Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The stratification of forested landscapes for intensive management : development and application Brière, Denis 1978

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1979_A1 B75.pdf [ 34.36MB ]
Metadata
JSON: 831-1.0094755.json
JSON-LD: 831-1.0094755-ld.json
RDF/XML (Pretty): 831-1.0094755-rdf.xml
RDF/JSON: 831-1.0094755-rdf.json
Turtle: 831-1.0094755-turtle.txt
N-Triples: 831-1.0094755-rdf-ntriples.txt
Original Record: 831-1.0094755-source.json
Full Text
831-1.0094755-fulltext.txt
Citation
831-1.0094755.ris

Full Text

THE STRATIFICATION OF FORESTED LANDSCAPES FOR INTENSIVE MANAGEMENT: DEVELOPMENT AND APPLICATION by DENIS BRIERE B.A. U n i v e r s i t y o f Montreal, 1968 B.Sc. L a v a l U n i v e r s i t y , 19 72 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF - THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF GRADUATE STUDIES F a c u l t y o f F o r e s t r y We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA November 19 78 Cc) Denis B r i e r e i n the I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my D e p a r t m e n t o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t h f P'e/iES TrfV The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 W e s b r o o k P l a c e V a n c o u v e r , C a n a d a V6T 1W5 E-6 B P 75-51 1 E ABSTRACT The development and application of the Aqua-Terra C l a s s i f i c a t i o n System (A.T.C.S.) i s proposed for the s t r a t i f i -cation of forested landscapes i n an attempt to integrate the land and aquatic systems i n t h e i r c l a s s i f i c a t i o n , inventory and interpretation for intensive forest management. The drainage basins and t h e i r d i f f e r e n t orders are proposed as levels of integration of the environment. The landform con-cept i s applied i n conjunction with the subdivision method of c l a s s i f i c a t i o n leading to the i d e n t i f i c a t i o n of management units, which express the state of development of the d i f f e r -ent slopes pertaining to each drainage basin order. Land-scape units are i d e n t i f i e d and described by the association method of c l a s s i f i c a t i o n . The stream ordering system developed by Strahler (1957) i s used to quantitatively characterize the stream network on a regional basis, based- on the laws of drainage composition. The A.T.C.S. drainage basin ordering system, which i s a modification of the S t r a h l e r 1 s system, was found more useful for a more intensive or l o c a l analysis because the d i f f e r e n t drainage basin orders have a unique mosaic of landscape units. Also, the biophysical c h a r a c t e r i s t i c s of the respective landscape units are very s i m i l a r from one drainage basin order ? i v to the other. The major difference between the d i f f e r e n t drainage basin orders i s i n the d i s t r i b u t i o n of the land-scape units which i s exclusive to each drainage basin order. Each landscape unit i s described i n terms of selected bio-physical c h a r a c t e r i s t i c s and forest stand productivity. The A.T.C.S. c l a s s i f i c a t i o n system i s proposed as a framework for intensive forest management allowing interpretations to be made at the landscape unit and drainage basin order l e v e l s . V TABLE OF CONTENTS Page ABSTRACT i i i TABLE OF CONTENTS V LIST OF TABLES ix LIST OF FIGURES x i ACKNOWLEDGEMENTS xv PRELIMINARY NOTE x v i i INTRODUCTION 1 CHAPTER I - CLASSIFICATION PRINCIPLES AND THEIR APPLICATION TO FORESTED LANDSCAPES 5 1. Basic P r i n c i p l e s of C l a s s i f i c a t i o n 5 2 . C l a s s i f i c a t i o n of Forested Terrain: Problem D e f i n i t i o n - Limitations and Needs 7 2.1 Inherent problems related to the object of the study: The forested landscapes . . . . 7 2 . 2 Inherent problems related to the admin-i s t r a t i v e structures by which the forested landscapes are managed 1 0 3 . C r i t e r i a of C l a s s i f i c a t i o n :m.^the)Context of Intensive Forest Management . . . 18 CHAPTER II - DEVELOPMENT OF THE AQUA-TERRA CLASSI-FICATION SYSTEM 2 0 1. Objectives and Hypotheses 20 2 . L i t e r a t u r e Review of the Different C l a s s i -f i c a t i o n Methods 22 3. Basic Concepts of the Proposed Aqua-Terra C l a s s i f i c a t i o n System (A.T.C.S.) 28 3.1 The landform concept as a basic frame-work for the A.T.C.S. approach 3 0 v i Page 4. Erosional landforms: An Improved C l a s s i f i c a -tion System 5. Watershed as a Basic Unit of the A.T.C.S. C l a s s i f i c a t i o n System - A Theoretical Approach. . . • 4 4 6. ^DevelopmentJpf Landscape Units within the Watershed Framework 47 7. ' Selected Methods of Quantitative Analyses of Drainage Basins. .53 7.1 Laws of drainage composition 53 7.2 Drainage density and shape index : 58 7. 3 Slope. 5'9 7.4 Hypsometric analysis 61 CHAPTER III - APPLICATION OF THE AQUA-TERRA CLASSI-FICATION SYSTEM - SUBDIVISION METHOD. V.,64 1 . Location of the Study Area - Seymour Watershed. . . '-.64 2. Geology of the Study Area 67 3. Landform Development of the Study Area J 6 7 4. F i r s t S t r a t i f i c a t i o n of the Forest Landscape of the Seymour Watershed - Derivation of the Hydrology Maps \^70 5. Quantitative Analysis of the Seymour Water-shed Geomorphology \ 73 5.1 Relation of number of streams to stream order. \ 75 5.2 Relation of stream length to stream order. . . -80 5.3 Relation of channel slope to stream order. . . -.88 5.4 Relation of drainage area to stream order. . . 96 5.5 Relation of drainage density to stream order . 1 0 3 5.6 Relation of shape index to stream order. . . 10)3 5.7 Relation of average t o t a l stream length to mean drainage area 10.5 5.8 Hypsometric analysis .10.8 5.9 Slope analysis ' 118 6. Second S t r a t i f i c a t i o n of the Forested Landscape of the Seymour Watershed - Management Unit maps . .123 v i i P a ge 6.1 A n a l y s i s o f t h e s p a t i a l d i s t r i b u t i o n o f t h e management u n i t s i n t h e d i f f e r e n t d r a i n a g e b a s i n s o r d e r ,125 7. T h e r m a l A n a l y s i s o f D r a i n a g e B a s i n s [131 SUMMARY OF THE SUBDIVISION METHOD 1,4.5 CHAPTER I V - APP L I C A T I O N OF THE AQUA-TERRA C L A S S I -F I C A T I O N SYSTEM - ASSOCIATION METHOD .14 6 1 . L a n d s c a p e U n i t D e v e l o p m e n t 14 6 1.1 R e l a t i o n o f t h e b i o g e o c l i m a t i c s u b z o n e s d i s t r i b u t i o n t o d r a i n a g e b a s i n o r d e r 14 7 1.2 R e l a t i o n o f t h e b i o g e o c l i m a t i c s u b z o n e s d i s t r i b u t i o n t o t h e p e r c e n t a g e h y p s o -m e t r i c c u r v e a n a l y s i s 150 1.3 L a n d s c a p e u n i t s d i s t r i b u t i o n f o r s l o p e s p e r t a i n i n g t o d i f f e r e n t d r a i n a g e b a s i n o r d e r 15 3 2. S o i l s a n d P a r e n t M a t e r i a l s D e s c r i p t i o n o f t h e S t u d y A r e a 15-3 2.1 S o i l s d i s t r i b u t i o n i n t h e d i f f e r e n t d r a i n a g e b a s i n s o r d e r . . . 157 2.2 B i o - p h y s i c a l d e s c r i p t i o n o f t h e m a j o r l a n d s c a p e u n i t s . . , 157 SUMMARY OF THE ASSOCIATION METHOD 167 CHAPTER V - THE AQUA-TERRA C L A S S I F I C A T I O N AS A FRAME-WORK FOR INTENSIVE FOREST MANAGEMENT . . . . . . 169 1. G e n e r a l F r a m e w o r k f o r I n t e n s i v e F o r e s t Manage-ment I n t e r p r e t a t i o n s 16:9 2. E x a m p l e s o f A p p l i c a t i o n s o f t h e A.T.C.S. Frame-wo r k f o r F o r e s t Management 173 2.1 T i m b e r i n v e n t o r y . . . . . . . 173 2.2 A q u a t i c s y s t e m i n v e n t o r y '4-7^ 3. E x a m p l e s o f I n t e r p r e t a t i o n s f o r F o r e s t Manage-ment and I m p a c t A s s e s s m e n t 180 v i i i Page 3.1 Selected examples of interpretations for each landscape unit 180 3.2 Selected examples of interpretations at the drainage,, basin order l e v e l 185 3.3 Selected examples of interpretations for integrated drainage basins . . . 191 4. Recovery Period and Extrapolation 19 3 CHAPTER VI - DISCUSSION AND CONCLUSIONS 19 7 BIBLIOGRAPHY 2 03 APPENDIX I.- KEY PLAN AND INDEX TO DRAWINGS 215 APPENDIX II - TECHNICAL DETAILS OF THE AERIAL SURVEY OF THE STUDY AREA .2 31 APPENDIX II I . STEREOGRAMS OF SELECTED DRAINAGE BASINS... 237 APPENDIX IV. SOILS OF THE STUDY AREA. '243 APPENDIX V. FOREST STAND CHARACTERISTICS, ENVIRON-MENT AND VEGETATION TABLES, FOR EACH LAND-SCAPE UNIT 278 Table LIST OF TABLES i x Page 1 L e v e l s of i n t e g r a t i o n r e s u l t i n g from the d i f f e r e n t drainage b a s i n o r d e r s . •.•"46 2 Environmental f a c t o r s c o r r e s p o n d i n g to each l e v e l o f i n t e g r a t i o n . -48 3 A e r i a l photo f e a t u r e s and other e x i s t i n g i n f o r m a t i o n used to c h a r a c t e r i z e manage-ment u n i t s components. . 51 4 D e s c r i p t i v e parameters of drainage b a s i n s . < 60, 5 O u t l i n e o f the procedure f o l l o w e d to d e r i v e the hydrology map. -il2^ 6 Number of streams versus stream order f o r the Seymour Watershed. J8 7 Stream l e n g t h versus stream o r d e r f o r the Seymour Watershed. > 81 8 Channel s l o p e versus stream order f o r the Seymour Watershed. : .89 9 Drainage area versus stream order f o r the Seymour Watershed. 97' 10 T a b u l a t i o n o f s e l e c t e d r e s u l t s d e r i v e d from the percentage hypsometric curves. 112 11 A n a l y s i s of maximum s l o p e l e n g t h versus drainage b a s i n order. 119 12 R e l a t i o n of percentage o f area o f 0 (zero) slopes t o drainage b a s i n o r d e r . 122 13 Area d i s t r i b u t i o n of the 0 (zero) slopes p e r t a i n i n g t o drainage b a s i n s o f d i f f e r e n t o rder. • 130 14 Day time temperature as a r e f l e c t i o n o f p l a n t s t r e s s f o r s l o p e s p e r t a i n i n g t o d i f f e r e n t drainage b a s i n order. 138 15 Day time temperature as a r e f l e c t i o n of p l a n t s t r e s s f o r d i f f e r e n t aspects of 0 (zero) s l o p e s . 139 E f f e c t o f drainage b a s i n orders-, and aspects on p l a n t s t r e s s . R e l a t i o n of the b i o g e o c l i m a t i c subzones d i s -t r i b u t i o n t o drainage b a s i n o r d e r . Area d i s t r i b u t i o n of the b i o g e o c l i m a t i c subzones based on the percentage hypsometric curves f o r drainage b a s i n s of order 1-3, 1-4 and 1-5. Landscape u n i t s d i s t r i b u t i o n f o r s l o p e s per-t a i n i n g to drainage b a s i n s of order 5, 4, 3, 3-5 and 2. Landscape u n i t s d i s t r i b u t i o n f o r s l o p e s per-t a i n i n g to drainage b a s i n s o f order 2-4, 2-5, 1-3, 1-4 and 1-5. R e l a t i o n o f s o i l d i s t r i b u t i o n to slopes per-t a i n i n g t o d i f f e r e n t drainage b a s i n s order. Comparison of the major landscape u n i t s of the study area a c c o r d i n g to s e l e c t e d b i o -p h y s i c a l c h a r a c t e r i s t i c s . D i s t r i b u t i o n of the major t r e e s p e c i e s a c c o r d i n g to t h e i r volume/acre i n the d i f f e r e n t landscape u n i t s . D i s t r i b u t i o n of the major s p e c i e s a c c o r d i n g to t h e i r abundance-dominance i n the d i f f e r e n t landscape u n i t s . The A.T.C.S. as a framework f o r f o r e s t management. Gross volume t a b l e (cunits) f o r each land-scape u n i t p e r t a i n i n g to s l o p e s of drainage basins of order 5, 4, 3, 3-5 and 2. Gross volume t a b l e ( c u n i t s ) f o r each landscape u n i t p e r t a i n i n g to slopes of drainage b a s i n s of order 2-4,. 2-5, 1-3, 1-4 and 1-5. C h a r a c t e r i s t i c s of s o i l groups f o r road c o n s t r u c t i o n . Average number o f s l i d e s per square mil e f o r s l o p e s p e r t a i n i n g to d i f f e r e n t drainage basin') orders. x i LIST OF FIGURES F i g u r e Page 1 T e r r a i n model f o r e r o s i o n a l , d e p o s i t i o n a l and p o l y g e n e t i c type of landforms. 34/ 2 Stream order d e s i g n a t i o n . 39 3 Open water bodies and wetlands d e s i g n a t i o n . 40 .-4 D e l i n e a t i o n o f s u r f a c e drainage b a s i n d i v i d e . '(41(? 5 Drainage b a s i n o r d e r d e s i g n a t i o n . v42> 6 Hydrology legend. 43 7 Landscape u n i t legend. ( 5 0 / . 8 An i d e a l i z e d s e c t i o n through a f o r e s t e d watershed. '54'; A) R e l a t i o n of stream l e n g t h to stream order. B) R e l a t i o n of number of streams to stream order. 56 10 R e l a t i o n of drainage area to stream order. 5 7 > 11 Percentage hypsometric curve f o r a drainage b a s i n . /62/ 1 2 Dimensionless hypsometric curve a n a l y s i s . ' 6 3 / ' 1 3 L o c a t i o n of study area. 6 5 / 14 L o c a t i o n of the Seymour Watershed. ( 6 6 / 1 5 S e l e c t e d examples of d i f f e r e n t drainage b a s i n s order. 74 16 R e l a t i o n of t o t a l number of streams to stream order (Regional a n a l y s i s ) . 76/ 17 R e l a t i o n to t o t a l number of streams to stream x i i Figure - Page 18 Relation of stream length to stream order (Regional a n a l y s i s ) . 83 19 Relation of mean stream length to stream Order (Regional a n a l y s i s ) . 8 4 2 0 Relation of stream length to stream order (Local a n a l y s i s ) . . 86 21 Relation of mean stream length to stream order (Local a n a l y s i s ) . 87 22 Relation of channel slope to stream order (Regional a n a l y s i s ) . 90 2 3 Relation of mean channel slope to stream order (Regional a n a l y s i s ) . 91 24 Relation of channel slope to stream order. (Local a n a l y s i s ) . 93 25 Relation of mean channel slope to stream order (Local a n a l y s i s ) . 94 2 6 Relation of drainage area to stream order (Regional a n a l y s i s ) . 9 8 2 7 Relation of drainage area to stream order. (Regional a n a l y s i s ) . 99 2 8 Relation of drainage area to stream order (Local a n a l y s i s ) . - 100 29 Relation of mean drainage area to stream order (Local a n a l y s i s ) . 102 30 Relation of drainage density to stream order (Local a n a l y s i s ) . 104 31 Relation of shape index to drainage basin order. 106 32 Relation of average t o t a l stream length to drainage area of stream of order 1, 2, 3, 4, and 5. 107 33 Dimensionless hypsometric curves for drain-age basins of order 1, 2 and 3. 110 F i g u r e x i i i Page 34 Percentage hypsometric curves f o r drainage b a s i n s o f order 1-3, 1-4 and 1-5. 114 35 Percentage hypsometric curves f o r drainage b a s i n s of order 2, 2-4 and 2-5. 115 36 Percentage hypsometric curves f o r drainage b a s i n s o f order 3 and 3-5. 116 37 R e l a t i o n of average maximum slope l e n g t h to drainage b a s i n order. 12 0 38 0 (zero) slope area o f the r e s p e c t i v e d r a i n -age b a s i n order expressed as a percentage of the t o t a l study area. 124 39 Area d i s t r i b u t i o n o f each management u n i t expressed as percentage of the t o t a l 0 (zero) s l o p e s area p e r t a i n i n g t o the respec-t i v e drainage b a s i n s of order 2 , 3 , 4 and 5. 12 6 40 Area d i s t r i b u t i o n o f each management u n i t ex-pressed as a percentage of the t o t a l 0 (zero) slopes area p e r t a i n i n g t o the r e s p e c t i v e drainage b a s i n s of order 2-4, 2-5 and 3-5. 127 41 Area d i s t r i b u t i o n o f each management u n i t ex-pre s s e d as a percentage o f the t o t a l 9 (zero) slopes area p e r t a i n i n g to the r e s p e c t i v e drainage b a s i n s of order 1-3, 1-4 and 1-5. 128 42 Models o f slopes p e r t a i n i n g t o d i f f e r e n t drainage b a s i n o r d e r s . 132 43 Models of slopes p e r t a i n i n g t o drainage b a s i n s of order 4 and 5. 133 44 Day and n i g h t - t i m e thermal i n f r a r e d imager-i e s f o r the Seymour Lake area. 134 45 Thermal a n a l y s i s o f the 0-2 slop e s f o r the N, NE, E, SE, S, SW, W and NW a s p e c t s . 141 46 Thermal a n a l y s i s of the 0-3 slop e s f o r the N, NE, E, SE, S, SW, W and NW a s p e c t s . 142 47 Thermal a n a l y s i s o f the 0-4 slop e s f o r the N, NE, E, SE, S, SW, W and NW a s p e c t s . 143 x i v Figure Page 48 Thermal analysis of the 0-5 slopes for the N, NE, E, SE, S, SW, W and NW aspects. 144 49 Relation of the biogeoclimatic subzones di s -t r i b u t i o n to drainage basin order. 149 50 Area d i s t r i b u t i o n of the biogeoclimatic sub-zones based on the percentage hypsometric curves for drainage basins of order 1-3, 1-4 and 1-5. 151 51 Average gross volume per acre (cunits) for slopes pertaining to d i f f e r e n t drainage basin orders. 17 7 52 Optimum yarding distances and slope percent of each logging system. 184 53 Storm r a i n f a l l and drainage basin order. 188 54 The landscape unit approach and the hydro-graph. 19 0 55 Guides for locating cross drains. 194 56 The drainage basin order framework and the hydrograph. 195 X V ACKNOWLEDGEMENTS Many people have c o n t r i b u t e d d i r e c t l y of i n d i r e c t l y to the d i f f e r e n t phases o f t h i s t h e s i s , l e a d i n g to the accomplishments h e r e i n . I f you are one of those people, I p e r s o n a l l y thank you. More s p e c i f i c a l l y , I am very g r a t e f u l t o : My Family D.S. Lacate R.P. W i l l i n g t o n L.M. L a v k u l i c h D. D. Munro S. Phelps K. Jones A. Kozak E. Hamaguchi T.E. Baker G.M. Joyce A l s o , I am very g r a t e f u l to the f o l l o w i n g O r g a n i z a t i o n s f o r t h e i r f i n a n c i a l support: x v i 1. The Greater Vancouver Water Board. 2. Le M i n i s t e r e de L'Education de l a P r o v i n c e de Quebec. 3. The F a c u l t y of F o r e s t r y , U n i v e r s i t y o f B r i t i s h Columbia/ x v i i PRELIMINARY NOTE Because of the t r a n s i t i o n from the Imperial to the Metric System i n Canada, this d i s s e r t a t i o n unfortunately r e f l e c t s the d i f f i c u l t i e s of thi s t r a n s i t i o n . The Forest Stand Characteristics Tables and the drainage basins morphological analysis are presented i n the Imperial System, since the c o l l e c t i o n and analysis of the data were completed before the adoption of the Metric System and since comparisons are made with other studies using the Imperial System. However, conversion Tables are now a v a i l -able to rel a t e one system to the other. THE STRATIFICATION OF FORESTED LANDSCAPES FOR INTENSIVE MANAGEMENT: DEVELOPMENT AND APPLICATION INTRODUCTION 2 There i s an i n c r e a s i n g demand f o r n a t u r a l r e s o u r c e i n f o r m a t i o n by a v a r i e t y of i n t e r e s t groups. Informed r e -source d e c i s i o n s to r e s o l v e the emerging i s s u e s r e q u i r e a b e t t e r understanding of the b i o l o g i c a l and p h y s i c a l a t t r i -butes of an area i n r e l a t i o n to the s o c i a l , p o l i t i c a l and economic c o n d i t i o n s p r e v a i l i n g a t a p a r t i c u l a r time. Know-ledge of the q u a l i t y , q u a n t i t y and v a r i a b i l i t y of the r e -sources being managed w i l l h e lp to f o s t e r p o l i c i e s t h a t f i t the l a n d and minimize the c o n f l i c t s between d i f f e r e n t u s e r s . In simple words, one must know "what i s t h e r e " b e f o r e the management process can be a r t i c u l a t e d . The r e a l c h a l l e n g e , however, i s to e v a l u a t e or examine the components of "what i s t h e r e " to enable the manager to understand t h e i r i n t e r r e l a t i o n s h i p s and degree of a n t i c i p a t e d a l t e r a t i o n under d i f f e r e n t management p r a c t i c e s . The f o r e s t manager a t a l l l e v e l s of a d m i n i s t r a t i o n i s now f a c i n g a new c h a l l e n g e i n h i s o b l i g a t i o n to manage the f o r e s t , because he must c o n s i d e r not o n l y the timber v a l u e s but a l s o o t h e r resources v a l u e s . T h i s f a c t c a l l s f o r a b e t t e r understanding o f the d i f f e r e n t l a n d and a q u a t i c systems and t h e i r i n t e r r e l a -t i o n s h i p s . T r a d i t i o n a l l y , land and a q u a t i c systems have been i n v e n t o r i e d and c l a s s i f i e d s e p a r a t e l y a c c o r d i n g to t h e i r i n -herent p h y s i c a l and b i o l o g i c a l c h a r a c t e r i s t i c s . " E c o l o g i c a l Land C l a s s i f i c a t i o n has been b i a s e d towards the s o i l / v e g e t a -t i o n complex, mainly because of a l a c k of understanding of a q u a t i c environments by land c l a s s i f i e r s " (Thie 1977). 3 The same gap i s a l s o e m e r g i n g i n t h e i n v e n t o r y o f a q u a t i c s y s -t ems. A c c o r d i n g t o M u l l a n ( 1 9 7 7 ) : " T h e r e h a s b e e n i n c r e a s i n g e m p h a s i s i n u n d e r s t a n d i n g man's and n a t u r e ' s w o r l d a s a f u n c -t i o n a l w h o l e . The same s h o u l d a p p l y t o t e c h n o l o g i c a l a s s e s s -ment o f s t r e a m s , away f r o m mere component a n a l y s i s , w h e r e i n f a c t o r s a n d o r g a n i s m s a r e t r e a t e d a s i f t h e y w ere i n d e p e n d e n t e n t i t i e s , t o more h o l i s t i c a p p r o a c h e s w h i c h i n c l u d e i n t e r -a c t i v e , i n t e g r a t i v e , a n d e m e r g e n t p r o p e r t i e s . " An h o l i s t i c a p p r o a c h , w h i c h w i l l be r e f e r e d t o a s t h e A q u a - T e r r a C l a s s i f i c a t i o n S y s t e m ( A . T . C . S . ) , i s p r o p o s e d i n an a t t e m p t t o c l a s s i f y t h e l a n d a n d a q u a t i c s y s t e m s a s i n t e -g r a t e d a n d i n t e r r e l a t e d e n t i t i e s , a n d t o a n a l y s e t h e i r b i o -p h y s i c a l r e l a t i o n s h i p s f o r i n t e n s i v e f o r e s t management. The b a s i c u n i t o f t h e p r o p o s e d c l a s s i f i c a t i o n s y s t e m (A.T.C.S.) i s t h e w a t e r s h e d o r d r a i n a g e b a s i n . "A w a t e r s h e d c a n be s u b -d i v i d e d i n t o s u b w a t e r s h e d s o f d e c r e a s i n g s i z e w i t h t h o s e h a v i n g t h e s m a l l e s t t r i b u t a r i e s r e p r e s e n t i n g t h e b a s i c s t r e a m u n i t s . By c l a s s i f y i n g t h e s e s t r e a m u n i t s i n t o a h i e r a r c h y o f s t r e a m o r d e r s , t h e o r g a n i z a t i o n o f s t r e a m s y s t e m s c a n be q u a n t i f i e d " ( B e s c h t a 19 7 8 ) . The s t r e a m o r d e r i n g s y s t e m p r o -p o s e d by S t r a h l e r (1957) i s u s e d t o c h a r a c t e r i z e the stream network on a r e g i o n a l b a s i s . F o r a more i n t e n s i v e o r l o c a l a n a l y s i s o f t h e f o r e s t e d l a n d s c a p e s , a m o d i f i c a t i o n o f t h e S t r a h l e r ' s m e t h o d o f s t r e a m o r d e r s i s p r o p o s e d i n o r d e r t o d e s c r i b e t h e i n t e r r e l a t i o n s h i p s o f t h e l a n d a n d a q u a t i c s y s t e m s w i t h i n t h e d r a i n a g e b a s i n o r d e r c o n c e p t . The p r o p o s e d f r a m e w o r k w i l l a l s o be a s s e s s e d f o r i t s i n t e r p r e t a t i v e v a l u e s i n t e r m s o f i n t e n s i v e f o r e s t management. The Seymour w a t e r s h e d l o c a t e d i n t h e C o a s t a l M o u n t a i n Range o f S o u t h w e s t e r n B r i t i s h C o l u m b i a was u s e d t o a p p l y t h e p r o p o s e d A q u a - T e r r a C l a s s i -f i c a t i o n S y s t e m ( A . T . C . S . ) . CHAPTER I C L A S S I F I C A T I O N P R I N C I P L E S AND THEIR A P P L I C A T I O N  TO FORESTED LANDSCAPES 1. B a s i c P r i n c i p l e s o f C l a s s i f i c a t i o n A. O b s e r v a t i o n s . The f i r s t s t e p o f t h e s c i e n t i f i c m e t h o d i s c o n c e r n e d w i t h c o l l e c t i n g d a t a f r o m t h e " o b j e c t " o f s t u d y . I n t h i s p r o c e s s , f a c t f r o m i n f e r e n c e m u s t be d i s t i n g u i s h e d . F o r e x a m p l e t h e f i e l d s o i l s c i e n t i s t u s u a l l y e s t i m a t e s s o i l d r a i n a g e by i n f e r e n c e . B o t h q u a l i t a t i v e and q u a n t i t a t i v e d a t a a r e i m p o r -t a n t t o c o n s i d e r , s i n c e : "The n a t u r a l s c i e n c e s a r e c o n c e r n e d w i t h e m p i r i c a l k n o w l e d g e o f n a t u r e , i . e . , w i t h what we p e r -c e i v e t h r o u g h t h e s e n s e s . P e r c e p t i o n i s n o t s i m p l y t h e r e g i s t r y b y a r e c e p t i v e m i n d o f wh a t l i e s ' o u t t h e r e ' ; r a t h e r i t i an a c t i v e i n t e l l e c t u a l p r o c e s s w h i c h p r o v i d e s c o n s c i o u s n e s s w i t h ' o b j e c t s ' a s v e h i c l e s o f m e a n i n g f o r t h e w o r l d a s s e n s e d " (Rowe 1 9 6 1 ) . B. C l a s s i f i c a t i o n o f t h e O b s e r v a t i o n s . The o b s e r v a t i o n s a r e c l a s s i f i e d a c c o r d i n g t o o u r c o n -c e p t o f o r d e r , w h i c h r e f l e c t s : - t h e p r e s e n t s t a g e o f o u r k n o w l e d g e a nd t e c h n i q u e s , - t h e l i m i t a t i o n s o f man's m i n d , - p e r s o n a l b i a s . 6 The capacity of man's perception i s a function of his capacity for abstraction, his knowledge, experience and the techniques av a i l a b l e . "At a given time our concepts are consequences of the knowledge we have gained, which i n turn depends substantially on the techniques at our disposal. Yet those concepts govern to a major degree our approach to the solution of current problems, and thus, they . control developments of the immediate future. With-in the framework of i t s accumulated knowledge, every science develops a mental image of the thing with which i t i s concerned. This model of a science i s the organized aggregate of accumulated f a c t s , laws and theories based on those fac t s ; i t i s a mental picture of that which i s known and viewed i n organ-ized perspective through v e r i f i e d quantitative r e l a -tionships, which we c a l l law, with varying degrees of d i s t o r t i o n by virtu e of theories that attempt to explain the observed relat i o n s h i p s . The picture i s not the same to a l l who work i n the science, for i t i s composed of knowledge and the extension of theory from knowledge into the unknown, and d i f f e r e n t men know, or think they know, d i f f e r e n t things" (Cline 1961). The main purpose of ordering things i s to i d e n t i f y differences and discover relationships between them. C. Prediction A l l sciences e x i s t because of our need to predict and understand the components of our environment. For t h i s pur-pose, the s c i e n t i s t expresses his knowledge by: 1) laws, which represent some factual r e l a t i o n s h i p s ; and 2) theory and hypotheses which are: - explanations of the determinants, - purely a mental picture, - not subject to f i n a l proof as law, - an approximation. 7 ' " ' D. V e r i f i c a t i o n The v e r i f i c a t i o n of a c l a s s i f i c a t i o n i s never completed because the purpose i s : - to test the predictions, - to detect errors. The role of a c l a s s i f i c a t i o n i s to organize our know-ledge adequately and to communicate and predict the properties of the defined classes or units. The excellence of a c l a s s i -f i c a t i o n i s judged by i t s u t i l i t y with respect to p a r t i c u l a r ends. " C l a s s i f i c a t i o n s are contrivances made by men to s u i t t h e i r purposes. They are not themselves truths that can be discovered. There i s no true c l a s s i f i c a t i o n ; the best c l a s s i -f i c a t i o n i s that which best serves the purposes for which i t i s to be used" (U.S.D.A., 1960). 2. C l a s s i f i c a t i o n of Forested Terrain: Problem D e f i n i t i o n - Limitations and Needs Two s p e c i f i c problems related to c l a s s i f i c a t i o n and management of forested t e r r a i n are discussed: 1) Inherent problems related to the object of study: the forested landscapes. 2) Inherent problems related to the administrative structures by which the forest i s managed. 2.1 Inherent Problems Related to the Object of Study: The Forested Landscapes A c l a s s i f i c a t i o n of forested landscapes should take into consideration the nature of the problems related to the 8 : object of study, such as: A) Size of the area to be examined. B) A c c e s s i b i l i t y . C) Forested landscapes as functional wholes. D) Forest's succession rates A. Size of the area to be examined. Any type of land c l a s s i f i c a t i o n or mapping system, to be e f f i c i e n t , has to take into consideration the size of the area to be examined, because of i t s effects on costs and on the development and application of the basic c l a s s i f i c a t i o n techniques. This term of reference i s very applicable to forested landscapes, es p e c i a l l y i n Canada where m i l l i o n s of hectares need to be examined and thousands of hectares are logged, burned or destroyed by insects and diseases annually. Considering the huge area that must be covered, i t i s not feasible to assume that every hectare can be f i e l d checked, nor would th i s be p r a c t i c a l i n economic terms. As a r e s u l t , two basic concepts should govern the development of a c l a s s i -f i c a t i o n system: - PRESTRATIFICATION of the environment using airphoto interpretation techniques or remote sensing tech-niques, in. order to focus on areas that appear to be si m i l a r . - EXTRAPOLATION of past experiences and research f i n d -ings by the i d e n t i f i c a t i o n of similar environments or "kinds of places", relevant to intensive forest management. B. A c c e s s i b i l i t y . A c c e s s i b i l i t y i s always a major concern to people i n -volved i n forested t e r r a i n c l a s s i f i c a t i o n . Any forested area should be examined before the construction of a road system, as i t i s now well recognized that roads have a s i g n i f i c a n t impact on sensitive s i t e s and aquatic systems, making road location a prime concern. Also, i n terms of p o l i c y develop-ment, the extent and v a r i a b i l i t y of the bio-physical charac-t e r i s t i c s of forested landscapes must be evaluated before the actual implementation of such policy. The a c c e s s i b i l i t y problem stresses the need for the pre-s t r a t i f i c a t i o n and extrapolation concepts defined previously. C. Forested landscapes as functional wholes. The forest i s more than just a group of trees. As C h r i s t i a n (1952) stated: "Though the forester i s more d i r e c t l y concerned with trees the forest manager i s becoming more and more a land manager. Land means the sum of a l l the features of the earth-'s surface which influence i t s usefulness".- It i s clear that foresters have to understand the forest as an integrated entity of the land and aquatic systems to maximize the benefits derived from the forest environments. To be h o l i s t i c , a c l a s s i f i c a t i o n system for forested landscapes must ^ 'recognize L~Jthe i n t e r r e l a t i o n s h i p s between land and aquatic systems. Any major modifications of the land systems a l t e r the d i s t r i b u t i o n (quantity, quality and timing) of water through the respective land and aquatic systems, a f f e c t -ing t h e i r o r i g i n a l properties. The c l a s s i f i c a t i o n system should serve the role of insuring better communication and understanding of information by creating a framework which allows relationships to be recognized between land and aquatic systems, at d i f f e r e n t levels of management. Jef f r e y (1970), suggested that: "one main purpose i n inventorying the forest land resource i s to provide a framework for i n t e -grated resource planning, and the most informative c l a s s i f i -cation w i l l therefore be based on the t o t a l landscape rather than on any single component of i t , whether vegetation, s o i l , geomorphology or climate". D. Forest's succession rates. The major objective of the forest manager i s to pre-d i c t and minimize the impact of his action on the forest en-vironments and make sure that the forest s i t e productivity i s maintained or enhanced for future use. The r e l a t i v e slow-ness of the forest's succession^makes th i s objective very hard to achieve i f there i s no reference system or data base to j u s t i f y the expectations of his impacts being bene-f i c i a l or detrimental on a p a r t i c u l a r forest environment. Consequently, a forest c l a s s i f i c a t i o n system must be f l e x i b l e enough to incorporate and extrapolate past and future experi-ences and research findings to similar forested landscapes located inside their respective aquatic system. 2.2 Inherent Problems Related to the Administrative Structures by Which the Forested Landscapes axe Managed If a forest c l a s s i f i c a t i o n system i s to be used at a p a r t i c u l a r time, i t should take into consideration the s o c i a l , economic and p o l i t i c a l framework i n which i t w i l l be applied. The following points w i l l be discussed i n an attempt to stress the need to consider the administrative framework i n which a c l a s s i f i c a t i o n system i s to be used: A. Administrative structures. B. Management. A. Administrative structures It i s not the intention or the objective of t h i s study to describe the resource administration of B r i t i s h Columbia or any other Provinces or Countries. But since the a p p l i -cation of the proposed s t r a t i f i c a t i o n of forested landscapes for intensive management i s i n the mountainous t e r r a i n of B r i t i s h Columbia, the author would l i k e to refer as an exam-ple, to the report of the Royal Commission on Forest Resources by Peter H. Pearse, Commissioner, e n t i t l e d : Timber Rights and  Forest Policy i n B r i t i s h Columbia (1976). According to Pearse a conspicuous feature of natural resource policy i n B.C. i s the great variety of systems used for a l l o c a t i n g rights over crown property. A host of licenses, leases, permits, and area designations have been developed to make each resource available to users, and these are administered by the several resource agencies. As a r e s u l t , a single t r a c t of crown forest may simultaneously be covered by one or more authoriza-tions, giving access to crown resources for such diverse pur-poses as timber production, water withdrawal, grazing, -guiding trapping, mining, and outdoor recreation. The administrative arrangements t h a t govern these o v e r l a p p i n g uses f o r crown land have extremely important consequences f o r the e f f i -c i e n c y of resource use. There i s , of course, a v a r i e t y of othe r p r o v i n c i a l , f e d e r a l , u n i v e r s i t y and p r i v a t e agencies t h a t are concerned w i t h f o r e s t r e l a t e d a c t i v i t i e s , d e a l i n g w i t h such d i v e r s e matters as f i s h e r i e s , n a v i g a t i o n , s a f e t y , highway use, e t c . I t i s obvious t h a t flow o f i n f o r m a t i o n between agencies and w i t h i n t h e i r own s t r u c t u r e s , i s a prime concern to encourage and f o s t e r b e t t e r p o l i c y development and implementation. To f u l f i l t h i s o b j e c t i v e , the c l a s s i f i c a t i o n should: - have a simple, common sense l o g i c , and use an understandable vocabulary; - be based on s i t e c h a r a c t e r i s t i c s t h a t can be seen and measured; - have mappable u n i t s , to Visually detect"" t h e i r s p a t i a l d i s t r i b u t i o n . B. Management C l a s s i f i c a t i o n i s the means o f environmental i d e n t i f i -c a t i o n , s t r a t i f i c a t i o n and l a b e l l i n g i n the l a r g e r context o f a f o r e s t management i n f o r m a t i o n system. I t i s the method we use to p r e d i c t the ^ biophysical^ response, y i e l d and impact i n f o r m a t i o n needed by managers and pl a n n e r s . As such, the c l a s s i f i c a t i o n system i t s e l f i s on l y a means to an end and must be judged by how w e l l i t enables the i n f o r m a t i o n system to f u n c t i o n . 1 3 An e f f i c i e n t management program has to work within the following l i m i t a t i o n s : - the f i n a n c i a l constraints, - the number of s k i l l e d people available - • for program delivery. The same constraints apply to any c l a s s i f i c a t i o n system and become c r i t i c a l i n i t s application and use. To cope with these l i m i t a t i o n s , the two basic concepts of p r e s t r a t i f i c a t i o n and extrapolation previously formulated are found to be useful. As a responsible administrative o f f i c e r , the manager has to make the f i n a l decision among alte r n a t i v e solutions to problems. For the forest manager a forest land c l a s s i f i c a t i o n has a dual r o l e : - a means to predict consequences of a l t e r n a t i v e solu-tions. - a way of explaining how or why c e r t a i n consequences are expected and s p e c i f i c choices were made. Managers of both public and private forestry spend a great deal of time explaining and j u s t i f y i n g t h e i r expecta-tions and actions to c r i t i c a l , but not t e c h n i c a l l y expert people, such as concerned c i t i z e n s or higher l e v e l administra-tors. To be useful as a communication device with the non-technical sector, the c l a s s i f i c a t i o n must have a simple, common sense l o g i c and use an understandable vocabulary. Better communication at a l l l e v e l s of administration w i l l foster better-. forest policy development by increasing the flow of information, and w i l l help to i d e n t i f y the needs f o r d i f f e r e n t management s t r a t e g i e s . One of the main f u n c t i o n s of s t a f f s p e c i a l i s t s or ex-p e r t s such as h y d r o l o g i s t s , engineers, s i l v i c u l t u r i s t s , p e d o l o g i s t s or w i l d l i f e b i o l o g i s t s i s to make o n - s i t e analyses of s p e c i f i c p r o j e c t s , t o prepare e v a l u a t i o n s and, more im-p o r t a n t l y , to recommend a p r e s c r i p t i o n f o r p r o j e c t implementa-t i o n . To be able to make these e v a l u a t i o n s and p r e s c r i p t i o n s , a g r e a t d e a l of s p e c i f i c i n f o r m a t i o n i s needed as the f o l l o w -i n g suggests: E n g i n e e r i n g Questions 1. Is the ground s u f f i c i e n t l y s t a b l e to be able to put i n a road? 2 . How much w i l l the road cost? a. S t a b i l i t y ? i . Parent m a t e r i a l , s o i l t e x t u r e , s l o p e , p r e c i p i t a -t i o n ? i i . Rooting depth? b. Avalanching magnitude and frequency? c. W i l l streams r e q u i r e c u l v e r t or bridge? i . S i z e , peak flows, c l i m a t i c data? i i . Bedload movement, bank s t a b i l i t y ? d. Type of c o n s t r u c t i o n - c a t or excavator? i . Boggy ground, p o o r l y drained? i i . Deep organic? • ,15 " e. What w i l l be the blasting costs? - How much and what kind of bedrock? f. Can s u r f i c i a l materials be used for ballasting? Surfacing? \ i . S o i l depth, texture, i n f i l t r a t i o n rate, com-paction? i i . Where do suitable materials e x i s t r e l a t i v e to the proposed road location? g. How much overburden i s to be removed? h. Where are the gravel deposits? 3. Can stream be yarded across or i s a buffer s t r i p recommended? 4 . How long i s the snow free period? Forestry Questions 1. How much usable wood i s there now? 2. What i s the potential productivity of the site? 3. What species i s wanted for regeneration? - Use natural (including advance regeneration) or a r t i f i c i a l regeneration? 4. Should the area be burned? 5. What i s the growing season water supply and where does i t come from? 6. What i s the n u t r i t i o n a l status of the site? - Is the area suited to f e r t i l i z a t i o n ? 7 . What i s the desired stocking of the site? - Aspect, exposure, s o i l depth? 8 . What i s the r i s k of p a l u d i f i c a t i o n ? 9. What w i l l be the r o t a t i o n age of the new stand? What i s the M.A.I.? F o r e s t r y - E n g i n e e r i n g Questions 1. What i s the sediment p o t e n t i a l o f the s o i l and s u r f i -c i a l m a t e r i a l s ? - How f a r w i l l the sediment move i n the a q u a t i c system? Where i s the f i r s t lake or r e c e i v i n g area from the sediment source? 2. What problems may e x i s t i n s i t e r e h a b i l i t a t i o n ? - I n f i l t r a t i o n r a t e , e r o s i o n , snow d u r a t i o n , f r o s t problems? 3. What about f i s h c r eeks, w i l d l i f e h a b i t a t ? Much of t h i s i n f o r m a t i o n i s e i t h e r too expensive to mea-sure d i r e c t l y or i s simply unknown f o r the s i t e i n q u e s t i o n ; the s p e c i a l i s t r e l i e s p a r t l y on p u b l i s h e d r e s e a r c h r e s u l t s and very h e a v i l y on experience and judgement to o b t a i n the i n f o r m a t i o n . The key to t r a n s f e r r i n g the experience gained elsewhere to the p r o j e c t s i t e i n q u e s t i o n , i s to a c c u r a t e l y i d e n t i f y the "kind o f p l a c e " or "environment" of the s i t e and look f o r s i m i l a r "kinds o f p l a c e s " elsewhere. The l a n d c l a s s i f i c a t i o n system serves the r o l e o f i d e n -t i f y i n g and l a b e l l i n g "kinds of p l a c e s " . To do t h i s e f f i c i -e n t l y , the methods of l a b e l l i n g o r c l a s s i f y i n g need to be o b j e c t i v e , well-documented, and a v a i l a b l e to the average t e c h n i c a l s t a f f . Moreover the c l a s s i f i c a t i o n process needs T 7 _ to provide several options, on how "places" can be i d e n t i f i e d depending on s k i l l s and resources available. Pragmatically, i t i s u n l i k e l y that research organiza-tions of government, industry, and u n i v e r s i t i e s w i l l ever have the resources to develop and communicate a l l the extensive empirical information needed by management. Management and the l i n e organizations w i l l have to provide t h i s information themselves i f i t i s to be made available. But t h i s i s not as d i f f i c u l t as i t might seem. Every stand cut, road b u i l t , s i t e preparation, f i s h stocking, or campground provided can be viewed as an experiment. A l l we need to do i s describe the environmental conditions and the treatment, observe what happens, and compile the r e s u l t s to b u i l d an information system. Much of t h i s we do i n the planning process anyway. Forest land c l a s s i f i c a t i o n again serves the r o l e of describing the environmental conditions (kinds of places) and becomes the basic l a b e l l i n g system for f i l i n g data on cases, experiments, etc., for future r e t r i e v a l . The forest land c l a s s i f i c a t i o n system turns out to be the vehicle for information transfer, storage, and r e t r i e v a l . Budget preparation and program implementation require that forested landscapes be grouped by strata or categories of r e l a t i v e l y homogeneous treatment response. Forest land c l a s s i f i c a t i o n provides a framework for setting up such strata. Requirements of the c l a s s i f i c a t i o n system are that i t provide homogeneous response strata and that i t be r e l a t i v e l y inexpensive to map. 1.8 3. C r i t e r i a of C l a s s i f i c a t i o n i n the Context of Intensive  Forest Management The inherent lim i t a t i o n s related to the forested land-scapes, combined with the forest administrative framework, dictate obvious c r i t e r i a as a base of forest landscapes c l a s s i f i c a t i o n and mapping. The requirements of such a c l a s s i -f i c a t i o n system indicated above can be summarized: A. The method has to be f l e x i b l e according to the i n -formation available and allow for unforseen con-diti o n s . B. The c l a s s i f i c a t i o n has to be professionally accepted or credible, preferably through experimental v a l i d a -t i o n . C. The method must be rapid enough to make i t economic-a l l y sound and p r a c t i c a l i n terms of i t s f e a s i b i l i t y i n covering large areas. D. The forested landscapes should be grouped by strata of r e l a t i v e l y homogeneous treatment response, i n order to extrapolate or predict information over a wide range of environmental situations. E. The method must be so standardized that the work of d i f f e r e n t users or c l a s s i f i e r s w i l l be comparable. F i e l d i d e n t i f i c a t i o n keys and mapping rules should be e x p l i c i t , documented, and based on observable, measurable attributes of the environment and, when mapped,should guide planning and in-place program implementation. ,T9 ^ F. The b a s i c concepts and l o g i c of the system must be communicable and e x p l a i n a b l e to n o n - t e c h n i c a l people. G. The s t r a t i f i c a t i o n system should be l o g i c a l , con-s i s t e n t , and o b j e c t i v e l y q u a n t i f i a b l e so as to f u n c t i o n w i t h i n a computer-operated i n f o r m a t i o n system,^ (Frayer e t a_l. 1978). I f the system i s designed to i n c o r p o r a t e fin-formation from v a r i o u s agencies, to enhance the flow of i n f o r m a t i o n , and to improve c o o r d i n a t i o n w i t h i n and between agencies, the sys-tem should be h i e r a r c h i c a l so i t can be used at a v a r i e t y of o r g a n i z a t i o n a l l e v e l s . A l s o , the lowest l e v e l of the h i e r -archy should c o n s i s t of p e r c e i v a b l e u n i t s of the landscape or environment. The d e s c r i p t i o n o f these u n i t s should be based on measurable and r e a d i l y observable i n t r i n s i c p r o p e r t i e s of the o b j e c t of study and a l l o w f o r comparisons to be made. 20 CHAPTER II DEVELOPMENT OF THE AQUA-TERRA CLASSIFICATION SYSTEM The development of t h i s new approach focuses on the land and aquatic systems of forested mountainous t e r r a i n , i n an attempt to solve some of the problems associated with the intensive management of such areas. In a l l past work, land and aquatic systems have been c l a s s i f i e d separately. The A.T.C.S. approach i s the f i r s t attempt to integrate the c l a s s i f i c a t i o n of land and aquatic systems. 1. Objectives and Hypotheses The main objective of thi s study i s to develop land-scape units, based on environmental factors that can be used as a simple unit to integrate information of land and aquatic systems into the intensive forest management process. To f u l f i l l t h i s objective, the following hypotheses and secondary objectives are proposed: Hypotheses A. In mountainous t e r r a i n drainage basins of d i f f e r e n t order have a c h a r a c t e r i s t i c assemblage of landscape units which creates an h i e r a r c h i c a l c l a s s i f i c a t i o n system allowing environmental comparisons. 21 B. A simple r e p e t i t i v e landscape u n i t can be d e f i n e d , i d e n t i -f i e d and mapped a c c o r d i n g to environmental f a c t o r s , u s i n g the dual c l a s s i f i c a t i o n methods of a s s o c i a t i o n and s u b d i v i s i o n , w i t h i n the drainage b a s i n o r d e r frame-work, r e s u l t i n g i n a s i n g l e base map i n t e g r a t i n g the b i o -p h y s i c a l c h a r a c t e r i s t i c s of the l a n d and a q u a t i c systems a t d i f f e r e n t l e v e l s o f i n t e g r a t i o n . Secondary O b j e c t i v e s A. To develop a methodology u s i n g a i r p h o t o s and remote sens-i n g techniques w i t h the A.T.C.S. system, a l l o w i n g e x t r a -p o l a t i o n o f i n t e n s i v e s t u d i e s on s i m i l a r management u n i t s . B. To i n t e g r a t e the e r o s i o n a l , d e p o s i t i o n a l and p o l y g e n e t i c types of landform i n t o a framework s u i t a b l e f o r i n t e n s i v e f o r e s t management, us i n g the watershed and i t s d i f f e r e n t o rders as l e v e l s of i n t e g r a t i o n . C. To develop mappable landscape u n i t s , w i t h i n the drainage b a s i n s , which can be grouped i n t o management u n i t s , i n -c o r p o r a t i n g the f o l l o w i n g environmental f a c t o r s : c l i m a t e , geology, landforms, h y d r o l o g i c processes and c h a r a c t e r -i s t i c s , v e g e t a t i o n and organisms. D. To p r e s e n t a framework f o r i n t e n s i v e f o r e s t management w i t h i n the proposed A.T.C.S. c l a s s i f i c a t i o n system. 22 2. Literature Review of the Different C l a s s i f i c a t i o n Methods There are two contrasting methods of c l a s s i f i c a t i o n : a synthetic approach by grouping l i k e things; and an analy-t i c a l approach by d i v i d i n g the entire complex into groups and subgroups. The f i r s t i s the method of association, whereby individuals are arranged into successively broader groupings to form a hierarchy of ascending l e v e l s . The second i s the method of subdivision, i n which the t o t a l pop-ulation i s progressively segregated into groups and subgroups to form a descending hierarchy of successively f i n e r sub-d i v i s i o n s . In contrast to the method of association, which depends on observable facts about i n d i v i d u a l s , subdivision requires some understanding of the cause of v a r i a t i o n within a population. Hence, descending c l a s s i f i c a t i o n systems are mainly based on genetic considerations. Because of t h i s , i t might be expected that c l a s s i f i c a t i o n by association would be attempted before c l a s s i f i c a t i o n by subdivision i n the development of any science, as i s true i n zoology, for example. Thus, when a large number of animal species had become well known and had been grouped into categories at d i f f e r e n t l e v e l s , i t became possible for taxonomists to re-fine t h e i r work by subdividing many groups i n the l i g h t of new understanding. This i s a c h a r a c t e r i s t i c feature of zoological c l a s s i f i c a t i o n today, which i s largely the re-evaluation of e a r l i e r c l a s s i f i c a t i o n s with addition of new species, new subdivisions and new data (Blackwelder, 1967). 23 But t h i s v. progression has not always occurred.. - . ~ For instance, Lebedev (1961) has proposed a descending h i e r -archy of regional geomorphological units whereby zones equivalent i n size and content to the largest structures of the earth's crust are progressively subdivided, eventually to the l e v e l of small features such as l o c a l v a l l e y f l o o r s . During the l a t t e r part of the inter-war period and shortly a f t e r the second world war, new ideas emerged regard-ing ecological relationships which have had great impact on subsequent approaches to natural resource surveys. Espec-i a l l y notable i n the context were the formulation of the " s i t e " concept by Bourne (1931), Milne's (1935) study of s o i l -landform patterns, and Linton's (1946, 1948, 1951) scheme for the delimitation of morphological regions. Bourne, mainly concerned with the regional survey of forest resources, con-ceived of the " s i t e " as the basic unit for ecological study, defining i t as "an area which appears for a l l p r a c t i c a l pur-poses to provide throughout i t s extent similar l o c a l condi-tions as to climate, physiography, geology, s o i l . " However, Linton postulated that s i t e could be equated with i n d i v i d u a l " f l a t s " and "slopes" - the "ultimate units" of ground shape. He proposed, therefore, that morphological analysis could provide a comparatively simple but meaningful framework for ecological research. In addition, and equally important, he refined e a r l i e r ideas concerning s p a t i a l r e l a t i o n s h i p s . Bourne for instance, had recognized that the same type of s i t e commonly occu r r e d again and a g a i n w i t h i n some r e a d i l y i d e n t i f i a b l e area, and hence t h a t "regions" c o u l d be d e l i m -i t e d i n terms of t h e i r c h a r a c t e r i s t i c s i t e assemblages. In s i m i l a r v e i n , M i l n e had p o s t u l a t e d t h a t s p a t i a l groups of s o i l ("catena") were l i n k e d i n t h e i r occurrence by c o n d i t i o n s of "topography"; c o r o l l a r y being t h a t a s o i l - l a n d f o r m p a t t e r n would r e c u r w i t h i n a p a r t i c u l a r t opographic r e g i o n s . M i l n e (1947) demonstrated the e c o l o g i c a l i m p l i c a t i o n s of these p a t t e r n s , f i n d i n g t h a t " s o i l and v e g e t a t i o n zones are so l i n k e d t h a t n e i t h e r can be f a i r l y d i s c u s s e d without the o t h e r " I t i s e v i d e n t t h a t the method of s u b d i v i s i o n i n the c l a s s i f i c a t i o n of n a t u r a l resources i s an e s s e n t i a l step toward a b e t t e r understanding o f the i n t e r r e l a t i o n s h i p s of p h y s i c a l and b i o l o g i c a l components of the environment. The a s s o c i a t i o n method can a l s o be used i n s i d e the framework c r e a t e d by the s u b d i v i s i o n method, to d e s c r i b e s i m i l a r u n i t s and compile the i n f o r m a t i o n f o r comparison purposes. For example, how s i m i l a r are the u n i t s d e f i n e d by the sub-d i v i s i o n method f o r a s p e c i f i c component of the units accord-i n g to our management o b j e c t i v e s . I n t e g r a t e d surveys of n a t u r a l r e s o u r c e s have been developed i n many c o u n t r i e s i n r e c e n t y e a r s . Probably the most notable examples are those of the Commonwealth S c i e n -t i f i c and I n d u s t r i a l Research O r g a n i z a t i o n i n A u s t r a l i a . Since the second world war and l a r g e l y occasioned by i t , surveys^ of t h i s k i n d have been c a r r i e d out i n a wide 25 range of environments by the C.S.I.R.O. Di v i s i o n of Land Research. In the C.S.I.R.O. scheme, the basic mapping unit i s the "land system", an ecological unit which, as Linton envisaged, r e f l e c t s the fundamental significance of geomor-phological factors. In Christian's (1958) words, "the land system concept v i s u a l i z e s that: each part of the land surface i s the end product of an evolution governed by parent.geologi-c a l material, geomorphological processes, past and present climate, and time. During t h i s period the land surface has. been shaped to e x i s t i n g land forms, each developing i n the process i t s own hydrological features, s o i l mantle, vegeta-ti o n communities, animal populations, and range of micro-environments. Hence i t i s possible to recognize recurring units of "topography" with which are associated d i s t i n c t i v e groupings of s o i l s and vegetation, and which are termed "land units". Land units are associated i n recognizable patterns, or "land systems", which are "the product of cer t a i n landscape-forming processes operating on c e r t a i n base materials". (Christian, 1952). A similar method of t e r r a i n analyzes has evolved i n the U.S.S.R. since the second world war. In the Russian approach, as i n the C.S.I.R.O. scheme, >areal complexes" are examined rather than i n d i v i d u a l phenomena, and a h i e r -archy of units of t h i s kind i s recognized (Solntsev, 1962). According to Solntsev the p r i n c i p a l unit ,is the "landscape", and t h i s i s c l e a r l y a geomorphological e n t i t y as described by him; a landscape consists of an assemblage of "morphological 26 u n i t s t h a t are repeated i n r e g u l a r p a t t e r n s " . An analogous approach to those of A u s t r a l i a n and Rus-s i a n workers has a l s o been a p p l i e d i n n a t u r a l resource sur-veys i n Canada. For example, G.A. H i l l s and ot h e r s have mapped "land types" i n On t a r i o and elsewhere as a b a s i s f o r pla n n i n g r e g i o n a l development. The whole complex o f "land" i s i n v e s t i g a t e d i n t h i s work, r a t h e r than separate aspects o f i t . T h i s r e q u i r e s the i d e n t i f i c a t i o n o f "land types", the b a s i c u n i t s w i t h i n which d i s t i n c t i v e p a t t e r n s of p h y s i o -g r a p h i c s i t e s (each having a c h a r a c t e r i s t i c l o c a l c l i m a t e and s o i l moisture s u p p l y ) , of b i o t i c types, and of s o i l types a re examined" ( H i l l s and P o r t e l a n c e , 1960). Land types c o r r e s -pond to the A u s t r a l i a n land systems, as i s e v i d e n t i n Lacate's (1961):account o f the Canadian scheme: "An attempt i s made to r e c o g n i z e and map areas of d i s t i n c t i v e environments, i n terms of v e g e t a t i o n , s o i l , and t e r r a i n , the f i n a l product being an i n t e g r a t e d p i c t u r e o f environments r a t h e r than c l a s s e s o f v e g e t a t i o n , s o i l , topography, and/or c l i m a t e " . E q u a l l y , as i n the A u s t r a l i a n approach, comparable emphasis i s p l a c e d upon geomorphological c o n s i d e r a t i o n s , as Brown (1953) made c l e a r : "In the o r g a n i z a t i o n of the ph y s i o g r a p h i c base, the land i s d i v i d e d i n t o landforms. Any landform i s . composed o f a c h a r a c t e r i s t i c p a t t e r n o f p h y s i o g r a p h i c s i t e s . Each s i t e o f the p a t t e r n occurs on a s p e c i f i c topographic p o s i t i o n . T h e r e f o r e , a land type, which i s composed of a c h a r a c t e r i s t i c d i s t r i b u t i o n of landforms, a l s o has a charac-t e r i s t i c p a t t e r n o f p h y s i o g r a p h i c s i t e s . " 27 Integrated surveys of natural resources, based on the pri n c i p l e s outlined thus far (and es p e c i a l l y the C.S.I.R.O. land system concept) but with occasional differences i n te r -minology, have also been carried out successfully i n various parts of A f r i c a , the Indian Subcontinent and South America. Their p r a c t i c a l value i n enabling reconnaissance investiga-tions to be carried out quickly and economically has received widespread recognition. Thus, at a United Nations Conference on the problems of less developed areas, i t was acknowledged that research programs i n "new" countries should provide for such integrated studies for the regions for which development plans are being considered (Batisse, 1963). Si m i l a r l y , the UNESCO Advisory Committee on Natural Resources Research " i n -s i s t e d " on the importance of the integrated survey concept (UNESCO 196 5). For such reasons the Land Resources D i v i s i o n of the B r i t i s h Directorate of Overseas Surveys has adopted the C.S.I.R.O. approach ~ "in..response to in--'" " creasing requests from overseas governments, mainly i n the trop i c s , for s c i e n t i f i c investigations of land resource and development p o s s i b i l i t i e s " (U.K. Directorate of Overseas Surveys, 19 67). At the same time, however, C0^^,?^^^^'/' weaknesses have emerged which could l i m i t the ultimate worth of these investigations as a foundation for more detailed land re-search and development planning. Many integrated surveys do not produce c l a s s i f i c a t i o n s i n the s t r i c t sense. In p a r t i c u l a r , 28 c l a s s e s of l a n d cannot be d i s t i n g u i s h e d because areas are im-p r e c i s e l y d i f f e r e n t i a t e d as " r e c u r r i n g p a t t e r n s of topography, s o i l s and v e g e t a t i o n " , or "with homogeneous g e o l o g i c a l - g e o -m o r p h o l o g i c a l f o u n d a t i o n " . Such surveys are l a n d i n v e n t o r i e s , r a t h e r than c l a s s i f i c a t i o n s . No p r e c i s e d e f i n i t i o n o f a l a n d system has been framed; i t i s simply "an area, or group of areas, throughout which there i s a r e c u r r i n g p a t t e r n of topography, s o i l s and vegeta-t i o n " . ( C h r i s t i a n and Stewart, 1968). 3. B a s i c Concepts of the Proposed Aqua-Terra C l a s s i f i c a t i o n  System The approach uses a combination of the a s s o c i a t i o n and s u b d i v i s i o n methods to d e f i n e c r i t e r i a t h a t w i l l l e a d to the i d e n t i f i c a t i o n o f landscape u n i t s w i t h i n the drainage b a s i n framework. A landscape u n i t i s d e f i n e d as b eing an i n t e g r a t e d system t h a t has evolved over time. Matched t o the geographic environment, i t s components of landform, c l i m a t e , h y d r o l o g i c a l f e a t u r e s , s o i l , p l a n t s and animals, superimposed on a common s o l a r energy base, show d e f i n i t e mutual adjustments. The s u b d i v i s i o n method i s used w i t h the remote se n s i n g techniques r e a d i l y a v a i l a b l e a t the p r e s e n t time: b l a c k and white a i r p h o t o s and Landsat imagery. C o l o r , 29 c o l o r i n f r a r e d and thermal i n f r a r e d imageries are assessed and r a t e d f o r t h e i r u s e f u l n e s s i n i n t e n s i v e f o r e s t manage-ment. The e r o s i o n a l , d e p o s i t i o n a l and p o l y g e n e t i c landforms w i l l be used w i t h i n the h i e r a r c h y of the watersheds, as the f i r s t step i n the s t r a t i f i c a t i o n of f o r e s t landscape. The second step i s the i d e n t i f i c a t i o n o f each management u n i t w i t h i n the watershed framework, u s i n g s l o p e segments, l e n g t h of s l o p e , i n f e r r e d o r known depth t o impermeable l a y e r , p o s i -t i o n on s l o p e , v e g e t a t i o n f e a t u r e s (stand d e n s i t y and d i s t r i -b u t i o n , t r e e h e i g h t , shrubbed versus f o r e s t e d , etc.) pa r e n t m a t e r i a l s and other observable f e a t u r e s on the a i r p h o t o s such as g u l l i e s , avalanches, rock, snow, e t c . Using the biogeo-c l i m a t i c subzones ( K r a j i n a , 1969), each management u n i t i s f u r t h e r c l a s s i f i e d i n t o landscape u n i t s . The a s s o c i a t i o n method i s used to c h a r a c t e r i z e the p r e s t r a t i f i e d u n i t s through f i e l d data c o l l e c t i o n i n terms of t h e i r parent m a t e r i a l s , s o i l s , geology, c l i m a t e , h y d r o l -o g i c a l p r o p e r t i e s , v e g e t a t i o n and or o g r a p h i c i n f o r m a t i o n . Based on t h i s i n f o r m a t i o n , the landscape u n i t s c o u l d be grouped i n t o i n t e r p r e t i v e u n i t s a c c o r d i n g t o the l i m i t a t i o n s and c o n f l i c t s between the s p e c i f i e d use and other uses a t d i f f e r e n t l e v e l s i n the system. T h i s way each landscape u n i t i s p o s i t i o n e d i n s i d e the land and a q u a t i c systems t o all o w a b e t t e r p r e d i c t i o n o f i t s behavior i n r e l a t i o n t o the i n f o r m a t i o n and e x p e r t i s e now a v a i l a b l e . I f the l e v e l o f confidence i s inadequate f o r a management p l a n , the 30 framework would serve as a guide to d e f i n e r e s e a r c h needs f o r the landscape u n i t s i n q u e s t i o n . •\3.1 The Landform Concept as a B a s i c Framework f o r the  A.T.C.S. Approach V a l l e y s , h i l l s , p l a i n s and mountains a r r a y e d a c r o s s the s u r f a c e of the e a r t h present an almost i n f i n i t e v a r i e t y of form and c h a r a c t e r . Such a complex topographic c o n f i g u r a t i o n r e f l e c t s u l t i m a t e l y the i n t e r a c t i o n of a l l the dominant f o r c e s and s u b t l e i n f l u e n c e s that modify the earth:1-.s s u r f a c e . Engineers i n v o l v e d i n t e r r a i n a n a l y s i s have developed d e f i n i t i o n s and c l a s s i f i c a t i o n s of landforms which are being used more and more by land managers. Both the f o l l o w i n g d e f i n i t i o n s s t i p u l a t e t h a t , f o r a l a n d u n i t to be c l a s s i f i e d as a landform, i t must r e t a i n the same b a s i c composition and c h a r a c t e r i s t i c s whatever i t s geographic r e g i o n . "The e a r t h ' s f e a t u r e s may be d i v i d e d i n t o landforms so t h a t each form pre-sents separate and d i s t i n c t s o i l c h a r a c t e r i s t i c s , topography, rock m a t e r i a l s , and groundwater c o n d i t i o n s . The r e c u r r e n c e o f the landform, r e g a r d l e s s of the l o c a t i o n , i m p l i e s a r e c u r r e n c e of the b a s i c c h a r a c t e r i s t i c s of the landform" (Belcher, 1 9 4 8 ) . Lueder (1959) has formulated a d e f i n i t i o n s l i g h t l y d i f f e r e n t from B e l c h e r ' s : "A u n i t landform may be d e f i n e d as a t e r r a i n f e a t u r e or t e r r a i n h a b i t , u s u a l l y of the t h i r d o r d e r , c r e a t e d by n a t u r a l processes i n such a way t h a t i t may be d e s c r i b e d and r e c o g n i z e d i n terms of t y p i c a l f e a t u r e s wherever i t may occur, and which, when i d e n t i f i e d , 31 p r o v i d e s dependable i n f o r m a t i o n concerning i t s own s t r u c t u r e and e i t h e r composition and t e x t u r e or u n i f o r m i t y " . Lueder d e f i n e s landforms as t e r r a i n e f e a t u r e s of the t h i r d o r d e r . F i r s t - o r d e r forms i n c l u d e c o n t i n e n t s and ocean b a s i n s ; mountain ranges are r e l i e f f e a t u r e s of the second order; and t h i r d - o r d e r formations i n c l u d e v a l l e y s , b a s i n s , r i d g e s , and c l i f f s . The main i n n o v a t i o n i n Leuder's d e f i n i t i o n i s i n the r e f e r e n c e to the s c a l e o f the formations i n c l u d e d . Way (1973) i n c o r p o r a t e d the pr e v i o u s two d e f i n i t i o n s , w h i l e e n l a r g i n g the d e f i n i t i o n of the v i s u a l c h a r a c t e r i s t i c s : "Landforms are t e r r a i n f e a t u r e s formed by n a t u r a l p r o c e s s e s , which have a d e f i n a b l e composition and range of p h y s i c a l and v i s u a l c h a r a c t e r i s t i c s t h a t occur wherever the landform i s found. Thus, s p e c i f i c d i s t i n c t i o n s can be made among landform u n i t s , by which t o d e s c r i b e unique topography, composition, or to make v i s u a l d i s t i n c t i o n s r e l e v a n t t o pl a n n i n g i s s u e s and c a p a b i l i t i e s . " In the i d e n t i f i c a t i o n o f s i m i l a r "kinds o f p l a c e s " i n the landscape, the landform concept becomes the corn e r -stone i n any development of a methodology t o i d e n t i f y l a n d -scape u n i t s . The two b a s i c concepts o f p r e s t r a t i f i c a t i o n and e x t r a p o l a t i o n formulated i n Chapter I , would be prac -t i c a l l y i m p o s s i b l e to apply without the landform framework as the f i r s t s tep o f the s u b d i v i s i o n method. 32 The landform becomes the basic unit of the A.T.C.S. c l a s s i f i c a t i o n system. In the past, land c l a s s i f i c a t i o n systems used the depositional type of landform as a basic framework. The concepts of erosional and polygenetic types of landform are added i n the application of the A.T.C.S. c l a s s i f i c a t i o n system. A given land area i s composed of a p a r t i c u l a r set of rocks, which have p a r t i c u l a r chemical and mineralogic compo-s i t i o n s and s p e c i f i c physical properties. Because rocks were formed at d i f f e r e n t temperatures and pressures within the earth, when they are exposed at the surface they are no longer i n equilibrium with t h e i r new environment and thus begin to decompose under physical, chemical and b i o l o g i c a l weathering agents. In the process, landforms of various types are created: erosional, depositional and polygenetic. In a s p e c i f i c environment the physical and chemical consti-tution of the rocks determines the way i n which they w i l l break down and, i n turn, the size and quantity of debris made available to the denudational agents. As Leopold (1964) pointed out: "Each denudational agent, depending upon i t s density, gradient, and mass at a p a r t i c u l a r place, i s capable of applying a given stress on the materials a v a i l -able, a certain amount of work may be performed by the a p p l i -cation of t h i s stress, and the results of t h i s work are the landforms that we see developed i n various parts of the world. In a given climatic and vegetational environment the shape 33 or form of the landscape w i l l vary, depending upon the char-a c t e r of the rock and the type and a v a i l a b l e s t r e s s of the e r o s i o n a l agents." In o r d e r to v i s u a l i z e the e r o s i o n a l , d e p o s i t i o n a l and p o l y g e n e t i c types of landform, F i g u r e 1 i s presented as an example. The f o l l o w i n g d e f i n i t i o n s are attempted. - e r o s i o n a l type of landform: Any d e p r e s s i o n i n the t e r -r a i n which has been formed by e r o s i o n and weathering as the r e s u l t of f o r c e s or s t r e s s e s a p p l i e d a t the sur-face o f the e a r t h . - d e p o s i t i o n a l type o f landform: Any l a n d s u r f a c e f e a t u r e which has been formed by t r a n s p o r t a t i o n , d e p o s i t i o n or accumulation p r o c e s s e s . - p o l y g e n e t i c type of landform: Any l a n d s u r f a c e f e a t u r e which has mixed p r o p e r t i e s or c h a r a c t e r i s t i c s of e r o s i o n a l and d e p o s i t i o n a l p r o c e s s e s . The v a r i o u s n a t u r a l processes r e s p o n s i b l e f o r the f o r -mation of landforms are: 1 . Mass s t r e s s and s t r a i n . 2. Changes i n pressure-temperature-volume r e l a t i o n -s h i p s . 3. P h y s i c a l and chemical weathering. 4. E r o s i o n , t r a n s p o r t a t i o n and d e p o s i t i o n agents: water, g l a c i e r , wind, g r a v i t y . 5 . S p e c i a l chemical p r o c e s s e s . 6. B i o t i c processes. 34 1. Erosional type of landform: watershed slope of a s p e c i f i c order. 2 . Depositional type of landform: a f l o o d p l a i n . 3. Polygenetic type of landform: a morainal deposit on a watershed slope of a s p e c i f i c order. Figure 1. Terrain model for erosional, depositional and polygenetic type of landforms. 35 4. E r o s i o n a l Landforms: An Improved C l a s s i f i c a t i o n System By u s i n g the s u b d i v i s i o n method, the A.T.C.S. c l a s s i -f i c a t i o n system i s designed to be a p p l i e d as a mapping pro-cedure f o r the p r e s t r a t i f i c a t i o n of the landscape a t d i f f e r -ent l e v e l s of i n t e g r a t i o n . The drainage area and i t s c h a r a c t e r i s t i c s , i s the most common m o r p h o l o g i c a l e x p r e s s i o n of the mappable e r o s i o n a l type of landforms. The drainage area may be d e f i n e d as the area which c o n t r i b u t e s water to a p a r t i c u l a r channel or s e t of channels. I t i s the source area of the stream flow e v e n t u a l l y p r o v i d e d to the stream channels by v a r i o u s paths. As such, i t forms a convenient u n i t f o r the c o n s i d e r a t i o n of the processes determining the formation of s p e c i f i c landscapes i n the v a r i o u s r e g i o n s of the e a r t h . The s e l e c t e d methods of q u a n t i t a t i v e a n a l y s i s o f drainage b a s i n s are d e s c r i b e d i n S e c t i o n 7. A. Stream O r d e r i n g System Stream order i s a measure of the p o s i t i o n of a stream i n the h i e r a r c h y of t r i b u t a r i e s . The f i r s t step i n drainage b a s i n a n a l y s i s , i s order d e s i g n a t i o n f o l l o w i n g a system m o d i f i e d from S t r a h l e r (1957). The s m a l l e s t " f i n g e r - t i p " . t r i b u t a r i e s mappable at a g i v e n s c a l e are d e s i g n a t e d order 1. Where two f i r s t - o r d e r channels j o i n , a channel segment o f order 2 i s formed; where 36 two s e c o n d - o r d e r c h a n n e l s j o i n , a segment o f o r d e r 3 i s f o r m e d ; a n d s o f o r t h . T h i s s y s t e m p r o p o s e d b y S t r a h l e r , i s a d e q u a t e f o r m a t u r e t y p e s o f b a s i n s , b u t i n v e r y s t e e p m o u n t a i n o u s t e r r a i n , many s t r e a m s do n o t f o l l o w t h e p r e -v i o u s h i e r a r c h y . F o r e x a m p l e , a s t r e a m o f o r d e r 1, does n o t n e c e s s a r i l y f l o w i n t o a s t r e a m o f o r d e r 2, as i l l u s -t r a t e d i n F i g u r e 2. F o r d i f f e r e n t i a t i o n p u r p o s e s , i n t h e A.T.C.S. c l a s s i -f i c a t i o n s y s t e m , o n l y one d i g i t i s u s e d when a c h a n n e l f o l l o w s t h e h i e r a r c h y . A t w o - d i g i t s y s t e m i s u s e d when a s t r e a m d o es n o t f o l l o w t h e h i e r a r c h y . F o r e x a m p l e , a s t r e a m o f o r d e r 2 d r a i n i n g d i r e c t l y i n t o a s t r e a m o f o r d e r 4 i s d e s i g n a t e d b y 2-4. F o r i l l u s t r a t i o n , s e e F i g u r e 2. V i s u a l l y a n d a n a l y t i c a l l y , t h e c h a r a c t e r i s t i c s o f a s t r e a m o f o r d e r 1 w h i c h f o l l o w s t h e h i e r a r c h y , a r e v e r y d i f f e r e n t f r o m t h e c h a r a c t e r i s t i c s o f a 1-4 s t r e a m . T h i s i s i l l u s t r a t e d a n d q u a n t i t a t i v e l y a n a l y z e d i n C h a p t e r I I I . B. Open W a t e r B o d i e s a n d W e t l a n d s D e s i g n a t i o n I n o r d e r t o u n d e r s t a n d t h e w a t e r r e g i m e o f an a q u a t i c s y s t e m , t h e o p e n w a t e r b o d i e s a nd w e t l a n d s a r e c l a s s i f i e d a s : Open w a t e r b o d i e s a n d w e t l a n d s a r e s u b s c r i p t e d by t h e o r d e r o f t h e h i g h e s t s t r e a m o r d e r e m p t y i n g i n t o them, a n d a r e d e s i g n a t e d b y s y m b o l s a s f o l l o w s : 37 L: LAKE B: WETLANDS F: FLOODPLAIN R: ANY ENCLOSED AREA WHICH HAS A WATER STORAGE CAPACITY M: MARINE The s u b s c r i p t 0 ( z e r o ) i s u s e d f o r w a t e r b o d i e s o r w e t l a n d s w h i c h do n o t r e c e i v e any o b s e r v a b l e s t r e a m . F o r i l l u s t r a t i o n s e e F i g u r e 3. C. D r a i n a g e B a s i n O r d e r The d r a i n a g e b a s i n o r d e r i s t h e b a s i c f r a m e w o r k f o r the' A.T.C.S. a p p r o a c h . The d r a i n a g e b a s i n o r d e r i s d e f i n e d b y t h e s t r e a m o r d e r . I t i s t h e a r e a d e l i n e a t e d b y t h e s u r f a c e w a t e r d i v i d e s w h i c h c o n t r i b u t e t o s t r e a m f l o w o f a p a r t i c u l a r s t r e a m o f a g i v e n o r d e r . F o r i l l u s t r a t i o n , s e e F i g u r e 4. The minimum s i z e o f t h e d e l i n e a t e d d r a i n a g e b a s i n s , i s f u n c t i o n o f t h e map o r a i r p h o t o s c a l e u s e d f o r t h e a n a l y s i s . The d r a i n a g e b a s i n o r d e r d i f f e r s f r o m t h e s t r e a m o r d e r d e s i g n a t i o n i n two w a y s : 1. The s t r e a m o r d e r s h a v i n g a d r a i n a g e a r e a t o o s m a l l t o be mapped a t a s c a l e o f 1/15840 a r e i n d i c a t e d i n p a r e n t h e s e s . The f i r s t d i g i t i n d i c a t e s t h e s t r e a m 38 order and the second d i g i t , the number of non-mappable drainage b a s i n s p e r t a i n i n g to t h i s order (Figure 5). 2. Areas d r a i n i n g i n t o stream channels but not s u p p o r t i n g mappable drainage b a s i n s , are d e s i g n a t e d by 0 ( z e r o ) , f o l l o w e d by the order of the stream c o n s i d e r e d (Figure 5 ) . The drainage b a s i n i s a l s o c h a r a c t e r i z e d by i t s aspect or o r i e n t a t i o n and water regime, as d e f i n e d by the hydrology legend presented i n F i g u r e 6. T r a n s p i r a t i o n and e v a p o r a t i o n l o s s e s on a watershed, f a c t o r s t h a t a f f e c t the amount of water a v a i l a b l e f o r stream-flow, are i n f l u e n c e d by the g e n e r a l o r i e n t a t i o n or aspect of the b a s i n . A l s o , the accumulation and m e l t i n g of snow i s r e l a t e d to the o r i e n t a t i o n of a watershed. For example, i f the o r i e n t a t i o n i s s o u t h e r l y , s u c c e s s i v e s n o w f a l l s may soon melt and i n f i l t r a t e i n t o the ground or produce r u n o f f . For those watersheds w i t h a n o r t h e r l y aspect, i n d i v i d u a l s n o w f a l l s may accumulate throughout the w i n t e r and melt l a t e i n the s p r i n g , producing high volumes of streamflow ( W i l l i n g t o n , 1976). The hydrology legend as presented i n F i g u r e 6, i s proposed as the f i r s t step i n the s t r a t i f i c a t i o n of f o r e s t e d mountainous t e r r a i n . T h i s framework c r e a t e s an h i e r a r c h i c a l system where the landscape i s s u b d i v i d e d i n t o d i f f e r e n t l e v e l s of i n t e g r a t i o n . I t i s now p o s s i b l e to l o c a t e a slope i n s i d e the whole landscape and study t h i s p a r t i c u l a r MAP SYMBOLS DESCRIPTION AND DEFINITION STREAM CHANNEL STREAM ORDER DESIGNATION STREAM ORDER IS A MEASURE OF THE POSITION OF A STREAM IN THE HIERARCHY OF TRIBUTARIES. EACH NON-BRANCHING CHANNEL SEGMENT IS DESIGNATED A FIRST-ORDER STREAM. THE SECOND-ORDER STREAMS ARE THOSE WHICH HAVE AS TRIBUTARIES ONLY FIRST-ORDER CHANNELS AND SO ON FOR ALL THE CHANNEL.SEGMENTS. DESIGNATION: ONLY ONE DIGIT IS USED WHEN A CHANNEL FOLLOWS THE HIERARCHY. A TWO-DIGIT SYSTEM IS USED WHEN A STREAM DOES NOT FOLLOW THE HIERARCHY. FOR EXAMPLE, A STREAM OF ORDER 2 DRAINING DIRECTLY INTO A STREAM OF ORDER 4 IS DESIGNATED BY . FIGURE 2: STREAM ORDER DESIGNATION 00 MAP SYMBOLS DESCRIPTION AND DEFINITION STREAM CHANNEL STREAM ORDER DESIGNATION. STREAM ORDER IS A MEASURE OF THE POSITION OF A STREAM IN THE HIERARCHY OF TRIBUTARIES. EACH NON-BRANCHING CHANNEL SEGMENT IS DESIGNATED A FIRST-ORDER STREAM. THE SECOND-ORDER STREAMS ARE THOSE WHICH HAVE AS TRIBUTARIES ONLY FIRST-ORDER CHANNELS AND SO ON FOR ALL THE CHANNEL SEGMENTS. DESIGNATION: ONLY ONE DIGIT IS USED WHEN A CHANNEL FOLLOWS THE HIERARCHY. A TWO-DIGIT SYSTEM IS USED WHEN A STREAM DOES NOT FOLLOW THE HIERARCHY. FOR EXAMPLE, A STREAM OF ORDER 2 DRAINING DIRECTLY INTO A STREAM OF ORDER k IS DESIGNATED BY ( 2 - 4 ) . OPEN WATER BODIES AND WETLANDS DESIGNATION. OPEN WATER BODIES AND WETLANDS ARE SUBSCRIPTED BY THE ORDER OF THE HIGHEST STREAM ORDER EMPTYING INTO THEM, AND ARE DESIGNATED BY SYMBOLS AS FOLLOWS: © LAKE, ® WETLANDS,© FLOODPLAIN, ® ANY ENCLOSED AREA WHICH HAS A WATER STORAGE CAPACITY, ® MARINE ENVIRONMENT. THE UNITS B, F, R, M ARE NOT USUALLY MAPPED ON THE HYDROLOGY MAP BUT ON THE LANDSCAPE UNIT MAP. THE SUBSCRIPT 0 (ZERO) IS USED FOR WATER BODIES OR WETLANDS WHICH DO NOT RECEIVE ANY OBSERVABLE STREAM. FIGURE 3. OPEN WATER BODIES AND WETLANDS DESIGNATION. O SURFACE DRAINAGE BASIN DIVIDE MAP SYMBOLS © DESCRIPTION AND DEFINITION STREAM CHANNEL SURFACE DRAINAGE BASIN DIVIDE. STREAM ORDER DESIGNATION. STREAM ORDER IS A MEASURE OF THE POSITION OF A STREAM IN THE HIERARCHY OF TRIBUTARIES. EACH NON-BRANCHINC CHANNEL SEGMENT IS DESIGNATED A FIRST-ORDER STREAM. THE SECOND-ORDER STREAMS ARE THOSE WHICH HAVE AS TRIBUTARIES ONLY FIRST-ORDER. CHANNELS AND SO ON FOR ALL THE CHANNEL SEGMENTS. DESIGNATION: ONLY ONE DIGIT IS USED WHEN A CHANNEL EOLLOWS THE HIERARCHY. A TWO-DIGIT SYSTEM IS USED WHEN A STREAM DOES NOT FOLLOW THE HIERARCHY. FOR EXAMPLE, A STREAM OF ORDER 2 DRAINING DIRECTLY INTO A STREAM OF ORDER 4 IS DESIGNATED BY O-k . OPEN WATER BODIES AND WETLANDS DESIGNATION. OPEN WATER BODIES AND WETLANDS ARE SUBSCRIPTED BY THE ORDER OF THE HIGHEST STREAM ORDER EMPTYING INTO THEM, AND ARE DESIGNATED BY SYMBOLS AS FOLLOWS: © L A K E , ® WETLANDS,© FLOODPLAIN, ® ANY ENCLOSED AREA WHICH HAS A WATER STORAGE CAPACITY, ® MARINE ENVIRONMENT. THE UNITS B, F, R, M ARE NOT USUALLY MAPPED ON THE HYDROLOGY MAP BUT ON THE LANDSCAPE UNIT MAP. THE SUBSCRIPT 0 (ZERO) IS USED FOR WATER BODIES OR WETLANDS WHICH DO NOT RECEIVE ANY OBSERVABLE STREAM. FIGURE 4: DELINEATION OF SURFACE DRAINAGE BASIN DIVIDE. NON-MAPPABLE FIRST-ORDER DRAINAGE BASINS (NO WATERSHED BOUNDARIES) DESIGNATED BY (1X2), MAPPABLE FIRST-ORDER DRAINAGE BASIN DRAINAGE BASIN ORDER THE DRAINAGE BASIN ORDER IS DEFINED BY THE STREAM ORDER. IT IS THE AREA DELINEATED BY THE SURFACE WATER DIVIDES WHICH CONTRIBUTE TO STRF.AMFLOW OK A PARTICULAR STREAM OF A GIVEN ORDER. THE DRAINAGE BASIN ORDER D I F F E R S FROM THE STREAM ORDER DESIGNATION IN TWO WAYS: 1. THE STREAM ORDERS HAVING A DRAINAGE AREA TOO SMALL TO BE MAPPED AT A S C A L E OF 1 / 1 5 , 8 4 0 OR 1 INCH - 20 CHAINS ARE INDICATED IN P A R E N T H E S I S . THE F I R S T DIGIT INDICATES THE STREAM ORDER AND THE SECOND DIGIT THE SUMMATION OF NCN-MAPPABLE DRAINAGE BASINS PERTAINING TO THIS ORDER. SEE EXAMPLE 1 OF THE WATERSHED MODEL. 2. AREAS DRAINING INTO STREAM CHANNEL BUT NOT SUPPORTING MAPPABLE DRA1NACE BASINS ARE DESIGNATED BY 0 (ZERO). vA BOXED SYMBOL REPRESENTS THE SUM OF THE SUB-SYMBOLS OCCURRING WITHIN A DESIGNATED DRAINAGE BASIN. f j 0 - 3 + 2 ( 1 x 3 ) + 2 ( 1 x 2 ) + 0 - 3 MAP SYMBOLS DESCRIPTION AND DEFINITION STREAM CHANNEL SURFACE DRAINAGE BASIN DIVIDE. STREAM ORDER DESIGNATION. STREAM ORDER IS A MEASURE- OF THE POSITION OF A STREAM IN THE HIERARCHY OF TRIBUTARIES. EACH NON-BRANCHING CHANNEL SEGMENT IS DESIGNATED A FIRST-ORDER STREAM. THE SECOND-ORDER STREAMS ARE THOSE WHICH HAVE AS TRIBUTARIES ONLY FIRST-ORDER CHANNELS AND SO ON FOR ALL THE CHANNEL SEGMENTS. DESIGNATION: ONLY ONE DIGIT IS USED WHEN A CHANNEL FOLLOWS THE HIERARCHY. A TWO-DIGIT SYSTEM IS USED WHEN A STREAM DOES NOT FOLLOW THE HIERARCHY. FOR EXAMPLE, A STREAM OF ORDER 2 DRAINING DIRECTLY INTO A STREAM OF ORDER U IS DESIGNATED BY (2-4 . OPEN WATER BODIES AND WETLANDS DESIGNATION. OPEN WATER BODIES AND WETLANDS ARE SUBSCRIPTED BY THE ORDER OF THE HIGHEST STREAM ORDER EMPTYING INTO THEM, AND ARE DESIGNATED BY SYMEOLS AS FOLLOWS: (D LAKE, 03) WETLANDS,® FLOODPLAIN,® ANY ENCLOSED AREA WHICH HAS A WATER STORAGE CAPACITY,® MARINE ENVIRONMENT, THE UNITS B, F, R, M ARE NOT USUALLY MAPPED ON THE HYDROLOGY MAP BUT ON THE LANDSCAPE UNIT MAP. THE SUBSCRIPT 0 (ZERO) IS USED FOR WATER BODIES OR WETLANDS WHICH.DO NOT RECEIVE ANY OBSERVABLE STREAM. FIGURE5: DRAINAGE BASIN ORDER DESIGNATION, 4 3 HYDROLOGY LEGEND L E G E N D FOR D R A W I N G NO. W F - 1 4 0 6 S H E E T S 3 - 6 THE UNIT BOUNDARIES ARE DEFINED BY THE SURFACE WATER DIVIDES OF EACH DRAINAGE BASIN WATERSHED MODEL ILLUSTRATING THE HYDROLOGY LEGEND NON-MAPPABLE FIRST ORDER DRAINAGE BASINS (NO WATERSHED BOUNDARIES); MAPPABLE FIRST ORDER DRAINAGE BASIN-DESIGNATED BY: (1x3)-THESE ARE USED AS EX AMPLES-fEX AMPLE I WETLAND OF ORDER 2 "STREAM ORDER. THE LEGEND DESCRIPTION I EXAMPLE IT AREA DRAINING INTO STREAM CHANNEL, BUT NOT SUPPORTING MAPPABLE DRAINAGE BASIN,DESIGNATED BY 0 (ZERO)I - A BOXED SYMBOL REPRESENT THE SUM OF THE SUBSYMBOLS OCCURING WITHIN A DESIGNATED DRAINAGE BASIN. MAP SYMBOLS f c DESCRIPTION AND DEFINITION STREAM CHANNEL. SURFACE DRAINAGE BASIN DIVIDE. FLOODPLAIN AND/OR ALLUVIAL FAN. STREAM ORDER DESIGNATION. STREAM ORDER IS A MEASURE OF THE POSITION OF A STREAM IN THE HIERARCHY OFTRIBUTARIES. EACH NON-BRANCHING CHANNEL SEGMENT IS DESIGNATED A FIRST-ORDER STREAM. THE SECOND-ORDER STREAMS ARE THOSE WHICH HAVE AS TRIBUTARIES ONLY FIRST-ORDER CHANNELS AND SO ON FOR ALL THE CHANNEL SEGMENTS. DESIGNATION: ONLY ONE DIGIT IS USED WHEN A CHANNEL FOLLOWS THE HIERARCHY. A TWO-DIGIT SYSTEM IS USED WHEN A STREAM DOES NOT FOLLOW THE HIERARCHY. FOR EXAMPLE, A STREAM OF ORDER 2 DRAINING DIRECTLY INTO A STREAM OF ORDER 4 IS DESIGNATED BY(Q). OPEN WATER BODIES AND WETLANDS DESIGNATION. OPEN WATER BODIES AND WETLANDS ARE SUBSCRIPTED BY THE ORDER OF THE HIGHEST STREAM ORDER EMPTYING INTO THEM, AND ARE DESIGNATED BY SYMBOLS AS F O L L O W S : © L A K E , ® WETLANDS, © FLOODPLAIN, ® ANY ENCLOSED AREA WHICH HAS A WATER STORAGE CAPACITY, @ MAR INE ENVIRONMENT. THE UNITS B, F, R, M ARE NOT USUALLY MAPPED ON THE HYDROLOGY MAP BUT ON THE LANDSCAPE UNIT MAP. THE SUBSCRIPT 0 (ZERO) IS USED FOR WATER BODIES OR WETLANDS WHICH DO NOT RECEIVE ANY OBSERVABLE STREAM. THE DRAINAGE BASIN IS CHARACTERIZED BY 3 OF ITS COMPONENTS. A: BASIN ORDER. B= ASPECT OF THE DRAINAGE BASIN. C: WATER REGIME. A: DRAINAGE BASIN ORDER THE DRAINAGE BASIN ORDER IS DEFINED BYTHE STREAM ORDER. IT IS THE AREA DELINEATED BYTHE SURFACE WATER DIVIDES WHICH CONTRIBUTE TO STREAMFLOW OF A PARTICULAR STREAM OF A GIVEN ORDER. THE DRAINAGE BASIN ORDER DIFFERS FROM THE STREAM ORDER DESIGNATION IN TWO WAYS: 1. THE STREAM ORDERS HAVING A DRAINAGE AREA TOO SMALL TO BE MAPPED AT A SCALE OF 1/15,840 OR 1 I N C H - 2 0 CHAINS ARE INDICATED IN PARENTHESIS. THE FIRST DIGIT INDICATES THE STREAM ORDER AND THE SECOND DIGIT THE SUMMATION OFNON-MAPPABLE DRAINAGE BASINS PERTAINING TO THIS ORDER. SEE EXAMPLE 1 OF THE WATERSHED MODEL 2. AREAS DRAINING INTO STREAM CHANNEL BUT NOT SUPPORTING MAPPABLE DRAINAGE BASINS ARE DESIGNATED BY 0(ZERO). SEE EXAMPLE LT OF THE WATERSHED MODEL B = ASPECT OF THE DRAINAGE BASIN. THE FOLLOWING COMPASS READINGS IN DEGREES WERE USED TO DERIVE THE MAPPING SYMBOLS: THE ASPECT O F A DRAINAGE BASIN IS DICTATED BYTHE ORIENTATION OF A LINE DRAWN FROM THEWATERSHED . OUTLET, DIVIDING THE WATERSHED AREA IN HALF. C= WATER REGIME. THIS COMPONENT INDICATES ANY AREAS HAVING A WATER STORAGE CAPACITY BEFORE THE WATER GETS TO THE FIRST LAKE OR THE OCEAN. OPEN WATER BODIES AND WETLANDS ORDER, AS DEFINED PREVIOUSLY, ARE USED. IN EXAMPLE I OF THE WATERSHED MO DEL, THE WATER COMING OUT O F A SECOND ORDER DRAINAGE BASIN GOES THROUGH A FLOODPLAIN OF ORDER 4, AND A FLOOD PLAIN OF ORDER 6 BEFORE REACHING A LAKE OF ORDER 6. A BOXED SYMBOL REPRESENTS THE SUM OF THE SUB-SYMBOLS OCCURRING WITHIN A DESIGNATED DRAINAGE BASIN. REFERRING TO EXAMPLE LTJ OF THE WATERSHED MODEL LE I - -j L ? w i J + g ^ i | F 4 F 6 L ^ | + pliS|F4F6Ljj WF-1406 SHEET 2 44 slope i n r e l a t i o n with other slopes,, at d i f f e r e n t l e v e l s i n the system or to compare t h i s slope with a s i m i l a r slope c l a s s i f i e d as being i d e n t i c a l . This p r e - s t r a t i f i c a t i o n i s considered e s s e n t i a l as the f i r s t step i n the i d e n t i f i c a t i o n of s i m i l a r "kinds of places" i n the landscape. Figures 2 to 6 i l l u s t r a t e the methodology used to map the d i f f e r e n t hydrological systems of forested mountainous t e r r a i n . 5. Watershed as a Basic Unit of the A.T.C.S. C l a s s i f i c a t i o n  System - A Theoretical Approach Hie r a r c h i c a l order of organized e n t i t i e s i s very appealing to man's mind. The major advantage of a hierarch-i c a l system i s one of r e l a t i v i t y and relationship of the objects of t h e study at d i f f e r e n t l e v e l s of integration. Each l e v e l i n the system must be very well defined as an object of study. As a r e s u l t , the objects at successive levels must be s t r u c t u r a l l y related. Rowe (1961) states the basic propositions for a l o g i c a l , useful l e v e l -of-integration scheme: the object of study of whatever l e v e l must contain, volumetrically and s t r u c t u r a l l y , the objects of the lower l e v e l s , and must therefore be i t s e l f a part of the le v e l s above. Each object at the l e v e l below while forming a str u c t u r a l - f u n c t i o n a l part of the object at the l e v e l above. Feibleman (1954) has shown the value of the in t e g r a t i v e - l e v e l s concept as a po s i t i v e a i d to s c i e n t i f i c research, pointing out that the understanding 45 of an o r g a n i z a t i o n a t any l e v e l r e q u i r e s a t t e n t i o n a l s o a t the l e v e l s above and below. The o b j e c t of each l e v e l i s seen as the environment of the o b j e c t s a t the l e v e l s below and as a s p e c i f i c s t r u c t u r a l - f u n c t i o n a l p a r t of the o b j e c t a t the l e v e l above. The " l e v e l - o f - i n t e g r a t i o n " concept c r e a t e s a l o g i c a l framework i n s i d e which the b a s i c knowledge and behavior of the components can be r e l a t e d to the system as a whole. The drainage b a s i n and i t s d i f f e r e n t o r d e r s as de-f i n e d p r e v i o u s l y i s used as a primary breakdown of moun-ta i n o u s t e r r a i n , c r e a t i n g a framework to apply the l e v e l -o f - i n t e g r a t i o n concept i n the study of l a n d and a q u a t i c systems. Table 1 i l l u s t r a t e s the l e v e l s of i n t e g r a t i o n r e s u l t i n g from the d i f f e r e n t drainage b a s i n o r d e r s . The use of drainage b a s i n s as a framework f o r management has been r e c o g n i z e d by S i l k (19 7 5) as a b a s i s f o r c o a s t a l c l a s s i f i c a t i o n : "For management purposes, the c o a s t a l zone should be r e c o g n i z e d as the j u n c t u r e where the l a n d , sea and a i r o v e r l a p , and the boundaries t h a t are used should c o i n c i d e w i t h such i n t e r r e l a t i o n s h i p s . The l a n d -ward extent should be d e f i n e d by d e l i n e a t i n g drainage ba s i n s a c c o r d i n g to t h e i r c o n t i g u i t y w i t h c o a s t a l waters, which may be determined f o r each r e g i o n by stream o r d e r " . The use of drainage b a s i n t o d e l i n e a t e management u n i t s i s a fundamental but q u i t e simple technique. Standard TABLE 1. LEVELS OF INTEGRATION RESULTING FROM THE DIFFERENT DRAINAGE BASIN ORDERS Levels o f I n t e g r a t i o n Drainage Basin Order Proposed Approximate S i z e Mapping Scale Remote Sensing Imageries Proposed Mapping Uni t Maximum Mapping Unit on a 2.3 x 2.3 dm. Imagery  (i n Km2) 191,130 52,900 850 21 2 53 1 3 I II I I I IV V VI VII' 9-12 6-9 5-6 4-5 2-3 1-2 (D Not mappable at the s c a l e of l e v e l VI (Km2! 70 ,000 and over 400-75,000 100-500 10-200 1-15 0.1-5 Less than 0.1 1/2,000,000 1/1,000,000 1/100,000 1/50,000 1/20,000 1/10,000 Landsat Landsat Black and White Color Color i n f r a - r e d Thermal i n f r a - r e d Large s c a l e f o r s p e c i a l s t u d i e s (Km2) 1440 400 6.4 1.6 0.4 0.1 *Level VII i s the f i e l d work l e v e l , t h i s i s the l e v e l where the i n t e n s i t y of sampling w i l l be r e l a t e d to the other l e v e l s of i n t e g r a t i o n . (Ti 4 7 topographic maps can be used t o demarcate watersheds from which i n d i v i d u a l drainage b a s i n s can be d e s i g n a t e d . The drainage b a s i n s r e p r e s e n t an e a s i l y o bservable e r o s i o n a l type of landform, c r e a t i n g a framework where the environmental f a c t o r s can be i n t e g r a t e d a t d i f f e r e n t l e v e l s of i n t e g r a t i o n as suggested i n Table 2. 6. Development o f Landscape U n i t s w i t h i n the Watershed  Framework Landscape u n i t i s d e f i n e d as b e i n g an i n t e g r a t e d sys-tem t h a t has e v o l v e d over time. Matched to the geographic environment, i t s components of landform, c l i m a t e , h y d r o l o g i -c a l f e a t u r e s , s o i l , p l a n t s and animals, superimposed on a common s o l a r energy base, show d e f i n i t e mutual adjustments. Landscape u n i t s are i d e n t i f i e d by the s u b d i v i s i o n and a s s o c i a t i o n methods of c l a s s i f i c a t i o n d e f i n e d pre-v i o u s l y . The f o l l o w i n g procedure a t l e v e l VI of the pro-posed l e v e l s o f i n t e g r a t i o n p r e s e n t e d i n T a b l e 1 and 2, i s suggested to s t r a t i f y mountainous f o r e s t e d t e r r a i n i n t o landscape u n i t s a c c o r d i n g to the A.T.C.S. system: TABLE 2. ENVIRONMENTAL FACTORS CORRESPONDING TO EACH LEVEL OF INTEGRATION Levels of Integration* Geology Landform Climate Soil Krajina System Vegetation Hydrology Organisms Land Use II III IV RELATIVE SAMPLING INTENSITY Regional Regional Formation Local Local VI VII. SAMPLING Physiographic Climatic subdivisions Region Physiographic units Unit Landform Order 2 Unit Landform Order 3 Unit Landform Order 3 Description Climatic Region Local Climate Local Climate Local Climate Local Unit Landform Micro--fractures Order 4 Climate Order Order Great Group Sub-Group Family Soil Series On sit e measurement Biogeocl imatic Formation Biogeoclimatic Region Biogeoclimatic Zone Biogeoclimatic S u b zone Pedon Biogeocoenosis Forest Region Forest Section Quantitative analysis of watershed geomorphology Migration routes, distribution Urban Industrial Rural " Population analysis Water d i s t r i - " bution by areas. Slope study. Plant Stratification Habitat po ten-Association of slopes t i a l Releve Water systems, Fi e l d sampling Sampling Quantity, Habitat, food Level Quality, timing morphological characteristics Intensity Magnitude Monitoring •For each level, the environmental factors as classified could be combined according to the environmental variability. 00 49 /1. The delineation of watershed boundaries (drainage basins) at whatever scale re-quired, see Table 1 . These boundaries may be considered permanent and have obvious advantages in the i r interpretation with respect to watershed management. These basins are l a b e l l e d according to the hy-drology legend presented i n Figure 6 . SUBDIVISION METHOD 2 . The mapped drainage basin i s s t r a t i f i e d \into management units, which are delineated on the basis of slope segments, length of slope, inferred or known depth to imper-meable layer, position on slope, vegetation features (stand density and. d i s t r i b u t i o n , productivity related to stand height and crown cover, shrubbed vs. forested, e t c . ) , inferred permeability of the materials and other observable features on the a i r photos ( g u l l i e s , avalanches, rock, etc . ) . For i l l u s t r a t i o n see Figure 7 , landscape unit legend. Table 3 describes the inferred and observed features and other e x i s t i n g information to characterize the management unit components. 50 LANDSCAPE UNIT LEGEND LEGEND FOR DRAWING NO. WF-1406 SHEETS 8" II LANDSCAPE UNITS WERE DEVELOPED USING THE HOROLOGY MAP AS THE PRIMARY BREAKDOWN OF THE LANDSCAPE SLOPE TRANSECT MODEL ILLUSTRATING THE LANDSCAPE UNIT LEGEND HYGROTOPE/SLOPE POSITION LAND FEATURES ASPECT AND EXPOSURE VEGETATION FEATURES SM IMCV E I F SH| |BF £T| I L -MANAGEMENT UNIT LANDSCAPE UNITS Mill MHb MHQ CWHb MAP SYMBOLS B / // DESCRIPTION AND DEFINITION SURFACE DRAINAGE BASIN DIVIDE MANAGEMENT UNIT LOGGED AREA (YEAR OF LOGGING) I. MANAGEMENT UNIT. BIO-PHYSICAL CHARACTERISTICS OF THE MANAGEMENT UNITS A HYGROTOPE/SLOPE POSITION: (OCCASIONALLY COMPLEXED) SHI SH ST SM SL SLl RW RWl R l RII SHEDDING RIDGE OF KNOLL-TOP ZONE SHEDDING ZONE SEEPAGE ZONE, TOP-SLOPE SEEPAGE ZONE, MIDDLE SLOPE SEEPAGE ZONE, LOWER SLOPE SEEPAGE ZONE, LOWER SLOPE, OCCURRING AT MIDDLE AND UPPER ELEVATIONS RECEIVING ZONE, WELL DRAINED (e.g. ALLUVIAL FANS.I RECEIVING ZONE, WELL DRAINED, MIDDLE AND UPPER SLOPES RECEIVING ZONE, IMPERFECTLY DRAINED RECEIVING ZONE, IMPERFECTLY DRAINED, MIDDLE AND UPPER SLOPES RIPARIAN ZONE (e.g. FLOODPLAINS - AREAS WHOSE VEGETATION IS AFFECTED BY A FLUCTUATING WATER TABLE). C. LAND FEATURES OBSERVED ON AIR PHOTOS (e.g. SOIL, LANDFORM, EROSION) (FREQUENTLY COMPLEXED) B. ASPECT AND EXPOSURE: (INFREQUENTLY COMPLEXED) N NORTH NE : NORTH-EAST E EAST SE : SOUTH-EAST S SOUTH SW : SOUTH-WEST W WEST NW : NORTH-WEST T RIDGE TOP Tl KNOLL TOP (MIDDLE AND LOWER SLOPE POSITIONS) V VALLEY BOTTOM V l HANGING VALLEY BOTTOM L LEVEL icn (fC) w M A F V h E BEDROCK EXPOSURE ORGANIC COLLUVIAL MATERIALS (GRAVITY-INDUCED MOVEMENT) ALLUVIAL MATERIALS (SYNONYMOUS WITH FLUVIAL) (MATER IALS TRANSPORTED AND DEPO SITED BY WATER, STREAMS AND RIVERS.) COLLUVIAL-ALLUVIAL MATER IALS ALLUVIAL-COLLUV IAL MATER IALS OUTWASH MORAINAL AVALANCHED FAILING GULLIED HUMMOCKY CHANNELLED VEGETATION FEATURES OBSERVED ON AIR PHOTOS (OCCASIONALLY COMPLEXED) F D S fl 8 P W L FORESTED MATURE DISCONTINUOUS FOREST SHRUBS HERBACEOUS GROWTH NO TREES OR SHRUBS PYRAL INFLUENCE (FIRE HISTORY EVIDENT) WIND THROW LOGGED COMPOSITE UNITS -COMPONENTSON EITHER SIDEOFTHIS SYMBOL ARE APPROXIMATELY EQUAL 45-55% - 45-55% - THE COMPONENT IN FRONT OF THE SYMBOL IS MORE ABUNDANT THAN THE ONE THAT FOLLOWS 55-70% / 30-45% -THE COMPONENT IN FRONT OF THE SYMBOL IS CONSIDERABLY MORE ABUNDANT THAN THE COMPONENT THAT FOLLOWS 70-90% // 10-30?. 2. A MANAGEMENT UNIT IS FURTHER SUBDIVIDED BY WAY OF SHADING ON THE MAP INTO LANDSCAPE UNITS ON THE BASIS OF BIOGEOCLIMATIC SUBZONES. BIOGEOCLIMATIC SUBZONES COASTAL WESTERN HEMLOCK WET SUBZONE (CWHb) THE MOUNTAIN HEMLOCK SUBALPINE FOREST SUBZONE (MHa) THE MOUNTAIN HEMLOCK SUBALPINE PARKLAND SUBZONE (MHb) WF-1406 SHEET 7 I TABLE 3 AERIAL PHOTO FEATURES AND OTHER EXISTING INFORMATION  USED TO CHARACTERIZE MANAGEMENT UNIT COMPONENTS MANAGEMENT UNIT COMPONENT DIRECTLY OBSERVABLE FEATURES MANAGEMENT UNIT COMPONENT OBSERVED FEATURES AND THEIR INFERRENCE ON MANAGEMENT UNIT COMPONENT EXISTING INFORMATION SLOPE POSITION/ slope position for complex and simple slopes topographic map (1:50,000) HYGROTOPE drainage network slope position, slope length, slope configuration, present vegetation condition, aspect/ exposure, terrain features (parent material drainage) planimetric map (1:15,840) ASPECT/ EXPOSURE slope, slope orientation, slope position, valley position, valley orienta-tion glaciers and snow, present vegetation condition topographic map (1:50,000) PRESENT . VEGETATION CONDITION physiognomy, pattern, tree species identification, tone, texture, density, land use land use, slope position/ hygrotope, aspect/expoBure, terrain features (parent material drainage) forest cover map (1:15,840) vegetation zonation map (1:50,000-1:2,000,000) TERRAIN FEATURES AND PROCESSES (i.e. LAND-FORMS AND PARENT MATERIAL) exposed talus, rock, or unconsolidated deposit, drainage network, snow, glacier, slope position, slope configuration, valley orientation, valley position present vegetation condition landform and soils maps (1:50,000) geology map (1:500,000) ASSOCIATION METHOD 3. F i e l d data c o l l e c t i o n to c h a r a c t e r i z e the management u n i t s i n terms of t h e i r mater-i a l s , s o i l s , v e g e t a t i o n and or o g r a p h i c i n -formation i n s i d e each b i o g e o c l i m a t i c sub-zone as d e f i n e d by K r a j i n a (1969). 4. Mapping of the b i o g e o c l i m a t i c subzones, re c h e c k i n g o f the pretyped boundaries, map and legend f i n a l i z a t i o n . Each management u n i t a f t e r being l o c a t e d i n i t s r e s p e c t i v e b i o g e o c l i m a t i c subzone becomes a landscape u n i t . For i l l u s t r a t i o n see F i g u r e 7. 5. D e s c r i p t i o n of the landscape u n i t mosaics p e r t a i n i n g to each drainage b a s i n order, i n terms of t h e i r a s s o c i a t e d t e r r a i n u n i t s , s o i l s , v e g e t a t i o n , h i s t o r y and f o r e s t cover types. The hygrotope or slope p o s i t i o n c h a r a c t e r i z i n g the management u n i t i s ^ - t h e key •to e s t a b l i s h a l i a i s o n between land and a q u a t i c systems. S i z e of water-shed and i t s slopes (shedding, seepage, r e c e i v i n g , etc.) w i l l i n f l u e n c e the h y d r a u l i c s o f the stream by determining magnitudes of water c o n c e n t r a t i o n s and peak flows. Land systems not onl y c o n t r o l water d i s t r i b u t i o n to the streams but r e d i s t r i b u t e the p r e c i p i t a t i o n water over the land a c c o r d i n g to t h e i r m o r p h o l o g i c a l c h a r a c t e r i s t i c s which are ANALYSIS AND SYNTHESIS r e l a t e d to s i t e p r o d u c t i v i t y . F i g u r e 8 i l l u s t r a t e s the importance of slope p o s i t i o n c o n s i d e r a t i o n i n terms o f s o i l moisture d i s t r i b u t i o n . T h i s procedure of s t r a t i f i c a t i o n i s c o n s i d e r e d to be the second step i n the proposed A.T.C.S. system towards the c l a s s i f i c a -t i o n of the landscape as a whole, a f t e r watershed boundary d e l i n e a t i o n . 7. S e l e c t e d Methods of Q u a n t i t a t i v e A n a l y s i s of Drainage  Basins Stu d i e s of a c t u a l drainage b a s i n s i n d i f f e r i n g e n v i r -onments show t h a t i n many comparisons i n homogeneous rock masses, g e o m e t r i c a l s i m i l a r i t y i s c l o s e l y approximated-when mean v a l u e s are c o n s i d e r e d , whereas i n other compari-sons, where g e o l o g i c inhomogeneity e x i s t s , s i m i l a r i t y i s d e f i n i t e l y l a c k i n g ( S t r a h l e r , 1957). 7.1 Laws of Drainage Composition The f i r s t step i n the q u a n t i t a t i v e a n a l y s i s of d r a i n -age b a s i n s i s the o r d e r i n g of streams a c c o r d i n g to the system proposed by S t r a h l e r (1957). O r d e r i n g i s u s e f u l because i t p r o v i d e s a r a p i d method o f q u a n t i t a t i v e l y de-s i g n a t i n g streams or stream segments. Map s c a l e can a f f e c t the o r d e r i n g of streams and thus should remain constant over the area o f i n t e r e s t . In each case the method of o r d e r i n g and map s c a l e need t o be i d e n t i f i e d (Beschta, 1977). Several laws have been formulated to express stream order relationships for drainage basins. These are c a l l e d the laws of drainage composition and are according to Butzer (1976): 1. Law of Stream Numbers. The number of streams of a given order i n a drainage basin decreases systematically with increasing stream order (See Figure 9). 2. Law of Stream Lengths. The average length of streams of a given order i n a drainage basin increases systematically with increasing stream order (See Figure 9). 3. Law of Basin Areas. The average drainage basin area of streams of a given order increases systematically with increasing stream order (See Figure 10). 4. Law of Channel Maintenance. The average length of stream channels of a given order increases systematically with increasing average drainage" basin area of a given order. 5. Law of Stream Gradients. The average gradient of streams of a given order decreases systematically with increasing stream order. These laws help formalize and express the fundamental c h a r a c t e r i s t i c s of stream networks on a regional basis. Stream order i s related to the number of streams, stream length and drainage area by simple geometric relationships; that i s , these variables plot as straight l i n e r e l a t i o n -ships with stream order on semilogarithmic paper (Figures 9 and 10). AVERAGE VALUES OF DIFFERENT DRAINAGE BASINS o *»U I I l " A tn _ 2. 2 < tr r~ ot f A /1 l T T 2 :/• 7 i I 2 3 4 5 6 7 8 9 10 II 1 , 0 0 0 , 0 0 0 100,000 tr ui D CC o Ul > o u. o w s < UJ CC l-o CC UJ OD z 10,000 1000 100 10 = 1 1 1 1 1 1 1 1 = ~ B \ — E=\ — o 1 1 llllll ~ \ » — o \ o m llllll 1 1 Illlj 1 1 1 • \ i \ -V 1 1 1 1 1 1 1 1 x 1 2 3 4 5 6 7 8 9 10 STREAM ORDER FIGURE 9 A) RELATION OF STREAM LENGTH TO STREAM ORDER B) RELATION OF NUMBER OF STREAMS TO STREAM ORDER (LEOPOLD, 1964) 57 1 2 3 4 5 6 7 8 9 10 II 12 S T R E A M O R D E R F I G U R E 10 R E L A T I O N O F D R A I N A G E A R E A T O S T R E A M O R D E R (LEOPOLD, 1964) 58 7.2 Drainage Density and Shape Index A. Drainage Density The pattern of arrangement of natural streams on a watershed i s an important physical c h a r a c t e r i s t i c of any drainage basin for two primary reasons. F i r s t of a l l , i t affects the e f f i c i e n c y of the drainage system and thus i t s hydrographic c h a r a c t e r i s t i c s . Secondly, the drainage pro-vides the land manager with a knowledge of s o i l and surface conditions existing on the watershed; more s p e c i f i c a l l y , the erosive forces of stream channels are related to and res-t r i c t e d by the type of materials from which the channels are carved. Drainage density i s an expression of the closeness of spacing of stream channels on a watershed. Drainage density i s expressed by the following r e l a t i o n s h i p : Where L = t o t a l length of streams A = drainage area B. Shape Index The outline form or shape of a watershed can sometimes have a marked e f f e c t on streamflow patterns. Shape index, based on the degree of roundness or c i r c u l a r i t y of a watershed may be computed as : 5 9 Shape Index (S.I.) = 0.2 8 x Watershed Perimeter |/Watershed Area When a watershed i s c i r c u l a r i n shape, the index value w i l l be approximately 1. The closer a shape index value i s to unity, the greater the l i k e l i h o o d that p r e c i p i -tation w i l l be quickly concentrated in the main stream channel, possibly r e s u l t i n g i n high peak flows. Watersheds that are non-circular i n shape w i l l have index values greater than unity. Table 4 summarizes the planimetric descriptive para-meters of drainage basins. Leaving now the drainage network and what might be c l a s s i f i e d as planimetric or areal aspects of drainage basins, we turn to slope of the ground surface. This brings into consideration the aspect of r e l i e f of drainage basin geometry. 7.3 Slope The slopes of various land surfaces within a watershed, usually expressed i n percentage terms, can greatly influence the v e l o c i t y and associated erosive power of overland flow. The slope values could be obtained d i r e c t l y from ground survey or slope estimates can be computed from topographic maps. The Slope of the main stream channel i s defined as: Slope (%) = e x 100 d 60 TABLE 4 DESCRIPTIVE PARAMETERS OF DRAINAGE BASINS Name Symbol Used Dimension D e f i n i t i o n or Derivation Stream order R Stream number N Stream length L Average length L of streams of a given order Bifurcation r, r a t i o Length r a t i o r Drainage area A Perimeter Shape index S.I, Drainage density D None None Length Length None None Length Length None Length Length 2 An integer designation of a segment of a channel according to the number and order of t r i b u t a r i e s . Number of streams of a given length. The distance along a stream channel. The .ratio of number of streams of a given order to number in next higher order, N^/^ The r a t i o of length of streams of a given order to average length of streams of next lower order, L^/L^ Basin area contributing p r e c i p i t a t i o n to a given channel segment. Basin perimeter repre-senting the surface water divide. Degree of roundness of a watershed expressed by the following r e l a t i o n -ship : .28 x P The r a t i o of the t o t a l length of streams of a watershed over drainage area. 61 Where: e = elevational difference between the highest and lowest points of the channel d — horizontal distance between high and low elevations 7.4 Hypsometric analysis The mean elevation and the variations i n elevation of a watershed are important factors with respect to tempera-ture and p r e c i p i t a t i o n patterns. The relationship of elevation to areas within a watershed can be i l l u s t r a t e d by a percentage hypsometric curve as i n Figure 11. Such a curve can be used to estimate the proportion of a watershed that l i e s above or below any selected elevation (Willington, 1 9 7 6 ) . Hypsometric analysis, or the r e l a t i o n of horizontal cross-sectional drainage basin area to elevation, was develop-ed i n i t s dimensionless form by Langbein and others ( 1 9 4 7 ) . Figure 12, i l l u s t r a t e s the d e f i n i t i o n of the two dimension-less variables involved. Taking the drainage basin to be bounded by v e r t i c a l sides and a horizontal base plane passing through the mouth, the r e l a t i v e height i s the ration of height of a given contour h to a t o t a l basin height H. Relative area i s the r a t i o of horizontal cross-sectional area a to entire basin area A. The dimensionless hypso-metric curve i s a plot of the continuous function r e l a t i n g r e l a t i v e height Y to r e l a t i v e area x. FIGURE II P E R C E N T A G E H Y P S O M E T R I C C U R V E F O R A D R A I N A G E B A S I N 63 Dimensionless hypsometric F I G U R E 12 v D I M E N S I O N L E S S H Y P S O M E T R I C C U R V E A N A L Y S I S (ADAPTED FROM STRAHLER 1957) 6 4 CHAPTER III APPLICATION OF THE AQUA-TERRA CLASSIFICATION  SYSTEM - SUBDIVISION METHOD The landscape unit approach was developed at l e v e l VI of the proposed leve l s of integration presented i n Table 2 . The methodology as described in Chapter II, i s f i r s t used to produce the hydrology map of the study area, and second to produce the management unit map, which i s a further s t r a t i f i -cation of the hydrology map. This Chapter provides the basic analysis of the d i f f e r e n t drainage basins, and of the manage-ment units, r e s u l t i n g from the subdivision method. The basic data derived from t h i s analysis w i l l be used for the interpre-tations presented i n Chapter V. 1. Location of the Study Area - Seymour Watershed The study area i s located i n the southwestern coast of the province of B r i t i s h Columbia (Figure 1 3 ) . The Seymour Watershed i s part of the Canadian C o r d i l l e r a which runs the length of the province i n a northwesterly d i r e c t i o n , more s p e c i f i c a l l y i t i s part of the P a c i f i c Ranges described by Holland ( 1 9 6 4 ) : "The P a c i f i c Ranges comprise the e s s e n t i a l l y g r a n i t i c mountains extending southeastward from Burke Channel and Be l l a Coola River for about 3 0 0 miles to the Fraser River. The Seymour Watershed having an area of 1 7 , 4 4 6 hectares, i s more precisely located by Figure 1 4 . 65 FIGURE 13: LOCATION OF STUDY AREA 66 SCALE F i g u r e 14. L o c a t i o n o f t h e Seymour w a t e r s h e d . 67; 2. Geology of the Study Area Most of the area consists of Plutonic rock types: quartz d i o r i t e , granodiorite and migmatite (Roddick, 19 65). The area also contains some inclusions of the Twin Island Group (hornblende-granulite, amphibolite, gneiss s c h i s t , conglomerate, quartzite, meta-arkose, l i m e - s i l i c a t e rock, migmatite), the Harrison Lake formation (porphyritic meta-ande-s i t e and meta-dacite; minor brecia and arkose) and some i n c l u -sions of the Gambier Group (tuff, breccia, agglomerate, ande-s i t e , a r g i l l i t e , greywacke, quartzite, and conglomerate; minor sc h i s t , granulite, limestone and l i m e - s i l i c a t e rock). For a quantitative analysis of the watershed geomorphology, the study area i s considered to be representative of Plutonic rock types (quartz d i o r i t e , granodiorite and migmatite), due to the low occurrence of the reported inclusions. 3. Landforms Development of the Study Area The study of landforms necessitated consideration of past and present processes, the effects of li t h o l o g y and geologic structure, and the stage in the t o t a l evolution of the land-scape. a) Influence of processes Stream erosion under moist temperate cli m a t i c conditions has been the dominant process i n developing B r i t i s h Columbia landforms (Holland, 1964). The rate at which stream erosion takes place varies according to the regional climate, 68 e s p e c i a l l y the amount o f p r e c i p i t a t i o n i n the form of r a i n or snow, the g r a d i e n t s of streams, the s u r f a c e r e l i e f , the v e g e t a t i o n cover of the l a n d and the competency of the m a t e r i a l s through which the streams flow. Twice i n the r e c e n t past the r e l i e f has been g r e a t l y i n c r e a s e d through u p l i f t of the land; once d u r i n g the e a r l y T e r t i a r y and a g a i n at the end of t h a t p e r i o d , r e s u l t i n g i n a c c e l e r a t e d stream e r o s i o n . Throughout B r i t i s h Columbia, d i f f e r e n c e s i n c l i m a t e and r e l i e f have r e s u l t e d i n the p r o d u c t i o n of g r e a t l y d i v e r s e landforms-In B r i t i s h Columbia, the second most important agent o f e r o s i o n and d e p o s i t i o n has been glacial ice (Holland, 1964) . Pleistocene g l a c i a l i c e inundated most of the study area except, p o s s i -b l y , the h i g h e s t peaks above 1,800 meters ( G e o l o g i c a l A s s o c i a -t i o n o f Canada, 19 58). A t l e a s t three major g l a c i a t i o n s (Seymour, Semiamu and Vashon) a f f e c t e d the Southern p a r t s of the c o a s t range w h i l e the e x i s t e n c e of a f o u r t h g l a c i a t i o n (Sumas) of more l i m i t e d extent has been proposed by Armstrong (1956). The r e t r e a t -ing i c e l e f t widespread t i l l d e p o s i t s o f v a r i a b l e t h i c k n e s s c o v e r i n g the v a l l e y s l o p e s . Exposures i n the Seymour v a l l e y r e v e a l t i l l t h i c k n e s s i n excess of 4 m a t a l t i t u d e s below 700 m, but a t ' h i g h e r a l t i t u d e s the t i l l i s t h i n n e r and d i s -continuous (O'Loughlin, 1972). Since the disappearance of the bulk o f the Pleistocene i c e about 10,000 years ago, stream e r o s i o n has a g a i n become an a c t i v e agent of landscape develop-ment. 69 b) Influence of bedrock As Holland (1964) points out, the d i f f e r e n t kinds of rock, whether igneous, sedimentary or metamorphic, are affected by erosion i n d i f f e r e n t degrees. The properties of rocks, such as hardness, s o l u b i l i t y , and homogeneity, deter-mine the i r response to erosion. Structures, including such features as the intensity and orient a t i o n of folding, or the presence of f a u l t s , shear zones, j o i n t systems, regionally developed cleavage, and zones of a l t e r a t i o n , a l l influence the course of erosion and combine to determine the character of the landforms. c) Influence of orogenic history The present landforms are greatly influenced by the fact that regional u p l i f t i n the late T e r t i a r y was regionally varied i n i n t e n s i t y . The d i f f e r e n t i a l u p l i f t s account for • the contrast between the moderate to low topographic r e l i e f of the Plateau areas of Central B r i t i s h Columbia and the strong r e l i e f of the adjoining Coast Mountains and Columbia Mountains. Throughout the Province the land surface of erosional and depositional o r i g i n that had evolved i n late Miocene time was d i f f e r e n t i a l l y u p l i f t e d during the Pliocene, The surface, which had some i n i t i a l r e l i e f , was incised by the streams, whose erosion was rejuvenated, and considerable additional u p l i f t and erosion of the late T e r t i a r y established the present arrangement of mountains, plateaus, p l a i n s , etc. 70 I t was t h i s l a t e T e r t i a r y t o p o g r a p h y t h a t d u r i n g t h e P l e i s -t o c e n e was c o v e r e d by g l a c i a l i c e a n d was m o d i f i e d by i t t o p r o d u c e t h e l a n d s c a p e o f t o d a y ( H o l l a n d , 1 9 6 4 ) . 4. F i r s t S t r a t i f i c a t i o n o f t h e F o r e s t e d L a n d s c a p e o f t h e  Seymour W a t e r s h e d - D e r i v a t i o n o f t h e H y d r o l o g y Maps D i f f e r e n t r e m o t e s e n s i n g i m a g e r i e s w e r e u s e d t o d e r i v e t h e h y d r o l o g y maps. To a s s e s s t h e d i f f e r e n t r e m o t e s e n s i n g i m a g e r i e s r e a d i l y a v a i l a b l e , t h e s t u d y a r e a was p h o t o g r a p h e d on S e p t e m b e r 15, 19 75 b y t h e C a n a d i a n C e n t r e f o r Remote S e n s i n g , O t t a w a , C a n a d a . The f o l l o w i n g i m a g e r i e s w e r e t a k e n : (1) H i g h l e v e l ( s c a l e 1/63,360) b l a c k a n d w h i t e , c o l o r , c o l o r - i n f r a - r e d a n d t h e r m a l i n f r a - r e d day a n d n i g h t i m a g e r i e s . (2) Low l e v e l ( s c a l e 1/12,000) c o l o r i n f r a - r e d i m a g e r i e s . The d e t a i l s o f f l i g h t a r e p r e s e n t e d i n A p p e n d i x I I . The b l a c k a n d w h i t e a i r p h o t o s ( s c a l e : 1/15840) a r e a v a i l a b l e f r o m t h e B r i t i s h C o l u m b i a p r o v i n c i a l g o v e r n m e n t . The h y d r o l o g y l e g e n d d e v e l o p e d i n C h a p t e r I I , a n d p r e -s e n t e d i n F i g u r e 6, was a p p l i e d t o t h e Seymour W a t e r s h e d . The d i f f e r e n t steps f o l l o w e d to d e r i v e the hydrology map are presented i n Table 5. i The a p p l i c a t i o n of the hydrology legend represents/ the f i r s t step i n s t r a t i f y i n g the mountainous f o r e s t e d landscapes a c c o r d i n g to the proposed A.T.C.S. c l a s s i f i c a t i o n system. The hydrology maps o f the Seymour Watershed are presented i n Appendix I, sheet 1, 2, 3, 4, 5, and 6. R e f e r r i n g t o Table 5, i t i s e v i d e n t t h a t the b l a c k and white a i r p h o t o s a t a s c a l e of 1/15,840, are the most s u i t e d images to apply the hydrology legend at t h i s l e v e l o f i n t e -g r a t i o n . However, the n i g h t time thermal i n f r a - r e d imagery was found s u p e r i o r to the bl a c k and white a i r p h o t o s , to map drainage p a t t e r n s . F i g u r e 44: i l l u s t r a t e s the c l a r i t y with which the streams show on the n i g h t time thermal i n f r a - r e d imagery. Some o f the streams v i s i b l e on the n i g h t time thermal i n f r a - r e d imagery are imp o s s i b l e to d i s t i n g u i s h on bl a c k and white or c o l o r i n f r a - r e d a i r p h o t o s , mainly because of the canopy c o v e r i n g the stream and the l i m i t e d topographic e x p r e s s i o n o f the stream channel and source area. Even i f a stream i s v i s u a l l y obscured by the o v e r l a p of surrounding v e g e t a t i o n , the a q u a t i c environment c r e a t e s a d i f f e r e n t i a l of temperature i n the canopy, which i s e a s i l y d e t e c t e d by thermal i n f r a - r e d imagery. TABLE 5. OUTLINE OF THE PROCEDURE FOLLOWED TO DERIVE THE HYDROLOGY MAP. Pro g r e s s i v e Steps t o Derive M a t e r i a l s and Techniques Selected the Hydrology Maps as being the Most S u i t a b l e f o r Instruments (Scale: 1/15840) Each Step Needed Comments STEP 1: O u t l i n e a l l the streams, water bodies and wetlands STEP 2: D e l i n i a t i o n o f s u r f a c e drainage b a s i n d i v i d e STEP 3: T r a n s f e r o f t h e informa-t i o n d e r i v e d i n Steps 1 and 2, on a map (Scale: 1/15,840) STEP 4: Stream order d e s i g n a t i o n STEP 5: Drainage b a s i n order d e s i g n a t i o n STEP 5: Aspect d e s i g n a t i o n f o r each drainage b a s i n and respec-t i v e slopes STEP 6: Water regime d e s i g n a t i o n Black and white a i r p h o t o s and ther r r a l i n f r a - r e d images Black and white a i r p h o t o s Information d e r i v e d from Steps 1 and 2 According t o the procedure out-l i n e d i n the hydrology legend f i g u r e . "Old D e l f t " scanning stereoscope K.E.K. Stereo-s c o p i c p l o t t e r Maps de r i v e d i n Step 3 Maps d e r i v e d i n Step 4 Maps d e r i v e d i n Step 5 Maps d e r i v e d i n Step 6 Some o f t h i s i n -formation i s a l -ready a v a i l a b l e on e x i s t i n g f o r e s t cover maps Thi s procedure i s a p p l i e d from the headwaters. 7 3 5. Q u a n t i t a t i v e A n a l y s i s of the Seymour Watershed Geo- morphology Q u a n t i t a t i v e geomorphic methods developed i n the p a s t p r o v i d e means of measuring s i z e and form p r o p e r t i e s of d r a i n -age b a s i n s . The hydrology maps are used as a b a s i c framework to apply the q u a n t i t a t i v e geomorphic methods. V i s u a l l y , the observer w i l l see from the hydrology maps of the Seymour Watershed, t h a t the drainage b a s i n s have d i f f e r e n t maximum sl o p e l e n g t h a c c o r d i n g to t h e i r r e s p e c t i v e o r d e r . I l l u s t r a t i o n s of the d i f f e r e n t drainage b a s i n s order are presented i n F i g u r e 15 and i n Appendix I I I . Since the a n a l y s i s of the data d e r i v e d from the Sey-mour Watershed are h e a v i l y based on the stream order concept, the f o l l o w i n g approaches were adopted: 1 - Regional a n a l y s i s T h i s a n a l y s i s i s based on the stream o r d e r i n g system as developed by S t r a h l e r ( 1 9 5 7 ) , which was d e s c r i b e d pre-v i o u s l y . T h i s approach p r o v i d e s a framework f o r the c h a r a c t e r i z a t i o n on a r e g i o n a l b a s i s of the stream network of the Seymour Watershed. 2 - L o c a l a n a l y s i s For a more i n t e n s i v e a n a l y s i s o f ...the study area, the proposed stream o r d e r i n g system as p r e s e n t e d i n the hydrology legend (Figure 6) was adopted. T h i s approach Order 2, 1-3 and 0-3 slope Figure 15. Selected examples of different drainage basin o r d e r s . 75 rep r e s e n t e d a d e t a i l e d s u b d i v i s i o n o f the landscape f o r i n t e n s i v e management, a t l e v e l VI of the proposed l e v e l s o f i n t e g r a t i o n presented i n Table 2 of Chapter I I . The hydrology maps presented i n Appendix I, were used t o i n v e s t i g a t e the f o l l o w i n g r e l a t i o n s h i p s . 5.1 R e l a t i o n of Number of Streams t o Stream Order 1 - Regional a n a l y s i s S t r a h l e r (1957) showed t h a t stream order i s l o g a r i t h -m i c a l l y r e l a t e d to number of streams. F i g u r e 16 i l l u s t r a t e s t h i s r e l a t i o n s h i p f o r the Seymour Watershed. The equation f o r the Seymour Watershed i s : Seymour: l o g Y = 3.2883 - 0.66298 X ( r 2 = 0.99) where Y = t o t a l number of streams of a given order; X = stream or d e r . The b i f u r c a t i o n r a t i o s , d e f i n e d as the r a t i o of the number of streams of a given o r d e r t o the number of streams i n the next h i g h e r order, were c a l c u l a t e d f o r the study area and are presented i n Table 6. Coates (1956) found b i f u r c a t i o n r a t i o s of f i r s t o r d e r to second-order streams to range from 4.0 t o 5.1; r a t i o s of second order t o t h i r d -order streams t o range from 2.8 to 4.9. These values d i f f e r l i t t l e from the b i f u r c a t i o n r a t i o s found f o r the study 76 F i g u r e J.6. R e l a t i o n o f t o t a l number of streams t o stream order. (Regional a n a l y s i s ) 77 area. The b i f u r c a t i o n r a t i o i s highly stable and shows a small range of va r i a t i o n from region to region or environ-ment to environment, except where powerful geological con-t r o l s dominate (Strahler, 1957) . The b i f u r c a t i o n r a t i o , i s the slope of the l i n e r e l a t i n g number of streams to stream order. 2 - Local analysis For a more intensive analysis, the streams which do not follow the hierarchy must be d i f f e r e n t i a t e d because of t h e i r d i f f e r e n t c h a r a c t e r i s t i c s and location i n the drainage network. According to the proposed ordering system as outlined i n the hydrology legend (Figure 6 ) , the r e l a t i o n -ship of stream order to number of streams plotted on semi-logarithmic paper (Figure 17) does not r e f l e c t a straight l i n e r e l a t i o n s h i p . But working on a l o c a l basis, i t i s important to know how many streams of a s p e c i f i c order, having si m i l a r c h a r a c t e r i s t i c s , have to be managed. Refer-ring to Table 6, the following conclusions are drawn: For the streams of order 1, there i s a decreasing number of streams pertaining to streams of order 1, 1-3, 1-5 and 1-4. Most of the streams of order 1, follow the hierarchy. I t i s s i g n i f i c a n t however, that 34% of the streams of order 1, enter channels of order 3, 4 and 5. TABLE 6. NUMBER OF STREAMS VERSUS STREAM ORDER FOR THE SEYMOUR WATERSHED Number of Streams  Stream Strahler's Proposed Bifurcation Order C l a s s i f i c a t i o n C l a s s i f i c a t i o n Ratio 1 274 1-3 75 1-4 31 1-5 33 Total 1 413 2 70 2-4 7 2-5 23 Total 2 100 4.13 3 6 3-5 13 Total 3 19 5.26 4 4 4 4.75 5 1 1 4. 00 Average <• 4.53 79^  o -S E Y M O U R W A T E R S H E D x X tn 2-co-az U J " • or UJ X X X X T 1 1 1 1 1 1 1 I X 1-3 1-4 1-5 2 2-4 2-5 3 3-5 4 5 S T R E A M O R D E R Figure 1 7 . R e l a t i o n of t o t a l number of streams to stream order. (Local a n a l y s i s ) 80 For the streams o f order 2, th e r e i s a d e c r e a s i n g number of streams p e r t a i n i n g to streams o f order 2, 2-5, and 2-4. Most o f the streams o f order 2, f o l l o w the h i e r a r c h y . T h i r t y percent o f the streams of order 2, enter channels of order 4 and 5. For the streams of order 3, there i s a d e c r e a s i n g number of streams p e r t a i n i n g to streams of order 3-5 and 3. S i x t y p e r c e n t o f the streams of order 3, do not f o l l o w the h i e r a r c h y . For the e n t i r e study area, t h e r e are 182 streams o r 34% of the t o t a l number of streams which do not f o l l o w the h i e r a r c h y . In terms o f management, i t i s important t o know the s p a t i a l d i s t r i b u t i o n and number of streams which f o l l o w the hierarchy, from the headwaters t o the ocean, and to know how many streams are d i s s e c t i n g the s l o p e s of drainage b a s i n s of o r d e r 3, 4, and 5. For example, r e f e r r i n g to Table 6, we know t h a t t h e r e . a r e 75 streams of o r d e r 1-3, which means, t h a t t h e r e are 75 streams of order 1, d i s s e c t i n g the sl o p e s o f drainage b a s i n s o f o r d e r 3. 5.2 R e l a t i o n o f Stream Length t o Stream Order The stream l e n g t h o f a l l the 537 streams o f the Seymour Watershed was computed u s i n g the Hewlett Packard mini-computer, model 9370. The r e s u l t s are summarized i n Table 7. TABLE 7 STREAM LENGTH VERSUS STREAM ORDER FOR THE SEYMOUR WATERSHED Stream Average Length Total Length of Stream Order Length Ratio for Each Order (miles) (miles) 1 0. 269 73.70 1-3 0.404 30. 30 1-4 0.418 12.95 1-5 0.518 17.09 Total 1 0.324 1 34.04 2 0 . 34 2 3 . 80 2-4 0.49 3 . 4 3 2 - 5 0. 75 17.25 Total 2 0 . 4 4 5 1 . 37 44.48 3 1.48 8 . 8 3-5 1.14 14.82 Total 3 1 .24 2.78 2 3 . 6 2 4 3 . 175 2.56 1 2 , 7 0 5 14.325 4.51 14.325 82 1 - Regional analysis Figure 18 i l l u s t r a t e s the relationship of stream length to stream order on semilogarithmic paper, for the Seymour Watershed. I t i s noteworthy that the streams of order 1 and 2 have a wide overlap i n stream length.\. Figure. 19 presents the r e l a t i o n of mean stream length to stream order for the Seymour Watershed. The equation for the study area i s : Seymour: log Y = -1.3405 - 1.8272 log X + 0.75273 X. ( r 2 = 0.98) . where Y = stream length of a given order; X = stream order. The following recommendations are proposed for the analysis of stream length versus stream order on a regional basis: a) To e s t a b l i s h any relationship between stream length and stream order, the analysis should be based on streams of order 3 and higher, since inconsistent results are more l i k e l y to happen for the streams of lower order. b) Also, i n some watersheds higher-order stream segments are shorter than they should be i f the law of stream lengths i s v a l i d . I t may be that, i n t h i s case, lack of agreement with the law i s a r e s u l t of the Strahler method of ordering. Horton considered the length of a higher-order stream to extend from the head i n a finger-t i p t r i butary to i t s mouth, whereas the Strahler methods breaks a stream up into segments. This makes higher-order segments shorter than those from which Horton 8 3S SEYMOUR WATERSHED X -"1 r~ -s i , cc UJin -cr I — X o-X X X X , X X X X X —r——• 1 r 2 STREAM ORDER 3 Figure.'.';!8.. Relation of stream length to stream order. (Regional analysis) -> — — . . •> 7 — : ' 5 i 7 "3 4 J 5TRERM ORDER J Figure 19. Relation of mean stream length to stream order. ( Regional analysis ) 85 d e r i v e d h i s l a w . T h u s , t h e i d e n t i f i c a t i o n o f t h e o r d e r -i n g s y s t e m , s c a l e o f maps o f a i r p h o t o s u s e d f o r an a n a l y s i s i s v e r y i m p o r t a n t , b e f o r e any r e g i o n a l c o m p a r i -s o n s a r e u n d e r t a k e n . 2 - L o c a l a n a l y s i s The r e s u l t s o f t h e a n a l y s i s o n a l o c a l b a s i s a r e p r e -s e n t e d i n T a b l e 7. The r e l a t i o n s h i p o f s t r e a m l e n g t h t o s t r e a m o r d e r f o r a l l t h e s t r e a m s m e a s u r e d (537) i s p l o t t e d i n F i g u r e 20. A l s o , t h e r e l a t i o n o f mean s t r e a m l e n g t h t o s t r e a m o r d e r i s i l l u s t r a t e d by F i g u r e 2 1 . B a s e d on t h e a n a l y s i s , t h e f o l l o w i n g c o n c l u s i o n s a r e s u g g e s t e d f o r t h e s t u d y a r e a : a) F o r t h e s t r e a m s o f o r d e r 1, 1-3, 1-4 a n d 1-5, t h e mean s t r e a m l e n g t h i n c r e a s e s f r o m s t r e a m s o f o r d e r 1, 1-3, 1-4 a n d 1-5. b) F o r t h e s t r e a m s o f o r d e r 2, 2-4 a n d 2-5, t h e mean s t r e a m l e n g t h i n c r e a s e s f r o m s t r e a m o r d e r 2, 2-4 a n d 2-5. c) F o r t h e s t r e a m s o f o r d e r 3 a n d 3-5, t h e m a i n s t r e a m l e n g t h i n c r e a s e s f r o m s t r e a m o r d e r 3-5 and 3. r The mean s t r e a m l e n g t h o f v a r i o u s s t r e a m o r d e r s a r e c o m p a r e d s t a t i s t i c a l l y , u s i n g t h e S t u d e n t ' s T t e s t f o r n o n -p a i r e d d a t a a t a l e v e l o f s i g n i f i c a n c e o f 0.05. The f o l l o w -i n g c o n c l u s i o n s a r e d e r i v e d f r o m t h e a n a l y s i s : ;86 SEYMOUR WATERSHED X X LO. ii i«  • _) • z: . cr LUm -Ql •— • CD X X X X X X X * X X X X X X X X X 1-3 1-1 1-5 2 2-4 2-5 3 % STREAM ORDER 3-5 F i g u r e 20. R e l a t i o n o f s t r e a m l e n g t h t o s t r e a m o r d e r . ( L o c a l a n a l y s i s ) 87 SEY.MOUR WATERSHED V —'to-13 •zy-UJ cr UJ CC I — r » -m X X X «H x » i • • x x x x - i :—i 1 n 1 1 1 i 1 1— 1 1-3 1-4 1-5 2 " 2 - 4 - 2 - S 3 3-5 4 STREAM ORDER Figure 21. Relation of mean stream length to stream order. (Local analysis) 88 e) The r e s p e c t i v e mean stream l e n g t h of streams of order 1-3, 1-4 and 1-5 have a s i g n i f i c a n t l y h i g h e r v a l u e when com-pared w i t h the mean stream l e n g t h of streams of order 1. A l s o , the streams of order 1-5 have a h i g h e r mean stream l e n g t h compared to streams of order 1-3 and 1-4. But the mean stream l e n g t h o f streams of order 1-3 and 1-4, are not s i g n i f i c a n t l y d i f f e r e n t . f) The mean stream l e n g t h of streams of order 2 and 2-4 are not s i g n i f i c a n t l y d i f f e r e n t , the same c o n c l u s i o n a p p l i e s f o r the streams o f order 2-4 and 2-5. The mean stream l e n g t h o f streams of order 2 has a s i g n i f i c a n t l y lower value,.compared w i t h the mean stream l e n g t h of streams of order 2-5. g) The mean stream l e n g t h o f streams of order 3 and 3-5, are not s i g n i f i c a n t l y d i f f e r e n t . 5.3 R e l a t i o n of,Channel Slope t o Stream Order The slope o f a l l the 537 streams of the Seymour Water-shed were computed from a topographic map having a s c a l e of 1/15,840 and 50 f o o t contour i n t e r v a l s . The r e s u l t s are summarized i n Table 8. 1 - Regiona l a n a l y s i s A l l the r e s u l t s d e r i v e d from ..the . study area were p l o t t e d on s e m i l o g a r i t h m i c paper and are i l l u s t r a t e d i n Fi g u r e 22. F i g u r e 23 presents the r e l a t i o n s h i p o f mean channel slope t o stream order f o r the Seymour Watershed. TABLE 8 CHANNEL SLOPE VERSUS STREAM ORDER FOR THE SEYMOUR WATERSHED Stream Number Average Channel Order of Streams Slope (%) 1 274 69.00 1-3 75 58.48 1-4 31 51 . 35 1-5 33 55.82 T o t a l 1 413 68.90 2 70 40.87 2-4 7 44. 28 2-5 23 52.59 T o t a l 2 100 41.47 3 6 16.00 3-5 13 33. 61 T o t a l 3 19 23.00 4 4 5.13 5 1 2. 20 90 SEYMOUR WATERSHED X X X X a X X X X I 1 1 1 1 1 1 I 1 1 2 3 , A- 5 STREAM ORDER Figure 22. Relation of channel slope to stream order. (Regional analysis) Figure 23: R e l a t i o n of mean channel slope to stream order. ( Regional analysis ) 92 The equation for the study area i s : Seymour: log Y = 2.2954 - 0.37515 X. ( r 2 = 0.98) where Y = channel slope for a given order; X = stream order. For the Seymour Watershed, the regional analysis i n -dicates as would be expected that there i s a decrease i n average channel slope, from the stream of order 1, 2, 3, 4, and 5. 2 - Local analysis The data used for the l o c a l analysis i s summarized i n Table 8. Figure 24 i l l u s t r a t e s the relat i o n s h i p of channel slope to stream order. Figure 25 presents the relationship of mean channel slope to stream order. Based on t h i s i n f o r -mation, the following conclusions are suggested for the study area: a) For streams of order 1, 1-3, 1-4 and 1-5, the mean channel slope decreases from stream order 1, 1-3, 1-5 and 1-4. The mean channel slope of the streams which do not follow the hierarchy i s consistently less than the streams of order 1. b) For the streams of order 2, 2-4 and 2-5, the mean channel slope increases from stream order 2, 2-4 and 2-5. The mean channel slope of the streams which do not follow the hierarchy i s consistently higher than the streams of order 2. .9.3 1-3 1-4 1-5 2 2-4 2-5 3 3-5 STRERM ORDER F i g u r e 24. R e l a t i o n o f c h a n n e l s l o p e t o s t r e a m o r d e r . ( L o c a l a n a l y s i s ) 9.4 X SEYMOUR WATERSHED X x X x X X o 10 cr x cr UJ X X 1-3 1-4 1-5 2 2-4 2-5 3 , 3-5 STREAM ORDER Figure 25 J Relation of mean channel slope to stream order. (Local analys i s ) <3 95 c) For the streams of order 3 and 3-5, the mean channel slope i n c r e a s e s from stream order 3 and 3-5. The mean channel slope o f the streams which do not f o l l o w the h i e r a r c h y i s c o n s i s t e n t l y h i g h e r than the streams o f order 3. The mean channel slope o f v a r i o u s stream o r d e r s are compared s t a t i s t i c a l l y , u s i n g the Student's T t e s t f o r non-p a i r e d data a t a l e v e l o f s i g n i f i c a n c e of 0.05. The f o l l o w -i n g c o n c l u s i o n s are d e r i v e d from the a n a l y s i s : d) The r e s p e c t i v e mean channel s l o p e s o f streams of order 1-3, 1-4 and 1-5, are s i g n i f i c a n t l y lower when compared wit h the mean channel slope o f streams of order 1. But, the r e s p e c t i v e mean channel s l o p e s o f streams o f o r d e r 1-3, 1-4 and 1-5, are not s i g n i f i c a n t l y d i f f e r e n t . e) The mean channel slope of streams of order 2 and 2-4 are not s i g n i f i c a n t l y d i f f e r e n t , the same c o n c l u s i o n a p p l i e s f o r the streams o f o r d e r 2-4 and 2-5. The mean channel slope of streams of order 2 i s s i g n i f i c a n t l y lower compared wi t h streams of order 2-5. f) The mean channel slope o f streams of order 3, i s s i g -n i f i c a n t l y lower, compared with the mean channel s l o p e of streams of order 3-5. 96 5.4 Relation of Drainage Area to Stream Order The i n t e n s i t y of the drainage area analysis i s a function of the scale of the maps or airphotos available for the area. For example, there are 537 streams i n the Seymour Watershed and only 88 drainage basins were mappable at a scale of 1/15840. Drainage areas were computed from a topographic map (scale: 1/15840), using the Hewlett Packard mini-computer model 9 370. The measurements represent the projected rather than true surface area. Table 9 presents a summary of the drainage area analysis for the Seymour Watershed. 1 - Regional analysis The r e l a t i o n of drainage area to stream order for the study area i s i l l u s t r a t e d by Figure 26. I t should be noted that there i s no overlap of drainage area for streams of order 1, 2, 3, 4 and 5. Each stream order has a d i f f e r e n t range of drainage basin areas, increasing with stream order. The relationship of mean drainage area to stream order i s expressed by Figure 27. The equation for the study area i s : Seymour: log Y = -2.0395 - 0.2609 log X + 0.8096 X. ( r 2 = 0.99) where Y = drainage area of a given order; X = stream order. 2 - Local analysis The data used for the l o c a l analysis i s summarized i n Table 9. Figure 28 gives the relat i o n s h i p of drainage area to stream order. Note that contrary to Figure 2 6 the TABLE 9. DRAINAGE AREA VERSUS STREAM ORDER FOR THE SEYMOUR WATERSHED Stream Number of Mean Drainage Order Streams Analyzed Area 1 12 0. 058 1-3 3 0.21 1-4 2 0.31 1-5 6 - 0.12 Total 1 23 0.12 2 20 0.33 • 2-4 5 0.18 2-5 18 0. 34 Total 2 43 0.317 3 3 1 .87 3-4 3 0.95 3-5 13 0.83 Total 3 19 1 .06 4 2 10.045 5 1 70.48 9.8: I D " in -•v - SEYMOUR WATERSHED lo-rn -cn Ujf--C0U3-cr.1' On-o o -r » -I O -i n -v -m-X X i 1 1 r 2 STREAM ORDER 3 ^ Figure '2 6. Relation of drainage area to stream order. (Regional analysis) 99 Figure 27. Relation of mean drainage area to stream order. ( Regional analysis ) IO.O: 1-3 1-4 1-5 2 2-4 2-5 3 3-4 3-5 STRERM ORDER Figure 28. Relation of drainage area to stream order. (Local analysis) drainage areas have a wide o v e r l a p from one stream o r d e r to the o t h e r . F i g u r e 29- i l l u s t r a t e s the r e l a t i o n s h i p of mean drainage area to stream o r d e r . A c c o r d i n g to t h i s a n a l y s i s the f o l l o w i n g c o n c l u s i o n s are suggested: a) For the streams of order 1, 1-3, 1-4 and 1-5, the main drainage area i n c r e a s e s , from streams of order 1, 1-5, 1-3 and 1-4. b) For the streams of order 2, 2-4 and 2-5, the mean d r a i n -age area i n c r e a s e s , from streams o f order 2-4, 2 and 2-5. c) For the streams of order 3, 3-4 and 3-5, the mean d r a i n -age area i n c r e a s e s from streams of order 3-5, 3-4 and 3. Because of a very l i m i t e d number of o b s e r v a t i o n s per-t a i n i n g t o the study area, the drainage areas of each stream order were not sub j e c t e d to any s t a t i s t i c a l t e s t . However, some s i m i l a r i t y between stream order and drainage area are apparent: d) The mean drainage areas of streams of order 1-3, 1-4 and 1-5, are higher than the mean drainage area of streams of order 1. e) The mean drainage area o f the streams of order 2-4 i s lower than the mean drainage area o f streams of order 2 and 2-5. f) The mean drainage area o f streams of order 3, i s higher than the mean drainage area o f streams of order 3-4 and 3-5. 10,2 X SEYMOUR WATERSHED X .m -CC o • CCr--dm-X X x x x X X X r- -3-3 1-4 1-5 2 2-4 2-5 3 3-4 3-5 STREAM ORDER" Figure 29. Relation of mean drainage area to stream order. (Local analysis) 103 g) The streams of order 1-3 and 2-4 have a similar mean drainage area. h) The streams of order 1-4, 2 and 2-5 also have a similar mean drainage area. 5.5 Relation of Drainage Density to Stream Order The drainage density i s defined by the r a t i o of the t o t a l length of streams of a watershed over drainage area. The computed mean drainage densities of the 8 8 mappable drain-age basins of the study area range from 2.52 to 8.52 for the Seymour Watershed. The average drainage density for the study area i s 4.86. Figure 30. i l l u s t r a t e s the rel a t i o n s h i p of drainage density to stream order. According to the analysis of drain-age density i n the Seymour Watershed, drainage density i s d e f i n i t e l y independent of stream order. 5.6 Relation of Shape Index to Stream Order Shape index i s defined as the degree of roundness of a watershed expressed by the following re l a t i o n s h i p : S.I. =0.28 x P , C , T , . , —: where S.I. = shape index V A ~ _ P = basin (perimeters A .= basin area The shape index of 6 6 mappable drainage basins of the study area were computed. Shape index values range from 1.07 to 1.86 for the d i f f e r e n t drainage basins order of the •104 a rj. 5EYM0UR WATERSHED co" in cr i n m 8 x 8 X X X X r" x x x » 8 x * X X x x * K S' x X .X x X X • ' x x x * g x x 5 -i 1 1 r 1 1 1 n ' • L 1-3 1-4 1-5 2 2-4 2-5 3 3-4 3-5 4 a 1 3 1 STREAM ORDER F i g u r e 30. R e l a t i o n o f d r a i n a g e d e n s i t y t o s t r e a m o r d e r . ( L o c a l a n a l y s i s ) 105 Seymour Watershed. The average shape index i s 1.32. F i g u r e .31 i l l u s t r a t e s the r e l a t i o n s h i p of shape index t o stream o r d e r . T h i s a n a l y s i s i n d i c a t e s t h a t shape of drainage b a s i n s i s independent of order or s i z e . 5.7 R e l a t i o n of Average T o t a l Stream Length to Mean  Drainage Area Schumm (1956) has used the i n v e r s e o f drainage d e n s i t y as a p r o p e r t y termed constant o f channel maintenance. In F i g u r e 32 the average t p t a l stream l e n g t h (ordinate) i s t r e a t e d as a f u n c t i o n o f the mean drainage area (abscissa) on l o g a r i t h m i c paper. Stream l e n g t h i s cummulative f o r a g i v e n order and i n c l u d e s a l l l e s s e r o r d e r s ; i t i s thus the average t o t a l stream l e n g t h of a l l the watersheds p e r t a i n i n g t o the same drainage b a s i n o r d e r . An i n d i v i d u a l p l o t t e d p o i n t on the graph r e p r e s e n t s a g i v e n drainage b a s i n order i n the watershed, as numbered 1 through 5. I f the average t o t a l stream l e n g t h i s read f o r a cor r e s p o n d i n g value o f (1 x 10^) f o r the mean drainage area, the constant o f channel mainten-ance i s ob t a i n e d . T h i s means t h a t on the average, 1 square m i l e o f su r -face i s r e q u i r e d to maintain 4.2 m i l e s o f stream f o r the study area. In other words, 125 7 square f e e t o f p r o j e c t e d watershed s u r f a c e are r e q u i r e d to m a i n t a i n each f o o t of channel l e n g t h . The constant of channel maintenance r e p r e -sents the area i n square f e e t necessary to develop and J SEYMOUR WATERSHED X X X X X X X X X X X X X * x X X V X X w A Q X X x X X X I X * X . » • X X X X X 1-3 J-4 J-5 2 2-4 2-5 3 3-4 3-5 DRAINAGE BASIN ORDER Figure 31. Relation of shape index to drainage basin order. 107 Figure 32. R e l a t i o n of average' t o t a l stream length to drainage area of stream order 1, 2, 3,4 and 5. 108 maintain 1 foot of drainage channel. I t i s therefore the lower l i m i t i n g area required for expansion of a drainage system i n a given region. "A watershed surfaced with an impervious and impermeable s i l t requires a smaller drainage area to maintain a permanent channel than does a watershed on porous sand. The constant of channel maintenance i s thus a measure of the e r o d i b i l i t y of the land surface of watershed." (Morisawa, 1968). 5.8 Hypsometric Analysis 1 - Regional analysis Hypsometric analysis, or the r e l a t i o n of horizontal cross-sectional drainage area to elevation, was developed i n i t s dimensionless form by Langbein and others (1947) . Where-as they applied i t to rather large watersheds, i t has since been applied to small drainage basins of lower order to determine how the mass i s d i s t r i b u t e d within a basin from base to top (Strahler, 1952; M i l l e r , 1958; Schumm, 1956; Coates, 1956). Figure 12 i n Chapter II i l l u s t r a t e s the d e f i n i t i o n of the two dimensionless variables involved. This dimensionless form of the hypsometric curve can be used for regional comparative purposes, related to the di f f e r e n t stages of development of the drainage basin. 109 The hypsometric curves of the d i f f e r e n t drainage basins of the Seymour Watershed were computed using the Hewlett Packard mini-computer, Model 9370. Topographic maps at a scale of 1/15,840 and 50 foot contour i n t e r -vals were used to derive the hypsometric curves. Figure 33 i l l u s t r a t e s the hypsometric curves for the streams of orders 1, 2 and 3 of the study area. The s i m i l a r i t i e s of the curves properties are e a s i l y detected. This confirms the general statement made by Strahler (1957): "Generally the curve properties tend to be stable i n homogeneous rock masses and to adhere generally to the same curve family for a given geologic and cli m a t i c combination". This i s a very useful t o o l i n determining i f the area under investigation has a high degree of geological homogeneity,;which i s the case for the Seymour Watershed, as i l l u s t r a t e d by Figure 33. 2 - Local analysis The dimensionless hypsometric analysis was applied to the streams of order 1, 1-3, 1-4, 1-5, 2, 2-4, 2-5, 3 and 3-5. A l l the hypsometric curves derived from the previous drainage basins adhere to the same family of curves presented i n Figure 33. This implies that the FIGURE 33. DIMENSIONLESS HYPSOMETRIC CURVES FOR DRAINAGE BASINS OF ORDER 1,2 AND 3 INCREMENT OF HEIGHT • 0 . 200E-01 INCREMENT OF AREA - 0 . 8 J J E - 0 2 TOTAL NUMBER OF OBSERVATIONS » 645 NUMBER OF OBSERVATIONS EXCLUDED - 0 NUMBER OF OBSERVATIONS PLOTTED - 645 I l l d i mensionless hypsometric a n a l y s i s i s recommended at the r e g i o n a l l e v e l . The hypsometric a n a l y s i s as d e f i n e d and i l l u s t r a t e d by F i g u r e 11 i n Chapter I I , i s more s u i t a b l e f o r a l o c a l a n a l y s i s , and w i l l be r e f e r r e d t o as the percentage hypso-m e t r i c curve a n a l y s i s . W i t h i n an i n t e n s i v e management p e r s p e c t i v e i t i s important t o know how much of a watershed area i s above a c e r t a i n e l e v a t i o n , knowing the e f f e c t of e l e v a t i o n on c l i m a t e , s o i l development, parent m a t e r i a l d i s t r i b u t i o n , v e g e t a t i o n and organisms. The f o l l o w i n g percentage hypsometric curves of the Seymour Watershed are d i s c u s s e d : a) F i g u r e 34 i l l u s t r a t e s the hypsometric curves f o r the drainage b a s i n s of order 1-3, 1-4 and 1-5. The d i s -t r i b u t i o n o f the mass w i t h i n the drainage b a s i n s i s very s i m i l a r : . a c c o r d i n g t o the shape of the hypsometric curves. The major d i f f e r e n c e i s the e l e v a t i o n a l d i s -t r i b u t i o n of the watersheds as i l l u s t r a t e d by F i g u r e 34 and q u a n t i t a t i v e l y analyzed i n Table 10. b) F i g u r e 35 i l l u s t r a t e s the hypsometric curves f o r the streams o f order 2, 2-4 and 2-5. The major d i f f e r e n c e between the curves i s the e l e v a t i o n a l d i s t r i b u t i o n of TABLE 10. TABULATION OF SELECTED RESULTS DERIVED FROM THE PERCENTAGE HYPSOMETRIC CURVES (A) (B) (C) (D) (E) Drainage Minimum Maximum Range i n E l e v a t i o n Mean Percent of Area Basin Order E l e v a t i o n E l e v a t i o n (B) - (A) E l e v a t i o n * Above 3000 f e e t (feet) (feet) (feet) 1-3 2500 .5 250 2750 4050 94 1-4 2000 4750 2750 3850 90 1-5 1250 4000 2750 3000 50 2 2000 5500 3500 4400 96 2-4 1750 5000 3250 3700 67 2-5 1000 4750 3750 3000 5 0 3 2000 5500 3500 3850 82 3-5 500 5000 4500 3500 66 4 1200 5500 4300 - -5 0 5500 5500 - -*Mean e l e v a t i o n i s drainage b a s i n i s d e f i n e d as being d i v i d e d i n h a l f . the e l e v a t i o n f o r which the area of the 0 113 the watersheds as i l l u s t r a t e d by F i g u r e 35 a n ( j q u a n t i t a -t i v e l y analyzed i n Table 10. c) F i g u r e 36 i l l u s t r a t e s the hypsometric curves f o r the drainage b a s i n s of order 3 and 3-5. Again, the major d i f f e r e n c e between the curves i s the e l e v a t i o n a l d i s t r i -b u t i o n of the watersheds as i l l u s t r a t e d by F i g u r e ^ 3i6 and q u a n t i t a t i v e l y analyzed i n Table 10. Based on the t a b u l a t i o n o f s e l e c t e d r e s u l t s d e r i v e d from the hypsometric curve a n a l y s i s presented i n Table 10, the f o l l o w i n g c o n c l u s i o n s are d e r i v e d : 1 - Drainage b a s i n s o f order 1-3, 1-4 and 1-5. a) The minimum and maximum e l e v a t i o n , the mean e l e v a t i o n and the percentage o f drainage area above 3000 f e e t , decreases from the drainage b a s i n s of order 1-3, 1-4 and 1-5. The d i f f e r e n c e s are d r a s t i c between the drainage b a s i n s o f or d e r 1-3 and 1-5. b) The range i n e l e v a t i o n f o r the s t u d i e d drainage b a s i n s i s cons t a n t . The drainage b a s i n s of order 1-3, 1-4 and 1-5 d i s p l a y a common range i n e l e v a -t i o n o f 2750 f e e t . 2 - Drainage b a s i n s of order 2, 2-4 and 2-5. a) The minimum and maximum e l e v a t i o n , the mean e l e v a -t i o n and the percentage of drainage area above 3000 f e e t , decreases from the drainage b a s i n s of order 2, 2-4 and 2-5. The d i f f e r e n c e s are d r a s t i c between the drainage basins of order 2 and 2-5. 1 0 0 . 0 eo.oo 6 0 . 0 0 AO . 0 0 2 0 . 0 0 500 .00 0 . 0 FIGURE 34. PERCENTAGE HYPSOMETRIC CURVES FOR DRAINAGE BASINS OF ORDER h3,l-4 AND l~5 (6 basins) ORDER 1-3 1500.0 2500.0 1000 .0 2000.0 3 5 0 0 . 0 4 5 0 0 . 0 3 0 0 0 . 0 4 0 0 0 . 0 5000.0 5500.0 6 0 0 0 . 0 INCREMENT OF AREA » 2 . 0 0 INCREMENT OF HEIGHT = 3 0 . 0 TOTAL NUMBER OF OBSERVATIONS - 71 NUMBER OF OBSERVATIONS EXCLUDED » 0 NUMflER OF OBSERVATIONS PLOTTEO = 71 FIGURE 3 5. PERCENTAGE HYPSOMETRIC CURVES FOR DRAINAGE BASINS OF ORDER 2 , 2~4 AND 2"5 (25 basins) 100.0 80 .00 . 60 .00 4 0 . 0 0 20 .00 0 .0 FIGURE 3,6'. PERCENTAGE HYPSOMETRIC CURVES FOR DRAINAGE BASINS OF ORDER 3 AND 3~5 (14 basins) 500 .00 1500.0 2500.0 3500 .0 4500 .0 5500.0 1000 .0 2000.0 3000.0 4000 .0 5003.0 6 0 0 0 . 0 INCREMENT OF AREA • 2 .00 INCREMENT OF HEIGHT » 5 0 . 0 TOTAL NUMBER OF OBSERVATIONS - 204 NUMBER OF OBSERVATIONS EXCLUDED » 0 NUMBER OF OBSERVATIONS PLOTTED - 204 . 117 b) The range i n e l e v a t i o n v a r i e s from 3250 f e e t f o r the drainage b a s i n s of order 2-4, to 3500 f e e t f o r the 2 and to 3750 f e e t f o r the 2-5 drainage b a s i n s . 3 - Drainage b a s i n s of order 3 and 3-5. a) The minimum and maximum e l e v a t i o n , the mean e l e v a -t i o n and the percentage of drainage area above 3000 f e e t , decreases from the drainage b a s i n s of o r d e r 3 and 3-5. b) The range i n e l e v a t i o n v a r i e s from 3500 f e e t f o r the drainage b a s i n s of order 3, to 4500 f e e t f o r the drainage b a s i n s of order 3-5. 4 - Percent of area above 3000 f e e t . The percentage of the drainage area above the 30 00 f e e t contour i s c o n s i s t e n t l y l e s s f o r the drainage b a s i n s which do not f o l l o w the h i e r a r c h y , compared wi t h the ones which do f o l l o w the h i e r a r c h y . For example, the drainage b a s i n s of order 2-5, have only 50% of t h e i r drainage area above 30 00 f e e t , compared with 96% f o r the drainage basins of order 2. A l s o , the drainage b a s i n s which d i s s e c t slopes of hi g h order drainage b a s i n , c o n s i s t e n t l y have a lower percentage of t h e i r area above 3000 f e e t , compared with drainage b a s i n s d i s s e c t -i n g s l o p e s of lower drainage b a s i n o r d e r . For example, the 1-5 drainage b a s i n s have on l y 50% o f t h e i r area above 3000 f e e t compared with 90% f o r the 1-4, and 94% f o r the 1-3 drainage b a s i n s . 11:8 5.9 Slope A n a l y s i s 1 - Maximum slope l e n g t h a n a l y s i s The maximum slope l e n g t h i s d e f i n e d as the l o n g e s t s l o p e p e r t a i n i n g t o each drainage b a s i n o r d e r , which i s the d i s t a n c e between the s u r f a c e water d i v i d e and the stream. The maximum sl o p e l e n g t h of each drainage b a s i n o r d e r , of the study area were computed. For the a n a l y s i s , the drainage b a s i n s o f order 1 i n c l u d e the drainage b a s i n s of order 1, 1-3, 1-4 and 1-5, the drainage b a s i n s of order 2 i n c l u d e the drainage b a s i n s o f order 2, 2-4 and 2-5, and the drainage b a s i n s o f order 3 i n c l u d e the drainage basins o f order 3 and 3-5. The r e s u l t s of the a n a l y s i s are presented i n Table 11. F i g u r e 37, i l l u s t r a t e s the r e l a t i o n s h i p between the average maximum slope l e n g t h and drainage b a s i n o r d e r . The f o l l o w i n g c o n c l u s i o n can be drawn f o r the study area: - The average maximum slope l e n g t h i n c r e a s e s w i t h drainage b a s i n o r d e r , from drainage b a s i n s of order 1 , 2, 3, 4 and 5. 2 - Spa'tial d i s t r i b u t i o n o f s l o p e s . The areas o f a drainage b a s i n that, d r a i n s d i r e c t l y i n t o the main channel are designated by 0 (zero) f o l l o w e d by the order o f the stream, as d e f i n e d i n the hydrology legend (Figure 6). For example, areas d e s i g n a t e d as 0-4, d r a i n d i r e c t l y i n t o the main channel o f f o u r t h order without TABLE 11. ANALYSIS OF MAXIMUM SLOPE LENGTH VERSUS DRAINAGE BASIN ORDER. Drainage Basin Order Number of Slopes Analyzed Maximum Slope Length Analysis Average Slope Length (feet) Minimum (feet) Maximum (feet) Range (feet) 1, 1-3, 1-4, 1-5 2, 2-4, 2-5. 3, 3-5 4 5 12 34 20 8 16 1050 1560 2790 3800 5470 530 920 1850 2900 3800 1320 2110 3430 3960 9636 790 1 190 1580 1060 5836 1 2 0 55CO T FIGURE 37. RELATION OF AVERAGE MAXIMUM S L O P E LENGTH TO DRAINAGE BASIN ORDER 5000 j 4500 f - 4 0 0 0 <D X I-o 2 3500 UJ Q. o - J CO 2 3000 ZD UJ o 2500 <t cr UJ 2000 1500 1000 DRAINAGE 3 BASIN ORDER 121 supporting any mappable drainage basins. The percentage of t o t a l area which so drains d i r e c t l y into the main channel, were computed for each drainage basin order and also as a percentage of the t o t a l study area. The res u l t s are presen-ted i n Table 12. Referring to Table 12 i t should be noted that the per-centage of area which drains d i r e c t l y into the main channel of drainage basins of order 1, 1-3, 1-4 and 1-5, i s 100%, thi s i s obvious, since the t o t a l area of these drainage basins drains d i r e c t l y into t h e i r main channel. The drainage basin of order 2 also have a value of 100%, th i s percentage expresses the l i m i t a t i o n of the mapping scale used for the study, since no drainage basin of order 1, was. mappable at a scale of 1/15840. But as defined i n the hydrology legend (Figure 6), the areas draining d i r e c t l y into stream channel but not supporting mappable drainage basins are designated by O (zero) and are included i n the percentage of area which drains d i r e c t l y into the main channel. Also, i t may be noted, according to Table 12, that the percentage of area which drains d i r e c t l y into the main channel decreases for the drainage basins which do not follow the hierarchy. The drainage basins of order 2 have 100% of the i r area draining d i r e c t l y into the main channel compared with 75% for drainage basins of order 2-4 and 46% for drainage basins of order 2-5. For the drainage basins of order 3 there i s 71% of t h e i r area draining d i r e c t l y into the main channel, compared with 54% .122 TABLE 12 RELATION OF PERCENTAGE OF AREA OF 0 (ZERO) SLOPES TO DRAINAGE BASIN ORDER Percentage of Area which Drains D i r e c t l y i n t o the Main Channel 0 (Zero) Slopes  Percentage of the T o t a l Drainage Percentage of Each Study Area (Drainage B a s i n Order Drainage Basin Basin of Order 5) 1 100 ' not mappable 1-3 100 3 1-4 100 1 1- 5 100 2 2 100 16 2- 4 75 1 2- 5 46 11 3 71 15 3- 5 54 14 4 35 8 5 2 9 29 12 3 f o r drainage b a s i n s of order 3-5. The Seymour Watershed i s a drainage b a s i n of order 5. Table 12 presents a c o m p i l a t i o n of the r e s p e c t i v e areas which d r a i n d i r e c t l y i n t o the main channel of the d i f f e r e n t d r a i n -age b a s i n s order, as a percentage of the t o t a l study a r e a , which i s a drainage b a s i n o f order 5. For example, as i l l u s -t r a t e d i n F i g u r e 38, there i s 29% of the Seymour Watershed area which d r a i n s d i r e c t l y i n t o the main channel of the Seymour R i v e r , a l s o , t h e r e i s 15% o f the t o t a l area (17,446 h e c t a r e s ) , which d r a i n s d i r e c t l y i n t o streams of order 3. I t i s a l s o i n t e r e s t i n g t o note, t h a t there i s 32% o f the study area which d r a i n s i n t o streams which do not f o l l o w the h i e r a r c h y , t h i s i s another argument t h a t s t r e s s e s the importance of se g r e g a t i n g these drainage b a s i n s ; which a r e , f o r the study area the drainage b a s i n s of order 1-3, 1-4, 1-5, 2-4, 2-5 and 3-5. 6. Second S t r a t i f i c a t i o n o f the F o r e s t e d Landscape of the  Seymour Watershed - Management U n i t Maps In order t o c h a r a c t e r i z e the slo p e s of the d i f f e r e n t drainage b a s i n s , the management u n i t concept developed i n 1 2 4 FIGURE 38. 0 (ZERO) SLOPE DRAINAGE BASIN PERCENTAGE OF AREA OF T H E R E S P E C T I V E ORDER E X P R E S S E D A S A THE TOTAL STUDY A R E A 30 T 254 a : or < o 20~ ZD r-CO is P UJ X O 15+ U J 10-UJ o or UJ 5 + U i _ i m CL < o 0 j h i l"1? *2 2 -4 2-5 3^ 3^5 4 5 O(ZERO) SLOPES OF RESPECTIVE DRAINAGE BASINS ORDER 125 Chapter I I , i s a p p l i e d to the Seymour Watershed. The manage-ment u n i t maps are presented i n Appendix I, sheets 7, 8, 9, 10 and 1 1 . 6.1 A n a l y s i s o f the S p a t i a l D i s t r i b u t i o n o f the Manage- ment U n i t s i n the D i f f e r e n t Drainage Basin. Order The components of the management u n i t s a r e : slope p o s i -t i o n , aspect, l a n d and v e g e t a t i o n f e a t u r e s . The f o l l o w i n g a n a l y s i s o f the management u n i t s i s f o c u s s i n g on the sl o p e p o s i t i o n components of the u n i t . For the d e f i n i t i o n of the d i f f e r e n t management u n i t s see F i g u r e 7. I t i s important to s t r e s s the f a c t t h a t the management u n i t s are a l s o d i f f e r e n -t i a t e d a c c o r d i n g t o t h e i r r e s p e c t i v e drainage b a s i n o r d e r . For example, a seepage top slope (ST) u n i t on a 0-5 slope i s a d i f f e r e n t management u n i t than a ST u n i t p e r t a i n i n g to a 0-3 sl o p e . The s p a t i a l d i s t r i b u t i o n o f the management u n i t s i n t h e i r r e s p e c t i v e drainage b a s i n order i s presented by F i g u r e s 39, 40 and 41. The percentages r e p r e s e n t the area of each management u n i t as a f r a c t i o n o f a l l the management u n i t s p e r t a i n i n g to each drainage b a s i n order f o r the e n t i r e study area. For example, the 44.8% o f ST u n i t s i n the drainage b a s i n o f order 2 i s c a l c u l a t e d by adding the areas of the ST u n i t s f o r a l l the drainage b a s i n s o f order 2, i n the e n t i r e study area, and by e x p r e s s i n g t h a t area as a FIGURE: 39. AREA DISTRIBUTION OF EACH MANAGEMENT UNIT EXPRESSED AS A PERCENTAGE OF THE TOTAL 0 (ZERO) SI^ SfES AREA PERTAINING TO THE RESPECTIVE DRAINAGE BASINS OF ORDER 2,3,4 AND 5 G O T 55 5C4 Ul O or o 2 V) < CO U l z < or a 5<° o 35 Id or < tn UJ50 3 tn Uj 25 u. o 111 o U J io o v cr ui CL OCZERO) SLOPE OF EACH DRAJNAGE eAStN ORDER MANAGEVENT UNIT PERCENTAGE O 52-8 &7 s O © o p s O 09JS o KT8 e i 2 TOO rr.6 m. I o S4I >2B e o i O or -P-f o o 3-(3 ; T S o io • O w i O «1 — IS 17 O - ' mm Rl Rl. o 2_J Q 6.0 O SL S H 8 S H , ' ' ST ' SM '• RW ' RW, ' Rl' MANAGEMENT UNITS 127 FIGURE .40 . AREA DISTRIBUTION OF EACH MANAGEMENT UNIT EXPRESSED AS A PERCENTAGE OF THE TOTAL 0(ZERO) SLOPES AREA PERTAINING TO THE RESPECTIVE DRAINAGE BASINS OF ORDER 2-4 , 2-5 AND 3-5 6 5 T 6 0 4 I I o 60.0 i " o i2Jb-55+ 5 0 + UJ O or o z < CD LU 0 45+ Z 2 o to i 01 433 IO t O K0.4 4 0 + 3 5 + 2 o t t o u . < UJ cr < v> UJ30+ s CA UJ 25+ fsl &20+ Ul Ix. O UJ (_> 1 cc UJ a. M o 33.4 15 in i 10 O i o 53.8 53J0 0 ( Z E R 0 ) SLOPE OF EACH ' DRAINAGE • BASIN ORDER MANAGEMENT UNIT PERCENTAGE i w « ~ o 1 N £ <b i 12 .SHBSH, ST SM RW RW, Rl MANAGEMENT UNITS Rl. SL 128 FIGURE 41. AREA DISTRIBUTION OF, EACH MANAGEMENT UNIT EXPRESSED AS A PERCENTAGE OF THE TOTAL 0(ZERO) SLOPES AREA PERTAINING TO THE RESPECTIVE DRAINAGE BASINS OF ORDER 1-3, 1-4. AND 1-5 65T 60 551 50 o 62.8 or UJ Q or O i 2 " co < CD < 2 Q I 404 o < U J or o u.. < U J or < fn UJ30J 3 CO I_ U j 2 5 j -1 O20t UJ I u. o UI o I (Of or ui 0. o (517 o 120-OCZERO) SLOPE OF EACH DRAINAGE BASIN ORDER MANAGEMENT UNIT .PERCENTAGE o 64.7 O &0J5 o 40J2| SI 6 3 7 2 • s O S o 23 w O 0 1.0 r RW. 10 n TV SH ft SH, ST SM RW , Rl MANAGEMENT UNITS R l . SL 129 p e r c e n t a g e o f t h e t o t a l a r e a o f a l l t h e management u n i t s p e r -t a i n i n g t o t h e d r a i n a g e b a s i n s o f o r d e r 2. The a c t u a l a r e a s o f e a c h management u n i t o f t h e d i f f e r -e n t d r a i n a g e b a s i n s o r d e r a r e c o m p i l e d i n T a b l e 13. R e f e r -r i n g t o F i g u r e s -39, 40 and 413 and T a b l e 13 t h e f o l l o w i n g c o n -c l u s i o n s a r e s u g g e s t e d f o r t h e s t u d y a r e a : a) O n l y t h e s l o p e s o f d r a i n a g e b a s i n s o f o r d e r 5 and 4 c o n -t a i n a l l t h e management u n i t s . b) As e x p r e s s e d by F i g u r e '39, - t h e p e r c e n t a g e s o f SH + SH^ and ST u n i t s a r e i n v e r s e l y p r o p o r t i o n a l t o t h e s l o p e o r d e r , e x c e p t f o r t h e 0-2 s l o p e s h a v i n g a l o w e r b u t s i m i l a r p e r c e n t a g e o f ST u n i t s compared w i t h t h e 0-3 s l o p e s . - t h e p e r c e n t a g e s o f SM, RW, A and SL management u n i t s i n c r e a s e w i t h s l o p e o r d e r , b u t t h e y have n o t d e v e l o p e d on t h e 0-2 s l o p e s , b e c a u s e o f t h e i r e a r l y s t a g e o f d e v e l o p m e n t . A l s o , t h e SL u n i t i s n o t f o u n d i n t h e 0-3 s l o p e s . c) As e x p r e s s e d by F i g u r e '40, - t h e s l o p e s o f t h e d r a i n a g e b a s i n s o f o r d e r 2-4, 2-5 and 3-5, h a v e 1 a h i g h p e r c e n t a g e o f ST u n i t s compared w i t h t h e 0-2 and 0-3 s l o p e s o f F i g u r e 3 , 9 , . - t h e 0-2-4 and 0-2-5 s l o p e s s u p p o r t some SM u n i t s w h i c h a r e a b s e n t f o r . t h e 0-2 s l o p e s . TABLE 13. AREA DISTRIBUTION OF THE O(ZERO) SLOPES PERTAINING TO DRAINAGE BASINS OF DIFFERENT ORDER 0 (ZERO) SLOPES OF RESPECTIVE DRAINAGE BASIN ORDER 0-5 0-4 0-3 Manage- % of % of % of ment Area Total Area Total Area Total Units Acres Area Acres Area Acres Area SH+SH1 1,807.8 13.8 1,001.1 28.4 3,387.7 45.7 ST 3,641.8 27.8 1,392.4 39.5 3,454.4 46.6 SM RW RW. Rl Rl A SL Total 2.305.6 17.6 493.5 14.0 252.0 3.5 2,620.0 20.0 98.7 2.8 37.1 0.5 1 131.0 1.0 105.8 3.0 0.0 0.0 248.9 1.9 35.2 1.0 0.0 0.0 1 26.2 0.2 45.8 1.3 59.3 0.9 1.532.7 11.7 317.3 9.0 207.6 2.8 786.0 6.0 35.2 1.0 0.0 0.0 Area 13,100.0 100.0 3,525.0 100.0 7,398.2 100.0 0-3--5 0-•2 0-2--4 0-2-! 5 0-1--3 0-1 -4 0-1-5 % of % of % of % of % of % of % of Area Total Area • Total Area Total Area Total Area Total Area Total Area Total Acres Area Acres Area Acres Area Acres Area Acres Area Acres Area Acres Acres 2,469.2 40.4 3,696.0 52.8 164.0 33.4 2,098.0 43.5 736.5 62.8 221.0 51.7 237.8 30.6 3,239.4 53.0 3,136.0 44.8 295.0 60.0 2,595.1 53.8 436.3 37.2 172.0 40.2 425.1 54.7 311.7 5.1 0.0 0.0 9.8 2.0 72.4 1.6 0.0 0.0 11.5 2.7 84.7 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 4.3 1.0 15.5 2.0 18.4 0.3 0.0 0.0 0.0 0.0 29.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 73.3 1.2 119.0 1.7 22.6 4.6 24.1 0.5 0.0 0.0 4.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 1.5 14.0 1.8 6,112.0 100.0 7,000.0 100.0 491.4 100.0 4,818.6 100.0 1,172.8 100.0 427.6 100.0 77.1 100.0 I—1 U) to "1-3.1 d) As expressed by Figure -'41, - the 0-1-4 and 0 - 1 - 5 slopes, support management units pertaining to slopes of order 0-4 and 0-5 which are dissected by drainage basins of order 1-4 and 1 - 5 . The 0-1-4 and 0 - 1 - 5 slopes support SM, RW and SL management units, which are absent on the 0-1 slopes. Based on the analysis of the maximum slope length pre-sented i n Figure 37 and the analysis of the s p a t i a l d i s t r i b u -tion of the management units, models of the d i f f e r e n t slopes order are presented i n Figures - 4 2 and .43. There i s a d e f i n i t e trend detected by these analyses r e l a t i n g the d i s t r i b u t i o n of the d i f f e r e n t management units to drainage basin order. In most cases, the drainage basins which do not follow the hierarchy are supporting management units pertaining to the higher drainage basin order dissected by them. For example, the 2-4 and 2-5 drainage basins support SM units which are absent i n drainage basins of order 2 . 7. Thermal Analysis of Drainage Basins Thermal infrared images were flown for the study area. Details of the f l i g h t s are presented in Appendix III. The images were taken during the day and night time, an example i s shown i n Figure 44. At an a l t i t u d e of 10,0 00 feet, the thermal infra-red scanner w i l l detect objects or areas that are larger than 25 feet, but only i f the object's temperature d i f f e r s from i t s surroundings by an amount greater than the «PQ f t , LEGEND S O - A C R E S , T H I S R E P R E S E N T S T H E A R E A O F T H E MANAGEMENT UNIT F O R T H E E N T I R E S T U D Y A R E A (SEE T A B L E ) H O R I Z O N T A L S C A L E R E P R E S E N T I N G T H E P R O J E C T E D M A X I M U M S L O P E L E N G T H F O R T H E D R A I N A G E BASNS (SEE TABLE ) SH a SH, ST W O R D E R 1-3 ORDER 1-4 ORDER 1-5 ORDER 3 O R D E R 3 - 5 FIGURE 42. MODELS OF SLOPES PERTAINING TO DIFFERENT DRAINAGE BASIN ORDERS I SH a SH, ! LEGEND SO ACRES, THIS REPRESENTS THE AREA OF THE • MANAGEMENT UNIT FOR TIC ENTIRE STUDY AREA (SEE TABLE ) RW a RW, RI a RI, S T 400 f(M HORIZONTAL SCALE REPRESENTING THE PROJECTED ' MAXIMUM SLOPE LENGTH FOR THE DRANAGE BASINS (SEE TABLE ) A S L S M 1 / a 1 • • ORDER 4 SH a SH, ORDER 5 FIGURE 43. MODELS OF SLOPES PERTAINING TO DRAINAGE BASINS OF ORDER 4 AND 5 134 DAY-TIME IMAGERY NIGHT-TIME IMAGERY FIGURE 44 = DAY AND NIGHT-TIME THERMAL INFRARED IMAGERIES FOR THE SEYMOUR LAKE AREA. (IMAGERIES BY C.C.R.S.) 135 s e n s i t i v i t y o f the sensor or system ( t i s ± 1°C). For t h i s a n a l y s i s , no attempt was made to o b t a i n a r e a l s u r f a c e temperature. The e n t i r e a n a l y s i s i s based on apparent temperature. Since the number o f l e v e l s (8) i n the s l i c i n g was kept constant, the p r e c i s i o n o f the apparent tempera-ture i s a f u n c t i o n of the temperature range of the t e r r a i n f o r each f l i g h t l i n e . The minimum p r e c i s i o n of the apparent temperature f o r our study was ± 0.5°C. In order to analyze the thermal regime of v a r i o u s drainage b a s i n s , r e l a t i v e temperature v a l u e s are more important than a c t u a l v a l u e s of t emper a t u r e. For t h i s p a r t i c u l a r a n a l y s i s , the drainage b a s i n s which do not f o l l o w the h i e r a r c h y i n the stream o r d e r i n g system were not d i f f e r e n t i a t e d . For example, the r e s u l t s f o r the 0-2 s l o p e s , i n c l u d e the slopes of order 2, 2-4 and 2-5. I t i s very important to s t r e s s the f a c t t h a t a l l the tempera-t u r e r e adings were taken f o r mature and over-mature f o r e s t stands. A) P l a n t s t r e s s P l a n t s may be subjected to s t r e s s as a r e s u l t o f drought, shallow s o i l , s a l i n i t y , presence of nematodes, e t c . (Wiegand, 1971). Increase i n canopy temperature as a consequence of water d e f i c i e n c y has been demonstrated by Weigand and Namken (1966). Weber (1965) has found a 2 to 3°C i n c r e a s e i n midday apparent temperature of red pine t r e e s under a simulated 136 s t r e s s . From the evidence a v a i l a b l e so f a r , i t would appear t h a t plan s t r e s s r e s u l t i n g from reduced t r a n s p i r a t i o n r a t e (e.g., due to s o i l water d e f i c i e n c y ) should be the e a s i e s t one to d e t e c t . T h i s i s because reduced t r a n s p i r a t i o n r a t e d i r e c t l y causes p l a n t temperature i n c r e a s e (other c o n d i t i o n s being e q u a l ) . The e f f e c t of p l a n t s t r e s s on canopy temper-ature w i l l be most apparent around midday when the s o l a r energy i n p u t i s a t i t s maximum ( C i h l a r and M c Q u i l l a n , 1977). Assuming t h a t the midday canopy temperature i s a r e -f l e c t i o n o f p l a n t s t r e s s the f o l l o w i n g a n a l y ses were com-p l e t e d f o r the study area: B) Day time temperature as a r e f l e c t i o n o f p l a n t s t r e s s f o r slope components By a n a l y z i n g each component of a slope having a s p e c i f i c aspect, no temperature or p l a n t s t r e s s d i f f e r e n c e s were r e -corded by the thermal i n f r a r e d imagery. For example, a 0-5 slope of South-West aspect has a uniform temperature which means t h a t no p l a n t s t r e s s was recorded f o r the e n t i r e s l o p e . T h i s s i m i l a r i t y of temperature i s i l l u s t r a t e d by the uniform gray tone o f the day time imagery presented i n F i g u r e 44. P l a n t s t r e s s appears to be r e l a t e d more to drainage b a s i n order and aspect v a r i a t i o n s . C) Day time temperature as a r e f l e c t i o n of p l a n t s t r e s s f o r slopes p e r t a i n i n g to d i f f e r e n t drainage b a s i n order Day time temperatures were recorded f o r 0-2, 0-3, 0-4 and 0-5 sl o p e s a c c o r d i n g to t h e i r r e s p e c t i v e a s p e c t s , to 13.7 provide a basis for analyzing the e f f e c t of slopes, pertain-ing to d i f f e r e n t drainage basins order on plant stress. Keeping i n mind that no data i s available for the North and South aspects of the 0-5 slope, the data and conclusions are presented i n Table 14. D) Day time temperature as a r e f l e c t i o n of plant stress for d i f f e r e n t aspects of 0 (zero) slopes Day time temperatures were recorded for d i f f e r e n t as-pects of the same slope drainage order. The analysis i s pre-sented graphically i n Figures 45, 46 , 47 and 48. The con-clusions of the analysis are presented i n Table 15. E) The e f f e c t of d i f f e r e n t drainage basins order and aspects on day time temperatures or plant stress The data presented i n Tables 14 and 15 were summarized to combine the e f f e c t of the 0 (zero) slopes and aspects on plant stress. The conclusions are presented i n Table 16. F) Compilation of the night time temperatures The night time images were more valuable i n the i d e n t i -f i c a t i o n of small streams than the thermal day time images as i l l u s t r a t e d by Figure 44. The night time temperatures and the d i f f e r e n t i a l between the day and average night tempera-tures are presented i n Figures 45 , 46 , 47 and 48., Because of the wide v a r i a t i o n i n night temperatures for the d i f f e r e n t slopes and aspects, no s p e c i f i c conclusions could be drawn in r e l a t i o n to these parameters.. Future research might help i n the analysis of the data presented. TABLE 14. DAY TIME TEMPERATURE AS A REFLECTION OF PLANT STRESS FOR SLOPES PERTAINING TO DIFFERENT DRAINAGE BASIN ORDER Day Time Temperature (Mean) i n Degree Centigrade  Slope Drainage Order Descending Intensity of Plant Stress to Aspect 0-5 0-4 0-3 0-2 Slope Drainage Order N - 17.6 17.0 18.7 0-2>0-4 >0-3 NE 21.4 17.6 18.2 21.5 0-2=0-5*0-3=0-;4-> E 22 . 0 21.1 21 . 3 21 . 3 0-5> 0-4=0-3=0-2 SE 20.9 21.2 22.2 21 .7 0-3>0-2>0-4=0-5 S - 21.5 21.7 21.7 0-4=0-3=0-2 SW 2 4.2 22. 3 21.6 21.7 0-5>0-4>0-2=0-3 W 22.1 22 . 1 21.3 21 . 3 0-5=0-4>0-3=0-2 NW 20.9 21.3 22.2 19.3 0-3>0-4=0-5>0-2 - No data > Greater than Note: A d i f f e r e n t i a l of ± 0.5°C i s required between two units to be considered d i f f e r e n t TABLE 15. DAY TIME TEMPERATURE AS A REFLECTION OF PLANT STRESS FOR DIFFERENT ASPECTS OF 0 (ZERO) SLOPES Day Time Temperature (Mean) i n Degree C e n t r i g r a d e Descending I n t e n s i t y of Slope Aspect P l a n t S t r e s s a c c o r d i n g inage Order N NE . . E SE S SW . W NW to D i f f e r e n t Aspect: 0 - 5 - 21 . 4 22 . 0 20. 9 - 24. 2 22. 1 20. 9 SW>W=E>NE >SE=NW 0 - 4 17. 6 17. 6 21 . 1 21 . 2 21 .5 22. 3 22. 1 21 . 3 SW=W>E=SE=NW=S >N=NE 0 - 3 17. 0 18. 2 21 . 3 22. 2 21 .7 21 . 6 21 . 3 22 . 2 SE=NW>S=SW=W=E >NE->N 0-- 2 18. 7 21 . 5 21 . 3 21 . 7 21 .7 21 . 7 21 . 3 19. 3 SW=S=SE=NE=E=W>NW:>N No data. £ Greater than Note: A d i f f e r e n t i a l o f ± 0.5°C i s r e q u i r e d between two u n i t s to be considered d i f f e r e n t TABLE 16. EFFECT OF DRAINAGE BASIN;'ORDERS' AND ASPECTS ON PLANT STRESS TEMPERATURE RANGES. (0°C) 24. 2 21.1 t o 22.3 19.8 t o 21.0 18.6 to 19.8 17.4 to 18.6 16.2 to 17.4 Slope Aspect Slope Aspect Slope Aspect Slope Aspect Slope Aspect Slope Aspect 0-5 SW 0-5 NE 0-5 SE 0-4 _N 0-3 N 0-5 E 0-5 NW 0-2 NW' v ^ 7~- — •> '• 0-5 N 0-4.' NE 0-4 E 0-4 SE 0-4 S 0-4 SW 0-4 W 0-4 NW 0-3 E 0-3 SE 0-3 S 0-3 SW 0-3 W 0-3 NW 0-2 NE 0-2 E 0-2 SE 0-2 SW 0-2 W *• DESCENDING INTENSITY:"OF PLANT STRESS ' * » — > FIGURE 45. THERMAL ANALYSIS OF. THE 0"2 SLOPES FOR THE N, NE, E,SE,S,SW,W AND NW-ASPECTS DAY TEMP. NIGHT T E M P RANGE AVERAGE NIGHT T E M R DIFFERENCE BETWEEN DAY AND NIGHT TEMR MIN .18.70 14.90 13.80 12.60 21.50 13.60 21.30 12.20 21.70 13.00 21.70 15.20 14.70 13.80 .21.70 14.60 ,21.20 14.40 SE S ASPECT SW 1 NW laso 12.70 2 5 i FIGURE "46 THERMAL ANALYSIS OF THE 0-3 SLOPES FOR THE N.NE, E,SE,S,SW,W AND NW ASPECTS 142' 244 2 3 -224 21 2 0 -UJ o I 194 » -z UJ u U l £ 18 o U l o g 1 ^ CC U l w 16 -I 15 OAY TEMR NIGHT TEMP RANGE AVERAGE NIGHT TEMP DIFFERENCE BETWEEN DAY AND NIGHT TEMP \ \ 14 . 13 12. 10 11.32 MAX 18.2 14.40 13.60 12.30 21.30 2 2 . 2 0 1 2 . 2 11.50 21.70 21.60 MAX 13.80 14.40 1 3 . 3 0 12.20 21.30 1 2 . 2 0 2 2 . 2 0 13.70 12.60 11.60 (IE Sti SW NW ASPECT 1 FIGURE 47.THERMAL ANALYSIS OF THE 0 " 4 SLOPES FOR THE N, NE, E,SE,S,SW,W AND NW ASPECTS DAY TEMP. NIGHT TEMP RANGE AVERAGE NIGHT T E M P DIFFERENCE BETWEEN DAY AND NIGHT T E M P S3 ,21.10 ,21.50 V 22.30 , 2 2 . 1 0 ,21.5 > 21 .JO 19.70 2 5 -24 23 224 FIGURE 48. THERMAL ANALYSIS OF. THE 0~5 SLOPES FOR THE N, NE, E,SE,S,SW, W AND NW .ASPECTS N I G H T T E M P R A N G E A V E R A G E N I G H T T E M P D I F F E R E N C E B E T W E E N DAY A N D N I G H T T E M P MAX MIN EC 20 J o | o+ t-z U J u o U l a ui 17 cc D K U l ui 16 •-15. 13 • 12 10 1 o z MAX w N E 21.4 3.70 12.90 2.20 MAX 22.0 14.90 14.35 13.80 MAX 20.9 14.90 14.30 3.80 I O 2 SE S A S P E C T 13.6 13.2 _22.I0 MAX 1420 3.60 12.40 20.9 1420 13.60 SW 144 SUMMARY OF THE SUBDIVISION METHOD The drainage b a s i n s and t h e i r r e s p e c t i v e order (strahler^, 1957) c o n s t i t u t e a b a s i c u n i t i n the s t r a t i f i c a t i o n o f the f o r e s t e d landscapes, which c r e a t e s an adequate framework, a l l o w i n g the comparison of d i f f e r e n t environments on a r e g i o n a l b a s i s . The proposed m o d i f i c a t i o n s i n the drainage o r d e r i n g system generate a refinement i n the s t r a t i f i c a t i o n o f the landscape which i s more s u i t a b l e f o r a l o c a l or i n t e n s i v e a n a l y s i s l e a d i n g t o the i d e n t i f i c a t i o n o f management u n i t s which expressed the s t a t e of development o f the d i f f e r e n t s l o p e s p e r t a i n i n g to each drainage b a s i n o r d e r . 146 CHAPTER IV APPLICATION OF THE AQUA TERRA CLASSIFICATION  SYSTEM - ASSOCIATION METHOD Management u n i t s are i d e n t i f i e d u s i n g the s u b d i v i s i o n method as d e s c r i b e d p r e v i o u s l y i n Chapter I I ; they are the s m a l l e s t u n i t mapped i n s i d e the drainage b a s i n order framework u s i n g remote se n s i n g techniques. Any more d e t a i l e d d e s c r i p t i o n s of the landscape a t t r i b u t e s r e q u i r e s the a p p l i c a t i o n of the a s s o c i a t i o n method by which the management u n i t s are d e s c r i b e d , analyzed and s u b d i v i d e d i n t o landscape u n i t s . The data pre-sented i n t h i s Chapter, were not s t a t i s t i c a l l y t e s t e d , because of the l i m i t e d number of sampling p l o t s i n some of the l a n d -scape u n i t s . 1. Landscape U n i t Development The management u n i t s are s t r a t i f i e d i n t o landscape u n i t s u s i n g the b i o g e o c l i m a t i c subzones as developed by K r a j i n a (1969). Three major b i o g e o c l i m a t i c subzones were i d e n t i f i e d i n the study area: the C o a s t a l Western Hemlock Wet subzone (CWH^), the Mountain Hemlock Subalpine f o r e s t subzone (MH&) and the Mountain Hemlock Subalpine P a r k l a n d subzone (MH^). The biogeoclimatic subzones are shown by way of shading on the landscape u n i t maps presented i n Appendix I, sheets 7, 8, 9, 10 and 11. The management u n i t s become landscape u n i t s when they are l o c a t e d i n t h e i r r e s p e c t i v e b i o g e o c l i m a t i c subzones. A management u n i t which extends i n t o two biogeo-c l i m a t i c subzones i s f u r t h e r s u b d i v i d e d i n t o two landscape 147 units. For i l l u s t r a t i o n , see the landscape unit legend, sheet 7, presented i n Appendix I. 1.1 Relation of the Biogeoclimatic Subzones D i s t r i b u t i o n  to Drainage Basins Orders The area of the d i f f e r e n t biogeoclimatic subzones were compiled for each drainage basin order and expressed as a percentage of the t o t a l area of the respective drainage basin order. The results are presented i n Table 17 and graphically i l l u s t r a t e d by Figure ."49. The following conclusions are suggested for the study area: For the drainage basins of order 2, 3, 4 and 5 which follow the hierarchy, the percentage of area covered by the CWH^  and the MH subzones increases with drainage basin order, a ^ while the percentage area covered by the MH^  subzone decreases with an increase of drainage basin order. For the drainage basins of order 3 and 3-5, the percentage of area covered by the CHW^  an& the MH^ subzones, decreases from drainage basin of order 3 to 3-5, while the percentage of area covered by the MHa subzone increases from drainage basins of order 3 to 3-5. For the drainage basins of order 2, 2-4 and 2-5, the percen-tage of area covered by the CWH ^and;lthe>^M|n ; s . u 6 z o n e s i n -creases, while the percentage of area covered by the MH^ subzone decreases from drainage basins of order 2, 2-4 and 2-5. TABLE 17 RELATION OF THE BIOGEOCLIMATIC SUBZONES DISTRIBUTION TO DRAINAGE BASIN ORDER Drainage B a s i n Percentage Respe c t i v e of T o t a l Drainage Area of the Bas i n Order Order CWH, b MH a MH,, b % *o % 5 5 0 21 2 9 4 3 2 2 0 4 8 3 2 6 14 6 0 3 - 5 1 9 3 3 4 8 2 5 10 8 5 2 - 4 2 8 3 2 4 0 2 - 5 3 4 3 8 2 8 1 - 3 7 21 7 2 1 - 4 8 : 4Q 5 2 1 - 5 . 4 3 4 7 10 CWH, : C o a s t a l Western Hemlock Wet Subzone b MH^: The Mountain Hemlock Subalpine F o r e s t Subzone MH^: The Mountain Hemlock Subalpine Parkland Subzone. FIGURE 4 9 . RELATION OF THE BIOGEOCLIMATIC SUBZONES DISTRIBUTION TO DRAINAGE BASIN ORDER [_J CWBb' COASTAL WESTERN HEMLOCK WET SUBZONE MHQ • MOUNTAIN HEMLOCK SUBALPINE FOREST SUBZONE MHb • MOUNTAIN HEMLOCK SUBALP NE PARKLAND SUBZONE OS u i Q or O 100+ s (A 2Mi SOf 8 0 4 704 3 o •5 2 2 or < ^•60t u . o z Ui o K 404 Si! 301 20+ D4 3-5 2 2-4 2-5 DRAINAGE BASIN ORDER h3 1-4 15 Dx For the drainage basins o f order 1 - 3 , 1 - 4 and 1 - 5 , the per-centage o f area covered by the CWH and the MH subzones a a i n c r e a s e s , while the percentage o f area covered by the MH^ subzone decreases from drainage b a s i n s o f order 1 - 3 , 1 - 4 and 1 - 5 . 1 . 2 R e l a t i o n of the B i o g e o c l i m a t i c Subzones D i s t r i b u t i o n  to.the Percentage Hypsometric Curve A n a l y s i s The b i o g e o c l i m a t i c subzones are r e l a t e d t o the percentage hypsometric curve a n a l y s i s , because they are both a f f e c t e d by an e l e v a t i o n d i f f e r e n t i a l which has a d r a s t i c e f f e c t on the c l i m a t i c c o n d i t i o n s . R e f e r r i n g to F i g u r e 5 0 , the CWH^ subzone: has a maximum e l e v a t i o n o f 3 0 0 0 f e e t , the MH, subzone i s over b 3 8 0 0 f e e t . Table 1 8 p r e s e n t s the area d i s t r i b u t i o n (percent) o f the b i o g e o c l i m a t i c subzones based on the percentage hypso-m e t r i c curves a n a l y s i s f o r the drainage b a s i n s of order 1 - 3 , 1 - 4 and 1 - 5 . I t should be noted t h a t the d i s t r i b u t i o n o f the subzones d e r i v e d from the percentage hypsometric curves are s i m i l a r to the percentages presented i n Table 1 7 , which were d e r i v e d from the mapping procedure of the subzones. Based on t h i s a n a l y s i s i t i s e v i d e n t t h a t the percentage hypsometric curves a n a l y s i s and the b i o g e o c l i m a t i c z o n a t i o n are complemen-t a r y and should be used j o i n t l y i n watershed management. FIGURE 50. AREA DISTRIBUTION OF THE BIOGEOCLIMATIC SUBZONES BASED ON THE PERCENTAGE HYPSOMETRIC CURVES FOR DRAINAGE BASINS OF ORDER 1-3 , 1-4 AND 1-5 ( 6 BASINS ) 1 0 0 . 0 8 0 . 0 0 6 0 . 0 0 4 0 . 0 0 2 0 . 0 0 0 . 0 z o I _J tu in 3 I 8 CD < co < . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •\»i;.7.,*'T+.^.,.*.'?V^ * * " \ ORDER 1-5' \ CWH ELEVATION IFEET) • i n ORDER l-4ik:::l; W m m M ' W m m m .•••.v. \v.\ v.v.v.wv m M m m w m m m soo.oo 1500.0 2 5 0 0 . 0 3 5 0 0 . 0 m m k m m m Jii^f::':':::::7 4 5 0 0 . 0 1 0 0 0 . 0 2 0 0 0 . 0 3 0 0 0 . 0 4 0 0 0 . 0 5 0 0 0 . 0 I N C R E M E N T O F A R E A - 2 . 0 0 I N C R E M E N T O F H E I G H T • 5 0 . 0 TOTAL NUMBER OF O B S E R V A T I O N S - 7 1 N U H 8 E R O F O B S E R V A T I O N S E X C L U 0 E 0 • 0 N U M B E R O F O B S E R V A T I O N S PLOTTED 5 5 0 0 . 0 6 0 0 0 . 0 Tl 15'2 TABLE 18 AREA DISTRIBUTION OF THE BIOGEOCLIMATIC SUBZONES BASED ON THE PERCENTAGE HYPSOMETRIC CURVES FOR DRAINAGE BASINS OF ORDER 1-3, 1-4 AND 1-5. Drainage Percentage of Total Area of the Basin Respective Drainage Basin Order Order CWH, MH MH, b a b 1-3 6(7)* 19 (21 ) 75 (72) 1-4 10(g)) 40 (40) 50 (52) 1-5 52(43) 46(47) 2 (10) CWH, : Coastal Western Hemlock Wet Subzone. b MH^ : The Mountain Hemlock Subalpine Forest Subzone. MH^ : The Mountain Hemlock Subalpine Parkland Subzone. * The percentage i n brackets i s derived from Table 17 i n order to compare with the subzones mapping pro-cedure. 153 1.3 Landscape Units D i s t r i b u t i o n for Slopes Pertaining  to Different Drainage Basin Order The area of each landscape unit i s expressed as a per-centage of the t o t a l 0 (zero) slope area for each drainage basin order i n Tables 19 and 20. I t i s in t e r e s t i n g to note that 9 3.9% of the landscape unit of the 0-5 slopes are i n the CWH^  subzone compared with 72.8% for the 0-4 slopes, 30.7% for the 0-3 slopes and 7.3% for the 0-2 slopes. There i s also an increase i n t o t a l percentage of landscape units i n the CWH^  subzone from slopes of order 0-2, 0-2-4 and 0-2-5, and from slopes of order 0-1-3, 0-1-4 to 0-1-5. 2. Soils and Parent Materials Description of the Study Area The s o i l s of the Seymour Watershed l i s t e d i n Table 21 have been described i n a study by Lavkulich (1973). The des-c r i p t i o n of the d i f f e r e n t s o i l s developed on various parent materials i s presented i n Appendix IV. The chemical analysis of the major s o i l s , provided by the B r i t i s h Columbia Depart-ment of Agriculture are presented i n Appendix IV. As a complement, the s o i l s were sampled, described and analyzed for t h e i r textural d i s t r i b u t i o n , the res u l t s and methods are presentedin Appendix I I I . The s o i l sampling s i t e s are located on sheets 12, 13, 14 and 15 i n Appendix I. The major parent materials of the study area were c l a s s i -f i e d for their texture according to the U.S. Department of TABLE 19. LANDSCAPE UNITS DISTRIBUTION FOR SLOPES PERTAINING TO DRAINAGE BASINS OF ORDER 5, 4, 3, 3-5 'AND: 2. Biogeo-cl i m a t i c Subzones Total Area Acres % Landscape Units Area (Acres) for Each Slope Order SH 1 SH ST SM RW RW 1 RI RI 1 A SL MH, ; M i l CWH?* b MH, MH. CWH' MH, MH. CWH' MH, ME. CWH' MH, MH. CWH' 198 602 12,301 278 681 2,566 3,543 1 ,584 2,271 2,139 2,554 1,418 5,334 1 , 155 51 1 1 :5i. 4.6 93.9 7.9 19.3 72.8 47.9 21 .4 30.7 35.0 41 . 8 23.2 76.2 16.5 7.3 Slopes 0-5, Total Area: 13,100 Acres 66 66 66 157 262 183 26 1,231 3,393 2,306 2,620 131 249 26 1,533 786 Slopes 0-4, Total Area: 3,525 Acres 148 11 1,210 128 2,674 112 18 307 303 32 419 1,072 465 102 28 85 32 46 317 1,124 1,465 836 518 1,036 288 1 ,576 Slopes 0-3, Total Area: 7,398 Acres 37 44 251 37 30 15 141 Slopes 0-3-5, Total Area: 6,112-Acres 330 599 587 1,638 110 214 1,002 202 1 8 73 Slopes 0-2, Total Area: 7,000 Acres 49 119 721 1,771 182 973 119 312 28 ERRATA: Page numbering. TABLE 20. LANDSCAPE UNITS DISTRIBUTION FOR SLOPES PERTAINING TO DRAINAGE BASINS OF ORDER 2-4, 2-5, 1-3, 1-4 AND 1-5. Biogeo-c l i m a t i c Total Area Landscape Units Area (Acres) for Each Slope Order  Subzones Acres % SH„ SH ST SM RW RW. RI RI. A SL MH MH CWH' b MH, MH. CWH' MH, MH. CWH,' MH, MH. CWH' MH, MH. CWH' Slopes 0-2 -4, Total Area: 491 Acres 237 48. 2 132 6 77 22 145 29. 6 18 127 109 22. 2 8 91 10 Slopes 0- 2 -5, Total Area: 4,819 Acres ,335 27. 7 723 231 381 ,739 36. 1 106 583 997 29 24 ,744 36. 2 458 1,214 72 Slopes 0- 1 -3, Total Area: 1,173 Acres 927 79. 0 256 325 346 143 12. 2 68 75 103 8. 8 88 15 Slopes 0- 1 -4, Total Area: 428 Acres 208 48. 6 106 68 34 160 38. 4 43 110 3 4 55 13. 0 5 28 8 Slopes 0- 1 -5, Total Area: 777 Acres 64 8. 3 45 2 17 417 53. 7 60 96 261 295 38. 0 34 147 85 15 14 157. Agriculture S o i l C l a s s i f i c a t i o n system and the Unified S o i l C l a s s i f i c a t i o n system, the re s u l t s are presented i n Appen-dix IV. 2•1 Soils D i s t r i b u t i o n in the Different Drainage Basin; Orders The d i s t r i b u t i o n of the s o i l s i s related to drainage basin s i z e , slope configuration and elevational d i s t r i b u t i o n (hypsometric curves), other factors being equal (i.e. geology, g l a c i a l a c t i v i t y , e t c . ) . Table 21 presents the r e l a t i o n of s o i l s and parent materials d i s t r i b u t i o n to drainage basin order and management units. I t should be noted that the s o i l s devel-oped on g l a c i a l outwash are s p e c i f i c to drainage basin of order 5. The s o i l s developed on alluvium, are r e s t r i c t e d to drainage basins of order 1-4, 3, 4 and 5. The s o i l s developed on fans, are r e s t r i c t e d to drainage basins, of order 3, 4 and 5. The Cardinal, Steelhead, Golden Ears and Whonnock s o i l s occur only i n drainage basins of order 5. 2.2 Bio-Physical Description of the Major Landscape Units The bio-physical c h a r a c t e r i s t i c s of the landscape units are described by 159 sampling plots, which are located on the maps included in Appendix I. The res u l t s and methods used to derive the environment tables, the forest stand mensuration and vegetation tables are presented i n Appendix V. \-158 TABLE : 21. RELATION OF S O I L D I S T R I B U T I O N TO SLOPES PERTAINING TO DIFFERENT DRAINAGE B A S I N ORDERS. SLOPE DRAINAGE ORDER AND MANAGEMENT UNITS S O I L S OF THE STUDY AREA 1-3 1A 1-5 2 2A 2-5 . 3 3-5 . 5 A. S O I L S DEVELOPED ON G L A C I A L T I L L : 1. CARDINAL S L 2. STEELHEAD RI 3. STRACHAN A, BURWELL 5, GOLDEN EARS 6. WHONNCCK SL+SM SL+SM SM SM SM SM SL+SM+ RW, . . SL+SM+ RW. RW+RW. RW+RW. R I . R I + R I . R I . R I + R I I R I + R I . R h SM R h B. S O I L S DEVELOPED ON SHALLOW T I L L OVER EEDRCCK: 1. HOLLYBURfl 2. GROUSE 3. CANNEL 4. SAYRES C. ORGANIC SOILS DEVELOPED ON BEDROCK: 1. EUNICE 2. DENNET ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH S H i j S H . S H i R I . + S H i R I . + S H i R I . + S H . R I . + S H i R I . + S H . R I l + S H i R I l + S H i ST ST ST ST ST ST I i ST ST ST ST ST ST ST ST ST ST ST ST ST ST+SH+! ST+SH+ S H , ! SHi ST+SH+ S H . ST+SH+ SHi ST+SH+ S H i ST+SH+ S H i ST+SH+ S H i ST+SH+ SHi 'ST+SH+ S H i ST+SH+ SHi D. S O I L S DEVELOPED ON G L A C I A L OUTWASH: 1. CAPILANO 2, HANEY RW RW E. S O I L S DEVELOPED ON RECEffT A L L U V I U M : 1. SARDIS 2. SEYMOUR A A A A A F. S O I L S DEVELOPED ON F A N S : 1,. DEAN 2. S A L I S H RW | i RW RW G, S O I L S DEVELOPED ON COLLUVIUM: 1. PATTON 2. P A L I S A D E 3. LIONS ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH ST+SH H, MISCELLANEOUS LAliD UNITS: 1, T A L U S 2. ROCK OUTCROP ST+SH ST+SH+ SM ST+SH+ SM ST+SH ST+SH+ SM ST+SH+ SM ST+SK+ SM ST+SH+ SM ST+SH+ C M ST+SH+ SM SH+SH.+ ST SH+SH.+ ST+SM SH+SH.+ ST+SM SH+SH.+ ST SH+SH. + ST+SM SH+SH.+ ST+SM Sh+SH.+ ST+SM SH+SH.+ ST+Sn SH+SH,+ ST+SM SH+SH.+ ST+SM 159 The aspect component of the d i f f e r e n t landscape units was not a very s i g n i f i c a n t factor influencing productivity or the vegetation composition of the mature forest stands in the study area. This might be explained by the North-South orien-tation of the studied watershed. Parent materials and s o i l s , have a more d e f i n i t e c o r r e l a t i o n with productivity arid vegeta-tion composition within a landscape unit. The d i f f e r e n t slope positions with th e i r respective s o i l were found to be the most s i g n i f i c a n t factors influencing forest productivity and vegeta-ti o n composition, regardless to which drainage basin order they belong to. The d i f f e r e n t drainage basin "orders are direc-t l y related to the d i s t r i b u t i o n rather than the nature of the landscape units as shown i n Tables 19 and 20. In order to compare the d i f f e r e n t landscape units, a synthesis of the environment and forest stand mensuration data i s presented i n Table 22. It should be noted that.the seepage zone top slope (ST) units i n the CWH^  subzone, which cover 2 0% of the study area have an average slope gradient of 35 degrees compared with 14 degrees for the seepage zone middle slope (SM) units in the same subzone. Table 23 presents the d i s t r i b u t i o n of the major tree species according to t h e i r volume/acre i n the d i f f e r e n t landscape units, t h i s information was derived from the forest stand-: mensuration tables presented i n Appendix V'.>; As a synthesis of the vegetation tables also presented i n Appendix :..'v', Table 24 shows the d i s t r i b u t i o n of the major species according to t h e i r abundance-dominance, i n the d i f f e r e n t Table 22. Compare 1 son of the major landscape units of the c h a r s t e r l s t l c a study area according to selected b i o - p h y s l c a l LANDSCAPE UNITS Selected b i o - p h y s l c a l SHj* SH SH SH ST ST ST SM SM RW RI A c h a r a c t e r i s t i c s ( Average values) <• CWHb MH a MHb C M 1 , b MH, MHb HU a C«H b CWH. D CWH. o CWU. b E l e v a t i o n (maters) 1.07 6 652 1.016 1,220 454 ' 922 1,110 396 991 239 543 564 274 Slope gradient (degrees) 1 7 21 5 35 30 24 14 23 6 7 2 2 S o i l s e r i e s DE CE-EU PA LS CE-SN PA LS-HB SN-BW HB SH BW 0 SD-SU Humus form H-FH F-HM H-FM H-FH H-FM H-FM H-FM F-HM F-HM H-FM F-HM F-HM H-FM Humus depth (cn) 33 14 25 5 14 31 17 17 24 8 20 65 11 Volume/acre (cu. feet) 1391 8,63 2 9,058 i;2B5 13,880 9,418 5.214 15,073 13,192 12,751 14,273 4,430 1 2 . 8 6 9 Number of stems per acre 80.1 182.9 219.5 714.4 176.8 164.3 83.1 161.9 99.3 383.0 144 . 1 148.4 264 . 6 Average volume/tree (cu. feet) 23. 5 47.2 41.2 1.7 78.5 57.3 62.7 93.1 132.8 33.3 99.0 29 . 8 48 . 6 Average D.B.H. ( Inches) 15.7 14.8 13.4 3.9 16.9 16.0 19.1 17.2 23.7 11 . 8 17 . 4 13 . 2 1 2 . 8 Average height (Feet) 38.2 61 .0 54.7 8.5 75.1 56.3 58.3 74.0 86.2 6 2 . 7 67.1 5 6 . 2 6 0 . 3 * For definitions see Figure 7. in Chapter II. *« CWH.1 Coastal western hemlock wet subione. b MH t Mountain hemlock subalpine subione. a MH. I Mountain hemlock subalpine parkland subtone. b T a b l e 23, D i s t r i b u t i o n o f the m a j o r t r e e s p e c i e s a c c o r d i n g to t h e i r v o l u m e / a c r e i n t h e d i f f e r e n t l a n d s c a p e u n i t s LANDSCAPE UNITS SH SH SH ST ST ST SM SM RW RI A T r e e s p e c i e s CWTL D MH a MH, b CWH b MH a MH, • CWH, 0 MH a CWH b CWH, 0 CWH. 0 CWH b P s e u d o t s u g a m e n z i e s i i X X X X T h u j a p l i c a t a XXX XXX X XXX XXX Tsuga h e t e r o p h y l l a ' Tsuga m e r t e n s i a n a (1) XXX XX XXX XX XX XXX XXX XX XXX XX XX Tsuga m e r t e n s i a n a and h e t e r o p h y l l a XX XX A b i e s a m a b i l i s XX XX XX X X XX XX XX XXX XX X X XX X XX X Ch a r o n e c y p a r i s n o o t k a t e n s i s XX X X XXX X X X P i c e a s i t c h e n s i s XX P i n u s raonticola X A l n u s r u b r a X X * CWH, : C o a s t a l w e s t e r n hemlock wet subzone. b MH : M o u n t a i n hemlock s u b a l p i n e s u b z o n e . a MH, : M o u n t a i n hemlock s u b a l p i n e p a r k l a n d s u b z o n e . (1) Ranking of i m p o r t a n c e o f the t r e e s p e c i e s a c c o r d i n g to t h e i r volume p e r a c r e : XXX: F i r s t s p e c i e s XX: Second s p e c i e s X: T h i r d s p e c i e s T a b l e 24. D i s t r i b u t i o n o f the major s p e c i e s a c c o r d i n g to t h e i r abundance-dominance i n the d i f f e r LANDSCAPE UNITS SH SH SH ST ST ST SM SM RW RW RI A S t r a t ; S p e c i e s MH,* CWH. D MH a MH. D CWH, 0 MH a MH, 0 CWH. b MH a CWH, b 1 CWH b CWHL b CWH, b As Tsuga h e t e r o p h y l l a T h u j a p l i c a t a XXX XX X XX XXX X XXX XXX XXX XXX XX XXX X A b i e s a m a b i l l s X XX XX XX XX X XXX Tsuga m e r t e n s i a n a X XX XX C h a m a e c y p a r i s noo t k a t e n s i s P s e u d o t s u g a m e n z i e s i i X X P i c e a s i t c h e n s l s XX A i T suga m e r t e n s i a n a C h a m a e c y p a r i s n o o t k a t e n s i s XXX XXX XXX XX XXX XX XXX XX X XX A b i e s a m a b i l i s X XXX XXX XX X XXX XXX XX XXX XX XX X XXX Tsuga h e t e r o p h y l l a XX XXX X XXX XXX XXX XXX X XX T h u j a p l i c a t a X XX X X P i c e a s i t c h e n s l s X A l n u s r u b r a X P i n u s m o n t i c o l a X * CWH b: C o a s t a l w e s t e r n hemlock s u b z o n e . MH g: M o u n t a i n hemlock s u b a l p i n e s u b z o n e . MHfa: Mo u n t a i n hemlock s u b a l p i n e s u b z o n e . h IN (1) Ranking f o r e a c h s p e c i e s . XXX: F i r s t s p e c i e s XX: Second s p e c i e s . X: T h i r d s p e c i e s Table 24 ( Continued) ,• LANDSCAPE UNITS S t r a t a S p e c i e s SH SH 8H ST ST ST SM SM RW RW1 RI A CWH^ HH b CWHb MH a MHb CWHb MH a CWHb CWH b CWH D CWH, D Bu Tsuga m e r t e n s i a n a C h a m a e c y p a r i s n o o t V a t e n s l s XXX XX XX XXX X XX X X X X A b i e s a m a b l l l s X XXX XXX .X X XXX XXX XX XXX XX XXX XXX XXX Tsuga h e t e r o p h y l l a XXX X XXX XX xxx XX xxx XX XX xx Taxus b r e v l f o l l a XX X T h u j a p l i c a t a X X A c e r c l r c l n a t u m X A l n u s r u b r a X B i V a c c l n l u m membranaceum Chamaecypn r l s noo t k a t e n s I s M e n z l e s l a f e r r u g l n e a XXX xx-; xx.-, XXX XX X XX XXX XX X X XXX X A b i e s a m a b l l l s X XXX xxx XX XX X XX X V a c c l n l u m a l a s k a e n s e V a c c l n l u m p a r v l f o l l u m Tsuga h e t e r o p h y l l a Tsuga m e r t e n s i a n a C l a d o t h e m n u s p y r o l l ( l o r u s XX XX XXX XX X X XX XXX XX XX X XXX xxx X xxx XX X XXX XX X Rhododendron a l b l f l o r u m X I ; M CO Table 24. (Continued) LANDSCAPE UNITS S t r a t a s p e c i e s SH - SH 811 ST ST ST SH SH RW RWj RI A CWH D M% MH b CWHb HH a MH b CWHb MH a CWHb CWH. D CWH. b CWH D B l Rubus s p e c t a b l l l s XXX c o n t . O p l o p a n a x h o r r l d u m XX H P h y l l o d o c e e m p e t r l f o r m i s C a s f l l o p e m e r t e n s i a n a L u e t k e a p e c t i n a t e C l l n t o n l a u n l f l o r a C ornus c a n a d e n s i s XXX XX X XXX XX XX X XX X X X x-X XX XXX x x x x X Blechnum s p l c a n t X xxx XX xxx XX X XX XXX V a c c l n l u m membranaceum X XX Rubus p e d a t u s X xxx xxx XX XX XX XXX C a r e x n i g r i c a n s XXX xxx P o l y s t i c u m munltum C a u l t h e r l a s h a l l o n D r y o p t e r i s a u s t r l a c a x X X X XX xxx X XX T l a r e l l a t r i f o l i a t e X XX S m l l a c l n a a t e l l a t a XX Halanthenum d i l a t a t u m X Table 24 (Continued) LANDSCAPE UNITS S t r a t a S p e c i e s SH, SH SH SH ST ST ST SM SM RW RW, RI A MH b* CWH. MH a HH b CWHb MH a MH b CWH. • b MH a CWH. D CWH. b CWHL b CUM D H T l a r e l l a u n l f o l l a t a X C o n t . S t r e p t o p u s a m p l e x l f o l l u s X L y s l c h l t u m amerlcanum XX V e r a t r u m v l r l d e XX A t h y r i u m f l l l x - f e m l n a X X S t r e p t o p u s r o s e u s X X MH D l c r a n u m f u s c e s c e n s XXX X XXX XXX XX XX X X D l c r a n u m s c o p a r l u m XX xxx XX R h y t l d i o p s l s r o b u s t a X XXX XXX XX XXX xxx XX xxx R h y t l d l a d e l p h u s t r i q u e t r u s X Hylocomlum s p l e n d e n s XX X X B r a c h y t h e c i u m s p p . XX F l a g i o t h e e l u m u n d u l a t u m XX xxx XXX xxx XXX XXX R h y t i s l a d e l p h u s l o r e u a X XX X xxx X Rhizomnlum g l a b r e e c e n s X XXX x XX XX Sphagnum g i r g e n a o h n l l XX XX U I Table 24 (Continued) LANDSCAPE UNITS 8 " l MH^* SH SH 8H ST ST ST SM SM RW RWj RI A S t r a t a S p e c i e s CWH, , M H « MH b CHH b Mil ' a CWH. D CWH b CWHt D CWH b MH Sphagnum p a l u s t r a D l c r a n u m h o u e l l l l Pogonatum c o n t o r t u m X X X 16 7 landscape units. It should be pointed out that t h i s informa-t i o n i s used to characterize rather than i d e n t i f y the d i f f e r -ent landscape units. SUMMARY OF THE ASSOCIATION METHOD The d i f f e r e n t slope positions with t h e i r respective s o i l s and e f f e c t on water d i s t r i b u t i o n were found to be the most s i g n i f i c a n t components of the landscape units a f f e c t i n g the forest s i t e productivity and vegetation composition i n the study area. Each drainage basin order i s characterized by a combina-tio n of landscape units which creates a comprehensive framework integrating the land and aquatic systems. The bio-physical c h a r a c t e r i s t i c s of the respective landscape units are very similar from one drainage basin order to the other. For example, the SM units the CWHb subzone have very similar bio-physical c h a r a c t e r i s t i c s independently of the stream order in which i t occurs. The major difference between the d i f f e r e n t drainage basins order i s the d i s t r i b u t i o n of the landscape units which i s exclusive to each drainage basin order. This rela t i o n s h i p becomes evident by consulting Table 19 and 2 0 and Figures 42 and 43., for example, the 0-5 slopes have 2,306 acres of SM units compared with only 465 acres for the 0-4 slopes and no SM units for the 0-2 slopes. This i s a very important rel a t i o n s h i p in terms of interpretation for each landscape unit which has i t s own d i s t r i b u t i o n pattern i n the 168 d i f f e r e n t drainage basin order. Interpretations can be made for each basic landscape unit which can be located inside the drainage basin order framework to assess i t s i n t e r r e l a -tionships with, or possible impacts aft e r treatment to, the surrounding land and aquatic systems. 169 CHAPTER V THE AQUA-TERRA CLASSIFICATION SYSTEM AS A  FRAMEWORK FOR INTENSIVE FOREST MANAGEMENT The A.T.C.S. C l a s s i f i c a t i o n System, integrating the land and aquatic systems within the drainage basin order concept, i s proposed as a framework within which each landscape unit can be assessed as a separate en t i t y for forest management accord-ing to i t s i n t r i n s i c bio-physical c h a r a c t e r i s t i c s . The land-scape unit can also be related to each drainage basin order i n an attempt to study t h e i r i n t e r r e l a t i o n s h i p s with the aquatic systems. Some selected examples of the proposed framework for intensive forest management are presented. 1• General Framework for Intensive Forest Management  Inte rpre tation s The forest manager deals with four major levels i n the a r t i c u l a t i o n of forest management plans^i f i r s t the inventory of the resources, second the interpretations for the d i f f e r e n t management alternatives based on the inventory, t h i r d the recovery period of the u t i l i z e d resource values and fourth the extrapolation of past experiences and research findings to similar areas to avoid the r e p e t i t i o n of.mistakes and to promote suitable management t a c t i c s for s i m i l a r land and aquatic systems according to t h e i r d i f f e r e n t stages of development and recovery. Table 25 presents a general TABLE 25. THE A.T.C.S. AS A FRAMEWORK FOR FOREST MANAGEMENT. Le v e l s o f Integration of the land and aquatic systems  F o r e s t LANDSCAPE UNIT Association DRAINAGE BASIN ORDER Association INTEGRATED DRAINAGE BASINS Management (land system) (Mosaic of landscape (interrelationships be-Subdivision units) subdivision tween drainage basins of different order Integrated resource inventory A. Bio-physical characterization -Geology, s o i l , vegetation and water interrelation-ships . -Wildlife A.-Association of landscape A. units for each drainage basin order. -Morphological descriptions of each drainage basin order. -Bio-physical characteristics of the aquatic system, i.e. spawning areas, fish popula-tion. -Aquatic and land systems interactions, i.e. water quantity, quality and timing. -Stream bank stability, debris. Bio-physical interrelation-ships between drainage basins of different order. Regional versus local analysis. B. Resource values for each land-scape unit. -Forestry -Mining -Recreation B.-Resource values for the mosaic of landscape units pertaining to each drain-age basin order. -Resource values of the aquatic system. -Integrated resource values of the land and aquatic systems for each drainage basin order. B. Resource values of the com-bined drainage basins inte-grating the land and aquatic systems. — i o . TABLE 25. (Continued) II. Interpretations and impacts assessment A. Site sensitivity to the proposed management alter-natives, based on past ex-periences and research findings for similar land-scape units. -soil f e r t i l i t y -effects on the moisture regime -erosion potential -road building suita-bi l i t y -logging method suita-b i l i t y -susceptibility to disease and insect damages -Fire hazard -brush hazard B. Methods of buffering or elim-inating detrimental impacts during the resource utiliza-tion phase. -This refers to the stand-ards of utilization, i.e. standards of road accord-ing to different landscape units, culverts and cross-drain spacings. A. Drainage basin sensitivity according to the land and aquatic systems interrela-tionships . -expected sediment produc-tion -nature and amount of debris related to each landscape unit -sensitivity of the landscape unit near the streams -expected variation of water quantity, quality and timing. A. Sensitivity of a group of drainage basins inside the drainage basin order hierarchy. -Interrelationships be-tween drainage basins of different order -receiving areas buffer-ing the sediment distri-bution -distance between spawn-ing areas and the sedi-ment sources A. Methods to minimize detri- A. mental impacts at the drainage basin order level. -Rate of cut -Cross stream yarding -Diversion of subsurface flow modifying the varia-ble source area. Road location. -Water balance studies related to the nature and distribu-tion of landscape units -Erosion control measures -Water temperature variation -Buffer strips along the stream -Culvert design Methods of reducing im-pacts between drainage basins of different order. -Rate of cut for a series of drainage basins -Diversion of water from a drainage basin to the other, modifying the variable source area. TABLE 25. (Continued) III. Recovery Expected tine of recovery, period and consideration of a l -ternative treatments for a better recovery. -brush control methods -plantation (species suitability) -natural regeneration poten-t i a l -seeds source -spacing, thinning, selective logging - f e r t i l i z a t i o n -slash burning -scari fication -cut banks stabilization Alternative uses during the recovery period. IV. Extrapolation Compilation of the results to build and information system i n order to extrapolate the findings to similar land-scape units. Expected time of recovery at the drainage basin order level. -Removal of a l l culverts and bridges that cannot be maintained -Cross ditch the roads Expected time of recovery for a group of drainage basins of different order. Extrapolation of the results to other drainage basins of the same order. Extrapolation of the results focusing on the interactions of drainage basins of different order. 173 framework for intensive forest management taking into consid-eration the land and aquatic systems as c l a s s i f i e d and mapped according to the A.T.C.S. system. It should be pointed out that t r a d i t i o n a l l y , forest management has been mainly con-cerned with the land systems. The information available could e a s i l y be integrated i n the A.T.C.S. at the landscape unit l e v e l . The respective mosaics of landscape units associated with the d i f f e r e n t drainage basins order are proposed as an h o l i s t i c approach combining land and aquatic systems for i n -tensive forest management. 2. Examples of Applications of the A.T.C.S. Framework for  Forest Management As suggested in Table 25, the bio-physical c h a r a c t e r i s t i c s of each landscape unit must be described following t h e i r pre-s t r a t i f i c a t i o n using the subdivision method. The analysis of the landscape units and t h e i r i n t e r r e l a t i o n s h i p s with the drainage basins of d i f f e r e n t order are presented i n Chapter IV. Based on this analysis the following examples i l l u s t r a t e the framework presented i n Table 25. 2.1 Timber inventory The framework created by the d i f f e r e n t drainage basin -orders and t h e i r associated landscape units i s compatible with the timber inventory procedures. Referring to Appendix V, each landscape unit has i t s own forest stand c h a r a c t e r i s t i c s . 174 At the drainage basin order l e v e l each slope order i s charac-terized according, to i t s average gross volume per acre as pre-sented i n Tables 26 and 27, and i l l u s t r a t e d by Figure 51?. I t should be noted that average gross volume per acre increases with drainage basin'order. In term of application, the present timber inventory data could e a s i l y be related to the A.T.C.S. framework, and allow extrapolation to sim i l a r landscape units, which have not been examined i n d e t a i l . 2.2 Aquatic system inventory As described i n Chapter I I I , each drainage basin order has i t s own combination of morphological c h a r a c t e r i s t i c s . Also, each drainage basin order i s characterized by a unique mosaic of landscape units. The re s u l t i n g framework i s believed to be very useful i n aquatic system inventories. Even i f no attempt was made to produce a detailed inventory of the streams' bio-physical c h a r a c t e r i s t i c s i n the study area, some of the reported studies by various s c i e n t i s t s indicate the values of the A.T.C.S. framework for aquatic system inventory. Herrington and Duham (196 7) and Pl a t t s (1976) have found that stream channel measurements (including depths, widths, channel substrate composition, percent pools and r i f f l e s , and others) can provide the basis for describing environmental conditions which are correlated with i n stream f i s h habitat and population. Also, Platts (1976) reports: "As stream TABLE 26. GROSS VOLUME TABLE (CUNITS) FOR EACH LANDSCAPE UNIT PERTAINING TO SLOPES OF DRAINAGE BASINS OF ORDER 5, 4, 3, 3-5 and 2. Biogeo-c l i m a t i c Subzone T o t a l Volume Landscape U n i t s , Gross Volume (CUNITS.) f o r Each Slope Order (CUNITS) SH SH ST SM RW RW RI RI 1 A SL MH, MH. CWH' T o t a l MH, MH. CWH' b, T o t a l MH MH_ CWH' b T o t a l MH, M H . CWHf MH, MH. CWH' T o t a l T o t a l 5 ,484 52,101 1 ,486 ,370 1 ,543,955 5,087 60 ,774 322,402 388,263 82,497 144,490 299 ,587 526,574 58,090 224,368 187,997 470 ,455 151 ,593 108,123 64,682 324,398 Slopes 0-5, Average Volume per Acre: 118 CUNITS • 1,248 795 3,441 2,969 23,732 25,400 492 106,260 470,948 347,583 334,076 18,698 11,031 Slopes 0-4, Average Volume per Acre: 110 .CUNITS. .  2,799 1,350 938 208 27,808 28,537 4,221 36,168 148,794 70,089 .13,006 12,132 1,418 Slopes 0-3, Average Volume per Acre: 71 CUNITS 21,255 17,653 43,589 46,920 97,570 24,860 218,749 37,833 Slopes 0-3-5,Average Volume per Acre: 77 CUNITS 22 ,881 3,977 31 ,232 2,420 53,170 154,267 14,511 18,472 139,078 30,447 Slopes 0-2, Average Volume per Acre: 46 . CUNITS 50,565 8,688 92,240 16,486 91,637 10,272 54,410 197,282 -40,795 -18,145 -TABLE 27, Biogeo-c l i m a t i c Subzone T o t a l Volume GROSS VOLUME TABLE (;CUNITS) FOR EACH LANDSCAPE UNIT PERTAINING TO SLOPES OF DRAINAGE BASINS OF ORDER 2-4, 2-5, 1-3, 1-4 and 1-5. Landscape U n i t s , Gross Volume (CUNITfr) f o r Each Slope Order (.CUNITS) SH 1 SH ST SM RW RW1 Rl Slopes 0-2-4, Average Volume per Acre: 71 CUNITS - \ 6 ,583 2,496 72 4,015 13,591 1 ,630 11 ,961 14,828 691 12,630 1 ,507 35,002 Slopes 0-2-5, Average Volume per Acre: 84 CUNT.TS ; 36,321 13,672 2,784 19,865 148,709 2,004 52,808 93,897 220 ,842 41,486 168,503 10 ,853 405,872 Slopes 0-1-3, Average Volume per Acre: 42 .CUNITS •. 26 ,797 4,844 3,916 18,040 13,222 6 ,159 7,063 9,678 7,596 2 ,082 49,697 Slopes 0-1-4, Average Volume per Acre: 6 0 ' (UNITS • 4,596 2,004 819 1 ,773 14 ,651 3 ,895 10,360 396 6,554 432 3,886 1 ,206 25,801 Slopes 0-1-5, Average Volume per Acre: 96 CUNTTS ' 1 ,761 851 24 886 34,412 1,135 8,696 24,581 38,064 2 ,935 20,404 12,812 1 ,913 Rl 1 A SL MH, MH. CWH' MH, MH. CWH' MH MH. CWH,C MIL MH. CWH' MH, MH. CWH,C T o t a l T o t a l T o t a l T o t a l 1,030 -T o t a l 74,2 37 177 FIGURE .5.1, A V E R A G E GROSS V O L U M E P E R A C R E (CUNITS) F O R S L O P E S PERTAIN ING T O D I F F E R E N T D R A I N A G E B A S I N \ O R D E R S 1204 10 100 90 + £ 80+ 3 U UJ 70f a: o < g e o f a. UJ 3 o > 50+ $ 40+ s o. UJ 30+ o < tr UJ § 2 0 4 10+ 5 4 1-5 2-5 3-5 2-4 3 1-4 2 1-3 O(ZERO) SLOPES OF RESPECTIVE DRAINAGE BASIN ORDERS 178 order i n c r e a s e d , a v a i l a b l e water space and t o t a l f i s h popula-t i o n i n c r e a s e d . Orders 4 and 5 c o n t r i b u t e d about 75 per c e n t of the f i s h p o p u l a t i o n i n the study stream o f the Idaho Batho-l i t h but onl y made up 19 percent of the stream mileage. C l a s s i f y i n g streams i n g r a n i t i c lands as t o t h e i r "order" and frequency o f occurrence can give the l a n d manager i n f o r -mation f o r an approximation o f p o p u l a t i o n s o f f i s h s p e c i e s . " The r e s u l t s o f the study a l s o i n d i c a t e d t h a t i n c r e a s i n g water space, which i s a s s o c i a t e d w i t h d e c r e a s i n g "channel g r a d i e n t s " and i n c r e a s i n g water temperatures, had more i n f l u e n c e on i n -c r e a s i n g f i s h p o p u l a t i o n s than d i d oth e r f a c t o r s . The r e l a -t i o n s h i p of channel g r a d i e n t to stream order was analyzed i n Chapter I I I . Slack (1955) s t a t e d t h a t the b i o l o g i c a l produc-t i v i t y o f a stream i s d i r e c t l y r e l a t e d t o the p h y s i c a l e n v i r -onment of the watershed, which c o n t r o l s drainage p a t t e r n , flow r a t e s , g r a v e l s i z e and shape, channel g r a d i e n t , and gene r a l s t a b i l i t y c h a r a c t e r i s t i c s . Swanston (1977) r e i n f o r c e s t h i s concept i n h i s q u a n t i t a t i v e geomorphic approach to pre-d i c t p r o d u c t i v i t y of Pink and Chum salmon streams i n South-e a s t A l a s k a . The q u a n t i t a t i v e geomorphic v a r i a b l e s used f o r i n t e r b a s i n c o r r e l a t i o n purposes were, area o f drainage b a s i n , mean v a l l e y s i d e s l o p e , b a s i n area with s l o p e above c r i t i c a l angle (34°) , avalanche index (number of avalanches i n water-shed) , drainage d e n s i t y , b i f u r c a t i o n r a t i o , t o t a l l e n g t h o f channel segments, g r a d i e n t o f stream channel, l e n g t h o f stream w i t h a c c e p t a b l e spawning g r a d i e n t ( l e s s than 12 p e r c e n t ) , o b s t r u c t i o n s i n main channel, b a s i n perimeter, b a s i n r e l i e f , 179 channel frequency, r e l a t i v e r e l i e f , compactness c o e f f i c i e n t , form factor, lakes i n stream system, length r a t i o , basin orientation and bedrock geology. Many of the previous para-meters have been analyzed i n r e l a t i o n to drainage basin order i n Chapter III. The A.T.C.S. creates a framework within which a quantitative geomorphic approach to stream produc-t i v i t y could be applied. Also, the c h a r a c t e r i s t i c s of the mosaic of landscape units associated with each basin order may be tested as to t h e i r r e l a t i o n to the bio-physical char-a c t e r i s t i c s of the aquatic system. P l a t t s (1977) points out the relationships between the land systems and f i s h populations within the Idaho Batholith: "Total f i s h popula-tions were highest near the grass-brush habitat types because the two dominant f i s h species centered on these environments. Chinook salmon dominated the grass type areas and the rainbow trout dominated the brush type areas. Cutthroat trout numbers, however, were at t h e i r highest i n channels with dominant tree cover on the bands. Some species were adapted only to certain ranges of stream gradient, and certain species usually peaked i n population density at d i f f e r e n t channel gradients." 180 3. Examples of Interpretations for Forest Management and  Impact Assessment There are three major levels i n the A.T.C.S. designed for interpretations. F i r s t , interpretations are derived from the basic bio-physical c h a r a c t e r i s t i c s of each landscape unit, the t r a d i t i o n a l l e v e l at which interpretations are made. The second l e v e l consists of interpretations for each drainage basin order according to t h e i r respective mosaic of landscape units. At the t h i r d l e v e l , interpretations are made for integrated drainage basins. 3.1 Selected examples of interpretations for each  landscape unit The bio-physical information available for each land-scape unit w i l l dictate the r e l i a b i l i t y of the interpreta- ' tions derived. This i s where the concept of extrapolation becomes c r i t i c a l . Most of the int e r p r e t i v e information i s extrapolated from past experiences and research findings. At the landscape unit l e v e l of interpretations, on-site s e n s i t i v i t y can be evaluated, and methods available to re-duce the impacts of the projected u t i l i z a t i o n can be con-sidered. A. Interpretations for Road Building Each landscape unit has i t s own bio-physical character-i s t i c s as described i n Chapter IV. The various components of the landscape units, i . e . slope p o s i t i o n , slope degree, 181 aspect, parent materials, erosional features and vegetation, creates a framework by which each landscape unit can be charac-t e r i z e d for road building. The major parent materials asso-ciated with the various landscape units have been c l a s s i f i e d according to the Unified S o i l C l a s s i f i c a t i o n System and pre-sented i n Appendix IV. The major s o i l s of the study area were c l a s s i f i e d as: SM ( s i l t y sand, s a n d - s i l t mixtures), CL (in-organic clays of low to medium p l a s t i c i t y ) , SC (clayey sands, sa n d - s i l t mixtures), SW (well-graded sands or gravelly sands, l i t t l e or no f i n e s ) . Based on t h i s analysis, interpretation for road building can be derived as shown i n Table 28. It i s very important to the forest engineer to know the location of suitable material for road building i n his area. It should be noted that materials and depth of organic matter are r e l a -ted to each landscape unit. Also, information on tree species and volume of timber associated with each landscape unit w i l l a s s i s t i n the location of a more e f f i c i e n t road system. B. Interpretations for Logging System Selection The optimum yarding distances and slope percent of each logging system i s presented i n Figure 52:. According to th i s guide, each landscape unit could be assessed as to i t s s u i t a b i l i t y for the d i f f e r e n t logging systems. Referring to Figure 37' i t i s noted that each drainage basin order has a s p e c i f i c maximum slope length and configuration which could be related to the yarding distance of the d i f f e r e n t TABLE 28. CHARACTERISTICS OF SOIL GROUPS FOR ROAD CONSTRUCTION Unified Soil Classification System (u.S Corps of Engineers 1953) Field Compressi- Compaction Dry** u .s . cs . Value as CBR Drainage Erosion bility and Character- Weight Symbol Sub-Grade* Value Characteristics Index Frost Action Expansion istics lbs/cu.ft. 1 2 3 4 5 6 7 8 9 GW Excellent 60-80 Excellent 100 None to very Almost none Good 125-140 slight GP Good to 25-60 Excellent 100 None to very Almost none Good 110-130 excellent slight d Good to 40-80 Fair to poor 60 Slight to Very slight Good 130-145 excellent medium GM u Good 20-40 Poor to imper- 50 Slight to Slight Good 120-140 vious medium GC Good 20-40 Poor to imper- 70 Slight to Slight Fairy 120-140 ious medium SW Good 20-40 Excellent 80-90 None to Almost Good 110-130 very slight none SP Fair 10-25 Excellent 80-90 None to Almost Fair to 100-120 very slight none good * Value as sub-grade, foundation or base course (except under bituminous) when not subject to frost action. ** Unit dry weight for compacted soil at optimum moisture content for modified AASHO compactive effort. TABLE 28 (Continued). Field Compressi- Compaction Dry u.s .c .s . Value as CBR Drainage Erosion biligy and Character- Weight Symbol Sub-Grade Value Characteris tics Index Frost Action Expansion istics lbs/cu.ft. 1 2 3 4 5 6 7 8 9 d Good 20-40 Fair to poor 20 Slight to Very slight Good 120-135 SM Fair to high u 10-20 Poor to im- 10 Slight to Slight to Good 105-130 good pervious high medium SC Fair to good 10-20 Poor to im- 50 Slight to Slight to Fair 105-130 pervious high medium ML Fair to 5-15 Fair to poor 10-20 Medium to Slight to Good to 100-125 poor very high medium poor CL Fair to 5-15 Practically 40 Medium to Medium Good to 100-125 poor impervious high fair OL Poor 4-8 Poor 3.0-40 Medium to Medium to Fair to 90-105 high high poor MH Poor 4-8 Fair to poor 30-40 Medium to High Poor to 80-100 very high very poor CH Poor to 3-5 Practically 50-60 Medium High Fair to 90-110 very poor impervious poor OH Poor to 3-5 Practically 50 Medium High Poor to 80-105 very poor impervious very poor PT Unsuitable Fair to poor Slight Very high Fair to poor 1.85 logging systems. Also, the average diameter, height and v o l -ume of timber for each landscape unit as presented i n Appen-dix V, are important factors to consider i n the sel e c t i o n of a logging system. In terms of future investment i n innovative logging systems, i t becomes c r i t i c a l to know the bio-physical v a r i a b i l i t y and the d i s t r i b u t i o n of the landscape units as mapped by the A.T.C.S. System. 3.2 Selected examples of interpretations at the drainage  basin order l e v e l Each drainage basin order has i t s own mosaic of land-scape units and morphological c h a r a c t e r i s t i c s . The drainage basin and i t s d i f f e r e n t orders create a framework by which interpretations can be made at that l e v e l only. The i n t e r -pretations for logging systems selection presented i n Section 3.1, i s a good example of the importance to recognize the drainage basin framework because of the d i f f e r e n t slope lengths and slope configurations of the respective drainage basin order, which control the de f l e c t i o n and yarding distan-ces of each logging system. In t h i s case, each landscape unit i s important, but the c h a r a c t e r i s t i c s of the entire slope i s also c r i t i c a l . A. Interpretations for Slope S t a b i l i t y The slope s t a b i l i t y indexes (number of s l i d e s i n water-shed) were compiled for the d i f f e r e n t slopes order and are presented i n Table 29. The number of s l i d e s per square mile TABLE 29. AVERAGE NUMBER OF SLIDES PER SQUARE MILES FOR SLOPES PERTAINING TO DIFFERENT DRAINAGE BASIN ORDERS. Slope Order Number of S l i d e s / m i 2 1-3 25.6 1-4 23.0 1-5 18.0 2 10.2 2-4 6.4 2-5 4.1 3 3.4 3-5 1.2 4 1.8 5 0.8 187 decreases w i t h an i n c r e a s e of the drainage basins order. B. Interpretations f o r Stream Flow Prediction The drainage b a s i n order concept i s found to be very u s e f u l i n understanding the hydrographs o f various drainage b a s i n s as i l l u s t r a t e d i n Figure 53". H i s t o r i c a l l y speaking, hydrology has c h i e f l y been con-cerned with downstream channel processes and how they are r e l a t e d t o p r o d u c t i o n of f l o o d peaks, volumes, and frequen-c i e s . The consequence of t h i s emphasis, however, i s a poor understanding today of upstream, headwater b a s i n hydrology because f l o o d s i n these areas p r i m a r i l y r e s u l t from pro-cesses o p e r a t i n g beyond the stream channel. OHewlett (1961) proposed the v a r i a b l e source area concept i n order t o under-stand the mechanisms, pathways, and source of subsurface stormflow and what p o s s i b l e i m p l i c a t i o n s i t may have to the f o r e s t l a n d manager. The A.T.C.S. framework i s b e l i e v e d to be s u i t a b l e f o r the a p p l i c a t i o n of the v a r i a b l e source area concept because the l a n d and a q u a t i c system i n t e r r e l a t i o n -s h i p s are e a s i l y d e p i c t e d . The dominant b a s i n p h y s i c a l para-meters which a f f e c t response of source areas are l e n g t h , angle, and c o n f i g u r a t i o n o f s l o p e , depth of weathered mantle, and s o i l h y d r o l o g i c p r o p e r t i e s . The drainage b a s i n order concept and the a s s o c i a t e d landscape u n i t s c r e a t e a framework where the previous f a c t o r c o u l d be analyzed and r e l a t e d to the flow c h a r a c t e r i s t i c s of the d i f f e r e n t drainage b a s i n s . It i s becoming e v i d e n t t h a t the understanding o f the 188 STORM RAINFALL Channel system of a higher order basin (storage and lag) 1 • Time in days Figure .53... A rainstorm beginning at time zero (t 0) produces storm hydrographs- measured in hours from small basins. Due to storage and lag in the channel system, the resulting river hydrograph will be measured in days. ( Hewlett 1969 ) 189. land system i s necessary to predict streamflow. Almost a l l streamflow prediction methods, whether for'peaks or volumes, are based on the assumption that a rapid response of stream-flow to p r e c i p i t a t i o n i s an indicati o n that water i s f a i l i n g to i n f i l t r a t e and i s running over the surface to the stream channel. "However, stormflow i n well-vegetated headwater basins i s generated c h i e f l y by processes quite d i f f e r e n t from those assumed to occur by c l a s s i c a l hydrology. Many of these basins have a permeable weathered mantle with i n f i l t r a t i o n capacities great enough to handle the highest expected r a i n -f a l l i n t e n s i t i e s and overland flow rarely occurs". (Nutter, 1970). Under these conditions, stormflow i s p r i n c i p a l l y the resul t of subsurface flow. Although largely ignored as a source of stormflow by c l a s s i c a l hydrology, many foresters and a g r i c u l t u r i s t s have long recognized that subsurface flow was rule and overland flow the exception i n most well-vegetated basins. The A.T.C.S. proposed the drainage basin order con-cept and th e i r associated landscape units as a basic framework for streamflow prediction. In practice, i t i s important to group the watersheds which have s i m i l a r hydrographs i n order to design adequate culverts based on past experiences or research findings. Each landscape unit could be defined i n terms of hydrologic response and contribution to the hydro-graph components. Figure ••5$ presents the concepts of land-scape unit and drainage basin order as a framework for a better understanding of the source area hydrology a f f e c t i n g 190 F I G U R E 54.;, T H E L A N D S C A P E U N I T A P P R O A C H A N D T H E H Y D R O G R A P H PRECIPITATION b e d r o c k -SOIL-LANDSCAPE UNIT - s l o p e - v e g e t a t i o n r- LENGTH \- ANGLE CONFIGURATION MOSAIC OF LANDSCAPE UNITS DRAINAGE BASIN ORDER HYDROLOGIC RESPONSE TIME 191 the hydrograph. As discussed by Nutter (1970), the land manager for one must understand not only the processes that produce stormflow but also the source, i f he i s to have a t r u l y integrated resource management scheme. In the past, the overland flow model gained wide acceptance because of i t s s i m p l i c i t y . What was lacking i n i t s application was an under-standing of the non-linear processes involved i n stormflow production; a lack of understanding caused by the f a i l u r e to associate theory with f i e l d observation. Success i n predicting stormflows for an array of watershed systems has been, as may be expected, disappointing. The A.T.C.S. creates a framework by which processes could be better understood allowing predic-t i o n of not only natural systems but also the influence of manipulation of the landscape units on the water quantity, qua l i t y and timing, which w i l l be discussed i n the following section. 3.3 Selected examples of interpretations for integrated  drainage basins At t h i s l e v e l , interpretations are made for drainage basins of d i f f e r e n t order according to t h e i r i n t e r r e l a t i o n -ships in the hierarchy of the drainage basin ordering system proposed by the A.T.C.S. system. 192 A. Road Location Based on the bio-physical c h a r a c t e r i s t i c s of the land-scape units, interpretations for road building can be made for each unit as suggested i n section 3.1. In practice, i t i s desirable to re l a t e the interpretations for each landscape unit to i t s surroundings, i n order to study the interactions between landscape units or drainage basins which w i l l e f f e c t the basic interpretations of the separate e n t i t i e s . In terms of suitable materials for road construction, i t i s important for the forest engineer to know the s p a t i a l d i s t r i b u t i o n of the gravel source areas and the potential of the "native" materials for road construction, for each landscape unit. Also, the nature and degree of weathering of the bedrock i s important in terms of blasting requirements. The d i s t r i b u t i o n of the suitable materials for road building associated with each drainage basin order w i l l e f f e c t the location of a road i n terms of hauling distances of the materials which i s d i r e c t l y related to the road cost. In the location of a road, one could think of ditches as ephemeral streams intercepting subsurface flow and there-fore having a d e f i n i t e drainage area. The diversion of sub-surface flow from one watershed to the other, which generally takes place i n the not well defined f i r s t order drainages, may increase or decrease the drainage area of a drainage basin therefore modifying i t s hydrograph. Regarding the i n -crease of the drainage area of a drainage basin, the increase in peak flow could generate a major i n s t a b i l i t y problem of 193 the stream banks, due to the l a t e r a l expansion of the satur-ated zone and the displacement of the stream bank material. The A.T.C.S. creates a framework providing the basis for the location of culverts and cross drains which would prevent the diversion of water from one drainage basin to the other. Figure 55 gives an example of cross drains location. B. Stream Flow Estimation One would suspect that the hydrographs of drainage basins pertaining to the same order would be very s i m i l a r . Drainage basins having s i m i l a r drainage area, hypsometric curves, slopes, and combination of landscape units i n the same climatic condi-tions, w i l l have sim i l a r hydrologic response. The A.T.C.S. approach l i n k i n g the landscape units to the d i f f e r e n t drain-age basins order creates levels of integration by which hydro-graphs of drainage basins may be better understood as i l l u s -trated by Figure 56. 4. Recovery Period and Extrapolations The recovery period i s c e r t a i n l y c r i t i c a l i n forest management since i t w i l l determine the rate at which the resources can be used. I t i s believed that the A.T.C.S. framework could foster a better integration of the present knowledge of the land and aquatic systems allowing for a more e f f i c i e n t use and extrapolation of the information available, 194 Figure 55. Guides for l o c a t i n g cross drains. Several l o c a t i o n s require cross drains independent of spacing guides. A and J, d i v e r t water from shedding zone; A, B and C, cross drain above and below junction; C and D, l o c a t e drains below log landing areas; D and H, drains located with regular spacing; E, drain above incurve to prevent bank c u t t i n g and keep road surface water from entering draw; G, drain below incurve to prevent water from coursing down road; I, drain below seeps and springs. ( Adapted from Megahan 1977 ) 195 FIGURE 56.-: T H E D R A I N A G E BASIN O R D E R F R A M E W O R K A N D T H E H Y D R O G R A P H PRECIPITATION _ _ i DRAINAGE BASIN OF ORDER I £ LANDSCAPE UNITS H Y D R O G R A P H F O R F I R S T O R D E R B A S I N £ O F D R A I N A G E B A S I N S O F O R D E R I A N D £ L A N D S C A P E U N I T S O F 0-2 S L O P E S H Y D R O G R A P H F O R S E C O N D O R D E R B A S I N (U u nJ o 03 Time 196 and promoting a better i d e n t i f i c a t i o n of the unknown which could guide future research projects. Knowing the bio-physical c h a r a c t e r i s t i c s and d i s t r i b u t i o n of landscape units for the d i f f e r e n t drainage basins order would f a c i l i t a t e the planning of intensive forestry programs, especially concerning second growth management, because of the landscape units being e a s i l y i d e n t i f i a b l e even aft e r removal of the vegetation. CHAPTER VI DISCUSSION AND CONCLUSIONS CHAPTER VI DISCUSSION AND CONCLUSIONS The A.T.C.S. c l a s s i f i c a t i o n system presents a single base map which integrates the environmental factors and creates a framework for interpretations based on the bio-physical c h a r a c t e r i s t i c s of the land and aquatic systems of the forested landscapes. The f i r s t step i n the application of the A.T.C.S. approach i s the mapping of a l l the streams and drainage basins and the application of the hydrology legend (Figure 6). It should be noted that the hydrology legend could be simpli-f i e d at the operational l e v e l by stressing the slope order concept. However, i f the system i s to be compatible within a computer information system, the information should be recorded as presented i n the hydrology legend, to allow regional and l o c a l comparisons to be made. The second step i n the application of the A.T.C.S. c l a s s i f i c a t i o n system i s the mapping of management units within the drainage basin frame-work according to the landscape unit legend presented i n Figure 7. F i n a l l y , the landscape units are defined and des-cribed using the association method of c l a s s i f i c a t i o n , t h i s i s the l e v e l at which the already available bio-physical i n -formation could be integrated in the A.T.C.S. framework, at d i f f e r e n t scale or lev e l s of integration. The major conclusions of the study are as follows: -199 The subdivision method of c l a s s i f i c a t i o n must be com-bined with the association method i n order to i d e n t i f y and describe the landscape units pertaining to slope of d i f f e r e n t drainage basins order. The Black and White airphotos were found the most use-f u l i n the application of the subdivision method. How-ever, the night time thermal i n f r a - r e d imagery was found superior to the Black and White airphotos, to map drainage patterns masked by vegetation cover. The A.T.C.S. drainage basin ordering system, which i s a modification of the Strahler's system, was found more useful for a l o c a l analysis leading to the i d e n t i -f i c a t i o n of management units and landscape units. The d i f f e r e n t drainage basins order having t h e i r res-pective percentage hypsometric curves have a unique d i s t r i b u t i o n of s o i l s and biogeoclimatic subzones. Each drainage basin order i s characterized by a mosaic of landscape units which creates a comprehensive frame-work integrating the land and aquatic systems. 200 6 . The A.T.C.S. c l a s s i f i c a t i o n system using the drainage basin order concept leads to the i d e n t i f i c a t i o n of management units which express the v a r i a b i l i t y of landscape units for the d i f f e r e n t slopes pertaining to each drainage basin order. 7. Each landscape unit i s characterized by a unique com-bination of elevation range, slope gradient, s o i l , forest stand c h a r a c t e r i s t i c s and vegetation. 8. The bio-physical c h a r a c t e r i s t i c s of the respective landscape units are very si m i l a r from one drainage basin order to the other. The major difference between the d i f f e r e n t drainage basin orders i s i n the d i s t r i -bution of the landscape units which i s exclusive to each drainage basin order. 9. The d i f f e r e n t slope positions with t h e i r respective s o i l s and e f f e c t on water d i s t r i b u t i o n were found to be the most s i g n i f i c a n t components of the landscape units a f f e c t i n g the forest s i t e productivity and vegetation composition i n the study area. 10. The A.T.C.S. c l a s s i f i c a t i o n system creates a framework (hydrology and landscape units maps) by which land and 201" a q u a t i c systems are i n t e g r a t e d by a s i n g l e base map, a l l o w i n g i n t e r p r e t a t i o n s f o r i n t e n s i v e forest, manage-ment to be made a t the landscape u n i t and drainage b a s i n order l e v e l . A l s o , the f o l l o w i n g c o n c l u s i o n s were reached, based on the a n a l y s i s of the stream and drainage b a s i n orders o f the study area: 11. The streams which do not f o l l o w the h i e r a r c h y of S t r a h l e r ' s o r d e r i n g system were found s i g n i f i c a n t l y d i f f e r e n t a t the 0.05 l e v e l , i n r e l a t i o n to t h e i r average l e n g t h , mean channel slope and mean drainage area. 12. The shape of drainage b a s i n s i s independent o f order o r s i z e . 13. Drainage d e n s i t y was found independent of drainage b a s i n o r d e r . 14. The average maximum slope l e n g t h i n c r e a s e s w i t h drainage b a s i n order. 202 15. The...variation i n the elevational d i s t r i b u t i o n of the d i f f e r e n t drainage basins of the study area, i s the major factor responsible for the differences between the res-pective percentage hypsometric curves. 16. The average gross volume/acre of timber for the study area increases with drainage basin order. Many aspects of the proposed c l a s s i f i c a t i o n system have not been f u l l y tested and one must be c a r e f u l i n the extrapolation of information or interpretations for intensive forest management to areas where i n s u f f i c i e n t analysis have been car r i e d out i n order to t e s t for s i m i l a r i t i e s on a regional or l o c a l basis. The d i f f e r e n t levels of integra-t i o n created by the A.T.C.S. c l a s s i f i c a t i o n system however would allow for comparisons at d i f f e r e n t scales (from a broad regional l e v e l to a more intensive l o c a l level) where the extrapolation of gained experiences for a s p e c i f i c area could be assessed as to i t s application for other s i m i l a r areas. BIBLIOGRAPHY 204 BIBLIOGRAPHY ARDA. 196 8. Progress Report on Biophysical Land C l a s s i f i c a - tion P i l o t Projects. Canada Land Inventory, ARDA, 304 p. Armstrong, J.E. 1956. S u r f i c i a l geology of the Vancouver area, B r i t i s h Columbia. Geol. Surv. Can. Paper 5 5 -4 0 , 16 pp. Batisse, M. 1963. Study of natural resources i n developing countries. UNESCO Chron. 2 6 : 12 8-137. Belcher, D.J. 1948. The Engineering Significance of Land- forms . Highway Research Board B u l l e t i n , No. 13. Beschta, R.L. 19 78. Inventorying small streams and channels on wildland watersheds. In Integrated Inventories of Renewable Natural Resources: Proceeding of the Workshop General Technical Report RM-55. Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S.D.A. p. 104-113. Blackwelder, R.E. 19 67. Taxonomy. Wiley, New York. Bourne, R. 1931. Regional survey and i t s r e l a t i o n to stock-taking of the a g r i c u l t u r a l resources of the B r i t i s h Empire. Oxford Forestry Mem. 13. Brown, W.G.E. 1953. Site c l a s s i f i c a t i o n . Pulp and Pap. Magaz. of Canada. 146-147. Burchard, H.H. 19 75. Watershed indicators of landform development. In Vol. 5 , Hydro1. Water Resour. in A r i z Sect., Am. Water Resource Assoc. and Hydrol. Sect., A r i z . Acad. S c i . Butzer, K.W. 1976. Geomorphology from the Earth. Harper and Rowe, New York, 4 63 p. CEPE, 1966. Carte phyto-ecologique de l a Tunisie septen-t r i o n a l e . Exchelle 1 : 2 0 0 0 , 0 0 0 . F e u i l l e 1 . Cap Bon-La Goulette-Sousse. Ann. Inst. Nat. de l a Rech. Agri. de Tunisie. Vol. 3 9 , Fasc. 5 : 213 p. Christi a n , C.W. 1952. Regional land surveys. J. Aust. Inst. Agric. S c i . 18: 140-146. .205 C h r i s t i a n , C S . 1956. The A u s t r a l i a n a r i d zone i n perspec-t i v e . C.S.I.R.O. A r i d Zone N e w s l e t t e r : 6-8. C h r i s t i a n , C.W. 1958. The concept of land u n i t s and land systems. Proc. N i n t h P a c i f i c S c i . Congr. 20: 74-81. C h r i s t i a n , C S . and G.A. Stewart. 1953. General Report on Survey of Katherine-Darwin Region. C.S.I.R.O. A u s t r a l . Land Research S e r i e s , No. 1, 24 p. C h r i s t i a n , C S . and G.A. Stewart. 1968. Methodology of i n t e -g r a t e d surveys. In. A e r i a l Surveys and I n t e g r a t e d S t u d i e s , UNESCO, P a r i s . C i h l a r , J . , and A.K. M c Q u i l l a n . 1977. A p p l i c a t i o n s o f s a t e l l i t e thermal i n f r a r e d measurements to e a r t h ' s resources s t u d i e s . Presented a t the Remote Sensing and Technology Symposium, Ottawa, 21-23 February, 1977. C l i n e , M.G. 1949. B a s i c p r i n c i p l e s of s o i l c l a s s i f i c a t i o n . S o i l S c i . 67: 81-91 . C l i n e , M.G. 1961. The Changing Model o f S o i l , S o i l Science S o c i e t y Proceedings, p. 442-446. C l i n e , M.G. 1963. L o g i c of the new system o f s o i l c l a s s i f i -c a t i o n . S o i l S c i e n c e , V o l . 96: 17-22. Coates, D.R. 19 56. Q u a n t i t a t i v e Geomorphology of Small Drainage Basins i n Southern Indiana, Of. Nav. Res. P r o j . NR 389-042, Tech. Rep. 10 (Columbia Univ. Ph.D. D i s s e r t a t i o n ) , 57 pp. Delvaux, J . e t Galoux. 1962. Les T e r r i t o i r e s E c ologiques du Sud-Est Beige. Centre d ' E c o l o g i e Generale, 311 p. Feibleman, J.K. 1954. Theory of i n t e g r a t i v e l e v e l s . B r i t . J . Philosophy S c i . 5: 59-66. F o u r a s t i e , J . 1966. Les C o n d i t i o n s de l " E s p r i t S c i e n t i f i q u e . Ed., G a l l i m a r d , 254 p. F r a y e r , W.E., L.S. Davis and P.G. R i s s e r . 1978. Uses of la n d c l a s s i f i c a t i o n . J . F o r e s t r y 76(10): 647-649. G e o l o g i c a l A s s o c i a t i o n of Canada. 1958. G l a c i a l Map of Canada. Hack, J.T. 19 57. Studies of l o n g i t u d i n a l stream p r o f i l e s i n V i r g i n i a and Maryland. U.S. Geol. Survey P r o f . Paper 294-B, pp. 46-94. 2 06' Hack, J.T. 1960. I n t e r p r e t a t i o n of e r o s i o n a l topography i n humid temperate r e g i o n s . Am. J . S c i . , Bradley Volume, V. 258-A, pp. 80-97. H e r r i n g t o n , R.B. and D.K. Dunham. 1967. A technique f o r sampling g e n e r a l f i s h h a b i t a t c h a r a c t e r i s t i c s of streams. U.S.D.A. For. Serv. Res. Pap. INT-41, 12 p. Intermountain For. and Range Exp. S t a t i o n , Ogden, Utah. Hewlett, J.D. 1961. S o i l moisture as a source of base flow from steep mountain watersheds. U.S. F o r e s t S e r v i c e , Southeastern F o r e s t Expt. Sta. Paper 132: 11 pp. Hewlett, J.D. and W.L. N u t t e r . 1969. An O u t l i n e of F o r e s t Hydrology. U n i v e r s i t y of Georgia Press. H i l l s , G.A. 1960. Regional s i t e r e s e a r c h . F o r e s t r y Chron. 40: 62-70. H i l l s , G.A. 1961. The e c o l o g i c a l b a s i s f o r land-use p l a n n i n g . O n t a r i o Dept. of Lands and F o r e s t s Research Report No. 46: 204 p. H i l l s , G.A. and R. P o r t e l a n c e . 1960. The Glackmeyer Report on M u l t i p l e Land-Use Pl a n n i n g . Dept. of Lands and F o r e s t s , O n t a r i o . H i l l s , G.A. and G. P i e r p o i n t . 1960. F o r e s t s i t e e v a l u a t i o n i n O n t a r i o . Ont. Dept. of Lands and F o r e s t s Res. Branch. Res. Rep. 42: 64 p. H i l l s , G.A. and D.S. Lacate. 1970. Developing a b e t t e r en-vironment. O n t a r i o Economic C o u n c i l , August 19 70, 175 p. H o l l a n d , S.S. 1964. Landforms o f B r i t i s h Columbia: A Phys i o -g r a p h i c o u t l i n e . B.C. Dept. Mines, B u l l . 48. Horton, R.E. 19 45. E r o s i o n a l developments of streams and t h e i r drainage b a s i n s ; h y d r o p h y s i c a l approach to quan-t i t a t i v e morphology. Geol. Soc. Am. B u l l . 56: 2 75-370. Jackson, M.L. 19 56. S o i l chemical a n a l y s i s - Advanced Course. U n i v e r s i t y o f Wisconsin, Madison, Wisconsin, Mimeo. 991 pp. J e f f r e y , W.W. 1968. F o r e s t h a r v e s t i n g and water management. F o r e s t r y Chron. 44(6): 1-8. 207 J e f f r e y , W.W. and B.C. G o o d e l l . 19 70. Land management i n m u n i c i p a l watershed. J . Am. Water Works Assoc. 62 (6) : June 1970. Jurdant, M. 1964. P h o t o - i n t e r p r e t a t i o n and f o r e s t l a n d c l a s -s i f i c a t i o n . Woodlands Review, Pulp and Paper Mag. of Canada, Oct. 1964. Jurdant, M. 1964. P e d o l o g i e , p h y t o s o c i o l o g i e e t c l a s s i f i -c a t i o n des t e r r a i n s f o r e s t i e r s au Canada. Transac-t i o n s 8e Congres I n t . Science du S o l , Bucarest, Roumanie, V o l . 5: 1103-1110. Jurdant, M. 1968. E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t lands, an i n t e g r a t e d v e g e t a t i o n - s o i l - l a n d f o r m approach. Ph.D. T h e s i s , C o r n e l l U n i v e r s i t y , 414 p. Jurdant, M. 1969. The e c o l o g i c a l survey: The b i o p h y s i c a l b a s i s of f o r e s t l a n d management. Paper presented at the 51st Annual Meeting of the Woodlands S e c t i o n , Canadian Pulp and Paper A s s o c i a t i o n . Jurdant, M., J.C. Dionne, V. G e r a r d i n e t J . Beaubien. 1969. I n v e n t a i r e bio-physique de l a r e g i o n M i s t a s s i n i -R o b e r v a l - H e b e r t v i l l e (Quebec). Min. des Peches e t F o r e t s du Canada. D i r e c t i o n Generale des F o r e t s . Rapport d 1 i n f o r m a t i o n Q-X-12, 162 p. Jurdant, M., and G.J. F r i s q u e . 1970. The Nicauba r e s e a r c h f o r e s t : A Research area f o r b l a c k spruce i n Quebec. P a r t I: F o r e s t l a n d survey. Canadian F o r e s t r y S e r v i c e , Information Report Q-X-18, 115 p. Kimmins, J.P. 1972. The ecology of f o r e s t r y , the e c o l o g i c a l r o l e of man, the f o r e s t e r , i n f o r e s t ecosystems. F o r e s t r y Chron. 48(6), December 1972. K l i n k a , K. 1974. Environment-vegetation t a b l e s by a computer program. In Progress Report ISSN 0315-7261, Dept. of Botany, U n i v e r s i t y of B r i t i s h Columbia. K r a j i n a , V.J. 1959. B i o c l i m a t i c zones i n B r i t i s h Columbia. U.B.C. Bot. Ser. 1: 1-47. K r a j i n a , V..J. 1960. Ecosystem c l a s s i f i c a t i o n of f o r e s t . S i l v a F e n n i c a 105: 107-110. K r a j i n a , V.;'j. 1960. Can we f i n d a common p l a t f o r m f o r the d i f f e r e n t schools of f o r e s t type c l a s s i f i c a t i o n ? S i l v a Fennica 105: 50-55. 208 K r a j i n a , V.J.. 1965. B i o g e o c l i m a t i c zones and c l a s s i f i c a t i o n of B r i t i s h Columbia. E c o l , West. N.A. 1: 1-17, Dept. of Botany, Univ. of B r i t i s h Columbia, Vancouver, B.C., Canada. K r a j i n a , V.J. 1969. Ecology of f o r e s t t r e e s i n B r i t i s h Columbia. E c o l . West. N.A. 1: 1-146, Dept. of Botany, Univ. of B.C. K r a j i n a , V.J. 1972. Ecosystem P e r s p e c t i v e s i n F o r e s t r y . H.R. MacMillan L e c t u r e i n F o r e s t r y . March 15, 1972. K r y g i e r , J.T. and J.D. H a l l . 1971. F o r e s t l a n d uses and stream environment. Oregon State U n i v e r s i t y . L a cate, D.S. 1961. A review of landtype c l a s s i f i c a t i o n and mapping. Land Economics V o l . XXXVII(3): August 1961. La c a t e , D.S. 1965. F o r e s t land c l a s s i f i c a t i o n f o r the U n i v e r -s i t y of B r i t i s h Columbia Research F o r e s t . Can. Dept. F o r e s t r y Publ. 1107, 24 p. Lacate, D.S. 1966. W i l d l a n d i n v e n t o r y and mapping. F o r e s t r y Chron. 42: 184-194. Lambe, T.W. 1951. S o i l T e s t i n g f o r Engineers. John Wiley and Sons, Inc., New York. Langbein, W.B. 1947. Topographic c h a r a c t e r i s t i c s of drainage b a s i n s . U.S. Geol. Survey Water-Supply paper 968-C, p. 125-155. L a v k u l i c h , L.M. 1973. S o i l Survey of the Greater Vancouver Water Supply Area. Department of S o i l S c i e n c e , U n i v e r -s i t y o f B r i t i s h Columbia. L a v k u l i c h , L.M. 1977. Methods of s o i l a n a l y s i s , Pedology La b o r a t o r y , Department o f S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h Columbia. Lebedev, V.G. 1961. P r i n c i p l e s of gemorphic r e g i o n a l i z a t i o n . S o v i e t Geog. 1: 59-64. Leopold, L.B. 1974.: Water, a primer. W.H. Freeman and Company, San F r a n c i s c o . Leopold, L.B. and W.B. Langbein. 1961. The concept of e n t r o -py i n landscape e v o l u t i o n . U.S. Geol. Surv. P r o f . Paper 500-A. Leopold, L.B., M.G. Wolman, and J.P. M i l l e r . 1 9 6 4 . F l u v i a l processes in geomorphology. W.H. Freeman Company, New York. 5 0 7 p. Linton, D.L. 1 9 4 6 . The physical regions of Peebles and S e l k i r . In The Land of B r i t a i n , Pts. 2 4 - 2 5 , Peeble-shire and Se l k i r k s h i r e : 4 0 7 - 4 1 8 . Linton, D.L. 1 9 4 8 . Delimitation of morphological regions. Trans, and Pap. I.B.G. 1 4 : 8 6 - 8 7 . Linton, D.L. 1 9 5 1 . The delimitation of morphological regions. In London Essays i n Geography, Longmans, London. Long, G. 1 9 6 8 . Conceptions generales sur l a cartographie biogeographique integree de l a vegetation et de son ecologie. CNRS., CEPE, Doc. 4 6 , 7 7 p. Lueder, D.R. 1 9 5 9 . A e r i a l Photographic Interpretation: P r i n c i p l e s and Application, McGraw-Hill, New York. Megahan, W.F. 1 9 7 7 . Reducing erosional impacts of roads. In Guidelines for Watershed Management. FAO Conserva-ti o n Guide. Food and Agriculture Organization of the United Nations, Rome. M i l l e r , J.P. 1 9 5 8 . High mountain streams: Effects of geology on channel c h a r a c t e r i s t i c s and bed material. New Mex. State Bur. Mines and Min. Resources, Memoir 4 , 5 1 p. Milne, G. 1 9 3 5 . Some suggested units of c l a s s i f i c a t i o n and mappling p a r t i c u l a r l y for East African s o i l s . S o i l Res. 4: 1 8 3 - 1 9 8 . Milne, G. 1 9 4 7 . A s o i l reconnaissance journey through parts of Tangayika T e r r i t o r y , December 1 9 3 5 to February 1 9 3 6 . J. Ecol. 3 5 : 1 9 2 - 2 6 5 . Morisawa, M. 1 9 6 8 . Streams, Their Dynamics and Morphology. McGraw-Hill, Toronto. Mullan, J.W. 1 9 7 8 . Techniques and p r i n c i p l e s of stream f i s h e r i e s surveys. In Integrated Inventories of Renewable Natural Resources: Proceeding of the Work-shop, General Technical Report RM-55. Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S.D.A. p. 8 5 - 9 0 . 210 Nutter, W.L. 1 9 6 9 . Management implications of subsurface stormflow and the variable source concept. Paper pre-sented to the management d i v i s i o n , Society of Amer-ican Foresters Annual Meeting, October 1 9 6 9 , Miami, F l o r i d a . Odum, E.P. 1 9 7 1 . Fundamentals of Ecology, Third E d i t i o n . W.B. Saunders, Co. Odum, E.P. 19 7 7 . The emergence of ecology as a new integra-t i v e d i s c i p l i n e . Science 1 9 5 ( 4 2 8 4 : 1 2 8 9 - 1 2 9 3 . O'Loughlin, C L . 1 9 7 2 . An investigation of the s t a b i l i t y of the steepland forest s o i l s in coast mountains, south-west B r i t i s h Columbia. Ph.D. Thesis, University of B r i t i s h Columbia. Pearce, J.K. 1 9 6 2 . Forest engineering handbook. Bureau of Land Management, Oregon State O f f i c e . Pearse, H.P. 1 9 7 6 . Timber rights and forest policy i n B r i t i s h Columbia. K.M. MacDonald, V i c t o r i a , B r i t i s h Columbia. Vol. 1. P l a t t s , W.S. 1 9 7 6 . V a l i d i t y of methodologies to document stream environments for evaluating fishery conditions, Proc. Symp. Ant. Spec. Conf. on Instream Flow Needs, Vol. I I , p. 2 6 7 - 2 8 4 , West. Div. Am. Fisheries S o c , and Am. Soc. C i v i l Eng., Boise, Idaho. Roddick, J.A. 1 9 6 5 . Vancouver North, Coquitland, and P i t t Lake Map-Areas, B r i t i s h Columbia. Geological Survey of Canada. Memoir 3 3 5 . Rowe, J.S. 1 9 6 1 . The le v e l - o f - i n t e g r a t i o n concept and ecology. Ecology 4 2 ( 2 ) : 4 2 0 - 4 2 7 . Rowe, J.S. 1 9 6 2 . S o i l , s i t e , and land c l a s s i f i c a t i o n . Forestry Chron. 3 8 : 42 0-4 3 2 . Rowe, J.S. 1 9 7 1 . Why c l a s s i f y forest land? Forestry Chron. 4 7 ( 3 ) : 1 4 4 - 1 4 8 , June 1 9 7 1 . Schumm, S.A. 1 9 5 6 . Evolution of drainage systems and slopes i n badlands at Perth Amboy, New Jersey. Geol. Soc. Am. B u l l . 6 7 : 5 9 7 - 6 4 6 . S i l k , D.D. 1 9 7 5 . A Basis for Coastal C l a s s i f i c a t i o n i n At l a n t i c Canada. Submitted, October 1 9 7 5 to A t l a n t i c Regional O f f i c e , Lands Directorate, Environmental management Service, Environment Canada, Halifax, Nova, Scotia. 211 S l a c k , K.V. 1955. A study of the f a c t o r s a f f e c t i n g stream p r o d u c t i v i t y by the comparative method. C o n t r i b . 501, Invest. Indiana Lake and Streams 4 ( 1 ) : 3-47. S o l n t s e v , N.A. 1962. B a s i c problems i n S o v i e t landscape s c i e n c e . S o v i e t Geogr. 3: 3-15. Spurr, S.H. 1964. F o r e s t Ecology. The Ronald Press Co., N.Y. 352 p. S t e i n b r e n n e r , E.C. 1965. The i n f l u e n c e of i n d i v i d u a l s o i l and p h y s i o g r a p h i c f a c t o r s on the s i t e index of Douglas-f i r i n western Washington, pp. 261-277, i l l u s . In F o r e s t - s o i l r e l a t i o n s h i p s i n North America, Second N. Amer. F o r e s t S o i l s Conf., August 1963. C o r v a l l i s : Oreg. S t a t e Univ. P r e s s . S t r a h l e r , A.N. 1952. Hypsometric a n a l y s i s of e r o s i o n a l topography, B u i . Geol. Soc. Amer., 63, 1117-1142. S t r a h l e r , A.N. 1954. Q u a n t i t a t i v e geomorphology of e r o s i o n a l landscapes, C-R. 19th Inten. G e o l . Cong., Sec. 13, Pt. 3, pp. 341-354. S t r a h l e r , A.N. 1957. Q u a n t i t a t i v e a n a l y s i s of watershed geo-morphology. Am. Geophys. Union Trans., v. 38: 913-920. S t u d i e r , D.D. 1974. Cable l o g g i n g systems. D i v i s i o n of Timber Management F o r e s t S e r v i c e , U.S. Department of A g r i c u l t u r e , P o r t l a n d , Oregon. Swanston, D.N. 19 77. A q u a n t i t a t i v e geomorphic approach to p r e d i c t i n g p r o d u c t i v i t y of pink and chum salmon streams i n southeast A l a s k a . U.S.D.A. F o r e s t S e r v i c e , Research Paper PNW-2 27. T h i e , J . 1977. The CCELC, b i o p h y s i c a l c l a s s i f i c a t i o n , and the p r o s p e c t s f o r land/water i n t e g r a t i o n . I n CCELC Land/Water I n t e g r a t i o n Working Group, F i r s t Meeting, February 19 77. Fresh Water I n s t i t u t e , Winnipeg, Manitoba. Toogood, J.A. and T.W. P e t e r s . 1953. Comparison of methods of mechanical a n a l y s i s of s o i l s . Can. J . Agr. S c i . 33: 159-171. U.K. D i r e c t o r a t e of Overseas Surveys. 1967. A s s i s t a n c e to Developing C o u n t r i e s - P l a n n i n g the Use of Land Resources. M i n i s t r y of Overseas Development, London. 212 UNESCO. 1965. E i r s t session of the advisory committee on natural resources research. Nature and Resources 1: 1-4. UNESCO. 1968. A e r i a l Survey and Integrated Studies. Paris. United States Army Corps of Engineers. 1953. The Unified S o i l C l a s s i f i c a t i o n System. Technical memorandum No. 3-357, Waterways Experiment Station, Vicksburg, M i s s i s s i p p i . Volumes 1, 2 and 3. U.S.D.A. 1960. S o i l C l a s s i f i c a t i o n , a Comprehensive System. 7th Approximation. S o i l Survey S t a f f , U.S. Govt. Pr i n t i n g O f f i c e , Washington, 265 p. Way, D.S. 1973. Terrain Analysis, Dowden, Hutchinson and Ross, Inc., Pennsylvania. Weber, F.P. 1965. Exploration of changes i n r e f l e c t e d and emitted radiation properties for early remote detec-t i o n of tree vigor decline. M.Sc. Thesis, University of Michigan, Ann Arbor, Michigan 101 p. Weitzman, S. and G.R. Trimble, J r . 1955. A c a p a b i l i t y c l a s s i f i c a t i o n for forest land. J . S o i l and Water Conserv. 10: 228-232, i l l u s . Wiegand, C L . 1971. A g r i c u l t u r a l applications and require-ments for thermal i n f r a r e d scanners. International Workshop on ERSS, U.S. Govt. P r i n t i n g O f f i c e : 67-81. Wiegand, C L . and L.N. Namken. 1966. Influences of plant moisture stress, solar radiation and a i r temperature on cotton leaf temperature. Agronomy J. 58: 5 82-586. Willington, R.P. 19 76. A guide to forest land-use hydrology, pp. 55, B r i t i s h Columbia Forest Products Limited. Zinke, P.J. 19 60. The Soil-Vegetation Survey as a Means of C l a s s i f i c a t i n g Land for Multiple Use Forestry. Proc. 5th World Forestry Congress, Seattle, Washington. 213 APPENDICES 214 APPENDICES APPENDIX I.- KEY PLAN AND INDEX TO DRAWINGS. APPENDIX II.-TECHNICAL DETAILS OF THE AERIAL SURVEY OF THE STUDY AREA. APPENDIX I I I . - STEREOGRAMS OF SELECTED DRAINAGE BASINS. APPENDIX IV. - SOILS OF THE STUDY AREA. APPENDIX V. - FOREST STAND CHARACTERISTICS, ENVIRON-: MENT AND VEGETATION TABLES, FOR EACH LANDSCAPE UNIT. APPENDIX I KEY PLAN AND INDEX TO DRAWINGS S E Y M O U R WATERSHED K E Y P L A N A N D I N D E X T O D R A W I N G S SCALE 2 16 T" INDEX TO DRAWINGS DWG. No. SHEET No. TITLE WF-1406 1 KEY PLAN & INDEX TO DRAWINGS 2 HYDROLOGY LEGEND 3 HYDROLOGY MAP 1 4 HYDROLOGY MAP 11 5 HYDROLOGY MAP III 6 HYDROLOGY MAP IV 7 LANDSCAPE UNIT LEGEND 8 LANDSCAPE UNIT MAP 1 9 LANDSCAPE UNIT MAP II 10 LANDSCAPE UNIT MAP III 11 LANDSCAPE UNIT MAP IV 12 DATA MAP 1 13 DATA MAP 11 14 DATA MAP 111 . 15 DATA MAP IV ^ ^ • g ^ g g r r z " . -pp*^ fesz?."*/* SEYM0 UR WATER SHED GREATER VANCOUVER WATER DISTRICT 2 Miles WF-1406 SHEET 1 2 1 7 HYDROLOGY L E G E N D LEGEND FOR DRAWING NO. WF-I406 SHEETS 3"6 THE UNIT BOUNDARIES ARE DEFINED BY THE SURFACE WATER DIVIDES OF EACH DRAINAGE BASIN WATERSHED MODEL ILLUSTRATING THE HYDROLOGY LEGEND NON - MAPPABLE FIRST ORDER DRAINAGE BASINS (NO WATERSHED BOUNDARIES): MAPPABLE FIRST ORDER DRAINAGE BASIN-DESIGNATED BY: (1x3)-THESE ARE USED AS EXAMPLES-fEX AMPLE I WETLAND OF ORDER 2 -STREAM ORDER. IN THE LEGEND DESCRIPTION I EXAMPLE H AREA DRAINING INTO STREAM CHANNEL, BUT NOT SUPPORTING MAPPABLE DRAINAGE BASIN, DESIGNATED BY 0 (ZERO) - A BOXED SYMBOL REPRESENT THE SUM OF THE SUBSYMBOLS OCCURING WITHIN A DESIGNATED DRAINAGE BASIN. MAP SYMBOLS A_ B DESCRIPTION AND DEFINITION STREAM CHANNEL. SURFACE DRAINAGE BASIN DIVIDE. FLOOD PLAIN AND/OR ALLUVIAL FAN. STREAM ORDER DESIGNATION. STREAM ORDER IS A MEASURE OF THE POSITION OF A STREAM IN THE HIERARCHY OF TRIBUTARIES. EACH NON-BRANCHING CHANNEL SEGMENT IS DESIGNATED A FIRST-ORDER STREAM. THE SECOND-ORDER STREAMS ARETHOSE WHICH HAVE AS TRIBUTARIES ONLY FIRST-ORDER CHANNELS AND SO ON FOR ALL THE CHANNEL SEGMENTS. DESIGNATION: ONLY ONE DIGIT IS USED WHEN A CHANNEL FOLLOWS THE HIERARCHY. A TWO-DIGIT SYSTEM IS USED WHEN A STREAM DOES NOT FOLLOW THE HIERARCHY. FOR EXAMPLE, A STREAM OF ORDER 2 DRAINING DIRECTLY INTO A STREAM OF ORDER 4 IS DESIGNATED BY(M). OPEN WATER BODIES AND WETLANDS DESIGNATION. OPEN WATER BODIES AND WETLANDS ARE SUBSCRIPTED BY THE ORDER OF THE HIGHEST STREAM ORDER EMPTYING INTO THEM, AND ARE DESIGNATED BY SYMBOLS AS FOLLOWS.:© LAKE, ® WETLANDS, © FLOODPLAIN, ® ANY ENCLOSED AREA WHICH HAS A WATER STORAGE CAPACITY, ® MAR INE ENVIRONMENT. THE UN ITS B, F, R, M ARE NOT USUALLY MAPPED ON THE HYDROLOGY MAP BUT ON THE LANDSCAPE UNIT MAP. THE SUBSCRIPT 0 (ZERO) IS USED FOR WATER BODIES OR WETLANDS WHICH DO NOT RECEIVE ANY OBSERVABLE STREAM. THE DRAINAGE BASIN IS CHARACTERIZED BY 3 OF ITS COMPONENTS. A= BASIN ORDER. B: ASPECT OF THE DRAINAGE BASIN. C: WATER REGIME. A: DRAINAGE BASIN ORDER THE DRAINAGE BASIN ORDER IS DEFINED BY THE STREAM ORDER. IT IS THE AREA DELINEATED BY THE SURFACE WATER DIVIDES WHICH CONTRIBUTE TO STREAMFLOW OF A PARTICULAR STREAM OF A GIVEN ORDER. THE DRAINAGE BASIN ORDER DIFFERS FROM THE STREAM ORDER DESIGNATION IN TWO WAYS: 1. THE STREAM ORDERS HAVING A DRAINAGE AREA TOO SMALL TO BE MAPPED AT A SCALE OF 1/15.840OR1 INCH-20 CHAINS ARE INDICATED IN PARENTHESIS. THE FIRST DIGIT INDICATES THE STREAM ORDER AND THE SECOND DIGIT THE SUMMATION OFNON-MAPPABLE DRAINAGE BASINS PERTAIN ING TO THIS ORDER. SEE EXAMPLE 1 OF THE WATERSHED MODEL. 2. AREAS DRAINING INTO STREAM CHANNEL BUT NOT SUPPORTING MAPPABLE DRAINAGE BASINS ARE DESIGNATED BYO(ZERO). SEE EXAMPLE LT OF THE WATERSHED MODEL B= ASPECT OF THE DRAINAGE BASIN. THE FOLLOWING COMPASS READINGS IN DEGREES WERE USED TO DERIVE THE MAPPING SYMBOLS: THE ASPECT OF A DRAINAGE BASIN IS DICTATED BYTHE ORIENTATION OF A LINE DRAWN FROM THE.WATERSHED . OUTLET, DIVIDING THE WATERSHED AREA IN HALF. C= WATER REGIME. THIS COMPONENT INDICATES ANY AREAS HAVING A WATER STORAGE CAPACITY BEFORE THE WATER GETS TO THE FIRST LAKE OR THE OCEAN. OPEN WATER BODIES AND WETLANDS ORDER, AS DEFINED PREVIOUSLY, ARE USED. IN EXAMPLE I OF THE WATERSHED MODEL, THE WATER COMING OUT OF A SECOND ORDER DRAINAGE BASIN GOES THROUGH A FLOODPLAIN OF ORDER 4, AND A FLOOD PLAIN OF ORDER 6 BEFORE REACHING A LAKE OF ORDER 6. A BOXED SYMBOL REPRESENTS THE SUM OF THE SUB-SYMBOLS OCCURRING WITHIN A DESIGNATED DRAINAGE BASIN. REFERR ING TO EXAMPLE UJ OF THE WATERSHED MODEL + [ ^ F 4 F 6 L ^ + p^r4F6^ J WF-1406 SHEET 2 218 WF-1406 SHEET 3 2 19 22 0 MATCH HYDROLOGY MAP m MATCH LINE <\ WF-1406 SHEET 5 2 2 2 LANDSCAPE UNIT LEGEND LEGEND FOR DRAWING NO. WF-1406 SHEETS 8 - 1 1 LANDSCAPE UNITS WERE DEVELOPED USING THE HYDROLOGY MAP AS THE PRIMARY BREAKDOWN OF THE LANDSCAPE SLOPE TRANSECT MODEL ILLUSTRATING THE LANDSCAPE UNIT LEGEND MAP SYMBOLS DESCRIPTION AND DEFINITION HYGROTOPE/SLOPE POSITION LAND FEATURES B 5M1MCV I TT R l | J O M SH, | R F ST | CR TTT mm. i MHb MHQ CWHb SURFACE DRAINAGE BASIN DIVIDE MANAGEMENT UNIT LOGGED AREA (YEAR OF LOGGING! I. MANAGEMENT UNIT. BIO-PHYSICAL CHARACTERISTICS OF THE MANAGEMENT UNITS A HYGROTOPE/SLOPE POSITION : (OCCASIONALLY COMPLEXED) SH] SH ST SM SL S l l RW RWl R l R11 SHEDDING RIDGE OF KNOLL-TOP ZONE SHEDDING ZONE SEEPAGE ZONE, TOP-SLOPE SEEPAGE ZONE, MIDDLE SLOPE SEEPAGE ZONE, LOWER SLOPE SEEPAGE ZONE, LOWER SLOPE, OCCURRING AT MIDDLE AND UPPER ELEVATIONS RECEIVING ZONE, WELL DRAINED (e.g. ALLUVIAL FANS. I RECEIVING ZONE, WELL DRAINED, MIDDLE AND UPPER SLOPES RECEIVING ZONE, IMPERFECTLY DRAINED RECEIVING ZONE, IMPERFECTLY DRAINED, MIDDLE AND UPPER SLOPES RIPARIAN ZONE (e.g. FLOODPLAINS - AREAS WHOSE VEGETATION IS AFFECTED BY A FLUCTUATING WATER TABLE). B. ASPECT AND EXPOSURE: (INFREQUENTLY COMPLEXED) N NORTH NE : NORTH-EAST E EAST SE : SOUTH-EAST S SOUTH SW , SOUTH-WEST W WEST NW : NORTH-WEST T RIDGE TOP Tl KNOLL TOP (MIDDLE AND LOWER SLOPE POSITIONS) V VALLEY BOTTOM V l HANGING VALLEY BOTTOM L LEVEL C. LAND FEATURES OBSERVED ON AIR PHOTOS (e.g, R 0 C: f (Cf) IfC) W M A F V h E SOIL, LANDFORM, EROSION) (FREQUENTLY COMPLEXED) BEDROCK EXPOSURE ORGANIC COLLUVIAL MATER IALS (GRAVITY-INDUCED MOVEMENT) ALLUVIAL MATERIALS (SYNONYMOUS WITH FLUVIAL) (MATER IALS TRANSPORTED AND DEPOSITED BY WATER, STREAMS AND RI VERS.) COLLUV IAL-ALLUV IAL MATER IALS ALLUVIAL-COLLUVIAL MATERIALS OUTWASH MORAINAL AVALANCHED FAILING GULLIED HUMMOCKY CHANNELLED VEGETATION FEATURES OBSERVED ON AIR PHOTOS (OCCASIONALLY COMPLEXED) FORESTED MATURE DISCONTINUOUS FOREST SHRUBS HERBACEOUS GROWTH NO TREES OR SHRUBS PYRAL INFLUENCE (FIRE HISTORY EVIDENT) WIND THROW LOGGED COMPOSITE UNITS •COMPONENTS ON EITHER SIDE OF THIS SYMBOL ARE APPROXIMATELY EQUAL 45-55% = 45-557= •THE COMPONENT IN FRONT OF THE SYMBOL IS MORE ABUNDANT THAN THEONE THAT FOLLOWS 55-70% / 30-45% • THE COMPONENT IN FRONTOFTHE SYMBOL IS CONSIDERABLY MORE ABUNDANT THAN THE COMPONENT THAT FOLLOWS 70-90% // 10-30% 2. A MANAGEMENT UNIT IS FURTHER SUBDIVIDED BY WAY OF SHADING ON THE MAP INTO LANDSCAPE UNITS ON THE BASIS OF BIOGEOCLIMATIC SUBZONES. BIOGEOCLIMATIC SUBZONES - COASTAL WESTERN HEMLOCK WET SUBZONE (CWHb) -THE MOUNTAIN HEMLOCK SUBALPINE FOREST SUBZONE (MHa) -THE MOUNTAIN HEMLOCK SUBALPINE PARKLAND SUBZONE (MHb) WF-1406 SHEET 7 2 2 4 L A N D S C A P E U N I T M A P D i Scale 1:35,000 0 20 40 50 Chains 1 1 1 0 500 1000 Metres WF-1406 SHEET 9 225 2 2 6 2 2 7 MATCH UNE D A T A M A P I Scale 1 :35 ,000 40 50 Chains LEGEND: O v VEGETATION PLOT O s SOIL SAMPLING WF-1406 SHEET 12 MATCH LINE 231 APPENDIX I I TECHNICAL DETAILS OF THE AERIAL SURVEY OF THE STUDY AREA 232 C A M £ R A T V P E 4 K O . WnnRC.lO #1771 F I L M T V P E AEROGRAPHIC DOUBLE-X P R O J E C T N O . 7 5 - 4 5 1 5 3 . 1 2 KM, L E N S N O . UAGI13005 E X P I R Y D A T E 6 / 7 4 O P E R A T O R SULLIVAN 525 AV 2 .OX #4315 M A G A Z I N E N O . 1 1 - 1 2 E M U L S I O N N O . 2 4 0 5 - 3 5 1 - 0 2 F I E L D R O L L N O ( 5 ) 1 3 1 3 D A T E L I N E N O . F R A M E N O . G M T A L T I T U D E A S L C A M E R A E X P O S O R E R E M A R K 5 I r o i i ' i O K o» S T * « T b [ H D , H O . on L t T T l * . C C O & W * *-H I C * 1. K k M t i , L T C . l S T A R T E N D S T A R T E N D 5 SEPT ! 1975 , 24 E 001 012 1753 1758 3 5 0 0 0 ' F 8 / 2 0 0 NORTH VANCOUVER AND 22 W 013 022 1801 1807 M. SHORE MOUNTAINS 2 3 E 0 2 3 032 1811 1816 a BETWEEN HOWE SOUND 2 1 VI 033 042 1820 1826 AND PITT LAKE NTS SHEET 92G 35000 ' COVE ? OF L NES 21 - 2 4 n CL. i ABOVE COVER IMMED AT ELY REPEAT ED WITH SI MULTA NEOUS • APROC HROME [NFRARF. T) (A : 729? ] R) PI US i AEROC OLOR N :GATIVE ; ( A Ti 2 9 3 ) F LUS • • • DAEDA LUS I N : RARED SCANNE R. 1 . r • ; i i . i -233 C A M E R A T V P E a N O . Wn n Rc.io nm F I L M T Y P E AEROCHROME I N F R A R E D P R O J E C T N O . 75- -45 C A U P D A T E D F . L . 153.12 MM,-L E N S N O . UAG3005 . E X P I R Y D A T E 8/75 O P E R A T O R S U L L I V A N f l L T t * T v p t b N O . 5 2 5 A V 2 X #4315 M A G A Z I N E N O . 11-2154 E M U L S I O N N O . 24^3-104-2 F I E L D R O L L N O I S I 1321 1 L t N E j D A T E I T . _ p t n t c n o x | F R A M E N O . G M T A L T I T U D E A S L C A M E R A E X P O S U R E R E M A R K S I » O S I T I O M o r » T » « T (, C N O . i » t * MO o » t C T T E R . C £ O C « l * W l t * L MUMES. n c . J S T A R T E N D S T A R T E N D 5 S E P T . 1975 12 •W 1 24 2153 2157 10000' 5 l 5/30E ' '5-MILE H IATUS BETWEEiN F R A K i S 1 & 2 18 E 25 43 2200 2203 ; / 5.6/250 ; 13 W 44 75 2207 2212 ir n 1 19 E .76 93 2214 2217 II a 15 • W 94 130 2220 2225 II a ! 20 E 131 151 2233 2236 II a ! 14 W 152 183 2240 2245 n it .NTS S H E E T 92 6 j • V A N ( OUVER NORTH SHORE 1 b U N T A NS BETV1 EEN HOW! : SOUND AND P I T T L A K E j M.B - / IT THE START )F L I N : : 12, i :OLLOWIf> G FRAME 1 THE CAMERA^TO. | ' i UNCTIC N FOR ftPPROX M A T E L f l . M I N L T E , L E A ' fl NG A GAP OF ABOUT I i M I L E S t 1 HE FOLLOWING FORWARD OVER .APS A iE L E S S THAN J> UN UHHbK S L O P E S ' 234 C A M E R A T v p f c t , N O . W I L D R C . 1 0 # 1 7 7 1 F I L M T V P E AEROCHROME I N F R A R E D P N O J E C T N O . 7 5 - 4 5 C A ; . I B ^ A : £ D F , L . 1 5 3 . 1 2 MM. L E N S N O . 11AG3005 E X P I R Y D A T E 1 0 / 7 5 O P E P. A T O H S U L L I V A N f l ' . i C -yc£ t N O . 5 2 5 A V 2 X # 4 3 1 5 M A G A Z I N E N O . 1 0 - 1 1 E M U L S I O N N O . 2 4 4 3 - 2 1 2 - 2 F I E L D R O L L N O I S ) 1 3 1 9 t .1 L I N E °* T E j N O . S I M C T I O K F R A M E N O . C M T A L T I T U D E A S L C A M E R A E X P O S ' J R E R E M A n K S t l»OSt1lOW C S T i * T b ( N O , A « t A KO. O" ' L C T T l * . C E O t t * w i C i k » > A M C S . I TC . I S T A R T E N D S T A R T E N D 5 S E P T 1 9 7 5 M E 1 2 8 2 0 5 6 2 1 0 1 1 0 0 0 0 ' 5 , 5 / 2 0 C 9 W 2 9 5 7 2 1 0 4 2 1 0 9 II 5 L 5 / 3 Q 0 j 5 E 5 8 8 9 2 1 1 1 2 1 1 6 m 1 0 VI 9 0 1 2 2 2 1 1 8 2 1 2 3 II n j 1 6 • E 1 2 3 1 5 4 2 1 2 8 2 1 3 2 n a 1 1 W 1 5 5 1 8 8 2 1 3 5 2 1 4 0 il a 17 E 1 8 0 2 2 0 2 1 4 3 2 1 4 7 II n ! VAh COUVE R N0R7 H SHOR : MO UN" A I N S 3 SETWEEN HOWE SOI IND AND P l T T L.AKE N T S S H E E T 9 2 6 1 1 235 C A M E R A T Y P E 6 N O . WILD R C . 1 0 #1771 F I L M T Y P E . AEROCHROME INFRARED f H O J E C T N O . 75 - 45 1 5 5 , 1 2 MM. LLIAG3005 E X P I R Y D A T E 1 0 / 7 5 O P E R A T O R SULLIVAN r i _ ~ r. 7 T Y P E & N O . 525AV2X #4315 M A G A Z I N E N O . 1 2 - 1 0 E M U L S I O N N O . 2 4 4 3 - 2 1 1 - 1 / 3 9 F I E U O R O L L N O : S i 1317 „ ! L I N E 3 l » t C T I O * * F R A M E N O . G M T A L T I T U D E A S L C A M E R A E XPOSUR E R E M A « < 5 " O S I T I O N Or 5 T#»T & ( H O , NC 6" L C T T t * . t C O C R * » - l C A i K i M t ] , [ T C . ) ! N O . S T A R T E N D S T A R T E N D 5 SEPT ! 24 E 1 7 1831 1835 3 5 0 0 0 ' 5 . 6 / 2 5 0 SIMULTANEOUS WITH ! 22 W 8 18 1838 1843 a ROLL A37293 PLUS .1975 2 3 E 1 9 28 1847 1851 a a INFRARED SCANNER 2 1 W 29 38 1854 1859 a CH \NGE Al TITUDE AND S ENSOR PACKAGE 1 E 3 9 62 2010 2014 1 0 0 0 0 ' 5 . 6 / 2 5 0 6 W 6 3 91 2017 2022 // 5 , 5 / 3 0 0 _ 2 E 9 2 115 2024 2029 » _ WITH INFRARED • 7 W 116 144 2031 2036 « SCANNER ONLY. 3 F 145 171 2039 2044 a. R W 172 199 2046 2 0 5 1 // i • i i N ORTH YANCOU 1 fER B.( . AND N O R T H SHORE n JUNTAINS BETWEEN HOWE SOUND j AND P I T T L iKE, Al 3500C ' A N D 1 0 0 0 0 ' , \SL •! 1 NTS SHEET 92 G ; i 1 I N.B.' THE FOLLOW N G FOI WARD C VERLAP S A R E L :SS T H A N 50 % ON UPPER SLOPFS 236 : A * ' E H A r » P t & N O . WILD RC . 10 #1769 r I L M T V P E AEROCOLOR NEGATIVE P R O J E C T N O . 75 - 45 ; t . i 5 " » " ' J F . L . 153.29 MM. UAGTi3034 E X P I R Y D A T E 11/73 O P E R A T O H SULLIVAN F I L T E R T Y » E * N O . NEUTRAL AV2.2X 4173 M A G A Z I N E N O . 9-8 E M U L S I O N N O . 2445-128-3 F I E L D R O L L N O ' . l l 1316 I L • S- E . ° * T T ' N O . » t * t C T ION F R A M E N O . G M T A L T I T U D E A S L C A M E R ' A E X P O S U R E R E M A R K S I l » o i m c * Of 5 T » » T C H O . * « t A « 0 . O " j • L C T . T C " . e t o e - A w i c . i K A M I : , t " C . ) j S T A R T E N D S T A R T E N D 1 5 i SEPT 1975 24 E 1 7 1831 1835 35000' 5 . 6 / 2 0 ( ) SEE BELOW RE OVERLAP .22 W 8 17 1838 1843 — • 1 18 BLANK i i i l i 1 i 23 E . 19 28 1847 1851 21 H 29 .38 1854 1859 // . i NORTH VAh COUVER B.C. WD NO! :TH SH( )RE MOUN TAINS BE TWEEN HOWE SOUND ! ND P I TT LAKE NTS SHEET 92 G I -1 i i i ABO\ 1 'F COVER IS A REPE \T OF 1 .INES ! LOWN- I f MED I ATEL .Y PREVIOUSLY WITH • AEf i OGRAFIHIC DO UBLE-X FILM PLUS DAFDALUS INFRARED VNNFR ! • ! . i • i -237 APPENDIX I I I STEREOGRAMS OF SELECTED DRAINAGE BASINS The hydrology and landscape u n i t maps are presented above each stereogram, the r e s p e c t i v e legend f o r the maps are presented i n Appendix I, sheet 2 and 7. F i g u r e III.1 and III.2 are c o l o r i n f r a - r e d photos, and F i g u r e I I I . 3 , I I I . 4 and II I . 5 are b l a c k and white photos. The approximate s c a l e o f the stereograms i s 1/15,840. 238 F i g u r e I I I . 1 . I l l u s t r a t i o n of a drainage b a s i n of o r d e r 2-5 and a 0-5 s l o p e o r d e r . 2 3 9 Figure III.2 Illustration of an unstable 0-5 slope, and of a 0-5 flocdplain. 240 Figure III.3. Illustration of drainage basins of order 2, 3 and 1-4. Hydrology map Landscape unit map 241 Figure III.4. Illustration drainage basins of order 1-3 and 2, and of a 0-3 slope order. APPENDIX IV SOILS OF THE STUDY AREA SOILS DESCRIPTION. SELECTED CHEMICAL PROPERTIES OF THE SOILS. SELECTED PHYSICAL PROPERTIES OF THE SOILS. A) T e x t u r a l a n a l y s i s and r o o t s d i s t r i b u t i o n . B) C h a r a c t e r i z a t i o n o f the d i f f e r e n t p l a n t m a t e r i a l s . 244 1) SOILS DESCRIPTION OF THE SEYMOUR WATERSHED 245 SOILS OF THE SEYMOUR WATERSHED A. S o i l s developed on g l a c i a l t i l l : 1. Cardinal (CL) 2. Steelhead (ST) 3. Strachan (SN) 4. Burwell (BW) 5. Golden Ears (GE) 6. Whonnock (WH) B. S o i l s developed on shallow t i l l over bedrock: 1. Hollyburn (HB) 2. Grouse (GR) 3. Cannel (CE) 4. Sayres (S) C. Organic s o i l s developed on bedrock: 1. Eunice (EU) 2. Dennet (DE) D. So i l s developed on g l a c i a l outwash: 1. Capilano (CP) 2. . Haney (HY) E. S o i l s developed on recent alluvium: 1. Sardis (SD) 2. Seymour (SU) F. S o i l s developed on fans: 1. Dean (DN) 2. Salish (SH) G. So i l s developed on colluvium: 1. Patton (PN) 2. Palisade (PA) 3. Lions (LS) H. Miscellaneous land units: 1. Talus (TA) 2. Rock outcrop (RO) 246 So i l s developed on g l a c i a l t i l l : 1. CARDINAL Series. The Cardinal series occurs between 600 and 2000 feet in elevation. Topography i s generally steeply sloping or steeply r o l l i n g with gradients between 15 and 35%. These s o i l s have developed from ablation t i l l deposits over basal t i l l at depths of 24 to 36 inches. Loess i s often mixed with the ablation t i l l . S o i l textures are loamy throughout, varying from loam through sandy loam to gravelly sandy loam. This series i s usually moder-ately well drained and often grades into the imperfectly drained Steelhead series. The Cardinal series has been c l a s s i f i e d as an Orthic Ferro-Humic Podzol. 2. STEELHEAD Series. The Steelhead s o i l s occupy gently to strongly sloping topography with slopes varying from 5 to 20%. They are close l y associated with the Cardinal series and occupy the lower slopes and shallow depressions i n the r o l l i n g topography. Parent materials and p a r t i c l e size d i s t r i b u t i o n of t h i s s o i l i s similar to the Cardinal series. The Steel-head s o i l s are imperfectly drained due to perching of the water table over the impervious basal t i l l . Gleying and mottling are found i n the lower B horizon. The Steelhead s o i l has been c l a s s i f i e d as a Gleyed Orthic Ferro-Humic Podzol. 247 3. STRACHAN Series. The Strachan s o i l s are to be found between 1400 and 2400 feet i n elevation on steeply sloping or steeply r o l l i n g topography. Gradients vary from 20 to 50%. These s o i l s have developed from mixed ablation t i l l and colluvium over basal t i l l . Sandy loam and gravelly sandy loam are the predominant s o i l textures. Coarse fragments (material greater than 2 inches i n diameter) may account for 20 to 60% of the s o i l volume. The series i s moderately well drained. The Strachan series has been c l a s s i f i e d as an Orthic Ferro-Humic Podzol. 4: BURWELL Series. Soils mapped as the Burwell series occur on strongly to steeply sloping topography with gradients of 10 to 40%. They are clos e l y associated with Strachan s o i l s , generally occupying lower receiving positions on the slopes or i n depressional areas. The Burwell s o i l s are imperfectly drained and subject to gleying and mottling i n the lower B. In other res-pects they are similar to Strachan s o i l s , being of sandy loam or gravelly sandy loam texture and developed on mixed t i l l and colluvium over basal t i l l . Burwell s o i l s have been c l a s s i f i e d as Gleyed Orthic Ferro-Humic Podzols. 248 5. GOLDEN EARS Series. The series known as Golden Ears was found on moder-ately steep to steeply sloping topography between 20 0 0 and 3000 feet i n elevation. Common slope gradients were from 15 to 50%. The texture of these s o i l s i s mainly sandy loam with some gravelly sandy loam. Material greater than 2 inches comprises 10 to 30% of the s o i l volume. The series i s moderately well drained and i s developed on ablation t i l l overlying basal t i l l . The Golden Ears series has been c l a s s i f i e d as an Orthic Ferro-Humic Podzol. 6. WHONNOCK Series. At elevations between 2000 and 3000 feet and cl o s e l y associated with the Golden Ears series i s the Whonnock series. The Whonnock i s developed on similar materials as Golden Ears s o i l s but occupies more gently sloping areas (5 to 30%) and depressional areas. The Whonnock series i s imperfectly drained and has been c l a s s i f i e d as a Gleyed Orthic Ferro-Humic Podzol. B. Soils developed on s h a l l t i l l over bedrock: 1. HOLLYBURN Series. At elevations of 3500 to 5000 feet and on strongly sloping to very steeply sloping convex slopes of 20 to 60% gradient the Hollyburn series i s occurring. 249 These s o i l s have developed from a shallow mixture of ablation t i l l and t i l l - d e r i v e d colluvium over basal t i l l underlain by bedrock at 12 to 30 inches. Texture of t h i s material i s sandy loam or gravelly sandy loam with coarse fragments accounting for from 10 to 40% of s o i l volume. The series appears to be moderately well drained. The Hollyburn s o i l s have been c l a s s i f i e d as L i t h i c Orthic Humo-Ferric Podzols. 2. GROUSE Series. This series occurs i n depressional areas associated with the Hollyburn series. Slope gradients range from 0 to 40%. Depth to bedrock ranges from 12 to 30 inches. Drainage i s imperfect due to the long duration of snow cover and the Grouse series has been c l a s s i f i e d as a Gleyed L i t h i c Orthic Ferro-Humic Podzol. 3. CANNEL Series. The Cannel series i s found on strongly sloping to very steeply sloping convex slopes of 20 to 6 0% gradient at elevations of 600 to 2200 feet. Parent material for thi s series i s mixed ablation t i l l and colluvium of sandy loam or gravelly sandy loam tex-ture with 10 to 40% of coarse fragments. This s o i l i s well to rapidly drained. The Cannel series i s c l a s s i f i e d as a L i t h i c Orthic Humo-Ferric Podzol. 250 4. SAYRES S e r i e s . Although the b e d r o c k - c o n t r o l l e d topography occupied by the Sayres s e r i e s v a r i e s from s t e e p l y to very s t e e p l y s l o p i n g and h i l l y w ith g r a d i e n t s between 15 and 60%, the most common g r a d i e n t i s about 30%. These s o i l s have developed from a shallow mixture of a b l a t i o n t i l l and/or c o l l u v i u m over bedrock. They con-t a i n 10 to 40% o f coarse fragments. S o i l t e x t u r e s are sandy loam or g r a v e l l y sandy loam. Depth to bedrock i s commonly about 18 i n c h e s , with v a r i a t i o n s of from 6 to 36 inches. The s e r i e s i s g e n e r a l l y moderately w e l l d r a i n e d but o c c a s i o n a l l y i n c l u d e s some i m p e r f e c t l y d r a i n e d s o i l s . The Sayres s e r i e s i s regarded as a L i t h i c O r t h i c Ferro-Humic Podzol. Organic s o i l s developed on g r a n i t i c bedrock: 1. EUNICE S e r i e s . Between 500 and 2200 f e e t i n e l e v a t i o n on convex slopes o f from 20 to 90% g r a d i e n t i s found the Eunice s e r i e s . Often i n a s s o c i a t i o n with the Cannel and Patton s e r i e s , the Eunice s o i l s occupy p o s i t i o n s adjacent to n e a r l y v e r t i c a l rock f a c e s . The Eunice i s an o r g a n i c s o i l and i s comprised o f 50 to 60% of f e l t y H m a t e r i a l and 40 to 50% o f L-F. Depth of the o r g a n i c m a t e r i a l may vary from 4 to 8 inches. 251 Below the organic material i s a t h i n horizon of wea-thered bedrock. Drainage i s rapid. O r i g i n a l l y regarded as a L i t h i c Regosol, the Eunice i s now c l a s s i f i e d as a L i t h i c F o l l i s o l . 2. DENNET Series. The Dennet series i s a high elevation analog of the Eunice ser i e s . Dennet s o i l s occupy similar positions of bedrock as the Eunice s o i l s , but at elevations over 2200 feet. This series i s comprised of more than 80% of amor-phous H materials (well decomposed moss and needles). A thin horizon of weathered bedrock underlies the organic material. As was the Eunice, so the Dennet s o i l s have been c l a s s i f i e d as L i t h i c F o l l i s o l s . S o i l s developed on g l a c i a l outwash: 1. CAPILANO Series. The Capilano series occurs on moderately sloping topography between 100 and 700 feet i n elevation. Slope gradients may vary from 10 to 25%. During the l a s t g l a c i a t i o n the land was depressed r e l a t i v e to the sea, perhaps 1000 or more. As the ice retreated the land rose and the outwash material issuing from the Capilano River was deposited as marine deltas and many terraces were formed. The texture of t h i s material i s well s t r a t i f i e d loamy sands and 252 gravelly loamy sands. Cementation of the sands and gravel i s common. The Capilano series i s generally well drained and has been c l a s s i f i e d as an Orthic Ferro-Humic Podzol. 2. HANEY Series. Between 100 0 and 1250 feet near L i t t l e Capilano Lake and between 400 and 1000 feet in the southeast portion of the map-area on strongly r o l l i n g topography i s the Haney series. Slope gradients range from 25 through 65%. Parent materials of t h i s s o i l are g l a c i o - f l u v i a l de-posits of p i t t e d outwash, eskers and kame terraces. Drain-age i s well to rapid through s o i l textures of poorly s t r a t i f i e d sands, loamy sands and gravelly loamy sands. Cementation i s often associated with the coarser sands and gravels. The Haney series i s an Orthic Humo-Ferric Podzol. E. Soils developed on recent alluvium: 1. SARDIS Series. The Sardis series occupies scattered l e v e l to gently undulating positions along the Capilano and Seymour Rivers. Sardis s o i l s are cl o s e l y associated with the Seymour se r i e s , the former being found on the lowest terraces or present floodplain of the r i v e r , while the Seymour series i s found on older, second l e v e l terraces. Textures of the stream deposits forming the parent materials varies from stony gravelly sand to sandy loam 253 and i s u n d e r l a i n by cobbles and g r a v e l s . S a r d i s s o i l s are i m p e r f e c t l y d r a i n e d and c l a s s i f i e d as Gleyed Regosols. I n c l u s i o n s o f O r t h i c Regosols and Rego G l e y s o l s are common. 2. SEYMOUR S e r i e s . As p r e v i o u s l y mentioned, the Seymour s e r i e s occurs i n c l o s e a s s o c i a t i o n with the S a r d i s s e r i e s , but on some-what o l d e r m a t e r i a l s . Parent m a t e r i a l i s a g a i n a l l u v -ium, p r i m a r i l y l a t e r a l a c c r e t i o n d e p o s i t s . . Textures may vary from g r a v e l l y sandy loam and g r a v e l l y loamy sand t o loamy sand. Drainage i s moderately w e l l . Seymour s o i l s have been c l a s s i f i e d as M i n i Humo-F e r i c Podzols. F. S o i l s developed on fans: 1. DEAN S e r i e s . Occupying on l y a very s m a l l acreage i n the map-area i s the Dean s e r i e s . Found on a l l u v i a l and c o l l u v i a l fan d e p o s i t s between 500 and 20 00 f e e t i n e l e v a t i o n w i t h slope g r a d i e n t s v a r y i n g from 20 to 45%, the Dean s e r i e s i s o c c u r r i n g o n l y on what appear to be o l d fans. Younger fans i n s i m i l a r p o s i t i o n s support the development of the S a l i s h s e r i e s . Coarse fragments may occupy from 10 to 75% of s o i l volumes; p a r t i c l e s i z e d i s t r i b u t i o n v a r i e s from sandy g r a v e l through g r a v e l l y sandy loam to sandy loam. Cementation of sands and g r a v e l s i s found i n lower B and 254 BC horizons. The series i s moderately well drained and Dean s o i l s are c l a s s i f i e d as Orthic Ferro-Humic Podzols. 2. SALISH Series. This series appears to be a youthful analog of the Dean series. It may occupy fan positions up to 2500 feet i n elevation. Cobbles and boulders are s l i g h t l y more angular and comprise 10 to 90% of s o i l volume. No cementation i s observable. The series i s well to moderately well drained. Salish s o i l s have also been c l a s s i f i e d as Orthic Ferro-Humic Podzols. G. S o i l s developed on colluvium: 1. PATTON Series. Occupying very steeply sloping to extremely sloping topographic positions at elevations between 500 and 2000 feet i s the Patton series. Slope gradients vary from 40 to as much as 90%. The colluvium from which these s o i l s are derived i s mixed ablation t i l l and rock debris from higher eleva-tions. Texture of t h i s varies from sandy gravel to gravelly loamy sand and commonly contains from 50 to 80% of coarse material. Patton s o i l s are rapidly to moderately well drained. As mapped, the series consists mainly of Mini Humo-Ferric Podzols; some Regosolic s o i l s are included. 255 2. PALISADE S e r i e s . The P a l i s a d e s e r i e s was mapped a t e l e v a t i o n s between 2000 and 3500 f e e t on very s t e e p l y t o extremely s l o p i n g topography with g r a d i e n t s o f 30 to 90%. Most common g r a d i e n t s are from 45 to 60%. The parent m a t e r i a l c o n s i s t s o f a stony, t i l l - d e r i v e d c o l l u v i u m . T h i s m a t e r i a l i s a g r a v e l l y sandy loam or g r a v e l l y loamy sand with 40 to 80% of coarse fragments. Depth o f the c o l l u v i u m may vary from a few inches to 6 f e e t o r more. The s o i l i s g e n e r a l l y w e l l d r a i n e d but may vary from moderately w e l l to r a p i d drainage with i n c r e a s i n g depth to impervious m a t e r i a l and i n c r e a s i n g coarseness o f c o l l u v i u m . The P a l i s a d e s e r i e s i s c l a s s i f i e d as a M i n i F e r r o -Humic Podzol. 3. LIONS S e r i e s . The L i o n s s e r i e s i s found t o occur on topography very much l i k e t h a t on which the P a l i s a d e and Patton s e r i e s occur. However the L i o n s occurs a t e l e v a t i o n s o f from 3500 to 5000 f e e t . The s e r i e s i s found on slopes o f from 40 to 90% and o f t e n i n a s s o c i a t i o n w i t h t a l u s covered slopes and wit h avalanche chutes. Parent m a t e r i a l o f L i o n s s o i l s i s a mixture o f a b l a -t i o n t i l l - - t a l u s — a v a l a n c h e d e b r i s c o l l u v i u m . Percen-tage of coarse m a t e r i a l may vary from roughly 5 0 to 80% of the s o i l volume. Texture o f the f i n e m a t e r i a l \ 256 i s gravelly loamy sandy. Depth of the colluvium varies with the slope position and generally increases down-slope. The series i s well drained, ranging from moder-ately well to rapidly drained. The Lions s o i l s have been c l a s s i f i e d as Mini Ferro-Humic Podzols but may include some L i t h i c Ferro-Humic Podzols. H. Miscellaneous land units: 1. TALUS In t h i s map-area many unstable areas occur where snow and rock s l i d e s have prevented the establishment of s o i l s and vegetation or have removed these recently. These areas consist of exposed bedrock and bedrock covered with a mantle of rock debris of varying depth. Scattered throughout t h i s material are small pockets of f i n e material capable of developing into s o i l or already ex-pressing varying degrees of horizonation. 2. ROCK OUTCROP On both the mountain tops and the slopes there i s a substantial acreage of exposed bedrock. On the slopes the outcrops are nearly v e r t i c a l , are moss-covered and are associated with series such as Dennet, Sayres, Cannel and Eunice. At the summits, rock outcrops are very common and associated with Talus, Lions, and Hollyburn s o i l s . SELECTED CHEMICAL PROPERTIES OF THE SOILS TABLE IV. 1. SELECTED CHEMICAL PROPERTIES OF THE SOIL SERIES Soi l Base and PH Total Exchangeable Cations Satur- Available P Horizons Depth H,0 CaCl, C .E .C . Ca Mg K Na Sum atlon C O.M. N C/N PT P2" (cm) me/lOOg -me/lOOg- ppm STRACHAN L+F 10-9 3. 9 3.45 97.15 7. 58 2.35 1.72 0.29 11.94 12.29 60.17 103.73 1. 465 41. 07 32. 02 38. 20 H 9-10 3. 5 2.93 131.18 7. 09 2.83 1.22 0.27 11.41 8.70 62.99 108.58 1. 766 35. 67 38. 32 38. 55 Ae 0-4 4. 0 3.53 12.40 0. 45 0.18 0.09 0.06 0.78 6.29 3.90 6.72 0. 2.13 18. 31 7. 11 8. 73 Bhf 4-14 4. 8 4.26 44. 14 0. 27 0.11 0.06 0.06 0.50 1.13 8.01 13.81 0. 288 27. 82 1. 08 8. 40 Bfhl 14-38 5 . 2 4.55 23.89 0. 52 0.17 0.05 0.04 0.78 3.26 5.28 4.10 0. 197 26. 79 6. 60 18. 6 Bfh2 38-66 5. 3 4.52 25.06 0. 46 0.09 0.06 0.07 0.68 2.71 • 4.61 7.94 0. 180 25. 61 3. 15 10. 52 Bfhgjl 66-97 5. 0 4.30 25.64 0. 26 0.08 0.05 0.04 0.43 1.68 4.44 7.66 0. 217 20. 47 7. 23 17. 30 Bfhgj2 97-132 4. 9 4.26 27.13 0. 20 0.06 0.03 0.04 0.33 1.22 5.13 8.84 0. 206 24. 89 4. 54 13. 19 BC 132-158 5. 2 4.49 11.60 0. 13 0.03 0.02 0.09 0.27 2.33 1.99 3.43 0. 080 24. 89 10. 89 26. 21 Ccgj 158-183 5. 2 4.84 C 183-208 5. 1 4.72 BURWELL L+F 18-13 3. 50 85. 33 8.71 2.64 1.58 0.43 13.36 15.66 62.15 107.15 1.318 47.15 28.65 40.45 H 13-0 4. 1 3. 20 103. 44 6.34 2.08 0.89 0.19 9.50 9.18 48.49 1.640 29.57 25.79 31.08 Aeh 0-3 4. 3 3. 72 15. 56 0.26 0.13 0.06 0.06 0.51 3.28 5.05 0.189 26.70 5.02 6.86 Bhf 3-25 5. 0 4. 21 27. 88 0.33 0.10 0.05 0.07 0.55 •1.97 , 7.24 0.259 27.97 _ 4.16 Bhfgjl 25-56 5. 0 4. 30 30. 21 0.33 0.09 0.04 0.08 0.54 1.79 . 7.10 0.388 18.30 4.08 4.08 Bhfgj2 56-102 5. 4 4. 23 31. 40 0.31 0.09 0.05 0.06 0.51 1.62 10.02 0.403 24.87 3.45 6.14 Bhfgj 102-152 5. 8 4. 35 10. 78 0.32 0.06 0.03 0.04 0.45 4.17 1.69 0.073 23.12 16.09 40.98 BCgj 152-203 5. 8 4. 80 C AT 3M 6. 2 5. 61 TABLE 1. ( C o n t i n u e d ) S o i l a n d H o r i z o n s D e p t h (cm) PH H 2 0 C a C l „ T o t a l C . E . C . C a E x c h a n g e a b l e C a t i o n s Mg Na Sum Base Satur-ation O.M. C / N A v a i l a b l e P n P T GOLDEN EARS m e / l O O g - m e / l O O g - -ppm-L - F 2 0 - 1 9 3 . 9 3. .10 128. ,63 1 2 . 13 4 . 6 7 0 . 7 7 0 . 1 5 1 7 . 7 2 1 3 . 7 7 6 3 . 4 2 1 6 9 . 3 4 1 .378 46 . 0 3 11 . 7 9 14. 30 H1 19-8 3 . 5 2. .89 157. 02 11 . 54 6 . 7 6 0 . 5 9 0 . 2 0 1 9 . 0 9 1 2 . 1 6 6 6 . 5 2 1 1 4 . 6 7 1 .232 53 . 9 9 11 . 0 7 2 5 . 06 H2 8 - 0 3 . 6 2, .80 150, ,17 3 . 01 0 . 7 6 0 . 5 4 0 . 2 2 4 . 5 3 3 . 0 2 6 7 . 2 6 1 1 5 . 9 6 1.174 57 . 2 9 17 . 3 6 2 2 . 57 Ae 0 - 8 4 . 0 3. .17 11. ,53 0 . 51 0 . 1 9 0 . 0 5 0 . 0 3 0 . 7 8 6 . 7 6 2 . 8 4 4 . 9 0 0 . 0 6 1 46 . 5 9 1 . 8 3 2 . 84 B h f 8 - 1 8 4 . 6 3. .82 3 8 . ,54 0 . 45 0 . 2 4 0 . 1 1 0 . 0 3 0 . 8 3 2 . 1 5 7 . 8 0 1 3 . 4 3 0 . 1 8 7 41 . 6 5 1 . 0 8 7 . 86 B f h 18-30 5 . 1 4. .44 2 8 . ,25 0 . 26 0 . 0 8 0 . 0 7 0 . 0 3 0 . 4 4 1 .56 2 . 9 4 5 . 0 7 0 . 0 8 1 36 . 3 3 4 . 9 7 7 . 0 3 Bf 3 0 - 5 1 5 . 3 4, .76 16. .63 0 . 15 0 . 0 4 0 . 0 8 0 . 0 3 0 . 3 0 1 .80 1 . 6 9 2 .91 0 . 0 5 3 31 . 8 9 6 . 3 4 1 8 . 27 B C g j I 5 1 - 6 4 5 . 4 4, .64 14. . 17 0 . 16 0 . 0 3 0 . 0 9 0 . 0 3 0 . 3 1 2 . 1 9 1 .77 3 . 0 4 0 . 0 5 5 32 . 1 5 10 .31 2 2 . 92 B C g j 2 6 4 - 8 1 5 . 4 4. .66 12. .49 0 . 13 0 . 0 3 0 . 0 9 0 . 0 6 0 . 3 1 2 . 4 8 0 . 0 5 8 12 . 6 4 2 6 . 94 B C g j 3 81-114 5 . 4 4. ,73 0 . 0 5 5 C1 TILL a t 150cm 5 . 5 4. .86 C2 TILL a t 200cm 5 . 7 4. .82 WHONNOCK L 2 8 - 2 0 4 . 0 3 . 29 7 8 . 7 2 3 . 4 2 1 . 8 0 1 . 8 3 0 . 2 1 7 . 2 6 9 . 2 2 5 8 . 1 2 1 0 0 . 2 0 1 .332 4 3 . 6 3 1 1 . 9 9 1 4 . 7 3 HI 2 0 - 1 3 3 . 5 2 . 82 1 2 4 . 4 8 2 . 7 0 1 . 8 0 0 . 8 9 0 . 2 3 5 . 6 2 4 . 5 1 5 8 . 8 2 1 0 1 . 4 0 1 . 8 8 8 3 1 . 1 5 112 1 3 - 0 4 . 1 3 . 50 1 1 8 . 1 7 0 . 9 5 0 . 3 0 0 . 2 6 0 . 1 0 1 .61 1 .36 4 7 . 4 2 8 1 . 7 5 1 .613 2 9 . 4 0 4 . 2 7 4 . 9 8 Ahe 0 - 4 4 . 5 3 . 94 3 6 . 0 7 0 . 2 1 0 . 0 7 0 . 0 5 0 . 0 3 0 . 3 6 1 . 0 0 9 . 3 0 1 6 . 0 3 0 . 2 9 4 3 1 . 6 3 B h f 4-19 4 . 9 4 . 13 4 5 . 1 4 0 . 1 6 0 . 0 8 0 . 0 4 0 . 0 4 0 . 3 2 0 . 7 1 9 . 1 2 1 5 . 7 2 0 . 3 0 3 3 0 . 0 9 3 . 4 7 7 . 1 6 B h f g j 1 9 - 4 8 5 . 2 4 . 29 2 9 . 9 7 T r 0 . 0 2 0 . 0 2 0 . 0 4 0 . 0 8 0 . 2 7 5 . 5 0 9 . 4 9 0 . 1 5 7 3 5 . 0 6 4 . 7 9 1 2 . 9 9 B f h g j 4 8 - 8 1 5 . 2 4 . 45 1 7 . 1 8 T r 0 . 0 1 0 . 0 1 0 . 0 3 0 . 0 5 0 . 2 9 2 . 5 5 4 . 4 0 0 . 0 8 8 2 9 . 0 0 7 . 4 6 2 1 . 7 6 BC1 8 1 - 1 0 9 5 . 2 4 . 70 7 . 8 6 T r 0 . 0 1 0 . 0 1 0 . 0 6 0 . 0 8 1 . 0 2 1 . 0 3 1 .77 0 . 0 3 0 3 4 . 3 3 2 0 . 8 1 6 1 . 1 6 BC2 1 0 9 - 1 5 2 5 . 6 5 . 16 4 . 2 0 T r 0 . 0 1 0 . 0 1 0 . 0 3 0 . 0 5 1 .19 0 . 0 1 7 4 1 . 5 4 1 2 1 . 0 8 C 1 5 2 - 1 7 8 5 . 9 5 . 43 3 . 2 1 1 .96 0 . 2 0 0 . 0 7 0 . 0 7 2 . 3 0 7 1 . 6 5 1 9 . 1 0 8 5 . 9 3 TABLE 1. (Continued) S o i l and Horizons PH Depth H 20 CaCl, T o t a l C.E.C. Ca Exchangeable Cations Mg Na Sum Base Satur-a t i o n O.M. C/N Available P PT P2 WIIONNOCK SAYRES (cm) me/lOOg -me/lOOg- ppm-L+F 35-33 4. 1 3. 59 88.02 10. 85 4.00 1.67 0.21 16.73 19.01 49.88 85.99 1.288 38.72 14.33 17. 00 HI 33-23 3. 3 2. 90 158.81 11. 42 4.43 0.87 0.35 17.07 10.75 61.48 105.99 2.150 28.60 15.03 15. 85 112 23-0 3. 8 3. 18 135.25 4. 70 1.48 0.32 0.15 6.65 4.92 60.51 104.32 1.873 32.21 13.97 17. 37 Aeh 0-10 4. 4 3. 66 37.54 0. 52 0.05 0.03 0.05 0.65 1.73 10.48 18.06 0.336 31.19 1.26 2. 41 Bh 10-23 4. 8 4. 01 61.94 0. 47 0.10 0.05 0.07 0.69 1.11 13.81 23.81 0.423 32.65 1.68 5. 59 Bhf 23-43 5. 0 4. 11 45.88 0. 24 0.05 0.03 0.04 0.36 0.78 7.47 12.87 0.233 32.06 0.87 8. 20 Bfhgjl 43-64 4. 9 4. 18 35.13 1. 94 0.04 0.02 0.03 2.03 5.78 5.60 9.64 0.182 20.74 3.76 9. 68 Bfhgj2 64-81 5. 0 4. 37 25.41 0. 20 0.04 0.02 0.04 0.30 1.18 3.61 6.22 0.109 33.14 7.14 14. 38 BC1 81-102 5. 3 4. 81 BC2 102-140 5. 6 5. 31 C 140 + 5. 7 6. 79 H 19-0 3.2 2. 31 166.81 5.20 4.95 1.18 4.14 15.47 9.27 64.28 110.83 0.904 71.1 8.82 9. 39 Ae 0-5 4.0 3. 67 8.02 0.40 0.12 0.09 0.04 0.65 8.10 2.00 3.44 0.054 37.0 1.01 1.31 Bhf 1 5-23 4.3 3. 80 43.53 0.42 0.07 0.17 0.04 0.70 1.61 8.60 14.82 0.259 33.2 0.85 0.85 Bhf2 23-39 4.9 4. 14 50.33 0.22 0.02 0.11 0.05 0.40 0.79 9.66 16.66 0.250 38.6 1.30 7.03 Bh 39-43 4.9 4. 06 95.14 0.47 0.14 0.10 6.08 0.79 0.83 19.38 33.41 0.508 38.0 0.93 4.66 DENNETT L+F 20-19 3.6 3.16 H1 19-10 3.4 2.78 H2 10-0 3.5 2.61 Ae 0-5 4.1 3.64 99.10 118.44 98.80 6.52 4.50 3.39 0.87 0.08 4.95 6.56 3.18 0.08 3.94 2.52 1.04 0.06 0.50 0.49 0.46 0.04 13.89 12.96 5.55 0.26 1 4 . 0 2 1 0 . 9 4 5 . 6 2 3 . 9 9 54.44 63.56 69.76 1.81 93.86 189.59 120.26 3.12 1.564 1.284 0.985 0.050 34.81 49.12 70.82 36.16 26.69 20.81 12.73 1.41 30.97 24.32 15.74 1.61 T A B L E 1. ( C o n t i n u e d ) S o i l a n d H o r i z o n s D e p t h (cm) PH H 2 0 C a C l „ T o t a l C . E . C . E x c h a n g e a b l e C a t i o n s C a Mg Na 2 / 1 0 0 g - m e / l O O g -Sura Base Satur-a t i o n O .M. A v a i l a b l e P C / N P T P2 —ppra-EUNICE L+F 10 - 6 4 . 2 3 . 88 8 1 . 73 H 6 - 0 3 . 6 3 . 08 120 . 64 CAPILANO L+F 13- 8 4 . 3 3 . 71 7 4 . 91 H 8- 0 4 . 0 3 . 08 4 9 . 39 Ae 0- •4 4 . 1 3 . 16 9 . 06 B h f 4- 8 4 . 6 4 . 05 2 3 . ,47 Bf 1 8- -28 5 . 0 4 . 43 13. ,65 Bf 2 28- -43 5. .6 5 . 08 10. .45 B f c 43- -76 5. .7 5 . . 33 6. .00 SEYMOUR L+F 9- -8 • 3. ,9 3. .24 101. .87 H 8- -0 3. .5 2. .74 123 . 9 5 A e 0- -3 3, .8 3, . 30 10 . 2 7 B h f 3- -15 4 .7 4 . 0 3 36 . 48 B h f c 15- -36 5 .4 4 .61 20 .81 B f c g j 1 36- -66 5 . 6 4 .76 16 . 54 B f c g j 2 66- -96 5 . 6 4 .78 13 .21 C g j 9 6--190 5 . 5 4 . 8 0 1 5 . 0 7 1 1 . 2 3 40 93 31 20 20 20 19 8 . 8 9 5 . 1 3 0 . 2 0 0 . 1 0 0 . 2 1 0 . 3 1 0 . 4 1 3 . 5 6 2 . 4 4 1 .82 0 . 9 1 0 . 1 0 0 . 0 9 0 . 0 6 0 . 0 6 0 . 0 8 2 . 8 0 4 . 2 0 0 . 0 7 0 . 0 4 0 . 0 1 0 . 0 1 0 . 0 1 2 . 6 0 1 .60 1 .44 0 . 5 5 0 . 0 6 0 . 0 4 0 . 0 3 0 . 0 3 0 . 0 2 1.51 0 . 9 1 0 . 0 5 0 . 0 5 0 . 0 1 0 . 0 2 0 . 0 3 0 . 3 3 0 . 4 3 0 . 3 6 0 . 1 5 0 . 0 5 0 . 0 5 0 . 0 3 0 . 0 7 0 . 0 4 0 . 2 3 0 . 2 5 03 06 ,03 ,03 .04 2 1 . 5 6 1 5 . 7 0 1 1 . 0 2 5 . 5 4 ,52 ,38 .32 .36 . 3 3 1 3 . 4 3 1 0 . 4 9 0 . 3 5 0 . 2 5 0 . 2 6 0 . 3 7 0 . 4 9 2 6 . 3 8 1 3 . 0 1 1 4 . 7 1 1 1 . 2 2 5 . 7 4 1 . 6 2 2 . 3 4 3 . 4 4 5 . 5 0 1 3 . 1 8 8 . 4 6 41 . 6 9 . 2 5 , 2 4 3 . 7 1 5 6 . 8 8 9 8 . 0 6 1 . 2 6 3 4 5 . 03 67 . 0 0 7 8 . 26 5 5 . 3 9 9 5 . 5 0 1 . 4 8 3 3 7 . 35 29 . 7 7 3 7 . 27 3 8 . 7 9 6 6 . 8 9 1 .138 3 4 . 09 41 . 6 7 7 0 . 18 4 8 . 1 2 8 2 . 9 6 0 . 9 7 9 4 8 . 15 28 . 9 9 3 2 . 47 1.31 2 . 2 6 0 . 0 4 6 2 8 . 48 10 . 7 0 1 6 . 57 1 0 . 0 9 1 7 . 3 9 0 . 2 6 0 3 8 . 8 1 108 . 7 2 1 8 9 . 07 4 . 3 8 7 . 5 5 0 . 1 5 2 2 8 . 82 47 . 3 5 1 2 5 . 91 1 .04 1 .80 0 . 0 4 4 2 3 . 73 34 . 7 2 1 0 3 . 63 0 . 7 8 1 .34 0 . 0 4 5 17. 40 23 . 2 0 7 8 . 49 5 3 . 3 6 5 7 . 1 8 2 . 4 6 6 . 0 8 3 . 4 4 1 . 6 6 9 2 . 0 0 9 8 . 5 7 4 . 2 4 1 0 . 4 8 5 . 9 2 2 . 8 7 1 .501 1 .961 0 . 1 2 8 0 . 2 4 0 0 . 1 4 2 0 . 0 6 7 0 . 1 2 3 3 5 . 6 2 9 . 2 1 9 . 2 2 5 . 3 2 4 . 2 2 4 . 8 2 8 . 5 6 2 3 . 3 3 1.61 2 5 . 8 4 2 3 . 8 8 3 4 . 11 2 4 . 6 7 2 . 5 2 5 3 . 3 5 6 3 . 6 1 4 3 . 1 4 1 9 7 . 6 1 4 7 . 2 2 1 2 5 . 3 9 T A B L E 1. ( C o n t i n u e d ) S o i l a n d H o r i z o n s D e p t h PH i O C a C l „ T o t a l C ; E . C . CiT mg/lOOg E x c h a n g e a b l e C a t i o n s . Mg . . . K . . . . Na Sum me/lOOg Base S a t u r -a t i o n O . M . C / N A v a i l a b l e P FT P2 (cm) % ppm-DEAN L - F 8 - 6 4 . 5 3 . 6 1 1 0 8 . 3 4 1 0 . 5 1 2 . 4 2 1 . 7 0 0 . 2 5 1 4 . 8 8 2 2 . 9 6 5 8 . 4 9 1 0 0 . 8 3 1. 647 3 5 . 51 39 . 5 5 4 5 . 4 6 H 6 - 0 3 . 9 3 . 0 2 1 2 1 . 2 4 1 2 . 8 1 2 . 2 8 0 . 8 0 0 . 2 3 1 6 . 1 2 1 3 . 3 0 5 4 . 8 0 9 4 . 4 7 1. ,310 4 1 . 83 33 . 4 9 3 8 . 5 0 A e 0 - 4 . 3 3 . 4 3 1 0 . 5 3 0 . 3 1 0 . 0 9 '6 . 0 3 0 . 0 6 0 . 4 9 4 . 6 5 2 . 0 9 3 . 6 0 0 . ,066 3 1 . 71 3 . 7 6 6 . 2 9 B h f 8 - 1 8 5 . 0 4 . 3 3 4 0 . 2 3 0 . 6 9 0 . 1 8 . 0 . 0 4 0 . 0 3 0 . 9 4 2 . 3 4 5 . 4 1 9 . 3 3 0 . ,201 2 6 . 93 8 . 8 0 2 0 . 0 2 B f h 1 8 - 4 6 5 . 1 4 . 5 4 3 7 . 8 7 : 0 . 3 4 0 . 1 4 0 . 0 4 0 . 0 4 0 . 5 6 1 . 4 8 6 . 9 8 1 2 . 0 3 0 . ,294 2 3 . 74 7 . 0 6 1 1 . 2 5 B f h c 4 6 - 6 6 5 . 3 4 . 6 8 3 8 . 4 9 0 * 2 1 0 . 0 9 0 . 0 4 0 . 0 9 0 . 4 3 1 . 12 4 . 9 4 8 . 5 2 0 . ,203 2 4 . 35 8 . 2 2 1 4 . 5 6 B f c 6 6 - 1 1 2 5 . 4 5 . 0 8 2 2 . 7 3 0 , 1 4 0 . 0 6 0 . 0 3 0 . 0 4 0 . 2 7 1.19 2 . 0 4 3 . 5 1 0 . ,091 2 2 . 42 9 .64 2 3 . 7 7 BC 1 1 1 2 - 1 5 2 5 . 6 5 . 2 8 0 . .019 BC2 1 5 2 - 2 0 3 5 . 6 5 . 2 9 C1 2 0 3 - 2 5 3 5 . 7 5 . 3 8 C2 AT c m 5 . 7 5 . 4 1 S A L I S H L+H 6 - 0 4 . 2 4 . 0 2 6 2 . 0 4 5 . 1 4 1 . 2 2 1 . 0 3 0 . 1 9 7 . 5 8 1 2 . 2 2 3 3 . 6 1 5 7 . 9 5 0 . 9 4 6 3 5 . 53 11 . 6 9 15 . 15 A e 0 - 5 4 . 4 3 . 8 7 2 . 9 5 0 . 3 1 0 . 1 9 0 . 0 3 0 . 0 4 0 . 5 7 1 9 . 3 2 0 . 9 8 1 . 6 8 0 . 0 3 6 2 7 . 19 1 .81 2 . 61 B f h 5 - 1 3 4 . 9 4 . 3 9 3 6 . 2 1 0 . 2 7 0 . 1 4 0 . 0 7 0 . 0 6 0 . 5 4 1 . 4 9 6 . 5 0 11 .21 0 . 2 8 2 2 3 . 05 .2 . 8 8 4 . 70 B f 1 3 - 5 3 5 . 2 4 . 8 4 2 9 . 8 9 0 . 4 1 0 . 1 0 0 . 0 5 0 . 0 6 0 . 6 2 2 . 0 7 5 . 2 4 9 . 0 4 0 . 2 3 1 2 2 . 70 4 . 5 4 2 1 . 62 B f h g j 5 3 - 8 9 5 . 1 4 . 5 0 3 2 . 9 1 0 . 2 0 0 . 0 9 0 . 0 5 0 . 0 6 0 . 5 0 1 .52 1 1 . 2 4 1 9 . 3 8 0 . 4 6 6 2 4 . 12 2 . 6 8 8 . 24 B h f g j 8 9 - 1 2 7 5 . 0 4 . 4 0 3 1 . 1 5 0 . 0 0 . 0 0 . 0 0 . 4 0 1 . 4 4 6 . 6 6 1 1 .47 0 . 2 5 5 2 6 . 11 2 . 1 4 6 . 53 B C g j I 1 2 7 - 1 6 5 5 . 3 4 . 9 8 1 .27 2 . 1 9 0 . 0 4 3 2 9 . 60 B C g j 2 1 6 5 - 2 0 3 5 . 5 5 . 1 5 TABLE 1. (Continued) S o i l and Horizons Depth PH CaCl-Total C.E.C. Exchangeable Cations Mg K me/100g--Na Sum Base Satur-a t i o n O.M. C/N Available P PT P2 (cm) mg/lOOg PATTON L+H Ae j Bfh1 Bfh2 Bf BC 1 BC2 BC3 C 3-0 0-3 3-30 30-69 69-89 89-102 102-137 137-165 165-203 4.8 4.7 5.6 5.7 5.8 5.8 5.9 6.0 5.9 28 46 59 68 73 4.77 4.86 5.00" 4.80 53.78 10.22 2.99 0.51 0.08 13. 80 25.66 22.86 4.62 2.25 0.18 0.09 7. 14 31.23 40.67 3.22 0.35 0.10 0.15 3. 82 9.39 26.98 2.10 0.13 0.04 0.12 2. 39 8.86 24.10 1.35 0.0 0.03 0.10 1. 53 6.35 16.14 1.03 0.07 0.03 0.07 1. 20 7.43 15.99 1.24 0.05 0.04 0.10 1. 43 8.94 42.04 6.89 7.89 5.71 3.02 72.48 11.89 13.75 9.85 5.21 0.869 0.270 0.319 0.216 0.139 0.093 0.097 48. 25. 25. 26, 21. 53.30 14.77 11.04 10.61 25.50 27.40 14.49 93.41 25.85 34.83 30.88 69.27 92.03 38. 30 PALISADE L+F H Aeh Bhf Bhf g j l Bhfgj2 Bfhgj 18-15 15-0 0-10 10-41 41-69 69-99 99-135 4.8 4.0 4.3 4.5 4.7 4.8 5.1 3.9 3.1 3.6 90.09 143.88 20.97 26.69 32.55 41.23 25.38 16.12 8.79 0.61 0.42 0.31 0.32 0.42 .79 .98 .07 .04 .01 .01 .01 3.05 3.87 0.24 0.16 0.11 0.07 0.07 .21 .17 .03 .04 .03 .03 .06 23.17 15.99 0.95 0.66 0.46 0.43 0.56 25.72 11.11 4.33 2.22 1.41 1.04 2.21 53.48 62.27 4.44 4.54 5.48 7.46 4.00 92.20 107.36 7.66 7.82 9.44 12.84 6.90 1.121 1.598 0.151 0.157 0.179 0.250 0.151 47.71 39.00 29.40 28.90 30.60 29.80 26.50 20.04 17.94 1.73 Tr 0.42 0.21 5.36 30.50 25.45 4.08 1.35 3.25 2.88 8.09 SELECTED PHYSICAL PROPERTIES OF THE SOILS A) T e x t u r a l A n a l y s i s and Roots D i s t r i b u t i o n B) C h a r a c t e r i z a t i o n o f the D i f f e r e n t Parent M a t e r i a l s 265 A) T e x t u r a l A n a l y s i s and Roots D i s t r i b u t i o n The method d e s c r i b e d by Toogood and P e t e r s (1953) was used to analyze the sand, s i l t and c l a y f r a c t i o n s of the s o i l s . The f i n e c l a y f r a c t i o n s e p a r a t i o n and the removal of f r e e i r o n oxides from the s o i l s were executed a c c o r d i n g t o the procedures o u t l i n e d by Jackson (1956). The t e x t u r a l a n a l y -s i s was done a c c o r d i n g to the U.S. Department of A g r i c u l t u r e S o i l C l a s s i f i c a t i o n , f o r the 2 mm f r a c t i o n . The f o l l o w i n g s i z e l i m i t s were used: sand (2.0 - 0.05 mm), s i l t (0.05 -0.002 mm), c l a y ( l e s s than 0.002 mm) and f i n e c l a y ( l e s s than 0.0002 mm). The r o o t s d i s t r i b u t i o n was d e s c r i b e d a c c o r d i n g to the f o l l o w i n g d e s c r i p t i v e parameters: Abundance C l a s s e s : V = Very few 1 per u n i t area One u n i t i s 1 square i n c h F = Few 1-3 per u n i t area f o r f i n e , very f i n e and P = P l e n t i f u l 4-14 per u n i t area micro r o o t s , or 1 square A = Abundant 14 per u n i t area yard f o r medium to coarse r o o t s . S i z e C l a s s e s : O r i e n t a t i o n : Mi = Micro l e s s than .075 mm V = V e r t i c a l V = Very f i n e — 0.075 to 1 mm H = H o r i z o n t a l F = F i n e 1 to 2 mm 0 = Oblique Me = Medium 2 to 5 mm R = Random C - Coarse More than 5 mm TABLE IV.2. SELECTED PHYSICAL PROPERTIES OF THE SOILS AND ROOTS DISTRIBUTION S o i l and Horizons P a r t i c l e Size D i s t r i b u t i o n Textural Depth Sand S i l t Clay Fine Clay C l a s s STRACHAN (cm) L 12-10 F 10-•2 H 2-0 Ae 0-•6 70 .23 26 .74 3.03 Bhf 6- 13 70 .30 26 .53 3.17 Bfhl 13- 48 61 -58 34 .54 3.88 Bfh2 48- 73 69 .01 26 .25 4.74 Bf 73- 113 73 .85 21 .57 4.58 BC 113 1-148 72 .73 22 .65 4.62 C 148 76 .38 21 .96 1.66 GOLDEN EARS L 12- 10 F 10-4 H 4-0 Ae 0-5 55, .22 36 .65 8.13 Bh1 5-15 66, .42 26 .01 7.57 Bh2 15-35 67, .64 26 .23 6.13 Bhf 35-65 67, .92 26 .75 5.33 Bf 1 65-68 69, .48 25 .07 5.45 Bf2 68- 83 68. .43 27 .16 4.41 BC 75. .34 20 .76 3.90 C 63. .75 32 .77 3.48 P a r t i c l e Size D i s t r i b u t i o n Iron Removed  Sand S i l t Clay Fine Clay Roots D i s t r i b u t i o n Abun- Orien-dance Size t a t i o n None 0.57 0.23 1.24 None 0.74 None Sandy Sandy Sandy Sandy Loamy Loamy Loamy loam loam loam loam sand sand sand 64.15 59.68 23.12 29.66 None A F-He H A F-Me H F V-F H-R 12.73 9.69 F F-Me H 10.66 7.09 A F-Me H-R F Me-C H V Mi H V Mi H 6.56 5.82 None 2.41 Sandy loam 3.00 Sandy loam 59. 99 26.62 13.39 7, .16 2.70 Sandy loam 2.09 Sandy loam 64. 21 25.90 9.89 4. .61 0.73 Sandy loam 65. 67 23.77 10.56 4. .88 None Sandy loam 0.40 Loamy sand 64. 08 22.18 13.74 7. .16 0.19 Sandy loam 61. 15 32.01 6.84 4. ,35 None A F-Me H A C-Me H F F H F Me R F Me R None None None None None CV) TABLE 2. (Continued) S o i l P a r ticle Size Distribution Roots Distribution and Horizons Depth Pa r t i c l e Size Distribution Textural. "Class ... Iron Removed Abun-dance Size Orien-tation Sand S i l t Clay Fine Clay Sand S i l t Clay Fine Clay (cm) % GROUSE None L 20-18 P V-F O F 18-2 F F H H 2-0 F V H Ahe 0-1 . 5 3 5 . 9 2 4 9 . 7 7 1 4.31 2 . 3 6 Loam F V H Bhfg 1 .5-18.5 4 3 . 9 4 4 4 . 5 0 1 1 . 5 6 2 . 3 5 Sandy loam 4 2.8 4 2 . 2 7 14.89 5 . 9 6 None C 1 8 . 5 - 2 5 . 0 SAYRES » L 3-2 F+H 2-0 p C H Ae 0-10 72.96 2 4 . 7 0 2.34 None Loamy sand F F H Bhf 1 10-20 6 5 . 3 4 29.53 5.13 None Sandy loam 6 1.53 2 6 . 4 2 1 2.05 8.30 A Me H Bhf2 20-55 6 8 . 0 9 2 8 . 6 5 3 . 2 6 None Sandy loam F F-Me V . Bfh 55-110 70.60 27.31 2.09 None Loamy sand 66.00 22.33 11.67 9.92 A F-Me H CAPILANO L 6-4 F+H 4-0 P V H Ae 0-10 68.73 24. 44 6.83 0.39 Sandy loam V-F F H Bhf 10-12 66 .32 27. 16 6.52 1.09 Sandy loam 63.54 20.15 16. 31 11.69 P F H Bfhgj 12-20 73.36 20. 80 5.84 1.32 Sandy loam 67.38 16.54 16.08 12.50 P Me-C H Bfgji 20-36 81.57 14. 09 4.34 0.81 Loamy sand 75.61 12.93 11.46 9.35 A C 11 Bfgj2 36-42 87.64 .9. 35 3.01 0.54 Sand 82.59 6.56 10.85 8.45 P F-Me II BC 42-80 87.66 7. 96 4.38 2.06 Sand V F H Cl 80-300 90.30 8. 34 1.36 0.48 Sand 89.04 6.01 4.95 4.12 C2 300 + 25.64 61. 34 13.02 0.72 S i l t loam 25.55 57.94 16.96 5.20 T A B L E 2. (Continued) S o i l a n d P a r t i c l e Size D i s t r i b u t i o n P a r t i c l e Size D i s t r i b u t i o n Textural Roots D i s t r i b u t i o n Horizons Depth . Sand S i l t Clay F i n e Clay Class ... Sand S i l t Clay Fine Clay dance Size t a t i o n SARDIS (era) %  L 2-0 A Mi-V H Ah 0-5 71.97 25.90 2.13 0.11 Loamy sand F F H CI 5-15 67.17 29.75 3.08 0.10 Sandy loam P Me-C H C2 15-22 93.58 6.13 0.29 0.10 Sand V Mi H C3g 22-35 40.12 53.63 6.25 0.80 S i l t loam V V-F H C4gj 35 + 67.29 29.96 2.75 0.40 Sandy loam None DEAN L F H A e B h f Bfh1 B f h 2 BC S A L I S H L F+ll Ae B h f Bfh1 B f h 2 BCg j 1 B C g j 2 0-3 3-6 6-42 88.98 9.65 1.37 None Sand A F-M V 42-92 90.11 8.85 1.04 0.19 Sand F V V 92 + 87.23 11.64 1.13 0.29 Sand 81.94 10.47 7.49 5.82 V V R 10-8 8-0 A Me-C H 0-5 73.57 23.07 3.36 0.59 Loamy sand P F-Me H 5-20 67.78 25.43 6.79 1.86 Sandy loam P F-Me H 20-50 72.80 23.37 3.83 1.14 Sandy loam P Me-C H 50-80 70.82 24.86 4.32 0.82 Sandy loam F F-Me II 80-100 65.90 28.15 5.95 1.43 Sandy loam V V-F H 100 + 84.99 12.88 2.13 0.39 Loamy sand V V H to CTl 00 TABLE 2. (Continued) S o i l P a r t i c l e Size D i s t r i b u t i o n Roots D i s t r i b u t i o n and P a r t i c l e Size D i s t r i b u t i o n Textural Iron Removed ^ _ Abun- Orien-Horizons Depth Sand S i l t Clay Fine Clay. . Class Sand S i l t Clay Fine Clay dance Size t a t i o n (cm) — % — ' ' '. % PALISADE L 12-10 None F+H 10-0 A F-Me H Ae 0-2 71.54 24.44 4.02 1.55 Sandy loam F V-F H Bfh1 2-22 71.99 25.00 3.01 None Sandy loam P F-Me H Bfh2 22-44 66.26 33.74 None None Sandy loam A F-Me H Bf 44-78 58.47 40.83 0.70 • None Sandy loam A V-F H Bhf 78-105 67.34 24.56 8.10 1.96 Sandy loam A V-Me H Bh 105-125 65.00 23.44 11.56 5.26 Sandy loam A V-F H C 125 + None 270 B) Characterization of Selected Parent Materials The textural analysis as described i n section A i s applied to characterize the d i f f e r e n t parent materials. The Unified S o i l C l a s s i f i c a t i o n system was used to describe the f i r s t meter of the various materials i n the study area. The bulk density of the s o i l s are measured according to the method described i n Methods Manual, Pedology Labora-tory, Department of S o i l Science, University of B r i t i s h Columbia (19 77). The s p e c i f i c gravity, p l a s t i c l i m i t and l i q u i d l i m i t tests described by Lambe (1951) were applied to the d i f f e r e n t parent materials. The following d e f i n i t i o n s and abbreviations were used i n the presentation of the r e s u l t s : B.D. = Bulk density: The mass of dry s o i l per unit bulk volume. S.G. = S p e c i f i c gravity: The mass per unit volume of i n d i -vidual p a r t i c l e s . P = Porosity: The t o t a l volume of pore space; expressed as a percentage of the t o t a l s o i l volume. L.L. = Liquid l i m i t : This i s the moisture content at which a s o i l passes from a p l a s t i c to a l i q u i d state. P.L. = P l a s t i c l i m i t : This condition exists when a s o i l changes from a semi-solid to a p l a s t i c state. P.I. = P l a s t i c i t y index: This i s the numerical difference between the p l a s t i c l i m i t and the l i q u i d l i m i t of a s o i l . TABLE I V . 3 . SELECTED P H Y S I C A L PROPERTIES OP THE PARENT MATERIALS T e x t u r a l P a r t i c l e S i z e D i s t r i b u t i o n I r o n Removed P a r e n t M a t e r i a l s E l e v a t i o n S a n d S i l t C l a y F i n e C l a y . C l a s s S a n d S i l t C l a y F i n e C l a y B a s a l T i l l m 2 1 3 6 7 . 3 0 2 9 . 7 9 - % 2 . 9 1 None S a n d y l o a m 6 5 . 9 3 2 6 . 0 7 8 . 0 0 4 . 9 2 B a s a l T i l l 457 7 6 . 3 8 2 1 . 9 6 1 . 6 6 None Loamy s a n d 7 3 . 5 3 1 9 . 9 1 6 . 5 6 5 . 8 2 B a s a l T i l l 731 7 7 . 3 3 2 0 . 8 9 1 . 7 8 0 . 1 9 Loamy s a n d 7 5 . 0 5 2 0 . 0 4 4 . 9 1 3 . 2 7 B a s a l T i l l 914 6 3 . 7 5 3 2 . 7 7 3 . 4 8 0 . 1 9 S a n d y l o a m 6 1 . 1 5 3 2 . 0 1 6 . 8 4 4 . 3 5 A b l a t i o n T i l l 914 7 5 . 3 4 2 0 . 7 6 3 . 9 0 0 . 4 0 Loamy s a n d 6 4 . 0 8 2 2 . 1 8 1 3 . 7 4 7 . 1 6 A b l a t i o n T i l l 56 3 7 0 . 6 0 2 7 . 3 1 2 . 0 9 None S a n d y l o a m 6 6 . 0 0 2 2 . 3 3 1 1 . 6 7 9 . 9 2 A b l a t i o n T i l l 4 5 7 7 2 . 7 3 2 2 . 6 5 4 . 6 2 0 . 7 4 ' S a n d y l o a m A b l a t i o n T i l l a n d C o l l u v i u m 731 8 3 . 3 1 1 4 . 8 8 1 . 8 1 0 . 5 7 Loamy s a n d F a n M a t e r i a l 2 1 3 9 4 . 6 8 4 . 9 3 0 . 3 9 None S a n d F a n M a t e r i a l 2 1 3 8 7 . 2 3 1 1 . 6 4 1 . 1 3 0 . 2 9 S a n d 8 1 . 9 4 1 0 . 4 7 7 . 5 9 5 . 8 2 F a n M a t e r i a l 366 8 4 . 9 9 1 2 . 8 8 2 . 1 3 0 . 3 9 Loamy s a n d O u t w a s h 183 9 0 . 3 0 8 . 3 4 1 . 2 6 0 . 4 8 S a n d 8 9 . 0 4 6 . 0 1 4 . 9 5 4 . 1 2 G l a c i a l M a r i n e 183 1 3 . 9 8 6 5 . 7 8 2 0 . 2 4 1 . 3 4 S i l t l o a m F i g u r e : i v . 1 . Gradation curve and selected physical, analysis for'the ablation t i l l deposits. too o Q i >-o tc Ul z C ui u tt 3 IN. U.S. STANDARD SIEVE SIZE NO. 4 NO. IO NO. 40 NO. 20O O.OI O.OOI ORAIN SIZE IN MILLIMETERS C0B8US CRAVtl UNO SILT OR CUt CMCM 1 Fir* COMM | Medium | rim Sample No. Elev or Depth Classification NatWC L L P L PI a o . S.G, P 8 samples 0-1 meter SM 66 58 8 0.96 £2o S i l t y gravelly sand. 0 6 2 5 5 2 c G R A D A T I O N C U R V E S Parent material; A B L A T I O N T I L L Figure: i v.2 Gradation curve and selected physical analysis for the bassal t i l l deposits too i o u J V (D K Ui z c r -Z Ul O <r Ul a. IOOO 3 IN. too U . S . S T A N D A R D S I E V E SIZE j - IN. N O . 4 NO. IO N O . 4 0 NO. 2 0 0 i - - — — — — — -- -i i -i . . . . — -| - - — — i i i - — . . . --1 1 1 i 1 1 i -- — i - - . . . . | i - - — — — i i i — - - . . . J i — i i i IO I.O GRAIN SIZE IN MILL IMETERS O.I O.OI O OO! COBBUS GRAVEL SAND tit T t\tt f * l I V Coin* | TIM Coiru | Medium I Fine 5IU UK LIAT Sample No. Elev or Depth Classification NatWC L L P L PI B . D . S.G. P Parent m a t e r i a l : 0 samples 0-1 m. SM 17 15 2 216 253 146 S i l t y gravelly sand BASAL TILL non-plastic 0 8 2 3 5 2 C G R A D A T I O N C U R V E S 6 Figure: IV.3. Gradation curve and s e l e c t e d p h y s i c a l a n a l y s i s f o r the glacial-marine deposits too 3 IN. U.S. STANDARD SIEVE SIZE NO. 4 NO. IO NO. *0 NO. 20O - - -1 1-1 - - — 1 1 -1 1 - . . . 1s 1 1 •1-1 -r 1 | 1 1 1 N -1 | 1 | 1 1 I - . . . — -- -1 1 1 r 1 - - — _ _ 1 1 1 I X o U > m or bl z c t-z u u K U a. GRAIN SIZE IN MILLIMETERS COBBUJ CRAVIL SAND — cii T no n iv Cum | Firu CMIM 1 Medium 1 tint 5111 OR tlAT Sample No. Elev or Depth Classification a^tWC LL PL PI B.D. S.G. P Parent m a t e r i a l : 2 samples 0-lmeter CL 23 18 5 L96 2A5 20.0 S i l t y c l a y GLACIAL-MARINE 062552 C GRADATION CURVES Figure: IV.4. Gradation curve and selected physical analysis for the alluvium deposits 100 90 U. 8. S T A N O A R D S I E V E SIZE 3 IN. £ IN. N O . 4 NO. IO N O . 4 0 NO. 2 0 0 - - — . . . — -•- ... • \ 1 1 - \ 1 1 -I s 1 I 1 1 1 - — 1  1 1 -— - - . . . . j — - - - ... - — j j - -— | - — ! :1 1 1 BO X o >-m or bl z U. U oc Ul OL 7 0 OO BO 4 0 3 0 20 10 O IOOO IOO IO I.O GRAIN SIZE IN MILL IMETERS O.I O.OI OOOI COBBUS GRAVU SAND Silt OR OAY Coaru I HIM CoirM | Medium I Fin* Sample No. Elev or Depth Classification NatWC L L P L PI B . Q S G P Parent material: 1 sample 0-1 meter SC 43 17 26 085 238 643 Clayey sand ALLUVIUM 062352 C GRADATION CURVES F i g u r e : IV.5. Gradation curve and s e l e c t e d p h y s i c a l a n a l y s i s - f o r the outwash deposits 100 <E o o > CD or u z C Id U K U OL U.S. STANDARD SIEVE SIZE NO. 4 NO. IO NO. 40 IOOO IOO IO I.O O.I GRAIN SIZE IN MILLIMETERS O.OI OOOI C0B8US GRAVEL SAND Coot* 1 fat Cum | Medium I ,•• Fine SILT OR ClAY Sample No. Elev or Depth Classification NatWC LL P L PI B.D. S.G. P Parent m a t e r i a l : _J?_S.ajnplje£ > 0 - 1 meter SW L 2 5 2/10 4 a o Poorly graded g r a - OUTWASH v e l l y and sandy s o i l s . 062552 C GRADATION CURVES Figure: xv.6. Gradation curve and s e l e c t e d p h y s i c a l a n a l y s i s f o r the fans deposits lOOr o 2 jt v to K bl Z Z bl U K bl IOOO 3 IN. U. S. 8 T A N D A R O S IEVE SIZE N O . 4 NO. IO N O . 4 0 NO. 2 0 0 O O O I G R A I N SIZE IN MILL IMETERS C08BUS GRAVU SAND Corn* 1 Rni Coirie 1 Medium 1 fin* SHI OR CIAY Sample No. Elev or Depth Classification NatWC L L P L PI B.LX S.G. P Parent m a t e r i a l : 8 samples 0-1 meter sw 143 2/12 4 IP Well graded g r a v e l l j FANS and sandy s o i l s 0 6 2 5 5 2 c G R A D A T I O N C U R V E S 278 APPENDIX V FOREST STAND CHARACTERISTICS, ENVIRONMENT AND  VEGETATION TABLES, FOR EACH LANDSCAPE UNIT The variable radius (Prism) sampling method was used to produce the forest stand c h a r a c t e r i s t i c s tables. A com-puter program presented by Klinka (1974) was used to produce the environment and vegetation tables. Part of the program was modified by S. Phelps, computer programmer at the Faculty of Forestry, University of B r i t i s h Columbia. Each landscape unit i s described by three tables: a) FOREST STAND CHARACTERISTICS TABLES b) ENVIRONMENT TABLES c) VEGETATION TABLES 279 The various abbreviations and symbols used i n the en-vironment and vegetation tables are described. 1. Environment Tables The following describe the parameters used i n the en-vironment tables: - Elevation (meters)i - Slope gradient (degrees) - Aspect (as defined i n the hydrology legend, Appendix I) - Bedrock (as defined by Roddick (1965)) - Texture (NSSC, 1970) - Parent materials (as defined i n the landscape unit legend i n Appendix ) - S o i l depth (cm) - Coarse fragments (%) (NSSC, 1970) - Slope position (as defined in the landscape unit legend i n Appendix ) - Erosional features (as defined i n the landscape unit legend i n Appendix ) - S o i l series (see Appendix III) - S o i l subgroup and modifier (CSSC, 1973) - Humus form (Bernier, 1967) - Growth class (Klinka, 1974) - NT/AC (Number of stem per acre) - VOL/AC (Volume per acre i n 100 cubic feet) 280 - S t r a t a coverage (%) As dominant t r e e s A i co-dominant and i n t e r m e d i a t e t r e e s Bs shrub s u p e r i o r B i shrub i n f e r i o r H herb l a y e r M moss l a y e r - Ground coverage (%) H + MS : Humus and m i n e r a l s o i l DW : Decayed wood R + S : Rock and stones 2. V e g e t a t i o n Tables The v e g e t a t i o n d e s c r i p t i o n was done by d i v i d i n g the v e g e t a t i o n i n t o s i x s t r a t a or l e s s , a c c o r d i n g to the d i f -f e r e n t types of v e g e t a t i o n s t r u c t u r e . The s t r a t a a r e : As dominant t r e e s A i co-dominant and i n t e r m e d i a t e t r e e s Bs shrub s u p e r i o r B i shrub i n f e r i o r H herb l a y e r M moss l a y e r MH : bryophytes and l i c h e n s on humus. MW : bryophytes and l i c h e n s on decayed wood. MR : bryophytes and l i c h e n s on rocks and stones. MA : bryophytes and l i c h e n s on t r e e s , the s p e c i e s i s preceded by the l e t t e r T when found on t r e e trunk, and by B when recoded on t r e e branches. Each s p e c i e s of the r e s p e c t i v e s t r a t a i s l i s t e d and ev a l u a t e d f o r t h e i r abundance-dominance and s o c i a b i l i t y . The f o l l o w i n g c l a s s e s were used: 281 ABUNDANCE-DOMINANCE Description Symbols One or two individuals 1 Few individuals, covering 0.5 to 5% of the plot 2 Non-abundant individuals, covering 5-20% of the plot 3 Individuals are abundant, covering 21-40% of the plot 4 Individuals are very abundant, covering 41-60% of the plot 5 Individuals are very abundant, covering 61-80% of the plot 6 Individuals covering 81-100% of the plot 7 SOCIABILITY Description Symbols Plants are growing singly 1 Plants are grouped or tufted 2 Plants are i n troops, small patches or cushions 3 Plants are i n small colonies, i n extensive patches or forming'carpets 4 Plants are i n gread crowds or pure populations 5 TABLE V.1.a. FOREST STAND CHARACTERISTICS FOR THE SH. UNIT IN THE MH. SUBZONE. 1 D Forest Stand Mensuration Tsuga iriertensiana Abies Chamaecypar1 s Pinus amabilis noo tka ten s1 s Monticola Total Volume/Acre i n cu. ':J feet Number of Stem/Acre Average Volume/Tree i n cu. feet Average D.B.H. (inches) Average Height (feet) 946;0 47.5 19.9 15.0 34.5 373. 6 15.6 23.9 13.6 49.0 368.8 14.1 26.1 17.2 37.8 202.8 2.9 67.9 27.5 44.4 1891 .2 80. 1 23.5 15.7 38.2 ENVIRONMENT TABLE L ANOSCAPE UNIT t SLOPE POSIT I ON I SHI SUBALPIN PARKLAND SUB ZONE (MHB ) I PLOT NUMBER 0311 049| 1381 1221 1251 0431 0971 I SLOPE DRAINAGE ORDER I ELEVATION (Ml I SLOPE GRADIENT (DEGREES) I ASPECT I I SOIL | . IBEOROCK (TEXTURE I PARENT MATERIAL t SO IL DEPTH (CM I ICOARSE FRAGMENTS ( t l I SLOPE POSITION IEROSIONAL FEATURES I SOIL SERIES. I H Q O I F I E R ISOIL SUBGROUP 0-2 10-3-5 • 0-2 I 0 -3 1 0 - 2 - 5 1 0 - 3 - 5 I 0-2 I I I I I I I I 1098|112S|U89|1098| 91511037 110 671 01 01 51 01 01 01 51 SMI Hi NI I I I I NI NI NI Ml HBOOl GGlHBGDlBHODlHBODlHBGDlHBGDl I l l l I I I OVI OVl OVI OVl OVl OBI OBI I I I I I I I I I I I I I I SHI I SHI I SHI I SHI I SHll SHI I SHll Fl I I F.I. I I I IHUMUS I HUMUS FORM I TOTAL THICKNESS (CHI DEI OEI OEl DEI DEI DEI DEI LI LI LI LI LI LI LI LF| LFI LFI LF I LF I LF.I LF I I I I I I I I I I I I I I I I I I I I I I I IH-FNI IH-FHIF-MHl I 281 I 221 281 I I I I I I I I I IH-FMI I 561 1 VEGETATION 1 1 1 1 1 1 1 1 I — -1 1 1 1 1 1 1 1 1 AGE (YEARS) 1 3331 2681 3131 2801 2801 2781 4951 1 GROWTH CLASS - DF 1 1 1 1 1 1 1 1 1 - WH 1 1 1 1 1 1 1 1 1 - WRC 1 1 1 1 1 1 1 1 1 - AA 1 1 1 1 1 1 1 1 1 - YC 1 1 1 91 1 1 1 1 1 - SS 1 1 1 1 1 1 1 1 1 - MH 1 91 91 1 91 91 91 91 1 - RA 1 1 1 1 1 1 1 1 1 - PM 1 1 1 1 1 1 1 1 INT/AC 1 671 831 1 601 521 1371 1 1 VOL/AC (PER 100 C.F.I 1 201 111 1 151 131 311 1 1ST RAT A AS LAYER 1 1 1 1 1 1 1 1 ICOVER AGE Al LAYER 1 151 1 1 1 151 1 201 1 ( (1 BS LAYER 1 1 201 81 201 301 201 201 1 Bl LAYER 1 1 851 501 201 601 851 851 1 H LAYER 1 801 751 951 701 901 751 801 1 M LAYER 1 1 351 151 201 SI 1 601 IGROUNO H t MS 1 1 41 41 41 41 41 51 ICOVERAGE OH 1 1 11 11 01 01 21 11 r m R t S 1 1 21 11 21 21 11 01 AOUA TERRA CLASSIFICATION SYSTEM (A.T.C.S.I SEYMOUR WATERSHED TABLF V,.l.b. HEANl I I 1075.81 1.41 I 33.51 I I I I 321.01 I I I 9.01 I 9.01 I I 79.81 18.01 I 16.71 19.71 64.21 80.71 27.01 4.21 0.81 1.31 l\5 CO VEGETATION TABLE - LANDSCAPE UNIT I SLOPE POSITION* SHI SUBALPINE PARKLAND SUBZONE IHH8I TABLE V . l . C . PLOT NUMEER ST NO. SPECIES 1 0 3 1 1 0 * 9 1 1 3 8 1 1 2 2 1 1 2 5 1 0 * 3 1 097 I l i l t SPECIES ABUNOANCE-DOH INANCE AND SOCIABILITY MS RS A I BS BI 1 TSUGA MERTENSIANA 1 3 . l l . 1 1 . 1 4.21 . 12.ll • 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 42.9 3.0 2-4 2 CHAMAECYPARIS NOOTKATENSIS 12.11 . 1 • 1 . 1 2.11 . 12.11 • 1 * 1 . 1 . 1 . 1 . 1 • 1 • 1 • 1 . 1 . 1 . I 42.9 2. 1 2-2 3 ABIES AMABILIS 12.11 . 1 • 1 . 1 . 1 . 12.11 • 1 • 1 • 1 . 1 • 1 • 1 . 1 • 1 . 1 . 1 . 1 . 1 23.6 2.0 7-2 4 PINUS MONT1C0LA 11.11 . 1 • 1 . 1 . I . I . I • 1 • I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 14.3 1.0 1-1 TSUGA MERTENSIANA 1 • 13.112.115.11 4.213.212.11 • 1 * 1 . 1 . 1 . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 85.7 3.5 ?-5 CHAMAECYPARIS NOOTKATENSIS 1 . 12.11 • 11.11 4.213.212.ll • 1 * 1 . 1 . 1 . 1 • 1 . 1 . 1 • 1 . 1 . 1 . 1 71.4 3.0 1-4 ABIES AMABILIS 1 . 12.11 • • 1 • 1 . 12.112.II . 1 . 1 . 1 • 1 • 1 • 1 • 1 . I . 1 . I 42.9 2.1 2-2 PINUS MONT ICOLA 1 . 1 . 1 • l l .1 . 1 . 1 . 1 • 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 14.3 1.0 1-1 5 VACCINIUM MEMBRANACEUM 14. 213.212. 214.1 . 13.114.31 • 1 * 1 . 1 . 1 . ( . 1 . 1 . 1 . 1 . 1 . 1 . 1 85.7 3. 5 2-4 CHAMAECYPARIS NOOTKATENSIS 1 • - 13.113.213.11 3.213.112.11 • 1 * 1 . 1 . 1 . 1 . I . I . I . 1 . 1 . 1 . 1 85.7 3.4 2-5 6 MENZ IES t A FERRUGINEA 13.112.1 1 * 12.1 3.212.113.ll • 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 85.7 3.0 2-3 TSUGA MERTENSIANA 1 • • 12.114. 215.1 . 12.112.11 • 1 * 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 71.4 3.3 2-5 7 CLAOOTHEMNUS PYROLIFLORUS 12.113.11 • 14.11 4.212.11 . 1 • 1 * 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 71.4 3.2 2-4 ABIES AMABILIS 1 • 12.11 12.1 . 11.112.11 * 1 • 1 • I . I . 1 • I • 1 • 1 . 1 . 1 . .1 . 1 57.1 2. 1 1-2 8 VACCINIUM ALASKAENSE 1 • 1 . 1 13.1 4.21 . 13.21 * 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 42.9 3. 1 3-4 9 RHODODENDRON ALBIFLORUM 1 • 12.11 * 1 . 1 . 13.113.31 • 1 * 1 • I . I . 1 • I . I . I . 1 . 1 . 1 . 1 42.9 2.5 2-3 10 SORBUS SITCHENSIS 1 - • 12.11 * 1 . . 12.112.11 • 1 • 1 • I . I . 1 . 1 . 1 • 1 • 1 . 1 . 1 . 1 42.9 7. 1 2-7 PINUS HCNTICOLA 1 • 11.11 • 12.1 2.11 . 1 . 1 • 1 * 1 . 1 . 1 . 1 • I . I . I . 1 . 1 . 1 . 1 42.9 2.0 1-2 11 VACCINIUM OELICIOSUM 1 • 14.213.21 . . 1 . 1 . 1 . 14.11 . 1 • 1 • 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 28.6 3.0 3-4 12 VACCINIUM CAESPITOSUM 1 • 1 . 1 • 1 . • 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 14.3 2-5 4-4 13 PHYLLOOOCE EHPETRIFORMIS 14.11 .15.415.1 2.214.214.21 • 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 85.7 4.2 2-5 1* CASSIOPE MERTENSIANA 13.113.214.215.2 . 13.214.21 • . 1 • 1 . 1 . 1 . 1 . 1 • 1 . 1 • 1 . 1 . 1 . 1 85.7 4.0 3-5 15 LUETKEA PECTINATA 12.113.212.21 . . 12.213.11 • 1 * 1 . 1 . 1 . 1 • 1 • 1 • 1 • 1 . 1 . 1 . 1 71.4 2.6 2-3 VACCINIUM OELICIOSUM I • 12.113.214.1 12.11 . 1 . 1 • | • 1 . 1 . 1 . 1 • 1 • 1 . 1 • 1 . 1 . 1 . 1 57.1 3.0 2-4 16 GALLlhERIA HISPIDULA 14.11 . 1 • 1 . . 12.113.21 • 1 • ,1 • I . I . 1 • 1 • 1 • 1 . 1 . 1 . 1 . 1 42.9 3.0 2-4 17 CAREX NIGRICANS 1 • 13.212.21 . I . I . 13.11 • 1 * 1 . 1 . 1 . 1 . 1 • 1 • 1 • 1 . 1 . 1 . 1 42.9 2.5 2-3 18 RUBUS PEOATUS I • 12.11 • 1 . 1 . 12.113.11 • 1 • 1 . 1 . 1 . 1 . I • 1 • 1 . 1 . 1 . 1 . 1 42.9 2.3 2-3 CHAHAECYPARIS NOOTKATENSIS 1 • 1 . 1 14.1 2.11 . 1 . 1 • 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 28.6 2.6 2-4 19 VERATRUH VIRIOE 1 « 1 . 1 • 1 . 1 . 12.212.11 • 1 • I . 1 . 1 . 1 . 1 • 1 • 1 . 1 . 1 . 1 . 1 28.6 2.0 2-2 20 EFPETRUM NIGRUM 1 • 15.21 • 1 . 1 . 1 . 1 . 1 • 1 * 1 . 1 . 1 . 1 . 1 . 1 • 1 • 1 . 1 . 1 . 1 14.3 3.1 5-5 VACCINIUM MEMBRANACEUM 1 • 1 . 1 • 13.1 1 . 1 . 1 . 1 * 1 • 1 • I . I . 1 • 1 • 1 • 1 . 1 . 1 . 1 . 1 14.3 3.1 5-5 21 CAR EX LAEVICULHIS 1 * 1 . 1 • 1 . 1 . 13.21 . 1 • I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 14.3 2.2 3-3 22 CAREX LUZULINA I • 12.21 * 1 . 1 . 1 . 1,. 1 • 1 * 1 • I . I . 1 • I . I . I . 1 . 1 . 1 . 1 14.3 1.6 2-2 23 GAULTHERIA HISPIDULA 1 • 1 . 1 • 1 . 12.21 . 1 . 1 • 1 * 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 14.3 1.6 2-2 2* JUHCUS ORUMMONOII I • 12.21 • 1 . 1 . 1 . 1 . 1 • 1 • 1 • I . I . 1 • 1 • 1 • 1 • 1 . 1 . 1 . 1 t4.3 1.6 2-2 25 LYCOPODIUM SITCHENSE • • 12.11 • 1 . 1 . 1 . 1 . 1 • 1 • • . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 14.3 1.6 2-2 26 OICRANUM FUSCESCENS 1 . 11.11 • 14.2 1 . 14.21 . 1 • 1 • 1 . 1 . 1 .' 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 42.9 3.1 1-4 27 OICRANUM SCOPARIUN 11.l l . 1 • 1 . I . I . 15.11 • 1 * 1 . 1 . 1 . 1 • 1 • 1 • 1 • 1 . 1 . 1 . 1 28.6 3.1 1-5 00 VEGETATION TABLE - LANDSCAPE UNIT t SLOPE POSITION! SHI SUBALPINE PARKLAND SUEZONE (MH8I PLOT NUMBER ST NC. SPECIES TABLE V.3,,C. |031|049| 13811221 12SI043I097I I I I I I I I I SPECIES ABUNDANCE-DOMINANCE ANO SOCIABILITY I I MS RS MW MR MA 28 RHYTIDIOPSIS ROBUSTA 29 RHYTIDIADELPHUS TRIQUETRUS 30 OICRANUM PALIIDISETUH 31 LESCURAfA BAILEY I' 32 PLAGIOTHECIUM UNDULATUH 33 RHACOMITRIUM CANESCENS 34 RHIZOHNlUM GLABRESCENS OICRANUM FUSCESCENS OICRANUM SCOPARIUM 39 PCLYTRICHUH PILIFERUM RHACOMITRIUH CANESCENS RHYTIDIOPSIS ROBUSTA 36 T-OICRANUM FUSCESCENS nal I . I . 4.2 2.2 3*1 2.1 I I 28.6 3.0 3-4 I 28.6 2.0 1 I 14.3 1.0 1-I 14.3 1.0 1-I 14.3 1.0 1-I 14.3 1.0 1-14.3 1.6 2-2 I 14.3 1.0 I 14.3 1.0 1.0 1.0 1.0 l l . l l . I . I . I . I . I . I I . I . I . I . I . I . I . I . I I 14.3 1.0 l - l to 00 U l TABLE V.2.a. FOREST STAND CHARACTERISTICS FOR THE SH UNIT IN THE CWH, SUBZONE. Forest Stand Thuja Tsuga Abies Chamaecyparis Mensuration p l i c a t a heterophylla amabilis nootkatensis Total Volume/Acre i n cu. 1 2 5 5 3 1 2 g 3 7 2 Q 5 2 g 8362,0' feet Number of Stem/Acre 5.1 92.1 82.9 2.8 182.9 Average Volume/Tree 2 4 6 3 4 > 0 4 4 > 9 1 8 g > 6 4 7 > 2 i n cu. feet Average B.D.H. 3 7 < 9 1 3 > 5 1 4 > 1 3 5 > 6 1 4 ^ 8 (inches) Average Height (feet) 78.9 54.8 66.1 79.5 61.0 ENVIRONMENT TABLE LANDSCAPE UNIT t SLOPE POSITION! SH COASTAL WESTERN HEMLOCK WET SUBZONE (CWHB* I PLOT NUMBER 0791 1101 0261 1331 1531 I SLOPE DRAINAGE ORDER IELEVATION IM) ISLOPE GRADIENT I DEGREES I I ASPECT I I ISOIL I8E0R0CK I TEXTURE I PARENT MATERIAL ISOIL DEPTH (CH) I COARSE FRAGMENTS (!) I SLOPE POSITION IEROSIONAL FEATURES ISOIL SERIES IMOOIFIER I SOIL SUBGROUP I I IHUMUS I IHUHUS FORM -3-M 0-5 I 0-5 I 0-t 10-2-51 I I I I I 762110061 2741 7011 5181 01 271 01 101 SI SW| Wl Wl 01 El I I I I I I I I I HBGDIBHGO|HB0D|BHGDIBHODl SLI SLl LSI SLl LSI MR I RCl Rl RCI Rl 251 I I I I G45I G45I R30I S65| G45I SHI SHI SH| SHI SHI Fl EUl LI LI LI OHFPlOHFPl LFlOHFPI LFI I I I I I I I I I I I I I I I I I I I I H-FHl IF-HMlF-HMl FMl 201 101 191 121 111 Fl I I I CEI SI EUl CEI LI LI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1 1 1 1 1 VEGETATION 1 1 -I 1 1 2471 1 1 4051 1 1 2201 1 1 2701 1 1 3381 | - — 1 AGE (YEARSI 1 GROWTH CLASS - OF 1 1 1 1 1 1 1 - WH 1 1 1 1 51 81 - WRC 1 1 I 61 1 1 1 - AA 1 81 71 1 1 1 1 - YC 1 1 1 1 1 1 1 - SS 1 1 1 1 1 1 1 - MH 1 1 1 1 1 1 1 - RA 1 1 1 1 1 1 1 - PM 1 1 1 1 1 1 1 NT/AC 1 1851 2481 2251 1311 1261 1 VOL/AC (PER 100 C.F.I 1 1351 911 451 711 901 1 STRATA AS LAYER 1 1 1 501 201 1 1 COVERAGE Al LAYER 1 551 451 1 101 651 1 (?) BS LAYER 1 401 351 351 201 201 1 Bl LAYER 1 851 151 801 751 451 1 H LAYER 1 701 51 551 651 401 1 H LAYER 1 551 101 751 601 851 1 GROUND H t MS 1 21 41 31 31 41 1 COVERAGE OW 1 41 21 21 31 31 1 (XI R C S 1 ol 11 11 01 Ol AOUA TERRA CLASSIFICATION SYSTEM IA.T.C.S.I SEYMOUR WATERSHED TABLE V.2.b. I MEAN I 652.4 7.4 25.0 14.4 296.0 6.5 6.0 7.5 183.0 86.4 35.0 43.8 30.0 60.0 47.0 57.0 3.2 2.8 0.4 VEGETATION TABLE - LANDSCAPE UNIT t SLOPE POSITION! SH COASTAL WESTERN HEMLOCK WET SUBZONE ICWHBI TABLE V.2. PLOT NUMBER 107911101026113311 S31 I I I I I I I I I I I I I I ST NO. SPECIES SPECIES ABUNDANCE-DOMINANCE ANO SOCIABILITY ? MS RS H 1 TSUGA HETEROPHYLLA I . I . 13.113.H . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 40.0 3.0 3-3 2 THUJA PLICATA 1 t 1 . 14.11 . 1 . 1 . 1 , 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 3.0 4-4 3 ABIES AMABILIS 14.213.11 . 12.112.11 . 1 . 1 . I . I . I . I . I . I . I . I . I . I . I . I 80.0 3.2 2-4 TSUGA HETEROPHYLLA 1 . 14.21 . 12.113.11 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I 60.0 3. 1 7-4 THUJA PLICATA 13.ll . 1 . 1 . 12.1| . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . 1 . 1 . 1 40.0 7.4 2- 3 4 CHAMAECYPARIS NOOTKATENSIS 1 . 1 . 1 . 1 . 13.11 . | . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I 20.0 2. 3 3-3 ABIES AMABILIS 13.213.114.1J3.213.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . l . l . l . l . l . l i o o . o 3.5 3-4 TSUGA HETEROPHYLLA 14.214.213.112.112.11 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I 100.0 3.4 2-4 THUJA PLICATA I . I . 12.11 . 1 . 1 . 1 . 1 . j . I . I . I . I . I . I . I . I . I . I . I 20.0 2.0 2-7 ABIES AMABILIS 14.213.113.114.213.21 . I . I . 1 . 1 . I . I . I . I . I . I . I . I . I . 1100.0 3.6 3-4 5 VACCINIUM ALASKAENSE I5.3l2. l l . 12.113.21 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 80.0 3.4 7-5 TSUGA HETEROPHYLLA 13.11 . 13.113.213.11 . 1 . 1 • I . I . I . I . I . I . I . I . I . I . I . I 80.0 3.2 3-3 6 MENZIESIA FERRUGINEA 12.11 . I 2 . l f 2 . l l 2 . i l . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 80.0 2.2 7-2 7 VACCINIUM PARVIFOLIUH I . I . 13.112.11 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 40.0 7.4 2-3 8 VACCINILM OVALIFOLIUH I . I . 14.11 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 3.0 4-4 9 GAULTHERIA SHALLON I . I . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . 1 . 1 . 1 . 1 20.0 7.0 2-2 10 RUBUS SPECTABILIS I . I . I . 12.11 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 2.0 2-2 11 SORBUS SITCHENSIS 1 . I . 12.11 . 1 . 1 . 1 . 1 • I . I . I . I . I . I . I . I . I . I . I . I 20.0 2. 0 2-2 12 SAM8UCUS RACEMOSA 1 . 1 . 1 . 1 . 11.11 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 1.0 1-1 13 CLINTONIA UNIFLORA 15.21 . 11.113.212.ll . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I 80.0 3.3 1-5 14 CORNUS CANADENSIS 13.21 . 13. 112.112.21 . 1 . 1 . , 1 . 1 . 1 . 1 . 1 . t . 1 . 1 . 1 . 1 . 1 . 1 80.0 3.0 2-3 15 8LECHNUH SPICANT 12.11 . 11.113.212.11 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 80.0 2.4 1-3 16 RUBUS PEDATUS y 14.21 . 1 . 14.213.21 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 60.0 3.4 3-4 ABIES AMABILIS 13.212.11 . 1 . 12. l l . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 60.0 2.4 2-3 TSUGA HETEROPHYLLA 12.212.11 . 13.21 . 1 . 1 . 1 . 1 . 1 * 1 . I . I . I . I . I . I . I . I . I 60.0 2.4 2-3 VACCINIUM PARVIFOLIUH 1 . I 2 . l l 2 . l l . 13.21 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 60.0 7.4 2-3 17 GOOOYERA OBLONGIFOLIA 11.11 . 12.11 . 11.11 . 1 . 1 . 1 . . 1 . 1 . I . I . I . I . I . I . I . I . I 60.0 2.0 1-2 18 OBYOPTERIS AUSTRIACA I . I . I . 12.112.1 I . I . I . 1 . 1 . I . I . I . I . I . I . I . I . I . I 40.0 7. 1 2-7 VACCINIUM ALASKAENSE 1 . 12.l l . 1 . 12.21 . 1 . 1 • I . I . I . I . I . I . I . I . I . I . I . I 40.0 2.1 2-2 19 LISTERA CAURINA 11.11 . 1 . 1 . 11.11 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 40.0 1.0 1-1 GAULTHERIA SHALLON I . I . 13.11 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 2.3 3-3 20 SHILACINA STELLATA 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 2.3 3-3 21 CORALLORHIZA SPP. 1 . 1 . 1 . 1 . 12.11 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 7-0 2-2 22 GYMNOCARPIUM ORYOPTERIS I . I . I . 12.11 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 2.0 2-2 23 LACTUCA MURALIS 1 . 1 . 1 . 1 . 12.11 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 2.0 2-2 24 LINNAEA BOREAL IS 1 . 1 . 1 . 1 . 12.ll . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I 20.0 7.0 7-7 25 LYCOPOOIUM CLAVATUH I . I . I . 12.11 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I " . 1 20.0 2.0 7-2 26 PYROLA SECUNOA I . I . I . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I 20.0 2.0 2-2 VEGETATION TA8LE - LANOSCAPE UNIT I SLOPE POSITION! SH COASTAL WESTERN HEMLOCK WET SUBZONE (CWHBI PLOT NUMBER ST NO. SPECIES 107911101026113311531 I I SPECIES ABUNDANCE MH HW HR MA 27 STREPTOPUS STREPTOPOIOES THUJA PLICATA 26 TIARELLA TRIPOLIATA VACCINIUM OVALIFOLIUM 29 RHVTIOIOPSIS ROBUST A 30 HYLCOOMIUN SPLENOENS 31 PLAGIOTHECIUM UNOULATUM 32 OICRANUM FUSCESCENS 33 CLAOPOOIUM CRISPIFOLIUM 34 RHYTIOIADELPHUS LOREUS 35 ISOTHECIUM STOLONIFERUM PL AG IOTI-EC IUM UNOULATUM RHYTIOIOPSIS ROBUSTA OICRANUM FUSCESCENS HYLOCOMIUM SPLENOENS HYLOCONIUH SPLENOENS PLAGIOTHECIUM UNOULATUM 36 RHACCMITRIUM BREVIPES 37 PH1Z0HNIUH GLA8RESCENS RHYTIOIACELPHUS LOREUS 38 B-OICRANUM FUSCESCENS 39 B-ISOTHECIUM STOLONIFERUM 40 B-PLAGIOThECIUM UNOULATUM 41 8-RHIZOHNIUH GLABRESCENS 42 T-CLAOPOOIUM CRISPIFOLIUM 43 T-OICRANUM FUSCESCENS 44 T-IS0THEC1UM STOLONIFERUM . 1 . 1 . 1 . 1 . I , I . 12.11 rr Tt 14.21 14.21 II . I 11.11 11.11 I . I 12.11 I . I 11.11 l i . i l LITY TABLE V.2 MS RS I 20.0 2.0 2-7 I 20.0 2.0 2-2 I 20.0 2.0 2-2 I 20.0 2.0 2-2 I 60.0 4 .1 2-6 I 20.0 3.0 4 - 4 I 20.0 I 20.0 I 20.0 3.0 4-4 2.3 3-3 1.0 1-1 1 60.0 2.1 1-2 1 20.0 2.0 2-2 1 20.0 7.0 2-2 1 20.0 2.0 2-2 1 20.0 1.0 1-1 1 20.0 1.0 1-1 1 20.0 1.0 1-1 1 20.0 1.0 l - l 1 20.0 1.0 1-1 1 20.0 1.0 1-1 1 20.0 1.0 1-1 I 20.0 1.0 1-I 20.0 1.0 1-I 20.0 1.0 1-I 20.0 1 .0 1-I 20.0 1.0 1-I 20.0 1.0 1-I 20.0 1.0 1-TABLE V.3.a. FOREST STAND CHARACTERISTICS FOR THE SH UNIT IN THE MH SUBZONE. Forest Stand Mensuration Tsuga Abies Chamaecyparis mertensiana amabilis nootkatensis Total Volume/Acre i n cu. feet Number of Stem/Acre Average Volume/Tree i n cu. feet Average D.B.H. (inches) Average Height (feet) 3906 94.5 41 . 3 16.0 52.6 3162 98.3 32. 1 13.2 54.0 1990. 3 26.7 74.5 21.5 65. 1 9058.3 219.5 41 . 2 15.4 54.7 ENVIRONMENT TABLE LANDSCAPE UNIT t SLOPE POSITION! SH SUBALPINE FOREST SUBZONE IHHAI I PLOT MJHBER I 1261 1181 0961 I SLOPE DRAINAGE OROER I EL E VAT I ON (H) ISLOPE GRADIENT I DEGREES I IASPECT I I ISOIL | I BEDROCK I TEXTURE I PARENT MATERIAL ISOIL DEPTH (CM) I COARSE FRAGMENTS III I SLOPE POSITICN IEROSIONAL FEATURES I SOIL SERIES MODIFIER I SOIL SUBGROUP I | IHUMUS I IHUMUS FORM I TOTAL THICKNESS (CMI I VEGETATION I AGE (YEARSI I GROWTH CLASS I I I I I I NT/AC (VOL/AC I STRATA I COVERAGE I IX) I OF WH WRC AA YC SS HH RA PM I IGROUND I COVERAGE I (XI (PER 100 C.F.I AS LAYER Al LAYER BS LAYER Bl LAYER H LAYER LAYER I MS M H DW R C S 1 0-2-51 0-3-51 0-3 1 1 1 9151 11891 <45! 1 19| 441 01 1 Wl SWl NI 1 1 1 1 IHBOOI HBODI HBGDI 1 SLl LSI SLl 1 CVl CVl MVl 901 1 G60I G4SI 1 SHI SHI SHI VA Fl 1 PA| PAI SI 1 LI LI LI IMHFP MHFP OHFPl 1 1 I 1 IH-FH H-FM 1 1 201 36 201 | 1 1 1 1 1 1 '/20 305 4421 l 1 1 1 1 1 1 9 1 1 1 1 9 81 1 • 1 1 1 1 176 300 1 182  1 75 93 1 1051 601 1 50 1 60 1 101 1 10 30 1 251 1 60 70 1 351 1 20 1 10 1 751 1 65 1 50 1 251 1 4 1 3 1 41 1 2 1 1 1 21 1 1 3 1 01 AOUA TERRA CLASSIFICATION SYSTEM (A.T.C.S. I SEYMOUR WATERSHED TABLE ,V.3.b. MEAN I 1016.3 I 21.01 I 90.01 I I 25.31 I 389.01 I I I I 9.01 8.51 I I 219.31 91.01 60.01 40.01 21.71 55.01 35.01 46.71 3.71 1.71 1.31 VEGETATION TABLE - LANDSCAPE UNIT SLOPE POSITION: SH SUBALPINE FOREST SUBZONE (HHAI PLOT NUHBER ST NO. SPECIES TABLE V . 3 . C . I126lll8l096l I I I I I I I I I I SPECIES ABUNDANCE-DOMINANCE AND SOCIABILITY MS RS AS At BS Bl MH MM. 1 ABIES AHABILIS 2 TSUGA HETEROPHYLLA 3 TSUGA MERTENSIANA TSUGA MERTENSI ANA ABIES AHABILIS 4 CHAHAECYPARIS NOOTKATENSIS ABIES AHABILIS TSUGA MERTENSIANA " TSUGA HETEROPHYLLA 5 VACCINIUH ALASKAENSE 6 HEKMESIA FERRUGINEA ABIES AHABILIS 7 VACCINIUH MEHBRANACEUM 8 CLADOTFEHNUS PYROLIFLORUS TSUGA HERTENSIANA TSUGA HETEROPHYLLA VACCINIUH ALASKAENSE 9 RUBUS PEOATtfS ABIES AHABILIS 10 CL INTONIA UMFLCRA VACCINIUH MEHBRANACEUM 11 CCRNUS CANADENSIS 12 BLECHNUM SPICANT CLACOThEMNUS PYROLIFLORUS PENZIESIA FERRUGINEA 13 SHI LAC INA STELLATA 1* STREPTOPUS STREPTOPOIOES TSUGA MERTENSI ANA 15 VACCINIUH PARVIFOLIUM 16 DICRANUH FUSCESCENS 17 RHYTIDIOPSIS ROBUSTA 18 RHIZOHNIUM GLABRESCENS DICRANUH FUSCESCENS 19 RHYTIOIAOELPHUS LOREUS I - I I . t I . I 15.115.112.II 14.113.112.II 15.114.II . I 13.113.113.21 I . I 5 . l l 2 . l l 12.11 . 1 . 1 14.114.113.21 14.114.112.II 14.112.113.21 12.1(2.112.II 13.115.II . I I . I 2 . l l 2 . l l 12.11 . 1 . 1 13.112.112.II 14.21 .15.31 13.11 . 13.11 13.11 . 13.21 I . 12.112.II 13.Il . I 12.11 . I I . 12.11 I . 12.11 12.11 I . I 12.11 12.11 I . I 12.11 1 * 1 I . I 15.214.213.21 15.214.213.21 13.21 . 1 . 1 15.21 13.21 I . I 33.3 2.5 3-3 . I 33.3 7.0 2-7 . I 33.3 2.0 2-2 I 100.0 4.4 2-5 I 100.0 3-4 ?-4 I 66.7 4.2 4-5 1100.0 3.3 3-3 I 66.7 3.5 2-5 I 33.3 2.0 2-2 I 100.0 4.1 3-4 I 100.0 4.0 2-4 I 100.0 3.4 2-4 I 100.0 2.3 2-2 I 66.7 4-0 3-5 I 66.7 2.7 2-2 I 33.3 2.0 2-2 1 100.0 3.0 2-3 I 66.7 4.2 4-5 I 66.7 3-1 3-1 I 66.7 3.1 3-3 I 66.7 2.2 2-2 I 33.3 7.5 3-3 I 33.3 2.0 ?-? I 33.3 7.0 7-2 I 33.3 I 33.3 I 33.3 I 33.3 I 33.3 2.0 2-2 2.0 2-2 2.0 2-2 2.0 2-2 2.0 2-2 1100.0 4.3 3-5 I 100.0 4.3 3-5 I .33.3 2.5 3-3 I 33.3 3.5 5-5 I 33.3 2.5 3-3 NJ TABLE V.4.a. FOREST STAND CHARACTERISTICS FOR THE SH UNIT IN THE MH, SUBZONE. Forest Stand Mensuration Tsuga Abies Chamaecyparis mertensiana amabilis noo'tk'a ten's i s Total Volume/Acre i n cu. feet Number of Stem/Acre Average Volume/Tree i n cu. feet Average D.B.H. (inches) Average Height (feet) 491 152 . 3 3.2 5.8 8.2 173 57.3 3.0 8.0 20.0 541 504.8 1 . 1 2.9 7.2 1205 714.4 1 . 7 3.9 8.5 ENVIRONMENT TABLE LANDSCAPE UNIT I SLOPE POSITION! SM SUBALPINE PARKLAND SUBZONE I MHB I I PLOT NUMBER I 1451 ISLOPE ORAINAGE ORDER I EL EVAT I ON (M) ISLOPE GRADIENT (DEGREES I IASPECT I ISOIL I BEDROCK (TEXTURE I PAR ENT MATERIAL ISOIL DEPTH (CM! ICOARSE FRAGMENTS It) ISLCPE POSITION IEROSIONAL FEATURES ISOIL SERIES I MODIFIER I SOIL SUBGROUP I I HUMUS I HUMUS FORM I TOTAL THICKNESS (CH) I VEGETATION I AGE (YEARS) I GROWTH CLASS - DF I - WH I - WRC I - AA I - YC I - ss I - MH I - RA I - PM INT/AC IVOL/AC (PER 100 C.F.I I STRATA ICOVERAGE I H I I I I GROUND ICOVERAGE I I XI AS LAYER Al LAYER BS LAYER Bl LAYER H LAYER M LAYER H £. MS OW R £ S 0-2 I I 12201 51 . W| I I I I HF| SLl CVl 551 I SHI Rl LSI LI LFI I I I I H-FMI 51 3721 I 91 I I 7141 121 I 201 201 301 901 151 51 II II AQUA TERRA CLASSIFICATION SYSTEM (A . I . e .S. I SEYHOUR WAT ERSHED TABLE V.4, I HEANl 1219.5 5.0 55.0 5.0 372.0 9.0 714.0 12.01 20.0 20.0 30.0 90.0 15.0 5.0 1.0 1.0 VEGETATION TABLE - LANDSCAPE UNIT SLOPE POSI HON I SH SUBALPINE PARKLAND SUE20NE (MHB ) PLOT NUH8ER ST NO. SPECIES A I 1 TSUGA MERTENSIANA BS TSUGA Mg RT 6 NSI ANA 2 ABIES AMABILIS B I 3 CHAMAECYPARIS NOOTKATENSIS TSUGA MERTENSIANA 4 RHODODENDRON ALBIFLORUM ABIES AMABILIS 5 SORBUS SITCHENSIS H 6 CAREX NIGRICANS 7 VACCINIUM HEMBRANACEUM 8 LUETKEA PECTINATA 9 VACCINIUM OELICIOSUM 10 PHYLLOGOCE EMPETRIFORMIS CHAMAECYPARIS NOOTKATENSIS TSLGA MERTENSIANA MH 11 DICRANUH FUSCESCENS 12 OICRANUM SCOPARIUM 13 ERACHYTl-EC IUM SPP. TABLE V.4 11451 1 I I I I I I I I I I I I I I I I l_ _ SPECIES ABUNOANCE-OOMINANCE ANO SOCIABILITY P MS RS |4.1| . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 100.0 4 . 3 4-4 —— K . l l . l . l . l . l . l . l . l . i . i . . 1 . 1 . 1 . 1 , 1 . 1 . 1 . 1 . 1100.0 4.3 4-4 11.11 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 '•2 1-1 13.21 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3 . 3 3 - 3 13.11 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3 . 3 3 - 3 12.11 . l . l . l . l . l . l . l . i . i • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . HOO.O ?. 3 7 -7 11.11 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 100.0 1.2 l - l 11.11 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 1.2 1-1 17.51 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 7.3 7-7 17.51 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I ioo.o 7.3 7-7 16.31 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 6.3 6-6 13.21 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3.3 3-3 12.21 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 2.3 2-7 11. l l . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 1.2 l - l 11.11 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 0 0 . 0 1.2 1-1 13.21 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3.3 3-3 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3.3 3-3 12.21 . l . l . l . l . l . l . l . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 2.3 2-2 TABLE V.5.a. FOREST STAND CHARACTERISTICS FOR THE ST UNIT (0-5.SLOPE) IN THE CWH,_ SUBZONE. Forest Stand Pseudotsuga Thuja Tsuga Abies Mensuration menziesii p l i c a t a heterophylla amabilis Total Volume/Acre i n cu. feet Number of Stem/Acre Average Volume/Tree i n cu. feet 837.2 3.6 232.5 Average B.D.H. (inches) 30.7 Average Height (feet) 124.5 6641 .5 28.2 235.5 31.8 101.8 6001 .7 127. 3 47. 2 14.3 71 .2 399. 1 17.7 22.5 9.1 51 . 1 13879.5 176.8 78.5 16.9 75.1 ENVIRONMENT TABLE LANDSCAPE UNIT l SLOPE POSITION* ST AOJA TERRA CLASSIFICATION SYSTEH (A.T.C.S. I SEYMOUR WAT ERSMED COASTAL WESTERN HEMLOCK WET SUBZONE (CWHBI TABLE V.5 I PLOT NUMBER I 1161 0391 0201 OOBl 0301 0051 0271 0471 0131 056) 0781 1111 1281 0541 0531 OlOl 0681 0521 0511 ISLOPE DRAINAGE OROER I EL E VAT ION (Ml ISLOPE GRADIENT (DEGREES I IASPECT I | ISOIL I r-I BEDROCK I TEXTURE I PARENT MATERIAL ISOIL DEPTH (CMI I COARSE FRAGMENTS ( X ) I SLOPE POSITION I EROSIONAL FEATURES ISOIL SERIES IMOOIFIER ISOIL SUBGROUP I HUMUS I I HUMUS FORM I TOTAL THICKNESS (CMI SW 0-5 I 0-5 I 5491 427 301 30 Wl I I I I BHGOl HN LSI LS MCI MC 501 G40I R40 ST I ST VI F SNI CE I L OFHPlOHFP I I I I IH-FM 61 15 0-5 I 0-5 I 4571 366 451 35 SWl NE I I I BHGOl BHOO SLl SL MCI CM I 208 S40I R45 ST I ST Fl V CEI SN LI OHFPIOFHP I I I I H-FHlF-HM 121 15 1 1 i i I | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VEGETATION 1 1 i i 1 1 1 1 1 1 • 1 l • 1 1 " 1 1 1 1 1 AGE (YEARS) 1 2751 4511 1041 2221 2201 1061 1131 2001 851 1 GROWTH CLASS - DF 1 1 1 1 1 1 1 1 1 - WH | | 31 51 71 21 1 1 1 - WRC 1 31 91 1 1 1 1 1 31 71 1 - AA 1 1 1 1 1 1 71 1 1 - YC | | 1 1 1 1 1 1 1 - SS 1 1 1 1 1 1 1 1 1 - MH 1 1 1 1 1 1 1 1 1 1 - RA - PM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NT/AC 1 2331 1711 1051 1631 1501 88 1 3001 961 5161 2411 1 VOL/AC (PER 100 C.F.I 1 1541 1761 1331 1101 1191 1431 1731 1261 1641 1341 1 STRATA AS LAYER 1 301 601 351 401 601 65 1 701 551 651 251 1 COVER AGE Al LAYER 1 701 201 451 451 351 401 301 251 451 751 1 (XI BS LAYER 1 151 301 301 351 451 351 201 401 251 251 1 Bl LAYER 1 351 451 151 401 301 651 251 301 351 151 1 H LAYER 1 .751 401 401 851 251 701 751 801 401 101 1 M LAYER 1 501 351 401 801 251 55 1 3 1 201 801 351 1 GROUND H £ MS I 31 31 31 41 41 41 1 31 31 21 1 COVERAGE OW 1 21 31 21 21 21 11 1 31 11 21 1 ( «l R £ S 1 21 11 21 11 01 11 1 11 21 41 0-5 I 0-5 I 0-5 I 0-5 I 0-5 I 0-5 I I I I I 3351 579 1 3051 5791 6401 366 371 381 301 331 381 34 SWl NE| El El SWl S I I l l l I I I I I I I I I I I I I I I H. FIHBOOIBHGOIHBGO18HGDIBHGD LSI SLl LSI SLl LSI LS CMl CBl CMI CMI CBl CB I I I I I G40I R40I R30I G30I B95I B90 ST| STI STI STI STI ST I VI Fl I FVAl VA SNI CEI CEI CEI TAI TA I LI Ll LI LI L OFHPIOHFPIOHFPIOHFPI LFI LF I I I I I I I I I I I l l l I l l l F-HMlH—FMlF-HMlH-FHlH-FHl 101 19| 141 141 151 29 0-5 I 0-5 I 0-5 I 0-5 I 0-5 I 0-5 I 0-5 I 0-5 I 0-5 I I I I I I I I I I 2741 9151 4571 4271 4271 3351 3051 5181 3661 301 321 NE I Wl 251 Wl 381 Wl 431 Wl 331 Wl I I 371 321 441 SWl NWl NWl I I I 1 I I I I I HBGD I BHGD IH BOO IHBOD IHBODIHBOO I BHODl SHOD I BHODl SLl LSI LSI SLl LSI LSI LSI LSI SLl CBl Cl CRl CRI CRI CRI CRI RCI RCl I 551 I I I I I I I G40I G45I R30I G30I R30I R30I G40I G60I S70I STI STI STI STI STI STI STI STI STI I VI I I I Fl I VI VI TAI CEI CEI CEI CEI CEI CEI CEI CEI I LI Ll LI LI LI LI LI Ll OFHPIOHFPIOHFPIOHFPlOHFPlOHFPlOHFPIOHFPIQHFPI I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IH-FMIH-FMIH-FMIF-HMIH-FMIH-F MIH-F Ml 61 181 141 131 101 281 101 91 I I H-FM I 141 I I 1071 2581 1741 1281 1401 1731 16&I 1401 2041 51 251 651 201 301 801 401 31 31 01 I I I I I I I HEANl 4 5 4 . 1 3 4 . 9 104.3 1 4 . 3 181.4 61 91 31 71 1 61 71 51 5. 51 1 1 1 1 21 1 1 I 4.81 1 1 1 1 1 1 1 1 1 1 | 1 | 1 1 1 6.0 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 2461 1 651 1341 1221 1 2 891 1 611 1 901 1 771 177.0 1501 781 131 1 1711 1571 m i 1781 1421 13 8.5 351 201 501 401 551 601 301 451 45.5 251 701 451 251 201 151 5.51 251 40. B 201 301 351 351 451 201 101 251 28.4 101 201 301 251 451 651 601 301 34.2 51 901 701 601 651 83 1 95 1 701 60.8 51 701 401 701 551 551 25 1 251 43.9 41 31 31 31 21 31 31 21 3. 1 21 31 21 21 41 31 31 11 2 .3 11 31 21 21 01 11 21 41 1.6 VECE TAT ION TABLE - LANOSCAPE UNIT t SLOPE POSITION! ST COASTAL WESTERN HEMLOCK MET SUBZONE ICWHBI TABLE 'V.5.C. PLOT NUMBER ST NO. SPECIES I 1161 03910201008103010C51027104710131056107811 1111281054 10531 0101068 I 052 1051 I SPECIES ABUNDANCE-DOMINANCE A NO SOCIABILITY MS RS AS AI BS BI 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 THUJA PLICATA TSUGA HETEROPHYLLA PSEUDOTSUGA FENZIESII ABIES AMABILIS TSUGA HETEROPHYLLA THUJA PLICATA ABIES AMABILIS CORNUS CANADENSIS ACER CIRCINATUH TSUGA HETEROPHYLLA TAXUS 8REVIF0LIA ABIES AMABILIS THUJA PLICATA ACER CIRCINATUH ALNLS RUBRA TSUGA HETEROPHYLLA VACCINIUM PARVIFOLIUH VACCINIUM ALASKAENSE ABIES AMABILIS MEM IES IA FERRUGINEA RUBUS SPECTABILIS ACER CIRCINATUH THUJA PLICATA OPLCPANAX HORRIDUH TAXUS BREVIFOLIA VACCINIUM OVALIFOLIUM SAMBUCUS RACEHOSA BLECHNUH SPICANT CORNUS CANADENSIS POLYSTICUM MUNITUH GAULTHERIA SHALLON TIARELLA TRIFOLI ATA SMILACINA STELLATA VACCINIUH PARVIFOLIUH TIARELLA UNIFOLIATA CRYCPTERIS AUSTRIACA GOCDYERA OBLONGIFOLIA CLINTONIA UNIFLORA |4 ,1 )4 . 214 .114 .113 .115 .114 .U5.214 .113 .112 . I I . I 2.114.114.21 5.114.2 I 2.11 4.11 94.7 4.? 7-5 I . 1 3 . l l . 1 . 1 . | 3 . 113.112.114. II . 13.114.21 . 13.11 2.11 3 . 11 3 . l l 3. 117.11 6ft.4 3.7 7-5 I . I 3 . l l 2 . i l . 1 . 1 . 13.11 . I 3 . l l 2 . l l . 1 . 1 . 1 . 1 . 13.11 . 13.112.11 47.1 7.5 2-3 I . I . I . I . I . I . I . 12.11 . I . 12.113. I I . 1 . 1 . I . I . I . I . I 15.fi 7.0 2-3 14.21 3 .114 .114 . I I4 . I I4 .114 . I I 3 . II 4. 11 5.214.213. II 5. 114. 11 3.1 13 . 112 . 114 . 11 3.1 1100.0 4.1 2-5 13.112.112.II 73.7 3.0 7-4 I . I - I . I 31.6 7.1 1-3 I . I . I . I 5.3 1.0 7-7 I . I . I . I 5.3 1.0 l - l 1 2 . 1 1 2 . 1 1 2 . 1 1 3 . 1 1 2 . l l . I . 12 .114 .113 . l l . I . 14. 112.112.II 13.21 . I . 11.11 . 1 . 1 . 12.11 . I . 12.112.1 12.1 I . 1 . 1 I . I . I . 12.11 . 1 . 1 . l . l . l . l . l . l . l . i . i I . I . I . I . I . I . I . I . I . I . 11.11 . 1 . 1 . 1 . 1 I 3 .114. I I 3 . 113 .114 .113 .112 . I I3 . I I 4 .113 .113 .112 . 11 3 . 11 3. 11 3 . l l 5 . II 3.11 3 . 113. 1 1100.0 I . 12.112.11 . 13.111.11 . 12.11 . 1 . 1 . 1 . 12.112.112.111.112. I I 13.112. I I . I . 12.113.11 . 12.111.11 . 12.112.112.11 . 1 . 1 . 1 . 1 I . I . 12.112.112.112. I I . 12.11 . 12.11 . 1 . 1 . 1 . 12.11 . 13.11 I . I . I . I . I . I . 13.11 . l . l . l . l . l . l . l . i . i . I I . I . 12.11 . 1 . 1 . I . I . I . l - l . I . I . I - I . I - I - I 12.11 57.9 I . I 47.4 I . I 42-1 I . I 5.3 3.5 2-5 7.2 1-3 2.2 1-3 7.1 2-3 7.0 3-3 . 1 . 1 5.3 1.0 7-2 12.114 12.213 12.112 I . 12 11.112 1 2 . l l I . I I . 12 12.11 I . 12 I . I 12.11 .213.112.114.314.113.113.114.11 . 12.11 . 14. 113. 11 3. 11 3 . 113 . 1 1 4 . 113. 11 ,11 3. 112.II 2.11 3 .213 . I I 2 . I I 3 .112 .112 . I I 2 .11 . 12.112.112.114.213. l l 2 . II 112.11 I I . I I . 14.21 12.112.11 l l . I I . 112 . I I . |2 . I I . 11.11 . 12.11 . 1 . 1 .11 . 11.112.11 . I . 13.11 . I .112.11 . 1 . 1 . I . 12.112.11 . 12.11 . 1 . 1 12.1 12 . I I1 .113.113.115.2 12. I I2 . I I 13.11 . I . 12 .112.112.112. I I . I 13.112. II 14.213.1 I I . I I . 1 2 . l l . 12.11 . 1 . 1 . 1 . 12.111. I I . 17.11 . I 2 . l l 2 . l l . I . 1 2 . l l . I . I . I I . l l . 1 . 1 14.112.11 . 12.111. I I . 1 . 1 . 1 . 12.11 . I I . I . 13.11 . 1 . 1 . 1 . 1 . 12.II . 12.11 I 2 . l l 2 . l l . I . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 I . I . 12.11 . 1 . 1 . 1 . I l . l l . 1 . 1 . 1 l . l . l . l . l . l . l . i . i . 12.112.I I I . I . I . I . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 I I 12.11 I . I I . I 14.21 . 14. 13 .212 .112 . 12.11 . 13. I . 14.21 . 12.21 . 12. I . I I . I 14.21 13.11 I I 12. I I . 12 .111 . 12.11 . I I . 112.11 3. II . I I . 114.111. I . 12. 112.111. I . I I . I . I , 1 1 3 . l l . 12.11 . 111.11 . II . I . 114. 112* 11. 12. 114.213. I . I . 114.212. 12.11 . 12.11 . I . 13. I . I , l l . 13 I - 12. I I . 11 . l l . 12. 112. 12. 112. 13. 3 12 12. 11 . II l l l l 112. I I '. 112. I . I . II . I . I . I 12.11 I . I II . I I . I I l . l l II . I 14.11 13.11 I . I I . I 14.214.113.113.112.113.113.11 I 5.2 12.II3.II2.II4.21 5.2 12.II 14.212.112.112.II . I - 14.11 14.2 l l . II 3. II 2. II 5. 2 I 2. 111. 11 I . 12.112.112. II . I . 12.11 14.212.112.II . 1 . 1 . I l . l l 12.112.112.1 I . 14.212.112.11 14.21 . 1 . 1 . 1 . 1 . 1 . 1 I . I 2 . l l 2 . l l 3 . l t . 1 . 1 . 1 I . I . I . I l . l l 14.21 . 1 . 1 . 1 . 12.1 I 13.11 94.7 94.7 73.7 52.6 47.4 36.8 31.6 31.6 26.3 26.3 21.1 15.B 78.9 63.4 63.4 63.2 47.4 42.1 42.1 36.8 36 .8 36.8 31.6 3.5 2-4 3.0 2-4 3.1 1-5 2.5 2-4 7.0 1-7 2.0 7.2 7.1 7.1 7.0 2.0 2.0 3.4 3. 1 3. 1 3.1 7. 1 7.3 1-4 2.3 2-4 3,0 1-4 2.3 2-3 1.5 1-2 2.3 1-4 1-2 1-4 1- 3 2- 3 1- 2 7-7 2- 2 2-4 1-5 1-4 1-5 1-2 M CO VEGETATION TABLE - LANDSCAPE LNIT I SLOPE POSITION: ST COASTAL WESTERN HEMLOCK WET SUBZONE ICWHBl TABLE V.5 . C . PLOT NUMEER ST NO. SPECIES MW 47 PLAGIOTHECIUM UNDULATUM 48 RHYTIDIOPSIS ROBUSTA 49 HYLOCCM1UM SPLENDENS 50 RHYTIOIAOELPHUS LOREUS 51 RHIZOMNIUM GLABRESCENS 52 ISCPTERYGIUM ELEGANS 53 OICRANUM FUSCESCENS 54 ISOTHECIUM STOLONIFERUM 55 APBLYSTEGIUH SERPENS 56 EURHYNCHIUM OREGANUM 57 LYCOPODIUM SELAGO 58 RHACCMITRIUM HETEROSTICHUM RHYTIOIAOELPHUS LOREUS DICRANUH FUSCESCENS HYLOCOMIUM SPLENDENS PLAGIOTHECIUM UNOULATUM I 116 1 039 10 2 01008103010051027 1047101310561 078 I111 11281054 SPECIES ABUNOANCE-OOHINANCE AND SOCIAB 25 GYHNOCARPIUM DRYOPTERIS 12 .21 . 1 • 12.11 . 12.11 13.21 1 . 12 .1 . 1 . I . I . I . 1 . 1 . 12. 1 1 31.6 7. 1 2-3 26 LINNAEA BOREAL IS 1 < , j . 1 • 1 . 12.11 • 1 1 . 14.11 . . 12! 21 . 1 . 1 . 13. 11 . 12. 11 76.3 7. 3 2-4 TSLGA HETEROPHYLLA | , j . 1 • 1 . 1 • 1 • 1 2. l l . 1 1 . . 13. 11 . 1 . 12. 213. 112. II . 26.3 2.2 2-3 27 ATHYRI l)M F I LI X-FEHI NA | , | . 1 12.11 * 1 • 1 13.11 • 1 . 12 .1 • 1 . 12.11 . 12. l l . 1 . 1 . 26.3 2.1 2-3 28 RUBUS PEDATUS | . 1 • 1 . 1 • 1 • 1 1 . 1 2 . l l . 13 .1 . 12. 11 . 1 . 1 . 12. 112. 11 . 26.3 t. 1 2-3 29 VICLA GLABELLA j . j . 1 • 12.11 • 1 • 1 2. 112.11 • 1 . . 12. 21 . 1 . 1 . 1 . 1 . 12 1 1 26.3 2.0 2-2 30 STREPTOPUS ROSEUS 12 .11 . 1 • 12.11 • 11 .1 1 . 1 • 1 . . 12. 21 . 1 . 1 . 1 . 1 . 1 . 26.3 2.0 1-2 31 STREPTOPUS AMPLEXIFOLIUS 11 .11 . 1 • 1 . 1 # 1 • 12.11 • 1 . . 12. 21 . 1 . 1 . 12 .11 . 11. .11 26.3 7.0 1-7 32 CORNUS CANADENSIS | . | . 1 • 12.11 • 12.11 . 14.21 • 1 . • 1 < I . I . I . 1 . 1 . 1 . 15.8 2.2 2-4 33 HA IANTHEMUM DILATATUM | . | . 1 • 1 . . 1 • 13.1 13.21 • 1 . . | . 1 . 1 . 1 . . 1 . 1 . . 1 10.5 7. 1 3-3 34 ADENCCAULON BICOLOR | . j . 1 • 1 . 1 • 1 • 1 12.11 • 1 . I . I ' . 1 . 1 . 1 . 1 . 1 . 1 10.5 1.4 7-2 35 CHIHAPHILA UHBELLATA j . j . 1 • 1 . 12.11 • ' . 1 . 11.11 . . | . 1 . 1 . 1 . . 1 . 1 . 1 . 10.5 1. 1 1-2 36 01SPORUH HOOKER I | . j . 1 11.11 • 1 • 1 12.11 • 1 . I . I . . 1 . 1 . 1 . 1 . 1 . . 1 . 10.5 1.1 1-2 37 LYCOPOOIUH CLAVATUM j . | . 1 • 1 . 1 • 1 • . 12.11 • 1 . I . I . . 1 . 1 . 1 . 11 .11 . 1 10.5 1.1 1-2 38 PYROLA SECUNOA | . 1 • 1 . 1 • 1 1 . 1 • 1 . l . l l . . 1 . 1 . 1 > 1 . 12 .11 10.5 1.1 1-2 39 SHILACINA RACEHOSA | . 1 • 1 . 1 1 • 12.11 • 1 . • 1. . 1 . 1 . 11 .11 . 1 . 1 10.5 1. 1 1-2 40 LlSTERA CORDATA . 1 • 1 . 1 • 1 • . 1 . 1 • 1 . . 1 . 1 . 1 . 1 . 11 .211. 1 1 . 10.5 1.0 l - l 41 ADIANTUM PEDATUM | . 1 « 12.11 • 1 • . 1 . 1 * 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 5.3 1.0 7-7 HENZIESIA FERRUGINEA j . 1 • 1 . 1 * 1 • 1 . 1 1 . I . I . . I . I . I . 1 . 1 . 12 .11 5.3 1.0 7-2 CPLOPANAX HORRIDUN | . 1 • 1 . 1 • 1 • . 1 . 1 • 1 . 1 . 12 .21 . 1 . 1 . 1 . 1 . . 1 5.3 1.0 2-2 RueuS SPECTABILIS j . j . 1 • 1 . 1 • 1 • 2. .11 . 1 • 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 5.3 1.0 2-2 42 STREPTOPUS STREPTOPOIOES | . 1 • 1 . 1 * 1 m . 1 . | • 1 . 1 . 1 • I . I . I . 1 . 1 . 12 .1 1 5.3 1.0 2-2 THUJA PLICATA | • 1 . 1 • 1 . 1 • 1 • . 1 . 1 • 1 . 1 • .1 . 1 . 1 . 1 . 1 . 12 .11 5.3 1.0 2-2 VACCINIUH ALASKAENSE j . 1 • 1 . 1 * 1 • . 1 . 1 • 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 5.3 1.0 2-2 43 AC TEA RUBRA | . 1 • 1 . 1 • 11 .1 . 1 . 1 • 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 5.3 1.0 1-1 44 OICENTRA FORHASA | . 1 • 11.11 • 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 5.3 1.0 t - l 45 PYPCLA AS ARIFOLIA I . j . 1 • 1 . 1 1 . 11 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 5.3 1.0 1-1 46 THELYPTERIS PHEGOPTERIS 1 • 1 . 1 • 11.11 • 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 5.3 1.0 1-1 I . 14.314. 112.11 . I . 312.11 . I I . 211.11 . I , 11.113.311. 11.11 . I I . 11.11 . I , 11.11 . I I . I . 11.11 . 11.11 . I . I . 11.11 . I . I . I . 214. 1 11.1 l l - . 12.1 l l l . l 11 . I . II . I . I 111.111.11 . I . II . I I . 1 1 1 . l l l . l 311.111.11 . I . II . 11.11 . I . II . 11.114 I . 14.II I . 1 3 . l l I . 11.11 I . 11.11 I . 11.11 I . 11.11 I . I . I I . I . I I . I . I I . I . I I . 11.11 I . I . I I . I . I I . I . I l l . I . I 3.2 053I010I068I052I051I LITY MS RS 312 I 112 I I I 112 11 111 31 113 13 l l 11 12 11 I 1 13 11 73.7 31.6 3.4 1-2.3 1-31-6 2.1 l-26.3 7.0 1-26.3 7.0 l-15.8 1.0 1-10.5 1.0 1-10-5 5.3 5.3 5.3 5.3 1.0 1-1.0 1-1.0 1-1.0 1-1.0 1-42.1 7.2 1-42.1 2-2 1-36.8 2.3 1-31.6 2.2 1-VEGETATION TABLE - LANDSCAPE UNIT I SLOPE POSITION t ST COASTAL WESTERN HEMLOCK WET SUBZONE ICWHBI PLOT NUMBER TABLE -V.5.C. ST NO. SPECIES HR MA 59 HYPNUM CIRCINALE ISCTFECIUH STOLONIFERUM RH IZQMNI UM GLABRESCENS RHYIIOIOPSIS ROBUST A 60 OICRANUM HOWELLII 61 OICRANUM SC0PAR1UH 62 PLAGIONNIUH INSIGNE RHVTIOIADELPHUS LOREUS hYLOCOHIUM SPLENOENS ISOTHECIUM STOLONIFERUM RHYTIOIOPSIS ROBUSTA PLAGIOTHEC IUM UNOULATUM RHIZOMNtUH GLABRESCENS 63 POGONATUM ALPINUM 64 CLAOPOOIUM CRISPIFOLIUM OICRANUM FUSCESCENS ISOPTERYGIUM ELEGANS 65 RHACCHlTRIUM BREVIPES 66 PLEUROZIUM SCHREBERI 67 POGChATUM CONTORTUM EURHYNCHIUH OREGANUH 68 EURHYNCHIUH PRAELONGUH 69 LEUCOLEPIS HENZIESII LYCOPODIUM SELAGO PLAGI0HN1UM INSIGNE RHACCHITRIUM HETEROSTICHUH 70 T-OICRANUH FUSCESCENS 71 T-HYPNUM CIRCINALE 72 T-ISOTHECIUM STOLONIFERUM 73 8-OICRANUM FUSCESCENS 74 8-HYPNUM CIRCINALE 75 6-ISOTHECIUH STOLONIFERUM 76 B—PLAGIOTHECIUM UNOULATUM 77 8-RHYTIOIADELPHUS LOREUS 78 T-PLAGIOTHECIUM UNOULATUM 79 T-RHYT1DIA0ELPHUS LOREUS 11161 039102010081 03010C510271047101310561078 11111128 1054 SPECIES ABUNDANCE-DOMINANCE AND SOCIAB 053I010I068I052I051I LITY I I . 111 . I I . I l . l l l . l l l . i l 11.111.11 . I I . 111 . I I . I I . I . 13.31 . 1 . 1 . 1 I I . l l . 1 . 1 . I l . l l . I I . 11.11 . 1 . 1 . 1 . 1 I . I . I . I . I . I l . l l I . I . I l . l l . 1 . 1 . 1 l l I L . II .11 1 1 1 . I I I . I I . I I .111.111.11 . I .1 l l . 1 1 1 . 1 1 1 . I l l ,111.11 , 1 1 . 1 . 1 . I . 11.11 . I . 11.11 . I . I l . l l . I l . l l . I . 1 . 1 . 1 .111.11 . I . 1 . 1 . 1 I . II . I '. I I I . I I . I I l . l l 11.11 I . I I l . l l I . I 11 11 l l 11 111.I I . l l 11.11 . II ,111.11 II . I , 13.11 ,111.11 .11 . I . I l . l l ,11 . I 1 11*11 .11 . I 11 11 11 ,11 , I . I II . I , I ,11 . I I . I . . I ,11 l l . l l l . l l l . l l l . l l l . l l l . i l . I l . l l . I . 11.111.11 . I l . l l . I . I l . l l . I . I . I l . l l . I l . l l . 1 . 1 . I . I . I . I l . l l . 1 . 1 . 1 I . I . I . I l . l l . 1 . 1 I I . 11 . 1 . 1 . 1 . 1 . 1 I . I . I . 11.11 . I I . I . I . 11.11 . I I . I . I . I . I l . l l . I I . I . I . I . 11.11 . I I . I I . I I . I I . I MS RS . 1 31.6 1.0 l - l . 1 21.1 1.0 1-1 . 1 15.8 2.0 1-3 . 1 10.5 1.0 1-1 . 1 5.3 1.0 1-1 . I 5.3 1.0 1-1 . 1 5.3 1.0 1-1 .11 4 7 . 4 2. 2 1-4 .11 36.8 1.5 1-2 . 1 36.8 1.0 1-1 . 1 26.3 1.1 1-2 . 1 21.1 2.1 1-3 .11 21.1 1. 1 1-2 . 1 15.8 1.0 1-1 . 1 10.5 1.0 1-1 . 1 10.5 1.0 l - l . 1 10.5 1.0 1-1 . 1 10.5 1.0 1-1 . 1 5.3 1.0 2-2 . 1 5.3 1.0 2-2 . 1 5.3 1.0 l - l . 1 5.3 1.0 1-1 . 1 5.3 1.0 l - l . 1 5.3 1.0 l - l . 1 5 .3 1 .0 1-1 . 1 5.3 1.0 1-1 . 1 36.8 1.0 1-1 . 1 21.1 1.0 1-1 . 1 15.8 1.1 1-2 . 1 5.3 1.0 1-1 . 1 5.3 1.0 1-1 . 1 5.3 1.0 l - l . 1 5.3 1.0 l - l . 1 5.3 1.0 1-1 . 1 5.3 1.0 l -. 1 5.3 1.0 1-1 co o TABLE V.6.a. FOREST STAND CHARACTERISTICS FOR THE ST UNIT (0-4, 0-3 AND 0-2 SLOPES) IN THE CWH, SUBZONE. b F o r e s t Stand Mensuration Pseudotsuga m e n z i e s i i Thuja  p l i c a t a Tsuga Abies Chamaecyparis h e t e r o p h y l l a a m a b i l i s n o o t k a t e n s i s T o t a l Volume/Acre i n cu. f e e t Number of Stem/Acre Average Volume/Tree i n cu. f e e t Average D.B.H. (inches) Average Height 357.7 2908.4 4806.0 1.0 27.7 41.5 357.7 105.0 115.8 27.9 19.8 22.6 78.0 73.8 86.1 4420.6 485.4 12978.1 52.5 2.5 125.2 84.2 194.2 103.7 16.7 31.8 19.7 76.3 96.7 79.4 ENVIRONMENT TABLE LANDSCAPE UNIT * SLOPE POSITION* ST AQUA TERRA CLASSIFICATION SYSTEM (A.T.C.S.I SEYMOUR WATERSHED COASTAL WESTERN HEMLOCK WET SUBZONE ICNHBI I PLOT NUMBER I SLOPE ORAINACE ORDER I ELEVATION (Ml I SLOPE GRADIENT IOEGREESi IASPECT I (SOIL I I BEDROCK I TEXTURE I PARENT MATERIAL ISOIL OEPTH ICMI I COARSE FRAGMENTS (X» I SLOPE POSITION I EROSIONAL FEATURES ISOIL SERIES IMOCIFIER I SOIL SUBGROUP I I IHUMUS | I HUMUS FORM I TOTAL THICKNESS ICMI I I VEGETATION I AGE (YEARS) I GROWTH CLASS I I INT/AC IVOL/AC I STRATA I COVERAGE I I II I I DF WH WRC AA YC SS MH RA PM I I GROUND I COVERAGE I (X) (PER 100 C.F.I AS LAYER AI LAYER BS LAYER Bl LAYER H LAYER M LAYER H C MS CW R £ S 1151 1311 1071 0231 0181 0991 1011 0731 1481 0871 1241 0-4 1 0-4 1 6-4 1 0-4 1 0-4 1 0-3 1 0-3 1 0-3 1 0-4 1 0-2 1 0-1 1 1 1 1 1 1 1 1 701110061 6101 3661 5181 7621 8541 7321 9151 8231 6401 251 421 311 271 401 32 1 421 301 301 361 321 Wl Ml Wl SI swl El Wl SWI SI El El 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | BHGDIBHGOl BHGDIBHGD IBHGDl HF 1 BHGOl HF 1 HFlHBGOl BHODI SLI LSI SLI 1 LSI SLI LSI SLI SLI SLI LSI 1 MCI CHI CMI CBI C 1 CNl CMl CHI C 1 CM| CRI 1 1101 1 2031 1 1 1 1 R60I R65I S65I B90| B90I 1 1 1 S60I R60I 1 ST! STI STI STI ST I STI STI STI STI STI STI 1 Fl VI Al 1 VI 1 VI VI 1 CEI LS PNl TAI PNl GEI PAI GEI PAI CEI CEI 1 Ll Ll 1 1 1 L l 1 Ll Ll lOHFPlOFHPl OHFPI I0HFPI OFHP IMFHPIOFHPI HFHPl OHFPI OHFPI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 F-HMIH-FM I H-FHI IF-HMl HlH-FMl F-HHI H-FHI 1 211 IV 81 1 22! 281 91 181 201 10 231 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ;•" 1 1 1 1 1 1 1 1 1 1 1 3601 i • 260 2221 l 2651 I 65 187 1 l 921 1 197 2041 I 193 1601 i 1 1 1 1 1 1 1 41 1 91 1 1 l 1 I 1 1 41 1 1 5 1 | 1 1 1 1 4 61 1 1 81 7 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 • 1 1 1 j 1 | 1 | | | 1 961 BO E 1831 | 1421 208 1491 611 66 1191 115 1531 1 1731 170 1 1301 1081 146 1 1281 601 113 771 178 1451 1 651 65 401 301 45 601 1 75 1 701 40 401 1 551 15 1 251 351 30 1 301 651 15 151 10 201 1 201 10 1 201 201 20 101 201 30 1 71 10 1 101 1 651 40 1 551 401 15 1 401 601 45 251 35 1 501 1 701 30 1 651 101 15 1 45 1 701 20 1 90 1 301 1 651 10 1 551 901 10 701 351 25 1 1 10 1 201 1 31 4 1 31 01 3 1 21 41 4 41 3 1 41 1 31 2 1 31 .11 1 1 4 1 21 3 1 11 4 1 31 1 1 1 1 21 51 4 01 01 1 1 11 0 1 01 TABLE V.6.b. I MEANl 7 2 0 . 6 3 3 . 4 1 5 6 . 5 17.3 2 0 0 . 5 6 . 5 4 . 5 6 . 2 1 2 4 . 7 1 2 9 . 8 5 3 . 0 2 8 . 6 16 . 1 4 2 . 7 4 4 . 5 3 9 . 0 3.1 2 . 5 1 .4 VEGETATICN TABLE - LANDSCAPE UNIT I SLOPE POSITION: ST COASTAL WEST ERN HEMLOCK WET SUBZONE tCWHBI PLOT NUMBER ST NO. SPECIES 111511311107(023 1018109911011073 1148 108711241 SPECIES ABUNOANCE-DOM INANCE ANO SOCIABILITY T A B L E V.6.C. MS RS AS At BS B l 1 TSUCA HETEROPHYLLA 2 ABIES AHABILIS 3 THUJA PLICATA 4 PSEUCOTSUGA HENZIESII 5 CHAMAECYPARIS NOOTKATENSIS ABIES AHABILIS TSLGA HETEROPHYLLA THUJA PLICATA CHAMAECYPARIS NOOTKATENSIS TSUGA HETEROPHYLLA ABIES AHABILIS 6 TAXUS BR EVIFOLIA THUJA PLICATA TSUGA HETEROPHYLLA 7 VACCINIUH ALASKAENSE ABIES AHABILIS 8 CPLOPANAX HORRIDUH 9 VACCINIUH PARVIFOLIUH 10 RUeUS SPECTABILIS 11 HENZIESIA FERRUGINEA THUJA PLICATA TAXL.S BREVIFOLI A 12 VACCINIUH OVALIFOLIUM 13 RUBUS PARVIFLORUS 14 SAMBUCUS CERULEA 15 SAH8UCUS RACEHOSA 16 BLECFNUH SPICANT 17 RUBUS PEDATUS 18 CORNUS CANADENSIS 19 CLINTONIA UNIFLORA 20 TIARELLA UNIFOLI ATA ABIES AHABILIS 21 ORYOPTERIS AUSTRIACA TSUGA HETEROPHYLLA 22 P YR CL A SECUNOA 23 GYMNOCARPIUM ORYOPTERIS 24 ATHYRIUH FI LIX-FEMINA 25 STREPTOPUS STREPTOPOIOES 14.113.113.113.114.113. I I I . 14.212.113.112.113.11 14.21 . 14.11 . 13.11 . I I . I . I . 12.113.11 . I I . I . I . I . I . I . I 15.115.114.214. I I 14.215.114.214.1 I I . I . I . 15.11 I . I . I . I . I I . I . I . 15.11 13.21 2 . 1 1 3 . 114.II 2 . 11 2 . II 2 . I I 3 . I I 3 . II 2 . I I 4 . II 14 .112 .113 . 1 1 3 . U 3 . 1 I 2 . 1 1 4 . I I . I 3 . U 2 . I I . I 11.11 . 12.11 . 13.11 . 1 . 1 . 1 . 1 . 13.11 I . I . I . I . I . I . I . I . I . I . 13.1 I I 2. I I I . I I2 .113.11 3 . 1 ) 2 . 1 1 2 . 1 1 2 . 1 I 2 . l l 2 . l l 2 . i l 13 .112.112.113. I I . I . 13 .113.112.112.112. I I I . I . I . I . 12.11 . 1 . 1 . 1 . 1 . 13.11 I . 1 . 1 . 1 . 12.11 . 1 . 1 . 1 . 1 . 12.11 I 3.21 3 .212 . I I3 .113.113. 14 . 213.213. 114.112.112. 14.213.214.211.112.113 12.21 . 12. 111.II . 12 12.112.112.112 12.11 . I . 12 I . 11.11 . 12 11.11 . 12.11 I . I . I . I I . I . I . I I . I . I . I I . 12.11 . I I . I 12.11 I . I 112.112.113. ,113. 114.21 112.113.114. ,114.11 . I . .11 . 12.11 . 1 . 1 . 1 1 1 3 . l l 112.11 I . I I . I . 1 . 1 , 12.11 , 1 . 1 , 1 . 1 I . 112.214 13.213 212.11 14.21 I . 14 12.11 I . 14 . I 14 14 I . I . I I I I . 12.11 .11 .11 . I . I .11 . I .1 I . I .11 .11 . I . I . I |4 .213 .214 .21 . 14.213.212. I I . 13.21 . 14.21 . 13.21 . 12.11 • 13.21 . 13.21 . 13.213.21 . I . 12.11 . I . 12 12.11 12 .21 12*11 I . I 12.11 12.11 12.11 I . I 13.112.112. I I . I . 13.214.312. 12.112.113.212. I . 13.112.212. I . 12.112. I I . I . 12.112.113. I . 12.113.11 . I . 12.112.112. | . I . 1 2 . 1 1 3 . I . 12.11 . I . I . I . 12.11 . I . I . 12.112. 14.212, 113.112 113.I I 113.312 14.212 11 . 12 12.112 11 . 12 112.11 13.213 13.115 113.11 1 1 3 . l l .213.11 , I 3 . l t .112.21 .212.11 ,11 . I .11 . I .112.11 . 14.21 .21 . I .31 . I . 1 . 1 I 90.9 4. 1 3-5 I 81.8 3.6 2-5 I 36.4 3.2 3-5 I 18.2 2.1 2-3 I 9.1 2.6 5-5 1100.0 3.2 2-4 I 81.8 3.2 2-4 I 36-4 7.3 1-3 I 9.1 7.1 3-3 1100.0 7.5 1-3 I 81.8 3-0 2-3 I 18.2 2.1 2-3 I 18.2 2.0 2-7 I 100.0 3.2 2-4 I 90.9 3.4 2-4 I 90.9 3.3 1-4 I 54.5 3.0 1-4 I 54.5 2.5 2-4 I 45 .5 2.2 2-3 I 36.4 I 18.2 I 9.1 I 9.1 I 9.1 I 2.4 1.3 2 .3 2 .3 1.3 9.1 1.3 2-2 9.1 1.3 2-2 1-4 1 - 2 4 - 4 4 - 4 2 - 2 3.3 2-4 3.2 7-4 3.1 2-4 2.6 2-3 3-0 2-4 54.5 2.5 2-3 54.5 2.2 2-3 54.5 2. 1 7-7 7.6 7-4 7.3 2-3 3.0 7-5 7.2 7-3 I 81.8 I 81.8 I 72.7 I 72.7 I 63.6 I I I I 45.5 I 45 .5 I 36.4 I 36.4 CO O VEGETATION TABLE - LANCSCAPE UNIT t SLOPE POSITION* ST COASTAL WESTERN HEMLOCK WET SUBZONE ICWHBI TABLE V.6.C. PLOT NUMBER ST NO. SPECIES HH HR 26 STREPTOPUS AHPLEXIFOLIUS 27 STREPTOPUS ROSEUS VACCINIUM ALASKAENSE 28 SHI LAC INA STELLATA 29 GOOOYERA OBLONGIFOLIA VACCINIUM PARVIFOLIUH 30 LINNAEA BOREAL IS 31 MA IANTHEHUM 01 LATATUH 32 SORBUS SITCHENSIS 33 CORALL CRHIZA SPP. 34 CR YPTOGRAMMA CRISPA 35 OISPORUM HOOKERI 36 GAULTHERIA SHALLON 37 LISTERA CAURINA 38 LYCOPODIUH CLAVATUM MENZIESIA FERRUGINEA OPLOPANAX HORRIOUH RUBUS SPECTABILIS THUJA PLICATA VACCINIUM OVAL I FOLIUM 39 CIRCAEA ALPINA 40 POLYPOOIUM GLYCYRRHIZA 41 SHILACINA RACEMOSA 42 RHYTIOIOPSIS ROBUSTA 43 RHYTIOIAGELPHUS LOREUS 44 OICRANUM FUSCESCENS 45 HYLOCOMIUM SPLENOENi 46 PLAGIOTHECIUH UNOULATUM 47 RHIZOMNIUM GLABRESCENS 48 OICRANUM SCOPARIUM 49 EURHYNCHIUH OREGANUH RHY T 10 IAOELPHUS LOREUS HYLOCOHIUH SPLENOENS OICRANUH FUSCESCENS 50 HYFNUM CIRCINALE 51 ISOPTERYGIUH ELEGANS RHYTIOIOPSIS ROBUSTA PLAGIOTHECIUM UNOULATUH RHIZOMNIUM GLABRESCENS 52 SPHAGNUM GIRGENSOHNII HYLOCOHIUH SPLENOENS RHYTI01ADELPHUS LOREUS I 1151131110710231018109911011073ll4810871124 I I I SPECIES ABUNDANCE-DOMINANCE AND SOCIAB 21 I 21 12 11 l l 12 l l 11 11 11 12 I 2 11 11 11 11 11 13 11 l l I I I 12 11 1 111 11 I 1 I I I 11 11 15.311 11.111 12 12 l l 11 112 112 11 111 11 I I 11 111 II I 12 11 I 12 11 I I 112 112 12 12 313 21 11 21 21 I I I 212 21 11 12 12 31 21 I r 12 12 2 I 11 13 12 21 12 12 12 14 12 21 21 I I LITY p MS RS 36.4 2.0 7-7 36 .4 7.0 7-7 27.3 2.5 2-4 27.3 7. 3 2-3 27 .3 2.0 1-7 la.? 2. 1 2-3 18.2 2.0 7-7 9.1 2. 1 3-3 9.1 7. 1 3-3 9.1 1.3 7-2 9. 1 1.3 2-2 9.1 1.3 7-7 9.1 1-3 2-2 9.1 1.3 2-2 9.1 1. 3 2-2 1 9.1 1.3 2-2 9.1 1. 3 2-7 9.1 1.3 2-7 9.1 1.3 2-7 9.1 1.3 7-7 9.1 1.0 1-1 1 9.1 1.0 1-1 9.1 1.0 1-1 1 54.5 3. 2 1-5 1 45.5 3.0 7-4 1 36.4 2-0 1-2 1 27.3 1.4 1-7 1 IS.2 1.3 1-7 1 9.1 2- 1 3-3 1 9.1 1.3 7-7 1 9.1 1.3 2-2 1 4S.5 2.0 1-7 1 27.3 1-0 1-1 1 18.2 1-3 1-7 1 18.2 1.3 1-2 1 9.1 1.3 7-2 1 9.1 1.3 2-2 1 9.1 1.0 1-1 1 9.1 1.0 1-1 1 9.1 1.0 1-1 1 18.2 7-6 1-5 1 18.2 1.0 1-1 o VEGETATICN TABLE - LANDSCAPE UNIT I SLOPE POSITIONS ST COASTAL WESTERN HEMLOCK WET SUB20NE ICWHBI TABLE V.6 PLOT NUMBER ST NO. SPECIES 11151131110710231 0181 OS") 110110731148)0 8711241 I I I I SPECIES ABUNDANCE-DOMINANCE ANO SOCIABILITY MS RS MA RHYTIOIOPSIS ROBUSTA 1 • 1 • 1 • 11.111.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I 18.2 1.0 l - l 53 EURHYNCHIUH PRAELONGUM I • 1 • 1 • 11.11 . 1 . 1 . 1 . 1 • 1 • 1 • 1 . 1 • 1 . 1 . 1 . 1 . 1 . I . 1 9.1 1 .0 1-1 ISCPTERYGIUM ELEGANS 1 « 1 • 1 t 1 . I l . l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I 9.1 1.0 1-1 54 ISOTHECIUM STOLONIFERUM 1 • 1 » 1 ' • 1 . I l . l l . 1 . 1 . 1 • 1 • I • 1 . 1 • 1 . 1 . 1 . 1 . I . I . I 9.1 1.0 l - l 55 QPOLYTR1CHUH HACOUN11 I • • 1 * 1 * 1 . 1 1.1) . 1 . 1 . I • 1 . ) . 1 • 1 • 1 . 1 . 1 . 1 . I . I . I 9.1 1 .0 1-1 PLAGIOTHECIUM UNOULATUM | * | * | * I l . l l . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . i . 1 . 1 . 1 . 1 . I . I . I 9.1 1.0 1-1 RHIZOMNIUM GLABRESCENS I . I . I . 11.11 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I 9.1 1.0 1-1 56 T-HYPNUM CIRCINALE 1 . 1 . 1 . 1 . 11.112.11 . 1 . . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . . 1 . 1 . 1 13.2 1.3 1-2 57 T-OICRANUM FUSCESCENS I . I . I . 11.111.11 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I 18.2 1.0 1-1 58 B-OICRANUM HOWELLII I . I . I . I l . l l . 1 - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I 9.1 1.0 1-1 59 8-ISOTHECIUM STOLONIFERUM 1 . 1 . 1 . 11.11 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 9.1 1.0 1-1 60 T-ISOTMECIUM STOLONIFERUM 1 . 1 . 1 . 11.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I 9.1 1.0 1-1 TABLE V.7.a. FOREST STAND CHARACTERISTICS FOR THE ST UNIT IN THE MH SUBZONE. d Forest Stand Thuja Tsuga Abies Chamaecyparis Mensuration p l i c a t a mertensiana aitVab.il i s nootkatensis Total Volume/Acre i n cu. feet 478.9 3921.0 3163.5 1854.3 9417.7 Number of Stem/Acre 2.1 60.2 90.3 11.7 164.3 Average Volume/Tree i n 2 2 8 > Q 6 5 > 1 3 5 > 0 1 4 2 > 3 5 7 > 3 cu. feet Average B.D.H. (inches) 40.5 18.5 11.8 31.4 16.0 Average Height (feet) 87.8 59.0 50.1 84.5 56.3 ENVIRONMENT TABLE LANDSCAPE UNIT J SLOPE POSIT ION I- ST AOUA TERRA CLASSIFICATION SYSTEM (A.T.C.S. ) SEYMOUR WATERSHED SUBALPINE FOREST SUBZONE (HHAi TABLE V.7.b. I PLOT NUMBER I 0321 0701 C29I 0441 1231 1351 1431 0861 1411 1271 1191 1461 1511 1521 0721 0931 0331 1391 0901 ISLOPE DRAINAGE ORDER | I ELEVATION (Ml I SLOPE GRADIENT (OEGREES) I ASPECT I | ISOIL I BEOROCK I TEXTURE I PARENT MATERIAL ISOIL DEPTH (CMI ICOARSE FRAGMENTS (SI I SLOPE POSITION IEROSIONAL FEATURES ISOIL SERIES I MODIFIER ISOIL SUBGROUP I I I HUMUS IHUHUS FORM (TOTAL THICKNESS (CHI I I I VEGETATION I AGE (YEARSI IGROWTH CLASS - DF 0-2 I 0-3 I 9451 793 381 38 SE| SE I I I I H80DIBHOD CBl CR I B90I STI VAI TAI I I I I I I H-FM I 181 I I I I ST VA DE L LF 3 0 4601 207 I 0-2 I 0 - 3 I 0-1 I 0 - 2 - 5 I O - 3 - 5 I 0-2 10-3-51 0-5 I I I I I I I 8231 9761103711098 1 9451 8841 9451 732 411 SEI I I 271 231 421 281 351 271 24 E l El SEI SEI El NWl W I I I I I I I I I I I I I I I I I I HBOOl HBGDl BHOOl HBGO iHBGOlHBGDl BHGDlHBOD SLl LSI SLl SLl LSI SLl SLl SL CVl CVl CVl CVl CVl CVl CVl CV I I I I I I I R65I G I G60I R65I R60I R30I R60l G30 STI ST I STI STI STI STI STI ST VAI V| VI VI I VI I PA| PAI PAI PA| PAI PAI PAI PA Ll Ll Ll Ll Ll Ll Ll L MFHPIHFHPlMFHPlHFHPlMFHPIOHFPlHFHPlOHFP I I I I I I I I I I I I I I I I I I I I I I I I I I I I H- FHIH-FMIH-F MIH-FMI FMIF-HMIF-HMlH-FM 251 351 381 221 121 361 161 25 I I I I I I I I I I 0-3-51 0-2 I 91511098 381 24 SWl W I I I I HMl HF HF 1 HF I HF 1 BHOD 1 HOO1HBGO1HBGDl LSI SLl SLl SLl SLl LSI SLl SLl SLl 1 CVl CV CVl CVl CVl CMI MVl MVl HVl 1 1 1 1351 1 1 1 1 1 1 G60I 1 1 1 R40I R35I S45I G40I STI ST STI STI STI STI STI STI STI 1 VAI VI VI VAI 1 1 FV| VI PAI PA PAI PAI PAI CEI CEI CEI CEI 1 Ll L Ll 1 Ll Ll Ll Ll Ll IMHFPI LF MFHPlHFHPIMFHPIOHFP1OHFP1OHFPlOFHPl 3051 2561 6501 3801 4281 4471 I I I I I I 405 1 - WH 1 1 81 1 1 1 1 1 1 1 1 1 - WRC 1 1 1 1 1 1 1 1 1 1 1 - A A 1 1 1 71 1 1 1 1 I 1 1 - YC 1 1 1 1 71 61 81 1 1 81 1 1 - SS 1 1 1 1 1 1 1 1 1 1 1 1 - MH - RA 1 71 1 1 91 1 1 1 1 1 1 1 1 1 81 1 1 1 91 1 1 - PM 1 1 1 1 1 1 1 1 1 1 1 NT/AC 1 1731 1601 941 1431 2361 224 1 1451 701 541 3451 1781 571 IVOL/AC (PER 100 C.F.I 1 79| 89| 1131 1021 751 781 891 891 1021 741 1031 611 1 STRATA AS LAYER 1 501 351 1 1 301 351 301 SOI 1 501 ICOVER AGE A I LAYER 1 1SI 451 1 551 301 451 351 201 201 601 651 151 1 (XI BS LAYER 1 301 351 201 201 201 151 101 251 41 401 201 101 1 Bl LAYER 1 601 751 751 651 101 401 1 401 71 251 201 70 1 H LAYER 1 251 551 351 701 601 51 1 551 1 251 101 1 M LAYER 1 1 201 201 501 301 45 1 1 601 1 101 SOI 1 GROUND H C MS 1 31 41 41 41 41 41 41 31 51 31 31 5 1 COVERAGE OW 1 21 31 11 21 31 21 21 41 11 31 21 2 I ( XI R C S 1 21 1 1 11 01 01 11 21 01 11 11 11 0 I I H-FMl F-HM 991 25 I I I I I 3351 I 0-3 I 0-3 I 0-3 I 0-3 IO-3-5IO-3-5I 0-3 I I I I I I I I 10371 9451 9151 6401 915111281 7321 231 371 NE I El 361 SI 201 221 SI NWl 271 E I 241 El H-FMl SI I I 271 I I I I I I I I I I I I I I IH-FMIH-FHI I 311 441 I I I I I I I I I I I I I I 5201 1361 3111 2621 3881 4901 3001 I I I I I I I 61 2281 51 81 51 I I 31 I I 41 I I 881 1001 1091 1551 1701 3941 91 1521 1471 551 501 51 71 351 801 I 41 21 l l 51 I 51 21 l l 751 I 41 31 01 801 451 301 951 981 451 I 921 151 301 301 201 801 651 751 801 351 41 31 01 751 40 I 21 41 01 551 551 251 701 601 651 151 701 41 11 21 51 01 01 MEAN I 9 2 1 . 1 1 0 . 2 1 3 5 . 0 30.5 369.4 8.0 6.0 6.8 7.3 1 6 4 . 4 9 4 . 4 4 3 . 2 3 3 . 5 2 1 . 2 5 0 . 8 5 0 . 0 37 .1 3-7 2 . 5 0 . 6 VEGETATION TABLE - LANDSCAPE UNIT t SLOPE POSITION! ST SUBALPINE FOREST SUBZONE (HHAI PLOT NUMBER ST NO. SPECIES TABLE V.7.C. I 0321 070 102910441123 113511431086 1141112711191146115111521072109310331 13910901 SPECIES ABUNDANCE-DOMINANCE ANO SOCIABILITY MS RS AS AI BS BI 1 TSUGA MERTENSIANA 2 ABIES AMABILIS 3 TSUGA HETEROPHYLLA 4 CHAMAECYPARIS NOOTKATENSIS 5 THUJA PLICATA ABIES AMABILIS TSUGA MERTENSIANA TSUGA HETEROPHYLLA CHAMAECYPARIS NCOTKATENSIS : THUJA PLICATA ABIES AHABI LIS TSUGA HETEROPHYLLA TSUGA MERTENSIANA CHAMAECYPARIS NOOTKATENSIS THUJA PLICATA ABIES AMABILIS 6 NENZIESIA FERRUGINEA 7 VACCINIUM ALASKAENSE TSUGA MERTENSIANA TSUGA HETEROPHYLLA 8 VACCINIUM HEPBRANACEUM CHAMAECYPARIS NOOTKATENSIS 9 CLADCTHEMNUS PYPOLIFLORUS 10 TAXUS BREVIFOLIA 11 SORBUS SITCHENSIS THUJA PLICATA 12 VACCINIUM PARVIFOLIUH 13 RHODODENDRON ALBIFLORUH 14 VACCINIUM OVALIFOLIUM 15 VACCINIUM OELICIOSUH 16 CPLCPANAX HORRICUH 17 RUBUS SPECTABILIS 18 RUBUS PEOATUS 19 BL ECHNUH SPICANT 20 CLINTONIA UNI FLORA 21 CORNUS CANADENSIS ABIES AMABILIS VACCINIUM ALASKAENSE 14.11 12.11 12.11 14.21 I . I 12.11 I . I 13.11 12.11 14.11 I 13.11 . 13.11 . I I . I I . 112 .115 . I I 12.114.11 . 14.11 I . 14.11 . 12.11 I . I . I . I . I I I 5 . l l 4 . l l 4 . l l 13.1 13.113.11 I . I . 14.11 I . I . I . I I . I . I . I 13.113.II 13.114.11 13.113.I I 12.112.11 I . I . I I . I 47.4 3.2 7-5 I 47.4 3.0 1-5 I 42.1 3.0 2-4 I 31.6 2.5 2-4 I 5.3 2.1 4-4 12.11 . I 13.11 . I 11.112. I I 12.114.21 I . 12.11 |4 .215 .113 . I I . 13.113.113.115.112.113.112.114.114.113.113.112. I I 84.2 3.4 2-5 14.215.113.113.112.11 . I - 14.113. I I . I . 13.11 . 12.11 4.2 I 2. 11 63.2 3.2 7-5 12.11 . I . 13.11 . 1 3 . 1 1 3 . 1 1 1 . l l . 1 . 1 . 13.113.112.11 . 1 . 1 12.114.11 . I . 12.I I . 15.112. I I . 1 . 1 . I l . l l . 1 . 1 . 13.11 47.4 | . I . I . | . I . I . I I .114 . I I . 1 . 1 . 1 . 1 . 1 . 1 . I 2 . H 21.1 52.6 7.5 1-3 3.0 1-5 2.2 1-4 12.113.11 . 13.114.113. I I . 1 3 . 2 1 2 . 1 1 4 . 1 1 4 . 1 1 2 . 1 1 3 . 1 1 2 . 1 1 2 . 1 I 3 . 1 I 4 . 1 I 2 . 1 I 3 . H 12.113.112.11 . I . 12.11 . 12.111.112.113. I I . I . 12.11 I . I I3.11 2.11 . I l . l l 13.11 . 1 2 . 1 1 3 . 1 1 4 . 1 1 . 12.11 . 1 . 1 . 1 . 13.113.11 . 12.11 . 12.113.2 12.11 57.9 12.113. I I . 1 . 1 . 1 . I 2 . U . 1 . 1 . I . l . l . l . l . l . l . l . i . i I . 12.112. I I . 1 . 1 . 1 . 1 . 1 . 1 . 1 2 - H . 1 . 1 . 1 . I . I . I . I . I 89.5 3.3 2-4 73.7 2.4 1-3 3.0 7-4 7.0 2-3 2.0 7-7 15.8 15.8 13.114 13.113 14.213 13.11 1 . 1 3 I . I 12.112 14.21 I . 13 I . I I . 12 I . 13 I . I .213.11 .112 . 112 .1 14.213 . 12.11 .114.11 . I . 12 .112.11 . 12.11 .112.11 . 1 . 1 .112.11 .11 . I , 14.114.213.114.213 ,112.112.I I . 12.11 .114.113.11 . 14.21 , 14.113.112.11 . I . I . 1 2 . 1 1 2 . 1 1 2 . I l l .112.112.11 . 1 . 1 I . I 13.11 I . I 12.111.11 I . I . I I . I . I I . I . I . I I . I . I . I . I . I I . I I . 12. I . 12. I . I 11 . I I I . I 13.11 I . I I . I I . I I . I I I .214 . 13. 12. .113 ! I 2 ! 12, 12 114.113 114.112 114.11 I . 13 II . I l l 11 11 . I 12. 12. 12. I .314 ^313 . I I . I I . I I . I 113.113.113 I . 13.112 I . 13.114 12.112 12.112 14.11 12.11 I . I I I I I I I I I I l l I . I . 12 12 12 114.213. 112.112. 113.112. 113.112. 113.11 . , 13.112. . I . 12. , 1 . 1 . I . I ,112.11 , 1 . 1 l l I 11 , 1 . 1 1 . 1 I 12 I I . I . I 214 113 I 14 212 I 112 21 I 12 I I I .11 I , I , I , I 11 94.7 11 78.9 21 73.7 11 63.7 I 52.6 36.8 36.8 I 21 .1 11 21.1 . I 15.8 . I 15.8 4.0 3.0 3-4 7-4 11 I 3.4 7-4 3.0 7-4 7.5 1-4 2.3 7-4 I 10.5 10.5 10.5 5-3 5.3 5.3 2-0 7.3 2- 1 7.0 2.0 2.0 1- 2 2- 4 2-3 7-2 2-2 2-3 1.4 7-7 1.4 2-2 2-0 1.0 1-0 3-3 2-2 2-2 12.11 . 12.114.215.21 13.113.112.112.112.21 11.113.113.114.21 . I 12 .113.113. I I . 1 . 1 I . I . I . 12.112.11 I . I . I . I . I . I 13.114.214. I I . 14 .113 .114 .115 .212 .213 .214 .214 .213 . I I 84.2 3.6 2-5 14.112.113.213.112-112.112.114. I I . 12.112. I I - I l . l l 84.2 3 .0 1-4 I . 14.213.112.112. I I . I . 14.11 . 13.115.214.214. I I 68.4 3.3 1-5 13.112.11 . 14.113.11 . I . 12.II . 12.112.11 - 13.II 57.9 3.0 2-4 I . 12.213.113. I I . I . 12.112.112.112. I I . 1 2 . l l . 1 52.6 7.3 2-3 13.11 . 14.114.114.115.413.1 14.11 . 1 . 1 . 12.112.11 47.4 3.2 2-5 CO O 00 VEGETATION TABLE - LANDSCAPE UNIT 1 SLOPE POSITION! ST SUBALPINE FOREST SUBZONE (HHA) TABLE V.l.C. PLOT NUMBER | 032 |070 |029 |044 |123 | ST NO. SPECIES MH VACCINIUH HEHBRANACEUM 22 STREPTOPUS STREPTOPOIOES HENZIEStA FERRUGINEA 23 TIARELLA UNIFOLI ATA 24 VERATRUM VIRIDE 25 STREPTOPUS ROSEUS VACCINIUH PARVIFOLIUH 26 ORYOPTERIS AUSTRIACA 27 GYMNOCARPIUH ORYOPTERIS 28 P YR OL A SECUNDA ' RUBUS SPECTABILIS TSUGA HETEROPHYLLA TSUGA HERTENSIANA 29 GOCOYERA OBLONG IFOLI A 30 LISTERA CONVALLARIOIOES 31 LISTERA CORDATA OPLOPANAX HORRIOUH S0R8US SITCHENSIS ' 32 RIBES BRACTEOSUM 33 ARNICA LATIFOLI A 34 ATHYRIUH F1LIX-FEHINA 35 COPTIS ASPLENIFOLIA 36 GAULTHERIA HISPIDULA 37 LUZULA PARVIFLORA 38 LYCOPOOIUM CLAVATUH 39 LYSICH1TUH AMERICANUM 40 PA IANTHEMUM DILATATUH 41 POLYSTICUH MUN1TUM 42 PYRCLA ASARIFOLI A RHODODENDRON AL8IFLORUH 43 SAMBUCUS CERULEA 44 SH I LAC INA STELLATA 45 STREPTOPUS AMPLEXIFOLIUS 46 TIARELLA TRIFOLI AT A VACCINIUH OVALIFOLIUM 47 VALERIANA SITCHENSIS 48 VICLA LANGSDORF11 49 HABENARIA SACCATA 50 RHYTIOIOPSIS ROBUSTA 51 OICRANUM FUSCESCENS 52 RHYTIOIAOELPHUS LOREUS 53 DICRANUH SC0PAR1UM 54 RHIZOHNIUH GLA8RESCENS 55 ISOTHECIUM STOLONIFERUM 56 PLAGICHNIUM INSIGNE 57 PLAGIOTHECIUM UNDULATUM SPEC 3511431086 11411127 11191146 I IS 11152 ES ABUNDANCE-DOMINANCE AND SOCIAB 072109310331 13910901 LITY 1 i 1 . 1 . 1 . 14.11 . 1 . I t . 11 . 1 . 1 2 . 1 1 3 . 1 1 3 . 1 1 3 . l l . 1 . 1 . 1 . 13.11 . 13.11 . 1 . 13. 114.1 12.1 1 . 1 . 1 . 1 1 • 1 • 1 . 1 • 12*11 . 12.11 . 12.113.11 3.11 . 1 . 12.11 . 1 . 1 . 1 1 • 1 • 1 • 1 . 1 . 1 . 12.11 . 12.11 . 1 . 1 . 12.112.11 . 12.11 . 1 1 . 1 . 1 • 1 . 1 . 1 . 12.21 - 12.21 . 1 . 12. 212.1 1 . 1 . 1 . 1 . 1 I . I . I . I 2 . l l • 1 . 1 . 11. 11 . 1 . 1 . 1 . I . I . I . 12.112.11 I . I . I . I . I . I . 1 . 1 . 1 . 13.21 4.11 . I . I . I . 1 . 1 . 1 1 . 1 . 1 • 1 . 1 . 1 . 12.21 . I . I . I . 1 . 12.114.11 . 1 . 1 . 1 . 1 . 1 * 1 . 1 . 1 . 12.11 . 12.31 . 1 . 1 . I . I . I . 1 . 1 . 1 I . I . 12.11 . 1 . 1 . 1 . 1 . I . I . . 1 . I . I . I . 12.II . 1 * 1 . 1 * 1 . 1 . 1 . 12.11 . 12.11 . 1 . 1 . 1 . 12.11 . 1 . 1 . 1 1 . 1 * 1 . 1 . 1 . 1 . 1 . I . I . 2.11 . 1 . 1 . 12 .112.11 . 1 1 . 1 • 1 . 1 . 12.11 2.11 . 1 . I . I . . 1 . 1 . 12.11 . 1 . 1 . I . 1 2 . 1 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . 1 . I . I . I . 12.11 . I 1 . 1 . 1 . . 1 » 1 . 1 . 1 . I . I . . 1 . I . I . I . 12.11 . I 2 * l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . I . I . I . 1 . 12.1 • | . | . I . 1 . 1 . 1 . 1 . . 1 . 1 . . 1 . 1 . 12.11 . 1 . 1 . 1 * 1 * 1 . 1 . 1 . 1 . 1 . 1 . I . I . 1 . 12. 112.11 . 1 . 1 . 1 . 1 . | 4 . 2 I . I . I . I . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . 12.11 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 • 1 . 1 . 1 . . 1 . 1 . I . I . 12.1 1 . 1 . 1 . 1 . 1 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 12.11 . 1 . 1 * 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . . 1 . 1 . 1 . 12.11 . 1 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . I . I . 12.11 . 1 « I • 1 * I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 « 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 12.11 . 1 . 1 • 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 12.11 . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 12 .11 . 1 . 1 . 1 . 1 . 1 * 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . I . J . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 12.1 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . 1 . 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • i1 . 1 • iI . 1 . 1 . 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . 11.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I 3 . 1 I 3 . U . 14.213.21 . 13.114 .212.11 . 15.21 . 12.21 . 1 4.213.213.1 1 • | . |1.11 . 14.21 4.21 . 1 . 1 . 1 . 15.21 . 1 . 1 . 1 3.21 . 12.1 l l ' l l . 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 14.211.1 1 . 1 . 1 . 1 • 1 • i . 1 . 1 . 13.11 . 1 . 14 .212.21 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . . 12.31 . 11.11 . 1 . 1 . 1 . 1 . 1 . | . 12.1 1 . 1 . 1 . 1 . 1 . 1 . 12.11 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 ' . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 13.31 . 1 . 1 . 1 . I . I . I 3. 2 1 . I . I . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . MS RS . I 36.8 .11 31.6 . I 31.6 .21 31.6 .11 26.3 .11 26.3 .11 15.8 2. 2. 2. 2. 2 . 2. 2. I 15.8 2. II 15.8 7. 21 15.8 2 . I 15.8 2 . 15.8 2. I 15.8 2 l l 15.8 1 10.5 1 10.5 1 l l 10.5 I I 10.5 1 5.3 2 5.3 1 5.3 1 5.3 1 5.3 1 5.3 1 5.3 1 5 1-4 5 2-4 2 2-3 1 2-3 I .21 I !.2l M l 5.3 1 2-2 1- 2 7-4 2 - 4 7-7 7-7 2-2 7-2 2-2 1- 2 2- 2 2-2 7-7 2-2 4-4 2-7 2-2 2-7 7-7 2-2 2-7 7-2 .1 I .11 5.3 1 5.3 1 5.3 1 5.3 1 5.3 1 5.3 5.3 5.3 1 5.3 1 5.3 1 5.3 1 5.3 1 . 0 2-2 . 0 7 - 2 .0 2-2 . 0 2-2 .0 7-7 1.0 2-2 1.0 7-7 7-7 2-7 2-2 2-2 1-1 I 68.4 3.3 2-5 I 36.8 3.0 1-5 I 21.1 2.7 1-4 I 15-8 7.3 2-4 I 15.8 1.4 1-7 . I . I 10-5 5.3 5.3 1.4 7-2 2.0 3-3 2.0 3-3 O V E G E T A T I O N T A B L E - L A N D S C A P E U N I T I S L O P E P O S I T I O N : ST S U B A L P I N E F O R E S T S U B Z O N E CHHA) TABLE >V.7 PLOT NUM 6ER ST N O . S P E C I E S 5 8 SPHAGNLM G I R G E N S O H N I I 5 9 SPHAGNUM S P P . 6 0 A H B L Y S T E G I U M S E R P E N S 61 C Y N O D O N T I U M J E N N E R I 6 2 HYPNUM C I R C I N A L E 6 3 I S O P T E R Y G I U M E L E G A N S 6 4 P L E U R O Z I U M S C H R E B E R I 6 5 SPHAGNUM C A P I L L A C E U M MU MR MA 10 3 2 1 O T O 1 0 2 9 1 0 4 4 1 1 2 3 1 1 3 5 1 1 4 3 1 0 8 6 1 1 4 1 1 1 2 7 1 1 1 9 1 1 4 6 1 I S 1 1 1 5 2 S P E C I E S A B U N O A N C E - D O M I N A N C E ANO S O C I A B I . I I . I I . I 11.11 I l . l l 11.11 I . I 11.11 C I C R A N U M F U S C E S C E N S 11 • 11 . |1.113-11 . 1 . 1 . 12.11 . 12. .2 1 . 1 . 1 . 1 . 12 . 2 1 3 . 11 . 1 2 . 21 4 2 . 1 2 . 2 1 - 3 P L A G I O T H E C I U M U N O U L A T U M I . I . I . I . I . I . 1 . 1 . 14 .2 i . i . 1 . 1 . 12 2 1 3 . 11 . 1 2 . i i 2 6 . 3 2 . 4 2 - 4 ! R H Y T I O I A O E L P H U S L O R E U S 11 .11 . i . i . i . i . i . 13.21 . 14 .2 . I . I • I . I . I . . I I . 11 • 1 . i 2 1 . 1 2 - 2 1 - 4 R H I Z O M N I U M " G L A B R E S C E N S | . I . I . I . I . I . 12.11 . 1 . i . i . 1 . 1 . 1 3 . 2 1 3 .11 . 1 i 1 5 . 8 2 - 1 2 - 3 R H Y T I O I O P S I S R O B U S T A | . i i . i l . i . i . i . I . I . I . i . i . 1 . 1 . 1 . 13 . 1 1 . 12 . 21 1 5 . 8 2 - 0 1 - 3 HYPNUM C I R C I N A L E 11 . 1 1 - i i . i i . I . I . I . I . I . I . i . i . 1 . 12.21 . 1 . , | , | 1 1 5 . 8 1. 1 1 - 2 6 6 H Y L O C O M I U M S P L E N O E N S I S O P T E R Y G I U M E L E G A N S j . I . I . I . I . I . . i i . i l . I . I . I . I . * !" . ! ' . i '. i : I:!:! . 1 . 1 . • ! . 1 2 . 11 1 5 . 3 5 . 3 1 . 0 1 - 0 2 - 7 1-1 O I C R A N U M F U S C E S C E N S | . i i . u . I . I . I . I . I . I 5 .21 . 1 . I . I . I . 11 i i ~~~ . 1 1 5 . 8 2 . 3 1 - 5 R H Y T I O I O P S I S R O B U S T A l l .11 . i i . u . I . I . I . i . i . i 5 .21 . 1 . I . I . I . 1 . i . 1 . 1 1 5 . 8 2 . 3 1 - 5 R H Y T I O I A O E L P H U S L O R E U S 1 1 .11 . I I . I I . I . I . I . I . I . I . . 1 . 1 . i . i . i . 1 . . i . | . 1 1 0 . 5 1 . 0 1-1 A M B L Y S T E G I U M S E R P E N S l l .11 . I . I . I . I . I . I . I . I . i • i . I . I . I . 1 , i • 1 . 1 5 . 3 1 . 0 l-l HYPNUM C I R C I N A L E I . I . I . I . I . I . I . I . I • i . i . i . i . i . l l . .n . | . 1 5 . 3 1 . 0 1-1 I S C P T E R Y G I U M E L E G A N S j . I . I . I . I . I . I . I . I . i . i . i . 11 .H . 1 . . 1 5 . 3 1 . 0 1-1 6 7 POGCNATUH A L P I N U H | . I . I . I . I . I . I . I . 1 • i . i . i . i . i . 11 . i i . 1 . . 1 5 . 3 1 . 0 1-1 6 8 R H A C Q M I T R I U M B R E V I P E S | . I I . I I . I . I . I . I . I . I . i . i • i . i . i . 1 . | . 1 5 . 3 1 . 0 1-1 6 9 R H A C O M I T R I U M HE T E RO ST I CHUM 11 .11 . I . I . I . I . I . I . I . I . I . I . I . I . I . 1 • > • 1 . 1 5 . 3 1 . 0 1-1 7 0 T - O I C R A N U M F U S C E S C E N S 11 .11 . i i . u . I . I . I . I . I . I . I . I . I . I . I . 11 .i i . 12 . 1 1 2 1 . 1 1.1 1 -7 71 T - R H Y T I D I A D E L P H U S L O R E U S | . 1 . 1 . 12.21 . 1 . I . I . I 4 .21 . 1 • i . i . i . 1 . i . | . 1 1 0 . 5 2 . 2 2 - 4 72 T - H Y P N U M S U B I M P O N E N S j . 1 . 1 . 1 . 1 . 1 . i . i . i . i . i . i . i . i . 1 . i . 1 2 . 1 1 5 - 3 1 . 0 7 - 2 7 3 E - C 1 C R A N U M F U S C E S C E N S j . 11.11 . 1 . 1 . 1 . i . i . i . I . I . I . I . I . 1 . i . | . 1 5 . 3 1 . 0 1-1 74 T—HYPNUM C I R C I N A L E 11 *n . 1 . 1 . 1 . 1 . 1 . i . i . i . I . I . i . i . i . 1 , i . 1 . . 1 5 . 3 1 . 0 1-1 7 5 T - I S O T H E C I U M S T O L O N I F E R U M | . 1 . 1 . 1 . 1 . 1 . i . i . i . i . i . I . I . I . 11 .i i 1 5 . 3 1 . 0 1-1 76 T - P T E R I G Y N A N D R U M F I L I F O R M E 11 lit . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I : _ 2 -* j_ :_ i_ . . 1 . 1 5 . 3 1 - 0 1-1 0 7 2 1 0 9 3 1 0 3 3 1 1 3 9 1 0 9 0 1 L I T Y MS RS 5 . 3 5 . 3 1 . 0 7 - 2 1 . 0 7 - 2 5 . 3 1 .0 l - l 5 . 3 1 . 0 1-1 1 . 0 l - l 1 .0 l - l 1 . 0 1-1 5 . 3 5 . 3 5 . 3 5 . 3 1 . 0 l - l TABLE V.8.a. FOREST STAND CHARACTERISTICS FOR THE ST UNIT IN THE MH, SUBZONE. b Forest Stand Tsuga Abies Chamaecyparis Mensuration mertensiana amabilis nootkatensis Total Volume/Acre i n cu. feet 2948.2 1276.0 990.0 5214.2 Number of Stem/Acre 47.5 28.0 7.6 83.1 Average Volume/Tree i n 1452 4 5 6 cu. feet 130.3 62.7 Average D.B.H. (inches) 18.8 16.0 32.7 19.1 Average Height (feet) 56.6 61.8 55.7 58.3 ENVIRONMENT TABLE LANDSCAPE UNIT : SLOPE POSITION! ST SUBALPINE PARKLAND SUe/ONE IPLOT NUMBER 1 0951 1211 1291 134 ISLOPE DRAINAGE ORDER 1 0-2 1 0-1-31 0-2 1 0-1 1 ELEVATI ON (M) 110061 1067 1 11281 1159 1 SLOPE GRADIENT I DEGREE S1  20 22 1 321 22 lASPECT 1 1 Nl NWl SWI SE ISOIL 1 BE CROCK IHBGDI BHODl BHGDl H8G0 1 TEXTURE 1 SL1 SLI LSI 1 PARENT MATERIAL 1 CV CVI CVl MV ISOIL OEPTH (CM I 551 ICOARSE FRAGMENTS U l 1 R55 G60I R65I 890 ISLOPE POSITION 1 STI STI STI ST IEROSIONAL FEATURES F ISOIL SERIES 1 LS LS LSI TA IMOCIFIER 1 Ll Ll Ll L 1 SOIL SUBGROUP 1 IOHFPI MFHPI OFHPI LF IHUMUS IHUHUS FORM IF-HMl H-FM 1 H—FMl F-HM (TOTAL THICKNESS (CMI 1 1 1 18 211 191 22 1 t VEGETATIGN 1 ,. • . . . . . 1 AGE (YEARS 1 1 5101 2801 4601 210 1 GROWTH CLASS - DF 1 - WH 1 - WRC 1 - AA 91 9 1 - YC 81 1 - SS 1 - MH 1 9 1 - RA 1 - PM INT/AC 1 104 66 109 123 IVOL/AC (PER 100 C.F.I 1 39 28 99i 47 1 STRATA AS LAYER 1 COVERAGE AI LAYER 1 15 20 35 25 1 C l l BS LAYER 1 201 101 151 45 1 BI LAYER 1 90 50 851 80 1 H LAYER 1 55 10 151 10 1 M LAYER 1 351 80 451 90 1 GROUND H £ MS 1 5 4 3 3 ICOVERAGE CW 1 1 1 31 2 1 U ) R £ S 1 0 1 01 2 MHB I 1491 0-3 I I 11891 221 SEI I I I I HF I SLI MVl I I STI F l HBI L l OHFPI I I I I H-FM I 31 I I I I I 1 2401 I 1 I I I I I 61 I I I I 151 I 481 I I I 451 ! SI I 551 I I ! I I 41 I 21 I l l AOUA TERRA CLASSIFICATION SYSTEM (A.T.C.S.) SEYMOUR WATERSHED TABLE V.8 I I I I I I I MEAN! I I I I I I I I I I I I I I I I I I I I I I I 1109.a l I I I I I I I 23 .61 5 5 . 0 1 6 . 6 340.0 9.0 8.0 7.5 8 3 . 4 5 2 . 2 2 8 . 0 / 1 9 . 0 7 2 . 0 2 2 . 5 62 .5 3 . 8 1.8 0 . 8 V E G E T A T I O N T A B L E - LANOSCAPE UNIT S L O P E POSITIONS ST SUBALPINE PARKLANO SUBZONE IHHBI PLOT NUMBER ST N O . S P E C I E S A l 1 TSUGA MER T ENS I ANA 2 ABIES A H A B I L I S 3 CHAMAECYPARIS NOOTKATENSIS BS A B I E S A H A B I L I S TSUGA MERTENSIANA CHAMAECYPARIS NOOTKATENSIS B l A B I E S A H A B I L I S TSUGA MERT ENS IANA 4 V A C C I N I U H HEHBRANACEUH 5 VACCIN IUH A L A S K A E N S E 6 P E N Z I E S I A FERRUGINEA CHAMAECYPARIS NOOTKATENSIS 7 RHODODENDRON AL81FLORUM 8 CLADQTHEHNUS PYROLIFLORUS 9 SORBUS S I T C H E N S I S 10 V A C C I N I U H OELIC IOSUM H 11 CAR EX NIGRICANS 12 RUBUS PEOATUS 13 PHYILOOOCE EMPETRIFORMIS 14 L U E T K E A PECTIN AT A 15 VERATRUM V I R 1 0 E VACCIN IUH OELIC IOSUM V A C C I N I U H HEHBRANACEUH 16 BLECHNUH SPICANT 17 CASSIOPE HERTENSIANA 18 C l I N T Q N I A UNIFLORA 19 LUZULA PARVIFLORA 20 STREPTOPUS A M P L E X I F O L I U S 21 STREPTOPUS ROSEUS VACCIN IUH A L A S K A E N S E SORBUS S I T C H E N S I S 22 STREPTOPUS S T R E P T 0 P 0 1 0 E S HH 23 R H Y T I D I O P S I S ROBUSTA 24 DICRANUH SCOPARIUH 25 DICRANUH F U S C E S C E N S 26 RHYTIOIAOELPHUS LOREUS 27 PLAGIOTHECIUM UNOULATUH T A B L E V.8 I 0 9 5 I 1 2 1 | 1 2 9 | 1 3 4 | 1 4 9 | I I I I I I I I I I I I I I SPECIES ABUNDANCE-DOMINANCE AND SOCIABILITY P MS RS 13.113.114.213.11 4.11 . 1 . 1 . 1 . 1 . 1 . 1 O . 1 . 1 . 1 . 1 . 1 . 1100 .0 3 . 6 3 - 4 1 1.114.111.112.11 3.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100 .0 3.1 1-4 1 . I S . 113.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . JL" 1 . 1 40 . 0 3 . 3 3 - 5 13.115.213.113.11 2.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l " 1 . 1 100 .0 3 . 6 2 - 5 12.114 .1 13 .113.1 2.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3 . 3 ? - 4 1 3 . 1 1 4 . 1 1 2 . 11 . . 1 . 1 . 1 . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 • 1 . 1 6 0 . 0 3.1 2 -4 12.113.113.112.1 4.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . | . 1 . 1100.0 3 . 3 2 - 4 12.11 3.11 1. 112.11 3.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . | . 1 . 1100.0 3 . 0 1-3 13.115.114.214.2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 • 1 • 1 • 1 • I . 1 . 1 80.0 4 . 1 3 - 5 1 5 . 2 1 2 . 1 1 2 . 1 1 2 . 1 . I - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 80.0 3 . 3 7 - 5 13.112.113.113.1 . 1 . 1 . I . I . I . I . I . I . 1 . 1 . 1 . 1 . I . 1 . 1 80.0 3.1 2 - 3 12.113.112.11 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 60.0 2 . 4 2 - 3 13.211.11 . 1 . . 1 . 1 . I . I . I . I . I . I . 1 . 1 . 1 . 1 . I . 1 . 1 40.0 2 . 3 1 -3 1 . 16.21 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 • 1 • 1 . 1 • 1 . 1 . 1 20.0 3 . 4 6 - 6 12.11 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 20.0 7 . 0 2 - 2 I . I . 12.21 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . • - 1 . 1 20.0 7 . 0 2 -2 14.213.21 . 12.1 2.31 - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . | . 1 . 1 80.0 3 . 2 7 - 4 I S . 3 l 6 . 3 i . 1 . 2.11 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . I . 1 . 1 60.0 4 . 1 7 -6 13.114.21 . 13.1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 60.0 3 .2 3 -4 13.21 . 1 . 1 . 2.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • I . I . I . I . | . 1 . 1 40 .0 7 .4 2-3 12.113.21 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 40 .0 2.4 2-3 1 . I 2 . l l 2 . l l . . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . | . 1 . 1 40.0 2.1 2-2 I . I . 12.11 . 2.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 40 .0 2 .1 7 -2 1 . 12.11 . 1 . . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I • 1 . 1 20.0 2.0 2-2 1 2 . l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 20.0 2.0 2 - 7 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 20.0 2.0 7 -2 1 . 1 . 1 . 1 . 2.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 20 .0 2.0 2-2 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • I . I . I . 1 • 1 . 1 . 1 20.0 2.0 2-2 12.11 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . • 1 • 1 • 1 . 1 • I . 1 . 1 20 .0 2.0 2-2 I . I . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . | . 1 . 1 20 .0 2.0 2-2 11.11 . 1 . 1 . . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 20.0 1.0 1-1 1 . 1 . 1 . 1 . I.II . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I • 1 . 1 20 .0 1.0 1-1 13.21 . 14.212.2 I . I . I . I . I . I . I . I . . 1 . 1 . 1 . 1 . | . 1 . 1 60.0 3.1 2 -4 I . I . I . 14.3 3.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 40 .0 3.1 3-4 13.213.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . | . 1 . 1 40 .0 3 . 0 3 - 3 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . | . 1 . 1 20 .0 2 . 3 3 - 3 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 20 .0 2 . 0 2 - 2 VEGETATION TABLE - LAfiOSCAPE UNIT I SLOPE POSITION: ST SUBALPINE PARKLAND SUBZONE (HHBI TABLE V . 8 . C . P L O T NUMBER 10951 1211 129113*1 1491 I I I I I I I _ I J J I • [ STNO- SPECIES S P E C I E S A B U N D A N C E - D O M I N A N C E A N O S O C I A B I L I T Y P HS^ RS OICRANUM FUSCESCENS I . I . 1 3 . 2 1 • • • • • I * 1°'° 2?'\ \ \ OICRANUM SCOPARIUM I . I . 13.21 . I . I . . . . . . . • - . • - - • M . O 2.3 3-3 RHYTIOIOPSIS ROBUSTA I . 12.21 . I . I . I . I . I . T . I . I . I • I • I • I I - I - ' - ' • « 2 0 - ° 2 - ° *~ 2 OJ TABLE V.9.a. FOREST STAND CHARACTERISTICS FOR THE SM UNIT (0-5 AND 0-4 SLOPES) IN THE CWH, SUBZONE. F o r e s t Stand Mensuration Pseudotsuga Thuja Tsuga Abies m e n z i e s i i p l i c a t a h e t e r o p h y l l a a m a b i l i s T o t a l Volume/Acre i n cu. f e e t Number of Stem/Acre Average Volume/Tree i n cu. f e e t Average D.B.H. (inches) Average Height (feet) 156.4 0.13 1203.1 85.0 150.0 7551.0 13.0 580.8 52.8 1 35.0 5234.3 87.0 60.2 16.1 79.6 2131.3 61 . 8 34.5 11.2 53. 2 15073.0 161.9 93.1 17.2 74.0 ENVIRONMENT T A B L E LANDSCAPE UNIT < SLOPE P O S I T I O N ! SH COASTAL WESTERN HEMLOCK WET SUBZONE (CWHBI IPLOT NUMBER 0161 0121 ISLOPE DRAINAGE ORDER 1 1 . . _ . _ _ _ _ _ 0-5 1 0-5 1 111 t VA T1G N (Ml S1BI 2741 ISLOPE GRADIENT I DEGREE S1 201 101 IASPECT 1 El swl ISOIL 1 BEDROCK HBGDI HBODI 1 T E X T U R E SLI SLI 1 PARENT MATERIAL MV MV 1 ISOIL DEPTH ICMJ ICOARSE FRAGMENTS (t) S65I G35I 1 SLOPE POSITION SM SMI 1 EROSIONAL FEATURES VI ISOIL SERIES 1 CE BWl 1 KO CIFIER 1 L Gl 1 SOIL SUBGROUP 1 OHFPI OFHPI I HUMUS 1 1HUMUS FORM F-HM F—HN 1 1 TOTAL THICKNESS (CH) 1 • 1 6 231 1 1 VEGETATION 1 AGE (YEARS) 1 156 301 1 GROWTH CLASS - DF 1 - WH 41 1 - WRC 1 3 1 - AA 1 - YC l - SS 1 - HH 1 - RA 1 - PH INT/AC I 141 1471 IVOL/AC (PER 100 C .F .J 1 220 1 1361 1 STRATA AS LAYER 1 60 201 ICOVERAGE AI LAYER 1 45 451 1 i%) BS LAYER 1 30 30| 1 BI LAYER 1 25 751 1 H LAYER 1 80 1 75 1 M LAYER 1 35 1 GROUND H £ MS 1 4 4! ICOVERAGE CW 1 1 1 2 1 ( X i R £ S 01 0-5 I 0-5 I 3051 305 161 12 NEI S I I BHOOI HLF SLI SL MVl 2031 BW G MV 67 G45I G65 S M I SM VI BWl Gl OFHPIOFHP I I I I F-HHIF-HH 211 9 I I I I I 1551 I I I 21 3601 1281 451 30) 351 601 751 I 31 41 01 0-5 4S8 18 SE HBGD SL MC 206 G30 SM SN OFHP H - F H 26 171 8 0-5 244 12 SE BHGD LS MC B70 SH VA CP OFHP H - F M 1 7 104 4 86 1 1191 981 1 1521 1 1941 1721 1731 1301 1721 751 651 451 201 651 401 751 151 55 1 451 351 401 251 301 201 251 651 651 351 651 551 751 701 85 1 701 651 801 301 601 351 401 41 4l 41 41 21 21 31 3.1 21 41 01 01 21 11 11 0-. I 0-4 I I I 4881 5491 121 181 Wl SWI I I I I I I I I BHGClBHGOl SLI LSI HCI CI I I S40I B60I SMI SMI Fl I SNI TAl I Ll OFHPlMHFPl I I I I I I I I F-HMlF-HHl 51 231 I I I I I I 1581 3551 I I 81 81 I AOUA TERRA CLASSIFICATION SYSTEM (A .T .C .S . I SEYMOUR WATERSHED T A B L E V . 9 . I I I I I I I I I I I MEAN I I I 396.31 14.81 I I I I I I I I 159.31 I I I I I I I I I I I 16.51 I I 1 I I 161.31 I 6.01 3.01 5.01 I I I I I 162.1 I 150.81 45.01 43.11 29.41 55.61 74.4 I 46.71 3.61 2.61 0.61 V E G E T A T I O N T A B L E - LANDSCAPE UNIT J SLOPE P O S I T I G N : SM COASTAL WESTERN HEMLOCK WET SUBZONE ICWHBI PLOT NUM eER ST N O . S P E C I E S 10 161 0121009|OOlI 076105.1 048 1106 I I I SPECIES ABUNDANCE-DOMINANCE ANO SOCIABILITY T A B L E V . 9 . I I MS RS AS A I BS BI 1 THUJA PLICATA 2 TSUGA HETEROPHYLLA 3 A M E S AMAB IL IS 4 PSEUDOTSUGA MENZIES I I ISUGA HE TEKUPHYLLA A B I E S AMABIL IS THUJA P L I C A T A TSUGA HETEROPHYLLA A B I E S A M A B I L I S 5 ACER C I R C I N A T U H 6 TA >LS B R E V I F O L I A TSUGA HETEROPHYLLA A B I E S A M A B I L I S 7 VACCINIUM P A R V I F O L I U H 8 VACCINIUM A L A S K A E N S E 9 MENZIESIA FERRUGINEA 10 R U 8 L S S P E C T A B I L I S 11 CPIOPANAX HORRIDUM 12 VACCINIUM OVALIFOLIUM THUJA P L I C A T A 13 SANBUCUS RACEHOSA ACER CIRCINATUH 14 CGRNUS CANADENSIS 15 SORBUS S I T C H E N S I S 16 BLECHNUH SPICANT CCRNUS CANADENSIS 17 RUBLS PEOATUS 18 CL INTONIA UNIFLORA 19 DRYCPTERIS AUSTRIACA 2C T I A R E L L A T R I F O L I ATA 21 PQLYSTICUM HUNITUM 22 T I A R E L L A U M F O L I AT A 23 STREPTOPUS A M P L E X I F O L I U S 24 SMI LAC INA S T E L L A T A 25 ATHYRIUM F I L I X - F E M I N A 26 STREPTOPUS ROSEUS TSUGA HETEROPHYLLA 27 MAIANTHEMUM O I L A T A T U H 1 5 . 1 1 3 . 1 1 3 . 1 1 5 . 1 1 5 . 2 1 . 1 4 . 1 1 . I I . I . 1 4 . 1 1 4 . 1 1 2 . 1 1 3 . 1 1 1 . I K . I I | . | . 1 4 . 1 1 2 . I I . I . 1 2 . 1 1 3 . 1 1 I . I . I . I . I . 1 2 . 1 1 . 1 . 1 I 4 . I I 4 . II 4 . 1 1 3 . I I 2 . 1 1 4 . 1 1 3 . I I 4 . 1 1 . 1 3 . 1 1 2 . 1 1 2 . I I . 1 . 1 3 . 1 1 3 . 1 1 3 . I I . 1 3 . 1 1 3 . 1 1 . I . 1 2 . 1 1 . 1 . 1 . 1 . 1 3 . 1 1 3 . I I 4 . I I 4 . I I 3 . 1 1 3 . 1 1 3 . I I 2 . I I . I 2 . I I 4 . 1 1 3 . 1 1 2 . 1 1 2 . 1 1 3 . 1 1 2 . 1 1 4 . 1 I . I . 1 2 . 1 1 . 1 2 . 1 1 . 1 2 . 1 1 . 1 . 1 . I l . l l . 1 . 1 . 1 2 . 1 1 . 1 . 1 . 1 . 1 3 . 1 1 3 . 1 1 3 . 1 1 4 . 1 1 3 . 1 1 2 . I . 1 4 . 2 1 3 . 1 1 2 . 1 1 3 . 1 1 3 . 1 2 . 1 1 2 . I I . 1 2 . 1 1 2 . 1 1 2 . I . I . 1 4 . 1 1 . 1 3 . 1 1 3 . I . 1 2 . 1 1 1 . 1 1 2 . 1 1 2 . I I . 1 2 . 1 1 2 . 1 1 1 . 1 1 2 . 1 1 . 1 2 . 1 2 . 1 1 . I l . l l . I l . l l 1 1 2 . 1 1 2 . 1 1 1 1 3 . 1 1 3 . I I 1 1 2 . 1 1 . I 1 1 3 . 1 1 4 . 2 1 1 4 . 2 1 I . 1 2 . 1 1 11 .11 . 1 I . 1 2 . 1 1 I . I . I I . I . I 1 2 . 1 1 . I I . 1 2 . 1 1 I . I I I . I I . 12 I . I I . I . I . I . .11 . 1 1 .11 1 2 . 1 1 I U 1 I 1 2 . 1 1 3 . 1 1 2 , 1 2 . 1 1 5 . 2 1 3 . I . 1 3 . 1 1 4 1 2 . 1 1 4 . 2 13. 1 3 . 1 1 . 12 1 2 . 1 1 . 12 1 5 . 2 1 . I 1 2 . l l . 12 I . 1 2 . 1 1 1 1 3 . 2 1 . I 1 3 . 2 1 . I I . 1 2 . 1 1 3 I . 1 2 . 1 1 1 2 . 1 1 . I , 1 1 3 . 1 1 2 . 1 1 4 1 1 4 . 1 1 3 . 1 1 , 2 1 3 . 1 1 3 . 1 1 1 11 . 1 3 . 1 1 . 1 1 2 . 1 1 . 12 . 1 1 2 . 1 1 2 . 1 1 3 , 1 2 . 1 1 1 . I l l .11 . 1 3 . 1 1 . 1 1 2 . 1 1 . I . I . 1 3 . 2 1 2 . 12.11 . I . 1 1 2 . 1 1 . I . I . I . 12 . I . 1 3 . 1 1 , 1 1 3 . 1 1 3 . 1 1 A 1 3 . 1 1 4 . I I , 1 1 2 . 1 1 4 . I I 1 3 . 1 1 4 . 2 1 . 1 1 2 . 1 1 .11 . I . 1 1 . I . 1 2 . 1 1 . 1 2 . 1 1 . 1 1 . I . 1 2 . 1 1 . 1 . 1 . 1 1 2 . 1 1 . 1 . 1 1 75.0 4.1 3-5 1 75.0 3.3 1-4 1 50.0 3.0 2-4 1 12.5 1.5 7-2 1100.0 4.0 2-4 1 75.0 3.0 2-3 1 37.5 2.4 2 -3 1100.0 3.4 2-4 1100.0 3. 3 2-4 1 37.5 2.0 2-7 1 25.0 1.6 1-2 1100.0 3.2 2-4 1 87.5 3.3 2-4 1 75.0 2 . 2 7-2 1 62.5 3.3 3-4 1 67.5 7. 1 1-2 1 62.5 2.1 1-2 1 37.5 1.6 1-2 1 25.0 2.5 2-4 1 25.0 7.0 2-2 1 25.0 1.0 1-1 1 12.5 1.5 2-2 1 12.5 1.5 2-2 1 12.5 1.0 1-1 1100.0 3.2 2-4 1 87.5 3.6 2-S 1 87.5 3.3 1-4 1 75.0 3.3 7-4 1 62.5 2.3 2-3 1 62.5 2.3 2-3 I 50.0 3.0 1-5 1 50.0 2.3 2-3 1 50.0 2.0 1-2 1 37.5 2.4 2-3 1 37.5 2.2 2-3 1 37.5 2.2 2 -3 1 37.5 2.0 2-2 1 25.0 2.2 2 -3 VECE TA TIC N T A B L E - L A N D S C A P E U N I T I SLOPE P O S I T I O N . SM COASTAL WESTERN HEMLOCK WET SUE ZONE JCWHB) T A B L E V . 9.C, PLOT NUMEER ST NO. S P E C I E S 28 GYMNflCA R P I U M D R Y O P T E R I S V A C C I N I U M P A R V I F O L I U H 2 9 L I S T F R A CORDATA 30 S T R E P T O P U S S T R E P T O P O I D E S 31 DI CENTRA FQRMASA 32 DISPORUM HOOKER I 3 3 L 1 N N A E A BORE A L I S 3<i S H I L A C I N A RACEMOSA T H U J A P L I C A T A 35 V I O L A G L A B E L L A 36 AOENOCAULON B I C O L O R 3 7 C H I M A P H I L A U M B E L L A T A 38 GOGOYERA O O L O N G I F O L I A 3 9 L A C T U C A MURAL I S OPLOPANAX HORRIOUM 4 0 PL AG IOTH EC I UM UNOULATUM 41 R H Y T I D I A D E L P H U S LOREUS 42 H Y L O C O H I U H S P L E N D E N S 4 3 R HIZOMNIUM G L A B R E S C E N S 4 4 R H Y T I O I O P S I S R O B U S T A 4 5 CICRANUM F U S C E S C E N S 4 6 POGCNATUM CONTORTUM 4 7 SPHAGNUM G l R G E N S O H N I I 4 8 I S O P T E R Y G I U M E L E G A N S 49 L E U C C L E P I S M E N Z I E S I I 50 SPHAGNUM S P P . R H I Z O M N I U M G L A B R E S C E N S DICRANUM F U S C E S C E N S P L A C I G T h E C I U M UNOULATUM R H Y T I D I A D E L P H U S LOREUS HYLOCOMIUM S P L E N D E N S 51 I S O T H E C I U M S T O L C N I F E R U M 52 E U R H Y N C H I U H PRAELONGUH 5 3 HYPNUM C I R C I N A L E R H Y T I O I O P S I S ROBUSTA SPHAGNUM GIRGENSOHN11 R H 1 Z C K N I U M G L A B R E S C E N S I S C P I E X Y G I U M E L E G A N S R H Y T I D I A D E L P H U S LOREUS PL AG IOTH EC IUM UNOULATUM H Y L O C O H I U H S P L E N D E N S 54 A M B L Y S 1 E G I U M S E R P E N S I016I012I009I001I076I057I048I106I I I I I I S P E C I E S ABUNDANCE-DOMINANCE AND SOCIAB MW HR 12.11 . I I . I . I I . 12.11 I . I . I 12.11 . I 12.11 . I I . I . I I . I . I I . 12.11 12.11 . I II. 11 I . I I . I Il.ll I . I I 1.II1.114 14.113.Ill I . 12.111 I 1.11 I . I 11.111 I 1.111 11.111 I 1.11 Il.ll 11.11 I . 11.111 II.111.Ill I 1.11 1.11 1 II.111.Ill I - 11.111 Il.ll 1.11 I . I . II Il.ll . I Il.ll . I I . Il.ll 11.111.Ill I 1.11l.lll I 1.111.111 11.11 . II I . I . I I . I . II 2.1 I L I T Y HS RS 25.0 7.0 7-7 25 .0 2.0 7-2 25.0 1.6 1-2 12.5 2. 1 3- 3 12.5 1.5 2-2 12.5 I . 5 7-7 12.5 1.5 2-2 12.5 1.5 7-2 12.5 1.5 2-2 12.5 1 .5 2-2 12.5 1.0 l - l 12.5 1.0 1-1 12.5 1.0 l - l 12.5 1.0 1-1 12.5 1.0 1-1 87.5 3.4 1-4 75.0 3.2 1-4 37.5 2.0 1-2 25.0 2. 1 1-3 25.0 2.0. 2-2 25.0 1.0 1-1 25.0 1.0 1-1 25.0 1.0 1-1 12.5 1.0 1-1 12.5 1.0 1-1 12.5 1.0 1-1 50.0 2.2 1-3 37.5 1.0 1-1 37.5 1.0 l - l 37.5 1.0 1-1 25.0 1.0 l - l 25.0 1.0 1-1 12.5 1.0 1-1 12.5 1.0 1-1 12.5 1.0 l - l 12.5 1.0 l - l 50.0 2. 1 1-3 37.5 1.0 1-1 LO 37.5 1.0 l - l -25.0 1.0 1-1 CO 12.5 2. 1 3-3 12.5 1.0 1-1 VEGETATION T A B L E - LANDSCAPE UNIT S SLOPE P O S I T I O N : SM COASTAL WESTERN HEHLOCK WET SueZONE ICWHB) TAULE V . 9 . PLCT NUMEER ST K O . S P E C I E S I 0161 0121 0091 0011 0761 05 II048 11061 I SPECIES ABUNDANCE-DOMINANCE ANO SOCIABILITY 55 HETEROCLADIUM MACQUNI1 11.11 .1.1. 1 . 1 .1.1.1 * 1 • 1 • 1 * 1 . 1 . I . I . I . I . I . I . I . I ISOTHECIUN ST0LQN1FERUM 11.ll .1.1. 1 . 1 .1.1.1 « 1 • 1 • 1 • 1 . 1 L E U C O L E P I S MENZ IESI I I . I . 11.11 . 1 . 1 .1.1.1 • I • 1 • 1 • 1 « 1 56 PLAG 1 OMNIUM INS1GNE I . I . 11.11 . 1 . 1 .1.1.1 • 1 * 1 • 1 * ! * i 57 POGCNATUM ALP1NUM I . 11.11 . 1 .1.1 .1.1.1 • 1*1 * 1 • i . i • i - i 58 T-DICRANUM F U S C E S C E N S 11.111.111.111. 11 . 1 .1.1.1 • 1 • 1 • 1 • i . i . I . I 59 B - I S O T H E C I U M STOLONIFERUM I l . l l l . l l l . i l .1.1 .1.1.1 • 1 « 1 • 1 • i . i . I . I 60 T-IS0THEC1UM STOLONIFERUM 1 . 1 I.111.111. 11 . 1 .1.1.1 • 1*1*1* i . i . I . I . I . I . I . I 6 1 T-HYPNUM C I R C I N A L E 11.111.11 . 1 .1.1 .1.1 .1 « 1 • " 1 • 1 • i. • i 62 T - P L A G I O T H E C I U M UNOULATUM 1 . 11.11 . 11 .11 . 1 .1 .1.1 • 1 • 1 * 1 • j . j 63 T - R M Y T I C I A O E L P H U S LOREUS I . I . 11.111 .11 . 1 .1.1.1 • 1 •» 1 • 1 • 1 — • i . i MS RS I 12.5 1.0 1-I 12.5 1.0 l -I 12.5 1.0 1-I 12.5 1.0 1-I 12.5 1.0 1-I 50.0 1.0 1-I 37.5 1.0 1-I 37.5 1.0 1-I 25.0 1.0 1-I 25.0 1.0 l -I 25.0 1.0 1-TABLE V.IO.a. FOREST STAND CHARACTERISTICS FOR THE SM UNIT (0-3, 0-2 AND 0-1 SLOPES) IN THE CWH, SUBZONE. F o r e s t Stand Mensuration Pseudotsuga m e n z i e s i i Thuja Tsuga Abies Volume/Acre i n cu. f e e t Number of Stem/Acre Average Volume/Tree i n cu. f e e t Average D.B.H. (inches) Average Height (feet) 113.7 0.14 812.1 66.0 150.0 p l i c a t a h e t e r o p h y l l a a m a b i l i s T o t a l 8386.8 21 .2 395.6 41.1 97.9 4188.9 64.9 64. 5 16.0 64.6 1501.6 64.1 23.4 10.5 50. 3 14191.0 150.3 94.4 17.2 63.3 M O ENVIRONMENT TABLE LANDSCAPE UNIT : SLOPE POSITICNJ SM AOJA TERRA CLASSIFICATION SYSTEM ( A . T . C . S . I S E Y M O U R W A T E R S H E D COASTAL WESTERN HEMLOCK WET SUBZONE (CWHB) I PL OT NUMBER I 1201 0641 1571 1561 089| 0631 0501 0801 0881 0401 0851 1551 TABLE,V.10. I HEANl I SLOPE ORAINAGE ORDER 0-3-5 1 ELEVAT(ON (M) 6101 427 640 640 671 427 396 671 793 701 793 3051 ISLOPE GRADIENT (DEGREES) 221 20 221 16| 20 25 111 22 121 20 20 22 1 IASPECT 1 1 S SE E s w E E Ei SI SI W S SEI ISOIL 1 1 i 1BEOROCK 1 HM HF HBGO HBGD HBGO HBGD HBGC HBGC HBGD HG HBGD 1 HBODI 1 TEXTURE 1 SLl SL LSI SL LS SL SL SL SL SL SLl LSI 1 PARENT MATERIAL 1 MV HV MV MV MV MV MV MC CRI HC CH CMI ISOIL DEPTH (CMI 148 1251 1 1 COARSE FRAGMENTS (S) R40 R40 R40 G25 R60 R40 R40 R40 G45 R30 G40 G3SI 1 SLOPE POSITION 1 SH SH SH SM SMI SM SM SM SMI SH SM SHI 1 EROSIONAL FEATURES 1 VA V V V V V V F F V 1 1 SOIL SERIES 1 CEI CE CE CE SN SN SN SN CE SN SN SNI IHODIFIER 1 L L L L L | ISOIL SUBGROUP IOHFPI OFHP OFHP OFHP OFHP OFHP OFHP OFHP OHFP OFHP OFHP OFHPI IHUHUS IHUHUS FORH I TOTAL THICKNESS (CMI IVEGETAT ION | H-FM 8 0-3 H-FM 17 0-3 F-HM 26 0-3 H 23 0-3 14 0-3 H-FM 9 0-3 H-FM 38 0-3 H-FM 44 0-3 0-3-5 H-FM 19 1 AG E (YEARSI 1 2261 1831 1501 2401 1071 1241 2471 1361 2321 2501 1921 2261 I l l l 1 1 1 192.81 1 GROWTH CLASS - OF 1 1 j 1 1 1 1 1 1 - WH 1 91 81 51 61 61 4 | 1 1 1 1 1 1 1 1 6.31 1 - WRC I I | I I 1 1 1 1 - AA I | 51 61 61 61 . | 61 1 1 1 1 1 1 1 1 5.81 1 - YC I | | 61 1 1 1 1 1 1 1 6.01 1 - SS 1 | | 1 1 1 I I I I I 1 1 - MH | | j 1 1 1 1 1 I I I 1 1 - RA | | | 1 1 1 1 1 I I I 1 1 - PM j j | 1 1 1 1 1 1 1 1 1 INT/AC 1 1041 321 521 681 2761 431 481 2321 961 4131 1061 3341 I l l l 1 1 1 150.31 IVOL/AC (PER 100 C .F . I 1 1101 1741 1741 1691 1171 144 1 1211 1 181 1411 1191 1891 1281 I l l l 1 1 1 142.01 1 STRATA AS LAYER | | 401 651 551 301 451 551 451 251 551 551 751 1 1 1 1 1 1 1 49.51 1 COVERAGE Al LAYER 1 501 101 151 201 251 301 351 251 401 201 101 301 I l l l 1 1 1 25.81 1 (XI BS LAYER 1 301 201 351 251 301 401 301 351 251 451 301 151 1 1 I I I I 1 30.01 1 Bl LAYER 1 201 501 751 851 551 751 SCI 8CI 651 55 1 151 551 1 1 I I 1 1 1 59.21 1 H LAYER 1 801 701 901 901 851 801 701 851 651 601 901 751 1 1 1 I 1 1 1 78.31 1 M LAYER 1 201 251 251 151 151 601 401 301 451 351 101 1 1 1 I 1 1 1 29.11 1 GROUND H C NS 1 21 4| 41 41 21 41 21 41 31 41 41 41 I t 1 1 1 1 1 3.41 ICOVERAGE OW 1 31 21 31 31 51 2 1 41 21 41 31 31 21 1 1 I 1 1 1 3.01 1 11} R £ S 1 11 01 01 01 01 1 1 01 01 l l 01 11 11 1 1 1 1 1 1 1 0.41 H-FH 28 0-3 0-2-5 I F-HH 36 FM| 151 VEGETATION T A B L E - LANDSCAPE UNIT 1 SLOPE P O S I T I O N : SH COASTAL WESTERN HEMLOCK WET SUBZONE ICWHBI P L O T NUM eER ST NO. S P E C I E S 1120 1064 l l 57 11 561 089 10631050 1080 108810401 08511551 SPECIES ABUNDANCE-DOMINANCE ANO SOCIABILITY T A B L E V . 1 0 . C . MS RS AS A l B S Bl 1 T H U J A P L I C A T A 2 T S U G A H E T E R O P H Y L L A 3 A B I E S AMABIL IS 4 PSEUDOTSUCA MENZ1ESI1 T S L G A H E T E R O P H Y L L A A £ I E S A M A B I L I S T H U J A P L I C A T A TSUGA HETEROPHYLLA A B I E S A H A B I L I S THUJA P L I C A T A 5 TAXLS B R E V I F O L I A 6 SORBUS S I T C H E N S I S TSUGA H E T E R O P H Y L L A 7 VACCINIUH A L A S K A E N S E Ae I ES AMABIL IS 8 CPLOPANAX HORRIOUM 9 VACCINIUH P A R V I F O L I U H 10 RUBUS S P E C T A B I L I S 11 SAMbUCUS R A C E M O S A 12 H E N Z I E S I A FERRUGINEA 13 V A C C I N I U H O V A L I F C L I U M TAXUS BREV IFOL IA SORBUS S I T C h E N S I S 14 S H I LA C INA S T E L L A T A T H U J A P L I C A T A 15 C O R N U S CANADENSIS 16 B L E C H N U H S P I C A N T 17 C L I N T C N I A U N I F l C R A 18 RUeuS P EDA TU S SMILACINA S T E L L A T A 19 T I A R E L L A U N I F O L I ATA 20 ORYOPTERIS AUSTRIACA 21 KAIANTHEMUM DILATATUM 22 ATHYRIUH F I L I X - F E M I N A 23 STREPTOPUS ROSEUS 24 S T R E P T O P U S AMPLEX I F CLI US T S U G A HETEROPHYLLA 25 GYHNUCARPIUM ORYOPTERIS I 5.21 4.2 14. 3 14.3 14. 114.115.114.2 13.113.114.214.31 . 14.113.113.11 . 12.113.II . |4.212.114.214.212. l l . 12.11 .1 . 1 .12.11 . 1 . 1 . 1 . 1 . 1 2 . 1 1 . I . I . 1 . 1 . I . I . I . I . I . I . I . I . 12 .U • 14.113.1 13 .2 12.II2.113. 114. II3.11 2. 113.11 2.113.21 I 3.112.112. 113.21 3.11 2.112.1 13.1 13.112.112-112.1 I I . 12.111.111.II . 12.113.11 . 12.11 . I . 13.11 I 3. 113. II 2. 113.113. I I3. 113. 113. I I2. 113.1 12. 113. II 14.113.114.113.213.113.113.114.213.114.214.21 . I I . I . I I . l l . 11.112.11 . 1 . 1 . 12.11 . 12.11 I . 12.11 . 1 . 1 . 12.112.II . 1 . 1 . 1 . 1 . 1 I . I . I . I . I . I . I . I . I . I . I . 12.11 14.113.112. 12.1(4.214. 14. l l 3.113. 14.21 . 12. IS.112.112. I . 1 . 1 2 . I . I . 12, I . 12.11 . 14.113.11 . 13.112.11 . I . I . I . I . I . I I . I . I . 212.21 2. 212.112 213.213, 114.313 112.11 112.113 112.112 I . I 12.11 I . I I . I I . I I . I 113.113.113.112 ,114.114.114.214 ,212.114.114.2 13. .213.1|2.113. l l , I . 12.11 . 12 .112.112.112.11 .112.11 . 12 . l l . I . I . I . 12 . 1 . 1 . 12.11 . I . 12.11 . I . 1 . 1 . I I . l l . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 .113.2 12.114. .212.112.II . ,112.113.II . . 12.112.II . .112.11 . 13. . 12.11 . I . . 12.11 . I . .112.112.112. I . I . I . I . I 12.11 . I . 1 12.11 I . I . I . I . 21 . 21 . 15.112 I 3.114 13.114 14.113 13.112 13.113 I . I 14.11 12.21 I . 13 13.11 I . I I . I .112.112.213, .212. 112.112. .212.112.113. .113.21 . I .115.314.214. .11 . 14.212 . 12. 112.112 . 12.213.212 . 12.113.213 .112. 112.11 2 . 12.112.11 - I . 1 . 1 3 . 12.113.21 .112.112. 114.113. 213.112. , 14.112. ,21 . I . .113.112. ,112.112. .11 . I . .213.11 . .113.11 . , 1 . 1 1 .213.112 . 12.112, 113.113.114 113.II . 13 113.214.213 114.213.213 14.213.31 113.21 . I l l - . I . 1 2 13.112.11 13.11 . 12 I . I . 12 II . I . 12 l l . 12.11 112. l l . I .212.113.21 .112.113.11 .212.11 . I .112.11 . I . 15.31 . I . 12.21 . I .112.112.11 . 15.31 . I .11 . 1 . 1 .11 . I . I .112.11 . I . I . 12.11 . 1 . 1 . 1 I 1 0 0 . 0 4 . 3 3 - 5 I 8 3 - 3 3 .4 7 -4 I 2 5 . 0 2 . 0 7 -2 I 8 . 3 1-2 7 - 7 1 1 0 0 . 0 3 . 3 2 - 4 I 1 0 0 . 0 3 . 0 7 -3 I 5 8 . 3 2 . 3 1-3 1 1 0 0 . 0 3.2 2-3 I 9 1 . 7 3.6 3-4 I 4 1 . 7 7-0 1-2 I 2 5 . 0 2 . 0 2 - 7 I 8.3 1-2 2 - 7 1100.0 I 9 1 . 7 I 9 1 . 7 3.2 2-4 3.5 2-4 3.4 2-4 I 7 5 . 0 3 .1 2 - 4 I 6 6 . 7 3 . 0 2 - 5 I 5 8 . 3 2 . 3 2 - 3 I 5 0 . 0 2 .1 2 - 2 I 4 1 . 7 2 .1 2 - 2 I 3 3 . 3 2 . 5 2 - 4 I 25.0 I 16.7 8.3 2 .1 2 - 3 1.1 1-2 1.2 2 - 2 I 8 . 3 1 .2 7 - 7 1 1 0 0 . 0 3 . 3 7 - 5 I 9 1 . 7 3 . 2 2 - 4 I 9 1 . 7 3 . 2 2 - 4 I 7 5 . 0 3 . 3 2 - 4 I 6 6 . 7 3 . 6 2 - 5 I 6 6 . 7 3 .1 2 - 4 I 6 6 . 7 7 . 2 7 - 2 I 5 8 . 3 3 .2 2 - 5 I 5 8 . 3 2 . 6 2 - 3 I 5 0 . 0 I 5 0 . 0 I 4 1 . 7 I 4 1 . 7 2 . 3 7 - 3 2 . 2 1-3 2 . 3 2 - 3 7 .2 2-1 U ) to V EG £ TAT I ON T A B L E - LANDSCAPE UNIT » SLOPE POSITTONJ SH COASTAL WESTERN HEMLOCK WET SUBZONE (CWHB! T A B L E V . 1 0 . C . PLOT NUMBER ST NO- S P E C I E S 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 MW 48 49 50 51 52 1120 10641157115610891063105010801088 1040108511551 I MA 53 54 55 56 57 T I A R E L L A T R I F O L I A T A P O L Y S U C U H MUNITUM L1NNAEA BORE A L I S THUJA P L I C A T A CCODYERA OBLONGIFOL IA A B I E S AMABIL IS GAULTHERIA SHALLON AC1ANTUM PEDATUM CHIMAPHILA M E N Z I E S I I CIRCAEA AL PINA LACTUCA MURAL IS L I S T E R A CORDATA LYCOPODIUM CLAVATUH LYS ICHITUM AMERICANUM PYROLA SECUNOA STREPTOPUS STREPTOPOIDES VACCINIUM P A R V I F O L I U H HAE-ENARIA SACCATA L I S T E R A CAURINA OPLOPANAX HORRIDUH PLAGIOTHECIUM UNOULATUM R H Y T I O I O P S I S ROBUSTA RHYTIC IADELPHUS LOREUS RHIZOMNIUM GLABRESCENS HYLOCOHIUH SPLENDENS ISOTHECIUM STOLONIFERUM RHYT101ACELPHUS LOREUS OICRANUM F L S C E S C E N S HYPNUM C I R C I N A L E POGONATUM CONTORTUH SPHAGNUM GlRGENSOHNI I OICRANUM SCOPARIUM HYLOCCMIUM SPLENDENS PL AGIOTHECIUM UNOULATUM RHIZCMNIUM GLABRESCENS T - I S O T H E C I U M STOLONIFERUM B - I S 0 T H E C 1 U H STOLONIFERUM T—OICRANUM F U S C E S C E N S T - R H Y T I D IADEL PHUS LOREUS T-HYPNUM C I R C I N A L E S P E C I E S ABUNDANCE-DOMINANCE AND S O C I A B I L I T Y P HS RS 13.11 . 2 . 1 . 1 . 12.11 . 1 . 12.21 . 12.11 . 1 . 1 . 1 . . 1 . 1 . 1 4 1 . 7 2 . 2 2 - 3 I . I . I 1 . 1 2 . 1 2 .1 . 12.111.11 . 1 . 1 2 . l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 3 3 . 3 2 . 0 1-2 . 12.11 . 1 . 1 . 1 . 1 . 13.2 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 5 . 0 2.1 2 - 3 I . I . 2 .2 . 12 .112 .11 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 . 1 . 1 . 1 2 5 . 0 2 . 0 2 -2 1 . 1 2 . 1 . 1 . 1 . 1 . 1 . 1 . 12. 11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 6 . 7 2 . 0 2 -2 I . I . I . 1 . 1 . 1 . 12.11 . 11. 11 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 6 . 7 1.3 1-2 I . I . . 1 . 1 . 1 . 1 . 1 . 1 . 14.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 a . 3 7 . 3 4~<> 12.11 . . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 . 3 1.2 2-2 I . I . . 1 . 1 . 1 . 12.11 . 1 . I . I . I . I . I . . 1 . 1 . 1 d . 3 1.2 2 -2 I . I . . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 8 . 3 1.2 7 -7 12.11 . . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 .3 1.2 2 - 7 1 . 12.1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 . 3 1.2 2 - 2 I . I . . 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 8 . 3 1.2 2 -2 I . I . . 1 . 12.11 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 . 3 1.2 7 -2 1 . 12 .1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 . 3 1.2 7 - 7 I . I . . 1 . 12.11 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 . 3 1.7 7 -2 I . I . . 1 . 1 . 1 . 1 . 1 . 1 . 12.21 . 1 . 1 . 1 . . 1 . 1 . 1 8 . 3 1.2 2 -2 I . I . 1 . 1 . 1 . 1 . 1 . 1 . l l . l l . 1 . 1 . 1 . 1 . . 1 . 1 . 1 8 . 3 1.0 1-1 I . I . . 1 . 1 . I l . l l . I . I . I . I . I . I . I . . 1 . 1 . 1 8 . 3 1.0 1-1 1 . 11.1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 . 3 1 .0 1-1 1 . 13 .1 3.213.112.11 . I . 14.21 . I . I . I . I . I . . 1 . 1 . 1 4 1 . 7 3 . 0 2 - 4 1 . 12.1 2 . 2 I . I . I . I 3 . 2 l 4 . 2 l . 12. 21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 41 . 7 2 . 5 7 -4 1 . 12.1 3 . 2 2 .2 . 1 . 1 . 1 . 13.21 . 1 , I . I . I . I . I . . 1 - 1 . 1 3 3 . 3 2 . 3 2 - 3 I . I . 12 .2 12.214.21 . 1 . 1 . 1 . 1 . . I . I . I . I . I . . 1 . 1 . 1 25 .0 2 . 3 2 - 4 1 . 13 .1 I . I . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 . 3 2 . 0 3 - 3 I . I . . 1 . 1 . 1 . 1 . 1 . 1 . . 12.11 . 1 . 1 . 1 . . 1 . 1 . 1 8 . 3 1 .2 2 - 2 14.21 . . 12.113.11 . I . I . I . 12.11 . 1 . 1 . 1 . . 1 . 1 . 1 3 3 . 3 2 . 5 2 -4 I . I . 1 . 1 . 1 . 1 . 12.211.11 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 16 .7 1.3 1-2 I . I . I . I . I . I . I . I l . l l . . 12.21 . 1 . 1 . 1 . . 1 . 1 . 1 16 .7 1.3 1-7 I . I . 1 . 13.11 . 1 . 1 . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 8 . 3 2 . 0 3 - 3 I . I . I . I . 13.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 8 . 3 2 . 0 3 -3 I . I . 1 . 12.11 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 8 . 3 1.2 ? - ? I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 8 . 3 1.2 2 - 2 I . I . I . I . I . I . I . I l . l l . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 8 . 3 1 .0 1-1 I . I . I . I . I . I . I . I l . l l . . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 8 . 3 1.0 1-1 1 . 12 .1 I . I . 12.21 . 1 . I l . l l . . I . I . I . I . I . . 1 . 1 . 1 25 .0 7 . 0 1-7 1 . 12 .1 I . I . 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 6 . 7 2 . 0 2 -2 1 . 12.1 I . I . I . I . I . I l . l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 6 . 7 1-3 1-2 14.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 8 . 3 2 - 3 4 - 4 1 . 12 .1 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 8 . 3 1.2 2 - 2 I I OJ OJ TABLE V.11.a. FOREST STAND CHARACTERISTICS FOR THE SM UNIT IN THE MH SUBZONE. Forest Stand Tsuga mertensiana Abies Mensuration + Tsuga heterophylla amabiiis Total Volume/Acre i n cu. feet 4536.0 8655.5 13191.5 Number of Stem/Acre 15.0 84.3 99.3 Average Volume/Tree i n 3 Q 2 > 4 1 Q 2 < 6 1 3 2 < 8 cu. feet Average D.B.H. (inches) 40.7 20.7 23.7 Average Height (feet) 100.4 83.7 86.2 ENVIRONMENT TABLE LANDSCAPE UNIT : SLOPE POSITION: SH AOUA TERRA CLASSIFICATION SYSTEM ( A . T . C . S . ) SEYMOUR WATERSHED SUBALPINE FOREST SUBZONE IMHAI T A B L E V . l l . I PLOT NUMBER I 0411 1361 I I I I I I I I I I I I I I I > < I SLOPE DRAINAGE ORDER 10-1 -3l0-3-51 I I I I I I I I I I I I I I I I I I IELEVATION (Ml 110671 9151 I I I I I I I I I I I I I I I I I 9 9 0 91 ISLOPE GRAOIENT (OEGREES)I 231 221 I I I | I I | | | I | | | | | | | 22 .51 I ASPECT I SWl NE| I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I | | | | | | | | I | | 1 I I I I I I I I I I | I I | | | | | | | ISOIL | | | | | | | | J | | | | | | | | | | | | I 1 I I I I I I I I I I I I I I I I I I I J IBECROCK IHBGOIHBGOI I I I I I I I I I I I I I I I I I I ITEXTURE < LSI SLI I I I | | | | | | | | | | | | | | | I PARENT MATERIAL I MCI MC t l l t t l l l l | l | | | | J | | | ISOIL CEPTH (CMJ I 130| I I I I | I I I I I I I I I I | | f 130 01 ICOARSE FRAGMENTS lit I R40I R60| I I I I I I I I I I I I I I I I I | I SLOPE PCSITICN I SH| SH| I I | | | | | | | | | | | | | | | I • EROSIONAL FEATURES | VI I I I I I I I I I | I I | | | | | | | ISOIL SERIES I HB| HB| I I | | | | | | | | | | | | | | | i IMOCIFIER I Ll Ll I I I I | I | | | | | | | | | | | | ISOIL SUBGROUP lOHFPlMFHPl I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I HUMUS I I I I I I I I I I I I I I I I I I I I | I HUMUS FORM | |F-HH| I I I I I I I I I I I I I I I I I j ITOTAL THICKNESS (CM) I 201 271 I I I I I I I I I I I I I I I I I 23.51 I I | | I | | | | | | | | | | I | I I | j ', | 1 I I I I I I I I I I I I I I I I I I I | IVEGETAT ICN I I I I I I I I I I I I I I I I I I | I I I AG E (YEARS) I 2701 2741 I I I I I I I I I I I I I I I I I 277 01 I GROWTH CLASS - OF I I I I I I I I I I I I I I I I I I I I | i - W H i I i i i i i i i i i i i i i i i i i i i I - WRC I I I I I I I I I I I I I I I 1 I I I I I I - AA I 81 I I I | | | | | | | | | | | | | | | e.OI I - YC I I 91 I | | | | | | | | | | | | | | | | 9.QI I - SS I I I I I I I I I I I I I I I I I I I I | I - MH I I I I I I I I I I I I I I I I I I I I I ' " *A I I I I I I I I I I I I I I I I I I I I I I - P H I I I I I I I I I I I I I I I I I I I I I INT/AC I 1161 831 I I I I I I I I I I I I I I I | | 99 51 IVOL/AC (PER 100 C F . ) I 1251 139| I I I I I I I I I I I I I I I I | 137 01 (STRATA AS LAYER I 451 I I I I I I I I I I I I I I I | | f 4 5*01 ICOVERAGE AI LAYER I 251 351 I I I I I I I I I I I I I I I I I 3 0 01 I (X) BS LAYER I 151 201 I I I I I I I I I I I I I I I I I _ 7 * 5 | I BI LAYER I 101 £51 I I I | | ! | | | | | | | | | | | 37.SI LO I H LAYER I 701 901 I I | | | | | | | | | | | | | | | 8 0 . 0 1 t o I H LAYER I 201 101 I I I I I I I I I I I I I I I I I 15.01 I GROUND H £ MS I 21 31 I I I I I I I I I I j I | | | | | 2*5 1 ICOVERAGE CW | 4| 31 I .1 | | | | | | | | | | | | | | | 3 \ | I <*> R £ S l l l l l l I | | | | | | | | | | | | | | | !*_>) V E G E T A T I C N T A B L E - LANDSCAPE UNIT SLOPE P O S I T I O N : SH S U B A L P I N E FOREST SUBZONE (HHA) PLCT KLHEER ST N O . S P E C I E S AS 1 A B I E S A H A B I L I S 2 TSUCA HERTENSIANA A l A B I E S A H A B I L I S 3 TSUGA HETEROPHYLLA BS A B I E S A H A B I L I S TSUGA HETEROPHYLLA TSIGA HERTENSIANA B l 4 VACCIN IUH A L A S K A E N S E A B I E S A H A B I L I S 5 H E N Z I E S I A FERRUGINEA 6 CPLOPANAX HORRIOUH 7 RUeUS S P E C T A B I L I S TSUGA HETEROPHYLLA 8 VACCINIUH P A H V I F O L I U H 9 H B E S L A C U S T R E 10 SORBLS S I T C H E N S I S TSUGA HER TENS I ANA 11 V A C C I N I U H HEHBRANACEUH H 12 CL 1NTONIA UNIFLORA 13 GYHNCCAPPIUH ORYOPTERIS 14 RUBUS P E O A T L S 15 BLECHNUH SPICANT 16 ATHYR1UH F I L I X - F E M I N A 17 ORYOPTERIS AUSTRIACA 18 STREPTOPUS ROSEUS 19 VERATRUH V I R 1 0 E 20 T I A R E L L A UNIFOLI ATA 21 CCRNUS-CANADENS1S 22 STREPTOPUS S T R E P T O P O I O E S 23 T I A R E L L A TRI FOL I AT A 24 VALERIANA S I T C H E N S I S 25 V IOLA G L A B E L L A 26 OSHCRHIZA PURPUREA MH 27 RHIZOHNIUH GLABRESCENS 28 R H Y T I O I O P S I S RO BUSTA T A B L E V . l l . C . 1 0 4 1 1 1 3 6 1 I I I I I I I I I I I I J I < I I S P E C I E S ABUNOANCE-OOMINANCE ANO S O C I A B I L I T Y P MS RS 14.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 50 .0 3 . 4 4 - 4 14.11 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50 .0 3 . 4 4 - 4 14.213.11 . I . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 - 1 . 1 . 1 . 1100 .0 4 . 0 3 - 4 12.113.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 . II 0 0 . 0 3. 1 2 - 3 13.113.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 . 1 100.0 3 . 3 3 - 3 12.112.11 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 100 .0 2 . 3 7-2 1 . 13.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 5 0 . 0 3 . 0 3 - 3 12.114.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3 . 5 2 -4 13.113.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 • 1 . 1 . 1 . 1 . 1100 .0 3 . 3 3 - 3 12.112.11 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 100 .0 2 -3 2 - 2 12.112.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . 1 . 1 . 1100.0 2 . 3 2 - 2 I 2 . l l 2 . l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 • 1 . 1 . 1 . 1100 .0 2 . 3 7 - 7 1 . 13.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50 .0 3 .0 3 -3 1 . I 3 . l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 50 .0 3 . 0 3 -3 12.11 . 1 . 1 . 1 . 1 . 1 . 1 • I . I . I . I . I . I . I . I . 1 . 1 . 1 . 1 50 .0 2 .1 7 -7 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 • 1 • 1 . 1 . 1 50 .0 2 . 1 2 -2 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 50 .0 7 .1 7 - 2 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50 .0 7 .1 2 - 7 14.214.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 100 .0 4 . 3 4 - 4 14.21 3.21 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 100 .0 4 . 0 3 -4 13.114.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100 .0 4 . 0 3 - 4 12.113.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 100 .0 3.1 7 - 3 12.112.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 • 1 . 1 . 1 . 1 . 1100.0 2 . 3 2 -2 12.112.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100 .0 2 . 3 2 - 2 I 2 . l l 2 . l t . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 100 .0 2 . 3 2 -2 12.112.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100 .0 2 . 3 2 -2 13.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 5 0 . 0 3 . 0 3 -3 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50 .0 2 .1 2 -2 1 . I Z . l l . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50 .0 2 .1 2 - 2 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 5 0 . 0 2 .1 2 - 2 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50 .0 2 .1 2 -2 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50 .0 2 .1 2 - 2 11.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50 .0 1 .0 1-1 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 - 1 . 1 - 1 . 1 50 .0 3 . 0 3 - 3 1 . 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . 1 . 1 . 1 . 1 . 1 . 1 1 50 .0 3 . 0 3 - 3 O J TABLE V.12.a. FOREST STAND CHARACTERISTICS FOR THE SL UNIT IN THE CWH, SUBZONE. Forest Stand Pseudotsuga Thuja Tsuga Mensuration menziesii p l i c a t a heterophylla Total Volume/Acre i n cu.feet 3171 2944 8972 15087 Number of Stem/Acre 54.7 57.3 196.8 308.8 Average Volume/Tree i n 57 9 51 4 cu. feet 45.6 48.9 Average D.B.H. (inches) 16.2 14.4 13.3 14.1 Average Height (feet) 113.7 93.3 106.2 105.1 ENVIRONMENT T A B L E L A N D S C A P E UNIT » SLOPE P O S I T I O N * S L COASTAL WESTERN HEMLOCK WET SUBZONE 1CWHB) I PLOT NUMBER I 0381 I SLOPE ORAINAGE ORDER ( E L E V A T I O N (Ml I S L O P E GRADIENT ( D E G R E E S ) I A S P E C T I I I S O I L I BEDROCK I TEXTURE I PARENT MATERIAL I S O I L DEPTH (CHI I COARSE FRAGMENTS ( t l ISLOPE POSIT ION IEROSIONAL FEATURES I S O I L S E R I E S I MODIFIER I S O I L SUBGROUP I IHUMUS I IHUMUS FORM I TOTAL T H I C K N E S S (CM) I I I V E G E T A T I O N I AGE ( Y E A R S ) I GROWTH CLASS OF WH WRC AA YC s s MH RA PM I N T / A C I V O L / A C I STRATA ICOVERAGE I (XI I I I I GROUND ICOVERAGE I ( X ) (PER 100 C F . ) AS LAYER AI LAYER BS LAYER BI LAYER H LAYER M LAYER H C MS OW R C S I I 2741 51 Wl I I I I HBGOl SLI HI 3251 G20I SLI I C D I OFHPl I I I I HI 91 I I I I I 1371 I I 41 I I I I I I 3091 1511 I 651 451 251 651 851 31 31 11 AOUA TERRA CLASSIFICATION SYSTEM (A.T.C.S.. SEYMOUR WATERSHED TABLE V. 12.b I MEANl I 274 .41 5.01 3 2 5 . 0 1 9 .01 1 3 7 . 0 1 I 4 .01 I I I I I I 3 0 9 . 0 1 151 .01 I 6 5 . 0 1 45 .01 25 .01 OJ 6 5 . 0 1 ^ 85 .01 0 0 3.01 3.01 1.01 VEGETATION T A B L E - LANDSCAPE UNIT « SLOPE P O S I T I O N ! SL COASTAL WESTERN HEMLOCK WET SUBZONE (CWHBt T A B L E V . 1 2 . C . PLOT NUMBER ST N O . S P E C I E S I03BI I I I I I I I I I I I I I SPECIES ABUNDANCE-DOMINANCE AND SOCIABILITY AI BS BI MH MW 1 TSUGA HETEROPHYLLA 2 PSEUDOTSUGA HENZ IES11 3 THUJA P L I C A T A TSUGA HETEROPHYLLA THUJA P L I C A T A 4 ACER MACROPHYLLUM 5 ALNUS RUBRA TSUGA HETEROPHYLLA 6 VACCINIUM P A R V I F C L I U M 7 RUBUS S P E C T A B I L I S S VACCINIUM A L A S K A E N S E 9 POLYSTICUM MUNITUM TSUGA HETEROPHYLLA 10 BLECHNUM SPICANT • 11 CRYOPTERIS AUSTRIACA 12 GAULTHERIA SHALLGN 13 PT ERIDIUM AOUIL INUH 14 T I A R E L L A T R I F O L I ATA 15 P L A G I O T H E C I U H UNOULATUM 16 hYLOCOHIUH SPLENDENS 17 RHIZOMNIUH GLABRESCENS RHIZOMNIUM GLABRESCENS IB DICRANLM F U S C E S C E N S HYLOCOHIUH SPLENDENS 19 ISOPTERYGIUH ELEGANS PLAGIOTHECIUH UNDULATUH HYLOCOHIUH SPLENOENS ISOPTERYGIUH ELEGANS 20 RHACCHITRIUM LANUGINOSUH RHIZCMNIUH GLABRESCENS 21 RhYTID IADELPHUS LOREUS HA 22 T - D I C R A N U H F U S C E S C E N S HS RS 13.1 13.1 12.1 12.1 14.2 13.1 12.1 12.1 12.1 12.1 l l . l 15.3 13 .2 l l . l 14 .2 l l . l l l . l l l . l l l . l l l . l l l . l l l . l l l . l l l . l I l . l l . I I . I . I . I I . I . I . 1 I . I . I I . 1 1100 .0 4 . 3 4 - 4 1 1 0 0 . 0 3. 3 3 - 3 1 1 0 0 . 0 ?. 3 2 - 7 1 1 0 0 . 0 4 . 3 4 - 4 1 1 0 0 . 0 3 . 3 3 - •\ 1 1 0 0 . 0 2 . 3 7 - 7 1 1 0 0 . 0 2. 3 7- 7 1 1 0 0 . 0 3 . 3 3 - 3 1 1 0 0 . 0 3 . 3 3- 3 1 1 0 0 . 0 7 . 3 7 - 7 1 1 0 0 . 0 2 . 3 2 - 7 1 1 0 0 . 0 4 . 3 4 - 4 1 1 0 0 . 0 3 . 3 3- 3 1100 .0 2 . 3 7 - 2 1 1 0 0 . 0 7 . 3 7 - 2 1 1 0 0 . 0 2 . 3 2 - 2 1 1 0 0 . 0 7 . 3 2 - 2 1 1 0 0 . 0 1. 2 1- 1 1 1 0 0 . 0 5. 3 5- 5 1 1 0 0 . 0 3 . 3 3- 3 1 1 0 0 . 0 1 . 2 1- 1 1 1 0 0 . 0 4 . 3 4 - 4 1 1 0 0 . 0 1. 2 1- I 1 1 0 0 . 0 1. 2 1- 1 1 1 0 0 . 0 1 . 2 1- 1 1 1 0 0 . 0 1 . 2 1- 1 1 1 0 0 . 0 1. 2 1- 1 1 1 0 0 . 0 1. 2 1- 1 1 1 0 0 . 0 1 . 2 1- 1 1 1 0 0 . 0 1. 2 l - 1 1 1 0 0 . 0 1. 2 1- 1 1 1 0 0 . 0 1. 2 1- 1 t o TABLE V.13.a. FOREST STAND CHARACTERISTICS FOR THE RW UNIT IN THE CWH, SUBZONE. Forest Stand Mensuration Pseudotsuga menziesii Tsuga Abies Alnus heterophylla amabilis rubra Volume/Acre i n cu. feet Number of.Stem/Acre Average Volume/Tree i n cu. feet Average D.B.H. (inches) Average Height (feet) 242.0 0.16 15.12.5 85 .0 170 7132.4 261 .5 27.3 11.1 59. 3 4562.8 86. 3 52.9 13.0 71 .2 813.8 35.0 23.3 11.5 67. 2 Total 12751.0 383.0 33. 3 11.8 62 .7 U ) u> o ENVIRONMENT TABLE LANDSCAPE UNIT J SLOPE POSITIONS.RW COASTAL WESTERN HEMLOCK WET SUB ZONE (CWHB) IFLCT NUMBER I SLOPE DRAINAGE ORDER | I EL EVAT I ON (MI I SLOPE GRADIENT (DEGREES) IASPECT I | ISOIL IBEOROCK I TEXTURE I PARENT MATERIAL ISOIL OEPTH (CM) ICOARSE FRAGMENTS IX) ISLOPE POSITION IEROSIONAL FEATURES I SOIL SERIES I HOD IF IER ISOIL SUBGROUP I | 1 0191 05SI 0591 0601 0611 0211 i ° " 5 1 0-S 1 1 2131 oTi 1 2741 'o'-Tj" "o~57 0-5 1 1 213 1 1 3661 2741 2131 1 SI 61 21 51 141 21 1 SWl SEI E l SEI E l SEI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 BHGOl | 1 1 IBHGDI 1 LSI LSI LSI LSI LSI LSI 1 FCI FCI FCI FCI FCI WFI 1 1 1 1 1 1 1 1 B90I B90I B90I B90I B9CI G60I 1 RWl RWl RWl RWl RWl RWl 1 1 1 1 1 1 1 1 SHl SHI SHI SHI SHI CPI I HUMUS IHUHUS FORM I TOTAL THICKNESS (CM) I I I I OFHPIOFHPIOFHPIOFHP|OFHPIOHFPI H-FMl 41 I I I I I I I I I I I I IH-FMIH-FMI 121 I SI I H I I I I I I I I I I HlH-FMl 6l 81 1 1 1 1 1 1 | I 1 1 1 961 1 1 1 1211 1 1 1 1601 1 1 VEGETATION I 1 | 1 AGE (YEARS) 1 761 2051 731 1 GROWTH CLASS - OF i 1 1 I 1 1 1 1 - WH 1 1 41 41 61 41 1 1 - WRC 1 1 1 1 | 1 1 1 - AA 1 21 1 I 1 1 31 1 - YC 1 1 1 1 1 1 1 1 - SS I | 1 1 1 1 1 1 - MH 1 1 1 1 1 1 1 1 - RA 1 1 1 1 1 1 1 1 1 - PM 1 1 1 1 1 1 INT/AC 1 6431 3251 2311 4001 3861 3131 1 VOL/AC (PER 100 C.F.I 1 1561 1401 971 921 1311 149 1 1 ST R AT A AS LAYER 1 451 601 151 1 1 65 1 1 COVERAGE Al LAYER 1 151 151 6 51 751 701 251 1 (X) BS LAYER 1 551 701 351 451 151 301 1 Bl LAYER 1 301 401 101 301 151 301 1 H LAYER 1 801 201 401 351 301 651 1 M LAYER 1 1 30 1 251 451 601 601 1GROUNO H EHS 1 41 21 21 31 l l 31 ICOVERAGE CW 1 11 41 21 U 41 31 1 ( X ) R £ S 1 21 11 31 3 1 11 21 AOUA TERRA CLASSIFICATION SYSTEM (A.T.C.S.I SEYMOUR WATERSHED T A B L E V.13.b. I I I I I I I PEANI 2 5 9 . 1 5 . 7 7 . 7 1 2 1 . 8 4 . 5 7 . 5 383 .01 127 .51 4 6 . 31 4 4 . 2 1 4 1 . 7 1 25 .81 OJ 4 5 . 0 1 OJ 4 4 . 0 1 i 7.51 2 .51 7.01 V E G E T A T I O N T A B L E - LANDSCAPE UNIT < S L O P E P O S I T I O N : RW COASTAL WESTERN HEMLOCK WET SUBZONE (CWHBI PLOT^NUMBER 1019105810591060106110211 I I ST NO. S P E C I E S SPECIES ABUNDANCE-AS 1 TSUGA H E T E R O P H Y L L A 2 A B I E S AMABIL IS 3 PSEUOOTSUGA K E N Z I E S I I A I TSUGA HETEROPHYLLA A B I E S AMABIL IS 4 ALNUS RUBRA 5 THUJA PL It. AT A BS TSUGA HETEROPHYLLA A B I E S AMABIL IS THUJA P L I C A T A ALNUS RUBRA 6 ACER C I R C I N A T U H BI 7 VACCINIUH P A R V I F O L I U H TSUGA HETEROPHYLLA A B I E S A M A B I L I S 8 VACCINIUH A L A S K A E N S E 9 H E N Z I E S I A FERRUGINEA 10 VACCINIUM O V A L I F O L I U M 11 SAMBUCUS RACEHOSA 12 RUBUS S P E C T A B I L I S ACER C I R C I N A T U H 13 ACER MACROPHYLLUM ALNUS RUBRA H 14 CRYOPTERIS AUSTRIACA 15 POLYSTICUM MUNITUH 16 OLECHNUM SPICANT 17 STREPTOPUS AMPLEX IFOL1US 18 RUBUS PEOATUS 19 T I A R E L L A T R I F O L I A T A VACCINIUH PARVIFOLIUH 20 ATHYRIUM F I L I X - F E M I N A 21 CORNUS CANADENSIS 22 GYMNOCARP IUM DRYOPTERIS TSLGA H E T E R O P H Y L L A 23 T I A R E L L A UNIFOLI AT A 24 CL INTONIA UNIFLORA 25 STREPTOPUS ROSEUS VACCINIUM A L A S K A E N S E 13 .1 (3 .112 . I I . I . 15.11 14.2(4.21 . 1 . 1 . 14.11 I . 1 . 13.11 . 1 . 1 . 1 (3 .113.113.114.213.113.11 13 .113. I I . 12.115.212.11 I . I . 14.214.21 . 1 . 1 I . I . 12.112.11 . 1 . 1 14 .214 .213 .113 .112 .114 . I I 13 .113. I I . 13 .113.112. I I I . I . 12.112. I I - I . I I . I . 13.11 . 1 . 1 . 1 12.11 . 1 . 1 . 1 . 1 . 1 (2 .112 .111 .112 .113 .112 . I I 12.112.1 12.113.11 . 13.11 1 3 . 112 .112 .1 (2 . 112.11 . I I . . 13.112.1(2 .112.11 . | (2 .111 . I I . I . I I . 112 . I I 1 3 . II . 1 . 1 . 12.113.11 12.11 . 1 . 1 . 12.112.11 12.11 . 1 . 1 . 1 . 12.11 12.11 . 1 . 1 . 1 . 1 . 1 I . I . I . I . I l . l l . I I . I . I I . l l . I . I . I 14 .212 .113 .1 (2 .113 . 1(3. I I 11 .111 .113 .114 .212 .112 . I I 12 .112. I I . 12.113.113.11 12.11 . 12.111.112.112. I I 13.112.11 . I . 12.112.11 I . I . 13.112.112.112.11 I . 12.11 . 12.112. I I . I I . I . I . I . 12.112.11 12.112. I I . 1 . 1 . 1 . 1 12.11 . 12.11 . 1 . 1 . 1 I . 12.11 . I . 12.11 . I 14.21 . 1 . 1 . 1 . 1 . 1 12.11 . 1 . 1 . 1 . 1 . 1 12.11 . 1 . 1 . 1 . 1 . 1 I . 12.11 . 1 - 1 - 1 . 1 T A B L E V . 1 3 . C . I I I I I P MS RS 1 6 6 . 7 3 . 3 2 - 5 1 5 0 . 0 3 .4 4 - 4 1 1 6 . 7 2 . 2 3 - 3 1 1 0 0 . 0 3 .4 3-4 1 8 3 . 3 3 . 3 2 - 5 1 3 3 . 3 3-2 4 - 4 1 3 3 . 3 2 . 0 2 - 2 1100 .0 3 . 6 2 -4 1 8 3 . 3 3 . 1 2 - 3 1 3 3 . 3 2 . 0 2 - 2 1 16 .7 2 . 2 3 -3 1 1 6 . 7 2 . 0 7 -2 1100 .0 2 . 5 1-3 1 8 3 . 3 3 . 0 2 - 3 1 8 3 . 3 2 . 5 2 - 3 1 6 6 . 7 2 . 4 2 - 3 1 6 6 . 7 2 - 0 1-2 1 5 0 . 0 2 . 6 2 - 3 1 5 0 . 0 2 . 1 2 - 7 1 3 3 . 3 2 . 0 7 - 2 1 1 6 . 7 2 . 0 2 -2 1 1 6 . 7 1 .0 1-1 1 1 6 - 7 1.0 1-1 1 1 0 0 - 0 3 . 3 7 -4 1 100 .0 3 .1 1-4 1 8 3 . 3 3 . 0 2 - 3 1 8 3 . 3 7 . 7 1-7 1 6 6 . 7 7 .4 2 - 3 1 6 6 . 7 2 . 4 7 -3 1 5 0 . 0 2. 1 2 -2 1 3 3 . 3 2 . 0 2 -2 1 3 3 . 3 2 . 0 2 - 7 1 3 3 . 3 2 . 0 7 - 7 1 3 3 . 3 2 . 0 7 - 7 1 1 6 . 7 3 . 0 4 - 4 1 1 6 . 7 2 . 0 7 -2 1 1 6 . 7 2 . 0 7 -2 1 1 6 . 7 2 . 0 ?-? VEGETAT ION T A B L E - LANOSCAPE UNIT • SLOPE P O S I T I O N : RW COASTAL V.ESTERN HEMLOCK WET SUBZONE (CWHB) PLOT NUN EER ST NO. S P E C I E S I 0191058 1059 I 0601 061 1021I I l l l I I S P E C I E S ABUNDANCE-DOMINANCE AND S O C I A B I L I T Y T A S 1 E V . 1 3 . C . MS RS MH M R MA 26 PLAGIOTHECIUM UNOULATUM 27 RHYTIOIAOELPHUS LOREUS 28 OICRANUM F U S C E S C E N S 29 HYPNUM C IRCINAL E 30 ISOPTERYGIUM E L E G A N S 31 RHIZCMNIUM GLABRESCENS RHIZOMNIUM GLABRESCENS PLAGIOTHECIUM UNOULATUM RHYTIOIAOELPHUS LOREUS OICRANUM F U S C E S C E N S HYPNUM C I RC [NAI E ISGPTERYGIUM ELEGANS RHYTIOIAOELPHUS LOREUS PLAGIOTHECIUM UNOULATUM 32 HYLCCOMIUM SPLENDENS RHIZOMNIUM GLABRESCENS ISCPTERYGIUH ELEGANS 33 ISOTHECIUH STOLONIFERUM 34 AMBLYSTEGIUH SERPENS 35 CLAOPODIUM C R I S P I F 0 L 1 U M 36 B - I S O T H E C I U M STOLONIFERUM 37 T - I S O T h E C I U M STOLONIFERUM 38 T-DICRANUM FUSCESCENS 39 T - R H Y T I O I A D E L P H U S LOREUS 40 T -CLAOPODIUM C R 1 S P I F 0 L I U H 4.2 I . I . I I I I . 14 113.21 I - 12 I . I I . I I . I 213.21 113.21 112.11 12.11 I . I 11.11 I . I I . I 11 . 12 11 . 12 12.11 11.11 11.11 .314.21 . 1 . 1 . 1 . I . I . I . i . i . i - i . i . 1 . 1 66.7 3.5 3 -4 . 1 . 1 . 1 . I . I . i • i • i . i • i . i • i . i . 1 . 1 16.7 2 . 2 3 -3 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I . 1 . 1 16.7 1.0 1-1 . 1 . 1 . 1 . I . I . I . I . I . i . i . i . i . i . 1 . 1 16.7 1.0 1- I . 1 . 1 . 1 . I . I . I . I . I . i . i . i . i . i . 1 . 1 16.7 1.0 1-1 . 1 . 1 . 1 . I . I . I . I . I . i . i . i . i . < . 1 . 1 16.7 1.0 1-1 • .311.11 . I . I . I . I . I . I . i . i . i . i . i 1 . 1 6 6 . 7 3 . 0 1-4 . 11.11 . 1 . I . I . i . i . i . i . i . i . I . I . 1 . 1 66.7 2 . 3 1-3 ' - l l l . i l . 1 . I . I . i . i . i . i . i . i . i . i . 1 . 1 6 6 . 7 2 . 0 1-2 . 11.11 . 1 - I . I . i . i . i . i . i . i . i . i . 1 . 1 3 3 . 3 1 .0 l - l . 11.11 . 1 . I . I . i . i . i . i • i • i . i . i . 1 . 1 16.7 1.0 l - l . 1 . 1 . 1 . I . I . I . I . I . i . i . i . i . ( . 1 . 1 16.7 1 .0 1-1 . 11.11 - I . I . I . I . I . I . i . i . i . i . i 1 . 1 66.7 2 . 5 1-3 . 11.11 . 1 . i . i . i . i . i . i . i . i . i . i . 1 . 1 66.7 2 . 3 1-3 . 1 . 1 . 1 . I . I . I . I . I . i . i . i • i • i . 1 . 1 3 3 . 3 2 . 0 2 - 2 . 11.11 . 1 . I . I . I . I . I . i . i . i • i • i • 1 . 1 33.3 2 . 0 1-2 . 11.11 . 1 . i . i . i . i . i . i . i . i . i . i . 1 . 1 33.3 1.0 l - l . 1 . 1 . 1 . I . I . I . I . I . i • i • i . i . i . 1 . 1 33.3 1.0 1-1 . 1 . 1 . 1 . I . I . I . I . I . i . i . i . i . i . 1 . 1 16.7 1.0 l - l . 1 . 1 . 1 . I . I . I . I . I . i . i . i . i . i . 1 . 1 16.7 1.0 1-1 .111.11 . 1 . I . I . i . I . I . i . i . i . i . i 1 . 1 66 .7 2.0 1-2 '.111.11 . I . I . I . i . i . i . i . i . i . i . i . 1 . 1 66 .7 7 . 0 1-7 . 1 1.11 . 1 . I . I . I . I . I . i • i . i . i . i . 1 . 1 SO.O 2.0 1-2 . 1 . 1 . 1 . I . I . i . I . I . i • i . i . i . i . 1 . 1 33.3 1. 0 1-1 . 1 . 1 . 1 . i . , i . I . I . I . i • i • i . i . i . 1 . 1 16.7 1.0 l - l O J O J O J TABLE V.14.a. FOREST STAND CHARACTERISTICS FOR THE RW1 UNIT IN THE CWHb SUBZONE. Forest Stand Pseudotsuga Thuja Tsuga Abies Mensuration menziesii p l i c a t a heterophylla amabilis Total Volume/Acre i n cu. feet Number of Stem/Acre Average Volume/Tree i n cu. feet Average D.B.H. (inches) Average Height (feet) 933 1.54 605.8 53.0 156.5 5452.2 16.8 342.6 39.8 98.3 4107.8 32.9 124.9 22. 1 65.5 3780 92.9 40.7 11.1 60.5 14273.0 144. 1 99.0 17.4 67.1 ENVIRONMENT TABLE LANDSCAPE UNIT : SLOPE POSITION: RW I COASTAL WESTERN HEMLOCK WET SUBZONE I PLOT NUMBER I 0141 0691 0551 0171 081 I I SLOPE DRAINAGE ORDER | IELE VAT ICN (Ml ISLCPE GRADIENT (DEGREES t .ASPECT I | I SOIL | I BEDROCK I TEXTURE I PARENT MATERIAL ISOIL DEPTH (CM1 ICOARSE FRAGMENTS It) I SLOPE PCSITICN IEROSIONAL FEATURES ISOIL SERIES I MODIFIER ISOIL SUBGROUP I IHUMUS , I HUMUS FORM I TOT AL THICKNESS (CM1 I 0-5 I 0-5 I 0-5 I 0-4 I 0-3 I I I I I I 5181 4881 4271 6711 6101 91 51 91 81 51 SI SEI NWl Wl SI I I I I I I I I I I I I I I I I I I I I 8HGDI BHQDlHBODI BHGDI HBGDI SLI LSI SLI LSI SLI MVI MCI CMI C I MBI I 2021 I I I G40I G35I R30I S60I G35I RUll RWll RW1I RW1I RWll I I I I I CEI BWl BWl PAI BWl Ll Gl Gl Ll Gl OHFPIOFHPIOFHPlMFHPIOFHPI I I I I I I I I I I I I I I I I I I I I F-HM IF—HMI H—FMl HlF-HMl 351 121 151 81 301 I I I I I 1 1 1 1 1 1 i 1 | 1 i 1 VEGETATION 1 1 | 1 1 1 1 1 | I 1 | 1 1 | 1 AG E (YEARS) 1151 1 2441 1351 2501 3061 1 GROWTH CLASS -OF 1 1 1 1 1 1 1 - WH 1 1 61 41 1 1 1 - WRC 1 91 1 1 1 1 1 - AA 1 1 1 1 41 51 1 - YC 1 1 1 1 1 1 1 - SS 1 1 1 1 1 1 1 - MH 1 1 1 1 1 1 1 - RA 1 1 1 1 1 1 1 - PM 1 1 1 1 1 INT/AC 881 2611 1751 1521 571 IVOL/AC (PER 100 C F . ) 1 1541 1341 1461 1211 1591 1 STRATA AS LAYER 651 551 351 451 301 1 COVERAGE AI LAYER 301 301 151 201 351 1 ( S) BS LAYER 351 1 101 251 301 1 B I LAYER 751 65 1 751 651 801 1 H LAYER 801 751 901 801 701 1 M LAYER 1 351 451 401 501 ICAOUNO H t MS 41 31 41 41 21 .COVERAGE DW 1 21 41 31 21 41 1 ( D R £ S 1 01 01 01 01 01 AOUA TERRA C L A S S I F I C A T I O N SYSTEM ( A . T . C . S . ) SEYMOUR WA.fr.SHEO TAi iLE V. 14 .b. MEAN I 542. 7. 202.01 I I I I 20.01 I I I I I 210.01 I 5.01 9.01 4.51 I I I 146.61 142.81 46.01 26.01 25.01 72.01 79.01 47.51 3.4 1 3.01 I OJ oo U1 V EGET Al I ON T A B L E - LANDSCAPE UNIT l SLOPE POSITIONS RWl COASTAL WESTERN HEMLOCK WET SUBZONE ICWHB1 T A B L E V.14.C. PLOT NUMBER ST N O . S P E C I E S 101410691Ot.510171061 I I I I I I I I I I I S P E C I E S ABUNDANCE-DOMINANCE AND S O C I A B I L I T Y MS KS AS AI BS 81 1 TSUGA HETEROPHYLLA 2 T H U J A P L I C A T A 3 A B I E S AMA6IL IS 4 PS EUDQTSUGA M E N Z I E S I I TSUGA HETEROPHYLLA A B I E S AMABILIS THUJA P L I C A T A A B I E S AMABILIS TSUGA HETEROPHYLLA THUJA P L I C A T A 5 ACER C I R C I N A T U H 6 TAXUS BREVIFOL IA TSUGA HETEROPHYLLA A B I E S AMABILIS 7 VACCINIUM A L A S K A E N S E 8 OPLOPANAX HORRI DUN 9 MENZIESIA FERRUGINEA 10 SAMBUCUS RACEHOSA 11 VACCINIUM PARVIFOLIUH 12 RUBLS S P E C T A B I L I S THUJA P L I C A T A ACER C IRC INATUH 13 RUBUS PARVIFLORUS 14 SORBUS S I T C H E N S I S 15 CORNUS CANAOENSIS 16 BLECHNUH SPICANT 17 SMI LAC INA S T E L L A T A 18 ORYOPTERIS AUSTRIACA 19 C L I N T O N I A UNIFLORA 20 RUBUS PEDATUS TSUGA HETEROPHYLLA 21 L1NNAEA BOREAL IS A B I E S AMABIL IS 22 V I O L A G L A B E L L A 23 GOCDYERA OBLONGIFOLI A 24 T I A R E L L A TRIFOLI ATA 25 T I A R E L L A UN IFOL I AT A 26 GYMNCCARPIUM ORYOPTERIS 15.114.114. l |4 . I I . I 14.113.II . I . 13.II I . I . 13. 114.11 . I 14.11 . 1 . 1 . 1 . 1 1 3 . 1 1 4 . 5 1 2 . 1 1 3 . l l ) . 1 I 12.11 . I 3 . II 3.11 3.11 1 3 . l l . 1 . 1 . 13.11 12. 112.112. 114.114. 21 13.11 . 12 .112 .113 .1 | 12.11 . 1 . 1 . 1 . 1 I . I . I l . l l . 1 . 1 I . I l . l l . 1 . 1 . 1 15.21 . 14.112.112. I I I . 12 .113.113. I I5 .21 12.112.113. I I . 14.21 I . 12.1 12. 113.112.11 I 2 . 1 I 2 . U . I . 12.11 I . 1 2 . 111 . 112 . II 12.11 . I . 14.11 I . I . 12.112.11 13.11 . 1 . 1 . 1 I . I . 12.11 I . 12.11 . I 12.11 . 1 . 1 I . I I . I I . I 15.214, 12.113. I 2.112 12.112 I . 13, I - 14 I . 13. 14.213, I . 12 I . I . 12.112 1 . 1 2 I . 12. I . I , 412. 113. 112. ,1 12. II . 311. 213. 31 . II . 13. ,11 . ,112. II . , 12. 112.113. I I 113.112.1 I 113.112.21 112.11 . I 12.114.21 13.21 12.11 I . I 13.21 11 I I 112.II I . I I I . I 12.11 11 l . l l 8 0 . 0 4 . 2 4 - 5 6 0 . 0 3 .2 3 - 4 4 0 . 0 3. 1 3 - 4 2 0 . 0 3 .0 4 - 4 1 0 0 . 0 3. 4 2 - 4 8 0 . 0 3. 1 2 - 3 4 0 . 0 3. 0 3 -3 1 0 0 . 0 3 . 4 2 - 4 8 0 . 0 3 .0 2 - 3 2 0 . 0 2 . 0 2 -2 2 0 . 0 1.0 l - l 2 0 . 0 1. 0 l - l 8 0 . 0 3. 5 2 - 5 8 0 . 0 3 . 4 2 - 5 8 0 . 0 3 .2 2 - 4 8 0 . 0 2 . 5 2 - 3 6 0 . 0 2 . 1 2- 2 6 0 . 0 2 . 1 1-2 4 0 . 0 3 . 0 2 - 4 4 0 . 0 2 . 1 2 - 2 2 0 . 0 2 . 3 3 -3 2 0 . 0 2 . 0 7 -2 2 0 . 0 2 . 0 2 -2 2 0 . 0 2 . 0 2 - 2 1 0 0 . 0 3 . 6 2 - 5 1 0 0 . 0 3. 1 2 - 3 1 0 0 . 0 2 . 6 2 - 3 8 0 . 0 2 . 2 2 - 2 6 0 . 0 3 .1 2 - 4 6 0 . 0 3 . 1 1-4 6 0 . 0 3 . 0 2 - 3 40 .0 3 . 1 3 - 4 4 0 . 0 2 . 4 2 - 3 4 0 . 0 2 . 4 2 - 3 4 0 . 0 2 .1 2 - 2 4 0 . 0 2 . 1 2 -2 4 0 . 0 2 . 1 2 - 2 4 0 . 0 2 . 0 1-2 OJ OJ a. V E G E T A T I C N T A B L E - LANDSCAPE UNIT : SLOPE P O S I T I O N : RWl COASTAL WESTERN HEMLOCK WET SUBZONE ICWHBI PLOT NUMBER ST N O . S P E C I E S | 0 1 4 | 0 6 9 | 0 5 5 | 0 1 7 I 0 8 1 | I I I I I S P E C I E S ABUNDANCE-DOMINANCE 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 THUJ A PL ICATA ATHYRIUM F I L I X - F E M I N A CCRALLORHIZA S P P . L I S T E R A CORDATA LYSICHITUM AM ER I CANUM MA IA N THE MUM DILATATUM PGLYPOOIUM CLYCYRRHIZA POLYST1CUM MUNI TUM PSEUDOTSUGA MENZ IES I I RUBLS S P E C T A B I L I S STREPTOPUS A M P L E X I F O L I U S STREPTOPUS STREPTOPOIDES RHYT IO IAOELPHUS LOREUS PLAGIOT HEC IUH UNOULATUM SPHAGNUM GI RGENSOHNII RHIZOMNIUM GLABRESCENS DICRANUH FUSCESCENS HYLOCOMIUM SPLENDENS POGONATUM CONTORTUH RHYTID IOPSIS RO BUST A EURHYNCHIUM OREGANUM HYPNUM C I R C I N A L E RHYTIOIADELPHUS LOREUS EURHYNCHIUM OREGANUM PLAGIOTHECIUM UNOULATUM OICRANUM FUSCESCENS HYPNUM C I R C I N A L E HYLOCOMIUM SPLENDENS ISOPTERYGIUM ELEGANS RHYTIOIAOELPHUS LOREUS BR ACHY T F E C I U H S P P . HYLOCOMIUM SPLENDENS ISOPTERYGIUM ELEGANS PLAGIOTHECIUH UNOULATUM RHACOMITRIUM AOUATICUM R H Y T I D I O P S I S ROBUST A T-D1CRANUM FUSCESCENS T-HYFNUM C I R C I N A L E B-OICRANUM FUSCESCENS I - I S O T H E C I U M STOLONIFERUM 1 . 13 . ll . . 1 . I . I . I I . I . 1 2 . 11 . 1 • I . I . I . 12.11 . 1 . . | , 1 . 1 . 1 I . I . 1 . . 1 2. 11 . 1 . 1 I . I . 1 . . 1 2 11 . 1 . 1 I . I . 1 . . 12. 21 . 1 . 1 1 . 12 ll . . 1 . I . I . I 1 . 12 .11 . . 1 . 1 . 1 . 1 12.11 . 1 . . 1 . I . I . I I . I . . 12. 1 • 1 . . 1 . 1 . 1 1 . 12 .1 1 . | • I . I . 1 1 . 1 . 12. 1 . 1 . I . I . I 1 1 . 1 1 1 . 1 1 . 2 . 1 1 5 .21 . 1 . 1 1 . 1 2 . 3 1 2 . 1 4 . 2 1 3 . 21 . 1 . 1 1 . 1 . 13 3 . 12 .21 . 1 . 1 I . I . 13. 1 1 .11 • I . I . I 1 . 1 . 12. 1 . 12 .21 . 1 . 1 15.2 1 • 1 • . | • I . I . I 1 . 1 . 13. 1 • 1 . I . I . I 13.21 . 1 . . j . 1 . 1 . 1 11.11 1 . 1 . 1 . . 1 . .11 :!: i: 1 1 1 . 1 1 3 .31 . .11 . I . I . I 1 1 .112 .11 . . | . i . i . i 1 . 12 .3 1 .1 1 . i . i . i 11.II . 1 . . 11 • i . i . i 11.11 . 1 .11 . I . I . I 11.1 1 1 . 1 . 1 . . 1 . ill : i: 1 .* I ll.ll . 1 . .11 . I . I . I 1 . 1 . 1 .11 . I . I . I 11 .1 1 . 1 . | • i . 1 >i 1 . 1 . 1 . . 11 . I . I . I 1 . 1 . 1 .11 . I . I . I 1 > 1 1 . 1 . 1 . . 1 III ; ' ; 1;' ll.ll . 1 . — — — — — — — — — — ll.ll . 1 .11 . i . i . i 1 . 12 .1 1 . j . I . I . I ll.ll . 1 . I • i . i . i T A B L E V.14.C. I P MS RS . 1 2 0 . 0 2. 3 3 - 3 . 1 20 .0 2 . 0 2 - 7 . 1 2 0 . 0 2 . 0 2 -2 . 1 2 0 . 0 2 . 0 7 - 7 . 1 20 .0 2 . 0 2 -2 . 1 2 0 . 0 2 . 0 2 - 2 . 1 20 .0 2 . 0 2 - 2 . 1 2 0 . 0 2 . 0 2 - 2 . 1 2 0 . 0 2 . 0 2 - 2 . 1 20 .0 2 . 0 2 - 2 . 1 2 0 . 0 2 . 0 2 -2 . 1 2 0 . 0 2 . 0 2 - 2 . 1 8 0 . 0 3 . 2 1-5 . 1 8 0 . 0 3 .2 2 - 4 . 1 4 0 . 0 2 . 4 2 - 3 . 1 4 0 . 0 2 . 3 1-3 . 1 4 0 . 0 2 .1 2 - 2 . 1 2 0 . 0 3 . 2 5 -5 . 1 2 0 . 0 2 . 3 3- 3 . 1 2 0 . 0 2 . 3 3 -3 . 1 2 0 . 0 1 .0 l - l . 1 2 0 . 0 1 .0 l - l . 1 6 0 . 0 2 . 3 1-3 . 1 4 0 . 0 7 .0 1-2 . 1 4 0 . 0 2 . 0 1-2 . 1 4 0 . 0 1 .0 1-1 . 1 4 0 . 0 1 .0 l - l . 1 2 0 . 0 1 . 0 1-1 . 1 2 0 . 0 1 .0 1- 1 . 1 4 0 . 0 1 .0 1-1 . 1 2 0 . 0 1 .0 1-1 . 1 2 0 . 0 1 .0 l - l . 1 2 0 . 0 1 .0 l - l . 1 2 0 . 0 1 . 0 l - l . 1 2 0 . 0 1 .0 l - l . 1 2 0 . 0 1.0 l - l . 1 4 0 . 0 1. 0 1-1 . 1 40 .0 1.0 1-1 . 1 2 0 . 0 2 . 0 2 - 2 . 1 2 0 . 0 1.0 l - l ENV I RONHENT TABLE LANOSCAPE UNIT : SLOPE POSITION: R U COASTAL WESTERN HEMLOCK WET SUBZONE (CWHB) I PLOT NUMBER I OT7I I SLOPE DRAINAGE ORDER l I EL EVAT ICN IM) I SLOPE GRADIENT (DEGREES) I ASPECT I I SOIL I BEDROCK ITEXTUSE I PARENT MATERIAL I SOIL DEPTH (CHI ICOARSE FRAGMENTS (*) ISLOPE POSITION IER0S10NAL FEATURES ISOIL SERIES IMOOIFIER ISOIL SUBGROUP I 0-5 I I 4381 01 SEI I I I I HBGD I SLI MR I I G30I RI II I BWl ' G l OFHPI I I IHUPUS I IHUMUS FCRM I TOTAL THICKNESS (CM) I I | IVEGETATICN I AGE (YEARS) I GROWTH CLASS I I I I I I NT/AC I VOL/AC I STRATA I COVERAGE I ( *) I I I OF WH WRC AA YC SS HH RA PH IGROUNO ICOVERAGE I (*) (PER 100 C F . AS LAYER AI LAYER BS LAYER 81 LAYER H LAYER LAYER C MS M H CW R t I I I 251 55 1 801 51 11 01 AOUA TERRA C L A S S I F I C A T I O N SYSTEM ( A . T . C . S . I SEYHOUR WATERSHED TABLE V.15.b. T" | | | I I I I I I I HEANI 4 8 7 . B 25 .0 9 5 . 0 ao.o 5.0 1.0 co co VEGETAT1CN T A B L E - LANDSCAPE UNIT 5 SLOPE P O S I T I O N : f i l l COASTAL WESTERN HEMLOCK WET SUBZONE (CWHBI PLOT NUMBER 10771 ST N O . S P E C I E S T A B L E V . 1 5 . C . I I I I I I I __l I I I j_ S P E C I E S ABUNDANCE-DOMINANCE AND S O C I A B I L I T Y MS RS BI 1 OPLOPANAX HORRIOUM 13.21 2 RU-US S P E C T A B I L I S 13.11 3 HENZIES IA FERRUGINEA 12.11 4 LYSICHITUM AMER ICANUM |4.2| 5 (•AlANTHEKUM DILATATUM 14.21 6 V ICLA L ANG SDORF11 14.21 7 ATHYR1UM F I L I X - F E M I N A 1 3.21 8 GYHNCCARPIUM DRYQPTERIS 13.11 9 BLECHNUM SP.ICANT 12.11 10 HABENARIA SACCATA 12.11 OPLOPANAX HORRI DUN 12.11 11 SMILACINA S T E L L A T A 12.II 12 T I A R E L L A UN IF OLI AT A 1 1 .11 13 SPHAGNUM GIRCENSOHNII 15.31 14 P L A G I O T H E C I U H UNOULATUM 12.11 15 RHIZOMNIUM GLABRESCENS 12.11 1100.0 3.3 3-3 I 100.0 3. 1 3-3 I 100.0 2.3 2-2 I 100.0 I 100 .0 I 100.3 I 100.0 1100.0 I 100.0 2.3 I 100.0 I 100.0 I 100.0 4.3 4-4 4.3 4-4 4.3 3. 3 3.3 2. 3 1100.0 1.2 4-4 3- 3 3-3 2-2 2.3 2-2 2.3 2-2 2-2 1-1 1 100.0 5.3 5-5 1100.0 2.3 2-2 I 100.0 2.3 7-2 OJ OJ TABLE V.16.a. FOREST STAND CHARACTERISTICS FOR THE RI.. UNIT IN THE MH SUBZONE. Forest Stand Mensuration Tsuga mertensiana Abies amabilis Chamaecyparis nootkatensis Total Volume/Acre i n cu. feet 974 Number of Stem/Acre 81.6 Average Volume/Tree i n - 1 1 0 cu. feet Average D.B.H.. (inches) 10.4 Average Height (feet) 31.5 642 4648 6284 30.3 77.0 188.9 21.2 60.4 33.2 11.0 18.3 13.7 70.0 77.9 56.6 ENVIRONMENT T A B L E LANDSCAPE UNIT J SLOPE P O S I T I O N : R l t SUBALPINE FOREST SUBZONE (MHA) IPLCT MJMEER I 1371 1421 SLOPE DRAINAGE ORDER 0-3-5i 0-3-5 E L E V A T I O N (HI 823 864 SLOPE GRADIENT (DEGREESI 71 01 ASPECT NE SW S O I L BEDROCK BHGD BHGD TEXTURE SL PARENT MATERIAL MV OB SOIL DE P T H • ( C M ) 1 43 COARSE FRACMENTS ( X ) R30 SLOPE P O S I T I O N RI1 R I l EROSIGNAL F E A T U R E S S O I L S E R I E S GR 0 MODIFIER G SOIL SUBGROUP OFHP 0 HUMUS HUHUS FORM H-FMl TOTAL TH ICKNESS ICH1 19 60 VEGETAT ION AGE (YEARSI 327 GROWTH CLASS - OF - WH - WRC - AA 8 - YC - SS - MH - RA - PM NT / AC 189 V C L / A C (PER 100 C F . ) 631 STRATA AS LAYER COVERAGE A I LAYER 40 ( t l BS LAYER 1 IS B l LAYER 60 H LAYER 851 90 M LAYER 1 7C GROUND H £ MS 4 5 COVERAGE OW 2 0 ('41 R £ S Cl 0 A Q U A TERRA C L A S S I F I C A T I O N SYSTEM ( A . T . C . S . I SEYMOUR WATERSHED T A B L E V.16.b. I MEAN I I I 8 5 3 . 7 I 3.51 I I I I I I I I 4 3 . 0 1 I I I I I I I I I I 3 9 . 5 1 I I I I I 3 2 7 . 0 1 I I I 8.01 I I I I I 189 .01 6 3 . 0 1 I 4 0 . 0 1 15.01 6 0 . 0 1 87 .51 70 .01 4.51 l . O i I U) VCGETA11CN TABLE - LANDSCAPE UNIT I SLCPE P O S I T I O N : RI1 SUBALPINE FOREST SUBZCNE (MHA) PLCT NUMBER ST NO. SPECI ES I 13711421 1 ' ' 1 1 1 L S P E C I E S ABUNDANCE-DOM INANC A l BS 81 1 CHAMAECYPARIS NOOTKATENSIS 2 A B I E S A M A B I L I S 3 TSUGA HERTENSIANA TSUGA MERTENSI ANA CHAMAECYPARIS NOOTKATENSIS A B I E S AMABIL IS 4 TSUGA HETEROPHYLLA TSUGA HERTENSIANA CHAMAECYPARIS NOOTKATENSIS A B I E S A M A B I L I S 5 MENZIESIA FERRUGINEA 6 VACCIN IUH A L A S K A E N S E 7 VACCINIUH HEHBRANACEUH 8 RUBUS PEOATUS 9 CORNUS CANADENSIS 10 C AR EX NIGRICANS 11 C O P T I S A S P L E N I F O L I A 12 V IOLA GLABELLA 13 C A L T F A L E P T O S E P A L A 14 CLADOTHEHNUS PYROLIFLORUS 15 C L I N T O N I A UNI FLORA 16 PHYLLCCOCE EHPETRIFORMIS 17 VACCIN IUH O E L I C I O S U M 18 BLECHNUH SPICANT 19 C A S S I O P E HERTENSIANA 20 C A U L T E R I A O V A T I F O L I A 21 GAULTHERIA H I S P I O U L A 22 GYMNCCARPIUH ORYOPTERIS 23 H IPPURIS MONTANA 24 L I S T E R A CAURINA 25 STREPTOPUS A M P L E X I F O L I US 26 STREPTOPUS ROSEUS 27 T I A R E L L A U N I F O L I A T A 28 ATHYRIUM F I L I X - F E M I N A 29 PYRCLA SECUNDA 3C T H E L Y P T E R I S NEVADENSIS 31 SPHAGNUM S P P . 32 RHIZCHNIUH GLABRESCENS I (3.114.21 12.113.21 12.112.21 l l . l l . I 11.114.21 12.116.21 13.11 . I 13.11 . I 13.11 . I 12.11 . I 13.212.31 12.21 2.31 I . 16.51 14.21 . I I . 14.41 I . 13.11 I . 13.21 13.21 . I I . 13.21 I . 13.21 12.11 . I I . 12.31 I . 12.21 1 2 . l l . I 12.11 . I I . 12.11 12.11 12.11 12.11 12.11 l l . l l I l . l l l l . l l I . 14.31 13.21 . I T A B L E V . 1 6 . C . I I I I I I I I I AND S O C I A B I L I T Y P MS RS 1 5 0 . 0 3 . 0 3-3 1 5 0 . 0 ? - 1 7 -2 1 5 0 . 0 2 . 1 2 -2 1 1 0 0 . 0 4 . 0 3 - 4 1 1 0 0 . 0 3 .1 2 - 3 1 1 0 0 . 0 2 . 3 2 - 2 1 5 0 . 0 1 .0 l - l 1 1 5 0 . 0 4 . 0 1-4 1 1 0 0 . 0 4 . 5 2 - 6 I 5 0 . 0 3 . 0 3 - 3 1 5 0 . 0 3 . 0 3 -1 1 SO.O 3 . 0 3-1 1 5 0 . 0 2 . 1 2 - 2 1 1 0 0 . 0 3.1 2 - 3 1 1 0 0 . 0 2 . 3 2 - 2 1 5 0 . 0 4 . 5 6 - 6 1 5 0 . 0 3 . 4 4 - 4 1 5 0 . 0 3 . 4 4 - 4 1 5 0 . 0 3 . 0 3 - 3 1 SO.O 3 . 0 3 - 3 1 SO.O 3 . 0 3 - 3 1 5 0 . 0 3 . 0 3 - 3 1 5 0 . 0 3 . 0 3 - 3 1 SO.O 2 . 1 2 - 7 1 SO.O 2 . 1 2 - 2 1 SO.O 2. 1 2 - 7 1 SO.O 2 .1 2 - 7 1 SO.O 2 . 1 2 - 2 1 SO.O 2 . 1 2 - 2 1 5 0 . 0 2 . 1 2 - 2 1 SO.O 2 . 1 2 - 2 1 5 0 . 0 2 . 1 2 - 2 1 5 0 . 0 2 . 1 2 - 2 1 5 0 . 0 1 .0 1-1 1 5 0 . 0 1 .0 1-1 1 5 0 . 0 1 .0 l - l 1 5 0 . 0 3 . 4 4 - 4 NJ 1 5 0 . 0 3 . 0 3 - 3 V E G E T A T I O N T A B L E - LANDSCAPE UNIT SLOPE POSITIONS R l l SUBALPINE FOREST SUB2CNE IMHA) PLOT NUMeER ST NO. SPECIES 33 R H Y T I D I C P S I S ROBUSTA 34 SPHAGNUM CAP ILLACEUM TABLE V.16 . C I 1371 1421 I I I I I I I I I I I I I S P E C I E S ABUNDANCE-DOMINANCE AND S O C I A B I L I T Y P MS RS 13.21 . 1 . 1 . I . I . I . I . I . I . I . I . | . I . I . | . | . I . I . I 5 0 . 0 3 .0 3-3 13.31 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . | . I . I . I . I . I . 1 . 1 S O . O 3 . 0 3 - 3 OJ OJ ENVIRONMENT T A B L E LANDSCAPE UNIT I SLOPE P O S I T I O N ! RI I SUBALPINE PARKLANO SUBZONE IMHBI IPLOT NUMBER ISLOPE ORAINAGE ORDER I E L E V A T I C N IP) ISLOPE GRAOIENT ( D E G R E E S ) I ASPECT | I SOI L IBEDRCCK I TEXTURE I PARENT MATERIAL I SOIL DEPTH ICMI ICOARSE FRAGMENTS ( X ) ISLOPE POSIT IGN IEROSIONAL F E A T U R E S ISOIL S E R I E S IMOCIFIER ISOIL SUBGROUP I | IHUMUS IHUMUS F CRM I TOTAL T H I C K N E S S ICMI I I I VEGETAT ION I AGE ( Y E A R S ) IGROwTH CLASS I N T / A C I V O L / A C I STRATA I COVERAGE I (X ) I I I I GROUND ICOVERAGE I (X) OF - WH - WRC - AA - YC - SS - MH - RA - PM (PER 100 C F . ) BI AS LAYER A I LAYER BS LAYER LAYER H LAYER M LAYER H £ MS CW R £ S 09 *1 1*71 0-2 0-2 976 0 HBGD 08 RI 1 0 0 1037 2 SW HF 08 RI1 0 0 41 2 3 99 5 1 1 AOUA TERRA C L A S S I F I C A T I O N SYSTEM ( A . T . C . S . ) S E Y M O U R W A T E R S H E D f l H L E V.17.b. I I I I I I I M E A N | I I I I I I I 1006 .1 1 I I I I I I I 1.01 I I I I I I I 4 1 . 0 1 2.01 OJ 3.01 tb. 9 9 . 0 1 5 . 0 1 .0 0 . 5 VEGfc TAT1 ON T A B L E - LANDSCAPE UNIT : SLOPE P O S I T I O N : RI1 S U B A L P I N E PARKLAND SUB2CNE IHHBI T A 8 _ . f PLCT NUHEER 10941 1471 I I I I I I I I I I I I I I I I > ST NO. S P E C I E S S P E C I E S ABUNDANCE-DOMINANCE ANO S O C I A B I L I T Y P HS RS H MH I CHAMAECYPARIS NOOTKATENSIS 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 2.1 7 - 2 2 TSUGA MERTENSIANA 1 . 12.1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 2 .1 2 - 7 CHAMAECYPARIS NOOTKATENSIS 1 2 . 1 1 3 . 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1100 .0 3 . 1 2 - 3 TSUGA MERTENSIANA 1 2 . 1 1 3 . 1 1 . . . I . I . I . I . I . . . l . l . l . l . l . l . l . i . i . 1 1 0 0 . 0 3 . 1 2 - 3 3 VACCINIUM A L A S K A E N S E 14.31 - 1 . 1 - 1 . 1 - 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 3 .4 4 - 4 4 A B I E S AMABIL IS 1 . 12.1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 2 .1 7 - 2 5 RHOOODENCRON A L B I F L O R U H 12.11 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 2.1 2 - 7 6 SORBUS S I T C H E N S I S 12.11 - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 2 .1 7 - 7 7 V A C C I N I U H MEMBRANACEUM 12.11 - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 7.1 7 -2 8 CAREX NIGRICANS 1 5 . 3 1 7 . 5 1 . 1 . 1 . I . I . I . I . I . l . l . l . l . l . l . l . i . i . 1 1 0 0 . 0 6 . 3 5 - 7 9 VERATRUH V I R I D E 1 2 . 1 1 6 . 5 1 . 1 . 1 . I . I . I . I . I . l . l . l . l . l . l . l . i . i . 1 1 0 0 . 0 4 . 5 2 - 6 10 L L E T K E A P E C T I N A T A I S . 3 1 2 . 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . 1 . I . I . I . I . I . 1 1 0 0 . 0 4 . 2 2 - 5 11 PHYLLODCCE EMPE TRIFQRNIS 1 5 . 3 1 2 . 2 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 1 0 0 . 0 4 . 2 2 - 5 12 CALTHA L E P T O S E P A L A ' 1 2 . 1 1 3 . I I . 1 . 1 . I . I . I . I . I . l . l . l . l . l . l . l . i . i . 1 1 0 0 . 0 2.1 2 - 3 13 PCLYGCNUM S P P . 1 . 16 .21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . 1 5 0 . 0 4 . 5 6 - 6 11 VALERIANA S I T C H E N S I S 1 . 15 .31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 4 . 1 5 -5 15 JUNCUS CRUMHONDII 14.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 3 .4 4 - 4 16 C A S S I O P E MERTENSIANA 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 3 . 0 3 - 3 17 CL A COT HEMNU S PYROLIFLORUS 1 . 13.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . 1 . 1 . 1 . 1 5 0 . 0 3 . 0 3 - 3 18 E C U I S T U H ARVENSE 1 . 13 .11 . 1 . 1 . I . I . I . I . I . I . I . I . l . l . l . l . l . l . 1 5 0 . 0 3 . 0 3 -3 19 SAXIFRAGA L Y A L L I I i . 13.11 . 1 . 1 . I . I . I . I . I . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 3 . 0 3 - 3 20 ATHYRIUM 01 S T E N T I F O L I U H 1 . 12 .11 . I . I . I . I . I . I . I . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 7 .1 2 - 2 21 GAULTHERIA H I S P I D U L A 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 2 . 1 2 - 2 22 S A L I X S P P . 1 . 12.1 I . I . I . I . I . I . I . I . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 2 . 1 2 - 2 23 V A C C I N I U H OEL IC IOSUM 1 . 12 .21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 2.1 2 - 7 24 V IOLA ADUNCA 1 . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . 1 . 1 . I . I . . 1 5 0 . 0 2 . 1 2 - 2 25 STREPTOPUS A M P L E X I F O L I U S I l . l l . 1 . 1 . 1 . 1 . 1 . 1 , 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 1.0 1-1 26 SPHAGNUM GIRGENSOHNII 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 5 0 . 0 3 . 0 3 - 3 27 SPHAGNUM S P P . 1 . 13 .11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l . l . l . l . l . l . l . i . i . 1 5 0 . 0 3 . 0 3 - 3 TABLE V.18.a. FOREST STAND CHARACTERISTICS FOR THE RI UNIT IN THE CWHL SUBZONE. Forest Stand Mensuration Tsuga mertensiana Abies Chamaecyparis + Tsuga heterophylla amabilis nootkatensis Total Volume/Acre i n cu. feet Number of Stem/Acre Average Volume/Tree in cu. feet Average D.B.H. (inches) Average Height (feet) 1646 51 . 4 32.0 14.7 55.2 1733.5 79.9 21.7 10.9 54. 4 1050 17.1 61.4 19.6 67.6 4429.5 148.4 29.8 13.2 56.2 ENVIRONMENT TAI11E L AN USC AR E UN IT i SLOPE POSIT IONS R l AQUA TERRA C L A S S I F I C A T I O N SYSTEM ( A . T . C . S . ) SEYMOUR W A T E R S H E D COASTAL WESTERN HEMLOCK WET SUB20NE (CWHBI TABLE V . 1 8 . b . IPLOT NUMBER I 1C8I 092 1 I I I I I I I I I I I I I I I I I MEAN) 1 SLOPE DRAINAGE ORDER 0-k 1 0-3 1 1 1 1 I l l l i i i i i i i i i i i i i I E L E V A T I C N (M) 5491 I I5791 1 I l l l i i i i i i i i i i 1 1 564 .01 ISLOPE GRADIENT I DEGREES) 0! 51 1 I l l l i i I I i i i i i i 1 1 7 .51 1 ASPECT 1 Wl 1 1 1 1 i i ! ! I i i i ! I I ! i i i i i 1 1 SO! L | — " 1 ( 1 1 I 1 I I * I i l l ! i i i ' i I i i i IBEDRCCK BHGDl I I HBODI 1 i I I i i i i i i i i i i i I I i 1 TEXTURE 1 S L l 1 1 I I I I j i i i I I i i i i I . I i 1 PARENT MATERIAL OB 0 1 1 i I I I i i i i i i i i i i i i i 1 SOIL DEPTH (CM) 1 1 I I I I i i j l i j i i i i i i i ICOARSE FRAGMENTS ( t l 1 1 I I I I i i i j j i i I I i i i i ISLOPE POSIT ION RII RII 1 I I I I i i i i i i i i i i i i i 1EROSIONAL FEATURES 1 1 I I I I i i i i . i i i i i i i i i I S O I L S E R I E S 0 01 1 I I I I i i i i i i i i i i i I I I IMOCIF IER 1 1 I I I I i i i i i i i i i i i i i I S O I L SUBGROUP 1 0 01 1 1 1 I ! I ! ! i i i i i i i. ! i i ! i IHUHUS 1 1 1 1 1 1 ! I ! i I i I ! I S ! i i i i i ! IHUHUS FORM F-HMI 1 1 i I I i i i i i j i I i i i i i i 1 TOTAL TH ICKNESS (CM) 1 1 65 1 1 1 1 1 1 i i i ! i i ! i i ! i i i i 1 1 65.01 1 | ! V E C E T A T I C N i ., 1 1 1 1 1 1 1 1 ! ! I ! ! ! ! i i 1 ! i ! i ! ! ! I 1 AG E ( Y E A R S ) 1 410  14201 1 j i ^ i ! * J J } j i J i i i 1 1 415.01 1 GROWTH CLASS - DF 1 1 I I I I i i i i i i i i i i i i i 1 - WH 1 1 I I I I t i i i i i i i i i 1 i i 1 - WRC 1 1 I I I I i i i i i i i j j j j i i 1 - AA 1 1 j I I i j i . i i i i i i i i 1 i i 1 - YC 1 8 61 1 I I I I i i i i i i i i i i 1 1 7.01 1 - SS 1 1 I I I I i i i i i i i i i i I I 1 1 - MH 1 1 I I I I i | | j ) i | i i i 1 1 1 1 - RA 1 1 i i i i j j i j | j j i i i I I 1 1 - PM 1 1 i i i i i j j i i i i i i i 1 1 1 I N T / A C 1 185 1121 1 i i i i i i i i i i i i i i 1 1 148.51 I V C L / A C (PER 100 C . F . I 1 47 421 1 i i i i i i i i j j i j j i 1 1 44.51 1 STRATA AS LAYER 1 1 I I I I i i i i i i i j | | 1 1 1 ICOVERAGE A l LAYER 1 40 25 1 1 I I I I i i i i i i i i i i 1 1 32.51 1 (XI BS LAYER 1 101 201 1 I I I I i i i i i - i i i i i ( 1 15.01 1 B l LAYER 1 80 901 1 I I I I j i j i j j j i i i 1 1 85 .01 1 H LAYER 1 90 851 1 I I I I i i i i i i i i i i 1 1 87 .51 1 M LAYER 1 80 701 1 I I I I j i i i i i i i i i 1 1 75 .01 1 GROUND H t H i 1 4 31 1 I I I I i i i i i i i i i i 1 1 3 .51 ICOVERAGE CW 1 2 31 1 . i i i i i i i i i i i i i i 1 1 7.51 1 lit R C S 1 0 01 1 t i I I i i i i i i i i i i I I 1 V E G E T A T I O N T A B L E - LANDSCAPE UNIT 1 S L O P E P O S I T I O N : P.I C O A S T A L WESTERN HEMLOCK WET SUBZONE (CWHB) PLOT NUMBER 1108 1092 I ST N O . S P E C I E S T A B L E V . 1 8 . C . I I I I S P E C I E S ABUNDANCE-DOMINANCE AND S O C I A B I L I T Y MS RS AI BS B I 1 CHAMAECYPARIS NOOTKATENSIS 2 A B I E S AMABIL IS 3 TSUGA MERTENSIANA 4 TSUGA HETEROPHYLLA 5 PINUS HONTICOLA A B I E S AMABIL IS TSUGA HETEROPHYLLA CHAMAECYPARIS NOOTKATENSIS TSUGA HER TENS I ANA CHAHAECYPARIS NOOTKATENSIS 6 VACCINIUM A L A S K A E N S E 7 MENZIES IA FERRUGINEA 8 VACCINIUM O V A L I F O L I U M A B I E S A M A B I L I S 9 RUBUS S P E C T A B I L I S 10 LINNAEA BOREAL IS 11 CLADOTHEMNUS PYROLIPLORUS TSUGA MERTENSIANA 12 RHODODENDRON A L B I F L O R U H 13 VACCINIUM HEMBRANACEUH 14 VACCINIUH P A R V I F O L I U H 15 TAXUS BR E V I F O L IA 16 RUEUS PECATUS 17 L Y S I C H I T U H AMERICANUH 18 CORNUS CANADENSIS 19 VERATRUM V I R I O E 20 AThYRIUM F I L I X - F E M I N A 21 T IARE LL A UN I F Q L I AT A 22 COPTIS ASPLENI F C L I A 23 STREPTOPUS S T R E P T O P O I O E S A B I E S AMABIL IS 24 ARNICA L A T I F O L I A 25 BLECHNUM SPICANT 26 CAREX S A X A T I L I S CLADOTHEMNUS PYROLIFLORUS 27 CL INTONIA UNIFLORA 28 ERIGERON PER1GRINUS 29 GAULTHERIA H I S P I D U L A 30 COCOYERA OBLONG IFOL IA 31 GYMNOCARPIUM ORYOPTERIS 14.212.1 I 2.112.1 12.112.1 I 1.112.1 I l . l l . 12.113.1 12.112.1 12.11 . I . 12.1 14.212.1 12.114.2 13.112.1 13.112.2 12.112.1 12.112.1 14.21 . 13.11 . 13.21 . 12.11 . I . 12.1 I . 12.1 I l . l l . 12.115.3 14.212.1 13.213.1 13.112.1 12.112.1 12.112.1 I . 14.2 I . 13.1 I . 12.1 12.11 . 12.11 . 12.11 . 12.21 . I . 12.1 12.11 . 12.21 . 12.11 . I .12 .1 1 1 0 0 . 0 3 . 5 2 - 4 1 1 0 0 . 0 2 . 3 2 - 7 1 1 0 0 . 0 2 . 3 2 - 2 1 1 0 0 . 0 2. 1 1-7 1 5 0 . 0 1 . 0 1-1 1 1 0 0 . 0 3-1 2- 3 1100 .0 2 . 3 2 - 2 1 5 0 . 0 2 . 1 7 - 7 1 5 0 . 0 2 . 1 2 - 2 1 1 0 0 . 0 3 . 5 7 - 4 1 1 0 0 . 0 3 . 5 2 - 4 1 1 0 0 . 0 3. 1 2 - 3 1 1 0 3 . 0 3. 1 2 - 3 1 1 0 0 . 0 2 . 3 2 -2 1100 .0 2 . 3 2 - 2 1 5 0 . 0 3 .4 4 - 4 1 5 0 . 0 3 . 0 3 - 3 1 5 3 . 0 3 . 0 3 - 3 1 5 0 . 0 2 .1 2 - 2 1 5 0 . 0 2 . 1 2 - 2 1 5 0 . 0 2 .1 2 - 7 1 5 0 . 0 1 .0 l - l 1100 .0 4 . 2 2 - 5 1 1 0 0 . 0 3 . 5 2 - 4 1100 .0 3 . 3 3 - 3 1 1 0 0 . 0 3.1 2 - 3 1100 .0 2 . 3 2 - 7 1 1 0 0 . 0 2 . 3 7 - 2 1 5 0 . 0 3 . 4 4 - 4 1 5 3 . 0 3 . 0 3 - 3 1 5 0 . 0 2 . 1 2 - 7 1 5 0 . 0 2 . 1 2 - 2 1 5 0 . 0 2 . 1 2 - 7 1 5 0 . 0 2 .1 2 - 2 1 5 0 . 0 2 . 1 2 - 7 1 5 3 . 0 7 . 1 7 - 2 1 5 0 . 0 2 .1 2 - 2 1 5 0 . 0 2 . 1 2 - 2 1 5 0 . 0 2 . 1 2 - 2 1 5 0 . 0 2 . 1 2 - 2 OJ CO V E C E T A T I C N TABLE - LANDSCAPE UNIT SLOPE P O S I T I O N : R l COASTAL WESTERN HEMLOCK WET SUB20NE (CWHB. PLOT NUMBER 110810921 ST N O . S P E C I E S 32 EA6ENARIA SACCATA l 2 . l l . I 33 CPLCPANAX HORR10UM | 2 . 1 | . I 34 PHYLLODOCE EHPe TRIFORHIS 12.11 . I 35 PHVSOCARPUS C A P I T A T U S I . 12.11 36 PTERIU IUH AUUILINUM 12.11 . I 37 R I e E S LACUSTRE 12.11 . I 38 SAMBUCUS RACEMOSA I . 12 .1 I 39 SENECIO TRIANGULARIS 12.11 . I 40 STREPTOPUS A H P L E X I F O L I U S I . 12.11 41 STREPTOPUS R C S E L S 12.21 . I 42 T R I E N T A L I S ARCTICA 12.11 . I 43 VALERIANA S I T C H E N S I S 1 2 . l l . I 44 V IOLA LANGSDCRF11 12.11 . I 45 R H Y T I O I O P S I S ROBUSTA 1 2 . 1 1 2 . 2 1 46 SPHAGNUM GIRGENSOHN11 I . 15 .31 47 RHIZOMNIUM GLABRESCENS 14.21 . I 48 SPHANUM PALUSTRE 14.21 . I 49 OICRANUM HOWELLII I.- 12 .11 50 PLEUROZIUM SCHREBERI I . 1 2 . l l 51 RHYTID IADELPHUS LOREUS 12.11 . I RHYTIDIADELPHUS LOREUS I . 14 .21 52 DICRANUN F U S C E S C E N S I . 13 .21 RHIZOMNIUM GLABRESCENS I . | 3 . 2 | T A B L E V.18. I I I I I I S P E C I E S ABUNDANCE-DOMINANCE ANO SOCIAB I I L I T Y HS RS I 5 0 . 0 2 .1 2 -2 < 5 0 . 0 2 .1 2 -2 I 5 0 . 0 2 .1 2-2 I 5 0 . 0 7. 1 ? - ? I 5 0 . 0 2 .1 2 -2 I 5 0 . 0 2 . 1 7 -7 I 5 0 . 0 7.1 2 - 7 I 5 0 . 0 2. 1 7 -2 I 5 0 . 0 2 . 1 2 -2 I 5 0 . 0 2 . 1 2 -2 I 5 0 . 0 2 .1 2 -2 I 5 0 . 0 2 . 1 2 -2 I 5 0 . 0 2 . 1 2 - 2 I 1 0 0 . 0 2 . 3 2 - 2 I 5 0 . 0 4 .1 5 -5 I 5 0 . 0 3 . 4 4 - 4 I 5 0 . 0 3 . 4 4 - 4 I 5 0 . 0 2 .1 2 - 2 I 5 0 . 0 2-1 2 - 2 I 5 0 . 0 2 . 1 2 - 2 I 5 0 . 0 3 . 4 4 - 4 I 5 0 . 0 3 . 0 3 - 3 I 5 0 . 0 3 . 0 3 -3 TABLE V.19.a. FOREST STAND CHARACTERISTICS FOR THE A UNIT IN THE CWH, SUBZONE. Forest Stand Mensuration Thuja  p l i c a t a Tsuga Abies Picea Alnus heterophylla amabilis sitchensis rubra Total Volume/Acre i n cu. feet Number of Stem/Acre Average Volume/Tree i n cu. feet Average D.B.H. (inches) Average Height (feet) 735.2 3.3 222.8 37. 3 81 . 3 3695.7 89.5 41.3 12.1 59. 8 6061.4 115.2 52. 6 13.2 60.2 1801 .4 14.5 124.2 21 .2 85. 8 575. 1 42. 1 13.7 8.5 51 . 2 12868.8 264.6 48.6 12.8 60.3 ENVIRONMENT T A B L E LANDSCAPE UNIT ! SLOPE P O S I T I O N : A AOUA TERRA C L A S S I F I C A T I O N SYSTEM ( A . l . C . S . t SEYMOUR WATERSHED COASTAL WESTERN HEMLOCK WET SUBZONE tCWHBI T A B L E V.19.b. I PLOT NUMBER I SLOPE DRAINAGE ORDER I 1141 1121 0831 0671 0651 0251 0221 0111 0031 0841 1031 0741 I IELE VAT ICN (M) ISLOPE GRADIENT (DEGREESI I ASPECT I I SOI L | I BEDROCK I TEXTURE I PARENT MATERIAL I S O I L DEPTH JCM) ICOARSE FRAGMENTS U l ISLOPE POSIT ION I EROSIQNAL F E A T U R E S ISOIL SERIES I MODIFIER I S O I L SUBGROUP I IHUMUS | IHUMUS FORM ITOTAL THICKNESS I I I I V E G E T A T I O N I AG E ( Y E A R S ) IGRGWTH CLASS I I I (CM) I I I N T / A C I V O L / A C I STR ATA ICOVERAGE I ( X) DF WH WRC AA YC ss MH RA PM I IGROUNO ICOVERAGE I ( S ) (PER 100 C F . AS LAYER A l LAYER BS LAYER B l LAYER H LAYER M LAYER H £ . MS CW R C S 0-5 I 0-5 I 2441 305 01 0 1 SEI 1 1 1 SE 1 1 1 1 SI SI A l 1 A 1 1 A l A 1 | sol SDI GI GI CRI 1 1 CRI 1 1 1 1 IH-FMI 01 1 1 71 1 1 1 | 801 1 1 I 2 4 0 1 1 1 31 1 1 7  1 4531 263 611 12B 51 30 851 55 151 25 901 45 601 85 151 30 31 1 31 5 01 0 0-5 I 0-5 I 0-5 I I I I 2131 1521 1831 01 01 01 0-5 I 0-5 I 0-5 I 0-5 I 0-d I l l l 1831 1831 1831 2741 274 SEI SI SI I I I I I I LSI S I L I S L l A l A l A l I I I G 3 0 | G151 G15I A l A l A l I I I SOI SUl SDI GI GI GI CRlMHFPI R| I I I I I I I I I I I I F—HHI F-HM I F -HM I 31 81 81 81 31 201 301 101 901 951 I 51 21 01 251 601 801 851 31 41 01 01 SI 01 SI 81 01 SI SE I I I I IHBODI GGIHBGO L S I LSI A l * A l S L l LS I A l A l I SL A I I I G15I G1SI G30I AI A l Al I I I SOI SDI SUl GI GI G l 1571 471 1801 I I I I I I 51 I I Al I 40 A SU G R I O H F P l M H F P l O F H P I I I I I I I I I I l l l IF -HHI H l H - F M l H - F M 61 161 101 121 28 SDI GI R l I I I 138 1 1701 1701 1061 204 I l l l I I I I I I l l l 3511 1801 981 1411 1461 401 651 201 151 601 251 701 351 31 31 01 81 1 1 1 41 1 71 1 j 1 1 . ; 1 1 1 31 1 1 51 61 * 71 1 1 1 1 | 1 : 1 1 1 1 1 | 1 : 1 | 1 1 1 | 1 1 1 1 1 1 1 1 1 1 J 1 1 1 1 2931 2001 1431 6761 701 1721 1 1441 1801 1281 1151 881 1891 501 401 451 301 301 201 651 401 251 351 351 351 451 201 251 651 451 201 201 151 301 401 701 451 801 751 901 551 70 1 751 801 951 4 0 | 451 701 901 701 851 901 751 701 501 51 41 41 31 21 31 31 21 31 21 41 51 31 31 01 01 01 01 01 01 11 0-3 I 0-3 I I I 4571 6401 51 81 NEI SI I I I I HF I HF I S L l S L l A l A l Al A l S U l S U l GI GI HHFPIOFHPl I I I I I I I I H - F M l FMI 71 261 I I I I I 1601 1321 I I MEAN I 274.41 2.31 10.91 I I 148 .71 I 6 .31 6 .51 4 .81 I 5 .01 I 264.71 128.91 36.71 36.71 29.61 CO 63.81 72.1 1 —» 63.21 3.31 3.31 0.1 1 V E G E T A T I O N T A B L E - LANDSCAPE UNIT S SLOPE P O S I T I O N : A COASTAL WESTERN HEHLOCK WET SUeZONE ICWHB) T A B L E V . 1 9 . C . PLOT NUMBER I 114| 112108310671 0651 025 I 022 IO l11003 I 084 11031074 I I I I I I I I ST N C . S P E C I E S S P E C I E S ABUNDANCE-DOMINANCE AND S O C I A B I L I T V P MS RS AS A I BS B l 1 A B I E S A M A B I L I S 2 TSUGA HETEROPHYLLA 3 PI C EA S 1TCHENSIS 4 THUJA P L I C A T A A B I E S AMAB IL IS TSUGA HETEROPHYLLA P ICEA S I T C H E N S I S 5 ALNUS RUBRA ABIES AMABIL IS TSLGA HETEROPHYLLA ALNUS RUBRA 6 ACER C IRCINATUM P I C E A S I T C H E N S I S 7 RHAMNUS PURSHIANA 8 TAXUS B R E V I F O L I A THUJA P L I C A T A 9 RUBUS S P E C T A B I L I S 10 CPLOPANAX HORRIDUM TSUGA HETEROPHYLLA A B I E S AMABIL IS 11 VACCIN IUH ALASKAENSE 12 V A C C I N I U H OVALIFOLIUM 13 SANBUCUS RACEMOSA 14 MENZ IESIA FERRUGINEA 15 VACCINIUH P A R V I F O L I U H ACER CIRCINATUM 16 R I S E S BRACTEOSUM 17 PHYSCCARPUS C A P I T A T U S P I C E A S I T C H E N S I S 13 SAM3UCUS C t R U L E A THUJA P L I C A T A 19 V A C C I N I U H HEHBRANACEUH 20 BL ECHNUM SPICANT 21 ORYOPTERIS AUS TR I AC A 22 T I A R E L L A TR IFOL I AT A 23 ATFYRIUM F I L I X - F E M I N A 24 STREPTGPUS ROSEUS 25 STREPTOPUS AMPLEXIFOLI US I . I . I . 12.115.214.113.114.113.113.113.114.21 I . 13.1 12.1 12.11 . 14.113.113.1 I . 13.111.113. I I 12 .114.212. I I . I . 1 3 . 1 1 . I . 13.11 . 1 . 1 . 1 I . I . 1 2 . 1 1 4 . 2 1 3 . l l . I . 12.11 . 1 . 1 . 1 . 1 I 2.I I 4.2 12. II 2 . II 3 . I I 4 . II 2. 11 3 . 112. 114. 114 .113 .1 I 12.112.1 12 .113.112.114.114.114.113.113.112. I I . I 12.114.213. I I . 12.11 . 1 . 1 . I . I . I . I . I 15.31 . 13.11 . 1 . 1 . 1 . 1 . 12.11 . 1 . 1 . 1 I 2. I I 4.21 2. I I 3 . I I 2 .113 .114 .114 .112 .113 .113 .114 .2 I 12.112.11 . 13.115.213.114.114.113.112.112.112.11 12.11 I . I . I I . 12.11 12.11 . I I . 12.11 I . 12.11 12.11 . I 14.213.113.113.112 13.113.113.113.112 I I . 14.213 I . I . 12.112.11 I . I . I . 13.112 I . 14.21 . I . 1 2 1 4 . 2 1 3 . 2 1 3 . l l . I I . 1 2 . l l . 12.112 I . I . I . I I . 13.113.21 13.21 I I I . I . I . I . I I 15.21 . I . . I . . I . .112. .113 . .112. 12. .11 . . 1 (2 . I . .11 . I , l l . I I 12 I . I . 12.11 I . I . I I . I I . I I I I I I I . I I . I 112.111.112. l l . I . 14. 114.113.113. 114.113.112. I . I . 14. 113 .114 . l l . I . 11.11 . 12.11 . I . 12 .112.112. I . I . I I I I 14 14 112.112 114.212 114.212 I • 12 I . 12 1 2 . l l 11 I I . I 11. I . 12. I , 12 11 . I I . I II . I I . I l l . I I . I l l . I I I .313.21 .313.21 .113.21 .112.11 .112.11 .11 . I .112.11 . I . I . 12.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . l l . l l I 2 . I I 2 . 1 1 2 . 112.114.212.113.113.112.113.212.112.11 I 2 . 1 I 2 . 2 I 2 . 1 I 2 . 1 I 3 . 1 I 2 . 1 I 3 . 1 I 3 . 1 I 4 . 2 I 2 . 1 I . 12.11 I 2 . l l 2 . l l 2 . l l 2 . l l 3 . l l 5 . l l 2 . l l 3 . l l 2 . i l . I . 12.11 14.213.214. 113.114.214.21 . 12.11 . I . 12.115.21 12.112.212. 112.II 2.113.11 . 13.11 . I . 12.112. I I I . 12.112.112.112.112.112.112.113.31 . 12.11 . I I 7 5 . 0 3 . 5 2 -5 I 7 5 . 0 3 .1 1-4 I 4 1 . 7 3 .0 2 -4 I 3 3 . 3 2. 5 2 -4 I 1 0 0 . 0 3.4 7 - 4 I 9 1 . 7 3 .3 7 - 4 I 3 3 . 3 2 . 5 7 - 4 I 2 5 . 0 3 . 0 2 - 5 I 1 0 0 . 0 3 . 4 2 - 4 I 9 1 . 7 3 . 3 2 - 5 1 6 . 7 8 . 3 8 . 3 8 . 3 I 2 . 0 7 - 7 1.7 7 -7 1.2 2 - 2 1.2 7 - 7 8 . 3 1.2 2 - 2 8 . 3 1 .2 2 - 2 I 9 1 . I 7 5 . I 7 5 , I 75 . I SO . I 50 , I 50. I 4 1 . I 33 . I 2 5 . I I 1 - 4 2 - 4 2 - 4 7 - 4 2 - 4 2 - 4 1- 4 2 - 2 2 - 2 2 - 3 1- 3 5 - 5 7 -2 2 - 2 2 - 2 l - l I 1 0 0 . 0 3. 1 2 - 4 I 9 1 . 7 3.1 7 - 4 I 8 3 . 3 3 . 1 2 - 5 I 7 5 - 0 3 . 5 2 - 5 (jn I 7 5 . 0 2 . 4 2 - 3 K J I 7 5 . 0 2 . 3 2 - 3 V E C E T A T I C N TABLE - LANDSCAPE UNIT S L O P E P O S I T I O N : A COASTAL WESTERN HEMLOCK WET SUBZONE (CWHBI T A B L E V . 1 9 . C. PLOT NUMBER ST NO. S P E C I E S I 1 H I 1 1210831 0671 0651 0251022 I O i l 1003108'. I 103107'. I I S P E C I E S ABUNDANCE-DOM I NANCE AND SOCIAB 2b 27 23 29 30 31 J2 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 53 54 55 56 57 58 RUBLS PECATUS GYMNCCARPIUM ORYOPTERIS TI ARELL A UNIFOLI ATA CORNUS CANADENSIS CLINTONIA UN IFLflRA M/IANIHEMUM DILATATUM V I O L A G L A B E L L A POLYSTICUM MUNITUM LYS ICHITUM AMERICANUM VACCINIUM P A R V I F O L I U H TSUGA H E T E R O P H Y L L A C IRCAEA ALP INA LYCOPODIUH SELAGO PCNTIA S I B I R I C A SMILAC INA S T E L L A T A VACCINIUH O V A L I F O L I U H VERATRUM V IR IDE C O P T I S A S P L E N I F O L I A ABIES AMABIL IS CORNUS CANADENSIS GALIUM TRIFLORUM GAULTHERIA SHALLON SAMOUCUS RACEMOSA STREPTOPUS STREPTOPQIDES P ICEA S I T C H E N S I S PLAGIOTHECIUH UNOULATUH RHIZOMNIUM GLABRESCENS RHYTID IADELPHUS LOREUS POGQNATUM CQNTORTUM HYLOCOHIUH SPLENOENS SPHAGNUM GIRGSNSQHNII PNIUM LYCCPG0IO1DES OICRANUM FUSCESCENS OICRANUM SCOPARIUM FCGCNATUM ALP INUM EURHYNCHIUH PRAELONGUM PL AG ICMN IUM INSIGNE RHIZOMNIUM GLABRESCENS RHYTIO IACELPHUS LOREUS PLACICTHECIUM UNOULATUM OICRANUM FUSCESCENS HYLOCCMIUH SPLENOENS ISOTHECIUM STOLONIFERUM HYPNUM C I R C I N A L E 1 • 1 . 14.2 3 .111 .114. 113 .11 . 3 .113.3 13 .2 12 .1 . 1 . 12.1 2 .112 .11 . 12 .113.1 . 13.1 3 .1 14 .2 4 .2 12. 11 . . 1 . . 1 . 1 . 14.1 . 12.1 12 .1 1 . 2. .21 . 12.1 . 12. 112 .113 .11 . 3 .1 1 . 1 3 .214. 11 . . 1 . 1 . 1 . l l . l 3 .21 . 4 .2 1 3 2 . 1 3 . 214 .2 2 .112. .11 . 1 . 1 . . 1 . 1 2 .1 . 14. 113.1 . 1 . 1 . 12 .11 . . 12.1 1 2 1 . 12. 11 . . 12 .11 . 12 . 1 l l . l . 1 . 14 .2 . 12. 114.2 . 13 .11 . . 1 . . 1 . 1 • 12 .1 2 .1 1 . 12.1 . 1 . 1 . 1 . . 1 . . 12.1 1 . 12. 113.1 . 1 . 1 . . 1 . . 1 . 12 .11 . 12 .1 . 12. .11 . . 1 . 1 . 1 . 1 . . 12.1 1 . . 1 . 1 . 1 .21 . . 1 . . 1 . 1 . . 12.1 12. 1 . 12. l l . . 1 -. 1 . . 1 . 1 . . 1 . 1 2 .112. 11 ' . . 1 . 1 . 1 • 1 • . 1 . 12 1 2 .11 . 1 . . 1 . . 1 . . 1 . . 1 . . 1 . 12 .1 . 1 . 1 . . 1 . . 1 . 1 . 1 . . 12.1 1 . 1 . 14.2 . 1 . 1 . . 1 . . 1 . . 1 . • 1 . 1 . 1 . . 1 . . 1 . . 1 . . 1 . 2. .11 . 1 . 1 . 1 . . 1 . 1 . 1 . 12.1 . 1 . 1 . . 12. 11 . . 1 . . 1 . . 1 . . 1 . . 1 . 1 . 1 . 12.1 . 1 a . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 2 .11 . 1 . 1 . 1 . . 1 . 1 . . 1 . 12.1 . 1 . . 1 . 1 . . 1 . . 1 . 1 • . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1. 11 . | . 3. .21 . 12.1 2 .111. .11 5. .114. 311.1 13. .213.2 1 . . 1 . 12.2 13. 113 .111 .111.1 13 .213.2 1 1 . 1 . . 11 .11 . 11 .115.1 4 .213.2 4 '.2 1 . 1 . 1 . 3. • 111. 111. 111. 11 . . I . 1 . 1 . 1 . , | . 1 1 .111 .11 . 2 .212.2 1 . . 1 . 14.2 . 1 . 1 . . 1 . l l . l . 12.2 1 . 12. 11 . . 1 . . 1 . 1 . . 1 . . 12.2 1 . . 1 . 1 . . 1 . 1 . . 1 . . 1 . 2 .21 . 1 . . 1 . 1 . 1 . . 1 . 1 . . 1 . 2. .21 . 1 . 12. 11 . 1 1 . | . 1 . . 1 . . 1 . 1 . . 1 . 1 . . 1 . . 1 . . 1 . l l . l . 1 . 1 ' 1 . 1 . 1 . 1 . • • l l . l . 1 . | . 4. 212. 113.2 3. 211. 111. 111. l l . . 1 . 2 .2 1 . 2. 112. 112.1 . 11. 11 1. 111. 111.1 13.2 1 . . 1 . l l .1 3 .211 114. .214 .31 1.1 . 13.2 1 . 1 . 1 . 1 . 1 1. 111. 1 l l . l 1 . 2. .2 1 . . 1 . 12.1 1 . 1 1. .11 . l l . l 1 • 1 . . 1 . 1 . 1 . 11. 11 . l l . l l l . l . 1 . 1 • 1 . 1 . 1 1 . 1 . 11. 11 . 1 . 2. .2 L I T V 66 .7 i . 7 1-4 6 6 . 7 2. 5 2 - 3 5 0 . 0 1 7- 4 5 0 . 0 7 .1 7 -3 4 1 . 7 3 . 0 1-4 41 .7 1.0 7- . 4 1 . 7 2 . 5 7 -4 4 1 . 7 ? . 0 1-7 3 3 . 3 3 . 0 7 -4 3 3 . 3 2 . 0 7 -2 2 5 . 0 2.1 7 - 3 2 5 . 0 2 . 0 7 -2 2 5 . 0 2 . 0 1-2 1 6 . 7 2 . 0 7-2 1 6 . 7 2 . 0 2 -2 1 6 . 7 2 . 0 7 -7 1 6 . 7 2 . 0 2 -7 8 . 3 2 . 3 4 - 4 8 . 3 1.2 ?-? 8 . 3 1.2 7 -2 8 . 3 1 .2 2 -2 8 . 3 1 .2 2 - 7 8 . 3 1.2 2 -2 8 . 3 1 .2 7 - 7 8 . 3 1 .0 l - l 7 5 . 0 3 . 2 1 -5 5 8 . 3 2 . 6 1-3 5 0 . 0 3 . 2 1 -5 3 3 . 3 2 .1 1-3 3 3 . 3 2 . 0 1-2 2 5 . 0 2 . 3 1-4 1 6 . 7 2 . 0 2 - 2 8 . 3 1 .2 2 - 2 8 . 3 1.2 2 - 2 8 . 3 1 . 2 2 - 2 8 . 3 1 .0 1-1 8 . 3 1 .0 1- 1 6 6 . 7 3 . 0 1-4 6 6 . 7 2 . 2 1 - J 5 8 . 3 3 . 0 1-4 3 3 . 3 1.4 1-2 25 .0 1.3 1-2 2 5 . 0 1 . 0 1-1 1 6 . 7 1. 3 1-2 LO co V E G E T A T I C N T A B L E - LANDSCAPE UNIT SLOPE P O S I T I O N : A COASTAL WESTERN HEMLOCK WET SUBZONE (CWHB) PLOT NUM EER ST N O . S P E C I E S T A B L E V . 1 9 . C . I 114 11121 083 10671 0651025 10221011 10031084110310741 I S P E C I E S ABUNDANCE-DOMINANCE AND SOCIAB POGONATUM ALP INUM 59 AMBLYSTEGIUH SERPENS 60 ISOPTERYGIUM ELEGANS POGONATUM CONTORTUM MR HYLOCOMIUM SPLENDENS ISOPTERYGIUM ELEGANS R h l Z O M N l U H GLABRESCENS RHYTIOIAOELPHUS LOREUS 61 R H Y T I D I O P S I S ROBUSTA OICRANUM FUSCESCENS ISOTHECIUM STOLONIFERUM PLAGIOTHECIUM UNOULATUM 62 RHACCMITRIUM AOLATICUM MA 63 64 65 66 68 B - I S O T H E C I U M STCLON1FERUM T - I S O T H E C I U M STOLONIFERUM T-DICRANUM FUSCESCENS T - R H Y T I D I A D E L P H U S LOREUS 67 6-OICRANUM F U S C E S C E N S ISOTHECIUM STOLONIFERUM T-RHIZOMNIUM GLABRESCENS I 1 . 1 1 l l . l l I . I I - I l l 1 . 1 1 1 l l . l l 1 1 1 . 1 1 i n . I I . i . i i 1 1 1 . 1 1 3 1 1 1 . 1 1 3 I I . I 1 1 1 . I I I . I I . I l l . I I I L I T Y MS RS I 1 6 . 7 1.0 1-1 I 8 . 3 1.0 l - l I 8 . 3 1.0 1-1 I 8 . 3 1 .0 1-1 I 1 6 . 7 1 .0 l - l I 1 6 . 7 1 .0 1-1 I 1 6 . 7 1.0 1-1 I 1 6 . 7 1 .0 1-1 8 . 3 8 . 3 8 . 3 1.2 1 .0 1 .0 7 -2 1-1 1-1 I 8 . 3 1.0 1-1 I 8 . 3 1 .0 l - l I 7 5 . 0 3 . 0 1-4 I 6 6 . 7 2 . 4 1-3 I 2 5 . 0 1.0 1-1 I 2 5 . 0 1 .0 l - l I 1 6 . 7 2 . 1 1-3 I 8 . 3 3 . 0 6 - 6 I 8 . 3 1 .0 l - l it* 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0094755/manifest

Comment

Related Items