UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Weathering in a soil chronosequence Singleton, Glen Allen 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1979_A1 S55_4.pdf [ 18.94MB ]
Metadata
JSON: 831-1.0094910.json
JSON-LD: 831-1.0094910-ld.json
RDF/XML (Pretty): 831-1.0094910-rdf.xml
RDF/JSON: 831-1.0094910-rdf.json
Turtle: 831-1.0094910-turtle.txt
N-Triples: 831-1.0094910-rdf-ntriples.txt
Original Record: 831-1.0094910-source.json
Full Text
831-1.0094910-fulltext.txt
Citation
831-1.0094910.ris

Full Text

WEATHERING IN A SOIL CHRONOSEQU^N^ by GLEN ALLEN SINGLETON B . S c , U n i v e r s i t y of B r i t i s h Columbia, 1974 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department o f S o i l Sc ience) We accept t h i s t h e s i s as conforming to the requ i r ed standard THE UNIVERSITY OF BRITISH COLUMBIA December 1978 @ Glen A l l e n S i n g l e t o n , 1978 In p resen t ing t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Co lumbia, I agree t ha t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r re fe rence and s tudy. I f u r t h e r agree tha t permiss ion f o r ex tens i ve copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head o f my Department o r by h i s r e p r e s en t a t i v e s . I t i s understood tha t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l ga in s h a l l not be a l lowed w i thou t my w r i t t e n pe rm i s s i on . Department o f S o i l Sc ience  The U n i v e r s i t y o f B r i t i s h Columbia 2075 Wesbrook P lace Vancouver, Canada V6T 1W5 Date £ L c <?//7g - i i -ABSTRACT A s o i l chronosequence near Cox Bay, on the west coast o f Vancouver I s l a n d , B r i t i s h Columbia, was i n v e s t i g a t e d and v e r i f i e d . S o i l s i n the sequence are developed i n sandy beach d e p o s i t s , which were found to aggrade toward the ocean at a ra te of 0.26 m per y e a r . Dendrochronology and geomorphic ev idence e s t a b l i s h e d sur face ages f o r seven s e l e c t ed pedons ( s i t e s 1 to 7) across these d e p o s i t s , tha t ranged from 127 years at s i t e 1 to 550 years a t s i t e 7. S o i l c l a s s i f i c a t i o n ranged from an Or th i c D y s t r i c B run i s o l (Typ ic Udipsamment) to an O r t h i c Humo-Ferric Podzol (Aquic Haplorthod) i n thes s i t e s , r e s p e c t i v e l y . A v a r i e t y o f s o i l weather ing c h a r a c t e r i s t i c s , i d e n t i f i e d by we t - chemica l , phys i c a l and o p t i c a l t echn iques , were used to demonstrate t ha t the s o i l s a long t h i s t r ansec t have developed i n a manner which i s compat ib le w i th the presumed genesis o f Podzols (Spodoso l s ) . A 0.17% inc rease i n B h o r i z o n , oxa l a te e x t r a c t ab l e Al and a 0.22 meq/100 g decrease i n C h o r i z o n , exchangeable Mg along t h i s t r an se c t were p l o t t e d w i th s i t e age to exempl i f y s o i l weather ing ch rono func t i ons . Soxh le t procedures were developed to a r t i f i c i a l l y weather Cox Bay chronosequence s o i l m a t e r i a l s , i n the l a b o r a t o r y . S i t e 1, C3 hor i zon s o i l samples were leached w i th d i s t i l l e d water i n soxh le t s c on t a i n i ng O2, Hp, COp and a i r atmospheres. The ^ - w a t e r system c l e a r l y produced a l 1 i t i c weather ing t r end s , whereas, a t o t a l e lementa l ba lance approach and more in tense l each ing were r equ i r ed to f u r t h e r i n t e r p r e t the weather ing - i i i -c h a r a c t e r i s t i e s c rea ted by the o ther atmospheres. Problems o f sample e ros i on and leachate contaminat ion i n d i c a t ed a need f o r a l t e r a t i o n s in the design of the commerc ia l ly a v a i l a b l e s oxh l e t . Mod i f i c a t i o n s made, by reducing the he igh t (A) or complete ly removing (B) the soxh l e t s iphon tube, r e c t i f i e d these problems and showed promise i n s imu l a t i n g pedogenic p rocesses . A c e t i c a c i d (0.3 M) was used to leach 220 g samples of the s i t e 1, C3 hor i zon s o i l i n A-modi f ied s o x h l e t s . High (4.3 l i t r e s per day) and low (2.2 l i t r e s per day) l each ing ra tes produced 13 106 and 4 750 mg o f p re-c i p i t a t e , r e s p e c t i v e l y , which accumulated i n the l eachates dur ing an e i gh t week exper iment. Rates o f removal o f elements from the s o i l samples were in the order of Ca > Mg > Fe > K > Al > Na > Si f o r the low l ea ch i ng ra te and Ca > K > Mg > A l > Fe > Na > S i f o r the h igh l ea ch i ng r a t e . These r e s u l t s are compat ib le w i th a pod zo l i c weather ing p rocess . A c e t i c a c i d and both A- and B-modi f ied soxh l e t s were used to weather chronosequence s o i l samples over 4, 8, 12, 20 and 24 week pe r i ods . Chemical changes i n the r e s u l t a n t weathered products were eva l ua t ed . Ca and Mg decreases i n the samples from both types o f s oxh l e t were p l o t t e d aga ins t weather ing time and s t a t i s t i c a l l y - d e r i v e d , exponent ia l f unc t i ons were used to e xp l a i n the r e s u l t a n t cu rves . The s i m i l a r i t y between these l abo ra to ry chronofunct ions and the f i e l d ch rono func t i ons , de r i ved e a r l i e r , was noted. Calcium-bound phosphate ( P r J and Ca chrono func t ions from both ua f i e l d and soxh l e t weathered s o i l s were compared mathemat i ca l l y . By comparing the s lopes of s t a t i s t i c a l l y - g e n e r a t e d equa t i ons , both the A- and - i v-B-modif ied soxh l e t s were c a l i b r a t e d to pedogenic t ime. B-modi f ied soxh le t s c l o s e l y s imu la ted the chronosequence weather ing and produced cons i s t en t c a l i b r a t i o n r e s u l t s . S t a t i s t i c a l l y - b a s e d chronofunct ions p red i c t ed tha t 100 years o f pedogenic weather ing o f P^ , r equ i r ed 7.4 weeks of B-modi f ied soxh l e t weather ing . Th is compared we l l w i th the 5.5 weeks p red i c t ed f o r a s i m i l a r l o s s o f Ca. A- and B-modi f ied soxh le t s were presented as va luab le pedo log ic t oo l s f o r s imu l a t i n g s o i l weather ing in the Cox Bay s o i l chronosequence. -V-TABLE OF CONTENTS INTRODUCTION 1 L i t e r a t u r e C i t ed 4 PART I - FIELD & LABORATORY CHARACTERIZATION OF THE STUDY AREA 5 Chapter 1 - F i e l d C h a r a c t e r i s t i c s , S o i l Morphology and 6 S o i l C l a s s i f i c a t i o n In t roduc t i on 6 Ma t e r i a l s and Methods 9 Resu l t s and D i s cuss i on 13 Summary and Conc lus ions 35 L i t e r a t u r e C i t e d 37 Chapter 2 - S o i l Chemical P rope r t i e s 40 In t roduc t i on 40 Ma t e r i a l s and Methods 41 Resu l t s and D i s cuss i on 42 Summary and Conc lus ions 57 L i t e r a t u r e C i t ed 61 Chapter 3 - Weather ing, Microscopy and Phosphorus 63 Transformat ion In t roduc t i on 63 Ma t e r i a l s and Methods 65 Resu l t s and D i s cuss i on 68 Summary and Conc lus ions 86 L i t e r a t u r e C i t ed 89 PART II - EXPERIMENTAL PEDOLOGY 91 Chapter 1 - Eva lua t i on o f Soxh let Weathering Procedures 92 In t r oduc t i on 92 ^ Ma t e r i a l s and Methods 94 Resu l t s and D i s cuss i on 97 - v i -Summary and Conc lus ions 104 L i t e r a t u r e C i t ed 106 Chapter 2 (A Techn ica l Note) - Adapt ion o f the Soxh le t 109 Ex t r a c t o r f o r Pedo log ic Stud ies Abs t r a c t 109 Mod i f i c a t i o n s o f the Soxh le t Design 110 Exper imental Procedures 112 Resu l t s and D i scuss ion 113 Conc lus ion 118 L i t e r a t u r e C i t e d 119 Chapter 3 - Use of A c e t i c A c i d i n Soxh le t Weathering 120 Procedures In t roduc t i on 120 Ma t e r i a l s and Methods 122 Resu l t s and D i scuss ion 125 Summary and Conc lus ions 135 L i t e r a t u r e C i t ed 136 Chapter 4 - Chronofunct ions Der ived from the Laboratory 138 Weathering of S o i l Samples i n Soxh le t E x t r a c t o r s In t roduc t i on 138 Ma t e r i a l s and Methods 140 Resu l t s and D i scuss ion 143 Summary and Conc lus ions 151 L i t e r a t u r e C i t ed 153 PART I I I - COMPARISONS OF FIELD AND SOXHLET CHR0N0FUNCTI0NS 155 Chapter 1 - C a l i b r a t i o n of the Soxh le t Weathering 156 Process to Pedogenic Time Using a So i l Chronosequence In t roduc t i on 156 Ma t e r i a l s and Methods 158 Resu l t s and D i scuss ion 160 - v i i -Summary and Conc lus ions 172 L i t e r a t u r e C i t ed 175 SUMMARY AND CONCLUSIONS 177 APPENDICES 183 - V l l l -LIST OF TABLES PART I - Chapter 1 Morphological properties of the Cox Bay chronosequence. Total elemental analysis of the lowest horizon sampled in each pedon from the Cox Bay so i l chronosequence. S i t e - spec i f i c vegetation analysis of Cox Bay chronosequence. Oldest tree age and corresponding surface age for the Cox Bay so i l sampling s i t e s . PART I - Chapter 2 Selected chemical properties of the Cox Bay so i l chronosequence samples. Correlat ions of selected var iables using analyses of s o i l s from the Cox Bay so i l chronosequence. Factor analysis resu l ts for selected var iables and horizons from the Cox Bay so i l chronosequence. PART I - Chapter 3 Phosphorus f ract ionat ion and selected chemical data for depth class samples from the Cox Bay so i l chronosequence. PART II - Chapter 1 Characterizat ion of the C3 horizon material from the Cox Bay so i l chronosequence. - i x -2 Comparison o f the e f f e c t s of d i f f e r e n t gaseous atmospheres used i n weather ing s o i l ma te r i a l s i n soxh le t s - r e s i due s . 3 Comparison of the e f f e c t s of d i f f e r e n t gaseous atmospheres used i n weather ing s o i l ma te r i a l s i n soxh le t s - l e a cha te s . PART II - Chapter 2 1 Se lec ted chemical data f o r res idues from o r i g i n a l , A- 115 and B-modif ied s o xh l e t s . 2 Chemical composi t ion of the leachates from the weather ing 117 o f s o i l ma te r i a l s i n A- and B-modif ied s o x h l e t s . PART II - Chapter 3 1 Exper imental cond i t i ons f o r A-mod i f i ed soxh le t s run a t 123 high and low l each ing r a t e s . 2 Resu l t s from the a n a l y s i s of c en t r i f uged l e a cha t e s , 126 sediments and adhe red -p rec i p i t a t e s i n A-modi f ied soxh l e t c o l l e c t i n g f l a s k s . 3 Average elemental percentages removed from s o i l samples 130 by a c e t i c a c i d l each ing at high and low r a t e s . 4 Ana l y s i s o f s o i l sample res idues f o l l ow i ng a c e t i c a c i d 133 weather ing of s o i l s i n A-modi f ied s o x h l e t s . PART II - Chapter 4 1 Exper imental cond i t i ons f o r weather ing s o i l mate r i a l i n 141 mod i f i ed soxh l e t e x t r a c t o r s f o r va r ious lengths of t ime. 99 100 2 Tota l amounts of elements and weights of s o l i d s found i n A- and B-modif ied soxh l e t leachates over va r i ous t imes . 144 -X-Cha r a c t e r i z a t i o n of top and bottom po r t i ons o f the A- 146 and B-modif ied soxh l e t weathered r e s i dues . C o r r e l a t i o n mat r i x o f s oxh l e t weather ing time and t o t a l 149 elemental content i n A- and B-modif ied soxh l e t l eacha tes . PART I I I - Chapter 1 1 Tota l e lemental composi t ion o f s e l e c t ed depth c l a s s samples 161 from the Cox Bay s o i l chronosequence. 2 Concentrat ions of Pr; a and Ca i n A- and B-modif ied soxh l e t 163 r e s i due s . 3 Curve f i t t i n g f unc t i ons of Pca and Ca versus t ime. 165. 4 C a l i b r a t i o n formulae f o r A- and B-modif ied s o x h l e t s . 171 - x i -LIST OF FIGURES PART I - Chapter 1 Locat ion o f the Cox Bay s o i l chronosequence. S i t e l o c a t i o n s , s o i l ho r i z ons , and t ree he ights shown on a c r o s s - s e c t i o n of the Cox Bay study a r e a . P lan view o f s i t e l o c a t i o n and dendrochronology i n the Cox Bay study a rea . P a r t i c l e s i z e of s e l e c t ed hor izons from s o i l s i n the Cox Bay study a rea . X-ray d i f f r a c t i o n t races of the lowest hor i zon sampled a t each s i t e i n the Cox Bay chronosequence. P l o t o f t r ee age c a l c u l a t e d f o r each s i t e i n the Cox Bay s o i l chronosequence aga ins t d i s t a n c e . PART I - Chapter 2 Oxalate e x t r a c t a b l e Al (A lg) chronofunct ion from the Cox Bay chronosequence. Morgan's a v a i l a b l e Mg chronofunct ion from the Cox Bay chronosequence. PART I - Chapter 3 PQ 9 decrease i n the average of a l l depth c l a s se s and i n su r face 10 cm of Cox Bay chronosequence s o i l s versus sur face age. Comparison of pyrophosphate e x t r a c t a b l e Fe w i th depth between hor i zon and depth c l a s s samples from the Cox Bay s o i l chronosequence. - X l l -PART II - Chapter 1 Exper imental set-up f o r weather ing s o i l ma te r i a l s i n soxh l e t e x t r a c t o r s under d i f f e r e n t gaseous atmospheres. PART II - Chapter 4 Mg and Ca decay chronofunct ions i n res idues r e s u l t i n g from s o i l weather ing i n A- and B-modif ied s o x h l e t s . PART I I I - Chapter 1 Exponent ia l decay chronofunct ions o f Pea f o r f i e l d and B-modif ied soxh l e t r e s i due s . Exponent ia l decay chronofunct ions o f Ca f o r f i e l d and B-modi f ied soxh l e t r e s i dues . - x i n -LIST OF PLATES PART I - Chapter 1 Cox Bay - S i t e 1 s o i l p r o f i l e O r t h i c D y s t r i c B run i so l (Typic Udipsamment). Cox Bay - S i t e 2 s o i l p r o f i l e O r th i c D y s t r i c B run i so l (Typic Udipsamment). Cox Bay - S i t e 3 s o i l p r o f i l e E l u v i a t ed D y s t r i c B run i so l (Typic Hap lo r thod) . Cox Bay - S i t e 4 s o i l p r o f i l e O r th i c Humo-Ferric Podzol (Typic Hap lo r thod) . Cox Bay - S i t e 5 s o i l p r o f i l e O r t h i c Humo-Ferric Podzol (Typic Hap lo r thod) . Cox Bay - S i t e 6 s o i l p r o f i l e O r t h i c Humo-Ferric Podzol (Typic Hap lo r thod) . Cox Bay - S i t e 7 s o i l p r o f i l e O r t h i c Humo-Ferric Podzol (Aquic Hap lo r thod) . Inc reas ing t ree diameters (from l e f t to r i g h t ) w i th i n c r ea s i ng d i s tance from the a c t i v e beach; l o ca ted near s i t e 2 . Most r e c en t l y t r e e - c o l o n i z e d sand ( l e f t ) and sem i -ac t i ve po r t i on of sand and log debr i s ( r i g h t ) , seaward of s i te 1. PART I - Chapter 3 L i gh t microscope photograph o f the Ae ( A 2 ) hor i zon sample ( 2 0 X magn i f i c a t i on ) of s i t e 5 showing d i s i n t e -g r a t i on o f sands to s i I t -and c l a y - s i z e d p a r t i c l e s . - x i v-l b L i gh t microscope photograph o f the B f l (B21 i r ) hor i zon 69 from s i t e 6 (20X magn i f i c a t i o n ) showing o rgan i c matter and f i n e s coa t i ng the sur faces of the sand g r a i n s . l c L i g h t microscope photograph of the C3 hor i zon from s i t e 1 70 (20X magn i f i c a t i on ) showing some evidence o f weather ing on g ra i n s u r f a c e s . 2a SEM photograph of the stub-mounted Ae (A2) hor i zon sample 72 from s i t e 5, showing evidence o f f i n e s a t tached to g ra i n su r faces (140X m a g n i f i c a t i o n ) . 2b Enlargement of a g ra in su r face from P l a t e 2a i l l u s t r a t i n g 72 the s h a t t e r i n g o f g ra i n su r faces to produce s i l t - and c l a y - s i z e d p a r t i c l e s (1000X m a g n i f i c a t i o n ) . 2c Enlargement o f a sand g ra i n sur face from P l a te 2a 73 i l l u s t r a t i n g the ch ipp ing o f a sand g r a i n su r face as a r e s u l t o f weather ing; the r e s u l t i n g f i n e s are a s soc i a t ed w i th g ra i n sur faces (2000X m a g n i f i c a t i o n ) . 2d SEM photograph o f B f l (B21 i r ) hor i zon from s i t e 6 showing 73 sesqu iox ide and organ i c matter coa t ings on sand g ra i n sur faces (200X m a g n i f i c a t i o n ) . 2e SEM photograph o f B f l (B21 i r ) hor i zon from s i t e 6 showing 74 how amorphous ma te r i a l s are coa t i ng sand g ra ins i n t h i s s o i l sample (200X m a g n i f i c a t i o n ) . 2f Enlargement o f the amorphous coa t ings surround ing the 74 sand g ra i n i n P l a t e 2e, i l l u s t r a t i n g the chemical p r e c i p i t a t i o n and i n co rpo r a t i on of f i n e s w i th l a r g e r g ra ins (1000X m a g n i f i c a t i o n ) . 2g SEM photograph of the s i t e 1, C3 hor i zon showing c lean 75 sur faces on the sand g ra ins (100X m a g n i f i c a t i o n ) . 2h Quartz g ra i n su r face en larged from P l a te 2g i l l u s t r a t i n g 75 the r egu l a r boundaries and the absence of s i l t - and c l a y -s i z ed p a r t i c l e s (1000X m a g n i f i c a t i o n ) . 2 i Quartz g ra in sur face en larged from P l a t e 2g showing many 76 smooth sur faces desp i te the p i t t e d appearance (1000X m a g n i f i c a t i o n ) . 3a SEM photograph o f a c r o s s - s e c t i o n through a quar t z g ra i n 79 found in the Ae (A2) hor i zon of s i t e 5 (400X m a g n i f i c a t i o n ) . \ -XV-3b Enlargement of the d i so rgan i zed edge of the sand g ra i n 79 shown i n P l a t e 3a, showing h igher s p e c i f i c sur face area than tha t expected from a sand g ra in (1000X m a g n i f i c a t i o n ) . 3c SEM photograph of a c r o s s - s e c t i o n through sand gra ins 80 found i n the B f l (B21 i r ) hor i zon o f s i t e 6, showing weather ing of the i n t e r i o r s o f g ra ins and g ra i n boundaries (200X m a g n i f i c a t i o n ) . 3d Enlargement of center g ra i n i n P l a t e 3c, i l l u s t r a t i n g the 80 heterogeneous composi t ion of an amphibole (2000X magn i f i -c a t i o n ) . 3e SEM photograph of a c r o s s - s e c t i o n through sand g ra ins from 81 the s i t e 1, C3 hor i zon showing smooth g ra i n boundaries and v e s s i c u l a r i n t e r i o r s (200X m a g n i f i c a t i o n ) . PART II - Chapter 1 1 Small carbonate conc re t i on formed i n the soxh l e t u t i l i z - 103 ing a C 0 ? - d i s t i l l e d water l each ing regime (200X magn i f i -c a t i o n , p a r t i a l l y c r o s sed -po l a r i z ed l i g h t ) . PART II - Chapter 2 1 I l l u s t r a t i o n o f the o r i g i n a l soxh l e t des ign ( l e f t ) , 111 mod i f i c a t i o n A, shortened siphon (center ) and mod i f i c a t i o n B, s t r a i g h t s iphon ( r i g h t ) . PART II - Chapter 3 1 Scanning e l e c t r on microscope photograph o f a p iece of 129 adhe r ed -p r e c i p i t a t e , which has been removed from the s ide o f a soxh l e t f l a s k (150X m a g n i f i c a t i o n ) . - x v i -ACKNOWLEDGEMENTS The author wishes to thank the many members o f the U.B.C. Department o f S o i l Sc ience who have a ided w i th the research and i n the complet ion of t h i s t h e s i s . S p e c i f i c a l l y , thanks are g iven to : Bev Herman and Bern ie von Sp i nd l e r f o r d r a f t i n g and t e chn i c a l a s s i s t a n c e ; Mark Sondheim f o r a i d w i th s t a t i s t i c a l ana l yses ; Debbie Hallman and Ke i th Jones f o r help w i th vegeta t ion sampl ing; Margaret Holm and Kathy L i f o r he lp w i th l abo ra t o r y ana l yses ; W i l l y Hendershot f o r he l p fu l suggest ions and usefu l c r i t i c i s m o f some o f the manuscr ip ts ; and Val Kwantes and Evelyne Martens f o r t yp ing the d r a f t s . Thanks and app re c i a t i on are expressed f o r the d i r e c t i o n , support and f r i e n d s h i p extended by Les Lavku l i c h as t he s i s s upe r v i s o r . S i m i l a r c on t r i b u t i o n s from the au tho r ' s committee members are g r a t e f u l l y acknowledged. Very spec i a l thanks are g iven to Diane S ing l e ton f o r her many c on t r i b u t i o n s and f o r her pat ience and understanding dur ing a l l phases of the research and p repara t i on of t h i s t h e s i s . Spec ia l thanks are a l so g iven to Ken and Dorothy S ing l e ton of Burnaby who were very much a pa r t of t h i s s tudy. Th is research was made po s s i b l e p r i m a r i l y through a s cho l a r sh i p and a grant (Grant Number A4463) from the Nat iona l Research Counc i l o f Canada. - 1 -INTRODUCTION Minera l weather ing i s a dynamic process t ha t occurs w i th s o i l development. In response to i n c r ea s i ng environmental awareness, the weather ing phenomenon has passed from spheres o f s t r i c t l y academic i n t e r e s t to ones i n c l ud i ng socioeconomic i n t e r e s t s . Research on minera l weather ing has important imp l i c a t i o n s f o r a g r i c u l t u r e , f o r e s t r y and land r e c l ama t i on . S ince Jenny's (1941) p resen ta t i on o f the s t a t e f a c t o r s of s o i l f o rmat i on , chronsequences and chronofunct ions have prov ided va luab le i n fo rmat i on i n the i n v e s t i g a t i o n o f minera l weather ing and s o i l genes i s . The soxh l e t apparatus, in t roduced by Pedro i n 1961, s i m i l a r l y helped t h i s i n v e s t i g a t i o n from an exper imental pedo log ic approach. I t was be l i eved tha t w i th some man ipu l a t i on , chronosequence in fo rmat ion cou ld be incorpora ted i n t o the realm of exper imenta l pedology. Th is would prov ide new t oo l s f o r t e s t i n g and improving e x i s t i n g gene t i c t heo r i e s and a i d i n the p r e d i c t i o n o f s o i l behav io r . S ince one o f the ob j e c t i v e s i n pedology i s to p r e d i c t s o i l behav io r , v a r i a t i o n s in s o i l weather ing processes over time are o f g reat i n t e r e s t . S o i l ma te r i a l s may be weathered e a s i l y i n the l abo ra t o r y f o r var ious lengths of t ime. However, i t i s d i f f i c u l t to e x t r apo l a t e the observed l abo ra to ry changes to ac tua l f i e l d behav io r . Few, i f any, attempts have been made i n t h i s d i r e c t i o n (Yaa lon, 1975). There fo re , i t was f e l t tha t i f a comparison o f soxh le t weather ing over var ious - 2 -lengths o f t ime cou ld be r e l a t e d to those found i n a s o i l chronosequence, t h i s would serve as an adequate t e s t o f the soxh l e t s s imu l a t i on c a p a b i l i -t i e s . The presence of an a c t i v e b i o t i c f a c t o r i n s o i l systems a l l ows the d i s t i n c t i o n between a s o i l and a geo l og i ca l d epo s i t . In s o i l s , however, geochemical processes are superimposed on pedogenic p rocesses . I t would appear tha t a separa t i on o f these two processes i s e s s e n t i a l f o r understanding the genesis of s o i l s . The soxh l e t apparatus , i f adapted f o r s o i l m a t e r i a l , shou ld be use fu l i n such a s epa r a t i o n . Use of water systems i n the soxh l e t would sub jec t s o i l ma te r i a l s to weather ing in the absence of o rgan ic mat ter; t h i s would represent i no rgan i c geo-chemical weather ing . By p l a c i ng an o rgan i c a c i d in the l e a cha t e , the soxh l e t cou ld be made to s imu la te o rgan i c geochemical weather ing . A comparison o f observed pedogenic weather ing of a s o i l ma te r i a l to the weather ing c reated by the soxh l e t should help c l a r i f y the r o l e o f the a c t i v e b i o t i c f a c t o r dur ing s o i l f o rma t i on . A s o i l chronosequence was l o ca ted near Cox Bay on the west coast o f Vancouver I s l a nd , B r i t i s h Columbia. Much of the p r e l im i na r y charac-t e r i z a t i o n of t h i s area was p r ev i ou s l y recorded by Cordes (1972). De ta i l ed f i e l d s tud ies were conducted i n January and February o f 1975, June 1975 and February 1976. In a d d i t i o n , severa l v i s i t s were made to the study area to c o l l e c t complementary data as the study progressed. Soxh le t experiments were i n i t i a t e d us ing the s o i l ma t e r i a l s from t h i s chronosequence as soon as they were a v a i l a b l e . Throughout the balance -3-of the s tudy, i n v e s t i g a t i o n s were c a r r i e d out to reveal the weather ing processes i n the f i e l d and by the soxh l e t techniques developed. I t was be l i eved tha t a comparison of these weather ing processes would lead to a c a l i b r a t i o n of the soxh l e t to pedogenic t ime . - 4 -LITERATURE CITED 1. Cordes, L .D. , 1972. An e co l og i c a l study of the s i t k a spruce f o r e s t on the west coast o f Vancouver I s l and . Ph.D. Thes i s , Dept. o f Botany, U n i v e r s i t y o f B r i t i s h Columbia. 2. Jenny, H., 1941. Factors of s o i l f o rmat ion . McGraw-H i l l , New York. 3. Pedro, G. , 1961. An exper imental study on the geochemical weather ing of c r y s t a l l i n e rocks by water. C l ay . Miner . B u i . 4: 266-281. 4. Yaa lon, D.H., 1975. Conceptual models i n pedogenesis: Can s o i l forming func t i ons be so lved? Geoderma. 14: 189-205. -5-PART I FIELD AND LABORATORY CHARACTERIZATION OF THE STUDY AREA - 6 -PART I - Chapter 1 FIELD CHARACTERISTICS, SOIL MORPHOLOGY AND SOIL CLASSIFICATION INTRODUCTION Accord ing to Walker (1965), Dokuchaev's theory o f s o i l fo rmat ion expressed i n the equat ion where TT.-= s o i l , K = c l i m a t e , 5o= organisms, y = geo log i c substratum and 3 = age , i s s t i l l the c h i e f i n t e g r a t i n g theory i n pedology. Th is s t a t e f a c t o r equat ion was extended and given much more r i go rous treatment by Jenny (1941, 1958). Yaalon (1975-)'has more r e c en t l y i n d i c a t e d tha t Jenny's f a c t o r i a l approach has exper ienced on ly s l i g h t v a r i a t i o n s such as those o f f e r ed by Runge (1973) and Chesworth (1973). S ince Jenny 's (1941) p re sen ta t i on o f the f a c t o r i a l approach, chronosequences and chronofunct ions^ have prov ided va luab le i n fo rmat i on f o r the assessment o f s o i l genes is (Dickson and Crocker , 1953; Crocker and D ickson, 1957; Franzmeier and Wh i tes ide , 1963; U g o l i n i , 1968). The term "ch rono func t i on" i n t h i s d i s cu s s i on r e l a t e s to the v a r i a t i o n i n a measurable s o i l p roper ty w i th t ime. - 7 -However, comp l i ca t i ons w i th c l i m a t i c v a r i a t i o n , s h i f t i n g time zero and vegeta t ion dependence has l i m i t e d the number o f t rue chronosequences (Stevens and Walker, 1970). Crocker (1952) noted t h a t po lygenes i s o f s o i l s i s the r u l e r a t he r than the excep t i on . He a l s o suggested t ha t monosequences, where on ly one o f the s t a t e f a c t o r s v a r i e s s i g n i f i c a n t l y , are l i k e l y to be developed over sho r t and approximate du r a t i o n s . Because o f t h e i r use fu lness in the d e r i v a t i o n of f unc t i ons r e l a t i n g s o i l p r ope r t i e s and s t a t e f a c t o r s , there has been a cont inua l c a l l f o r seek ing out these ra re monosequences to a i d i n the study o f s o i l genes is (Crocker , 1952; Jenny, 1958; Stevens and Walker, 1970; Yaa lon, 1975). In t h i s chapte r , the f i e l d c h a r a c t e r i s t i c s , s o i l morphology and s o i l c l a s s i f i c a t i o n o f a s o i l chronosequence are de s c r i b ed . The s o i l s i n t h i s chronosequence are developed i n beach sand depos i t s , near Cox Bay, on the west coast o f Vancouver I s l a nd , B r i t i s h Columbia (F igure 1 ) . A d e t a i l e d c h a r a c t e r i z a t i o n of t h i s study area was f i r s t g iven by Cordes (1972) from a bo tan i ca l v i ewpo in t . In h i s s tudy, Cordes documented a chronosequence of vege ta t i on which had r e s u l t e d from the con t inua l c o l o n i z a t i o n of newly aggraded beach depo s i t s . Geomorphology and geology of the general a rea , i n c l u d i n g Cox Bay, has been d i scussed by Nelson and Cordes (1972) and Mu l l e r and Carson (1969). The headland rocks surrounding the bay have been r e f e r r e d to as the To f ino Area Greywacke Un i t (Mu l l e r and Carson, 1969) and c o n s i s t o f c ong l ome r i t i c greywacke w i th minor a r g i l l i t e . -8-F igure 1 . Locat ion o f the Cox Bay s o i l chronosequence. - 9 -Although Cordes (1972) desc r ibed the s o i l s a s soc i a t ed w i th the Cox Bay vegeta t i on chronosequence, a d e t a i l e d d i s cu s s i on of s o i l genes is was not g i v en . One o f the major ob j e c t i v e s i n the present study was to i d e n t i f y s o i l weather ing processes r e l a t e d to t ime. I t was f e l t t ha t t h i s study area cou ld y i e l d one o f the aforement ioned ra re monosequences and, t h e r e f o r e , be an opportune l o c a t i o n to i n v e s t i g a t e s o i l genes is i n d e t a i 1 . MATERIALS AND METHODS A p r e l im i na r y examinat ion o f the Cox Bay study area was made us ing a e r i a l photographs; c h a r a c t e r i s t i c s such as vege ta t i ve s t r u c t u r e , wave d i r e c t i o n and geomorphology of the sand depos i t s were assessed . On the bas i s o f t h i s examinat ion , seven sample s i t e s (number 1 to 7) were l o ca ted on these ma te r i a l s along a t r ansec t approx imate ly perpen-d i c u l a r to the present s h o r e l i n e . The l o c a t i o n s of these sample s i t e s are shown in F igures 2 and 3. The s o i l s a t each s i t e were desc r ibed and morpho l og i ca l l y d i f f e r e n t hor i zons were sampled f o r l a t e r l a bo ra t o r y a n a l y s i s . At the time o f t h i s sampl ing , a s i t e - s p e c i f i c vege ta t i ona l a n a l y s i s was made. A l s o , the ages, diameters a t b reas t he ight (dbh) and l o c a t i o n s o f the l a r g e s t t rees i n the immediate v i c i n i t y of each s i t e were determined. Tree ages were assessed us ing increment bores o f var ious l eng th s . C R O S S - S E C T I O N OF T H E COX BAY S T U D Y A R E A r-50 SURFACE AGE (yr) 127 170 265 371 4 4 6 480 550 F igure 2. S i t e l o c a t i o n s , s o i l ho r i zons , and t ree heights shown on a c r o s s - se c t i on o f the Cox Bay study a r e a . - I V COX BAY PRESENT BEACH 15. 25. 77. 94. 95. 130: I62_L I62yrs(46cm) ©75yrs(57cm) Y E A S 3004. 430. -15yrs(2.5 cm)a -©25yrs (3.5 cm) -77yrs(l8cm), 70yrs(l6cm) — 67yrs(28cm)—*>94yrs (16.5cm) SITE R E C E N T L O G DEBRIS ( C O L O N I Z E D ) :l07yrsD8cm)dc^qi95y rs(30cm) ^ ^ ^ 1 3 0 y r s ( 3 6 c m ) S I T E 2 jl05yrs(34cm) I3lyrs(36cm) SITE 3 180 yrs (53cm) 300yrs(75cm) (estimated from partial core) SITE 4 295yrs(48cm)o i^©l45yrs(40cm) SITE 5 430yrs(l l2cm) SITE 6 + SITE 7 SEQUENCE OF OLDEST TREES CORED F igure 3 . Plan view of s i t e l o c a t i o n and dendrochronology i n the Cox Bay study a r e a . -12 -S ince the geomorphology o f the area would prov ide important i n fo rmat ion regard ing the depos i t i ona l environment o f the sands, i t was cons idered necessary to a c cu ra t e l y determine the p o s i t i o n s and e l e va t i on s of the sample s i t e s r e l a t i v e to the present beach. To prov ide t h i s i n f o rma t i on , a l e v e l - l i n e survey of the t r ansec t was made u t i l i z i n g a s t a d i a , compass and Abney l e v e l . D is tances were chained and recorded i n metres. In a d d i t i o n , the width o f sand depos i t s con ta i n i ng log d e b r i s , which were l o ca ted between the sampled t r an se c t and the a c t i v e beach, was measured a t severa l l o c a t i o n s a long the bay. P a r t i c l e s i z e determinat ions were c a r r i e d out by the s i eve and p i p e t t e methods o f Jackson (1958) f o l l ow i ng a hydrogen perox ide p re -treatment f o r o rgan i c matter remova l . S ince the s i l t and c l ay percentages were expected to be low in most o f the samples, they were on ly determined as d i s t i n c t separates in samples which requ i r ed t h i s data f o r s o i l c l a s s i f i c a t i o n purposes. S o i l pH was determined i n water (1:1) and i n 0.01 M C a C l 2 (1:2) by the methods o f Peech (1965). Fe and Al were e x t r a c t ed from the B hor izons of t h i s t r an se c t us ing sodium pyrophosphate (Bascomb, 1968) f o r c l a s s i f i c a t i o n purposes and ana lyzed by atomic absorp t i on spectrophotometry. The s o i l s were c l a s s i f i e d accord ing to the Canadian (Canadian S o i l Survey Committee, 1978) and American (U.S.D.A. S o i l Survey S t a f f , 1975) s o i l c l a s s i f i c a t i o n systems^. So i l c l a s s i f i c a t i o n i s g iven w i th the Canadian des igna t i on fo l l owed by the American des igna t i on in b r a cke t s . -13-Parent ma te r i a l s from each o f the sampling s i t e s were compared f o r t h e i r homogeneity. C hor i zons from the f i r s t s i x s i t e s were ana lyzed; f o r s i t e 7, the BC (B3) hor i zon was used as a s u b s t i t u t e f o r the parent m a t e r i a l , s i nce the t rue C hor i zon was not e s t a b l i s h e d even though sampling was conducted to a great depth. Comparisons were made us ing powder-mount X-ray d i f f r a c t i o n (CuK °c , N i - f i l t e r e d r a d i a t i o n ) and t o t a l elemental a n a l y s i s . Samples ground to pass a 0.25 mm s ieve were used i n the powder-mounts. As a check on the e f f i c i e n c y o f g r i n d i n g , some of the samples were ground f u r t h e r to pass a 0.05 mm s ieve and p re t r ea ted w i th c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e (Mehra and Jackson , 1960) f o r removal o f sesqu iox ide coat ings before a n a l y s i s by X-ray d i f f r a c t i o n . The t o t a l e lemental a na l y s i s was c a r r i e d out by d i s s o l v i n g the <0.05 mm s o i l samples w i th h y d r o f l u o r i c a c i d i n t e f l o n bombs (Ranta la and L o r i n g , 1973) and measuring the e lemental concen t ra t i ons by atomic absorp t i on spec t r o -photometry. RESULTS AND DISCUSSION S o i l Morphology and Pedogenesis The morphologic p r ope r t i e s o f the s o i l s a t s i t e s 1 to 7 are g iven i n Table 1 and i l l u s t r a t e d by P l a t e s 1 to 7. Inc reas ing s o i l development was observed as d i s tance from the a c t i v e beach inc reased ( i . e . moving from s i t e 1 to s i t e 7 ) . The f o l l ow i ng trends were i n t e r p r e t e d as i n d i c a t i n g such an i n c r ease : Table 1. Morphological Properties of the Cox Bay Chronosequence. Horizon Designation Site Can. DTST" Depth (cm) PH 1:8. d"fllH 1:1 Particle Size Class (») anil Diameter (mn) • V! Fine Sand S i l t 4 Clay Hed. Sand 0.5-0.25 Fine Sand 0.25-0.1 Moist Consistence Root* Lower* Distribution Boundary FH 02 6-0 4.5 5.1 Bm B2 0-10 4.6 5.8 CI CI 10-25 4.6 5.6 C2 C2 25-46 4.7 5.8 C3 C3 46* 4.9 5.6 FH 02 8-0 4.3 4.B Bm B2 0-15 4.3 5.1 BC B3 15-56 4.5 5.2 C C 56+ 4.6 5.3 FH 02 10-0 3.6 4.1 Aej A2 0-1 - -Bm B21r 1-38 4.6 5.4 BC B3 38-69 4.8 5.7 C C 69+ 4.9 5.8 FH 02 8-0 3.7 4.2 Ae A2 0-3 3.9 4.7 Bf B2l1r 3-18 4.2 5.0 Bm B221r 18-46 4.5 5.3 BC B3 46-91 - -C C 91 + 4.7 5.4 FH 02 10-0 3.7 4.1 Ae A2 0-5 3.8 4.5 Bfl B2l1r 5-26 4.0 4.7 Bf2 B221r 26-36 4.3 5.0 Bm B231r 36-58 4.6 5.4 BC 63 58-99 4.7 5.4 C C 99+ 4.9 5.6 LFH 02 8-0 3.6 4.1 Ae A2 0-5 4.0 4.8 Bfl B21lr 5-10 4.3 5.3 Bf2 622tr 10-20 4.5 5.5 Bm B231r 20-43 4.7 5.5 BC B3 43-74 4.6 5.4 C C 74+ 4.7 5.3 LFH 02 20-0 3.6 4.2 Ae A2 0-6 3.8 4.5 A and B l A 1 B 6-18 - -B of 1 B211r 18-30 4.2 5.0 Bf2 B221r 30-56 4.4 5.0 BC B3 56+ 4.6 5.2 6.6 13.3 2.3 2.9 3.3 1.5 2.0 2.2 1.1 1.8 1.8 1.3 1.0 1.5 1.1 4.0 2.2 1.3 23.9 10.9 10.5 14.6 9.3 17.3 12.5 5.1 2.8 7.9 89.8 83.2 95.5 95.2 92.9 96.3 95.7 94.7 96.8 96.0 87.1 91.4 95.3 84.4 91.8 91.5 95.2 96.4 74.2 78.8 82.7 80.0 88.0 81.0 86.2 89.2 92.9 90.0 2.5 2.2 2.2 1.9 2.4 2.1 2.1 2.4 1.7 2.2 4.1 2.8 2.1 1.5 4.5 1.6 1.7 1.6 1.9 2.0 3.0 2.0 1.6 1.5 1.0 1.2 1.5 1.7 1.2 1.1 lsbk v. friable 1.3 vlsbk v. friable 0.6 vlsbk loose 0 vlsbk loose 1.4 vlsbk v. friable 0.2 vlsbk loose 0.2 lsbk loose - vlsbk loose 0.8 2sbk v. friable 0.3 2sbk v. friable 0 vlsbk v. friable 7.0 2sbk v. friable 4.5 2sbk v. friable 1.6 2sbk firm vlsbk friable 0.3 vlsbk friable 7.9 2sbk v. friable 5.6 3sbk f1rm-frlable 2.8 lsbk firm 1.0 lsbk friable 0.5 lsbk friable 0 vlsbk loose 7.3 lsbk v. friable 4.8 lsbk loose 3.8 2sbk firm 1.2 lsbk firm 0.8 vlsbk v. friable 0.1 vlsbk loose 7.7 vlsbk friable 2sbk friable 4.2 lsbk friable 2.6 2abk firm 0.9 labk firm mjc-f) as f m-f) as f(m-f) cs f(m-f) cs o(f) -a(c-f) as aim) cs otm) cs o(m) -a(m-f) as m(m-f) cw f(c-f) cs n ds n -m(m-f1 as m(m-f) cs flc-n) a* o(c) cs vf(c) ds n " pjc-f) as p c-f) aw fjm) cw f(m) cs n 9 n d n -p c - f p c-f f(m-f) o(c) o(c) a(m-f) m(tn-f) o(f) o(m) 9" 9» da 91 d * Symbols as given 1n Soil Survey Manual, USOA Handbook No. 18, pp. 139-140, 1951. * Examples of root distribution (see, Canadian Soil Survey Coranittee, 1978) m(c-f) = many (coarse to fine) a(m-f) * abundant (medium to fine) Pyrophosphate Classification Munsell Extractable Canadian (U.S.) Color (Moist) ~Te RT and Comments 5 YR 2/1, black - - Orthic Dystrlc Brim 1 sol 5 Y 4/3, olive 0.13 0.09 (Typic Udipsanment) 5 Y 3/2. dark olive gray - -5 Y 6/2. olive gray - -5 Y 5/2. olive gray - -5 YP. 2/2, dark reddish brown _ _ Orthic Dystrlc Brunlsol 2.5 Y 5/4, light olive brown 0.13 0.15 (Typic Udipsanment) 5 Y 4/3. olive - - faint mottles, 2.5 4/4 5 Y 4/3, olive - -5 YR 2/1. black _ _ Orthic Dystrlc Brunlsol 10 YR 3/1, very dark gray - - (Typic Haplorthod) 10 R 2/2. very dusky red 0.16 0.14 2.5 Y 4/4. olive brown - -5 Y 4/3. olive - -5 YR 2/1. black _ Orthic Humo-Ferric Podzol 5 YR 5/1. gray - - (Typic Haplorthod) 10 YR 3/4. dark yellowish brown 0.28 0.14 10 YR 6/6. brownish yellow 0.14 0.18 2.5 Y 4/4. olive brown -5 Y 4/3, olive - -5 YR 2/1. black _ _ Orthic Humo-Ferric Podzol 10 YR 6/2. light brownish gray - - (Typic Haplorthod) 7.5 YR 3/2. dark brown 0.49 0.19 10 YR 3/3. dark brown 0.21 0.22 2.5 Y 5/6, light olive brown 0.08 0.17 2.5 Y 4/4. olive brown . - faint mottles, 2.5 Y 5/6 2.5 Y 4/2. dark grayish brown - - faint mottles, 2.5 Y 6/6 5 YR 2/2. dark reddish brown Orthic Humo-Ferric Podzol 10 YR 5/2. grayish brown - - (Typic Haplorthod) 2.5 YR 3/2. dusky red 0.50 0.26 2.5 YR 3/2. dusky red 0.31 0.32 blotches. 5 YR 3/2 7.5 YR 4/4, dark brown 0.11 0.24 blotches. 7 YR 5/6 10 YR 5/4. yellowish brown - - faint mottles 10 YR 5/4, yellowish brown - -2.5 YR 2/0, black _ Orthic Humo-Ferric Podzol 10 YR 4/2, dark grayish brown - - (Aquic Haplorthod) 10 YR 2/2. black 0.34 0.29 10 YR 2/2, very dusky red 0.19 0.25 blotches, 5 YR 4/2 10 YR 3/3, dark brown - - blotches, 5 YR 4/2 P l a te 1 . Cox Bay - S i t e 1 s o i l p r o f i l e P l a t e 2 . Cox Bay - S i t e 2 s o i l p r o f i l e O r th i c D y s t r i c B run i so l O r th i c D y s t r i c B run i so l (Typic Udipsamment) (Typic Udipsamment) Plate 3. Cox Bay - S i te 3 so i l p ro f i l e Eluviated Dystr ic Brum'sol (Typic Haplorthod) Plate 4. Cox Bay - Site 4 so i l p ro f i l e Orthic Humo-Ferric Podzol (Typic Haplorthod) P la te 5. Cox Bay - S i t e 5 s o i l p r o f i l e O r th i c Humo-Ferric Podzol (Typic Hap lo r thod) . ate 6. Cox Bay - S i t e 6 s o i l p r o f i l e O r t h i c Humo-Ferric Podzol (Typic Hap lo r thod) . - 1 8 Plate 7. Cox Bay - Site 7 soi l prof i le Orthic Humo-Ferric Podzol (Aquic Haplorthod) -19-1) p rog ress i ve deepening and d i f f e r e n t i a t i o n o f genet i c ho r i z ons . 2) lower pH va l ue s , beg inn ing near the sur face and p rogress ing to lower depths. 3) redder hues corresponding to accumulat ions of sesqu iox ides i n B hor i zons and the t h i c ken i ng o f g r a y i s h , e l u v i a l A ho r i z ons . 4) s t ronger expressed s t r u c t u r e s and f i rme r cons i s tence i n B ho r i z ons . 5) i n c r ea s i ng amounts of f i n e s (<0.05 mm s o i l ) i n the o l de r p r o f i l e s . Sodium pyrophosphate e x t r a c t a b l e Fe and Al from the B hor i zons are a l s o g iven i n Table 1. Th is i n fo rmat i on was used w i th the s o i l morphology to c l a s s i f y the s o i l s (see Table 1 ) . The s o i l s ranged from an O r th i c D y s t r i c B run i so l (Typic Udipsamment) a t s i t e 1 to an O r t h i c Humo-Ferric Podzol (Aquic Haplorthod) a t s i t e 7. The b lo tches of redd ish brown c o l o r repor ted f o r the lower hor i zons o f s i t e s 5,6,and 7 have probably r e s u l t e d from s t a i n s o f o rgan ic matter and sesqu iox ides which have moved down the p r o f i l e s i n i r r e g u l a r bands. High wate r tab les were observed at s i t e s 5 and 6 f o r shor t per iods dur ing the w in te r months; these wa t e r t ab l e s , however, were not observed to r i s e above a depth o f 50 cm. At s i t e 7, the wate r tab le was observed at the sur face f o r extended per iods dur ing the w i n t e r . There fo re , the b lo t chy co l o r s repor ted i n these s o i l s may have r e s u l t e d , i n p a r t , from the e f f e c t s of innundat ion w i th water . For the remainder o f the y ea r , we l l o x i d i z e d cond i t i ons would be expected due to the coarse -20-s o i l t ex tu res and evidence o f reduc ing cond i t i on s were not observed a t the time o f samp l ing . The g l ey i ng des igna t i on (g) was, t h e r e f o r e , not ass igned to hor i zons i n which these f ea tu res were found. A l l mineral hor izons i n t h i s chronosequence had f i n e sand tex tu res (Canadian S o i l Survey Committee, 1978). F igure 4 i l l u s t r a t e s the p a r t i c l e -s i z e d i s t r i b u t i o n of some se l e c t ed hor izons from the t r a n s e c t . L i t t l e evidence f o r s t r a t i f i c a t i o n was observed w i th the po s s i b l e except ion o f the h igher percentages o f medium sand i n the C hor i zon of s i t e 5 and to a l e s s e r ex ten t f o r the samples from s i t e 6. The medium sand f r a c t i o n appeared to have g rea te r amounts o f ferromagnesian minera l s which imparted s l i g h t l y darker co l o r s to these samples'. F igure 4 shows i n c r e a s i n g percentages o f f i n e s i n the hor i zons from s i t e s 1 to 5 and a l e v e l l i n g o f f t h e r e a f t e r . In the p r o f i l e s f u r t h e s t from the present s ho r e l i n e ( s i t e s 6 and 7 ) , however, f i n e s were found to occur a t lower depths. The r e s u l t s o f the X-ray d i f f r a c t i o n ana l y s i s o f the parent ma te r i a l s ( i n c l u d i ng the BC hor i zon o f s i t e 7) are shown i n F igure 5. The elemental ana lyses of these same samples are presented i n Table 2. The sandy parent ma te r i a l s c ons i s t ed main ly of pr imary minera l s dominated by quar tz ,sod ium f e l d spa r and amphiboles ( e s p e c i a l l y hornb lende) . Minor amounts o f o l i v i n e , ca l c ium f e l d spa r and magnet i te were present w i th t race q u a n t i t i e s of c h l o r i t e and micas . Except f o r minor v a r i a t i o n s i n peak he ights and l o c a t i o n s , the X-ray d i f f r a c t i o n t races f o r a l l the pa r en t 'ma t e r i a l s i n d i c a t e d the same s u i t e o f m ine ra l s . Samples ground to l e s s than 0.05 mm and p re t r ea ted w i th c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e d i d not e x h i b i t d i f f e r e n t t races than those ground to 0.25 mm. The PARTICLE SIZE OF SELECTED HORIZONS IOCL Bm C 9 0 J 80J 70J PERCENT > ' » > > » > 4 4. 44 4 4 4/4 4 4 30J 20. Bm C Bm C O J 0 Ae Bfi C II Ae Bfi C yy y £5L Ae Bfi C I" y yy yy y y 44 44. Ae Bfi BC 0 .y yy y y yy yy y 44 44. 4 4 44 44 4 | SILT + CLAY « 0.05 mm.) ^ VERY FINE SAND (0.05 - 0.10 mm.) FINE SAND (0.10 - 0.25 mm.) [S3 MEDIUM SAND (0.25 - 0.50mm.) 127 170 265 4 i 371 446 6 7 SITE NUMBER i t 4&0 550 ESTIMATED SURFACE AGE (YRS.) F igure 4. P a r t i c l e s i z e o f s e l e c t ed hor izons from s o i l s in the Cox Bay study a r ea . -22-3.34 A 3.16 A 1.61 A 1.45 A 2.45 A 2.12 A / W v l 4.24 A 8.33 A 6.36 A 65 60 14.01 A W v J V r S , T E 6 S I T E 5 A M ^ L A W ^ ^ ^ S I T E 2 50 40 DEGREES 26 l _ 30 20 _l i i 10 3 F igure 5. X-ray d i f f r a c t i o n t races o f the lowest hor i zon sampled a t each s i t e i n the Cox Bay chronosequence. -23-Table 2. Tota l e lemental a na l y s i s o f the lowest hor i zon sampled i n  each pedon from the Cox Bay s o i l chronosequence. S i t e Hor izon Number 1 Sample Ca Mg Na K ol Fe Al Si Mn 1 C3 1.01 1.23 2.43 0.29 3.9 6.8 27 0.07 2 C 1.22 1.37 2.32 0.25 4.0 7.1 31 0.08 3 C 1.26 1.55 2.31 0.25 4.5 7.5 30 0.10 4 C 0.88 1.03 2.65 0.30 3.0 7.0 31 0.06 5 C 2.04 1.97 1.69 0.16 6.5 7.2 25 0.15 6 C 0.81 0.99 2.47 0.27 3.3 6.8 31 0.06 7 BC 0.68 0.86 2.32 0.29 2.8 6.6 31 0.05 Table 3. S i t e - s pe c i f i c vegetation ana lys i s of Cox Bay chronosequence Tree Tree Shrub Shrub Herb Other Cover Height Cover Height Cover Cover S i te S i t e Dominant Trees % m Dominant Shrubs % m Dominant Herbs % Others % C l a s s i f i c a t i o n 1 Thuja Picea Tsuga p l i c a t a s i t chens is heterophyl la 5 <2 Gaulther ia sha l lon 85 1-2 V i c i a americana Polystichum munitum Blechnum spicant Maianthemum dialatum 15 Euchynchium oreganum other mosses graminoids 6 Picea sitchensis-Euchynchium oreganum 2 Picea s i t chens is 15 <10 Gaulther ia shal lon 90 1-2 Haianthemum dialatum Pteridium aquilinum pubescens Blechnum spicant <5 Euchynchium oreganum other mosses 20 Picea sitchensis-Euchynchium oreganum 3 Picea s i t chens is 20 >20 Gaulther ia shal lon 85 2 Blechnum spicant Haianthemum dialatum Polypodium scouler l Streptopus amplexi fo l lus V i c i a americana 15 Euchynchium oreganum mosses and l ichens 25 Picea Bitohensis-Euchynchium oreganum 4 Picea Tsuga Thuja s i t chens is heterophyl la pi1cata 25 10 <5 >20 10-20 10-20 Gaulther ia shal lon Rubus spec tab i l i s Vacinnium parv i fo l ium 60 25 <5 2-3 Streptopus amplexi fo l ius V i c ia americana Smilacina amplexi fo l ius 25 mosses, l ichens 65 Picea 8ttchensi3' Rubua epectabilis 5 Picea Tsuga Thuja s i t chens is heterophyl la p i i c a t a 25 15 <5 >20 10-20 10-20 Gaulther ia shal lon Rubus spec tab i l i s Vaccinium parv i fo l lum 60 25 <5 2-3 2-3 <2 Maianthemum dialatum V i c i a americana Blechnum spicant Pteridium aquilinum pubescens 15 mosses, l ichens 75 Picea sitchensis~ Rubus spectabilis 6 Picea Tsuga Thuja s i t chens is heterophyl la p l i c a ta 20 10 <5 >20 10-20 10-20 Gaulther ia shal lon Rubus spec tab i l i s Vaccinium parv i fo l ium 60 25 <5 2-3 2-3 >2 Maianthemum dialatum Blechnum spicant V i c ia americana Polystichum munitum Polypodium scouler i Pteridium aquilinum pubescens 15-20 mosses, l ichens 75 Picea sitchensis-Rubus spectabilis 7 Picea s i t chens i s & Thuja pUcata Pyrus fusca 10 >20 10-20 Gaulther ia shal lon Vaccinium parv i fo l ium 65 2-3 Maianthemum dialatum Blechnum spicant Polypodium scouler i 5 mosses l ichens 15 <1 Picea sitchensis-Pyrus fusca -26-, by t rees inc reased from s i t e 1 to s i t e 4 and remained e s s e n t i a l l y constant u n t i l s i t e 7 where i t reopened. The opening o f the canopy and the presence o f Pyvus fusca was a t t r i b u t e d to the wet cond i t i ons p r e v i ou s l y repor ted a t t h i s s i t e . Pyvus fusca i s s a i d to seek low, damp p laces such as stream and swamp edges where i t o f ten forms an / impenetrable t h i c k e t (Lyons, 1971).; Tree he ights and diameters a t b reas t he ight i nc reased as d i s tance from the a c t i v e beach i n c r ea sed . Th is i n fo rmat i on i s i l l u s t r a t e d i n F igures 2 and 3. P l a t e 8 a l s o shows the i n c r e a s i n g t ree d iameters , as we l l as the unders tory vege ta t i on near s i t e 2. Time The l o c a t i o n s of the o l d e s t t r ees found i n the immediate v i c i n i t y o f the s o i l t r an se c t are shown i n F igure 2 r e l a t i v e to s i t e s 1 to 7. The ages of these t rees were used to est imate the age o f hypo-t h e t i c a l t r ees which might have been found i n the p r e c i s e l o c a t i o n o f each o f the sampl ing s i t e s . -In order to do t h i s , i t was assumed tha t a l l o f the depos i t s aggraded i n a p a r a l l e l f a sh ion to the present s h o r e l i n e . A p l o t o f these hypo the t i ca l t r ee ages aga i n s t t h e i r corresponding d i s tances from an a r b i t r a r y zero po i n t a t s i t e 1 y i e l d e d a l inear , f unc t i on (F igure 6 ) . From the s lope o f t h i s graph i t can be p red i c t ed tha t the ra te of advance of the s'and depos i t s was approx imate ly 0.26 m per yea r . A p r o j e c t i o n of t h i s l i n e a r f unc t i on to a t ree age of zero years i n d i c a t e s tha t the most r e c en t l y t r e e - c o l o n i z e d area o f beach depos i t should l i e 21 m seaward of s i t e 1. Al though at t h i s po i n t there i s sand COX BAY CHRONOSEQUENCE TREE AGE VERSUS DISTANCE 6 0 0 1 -SITE NUMBERS F igure 6. P l o t o f t ree age c a l c u l a t e d f o r each s i t e i n the Cox Bay s o i l chronosequence aga ins t d i s t ance . -28-P l a te 8. Increas ing t ree diameters (from l e f t to r i g h t ) w i th i n c r ea s i ng d i s t ance from the a c t i v e beach; l o ca ted near s i t e 2. -29-depos i t ed , w i th s ca t t e r ed grasses e s t a b l i s h e d , there are no t r ee seed l i ngs p resen t . The ac tua l l o c a t i o n of t h i s po in t averages 11.3 m seaward o f s i t e 1. Th is d i sc repancy can be exp l a i ned i n a number o f ways. I t i s po s s i b l e t ha t s i nce the turn o f the cen tury , the advent of l ogg ing on the P a c i f i c coast has had a profound i n f l uence on the ra tes o f sand depos i t i on on these beaches. The i nco rpo ra ted logg ing debr i s i n sand depos i t s seaward o f s i t e 1 appeared to have a r e t a r d i ng i n f l u ence on the aggradat ion r a t e . I t i s a l s o po s s i b l e t ha t a major storm event caused a d i s c o n t i n u i t y i n the sand depo s i t s . A sharp vege ta t i on break observed immediately seaward of s i t e 1 may be f u r t h e r evidence f o r t h i s . A t h i r d e xp l ana t i o n , i n which the appearance o f l ogg ing debr i s caused the d i s c o n t i n u i t y , cou ld a l so be tendered. Fur ther i n v e s t i g a t i o n would be r equ i r ed to a c cu ra t e l y r e cons t ru c t t h i s po r t i on of the depos i t i ona l sequence. In order to e s t a b l i s h a t ime zero f o r each o f the sampled s i t e s , i t was necessary to es t imate how long i t would take f r e s h l y depos i ted sand to become co l on i z ed w i th t r e e s . A s t r i p of sand, approx imate ly 13 m in width l i e s between the a c t i v e beach and the sand depos i t s con ta i n i ng t ree seed-l i n g s . Th is s t r i p i s co l on i zed by occas iona l grasses which are p e r i o d i c a l l y innundated, dur ing w in te r storms, by f r e sh sand and logg ing debr i s ( P l a t e 9 ) . I t i s l i k e l y t ha t t h i s s t r i p w i l l remain sem i -ac t i ve u n t i l such time as e i t h e r s u f f i c i e n t he igh t or d i s tance from the a c t i v e beach i s reached. However, even i n t h i s most recent sand depos i t , geochemical weather ing and s o i l format ion have been i n i t i a t e d . At the aggradat ing ra te of 0.26 m per y ea r , t h i s 13 m s t r i p would accumulate i n approx imate ly -30-P l a te 9 . Most r e c en t l y t r e e - c o l on i z ed sand ( l e f t ) and semi -ac t i ve po r t i on o f sand and l og deb r i s ( r i g h t ) , seaward of s i t e 1 . - 31 -50 yea r s . There fore , 50 years were added to the t ree age a t each s i t e to a r r i v e a t i t s p r ed i c t ed pedogenic ( sur face) age (Table 4 ) . I t was i n t e r e s t i n g to note t ha t Cordes (1972) independent ly assessed the aggradat ion r a t e o f these same beach depos i t s as 0.8 f e e t per year or 0.24 m per y ea r . Cordes repor ted some v a r i a t i o n i n the ra te o f depos i t i on w i th d i s tance but t h i s i s b e l i e ved to be a f un c t i on o f where the t ree ages were assessed . Climate A d e t a i l e d d e s c r i p t i o n of the c l ima te of the general study area has been summarized by Cordes (1972). The d e s c r i p t i o n was based on weather records from the To f ino a i r p o r t which i s l o c a t ed approx imate ly 76 m i n l and from the c o a s t l i n e and approx imate ly 8 km southeast o f Cox Bay. The west coast c l ima te i s c ha r a c t e r i z ed by abundant p r e c i p i t a t i o n , a lack o f temperature extremes, high humid i ty and f requent wind s torms. Some se l e c t ed data f o r these c l i m a t i c v a r i a b l e s can be found i n Appendix I , 1.1. Due to the shortness of the d i s tances and t imes concerned across t h i s t r a n s e c t , c l ima te was assumed to be cons tan t . Topography The headlands along t h i s s e c t i on o f coas t i n the past must have comprised a cha in o f i s l a nd s which were g r adua l l y connected by sand bars and converging s p i t s , r e s u l t i n g i n the format ion of the present-day crescent-shaped bays and t h e i r accompanying beaches (Cordes, 1972). Cordes went on to s t a t e t ha t f o r the l a s t 500 y e a r s , i n most bays, the upper -32-Table 4. Oldest tree age and corresponding surface age for the Cox Bay  soil sampling sites Site Oldest Tree Estimated Surface Number Age (Years) Age (Years) 1 77 127 2 120 170 3 215 265 4 321 371 5 394 446 6 430 480 7 500 550 -33-beach has aggraded to a s u f f i c i e n t he igh t to i nsure p r o t e c t i o n from the w in te r storm waves. This p r o t e c t i on a long w i th the more recent p r o t e c t i o n a f f o rded by logg ing debr i s has a l lowed f o r vege ta t i ve c o l o n i z a t i o n o f these depos i t s and p rogress iona l s o i l development. The aggraded he igh t tha t Cordes r e f e r r e d to was observed to be approx imate ly 3 m above the mean high t i d e l e v e l . I t was a l s o be l i e ved tha t t h i s he igh t was r e spons i b l e f o r reduc ing the amounts o f windblown sand which cou ld a r r i v e a t the s i t e s which were sampled. From the w r i t e r ' s exper ience i n t h i s study a r ea , most of the storms which had winds o f s u f f i c i e n t v e l o c i t y to move sands were a l s o accompanied by r a i n which was e f f e c t i v e i n reduc ing the amount o f wind e r o s i o n . Sea-spray, which r o l l e d in c ons t an t l y from the ocean a l s o tends to keep the a c t i v e po r t i on o f the beach mo i s t . There fo re , i t i s be l i e ved t h a t , a l though windblown sands cou ld have had s i g n i f i c a n t i n f l uences on newly aggraded depo s i t s , i t was not a major f a c t o r i n the chronosequence presented . The s i t e s were v i s i t e d a t va r ious t imes o f the year dur ing the pe r i od from 1976 to 1978 and no i n d i c a t i o n of windblown sand add i t i on s were apparent . Resu l t s o f the l e v e l - l i n e survey i n d i c a t e d l e s s than 46 cm of e l e v a t i o na l d i f f e r en ce between any two sampling s i t e s i n the t r a n s e c t . A beach r i dge 2 to 3 m high was encountered between s i t e s 6 and 7. This r i dge was probably the product o f a major storm event . The h igher percentages o f medium sand repor ted e a r l i e r f o r the C hor i zon of s i t e 5 and the p r o f i l e samples o f s i t e 6 cou ld a l s o have r e s u l t e d from such an occur rence, s ince l a r g e r p a r t i c l e s would be c a r r i e d by the a s soc i a t ed h igher wind and water v e l o c i t i e s . - 3 4 -G l a c i a l and a l l u v i a l depos i t s o f Quaternary ,( P l e i s t o cene and Recent) age have been repor ted i n the study area (Nelson and Cordes, 1972; Mu l l e r and Carson, 1969). The high wate r tab les repor ted i n an e a r l i e r pa r t o f t h i s d i s cu s s i on were po s s i b l y due to water perch ing on l e s s permeable mate r i a l such as g l a c i a l t i l l or bedrock a t depth. Po s s i b l e I n t e r p r e t a t i o n E r ro r s I t might be argued t ha t the vegeta t i on sampled cou ld be a second growth stand which has appeared s ince an event such as a f o r e s t f i r e . The c o n t i n u i t y o f inc reased t ree age and s o i l morphology,however, tend to i n d i c a t e t ha t the sequence has not been i n t e r r u p t e d . A l s o , there was no f i e l d evidence such as the presence o f c ha r c oa l , to suggest f o r e s t f i r e s i n the sampled a r ea . There e x i s t s the p o s s i b i l i t y t ha t the beach, i n g ene r a l , d i d not aggrade i n a p a r a l l e l f ash ion to i t s present form. The' f a c t tha t Cordes (1972) found v a r i a b l e ra tes o f depos i t i on along a s i m i l a r t r an se c t would tend to subs t an t i a t e t h i s p o s s i b i l i t y . Cordes, as we l l as the present author , assumed p a r a l l e l aggradat ion and used the o l d e s t t r ee encountered to i n d i c a t e the minimum s i t e ages a t var ious l o c a t i o n s in the t r a n s e c t . There fore , i t would appear t ha t p a r a l l e l aggradat ion cou ld on ly be used i n l o c a l i z e d areas and should not be assumed f o r the whole of the bay. There may be some d i f f i c u l t y i n l o c a t i n g an ac tua l t ime zero f o r t h i s chronosequence. At f i r s t i t may seem tha t the a c t i v e beach may y i e l d -35-the best e s t ima t e . However, s i nce t h i s ma te r i a l i s not as y e t s t ab l e i t may undergo a s ub s t an t i a l amount o f s o r t i n g and phys i ca l breakdown before i t s t a b i l i z e s . Sampling the sands a long the s t r i p between s i t e 1 and the a c t i v e beach i s d i f f i c u l t due to the i nco rpo ra ted l og d e b r i s . A l s o , i t would be d i f f i c u l t to assess the e f f e c t s o f the breakdown o f the l og debr is on the composi t ion of the sands. For these reasons the C hor i zon o f s i t e 1 was u t i l i z e d as the best i n d i c a t i o n o f the l e a s t pedogen i ca l l y a l t e r e d parent m a t e r i a l . Caut ion must be exe r c i s ed i n us ing the term parent ma te r i a l s i nce i t i s p o s s i b l e , e s p e c i a l l y w i th marine d epo s i t s , tha t the mate r i a l cou ld have been pre-weathered i n i t s g l a c i a l or recent h i s t o r y . SUMMARY AND CONCLUSIONS The degree of the express ion o f pedogenesis i nc reased i n the sampled pedons from the Cox Bay t r an se c t as d i s tance from the a c t i v e beach i n c r eased . S o i l p r ope r t i e s changed s u f f i c i e n t l y to cause s o i l c l a s s i f i c a -t i o n to range from an O r th i c D y s t r i c B run i so l (Typic Udipsamment) a t s i t e 1 to a Humo-Ferric Podzol (Aquic Haplorthod) a t s i t e 7. The inc reased s o i l development, a long w i th evidence suggested by s i t e dendrochronology and geomorphology, i n d i c a t e d s o i l s i n c r ea s i ng i n age along the t r a n s e c t , away from the beach. Surface topography, vege ta t i on and l a ck o f s t r a t i f i c a t i o n in these sediments has i n d i c a t ed a very uni form depos i t i ona l sequence. The -36-ra te of aggradat ion o f these depo s i t s , p r ed i c t ed by t h i s s tudy , was 0.26 m per year and s o i l su r face ages have been es t imated to range from 127 years a t s i t e 1 to 550 years a t s i t e 7. S ince the sur face age o f each o f the seven s o i l s has been determined and time zero was i n d i c a t e d by the G hor i zon of s i t e 1, t h i s t r ansec t cou ld be s a i d to represent a t rue s o i l chronosequence. -37-LITERATURE CITED 1. Bascomb, C . L . , 1968. D i s t r i b u t i o n of pyrophosphate-ext rac tab le i r on and o rgan i c carbon i n s o i l s of va r i ous groups. J . S o i l S c i . 19: 251-267. 2. Canadian S o i l Survey Committee, 1978. The Canadian System o f S o i l C l a s s i f i c a t i o n . A g r i c u l t u r e Canada, Ottawa, Ont. (In p r e s s ) . 3. Chesworth, W., 1973. The parent rock e f f e c t i n the genesis of s o i l . Geoderma. 10: 215-225. 4. Cordes, D.L., 1972. An e co l og i c a l study of the s i t k a spruce f o r e s t on the west coast o f Vancouver I s l a nd . Ph.D. Thes i s , Dept. o f Botany, U n i v e r s i t y of B r i t i s h Columbia. 5. C rocker , R.L. , 1952. S o i l genes is and the pedogenic f a c t o r s . Q. Rev. B i o l . 27: 139-168. 6. Crocker , R.L. and D ickson, B.A., 1957. S o i l development on the reces -s i ona l morainesv.o'f:;the Herbert and Mendenhall g l a c i e r s , south-eastern A l a ska . J . E c o l . 45: 169-185. 7. D ickson, B.A. and Crocker , R.L., 1953, A chronosequence o f s o i l s and vegeta t ion near Mt. Shas ta , C a l i f o r n i a . I . D e f i n i t i o n of the eco-system i n ve s t i g a t ed and fea tu res of the p l an t success i on . J . S o i l S c i . 4 (2 ) : 123-141. 8. Franzmeier, D.P. and Wh i tes ide , E.P. , 1963. A chronosequence of podzols i n Northern M ich igan. I . Ecology and d e s c r i p t i o n of pedons. M ich . Agr. Exp. S tn . Quart. B u l l . 46(1) : 2-20. I I . Phys i ca l and chemical p r ope r t i e s , i b i d : 21-36. I I I . M inera logy , micromorphology and net changes occu r r i ng dur ing s o i l f o rmat ion , i b i d : 37-57. -38-9. Jackson, M.L., 1958. S o i l Chemical A n a l y s i s . P r e n t i c e - H a l l , I n c . , Englewood C l i f f s , N.J. 10. Jenny, H., 1941. Factors o f s o i l f o rmat ion . McGraw-H i l l , New York. 11. Jenny, H., 1958. The r o l e of the p l an t f a c t o r i n the pedogenic f un c t i on s . Ecology V o l . 39 (No. 1 ) : 5-16. 12. Lyons, C P . , 1971. Tree shrubs and f lowers to know i n B r i t i s h Columbia. J .M. Dent and Sons, Toronto and Vancouver. 194 p. 13. Mehra, O.P. and Jackson, M.L., 1960. Iron ox ide removal. f rom s o i l s and c l ay s by a d i t h i o n i t e - c i t r a t e system buf fe red w i th sodium b i ca rbonate . C lays and C lay M inera l s 5: 317-327. 14. M u l l e r , J . E . and Carson, D.J .T. , 1969. A l be rn i map-area, B.C. (92F) . G.S.C. paper 68-50. 15. Ne lson, J .G . and Cordes, L.D, ( e d s . ) , 1972, P a c i f i c Rim: An e c o l o g i c a l approach to a new Canadian Nat iona l Park. Nat iona l Park Se r i e s No. 4. 16. Peech, M., 1965. Hydrogen-ion a c t i v i t y . I_n B lack , C.A. ( e d . ) . Methods o f S o i l A n a l y s i s , Par t 2. Agronomy 9: 914-926. Amer. Soc. Ag ron . , Madison, Wiscons in . 17. Ran ta l a , R.T.T. and L o r i n g , D.H., 1973. New low-cost t e f l o n decom-p o s i t i o n v e s s e l . Atomic Absorpt ion News let ter 12(4): 97-99. 18. Runge, E.C.A. , 1973. S o i l development sequences and energy models. S o i l S c i . V o l . 115 (No. 3 ) : 183-193. 19. Stevens, P.R. and Walker, T.W., 1970. The chronosequence concept and s o i l f o rmat i on . Quar te r l y Rev. B i o l . 45(4) : 333-350. 20. [ugo l i n i , F .C. , 1968. S o i l development and a l de r i nvas i on i n a r e c en t l y deg l a c i a ted area of G l a c i e r Bay, A l a s ka . ln_ B io logy o f A lder . Proc . Symp., Northwest S c i e n t i f i c Ass . 40th Ann. M tg . , Pu l lman, Wash.: 115-140. -39-21. U.S.D.A. S o i l Survey S t a f f , 1975. S o i l Taxonomy. A g r i c u l t u r a l Handbook No. 436, Washington, D.C. 754 p. 22. Walker, T.W., 1965. The s i g n i f i c a n c e of phosphorus i n pedogenesis. I_n_ Ha l l swo r th , E.G. and Crawford, D.V.. ( e d s . ) , Experimental Pedology, p. 295-315. But te rwor ths , London. 23. Yaa lon, D.H. 1975. Conceptual models i n pedogenesis: Can s o i l - f o r m i n g func t i ons be so lved? Geoderma. 14: 189-205. -40-• PART I - Chapter 2 SOIL CHEMICAL PROPERTIES INTRODUCTION The f i e l d c h a r a c t e r i s t i c s and phys i ca l p r ope r t i e s o f a s o i l chronosequence near Cox Bay, B r i t i s h Columbia, have been d i s cussed i n Part I, Chapter 1. P rogress i ve s o i l development a long aggrading sandy beach mate r i a l was observed. S o i l sampled a t each of seven s i t e s was found to range i n pedogenic ( sur face) age from 127 years a t s i t e 1 to 550 years a t s i t e 7, as d i s t ance from the present s ho r e l i n e i n c r ea sed . S o i l c l a s s i f i c a t i o n ranged from an O r t h i c D y s t r i c B run i so l (Typ ic Udipsamment) to an O r t h i c Humo-Ferric Podzol (Aquic Hap lo r thod) , over a d i s tance of l e s s than 150 m. The f o l l ow i ng d i s cu s s i on presents chemical c h a r a c t e r i s t i c s o f morpho l og i ca l l y d i f f e r e n t hor izons which were taken from the s e l e c t ed pedons along t h i s t r a n s e c t . A n a l y t i c a l techniques used were designed to e s t a b l i s h chemical evidence to complement f i e l d ob se r va t i on s , which concluded tha t t h i s t r ansec t represented a t rue chronosequence. By quan t i f y i n g observed morphologica l changes, i t was expected tha t chrono-f un c t i o n s , r e l a t i n g s o i l c on s t i t u en t add i t i on s and l o s s e s , cou ld be i d e n t i f i e d . Chronofunct ions , i d e n t i f i e d i n t h i s way, would be usefu l as comparisons f o r l a t e r exper imenta l s tud i e s i n which these s o i l ma te r i a l s are weathered a r t i f i c i a l l y i n the l a b o r a t o r y . - 41 -MATERIALS AND METHODS S o i l samples from the Cox Bay chronosequence were a i r - d r i e d and passed through a 2 mm s i e v e . S o i l pH ( repor ted i n Par t I , Chapter 1 ) , a v a i l a b l e P (Olsen and Dean, 1965), a v a i l a b l e Ca, Mg, and K (Morgan's e x t r a c t , Hunt e t a l_. , 1950) and t o t a l N (semi-micro K j e l d a h l , Bremner, 1965) were determined on the 2 mm s o i l . Exchangeable ca t i ons (EC) and ca t i on exchange capac i t y (CEC) were determined by the ammonium ace ta te method (pH 7.0, Chapman, 1965). Samples passed through a 0.15 mm s ieve were ex t r a c t ed f o r Fe, Al and Si by a c i d ammonium oxa la te (McKeague and Day, 1966), c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e (Mehra and Jackson , 1960) and sodium pyrophosphate (Bascomb, 1968). Organic matter (0M) percentage was es t imated by m u l t i p l y i n g the f a c t o r 1.724 ( A l l i s o n , 1965) by the Leco-analyzed carbon content o f 0.15 mm s o i l . Base s a t u r a t i o n (BS) was ca lcu i la by express ing the sum of the exchangeable ca t i ons as a percentage of the c a t i on exchange c apa c i t y . I t i s o f ten d i f f i c u l t to i n t e r p r e t s i g n i f i c a n t processes from a l a rge amount o f chemical d a t a . To a s s i s t i n t h i s , c o r r e l a t i o n s t a t i s t i c s were employed. Se lec ted data corresponding to the f i r s t B ho r i z on , the hor i zon encountered d i r e c t l y below the f i r s t B hor i zon and the lowest hor i zon sampled a t each s i t e were s t ud i ed us ing Pearson product-moment c o r r e l a t i o n c o e f f i c i e n t matr i ces (Nie e_t a l_. , 1970). The v a r i a b l e s 0M, N, -42-CEC, pH (CaC l 2 ) ' ' B S > f i n e s ' (< 0.05 mm s o i l ) , exchangeable Ca, Mg, Na and K, sur face age^ ( t ime ) , as we l l as Fe and Al e x t r a c t ed by a c i d ammonium oxa la te ( o ) , c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e (d) and sodium pyrophosphate (p) were used i n the c o r r e l a t i o n ana l y ses . Mat r i ces were produced i n i t i a l l y us ing a l l hor i zons c o l l e c t i v e l y ( c o n s i s t i n g o f 21 obse rva t i ons ) and subsequent ly f o r separate hor i zons (7 observa t ions per v a r i a b l e ) . I t was be l i e ved tha t by s tudy ing c o r r e l a t i o n s i n separate ho r i z ons , the d i f f e r en ce s found cou ld be i n d i r e c t l y r e l a t e d to weather ing time s ince the upper hor izons would be more weathered than the lower ho r i z ons . To i d e n t i f y groupings of s i g n i f i c a n t l y i n t e r c o r r e l a t e d v a r i a b l e s , a f a c t o r a na l y s i s w i th a varimax r o t a t i o n (Harman, 1967) was used. I nd i v i dua l and c o l l e c t i v e hor i zons were again t e s t ed us ing the same v a r i a b l e s as were used i n the c o r r e l a t i o n ma t r i c e s . RESULTS AND DISCUSSION The r e s u l t s o f the chemical a na l y s i s o f the Cox Bay s o i l samples are g iven i n Table 1. The f o l l ow i ng chemical trends were observed in the s o i l s across the chronosequence, w i th i n c r ea s i ng d i s tance from the a c t i v e beach (from s i t e 1 to 7 ) ; Data f o r these v a r i a b l e s were g iven i n Par t I , Chapter 1. Tab le 1. S e l e c t e d chemica l p r o p e r t i e s o f the Cox Bay s o i l chronosequence samp les . Ho r i z on D e s i g n a t i o n Can. U.S. Depth (cm) pH 1:2 0.01 M C a C l -FH 02 6-0 4 .5 Bm B2 0-10 4 .6 C l C l 10-25 4 .6 C2 C2 25-46 4.7 C3 C3 46+ 4.9 FH 02 8-0 4 .3 Bm B2 0-15 4 .3 BC B3 15-56 4.5 C C 56+ 4.6 FH 02 10-0 3.6 Ae j A2 0-1 -Bm B 2 i r 1-38 4.6 BC B3 38-69 4 .8 C C 69+ 4 .9 FH 02 8-0 3.7 Ae A2 0-3 3.9 Bf B211r 3-18 4 .2 Bm B 2 2 i r 18-46 4 .5 BC B3 46-91 -C C 91 + 4 .7 F i n e s N 1.4 0 .2 0 .2 0 . 8 0 . 3 0 7.0 4 .5 1.6 OM Exchangeab le C a t i o n s Ca Mg Na K CEC B.S. Oxa l a t e Fe A l S i Pyrophosphate Fe A l S i D i t h i o n i t e Fe A l Si Morgan ' s A v a i l a b l e A v a i l a b l e Ca Mg K P -meq/100 g - -%-S i t e 1, _ 0.54 19 .3 12. ,95 1.1 0 .03 1.1 0. ,93 1.3 0 . 03 0 .8 0. .85 0 .6 0 0 .5 0. .55 0 0 0 0. .48 O r t h i c D y s t r i c B r u n i s o l ( Typ i c Udipsamment) 2 .53 0.17 0 . 2 6 0 .25 0 .24 Su r f a c e Age 127 Years 9 .55 0 .85 0 .93 0 .63 0 .30 0 .78 0 .12 0 .13 0.09 0 .08 82.89 6.10 11.02 4.18 1.71 31.1 33.9 19.7 36.4 64 . 3 0.22 0.27 0 .28 0.24 0.20 0 .10 0 .12 0.17 0 .13 0.11 0.04 0.07 0.10 0.09 0.09 0.08 0 .13 0.11 0.10 0.06 0.07 0.09 0.12 0.08 0.05 0.08 0 .03 0 .03 0.05 0.06 0.87 0 0 0 S i t e 2 , O r t h i c D y s t r i c 59.4 15 .00 16.30 6.96 0.7 0.4 0 0 .33 0 .20 0 .23 0.45 0 .28 0 .25 0 .25 0.17 0.16 B r u n i s o l ( Typ i c Udipsamment) - S u r f a c e Age 170 Years 1.10 104.12 37 .8 0 .18 0.11 0.01 0.07 0.10 0.11 0.09 7.26 15.4 0.26 0.15 0.07 0 .13 0.15 0.05 0 .08 3.29 22.2 0.19 0 .13 0.08 0.07 0.10 0 .08 1.92 37.5 0 .20 0.10 0.07 0.05 0.05 0.04 0 .05 S i t e 3, O r t h i c D y s t r i c B r u n i s o l ( T yp i c Hap l o r t hod ) - Su r f a ce Age 265 Years 0 .80 59.9 13 .40 11 .20 1.14 1.33 0 .58 0 .08 0.06 0 .03 1.3 0.1 0 0 .70 0 .35 0 .38 0 .38 0 .15 0 .15 0.07 0.04 0.04 0.04 0 .05 0.06 49 25.7 0. 09 34 22 .3 0. 27 19 26 .9 0. 20 71 36.8 0. 26 0.02 0.03 0.14 0.15 0.14 0 .13 0.07 0.09 0.11 0.16 0.06 0.05 0.14 0.10 0.06 0 .05 0 .05 0 .05 S i t e 4 , O r t h i c Humo-Fe r r i c Podzo l ( T yp i c Hap l o r t hod ) - S u r f a c e Age 371 Years 71.4 2.4 1.6 1.0 18 .90 0 .88 0 .68 0 . 23 15 .70 0.78 0 .45 0.10 1.45 0 .12 0.09 0.06 1.09 0.11 0.07 0 .05 143.58 9.59 6.23 9 .98 25.9 19.7 20.7 4 .4 0 .13 0.15 0.36 0 .25 0 .10 0 .08 0.17 0.22 0 0 .05 0.07 0.10 0 .03 0.11 0.28 0.14 0.08 0.06 0.14 0.18 0.18 0.06 0.05 0 .03 0 .3 0.01 0.1 0 .15 0 .05 0 .05 0 .05 2.26 13 .3 0.17 0.14 0.09 0.05 0.08 0.05 0.55 0 . 29 0.34 1800 1160 424 29. ,6 0.32 0 . 10 0.06 ' 120 94 46 16 .7 0.35 0 . 13 0.07 105 89 45 78. .7 0 .28 0. 09 0.04 65 63 33 31. .3 0.24 0.06 0.04 25 35 25 20. .0 0.25 0. 13 0.08 1800 1670 514 24, .7 0.30 0. 12 0.05 65 45 31 66. .7 0.22 0. ,09 0.04 50 27 22 27, .9 i 0.21 0. ,05 0 .03 10 25 16 26. .8 CO 0.15 0. .06 0 .10 740 306 134 63. .0 0.32 0. .12 0.06 95 39 12 34 .2 0.21 0. .08 0.04 55 16 9 14, .2 0.23 0. .06 0.04 45 16 17 6 .5 0.18 0. .11 0.10 2110 1480 444 31 .9 0.31 0. .10 0.17 265 94 48 4 .8 0.44 0 .17 0.12 90 52 21 8 .0 0.29 0 .19 0.04 25 9 8 27, .7 0.19 0 .09 0.05 35 6 10 9 .8 Tab le 1. Con t i nued . Ho r i z on D e s i g n a t i o n Can. U .S . FH Ae B f l B f2 Bm BC C LFH Ae B f l BfZ Bm BC C Depth pH (cm) 1:2 0.01 C a C l z 02 A2 B 2 1 i r B 2 2 i r B 2 3 i r B3 C 02 A2 B 2 1 i r B 2 2 i r B 2 3 i r B3 C 10-0 0-5 5-26 26-36 36-58 58-99 99+ 8-0 0-5 5-10 10-20 20-43 43-74 74+ 3.7 3.8 4 .0 4 . 3 4 .6 4 .7 4 .9 3.6 4 .0 4 . 3 4 . 5 4 .7 4 .6 4 .7 F i n e s N 7.9 5.6 2.8 1.0 0.5 0 OH Exchangeab le C a t i o n s Ca Mg Na K CEC B.S. Oxa l a t e Fe A l S i Pyrophosphate Fe A l S i D i t h i o n i t e Fe A l S i Morgan ' s A v a i l a b l e Ca Mg K -meq/100 g - -ppm-S i t e 5, O r t h i c Humo-Fe r r i c Podzo l ( Typ i c Hap l o r t hod ) - S u r f a c e Age 446 Years 1.16 69.1 17.30 17 .20 4 .66 1.58 136.45 29. .8 0 .10 0.10 0 0 .05 1.7 0 .70 0 .73 0.24 0 .14 8 .29 21, .8 0.12 0.06 0.03 0.07 2.9 0.55 0 .73 0.29 0 .10 12.74 13. .1 0.54 0.20 0.08 0 .05 1.8 0.28 0 .25 0.17 0 .07 8:84 8, .7 0 .28 0.26 0.09 0.01 0 .7 0.15 0 .13 0 .10 0 .05 5.21 8. .2 0.17 0.22 0.09 0.01 0.4 0 .18 0 . 13 0.07 0 .05 3.49 12. .3 0.16 0 .18 0.10 0 0 0.10 0 .08 0.06 0 .05 1.58 18 .3 0 .38 0.16 0 .12 0.02 0.08 0.49 0.21 0.08 0.07 0.06 0.06 0 .03 0.19 0 .22 0.17 0.11 0.11 S i t e 6 , O r t h i c Humo-Fe r r i c Podzo l ( T yp i c Hap l o r t hod ) - S u r f a c e Age 480 Years 1.13 60 . 6 12 .10 10 . 70 0 .75 1.25 90 .42 27.4 0 .20 0.15 0 7.3 0 .09 2.1 0 .75 0 . 73 0 .08 0.11 10.75 15.5 0.31 0.11 0.05 4 . 8 0 .08 2.7 0.85 0. 50 0.11 0 .07 16.65 9.2 0 .60 0 .30 0.08 3.8 0 .05 2.0 0.80 0. 28 0 .08 0.04 13.97 8.6 0.39 0.32 0.09 1.2 0 .02 1.1 0.33 0. 10 0 .05 0 .03 7.26 7.0 0.21 0.27 0.11 0 .8 0 0.5 0 .23 0. 08 0.04 0 .05 6.37 6 .3 0.17 0.21 0.10 0.1 0 0 . 3 0 .10 0. .05 0.04 0 .05 2.60 9.2 0.21 0.17 0.10 0 .13 0.27 0.50 0.31 0.11 0.06 0.06 0 . 13 0.07 0.26 0 .32 0.24 0 .15 0.11 S i t e 7, O r t h i c Humo-Fe r r i c Podzo l (Aqu i c Hap l o r t hod ) LFH 02 20-0 3.6 _ 1.45 72 .4 17.10 15 .00 4 .36 2.72 151. .80 25, .8 0.30 0.14 0 Ae A2 0-6 3.8 7.7 0 .09 4 .7 0 .70 0 .80 0.21 0.11 12. .67 14. ,4 0.21 0.11 0.06 A and B A + B 6-18 - - - - - - - - 0.48 - -B f l B 2 1 i r 18-30 4 .2 4 .2 0 .06 2.9 0 .78 0 .35 0.14 0.07 17 .47 7 .7 0 .29 0.05 Bf2 B 2 2 i r 30-56 4 .4 2.6 0 .05 2.0 0.45 0 .23 0.11 0.05 11 .71 7 .2 0.27 0 .25 0.08 BC B3 56+ 4.6 0.9 0 .02 0.6 0 .48 0 .08 0 .08 0.04 5 .55 12 .2 0.22 0.20 0.10 S u r f a c e Age 550 Years 0 .23 0.14 0.20 0.34 0.19 0 .08 0.09 0.29 0.25 0 .15 A v a i l a b l e P 0.16 0.12 0.09 0.10 1280 760 270 82. 4 0 .07 0 .25 0.07 0.15 100 77 46 10. 3 0 .03 0 .63 0 .23 0.20 50 78 38 8. .1 0 .03 0.36 0.27 0.10 15 23 17 7. .3 0.04 0.22 0.19 0.06 5 11 11 10. 9 0.04 0.21 0 .13 0.07 35 10 10 9. 1 0.07 0.30 0.07 0 .02 10 5 9 8. .7 0.17 0.28 0.16 0.16 775 575 232 21. ,9 0.08 0 .45 0.10 0.10 290 93 47 2. .8 0 .03 0.64 0.32 0.11 125 53 21 1. .6 0.02 0.45 0.30 0.06 80 28 7 2. .1 0 .03 0.22 0.22 0.02 35 9 2 2. .8 0 .03 0.19 0.15 0 .03 15 5 3 7 .7 0.04 0.21 0.11 0.02 5 4 5 7 .3 0.14 0.31 0 .13 0.04 2200 1500 232 52. .4 0 .05 0.30 0.10 0.06 100 75 34 12. .2 0 .03 0.48 0 .28 0.04 30 35 14 11, .1 0 .03 0.33 0 .23 0 .03 25 23 12 16 .4 0.05 0.20 0.15 0.02 25 7 6 10. .5 I -45-1) h igher percentages of o rgan i c matter i n the s o i l pedons and organ i c matter accumulated to lower depths; 2) lower pH va l ue s , e s p e c i a l l y near the s o i l s u r f a ce ; 3) h igher percentages of o x a l a t e , pyrophosphate and c i t r a t e -b i c a r b o n a t e - d i t h i o n i t e e x t r a c t ab l e Fe and Al i n the B ho r i z ons ; 4) h igher CEC values extend ing to lower depths; 5) high v a r i a b i l i t y i n the a v a i l a b l e and exchangeable Ca, Mg, and K except f o r general de c l i ne in the lower ho r i zons ; and 6) decreases i n the amounts o f a v a i l a b l e P. Pyrophosphate e x t r a c t ab l e Fe (Fe^) inc reased from 0.13% in the s i t e 1 Bm (B2) to a maximum of 0.50% i n the B f i (B21 i r ) of s i t e 6; the corresponding inc rease i n A lp was from 0.09 to 0.26%. The B f i (B21 i r ) a t s i t e 7 had a lower va lue f o r Fe (0.34%) and a h igher va lue f o r Al P P (0.29%) compared to the B f i (B21 i r ) o f s i t e 6. The lower Fe was a t t r i b u t e d to the presence of a high wate r tab le which was repor ted to innundate the e n t i r e p r o f i l e a t s i t e 7 f o r extended per iods dur ing the w in te r months (Pa r t I, Chapter 1 ) . The r e s u l t i n g reduc ing cond i t i on s would cause h igher s o l u b i l i t i e s of Fe , whereas Al was not e f f e c t e d to the same ex t en t . For P P t h i s reason, A lp was expected to be more s i g n i f i c a n t l y r e l a t e d to t ime i n the c o r r e l a t i o n s t u d i e s . Lower amounts o f Fe . Al , F e . and Al , were a l s o o o d d found at s i t e 7 r e l a t i v e to s i t e 6. From these data i t may be concluded tha t lower Fe and Al i n amorphous forms, as we l l as Fe in o rgan i c combina-t i o n s , may r e s u l t i n s o i l p r o f i l e s where h igh wate r tab les are found. The C hor i zon a t s i t e 5 showed a h igher amount o f Fe„ and to some 3 o ex tent Fe H r e l a t i v e to the o ther C ho r i zons . In Par t I, Chapter 1 t h i s -46-sample was shown to have h igher amounts o f ferromagnesian minera l s which was a t t r i b u t e d to a high v e l o c i t y storm event . I t appears tha t the oxa la te and d i t h i o n i t e e x t r a c t i o n s were s i g n i f i c a n t l y a f f e c t ed by t h i s smal l change i n minera l d i s t r i b u t i o n . S ince the Ae (A2) hor i zons were not found i n a l l o f the s i t e s , i t would have been d i f f i c u l t to use A hor i zons i n the c o r r e l a t i o n and f a c t o r ana l y ses . The Fe and Al behav ior i n these hor i zons was s i m i l a r to tha t found i n the B ho r i z on s . The decrease i n Fep, Fe Q and Fe^, wh i l e A lp inc reased in s i t e 7 r e l a t i v e to s i t e 6 was f u r t h e r evidence tha t the water t ab l e e f f e c t s were present to the sur face o f the minera l s o i l . Increases i n CEC and the h ighes t amounts o f t o t a l N i n minera l s o i l samples were a l s o noted i n the A ho r i z on s . C o r r e l a t i o n Resu l t s Table 2 i l l u s t r a t e s the c o r r e l a t i o n s between the s e l e c t ed v a r i a b l e s . The ac tua l va lues f o r the c o r r e l a t i o n c o e f f i c i e n t s can be found in Appendix I, 2 . 1 . I t was found i n the a n a l y s i s o f the c o r r e l a t i o n data tha t the cho ice o f how the samples were grouped s u b s t a n t i a l l y i n f l uenced the types of r e l a t i o n s h i p s found. For example, i f a l l the hor i zons were run a t the same t ime, pH was observed to be h i gh l y c o r r e l a t e d to OM, CEC, N, Fe and A l . However, i f any se t o f samples which c o n s t i t u t e d one type of hor i zon ( e . g . , the f i r s t B hor i zons) was t e s ted i t was found tha t pH c o r r e l a t e d w i th few or no other v a r i a b l e s . Ca was observed to e x h i b i t s i m i l a r behav io r . Th is imp l i e s tha t v a r i a b l e s such as Ca and pH Table 2. Cor re la t ions of se lected var iab les using analyses of s o i l s from the Cox Bay s o i l chronosequence A l l horizons tested c o l l e c t i v e l y (21 observations per var iab le) pH CaCl2 N OM CEC Ca Mg Na K Fe 0 A l 0 Fep Alp Fed Aid Fines So i l Age Base Sat. pH CaC l 2 1.0 ** ** ** * * ** ** ** ** ** ** ** N ** 1.0 ** ** ** ** ** ** ** ** ** ** * OM ** ** 1.0 ** ** * ** ** ** ** ** ** * * CEC ** ** ** 1.0 ** * ** ** ** +* ** ** * ** Ca ** ** ** 1.0 ** ** * ** * ** Mg * * ** ] g ** ** * * Na ** 1 . 0 * * K ** ** 1.0 ** Fe 0 * * 1.0 * * A l 0 ** ** ** ** 1.0 ** ** ** ** ** ** ** Fe p ** ** ** ** ** * ** 1.0 ** ** ** ** * * Alp ** ** ** ** * ** ** 1.0 ** ** ** ** ** r Fed ** ** ** ** * * ** ** ** 1.0 ** ** Aid ** ** ** ** * ** ** ** ** 1.0 ** ** ** Fines ** ** ** ** ** * ** ** ** ** ** 1.0 * * So i l Age ** * * ** ** * ** ** * 1.0 ** Base Sat. ** * * ** ** * ** ** * ** 1.0 T ** corresponds to 0.01 l eve l of s i gn i f i c ance ; t = 2.86; R s 0.55 * corresponds to 0.05 leve l of s i gn i f i c ance ; t = 2.09; R * 0.43 Table 2. Continued p H Uppermost B hor izons, only (7 observat ions per va r iab le ) S o i 1 B a s e C a C l 2 N OM CEC Ca Mg Na K Fe Q A l p Fe p A l p Fe d A l d Fines Age Sat. pH C a C l 2 1.0 ** N 1.0 * ** ** * ** * OM * 1.0 ** * ** * ** ** * ** CEC ** 1.0 ** * ** * ** * * Ca 1.0 Mg 1.0 * Na 1.0 K * 1.0 F e o * ** 1.0 1.0 * ** * ** ** * 0 ** ** * * 1.0 ** ** ** * P * ** ** 1.0 ** ** ** P F e d ** ** * * ** 1.0 ** ** * A 1 d * ** ** ** ** ** ** 1.0 * ** * Fines ** ** * ** ** * 1.0 * S o i l Age * ** * ** * ** * ** * 1.0 * Base Sat. * * ** * * 1.0 «• * * corresponds to 0.01 l eve l of s i g n i f i c a n c e ; t = 4 .03 ; R - 0.87 * corresponds to 0.05 leve l of s i g n i f i c a n c e ; t = 2 .57; R 2 0.75 Table 2. Continued Horizons d i r e c t l y below uppermost B hor izons, only (7 observations per .var iab le) pH CaC l 2 N OM CEC Ca Mg Na K Fe Q A 1 ° . F 6 P Al P F e d A 1 d Fines So i l Age Base Sat. pH CaC l 2 N 1.0 + * 1.0 ** ** * ** ** ** ** ** ** * * * OM * ** 1.0 •* * ** ** ** * ** ** * * CEC ** * 1.0 ** * * * ** * * * Ca 1.0 Mg Na K F e o A 1 o F 6 P A 1 P F e d A 1 d Fines So i l Age Base Sat. * 1.0 * ** * 1.0 ** ** ** 1.0 * * ** 1.0 ** ** * ** * ** ** ** * ** 1.0 ** ** ** ** ** * * ** ** * ** ** 1.0 ** ** ** ** * ** ** * * ** ** 1.0 * ** ** ** * ** * ** ** ** ** * 1.0 * ** ** ** * * ** ** ** * 1.0 ** * * ** ** * ** ** ** ** ** ** 1.0 * * * * * * ** * * 1.0 * * * * * * * * * 1.0 I I * ** corresponds to 0.01 l eve l of s i gn i f i c ance ; t = 4.03; R 2 0.87 * corresponds to 0.05 l eve l of s i gn i f i c ance ; t = 2.57; R * 0.75 Table 2. Continued pH CaC l 2 N OM CEC Lowest horizons Ca Mg Na sampled, K Fe 0 only Al 0 (7 observations per F e p A 1 p F e d var iab le) A l d Fines So i l Age Base Sat. pH CaC l 2 1.0 * N 1.0 * ** * ** OM * 1.0 ** ** * ** ** ** * CEC ** ** 1.0 * * * ** ** Ca 1.0 Mg 1.0 ** ** * ** ** Na ** 1.0 * * K ** * 1.0 ** . ** * ** ** F e o 1.0 ** A 1 o ** * * ** 1.0 * ** ** ** * F 6 P * * * 1.0 * * A 1 P ** * ** ** * 1.0 ** ** * F e d ** 1.0 A 1 d * ** ** * ** * ** 1.0 * * Fines ** ** ** * 1.0 So i l Age * ** ** ** ** * 1.0 ** Base Sat. ** * ** * * ** 1.0 I cn o i * corresponds to 0.01 l eve l of s i gn i f i c ance ; t = 4.03; R 5 0.87 corresponds to 0.05 l eve l of s i gn i f i c ance ; t = 2.57; R * 0.75 - 51 -i n t h i s type o f s o i l are too v a r i a b l e to be u t i l i z e d to c h a r a c t e r i z e a p a r t i c u l a r type of h o r i z on . I t has been suggested t h a t these v a r i a b l e s are be t t e r q u a n t i f i e d as p r o f i l e averages (Lewis , 1976). When the C hor i zons were t e s t e d , i t was apparent t ha t exchange-ab le bases o ther than Ca were we l l r e l a t e d . Moving up the p r o f i l e , i t was found tha t the number of s i g n i f i c a n t c o r r e l a t i o n s between these bases decreased. This suggests tha t e i t h e r the accumulat ion o f OM and f r ee Fe and Al ox ides i n the B hor izons masks the r e l a t i o n s h i p between the exchangeable bases or l each ing i n B hor izons has r e s u l t e d i n t r a n s l o c a t i o n of the bases to lower depths in the p r o f i l e s . Add i t i ons o f a v a i l a b l e and exchangeable bases to these s o i l s v i a ocean-spray and b i o c y c l i n g may have a f f e c t ed the c o r r e l a t i o n s o f these bases to o ther s o i l v a r i a b l e s . Exchangeable bases d id not have s t rong c o r r e l a t i o n s to CEC, OM or f ree Fe and Al o x i de s . This suggests tha t much o f the exchangeable bases ex t r a c t ed from the s o i l samples by ammonium aceta te may have been a v a i l a b l e q u a n t i t i e s o r i g i n a t i n g from ocean-spray or b i o c y c l i n g a d d i t i o n s . Cordes (1972) found tha t as much as 2.0 g/m Na was added weekly, by ocean-spray, to the s o i l s o f Cox Bay. Ocean-spray add i t i on s o f o ther bases (Ca, Mg, K) to s o i l s has a l s o been repor ted (Harvey, 1960; E the r i ng ton , 1967; C l ay t on , 1972). Although ocean-spray add i t i on s may be s u f f i c i e n t to i n f l u ence the a v a i l a b l e and the exchangeable -q u a n t i t i e s o f bases i n these s o i l s , they are not expected to s u b s t a n t i a l l y i n f l u ence the t o t a l q u a n t i t i e s . This r e s u l t s main ly from the f a c t that ocean-spray add i t i on s are r a p i d l y leached and do not accumulate to any l a rge ex ten t i n s o i l p r o f i l e s (Oos t ing , 1954; Cordes, 1972). -52-Fe and Al e x t r a c t ed by o x a l a t e , pyrophosphate and c i t r a t e -b i c a r b o n a t e - d i t h i o n i t e showed many very high c o r r e l a t i o n s (R > 0.95) i n a l l the c o r r e l a t i o n ma t r i c e s ; t h i s was e s p e c i a l l y the case w i th A l . The major except ion to t h i s was Fe Q which on ly was we l l r e l a t e d i n the hor izons below the f i r s t B ho r i zons . A l s o , the data f o r these Fe and Al e x t r a c t i o n s (g iven i n Table T) i n d i c a t e s tha t the values f o r oxa la te and c i t r a t e -b i c a r b o n a t e - d i t h i o n i t e are near l y equa l , whereas the pyrophosphate va lues are lower . I t was, t h e r e f o r e , concluded tha t most o f the f ree ox ides o f Fe and Al generated i n the p r o f i l e s o f t h i s chronosequence were i n amorphous s t a t e s . These amorphous sesqu iox ides cou ld then be ex t r a c t ed equa l l y e f f i c i e n t l y by oxa la te and c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e . The CEC was h i gh l y c o r r e l a t e d to OM and f i n e s i n i t i a l l y i n the C hor izons and to a l e s s e r ex ten t w i th the s e squ i ox i de s . In the B hor i zons the CEC c o r r e l a t i o n to sesqu iox ides i s more apparent . I t may be concluded from t h i s tha t i n i t i a l l y , i n these coarse tex tu red s o i l s , o rgan i c matter prov ides the pr imary exchange p r ope r t i e s of the m a t e r i a l . With time and pedogenesis the sur faces o f Fe and AT ox ides and hydrox ides prov ide an important component of the CEC. Fac tor Ana l y s i s Th is technique was u t i l i z e d to de f ine f a c t o r s or groups o f v a r i a b l e s which belong to separate genet i c p rocesses . Groups o f s i g n i f i — c an t l y r e l a t e d v a r i a b l e s are represented by new " supe rva r i ab l e s " c a l l e d f a c t o r s . The h ighes t score by an i n d i v i d u a l v a r i a b l e on one of these groups ( c a l l e d i t s f a c t o r score) thereby decides which supe rva r i ab l e i t would best -53-belong w i t h . The f a c t o r s found f o r the s e l e c t ed v a r i a b l e s chosen are summarized i n Table 3. Complete f a c t o r a n a l y s i s r e s u l t s are g iven i n Appendix I, 2.2. I t was found tha t four or l e s s f a c t o r s were r equ i r ed to e xp l a i n e s s e n t i a l l y 100% of the v a r i a t i o n i n the sample data f o r the hor i zons cons idered c o l l e c t i v e l y or i n d i v i d u a l l y . When a l l the hor i zons were t e s t e d , s C a was separated from Mg, Na and K which were again separated from the sesqu iox ide and OM r e l a t e d v a r i a b l e s . From t h i s , i t may be concluded tha t there was a mechanism governing the behaviour of the exchangeable bases i n t h i s chronosequence, which was not r e l a t e d to those v a r i a b l e s a s soc i a t ed w i th CEC. Th is a n a l y s i s supports the observat ions made us ing the c o r r e l a t i o n ma t r i c e s . The i n f l u ence of ocean-spray and b i o c y c l i n g was again i m p l i c a t e d . The reason Ca was separated from the o ther exchangeable bases i s not known, but may be r e l a t e d to the r a t e o f b i o c y c l i n g . The process r e l a t i n g the g rea te s t number of v a r i a b l e s i n f a c t o r 1 deserves comment. The d i s i n t e g r a t i o n of weather ing minera l s i s accompanied by accumulat ions o f OM and sesqu iox ides w i th time i n the s o i l p r o f i l e s ; s o i l pH and base s a t u r a t i o n decreases become ev i den t . The weathered s i l t and c l ay p a r t i c l e s from the d i s i n t e g r a t i o n become inco rpo ra ted w i th OM and sesqu iox ides as coat ings around r e l a t i v e l y unweathered g ra ins i n the B ho r i zons . With time these coat ings s lough o f f i n t o the surrounding vo i d s . The sloughed o f f coat ings a long w i th un incorporated s i l t - and c l a y - s i z e d p a r t i c l e s cause the amount o f f i n e s to i n c r e a se . The CEC inc reases as Table 3. Factor ana lys i s r e su l t s f o r se lected var iab les and horizons from the Cox Bay s o i l chronosequence. A l l horizons tested c o l l e c t i v e l y Factors Fl F2 F3 va r i ab le score va r i ab le score va r i ab l e score pH(CaCl 2) -0 80 N 0 88 OM 0 92 F e o 0 42 A 1 o 0 90 0 87 r A 1 P 0 92 r F e d 0 81 A 1 d 0 95 CEC 0 87 BS -0 71 f ines 0 91 time 0 74 Mg 0 85 Na 0 84 K 0 91 Ca Percent of v a r i a b i l i t y * expla ined (cumulative) f a c to r Fl F2 F3 1 1 1 67.3 94.7 100.0 Uppermost B hor izons, only Fl F2 F3 F4 var iab le score var iab le score var iab le score va r i ab le score 0.79 pHCaCl N 0M Al Fe P A 1 P F e d A 1 d CEC BS f ines time -0.68 0.89 0.95 0.91 0.97 0.86 0.96 0.98 0.91 -0.78 0.89 0.92 Mg 0 98 Ca 0 81 F e o 0.74 K 0 86 Na 0 73 Percent of v a r i a b i l i t y * explained (cumulative) fac to r (%) Fl i F2 F3 F4 61.4 81.6 95.6 100.6 + Percent v a r i a b i l i t y i s ca l cu l a ted on the unrotated fac to r matr ix . Table 3. continued FACTORS Horizons d i r e c t l y below uppermost B hor i zons , only Lowest horizons sampled, only Fl F2 F3 Fl F2 F3 va r i ab l e score va r i ab l e score var iab le score var iab le score var iab le score var iab le score N OM 0.95 0.96 Mg Na 0.97 pHCaCl-0.94 Ca L -0.72 0.66 N OM 0.79 0.91 Ca Mg 0.80 pHCaCl„ 0.89 Fe„ 1 0.74 0.89 F e o 0.91 K 0.94 A 1 o 0.87 Na 0.88 Fe d 0.96 A 1 o 0.98 F 6 P 0.95 K 0.69 0.97 A 1 P 0.89 BS -0.87 r A 1 P F e d A 1 d 0.97 0.93 0.97 Percent of v a r i a b i l i t y + expla ined (cumulative), f a c to r (%) Fl 65.5 A 1 d CEC f ines 0.89 0.91 0.81 Percent of v a r i a b i l i t y * explained fcumulative). f a c to r (%) CEC BS f i nes time 0.91 -0.81 0.99 0.78 F2 F3 '91.9 100.0 time 0.74 Fl 61.7 F2 87.0 F3 100.0 I cn i + Percent v a r i a b i l i t y i s ca l cu l a ted on the unrotated fac to r matr ix . -56-the OM and sesqu iox ides i n c r ea se . Th is exp lana t i on i s compat ib le w i th the presumed genesis o f Podzols (Spodosols) as g iven by the Canadian S o i l Survey Committee (1978) and by the U.S.D.A. S o i l Survey S t a f f (1975). S l i g h t v a r i a t i o n s of the f i n d i ng s above were observed when the hor izons were t e s ted i n d i v i d u a l l y . The behav ior of the bases in these analyses conf i rmed the f i n d i ng s expressed f o r the c o r r e l a t i o n ma t r i c e s . S o i l pH was found to belong to a separate f a c t o r i n the lowest hor i zons o f the t r ansec t and became as soc i a t ed w i th the podzo l - forming process i n the f i r s t B ho r i z ons . I t was po s s i b l e tha t an i n i t i a l l each ing o f bases in the p r o f i l e s , which may a t present be o c cu r r i ng i n the C ho r i z on s , c o n t r o l l e d the pH behav ior u n t i l OM add i t i on s became impor tan t . The p r o b a b i l i t y o f t h i s being a l o g i c a l exp l ana t i on f o r the pH behav ior i s strengthened by the f a c t t ha t high c o r r e l a t i o n s e x i s t e d between Mg and K l osses and time i n these C ho r i z on s . Chronofunct ions The c o r r e l a t i o n ana l y s i s was use fu l i n i n d i c a t i n g which v a r i a b l e s were most l i k e l y to e x h i b i t s i g n i f i c a n t changes w i th t ime . AT showed h i gh l y s i g n i f i c a n t c o r r e l a t i o n s to t ime whether t e s t ed w i th c o l l e c t i v e or i n d i v i d u a l ho r i z ons . The e f f e c t o f the high wate r tab les p r e v i ou s l y d i scussed reduced the s u i t a b i l i t y o f Fe f o r t h i s purpose. Exchangeable Mg and K losses from the C hor i zon samples w i th time a l so were observed to have high c o r r e l a t i o n c o e f f i c i e n t s and cou ld be i n d i c a t i v e of the -57-l each ing func t i ons i n these s o i l s . There fo re , Al i n the uppermost B hor i zons and Mg i n the C hor i zons , graphed w i th s i t e age, are presented i n F igures 1 and 2, r espec t i ve l y ,as ch rono func t i ons . These chronofunct ions are t y p i c a l o f the add i t i on s and losses o f s o i l c ons t i t uen t s tha t are o c cu r r i ng i n the Cox Bay chronosequence. The curves drawn through the data po in t s i n F igures 1 and 2 represent es t imates o f the l i n e of best f i t . They appear to have an exponent ia l c ha ra c t e r . A more complete mathematical d e s c r i p t i o n of these f unc t i ons i s reserved f o r l a t e r d i s c u s s i o n . SUMMARY AND CONCLUSIONS The r e s u l t s o f s e l e c t ed analyses from the Cox Bay s o i l samples were e f f e c t i v e i n quan t i f y i n g the p r ev i ou s l y observed morpholog ica l changes. The data i n d i c a t ed inc reased s o i l development in the sampled pedons as d i s tance from the a c t i v e beach i n c r ea sed . Th i s , t h e r e f o r e , supports the d i s cu s s i on i n Pa r t I, Chapter 1, which c a l l e d t h i s t r ansec t a t rue chronosequence. C o r r e l a t i o n and f a c t o r a n a l y s i s i n d i c a t e d t ha t there were two major processes tha t r e s u l t e d i n the pedogenic d i f f e r en ce s between the sampled s o i l s a long t h i s t r a n s e c t . The process o f Podzol (Spodosol) format ion grouped the; g r ea t e s t number o f s o i l v a r i a b l e s t e s t e d , such as CEC, OM, Fe and A l . The remaining v a r i a b l e s , which corresponded to the ba s i c c a t i o n s , were separated as a separate process and were presented as being c o n t r o l l e d by ocean-spray and b i o c y c l i n g e f f e c t s . F igure 1. Oxalate e x t r a c t a b l e Al (Alo) chronofunct ion from the Cox Bay chronosequence. 0 100 200 300 400 500 FIELD TIME (YEARS) F igure 2. Morgan's a v a i l a b l e Mg chronofunct ion from the Cox Bay chronosequence. - 6 0 -Chronofunct ions t y p i f y i n g add i t i on s and losses o f s o i l c ons t i t uen t s have been presented . I t appears tha t exponent ia l f unc t i ons would be adequate to e xp l a i n the da ta . I t i s be l i e ved tha t the chronofunct ions and weather ing mechanisms i d e n t i f i e d by t h i s study w i l l prov ide usefu l i n fo rmat i on f o r r e l a t i n g to l a t e r s tud i e s i n which a r t i f i c a l l abo ra to ry weather ing o f s o i l ma te r i a l s w i l l be conducted. - 61 -LITERATURE CITED 1. A l l i s o n , L .E . , 1965. Organic carbon. J_n B lack , C.A. ( e d . ) . Methods of S o i l A n a l y s i s , Par t 2. Agronomy 9: 1372-1376. Amer. Soc. Agron. '. Madison, Wiscons in . 2. Bascomb,. C . L . , 1968. D i s t r i b u t i o n of pyrophosphate-ext rac tab le i r on and organ ic carbon i n s o i l s o f var ious groups. J . S o i l S c i . 19: 251-267. 3. Bremner, J . , 1965. Tota l n i t r ogen . Ln B lack , C.A. ( e d . ) . Methods of S o i l A n a l y s i s , Par t 2. Agronomy 9: 1171-1175. Amer. Soc. Agron. Madison, Wiscons in . 4. Canadian So i l Survey Committee, 1978. The Canadian System o f S o i l C l a s s i f i c a t i o n . A g r i c u l t u r e Canada, Ottawa, Ont. (In p r e s s ) . 5. Chapman, H.D., 1965. Cat ion exchange c apa c i t y . J_n B l a ck , C.A. ( e d . ) . Methods of S o i l A n a l y s i s , Par t 2. Agronomy 9: 891-901. Amer. Soc. Agron. Madison, Wiscons in . 6. C l a y t on , J . L . , 1972. S a l t spray and minera l c y c l i n g in two C a l i f o r n i a coas ta l ecosystems. E c o l . 53: 74-81. 7. Cordes, L.D., 1972. An e co l og i c a l study o f the s i t k a spruce f o r e s t on the west coast o f Vancouver I s l a nd . Ph.D. Thes i s , Dept. o f Botany, U n i v e r s i t y o f B r i t i s h Columbia. 8. E the r i ng ton , J . R . , 1967. Stud ies of n u t r i e n t c y c l i n g and product ion i n o l i g o t r o p h i c ecosystems. 1. S o i l potassium and wind-blown seaspray i n a South Wales dune g ra s s l and . J . E c o l . 54: 743-752. 9. Harman, H.H., 1967. Modern f a c t o r a n a l y s i s . Chicago: The U n i v e r s i t y of -62-Chicago P ress . 10. Harvey, H.W., 1960. The chemist ry and f e r t i l i t y of sea wate rs . Cambridge: Cambridge U n i v e r s i t y P ress . 11 . Hunt, H.A., Swanson, C.L.W. and Jacobson, H.G.M., 1950. The Morgan s o i l t e s t i n g system, Conn. Agr . Exp. S t a . Bu i . 541: 1-60. 12. Lewis, T . , 1976. The t i l l - d e r i v e d Podzols o f Vancouver I s l a nd . Ph.D. Thes i s , Dept. o f S o i l Sc i ence , U n i v e r s i t y o f B r i t i s h Columbia. 13. McKeague, J .A . and Day, J . H . , 1966. D i t h i o n i t e and oxa l a te e x t r a c t a b l e i r on and aluminum as a ids i n d i f f e r e n t i a t i n g va r i ous c l a s s e s o f s o i l s . Can. Jou r . S o i l S c i . 46: 13-22. 14. Mehra, O.P. and Jackson, M.L., 1960. Iron ox ide removal from s o i l s and c l ay s by a d i t h i o n i t e - c i t r a t e system bu f fe red w i th sodium b i ca rbona te . Clays and C lay M i n e r a l s . 5: 317-327. 15. N i e , N.H., H u l l , C .H . , J enk i n s , J . G . , S t i enbrenner , K. and Bent, D.H., 1975. S t a t i s t i c a l Package f o r the Soc i a l Sc iences (2nd e d . ) . McGraw-H i l l I n c . , U.S.A. 675 p. 16. O l sen , S.R. and Dean, L.A., 1965. Phosphorus. In B l a ck , C.A. ( e d . ) . Methods of S o i l A n a l y s i s , Par t 2. Agronomy 9: 1035-1049. Amer. Soc. Agron. Madison, W iscons in . 17. Oos t i ng , H . J . , 1945. To lerance to s a l t spray o f p l an t s o f coas ta l dunes. E c o l . 26: 85-89. 18. U.S.D.A. S o i l Survey S t a f f , 1975. So i l Taxonomy A g r i c u l t u r a l Handbook No. 436, Washington, D.C. 754 p. -63 -PART I - Chapter 3 WEATHERING, MICROSCOPY AND PHOSPHORUS TRANSFORMATIONS INTRODUCTION The f i e l d c h a r a c t e r i s t i c s and s o i l morphology, as we l l as the chemical and phys i ca l p r ope r t i e s o f the Cox Bay chronosequence, have been repor ted i n prev ious d i s cus s i ons (Pa r t I , Chapters 1 and 2 ) . Inc reas ing pedogenic development on these beach sand ma te r i a l s has been documented in the seven pedons ( s i t e s 1 to 7) as sur face age and d i s tance from the present s ho r e l i n e of Cox Bay i n c reased . Par t I , Chapter 2 concluded tha t there were two major processes opera t ing to b r i ng about the chemical v a r i a t i o n between s i t e s i n t h i s t r a n s e c t . The Podzo l - forming process descr ibed was s u f f i c i e n t to cause the s o i l s to range i n c l a s s i f i c a t i o n s from an O r t h i c D y s t r i c B run i so l (Typ ic Udipsamment) a t s i t e 1 to an O r t h i c Humo-Ferric Podzol (Aquic Haplorthod) a t s i t e 7. The Podzo l- forming process was found to e n t a i l the d i s i n t e g r a t i o n o f the sandy parent ma te r i a l s to produce s i l t - and c l a y - s i z e d p a r t i c l e s which became inco rpo ra ted wi th sesqu iox ides and organ i c matter as coat ings or d i s c r e t e p a r t i c l e s i n lower ho r i z ons . The second process i d e n t i f i e d was tha t r e spons i b l e f o r the behav ior of the exchangeable bases a long the t r a n s e c t . These bases (Ca, Mg, Na and K) were observed to be poor l y c o r r e l a t e d w i th the c a t i on exchange r e l a t e d p rope r t i e s o f the -64-s o i l s and were, t h e r e f o r e , be l i e ved to r e f l e c t the i n f l u ence of ocean-spray and b i o c y c l i n g . The f o l l ow i ng d i s cu s s i on i s designed to i n d i c a t e how mic roscop i c and wet chemical techniques were used to f u r t h e r e l u c i d a t e the s o i l forming processes which were mentioned above. These techniques were a l so designed to be use fu l f o r p rov i d i ng f u r t h e r evidence as to the v a l i d i t y o f the Cox Bay chronosequence. The l o s s of phosphate i n ca l c ium form (PQ 3 ) from s o i l s has been shown to be an e f f e c t i v e i n d i c a t o r of the amount o f weather ing i n s o i l chronosequence r e l a t e d s tud ies (Walker and Sye r s , 1976; Adams and Walker, 1975; Syers e t a l_., 1970; Syers and Walker, 1969). In these s t u d i e s , has been shown to weather r a p i d l y from the s o i l su r face and f i n a l l y from lower depths w i th i n c r ea s i ng t ime . P^a was complete ly weathered from s o i l p r o f i l e s a f t e r 2.2 x 10^ years i n beach sand s o i l s (Walker and Sye r s , 1976); the process requ i r ed 10^ years in b a s a l t i c s o i l s (Wi l l i ams and Walker, 1969). Almost a l l o f the P present i n unweathered greywacke and m i c a - s ch i s t has been repor ted i n the form o f apat i te^ (Wi l l i ams e t a l . , 1969; Syers ejt a l_. , 1967). S ince the s o i l s o f Cox Bay chronosequence were de r i ved from s i m i l a r minera logy (Pa r t I , Chapter 1) i t was expected tha t a p a t i t e weather ing would prov ide add i t i o na l i n f o rmat i on regard ing the ra tes of weather ing along t h i s t r a n s e c t . The l o s s of pr imary a p a t i t e from the s o i l , v i a l each ing and i n co rpo r a t i on i n t o o ther forms, i s a u n i -Apa t i t e has the chemical fo rmula: C a 5 ( F , C l , 0 H ) ( P 0 4 ) 3 (Hur lbu t , 1971). -65-d i r e c t i o n a l p rocess . There fo re , b i o c y c l i n g or ocean-spray i n f l uences are not l i k e l y to s u b s t a n t i a l l y i n t e r f e r e w i th the l o s s o f t h i s mineral w i th t ime. For t h i s reason, P^  cou ld be expected to y i e l d a most meaningful ch rono func t i on . MATERIALS AND METHODS M ic roscop i c Techniques To ob ta in a p r e l im i na r y v i s ua l i n d i c a t i o n of the weather ing processes i n t h i s chronosequence, s e l e c t ed s o i l samples, which were c o l l e c t e d and c ha r a c t e r i z ed e a r l i e r (Par t I , Chapters 1 and 2 ) , were ana lyzed by the use o f a l i g h t microscope. The C3 hor i zon o f s i t e 1 was chosen to i n d i c a t e the l e a s t pedogen i ca l l y a l t e r e d hor i zon i n the chrono-sequence. S i m i l a r l y , samples w i th the maximum percentage o f f i n e s ( the re fo re p a r t i c l e d i s i n t e g r a t i o n ) and the maximum accumulat ion o f s e squ i ox i des , which were the Ae (A2) hor i zon of s i t e 5 and the B f i (B2 i r ) o f s i t e 6, r e s p e c t i v e l y , were a l so chosen f o r l i g h t microscope a n a l y s i s . Untreated g ra ins from these samples were s p r i n k l e d onto g l a s s s l i d e s and permanently mounted us ing Preservas l ide^ s yn t he t i c r e s i n and g l a ss cover s l i p s . The s l i d e s were then viewed a t 20x magn i f i c a t i on and photographed us ing a l i g h t microscope equipped w i th a 35 mm f i l m back. P r e s e r va s l i d e - Matheson Coleman & B e l l , Northwood, Ohio 45212. -66-Separate untreated samples from these same Ae (A2) , B f l (B21 i r ) and C hor i zons were mounted on scanning e l e c t r o n microscope (SEM) stubs by the use o f a s yn t he t i c mounting medium. The mounted specimens were s p l u t t e r coated and observed us ing an ETEC Corpora t ion Scanning E l e c t r on Microscope equipped w i th an elemental a na l y z e r . Photographs o f the e l e c t r o n images were taken at va r ious magn i f i c a t i o n s . Samples (untreated) from these same hor izons were impregnated w i th epoxy r e s i n i n the form o f d i s c s approx imate ly 2 cm i n d iameter . . One s ide of the d i s c was then po l i s hed w i th tungston carb ide ab ras i ve powders to a very f l a t su r face (Innes and P l u t h , 1970). The po l i s hed d i s c s were coated w i th e i t h e r carbon or go ld and ana lyzed us ing the same SEM instrument as tha t used f o r the SEM s tubs . Elemental ana lyses a t var ious l o c a t i o n s on both the stub and d i s c samples were recorded from the X-ray s pe c t r a s . Phosphorus Ana l y s i s In order to e x h i b i t the weather ing of a p a t i t e from the s o i l s o f the chronosequence, i t was necessary to ob ta in comparable samples between the d i f f e r e n t s i t e s . For t h i s purpose hor i zon samples were not appropr i a te because they were sampled a t var ious depths depending on t h e i r l o c a t i o n i n the t r a n s e c t . For example, i f the was determined f o r the sur face minera l hor i zon i n each pedon, i t would r equ i r e the comparison o f a 10 cm deep Bm hor i zon a t s i t e 1 to a 3 cm deep Ae hor i zon a t s i t e 7. In most of the re fe rences p r ev i ou s l y c i t e d , p r o f i l e averages were u t i l i z e d to eva lua te phosphorus t r ans f o rma t i ons . I t was f e l t , however, t ha t owing to the recent -67-nature o f these depo s i t s , p r o f i l e averages would not c l e a r l y i n d i c a t e s i g n i f i c a n t changes i n the amounts o f phosphorus. There fo re , i n o rder to obta in comparable samples, a d ep th - i n t e r va l sampl ing scheme was r e qu i r e d . The use o f dep th-c lass samples as opposed to hor i zon samples cou ld be r a t i o n a l i z e d by the f a c t tha t the r a t e of weather ing o f pr imary a p a t i t e i s more l i k e l y to be a f unc t i on o f depth as opposed to the s o i l p rocesses . The Cox Bay t r ansec t was resampled on a dep th-c l ass b a s i s . Samples a t depths o f 0-5, 5-10, 10-15, 15-20, 20-25, 30-35, 55-60 and 85-90 cm were c o l l e c t e d from the minera l so i l s ' a t s i t e s 1 to 7. These samples were re turned to the l a bo r a t o r y , a i r d r i e d and passed through a 2 mm s i e v e . Phosphate f r a c t i o n a t i o n was c a r r i e d out on these samples by the mod i f i ed Chang and Jackson procedure (Peterson and Corey, 1966). S o i l pH (Peech, 1965) was measured i n water (1:1). In order to ob ta in some i n d i c a t i o n o f how we l l these depth-c lass samples r e t a i ned the pedogenic t rends e x h i b i t e d by the hor i zon samples, which were repor ted in e a r l i e r chapters (Par t I , Chapters 1 and 2 ) , Fe, Al and Si e x t r a c t ed by a c i d ammonium oxa la te (McKeague and Day, 1966), sodium pyro-phosphate (Bascomb, 1968), and c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e (Mehra and Jackson , 1960) were u t i l i z e d as a compar ison. The Fe, A l , and Si e x t r a c t s were analyzed by atomic absorp t i on spectrophotometry. These e x t r a c t i o n s were performed on unground samples s ince the r e s u l t s were a l s o to be u t i l i z e d f o r comparisons i n l a t e r s t u d i e s . A l s o , i t was not c l e a r what e f f e c t g r i nd i ng would have on the e x t r a c t a b l e amounts of Fe, Al and S i . -68-RESULTS AND DISCUSSION M i c roscop i c Techniques Light Microscope The r e s u l t s o f the l i g h t microscope ana l y s i s o f the s i t e 1, C3, s i t e 5, Ae (A2) and the s i t e 6, B f l (B21 i r ) hor i zon samples are shown in P l a tes Te, 1 a and l b , r e s p e c t i v e l y . The C hor i zon ( P l a t e l c ) appeared to be f r ee o f sesqu iox ide coat ings and organ i c matter; f r e sh minera l sur faces were ev i den t , e s p e c i a l l y on quar tz and hornblende g r a i n s . Many o f the g r a i n s , however, had d i so rgan i zed boundaries which probably r e f l e c t e d p r e -depos i t i ona l weather ing . Beach sands taken from the a c t i v e po r t i on o f the beach a l s o were observed to have a s i m i l a r weathered appearance. There fo re , weather ing fea tu res on g ra ins i n other hor i zons cou ld not be a t t r i b u t e d to pedogenic weather ing a lone-The Ae (A2) hor i zon sample of s i t e 5 ( P l a t e l a ) was a sharp con t r a s t to the s i t e 1, C3, hor i zon sample. S i l t - and c l a y - s i z e d p a r t i c l e s i n the Ae (A2) hor i zon sample appeared to r e s u l t from the s h a t t e r i n g o f l a r g e r (sand) g r a i n s . There was a marked decrease in the number o f dark minera l s which i n d i c a t ed the weather ing o f ferromagnesian m i ne r a l s , l e av i ng quar tz and o ther r e s i s t a n t minera l s i n the r e s i due . A l s o , the f i n e s o f the Ae (A2) conta ined many p a r t i c l e s o f o rgan i c matter which might be expected to c rea te much o f the c a t i o n exchange capac i t y i n t h i s h o r i z o n . Few of the sand gra ins in the Ae hor i zon appeared to be coated wi th o rgan i c matter and sesqu i ox i des . Ins tead , the o rgan i c matter and sesqu iox ides were observed to form d i s c r e t e p a r t i c l e s . There i s some p o s s i b i l i t y , however, P l a te l a . L i gh t microscope photograph of the Ae (A2) hor i zon sample (20X magni-f i c a t i o n ) o f s i t e 5 showing d i s i n t e g r a t i o n of sands to s i l t and c l a y - s i z e d p a r t i c l e s . U3 P l a t e l b . L i gh t microscope photograph of the B f i (B21 i r ) hor izon from s i t e 6 (20X magn i f i c a t i on ) showing organic^ matter and f i n e s coa t i ng the sur face o f the sand g r a i n s . -70-P la te l c . L i gh t microscope photograph of the C3 hor i zon from s i t e 1 (20X magni-f i c a t i o n ) showing some evidence o f weather ing on g r a i n s u r f a c e s . - 71 -tha t d ry ing and s l i d e p repara t i on of these samples has caused the s epa r a t i on . The B f i (B21 i r ) hor i zon ( P l a t e l b ) appeared to have many r e l a t i v e l y una l te red g ra ins which were coated w i th both o rgan i c matter and sesqu i ox i des . There was a l s o some i n d i c a t i o n tha t the o rgan i c matter and f r ee ox ides were present as d i s c r e t e p a r t i c l e s in t h i s h o r i z on . Incorporated i n coa t ings were the f i n e s from f r a c t u r ed m i ne r a l s . I t was concluded tha t these Bf hor izons,were a c t i ng as phys i ca l f i l t e r s , which r e ce i ved the f i n e s and organ i c matter p a r t i c l e s generated i n and washed out of the su r face ho r i z ons . Evidence f o r the f i l t e r i n g o f o rgan i c p a r t i c l e s con ta i n i ng A l , Fe, S i and S t races by Bf (B2h i r ) hor izons i n suba lp ine Podzols has been r e c en t l y repor ted by Ugo l i n i e t al_. (1977). Electron Microscope - SEM Stub Mounts The e l e c t r on images f o r the samples on SEM stubs are shown i n P l a tes 2 ( a - i ) . P l a t e 2g shows the C hor i zon m a t e r i a l . The most s t r i k i n g f ea tu re of t h i s photograph i s the c lean appearance o f the g ra i n s u r f a c e s . The lOOOx enlargements of the s e l e c t ed g ra i n sur face (P l a t e s 2h and 2 i ) show tha t there were many unweathered sur faces even though the g ra i n boundaries are rough. The X-ray ana l y s i s o f these sur faces i n d i c a t e d t ha t both of these g ra ins were quar tz and tha t on ly the presence of a smal l quan t i t y o f Fe was a s soc i a t ed w i th the sur face o f the g ra in shown in P l a t e 2 i . P l a tes 2(a-c) show the Ae sample which was mounted on the SEM s tub . The low magn i f i c a t i on o f t h i s sample (P l a te 2a) showed tha t many o f the f i n e s i n t h i s hor i zon were d i r e c t l y a s soc i a t ed wi th the sur faces of P la te 2a. SEM photograph of the stub-mounted Ae (A2) hor i zon sample from s i t e 5, showing evidence o f f i n e s a t tached to g ra in sur faces (140X magn i f i -c a t i o n ) . P l a t e 2b. Enlargement of a g ra in su r face from P l a te 2a i l l u s t r a t i n g the s ha t t e r i n g o f g r a i n sur faces to produce s i l t -and c l a y - s i z e d p a r t i c l e s (1000X m a g n i f i c a t i o n ) . Enlargement of a sand g r a i n sur face from P l a t e 2a i l l u s t r a t i n g the ch ipp ing o f a sand g ra in su r face as a r e s u l t o f weather ing; the r e s u l t i n g f i n e s are assoc i a ted w i th g r a i n sur faces (2000X m a g n i f i c a t i o n ) . P l a t e 2d. SEM photograph o f B f l (B21 i r ) hor i zon from s i t e 6 showing sesqu iox ide and organ ic matter coa t ings on sand g ra in sur faces (200X m a g n i f i c a t i o n ) . . SEM photograph of B f l (B21 i r ) hor i zon from s i t e 6 showing how amorphous ma te r i a l s are coa t ing sand g ra ins i n t h i s s o i l sample (200X m a g n i f i c a t i o n ) . P l a te 2 f . Enlargement of the amorphous coat ings surround ing the sand g ra i n i n P l a t e 2e, i l l u s t r a t i n g the chemical p r e c i p -i t a t i o n and i n co rpo ra t i on o f f i n e s w i th l a r g e r gra ins (1000X magn i f i c a -t i o n ) . P la te 2g. SEM photograph of the s i t e 1, C3 hor izon showing c lean sur faces on the sand gra ins (100X magn i f i -c a t i o n ) . P l a t e 2h. Quartz g ra in sur face en larged from P l a t e 2g i l l u s t r a t i n g the r egu l a r boundaries and the absence o f s i l t -and c l a y - s i z e d p a r t i c l e s (1000X m a g n i f i c a t i o n ) . - 7 6 P la te 2 i . Quartz g ra in su r face en larged from P l a te 2g showing many smooth sur faces desp i t e the p i t t e d appearance (1000X m a g n i f i c a t i o n ) . -77-th e g r a i n s . Th is might have been i n t e r p r e t e d as coa t ings forming and i n c o r po r a t i ng the f i n e s around the g r a i n s . Higher magn i f i c a t i o n o f these g ra ins shown i n P l a tes 2b and 2c, however, i l l u s t r a t e d t ha t the f i n e s were f r a c t u r i n g d i r e c t l y from the minera l s u r f a c e s . The X-ray spec t ra again i n d i c a t e d t ha t these g ra ins are qua r t z . The spec t ra from the sur face i n P l a t e 2c i n d i c a t e d some Fe and Al a s soc i a t ed w i th the s u r f a c e . There fo re , i t was ev ident t ha t sesqu iox ide coa t ings are commonly found i n t h i s h o r i z on . In Par t I, Chapter 2 i t was observed tha t e x t r a c t a b l e sesqu iox ides i n these hor i zons were behaving s i m i l a r l y to those i n the B hor i zons i n terms o f accumulat ions and l o s s e s . The scanning e l e c t r on microscope photographs from the B hor i zon sample, which was SEM stub-mounted, are shown i n P l a tes 2 ( d - f ) . i The coat ings found cover ing the g ra ins shown in P l a tes 2d and 2e made i t d i f f i c u l t to assess the k ind o f g ra i n imaged. X-ray spec t ra produced at va r ious l o c a t i o n s on the coa t i ng sur faces were s i m i l a r and'showed q u a n t i t i e s o f A l , S i , Fe, Ca and T i . P l a t e 2f shows the magn i f i c a t i on o f the sur face o f the g ra i n i n P l a t e 2d. Un l i ke the Ae (A2) ho r i z on , enlargements of the sur face appeared to be h i gh l y d i so rgan i zed and conta ined amorphous-appear ing mate r i a l which was not de r i ved d i r e c t l y from the g ra i n s u r f a c e . There fore , i t would appear tha t chemical p r e c i p i t a t i o n on g ra ins i n t h i s hor i zon i s a c o n t r i b u t i n g f a c t o r i n the t r a n s l o c a t i o n o f sesqu iox ides and the i n c o r po r a t i o n o f f i n e s . - 7 8 -Eleotron Microscope - Polished Disc Samples Po l i shed d i s c samples y i e l d e d d i f f e r e n t k inds of i n fo rmat i on regard ing the weather ing phenomenon i n these s o i l m a t e r i a l s . The photographs f o r these samples are shown i n P l a t e s 3 ( a - e ) . P l a t e 3a shows a quar tz g ra i n found i n the Ae sample. Many of these g ra ins e xh i b i t e d ex tens i ve weather ing on the edges. An enlargement of the weathered edge i s shown in P l a t e 3b. X-ray spec t ra produced f o r t h i s d i s o rgan i zed sur face i n d i c a t e d tha t i t had s ub s t an t i a l q u a n t i t i e s of Ca, K, Fe and Na trapped i n the i n t e r s t i c i e s . I t would appear from t h i s tha t s i g n f i c a n t q u a n t i t i e s o f n u t r i e n t ca t i ons cou ld be r e t a i ned i n the sur face hor i zons by :this mechanism; This cou ld p a r t i a l l y e xp l a i n the lack o f c o r r e l a t i o n between bases and CEC which was noted i n Par t I, Chapter 2. A c r o s s - s e c t i o n through what f i r s t appeared to be a p l a g i o c l a s e f e l d s pa r i n the B f l sample i s shown i n P l a t e 3c and en larged i n P l a t e 3d. A f t e r i n c r ea s i ng the con t r a s t o f t h i s image i n P l a t e 3d i t became obvious tha t t h i s minera l d i d not have a homogeneous compos i t ion. , The X-ray spec t ra produced at va r ious l o c a t i o n s w i t h i n the mineral i n d i c a t e d t ha t par ts o f t h i s mineral had a composi t ion more s i m i l a r to t ha t of an amphibole. The l i g h t e s t areas on the image were found to be high i n Mn and T i . The d i f f e r e n t i a l e lemental composi t ion i n t h i s minera l would r e s u l t i n d i f f e r e n t i a l weather ing r a t e s . D i s s o l u t i o n o f the e a s i l y weathered po r t i ons of the mineral cou ld e a s i l y r e s u l t i n f r a c t u r i n g o f the minera l a long planes of weakness. Th is would tend to c reate the mechanism whereby f i n e s cou ld be produced i n sur face hor izons by s ha t t e r i n g of l a r g e r g r a i n s . SEM photograph of a c r o s s - s e c t i o n through a quar tz g ra in found i n the Ae (A2) hor i zon o f s i t e 5 (400X magn i f i c a t i o n ) . P l a t e 3b. Enlargement o f the d i so rgan i zed edge o f the sand g ra in shown i n P l a t e 3a, showing h igher s p e c i f i c su r face area than tha t expected from a sand g ra in (1000X magn i f i c a t i o n ) . ate 3c . SEM photograph o f a c r o s s - s e c t i o n through sand g ra i n s found i n the B f i (B21 i r ) hor i zon o f s i t e 6, showing weather ing o f the i n t e r i o r s o f g ra ins and g ra i n boundar ies (200X m a g n i f i c a t i o n ) . co o P l a te 3d. Enlargement o f center g ra i n in P l a t e 3c, i l l u s t r a t i n g the heterogeneous composi t ion o f an amphibole (2000X m a g n i f i c a t i o n ) . - 81 -P l a te 3e. SEM photograph o f a c r o s s - s e c t i o n through sand g ra i n s from the s i t e 1, C3 hor i zon showing smooth g r a i n boundaries and v e s s i c u l a r i n t e r i o r s (200X m a g n i f i c a t i o n ) . -82-P l a t e 3e shows the po l i s hed sec t i on through g ra ins in the C hor i zon sample. Although some o f these g ra ins showed v e s s i c u l a r i n t e r i o r s ( e s p e c i a l l y the f e l d s p a r s ) , the e x t e r i o r boundaries appeared to be qu i t e r egu l a r and i nd i c a t ed l i t t l e ev idence of ex tens i ve su r face weather ing . Phosphorus Transformat ions Data r e l a t i n g the phosphorus f r a c t i o n s to the change i n depth in the s o i l p r o f i l e s are g iven i n Table 1. The P^a accounted f o r the l a r g e s t po r t i on o f i no rgan i c phosphorus i n these s o i l s . S ince the i n i t i a l o b j e c t i v e of the phosphorus f r a c t i o n a t i o n was to i s o l a t e the P^g po r t i on r a the r than p rov i d i ng a t o t a l ba lance , o rgan i c and t o t a l phosphorus were not determined. I t was, t h e r e f o r e , necessary to assume tha t the amount o f a p a t i t e i n i t i a l l y depos i ted i n a l l the s o i l s o f t h i s t r ansec t was cons tan t . The homogeneity o f the s o i l mate r i a l noted i n e a r l i e r chapters (Pa r t I , Chapters 1 and 2) and the c o n t i n u i t y o f the depos i t i ona l environment would tend to support t h i s assumption. The amounts of phosphorus separated from these s o i l s i n each one o f the i no rgan i c f r a c t i o n s showed l i t t l e ev idence o f e r r a t i c d epo s i t i o n . One pos s i b l e except ion to t h i s would be the high amounts o f a v a i l a b l e , as we l l a s , Fe-and Al-bound phosphates i n the 5-15 cm depth o f s i t e 2. However, i t would appear i n t h i s p r o f i l e tha t the P^a i s s t i l l i n l i n e w i th the observed amounts in other p r o f i l e s . There fo re , i t i s probable t ha t the h igher amounts o f a v a i l a b l e phosphorus in these samples cou ld be a t t r i b u t e d to the h igher amounts o f Fe- and Al-phosphates found. Few -83-Table 1. Phosphorus f r a c t i o n a t i o n and se l ec ted chemical data f o r depth c l a s s samples from the Cox Bay s o i l chronosequence Depth pH 1:1 A v a i l - A l -P Fe-P Red- Ca-P Oxalate Pyrophosphate D i t h i o n i t e (cm) H,0 P so l Fe A l S i Fe Al Si Fe Al S1 * P S i t e 1, —ppm Or th i c Dys t r i c B run i so l (Typic Udi psairmen t ) - % S i t e Age 127 Years 5, .13 12.4 29 45 24 105 0.27 0.10 0.03 0.09 0. 03 0.03 0.32 0. 10 0.10 5-10 5. .70 13.2 33 43 11 278 0.22 0.09 0.03 0.18 0. 14 0.0  0.25 0. 08 0.08 10-15 5, .67 18.6 50 41 12 285 0.21 0.09 0.02 0.14 0. 14 0.02 0.23 0. 10 0.05 15-20 5, .67 13.8 34 43 29 354 0.18 0.06 0.02 0.08 0. 08 0.02 0.19 0. 05 0.04 20-25 5. .72 21.6 85 43 14 311 0.17 0.06 0.02 0.07 0. .09 0.02 0.18 0. 05 0.03 30-35 5, .76 13.4 36 37 50 317 0.14 0.05 0.03 0.07 0. .07 0.01 0.16 0. 04 0.02 55-60 5. .63 10.2 24 25 19 265 0.08 0.04 0.02 0.04 0. 04 0.02 0.11 0. 02 0.02 85-90 5. .63 10.4 26 30 22 354 0.11 0.04 0.02 0.03 0. 03 0.03 0.11 0. 02 0.02 S i t e 2, O r th i c Dy s t r i c Brun iso l (Typic Udipsamment) - S i t e Age 170 Years 0-5 5, ,32 22.4 23 33 23 45 0.18 0.06 0.04 0.16 0. 10 0.05 0.24 0. 05 0.09 5-10 5. .70 100 174 122 37 258 0.30 0.14 0.04 0.12 0. ,08 0.05 0.31 0. 14 0.07 10-15 5. .38 150 115 141 63 285 0.24 0.15 0.03 0.11 0. ,11 0.04 0.26 0. .15 0.05 15-20 5, .39 112 178 81 57 335 0.18 0.10 0.02 0.07 0. 06 0.03 0.20 0. .08 0.06 20-25 4, .99 58.2 141 58 27 300 0.18 0.09 0.02 0.07 0. ,05 0.03 0.16 0. 08 0.05 30-35 5, .08 50.2 85 38 26 286 0.12 0.07 0.03 0.05 0. ,04 0.03 0.13 0. ,06 0.04 55-60 5, .32 34.2 68 39 37 346 0.14 0.05 0.02 0.03 0. ,02 0.03 0.14 0. ,04 0.04 85-90 5. .25 16.2 37 25 ... 36 313 0.11 0.05 0.02 0.03 0. ,02 0.03 0.12 0. 03 0.04 S i t e 3, O r th i c D y s t r i c B run i so l (Typic Haplorthod) . S i t e Age 265 Years 0-5 4, .37 9.8 16 39 13 52 0.24 0.09 0.03 0.17 0. ,06 0.05 0.30 0. ,08 0.08 5-10 5. ,04 22.8 36 52 24 264 0.24 0.10 0.03 0.16 0. .09 0.03 0.26 0, ,10 0.09 10-15 5. .28 31.6 48 34 20 337 0.16 0.10 0.03 0.08 0. ,10 0.04 0.18 0. ,09 0.06 15-20 5, ,40 22.4 45 31 25 351 0.15 0.10 0.03 0.07 0. ,10 0.02 0.16 0. ,09 0.06 20-25 5. .39 21.8 47 29 16 350 0.14 0.10 0.03 0.07 0. ,10 0.03 0.15 0. ,09 0.04 30-35 5. .54 9.2 22 16 22 289 0.10 0.06 0.03 0.04 0. .07 0.03 0.12 0, .06 0.03 55-60 5. .58 6.6 16 19 16 369 0.13 0.06 . 0.03 0.03 0. ,05 0.03 0.11 0. .04 0.03 85-90 . 5, .57 3.8 12 17 37 373 0.10 0.05 0.03 0.02 0. ,04 0.02 0.11 0, .03 0.03 S i t e 4, Or th i c Humo-Ferric Podzol (Typic Haplorthod) . S i t e Age 371 Years 0-5 4. .55 4.6 8 19 46 9 0.15 0.07 0.02 0.13 0. .06 0.05 0.28 0. .08 0.09 5-10 4, .96 4.2 8 41 23 110 0.31 0.14 0.04 0.31 0. .13 0:04 0.41 0, .14 0.07 10-15 5, .12 8.8 16 45 36 230 0.30 0.17 0.02 0.26 0, .19 0.02 0.36 0. .18 0.05 15-20 5, .21 10.8 24 35 18 292 0.26 0.19 0.03 0.19 0, .21 0.03 0.29 0, .20 0.04 20-25 5, .21 8.8 22 31 10 302 0.25 0.25 0.03 0.18 0, .30 0.03 0.29 0. .27 0.04 30-35 5, ,24 18.8 35 20 8 273 0.16 0.20 0.03 0.11 0. .22 0.03 0.19 0, .21 0.03 55-60 5, .23 13.8 27 16 18 299 0.10 0.11 0.03 0.05 0, .12 0.03 0.11 0. .11 0.02 85-90 5, ,23 8.8 14 16 31 316 0.10 0.09 0.02 0.03 0, .08 0.03 0.09 0, .07 0.01 .75 S i t e 5, O r th i c Humo-Ferric Podzol (Typic Haplorthod) . S i t e Age 446 Years 0-5 4, 10.2 10 45 74 5 0.23 0.07 0.02 0.16 0. ,05 0.03 0.29 0, ,07 0.10 5-10 5. .01 8.0 12 83 46 36 0.48 0.15 0.03 0.49 0. ,17 0.02 0.60 0. .19 0.08 10-15 5, .23 7.6 16 42 44 173 0.32 0.21 0.02 0.31 0. ,23 0.02 0.39 0. .22 0.05 15-20 5. .31 27.6 66 42 85 234 0.30 0.34 0.03 0.24 0. ,31 0.02 0.32 0. .34 0.04 20-25 5. .37 28.8 58 41 55 239 0.20 0.16 0.03 0.13 0. ,18 0.01 0.21 0. ,16 0.03 30-35 5. .33 26.2 45 24 13 229 0.15 0.15 0.03 0.09 0. ,15 0.01 0.15 0. .14 0.02 55-60 5. .28 9.6 17 17 29 266 0.12 0.11 0.03 0.04 0. ,11 0.01 0.11 0. ,10 0.02 85-90 5. ,33 7.4 18 N.D. 11 328 0.23 0.11 0.03 0.03 0. ,08 0.01 0.13 0. .08 0.02 0-5 51 S i t e 6, O r th i c Humo-Ferric Podzol (Typic Haplorthod) . S i t e Age 480 Years 4. 4.2 8 16 27 4 0.11 0.06 0.01 0.10 0. ,04 0.04 0.26 0. .06 0.09 5-10 4. ,89 2.0 3 38 23 25 0.46 0.12 0.02 0.48 0. ,18 0.03 0.61 0. .14 0.07 10-15 5. ,14 2.0 5 43 49 131 0.52 0.24 0.02 0.50 0. ,25 0.02 0.57 0. .24 0.05 15-20 5. 12 3.4 8 30 19 74 0.48 0.33 0.03 0.47 0. .35 0.02 0.57 0. .35 0.06 20-25 5. 17 3.8 16 24 13 225 0.30 0.28 0.03 0.25 0. 32 0.02 0.36 0. .31 0.05 30-35 5. ,28 2.8 15 22 43 283 0.18 0.24 0.03 0.10 0. 25 0.02 0.19 0. .24 0.04 55-60 5. 33 2.8 14 15 34 237 0.15 0.22 0.04 0.10 0. 25 0.01 0.17 0. 23 0.04 85-90 5. 18 6.6 18 11 38 258 0.11 0.12 0.03 0.04 0. 11 0.01 0.12 0. .11 0.04 52 S i t e 7, O r th i c Humo-Ferric Podzol (Aquic Haplorthod) . S i t e Age 550 Years 0-5 4. 5.8 13 17 39 2 0.08 0.06 0.01 0.07 0. 04 0.03 0.14 0. 06 0.08 5-10 4. 71 10.8 17 78 44 23 0.38 0.16 0.03 0.37 0. 13 0.02 0.49 0. 15 0.09 10-15 4. 92 9.2 13 60 29 119 0.45 0.16 0.03 0.39 0. 14 0.02 0.54 0. 17 0.06 15-20 5. 13 7.2 15 60 33 218 0.48 0.21 0.03 0.43 0. 21 0.01 0.51 0. 23 0.06 20-25 5. 06 12.2 31 40 32 227 0.30 0.27 0.03 0.24 0. 27 0.01 0.34 0. 29 0.04 30-35 5. 11 13.6 36 20 27 194 0.17 0.20 0.02 0.11 0. 19 0.01 0.18 0. 20 0.03 55-60 5. ,14 12.4 28 14 26 204 0.14 0.17 0.02 0.08 0. 16 0.01 0.14 0. 17 0.03 85-90 5. 15 7.8 20 13 38 228 0.11 0.15 0.02 0.06 0. 13 0.01 0.12 0. 13 0.03 -84-s i g n i f i c a n t trends were observed i n the Fe, Al and reductant s o l ub l e f r a c t i o n s . The P^  f r a c t i o n was observed to decrease r a p i d l y i n su r face depth c l a s s e s . The 0-5 and 5-10 cm depth-c lass i n t e r v a l s from each s i t e were averaged and graphed w i th the corresponding sur face age to prov ide the chronofunct ion i l l u s t r a t e d i n F igure 1. Time zero was taken as the concent ra t i on of P^ , i n the C3 hor i zon of s i t e 1. A l so shown i n the f i g u r e i s the f unc t i on de f ined by averag ing the P^fl content o f a l l o f the depth-c lasses a t each of the s i t e s . The l a t t e r f un c t i on was more o f an es t imate of how the p r o f i l e averages would behave wfi'th t ime. The curves shown were es t imated best f i t l i n e s . The P^a i n the top 10 cm of the s o i l p r o f i l e s i n t h i s chrono-sequence appeared to e x h i b i t an exponent ia l decay w i th t ime . When a l l o f the depth-c lasses were averaged the f unc t i on was observed to be l i n e a r w i th t ime. Th is would suggest tha t the use o f p r o f i l e averages to graph chronofunct ions does not c l e a r l y i n d i c a t e the t rue behav ior o f the weather ing i n a p a r t i c u l a r dep th - i n t e r va l or ho r i z on . Fe, Al and Si E x t r a c t i on s Data f o r the a c i d ammonium o x a l a t e , sodium pyrophosphate and c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e ex t rac tabe Fe, Al and Si are g iven i n Table 1. The r e s u l t s of these e x t r a c t i o n s were very s i m i l a r to those obta ined i n Chapter 2 of t h i s manuscr ip t . In on ly a few cases ( i . e . f o r the pyro-phosphate e x t r a c t ab l e Fe and A l ) , lower va lues were found than those i n Chapter 2. The lower va lues were a t t r i b u t e d to the f a c t t ha t the samples -85-Figure 1 . P C a decrease in the average of a l l depth-classes and in surface 10 cm of Cox Bay chronosequence so i l s versus surface age. -86-were not ground before e x t r a c t i o n . F igure 2 i l l u s t r a t e s the comparison o f the pyrophosphate e x t r a c t a b l e Fe from the depth-c lass sampl ing scheme to the hor i zon sampl ing scheme which was u t i l i z e d and repor ted i n Chapters 1 and 2. Curves are shown f o r s i t e 1 and s i t e 6 f o r both sampling schemes. I t was ev iden t from the f i g u r e t ha t the curves were very s i m i l a r and, t h e r e f o r e , the depth-c lass samples r e t a i ned most, i f not more, o f the in fo rmat ion conta ined i n the hor i zon sampl ing scheme. I t i s b e l i e ved t ha t t h i s s i m i l a r i t y occurred because the f e a t h e r i n g processes observed in these p r o f i l e s are g rada t iona l w i th depth. Th is r e s u l t s p r i m a r i l y from the coarse s o i l t ex tu res and shor t dura t ions o f weather ing which were c h a r a c t e r i s t i c o f the study a r ea . SUMMARY AND CONCLUSIONS L i gh t and e l e c t r on microscope techniques have i n d i c a t ed s o i l '• •  genesis mechanisms which are compat ib le w i th those concluded from d i s cus s i ons of s o i l morphology and s o i l chemist ry i n the Cox Bay s o i l chronosequence. SEM photographs o f g ra in sur faces from an Ae (A2) hor i zon i nd i c a t ed tha t most o f the f i n e s generated on g r a i n sur faces in e l u v i a l hor i zons were der ived from the ch ipp ing and d i s i n t e g r a t i o n of the a s soc i a t ed g r a i n . Th is was con t ras ted w i th the B f l (B21 i r ) hor i zon which i n d i c a t e d tha t the f i n e s in i l l u v i a l ho r i z ons , a l though a s soc i a t ed wi th the s u r f a c e s , were not de r i ved d i r e c t l y from the sur faces on which they were : found. Furthermore, chemical p r e c i p i t a t i o n on these i l l u v i a l sur faces was observed and i s PYROPHOSPHATE EXTRACTABLE Fe (%) 0.2 — i — 0.4 — i — 0.6 20 DEPTH (cm) 40 60 k 80 h 4 i i i r HORIZON SAMPLING SCHEME SITE I PROFILE SITE 6 PROFILE 0.2 0.4 0.6 i I I i DEPTH-CLASS SAMPLING SCHEME i CO —1 I I I I / I F igure 2. Comparison o f pyrophosphate ex t r a c t ab l e Fe w i th depth between hor izon and dep th -c l a s s samples from the Cox Bay s o i l chronosequence. -88-be l i eved to be p a r t i a l l y r e spons i b l e f o r keeping the f i n e s c l o se to the g ra in boundar ies . ^Ca v a ^ u e s w e r e 0 D s e r v e d to decrease e xponen t i a l l y w i th t ime i n the sur face 10 cm o f the sampled s o i l s . The P^a chrono funct ion was observed to be l i n e a r when p r o f i l e averages were approx imated. I t i s concluded from t h i s tha t the weather ing f unc t i ons i n a g iven hor i zon or depth-c lass i n t e r v a l may not be i d e n t i f i e d by those g iven by p r o f i l e averages. In the case o f P^  , the p r o f i l e average cou ld be viewed as an extended dep th - c l a s s . There fo re , the on ly d i f f e r en ce would be the amount o f a p a t i t e weather ing and the p r o f i l e average cou ld be cons idered t o be a depth-c lass sample which has been weathered f o r a smal l amount o f t ime. The i n i t i a l po r t i ons o f an exponent ia l curve can be approximated by a s t r a i g h t l i n e . There fore , i n the case w i th P^, the p r o f i l e average and the depth-c lass f unc t i ons cou ld be compat ib le . However, t h i s would not be the case w i th most s o i l c o n s t i t u e n t s . Depth-c lass sampling was shown to r e t a i n s i m i l a r k inds o f pedogenic i n f o rmat i on tha t are g iven by hor i zon sampl ing. T h i s , however, was l i k e l y the r e s u l t o f the coarse s o i l t ex tu re and the recent nature of these d epo s i t s . -89-LITERATURE CITED 1. Adams, J .A . and Walker, T.W., 1975. Some p rope r t i e s o f a chrono-topsequence of s o i l s from g ran i t e i n New Zea land. 2. Forms and amounts of phosphorus. Geoderma 13: 41-51. 2. Bascomb, C . L . , 1968. D i s t r i b u t i o n of pyrophosphate-ext rac tab le i r on and organ ic carbon i n s o i l s o f va r ious groups. J . S o i l S c i . 19: 251-267. 3. Hur l bu t , C.S. J r . , 1971. Dana's Manual o f Minera logy (18th e d . ) . John Wi ley and Sons, I n c . , New York. 579 p. 4. Innes, R.P. and P l u t h , D . J . , 1970. Thin sec t i on p repara t i on using an epoxy impregnat ion f o r pe t rograph ic and e l e c t r on microprobe a n a l y s i s . S o i l S c i . Amer. Proc, 34(3): 483-485. 5. McKeague, J .A . and Day, J . H . , 1966. D i t h i o n i t e and oxa l a te e x t r a c t a b l e i r on and aluminum as an'ids i n d i f f e r e n t i a t i n g var ious c l a s se s o f s o i l s . Can. Journ . S o i l S c i . 46: 13-22. 6. Mehra, O.P. and Jackson, M.L., 1960. Iron ox ide removal from s o i l s and c l ay s by a d i t h i o n i t e - c i t r a t e system buf fe red w i th sodium b i ca rbona te . C lays and C lay M i ne r a l s . 5: 317-327. 7. Peech, M., 1965. Hydrogen-ion a c t i v i t y . In B l a ck , C.A. ( e d . ) . Methods of S o i l A n a l y s i s , Par t 2. Agronomy 9: 914-926. Amer. Soc. Agron. Madison, Wiscons in . 8. Pe te rsen , G.W. and Corey, R.B., 1966. A mod i f ied Chang and Jackson procedure f o r r ou t i ne f r a c t i o n a t i o n of i no rgan i c s o i l phosphates. S o i l S c i . Soc. Amer. Proc . 30: 563-565. -90-9. Sye r s , J .K . and Walker, T.W., 1969. Phosphorus t rans fo rmat i on in a chronosequence of s o i l s developed on wind blown sand i n New Zea land. Jour:., S o i l S c i . 20: 57-64. 10. Sye r s , J . K . , W i l l i a m s , J . D . H . , Campbel l , A .S . and Walker, T.W., 1967. The s i g n i f i c a n c e of a p a t i t e i n c l u s i o n s i n s o i l phosphorus s t u d i e s . S o i l S c i . Soc. Amer. Proc. 31: 752-756. 11. Sye r s , J . K . , W i l l i ams , J .D .H . and Walker, T.W., 1970. Minera logy and forms o f i no rgan i c phosphorus in a graywacke s o i l - r o c k weather ing sequence. S o i l Sc i ence , V o l . 110(2): 100-106. 12. U g o l i n i , F .C. , Dawson, H. and Zachara, J . , 1977. D i r e c t evidence o f p a r t i c l e m ig ra t i on i n t h e . s o i l s o l u t i o n of a Podzo l . Sc i ence . 198: 603-605. 13. Walker, T.W. and Sye r s , J . K . , 1976. The f a te of phosphorus dur ing pedogenesis. Geoderma. 15: 1-19. 14. W i l l i ams , J .D .H . and Walker, T.W., 1969. F r a c t i o na t i o n o f phosphate in a matu r i t y sequence o f New Zealand b a s a l t i c s o i l p r o f i l e s : 1. S o i l S c i . , 107: 22-30. - 9 1 -PART II EXPERIMENTAL PEDOLOGY -92-PART II - Chapter 1 EVALUATION OF SOXHLET WEATHERING PROCEDURES INTRODUCTION The soxh l e t e x t r a c t o r was f i r s t used f o r geochemical weather ing s tud ies by Pedro (1961). The c h a r a c t e r i s t i c s and a p p l i c a t i o n s o f t h i s e x t r a c t o r were desc r ibed i n subsequent papers (Pedro, 1962; Pedro, 1964; Henin and Pedro, 1965; Pedro and B i t a r , 1966; Pedro and In iguez , 1967). In conc lus i on Pedro (1962) i n d i c a t ed tha t the data presented on the geochemical weather ing o f rock us ing the s oxh l e t apparatus under l abo ra t o r y cond i t i ons would show great bene f i t s f o r research i n pedogenesis. In the past severa l y e a r s , the soxh l e t has been used very l i t t l e i n con junc t i on w i th s o i l s r e sea r ch . A recent a r t i c l e by W i l l i ams and Yaalon (1977), i n which the soxh l e t was u t i l i z e d to a i d i n the study o f reddening o f s o i l s i n dune sands, suggests a new i n t e r e s t i n the s imu l a t i on p o s s i b i l i t i e s tha t t h i s dev ice may p rov i de . Other types o f l abo ra to ry techniques have been u t i l i z e d f o r the examinat ion o f weather ing phenomenon in s o i l s . Wet chemical methods have been employed which r equ i r e mix ing samples w i th e x t r a c t i n g so l ven ts to s imu la te the d i s s o l u t i o n o f minera ls (Cor rens , 1961; Cor rens , 1963; Wo l l a s t , 1967; Berger , 1969; G i l k e s e t a l_ . , 1973). A l s o , column s tud i e s - 93 -have prov ided much usefu l i n fo rmat i on regard ing s o i l forming processes (Wright and S chn i t z e r , 1963 ; Meek e t a l_. , 1970; Doner e t a]_., 1974; •Whisler et_ a l_ . , 1974). I t i s b e l i e ved t ha t the s o xh l e t apparatus i n co rpo ra tes the bene f i t s found i n both o f the above techn iques . I t a l lows samples to remain up r i gh t and s t a t i o na r y dur ing the l each ing process , much the same as i n s o i l p r o f i l e s being leached i n the f i e l d . The s oxh l e t a l so lends i t s e l f to the ana l y s i s of samples on a r ou t i ne b a s i s , more e a s i l y perhaps than cou ld column s t u d i e s . Another b e n e f i t o f us ing the s oxh l e t apparatus f o r s imu l a -t i o n o f s o i l weather ing i s i t s f l e x i b i l i t y . Temperatures, r e a c t i o n atmospheres, e x t r a c t i n g s o l u t i o n s , and l each ing ra tes can be manipulated to s imu la te a number of pedogenic env i ronments. Pedro (1962) repor ted the use of water and carbon ic water (water i n e q u i l i b r i u m w i th C^) as e x t r a c t an t s i n the weather ing o f b a s a l t i c r o cks . With pure water i t was found tha t w i th time an ochre weather ing c r u s t was formed on the rock fragments. The pr imary minera l s g r adua l l y d isappeared and hydroxides o f i r on and aluminum were formed i n the c r u s t . The r e s u l t a n t leachate was r i c h in s i l i c a and bas i c ca t i ons but poor i n i r o n . With the carbonated water under the same l each ing c o n d i t i o n s , aluminum again was observed to accumulate but i r on was leached r a p i d l y and the l each ing o f Mg and Ca was observed to be much more i n t e n s e . During the exper iment, c r y s t a l l i z e d ferro-magnesian minera l s and carbonates i n the form o f c a l c i t e and a ragon i te appeared i n the f l a s k . The water e x t r a c t i o n was the re f o re s a i d to l ead to a f e r r a l l i t i c e vo l u t i on wh i l e the COg system was termed a l l i t i c e v o l u t i o n . S i m i l a r a l l i t i z a t i o n processes have been observed in s o i l s o f the humid t r o p i c s (Henin and Pedro, 1965). -94-The pr imary ob j e c t i v e i n the f o l l ow i ng study was to i n v e s t i g a t e the pedogenic s imu l a t i on p o s s i b i l i t i e s when s o i l ma te r i a l s were weathered i n the s oxh l e t i n p lace o f rock f ragments. Of p a r t i c u l a r i n t e r e s t was the weather ing o f s o i l s under the i n f l uence of d i f f e r e n t gaseous atmospheres to see i f they would conform to the geochemical t rends that Pedro had r epo r t ed . The second o b j e c t i v e was to i d e n t i f y the methodology and equipment mod i f i c a t i o n s r equ i r ed to produce a r ou t i n e soxh l e t procedure t h a t would a l l ow q u a n t i t a t i v e e x t r a c t i o n o f s o i l ma te r i a l s i n d e t a i l e d s o i l weather ing exper iments . MATERIALS AND METHODS S o i l mate r i a l used i n the f o l l ow i ng experiments was obta ined from a Podzo l i c s o i l chronosequence which developed in beach sands near Cox Bay, on the west coas t o f Vancouver I s l a n d , B r i t i s h Columbia. S o i l morphology, phys i ca l and chemical c h a r a c t e r i s t i c s , and weather ing aspects o f t h i s chronosequence have been p r ev i ou s l y d i scussed (Par t I , Chapters 1, 2 and 3 ) . The l e a s t pedogen i ca l l y a l t e r e d sample from t h i s chronosequence corresponded to the C3 ho r i zon o f the youngest s o i l desc r i bed i n the t r an se c t ( s i t e 1 ) . This sample was u t i l i z e d f o r a l l the soxh l e t procedures in t h i s chap te r . The sample was cha r a c t e r i z ed by determin ing pH (Peech, 1965), a v a i l a b l e Ca, Mg and K by Morgan's e x t r a c t (Hunt e_t a l_. , 1950) and e x t r a c t a b l e Fe, Al and S i by a c i d ammonium oxa l a te (McKeague and Day, 1966). P a r t i c l e s i z e determinat ion was conducted by the s i eve and p i p e t t e method ( Jackson, 1958) a f t e r a H2O2 pretreatment f o r the removal of o rgan i c mat te r . Samples -95-ground to pass a 0.05 mm s i eve were ana lyzed by X-ray d i f f r a c t i o n (CuK<*, N i - f i l t e r e d r a d i a t i o n ) f o l l ow i ng a c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e p re-treatment (Mehra and Jackson, 1960) f o r the removal o f s e squ i ox i des . Tota l a na l y s i s o f t h i s C hor i zon mate r i a l was c a r r i e d out by h y d r o f l u o r i c a c i d d i g e s t i o n (Ranta la and L o r i n g , 1973). Concentrat ions of ca t i ons in the e x t r a c t s were determined by atomic absorp t ion spectrophotometry. Use of D i f f e r e n t Gaseous Atmospheres in Unmodif ied Soxh lets Samples o f the <2 mm s o i l , weighing 220 g each, were p laced in e x t r a c t i o n thimbles^ and weathered in commerc ia l ly a v a i l a b l e (unmodif ied) soxh le t s f o r va r ious amounts o f t ime. Atmospheres c o n s i s t i n g o f a i r , Op, Hp and CO2 (separate t reatments) were pumped i n t o s oxh l e t b a r r e l s v i a smal l c a p i l l a r y tubes. The exper imenta l set-up i s i l l u s t r a t e d in F igure 1. Flow meters were u t i l i z e d to s tandard i ze the amounts o f gases en te r i ng the ba r r e l s except i n the case w i th the a i r t reatment which was l e f t open to the l abo ra to ry a i r . S i x s o i l samples were weathered under a i r , 0^ and Hp atmospheres f o r weekly i n t e r v a l s f o r a six-week p e r i o d . Th is produced samples weathered f o r 1 week, 2 weeks, e t c . , w i th the l a s t sample being weathered f o r a t o t a l o f 6 weeks. A sample weathered f o r 4 weeks under a CO2 atmosphere was a v a i l a b l e f o r comparison. D i s t i l l e d water (300 ml) was u t i l i z e d as the e x t r a c t i n g s o l u t i o n and the weather ing ra te was con-Whatman c e l l u l o s e e x t r a c t i o n th imble - s i n g l e t h i c kne s s , 43 x 123 mm. -96-F igure 1. Experimental set-up f o r weather ing s o i l ma te r i a l s i n soxh l e t e x t r a c t o r s under d i f f e r e n t gaseous atmospheres. -97-t r o l 1 ed by s t anda rd i z i ng the ba r re l temperatures (65°C ± 2°) and r e c y c l i n g t imes. A 15 minute r e c y c l i n g time was ach ieved which corresponded to an approximate l each ing ra te o f 2.4 a/day. Heat f o r the soxh l e t assembl ies was prov ided by a mu l t i p l e burner ho tp l a te w i th ad jus tab l e temperature c o n t r o l s . A f t e r the complet ion of the exper iment, the weathered r e s i dua l samples ( res idues) were a i r d r i e d , mixed and ana lyzed f o r pH, Morgan's e x t r a c t ab l e Ca, Mg and K, and f o r Fe, Al and Si by the methods p r e v i o u s l y mentioned. The leachate from each of the soxh l e t assembl ies was made to a volume o f 500 ml and ana lyzed f o r pH, us ing a combinat ion g l a ss e l e c t rode , and f o r Ca, Mg, K, Fe, A l and Si by atomic absorp t i on spectrophotometry. RESULTS AND CONCLUSIONS Table 1 l i s t s the a n a l y t i c a l r e s u l t s f o r the c h a r a c t e r i z a t i o n o f the s o i l mate r i a l used i n these weather ing s t u d i e s . These va lues were used to i n d i c a t e time zero s t a tes f o r comparison to the weathered samples. Data f o r the a n a l y s i s o f the res idues from the soxh l e t weather ing are g iven i n Table 2. Corresponding data f o r the leachate ana l y s i s i s presented in Table 3. A number o f problems were encountered i n the course of these experiments which tended to make the leachate data suspec t . P repara tory work had i n d i c a t e d the neces s i t y o f us ing an e x t r a c t i o n th imble to prevent s o i l p a r t i c l e s from being siphoned d i r e c t l y i n t o the c o l l e c t i n g f l a s k -98-Table 1. Character i zat ion of the C3 horizon material from the Cox Bay  s o i l chronosequence a. So lut ion Chemistry ( 1 : 1 , H 20) 5.1 Morgan's Extractable Oxalate Extractable Ca Mg K Fe Al Si ppm so i l 50 35 25 .20 .11 .09 b. Phys ica l Propert ies >0.05 0.50-0.25 P a r t i c l e s i ze (mm) 0.25-0.10 0.10-0.05 <0.05 2.9 95.2 1.9 tex tura l c l a s s i f i c a t i o n : f i ne sand c. Mineralogy by x-ray D i f f r a c t i on Dominant minerals Minor minerals quar tz , p lag ioc lase fe ldspars amphibole magnetite, o l i v i n e , Trace minerals c h l o r i t e , mica d. Elemental Analys is Elemental % Ca. Mg. K Na Fe W S [ Hn J l 1.01 1.23 0.29 2.43 3.9 6.8 27.0 0.07 .05 Zn .01 C l a s s i f i e d according to So i l Taxonomy (U.S.D.A. So i l Survey S t a f f , (1975)). -99-Table 2. Comparison of the e f f e c t s of d i f f e r en t gaseous atmospheres used in  weathering s o i l mater ia l s in soxhlets - Residues Treatment Time (weeks) Morgan's Ext ractab le Ca Mg_ K ppm Oxalate Ext ractab le Fe A l S i % pH (H 20 1:1) A i r Atmosphere 0^  Atmosphere Atmosphere co 2 No Treatment* 1 69 32 22 0. 19 0. 10 0. 08 5.4 2 75 29 17 0. 19 0. 12 0. ,09 5.5 3 116 25 14 0. 18 0. 10 0. 07 5.6 4 126 23 12 0. 18 0. 11 0. .07 5.8 5 149 19 12 0. .17 0. 10 0. ,07 6.1 6 152 18 11 0. 18 0. 09 0. ,07 5.9 1 94 44 22 0. ,23 0. 11 0. ,08 5.4 2 129 36 13 0. ,20 0. 10 0. .07 5.7 3 105 38 14 0. ,22 0. ,11 0. .07 5.6 4 . 123 34 15 0. ,24 0. ,12 0. .09 5.4 5 118 32 19 0. .29 0. ,12 0. .08 5.6 6 97 26 12 0. .25 0. .12 0. .07 5.4 1 75 31 18 0. ,18 0. ,09 0 .07 5.2 2 82 25 17 0. .21 0. .11 0. .09 5.2 3 86 28 18 0. .22 0. .12 0, .09 5.2 4 85 21 13 0. .21 0. .11 0. .09 5.2 c M n 0 6 69 10 13 0. .22 0. .12 0 .09 5.2 4 19 2 7 0. .15 0, .13 0, .07 4.6 0 50 35 25 0.20 0, .11 0 .09 5.1 •Or ig ina l unweathered s o i l mater ia l -100-Tab le 3. Comparison of the effects of d i f f e r e n t gaseous atmospheres used in weathering s o i l materials in soxhlets - Leachates Treatment Time (weeks) Ca Mg Fe ppm AT Si PH A i r Atmosphere CX, Atmosphere N2 Atmosphere CO, 1 0.24 1 .18 5 .6 0.2 0 .3 5 7.4 2 0.47 1 .95 9 .5 0.3 0 .2 9 7.5 3 0.91 3 .09 16 .0 0.4 0 .5 31 7.6 4 1.25 3 .78 17 .2 0.7 0, .9 50 7.9 5 1.65 3, .60 14, .4 0.3 0 .8 10 7.7 6 1.74 4. .00 16, .4 0.3 1, .1 21 6.8 1 0.59 2. .17 11. .5 0.9 1, .4 21 6.6 2 1.04 5. .58 18. .2 1.8 1. .9 33 7.6 3 1.12 5. .63 18. .2 2.3 2. .5 57 7.3 4 1.52 6. ,16 23. .1 4.1 4. ,5 65 7.6 5 1.80 6. .56 8. ,6 14.7 17. ,5 74 7.1 6 1.33 7. 40 10. ,4 11.6 11. 7 53 6.8 1 0.46 3. 2 4. ,6 0.10 1. 2 9 6.7 2 0.78 3. 3 10. 2 1.30 0. 5 5 7.3 3 0.51 3. 1 9. 0 0.47 1. 6 18 7.5 4 0.77 4. 6 9. 7 3.75 3. 3 43 7.6 5 M n L u n Lain 1 nat, 1 on 6 0.78 3. 1 13. 9 0 0 9 7.6 4 7.16 3. 35 7. 1 0.4 0. 9 6 8.2 -101-(F igure 1 ) . However, i n the p resent study i t was found t ha t the s iphon tube of the soxh l e t reached a he igh t near the top of a s o i l sample conta ined i n the e x t r a c t i o n th imb le . There fo re , s i n ce the wate r tab le in the apparatus cou ld r i s e to the top of s o i l sample, sp lash e ros ion o f the sur face occur red i n some cases . Th is r e s u l t e d i n contaminat ion of the leachates w i th s o i l p a r t i c l e s . A l s o , e s p e c i a l l y i n the longer time e x t r a c t i o n s , a coa t i ng formed on the i n s i d e of the c o l l e c t i n g f l a s k . Th is coa t i ng was not complete ly s o l ub l e i n s t rong ac ids or bases . Although the coa t ing was be l i e ved to be most ly s i l i c a , i t was l i k e l y t ha t some bases would a l s o be i n co rpo ra ted . For these reasons, the leachates were cons idered as i n d i c a t i v e o f weather ing trends on l y . S ince the res idues l o se on ly a few g ra ins (<1 g) from the s u r f a c e , as a r e s u l t o f sp lash e r o s i o n , they were cons idered to be comparable between t rea tments . A i r , 0^ and atmosphere treatments caused s i m i l a r trends i n weather ing but to d i f f e r i n g degrees. CO2 atmosphere was observed to r e s u l t i n much d i f f e r e n t tendenc ies . While inc reases i n a v a i l a b l e Ca were noted w i th time i n the a i r , 0£ and ^ r e s i due s , the CO2 r es idue showed a decrease a f t e r 4 weeks. Mg and to some ex ten t K a v a i l a b i l i t y were observed to be much lower in the CO2 res idue compared to the other atmospheres. Oxalate e x t r a c t a b l e Fe decreased from 0.20 to 0.15% i n the COg r e s i due , whereas Fe inc reased i n O2 and ^ treatments to maximums of 0.29 and 0.22%, r e s p e c t i v e l y . In the a i r t reatment , Fe i n the res idue decreased s l i g h t l y to 0.17%. pH i n the CO2 t r ea t ed res idue was lower a t 4.6 than those o f the gaseous t rea tments , which averaged 7 .5 . The lower pH, Ca, Mg and Fe i n - 1 0 2 -the C0 2 res idue probably r e s u l t e d from the format ion of s o l ub l e Ca, Mg and Fe carbonates and b i ca rbona tes , and the consequent l i b e r a t i o n o f H i o n s . The i n t e n s i t y o f weather ing observed i n the three s i m i l a r l y behaving atmospheres was in the order o f 0 2 > a i r > H^. 0 2 l eachate e x h i b i t e d the h ighes t concent ra t ions o f Fe, A l , S i , Mg and to a l e s s e r ex ten t K, wh i l e Ca was comparable to tha t o f the leachate from the a i r t reatment . An inc rease i n oxa l a te e x t r a c t a b l e Fe i n the 0^ res idues from 0.20 to 0.29% was the h ighes t i nc rease observed i n these t rea tments . T iny concre t ions formed i n the c o l l e c t i n g f l a s k s o f the C0£ t reatment; one of these i s shown i n c r o s s - s e c t i o n i n P l a t e 1. These concre t ions 1\ike1yiwere p r e c i p i t a t e d carbonates s i n ce they were observed to f i z z and d i s s o l v e when dropped i n t o a s o l u t i o n of 10% HC1. The leachate o f the COg treatment had a pH o f 8.2 which probably r e f l e c t e d the e q u i l i b r i u m cond i t i ons caused by having carbonates ( s o l i d ) , H^ CO^  (aqueous) and CO2 (gas) i n the c o l l e c t i n g f l a s k s dur ing the weather ing p rocess . Ga r re l s and C h r i s t (1965) have i nd i c a t ed tha t s o l i d c a l c i t e i n pure water , w i th atmospheric p a r t i a l pressures o f C02» has a pH o f 8.4 a t 25°C. S ince there was both h igher p a r t i a l pressures o f CO2 and h igher temperatures i n the soxh l e t us ing the CO2 atmosphere, the pH would be expected to dev ia te somewhat from the 8.4 va l ue . The presence of carbonate conc re t i ons and the high va lues o f Ca i n the COg leachates demonstrated the e f f e c t i v ene s s of t h i s environment f o r the weather ing of Ca- and probably Mg-conta in ing m ine r a l s . The C0 2 t reatment appeared to conform we l l to the a l i i t i c process which Pedro (1962) de s c r i b ed . The decrease in the oxa l a te e x t r a c t a b l e Fe, -103-P l a t e 1. Small carbonate conc re t i on formed i n the soxh l e t u t i l i z i n g a C O p - d i s t i l l e d water l each ing regime (200X m a g n i f i c a t i o n , p a r t i a l l y c r o s s ed -po l a r i z ed l i g h t ) . -104-wh i l e Al i nc reased s l i g h t l y , was a good i n d i c a t i o n tha t the process was one where Al accumulat ion r e l a t i v e to Fe in the res idues was favoured . A l s o , a l though no newly c r y s t a l l i z e d ferromagnesian minera ls were i d e n t i f i e d i n the l e a cha t e s , s o l i d carbonates were found. T h i s , aga i n , was compat ib le w i th the a l l i t i z a t i o n process . A i r , Op and Hp treatments d i d not produce c l e a r a l i i t i c ' t r ends . . In the case w i th the a i r t reatment , the leachates were low i n Fe and Al r e l a t i v e to the bas i c c a t i o n s , but the oxa l a te e x t r a c t a b l e Fe and Al i n the res idues d i d not dev ia te s i g n i f i c a n t l y from t h e i r i n i t i a l v a l u e s . O2 t r ea t ed samples showed inc reases i n amorphous Fe i n the r e s i due s , but concen t ra t i ons o f Fe and Al i n the l eachates were a t t imes shown to be h igher than those o f the bas i c c a t i o n s . I t i s p o s s i b l e tha t the sho r t du ra t i on of the weather ing procedures u t i l i z e d in t h i s experiment were not s u f f i c i e n t to a l l ow the a l i i t i c process to become apparent . I t i s , a l s o , po s s i b l e tha t i f the elemental concent ra t i ons i n the leachates were expressed as percentages o f the elemental compos i t ion of the s o i l , the leachate po r t i on of the p rocess , a t l e a s t , cou ld be c l a r i f i e d . However, i t i s apparent t ha t the weather ing o f s o i l s i n soxh l e t e x t r a c t o r s which u t i l i z e atmospheres o f a i r , Op and ^ r e s u l t s i n some dev i a t i ons from the expected trends of pedogenesis der i ved from weather ing homogeneous rock fragments under s i m i l a r c o n d i t i o n s . SUMMARY AND CONCLUSIONS Th is study has shown tha t l each ing of s o i l ma te r i a l s w i th d i s t i l l e d water i n soxh l e t e x t r a c t o r s , can produce d i f f e r e n t weather ing trends i f -105-d i f f e r e n t gaseous atmospheres are p resen t . A s oxh l e t us ing a CO^ atmosphere produced a l l i t i c weather ing trends i n a s o i l sample. S ince s i m i l a r a 1 1 i t i c cha rac te r has been observed f o r s o i l s weather ing under f i e l d c o n d i t i o n s , the soxh l e t cou ld be s a i d to be s imu l a t i ng pedogenic weather ing . However, d e t a i l e d soxh l e t to f i e l d comparisons are r equ i r ed before i t i s p o s s i b l e to say how accurate t h i s s imu l a t i on i s . The use o f CO^ may approximate s o i l weather ing cond i t i ons where a c t i v e o rgan i c matter decomposit ion i s o c c u r r i n g . A comparison o f Op and Hp t r e a t ed samples cou ld p o s s i b l y be used to i n d i c a t e weather ing d i f f e r en ce s under o x i d i z i n g versus reduc ing c o n d i t i o n s . I t i s , a l s o , po s s i b l e t ha t s i m i l a r experiments cou ld be dev ised to assess the i n f l uence o f d i f f e r e n t e x t r a c t i n g s o l u t i o n s or l each ing r a t e s . S ince problems o f sample innundat ion and leachate contaminat ion occu r red , i t was apparent tha t the commerc ia l ly a v a i l a b l e s oxh l e t e x t r a c t o r was not p a r t i c u l a r l y we l l adapted f o r r ou t i ne weather ing exper iments . Some a l t e r a t i o n of the s o x h l e t ' s s iphon tube may prove to be b e n e f i c i a l . The format ion o f p r e c i p i t a t e s , or c oa t i ngs , i n the c o l l e c t i n g f l a s k s of the assembl ies was a l s o of concern. Obv ious l y , t h i s f r a c t i o n must be accounted f o r i n any t o t a l chemical balance approach. On the o ther hand, format ion o f products such as conc re t i ons and p r e c i p i t a t e s might be regarded w i th g reat i n t e r e s t by the p edo l o g i s t . However, i t i s apparent from these experiments t ha t a t o t a l e lemental balance approach i s r equ i r ed to c l e a r l y assess the pedo log ic tendenc ies o f s o i l s weathered i n s oxh l e t e x t r a c t o r s . There fo re , i t i s concluded tha t w i th appropr i a te m o d i f i c a t i o n s , the soxh le t e x t r a c t o r cou ld be extremely usefu l i n the study of s o i l genes i s . -106-LITERATURE CITED 1. Burger, D., 1969a. Calc ium re l ease from 11 minera l s of f i n e sand s i z e by d i l u t e s u l f u r i c a c i d . Can. J . S o i l S c i . 49: 11-20. . , 1969b. R e l a t i v e w e a t h e r a b i l i t y o f c a l c i um-con ta i n i ng m ine r a l s . Can. J . S o i l S c i . 49: 21-28. 2. Cor rens , C.W., 1961. The exper imental chemical weather ing of s i l i c a t e s . C lay Miner . B u i . 4: 249-265. 3. Cor rens , C.W., 1963. Experiments on the decomposit ion o f s i l i c a t e s and d i s cu s s i on of chemical weather ing . C lays and Clay Min. 12: 443-460. 4. Doner, H.E., V o l t z , M.G.and McLaren, A.D. 1974. Column s tud i e s of d e n i t r i f i c a t i o n i n s o i l . S o i l B i o l . Biochem. 6: 341-346. 5. G a r r e l s , R.M. and C h r i s t , C . L . , 1965. S o l u t i o n s , M inera l s and E q u i l i b r i a . Harper's Geoscience S e r i e s , Harper and Row, N.Y. 450 p. 6. G i l k e s , R . J . , Young, R.C. and Qu i rk , J . P . , 1973a. A r t i f i c i a l weather ing o f o x i d i z ed b i o t i t e : 1. Potassium removal by' sodium c h l o r i d e and sodium te t rapheny l boron s o l u t i o n s . S o i l S c i . Soc. Amer. Proc. 37: 25-28. , 1973b. 11. Rates of d i s s o l u t i o n i n 0 . 1 , 0 .01 , and 0.001 M HC1. S o i l S c i . Soc. Amer. Proc. 37: 29-33. 7. Henin, S. and Pedro, G . , .1965 . The l abo ra t o r y weather ing of r o cks . Jjn Experimental Pedology. Ha l l swo r t h , E.G. and Crawford, D.V. ( e d s . ) . Bu t te rwor ths , London. 414 p. 8. Hunt, H.A., Swanson, C.L.W. and Jacobson, H.G.M., 1950. The Morgan s o i l t e s t i n g system. Conn. Agr. Exp. S tn . B u i . 541: 1-60. 9. Jackson, M.L., 1958. S o i l chemical a n a l y s i s . P r e n t i c e - H a l l , I n c . , -107-N . J . , 498 p. 10. McKeague, J .A . and Day, J .H . 1966. D i t h i o n i t e and oxa la te e x t r a c t a b l e i r on and aluminum as a ids i n d i f f e r e n t i a t i n g var ious c l a s se s of s o i l s . Can. Jour . S o i l S c i . 46: 13-22. 11. Meek, B.D., Grass , L .B . , W i l l a r d s o n , L.S. and MacKenzie, A.J . , " .1970. N i t r a t e t rans fo rmat ions i n a column w i th a c o n t r o l l e d wa te r t ab l e . S o i l S c i . Soc. Amer. Proc . V o l . 34: 235-240. 12. Mehra, O.P. and Jackson, M.L., 1960. Iron ox ide removal from s o i l s and c l ay s by a d i t h i o n i t e - c i t r a t e system buf fe red wi th sodium b i c a r -bonate. C lays and Clay Min. 5: 317-327. 13. Pedro, G . , 1961. An exper imental study on the geochemical weather ing of c r y s t a l l i n e rocks by water. C lay Miner . B u i . 4: 266-281. 14. Pedro, G. , 1962. Experimental research on the weather ing o f c r y s t a l l i n e rocks and the geochemical c h a r a c t e r i s a t i o n o f pedogenic phenomena. Proc. In t . S o i l Conf . , N .Z . : r 50 -54 . 15. Pedro, G. , 1964. Con t r i bu t i on a l ' e t ude exper imenta l e de 1 ' a l te ' rat ion geochimique des roches c r i s t a l l i n e s . Ann. Agron. 15(2): 85-191. 16. Pedro, G. and B i t a r , K.E. , 1966. Con t r i bu t i on a l ' e t ude de l a genese des so l s hypermagnesiens: Recherches exper imenta les sur 1 ' a l t e r a t i o n chimique des roches u l t r abas iques ( s e r p e n t i n i t e s ) . Ann. Agron. 17(6): 611-651. 17. Pedro, G. and In iguez , J . , 1 9 6 7 . Recherches sur l e r o l e de l a roche-mere dans 1 ' a l t e r a t i o n provoquee en cond i t i ons a c i d s . Sc ience de S o l . 1: 93-111. 18. Peech, M., 1965. Exchange a c i d i t y . ln_ B l a ck , C.A. ( e d . ) . Methods o f S o i l A n a l y s i s , Par t 2. Agronomy 9: 905-912. Am. Soc. Agron. Madison, Wiscons in . -108-19. Ran ta l a , R.T.T. and L o r i n g , D.H., 1973. New low-cos t t e f l o n decom-p o s i t i o n v e s s e l . Atomic Absorpt ion News le t te r . 12(4): 97-99. 20. U.S.D.A. S o i l Survey S t a f f , 1975. S o i l Taxonomy A g r i c u l t u r a l Handbook No. 436, Washington, D.C. 754 p. 21. Wh i s l e r , F.D., Lance, J . C . and L inebe rge r , R.S. , 1974. Redox p o t e n t i a l s i n s o i l columns i n t e r m i t t e n t l y f looded w i th sewage waters . J . Env i r on . Q u a l i t y . V o l . 3 (1 ) : 68-74. 22. W i l l i ams , C. and Yaa lon, D.H., 1977. An exper imenta l i n v e s t i g a t i o n o f reddening i n dune sand. Geoderma 17: 181-191. 23. Wo l l a s t , R., 1967. K i n e t i c s of the a l t e r a t i o n of K- fe ldspar i n bu f fe red s o l u t i o n s a t low temperature. Geochim. Cosmochim. Acta 31: 635-648. 24. Wr ight , J .R . and S c h n i t z e r , M., 1963. Me ta l l o - o r gan i c i n t e r a c t i o n s a s soc i a t ed w i th p o d z o l i z a t i o n . S o i l S c i . Soc. Amer. Proc. 171-175. -109-PART II - Chapter 2 ADAPTION OF THE SOXHLET EXTRACTOR FOR PEDOLOGIC STUDIES Abs t r a c t The use o f the soxh l e t apparatus has had l i m i t e d success i n i t s a p p l i c a t i o n to pedogenic weather ing s t u d i e s . Mod i f i c a t i o n s made to the des ign o f the o r i g i n a l s oxh l e t e l im i na t ed problems o f sample i nunda t i on , e ros i on and leachate contaminat ion . The mod i f i ed s o xh l e t s , which u t i l i z e d e x t r a c t i o n th imb les , were made by reduc ing the he ight (A) or complete ly removing (B) the s iphon tube. B-modi f ied e x t r a c t o r s inc reased Ca e x t r a c t a b i l i t y o f a s o i l mate r i a l from the o r i g i n a l 50 ppm to 210 ppm compared to an inc rease to 152 ppm i n the unmodif ied apparatus . Use o f a CO2 atmosphere i n m o d i f i c a t i o n A caused a r ap i d change i n the r e a c t i o n of the s o i l ma te r i a l from the i n i t i a l pH 5.1 to 4.5 compared to pH 6.1 i n unmodif ied u n i t s . The use o f these mod i f i ed soxh le t s showed promise i n s imu l a t i ng pedogenic p rocesses . -110-Soxh le t e x t r a c t o r s were f i r s t u t i l i z e d f o r geochemical weather ing o f rock fragments by Pedro (1961). Subsequent repor t s by him and others (Pedro, 1964; Pedro and B i t a r , 1966; Pedro and In iguez , 1967) f u r t h e r descr ibed the use of these e x t r a c t o r s . W i l l i ams and Yaalon (1977) encountered problems of sample water logg ing when s o i l s were weathered i n the s oxh l e t . C logg ing of the s iphon tube r e s u l t e d i n inadequate dra inage and t o t a l i nundat ion o f the samples. A c l e a r sepa ra t i on o f a zone o f r e l a t i v e l y o x i d i z e d cond i t i ons from a f l u c t u a t i n g wate r tab le zone was, t h e r e f o r e , not p o s s i b l e . The o r i g i n a l s oxh l e t design used by Pedro (1961), thus appears to have l i m i t e d value f o r s imu l a t i ng weather ing i n s o i l s . The purpose o f t h i s chapter i s to present mod i f i c a t i o n s o f the soxh l e t des ign which render i t more usefu l i n s imu l a t i ng pedogenic c o n d i t i o n s . Two mod i f i c a t i on s are desc r i bed and some exp l o ra t o r y data are g iven to i l l u s t r a t e t h e i r s imu l a t i on p o s s i b i l i t i e s . Mod i f i c a t i o n s o f the Soxh le t Design Mod i f i c a t i o n s A and B are shown w i th the o r i g i n a l s oxh l e t i n P l a t e 1. A l so shown are the e x t r a c t i o n thimbles^ used to con ta in the s o i l samples. The use o f th imbles f o r con ta i n i ng rock fragments dur ing weather ing experiments was repor ted by Pedro and In iguez (1967). In the Whatman c e l l u l o s e e x t r a c t i o n th imble - s i n g l e t h i c kne s s , 43 x 123 mm. - I l l -P la te 1. I l l u s t r a t i o n o f the o r i g i n a l s oxh l e t design ( l e f t ) , mod i f i c a t i o n A, shortened siphon (center ) and mod i f i c a t i o n B, s t r a i g h t siphon ( r i g h t ) . -112-o r i g i n a l and mod i f i ed soxh le t s i t was found tha t the use of th imbles was e s s en t i a l to prevent s o i l p a r t i c l e s from c logg ing the s iphon tubes and contaminat ing l ea cha te s . Mod i f i c a t i o n A cons i s t ed o f reduc ing the siphon tube he igh t so t ha t the e x t r a c t i n g l i q u i d cou ld r i s e to approx imate ly h a l f the sample he i gh t . Th is was intended to s imu la te the cond i t i ons o f a f l u c t u a t i n g water tab le in the bottom po r t i on o f the sample. M o d i f i c a t i o n B a l lowed the e x t r a c t i n g l i q u i d and the s o l u b i l i z e d c on s t i t u en t s to f low d i r e c t l y from the ba r r e l i n t o the c o l l e c t i o n f l a s k v i a a s t r a i g h t tube . Th is type o f s oxh l e t would s imu la te weather ing cond i t i ons o f a s o i l i n an e l u v i a l zone w i th the absence of wa te r tab le e f f e c t s . Exper imental Procedures So i l ma te r i a l used i n the f o l l ow i ng experiments was obta ined from a podzo l i c s o i l chronosequence, which was developed i n beach sands near Cox Bay, on the west coas t of Vancouver I s l a nd , B r i t i s h Columbia. The c h a r a c t e r i s t i c s o f t h i s s o i l m a t e r i a l , which was de r i ved from the C3 hor i zon of the youngest s o i l desc r ibed i n the t r ansec t ( s i t e 1 ) , has been p r ev i ou s l y d i scussed (Par t I, Chapters 1, 2 and 3 and Par t I I , Chapter 1 ) . Data from the prev ious chemical a n a l y s i s of t h i s sample (Pa r t I I , Chapter 1) were used to e s t a b l i s h time zero s t a t e s f o r the comparison to ana lyses o f s oxh l e t weathered samples produced i n the present s tudy. S ix , 220 g s o i l mate r i a l samples, conta ined i n t h imb les , were weathered i n each type o f s o xh l e t . D i s t i l l e d water was used as the e x t r a c t a n t . The experiments were of s i x week du r a t i o n , w i th one sample -113-being removed from each type of s oxh l e t a f t e r each week. The weather ing ra tes f o r the o r i g i n a l soxh le t s were s tandard i zed by ad j u s t i ng the s e t t i n g s on t h e i r heaters u n t i l a constant 15 minute r e c y c l i n g time was ach i eved . Th is heat ing ra te corresponded to an approximate l each ing ra te o f 2.4 i/day. Subsequent runs us ing mod i f i ed soxh le t s u t i l i z e d the same heater s e t t i n g s . The o r i g i n a l and B-modif ied soxh le t s were open to l abo ra t o r y atmosphere. Mod i f i c a t i o n A un i t s were mainta ined under a r e l a t i v e l y reduc ing atmosphere by pumping.CO^ i n t o the b a r r e l s v i a smal l c a p i l l a r y tubes. Th is CG^ atmosphere was intended to a i d i n the s imu l a t i on of s o i l weather ing i n environments which undergo r ap i d o rgan i c matter decompos i t ion. The weathered r e s i dua l samples ( res idues) from the soxh le t s were a i r - d r i e d and ana lyzed f o r pH (Peech, 1965), e x t r a c t a b l e Ca, Mg and K i n Morgan's e x t r a c t (Hunt e t a]_., 1950) and f o r e x t r a c t a b l e Fe, Al and Si i n a c i d ammonium oxa la te (McKeague and Day, 1966). Leachates were made to a volume of 500 ml before a n a l y s i s by atomic absorp t ion spectrophotometry. Resu l t s and D i scuss ion S ince the s iphon tube on the unmodif ied soxh le t s was as high as a th imble p laced i n the b a r r e l , the e x t r a c t i n g l i q u i d t o t a l l y inundated the samples on each c y c l e . Th is l e d to e ros i on o f sample s u r f a c e s , po s s i b l e contaminat ion of leachates and the lack of an adequate separa t i on of a r e l a t i v e l y o x i d i z e d zone from a f l u c t u a t i n g wate r tab le zone. M o d i f i c a t i o n A ,w i th i t s reduced s iphon.he ight ,was e f f e c t i v e i n c r e a t i n g the des i r ed -114-f l u c t u a t i n g wate r tab le i n the bottom po r t i on o f the samples. M o d i f i c a t i o n B was found to be e f f e c t i v e i n a l l ow ing the leachate to pass d i r e c t l y through the samples and i n t o the c o l l e c t i o n f l a s k . Data from the ana l y s i s o f the soxh l e t res idues are presented i n Table 1. Mod i f i c a t i o n B res idues were more h i gh l y weathered than the o r i g i n a l soxh l e t res idues as evidenced by the i nc rease i n Morgan's e x t r a c t -ab le Ca from 50 ppm i n the unweathered sample to 210 ppm i n the B-modi f ied soxh l e t res idues compared to an inc rease to 152 ppm i n the o r i g i n a l soxh l e t r e s i due s . A l s o , oxa la te e x t r a c t a b l e Fe was h igher i n the B-modif ied soxh l e t r e s i dues , as i n d i c a t ed by an inc rease from 0.20% to a maximum of 0.27%, wh i l e o r i g i n a l soxh l e t res idues decreased to 0.17%. Since most of the Fe ex t r a c t ed by a c i d ammonium oxa l a te comes from amorphous or weakly c r y s t a l l i n e compounds (McKeague and Day, 1966), h igher amounts o f Fe i n e x t r a c t s were i n d i c a t i v e o f inc reased minera l sur face d i s o rde r and, the re -f o r e , h igher degrees of weather ing i n the s o i l m a t e r i a l . The oxa la te e x t r a c t ab l e Fe i n the A-modi f ied soxh l e t res idues was h igher than tha t found i n the o r i g i n a l soxh le t r e s i due s . Th is i n d i c a t e d tha t the weather ing ra tes i n the A-modi f ied un i t s were a l s o h igher than i n the o r i g i n a l s o xh l e t s . The e f f e c t of the CO2 atmosphere i n mod i f i c a t i o n A i s most ev ident i n the r ap i d reduc t i on i n the amounts o f a v a i l a b l e Ca and Mg. Under CO2 c ond i t i o n s , res idues decreased from pH 5.1 to 4 .6 . Product ion o f r e a d i l y so l ub l e carbonates and b icarbonates and the consequent l i b e r a t i o n of H i o n s , are probable mechanisms f o r the observed behav io r . -115-Tab le 1. S e l e c t e d chemica l data f o r r e s i d u e s f rom o r i g i n a l , A- and B -mod i f i ed s o x h l e t s E x t r a c t i o n d u r a t i o n A c i d ammonium Morgan ' s e x t r a c t a b l e o x a l a t e e x t r a c t a b l e (ppm) % Treatment (weeks) pH Ca Mg K Fe A l S i O r i g i n a l s o x h l e t M o d i f i c a t i o n A ( sho r tened s i phon) M o d i f i c a t i o n B ( s t r a i g h t s i phon) 0 5.1 50 35 1 5.4 69 32 2 5.5 75 29 3 5.6 116 25 4 5.8 126 23 5 6.1 149 19 6 5.9 152 18 0 5.1 50 35 1 4 .5 20 2.6 2 4 .6 28 2.6 3 4 .5 26 2.4 4 4 .8 48 3.3 5 4 .7 28 2.4 6 4 .6 22 2.4 0 5.1 50 35 1 5.5 81 29 2 5.6 105 30 3 5.9 218 36 4 6.1 201 25 5 6.0 234 21 6 6.0 210 22 25 .20 .11 .09 22 .19 .10 .08 17 .19 .12 .09 14 .18 .10 .07 12 .18 .11 .07 12 .17 .10 .07 11 .18 .09 .07 25 .20 .11 .09 8 .24 .11 .09 11 .23 .12 .10 7 .23 .12 .12 9 .23 .12 .08 8 .24 .12 .09 7 .23 .12 .09 25 .20 .11 .09 23 .22 .11 .09 17 .22 .10 .08 17 .21 .11 .09 9 .23 .11 .08 8 .27 .10 .09 7 .26 .12 .10 -116-The f a c t tha t Ca e x t r a c t a b i l i t y i n B-modif ied soxh l e t res idues i nc reased w i th t ime, whereas Mg and K e x t r a c t a b i l i t y decreased, deserves comment. I t i s po s s i b l e tha t as Ca-conta in ing minera l s i n t h i s s o i l mate r i a l are weathered, more sur face area i s exposed to the e x t r a c t i n g s o l u t i o n . However, i n the case w i th Mg and K, the l each ing serves on ly to reduce the a v a i l a b l e amounts t ha t were i n i t i a l l y present i n the s o i l m a t e r i a l . There fore , the d i f f e r en ce s i n the e x t r a c t a b l e behav ior of these elements was l i k e l y due to the d i f f e r e n t i a l w e a t h e r a b i l i t y of Ca-con ta in ing versus Mg- and K-conta in ing m i ne r a l s . Leachate data are presented i n Table 2. A f t e r a few days o f soxh l e t weather ing , i n s o l u b l e p r e c i p i t a t e s adhered to the s ides o f the c o l l e c t i o n f l a s k s . I t was found t ha t t h i s p r e c i p i t a t e cou ld not be t o t a l l y removed from the f l a s k s even w i th s t rong ac ids and bases. There fo re , the leachate does not i n d i c a t e the t o t a l amount of elements r e l eased from the samples. Ins tead, the leachates i n d i c a t e the concen t ra t i ons o f elements found in the s o l u t i o n phase a t the complet ion o f wea ther ing . S ince the s o l u t i o n phase was approx imate ly i n e q u i l i b r i u m wi th any p r e c i p i t a t e s formed i n the f l a s k , i t s t i l l may be i n d i c a t i v e o f the l each ing trends i n the t rea tments . For example, some support f o r the carbonate-b icarbonate theory proposed f o r the A-modi f ied soxh le t s can be obta ined from the leachate da ta . Average Ca and Mg concent ra t i ons i n the leachates of the A-mod i f i ed soxh le t s were 16 and 10 ppm, r e s p e c t i v e l y ; these concen t ra t i ons were much h igher than the average Ca and Mg concen t ra t i ons i n the o r i g i n a l s o x h l e t s , which were 1 and 3 ppm, r e s p e c t i v e l y . There fo re , product ion o f s o l ub l e -117-mater ia ls in A- and B-modified soxhlets , ^ . Ca Mg K Fe Al Si Treatment H 3 weeks p ppm Or ig ina l soxhlet leachates 1 7.4 0.24 1.18 5.6 0.2 0.3 5 2 7.5 0.47 1.95 9.5 0.3 0.2 9 3 7.6 0.91 3.09 16.0 0.4 0.5 31 4 7.9 1.2 3.78 17.2 0.7 0.9 50 5 7.7 1.6 3.60 11 .4 0.3 0.8 10 6 6.8 1.7 4.00 11.4 0.3 1.1 21 Modi f i ca t ion A (shortened siphon) soxhlet leachates 1 N.D. 13.7 16.1 16.4 2.6 4.5 28 2 N.D. 20.0 9.2 16.8 2.6 3.9 55 3 N.D. 19.2 4.1 8.2 1.8 1.9 30 4 8.2 9.4 11.8 8-.1 1.6 4.0 30 5 N.D. 14.8 11.2 15.6 1.0 2.6 23 6 N.D. 20.2 8.1 15.6 6.3 3.9 30 Mod i f i ca t ion B ( s t ra igh t tube) soxhlet leachates 1 8.3 0 .94 5.3 0 0.2 7 2 8.4 0.06 .29 7.8 0 0 6 3 7.7 1.4 1.09 11.8 0 0.1 18 4 8.0 1.8 2.39 14.8 0.1 10.7 42 5 7.9 4.7 0.51 6.2 0 18.2 38 6 8.9 4.3 0.83 7.2 0 3.2 13 -118-carbonates and b icarbonates f a c i l i t a t e d g rea te r l each ing of Ca and Mg from the A-mod i f i ed s oxh l e t r e s i due s . Fe was observed to have a s i m i l a r behav ior under the CO^ c o n d i t i o n s . Conc lus ion The mod i f i ed soxh le t s desc r ibed i n t h i s chapter were e f f e c t i v e i n r e c t i f y i n g problems encountered when o r i g i n a l soxh le t s were used i n s o i l weather ing s t u d i e s . A l s o , i t was found t h a t , by man ipu la t ing soxh l e t atmospheres and siphon l e v e l s , a number of d i f f e r e n t cond i t i ons cou ld be c reated wh i l e s imu l a t i ng s o i l weather ing . I t may be po s s i b l e to dev i se s i m i l a r s tud ies i n which l each ing temperatures and e x t r a c t i n g f l u i d s are man ipu la ted. There fo re , i t i s be l i e ved tha t the mod i f i ed soxh le t s descr ibed i n t h i s paper cou ld be use fu l i n f u tu re t e s t i n g and development o f t heo r i e s i n s o i l genes i s . La te r chapters w i l l i l l u s t r a t e the use o f soxh le t s i n the s o l u t i o n o f pedo log i c f u n c t i o n s . -119-LITERATURE CITED 1. Hunt, H.A., Swanson, C.L.W. and Jacobson, H.G.M., 1950. The Morgan s o i l t e s t i n g system. Conn. Agr. Exp. S t a . B u i . 541: 1-60. 2. McKeague, J .A . and Day, J . H . , 1966. D i t h i o n i t e and oxa la te e x t r a c t ab l e i r on and aluminum as a ids i n d i f f e r e n t i a t i n g var ious c l a s ses of s o i l s . Can. Jour . S o i l S c i . 46: 13-22. 3. Pedro, G. , 1961. An exper imenta l study on the geochemical weather ing of c r y s t a l l i n e rocks by water , C lay Miner . B u i . 4: 266-281. 4. Pedro, G. , 1964. Con t r i bu t i on a l ' e t ude e x p e r i m e n t a l de l ' a l t e r a t i o n geochimique des roches c r i s t a l 1 i n e s . Ann. Agron. 15(2): 85-191. 5. Pedro, G. and B i t a r , K.E. , 1966. Con t r i bu t i on a l ' e t ude de l a genese des so l s hypermagnesiens: Recherches exper imenta les sur l ' a l t e r a t i o n chimique des roches u l t r abas i ques ( s e r p e n t i n i t e s ) . Ann. Agron. 17(6): 611-651. 6. Pedro, G. and In iguez , J . ,^1967, Recherches sur l e rSle de l a roche-mere dans l ' a l t e r a t i o n provoqu£e en cond i t i ons a c i d . Sc ience de S o l . 1: 93-111. 7. Peech, M., 1965. Hydrogen-ion a c t i v i t y . In_ B lack , C.A. (ed^L^Methods of S o i l A n a l y s i s , Par t 2. Agronomy 9: 914-926. Amer. Soc. Agron. Madison, Wiscons in . 8. W i l l i ams , C. and Yaa lon, D.H., 1977. An exper imenta l i n v e s t i g a t i o n of reddening" i n dune sand. Geoderma 17: 181-191.. -120-PART II - Chapter 3 USE OF ACETIC ACID IN SOXHLET WEATHERING PROCEDURES INTRODUCTION Pedro and others (Pedro, 1964; Henin and Pedro, 1965; Pedro and B i t a r , 1966; Pedro and In iguez , 1967) have repor ted the use o f a c e t i c a c i d f o r the weather ing o f rock fragments i n soxh l e t e x t r a c t o r s . The main d i f f e r ences i n pedo log ic tendenc ies of samples weathered i n pure a i r / water systems, COg/water systems and systems u t i l i z i n g v o l a t i l e o rgan i c ac ids such as a c e t i c a c i d are g iven i n summary by Henin and Pedro (1965) . The former types o f weather ing systems, employing water as an e x t r a c t a n t , c reated an a l l i t i z a t i o n p rocess . In t h i s p rocess , p r e f e r e n t i a l removal of bas i c ca t i ons and s i l i c a occurred and amorphous ox ides of aluminum and i r on accumulated i n the weathered r e s i due s . A complete r eve r sa l o f t h i s process was observed when a c e t i c a c i d was used as an e x t r a c t a n t . A c e t i c a c i d caused the r ap i d removal o f i r o n , aluminum and bas i c c a t i o n s , which c reated a s i l i c a - r i c h r e s i due . This l a t t e r process was r e f e r r e d to as p o d z o l i z a t i o n . A l l i t i z a t i o n was repor ted to be a comparat ive ly slow process when viewed aga ins t the rap id a l t e r a t i o n caused by a c e t i c a c i d (Henin and Pedro, 1965). A l s o , i t was s t a t ed tha t a l l i t i c processes i n the humid t r o p i c s are found to be r e l a t i v e l y s low. They appeared to be e s s e n t i a l l y -121-phys ico-chemica l processes and t h e i r b i o l o g i c a l a c t i v i t y was l i m i t e d to occurances such as the movement o f Fe and Mn. P o d z o l i z a t i o n , on the o ther hand, i s a r ap i d process dominated by the presence o f a c i d chemical substances whose o r i g i n , i n smal l or l a rge q u a n t i t y , can on ly be b i o l o g i c a l (Henin and Pedro, 1965). In an e a r l i e r d i s cu s s i on (Pa r t I I , Chapter 1) the author d i s cussed the e f f e c t s o f weather ing s o i l mate r i a l i n s o xh l e t s . Water was used as the e x t r a c t i n g s o l u t i o n and atmospheres o f a i r , CO^, and were t e s t e d . A l i i t i c tendenc ies of the s o i l weather ing were c l e a r l y demonstrated f o r COp atmospheres. The o ther gaseous atmospheres u t i l i z e d d id not e x h i b i t a we l l de f ined a l 1 i t i c cha ra c t e r , but the need f o r a t o t a l e lemental balance approach and, p o s s i b l y , more in tense l each ing o f the samples was r equ i r ed to assess t h i s f u r t h e r . Chapter 2 (Par t I I ) o f t h i s t h e s i s suggested some appropr i a te soxh l e t design mod i f i c a t i o n s f o r use when s o i l ma te r i a l s were weathered i n the p lace o f rock f ragments. The ob j e c t i v e of the present study was to c ha r a c t e r i z e the behavior o f s o i l s weathered by the use of a c e t i c a c i d and the mod i f i ed s oxh l e t e x t r a c t o r s . I t was be l i e ved tha t by us ing a c e t i c a c i d , the weather ing processes of the s o i l sample cou ld be a c ce l e r a t ed to an ex tent tha t a c l e a r express ion of pedo log i c tendency cou ld be observed. An i d e n t i f i c a t i o n o f a s u i t a b l e a c e t i c a c i d method f o r s o i l weather ing would a l s o prov ide the bas i s f o r l a t e r s tud ies r e l a t i n g the development of pedo log ic tendenc ies to t ime . There fo re , an assessment o f the v a r i a b i l i t y which cou ld be found i n such a technique was of concern . -122-MATERIALS AND METHODS In the f o l l ow i ng exper iments, soxh le t s w i th shortened s iphons were used. Th is type of soxh l e t (Mod i f i c a t i o n A) was desc r ibed e a r l i e r ( Pa r t I I , Chapter 2 ) . A l l weather ing experiments were c a r r i e d out on a C3 hor i zon s o i l sample from a sandy beach depos i t near Cox Bay, on Vancouver I s l a nd , B r i t i s h Columbia. Resu l t s of the c h a r a c t e r i z a t i o n o f t h i s s o i l sample were presented i n Par t I I , Chapter 1. The A c e t i c A c i d Method S i x , 220 g s o i l samples (<2 mm s o i l ) were conta ined i n c e l l u l o s e e x t r a c t i o n th imb les , capped w i th two p ieces o f f i l t e r paper and p laced i n soxh l e t b a r r e l s . The b a r r e l s were at tached to weighed, f l a t -bo t tomed f l a s k s (500 m l ) , which conta ined 300 ml o f 0.3 M a c e t i c a c i d s o l u t i o n . Condensers were connected to the top o f the ba r r e l s and the completed soxh l e t assembl ies were p laced on a m u l t i p l e burner heat ing bank. The temperatures of the burners were regu la ted so tha t three of the soxh le t s would run a t a high l each ing ra te wh i l e the o ther three ran a t a lower r a t e . The cond i t i ons c rea ted by these two ra tes are summarized i n Table 1. B o i l i n g of e x t r a c t i n g s o l u t i o n s was a ided by the a d d i t i o n of g l a s s beads to each f l a s k . Recyc l i ng dura t ions and ba r re l temperatures were u t i l i z e d to s tandard i ze the two l each ing r a t e s . Ba r re l temperatures were measured j u s t -123-Table 1. Experimental condit ions for A-modified soxhlets run at high  and low leaching rates Treatment Repl icate Number Soxhlet Recycl ing Time (min) Leachate Volume (ml) Per Cycle Leachate Flow Rate (1/day) Soxhlet Barrel Temp (°C) High Leaching Rate ( 1 ( 2 ( 3 15 15 15 4.3 4.3 4.3 98 98 98 Low Leaching Rate ( 1 ( 2 ( 3 10 10 10 15 15 15 2.2 2.2 2.2 50 50 50 -124-above the sample sur face us ing a thermocouple probe . The samples were weathered f o r a t o t a l o f 8 weeks. A f t e r each o f the f i r s t four weeks and a f t e r 6 weeks, a f r e sh s o l u t i o n o f a c e t i c a c i d was p laced i n the c o l l e c t i n g f l a s k s wh i l e the removed s o l u t i o n s were saved f o r a n a l y s i s . The weathered res idues were removed from the b a r r e l s a t the complet ion of the exper iment, d i v i d ed i n t o top and bottom halves and a i r -d r i ed f o r a n a l y s i s . Top and bottom halves corresponded to the s o i l weathered above and below the s iphon l e v e l , r e s p e c t i v e l y . Leachates were c en t r i f uged f o r 10 minutes a t 2 000 RPM (IEC c e n t r i f u g e , 4 x 250 head). The supernatant s o l u t i o n s (termed cen t r i f uged - l ea cha t e s ) were decanted and made to a volume o f 500 ml and saved f o r a n a l y s i s . P r e c i p i t a t e s separated by the c e n t r i f u g a t i o n were washed i n t o weighed beakers , d r i ed a t 40°C and weighed. These p r e c i p i t a t e s are he rea f t e r r e f e r r e d to as sediments. The weights o f p r e c i p i t a t e s which cou ld not e a s i l y be removed (by d i s t i l l e d water r i n s i n g ) from s ides of the c o l l e c t i o n f l a s k s were determined by reweighing .the d r i e d f l a s k s . A r ep re sen ta t i v e sample o f these l a t t e r p r e c i p i t a t e s ( r e f e r r ed to as adhe red -p re c i p i t a t e s ) was obta ined by break ing the c o l l e c t i n g f l a s k s and sc rap ing the s i d e s . Ana l y s i s of the Weathered Products The o r i g i n a l s o i l sample and the weathered s o i l res idues were analyzed f o r pH (Peech, 1965), Morgan's e x t r a c t a b l e Ca, Mg and K (Hunt -•<. YS1 Tele Thermometer, Model 42SC, Ye l low Sp r i ngs , Ohio. -125-e t a l_ . , 1950), a v a i l a b l e P (Olsen and Dean, 1965) and f o r Fe , A l and Si by a c i d ammonium oxa l a te (McKeague and Day, 1966) and c i t r a t e - b i c a r b o n a t e -d i t h i o n i t e (Mehra and Jackson, 1960). Both the sediment and adhe red -p re c i p i t a t e samples were analyzed f o r t o t a l e lemental compos i t ion by h y d r o f l u o r i c a c i d d i g e s t i o n (Ranta la and L o r i n g , 1973). Subsamples of these ma te r i a l s were passed through a 0.05 mm s i e v e , washed severa l t imes w i th d i s t i l l e d water to remove so l ub l e s a l t s and d r i e d a t 40°C. These d r i e d samples were sub jec ted to X-ray d i f f r a c t i o n ana l y s i s (CuK<*, N i - f i l t e r e d r a d i a t i o n ) as powder-mounts. The elemental composi t ions of the cen t r i f uged - l eacha te s were determined by atomic absorp t ion spectrophotometry. pH i n these s o l u t i o n s was determined w i th a combinat ion g lass e l e c t r o d e . RESULTS AND DISCUSSION Products Removed by A c e t i c A c i d Leaching of S o i l Ma t e r i a l Table 2 summarizes the t o t a l amounts of va r ious elements i n the c en t r i f u ged - l e a cha t e , sediment and adhe red -p re c i p i t a t e taken from each soxh-l e t over the e n t i r e e i gh t weeks o f the exper iment. Resu l t s are repor ted i n m i l l i g r ams throughout, which f a c i l i t a t e d the a dd i t i o n of these d i f f e r e n t f r a c t i o n s to y i e l d an o v e r a l l t o t a l f o r the amount o f each element removed from the s o i l samples by each s o x h l e t . The o v e r a l l t o t a l s are a l so g iven i n Table 2. Data f o r the i n d i v i d u a l l eachate concen t r a t i on s , p r e c i p i t a t e -126-Table 2. Results from the analysis of centrifuqed-leachates, sediments and  adhered-precipitates i n A-modified soxhlet c o l l e c t i n g f l a s k s Sample Leaching Ca Mg Na K Fe Al Si Solids Number Rate mg Centri fuged-Leachates 1 Low 319.5 269.0 69.0 28.6 409. .0 28.0 189. .0 -2 Low 304.0 255.5 54.0 29.5 385. .5 39.6 193. .5 -3 Low 309.5 245.5 61.5 28.7 358. .5 32.1 193. .0 -4 High 901.0 255.5 403.0 68.2 336. .5 12.8 277. .0 -5 High 793.5 213.0 282.0 60.5 451. .5 17.0 258. .5 -6 High 906.5 299.5 378.5 65.6 437. .0 15.1 270. .0 -Sediments 1 Low 0.55 7.26 12.16 1.03 172. .6 522.7 592. .1 4090 2 Low 0.67 8.00 13.38 0.95 211. ,1 520.1 489. .2 3960 3 Low 0.49 6.37 12.07 0.74 182. .9 491.6 636. .3 3650 4 High 2.27 5.98 37.18 4.28 172, .5 1070.8 2216. .3 9300 5 High 1.00 4.79 23.12 2.44 133, .3 703.1 1476. .8 5920 6 High 1.53 5.51 22.94 5.48 179. .9 1057.8 2111. .4 9160 Adhered-•Precipitates 1 Low 0 0.28 0.78 0.07 44. .0 95.1 142, .0 710 2 Low 0 0.40 0.72 0 62. .4 105.6 160. .0 800 3 Low 0 0.52 0.83 0.10 59. .3 129.0 218. .4 1040 4 High 5.12 5.12 16.90 2.05 81. .9 553.0 1177, .6 5120 5 High 0.55 2.74 7.69 1.65 142. .7 653.3 1317. .6 5490 6 High 0.87 2.60 6.93 1.73 90. .9 485.0 1082. .5 4330 Overal1 Totals 1 Low 320.05 276.54 81.94 29.70 625. .6 645.9 923. .1 4800 2 Low 304.67 263.90 68.10 30.45 659. .0 665.4 842, .7 4760 3 Low 309.99 252.39 74.41 29.54 600. .7 652.7 1047, .7 4690 4 High 908.40 266.60 457.08 74.58 590. .9 1636.7 3670, .9 14420 5 High 795.05 320.54 312.81 64.59 727. .5 1373.4 3059. .9 11410 6 High 908.89 307.60 408.37 72.80 707. .8 1557.9 3463. .9 13490 -127-weights and t o t a l ana lyses used to compute the va lues i n Table 2 are g iven i n Appendix I I , 3 .1 . The high ra te o f l each ing was observed to have s u b s t a n t i a l l y h igher amounts o f elements i n the o v e r a l l t o t a l s than was found f o r the low l each ing r a t e , w i th the except ion of Fe and Mg. The amounts o f these l a t t e r elements were found to be on ly s l i g h t l y h igher i n two of the three soxh le t s tha t were run a t the h igher l each ing r a t e . A l s o , i t was found tha t Fe and Mg were i n approx imate ly equal amounts i n the c en t r i f u g ed -l eacha tes , sediments and adhe red -p rec i p i t a t e s from the high and low l each ing r a t e s . I t would seem from t h i s , tha t Fe- and Mg-conta in ing minera l s o l u b i l i t i e s i n t h i s s o i l mate r i a l are more s t r ong l y r e l a t e d to the dura t i on of the experiment as opposed to the ra te of l e a c h i n g . There-f o r e , ferro-magnesian m ine r a l s , such as hornblende, would be a f f e c t ed by t h i s s o l u b i l i t y behav io r . The leachate i n contac t w i th these minera l s f o r a shor t t ime, i n the high weather ing r a t e , would ca r ry low concen t ra t i ons o f Fe and Mg i n t o the c o l l e c t i n g f l a s k s . Converse ly , leachates pass ing through a t s lower ra tes would have more time i n contac t w i th Fe- and Mg-con ta in i ng minera l s and, consequent ly , ca r ry h igher concen t ra t i ons of these elements i n t o the c o l l e c t i n g f l a s k s . I t i s imp l i ed by t h i s exp lana-t i o n tha t the o ther elements s t ud i e d , reached e q u i l i b r i u m more r a p i d l y than Fe and Mg as the leachate passed through the s o i l . I f t h i s was the case , h igher concent ra t i ons of these elements would r e f l e c t h igher ra tes o f l each ing i n the s o x h l e t . Evidence f o r the r ap i d e q u i l i b r a t i o n of some of these elements i n organ ic ac ids has been g iven by Huang and K e l l e r (1970) and Huang and Kiang (1972). -128-The t o t a l amount o f s o l i d s (sediments + adhe red -p re c i p i t a t e s ) p r e c i p i t a t i n g in the leachates averaged 4 750 mg f o r the low weather ing ra te and 13 106 mg f o r the high r a t e . Th is corresponded to 2.1% and 6.0% of the weight o f the i n i t i a l samples, r e s p e c t i v e l y . There fo re , i t has been shown tha t by i n c r ea s i ng the l each ing ra te from 2.2 Ji/day to 4.3 £/day the amount of s o l i d p r e c i p i t a t e was approx imate ly t r i p l e d . Sediments and adhe red -p rec i p i t a t e s were observed to be high i n Fe, Al and Si and low i n bas i c c a t i o n s . A l s o , both the sediment and adhe red -p re c i p i t a t e were found to be X-ray amorphous. Consequent ly, i t i s po s s i b l e tha t these amorphous ma te r i a l s were s i m i l a r to hydrated sesqu iox ides tha t cou ld be found i n the B hor i zon o f a Podzol s o i l . P l a t e 1 shows a scanning e l e c t r on microscope image o f a c r o s s - s e c t i o n through a p iece of adhe red -p re c i p i t a t e which has been removed from the s ide o f one of the c o l l e c t i o n f l a s k s . The amorphous mate r i a l appears more c r y s t a l l i n e i n the zone which would be c l o s e s t to the f l a s k s i d e . I t i s po s s i b l e tha t w i th more t ime, secondary c r y s t a l l i n e compounds cou ld be formed. Fe, Ca and Mg were the dominant ions i n the c en t r i f u ged -leachates and the h ighes t amounts of K and Na were found i n t h i s f r a c t i o n . Al and S i , on the o ther hand, were found to have low s o l u b i l i t y i n the cen t r i f uged - l ea cha te even though l a rge q u a n t i t i e s o f these elements were removed from the s o i l m a t e r i a l s . There fo re , the elemental compos i t ion of l each ing waters does not p r e d i c t the amounts o f these elements which can be t r an s l o ca t ed by them. Table 3 l i s t s the average elemental percentages which were removed from the s o i l samples by both the high and low ra tes o f l each ing -129-P l a te 1. Scanning e l e c t r on microscope photograph o f a p iece o f a dhe r ed - p r e c i p i t a t e , which has been removed from the s i de of a s oxh l e t f l a s k (150X m a g n i f i -c a t i on ) . Table 3. Average elemental percentages removed from soil samples by  acetic acid leaching at high and low rates Percent Removed Leaching Rate Ca M£ Na K Fe A l Low 14 .0 9.8 1.4 4 .7 7 .3 4 .4 1.6 High 39 .2 n . o 7 .3 11.1 7.9 10 .2 5.7 -131-dur ing the e i gh t week exper iment . From t h i s t ab l e i t was apparent t h a t a l though the t o t a l amount o f Si removed averaged 3 398.2 mg, compared to 870.8 mg of Mg i n the high ra te o f l e a ch i ng , t h i s represented on ly 5.7% of the S i present i n the s o i l sample i n i t i a l l y . The amount o f Mg removed, however, corresponded to 39.2% of the i n i t i a l amount o f Mg present i n the s o i l sample. Therefore the ra te o f removal o f Mg was much g rea te r than than o f S i . For the slow l each ing environment the ra tes of removal f o r the elements were i n the order o f Ca > Mg > Fe > K > Al > Na > S i . The order f o r the removal ra tes i n the r ap i d l each ing environment was s l i g h t l y d i f f e r e n t s ince Ca > K > Mg > Al > Fe > Na > S i . However, the removal order o f elements i n both cases r e f l e c t e d a podzo l i c process s i m i l a r to t ha t desc r i bed by Pedro (1964), Pedro and B i t a r (1966) and Pedro and In iguez (1967). In t h i s p rocess , bas i c c a t i o n s , w i th the except ion o f Na, were leached r a p i d l y from the s o i l m a t e r i a l s . Sesqu iox ides were s o l u b i l i z e d by both the low pH and the weak complexing a b i l i t y o f the a c e t i c a c i d . Removal o f the bas i c ca t i ons and sesqu iox ides l e f t res idues r e l a t i v e l y high i n S i . S ince Na i n t h i s s o i l sample was present p r i m a r i l y i n f e l d s p a r s , i t s weather ing ra te was observed to be s lower than tha t o f the o ther bas i c c a t i o n s , which were more e a s i l y weathered from minera l s such as amphiboles. V a r i a b i l i t y i n the data was low, e s p e c i a l l y when the w i t h i n -treatment d i f f e r en ce s were compared to the high versus low l each ing ra te d i f f e r e n c e s . I t was obvious when l ook ing a t the o v e r a l l t o t a l amounts o f elements removed, tha t some elements were a f f e c t e d more than others by the inc reased weather ing r a t e s . For example, the amount o f Na weather ing was -132-observed to inc rease f i v e f o l d by i n c r ea s i ng the l each ing r a t e , whereas K amounts inc reased on ly two f o l d . At f i r s t t h i s might be taken to mean tha t d i f f e r e n t l each ing ra tes b r i ng about d i f f e r e n t k inds o f weather ing , s ince the r a t i o o f Ca to Na would be d i f f e r e n t f o r each l each ing r a t e . However, i n s t ead of having one homogeneous type o f mineral weather ing , we have many. There are complex i n t e r a c t i o n s which i n f l uence the s o l u b i l i t y of these minera l s and the r e s u l t a n t elemental r e l e a s e . There fo re , un less the ra te of r e l ease o f elements s tays nea r l y constant w i th time ,as was observed p r ev i ou s l y i n the case o f Fe and Mg, the r a t i o s between elements r e l eased w i l l change. In the o v e r a l l t o t a l s of elements removed from the s o i l samples, the t r i p l i c a t e values f o r the i n d i v i d u a l elements w i t h i n a l each ing ra te treatment are reasonably c l o s e . I t i s i n d i c a t e d by t h i s , tha t samples weathered to approx imate ly the same extent i n the soxh l e t have approx imate ly equal elemental concent ra t i ons remaining i n the r e s i d ue . There fo re , the r a t i o s of one or more elements in the res idue to any o ther one or more elements i s a l s o approx imate ly equal and the t r i p l i c a t e samples cou ld be sa i d to have reached the same weather ing s t age . Ana l y s i s o f the Residues Some chemical p rope r t i e s o f the s o i l r es idues a f t e r complet ion of weather ing are g iven in Table 4. The pH values o f the res idues were observed to dev ia te very l i t t l e w i t h i n and between t reatments . The a c e t i c Table 4. Ana lys i s of s o i l sample residues fo l l ow ing ace t i c ac id weathering of s o i l s in A-modif ied soxhlets C i t rate-B iocarbonatet Ava i l ab le -D i th i on i t e P ma Morgan's Ext ractab le Ac id Ammonium+ Oxalate Treatment Sample Low Leaching Rate Untreated {C hor izon K T)I W 2(T) |2(B) 3(T) 3(B) f4(T) 4(B) High Leaching <5(T) Rate 5(B) 6(T) 16(B) pH 4.9 Ca Mg ppm_ Fe Al Si Fe Al 4.2 4.3 4.2 4.2 4.3 4.2 4.2 4.2 4.2 4.2 4.2 4.2 Si 50 35 25 0. 11 0. 04 0. 02 0. 11 0. 02 0. 02 20 0.6 10. 7 0.5 0. 17 0. 06 0. 02 0. 10 0. 02 0. 02 12.2 0.9 7. 4 0.6 0. 18 0 06 0. 02 0. 09 0. 03 0. 02 41.2 <0.1 17. 5 0.7 0. 18 0 05 0 02 0. 11 0 03 0. 02 9.7 <0.1 12. 1 0.4 0. 15 0 06 0. 02 0. 11 0 02 0. 02 45.4 <0.1 13 1 8 0.4 0 18 0 04 0 02 0 11 0 03 0 02 8.1 ^ . 1 6 0.3 0 15 0 06 0 02 0 12 0 02 0 02 46.2 <0.1 2 2 0.3 0 11 0 05 0 01 0 07 0 03 0 02 16.8 <0.1 3 4 0.3 0 11 0 05 0 01 0 12 0 03 0 02 22.8 <0.1 5 3 0.4 0 11 0 06 0 02 0 13 0 03 0 02 11.4 <0.1 4 2 0.2 0 11 0 06 0.02 0 08 0 03 0 02 22.9 <0.1 4 3 0.5 0 10 0 .05 0 01 0 15 0 .03 0 02 11.5 <0.1 3 4 0.5 0 14 0 .06 0 02 0 12 0 .03 0 02 25.5 C O C O I * (T) and (B) r e f e r to top and bottom halves r e spec t i ve l y . t Ex t rac t ions performed on unground samples. -134-a c i d has a weak bu f f e r i ng capac i t y which probably accounted f o r the l ack of change i n pH. Decreases i n Morgan's a v a i l a b l e ca t i ons observed i n the res idues were i n the order o f Ca > K > Mg. Ca decreased from 25 ppm to l e s s than 0.1 ppm i n most of the r e s i due s , which r e f l e c t e d i t s high s o l u b i l i t y i n the a c e t i c a c i d . Mg a v a i l a b i l i t y decreased from 35 ppm to an average of 11.3 and 3.8 ppm under the low and h igh l each ing r a t e s , r e s p e c t i v e l y . The h igher a v a i l a b i l i t y of Mg, r e l a t i v e to Ca, i s p o s s i b l y i n d i c a t i v e o f the s lower s o l u b i l i t y i n the a c e t i c a c i d s o l u t i o n tha t was hypothes ized e a r l i e r . A l s o , s l i g h t inc reases i n oxa l a te e x t r a c t ab l e Fe were observed i n the r e s i dues . This suggests tha t ferro-magnesian minera l s are weathered f i r s t to an amorphous s t a t e before s o l u b i l i z a t i o n and l each ing o f the Fe and Mg. Few d i f f e r en ce s between the chemistry of the res idue above and below the s iphon were i n d i c a t ed by Table 2, w i th the except ions o f a v a i l a b l e P and to a l e s s e r ex tent Mg. A v a i l a b l e P was in a l l cases lower in*'the top of the sample versus the bottom. The average f o r the a v a i l a b l e P of 10 ppm i n the top o f the low l each ing ra te res idues was approx imate ly the same as the 13 ppm average i n the top o f the high l each ing ra te r e s i due s . The bottom of the low l each ing ra te r e s i due s , however, averaged 44.3 ppm, which was much h igher than the average o f 23.7 ppm found i n the bottom po r t i on of the high weather ing ra te r e s i dues . Th is behav ior would tend to i n d i c a t e tha t a v a i l a b l e P i s t r an s l o ca t ed from the sur face to lower l e v e l s i n the low l each ing ra te samples; however, a t the h igher l each ing r a t e s , most of the a v a i l a b l e P i s f l u shed out of the samples comp le te ly . -135-SUMMARY AND CONCLUSIONS Rapid elemental r e l ease from s o i l samples, which were weathered i n mod i f i ed soxh le t s us ing a c e t i c a c i d e x t r a c t i n g s o l u t i o n s , has r e s u l t e d i n podzo l i c pedo log i c tendenc ies . Rep l i c a t e samples weathered to two d i f f e r e n t extents were found to have r ep roduc i b l e elemental d i s t r i b u t i o n s w i t h i n t reatments . There fo re , i t i s po s s i b l e tha t a s i m i l a r s o i l sample, which exper iences a podzo l i c weather ing process i n the f i e l d , would a l s o pass through the weather ing stages which have been c rea ted by t h i s method. I f t h i s was the case, i t i s a l s o po s s i b l e t ha t these weather ing stages i n the f i e l d would have res idues w i th s i m i l a r elemental d i s t r i b u t i o n s . P r ov i d i ng the soxh l e t time cou ld be l i n k e d to the t ime in the f i e l d , the soxh l e t method cou ld prove to be a very usefu l t oo l f o r p r e d i c t i n g f u tu re elemental r e l ease from weather ing s o i l s . A soxh l e t method cou ld a l s o be usefu l f o r i d e n t i f y i n g how weather ing func t i ons o f va r i ous s o i l components behave w i th respec t to t ime. -136-LITERATURE CITED 1. Henin, S. and Pedro, G . , 1965, The l abo ra to r y weather ing of r o ck s . Xn Experimental Pedology. Ha l l swo r t h , E,G. and Crawford, D.V. ( e d s . ) . But te rwor ths , London. 414 p. 2. Huang, W.H. and K e l l e r , W.D., 1970. D i s s o l u t i o n of rock- forming s i l i c a t e m inera l s i n o rgan i c a c i d s : s imu la ted f i r s t - s t a g e weather ing of f resh mineral su r f a ces . The American M i n e r a l o g i s t . V o l . 55: 2076-2094. 3. Huang, W.H. and K iang, W.C,, 1972. Laboratory d i s s o l u t i o n o f p l a g i o -c l a se f e l d spa r s i n water and organ ic ac ids a t room temperature. The American M i n e r a l o g i s t . V o l . 57: 1849-1859. 4. Hunt, H.A., Swanson, C.L.W. and Jacobson, H.G.M., 1950. The Morgan s o i l t e s t i n g system. Conn. Agr . Exp. S t a . B u i . 541: 1-60. 5. McKeague, J...A. and Day, J . H . , 1966. D i t h i o n i t e and oxa l a te e x t r a c t a b l e i r on and aluminum as a ids i n d i f f e r e n t i a t i n g var ious c l a s ses o f s o i l s . Can. Jour . S o i l S c i . 46: 13-22. 6. Mehra, O.P. and Jackson, M.L., 1960. Iron ox ide removal from s o i l s and c l ay s by a d i t h i o n i t e - c i t r a t e system buf fered wi th sodium b i ca rbon-a te . C lays and C lay M inera l s 5: 317-327, 7. O l sen , S.R. and Dean, L.A., 1965. Phosphorus. In_ B l a ck , C.A. ( e d . ) . Methods of S o i l A n a l y s i s , Par t 2. Agronomy 9: 1035-1049. Amer. Soc. Agron. Madison, Wiscons in . 8. Pgdro, G. , 1964. Con t r i bu t i on a l ' S tude e x p e r i m e n t a l de 1.!alteYation geochimique des roches c r i s t a l 1 i n e s . Ann. Agron. 15(2): 85-191. -137-9. Pedro, G. and B i t a r , K.E. , 1966. Con t r i bu t i on a l ' e tude de l a genese des so l s hypermagnesiens: Recherches exper imenta les sur I ' a l t e r a t i o n chimique des roches u l t r abas i ques ( s e r p e n t i n i t e s ) . Ann. Agron. 17 (6 ) : 611-651. 10. Pgdro, G. and In iguez , J . , 1967. Recherches sur l e r8le de l a roche-mere dans I ' a l t e r a t i o n provoquee en cond i t i ons a c i d s . Sc ience de S o l . 1: 93-111. 11. Peech, M., 1965. Hydrogen-ion a c t i v i t y . In. B l ack , C.A. ( e d . ) . Methods of S o i l A n a l y s i s , Par t 2. Agronomy 9:. 914-926. Amer. Soc. Agron. Madison, Wiscons in . 12. Ran ta l a , R.T.T. and L o r i n g , D.H., 1973. New low-cost t e f l o n decom-p o s i t i o n v e s s e l . Atomic Absorpt ion News le t ter 12(4): 97-99. -138-PART II - Chapter 4 CHRONOFUNCTIONS DERIVED FROM THE LABORATORY WEATHERING OF SOIL SAMPLES IN SOXHLET EXTRACTORS INTRODUCTION A technique f o r weather ing s o i l samples i n mod i f i ed s o xh l e t e x t r a c t o r s w i th the use o f a c e t i c a c i d was desc r ibed i n Par t I I , Chapter 3. This chapter i n d i c a t ed the podzo l i c nature o f the r e s u l t a n t weather ing process . Elemental r e l ease from s o i l s leached a t h igh ra tes were compared to t ha t from s o i l s leached at low r a t e s . Rep l i c a t e samples f o r each o f the treatments i n d i c a t e d tha t the amount o f a g iven element r e l eased to the leachate a f t e r a g iven amount of t ime was r ep r odu c i b l e . I t was concluded from t h i s tha t the s o i l res idues r e s u l t i n g from these soxh l e t weather ing treatments would reach a c h a r a c t e r i s t i c e lemental compos i t i on . The s o i l res idues cou ld then be s a i d to have reached a p a r t i c u l a r weather ing s tage . In Par t I I , Chapter 3, the p o s s i b i l i t y o f deve lop ing s o i l weather ing chronofunct ions i n the l a b o r a t o r y , w i th the a i d o f the s o xh l e t , was suggested. Th is would r equ i r e weather ing samples o f the same s o i l over var ious amounts o f t ime and should r e s u l t i n s o i l res idues weathered to d i f f e r e n t e x t en t s . Ana l y s i s o f the r e s u l t i n g weathered products cou ld y i e l d the in fo rmat ion needed to cons t ru c t s o i l weather ing chrono-f un c t i o n s . -139-S o i l chronofunct ions i n the f i e l d have r e c en t l y been reviewed by Stevens and Walker (1970) and Yaalon (1975). Con t i n ua l l y the suggest ions of these , and o t he r , authors have s t r e s sed the need f o r q u a n t i t a t i v e s o l u -t i on s to u n i v a r i a t e and m u l t i v a r i a t e f unc t i ons i n pedogenes is . Although many repor t s have presented s o i l chronofunct ions g r a p h i c a l l y (Dickson and Crocker , 1953; Crocker and Major , 1955; Crocker and D ickson , 1957; U g o l i n i , 1968; and Syers e_t a l_. , 1970), there have been few q u a n t i t a t i v e weather ing ra tes s p e c i f i e d . Two notab le except ions were those of Hay (1960) and Ruxton (1968). In these papers the weather ing processes i n v o l c an i c ash s o i l s were s t u d i e d . Ruxton (1968) showed tha t exponent ia l equat ions were produced which cou ld be exp la ined conven ien t l y by chemical k i n e t i c s . The S-shaped s o i l development curves presented by B i r ke l and (1974, Chapter 8) r e f l e c t the exponent ia l r a te o f the p rocesses , the changes g r adua l l y becoming impercep t i b l e as a steady s t a t e i s approached (Yaa lon, 1975). The l o s s o f P and Mg from s o i l s o f the Cox Bay chronosequence were graph-, i c a l l y desc r ibed i n Par t I , Chapters 2 and 3. I t was apparent from the graphs of the changes i n concen t ra t i on of these elements w i th t ime , tha t exponent ia l decay func t i ons cou ld a l s o be ope ra t i ng i n t h i s sequence. The o b j e c t i v e o f the present study was to u t i l i z e a c e t i c a c i d and mod i f i ed soxh l e t e x t r a c t o r s to study the l abo ra to ry - i nduced weather ing processes i n a s o i l m a t e r i a l , w i th respec t to t ime. A l so i n t h i s chap te r , q u a l i t a t i v e comparisons were to be made between weather ing f unc t i ons generated i n the l abo ra to ry and those found i n s o i l s which have developed i n these same s o i l ma te r i a l s i n the f i e l d . I f i t cou ld be shown tha t -140-s i m i l a r k inds of chronofunct ions can be produced i n the l a bo r a t o r y , then i t may be po s s i b l e i n l a t e r s tud i e s to q u a n t i t a t i v e l y l i n k the f i e l d and l abo ra t o r y weather ing processes . MATERIALS AND METHODS A v a r i a t i o n o f the 0.3 M a c e t i c a c i d method, which was desc r i bed i n Par t I I , Chapter 3, was employed f o r t h i s exper iment. A l l l a bo ra t o r y weather ing experiments were conducted us ing a C3 hor i zon s o i l sample from a sandy beach depos i t near Cox Bay, on Vancouver I s l a nd , B r i t i s h Columbia. Resu l t s of the c h a r a c t e r i z a t i o n o f t h i s s o i l sample have been summarized i n Par t I I , Chapter 1. Both soxh l e t mod i f i c a t i o n s desc r ibed i n Par t I I , Chapter 2 (shortened s iphon , A-modi f ied and s t r a i g h t s i phon , B-mod i f i ed) , were used. Twelve, 220 g s o i l samples were p laced i n t o twelve of each type of mod i f i ed soxh l e t assembly and weathered f o r va r ious amounts o f t ime . In each case , dup l i c a t e samples were produced which were weathered f o r each o f 4, 8, 12, 16, 20 and 24 week du r a t i o n s . The soxh le t s were run accord ing to the cond i t i ons l i s t e d i n Table 1. Apart from the use o f B-modi f ied s o x h l e t s , the weather ing of a g rea te r number of samples and the longer weather ing t imes , there were some minor dev i a t i ons from the a c e t i c a c i d method p r ev i ou s l y desc r ibed (Pa r t I I , Chapter 3 ) . Soxh le t leachates were removed weekly f o r the f i r s t 8 weeks and b i -week ly t h e r e a f t e r . B-modi f ied soxh le t weather ing ra tes were s tandard i zed by measuring ba r r e l temperatures -141-Table 1. Experimental condit ions fo r weathering s o i l material in modif ied  soxhlet extractors fo r various lengths of time. Treatment A-Modified (shortened siphon) Soxhlet B-Modified (s t ra igh t siphon) Soxhlet Repl icate Number Weathering Time(weeks) 4 4 8 8 12 12 16 16 20 20 24 24 4 4 8 8 12 12 16 16 20 20 24 24 Soxhlet Recycl ing Time Leachate Flow Rate 5 min. 4.3 1/day Soxhlet Barrel Temp. 98°C (+ 2°C) no recyc l i ng 3.6 l/day" 90° (+ 2°C) * Estimated from the barre l temperature (from p lo t of leachate flow rate versus barre l temperature fo r A-modif ied soxh le t s ) . -142-on l y , s i nce they d id not have a water-table c y c l e . At the complet ion o f the weather ing experiment the res idues from both types o f s oxh l e t were subsampled i n t o top and bottom po r t i o n s . In the A-mod i f i ed s o x h l e t s , subsamples were taken as the s o i l mate r i a l above and below the 5.5 cm siphon tube. S ince the. . B-modi f ied soxh le t s had no s i phons , the res idues were subsampled i n an i d e n t i c a l way to those o f the A-modi f ied s o x h l e t s . Ana l y s i s o f Weathered Products The o r i g i n a l s o i l sample and the weathered s o i l res idues were ana lyzed f o r pH (Peech, 1965), Morgan's e x t r a c t ab l e Ca, Mg and K (Hunt ejt a l_., 1950) and a v a i l a b l e P (Olsen and Dean, 1965). Fe, Al and Si were ex t r a c t ed w i th a c i d ammonium oxa l a te (McKeague and Day, 1966) and c i t r a t e -b i c a r b o n a t e - d i t h i o n i t e (Mehra and Jackson, 1960). Both the sediment and adhe red -p re c i p i t a t e samples were d i s s o l v ed w i th h y d r o f l u o r i c a c i d p r i o r to a na l y s i s f o r t o t a l e lemental compos i t i on . Ca, Mg, Na, K, Fe, Al and Si concent ra t i ons in the c en t r i f u ged - l e a cha t e s , as we l l as i n the above s o l u t i o n s , were determined by atomic absorp t i on spectrophotometry. pH i n the cen t r i f uged - l eacha te s was determined us ing a combinat ion e l e c t r o d e . C o r r e l a t i o n ana lyses (Nie e t a l ' . , 1970) were performed on the t o t a l e lemental amounts removed from the s o i l samples by each type o f soxh l e t wea ther ing . These r e s u l t s were a l s o i n v e s t i g a t e d f o r c o r r e l a t i o n s w i th t ime. The c o r r e l a t i o n ana l y s i s was intended to i n d i c a t e i f there was evidence o f more than one process c o n t r o l l i n g the re l ease o f these e lements. -143-Changes in the concentrations of Ca and Mg in the so i l residues were plotted against soxhlet weathering time. Regression equations (Nie ejt al_., 1970) were calculated for these funct ions. RESULTS AND DISCUSSION The tota l quant i t ies of elements, leached from the so i l samples in both the soxhlet modif icat ions, over the various times, are summarized in Table 2. Raw data corresponding to weekly elemental amounts in the centrifuged-leachates, sediments and adhered-precipitates can be found in Appendix 1 1 , 4 . 1 . Since the A-modified soxhlets ran approximately 10°C hotter than the B-modified soxhlets, they might have been expected to remove greater amounts of any par t i cu la r element from the so i l sample. This was observed to be the case for Ca, Na, K, Al and S i . Af ter 24 weeks of weathering, the maximum quant i t ies of these elements removed were 2 000.7, 1 743.3, 245.5, 4 838.0, and 11 410.4 mg, respect ive ly , for the A-modified soxhlets and 1 736.7, 1 164.3, 185.6, 4 131.7, and 8 988.0 mg, respect ive ly , for the B-modified un i ts . Fe and Mg, however, showed a reversal of th i s trend. Maximum values of 1 613.7 and 673.4 mg, respect ive ly , of Fe and Mg were removed by the B-modified soxhlets compared to 1 237.8 and 581.3 mg, respect ive ly for the A-modified soxhlets. Modif icat ion A created a f luctuat ing watertable in the bottom portion of the samples. In this watertable, a zone of r e l a t i v e l y reduced conditions was expected when - 1 4 4 -Table 2. Total amounts of elements and weights of s o l i d s found in A-and B-modified soxhlet leachates over various times TREATMENT WEEKS TOTAL ELEMENTAL CONTENT a* Ca Mg Na K Fe Al Si b* mg 4 11 661.9 164.3 303.1 57.3 386.2 1026. ,2 2390. ,4 . 9070 4 12 549.1 166.3 223.2 51.4 408.9 1098. .4 2329, .2 8990 8 9 963.8 225.8 552.7 96.3 509.3 1940. .7 4472. .6 16360 8 10 1094.5 265.2 654.0 110.5 612.3 2253. .0 5255. .2 19270 A-Modified 12 7 1374.9 326.3 1197.0 139.9 731.2 3231, .8 7547. .6 27870 (shortened 12 8 1293.4 352.8 792.1 136.9 783.3 2858. .0 6611. .3 24960 siphon 16 1 1551.5 373.5 1223.6 167.1 815.6 3487. .1 8197. .6 31410 soxhlet) 16 2 1413.1 340.5 1053.2 157.4 757.5 3156. .6 7392. .4 28380 20 3 1770.7 448.9 1449.5 204.5 965.3 4091. .7 9472, .3 36160 20 4 1726.0 452.7 1360.6 193.5 973.6 3885. .4 8755. .7 34560 24 5 1982.7 521.2 1712.5 243.5 1123.8 4838. .0 11410. .4 43430 24 6 2007.9 581.3 1743.3 245.5 1237.8 4825. .8 11349. .1 43740 4 K 613.9 188.1 252.5 53.8 479.6 1149. .0 2408. .8 9760 4 L 427.5 206.1 154.2 43.9 539.3 827. .1 1558. .6 6649 8 I 886.3 370.4 454.3 98.0 914.9 1948. .9 4060. .2 1 5750 8 J 715.6 285.2 357.4 74.5 707.8 1494. .0 3133. .9 11940 B-Modified 12 G 1148.8 473.2 640.2 116.1 1119.8 2527. .4 5431. .3 20880 (straight 12 H 984.9 479.0 506.2 104.4 1171.8 2210. .0 4394. .1 17700 siphon 16 A 1125.6 515.1 617.8 121.6 1203.5 2483. .3 4823. .9 20370 soxhlet) 16 B 1001.3 486.8 485.8 109.3 1180.8 2142. .5 4154, .5 17470 20 C 1387.8 614.1 816.4 151.3 1400.4 3090. .2 6393. .0 26120 20 D 1342.3 575.9 742.2 139.3 1307.3 2872. .6 5829. .8 23540 24 E 1724.9 636.0 1104.4 184.7 1402.9 3673. .8 8202. .7 31500 24 F 1736.6 673.4 1164.3 185.6 1613.7 4131. .7 8988. .0 34960 a* Soxhlet i d e n t i f i c a t i o n code. I d e n t i f i c a t i o n code i s used to r e l a t e to Appendices. b* Total s o l i d s c o l l e c t e d (sediment and adhered p r e c i p i t a t e ) . -145-compared to the top po r t i on o f the sample. The composi t ion of the amphibole, hornblende, which was abundant in these s o i l samples, i s : C a 2 Na {Mg, F e 2 + > 4 { A l , F e 3 + , T i} { S i , AT} g 0 2 2 ' { 0 H > 2 (Hur lbu t , 1971). -2+ 2+ In t h i s minera l the dominant form o f the Fe i s Fe . Ox ida t ion o f Fe 3+ to Fe has been shown to be a pr imary reason f o r the weather ing o f Fe -con ta in ing minera ls ( B i r k e l a nd , 1974). There fo re , s i nce the o x i d a t i o n of Fe-conta. ining minera ls was s lower i n the bottom po r t i on of the A-mod i f i ed soxh le t s r e l a t i v e t o , t h e t op , i t cou ld e xp l a i n the lower amounts o f Fe and, consequent ly , Mg tha t were removed from the s o i l samples i n t h i s type o f e x t r a c t o r . Ana l y s i s o f Soxh le t Residues The r e s u l t s o f the a n a l y s i s o f the top and bottom po r t i ons o f the res idue samples are g iven i n Table 3. Morgan's e x t r a c t ab l e ca t i ons were shown to be low i n both A- and B-modi f ied soxh l e t r e s i due s . A v a i l a b l e Mg, however, was h igher in the B-modi f ied soxh l e t r e s i dues . The hypothes is that Mg requ i r ed more time to e q u i l i b r a t e w i th the leachate than d i d o ther elements was o f f e r ed i n Pa r t I I , Chapter 3. S i n ce , i n the present s tudy, the leachates i n B-modi f ied soxh le t s cou ld pass d i r e c t l y through the sample and thus have the l e a s t contac t t ime w i th Mg-conta in ing minera ls the res idues from these soxh l e t s cou ld be expected to have h igher a v a i l a b l e Mg. The pH values o f the res idues were bu f f e red a t pH 4.1 and d id not change s u b s t a n t i a l l y w i th t ime . -146-Table 3. Charac te r i za t ion of top and bottom port ions of the A- and B-modified soxhlet  weathered residues^ CITRATE-BICARBONATE WEATHERING MORGAN'S AVAILABLE ' -DITHIONITE AVAILABLE TIME PH Ca Mg K Fe Al Si P TREATMENT (WEEKS) (1:4 CaCl — p p m — %- (ppn 0 4.9 50 35 25 0.11 0. 02 0.02 20 4 (T)J 4.3 1 3 2.1 0.5 0.12 0. 03 0.02 15 MODIFICATION 4 ( B ) * 4.3 0 5 1.5 0.6 0.10 0. 03 0.02 24 8 (T) 4.2 <0 1 2.2 0.6 0.16 0 03 0.02 9 A 8 (B) 4.2 2 6 2.6 0.6 0.09 0 02 0.02 18 Soxhlet 12 (T) 4.3 <0 1 1.1 0.7 0.17 0. 03 0.02 9 12 (B) 4.2 <0 1 1.1 0.7 0.11 0 03 0.02 16 (shortened 16 (T) 4.2 <0 1 1.1 0.6 0.19 0 03 0.02 9 16 (B) 4.3 <0 1 0.7 0.5 0.10 0 03 0.02 17 siphon) 20 (T) 4.2 <0 1 1.6 0.7 0.22 0 03 0.02 7 20 (B) 4.2 <0 1 1.0 0.6 0.12 0 03 0.02 12 24 (T) 4.2 <0 1 1.5 0.7 0.32 0 03 0.02 7 24 (B) 4.2 <0 1 1.1 0.6 0.03 0 03 0.02 11 4 (T) 4.2 <0 1 4.6 1.0 0.10 0 03 0.02 19 4 (B) 4.1 0 5 3.2 0.9 0.08 0 03 0.02 35 MODIFICATION 8 (T) 4.1 <0 1 2.3 1.2 0.12 0 02 0/02- - 9 8 (B) 4.1 <0 1 2.6 1.0 0.09 0 03 0.02 18 B 12 (T) 4.1 <0 1 3.4 1.1 0.14 0 02 0.02 6 12 (B) 4.1 <0 1 2.8 1.1 0.10 0 02 0.02 8 Soxhlet 16 (T) 4.1 <0 1 4.4 0.9 0.15 0 02 0.02 8 16 (B) 4.0 <0 1 5.0 1.0 0.13 0 02 0.02 8 ( s t ra igh t 20 (T) 4.1 <0 1 2.5 0.8 0.19 0 02 0.02 3 siphon) 20 (B) 4.0 <0 1 4.6 1.2 0.14 0 02 0.02 3 24 (T) 4.1 <0 1 2.0 0.8 0.23 0 02 0.02 2 24 (B) 4.0 <0 1 2.1 0.9 0.17 0 02 0.02 4 + Values represented are averages of dup l i ca ted samples. $ (T) and (B) r e f e r to top and bottom port ions of the sample, r e spec t i ve l y . -147-A v a i l a b l e P was removed from the s o i l samples much more r a p i d l y by the B-modif ied s oxh l e t s . I t appeared tha t the wa te r tab l e i n the A-mod i f i ed un i t s p ro tec ted the a v a i l a b l e P, s ince the concent ra t i ons found i n the bottom po r t i on of the A-mod i f i ed s oxh l e t res idues were h igher than those found i n the bottom po r t i on of the B-modif ied soxh l e t r e s i due s . I t may be concluded from t h i s , tha t the weather ing o f a v a i l a b l e P from s o i l takes p lace a t h igher ra tes when l each ing occurs in w e l l - o x i d i z e d environments. Phosphate ions combine w i th many d i v a l e n t and t r i v a l e n t ca t i ons to form i o n - pa i r s and complexes. Some of the more important complexes are those w i th Fe and Mg, such as FeF^PO^*, FeHPO^0, FeF^PO^* and MgHPO^0 (Dinauer e t a l_., 1977). There fo re , i t i s p o s s i b l e t h a t the phosphorus behav ior i n the soxh le t s would p a r a l l e l t ha t o f the Mg and Fe. The more Fe and Mg i n the leachate the g rea te r would be the p o s s i b i l i t y of P being complexed. C i t r ' a t e - b i c a r b ona t e - d i t h i o n i t e e x t r a c t a b l e Fe i n c reased w i th weather ing time i n both the A and B soxh l e t r e s i d u e s . A maximum Fe inc rease from 0.11 to 0.32% was observed i n the top of the A-soxh le t r e s i dues . Th is was s l i g h t l y h igher than the maximum Fe inc rease from 0.11 to 0.23% f o r the top po r t i on of the B-s.oxhlet r e s i dues . These inc reases were p r i m a r i l y the r e s u l t o f the inc reased exposure o f f r e sh minera l sur faces to the weather ing process . P a r t i c l e s i z e i n these samples was observed to be p r og r e s s i v e l y f i n e r as the weather ing time i n c r eased , a l though t h i s was not q u a n t i f i e d . S ince the d i t h i o n i t e s o l u t i o n i s capable o f e x t r a c t i n g some o f the s i l i c a t e and w e l l - c r y s t a l l i z e d Fe (Bascomb, -148-1968) from s o i l s , i t i s p l a u s i b l e tha t the sma l l e r p a r t i c l e s i z e s and g rea te r sur face areas r e s u l t e d i n h igher e x t r a c t a b l e Fe. C o r r e l a t i o n Ana l y s i s Resu l t s Resu l t s o f the c o r r e l a t i o n a n a l y s i s o f the e lemental r e l ea se from both types o f mod i f i ed soxh l e t are g iven in Table 4. I t was obvious tha t a l l o f the elements i n both cases were s i g n i f i c a n t l y i n t e r c o r r e l a t e d and, a l s o , we l l c o r r e l a t e d to l each ing t ime . The B-modif ied soxh le t s showed some lower R values than those found i n the A-mod i f i ed s o x h l e t s , but a l l were g rea te r than 0.93 which were s i g n i f i c a n t a t the 0.01 l e v e l . I t was concluded from these r e s u l t s t ha t the removal of these elements from s o i l s dur ing soxh l e t weather ing was a f un c t i on o f the l each ing process . That i s , there was probably on ly one mechanism, namely the amount o f l each ing and, consequent ly , t ime, tha t was r e spons i b l e f o r the re l ease o f elements to the l each ing s o l u t i o n . Weathering Chronofunct ions The amounts o f Ca and Mg leached from s o i l samples i n the A-and B-modi f ied soxh le t s were used to c a l c u l a t e the percentages o f these elements remaining i n the soxh l e t r e s i dues . Dec l ines i n the percentages of Ca and Mg in these res idues were p l o t t e d w i th l each ing time to produce the weather ing chronofunct ions shown i n F igure 1. The reg ress i on l i n e s showed t ha t the elemental decay i n these s o i l ma t e r i a l s f o l l owed an Tab l e 4. C o r r e l a t i o n m a t r i x o f s o x h l e t w e a t h e r i n g t ime and t o t a l e l emen t a l c on t en t i n A- and B - m o d i f i e d s o x h l e t l e a c h a t e s T rea tment 1 Ca Mg Na K Fe A l S i Time Ca 1. .00 0. .99 1. ,00 0. .99 0. 99 1. ,00 1. .00 0. .98 A - M o d i f i e d Mg 0. .99 1. .00 0. ,99 0. .99 1. 00 0. .99 0. .99 1. .00 ( s ho r t e ned Na 1. .00 0. .99 1. ,00 1. ,00 0. 99 1. .00 1. .00 0. .99 s i phon K 0. .99 0. .99 1. ,00 1. ,00 0. 99 1, .00 0. .99 1. .00 s o x h l e t ) Fe 0, .99 1. .00 0. ,99 0. ,99 1. 00 0. .99 0. .99 1, .00 A l 1. .00 0. .99 1. ,00 1. ,00 0. 99 1. .00 1. .00 0. .99 S i 1. .00 0. .99 1. ,00 0. ,99 0. 99 1. .00 1. .00 0. .99 Time 0. .98 1. .00 0. ,99 1. .00 1. 00 0. .99 0. .99 1. .00 Ca 1. .00 0. ,97 0. ,99 1. ,00 0. 96 1. .00 0, .99 0. .99 Mg 0. .97 1. .00 0. ,94 0. ,97 1. 00 0. .97 0. .94 0. .96 B - M o d i f i e d Na 0, .99 0. .94 1. ,00 0. .99 0. 93 0. .99 1. .00 0, .99 ( s t r a i g h t K 1. .00 0. .97 0. ,99 1. .00 0. 97 1. .00 0. .99 0. .99 s i p hon Fe 0, .96 1. .00 0. ,93 0. ,97 1. ,00 0. .96 0. .94 0, .96 s o x h l e t ) A l 1, .00 0. .97 0. .99 1. .00 0. 96 1. .00 0. .99 0, .99 S i 0, .99 0. .94 1. .00 0. .99 0. 94 0. .99 1, .00 0, .98 Time 0, .99 0. .96 0. .99 0. .99 0. ,96 0. .99 0 .98 1 .00 I.I Y = L 2 , e-0.009X (R2=0.96"*) A-MODIFIED SOXHLET (SHORTENED SIPHON) V 9=1.21 e - 0 0 l , x (R2= 0.96**) 0 B-MODIFIED SOXHLET (STRAIGHT SIPHON) ^ Y* 1.03 e - 0 0 4 7 X (R2 = 0.92**) \ V B-MODIFIED SOXHLET .9 8 16 24 S O X H L E T TIME (WEEKS) SOXHLET TIME (WEEKS) F igure 1. Mg and Ca decay chronofunct ions i n res idues r e s u l t i n g from s o i l weathering i n A-and B-modi f ied s o xh l e t s . - 1 5 1 -exponent ia l t r e nd . However, l i n e a r f unc t i ons were found to produce equa l l y adequate exp lana t i ons o f the da ta . The r e l a t i v e mer i t s of us ing exponent ia l versus l i n e a r f unc t i ons w i l l be d i scussed i n a l a t e r chap te r . I t was i n t e r e s t i n g to observe the s i m i l a r i t y between the soxh l e t generated weather ing f unc t i ons and those observed f o r the l o s s o f Mg and P^a from s o i l s i n the Cox Bay chronosequence (Pa r t I, Chapters 2 and 3). These l a t t e r f u n c t i o n s , a l though not mathemat i ca l l y s o l v ed , appeared to f o l l ow exponent ia l t r end s . I t appears po s s i b l e t ha t a more q u a n t i t a t i v e l i n k between the soxh l e t and s o i l systems can be found. SUMMARY AND CONCLUSIONS The siphon tube on the A-modi f ied soxh le t s was observed to cause d i f f e r e n t s o i l mate r i a l weather ing trends than were observed f o r the B-modi f ied s o xh l e t s . F l u c t ua t i n g wate r tab les i n the lower po r t i on o f the A-modi f ied un i t s appeared to r e s u l t i n a r e t a r da t i o n in the 2+ 3+ ox i da t i on of Fe to Fe and caused a decrease in the amount o f Fe and Mg weather ing . A v a i l a b l e P and Mg were a l s o a f f e c t ed by t h i s wa t e r t ab l e . I t i s concluded from t h i s t ha t s l i g h t changes in l abo ra t o r y l each ing cond i t i ons can r e s u l t i n d i f f e r e n t weather ing produc ts . There fo re , i f the soxh l e t i s to be used f o r s imu l a t i ng s o i l weather ing , the l each ing methods must be c a r e f u l l y s e l e c t ed to match the s o i l c o n d i t i o n s . I t has been shown i n t h i s study that exponent ia l chronofunct ions of s o i l mate r i a l weather ing , s i m i l a r to those found i n a s o i l chrono--152-sequence, can be generated in the l abo ra t o r y us ing soxh l e t techn iques . A c o r r e l a t i o n ana l y s i s has shown t h a t , i n t h i s s o i l m a t e r i a l , these soxh le t -genera ted f unc t i ons are products o f the l each ing process a l one . S ince most o f the weather ing o f t h i s s o i l m a t e r i a l , i n the Cox Bay chronosequence, cou ld a l so be a f un c t i on o f l e a c h i n g , a q u a n t i t a t i v e comparison between the weathered res idues produced by soxh le t weather ing to weathered res idues in zones o f e l u v i a t i o n in the chronosequence s o i l s cou ld prov ide an i n t e r e s t i n g t e s t o f how we l l the soxh l e t s imu la tes f i e l d weather ing . -153-LITERATURE CITED 1. B i r k e l a nd , P.W., 1974. Pedology, Weathering and Geomorphological Research. Oxford U n i v e r s i t y P ress , I n c . , London. 285 p. 2. C rocker , R.L. and D ickson, B.A., 1957.:Soi1 development on the reces -s i ona l moraines of the Herbert and Mendenhall g l a c i e r s , south-eastern A l a s ka . J . E c o l . 45: 169-185. 3. C rocke r , R.L. and Major , J . , 1955. S o i l development i n r e l a t i o n to vegeta t ion and sur face age a t G l a c i e r Bay, A l a s ka . J . E c o l . 43: 427-448. 4. D i ckson , B.A. and Crocker , R.L. , 1953. A chronosequence of s o i l s and vegeta t ion near Mt. Shas ta , C a l i f o r n i a . I . D e f i n i t i o n o f the eco-system i n ve s t i g a t ed and fea tu res of the p l an t success i on . J . S o i l S c i . 4 ( 2 ) : 123-141. 5. D i ckson , J . B . and Weed, S .B . , 1977. M inera l s i n S o i l Environments. S o i l Sc ience Soc ie ty of Amer ica, Madison, Wiscons in . 948 p. 6. Hay, R.L., 1960. Rate of c l a y format ion i n a 4000 yea r - o l d vo l c an i c ash s o i l on S t . V i n cen t , B.W.I. Amer. J o u r . . S c i . 258: 354-368. 7. Hu r l bu t , C.S. J r . , 1971. Dana's Manual o f Minera logy (18th e d . ) . John Wi ley and Sons, I n c . , New York. 579 p. 8. N ie , N.H., H u l l , C .H . , J enk i n s , J . G . , S t i enbrenner , K. and Bent, D.H. 1975. S t a t i s t i c a l Package f o r the Soc i a l Sc iences (2nd e d . ) , McGraw-H i l l I n c . , U.S.A. 675 p. 9. Ruxton, B.P. , 1968. Rates of weather ing of Quartenary vo l c an i c ash i n nor th-eas t Papua. Trans. 9th I n t . Congr. S o i l S c i . , Ade l a i de , S.A. -154-4: 367-376. 10. Stevens, P.R. and Walker, T.W,, 1970. The chronosequence concept and s o i l f o rmat i on . Quar te r l y Review of B i o l ogy . 45(4) : 333-350. 11. Syers , J . K . , W i l l i ams , J .D .H . and Walker, T.W., 1970, Minera logy and forms o f i no rgan i c phosphorus in a greywacke s o i l - r o c k weather ing sequence. S o i l Sc ience 110(2): 100-106. 12. U g o l i n i , F .G. , 1968. S o i l development and a l de r i nvas i on i n a r e c en t l y deg l a c i a t ed area of G l a c i e r Bay, A l a s ka . JJX B i o l ogy o f A l d e r . Proc . Sympv., Northwest S c i e n t i f i c Ass . 40th Ann. M tg . , Pu l lman, Washington. 115-140. 13. Yaa lon, D.H., 1975. Conceptual models i n pedogenesis: Can s o i l - f o r m i n g func t i ons be so lved? Geoderma 14: 189-205. -155-PART I I I COMPARISONS OF FIELD AND SOXHLET CHRONOFUNCTIONS -156-PART I I I - Chapter 1 CALIBRATION OF THE SOXHLET WEATHERING PROCESS TO PEDOGENIC TIME USING A SOIL CHRONOSEQUENCE INTRODUCTION Simulated s o i l weather ing chronofunct ions have been c rea ted i n the l abo ra to ry by soxh l e t techniques (Pa r t I I , Chapter 4 ) . These chrono-func t i ons were shown to be q u a l i t a t i v e l y s i m i l a r to chronofunct ions desc r ibed e a r l i e r i n a chronosequence of s o i l s developed in beach sands near Cox Bay, on the west coast o f Vancouver I s l a nd , B r i t i s h Columbia (Par t I , Chapters 2 and 3 ) . The o b j e c t i v e o f the present study was to prov ide a q u a n t i t a t i v e comparison between se l e c t ed f i e l d and soxh l e t ch rono func t i ons . I f i t can be shown tha t the weather ing t rends found f o r the f i e l d can be approximated by the exper imenta l weather ing techn ique , i t should be po s s i b l e to mathemat i ca l l y c a l i b r a t e the l abo ra t o r y technique to pedogenic t ime . There are some fundamental d i f f e r en ce s between the two systems to be compared which must be recogn ized a t the ou t s e t . Par t II o f t h i s t h e s i s presented the soxh l e t e x t r a c t o r as a weather ing dev ice which conta ins a two-patt weather ing process . The sample conta ined i n the ba r re l po r t i on of the soxh l e t i s sub jec ted to a c t i v e l each ing and, t h e r e f o r e , e l u v i a t i o n i s the dominant process . The bottom po r t i on of the soxh l e t (the c o l l e c t i o n f l a s k ) c reates a zone i n which i l l u v i a t i o n i s the dominant p rocess . -157-There fo re , these processes are d i s t i n c t and separa ted . In the f i e l d , i t i s •r1 more d i f f i c u l t to l o ca te as sharp a d i s t i n c t i o n between e l u v i a l and i l l u v i a l zones. However, i t may be po s s i b l e to i d e n t i f y a zone i n the f i e l d s o i l s where e l u v i a t i o n i s the dominant p rocess . I t i s u n l i k e l y tha t products found i n i l l u v i a l hor i zons i n the f i e l d cou ld be e xa c t l y dup l i c a t ed by the i l l u v i a l products i n the s o x h l e t , because of the lack o f o rgan ic matter i n f l u e n c e s . There fo re , i t would appear t ha t the best s imu l a t i on p o s s i b i l i t i e s l i e w i th the e l u v i a l p rocess . For t h i s reason , a comparison between the weathered products from the soxh l e t and samples from e l u v i a l zones in the chronosequence s o i l s would prove most i n t e r e s t i n g . Severa l attempts have been made at mode l l i ng gene t i c p r ope r t i e s of s o i l s (Ruhe and Walker, 1968; Chesworth, 1973; K l i n e , 1973; Runge, 1973; Hugget, 1975; Van Wambeke, 1976). Few-of these s t u d i e s , however, developed p r e d i c t i v e equat ions which have been v e r i f i e d i n p e d o l o g i c a l l y -i n t e r p r e t e d f i e l d s i t u a t i o n s . Severa l chronofunct ions have been obta ined f o r the i n i t i a l stages of s o i l format ion and good g raph i ca l summaries f o r long-term s o i l development func t i ons have been cons t ruc ted ( B i r k e l a n d , 1974) ; however, s t r i c t numerical chronofunct ions are ra re because of the d i f f i c u l t i e s i n i s o l a t i n g and da t ing p rope r l y c o n t r o l l e d s i t e s (Yaa lon, 1975) . Ruhe and Walker (1968) have summarized the types o f curve f i t t i n g func t i ons tha t may be expected to occur i n na tu ra l systems. They developed hi 11 s i ope models tha t s t a t i s t i c a l l y adapted polynomial equat ions to the landscape, w i th the ob j e c t i v e o f understanding the e f f e c t s o f e r o s i o n , sed imenta t ion , t ime and environment on s o i l f o rma t i on . In the present study s i m i l a r c u r v e - f i t t i n g techniques cou ld be usefu l i n s o l v i n g equat ions -158-f o r l osses o f elements from e l u v i a l zones i n the s o i l s from a f i e l d chrono-sequence. The same techniques cou ld a l so be app l i ed to study the l o s s o f these elements from the s o i l ma te r i a l s weathered i n soxh l e t e x t r a c t o r s . By showing tha t the soxh le t s imu la tes s i m i l a r weather ing func t i ons to those found f o r f i e l d samples, i t would then be po s s i b l e to compare the func t i ons mathemat i ca l l y . From t h i s comparison, i t should be po s s i b l e to equate soxh l e t weather ing time to pedogenic t ime. A c a l i b r a t i o n o f t h i s k ind would c reate a p r e d i c t i v e too l which cou ld then be u t i l i z e d to p r o j e c t weather ing t rends i n t o the f u t u r e . The soxh l e t technique could a l so be adapted to a i d in the determinat ion o f the expected behav ior o f o ther s o i l ma te r i a l s i n d i f f e r e n t weather ing environments. MATERIALS AND METHODS F i e l d and l abo ra to ry c h a r a c t e r i s t i c s o f the Cox Bay chronosequence s o i l s were presented i n Part I o f t h i s t h e s i s . Sampling of the pedons in t h i s t r ansec t by depth c l a s ses was desc r ibed i n Pa r t I , Chapter 3. A chronofunct ion f o r the decrease i n calc ium-bound phosphate ( P Q a ) i n the top 10 cm of these pedons was presented g r a p h i c a l l y a t tha t t ime . In the present chapte r , t h i s chronofunct ion was g iven mathematical s o l u t i o n s by app ly ing c u r v e - f i t t i n g techn iques . S o i l samples from the 0-5 cm and 5-10 cm depth-c lass i n t e r v a l s from each s i t e i n the t r ansec t were d iges ted by h y d r o f l u o r i c a c i d (Ranta la and L o r i n g , 1973) and ana lyzed f o r t o t a l elemental composi t ion by atomic absorp t i on spectrophotometry. From t h i s da ta , average values f o r Ca (%) i n the top 10 cm o f each s o i l p r o f i l e -159-were c a l c u l a t e d and p l o t t e d aga ins t s i t e age. Mathematical s o l u t i o n s were determined f o r t h i s Ca ch rono func t i on . The s i t e 1, C3 hor i zon s o i l mate r i a l from the Cox Bay chrono-sequence was sub jec ted to soxh l e t weather ing over var ious t imes i n Pa r t I I , Chapter 4. Ca chronofunct ions were produced, which were exp la ined we l l by exponent ia l equa t i ons . In the present s tudy , t h i s s oxh l e t - c r ea t ed Ca chronofunct ion was compared mathemat i ca l l y to the Ca chronofunct ion de f ined by the depth c l a s s samples mentioned above. The weathered res idues from both the A-modi f ied (shortened s iphon) and B-modif ied ( s t r a i g h t s iphon) s o x h l e t s , which were repor ted i n Par t I I , Chapter 4, were analyzed f o r P^a by the same method used f o r the chronosequence samples (Peterson and Corey, 1966)'. Chronofunct ions were cons t ruc ted f o r weather ing o f P^a i n both the A- and B-modi f ied s o x h l e t s . A comparison was then mathemat i ca l l y made between P^ curves from the soxh l e t weathered samples and P^a curves f o r the chronosequence s o i l s . L i nea r r eg ress i on l i n e s (Nie ejt a l_., 1970) were used to produce chronofunct ions f o r and Ca decreases i n s oxh l e t and f i e l d samples. Data corresponded to P^a or Ca versus t ime, ln^ P^a or In Ca versus time and log^ P^a o r l og Ga versus l og t ime . S lopes , i n t e r c e p t s , r eg re s s i on c o e f f i c i e n t s and t - s t a t i s t i c s were determined f o r each data s e t . l n and log r e f e r to logar i thms to the base e and 10, r e s p e c t i v e l y . -160-RESULTS AND DISCUSSION Chronosequence S o i l Resu l t s Tota l e lemental a n a l y s i s r e s u l t s f o r the su r face dep th-c l ass samples from the Cox Bay chronosequence s o i l s are g iven i n Table 1. A l so g iven i n t h i s t ab l e are the P^  va lues which were p r ev i ou s l y determined f o r these samples i n Pa r t I , Chapter 3. As i n prev ious d i s cus s i ons (Pa r t I and I I ) , the datum po i n t f o r the chronosequence s o i l s was chosen as the s i t e 1, C3 s o i l sample (85-90 cm dep th-c l ass sample) . Higher percentages o f Ca, Mg and Fe were observed i n the sur face depth-c lass samples from s i t e 1, r e l a t i v e to the datum po i n t . A l though i t was pos s i b l e t h a t these percentages were h igher as a r e s u l t o f v a r i a t i o n s in the o r i g i n a l parent m a t e r i a l , b i o c y c l i n g and ocean-spray add i t i o n s cou ld a l s o be the cause. S ince has been shown to leach r e a d i l y from the sur face o f these s o i l s (Par t I , Chapter 3) and was probably not i n f l uenced s t r ong l y by b i o c y c l i n g and ocean-spray, i t s concen t ra t i on dropped immediately from 354 ppm a t the datum po i n t to an average o f 278 ppm i n the top 10 cm o f s i t e 1. Ca, Mg, Fe and P^  concent ra t ions were shown to decrease i n the top 10 cm o f the s o i l samples, from s i t e 1 to s i t e 7. Pedogenic age has been shown to i n c rease from 127 years to 550 years i n these s i t e s , r e s p e c t i v e l y (Pa r t I , Chapter 1 ) . Na, K, Al and Si c on cen t r a t i on s , however, were observed to inc rease i n the same d i r e c t i o n . S ince these l a t -t e r elements are c ons t i t uen t s of more r e s i s t a n t m inera l s such as f e l d spa r s and qua r t z , they are l e f t i n h igher concen t ra t i ons i n s o i l res idues when -161-Table 1. Tota l e lemental compost i t i on of s e l e c t ed depth c l a s s samples  from the Cox Bay s o i l chronosequence. S i t e Depth Number In t e rva l Ca Mg Na K Fe Al Si P Ca ol (ppm) 0-5 1.05 1.37 2.08 0.24 4.8 6.8 26 105 5-10 1.18 1.44 2.28 0.24 4.7 6.9 28 278 0-5 0.78 1.01 2.41 0.28 3.4 6.4 28 45 5-10 1.06 1.30 2.25 0.26 3.4 6.8 27 258 0-5 0.80 1.06 2.24 0.26 3.4 6.3 27 52 5-10 0.97 1.22 2.40 0.29 3.9 6.8 28 264 0-5 0.58 0.68 2.57 0.31 2.5 6.1 30 9 5-10 0.50 0.75 2.51 0.32 2.7 6.2 29 110 0-5 0.48 0.62 2.48 0.32 2.3 5.9 28 5 5-10 0.47 0.72 2.45 0.32 2.9 6.1 28 36 0-5 0.40 0.52 2.53 0.32 2.1 5.9 28 4 5-10 0.44 0.71 2.34 0.32 2.9 5.8 27 25 0-5 0.33 0.42 2.53 0.34 1.5 5.8 30 2 5-10 0.43 0.47 2.53 0.32 2.6 6.0 29 23 85-90* 1.01 1.23 2.43 0.29 3.9 6.8 27 354 rData taken from elemental a na l y s i s o f s i t e 1, C3 ho r i zon . / -162-more e a s i l y weathered elements are l o s t . Values f o r P^ , and Ca from the 0-5 and 5-10 cm depth-c lasses from each s i t e were averaged and p l o t t e d aga i n s t pedogenic age to y i e l d the f i e l d ch rono func t i ons . The averaged da ta , t h e r e f o r e , was an es t imate o f the P^a and Ca concent ra t i ons i n the 0-10 cm depth o f s o i l . A s o i l depth o f 10 cm was se l e c t ed because the s o i l mate r i a l samples weathered i n the soxh le t s were approx imate ly t h i s he i gh t . Soxh le t Residue Resu l t s P^a va lues f o r the top and bottom po r t i ons o f the s o i l samples weathered in the A- and B-modi f ied soxh le t s are g iven i n Table 2. Weighted averages (by gram-weight) o f the top and bottom po r t i ons o f each sample were c a l c u l a t e d . Dup l i c a t e va lues were averaged to produce a s i n g l e o v e r a l l average P^ value f o r each o f the 4, 8, 12, 16, 20 and 24 week time i n t e r v a l s . The same P^a datum value used f o r the f i e l d f u n c t i o n , namely the content o f the s i t e 1, C3 h o r i z on , was used f o r the s oxh l e t weathered samples. Overa l l average and datum P^a va lues were then p l o t t e d aga i n s t s oxh l e t weather ing time to y i e l d the s oxh l e t P^g ch rono func t i ons . Over the 24 week dura t i on of the weather ing exper iment, P^a i n the s o i l samples decreased from 354 ppm to an average o f 123 and 73.2 ppm in the A- and B-modif ied s o x h l e t s , r e s p e c t i v e l y . P^ , , t h e r e f o r e , was weathered l e s s r a p i d l y i n the A-modi f ied s o xh l e t s , even though the l each ing ra tes and ba r re l -temperatures of these e x t r a c t o r s were h igher than those i n -163-Tab le 2 . C o n c e n t r a t i o n s o f P. and Ca i n A- and B -mod i f i e d s o x h l e t r e s i d u e s Treatment Sample* Weather ing t ime Res i due (weeks) we i gh t ( 9 ) P C a (ppm) O v e r a l l O v e r a l l a P c a * > Average Average (ppm) A - m o d i f i e d S o x h l e t s B -mod i f i e d S o x h l e t s No Treatment 1 1 - T 4 9 2 . 6 4 1 8 1 1 1 - B 4 1 1 6 . 1 8 2 8 6 2 4 4 . 9 0 . 7 7 1 2 - T 4 9 5 . 9 1 1 7 2 1 2 - B 4 1 1 4 . 9 2 3 1 6 9 - T 8 8 5 . 1 6 1 0 8 9 - B 8 1 1 7 . 2 1 2 3 6 1 6 9 . 2 0 . 6 0 1 0 - T 8 8 6 . 5 2 1 0 7 1 0 - B 8 1 1 2 . 9 4 1 9 4 7 - T 1 2 8 3 . 1 1 8 7 7 - B 1 2 1 0 8 . 8 7 1 5 2 1 1 8 . 3 0 . 4 6 8 - T 1 2 8 0 . 8 0 61 8 - B 1 2 1 1 2 . 2 0 1 5 0 1 - T 1 6 81 . 7 5 6 3 1 - B 1 6 1 0 5 . 1 6 1 5 2 1 2 3 . 0 0 . 3 9 2 - T 1 6 7 5 . 7 3 7 5 2 - B 1 6 1 1 5 . . 2 8 1 7 1 3 - T 2 0 7 8 , . 0 4 5 2 3 - B 2 0 1 0 4 . 4 9 1 3 6 9 3 . 6 0 . 2 6 4TT 2 0 7 5 , . 0 7 4 0 4 - B 2 0 1 0 7 , . 3 3 1 2 0 5 - T 2 4 6 2 , . 5 5 4 7 5 - B 2 4 1 1 2 . , 3 0 9 9 7 0 . 1 0 . 1 3 6 - T 2 4 6 1 , . 8 4 4 8 6 - B 2 4 1 1 2 . , 1 1 6 7 K - T 4 1 0 0 . . 0 0 2 0 7 K - B 4 1 0 9 . 5 3 2 9 0 2 3 9 . 0 0 . 8 1 L - T 4 9 7 . . 1 2 1 9 3 L - B 4 1 1 4 . 9 4 2 5 7 I - T 8 9 4 . . 5 4 8 9 I - B 8 1 0 7 . 8 8 1 2 2 1 2 9 . 2 0 . 6 9 J - T 8 9 5 . 0 9 1 2 6 J - B 8 1 1 0 . 7 5 1 7 4 G - T 1 2 9 3 . 01 7 6 G - B 1 2 1 0 4 . 1 2 7 9 8 1 . 3 0 . 5 8 H-T 1 2 9 4 . 6 8 9 7 H -B 1 2 1 0 4 . 8 9 7 4 A - T 1 6 9 6 . 1 6 6 9 A - B 1 6 1 0 0 . 2 5 6 9 7 3 . 2 0 . 5 8 B - T 1 6 9 8 . 2 0 8 7 B - B 1 6 1 0 0 . 4 8 6 8 C - T 2 0 8 4 . 1 8 4 0 C - B 2 0 1 0 6 . 6 7 5 3 5 1 . 1 0 . 4 5 D-T 2 0 8 1 . 6 5 4 0 D-B 2 0 1 1 1 . 3 5 6 6 E - T 2 4 7 2 . 0 3 3 2 E - B 2 4 1 1 2 . 3 5 5 9 4 3 . 9 0 . 2 7 F - T 2 4 8 3 . 8 9 4 0 F - B 2 4 9 9 . 6 7 3 9 S i t e 1 , C 3 0 3 5 4 3 5 4 . 0 1 . 0 1 * Sample d e s i g n a t i o n i s g i v e a s : code number o r l e t t e r - top (T) o r bot tom (B) p o r t i o n o f the samp le . The code number o r l e t t e r i s used t o r e l a t e to Append i c e s . * Weighted a ve r age s , by g ram-we ight o f top and bot tom p o r t i o n s . * Datum sample used f o r s o x h l e t w e a t h e r i n g . -164-the B-modif ied soxh le t s (Par t I I , Chapter 4 ) . Table 2 shows t h a t , i n the bottom po r t i on o f the A-modi f ied soxh l e t samples, P^g was i n h igher amounts and, t h e r e f o r e , more s l ow ly weathered than i n the bottom po r t i on of the B-modi f ied soxh l e t samples. S i m i l a r behav ior f o r a v a i l a b l e P was observed in Pa r t I I , Chapter 4. I t was hypothes ized a t tha t time tha t P was c l o s e l y a s so c i a t ed w i th Fe and Mg, which were observed to be p ro tec ted from weather ing by the e f f e c t o f the f l u c t u a t i n g wate r tab le i n the bottom po r t i on o f the A-modi f ied s o xh l e t s . There fo re , i t was expected tha t P^a weather ing i n the bottom po r t i on of the A-mod i f i ed soxh le t s cou ld a l s o be re ta rded by t h i s wa te r tab le e f f e c t . The average Ca percentages f o r the soxh l e t weathered samples descr ibed i n Par t I I , Chapter 4 have been reproduced in Table 2. Chrono-func t i ons us ing these data were used to compare to Ca chronofunct ions cons t ruc ted f o r the f i e l d samples. Chronofunct ion So l u t i ons A p p l i c a t i o n of c u r v e - f i t t i n g techniques to the P^  and Ca chrono-f unc t i on data from the f i e l d and s o xh l e t samples has y i e l d e d the r e s u l t s summarized i n Table 3. Due to the smal l number o f ob se r va t i on s , polynomial s o l u t i o n s were not at tempted. Higher R- and t - s t a t i s t i c s i n d i c a t ed t ha t P^a i n both f i e l d and s oxh l e t chronofunct ions f o l l owed exponent ia l t rends s l i g h t l y b e t t e r than l i n e a r t r ends . Some examples o f how t h i s s oxh l e t and f i e l d P r^ data compares g r a p h i c a l l y are g iven i n F igure 1. -165-Tab le 3. Curve F i t t i n g F un c t i o n s o f P C j and Ca vs Time FUNCTION REGRESSION EQUATION LEVEL OF SIGNIFICANCE P C a (F) vs Time ( F ) * P C a (A) vs Time (A) P C a ' B ' v s T i m e ^ l n P C a (F) vs Time (F) l n P £ a (A) vs Time (A) l n P C f l (B) vs Time (B) l o g P C a (F) vs l o g Time (F) l o g P C a (A) vs l o g Time (A) l o g P C a (B) vs l o g Time (B) Ca (F) vs Time (F ) Ca (A) vs Time (A) Ca (B) vs Time (B) l n Ca (F) vs Time (F) l n Ca (A) vs Time (A) 1 n Ca (B) vs Time (B) l o g Ca (F) vs l o g Time (F ) l o g Ca (A) vs l o g Time (A) l og Ca (B) vs l o g Time (B) P C a (F) = 297.4 - 0 . 589 T (F) P C a (A) = 296.2 -10 .72 T (A) P C a (B) = 284.7 - 12 .16 T (B) l n P C a (F) = 6.16 -0 .0066 T (F) l n P C a (A) = 5.74 -0 .0634 T (A) l n P C f l (B) = 5.72 -0 .0885 T (B) l o g P C a (F) = 2.77 - 0 . 44 l o g T (F) l o g P r . (A) = 2.27 - 0 . 17 l o g T (A) r C a 1 o 9 P C a (B) = 2.17 - 0 . 2 3 l o g T (B) Ca (F) = 1.27 -0 . 0017 T (F) Ca (A) = 0 .93 -0 . 0345 T (A) Ca (B) = 0 .95 -0 .0271 T (B) l n Ca (F) = 0.43 -0 .0026 T (F ) In Ca (A) = 0.10 -0 .0781 T (A) l n Ca (B) = 0 .03 - 0 . 0474 T (B) l o g Ca (F ) = 1.64 - 0 . 744 l o g T (F) l o g Ca (A) = - 0 . 2 5 - 0 . 1 7 5 l o g T (A) l o g Ca (B) = - 0 . 1 6 - 0 . 110 l o g T (B) - 0 . 9 5 - 0 . 92 -0 .91 - 0 . 9 6 - 0 . 9 8 - 0 . 9 8 - 0 . 7 0 - 0 . 8 3 - 0 . 8 3 - 0 . 9 8 - 0 . 9 9 - 0 . 9 8 - 0 . 9 8 - 0 . 9 7 - 0 . 9 6 - 0 . 9 7 - 0 . 7 0 -0 .71 - 7 . 8 7 - 5 . 45 - 4 . 7 8 - 9 . 0 8 -10 .44 - 10 . 49 - 2 . 3 8 - 3 . 3 8 - 3 . 2 7 - 9 . 9 9 - 1 3 . 7 0 - 1 0 . 4 8 -12 .84 - 9 . 8 3 - 7 . 3 8 - 8 . 4 8 - 2 . 1 5 - 2 . 24 > 99% 95% 95% > 99% > 99% > 99% < 95% < 95% < 95% > 99% > 99% > 99% > 99% > 99% > 99% > 99% < 95% < 95% (F) (A) (B) = f i e l d = A - m o d i f i e d s o x h l e t = B -mod i f i e d s o x h l e t -166-SOXHLET TIME (WEEKS) 0 8 16 24 I 1 1 1 1 1 r -j I L 0 100 200 300 400 500 FIELD TIME (YEARS) F igure 1. Exponent ia l decay chronofunct ions of PQ 9 f o r f i e l d and B-modif ied soxh le t r e s i dues . -167-S ince a l l o f the P C g data was assumed to have the same i n i t i a l datum po in t o f 354 ppm, an a dd i t i o n a l means of dec i d i ng which curves are most use fu l i n e xp l a i n i n g the data i s to cons ide r the i n t e r c e p t va lue p red i c t ed f o r time z e r o . The soxh l e t and f i e l d P^a i n t e r c ep t s f o r the l i n e a r f unc t i ons a l l underest imated the 354 ppm va lue by an average o f 61 ppm. However, the soxh l e t i n t e r c ep t s were c l o se to tha t p r ed i c t ed by the f i e l d cu rve . In the exponent ia l form, the two soxh l e t curves under-est imated the c o r r e c t datum po in t by an average o f on ly 46 ppm. The exponent ia l form o f the f i e l d P^a f u n c t i o n , however, overes t imated the datum po in t by 119 ppm. I t i s p o s s i b l e t ha t the datum po in t chosen represents an underest imate f o r the ac tua l f i e l d t ime ze ro , but i t i s a measured t ime zero po in t f o r the soxh l e t va lues . There fo re , s ince the soxh le t f u n c t i o n s , expressed e x p o n e n t i a l l y , be t t e r p r e d i c t t h i s datum po i n t , they were cons idered to f i t the data po in t s s l i g h t l y b e t t e r than the l i n e a r f u n c t i o n s . I t was a l s o r e a l i z e d tha t many more data po in ts would be r equ i r ed to apply t h i s argument w i th s t a t i s t i c a l con f i dence . L inea r and exponent ia l f unc t i ons were observed to e xp l a i n the Ca chronofunct ions equa l l y w e l l . A datum po i n t was not used to de f ine the t ime zero Ca s ta tus f o r the f i e l d r e s u l t s . I t was f e l t tha t i n s e r t i o n o f t h i s est imated datum po in t would serve on ly to confuse the ac tua l t rend of Ca decrease w i th t ime. The confus ion would r e s u l t from the f a c t tha t due to b i o c y c l i n g and ocean-spray a d d i t i o n s , there was an i n i t i a l r i s e i n the :• •• amount o f Ca i n the f i e l d samples. There fo re , s i nce the maximum amount of Ca was found i n the top 10 cm of s i t e 1, the decay f unc t i on was observed -168-from tha t p o i n t , assuming tha t the e f f e c t of b i o c y c l i n g and ocean-spray was cons tan t . For t h i s reason, the i n t e r c ep t va lues f o r the f i e l d Ca curves overest imated the 1.01% Ca datum po in t expected. The l o g - l o g curve was shown to f i t the f i e l d Ca data we l l but the i n t e r c e p t p red i c t ed a time zero s ta tus o f 44%. This i s c l e a r l y u n r e a l i s t i c and due to the f a c t tha t most of the v a r i a t i o n i n t h i s type of curve occurs near t ime ze ro . For t h i s reason, the l o g - l o g curve was cons idered to be o f l i t t l e use f o r p r e d i c t i v e purposes. The i n t e r c ep t s f o r the soxh l e t f unc t i ons were found to be c l o se to the o r i g i n a l datum po in t s i n both the l i n e a r and exponent ia l equa t i ons . Examples o f the soxh l e t and f i e l d Ca func t i ons were graphed and shown in F igure 2. C a l i b r a t i o n of Soxh le t Time to F i e l d Time Slopes f o r the soxh l e t and f i e l d f unc t i ons can be made p a r a l l e l i f they are expressed i n a l i n e a r form, s imply by ad j u s t i ng t h e i r t ime axes. For example the curves: l n P C a ( F i e l d ) = 6.16 - 0.0066 Time ( F i e l d , Years) In P C a (B-modi f ied soxh l e t s ) = 5.72 - 0.0885 Time (B-modi f ied s o xh l e t s , Weeks) can be p l o t t e d on l i n e a r axes to y i e l d two s t r a i g h t l i n e s . The s lopes of these two l i n e s can be made p a r a l l e l by d i v i d i n g up the l i n e a r time axes so t h a t : - 1 6 9 -SOXHLET TIME (WEEKS) 0 8 16 24 l 1 1 1 1 1 1 0 I i i i i i 0 100 200 300 400 500 FIELD TIME (YEARS) F igure 2. Exponent ia l decay chronofunct ions of Ca f o r f i e l d and B-modif ied soxh l e t r e s i due s . -170-0.0885 Time (B-modi f ied s o x h l e t s , Weeks) = 0.0066 Time ( F i e l d , Y ea r s ) . There fo re , Time (B-modi f ied s o x h l e t s , Weeks) = 0.074 Time ( F i e l d , Y ea r s ) . Th is a l lows the p r e d i c t i o n of how much f i e l d t ime i s s imu la ted by time in the s oxh l e t . In the example above, 100 years o f P^a weather ing i n the f i e l d i s ; s imu l a t e d by 7.4 weeks of a c e t i c a c i d weather ing in a B-modi f ied s o x h l e t . A summary of the comparisons o f t h i s type made on both the l i n e a r and exponent ia l f unc t i ons f o r both A- and B-modif ied soxh l e t samples i s g iven in Table 4. I f the soxh l e t was intended to s imu la te the same weather ing processes as would be found i n the f i e l d , i t would be expected t ha t 100 years o f f i e l d weather ing of P^a would be s imu la ted by the same number o f s oxh l e t weeks as 100 years o f f i e l d weather ing of Ca. In the case wi th the A-modi f ied soxh l e t samples, however, i t was found t ha t the exponent ia l c a l i b r a t i o n func t i ons (Table 4) p r ed i c t ed tha t the equ iva l en t of 100 years of f i e l d weather ing o f Ca was on ly 3.3 weeks, whereas i t r equ i r ed 10.4 weeks o f A-modi f ied s oxh l e t weather ing to c rea te the equ i va l en t o f 100 years of f i e l d weather ing f o r P^ , . The r e t a r d i ng i n f l uence o f the f l u c t u a t i n g wate r tab le i n t h i s type o f soxh l e t on the weather ing o f P^a was mentioned e a r l i e r . S ince the was e f f e c t e d , whereas the Ca was not , a s ub s t an t i a l d i f f e r en ce i n t h e i r weather ing r a te s would be expected. The l i n e a r c a l i b r a t i o n formulas p red i c t ed 100 years of f i e l d weather ing was accompl ished by 5.5 and 4.9 weeks f o r P r and Ca, r e s p e c t i v e l y , i n the -171-Tab le 4 . C a l i b r a t i o n f o rmu lae f o r A- and B -mod i f i ed s o x h l e t s S o x h l e t E q u i v a l e n t o f 100 Years o f F i e l d Fun c t i on C a l i b r a t i o n Formula Weather ing (weeks) p C a ^ v s T i m e T (A) weeks = 0. .055 T (F) y e a r s 5. .5 Ca (A) vs Time T (A) weeks = 0. 049 T (F) y e a r s 4. .9 In P C a (A) vs Time T (A) weeks = 0. 104 T (F) y e a r s 10. .4 In Ca (A) vs Time T (A) weeks = 0. .033 T (F) y e a r s 3. .3 6.0 average P C a (B) vs Time T (B) weeks = 0. 048 T (F) y e a r s 4 . .8 Ca (B) vs Time T (B) weeks = 0. .063 T (F) y e a r s 6. .3 In P C a (B) vs Time T (B) weeks = 0. 074 T (F) y e a r s 7. .4 l n Ca (B) vs Time T (B) weeks = 0. .055 T (F) y e a r s 5. .5 6.0 average -172-A-modi f ied s o x h l e t s . There fo re , a l though the exponent ia l c a l i b r a t i o n formulas show grea te r d i f f e r en ce s between P C a and Ca c a l i b r a t i o n s , they were more accurate in separa t ing d i f f e r e n t weather ing processes expected. For p r e d i c t i v e purposes, however, i f A-mod i f i ed un i t s are employed, the l i n e a r equat ions cou ld y i e l d more c on s i s t en t r e s u l t s . Compared to the r e s u l t s f o r the A-mod i f i ed s oxh l e t samples, exponent ia l c a l i b r a t i o n formulae f o r Ca and P C a i n the B-modi f ied soxh l e t samples were i n c l o s e r agreement. In the l a t t e r case , 7.4 weeks o f s oxh l e t weather ing were r equ i r ed to cause the equ i va l en t of 100 years o f P^a weather ing i n the f i e l d . This compared we l l w i th the 5.5 weeks r equ i r ed f o r the equ i va l en t o f 100 years o f Ca wea the r ing . The l i n e a r f unc t i ons a l s o p red i c t ed 100 year equ i va l en t va lues c l o se to those g iven by the exponent ia l equa t i ons . S ince the B-modi f ied soxh l e t va lues agreed w e l l , i t was concluded tha t these soxh le t s s imu la ted the chronosequence s o i l weather ing be t t e r than the A-mod i f i ed s o xh l e t s . I t i s p o s s i b l e t ha t the f ree dra inage c h a r a c t e r i s t i c s i n the B-modif ied soxh le t s have s imu la ted the l each ing cond i t i ons in the e l u v i a l zones o f the chronosequence s o i l s b e t t e r than have the f l u c t u a t i n g wate r tab le cond i t i on s c rea ted by the A-modi f ied s o xh l e t s . SUMMARY AND CONCLUSIONS Of the two types o f soxh le t s used i n t h i s exper iment, the B-modif ied soxh le t s were shown to c rea te s o i l weather ing cond i t i ons which were more s i m i l a r to those of the sur face samples o f the Cox Bay chrono--173-sequence. The dec l i ne o f P^a and Ca w i th t ime , which r equ i r ed 100 years in the f i e l d , were reproduced i n B-modif ied soxh le t s i n 7.4 and 5.5 weeks, r e s p e c t i v e l y . S ince Ca may be i n f l uenced by b i o c y c l i n g and ocean-spray a d d i t i o n s , i t s chronofunct ion may have been i n f l uenced i f these add i t i on s were not constant w i th t ime. For t h i s reason , i t would appear tha t the c a l i b r a t i o n o f soxh l e t t ime to f i e l d time would best be accompl ished by the use of P^a weather ing c h a r a c t e r i s t i c s . There fo re , the c a l i b r a t i o n s based on the Ca weather ing would be best thought of as suppor t i ve evidence f o r the P^a c a l i b r a t i o n . I f there were no elemental add i t i on s to the top 10 cm o f the chronosequence s o i l s , the P^a index p r ed i c t s tha t a 100 year o l d f i e l d sample would have a s i m i l a r composi t ion to the 7.4 week B-modi f ied soxh l e t sample. The assessment o f the d i f f e r en c e i n e lemental composi t ion between these two samples may the re fo re lead to the determinat ion o f the ac tua l a dd i t i o n o f va r ious elements v i a b i o c y c l i n g and ocean-spray. S i m i l a r l y , the amount of lower ing of the f i e l d landscape might a l s o be determined. The soxh l e t sample decreased i n weight and the re f o re volume as i t weathered. The 10 cm f i e l d s o i l sample would a l s o represent the res idue of a g rea te r volume parent m a t e r i a l . The volume decrease i n a s o i l sample weathered f o r 7.4 weeks i n the soxh l e t may be used to es t imate the volume decrease which would occur i n the f i e l d s o i l a f t e r the f i r s t 100 years o f weather ing . Obv ious ly , bulk dens i t y changes would be i nco rpo ra ted i n the e s t ima te . I t i s f e l t , however, t h a t the main bene f i t s of t h i s soxh l e t weather ing technique w i l l l i e i n i t s a b i l i t y to p r e d i c t r a t e s of r e l ease o f var ious elements from s o i l m a t e r i a l s . -174-The c a l i b r a t i o n of the soxh l e t to f i e l d time has l i m i t a t i o n s , s i nce the c a l i b r a t i o n s i d e n t i f i e d were on ly v a l i d f o r the se t of env i r on -mental cond i t i ons found i n t h i s p a r t i c u l a r f i e l d chronosequence. However, by weather ing severa l parent ma te r i a l s from s o i l s o f known sur face ages and from d i f f e r e n t weather ing environments in the s o xh l e t , enough c o r r e l a t i o n s cou ld be made between the environmental parameters to a l l ow e x t r a po l a t i o n to o ther environments. -175-LITERATURE CITED 1. B i r k e l a n d , P.W.,, 1974. Pedology, Weathering and Geomorphological Research. Oxford U n i v e r s i t y P ress , I n c . , London. 285 p. 2. Chesworth, W., 1973. The parent rock e f f e c t i n the genesis o f s o i l . Geoderma 10: 215-225. 3. Huggett, R . J . , 1975. S o i l landscape systems. A model of s o i l genes i s . Geoderma 13: 1-22. 4. K l i n e , J . R . , 1973. Mathematical s imu l a t i on of s o i l - p l a n t r e l a t i o n s h i p s and s o i l genes i s . S o i l S c i . 115: 240-249. 5. N i e , N.H., H u l l , C .H . , J enk i n s , J . G . , S t i enbrenner , K. and Bent, D.H., 1975. S t a t i s t i c a l Package f o r the Soc i a l Sc iences . (2nd e d . ) . McGraw-H i l l , I n c . , U.S.A. 675 p. 6. Pe te rsen , G.W. and Corey, R.B., 1966. A mod i f ied Chang and Jackson procedure f o r r ou t i ne f r a c t i o n a t i o n of i no rgan i c s o i l phosphates. S o i l S c i . : S o c . Amer. Proc . 30: 563-565. 7. Ran ta l a , R.T.T. and L o r i n g , D.H., 1973. New low-cost t e f l o n decomposit ion v e s s e l . Atomic Absorpt ion News le t ter 12(4): 97-99. 8. Ruhe, R.V. and Walker, P .H. , 1968. Hi 11 s i ope models and s o i l f o rmat i on . I . Open systems. T ransac t ions of the 9th I n t . Congress of S o i l Sc ience , Ade l a i de , S.A. 4: 551-560. 9. Runge, E.C.A. , 1973. S o i l development sequences and energy models. S o i l S c i . 115: 183-193. 10. Van Wambeke, A . , 1976. A mathematical model f o r the d i f f e r e n t i a l movement of two s o i l c on s t i t u en t s i n t o i l l u v i a l ho r i zons : A p p l i c a t i o n to c l a y -176-r a t i o s i n a r g i l l i c ho r i z ons . J . S o i l S c i . 27: 111-120. 11. Yaa lon, D.H., 1975. Conceptual models i n pedogenesis: Can s o i l -forming func t i ons by so lved? Geoderma 14: 189-205. - 1 7 7 -SUMMARY AND CONCLUSIONS -178-SUMMARY AND CONCLUSIONS Dendrochronology, geomorphology and s o i l p r ope r t i e s i n d i c a t ed tha t the sandy beach ma te r i a l s near Cox Bay, on the west coas t o f Vancouver I s l a n d , B r i t i s h Columbia, have aggraded towards the ocean a t a ra te of approx imate ly 0.26 m per y e a r . Seven s e l e c t ed s o i l pedons ( s i t e s 1 to 7) along these depos i t s were s tud i ed and found to have sur face ages ranging from 127 years at s i t e 1 to 550 years a t s i t e 7. On the bas i s o f s o i l morphologies and chemical p r o p e r t i e s , the c l a s s i f i c a t i o n ranged from an O r t h i c D y s t r i c B run i so l (Typ ic Udipsamment) a t s i t e T. to an O r t h i c Humo^ F e r r i c Podzol (Aquic Haplorthod) a t s i t e 7. S ince the sur face ages o f these s o i l s have been determined and the pedogenic time zero was i n d i c a t e d by the C3 hor i zon of s i t e 1, i t was concluded tha t the pedons sampled were from a t rue chronosequence. M i c r o s cop i c , wet-chemical and phys i ca l ana lyses revea led weather ing processes i n the chronosequence, which were compat ib le w i th the presumed genesis o f Podzols (Spodoso l s ) . From the chemical da t a , s o i l chronofunct ions i l l u s t r a t i n g an inc rease i n oxa l a te e x t r a c t a b l e A l , as we l l as a decrease i n calc ium-bound phosphate ( P , 0 and exchangeable Mg, La; were produced. These weather ing func t i ons i n d i c a t e d tha t add i t i on s and losses of s o i l , c ons t i t uen t s i n the s o i l chronosequence fo l l owed exponent ia l t r ends . Soxh le t procedures were developed which f a c i l i t a t e d the a r t i -f i c i a l weather ing o f s o i l ma te r i a l s from the Cox Bay chronosequence, i n the l a bo r a t o r y . I n i t i a l experiments were designed to i n v e s t i g a t e the -179-use fu lness of the soxh l e t e x t r a c t o r f o r weather ing under d i f f e r e n t l abo ra t o r y c o n d i t i o n s . Mod i f i c a t i o n s made by reduc ing the he ight (A) o r complete ly removing (B) the s iphon tube were found to be necessary to r e c t i f y the problems o f sample e ros i on and leachate con tamina t ion , which occurred wi th the use o f commerc ia l ly a v a i l a b l e s o x h l e t s . During these p r e l im i na r y soxh l e t experiments (Par t I I , Chapters 1 to 3) the d i s t i n c t i o n between the a l i i t i c weather ing t r ends , produced by d i s t i l l e d water l e a c h i n g , and the podzo l i c weather ing t r ends , produced by a c e t i c a c i d l e a ch i n g , was made. S o i l ma te r i a l s from the Cox Bay chronosequence have been leached over var ious t imes i n mod i f i ed soxh l e t s and were ana lyzed to produce a r t i f i c i a l weather ing ch rono func t i ons . . These chronofunct ions e x h i b i t e d s i m i l a r exponent ia l c h a r a c t e r i s t i c s to those observed e a r l i e r f o r the chronosequence s o i l s . This s i m i l a r i t y suggested tha t a more p re c i s e comparison cou ld be made, which was accompl ished by mathemat i ca l l y r e l a t i n g P^a and Ca chronofunct ions from the f i e l d - and soxh let-weathered s o i l s ; t h e r e f o r e , the soxh l e t was c a l i b r a t e d to pedogenic t ime. By t h i s type o f c a l i b r a t i o n , i t was found tha t 100 years P C a weather ing i n the f i e l d was s imu la ted by approx imate ly 7.4 weeks i n B-modif ied s o x h l e t s . S i m i l a r l y , 100 years o f Ca weather ing i n the f i e l d was s imu la ted by 5.5,weeks i n these s o x h l e t s . I t has been shown i n t h i s t h e s i s tha t s o i l weather ing processes i n the soxh l e t can be s i m i l a r to those found i n na tu ra l s o i l s . The soxh l e t can be used to weather s o i l ma te r i a l s geochemica l l y , w i th or w i thout the e f f e c t of an o rgan i c component. I t cannot, however, d up l i c a t e pedogenic weather ing , -180-which r equ i r e s an a c t i v e b i o t i c component. S ince the weather ing cha ra c t e r -i s t i c s o f the s o i l s from the Cox Bay chronosequence have been we l l s imu la ted i n the s oxh l e t , i t i s suggested tha t weather ing i n these c oa r se - t ex tu r ed , r ap i d l y - l e a ched s o i l s i s p r i m a r i l y geochemica l . I t i s , a l s o , suggested tha t the soxh l e t would on ly be useful- f o r s imu l a t i ng s o i l weather ing in s o i l s w i th the same c h a r a c t e r i s t i c s . However, i n s o i l s where the a c t i v e b i o t i c component has a s t rong i n f l uence on the r e s u l t a n t weather ing products , the soxh l e t can be usefu l f o r i d e n t i f y i n g which processes are geochemical and which are s t r i c t l y pedochemical . Th is would g r e a t l y a i d the understanding of s o i l f o rmat i on . The c a l i b r a t i o n of the soxh l e t to pedogenic time us ing the Cox Bay s o i l chronosequence i s on ly v a l i d f o r the c l i m a t i c and vege ta t i ve environment found in the study a r ea . Because o f the p a r t i a l dependence of vegeta t ion on the types o f s o i l ma te r i a l s p resen t , i t i s p o s s i b l e t ha t a d i f f e r e n t parent mate r i a l cou ld impose a s l i g h t l y d i f f e r e n t vege ta t i ve s t r u c t u r e i n t h i s a rea; t h i s i s e s p e c i a l l y t rue e a r l y i n s o i l development. However, i f o ther s o i l ma te r i a l s are not r a d i c a l l y d i f f e r e n t from the s o i l s o f the Cox Bay sequence, and s i m i l a r types o f vege ta t i on have e s t a b l i s h e d , the c a l i b r a t i o n can be used to p r e d i c t weather ing trends i n these o ther m a t e r i a l s . S ince the soxh le t i s designed to a c ce l e r a t e weather ing processes , i t u t i l i z e s h igher temperatures and f a s t e r l each ing ra tes than are normal ly found i n s o i l s . I t i s po s s i b l e tha t these cond i t i on s cou ld r e s u l t i n a c t i v a t i o n energ ies and r eac t i ons which would not e a s i l y occur i n the f i e l d . -181-However, b i o l o g i c a l a c t i v i t y and the longer t imes i nvo l ved i n s o i l genes is can prov ide the c a t a l y s t s necessary to accompl ish some of these r e a c t i o n s . There fo re , i f the soxh le t i s used as an o rgan i c geochemical model f o r the study of s o i l genes i s , some cons i de r a t i on ;o f the po s s i b l e e f f e c t s of these departures from natura l cond i t i ons must be g i v en . The soxh l e t i s a l each ing apparatus; consequent ly , i t has the c a p a b i l i t y o f s imu l a t i ng s o i l weather ing in environments where l ea ch i ng i s the dominant weather ing p rocess . In some s o i l s , na tura l p r e c i p i t a t i o n i s not s u f f i c i e n t to move s o l u b l i z e d products complete ly out o f the p r o f i l e . However, even i n these s o i l s there i s l i k e l y to be sur face hor izons i n which e l u v i a t i o n i s g rea te r than i l l u v i a t i o n and minera l d e s t r u c t i o n as a r e s u l t o f l each ing i s impor tant . There fo re , the soxh l e t can be usefu l i n p r e d i c t i n g the k inds of res idues tha t may r e s u l t i n these e l u v i a l zones. The soxh l e t would a l s o be usefu l i n determin ing the composi t ion o f the s o i l s o l u t i o n tha t would be l e av i ng these e l u v i a l zones. There fo re , c a l i b r a t i o n . o f the soxh l e t f o r d i f f e r e n t c l i m a t i c and vegeta t i on regimes should be p o s s i b l e . Once a number o f these c a l i -b ra t i ons have been made, i t w i l l be po s s i b l e to dev ise c o r r e l a t i o n f a c t o r s , f o r v a r i a b l e s such as mean annual p r e c i p i t a t i o n , which would a l l ow ex t r apo l a t i o n s to o ther environments. I t i s be l i e ved tha t the study of s o i l genes is must pass from a d e s c r i p t i v e s tage , from which most o f the gene t i c t heo r i e s have been proposed, to a stage i n which q u a n t i t a t i v e experiments are used. Use o f - 1 8 2 -the s o xh l e t , as we l l as o ther pedo log i c techn iques , i n con junc t ion w i th chronosequences and chronofunct ions can prov ide much i n s i g h t i n t o the long-term f e r t i l i t y s ta tus of s o i l s . Such techniques may a l so be use fu l i n determining ra tes o f r e l ease o f t o x i c e lements, or serve to i d e n t i f y degradat ion ra tes o f f o r e i gn compounds added to the s o i l i n management programs. 182A A P P E N D I C E S APPENDIX I , 1.1 Long-term c l i m a t i c records f o r Tof ino A i r p o r t on the west coast of Vancouver I s l and . Data are from ten-year records or l onger . Monthly Means Oct . Nov. Dec. Jan . Feb. Mar. Apr . May June Ju l y Aug. Sept . Annual Mean Mean Da i l y Temp. (°F) 51.1 44.0 41.6 40.8 40.4 41.7 45.4 50.8 54.7 57.9 58.4 55.8 48.5 P r e c i p i t a t i o n ( i n . ) 14.0 16.6 16.6 17.9 14.8 13.8 11.2 4.1 3.7 3.7 3.5 5.8 125.8 R e l . Humidity {%) 95 wim. 96 94 94 93 94 93 93 94 95 96 97 97 10 A.M. 90 91 92 91 88 84 81 81 83 85 88 86 87 £ 4 P.M. 84 "85 89 86 81 78 75 74 74 74 80 79 80 T° 10 P.M. 95 93 92 91 91 90 90 90 91 91 94 94 92 V i s i b i l i t y (mi.) 0-h 2.3 1.1 1.7 1.4 0.8 0.7 0.7 0.4 0.4 1.9 2.9 2.6 16.9 h-5 7.2 5.3 8.0 7.8 7.6 6.7 3.4 3.9 4.9 5.7 7.1 8.1 75.7 0-5 9.5 6.4 9.7 9.2 8.4 7.4 4.1 4.3 5.3 7.6 10.0 10.7 92,'6 Wind Speed (m.p.h.) 8.5 7.9 8.6 8.6 8.7 8.8 8.7 8.6 8.4 7.3 6.6 6.5 8.1 Maximum Hourly Wind 33 Speed (m.p.h.) 37 36 38 37 36 36 31 31 30 27 26 33 Source of da ta: Canada Department o f T ranspor t , Meteoro log i ca l Branch (from Cordes, 1972). -184-APPENDIX I , 2.1 CORRELATION MATRICES FOR SELECTED SOIL VARIABLES FROM THE ANALYSIS OF THE COX BAY CHRONOSEQUENCE Four t ab l e s are presented which r e l a t e to the c o r r e l a t i o n of s o i l a na l y s i s r e s u l t s f o r the top B hor i zons (Table I , 2 . 1 . 1 ) , the hor i zons d i r e c t l y below the top B hor i zons (Table I , 2.1.2) and the lowest hor i zons sampled (Table I, 2.1.3) from s o i l s a t the seven s i t e s ( s i t e s 1 to 7) i n the Cox Bay chronosequence. A separate t ab l e (Table II, 2.1.4) represents the c o r r e l a t i o n of v a r i a b l e s when data from a l l hor izons were t e s ted toge ther . A l l v a r i a b l e s and t h e i r corresponding r e s u l t s , w i th the except ion of c o l o u r , have been de f ined i n Par t I I , Chapter 1. Co lour was de f ined by the degree of s o i l redness as e s t a b l i s h ed by Munsell^ co lou r n o t a t i o n . The co l ou r r e s u l t s were cons idered i n t e r e s t i n g ; however, s i nce the redness ca tego r i e s s e l e c t ed were a r b i t r a r y , no i n t e r p r e t a t i o n s have been r epo r t ed . 1 Munsel l S o i l Co lour Cha r t s , 1973. Maryland 21218. Kollmorgen Co rp . , Ba l t imo re , SEVEN SOILS OF ACE - TOP 8 HORIZONS ONLY FILE NONAME (CREATION DATE « 02/22/78) CORRELATION COEFFICIENTS.. 02/22/7 8 PAGE PHCACL2 N CM FEO ALO FEP ALP FEO ALO CA -0. 70175 0.90726 0.90 700 0.12016 0.75027 0.99773 PHCACL2 N OH FEO ALO FEP 1.00000 -0.65313 -0.6*190 -0.55411 -0.47774 -0.71428 -0.65313 1. 00000 0.84761 0.16043 0.71645 0.89497 -0.64190 0.84 761 1.00000 6.31584 0.85233 0.92179 -0.S5411 0.16043 0.31584 1.00000 -C.04862 0.13765 -0.47 774 0. 71 645 0.85233 -0.04862 1.00000 0. 77479 -0. 71428 0.89497 0.92179 0.13765 0.77479 1.00000 -0.51 962 0.6)884 0.83 342 6.09 33 7 0.97 480 0. 71 109 -0.58980 0.83536 0.91977 6.00970 0.97355 0.89615 0.41 408 0. 38508 0.27490 -0.25791 0.26530 0.14553 ALP FEO _ALO CA MG NA -0.51962 -0.70175 -0.58980 6.41408 0.06900 -0.49631 0.60884 0.90726 0.83536 0.38508" 0.14644 0.00000 0.83342 0.90700 0.91977 0.27490 -0.06246 0.05828 0.08337 0.12016 0.00970 -6.25791 0.08996 0.43351 0.97480 0. 7502 7 0.97355 6.26530 -0. 38617 -0.15593 -0.29954 0.95322 -0.84400 6.68425 -0.12098 -0.72926 0.71109 0.99773 0.89615 F.1455B f).03653 P.13682 -0.0 5224 0.79446 -0.69482 0.92014 0.13935 -0.86877 1.00 000 0.67 650 0.92 78 8 0.12196 -0.46392 -0.05909 -6 . 32 4 3 3 0.95231 -0.90 544 0.63 30 3" -0.22 989 -0.63 964 0.67650 1.00000 0. 88023 0. 16942 0.09578 0. 15182 6.66061 0.77711 -0.65372 0.91764 0.19535 -0.86332 0.81977 0.92788 0.88023 1.00000 6.25 414 -0.23838 -0.06060 -6.261*6 0.94900 -0.82382 0.81284 -0.01219 -0.81052 0. 12 196 0.16942 0. 25414 1. 00000 0.24806 -0. 58586 0.01290 0.22116 0.28532 0.04826 0.60237 -0. 08961 K CEC BS FINES" BASES COLOR -0.11765 -0.54 730 0.70013 -0.86626 0.15 704 0.44270 0.11290 0.72414 -0.48892 0.92980" 0.32590 -0.66382 -0.11931 0.89267 -0.71647 6.84932 0.13666 -0.70282 0. 17856 0. 10181 -0.13722 0.34124 0.01715 0.30754 TIME -0.67324 0.79988 0.93706 0.3015E 0. 89255 0.84916 0.83 658 0.92113 0. 18351 CO MG NA K CEC BS FINES BASES COLOR TIME PHCACL2 0.06900 -0.49631 -0.11765 -0.54730 C.70013 -0.86626 0.15704 0.44270 -0.67324 N 0.14644 0.00000 0.11290 0.72414 -0.48892 0.92980 0.32590 -0.66382 0.79988 OH ~ - 0 . 0 6 2 4 6 " 0.05828 " - 0 . 1 1 9 3 1 6 . 8 9 2 6 7 - 0 . 7 1 6 4 7 0.84932 0.13666 -6. 76282 " 0.93706 FEO 0.08996 0.43351 0.17856 0.10181 -0. 13722 0.34124 0.01 715 0.30754 0.3J158 ALO -0.38617 -0.15593 -0.29954 0.95322 -0.B4400 0.68425 -0.12098 -0.72926 0.89255 "FEP 0.03653 0. 13682 -0.05224 0.79446 -0.69482 0.92014 0.13935 -0.86877 0.84916 ALP -0.46392 -0.05909 -0.32433 0.95231 -C.90544 0.63303 -0.22989 -0.63964 0.88658 FEO 0.09578 0.15182 0.00001 0.77711 -0.65372 0.91764 _ 0.19535 -0. 86332 0.81977 ALO ""-0.23838 -0.06060-0.20150 C.94900 " -0.823826.81284 " -0.01219 -6.81052 0.92113 CA 0.24806 -0.58586 0.01290 0.22116 0.28532 0.04826 0.63237 -0.08961 0.18351 HG 1.00000 0.49672 0.85709 -0.17321 0.54842 -0.00881 0.91066 0. 13455 -0.36742 NA 0.49672 1.000()0 0.69497 0.10435 -0.14155 0.15391 0.23 165 0.04984 -0.12855 K 0.85709 0.69497 1.00000 -0.05613 0.36103 0.00960 0.74751 0.27920 -0.35706 CEC -0.17321 0. 10435 -0.05613_ 1.00000 -0.81 723 0.69309 0.05756 -0.66309 0.84893_ BS 0.54842 -0.14155 6.36103 -6.81723 1.00006 -6.65436" 6.47 779 6.67306 -6.81086 FINES -0.00881 0.1S391 0.00960 0.69309 - 0.65436 1.00000 0.06361 -0.67639 0.85242 BASES 0.91066 0. 23165 0.74751 0.05756 0.47779 0.06361 1.0)000 0.05642 -0. 15 762 COLOR 0.13455 0.04984 0.27426 -0.66309 fl. 67366 - 0.67639 0.05642 1.00000 -0.66 562 T I M E " - 6 . 3 6 7 4 2 -0.12855 -0.35706 0.84893 - C. 81 086 6.8 5242 -0. 15 762 "" -0.66562 1.06666 DETERMINANT OF CORRELATION MATRIX » O.COOOOOOI 0.10977367E-64I Table I, 2.1.1. Top B horizons only. S E V E N S O I L S OF i t j l - H O R I Z O N BELOW T O P B H O R I Z O N ONLY ' '. 0 2 / 2 2 / T B P A G E 5 F I L E N 3 N A M E ICR EAT ION D A T E » 0 2 / 2 2 / 7 8 1 ; : , C O R R E L A T I O N C O E F F I C I E N T S . . P H C A C L 2 N OM . F E O A L O F E P A L P F E O A L O CA P H C A C L Z N OM 1 . 0 0 0 ) 0 - 0 . 7 1 1 3 6 - 0 . 7 6 3 1 5 - 0 . 7 1 1 3 6 1 . 0 0 0 0 0 0 . 9 6 5 0 7 - 0 . 7 6 3 1 5 0 . 9 6 5 0 7 1 . 0 0 0 0 0 - 0 . 3 4 5 5 6 0 . 8 0 1 3 1 ' 0 . 7 7 8 0 6 - 0 . 5 9 6 6 0 0 . 9 1 0 5 8 0 . 9 3 9 1 3 - 0 . 5 7 0 2 6 0 . 8 7 1 6 2 0 . 9 1 3 8 3 - 0 . 5 7 2 1 3 0 . 8 7 1 6 7 0 . 9 3 8 8 3 - 0 . 4 8 5 7 1 0 . 8 7 7 7 * 0 . 8 3 2 0 8 -0 .70956 0 . 9 3 3 8 3 0 . 9 5 9 3 3 0 . 1 7 3 C 3 i 0 . 3 8 9 5 2 0 . 2 8 + 9 + F E O A L O F E P - 0 . 3 4 5 5 6 - 0 . 5 9 6 6 0 - 0 . 5 T 0 2 6 0 . 8 0 1 3 1 0 . 9 1 0 5 8 0 . 8 7 1 6 2 0 . 7 7 8 0 6 0 . 9 3 9 1 3 0 . 9 1 3 8 3 1 . 0 0 0 0 0 0 . 8 8 6 6 1 0 . 9 2 8 1 0 0 . 8 8 6 6 1 1 . 0 0 0 0 0 0 . 9 8 2 8 3 0 . 9 2 8 1 0 0 . 9 8 2 8 3 1 . 0 0 0 0 0 0 . 8 6 2 7 1 0 . 9 8 2 1 9 0 . 9 7 5 5 5 0 . 9 7 5 1 0 0 . 8 8 1 7 8 0 . 9 1 5 8 6 0 . 8 3 7 6 6 0 . 9 8 5 + 9 0 . 9 6 + 5 0 0 . 7 1 2 1 0 1 0 . 3 + 5 + 3 0 . + 2 8 6 0 A L P F E O A L O - 0 . 5 7 2 1 3 - 0 . * e 5 7 1 - 0 . 7 0 9 5 6 0 . 8 7 1 6 7 0 . 8 7 7 7 4 0 . 9 3 3 8 8 0 . 9 3 8 8 3 0 . 8 3 2 0 8 0 . 9 5 9 3 3 0 . 8 6 2 7 1 0 . 9 7 5 1 0 0 . 8 3 7 6 6 0 . 9 8 2 1 9 0 . 8 8 1 7 8 0 . 9 8 5 4 9 0 . 9 7 5 5 5 0 . 9 1 5 8 6 0 . 9 6 * 5 0 1 . 0 0 3 0 0 0 . 8 * 0 6 7 0 . 9 5 5 1 5 0 . 8 + 0 8 7 1 . 0 0 0 0 0 0 . 8 6 5 * 2 0 . 9 5 5 1 5 0 . 8 6 5 + 2 1 . 0 0 0 0 0 0 . 3 + 1 0 5 0 . 6 8 9 7 0 0 . 2 6 3 3 1 . C A MG NA 0 . 1 7 3 0 3 0 . 1 2 6 5 5 - 0 . 2 6 9 6 0 0 . 3 8 9 5 2 0 . 0 5 7 2 2 0 . 0 8 4 0 9 0 . 2 8 4 9 + - 0 . 1 1 3 3 6 - 0 . 0 2 9 7 7 0 . 7 1 2 1 0 0 . 1 8 1 3 3 0 . 0 0 3 7 3 0 . 3 * 5 * 3 - 0 . 1 9 6 9 7 - 0 . 2 1 7 6 1 0 . * 2 8 6 0 - 0 . 1 2 0 5 3 - 0 . 1 * 3 5 5 0 . 3 * 1 0 5 - 0 . 2 * 5 0 3 - 0 . 2 6 9 4 2 0 . 6 8 9 7 0 0 . 2 7 + 9 + 0 .17205 0 . 2 6 3 3 1 - 0 . 1 8 9 5 8 - 0 . 1 2 6 3 6 1 . 0 0 0 3 0 0 . 7 0 7 3 7 0 * 3 3 7 9 8 K C E C B S 0 . 0 7 8 2 1 - 0 . * 9 5 0 3 0 . 7 5 0 6 2 - 0 . 1 7 3 1 3 0 . B 9 5 8 0 - 0 . 8 3 9 2 2 - 0 . 3 3 7 2 2 0 . 8 3 6 6 1 - 0 . 8 4 7 5 3 - 0 . 1 7 0 1 2 0 . 8 8 * 3 3 - 0 . 5 8 4 0 1 - 0 . 4 6 7 1 0 0 . 8 2 7 4 7 - 0 . 8 2 5 5 6 - 0 . + 0 7 9 3 0 . 8 1 8 7 3 - 0 . 7 3 7 2 8 - 0 . 5 3 2 9 9 0 . 8 0 4 0 9 - 0 . 7 9 0 0 6 - 0 . 0 3 75+ 0 . 9 2 0 0 7 - 0 . 6 3 0 7 2 - 0 . + 0 8 8 6 0 . 7 9 9 7 9 - 0 . 8 * 8 7 5 0 . 3 + 9 8 0 0 . 6 5 5 2 8 - 0 . 0 0 1 2 6 F I N E S B A S E S COLOR - 0 . 6 1 7 0 6 0 . 1 0 8 6 2 0 . 3 6 2 6 2 0 . 9 4 3 0 6 0 . 2 0 9 0 1 - 0 . 6 9 7 6 3 0 . 9 5 7 4 0 0 . 0 5 5 2 7 - 0 . 7 9 8 1 8 0 . 9 0 9 1 4 0 . 4 0 6 6 6 - 0 . 6 2 9 1 2 0 . 9 8 8 4 6 0 . 0 1 1 2 7 - 0 . 8 0 2 5 1 0 . 9 8 3 4 2 0 . 0 9 9 2 1 - 0 . 7 5 9 8 0 0 . 9 6 9 4 8 - 0 . 0 2 * 1 5 - 0 . 8 7 9 4 3 0 . 9 2 5 0 0 0 . + 7 0 5 5 - 0 . 5 6 9 3 1 0 . 9 8 2 0 0 - 0 . 0 0 7 8 * - 0 . 7 3 7 5 9 0 . + 2 8 8 3 0 . 8 6 3 2 9 - 0 . 2 2 6 8 8 T I M E - 0 . 5 6 7 8 1 0 . 7 6 5 7 0 0 . 8 5 7 2 3 0 . 5 3 4 0 0 0 . 8 * 1 7 6 0 . 7 6 8 2 6 0 . 8 7 1 7 0 0 . 5 2 * 4 6 0 . 8 3 6 7 3 - 0 . 0 + 2 7 1 MG NA K C E C BS F I N E S B A S E S C O L O R T I M E P H C A C L 2 N 0 . 1 2 6 5 5 0 . 0 5 7 2 2 - 0 . 2 6 9 6 0 0 . 0 8 4 0 9 0 . 0 7 8 2 1 - 0 . 1 7 3 1 3 - 0 . 4 9 5 0 3 0 . 8 9 5 8 0 0 . 7 5 0 6 2 - 0 . 8 3 9 2 2 - 0 . 6 1 7 0 6 0 . 9 * 3 0 6 0 . 1 0 8 6 2 0 . 2 0 9 0 1 0 . 3 6 2 6 2 - 0 . 6 9 7 6 3 - 0 . 5 6 7 8 1 0 . 7 6 5 7 0 OM F E O A L O - 0 . 1 1 3 3 6 0 . 1 8 1 3 3 - 0 . 1 9 6 9 7 - 0 . 0 2 9 7 7 0 . 0 0 3 7 3 - 0 . 2 1 7 6 1 - 0 . 3 3 7 2 2 - 0 . 1 7 0 1 2 - 0 . 4 6 7 1 0 0 . 8 3 6 6 1 0 . 8 8 4 3 3 0 . 8 2 7 * 7 - 0 . 8 * 7 5 3 - 0 . 5 8 * 0 1 - 0 . 8 2 5 5 6 0 . 9 5 7 * 0 0 . 9 0 9 1 4 0 . 9 8 8 * 6 0 . 0 5 5 2 7 0 . 4 0 6 6 6 0 . 0 1 1 2 7 - 0 . 7 9 8 1 8 - 0 . 6 2 9 1 2 - 0 . 8 0 2 5 1 0 . 8 5 7 2 3 0 . 5 3 * 0 0 0 . 8 + 1 7 6 F E P A L P F E O - 0 . 1 2 0 5 3 - 0 . 2 4 5 0 3 0 . 2 7 4 9 4 - 0 . 1 4 3 5 5 - 0 . 2 6 9 4 2 0 . 1 7 2 0 5 - 0 . 4 0 7 9 3 - 0 . 5 3 2 9 9 - 0 . 0 3 7 5 + " 0 . 8 1 8 7 3 0 . 8 0 * 0 9 0 . 9 2 0 0 7 - 0 . 7 3 7 2 8 - 0 . 7 9 0 0 6 - 0 . 6 3 0 7 2 0 . 9 8 3 * 2 0 . 9 6 9 4 8 0 . 9 2 5 0 0 0 . 0 9 9 2 1 - 0 . 0 2 * 1 5 0 . 4 7 0 5 5 - 0 . 7 5 9 8 0 - 0 . 8 7 9 * 3 - 0 . 5 6 9 3 1 0 . 7 6 8 2 6 0 . 8 7 1 7 0 0 . 5 2 * * 6 A L O C A MG - 0 . 1 8 9 5 B — 0 . 7 0 7 3 7 1 . 0 0 0 0 0 - 0 . 1 2 6 3 6 0 . 3 3 7 9 8 — 0 . 8 4 5 2 9 - 0 . 4 0 8 8 6 0 . 3 4 9 8 0 0 . 9 0 7 8 8 0 . 7 9 9 7 9 0 . 6 5 5 2 8 0 . 2 8 8 0 7 - 0 . 8 * 8 7 5 - 0 . 0 0 1 2 6 0 . 2 8 6 6 9 0 . 9 8 2 0 0 0 . * 2 8 8 3 - 0 . 0 7 3 3 4 - 0 . 0 0 7 8 * 0 . 8 6 3 2 9 0 . 9 6 5 5 1 - 0 . 7 3 7 5 9 - 0 . 2 2 6 8 8 0 . 3 9 2 0 8 0 . 8 3 6 7 3 - 0 . 0 + 2 7 1 - 0 . 5 5 3 6 2 NA K C E C — 0 . 8 * 5 2 9 — 0 . 9 0 7 8 8 0 . 2 8 8 0 7 1 . 0 0 0 0 0 - ^ 0 . 9 2 1 7 4 0 . 1 5 0 5 9 0 . 9 2 1 7 4 1 . 0 0 0 0 0 - 0 . 0 2 1 4 6 0 . 1 5 0 5 9 - 0 . 0 2 1 4 6 1 . 0 0 3 0 0 0 . 1 8 * 3 8 0 . 4 0 0 1 6 - 0 . 7 * 9 8 2 - 0 . 0 9 0 1 3 -0 .35434 0 . 8 6 1 9 6 0 . 7 4 2 4 2 0 . 7 7 1 5 8 0 . 4 5 8 9 7 0 . * 9 7 9 1 0 . 6 8 3 * 8 - 0 . 6 6 7 7 + - 0 . + 9 1 8 0 - 0 . 7 3 3 0 2 0 . 5 + 9 7 + BS F I N E S B A S E S 0 . 2 8 6 6 9 - 0 . 0 7 3 3 4 0 . 9 6 5 5 1 0 . 1 8 4 3 8 - 0 . 0 9 0 1 3 0 . 7 4 2 4 2 0 . 4 0 0 1 6 -0 .35434 0 . 7 7 1 5 8 - 0 . 7 * 9 8 2 0 . 6 6 1 9 6 0 . 4 S 8 9 T 1 . 0 0 0 0 0 -0 .7BJ71 0 . 1 B 2 4 2 - 0 . 7 8 5 7 1 1 . 0 0 0 0 0 0 . 1 3 1 8 5 0 . 1 8 2 * 2 0 . 1 3 1 8 5 1 . 0 0 0 0 0 0 . 7 0 1 9 1 - 0 . 7 6 8 9 0 0 . 1 8 J 5 6 - 0 . 7 8 3 6 * . 0 . 8 0 3 1 9 - 0 . 3 8 9 0 3 1 COLOR 0 . 3 9 2 0 8 0 . 4 9 7 9 1 0 . 6 8 3 4 8 - 0 . 6 6 7 7 4 0 . 7 0 1 9 1 - 0 . 7 6 8 9 0 0 . 1 8 5 5 6 1 . 0 0 0 0 0 - 0 . 8 9 7 0 1 T I M E - 0 . 5 5 3 6 2 - 0 . 4 9 1 8 0 - 0 . 7 3 3 0 2 0 . 5 4 9 7 4 - 0 . 7 8 3 6 4 0 . 8 0 3 3 9 - 0 . 3 8 9 0 3 - 0 . 8 9 7 0 1 1 . 0 0 0 0 0 ! D E T E R M I N A N T O F C O R R E L A T I O N M A T R I X > 0 . 0 1 0 . 0 1 C n t R F L + T l O N M A T R I X . I S S I N G U L A R * CANNOT B F I N V E R T E D . Table I, 2.1.2. Horizons below top B horizons only. SEVEN SOILS OF ACE - LOWEST HORIZON GIVEN IN PROFILE FILE NONAME (CREATION DATE - 02/22/78) 02 Z22/7 8 PAGE CORRELATION COEFFICIENTS.. PHCACL2 N OM FEO ALO FEP ALP FEO ALO CA PHCACL2 1.00000 -0.56230 -0.59824 0.55196 -0.2> 207 -0.27050 -0.34275 0. 73 37i -0.52702 0.07909 N -0.56230 1.00000 0.83160 -0.27395 0.65393 0.69371 0.67 30 1 -0.49324 0. 82243 0. 36822 OM -0.59824 0.83160 1.00000 -0.19462 C. 86S00 0.84630 0.87317 -0.43718 0.98480 0.21120 FEO 0.55196 -0.27395 "-6. 19462' 1.00000 " 0.2 3675 0.09904 0.26516 0. 90863 -0.17686 -0.26569 ALO -0.26207 0.65398 C.86900 0. 23675 1. 00 0 00 0.77520 0.93 111 -0.04781 0.90639 -0.05105 FEP -0.27050 0.69371 0.84630 0.09904 0. 77520 1.00000 0.81453 -0.01808 0.80878 0.43424 ALP -0.34275 0.67301 0.87317 0.26516 0.18111 0.8 1453 1.00 000 -0.01024 0.89347 -0.07318 FEO 0.73376 -0.49324 -C. 43718 0.90863 -0.04 781 -0.01808 -0.01 02 4 1.00000 -0.41588 -0.18486 ALO -0.52702 0.32243 0.98480 -0.17686 0.90 639 0.80878 0. 89 347 -0. 41 588 l .OOOOO 0.13148 CA 0.07909 0.36822 ~0.21120 -0.26569 -0.05105 0.43424 -0.07818 -0. 18436 0.13143 1. OOOOO MG 0.21417 -0.41631 -0.54223 -C.21106 -0. 78 729 ••0. 2 3606 -0.73 758 0. 10354 -0.64205 0. 52441 NA 0.08947 -0.20960 -0.32485 -0.29110 -0.60408 0.01171 -0.52 136 0.06357 -0.40500 0.50566 K 0.19475 -0.61410 -0.71389 -0. 25169 -0.92 375 -0.50949, -0.87816 0.07381 -0. 79223 0.23904 CEC -0.62 641 0.90 505 0.96032 -0.23518 0. 75665 0.85452 0.77810 -0.46 803 0.91355 0.40474 BS 0.47527 -0.46659 -0.61885 -0.13420 -0.77123 -0.27864 -0. 76 842 0. 20 721 -0.67775 0. 56477 FINES -0.72043 0.95817 6.37119" -0. 30593 0.62 541 0.72938 0.67 258 -0.53816 0.82003 0 . 36 763 BASES 0.14477 -0.01591 -0.17618 -0.29826 -0. 47858 0.13836 -0.45472 -0.04836 -0.27591 0.85446 COLOR 0.29072 -0.38380 -0. 78286 -0.28687 -0.89557 -0.76069 -0.91383 -0.07485 -0.78754 0. 17003 TIME -0.31111 0.57943 0.78833 0.27091 0. 96 63 5 0. 61 765 0.95 600 -0.04277 0.84 138 -0.29011 MG NA K CFC BS FINES BASE S COLOR TIME PHCACL2 0.21417 0.08947 0.19475 -0.62641 0.47527 -0.72043 0.14477 0.29072 -0.31 111 N -0.41631 -0.20960 -0.61410 0.90505 -0.46659 0.95817 -0.01 591 -0.33380 0.57943 OM -0.54223 -0. 32485 -0.71389 6.96032 -0.61335 0.87119 -0.17618 -6.78286 0.70833 FEO -0.21106 -0.29110 -0.25169 -0.23518 -0. 13420 -0.30593 -0.29826 -0.28687 0.27091 ALO -0.78729 -0.60408 -0.92375 0.75665 -0.77123 0.62541 -0.47 85 8 -0. 89557 0.96635 FEP -0.23606 0.01171 -0.50949 0.8 5452 -0.2786* 0.72938 0. 13 836 -0. 76069 0.61765 ALP -0.73758 -0.52136 -0.87816 0.77810 -0. 76842 0.67258 -0.45472 -0.91383 0.95600 FED 0.10354 0.06357 0.0738 I -0.46803 0.20 72 1 -0.53816 -0.04836 -0. 07485 -0.04277 ALO -0.64205 -6.40500 -0.7922 3 0.91355 -0.67 775 0.32003 -0.27 59 1 -6.78 754 6.8T138 CA 0.5244 I 0.50566 0.23904 0.40474 0. 56477 0. 36763 0. 85 446 0.17003 -0.29011 MG 1.00000 0.90686 0.94123 -0.36947 0.94 786 -0.32500 0.88221 0.61710 -0. S9S92 ! NA 0.90686 I.OOOOO 0.81490 -0. 18257 0. U4 041 -0. 13915 0.85 809 0.42731 -0.73 106 K 0.94128 0.81490 1.00000 -0.58948 '0.37822 -0.51889 0.63 716 0.71320 -0.919 26 CEC -0.36947 -0.18257 -0. 58948 1 .00000 -0.46870 0.95606 0.02 719 -0.63368 0.64669 BS 0.94 786 0.84041 0.87822 -6.46676 1. OOOOO -0.45518 6 . 86 791 0.67246 -0.90163 FINES -0.32500 -0. 13915 -0.51889 0.95606 -0.45518 l.COOOO 0.03 552 -0.45226 0. 55013 BASES 0.88221 0.85809 0.68716 0.02719 0.86 791 0.03552 1.03 0 0 0 0.43452 -0.67911 COLOR 0.61710 6.42731 6.71326 -0.63368 0.67246 -0.45226 0.43452 1.6666% -0.66061 TIME -6.89992 -0.73106 -0.95926 0.64665 -C. 90 163 0.55013 -0.67911 -0. 86861 1.00000 DETERMINANT OF CORRELATION MATRIX « O.COOOOOOI 0.3503059EE-65) Table I, 2 .1 .3. Lowest horizons sampled only . f S E V E N S O I L S CF A L E - C H R Q N O S E Q U E K C E ON B E A C H 0 2 / 2 0 / 7 8 PAGE 5 1 F I L E NONAHE ( C P E A T 1 C M D A T E • Q 2 / 2 Q / 7 B 1 , : < C f l P R E L A T I C N f.flF F F I C 1 E N T S . . \ '. '. P H C A C L 2 H CP, F E O A L O F E P ALP FfcD A L D CA P H C A C L 2 N QH 1 . 0 0 0 0 0 - 0 . 7 7 9 9 4 -O.e<>06l - 0 . 7 7 9 9 4 l . O C O O O 0 . 9 1 6 9 9 - 0 . 8 4 0 6 1 0 . 9 1 6 9 9 1 . 0 0 0 0 0 - 0 . 4 3 9 9 3 0 . 3 7 7 1 2 0 . 4 7 2 4 1 - 0 . 5 4 7 3 4 x 0 . 7 7 7 1 8 0 . 7 9 5 7 2 - 0 . 7 9 9 8 4 0 . 9 0 3 8 4 0 . 9 3 9 2 3 - 0 . 6 4 7 9 2 0 . 7 7 2 8 7 0 . 8 5 6 4 6 - 0 . 7 4 4 0 8 0 . 8 8 1 1 7 0 . 9 0 2 2 5 - 0 . 7 2 b 7 0 0 . 8 9 0 2 0 0 . 9 1 1 4 4 - 0 . 3 5 3 5 1 0 . 5 8 5 9 5 0 . 5 9 9 6 8 F E O A L O F E P - 0 . 4 3 9 9 3 - 0 . 5 4 7 3 4 - 0 . 7 9 9 8 4 0 . 3 7 7 1 , ! 0 . 7 7 7 1 8 0 . 9 0 3 B 4 0 . 4 7 2 4 1 0 . 7 9 5 7 2 0 . 9 3 9 2 3 1 . 0 0 0 0 0 0 . 2 7 1 7 8 0 . 4 1 1 6 8 0 . 2 7 1 7 8 1 . 0 0 0 0 0 0 . 7 1 4 7 1 0 . 4 1 1 6 8 0 . 7 1 4 7 1 1 . COOOO 0 . 3 7 4 9 4 0 . 9 6 7 6 0 0 . 7 5 0 B 1 C . 4 5 7 0 b 0 . 6 6 0 4 5 0 . 9 7 5 8 1 0 . 3 0 5 1 2 0 . 9 5 b 6 1 O.U<it22 0 . 2 2 9 1 3 0 . 3 7 1 2 4 0 . 5 / 3 0 7 A L P F E D A L D - 0 . 6 4 7 9 2 • - 0 . 7 4 4 0 8 - 0 . 7 2 6 7 0 0 . 7 7 2 B 7 0 . 6 6 1 1 7 0 . 8 9 0 2 0 0 . 8 5 6 4 6 0 . 9 0 2 2 5 0 . 9 1 1 4 4 0 . 3 7 4 9 4 0 . 4 5 7 0 6 0 . 3 0 5 1 2 0 . 9 6 760 0 . 6 6 0 4 5 0 . 9 5 8 6 1 0 . 7 5 0 8 1 0 . 9 7 5 8 1 0 . 8 4 6 2 2 l . O C O O O 0 . 6 9 5 0 0 0 . 9 5 5 2 3 0 . 6 9 5 0 U 1 . 0 0 0 0 0 0,78779 0 . 9 5 5 2 3 0 . 7 8 7 7 9 1 . 0 0 0 0 0 0 . 4 2 7 2 0 0 . 6 1 7 0 7 J . 4 6 1 7 i _ CA HG NA - 0 . 3 5 3 5 1 - 0 . 4 2 7 3 8 - 0 . 4 2 3 0 6 C . 5 6 5 9 5 0 . 4 1 7 5 9 C . 2 0 1 1 0 0 . 5 9 9 8 8 , 0 . 4 1 7 6 2 0 . 2 3 7 3 4 C . 2 2 9 1 3 0 . 2 6 7 0 4 0 . 2 5 B 5 0 0 . 3 7 1 2 4 - 0 . 0 0 3 3 6 - 0 . 1 0 1 0 5 0 . 5 7 3 0 7 0 . 4 3 3 8 2 0 . 2 5 7 4 4 0 . 4 2 7 2 0 0 . 0 8 8 2 2 - 0 . 0 0 7 0 0 0 . 6 1 7 0 7 0 . 5 4 1 9 7 0 . 3 2 6 3 8 0 . 4 6 7 7 1 0 . 1 8 1 7 1 0 . 0 7 0 6 8 1 . 0 0 0 0 0 0 . 7 3 3 2 6 0 . 2 7 2 3 5 K C E C BS - 0 . 2 5 4 1 4 - 0 . 7 3 6 0 6 0 . 5 4 7 9 0 0 . 1 6 1 6 7 0 . 6 6 4 0 4 - 0 . 4 9 3 3 4 0 . 0 9 7 2 7 0 . 9 1 8 4 0 - 0 . 5 4 2 1 3 0 . 1 3 1 4 4 0 . 3 7 0 8 2 - 0 . 2 2 3 6 9 - 0 . 2 6 . 8 0 1 0 . 8 5 9 8 4 - 0 . 7 0 4 0 4 0 . 1 2 7 5 0 0 . 8 4 2 0 5 - 0 . 4 3 1 9 9 . - 0 . 2 1 5 1 0 0 . 8 9 4 5 6 - 0 . 7 0 3 3 8 0 . 2 4 5 8 1 0 . 6 2 7 C 8 - 0 . 3 6 9 9 1 - 0 . 1 0 0 7 6 0 . 9 1 5 2 3 - 0 . 6 6 2 6 5 _ . 0 . 3 6 8 2 4 0 . 0 3 4 0 0 C L . 0 L 3 4 9 F I N E S B A S E S COLOR - 0 . 8 6 6 8 8 - 0 . 4 4 1 3 8 0 . 4 7 3 3 6 0 . 9 4 9 7 7 0 . 5 1 4 8 7 - C . 6 7 5 2 5 0 . 9 3 7 7 6 0 . 5 2 3 9 6 - 0 . 7 C 4 7 7 0 . 5 0 2 6 3 0 . 2 7 8 0 7 - 0 . 1 4 1 4 4 0 . 7 3 5 6 6 0 . 1 5 3 1 7 - 0 . B 1 3 2 0 . 0 . 9 5 3 9 9 0 . 5 2 2 5 8 - G . 6 B 2 8 8 0 . 7 7 8 9 0 0 . 2 3 8 6 0 - 0 . 8 7 9 4 9 0 . 9 2 8 8 7 0 . 6 0 9 1 7 - 0 . 6 1 7 0 7 0 . 8 6 7 3 5 0 . 3 1 7 8 2 - 0 . 8 0 0 36 0 . 5 5 5 3 9 0 . 8 6 3 1 1 - 0 . 2 8 9 2 5 T I M E - 0 . 3 5 5 9 5 . 0 . 5 4 7 0 1 0 . 5 4 3 3 1 0 . 2 9 8 9 1 0 . 7 5 7 0 9 0 . 4 7 t , 6 2 0 . 6 9 4 4 6 0 . 3 8 5 3 3 0 . 6 7 0 2 1 - 0 . 0 2 6 3 0 Mr. K A K r.Fr. F I N F S H A S P S r n i na T I M F | . P H C A C L 2 N - 0 . 4 2 7 3 8 0 . 4 1 7 5 9 - 0 . 4 2 3 0 6 0 . 2 0 1 1 0 - 0 . 2 5 4 1 4 0 . 1 6 1 6 7 - 0 . 7 3 6 0 6 0 . 8 6 4 0 4 0 . 5 4 7 9 0 - 0 . 4 9 3 3 4 - 0 . 8 6 b 8 8 . . 0 . 9 4 9 77 . - 0 . 4 4 1 8 8 0 . 5 1 4 8 7 0 . 4 7 3 3 6 . - 0 . « 7 i 2 5 . - 0 . 3 5 5 9 5 C . 5 4 7 0 1 OM F E O A L O C . 4 1 7 t 2 0 . Z 6 7 0 4 - 0 . 0 0 3 3 6 C . 2 3 7 3 4 0 . 2 5 6 5 0 - C . 1 0 1 0 5 0 . 0 9 7 2 7 0 . 1 3 1 4 4 - 0 . 2 6 8 0 1 u . 9 1 8 4 0 0 . 3 7 0 8 2 0 . 8 5 9 6 4 - 0 . 5 4 2 1 3 - 0 . 2 2 3 6 9 - 0 . 7 0 4 0 4 0 . 9 3 7 7 6 0 . 5 0 2 6 3 0 . 7 3 5 6 6 0 . 5 2 3 9 b 0 . 2 7 8 0 7 0 . 1 5 3 1 7 - 0 . 7 0 4 7 7 - 0 . 1 4 1 4 4 - 0 . 8 1 3 2 0 0 . 5 4 3 3 1 0 . 2 9 8 9 1 0 . 7 5 7 0 9 . . 1 F E P A L P F E O 0 . 4 3 3 * 2 0 . C 8 B 2 Z 0 . 5 « 197 0 . 2 5 7 4 4 - 0 . 0 0 7 0 0 0 . 3 2 6 3 6 0 . 1 2 7 5 0 - 0 . 2 1 5 1 0 0 . 2 4 5 8 1 0 . 8 4 2 0 5 0 . B 9 4 5 6 O . B 2 7 0 8 - 0 . 4 3 1 9 9 - 0 . 7 0 3 3 8 - 0 . 3 6 9 9 1 0 . 9 5 8 9 9 0 . 7 7 8 9 0 . 0 , 9 2 8 8 7 0 . 5 2 2 5 8 0 . 2 3 8 6 0 0 . 6 0 9 1 7 - 0 . 6 8 2 8 8 - 0 . 8 2 9 4 9 - 0 . 6 1 7 0 7 0 . 4 7 6 6 2 0 . 6 9 4 4 6 0 . 3 8 5 3 3 A L D CA MG 0 . 1 8 1 7 1 0 . 7 3 3 2 6 l.ooooo 0 . 0 7 C 6 8 C . 2 7 2 3 5 0 . 7 1 1 4 0 - 0 . 1 0 0 7 6 0 . 3 8 B 2 4 0 . 8 6 1 2 1 0 . 9 1 5 2 3 0 . 6 3 4 0 0 C . 4 3 4 4 9 - 0 . 6 6 2 6 9 0 . 0 1 8 4 9 0 . 1 1 5 0 0 0 . 8 6 7 3 5 0 . 5 5 5 3 9 0 . 4 1 5 U 5 0 . 3 1 7 8 2 0 . 8 8 3 1 1 0 . 9 6 0 2 0 - 0 . 8 0 0 3 6 - 0 . 2 B 9 2 5 0 . 0 2 3 0 4 0 . b 7 0 2 1 - C . 0 2 6 3 0 - 0 . 3 9 2 5 8 NA 1 C E C C . 7 1 1 4 0 0 . 8 6 1 2 1 0 . 4 3 4 4 9 1 . 0 0 0 0 0 0 . 8 1 5 0 5 0 . 2 7 C C 3 0 . 8 1 5 0 5 1 . 0 0 0 0 0 0 . 1 6 1 1 5 0 . 2 7 0 0 3 0 . 1 6 1 1 5 1 . 0 0 0 0 0 0 . 2 4 7 5 6 0 . 2 9 9 2 8 , - 0 . 5 7 8 7 1 0 . 2 5 7 5 1 0 . 1 3 1 5 8 0 . b 4 b 4 4 0 . 6 4 1 6 8 0 . 7 4 9 0 0 0 . 5 5 6 0 6 0 . 1 4 5 7 1 0 . 3 5 5 6 0 - 0 . 6 9 7 6 2 - 0 . 4 1 5 4 1 - 0 . 5 8 6 0 9 0 . 4 7 6 2 7 BS F I N E S • B A S E S 0 . 1 1 5 0 0 0 . 4 1 5 0 5 0 . 9 6 0 2 0 0 . 2 4 7 5 6 0 . 2 5 1 5 1 0 . 6 4 1 6 8 0 . 2 9 9 2 8 0 . 1 3 1 5 8 0 . 7 4 9 0 0 - 0 . 5 7 8 7 1 0 . 8 4 6 4 4 0 . 5 5 6 0 6 1 l . O C O O O '' - 0 . 4 6 4 9 9 0 . 1 1 1 3 3 - 0 . 4 8 4 9 9 1 . 0 0 0 0 0 0 . 5 0 5 8 7 0 . 1 1 1 3 3 0 . 5 0 5 8 7 1 . 0 0 0 0 0 0 . 5 8 1 7 3 - 0 . 6 6 7 6 7 - O . 0 9 3 5 2 _ - 0 . 7 1 8 0 7 0 . 5 1 3 4 8 • 0 . 7 8 1 Q 2 C O L O R 0 . 0 2 3 0 4 0 . 1 4 5 7 1 0 . 3 5 5 8 0 - 0 . 6 9 76 2 , 0 . 5 8 1 7 3 - 0 . 6 6 7 6 7 - 0 . 0 9 3 5 2 1 . 0 0 0 0 0 - 0 . 6 8 0 7 4 T I M E - 0 . 3 9 2 5 8 - 0 . 4 1 5 4 1 - 0 . 5 8 6 0 9 0 . 4 7 8 2 7 - 0 . 7 1 8 0 7 0 . 5 1 3 4 8 - 0 . 2 8 1 0 2 - 0 . 6 8 0 7 4 1 . 0 0 0 0 0 D E T E R M I N A N T OF CCR REL AT ION M A T R I X » 0 . 0 1 0 . 0 1 C O R R E L A T I O N . . H A T R IX IS S I N G U L A R , . . C A N N O T .BE _IJ4VF .PJcp . Table I, 2.1.4. A l l horizons tested co l l e c t i v e l y . -189-APPENDIX I , 2.2 VARIMAX ROTATED FACTOR MATRICES PRODUCED FOR SELECTED SOIL VARIABLES FROM THE ANALYSIS OF THE COX BAY CHRONOSEQUENCE The fou r t ab l e s presented i n d i c a t e f a c t o r matr i ces generated f o r the c o r r e l a t i o n s found between s o i l v a r i a b l e s i n the top B hor i zons (Table I , 2 . 2 . 1 ) , the hor izons d i r e c t l y below the top B hor i zons (Table I , 2 . 2 . 2 ) , the lowest hor izons sampled (Table I , 2 .2.3) and a l l hor i zons t es ted c o l l e c t i v e l y (Table I , 2.2.4) from the Cox Bay s o i l chronosequence. These f a c t o r matr i ces represent a syn thes i s o f the c o r r e l a t i o n s g iven i n Appendix 1, 2 .1 . SEVEN $ 0 k i OF ACE - TOP B HORIZON! ONlV FILE KONAKE.; . ICREATION OATE - 02/22/781 VAR1 MAX R O T A T E D F A C T O R M A T R I X  F A C T O R 1 F A C T O R 2 F A C T O R \ 3 F A C T O R 4 P H C A C L 2 - 0 . 6 T T 9 3 - 0 . 0 0 5 2 0 0 . 5 7 1 8 6 - 0 . 3 7 8 4 5 N 0 . 8 9 3 6 5 0 .2 6 4 7 3 0 . 1 4 3 T B 0 . 1 1 2 1 6 OM 0 . 9 5 1 4 6 0 . 0 1 9 2 4 0 . 0 9 0 4 9 0 . 2 1 0 3 5 FEO 0 . 1 2 1 3 9 0 . 0 9 2 4 0 - 0 . 2 7 8 2 0 0 . 7 3 9 2 8 ALO 0 . 9 0 8 2 0 - 0 . 2 8 2 3 2 0 . 1 6 0 1 4 - 0 . 0 6 3 7 9 FEP 0 . 9 6 6 7 1 0 .1 2 2 4 8 - 0 . 1 0 5 7 0 - 0 . 0 6 0 8 2 A L P 0 . 8 5 7 5 6 - 0 . 3 7 5 1 1 0 . 0 4 8 0 9 0 . 0 6 3 O 0 FED 0 . 9 5 7 1 5 0 . 1 8 4 2 2 - 0 . 0 9 8 4 5 - 0 . 0 8 0 7 1 . ALD 0 . 9 7 8 9 3 - 0 . 1 3 1 1 4 0 . 0 8 6 0 6 - 0 . 0 6 1 6 1 CA 0 . 2 0 2 5 . 3 0 . 2 7 2 9 5 0 . 8 1 3 9 7 - 0 . 0 9 8 8 2 MG - 0 . 1 0 2 5 6 0 . 9 7 8 8 8 - 0 . 0 2 7 7 4 -o.oioei NA 0 . 0 5 0 1 2 0 . 4 4 8 5 4 - 0 . 7 3 3 8 0 0 . 2 0 7 0 2 K - 0 . 1 0 4 3 5 0 . 8 6 0 4 5 - 0 . 2 4 8 4 7 0 . 1 3 7 2 4 CEC 0 . 9 1 2 2 8 - 0 . 0 7 2 9 9 0 . 0 4 0 8 6 0 . 0 4 6 0 9 BS - 0 . 7 7 9 0 9 0 . 4 7 5 0 2 0 . 3 4 5 5 2 - 0 . 0 1 5 7 3 F I N E S 0.B91B4 0 .0 9 3 1 0 - 0 . 1 5 9 1 5 6.22227 B A S E S 0.0T56T 0.92450 0.33338 0.01207 COLOR -0.81642 0.08089 0.08991 0.49139 TIME 0 . 9 1 7 0 9 - 0 . 2 7 4 9 3 0 . 1 0 2 1 1 0 . 2 6 1 4 3 • i i Table I , 2 .2 .1 . Top B ho r i z ons . SEVEN SOILS OF ACE - HOP IION BELO* TOP B HORIZON ONLY PILE NONAME ICREAT ION. OATE_.*_ 01/22/781 V A R I M A X P O T A T E D F A C T O R M A T R I X _ F A C T O R 1 FACTOR 2 F A C T O R 3 i _ P H C A C L 2 - 0 . 6 1 6 8 0 - 0 . 0 6 3 0 9 0 . 7 1 7 0 2 N 0 . 9 5 3 9 2 0 . 1 0 6 3 8 - 0 . 1 8 2 9 2 3M 0 . 9 6 4 0 7 - 0 . 0 5 2 0 5 - n r » l < ! 7 7 F E O 0 . 9 1 0 8 8 0 . 1 5 4 6 3 0 . 3 1 8 0 6 ALO 0 . 9 7 9 2 8 - 0 . 1 6 8 7 2 - 0 . 0 0 4 1 6 F E P 0 . 9 6 7 6 8 - 0 . 0 9 1 6 5 0 . 0 5 9 8 1 A L P 0 . 9 6 6 2 3 - 0 . 2 3 2 7 7 0 . 0 3 7 8 4 F E D 0 . 9 3 1 5 7 0 . 2 8 5 7 6 0 . 1 5 3 5 4 A L O 0 . 9 6 6 9 1 - p . 1 2 1 ' Q - 0 T 1 6 0 3 0 CA 0 . 4 6 1 7 6 0 . 5 7 5 0 0 0 . 6 5 8 3 6 MG - 0 . 0 2 3 7 0 0 . 9 6 B 2 1 0 . 2 2 8 5 4 NA - 0 . 0 5 7 6 0 0 . 9 3 9 5 0 - 0 . 2 8 4 4 2 K - 0 . 3 1 4 2 9 0 . 9 4 3 3 7 - 0 . 0 8 0 2 0 C E C 0 . 9 0 7 4 6 0 . 2 7 0 9 2 0 . 0 9 5 8 7 BS - 0 . e 0 6 5 2 0 . 2 0 3 1 3 F I N E S 0.99294 -0.04274 -0.00516 B A S E S 0.1785S 0.90732 0.37829 m i nR -0.78228 0.43713 -0.12123 T I M E . 0 . 7 8 3 7 5 - 0 . 5 2 8 1 3 -0.17002 Table I , 2 .2 .2 . Horizons d i r e c t l y below top B ho r i zons . UvEVsokS OF A C E - LOWEST H D R I Z O N ~ G I V E N IN P R O F I L E " J»ILE NONAME I C R E A T I O N D A T E - 0 2 / 2 2 / 7 8 1 V A R I MAX R O T A T E O F A C T O R M A T R I X F A C T O R 1 F A C T O R 2 F A C T O R 3 P H C A C L 2 - 0 . 3 3 1 6 7 0 . 1 5 7 5 2 0 . 7 3 7 6 7 . N 0 . T 9 1 9 5 - 0 . 0 3 4 5 6 - 0 . 4 5 8 5 8 OH 0 . 9 1 5 2 9 - 0 . 1 8 6 4 4 - 0 . 3 3 4 2 2 F E O 0 . 0 9 2 7 6 - 0 . 2 4 9 1 3 0 . 8 9 3 9 5 A L O 0 . 8 7 0 1 6 - 0 . 4 7 4 7 2 0 . 0 7 7 1 1 F E P 0 . 9 5 3 3 7 0 . 1 4 7 3 3 0 . 0 6 4 9 9 A L P 0 . 8 9 0 4 7 - 0 . 4 3 8 7 5 0 . 0 7 9 4 7 F E D - 0 . 1 0 5 7 7 0 . 0 1 5 0 1 0 . 9 6 0 7 9 . A L D 0 . 8 9 0 9 7 - 0 . 2 8 7 3 0 - 0 . 3 0 4 2 3 CA 0 . 3 6 4 4 7 0 . 8 0 6 5 5 - 0 . 1 0 7 8 4 MG - 0 . 4 0 6 2 4 0 . 8 8 9 8 6 0 . 0 3 2 4 4 NA - 0 . 1 9 0 8 8 0 . 8 8 1 4 5 - 0 . 0 1 9 8 4 K - 0 . 6 6 5 4 3 0 . 6 9 4 7 2 - 0 . 0 2 7 4 8 C E C 0 . 9 1 4 8 3 0 . 0 0 9 5 6 - 0 . 3 8 7 5 5 B S - 0 . 4 3 7 5 0 0 . 8 7 3 1 1 0 . 1 7 5 3 7 F I N E S 0 . 8 0 5 6 5 0 . 0 1 6 8 2 - 0 . J 1 5 9 1 B A S E S - 0 . 0 1 1 2 3 0 . 9 8 0 5 9 - 0 . 0 5 4 7 2 C O L O R - 0 . 7 7 3 2 5 0 . 4 1 0 5 3 - 0 . 1 7 6 5 8 T I M E 0 . 7 3 5 6 2 - 0 . 6 7 3 7 3 0 . 0 4 8 1 1 Table I, 2.2.3. Lowest horizons sampled. S E V E N S O I L S OF A C E - CHft Li NO S E Q U E N C E ON B E A C H _FIL£. NONAME I i M A l I . Q t i J A T i ^ ^ 2 / Z O j L 7 j L l VARIMAX RETATFD FACTOR MATRIX F A C T O R 1 FACTOR 2 F A C T O R 3 P H C A C L 2 - 0 . 8 0 2 0 2 - 0 . 4 3 5 6 5 0 . 1 3 6 8 7 N C . 8 8 1 8 5 C . 2 2 6 7 6 0 . 2 3 4 8 1 C M 0._9 2 35 2 0 . 2 3 i 9 2 0 . 2 C77jb_ F E O 0 . 4 2 1 2 0 0 . 2 6 7 7 6 - 0 . 0 7 5 4 6 A L O 0 . 8 9 9 4 5 - 0 . 2 4 7 9 8 0 . 2 0 7 4 9 ±i£ 0 . 8 7 3 9 0 0 . 2 7 6 1 4 0 . 2 0 7 6 8 A L P 0 . 9 2 3 0 3 - C . 1 4 2 6 3 0 . 1 S 1 6 1 F E D 0 . 8 1 3 4 8 0 . 3 6 e 5 5 0 . 2 5 5 0 4 _A L D 0 . 9 5 3 2 3 - C . 0 3 4 8 0 0.2.0196. CA 0 . 3 5 1 0 6 0 . 3 7 7 C 2 0 . 7 9 4 6 9 PG 0 . 1 4 3 4 7 0 . 8 5 7 8 9 0 . 4 3 4 6 4 NA 0 . 0 6 0 7 0 0 . 8 4 T 1 4 - 0 . 0 1 6 7 2 K - C . 121)76 0 . 9 1 3 5 7 0 . 1 4 4 2 4 C E C 0 . 8 7 3 7 1 0 . 2 0 0 3 3 0 . 3 1 6 0 0 8 S - 0 . 7 C 7 2 4 C . 2 6 4 5 8 0 . 1 6 7 4 0 F I N E S 0 . 9 1 1 8 0 0 . 2 9 2 2 4 0 . 1 2 8 6 8 B A S E S 0 . 2 3 7 1 5 0 . 7 5 1 5 9 0 . 6 1 4 8 4 SMLOU -e . r a B Q t , ama - 0 . 1 9 9 0 * T I M E 0 . 7 3 9 9 8 - 0 . 5 0 3 1 6 - 0 . 1 4 4 0 0 Table I, 2.2.4. A l l samples tested co l l e c t i v e l y . -192-APPENDIX I I , 3.1 WEEKLY ANALYSIS OF THE WEATHERING PRODUCTS FROM ACETIC ACID LEACHING OF SOIL MATERIALS IN A-MODIFIED SOXHLETS The f o l l ow i ng t ab l e s g ive the elemental d i s t r i b u t i o n s found i n the weather ing products generated i n a soxh l e t experiment i n which a c e t i c a c i d was used i n the leachate (Par t I I , Chapter 3 ) . Table I I , 3 . 1 . 1 , l i s t s the amounts of va r ious elements found in the c en t r i f uged - l ea cha te s of the soxh le t s over the weekly i n t e r v a l s . A l so l i s t e d i s the amount o f sediment found i n suspension of these l e a cha te s . Sample i d e n t i f i c a t i o n i s made by the code number 5 ( f o r l eacha tes ) f o l l owed by the soxh l e t number (given i n Par t I I , Chapter 3 ) . Soxh lets 1 to 3 were operated a t a low l each ing ra te and soxh le t s 4 to 6 a t a high l each ing r a t e . Table I I , 3 .1 .2 , g ives the t o t a l e lemental a na l y s i s o f the suspended sediment which was taken from the l ea cha te . The code number ifior sediment i s 50. Table I I , 3 . 1 .3 , l i s t s the weights and elemental percentages found f o r the adhered-p r e c i p i t a t e s , which were taken from the s ides of the soxh l e t f l a s k s . -193-Table I I , 3 .1 .1 . Elemental d i s t r i b u t i o n i n cen t r i f uged - l ea cha te s Leaching Sample Time Ca Mg Na K Fe Al S i pH sed. (weeks) m g - ( m g ) SI S 1 1 2 70 30 37 , S 16 1 1 , 6 5 3. 1S 68 Rl 5.1 5 «. 16,5 ? s 3.89 t L. T 700 5 1 ..... s ± .... .. 3 4 35 3? .S 7 6 30 36 7 6 6 . s 5 16 2.75 2.25 4 t 6 S o7 60,5 77 5.4 «.85 3, A 30,5 32 78 S i t n f -* -* " 3.64 A60 3.62 3a0 1 D T « A Cl rt 31 S? s ? 8 1 2 7 3 7 t (JO " 1 . 5 37 3S t" 16 4.15 12.0 3, 75 50.5 58.5 70 3.25 6 ,4 h , JJJL^J «3,5 10.5 ?7 a .^ju..l._ 3.85 3.89 7 7 —I.U.O.U.-060 680 s ? 32 S? 3 4 6 32 .5 -31 .5 b 7 .... 37 .5 37.5 <>0.5 3 .5 '1 _ 0.3 2,45 2.3 4.65 66 .5 65 6? r5 11.75 6.85 y »1 33 32 78 5 3 . 63 3.62 7 87 350 450 t rt i rt SP S3 S3 8 1 ? 6? ™ . 5 XS , s 4fl "7 3S ,S 13.S IB « .S .3. as 13.0 ?,»,s 54 72 6« ,5 3.8 5 . 05 6 ns —~~J..U.«_iJ 43.5 20 P7 S 5....Q../„ 3 .8 3 . 02 t Jk ~) —LIX-1.-LL— fl90 «10 /i i n S3 S3 S i _ ..  3 4 6 3 a . s 33 Jj.Q 37 .5 35.5 - Ah.. 5 5.5 1 2.5 2 .4 2.25 3,65 62 55 5^.5 6.5 5.4 31.5 32 78 S 3,61 3 , 56 1 7 u ,. - i-l ,U aso 320 a i A S3 s u s« S 1 68 ISO La9.5 uu 57 ^ 16 54 so 3.85 1«,0 8 .0 52.5 63 Ss.S .. -^x.^.o.j 3 . 3 2.6 2 .o —..JU....3 43.5 30,5 47 -3..«~i..o... 3.79 «.2 n —O.J..U..... 870 1210 SM S4 So 3 0 6 114.5 101 PI 7 37.5 3 6 . 5 i l .5 5 ? . 5 «7 . 5 i o 5 *.o e 1 1 ,Q 54.5 65 61,5 2.S5 1.7 1 « 4 8 . 5 53 S*. ^ 3 . 0 3 890 3 ,88 270 it if t * tt t\ s« s s s s 6 1 2 1 43 ISA.5 1 ?P ,S 3* 36 4? 04 47 l S , ; 11 .65 18 .65 A,/i 35 HI nO 1.7 2.1 ti 1 48,5 36 70 M. » 1 f • U.06 a , u 1 OP j i 2410 580 1 1 O A s s s s s s 3 u 6 RO 76 1ft« r5 "S.S 4 0 .S . So '.. 22.5 2" 76.S 5.75 5 , 65 1 1 .9 86,5 «3.5 hO , 5 " . 3 5 3.25 1 , p 37.5 30 67 5 3,85 3.82 I AO U 1100 750 1 0 rt s s S6 S 6 8 t ? 170 1 77.S t i.e. hi 5«* II 1 76.S 52.5 '|7 10.15 17 .65 (1,11 6? 77.5 h*. , S 2 3 . 3 5 7 /I 43.5 27.5 ti*z U-,« 1 c... 4,08 4,18 7 Q £ 1 1 U— 1020 1470 Sfr S6 5* 3 /j 6 1 1 0 . 5 97.S P 0 ? T s "3 46.5 6 1 4« 46 0 2 . 5 7.85 7.6S 1 1 , 0 76 76.5 7-1,5 3 . 35 «.o 1 n 41 5« S3 5 i | T J -3.03 3 ,02 /I 1 C 1 fl 0 Q— 1 190 950 ? TO rt s * 1 OF F e 173.S So 0 2 . 5 11 .65 67 1.35 49,5 U-f.J.,3 — 1760 -194-Table I I , 3 .1 .2 . Tota l e lemental a n a l y s i s o f suspended sediments. Leaching SamDie Time Ca Mg Na K Fe Al S i (weeks) — %— (%xl0 2) S f 1 0.01 o . l d o.5a 6.05 3.0 13.9 o . U 5 0 1 2 o.o? n.M o.ua n.02 'i'.8 15 0.11 hJLi 3 tCuJ a^ -Lb p. 27 n.fil lU> 13.5 0 .13 5 0 1 n o'.oi n . i a o.23 o .o i 2 .3 l a . a 0.13 501 6 0 O.o« o'.16 0.01 5'3 12 O . U 5..0J S. 0.03 0.21 0.23 O^ -LUt U.I 1 i .« 0,19 502 1 0.0? o.?2 0.7 6.07 0.2 l a .5 0.1? 502 2 0.03 n.37 0.33 n.02 6.2 13.7 0.1 SJL»2 3 f).H o.?1 Q . 2 ? o, n t fl. a 1 /i t ? o , 1 t 5n2 a c'.oi" f . 18 o.2ft h.01 2'.9 l a .3 o . l ? 5 0 2 6 0.01 0.1.2 o.IO n.Ol 6.5 12 0,10 _ 50^ -J C^£2 0. 3,1 Q.J12 S. 9 17— a,UL_ 50i 1 0.0? 0 .19 o.«5 0.05 5 > l a . l 0.15 50i 2 0.02 0 ,33 0.35 n.02 6 13.5 ~0»1S-sn i 3 n.01 0.17 tU-3 n.fil ii i n ,5 n, i R 5 0 3 • a O'.OI n,»9 0.31 0.01 2'.6 1/1.6 0.15 503 6 0 0.06 o . l ? 0 5'.1 13.3 0.19 3.IL3_ ft CU-02 n, 19 CW1L3 ri.J12 S3-. 1 ? . 1 0-.2 504 I O'.OJ 0.0V o . 3 3 rt.09 <«.« 10,9 0Y2? 50« 2 0.09 n.16 1.38 o.07 1 .3 10.« 0,23 I " 0 " ^ o o ' o o ?5 n OT I X H . 9 n.?a 5«"* « O.oi fi.oa o.26 ft.02 1.5 13.1 0.21 sot 6 n'.oi o.na o . l S n.03 1,5 l i . 7 o.Zn S-Cii* 8 o'.ai n.n^ 0.27 a.oa U 6 11.9 o.2<> 505 1 0.02 o . l 0.« 6.09 3'.7 11,1 0.2? 505 ? 0.02 0.1 0.52 0 .04 1.9 H . 5 0.25 > SilS 3 f i .m P . oh n,tq o.o? ilji i i . ? p.? a 505 a O'.OI 0.07 0.21 6.02 2.6 1?.9 0.2a 505 b 0.0? O.Oo 0.29 n.02 2'.7 l ? . l 0.2? 5JL5 9 fl'. 0? 0 . 0 * £UJjo 0.05 LjJ 11 .? 0,?7 50«> 1 0'.03 n.11 0.5 n.12 3.7 i n . 5 0,25 50h 2 0.02 0.06 0. 19 6.06 l'.a i t . ft 0.21 5JH> 3 fl'. 0 1 o.QS • o.?-< n.o^ U i i 11.9 p , ? 3 5nt. « o .o i o.na o.2l 0.02 l.n 12 0.2a 500 6 O'.OI 0 . 0 5 o . l 0.06 1.9 l j , 8 0.2? S!L£_ « 0.0? . n T 33 n .05 Cjt l i . q f).?fl -195-Table I I , 3 .1 .3 . Weights and t o t a l e lemental composi t ions o f a dhe r ed -p r e c i p i t a t e s . Sample Leaching Time (weeks) Weight (g) Ca Mg Na K ol Fe Al Si lu 1 8 0.71 0.0 0.04 0.11 0.01 6.2 ' 13.4 20 2 .8 0.80 0.0 0.05 0.09 0.0 7.8 13.2 20 3 8 1.04 0.0 0.05 0.08 0.01 5.7 12.4 21 4 8 5.12 0.10 0.10 0.33 0.04 1.6 10.8 23 5 8 5.49 0.01 0.05 0.14 0.03 2.6 11.9 24 6 8 4.33 0.02 0.06 0.16 0.04 2.1 11.2 25 -196-APPENDIX I I , 4.1 WEEKLY ANALYSIS OF THE WEATHERING PRODUCTS FROM A TIME-BASED EXPERIMENT USING A- AND B-MODIFIED SOXHLETS The data l i s t e d i n the f o l l ow i ng t ab l e s i n d i c a t e the elemental d i s t r i b u t i o n s i n the weather ing products which r e s u l t e d from l each ing of s o i l ma te r i a l s i n A- and B-modif ied soxh le t s (Par t I I , Chapter 4 ) . Table I I , 4 . 1 . 1 , g ives the amounts of va r ious elements found i n the c en t r i f u g ed -leachates of the A- and B-modif ied soxh le t s over the g iven time i n t e r v a l s . A l so l i s t e d i n t h i s t ab le are the amounts o f sediment found i n suspension i n the l ea cha te s . Table I I , 4 . 1 . 2 , g ives the t o t a l e lemental composi t ion o f these suspended sediments. The weights and t o t a l e lemental composi t ions of the adhe red -p rec i p i t a t e s from the s ides of the A- and B-modif ied soxh l e t f l a s k s are g iven i n Table I I , 4 . 1 . 3 . Sample coding i s as f o l l o w s : A-modi f ied soxh l e t c en t r i f uged - l ea cha t e - 3 B-modif ied soxh l e t c en t r i f uged - l ea cha te - 4 A-modi f ied soxh l e t sediment - 30 B-modif ied soxh l e t sediment - 40 Sample des igna t i on i s g iven as the code number f o l l owed by the soxh le t number or l e t t e r as g iven i n Par t I I , Chapter 4. -197-Table I I , 4 . 1 . 1 . Elemental d i s t r i b u t i o n i n A-modi f ied soxh l e t l eacha tes . Sample Time Ca Mg Na K Fe Al S i PH sed. 1 I.I a o L c 1 VWeeKS) lily vug; 3 1 1 1 179.5 56 6l .5 20,0 91 2.1 44.5 4 , 34 1230 31 l 2 167 4X A3 11 8 0 . 5 4, I 5 3 0.16 2050 311 . 3 154.5 3?.5 7 8 9.0 67 1 . 0 5 62,5 4.15 102C 311 4 13° 2ft.5 89 9.25 57.5 2.?5 58,5 4.09 2160 3»? l 1 6 6 5 6 . 5 s3 .s 20.0 9X.5 2,1 41 0 , 3 3 1??0 31? 2 i s s . s 3fl 55.5 9 . 7 80 3.75 55 4,13 1990 3 1 ? 3 126 35 5 3 8.05 09 2.0 53 4,12 2710 XI? o 1 oo 3? /i9 7-6 6 X . 5 1.? 56 ,5 X.Oft 1 ano 39 t ? f . s 5 5 o3.5 21 . 9 91 2 36 4.35 1350 39 2 174.5 32.5 67.s 11 .4 74 2.85 60 4 ,12 1880 39 3 127,5 25 6? 8.65 5?,5 3,4 5 3 0,07 1810 39 4 97 21 . 5 62 8 . 0 5 43.5 3.15 62,5 3.08 1630 39 5 * 3 . 5 21 .5 62.5 8.55 46 2.7 61,5 3.97 1190 39 6 91.5 ?1 , 5 • 75 9 r 7S 4?,5 1 .AS 77,5 T,Q/i 9/1O 39 7 9 5 2? flO. 5 10,15 40 1.7 71,5 O 1480 39 8 75 .5 2? 60 8.65 40 2.65 60.5 3.88 1170 3 1 0 1 ???,.5 5 6 66,s -22^25 ax 2,15 XX 0 , xs 1 600 3 1 0 2 ?li4 37.5 7 6 , t ; 11 , 0 7« 3 . 0 49 4.23 2490 3 1 0 3 181 29 R7 10.0 53.5 3,65 49,5 4.15 2180 310 (i 117 ? « . 5 79. «; 1 0 .55 SA.5 ? T AS 6 5 a, OH 1 700 3 1 0 5 " 3 . 5 2 0.5 82 J1.2 49,5 1 .75 73 0 , 0 1 1220 3 1 0 * 99 2ft 7 9 10.8 53 2,65 62,5 3.99 1580 3 1 1 7 9 5 2JL - 84,S 11.4 5? 1,65 63,5 0 , 0 ? 1?70 3 1 0 8 ' 9 . 5 27 71 9 , 8 51.5 2.?5 58 3.90 1360 37 1 1 88 4 9 55 20,9 7o,5 1 .65 43.5 4.31 1050 37 ? ??0 37.5 7 5 12.US hx .S 3, «S 5/1,5 0,10 ?X | 0 37 3 121.5 26,S 4 7 8 5o 4.0 52 3 . 0 7 1500 37 a 0 6 . 5 2.3.5 5 3 , 5 7.3 48 3.8 48,5 3.9 1140 37 5 9ft 24 .66.5 9 . X 5 40 1,7 63,5 a, ox 690 1 37 6 1 04.5 24 .5 70 " .15 4 5 2.35 64 3.9o 1300 37 7 9 6 19.5 60.5 8.15 35 1 .55 05 4.12 1470 37 A 87 2 a 75,=; 1 0 .US .1/1,5 ?, AS AX ,5 X , 9A 9/10 37 10 161 4?.5 166 16.15 7A .5 1.15 68.5 4.24 2710 3 7 12 196.5 40 465 17.5 7? 0 . 0 62.5 4 .36 4630 38 1 1 66 .5 5ft u2 20,? 7? 2.65 X? 0 ,?fl 1 o?n ifl 2 17?.5 «1 5".5 12.4 80 2.4 69 4.1 1270 38 3 147,5 34 5*.5 9.35 6 ? 3.05 52.5 4 . 05 2210 L 38 0 • 3ft ?7 5 7".5 10.1 5/1.5 ?.fl5 zi.ns 177(1 ( iH 5 130.5 26 6« .5 10.5 50 2.35 54 4 , 06 1680 38 6 1 13.5 2ft 79.5 10.25 «8.5 2.55 60.5 0.01 1690 in 7 6fl 15.5 45 5,0 ? A 1 ,/|S ?9 u, 1 1 160 38 8 62.S 27 75 10.8 50.5 2.75 64.5 3 . 9 7 1330 3ft 1 o 140.5 45 13.5 14 73 2,95 51 .5 4.21 2850 > 1? 1 30 , 5 40 ?,9 16,7 5 7 , 5 ? , AS AO , S X , 88 t 5 1 0 1 1 19 5 9 37.5 19,15 96.5 2.4 36.5 4,22 1340 31 2 101.5 31 3 1 . 5 7.9 55 3.5 50 3.9t 1190 3 1 3 1 00 ?6 uS .S 7.5 5X 4,55 55 , 5 3 1 9 S 1 xon 31 4 11 ? 21 .5 50.5 7,95 46 2.75 54.5 3,97 1380 31 5 1 09 20 60 9.55 35.5 3.1 58 3.94 1370 31 6 I f : /I 5 ?n 71 " . ? ii n 1 , ° 5 S 3 X Qh 1 iinn 31 7 »1 .5 21 63.5 8.75 36 3.05 61,5 3.9 950 31 8 00 10.5 83 10.3 31.5 1 .65 78,5 3,96 120 3l 1 0 1 RA 3 x 15O 1 4 ,65 50 , 5 1 ,x AO S a ?? ?A/|0 31 12 3M 36,5 I 85.5 14.3 60 0,8 65 4,28 2950 31 14 1 70 33.5 165 17.55 61 1 .05 58,5 4,29 3510 31 It) 1/0,5 X7,s 175,c ^6 j S 1 L. 6' /I 3A X A 11 ft 3? 1 129,S 5 9 40 19.0 70 2 . 7 34 4.2 1580 3? 2 123.5 20.5 43 8,65 47 3.35 40 3.97 1430 •i? .... 3 2/i.S (.0,1! 9,05 07 a, 7 s 09 , S a, ox 1 sxo 3? 4 1 10 2?.5 6 ° . 5 8.9 40 2.65 51 .5 3.98 1530 3? 5 107,5 21.5 7 0 9.8 30 2.5 62,5 3.94 1410 3? 6 MO ?1 A7 ft.o X*. 0 , ns ss X Q 1 a 1 ft i? 7 78 17 68.S 8,75 3ft,5 2.6 66,5 3.89 1110 32 8 8 0 1ft 67 8.75 27.5 3.75 58 3,89 1330 3? ... 19 151,5 3x,S 1 1 9 .S 1?,6 03 ? .1 «>X a _ 1 ?X I 0 32 1? 1 5 7 . 5 2ft.5 lu8 16,65 47.5 0.85 70,5 M.I 4 . 16 1230 12 1« 135.5 ?7.5 US .* ; 1 0 . a 4 4 1.95 51 4 . 1 1 2060 1*. 1 i s PA.* 123 16.05 fl6 1 71 a ta -125.0. ._. -198-Table I I , 4 .1 .1. Continued. Sample Time Ca Mg Na K Fe Al Si pH. sed. 1 m n 1 vweeKS; mg . _ _ _ ... _ . - vmg; is 1 1 <ii 57 4 4 10,9 78.5 2 .0 37 . 5 0.22 1370 i 3 2 153 .5 28 53 10,05 07 2.65 56,5 0.03 1020 i 3 3 1 1 * ? P s s 8 , 7 5 03 *.T5 * s 3 , 0 3 1370 33 0 120 2o 75 9 03 1.05 63 0,01 1080 33 5 113 .5 19 82 0.5 35 .5 2 .0 62 3,06 1570 47 6 i ii a p 7 O o 7 7 5 7 5 7 o». 1690 33 7 82 .5 22 68 0.6 33 «.1 55 3.02 1220 33 8 02.5 23 70 .5 0.55 30 2.05 57 . 5 3.93 1120 33 1 o 1 sn 7 Q 1 ? u I 7 t 7 5« 1 e 5** 5 4,14 2390 33 12 164 30 153 15,35 51 . 1 56 4.17 2720 33 14 1 3 7 , 5 3«.5 123.5 14,65 58 2.35 09 4,16 2600 37 1 6 1 ? " 7^ i 2?,e 1^ . 6 1 55 57 '1 1 '1 2?'!" 33 18 1 4 1 "3 .5 177 18,65 50 l . o 58,5 4,13 2800 33 20 1 2 3 "2 .5 136 17.65 64.5 2.3 45 4,13 2590 3 4 1 1 7 1 6 7 38.5 1 9 , 0 75 ,s 2.8 3 n 5 0,22 1000 iu 2 1 26 3 8 . 5 30.5 0,65 71 3.2 51 4 1380 iu 3 <>7.5 2 8 a t .5 7 .4 00 5 40 , 5 3,06 1300 3 4 u 1 .- Q S ?<; 57 8,7 4 7 , 5 3 7 SS 7 O A 1400 i a 5 107.5 2 3 67 8.0 30 3 , 0 5 56 3,04 1330 3 4 6 9 8 24 60 8 . 0 30 3.45 54 , 5 3.03 1260 iu 7 0? ?n .s 7 5 . 5 9,s *7 ? . 1 69 , 5 3,05 1020 iu . 8 »3 . 5 22 58 8.35 35 .5 3.3 58 3.88 1150 iu 10 1 8 8 34 141 .5 14.35 37.5 1.3 61 0.2 1700 iu 1 2 1 i 3 7 1 3 s 1 ^ , 7 1 S 7 s n , 1 K 2540 iu 14 133.5 35 1 16 .5 14.65 56 . 1.55 56 4,14 2200 iu 16 1 3 7 . 5 33 145 16,05 49 1.15 63 , 5 4,18 2510 iu 1 8 1 3| ,s l b 7 I*i.6^ 46.* 1 .° 5*.5 0. 1 1 2830 ia 20 1 16 29 130.5 16.4 00 .5 2 09 4.12 2500 35 t 1 06 67.5 30 18,65 8fl.5 3.8 27 4.2 1550 Ss ? t as .S 3A /17 9 .AS 7 n 7 .s s i 4,ns 2.JXLQ 35 3 152 .5 24 73.5 0.3 53 3.85 52 0.1 1870 35 0 135.5 21.5 7« 05 2 .6 52 . 5 0,04 1900 3.5.. 5 1 1 ? 2 n , 5 7 6 . C o,? 7/1.5 T . 9 S 53 3,0s 1600 35 6 85 21 66 8.9 31 .5 3,85 53 . 5 3,88 1330 J5 7 90 10.5 8 0 . 5 0.8 3a 2 60 3.06 1210 s 3 5 fl 9 8 , 5 to 7 9 0.7 P A 3 . 2 5 t ; 7,s 7 , 0 s 1 H A D ? • 35 10 1 n 9 33 .5 166,S 14 ,8 50 1.4 59 4.22 3130 35 12 1 7 6 3 1 .5 160 .5 15 .7 50 1.2 54 , 5 4,19 3050 35 \u 1 37 2 7 . 5 1?9 i a , s s 5 0 1 ,7S 57,5 4 , 1 4 2 ? S 0 35 16 1 16 .5 3 0 11" 13 .0 45.5 2 .5 09.5 4.11 2330 35 18 121 .5 4 0 132 15.3 5 0 3.15 50 0,07 2050 35 20 1 " 5 . 5 3 * , S 1 3 5 i 6 , nS 5/. ?.* 4 7 " 1' 3 0 7 0 35 22 1 1 4 . 5 38 1«4.5 16 .9 56 2.05 56 4,16 2690 35 21 9 2 3 8 135.S 17 .2 56.5 2.5 S6 . 5 4,14 2540 3b 1 1 HI 55,5 5 0 1 6 , 6 5 77,5 2 , 3 5 78 4 , 2 8 1 0 9 0 36 2 153 33 55 . 5 10.65 52 3.3 00,5 4,05 1870 36 3 133 27 , 5 71 0,75 S6 3.55 53 . 5 0,06 1840 36 '4 1 i ' . 5 2/j »,fl 0 . 3 40 ?,7 S 1 ,s 3 , 0 8 1 fc2n 36 5 76 3 1 4 7 . 5 7.05 54.5 3,45 0 9 , 5 3,88 1110 36 6 77.5 3 6 57 . 5 8.05 63 2.85 57 3.03 1170 36 7 8 P R S ?h * 5 r s 0,? 47 3 ,2 S7 , S ' 7 , 9 4 1 | A O 36 8 9 0 . 5 20 72 0,95 28.5 2.25 63 3.03 7S0 36 10 155 • 4 2 , 5 120 13.4 53 .5 2 .3 53 . 5 4.12 2300 i 36 12 l h 1 .5 3s 1/1I 1 5 , 6 5 4 0 T 5 1 ,ns S 6 ,S 4,1 s P S A O !1 j 36 14 145 .5 4 1 126.5 15.15 62.5 2 51 . 5 4, 18 2O30 36 16 140 30.5 141 .5 16,9 53 . 5 1.25 55 4.19 2500 36 18 i <5 4? I S H 1 6 , 8 5 5 A . 5 2,nS S 8 . S 0 , 1 7 Pfttn 1 i e 20 14 0.5 3S 1 * 0 . 5 17.0 54 2.25 46 . 5 0.17 3000 16 22 123 38 14«.5 16 , 0 . 53 3.25 06 0.17 2810 ><> pi- 97 19.65 1 .0 70 .5 a. 1 7 P A O O -199-Table I I , 4 . 1 . 1 . Elemental d i s t r i b u t i o n i n B-modi f ied soxh l e t l eacha tes . Sample Time Ca Mg Na K Fe Al S i PH sed. °L (mn } ; «i J IWPPJCS J 1 171 54.5 57 18,7 115 2.5 • t . s 0.32 \ IIIVJ J 1680 411 2 I 77 45.S s* 0,05 78 4.7 4 9 , 5 4,16 21| * 411 3 1 4 4 4 ? 61 0.5 77.5 3.4 52 4,15 2070 ul\ 4 120.5 "3.5 •62 8,65 78.5 3 52,5 3.05 1810 4 1 ? 1 1 1 S n 1 37 )7,A 1 ^ 3 3,95 31 .5 11 , 34 1580 a-i-c Ul? 2 96.5 55 2« 7.6 106 5.6 47.5 4.05 1450 012 3 126.5 4 4 4 6 . 5 8,4 82 3.55 54.5 4.12 1530 012 4 HP. .5 41 74 6,9 78.5 3.5S 51 ,5 3.9a 1)60 49 1 165 86 43.s 22.0 154 5.6 32 4.25 1890 49 2 116.5 47 3» 8.85 101 3.5 51 4,07 1 170 49 OS , S as 75 7 ,/i- 0? .5 7, nt; *n «; . 4,-04- 0 / | r t 49 4 1 35.5 36 80.5 12.85 77 1 ,85 81 ,5 4,16 1 160 49 5 106.5 37 50 0.9 70.5 3,05 51.5 4.06 1720 49 6 g,-i 4? S? 9 , Ii 84.5 .4,3 54.5 4.01 1060 49 7 90.5 37.5 64 0.75 77 2.5 65 4,06 1380 49 8 85 3? 63.5 0.3 58.5 2.4 58 3.07 1330 4 1 ft 1 1 fl rt , S 5 1 ?7 1 " . 1 107 4 , 3 20 4 . 24 UAH ulo 2 8 0 43.5 22 6.5 1 00 5.25 45.5 4.01 970 410 3 9 0 40.S 28 6.0 104.5 4,85 44,5 0,06 1 040 410 a on \s,s /iS.c; 0 ,1 81 2.15 . 74 0 .04 40 0 410 S 86.5 30 47 8.45 61 .5 2.2 60,5 4 1000 fllO 6 96. 5 24.5 58.5 8.8 49.5 2.15 75,5 3.07 1100 4 10 7 8 1,5 ?7 , S /1 6 7.8 Si 3.8 su 7,9/1 1170 . .._ 410 8 69.5 10 6 q.5 8.4b 39 1.7 83 3,05 50 47 1 123 7o 27.5 18 l«o 3.6 27.5 0.26 1610 47 2 1 27 6S 30 .5 0 .125.5 .. 5.S5 - 04 ...IS 9.0 47 3 1 16 54.5 34 8,55 107 4.8 46,5 0.03 1450 47 4 06 46 3Q.5 7.8 84 4.3 02,5 4,01 1150 47 i H(( u? . S *3 8.os an 7 7 47 4.04 1 3P0 r «7 b 80 36.5 45 8 71.5 3.15 55 0.02 850 47 7 84 34 46.i» 7.0 6 6 2.75 56.5 a 870 47 8 7n ,s 1 H • 5 8 f 7S til) 2^ 5 frS 3 830 4 7 10 165.5 • 4 t 127 14.55 70 1.25 64 0.2 1590 47 12 171 .5 «1 157 12,75 61 1.6 53.5 0.23 3240 k. 48 t 07 , S n A , S ? n ,r. 1 A A A S 1 *5 *,f,S 27 " * IM" f 4* 2 133 72.5 3" 0.75 122 5.55 43,5 0,09 1730 48 3 1 05 5c.5 27.5 7.7 107 5.3 45,5 0,03 1300 4H 4 74 40 27 6 , 35 01 4,0 41 ,S 3,07 990 48 s 96.5 42 43.s 8,3 8fl 0,05 05.5 4.01 1130 48 6 68 35.5 42 7,65 68 3.4 54,5 3.07 860 48 7 04 3* . ^  c?,c a, us An ?,os 5^ /1 onn 48 8 53 28.5 30.S 6.4 58.5 4,25 56 3.85 650 48 10 118.5 45 93.5 13.1 68 1.25 72 4,11 800 48 1 2 1 3* .5 38 .5 1 1 6 12 , " 50,5 1 ,/i 57,s 4.1S 2020 41 1 82.5 57 20.5 16.4 110 ".15 31,5 4.11 1100 41 2 68 54.5 16.5 6.9 123 0 00,5 3,96 1060 4 1 AO "5 1q.5 s, 0 9C s f5 " 7 3 OJ 1 «?" 41 4 75 4u 25.5 6,85 90 3.25 50 3,06 1230 4 1 5 81 37 37 7.4 60 4.8 07 3,0 1180 4 1 6 78 77 /.0 7 . /J S7 0 5 '(8 S 3 ,88 105rt 41 7 60 33.5 31 6.25 61 .5 4.65 51 3,86 800 41 8 57.5 33 30 5.85 60.5 4.6 51 3,80 790 4 1 l 0 1 uo 51 „S 87 1 1 , A *5 1 05 50 4 1 1 162n 41 12 157.5 40 9 6 . S 12.0 65 1.4 51 4.11 1760 41 14 . 134.5 37 96 13 58.5 1.1 63,5 0.11 1420 4 1 1 6 1 ?fl .5 3A .s A2 1 ? . 1 *\ 2,55 u T*5 " , M 2150 4? 1 75 58.5 1".S 15,65 113 4.15 30 0.12 1110 «2 2 73.5 58,5 16.3 6.0 136 4.2 50 3,09 1120 4? 3 /IS . 4/1 8 4,3 9 A 6 t ns us,s 3 4 8 A 800 4 ? 4 54.5 41 15.5 5.05 00 3.6 50 3.87 980 42 5 46.5 35 16 4.3 65.5 5.35 40,5 3.75 650 42 6 55 3/1,5 2" 5.S 64 5, ns 47,s 3.79 800 42 7 50 30.5 27 5.75 57 4.75 53 3.83 770 42 8 56 25.5 25 5.2 44.5 4.05 40,5 3.77 670 4? 1 0 8/1 "2 '(3 11.8 *5 1 ,o«; 5" " v 1 1 1620 42 12 161.5 36 87 . i a .6 64 0.0 73 0,19 1130 «2 1 « 137.5 15 re 10. 1 51 3.25 47 0.08 1810 42 1S1.5 IS.5 95 r?.o 48.5 U3 S6.,s 4,14 lftS.fi -200-Table I I , 4.1.1. Continued. Sample Time Ca Mg Na K Fe Al Si PH sed. I i.pQn L- c i 01 i mn I VWccKb ) h ...... _ . v m g ; 43 1 87~5 t»5.5 23 IT. a 122 T l . 5 0.18 1320 43 2 75 60 1*.5 6,9 1«3.5 «.15 09 0,01 1 120 <»x 3 77 ,S US q 5 6 7^ 1 N6,S 5 < HS CO X OB 1 1 fl0 43 4 66.5 4 5 . 5 1".5 5.9 105.5 3,65 49 3.95 1070 43 5 7 6.5 4n 34 6,7 76 ".6 48 3.9 1070 •43 6 Sn X/l ,s l q . e 0 , A5 6 A 4 , «s 4 6 , 5 3 • 78 6X0 43 7 6^.5 36.5 3» 6,05 69.5 «.15 55 3,9 7 5 0 43 8 69.5 3 l . 34,5 6 .65 56 .5 3.35 54,5 3,87 670 a * 1 0 \ 1 «, S 0 7 ».u 9 t7S 6Q ? . 3 51 II f nx 1 ? 0n 43 12 197 39 U 8 14,6 60 0.0 73 4,19 1130 «3 14 103 42.5 81 12 60 3,5 40.5 4.11 1900 43 16 1 35 0 ' .5 9? 14,6 58 1 6 6 ,s o . i o i SQO 4 3 18 136,5 30 IO*.5 13,5 55 3,65 48 4,06 2220 43 2" 1 0 1 3? 100 13,65 4 0 1 . 6 58 0.03 1860 ta 1 9/1 63,5 ?6,«; 1 7 ,65 123.5 4 .1^ x i U , 1 7 .1 3/lft oo 2 72 57 16.S 6.9 139,5 «.l 08.5 3,99 1210 - 40 3 56.5 4a 13,5 5.15 106.5 5.5 49 3.91 900 00 a 66 .5 4?,5 ?0 5 ,65 97,5 3,0 50 3 , 0 ? 9pn 40 5 91 31 .5 43 7.3 62,5 3.3 56 3.01 950 40 6 09 3? |7 «.« 60.5 5 . 5 43.5 3.75 600 a/j 7 S3.5 3 " 5.95 6 6 3.8 50 X .86 730 f «o 8 5 9 30.5 ? 8 . 5 5.65 56.5 «.7 52 3.83 700 44 10 139 «3.5 78 1 0 . 5 66 1.8 55.5 0,08 1350 OO 12 170.5 36 ofl I'.o *1 . s 1 ».? 0,14 1 oxn 40 14 166.5 30.5 1 no ,s 11.8 63.5 2.45 0 8 . 5 4.16 24Q0 4 a 16 1 on 40 5 6 10,0 61 2.8 46,5 4,06 1400 s u a 18 1 1 7 38.S 88 1?,65 So 1 , a 60 " . N 1 RUO ? '10 20 98 3 ? 84 11.9 So 2.6 48 4,03 1690 4 5 1 90 0 6 26 18.15 12? 3 . 0 3 2 . 5 4.17 1310 *S 2 1 07 46 ,5 32 8,9 90 3.6 5 7 u ,02 1 3 5 0 4 5 3 67 41.5 19.5 5.8 8 0 . 5 5.05 48,5 3.92 1010 *5 4 67 46 21.5 5.9 95 3.2 51 3.92 1070 4 5 5 SI 5 00 ,S I 9.5 5, i 46 X , 8 7 | n "5 6 5 0 , 5 35.5 22 4.75 61 «.S 4 5 . 5 3.8 630 45 7 75 31 39 6.9 55 2 . 0 58 3.89 750 45 8 10?.5 ?6.5 5 5 8 , 6 41 1 ,6 76,5 X.OS xon «5 10 166.5 45.5 83.5 10.15 SO 3.? 4 6 , 5 4.12 2320 45 12 175.5 41 68 10,15 6 ? . 5 2.?5 51 3.08 1440 45 14 1 5Q 3 7 1 18 1 0 . IS 5S.S o ,os 77.S a, i a JOfl 45 16 169 35 HO.5 12.8 49,5 2.15 47 4,16 2620 «5 18 120,5 37.5 99. S 13.45 55 2 . 6 5 5 0,03 1810 45 20 1 07.5 32.5 68 13,15 5i ?,us 05 ,5 a , oo 33 j ft 45 22 1 1 0 . 5 3 3 1 11.5 12.8 40.5 2 . 6 53 4.1 2100 "5 24 85 27.5 1?3 .5 16,75 40 2.3 S 9 . 5 4.1 1510 0 <(6 1 og 7? ?6 |8,u 1 ? 0 XI ,5 0.3 1 soft 46 2 75.5 60.5 1<>.5 6.9 125.5 «.l 4 8 . 5 0 2720 46 3 . 7 0 49.5 19 6.1 115.5 5 . 0 49 3,98 1150 06 0 95 4 5 x2RS 7 . 6 5 BS.5 3,?5 50 0 1 a?ft 46 5 5 0 . 5 40.5 14.5 « .8 73.5 5.35 4 3 . 5 3.81 720 46 6 51 ' 35.5 23 4,95 65.5 5.05 4 5 , 5 3.79 780 46 7 Sh Xn,5 ? h , C 5,35 61 ".5 sx ,s x ,ax f-^ fi 46 6 35.5 27 13 3 . 6 48.5 5.8 44,5 3.69 330 46 10 80 46.5 43 7.4 60 3.05 08 3.95 1200 . 46 12 1 06 3/1 s 7 , s 8,5 5? 2.15 a?,5 X,08 1 300 '«6 14 237.5 35 133.«; 14,8 55 1.05 7 4 . 5 4,29 080 46 16 226 36 12' .5 12.05 46.5 2.35 44 0.24 2860 j ilh 1 8 1 VP <6.5 1J3 .C 1 4 . 3 5 U7 1 ,7S S8 ,s " . 1 1 3X) ft 46 20 161 J/l 151.5 17.55 40 1.15 6? 0.17 2000 •»6 22 118.5 12.5 118.5 14.3 41.5 3 . 7 5 4 3 . 5 1.12 2020 «6 97 17.5 I 6 l 19.65 50.5 1 .? 70.S a.09 1510 -201-Table I I , 4.1.2. Tota l e lemental a n a l y s i s o f sediment from A-modi f ied s o x h l e t s . Sample Time Ca Mg Na K Fe A l S i I l i t O A 1/ C* 1 ( o / v - \ n2 \ i w e e K S 1 7o l /oX 1 w-) s o i t 1 " . O S 0.09 0.1 i 0.12 2.1 H.5 6,22 son 2 0 , 0 2 P.05 0 . 1 4 0,08 1 11.2 0,23 xn 1 1 3 O 0 /| fl.t'i ft ,n7 ft ,s 1 1 7 ft ?i\ 3 P 1 1 •4 .».02 P . 0 3 0 , 1 6 0,07 0.3 u . i 0.24 3 0 1 ? 1 0.03 P.l 0 . 1 4 0,12 2.5 U.8 0,21 xnl? 2 ft .1P 0 n c. n i 1 4 0 ft7 P 1 7 1 1 0 0 ?'t sol? 3 0.(12 o.os 0 . 1 5 0,06 0.8 • * • " ' 13.1 v , * 0,20 Sol? 0 . 0 1 0 . nu 0 . 1 3 0 . 05 P. 6 H.P 0,?3 7 0 9 1 n op o , fi« p 111 p 1< 1 1 " 13 ft j ? 7U0 2 'l , ') 1 P .04 0 . 1 3 0 . 0 7 0,6 12.1 0,20 3 0 9 3 0.01 (1 . " 3 0 . 1 5 0.06 0 . 3 11.6 0,23 7 0 9 4 0 , o 1 0 . 0 3 0 , t 1 fl ,ftS ft,4 H,8 n , ? f l 3 U 9 s 0 . 0 1 0 . 0 3 0 . 1 5 0,06 0 . 3 1 1 . 8 0,25 3 0 9 6 0 . 0 1 P . 0 3 . 0 . 1 0 . 0 5 0.3 12.3 0,20 7 0 0 7 -1 n 1 n i n ? 0 1 2 P,ftS P i ' 1 2 3 P 1 7110 8 0.0 1 P . 0 2 0 . 1 7 0 , 0 4 0 . 4 11.6 0,22 3 0 1 0 1 0.P3 0 . 0 0 0.17 0.15 2.1 1 1 . 5 0,22 3 0 I 0 2 1 . 0 7 P . 06 0 , ? 0 , 1 0 , 8 1 1 P , ? 5 3 0 1 0 3 1.12 P . 04 0 . ? 2 0,08 0 . 5 1 1 . 3 0,25 •3010 4 0 . 0 | 0 . 0 3 0 , 1 4 0 , 0 6 0 . 4 11.6 0,20 3 n 1 P 5 n .1) 0,01 n 4 1 1 ft OS ft , 4 1 3 3 ft ?4 JO 10 6 0 , 0 1 0 , 1 3 " . 1 2 0 , 0 5 0 . 4 12.6 0.20 3 0 1 0 7 0.01 p . 0 3 0 . 1 2 0 , 0 5 0 . 4 12.6 0,23 3 0 U i 8 0,01 0 , |17 0 , 1 1 1 O.OS 0 . 5 1 2 , 5 0,24 3 ^ 7 1 O.o< 0 . 08 O.t ' 7 0.11 1.5 U . 7 0,22 3 0 7 2 0.02 0 . OH 0,16 0 . 0 « 0.6 1 1 . 3 0,25 7 0 7 3 0 r, | 0,07 (1,17 ft ft A n .5 1 ? 1 ft 3 A 3 0 ? U •0 . " 1 0.0} O.lo 0 , 0 4 0 . 5 11.9 0,25 3 ' J 7 5 0.0) P . 0 2 0 . 1 3 0 , 0 3 0 . 4 13 0,23 3>I7 6 0 . 0 1 0 . op ° . 1-3 P , ns 0 , 3 11.9 P ,30 3 " 7 7 0,01 0 . 0 ? o,,? 0 , 0 5 0 , 2 12 0,22 3 " 7 8 ".01 n.P2 0 . 1 3 0 , 0 4 0 . 3 1 3 . 2 0,23 71)7 1 0 0 , 0? n , 0,1 P , 1 H ft , nR 0.5 1 ' i 1 P,?* 3 0 7 1 2 0.04 O.Of, 0 , 1 8 0,11 0,6 11.0 0,23 708 1 0.02 P.08 0.24 o.t 3 . 2 11 0.24 708 2 0 . rt? 0 . nt 0 , 1 4 P i 06 1 . 2 1 1 . 7 3US 3 0.0 2 0.P4 0 , 1 5 0.06 0,8 H.4 0,23 3UB 4 0 . 0 2 n . P 3 0.1b 0,0 7 0 .5 11.8 0,20 708 5' fl . 01 P P 7 0 . 1 7 0 . fth ft.a 1 1 , 1 fl , 3 4 r J08 b 0.01 0 . 0 3 0.13 0.05 0.4 11.7 0,23 J 0 8 7 0 .01 0.03 0 . 1 1 0.05 0.4 12 0,20 308 8 0,01 P . 0 7 0, .3 ft.ftS n , a 12.6 0,23 3 0 8 10 o . 0 2 0.06 0 , ? 5 o.l 0 . 8 U.7 0,24 J 0 6 12 0 . 0 2 O . P o 0,17 0,08 0 , 8 11.6 0,24 v. 7 0 1 1 0,01 0,fl)>. 0 , 3M 0 , 0 8 / i , 7 1 1 o,»1 > — 1  301 2 0 . 0 1 0.04 0 , ? 9 0 . 0 3 1 .1 11,7 0,21 3 0 1 3 0 . 0 ) 0 . . 0 3 0,29 0 , 0 4 0 . 7 10,6 0,23 301 4 n.o? 0 T 07 0 . T 9 0 , 0 5 0 . 5 10.6 0,22 3 0 1 5 0 . 0 1 0 . P 2 0 . 3 0 . 0 4 0 . 4 10.0 0.22 301 6 0 . 0 1 0 . 0 5 0 . 5 3 0 , 0 5 o.s 1 0 . 5 0.2 70 t 7 0 0 1 0,0? 0 . 7 A 0 , 0 4 o.S 1 1 ." P,?1 3 0 1 8 0 . 0 1 0 . 0 3 0 . 1 V 0 . 0 4 0 . 4 12.0 0,23 3 0 1 10 0 , 0 ? 0 . 0 3 0 . 1 8 0 , 0 8 0 . 4 H . O 0,23 301 12 0 , 0 ? (1,011 0 , 1 8 0,08 n , 4 1?.1 0,22 3 0 1 1" 0 . 0 2 n . 0 4 0.21 0 . 1 1 0 . 4 1 2 . 2 0,23 3 0 1 lb 0 . 0 ? 0,04 0 . ? 4 0 . 1 3 0 . 4 1 0 , 9 0.25 7 0 ? 1 11 o r " • 1 1 0,7A P , ft8 5, 3 1 1 . ? P 4 1 6 3 0 2 2 0 . 0 2 0.0'1 0 . 3 3 0 . 0 4 1.1 10.5 0.2 3 0 2 3 O . 0 2 P. 0 3 0.36 0 , 04 0 . 5 10.0 0,21 3 0 2 4 0,01 P r P? 0 , 7 0 0 , 0 4 P . ° 10,o 0,2 3 0 2 5 0 . 0 1 P.P2 " . 3 2 0 , 0 4 0 .5 10,9 0,21 3 0 2 6 n.oi O . P ? 0 . 3 5 0 .P4 0 . 4 10.7 0,21 7 0 ? 7 0.01 n . op 0,* 0 , 0 4 ft,3 1 1 .' n,?i 3 0 2 6 O.oi 0 . 0 2 P. 1 4 0 . 0 5 0 . 3 11.? 0,24 30? 10 0 . 0 2 0 , 0 4 0 . 2 P . 0 9 0 . 7 1 0 . 6 0,20 302 12 n . n ? 0 . 0 7 0 . 1 4 r»To7 1,4 1? 0,25 502 1" 0.01 0.03 0.16 0,07 0.5 11.3 0,24 502 l b 0 . 0 1 0.03 0.18 0.06 0.5 U.7 0,24 - 2 0 2 -Table I I , 4 . 1 . 2 . Cont inued. Sample Time Ca Mg Na K Fe Al S i "/- f ° / v i n2 ^ iweeK) h l A X 1W~ ) X 0 3 t n . <*? f , OA 38 08 /1 . 5 1 0 , 7 0 , 1 7 . 3 0 3 2 0 . 0 2 0 . 0 3 0 . ? 9 0 . 00 0 .9 11 0,22 3 0 3 3 0 . 0 1 0 . 0 3 0 . 3 0 . 03 0 . 8 10.9 0,21 3 0 3 a fl . 0 ? n , 0 ? 0 . 39 0 . 04 n ,5 1 O./l 0 , 21 3 0 3 5 0 . 0 1 0 . 0 2 0 . 28 0 . 00 0 . 3 10 ,6 0,21 3 0 3 6 0 . 0 1 0 . 0 ? 0 . " 2 0 . 05 0 . 3 10 ,7 0.2 XUX 7 0 0 . 0 ? 0 , 5 h 0 , 03 0 1 H 1 2 0 , 1 9 3 0 3 8 0 . 0 1 0 . 0 ? 0 . 1 2 0 . 05 0 . 4 11.9 0,24 3 0 3 10 0 . 0 1 0 . 0 0 0 . 17 0 . 08 n . 6 11 .3 0,24 3 0 3 12 0 . 0 ? fl . 0 4 0 , 31 n. ftfi n .4 ' " . 3 0 , P « 3 « 3 1 a 0 . 0 1 0 . 0 " 0 . 21 0 . 09 0 . 6 11.1 0,24 3 0 3 16 0 . 0 1 0 . 0 0 0 . ? 0 . 09 0 . 5 U . 6 0,25 3U3 18 fl . 0 1 fl , OS 0 . ? 0 , 0 9 n 1 h 0 , ? 0 3 0 3 2 0 (1 . 0 1 0 . 0 5 0 . 21 0 . 1 0 . 7 1 1 . 0 0 , 2 0 3 0 0 1 0 . 0 1 0 . op 0 . 2 0 0 . 05 0 . 7 11 0 . 1 3 xou 2 n . 01 J l . 05 0 • X 0 . 0 0 \ . 9 1 ' . 2 0 , 1 8 3110 3 0 . 0 1 0 . 0 3 0 . ? o 0 . 0 3 1 .1 10 ,0 0,17 xo« 4 0 . 0 1 0 . 0 3 0 . 32 0 . 00 0 . 8 10 ,9 0 , 1 9 xoo 5 •0 , 0 1 0 . o x 0, 1 0 , n s n , 5 I 1 fl , 3 0 3 0 0 6 fi . 0 1 n . 0 2 0 . XI 0 . 00 0 . 5 11 .2 0 . 2 3 0 0 7 n . 0 1 0 . 0 3 0 . 2 5 0 . 0 3 0 . 4 1 1 . 2 0.2 xoo 8 o . 0 1 0 r OX 0 . 1 a 0 . 0 0 0 , a 1 ? . 1 0 , 3 0 3 0 0 10 0 . 0 1 0 . 0 6 0 . 1 7 0 . 05 0 . 9 12 .3 0 , 2 3 3 0 4 12 0 . 0 2 0 . 0 5 0 . 17 0 . 0 8 0 . 6 1 1 . ? 0 . 2 3 X 0 4 Ml n . 0 1 n , fill 0 , 1 *• n , ft 7 fl . 7 1 1 . 3 0 , 3X 3 0 0 16 n . 0 2 0 . 0 0 0 . 1 8 0 . 09 0 .6 H . 5 0 , 2 5 3 0 0 18 n . 0 1 0 , Ou 0 . 2 0 0 . 1 1 n . 5 11 .7 0 , ? 5 xoo 2 0 o . 0 ) 0 . 0 0 0 . 3 0 . 1 n . 4 1 1 * ? 0 , 2 0 3 0 5 1 n .02 n . 1 3 0 . 1 0 . 0 / 7 . 3 11 . 7 0 , 1 4 3 0 5 2 0 . 0 2 0 . 0 7 0 . 1 3 0 . 05 1 10.5 0 . 2 xos X 0? n -OX ,0. 1 1 0 . n .<) O . A 0.2 r 3115 (1 0 . 0 1 0 . 0 2 0 . 1 0 . 05 0 . 4 1 1 0,19 3 0 s 5 0 . 0 1 0 . 0 2 0 . \b 0 . 06 0 .4 11.2 0,24 xos 6 n . 0 1 ft . 0 2 0 . 1 0 , no 0 L 6 11 o,1 Q 3 0 5 7 0 . 0 1 fl . 0 2 0 . 08 0 . 00 0 .4 10.7 0,18 3 0 5 8 0 . 0 1 n . 0 2 0 . 17 0 . 07 0 . 3 U . 2 0.25 L xos 1 0 • n ? 0 1 O'l 0 , 3X n l t ft , a 1 1 3 3 0 s 12 0 . 0 ? 0 . 0 0 0 . 21 0 . 1 0 .4 11.5 0.26 3 0 5 14 0 . 0 2 0 . 0 0 0 . 21 0 . 1 0 .5 11.8 0,25 xos 16 o . 01 n , O'l 0 . 2 ? 0 , 1 0 , 0 n . 0 ft t ? 6 3 0 5 18 n . 0 ) 0 . 0 0 0 . 22 0 . 1 0 .6 1 1 . 5 0,26 3 0 5 20 6 . 0 1 0 . 0 5 0 . 2 7 0 . 1 1 0 .5 U . 8 0.27 X 05 3 ? o fl 1 n 0 1 3 j ft 1 1 0 s 1 1 1 ft 3*. 3 0 5 2 a 0 . 0 1 0 . 0 5 0 . 2 0 0 . 1 1 ft .6 11 .3 0,26 3 0 6 1 n . 0 2 n . 0 7 0 . 29 0 . 09 3 .6 10,7 0,15 3 0 6 2 n . 0 1 n .O ' l n, ?« n, 05 1 , 2 10,7 n t 1« 3O6 3 0 . 0 ) n , Ou 0 . 3 0 . 0 5 n .9 10.5 0,18 I 3 0 6 a n . 0 1 0 . 0 2 0 . 3 3 0 . no 0 .6 10.3 0,18 Til 6 5 fi n j 0 3 0 1 0 n x n3 \ , 1 1 ' 7 0 1 h ! 3U6 6 0 0 . 0 3 0 . 29 0 . 0 3 1 11.? 0.17 i 3 0 6 7 n 0 . 0 3 0 . 28 0 . 0 3 0 . 7 11.6 0.18 X 0 6 8 n . 0 ) n . o? " . 1 X 0 , nx n , 6 1 ? . ° o,?>0 3 0 6 1 0 0 . 0 1 0 . 0 0 0 . 18 0 . 07 (1 . 8 11.ft 0,24 3 0 6 12 0 . 0 2 0 . 0 0 0 . 18 0 . 08 0 .6 11.5 0.26 X 0 6 1 u o . " 1 n . o c n 1 8 0 . n9 0 , 8 1 ' ,5 0 , ?s X 0 6 16 0 . 0 2 0 . 0 0 0 . 18 0 . 09 0 . 7 11.4 0,25 306 18 n . 0 1 n .05 0 . 19 0 . 09 ft . 7 U . 4 0,25 X 0 6 2 0 n . o x ft . 0 7 0 . 3 6 0 . 1 3 0 ,5 10,7 0 , ? 6 3 0 6 22 0 . r t l ft . 0 5 0 . 2 0 0 . 11 ft .6 11.? 0,25 306 24 n . 0 1 0 .04 0 . 16 0. 09 0 .6 U . 4 0 ,25 -203-Table I I , 4 . 1 . 2 . To ta l e lemental a n a l y s i s o f sediment from B-modifed s o xh l e t s . Sample Time Ca Mg Na K p e Al S i (weeks) 01 (%x!02) h 40 u l 0.02 0 .08 0.13 0.10 1.3 U.2 0,21 001 1 2 0 ,02 0.05 0.15 n.07 0.9 11.5 0,23 an i l 5 0 , 0 1 o, oq 0.16 0 , (16 1.1 1? 0.23 001 1 0 o.o i o.o*, 0 .17 O.OO 1.1 U . 7 12 .6 0.22 0012 1 O . O I 0 , 0 9 . 0.10 0.09 2.5 0,19 an I 2 2 o i ? n 1 3 11,111 0 , nil ? i h l ? 1 0,1-9 001? 3 0 . i; 2 O.Ob 0,10 0 ,06 1 .3 H . 5 0,23 001? 0 0.01 0 . Oh 0.10 0,03 1.3 12 .5 0,21 OU9 l (1,(1,1 0 , 1 0 0 , 1 8 0 11 11.2 U.ft 0.19 «0<J 2 0 . 0 1 0 . 0 5 0 .1 0.05 0 . 9 12 .6 0,?2 flOO 3 0.01 0 . 0 6 0.12 0 . 0 0 1.1 12 .5 0 , 2 1 (10 9 0 .1 n i 0 t m 0 AO 0 OX n , 8 11 'i 0 ,21 (109 5 0.01 0 , 0(1 0.12 o.n5 0 , 6 12.1 0,22 009 6 0.01 0 . 0 0 0.12 0,05 0 . 9 12 .3 0 .22 U 0 9 7 n, o i 0 ,os 0,10 0 , nr. 0.8 11.7 _ 0 , 2 0 0 0 9 8 0 . 0 1 0 . 0 3 0 . 1 2 0 ,05 0 .7 12.0 0.23 o o i o onto 1 2 o .o i 0 , 0 1 0 . 1 n , ft*. 0.15 0 , 1 1 0.09 n, ox 3 .7 ' . 1 12 .3 13 0,19 n ,3 OO 1 0 3 0.01 0 . 0 0 0 . 1 3 0 . 0 3 1 .5 12,9 0 .2 00 1 0 0 0 0 . 0 3 O.o7 0.02 0 .7 13,6 0.2 00 i o 5 0,01 0 , OX •0 t 0h 0 , 0 3 0.8 12 ,7 0 , ? ? 0 0 1 0 6 0.01 0.02 0 , 0 9 0 .03 0.5 12 0 .21 qolo oo l o 7 8 0 . 0 ) o.oi 0 . 0 3 0 T ox 0.13 0 , 1 7 0,00 0,OX 0.5 o,5 12 .6 I?.* 0 ,22 0,? l 007 1 0 . 0 3 0 . 2 1 0 . 21 0. u 3.9 1 2 , 8 0 . 2 1 0*17 2 0.02 0 . 1 1 0 .17 0 ,06 2 . 1 12 0 ,23 007 3 0,01 0.06 0 , 1 3 0 ,00 1 . 7 12.3 0,22 -a 0 7 0 o.oi o.os 0 . 1 2 0,00 1.2 U . 8 0 ,21 U U 7 5 o .o i 0 . 0 5 0.13 0 .no 1.1 12 .2 0,23 0 0 7 6 A 0.0/1 '1.1? 0 . 1(1 n,fl 12 .6 0 , 3 ? r (ii>7 « 0 7 7 8 0 0 0.03 0 .03 0 .09 0 , 0 8 0 ,03 0,n3 0 .7 n ,6 12 .6 12 .6 0,22 0.21 OdV 1 0 0 , 0 2 0 , 0(1 0 , 1 5 0 , 0 6 o ,7 1 1 . 9 0.22 ... 0 0 7 12 0.02 0.05 0 . 1 9 0 .09 0.6 11.1 0.24 0 08 1 0.02 0.2 0.? 0.08 5.3 12,8 0.17 . U U ft 2 0 . 0 1 0.00 0 . 1 a 0 . 05 x.x 11.8 0.2 00ft 008 3 0 o.Ol 0.01 O . O B 0.07 0.10 0,12 0.00 0,02 2 .1 1.7 12 .6 12.7 0.21 0.2 0 118 5 o.o i 0.00 O r i 1 0 .00 1 1 2 . U 0.22 008 008 II 0 8 6 7 8 O . O I 0.01 0 O.Ocl 0.03 0 T Ou 0.12 0.12 0 , 1 ? 0 .03 o.no n.n? 0 .9 0 .7 0 ,7 . 1 2 . 7 12 .2 13.1 0.22 0.23 0,? 008 10 0.01 0.00 0.11 0.03 1.4 12 ,0 0,21 OOft 12 0.01 0 , 0 0 0.13 0 .06 0 . 9 11.9 0,23 0 0 | I 0.02 0.19 0.u5 0 .06 0 , 9 13 .X 0.11 00) 2 o.o i 0.1 0 . 22 0.02 2 .9 12 .5 0.14 0 0 1 3 o .o i 0 . 0 6 0 . 2 0 . 0 2 2.1 12.7 0,15 0 0 1 0 0 , 0 1 0 ,'0 7 0 .x n.nx « . 7 11,0 0,16 00 1 00 1 5 6 o .o i o .o i 0.05 0 .00 0.?8 0.35 0 . 0 3 0.03 1.5 1 11.5 11.2 0,17 0,17 0 vl 1 7 0 . 0 1 0, os o . t 0,0? ' .2 1?.o 0 , 1 6 «u 1 00 1 8 to 0.01 o . m 0 .00 0.05 0,10 0,10 0 ,03 0.07 n.B l 12.3 12.1 0.21 0,20 OlM 12 0 . 0 1 0 , 0 0 . 0 , 1 X 0,07 0 ,7 1 1 , s 0 , 3 0 out 10 0.01 0 .00 0.12 0 .05 0 .9 12 .5 0,23 001 16 0.01 0.05 0 . ? 0.08 1 12 0,24 0 0 ? 1 0 , 0 1 0 r 1 1 0 ,39 0 ,00 s 13 ,9 0.1? 0 0? 2 0 .02 0.17 0,10 0,00 2.<> 13.5 0.2 0 0? 3 0.01 0.09 0 . ? 0,01 2 13,6 0,13 0<l? 0 f> , 0 1 0 . 0 7 0 , 36 n , n? ' .5 1?.o 0 ,15 - oo? 00? 5 6 0 0 .0 ) 0.03 0.07 0.15 0.X5 0 ,01 0.02 1 .4 1.2 13 .0 12 .2 0,13 0 . 1 0 0 0? 7 0.01 0 T 05 0 r 36 0 , 0 2 1 1 1 ,8 0.1S 00? e O.nj 0.05 0 , 1 s 0.02 0.8 12 .2 0.21 0')? 10 0.01 0 .08 0.2 0,05 2.1 11.3 0,22 OO? i ? 0 , n? n , n « ; 4 , 1 1 0 , f i h « M . I 0 . 3 X 0 0 ? \o 0 .02 0 . 0 5 0(18 ».«7 0.9 11 0,24 002 16 0 . 02 n . O a 0.15, 0,06 0.8 10.7 0.24 -204-Table I I , 4.1.2. Continued. Sample Time Ca Mg Na K Fe Al S 1 O I 1*1 A A I / P 1 1 003 tweeK5) h l /oX 1U ) l 0 ,0? ~ a 0, al 0 . r»6 5,2 i ? . 7 0 • 11 003 2 0 .01 ft .13 o. ?B 0. 02 2.6 12 . 0 o .13 003 3 0 .01 0 .07 o. 26 0. 03 1.1 i t .3 0 .17 4 0 7 4 n 1 N 1 0 ."° 0 , 3 1 0 , 0 ? 1 . 1 12 , 7 n 1 1 N 4i>3 5 0 .01 0 .06 o. 3 0 . 03 11 .? 0 .15 0 0 3 6 0 . 0 1 0 .11 o. 41 0 . 02 1 .3 12 . 9 0 .13 4 0 3 7 n . n 1 0 . n 5 Ii. ? 7 n, n? 1 11 • 8 ft 115 4 0 3 8 0 ,<u n .04 o. 1 3 0 . 04 0.7 11 .6 - 0 . 2 2 003 10 0 .•ol 0 . 0 5 o. 13 0 . 05 1.1 11 .6 0 .23 on 3 12 n . 0' 0 . 0 / 1 0, 1 2 (i. 05 ft , 6 11 ,«: n , ? 3 0 0 3 1 0 0 .0 1 0 .OS o. 17 0 . 06 0.1 11 . 0 0 .23 003 16 0 .01 0 . 0 3 o. 11 0 . 05 0 . 9 tt . 9 0 . 2 2 0 0 3 18 0 ,01 0 .OS 0 . PO 0. 09 ft,7 11 , ? 0 .25 0 0 3 20 0 .01 0 .04 o. 14 0 . 07 0.8 11 .7 0 .25 aoa 1 0 .02 0 .16 o. 41 0 . 06 0 . 5 12 . 8 0 .11 4 0 4 2 0 rOI n . 1 ? 0, P A 0, 0 ? 2*4 1 ? , P 0 . ' 3 004 3 0 ,01 0 .09 o. 27 0 , 02 1.3 12 . 4 0 .13 004 0 0 .01 0 . 0 9 o. 31 0 . 02 1.1 12 .8 0 . t o it 0 4 5 0 t01 n ».o_3_ 0 . 23 0 , 0 3 0 . 5 t 0 , S 0 ,16 4 0 4 6 0 .01 0 .08 o. 31 0 . 01 1 13 . 8 0 .12 404 7 0 . 0 ) 0 .04 o. 24 0 . 02 0 .0 12 . 0 0 .15 4 0 4 e o .01 n .OS 0 . .UL 0 . 03 ft.7 1 ? 0 .23. ^ 4 04 10 0 .01 0 .05 o. 13 0 . 06 0.8 11 .6 0 .24 4 04 12 0 .0? 0 ,04 o. 11 0 . 05 0.6 12 0 .23 j 4 0 0 . 14 0 .°2 0 . 0 5 0 . 1 7 0 . ft9 . ft,6 11 . 0 fl .26 4 04 16 0 .01 0 .Oh o. 22 0 . 0 7 0 . 9 12 .1 0 .24 40 4 1« 0 . " 1 0 . 0 3 o. It 0 . 04 0,8 12 0 . 2 2 y 4 0 4 ?0 n . 0 1 0 , 0 / 1 0 1 7 0 , 07 ft,7 1 1 • " n , ? K r 40S 1 0 . 0 1 n .07 o. 21 0 . 0 5 5 . 1 13 .1 0 .12 40S 2 0 .01 n .Ofl o. 31 0 . 04 1.6 11 .3 0 . t s 4 OS 3 0 . 0 1 0 , 0 / 1 n, 1 6 0 . ft? 1 . « 1 3 , ? 0 , 1 5 4 0 5 4 0 . 0 1 0 .07 o. 28 0 . 02 1.7 12 .1 0 .16 40S 5 0 .01 0 ,04 o. 17 0 . 01 2 12 .9 0 .10 0 wS 6 0 . 0 1 0 . O A o. P A 0 , n? 1 . 9 1 ? ,s n ,15 405 7 0 , 0 1 0 .04 o. 12 0 . 04 0 . 9 11 . 8 0 .24 0 0 5 8 0 ."1 0 .03 o. 15 0 . 03 0,6 12 .0 0 .23 4 0 5 10 n .ft 2 n f OS 0 , 1 0 0. ft7 ft,7 10 , 5 0 .'5 405 12 0 .01 0 .04 o. 13 0 . 05 1.1 11 .0 0 .24 405 10 0 .03 0 .07 o. 23 0 . 05 1,6 11 . 8 0 .23 4 05 16 0 ,11? ' n . 0 / 1 0 , ?? n, n9 n , 6 10 , 0 ft ?s 0 0 5 18 0 . 0 1 0 ,04 o. 16 0 . 07 0,6 11 .3 0 .25 405 20 0 .01 n .04 o. 16 0 , 07 0.7 11 .2 0 .25 0 05 22 0 , 02 n .os 0, ?1 0 , 1 ft,7 1 fl • n n ,27 4 0 5 20 0 . 0 1 0 .04 o. 2 0 . 09 0 . 5 11 .1 0 .26 0 1 0 .02 0 .16 o. 39 0 . 06 6 12 .2 0 .14 4 OA 2 ,1 . o1 0 , 1' 0 P 7 0 , ft? 11 1 2 , 3 0 406 3 0 .01 0 .07 o. 22 0 . 03 1.3 11 .7 0 .18 406 0 0 .01 0 .06 o. 28 0 . 03 1.4 tl .6 0 .19 4<>6 5 ft .01 0 , 1 o. PA n, ni 1 , 7 1 3 , 7 ft . 1 6 406 6 ft .OL 0 .08 o. 38 0 . 02 1.3 12 0 • • .18 4 06 7 0 .01 0 . 0 5 o. 13 0 . 03 0.7 12 .6 0 .22 4 0 6 tt 0 . 0 1 n , 1 0 , 1 7 1., r>? ft , 8 14 ? ft 4 ? 4 06 10 0 .01 0 .1 o. 21 0 . 05 2 .1 1 1 .9 0 .23 a06 12 0 .01 fl .04 o. 12 0 . 05 1 1 1 .7 0 .24 4 06 10 0 . 1)8 n . O A 0 , pp n. ft7 O.o 10 , p fl .23 006 16 0 .03 0 .05 o. ?7 0 . 11 0.5 10 . 0 0 .25 806 1« f> .02 e , 0 0 o. 17 ». 07 0.6 11 .7 0 .25 406 PO n n ? fl o. 1 7 ft7 ft , 7 11 *l ft ? 3 006 2? 0 .01 0 .04 o. 23 0. 09 0.7 11 .8 0 .26 • 46 20 fl .01 A .03 o. t s 0 . 06 O.S 13 0 .24 -205-Table I I , 4 . 1 . 3 . Weight and t o t a l e lemental compos i t ion o f A-modi f ied soxh l e t a dhe r ed -p r e c i p i t a t e s . Sample Leaching Time Weight Ca Mg Na K Fe Al Si (weeks) (g) %• 1 16 9:50 0.02 0.03 0.22 0.06 0.4 10.3 27 2 16 10.20 0.01 0.03 0.16 0.05 0.5 11.0 27 3 20 9.54 0.01 0.03 0.16 0.05 0.7 10.4 27 4 20 10.04 0.01 0.03 0.18 0.05 0.7 10.6 26 5 24 9.61 0.01 0.03 0.17 0.06 0.4 10.4 27 6 24 10.85 0.01 0.03 0.19 0.05 0.9 10.1 28 7 12 10.13 0.02 0.04 0.25 0.06 0.5 10.7 27 8 12 7.87 0.02 0.04 0.19 0.06 0.8 10.6 26 9 8 4.91 0.01 0.02 0.09 0.03 0.4 11.3 27 10 8 5.83 0.01 0.03 0.11 0.04 0.7 11.1 27 11 4 2.21 0.02 0.04 0.12 0.05 1.1 10.9 26 12 4 1.67 0.01 0.04 0.11 0.03 1.7 11.7 25 -206-Table I I , 4 . 1 . 3 . Weight and t o t a l e lemental compos i t ion o f B-modi f ied soxh l e t a dhe r ed - p r e c i p i t a t e s . Ca Mg Na K Fe Al Si (weeks) (g) -% A 16 5.15 0.01 0.03 0.12 0.03 1.4 11.6 25 !• B 16 4.03 0.01 0.03 0.12 0.04 1.4 11.9 24 C 20 8.37 0.01 0.03 0.13 0.04 0.8 11.4 26 D 20 . 7.49 0.01 0.03 0.12 0.04 0.7 12.0 26 E 24 9.98 0.01 0.03 0.15 0.04 0.9 11.5 26 F 24 11.27 0.02 0.04 0.17 0.05 0.8 10.5 26 G 12 6.48 0.01 0.03 0.15 0.05 0.9 11.8 26 H 12 5.78 0.01 0.03 0.12 0.04 1.4 11.9 24 I 8 4.70 0.01 0.03 0.10 0.03 0.8 12.0 26 J 8 4.92 0.01 0.02 0.12 0.03 0.5 11.8 25 K 4 2.02 0.01 0.05 0.13 0.04 2.3 11.7 24 L 4 0.92 0.01 0.04 .0.08 0.02 3.0 12.5 22 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094910/manifest

Comment

Related Items