e c t Number of cases c l a s s i f i e d i n t o group XLF MLF HLF XH MH HH XLF 73.3 11 1 0 3 0 0 MLF 66.7 2 10 2 0 1 0 HLF 46.7 2 2 7 1 2 1 XH 53.3 4 3 0 8 0 0 MH 86.7 0 0 1 0 13 1 HH 86.7 0 0 0 0 2 13 T o t a l 68.9 19 16 10 12 18 15 +XLF = X e r i c LF, MLF = Mesic LF, HLF = Hygric LF, XH = X e r i c H, MH = Mesic H, HH = Hygric H 764 d e t e c t i o n e r r o r than to sampling e r r o r . The 0w i s of marginal value as i t represents the water content of an a i r - d r i e d sample. For these reasons, a second d i s c r i m i n a n t a n a l y s i s was run using the v a r i a b l e s N, P, K, LOI/C, and CEC(4). This stepwise d i s c r i m i n a n t a n a l y s i s u t i l i z e d a l l f i v e v a r i a b l e s i n the c l a s s i f i c a t i o n f u n c t i o n s . The order i n which the v a r i a b l e s were entered i n the c l a s s i f i c a t i o n f u n c t i o n s was N, K, CEC(4), LOI/C, and P. The f i n a l d i s c r i m i n a n t a n a l y s i s i n v o l v e d the v a r i a b l e s N, P, and K. The v a r i a b l e P was not used i n the c l a s s i f i c a t i o n f u n c t i o n s and t h i s procedure w i l l be c a l l e d the two v a r i a b l e a n a l y s i s . The number of cases c o r r e c t l y c l a s s i f i e d f o r the n i n e , f i v e , and two v a r i a b l e analyses were 94.4%, 81.1%, and.71.1%, r e s p e c t i v e l y . The j a c k k n i f e d procedure c o r r e c t l y c l a s s i f i e d 91.1%, 75.6%, and 68.9% of the cases f o r the nine, f i v e , a n d two v a r i a b l e analyses, r e s p e c t i v e l y . This i n d i c a t e s that there are not too many anomolous samples or observations which could s i g n i f i c a n t l y b i a s the normal c l a s s i f i c a t i o n procedure i n v o l v i n g a l l cases. The o v e r a l l trend i s f o r a decrease i n c l a s s i f i c a t i o n accuracy as the number of v a r i a b l e s used i n the c l a s s i f i c a t i o n f u n c t i o n s i s decreased. This trend i s expected. More informati o n should be a v a i l a b l e f o r d e s c r i b i n g and understanding a system when more v a r i a b l e s are included i n the a n a l y s i s . This assumes that the o r i g i n a l c l a s s i f i c a t i o n i s c o r r e c t and that the a d d i t i o n a l v a r i a b l e s are important f a c t o r s i n the system. This type of a n a l y s i s could be used f o r determining the most u s e f u l p r o p e r t i e s f o r c l a s s i f i c a t i o n purposes and the optimum number /65 of v a r i a b l e s needed f o r c l a s s i f i c a t i o n . Sampling and a n a l y t i c a l requirements should be considered when s e l e c t i n g the optimum number of v a r i a b l e s . The v a r i a b l e s s e l e c t e d would depend on the accuracy that i s considered acceptable f o r a study of t h i s nature. The maximum of 94% c o r r e c t l y c l a s s i f i e d u s i n g nine v a r i a b l e s i s d e s i r a b l e . However, i t must be remembered that these nine were s e l e c t e d from a t o t a l o f 40 v a r i a b l e s . A few of the nine s e l e c t e d are of marginal u t i l i t y i n terms of understanding f o r e s t f l o o r ecosystems. The amount of time and e f f o r t necessary to analyze f o r these nine v a r i a b l e s w i l l be greater than f o r analyses i n v o l v i n g the f i v e or two v a r i a b l e s s e l e c t e d and used i n the other d i s c r i m i n a n t analyses. The two and f i v e v a r i a b l e groups are a l s o advantageous i n terms of sampling requirements and s i t e f e r t i l i t y a p p l i c a t i o n s . Thus i t may be acceptable and more e f f i c i e n t to use a c l a s s i f i c a t i o n accuracy of only 81% or 71% when only f i v e or two l a b o r a t o r y analyses are r e q u i r e d . The reduced a n a l y t i c a l requirements would save time and s i m p l i f y the c r i t e r i a needed f o r c h a r a c t e r i z i n g s i t e s . The time saved could be u t i l i z e d f o r c h a r a c t e r i z i n g a d d i t i o n a l s i t e s and i n c r e a s i n g the o v e r a l l understanding of f o r e s t f l o o r s w i t h i n r e p r e s e n t a t i v e biogeocoenoses. Therefore the best recommendation f o r c h a r a c t e r i z i n g the f o r e s t f l o o r s of the present study i s to analyze f o r a minimum number of v a r i a b l e s and to i n c l u d e N, K, CEC(4), LOI/C, and P i n the analyses. I t i s p o s s i b l e to s e l e c t a combination of p r o p e r t i e s which w i l l best separate the horizons of a l l the s i t e s used i n t h i s study. The a n a l y t i c a l e f f o r t would o b v i o u s l y be greater than the e f f o r t r e q u i r e d /66 f o r u s i n g a s i n g l e property. The m u l t i v a r i a t e a n a l y s i s i s a l s o not able to c o r r e c t l y c l a s s i f y a l l cases f o r each treatment. This technique i s best u t i l i z e d as a screening device. The r e s u l t s could be used to a i d i n the s e l e c t i o n of v a r i a b l e s used i n f u t u r e f o r e s t f l o o r s t u d i e s . Thus f u t u r e s t u d i e s would be able to achieve a reasonable c l a s s i f i c a t i o n or c h a r a c t e r i z a t i o n of f o r e s t f l o o r s without having to s o r t through a la r g e number of v a r i a b l e s . Summary arid Conclusions Forest f l o o r c l a s s i f i c a t i o n has t r a d i t i o n a l l y been based on morphological p r o p e r t i e s which were perceived to r e f l e c t the genesis or development o f these systems. Simultaneous or subsequent s t u d i e s have attempted to c h a r a c t e r i z e f o r e s t f l o o r s with'chemical, p h y s i c a l , or m i c r o b i o l o g i c a l p r o p e r t i e s . C h a r a c t e r i z a t i o n was necessary f o r a more comprehensive understanding of f o r e s t f l o o r s and t h e i r importance f o r s i l v i c u l t u r e . Most f o r e s t f l o o r c l a s s i f i c a t i o n s have not been compatible with other s o i l , e c o l o g i c a l or land c l a s s i f i c a t i o n s . A few vege t a t i o n c l a s s i f i c a t i o n s have u t i l i z e d f o r e s t f l o o r s to c h a r a c t e r i z e v e g e t a t i o n u n i t s . A humus-form c l a s s i f i c a t i o n based on an ecosystemat approach has r e c e n t l y been proposed. This approach i s considered to be advantageous f o r understanding the r o l e of f o r e s t f l o o r s i n the o v e r a l l ecosystem. The r e s u l t should be a b e t t e r understanding of the importance of f o r e s t f l o o r s i n the management of f o r e s t ecosystems /67 This proposed c l a s s i f i c a t i o n i s based p r i m a r i l y on morphological f e a t u r e s . Therefore, chemical c h a r a c t e r i z a t i o n of the f o r e s t f l o o r s of a few r e p r e s e n t a t i v e biogeocoenoses would be d e s i r a b l e . The p r o p e r t i e s used i n the present study would be examined to see i f the f o r e s t f l o o r s and the f o r e s t f l o o r horizons could be d i s t i n g u i s h e d f o r the three biogeocoenoses. The p r o p e r t i e s used i n the c l a s s i f i c a t i o n e x e r c i s e s included the p r o p e r t i e s measured f o r the v a r i a b i l i t y study and a number of derived or c a l c u l a t e d v a r i a b l e s . The derived v a r i a b l e s were considered to have p o s s i b l e value f o r d e s c r i b i n g s i t e f e r t i l i t y r e l a t i o n s h i p s and p o s s i b l e value f o r c h a r a c t e r i z i n g the s i t e s . Many of the derived v a r i a b l e s had l a r g e c o e f f i c i e n t s of v a r i a t i o n , which reduced t h e i r p o t e n t i a l f o r c l a s s i f i c a t i o n or c h a r a c t e r i z a t i o n of f o r e s t f l o o r s . A few u s e f u l concepts were developed from the derived v a r i a b l e s . I t was noted that the LOI/C r a t i o has a low C V . and that a value of 1.98 would be more appropriate than the commonly used value of 1.724. I t was a l s o found that the m a j o r i t y of the n u t r i e n t s Ca, Mg, and K are i n exchangeable forms. A u n i v a r i a t e a n a l y s i s was used to examine the v a r i a b l e s on an i n d i v i d u a l b a s i s . Two-way a n a l y s i s of variance i n combination w i t h the SNK range t e s t was u t i l i z e d to determine which p r o p e r t i e s would best d i s t i n g u i s h the f o r e s t f l o o r s of s i t e s , the LF and H h o r i z o n s , and the horizons of i n d i v i d u a l s i t e s . The best p r o p e r t i e s f o r separating X e r i c , Mesic, and Hygric f o r e s t f l o o r s were K, Na(7), and LOI/C Other /68 v a r i a b l e s had value f o r d i s t i n g u i s h i n g the f o r e s t f l o o r s of i n d i v i d u a l s i t e s . The best p r o p e r t i e s f o r separating LF and H horizons were K, Zn, Ca(7), K(7), K(4), pH(H 20), pH(CaCl 2), LOI, BS(7), Ca/Mg, and Ca/K. The horizons of the i n d i v i d u a l s i t e s could not a l l be separated by any i n d i v i d u a l parameter. A few of the horizons of i n d i v i d u a l s i t e s could be d i f f e r e n t i a t e d by some of the p r o p e r t i e s . I t was noted that the more c l a s s e s a system had, the more d i f f i c u l t i t was to d i s t i n g u i s h or c h a r a c t e r i z e the c l a s s e s by use of a s i n g l e v a r i a b l e . Thus the order f o r i n c r e a s i n g d i f f i c u l t y i n terms of c h a r a c t e r i z a t i o n was the LF and H h o r i z o n s , the f o r e s t f l o o r s of s i t e s , and the horizons of i n d i v i d u a l s i t e s . A m u l t i v a r i a t e a n a l y s i s was performed to f i n d the combination of v a r i a b l e s which best d i s t i n g u i s h e s the horizons of i n d i v i d u a l s i t e s . Three stepwise d i s c r i m i n a n t analyses were run. Nine, f i v e and two v a r i a b l e s c o r r e c t l y c l a s s i f i e d 94%, 81%, and 71%, r e s p e c t i v e l y of the cases examined. A j a c k k n i f e d c l a s s i f i c a t i o n i n d i c a t e d that the procedure was not s i g n i f i c a n t l y biased by anomolous observations. A trend of decreasing c l a s s i f i c a t i o n accuracy w i t h a decreased input of v a r i a b l e s was noted. A compromise between c l a s s i f i c a t i o n accuracy and a n a l y t i c a l requirements was found to be d e s i r a b l e . The best approach f o r using m u l t i v a r i a t e c h a r a c t e r i z a t i o n would be to use a minimum number of v a r i a b l e s . The v a r i a b l e s best s u i t e d f o r t h i s approach were N, K, CEC(4), LOI/C, and P. These p r o p e r t i e s appeared to be a good compromise as they were advantageous i n terms of sampling requirements, /69 a n a l y t i c a l e f f o r t , and relevance to s i t e f e r t i l i t y . The stepwise discriminant analysis was considered to be more involved than the univariate analysis although i t appeared to be a useful screening device. The r e s u l t would be a reduction i n the number of properties that should be considered f o r future studies dealing with f o r e s t f l o o r c l a s s i f i c a t i o n and ch a r a c t e r i z a t i o n . /70 CHAPTER III NUTRIENT RELATIONSHIPS IN THE FOREST FLOORS Introduction The v a r i a b i l i t y and c l a s s i f i c a t i o n studies used properties that were assumed to be important f o r s i t e f e r t i l i t y . These properties should be examined i n greater d e t a i l with respect to nutrient r e l a t i o n s h i p s . Information concerning c l o s e l y r e l a t e d nutrients would also be v a l u l a b l e f o r c l a s s i f i c a t i o n purposes. Two or more highly correlated v a r i a b l e s should give comparable information for d i s t i n g u i s h i n g s i t e s or horizons. It may be necessary to measure only one of a group of v a r i a b l e s i n order to obtain optimum information f o r characterizing forest f l o o r s . Many authors have separated forest f l o o r s into horizons based on degree of decomposition. These authors have spent considerable time characterizing the l i t t e r , fermentation, : and humus layers or horizons (Romell and Heiberg, 1931; Bernier, 1968; Remezov and Pogrebnyak, 1969). The c h a r a c t e r i s t i c s and properties of these horizons were considered important for understanding processes such as nutrient c y c l i n g and nutrient accumulation. The LF and H horizons of t h i s study were previously found to be r e a d i l y separated by chemical properties. Thus i t i s assumed that LF and H horizons of t h i s study are two unique and separate systems. Nutrient r e l a t i o n s h i p s should be examined within each horizon and then the two horizons should be compared. This approach might reveal processes that are unique to each horizon. The importance of pH-dependent CEC i n f e r t i l i t y r e l a t i o n s h i p s has been examined i n s e v e r a l s t u d i e s (Coleman et al., 1959; C l a r k , 1965; Lewis, 1976). These s t u d i e s revealed that the pH-dependent CEC of s o i l s i s due to sesquioxides, c l a y s and organic matter. Since the f o r e s t f l o o r s are p r i m a r i l y organic, sesquioxides and c l a y s w i l l p l a y minimal r o l e s i n c r e a t i n g the pH-dependent CEC f o r the LF and H horizons. The CEC was measured at two d i f f e r e n t pH values f o r the v a r i a b i l i t y study. Thus the pH-dependent CEC ass o c i a t e d w i t h f o r e s t f l o o r organic matter could be r e a d i l y examined with the inf o r m a t i o n a v a i l a b l e . Decaying wood was observed to occur i n s i g n i f i c a n t q u a n t i t i e s on the old-growth s i t e s of t h i s study. The impact of decaying wood on f o r e s t f l o o r s has been examined i n a few s t u d i e s (McFee and Stone, 1966; N i k i t i n , 1966; Kaarik, 1974). These studies demonstrated that decaying wood i s a s i g n i f i c a n t component of f o r e s t f l o o r biomass, i s a r e l a t i v e l y n u t r i e n t - d e f i c i e n t s u b s t r a t e , and i s a substrate of r e l a t i v e l y long d u r a t i o n i n undisturbed old-growth stands. These st u d i e s have a l s o e s t a b l i s h e d t h a t decaying wood plays an important r o l e i n s i l v i c u l t u r e and s i t e v a r i a b i l i t y . Therefore, i t i s d e s i r a b l e to examine the n u t r i e n t status of decaying wood and to examine the p o s s i b l e e f f e c t s i t has on the f o r e s t f l o o r s o f the present study. N i k i t i n (1966) has a l s o noted that minimal i n f o r m a t i o n i s a v a i l a b l e on the p h y s i c a l p r o p e r t i e s of decaying wood. Thus i t would be a u s e f u l e x e r c i s e to c o l l e c t bulk d e n s i t y i n f o r m a t i o n on decaying wood and f o r e s t f l o o r s f o r comparative purposes. Ill A f i n a l component of the f o r e s t f l o o r ecosystem that should be examined i s the f i n e r o o t s that occur i n an i n t i m a t e a s s o c i a t i o n with the f o r e s t f l o o r humus. P r i t c h e t t (1979) has reviewed the e f f e c t s of t r e e roots on s o i l p r o p e r t i e s . Several authors have noted that f i n e roots represent a s i g n i f i c a n t component of t r e e biomass and are important i n organic matter production and n u t r i e n t c y c l i n g (Rodin and B a z i l e v i c h , 1967; Remezov and Pogrebnyak, 1969; Foster and Morrison, 1976; H a r r i s et al., 1977; Kimmins and Hawkes, 1978; Santantonio, 1979). Several s t u d i e s have a l s o revealed that f i n e roots occur predominantly i n the f o r e s t f l o o r and upper mineral horizons (Foster and Morrison, 1976; Baker and Blackman, 1977; H a r r i s et a l . , 1977; Kimmins and Hawkes, 1978). Fine roots were found to occur predominantly i n the f o r e s t f l o o r horizons of the present study s i t e s (Appendix 1-1). The n u t r i e n t concentrations of f i n e roots and decomposing organic matter should be compared f o r the study s i t e s . The f i n e roots may have concentrations that are s i g n i f i c a n t l y g r e a t e r or! l e s s than the a s s o c i a t e d f o r e s t f l o o r . This i n f o r m a t i o n could be u t i l i z e d to estimate the e f f e c t of f i n e root decomposition on f o r e s t f l o o r p r o p e r t i e s . Thus n u t r i e n t r e l a t i o n s h i p s i n v o l v i n g LF and H h o r i z o n s , decaying wood, and f i n e r o o t s w i l l be examined. I t i s r e a l i z e d that a proper study of each of these components would be a major study i n i t s e l f . Therefore, the m a t e r i a l s c o l l e c t e d and used f o r t h i s study are of a somewhat l i m i t e d nature. I t i s hoped that important trends as w e l l as base l i n e data can be e s t a b l i s h e d f o r the s i t e s of t h i s study. /73 Materials and Methods LF arid H Horizons The 40 v a r i a b l e s used i n the v a r i a b i l i t y and c l a s s i f i c a t i o n s t u d i e s have been included i n t h i s p a r t of the study (Appendices 1-2 and 2-1). The U n i v e r s i t y of B r i t i s h Columbia Computing System was u t i l i z e d to produce a separate c o r r e l a t i o n matrix f o r the LF and H horizons. Procedures f o r o b t a i n i n g the c o r r e l a t i o n matrices have been o u t l i n e d by Halm (1976b). This approach w i l l y i e l d two large and awkward c o r r e l a t i o n matrices because of the l a r g e number of input v a r i a b l e s . I t was decided to concentrate on the correlationSwhose c o r r e l a t i o n c o e f f i c i e n t had an absolute value greater than 0.7. Williams (1968) and Sokal and Rohlf (1973) have i n d i c a t e d that marked and dependable r e l a t i o n s h i p s are more r e a d i l y perceived when the c o r r e l a t i o n c o e f f i c i e n t i s above t h i s value. They a l s o warn that spurious c o r r e l a t i o n s w i t h h i g h l y s i g n i f i c a n t c o r r e l a t i o n c o e f f i c i e n t s can s t i l l be obtained. A value f o r the pH-dependent CEC was c a l c u l a t e d by use of the f o l l o w i n g formula: ACEC/ApH = ^  - C E C W pH(NaCl) where ACEC/ApH i s the average change i n CEC that occurs from f i e l d pH to pH 7; CEC(7) i s the CEC measured with 1 N NH OAc; CEC(4) i s the CEC determined w i t h 1 N NaCl; 7 i s the pH of the buff e r e d NH 40Ac /74 s o l u t i o n ; and pH(NaCl) i s the pH measured with 1 N NaCl. These values were p r e v i o u s l y measured and included i n Appendix 1-2. The maximum, minimum, mean, standard d e v i a t i o n , and C V . were estimated f o r the s i x sampling u n i t s . A two-way a n a l y s i s of variance i n conjunction with the SNK range t e s t was used to determine the e f f e c t s of s i t e s and horizons onACEC/ApH. Decaying Wood The sample c o l l e c t i o n f o r decaying wood was p r e v i o u s l y o u t l i n e d i n the M a t e r i a l s and Methods Secti o n of Chapter I. The decaying wood, where present, was separated and returned to the l a b o r a t o r y i n p l a s t i c bags. A t o t a l of 17 samples was c o l l e c t e d on a l l three s i t e s . The decaying wood samples were a i r - d r i e d at 25°C, ground i n a Wiley M i l l to pass through a 20-mesh s i e v e , and stored i n a i r - t i g h t p l a s t i c c o n t a i n e r s . The analyses included measurement of pH(H„0), pH(CaCl„), and LOI. A t o t a l a n a l y s i s was performed f o r C, N, P, Ca, Mg, K, Na, Fe, A l , Mn, Cu and Zn. Water content was a l s o determined f o r c o r r e c t i n g values to an oven dry b a s i s . The methods used were the same as those o u t l i n e d f o r the f o r e s t f l o o r m a t e r i a l i n Chapter I. A number of n u t r i e n t r a t i o s were c a l c u l a t e d . The r a t i o s i n cluded C/N, C/P, N/P, Ca/Mg, Ca/K, Mg/K, and LOI/C. The c a l c u l a t i o n s were o u t l i n e d i n the Methods s e c t i o n of Chapter I I . The p r o p e r t i e s of the decaying wood samples f o r a l l three p l o t s were compared as a s i n g l e groups with the corresponding LF and H horizons found at each decaying wood sampling s i t e . This approach was used because of the l i m i t e d number of samples /75 and.the need to compare LF and H horizons d i r e c t l y a f f e c t e d by decaying wood. A one-way Mann-Whitney U t e s t was u t i l i z e d to compare the p r o p e r t i e s of the decaying wood with the corresponding LF and H horizons. This s t a t i s t i c a l method has been o u t l i n e d i n S i e g e l (1956). Bulk d e n s i t i e s were determined f o r decaying wood when s u f f i c i e n t m a t e r i a l was found at a sampling s i t e . A t o t a l o f ten samples were c o l l e c t e d f o r a l l three p l o t s . Bulk d e n s i t y samples f o r the f o r e s t f l o o r were c o l l e c t e d at f i v e random l o c a t i o n s w i t h i n each p l o t to y i e l d a t o t a l of 15 samples. No attempt was made to measure the bulk d e n s i t i e s of the i n d i v i d u a l LF or H h o r izons. The bulk d e n s i t i e s of decaying wood and f o r e s t f l o o r m a t e r i a l s were estimated by use of an excavation technique. A c a v i t y was cut i n the appropriate m a t e r i a l w i t h a pruning saw. The c a v i t y was approximately 10 cm x 10 cm at the surface and was excavated f o r the e n t i r e depth of the m a t e r i a l . A p l a s t i c sampling bag was f i t t e d i n t o the c a v i t y , water was added t i l l the c a v i t y was f u l l , and the volume of water was measured with a graduated c y l i n d e r . The excavated m a t e r i a l was placed i n p l a s t i c bags, returned to the l a b o r a t o r y , and oven-dried at 105°C t i l l completely dry. The samples were then weighed and the bulk d e n s i t i e s were c a l c u l a t e d . The bulk d e n s i t y r e s u l t s f o r the decaying wood and f o r e s t f l o o r samples were compared with a one-way Mann-Whitney U t e s t . Fine Roots Composite samples of the f o r e s t f l o o r horizons were randomly c o l l e c t e d at three sampling p o i n t s per p l o t to y i e l d a t o t a l of nine /76 samples. No attempt was made to separate i n d i v i d u a l h o r i z o n s . The samples were placed i n p l a s t i c bags and returned to the l a b o r a t o r y . The samples were stored at 1°C t i l l sample p r e p a r a t i o n could begin. Roots greater than 2 mm were removed from the sample. The remainder of the sample was separated i n t o two f r a c t i o n s . The l i v i n g and r e c e n t l y dead roots of a l l species were separated i n t o one f r a c t i o n . The remaining decomposing organic matter was c o l l e c t e d as the other f r a c t i o n . The two f r a c t i o n s were a i r - d r i e d at 25°C, ground to pass through a 20-mesh s i e v e , and stored i n a i r - t i g h t p l a s t i c c o n t a i n e r s . T o t a l a n a l y s i s was performed f o r C, N, P, Ca, Mg, K, Na, Fe, A l , Mn, Cu, and Zn. The water content and LOI were a l s o determined. A l l values were c o r r e c t e d to an oven dry b a s i s . The procedures were p r e v i o u s l y o u t l i n e d f o r f o r e s t f l o o r m a t e r i a l s . A number of n u t r i e n t r a t i o s were c a l c u l a t e d . The r a t i o s i n cluded C/N, C/P, N/P, Ca/Mg, Ca/K, Mg/K, and LOI/C. A one-way Mann-Whitney U t e s t was used to compare the p r o p e r t i e s of the root samples as a s i n g l e group with the p r o p e r t i e s of the decomposing organic matter. Results and Discussion  Some Nutrient Relationships in the LF and H Horizons A summary of the c o r r e l a t i o n c o e f f i c i e n t s f o r the LF and H horizons has been included i n Tables 3-1 and 3-2. A c o r r e l a t i o n c o e f f i c i e n t of 0.372 i s s i g n i f i c a n t at the one percent l e v e l f o r a Ill TABLE 3-1: Correlations f o r LF Horizons where the Absolute Value of the C o r r e l a t i o n C o e f f i c i e n t i s Greater than 0.7 + C o r r e l a t i o n C o r r e l a t i o n Variables c o e f f i c i e n t Variables c o e f f i c i e n t Ca ( 4 ) : Ca(7) 0.995 C:Mn -0. 819 Mg ( 4 ) : Mg(7) 0.994 Mn:pH(NaCl) 0. 812 H(CaClo):pH(NaCl) 0.992 BS(4):Ca 0. 811 pH(H 20): pH(NaCl) 0.986 Ca(7):Ca/K 0. 808 H(CaCl 2): pH(H 20) 0.983 C:Na -0. 806 K(4) : K(7) 0.981 Mn:pH(H20) 0. 803 K: K(4) 0.968 Al:pH(NaCl) 0. 802 A l : LOI -0.965 Mg:Mg(7) 0. 800 C/P: P -0.959 Ca:Ca(7) 0.954 Al:ExCa ( 4 ) -0, .799 K: K(7) 0.950 ExCa(4):Na -0. 799 Ca: Ca(4) 0.949 Al:pH(H 20) 0. 798 C/N: N -0.948 Mn:P 0. 795 Fe: Mn 0.943 Mn:pH(CaCl 2) 0. 793 A l : Fe 0.939 ExK(4):L0I 0. 791 A l : :Mn 0.934 Mg:Mg(4) 0. 789 LOI: :Na -0.923 Ca(4):Ca/K 0. 789 Na:pH(NaCl) -0.923 Fe :Na 0. 786 C: :LOI 0.919 Cu:Zn 0. 784 ExCa(4): :L0I 0.916 LOI:pH(H20) -0. 782 BS ( 4 ) : :BS(7) 0.915 LOI:pH(NaCl) -0. 781 AL :C -0.915 Mn:Na 0. 778 BS(7) :Ca(4) 0.913 A1:AL(4) 0. 765 BS(7) :Ca(7) 0.910 A1:P 0. 762 BS(4) :Ca(4) 0.907 Al(4) :P 0. 762 ExMg(4) :LOI 0.907 C:ExCa(4) 0. 762 Fe:pH(NaCl) 0. 761 Al :Na 0.889 Fe:P 0. 759 BS(4) :Ca(7) 0.884 ExK(4):Na -0. 759 Fe :LOI -0.878 Al :ExK(4) -0. 759 ExK(4) :ExMg(4) 0.871 Al:pH(CaCl ?) 0. ,756 Ca(7) :Ca/Mg 0.869 C:ExK(4) 0. .755 C :Fe -0.869 C:C/N 0. .753 LOI :Mn -0.866 ExMg(4):Mn -0, .750 Ca:Ca/Mg. 0.865 ExCa(4):Mn -0, .748 Ca(4) :Ca/Mg 0.859 P:pH(NaCl) 0. .746 Al :ExMg(4) -0.859 Fe:pH(H 20) 0 .745 ExMg(4) :Na -0.859 N/P:P -0 .743 Ca :Ca/K 0.853 Ca/K:Ca/Mg 0 .743 ExCa(4) :ExK(4) 0.852 K(7):Mg/K -0 .741 C:ExMg(4) 0.832 K(4):Mg/K -0 .735 ExCa(4) :LOI 0.830 K:Mg/K -0 .733 BS(7) :Ca 0.826 Al ( 4 ):Fe 0 .732 continued... /78 Table 3-1: (continued)... ' C o r r e l a t i o n C o r r e l a t i o n Variables c o e f f i c i e n t Variables c o e f f i c i e n t LOI:pH(CaCl 2) -0.731 ExMg(4): PH(NaCl) -0.708 Fe:pH(CaCl 9) 0.729 C:C/P 0.702 C:CEC(4) 0.727 C/P:N/P 0.702 BS(4):CEC(4) 0.718 A1:C/N -0.702 ExMg(4):pH(H 20) -0.715 + C o r r e l a t i o n c o e f f i c i e n t of 0.372 i s s i g n i f i c a n t at one percent (n = 45) TABLE 3-2: Correlations f o r H Horizons where the Value of the C o r r e l a t i o n C o e f f i c i e n t i s Greater than 0.7+ C o r r e l a t i o n C o r r e l a t i o n Variables c o e f f i c i e n t Variables c o e f f i c i e n t Mg(4):Mg(7) 0. 995 Ca(4):Ca(7) 0. 993 C:LOI 0. 988 pH(CaCl 2):pH(H 20) 0. 986 pH(H 20):pH(NaCl) 0. 984 pH(CaCl 2):pH(NaCl) 0. 984 Ca:Ca(4) 0. 978 Al :Fe 0. 976 Ca:Ca(7) 0. 973 BS(4):BS(7) 0. 964 Kf4):K(7) 0. 957 C/N:N -0. 951 ExMg(4):Fe -0. 923 Mg:Mg/K 0. 915 C:P -0. 911 Mg:Mg(4) 0. ,906 C/P:P -0. .906 Mg:Mg(7) 0. .901 LOI :P -0. .897 BS(4):Ca(4) 0. 896 Al:pH(H 20) 0. ,894 Ca(4):Ca/K 0. .892 Ca:Ca/Mg 0, .891 Al:ExMg(4) -0 .891 BS(7):Ca(7) 0 .889 Fe:pH(H 20) 0 .887 Ca:Ca/K 0 .886 Al :Mn 0 .884 Al:pH(NaCl) 0 .884 BS(4):Ca(7) 0 .883 BS(7):Ca(4) 0 .883 Ca(7):Ca/Mg 0 .878 FerpH(NaCl) 0 .874 LOI:Na -0 .867 Ca(7):Ca/K 0 .866 Ca(4):Ca/Mg 0 .861 Mg(4):Mg/K 0 .859 Al:pH(CaCl 2) 0 .855 C:Na -0 .849 Fe :Mn 0 .847 ExCa(4):ExMg(4) 0 .845 C:LOI/C -0 .843 Fe:pH(CaCl 2) 0 .842 ExMg(4):pH(NaCl) -0 .840 K:K(7) 0.833 K:K(4) 0.827 C:C/P 0.825 Mn:pH(H20) 0.825 C:ExCa(4) 0.824 ExCa(4):L0I 0.819 C:ExK(4) 0.818 ExMg(4):pH(H 20) -0.814 ExK(4):L0I 0.813 ExK(4):P -0.812 Mn:pH(CaCl 2) 0.809 C:Na(7) 0.805 ExK(4):ExMg(4) 0.802 Na:P 0.795 N:P 0.794 C/N:C/P 0.793 ExK(4):Na -0.791 ExCa(4):ExK(4) 0.791 C/P:LOI 0.790 CEC(4):ExMg(4) 0.780 L0I/C:P 0.779 Mn:pH(NaCl) 0.777 ExMg(4): PH(CaCl 2) -0.776 C:C/N 0.775 C/N:LOI/C -0.775 BS(4):Ca/K 0.774 C/P:N -0.772 ExCa(4):Na -0.772 Na(7):P -0.771 C/N:P -0.770 LOI:Na(7) 0.769 ExCa(4):P -0.769 ExMg(4):N/P 0.763 CEC(4):N/P 0.763 C/P:L0I/C -0.763 C/P:ExCa(4) 0.761 CEC(4):CEC(7) 0.754 LOI/C:Na -0.752 LOI:LOI/C -0.750 CEC(4):Fe -0.746 C/N:Na(7) -0.745 LOI/C:N 0.738 N:Na(7) -0.735 C/P:Na(7) 0.726 /80 Table 3-2: (continued). C o r r e l a t i o n C o r r e l a t i o n V a r i a b l e s c o e f f i c i e n t V a r i a b l e s c o e f f i c i e n t C/N:LOI Mn: Zn ExK(4):N C:N 0.725 0.724 -0.721 -0.719 ExK(4):Na(7) C/P:ExK(4) C/N:ExK(4) 0.713 0.711 0.703 "•"Correlation c o e f f i c i e n t o f 0.372 i s s i g n i f i c a n t at one percent (n = 45) /81 c o r r e l a t i o n i n v o l v i n g 45 observations (Sokal and Rohlf, 1973) . A number of important r e l a t i o n s h i p s are apparent f o r both h o r i z o n s . The three forms of Ca measured i n t h i s study have high p o s i t i v e c o r r e l a t i o n s i n both h o r i z o n s . The minimum c o r r e l a t i o n c o e f f i c i e n t i n v o l v i n g the three forms of Ca i s 0.949. The three forms of K determined i n t h i s study are h i g h l y c o r r e l a t e d i n the LF horizons and a l l three p o s s i b l e c o r r e l a t i o n c o e f f i c i e n t s are greater than 0.950. The forms of K were not as h i g h l y c o r r e l a t e d i n the H h o r i z o n although the lowest value i s a h i g h l y s i g n i f i c a n t 0.827. The exchangeable forms of Mg are h i g h l y c o r r e l a t e d i n both LF and H ho r i z o n s . The t o t a l Mg values are more c l o s e l y c o r r e l a t e d w i t h the exchangeable forms i n the LF than i n the H h o r i z o n . The lowest c o r r e l a t i o n c o e f f i c i e n t f o r t o t a l to exchangeable Mg i n the H h o r i z o n i s s t i l l a s i g n i f i c a n t 0.789. These r e s u l t s confirm the e a r l i e r observations that s i m i l a r values are obtained f o r these n u t r i e n t s by the use of two d i f f e r e n t exchangeable base methods and that the m a j o r i t y of these n u t r i e n t s are i n exchangeable forms. This i n d i c a t e s that f o r c l a s s i f i c a t i o n or c h a r a c t e r i z a t i o n purposes the three forms of the n u t r i e n t should have comparable value. Therefore, i t i s necessary to measure only one form of these n u t r i e n t s . These r e s u l t s a l s o i n d i c a t e that the exchangeable n u t r i e n t s r e l e a s e d at pH 7 and at f i e l d pH are not s i g n i f i c a n t l y d i f f e r e n t . The values obtained f o r the three d i f f e r e n t s o i l r e a c t i o n measurements are h i g h l y c o r r e l a t e d i n both h o r i z o n s . The c o r r e l a t i o n c o e f f i c i e n t s f o r comparing pH(NaCl), pH(CaCl ), and pH(H 0) range from /82 0.992 to 0.983. I t was p r e v i o u s l y observed that the pH measured c o n s i s t e n t l y decreased i n the order of pH(H„0), pHCCaCl^), and pH(NaCl). Thus the pH measured by the three methods should have comparable values f o r c h a r a c t e r i z a t i o n purposes and i t i s necessary to measure only one pH value. One could be reasonably confident of the r e s u l t obtained by use of the other two methods. The pH(NaCl) i s the l e a s t d e s i r a b l e to measure as t h i s property was not able t o d i s t i n g u i s h horizons i n an e a r l i e r s e c t i o n of t h i s study. The Fe, A l , and Mn concentrations are h i g h l y c o r r e l a t e d i n the LF h o r i z o n w i t h c o r r e l a t i o n c o e f f i c i e n t s ranging from 0.943 to 0.934. These elements are almost as h i g h l y c o r r e l a t e d i n the H horizon where values f o r the c o r r e l a t i o n c o e f f i c i e n t s range from 0.976 to 0.847. Remezov and Pogrebnyak (1969) s t a t e d that these elements are concentrated and b i o c y c l e d by the f i n e roots of t r e e s . B i r k e l a n d (1974) has discussed the p o s s i b l e r o l e of the chelated forms of these elements i n the-genesis of podzols. Thus, Fe, A l , arid Mn are i n v o l v e d i n s i m i l a r processes and t h i s e x p l a i n s the r e l a t i v e l y h i g h c o r r e l a t i o n s between these elements. These elements are a l s o w e l l c o r r e l a t e d w i t h the v a r i o u s pH measurements made i n each h o r i z o n . These p o s i t i v e c o r r e l a t i o n s are unexpected as Fe and A l s o l u b i l i t i e s increase s i g n i f i c a n t l y w i t h decreasing pH when the pH i s below 5 ( B i r k e l a n d , 1974). Heese (1971) s t a t e s that as pH i n c r e a s e s , protons are r e l e a s e d from the f u n c t i o n a l groups of organic matter, /83 and greater numbers o£ complexing s i t e s are provided f o r elements such as Fe, A l , and Mn. The increased a c t i v i t y o f small molecular-weight chelates would enhance the e f f e c t i v e s o l u b i l i t y of these elements i n s o l u t i o n . The r e s u l t i s the d e t e c t i o n of greater concentrations of these elements when a t o t a l a n a l y s i s i s performed. The LOI and t o t a l C values are h i g h l y c o r r e l a t e d i n both the LF and H horizons w i t h c o r r e l a t i o n c o e f f i c i e n t s of 0.919 and 0.988, r e s p e c t i v e l y . This i n d i c a t e s that i t i s u s e f u l to measure only one of these p r o p e r t i e s . The r a t i o o f LOI/C was p r e v i o u s l y found to have a low C V . and t o possess an o v e r a l l mean of 1.98. Therefore, measuring t o t a l C, which i s l e s s time consuming, and m u l t i p l y i n g by 1.98 to o b t a i n LOI, i s an acceptable method f o r o b t a i n i n g a good estimate of the LOI f o r these s i t e s . This would be a recommended procedure where c l a s s i f i c a t i o n i s not the prime object of a study. I t should be remembered, however, that the LOI/C r a t i o was one of the few v a r i a b l e s that d i s t i n g u i s h e d a l l three s i t e s i n Chapter I I . The C/N r a t i o has a high negative c o r r e l a t i o n w i t h t o t a l N f o r both the LF and H h o r i z o n s . These c o r r e l a t i o n c o e f f i c i e n t s are greater i n magnitude than the c o r r e l a t i o n c o e f f i c i e n t s found when t o t a l C and the C/N r a t i o are compared. The c o r r e l a t i o n c o e f f i c i e n t s between t o t a l C and the C/N r a t i o f o r the LF and H horizons are 0.753 and 0.775, r e s p e c t i v e l y . This i n d i c a t e s that t o t a l N i s more c r i t i c a l than t o t a l C f o r determining the v a r i a t i o n i n the C/N r a t i o . Thus a small change i n the absolute c o n c e n t r a t i o n of t o t a l N w i l l have a greater impact on /84 the C/N r a t i o than a s i m i l a r change i n t o t a l C content. This i s s i g n i f i c a n t when i t i s r e a l i z e d that t o t a l N concentrations are only a small f r a c t i o n of t o t a l C values. The C/N r a t i o i s also highly v a r i a b l e . Therefore the value f o r t o t a l C or t o t a l N could hot be r e l i a b l y i n f e r r e d by measuring one nutrient and u t i l i z i n g the C/N r a t i o . The C/P r a t i o i s s i m i l a r to the C/N r a t i o with respect to i t s components. The C/P r a t i o has a high negative correlation with the t o t a l P values for both LF and H horizons and a p o s i t i v e though smaller magnitude c o r r e l a t i o n with the t o t a l C concentrations. This indicates that t o t a l P has a greater e f f e c t on the C/P r a t i o than does t o t a l C. This i s due to the smaller magnitude and greater v a r i a b i l i t y of t o t a l P. The C/P r a t i o has been noted as a r e l a t i v e l y v a r i a b l e parameter. Thus i t i s best suited f o r i n d i c a t i n g trends rather than absolute r e l a t i o n s h i p s . The base saturation values calculated for the NH.OAc and 4 NaCl methods are highly correlated i n both the LF and H horizons with c o r r e l a t i o n c o e f f i c i e n t s of 0.915 and 0.964, r e s p e c t i v e l y . The CEC values measured by both methods have smaller c o r r e l a t i o n c o e f f i c i e n t s with values i n the LF and H horizons of less than 0.7 and 0.754, res p e c t i v e l y . The base saturation r e s u l t s are also well correlated with the Ca(4), Ca(7), and Ca values. Thes.e r e s u l t s show that Ca i s the dominant cation on the exchange complex and that the degree of base saturation i s p r i m a r i l y a function of the exchangeable Ca concentra-t i o n . The high c o r r e l a t i o n s between BS(4) and BS(7) v e r i f i e s the e a r l i e r / 8 5 observations that the exchangeable bases e x t r a c t e d by both methods are s i m i l a r while the CEC (7) values are c o n s i s t e n t l y greater than the corresponding CEC(4) values. Thus the increase i n base s a t u r a t i o n at f i e l d pH i s p r i m a r i l y a r e s u l t of the decrease i n t o t a l exchange s i t e s and not a r e s u l t of an increase i n exchangeable bases. A f i n a l note with reference to exchangeable bases i s that the values f o r ExCa(4), ExMg(4) and ExK(4) have s i g n i f i c a n t p o s i t i v e c o r r e l a t i o n s . Thus when one n u t r i e n t i s p r i m a r i l y i n exchangeable form, the other two n u t r i e n t s are a l s o predominantly i n the same form. This i n d i c a t e s t h a t decomposition processes which r e l e a s e one of the n u t r i e n t s a l s o act to r e l e a s e a s i g n i f i c a n t p r o p o r t i o n of the other two n u t r i e n t s . Cromack et al. (1979) found that f u n g i p l a y a key r o l e i n the c y c l i n g of Ca i n the f o r e s t f l o o r o f a D o u g l a s - f i r stand. Thick fungal mats occurred i n the f o r e s t f l o o r s throughout the study s i t e s (Appendix 1-1). I t was e a r l i e r noted that most of the Ca, Mg, and K are i n exchangeable forms. Thus fungal a c t i v i t y on the research s i t e s appears to be r e l e a s i n g the m a j o r i t y of Ca, Mg, and K from u n a v a i l a b l e organic forms. The LF and H horizons have a number of processes and n u t r i e n t r e l a t i o n s h i p s i n common. I t was p r e v i o u s l y found that these horizons could be d i s t i n g u i s h e d by a number of v a r i a b l e s which i n d i c a t e d that they are two d i s t i n c t systems. The concentrations of elements such as Fe, A l , and Mn were n o t i c e a b l y greater i n the H horizons. These r e s u l t s are obtained because decomposition processes have had greater time to express themselves i n the more h i g h l y decomposed H h o r i z o n . /86 Thus the main d i f f e r e n c e between the two systems i s due to the amount of time that has been a v a i l a b l e f o r processes to occur and i s not due to a r a d i c a l d i f f e r e n c e i n the type of processes that are o c c u r r i n g i n each h o r i z o n . A f i n a l r e l a t i o n s h i p to examine i n the f o r e s t f l o o r horizons i s the pH-dependent CEC. Values f o r ACEC/ApH are included i n Appendix 3-1. The b a s i c s t a t i s t i c s and the s t a t i s t i c a l analyses have been summarized i n Tables 3-3, 3-4, and 3-5. The two-way a n a l y s i s of variance shows that pH-dependent CEC i s s i g n i f i c a n t l y a f f e c t e d by both, s i t e s and horizons while the i n t e r a c t i o n i s not s i g n i f i c a n t . Thus s i t e s and horizons are e s s e n t i a l l y independent f a c t o r s (Sokal and Rohlf, 1973) a f f e c t i n g ACEC/ApH. The range t e s t f o r comparing the mean values of the LF and H horizons shows that the H h o r i z o n has a greater pH-dependent CEC than the LF h o r i z o n . This i n d i c a t e s that as decomposition proceeds there i s an increase i n f u n c t i o n a l groups c o n t r i b u t i n g to pH-dependent CEC (Weels and Davey, 1966). Wildung et al. (1965) a t t r i b u t e d the increase i n pH-dependent CEC during decomposition to an increase i n f u n c t i o n a l groups a s s o c i a t e d w i t h the formation of humic m a t e r i a l s . Therefore the greater ACEC/ApH values f o r the H horizons are p r i m a r i l y a r e s u l t of the formation of humus. The range t e s t f o r s i t e s i n d i c a t e s that the ACEC/ApH increases s i g n i f i c a n t l y downslope and that a l l three s i t e s are s i g n i f i c a n t l y d i f f e r e n t . The pH-dependent CEC i s a f u n c t i o n of the type of organic compounds present i n the f o r e s t f l o o r m a t e r i a l (Wildung et al., 1965). /87 TABLE 3-3: Summary of ACEC/ApH+ f o r Each Sampling Unit Minimum Maximum Mean SD* CV.* Sampling u n i t meq/lOOg/pH u n i t (%) X e r i c LF -0.23 6.86 2, .67 2, .01 75. .2 X e r i c H 5.17 10.73 8, .75 1, .66 19. .0 Mesic LF -0.17 10.25 4, .86 2, .45 50. .4 Mesic H 9.43 14.73 12. .63 1, .75 13. .8 Hygric LF 1.80 18.50 7. .71 4, .43 57. .4 Hygric H 9.80 27.54 15. .67 4. .52 28. .8 +A measure of pH-dependent CEC "''Standard d e v i a t i o n and c o e f f i c i e n t of v a r i a t i o n , r e s p e c t i v e l y /88 TABLE 3-4: The F-Values f o r Two-Way ANOVA with I n t e r a c t i o n f o r S i t e s and Horizons: ACEC/ApH S i t e Horizon S i t e X Horizon 118.9861** 26.8533** 0.7892 N S S i g n i f i c a n c e : ** - at one percent, * - at f i v e percent, NS - not s i g n i f i c a n t TABLE 3-5: The Results of the Student-Newman-Keuls Range Tests f o r S i t e s and Horizons: ACEC/ApH S i t e s : X e r i c Mesic Hygric Mean v a l u e : + 5.71 a* 8.76 b 11.69° Horizons: LF H Mean v a l u e : + 5.08 d 12.35 6 +A11 values i n meq/lOOg/pH Unit ^ D i f f e r e n t l e t t e r s denote mean values s i g n i f i c a n t l y d i f f e r e n t at f i v e percent /90 Since the p l o t s are d i s t i n c t v e g e t a t i v e l y , i t f o l l o w s that e i t h e r the v e g e t a t i o n i s c o n t r i b u t i n g s i g n i f i c a n t l y d i f f e r e n t types of organic compounds or that organic matter decomposition processes are y i e l d i n g compounds unique to each s i t e . Organic matter decomposition could d i f f e r from s i t e to s i t e because of the downslope movement of n u t r i e n t s and water. Therefore i t would be u s e f u l to determine the p r i n c i p a l groups o f organic compounds present at each s i t e and whether the source i s v e g e t a t i o n inputs or decomposition products. This type o f in f o r m a t i o n would g r e a t l y increase the understanding o f the processes o c c u r r i n g i n the f o r e s t f l o o r s of these biogeocoenoses. Nutrient Status of Decaying Wood The a n a l y t i c a l data f o r the decaying wood samples i s l i s t e d i n Appendix 3-2. The Mann-Whitney U t e s t r e s u l t s f o r comparing decaying wood with LF and H horizons are summarized i n Tables 3-6 and 3-7, r e s p e c t i v e l y . For most n u t r i e n t s , the decaying wood has s i g n i f i c a n t l y l e s s than the surrounding LF and H horizons. This r e s u l t i s f u r t h e r v e r i f i e d by s i g n i f i c a n t l y g reater C/N and C/P r a t i o s i n the decaying wood. Thus the decaying wood on the study s i t e s i s a r e l a t i v e l y n u t r i e n t - d e f i c i e n t s u b s t r a t e . This agrees w i t h the e a r l i e r f i n d i n g s of McFee and Stone (1966) and N i k i t i n (1966). The notable exceptions are Mg and K which are not s i g n i f i c a n t l y d i f f e r e n t f o r the LF ho r i z o n m a t e r i a l although most decaying wood samples had lower concentrations f o r these n u t r i e n t s . Therefore decaying wood i s a d i s t i n c t l y /91 TABLE 3-6: The Results of the Mann-Whitney U Test f o r Comparing the P r o p e r t i e s of Decaying Wood and LF Horizons Values f o r decaying wood compared to LF horizons Not s i g n i f i c a n t l y V a r i a b l e Greater Less than " d i f f e r e n t c +** N + ** P +** Ca +** Mg + K +** Na + Fe +** A l + ** Mn +** Cu +** Zn +** pH(H 20) + P H ( C a C l 2 ) +** LOI +** C/N +** C/P + ** N/P + Ca/Mg + ** Ca/K +** Mg/K +** LOI/C + * * S i g n i f i c a n c e : ** - at one percent, * - at f i v e percent / 9 2 TABLE 3-7: The Results of the Mann-Whitney U Test f o r Comparing the P r o p e r t i e s of Decaying Wood and H Horizon Values f o r decaying wood compared t o LF horizons Not s i g n i f i c a n t l y V a r i a b l e Greater Less than d i f f e r e n t c +** N +** P +** Ca +** Mg + ** K +** Na + * Fe +** A l +** Mn +* Cu +** Zn +** PH(H 20) + pH(CaCl 2) + LOI +** C/N + ** C/P +** N/P +** Ca/Mg + Ca/K + Mg/K + LOI/C S i g n i f i c a n c e : ** - at one percent, * - at f i v e percent / 9 3 d i f f e r e n t m a t e r i a l - from both the LF and H horizons. The h o r i z o n that decaying wood i s c o n t r i b u t i n g the most to i s not obvious. The d i f f e r e n c e s i n n u t r i e n t content suggest that s u b s t a n t i a l changes w i l l have to occur during decomposition before the n u t r i e n t s t a tus of decaying wood i s comparable to that of the LF and H horizons. These changes are l i k e l y to be the r e s u l t o f a major degradation of the decaying wood and most of the breakdown products should c o n t r i b u t e to the H h o r i z o n humus. A few r e s u l t s are worth examining i n greater d e t a i l . The LOI values f o r decaying wood are s i g n i f i c a n t l y g reater than the values f o r LF and H h o r i zons. The reverse r e l a t i o n s h i p i s found f o r t o t a l C. The greater LOI values are expected s i n c e the ash content of wood i s l e s s than l i t t e r and other t r e e components ( N i k i t i n , 1966; Kaarik, 1974). The lower t o t a l C values are unexpected because i t was assumed that an increase i n LOI or v o l a t i l e matter would y i e l d a p r o p o r t i o n a t e increase i n t o t a l C. This anomolous r e s u l t could be a f e a t u r e of the decomposition process. N i k i t i n (1966) and Kaarik (1974) have discussed the organisms i n v o l v e d i n wood decomposition and the transformations caused by these organisms. They s t a t e d that white r o t f u n g i w i l l y i e l d an increase i n c e l l u l o s e content, at the expense of a decrease i n l i g n i n content. They a l s o noted that brown r o t f u n g i y i e l d an increase i n l i g n i n content w i t h a p r o p o r t i o n a t e decrease i n c e l l u l o s e . The end product i s an accumulation of the wood component not u t i l i z e d by the decay organism. N i k i t i n (1966) reported that the t o t a l C of wood degraded by white r o t f u n g i decreases from 49% to 41%. Brown r o t f u n g i was found to y i e l d substrates w i t h a t o t a l G content of 61%. The t o t a l C values f o r decaying wood i n the present study ranged from 41.8% to 47.6% w i t h /94 a mean value of 45.1%. Thus white r o t fun g i appear to be the predominant decay organisms on the study s i t e s and the decreased t o t a l C content r e l a t i v e to the LF and H horizons i s a r e s u l t o f the accumulation of c e l l u l o s e i n the decaying wood. The C/N values are s i g n i f i c a n t l y g reater f o r the decaying wood than f o r the LF and H horizons. This r e s u l t i s expected i n a m a t e r i a l that i s r e l a t i v e l y n u t r i e n t d e f i c i e n t . Kaarik (1974) s t a t e d that the C/N r a t i o f o r the woody component of most healthy t r e e species ranges from 350:1 to 500:1 or grea t e r . The C/N values f o r the decaying wood of the present study ranged from 62.1 to 225.0 with a mean value of 113.5. Thus, an increase i n t o t a l N content appears to be occ u r r i n g during decomposition of these woody substrates i n a d d i t i o n to inputs from atmospheric and b i o l o g i c a l sources. McFee and Stone (1966) found a s i m i l a r r e s u l t f o r the decomposition of yellow b i r c h (Betula allegiianiens'Cs B r i t t o n ) and red spruce {Pioea rubens Sarg.). Therefore, wood decomposition on the study s i t e s appears to r e q u i r e s i g n i f i c a n t inputs of N and the processes of decomposition are l i k e l y to be l i m i t e d by N a v a i l a b i l i t y . The pHfCaC^) f o r decaying wood i s s i g n i f i c a n t l y l e s s than the values f o r the LF h o r i z o n although the d i f f e r e n c e s are l e s s than 0.5 of a pH u n i t . A l l other pH measurements i n v o l v i n g decaying wood do not d i f f e r s i g n i f i c a n t l y from values f o r LF and H horizons. McFee and Stone (1966) had found t h a t decaying wood was more a c i d i c than the surrounding l i t t e r l a y e r s and that t h i s was an important f a c t o r i n the /95 slower decomposition r a t e s of decaying wood. The major input of l i t t e r on t h e i r research s i t e s was deciduous. Remezov and Pogrebnyak (1969) s t a t e d that deciduous species tend to have a higher base content and to produce a l e s s a c i d i c l i t t e r than coniferous species. Therefore, the coniferous t r e e s on the present study s i t e s produce a l i t t e r t hat should be more a c i d i c than the species s t u d i e d by McFee and Stone. D i f f e r e n c e s between the l i t t e r and decaying wood can only be detected w i t h C a C ^ when the l i t t e r i s f i r s t deposited. With increas decomposition, the bases are leached from the l i t t e r to y i e l d a H hor i z o n whose a c i d i t y i s comparable to decaying wood. Thus a c i d i t y of the woody substrates of the present study should not be as c r i t i c a l a f a c t o r i n determining decomposition r a t e s as i t was on the s i t e s s t u d i e d by McFee and Stone. The bulk d e n s i t y r e s u l t s f o r decaying wood and f o r e s t f l o o r s (Tables 3-8 and 3-9) are not s i g n i f i c a n t l y d i f f e r e n t when t e s t e d w i t h a one-way Mann-Whitney U t e s t at the f i v e percent l e v e l . The f o r e s t -3 -3 f l o o r bulk d e n s i t i e s have values that range from 97 kg'm to 189 kg-m -3 -3 These r e s u l t s are comparable to the 124 kg-m to 139 kg-m values -3 -3 l i s t e d by Gessel and B a l c i (1965) and to the 120 kg-m to 160 kg-m values found by McFee and Stone (1966). The decaying wood bulk d e n s i t i e s are more v a r i a b l e than the f o r e s t f l o o r bulk d e n s i t i e s w i t h c o e f f i c i e n t s of v a r i a t i o n of 35.6% and 14.5%, r e s p e c t i v e l y . The greater v a r i a t i o n f o r the decaying wood can be a t t r i b u t e d to the stage of decomposition. The decaying wood sample c o l l e c t e d at sampling p o i n t TABLE 3-8: The Results of Bulk Density Measurements f o r Decaying Wood Bulk d e n s i t y Sample Location (kg-m-3) X e r i c 116,2 94 X e r i c 111,3 298 X e r i c 1113,1 142 Mesic 13,1 145 Mesic 111,3 97 Mesic 110,1 141 Mesic 1110,0 155 Hygric 16,4 156 Hygric 113,8 124 Hygric 1112,10 155 Mean Value 150.6 Standard D e v i a t i o n 53.6 C o e f f i c i e n t o f V a r i a t i o n (%) 35.6 TABLE 3-9: The Results of Bulk Density Measurements f o r Forest F l o o r s Bulk Density Sample l o c a t i o n (kg'nr^) X e r i c 18,0 132 X e r i c 111,3 161 X e r i c 119,4 145 X e r i c 118,1 128 X e r i c 1113,1 134 Mesic 13,1 170 Mesic 16,0 97 Mesic II0.1 144 Mesic 1118,0 147 Mesic 1116,4 160 Hygric 10,7 141 Hygric 19,8 189 Hygric 118,8 170 Hygric 112,3 132 Hygric 1113,0 159 Mean Value 147.2 Standard D e v i a t i o n 21.4 C o e f f i c i e n t of V a r i a t i o n (%) 14.5 798 X e r i c I I 1,3 was from a r e l a t i v e l y undecomposed log that had j u s t s t a r t e d to decay. I t possessed the l a r g e s t bulk d e n s i t y with a _3 value of 298 kg-m . The.mother extreme i s represented by samples c o l l e c t e d at sampling p o i n t s X e r i c I I 6,2 and Mesic I I 1,3. These samples were taken from logs i n an advanced s t a t e of decomposition and -3 -3 y i e l d e d bulk d e n s i t y values of only 94 kg-m and 97 kg-m . Thus the bulk d e n s i t y o f decaying wood i s l a r g e l y r e l a t e d t o the degree of decomposition although the o v e r a l l values do not d i f f e r s i g n i f i c a n t l y from f o r e s t f l o o r m a t e r i a l . McFee and Stone (1966) found s i m i l a r r e s u l t s when they compared the bulk d e n s i t i e s o f decaying wood and f o r e s t f l o o r s . Thus decaying wood i s a component of the f o r e s t f l o o r that i s s i g n i f i c a n t l y d i f f e r e n t from the LF and H horizons i n terms of n u t r i e n t s t a t u s . The r e a c t i o n o f decaying wood d i f f e r s s l i g h t l y from the f o r e s t f l o o r humus. The bulk d e n s i t i e s of decaying wood do not d i f f e r s i g n i f i c a n t l y from f o r e s t f l o o r m a t e r i a l although the v a r i a b i l i t y i s g r e a t e r . Therefore, where decaying wood i s a s i g n i f i c a n t component of the f o r e s t f l o o r , the o v e r a l l n u t r i e n t s t a t u s and n u t r i e n t s t o r e o f a s i t e w i l l be l e s s than a s i t e w i t h comparable biomass derived from predominantly l i t t e r sources. This m a t e r i a l would a l s o a f f e c t the v a r i a b i l i t y of n u t r i e n t s measured i n the f o r e s t f l o o r e s p e c i a l l y where f i n e decaying wood fragments occur. The impact of decaying wood should be most n o t i c e a b l e when comparing undisturbed old-growth stands to second-growth p l a n t a t i o n s growing on slash-burned s i t e s . Since the / 9 9 present study s i t e s are old-growth stands which were observed to contain s i g n i f i c a n t q u a n t i t i e s of decaying wood i n the f o r e s t f l o o r , i t appears that t h i s m a t e r i a l has c o n t r i b u t e d a s i g n i f i c a n t component of n u t r i e n t - d e f i c i e n t m a t e r i a l to the f o r e s t f l o o r humus. The r e s u l t has been a decrease i n the o v e r a l l n u t r i e n t status of the f o r e s t f l o o r s developed on these s i t e s as w e l l as an increase i n the v a r i a b i l i t y of n u t r i e n t concentrations. The decaying wood a l s o represents a store of n u t r i e n t s i n r e l a t i v e l y u n a v a i l a b l e forms when compared to other f o r e s t f l o o r m a t e r i a l s . Effects Of Fine Roots on the Forest Floors The a n a l y t i c a l data f o r the f i n e root samples and f o r the decomposing organic matter i s included i n Appendix 3-3. The s t a t i s t i c a l comparisons of roots and decomposing organic matter are summarized i n Table 3-10. The t o t a l C values are not s i g n i f i c a n t l y d i f f e r e n t although the LOI values are greater f o r f i n e r o o t s . Remezov and Pogrebnyak (1969) re p o r t that the ash content of l i t t e r f a l l was greater than the ash content of f i n e absorbing r o o t s . P r i t c h e t t (1979) s t a t e d that f o r e s t f l o o r s become contaminated w i t h u n d e r l y i n g mineral s o i l . This i n d i c a t e s t h a t the LOI values of decomposing organic matter are l e s s because of a grea t e r ash content and ah increased i n c o r p o r a t i o n of u n d e r l y i n g mineral s o i l . The t o t a l C values may not d i f f e r because the lower v o l a t i l e matter content of the f o r e s t f l o o r has a higher content of car b o n - r i c h compounds such as l i g n i n . Thus a decrease i n LOI appears to be o f f s e t by an increase i n t o t a l C content and the two m a t e r i a l s have s i m i l a r t o t a l C values. TABLE 3-10: The Results of the Mann-Whitney U Test f o r Comparing the P r o p e r t i e s o f Fine Roots and Decomposing Organic Matter . Values f o r f i n e r oots compared to organic matter Not s i g n i f i c a n t l y V a r i a b l e Greater Less than d i f f e r e n t c + N P + Ca + Mg + ** K + Na + ** Fe + ** A l + ** Mn + Cu + Zn + LOI + ** C/N + ** C/P + N/P + ** Ca/Mg + ** Ca/K + Mg/K LOI/C + S i g n i f i c a n c e : ** - at one percent, * - at f i v e percent /101 The f i n e roots had a s i g n i f i c a n t l y lower content of t o t a l Nthan the decomposing organic matter. Remezov and Pogrebnyak (1968) st a t e d that the t o t a l N content of small roots i s comparable to small twigs and i s l e s s than leaves or needles. Kimmins and Hawkes (1978) found t o t a l N values c l o s e to two percent i n the f i n e roots of an o l d growth white spruce (Pieea glauea (Moench) Voss) - subalpine f i r (Abies lasiocarpa (Hook.) Nutt.) stand i n c e n t r a l B r i t i s h Columbia. However, the t o t a l N values f o r f i n e roots i n the present study are comparable to r e s u l t s from a number of stu d i e s on coniferous t r e e s that are summarized i n Kimmins and Hawkes (1978). The C/N r a t i o i s greater f o r f i n e roots than f o r decomposing organic matter. This i s c o n s i s t e n t with the p r e v i o u s l y noted t o t a l C values. Therefore, the f i n e roots on the present study s i t e s are r e l a t i v e l y d e f i c i e n t i n t o t a l N and would cause an i m m o b i l i z a t i o n o f N when they decompose. The t o t a l N content i s g reater than the values l i s t e d p r e v i o u s l y f o r decaying wood. Thus decomposing f i n e roots would not immobilize N as se v e r e l y as decomposing wood. The f i n e roots had s i g n f i c i a n t l y greater concentrations of Fe, A l , Mg, and Na. The concentrations f o r elements such as C, P, Ca, K, Mn, Cu, and Zn were not s i g n i f i c a n t l y d i f f e r e n t . Remezov and Pogrebnyak (1969) found that the f i n e roots of oak tre e s contained greater concentrations of Fe and A l than the l i t t e r f a l l and that the f i n e roots were important i n the b i o c y c l i n g of these elements. They a l s o s t a t e d that there i s an enrichment of A l , Ca, and Mg i n the root zone due to /102 the decomposition of p l a n t s e c r e t i o n s and due to a change i n acidity-a s s o c i a t e d w i t h root r e s p i r a t i o n . G e r l o f f et aZ-..(1966) s t a t e d that elements such as Mn, K, Ca, and Zn are concentrated i n some p l a n t species by the process of s e l e c t i v e uptake. Alhonen et at. (1975) found that Fe, A l , and Mn were p r e c i p i t a t e d near p l a n t roots growing i n s i l t s and f i n e sands. They a t t r i b u t e d t h i s r e s u l t to the presence of an o x i d i z i n g environment near the r o o t s . Thus the f i n e roots on the study s i t e s appear to be important i n concentrating and c y c l i n g elements such, as Fe, A l , Mg, and Na. The accumulations could be a f u n c t i o n of p r e f e r e n t i a l uptake by c e r t a i n p l a n t s or a r e s u l t of a p h y s i c a l - c h e m i c a l process whereby s o l u b l e Fe and A l are p r e c i p i t a t e d i n the rhizosphere. Decomposition of f i n e r o o t s would increase the concentration of these elements i n the adjacent f o r e s t f l o o r . The l o c a l i z e d inputs of these elements would g r e a t l y increase the v a r i a b i l i t y of the s i t e on a microscopic s c a l e . The decomposition process could a l s o a f f e c t macro-scopic v a r i a b i l i t y where roots are unevenly d i s t r i b u t e d i n the f o r e s t f l o o r . This may e x p l a i n the high v a r i a t i o n found f o r Fe and A l concentrations i n the previous v a r i a b i l i t y study. Therefore, f i n e roots would have a number of important e f f e c t s on- f o r e s t f l o o r p r o p e r t i e s . I t has been noted that f i n e roots c o n t r i b u t e a s i g n i f i c a n t input of biomass to the f o r e s t f l o o r and upper mineral horizons. The decomposition of f i n e roots would y i e l d a s i g n i f i c a n t input to the f o r e s t f l o o r of r e l a t i v e l y N - d e f i c i e n t biomass. This biomass would create a demand f o r N by decomposer organisms. The /103 concentrations of elements such as Fe, A l , Mg, and Na would increase as would the inherent v a r i a b i l i t y o f these elements. Since Fe and A l t r a n s l o c a t i o n i s important i n the formation of p o d z o l i c B h o r i z o n s , increased concentrations of these elements i n the f o r e s t f l o o r , where they can be complexed by organic c h e l a t i n g agents, should enhance the m o b i l i t y of these elements. Thus,fine roots on the study s i t e s have an important r o l e i n processes such as b i o c y c l i n g and pedogenesis as w e l l as an e f f e c t on f o r e s t f l o o r p r o p e r t i e s . Summary and Conclusions The p r o p e r t i e s used f o r studying f o r e s t f l o o r v a r i a b i l i t y and c l a s s i f i c a t i o n were examined f o r n u t r i e n t r e l a t i o n s h i p s . H i g h l y s i g n i f i c a n t c o r r e l a t i o n s could be used t o e s t a b l i s h n u t r i e n t r e l a t i o n -ships and to reduce the e f f o r t needed to c l a s s i f y or c h a r a c t e r i z e s i t e s . A number of s t u d i e s have s t r a t i f i e d f o r e s t f l o o r s i n t o horizons or la y e r s based on d i f f e r e n t stages o f decomposition. The s t r a t i f i c a t i o n was necessary f o r understanding the processes o c c u r r i n g i n the system. The importance of pH-dependent CEC was discussed and the p o s s i b l e r o l e of decaying wood and roots i n f o r e s t f l o o r s was noted. A lack of information concerning the bulk d e n s i t i e s of decaying wood was a l s o i n d i c a t e d . Samples f o r decaying wood and f i n e roots were c o l l e c t e d i n conjunction w i t h samples c o l l e c t e d f o r studying f o r e s t f l o o r v a r i a b i l i t y . /104 A c o r r e l a t i o n m a t r i x was produced f o r the LF and H horizons of the study s i t e s . The c o r r e l a t i o n s were examined to i n f e r p o s s i b l e n u t r i e n t r e l a t i o n s h i p s w i t h i n each h o r i z o n . The various forms of Ca, Mg, and K were found to be h i g h l y c o r r e l a t e d . I t would only be necessary to measure one form of these elements. This should be s u f f i c i e n t f o r c h a r a c t e r i z i n g these horizons and f o r understanding n u t r i e n t r e l a t i o n s h i p s i n v o l v i n g these elements. The pH measured by three methods was found to be h i g h l y c o r r e l a t e d . This i n d i c a t e s that one pH-measurement should be adequate. The Fe, A l , and Mn values were found to be h i g h l y c o r r e l a t e d . These values were a l s o w e l l c o r r e l a t e d w i t h pH values. This i n d i c a t e s that these three elements are i n v o l v e d i n s i m i l a r processes such as b i o c y c l i n g and podzol formation. The e f f e c t of increased pH on increased c h e l a t i o n of these elements was a l s o noted. Carbon was very h i g h l y c o r r e l a t e d w i t h LOI but was l e s s v i t a l i n determining the C/N or C/P r a t i o s . These r a t i o s were more h i g h l y c o r r e l a t e d w i t h the other component of the r a t i o . The base s a t u r a t i o n values measured by two methods were h i g h l y c o r r e l a t e d with each other and w i t h the v a r i o u s forms of Ca. This element i s the dominant c a t i o n i n these f o r e s t f l o o r systems. The d i f f e r e n c e s i n base s a t u r a t i o n are p r i m a r i l y due to changes i n the CEC and not due to changes i n the bases e x t r a c t e d at d i f f e r e n t pH values. Most of the n u t r i e n t s Ca, Mg, and K are i n exchangeable forms and the r a t i o s of exchangeable to t o t a l f o r these elements are w e l l c o r r e l a t e d . Fungi appear to p l a y a key r o l e i n r e l e a s i n g the m a j o r i t y of these n u t r i e n t c a t i o n s from l e s s a v a i l a b l e organic forms. The LF and H horizons /105 have jnany processes i n common although they are d i s t i n g u i s h e d by a number of p r o p e r t i e s . This i n d i c a t e s that the time that has been a v a i l a b l e f o r decomposition i s the main f a c t o r d i s t i n g u i s h i n g these horizons. A f i n a l n u t r i e n t r e l a t i o n s h i p to be examined was the pH-dependent CEC. The e f f e c t s o f s i t e s and horizons on pH-dependent CEC were found to be independent and s i g n i f i c a n t . Greater values f o r ACEC/ApH i n the H horizons were a t t r i b u t e d to an increase i n f u n c t i o n a l groups a s s o c i a t e d w i t h the formation of humic m a t e r i a l s . The three s i t e s have s i g n i f i c a n t l y d i f f e r e n t ACEC/ApH values and there i s an obvious downslope increase i n these values. The s i t e d i f f e r e n c e s are r e l a t e d t o v a r i a t i o n s i n v e g e t a t i o n i n p u t s or t o v a r i a t i o n s i n decomposition products a s s o c i a t e d w i t h each s i t e . The decaying wood was found to be a n u t r i e n t - d e f i c i e n t m a t e r i a l that i s d i s t i n c t from both LF and H horizons. This m a t e r i a l would r e q u i r e s u b s t a n t i a l a l t e r a t i o n or degradation before i t s p r o p e r t i e s would approximate these of the LF or H horizons. The degradation products should c o n t r i b u t e more to the H h o r i z o n than . to the LF h o r i z o n . The s i g n i f i c a n t l y lower t o t a l C values f o r the decaying wood were a s s o c i a t e d w i t h the accumulation of c e l l u l o s e . This r e s u l t i n d i c a t e s t h a t the dominant decomposer organisms on these s i t e s are the white-r o t f u n g i . The decaying wood was found to have s i g n i f i c a n t l y higher values f o r the C/N r a t i o although these values were lower than the range of values normally a s s o c i a t e d w i t h wood from l i v i n g t r e e s . The input o f N during decomposition processes i s the main f a c t o r y i e l d i n g t h i s r e s u l t . The pHfCaC^) values f o r /106 decaying wood were s i g n i f i c a n t l y l e s s than the r e s u l t s f o r the LF hori z o n but not s i g n i f i c a n t l y d i f f e r e n t from the H h o r i z o n values. A c i d i t y i s not considered an important f a c t o r i n the decomposition o f wood on these s i t e s . Bulk d e n s i t y measurements demonstrated that the f o r e s t f l o o r and decaying wood m a t e r i a l s are not s i g n i f i c a n t l y d i f f e r e n t although the l a t t e r m a t e r i a l i s a more v a r i a b l e s u b s t r a t e . The v a r i a b i l i t y of decaying wood bulk d e n s i t i e s was r e l a t e d to the degree or stage o f decomposition. Thus decaying wood represents a s u b s t a n t i a l input of n u t r i e n t - d e f i c i e n t biomass to the f o r e s t f l o o r . The input of t h i s m a t e r i a l decreases the o v e r a l l n u t r i e n t s t a t u s of the s i t e , a f f e c t s the v a r i a b i l i t y of n u t r i e n t measurements, and y i e l d s an accumulation of n u t r i e n t - d e f i c i e n t s u b s t r a t e s . The f i n e roots had higher LOI values than the f o r e s t f l o o r . This r e s u l t s from greater ash content and l a r g e r mineral s o i l contamination i n the humus l a y e r s . The f i n e roots were found to be r e l a t i v e l y d e f i c i e n t i n N and would immobilize t h i s element during decomposition. The i m m o b i l i z a t i o n of N should not be as s i g n f i c a n t i n decomposing f i n e r o o t s as i t would be i n decaying wood. Several elements were found to be concentrated i n or near f i n e r o o t s . These included Fe, A l , Mg, and Na. These concentrations could r e s u l t from processes such as s e l e c t i v e p l a n t uptake or p r e c i p i t a t i o n of i n s o l u b l e forms i n the rhizosphere. The decomposing f i n e roots have an important impact on the f o r e s t f l o o r s of the study s i t e s . Decomposing f i n e roots y i e l d a s i g n i f i c a n t input of N - d e f i c i e n t biomass, cause an increase i n the co n c e n t r a t i o n and v a r i a b i l i t y o f c e r t a i n elements, /107 and p l a y an important r o l e i n processes such as b i o c y c l i n g or pedogenesis. /108 SUMMARY AND CONCLUSIONS The n u t r i e n t p r o p e r t i e s of the f o r e s t f l o o r should be p r o p e r l y c h a r a c t e r i z e d f o r s i l v i c u l t u r a l , e c o l o g i c a l and p e d o l o g i c a l s t u d i e s . Proper c h a r a c t e r i z a t i o n of these p r o p e r t i e s i s o f t e n l i m i t e d by inherent f o r e s t f l o o r v a r i a b i l i t y . V a r i a b i l i t y c o n s t r a i n t s a l s o l i m i t the use of c e r t a i n p r o p e r t i e s f o r c l a s s i f i c a t i o n . The f o r e s t f l o o r s of three r e p r e s e n t a t i v e biogeocoenoses were examined i n d e t a i l . The magnitude and v a r i a b i l i t y o f chemical p r o p e r t i e s on these s i t e s i s comparable to r e s u l t s found i n the l i t e r a t u r e . These f o r e s t f l o o r s are h i g h l y v a r i a b l e . Sampling requirements w i l l vary w i t h the property being measured and the i n t r i n s i c v a r i a b i l i t y of some p r o p e r t i e s makes adequate sampling i m p r a c t i c a l . T r a d i t i o n a l f o r e s t f l o o r c l a s s i f i c a t i o n s were based on morphological features although i t was recognized that chemical and p h y s i c a l measurements would be necessary f o r a more comprehensive understanding o f these systems. Most f o r e s t f l o o r c l a s s i f i c a t i o n s were not i n t e g r a t e d w i t h an o v e r a l l s o i l , e c o l o g i c a l or other land based system. Forest f l o o r s should be c a l s s i f i e d as an i n t e g r a l p a r t of a h o l i s t i c system i n order to b e t t e r understand the f u n c t i o n i n g of a f o r e s t f l o o r . Three r e p r e s e n t a t i v e biogeocoenoses were examined to see i f chemical p r o p e r t i e s could d i s t i n g u i s h s i t e s and f o r e s t f l o o r h o r i z o n s . A number of derived v a r i a b l e s were included f o r f e r t i l i t y c o n s i d e r a t i o n s . Most o f these v a r i a b l e s have l a r g e c o e f f i c i e n t s o f v a r i a t i o n and would have l i m i t e d value f o r c l a s s i f i c a t i o n purposes. The derived /109 v a r i a b l e s d i d i n f e r a few u s e f u l r e l a t i o n s h i p s i n v o l v i n g LOI, t o t a l C, and exchangeable bases. A u n i v a r i a t e a n a l y s i s i n d i c a t e d that fewer v a r i a b l e s would d i s t i n g u i s h the three s i t e s than would d i s t i n g u i s h the LF and H horizons. An i n d i v i d u a l v a r i a b l e that could separate a l l s i x sampling u n i t s was not found. This i n d i c a t e s that more complicated c l a s s i f i c a t i o n systems are more d i f f i c u l t to c h a r a c t e r i z e with s i n g l e v a r i a b l e s . Therefore, i t i s d e s i r a b l e to keep the number of c l a s s e s i n a f o r e s t f l o o r c l a s s i f i c a t i o n system to a minimum when using u n i v a r i a t e a n a l y s i s . This approach should a i d i n separating the members or c l a s s e s o f the system. The m u l t i v a r i a t e a n a l y s i s could d i s t i n g u i s h the horizons o f a s i t e w i t h a l e v e l of accuracy that depended on the number o f input v a r i a b l e s . I t i s best to s a c r i f i c e some c l a s s i f i c a t i o n accuracy i n order to reduce the requirements f o r sampling and l a b o r a t o r y a n a l y s i s . Thus two or f i v e v a r i a b l e s may be the optimum number to use f o r c l a s s i f y i n g the horizons of a s i t e w i t h m u l t i v a r i a t e a n a l y s i s . The v a r i a b l e s N, K, CEC(4), LOI/C, and P are the most d e s i r a b l e to use on the present research s i t e s . These parameters had r e l a t i v e l y low sampling requirements as w e l l as obvious s i t e f e r t i l i t y values. The m u l t i v a r i a t e a n a l y s i s i s more i n v o l v e d than the u n i v a r i a t e a n a l y s i s although i t i s a u s e f u l screening or s o r t i n g mechanism. This type o f a n a l y s i s i s u s e f u l f o r reducing the number of v a r i a b l e s to be considered i n f u t u r e f o r e s t f l o o r c l a s s i f i c a t i o n or c h a r a c t e r i z a t i o n s t u d i e s . / n o Highly c o r r e l a t e d v a r i a b l e s are d e s i r a b l e f o r i n d i c a t i n g n u t r i e n t r e l a t i o n s h i p s and f o r reducing the e f f o r t needed f o r c l a s s i f y i n g f o r e s t f l o o r s . C e r t a i n groups of v a r i a b l e s were found to be h i g h l y c o r r e l a t e d . The three forms of Ca, Mg, and K are h i g h l y c o r r e l a t e d and only one form o f these n u t r i e n t s should be measured. These n u t r i e n t s are predominantly i n exchangeable forms. The fu n g i p l a y a key r o l e i n r e l e a s i n g these n u t r i e n t s from u n a v a i l a b l e organic forms. The r e s u l t i s a more r a p i d c y c l i n g of these n u t r i e n t s i n the f o r e s t f l o o r system. High c o r r e l a t i o n s e x i s t between Fe, A l , and Mn and these elements are h i g h l y c o r r e l a t e d w i t h s o i l r e a c t i o n . Processes such as b i o c y c l i n g and podzol formation are common to these elements. Calcium i s the dominant c a t i o n of the exchange s i t e s of the f o r e s t f l o o r s of the study s i t e s . This n u t r i e n t i s important i n these f o r e s t f l o o r systems although high v a r i a b i l i t y would make i t d i f f i c u l t to adequately sample t h i s n u t r i e n t f o r s i t e f e r t i l i t y purposes. A f i n a l n u t r i e n t r e l a t i o n s h i p to be considered was the pH-dependent CEC. The s i t e and hori z o n f a c t o r s had an independent e f f e c t on t h i s property. This parameter i s a f f e c t e d by processes c h a r a c t e r i s t i c of each s i t e . Vegetation inputs and unique decomposition environments are i n d i c a t e d as determining f a c t o r s f o r pH-dependent CEC w i t h i n the f o r e s t f l o o r s . Therefore, the LF and H horizons are d i s t i n g u i s h a b l e systems with many common processes. The p r i n c i p a l d i f f e r e n c e between LF and H horizons i s the time that has been a v a i l a b l e f o r decomposition. / I l l Decaying wood i s a n u t r i e n t - d e f i c i e n t m a t e r i a l which a f f e c t s o v e r a l l s i t e f e r t i l i t y , n u t r i e n t accumulation, and n u t r i e n t v a r i a b i l i t y . Fine roots are another component of the f o r e s t f l o o r system that have an important impact on f o r e s t f l o o r p r o p e r t i e s . The f i n e r o o t s are important f o r production of r e l a t i v e l y N - d e f i c i e n t biomass, f o r b i o c y c l i n g elements such as Fe and A l , and f o r enhancing the r a t e of podzol formation. Therefore, i t i s e s s e n t i a l to study the decaying wood and f i n e roots a s s o c i a t e d w i t h f o r e s t f l o o r s i n order to p r o p e r l y understand these systems. These components have an impact on f o r e s t f l o o r p r o p e r t i e s that may be as s i g n i f i c a n t as that of v e g e t a t i o n l i t t e r . /112 LITERATURE CITED Alban, D. H. 1967. The i n f l u e n c e of western hemlock and western red cedar on s o i l p r o p e r t i e s . Ph.D. Thesis. Washington State U n i v e r s i t y . 167 pp. Dis s . Abstr. No. 67-9159. Alhonen, P., T. Koljonen, P. Lahermo and R. Uusinoka. 1975. Ferruginous concretions around root channels i n c l a y and f i n e sand d e p o s i t s . B u l l . Geol. Soc. F i n l a n d 47: 175-181. Annas, R. M. and R. Coupe (eds.). 1979. B i o g e o c l i m a t i c zones and subzones of the Cariboo Forest Region. Min. of Fo r e s t s , Prov. of B.C. pp. 9-11. Anonymous. 1974a. Technicon Autoanalyzer I I . Methodology: Determination of phosphorous i n BD a c i d d i g e s t s . I n d u s t r i a l Method No. 327-7410. Anonymous. 1974b. Technicon Autoanalyzer I I . Methodology: I n d i v i d u a l / simultaneous determination of n i t r o g e n and phosphorous BD a c i d d i g e s t s . I n d u s t r i a l Method No. 334-74A. Baker, J . B. and B. G. Blackmon. 1977. Biomass and n u t r i e n t accumulation i n a cottonwood p l a n t a t i o n - the f i r s t growing season. S o i l S c i . Soc. Am. J . 41: 632-636. B a l l , D. F. and W. M. W i l l i a m s . 1968. V a r i a b i l i t y of s o i l chemical p r o p e r t i e s i n two u n c u l t i v a t e d brown earths. J . S o i l Sc. 19(2): 379-391. Bascomb, C. L. 1968. D i s t r i b u t i o n of pyrophosphate e x t r a c t a b l e i r o n and organic carbon i n s o i l s o f various groups. J . S o i l Sc. 19(2): 251-268. /113 Beckett, P. H. T. 1967. L a t e r a l changes i n s o i l v a r i a b i l i t y . J . Austr. I n s t . Agr. Sc. 33: 172-179. Beckett, P. H. T. and R. Webster. 1971. S o i l v a r i a b i l i t y : A review. S o i l s and F e r t . 34(1): 1-15. Belobrov, V. P. 1976. V a r i a t i o n i n some chemical and morphological p r o p e r t i e s of sod-podzolic s o i l s w i t h i n the boundaries of elementary s o i l a r e a l s and taxonomic groups, p. 147-158. In: V. M. F r i d l a n d (ed.) S o i l combinations and t h e i r genesis. Amerind P u b l i s h i n g Co. Pvt. L t d . , New D e l h i . B e r n i e r , B. 1968. D e s c r i p t i v e o u t l i n e of f o r e s t humus-form c l a s s i f i c a t i o n . Proc. 7th Meeting N a t i o n a l S o i l Survey Committee of Canada, Edmonton, p. 139-154. B i r k e l a n d , P. W. 1974. Pedology, weathering and geomorphological research. Oxford U n i v e r s i t y Press, New York. 285 pp. Bloom, A. L. 1978. Geomorphology - a systematic a n a l y s i s of l a t e Cenozoic landforms. P r e n t i c e - H a l l , . Inc., Englewood C l i f f s , New Jersey. 510 pp. B l y t h , J . F. and D. A. Macleod. 1978. The s i g n i f i c a n c e of s o i l v a r i a b i l i t y f o r f o r e s t s o i l s t u d i e s i n north-east Scotland. J . S o i l Sc. 29: 419-430. Bracewell, J . M., G. W. Robertson and J . Logan. 1979. V a r i a b i l i t y of organic matter and exchangeable cat i o n s w i t h i n the A^ h o r i z o n of an i r o n podzol. J . S o i l Sc. 30: 327-332. /114 Bremner, J . M. 1965. T o t a l n i t r o g e n , p. 1149-1178. In: C. A. Black (ed.) Methods of s o i l a n a l y s i s . Part 2. Chemical and m i c r o b i o l o g i c a l p r o p e r t i e s . ASA Monograph 9. Madison, Wisconsin. Bremner, J . M. and M. A. Tabatubai. 1971. Use of automated combustion techniques f o r t o t a l carbon, t o t a l n i t r o g e n , and t o t a l s u l f u r a n a l y s i s of s o i l s , p. 1-16. In: L. M. Walsh (ed.) Instrumental methods f o r a n a l y s i s o f s o i l s and pl a n t t i s s u e . S o i l Sc. Soc. of Amer, Wisconsin. Broadbent, F. E. 1965. Organic matter, p. 1397-1400. In: C. A. Black (ed.) Methods of s o i l a n a l y s i s . Part 2. Chemical and m i c r o b i o l o g i c a l p r o p e r t i e s . ASA Monographs 9. Madison, Wisconsin. Campbell, J . B., J r . 1978. S p a t i a l v a r i a t i o n of sand content and pH w i t h i n s i n g l e contiguous d e l i n e a t i o n s of two s o i l mapping u n i t s . S o i l S c i . Soc. Amer. J . 42: 460-464. Canada S o i l Survey Committee, Subcommittee on S o i l C l a s s i f i c a t i o n . 1978. The Canadian system of s o i l c l a s s i f i c a t i o n . Can. Dep.. A g r i c . Publ. 1646. Supply and Services Canada, Ottawa, Ont. 164 pp. Chapman, H. D. 1965. Cation-exchange c a p a c i t y , p. 891-901. In: C. A. Black (ed.) Methods of s o i l a n a l y s i s . Part 2. Chemical and m i c r o b i o l o g i c a l p r o p e r t i e s . ASA Monograph 9. Madison, Wisconsin. /115 Chapman, H. D. and P. F. P r a t t . 1961. Methods of a n a l y s i s f o r s o i l s , p l a n t s and waters. Div. Agr. S c i . , Univ. of C a l i f . 309 p. Cl a r k , J . S. 1965. The e x t r a c t i o n of exchangeable ca t i o n s from s o i l s . Can. J . S o i l S c i . 45: 311-322. Coleman, N. T., S. B. Weed and R. J . McCracken. 1959. Cation-exchange c a p a c i t y and exchangeable c a t i o n s i n Piedmont s o i l s of North C a r o l i n a . S o i l S c i . Soc. Amer. Proc. 23: 146-149. C o l l i n s , J . B., E. P. Whiteside and C. E. Cress. 1970. Seasonal v a r i a b i l i t y of pH and l i n e requirements i n s e v e r a l southern Michigan s o i l when measured i n d i f f e r e n t ways. S o i l S c i . Soc. Amer. Proc. 34: 56-61. Cromack, K., P. S o l l i n s , W. C. Graustein, K. S p e i d e l , A. W. Todd, G. Spycher, C. Y. L i and R. L. Todd. 1979. Calcium o x a l a t e accumulation and s o i l weathering i n mats o f the hypogeous fungus Eystevangivm crassum. S o i l B i o l . Biochem. 11: 463-468. D a n i e l , T. W., J . A. Helms and F. S. Baker. 1979. P r i n c i p l e s of S i l v i c u l t u r e . Second e d i t i o n . McGraw-Hill Book Company, p. 252-254. Day, P. R. 1950. P h y s i c a l b a s i s of p a r t i c l e s i z e a n a l y s i s by the hydrometer method. S o i l Sc. 70: 363-374. Foster, N. W. and I. K. Morrison. 1976. D i s t r i b u t i o n and c y c l i n g of n u t r i e n t s i n a n a t u r a l Pinus banksiana ecosystem. Ecology 57: 110-120. /116 G e r l o f f , G. C , D. G. Moore and J . T. C u r t i s . 1966. S e l e c t i v e absorption of mineral elements by n a t i v e p l a n t s o f Wisconsin. P l a n t and S o i l 25(3) : 393-405. Gessel, S. P. and A. N. B a l c i . 1965. Amount and composition of f o r e s t f l o o r s under Washington coniferous f o r e s t s , p. 11-23. In: C. T. Youngberg (ed.) F o r e s t - s o i l r e l a t i o n s h i p s i n North America. Second N. Amer. Forest S o i l s Conf. Proc. 1963. C o r v a l l i s : Oreg. State Univ. Press. G r i e g , M. and D. O s t e r l i n . 1978. UBC ANOVAR - A n a l y s i s of vari a n c e and covariance. Computing Centre, Univ. of B r i t i s h Columbia, Vancouver, B.C. 69 pp. G r i e r , C. C. and J . G. McC o l l . 1971. Forest f l o o r c h a r a c t e r i s t i c s w i t h i n a small p l o t i n D o u g l a s - f i r i n Western Washington. S o i l S c i . Soc. Amer. Proc. 35: 988-991. Halm, J . 1976a. Stepwise d i s c r i m i n a n t a n a l y s i s . Computing Centre, Univ. of B r i t i s h Columbia, Vancouver, B.C. 20 pp. Halm, J . 1976b. UBC FAN - Factor a n a l y s i s . Computing Centre, Univ. of B r i t i s h Columbia, Vancouver, B.C. 42 pp. H a r r i s , W. F., R. S. Kinerson, J r . and N. T. Edwards. 1977. Comparison of belowground biomass o f n a t u r a l deciduous f o r e s t and l o b l o l l y pine p l a n t a t i o n s . Pedobiologia 17: 369-381. Hesse, P. R. 1971. A textbook o f s o i l chemical a n a l y s i s . Chemical P u b l i s h i n g Co., Inc., New York. 520 pp. Hitchcock, C. L. and A. Cronguist. 1973. F l o r a of the P a c i f i c Northwest. Univ. of Washington Press, S e a t t l e . 730 pp. /117 Hoover, M. D. and H. A. Lunt. 1952. A key f o r the c l a s s i f i c a t i o n of f o r e s t humus types. S o i l S c i . Soc. Amer. Proc. 16: 368-370. Husch, B., C. I. M i l l e r and T. W. Beers. 1972. Forest mensuration. Second e d i t i o n . The Ronald Press Co., New York. 410 pp. Ike, A. F. and J . L. C l u t t e r . 1968. The v a r i a b i l i t y of f o r e s t s o i l s of the Georgia Blue Ridge Mountains. S o i l S c i . Soc. Amer. Proc. 32: 284-288. J e n n r i c h , R. and P. Sampson. 1977. Stepwise d i s c r i m i n a n t a n a l y s i s . p. 711-734. In: M. B. Brown (ed.) Biomedical computer programs P - s e r i e s . BMDP-77. Univ. of C a l i f . Press, Berkeley, C a l i f . Kaarik, A. A. 1974. Decomposition of wood. p. 129-174. In: C. H. Dickinson and G. J . F. Pugh (eds.) B i o l o g y of p l a n t l i t t e r decomposition. V o l . I. Academic Press, London. Kimmins, J . P. 1977. The need f o r e c o l o g i c a l c l a s s i f i c a t i o n i n B.C. B.C. F o r e s t r y 2(1): 1-2. Kimmins, J . P. and B. C. Hawkes. 1978. D i s t r i b u t i o n and chemistry of f i n e roots i n a white spruce-subalpine f i r stand i n B r i t i s h Columbia: I m p l i c a t i o n s f o r management. Can. J . For. Res. 8: 265-279. K i s e l e v a , N. K. 1976. V a r i a b i l i t y of exchangeable calcium, magnesium and aluminum i n sod-podzolic s o i l under broad-leaved spruce f o r e s t , p. 169-178. In: V. M. F r i d l a n d (ed.) S o i l combinations and t h e i r genesis. Amerind P u b l i s h i n g Co. Pvt. L t d . , New D e l h i . /118 Klin k a , K. 1977. Guide f o r the t r e e species s e l e c t i o n and p r e s c r i b e d burning i n the Vancouver Forest D i s t r i c t . Second approximation. Prov. of B.C., Min. of Forest, Research Branch, Vancouver, B.C. 42 pp. and appendices. K l i n k a , K., R. N. Green and R. L. Trowbridge. 1979. Humus form c l a s s i f i c a t i o n i n the e c o l o g i c a l program of the B r i t i s h Columbia Forest S e r v i c e . F i r s t approximation. Prov. of B.C., Min. of F o r e s t , Research Branch, V i c t o r i a , B.C. 53 pp. and appendices. K r a j i n a , V. J . 1969. Ecology of f o r e s t t r e e s i n B r i t i s h Columbia. Ecology of Western North America 2(1): 1-146. Lewis, T. 1976. The t i l l - d e r i v e d podzols of Vancouver I s l a n d . Ph.D. t h e s i s . Univ. of B r i t i s h Columbia, Vancouver, B.C. 158 pp. Lindner, R. C. and C. P. Harley. 1942. A r a p i d method f o r the determination of n i t r o g e n i n p l a n t t i s s u e . S c i . 96: 565-566. Lowe, L. E. 1972. Aspects of chemical v a r i a b i l i t y i n f o r e s t humus la y e r s under a mature western hemlock - western red cedar stand. Can. J . Forest Res. 2: 487-489. Mader, D. L. 1953. P h y s i c a l and chemical c h a r a c t e r i s t i c s of the major types of f o r e s t humus found i n the United States and Canada. S o i l S c i . Soc. Amer. Proc. 17: 155-158. Mader, D. L. 1963. S o i l v a r i a b i l i t y - a serious problem i n s o i l - s i t e s t u d i e s i n the Northeast. S o i l S c i . Soc. Amer. Proc. 27: 707-709. McFee, W. W. and E. L. Stone. 1965. Quantity, d i s t r i b u t i o n and v a r i a b i l i t y o f organic matter and n u t r i e n t s i n a f o r e s t podzol i n New York. S o i l S c i . Soc. Amer. Proc. 29: 432-436. /119 McFee, W. W. and E. L. Stone. 1966. The p e r s i s t e n c e of deaying wood i n the humus l a y e r s o f northern f o r e s t s . S o i l S c i . Soc. Amer. J . 30: 513-516. Mehra, 0. P. and M. L. Jackson. 1960. Iron oxide removal from s o i l s and c l a y s by a d i t h i o n i t e - c i t r a t e system b u f f e r e d w i t h sodium bicarbonate, p. 317-327. In: Clays and c l a y minerals. Proc. of 7th Conf. Messenger, A. S. 1975. Climate, time and organisms i n r e l a t i o n to podzol development i n Michigan sands: I I . R e l a t i o n s h i p s between chemical element concentrations i n mature t r e e f o l i a g e and upper humic h o r i z o n s . S o i l S c i . Soc. Amer. Proc. 39: 698-702. Messenger, A. S., E. P. Whiteside and A. R. Wolcott. 1972. Climate, time and organisms i n r e l a t i o n to podzol development i n Michigan sands: I. S i t e d e s c r i p t i o n s and m i c r o b i o l o g i c a l observations. S o i l S c i . Soc. Amer. Proc. 36: 633-638. Metz, L. J . 1954. Forest f l o o r i n the Piedmont r e g i o n of South C a r o l i n a . S o i l S c i . Soc. Amer. Proc. 18: 335-338. Metz, L. J . , C. G. Wells and B. F. Swindel. 1966. Sampling s o i l and f o l i a g e i n a pine p l a n t a t i o n . S o i l S c i . Soc. Amer. Proc. 30: 397-399. Minderman, G. 1960. M u l l and mor (Muller-Hesselman) i n r e l a t i o n to the s o i l water regime of a f o r e s t . P l a n t and S o i l 13(1): 1-27. /120 Mueller-Dombois, D. and H. E l l e n b e r g . 1974. Aims and methods of v e g e t a t i o n ecology. John Wiley and Sons, Inc., New York. 547 pp. M u l l e r , J . E., K. E. Northcote and D. C a r l i s l e . 1974. Geology and mineral deposits of A l e r t Bay - Cape Scott map area Vancouver I s l a n d , B r i t i s h Columbia. G e o l o g i c a l Survey Paper 74-8, G e o l o g i c a l Survey of Canada, Dept. of Energy, Mines and Resources, Ottawa. 77 pp. M u l l e r , P. E. 1879. S t u d i e r over skovjord, som b i d r a g t i l skovd yrkningens t h e o r i . T i d s s k r . Skovbr. 3: 1-124. N i k i t i n , N. I . 1966. The chemistry of c e l l u l o s e and wood. IPST Press, Jerusalem. 691 pp. Ovington, J . D. 1954. Studies o f the development of woodland c o n d i t i o n s under d i f f e r e n t t r e e s . I I . The f o r e s t f l o o r . J . of Ecology 42: 71-80. Parkinson, J . A. and S. E. A l l e n . 1975. A wet o x i d a t i o n procedure s u i t a b l e f o r the determination of n i t r o g e n and mineral n u t r i e n t s i n b i o l o g i c a l m a t e r i a l . Comm. S o i l S c i . and Pl a n t A n a l y s i s . 6 ( 1 ) : 1-11. Peech, M. 1965. Hydrogen-ion a c t i v i t y , p. 914-926. In: C. A. Black (ed.) Methods of s o i l a n a l y s i s . Part 2. Chemical and m i c r o b i o l o g i c a l p r o p e r t i e s . ASA Monograph 9. Madison, Wisconsin. /121 P f i s t e r , R. D., B. L. Kovalchik, S. F. Arno and R. C. Presby. 1977. Forest h a b i t a t types of Montana. USDA For. Ser. Gen. Tech. Rep. INT-34, Intermountain Forest and Range Experiment S t a t i o n , Forest S e r v i c e , USDA, Ogden, Utah. 174 pp. P r i c e , W. J . 1978. A n a l y t i c a l atomic absorption spectrometry. Heyden and Son L t d . , London. 239 pp. P r i t c h e t t , W. L. 1979. P r o p e r t i e s and management of f o r e s t s o i l s . John Wiley and Sons, Inc., New York. 500 pp. Reiners, W. A. and N. M. Reiners. 1970. Energy and n u t r i e n t dynamics of f o r e s t f l o o r s i n three Minnesota f o r e s t s . J . of Ecology 58: 521-528. Remezov, N. P. and P. S. Pogrebnyak. 1969. Forest s o i l science. IPST Press, Jerusalem. 261 pp. Richards, B. N. 1974. I n t r o d u c t i o n to the s o i l ecosystem. Longman Group L t d . , London. 266 pp. Rodin, L. E. and N. I. B a z i l e v i c h . 1967. Production and mineral c y c l i n g i n t e r r e s t r i a l v e g e t a t i o n . O l i v e r and Boyd, London. 288 pp. Romell, L. G. and S. 0. Heiberg. 1931. Types of humus l a y e r i n the f o r e s t s o f northeastern United S t a t e s . Ecology 12: 567-608. Santantonio, D. 1979. Seasonal dynamics of f i n e roots i n mature stands of Douglas f i r of d i f f e r e n t water regimes - a p r e l i m i n a r y r e p o r t . Paper 1332 of the Forest Research Laboratory, Oregon State Univ., C o r v a l l i s . 15 pp. /122 S c h o f i e l d , W. B. 1969. Some common mosses o f B r i t i s h Columbia. B r i t i s h Columbia P r o v i n c i a l Museum, Handbook No. 28. Queen's P r i n t e r , V i c t o r i a . 262 pp. S i e g e l , S. 1956. Nonparametric s t a t i s t i c s f o r the b e h a v i o r a l sciences. McGraw-Hill Book Co., New York. 312 pp. S l a v i n s k i , H. C. 1977. S o i l v a r i a b i l i t y along a topographic sequence, U.B.C. Endowment Lands. M.Sc. Thesis. Univ. of B r i t i s h Columbia, Vancouver, B.C. 203 pp. S o i l Survey S t a f f . 1975. S o i l taxonomy - a b a s i c system o f s o i l c l a s s i f i c a t i o n f o r making and i n t e r p r e t i n g s o i l surveys. A g r i c . Handbook No. 436, S o i l Conservation S e r v i c e , USDA, U.S. Government P r i n t i n g O f f i c e , Washington, D.C. 754 pp. Sokal, R. R. and F. J . Rohlf. 1973. I n t r o d u c t i o n t o b i o s t a t i s t i c s . W. H. Freeman and Co., San Fra n c i s c o . 368 pp. T i s d a l e , S. L. and W. L. Nelson. 1975. S o i l f e r t i l i t y and f e r t i l i z e r s . T h i r d e d i t i o n . MacMillan P u b l i s h i n g Co., Inc., New York. 694 pp. Van Lear, D. H. and N. B. Goebel. 1976. Leaf f a l l and f o r e s t f l o o r c h a r a c t e r i s t i c s i n L o b l o l l y pine p l a n t a t i o n s i n the South C a r o l i n a Piedmont. S o i l S c i . Soc. Amer. J . 40: 116-119. Vezina, P. E. 1965. Methods of pH determination and seasonal pH f l u c t u a t i o n s i n Quebec f o r e s t humus. Ecology 46(5): 752-755. Watanabe, F. S. and S. R. Olsen. 1965. Test o f an as c o r b i c a c i d method f o r determining phosphorous i n water and NaHCO^ e x t r a c t s from s o i l . S o i l S c i . Soc. Amer. Proc. 49: 677-678. /123 Weaver, T. and F. F o r c e l l a . 1979. Seasonal v a r i a t i o n i n s o i l n u t r i e n t s under s i x Rocky Mountain v e g e t a t i o n types. S o i l S c i . Soc. Amer. J . 43: 589-593. Webster, R. 1977. Q u a n t i t a t i v e and numerical methods i n s o i l c l a s s i f i c a t i o n and survey. Monographs on S o i l Survey, Oxford U n i v e r s i t y Press. 269 pp. Wells, C. G. and C. B. Davey. 1966. Cation-exchange c h a r a c t e r i s t i c s of f o r e s t f l o o r m a t e r i a l s . S o i l S c i . Soc. Amer. Proc. 30: 399-402. Wilde, S. A. 1958. Forest s o i l s - t h e i r p r o p e r t i e s and r e l a t i o n to s i l v i c u l t u r e . The Ronald Press Co., New York. 537 pp. Wilde, S. A. 1971. Forest humus: I t s c l a s s i f i c a t i o n on a genetic b a s i s . S o i l S c i . 111(1): 1-12. Wildung, R. E., G. Chesters and S. 0. Thompson. 1965. Cation-exchange c a p a c i t y of p l a n t l i g n i n s and s o i l humic c o l l o i d s as a f f e c t e d by pH and h y d r o l y s i s e r r o r . S o i l S c i . Soc. Amer. Proc. ' 29: 688-692. W i l l i a m s , C. B., J r . and C. T. Dyrness. 1967. Some c h a r a c t e r i s t i c s of f o r e s t f l o o r s and s o i l s under the tru e fir-hemlock stands i n the Cascade range o f Oregon and Washington. U.S. Forest Serv. Res. Pap. PNW-37, P a c i f i c Northwest Forest and Range Experiment S t a t i o n , P o r t l a n d , Oregon. 19 pp. Wi l l i a m s , F. 1968. Reasoning with s t a t i s t i c s . H o l t , Rinehart and Winston, Inc. 188 pp. /124 Wooldridge, David D. 1970. Chemical and p h y s i c a l p r o p e r t i e s of f o r e s t l i t t e r l a y e r s i n c e n t r a l Washington, p. 327-337. In: C. T. Youngberg and C. B. Davey (eds.) Tree growth and f o r e s t s o i l s . Oreg. State Univ. Press, C o r v a l l i s . Youngberg, C. T. 1966. Forest f l o o r s i n Douglas f i r f o r e s t s : I. Dry weight and chemical p r o p e r t i e s . S o i l S c i . Soc. Amer. Proc. 30: 406-409. Zar, J . H. 1974. B i o s t a t i s t i c a l a n a l y s i s . P r e n t i c e - H a l l , Inc., Englewood C l i f f s , N.J. 620 pp. /125 APPENDIX 1-1 Description and analysis of the modal soils. /126 Appendix 1-1 S i t e : X e r i c Parent M a t e r i a l : C l a s s i f i c a t i o n : organic o v e r l y i n g bedrock Typic F o l i s o l Modal P i t Location: E l e v a t i o n : 375 m Slope: 0-10% X e r i c I 8,0 Horizon LF Depth cm 21.0-12.5 H 12.5-0 Ae 0-1 1+ D e s c r i p t i o n Black (5YR 2.5/1 m), dark brown (7.5YR 3/2 d); dominantly f r e s h l y f a l l e n to semidecomposed coniferous l i t t e r w i t h white filamentous mycellium; f e l t y ; few medium and p l e n t i f u l f i n e r o o t s ; gradual, wavy boundary; 2-11 cm t h i c k ; pH (H-O) 3.89. Black (5YR 2.5/1 m), dark brown (7.5YR 3/2 d ) ; h i g h l y decomposed organic matter; f e l t y to granular, n o n s t i c k y , nongreasy; p l e n t i f u l medium and f i n e r o o t s ; c l e a r wavy boundary; 2-21 cm t h i c k ; pH (H„0) 3.64. Grayish brown (10YR 5/2 m), l i g h t gray (10YR 7/2 d ) ; s i l t loam; amorphous; f r i a b l e ; few f i n e r o o t s ; abrupt, broken boundary; 0-1 cm t h i c k ; pH (H 20) 3.78. Massive a n d e s i t i c to r h y o d a c i t i c bedrock, rough i r r e g u l a r surface created by weathering and t r e e r o o t s . Appendix 1-1 (cont'd) T o t a l Organic T o t a l CEC Exchangeable Bases Depth pH pH C Matter N (NaCl) Ca Mg K A l Horizon cm (HO) ( C a C l ) % C/N meq/lOOg kg-kg LF 21, .0-12.5 5, ,89 3, .48 48.3 95.8 + 0, .789 61.2 145, .8 19. .42 9. .93 2, ,44 0, .71 0. 107 H 12, ,5-0 3, ,64 3, .24 49.8 95.2 + 0, .889 56.1 127, .4 6. .64 23. .19 0, .80 1, .49 0. 106 Ae 0-1 3. ,78 3, .16 4.3 7.5* 0. ,072 58.8 13. .3 0. .07 0. ,40 0. .10 1, .83 0. 006 + Loss on i g n i t i o n i x 1, .724 Pyrophosphate Fe A l T o t a l Sand S i l t Clay Textural Horizon % : % :—— Class Ae 0.02 0.01 0.03 32 55 13 SiL /128 Appendix 1-1 (cont'd) Modal P i t Location: Mesic I 8,4 a l : c o l l u v i a l blanket E l e v a t i o n : 340 m n: O r t h i c Ferro-Humic Slope: 45% Podzol Depth cm D e s c r i p t i o n 12.0-6.5 Black (5YR 2.5/1 m), dark r e d d i s h brown (5YR 3/2 d ) ; dominantly f r e s h l y f a l l e n to semi-decomposed coniferous and shrub l i t t e r w i t h white filamentous mycellium; f e l t y ; few f i n e r o o t s ; c l e a r , wavy boundary; 4-19 cm t h i c k ; pH (H 20) 3.69. 6.5-0 Black (5YR 2.5/1 m), dark r e d d i s h brown (5YR 3/2 d ) ; h i g h l y decomposed organic matter; g r a n u l a r , s l i g h t l y s t i c k y and s l i g h t l y greasy; few, very coarse and coarse, p l e n t i f u l medium and few f i n e r o o t s ; abrupt, i r r e g u l a r boundary; 2-15 cm t h i c k ; pH (H 20) 3.59. 0-6 Brown to dark brown (7.5YR 4/2 m), p i n k i s h gray (7.5YR 6/2 d ) ; loam; weak, medium subangular b l o c k s ; f r i a b l e ; very few f i n e r o o t s ; c l e a r , i r r e g u l a r boundary; 4-7 cm t h i c k ; pH (H„0) 3.87. 6-11 Black (7.5YR 2/0 m), dark brown (7.5YR 3/2 d ) ; s i l t loam; moderate medium subangular b l o c k s ; f r i a b l e ; few medium and f i n e r o o t s ; p l e n t i f u l (60%) angular g r a v e l s ; c l e a r , i r r e g u l a r boundary with some f i n e tongues along o l d root channels i n t o u n d e r l y i n g h o r i z o n , 4-7 cm t h i c k ; pH (H 20) 4.05. 11-30 Dark brown (7.5YR 3/2 m), brown to dark brown (7.5YR 4/4 d ) ; loam; moderate medium subangular b l o c k s ; f r i a b l e ; few f i n e r o o t s ; p l e n t i f u l (60%) angular g r a v e l s ; gradual, wavy boundary with a few r e l i c t features a s s o c i a t e d with t r e e churning; 18-25 cm t h i c k ; pH (H 20) 4.67. 30-90 + Brown to dark brown (7.5YR 4/4 m), strong brown (7.5YR 5/6 d ) ; sandy loam; moderate coarse subangular b l o c k s ; f r i a b l e ; few f i n e r o o t s ; p l e n t i f u l (60%) angular g r a v e l s ; 56-70 cm t h i c k ; pH (H 20) 5.01. Appendix 1-1 (cont'd) T o t a l Organic T o t a l CEC Exchangeable Bases Depth pH pH C Matter N (NaCl) Ca Mg K A l 9w Horizon cm (HO) ( C a C l ) % C/N meq/lOOg kg-kg LF 12.0-6.5 3, .69 3, .38 48.5 95.1 + 1, .026 45, .3 124.0 17, .20 8, .65 3, .19 0, .96 0, .106 H 6.5-0 3, .59 3. ,21 47.4 93.3 0, .984 48, .1 126.3 18, .63 11, .95 1. .54 0, .98 0, .126 Ae 0-6 3. .87 3. .32 4.7 8.0* 0, .091 51. .3 20.1 0. .35 0. .52 0, .08 4, .34 0, .016 Bhf^ 6-11 4. .05 3. .87 13.5 23. 2* 0, .319 42, .2 24.1 0. .22 0. .37 0, .14 5, .07 0, .107 Bhfu 11-30 4. .67 4. .50 9.9 17.1* 0. .240 41, .2 36.3 0. .07 0. .03 0, .04 1, .00 0. ,122 Bh£ 2 30-90 + 5. .01 4. .79 7.3 12.6* 0. ,167 43. .8 28.0 0. ,08 0. .02 0. .01 0, ,04 0. ,120 + L o s s on i g n i t i o n he X 1.724 Pyrophosphate Fe A l T o t a l Sand S i l t Clay Textural Horizon °f, O, C 1 ™ „ 0 •b Class Ae 0.38 0.09 0.47 41 44 15 L Bhf-L 7.96 2.82 10.78 38 52 10 Si L Bhfu 2.54 2.74 5.28 47 46 7 L Bhf 2 2.13 1.86 3.99 61 35 4 SL t o V O /130 Appendix 1-1 (cont'd) S i t e : Hygric Parent M a t e r i a l : C l a s s i f i c a t i o n : t h i n mudflow covering d i s s e c t e d bedrock Gleyed Ferro-Humic Podzol Modal P i t Location: E l e v a t i o n : 290 m Slope: 40% Hygric I 9,8 Depth Horizon cm LF 13.0-7.5 7.5-0 Bhf 0-25 Ahbgj 25-38 38^ D e s c r i p t i o n Black (5YR 2.5/1 m) , dark brown (7.5YR 3/2 d ) ; mixture of f r e s h l y f a l l e n to semidecomposed coniferous, shrub and herb l i t t e r ; white mycellium a s s o c i a t e d w i t h the coniferous l i t t e r ; f e l t y ; p l a t y s t r u c t u r e ; few medium and f i n e r o o t s ; gradual, wavy boundary; 3-13 cm t h i c k ; pH (HO) 3.99. Black (10YR 2/1 m), very dark g r a y i s h brown (10YR 3/2 d ) ; h i g h l y decomposed organic matter; gr a n u l a r , s l i g h t l y s t i c k y and greasy; few coarse, medium and f i n e r o o t s ; gradual wavy boundary; 1-2 cm t h i c k ; pH (H 20) 4.07. Dark brown (7.5YR 3/2 m), brown to dark brown (7.5YR 4/4 d ) ; s i l t loam; moderate coarse subangular b l o c k s ; f r i a b l e ; p l e n t i f u l medium and few f i n e r o o t s ; p l e n t i f u l (45%) angular g r a v e l s ; c l e a r i r r e g u l a r boundary; 15-30 cm t h i c k ; pH (HO) 4.46. Very dark g r a y i s h brown (10YR 3/2 m), g r a y i s h brown (10YR 5/2 d ) ; loam; weak f i n e granules; f r i a b l e ; few medium and f i n e r o o t s ; p l e n t i f u l (45%) angular g r a v e l s ; abrupt i r r e g u l a r boundary; 9-15 cm t h i c k ; pH (l^O) 4.56. Massive a n d e s i t i c to r h y o d a c i t i c bedrock; smooth i r r e g u l a r surface i n d i c a t i n g former stream e r o s i o n . Appendix 1-1 (cont'd) Total Organic Total Exchangeable Bases Depth pH pH C .' Matter N (NaCl) Ca Mg K Al 9w Horizon cm (HO) ( C a C l ) % C/N meq/lOOg kg "kg" LF 13.0-7.5 3. .99 3, .63 45. .5 91. ,2 + 1. .396 32. .6 122, .7 13. .16 7, .28 2, .39 7, .91 0.134 H 7.5-0 4, .07 3, .66 38. .1 77. .8 + 1. .769 21. .6 96, .9 7, ,77 4, .75 0, .97 10, ,66 0.132 Bhf 0-25 4. .46 3. .82 16. .7 28. .9* 0. .620 27. .0 28. .6 1. ,25 0, .98 0, ,36 3. .66 0.120 Ahbgj 25-38 4. .56 3. .82 9. ,3 16. .0* 0. .478 19. ,5 25. .7 1. ,22 0. ,80 0. ,27 3. ,10 0.055 + Loss on i g n i t i o n *%C x 1.724 Pyrophosphate Fe Al Total Sand S i l t Clay Textural Horizon % % Class Bhf 8.32 2.21 10.53 22 62 16 SiL Ahbgj 1.86 0.89 2.75 37 47 16 L /132 APPENDIX 1-2 Data f o r the LF and H horizons of the X e r i c , Mesic and Hygric s i t e s Code f o r samples - column 1: 1 = X e r i c , 2 = Mesic, 3 = Hygric - column 2: subplot - columns 3§4: subplot coordinates - column 5: 1 = LF, 2 = H A P P E N D I X 1.-2 C N P Ca Mg K Na Fe Al Mn Cu Zn Sample % ppm 11801 48.4 0.789 0.068 0.448 0.126 0.106 0.044 0.039 0.070 103.6 5.8 14.8 11361 48.9 0.889 0.072 0.v616 0.086 0.108 0.037 0.042 0.079 121.3 3.5 10.4 U 1 8 1 48.4 0.860 0.073 0.396 0.102 0.124 0.042 0.064 0.123 63.6 3.5 12.6 11841 50.4 0.820 0.060 0.378 0.138 0.091 0.049 0.059 0.115 48.4 3.5 12.6 11071 49.1 0.915 0.071 0.500 0.095 0.106 0.026 0.044 0.079 169.7 3.5 14.8 12171 50.9 0.849 0.074 0.348 0.068 0.139 0.028 0.055 0.103 215.4 5.7 14.8 12731 49.1 0.941 0.088 0.296 0.077 0.126 0.026 0.050 0.085 794.5 5.7 21.4 12941 45.8 0.936 0.098 0.216 0.091 0.233 0.046 0.L70 0.286 117.2 3.6 19.3 12931 47.2 0.970 0.096 0.266 0.100 0.173 0.031 0.068 0.121 267.5 5.8 17.0 12131 48.6 1.073 0.103 0.471 0.119 0.150 0.026 0.048 0.086 465.9 5.7 17.0 13001 49.6 0.923 0.107 0.227 0.097 0.187 0.035 0.066 0.097 460.2 5.7 23.6 13701 49.6 1.006 0.097 0.387 0.097 0.152 0.035 0.064 0.099 348.4 3.5 12.6 13341 48.1 0.928 0.091 0.384 0.099 0.148 0.039 0.059 0.083 154.0 3.5 14.8 13311 50.1 0.712 0.075 0.425 0.080 0.144 0.035 0.035 0.075 399.6 1.3 3.8 13811 48.0 1.039 0.100 0.436 0.095 0.146 0.035 0.066 0.097 377.3 '3.5 14.8 >1601 50.4 L.002 0.071 0.378 0.133 0.109 0.029 0.049 0.106 65.1 8.1 24.2 21011 46.5 1.061 0.078 0.420 0.082 0.122 0.020 0.053 0.101 149.8 8.0 19.2 21311 47.9 0.955 0.068 0.319 0.108 0.069 0.033 0.037 0.086 68.2 3.5 14.8 21841 46.5 1.026 0.080 0.376 0.111 0.139 0.031 0.070 0.119 92.5 5.8 21.5 21441 48.6 0.948 0.072 0.497 0.098 0.098 0.022 0.066 0.101 112.6 5.8 19.3 22341 49.0 0.971 0.076 0.435 0.111 0.126 0.031 0.053 0.110 55.0 5.8 23.7 22131 48.4 0.907 0.073 0.439 0.088 0.099 0.020 0.046 0.088 103.1 5.7 17.0 22431 46.7 0.999 0.077 0.383 0.133 0.104 0.055 0.179 0.163 63.1 5.7 12.6 22011 46.8 0.956 0.076 0.376 0.088 0.108 0.024 0.044 0.070 92.3 5.7 19.2 22711 47.4 1.038 0.075 0.496 0.100 0.106 0.022 0.057 0.088 72.6 5.8 19.3 23001 48.2 1.030 0.081 0.483 0.100 0.095 0.020 0.055 0.106 79.2 5.8 17.0 23801 46.8 1.103 0.093 0.595 0.119 0.126 0.033 0.125 0.141 176.7 5.8 19.5 23641 49.1 0.939 0.075 0.469 0.090 0.090 0.024 0.051 0.089 100.4 3.6 17.3 23631 49.2 1.014 0.075 0.537 0.088 0.090 0.018 0.047 0.083 102.8 3.6 15.0 23671 48.0 0.933 0.082 0.369 0.119 0.110 0.025 0.060 0.108 143.6 3.6 15.1 31071 46.2 1.236 0.087 0.476 0.092 0.110 0.024 0.121 0.154 369.5 5.8 12.8 3198l\ 45.5 i.396 0.130 0.313 0.100 0.116 0.045 0.453 0.730 507.6 5.9 15.2 31441 46.5 1.067 0.077 0.280 0.092 0.096 0.033 0.091 0.145 247.7 5.8 17.2 31561 47.7 1.074 0.074 0.274 0.081 0.103 0.020 0.062 0.112 169.8 3.6 15.0 U 8 7 1 47.1 1.037 0.078 0.274 0.120 0.129 0.022 0.104 0.223 87.7 3.6 15.1 32391 47.3 0.928 0.064 0.174 0.112 0.106 0.027 0.040 0.094 109.7 3.6 12.8 32881 47.7 1.058 0.076 0.124 0.143 0.128 0.049 0.210 0.194 69.0 8.1 21.7 32231 48.5 0.387 0.072 0.365 0.122 0.131 0.034 0.069 0.211 125.7 8.1 19.6 32581 47.4 1.123 0.070 0.178 0.153 0.121 0.031 0.060 0.137 87.1 3.6 12.8 32551 49.0 0.814 0.062 0.263 0.087 0.096 0.018 0.035 0.074 154.2 5.8 19.5 33831 46.6 1.035 0.066 0.334 0.031 0.116 0.018 0.051 0.105 140.7 5.8 17.2 33701 45.5 1.125 0.083 0.530 0.101 0.114 0.033 0.130 0.177 255.4 5.8 19.5 33711 38.8 1.282 0.162 0.217 0.073 0.178 0.080 1.801 1.915 5519.4 5.9 19.8 33391 46.1 I.010 0.070 0.309 0.069 0.078 0.020 0.648 0.107 122.5 3.6 12.7 13301 31.7 1.164 0.136 0.332 0.119 0.078 0.147 1.589 2.640 4477.8 10.3 30.7 APPENDIX 1-2 (cont'd). Sample Ca Mg Na Fe Al Mn Cu -ppm-Zn 11802 11362 11182 11842 11072 12172 12732 129 42 12932 12132 13002 137,02 13342 13312 13812 21602 21312 21842 21442 21012 22342 22132 22432 22012 22712 23002 23802 23642 23632 23672 31072 31982 31442 31562 31872 32392 32882 32232 32582 32552 338 32 33702 33712 33392 33302 48.4 46.3 47.8 4 7. 9 49.3 47.2 47.5 44.8 45.2 48.2 47. 5 48.0 49.4 50.9 47.6 49.9 50.7 47.4 47.8 48.9 48.0 49.9 45.7 47.9 47.2 48.3 44.1 48.6 46.3 47. 1 39.1 38. 1 30.2 44. 1 38.9 47. 7 39. 4 44.6 46.2 46.2 46. 0 44.4 35.6 45.6 3 0.4 0.724 0.843 0. 862 0.716 0.911 0.646 0. 772 0.917 0. 848 0.843 0. 768 0. 999 0.872 0.634 0.916 0.889 0.963 0.984 1.082 0.941 0.894 0.804 i.062 0.803 1.264 1.149 1.193 1.053 1.037 0. 976 1.818 1. 769 1.413 1.281 1.811 1.203 1.264 I. 363 1.274 1.048 1. 143 1.462 1.398 1. 226 1.436 0.050 0. 059 0.063 0.049 0.058 0.049 0. 077 0.099 0.078 0.078 0. 079 0.072 0.065 0.054 0.070 0. 052 0.056 0.060 0. 059 0.053 0. 044 0.040 0.051 0.039 0. 06 7 0.06 1 0.093 0. 056 0.062 0.054 0. 171 0. 197 0. 194 0. 087 0. 176 0.073 0.096 0.134 0. 06 9 0.070 0. 065 0.081 0. 170 0. 083 0.201 0. 323 0.719 0. 328 0.268 0. 378 0.270 0.274 0. 107 0. 191 0.324 0. 136 0. 316 0.312 0. 377 0.443 0. 133 0.232 0.356 0.436 0.348 0.379 0.334 0.398 0. 243 0. 588 0. 537 0.457 0.459 0.482 0. 298 0.361 0.238 0.222 0. 132 0. 139 0. 123 0.074 0.268 0.115 0.256 0.464 0.781 0. 140 0.458 0. 173 0. 146 0.095 0. 110 0. 169 0. 127 0.068 0.089 0. 071 0.098 0. U l 0. 100 0. 125 0. 120 0. 085 0.110 0.281 0. 141 0. 142 0. 152 0. 161 0. 187 0. 140 0. 191 0. 099 0. 125 0. 127 0. 135 0. 141 0. I l l 0. 183 0.099 0. 104 0. 106 0.076 0.079 0. 159 0. 080 0. 116 0.189 0. 118 0. 119 0. 132 0.098 0. 121 0.115 0. 073 0.079 0.099 0.068 0.082 0.092 0. 127 0. 155 0. 133 0. 118 0.136 0.101 0.098 0.096 0. 103 0.043 0.043 0.079 0.057 0.059 0.063 0.043 0.052 0.049 0.068 0.059 0. 103 0.057 0.070 0. 063 0.088 0.093 0. 113 0.085 0. 104 0.053 0.078 0.079 0.072 0.052 0.062 0. 066 0.082 0. 080 0. 076 0.046 0.090 0.048 0.057 0.035 0.046 0.038 0.068 0.055 0.044 0.055 0.049 0.047 0.038 0.051 0.041 0.03 3 0.036 0.032 0.025 0.047 0.031 0.051 0.033 0.043 0.029 0.076 0.032 0.056 0.049 0.099 0.145 0.235 0.075 0. I l l 0.039 0.093 0.047 0.052 0. 041 0.050 0.052 0.082 0.048 0.103 0.066 0.262 0.112 0.098 0.038 0.102 0.071 0.338 0.119 0.053 0.131 0.111 0.057 0.035 0.114 0.070 0.038 0.096 0. 068 0.045 0.092 0.049 0.197 0.056 0.138 0.065 0.382 0.063 0.149 0.130 1.442 1.584 2.216 0.444 1.018 0.329 1.581 0.635 0.213 0. 387 0.201 0.214 3.020 0.247 4.664 0.128 0.205 0. 183 0.146 0.142 0.205 0.128 0.623 0.2 55 0.124 0.231 0.232 0.120 0.084 0. 176 0.168 0. 102 0. 195 0.161 0.125 0.162 0.121 0.269 0.091 0.240 0.162 0.402 0.158 0.246 0.252 1.016 1.494 1.728 0.516 1.267 0.960 0.975 0.929 0.351 0.742 0.312 0.326 3.271 0.352 4.366 12.8 76.7 32.7 25.8 10.7 19. 3 521.7 41.5 206.0 106.6 166. 2 37.6 19.6 39.7 37.6 4. 1 4. I 8.6 13.2 6.4 8.6 8.6 15.3 13.0 17.7 3.6 46. 8 8.6 22. I 28.9 1 79.9 126.3 132.5 39.6 60.7 11. 1 44.1 269.4 15.3 17. 7 56.6 143.3 7094.6 29. I 9906.2 1.3 3. 5 3.5 3.5 1.3 1.3 1.3 3.5 3.6 3.6 3.6 3.6 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 3.6 3.6 3.5 3.6 3.6 1.4 3.6 5.9 3.6 3.6 3.7 5.9 5.9 3.6 6.0 8.2 8.2 10.4 10.3 8.2 3.7 10.4 12.6 19.3 17.2 19.3 12.8 8.2 8.3 12.7 13.0 10.7 12.8 12.9 15.2 17.4 10.6 15.1 10.5 17.5 17.4 12.8 10.7 10.6 10.6 17.4 10.6 14.8 12.7 15.2 13. 1 12.7 10.7 10.6 12.9 13.0 22.1 26.8 17.5 33.8 APPENDIX 1-2 (cont'd). CEC(7) Ca(7) Mg(7) K(7) Na(7) CEC(4) Ca(4j Mg(4) K(4) Al(4) pH pH Sample meq/lOOg (H 20) (CaCl^ 11801 11361 11181 11841 1107 1 12171 12731 12941 12931 1213 1 13001 13701 13341 13311 13811 21601 2101 1 21311 21841 21441 22341 22131 22431 2201 1 2271 1 23001 23801 23641 2363 1 23671 31071 31981 31441 3156 1 31871 32391 32881 32231 32581 32551 33831 33701 3371 1 33391 33301 145.5 150.4 138.2 148. 7 142.7 137. 8 134. 8 140.9 145. 5 133. 8 12 8.6 138. 7 138.5 126.9 138.4 153. 7 135.8 164.2 143. 3 150.5 148. 7 136.3 150. 1 133.7 151.4 134.0 1 4 3 . a 153. 3 144.4 147.3 141.3 160.6 133.4 139.7 148.5 152.2 142.2 140.9 151.1 130. 3 152.2 136.9 151.3 141.9 131.5 18.58 27.42 17. 29 16.05 21.38 15.32 13. 12 3.59 11.26 19. 86 9.42 16.95 17.00 19.24 18.43 15. 17 19.10 13.75 16.36 21.23 20.8 3 19.65 16.96 17.57 22.86 21.74 25.74 20.91 25.27 16.92 19.73 12.81 11. 58 10.90 12. 20 7.36 4.05 16.65 8.06 12. 52 14.96 22.61 6. 76 17.93 6.07 9.92 6.73 7.85 10.97 7. 74 5.44 5.78 6.97 7.98 9. 10 7.72 7.62 7.73 6.26 7.13 11.18 6.60 8.78 8.43 7.99 9.02 6.80 10.81 7.51 7.64 7.86 9. 12 6. 93 6.93 9. 15 6.81 7.24 7.02 6.23 9. 78 9.03 10. 38 9.39 12.49 7.04 6.35 7.74 4.58 6.79 2. 54 2.42 2.39 2.66 1.86 2.45 3.36 2.83 5.31 4.16 3. 73 4.56 3. 76 3.76 3.20 3.38 2.58 3.20 1.57 3.23 2.28 3. 10 2.30 2.56 2. 81 2.56 2.56 3.03 2.31 2.28 2.68 2. 74 2.48 2.30 2.49 3.12 2.39 2. 88 3.19 3.10 2.24 2.42 2.92 3.55 2.30 1. 09 1.75 1.08 1.26 1.63 1.14 1.02 0. 90 1. 21 1. 14 1.02 1.32 1.44 1.74 1.32 1.44 1.17 0. 78 1.02 1.02 0.78 1.33 1.08 0.90 1.14 0.78 0. 84 0.98 0.85 0.86 0.98 0.67 0. 80 1. 10 0.67 0. 74 1.16 1.28 1.16 1. 10 0.79 0.55 0.67 1.55 0.73 0.30 145. 8 142.4 128.6 122. 0 135.9 121. 1 134.5 123. 0 127.5 128. 2 120.2 134.9 125. 6 127. 8 119.7 134.7 123.0 120.8 124.0 124.7 122.9 117. 7 122.5 127.2 129.9 134. 6 127.7 130.6 138.0 129.6 114. 5 122.7 111.3 114.9 120.8 115.8 110.5 128.2 130. 8 116.0 119. 8 130.2 103.0 122.0 79.7 19.42 29.53 19.26 18.79 23.69 16.85 14.65 9.73 12.19 21. 54 10.37 18.27 18. 53 21.10 21.06 16.34 20. 16 15.56 17.20 22.43 22.78 20.47 18.73 18.43 24. 78 22.38 27.16 22.02 25.40 17.72 21. 07 13.16 12.19 11.83 13.00 8.00 4.56 18.07 8. 16 12.90 16.07 23.77 6.92 18.83 6.06 9.93 6.92 8.18 11.59 7.91 5.62 5.98 7. 13 7.74 9.00 8. 16 7.90 7.72 6.82 7.56 10.89 6.73 8.93 8.65 8.02 9.49 6. 89 10.64 7.36 7.84 7.92 9.04 7.01 7.20 9.44 7. 10 7.28 7.18 6.36 10.04 9.25 10.42 10.01 12. 75 7.10 6.45 7.85 4.60 6.90 2.49 2.45 2. 53 2.87 2.23 2.64 3.28 3.08 5.78 4.43 3.86 4.75 3.91 3.65 3.38 3.44 2.56 2.87 1.51 3.13 2.19 3.05 2.24 56 67 59 25 94 2. 14 2. 19 2.66 2.59 2.39 2.22 2.33 3.14 2.34 2.76 3.24 2.83 2.22 2.62 2.68 3.66 2. 16 0.96 0. 71 0. 34 0.83 0. 71 0. 71 0.83 0.95 5.03 1.57 0.83 1.44 1.20 0.95 0.71 0.96 1.10 1 .08 0.96 0.96 0.71 0.96 0.71 1.08 3.71 0.71 0.83 0. 97 0.72 0.60 0.85 0. 72 7.90 1.71 1.59 3.49 1. 72 2.83 2.35 1.85 0.72 0.97 0.85 7.06 0.97 6.19 3.89 4.03 3.74 3.73 3.88 3.77 3.83 3.63 3.70 4.0 1 3.74 3.77 3.72 4.01 3.92 3.67 3.77 3.40 3.69 3.72 3.79 3.83 3.66 3.79 3.85 3.81 3.98 3.84 3.91 3.82 3.98 3.99 3.74 3.61 3.76 3.50 3.45 3.98 3.47 3.73 3.65 3.89 4.59 3.72 4.86 3.48 3.70 3.37 3.34 3.50 3.43 3.48 3.31 3.38 3.63 3.39 3.47 3.42 3.68 3.58 3. 31 3.45 3.03 3.38 3.35 3.40 3.47 3. 34 3.44 3.50 3.46 3.66 3.38 3.53 3.41 3.60 3.63 3.33 3.20 3.37 3.11 3.10 3.59 3.14 3.32 3.28 3.51 4.27 3.35 4.28 APPENDIX 1-2 (cont'd). Sample CEC(7) Ca(7) Mg(7) K(7) Na(7) CEC(4) Ca(4) Mg(4) meq/lOOg : K(4) Al(4) pH (H20) pH (CaCl2) 11332 11362 11182 11342 11072 12172 12732 12942 12932 12132 13002 13702 13342 13312 13812 21602 21312 21842 21442 21012 22342 22132 22432 22012 22712 23002 23802 23642 23632 236T2 31072 31982 31442 31562 31872 32392 32882 32232 32582 32552 33832 33702 13712 33392 33302 146.8 143.3 134.3 142.9 154.8 132.1 129. 1 139.8 138.9 139.5 126.1 158.0 146.9 147.5 151.9 190.2 179.4 164. 0 179.4 189.0 182.8 164.5 184.3 158.3 181.4 179.9 154.4 175.8, 161.1 167.9 153.1 146.7 120.4 153. 1 158.8 201.8 149.4 165.7 170. 1 180.1 186.3 184.1 142.7 173.3 137. I 12.63 31. 15 13.79 10.04 15.65 11.34 10.95 4.27 8.10 14.61 5.61 13. 82 14.11 17. 88 20. 16 4.98 8.56 14.97 17.83 16.32 15.05 13.42 16. 34 14.41 25. 12 23. 15 19.30 21.02 21.37 12. 53 13.43 6. 85 3.04 4.58 4. 17 5.10 0.69 9.55 3. 94 9.96 19.38 29.69 3.07 18.87 3.44 11.05 7.15 8.31 13.31 10.18 4.96 6.64 4.55 7.55 8.61 7.32 9.91 9.52 6.66 8.41 21.98 11.10 11.48 12.03 12.77 14.05 11.02 15.63 10.16 9.46 10.02 9.27 11.21 8.50 14. 52 4.76 4.66 2.28 5.38 4.20 12.58 4.36 7.83 13.92 8.86 9. 18 9.64 2.36 8.90 1.66 1.36 1.43 1.71 1. 14 1. 58 1.42 2. 79 3.69 2.93 2. 83 2.79 2. 09 2.33 2.26 2.20 0. 89 0. 81 1.60 1. 14 1.43 1.56 0. 95 1.38 1.41 1.47 1.24 1.96 1. 07 1.46 1.46 1.46 1.14 0. 90 1. 65 1.68 1.08 I. 23 1.83 1.46 1.10 1.43 1.15 1.26 1.65 0.90 1.69 1.08 1.20 1.55 1.21 1.13 0. 91 1.20 1.03 1.09 1.27 1.46 1.64 1.33 1.10 1.68 1.48 I.10 1.05 I . 1 1 1.41 1. 10 1.16 1.22 0. 93 1.05 1.10 1. 11 0.98 1.23 0.49 0.49 0.48 0.35 0.68 1.32 0.97 1.11 1.16 1.23 0.75 0.81 0.44 0.93 0.38 106.2 112.6 111.9 99.9 118.7 97.1 109.1 101.8 103.2 112. 9 96.6 116.2 109.4 107.6 115.2 127.5 118.8 126.3 128.6 136.4 125.4 122.8 124. 1 117.4 131.1 125.4 115.9 120.3 111.5 110.3 100.4 96.9 76.5 112.1 103.3 121.7 83.3 113.4 107.2 118.6 134.0 146. 3 80. 5 123. 1 63.9 15.38 36.66 17.40 13.97 19.14 13.58 12.12 4.39 9.23 15.67 6.08 15.28 14.76 19.01 21.62 6.64 11.41 18.63 22.05 18.02 19.10 16.16 19.95 15.86 29.57 26.11 21.87 23.52 23.26 14.39 14.37 7.77 3.46 5.42 4.55 5.78 0.81 11.18 5.48 12.35 23.68 35.96 4.26 22.84 4.85 11.56 7.53 3.64 13.25 10.41 5.23 6.77 4.46 7.40 8.31 7.31 9.95 9.53 6.88 8.56 23. 19 11.85 11.95 12.32 12.91 14.19 11.58 15.54 10. 15 10.36 10.43 9.91 11.29 8.65 14.76 4.82 4.75 2. 37 5.49 4. 19 12.52 4.49 8.21 16.40 9. 50 9.77 10. 80 2.45 9.26 1. 80 1.43 1.56 1.77 1. 53 1.60 1.41 2.60 2.95 2.77 2.55 2.66 2.37 2.09 2.13 2.10 0.80 0.80 1.54 1.06 1.32 1.34 0.76 1.08 1.22 1.32 1.17 2.03 1.00 1.23 1.17 1.05 0.97 0.75 1.58 1.40 0.99 1.37 1.29 1.37 1.08 1.09 1.06 1.21 1.47 0.89 0.59 0.34 0.96 0.83 0.71 1.07 0.96 6.60 2.19 0.72 2.44 2.21 0.84 0.59 0.97 1.49 1.23 0.98 0. 98 1. 11 0.85 0.98 1.72 0.85 1.36 0.85 1.72 0. 98 1. 10 1.98 5.98 10.65 12.15 6.52 13.29 16.73 13.33 10. 17 4.23 10.53 3. 14 1.37 8.10 2 . 8 8 4.95 3.64 4.01 3.60 3.66 3.77 3.62 3.64 3.65 3.58 3.70 3.54 3.61 3.56 3.91 3.71 3.44 3.28 3.59 3.50 3.52 3.53 3.55 3.59 3.59 3.71 3.66 3.78 3.56 3.66 3.59 3.97 4.07 4.02 3.52 3.88 3.70 3.72 3.78 3.58 3.73 3.49 3.71 4.64 3.58 4.84 3.24 3.69 3.28 3.22 3.30 3.17 3.34 3.21 3.27 3.37 3.20 3.20 3.17 3.52 3.35 3.02 2.86 3.21 3.13 3.11 3.14 3.13 3.13 3.17 3.32 3.28 3.42 3.18 3.28 3.17 3.55 3.66 3.59 3.07 3.46 3.29 3. 19 3.44 3.15 3.31 3. 14 3.35 4.19 3.18 4.41 APPENDIX 1-2 (cont'd). Sample pH (NaCl) LOI Thickness Ca(7) Mg(7) kg-kg" K(7) Na(7) Ca(4) Mg(4) K(4) Al(4) u a o i 11361 1118 1 11841 11071 12171 12731 12941 12931 12131 13001 13701 13341 13311 13811 21601 21011 21311 21841 21441 22341 22131 22431 2201 1 22711 2 3001 2330 I 23641 23631 23671 31071 31981 11441 31561 31871 32391 3288 1 32231 32581 32551 33831 3 3 701 33711 33391 33301 3.22 3.43 3.13 3.10 3.25 3.18 3.19 3.06 3.09 3.39 3.12 3.19 3.17 3.38 3.32 3.03 3.19 2.76 3. 14 3.12 3.17 3.21 3.11 3.22 3.30 3.28 3.44 3.15 3.27 3. 13 3.36 3.44 3.09 2.97 3.13 2.86 2. 89 3.34 2.89 3.07 3. 05 3.23 4.07 3.08 4.20 95.8 95.5 95.3 95.4 95.8 95.9 96.2 93.4 94.5 95.6 96.3 91 .6 96 . 96. 95 . 96. 96.2 96. 8 95. I 95.6 95.3 96. 3 92.4 96.5 94. 8 95.9 93. 7 95.8 95.6 95.1 94.3 91.2 94.2 96.8 95.2 97.0 93.8 95.9 94.9 97.3 95.4 92.1 78.9 95. 1 60.7 0. 107 0. 107 0. 104 0. 109 0. 105 0. 101 0.101 0.110 0. 107 0. 105 0. 102 0. 104 3. 103 0. 105 0. 106 0. 131 0. 105 0. 107 0. 106 0. 108 0. 109 0. 101 0. 105 0. 104 0. 107 0. 106 0. 121 0. 121 0. 122 0. 125 0. 121 0. 134 0. 118 0.120 0. 130 0.124 0. 120 0. 126 0.123 0.121 0. 120 0. 122 0. 140 0. 1 18 0. 1 19 84. 73. 69. 1 13. 1 08. 85. 83. 34. 23. 51. 43. 55. 62. 78. 35. 157. 1 86. 86. 56. 86. 1 16. 65. 87. 99. 65. 103. 55. 94. 38. 38. 42. 55. 35. 64. 75. 61. 64. 125. 53. 106. 96. 25. 79. 52. 65. 0. 372 0. 548 0. 346 0.321 0.428 0. 306 0.262 0. 172 0.22 5 0. 397 0. 188 0. 339 3.340 0.335 0. 369 3.303 0. 382 0.275 3.327 3. 425 0. 417 0.393 0.339 0. 351 3. 457 0. 435 0. 515 0.418 0. 505 0. 338 0. 395 0.256 0. 232 3.218 0. 244 0.147 0. 081 0. 333 0.161 0.250 3.299 0. 452 0. 135 0. 359 0. 121 0.121 0.082 0. 096 0. 134 0.094 0. 066 0.071 0.08 5 0.097 0.111 0.094 0. 093 0.094 0.076 0. 088 0. 136 0.081 0.107 0.103 0.097 0. 110 0.083 0. 132 0. 092 0.093 0.096 0.111 0.085 0.085 0.112 0.083 0.098 0. 086 0.076 0. 119 0. 110 127 0.115 0.152 0.086 0.077 0.094 0.056 0.083 0.031 0 0.095 0.093 0. 104 0.073 0.096 0. 131 0.111 0.207 0. 163 0. 146 0.178 0.147 0. 147 0.125 0. 132 0. 101 0.125 0.061 0. 126 0.089 0.121 0.090 0.100 0. 110 0.100 0.100 0. 118 0.090 0.089 0.105 0.107 0.097 0.090 0.097 0.122 0.093 0.113 0. 125 0.121 0.088 0.094 0.114 0.139 0.090 0. 043 0.040 0.025 0.029 0.037 0.026 0.023 0.021 0. 028 0.026 0.024 0.030 0.033 0.040 0.030 0.033 3.027 0.018 0.024 3.024 0.018 0.031 0.025 0.021 0.026 0.018 0.019 0.022 0.020 0.020 0.023 0. 015 0.018 0.025 0.015 0.017 0.027 0.029 0.027 0.025 0.018 0.013 0.015 0.036 0.017 0.007 0.388 0.591 0.385 0.376 0.474 0.337 0.293 0. 195 0.244 0.431 0.207 0.365 0.371 0.422 0.421 0.327 403 311 344 449 456 409 375 369 496 0 .443 0.543 0.440 0.508 0.354 0.421 0.263 0.244 0.237 0.260 0.160 0.091 0.361 0.163 0.2 53 0.321 0.475 0.133 3.377 0.121 0.121 0.034 0.130 0.141 0.097 0.06 9 0.073 0.037 3.094 0.110 0. 100 0.096 0. 094 0.083 0.092 0. 133 0.082 0.109 0.135 0. 098 0.116 0.084 0. 130 0.090 0.096 0.097 0. 110 0.086 0. 08 8 0.115 0.087 0.08 9 0. 08 8 0.07 3 3.123 0. 113 0.127 0.122 0.156 0.087 0.079 0.096 0.056 3 .034 0.03 0 0.096 0.099 3.112 0.087 0.103 3.128 0.121 0.226 3. 173 3.151 0.186 3.153 0.143 0.132 3.134 0.100 0.112 0.059 0.124 0.086 0.119 0 .088 0.100 3.134 0.101 0.088 0.115 3.083 0.086 0. 104 0.101 0.094 0.087 0.091 3.123 0.092 0.108 3.127 0.111 0.087 0. 102 3.105 0.143 3.084 0.037 0.006 0.003 0.007 0.006 0.006 0.007 0.009 0.045 0.014 0.007 0.013 0.011 0.009 0.006 0.009 0.010 0.010 0.009 0.009 0. 006 0.009 0.006 0.010 0.006 0.006 0.008 0.009 0.006 0.005 0.008 0.006 0.071 0.015 0. 014 0.031 0.015 0.025 0.021 0.017 0.006 0.009 0.008 0.063 0.009 0.056 APPENDIX 1-2 (cont'd). Sample PH (NaCl) LOI kg-kg" Thickness mm Ca(7) Mg(7) K(7) Na(7) Ca(4) Mg(4) K(4) Al(4) 11802 11362 11182 11842 11072 12172 12732 12942 12932 12132 13002 13702 13342 13312 13812 21602 21312 21842 21442 21012 22342 22132 22432 22012 22712 23002 23802 23642 23632 23672 31072 31982 31442 31562 31872 32392 32882 32232 J2582 32552 33832 33702 13712 33392 33302 2.97 3.45 3.02 2.94 3.08 3.02 3.13 3. 13 3.05 3.18 2.98 2.96 2.97 3.28 3. 15 2.72 2.58 2.99 2.87 2.84 2.89 2.87 2.91 2.94 3.03 3.07 3.27 2 .96 3.12 2.9 7 3.43 3.62 3.58 2.91 3.38 3.15 3.10 3.26 2.91 3.14 2.86 3.15 4. 16 2.96 4.34 93.1 87.7 92 .5 92.6 94.9 93.3 93.9 87. 7 90.4 94.4 93.8 92 .9 95.9 96.4 93 .0 95.2 96.8 93.3 94.3 95.3 93.4 96. 1 90.1 95.2 91.9 95.2 88.4 94.9 92. 1 92.0 80.3 77.8 62 .4 88.6 80.0 94.2 81.2 90.1 92.2 93 91 37 n 90 64 0. 106 0. 102 0.105 0.095 0. 110 0.095 0.111 0. 105 0.110 0.115 0. I l l 0. 1 19 0.114 0. 115 0. 118 0. 141 0. 134 0. 126 0.134 0. 137 0. 127 0. 126 0. 124 0. 121 0.134 0. 131 0. 125 0.134 0. 130 0. 128 0. 127 0. 132 0. 108 0.112 0. 132 0. 152 0.114 0. 134 0. 126 0. 132 0. 142 0. 141 0. 144 0. 137 0. 149 125. 110. 25. 210. 80. 170. 60. 2 5. 35. 20. 20. 50. 120. 120. 30. 100. 110. 50. 95. 30. 57. 150. 40. 83. 44. I 30. 35. 48. 28. 22. 48. 25. 20. 12. 50. 120. 45. 100. 30. 9 0 . 55. 8. 40. 18. 33. 0. 253 0.623 0. 276 0.201 0. 313 0.227 0. 219 0. 036 0. 162 0.292 0.112 0. 277 0. 232 0. 358 0.403 0. 100 0.171 0. 299 0.35 7 0.326 0. 301 0.268 0. 32 7 0.238 0. 502 0.463 0.386 0.420 0.427 0.251 0.269 0 . 137 3. 061 0. 092 0.08 3 0 . 102 0.014 0. 191 0. 079 0 . 199 0 . 388 0 . 594 0 . 061 0 . 377 0 . 069 0. 135 0.087 0.101 0. 162 0. 124 0. 061 0. 081 0.056 0.092 0. 105 0.089 0.121 0. 116 0. 081 0. 103 0. 268 0.135 0. 140 0. 147 0.156 0.171 0. 134 0.191 0. 124 0.115 0. 122 0.113 0. 137 0.104 0.177 0. 058 0. 057 0.028 0. 066 0.051 0. 153 0.053 0.095 0. 170 0. 108 0. 112 0.118 0.029 0. 109 0 . 0 2 0 0.053 0.056 0.067 0.044 0.062 0.055 0.109 0.144 0. 114 0. U l 0.109 0.082 0.091 0.088 0.086 0.035 0.032 0.063 0.045 0.055 0.061 0.037 0.054 0.055 0.057 0.049 0.077 0.042 057 0.057 0.057 0.044 0.035 0.065 0. 066 0.042 0.043 0.072 0.057 0 .043 0.058 0.045 0.049 0. 065 0.035 0 0.039 0.025 0.028 0.036 0.028 0.026 0.021 0.028 0.024 0.025 0.029 0.034 0.038 0.031 0.025 0.039 0.034 0.025 0.024 0.026 0.032 0.025 0.027 0.028 0.021 0.024 0.025 0.026 0.023 0.028 0.0U 0.011 0.011 0.019 0.016 0.030 0.022 0.026 0.027 0.028 0.017 0.019 0.010 0.021 0.009 0.303 0.733 0.348 0.279 0.383 0.272 3.242 0.083 0.185 0.313 0. 122 0.306 0.295 0.380 0.432 0.133 0.223 0.373 0.441 0.360 0.382 0.323 0.399 0.317 0.591 0.522 0.437 0.470 0.465 0.283 0.237 0.155 0.069 0.133 0.091 0.116 0. 016 0.224 0. 110 0.247 0.474 0.719 0 .035 0.457 0.097 0. 141 0.092 0.105 0. 162 0.127 0.064 3.08 3 0.054 0.090 0. 107 0. 089 0.121 0. 116 0.034 0.104 3.28 3 0. 145 0.146 0. 150 0.158 0.173 0. 141 190 124 126 127 121 138 0. 106 0.180 059 058 029 367 0.051 0.153 3.055 0 . 100 0.200 116 0.119 0 . 132 3.033 0.113 0.022 0 0.056 3.061 0.069 3 .062 0.063 0.055 0.102 0.115 0. 108 0. 100 0. 104 0.081 3.082 3.082 0.082 3.031 0.031 3.060 0.041 0.052 3.052 0.030 0.342 0.048 3.052 0.046 3.079 0.039 0.047 3.046 0.041 0.038 3.029 3.062 0.055 0.039 3.042 0.050 0.O53 0.042 0.043 3.042 3.047 0.057 3.035 0.005 0.003 0.009 0.007 0.006 0.010 0.009 0.059 0.020 0. 006 0.022 0.020 0.008 0.005 0. 009 0.013 0.011 0.009 0. 009 0.010 0.008 0. 009 0.015 0.008 0.012 0.008 0.015 0. 009 0.010 0.018 0.054 0.096 0. 109 0.059 0. 120 0. 150 0. 120 0.091 0.038 0. 095 0.028 0.012 0.073 0.026 0.044 /139 APPENDIX 2-1 Data f o r the derived v a r i a b l e s of the LF and H horizons of the X e r i c , Mesic and Hygric s i t e s Code f o r samples - column 1: 1 = X e r i c , 2 = Mesic, 3 = Hygric - column 2: subplot - column 3§4: subplot coordinates - column 5: 1 = LF, 2 = H APPENDIX 2-1 Sample C/N C/P N/P BS(7) BS(4) Ca/Mg Ca/K Mg/K LOI/C ExCa(4) ExMg(4) ExK(4) 11801 11361 11181 11841 11071 12171 12731 12941 12931 12131 13001 13701 13341 13311 13811 21601 21011 21311 21841 21441 22341 22131 22431 22011 22711 23001 23801 2 3641 23631 23671 31071 31981 31441 31561 31871 3 2391 32881 32231 32581 32551 33831 33701 33711 33391 33301 61.3 55.0 56.3 61.5 53.7 60.0 52.1 49. 0 48.6 45.3 53.7 49.3 51. 8 70.4 46.2 50.3 43.9 50. 1 45.3 51.3 50.5 53.3 46.7 48. 9 45.7 46. 8 42.4 52.3 48.5 51.5 37.4 32.6 43.6 44.4 45.4 51.0 45. 1 54.6 42.2 60. 1 45.0 40.4 30.3 45.7 27.3 709. 682. 661. 844. 693. 693. 557. 466. 492. 473. 465. 510. 526. 665. 479. 715. 596. 700. 581. 673. 644. 666. 607. 618. 636. 594. 504. 656. 653. 587. 531. 349. 605. 645. 604. 739. 629. 670. 676. 791. 707. 550. 239. 659. 234. 11.6 12.4 11.7 13.7 12.9 11.5 10.7 9.5 10.1 10.4 8.7 10.4 10.2 9.4 10.4 14.2 13.6 14.0 12.8 13.1 12.8 12.5 13.0 12.6 13.9 12.7 11.9 12.5 13.5 11.4 14.2 10.7 13.9 14.5 13.3 14.5 13.9 12.3 16.0 13. 2 15.7 13.6 7.9 14.4 8. 6 22. 5 25.0 21. 0 20. 5 22.9 18. 2 16.8 15.7 16.9 25.2 17.9 21.5 21. 8 23.6 22.0 19.6 21. 9 15.3 20. 3 21.4 23.1 21.9 20.8 21.7 22.4 24.6 27.0 20. 2 24.5 20.2 21.2 14.5 16. 5 14.5 17.4 13. 1 13.1 21.6 16.4 17.3 15.9 24.8 10. 9 19.6 7.6 23.0 28.1 24.5 28.1 26.0 22.1 18.3 19.4 20.0 27.6 20.5 23.4 25.2 25.5 28.0 23.0 24.8 22.4 24.2 26.8 29.8 26.1 26.8 23.3 27.7 24.8 31.4 24.5 25.8 23.8 27.5 19.3 20.4 18.4 22.3 17.9 17.2 25.3 19.0 19.8 21.5 26.9 16.2 23.5 12.3 3.55 7.13 3.90 2.74 5.26 5.10 3.83 2.37 2.67 3.95 2.35 3.98 3.87 5.34 4.59 2.83 5. 14 2.94 3.40 5.10 3.92 4.98 2.89 4.26 4.98 4.85 5.00 5.23 6.13 3.10 5.18 3.14 3.05 3.39 2.29 1.54 0.86 3.00 1.16 3.01 4. 14 5.25 2.98 4.46 2.80 4.21 5.68 3.2 0 4.15 4.71 2.51 2.35 0.93 1.54 3.14 1.21 2.54 2.60 2.96 2.99 3.48 3.46 4.65 2.70 5.10 3.44 4.43 3.69 3.47 4.67 5.07 4.74 5.23 5.98 3.35 4.33 2.71 2.91 2.66 2.13 1.64 0.97 2.80 1.47 2.73 2.87 4.63 1.22 3.95 4.23 1.19 0.80 0.82 1.51 0.90 0.49 0.61 0.39 0.58 0.79 0.52 0.64 0.67 0.55 0.65 1.23 0.67 1.58 0.79 1.00 0.88 0.89 1.28 0.82 0.94 1.05 0.95 1.00 0.98 1.08 0.84 0.86 0. 95 0.78 0.93 1.06 1.12 0. 93 1. 26 0.91 0.69 0.88 0.41 0.89 1.51 1.98 1.95 1.97 1.89 1.95 1.88 1.96 2.04 2.00 1.97 1.94 1.85 2.00 1.92 1.99 1.91 2.07 2.02 2.05 1.97 1.94 1.99 1.98 2.06 2.00 1.99 2.00 1.95 1.94 1.98 2.04 2.01 2.02 2.03 2.02 2.05 1.96 1.98 2.00 1.99 2.05 2.02 2.03 2.06 1.91 86.8 95.9 97.3 99.6 94. 8 95.7 99.1 90.1 91.6 91.4 91.2 94.4 96.4 99.3 96.6 86.4 95.9 97.4 91.4 90.3 104.7 93.3 97.8 98.1 99.8 92.8 91.4 93.9 94.6 95.9 88.6 84.0 87.1 86.4 94.9 92.2 73.8 98.9 91.7 98.2 96.2 89. 7 63.7 121.9 36.6 96.0 97. 8 98.2 102.8 101. 6 100.4 94.7 95.5 94.8 92.0 102.7 99.3 94.8 104.6 95.9 99.6 100.4 100.4 95.4 100.4 104.4 95.4 97.9 101.7 95.9 97.1 92.8 95.4 100.4 96.6 94.3 89.0 95.5 96.2 102.3 100.4 88. 6 100.4 101.9 99. 1 97.6 94.8 76.9 121.5 25.6 90.1 91.3 90.6 95.7 97.4 92.5 96.1 96.9 100.4 100.4 99.2 100.4 96.7 91.9 92.1 92.2 92.3 86.2 89.3 88.0 94.3 88.3 96.3 96.4 95.3 92.4 91.5 93.1 95.6 94.4 92.3 80.9 90.1 88.6 95.2 86.7 84.6 97.0 91.2 90.1 88.0 91.7 80.5 107.8 47.8 APPENDIX 2-1 (cont'd). Sample C/N C/P N/P BS(7) BS(4) Ca/Mg Ca/K Mg/K LOI/C ExCa(4) ExMg(4) ExK(4) 11802 11362 11182 11842 11072 12172 12732 12942 12932 12132 13002 13702 13342 13312 13812 21602 21312 21842 21442 21012 22342 22132 22432 22012 22712 23002 23802 23642 23632 23672 31072 31982 31442 31562 31872 32392 32882 32232 32582 32552 33832 33702 33712 33392 33302 66.9 54.9 55.5 66.9 54.1 73.1 61.5 48. 8 53.3 57.2 61.9 48.0 56.7 80.3 52.0 56. 1 52.6 48. 1 44.2 51.9 53.7 62.0 43.0 59.7 37. 3 42.0 37.0 46.2 44.6 48.2 21.5 21. 6 21.4 34.4 21. 5 39.7 31.2 32.8 36.3 44. 1 40.2 30.4 25.4 37.2 21. 2 961. 787. 764. 976. 851. 958. 614. 450. 580. 620. 602. 666. 765. 940. 676. 959. 909. 788. 804. 923. 1092. 1244. 888. 1235. 706. 797. 475. 876. 750. 866. 228. 194. 155. 505. 220. 653. 409. 334. 668. 664. 709. 549. 210. 552. 151. 14.4 14.3 13.8 14.6 15.7 13.1 10.0 9.2 10.9 10.8 9.7 13.9 13.5 11.7 13.0 17.1 17.3 16.4 18.2 17.8 20.3 20.1 20.6 20. 7 18.9 19.0 12.8 19.0 16.8 17.9 10.6 9.0 7.3 14.7 10.3 16.5 13.1 10.2 18.4 15.1 17.6 18.1 8.2 14.8 7.1 18. 2 28.5 18. 6 18. 2 18.5 14. 3 16. 5 9.8 14. 1 19.5 13.5 17.3 18.8 19. 1 21.0 15.5 12. 2 17.8 17.9 16. 7 17.5 16. 1 18.7 17.2 20.4 19.7 20. 5 19.6 20. I 17.7 13.2 9.0 5.6 8.1 6. 8 10.0 4.9 12. 3 12.0 11. 7 16. 5 22.4 5. 0 17.5 4. 6 28.3 41.6 25.9 30.4 27.3 22.0 20.5 12.8 19.8 24.9 17.9 24.7 25.6 27.3 29.0 25.3 21.5 26.3 28.3 24.5 23.7 24.1 30.4 24.2 32.2 30.9 30.1 30.7 30.6 28.6 20.7 14.4 9.2 11.9 10.5 16.9 8.8 19.2 22.8 20.4 26.3 33.2 10.4 28.0 12.4 2.22 7.59 2.96 1. 59 2.99 3.97 3.08 1.51 1.96 2.90 1.36 2.52 2.60 4.45 4.05 0.47 1.65 2.51 2.87 2.16 2.03 2.39 2.09 2.46 4.71 4.24 3.39 3. 26 4.35 1.63 3.64 2.29 2.09 1.74 1.75 0.77 0.92 2.32 0.61 2.18 3.91 5.90 1.42 3.80 1.50 4.43 9.06 3.29 3.94 4.60 2.93 2.16 0. 69 1.44 2.74 1.00 3.14 3.19 3.94 4.31 3.06 5.38 4.52 7.69 5.89 6.01 7.80 7.70 4.92 8.64 9.12 4.42 8.09 6.88 4.72 4.11 2.57 1.97 1. 56 1.33 2.31 0.95 3.38 1.60 4.92 7.53 11.80 1.70 5.75 2.28 2.00 1.19 1.11 2.48 1.54 0.74 0.70 0.46 0.73 0.94 0.74 1.24 1.23 0.88 1.06 6.47 3.26 1.80 2.68 2.73 2.96 3.26 3.70 2.00 1.83 2.15 1.30 2.48 1.58 2.89 1.13 1.12 0. 94 0.89 0.76 3.00 1.03 1.46 2.63 2.26 1.93 2.00 1.19 1.51 1.52 1.92 1.90 1.94 1.93 1.93 1.98 1.98 1.96 2.00 1.96 1.97 1.94 1.94 1.89 1.95 1.91 1.91 1.97 1.97 1.95 1.94 1.93 1.97 1.99 1.95 1.97 2.00 1.95 1.99 1.95 2.05 2.04 2.07 2.01 2.06 1.98 2.06 2.02 2.00 2.01 1.99 1.98 2.00 1.98 2.11 95.1 102. 0 106.3 104.4 101.3 100.7 88.5 82.4 96.4 96.8 89.4 96.7 94. 5 100.7 97.6 100.0 98.4 104.6 101. 1 103.4 100.7 96.8 100. 1 130.8 100.6 97.3 95.7 102.6 96.6 96.5 79.6 65.3 31.2 82.3 65.7 94.4 21.9 83.4 95. 1 96.4 102.1 92. 1 60.8 99.9 56. 1 96.6 96.9 95.4 95.8 100.4 93.9 92.9 76.9 92.4 96.4 89.3 95.8 96.7 99.1 95.3 100.8 102. 8 102.8 98.9 97.6 92. 5 101.2 99.2 125.5 101.3 100.4 89.5 93.0 95.3 98.5 59.3 55.7 27.2 88. 6 64.5 96.0 68.3 86.6 105.8 98.5 100.4 99. 5 30.4 93.8 19.1 76.4 77.0 69.4 91.1 76.3 60.1 80.3 74.6 81.2 84.4 76.6 80.5 83. 5 85.4 79.9 72.2 72.2 76.4 72.9 87.4 82.9 69.5 81.4 96.5 75.7 77.8 76. 6 68.9 66. 8 72.2 46.7 40. 8 25.9 73.0 52.7 72.7 53.5 63.5 74.1 81.4 69.3 62. 8 57.6 72.1 46.1 /142 APPENDIX 2-2 Basic s t a t i s t i c s f o r the derived v a r i a b l e s of the LF and H horizons of the X e r i c , Mesic and Hygric s i t e s APPENDIX 2-2 V a r i a b l e S i t e Horizon Range Mean SD + C.V.+ C/N X e r i c Mesic Hygric C/P X e r i c Mesic Hygric N/P X e r i c Mesic Hygric BS(7) X e r i c (%) Mesic Hygric BS(4) X e r i c (%) Mesic Hygric Ca/Mg X e r i c Mesic Hygric Ca/K X e r i c Mesic Hygric LF 45.3-70.4 H 48.0-80.3 LF 42.4-53.3 H 37.0-62.0 LF 27.3-60.1 H 21.2-44.1 LF 465-844 H 450-976 LF 504-715 H 474-1244 LF 234-791 H 151-709 LF 8.7-13.7 H 9.2-15.7 LF 11.4-14.2 H 12.8-20.7 LF 7.9-15.7 H 7.1-18.4 LF 15.7-25.2 H 9.8-28.5 LF 15.3-27.0 H 12.2-20.5 LF 7.6-24.8 H 4.9-22.4 LF 18.2-28.1 H 12.8-41.6 LF 22.4-31.4 H 21.5-32.2 LF 12.3-27.5 H 8.8-33.2 LF 2.35-7.13 H 1.36-7.59 LF 2.83-6.13 H 0.47-4.71 LF 0.86-5.25 H 0.61-5.90 LF 0.93-5.68 H 0.69-9.06 LF 2.70-5.98 H 3.06-9.12 LF 0.97-4.63 H 0.95-11.80 54.3 6.76 12.4 59.4 9.07 15.3 48.5 3.24 6.7 48.5 7.52 15.5 43.0 8.75 20.3 30.5 8.01 26.3 594 118.6 20.0 747 163.6 21.9 629 53.4 8.5 887 197.3 22.2 575 171.0 29.7 414 210.7 50.9 10.9 1.39 12.8 12.6 2.03 16.1 13.0 0.78 6.0 18.2 2.04 11.2 13.1 2.36 1.8 12.7 4.01 31.6 20.8 3.03 14.6 17.7 4.15 23.4 21.7 2.67 12.3 17.8 2.19 12.3 16.3 4.38 26.9 10.6 5.24 49.4 24.0 3.36 14.0 25.2 6.54 26.0 25.7 2.52 9.8 27.8 3.21 11.5 20.5 4.10 20.0 17.7 7.54 42.6 4.04 1.30 32.2 3.05 1.56 51.2 4.32 1.06 24.5 2.68 1.15 42.9 3.08 1.31 42.4 2.32 1.43 61.8 2.98 1.30 43.6 3.39 2.00 58.6 4.23 0.92 21.8 6.32 1.81 28.6 2.75 1.15 41.8 3.58 2.93 81.9 continued. Appendix 2-2: (cont'd) V a r i a b l e S i t e Horizon Range Mean SD + C.V.+ Mg/K LOI/C ExCa(4) ExMg(4) (%) ExK(4) (%) X e r i c LF 0.39-1.51 0 .74 0 .29 31 .1 H 0.46-2.48 1 .14 0 .53 46 .8 Mesic LF 0.67-1.58 1 .01 0 .22 22 .0 H 1.30-6.47 2 .74 1 .24 45 .3 Hygric LF 0.41-1.51 0 .94 0 .25 26 .5 H 0.76-3.00 1 .56 0 .67 43 .0 X e r i c LF 1.85-2.04 1 .95 0 .05 2 .6 H 1.89-2.00 1 .95 0 .03 1 .5 Mesic LF 1.91-2.07 1 .99 0 .05 2 .3 H 1.91-2.00 1 .96 0 .03 1 .4 Hygric LF 1.91-2.06 2. .01 0 .04 1 .9 H 1.98-2.11 2. .02 0, .04 1 .9 X e r i c LF 86.8-99.6 94, .8 3, .78 4 .0 H 82.4-104.7 94, .9 4, .42 4, .7 Mesic LF 86.4-104.7 94, .9 4, .42 4, .7 H 95.7-130.8 101, .7 8, .49 8, .3 Hygric LF 36.6-121.9 86, ,9 18. ,82 21, .7 H 21.9-102.1 75. ,1 24, .63 32, .8 X e r i c LF 92.0-104.6 98. ,1 3. ,65 3. ,7 H 76.9-100.4 94. ,3 5. ,53 5. ,9 Mesic LF 92.8-104.4 98. 3 3. ,09 3. ,1 H 89.5-125.5 100. 3 7. 89 7. ,0 Hygric LF 25.6-121.5 92. 3 20. 70 22. 4 H 19.1-105.8 72. 9 29. 25 40. 1 X e r i c LF 90.1-100.4 95. 4 3. 75 3. 9 H 60.1-91.1 78. 5 7. 24 9. 2 Mesic LF 86.2-96.4 92. 4 3. 19 3. 5 H 66.8-96.5 76. 6 7. 81 10. 2 Hygric LF 47.8-107.8 87. 5 12. 85 14. 7 H 25.9-81.4 59. 5 15. 21 25. 6 Standard d e v i a t i o n and c o e f f i c i e n t o f v a r i a t i o n , r e s p e c t i v e l y /145 APPENDIX 3-1 The ACEC/ApH values f o r the LF and H horizons of the X e r i c , Mesic and Hygric s i t e s Code f o r samples - column 1: 1 = X e r i c , 2 = Mesic, 3 = Hygric - column 2: subplot - columns 3§4: subplot coordinates - column 5: 1 = LF, 2 = H APPENDIX 3-1 ACEC/ApH+ ACEC/ApH ACEC/ApH Sample (meq/lOOg/pH u n i t ) Sample (meq/lOOg/pH u n i t ) Sample (meq/lOOg/pH u n i t ) 11801 -0.09 21601 4. ,77 31071 7. ,36 11361 2.23 21011 3. ,38 31981 10. .65 11181 2.47 21311 10. .25 31441 5, .66 11841 6.86 21841 5. ,01 31561 6. .15 11071 1.81 21441 6. .65 31871 7. .15 12171 4.37 22341 6. .73 32391 8, .80 12731 0.09 22131 4. .90 32881 7, .71 12941 4.53 22431 7. .11 32231 3, .47 12931 4.59 22011 1. .74 32581 4, .93 12131 1.55 22711 5. .80 32551 3, .64 13001 2.15 23001 -0. .17 33831 8, .21 13701 1.00 23801 4. .53 33701 1, .80 13341 3.37 23641 5. .90 33711 16, .47 13311 -0.23 23631 1. .71 33391 5, .09 13811 5.08 23671 4. .59 33301 18, .50 11802 10.07 21602 14. .65 31072 14, .77 11362 8.67 21312 13. .71 31982 14, .74 11182 5.64 21842 9. .42 31442 12, .81 11842 10.58 21442 12. .28 31562 10, .01 11072 9.21 21012 12. .64 31872 15, .34 12172 8.81 22342 13. .97 32392 20, .81 12732 5.17 22132 10. .10 32882 16, .95 12942 9.81 22432 14, .78 32232 14, .00 12932 9.03 22012 10. .07 32582 15, .38 12132 6.97 22712 12, .83 32552 15, .93 13002 7.36 23002 13. .88 33832 12, .62 13702 10.34 23802 10, .31 33702 9, .80 13342 9.29 23642 13. .76 33712 21. .88 13312 10.73 23632 12, .79 33392 12, .43 13812 9.54 23672 14. .28 33302 27, .54 +A measure of pH-dependent CEC /147 APPENDIX 3-2 Data f o r decaying wood Code f o r samples - column 1: 1 = X e r i c , 2 = Mesic, 3 = Hygric - column 2: subplot - columns 3§4: subplot c o o r d i n a t i o n - column 5: 3 = decaying wood APPENDIX 3-2 Ca Mg Na Fe Al Mn Sample Cu ppm Zn 11183 12943 12133 13313 21313 21443 21013 22133 22013 23003 23673 31073 32 583 32553 32393 338 33 33393 47.6 42.2 43.6 43.0 45.5 46.5 45.4 46.3 47.2 46. 8 43. 6 43.4 44. 1 46.4 47.0 46.8 41.9 0.324 0.545 0.663 0.356 0.308 0.422 0.731 0.434 0.323 0. 555 0.267 0.464 0.638 0.561 0.3 59 0.432 0.136 0.039 0.033 0.070 0.03 7 0.035 0.03 2 0.041 0.032 0.031 0. 039 0. 026 0. 03 5 0.035 0.038 0.030 0.030 0. 025 0.219 0.089 0. 168 0. 178 0. 133 0. 157 0. 195 0. 168 0. 144 0.324 0. 124 0. 192 0. 066 0. 179 0. 050 0.231 0.087 0. 084 0.046 0. 107 0.057 0. 086 0. 176 0. 159 0. 077 0.064 0. 119 0. 040 0.048 0. 147 0. 104 0. 127 0. 084 0. 020 0.026 0.067 0.085 0.042 0.015 0.020 0.033 0.028 0.030 0.035 0.032 0.055 0.031 0.039 0.019 0.024 0. 024 0.021 0.019 0.043 0.028 0.024 0.030 0.024 0.019 0.021 0.021 0.010 0.013 0.019 0.026 0.021 0.015 0.006 0.015 0.097 0.115 0.245 0.013 0.015 0.017 0.010 0.010 0.030 0.008 0.034 0.061 0.026 0.008 0.020 0.019 0.030 0.197 0.330 0.094 0.037 0.065 0.052 0.032 0.032 0.092 0.010 0.037 0.070 0.060 0.032 0.059 0.026 6.1 16.9 40.9 14.9 1.3 3.9 3.9 1.7 14.6 1.7 44.3 13 7.0 8. 3 6. I 6.0 26.2 17.0 1 .3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 3.5 3.5 3. 5 1.3 1.3 1.3 3.7 34.0 8. 1 16.8 3.8 5.9 10.3 3.6 5.8 8.0 5.8 10. 3 8.1 5.9 3.6 3.8 5.9 APPENDIX 3 - 2 ( c o n t ' d ) 11183 12943 12133 13313 21313 21443 21013 22133 22013 23003 23673 31073 32583 32553 32393 33833 33393 3.76 3.54 3.71 3.68 3.23 3.35 3.43 3.8 1 3.76 3.88 3. 84 3.83 3.47 3.60 3.81 3.70 3.91 3.35 3.10 3.29 3.27 2.82 3.00 3.07 3.29 3.30 3.43 3.28 3.37 3.07 3.25 3.29 3. 10 3.30 98.0 96.8 91.6 95.9 98.6 97.9 97.4 98.4 98.7 97.4 99. 0 97.7 98. 0 98.2 98.8 98. 0 98.9 0.081 0 .084 0.088 C .094 0. 1Q7 0.086 0 .091 0.072 0.073 0.0 7.9 0.065 0.091 G.094 0.088 0.073 C. 109 C.088 147. 77. 65. 121. 148. 110. 62. 107. 146. 84. 163. 94., 69. 83. 131. ' 97. 22 5. 1215. 1271. 626. 1176. 1285. 1447. 1095. 1471. 1516. 1191 . 1691. 1227 . 1268 . 1218. 1542. 1541. 1687. 8.3 16.4 9.6 9.7 8.7 13.1 17.6 13.8 10.4 14.1 10.4 13.1 18.3 14.7 11.8 15.9 7.5 2.60 1.96 1 .58 3. 12 1.54 0. 89 1. 22 2.17 2.24 2 .73 3.06 4.01 0.45 1.71 0. 39 2.74 4.47 8.43 1.33 1.98 4. 27 8.60 8.02 5.95 6.02 4.80 9.39 3.88 3. 53 2. 16 4.57 2.58 9.47 3.65 3.25 0.68 1.26 1.37 5. 57 9.00 4.87 2.77 , 2.14 3.44 1.27 0. 88 4. 79 2.67 6.56 3.45 0.82 2.06 2.30 2.10 2.23 2.17 2.10 2.15 2.12 2.09 2.08 2.27 2.25 2.22 2.12 2.10 2.0 9 2.36 /150 APPENDIX 3-3 Data f o r f i n e roots and decomposing organic matter Code f o r samples - column 1: 1 = X e r i c , 2 = Mesic, 3 = Hygric - column 2: subplot - columns 3t>4: subplot c o o r d i n a t i o n - column 5: 4 = r o o t s , 5 = decomposing organic matter APPENDIX 3-3 Ca Mg Na Fe Al Mn Sample Cu ppm Zn 11804 45.3 0.783 12134 44.6 0.746 13314 45.7 0.703 21314 46. 1 0.815 22014 44.9 0.912 23644 44. 9 0.618 31874 4 5. 1 0.832 32234 45.2 0.785 33714 42.8 1.042 11805 43.8 0.856 12135 44.4 0.962 13315 4 5. 0 0.754 21315 46. 1 0.943 22015 45.8 0.877 23645 45.0 1. 127 31875 41.9 1.076 32235 44.6 0.920 33715 37.6 1.481 0.060 0.450 0.117 0.086 0. 357 0. 094 0.060 0.407 0.086 0.046 0.175 0.155 0.054 0.352 0.100 0. 071 0. 430 0. 117 0.076 0.233 0. 141 0. 069 0.299 0. 124 0. 156 0. 189 0. 096 0.065 0. 398 0. 082 0.075 0.295 0.074 0. 069 0.367 0. 077 0.050 0. 174 0. 082 0.061 0. 320 0. 071 0. 061 0. 291 0. 073 0. 066 0.257 0. 095 0. 064 0.280 0. 105 0. 091 0. 283 0. 070 0.093 0.043 0.054 0.163 0.032 0.070 0.106 0.034 0.043 0.050 0.033 0.046 0. 070 0.032 3. 058 0.093 0.026 0.054 0.125 0.041 0.326 0.109 0.039 0.087 0.143 0.077 2.138 0.113 0.022 0.015 0.153 0.019 0.024 0.143 0.024 0.015 0.055 0.015 0.017 0.077 0.015 0.022 0.091 0.022 0.020 0.100 0.013 0.077 0.103 0.018 0.024 0.137 0.029 0.438 0.097 127.0 1. 3 5.8 0. 109 379. 4 5. 6 14.4 0. 082 228.7 3. 5 16.6 0.107 25. 8 5. 7 19.0 0. 106 25.6 3. 5 10.2 0. 125 33.6 3. 5 18.9 0. 348 90. 4 51. 0 46.9 0.207 30. 1 27. 5 32.0 2. 330 5838.4 33. 4 42. 1 0.028 167.5 5. 7 14. 8 0.041 413.8 5. 7 14.6 0.039 359. 1 3. 5 12. 6 0. 040 128.3 3. 6 12.7 0.046 123. 1 5. 7 14.8 0. 048 197.0 1. 3 8.2 0. 152 181. 3 14.6 30.4 0. 103 14 7.4 12. 5 24. 0 0.858 14 16.3 10. 3 24. 0 APPENDIX 3-3 (cont'd). LOI e w Sample % kg-kg" 1 C/N C/P N/P Ca/Mg Ca/K Mg/K LOI/C 1 1 8 0 4 9 7 . 0 0 . 0 8 0 5 7 . 8 75 1 . 1 3 . 0 3.66 4 . 84 1 . 2 6 2 . 14 1 2 1 3 4 9 7 . 2 0 . C 7 3 5 9 . 9 5 1 7 . 8 . 6 3 . 7 8 2 . 1 9 C . 5 8 2 . 18 13314 9 7 . 2 0 . C 8 1 6 5 . C 7 6 0 . \ 1 1 . 7 4 . 7C 3 . 8 4 C . 8 2 2 . 13 2 1 3 1 4 5 8 . 5 0 . C 9 4 5 6 . 6 9 9 9 . 1 7 . 7 1 . 13 3 . 4 9 i. 09 2 . 14 2201 4 9 7 . 5 C . C 8 6 4 9 . 2 6 3 7 . 1 7 . 0 3 . 5 3 5 . 0 7 1 . 4 4 2 . 17 2 3 6 4 4 9 7 . 6 0 . 0 8 5 7 2 . 6 6 3 1 . 8 . 7 3 . 6 7 4 . 6 1 1 . 2 6 2 . 17 3 1 8 1 4 5 6 . 9 0 . C 8 1 5 4 . 2 ' 5 9 5 . 1 1 . 0 1 . 6 3 1 . 8 3 1.12 2 . 15 3 2 2 3 4 9 7 . 4 C . G 9 0 5 7 . 6 6 5 5 . 1 1 . 4 2 . 4 1 2 . 7 4 1 . 1 4 2 . 15 3 3 7 1 4 9 4 . 1 0 . 0 6 9 4 1 l . l 2 7 4 . 6 . 7 1 . 9 6 1 . 3 2 J . 6 7 2 . 20 i i e c 5 9 5 . 2 0 . 1 0 5 5 1 . 1 6 7 4 . 1 3 . 2 4 . 6 7 3 . 5 3 C . 7 3 2 . 17 1 2 1 3 5 9 5 . 3 C . C 9 C 4 6 . 1 5 9 0 . 1 2 . 8 3.9 8 1 . 9 3 0 . 4 9 2 . 15 1 3 3 1 5 9 6 . 5 0 . 1 0 3 5 9 . 6 6 5 5 . 1 L . C 4 . 7 5 2 . 5 6 0 . 54 2 . 15 ; 1215 9 6 . 7 C . 1 1 0 4 8 . 6 93 I. 1 9 . 1 2 . 1 1 3 . 1 3 1 . 4 8 2 . 10 2 2 0 1 5 9 5 . 9 0 . 1 0 3 5 2 . 2 7 4 6 . - 1 4 . 3 4 . 5 4 4. 15 0 . 9 1 2 . 0 9 236 4 5 9 5 . 8 0 . L 0 9 4 0 . 0 7 3 8 . 1 8 . 5 3 . 9 8 3 . 2 0 C . 8 1 2 . 13 3 1 8 7 5 9 0 . 4 0 . 108 3 6 . 9 63 6 . 1 6 . 3 2 . 7 C 2 . 5 8 0 . 9 6 2 . 16 3 2 2 3 5 96 . 0 0 . 1 2 0 4 8 . 5 7 C 1 . 1 4 . 5 2.66 2 . 7 2 1 . C 2 2 . 15 3 3 7 1 5 7 9 . 8 0 . 1 2 3 2 5 . 4 4 1 6 . ? 1 6 . 4 4 . C 7 2 . 0 7 0 . 5 1 2 . 12 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094948/manifest

Comment

Related Items