Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Toward an information framework for water quality planning : The Fraser River main stem case study Nickel, Jack Michael 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1980_A6_7 N53.pdf [ 9.33MB ]
Metadata
JSON: 831-1.0094934.json
JSON-LD: 831-1.0094934-ld.json
RDF/XML (Pretty): 831-1.0094934-rdf.xml
RDF/JSON: 831-1.0094934-rdf.json
Turtle: 831-1.0094934-turtle.txt
N-Triples: 831-1.0094934-rdf-ntriples.txt
Original Record: 831-1.0094934-source.json
Full Text
831-1.0094934-fulltext.txt
Citation
831-1.0094934.ris

Full Text

TOWARD AN INFORMATION FRAMEWORK FOR WATER QUALITY PLANNING: THE FRASER RIVER MAIN STEM CASE STUDY by JACK MICHAEL NICKEL B.Sc. (Honours), The U n i v e r s i t y of B r i t i s h Columbia, 1 9 7 2 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES THE SCHOOL OF COMMUNITY AND REGIONAL PLANNING We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA © Jack Michael N i c k e l , 1 9 8 0 In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the l i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s representatives. I t i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my written permission. The School of Community and Regional Planning The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, B r i t i s h Columbia Canada V6T IV5 Date - i i -TOWARD AN INFORMATION FRAMEWORK FOR WATER QUALITY PLANNING: . THE FRASER RIVER MAIN STEM CASE STUDY ABSTRACT This study examines the e x i s t i n g p r a c t i c e and l e g i s l a t i v e base f o r water q u a l i t y management a t both f e d e r a l and p r o v i n c i a l l e v e l s i n B r i t i s h Columbia and shows th a t the movement toward preventative-management p r e s e n t l y underway w i l l l e a d to i n c r e a s i n g demands f o r systems o r i e n t e d data and methods of i n t e r p r e t i n g t h i s data f o r p l a n n i n g purposes. An i n f o r m a t i o n framework i s developed f o r s t r e a m - q u a l i t y assessment o f f l o w i n g surface waters based on a one-dimensional r e p r e s e n t a t i o n o f the water system, a f i n i t e segment approach to data o r g a n i z a t i o n , and a combination d i l u t i o n model/ m a t e r i a l s balance approach to system s i m u l a t i o n and a n a l y s i s . The approach i s designed t o use a v a i l a b l e data and the framework i s computerized. The a n a l y s i s framework i s a p p l i e d to the main stem of the F r a s e r R i v e r above Hope. Although a l a r g e amount of data has been c o l l e c t e d i n t h i s watershed, d i v e r s e agency o b j e c t i v e s and l a c k o f c o - o r d i n a t i o n i n data c o l l e c t i o n programs l i m i t s the a n a l y s i s to ten r i v e r segments and nine water q u a l i t y parameters; f l o w , pH, temperature, s p e c i f i c conductance, d i s s o l v e d sodium, suspended s o l i d s , t o t a l i r o n , t o t a l managanese, and t o t a l copper. Using the best data p r e s e n t l y a v a i l a b l e , data gaps, in-stream behavior, a s s i m i l a t i v e c a p a c i t y estimates based on standards and q u a l i t y changes induced by development are discussed f o r s e v e r a l o f these parameters as an i l l u s t r a t i o n o f the framework's use as a research and planning t o o l . - i i i -Water q u a l i t y data c o l l e c t e d d u r ing 1976 f o r r e g u l a t o r y and system s u r v e i l l a n c e purposes were assemhled and used to simulate the behavior of conservative m a t e r i a l s o r t o q u a n t i f y the ohserved d e v i a t i o n from con s e r v a t i v e behavior. These d e v i a t i o n s i d e n t i f y and a s s i s t a n a l y s i s o f the aggregate q u a l i t y i n f l u e n c e s of n o n - s p e c i f i c source i n p u t s and/or in-stream t r a n s f o r m a t i o n processes. They al s o a l l o w l i m i t e d p r e d i c t i o n o f the water q u a l i t y changes a s s o c i a t e d w i t h water and r e l a t e d resource developments. The study shows t h a t very l i t t l e data has been c o l l e c t e d i n the upper reaches of the F r a s e r main stem, t h a t unaccounted d i l u t i o n can have as great an e f f e c t on water q u a l i t y as accounted m a t e r i a l i n p u t s , t h a t grab samples are not adequate rep r e s e n t a t i o n s o f mean monthly q u a l i t y , t h a t q u a l i t y degradation from i n d u s t r i a l discharge below P r i n c e George i s l a r g e l y o f f s e t "by the d i l u t i o n i n f l u e n c e o f the Nechako R i v e r , and th a t a sco u r i n g f o l l o w e d by downstream d e p o s i t i o n phenomenon can he observed through a m a t e r i a l s balance a n a l y s i s . A l s o , i t i s shown th a t new waste loads and dams can have a s i g n i f i c a n t e f f e c t on q u a l i t y . I t i s recommended t h a t the approach developed here be adopted as an a i d to water q u a l i t y managementsurveillance.network design and data i n t e r p r e t a t i o n . A j o i n t f e d e r a l / p r o v i n c i a l committee should be e s t a b l i s h e d under the Canada Water A ct to co-ordinate management e f f o r t . The p r o v i n c i a l government should e s t a b l i s h a water resource planning component i n the Environment and Land Use Committee S e c r e t a r i a t ' to develop planning procedures and i n t e g r a t e these procedures w i t h l a n d use planning. A p i l o t water resource management study should begin i n each resource management r e g i o n o f the province. Future work should concentrate on the development o f water q u a l i t y standards and mechanisms of p u b l i c input to water resource planning s t u d i e s . - i v -TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES v i LIST OF FIGURES v i i ACKNOWLEDGEMENTS v i i i INTRODUCTION Purpose o f the Thesis 1 D e f i n i t i o n s 2 Methods 3 CHAPTER 1 - APPROACHES TO WATER QUALITY MANAGEMENT 1. General Objectives o f Water Q u a l i t y Management 5 2. A l t e r n a t i v e Goals/Approaches t o Water Q u a l i t y Management 6 - Maximize Economic E f f i c i e n c y 6 - Maximize Environmental I n t e g r i t y 8 - Maximize S o c i a l U t i l i t y 9 3 . Water Q u a l i t y Management i n B r i t i s h Columbia 11 - H i s t o r i c a l P e r s p e c t i v e 11 - Overview and Prospects 18 - Summary 21 CHAPTER 2 - DEVELOPMENT OF THE INFORMATION FRAMEWORK 1. The I n s t i t u t i o n a l B a s i s 22 2. Scope and Information Requirements o f Plan n i n g and Research A c t i v i t i e s 25 3 . Data C o n s t r a i n t s 28 - Fede r a l 28 - P r o v i n c i a l 29 4. Framework Concepts and Process 32 - System D e l i n e a t i o n 35 - Component I n t e r r e l a t i o n s h i p s 37 - Model Process 40 - P r e d i c t i o n 41 5. Water Q u a l i t y Parameter S e l e c t i o n 42 6. Computerization 4? - V -CHAPTER 3 - THE FRASER RIVER CASE STUDY 1. I n t r o d u c t i o n to the Case Study 50 2 . P r e l i m i n a r y S i t e and Data Source Inventory 56 - Receiving Water Mo n i t o r i n g S i t e s 56 - Waste Discharge Permit Inventory 62 - Water License Inventory 62 3 . P r e p a r a t i o n f o r A n a l y s i s 68 - Segment Boundaries 68 - Parameter S e l e c t i o n 70 - Temporal Considerations 73 - Data R e t r i e v a l , Assumptions and Inventory 7^ - Summary 80 4. Model Outputs and Observations 81 - S i t e S p e c i f i c 81 - Segment Summary Output 83 - Output of System Summary 88 - P r e d i c t i o n Output 102 5. D i s c u s s i o n and Summary 107 - Advantages of Use 107 - Data L i m i t a t i o n s 115 - Summary 117 CHAPTER 4 - CONCLUSIONS 1. T e c h n i c a l / Methodological Conclusions 119 2. I n s t i t u t i o n a l / P o l i c y - R e l a t e d Conclusions 121 REFERENCES 128 APPENDIX I - The MATBAL Program 135 APPENDIX I I - Conversion Factors 144 - v i -LIST OF TABLES Table page 1. Water Q u a l i t y Parameter Behavior C l a s s i f i c a t i o n 44 2. F r a s e r R i v e r and T r i b u t a r y Receiving Water S t a t i o n Inventory 57-61 3. F r a s e r R i v e r Main Stem E f f l u e n t Permit Inventory ... 63-65 4. F r a s e r R i v e r Main Stem Water License Inventory 66-67 5. F r a s e r River Main Stem Segments 69 6. Data Base f o r February 1976 76 7. Data Base f o r A p r i l 1976 77 8. Data Base f o r J u l y 1976 78 9. Example o f S i t e S p e c i f i c Output Generated f o r Three S e q u e n t i a l Inputs t o Segment 4 During February 1976 ... 82 10. Example of Segment L e v e l Concentration Summary Output 84 11. Example o f Segment L e v e l Load Summary Output 86 12. System Concentration D i f f e r e n c e Summary f o r Three Months o f 1976 • 89 13. System Load D i f f e r e n c e Summary f o r Three Months of 1976 93 14. Normalized Load D i f f e r e n c e Summaries 95 15. System Mean A v a i l a b l e Capacity Summary f o r Three Months o f 1976 98 16. System C a l i b r a t i o n Values Showing the Net Flow and Concentration of Unaccounted Inf l u e n c e s 101 17. F r a s e r Main Stem Water Q u a l i t y Before and A f t e r New Development 103 - v i i -LIST OF FIGURES Figure page I. Proposed S t r u c t u r e o f the M i n i s t r y of the Environment ... 20 2 . . S t r u c t u r e of the Environmental Q u a l i t y Information System (EQUIS) ." 30 3. One-Dimensional Representation of Surface Water Influences 36 4. Flowchart of the MATBAL Program 49 5. The F r a s e r Watershed and Major Sub-Basins 51 6. I n f l u e n c e Schematic of Segment 10, L y t t o n to Hope ...... 75 7. F r a s e r Main Stem Unaccounted Flow Inputs 90 8. Normalized T o t a l I r o n Load D i f f e r e n c e Showing Net Unaccounted Input or D e p o s i t i o n W i t h i n Each Segment 96 9. T o t a l Manganese Mean A v a i l a b l e Load C a p a c i t i e s by River Segment f o r Three Months of 1976 99 10. P r e d i c t e d E f f e c t of New Development on D i s s o l v e d Sodium Concentrations 104 I I . P r e d i c t e d E f f e c t of New Development on S p e c i f i c Conductance 105 v i i i -ACKNOWLEDGEMENTS I wish t o express my a p p r e c i a t i o n to P r o f e s s o r W i l l i a m Rees f o r h i s constant encouragement and guidance.- I am indebted to P r o f e s s o r I r v i n g Fox and Dr. Ken H a l l f o r t h e i r a s s i s t a n c e and suggestions. S p e c i a l thanks to Dr. Malcom C l a r k of the P o l l u t i o n C o n t r o l Branch f o r h i s help i n numerous data r e t r i e v a l s from the EQUTS system. The case study would not have been p o s s i b l e without h i s f r e e l y g i ven a s s i s t a n c e . Thanks a l s o to Jim T a y l o r and Paul W h i t f i e l d o f the Water (Quality Branch f o r p r o v i d i n g e s s e n t i a l NAQUADAT inf o r m a t i o n . I would a l s o l i k e t o thank the many l o c a l s t a f f of the Water Rights Branch, the P o l l u t i o n C o n t r o l Branch, and the Water Survey of Canada f o r t h e i r co-operation and time i n d i s c u s s i o n . A Youth Employment Grant from the Province o f B r i t i s h Columbia during the summer of 1979 made i t p o s s i b l e to devote f u l l a t t e n t i o n to the completion of t h i s work. - 1 -INTRODUCTION Purpose of the Thesis The purpose of t h i s thesis i s to develop a method of s t r u c t u r i n g and analyzing water q u a l i t y data to y i e l d information which may a s s i s t i n the prevention of unforseen impact through b e t t e r understanding of stream materials behavior under changing conditions. More s p e c i f i c objectives are to: ( 1 ) characterize the e x i s t i n g water q u a l i t y management a c t i v i t i e s i n the province of B r i t i s h Columbia; (2) i d e n t i f y new information demands associated with a s h i f t to preventative management; (3) itemize the e x i s t i n g data c o l l e c t i o n a c t i v i t i e s of f e d e r a l and p r o v i n c i a l agencies; (4) develop a conceptual framework f o r the organization and manipulation of water q u a l i t y data, based on e x i s t i n g data c o l l e c t i o n p r a c t i c e s , which w i l l a s s i s t i n meeting the new information demands; (5) transform the conceptual framework to a computerized form which i s simple and f a s t to use and which may be applied to any stream; (6) apply the framework to the main stem of the Fraser River above Hope as a v a i l a b l e data permits; ( 7 ) discuss the advantages and l i m i t a t i o n s of the approach discovered i n the course of the case study; (8) i d e n t i f y changes i n e x i s t i n g .water q u a l i t y management p r a c t i c e which might a s s i s t i n the generation and i n t e r p r e t a t i o n of water q u a l i t y data f o r research and planning purposes. Almost a l l forms of development exert some impact on stream q u a l i t y . Achievement of desi r a b l e stream q u a l i t y at acceptable cost requires that management decisions be based on sound impact assessments. The l i n k between .potential: resource use and a management d e c i s i o n i s a te c h n i c a l assessment to p r e d i c t the p o t e n t i a l water q u a l i t y impacts of each planning a l t e r n a t i v e . The information framework i s a f i r s t step. - 2 -D e f i n i t i o n s The term water q u a l i t y i s misleading f o r , water i s a substance of d e f i n i t e composition and s t r u c t u r e . Q u a l i t y , i n the context of water, r e f e r s to the type and q u a n t i t y of m a t e r i a l born e i t h e r i n suspended o r dissolved-form per u n i t volume o f water and to the q u a n t i t y of energy contained represented as heat. Natural waters may be found i n n e a r l y a l l s t a t e s of q u a l i t y , from pure mountain streams to saturat e d s a l t b r i n e s . No s p e c i f i c q u a l i t y c o n d i t i o n i s good or bad i n i t s e l f . I t i s on l y when the q u a l i t y c o n d i t i o n i s placed i n the context of some use t h a t i t acquires value. A water q u a l i t y impact i s t h e r e f o r e the impairment o r i m p o s i t i o n o f some t a n g i b l e o r 'hidden' cost upon the e x i s t i n g o r p o t e n t i a l use of the water as determined by the l o s s of value which accompanys some change o f q u a l i t y . S i m i l a r i l y , to say a water i s p o l l u t e d means t h a t the q u a l i t y c o n d i t i o n i n t e r f e r e s w i t h the use o f t h a t water. Water q u a l i t y management o r water p o l l u t i o n c o n t r o l i s the i n s t i t u t i o n a l mechanism whereby general goals regarding b e n e f i c i a l use p r e s e r v a t i o n '• • and development-inspired degradation are t r a n s l a t e d i n t o program o b j e c t i v e s and s p e c i f i c a c t i o n s o f s u r v e i l l a n c e , a n a l y s i s , e v a l u a t i o n and c o n t r o l . I t has two prime f u n c t i o n s , the abatement o f e x i s t i n g impact and the prevent i o n of f u t u r e impact. The l i m i t s to management a c t i o n are defined by the l e g i s l a t i o n under which i t i s conducted, the manager's per c e p t i o n of h i s mandate, the resources a v a i l a b l e , A a n d t t h e w i l l o f the e l e c t o r a t e as represented by e l e c t e d o f f i c i a l s . The concept upon which most management i s based i s th a t a water system has a c a r r y i n g c a p a c i t y o r a b i l i t y to absorb m a t e r i a l s and energy through d i l u t i o n , decomposition and d i s p e r s i o n thereby r e s u l t i n g i n a s t a t e o f water q u a l i t y which w i l l not im p a i r other uses of the system. - 3 -C a r r y i n g c a p a c i t y i s a dynamic v a r i a b l e dependent upon n a t u r a l and man-induced v a r i a t i o n s i n loads and flows. Management may impose c o n t r o l upon a l l d i r e c t m a t e r i a l and thermal inputs to and q u a n t i t y withdrawals from the water system .through s p e c i f i c a t i o n of l o c a t i o n , q u a n t i t y and/or m a t e r i a l type. I n d i r e c t i n f l u e n c e s on water q u a l i t y , such as surface r u n o f f , t r i b u t a r y i n f l o w s , e r o s i o n and groundwater recharge, are not r e a d i l y c o n t r o l l e d and may be the main determinants of c a r r y i n g capacity. The nature and magnitude ofseach. i n f l u e n c e must be known so t h a t c o n t r o l can be d i r e c t e d to the most e f f i c i e n t u t i l i z a t i o n o f resources i n ensuring t h a t the c a r r y i n g or a s s i m i l a t i v e c a p a c i t y . i s not exceeded. Methods The i n f o r m a t i o n framework developed here i s based on ' i n f l u e n c e accounts' o r t a l l i e s of the m a t e r i a l and flow a d d i t i o n or s u b t r a c t i o n r a t e s f o r each w e l l d e f i n e d i n f l u e n c e on stream q u a l i t y i n c l u d i n g waste discharge, l i c e n s e d withdrawals and t r i b u t a r y i n p u t s . The main stem of a water b a s i n i s viewed as the sum of a l l inputs and outputs although the concept could be a p p l i e d t o each t r i b u t a r y i n d i v i d u a l l y . The c a r r y i n g c a p a c i t y can vary over distance as w e l l as time so the stream i s d i v i d e d i n t o segments of v a r y i n g length. A water q u a l i t y and f l o w monitoring s t a t i o n i s l o c a t e d a t each segment boundary and boundaries are l o c a t e d so as to d i f f e r e n t i a t e the e f f e c t of major i n f l u e n c e s upon b e n e f i c i a l use s i t e s , g e n e r a l l y upstream of each major confluence, waste: i n p u t , withdrawal o r grouping thereof. _ 4 -Within each segment the material input and output rates are assumed to he constant f o r one point i n time. Further, i t i s assumed that materials are instantaneously dispersed at the point of input and that once dispersed the materials behave as conservative parameters. This allows each influence to be s e q u e n t i a l l y added or subtracted to the i n i t i a l parameter values observed at the upstream segment boundary s t a t i o n through the use of a d i l u t i o n model. T o t a l t h e o r e t i c a l load values at the end of the segment are then compared to observed loads i n a materials balance check. Differences between observed and predicted values are a q u a n t i t a t i v e measure o f the net e f f e c t of unaccounted influences within the "segment. This operation i s performed f o r three d i f f e r e n t flow conditions to e s t a b l i s h a seasonal base. Assuming the accounted influences and the net e f f e c t of unaccounted influences determined through the materials balance are constant, a new input or withdrawal i s introduced and the downstream e f f e c t i s c a l c u l a t e d through the d i l u t i o n model to give predicted q u a l i t y at the end of each segment. The above c a l c u l a t i o n s are performed f o r nine parameters over ten segments through a computer program c a l l e d MA.TBAL. - 5 -CHAPTER 1 - APPROACHES TO WATER QUALITY MANAGEMENT 1. General Objectives of Water Q u a l i t y Management Water q u a l i t y management programs are g e n e r a l l y e s t a b l i s h e d by law. The i n t e n t of the l e g i s l a t i o n determines the p r i o r i t y assigned to p a r t i c u l a r o b j e c t i v e s . A review of many d i f f e r e n t j u r i s d i c t i o n s (Ward, 1973) shows two broad o b j e c t i v e s are common, the abatement and the prevent i o n of p o l l u t i o n . S i x more s p e c i f i c a c t i v i t i e s were: 1. Regulation 2. T e c h n i c a l A s s i s t a n c e 3. Enforcement 4. Planning 5. Research 6. A i d Programs Regulation, t e c h n i c a l a s s i s t a n c e and l e g a l enforcement are u s u a l l y r e a c t i v e a c t i v i t i e s and can g e n e r a l l y be c l a s s e d as abatement; planning, research and a i d programs are a n t i c i p a t o r y and pr e v e n t a t i v e . Each a c t i v i t y has separate data c o l l e c t i o n , processing and di s s e m i n a t i o n requirements l e a d i n g to o b j e c t i v e - r e l a t e d design and management o f the s u r v e i l l a n c e network (Lettenmaier, 197^ 0 • This r e p r e s e n t a t i o n i s i d e a l i z e d . Each j u r i s d i c t i o n s e l e c t s program p r i o r i t i e s f i t t i n g i t s needs and might not p a r t i c i p a t e i n a l l a c t i v i t i e s . However, the above i s a base upon which the consequences of a l t e r n a t i v e goals and approaches may be contrasted. - 6 -2. A l t e r n a t i v e Goals/Approaches to Water Q u a l i t y Management The s p e c i f i c approach to water q u a l i t y management w i l l f o l l o w from the management goal chosen. The f o l l o w i n g goal statements are examples of the more commonly h e l d viewpoints: (a) Maximize Economic E f f i c i e n c y - a s s o c i a t e d w i t h the t e c h n o l o g i c a l approach to c o n t r o l ; abatement o r i e n t e d ; resource a l l o c a t i o n determined through market demand (b) Maximize Environmental I n t e g r i t y - a s s o c i a t e d w i t h the environmental or 'cease and d e s i s t ' approach to c o n t r o l ; focuses on prevention; resource a l l o c a t i o n r e s t r i c t e d to b e n e f i c i a l use (c) Maximize S o c i a l U t i l i t y - a s s o c i a t e d w i t h the ecosystem o r i n t e g r a t e d approach to c o n t r o l ; combines abatement and prevention; resource a l l o c a t i o n based on impact knowledge and the d e s i r e s of the people a f f e c t e d . The f i r s t two statements are extremes and the t h i r d i n c o r p o r a t e s aspects o f both. Each w i l l now be examined. Maximize Economic E f f i c i e n c y To maximize economic e f f i c i e n c y i t i s necessary to minimize the costs o f production. The d e f i n i t i o n of these c o s t s d r a s t i c a l l y a f f e c t s r e s u l t i n g water q u a l i t y . From the pe r s p e c t i v e of c l a s s i c a l economics, e x t e r n a l i t i e s are not considered as costs and a l l process and domestic wastes should be discharged without treatment because co s t s imposed upon other use are not r e l a t e d to the production costs o f the source. Pareto o p t i m a l i t y or' a balanced d i s t r i b u t i o n of costs and b e n e f i t s would t h e o r e t i c a l l y e v e n t u a l l y develop through the supply and demand f o r goods p r e v i o u s l y perceived as common property resources'. I f the concepts o f environmental economics are used, costs imposed upon o t h e r f i r m s are considered through the p e r s p e c t i v e of a basin-wide f i r m (Kneese, 1968). E x t e r n a l i t i e s which may be monetarized, such as the l o s s o f f i s h i n g permit and personal incomes, costs of process feed pretreatment, taxes and m u l t i p l i e r e f f e c t s a s s o c i a t e d are accounted. - 7 -Income l o s s a s s o c i a t e d w i t h q u a l i t y degradation i s weighed a g a i n s t the income derived from the l a c k o f degradation c o n t r o l and a treatment e q u i l i b r i u m develops a t the balance p o i n t . Thus, only those items which can be q u a n t i f i e d and assigned a d o l l a r value are assessed and d e c i s i o n s are made on the b a s i s of one standard o f value. Not considered are the i n t a n g i b l e values of a e s t h e t i c enjoyment and sentiment.and the marginal u t i l i t y which one may place on the impairment of some use. The economic e f f i c i e n c y goal has been the t r a d i t i o n a l view to water p o l l u t i o n c o n t r o l . The U.S. Water Q u a l i t y A c t of 1965 and the Clean Waters A c t of 1971i i n Queensland, A u s t r a l i a , are examples' of t h i s t e c h n o l o g i c a l approach to water q u a l i t y management (Westman, 1972). The approach c l a s s e s p o l l u t a n t s as they are a f f e c t e d by the c o n t r o l technology and imposes treatment standards by these c l a s s e s to a degree which allo w s the c a r r y i n g c a p a c i t y o r a s s i m i l a t i v e c a p a c i t y of the stream to perform the remainder of the treatment. C o n t r o l focuses on the wastes discharged d i r e c t l y and the r e c e i v i n g waters i n the immediate v i c i n i t y . Standards may be d i r e c t e d a t both. The t e c h n o l o g i c a l approach leads to an emphasis on abatement w i t h r e g u l a t i o n and t e c h n i c a l a s s i s t a n c e being the major areas of concern. The i n f o r m a t i o n systems which have developed under these o b j e c t i v e s i n c l u d e waste permit systems, r e g u l a r s i t e s p e c i f i c monitoring, process technologies employed and costs o f treatment. L i t t l e c o n s i d e r a t i o n i s g i v en to incremental movement toward t h r e s h o l d s , long term s u b - l e t h a l e f f e c t s , o r the impairment o f f u t u r e use through the buildup of r e s i d u a l t o x i c s . The approach i s t h e r e f o r e a short-term r e a c t i o n a r y one which ac t s w e l l to s o l v e e s t a b l i s h e d problems but has l i m i t e d a p p l i c a t i o n to the a n t i c i p a t i o n and i d e n t i f i c a t i o n of p o t e n t i a l problems. Unf o r t u n a t e l y , some impacts may not be reversed once e s t a b l i s h e d and many are long term. - 8 -Maximize Environmental I n t e g r i t y The environment r e f e r s to a l l t h i n g s e x t e r n a l to a l i v i n g e n t i t y . To maximize environmental i n t e g r i t y i s t o optimize the h e a l t h , w e l f a r e and s a f e t y of the e n t i t y through adjustment of i t s surroundings. How-ever, one must s e l e c t the e n t i t y f o r which the environment i s to be maximized. The proponents of t h i s view argue t h a t i t i s necessary to r e t u r n the waters to n a t u r a l l e v e l s of q u a l i t y and perhaps even modify n a t u r a l i n f l u e n c e s which may be indigenous p o l l u t e r s . F u r t h e r , f o r very few substances does an e f f e c t i v e a s s i m i l a t i v e c a p a c i t y e x i s t f o r our present depth of understanding of n a t u r a l processes i s too shallow, introduces too many u n c e r t a i n t i e s , to a l l o w meddling w i t h the composi-t i o n o f n a t u r a l systems. Thus, the only l o g i c a l course i s to a t t a i n a s t a t e o f zero discharge from a l l d i r e c t sources and enact land use c o n t r o l s f o r non-point sources of p o l l u t i o n . The U.S. F e d e r a l Water P o l l u t i o n C o n t r o l Act Amendments of 1972 are an example of t h i s approach. I t s goals are to achieve, wherever p o s s i b l e by J u l y 1, 1983» water t h a t i s c l e a n enough f o r swimming and other r e c r e a t i o n a l uses, and c l e a n enough f o r the p r o t e c t i o n and pro-pagation of f i s h , s h e l l f i s h and w i l d l i f e . A l s o , by 1985> to e l i m i n a t e the discharge of p o l l u t a n t s i n t o the nation's waters (Kudukis, 1977)-C l e a r l y the e n t i t i e s f o r which t h i s l e g i s l a t i o n i s intended are r e c r e a t i o n users and aquatic organisms, each of which have s i m i l a r demands o f q u a l i t y . They w i l l indeed b e n e f i t from t h i s approach, but the c o s t s imposed upon man-as-developer w i l l be great. Water q u a l i t y management focuses on abatement to achieve preven-t i o n through e l i m i n a t i o n of a l l . r i s k , but at great and perhaps needless cost. - 9 -Maximize S o c i a l U t i l i t y To maximize s o c i a l u t i l i t y i t i s necessary to balance the tra d e -o f f s made between the value of uses which e i t h e r do o r do not degrade the water resource. This goal d i f f e r s from the f i r s t two i n t h a t i t attempts to a r r i v e a t a l l o c a t i o n s which s a t i s f y a l l p a r t i e s through r e c o g n i t i o n and c o n s i d e r a t i o n of the marginal value h e l d by a l l p a r t i e s a f f e c t e d by a d e c i s i o n of a l l o c a t i o n . I t recognizes c a r r y i n g c a p a c i t y as a u s e f u l concept and places l a r g e demands f o r i n f o r m a t i o n on the management s u r v e i l l a n c e system to provide r e f e r a n t groups w i t h a b a s i s f o r r e a c t i o n . E f f o r t must be placed upon a l l s i x o b j e c t i v e s of management. However, g r e a t e r emphasis w i l l l i e on the prevention o f unforseen problems through programs of planning and research, f o r here l i e s the area of gre a t e s t u n c e r t a i n t y i n the u t i l i z a t i o n of the c a r r y i n g c a p a c i t y concept. The approach which f o l l o w s from t h i s goal has been l a b e l l e d as the ecosystem;., approach (^Great Lakes Research A d v i s o r y Board, 1978). I t was adopted i n the Great Lakes B a s i n a f t e r i t was found t h a t the t e c h n o l o g i c a l approach "... does not, except i n a c u r a t i v e , r a t h e r than p r e v e n t a t i v e manner provide an adequate foundation f o r ensuring the r i g h t s and o b l i g a t i o n s o f the P a r t i e s i n respect to transboundary i n j u r y to h e a l t h and property." An ecosystem approach i s s i m i l a r to.the environmental approach except t h a t i t considers the organism as p a r t of the environment, i Thus, a l l a c t i o n s r e t u r n v i a some pathway t o i n f l u e n c e the f u n c t i o n .of the ecosystem. S t r e s s from a l l consequences of demographic growth w i l l i n f l u e n c e water q u a l i t y and an understanding of the pathways and magnitudes of these s t r e s s elements i s e s s e n t i a l t o the design of c o n t r o l and s u r v e i l l a n c e systems. - 10 -Key components of an ecosystem approach in c l u d e : 1. the.use-of dynamic v a r i a b l e s , such as lo a d i n g s , r a t e s of change o r pathways i n s t e a d of s t a t i c v a r i a b l e s such as q u a l i t y o r concentration; 2. r e c o g n i t i o n of a l i m i t to the demographic c a r r y i n g c a p a c i t y of a water system and planning f o r the time when t h a t l i m i t i s reached; 3 . understanding t h a t a long time o r di s t a n c e l a g may e x i s t between a -cause i n one p a r t o f the system and an e f f e c t i n another; 4 . the use of l i v i n g organisms t o monitor the long-term o r s y n e r g i s t i c e f f e c t of s u b - l e t h a l s o r low concentrations; 5. i n t e g r a t i o n of d a t a from a l l elements which may i n f l u e n c e water q u a l i t y ; 6. encouragement and i n c l u s i o n of p u b l i c i n t e r e s t and p a r t i c i p a t i o n i n the e v a l u a t i o n of a l t e r n a t i v e courses o f a c t i o n ; 7. a d i a g n o s t i c approach to problem-solving; 8 . f l e x i b i l i t y i n waste, r e c e i v i n g water and use standards which would a l l o w m o d i f i c a t i o n as new knowledge i s gained. Each of the goals/approaches discussed has advantages and disadvantages i n the ease of a d m i n i s t r a t i o n , c r e a t i o n of vested i n t e r e s t s , maintenance of a minimum standard of q u a l i t y , d e a l i n g w i t h u n c e r t a i n t y , expenditures f o r s u r v e i l l a n c e , and adherance to the p r i n c i p l e s of democracy. I t seems however, t h a t the t e c h n o l o g i c a l approach i s best s u i t e d to s i t u a t i o n s where the resource i s i n much g r e a t e r supply than the demand and the r i s k s minimal, the ecosystem approach should replace the t e c h n o l o g i c a l approach when i t i s perceived t h a t man-induced s t r e s s may begin to a f f e c t vthe f u n c t i o n of the system, and the environmental approach should replace the ecosystem approach i f and when i t i s evident t h a t the system's a s s i m i l a t i v e c a p a c i t y i s indeed u n r e l i a b l e and i t i s g e n e r a l l y agreed t h a t uses' which degrade q u a l i t y should b e . . s a c r i f i c e d ;„ for.thosepwhich do not. - 11 -3. Water..Quality Management i n . B r i t i s h .Columbia The purpose of t h i s s e c t i o n i s to examine the nature of water q u a l i t y management as i t i s p r e s e n t l y p r a c t i c e d , show where new d i r e c t i o n s and p r i o r i t i e s are r e q u i r e d and explore the i n f o r m a t i o n needs of these new p r i o r i t i e s . H i s t o r i c a l P e r s p e c t i v e Water q u a l i t y management i n B r i t i s h Columbia i s complicated by the d i v i s i o n of powers created i n the B r i t i s h North America Act of I867. Under S e c t i o n 91 of the A c t , the f e d e r a l government i s given the r e s p o n s i b i l i t y f o r anadromous f i s h and may make laws i n r e l a t i o n to a l l matters not assigned e x c l u s i v e l y to the p r o v i n c i a l l e g i s l a t u r e s . Under S e c t i o n 92, the provinces may make laws i n r e l a t i o n to a l l matters of a merely l o c a l o r p r i v a t e nature (Huberman, 1965). Thus, the a l l o c a t i o n o f water use and the p r o t e c t i o n ofrrthese uses, provided these a l l o c a t i o n s do not a f f e c t waters c r o s s i n g i n t e r n a t i o n a l boundaries o r concern f e d e r a l i n s t a l l a t i o n s o r developments o r i n t e r f e r e w i t h i n l a n d f i s h e r i e s , i s c - a p r o v i n c i a l r e s p o n s i b i l i t y . The f e d e r a l government, a f t e r passing the F i s h e r i e s Act w e l l over 100 years ago, has had d i r e c t r e s p o n s i b i l i t y f o r water p o l l u t i o n i n a l l i n l a n d waters used f o r migration. I n 1970, compartmentalization.problems were acknowledged... (D.R.E.E.., .1970) i n many areas, and the. F i s h e r i e s . A c t was amended.. I n the summer of 1971, Parliament p u l l e d together a multitude of environmentally r e l a t e d a c t i v i t i e s which had been separate f u n c t i o n s of the bureaucracy i n r e c o g n i t i o n t h a t environmental management i s a f u n c t i o n of environmental, s o c i a l and economic factors,(Edgeworth, 197^). This comprehensive o r ' ecosystem-' ' approach to management was a d e l i b e r a t e move to long-term, r a t i o n a l resource management through a thorough - 12 -knowledge of a l l the v a r i a b l e s i n a given s i t u a t i o n . I t i s based on i d e n t i f i c a t i o n of the f i n i t e l i m i t s of a body of water to r e c e i v e wastes and, a f t e r study of a l l f a c t o r s i n a p a r t i c u l a r watersbasin, attempts to optimize b e n e f i c i a l use w i t h a p p l i c a t i o n of the best p r a c t i c a b l e technology. P r a c t i c a b l e means t h a t the technology t r e a t s the waste to w i t h i n a s s i m i l a t i o n bounds but i s r not "•economically d e s t r u c t i v e . The f e d e r a l government a l s o s e t up the Environmental Management S e r v i c e with the I n l a n d Waters D i r e c t o r a t e as the agency f o r p l a n n i n g and research. The Environmental P r o t e c t i o n S e r v i c e was formed to implement the Government's environmental p r o t e c t i o n p o l i c i e s , a n d , through i t ' s Water P o l l u t i o n C o n t r o l D i r e c t o r a t e , has begun to develop r e g u l a t i o n s f o r the c o n t r o l of e f f l u e n t from d i f f e r e n t i n d u s t r y c l a s s e s . These r e g u l a t i o n s , coupled w i t h intended r e c e i v i n g water standards (Harvey, 1976), c o u l d be the b a s i s f o r problem i d e n t i f i c a t i o n and water p o l l u t i o n c o n t r o l enforcement. Other l e g i s l a t i o n which a f f e c t s water q u a l i t y management are the Canada Water Act which enables the f e d e r a l and p r o v i n c i a l governments to co-operate i n comprehensive water management programs and, the Environmental Contaminants A c t which i s intended t o d e a l w i t h contamination of the environment byochemicalcsubstances suspected as t o x i c to l i v i n g t h i n g s , The Contaminants A c t i s designed to enable an assessment of the t o t a l r i s k ofoharm from any p a r t i c u l a r suspect substance and p r e s e n t l y r e q u i r e s t h a t users of p o l y c h l o r i n a t e d b i p h e n y l s , other c h l o r i n a t e d compounds, and mercury compounds i n q u a n t i t i e s i n excess of one kilogram r e p o r t t h e i r a c t i o n s to the Minister,(Department of the Environment, 1977a and 1977b).,' - 13 -At the p r o v i n c i a l l e v e l , water q u a l i t y management has been segmented as a consequence of h i s t o r i c events. Concern w i t h water q u a l i t y began i n B r i t i s h Columbia with human h e a l t h - r e l a t e d aspects i n the l a t t e r p a r t of the l a s t century, l a t e r s h i f t i n g to encompass• organic p o l l u t i o n from municipal sources ( S h e l l e y , 1957). Through the same p e r i o d , b e n e f i c i a l use demands on the water resource i n c r e a s e d and l e d to enactment of the Water Act i n 1914. The Water Act i s mainly concerned with the r e g u l a t i o n of the q u a n t i t y o f water a l l o c a t e d f o r b e n e f i c i a l use and does not re q u i r e t h a t d e c i s i o n s be made w i t h i n a broad water management framework (W'ard, 1976). This A c t , . w i t h s t r e a m l i n i n g m o d i f i c a t i o n s , i s s t i l l i n f o r c e today. I n r e c o g n i t i o n of the growing demands f o r waste discharge use of the water resource, the P o l l u t i o n - c o n t r o l Act was passed i n 1956. under the M i n i s t e r of M u n i c i p a l A f f a i r s . The goal of the Act i s summarized i n the preamble as f o l l o w s : ... i t i s deemed i n thee .public i n t e r e s t to maintain and '-"•-v.vensure the p u r i t y of a l l waters of the Province c o n s i s t e n t w i t h p u b l i c h e a l t h and the p u b l i c enjoyment thereof, the propagation and p r o t e c t i o n of w i l d l i f e , b i r d s , game, and other aquatic l i f e , and the i n d u s t r i a l development of the Province . . . where itr.isr"deemed expedient to re q u i r e the use of a l l known a v a i l a b l e and reasonable methods by i n d u s t r i e s and others to prevent and c o n t r o l the p o l l u t i o n of the waters of the Province: P o l l u t i o n - c o n t r o l A c t , B.C. S t a t . (1956), c. 36. The p r o v i s i o n s of t h i s A c t formed a P o l l u t i o n C o n t r o l Board w i t h thenpower t o determine the q u a l i t i e s and p r o p e r t i e s of water t h a t c o n s t i t u t e a p o l l u t e d c o n d i t i o n , to conduct t e s t s and surveys, to examine a l l e x i s t i n g and proposed means o f sewage d i s p o s a l , and to p r e s c r i b e standards regarding the q u a l i t y and c h a r a c t e r of the e f f l u e n t which may be discharged. The Act a l s o e s t a b l i s h e d a permit system f o r -De-r e g u l a t i o n of discharges i n i t i a l l y o n l y i n the Lower F r a s e r V a l l e y downstream from Hope'and i n the L i l l o o e t R i v e r watershed. I n 196l, the Board's a u t h o r i t y was extended to i n c l u d e the Columbia R i v e r b a s i n , and i n 1963 the e n t i r e F r a s e r R i v e r b a s i n and much of the east coast of Vancouver I s l a n d were a l s o brought under i t s j u r i s d i c t i o n ; ( L i n n , 1966). I n 1965. the a d m i n i s t r a t i v e r e s p o n s i b i l i t y f o r the P o l l u t i o n C o n t r o l Board was t r a n s f e r r e d to the Water Resources S e r v i c e of the Department of Lands, Forest s and Water Resources. The P o l l u t i o n - c o n t r o l Act was repla c e d by the P o l l u t i o n C o n t r o l A c t , 1967, and the P o l l u t i o n C o n t r o l Branch was formed to ad m i n i s t e r the new Act. Under t h i s A c t , a l l discharges of waste to land, a i r and water are r e q u i r e d to o b t a i n a permit from the D i r e c t o r . A r e f e r r a l process upon permit a p p l i c a t i o n ensures t h a t the M i n i s t r i e s of Health, Recreation and Conservation, and A g r i c u l t u r e see the a p p l i c a t i o n i n f o r m a t i o n and have an opportunity to comment upon p o t e n t i a l impacts to t h e i r water uses. A copy i s a l s o provided to the f e d e r a l Department of F i s h e r i e s . Permit approval i s contingent upon the comments of p o t e n t i a l impact, as forwarded to the Branch from-the . r e f e r r a l p a r t i e s , and.a t e c h n i c a l assessment of the e f f l u e n t i n view of the c r i t e r i a e s t a b l i s h e d i n Objectives f o r f i v e major e f f l u e n t producing a c t i v i t y c l a s s e s as f o l l o w s : 1. Mining, M i n e - m i l l i n g and Smelting (P.C.B., 1973) 2.1 Forest Products I n d u s t r y (P.G.B., 1974a) 3. Chemical and Petroleum I n d u s t r i e s (P.C.B., 1974b) 4. .Food-processing-, A g r i c u l t u r a l l y Oriented, and Other Miscellaneous I n d u s t r i e s (P.C.B.., 1975a) 5. Municipal-Type Waste Discharge (P.C.B., 1975"b) I t should be noted t h a t f l e x i b i l i t y i s r e t a i n e d i n ther determination of permit s t i p u l a t i o n s . . • Permitted d e v i a t i o n s from Objectiv.es depend upon the - 15 -s e n s i t i v i t y of the r e c e i v i n g environment a t the s p e c i f i c p o i n t o f discharge, based mainly ..on. d i l u t i o n . Approval c o n f l i c t s are s e t t l e d by the quasi- j u d i c i a l powers (Lucas,.1967) of. the. P o l l u t i o n C o n t r o l Board. I t -is-apparent t h a t ..water q u a l i t y , management .programs..have l a r g e l y been concerned w i t h p o l l u t i o n c o n t r o l through r e g u l a t i o n of waste discharge from p o i n t sources and w i t h a s s i s t a n c e to dischargers i n areas o f process c o n t r o l and waste treatment. The Water I n v e s t i g a t i o n s Branch and the Water Rights Branch o f the Water Resources S e r v i c e were p r i m a r i l y concerned w i t h the p r o v i s i o n and a l l o c a t i o n of supply q u a n t i t y . No attempt was made to assess the e f f e c t s of a water withdrawal a l l o c a t i o n upon a r e c e i v i n g , water a l r e a d y s t r e s s e d i n q u a l i t y by constant and i n c r e a s i n g waste loads, to evolve waste management plans on a r e g i o n a l l e v e l , to research the e f f e c t s of land use and n a t u r a l i n f l u e n c e s on q u a l i t y under seasonal v a r i a t i o n , o r to determine the incremental q u a l i t y e f f e c t s of many a l l o c a t i o n d e c i s i o n s i s o l a t e d i n time and space. I n the words of Ben Marr, then A c t i n g A s s o c i a t e Deputy M i n i s t e r , B.C. Water Resources S e r v i c e : " ... the P o l l u t i o n C o n t r o l Branch was not set up to c o n t r o l land use. Rather, the Branch was s e t up to ad m i n i s t e r the ( P o l l u t i o n C o n t r o l ) A c t on a pipe-by-pipe.... b a s i s . The Branch has never been a planning agency. ...... The P o l l u t i o n C o n t r o l Branch ... has been confined to making a t e c h n i c a l e v a l u a t i o n -of the impact of proposed discharge on the r e c e i v i n g environment a t r a p a r t i c u l a r s i t e . " (Marr, 1974) The above i l l u s t r a t e s t h a t the. t e c h n o l o g i c a l , approach to water q u a l i t y .management ...has..-been, favoured as the b a s i s f o r p o l l u t a n t c l a s s i f i c a t i o n , i n f o r m a t i o n c o l l e c t i o n , impact e v a l u a t i o n and d e c i s i o n -making. - 16 -Movement toward a more comprehensive o r ecosystem approach to manage-ment began i n the province w i t h the s i g n i n g o f the Canad a - B r i t i s h Columbia Okanagan B a s i n Agreement i n October, 1969- This study was the f i r s t i n Canada t o recognize the need f o r comprehensive planning (Hunter, no dat e ) . I t considered the v a r i o u s uses o f water i n the b a s i n , t h e i r needs and value s , and p o t e n t i a l environmental q u a l i t y impact (Thomson, 1978). I t a l s o assessed the c a p a b i l i t y of the b a s i n to s u s t a i n e x i s t i n g and poten-t i a l f u t u r e demands under v a r i o u s water management a l t e r n a t i v e s . A review of the process employed (Province of B.C., 1975) d e t a i l s a d e f i c i e n c y i n the scope of the study as f o l l o w s : " I t i s recognized however, t h a t l a n d use planning should have been i n c l u d e d and s t u d i e d i n more d e t a i l , While some lan d use st u d i e s were c a r r i e d out to determine e x i s t i n g demands f o r water, the absence o f any p l a n f o r f u t u r e l a n d use i n the b a s i n s e v e r e l y l i m i t e d the development o f q u a n t i t y and q u a l i t y a l t e r n a t i v e s , p a r t i c u l a r i l y f o r f u t u r e t r i b u t a r y water management. For example, the d i s t r i b u t i o n of f u t u r e p o p u l a t i o n i n c r e a s e s , and the l o c a t i o n of new i n d u s t r i e s o r a g r i c u l t u r a l acreages w i l l a f f e c t the supply-demand balance o f the sub-basin from which water i s drawn t o meet the demands o f these p o t e n t i a l water us e r s , and the waste products from these developments w i l l a f f e c t the water q u a l i t y o f the t r i b u t a r y o r lak e to which waste e f f l u e n t s are discharged. The improvement proposed f o r f u t u r e b a s i n s t u d i e s t h e r e f o r e , i s the i n c l u s i o n o f land use planning to the extent t h a t such planning may a f f e c t f u t u r e water management i n the b a s i n . " As resource c o n f l i c t s continued to mount i n other areas of the province, i t was recognized t h a t a l l aspects of the n a t u r a l environment must be considered i n resource decision-making. A process was i n s t i t u t e d to d e a l w i t h these c o n f l i c t s and f o r m a l i z e d on A p r i l 2, 1971» wi t h assent o f the Environment and Land Use (ELU) Act. The Act created a formal Cabinet committee t h a t today i n c l u d e s the M i n i s t e r s from nine departments (Ward, 1976). The ELUC has powerful decision-making a u t h o r i t y because the Act supersedes a l l previous acts and r e g u l a t i o n s . - 17 -The ELUC, through i t s s t a f f arm, the Environment and Land Use S e c r e t a r i a t , : h a s "begun to develop i n t e g r a t e d approaches to i n v e n t o r y , p l a n n i n g and impact assessment. T h e i r primary concern however, has been w i t h the i n t e g r a t i o n of l a n d use with water resources as one f a c t o r which w i l l e i t h e r a f f e c t o r be a f f e c t e d by l a n d use. From the p e r s p e c t i v e of water q u a l i t y management t h i s could l e a d to d i f f e r e n t p r i o r i t i e s i n concern data c o l l e c t i o n and a n a l y s i s than i f concern- were with', the-.integration of water use w i t h l a n d use as one i n f l u e n c e which w i l l e i t h e r a f f e c t o r be a f f e c t e d by water use. These changes i n approach were not without i n f l u e n c e upon those charged w i t h water q u a l i t y management. With the recent r e s t r u c t u r i n g of p r o v i n c i a l M i n i s t r i e s and .creation o f the M i n i s t r y of the Environment, o p p o r t u n i t i e s e x i s t f o r increased i n t e r a c t i o n between Branches.. The Water I n v e s t i g a t i o n s Branch does now review s i t e s p e c i f i c s u r v e i l l a n c e r e p orts and waste discharge permit, a p p l i c a t i o n s a t the request of the P o l l u t i o n C o n t r o l Branch and water, l i c e n s e a p p l i c a t i o n s r e f e r r e d by the Water Rights Branch,. Environmental i m p l i c a t i o n s are assessed from a p l a n n i n g p e r s p e c t i v e . Environmental assessment s t u d i e s , n otably the F e d e r a l -P r o v i n c i a l study of the F r a s e r R i v e r E s t u a r y , , i n c l u d e r e p r e s e n t a t i v e s of the ELUCS, the P o l l u t i o n C o n t r o l Board and the Water I n v e s t i g a t i o n s Branch ..(.Fraser River. Estuary..'Study-'Steering Committee, . 1978)<?- Research programs i n c l u d e continued monitoring of the b i o t a and water q u a l i t y • of s e l e c t lakes and streams (Province o f .B..G. , 1977). Attempts are being made to :maker:: the p u b l i c more aware of environmental problems. The ecosystem approach to water q u a l i t y management has indeed been accepted and promises to b r i n g about wise u t i l i z a t i o n of resources as understanding and co-operation in c r e a s e . - 18 -Overview and Prospects The preceding • s e c t i o n summarized the t e c h n o l o g i c a l to ecosystem p r o g r e s s i o n o f management approaches which are.beginning to occur a t the f e d e r a l and p r o v i n c i a l l e v e l s of government. E f f o r t s are being made to s h i f t the management o b j e c t i v e s from the abatement f u n c t i o n s of r e g u l a t i o n and t e c h n i c a l a s s i s t a n c e to programs of a d i a g n o s t i c and pr e v e n t a t i v e nature. Yet, w i t h few exceptions, research and planning', base assessments are s i t e s p e c i f i c . a n d o r i e n t e d to a p a r t i c u l a r problem. Environmental degradation and the emergence of s p e c i f i c c o n f l i c t s continue to be the impetus f o r a p p l i c a t i o n of i n t e g r a t e d management. Regional o r watershed resource management plans have not been developed. I t i s evident t h a t t r a n s i t i o n to the ecosystem view i s not complete. Many of the programs s t i l l l i m i t . t h e i r a c t i v i t i e s to abatement o r i e n t e d f u n c t i o n s . One i s prompted t o ask, does the necessary l e g i s l a t i v e base e x i s t f o r e f f e c t i v e implementation of the ecosystem approach? An examination of the P o l l u t i o n C o n t r o l A c t , 19&7, r e v e a l s : " ( 3 ) The lieutenant-Governor i n C o u n c i l may d i r e c t the Board to i n q u i r e i n t o , to determine causes of and remedies f o r any matter o r matters r e l a t i n g to the p o l l u t e d c o n d i t i o n of water ... and (a) to take such remedial a c t i o n as the Board considers necessary i n the p u b l i c i n t e r e s t ; " (Province of B.C., 1976) The Water A c t does not c o n t a i n such broad d i s c r e t i o n a r y powers but i t does a l l o w the Lieutenant-Governor i n C o u n c i l to make, a l t e r and re p e a l r e g u l a t i o n s f o r c a r r y i n g out the s p i r i t of the A c t ; w i t h respect t o the l i c e n s e a p p l i c a t i o n procedure. Although the powers, of the - 19 -" b e n e f i c i a l use a l l o c a t i o n l e g i s l a t i o n i s r e s t r i c t i v e , the mandate of the impact preve n t i o n l e g i s l a t i o n seems adequate to i n s t i t u t e any program deemed necessary. Another p o t e n t i a l source of approach t r a n s i t i o n problems l i e s i n the s t r u c t u r e of the i n s t i t u t i o n s as they have evolved to date. The d i v i s i o n of a l l o c a t i o n and p r o t e c t i o n f u n c t i o n s , both of which bear on the f i n a l s t a t e of water q u a l i t y , i s a b a r r i e r to co-operation and i n t e g r a t i o n . A planned r e o r g a n i z a t i o n of the M i n i s t r y of the Environment i s p r e s e n t l y underway and i s scheduled f o r completion i n 1982. The r e o r g a n i z a t i o n w i l l r e s u l t i n a new i n s t i t u t i o n a l s t r u c t u r e (shown i n Figure l ) and w i l l occur i n seven phases as f o l l o w s : Phase I - Define the o b j e c t i v e s and programs of each D i v i s i o n and Branch r e p o r t i n g to the Deputy M i n i s t e r Phase I I - Develop r e o r g a n i z a t i o n and implementation plans by to V September 1979 Phase VI - Implementation of r e o r g a n i z a t i o n plans by 1982 Phase VII - Review Executive s t r u c t u r e by 1983 The r e o r g a n i z a t i o n i s being c a r r i e d out under a new mandate f o r the M i n i s t r y which i n c l u d e s planning, p r o t e c t i o n of b i o l o g i c a l resources and environmental q u a l i t y , water b a s i n management and r e g i o n a l a u t h o r i t y (PROVINCE OF B.C., 1979). Upon completion, the new s t r u c t u r e w i l l r e -move i n s t i t u t i o n a l impediments t o i n t e g r a t e d resource management. Changes i n l e g i s l a t i o n may w e l l accompany r e o r g a n i z a t i o n . As discussed under the maximization of s o c i a l u t i l i t y g o a l , water b a s i n planning and research w i l l place new demands f o r i n f o r m a t i o n on e x i s t i n g s u r v e i l l a n c e mechanisms. The c a r r y i n g c a p a c i t y of each b a s i n , segment or sub-basin must be determined and t o t a l l i m i t s t o discharge e s t a b l i s h e d from t h a t base. The bounds of v a r i a t i o n of each i n f l u e n c e MINISTRY OF ENVIRONMENT D E C E M B E R 3 1 , 1 9 7 8 Minister Deputy Minister Ministry Coordinator Responsible for - interagency liaison - forecasting - inter-divisional coordination - legislation - economic studies & advice Administrative Assistant Public Relations Assistant Deputy Minister Responsible for - Wildlife Management - Fisheries Management - Marine Resources - Aquatic & Terrestrial Inventory & Habitat Management - Surveys & Mapping Assistant Deputy Minister Responsible for • Waste Management - Air Management - Pollution Control - Pesticides Control - Environmental Lab Assistant Deputy Minister Responsible for - Water Basin Planning - Water Allocation - Water Supply - Watershed Protection - Flood Damage Prevention Assistant Deputy Minister Responsible for - Regional Operations - Enforcement - Provincial Emergency Program Director A d m i n i s t r a t i o n - Finance - Personnel - Info. & Ed. - Libraries - Management Advisory Service - Administrative Support Services FIGURE 1 - New Str u c t u r e o f the M i n i s t r y of the Environment (from Province o f B.C. 19?8. M i n i s t r y of Environment Annual Report 1978, M i n i s t r y o f Environment, V i c t o r i a , B.C.) - 21 -a c t i n g on water q u a l i t y must be determined and b e n e f i c i a l use c r i t e r i a evolved i f the impacts of d e c i s i o n s are to be p r e d i c t e d and evaluated. Mechanisms f o r encouraging p u b l i c e v a l u a t i o n o f d e c i s i o n consequences must be e s t a b l i s h e d . These and many other needs w i l l a r i s e and cannot be s a t i s f i e d by data c o l l e c t e d f o r s i t e s p e c i f i c r e g u l a t i o n o f waste discharge o r t e c h n i c a l a s s i s t a n c e to dis c h a r g e r s . This i s not to say th a t these f u n c t i o n s should not continue. Abatement a c t i v i t i e s have been and w i l l continue to be e f f e c t i v e means of c o n t r o l l i n g waste discharge. What i s needed i s a deeper understanding of how the system behaves as a whole. Although a d d i t i o n a l expenditure w i l l be r e q u i r e d , data should be c o l l e c t e d and i n f o r m a t i o n generated from a system p e r s p e c t i v e as a ba s i s f o r planning assessment. Summary The purpose o f t h i s s e c t i o n has been to show the e v o l u t i o n of approaches t o water q u a l i t y management as i t has occurred i n B r i t i s h Columbia and to i d e n t i f y present and f u t u r e i n f o r m a t i o n needs which f o l l o w from t h i s e v o l u t i o n . These needs now serve as the b a s i s f o r the development of an i n f o r m a t i o n framework which may a s s i s t i n meeting these needs. - 22 -CHAPTER 2 - DEVELOPMENT. OF THE INFORMATION FRAMEWORK 1. The ..-Institutional-Basis I t has been shown t h a t there are a range of goals and approaches i n water q u a l i t y management. There are a l s o a range of i n s t i t u t i o n a l mechanisms f o r water q u a l i t y c o n t r o l a v a i l a b l e i n c l u d i n g uniform e f f l u e n t o r e f f l u e n t treatment standards, assessment of the water q u a l i t y and hence impact consequences of a proposed a c t i o n a t the time the a c t i o n i s proposed, and establishment of r e c e i v i n g water standards as a means of determining s p e c i f i c l i m i t s f o r a c t i v i t i e s which a f f e c t q u a l i t y , ( F o x , 1973). From an ecosystem p e r s p e c t i v e , establishment of stream q u a l i t y standards i s the only e f f e c t i v e means of a c h i e v i n g a d e s i r e d s t a t e of q u a l i t y because i t d e f i n e s what the d e s i r e d end s t a t e w i l l be. Thus, c o n t r o l must encompass a l l processes which might a f f e c t t h a t end s t a t e , such as waste discharge c h a r a c t e r and l o c a t i o n , stream f l o w augmentation p r a c t i c e s , l a n d use p r a c t i c e s and n a t u r a l processes l i k e e r o s i o n . E f f l u e n t standards c o n t r o l o n ly one i n f l u e n c e upon the f i n a l q u a l i t y s t a t e . They are a d m i n i s t r a t i v e l y simple however, they do not c o n s i d e r the system's a s s i m i l a t i o n l i m i t s . I n e f f e c t they c o n t r o l demand f o r waste a s s i m i l a t i o n without knowing the supply of a s s i m i l a t i v e c a p a c i t y . Assessment of the consequences of proposed a c t i o n upon p r o j e c t proposal i s s i m i l a r i l y narrow because the assessment would be s i t e s p e c i f i c . To assess the e f f e c t s of each proposal i n view of a l l i n f l u e n c e s a c t i n g upon the system would be a d m i n i s t r a t i v e l y impossible. A l s o , t h i s method does not adequately address abatement of e x i s t i n g p o l l u t a n t sources. The o nly mechanism which w i l l ensure t h a t some agreed upon standard of q u a l i t y , and hence use of the water, w i l l be maintained now and i n - 23 -the f u t u r e i s one th a t d e f i n e s the water system's c a p a c i t y f o r s t r e s s based upon the d e s i r e d q u a l i t y end s t a t e , i d e n t i f i e s the i n f l u e n c e s which do now and w i l l i n the f u t u r e impose s t r e s s , and develops c o n t r o l s o r l i m i t s f o r these i n f l u e n c e s based upon the system's a v a i l a b l e c a p a c i t y . As stream q u a l i t y standards define the system's end s t a t e , they are the o n l y means of determining what the system's e x i s t i n g c a p a c i t y f o r s t r e s s i s . They are t h e r e f o r e e s s e n t i a l to any program of pr e v e n t a t i v e water q u a l i t y management and planning. The development o f stream q u a l i t y standards i s a complex process r e q u i r i n g knowledge of the h e a l t h o r f u n c t i o n a l impairment e f f e c t s of p a r t i c u l a r concentrations of contaminants,and a s u b j e c t i v e e v a l u a t i o n of the b e n e f i t s and cost s a s s o c i a t e d w i t h these e f f e c t s by those who are p o t e n t i a l l y a f f e c t e d . The f i x e d t e c h n i c a l estimates of r i s k are r e f e r r e d to as water q u a l i t y c r i t e r i a and may be developed through t r i a l and e r r o r . For example, i t may be e s t a b l i s h e d t h a t a copper co n c e n t r a t i o n of 20 p a r t s per b i l l i o n i s l e t h a l to rainbow t r o u t f r y w h i l e a lower l e v e l i s not. This c r i t e r i o n - f o r f i s h h a b i t a t use of the stream i s a f a c t based on n a t u r a l processes. I t i s not a standard f o r r e c e i v i n g water u n t i l those i n d i v i d u a l s o r groups who wish to in c r e a s e copper l e v e l s above i t on the one hand, and those who would l i k e to see l e v e l s lower on the other, have had a chance to negotiate t h e i r p o s i t i o n s i n f u l l knowledge of the d i r e c t and secondary e f f e c t s of a c c e p t i n g a higher o r lower l e v e l . The q u a l i t y standard t h e r e f o r e represents a s o c i a l l y accepted l e v e l of risk,once adopted. I t should be c l e a r t h a t value judgements and hence standards w i l l vary from r e g i o n to r e g i o n and watershed to watershed.even though c r i t e r i a may not. - 2 4 -I n B r i t i s h Columbia recommended standards have been developed f o r d r i n k i n g water and water-based r e c r e a t i o n (Province of B.C. , 1969) and f e d e r a l d r i n k i n g water standards and o b j e c t i v e s (Department of Health and Welfare, 19&9) a l s o apply. No standards have been developed f o r a g r i c u l t u r e , i n d u s t r i a l feedstock o r aquatic h a b i t a t . The P o l l u t i o n C o n t r o l Branch has e s t a b l i s h e d a combination of e f f l u e n t standards, s i t e s p e c i f i c t e c h n i c a l assessment, and r e c e i v i n g water standards however, the emphasis i s on c o n t r o l o f e f f l u e n t s and r e c e i v i n g water standards are s t a t e d as the change permissable due to p o i n t discharge r a t h e r than absolute values. I t i s i n t e r e s t i n g to note t h a t the P o l l u t i o n C o n t r o l O bjectives f r e q u e n t l y s t a t e t h a t no s i g n i f i c a n t change occur i n quality,,.where s i g n i f i c a n c e i s d e f i n e d as a change which would have an impact on other use. Without absolute stream standards f o r o t h e r use i t i s up to the e n t i t y impacted to prove t h a t damage has been done i n seeking redress. U n t i l standards are e s t a b l i s h e d , the measure of s i g n i f i c a n t change i s a d i s c r e t i o n a r y judgement w i t h the burden of proof upon the one s u f f e r i n g damage. The i n f o r m a t i o n framework developed here i s based on the acceptance of stream q u a l i t y standards as a means of determining the stream's m a t e r i a l a s s i m i l a t i o n c a p a c i t y f o r planning purposes. U n t i l such time as B r i t i s h Columbia has adopted standards f o r a l l b e n e f i c i a l uses i t w i l l be necessary to r e f e r to water q u a l i t y c r i t e r i a and standards developed elsewhere as the b a s i s f o r water q u a l i t y planning. - 25 -2. Scope and Information Requirements o f Pla n n i n g and Research A c t i v i t i e s Water q u a l i t y p l a n n i n g i n c l u d e s two a c t i v i t i e s , program planning and p r o j e c t planning. Both planning a c t i v i t i e s should be comprehensive and basinwide and should t r y to a n t i c i p a t e f u t u r e a c t i o n (Ward, 1973)• Program planning deals w i t h t r a n s m i t t i n g broad goals i n t o manageable u n i t s of work, o r g a n i z a t i o n of s t a f f and budgets, and development of short and lon g range work plans. Such broad plans f o r f u t u r e a c t i o n do n o t r e q u i r e s p e c i f i c water q u a l i t y data and may best be served by general t r e n d i n f o r m a t i o n of water q u a n t i t y and q u a l i t y , use demand p r o j e c t i o n s and a d m i n i s t r a t i o n o b j e c t i v e s . • P r o j e c t planning i n v o l v e s an e v a l u a t i o n o f the e f f e c t s of a l t e r n a t i v e water resource p r o j e c t s l e a d i n g t o development of a watershed p l a n f o r p o l l u t i o n c o n t r o l . This r e q u i r e s impact p r o j e c t i o n s based on water q u a l i t y estimates f o r v a r i o u s waste discharge l o c a t i o n s , types and numbers under v a r i a b l e stream c o n d i t i o n s and a l t e r n a t i v e scenarios of demand. The i n f o r m a t i o n requirements of p r o j e c t planning are th e r e f o r e s p e c i f i c and should be examined i n d e t a i l . The p r o j e c t planning process may be examined under three broad a c t i v i t y phases; i n f o r m a t i o n c o l l a t i o n , a n a l y s i s and e v a l u a t i o n . - 26 -Information C o l l a t i o n 1. Inventory h i s t o r i c data on water q u a l i t y and q u a n t i t y and organize i n a manner which simulates the water system's n a t u r a l s t a t e . 2. Tabulate the v a r i o u s demands f o r water use over time. 3. P r o j e c t demands f o r use i n t o the f u t u r e . 4. I d e n t i f y water q u a l i t y and q u a n t i t y requirements of use. A n a l y s i s 1. Impose the p r o j e c t e d demands f o r waste discharge and q u a n t i t y withdrawals upon the n a t u r a l regime i d e n t i f i e d above. 2. Compare water use requirements w i t h the p r o j e c t e d c o n d i t i o n s and thus i d e n t i f y problems. E v a l u a t i o n 1. Formulate a l t e r n a t i v e s o l u t i o n s f o r the a n t i c i p a t e d problems. 2. Assess the costs and b e n e f i t s t o those a f f e c t e d . 3. E l i c i t r e a c t i o n s of those a f f e c t e d by the a l t e r n a t i v e s . 4. Improve and develop favoured plan. The f i r s t two phases r e q u i r e h i s t o r i c a l water q u a l i t y and q u a n t i t y data and land use plans i n c l u d i n g p o p u l a t i o n p r o j e c t i o n s and economic p r e d i c t i o n s . The t h i r d phase r e q u i r e s knowledge of j u r i s d i c t i o n s , l e g i s l a t i o n , c o n t r o l technology and hydrology w i t h p u b l i c input to a i d formation of a l t e r n a t i v e s and s e l e c t i o n of a favoured plan. Research a c t i v i t i e s deal w i t h t e c h n i c a l and non-technical i n v e s t i -gations i n areas where problems are not w e l l understood and/or response options are few. The i n f o r m a t i o n needed to i d e n t i f y p r i o r i t y areas - 2? -comes from a v a r i e t y of sources "but of concern here are i n d i c a t i o n s of p o l l u t a n t behaviour and impact e f f e c t . For example, i f a given s t a t e of e f f l u e n t q u a l i t y meets present t e c h n o l o g i c a l discharge c o n t r o l c r i t e r i a , but a f i s h k i l l occurs nonetheless, then i n f o r m a t i o n i s needed t o d i r e c t research i n t o p o l l u t a n t i d e n t i f i c a t i o n , synergism, t r a n s f o r m a t i o n o r pathway of entry. The research a c t i v i t y t h e r e f o r e r e q u i r e s h i s t o r i c a l and r e a l - t i m e data of stream c o n d i t i o n s , an o r d e r l y monitoring o f stream q u a l i t y and flow at s e l e c t l o c a t i o n s and times as a guide to l a b o r a t o r y s i m u l a t i o n . I n s h o r t , i t r e q u i r e s a s u r v e i l l a n c e network. This review of planning and research a c t i v i t i e s shows the d i v e r s i t y of data r e q u i r e d to perform these tasks. As t h i s study concentrates on how water q u a l i t y and q u a n t i t y data may be used to a s s i s t planning and research a c t i v i t i e s , those i n f o r m a t i o n requirements which are based on such data are the only ones considered here. I t i s now p o s s i b l e to s p e c i f y the o b j e c t i v e s of the i n f o r m a t i o n framework. I t should f a c i l i t a t e : 1 . i d e n t i f i c a t i o n of trends i n water q u a l i t y and q u a n t i t y f o r a l l supply and demand i n f l u e n c e s ; 2. s i m u l a t i o n of the r e l a t i o n s h i p between water q u a l i t y and q u a n t i t y and the e f f e c t of a r t i f i c i a l v a r i a t i o n s i n e i t h e r ; 3. determination of the c a r r y i n g c a p a c i t y of the water system f o r any p a r t i c u l a r l o c a t i o n , waste type and time of year; 4. i d e n t i f i c a t i o n of monitoring l o c a t i o n s , parameters and frequencies f o r a s u r v e i l l a n c e network. Th i s i n f o r m a t i o n w i l l a s s i s t i n the d i r e c t i o n of research, program planning, and the f i r s t two phases of p r o j e c t planning, c o l l a t i o n and a n a l y s i s . Demand p r e d i c t i o n s and the formation and e v a l u a t i o n of a l t e r -n a t i v e s r e q u i r e d i f f e r e n t data and are beyond the scope of t h i s study. - 28 -3. Data C o n s t r a i n t s I n a d d i t i o n to the d e s i g n - r e l a t e d o b j e c t i v e s of the framework, the e x i s t i n g data c o l l e c t i o n a c t i v i t i e s o f f e d e r a l and p r o v i n c i a l agencies o p e r a t i n g i n B r i t i s h Columbia w i l l place l i m i t s on what can be done now w i t h a v a i l a b l e data. These a c t i v i t i e s are summarized as f o l l o w s : Federal The Water Survey of Canada Branch of the Inland Waters D i r e c t o r a t e measures . stream: f l o w at v a r i o u s s i t e s i n response to other agency o r i n d i v i d u a l requests. While some s i t e s have been cont i n u o u s l y monitored f o r over t w e n t y - f i v e years, these s i t e s are major r i v e r s or t r i b u t a r i e s and most minor t r i b u t a r i e s have sporadic records. Data c o l l e c t e d i s p r i n t e d i n h i s t o r i c a l summaries (Water Survey of Canada, 1977). The Water"Quality Branch of the Inland Waters D i r e c t o r a t e has e s t a b l i s h e d a water q u a l i t y s u r v e i l l a n c e network of major r i v e r s and t r i b u t a r i e s i n the province. The parameters chosen f o r a n a l y s i s are not o r i e n t e d to the determination of the e f f e c t s of waste discharge or water withdrawals. Rather, i n keeping w i t h the research o b j e c t i v e s of t h i s agency, the parameters have been chosen to r e v e a l the e f f e c t s of g e o l o g i c a l c o n d i t i o n s and seasonal v a r i a t i o n s on downstream q u a l i t y . A l l s t a t i o n s are not sampled r e g u l a r i l y and a watershed may have been monitored comprehensively f o r o n l y a b r i e f time to g a i n the research data. E x c l u d i n g s p e c i a l study areas such as the Okanagan Ba s i n and the Lower F r a s e r R i v e r , these system s u r v e i l l a n c e a c t i v i t i e s have produced the most.consistent omeasures^ofawateriquality f rom^a.isysitempperspective. I t should be noted t h a t except i n s p e c i a l circumstances these two f e d e r a l agencies do not co-ordinate t h e i r data gathering a c t i v i t i e s . Sites;ahd' frequencies are d i f f e r e n t . - 29 -P r o v i n c i a l The Water Rights Branch of the Water Resources S e r v i c e i s charged w i t h d e c i s i o n s of surface water a l l o c a t i o n f o r domestic, waterworks, m i n e r a l - t r a d i n g , i r r i g a t i o n , mining, i n d u s t r i a l , power, h y d r a u l i c k i n g , storage, c o n s e r v a t i o n , fluming, conveying, and land improvement purposes. Stream gauging i s conducted f o r a l i m i t e d time p r i o r to the a l l o c a t i o n d e c i s i o n i f data has not a l r e a d y been c o l l e c t e d . The q u a l i t y of the water a l l o c a t e d i s not considered. Data c o l l e c t e d i s s t o r e d w i t h i n the agency.and i s seldom used by other agencies. The P o l l u t i o n C o n t r o l Branch of the Water Resources S e r v i c e i s r e s p o n s i b l e f o r the a l l o c a t i o n of waste discharge use and prevention of adverse impacts. Upon permit a p p l i c a t i o n t h i s agency c o l l e c t s a l l o t h e r waste discharge permits and water l i c e n s e s i n ,the area and assesses the p o t e n t i a l impact of the proposed e f f l u e n t q u a l i t y loads s p e c i f i e d on the permit a p p l i c a t i o n . I f the a p p l i c a t i o n i s approved a monitoring program i s designed f o r the discharge. Sampling p o i n t s are u s u a l l y above and below the i n i t i a l d i l u t i o n zone and the e f f l u e n t i t s e l f . Parameters chosen are based on the Objectives a p p l i c a b l e and the e f f l u e n t character. Sampling frequencyrmay i n i t i a l l y be monthly but i s u s u a l l y changed to q u a r t e r l y i f no trends or v a r i a t i o n s appear over time i n s i g n i f i c a n t parameters. S i m i l a r i l y , parameters may be dropped or added. Stream and e f f l u e n t q u a l i t y data are generated by PCB s t a f f , the permittee o r h i s agent. The purpose of t h i s s i t e s p e c i f i c s u r v e i l l a n c e i s to detect s i g n i f i c a n t downstream changes i n r e c e i v i n g water q u a l i t y p r i o r to m o d i f i c a t i o n of permit s t i p u l a t i o n s . To a i d i n data storage and r e t r i e v a l , a computerized Environmental Q u a l i t y - I n f o r m a t i o n System (EQUIS) has been developed ( C l a r k , 1976). The.structure of the data base i s shown i n Figure 2. - 30 -FIGURE 2 - S t r u c t u r e of the Environmental Q u a l i t y I n f o r m a t i o n System (EQUIS) (taken from C l a r k , 197?) - 31 -Water q u a l i t y data c o l l e c t e d f o r discharge s i t e s u r v e i l l a n c e are entered i n the EQUIS data base. A l s o , data c o l l e c t e d by other agencies such as the f e d e r a l water q u a l i t y Branch and Environmental P r o t e c t i o n S e r v i c e , Westwater Research Centre, and B.C. Research, have been entered i n the EQUIS system. As a r e s u l t , EQUIS contains the l a r g e s t c o l l e c t i o n o f water q u a l i t y data p e r t a i n i n g to B r i t i s h Columbia and has been estimated to c o n t a i n the r e s u l t s of over f i v e m i l l i o n analyses ( C l a r k , 1978) f o r l a k e , r i v e r , marine, groundwater and a i r s i t e s . A number of problems a r i s e i n attempting to use the EQUIS data r e t r i e v a l system f o r the purpose of water q u a l i t y planning and research. The system was designed to a s s i s t i n the day-to-day abatement a c t i v i t i e s of the P o l l u t i o n C o n t r o l Branch. I t has the a b i l i t y to recover, manipulate o r summarize data on the b a s i s of j u r i s d i c t i o n a l boundaries, watersheds, types o f i n d u s t r y , geographical l o c a t i o n , parameters, time o f year, sampling agency and monitoring purpose but, s i t e l o c a t i o n s are denoted by approximate l o n g i t u d e and l a t i t u d e only. Viewing the r i v e r as a system, the c r i t i c a l measure of l o c a t i o n i s the watercourse l e n g t h from the s i t e to the r i v e r mouth or headwater. R i v e r k i l o m e t e r data are c u r r e n t l y being developed as are accurate l o n g i t u d e and l a t i t u d e measures„however, they are not yet a v a i l a b l e . A second problem i s the la c k of flo w measures accompanying c o n c e n t r a t i o n data. This i s e s s e n t i a l to the c a l c u l a t i o n of loads r e q u i r e d i n an ecosystem approach. F i n a l l y , the d i f f e r e n c e s i n a n a l y t i c a l methods, sampling techniques and parameters which r e s u l t from d i v e r s e agency o b j e c t i v e s make comparisons d i f f i c u l t and m u l t i - c o l l e c t i o n compilations suspect. - 32 -4. Framework Concepts and Process A systems a n a l y s i s o f a f l o w i n g surface water would o r d i n a r i l y r e q u i r e t h a t the system he d e l i n e a t e d o r hounded, t h a t the sub-component o r v a r i a b l e i n t e r r e l a t i o n s h i p s be d e f i n e d , and t h a t these r e l a t i o n s h i p s be used to l i n k the v a r i a b l e s i n a model which represents r e a l i t y ( F o i n , 1976). The model may then be used to estimate the e f f e c t s o f v a r i a t i o n i n v a r i a b l e values. I n d e a l i n g w i t h an 'open' system l i k e a r i v e r , i t i s d i f f i c u l t t o i d e n t i f y which v a r i a b l e s should be inc l u d e d i n the d e f i n i t i o n of the system. The number of v a r i a b l e s . i s so l a r g e and the lin k a g e s so p o o r l y understood t h a t even w i t h a great d e a l o f data and research the p r e d i c t i o n s o f a model co n s t r u c t may be a p p l i c a b l e to a d i s c r e t e s e t o f c o n d i t i o n s only. The t r a d i t i o n a l engineering approach to q u a l i t y p r o f i l e p r e d i c t i o n i n streams i s based on a d i l u t i o n model. A conservative waste m a t e r i a l i s assumed to be ins t a n t a n e o u s l y d i s p e r s e d a t the p o i n t of i n p u t and loads are a d d i t i v e . F o r non-conservative m a t e r i a l s a decay f u n c t i o n i s introduced to the d i l u t i o n model through one of two methods. These methods are r e f e r r e d to as the d i f f e r e n t i a l equation method and the f i n i t e segment method (Hann, 1972). The d i f f e r e n t i a l equation method req u i r e s t h a t the decay f u n c t i o n be expressed mathematically i n terms of i n i t i a l c o n c e n t r a t i o n , a decay r a t e f o r the stream reach, and flow time to the p o i n t of i n t e r e s t as f o l l o w s : -Kt C = C e~ where C v - / - i n i t i a l c o n c e n t r a t i o n 0 q K = decay r a t e f o r the stream reach t = flo w passage time i n days C = co n c e n t r a t i o n a t downstream p o i n t - 33 -Downstream c o n c e n t r a t i o n can thus he p r e d i c t e d f o r any p o i n t provided the decay r a t e and f l o w time are known. The f i n i t e segment method considers the stream to be made up of many short segments and uses a f i n i t e d i f f e r e n c e s o l u t i o n of the decay f u n c t i o n a t segment boundaries as f o l l o w s : C = G K t where G = i n i t i a l segment c o n c e n t r a t i o n o n n o K n= decay r a t e f o r segment n t = segment n passage time i n days G = co n c e n t r a t i o n a t segment end The f i n i t e segment method i s u s e f u l i f flo w r a t e and decay f u n c t i o n s change from segment to segment. I t may be used f o r m a t e r i a l s which f o l l o w a f i r s t order r e a c t i o n r a t e curve, has l e s s demand f o r data, and i s s u i t e d to computer processing. I t may a l s o be a p p l i e d to secondary parameters l i k e d i s s o l v e d oxygen through the i n c l u s i o n of a d d i t i o n a l terms. Both methods assume th a t the system's i n p u t s are w e l l defined and tha t decay r a t e s and passage times are known. I n most systems the in p u t s are not w e l l d e f i n e d and i n c l u d e non-point sources such as surface r u n o f f and groundwater i n f l o w . A l s o , decay r a t e s and passage times are not known. Faced w i t h these problems and the l i m i t e d amount o f systems o r i e n t e d data a v a i l a b l e , a new approach to system s i m u l a t i o n i s c l e a r l y r e quired. The approach developed here begins w i t h a re-examination o f the conceptual r e p r e s e n t a t i o n of the water system. The v a r i a b l e s a f f e c t i n g q u a l i t y are thus i d e n t i f i e d but only those f o r which data are a v a i l a b l e are i s o l a t e d and q u a n t i f i e d . The unknown v a r i a b l e s are aggregated i n t o one unknown i n f l u e n c e . A comparison o f the t h e o r e t i c a l e f f e c t s o f known i n f l u e n c e s based on a d i l u t i o n model w i t h the observed e f f e c t of a l l - 34 -i n f l u e n c e s i s o l a t e s and q u a n t i f i e s the unknown aggregated v a r i a b l e t e f f e c t s over a f i n i t e segment. Thus the e f f e c t s o f the decay f u n c t i o n are estimated through a m a t e r i a l s balance. Rather than attempting to determine decay r a t e s from these e f f e c t s , the q u a n t i f i e d decay, which may be negative, i s then used as a segment s p e c i f i c decay measure. Assuming t h a t these decay measures are constant, new i n f l u e n c e s may be imposed and the r e s u l t i n g q u a l i t y p r o f i l e p r e d i c t e d . The l i m i t a t i o n of the approach i s t h a t new i n f l u e n c e s do not undergo decay because decay i s i n c o r p o r a t e d as a s p e c i f i c and unchanging measure r a t h e r than a g e n e r a l l y a p p l i c a b l e f u n c t i o n . Without d e t a i l e d data regarding i n p u t l o c a t i o n s , stream passage times and the separate e f f e c t s of sedimentation, degradation and resuspension i t i s not p o s s i b l e to develop the decay f u n c t i o n . The approach t h e r e f o r e allows q u a l i t y p r o f i l e estimates to the extent t h a t e x i s t i n g data permits. The advantage of the approach i s t h a t i t f o r c e s the a n a l y s t to d i s c o v e r what i s known about the system and places a magnitude on what i s unknown. Data requirements conform to e x i s t i n g monitoring p r a c t i c e and the s t r u c t u r e enhances i n t e r p r e t a t i o n o f raw water, q u a l i t y data. With a d d i t i o n a l work, the decay measures obtained could become the b a s i s f o r c a l i b r a t e d decay f u n c t i o n s . - 35 -System D e l i n e a t i o n The watershed i s the b a s i c a n a l y s i s u n i t o f a water system. The f i n a l q u a l i t y and q u a n t i t y output of the system or the c o n d i t i o n a t any p o i n t i s determined by the f l o w and m a t e r i a l s introduced or withdrawn upstream and by the changes which these m a t e r i a l s undergo once i n the system. For any p a r t i c u l a r stream, the prime i n f l u e n c e s a c t i n g upon flo w and loads are: 1. T r i b u t a r i e s 2. Waste Discharges 3. Water Withdrawals 4. Surface Runoff 5. Groundwater Inflows 6. In-stream M a t e r i a l Transformation Each of these i n f l u e n c e s w i l l vary w i t h time and d i s t a n c e and a great number of secondary i n f l u e n c e s s u c h as channel c h a r a c t e r , stream bank v e g e t a t i o n , s o i l type, temperature, l a n d use, pH, f l o w r a t e and p r e c i p i t a t i o n , w i l l a c t to determine the c h a r a c t e r of each i n f l u e n c e but the prime i n f l u e n c e s are the pathways by which change occurs. Each watershed i s a c t u a l l y comprised of sub-watersheds of each t r i b u t a r y , a n d i d e a l l y one should examine the behavior of each f i r s t -o rder stream, f o l l o w e d by second-order streams with f i r s t - o r d e r t r i b u t a r y i n p u t , and so on u n t i l the behavior of the e n t i r e watershed i s understood through the sum of i t s p a r t s . However, to s i m p l i f y t h i s procedure t h i s study w i l l d eal o n l y w i t h the main stem of the water system and t r i b u t a r i e s which discharge d i r e c t l y to i t . This s i m p l i f i c a t i o n allows the system to be represented as a one-dimensional water volume and m a t e r i a l l o a d flow. This r e p r e s e n t a t i o n i s shown i n Figure 3-- 36 -withdrawals s t a t e m a t e r i a l t r a n s f o r m a t i o n i s t a t e waste , ., , . surface , , t r i b u t a r i e s „„ groundwater discharge r u n o f f FIGURE 3 - One-dimensional Representation of Surface Water Inf l u e n c e s Keeping i n mind t h a t the purpose of t h i s systems r e p r e s e n t a t i o n i s •'ultimately to prevent o r p r e d i c t the impact of some a c t i o n of man upon a valued use of the system, to determine the f i n a l g u a l i t y s t a t e at the mouth of the main stem based upon a l l i n f l u e n c e s would give l i t t l e i n f o r m a t i o n . The q u a l i t y s t a t e must be determined at each p o i n t where valued use occurs-.or i s l i k e l y to occur. This leads to the concept of r i v e r segments. By d i v i d i n g the r i v e r a t p o t e n t i a l " impact l o c a t i o n s each segment becomes an a n a l y s i s o r management u n i t . I n f l u e n c e s w i t h i n each segment w i l l a f f e c t downstream segments but,by t r e a t i n g the system as a s e r i e s of increments i n f o r m a t i o n may be generated a t each p o t e n t i a l impact l o c a t i o n . The above argument provides a b a s i s f o r system s u r v e i l l a n c e s i t e s e l e c t i o n . I n the case where l i t t l e use i s p r e s e n t l y made of the stream, methods of resource a n a l y s i s should be employed to i d e n t i f y s i t e s p o t e n t i a l l y s u i t e d to b e n e f i c i a l use (Hopkins, 1978). I n s i t u a t i o n s of complete system use, such as a f i s h spawning or r e a r i n g stream, those l o c a t i o n s where the most pronounced q u a l i t y changes occur would d e f i n e the segment boundaries. E x i s t i n g .stream q u a l i t y records should be reviewed t o . i d e n t i f y major q u a l i t y changes and those e x i s t i n g , abatement o r i e n t e d monitoring s i t e s which might a l s o be s u i t e d to system s u r v e i l l a n c e purposes. - 37 -Component I n t e r r e l a t i o n s h i p s Having defined the system as a stream segment w i t h a beginning and end p o i n t and s i x i n f l u e n c e s a c t i n g i n between, the next step i s to develop a way i n which they may be i n t e r r e l a t e d given a v a i l a b l e data. Of the s i x i n f l u e n c e s i d e n t i f i e d , the f i r s t three, t r i b u t a r i e s , waste discharges and water withdrawals, have been the subject of s u r v e i l l a n c e f o r the purpose of r e g u l a t i o n . A l l o c a t i o n of b e n e f i c i a l use has r e q u i r e d stream gauging, a s t i p u l a t e d l i c e n s e f l o w and an i n v e n t o r y of l i c e n s e l o c a t i o n s . Waste discharge flow and c h a r a c t e r are s t i p u l a t e d by permit and monitored r e g u l a r i l y . The l a s t three primary i n f l u e n c e s , surface r u n o f f , groundwater i n f l o w and in-stream m a t e r i a l t r a n s f o r m a t i o n , have not been i d e n t i f i e d and are not amenable to r o u t i n e monitoring because they are non-point i n f l u e n c e s . These l a s t three v a r i a b l e s must be a s c e r t a i n e d i f the behavior of the water system i s to be understood. They w i l l t h e r e f o r e be aggregated i n t o one unknown and be- i d e n t i f i e d i n t h a t form. The problem has now been s i m p l i f i e d to f o u r i n f l u e n c e s , three of which are known, and segment boundaries. Data a t the segment boundaries may have been c o l l e c t e d as upstream r e c e i v i n g water samples f o r e f f l u e n t monitoring o r data may have been c o l l e c t e d as p a r t of the e x i s t i n g system s u r v e i l l a n c e a c t i v i t i e s i n the province, Should no data e x i s t i t would have to be c o l l e c t e d . Data c o l l e c t e d immediately downstream from a waste discharge should not be used as the s i t e would have been s e l e c t e d to r e v e a l the immediate e f f e c t s of t h a t discharge. Instances where a p o t e n t i a l l y impacted use i s j u s t downstream from a waste discharge are best d e a l t w i t h a t a s i t e s p e c i f i c l e v e l . The one-dimensional approach employed here does not consider the p e c u l i a r i t i e s of channel c h a r a c t e r and l a t e r a l mixing and i s best s u i t e d to r e g i o n a l trends. - 38 -Assuming t h a t data are a v a i l a b l e f o r a l l but the unknown v a r i a b l e , the next step i s to l i n k the m a t e r i a l and f l o w inp u t s and outputs f o r the segment. Distance and f l o w v e l o c i t y data are not a v a i l a b l e so, to f o l l o w the changes of a p a r t i c u l a r parameter over time as i t t r a v e l s the len g t h o f the segment i s not p o s s i b l e . The only recourse i s to assume tha t a t the p o i n t o f entry o f each i n f l u e n c e a l l m a t e r i a l s are p e r f e c t l y dispersed. This i s a common assumption used i n modelling BOD/DO r e l a t i o n s h i p s (Joy, 197 ;^ Koch, 1976) and n u t r i e n t loads to lak e s (Moore, 1976). F u r t h e r , i t must i n i t i a l l y be assumed th a t m a t e r i a l s do not decay. These two assumptions are o f t e n used t o determine conservative estimates o f acceptable parameter loads (Enviro C o n t r o l Inc., 1971; F i s h , 1977) and have been proposed as a way of determining e f f l u e n t g u i d e l i n e s f o r d i s s o l v e d oxygen, temperature, pH, c o l i f o r m b a c t e r i a , and d e l e t e r i o u s substances i n general (Luttenmaier, 197 )^- The r e l a t i o n s h i p i s a simple d i l u t i o n model where, a t a po i n t of discharge, the downstream loa d and f l o w i s equal to the sum of the upstream and discharge load and flow as shown below. G2F2 °1 F 1 C 3 F 3 For a given parameter; (-']_^]_ + 2^^ 2 = ^3^3 a n ^ C^ and F^ are the co n c e n t r a t i o n and r i v e r flow upstream Cg and F,-, are the co n c e n t r a t i o n and f l o w o f the discharge C^ and F^ are the con c e n t r a t i o n and r i v e r f l o w downstream I f the system were only comprised o f inputs the t o t a l loads per segment could be added to the l o a d a t the beginning to give the l o a d a t the p o t e n t i a l impact p o i n t . With withdrawals i t i s necessary to order the i n f l u e n c e s i n the way they occur on the stream. - 39 -The assumption of instantaneous d i l u t i o n allows the behavior of i n f l u e n c e s to the water system to be simulated. To t i e these i n f l u e n c e s to the beginning and end p o i n t o f the segment i s d i f f i c u l t because the loads and flows of a l l i n f l u e n c e s and the i n i t i a l p o i n t change with time. However, a t any p a r t i c u l a r p o i n t i n time the stream may be viewed as a s t a t i c water body and, provided the r a t e s of a d d i t i o n and s u b t r a c t i o n have been constant f o r a t l e a s t one flow-through c y c l e of the segment, the system may be considered t o be at e q u i l i b r i u m . That i s , i f the m a t e r i a l and water volume inputs and withdrawals have been constant f o r the time r e q u i r e d to t r a v e l from the beginning to the end of the segment, then the c h a r a c t e r measured a t the end of the segment w i l l be equal to the sum of the i n i t i a l and i n f l u e n c e c h a r a c t e r , a l s o measurable. This semi-instantaneous view of the system allows c a l c u l a t i o n of a m a t e r i a l balance f o r each segment. S t a r t i n g w i t h i n i t i a l l oads, each measurable i n f l u e n c e i s s e q u e n t i a l l y added or subtracted from the system r e s u l t i n g i n a t h e o r e t i c a l l o a d value f o r each parameter a t the end of the segment. The d i f f e r e n c e between t h i s value and the measured value obtained from the s u r v e i l l a n c e network i s an estimate of the aggregate unknown i n f l u e n c e i n t h a t segment f o r t h a t parameter. To perform the m a t e r i a l s balance the data employed would have to be c o l l e c t e d a t a l l t r i b u t a r i e s , waste discharges and segment end p o i n t s simultaneously. With the number of agencies c o l l e c t i n g data.and the d i f f e r e n t purposes of these c o l l e c t i o n s i t i s u n l i k e l y t h a t t h i s would have occurred. The a v a i l a b l e data w i l l t h e r e f o r e have to be grouped i n t o monthly averages by years under the assumption t h a t the average i s r e p r e s e n t a t i v e of t h a t month. Data gaps may then be f i l l e d w i t h data from d i f f e r e n t years, h o p e f u l l y at a time when the fl o w regime was s i m i l a r . - 4 0 -Model Process Water systems n a t u r a l l y e x h i b i t d i u r n a l , d a i l y , monthly, seasonal and y e a r l y v a r i a t i o n s i n loads and f l o w s . P o l l u t i o n abatement a c t i v i t i e s should consider a l l these v a r i a t i o n s but they w i l l focus on the short-term v a r i a t i o n s o p e rative a t a p a r t i c u l a r s i t e . From a planning p e r s p e c t i v e , long-term trends of seasons o r years are more important t o the prevention of p o l l u t i o n which may r e s u l t from incremental or seemingly u n r e l a t e d decision-making. The view of a stream a f f o r d e d by the m a t e r i a l s balance i s a s t a t i c d etermination of the i n f l u e n c e s a c t i n g on water g u a l i t y . As such i t i s a d e t e r m i n i s t i c model of the system f o r a p a r t i c u l a r time and s e t of c o n d i t i o n s . To encompass dynamic c o n d i t i o n s , t h e m a t e r i a l s balance should be performed f o r successive times at the s c a l e s u i t e d to the model o b j e c t i v e s . This would suggest t h a t i t be run a t monthly i n t e r v a l s over a t l e a s t a one year p e r i o d and p o s s i b l y f o r s e v e r a l years to e s t a b l i s h a base f o r p o l l u t i o n prevention. More freguent i n t e r v a l s may be u s e f u l f o r water systems that are s e v e r e l y s t r e s s e d and are near the t h r e s h o l d of impact and where the s m a l l e r short-term v a r i a t i o n s may be c r i t i c a l however, t h i s s i t u a t i o n i s one where an abatement approach i s warranted and data demands would r e g u i r e continuous in-stream monitoring. The data base i n B r i t i s h Columbia has been c o l l e c t e d by grab sampling and i s more s u i t e d to monthly estimates of s t o c h a s t i c behavior. The i n f o r m a t i o n d e r i v e d from the a p p l i c a t i o n o f the above approach w i l l be d i f f e r e n t f o r d i f f e r e n t parameter c l a s s e s because each c l a s s has b e h a v i o r a l assumptions regarding in-stream processes. The a s s i m i l a t i v e c a p a c i t y may be determined f o r conservative parameters but,only a measure of a s s i m i l a t i o n can be determined f o r non-conservatives. This w i l l be discussed i n d e t a i l i n a l a t e r s e c t i o n . - 41 -P r e d i c t i o n I f the aggregate unknown v a r i a b l e l o a d values, determined through the d i f f e r e n c e between p r e d i c t e d and observed segment end values, are re-in t r o d u c e d as.-..a d e f i n e d input to the segment the d i l u t i o n model w i l l y i e l d p r e d i c t e d segment end values equal to those observed. Thus, the segment d i f f e r e n c e s may be used to c a l i b r a t e each segment so th a t new loads may be imposed and downstream concentrations p r e d i c t e d f o r t h a t f l o w and q u a l i t y regime. To agree w i t h the data input form of the other i n f l u e n c e s the c a l i b r a t i o n values must be expressed as m a t e r i a l concentrations f o r the f l o w d i f f e r e n c e s of each segment determined as f o l l o w s : L O A D , , = L O A D , . , , + L O A D , . „ „ observed p r e d i c t e d d i f f e r e n c e G. , x F , = (G ,x F ,) + (C , . rx F,. _ _ ) obs obs v pred pred' v c a l i b r a t i o n d i f f e r e n c e ' C _., ,. = ( C , x F , ) - ( C .x F ,) c a l i b r a t i o n v obs obs y v pred pred' F d i f f e r e n c e where C , and F , are the observed segment end c o n c e n t r a t i o n and flow obs obs ° C , and F , are the segment end co n c e n t r a t i o n and flo w -pred pred p r e d i c t e d through the d i l u t i o n model ^ d i f f e r e n c e ^ e u n a c c o u n ' ' : ' e ( i fl° w to the segment c a l c u l a t e d through the m a t e r i a l s balance G ,. i s the c o n c e n t r a t i o n of the unaccounted m a t e r i a l c a l i b r a t i o n ,, , , , added or l o s t over the segment. The above c a l i b r a t i o n process i s s i m i l a r to the a p p l i c a t i o n o f a decay f u n c t i o n except t h a t the. c a l i b r a t i o n i s segment and regime s p e c i f i c , The process does not apply decay to any new inputs which might be introduced. I t merely a l l o w s the d i l u t i o n model to c a r r y new lo a d a d d i t i o n o r l o s s through the segments under the assumption t h a t a l l e l s e remains constant. This i s a l l t h a t may be done w i t h e x i s t i n g data. - 42 -5. Water Quality. Parameter S e l e c t i o n The degree of agreement between the behavior of water system p o l l u t a n t s and the assumptions made i n the d i l u t i o n model w i l l determine what i n f o r m a t i o n can be produced f o r any given parameter. I n a d d i t i o n , data are not a v a i l a b l e f o r a l l parameters and not a l l parameters are s i g n i f i c a n t determinants of impact. These issues w i l l now be discussed to a r r i v e a t a parameter l i s t to which the model might be a p p l i e d . Of the many parameters of water a n a l y s i s some, such as n i t r a t e -n i t r o g e n , d i s s o l v e d copper and t o t a l sodium, are measures of a p a r t i c u l a r substance and others are i n d i c a t o r s of the ch a r a c t e r o f a group of substances. For example, BOD represents the oxygen consumption by b a c t e r i a over time as they metabolize organic m a t e r i a l , c o n d u c t i v i t y measures the a b i l i t y of d i s s o l v e d and p a r t i c u l a t e m a t e r i a l to pass an e l e c t r i c charge i n a water matrix, f i l t e r a b l e residue o r d i s s o l v e d s o l i d s i s the weight o f a l l d i s s o l v e d m a t e r i a l l e s s than o r equal to 0.45 microns i n s i z e , and TAC c o l o u r i s a, measure of the a b s o r p t i o n of i n c i d e n t l i g h t over the v i s i b l e spectrum. Each of these parameter concentrations o r measures may a l t e r w i t h time due to some chemical, b i o l o g i c a l o r p h y s i c a l mechanism. These mechanisms i n c l u d e d i l u t i o n , r e a c t i o n w i t h o t h e r substances to form new compounds, spontaneous molecular rearrangement or decay, b i o l o g i c a l i n c o r p o r a t i o n , p r e c i p i t a t i o n , a d s o r p t i o n to p a r t i c u l a t e s u r f a c e s , s e t t l i n g and resuspension. A l s o , the . p r o b a b i l i t y of any p a r t i c u l a r mechanism o c c u r r i n g w i l l vary with the c o n c e n t r a t i o n and type of the chemical and b i o l o g i c a l c o n s t i t u e n t s and w i t h the ambient c o n d i t i o n s of flo w r a t e , pH and temperature. C l e a r l y , to compare t h i s complexity of parameter behavior with t h a t assumed i n the d i l u t i o n model r e q u i r e s some form o f b e h a v i o r a l c l a s s i f i c a t i o n . - 43 -The c l a s s i f i c a t i o n employed examines each parameter f o r i t s r e a c t i v i t y and sediment a s s o c i a t i o n . R e a c t i v i t y i s a measure o f a parameter's ten-dency to change with time due to chemical o r biochemical processes. S e d i -ment a s s o c i a t i o n r e f e r s to the tendency of a con c e n t r a t i o n t o change due to s e t t l i n g o r surface a d s o r p t i o n f o l l o w e d by s e t t l i n g . These two broad c l a s s e s encompass most of the mechanisms r e f e r r e d to as in-stream m a t e r i a l transformations and can account f o r most p o l l u t a n t behavior. The r e s u l t of t h i s c l a s s i f i c a t i o n f o r a short parameter l i s t i s shown i n Table 1. Parameters were f i r s t d i v i d e d i n t o r e a c t i v e and non-reactive groups based on whether they r e q u i r e d p r e s e r v a t i o n p r i o r to a n a l y s i s (American P u b l i c H e alth A s s o c i a t i o n , 1979; U.S. EPA, 1974; Feldman, 1974; I n l a n d Waters D i r e c t o r a t e , 1973)• Each of these r e a c t i v i t y groups was then sub-divided as to t h e i r sediment a s s o c i a t i o n based on the knowledge o f the author and r e l a t i o n s h i p s developed i n the l i t e r a t u r e (Kudo, 1978; L i t e r a t h y , 1978). I t should be noted t h a t assignments to any p a r t i c u l a r c l a s s assume normal stream pH and flow c o n d i t i o n s to be ope r a t i v e . The grouping of parameters i n Table 1 i s crude and d e v i a t i o n s have been made from the above c l a s s i f i c a t i o n r u l e s . For example, t o t a l metals are u s u a l l y preserved p r i o r to a n a l y s i s but t h i s i s p r i m a r i l y to prevent t h e i r a d s o r p t i o n to the surface of the sampling c o n t a i n e r , BOD and c o n -forms are not preserved but have a r e s t r i c t i o n on time p r i o r t o a n a l y s i s , and c o l o u r measures s i m i l a r i l y may change w i t h time. I n gener a l , those parameters not a s s o c i a t e d w i t h sediment are those which s t a y i n s o l u t i o n as d i s s o l v e d ions o r c o l l o i d i a l suspensions under normal stream c o n d i t i o n s . Those a s s o c i a t e d w i t h sediments are p a r t i c u l a t e s , p r e c i p i t a t e s o r mater-i a l s which may adhere to p a r t i c u l a t e s u r f a c e s . _ 44 -TABLE 1 - Water Q u a l i t y Parameter Behavior C l a s s i f i c a t i o n REACTIVITY NON-REACTIVE REACTIVE c h l o r i d e ( C l " ) n i t r a t e - n i t r o g e n (NO~-N) n i t r i t e - n i t r o g e n (NO^-N) f l u o r i d e (F )_ sulphate (SO^ ) d i s s o l v e d orthophospnate-P EH <! M d i s s o l v e d s o l i d s phenol c o n d u c t i v i t y t r u e c o l o u r O o d i s s o l v e d sodium (Na) t o t a l absorbance c o l o u r (TAC) CQ CO < . d i s s o l v e d calcium (Ca) t o t a l & f e c a l c o l i f o r m s d i s s o l v e d magnesium (Mg) d i s s o l v e d metals (Cu, Zn, Pb, As, Fe, N i , Hg', Mn) o d i s s o l v e d potassium (K) g s u r f a c t a n t s (MBAS) d i s s o l v e d cyanide hardness t a n n i n and l i g n i n boron pH, a c i d i t y , a l k a l i n i t y ammonia n i t r o g e n n o n f i l t e r a b l e residue BOD s e t t l e a b l e matter COD t o t a l and. e x t r a c t a b l e metals TOC (Cu, Zn, Pb, As, Fe, N i , Hg, Mn) o i l & grease t o t a l cyanide < H t u r b i d i t y apparent c o l o u r O o t o t a l f i x e d residue K j e l d a h l n i t r o g e n CO CO p o l y c y c l i c aromatic t o t a l phosphorus < • hydrocarbons degradable p e s t i c i d e s DDT, PCB's and h e r b i c i d e s halogenated aromatics - 45 -I t i s now p o s s i b l e to di s c u s s the p o t e n t i a l a p p l i c a t i o n of the ma t e r i a l s balance d i l u t i o n model to these f o u r parameter c l a s s e s . 1. Non-reactive & non-sediment a s s o c i a t e d parameters f i t the d e s c r i p t i o n of conservative substances. Conservative substance are those which are not decomposed, a l t e r e d c h e m i c a l l y , o r removed p h y s i c a l l y as a r e s u l t of n a t u r a l processes i n a r e c e i v i n g water. T h e i r c o n c e n t r a t i o n i s d i r e c t l y r e l a t e d to the extent of d i l u t i o n (McKee, 1963). They w i l l t h e r e f o r e behave as p r e d i c t e d by the d i l u t i o n model and the m a t e r i a l s balance should a l l o w e s t i m a t i o n of unknown i n f l u e n c e s . 2. Reactive and non-sediment a s s o c i a t e d parameters w i l l tend t o s t a y i n s o l u t i o n but w i l l degrade o r change s t a t e as they are c a r r i e d downstream. The d i l u t i o n model i s v a l i d a t the p o i n t of entry but some decay f u n c t i o n would be r e q u i r e d to p r e d i c t downstream conc e n t r a t i o n . I f a s s i m i l a t i o n i s d e f i n e d as the m a t e r i a l removed from s o l u t i o n over a segment then, the a s s i m i l a t i o n measured through the m a t e r i a l s balance may be low because the balance w i l l show the net r e s u l t of a l l inpu t s and subsequent decay but the c o n t r i b u t i o n s from non-point sources cannot be d i f f e r e n t i a t e d from those'of p o i n t sources. I t may be p o s s i b l e to estimate a s s i m i l a t i o n f o r substances o r i g i n a t i n g from p o i n t sources only. 3. Non-reactive and sediment a s s o c i a t e d parameters are r e l a t i v e l y i n e r t and tend to be removed from s o l u t i o n by s e t t l i n g but may be resuspended during f r e s h e t . This group i n c l u d e s the s o l i d s , heavy metals and organic b i o r e s i s t a n t m i c r o p o l l u t a n t s ( L i t e r a t h y , 1978). The d i l u t i o n model i s not v a l i d here but a m a t e r i a l s balance could show the amount l o s t to sediment over the segment, p a r t i c u l a r i l y f o r those substances which do not occur n a t u r a l l y and are introduced from p o i n t sources. - 4 6 -stable p e s t i c i d e s or herbicides, could go undetected i f completely-taken up by sediments. Without data regarding the concentration of these substances i n the sediments, the mechanism f o r r e - i n t r o d u c t i o n to s o l u t i o n , or c r i t e r i a f o r sediment composition i t i s impossible to determine the r e c e i v i n g water's carrying capacity f o r these substances. In general, they are extremely t o x i c and should not e x i s t at any concentration. 4 . Reactive and sediment associated parameters are u s u a l l y organic p a r t i c u l a t e s . The problems discussed i n 3 above apply here as well as in-stream degradation. No information can be obtained from a p p l i c a t i o n of the materials balance. O v e r a l l , information may be generated f o r non-reactive parameters by use of the framework. Reactive parameters require much more data than i s presently a v a i l a b l e and should be the subject of a more d e t a i l e d mathematical model. Having narrowed the range of parameters to those which s u i t the model structure, i t i s necessary to ask which of them could cause impact upon b e n e f i c i a l use. The measure of impact i s a complex process i n v o l v i n g long-term observation and often, t r i a l and error. The r e s u l t . of these observations are c r i t e r i a f o r use and eventually, standards. E x i s t i n g c r i t e r i a should therefore be reviewed to i d e n t i f y those parameters which are important to the various users. An examination of reference c r i t i e r i a and standards (Ontario M i n i s t r y of the Environment, 1 9 7 8 ; U.S. E.P.A., 1 9 7 3 ) reveals that many of the compounds l i s t e d are not r o u t i n e l y analyzed i n t h i s province, p a r t i c u l a r -i l y p e s t i c i d e s and i n d u s t r i a l organics. The a p p l i c a t i o n of the framework w i l l therefore be r e s t r i c t e d to t r a d i t i o n a l non-reactive substances. - 47 -6. Computerization The concepts developed must be translated into a method f o r data assembly and processing. The t e c h n i c a l and dynamic nature of water q u a l i t y management information and the amount of c a l c u l a t i o n required favours the use of a computer f o r data processing. C r i t e r i a f o r development of computerized environmental information systems have been developed ( S t e i n i t z , 1970) and, i n combination with c r i t e r i a f o r design of planning information systems (Pepper, 1972), can a s s i s t i n flowcharting and program preparation. These c r i t e r i a are: 1. the framework should be comprehensive, incorporating a l l influences on water q u a l i t y i n c l e a r l y defined, mutually exclusive categories; 2. i t should be applicable throughout the area of i n t e r e s t ; 3 . i t should e s t a b l i s h an information base which may be used f o r a l l necessary types of analysis; 4. i t should have the capacity to be updated; 5. i t should be applicable at large and small scales; 6. i t should have the a b i l i t y to be added to i n both area and influences; 7. i t should be designed as a component within a decision-making process; 8. inputs and outputs should be accessible and comprehensible to a broad range of p o t e n t i a l users; 9. data inputs to the system should be determined by the p o t e n t i a l impact hazard associated with any p a r t i c u l a r parameter; 10. the framework should be designed to allow use of data which has been c o l l e c t e d i n the past. The c r i t e r i a advocate g e n e r a l i t y and f l e x i b i l i t y of a p p l i c a t i o n with well defined data inputs. Had distance data been a v a i l a b l e i t would be desirable to e s t a b l i s h influence accounts of t r i b u t a r i e s , - 48 -e f f l u e n t discharges and water withdrawals with each point keyed by distance thereby leaving segment boundaries to be imposed at w i l l . Insteam, each segment w i l l be f i x e d and treated as the base unit f o r data grouping and processing. Influences w i l l be ordered as they occur i n the segment and parameter values w i l l be i n i t i a l i z e d at the headwater. Each influence w i l l then be introduced and new values calculated f o r a l l parameters. Segment differences w i l l be c a l c u l a t e d at each boundary with observed values used to i n i t i a l i z e the next segment. Segment differences w i l l be stored and summarized at the end of a run. The flowchart of t h i s process i s shown i n Figure 4. A program was written i n FORTRAN IV to perform these operations and i s provided i n Appendix I. FIGURE 4 - Flowchart of the MATBAL Program - 49 -INITIALIZE PRINT RUN HEADINGS ARE 'THERE D A T A \ y e s CARDS •? 'no ECHO-PRINT CARD DATA READ A CARD 1=0, J=0 RESET INFLUENCE COUNTER L=0 ? PRINT NEW SEGMENT HEADING yes 1 = 1 + 1 INITIALIZE CALCULATED FLOW FL0W(1)=FL0W(3) PRINT yes SEGMENT DIFFERENCE SUMMARY SHIFT CALCULATED DOWNSTREAM VALUES TO THE UPSTREAM FILE PH(1)= PH(3) C0NC(1,N)= C0NC(3,N) I PRINT DOWNSTREAM VALUES i CALCULATE DOWNSTREAM CONCENTRATIONS PARAMETERS TO INPUT FILE C0NC(2,N)= PARA(I.N) PH(2)= PARA(I,2) L= L + 1 INCREMENT INFLUENCE COUNTER PRINT INFLUENCE HEADINGS J= J+l INITIALIZE STREAM VALUES FL0W(l)= = PARA(I,1) PH(1)= = PARA(I,2) G0NG(I,N)= = PARA(I,N) PLACE FLOW IN INPUT FILE & CALCULATE NEW VALUES FLOW(2)= PARA(I,1) FLOW(3)= FL0W(1)+FL0W(2) CALCUUTE, PRINT & STORE SEGMENT DIFFERENCES AND INFLUENCE COUNT - 5 0 -CHAPTER 3 - THE FRASER RIVER CASE STUDY 1 . I n t r o d u c t i o n to the Case Study The F r a s e r R i v e r watershed covers 2 3 0 , 9 2 0 square k i l o m e t e r s and contains seven major sub-basins i n c l u d i n g the watersheds of the Nechako, West Road, Quesnel, C h i l c o t i n , B r i d g e , Thompson and L i l l o o e t R i v e r s . From i t s Rocky Mountain headwaters near Moose Lake to i t s mouth on the S t r a i t ; : o f Georgia a t Vancouver, the r i v e r i s over 1 3 5 0 k i l o m e t e r s i n length. Over h a l f the p o p u l a t i o n of B r i t i s h Columbia l i v e s w i t h i n the F r a s e r b a s i n ( S t a t i s t i c s Canada, 1 9 7 8 ) and the m a j o r i t y of these people l i v e near the main stem.of the F r a s e r River. The many b e n e f i t s d e r i v e d from the i n d u s t r i a l , r e c r e a t i o n a l , occupational and domestic use of the r i v e r e s t a b l i s h the F r a s e r as the most important r i v e r i n B r i t i s h Columbia, (see Figure 5 ) -E x i s t i n g sources of environmental s t r e s s on the Fraser.are the Kemano Dam, waste e f f l u e n t s , and r u n o f f from a g r i c u l t u r e and urban centers. The Kemano Dam d i v e r t e d most of the Nechako Rive r ' s f l o w through the Nechako-Kemano D i v e r s i o n to the Aluminum Company of Canada's K i t i m a t development on Douglas Channel ( F r a s e r R i v e r Board, 1 9 5 6 ) . Wastes are introduced from a v a r i e t y of sources but the major e f f l u e n t types are domestic waste and pulp.and paper e f f l u e n t s from m i l l s i n the P r i n c e George and Quesnel areas. F i v e percent of the F r a s e r watershed area was u t i l i z e d as farmland i n 1 9 7 1 and of these farmlands, approximately 2 6 0 , 0 0 0 acres were f e r t i l i z e d , 3 0 , 0 0 0 acres were sprayed w i t h h e r b i c i d e s , 3 3 1 0 0 0 acres were sprayed with p e s t i c i d e s , and 1 2 6 , 0 0 0 acres were i r r i g a t e d ( S t a t i s t i c s Canada, 1 9 7 8 ) . Increased n u t r i e n t and s a l t s a t u r a t e d s u r f a c e r u n o f f and groundwater flow, s o i l e r o s i o n , and s y n t h e t i c chemical t r a n s p o r t to the water system are w e l l documented e f f e c t s of FIGURE 5 - The Fraser Watershed and Major Sub-Basins Major Sub-Basins 1. F r a s e r Main Stem 2. S t u a r t R i v e r 3. Nechako R i v e r 4. West Road R i v e r 5. ' C h i l c o t i n R i v e r 6. Bridge R i v e r 7. L i l l o o e t R i v e r 8. Quesnel R i v e r 9. Thompson R i v e r 10. North Thompson R i v e r 11. South Thompson R i v e r \/\ - 52 -a g r i c u l t u r a l land use i n other watersheds and a r e . ' l i k e l y sources o f s t r e s s on the Fr a s e r waters. Populations i n urban areas adjacent to the r i v e r have increased. I n the twenty year p e r i o d 1956 to 1976 the pop u l a t i o n of Vancouver increased from 365>844 to 410,188, t h a t of P r i n c e George from. 10.,563 to 59,9291 and Langley from 2,131 to 10,123 ( F a r l e y , 1979) ' Growing u r b a n i z a t i o n leads to increased surface r u n o f f w i t h t r a c e metal and p o l y c y c l i c aromatic hydrocarbon c o n s t i t u e n t s (Pope, 1978). Major sources of p o t e n t i a l s t r e s s , a s i d e from increased domestic waste loads and a g r i c u l t u r a l a d d i t i v e s , are a s s o c i a t e d w i t h power generation p r o j e c t s . The p o t e n t i a l e x i s t s f o r many t r i b u t a r y and Fr a s e r main stem h y d r o - e l e c t r i c power generating s t a t i o n s ( F r a s e r R i v e r Board, 1958). Although i t i s u n l i k e l y t h a t any main stem dam would .be b u i l t under the p r e v a i l i n g p o l i t i c a l c l i m a t e , the Aluminum Company of Canada i s i n v e s t i g a t i n g f u r t h e r d i v e r s i o n o f the Nechako R i v e r f l o w and the B r i t i s h Columbia Hydro and Power A u t h o r i t y i s a c t i v e l y c o n s i d e r i n g the hydro p o t e n t i a l of the McGregor R i v e r ( H a l l e r a n , 1977). I n a d d i t i o n to h y d r o - e l e c t r i c development, s e v e r a l deposits of uranium have been l o c a t e d i n the B.C. i n t e r i o r . Mining o f t h i s ore could introduce r a d i o a c t i v e m a t e r i a l to the Thompson R i v e r system f o r no t a i l i n g s impoundment i s a 100% r e c y c l e system over time. These m a t e r i a l s would u l t i m a t e l y migrate through Fraser-waters and bottom sediments. Another p o t e n t i a l source of s t r e s s l i e s i n the proposed c o a l - f i r e d thermal generation p l a n t and open p i t mine i n the Hat Creek v a l l e y . I f developed, the p l a n t would draw up to 20,000 g a l l o n s per minute from the Thompson R i v e r near A s h c r o f t f o r c o o l i n g - c i r c u i t purposes. The aqueous discharge from t h i s development would c o n t a i n heat, s a l t s , - 53 -and leachates from c o a l storage p i l e s and ash dumps. Atmospheric emissions would i n c l u d e oxides of ni t r o g e n , mercury, sulphur d i o x i d e and ash p a r t i c u l a t e . T h i s m a t e r i a l would he disp e r s e d over a l a r g e area and, without scrubbers, emissions could reach 400 tons per day of sulphur d i o x i d e , 166 metric tons per day of nitr o g e n d i o x i d e , and 10.5 metric tons of mercury over the 35 year expected l i f e o f the pl a n t (Shewchuk, 1979)- The p o t e n t i a l a c i d r a i n e f f e c t of sulphur emissions on .lake and stream waters w i t h i n the Fra s e r R i v e r watershed i s u n c e r t a i n . The planning context f o r the F r a s e r R i v e r watershed e x e m p l i f i e s the sectored agency j u r i s d i c t i o n s discussed i n Chapter 1. The watershed has been d i v i d e d i n t o s i x water regions f o r b e n e f i c i a l use a l l o c a t i o n under the p r o v i n c i a l Water Rights Branch. I t i s a l s o d i v i d e d i n t o three regions f o r waste discharge a l l o c a t i o n under the P o l l u t i o n C o n t r o l Branch. Boundaries of the two agency d i v i s i o n s w i l l c o i n c i d e a f t e r r e o r g a n i z a t i o n but are based on. ease of a d m i n i s t r a t i o n r a t h e r than sub-basins. The r i v e r i s t h e r e f o r e segmented a d m i n i s t r a t i v e l y as w e l l as geo g r a p h i c a l l y . The f e d e r a l I n l a n d Waters D i r e c t o r a t e has performed s u r v e i l l a n c e monitoring of the F r a s e r main stem and s e l e c t t r i b u t a r i e s t h r o u g h i t ' s Water Q u a l i t y Branch and the Water Planning Branch i s i n v o l v e d i n f l o o d management o f the lower reaches. However, no water management p l a n has been developed f o r the basin. The f i r s t water q u a l i t y study of the F r a s e r R i v e r b a s i n occurred i n 1965 and was intended to explore the e f f e c t o f f u r t h e r pulp m i l l development upon the q u a l i t y o f waters i n the lower reach near Vancouver ( S y l v e s t e r , 1965). This study discussed v a r i o u s p o l i c y approaches to water q u a l i t y management f o r none had yet been adopted i n the province. - 54 -F u r t h e r , i t s t r e s s e d the need f o r water q u a l i t y c r i t e r i a r egardless of the c o n t r o l approach adopted. The next major study ( G o l d i e , 1967) focused . on the lower F r a s e r as the major problem area. I n 1968 the P o l l u t i o n C o n t r o l Board responded to the growing concern over water q u a l i t y i n the lower F r a s e r River. The p o l i c y then developed recognized t h a t upstream development could a d v e r s l y - a f f e c t downstream q u a l i t y but, was s o l e l y concerned w i t h c o n t r o l of p o l l u t i o n from p o i n t sources i n the Lower F r a s e r V a l l e y (B.C. P o l l u t i o n C o n t r o l Board, 1968). This p o l i c y e s t a b l i s h e d the approach t h a t was to be used f o r p o l l u t i o n c o n t r o l throughout the.province. The preamble s t a t e s : " ... i t i s i m p r a c t i c a l to s e t standards f o r the r e c e i v i n g waters of the r i v e r , but i n s t e a d , (the Board) has decided to c o n t r o l i n d i v i d u a l e f f l u e n t s i n t o the r i v e r and i n t h i s way, maintain o r improve the q u a l i t y o f the r i v e r i t s e l f . " A l a t e r study (Dorcey, 1976) showed th a t t h i s approach d i d not e r a d i c a t e the problem. Data i n d i c a t e d increases i n the ambient concentrations of c o l i f o r m s , t r a c e metals and c h l o r i n a t e d hydrocarbons i n the water environment of the F r a s e r adjacent to g r e a t e r Vancouver r e l a t i v e t o the upstream reaches (Dorcey, 197^-). Perhaps as a r e s u l t of t h i s study o r perhaps due to the s h i f t toward an ecosystem p e r s p e c t i v e , a j o i n t f e d e r a l - p r o v i n c i a l study i s c u r r e n t l y examining the lower F r a s e r reach w i t h an eye toward the e f f e c t s o f land use upon water q u a l i t y , f u t u r e development pressure, and impacts upon b e n e f i c i a l use ( F r a s e r R i v e r Estuary Study S t e e r i n g Committee, 1978). I t appears t h a t , even though d i v e r s e i n p u t s and e f f e c t s are being considered, the approach i s abatement o r i e n t e d f o r i t ignores the transboundary e f f e c t s of upstream development and the l a g between cause and e f f e c t t h a t t h i s i m p l i e s . A p l a n f o r the lower F r a s e r R i v e r i s of l i t t l e use i f upstream d e c i s i o n s can i n v a l i d a t e . t h e plan's terms of- r e f e r e n c e . - 55 -The F r a s e r R i v e r above Hope was chosen as the case study f o r t h i s t h e s i s because the complexity of waste inputs and b e n e f i c i a l use s i t e s i n the r e l a t i v e l y s h o r t but t i d a l l y i n f l u e n c e d lower reach does not a l l o w a p p l i c a t i o n o f the model assumptions. I n a d d i t i o n , Hope marks the lowest downstream p o i n t i n c l u d e d i n the type of systematic data c o l l e c t i o n necessary to the case study. While i t i s recognized t h a t present demands f o r waste discharge and water withdrawals are low i n r e l a t i o n to the flo w of t h i s r i v e r , i t i s hoped t h a t an i n f o r m a t i o n base may be e s t a b l i s h e d which would a s s i s t i n f u t u r e demand d e c i s i o n s f o r t h i s very important water resource. I n keeping w i t h the s i m p l i f i e d one-dimensional water system r e p r e s e n t a t i o n discussed i n the previous chapter, the a n a l y s i s w i l l be r e s t r i c t e d t o e x i s t i n g data on the main stem o f the r i v e r as an i l l u s t r a t i o n o f the approach. - 56 -2. P r e l i m i n a r y S i t e , and Data Source Inventory As mentioned, .analysis s i t e s , segments, times and parameters were chosen from e x i s t i n g data. To do t h i s i t was necessary to in v e n t o r y a l l i n p u t s , outputs and p o t e n t i a l l y u s e f u l monitoring s i t e s i n the case study area. These i n v e n t o r i e s were then examined f o r time and parameter coverage p r i o r to f i n a l data s e l e c t i o n and a p p l i c a t i o n of the framework. The s i t e i n v e n t o r i e s provide a summary of system o r i e n t e d monitoring a c t i v i t i e s i n the area and are u s e f u l f o r i d e n t i f i c a t i o n of data gaps. Receiving Water Mo n i t o r i n g S i t e s F r a s e r main stem s i t e s and t r i b u t a r y monitoring s i t e s c l o s e to the main stem were i s o l a t e d from a l i s t i n g of a l l r e c e i v i n g water monitoring s t a t i o n s w i t h i n the F r a s e r watershed obtained through the P o l l u t i o n C o n t r o l Branch's(PGB) EQUTS system. F e d e r a l Water Q u a l i t y Branch (WQB) NAQUADAT s t a t i o n l o c a t i o n s f o r main stem and t r i b u t a r y flows were a l s o obtained. Each of the p o t e n t i a l data s i t e s thus i d e n t i f i e d was then checked f o r the existence of monthly mean discharge records w i t h the Water Survey of Canada (WSC). A summary of t h i s r e c eiving.water s i t e i n v e n t o r y i s shown i n Table 2. S i t e s and t r i b u t a r i e s are l i s t e d i n order o f flow and t r i b u t a r i e s i d e n t i f i a b l e on a 1:500,000 s c a l e map are i n c l u d e d f o r completeness even i f no data has been c o l l e c t e d f o r the input. The e n t r i e s i n Table 2 represent s i t e numbers assigned as codes by the various agencies. TABLE 2 - FBASER RIVER AND TRIBUTARY RECEIVING WATER STATIONS SUMMARY SITE WATER QUALITY FLOW PCB (EQUIS) WQB (NAQUADAT) WSC Fraser River @ Red Pass Robson River McLennan River Fraser River @ Tete Jaune Cache Tete Creek Kiwa Creek Small Creek Fraser River @ Dunster Raush River Castle Creek Holmes River Fraser River @ McBride Dore River Mcintosh Creek McKale River West Twin Creek East Twin Creek Fleet Creek Goat River 0400001 0400002 0400003 04O0004 0400005 0400006 040000? 04O0008 0400009 0400010 0400011 0400012 0400013 0400014 0400250 0400016 0400481 0400482 0400015 BC08KAOOO? 08KA00? (1955-76) BC08KA0010 BC08KA0005 BC08KA0011 BC08KA0002 BC08KA0012 08KA003 (1949-52) 08KA005 (1953-76) 08KA001 (1966-76) 08KA009 (1971-76) 0400017 BC08KA0004 08NH004 (1914-76) TABLE 2 - RECEIVING WATER STATIONS CONT'D. SITE PCB WOB WSC Snowshoe Creek Morkill River P.O.B. Creek Ptarmigan Creek Torpy River Fraser River @ Dome Creek Dome Creek Slim Creek Drisooll Creek Hungary Creek Moxley Creek Bowron River Fraser River @ Hansard McGregor River Olsson Creek Willow River Salmon River North Fraser River @ Shelley 0400018 0400591 0400019 0400020 0400021 0400022 0400023 0400024 0400025 0400026 0920065 0400027 0400028 0400029 0400030 0400031 0400032 0400033 Fraser River above Northwood Mi l l 0400044 Fraser River above Intercontinental 0400068 Fraser River @ Prince George 0400082 0400085 BC08KA0006 BC08KD0001 BC08KA0001 BC08KB0002 BC08KD0002 BC08KC0001 BC08KB0001 08LC028 (1946) 08KD004 (1954-76) 08KA004 (1952-76) 08KB003 (1960-76) 08KD006 (1976) 08KC001 (1953-76) 08KB001 (1950-76) BC08KB0003 BC08KE0007 08KE001 (1927-30) TABLE 2 - RECEIVING WATER STATIONS CONT'D. SITE PCB WQB WSC Nechako River Tabor Creek Cale Creek Fraser River @ Red Rock Stone Creek Naver Creek Whites Landing Creek West Road (Blackwater) River Cottonwood River Baker Creek Fraser River @ Quesnel Quesnel River Dragon Creek Narcosli Creek Tingley Creek 040004-0 0400455 0920666 0900187 0400782 0400233 0400034 0400035 0400036 040003? 0400038 0400805 0600081 0400041 0600049 0600045 0600532 0600019 0600029 0600015 0600034 0900186 0600078 0600028 BC08KE0010 BC08KG0001 BC08KE0006 BC08KE0001 BC08KH0001 08JC001 (1956-76) 08KE028 (1974-76) 08KE015 (1956-74) 08KE014 (1964-75) 08KG001 (1952-76) 08KE009 (1954-76) 08KE016 (1963-76) 08KE002 (1929-41) 08KH006 (1939-76) 08KH016 (1962-76) 08KE003 (1930-51) 08MC011 (1930) TABLE 2 - RECEIVING WATER STATIONS CONT'D. SITE Fraser River @ Marguerite Mackin Creek Soda Creek Hawks Creek Williams Lake River Meldrum Creek Chimney Creek PCB 0600011 0920141 WQB BC08MC0001 0600126 0600013 0600200 0600201 0600529 0600111 0600340 Fraser River @ Chilcotin Highway 0600143 Riske Creek Chilcotin River 0600024 A l k a l i Creek Dog Creek Gaspard Creek Churn Creek Canoe Creek Lone Cabin Creek French Bar Creek Fraser River @ Big Bar Creek BC08MC0004 BC08MC0002 WSC 08MC018 (1950-76) 08MC030 (1967-75) 08MC024 (1964-68) 08MC005 (1968-76) 08MC017 (1938-52) 08MC004 (1976) 08MB005 (1970-76) 08MD009 (1928-30) 08MD010 (1928) 08MD012 (1928-30) 08MD008 (1929-30) 08MD018 (1947-50) 08MD013 (1935-72) TABLE 2 - RECEIVING WATER STATIONS CONT'D, SITE PCB WSC Big Bar Creek Watson Bar Creek Pavilion Creek Bridge River Fraser River @ Lillooet Seton River Fraser River above Texas Creek Texas Creek Stein River Fraser River @ Lytton Thompson River Nahatlatch River Anderson River Scuzzy River Yale Creek Coquihalla River Fraser River @ Hope 0300054 0920142 0300117 0300053 0301428 0600010 0600005 0600325 0300052 0300151 0301117 0300007 0300050 0300139 0920001 BC08ME0002 BC08ME0001 BC08ME0003 BC08MF0009 BC08MF0004 BC08MF0003 BC08MF0006 BC08MF0008 BC08MF0001 08MD011 (1928-29) 08MD002 (1915-43) 08ME001 (1913-48) 08ME003 (1958-76) 08MF040 (1951-76) 08MF015 (1914-21) 08MF011 (1911-13) 08MF004 (1912-14) 08LF051 (1951-76) 08MF008 (1916-21) 08MF001 (1945-49) 08MF031 (1933-36) 08MF003 (1957-76) 08MFOO5 (1912-76) - 62 -Waste Discharge Permit Inventory Permits f o r a l l e f f l u e n t s discharged to the F r a s e r R i v e r watershed were obtained from an EQUIS permit r e t r i e v a l . Permit s t i p u l a t i o n s have changed over time and are summarized i n Table 3 f o r a l l discharges to the main stem above Hope. Those parameters which are common to most permits are i t e m i z e d and u n i t s o f fl o w and c o n c e n t r a t i o n have been converted to cubic meters per day and m i l l i g r a m s per l i t e r r e s p e c t i v e l y where p o s s i b l e , ( s e e Appendix I I ) . Permit s t i p u l a t i o n s represent maximum a l l o w a b l e o b j e c t i v e s . I n r e a l i t y these e f f l u e n t c h a r a c t e r i s t i c s w i l l f l u c t u a t e . However, they are a good i n d i c a t i o n of o v e r a l l e f f l u e n t c h a r a c t e r (Wong, 1977) should more d e t a i l e d data not be a v a i l a b l e . I t i s evident t h a t the parameters l i s t e d are o r i e n t e d t o t e c h n o l o g i c a l abatement and, w i t h few exceptions, do not s p e c i f y the d e t a i l e d p h y s i c a l and chemical makeup necessary to assess p o t e n t i a l impact on the r e c e i v i n g environment. For example, domestic e f f l u e n t s commonly c o n t a i n t r a c e s o f up to twenty metals (Environment Canada, 1978) and many s y n t h e t i c organics but nothing o f t h i s nature i s s p e c i f i e d on domestic e f f l u e n t permits. More d e t a i l e d i n f o r m a t i o n may have been s u p p l i e d on permit a p p l i c a t i o n s but t h i s i n f o r m a t i o n was n o t . r e a d i l y a v a i l a b l e . -Water License Inventory An i n v e n t o r y o f a l l water l i c e n s e s h e l d on the F r a s e r main stem above Hope was obtained from the Water Rights Branch.and i s shown i n Table 4. Withdrawal r a t e s have been converted to common u n i t s under the assumption t h a t i r r i g a t i o n use i s constant over a 100 day pe r i o d . P r e s e n t l y , no water l i c e n s e s have been obtained on the F r a s e r R i v e r f o r aquatic h a b i t a t o r r e c r e a t i o n use. Licenses represent water withdrawals only. TABLE 3 - FRASER RIVER MAIN STEM EFFLUENT PERMIT INVENTORY PERMIT # (PE) PERMITTEE EFFECTIVE FLOW DATE (m /d) 0015 0076 0091 0092 0095 0112 0146 0152* 0157* Town of Hope (mun. - untreated) Prince George Pulp & Paper Ltd. (mun. - 2 ) Village of Lgtton (mun. - 1 ) Village of Ljllooet (mun. - 1 ) School Di s t r i c t #57 (P.G.) (mun. - 2 ) Northwood Pulp Ltd. (mun. City of Prince George (mun. - 1 ) Prince George Pulp & paper Ltd. (kraft pulp m i l l - 2 ) Northwood Pulp Ltd. (kraft pulp m i l l - 2 ° ) 10 /09 /57 0 8 / 0 2 / 7 3 23 /09 /63 22 /04 /70 22/05/64 10 /07 /73 0 3 / 0 1 / 7 8 0 1 / 0 1 / 7 9 22/06/64 3 1 / 1 2 / 7 5 0 1 / 0 5 / 7 8 3 1 / 1 2 / 7 9 " 12/06/64 24 /10/78 04 /02/65 24 /07/74 0 9 / 1 1 / 6 5 29 /03 /71 0 9 / 0 6 / 7 2 7 ,439. 7 ,167 . 104. 72.6 363. 544. 550. 365. 1,000. 77. 145. 11,340. 12,247. 23,134. RESIDUE (mg/l) min max tot a l susp. pH (units) BOD FECAL TEMPERATURE (mg/l) C0LIF0RM (°F) (xlO^/lOOml) min max 6 .8 8.0 6 .5 7 .5 800 200 150 II 750 750 400 600 650 100 150 60 100 150 60 130 60 100 dormant 283 60 280 150 82 2 9 / 0 3 / 6 6 125,194. 6 .5 8 .5 1000 0 6 / 0 6 / 6 6 2 0 / 0 6 / 7 3 3 1 / 1 2 / 7 4 3 1 / 1 2 / 7 5 0 9 / 0 5 / 7 9 95 ,256 . 108,864. 118,000. 6 .5 8 .5 1000 6 .5 8.0 6.0 8.5 6 .5 8.0 63 95 ++ ++ 180 50 140 45 100 140 45 130 45 50 210 45 230 175 56 45 80 52^ 40. 1  0.005 11 5-0 .005 20. 0 .025 0. 40 60 125 125 95 35°C TABLE 3 - EFFLUENT PERMIT INVENTORY CONT'D. PERMIT PERMITTEE EFFECTIVE FLOW pH RESIDUE BOD FECAL TEMPERATURE JTjpi) DATE (jrVd) (units) (mg/l) (mg/l) COLIFORM ( F) min max to t a l susp. (xlO /100ml) min max 0190 Intercontinental Pulp Co. Ltd. (chemical plant) 0228* Intercontinental Pulp Co. Ltd. (kraft pulp m i l l - 1 ) 0319 Frechette, PrinceQGeorge (municipal - 1 ) 0354 Prince George, College Lands (municipal - 2 ) 07/07/67 907. 18/04/68 106,142. 31/12/69 15/06/71 08/02/79 02/07/70 72 25/03/71 23/05/71 6.8 17.7 17.7 386, 2,270. 25.4 378. 03/08/72 108,864. 01/12/78 109,100. 0392 Canyon Aerial Tramway Ltd. (municipal - 1 ) 0402 Village of McBride (municipal - 1 ) 1152* Cariboo Pulp & Paper Co. Ltd. (kraft pulp m i l l - 2°) 1720/01 Weldwood of Canada Ltd. (sawmill - 1 ) 1720/03 Weldwood of Canada Ltd. (sawmill - 1 ) 1763 B.C.G. Public Works (P.G.) (municipal - 1 ) 1901 Fraser-Fort George Reg. Dist. (municipal - 2 ) 2017 The Ranch Hotel Ltd. (P.G.) (municipal - 1 ) 2655 Northwood Pulp Ltd., U. Fraser 13/09/73 272. (municipal - 1 ) 1100 1000 6.5 8.5 1000 80 80 20 40 70 60 40 95 08/08/73 08/08/73 28/06/74 26/03/73 19/03/73 17/05/76 15/06/73 22.7 2,286. 40.8 113. 227. 19.6 6.5 6.5 60 60 50 40 10 30 80 45 30 75 45 45 60 45 dormant -60 60 45 45 0.005 0.03 0.001 2. 2. 125 95 ON TABLE 3 - EFFLUENT PERMIT INVENTORY CONT'D. PERMIT # (PE) PERMITTEE EFFECTIVE DATE 09/10/74 22/08/74 FLOW (nrVd) 136. 1,247. PH (units) min max total susp. - 50 RESIDUE BOD FECAL (mg/l) (mg/l) COLIFORM (xl0 6/l00ml) TEMPERATURE (°F) min max 13/03/75 258,552. ( mo.av. ) 6.5 8.0 60 40 42.6+ 42.6+ 3389 Iwasenko Mine, Watson Bar (placer mine - 1 ) 3868 Prince George, Airport (municipal - 1 ) 3900* Intercontinental & Prince George Pulp & Paper (kraft pulp mills - 2 ) 4125 Fraser-Cheam, Hope-Kawkaw** (municipal - 2 ) 4905 City of Prince George (municipal - 2 ) 4992* B.C. Hydro, McBride (source unknown) 5132 Prince George, Industrial Dev. (municipal - 2 ) * permit l i s t s other parameters (pulp mills include colour, D.O,, foam, sulphide, resin acids & mercaptans). ** not yet operational. + calculated from parameter rate and flow stipulations. ++ cannot be converted to concentration from permitted product rate stipulation. NOTE: 1. Where a choice was possible the maximum average flow was taken over the maximum. - - — , —-, t.„v1i0n+ +r% VP-H f-i cation. 27/11/75 07/04/78 13/07/78 01/05/78 18/01/79 6,800. 1  1,000. 77.3 1,400. 60 100 100 - 100 45 100 100 100 95 Where a cnoice was postsiLu-c W I S 0 ~ Data summarized from EQUIS retrieval and is subject to verification. TABLE 4 - FRASER RIVER MAIN STEM WATER LICENSE INVENTORY REGION & LOCATION Prince George (24) LICENSE HOLDER LICENSE DATE # USE VOLUME ORIGINAL UNITS 1000 x 0.0023 83DNW Saban 329750 14/10/75 domestic 500 g/d II 11 330765 " 1  II 330766 •' 83ESW B.C.G, - Rec. & Cons. 328339 10/02/75 industrial 20,000 g/d 93J1H Northwood Pulp 190678 01/04/52 industrial 0 TF 93J2A Harold Rice 273991 18/08/67 i r r i g a t i o n 2,000 acre-ft " 309232 29/07/69 i r r i g a t i o n 436 acre-ft. 93J2B 309231 i r r i g a t i o n 128 acre-ft. 93G15E Northwood Pulp 259630 27/10/64 industrial 140 cfs 6430 B.C. Land Commission 316890 08/05/73 i r r i g a t i o n 63 acre-ft. Quesnel (26) 7240 Couldwell 256105 27/04/64 domestic 500 g/d Poitras 256IO6 27/04/64 II " Meier 256102 27/04/64 II •• 7240A Carter ^ 256103 27/04/64 " II 7200 Weldwood of Canada Ltd. 264744 20/09/65 industrial 150 g/d 7225 Luy 281426 11/07/68 i r r i g a t i o n 70 acre-ft. 7221 Frechette 250007 30/05/63 domestic 500 g/d 9007UU Weldon 285264 27/02/69 i r r i g a t i o n 375 acre-ft. 9007HH Bourdon 300326 13/10/70 i r r i g a t i o n 65 acre-ft. 9007VV Gibraltar Mines Ltd. 300559 10/12/70 mining 2,985,000 g/d it 1  1  industrial 15,000 g/d 0.091 24.68* 5.38* 1.58* 343. O.78* 0.0023 0.0007 0.864* 0.0023 4 .63* 0.80* 13.54 0.068 Table 4 - WATER LICENSE INVENTORY CONT'D. REGION & LOCATION LICENSE HOLDER LICENSE DATE USE WITHDRAWAL VOLUME # ORIGINAL 1000 x Cariboo (05) 1054 Thompson Land & Cattle Co. 257340 19/06/64 i r r i g a t i o n 27 acre-ft. 0.33* 1052 Deer Park Ranching Ltd. 330316 22/03/76 i r r i g a t i o n 990 acre-ft, 12.22* Ashcroft (02) 102A Jones 300594 23/l2/?0 i r r i g a t i o n 15 acre-ft. 0.185* " Clark 300750 09/02/71 i r r i g a t i o n 45 acre-ft. 0.555* " Arthur 270552 16/09/66 i r r i g a t i o n 8.4 acre-ft. 0.104* St. Dennis 340531 16/09/66 domestic 500 g/d 0.0023 " " " i r r i g a t i o n 14.1 acre-ft. 0.174* " Arthur 330756 01/06/76 domestic 500 g/d 0.0023 Sunnymede Development Co. 203745 05/05/54 i r r i g a t i o n 208.5 acre-ft. 2.57* " " 330038 18/12/75 i r r i g a t i o n 52.8 acre-ft. 0.652* 328537 05/05/54 i r r i g a t i o n 562.2 acre-ft. 6.94* '• Riverland Farms Ltd. 340578 05/05/54 i r r i g a t i o n 99.3 acre-ft. 1.23* 102C Rizzuto 323228 10/06/74 i r r i g a t i o n 30 acre-ft. 0.37* 102C Grossler 300668 13/01/71 i r r i g a t i o n 30 acre-ft. 0.37* 256 Northern Arc Ltd. 32344-8 25/06/74 mining 0.5 cfs 1.23 Nicola (21) 6131 Canyon Aerial Tramways Ltd. 300549 07/12/70 industrial 20,000 g/d 0.091 New Westminister (20) 5943B Rivtow Marine Ltd. 198326 01/06/54 log booming 2 M. 5942 Quatsino Copper-Gold Mines 296179 24/03/70 mining 360,000 g/d 1.63 * assumed 100 day withdrawal period - 68 -3.. Preparation, f o r A n a l y s i s Segment boundaries, i n f l u e n c e s to be i n c l u d e d i n the a n a l y s i s , parameters, and a n a l y s i s times were chosen a f t e r an examination of the parameters and dates of c o l l e c t i o n a v a i l a b l e f o r each s t a t i o n o r i n f l u e n c e i d e n t i f i e d i n the preceeding r e c e i v i n g water s i t e and use a l l o c a t i o n i n v e n t o r i e s . These d e c i s i o n s l e d to the development of a data base ready f o r a n a l y s i s through the MATBAL program. Segment Boundaries As discussed i n the development of the framework, segment boundaries should be s e l e c t e d to r e f l e c t the p o t e n t i a l impact upon b e n e f i c i a l use l o c a t i o n s . B e n e f i c i a l use, as i n d i c a t e d by water l i c e n s e , i s predominantly f o r i r r i g a t i o n and i n d u s t r i a l feed. ...However, the F r a s e r i s a l s o one of the most productive P a c i f i c salmon r i v e r s o f the world. The gross value of f i s h e r i e s i n 19?4 was estimated a t about $30 m i l l i o n a n n u a l l y and w i t h enhancement could be about $58 m i l l i o n (Dorcey, 19?4). Segment boundaries should t h e r e f o r e r e f l e c t both s p e c i f i c withdrawal l o c a t i o n s and major in-stream c h a r a c t e r change p o i n t s . Other c o n s i d e r a t i o n s stem from the assumptions of the model. S i t e s should be s u f f i c i e n t l y f a r downstream from inputs to ensure 'thorough mixing and should d i v i d e the i n p u t s i n t o groupings of s i m i l a r magnitude. A balance must be s t r u c k between the d e s i r e f o r f i n e g r a i n data and the expense and d i f f i c u l t y o f data c o l l e c t i o n . A f t e r examination of the p o t e n t i a l monitoring s t a t i o n s on the F r a s e r main stem i t was decided t o s e l e c t a l l boundary s i t e s from among.-.the Water Q u a l i t y Branch s u r v e i l l a n c e system because these c o l l e c t i o n s e x h i b i t c o n s i s t e n t c o l l e c t i o n dates, parameters and a n a l y t i c a l methods. This l e d to. s e l e c t i o n of t e n r i v e r segments from. Red.Pass to Hope as shown i n Table 5-- 69 -TABLE 5 .Fraser Main Stem .River. Segments SEGMENT APPROXIMATE SEGMENT LENGTH (km) FRASER BEGINNING AT FRASER ENDING AT UPSTREAM DRAINAGE. ' AREA ' (sq.km.) SEGMENT INPUT DRAINAGE AREA ( sq. km.) 1 102 Red Pass McBride 1,700 5,190 2 217 McBride Hansard 6,890 11,110 3 93 Hansard S h e l l e y 18,000 14,375 4 47 S h e l l e y Red Rock 32,375 47,625* 5 153 Red Rock Quesnel 80,000* 17,900* 6 59 Quesnel Marguerite 97,900 15,800 7 60 Marguerite G h i l c o t i n Hwy. 113,700 5,300* 8 174 G h i l c o t i n H w y - Lillooet 119,000* 31,000* 9 58 L i l l o o e t L y t t o n 150,000* 3,850* 10 113 L y t t o n Hope 153,850 63,190 + adapted from Water Survey of Canada, 1977. * estimated values Q u a l i t y monitoring s i t e s a t Red Rock, C h i l c o t i n Highway and L i l l o o e t were chosen as segment boundaries without f l o w data because they represent a check on waste i n p u t s near P r i n c e George, and i r r i g a t i o n withdrawals f o r the other two. Flows f o r these s t a t i o n s were estimated by t r i b u t a r y flow a d d i t i o n to known main stem values plus a smoothing process. O v e r a l l , t h e segment boundaries-are l o c a t e d near e x i s t i n g water l i c e n s e s and u s u a l l y upstream from major inputs thus ensuring adequate di s t a n c e f o r mixing. Without l a n d use plans f o r the watershed i t i s not p o s s i b l e to con s i d e r f u t u r e use s i t e s except as extensions- of past use. - 70 -Parameter S e l e c t i o n Parameters should be s e l e c t e d to explore impacts p a r t i c u l a r to the watershed. T h i s enhances e f f i c i e n c y and e f f e c t i v e n e s s o f data c o l l e c t i o n and manipulation. Using a v a i l a b l e data, s e l e c t i o n was l i m i t e d to parameters with the most extensive system coverage. Since the f e d e r a l Water Q u a l i t y Branch c o l l e c t i o n s were chosen f o r segment boundaries-and the major t r i b u t a r i e s were subj e c t to s i m i l a r analyses, the parameters of these c o l l e c t i o n s formed the s e t . o f g r e a t e s t p o t e n t i a l . To s e l e c t among them each was examined f o r ( l ) impact p o t e n t i a l , (2) i n c l u s i o n i n PGB c o l l e c t i o n s and (3) v a r i a t i o n over the l e n g t h of the r i v e r . T his r e s u l t e d i n the f o l l o w i n g f i n a l parameter l i s t : 1. Flow Volume Rate 2. pH 3. Temperature 4. S p e c i f i c Conductance 5. D i s s o l v e d Sodium (Na) 6. N o n f i l t e r a b l e Residue (Suspended S o l i d s ) 7. T o t a l I r o n (Fe) 8. T o t a l Manganese (Mn) 9. T o t a l Copper (Cu) Flow determines the reaches where s p e c i f i c water q u a l i t y problems are most l i k e l y ' to occur and i s the b a s i s of the d i l u t i o n model and the m a t e r i a l s balance. I t governs the co n c e n t r a t i o n o f m a t e r i a l loads and, taken w i t h f l o w v e l o c i t y , i n f l u e n c e s many p h y s i c a l processes i n c l u d i n g s c o u r i n g , mixing and a e r a t i o n . Aquatic l i f e i s s e n s i t i v e to the pH o r hydrogen i o n co n c e n t r a t i o n of i t s environment. The pH may not be t o x i c i n i t s e l f unless the values are extreme but, the degree of formation of heavy metal hydroxides i s d i r e c t l y r e l a t e d to pH (Water P o l l u t i o n C o n t r o l D i r e c t o r a t e , 1975)-S h i f t s i n pH can thus a f f e c t the co n c e n t r a t i o n of d i s s o l v e d metals which, because they are very weakly complexed, can r e a d i l y be taken up - 71 -by aquatic organisms. Other m a t e r i a l s , such as ammonia and cyanide, in c r e a s e g r e a t l y i n t o x i c i t y as the pH .^changes -, again as a r e s u l t o f t h e i r i o n i z a t i o n s t a t e . The r e c e i v i n g water o b j e c t i v e s f o r the f o r e s t products i n d u s t r y ( P o l l u t i o n C o n t r o l Board, 1977) s t a t e t h a t n e g l i g a b l e change should occur outside the i n i t i a l d i l u t i o n zone f o r pH. S p e c i f i c conductance i s a measure of i o n content and may be regarded as a conservative parameter. I t has been proposed as a general i n d i c a t o r of water q u a l i t y and i s s i m i l a r to the parameter d i s s o l v e d s o l i d s but ' i s much e a s i e r to measure. Water w i t h a s p e c i f i c conductance of l e s s than 1000 umhos/cm u s u a l l y imparts no impact on use but water above t h i s value may l e a d to problems i f used f o r i r r i g a t i o n (Ontario M i n i s t r y o f the Environment, 1978). Temperature can i n f l u e n c e the metabolic r a t e o f aquatic organisms and hence t o x i c i t y because m a t e r i a l s are more r a p i d l y i n c o r p o r a t e d w i t h e l e v a t e d temperatures. Changes i n temperature can cause m o r t a l i t y i f o f s u f f i c i e n t magnitude and d u r a t i o n . Even a change of one degree from ambient temperature may be s i g n i f i c a n t . f o r an organism i f the ambient l e v e l l i e s c l o s e to the l i m i t of the t o l e r a n c e range ( Great Lakes Water Q u a l i t y Board,. 1978.)... The o b j e c t i v e s f o r the B.C. f o r e s t products i n d u s t r y s t a t e t h a t no measurable change i n temperature should occur i n r e c e i v i n g waters as a r e s u l t of discharge. Sodium i s the most abundant of the a l k a l i metals and tends to remain i n d i s s o l v e d form once introduced through s o i l l e a c h i n g o r waste discharge. Sodium p o l l u t i o n can a f f e c t both domestic and a g r i c u l t u r a l use of water. Q u a l i t y c r i t e r i a f o r r e s t r i c t e d sodium d i e t s l i m i t concentrations t o 20 mg/l f o r extreme d i e t s (U.S. Environmental P r o t e c t i o n Agency, 1976) and 270 mg/l f o r moderate r e s t r i c t i o n s (U.S. Environmental P r o t e c t i o n Agency, 1973). - 72 -N o n f i l t e r a b l e residue o r suspended s o l i d s are high i n the F r a s e r Paver and c o n t r i b u t e t o i t s t u r b i d i t y and ' d i r t y ' appearance. Q u a l i t y c r i t e r i a range from 0.05 to 0.5 mg/l f o r i n d u s t r i a l use (U.S. E.P.A.,1973) to 25 mg/l f o r aquatic h a b i t a t (Department of the Environment, 1972). Receiving water o b j e c t i v e s f o r B.C. s t a t e that n e g l i g a b l e increase occur as a r e s u l t o f waste discharge ( P o l l u t i o n C o n t r o l Board, 1977). T o t a l i r o n and manganese may be introduced from n a t u r a l sources and are u s u a l l y low i n n a t u r a l waters because d i s s o l v e d oxygen o x i d i z e s these m a t e r i a l s to p r e c i p i t a t e form which then s e t t l e s . However, mean values may vary widely due to changing seasonal f l o w and d i l u t i o n e f f e c t s . A review of s i x t y - n i n e parameters i n the main stem over the years 1970-75 ( C l a r k , 1978) shows that B.C. d r i n k i n g water standards of 0.3 mg/l f o r i r o n and 0.05 mg/l f o r manganese (Province of B r i t i s h Columbia, 19&9) were f r e q u e n t l y exceeded. T o t a l copper may a f f e c t aquatic l i f e and c r i t e r i a f o r i t s p r o t e c t i o n range from 0.005 mg/l (Ontario M i n i s t r y of the Environment, 1978) to 0.03 mg/l (Department o f the Environment, 1972). The B r i t i s h Columbia standard f o r d r i n k i n g water i s 1.0 mg/l and the o b j e c t i v e i s 0.01 mg/l (Province o f B r i t i s h Columbia, 1969). Many parameters co u l d not be considered due to l a c k of data i n e i t h e r f e d e r a l o r p r o v i n c i a l c o l l e c t i o n s . Examples i n c l u d e f e c a l c o l i f o r m s , t r u e c o l o u r , d i s s o l v e d boron, magnesium and calcium, cyanide, the d i s s o l v e d form of copper, i r o n and manganese, and the t o t a l and d i s s o l v e d forms o f a r s e n i c , cadmium, l e a d , mercury, molybdenum, n i c k e l and z i n c . A l l of these parameters may.have an impact on some use. S i m i l a r i l y , parameters which w i l l g a i n i n importance as development increases should be examined now to e s t a b l i s h a data base p r i o r to f u t u r e l o a d increases. These would i n c l u d e s y n t h e t i c o r g a n i c s , such as p e s t i c i d e s , h e r b i c i d e s and i n d u s t r i a l process components; c o a l a s s o c i a t e d - 73 -parameters, such as strontium, sulphate, l i t h i u m and the abovementioned metals; and r a d i o n u c l i d e s i n c l u d i n g radium 226, strontium 90, and gross beta a c t i v i t y . Very l i t t l e data, w i t h the exception of spot checks.for mercury, z i n c , l e a d and a few p e s t i c i d e s , have been generated f o r these parameters. N u t r i e n t s were not perceived to be a problem i n the F r a s e r due to the l a r g e d i l u t i o n c a p a c i t y and were not considered. D i s s o l v e d oxygen l e v e l s are near s a t u r a t i o n i n a l l reaches of the r i v e r above Hope ( C l a r k , 1978) thereby e l i m i n a t i n g concern over DO/BOD/COD behavior. A l s o , these parameters do not f i t the assumptions of the d i l u t i o n model and would r e q u i r e a more complex model f o r i n v e s t i g a t i o n . Temporal Considerations The most extensive monitoring coverage of the F r a s e r main stem, i t s t r i b u t a r i e s , and waste inputs occurred during the 1974 to 1976 p e r i o d . : During 1975 and 1976 the Water Q u a l i t y Branch conducted twelve system c o l l e c t i o n s although not a l l s t a t i o n s l i s t e d i n the s i t e i n v e n t o r y of Table 2 were included. I n view of the magnitude of the data c o m p i l a t i o n task i t was decided to r e s t r i c t the a n a l y s i s t o three c o n d i t i o n s of flow, the extremes and an intermediate p o i n t w i t h i n one year. The months February,. A p r i l and J u l y of 1976 were s e l e c t e d . - 74 -Data R e t r i e v a l , Assumptions and Inventory I n p r e p a r a t i o n f o r data r e t r i e v a l a l l segment check s t a t i o n s , waste i n p u t s , t r i b u t a r y inputs and water l i c e n s e l o c a t i o n s were i d e n t i f i e d on a 1:500,000 s c a l e map. An i l l u s t r a t i o n of the r e s u l t f o r Segment 10 ( L y t t o n to Hope) i s shown i n F i g u r e 6. The order of i n f l u e n c e s shown was determined from approximate l a t i t u d e and longitude measures of PCB s i t e s and the l o t designations of water l i c e n s e s . The or d e r i n g o f other segments may he a s c e r t a i n e d from the d e t a i l e d data base. Water q u a l i t y data were obtained f o r a l l NAQUADAT s t a t i o n s i d e n t i f i e d i n the schematic. Data r e t r i e v a l from the EQUIS system was s t r u c t u r e d to r e v e a l monthly mean values f o r each year from 1972 to 1977, f o r a l l parameters a v a i l a b l e i n the data baseband f o r a l l r e c e i v i n g water s i t e s o r s i t e groupings and waste discharges. The comprehensiveness of the EQUIS r e t r i e v a l allowed system coverage f o r parameters not here considered to be examined and ensured t h a t backup data would be a v a i l a b l e to f i l l gaps i n f e d e r a l c o l l e c t i o n s o r p r o v i n c i a l c o l l e c t i o n s f o r the year 1976. R e c e i v i n g water f l o w data were c o l l e c t e d from f e d e r a l records (Water Survey o f Canada, 1977)• Relevant data were compiled i n three t a b l e s based on the i n f l u e n c e schematic as shown i n Tables 6, 7 and 8. These t a b l e s form the d e t a i l e d data base upon which the MATBAL program was run. A l a r g e number of data gaps appeared while compiling the data base. These gaps were f i l l e d , as data permitted, from adjacent months i n the same year, the proper month mean value f o r a l l years, other years and adjacent months, mean value f o r a l l years, permit s t i p u l a t i o n s , and t h e o r e t i c a l l i t e r a t u r e values f o r s i m i l a r waste types. The s e l e c t i o n r u l e s and.assumptions employed f o r each data type are now summarized. LYTTON (BC08MF0004),(08MF004) 0 CANYON AERIAL TRAM (300549) QUATSINO MINES (296l?9) THOMPSON RIVER (BC08MF0003),(08LF05l) VILLAGE OF LYTTON (PE 0091) NAHATLATCH RIVER (0300052),(08MF008) ANDERSON RIVER (BC08MF0006),(08MF001) CANYON AERIAL TRAM (PE 0392) TOWN OF HOPE (PE 0015) COQUIHALLA RIVER (BC08MF0008),(08MF003) 6 HOPE (BC08MF0001).(08MF005) FIGURE 6 - INFLUENCE SCHEMATIC OF SEGMENT 10, LYTTON TO HOPE FRASER RIVER MATERIALS BALANCE DATE OF DATA - FEBRUARY 1976 PARAMETER CR ITER IA SEGMENT 1 1 FRASER AT REC PASS 2 3WL SABAN - DOMESTIC 3 WL328339 tiCG RECSCCN 4 HOLMES R. IPCHI SEGMEM 2 5 FRASER AT MCERIOE 6 PE0402 MCBRIDE STP 7 CORE RIVER - hWY166R 8 MCKALE RIVER (PCB1 9 GCAT RIVER 10 PTARMGAN CREEK PC B l k BOWRCN RIVER SEGMENT 3 12 FRASER AT hANSARO 13 PE02655 NQRTHkGCO 14 MCGREGOR RIVER (PCS) 15 hlLLCW RIVER 16 N SALMON R AT HWY97 SEGMENT 4 17 FRASER AT SFELLEY 18 WL25S630 NOR1HWOCD 19 PE0112 NORTFWOGC 20 PEC157 NORTHWGCO 21 PEG190 I NT ERCON. 22 PEC228 INTERCQN. KPM 23 PE390C INTER £ PGPfiP 24 FEC076 PG PULPCPAPER 25 PE0152 PG PULPtPAPER 26 PE1763 BCG PUB WORKS 27 NECHAKO RIVER 28 PE1S01 FRASER-FT .GEO 29 PE0095 SCHGCL 01ST57 30 PE2017 RANCH hOTEL 31 PE0354 P.G. COLLEGE 32 PE0146 P.G. CITY 33 PE3863 P.G. AIRPORT 34 PE0319 FRECHETTE 35 TABOR CHEEK (PCB) 36 CALE CREEK SEGMENT 5 37 FRASER AT RED ROCK 38 NAVER CREEK (PCB) 39 EL ACK WATER 1WR) RIV. 40 CCTTCNwOOD R.ICCMBi 41 4kL OUESNE L - OCf 42 PE1152 CARIBOO PULP 43 EAKEP. CREEK (PCE) SEGMENT 6 44 FRASER AT CUESNEL 45 QUESNEL RIVER 46 WL264744 W ELDWOOD 47 PE1720/01 fcELOWOOO 48 PE1720/03 WELOWOCD 49 NARCCSLI CREEK (PCBI SEGMENT 7 50 FRASER AT MARGUERITE 51 HL25C007 FRECHETTE 52 HL300559 GIBRALTAR 53 HAWKS CREEK (PCBI 54 WILLIAMS LAKE RIVER 55 KELORUM CREEK (PCBI 56 CHIMNEY CREEK IPCBI SEGMENT 8 57 FRASER AT HIGHWAY 20 58 CHILCOTIN R I V E R I P C e ) 59 CHURN CREEK (PCB) 60 PE3389 IMASENKO MINE 61 BRIDGE RIVER 62 WAT.LIC.LILLOOET-DOM SEGMENT 9 63 FRASER AT LILLOCET 64 SETON RIVER 65 PECC92 LILLOOET STP 66 TEXAS CREEK 6T WL 323448N0R THERN ARC 68 STEIN RIVER AT MCUTH SEGMENT 10 69 FRASER AT LYTTON 70 THOMPSON RIVER 71 PE0091 LYTTON STP 72 fcAHATLATCH RIVER-PCB 73 ANDERSON RIVER 74 V.1300549 CANYON TRAM 75 PEC392 CANYON TRAM 76 ML296179 OUATSINC CU 77 PE0015 HOPE STP 78 COCUIHALLA RIVER SEGMENT 11 79 FRASER AT HOPE FLGW X1000M3/D 551.250 -0.007 -0.091 269.500 2989.000 0. 195 151.165 115.640 548.800 0.171 1607.200 7766.496 0.008 2768.500 1C31.45C 808.500 16120, -343, 0. 92. 0. 80, 197. 0. 98, 0. 5187. 0. 0. 0. 0. 16. 0. c . 26. 31. 996 000 030 96 7 90 7 528 065 073 205 113 496 22 7 077 020 295 368 182 008 21 5 115 26785.848 105.350 1180.900 5 16.950 -0.007 81.83 8 122 .745 PH (UNITS) 8.00 7.90 7.80 7.00 8.10 7.60 8. 10 8.10 8. 10 8.20 7.20 7.80 7.40 8. 10 7.80 6.80 7.22 8. 80 6.97 6.86 7.20 6. 77 7.30 7.40 ***** ***** 7.63 7.22 7.30 8.30 7.20 7.40 ***** 7.70 7.00 8.00 7.50 7.29 7.70 TEMPIC) 0. 50 1.00 0. 50 0.0 0. 0 1 .00 0.50 ****** 1.00 0.50 0. 50 0.0 0.0 0.50 1. 00 9. 00 22.20 9.00 24.00 25. 20 13.00 27.90 12. 00 0.50 * • * * » • ****** ****** 17.00 13. 00 ****** 9. 00 ****** ****** 0.50 0.0 0.0 0.0 27.90 0.0 SP CUND (UMHOS/CM) DISS NA (MG/L t 270.00 NF RESIDUE TOT FE (MG/L • (MG/L) 25.000 0.300 TOT MN (MG/L) 0.050 TOT CU (MG/L) 1.000 142. 0.80 1.2 0 .029 0.010 0.001 178. 2.40 15. 2 0.500 0.010 0.003 114. 1.70 4.4 0.400 0.060 0.001 426. 78 .00 17.0 0.820 0.040 0. 060 183. 1.10 3.6 0.033 0.010 0.001 175. 1. 35 1.0 0.0 0.0 0.001 196. 1.20 4.0 0.022 0.010 0.001 4. ****** 7.0 ****** **«*«* ****** 168. 1.20 2.0 0.430 0.060 0.001 204. 1.80 3.2 0.180 0.010 0.003 411. 78.00 37.0 0.820 0.040 0.060 250. 1.70 2.9 0.070 0.0 0.004 13 0. 2.30 3.7 0.300 0.050 0.003 162. 2.40 3.3 0.600 0.050 0.001 216. 2. 10 5.6 0.310 0.060 0.002 248. 78.00 23.5 0.820 0.040 0.060 2050. 294.00 103.0 0.840 ****** ****** 878. 76.00 1000.0 ****** ****** 0.100 2080. 261.00 40.6 O.840 ****** ****** 1390. 265.00 35.7 0.840 ****** ****** 145. 78.00 13.0 0.820 0^040 0.060 1780. 268.00 90. 7 0.840 ****** ****** 1180. 78.00 8.0 0.820 0.040 0.060 98. 2.00 1.0 0.058 0.010 0.001 ****** 78.00 60.0 6.580 0.150 0.300 ****** 78.00 100.0 0.820 0.040 *0.060 1170. 78.00 60.0 0.820 0.040 0.060 1020. 78.00 29.0 0.820 0. 040 0.060 748. 78.00 95.0 0.820 0.040 0.060 1180. 78.00 6.6 0.820 0. 040 0.060 988. 78.00 16.0 1.400 2.980 0.030 94. ****** 26. 0 1.800 ****** 0.007 ****** ****** ******** ****** ****** ****** 189. 5.90 9.0 0.070 0.020 0.002 90. ****** 8.0 0.900 0.030 0.005 215. 6.60 3.9 0.080 0.0 0.002 134. ****** 2.0 0.300 0.020 0.007 2030. 373.00 72.5 0.840 ****** ****** 214. ****** 18.0 0.300 0.050 0.004 32942.695 7.80 0. 0 165. 3.50 5855.496 7.90 0.50 140. I.10 -0.00 1 0.025 6.35 10.00 360. ****** 0.041 6.90 12. 50 589. ****** 24.500 8.20 0. 50 339. ****** 40424.996 -0.002 -13.610 3.920 109.270 2.450 1.715 43477.695 2646.000 66.150 0.136 1305.850 -0.005 54043.742 882 .000 1.000 68.355 -1.230 455.700 7.90 7.60 8.35 7.90 9.00 8.00 8.00 ***** 7.00 8.20 7.90 7.90 7.30 ***** 7.70 0.50 0. 50 1. 00 0.0 ****** 0.50 1.00 ****** ****** 2.00 0.0 4.00 17. 50 ****** 3.00 170. 566. 587. 809. 729. 163. 178. ****** ****** 304. 176. 119. 717. ****** 92. 5.80 37.0 23.0 19.0 182.0 ******** 62.0 ****** 7 # 0 37.50 ******** ****** 2 2 . 0 ****** ******** 4.10 62.0 ****** ****** ******** ****** 50.0 5.90 2.0 4.40 1.80 78.00 ****** 10.9 2.0 77.0 •*•••*** 1.90 ******** 0.160 0.130 ****** ****** 0. 100 0.100 0.0 5.550 0.170 ****** 0.160 0.260 ****** 0.300 0.017 0.150 0.130 0.820 ****** 0.180 0.020 0.020 ****** ****** 0.020 0.020 0.080 0.010 0. 0 ****** 0.010 0.0 ****** 0.050 0.010 0.010 0.010 0.040 ****** 0.010 0.001 0. 001 ****** ****** 0.002 0.006 0.004 0.031 0.010 ****** 0.003 0.008 ****** 0.050 0.001 0.001 0.001 0.050 ****** 0.001 60294.492 19967.496 0.544 1347.500 568.400 -0.091 7.80 7.80 7. 15 8.00 7.60 2.00 3.00 14.50 6.00 3.00 154. 113. 434. 96. 108. 4.00 3.50 78.00 ****** 1 .90 114.0 3.0 72.0 ******** 2.0 0.180 0.050 0.600 ****** 0.140 0.010 0. 010 0.040 ****** 0.010 0.001 0.001 0.050 ****** 0.003 0.02 5 -1 .630 7.60 20.00 213. 78.00 30.0 0.820 0.040 0. 060 7.16 7 1680.700 7.40 7.60 ****** 3.00 ****** 73. 105.00 1.20 200.0 * • « * • • * * 6.580 0.043 0. 150 0.010 0.300 0. 001 89424.938 7.80 2.00 130. 3.30 3.0 0.048 0.010 0.001 ***** NO CATA CR ESTIMATE AVAILABLE, ASSUME THE VALUE IS ZERO (7.0 FOR PH) FRASER RIVER MATERIALS BALANCE DATE OF DATA - APRIL 1976 FLOW X1000M3/D PH (UNITS) T E M P ( C » PARAMETER CRITERIA SEGMENT 1 1 FRASER AT RED PASS 2 3WL SABAN - DOMESTIC 3 WL328339 BCG PECSCON 4 HOLMES R. IPCBJ SEGMENT 2 5 FRASER AT PCBRIDE 6 PE0402 MCBRIDE STP 7 DORE RIVER - HWY 16BR 8 MCKALE RIVER IPCBI 9 GOAT RIVER 10 PTARMIGAN CREEK PCB 11 BCWRCN RIVER SEGMENT 3 12 FRASER AT HANSARD 13 PE02655 NORTHUOOD 14 MCGREGOR RIVER IPCBI 15 WILLCn RIVER 16 N SALMON R AT HWY97 SEGMENT 4 17 FRASER AT SHELLEY 18 WL259630 NCRTHWOOC 19 PE0112 NORTHWOOD 20 PE0157 NOR THtaflOD 21 PE0190 INTERCON. 22 PE0228 INTERCON. KPM 23 PE3900 INTER 6 PGPEP 24 PE0076 PG PULPCPAPER 25 PE0152 PG PULPtPAPER 26 PE1763 BCG PUS WORKS 27 NECHAKD RIVER 28 PE1901 F R A S E R - F T . G E O 29 PE0095 SCHOOL OIST57 30 PE2017 RANCH HOTEL 31 PE0354 P . G . COLLEGE 32 PE0146 P . G . CITY 33 P E 3 8 t 8 P . G . AIRPORT 34 PE0319 FRECHETTE 35 TABOR CREEK (PCB) 36 CALE CREEK SEGMENT 5 37 FRASER AT RED ROCK 38 NAVER CREEK (PCBI 39 BLACKWATER 1 MR I RIV . 40 COTTCNWOOO R.(COMfl) 41 4WL QUESNEL - OOM 42 PE1152 CAR1BG0 PULP 43 BAKER CREEK tPCBt SEGMENT 6 44 FRASER AT OUESNEl 45 OUESNEL RIVER 46 *L264744 WELOWOOD 47 PE1720/01 V.EL0W00D 48 PE1720/O3 fcFLDWOOD 49 NARCOSLI CREEK (PCBI SEGMENT 7 50 FRASER AT MARGUERITE 51 WL250007 FRECHETTE 52 HL3C0559 GIBRALTAR 53 HAWKS CREEK (PCB I 54 WILLIAMS LAKE RIVER 55 MELORUM CR EEK (PCB » 56 CHIMNEY CREEK (PCBI SEGMENT 8 57 FRASER AT HIGHWAY 20 58 CHILCOTIN RIVERIPCBI 59 CHURN CREEK (PCBI 60 PE3389 IWASENKO PINE 61 BRIDGE RIVER 62 fcAT.LIC.LILLCCET-DCM SEGMENT 9 63 FRASER AT LILLOOET 64 SETON RIVER 65 PEC092 L ILLOOET STP 66 TEXAS CREEK 67 WL323448N0RTHERN ARC 68 STEIN RIVER AT MCUTH SEGMENT 10 69 FRASER AT LYTTON 70 THOMPSON RIVER 71 PEC091 LYTTON STP 72 NAHATLATCH R I V E R - P C B 73 ANDERSON RIVER 74 WL30C549 CANYON TRAM 75 PE0392 CANYCN TRAM 76 WL296179 QUATSINO CU 77 PE0015 HOPE STP 78 COOUtHALLA RIVER SEGMENT 11 79 FRASER AT HCPE 7 3 5 . 0 0 0 7 . 8 0 4 . 0 0 - 0 . 0 0 7 - 0 . 0 9 I 441 . 0 0 0 7 . 9 0 6 . 0 0 5 4 6 3 . 4 9 6 8 . 0 0 5 . 0 0 0 . 195 8 . 40 5. 00 2 6 2 . 1 5 0 7 . 8 0 3 . 0 0 1 8 0 . 3 2 0 8 . GO 5 . 0 0 3 2 5 8 . 5 0 0 8 . 0 0 3 . 0 0 0 . 3 6 7 8 . 1 0 ****** 4 0 9 1 . 5 0 0 7 . 4 0 0 . 50 SP COND (UMHOS/CM) 144 . 1 8 2 . DISS NA (MG/L I 2 7 0 . 0 0 0. 90 2 . 0 0 NF RESIDUE TOT FE (MG/L I (MG/L I 2 5 . 0 0 0 0 . 7 4 0 . 2 0 . 3 0 0 0 . 0 3 4 0 . 5 0 0 TOT PN (MG/L I 0 . 0 5 0 0 . 0 1 0 0 . 0 1 0 1 3 7 1 9 . 9 9 6 0 . 0 2 5 6 9 5 7 . 9 9 6 3 1 3 6 . 0 0 0 7 1 2 9 . 4 9 6 7 . 9 0 7 . 2 0 8. 10 7 . 10 7 . 2 0 7 2 3 0 4 . 3 7 5 7 . 9 0 9 . 30 1 1 6 . 1 .30 188 .0 0 . 2 3 0 1 8 6 9 . 3 5 0 6 . 9 0 0 . 0 2 2 4 . ****** 2 0 . 0 0 . 9 0 0 5 1 4 4 . 9 9 6 8 . 0 0 4 . 8 0 2 0 9 . 5 . 7 0 2 9 . 5 2 . 3 0 0 3 9 6 9 . 0 0 0 7 . 0 0 1 .00 5 2 . I. 00 1 2 6 . 0 I . 1 0 0 - 0 . 0 0 7 7 9 . 2 1 9 7 . 6 2 2 7 . 80 2 0 3 0 . 3 7 3 . 0 0 1 1 2 . 0 0 . 840 1 5 0 1 . 8 5 0 8 . 1 0 1 .00 2 3 8 . ****** 1 8 . 0 0 . 3 0 0 1 1 4 5 8 4 . 0 0 0 7 . 6 0 0 . 5 0 1 1 8 . 2 . 00 1 3 4 9 9 . 4 9 6 7 . 80 3 . 0 0 1 5 3 . 1 .90 - 0 .00 1 0 . 0 3 0 6 . 35 10 . 00 3 6 0 . ****** 0 . 0 4 1 6 . 9 0 12 . 50 5 8 9 . ****** 8 4 . 7 7 0 8 . 2 0 0 . 50 3 3 9 . ****** 139 6 4 9 . 9 3 8 - 0 . 0 0 2 - 1 3 . 6 1 0 1 3 . 7 2 0 9 5 5 . 5 0 0 1 2 . 9 8 5 8 . 5 7 5 1 4 2 4 5 2 . 7 5 0 3381 . 0 0 0 6 9 3 . 3 5 0 0 . 1 3 6 2 8 6 6 . 5 0 0 - 0 . 0 0 5 7 . 7 0 8 . 20 8 . 6 0 7 . 7 0 9 . 0 0 7 . 7 0 7 . 70 * * * * * 7 . 0 0 8 . 2 0 2 . 5 0 4 . 00 1 0 . 0 0 0 . 50 * * * * * * 3 . 0 0 0 . 5 0 •••*•* * * * * * * 1 0 . 5 0 1 2 6 . 5 0 2 . 5 2 6 . 8 4 4 . 7 2 9 . 1 3 3 . 1 8 0 . * * * * * * * * * * * * 3 1 4 . 2 . 4 0 ****** 3 0 . 7 0 * * * * * * * * * * « « 2. 70 * * * * * * * * * * * * * * * * * * 6 . 3 0 1 5 4 6 8 5 . 6 2 5 7 . 7 0 5 . 0 0 1 5 0 . 3 . 40 3 1 3 6 . 0 0 0 7 . 5 0 6 . 0 0 9 7 . 1 .80 1 . 0 0 0 7 . 4 0 1 7 . 50 7 6 5 . 7 3 . 0 0 7 8 . 4 0 0 ***** ****** ****** ****** - 1 . 2 3 0 1 3 1 0 . 7 5 0 7 . 5 0 9 . 0 0 9 5 . I . 8 0 1 6 0 9 7 4 . 7 5 0 7 . 8 0 6 . 0 0 148. 3 . 4 0 2 8 6 6 4 . 9 9 6 7 . 70 7 . 00 1 2 6 . 3 . 8 0 0 . 5 4 4 7 . 15 14 . 50 4 3 4 . 7 8 . 00 2 6 7 0 . 5 0 0 8 . 0 0 6 . 00 9 6 . ****** 1 2 0 0 . 5 0 0 7 . 6 0 6 . 0 0 1 0 9 . i . ro - 0 . 0 9 1 0 . 0 2 5 7 . 6 0 2 0 . 00 2 1 3 . 7 8 . 0 0 - 1 . 6 3 0 7 . 1 6 7 7 . 4 0 ****** ****** 1 0 5 . 0 0 2 4 7 4 . 5 0 0 7 . 3 0 6 . 0 0 6 7 . I. 10 1 9 9 4 2 9 . 9 3 8 7 . 6 0 6 . 00 139 . 3 . 50 5 8 0 . 0 3 3 2 . 3 19 .0 1 8 2 . 0 * * * * * * * * 6 2 7 . 3 2 4 . 0 B. 5 2 .0 * * * * * * * * 6 2 3 . T 7 0 . 0 * * * * * * * * 5 0 . 0 1 0 . 0 9 1 2 . 8 2 . 0 7 0 . 0 * * * * * * * * ******** 4 . 0 0 0 2 . 0 5 0 * * * * * * * * * * * * 0 . 100 4 . 0 0 0 0 .0 0 . 2 0 C 0 . 1 0 0 * « * « * * 7 . 3 0 0 0 . 2 6 0 * * * * * * 0 . 3 0 0 0 . 0 7 0 5 . 0 0 0 0 . 1 0 0 0 . 8 2 0 * * * * * * 0 . 070 0 . 0 3 0 0 . 2 1 0 0 . 120 0 . 0 9 0 * * * * * * 0 . 0 5 Q 0. 260 0 . 170 * * * * * * * * * * * * 0 . 0 2 0 0. 400 0 . 0 3 0 0 . 0 2 0 0. 0 * * * * * * 0 . 6 8 0 0 . 0 * * * * * * 0. 050 0 . 0 0 . 4 8 0 0 . 0 0 . 0 4 0 * * * * * * 0. 010 TOT CU (MG/LI I . 0 0 0 0 . 0 0 . 0 0 3 1 7 6 . 1. 60 2 8 . 4 0 . 5 0 0 0 . 0 3 0 0 . 0 0 2 4 2 6 . 7 8 . 0 0 3 0 . 0 0 . 8 2 0 0 . 0 4 0 0 . 0 6 0 165 . 0 . 90 4 . 0 0 . 0 8 0 0 . 0 0 . 0 0 2 1 7 3 . 1 . 3 0 12 . 0 0 . 3 5 0 0 . 0 1 0 0 . 001 1 7 3 . 1. 00 2 0 . 0 0 . 0 7 0 0 . 0 0 . 0 0 1 148 . ****** 2 8 6 . 0 1 1 . 0 0 0 0 . 2 3 0 0 . 010 105 . 0 . 30 3 6 . 2 0 . 5 9 0 0 . 0 4 0 0 . 0 0 2 0 . 50 1 3 4 . 1 . 2 0 7 1 . 5 0 . 6 8 5 0 . 0 4 5 0 . 0 0 6 0 . 5 0 4 1 1 . 7 8 . 00 4 0 . 0 0 . 82 0 0 . 0 4 0 0 . 060 0 . 50 2 3 5 . 1 .80 1 2 . 0 0 . 0 0 . 0 0 . 0 1 .00 6 8 . 1. 20 76. 0 0 . 6 0 0 0 . 0 5 0 0 . 0 0 4 1 . 0 0 9 2 . 1 . 7 0 2 . 0 1 . 2 0 0 0 . 1 3 0 0 . 005 3 1 8 4 9 . 9 9 6 7 . 7 0 3 . 7 0 1 4 7 . 1 . 4 0 3 6 . 7 0 . 5 5 0 0. 020 0 .002 - 3 4 3 . 0 0 0 0 . 0 5 5 6 . 8 0 1 2 . 0 0 2 4 8 . 7 8 . 0 0 2 4 . 0 0 . 8 2 0 0 . 040 0 . 060 8 9 . 6 9 4 7 . 50 2 3 . 4 0 1 9 3 4 . 2 9 4 . 0 0 8 1 . 0 0 . 8 4 0 ****** ****** 0 . 9 0 7 7 . 6 0 1 9 . 0 0 2 2 8 . 33 . 60 1 0 2 . 0 ****** ****** 0 . 100 9 3 . 6 2 2 6 . 9 1 2 4 . 0 0 2 2 3 0 . 2 6 1 . 0 0 6 1 . 0 0 . 8 4 3 ****** ****** 2 0 4 . 2 6 6 6 . 8 0 2 5 . 9 0 1 4 1 0 . 2 6 5 . 00 4 2 . 8 0 . 8 4 0 ****** ****** 0 . 0 7 3 7 . 2 0 1 3 . 0 0 1 4 5 . 7 8 . 0 0 1 3 . 0 0 . 8 2 C 0 . 0 4 0 0 . 060 9 6 . 2 4 1 7 . 0 7 2 9 . 00 1820. 2 6 8 . 0 0 1 5 4 . 0 0 . 8 4 0 ****** ****** 0 . 1 1 3 7 . 8 0 1 2 . 0 0 1 1 4 0 . 7 8 . 0 0 16. 0 0. 820 0 . 040 0 . 06 0 3 0 1 3 4 . 9 9 6 7. 40 0. 50 9 1 . 2 . 3 0 1 2 9 . 7 1 . 3 0 0 0 . 1 7 0 0 . 0 0 4 0 . 2 2 7 ***** ****** ****** 7 8 . 0 0 6 0 . 0 6 . 5 8 0 0 . 150 0 . 3 0 0 0 . 0 7 7 ***** ****** ****** 7 8 . 0 0 100 . 0 0 . 8 2 0 0 . 0 4 0 0 . 0 6 0 0 . 0 2 0 7 . 6 3 •*••*• 1 1 7 0 . 7 8 . 0 0 6 0 . 0 0 . 8 2 0 0 . 0 4 0 0 . 0 6 0 1 .231 7 .22 1 7 . 0 0 8 5 0 . 7 8 . 0 0 4 9 . 0 0 . 8 2 0 0 . 0 4 0 0 . 0 6 0 1 5 . 5 1 6 7 . 5 0 13. 00 6 8 3 . 78. 00 2 5 8 . 0 0 . 8 2 0 0 . 0 4 0 0 . 0 6 0 0 . 1 6 7 8 . 3 0 ****** 1 1 8 0 . 7 8 . 0 0 3 6 . 2 0 . 8 2 0 C. 040 0. 060 0 . 0 1 0 7 . 2 0 14. 00 1 1 9 6 . 7 8 . 0 0 8 3 . 5 1 . 4 0 0 2 . 9 8 0 0 . 0 30 5 2 1 . 8 5 0 7 . 2 0 ****** 7 5 . ****** 2 7 . 0 1 . 6 0 C ****** 0 . 0 0 4 5 3 4 . 1 0 0 ***** ****** ****** ****** ******** ****** ****** ****** 0 . 0 0 2 0 . 0 0 2 0 . 010 0 . 0 0 7 * * * * * * 0. 0 0 4 0 . 0 2 0 0 . 0 2 0 * * * * * * * * * * * * 0 . 002 0. 03 0 0 . 0 0 7 0 . 0 0 7 0 . 0 0 4 * * * * * * 0 . 0 3 0 0. 008 * * * * * * 0 . 0 5 0 0 . 0 0 2 0 . 0 3 0 0 . 0 0 1 0 . 0 6 0 * * * * * * 0 . 0 0 1 6 9 6 . 0 4 . 800 0 . 4 2 0 0 . 0 3 0 6 . 3 0 . 1 2 0 0 . 0 1 0 0 . 0 3 1 7 2 . 0 0 . 6 0 0 0 . 0 4 0 0 . 0 5 0 ******** ****** ****** ****** 6 2 . 0 0 . 3 2 0 0 . 0 20 0 . 0 0 3 3 0 . 0 0 . 3 2 0 0 . 0 4 0 0 . 0 6 0 200 . 0 6 . 5 8 0 0 . 1 5 0 0 . 3 0 0 ******** 0 . 160 0 . 0 0 . 0 0 3 3 w Is-i 5 5 7 . 5 3 . 6 0 0 0 . 3 0 0 0 .020 * * * * * NO CATA OR ESTIMATE A V A I L A B L E . ASSUME THE VALUE IS ZERO ( 7 . 0 FOR PHI FRASER RIVER MATERIALS BALANCE DATE OF DATA - JULY 1976 FLOW PH TEMPIC X1000M3/D IUNITSI PARAMETER CRITERIA SEGMENT 1 I FRASER AT RED PASS 14552.996 7.90 10.00 2 3WL SABAN - DOMESTIC -0.007 3 WL328339 BCG RECECON -0.091 4 HOLMES R. tPCBI 4507.996 7.80 10.00 SEGMENT 2 5 FRASER AT fCBRIOE 57084.992 8.00 10.00 6 PE04C2 MCBRIDE STP 0.195 10. 50 10.00 7 OORE RIVER - HWY 16BR 4042.500 7.80 0.0 8 MCKALE RIVER (PCBI 2572.500 7.60 11.00 9 GOAT RIVER 3405.500 8. 10 0.0 10 PTARMIGAN CREEK PCB 1.690 8.03 ****** 11 BOWRON RIVER 12764.496 7.90 10. 00 SEGMENT 3 12 FRASER AT HANSARD 115639.938 8.00 10. 00 13 PE02655 NORTHWOOD 0.011 7.50 10.00 14 MCGREGOR RIVER IPC8I 49979.996 7.80 12. 00 15 WILLOW RIVER 5316.496 7.50 10.00 16 N SALMON R AT HWY97 1996.750 7.90 10.00 17 3WL RICE - IRRIG. -31.640 ' CON 0 DISS NA NF RESIDUE TOT FE TOT PN TOT CU IOS/CMI (MG/L1 ( «G/ L 1 (MG/L 1 ( « r , / L I (MG /L1 — 270. 00 25.000 0.300 0.050 1 .000 117. 0. 60 I. 1 0.041 0.0 0 .005 101. 0.70 16.0 0. 800 0.020 0. 002 105. 0. 50 67.2 0.430 0.025 0. 004 380. 78 .00 133.0 0.820 0.040 0.060 80. 0.40 111.8 0.1 90 0.0 o.oo j 87. 0.50 5.0 0.700 0.020 0. 001 125. 0. 50 6.0 0.1 05 0.0 0.002 172. ****** 25.0 1 .3 50 0. 040 0.004 U l . 0.60 30.5 0.310 0.015 0.004 112. 0.60 65.7 0.515 O.030 0.004 401. 78. 00 83. 0 0.82 0 O.040 0.060 135. 0.40 50.0 2.000 0.020 0.003 55. 0.70 12. 0 0.260 0.015 0.004 123. 1 .80 15.0 0 .395 0.030 0. 005 SEGMENT 4 18 FRASER AT SHELLEY 19 WL259630 NORTHWCOO 20 PE0112 NORTHWOOD 21 PE0157 NORTHWOOD 22 PE0190 INTERCON. 23 PE0228 INTERCCN. KPM 24 PE39C0 INTER E PGPEP 25 PE0076 PG PULPEPAPER 26 PEC152 PG PULPtPAPER 27 PE1763 BCG PUB WORKS 28 NECHAKO RI VER 29 PECC95 SCHOOL DIST 57 30 PE2017 RANCH HOTEL 31 PE0354 P.G. COLLEGE 32 PE0146 P.G. CITY 33 PE3868 P.G. AIRPORT 34 PE0319 FRECHETTE 35 TABOR CREEK (PCB) 36 CAL E CREEK SEGMENT 5 37 FRASER AT RED ROCK 38 WL316890 BC LANO COM 39 NAVER CREEK (PCBI 40_ BLACKWATER (WRI RIV. 41 COTTONWOOD R.ICOB) 42 AWL CUESNEL - DCM 43 PE11 52 CARISOO PULP 44 6AK ER CR EEK ( PCB » SEGMENT 6 45 FRASER AT QUESNEL 46 QUESNEL RIVER 47 WL264744 WELDWOOD 48 PE1720/01 kELCWCOD 49 PE 1720/03 fcELOwOOD 50 ^ARCOSLl CREEK (PCBI SEGMENT 7 51 FRASER AT MARGUERITE 52 3WL IRR. BELOW MARG. 53 WL25C007 FRECHETTE 54 WL30C559 GIBRALTAR 55 HAWKS CREEK (PCBI 56 WILLIAMS LAKE RIVER 57 MELDRUM CREEK ( PCBI 58 CHIMNEY CREEK (PCBI 59 WL257340 THOPSCN CO SEGMENT 8 60 FRASER AT HIGHWAY 20 61 WL33C316 DEER PARK 62 CHILCCTIN RIVERIPCBI 63 CHURN CREEK (PCBI 64 PE3389 IWASENKO MINE 65 BFIDGE RIVER 66 WAT.LIC.LILLOOET-IRR 67 WAT.LIC.LILLOOET-DOM 1844 84.938 7.80 13.30 -343.000 0.077 6.40 17.00 103.443 7.32 64.80 0.907 7.80 18.00 129.631 6.92 25. 00 234.383 6.85 33.40 0.073 7.20 13. 00 117.846 6.88 34.50 0. 113 7. 70 12. 00 48999 .996 7.60 10.00 0.07 7 ***** ****** 0.020 7.63 ****** 1.342 7.20 17.00 14.272 7.20 13. 00 0.151 8.10 ****** 0.014 7.30 20. 00 50.470 7.90 ****** 67.375 ***** ****** 241592.000 8. 00 13. 00 -0.780 448.350 6.40 10.60 7129.496 7.50 19.00 2940.000 7.40 10.00 -0 .007 76.600 7.50 32.00 610.050 7.70 13. 00 277957.375 7.80 10. 00 62474.992 7.90 10.00 -0.001 0.021 7.30 17. 00 0.041 6.90 12 .50 212.415 8.40 15.00 350349.938 7.80 10. 00 -6.290 -0.002 -13 .610 45.325 8.25 15.00 347.900 8.90 19. 00 4.900 8.40 13.00 18.130 9.00 ****** -0.330 357254.063 8.00 10.00 -12.220 25479 .996 7. 30 14. 00 379.750 ***** ****** 0.136 7.00 ****** 24499.996 a. io 10.00 - 13.150 -0.005 120. 0.44 73.7 2 06. 78 .00 14.0 1B80. 294.00 77. 9 687. 119.00 17 .0 1930. 261.00 5 3. 5 1370. 265.00 102.0 145. 78.00 13.0 1650. 268.00 48.0 1100. 78 .00 5.0 R4. 2. 00 15.5 ****** 73.00 100 .0 1 170. 78. 00 60. 0 760. 78.00 55.0 611. 78.00 19.0 847 . 78 .00 67.2 1370. 73.00 305.0 159. ****** 17.0 ****** ****** ******** 116. 1.10 72.7 70. ****** 8.0 141. 4.90 11.0 49. 0.80 4.0 1790 . 392.00 77.5 123. ****** 40.0 10/. 1.30 113.0 118. I. 00 156.8 310. **«**« 35.0 589. ****** 182.0 248. ****** 16.1 I l l . 1.40 130.0 444. ****** 56.0 537. 32.3 0 5.3 839. ****** 17.0 763. ****** ******** 112. 1.40 180. 3 67. ****** 40.0 ****** ****** ******** ****** ****** 50.0 157. 2.20 9.0 2.860 0.066 0.003 0.820 0.040 0.050 0.84C * * * * * * ****** * * * * * * * * * * * * 0. 100 0.84 0 * * * * * * * * * * * * 0.840 * * * * * * * * * * * * 0.820 0.040 0.060 0. 840 * * * * * * * * * * * * 0.820 0.040 0.060 0.1 80 0.010 0.005 0.B20 0. 040 0.060 0. 820 0.040 0 .060 0.820 , 0.040 0. 060 0 .820 0.040 0.060 0. 820 0. 040 o. 060 1 .400 2 .980 0.030 1.200 * * * * * * 0.004 ****** ****** 3 .470 0.057 0.003 0.300 0. 040 0. 006 0.200 0.040 0.0 0.380 0.01O 0. 007 0. 840 ***«»* * * * * * * 0.300 0.050 0.012 0.595 0.050 0.007 0.92 0 0.065 0.009 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 0.100 0.015 0.009 0.775 0.060 0.007 0.1 00 0.060 0. 001 0.167 0,0 0.010 0.100 0.0 0. 003 * * * * * * * * * * * * * * * * * * 0.790 0.070 0.008 0.100 0.020 0.010 * * * * * * • * * * * * * * * * * * 0.300 0.050 0.050 0.295 0.0 0.004 SEGMENT 9 68 FRASER AT L ILL COET 69 SE TOW RI VER 70 PE0092 LILLOOET STP 71 TEXAS CREEK 72 WL323448N0RTHERN ARC 73 STEIN RIVER AT MOUTH SEGMENT 10 74 FRASER AT LYTTON 75 THOMPSON RIVER 76 PEC091 LYTTGN STP 77 NAHAUATCH RIVER-PCB 78 ANDERSON RIVER 79 WL30C549 CANVON TRAM 80 PE0392 CANYON TRAM 81 WL296 179 0LATS1N0 CU 82 PE0015 HOPE STP 83 COOUIHALLA RIVER SEGMENT 11 84 FRASER AT HOPE 426466.563 109 7.60 0 1.000 683.550 -1.230 8.00 7.80 7.20 ***** 10. 00 10.00 17. 50 ****** 112. 75. 727. ****** 1. 60 0.90 78.00 ****** 163. 3 9.0 76.0 ******** 0.625 0.370 0.820 ****** 0.055 -0.020 0.040 ****** 0.006 0. 005 0.060 ****** 4287.496 7.80 10.00 38. 0.80 **•*••*• 0. 100 0. 0 0.0 438143.250 197469. 93 8 0.544 10338.996 6 10.050 -0.09 1 8.00 7. 70 7.00 7.40 7.50 10.00 10.00 14. 50 12 .80 10.00 110. 77. 428. 26. 39. 1.50 1.50 78. 00 0.30 0.30 154.8 10.7 98.0 6.0 U l .0 0.625 0.170 0.600 0.200 0.245 0.055 0. 0 0.040 0.0 0.0 0.007 0.004 0.050 0.0 0.005 0.025 -1 .630 7. 50 20. 00 315. 78.00 440.0 0.820 0.040 0.060 7. 167 5120.496 7.40 7.50 ****** 10.00 ****** 40. 105.00 0. 70 200 .0 ******** 6.580 0.075 0. 150 0.0 0.300 o.oo^ 663949.938 7.90 10.00 96. 1. 60 103.3 0.635 0.070 0.007 ***** NO DATA OR ESTIMATE AVAILABLE, ASSUME THE VALUE IS ZERO (7.0 FOR PHI - 79 -I n each data type the order describes the order of preference: 1. Licensed Withdrawals - withdrawal flows taken from water l i c e n s e s 2. Receiving Water Flows (a) proper month and year mean value (b) proper year but mean value of adjacent months (c) c a l c u l a t e d from the percentage change e x h i b i t e d f o r the mean monthly values f o r a l l years and data a v a i l a b l e i n 1976 (d) mean monthly values f o r a l l years (e) mean monthly values from o t h e r years ( f ) c a l c u l a t e d from the percentage change e x h i b i t e d a t the downstream F r a s e r check s t a t i o n and data a v a i l a b l e NOTE: A l l F r a s e r check s t a t i o n f l o w values were e i t h e r taken from the proper months f o r 1976 o r c a l c u l a t e d from these values by a d d i t i o n o r s u b t r a c t i o n of t r i b u t a r i e s . 1 This was necessary t o ensure c o n t i n u i t y from segment to segment. Other flows need only d e s c r i b e the approximate magnitude. 3. Receiving Water Q u a l i t y (a) WQB data f o r the proper month and year (b) PCB mean f o r the proper month and year (c) proper year but mean value of adjacent months (d) proper month mean value f o r a l l years (e) proper year but adjacent month ( f ) mean of adjacent months i n other years (g) mean o f a l l months and a l l years NOTE: ( l ) WQB e x t r a c t a b l e metals values were used as t o t a l metals. The two analyses are s i m i l a r i n t h a t they show up a l l but r e f r a c t o r y m a t e r i a l s . (2) I f no t o t a l metal values were a v a i l a b l e d i s s o l v e d metals values were used i n t h e i r stead as a minimum value. (3) Values l e s s than the minimum d e t e c t a b l e c o n c e n t r a t i o n were assumed t o be zero. k. E f f l u e n t Flow and Q u a l i t y (a) proper month and year mean value (b) proper year and adjacent month mean value (c) annual mean value f o r 1976 ( i f l i t t l e v a r i a t i o n i s apparent) (d) mean value of the proper month f o r other years (e) other months and other years ( f ) permit data ( p r i m a r i l y f o r flow) (g) t h e o r e t i c a l values NOTE: ( l ) T h e o r e t i c a l values f o r municipal type discharge were c a l c u l a t e d from t o t a l metal analyses f o r 20 sewage p l a n t s i n Ontario o f v a r y i n g types and s i z e s (Environment Canada, 1978)-.. (2) Metals i n k r a f t m i l l wastes are taken from Rogers (1973)-- 80 -Due to the l a r g e number of data gaps and assumptions made to f i l l them, no p a r t i c u l a r value of Tables 6, 7 and 8 should be regarded as accurate without v e r i f i c a t i o n . Even i n those instances where data were a v a i l a b l e f o r the proper year and month i t i s not c e r t a i n t h a t the r e s u l t of a few grab samples adequately describes the mean monthly c h a r a c t e r of the water. However, through use of the s e l e c t i o n r u l e s and a c o n s i s t e n t approach to data c o m p i l a t i o n , the values d e r i v e d should p o r t r a y the c h a r a c t e r of the water system i n a r e l a t i v e sense and be s u f f i c i e n t f o r i l l u s t r a t i o n of the a n a l y s i s approach. Summary The purpose o f t h i s s e c t i o n was to d e t a i l the procedure used to prepare a data base ready f o r a n a l y s i s through the MATBAL program. The a c t i v i t i e s performed f o l l o w from the conceptual approach developed i n Chapter 2 and i n c l u d e d the f o l l o w i n g : 1. A l l accountable main stem inputs and outputs were i n v e n t o r i e d by type; 2. The r i v e r was segmented based on p o t e n t i a l impact s i t e s and e x i s t i n g monitoring s t a t i o n l o c a t i o n s ; 3. Chemical parameters were chosen f o r d e t a i l e d examination; 4. Times were chosen to run the m a t e r i a l s balance; 5. Water q u a n t i t y and q u a l i t y data were c o l l e c t e d f o r the above s i t e s , parameters and times. - 81 -4.. Model Outputs and Observations The MATBAL program operates on one data month at a time and performs c a l c u l a t i o n s on two l e v e l s , s i t e s p e c i f i c and segment.. S i t e s p e c i f i c information i s summarized at the segment l e v e l and segment information i s summarized at the end of the system. There are thus three output levels;, s i t e s p e c i f i c , segment and system. S i t e S p e c i f i c S i t e s p e c i f i c output i s generated at each input or withdrawal point. At an input point parameter loads are added to the upstream loads determined e i t h e r through segment i n i t i a l i z a t i o n or previous input load c a l c u l a t i o n s . The r e s u l t ant loads are then used to c a l c u l a t e downstream concentrations through d i l u t i o n . An example of the t h e o r e t i c a l influence of three sequential inputs to Segment 4 of the Fraser f o r February 1976 i s given i n Table 9- The upstream values shown i n Table 9 are the r e s u l t of s e r i a l d i l u t i o n of the various influences between the segment i n i t i a l i z a t i o n point, Fraser at Shelley, and the appropriate input. Parameters are divided between those which may only be represented as a concentration, such as pH, temperature and s p e c i f i c conductance, and those which may be expressed as both concentraion and load. The percentage change i n main stem concentrations and loads i s c a l c u l a t e d f o r a l l parameters except pH because t h i s parameter i s a logarithmic measure. The downstream t h e o r e t i c a l a v a i l a b l e a s s i m i l a t i v e capacity i s c a l c u l a t e d from the d i f f e r e n c e between the c a l c u l a t e d downstream concentration and c r i t e r i a f o r b e n e f i c i a l use as stated at the top of Table 6. The a v a i l a b l e capacity may thus be c a l c u l a t e d f o r any input c r i t e r i a set. - 82 TABLE 9 - Example of S i t e S p e c i f i c Output Generated f o r Three Sequential Inputs to Segment 4 During February 19?6. * * * * * * * INFLUENCE OF PE0152 PG PULP6PAPER * * * * * * * UPSTREAM VALUE INPUT VALUE DOWNSTREAM VALUE (CALC) PERCENT CHANGE FLOW (X1000M3/DAYI 16150. PH (UN ITS! 7 . 7 TEMPERATURE (C » 1 .5 SP CONDUCTANCE (UfHOS/CMI 2 5 0 . 98 .205 6 . 8 2 7 . 9 1780. 16248 . 7 . 7 1.7 259 . 0 .61 1 0 . 4 0 3 . 7 0 UPSTREAM VALUE INPUT VALUE DOWNSTREAM VALUE (CALC) PERCENT CHANGE AVAILABLE CA P AC I T Y* MG/L TONSIMI/O MG/L TONS(M) /0 MG/L TCNS(M) /D CQNC LOAD TONSIMI /D DISSOLVED SODIUM SUSPENDED SOLI DS TOTAL IRCN TOTAL MANGANESE TOTAL COPPER 8 .28 6 .76 0 .322 0 .059 0 . 0 0 2 133 .8 109.1 5 .202 0 .947 0 .032 2 6 8 . 0 0 9 0 . 7 0 0 . 8 4 0 0 . 0 0 . 0 2 6 . 3 1 9 8 . 9 0 7 0 . 082 0 . 0 0 . 0 9 . 8 5 7 .27 0 . 325 0 .058 0 .002 160. 1 118 . I 5. 2 85 0 .947 0.032 18. 95 7 .51 0. 97 - 0 . 6 0 - 0 . 6 0 19 .67 8 .16 1.59 - 0 . 0 0 - 0 . 0 0 4226 .793 288 .141 -0 .411 - 0 . 1 3 4 16 .216 • BASED ON INPUT CRITERIA * * * * * * * INFLUENCE OF PE1763 BCG PUB WORKS * * * * * * * UPSTREAM VALUE FLOW (XIOO0M3/CAY) 16248 . PH (UNITS) 7 . 7 TEMPERATURE (C) 1 .7 SP CONDUCTANCE (UXHCS/CMl 2 5 9 . INPUT VALUE 0. 113 7 . 3 12. 0 I 180 . OOWNSTREAM VALUE ICALC) 16249. 7 .7 1.7 259. PERCENT CHANGE 0.00 0.00 0. 00 DISSOLVED SOOIUM SUSPENDED SOLIDS TOTAL IRCN TOTAL MANGANESE TOTAL COPPER UPSTREAM VALUE MG/L TONSt M l / D 9 .85 7 .27 0 .325 0 .058 0 . 0 0 2 160.1 11B. 1 5 .285 0 .947 0 . 0 3 2 INPUT VALUE DOWNSTREAM VALUE ICALC) MG/L TONS(M) /D MG/L TONSIMI/D 7 8 . 0 0 8 .00 0 . 8 2 0 0 .040 0 . 0 6 0 0 .009 0.001 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 9 . 8 5 7 .27 0 . 325 0 .058 0 . 0 0 2 160. I 118.1 5 .285 0 .947 0. 032 PERCENT CHANGE AVAILABLE CAPACITY* CONC LOAD TONS(Ml /O 0 . 0 0 0 .01 4226 .813 0 . 00 0 .00 288 .143 0 . 0 0 0 .00 - 0 . 4 1 1 - 0 . 0 0 0 . 0 0 - 0 . 1 3 4 0. 02 0.02 16 .216 * BASED ON INPUT CRITERIA * * * * * * * INFLUENCE OF NECHAKO RIVER FLOW (X1000M3/CAYI PH IUNITS) TEMPERATURE ICI SP CONDUCTANCE <UMHCS/CMI UPSTREAM VALUE 16248 . 7 . 7 1 .7 2 5 9 . INPUT VALUE 9187 . 496 7 .4 0 . 5 9 8 . DOWNSTREAM VALUE (CALCI 25435. 7 .6 1.3 2 0 1 . PERCENT CHANGE 5 6 . 55 - 2 5 . 4 5 - 2 2 . 4 8 UPSTREAM VALUE INPUT VALUE DOWNSTREAM VALUE (CALC) PERCENT CHANGE AVAILABLE C A P A C I T Y * MG/L TONSIMI /O MG/L TONSIMt/D MG/L TONSIMI/O C'JNC LOAD TONS(M)/D DISSOLVED SOOIUM 9 . 8 5 160.1 2 . 0 0 18 .375 7 .02 178 .5 - 2 8 . 7 9 11.48 6689 .059 SUSPENDED SOLIDS 7 .27 118.1 1.00 9. 187 5 .00 127.2 - 3 1 . 1 5 7 .78 508 .644 TOTAL IRCN 0 .325 5 .285 0 .058 0 . 5 3 3 0 .229 5 .818 - 2 9 . 6 8 10 .08 1.813 TOTAL MANGANESE 0 .058 0 .947 0 .010 0 . 092 0.041 1.039 - 2 9 . 9 2 9 . 7 0 0 .233 TOTAL COPPER 0 .002 0 . 0 3 2 0 .001 0 . 0 0 9 0 . 0 0 2 0. 041 - 17 .58 29.02 25 .395 * BASED ON INPUT CRITERIA - 83 -At each withdrawal point the t h e o r e t i c a l concentration of the withdrawal water i s pr i n t e d based on upstream c a l c u l a t i o n s . The volume of the withdrawal i s used to reduce downstream material loads. I t should be noted that the ca l c u l a t e d downstream concentrations assume input materials to be instantaneously and p e r f e c t l y dispersed. In r e a l i t y , a large distance may be required before complete mixing occurs-however, the c a l c u l a t e d values provide a basis f o r estimation. This i s p a r t i c u l a r i l y true f o r waste e f f l u e n t inputs where material concentrations are higher than ambient. In t h i s case the c a l c u l a t e d values represent a very conservative estimate of downstream e f f e c t . I t should also be noted that the c a l c u l a t e d values do not include the e f f e c t s of surface runoff, groundwater inflow or in-stream material transformations which may have occurred upstream. These e f f e c t s w i l l be considered l a t e r . Segment Summary Output At the end of each segment a l l influences and t h e i r e f f e c t on downstream concentration are t a l l i e d as shown i n Table 10 f o r Segment 4 f o r February 1976. This summary allows s i g n i f i c a n t influence induced change points to be i d e n t i f i e d and provides a quick check on how close the predicted values are - to.,measured end values,as well as an i n d i c a t i o n of the o v e r a l l e f f e c t of unaccounted influences. For example, f o r the parameter s p e c i f i c conductance i t i s apparent that the pulp m i l l e f f l u e n t s above Prince George exert a degrading influence r e s u l t i n g i n a s h i f t from 216 to 259 umhos/cm however, the d i l u t i o n e f f e c t of the Nechako River, as d e t a i l e d i n Table 9 f o r the same period, more than o f f s e t s t h i s e f f e c t leading to a value of 201 umhos/cm. The diff e r e n c e between the observed and the ca l c u l a t e d value i s negative TABLE 1 0 - Example of Segment Level Concentration Summary Output SEGMENT 4 - CONCENTRAT ION SUMMARY FEBRUARY 1976 FLOW PH TEMP SP COND DISS NA NF RESIDUE TOT FE TOT MN TOT CU X1000N3/D ( U N I T S ! (C) (UMH0S/CM1 MG/L MG/L MG/L MG/L MG/L IN IT IAL VALUE FRASER AT SHELLEY 16120.996 7.8 1.0 216 . 2 . 10 5 .6 0 . 3 1 0 0 .060 0.002 INFLUENCE INPUT VALUES 1 WL25S630 NORTHt.000 - 3 4 3 . 0 0 0 2 PEC 112 NORIHkOOC 0 .030 6. 8 9 . 0 248 . 7 8 . 0 0 2 3 . 5 0 .820 0 .040 0 .060 3 PEC157 NOR IH WOOD 92.96 7 7.2 22 .2 2050. 2 9 4 . 0 0 1 0 3 . 0 0 .840 0 . 0 0 .0 4 PEC190 INTERCCN. O.907 a.a 9 .0 878. 7 6 . 0 0 1000.0 0. 0 0 .0 0 .100 5 PEC228 INTERCON. KPM 80 .528 7.0 2 4 . 0 2080. 2 6 1 . 0 0 4 0 . 6 0 .840 0 . 0 0 . 0 6 PE3900 INTER £ PGPtP 197.065 6 .9 25 .2 1390. 2 6 5 . 0 0 3 5 . 7 0 .840 0 . 0 0 . 0 7 FE0076 PG PULPtPAPER 0 .073 7.2 13 .0 145. 7 8 . 0 0 1 3 . 0 0. 82 0 0 .040 0.060 8 PE0152 PG PULPSPAPER 9 8 . 2 0 5 6 .8 2 7 . 9 1780. 2 6 8 . 0 0 9 0 . 7 0.840 0 . 0 0.0 9 PE1763 BCG PLB hCRKS 0 .113 7.3 12 .0 1180. 7 8 . 0 0 8 . 0 0 . 8 2 0 0 . 0 4 0 0 .060 10 NECHAKO RIVER 9187.496 7.4 0 .5 9 8 . 2 . 00 1.0 0 .058 0 .010 0.001 11 PE1901 F R A S E R - F T . G E O 0 .227 7 .0 0 . 0 0 . 78 .00 6 0 . 0 6 .580 0 . 1 5 0 0 . 3 0 0 12 PECC95 SCHOOL DIST57 0 .077 7 .0 0 .0 0 . 73 .00 1 0 0 . 0 0 . 8 2 0 0 . 0 4 0 0 .060 13 PE2017 RANCH HOTEL 0 .020 7.6 0 . 0 1170. 7 8 . 0 0 6 0 . 0 0 .820 0 .040 0 .060 14 PE0354 P . G . CCLLEGE 0 .295 7 .2 17 .0 1020. 78 .CO 2 9 . 0 0 . 8 2 0 0 .040 0 .060 IS PE0146 P . G . CITY 16 .368 7 .3 13 .0 7 4 8 . 7 8 . 0 0 9 5 . 0 0 . 8 2 0 0 .040 0 . 0 6 0 16 PE3868 P . G . AIRFCRT 0 .182 8.3 0 .0 1180. 78 .00 6 . 6 0. 820 0 .040 0.060 17 PE0319 FRECHETTE 0 .008 7.2 9 . 0 9 8 8 . 7 8 . 0 0 1 6 . 0 1.400 2 . 9 8 0 0.030 18 TABOR CREEK (PCB» - . 26 .215 7.4 0 . 0 94 . 0 . 0 2 6 . 0 1 .800 0 .0 0.007 19 CALE CREEK 31 .115 7 .0 0 .0 0 . 0 . 0 0 . 0 . 0.0 0 .0 0.0 PREDICTED CCWNSTREAM VALUES 1 25963 0 NCRlHbCCO 1 5 7 J 7 . 9 9 6 7.8 1.0 2 1 6 . 2 . 10 5 . 6 0.310 0 . 0 6 0 0.002 2 PEC112 NORTHkOOC 15778.023 7 .8 1 .0 2 1 6 . 2.10 5 . 6 0 . 3 1 0 0 .060 0.002 3 PE015J NORTHWOOO 15870.988 7.8 1.1 227 . 3.81 6.2 0.313 0. 060 0 . 0 0 2 4 PEO1S0 INTERCON. 15871.895 7.8 1. 1 2 2 7 . 3.81 6 . 2 0 .313 0 .060 0 . 0 0 2 5 PE0228 INTERCCN. KFH 15952.422 7 .8 1.2 236 . 5 .11 6 . 4 0.316 0 .059 0. 002 6 PE3SC0 INTER £ PGP£P 16149.484 7 .7 1.5 2 5 0 . 8 .28 6 . 8 0 . 322 0 . 059 0.002 7 PE0076 PG PULPCPAPER 16149.555 7 .7 1.5 250 . 8 . 2 8 6 . 8 0.322 0 .059 0 .002 8 PE0152 PG PULP£ PA PER 16247.758 7 .7 1.7 2 5 9 . 9 . 8 5 7 .3 0 . 3 2 5 0 .058 0.002 9 PE1763 BCG PUB HGRKS 16247.867 7 .7 1.7 2 5 9 . 9 . 8 5 7 . 3 0 . 325 0. 05 8 0.002 10 tfECHAKO RIVER 25435.363 7.6 1.3 2 0 1 . 7 .02 5 .0 0.229 0 .041 0.00 2 11 PE1901 F R A S E R - F T . G E O 25435.590 7 .6 1.3 2 0 1 . 7 .02 5 .0 0 .229 0 .041 0 . 0 0 2 12 PE0095 SCHCCL 0 IST57 25435.664 7 .6 1.3 2 0 1 . 7 .02 5 .0 0 . 2 2 9 0.041 0 .002 13 PE201? RANCH HOTEL 25435.684 7 .6 1.3 2 0 1 . 7 .02 5 .0 0 .229 0 .041 0 . 0 0 2 14 PE03?4 P . G . COLLEGE 25435.977 7 .6 1.3 2 0 1 . 7 .02 5 .0 0 .229 0 .041 0 . 0 0 2 15 PE0146 P . G . CITY 25452.344 7 .6 1.3 202 . 7 .06 5.1 0 .229 0 .041 0.002 16 PE3868 P . G . AIRPORT 25452 .523 7.6 1. 3 2 0 2 . 7 .07 5 . 1 0 .229 0 .041 0 . 0 0 2 17 PE0319 FRECHETTE 25452.531 7.6 1.3 2 0 2 . 7 . 0 7 5.1 0 .229 0 .041 - 0 . 0 0 2 18 TABOR CREEK (PCBI 25478.746 7 .6 1.3 2 0 1 . 7 . 0 6 5.1 0 .231 0 .041 0 .002 19 CALE CREEK 25509 .859 7 .6 1.3 2 0 1 . 7 .05 5.1 0.231 0 .041 0 .002 OBSERVED END VALUE FRASER AT REC RCCK 26785.848 7 .7 0.5- 1 8 9 . 5 .90 9 . 0 0. 070 0 .020 0 .002 DIFFERENCE ( O B S - C A L C I * 1275.988 0 . 1 - 0 . 8 - 1 2 . - 1 . 15 3 .9 - 0 . 1 6 1 - 0 . 0 2 1 0.000 * A NEGATIVE VALUE INDICATES DEPOSITION OR LCSS £ A POSITIVE INDICATES UNACCOUNTED INPUT - 85 -and almost as great as the change induced by accounted inputs alone. This i n d i c a t e s that unaccounted d i l u t i o n has as great an influence on the water q u a l i t y of t h i s segment as do accounted inputs f o r t h i s conservative parameter. S i m i l a r trends are apparent f o r temperature, dissol v e d sodium, and t o t a l i r o n and manganese,however, f o r parameters which are not conservative i t i s not c l e a r whether concentration reduction i s due to d i l u t i o n or deposition. N o n - f i l t e r a b l e residue exhibits a l a r g e r observed end value than that observed i n i t i a l l y or predicted. This indicates i n t r o d u c t i o n of suspended material e i t h e r from scouring or unaccounted inflows. T o t a l copper concentrations i n the Fraser River are close to d e t e c t i o n 1 l e v e l s and lack s u f f i c i e n t s i g n i f i c a n t f i g u r e s f o r the detection of change. To a s s i s t i n the i n t e r p r e t a t i o n of the behavior of those parameters which may be expressed as loads, a load summary table i s also produced at the end of each segment as shown i n Table 11 f o r the same segment and time,as Table 10. Predicted end loads are c a l c u l a t e d by adding the input of each influence to that observed i n i t i a l l y . The d i f f e r e n c e between the observed and c a l c u l a t e d end loads i s more meaningful" here than that of the concentration table because loads are s t r i c t l y a d d i t i v e and d i l u t i o n plays no part.' The mechanisms operating may be p a r t i c u l a t e suspension or s e t t l i n g and unaccounted input. In the case of a negative difference unaccounted input may be present as well as those l o a d s ' t a l l i e d however, the'difference indicates that at l e a s t that amount was l o s t to sediments over the segment. S i m i l a r i l y , i n the case of a p o s i t i v e d i f f e r e n c e deposition may have occurred and the amount shown i s a minimum measure of input from unaccounted sources and bottom scouring. TABLE 11 - Example o f Segment Lev e l Load Summary Output SEGMENT 4 - LOAD SUMMARY FOR FEBRUARY 1976 FLOW DISS NA NF RESIDUE TOT FE TOT MN TOT CU H1000M3/D TONSIMI/D TONS(M)/D TONSIMI /D TONS IMI/D TONSIMI /D INITIAL FLCW £ LCAC 0 .97 0 .032 FRASER A l SHELLEY 16121. 3 3 . 9 90 .3 5 .00 INPUT LOADS -- 0 . 0 0 1 1 ML259630 NORTHHCOD - 3 4 3 . 0 0 0 - 0 . 7 2 0 - 1 . 9 2 1 - 0 . 1 0 6 - 0 . 0 2 1 2 PEC112 NORTHWOOD 0 .030 0 .002 0.001 0 . 0 0 0 0 . 0 0 0 0 .000 3 FE0157 NORTHWOOD 92 .967 27 .332 9 .576 0 .078 0 .0 0 . 0 4 PEC190 I NT ERCCN• 0 .90 7 0 . 0 6 9 0 .907 0 . 0 0 .0 0 .000 5 PE0228 INTERCGN. KPM GO. 52 8 2 1 . 0 1 8 3 .269 0 .068 0 .0 0 . 0 6 PE39C0 INTER £ PGPSP 197.065 52 .222 7 .035 0 . 166 0 .0 0 . 0 7 PE0076 PG PULPCPAPER 0 .073 0 . 0 0 6 0 .001 O.COO 0 .000 0 .000 8 PE01S2 PG PULPCPAPER 9 8 . 2 0 5 2 6 . 3 1 9 8 .907 0 .082 0 . 0 0 .0 9 PE1763 BCG PUB WCRKS 0 .113 0 .009 0.001 0 .000 0 . 0 0 0 0 .000 10 NECHAKO RIVER 9187 .496 18 .375 9 .187 0 . 533 0 .092 0 .009 U PE1901 F R A S E R - F T . G E O 0.22 7 0 .018 0.014 0.001 0 . 0 0 0 0 .000 12 PEC0S5 SCHOOL DIST57 0 .077 0 .006 0 .008 0 .000 0 . 0 0 0 o.oco 13 PE2017 RANCH HOTEL 0.02 0 0 .002 0.001 0 .000 0 . 0 0 0 0 .000 14 PE0354 P . G . COLLEGE 0 .295 0 .023 0 .009 0 .000 0 . 0 0 0 0 . 0 0 0 15 PEC146 P . G . CITY 16 .366 1.277 1.555 0. 013 0 .001 0 .001 16 PE3868 P . G . AIRPORT 0 .182 0 .014 0.001 0 . 0 0 0 0 . 0 0 0 O.COO 17 PE0319 FRECHETTE 0 .008 0 .001 0 .000 0 .000 0 . 0 0 0 0 . 0 0 0 ie TABOR CREEK (PCBI 26 .215 0 .0 0.682 0 .047 0 .0 0 .000 19 CALE CREEK 3 1 . 115 0 .0 0 .0 0 . 0 0 . 0 0 . 0 PREOICTED ENO VALUE 25510. 179 .8 129 .5 5 . 88 1.04 0 .042 OBSERVED END VALUE 0 .054 FRASER AT RED RCCK 26786 . 158 .0 241 .1 1.88 0 . 5 4 DIFFERENCE ( 0 8 S - C A L C J * 1276. -21 .8 1 1 1 . 6 - 4 . 0 1 - 0 . 5 0 0.011 MEAN AVAILABLE CAPACITY* C A V . C A L C . C A P - LOAD DIFFI 5618 .4 302 .1 4 . 8 7 0 . 5 7 2 1 . 2 1 8 * A NEGATIVE VALUE INDICATES DEPOSITION OR LOSS K A POSITIVE INDICATES UNACCOUNTED INPUT • A NEGATIVE VALUE INDICATES LOAD IN EXCESS CF CRITERIA - 87 -A f u r t h e r use of the l o a d summary m a t e r i a l s balance i s i l l u s t r a t e d by the behavior of d i s s o l v e d sodium i n Table 11. The c a l c u l a t e d negative l o a d d i f f e r e n c e i n d i c a t e s that d i s s o l v e d sodium was l o s t t o to sediments and/or t o t a l form over the segment. Monovalent sodium can exchange with b i v a l e n t calcium and magnesium on p a r t i c u l a t e s . However, I b e l i e v e t h i s mechanism cannot account f o r a -.loss of 21.8 metric tons per day. Even i f the t o t a l t h e o r e t i c a l assumed inputs from municipal discharges (1.36 metric tons per day) are removed t h i s s t i l l leaves more than 20 tons/day l o s t over the segment. The magnitude of t h i s l o s s f o r a parameter which i s o f t e n assumed to be conservative leads to the c o n c l u s i o n t h a t the data used were not r e p r e s e n t a t i v e of mean monthly character. With an accurate data base i t would thus be p o s s i b l e to i d e n t i f y e r r o r s which a r i s e from i n c o r r e c t flow:-.measurement o r unrepresentative sampling l o c a t i o n s . The f i n a l e ntry i n Table 11 i s the mean a v a i l a b l e c a p a c i t y f o r the segment. This f i g u r e i s c a l c u l a t e d from the average of the s i t e s p e c i f i c c a p a c i t i e s r e f e r r e d to e a r l i e r minus the d i f f e r e n c e between the observed and p r e d i c t e d end load. The d i f f e r e n c e i s subtracted to account f o r the minimum load l o s t to sediments o r added from unaccounted inputs over the segment. The r e s u l t i n g f i g u r e i s an estimate only and i s provided to e s t a b l i s h some b a s i s f o r inter-segment comparisons. For example, i t may be p o s s i b l e to discharge more than 4,8?0 kilograms of t o t a l i r o n per day to the segment i n a d d i t i o n to e x i s t i n g i n p u t s without exceeding b e n e f i c i a l use c r i t e r i a however, the f i g u r e a l l o w s the c a p a c i t y of t h i s segment to be compared to another i n a d e c i s i o n of new discharge l o c a t i o n . As the c a p a c i t y v a r i e s over the segment, the s i t e s p e c i f i c c a p a c i t y should be examined f o r a more d e t a i l e d l o c a t i o n d e c i s i o n . - 88 -Output of System Summary The system summary has. f i v e aspects., each, of .which has a d i f f e r e n t purpose as discussed below, ( i ) Concentration Summary At the end of each month's data a l l c a l c u l a t e d segment c o n c e n t r a t i o n d i f f e r e n c e s are summarized as shown i n Table 12. Output f o r a l l three months are i n c l u d e d f o r comparison. While no more than three s i g n i f i c a n t f i g u r e s are a p p r o p r i a t e , the output format was f i x e d to ensure t h a t no s i g n i f i c a n t f i g u r e s would be l o s t due to the l a r g e v a r i a t i o n i n l o a d and f l o w over the l e n g t h of the system. Flow d i f f e r e n c e s are i n c l u d e d i n Table 12. These d i f f e r e n c e s i n d i c a t e the average amount of water which flows unmeasured each day i n t o the segment d u r i n g the month considered,as shown i n Figure These unmeasured flows i n c l u d e surface r u n o f f , groundwater i n f l o w and the c o n t r i b u t i o n s of minor t r i b u t a r i e s . I n a d d i t i o n , Segments 1 and 2 i n c l u d e the f l o w of f i v e major t r i b u t a r i e s ; the Robson, McLennan, Raush, M o r k i l l , and Torpy R i v e r s . These and other t r i b u t a r i e s have no f l o w data and are q u i c k l y i d e n t i f i e d by reference to Table 2. I t appears t h a t these major unmeasured r i v e r s exert a s t r o n g i n f l u e n c e on flow during the month of J u l y but are l e s s s i g n i f i c a n t d u r ing February and A p r i l . I n other segments a l l major t r i b u t a r i e s have been in c o r p o r a t e d i n the data base. Flow d i f f e r e n c e s f o r Segments 3 to 10 t h e r e f o r e d i s p l a y the magnitude of the many minor i n p u t s which are d i f f i c u l t to q u a n t i f y i n d i v i d u a l l y . For example, approximately 30 m i l l i o n cubic meters entered Segment 5 each day from these sources during J u l y of 1976. This unaccounted f l o w i s about three times the accounted f l o w input and i s 10.8$ of the f l o w observed l e a v i n g the segment. F i g u r e 7 may t h e r e f o r e TABLE 12 - System Concentration D i f f e r e n c e Summary f o r Three Months o f 1976. R I V E R S Y S T E M SUMMARY - F E B R U A R Y 1 9 7 6 I. C O N C E N T R A T I O N D I F F E R E N C E S ( O B S - C A L C ) F L O W X 1 0 0 0 M 3 / D PH U N I T S T E M P I C I SP C O N D U M H O S / C M D I S S NA M G / L NF R E S . M G / L T O T F E M G / L T O T MN M G / L T O T CU M G / L S E G M E N T 1 2 1 6 8 . - C . 1 6 - 0 . 1 6 - 3 9 . 8 0 . 3 7 - 1 . 4 0 . 2 1 6 0 . 0 5 0 - 0 . 0 0 1 S E G M E N T 2 2 3 5 4 . 0 .30 - 0 . 1 5 6 2 . 4 0. 32 - 0 . 4 - 0 . 1 7 2 - 0 . 0 4 2 0 . 0 0 2 S E G M E N T 3 3 7 4 6 . - 0 . 15 0 .65 1 0 . 6 0 . 2 4 2 . 4 0 . 1 1 7 0 . 0 4 6 - 0 . 0 0 1 S E G M E N T 4 1 2 7 6 . 0 . 1 3 - 0 . 7 7 - 1 2 . 2 - 1 . 15 3 . 9 - 0 . 1 6 1 - 0 . 0 2 1 0 . 0 0 0 S E G M E N T 5 4 1 4 9 . 0 . 10 - 0 . 5 4 - 2 9 . 1 - 3 . 3 2 2 8 . 1 0 . 0 7 9 0 . 0 0 1 - 0 . 0 0 1 S E G M E N T 6 1 6 0 2 . 0.09 0 .42 8 . 7 2 . 6 6 2 7 .1 - 0 . 0 5 5 0 . 0 0 0 0 . 0 0 5 S E G M E N T 7 2 9 4 9 . 0 . 1 0 - 0 . 0 0 - 8 . 2 - 1 . 7 8 0 . 2 0 . 0 4 5 - 0 . 0 1 0 - 0 . 0 0 3 S E G M E N T 8 8 5 4 8 . - 0 . 10 - 0 . 5 7 8 . 5 0 . 4 8 - 4 6 . 1 - 0 . 0 1 1 0 . 0 0 1 - 0 . 0 0 2 S E G M E N T 9 2 8 4 5 . - 0 . 0 9 1 . 9 1 - 2 0 . 3 - 0 . 3 4 1 0 3 . 3 0 . 0 3 0 0 . 0 0 0 0 . 0 0 0 S E G M E N T 10 5 5 6 1 . 0.00 RI VER -0. 3 3 : S Y S T E M - 1 2 . 5 SUMMARY -- 0 . 4 6 A P R I L 1 9 7 6 - 7 9 . 7 - 0 . 0 9 6 0 . 0 0 0 - 0 . 0 0 0 I. C O N C E N T R A T I ON D I F F E R E N C E S ( O B S - C A L C 1 F L C W X 1 0 0 0 M 3 / D P H UN I T S T E M P I C 1 SP C O N D U M H O S / C M D I S S NA M G / L N F R E S . M G / L T O T F E M G / L T O T MN M G / L TOT C U M G / L S E G M E N T 1 4 2 6 8 . 0 . 1 7 0 . 2 5 17 . 7 0 . 2 9 1 2 . 9 0 . 2 9 1 0 . 0 2 0 0 . 001 S E G M E N T 2 4 6 3 . 0 . 19 - 2 . 5 8 - 1 9 . 1 0 . 01 4 3 . 5 0 . 2 7 3 0 . 0 2 0 0 . 0 0 4 S E G M E N T 3 9 C 6 . 0 . 1 8 3 . 0 3 6 . 7 - 0 . 0 5 - 5 . 9 - 0 . 0 9 1 - 0 . 0 3 5 - 0 . 0 0 2 S E G M E N T 4 9 1 0 4 . 0 . 3 9 7 . 0 2 - 1 4 . 9 - 2 . 5 9 1 0 7 . 0 - 0 . 6 8 4 - 0 . 0 6 1 - 0 . 0 0 1 S E G M E N T 5 2 9 7 1 6 . - 0 . 1 2 - 7 . 8 0 - 7 . 0 0 . 1 5 4 1 1 . 3 3 . 5 8 7 0 . 2 1 7 0 . 0 1 7 S E G M E N T 6 1 1 4 8 2 . C . 0 8 1 . 7 4 4 . 2 0 . 41 7 3 . 8 0 . 2 0 8 0 . 1 5 0 0 . 0 1 0 S E G M E N T 7 1 8 2 6 . - 0 . 0 0 0 . 4 5 4 . 1 0 . 1 1 0 . 8 3 . 3 2 7 0 . 2 8 3 0 . 0 0 0 S E G M E N T 8 5 2 9 2 . 0 . 0 0 1 . 9 3 1 3 . 1 0 . 7 0 3 1 6 . 3 - 1 . 9 6 3 - 0 . 1 6 8 0 . 0 0 1 S E G M E N T 9 1 7 6 4 . 0 . 11 0 . 9 5 - 0 . 4 0 . 0 5 - 1 9 0 . 9 - C . 0 6 0 - 0 . 0 4 6 0 . 0 0 1 SEGM ENT 10 3 4 3 9 . - 0 . 17 - 0 . 15 - 3 . 8 0 . 1 2 - 1 5 . 5 - 0 . 3 6 4 - 0 . 0 4 7 - 0 . 0 0 5 RI VER S Y S T E M S U M M A R Y - , J U L Y 1 9 7 6 1 . C O N C E N T R A T I O N D I F F E R E N C E S ( O B S - C A L C ) F L O W X 1 0 0 0 M 3 / D PH U N I T S T E M P I C I S P C O N O U M H O S / C M D I S S NA M G / L N F R E S . M G / L T O T F E »C,/ L T O T M N M G / L T O T C U M G / L S E G M E N T 1 3 8 0 2 4 . 0.13 0 .00 - 8 . 2 - 0 . 1 2 6 2 . 6 0 . 2 0 9 0 . 0 2 0 - 0 . 0 0 0 S E G M E N T 2 3 5 7 6 8 . C . C5 0 . 9 0 7 . 0 0 . 0 9 6 . 7 0 . 1 2 1 0 . 0 0 9 0 . 0 0 0 S E G M E N T 3 1 1 5 8 4 . - 0 . 1 1 2 . 7 2 3 . 0 - 0 . 12 1 9 . 8 1 . 9 2 5 0 . 0 3 9 - 0 . 0 0 1 S E G M E N T 4 7 7 3 0 . C . 2 6 0 . 3 4 - 0 . 3 - 0 . 3 5 7 . 3 1 . 1 7 8 0 . 0 0 3 - 0 . 0 0 0 S E G M E N T 5 2 5 1 6 2 . - 0 . 1 3 - 3 . 1 4 - 9 . 4 - 0 . 0 2 4 3 . 0 - 2 . 7 3 3 - 0 . 0 0 6 0 . 0 0 4 S E G M E N T 6 9 7 0 5 . -0. 02 - 0 . 0 0 1 . 9 0. 16 9 . 0 0 . 1 2 1 0 . 0 0 7 - 0 . 0 0 0 S E G M E N T 7 6 5 0 8 . 0 .20 - 0 . 0 1 0.5 - 0 . 0 3 5 0 . 4 0 . 0 1 6 0 . 0 1 0 0 . 0 0 1 S E G M E N T 8 1 8 8 7 6 . 0 . 1 0 - 0 . 2 4 0.2 0 . 2 4 7 . 2 - 0 . 0 9 1 - 0 . 0 0 8 - 0 . 0 0 2 S E G M E N T 9 5 6 0 9 . 0 . 0 1 0 .02 - 1 . 0 - 0 . 0 9 - 1 1 . 2 0 . 0 0 7 0 . 0 0 1 0 . 0 0 1 S E G M E N T 10 1 2 2 6 2 . C . 0 4 - 0 . 0 4 - 2 . 0 0 . 12 - 4 . 2 0 . 1 59 0 . 0 3 3 0 . 0 0 1 o o o o ^) ON >x] >*] PL o o RED PASS - 06 -- 91 -be used to determine where new flow measurement i s r e q u i r e d to increase knowledge of the i n p u t s which make up the system and thereby reduce the u n c e r t a i n t y t h a t these peaks represent. As more data are generated the flow d i f f e r e n c e s w i l l d i m i n i s h . The remaining c o n c e n t r a t i o n d i f f e r e n c e s of Table 12 i n d i c a t e r e g i o n a l c o n c e n t r a t i o n changes which r e s u l t from unaccounted d i l u t i o n and/or l o s s o r input of unaccounted m a t e r i a l s . For example, temperature d i f f e r e n c e s r e f l e c t unaccounted energy g a i n o r l o s s depending on s i g n . A negative d i f f e r e n c e i n d i c a t e s heat l o s t to the atmosphere and a p o s i t i v e i n d i c a t e s heat gained. More d e t a i l e d i n t e r p r e t a t i o n of these d i f f e r e n c e s i s made complicated by the magnitude o f unaccounted i n p u t flows and the number of unknown mechanisms operating. O v e r a l l there appears to be no c o n s i s t e n t p a t t e r n over d i s t a n c e and time w i t h the exception of t o t a l i r o n and manganese. These two parameters behave s i m i l a r i l y i n magnitude and s i g n over time and w i l l be discussed i n more d e t a i l under the next output type. I t i s i n t e r e s t i n g to note t h a t the d i l u t i o n model p r e d i c t s the be-haviour of s p e c i f i c conductance more c l o s e l y d u r ing the summer than the w i n t e r even though unaccounted fl o w i n p u t , and presumably the d i l u t i o n e r r o r s i t should c r e a t e , i s much g r e a t e r i n the summer. Th i s i n d i c a t e s t h a t unaccounted input flow i n w i n t e r , though much s m a l l e r i n magnitude than i n the summer, must e i t h e r have a l a r g e r proportionate e f f e c t or i s o f a higher c o n c e n t r a t i o n . A c l e a r d e l i n e a t i o n of i n f l u e n c e e f f e c t i s not p o s s i b l e from t h i s output. As p r e v i o u s l y d i s c u s s e d , t o t a l copper data l a c k e d s u f f i c i e n t s i g n i f i c a n t f i g u r e s t o a l l o w d e t e c t i o n of meaningful change. -•92 -( i i ) Load Difference Summary The load differences c a l c u l a t e d i n the segment summaries are also c o l l a t e d i n the system summary as shown i n Table 13. As mentioned i n the segment summary discussion, d i l u t i o n does not a f f e c t the s i g n of the load d i f f e r e n c e values. The values therefore represent the net weight of material e i t h e r added through runoff and/or scouring or l o s t due to s e t t l i n g within each segment. Dissolved sodium appears to be l o s t to sediments i n some segments during each month examined. Again, t h i s indicates that the data were not representative of mean monthly character because the parameter i s close to conservative i n behavior. T o t a l i r o n and manganese load differences d i s p l a y a d d i t i o n and l o s s i n the same segments within each month with the exception of Segments 6 and 7 f o r February. This s i m i l a r i t y of behavior f o r two parameters which are u s u a l l y introduced to streams simultaneously by nature and can undergo s i m i l a r reaction suggests that the data are consistent, i f not s p a t i a l l y and temporally representative. I t there-fore seems p e c u l i a r that n o n - f i l t e r a b l e residue values do not e x h i b i t a s i m i l a r a d d i t i o n and l o s s pattern over distance. Unaccounted suspended s o l i d s appear to be added to the water i n a l l segments except those furt h e s t downstream, p r i m a r i l y below L i l l o o e t , where s i g n i f i c a n t deposition occurs i n both A p r i l and July. This apparent anomaly might be due to a d i f f e r e n t p a r t i c l e s i z e associated with the p a r t i c u l a t e metals than with suspended s o l i d s generally. I f the metals were associated with l a r g e r p a r t i c l e s they would be prone to f a s t e r s e t t l i n g according to Stokes Law. Copper values are e r r a t i c due to reasons discussed e a r l i e r . - 93 -TABLE 13 - System Load D i f f e r e n c e Summary f o r Three Months of 1976. 1 D IFFERENCES* FOR FEBRUARY 1976 DISS NA TONSIMI /D NF RESIDUE TONSIMI/D TOT FE TONSIMI /O TOT MN TONS(MI /0 TOT CU TONSIMI /D SEGMENT 1 3 .994 8 .4 1.04 0.171 0 .002 SEGMENT 2 5 .974 5 . 6 - 0 . 5 1 - 0 . 2 0 5 0 .018 SEGMENT 3 10 .855 5 0 . 9 2 .61 0 . 798 - 0 . 0 0 6 SEGCENT 4 - 2 1 . 7 8 8 I 11 . 6 - 4 . 0 1 - 0 . 5 0 4 0.011 SEGMENT 5 - 8 1 . 0 5 6 963.2 2 . 9 5 0 .104 - 0 . 0 2 8 SEGMENT 6 112 .725 1152 .8 - 1 . 9 9 0. 032 0 . 2 0 4 SEGMENT 7 - 6 0 . 2 2 5 1 9 0 . 0 2 .31 - 0 . 3 7 5 - 0 . 1 1 5 SEG KE NT 8 6 0 . 6 3 0 - 2 0 9 7 . 9 0 . 7 4 0 . 113 - 0 . 097 SEGMENT S - 7 . 9 4 0 6 2 6 0 . 9 2 . 2 5 0 .029 0 . 0 0 3 SEGMENT 10 - 1 9 . 8 4 8 - 6 6 6 7 . 6 - 7 . 7 6 0. 06 3 0 . 004 D IFFERENCES* FOR APRIL 1976 DISS NA TONSIMI/D NF RESIDUE T O N S I M » / 0 TOT FE TONS! M l / 0 TOT MN TONSIMI /D TOT CU TONSIM l /D SEGMENT 1 7 .198 136. 9 2 .49 0.152 0 .010 SEGMENT 2 0 . 7 0 5 6 0 9 . 2 3 . 9 4 0 .283 0 .059 SEGMENT 3 - 0 . 2 8 4 - 148 .2 - 2 . 3 2 - 1 . 064 - 0 . 0 6 7 SEGMENT 4 - 1 5 1 . 5 4 6 8 4 7 3 . 6 - 4 1 . 1 3 - 3 . 5 8 5 - 0 . 0 4 2 SEGMENT 5 72 . 329 52 1 4 0 . 3 423 .3 I 2 6 . 180 2 .058 SEGfENT 6 8 0 . 3 4 3 16657 .9 72. 58 23 .772 1.628 SEGMENT 7 2 0 . 162 1 2 4 5 . 6 481 .17 40 .994 0 .078 SEGMENT a 123 .250 52084.1 - 2 6 7 . 5 6 - 2 2 . 618 0. 334 SEGMENT 9 13 .306 - 2 9 1 6 3 . 8 - 1 . 1 5 - 6 . 6 5 2 0 . 1 8 4 SEGMENT 10 36 .211 - 1 1 1 1 . 4 - 5 8 . 9 9 - 8 . 0 9 1 - 0 . 882 D IFFERENCES* FCR JULY 1976 DISS NA TONSIMI /D NF RESIOUE TOT FE TONSIMI/D TONS! M l / 0 TOT MN TONS I Ml /O TOT CU TTNSIMI /D SEGMENT 1 16 .655 3 7 4 8 . 0 2 0 . 3 4 1 .337 0 . 147 SEGMENT 2 2 8 . 5 6 2 2 8 8 6 . 8 28. 12 I. 799 0. 162 SEGMENT 3 - 1 5 . 5 1 9 4328 .7 365 .94 7.568 - 0 . 0 9 0 SEGMENT 4 - 7 2 . 5 7 5 2266 . 5 302. 30 1 .127 - 0 . 0 7 4 SEGMENT 5 28 .281 13721 .5 - 6 7 5 . 8 6 - 0 . 2 3 6 1.190 SEGMENT 6 66 .671 4 3 3 6 . 9 4 8 . 6 4 3 .059 - 0 . 0 5 7 SEGMENT 7 - 1 . 5 4 2 18865 .6 10 .66 3 .985 0 .402 SEGMENT 8 128. 309 6124.1 - 2 5 . 4 5 - 2 . 0 6 1 - 0 . 6 5 2 SEGMENT 9 - 2 9 . 6 2 4 - 3 9 5 9 . 4 6 . 4 6 0 .620 0. 503 SEGMENT 10 100. 934 - 1 4 8 2 . 4 U l .55 22 .378 0 . 7 7 5 * A NEGATIVE VALUE INDICATES DEPOSITION OR LOSS t A POSITIVE INDICATES UNACCOUNTED INPUT - 94 -( i i i ) Normalized Load D i f f e r e n c e Summary I n examining the l o a d d i f f e r e n c e s of Table 13 i t i s d i f f i c u l t to compare the magnitude of the observed a d d i t i o n o r l o s s between segments because each segment i s of a d i f f e r e n t l e n g t h . To a s s i s t inter-segment comparison each l o a d d i f f e r e n c e was d i v i d e d by i t s r e s p e c t i v e segment l e n g t h to a r r i v e a t normalized l o a d d i f f e r e n c e s as shown i n Table 14. The normalized values are u s e f u l i n d i s p l a y i n g the behavior of the system g r a p h i c a l l y as shown i n Figure .8 f o r t o t a l i r o n . I t appears that very l i t t l e unaccounted i r o n a d d i t i o n o r l o s s occurred w i t h i n any segment i n February. Load d i f f e r e n c e s are small i n d i c a t i n g t h a t the t o t a l loads c a r r i e d may be d e s c r i b e d by accounted inputs alone. I n A p r i l though, unaccounted lo a d i n p u t s are evident i n Segments 5»6 and 7 w i t h s e t t l i n g i n Segment 8. I n J u l y , i n p u t s occurred i n Segments 3 and 4 f o l l o w e d by s e t t l i n g i n Segment 5- This suspension/loss curve s h i f t behavior p a r a l l e l s the northern movement of f r e s h e t from s p r i n g to summer and one might speculate t h a t f r e s h e t flows exert a l o c a l i z e d s couring e f f e c t f o l l o w e d by d e p o s i t i o n a r e l a t i v e l y s h o r t d i s t a n c e downstream. T o t a l manganese values d i s p l a y a s i m i l a r though more e r r a t i c behavior. - 95 -TABLE 14 - Normalized Load Difference Summaries NORMALIZED LOAD D IFFERENCES* (PER KILOMETERI FOR FEBRUARY 1976 DISS NA NF RESIDUE TOT FE TOT MN TOT CU TONS(M(/D TONS(Ml /D T O N S ! M l / D TONS ( M l /D TONS ( M l / D SEGMENT I 0 . 0 2 6 0.1 0 . 0 2 0 .001 0. 000 SEGMENT 2 0 .0 39 0.1 - 0 . 0 1 - 3 . 0 0 1 0 . 0 0 0 SEGMENT 3 0 .071 0 . 9 0 .04 0. 005 - 0 . 000 SEGMENT 4 - 0 . 1 4 2 1.9 - 0 . 0 7 - 0 . 0 0 3 0 .000 SEGMENT 5 - 0 . 5 30 16 .3 0 .05 0. 001 - 0 . 0 0 0 SEGMENT 6 0 .737 19 .5 - 0 . 0 3 0 .000 0 .004 SEGMENT 7 - 0 . 3 9 4 3. 2 0 .04 - 0 . 0 0 2 - 0 . 0 0 2 SEGMENT 8 0 . 3 9 6 - 3 5 . 6 0 .01 0 .001 - 0 . 0 0 2 SEGMENT S - 0 . 0 5 2 106. 1 0 . 04 0 .000 0 .000 SEGMENT to - 0 . 1 3 0 - 1 1 3 . 0 - 0 . 1 3 0 .000 0 .000 NORMALIZED LOAD D I F F E R E N C E S * (PER KILOMETERI FOR APRIL 1976 OISS NA NF RESIDUE TOT FE TOT MN TOT CU TONSIMI/D TONSIMI/O TONSIMI/D TONSIMI/D TONSIMI /O SEGMENT 1 0 . 0 4 7 2 . 3 0 .04 0 . 001 0 .000 SEGMENT 2 0 . 0 0 5 10 .3 0 . 0 7 0 .002 0 .00 1 SEGMENT 3 - 0 . 0 0 2 - 2 . 5 - 0 . 04 - 0 . 006 - 0 . 001 SEGMENT 4 - 0 . 9 9 0 1 4 3 . 6 - 0 . 6 9 -0 .021 - 0 . 0 0 1 SEGMENT 5 0 . 4 7 3 3 83 .7 7 .06 0. 150 0 .035 SEGMENT 6 0 .525 282 .3 1 .21 0 .137 0 .028 SEGMENT 7 0 . 132 21 . 1 8 .02 0 .236 0.001 SEGMENT 8 0 .806 8 8 2 . 8 - 4 . 4 6 - 0 . 130 0 .006 SEGMENT 9 0 . 0 8 7 - 4 9 4 . 3 - 0 . 0 2 - 0 . 0 3 8 0 .003 SEGMENT 10 0 . 2 3 7 - 1 8 . 8 - 0 . 9 8 - 0 . 0 4 7 - 0 . 0 1 5 NORMALIZED LOAD D IFFERENCES* (PER KILOMETERI FOR JULY 1976 DISS NA NF RESIDUE TOT FE TOT MN TOT CU TONSIMI /O TONSIMI /O TONS (M I/O TONSIMI/O TONSIM1/D SEGMENT 1 0 . 109 6 3 . 5 0 . 3 4 0 .008 0 .003 SEGMENT 2 0 .187 4 8 . 9 0 . 4 7 0 .010 0 . 003 SEGMENT 3 - 0 . 101 73.4 6 . 1 0 0 .043 - 0 . 0 0 2 SEGMENT 4 - 0 . 4 7 4 38 .4 5 .04 0. 006 - 0 . 001 SEGMENT 5 0 . 185 2 3 2 . 6 - 1 1 . 2 6 - 0 .001 0 .021 SEGMENT 6 0 .436 7 3 . 5 0.81 0. 018 - 0 . 001 SEGMENT 7 - 0 . 0 1 0 3 1 9 . 8 0 .18 0 .023 0 .007 SEGMENT 8 0 . 8 3 9 1 0 3 . a - 0 . 4 2 - 0 . 012 - 0 . O i l SEGMENT 9 - 0 . 1 9 4 - 6 7 .1 0 .11 0 .004 0 . 0 0 9 SEGMENT 10 0 . 6 6 0 - 2 5 . 1 1. 8 6 0. 129 0 .013 * A NEGATIVE VALUE INDICATES DEPOSITION OR LOSS £, A POSIT IVE INDICATES UN4CC0UNT ED INPUT TOTAL IRON (tons(m)/d/km) 10 February A p r i l —• J u l y \ 6\ /. A / \ / ^ • ^ / \ / v UNACCOUNTED , , \ / \ / \ INPUT V \ 0 ^ / N . A \ ^ \ / \ / -z\ \ / \ \ / X 7 / \ / -6 / \ / \ / \ / -io j ^ ! DEPOSITION , 100 km , SEGMENT c o l w 2 Q 3 ; > H ^ W 5 ^ 6 w 7 >H 8 £ H 9 g l 0 w C O O W H O H E - n g H O . PU £ E c o » - } f f i c o w Q E H W O o < ffi O B :=> o ^ tA FIGURE 8 - NORMALIZED TOTAL IRON LOAD DIFFERENCES SHOWING NET UNACCOUNTED INPUT OR DEPOSITION WITHIN EACH SEGMENT - 97 -( i v ) Mean A v a i l a b l e Capacity Summary I n a d d i t i o n to c o n c e n t r a t i o n and l o a d d i f f e r e n c e s , the mean a v a i l a b l e c a p a c i t i e s c a l c u l a t e d f o r each segment are a l s o summarized f o r the system as shown i n Table 15. These values are based on the con c e n t r a t i o n c r i t e r i a shown i n Table 6 and may be changed to r e f l e c t any input c r i t e r i a s e t . A negative c a p a c i t y value i n d i c a t e s l o a d i n excess of c r i t e r i a . A v a i l a b l e c a p a c i t y , as used here, r e f e r s to the d i l u t i o n c a p a c i t y a v a i l a b l e as c a l c u l a t e d from the d i f f e r e n c e between e x i s t i n g and c r i t e r i a c o ncentrations. I t should not be i n t e r p r e t e d to mean t h a t no impact would r e s u l t from, f o r example, the l o c a t i o n of a new discharge of 81 metric tons of copper per day somewhere i n Segment 10.; While such a discharge might not cause c r i t e r i a to be exceeded f i f t y k i l o m e t e r s downstream, i t would c e r t a i n l y cause s i t e s p e c i f i c problems which t h i s framework does not attempt to explore. Instead, the c a p a c i t y values should be i n t e r p r e t e d as i n d i c a t i n g t h a t , i n February of 1976, Segment 10 had f o u r times the d i l u t i o n c a p a c i t y f o r a copper discharge than Segment 4. This a l l o w s inter-segment comparisons to be made. Use o f t h i s output type i s i l l u s t r a t e d f o r t o t a l manganese i n Figure 9' By graphing the c a p a c i t i e s over time and d i s t a n c e i t i s c l e a r t h a t , even though some d i l u t i o n c a p a c i t y e x i s t e d f o r downstream segments i n February, loads are predominantly i n excess o f c r i t e r i a . F u r t h e r , i t shows t h a t a s i g n i f i c a n t change occurred i n A p r i l between Segments k and 5- Examination of the manganese l o a d d i f f e r e n c e s o f Table 13 shows th a t t h i s change i s due to l a r g e unaccounted in p u t i n Segment 5- This i l l u s t r a t e s t h a t the t y p i c a l c a l c u l a t i o n o f al l o w a b l e discharge loads based on a c o n d i t i o n o f minimum f l o w i s not v a l i d f o r - 98 -TABLE 15 - System Mean A v a i l a b l e Capacity Summary f o r Three Months o f 1976. MEAN AVAILABLE C A P A C I T I E S * FOR FEBRUARY 1976 DISS NA NF RESIDUE TOT FE TOT MN TOT CU TONSIMI/D TONSI Ml /O TONSIMI/D TONSIMI/D TONSIMI /D SEGMENT 1 216 .495 7 . 4 - 0 . 9 5 - 0 . 1 3 8 0 .818 SEGMENT 2 9 9 6 . 3 7 3 72 .4 0.31 0 .192 3 . 7 1 3 SEGMENT 3 2821 .355 179 .7 - 1 . 2 6 - 0 . 3 8 3 10 .533 SEGMENT 4 5 6 1 8 . 3 6 7 302.1 4 . 8 7 0 .569 21 .218 SEGMENT 5 7519 .477 - 5 0 7 . 1 3 .34 0. 760 28. 173 SEGMENT 6 10242 .695 - 1 5 3 6 . 2 7 . 6 0 1.132 38 .562 SEGMENT 7 10757 .457 - 1 6 8 3 . 1 5 .35 1. 590 40 . 369 SEGMENT 8 12314 .125 553 .6 5 .56 1.774 4 6 . 4 4 5 SEGMENT 9 15169 .527 - 5 4 4 6 . 7 6 . 33 2 .2 54 57 .014 SEGMENT 10 21791 .223 1777 .9 2 0 . 3 7 3 .213 81 .7 05 1 C A P A C I T I E S * FOR APRIL 1976 DISS NA TONSIMI/D NF RESIOUE TONSI Ml /D TOT FE TONSIMI/O TOT MN TONS (M | /D TOT CU T O N M M I / 0 SEGMENT 1 308 .751 - 1 2 5 . 8 - 2 . 3 8 - 0 . 105 1.165 SEGMENT 2 2 1 7 8 . 6 9 0 - 6 2 1 . 2 - 4 . 8 1 - 0 . 0 7 5 8 .040 SEGMENT 3 5987 .504 - 4 6 0 . 9 - 3 . 4 7 1. 251 22. 258 SEGMENT 4 13120 .465 - 1 0 6 1 4 . 2 16 .24 2 .545 4 8 . 6 3 9 SEGMENT 5 21666 .793 - 6 4 1 7 6 . 3 - 4 2 9 . 52 - 2 5 . 415 78. 7?7 SEGMENT 6 34253.063 - 8 4 3 9 9 . 8 - 5 2 0 . 1 6 - 4 9 . 4 5 3 123 .915 SEGMENT 7 37523 .961 - 8 5 3 3 6 . 3 - 9 9 7 . 7 4 - 8 9 . 8 4 4 136. 103 SEGMENT 8 39196 .543 - 1 3 7 4 9 8 . 8 - 7 2 9 . 1 6 - 6 6 . 8 9 6 142.434 SEGMENT 9 4 2 1 6 5 . 3 9 5 - 1 0 8 0 8 4 . 4 - 7 2 5 . 16 - 5 9 . 691 153 .360 SEGMENT 10 51304.598 - 1 0 6 3 3 5 . 4 - 6 5 9 . 6 4 - 5 0 . 1 8 9 188 .609 ! C A P A C I T I E S * FOR J U L Y 1976 DISS NA TONS(MI /D NF RESIDUE TONSIMI/O TOT FE TONSIMI /D TOT MN TONSIMI /D TOT CU TONSIMI /D SEGMENT 1 5117 .891 - 3 3 5 9 . 6 - 1 8 . 8 3 - 0 . 4 7 4 18 .833 SEGMENT 2 17758.414 - 5 5 3 3 . 3 - 3 5 . 5 5 0 .008 65. 586 SEGMENT 3 42124 .547 - 9 9 3 2 . 8 - 4 5 4 . 4 7 - 4 . 0 2 7 155 .734 SEGMENT 4 56665 .410 -11932 .0 - 7 7 0 . 8 4 - 3 . 0 1 2 209 .949 SEGMENT 5 67072 .563 - 2 5 1 2 4 . 3 - 8 9 . 5 7 - 1 . 3 2 2 2 4 7 . 7 2 8 SEGMENT 6 91440 .438 - 3 7 0 3 0 . 8 - 1 6 9 . 3 6 - 3 . 9 9 4 333. 034 SEGMENT 7 94176 . 125 - 5 5 6 4 6 . 3 - 1 7 7 . 0 2 -7 .476 3 4 7 . 7 8 6 SEGMENT a 104423.500 - 6 1 8 8 0 . 7 - 144 .38 - 3 . 999 386. 646 SEGMENT 9 115169.313 - 5 7 1 0 0 . 3 - 1 4 4 . 8 2 - 2 . 6 4 9 4 2 5 . 9 1 1 SEGMENT 10 172843.875 - 52436.4 - 2 2 7 . 3 7 - 1 4 . 272 6 3 9 . 443 * BASED ON INPUT CRITERIA TOTAL MANGANESE (tons(m)/d) 5 0 --5 --10 --15 -20 • -40 -60 -80 -100 AVAILABLE LOAD CAPACITY February A p r i l -July \ \ EXCESS LOAD , 100 km | SEGME CO CO < PM Q pq o s >H 4 H h3 1-3 H W CO o s CO & 8 7 O O H3 H o n o o h3 H3 H 1-3 9 g EH 10 PM O FIGURE 9 - TOTAL MANGANESE MEAN AVAILABLE LOAD CAPACITIES BY FRASER RIVER MAIN STEM SEGMENTS FOR THREE MONTHS IN 1976. - 100 -t h i s parameter. The system i s most s e v e r e l y s t r e s s e d i n A p r i l due to n a t u r a l processes. S i m i l a r i l y , of those months considered, A p r i l i s the c r i t i c a l f l o w c o n d i t i o n f o r t o t a l i r o n and suspended s o l i d s . (v) System C a l i b r a t i o n Values The f i n a l output of the system summary i s a t a b l e of c a l i b r a t i o n values as shown i n Table 16. These values are the f l o w and a s s o c i a t e d parameter concentrations which would b r i n g the c a l c u l a t e d p r e d i c t e d end values w i t h i n each segment to the observed l e v e l s . They thus represent the average f l o w and c o n c e n t r a t i o n of a l l unaccounted i n p u t s and l o s s e s and may be used, to c a l i b r a t e o r 'zero' unaccounted processes. The c a l i b r a t i o n values are used i n the system p r e d i c t i o n process and are discussed i n the next s e c t i o n . However, they r e v e a l f u r t h e r i n s i g h t i n t o the f u n c t i o n of the system. For example, from the c o n c e n t r a t i o n summary i t was impossible to t e l l what was causing the observed p r e d i c t i o n d i s c r e p a n c i e s .because c o n c e n t r a t i o n d i f f e r e n c e s were expressed i n terms of main ..stem changes. Table 16 c h a r a c t e r i z e s the unknown inputs and processes, allows f u r t h e r c a l c u l a t i o n s to be performed and f a c i l i t a t e s e r r o r d e t e c t i o n . For example, temperature and f l o w values c o u l d be used to c a l c u l a t e ergs gained o r l o s t w i t h i n each segment. These values might then be r e l a t e d to more d e t a i l e d atmospheric and stream fl o w c o n d i t i o n s . As a conservative parameter, s p e c i f i c conductance should not be negative. A negative value i n Table 16 t h e r e f o r e i n d i c a t e s e i t h e r data which were not r e p r e s e n t a t i v e of mean monthly c h a r a c t e r o r d e v i a t i o n s from conservative behavior. - 101 -TABLE 16 - System C a l i b r a t i o n Values Showing the Net Flow and Concentration of Unaccounted Influences 5 . S Y S T E M C A L I B R A T I O N V A L U E S F C R F E B R U A R Y 1 9 7 6 F L O W X 1 0 C 0 M 3 / D P H U N I T S T E M P I C 1 SP C O N O U M H O S / C M D I S S NA M G / L NF R 6 - S . M G / L T O T F E M G / L T O T M N M G / L T O T CU M G / L S E G M E N T 1 2 1 6 8 . 7 . 7 5 0 . 4 4 9 8 . 9 1 . 8 4 3 . 9 0 . 4 8 2 0 . 0 7 9 0 . 0 0 1 S E G M E N T 2 2 3 5 4 . 8 . 0 8 0 . 1 7 3 4 7 . 5 2 . 5 4 2 . 4 - 0 . 2 1 5 - 0 . 0 8 7 0 . 0 0 8 S E G M E N T 3 3 7 4 6 . 7 . 51 3 . 1 6 251 .1 2 . 9 0 1 3 . 6 0 . 6 9 7 0 . 2 1 3 - 0 . 0 0 2 S E G M E N T 4 1 2 7 6 . 6 . 9 5 - 1 4 . 8 2 - 5 4 . 0 - 1 7 . 0 8 8 7 . 4 - 3 . 1 3 9 - 0 . 3 9 5 0 . 0 0 9 S E G M E N T 5 4 1 4 9 . 7 . 86 - 3 . 7 8 - 3 6 . 6 - 1 9 . 5 4 2 3 2 . 1 0 . 7 1 0 0 . 0 2 5 - 0 . 0 0 7 S E G M E N T 6 1 6 0 2 . 7 . 2 6 1 0 . 7 8 3 7 9 . 8 7 0 . 3 5 7 1 9 . 5 - 1 . 2 4 3 0 . 0 2 0 0 . 1 2 7 S E G M E N T 7 2 9 4 9 . 7 . 6 0 0 . 4 8 5 0 . 0 - 2 0 . 4 2 6 4 . 4 0 . 7 8 3 - 0 . 1 2 7 - 0 . 0 3 9 S E G M E N T 8 8 5 4 8 . 7 . 5 7 - 3 . 16 2 2 3 . 3 7 . 0 9 - 2 4 5 . 4 0 . 0 8 7 0 . 0 1 3 - 0 . 0 1 1 S E G M E N T 9 2 8 4 5 . 7 . 11 4 0 . 6 6 - 2 5 5 . 1 - 2 . 7 9 2 2 0 0 . 7 0 . 7 9 1 0 . 0 1 0 0 . 0 0 1 S E G M E N T 1 0 5 5 6 1 . 7 . 8 7 - 2 . 9 6 - 5 9 . 2 - 3 . 5 7 - 1 1 9 9 . 1 - 1 . 3 9 5 0 . 0 1 2 0 . 0 0 1 5 . S Y S T E M C A L I B R A T I O N V A L U E S F C R A P R I L 1 9 7 6 FLOW X 1 0 C 0 M i / 0 P H U N I T S T E M P ( C 1 SP C O N O U M H O S / C M 01 SS NA M G / L N F R E S . M G / L T O T F E M G / L T O T M N M G / L T O T CU M G / L S E G M E N T 1 4 2 8 8 . 8 . 0 6 5 . 0 7 1 8 0 . 9 1 . 6 8 3 1 . 9 0 . 5 8 0 0 . 0 3 5 0 . 0 0 2 S E G M E N T 2 4 6 3 . 6 . 7 5 - 7 3 . 2 9 - 4 1 2 . 1 1 . 5 2 1 3 1 4 . 4 8 . 4 9 2 0 . 6 2 1 0 . 1 2 8 S E G M E N T 3 9 0 6 . 6 . 4 9 1 0 7 . 27 3 7 4 . 2 - 0 . 3 1 - 1 6 3 . 5 - 2 . 5 5 7 - 1 . 1 7 4 - 0 . 0 7 4 S E G M E N T 4 9 1 0 4 , 6 . 9 3 5 8 . 0 1 1 2 . 8 - 1 6 . 6 5 9 3 0 . 7 - 4 . 5 1 8 - 0 . 3 94 - 0 . 0 0 5 S E G M E N T 5 2 9 7 1 6 . 7 . 37 - 2 1 . 79 9 8 . 1 2 . 4 3 1 7 5 4 . 7 1 4 . 2 4 5 0 . 8 8 1 0 . 0 6 9 S E G M E N T 6 1 1 4 8 2 . 7 . 5 7 2 1 . 8 9 1 7 2 . 5 7 . 0 0 1 4 5 0 . 8 6 . 3 2 1 2 . 0 7 0 0 . 1 4 2 S E G M E N T 7 1 8 2 6 . 7 . 54 3 7 . 6 0 4 5 2 . 1 11 . 0 4 6 8 2 . 2 2 6 3 . 5 3 6 2 2 . 4 5 2 0 . 0 4 3 S E G M E N T 8 5 2 9 2 . 7 . 7 7 5 9 . 39 5 1 9 . 3 2 3 . 2 9 9 8 4 1 . 8 - 5 0 . 5 5 7 - 4 . 2 74 0 . 0 6 3 S E G M E N T 9 1 7 6 4 . 6 . 41 9 1 . 7 0 1 0 8 . 9 7 . 5 4 - 1 6 5 2 8 . 6 - 0 . 6 5 1 - 3 . 7 7 0 0 . 1 0 4 S E G M E N T 10 3 4 3 9 . 6 . 3 0 - 2 . 3 2 - 7 7 . 6 1 0 . 5 3 - 3 2 3 . 2 - 1 7 . 1 5 3 - 2 . 3 5 3 - 0 . 2 5 7 5 . S Y S T E M C A L I B R A T I O N V A L U E S F C R J U L Y 1 9 7 6 F L O W X 1 0 0 0 M 3 / 0 PH U N I T S T E M P ( C ) S P C O N D U M H O S / C M D I S S NA M G / L NF R E S . M G / L T O T F E M G / L T O T M N M G / L T O T CU M G / L S E G M E N T I 3 8 0 2 4 . e.ce 1 0 . 0 0 100 . 9 0 . 4 4 9 8 . 6 0 . 5 3 5 0 . 0 3 5 0 . 0 0 4 S E G M E N T 2 3 5 7 6 8 . 8 . 12 1 2 . 0 1 1 2 7 . 7 0 . 8 0 8 0 . 7 0 . 7 8 6 0 . 0 5 0 0 . 0 0 5 S E G M E N T 3 1 1 5 8 4 . 7 . 17 5 3 . 9 3 1 6 4 . 5 - 1 . 3 4 3 7 3 . 9 3 1 . 5 9 4 0 , 6 5 3 - 0 . 0 0 8 S E G M E N T 4 7 7 3 0 . 6 . 6 3 2 3 . 2 3 1 0 7 . 8 - 9 . 39 2 9 3 . 2 3 9 . 1 0 5 0 . 1 4 6 - 0 . 0 1 0 S E G H E N T 5 2 5 1 6 2 . 7 . 2 4 - 2 1 . 5 0 1 2 . 9 1 . 1 2 5 4 5 . 3 - 2 6 . 8 6 0 - 0 . 0 0 9 0 . 0 4 7 S E G M E N T 6 9 7 0 5 . 7 . 4 3 9 . 8 9 1 7 7 . 5 6 . 8 7 4 4 6 . 9 5 . 0 1 2 0 . 3 1 5 - 0 . 0 0 6 S E G M E N T 7 6 5 C 8 . 6 . 5 2 9 . 5 1 1 3 8 . 5 - 0 . 2 4 2 8 9 8 . 7 1 . 6 3 8 0 . 6 1 2 0 . 0 6 2 S E G M E N T 8 1 8 8 7 8 . 7 . 3 6 4 . 8 0 1 1 6 . 6 6 . 8 0 3 2 4 . 5 - 1 . 3 4 8 - 0 . 1 0 9 - 0 . 0 3 5 S E G M E N T 9 5 6 0 9 . 8 . 1 8 1 1 . 2 2 3 3 . 1 - 5 . 2 8 - 7 0 6 . 0 I. 1 52 0 . I l l 0 . 0 9 0 SEGM ENT 10 1 2 2 6 2 . 7 . 3 4 7 . 6 5 - 1 2 . 8 8 . 2 3 - 1 2 0 . 9 9 . 0 9 8 1 . 8 2 5 0 . 0 6 3 - 102 -P r e d i c t i o n Output Two operations were performed to give the MATBAL program p r e d i c t i v e a b i l i t y . F i r s t , the data base was c a l i b r a t e d by i n s e r t i n g the system c a l i b r a t i o n values of Table 16 a t the end of the a p p r o p r i a t e segments. MATBAL was then run on the c a l i b r a t e d data base to ensure t h a t a l l r e s u l t i n g c o n c e n t r a t i o n and l o a d d i f f e r e n c e s were zero. Second, the data base was prepared f o r i m p o s i t i o n o f a r t i f i c i a l change by removing a l l segment boundary s t a t i o n s except the i n i t i a l i z a t i o n s t a t i o n a t Red Pass and f i n a l s t a t i o n a t Hope. The data base thus became one segment i n c o r p o r a t i n g a l l former i n f l u e n c e s as w e l l as c a l i b r a t i o n i n p u t s a t l o c a t i o n s corresponding to former segment boundaries. The above operations s t r u c t u r e the data so t h a t MATBAL's segment l e v e l d i l u t i o n c a l c u l a t i o n and summary process can operate f o r the complete system w i t h output provided a t segment s t a t i o n l o c a t i o n s . I n f l u e n c e s could then be changed o r i n s e r t e d a t w i l l and MATBAL would c a r r y the water q u a l i t y e f f e c t through the system based on d i l u t i o n . To i l l u s t r a t e p r e d i c t i o n output, the February data base of Table 6 was c a l i b r a t e d w i t h the a p p r o p r i a t e values from Table 16. A f t e r a c a l i b r a t i o n check, f o u r changes were made i n the data base which are l i k e l y consequences of f u t u r e development: 1. A new pulp m i l l was i n s e r t e d downstream from Hansard w i t h waste f l o w and q u a l i t y c h a r a c t e r i s t i c s equal to the average of e x i s t i n g m i l l s . 2. The f l o w of the McGregor R i v e r was reduced from 1129 to 500 c f s to simulate the e f f e c t of a dam. 3. The f l o w of the Nechako R i v e r was reduced to one h a l f the o r i g i n a l value to simulate the e f f e c t of a dam. 4. The waste f l o w from the P r i n c e George sewage treatment p l a n t was doubled while r e t a i n i n g the same q u a l i t y c h a r a c t e r i s t i c s . The r e s u l t s o f these changes are shown i n Table 17 f o r s e l e c t parameters. - 103 -TABLE 1? - FRASER MAIN STEM QUALITY.BEFORE.AND AFTER NEW DEVELOPMENT om«mjr>-vr TEMPERATURE S P E C I F I C D I S S O L V E D TOTAL <CJJJAIJ.II &iA±j.ufl / C N CONDUCTANCE SODIUM I R O N umhos/cm mg 5/1 mg/l obs. pred. obs. pred. obs. pred. obs. pred. Red Pass 0.5 0.5 142 142 0.8 0.8 0.029 0.029 McBride 0.5 0.5 114 114 1.7 1.7 0.40 0.40 Hansard 0.5 0.5 204 204 1.8 1.8 0.18 0.18 * new pulp m i l l * reduce McGregor S h e l l e y 1.0 1.3 216 225 2.1 4.3 0.31 0.34 * reduce * double Nechako domestic waste Red Rock 0.5 0.7 189 214 5.9 8.6 0.070 0.077 Quesnel 0. 0. 165 179 3.5 5.1 0.160 0.185 Marguerite 0.5 0.6 170. 182 5.8 7.4 0.10 0.109 Highway 20 0.5 0.6 163 173 4.1 5.3 0.16 0.18 L i l l o o e t 0. 0. 176 185 4.4 5.3 0.15 0.16 L y t t o n 2.0 2,2 154 160 4.0 4.8 0.18 0.195 Hope 2.0 2.2 130 132 3.3 3.8 0.048 0.048 The parameters pH and temperature are not a p p r e c i a b l y a f f e c t e d by the developments because a t t h i s time o f year these parameters are very s i m i l a r i n a l l t r i b u t a r i e s . D i s s o l v e d sodium and, to a l e s s e r extent, s p e c i f i c conductance are a f f e c t e d f o r a l o n g d i s t a n c e downstream as shown i n Fig u r e s l O and 11. I t i s worthy of note t h a t the induced e f f e c t i s g r e a t l y diminished a t Hope due to the l a r g e d i l u t i o n i n f l u e n c e of the Thompson River. DISSOLVED SODIUM (mg/l) FIGURE 10 - PREDICTED EFFECT OF NEW DEVELOPMENTS ON DISSOLVED SODIUM CONCENTRATION SPECIFIC CONDUCTANCE (umhos/cm) FIGURE 11 - PREDICTED EFFECT OF NEW DEVELOPMENTS ON SPECIFIC CONDUCTANCE - 106 -For sediment a s s o c i a t e d m a t e r i a l s , such as t o t a l i r o n , p r e d i c t i o n values are suspect because the framework assumes the same weight o f m a t e r i a l i s added o r deposited w i t h i n each segment regardless o f the changes made t o the system. This leads to two types o f e r r o r s . I n instances where a f l o w has been reduced, such as the Nechako R i v e r , the r e d u c t i o n i n m a t e r i a l i n p u t should be compensated by a r e d u c t i o n i n the weight o f m a t e r i a l t h a t s e t t l e s downstream. I n instances where new m a t e r i a l s have been introduced, such as the new pulp m i l l discharge, some of the new l o a d should s e t t l e downstream. Under the assumptions of the framework new m a t e r i a l s are simply d i l u t e d . P r e d i c t e d values are t h e r e f o r e low from the f i r s t type o f e r r o r and high from the second. The above sediment a s s o c i a t e d e r r o r s could be reduced by i n t r o d u c i n g a decay constant f o r each parameter and segment. These decay constants would take the place of the segment c a l i b r a t i o n values but must be coupled w i t h passage time from each i n f l u e n c e p o i n t to the segment boundary. As these data were not a v a i l a b l e , the use of c a l i b r a t i o n values and the assumptions i m p l i c i t i n them were the on l y recourse. I t should be noted t h a t the l o a d d i f f e r e n c e s generated from the m a t e r i a l s balance approach are the f i r s t step i n e v o l v i n g decay constants. - 10? -5.. D i s c u s s i o n and Summary Advantages of Use The framework developed and a p p l i e d here i s an intermediate step between s i n g l e purpose data c o l l e c t i o n and exhaustive systems modelling. As an intermediate designed to use data c o l l e c t e d f o r other purposes i t cannot answer a l l questions which might a r i s e i n the assessment of q u a l i t y e f f e c t s o r d u r i n g the ' development of r i v e r b a s i n plans. I t can be used to a i d i n the i n t e r p r e t a t i o n of data and e s t a b l i s h a crude r e p r e s e n t a t i o n of the system t h a t allows some estimates to be made. Advantages i n i t s use l i e i n the s i m p l i c i t y , f l e x i b i l i t y and speed of a p p l i c a t i o n and i n b e n e f i t s a s s o c i a t e d w i t h an i n t e g r a t e d approach as discussed below: ( i ) I d e n t i f i c a t i o n o f Data Gaps Data gaps i n both q u a l i t y and f l o w became apparent d u r i n g i n v e n t o r y of t r i b u t a r i e s and r e c e i v i n g water monitoring s i t e s . The f i v e r i v e r s i n Segments 1 and 2 about which nothing i s known and yet which i n f l u e n c e t h a t reach of the F r a s e r R i v e r to a l a r g e extent are a case i n p o i n t . Data o r g a n i z a t i o n , such as shown i n Table 2, provides a quick reference of what data e x i s t s and what does not. This i s a major advantage of a m a t e r i a l s balance approach even though i t i s not a d e f i n e d output of the a n a l y s i s . ( i i ) E r r o r D e t e c t i o n E r r o r s were detected both during assembly of the data base and through the a n a l y s i s . To assemble the data base a l l monitoring s i t e l o c a t i o n s i n the F r a s e r watershed had to be examined as p o t e n t i a l segment boundaries - 1 0 8 -or t r i b u t a r y data stations. Several errors were detected i n s t a t i o n l o c a t i o n designations. I t was also apparent that many s i t e descriptions d i d not have s u f f i c i e n t d e t a i l to allow l o c a t i o n of the same sampling point by a new f i e l d agent. During c o l l e c t i o n of waste permit and q u a l i t y data, errors were found that l i k e l y represent keypunching errors or i n c o r r e c t conversion to metric units. In a more humorous vein, a water l i c e n s e flow u n i t a b r e v i a t i o n was encountered which no one knew the meaning of. From the materials balance aspect of the analysis i t was possible to conclude that dissolved sodium and s p e c i f i c conductance measures were not representative of mean monthly q u a l i t y at some segment s t a t i o n s . Another inconsistency was discovered i n Water Survey of Canada flow f i g u r e s . One would expect that the Fraser River flow at some point plus a downstream t r i b u t a r y flow would add up to something l e s s than what was observed even f u r t h e r downstream. In both A p r i l and Ju l y of 1976 the flow of the Fraser River measured at Marguerite (57>000 and 1^3,000 cfs resp e c t i v e l y ) plus major downstream t r i b u t a r i e s (approximately 4,700 and 21,100 cfs re s p e c t i v e l y ) added up to more than was observed f u r t h e r downstream above Texas Creek (58,300 and 163,000 r e s p e c t i v e l y ) . These figures include flow estimates f o r the Bridge.River as no data was a v a i l a b l e f o r 1976 however, even i f the estimates are excluded the flow values f o r A p r i l s t i l l are inconsistent and unaccounted flows have not been considered. This indicates e i t h e r one or more of the flow measures are i n c o r r e c t or an underground d i s t r i b u t a r y e x i s t s . The lack of representative data describing the Fraser River system l e d to the conclusion that an attempt to e s t a b l i s h standard q u a l i t y conditions f o r MATBAL c a l i b r a t i o n and f o r v e r i f i c a t i o n with an independent data set would be premature. I t i s f e l t that the large number of errors - 109 -detected were a d i r e c t r e s u l t o f the approach to data c o l l e c t i o n . Diverse data was r e q u i r e d that cut across the s i n g l e purpose a c t i v i t i e s of the agencies i n v o l v e d . T h i s , p l u s the m a t e r i a l s balance approach, made most i n c o n s i s t e n c i e s obvious. ( i i i ) Inter-Agency Go-ordination The p r e d i c t i o n output o f the d i l u t i o n model shows how d e c i s i o n s made by one j u r i s d i c t i o n o r agency can a f f e c t the range o f options a v a i l a b l e to another. Even i n a r i v e r the s i z e o f the F r a s e r , a d d i t i o n a l waste loads reduce downstream a v a i l a b l e c a p a c i t y as would major flo w d i v e r s i o n s . From the p o i n t o f view o f water q u a l i t y management waste discharge and b e n e f i c i a l use a l l o c a t i o n s cannot be separated. The framework provides a mechanism f o r t e s t i n g the downstream consequences of d e c i s i o n s o f both types. Opportunities e x i s t f o r the c o - o r d i n a t i o n o f agency a c t i v i t i e s . During the c o m p i l a t i o n o f the data base i t became, apparent t h a t many users of the system o b t a i n a water l i c e n s e to withdraw process feed and a waste permit to discharge process e f f l u e n t . Instances where one occurred without the other were r e a d i l y apparent. Thus, i t was p o s s i b l e to i d e n t i f y a development which d i d not have a discharge permit f o r wastes . generated. through i t s water l i c e n s e . This suggests.that some•referral process from the Water Rights Branch to the P o l l u t i o n C o n t r o l Branch i s warranted. As discussed p r e v i o u s l y , most agencies have t h e i r own data c o l l e c t i o n programs s u i t e d to t h e i r o b j e c t i v e s and l i t t l e shared use of i n f o r m a t i o n occurs. I n c o l l e c t i n g data from these agencies f o r a pooled data base s e v e r a l o b s t a c l e s were encountered. S i t e s , parameters, a n a l y s i s techniques, and sampling times were d i f f e r e n t and p e c u l i a r to each agency. Another major o b s t a c l e was the use of d i f f e r e n t u n i t s . - 110 -I f these agencies were to agree to a common parameter l i s t , standard forms o f a n a l y s i s , and c o n s i s t e n t sampling l o c a t i o n s and times, as i s r e q u i r e d f o r a p p l i c a t i o n of MATBAL, some d u p l i c a t i o n of e f f o r t could he avoided and a great d e a l more would he known about the c h a r a c t e r of the water system. ( i v ) E s t a b l i s h Research and Monitoring P r i o r i t i e s By knowing the magnitude o f unaccounted flows and parameter loads over d i s t a n c e and time i t i s p o s s i b l e d i r e c t monitoring and research a c t i v i t i e s to those segments and processes which a f f e c t downstream q u a l i t y . A base i s e s t a b l i s h e d through the? d i l u t i o n model and d e v i a t i o n s from i t as shown by the m a t e r i a l s balance l e a d to questions of p a r t i c l e s i z e behavior, composition and sedimentation r a t e s , thermal exchange, the e f f e c t s of la n d use types on surface r u n o f f , sub-basin water and chemical budgets, the composition and r a t e o f groundwater i n f l o w and in-stream r e a c t i o n s . The percentage change i n downstream c o n c e n t r a t i o n provided i n the s i t e s p e c i f i c output allows the r e l a t i v e e f f e c t of each input t o be placed i n p e r s p e c t i v e . As p r e v i o u s l y mentioned, t h i s percentage change i s the t h e o r e t i c a l minimum because i t i s based on instantaneous d i s p e r s i o n . The a c t u a l change induced by an input might be h i g h e r o r lower due to unaccounted upstream i n f l u e n c e s and would c e r t a i n l y be l a r g e r i n the i n i t i a l d i l u t i o n zone. The unknown e f f e c t of unaccounted i n f l u e n c e s could be o f f s e t by i n s e r t i n g a p o r t i o n o f the of the observed segment l o a d d i f f e r e n c e s upstream based on d i s t a n c e o r through the use of decay constants however, without d e t a i l e d data on sedimentation r a t e s o r l o c a t i o n t h i s could not be attempted. - I l l -In addition, i t was f e l t that the scale of t h i s analysis and uncertainty i n data d i d not warrant f u r t h e r manipulation. The t h e o r e t i c a l percentage change values are i n d i c a t o r s , not absolutes. In B r i t i s h Columbia, where re c e i v i n g water standards f o r the c o n t r o l of waste discharge are based p r i m a r i l y on n e g l i g i b l e change r e s u l t i n g downstream, these percentage change measures could be used to p r i o r i z e monitoring, t e c h n i c a l assistance and enforcement a c t i v i t i e s . Although i t might reduce administrative f l e x i b i l i t y , i t would c e r t a i n l y add c l a r i t y i f the ambiguous term ' n e g l i g i b l e ' were defined i n terms of percentage.change. An a d d i t i o n a l advantage of organizing data as i n Tables 6, 7 and 8 i s that influences with poor parameter coverage stand out as data gaps i n the table. For example, no data had been generated f o r metal concentrations i n pulp m i l l , sawmill or domestic waste e f f l u e n t s and i t was necessary to use t h e o r e t i c a l values from the l i t e r a t u r e . I t has been demonstrated that manganese and i r o n loads are i n excess of c r i t e r i a i n most reaches of the Fraser River at some time during the year and any a d d i t i o n a l loads from waste discharge should be known. S i m i l a r i l y , the enhanced i n t e r p r e t a b i l i t y of load data as opposed to concentration data has been demonstrated and suggests that flow should be monitored any time q u a l i t y data i s c o l l e c t e d . F i n a l l y , by i d e n t i f y i n g which parameters are or are l i k e l y to be sources of impact and then examining e x i s t i n g data f o r these parameters i t i s possible to request analyses at l o c a t i o n s where impact i s l i k e l y to occur and f o r those influences which are l i k e l y to cause i t . Knowing the l o c a t i o n and magnitude of each influence a f f e c t i n g the system, a monitoring scheme could be evolved to s u i t the unique behavior of the p a r t i c u l a r system under study. The lack of necessary parameter - 112 -coverage and the sm a l l sample i n time examined f o r the F r a s e r prevent establishment o f a s u r v e i l l a n c e network based on the case study. I t i s f e l t t h a t the segment boundary s t a t i o n s s e l e c t e d are s u i t e d to the assessment o f fo r s e e a b l e development demands, are e a s i l y a c c e s s i b l e , and make the best use of h i s t o r i c a l records. They should t h e r e f o r e be maintained i n f u t u r e i n v e s t i g a t i o n s . (v) Trend D e t e c t i o n Simply having the mean monthly fl o w and q u a l i t y measures of segment boundaries, t r i b u t a r i e s , waste inputs and withdrawals i n a c e n t r a l organized form us i n g common measurement u n i t s i s a good f i r s t step i n the d e t e c t i o n of trends. Were the values t r u l y mean values they should be accompanied by a varia n c e o r standard d e v i a t i o n measure so t h a t s t a t i s t i c a l t e s t s , such as a T-test of pooled v a r i a n c e , could be employed to detect s t a t i s t i c a l l y s i g n i f i c a n t change i n mean values over time and d i s t a n c e . A s i g n i f i c a n t change a t a segment boundary might then be r e l a t e d through r e g r e s s i o n a n a l y s i s to change i n some waste i n p u t , grouping o f waste i n p u t s , o r t r i b u t a r y . This type of a n a l y s i s r e q u i r e s much more data than are p r e s e n t l y a v a i l a b l e but, as the data base grows over time and i n v a l i d i t y as tru e r e p r e s e n t a t i o n s of mean character, i t could a l l o w causal l i n k s to be e s t a b l i s h e d . Throughout t h i s t h e s i s water q u a l i t y c r i t e r i a have been used as a measure of impact under the assumption t h a t acceptable harm o r r i s k thresholds have been e s t a b l i s h e d . Due to the process o f bioaccumulation and metals m i g r a t i o n through bed sediments, organisms may s u f f e r impact even though water q u a l i t y . c r i t e r i a have-riot.been exceeded. The in-stream' p o p u l a t i o n , -species d i v e r s i t y - and -tissue metal content o f benthic organisms should be r o u t i n e l y determined a t each segment boundary as - 1 1 3 -an on-going and d i r e c t i n d i c a t o r of s u b - l e t h a l impact trends. Water q u a l i t y c r i t e r i a and standards may have to be r e v i s e d to r e f l e c t the p e c u l i a r i t i e s o f the water system. ( v i ) A Tool For Planning C a l c u l a t i o n s The goal o f a water management p l a n i s to determine what use should be made of the resource so t h a t maximum b e n e f i t may be de r i v e d a t minimum cost now and i n the f u t u r e . The planner must develop a procedure which defines the e x i s t i n g supply o f the resource f o r v a r i o u s uses, assesses the demand f o r f u t u r e use, and a l l o c a t e s the supply amoung the v a r i o u s and v a r i a b l e demands i n a manner which ensures t h a t no e x i s t i n g o r p o t e n t i a l use i s l o s t unless i t has been determined t h a t i t should be l o s t . There are th e r e f o r e many p o l i c y d e c i s i o n s , such as agreement upon standards, the extent to which n a t u r a l processes should be modified, the value of a l t e r n a t i v e uses and eq u i t y i n d i s t r i b u t i o n , which r e l y upon a t e c h n i c a l assessment of the present and p r e d i c t e d f u t u r e behavior o f m a t e r i a l loads i n the water system. Two aspects o f the framework a s s i s t i n d e f i n i n g the system's a s s i m i l a t i v e c a p a c i t y and i n a t e c h n i c a l e v a l u a t i o n o f a l t e r n a t i v e scenarios of d i s t r i b u t i o n and use of t h a t c a p a c i t y . F i r s t , MATBAL's mean a v a i l a b l e c a p a c i t y output provides an estimate by parameter of the a d d i t i o n a l load each segment can a s s i m i l a t e before use c r i t e r i a are exceeded. Second, the p r e d i c t i o n output provides an estimate of the q u a l i t y e f f e c t downstream f o r any combination of load a d d i t i o n s o r f l o w s u b t r a c t i o n s a s s o c i a t e d w i t h a use a l l o c a t i o n . As has been pointed out, i n i t s present form MATBAL i s l i m i t e d to f l o w i n g surface waters and to non-reactive parameters. A l s o , the plann i n g c a l c u l a t i o n s operate a t the segment l e v e l . I t i s t h e r e f o r e - 114 -best used f o r inter-segment comparison d e c i s i o n s which are dependent upon these parameters. I n systems where n u t r i e n t o r d i s s o l v e d oxygen are l i m i t i n g f a c t o r s a d e c i s i o n would have to be made to e i t h e r develop a new framework s t r u c t u r e f o r r e a c t i v e m a t e r i a l s o r modify MATBAL f o r the assessment and p r e d i c t i o n of these m a t e r i a l s through the a d d i t i o n of decay formula. For those systems where the framework may be used, the f o l l o w i n g steps show how MATBAL can a s s i s t the planning process: (1) Determine the mean, a v a i l a b l e c a p a c i t i e s f o r each segment f o r the flow c o n d i t i o n which represents the r i v e r ' s lowest a s s i m i l a t i v e c a p a c i t y . (2) Based on the mean a v a i l a b l e c a p a c i t i e s and r e s e r v i n g a margin o f s a f e t y , a l l o c a t e the a v a i l a b l e c a p a c i t y t o the demand which has been determined (through other weighting methods not here discussed) to have highest p r i o r i t y o r determine the source of m a t e r i a l loads i n excess o f c r i t e r i a . (3) E i t h e r i n s e r t the new a l l o c a t i o n i n f l u e n c e concentrations and f l o w o r reduce the of f e n d i n g i n f l u e n c e i n the data base and p r e d i c t the r e s u l t i n g downstream q u a l i t y a t each segment s t a t i o n . (4) Update the o r i g i n a l segment s t a t i o n values w i t h the p r e d i c t e d downstream values. (5) Run MATBAL to generate new mean a v a i l a b l e c a p a c i t i e s f o r each segment which i s a f f e c t e d by the a l l o c a t i o n o r red u c t i o n . (6) Repeat steps (2) through (5) f o r each a l l o c a t i o n demand. The process i s an incremental a d d i t i o n o r r e d u c t i o n of loads which should r e s u l t i n a p r o j e c t p l a n t h a t ensures q u a l i t y c r i t e r i a are not exceeded. There are many economic and f u n c t i o n a l f a c t o r s which have not been considered here however, i t should be evident t h a t a great deal of l a b o r i o u s manual c a l c u l a t i o n can be performed q u i c k l y and cheaply through the approach which are necessary f o r a t e c h n i c a l e v a l u a t i o n of the e f f e c t of a l t e r n a t i v e management d e c i s i o n s and plans. With minor m o d i f i c a t i o n s , much of the above process c o u l d be automated. I t might a l s o be l i n k e d to economic e v a l u a t i o n models. - 115 -Data L i m i t a t i o n s Through the course of t h i s i n v e s t i g a t i o n i t has become c l e a r t h a t the v a l i d i t y o f the .framework output i s dependent upon the accuracy o f the data base as a r e p r e s e n t a t i o n o f mean monthly character. I f the data are not r e p r e s e n t a t i v e then the framework in c o r p o r a t e s the de v i a t i o n s i n the aggregate e f f e c t of unknown i n f l u e n c e s . Unrepresentative data f o r conservative parameters may be detected through the m a t e r i a l s balance however, a p p l i c a t i o n o f the approach to sediment a s s o c i a t e d parameters does not provide an i n t e r n a l check. To be conf i d e n t o f the r e s u l t s of a n a l y s i s , confidence must be e s t a b l i s h e d i n the data base. I n v e s t i g a t i o n o f m u l t i p l e samplings f o r n u t r i e n t s i n the Squamish R i v e r ( K l e i b e r , 197?) has shown tha t : " ... s i n g l e samples c o l l e c t e d monthly o r q u a r t e r l y would provide imprecise measures o f mean monthly o r q u a r t e r l y concentrations. Loading estimates d e r i v e d from these c o n c e n t r a t i o n values would a l s o be imprecise. " Further , i t has been suggested (Oguss, 19?6) t h a t a s i n g l e grab sample taken as an i n d i c a t o r o f water q u a l i t y i s meaningless without an estimate of e r r o r s a s s o c i a t e d w i t h e i t h e r g e t t i n g a high s i n g l e sample when the mean c o n c e n t r a t i o n i s i n f a c t much lower o r • g e t t i n g a low s i n g l e sample when the mean c o n c e n t r a t i o n i s high. Sampling e r r o r s may a r i s e from sample^Qontainer contamination, s p a t i a l non-homogeneity across the stream c r o s s - s e c t i o n , and from temporal v a r i a t i o n over the p e r i o d o f i n t e r e s t . Contamination can be c o n t r o l l e d through r i g o r o u s c l e a n i n g procedures, s p a t i a l d i f f e r e n c e s can be averaged i f s u f f i c i e n t samples are taken along a t r a n s e c t , and temporal v a r i a t i o n can be determined i f s u f f i c i e n t sampling t r i p s are made over time. To determine the s u f f i c i e n t number of r e p l i c a t e samples - 116 -and t r i p s r e q u i r e d to minimize u n c e r t a i n t y i n water q u a l i t y values under budget c o n s t r a i n t s one must f i r s t estimate the variance i n the values through i n t e n s i v e sampling, then use s t a t i s t i c a l r e l a t i o n s h i p s to determine optimum sampling frequency based on l e v e l s o f d i s c r i m i n a t i o n and p r o b a b i l i t y acceptable to the a n a l y s i s o b j e c t i v e s . U l t i m a t e l y , one must balance the l o s s e s a s s o c i a t e d w i t h an i n a c c u r a t e answer w i t h the c o s t o f data c o l l e c t i o n necessary to decrease u n c e r t a i n t y i n the estimate. R e l a t i o n s h i p s developed i n the l i t e r a t u r e ( N i e l s e n , 1975; Moore, 1976; K l e i b e r , 1978) show t h a t sampling co s t s r i s e e x p o n e n t i a l l y w i t h decreasing u n c e r t a i n t y . To e s t a b l i s h e r r o r l i m i t s f o r MATBAL outputs each datum should be accompanied by a variance measure determined through r e p e t i t i v e sampling t r i p s each month and r e p l i c a t e samples a t each s i t e i n the s u r v e i l l a n c e network. At the very l e a s t t h i s should be done f o r the major i n f l u e n c e s i d e n t i f i e d and segment boundary check s t a t i o n s . Outputs could then be expressed as ranges and s t a t i s t i c a l l y s i g n i f i c a n t changes i d e n t i f i e d . With a v a i l a b l e data one cannot be sure whether the c a l c u l a t e d l o a d d i f f e r e n c e s r e f l e c t non-point i n f l u e n c e s o r simple data e r r o r s . - 1 1 ? -Summary Though s i m i l a r i n nature, the i n f o r m a t i o n reguirements o f p o l l u t i o n abatement a c t i v i t i e s are much d i f f e r e n t than those of impact preve n t i o n a c t i v i t i e s . Both f a l l under the umbrella of water resource management but abatement focuses on p o i n t discharge c o n t r o l w h ile prevention r e q u i r e s understanding of system behavior. With r e c o g n i t i o n of the need f o r both types of a c t i v i t i e s i n f o r m a t i o n systems may be designed to maximize shared use of water q u a l i t y d a t a . f o r both purposes. MATBAL s t r u c t u r e s .diverse r e g u l a t o r y agency data to r e v e a l new i n s i g h t i n t o system behavior, and o p p o r t u n i t i e s f o r enhanced agency co-operation. Most water q u a l i t y models deal s t r i c t l y w i t h conservative parameters and BOD/DO or' n u t r i e n t behavior (Enviro C o n t r o l I n c . , 1 9 7 1). The major i n d u s t r i a l i z e d r i v e r s o f the world, i n c l u d i n g the Thames, the Rhine, and the lower F r a s e r , have been the su b j e c t of BOD/DO modelling. Only r e c e n t l y have t r a c e metals and sediments been recognized as problem parameters and very l i t t l e work has been d i r e c t e d to modelling t h e i r behavior, p r i m a r i l y due to the complexity of mass t r a n s p o r t models. Few : r i v e r s i n B r i t i s h Columbia are so s e v e r e l y taxed by waste discharge and withdrawals t h a t the more obvious BOD/DO problem warrants study and model development. There may t h e r e f o r e be a tendency to ignore the l e s s obvious problem of metals and sediment behavior because i t does not appear to be worth the e f f o r t yet. The a n a l y t i c a l framework developed here, while i t does not give d e t a i l e d answers to metal m i g r a t i o n q u e r i e s , does provide an idea of t h e i r behavior simply and i n e x p e n s i v e l y and w i t h r e l a t i v e l y few demands' f o r data. - 118 -l a t e r resource management i n B r i t i s h Columbia has focused on data c o l l e c t i o n f o r point source p o l l u t i o n abatement and streamflow planning. As the demands f o r both b e n e f i c i a l and detrimental use of a l i m i t e d water resource increase, so w i l l the need f o r systematic water q u a l i t y planning. MATBAL can a s s i s t i n the t r a n s i t i o n from simple data c o l l e c t i o n and storage to complex systems modelling:because the r i v e r - q u a l i t y assessment framework q u a n t i f i e s the diff e r e n c e between what i s known and what i s not known but can be observed. Thus, the ultimate goal i n the use of the framework would be to reduce t h i s q u a n t i f i e d margin of uncertainty through monitoring and research thereby r e s u l t i n g i n a system which i s understood and predictable. In i t s present form and with e x i s t i n g data i t s best use i s as a t o o l to guide these i n v e s t i g a t i o n s . With reduced errors and b e t t e r understanding the planning aspects of the framework, estimation of a v a i l a b l e capacity and impact p r e d i c t i o n , w i l l take on greater meaning and use. - 119 -CHAPTER k - CONCLUSIONS AND RECOMMENDATIONS The s t r e a m - q u a l i t y assessment and planning framework presented i n .this t h e s i s i s i n a developmental stage and i s only a . t o o l to a i d i n the development o f water q u a l i t y plans. There are many improvements to he made i n both t e c h n i c a l a n a l y t i c a l a b i l i t i e s and the i n s t i t u t i o n a l environment which .governs i t s use. 1. Technical/Methodological Conclusions #1 EXPAND THE; FRAMEWORK'S APPLICABILITY As developed, the framework i s only a p p l i c a b l e to r e g i o n a l assessment of f l o w i n g surface waters and a s e l e c t parameter l i s t . To be g e n e r a l l y a p p l i c a b l e the framework should c o n t a i n p r o v i s i o n s f o r s i t e s p e c i f i c l a t e r a l d i s p e r s i o n assessment and i n c l u s i o n o f r e a c t i v e parameters. Both aspects r e q u i r e stream l e n g t h d i s t a n c e data. With such data, the framework could be given two-dimensional c h a r a c t e r from the input p o i n t to the p o i n t o f complete d i s p e r s i o n through the use of s e v e r a l one-dimensional frameworks l i n k e d i n p a r a l l e l . Inputs could then be d i l u t e d i n stages across the r i v e r to simulate plume mixing. Reactive parameters could have segment s p e c i f i c decay constants to simulate t h e i r l o s s over time . The framework remains the b a s i c s t r u c t u r e which may be made more complex as the s i t u a t i o n warrants,and data permits. #2 KEY EQUIS DATA FOR SYSTEM SURVEILLANCE I t has been shown t h a t the abatement o r i e n t e d - d e s i g n of EQUIS can l e a d to d i f f i c u l t y i n data assembly f o r planning purposes. An EQUIS s i t e d e s i g n a t i o n d e l i n e a t i n g s e l e c t s i t e s as pa r t o f a new p r o v i n c i a l water q u a l i t y s u r v e i l l a n c e network would a s s i s t . As has been mentioned, - 120 -each s i t e should a l s o he accompanied by a measure of the distance from the mouth of the water system. Data r e t r i e v a l would a l s o be much s i m p l e r i f the s i t e s and a s s o c i a t e d data c o l l e c t e d f o r water l i c e n s e s by the Water Rights Branch and stream gauging by the Water Survey of Canada were i n c l u d e d i n the EQUIS data base. U l t i m a t e l y i t would be u s e f u l to i n c l u d e the l o c a t i o n o f va l u a b l e b e n e f i -c i a l use s i t e s , such as spawning h a b i t a t reaches, which have not been l o c a t e d f o r the purpose of r e g u l a t i o n i n a systematic form. #3 LINK MATBAL TO EQUIS The MATBAL framework should be viewed as a t o o l f o r data i n t e r p r e t a -t i o n which must be l i n k e d to a data storage system. I f the r e v i s i o n s to EQUIS mentioned i n #2 above were made, a l l the data requirements of MATBAL could be s a t i s f i e d . EQUIS a l r e a d y possesses a r e t r i e v a l form, mean values by year and month, which assembles a l l data f o r a given month and s i t e along with the a s s o c i a t e d standard d e v i a t i o n . This EQUIS output could be a . d i r e c t MATBAL input. With m o d i f i c a t i o n s the framework c o u l d be a data manipulation o p t i o n o f EQUIS t h a t would a l l o w a water q u a l i t y manager to view r e l e v a n t i n f o r m a t i o n , d i s c e r n data gaps and explore a l l o c a t i o n a l t e r n a t i v e s . #4 DEVELOP OTHER MODELS The framework i s a simple t o o l f o r e s t i m a t i n g in-stream processes. B e t t e r understanding of these net e f f e c t s would r e s u l t i f each process were modelled. For example, the m a t e r i a l s balance approach could be ex-tended to bed sediment t r a n s p o r t and composition. Surface r u n o f f models based on sub-basin water and chemical budgets could be developed to cope with problem parameters and watersheds. To provide more comprehensive planning i n f o r m a t i o n f o r areas of high development pressure or e c o l o g i c a l importance, treatment cost - 121 -functions could Toe developed f o r waste dischargers. This information coupled with mean av a i l a b l e capacity output, could he structured i n t o a l o c a t i o n optimization model based on q u a l i t y e f f e c t s and a b i l i t y to pay. Demand models could be developed f o r b e n e f i c i a l use types based on pre-ference sampling, resource a v a i l a b i l i t y and population projections. The demand models could also be incorporated i n an optimization model and would a s s i s t program planning. 2. I n s t i t u t i o n a l / P o l i c y - R e l a t e d Conclusions #5 ACCEPT THE ECOSYSTEM APPROACH The ecosystem approach i s the basis of integrated resource manage-ment. In the words of the Honourable W.R. Bennett, Premier of the province of B r i t i s h Columbia (Bennett, .1978): "While we seek to protect our environment and provide f o r the well-being of the people of B r i t i s h Columbia, we have to be c a r e f u l not to destroy the i n i t i a t i v e of firms and i n d i v i d u a l s who develop our resource base i n our mutual i n t e r e s t s . " "We w i l l achieve the b e n e f i t s of integrated resource management through responsible government which a r t i c u l a t e s i t s p o l i c i e s c l e a r l y , lays out the ground r u l e s , and supports these through l e g i s l a t i o n and programs. We w i l l apply the best t e c h n i c a l knowledge and a n a l y t i c a l techniques to i d e n t i f y and weigh the choices before us - and where value judgements must be made, we w i l l consult with i n t e r e s t e d groups and i n d i v i d u a l s . " This desire to maximize s o c i a l u t i l i t y must be t r a n s l a t e d i n t o programs f o r water q u a l i t y assessment and control. The p r i n c i p l e s of the ecosystem approach must be accepted and i n s t i t u t e d i n the data c o l l e c t i o n and manipulation procedures of a l l those charged with a l -l o c a t i o n of the water resource. This means that c r i t e r i a f o r a l l b e n e f i c i a l uses should be developed and adopted by the province, the a s s i m i l a t i v e capacity of the resource should be i d e n t i f i e d and monitored through regional s u r v e i l l a n c e of flow i n conjunction with - 122 -q u a l i t y , methods must he developed to allow comparison of the c o n f l i c t i n g values of resource use, and the information must he put i n a form which w i l l he understood by concerned groups and i n d i v i d u a l s . Acceptance of t h i s approach w i l l not occur spontaneously. There must be a precise program f o r i t s implementation to co-ordinate with e x i s t i n g abatement a c t i v i t i e s . The s t a r t i n g point should be a p o l i c y that a l l highly stressed or e c o l o g i c a l l y important watersheds develop a water resource plan. As the Municipal Act presently requires that regional d i s t r i c t s , settlement areas and communities develop land use plans, i t may be necessary to wait u n t i l the land-based plans are formed before proceeding with water-based plans so that the demand fa c t o r s of the land could be incorporated. In addition, the experience i n funding, public input and l e v e l of profession-alism gained i n the land-based plans could then be used to guide the s i m i l a r water-based program. I d e a l l y , water and land-based plans should be developed concurrently. Due to the t e c h n i c a l nature of water q u a l i t y data, the r e s p o n s i b i l i t y f o r data c o l l e c t i o n and i n t e r p r e t a t i o n to s u i t the information needs of water q u a l i t y planning must l i e with the governments. Consultants would not have the time to e s t a b l i s h the necessary data base and i t i s e s s e n t i a l that a l l o c a t i o n decisions be based on a consistent approach to a n a l y s i s . Parameters f o r study should be selected on t h e i r p o t e n t i a l to cause impact now or i n the future. I t i s also e s s e n t i a l that water q u a l i t y c r i t e r i a a l -ready be accepted as the basis f o r the a n a l y s i s . #6 CO-ORDINATE FEDERAL AND PROVINCIAL ACTIVITIES There i s a l i m i t e d pool of agency resources a v a i l a b l e f o r the study and control of water q u a l i t y . The most e f f i c i e n t u t i l i z a t i o n of these resources requires co-ordination of t h e i r a c t i v i t i e s . I t has been shown that diverse agency objectives and methods lead to d i f f i c u l t y i n the comprehensive task of planning. Some r e s p o n s i b i l i t i e s may be missed i f - 123 -there i s no overview of what i s being done and f i n d i n g s o f one agency which might be u s e f u l to another may never be known or i f they are known they may be i n a form not u s e f u l to the other. These are problems i n communication and may be r e c t i f i e d through contact and s t a n d a r d i z a t i o n . From a system p e r s p e c t i v e the l a r g e s t d i f f i c u l t y i n data i n t e r p r e t a -t i o n o r i g i n a t e s from the c o n s t a n t l y changing sample c o l l e c t i o n times, l o c a t i o n s , and a n a l y s i s parameters both w i t h i n each agency and between agencies. Times, s i t e s and parameters should be standardized f o r each watershed based on i t s flow and q u a l i t y c h a r a c t e r i s t i c s , i n f l u e n c e s t r u c -t u r e and demands f o r use. By t h i s i t i s meant t h a t each watershed should have a monitoring p l a n agreed upon by a l l agencies t o ensure broadest use of the data generated. Sampling s i t e s f o r system s u r v e i l l a n c e and abate-ment s u r v e i l l a n c e should be d e l i n e a t e d and f i x e d . There w i l l be some opportunity f o r i d e n t i f i c a t i o n o f s i t e s s u i t e d to both purposes. C o l l e c t i o n times should a l s o be determined and f i x e d , For example a l l data should be c o l l e c t e d w i t h i n the same month q u a r t e r l y . This would not hinder use of the data f o r abatement and would e s t a b l i s h some system consistency. Watersheds might be staggered i n time t o reduce peak loads on f i e l d and l a b o r a t o r y personnel. Consultants would welcome the econo-mies of s c a l e . Random spot checks should a l s o occur to ensure permittees do not abuse the f i x e d schedule. F i n a l l y , a common parameter l i s t , i n c l u d i n g f l o w and q u a l i t y para-meters important to the watershed, should be developed and adhered t o f o r every sample taken. The only time a parameter should be dropped would be i f i t has been determined over time t h a t i t does not e x i s t i n the system or t h a t i t i s not a s i g n i f i c a n t impact parameter. The recent purchase by the Environmental Laboratory of an i n d u c t i v e l y coupled plasma s p e c t r o -meter allows simultaneous determination of over f i f t y elements. Once the sample has been gathered, there i s very l i t t l e e x t r a cost i n the - 124 -determination of t h i r t y elements as compared t o , say, three. Other analy-ses are more expensive because they are manual, however automation i s b r i n g i n g about economies o f s c a l e . Another aspect o f parameter s t a n d i -z a t i o n i s the need f o r i d e n t i c a l f e d e r a l and p r o v i n c i a l a n a l y s i s methods. An example i s the f e d e r a l a f f i n i t y f o r e x t r a c t a b l e metals versus the p r o v i n c i a l r e l i a n c e on t o t a l metals. Each uses a d i f f e r e n t a c i d i n sample d i g e s t i o n , and although the two have been used interchangeably i n t h i s study, most s c i e n t i s t s would argue t h a t they cannot be compared. This i s c l e a r l y a hindrance to common data use and should be e l i m i n a t e d i n the i n t e r e s t s of e f f i c i e n c y , The above problems are not new to those working i n the f i e l d . Yet, the only instances where c o - o r d i n a t i o n has occurred are i n the j o i n t s t u d i e s performed under the Canada Water Act. Even i n these i n s t a n c e s , though h i s t o r i c a l data d i d e x i s t , the l a c k of e a r l y c o - o r d i n a t i o n p r i o r t o study onset meant t h a t new data had to be c o l l e c t e d because h i s t o r i c a l data was suspect. The only s i g n i f i c a n t step toward c o - o r d i n a t i o n i n the long term was the d e c i s i o n to pool f e d e r a l and p r o v i n c i a l data i n EQUIS. How-ever, without accompanying changes i n f i e l d and l a b o r a t o r y procedures, the common data base only promotes e f f i c i e n c y i n data r e t r i e v a l and not data i n t e r p r e t a t i o n . The s o l u t i o n seems to be a long term movement toward s t a n d a r d i z a t i o n i n f i e l d and l a b o r a t o r y procedures through c o n t i n u i n g dialogue. Such dialogue should not be s p e c i f i c to a p a r t i c u l a r study and should be es t a -b l i s h e d as an e n t i t y w i t h purpose, budget and the a u t h o r i t y to b r i n g about change. I t i s suggested t h a t the e n t i t y be a j o i n t f e d e r a l / p r o v i n c i a l committee e s t a b l i s h e d under the Canada Water Act w i t h r e p r e s e n t a t i v e s from the P o l l u t i o n C o n t r o l Branch, Water I n v e s t i g a t i o n s Branch, Water Eights Branch, and the Environmental Laboratory of the M i n i s t r y of Environment, - 125 -the Water Q u a l i t y Branch and Water Survey of Canada Branch o f the I n l a n d Waters D i r e c t o r a t e , the Water P o l l u t i o n C o n t r o l D i r e c t o r a t e , and t h e i r l a b o r a t o r i e s . The committee should f i r s t examine present water resource management a c t i v i t i e s to i d e n t i f y gaps i n abatement and prevention a c t i v i -t i e s and o p p o r t u n i t i e s f o r co-ordinated a c t i o n . Other r e s p o n s i b i l i t i e s should i n c l u d e agreement upon common monitoring s i t e s and times, deter-mination of the number of r e p l i c a t e s r e q u i r e d f o r s t a t i s t i c a l l y v a l i d d ata, the determination of watershed p l a n development p r i o r i t i e s and agreement upon a master parameter l i s t which could be modified to s u i t p a r t i c u l a r watersheds. C r i t e r i a and standards might a l s o be developed i n t h i s forum. The recommendations of the committee should be su b j e c t t o p u b l i c review and r e v i s i o n . I t w i l l a l s o be necessary to have a l i n k w i t h land use planning agencies to o b t a i n i n f o r m a t i o n regarding development plans and p r i o r i t i e s so t h a t planning e f f o r t and s u r v e i l l a n c e coverage can be s h i f t e d and focussed. #? ESTABLISH QUALITY CONTROL IN THE FIELD Whether agencies decide to co-ordinate t h e i r a c t i v i t i e s o r not, i t i s e s s e n t i a l t h a t data c o l l e c t i o n programs i n the f u t u r e ensure that measure-ments are r e p r e s e n t a t i v e o f the water system. A great d e a l o f e f f o r t i s spent i n the l a b o r a t o r y upon q u a l i t y c o n t r o l . Equipment i s standardized, d u p l i c a t e sub-samples are analyzed and compared, c a l c u l a t i o n s are checked by s e v e r a l people, and o f t e n an a n i o n - c a t i o n balance check i s performed w i t h anomalies subject to r e a n a l y s i s . This e f f o r t may be wasted i f the sample was not r e p r e s e n t a t i v e of the water f o r which i n f o r m a t i o n i s needed. As.has been discu s s e d , the s o l u t i o n to t h i s problem i s a s t a t i s t i c a l l y based s u r v e i l l a n c e program. The work o f the Water Q u a l i t y Branch i n t h i s area should continue and should be incorpo r a t e d by other agencies. F u r t h e r i t has been shown t h a t MATBAL can act as a rough check o f accurate q u a l i t y r e p r e s e n t a t i o n f o r conservative parameter sampling much i n the way t h a t an - 126 -a n i o n - c a t i o n balance i s used i n the l a b o r a t o r y , With i n f o r m a t i o n on bed sediment movement the check could be a p p l i e d to non-reactive sediment a s s o c i a t e d m a t e r i a l s as w e l l . Thus, MATBAL could become a t o o l f o r g u a l i t y c o n t r o l checks o f f i e l d sampling and a data base would be developed which would le n d confidence to a m a t e r i a l s balance a n a l y s i s . #8 INTEGPATE REGIONAL AND PROVINCIAL LEVEL MANAGEMENT ACTIVITIES The B r i t i s h Columbia M i n i s t r y of Environment i s d e c e n t r a l i z i n g some decision-making a b i l i t i e s to the r e g i o n a l o f f i c e of each of the e i g h t r e -source management regions i n the province. I n each centre w i l l be a Regional Manager of Water Management, Waste Management, and F i s h and W i l d l i f e under a Regional D i r e c t o r . I t i s not yet c l e a r what the r e s p o n s i b i l i t i e s of the r e g i o n a l o f f i c e s w i l l be but i t seems l i k e l y t hat they w i l l handle a p p l i -c a t i o n s f o r waste discharge permits and water l i c e n s e s , p a r t i c i p a t e i n Regional Resource Management Committees, and prepare r e g i o n a l resource man-agement plans w i t h l o c a l p u b l i c input. Given a w e l l designed s u r v e i l l a n c e network, complete land use plans f o r the r e g i o n , r e s p o n s i b i l i t y to i n c o r -porate p u b l i c values and a t e c h n i c a l procedure f o r e s t i m a t i n g the water system's a s s i m i l a t i v e c a p a c i t y based on g u a l i t y c r i t e r i a , i t should be pos-s i b l e to evolve a planning process l e a d i n g to a water resource management pla n f o r watersheds w i t h i n the region. The main i n t e r a c t i o n w i t h the prov-i n c i a l l e v e l w i l l be i n s t a n d a r d i z a t i o n of procedures and i n f o r m a t i o n flow. C r i t e r i a f o r s u r v e i l l a n c e network design and data i n t e r p r e t a t i o n should be developed i n V i c t o r i a to ensure t h a t the a n a l y t i c a l base f o r p l a n development i s c o n s i s t e n t . Remote t e r m i n a l s should be i n s t a l l e d i n each r e g i o n a l centre and personnel should be i n s t r u c t e d i n t h e i r use f o r data access and manipulation. For water systems t h a t cross the boundaries of the management regions , such as the F r a s e r River which crosses f o u r , a mechanism f o r c o - o r d i n a t i o n w i l l have to be e s t a b l i s h e d t o a l l o c a t e a s s i m i l a t i v e c a p a c i t y between - 127 -regions. S i m i l a r i l y , l o c a t i o n d e c i s i o n s between regions are not w i t h i n the scope of the Regional Managers. These d e c i s i o n s are best made at the p r o v i n c i a l l e v e l w i t h r e g i o n a l input as to socio-economic c o n d i t i o n s and demand f a c t o r s . Options c o u l d be developed a n a l y t i c a l l y but d e c i s i o n s of e q u i t y are o f t e n p o l i t i c a l d e c i s i o n s . This suggests t h a t a body such as ELUC through a new water resource assessment component of ELUCS, could be an e f f e c t i v e mechanism f o r the r e s o l u t i o n of these i n t e r - r e g i o n a l questions. #9 START PLANNING Throughout t h i s d i s c u s s i o n i t has been assumed t h a t the s e n i o r l e v e l o o f government acknowledges pla n n i n g i s needed and t h a t recent i n s t i t u t i o n a l changes have been made so t h a t planning and i n t e g r a t e d resource management can occur through some s t r u c t u r e d process. The b a s i s o f an i n f o r m a t i o n system i s i n p l a c e , resource management regions have been d e f i n e d , r e g i o n a l management s t a f f are being r e c r u i t e d , a new mandate f o r planning has been e s t a b l i s h e d a t a p o l i c y l e v e l , land use plans are being developed, and inter-agency communication i s improving. Much work remains to be done i n improving s u r v e i l l a n c e network design, developing procedures f o r i n t e r -p r e t i n g water q u a l i t y data, e s t a b l i s h i n g water q u a l i t y c r i t e r i a , d e f i n i n g a s s i m i l a t i v e c a p a c i t y , e x p l o r i n g p u b l i c input mechanisms and d e f i n i n g a planning process. The best way to i d e n t i f y the problems to be overcome i s to s e l e c t a p i l o t study, p r e f e r a b l y one watershed i n each management r e g i o n so that common problems can be def i n e d and a l l s t a f f w i l l g a i n some experience, and s t a r t planning. The process could begin with problem i d e n t i f i c a t i o n and the design of a s u r v e i l l a n c e network. Data w i l l have to be c o l l e c t e d f o r s e v e r a l years and i n t h i s time other r e q u i r e d procedures could be developed. The lessons l e a r n e d would improve the process f o r f u t u r e i n v e s t i g a t i o n s . - 128 -REFERENCES American P u b l i c Health A s s o c i a t i o n , et. a l . 1971. Standard Methods  f o r the Examination of Water and Wastewater, 13th E d i t i o n , Washington, D.C. Bennett, The Honourable W.R. 1978. Resource Management i n B r i t i s h Columbia, I n t e g r a t e d Management o f Resources, Proceedings of the Conference h e l d November 2-4, 1978, Vancouver, B.C. Resource I n d u c t r i e s Programs, Centre f o r -Continuing Education, The U n i v e r s i t y o f B r i t i s h Columbia. C l a r k , M.J.R. and J.D. E l l i s . 1976. B.C. Water Resources S e r v i c e Discharge and Environmental Data Base (EQUIS), C i r c u l a r No. 106, F i s h e r i e s and Marine S e r v i c e , P a c i f i c B i o l o g i c a l S t a t i o n , Nanaimo, B.C. Cla r k , M.J.R. and J.D. E l l i s . 1977. A Computer System f o r B i o l o g i c a l  Information, Province o f B r i t i s h Columbia, M i n i s t r y o f the Environment, P o l l u t i o n C o n t r o l Branch, Report No. 77-14. Cl a r k , M.J.R. 1978(a). A Trend Study o f A i r and Water Q u a l i t y i n B r i t i s h Columbia, Province o f B r i t i s h Columbia, M i n i s t r y of the Environment, P o l l u t i o n C o n t r o l Branch, C l a r k , M.J.R. 1978(b). Gr a p h i c a l Review of F r a s e r R i v e r Water Q u a l i t y  M o n i t o r i n g 1970-75, M i n i s t r y of the Environment, P o l l u t i o n C o n t r o l Branch, Report No. 78-3, V i c t o r i a , B.C. Demayo, A. and E. Hunt. 1975. NAQUADAT Users Manual, I n l a n d Waters D i r e c t o r a t e , Water Q u a l i t y Branch, Ottawa, Canada. Department o f the Environment. 1972. G u i d e l i n e s f o r Water Q u a l i t y ,  O b j e c t i v e s and Standards, T e c h n i c a l B u l l e t i n No. 67, I n l a n d Waters D i r e c t o r a t e , Water Q u a l i t y Branch, Ottawa, Canada. Department o f the Environment. 1977(a). Environmental Contaminants Act , Chemistry i n Canada, V o l . 29, No. 2, p. 11. Department o f the Environment. 1977(h). Environmental Contaminants A c t , Chemistry i n Canada, V o l . 29, No. 10, p. 12. Department o f N a t i o n a l H ealth and Welfare. 1969. Canadian D r i n k i n g  Water Standards and Objectives 1968, Ottawa, Canada. Department o f Regional Economic Expansion. 1970. Towards I n t e g r a t e d  Resource Management, Report of the Sub-Committee on M u l t i p l e Use, N a t i o n a l Committee on For e s t Land, Ottawa, Canada. - 129 -Dorcey, A.H.J. 1974. P o l i c y Mechanisms f o r Water Quality Management i n a Metropolitan Area: Greater Vancouver and the Fraser Estuary, The P r a c t i c a l A p p l i c a t i o n of Economic Incentives to the Control of P o l l u t i o n : The Case of B r i t i s h Columbia, The B r i t i s h Columbia I n s t i t u t e f o r Economic P o l i c y A n a l y s i s , U n i v e r s i t y of B r i t i s h Columbia Press, Vancouver, B.C. Dorcey, A.H.J.(ed<). 1976. The Uncertain Future of the Lower Fraser, Westwater Research Centre, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. Edgeworth, L. 1975• Role and R e s p o n s i b i l i t i e s of the Environmental Prot e c t i o n Service (Canada), B r i t i s h Columbia Water and Waste  Association, Proceedings of the Annual Conference, A p r i l 1974,  Vancouver, B.C., p. 59-69, Ottawa, Canada. Enviro Control Inc. 1971< Systems Analysis f o r Water Quality Management, f o r the Water Quality O f f i c e , Environmental Protection Agency, Contract #68-01-0096. Environment Canada. 1978. Sources of Metals and Metal Levels i n Municipal Wastewaters, Research Report No. 80, Research Program f o r the Abatement of Municipal P o l l u t i o n Within the Provisions of the Canada-Ontario Agreement on Great Lakes Water Quality, Project No. 75-1-43, T r a i n i n g and Technology Transfer D i v i s i o n (Water), Environmental Protection Service, Ottawa, Ontario. Farley, A.L. 1979. B r i t i s h Columbia A t l a s of Resources, U n i v e r s i t y of B r i t i s h Columbia, U n i v e r s i t y Press, Vancouver, B.C. Feldman, C. 1974. Preservation of D i l u t e Mercury Solutions, A n a l y t i c a l  Chemistry-, Vol. 4 6 , No.l, January 1974. F i s h , H. and L.B. Wood. 1977' Standards f o r Fresh Water Streams and E f f l u e n t s , Prog. Wat. Tech., Vol. 8, No. 6, p. 27-32. Foin, T.C., J r . 1976. E c o l o g i c a l Systems and the Environment, Houghton M i f f i n Company, Boston. Fox, I.K. and L.F. Wible. 1973- Information Generation to E s t a b l i s h Environmental Quality Objectives, Natural Resources Journal, Vol. 13, No. 1. Fraser River Board. 1956. Interim Report - Investigations Into Measures  f o r Flood Control i n the Fraser River Basin, Appendix A, Geography  of the Fraser River Basin, V i c t o r i a , B.C. Fraser River Board. 1958. Preliminary Report on Flood Control and  Hydro-Electric Power i n the Fraser River Basin, Victoria', B.C. - 130 -F r a s e r R i v e r Estuary Study S t e e r i n g Committee. 1978(a). F r a s e r R i v e r  Estuary Study Key Findings and Recommendations, Summary o f Proposals f o r the Development o f an Estuary Management P l a n , V i c t o r i a , B.C. Fra s e r R i v e r Estuary Study S t e e r i n g Committee. 1978(b). F r a s e r R i v e r Estuary Study, Water Q u a l i t y , I n t e r i m Report of the Water Q u a l i t y Work Group, V i c t o r i a , B.C. Gol d i e , C A . 1967- P o l l u t i o n and the F r a s e r , Report] I d e a l i n g w i t h P r e l i m i n a r y I n v e s t i g a t i o n s o f Waste D i s p o s a l to the Lower F r a s e r  R i v e r , Department of Lands, Forest s and Water Resources, Water Resources S e r v i c e , P o l l u t i o n C o n t r o l Branch, V i c t o r i a , B.C. Great Lakes Research A d v i s o r y Board. 1978. The Ecosystem Approach; Scope and I m p l i c a t i o n s of an Ecosystem Approach to Transboundary  Problems i n the Great Lakes Basin, S p e c i a l Report to the I n t e r n a t i o n a l J o i n t Commission, Windsor, Ontario. Great Lakes Water Q u a l i t y Board. 1978. Group 2 New and Revised S p e c i f i c  Water Q u a l i t y O b j e c t i v e s , Proposed f o r the 1972 Agreement Between the U n i t e d S t a t e s and Canada on Great Lakes Water Q u a l i t y , I n t e r n a t i o n a l J o i n t Commission, Windsor, Ontario. H a l l e r a n , M. 1977. An End to the Salmon? The Vancouver Sun, Page S i x , Tuesday, October 4, 1977. Hann, R.W. 1972. Fundamental Aspects o f Water Q u a l i t y Management, Technomic P u b l i s h i n g Co., Inc.. Westport, Conn. Harvey, H.H. 1976. Aquatic Environmental Q u a l i t y : Problems and Proposals, J o u r n a l of the F i s h e r i e s Research Board of Canada, 33: 2634-2670. Hopkins, L.D. 1977* Methods f o r Generating Land S u i t a b i l i t y Maps: A Comparative E v a l u a t i o n , AIP J o u r n a l , Oct. 1977-Huberman, D.S.M. 1965. Uniform Law Course f o r P r o f e s s i o n a l s , i n Se l e c t e d Readings i n Law f o r L o c a l P u b l i c - A d m i n i s t r a t o r s , Second  E d i t i o n , W.T. Lane (ed . ) , School o f Community and Regional Planning, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. Hunter, H.D.C. (undated). The Legal and A d m i n i s t r a t i v e Framework  A f f e c t i n g Water Resource Management i n the Okanagan B a s i n ,  P r e l i m i n a r y Study Data - B u l l e t i n No. 7, f o r : the Study Committee, Canada - B r i t i s h Columbia Okanagan B a s i n Agreement. I n l a n d Waters D i r e c t o r a t e . 1973- I n s t r u c t i o n s f o r Taking and Shipping  Water Samples f o r P h y s i c a l and Chemical Analyses, 2nd E d i t i o n , Water Q u a l i t y Branch, Ottawa, Ontario. - 131 -Joy, C.S. 197^- Water Q u a l i t y M o d e l l i n g I n E s t u a r i e s , D o c t o r a l T h e s i s , Department of C i v i l Engineering, U n i v e r s i t y of B r i t i s h Columbia. K l e i b e r , P. and W.E. Erlebach. 1977• L i m i t a t i o n s o f S i n g l e Water  Samples i n Representing Mean Water Q u a l i t y . I I I . E f f e c t s o f  V a r i a b l i l i t y i n Concentration Measurements on Estimates o f  Nut r i e n t Loadings i n the Squamish R i v e r , B.C., Te c h n i c a l B u l l e t i n No. 103, I n l a n d Waters D i r e c t o r a t e , P a c i f i c and Yukon Region, Water Q u a l i t y Branch, Vancouver, B.C. K l e i b e r , P., W h i t f i e l d , P.H. and W.E. Erlebach. 1978. L i m i t a t i o n s  of S i n g l e Water Samples i n Representing Mean Water Q u a l i t y .  I I . S p a t i a l and Temporal V a r i a t i o n i n N u t r i e n t Concentrations  i n the Okanagan R i v e r a t O l i v e r , B.C. , T e c h n i c a l B u l l e t i n No. 107, I n l a n d Waters D i r e c t o r a t e , P a c i f i c and Yukon Region, Water Q u a l i t y Branch, Vancouver, B.C. Kneese, A.V. 1968. Water P o l l u t i o n - Economic Aspects and Research Needs, Resources f o r the Future, I n c . , Washington, D.C. Koch, F.A. 1976. Lower F r a s e r River/Estuary D i s s o l v e d Oxygen Dynamics, Masters' T h e s i s , Department of C i v i l Engineering, U n i v e r s i t y o f B r i t i s h Columbia. Kudo, A., M i l l e r , D.R. , Akagi, H. , Mortimer, D.C, De F r e i t a s , A.S., Nagase, H., Townsend, D.R., and R.G. Warnock. 1978. The Role of Sediments on Mercury Transport ( T o t a l - and Methyl-) i n a Ri v e r System, Prog. Wat. Tech., V o l . 10, Nos. 5/6, p. 329-339. Kudukis, R. 1977. The N a t i o n a l Commission on Water Q u a l i t y , Prog.  Wat. Tech., V o l . 8, No. 6 , p. 1-7. Lettenmaier, D.P. and S.J. Burges. 197^-. Data Requirements f o r E s t a b l i s h i n g and Managing a Waste-Water A l l o c a t i o n Permit  System, Water Resources Information System, WRIS T e c h n i c a l B u l l e t i n No. 1, State o f Washington, Department of Ecology. L i n n , H.D. 1966. The A p p l i c a t i o n of Regional P l a n n i n g to the C o n t r o l  of Water Q u a l i t y : A Case Study of the Province o f B r i t i s h  Columbia, Masters' T h e s i s , School o f Community and Regional Planning, U n i v e r s i t y o f B r i t i s h Columbia. L i t e r a t h y , P. and F. L a s z l o . 1978. Accumulation o f B i o r e s i s t a n t M i c r o p o l l u t a n t s i n a P a r t i c u l a r Catchment i n Hungary, Prog. Wat.  Tech., V o l . 10, Nos. 5/6, p. 38I-389. Lucas, A.R. 1967. P o l l u t i o n C o n t r o l Law i n B r i t i s h Columbia: The  A d m i n i s t r a t i v e Approach, Masters' Thesis, Department of Law, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. -132 -Marr, B.E. 1975? Water Resources, B r i t i s h Columbia Water and Waste  Association, Proceedings of the Annual Conference, A p r i l 1974,  Vancouver, B.C., Ottawa, Canada. McKee, J.E. and H.W. Wolf. 1963. Water Quality C r i t e r i a , State Water Quality Control Board, Sacramento, C a l i f o r n i a . Moore, S.F., Dandy, G.C. and R.J. Delucia. 197°. Describing Variance With a Simple Water Quality Model and Hypothetical Sampling Programs, Water Resources Research, Vol. 12, No. 4. Moore, B.J. and H.Y. Wong. 1977. The Lower Fraser River E f f l u e n t  Discharges and Water Quality, P o l l u t i o n Control Branch, M i n i s t r y o f . the Environment, V i c t o r i a , B.C. Nielsen, K.S. 1975• A Note on Cost-Effectiveness i n Data A c q u i s i t i o n i n Water Quality Management, Water Resources Research, Vol. 11, No. 2, p. 357-358. Oguss, E. and W.E. Erlebach. 197&. Limitations of Single Water Samples  i n Representing Mean Water Quality. I. Thompson River at Shaw  Spring, B r i t i s h Columbia, Technical B u l l e t i n No. 95, Inland Waters Directorate, P a c i f i c and Yukon Region, Water Quality Branch, Vancouver, B.C. Ontario M i n i s t r y of the Environment. 1978. Water Management - Goals, P o l i c i e s , Objectives and Implementation Procedures of the M i n i s t r y ' of the Environment, November;1978, Water Resources Branch, Toronto, Ontario. Pepper, J.E. 1972. An Approach to Environmental Impact Evaluation of  Land-Use Plans and P o l i c i e s : The Lake Tahoe Basin Planning  Information Ststem, Masters Thesis ( C i t y Planning), Graduate D i v i s i o n , U n i v e r s i t y of C a l i f o r n i a , Berkelyy.The Department of Landscape Architecture, College of Environmental Design. P o l l u t i o n Control Board .(B.C. ) 1968. The P o l i c y of the P o l l u t i o n Control  Board of the Province of B r i t i s h Columbia Regarding P o l l u t i o n  Control on the Fraser River Below the Town of Hope, Department of Lands, Forests, and Water Resources, Water Resources Service, V i c t o r i a , B.C. P o l l u t i o n Control Board. 1973' P o l l u t i o n Control Objectives f o r the Mining, Mine-milling, and Smelting Industries of B r i t i s h Columbia, Department of Lands, Forests, and Water Resources, Water Resources Service, P o l l u t i o n Control Branch, V i c t o r i a , B.C. P o l l u t i o n Control Board. 1974(a). P o l l u t i o n Control Objectives f o r  the Forest Products Industry of B r i t i s h Columbia, Department of Lands, Forests, and Water Resources, Water Resources Service, P o l l u t i o n Control Branch, V i c t o r i a , B.C., Revised 1977-- 133 -P o l l u t i o n C o n t r o l Board. 1974(b). P o l l u t i o n C o n t r o l Objectives f o r  the Chemical and Petroleum I n d u s t r i e s of B r i t i s h Columbia, Department of Lands, F o r e s t s , and Water Resources, Water Resources S e r v i c e , P o l l u t i o n C o n t r o l Branch, V i c t o r i a , B.C. P o l l u t i o n C o n t r o l Board. 1975(a). P o l l u t i o n C o n t r o l O b j e c t i v e s f o r Food-processing, A g r i c u l t u r a l l y Oriented, and Other Miscellaneous  I n d u s t r i e s of B r i t i s h Columbia, Department of Lands, F o r e s t s , and Water Resources, Water Resources S e r v i c e , P o l l u t i o n C o n t r o l Branch, V i c t o r i a , B.C. P o l l u t i o n C o n t r o l Board. 1975(l>). P o l l u t i o n C o n t r o l Objectives f o r  M u n i c i p a l Type Waste Discharges i n B r i t i s h Columbia, Department of Lands, F o r e s t s , and Water Resources, Water Resources S e r v i c e , P o l l u t i o n C o n t r o l Branch, V i c t o r i a , B.C. Pope, W., Graham, N.J.D., Young, R.J. and R. Perry. 1978. Urban Runoff from a Road Surface - A Water Q u a l i t y Study, Prog. Wat.  Tech., V o l . 10, Nos. 5/6, p. 533-543. Province of B r i t i s h Columbia. 1969. Recommended Water Q u a l i t y Standards, Department of Health S e r v i c e s and H o s p i t a l Insurance, V i c t o r i a , B r i t i s h Columbia. Province o f B r i t i s h Columbia. 1975• Water Resource R e s p o n s i b i l i t i e s  W i t h i n the B r i t i s h Columbia Government ( F i r s t D r a f t ) , Appendix 2 - Review of Plan n i n g Process, Department of Lands, F o r e s t s , and Water Resources, Water Resources S e r v i c e , V i c t o r i a , B.C. Province of B r i t i s h Columbia. 1976. P o l l u t i o n C o n t r o l A c t , 1967, Consolidated f o r convenience on l y , September 3, 1976. Province o f B r i t i s h Columbia. 1977. M i n i s t r y of the Environment: 1977 Annual Report, M i n i s t r y of the Environment, V i c t o r i a , B.C. Province of B r i t i s h Columbia. 1979- Major Reorganization W i t h i n M i n i s t r y , Environment News, V o l . 3, No. 1. Rogers, I.H. 1973• I s o l a t i o n and Chemical I d e n t i f i c a t i o n of Toxic Components of K r a f t M i l l Wastes, Pulp and Paper Magazine of Canada, V o l . 74, No. 9. S h e l l e y , M.J. 1957- A C r i t i c a l A n a l y s i s o f the Water L e g i s l a t i o n of  the Province of B r i t i s h Columbia, Masters T h e s i s , F a c u l t y o f Commerce and Business A d m i n i s t r a t i o n , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. Shewchuk, M. 1979. W i l l B.C. Develop i t s Unused Coal Wealth? Canadian Geographic, V o l . 97, No. 3, p. 32-37. S t a t i s t i c s Canada. 1978. Human A c t i v i t y and the Environment, P u b l i c a t i o n No. 3-0001-504, by a u t h o r i t y o f The M i n i s t e r of Ind u s t r y , Trade and Commerce, Ottawa, Canada. -. 1-34 -S t e i n i t z , C. 1970. A General System f o r Environmental- Resource A n a l y s i s , i n P u b l i c Land P o l i c y and the Environment, A Study Prepared f o r the P u b l i c Land Law Review Commission, U.S. S y l v e s t e r , R.O. 19^ 5• A Review o f the F r a s e r R i v e r B a s i n w i t h Respect  to Water Q u a l i t y , prepared f o r the B r i t i s h Columbia P o l l u t i o n C o n t r o l Board, V i c t o r i a , B.C. Thomson, A.M. 1978. An Example of In t e g r a t e d Resource Management i n P r a c t i c e , "The Okanagan B a s i n Agreements", i n In t e g r a t e d  Management o f Resources, Proceedings of the Conference h e l d November 2-4, 1978, Vancouver, B.C., Resource I n d u s t r i e s Programs, Centre f o r Continuing Education,' U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. U.S. Environmental P r o t e c t i o n Agency. 1973• Water Q u a l i t y C r i t e r i a 1972, Committee on Water Q u a l i t y C r i t e r i a , Environmental Studies Board, N a t i o n a l Academy o f Sciences, N a t i o n a l Academy of Engineering, Washington, D.C., EPA R3-73-033, March 1973-U.S. Environmental P r o t e c t i o n Agency. 197^ -• Methods f o r Chemical  A n a l y s i s of Water & Wastes, Water Q u a l i t y O f f i c e , A n a l y t i c a l Q u a l i t y C o n t r o l Laboratory, C i n c i n n a t i , Ohio. U.S. Environmental P r o t e c t i o n Agency. 1976. Q u a l i t y C r i t e r i a f o r Water, Report #US-EPA-440/9-76-023, Washington, D.G. Ward, E.N. 1976. Land Use Programs i n Canada, B r i t i s h Columbia, Land Use Planning Branch, Lands D i r e c t o r a t e , Environment Canada, Ottawa, Canada. Ward, R.G. 1973- Data A c q u i s i t i o n Systems i n Water Q u a l i t y Management, f o r the O f f i c e of Research and Monito r i n g , U.S. Environmental P r o t e c t i o n Agency, Socioeconomic Environmental Studies S e r i e s , EPA-R5-73-014. Water P o l l u t i o n C o n t r o l D i r e c t o r a t e . 1975- Mine and M i l l Wastewater Treatment, Environmental P r o t e c t i o n S e r v i c e , Environment Canada, Report No. EPS 3-WP-75-5. Water Survey of Canada. 1977. H i s t o r i c a l Streamflow Summary, B r i t i s h  Columbia, to 1976, F i s h e r i e s and Environment Canada, I n l a n d Waters D i r e c t o r a t e , Water Resources Branch, Ottawa. Water Survey o f Canada. 1978. Surface Water Data Reference Index, Canada 1978, I n l a n d Waters D i r e c t o r a t e , Water Resources Branch, F i s h e r i e s & Environment Canada, Ottawa. Westman, W.E. 1972. Some B a s i c Issues i n Water P o l l u t i o n C o n t r o l L e g i s l a t i o n , American S c i e n t i s t , 60(6) 767-772. - 135 -APPENDIX I - The MATBAL Program c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c * * C * ********** THE MATBAL PROGRAM ********* * C * * C * WRITTEN BY JACK M. NICKEL ON SEPT. 18, 1979 AT * C * THE SCHOOL OF- COMMUNITY AND REGIONAL PLANNING * C * UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC * C * THE PROGRAM PERFORMS A MATERIALS BALANCE OF * C * AQUEOUS POLLUTANTS THROUGH A DILUTION MODEL. * C * USE OF THIS SOFTWARE REQUIRES ACKNOWLEDGEMENT * C * AND THE AUTHOR'S PERMISSION. * C * c c C VARIABLE DEFINITIONS £ DATA FORMAT C 1= CARD COUNTER (VALUES CREATED AS CARDS ARE RE AD ) C J= SEGMENT NUMBER INDICATOR C L~ INFLUENCE COUNTER C C NOTE: ( l ) F I R S T CARD WILL SUPRESS DETAILED PRINTOUT IF COL 1 = I C THE FOLLOWING CARD ORDER IS REPEATED FOR EACH DATA C SUBSET (MONTH*. C (2JSECOND CARD IS DATA DATE (COL 1-16), DATE(4) C (3)THIRD CARD CONTAINS PARAMETER CRITERIA 19X 6C0L FIELDS) C (4)F0URTH CARD HAS SEGMENT LENGTHS (10 X 6C0L FIELDS) C ( 5 ) T H E REMAINDER OF THE CARDS ARE THE BULK OF THE OAT A C , SUBSET AND CONTAIN THE SPECIFIC SITE PARAMETER DATA C AS FOLLOWS: C SEG(200l= SEGMENT NUMBER F I L E (COL 1-2) C INFL(200)= INFLUENCE TYPE (1=CHFCK STATION, C 2=TRIBUTARY, 3=EFFLUENT, AND C 4=WITHDRAWAL) (C0L3) C TYPE!200)= INFLUENCE TYPE SUBCLASS (COL 4) C SITE(200,5)= SITE NAME F I L E (COL 5-24) C PARA(200,9M WATER DATA (9 X 6C0LUMN FIELDS C IN COLUMNS 25 TO 78) C (6 )THE FINAL CARO IN EACH DATA SUBSET MUST HAVE -1 IN C COLUMNS 1 AND 2. C C INTEGER S E G I 2 0 0 ) , S I T E ( 2 0 0 , 5 ) , I, J , L, I N F L I 2 0 0 ) , T Y P E ( 2 0 0 ) , 1 D A T E ( 4 ) , P, 0, M, S, T, X, Y, SUPRES REAL PARA(200,9), F L 0 W (3). P H O ) , C0NC13.9), D I F ( 9 ) , F I N ( 1 0 , 9 ) , 1 C R I T ( 9 ) , L 0 A D ( 3 , 9 ) , P E R C ( 9 , 2 ) , C A P ( 9 ) , N D I F ( 1 0 , 9 ) , 2 INITI 10,200,9) , P R E D U 0 . 9 ) , D I F F ( 1 0 , 9 ) , ST0R(10,9), 3 0 B S ( 1 0 , 9 ) , D I S T ( I O ) , C A L C ( 1 0 , 2 0 0 , 9 ) , I N I L ( 1 0 , 2 0 0 , 9 ) , 4 C A L K 1 C 9 ) CALL FTNCMDCSET MINUSZER0=0N;•) READ (5,10) SUPRES 10 FORMAT ( I I ) 2C CONTINUE I = 1 C******BEGIN READING DATA SUBSET READ (5,30,END=1300) (DATE(N),N=l,4 I 30 FORMAT (4A4) WRITE (6,401 40 FORMAT ( , 1 , » T40, 'FRASER RIVER MATERIALS BALANCE') WRITE (6,50) (DATE(N),N=1,4) . - -136 -50 FORMAT C O ' , T40, * DATE OF DATA - ', T55, 4A4) WRITE (6,601 60 FORMAT C O * I WRITE (6.701 70 FORMAT C O ' , T32, 'FLOW, T42, * PH ', T50, • T E M P ( C ) ' , T60, 1 'SP COND', T70, 'DISS NA«, T79, * NF RESIDUE', T90, 2 'TOT F E ' . TIOO, 'TOT MN' , T U O , • TOT C U « ) WRITE (6.80) 80 FORMAT (• ', T29, 'X1000M3/D', T40, ' ( U N I T S ) ' , T58, * (UMHOS/ C M I * , 1 T70, •IMG/LI*. T80, •(MG/L) ', T90, " ( M G / L ) ' , TIOO, 2 * ( MG/LI '. T l l O , M H G / D ' I READ (5,90) ( C R I T ( N ) , N = l , 9 ) 9C FCRMAT (9F6.0) READ (5,100) (DIST(N),N=1,101 100 FORMAT (10F6.0) WRITE (6,110) (CRITIN),N=5,9) 110 FORMAT ( « 0 » , T6, 'PARAMETER CRITERIA", T31, « ', T42, « ', 1 T51, • «. T61, • ' . T70, F6.2, T80, F6.3, T90, F6.3, 2 TIOO, F6.3, T l l O , F6.3) 12C CONTINUE C*** * * » R E A D PARAMETER DATA READ (5,130) S E G ( I ) , I N F L ( I ) , T Y P E ( I ) , ISITE(I,N),N=1,51, 1(PARA(I,N),N=1,9) 130 FORMAT ( 1 2 , I I . I I . 5A4, F6.0, 8F6-3) C*»>****CHECK FOR END OF DATA SUBSET IF ( S E G ( I ) .LT. 0) GO TO 240 IF ( I N F L ( I ) .NE. I) GO TO 150 WRITE (6.140) S E G ( I ) 140 FORMAT C O ' , T2, • SEGMENT' , TIO, 12) C C * * * * » » C G N V E R T FLCW UNITS FROM CFS OR M3/DAY TO X1000M3/DAV C 150 CONTINUE IF ( I N F L ( I ) .EQ. 3) GO TO 160 IF ( I N F L ( I ) .EO. 4) GO TO 160 P A R A ( I . l ) * P A R A ( I . l ) * 2.45 160 CONTINUE IF ( I N F L ( I ) .NE. 3) GO TO 170 P A R A ( I . l ) = P A R A ( I . l ) * 0.001 170 CONTINUE 00 180 N » 2, 9 IF (16LANK(PARA(I.N) ) .EQ. - 1) PARA(I.N) = 1000000000. 180 CONTINUE IF ( P A R A l I . l ) .LT. 0) GO TO 200 WRITE (6.190) I . ( S I T E ( I ,NI,N=l,5), (PARA(I,N),N=1,9) 190 FORMAT (• ', T2, 13, T6, 5A4, T28, F10.3. T41, F5.2, T50, F6.2, 1 T60, F6.0, T70. F6.2. T78, F8.1, T90, F6.3, TIOO, F 6 . 3 , 2 T U O . F6.3) GO TO 220 2GC WRITE (6.210) I * ( S I T E ( I , N ) , N = l , 5 ) . P A R A ( I . l ) 210 FORMAT (' ', T2, 13, T6, 5A4, T28, F10.3) 220 CONTINUE IF (PAR A ( 1,2) .GT. 100.) PARAU.2) = 7.0 DC 230 N = 3, 9 IF (PARA(I.N) .GT. 100000000.) PARA(I.N) = 0. 230 CONTINUE 1 = 1 + 1 GO TO 120 - 1.37 240 CONTINUE WRITE (6,250» 250 FORMAT C O ' , T20,••**** NO DATA OR ESTIMATE AVAILABLE, ASSUME', 1 764, 'THE VALUE IS ZERO (7.0 FOR P H I M C#*****DATA SUBSET STORED; BEGIN DATA MANIPULATIONS DO 270 I = It 10 DO 240 J = 1, 9 STOR(I» J) = 0. 26C CONTINUE 27C CONTINUE I = 0 J = 0 2 80 CONTINUE 1 = 1 * 1 C»* * * * * C H E C K FOR END OF DATA SUBSET IF ( S E G ( I ) .LT. 0» GO TO 1110 C******CHECK FOR NEW SEGMENT IF (SEGCII .EQ. J l GO TO 690 C** * « * * B E G I N SEGMENT SUMMARY CALCULATIONS J = J + 1 FLO«I 1» = PARA(I ,11 PH(1) = PARA(I,2) DO 290 N = 3, 9 CGNCU.NI = PARA(I.N) 290 CONTINUE C******CHECK FOR SYSTEM INITIALIZATION IF I I .Eq. 1) GO TO 660 D I F C I J = FLOWCll - FL0W13» D I F ( 2 ) = PH11I - PH{3) K = J - 1 F I N l K . l ) = D I F ( l ) F I NIK.2I = 0IF<2» DO 30C N = 3, 9 DIF(N) = CONC(l.N) - C0NC13.N) FIN(K,NI = DIF(N> CONTINUE T = 0 X = 0 P = I - L - 1 0 = 1 - 1 DO 340 S = P. Q T = T + 1 DO 310 N = 1, 9 I N I T I K t T . N ) = PARA(S,N» CONTINUE 00 330 N = 5. 9 IF ( P A R A ( S . l ) . L T . 01 GO TO 320 I N I L U . T . N ) = PARA(S.N) * P A R A ( S . l ) / 1000 GO TO 330 Y = T • (-1) INIL<K,T,NI = CALC(K,Y,NI * P A R A ( S , l l / 1000 CONTINUE CONTINUE T = 1 DO 350 N = 5, 9 PREDIK , N i = LOAD!3,Nt CONTINUE DO 360 N = 5, 9 300 310 320 330 340 350 - . 1 3 8 -0BS1K.N) = PARAII.Nl * PARA(I,1) / 1000 360 CONTINUE DO 37C N = 5, 9 DIFF(K.N) = OBSIK.N) - PRED(K, N J 370 CONTINUE DO 380 N = 5, 9 STORIK.N) = STOR(K,N> / M - DIFFIK.NI 380 CONTINUE C A L K K . l ) = D I F ( l ) CALI(K,2) = (-1J * AL O G 1 0 I A e S ( ( 1 0 * * ( ( - 1 ) * P A R A I I , 2 ) > * P A R A ( I , l > - 10 1 **((-11*CALC(K,L,211*CALC(K,L,11) / D I F ( 1 ) ) I DO 390 N = 3, 9 CALIIK.N) = (PARA(I»NI*PARA(I,1) - CALC(K,L,1)*CALC1K,L,N)) / 1 D IF ( 1 J 390 CONTINUE C C******END OF SEGMENT SUMMARY CALCULATIONS C WRITE (6,400) K, IDATE(NI,N=1,4 I 400 FORMAT I•1« ,T28,•SEGMENT * ,12,' - CONCENTRATION SUMMARY «,4A4) WRITE 16,4101 410 FORMAT t'O'/'O', T32, 'FLOW', T43, •PH', T50, 'TEMP', T58, 1 'SP COND', T69, 'DISS NA', T79, 'NF RESIDUE', T90, 2 'TOT F E ' , T100, " TOT MN' » T U O , 'TOT CU •) WRITE (6,4201 420 FORMAT (• •, T29, 'X1000M3/D', T40, '(UNITS)', T50, M C I ' , T56, 1 •(UMHOS/CMI•, T70, 'MG/L'. T81, 'MG/L', T91, 'MG/L', T101. 2 * MG/L *, T i l l , 'MG/L'I WRITE (6,430) ( S I T E ( P , N ) , N =1,5) 430 FORMAT C O ' , 'INITIAL VALUE'/* «, 4X, 5A4) WRITE (6,440) ( I NI T(K,I,N» ,N=1,9) 440 FORMAT (••', T28, F10.3, T42, F 4 . 1 , T49, F 5 . 1 , T59, F5.0, T67, 1 F9.2, T80, F 7 . 1 , T90, F7.3, T100, F 7 - 3 , T U O , F7.3) WRITE (6,4501 450 FORMAT C O ' , * INFLUENCE INPUT VALUES'! P = P * 1 DO 490 S = P, Q T = T + 1 X = X • 1 WRITE (6,460) X, (SITE(S,N),N=1,5) 460 FORMAT (• 12, 2X, 5A4) IF ( I N I T ( K , T , 1 ) . L T . 0) GO TO 470 WRITE (6,4401 (INI T (K.,T ,NI ,N= 1 #9 I GO TO 490 470 WRITE (6,4801 INIT(K,T,1> 480 FORMAT (••', T28, F10.3) 490 CONTINUE WRITE (6,500) 500 FORMAT C O ' . • PREDICTED DOWNSTREAM VALUES') X = 0 DO 510 S = P, 0 X - X • 1 WRITE (6,4601 X, (S I TE(S,N),N = 1,5) WRITE (6,4401 (CALC(K,X,N),N=1,9) 510 CONTINUE WRITE (6,520) ( S I T E ( I , N ) , N = l , 5 ) 520 FORMAT (•0*. 'OBSERVED END VALUE'/• ', 4X, 5A4) WRITE (6,440) (PARA(I,N),N=1,9) i - 139 -WRITE (6,5301 530 FORMAT (* 0', •DIFFERENCE (OBS-CALC)*•) WRITE (6,440) (FIN(K» N ) ,N=1,9) WRITE (6,540) 540 FORMAT C O ' / ' O S 4X, •* A NEGATIVE VALUE INDICATES DEPOSITION', 1 T46, *0R LOSS £ A POSITIVE INDICATES UNACCOUNTED INPUT') WRITE (6,550) K, (DATE(N),N=1,4) 550 FORMAT ('1•,T25,•SEGMENT ',12,' - LOAD SUMMARY FOR ', 4 A O WRITE (6,560) 560 FORMAT I'O'/'O', T32, 'FLOW', T42, 'DISS NA', T53, 'NF RESIDUE', 1 T66, »TCT F E ' , T78, 'TOT MN', T90, 'TOT CU') WRITE (6,570) 570 FORMAT (• ', T29, 'X1000M3/D', T41, »T0NS(M)/D', T53, 'TONSIMI/D', 1 T65, 'TONS(M)/D', T77, 'TONS(M)/D', T89, 'TONSIMI/D'I P = P - 1 WRITE (6, 580), (SITE(P.N),N=1,5) 580 FORMAT C O * , ' I N I T I A L FLOW £ LOAD'/' ', 4X, 5A4) WRITE (6.59CI I N I T ( K , 1 , 1 I , (INIL(K,1,N),N=5,9) 590 FORMAT (••', T28, F 7 . 0 , T39, F9.1, T51, F9.1, T64, F9.2, T77, 1 F 8 . 2 , T89, F9.3) WRITE (6,600) 600 FORMAT C O ' , 'INPUT LOADS' ) T = 1 F = P + 1 X = 0 CO 620 S = P, 0 T = T + 1 X = X + I WRITE (6,460) X, (SITE!S.N),N=1,5 ) WRITE (6,610) I N I T ( K . T . l ) , (INIL(K,T,N),N=5,9) 610 FORMAT (••', T28, F10.3, T40, F10.3, T52, F10.3, T64, F 1 0 . 3 , 1 T77, F 9 . 3 , T89, F9.3) 620 CONTINUE WRITE (6,630) 630 FORMAT CO'/'O', 'PREDICTED END VALUE' ) WRITE (6,590) FL0W(3), (PRED(K,N),N=5,9 ) WRITE (6,520) (SITE(I,N),N=1,5) WRITE (6,590) P A R A ( I , l l , (OBS(K,N),N=5.9) WRITE (6,530) WRITE (6,590) D I F ( l ) , (DIFF(K,N),N=5,9) WRITE (6,640) (STORIK,N),N=5,91 640 FORMAT C O ' , * MEAN AVAILABLE CAPACITY*'/' ', *(AV.CALC.CAP - LOAD 1DIFF) • » T29» • ', T39, F 9 . 1 , T51, F9.1, T64, F9.2, T77, F8.2, 2 T89, F9.3) WRITE (6,540) WRITE (6,650) 650 FORMAT (• 4X, •• A NEGATIVE VALUE INDICATES LOAD', T40, 1 .'IN EXCESS OF CRITERIA') 660 CONTINUE IF(SUPRES.EC.1) GO TO 1310 WRITE (6,670) S E G ( I ) , ( S I T E ( I , N ) , N = l , 5 ) 670 FORMAT ( • 1', •SEGMENT' . 2X, 12, 2X, 'BEGINNING WITH ', 2X, 5A4) WRITE (6.68C) 680 FORMAT (••• , • ._•) 1310 CONTINUE L = 0 M = 0 GO TO 280 > - 140 -C******BEGIN INFLUENCE CALCULATIONS 6 S C 7CC 710 720 II GO TO 720 CONTINUE L = L • 1 IF (SUFRES .EQ WRITE (6.7CC) FORMAT C O ' ) WRITE (6,710» « S l T E ( l , N > , N = 1 , 5 ) FORMAT ( « 0 , / , 0 , , 2 5 X , • * * • • * * * INFLUENCE OF »,5A4, CONTINUE FL0W(2 ) = PARA(I, U F L 0 M 3 ) = FLOW(l) • FLCW(2» CALC(J,L,1> = FL0W(3> IF (FLCW(2) . L T . 0) GO TO 980 M = M • I PH(2 J = PARAfI.2) PHI3I = I-l» * A L O G 1 0 ( ( 1 0 * * ( ( - 1 I * P H ( I M * F L O W U I • l*FLOW(2J)/FLOW(3)) CALC(J.L,2» = PH(3) 9 PARA(I.N) (C0NC(2.N)*FL0W(2J • CONC11,N)*FLOW(1)) = C0NC(3,N) DC 730 N = 3, CGKC(2,N) = C0NC(3,N) = CAL C I J . L , M l CONTINUE 1 0 * * ( t - l ) * P H ( 2 ) ) / FLOW13I 730 C C******CALCULATE LOADS C DO 74C W = 5, 9 LOAD(l.N) = CONC(l.N) * FLOW(l) LOAD(2,N) =C0NC(2,N) * FL0W(2) LOAD(3,N) = C0NC(3,N> * FL0WI3I 740 CONTINUE IF (SUPRES .EQ. 1) GO TO 780 1000 1000 1000 C****#*CALCULATE PERCENTAGE CHANGE C P E R C U . l l = FLOW! 2) / FLOW(l) * 100 DO 7tC N = 3, 9 IF (CONC(l.N) .EO. 0) GO TO 750 PERC(N.l) = (C0NC(3,NI - CONCIl.NM IF ( P E R C ( N . l ) .GT. 999) PERC(N,1) = GO TO 760 750 P ERC(N.l) = 100 760 CONTINUE DO 780 N = 5, 9 IF (LOAD(l.N) .EO. 0) GO TO 770 PERCIN.2I = 1 LOAD(i,N) - L O A O ( l . N ) ) / CONCCltN) * 100 999. / L O A D l l . N ) * 100 IF (PERC(N,2) .GT. 999) PERC(N,2) = 999. GO TO 780 770 PERCCN.2) = 100 78C CONTINUE C******CALCULATE AVAILABLE LOAD CAPACITV FROM CALCULATED FLOW AND C******CIFFERENCE BETWEEN CRITERIA AND CALCULATED CONCENTRATION DO 790 N = 5, 9 CAPIN1 = (CRIT(N) - C0NCI3.N)) * FL0W(3) / 1000 STORU.NI = STORIJ.N) • CAP(N) 790 CONTINUE IF (SUPRES .EQ. 1) GO TO 960 WRITE (6,600) - 141 -800 FORMAT C C T31, • UPSTREAM' , T50, 'INPUT', T62, * DOWNSTREAM' , I T80, 'PERCENT'! WRITE (6,6101 810 FORMAT (• ', T32, 'VALUE', T50, 'VALUE', T61, * VALUE ( C A L C ) ' , T80, 1 'CHANGE') WRITE (6,8201 F L O W ( l ) . FLOWI2), FLOW(3), PERC(1,1) 620 FCRMAT C O ' , • FLOW (X10C0M3/DAY I' < T31 , F7.0, T47, F10.3, T62, I F7.0, T80, F6.2) WRITE (6,830) P H ( l ) , P H ( 2 ) , PH(3) 830 FORMAT (• '. 'PH ( U N I T S ) ' , T35, F 4 . 1 , T51, F4.1, T66, F 4 . 1 , T81, 1 ' ') WRITE (6,84C* CGNCI1.3), CCNC(2,3), C0NC(3,3), PERC(3,1) 840 FORMAT (• ', 'TEMPERATURE ( C ) ' , T35, F4.1, T49, F6.1, T66, F 4 . 1 , 1 T7S, F7.2I WRITE (6,850) C0NCI1.4), C0NC(2,4), C0NC(3,4), PERC(4,1I 850 FORMAT C «, •SP CONDUCTANCE (UMHOS/CM)', T33, F5.0, T49, F5.0, 1 T64, F5.0, T80, F6-2) WRITE (6,8601 860 FCRMAT C O ' ) WRITE (6,870) 670 FORMAT C O * . T31, •UPSTREAM', T50, 'INPUT', T62, * DOWNSTREAM*, 1 T80, 'PERCENT', T92, 'AVAILABLE') WRITE (6,680) 880 FORMAT C ', T32, 'VALUE'. T50, 'VALUE 1, T61, 'VALUE ( C A L C ) ' , T80, 1 'CHANGE', T92. 'CAPACITY*') WRITE (6,690* 890 FCRMAT C O ' , T23, 'MG/L'. T33, «TONS(M)/D', T45, 'MG/L', T51, 1 'TONSIMI/D', T62, 'MG/L', T67, •TONS(M)/D', T73. 'CONC. 2 T85, 'LOAO', T92, 'TONSIMI/D') WRITE (6,900) C 0 N C U . 5 I , L0AD(1,5), C0NC12.5), L0AD(2,5I, 1CCNC(3,5), L0AD(3,5), P E R C ( 5 , 1 ) , P E R C ( 5 , 2 ) , CAP(5) 900 FORMAT C O ' , 'DISSOLVED SODIUM', T26, F6.2, T33, F 7 . 1 , T44, F6.2, 1 T51, F9.3, T60, F 6 . 2 , T67, F 7 . 1 , T77, F6.2, T84, F6.2, T91, 2 F11.3) WRITE (6,910) C O N C H , 6 ) . LC A D ( 1 , 6 I , C0NC(2,6), L0AD(2,6I, 1CCNC(3,6), L 0 A C ( 3 , 6 ) , P E R C ( 6 , 1 ) , P E R C ( 6 , 2 ) , CAP(6) 910 FORMAT C ', 'SUSPENDED SOLIDS', T26, F6.2, T33, F7.1, T42, F8.2, 1 T51, F9.3, T60, F6.2, T67, F7.1, T77, F6.2, T84, F6.2, T91, 2 F l l . 3 ) WRITE (6,920) C 0 N C ( i . 7 | , L 0 A D ( 1 , 7 ) . C0NC(2,7), LCAD(2,7), 1C0NC(3,7), L0AC(3,71, PERC(7,1>, PERC(7,2), CAP(7) 920 FORMAT l» '. 'TOTAL I RON", T27, F 6 . 3 , T33, F 9 . 3 , T45, F 6 . 3 , T51, 1 F9.3, T61, F6.3, T67, F9.3, T77, F6.2, T84, F6.2, T91, 2 F l l . 3 ) WRITE (6,930) C0NC(1,8), L 0 A D ( 1 , 8 ) , C0NC(2,8), L0AD(2,8), 1 C 0 N C O . 8 ) . L0AD13.8), P E R C ( B , 1 ) , P E R C ( 8 , 2 ) , CAP(8I 930 FORMAT C '. 'TOTAL MANGANESE', T27, F6.3, T33, F9.3, T45, F6.3, 1 T51, F9.3, T61, F6.3, T67, F9.3, T77, F6.2, T84, F6.2, T91, 2 F l l . 3 ) WRITE (6,940) C0NC(1,9I, L 0 A D U . 9 ) , C0NC(2,9), L0AD(2,9), 1C0NC13.9), L0ADI3.9), P E R C I 9 . 1 ) , PERCI9.2), CAP 19) 940 FORMAT (• ', 'TOTAL COPPER', T27, F6.3, T33, F 9 . 3 , T45, F 6 . 3 , T51, 1 F 9 . 3 , T61, F 6 . 3 f T67, F9.3, T77, F6.2, T84, F6.2, T91, 2 F l l . 3 ) WRITE (6,9501 950 FORMAT C O ' , T15, •* BASED ON INPUT CRITERIA') 960 CONTINUE 6 -- 142 -C OF INFLUENCE LOAD CALCULATIONS 970 PH(1» = PH( 3» DO 970 N = 3, CONC(l.N) = CONTINUE GO TO 1100 C0NC(3,N) C» * * * * * P R I N T WITHDRAWAL VALUES C 980 CGNTINUE C A L C ( J , L , 2 ) = PHI1J DO 990 N = 3. 9 C A L C U . L . N I = CONC(l.N) 990 CONTINUE IF (SUPRES .EQ. I t GO TO 1100 WRITE (6,10001 1000 FORMAT CO'/'O WRITE (6,10101 (6,1020) (6.1030) (6, 1040) (6,1050) (6,10(0) (6,1070) 16,1080) (6,1090) C O C O 1010 1C20 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 ,'CALCULATED FL0W(2 ) PH( 1) CONCH ,3 ) CONC(1,4) C0NC(1,5) C0NC(1,6I C0NC(1,7) C0NC(1,8» CONC!1,9) •FL0W(X1000M3/DAY) = •PH (UNITS) = ', F6.2) • TEMPERATURE (C) = ', F6.2 ) •CONDUCTIVITY (UMHOS/CM) = ', • DISSOLVED SOOIUM (MG/L) = ', • SUSPENDED SOLIDS (MG/L) = ', •TOTAL IRON (MG/L) = ', F6.3) MANGANESE (MG/LI = ', COPPER (MG/L) = ', F 6 . WITHDRAWAL PARAMETER VALUES:') F10.3) WRITE WRI TE WRITE WRITE WRITE WRITE WRI TE WRITE FORMAT FORMAT FORMAT FORMAT C O ' , F6.1) FORMAT C O * , D F6.2) FORMAT C O ' , ' F6.1 ) FORMAT FORMAT C O ' , 'TOTAL F6.3) FORMAT C O ' . 'TOTAL 3) CONTINUE FLOW! 1) = FLOW!3) GO TO 280 CONTINUE WRITE (6,1120) FORMAT CO'/'O', T30, • * * * • » * END OF RIVER DATA *»****•» WRITE (6,1130) (DATE(N),N=1,4) FORMAT C l ' / ' O ' , T 3 5 , 'RIVER SYSTEM SUMMARY - «, 4A4/'0', T2, 1 « 1 . CONCENTRATION DIFFERENCES (OBS-CALC)') WRITE (6,1140) FORMAT C O ' , T20, 'FLOW', T33, 'PH', T40. 'TEMP(C)*, T50, 1. «SP COND*. T60, 'DISS N A « , T70, 'NF RES.', T80, •TOT FE* , 2 T90, •TOT MN*, TIOO, 'TOT CU') WRITE (6,1150) FORMAT C ', T18, •X1000M3/D', T32, 'UNITS', T50, 'UMHOS/CM', T61, 1 'MG/L', T71, 'MG/L', T B I , 'MG/L', T91, 'MG/L', T101, 2 'MG/L'I 00 117C I = 1, K WRITE (6,1160) I, (FIN(I,N),N=1,9> FORMAT C O ' , T2, •SEGMENT' , 2X, 12, T18, F7.0, T30, F6.2, T40, 1 F6.2, T50, F6.1, T59, F8.2, T69, F 8 . 1 , T78, F 8 . 3 , T90, 2 F6.3, TIOO, F6.3I - 143 -1170 CONTINUE WRITE 16,1180) (DATE(N),N=1,4) 1180 FORMAT I'O'/'O', '2. LOAD DIFFERENCES* FOR ',4A4» WRITE 16,1190) 1190 FORMAT C O ' , T39, 'DISS NA', T49, 'NF RESIDUE', T60, 'TOT F E ' , I T70, 'TOT MN', T80, 'TOT CU'I WRITE (6,1200) 1200 FORMAT I ' ', T38, « T O N S ( M ) / D ' , T49, 'TONSIMI/D', T59, 'TONS(M)/D', I T69, 'TONS(M)/D', T79, 'TONS(M)/D») DO 1230 I = 1, K WRITE (6,1210) I, (DIFF(I,N),N=5,9) 1210 FORMAT C O ' , T19, 'SEGMENT', 2X, 12, T37, F10.3, T49, F 9 . 1 , T60, 1 F8.2, T70, F 7 . 3 , T80, F7.3) DO 1220 N = 5, 9 NDIF(I.N) = D I F F f l . M / DIST1NI 1220 CONTINUE 1230 CONTINUE WRITE (6,540) WRITE (6,1240) (DATE(N ) ,N=1,4) 1240 FORMAT I ' l ' / ' O ' , '3. NORMALIZED LOAD DIFFERENCES* (PER KILOMETER) 1 FOR ',4A4) WRITE (6,1190) WRITE (6,1200) DO 1250 I = 1, K WRITE (6,12101 I, ( N D I F I I ,N) ,N=5,9) 1250 CCNTINUE WRITE ( 6, 540) WRITE (6,1260) (DATE(N),N=1,4) 1260 FORMAT I'O'/'O', '4. MEAN AVAILABLE CAPACITIES* FOR ',4A4» WRITE (6,1190) WRITE (6,1200) DO 1270 I = 1, K WRITE (6,1210) I, (ST0R(I,N),N=5,9) 1270 CONTINLE WRITE (6,950) WRITE (6,1280) (DATE(N),N=1,4) 1280 FORMAT C ' l ' t '5. SYSTEM CALIBRATION VALUES FOR ', 4A4) WRITE (6,11401 WRITE (6,1150) DO 1290 I = 1, K WRITE (6,1160) I, ( C A L K I . N ) ,N=1,9» 1290 CONTINUE GO TO 20 1300 CONTINUE RETURN END 144 -APPENDIX I I CONVERSION FACTORS ENGLISH UNIT MULTIPLIER S.I. UNIT acre 4,046 m2 acre 0.405 ha a c r e - f t 1,234 m3 cu f t 0.028 m3 cu i n 16.39 cm3 cfm 0.02832 m^/min c f s l . ? 0 m^/min f t 0.3048 m °F 0.5555 (°F - 32) °C g a l (Imp) 0.004546 m3 gpm (Imp) 0.2728 m3/hr i n 2.54 cm l b (mass) 0.4546 kg Ib/cu f t 16.02 kg/m3 lb/day/acre 0.112 g/day/m2 lb/day/acre - f t 3.68 g/day/m3 lb/day/cu f t 16.02 kg/day/m3 lb/day/sq f t 4.880 g/day/m2 l b / t o n 0.5 kg/t mgd (imp) 4546 m3/day sq f t o.09290 2 wr ton 9072 kg ton O.9072 t 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0094934/manifest

Comment

Related Items