UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Analysis of patterns in algal community structure in the North Alouette River watershed, British Columbia Wehr, John David 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1979_A6_7 W44.pdf [ 6.6MB ]
Metadata
JSON: 831-1.0094615.json
JSON-LD: 831-1.0094615-ld.json
RDF/XML (Pretty): 831-1.0094615-rdf.xml
RDF/JSON: 831-1.0094615-rdf.json
Turtle: 831-1.0094615-turtle.txt
N-Triples: 831-1.0094615-rdf-ntriples.txt
Original Record: 831-1.0094615-source.json
Full Text
831-1.0094615-fulltext.txt
Citation
831-1.0094615.ris

Full Text

ANALYSIS OF PATTERNS IN ALGAL COMMUNITY STRUCTURE IN THE NORTH ALOUETTE RIVER WATERSHED, BRITISH COLUMBIA by JOHN DAVID WEHR B . S c , Northern A r i z o n a U n i v e r s i t y A THESIS SUBMITTED IN PARTIAL FULFILLMENT • OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES Department of Botany We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA June, 1979 © John David Wehr, 1979 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u rposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department n f BOTANY The U n i v e r s i t y o f B r i t i s h Columbia 2075 Wesbrook P l a c e V a ncouver, Canada V6T 1W5 R a t P 12 June 1979 DE-6 B P 76-51 1 E i i ABSTRACT Pat t e r n s i n a l g a l community s t r u c t u r e and physiochemical c h a r a c t e r i s t i c s of streams and one impounded subalpine lake i n the mountainous North A l o u e t t e R i v e r watershed, B r i t i s h Columbia, were described f o r one year from June 1977 to June 1978. In t h i s p e r i o d , 266 a l g a l taxa were recognized, of which 59 were p r e v i o u s l y unrecorded i n the province. The streams were c h a r a c t e r i z e d by an e p i l i t h i c f l o r a c o n s i s t i n g predominantly of. unbranched Chlorophyta and s e c o n d a r i l y by both branched and unbranched Cyanophyta. B a c i l l a r i o p h y t a (diatoms) were species r i c h (over 100 t a x a ) , but were at a l l times r e l a t i v e l y unimportant i n the streams, although f r e q u e n t l y dominant i n the epipelon of Jacob's Lake. Species of Rhodophyta were l o c a l l y abundant only i n shaded h a b i t a t s . Many e p i l i t h i c and e p i p h y t i c species were "host" s p e c i f i c i n t h e i r s ubstrate preferences. Stream water i n the North Alouette was s l i g h t l y a c i d (pH 6-7) and 2- -n u t r i e n t poor, the r e l a t i v e order of anions being S0^ > SiO^ > CI >N0^ 3- 2+ + 2+ + + 2+/3+ 2+ 3+ > PO^ and ca t i o n s Ca = Na > Mg > K > NH 4 > Fe ' , Mn , and A l were not detected i n the d i s s o l v e d f r a c t i o n . Other v a r i a b l e s i n d i c a t e d t h i s to be a r a p i d l y f l o w i n g (often > lm sec "*") , c o o l (2-18°C s e a s o n a l l y ) , poorly b u f f e r e d (HCO^ = .06-.40 meq 1 "*") , and h i g h l y heterogeneous environ-ment. S t a t i o n s along the stream gradient d i f f e r e d i n c o n d i t i o n s of slope, current v e l o c i t y , degree of shading, and sub s t r a t e s i z e , but not i n temperature, pH, and p o s s i b l y n u t r i e n t chemistry. A p r i n c i p l e coordinates a n a l y s i s (P-Co-A) of seasonal succession at one s t a t i o n ( S t a t i o n 1) revealed a c y c l i c p a t t e r n c h a r a c t e r i z e d by sequences of gradual and abrupt changes i n species composition. Temporal e x t i n c t i o n of dominant species d i d not occur, as has been shown f o r phytoplankton i i i p opulations i n l a k e s . Current v e l o c i t y , depth, temperature, CI , and SO^ were s i g n i f i c a n t l y c o r r e l a t e d (P<0.05) w i t h most of the seasonal v a r i a b i l i t y i n the a l g a l community. A smaller amount of the seasonal change was c o r r e l a t e d w i t h the f l u x of d i s s o l v e d c a t i o n s . P-Co-A a l s o exposed s i m i l a r i t i e s between s i x s t a t i o n s w i t h i n the watershed which were not c o n s i s t e n t s e a s o n a l l y , and gave no evidence of d i s t i n c t zones. D i s t r i b u t i o n of a l g a l species w i t h i n S t a t i o n 1 i n May shown by c l u s t e r a n a l y s i s , occurred roughly i n two groups, corresponding to near-shore and midstream h a b i t a t s . The general heterogeneity of a l g a l d i s t r i b u t i o n and the o c c a s i o n a l disturbance by f l o o d i n g gave r i s e to p e r i o d i c peaks i n d i v e r s i t y , although many common species never became abundant. Hence, no c l e a r - c u t r e l a t i o n was r e a l i z e d between the physiochemical environment and species d i v e r s i t y . Hypotheses are generated, suggesting that (1) d i s t r i b u t i o n of red algae was shade l i m i t e d ; (2) diatom dominance was l i m i t e d by n u t r i e n t chemistry; (3) the even p a t t e r n of seasonal succession was i n t e r r u p t e d by p e r i o d i c events, such as n u t r i e n t pulses and f l o o d s ; and (4) a l a r g e degree of species coexistence was provided by these p e r i o d i c disturbances. iv TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES v i LIST OF FIGURES v i i LIST OF APPENDICES ix ACKNOWLEDGEMENTS x I. INTRODUCTION 1 II. THE ENVIRONMENT A. LOCATION, 3 B. TOPOGRAPHY AND GEOLOGY 5 C. CLIMATE AND VEGETATION 6 D. HISTORY OF USE AND RESEARCH 7 E. DESCRIPTION OF THE SAMPLING STATIONS 8 III. MATERIALS AND METHODS A. THEORETICAL AND PRACTICAL CONSIDERATIONS 12 B. COLLECTION OF ALGAL SAMPLES .. „ 13 C. QUANTIFICATION .15 D. TAXONOMIC AND ECOLOGICAL CLASSIFICATION 16 E. HABITAT VARIATIONS 18 F. PHYSIOCHEMICAL METHODS 19 G. STATISTICAL METHODS ._ 2 2 IV. BIOLOGICAL RESULTS A. GENERAL TAXONOMIC AND ECOLOGICAL FEATURES 25 B. LONGITUDINAL PATTERNS OF THE ALGAL COMMUNITIES 40 C. WITHIN-HABITAT VARIATIONS IN THE ALGAL COMMUNITY AT STATION 1 53 V. PHYSIOCHEMICAL RESULTS A. COMPARISONS OF STATIONS ALONG THE STREAM 66 V B. TEMPORAL PATTERNS IN PHYSIOCHEMICAL PARAMETERS WITHIN STATION 1 69 C. GRADIENT ANALYSIS OF PHYSIOCHEMICAL VARIABILITY AT STATION 1 79 VI. DISCUSSION A. SYNTHESIS OF BIOLOGICAL AND PHYSIOCHEMICAL RESULTS 82 B. IMPORTANCE OF MAJOR SPECIES AND THEIR LONGITUDINAL DISTRIBUTION 89 C. TEMPORAL VARIABILITY AND SEASONAL SUCCESSION AT STATION 1 94 D. GENERAL PROBLEMS OF ENVIRONMENTAL HETEROGENEITY 97 E. CONCLUSIONS AS TESTABLE HYPOTHESES 99 V I I . LITERATURE CITED 103 APPENDICES 115 v x LIST OF TABLES Table Page 1. L i s t of species i d e n t i f i e d from a l l s t a t i o n s of the watershed, w i t h t h e i r assigned species codes and dominant growth h a b i t ( s ) 28 2. P r o p o r t i o n s j of a l g a l t a x a v : by group, from Jacob's Lake present downstream and i n attached h a b i t s 39 3. Abundance of major species at seven sampling s t a t i o n s 47 4. Comparison of species d i v e r s i t y at seven sampling s t a t i o n s 48 5.Comparison of species assemblages at three s u c c e s s i o n a l stages f o r two s u b s t r a t e types 62 6. Temperature, pH, and current v e l o c i t y measured at s i n g l e times at seven c o l l e c t i n g s t a t i o n s 68 7. Simple l i n e a r c o r r e l a t i o n between a l l physiochemical v a r i a b l e s f o r three l e v e l s of s i g n i f i c a n c e 78 8. C o r r e l a t i o n between environmental f a c t o r s and scores of the f i r s t three coordinate axes of the date o r d i n a t i o n v i i LIST OF FIGURES Figure 1. The southern p o r t i o n of B r i t i s h Columbia, showing the general l o c a t i o n of the North A l o u e t t e R i v e r watershed, and a d e t a i l e d map of the sampling s t a t i o n s 4 2. Map of S t a t i o n 1 of the North Alouette R i v e r , showing l o c a t i o n of tr a n s e c t s and sampling g r i d f o r gradient a n a l y s i s 20 3. A p l o t of the s i m i l a r i t i e s between f i v e a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-6) f o r 9 August 1977, expressed by P-Co-A 49 4. A p l o t of the s i m i l a r i t i e s between s i x a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-7) for.15 February 1978, expressed by P-Co-A 50 5. A p l o t of the s i m i l a r i t i e s between s i x a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-7) f o r 18 May 1978, expressed by P-Co-A 51 6. A p l o t of the s i m i l a r i t i e s between s i x a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-7) f o r 23 June 1978, expressed by P-Co-A 52 7. Seasonal changes i n the abundance of the major a l g a l species at S t a t i o n 1 58 8. Seasonal changes i n species d i v e r s i t y of the a l g a l community at S t a t i o n 1 60 9. A p l o t of the s i m i l a r i t i e s between a l g a l communities on 17 sampling dates at S t a t i o n 1 of the North Al o u e t t e R i v e r , expressed by P-Co-A 61 10. C l u s t e r a n a l y s i s of a l g a l a s s o c i a t i o n s on separate stones c o l l e c t e d along a cross-stream g r a d i e n t , S t a t i o n 1 63 11. Map of a l g a l a s s o c i a t i o n s along a cross-stream gradient 65 Figure 12. Temporal v a r i a b i l i t y of anions and NH^ at S t a t i o n 13. Temporal v a r i a b i l i t y of ca t i o n s at S t a t i o n 1 14. Temporal v a r i a b i l i t y of a l k a l i n i t y , SiO^, and d i s s o l v e d 0^ at S t a t i o n 1 15. Temporal v a r i a b i l i t y of current v e l o c i t y , water temperature, and stream depth at S t a t i o n 1 16. Cross-stream v a r i a b i l i t y of pH, temperature, d i s s o l v e d 0^, current v e l o c i t y , depth, and i r r a d i a n c e at S t a t i o n 1 17. H y p o t h e t i c a l growth curves of major a l g a l species f o r three freshwater environments LIST OF APPENDICES Appendix A. Abundance of a l l algal taxa at Station 1 for 17 sampling dates B. Abundance of a l l algal taxa at alternate collecting stations (2-7) for four dates C. Presence of a l l algal taxa from Jacob's Lake in d r i f t and attached habits to downstream stations X ACKNOWLEDGEMENTS I would l i k e to express my g r a t i t u d e to Dr. J.R. S t e i n f o r i n v a l u a b l e advice and encouragement during t h i s study, and i n pre p a r a t i o n of the t h e s i s . F i n a n c i a l support was als o provided by J.R.S. through a N.R.C. Research Grant A1035. Improvements i n the t h e s i s were a l s o provided through advice and reading of the t h e s i s by Drs. P.J. H a r r i s o n and R.E. DeWreede. The f i e l d a s s i s t a n c e at various times by P. Crosson, E.L. Cabot, and e s p e c i a l l y D. MacDonald, i n .the c o n s i s t e n t l y wet and o c c a s i o n a l l y dangerous U.B.C. Research F o r e s t , i s g r a t e f u l l y acknowledged. The c a t i o n and some of the anion analyses were c a r r i e d out by K.M. Tsze, i n the l a b o r a t o r y of Dr. J.P. Kimmins, Fa c u l t y of F o r e s t r y , U.B.C, both of whom I thank. The i n s t r u c t i o n and advice of Dr. G.E. B r a d f i e l d i n the a n a l y s i s of data and the a s s i s t a n c e of S. H a r r i s o n w i t h computer programs are h i g h l y appreciated. Many ideas and procedures b e n e f i t t e d from d i s c u s s i o n w i t h Dr. B.A. Whitton, U n i v e r s i t y of Durham. I would a l s o l i k e to thank Dr. D.W. B l i n n , N. Ar i z o n a U n i v e r s i t y , who f i r s t sparked my i n t e r e s t i n the world of streams and algae, and provided o p p o r t u n i t i e s to get my f e e t wet. F i n a l l y , the support of D. Donaldson created f o r me a p o s i t i v e environment, without which t h i s work could not have been completed. 1 I . INTRODUCTION Studies of a l g a l communties i n f l o w i n g waters have followed two general approaches, one concerning metabolic or f u n c t i o n a l mechanisms, and a second examining s t r u c t u r a l aspects. The d e s c r i p t i o n s of p a t t e r n i n community s t r u c t u r e have been u s e f u l i n r e c o g n i z i n g how d i f f e r e n t ecosystems generally, are organized (May, 1976)-and have s p e c i f i c a l l y provided i n s i g h t i n t o the co m p l e x i t i e s of stream communities ( P a t r i c k , 1975). Such works f o r a l g a l communities i n streams have d e a l t w i t h s e a s o n a l i t y (e.g., Blum, 1957; Moore, 1977a, b ) , patterns of d i s t r i b u t i o n (e.g., Kawecka, 1971; Squires et a l . 1973), and species d i v e r s i t y ( P a t r i c k , 1967, 1970; A r c h i b a l d , 1972). The very few works on a l g a l communities of streams i n B r i t i s h Columbia (Stockner and Shortreed, 1976, 1978) have d e a l t l a r g e l y w i t h f u n c t i o n a l r e l a t i o n s ( n u t r i e n t s and p r o d u c t i o n ) , whereas s t u d i e s u s i n g the second approach, community s t r u c t u r e , are unknown f o r the province. S p a t i a l and temporal s t r u c t u r e i n t e r r e s t r i a l p l a n t communities have o f t e n been s t u d i e s through the use of m u l t i v a r i a t e s t a t i s t i c a l techniques (Dale, 1975) and these techniques have been a p p l i e d to problems i n la k e phytoplankton (Levandowsky, 1972; A l l e n and Koonce, 1973; B a r t e l l et a l . , 1978), and both e s t u a r i n e ( M c l n t i r e , 1973) and stream (Hufford and C o l l i n s , 1976, F a b r i , 1977; L e c l e r c q , 1977) diatoms. No s t u d i e s are known, however, which assess the e n t i r e (diatom and non-diatom) community of a l g a l species i n streams, using such methods. The o b j e c t i v e s of t h i s study are to provide p r e l i m i n a r y i n f o r m a t i o n on the taxonomy and community ecology of the algae i n a B r i t i s h Columbia stream ecosystem, from a t y p i c a l c o a s t a l mountain watershed. Community s t r u c t u r e (Whittaker, 1970) i s described here i n terms of growth h a b i t s of the species 2 the s p a t i a l d i s t r i b u t i o n and d i v e r s i t y of communities i n d i f f e r e n t reaches of the watershed, the s p a t i a l and seasonal v a r i a t i o n w i t h i n one community, and the r e l a t i o n between these patterns and the physiochemical environment. M u l t i v a r i a t e methods and other e c o l o g i c a l c r i t e r i a are used to produce meaningful patterns from complex v a r i a t i o n s i n the b i o t i c and a b i o t i c environment. These data are used to produce hypotheses as to how the s t r u c t u r e of one a l g a l community might d i f f e r from p l a n k t o n i c and other stream systems. 3 I I . THE ENVIRONMENT A. LOCATION The North A l o u e t t e River i s lo c a t e d i n southwestern B r i t i s h Columbia ( F i g . 1A) along the southern slopes of the Coast Mountains, approximately 50 km east of Vancouver. I t i s a broad mountain stream s i t u a t e d i n a c o a s t a l coniferous f o r e s t , t y p i f i e d by many f a s t s t r e t c h e s over rugged t e r r a i n . The stream's o r i g i n (49° 22'N; 122° 30'W) l i e s at an a l t i t u d e of ca. 1500 m near the peak of Mt. Blanshard and from there runs i n a southwesterly d i r e c t i o n . At i t s completion (49° 16'N; 122° 43'W) i t i s near sea l e v e l , where i t j o i n s the south f o r k of the Alo u e t t e R i v e r . These flow i n t o the P i t t R i v e r at a point 6 km upstream from a j u n c t i o n w i t h the Fraser R i v e r . The catchment area of the combined north and south f o r k s of 2 the A l o u e t t e R i v e r has been estimated at 208 km (Benedict et a l . , 1973). The upper reaches (8.7 km) of the stream are w i t h i n Golden Ears P r o v i n c i a l Park (see F i g . IB) which then continues through the U n i v e r s i t y of B r i t i s h Columbia Research Forest (4.9 km). The lowest p o r t i o n (10.0 km) i s w i t h i n the m u n i c i p a l i t y of Maple Ridge. Another segment of the watershed i s Jacob's Creek, a length of about 6 km, excluding a l l of i t s minor t r i b u t a r i e s . This secondary system i n l a r g e part i s w i t h i n the Research Forest and in c l u d e s a number of small subalpine l a k e s . One of these, Jacob's Lake (often as Marion Lake) i s considered i n t h i s study. This and the remainder of the c o l l e c t i n g s t a t i o n s shown ( F i g . IB) w i l l be discussed l a t e r . 4 Figure 1. The southern p o r t i o n of B r i t i s h Columbia, showing the general l o c a t i o n of the North A l o u e t t e R i v e r watershed (A), and a d e t a i l e d map of the p o s i t i o n s of the sampling s t a t i o n s w i t h i n the watershed (B). 5 B. TOPOGRAPHY AND GEOLOGY The mountainous slopes of the r i v e r b a s i n run rat h e r s t e e p l y , averaging 63.5 U/ oo, but v a r y i n g widely from about 180°/oo to 7 /oo. Along much of the segment s t u d i e d , the stream l i e s w i t h i n a narrow (^.5 km) V-shaped canyon. The streambed i s rat h e r wide, averaging about 15 m. Due to extreme flow, anchored su b s t r a t e c o n s i s t s of boulders f r e q u e n t l y greater than one meter i n diameter. The t r i b u t a r y Jacob's Creek system i s l e s s severe, w i t h an average slope of 23.8 U/ oo and mean width of 9 m. The extreme physiography of the study area i s considered t y p i c a l of streams and small r i v e r s i n the Coast Mountains (McKee, 1972). The geology and g l a c i a l h i s t o r y of the region have been summarized thoroughly by Roddick (1965) and Armstrong (1957, 1961) so that only a b r i e f d e s c r i p t i o n i s given here. During the P l e i s t o c e n e , the area e x p e r i -enced probably three major g l a c i a t i o n s . The i c e sheet (by most estimations) covered the re g i o n as r e c e n t l y as 11,000 years B.P. (Armstrong, 1957). Deposits i n d i c a t e that when the land was depressed, only the lowest reaches of the North A l o u e t t e were under sea water. Mathewes (1973) has shown that marine deposits occur up to present-day e l e v a t i o n s of 107 m. This presum-ably would i n c l u d e the lowest two sampling s t a t i o n s (see F i g . I B ) . The rocks i n the streambed are a c i d g r a n i t i c and c o n s i s t l a r g e l y of q u a r t z d i o r i t e , d i o r i t e , and gabbro (Roddick, 1965). These m a t e r i a l s are recognized as poorly s o l u b l e and lend l i t t l e i n the way of d i s s o l v e d minerals to the water (Northcote and L a r k i n , 1963; Golterman, 1975). Through humic substances of the parent m a t e r i a l and la r g e numbers of boggy areas, the waters of the catchment have a c h a r a c t e r i s t i c a l l y yellow-brown c o l o r . 6 C. CLIMATE AND VEGETATION Climate i n the area has been c l a s s i f i e d (Kbppen, 1936) as Cfb; a warm maritime-mesothermal, which i s humid to r a i n y . Conditions are c h a r a c t e r i z e d by m i l d temperatures w i t h frequent c l o u d i n e s s . Mean annual r a i n f a l l i s i n excess of 220 cm. Summers are c o o l and r e l a t i v e l y dry, whereas most of the p r e c i p i t a t i o n occurs during the w i n t e r . The d r i e s t month, however, may have up to 16.5 cm of r a i n f a l l ( K r a j i n a , 1969). Snow i s infrequent at lower e l e v a t i o n s , and may c o n t r i b u t e l e s s than 1% of the t o t a l annual p r e c i p i t a t i o n ( K r a j i n a , 1969), although at e l e v a t i o n s over 350 m i t may accumulate f o r a number of months. A l l p o r t i o n s of the. watershed stud i e d are l o c a t e d w i t h i n the C o a s t a l Western Hemlock b i o g e o c l i m a t i c zone ( K r a j i n a , 1965, 1969). The stream source and some upper e l e v a t i o n a l reaches not considered here l i e w i t h i n subalpine and a l p i n e tundra zones. The f o r e s t c o n s i s t s p r i m a r i l y of Tsuga  h e t e r o p h y l l a (Raf.) Sarg., Pseudotsuga m e n z i e s i i (Mirbel) Franco., and Thuja p l i c a t a Donn. The understory i s d i v e r s e , and the shrubs i n c l u d e Rubus s p e c t a b i l i s Pursh, G a u l t h e r i a s h a l l o n Pursh, and Vaccinium p a r v i f o l i u m Smith. The ferns Polystichum munitum (Kaulf.) P r e s l . and Blechnum spic a n t (L.) Roth are a l s o common, as w e l l as many mosses. The r i p a r i a n v e g e t a t i o n d i f f e r s somewhat, and Alnus rubra Bong., Acer c i r c i n a t u m Pursh, A. macro- phyllum Pursh, Populus t r i c h o c a r p a T. & G., and Oplopanax horridum (Smith) Miq. occur. For f u r t h e r d e t a i l s on the v e g e t a t i o n i n t h i s area, O r l o c i (1965), K l i n k a (1976), and K r a j i n a (1965, 1969) should be consulted. 7 D. HISTORY OF USE AND RESEARCH The study area l i e s w i t h i n f o r e s t s which have burned p e r i o d i c a l l y over the past 400 years and logged i n some po r t i o n s by a number of p r i v a t e logging companies between 1924 and 1931 (Cochrane, 1972). Logging ( c l e a r -c u t t i n g ) and p l a n t i n g operations are s t i l l being c a r r i e d out by the U.B.C. Fo r e s t r y c l a s s e s f o r t r a i n i n g and funding purposes. The watershed nonetheless contains many o l d growth stands commonly 200 to 300 years i n age, and some as much as 800 years ( K l i n k a , 1976). Secondary growth i n the v i c i n i t y of the stream v a r i e s i n age from r e l a t i v e l y young 20 year, to 130 year o l d t r e e s , l a r g e l y of planted Douglas f i r . The area w i t h i n and adjacent to the Research Forest i n c l u d e s many roads f o r access i n logging and research. P u b l i c usage i s r e s t r i c t e d to h i k i n g t r a i l s , and f u r t h e r uses (e.g., hunting, f i s h i n g ) have been p r o h i b i t e d . Although the lowest 10 km of the North A l o u e t t e R i v e r l i e w i t h i n the m u n i c i p a l i t y of Maple Ridge, i t i s not subject to any apparent e f f e c t s of p o l l u t i o n . The North A l o u e t t e R i v e r has been proposed f o r use as a supplementary water supply f o r Maple Ridge (G.V.W.D., 1961; c i t e d i n Cochrane, 1972). The proposals of dam c o n s t r u c t i o n and r e s e r v o i r management f o r t h i s system at present have not been undertaken. Research i n b i o l o g i c a l and f o r e s t r y r e l a t e d f i e l d s i n the immediate area have been ext e n s i v e , owing i n l a r g e part to the establishment of.the f o r e s t f o r research purposes i n 1949. A few works are of relevance to the present study. K l i n k a (1976) considered t e r r e s t r i a l v e g e t a t i o n and pla n t synecology, i n c l u d i n g s u r f i c i a l geology and s o i l s . Other s i g n i f i c a n t s t u d i e s included the palynology (Mathewes, 1973), road and bridge construc-t i o n (Pasicnyk, 1976), and water use (Cochrane, 1972) i n the North A l o u e t t e watershed, as w e l l as n u t r i e n t chemistry of streams i n an adjacent 8 (Spring-East Creek system) watershed ( F e l l e r , 1977). The m a j o r i t y of published work on aquatic b i o t a r e s u l t e d from the IBP s t u d i e s of Jacob's (Marion) Lake, whose o b j e c t i v e was to determine the f a c t o r s which c o n t r o l energy t r a n s f e r i n the lake ecosystem. The work was summarized by E f f o r d (1967) and a more complete l i t e r a t u r e assembled by H a l l and Hyatt (1974). Accounts of a l g a l communities w i t h i n the program (Dickman, 1969; Gruendling, 1971) and separate from i t ( S t e i n and Gerrath, 1968; K r i s t i e n s e n , 1975) have been r e s t r i c t e d to lakes and ponds. E. DESCRIPTION OF SAMPLING STATIONS In t h i s study the North A l o u e t t e w i l l be regarded as a stream, contrary to i t s name. This i s owing to i t s c o n d i t i o n s of slope, current v e l o c i t y , l a r g e s u b s t r a t e s , and other characters (see R i c k e r , 1934; l i l i e s , 1961). The s t a t i o n s were s e l e c t e d as r e p r e s e n t a t i v e of the range of c o n d i t i o n s present over the l e n g t h of the stream. These were based on the f o l l o w i n g c r i t e r i a : (1) reasonable access so that necessary equipment and m a t e r i a l s were brought i n t o the f i e l d ; (2) l a c k of i n f l u e n c e from human disturbance; and (3) a d i v e r s i t y and overlap of obvious p h y s i c a l c h a r a c t e r i s t i c s , p a r t i c u l a r l y current v e l o c i t y , shading, and s u b s t r a t e . The seven s t a t i o n s are d i s t r i b u t e d along the watercourse as shown i n F i g . IB. S t a t i o n 1 i s the s i t e of most i n t e n s i v e i n v e s t i g a t i o n and i s given a more thorough d e s c r i p t i o n than the other s i x s t a t i o n s . A length of ca. 50 m was used f o r sampling at these s t a t i o n s and n e a r l y a 100 m segment at S t a t i o n 1. The use of stream orders f o l l o w S t r a h l e r (1964) and f o r flow 9 c l a s s e s , Bishop (1973). In the l a t t e r : cascades are defined as extremely r a p i d , t u r b u l e n t ("white") water; r i f f l e s are moderately a g i t a t e d or laminar; and pools are recognized to have l i t t l e or no flow, and are o f t e n deep. S t a t i o n 1 represents the lowest segment of the stream (130 m elev.) which i s r a p i d l y f l o w i n g . I t i s a t h i r d (3°) order t r i b u t a r y w i t h current f r e q u e n t l y averaging 1 m s e c \ Substrate c o n s i s t s of l a r g e and small boulders w i t h few sm a l l stones. The mean s i z e i s between 75-100 cm i n diameter. R i f f l e s are most common, although cascades are a l s o present. Pools are l e s s frequent, being r e s t r i c t e d to the s h o r e l i n e and leeward sides of l a r g e boulders. Depth i s v a r i a b l e , both w i t h i n the b a s i n and seasonally w i t h the mean depth ca. 30 cm. S t a t i o n 1 shows a pronounced d i f f e r e n c e i n p h y s i c a l c o n d i t i o n s w i t h respect to nearness to the shore. The ba s i n i s wide, n e a r l y 18 m, hence only about 25% of the stream i s covered by canopy. Midstream i s cha r a c t e r -i z e d by greater flow and s u n l i g h t a v a i l a b i l i t y , w i t h extreme a l g a l growth. Algae are p r i m a r i l y attached i n en c r u s t i n g and filamentous forms. The moss, B l i n d i a acuta (Hedw.) B.S.G., i s the predominant bryophyte i n t h i s p o r t i o n , p a r t i c u l a r l y i n areas of extreme flow. Along the shore, the waters are pooled and shaded, and the a l g a l growth forms are l a r g e l y u p r i g h t t u f t s and mucilaginous f i l m s . The l e a f y l i v e r w o r t , Jungermania obovata Ness i s the common bryophyte i n t h i s shore h a b i t a t . L o c a l accumulation of d e t r i t u s i s present during low flow p e r i o d s . Of the other s t a t i o n s , f i v e l i e upstream from the main S t a t i o n and one downstream ( F i g . I B ) . The downstream S t a t i o n 7 occupies an area of reduced slope and cu r r e n t , c o n s i s t i n g of r i f f l e s and pools w i t h few cascading reaches. By t h i s stage, the North A l o u e t t e i s a f o u r t h order (4°) t r i b u t a r y occupying land (15 m elev.) which i s l a r g e l y Fraser River f l o o d p l a i n (Armstrong, 1957), u n l i k e any of the other s t a t i o n s . S t a t i o n 6, the uppermost (330 m elev.) s i t e , i s an unnamed second order (2°) creek of the Jacob's Creek system. I t w i l l be r e f e r r e d to as " T r i b u t a r y B". The s t a t i o n i s a steep s e r i e s of cascades and pools i n a narrow (4 m) streambed and has extensive overstory shading. Depth i s h i g h l y heterogeneous and pools may be greater than 1 m deep. Less than 500 m downstream from S t a t i o n 6, T r i b u t a r y B flows i n t o the upper arm of Jacob's Creek, a l s o a 2° t r i b u t a r y . This i s the l o c a t i o n of S t a t i o n 5. Below the j u n c t i o n , the stream order i s increased to 3° and i s near the bottom of the Jacob's Creek v a l l e y (305 m elev.) where the current slackens considerably. The substrate c o n s i s t s of sm a l l stones and few l a r g e rocks. Flow patterns are predominantly pools w i t h r i f f l e s very widely spaced. The stream i s a l t e r n a t e l y shaded and open. An emergent va s c u l a r p l a n t , Juncus e n s i f o l i u s Wikst. i s found i n the pools during the summer. Jacob's Lake i s S t a t i o n 4 (ca. 302 m elev.) and re c e i v e s inputs p r i m a r i l y from T r i b u t a r y B and Jacob's Creek. I t i s a small bog lak e w i t h a mean depth of only 2.4 m ( E f f o r d , 1967). The bottom c o n s i s t s of s o f t mud and ooze. This i n conjunction w i t h the r a p i d f l u s h i n g r a t e of l e s s than three days during high flow has r e s u l t e d i n the benthic components being of greater importance than the p l a n k t o n i c ( E f f o r d , 1967; Hargrave, 1970). Recently, however, c o n s t r u c t i o n of beaver dams near the lake o u t l e t has r e s u l t e d i n a r i s e i n the lake l e v e l as w e l l as reduced outflow. L i t t o r a l development by a number of macrophytes i n c l u d e Nuphar po l y s e p a l a Engelm., Potamogeton natans L., P_. epihydrus Raf. , Menyanthes t r i f o l i a t a L., and Isoetes o c c i d e n t a l i s Henders (Gruendling, 1971). The recent i n v a s i o n of U t r i c u l a r i a intermedia Hayne has been observed, but was not reported p r e v i o u s l y . Below the l a k e , ca. 0.5 km downstream on Jacob's Creek i s S t a t i o n 3 (elev. 300 m). The water runs smoothly u n t i l reaching a s e r i e s of jagged rock outcrops where r i f f l e s form. Cascades are infrequent and some deep pools form. Jacob's Lake tends to exert a r e g u l a t i n g e f f e c t on flow so that extremes are not as pronounced as i n other s t a t i o n s . Shading i s moderate and much of the stream r e c e i v e s n e a r l y f u l l s u n l i g h t . The growth of U t r i c u l a r i a extends to t h i s p o i n t . The sponge S p o n g i l l a l a c u s t r i s L. i s common throughout much of the year. Jacob's Creek, which j o i n s the North A l o u e t t e River 1 km below S t a t i o n 3, i s a 2° t r i b u t a r y before the j u n c t i o n . S t a t i o n 2 i s l o c a t e d at t h i s j u n c t i o n and i s 4.1 km upstream from the main S t a t i o n (1). S t a t i o n 2 i s at an e l e v a t i o n of 208 m and i s much l i k e S t a t i o n 1 i n flow regime, s u b s t r a t e , and shading. 12 I I I . MATERIALS AND METHODS A. THEORETICAL AND PRACTICAL CONSIDERATIONS The array of species i n the stream i s organized (sensu Hutchinson, 1953) as a s c a t t e r i n g of c l u s t e r s or patches which appear i n some instances to be random and at other times, ordered i n some more d e f i n i t e way. I d e a l l y then, these i n d i v i d u a l clumps should be examined i n d i v i d u a l l y , r a t h e r than assuming homogeneity and assessing the a s s o c i a t i o n ( s ) only as a whole. The p h y s i c a l and chemical environment i s a l s o i n some ways heterogeneous, w i t h respect to changes both i n space and time. Some compromise should be made which w i l l adequately portr a y these s u b t l e t i e s , but r e s t r i c t the number of samples and measurements to a workable s i z e . Only S t a t i o n 1 i s considered i n d e t a i l f o r w i t h i n - h a b i t a t v a r i a t i o n s i n the a l g a l community and f i n e r grained measurements of a b i o t i c f a c t o r s . The d i v e r s i t y i n morphology of the a l g a l species i n t h i s system i n d i v i d u a l l y and c o l l e c t i v e l y a l s o presents some problems w i t h respect to methodology. In p l a n k t o n i c systems, a b a s i c u n i t f o r species enumeration i s the c e l l (e.g., Vollenweider, 1969). In t e r r e s t r i a l environments or w i t h macroalgae, p l a n t s or plant weight can be used f o r t h i s purpose (Mueller-Dombois and E l l e n b e r g , 1974; Holme and Mclntyre, 1971, r e s p e c t i v e l y ) . The q u a l i t i e s of both are found i n the l o t i c system, where microphytes and macrophytes may each become dominant. I f mixed stands and epiphytes are a l s o considered, the t r a d i t i o n a l phytoplankton techniques become e n t i r e l y i n a p p r o p r i a t e . In t h i s study, the r e l a t i v e proportions of the species are q u a n t i f i e d without r e c o g n i t i o n of absolute amount. These values 13 could, i f d e s i r e d , be r e l a t e d to estimates of t o t a l a l g a l biomass measured by c h l o r o p h y l l or carbon (Marker, 1976; Bott et a l . , 1978; Tett et a l . , 1978). A f u r t h e r c o n s i d e r a t i o n i s that of inputs of a l g a l i n o c u l a from lake sources, p r i m a r i l y Jacob's Lake. The means of d i s t i n g u i s h i n g " a c c i d e n t a l " species from o p p o r t u n i s t i c or merely ubiquitous ones i s not c l e a r . However, some lak e species may be "aggressive" c o l o n i z e r s and represent something more than t r a n s i e n t components from the d r i f t . For t h i s , a c l a s s i f i c a t i o n of growth forms (see Se c t i o n III-D) i s proposed, and t h i s i s used i n con-j u n c t i o n w i t h d i f f e r e n c e s i n r e l a t i v e abundance to answer t h i s problem. B. COLLECTION OF ALGAL SAMPLES Many t e c h n i c a l problems i n sampling l o t i c algae are considered by Sanders and Eaton (1976), and some of t h e i r recommendations are incorporated here. A r t i f i c i a l s ubstrates were not used i n the bulk of t h i s study i n th a t , (1) a number of authors (Sladeckova, 1962; Tippet, 1970; S i v e r , 1977; Kann, 1978; Munteanu and Maly, 1978) found t h e i r use to be s e l e c t i v e or unrepresentative, and, (2) the com p l e x i t i e s mentioned p r e v i o u s l y ( I I I - A ) which may be fundamental to understanding aspects of community s t r u c t u r e , are e l i m i n a t e d by c r e a t i n g a uniform microenvironment. A l l d e s c r i p t i o n s and methodology i n t h i s s e c t i o n w i l l r e f e r to S t a t i o n 1 unless otherwise mentioned. The stream was crossed w i t h a s e r i e s of tra n s e c t l i n e s using 0.5 cm diam. nylon rope. The t r a n s e c t s were placed perpendicular to stream flow at ca. 25 m . i n t e r v a l s . The l i n e s were marked i n decimeter p o i n t s along t h e i r l ength ( a f t e r Blum, 1957). Sampling p o i n t s were s e l e c t e d from a s t r a t i f i e d s e r i e s f o r r o u t i n e c o l l e c t i o n s , f o l l o w i n g Cummins (1962). Below a given p o i n t the nearest ten boulders perpendicular to the t r a n s e c t w i t h a l g a l patches were s e l e c t e d f o r sampling. These were g e n e r a l l y w i t h i n a one meter le n g t h and were combined i n one sample r e p r e s e n t a t i v e of a p a r t i c u l a r l o c a l i t y i n the stream. I n i t i a l l y , 12 of these combined samples (=120 point s ) were taken, u n t i l time r e s t r i c t i o n s reduced t h i s to an average of 8. Methods f o r more d e t a i l e d comparisons are discussed i n Se c t i o n I I I - E . The apparatus used f o r removing the algae and bryophytes at a l l s t a t i o n s was a m o d i f i c a t i o n of the h a l f - b o t t l e designed by Douglas (1958). In the streams s t u d i e d , substrates w i t h a l g a l assemblages were f r e q u e n t l y l a r g e r than could be e a s i l y removed. Two 1 - l i t e r polypropylene b o t t l e s were fused together and f i t t e d w i t h a s t r i p of 8 mm t h i c k foam rubber around the neck, extending 3 mm beyond the rim. This was fastened w i t h a 1 cm diam. rubber vacuum hose, which had a heavy wire i n s i d e to secure i t . This allowed f o r a reasonable s e a l against a submersed rock so th a t water plus algae were i s o l a t e d from the current. The scraper f o l l o w s the o r i g i n a l design of Douglas (1958). The loosened m a t e r i a l was siphoned o f f using a l a r g e bore p i p e t t e attached to rubber tubing. For awkward angles and i n calm waters, a sharpened, U-shaped s p a t u l a was employed by hand. Most c o n d i t i o n s allowed these procedures to be made i n h i p - l e n g t h boots, but wet s u i t s were worn during winter and f o r peak flow periods. At Jacob's Lake ( S t a t i o n 4 ) , a s e r i e s of f i v e h o r i z o n t a l plankton tows were made using a #25 mesh Wisconsin net. E p i p h y t i c c o l l e c t i o n s were made from scrapes of at l e a s t f i v e macrophytes and/or f l o a t i n g l o g s . Bottom samples were c o l l e c t e d using a p l a s t i c tube (5 mm I.D.) f o r ten sediment cores, a f t e r Round (1953). 15 Seventeen c o l l e c t i o n s were made through the year at S t a t i o n 1, from 7 June 1977 to 29 June 1978. The sampling frequency followed biweekly to monthly p e r i o d s , l a r g e l y dependent on flow c o n d i t i o n s . During the peri o d mid-November through December, however, sampling was c u r t a i l e d due to f l o o d s . For the other s t a t i o n s , four sampling periods were made over the year, although S t a t i o n 7 was not i n i t i a t e d u n t i l 15 February 1978. A l l the f l o w i n g water s t a t i o n s (2, 3, 5-7) were c o l l e c t e d s i m i l a r l y to that at S t a t i o n 1, but using only 2 to 4 composite samples, each c o l l e c t e d from ten separate rocks. In a l l , samples were returned to the l a b o r a t o r y i n an i c e chest l i v e and observed upon a r r i v a l . They were kept i n 3, 5, 10, or 15 C c u l t ure chambers, depending on f i e l d temperatures. C. QUANTIFICATION As mentioned, absolute values of a l g a l biomass of each species were not estimated. Levandowsky (1972) has i n d i c a t e d that i n phytoplankton counts, s i g n i f i c a n t d i f f e r e n c e s between numbers l i e p r i m a r i l y i n orders of magnitude. The sc a l e s of cover used by Braun-Blanquet (1965) and Daubenmire (1968) f o r t e r r e s t r i a l v e g e t a t i o n and i n streams by Backhaus (1967) are adaptable to t h i s lognormal measure. A s e r i e s of ranks (1-5) used by Holmes and Whitton (1977) were employed i n t h i s study, r e p r e s e n t i n g the r e l a t i v e amounts of biomass c o n t r i b u t e d by each species. They are: 0=absent; 1=<0.1%; 2=0.1-1.0%; 3=1.0-5.0%; 4=5.0-10.0%; and 5=>10%. The method was designed f o r e s t i m a t i o n of macrophytes and so was modified f o r both macro- and microphytes. Samples i n the l a b o r a t o r y were p a r t i a l l y shredded w i t h forceps and mixed i n a 350 ml observation d i s h . Four 5 ml subsamples were taken from 16 each and the combination preserved i n Lugol's i o d i n e . P o r t i o n s of f r e s h m a t e r i a l were prepared f o r observation and scanned under 300X using a Leitz-Wetzar microscope. Five s t r i p s across t h e . f i e l d c o n s t i t u t e d " m i c r o t r a n s e c t s " whose width (330 ym) was determined by the width of the ocu l a r g r i d on the microscope. Cover estimates f o r the s e r i e s of s t r i p s r e s u l t e d i n an average value f o r a l l species encountered i n the subsample. This procedure was repeated eight times f o r a t o t a l of f o r t y m i c r o t r a n s e c t s per sample. E r r o r s due to randomness were p o s s i b l e but not l i k e l y to exceed the broad range (one-half to one order of magnitude) of an assigned cover c l a s s . Diatoms were never h i g h l y abundant (rank of 5) i n the streams and thus f o r more than 95% of a l l species no enumeration was necessary. The few numerous diatom species were assigned t h e i r average cover estimate, and f u r t h e r counts and i d e n t i f i c a t i o n of ra r e c e l l s were made of f r u s t u l e s cleaned as f o l l o w s . S i x 10 ml subsamples were removed from each sample and placed i n a 150 ml beaker. Cleaning and mounting followed P a t r i c k and Reimer (1966), using Hyrax (n=1.71) and made i n d u p l i c a t e . These were examined i n the same r o u t i n e as w i t h f r e s h m a t e r i a l , but observed w i t h a Zeiss standard UPL phase microscope (ocular g r i d 290 ym wide). In S t a t i o n 4 diatoms o f t e n predominated, so counts of l i v e c e l l s were made before d e t a i l e d observation of cleaned f r u s t u l e s . D. TAXONOMIC AND ECOLOGICAL CLASSIFICATION The general c l a s s i f i c a t i o n of a l g a l groups f o l l o w s S t e i n (1975), w i t h the exception of the diatoms, where S i l v a (1962) i s recognized. The Cyanophyta (=Cyanobacteria of S t a n i e r et a l . , 1978) were i d e n t i f i e d using 17 G e i t l e r (1932) and Desikachary (1959). In s p e c i f i c i n s t a n c e s , Kann (1972, 1973) was used f o r Chamaesiphon, Kann and Komarek (1970) and Komarek (1972) f o r Phormidium, Komarek and Kann (1973) f o r Homeothrix, and f o r T o l y p o t h r i x , Golubic and Kann (1967) were used. P r e l i m i n a r y i d e n t i f i c a t i o n of Chlorophyta followed P r e s c o t t (1962) and B o u r r e l l y (1966). S p e c i f i c a l l y , the U l o t r i c h a l e s and Chaetophorales followed P r i n t z (1964); f o r the Zygnematales Transeau (1951) and Randhawa (1959) were used i n the Zygnemataceae, w i t h West and West (1904, 1905, 1909, 1912), West et a l . (1923), Smith (1924), and S t e i n and Gerrath (1968) used f o r the Mesotaeniaceae and Desmidiaceae. C h l o r e l l a species were i d e n t i f i e d using P r e s c o t t (1962) and F o t t and Novakova (1969), although symbionts i n d i s t i n c t l y d i f f e r e n t a s s o c i a t i o n s were regarded as e c o l o g i c a l l y separate i n t h i s study. The Chrysophyta (Chrysophyceae) were i d e n t i f i e d using B o u r r e l l y (1957) and H u b e r - P e s t a l o z z i (1941), whereas the Prymnesiophyceae followed Parke et a l . (1962). B a c i l l a r i o p h y t a taxonomy f o l l o w s P a t r i c k and Reimer (1966, 1975), Cleve-Euler (1951, 1952, 1953a,b, 1955), Hustedt (1927, 1930a,b, 1961, 1964), H u b e r - P e s t a l o z z i (1942), and Hohn and Hellerman (1963). For s p e c i f i c problems, Koppen (1975) was consulted f o r T a b e l l a r i a , Belcher and Swale (1977) f o r T h a l a s s i o s i r a , and Lange-Bertalot (1976) f o r some species of N i t z s c h i a . The nomenclatural r e v i s i o n s of Van Landingham (1967-1975) were f o l l o w e d , except where superseded by more recent accounts. Euglenophyta were i d e n t i f i e d using P r e s c o t t (1962) and H u b e r - P e s t a l o z z i (1955). The Cryptophyta and Pyrrophyta f o l l o w B o u r r e l l y (1970) and Huber-P e s t a l o z z i (1950). The general taxonomy of the Rhodophyta agrees w i t h B o u r r e l l y (1970), but s p e c i f i c i d e n t i f i c a t i o n followed the papers of Skuja 18 (1935), I s r a e l s o n (1942), Whitford and Schumacher (1969), Haraguchi and Kobayasi (1969), and Mori (1975). When observed, a l l species were given a three l e t t e r , two number species code and c l a s s i f i e d according to growth h a b i t ( s ) when p o s s i b l e . The cate-go r i e s are a f t e r Round (1964) and r e f l e c t s ubstrate preferences. These are: (a) e p i p h y t i c — attached to p l a n t s or other algae; (b) e p i l i t h i c — attached to rocks; (c) e p i p e l i c — a s s o c i a t e d w i t h sediments; (d) metaphytonic — associated w i t h p l a n t s or other substrates but not attached and o f t e n from d r i f t ; and, (e) p l a n k t o n i c — f r e e l y f l o a t i n g i n the water column. E. HABITAT VARIATIONS Experiments were designed to examine d i f f e r e n c e s i n the a l g a l community temporally and s p a t i a l l y . S p a t i a l heterogeneity and substrate s e l e c t i v i t y were examined at S t a t i o n 1. C o l o n i z a t i o n of bare substrates was followed during August 1977. Three g r a n i t e boulders (ca. 0.5 cm diam.) chosen were s i m i l a r i n weight and t e x t u r e and scrubbed clean w i t h nylon brushes and surface s t e r i l i z e d w i t h 95% e t h y l a l c o h o l . They were placed i n a r i f f l e adjacent to each other, where cu r r e n t , depth, and shading were measured to be n e a r l y equivalent f o r the three. Next to these, three P l e x i g l a s . sheets (35 x 22 x 1 cm) were b o l t e d to concrete b l o c k s , a f t e r Stockner and Shortreed (1976). One substrate of both types was removed s u c c e s s i v e l y a f t e r 1, 2, and 4 weeks, f o l l o w i n g P a t r i c k et a l . (1954), Weber and Raschke (1970), Wihlm et a l . (1977), and others c i t e d i n these. Because r e p l i c a t e s were not made, t h i s design was used only to assess d i f f e r e n c e s between substrates and c o l o n i z a t i o n time, not c o n d i t i o n s of the stream o v e r a l l . 19 In May 1978, a more d e t a i l e d a n a l y s i s was made of the v a r i a t i o n s i n the array of species s p a t i a l l y along an apparent gradient of current from one margin of the stream to the other (see F i g . 2). In t h i s , the t r a n s e c t p o i n t s were l o c a t e d at e i g h t i n t e r v a l s 2 m apart. Samples were taken along perpendicular l i n e s as i n r o u t i n e work ( s e c t i o n I I I - B ) , but 7 a l g a l patches, ra t h e r than 10, were removed along each perpendicular, and these were kept i n separate v i a l s . Thus, 56 d i s t i n c t samples were compared w i t h each other i n t h i s matrix. Factors of temperature, d i s s o l v e d 0^, pH, current v e l o c i t y , and l i g h t a v a i l a b i l i t y were a l s o examined along t h i s t r a n s e c t . F. PHYSIOCHEMICAL METHODS F i e l d : Temperature was measured using an Etco f i e l d mercury thermometer and pH w i t h a Markson (model 85) p o r t a b l e pH meter, accurate to ±0.05 pH u n i t s . Both pH and temperature were measured at f i v e p o i n t s along a given t r a n s e c t and taken at f i v e , two-hour i n t e r v a l s during the sampling day. The va r i a n c e of these are expressed as a standard d e v i a t i o n from the mean of the 25 measurements. Depth p r o f i l e s were measured to the nearest cm, and the mean then c a l c u l a t e d . Incident l i g h t was determined by means of a B e l f o r t Instruments record-ing pyrheliometer placed on a rock outcrop which r e c e i v e d an average amount of shading as determined by a s e r i e s of i n d i v i d u a l measurements. Damage to the instrument, however, prevented continuous data c o l l e c t i o n . Shading e f f e c t s due to canopy f o r t h i s and the gradient a n a l y s i s were estimated using a L i c o r (model LI-185A) quantum meter taken at 2.0 m i n t e r v a l s along the t r a n s e c t s . Current v e l o c i t y was measured w i t h a General Oceanics (model 2030) d i g i t a l flowmeter, taken at 10 p o i n t s along two t r a n s e c t s . 21 T r i p l i c a t e measurements were made at each p o i n t and then averaged. A l l of the above measurements i n s i t u were at S t a t i o n 1 on the dates of a l g a l sampling plus one day (29 October 1977) when f l o o d s prevented a l g a l c o l l e c t i o n s . At the other s t a t i o n s , only current v e l o c i t y , pH, and temperature were estimated. S t a t i o n 1 water samples were a l s o taken f o r f u r t h e r a n a l y s i s . Samples f o r n u t r i e n t determinations were c o l l e c t e d i n 1 l i t e r polypropylene b o t t l e s i n d u p l i c a t e , r i n s i n g these w i t h stream water three times, f i l l e d , and capped underwater ( a f t e r S t a i n t o n et a l . , 1974). Most regions of the stream were w e l l mixed and thus s p a t i a l v a r i a t i o n s i n d i s s o l v e d minerals were not considered. A 500 ml water sample was taken each date f o r a l k a l i n i t y (as HCO^) determinations. Five 300 ml water samples were c o l l e c t e d at d i f f e r e n t p o i n t s at S t a t i o n 1 i n g l a s s BOD b o t t l e s held underwater. The f i r s t two 0^ reagents were added i n the f i e l d to prevent lo s s e s during storage. A l l samples were transported to the l a b o r a -tory i n an i c e chest. Laboratory: The two n u t r i e n t samples were separated and 1 l i t e r was f i l t e r e d (Whatman GF/C g l a s s f i b e r ) . Both samples were r a p i d l y f r o z en (-15°C) f o r fu t u r e a n a l y s i s . The f i l t e r i n g precaution to remove p a r t i c u l a t e f r a c t i o n s ( S t r i c k l a n d and Parsons, 1972) was l a t e r found to have a n e g l i g i b l e e f f e c t . At the time of a n a l y s i s , the frozen samples thawed f o r 24 hours at room temperature and were w e l l mixed to r e d i s s o l v e any ions p r e c i p i t a t e d during f r e e z i n g (Golterman, 1969). 3- - - 2- + A l l anion (PO^ , N0 3, CI , SO^ ), d i s s o l v e d S i 0 2 , and NH^ concentra-t i o n s were determined using a Technicon Autoanalyzer I I , f o l l o w i n g standard methods o u t l i n e d by the manufacturer (Technicon I n d u s t r i a l Systems, 1971a-d, 2H~ ~ l ~ ~\~ 2*4~ 3H~ / 2"l~ 3"i~ 1973). Cations (Ca , Na , K , Mg , Fe , Mn , A l ) were determined 22 using atomic absorption spectrophotometry (Varian-Techtron, L t d . ; model AA-5). Samples f o r a l k a l i n i t y (HCO^) determinations were not frozen but were analyzed w i t h i n 8 hours of c o l l e c t i o n . For t h i s , t i t r a t i o n s were done using standardized 0.02 N ^SO^ (A.P.H.A., 1965) w i t h a pH meter r a t h e r than c o l o r i n d i c a t o r s . D i s s o l v e d 0^ l e v e l s were determined w i t h i n 12 hours a f t e r a c i d i f i c a t i o n v i a the azide m o d i f i c a t i o n of the Winkler techinque (A.P.H.A., 1965). Percent s a t u r a t i o n was c a l c u l a t e d a f t e r L i n d (1974). G. STATISTICAL METHODS For s t a t i s t i c a l a n a l y s i s , the abundance ranks were converted to t h e i r median values. This allowed c a l c u l a t i o n of the mean abundance f o r each species on a given date and pl a c e , but preserving d i f f e r e n c e s i n the orders of magnitude. In presenting r e s u l t s of species composition between s t a t i o n s or dates (where t o t a l cover values may d i f f e r ) , species importance was used (Whittaker, 1970). The importance (I_ ) of species a would be: A _ Mean Abundance of One Species _ a . a Mean Abundances of A l l Species n — ' E x x=l where A i s the mean abundance of species x and n i s the t o t a l number of —x — — species. This i s comparable to r e l a t i v e dominance (Mueller-Dombois and E l l e n b e r g , 1974). The values range between 1, f o r absolute dominance ( i . e . , the only species) and 0, i f absent. D i v e r s i t y of species was expressed i n two ways. These were simple species number (S) and species d i v e r s i t y (H'), using the Shannon-Weiner index: 23 H' = -Zp. • In p., (2) where _£ i s the r e l a t i v e importance value of the :Lth species (Shannon and Weaver, 1949). For m u l t i v a r i a t e analyses of a f f i n i t i e s between dates and s t a t i o n s , an o r d i n a t i o n s i m i l a r to P r i n c i p l e Components A n a l y s i s ( O r l o c i , 1966) was used. This method, P r i n c i p l e Coordinates A n a l y s i s (P-Co-A), or Gower o r d i n a t i o n (Gower, 1966), i s more e f f i c i e n t f o r data i n which the number of v a r i a b l e s (species) i s much greater than cases (dates or s t a t i o n s ) . The s p e c i f i c program used here i s that of B r a d f i e l d (1977). The s i m i l a r i t y index f o r t h i s i s based on the cosine of the angle between each v e c t o r summarizing the abundance of each species. In data w i t h more than two v a r i a b l e s , the cosine f u n c t i o n takes the form: m S i m i l a r i t y between _ _ x . . j X i . Cases i and k ~ i k " J 1 J ' 3 , (3) \H~2 y 2 ' j = l J j = l J where x.. i s the value of the i t h species i n case i , x, . i s the value of - i l - - k l the j_th species i n case _k, and m i s the t o t a l number of species. When these s i m i l a r i t i e s are computed, a geometric r e p r e s e n t a t i o n of a l l s i m i l a r -i t i e s between a l l cases i s produced, r e f l e c t e d i n the distances between t h e i r p l o t t e d p o s i t i o n s . G e n e r a l l y , each component a x i s c o n t r i b u t e s s u c c e s s i v e l y l e s s of the t o t a l v a r i a b i l i t y expressed by a l l the date-place u n i t s . Thus, the f i r s t two axes are of greatest importance i n any o r d i n a -t i o n , although the t h i r d a x i s i s a l s o given. The nearness of a l l p o i n t s 24 w i l l r e v e a l s i m i l a r i t i e s but does not n e c e s s a r i l y c l a s s i f y the cases i n t o groups, emphasizing the continuum nature of species d i s t r i b u t i o n (Mueller-Dombois and E l l e n b e r g , 1974). A simple l i n e a r c o r r e l a t i o n (Anderson, 1958) was used to compare the seasonal behavior of physiochemical f a c t o r s w i t h the seasonal succession of species over the year. The coordinate scores provided by P-Co-A were used i n d e f i n i n g the temporal v a r i a t i o n of the a l g a l community, a f t e r B a r t e l l et a l . (1978). For purposes of d e s c r i b i n g v a r i a t i o n s w i t h i n S t a t i o n 1, a d d i t i o n a l s t a t i s t i c s were employed. S i m i l a r i t y between two assemblages c o l o n i z i n g bare substrates was judged using the S^rensen s i m i l a r i t y c o e f f i c i e n t : IS = 2_MW MA + MB ' K } where MW = the sum of the smaller of the species abundances of a l l species i n common to both s u b s t r a t e s , MA and MB are the values f o r a l l species present on sub s t r a t e A and 15, r e s p e c t i v e l y (S^rensen, 1948). The compari-son of species a s s o c i a t i o n s along a t r a n s e c t f o r gradient a n a l y s i s was made to recognize groups of d i f f e r e n c e , r a t h e r than the continuous nature of the species themselves. For t h i s , a c l u s t e r a n a l y s i s of samples was used ( O r l o c i , 1975). The al g o r i t h m was that of Ward (1963). 25 IV. BIOLOGICAL RESULTS A. GENERAL TAXONOMIC AND ECOLOGICAL FEATURES From June 1977 through June 1978, 266 a l g a l taxa were i d e n t i f i e d from the seven s t a t i o n s (Table 1). 59 taxa are new records f o r B r i t i s h Columbia ( S t e i n and Borden, 1978) as i n d i c a t e d (*) i n the t a b l e . The enumeration of species by date f o r S t a t i o n 1 and by s t a t i o n f o r four dates at the other s i x s t a t i o n s are l i s t e d i n Appendix A and B, r e s p e c t i v e l y . Although diatoms were extremely r i c h i n spe c i e s , the streams were t y p i f i e d by stands of green and bluegreen algae. A few major species e x h i b i t e d extremes i n morphological v a r i a b i l i t y . Phormidium autumnale was common i n many s t a t i o n s but w i t h i n a given stand on any one date many d i f f e r e n c e s were encountered: i ) the trichome apex v a r i e d from b l u n t l y rounded to tapered-capitate and curved; i i ) c e l l dimensions were not constant [(4.0)-4.5-5.5-(6.8) • um diam.] w i t h i n a s i n g l e f i l a m e n t , and v a r i e d from shortened d i s k s to quadrate c y l i n d e r s ; i i i ) macro-scopic c o l o r ranged from yellow-brown to dark brown and deep blue-green. Another common spe c i e s , Klebsormidium r i v u l a r e , was extremely p l a s t i c w i t h respect to c e l l diameter [(5.5)-6.5-10.0-(11.5) ym] and c h l o r o p l a s t form. The p l a s t i d was a f l a t t e n e d p l a t e i n 2-8 c e l l e d "germlings" but i n l a r g e r f i l a m e n t s , was a p a r i e t a l band which extended between h a l f and ne a r l y the e n t i r e c e l l l e n g t h . This band sometimes was wrapped around the c e l l i n t e r i o r from one-quarter to one-half the diameter of the f i l a m e n t . Batrachospermum moniliforme occurred as clumps i n pools at a l l l o t i c s t a t i o n s except S t a t i o n 2. Ge n e r a l l y , i t was of t y p i c a l morphology and reprod u c t i o n , w i t h a broad c o l o r range of re d d i s h brown to grey-green. I t 26 was observed to perennate i n grey or brownish c r u s t s . Sometimes the plumose t h a l l u s would o r i g i n a t e from these c r u s t s , and at other times the simply branched "chan t r a n s i a " stage would a r i s e from the same. No d i f f e r e n c e i n the appearance of the crustose growth was observed during the year. E f f o r t s to maintain crude c u l t u r e s were not s u c c e s s f u l . Table 1 gives i n f o r m a t i o n p e r t a i n i n g to the high degree of s e l e c t i v i t y among many species as to growth h a b i t and substrate. 30% (81 taxa) were e x c l u s i v e to one of the f i v e defined e c o l o g i c a l regimes. S l i g h t l y more than h a l f of these (46 taxa) were encountered i n the metaphyton and l i k e l y r epre-sent a d r i f t component from an upstream source. Generally the stream system was dominated by e p i l i t h i c forms, c o n s i s t -ing predominantly of Zygnema i n s i g n e , Klebsormidium mucosum, as w e l l as Phormidium autumnale and K. r i v u l a r e , mentioned e a r l i e r . In some reaches, the e p i l i t h o n was a l s o c h a r a c t e r i z e d by Stigonema mamillosum, Bulbochaete  pygmaea, and A u d o u i n e l l a hermanni. One bluegreen a l g a , Homeothrix v a r i a n s , was an e n c r u s t i n g species e x c l u s i v e l y r e s t r i c t e d to cascading segments d i r e c t l y under the s t r i k e of r a p i d water. Mougeotia sp. ( s t e r i l e ) was the only major species that f r e q u e n t l y occupied an e p i p h y t i c h a b i t . Desmids and diatoms were e c o l o g i c a l " g e n e r a l i s t s " , occupying commonly more than one h a b i t . In some i n s t a n c e s , growth h a b i t s were, as i n e p i p h y t i c forms, "host" s p e c i f i c . In p a r t i c u l a r , the members of the Chamaesiphonales were r e s t r i c t e d to one or two p a r t i c u l a r s u b s t r a t e s . Chamaesiphon c o n f e r v i c o l a (Cyanophyta) was the most common of these, and was found attached only to Zygnema i n s i g n e (Chlorophyta). During periods when the host was uncommon, the epiphyte d i d not grow on other dominant filamentous s p e c i e s . C l a s t i d i u m 27 setigerum was present throughout the year i n the North A l o u e t t e ( S t a t i o n 1) and n e a r l y a l l observations were as attached to the moss B l i n d i a acuta and never on as s o c i a t e d algae or the rock to which the moss was anchored. P l a n k t o n i c species were uncommon, even i n Jacob's Lake. Those encountered i n l o t i c s t a t i o n s were amongst filamentous or mucilaginous forms as metaphyton. A comparison of a l l species from the lake was made w i t h a l l downstream s t a t i o n s to determine the importance of the lake as an inoculum source (Appendix C). A l a r g e p r o p o r t i o n of the lake taxa (82%) were transported to the stream (Table 2). Only 27% of a l l lake species were capable of c o l o n i z a t i o n i n an attached h a b i t . Many of these c h a r a c t e r -i s t i c a l l y were dominants i n the fl o w i n g s t a t i o n s but uncommon i n Jacob's Lake, such as Z. i n s i g n e or K. r i v u l a r e . E p i p e l i c s p e c i e s , predominantly diatoms, reached s i g n i f i c a n t proportions i n the lake and were s u c c e s s f u l c o l o n i z e r s of the streams, although never abundant (rank of 5). Table 1. L i s t of species i d e n t i f i e d from a l l s t a t i o n s of the watershed, w i t h t h e i r assigned species codes and dominant growth h a b i t ( s ) ( * = taxon p r e v i o u s l y unrecorded i n B r i t i s h Columbia; XX = common growth h a b i t ; X = growth h a b i t observed but uncommon; — = not observed i n p a r t i c u l a r growth h a b i t ) . CODE SPECIES CYANOPHYTA - Chroococcales C C 0 O 1 Chvoococaus sp. (7-9 ym) XEN01 Coelosphaeriwn pallidum Lemm. G 0 C O 1 Gloeocapsa sanguinea (C. A. Ag.) KUtz. * MPD01 Merismopedia punctata Meyen MIC01 Microcystis cf. marginata (Menegh.) Kiitz. Chamaesiphonales CHM01 Chamaesiphon confervicola A. Braun. * CHM03 C. aonfervicola v. elongatus (Nordst.) Kann * CHM02 C. fuscua (Rostaf.) Hanag. CHM05 C. incvustans Grun. CHM06 C. minutu8 (Rostaf.) Lemm. * CHM04 C. rostafinskii Hansg. * CLS01 Clastidium setigerum Kirchn. * Nostocales ANB01 Anabaena flos-aquae (Lyngb.) Brgb. CAL02 Calothrix epiphytiaa W. & W. CAL01 C fusca Born. & Flah. ENC01 Homeothrix varians Geitl. * LYG01 Lyngbya sp. A (6-7 um diam.) LYG06 L. sp. B (1.4-2.4 ym) LYG05 L. bipunatata Lemm. * LYG04 L, hieronymusii Lemm. LYG03 L. kiitzingii Schmld. * 0 S C O 1 Oecillatoria sp. A (< 2 ym diam.) 0 S C O 2 0. cf. nigra Vauch. 0SCO3 0. cf. splendida Grev. PHR01 Fhormidium autumnale (C. A. Ag.) Gom. PHR02 P. tenue (Menegh.) Gom. RVU01 Rivularia minutula (Kutz.) Born. & Flah. CSP01 Spirulina sp. A TXP01 . Tolypothrix penicillata Thur. HABIT Eplphyton Epllithon Eplpelon Metaphyton Phytoplankton X XX XX X X X XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX X X K5 V£5 CODE SPECIES CYANOPHYTA - Stigonemales HPL01 Hapalosiphon sp. A STG01 Stigonema mamillosum (Lyngb.) C.A. Ag. CHLOROPHYTA - Volvocales CDY01 Chlamydomonas sp. A E0DO1 Eudorina cf. elegans Ehr. Tetrasporales SHC01 Sahizoohlamys gelatinosa A. Br. ex KUtz. TTR01 Tetraspora aylindriaa (Wahl.) C.A. Ag. TTR02 T. lubriaa (Roth) C.A. Ag. Ulotrichales UKL01 Klebsormidium muaosvm (Boye-Petersen) Silva et al. UKL03 K. rivularp. (Kutz.) Silva et al. * MCP01 Microsporespachyderma (Wille) Lag. Chaetophorales CET01 Chaetospaeridium globosum (Nordst.) Kleb. DPR01 Draparnaldia plumosa (Vauch.) C.A. Ag. SGC01 Stigeoalonium subseaundum KUtz. * Chlorococcales AKD01 Ankletrodeemus faloatue (Corda) Ralfs. AEC01 Asteroaoaaus superbus (Cienk.) Scherff. CRA02' Charaaium cf. arrbiguum Herm. CRA01 C. faloatum Schroed. C0VO1 Chlorella vulgaris Beij. (Zooxanthellae in Spongilla laaustrie L . ) C0VO2 C. vulgaris Beij. (zooxanthellae in Ophrydium sp.) CML01 Coelastrum aambrioum Arch. 0STO1 Oooystis borgei Snow PDI01 Pediastrum boryanum (Turp.) Meneg. SCD01 Soenedesmus quadrioauda (Turp.) Br£b. Oedogoniales BUL01 Bulboohaete pygmaea Pring. HABIT Epiphyton Epilithon Epipelon Metaphyton Phytoplankton H XX — .gJ X XX — — ~ ^ — — X XX n XX § rt H-0 XX ~ ~ — c CD xx — — — XX XX ~ X X XX — x X XX X — — X XX XX XX — — — — XX X — — XX XX — — X XX — — x XX XX X — XX — — X XX X -- XX — — X . XX X XX o CODE SPECIES CHLOROPHYTA - Oedogoniales (Cont.) 0EDO1 Oedogonium sp. A (nannandrous; 17-25y) 0EDO2 0. sp. B (reproduction unk.; 6-7u) Zygnematales Mesotaeniaceae DSM46 Gonatozygon monotaenium de Bary DSM03 Netrium digitus (Ehr.) I. & R. DSM12 N. digitas v. naegelii (BreTj.) k r i e g . DSM43 Spirotaenia condensata Breb. Desmidiaceae DSM23 Bambusina borreri (Ral fs . ) CI. DSM02 Closterium abruptum W. DSM08 C. abruptum v. brevius W. & W. DSM26 C. sp. A (370ym, lunate) DSM35 C. dianae Ehr. DSM28 C. graaile Breb. DSM38 C. intermedium Ra l f s DSM32 C. jenneri Ra l f s DSM18 C. juneidum v. elongatum Roy & B i s s . DSM13 C. parvulum Naeg. DSM14 C. pritahadianum Arch. DSM22 C. setaaeum Ehr. DSM04 Cosmarium sp. A ( semice l l s 10 X 12.5 ym; granulate) DSM01 C. blyttii W i l l e DSM56 C. spp. B (^ 20ym) DSM15 C. oaelatum Ra l fs DSM05 C. monomazum v. polymazum Nordst. * DSM51 C. obtusatum Schmid. DSM27 C. ornatum Ra l fs DSM25 C. cf. paahydermum Lund HABIT Epiphyton E p i l i t h o n Epipelon Metaphyton Phytoplankton & X XX — ^ XX x n o rr — — XX p xx x 5 — XX X XX X XX XX X XX XX XX XX XX XX XX XX XX XX XX XX X XX XX XX XX XX XX XX X X X X CODE SPECIES CHLOROPHYTA - Zygnematales Desmidiaceae (Cont.) DSM57 Cosmarium praegrande Luad DSM07 C. reniforme (Ralfs) Arch. DSM29 C. simii Roy & Biss. * DSM19 C. subauoumis Schmid. DSM47 Desmidium b a i l e y i (Ralfs) Nordst. DSM24 Euastrum bidentatwn Naeg. DSM50 E. d i d e l t a (Turp.) Ralfs DSM10 E. inerme (Ralfs) Lund. DSM42 Hyalothecd d i s s i l i e n s (Sm.) Breb. DSM31 H. mucosa (Dillw.) Ehr. DSM44 Miarasterias radiata Hass. DSM37 M. sol (Ehr.) KUtz. DSM34 Penium minutum v. crassum W, West DSM11 P. polymorphum Perty DSM45 Pleurotaenium maximum (Reinsch) Lund DSM09 Spondyloeium planum (Wolle) W. & W. DSM54 S. pulchrum (Bail.) Arch. DSM48 Staurastrum avctiscon (Ehr.) Lund. DSM53 S. sp. A DSM49 S. gladiosum Turn. DSM40 S. g r a c i l e Ralfs DSM16 5. muticum Breb. DSM20 S. ophiura Lund. DSM36 S. polymorphum Breb. DSM06 S. punctulatum Breb. DSM30 S. t e l i f e r u m Ralfs DSM39 Staurodesmus dejectus (Breb.) T e i l . DSM41 Triploceras v e r t i c i l l a t u m B a i l . DSM21 Xanthidium antilopaeum (Breb.) Kiitz. DSH52 X. armatum v. fissum Nordst. HABIT Epiphyton E p i l l t h o n Epipelon Metaphyton Phytoplankton __ — XX X — XX X XX X — — XX XX — — XX XX XX XX X XX X XX XX XX XX XX XX XX — • XX XX XX XX XX X — X XX XX XX — XX XX X XX XX X XX XX XX XX r-> o o XX X n XX 3 c n> a CODE SPECIES CHLOROPHYTA - Zygnematales Desmidiaceae (Cont.) DSM55 Xanthidiwn aristatum Br6b. Zygnemataceae M 0 U O 1 Mougeotia sp. A ( diam. « 12 - 34 ym ) SPI01 Spirogyva sp. A ( dlamV = 27 pm ) ZYG01 Zygnema insigne (Hass.) Kutz. ZYG02 Z. sp. B ( diam. = 20 pm ) CHRYSOPHYTA - Chromulinales CIP01 Chromulina parvula Conr. * CXP01 Chysopyxis bipes Stein Ochromonadales DNB02 Dinobryon bavaricum Imh. DNB01 D. divergen8 Imh. MAL01 Mallomonae aaudata Iwan. MAL02 M. doignonii Bourr. * 0CRO1 Oahromonas cf. mutabilis Klebs * SRN01 Synura sphagnioola Korsch. Prymnesiales CRY01 Chry8oahromulina parva Lack. * BACILLARIOPHYTA - Eupodiscales C0SO1 Aatinoptyahus cf. undulatus Ehr.* CYC02 Cyalotella meneghiniana Kiltz. CYC01 C. stelligera CI. & Grun. MEL02 Melosira distans (Ehr.) KUtz. MEL01 M. granulata (Ehr.) Ralfs SDC01 Stephanodiscus astrea (Ehr.) Grun. COS02 cf. Stephanopyxis bvosahii Grun. * THA01 Thalassiosira fluviatilis Hust. * HABIT H Epiphyton Epilithon Epipelon Metaphyton Phytoplankton ^ X XX o o 0 XX XX XX X X rt x xx — x xx g ft) X XX — X — XX — — X ~ — X XX XX XX X XX XX X — — XX X — X XX XX — X — XX X XX XX XX XX — ' X XX X XX XX XX XX XX X — — X X XX X — — XX X XX XX — 34 Table 1. Continued. o u (3 x x i I xi *. 3 i ! ! I i x I ! ! ! * ! x * B i i I X I X X > Si CL, o a) 4 J a H * ! » » i H H ! * I * H H H H I H * * H H B 8 x ! B B H C M O i i x i i i i i i i ' M ' ' 1 1 1 . M 1 X l l W l l l l l l l l X I I I I I X X X I x i 3 ! 8 B g I B I I I i l B x x x l ! ! ! ! * : ! * ; ! ^ ! i i i i i i i i i i i i i i C O 4 J >-Si a •H Q w i x B i ! ! I ! x *: £1 x ! i x x B B B x x i ! ! S x i x > u w Hi w a 8 3 • o e v—' A < o *—' CO u u 13 CO •H A Si 3 CO MS m w u act —. R o CO o 13 • Q r—. • CO M •a • 4 J o -C o •g CO u 4-1 CO W CO Si •H >H + i • W MS i-H CO 1*4 CO K CO H c2 ft. 5 CO Si a CO > co -ti R CO w CO K i o CO CO R R K i CO an CD K i a ' g g CO s a + i CO CO R a SL +i o a CO O C3 CO CO +i R CO 'g £ K i on R Q s o CO on O SH •K CO +i <3i co O ft. » +i a As fx" &I u 4 J 4-1 CO U CL, at • f i PL, Si .—. 00 Si 3 .8 n —^N a c >> u <2 o 4 J .—* a .—' ed .—. CO ' e O en a f » > CO P. CN « +i ,—. 8 3 • • u a . o CO i^i CN Si fi n f, CO CM •a 3 m +i Si 8 31 a U • CO w CO Q E O ,—. •<» § a 4-1 K g cq a CO CO N 3 CO CO 4 J • •«» CQ E o > CO a —^' 03 13 t) s, CO CO S .—. •ji 3 CO on CO 0) >L. on <3 Ci a o S, •s . C i^i CO s. o p. •8 :«» K i R a CO CO CO «K ti CO an CO C CO CO as 33 23 to to CO 6 i in r~ o o o o § g g g co cn on en 9 MS vo cn o o CO o 3 CO CO O CO •g +3 CO a CO ^ - i CM ^-t ^ o o o o M S B cn H H H a 01 00 09 ,—, N 4^ •a S —^s 4-1 3 <0 • 3 01 X N Mi HJ a) 4J r-l to a 44 a) Mi CO +i '—' s V4 u 4J . CO +i . J Si 3 u Si CD CO hi O 4J r-l s < 4J a CO H d 3 <3 CO » TS ft. K s—> > . 4J P. 8 3 CO o B CO O g s c K i m 6 3 3 K i « a to C5i w CO CO • CO c + i « sp + i K i o sp o CO CO ot § un t 6q 6a fe) Cfl o .—< 00 CO o CM o I—t 2! E-t UN UN UN UN UN UN << w w w u w CODE SPECIES BACILLARIOPHYTA - Eunot ia les (Cont.) EUN07 Eunotia flexuoaa Br6b. ex KUtz. EUN02 E. cf . hexaglyphia Ehr. * EUN19 E. naeglii Mlgula * EUN04 E. parallela Ehr. * EUN01 E. peotinalis (D i l lw.) Rabh. EUN05 E. perpusilla Grun. * EUN14 E. aeptrionalia 0 s t r . . EUN20 E. serra Ehr. EUN06 E. serra v. diadema (Ehr.) Pa t r . EUN16 E. soleirolii (KUtz.) Rabh. * EUN17 E. sueica A. CI. EUN03 E. tenella (Grun.) Hust. EUN15 E. vanheurckii Patr . EUN18 E. variheurokii v. intermedia (Krasske ex Hust.) Pa t r . PER01 Peronia fibula (Breb. ex KUtz.) Ross . * Achnanthales ACN05 Aahnanthes lanaeolata ( B r £ b . ) Grun. ACN04 A. lanaeolata v. dubia Grun. * ACNOl A. minutiasima Kutz. ACN03 A. stewartii Pa t r . * CNSOI Coaooneia placentula v. euglypta (Ehr.) Grun. * Navicula lea ^ APH02 Amphora ovalis v. libyaa (Ehr.) CI. * APH01 A. aoffeaeformie (Ag.) Kutz. NVA15 Anomoemeia follis (Ehr.) CI. NVA29 A. aerians (Br6b. ex KUtz.) CI. NVA04 A. serains v. braahyaira (Breb. ex Kiitz.) Hust. NVA08 A. vitrea (Grun.) Ross CYM03 Cymbella sp. A (Both margins convex, ^41 um) CYM06 C. sp. B (strongly arched, 36 ym) HABIT Epiphyton Ep i l i t hon Eplpelon Metaphyton Phytoplankton ^ t xx — x xx x n> xx xx — ^ xx x — n XX — XX X X 8 rt XX XX X XX X H-x xx xx £ — XX X XX — — XX XX X XX X — X XX XX XX ~ XX X — X XX XX ~ — XX X XX XX XX XX XX — — XX XX XX — XX X XX — — XX X XX X X — X X XX XX XX — XX X X XX — XX X XX X XX XX XX X XX X XX XX XX X — XX XX X t n CODE SPECIES BACILLARIOPHYTA - Nav icu la les (Cont.) CYM08 Cymbella cf. cistula (Hempr.) K i rchn. CYM02 C. cesatii (Rabh.) Grun. ex A.S. CYM05 C. gracilis (Ehr.) KUtz. CYM13 C. hauckii V.H. * CYM10 C. heteropleura v. subrostrata CI. * CYM04 C. minuta H i l se ex Rabh. * CYM07 C. minuta f. latens (Krasske) Reim. * CYM09 C. muelleri Hust. * CYM12 C. naviculiformis Auersw. ex Heib. CYM11 C. cf . proximo. Reim. * DPN01 Diploneis oblongella (Naeg. ex KUtz.) Ross DPN02 D. finnica (Ehr.) CI. EPM02 Epithemia smithii Carruth. * EPM01 E. 8orex Kutz. FRU03 Frustulia rhomboides (Ehr.) DeT. FRU01 F. rhomboides v. aapitata (A. Mayer) Pat r . FRU02 F. rhomboides v. saxonica (Rabh.) DeT. GPN06 Gomphoneis herauleana (Ehr.) CI. GPN07 Gomphonema acuminatum Ehr. GPNOl G. angustatum (Kutz.) Rabh. GPN05 G. apicatum Ehr. * GPN02 G. sp. A ( e n d s ' n o t 8 e t o f f , ^23 um) GPN08 G. sp. B (two i s o l a ted punctae, =naviculoid) GPN03 G. montanum v. media Grun.* GPN04 G. parvulum (Kutz.) KUtz. NVA01 Navicula sp. A (ends ± cap i t a te , 48 ym) NVA32 N. coaooneiformis Greg, ex Grev. NVA11 N. auspidata (Kutz.) KUtz. * NVA05 N. sp. D (e l l ip so id - rhombic ^16 um) NVA24 N. explanata Hust. * HABIT Epiphyton Ep i l i t hon Epipelon Metaphyton Phytoplankton ^ CT I-1 CD XX — — XX — ^ X — XX XX X XX X XX XX XX o C3 XX X XX X 3 c CD XX XX — XX X Pu XX XX — X XX X — • XX XX XX XX XX — — XX XX — XX X — — X XX X XX XX XX X X XX XX XX XX XX XX XX XX XX X X — X X — XX X X XX XX XX X X X XX XX X X XX — — XX XX XX XX u> XX. - - ON XX CODE SPECIES BACILLARIOPHYTA - Naviculales NVA13 Navicula sp. E (Ends capitate, striae indistinct NVA36 N. levandevi Hust. NVA27 N. minima Grun. NVA10 N. cf. monmouthiana-8todderi Yerm. * NVA35 N. placenta Ehr. * NVA26 N. poly stoma v. pantocsekii Wisl. & Kolbe * NVA16 N. pseudo8autiformis Hust. NVA19 N. pupula KUtz. NVA30 N. pupula v. elliptica Hust. * NVA25 N. pupula v. reatangulaxn.8 (Greg.) CI. & Grun. NVA09 N. radiosa KUtz. NVA22 N. rhynchoaephala v. elongata Grun. * NVA07. N. cf. 8autifovmis Grun ex A.S. * NVA31 N. subtilis8ima CI. NVA28 N. cf. validicostata Cl.-Eul.* NVA2I N. vanheurakii Patr. * NVA20 N. vim-dula (Kutz.) Ehr. NEIOl Neidium affine (Ehr.) Pfitz. NEI02 N. iridi8 v. amphigomph.ua (Ehr.) A. Mayer NEI03 N. tumeacena (Grun.) CI. * NVA34 Pinnularia biceps Greg. NVA06 P . hilseana Jan.. * NVA33 P . maior (Kutz.) Rabh. NVA18 P . parvula (Ralfs) Cl.-Eul. NVA12 P . microstauvon Ehr. CI. NVA14 P . viridis (Nitz.) Ehr. SNS02 Stauroneis aneeps f. gvaailis Rabh. NVA23 S. ignorata Hust. NVA17 S. phoenicenteron (Nitz.) Ehr. SNSOl S. phoenicenteron f. gracilis (Ehr.) Hust. HABIT Epiphyton Epilithon Epipelon Metaphyton Phytoplankton pj M CD XX — XX X XX ^ XX XX XX XX XX X O 0 XX — — X XX XX n c CD XX X — CL XX — X XX XX X xx XX X X XX X XX XX X — XX X X XX XX XX XX XX X XX XX X X — XX X X X — XX X X XX X — XX X X XX XX XX XX X — XX X XX X XX XX X X XX X — XX X XX — XX X X X — XX X X CODE SPECIES BACILLARIOPHYTA - B a c i l l a r i a l e s NZA02 Nitzachia sp. A (attenuate, 36 um) NZA03 N. sp. B (stout, ^25 wn) NZA05 N. oapitellata Hust. NZA07 N. c f . fontiaola Grun. NZA04 N. gracilis Hantz. ex Rabh. * NZA06 N. intermedia Hantz. S u r i r e l l a l e s NZA01 Stenopterobia intermedia Lewis SUR01 Surirella bieeriata Breb. SUR03 S. biseriata v. constriata Grun. SUR02 S. delicatiesima Lewis * EUGLENOPHYTA - Euglenales EGL01 Euglena aaus Ehr. PYRROPHYTA - P e r i d i n l a l e s PDN01 Peridinium c f . pusillum (Pern.) Lemm. GLD01 Peridiniopsia sp. A CRYPTOPHYTA - Cryptomonadales CPT01 Cryptomonae ovata Ehr, RHODOPHYTA - Nemaliales AUD01 Audouinella hermanni (Roth) Duby BAT01 Batrachospermum moniliforme Roth BAT02 B. sp. C (un ident i f i ed chantransia stages) BAT03 fl. vagum v. keratophyllum Bory XX XX XX XX XX XX g-HABIT £ Epiphyton E p i l i t h o n Eplpelon Metaphyton Phytoplankton n xx xx o xx — p. CJ XX X c (D — — X XX & XX — X XX X XX XX X XX X XX XX X XX X XX XX — X X X — — XX XX XX XX XX XX O O Table 2. Propor t i o n s of a l g a l taxa, by group, from Jacob's Lake present downstream ( d r i f t or attached) and i n attached h a b i t s , expressed i n numbers (n) and decimal f r a c t i o n (P) of the o r i g i n a l number (N) of taxa (based on data of Appendix C). TAXA IN PRESENCE COLONIZED IN JACOB'S L. DOWNSTREAM ATTACHED HABITS ALGAL GROUP N n P n P Cyanophyta 16 13 .81 5 .31 Chlorophyta 57 43 .75 12 .21 Chrysophyta 9 6 .67 1 .11 B a c i l l a r i o p h y t a 101 90 .89 33 .33 Euglenophyta 1 0 .00 0 .00 Pyrrophyta 2 1 .50 0 .00 Cryptophyta 1 1 1.00 0 .00 40 B. LONGITUDINAL PATTERNS OF THE ALGAL COMMUNITIES In comparing species assemblages at a l l s t a t i o n s , there are a few r e c u r r e n t a s s o c i a t i o n s i n the stream (summarized i n Table 3). Most fl o w i n g s t a t i o n s were t y p i f i e d by the presence of filamentous greens and bluegreens. The warmer months (June, August) are l a r g e l y dominated by Zygnema i n s i g n e and Phormidium autumnale, whereas Klebsormidium r i v u l a r e showed a predomin-ance i n the February p e r i o d . In t h i s w i nter c o l l e c t i o n , S t a t i o n 1 was sampled on 27 January 1978 and S t a t i o n 2 on 3 March 1978, due to f l o o d s (see a l s o Section IV-C). S t a t i o n s 1, 2, and 7 of the North A l o u e t t e were Zygnema dominated much of the year, although _P. autumnale was abundant i n e a r l y f a l l (9 August 1977). Due to the l a r g e r s i z e of the stream at these s t a t i o n s , streamside pools were o f t e n deep, and. contained a s s o c i a t i o n s d i f f e r i n g from the main. Here, Batrachospermum moniliforme, Stigonema mamillosum, and T o l y p o t h r i x  p e n i c i l l a t a were abundant. S t a t i o n 7 a l s o e x h i b i t e d many t u f t s of A u d o u i n e l l a hermanni. S t a t i o n s 5 and 6 were somewhat s i m i l a r to the North A l o u e t t e s t a t i o n s , but more of t e n were c o l o n i z e d by K. mucosum, which u n l i k e Z_. i n s i g n e or most other filamentous s p e c i e s , had few a l g a l epiphytes. I t was not apparent from l i g h t microscope observations whether mucilage or other mechanisms were i n v o l v e d . The w i n t e r maximum of K. r i v u l a r e occurred only at the upper ( S t a t i o n 6) of these s t a t i o n s , although propagules were present and a v a i l a b l e to S t a t i o n 5, i n that these were no more than 500 m apart. As noted, few plankton taxa occurred at Jacob's Lake ( S t a t i o n 4 ) , which was p r i m a r i l y c h a r a c t e r i z e d by attached forms, mainly a s t e r i l e 41 Mougeotia sp. and F r u s t u l l a rhomboides (2 v a r i e t i e s ) . This s t a t i o n was the only region of the watershed where diatoms were present i n dominant (rank of 5) p r o p o r t i o n s . These attached forms c o n t r i b u t e d n e a r l y a l l the " r e s i d e n t " stream f l o r a (see Appendix A). The outflow ( S t a t i o n 3) of Jacob's Creek had a unique q u a l i t y i n the presence of a s s o c i a t i o n s of C h l o r e l l a v u l g a r i s as endosymbionts i n two d i f f e r e n t s e s s i l e animals ( S p o n g i l l a l a c u s t r i s and Ophrydium sp.). The • a s s o c i a t i o n s d i f f e r e d a l s o i n t h e i r seasonal maxima. The dominant algae were Stigonema mamillosum year round, w h i l e others, such as Bulbochaete  pygmaea and K. r i v u l a r e were more seasonal. Accumulation of diatom epiphytes were more common than at a l l other s t a t i o n s . The species data do not provide immediately re c o g n i z a b l e d i s t i n c t i o n s between s t a t i o n s , although a few g e n e r a l i z a t i o n s can be made: i ) most flow i n g s t a t i o n s (1, 2, 5-7) were c h a r a c t e r i z e d by a number of unbranched filamentous green and bluegreen algae, which are e p i l i t h i c ; i i ) the l a k e outflow ( S t a t i o n 3) was mostly comprised of branched greens and bluegreens which were e p i l i t h i c , and two symbiotic a s s o c i a t i o n s of C h l o r e l l a ; and i i i ) Jacob's Lake ( S t a t i o n 4) was g e n e r a l l y a non-planktonic system where those species found i n the water column are o f t e n more abundant i n the sediments or attached to submersed p l a n t s , and diatoms were most f r e q u e n t l y encountered. The a l g a l communities at each s t a t i o n when summarized i n terms of species number and d i v e r s i t y show that g e n e r a l l y , there was no strong r e l a t i o n between species number and d i v e r s i t y expressed as H' (Table 4). Thus H' only w i l l be r e f e r r e d to as d i v e r s i t y here. Further, the seasonal trends f o r each s t a t i o n are not a l t o g e t h e r s i m i l a r . The s t a t i o n s downstream 42 from the l a k e (1, 2, 7), excluding the outflow, e x h i b i t e d the lowest d i v e r -s i t y during the winter (15 February 1978). On the other hand, the two upstream s t a t i o n s (5, 6) were l e s s d i v e r s e during e a r l y f a l l (9 August 1977) . Peaks of d i v e r s i t y occurred at a l l s t a t i o n s during s p r i n g (18 May 1978) , but the other months d i d not p a t t e r n s i m i l a r l y . In summary, patterns of species d i v e r s i t y (H') i n d i c a t e the s t a t i o n s may be grouped i n t o three segments: i ) a downstream reach can be i d e n t i f i e d which i s beyond the immediate e f f e c t s of lake outflow ( S t a t i o n s 1, 2, 7) which showed reduced d i v e r s i t y i n w i n t e r and greatest i n l a t e s p r i n g (May/June); i i ) an upstream area near the lake ( S t a t i o n s 5, 6, and perhaps 3) i s d i s t i n g u i s h e d by lowest d i v e r s i t y i n e a r l y f a l l (9 August 1977), s e c o n d a r i l y i n the winter (15 February 1978), and species r i c h c o n d i t i o n s during May and June; i i i ) a lake zone ( S t a t i o n 4) where species d i v e r s i t y was reduced s l i g h t l y during the w i n t e r , but g e n e r a l l y high a l l four sampling periods. A comparison of the e n t i r e species assemblage at each s t a t i o n along the stream f o r each of the dates has been made by m u l t i v a r i a t e a n a l y s i s . Each sampling period i s considered separately and a summary of the o r d i n a t i o n r e s u l t s are at the end of t h i s s e c t i o n . O r d i n a t i o n of the August data set f o r S t a t i o n s 2-6 i s shown i n F i g . 3. These data were summarized so that more than 99% of the t o t a l variance was accounted f o r i n the f i r s t three axes. Of t h i s , n e a r l y 55% was described by the f i r s t a x i s ( F i g . 3A) . The p l o t i n d i c a t e s that S t a t i o n s 5 and 6 are n e a r l y i d e n t i c a l i n species composition i n August, d i f f e r i n g only s l i g h t l y along the t h i r d coordinate a x i s . S i t e 2 a l s o bears strong resemblance to these s t a t i o n s , although i t separated along the t h i r d a x i s ( F i g . 3B). O v e r a l l , the s t a t i o n s above Jacob's Lake are f u r t h e s t from the point representing S t a t i o n 4, measured 43 along the f i r s t a x i s . The outflow S t a t i o n (3) on the other hand, i s more s i m i l a r to the lake than the other fl o w i n g s t a t i o n (2, 5, 6). S t a t i o n 2, which i s f u r t h e r downstream, i s considerably more s i m i l a r to the upstream s t a t i o n s than to the nearest s t a t i o n at Jacob's Creek (3). S t a t i o n s 5 and 6 were c h a r a c t e r i z e d by the dominance of Klebsormidium mucosum, and at S t a t i o n 2 i t was codominant w i t h Zygnema i n s i g n e . This can be i n t e r p r e t e d that the s t a t i o n s d i f f e r from each other along the f i r s t a x i s as determined by the presence of K. mucosum. I t appears that the f i r s t and p o s s i b l y the second axes are r e l a t e d to pr o x i m i t y to the lake . The s p e c i f i c i n f l u e n c e s of Jacob's Lake, whether from species loading or through some p h y s i c a l f a c t o r s , w i l l be considered a f t e r the a b i o t i c data (S e c t i o n VI-A). The o r d i n a t i o n using February data produced axes where the f i r s t three dimensions described a t o t a l of more than 83% of the va r i a n c e . The f i r s t and second i n d i v i d u a l l y contained n e a r l y 36 and 30%, r e s p e c t i v e l y , of the variance. The p l o t ( F i g . 4) incl u d e s S t a t i o n 7, the lowest c o l l e c t i n g s t a t i o n on the North A l o u e t t e . G e n e r a l l y , there i s a c l u s t e r of the upper-most (6) and lowermost (7) s t a t i o n s r a t h e r s t r o n g l y on a l l three axes, but the outflow (3) bears resemblance to these along the f i r s t and second axes as w e l l . The other upstream S t a t i o n (5) appears s i m i l a r to these along the second a x i s . The p o i n t swarm f o r the February data exposes a l e s s d i s t i n c t separa-t i o n of fl o w i n g s t a t i o n s from Jacob's Lake (4). The lake was covered by a t r a n s l u c e n t i c e l a y e r (ca. 3 cm t h i c k ) which may have a f f e c t e d absolute l e v e l s of standing crop (not measured). S t a t i o n 2 i s r e l a t i v e l y d i s t i n c t along the f i r s t and t h i r d axes. The l a t e r sampling date of t h i s s t a t i o n (3 March) w i l l be considered l a t e r (Sections VI-A,B). The v a r i a b l e most 44 important i n d i s c r i m i n a t i n g between s t a t i o n s i s K. r i v u l a r e , which was not abundant at S t a t i o n 2. Aside from S t a t i o n 2, the February p e r i o d appears to show l e s s l o n g i t u d i n a l p a t t e r n i n g of species assemblages than di d the August period. In the o r d i n a t i o n of species data f o r S t a t i o n s 2-7 during May ( F i g . 5 ) , the f i r s t three axes cumulatively represented n e a r l y 86% of the t o t a l v a r i a n c e , w i t h the f i r s t a x i s i n d i v i d u a l l y , 41%. At t h i s time, the lake (4) i s p o s i t i o n e d as most d i s s i m i l a r to a l l other s t a t i o n s , w i t h the outflow (3) bearing resemblance to i t only along the f i r s t a x i s . The downstream S t a t i o n s 2 and 7 c l u s t e r s t r o n g l y away from these, and would appear to diverge more than the upstream S t a t i o n s , 5 and 6. The spread along the second a x i s i s not e a s i l y understood i f considered s t r i c t l y from the standpoint of the stream gradient. During t h i s time a l l f l o w i n g s t a t i o n s except the outflow (3) had a dominance of Z_. i n s i g n e , and one other a l g a . S t a t i o n s 5 and 6 were j o i n e d by an abundance of K. mucosum, whereas S t a t i o n s 2 and 7 had very l i t t l e of t h i s . Codominant i n these downstream s t a t i o n s was P_. autumnale. The nearness of these two along the second a x i s i s at present u n i n t e r p r e t a b l e . The t h i r d coordinate a x i s adds l i t t l e f u r t h e r i n f o r m a t i o n as to the s i m i l a r i t y of the s t a t i o n s , and d i f f e r s mostly i n r e v e r s i n g the p o s i t i o n s of the 2/7 and 5/6 c l u s t e r s , r a t h e r than r e v e a l i n g new a f f i n i t i e s ( F i g . 5B). I t appears the r e l a t i v e d i f f e r e n c e s i n the importance of Z_. i n s i g n e and secondary dominants were c h a r a c t e r i s t i c s of comparison f o r t h i s p e r i o d . By June, the species data of a l t e r n a t e S t a t i o n s 2-7 are more e f f i c i e n t -l y summarized than e a r l i e r , where 93% of the t o t a l variance i s expressed by the f i r s t three axes and n e a r l y h a l f by the f i r s t a x i s alone. The gradient downstream from the lake i s more c l e a r l y expressed along the f i r s t a x i s ( F i g . 6 ) , where the outflow of Jacob's Creek (3) i s i n an intermediate p o s i t i o n of s i m i l a r i t y and l o n g i t u d i n a l p o s i t i o n . The f l o w i n g S t a t i o n s 2, 5, 6, and 7 are a l s o more d e f i n i t e l y c l u s t e r e d along a l l three axes than i n February and May. The s p a t i a l p a t t e r n of the a f f i n i t i e s between s t a t i o n s expressed i n the f i r s t two dimensions, of the o r d i n a t i o n i s s i m i l a r to that i n August, although the lake (4) and i t s outflow (3) are reversed along the second a x i s . The t h i r d a x i s i n the June p l o t exposed one major d i f f e r e n c e at the outflow, l i k e l y due to the occurrence of Stigonema  mamillosum, which at t h i s time i s poorly represented elsewhere. I t would appear that the a l g a l community at t h i s S t a t i o n (3) i s l e s s l i k e that at Jacob's Lake (4) than i n August of the previous year. A l l stream s t a t i o n s were continued to be c h a r a c t e r i z e d by an abundance of Zygnema, and i n c r e a s i n g l y so f o r the Jacob's Creek outflow S t a t i o n . A c o n s i d e r a t i o n of the species abundance, d i v e r s i t y , and o r d i n a t i o n r e s u l t s between s t a t i o n s produces a number of g e n e r a l i z a t i o n s . These are: 1. For much of the year, there are d i s t i n c t d i f f e r e n c e s i n species composition along the stream-watershed, which appear to be r e l a t e d to the stream gra d i e n t , although not f o r the w i n t e r (February/March). 2. Jacob's Lake d i f f e r s most s t r o n g l y from a l l the stream s t a t i o n s , but i s not e n t i r e l y without species common to them. 3. Although many s t a t i o n s are species r i c h , only the lake has an even p r o p o r t i o n of species and hence high d i v e r s i t y (H') at a l l four times of the year sampled. Conversely, the stream stations exhibited periodic low and high diversity over the year. At certain times, particularly June, the stations appreciably downstream from the lake (2, 7) bear strong resemblance to l o t i c stations above the lake (5, 6). 47 Table 3. Abundance of major species at seven sampling stations, expressed as species importance (la, see III-G) on four dates (see Table 1 for species codes, * = Station 2 data on 9 -October 1977, ** = Station 1 data on 3 March 1978,,— = not observed.* ND = no data available). SPECIES IMPORTANCE STATION MAJOR SPECIES 9 AUG 1977* 15 FEB 1978** 18 MAY 1978 23 JU1 1978 1: Main station,. ZY.G01 .27 .12 .43 .52 North Alouette UKL03 .00 .61 .16 .00 River PHR01 .26 — .00 .23 UKL01 .18 .00 .11 .12 STG01 .00 .12 .11 .01 2: Stream ZYG01 .45 .89 .45 .59 Junction PHR01 .01 .00 .45 .34 UKL01 .45 — .00 — UKL03 .01 .03 .04 .02 TXP01 .00 .12 .11 .11 3: Jacob's Creek STG01r .42 .41 .28 .30 at lake BUL01 .42 .21 .02 .04 outflow C0VO2 .45 — .00 — UKL03 . — .22 .28 — ZYG01 .02 — .02 .27 4: Jacob's Lake FRU01 .10 .34 .20 .20 M0UO1 .10 .30 .23 .20 MEL02 .00 .30 .17 .20 TXP01 .54 — — — DNB01 — — — .20 5: Upper Jacob's UKL01 .81 .41 .28 .31 Creek ZYG01 .04 .40 .38 .24 STG01 — — .38 .01 SPI01 .04 — .02 .22 BAT 01 — — .00 .20 6: Tributary B UKL01 .88 .41 .28 .31 ZYG01 .01 .02 .24 .29 UKL03 — .41 .02 .01 STG01 .00 .08 .24 .00 SPI01 .00 — .02 .29 7: Lower North PHR01 ND .00 .22 .23 Alouette River ZYG01 ND .00 .22 .22 UKL03 ND .44 .00 .00 SPI01 ND — .23 .22 AUD01 ND .40 .03 .01 Table 4. Comparison of species d i v e r s i t y at seven sampling s t a t i o n s at four dates, expressed as species number (S) and e c o l o g i c a l d i v e r s i t y (H') ( * = S t a t i o n 2 data on 9 October 1977, ** = S t a t i o n 1 data on 3 March, 1978, ND = no data). S T A T I O N S H ' int. 1 2 0 T 90--3 60--2 1 : MAIN STATION OF 3 0 " 1 NORTH ALOUETTE ... • 2: STREAM JUNCTION 3: JACOB'S CREEK AT LAKE OUTFLOW 4: JACOB'S LAKE 5: UPPER JACOB'S CREEK 6: TRIBUTARY B 7: LOWER NORTH ALOUETTE D A T E 9 AUG 15 FEB 18 MAY 23 JUN 1977* 1978** 1978 1978 e ND I III II III • III III III I I I I III L J J i_ni_ I n l nl X o C Csl JACOB'S LK. (4) o-(5) UPPER JACOB'S CR. ,5.$2..I?i.§!ff.A.?.Y...?. I • (2) STREAM JUNCTION-OUTFLOW TO JACOB'S CR. (3) T 1st axis x a TJ i — n o-©(2) STREAM JUNCTION JACOB'S LK. (4) OUTFLOW TO JACOB'S CR. (3) * (5) UPPER JACOB'S CR. (6) TRIBUTARY B j 0 1st axis A B Figure 3. A p l o t of the s i m i l a r i t i e s between f i v e a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-6) f o r 9 August 1977, expressed by P-Co-A i n the f i r s t and second (A) and f i r s t and t h i r d (B) coordinate axes (see F i g . 1 f o r s t a t i o n l o c a t i o n s ) . OUTFLOW TO (2) STREAM JUNCTION (5) UPPER JACOB'S CR. (4) JACOB'S LK. OUTFLOW TO JACOB'S CR. (3) LOWER NORTH ALOUETTE (7) I TRIBUTARY B i (6) • 1st ax i s V) o •o JACOB'S CR. (3) • ><2) STREAM JUNCTION -LOWER NORTH ALOUETTE (7)» • (5) UPPER JACOB'S • (4) JACOB'S LK. CR. | TRIBUTARY B *(6) r 1st axis B Figure 4. A p l o t of the s i m i l a r i t i e s between s i x a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-7) f o r 15 February 1978, expressed by P-Co-A i n the f i r s t and second (A) and f i r s t and t h i r d (B) coordinate axes (see F i g . 1 f o r s t a t i o n l o c a t i o n s ) . <J) X o ©(5) UPPER JACOB'S CR. (6) • TRIBUTARY B • (2) STREAM JUNCTION (7) LOWER NORTH ALOUETTE •(3) OUTFLOW TO J A C O B ' S C R . JACOB'S LK. ( 4 ) « 1st ax is X o "D cn 0-• (2) STREAM JUNCTION (7) LOWER NORTH ALOUETTE OUTFLOW (3) i TO JACOB'S CR. • (5). UPPER JACOB'S CR. JACOB'S LK. ( 4 ) 9 TRIBUTARY B (6)« T 0 1st ax is A B Figure 5. A p l o t of the s i m i l a r i t i e s between s i x a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-7) f o r 18 May 1978, expressed by P-Co-A i n the f i r s t and second (A) and f i r s t and t h i r d (B) coordinate axes (see F i g . 1 f o r s t a t i o n l o c a t i o n s ) . in x o c 0- • ©(3) OUTFLOW T O J A C O B ' S C R . ( 2 ) 'S T R E A M J U N C T I O N .(5) U P P E R J A C O B ' S C R . (6) T R I B U T A R Y B 9 (7) LOWER NORTH A L O U E T T E J A C O B ' S L K . (4) j 1st ax i s »(2) S T R E A M J U N C T I O N 0 ( 5 ) U P P E R J A C O B ' S C R . » (7) LOWER NORTH A L O U E T T E °(6) T R I B U T A R Y B J A C O B ' S L K . (4) • 1st axis B Figure 6. A p l o t of the s i m i l a r i t i e s between s i x a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-7) f o r 23 June 1978, expressed by P-Co-A i n the f i r s t and second (A) and f i r s t and t h i r d (B) coordinate axes (see F i g . 1 f o r s t a t i o n l o c a t i o n s ) . ro 53 C. WITHIN-HABITAT VARIATIONS IN THE ALGAL COMMUNITY OF STATION 1 The temporal v a r i a t i o n i n the abundance of seven dominant species i s compared i n F i g . 7 and expressed as importance values ( l a ) . As the observations are f o r 13 months, they are s u f f i c i e n t to g e n e r a l i z e f o r only one year. These data i n d i c a t e a gradual progression from one dominant species to the next. None of these, however, was absent or i n s i g n i f i c a n t l y low q u a n t i t i e s to have been missed i n the enumeration process. Most species were r e a d i l y observable at a l l times of the year and d i d not "disappear" or a l t e r n a t e between r e s t i n g stages (e.g., zygospores i n the Zygnemataceae) and the v e g e t a t i v e c o n d i t i o n . The major species can be separated i n t o c l a s s e s of occurrences, which are reasonably d i s t i n c t from each other. Z. i n s i g n e and K. mucosum predom-i n a t e i n the l a t e spring-summer u n t i l P_. autumnale and Oedogonium sp. A expand i n importance i n the e a r l y autumn. The l a r g e burst of K. r i v u l a r e i s marked by a low abundance of other species during the winter months, where both bluegreen and diatom epiphyte growth i s a l s o reduced. During l a t e r w i n ter and e a r l y s p r i n g , T o l y p o t h r i x p e n i c i l l a t a peaked, w h i l e s p r i n g and summer forms began t h e i r increase again. The temporal v a r i a t i o n i n abund-ance of Stigonema mamillosum was not p r e d i c t a b l e , as i t had p e r i o d i c peaks and lows throughout the year. The temporary periods between peaks are times of r e l a t i v e l y even species coexistence. This i s supported by the seasonal changes i n species d i v e r s i t y ( F i g . 8). The pulse of greatest d i v e r s i t y (H') was i n e a r l y September, before K. r i v u l a r e had reached l a r g e proportions w i t h a second, l e s s extreme peak o c c u r r i n g the f o l l o w i n g May. Here again, changes i n species number (S) does not mimic the p a t t e r n of d i v e r s i t y (H'), p a r t i c u l a r l y during the increase to i t s highest l e v e l s (H' = 2.33) i n August-September. Community d i v e r s i t y appears to f o l l o w a p a t t e r n o u t l i n e d f o r dominant species, where the l a t e - s p r i n g i s separate.from autumn-winter. These are l i k e l y d i s t i n c t from a group of l a t e w i n t e r - s p r i n g months. The temporal p a t t e r n was a l s o considered through o r d i n a t i o n methods. In t h i s , the comparison was between sampling dates. The 17 sampling dates w i t h 203 v a r i a b l e s (species) produced ve c t o r s where the f i r s t coordinate a x i s accounted f o r n e a r l y 50%, and cumulatively the f i r s t three axes, 87% of the t o t a l v a r i a n c e ( F i g . 9). The s i m i l a r i t y between sampling dates r e v e a l s a c y c l i c p a t t e r n from June 1977 to June 1978, considered by the f i r s t two axes ( F i g . 9A) . This model can be envisioned as a d i s k , where the seasonal succession of species f o l l o w s the course around the edge and completes the c y c l e i n one year. The t h i r d a x i s i s l e s s obvious, and only c o n t r i b u t e s another 7% of the i n f o r m a t i o n content to the t o t a l p i c t u r e ( F i g . 9B). The three dimensions together would appear as a d i s k which e x h i b i t s some "wobble", ra t h e r than as a f l a t p l a t e . Nonetheless, the a n a l y s i s shows the succession proceeded i n a c y c l i c manner, where the beginning and end meet. The o r d i n a t i o n a l s o r e v e a l s a few p r o p e r t i e s of the date-units i n d i v i d u a l l y . B a r t e l l et a l . (1978) i n d i c a t e that the l e n g t h of the l i n e s between successive points i n such a p l o t are roughly p r o p o r t i o n a l to the r a t e of change i n species composition between dates. The long p e r i o d from mid-October to January d i d not show a s i g n i f i c a n t change i n the community. The two dates (9 October 1977, 27 January 1978) were both c h a r a c t e r i z e d by 55 a predominance of K. r i v u l a r e . The most dramatic change i n composition occurred two sampling dates e a r l i e r , between l a t e January and e a r l y March. This response can be c o r r e l a t e d w i t h a l a r g e drop i n importance of K. r i v u l a r e and the succeeding increase i n Z_. i n s i g n e . When observing the mosaic of a l g a l species i n the f i e l d at S t a t i o n 1, i t appeared- that there was not an even or random d i s t r i b u t i o n along the streambed. Some species were found only on a s p e c i f i c p o s i t i o n on a rock or only on rocks i n some place s . The c o l o n i z a t i o n experiment, to a degree, supports these observations (Table 5). As i n d i c a t e d by the l a r g e change i n species composition (small s i m i l a r i t y value) of both s u b s t r a t e types w i t h time, a d i f f e r e n c e i n species composition was shown f o r d i f f e r e n t exposure periods. In t h i s short-term succession, the two substrates had low s i m i l a r -i t y to each other i n the i n i t i a l and f i n a l stages of the experiment. A period of convergence d i d occur a f t e r the second week, but i t was s h o r t -l i v e d . By week 4, smaller forms (diatoms) were s e l e c t e d f o r on the a r t i f i c i a l s u b s t r a t e , i n co n t r a s t to the n a t u r a l s u b s t r a t e , which then had an assemblage of filamentous greens. This l a t t e r a s s o c i a t i o n was a l s o t r u e f o r the stream o v e r a l l at t h i s time of year ( F i g . 7; Appendix A). The s p a t i a l p a t t e r n i n g of a l g a l species across the stream was analyzed by c l u s t e r a n a l y s i s ( F i g . 10). The major r e s u l t i s the production of two la r g e c l u s t e r s which d i f f e r l a r g e l y i n nearness to the shore. The r i g h t -hand group are those low and high numbered samples from the extremes of the tr a n s e c t . The bulk of the l e f t - h a n d c l u s t e r i s made up of samples from midstream. Choice of the number of c l u s t e r s i s i n part a r b i t r a r y , but the a n a l y s i s a l s o produced a step-wise l i s t i n g of the e r r o r a s s o c i a t e d w i t h each successive grouping. Thus, w i t h i n a range of 4-12 c l u s t e r s d e s i r e d 56 ( f o r the e i g h t p e r p e n d i c u l a r s ) , the c l u s t e r i n g a s s o c i a t e d w i t h the lowest e r r o r jump i s at the 1 0 - c l u s t e r l e v e l . This i s considered the most " n a t u r a l " grouping of the data. Beyond the two major c l u s t e r s , the o,ther e i g h t f a l l nearer to one or the other. The c l u s t e r s can be superimposed on the sample map ( F i g . 11). The matrix of 56 samples can be placed on the g r i d which i n d i c a t e s t h e i r r e l a t i v e p o s i t i o n to the t r a n s e c t and order along the perpendicular. The c l u s t e r e d groups are i d e n t i f i e d by contour l i n e s (not drawn to s c a l e ) . The p a t t e r n r e v e a l s a very l a r g e , d i s t i n c t group of assemblages that occur near midstream and f o r much of the northwest margin. The other l a r g e group does not f o l l o w s t r i c t l y w i t h nearness to the shore, although t h i s and most anomalous groups have no r e p r e s e n t a t i v e s i n the midstream regio n . Some of the margin samples from each s i d e have been c l u s t e r e d together. Thus, a l g a l species and a s s o c i a t i o n s encountered at S t a t i o n 1 e x h i b i t e d a number of s t r u c t u r a l aspects which vary i n space and time. They can be summarized by these two aspects. Temporal: i ) The dominant species at S t a t i o n 1 f l u c t u a t e d over the period of one year, but at no time were any of the species l o c a l l y e x t i n c t , i i ) Species d i v e r s i t y was greatest during e a r l y autumn (August/September) and s p r i n g ( A p r i l / May) and depressed during winter (January/ February). i i i ) A c y c l i c p a t t e r n was recognized i n the seasonal change of species ( s u c c e s s i o n ) , although two d r a s t i c changes i n community composition were 57 revealed (September and January/March) and occurred i n a short span of time. S p a t i a l : i ) A complex of species assemblages e x i s t s i n the stream which are not evenly or randomly d i s -t r i b u t e d . i i ) A short-term succession was found to d i f f e r i n s t r u c t u r e between the two substrate types, i i i ) Many species show a f f i n i t i e s to p a r t i c u l a r s u b strates and l o c a l i t i e s w i t h i n the stream, and do so i n a reco g n i z a b l e p a t t e r n . Figure 7. Seasonal changes .in the abundance of the major a l g a l species at S t a t i o n 1 of the North A l o u e t t e R i v e r , .. expressed as importance ( I a ) values. Species are presented i n order of t h e i r f i r s t peak from the beginning of the study (see Table 1 f o r species codes). Figure 8. Seasonal changes i n species d i v e r s i t y of the a l g a l community a t S t a t i o n 1 of the North A l o u e t t e R i v e r . D i v e r s i t y i s expressed as species number (S) and e c o l o g i c a l d i v e r s i t y (H') . ON o 1st ax is 1st axis A B Figure 9. A p l o t of the s i m i l a r i t i e s between a l g a l communities on 17 sampling dates at S t a t i o n 1 of the North A l o u e t t e R i v e r , expressed by P-Co-A i n the f i r s t and second (A) and f i r s t and t h i r d (B) coordinate axes. The c h r o n o l o g i c a l t r a j e c t o r y of points are connected by l i n e s whose length correspond to the r e l a t i v e amount of change i n species composition (•= 1977, 0 = 1978). Table 5. Comparison of species assemblages at three successional stages for two substrate types, expressed as similarity ( I s of S^rensen, 1948);, where 1 = complete and 0 = no similarity (refer to Table 1 for species codes). COMPARISON WEEKS TEMPORAL DIFFERENCES 1 vs. 2 2 vs. 4 1 vs. 4 Within the Plexiglas assemblage .16 .11 .23 Within the granite assemblage .02 .64 .13 SUBSTRATE DIFFERENCES Week 1 Week 2 Week 4 Major species on Plexiglas SPIOl SYNOl ACNOl ZYGOl SYNOl UKL03 GPNOl ACNOl SYNOl Major species on granite STGOl TXPOl ACNOl ZYGOl SPIOl TAB01 ZYGOl STGOl SPIOl Similarity (I g) between substrates .06 .61 .11 63 Figure 10. C l u s t e r a n a l y s i s of a l g a l a s s o c i a t i o n s on separate stones c o l l e c t e d along a cross-stream g r a d i e n t , S t a t i o n 1 of the North Alouette R i v e r , 4 May 1978. RELATIVE SIMILARITY > z: T J m CD m 7D 08 <— 48 — 03 — 20 — 38 — 18 — 23 — 44 — 34 — 29 — 30 — 52 — 09 — 24 — 06 — 27 — 4 0 — 37 — 42 — 49 — 47 — 26 — 50 — 36 — 35 — .55-1-3 3 ^ 32 — 31 — 4 6 — 1 0 — 4 5 — 41 — 3 9 — 2 8 — 25 — 51 — 21 04 17-19-16-54-12-43-56-07" 22" 13-53-15-14" 11-05-02-01" -> -O -a -m -o t 7 9 on 4 May 1978 (groups i d e n t i f i e d through c l u s t e r a n a l y s i s , see F i g . 10; f i g u r e not drawn to s c a l e ) . CTi 66 V. PHYSIOCHEMICAL RESULTS A. COMPARISON OF STATIONS ALONG THE STREAM The a b i o t i c data c o l l e c t e d on dates of a l g a l sampling f o r a l t e r n a t e S t a t i o n s (2-7) i n c l u d e only temperature, pH, and current v e l o c i t y (Table 6). C h a r a c t e r i s t i c s of a l t i t u d e , stream width (and hence r e l a t i v e shade), slope, substrate s i z e , and p o s i t i o n r e l a t i v e to the lake are considered f o r comparison. The temperature trends were s i m i l a r between s t a t i o n s s e a s o n a l l y . February was the c o l d e s t and August the warmest month of the four dates i n a l l s t a t i o n s . I n t e r e s t i n g l y , the Jacob's Lake e p i l i m n i o n was i n February the c o l d e s t s t a t i o n , whereas during the other periods, i t was warmer than a l l others. E v i d e n t l y , surface water temperature of the lake changes more r a p i d l y than i n any of the shallower streams. This i n d i c a t e s that some s t r a t i f i c a t i o n l i k e l y occurs, even though the lake i s regarded as n e a r l y c o n s t a n t l y mixed ( E f f o r d , 1967). O v e r a l l however, i t can be assumed that a l l s t a t i o n s behave s i m i l a r l y w i t h respect to seasonal temperatures. The pH appears l e s s r e g u l a r both between s t a t i o n s and dates. A l l s t a t i o n s were l a r g e l y c i r c u m n e u t r a l , although there were a m a j o r i t y of values recorded between pH 6 and 7. F e l l e r (1977) found that the s o i l s of t h i s area have a good d e a l of mineral l e a c h i n g , which r e s u l t s i n a r e d u c t i o n i n the c o n c e n t r a t i o n of hydrogen ions from the rainwater through to the stream. Patterns i n pH, although not p a r t i c u l a r l y s trong, can be o u t l i n e d . Down-stream, S t a t i o n s 1, 2, and 7, as w e l l as the upper S t a t i o n 6, had high values during February and low values i n May. The outflow ( S t a t i o n 3) was 67 most e r r a t i c , but d i d not f o l l o w patterns i n Jacob's Lake to any degree. L i t t l e change occurred f o r S t a t i o n 5, v a r y i n g ±0.15 pH u n i t s from a mean of 6.25. The three near-lake/lake S t a t i o n s (3, 4, 5) apparently were independ-ent of each other w i t h respect to pH c h a r a c t e r i s t i c s . Current v e l o c i t y g e n e r a l l y was r a p i d at a l l stream s t a t i o n s w i t h the exception of S t a t i o n 5, which i s c h a r a c t e r i z e d by l a r g e pools and i n f r e q u e n t , small r i f f l e s . In flow c o n d i t i o n s , S t a t i o n 5 was most d i s s i m i l a r to a l l other s t a t i o n s , excluding Jacob's Lake. The main stem reaches of the North A l o u e t t e , p a r t i c u l a r l y S t a t i o n s 1 and 2, were most r a p i d , sometimes averaging over 1 m sec \ The lowest s t a t i o n on the North Alouette d i d e x h i b i t a reduced c u r r e n t , where slope i s much l e s s than upstream s t a t i o n s . Average values can be ranked more or l e s s i n the order S t a t i o n s 1 > 2 > 3 = 6 > 7 > 5 > 4. Although the average values f o r S t a t i o n 6 were s i m i l a r to that of S t a t i o n 3, they were q u i t e d i s s i m i l a r . S t a t i o n 6 co n s i s t e d of many extreme cascades a l t e r n a t i n g w i t h l a r g e pools, and S t a t i o n 3 was p r i m a r i l y r i f f l e s . The temporal p a t t e r n i s s i m i l a r f o r a l l s t a t i o n s , which may be expected. The s t a t i o n s a l l are interconnected and occur w i t h i n a length of ca. 12 km, and hence, experience roughly s i m i l a r c l i m a t i c c o n d i t i o n s . These v a r i a b l e s of temperature, pH, and current v e l o c i t y can be summarized f u r t h e r i n t h e i r r e l a t i v e value i n comparing dates and s t a t i o n s . Current v e l o c i t y exposed d i f f e r e n c e s between s t a t i o n s regardless of time of year; Temperature was s i m i l a r between s t a t i o n s , but h i g h l y seasonal. The values recorded f o r pH, however, d i d not e a s i l y define c a t e g o r i e s or temporal responses f o r these l o c a t i o n s . Those c h a r a c t e r i s t i c s which remained e f f e c -t i v e l y constant, such as slope and stream width, w i l l a l s o be regarded as f a c t o r s of comparison between s t a t i o n s . Table 6. Temperature (°C), pH, and current velocity (cm sec )^ measured at single times at seven collecting stations on four sampling dates (* = Station 1 on 3 March 1978, ** = Station 2 on 9 October 1977, ND = no data available, — = assumed negligible). STATION •k* * 9 AUGUST 1977 15. FEBRUARY 1978 18 MAY 1978 23 JUNE 1978 TEMP pH CURR TEMP pH CURR TEMP pH CURR TEMP pH CURR 1: Main station, North Alouette River 18.3 7.20 58 3.1 7.15 95 8.1 6.50 119 13.4 6.80 61 2: Stream junction, North Alouette River 8.0 6.70 64 2.1 7.35 104 9.2 6.35 106 11.0 6.55 67 3: Jacob's Creek at lake outflow 19.0 7.00 53 3.0 5.85 87 10.2 6.40 89 17.0 6.85 56 4: Jacob's Lake 19.2 6.15 2.0 6.15 12.2 6.30 18.2 6.65 5: Upper Jacob's Creek 17.0 .6.10 15 2.4 6.25 25 9.4 6.15 25 11.2 6.40 16 6: Tributary B 15.0 6.55 52 2.2 7.40 86 6.8 6.45 88 10.2 6.90 55 7: Lower North Alouette River ND ND ND 4.0 7.00 73 11.8 6.45 73 13.8 6.25 47 69 B. TEMPORAL PATTERNS IN PHYSIOCHEMICAL PARAMETERS WITHIN STATION 1 The water chemistry and other a b i o t i c parameters were measured i n d e t a i l at S t a t i o n 1. As d u p l i c a t e samples f o r the n u t r i e n t chemistry were a l l that were taken (assuming well-mixed), no e r r o r bars are shown f o r the c a t i o n and anion concentrations. The low o v e r a l l values f o r d i s s o l v e d substances are w i t h i n the range found f o r other P a c i f i c c o a s t a l watersheds i n B r i t i s h Columbia ( S c r i v e n e r , 1975; F e l l e r , 1977) and Washington ( T r i s k a and S e d e l l , 1976). The patterns of the four d i s s o l v e d anions plus ammonia are not e n t i r e l y s i m i l a r ( F i g . 12). Trends i n NO^ and NH^ appear to show an in v e r s e r e l a t i o n . 2-SO^ and CI ions e x h i b i t very l i t t l e change over the year, although a 2-s l i g h t increase occurred over w i n t e r . SO^ and CI were the most abundant 3-anions on the average. PO^ was somewhat e r r a t i c , but the mean value was l e s s than that measured i n an adjacent watershed ( F e l l e r , 1977) and the l e a s t concentrated of the group. The anions were g e n e r a l l y highest during l a t e summer and autumn. The order of t h e i r r e l a t i v e average concentrations plus 2- - - 3-S i 0 2 ( F i g . 14) were: SO^ > S i 0 2 > CI > N0 3 > P 0 4 . Of the seven c a t i o n s measured, the concentrations of only four were 2+/ 3+ 2+ 3+ w i t h i n d e t e c t a b l e l i m i t s ( F i g . 13). Fe , Mn , and A l ions were never found i n the d i s s o l v e d f r a c t i o n . This i s s i m i l a r to that recorded by Wali et a l . (1972), where these minerals were not d e t e c t a b l e i n Jacob's Lake water, but appreciable concentrations occurred i n the sediments. In cont r a s t to the anions, the c a t i o n s showed a remarkably high degree of s i m i l a r i t y i n temporal p a t t e r n . A l l showed t h e i r greatest l e v e l i n mid-70 August and g e n e r a l l y so over much of the l a t e summer/early f a l l . Low l e v e l s were a l s o synchronized i n a number of periods during the s p r i n g and assumedly through the w i n t e r . G e n e r a l l y , the order of concentrations was: ^2+ A T + 2+ + .TU+ 2+/3+ ? „ 2+ ? .,3+ Ca - Na > Mg > K > NH^ >> Fe = Mn = A l . The seasonal l e v e l s of a l k a l i n i t y , pH, Si02, and 0^ are presented i n F i g . 14. The low a l k a l i n i t y (as HCO^) l e v e l s measured i n the stream water f o l l o w the general c o n d i t i o n s o u t l i n e d e a r l i e r f o r most areas i n the Coast Mountains (Northcote and L a r k i n , 1963). With t h i s low b u f f e r i n g c a p a c i t y i t i s perhaps s u r p r i s i n g the pH values d i d not vary g r e a t l y both w i t h i n the day (standard d e v i a t i o n ) and s e a s o n a l l y . The s l i g h t l y higher values during June 1977 were not repeated the f o l l o w i n g June. The widest v a r i a t i o n s i n pH occurred when a l k a l i n i t y was at i t s lowest, during w i n t e r . D i s s o l v e d S i 0 2 2-was r e l a t i v e l y abundant, averaging more than any other i o n except SO^ . The seasonal p a t t e r n of Si02 was s i m i l a r to the c a t i o n s . A strong peak occurred during mid-August and subsequently i n e a r l y March. D i s s o l v e d oxygen was always at or above s a t u r a t i o n l e v e l s a l l times of the year. Absolute values v a r i e d , l a r g e l y responding to seasonal temperature changes, the major f a c t o r i n f l u e n c i n g c oncentration (Golterman, 1975; Wetzel, 1975). Although l i g h t energy was measured, equipment f a i l u r e s d i d not a l l o w a complete p i c t u r e . G e n e r a l l y , data f o r average d a i l y r a d i a t i o n showed a -2 -1 gradual increase from e a r l y June (27 gm-cal cm d ) to a maximum i n e a r l y -2 -1 and mid-August (32-36 gm-cal cm d ), and then reducing to h a l f the maximum by November. The f o l l o w i n g s p r i n g t h i s p a t t e r n appears s i m i l a r (data incomplete). The measurements f o r any week were marked by at l e a s t a few cloudy days so that the annual p i c t u r e v a r i e s only by a f a c t o r of -2 -1 about two (17-40 gm-cal cm d ). More continuous data of water tempera-tures do r e f l e c t the seasonal character of s u n l i g h t a v a i l a b l e to the system. 71 The stream temperatures i n d i c a t e a degree of d i u r n a l f l u x by maximum and minimum values ( F i g . 15). The water temperatures appear to f o l l o w a seasonal p a t t e r n much r e l a t e d to daylength, where August was the warmest month. During t h i s p e r i o d , the a l g a l populations experienced a daytime f l u x of as much as 4°C. Whether the complete d i u r n a l f l u x i s any greater i s unknown, but due to the canyon e f f e c t i n t h i s area, measurements were made over the time during which the d i r e c t e f f e c t s of s u n l i g h t were present. The temperatures ranged n e a r l y 5 - f o l d over the year, although complete f r e e z i n g never occurred. Flow c o n d i t i o n s , which are r e f l e c t e d i n stream depth and current v e l o c i t y , were h i g h l y v a r i e d s e a s o n a l l y and w i t h i n S t a t i o n 1 on any one date ( F i g . 15). Both depth and current followed s i m i l a r patterns and are considered here as two expressions of one phenomenon. Stream width might al s o be considered a f u n c t i o n of flow, but v a r i e d l e s s than 10% from the mean (17.5 m) , hence provides l i t t l e i n f o r m a t i o n concerning changes i n stream levels.. Stream flow was greatest i n l a t e autumn-winter. The d e c l i n e a f t e r October may not be as immediate as shown ( i n t e r p o l a t e d ) , as f l o o d s made sampling impossible during t h i s p e r i o d . Spring a l s o e x h i b i t e d a pulse i n current v e l o c i t y , although of l e s s i n t e n s i t y . The time from l a t e s p r i n g u n t i l the beginning of autumn (March-August) was one of calmer flow, but these dates were at times i n t e r r u p t e d by b r i e f spates. When considered as.a whole, the physiochemical environment of the stream may be reduced to a number of d i s t i n g u i s h a b l e p a t t e r n s . Because d i f f e r e n c e s i n s c a l e of the graphs may misrepresent s i m i l a r i t i e s i n p a t t e r n , a simple l i n e a r c o r r e l a t i o n between a l l v a r i a b l e s was made (Table 7). The f i r s t group which can be i d e n t i f i e d may be regarded as the " c a t i o n group." K + i s 72 l e a s t s t r o n g l y ( p o s i t i v e l y ) c o r r e l a t e d among these, but i n a d d i t i o n to 2+ + 2+ - " + Ca , Na , and Mg , NO^ i s a l s o s t r o n g l y and p o s i t i v e l y c o r r e l a t e d . NH^ d i d not produce a s i g n i f i c a n t negative c o r r e l a t i o n as was assumed simply by observing F i g . 13. Although one c a t i o n , Na +, d i d c o r r e l a t e reasonably w e l l w i t h the changes:in stream depth, t h i s w i l l not be considered part of the assigned group, but w i l l be mentioned l a t e r . A second group changed g r a d u a l l y over the year, l a r g e l y r e f l e c t i n g d i f -ferences i n daylength. This "daylength group" includes a strong c o r r e l a -t i o n between temperature, d i s s o l v e d C^, and presumably l i g h t . A t h i r d 2- + asso c i a t e d group of v a r i a b l e s i n c l u d e s CI , SO^ , NH^, c u r r e n t , depth and SiC^. In t h i s "streamflow group", a s t r o n g l y s i g n i f i c a n t (P<0.001) c o r r e l a t i o n between current v e l o c i t y and depth supports the e a r l i e r assump-t i o n that these behave s i m i l a r l y . A l l members of t h i s group are p o s i t i v e l y c o r r e l a t e d , w i t h the exception of SiC^. Whether pH i s a l l i e d to t h i s group (a very strong c o r r e l a t i o n w i t h depth) or the c a t i o n groups (two l e s s e r 3-c o r r e l a t i o n s out of f i v e ) i s not c l e a r . Two o u t l i e r s , PO^ and HCO^j s u r p r i s i n g l y had no strong c o r r e l a t i o n s to any v a r i a b l e s measured, and were f o r the most p a r t , sporadic. The i n a b i l i t y to place a l l the physiochemical v a r i a b l e s i n t o separate c l a s s e s i s not s u r p r i s i n g . The c o r r e l a t i o n between some members of the c a t i o n group w i t h the streamflow group may r e f l e c t e f f e c t s due to a phenomenon not d i r e c t l y measured, such as r a i n f a l l , which may a l t e r the amounts of some d i s s o l v e d minerals. The i n t e r c o r r e l a t i o n s undoubtedly r e f l e c t the a r t i f i c i a l i t y of the grouping process to some extent as w e l l . Golterman (1975) s t a t e s that temporal changes i n stream-water chemistry f r e q u e n t l y vary i n v e r s e l y w i t h flow. The l a r g e number of negative c o r r e l a -73 t i o n s w i t h current v e l o c i t y and depth f o l l o w t h i s observation (Table 7)• 2+ + The c a t i o n s Ca and K a l s o c o r r e l a t e s t r o n g l y w i t h the daylength group, but p o s s i b l e b i o l o g i c a l i n t e r r e l a t i o n s cannot be assumed w i t h any c e r t a i n t y . 3-The l a c k of any strong c o r r e l a t i o n between a l k a l i n i t y , PO^ , and a l l other v a r i a b l e s , although unexplained at present, does not i n d i c a t e a l a c k of importance, as these c o r r e l a t i o n s merely point out the s i g n i f i c a n c e of 3-c o i n c i d e n t phenomena. For example, PO^ concentrations found i n t h i s study are w i t h i n or below l e v e l s found to be l i m i t i n g growth of a number of freshwater a l g a l species ( M i i l l e r , 1972; Rhee, 1973; Titman, 1976). -v4 MEAN STREAM DEPTH ( c m ) MAX/MIN WATER MEAN CURRENT VELOCITY TEMP. C O (cm s e c " 1 ) (D ^ era rt C no o o J o 1 o i r t to rt f» rt H-O 0 •8 o H CT rt O H> o c H H fD 3 rt * I—1 o r> H« rt s! rt fD H fD •I fD H "O -si 0 0 Table 7. L i n e a r c o r r e l a t i o n between a l l physiochemical v a r i a b l e s three l e v e l s of s i g n i f i c a n c e (* - P < 0.05, ** - P < 0.01, *** -f o r P < 0.001). "4 3- X HC03" .0656 X Cl" -.0217 -.1049 X -.0291 -.1369 .6440** X CURRENT -.1222 .0134' .6364** .3360 X DEPTH .2746 -.1016 .6530** .4214 .8030*** X Ca 2 + -.0880 .0058 -.1875 .1743 -.3215 -.4200 X Na+ -.1910 -.1830 .0072 .1350 -.5145* -.5875* .6550** M g 2 + -.1092 -.2360 .2072 .3032 -.3570 -.4377 .5852* K + .2206 .3502 -.1799 -.0950 -.2451 -.1474 .4727* s i o 2 .1933 -.3769 -.6289** -.5468* -.6126** -.5157* -.0640 .0516 .0751 .3795 .3987 -.1.124 -.1055 .3815 NH.+ 4 -.0811 -.2409 .5705* .4657 .5528* .6050** .0007 TEMPERATURE. .0314 .4078 ' -.3753 -.3803 -.2888 -.4343 .6315** °2 -.0971 -.2977 .3221 .3560 .2249 .3735 -.6850** PH -.2649 -.0352 -.1065 .0346 -.4376 -.6744** .1568 - 4 3 " HC03" Cl" - 4 " CURRENT DEPTH „ 2+ Ca .9302*** X .3591 .1986 X .2131 .1001 .1229 X .7043** .7617*** .3990 -.0928 X -.1617 .0135 -.1961 -.4464 -.0430 X .3459 .1983 .6809** -.0055 .2220 -.3132 X -.3700 -.2649 -.6824** -.0422 -.2390 .2174 -.9586*** X .5841* .6475** -.1415 .2553 .3910 -.3574 .0257 -.0152 Na+ Mg 2 + K + S i 0 2 NO3- NH 4 + TEMP 0 2 CO 79 C. GRADIENT ANALYSIS OF PHYSIOCHEMICAL VARIABILITY AT STATION 1 In conjunction w i t h the a l g a l d i s t r i b u t i o n a n a l y s i s , w i t h i n S t a t i o n 1, a number of f a c t o r s were measured along the f i r s t t r a n s e c t at r e g u l a r i n t e r v a l s . These were pH, temperature, d i s s o l v e d 0^, current v e l o c i t y , depth, and i n c i d e n t l i g h t . Measurements on the micr o - s c a l e were made i n weeks before (31 March, 17 A p r i l ) and a f t e r (26 May, 8 June, 29 June) the date of a l g a l sampling, as w e l l as on that date (4 May). Although absolute values changed temporally, the patterns along the tra n s e c t d i d not vary over t h i s time. Mean values of the s i x dates are given ( F i g . 16). The f i r s t two v a r i a b l e s , pH and temperature, d i d not change s i g n i f i c a n t l y , and so were measured only at three i n t e r v a l s . The e q u a l i t y of both of these on any of the s i x dates ( l i t t l e standard d e v i a t i o n ) supports t h i s . D i s s o l v e d 0^ v a r i e d s l i g h t l y but produced no evidence of a gradient. Current v e l o c i t y d i d vary across the stream. Midstream was the region of greatest flow, but apparently the r e s i s t a n c e o f f e r e d by e i t h e r stream bank was not equal. This segment of the stream was at a bend, and as i n d i c a t e d by Hynes (1970), tended to d i s p l a c e the i d e a l i z e d flow p a t t e r n . Depth was a l s o not uniform, where shallows were recorded at edge and midstream. The a v a i l a b i l i t y of l i g h t a l s o v a r i e d across the t r a n s e c t , but apparently l e s s i r r e g u l a r l y than d i d current v e l o c i t y . The o r i e n t a t i o n of t h i s segment of the stream was g e n e r a l l y southwesterly, so that the southeast bank was more s t r o n g l y a f f e c t e d by shading. F u r t h e r , as the sun moved across the sky, d i f f e r e n t l o c a l i t i e s of the midstream were under f u l l i r r a d i a n c e . Hence, l a r g e standard d e v i a t i o n s were observed at these p o s i t i o n s , and l e s s so i n the shaded p a r t s . I 80 In general, three f a c t o r s were measured, depth, current v e l o c i t y , and i r r a d i a n c e , which changed s i g n i f i c a n t l y along the t r a n s e c t . The experiment, however, was not designed to t e s t between these v a r i a b l e s . Nonetheless, the measurements do expose a degree of s p a t i a l heterogeneity w i t h i n one l o c a l i t y , even though at present, s i m i l a r l y v a r y i n g f a c t o r s cannot be separated w i t h any c e r t a i n t y . Figure 16. Cross-stream v a r i a b i l i t y of pH, temperature, d i s s o l v e d 0 2, c u r r e n t v e l o c i t y , depth, and i r r a d i a n c e at S t a t i o n 1 on f o r s i x weeks during s p r i n g of 1978. 00 82 VI. DISCUSSION A. SYNTHESIS OF BIOLOGICAL AND PHYSIOCHEMICAL RESULTS Temperature d i s t i n g u i s h e d between times of year f o r any given s t a t i o n , whereas v a r i a t i o n s i n current v e l o c i t y revealed d i f f e r e n c e s between the s t a t i o n s themselves (Section V-A). These r e s u l t s suggest that flow c h a r a c t e r -i s t i c s may have been e f f e c t u a l i n the production of d i f f e r e n t species composition along the stream gradient. Further c o n s i d e r a t i o n of the analyses i n d i c a t e s that t h i s may not be e n t i r e l y true. For example, neighboring S t a t i o n s 5 and 6 were shown to have h i g h l y s i m i l a r a l g a l communities at a l l times of the year ( F i g s . 3-6), yet t h e i r flow regimes were not a l l a l i k e (Table 6). The p i c t u r e of l o n g i t u d i n a l d i f f e r e n c e s along the stream i s most l i k e l y c h a r a c t e r i z e d both by changes a t t r i b u t a b l e to seasonal f l u c t u a t i o n s and those f e a t u r e s , l i k e current v e l o c i t y , are " f i x e d " i n t h e i r r e l a t i v e d i f f e r e n c e s between s t a t i o n s . The communities found at each s t a t i o n during the winter (February) are l e a s t c l e a r l y separable from each other, a f t e r c o n s i d e r i n g dominant species (Table .3), species d i v e r s i t y (Table 4 ) , and o r d i n a t i o n of the complete assemblages ( F i g . 5). The exception of a r a t h e r d i s t i n c t S t a t i o n 2 on the North A l o u e t t e can now be explained i n that on t h i s l a t e r c o l l e c t i n g date (3 March), Zygnema i n s i g n e had taken an abrupt i n c r e a s e i n importance (shown i n S t a t i o n 1, F i g s . 8, 10). However, using these same c r i t e r i a of dominant s p e c i e s , d i v e r s i t y , and the P-Co-A, the strongest c l u s t e r i n g of s t a t i o n s occurred during June 1978 (Tables 3, 4, F i g . 6) and August (Tables 3, 4, F i g . 3). Here, four of f i v e l o t i c s t a t i o n s were h i g h l y s i m i l a r , but d i f f e r e d from the outflow stream, a l l of which diverged from 83 Jacob's Lake. An i n t e r p r e t a t i o n of t h i s d i f f e r e n c e i n p a t t e r n i n g would suggest an o v e r r i d i n g i n f l u e n c e of the c o l d temperatures during w i n t e r , w h i l e at other times of the year species composition was l a r g e l y i n f l u e n c e d by current v e l o c i t y . The d i f f i c u l t y i n e x p l a i n i n g the causes of h i g h l y s i m i l a r species composition at S t a t i o n 5 and S t a t i o n 6, however, has not been removed. S u p e r f i c i a l l y , the a l g a l v e g e t a t i o n and h a b i t a t s of the two appear q u i t e d i s s i m i l a r . The slower fl o w i n g upper arm of Jacob's Creek (5) was very poorly c o l o n i z e d a l l year, except at the i n f r e q u e n t l y spaced r i f f l e s . Less than 500 m upstream, the f a s t f l o w i n g T r i b u t a r y B (6) was h e a v i l y carpeted w i t h algae and bryophytes. Owing to the pro x i m i t y of the two s t a t i o n s , i t may be assumed that the species pool from t h i s cascading r e g i o n served to c o l o n i z e S t a t i o n 5. Hence, i t i s not s u r p r i s i n g that the two s t a t i o n s have many species i n common. Accumulation of algae i n the slower f l o w i n g s t a t i o n (5) was r e s t r i c t e d p r i m a r i l y to the r i f f l e s , suggesting the upstream propagules had some s p e c i f i c i t y f o r a r h e o p h i l i c h a b i t . The l a c k of d i f f e r e n c e expressed by o r d i n a t i o n , then, i s a r e f l e c t i o n of the enumeration method as w e l l , i n that only the pr o p o r t i o n of each species was recorded, and not biomass. The complex of physiochemical f a c t o r s examined at S t a t i o n 1 to describe temporal v a r i a t i o n was s i m p l i f i e d by i d e n t i f y i n g groups of f a c t o r s that responded s i m i l a r l y over the year. The daylength group v a r i e d g r a d u a l l y , whereas the c a t i o n and streamflow groups, as w e l l as the few e r r a t i c a l l y changing f a c t o r s a l l had sudden peaks and lows i n time. The seasonal progression of major species ( F i g . 7) and the p a t t e r n from o r d i n a t i o n r e s u l t s f o r the a l g a l community ( F i g . 9) e x h i b i t e d periods that at times 84 changed smoothly and at other times, r a p i d l y . Some of these a c c e l e r a t e d changes were during e a r l y to l a t e September, l a t e January to e a r l y March, and e a r l y to mid-August. In general, these were times when the abundance of Klebsormidium r i v u l a r e , Zygnema i n s i g n e , and Phormidium autumnale e i t h e r g r e a t l y increased or decreased. A more p r e c i s e measure of the r a t e of change, based on the measured dist a n c e s from the P-Co-A p l o t between p o i n t s versus the number of days spanned, provides the f o l l o w i n g order: September (.36 cm/day) > August (.32 cm/day) > January-March (.24 cm/day). When compared w i t h the major f l u x e s i n the physiochemical environment, the l a r g e - s c a l e species replacement of September corresponds w i t h a time of i n c r e a s i n g current v e l o c i t y and depth ( F i g . 15), but not w i t h the other member of t h i s group, d i s s o l v e d SiC^ ( F i g . 14). The August species f l u x was a period where a l l c a t i o n s increased ( F i g . 13), plus NO^ and SiO^ ( F i g s . 12, 14). F i n a l l y , the January to March succession was marked by increases again i n d i s s o l v e d SiC^, as w e l l as pH ( F i g . 14), and s l i g h t l y i n the c a t i o n s . Current v e l o c i t y here dropped. The c o n s i d e r a t i o n of a l l species data made by c o r r e l a t i n g the c o o r d i n -ates of the f i r s t three axes of the seasonal o r d i n a t i o n ( F i g . 10) w i t h the temporal f l u x of a l l physiochemical v a r i a b l e s ( F i g s . 13-16) can be compared i n one u n i t (Table 8). The d i f f e r e n c e s i n species composition described by the f i r s t coordinate a x i s c o r r e l a t e s s i g n i f i c a n t l y w i t h the anions CI 2-and SO^ , a l s o current v e l o c i t y and depth, a l l p o s i t i v e l y . This a x i s c o r r e l a t e s n e g a t i v e l y w i t h temperature. The f i r s t a x i s i s a s s o c i a t e d l a r g e l y w i t h the changes i n importance between an a s s o c i a t i o n dominated by K. r i v u l a r e and a Z. insigne/P. autumnale a s s o c i a t i o n . The K. r i v u l a r e a s s o c i a t i o n thus was found at times of low temperature, high current v e l o c i t y , 85 2-and. greater concentrations of CI and SO^ . The Z_. insigne/P. autumnale a s s o c i a t i o n was more of a spring-summer occurrence, where greater tempera-2-tures were j o i n e d by reduced c u r r e n t , and CI and SO^ concentrations. This was a l s o a p e r i o d of greater plankton accumulation amongst the f i l a m e n t -ous species, from the d r i f t , mostly of desmids. The second coordinate a x i s c o r r e l a t e d s i g n i f i c a n t l y and t h i s time p o s i t i v e l y w i t h temperature, and a l l members of the c a t i o n group, as w e l l as n e g a t i v e l y w i t h C^. The behavior of the second a x i s represented a d i s t i n c t i o n between a l a r g e number of minor species. One extreme was an a s s o c i a t i o n v a r i o u s l y composed of Oedogonium sp. A, K. mucosum, Batracho- spermum moniliforme, and J?. autumnale. This i s contrasted w i t h an a s s o c i a -t i o n of T o l y p o t h r i x p e n i c i l l a t a , Stigonema mamillosum, A u d o u i n e l l a hermanni and again, K. r i v u l a r e . This l e s s d i s t i n c t a x i s i s f u r t h e r complicated i n that moderate l e v e l s of _Z. i n s i g n e were present on dates p l o t t e d on e i t h e r ends of t h i s v e c t o r . When compared w i t h F i g . 9, however, species d i v e r s i t y was g r e a t e s t on dates corresponding to the l a r g e s t ( p o s i t i v e ) values on the second a x i s . Hence, species d i v e r s i t y was highest during periods of higher c a t i o n and NO^ c o n c e n t r a t i o n s , greater temperatures, and low d i s s o l v e d O2. The t h i r d a x i s d i d not c o r r e l a t e s i g n i f i c a n t l y w i t h any of the v a r i a b l e s measured. In a l l , flow c o n d i t i o n s and temperature f l u x were s i g n i f i c a n t l y c o r r e l a t e d w i t h , and may be i n f l u e n t i a l i n the p a t t e r n i n g of species a s s o c i a t i o n s seasonally as w e l l as between segments of the stream. Concen-2-t r a t i o n s of d i s s o l v e d substances, p a r t i c u l a r l y SO^ and CI , may be f a c t o r s a f f e c t i n g the presence of some dominant species over the year. The increased l e v e l s of c a t i o n s , NO^, and temperature were as s o c i a t e d w i t h periods of greater d i v e r s i t y at S t a t i o n 1. 86 Synthesis of data c o l l e c t e d f o r a cross-stream gradient at S t a t i o n 1 provides f i n e r d e t a i l s of the r e l a t i o n between a l g a l d i s t r i b u t i o n and a b i o t i c f a c t o r s . The midstream a s s o c i a t i o n was at t h i s time dominated by _Z. i n s i g n e , and to a l e s s e r degree, K. r i v u l a r e . The marginal, or stream-edge h a b i t a t was c h a r a c t e r i z e d by an accumulation of _T. p e n i c i l l a t a , K. mucosum, and S^. mamillosum. Shading caused by the streamside canopy d i f f e r e d f o r these two a s s o c i a t i o n s , as d i d flow regime. This suggests both may e l i c i t some response i n the a l g a l d i s t r i b u t i o n . U n l i k e the seasonal or l o n g i t u d i n a l p a t t e r n i n g , there was no evidence suggesting temperature was a f a c t o r i n the m i c r o d i s t r i b u t i o n w i t h i n S t a t i o n 1. Further, both current and i r r a d i a n c e were more appreciably reduced toward the one margin where the bulk of the r e p r e s e n t a t i v e s of the stream-edge group were found. The separation of these hypothesized causal f a c t o r s cannot be e a s i l y accomplished from the data at hand. However, some evidence from between-s t a t i o n r e s u l t s (Section IV-B) may be of use i n t h i s respect. T r i b u t a r y B i s a narrow and well-shaded, but r a p i d l y f l o w i n g stream. Upper Jacob's Creek i s more openly l i g h t e d and slowly f l o w i n g . I f current regime were most e f f e c t u a l i n the S t a t i o n 1 m i c r o d i s t r i b u t i o n , the species composition at T r i b u t a r y B i n May would be more s i m i l a r to the midstream a s s o c i a t i o n , w i t h Upper Jacob's Creek more s i m i l a r to the stream-edge a s s o c i a t i o n . I f l i g h t were more important, the reverse would be true . As mentioned, l i t t l e d i f f e r e n c e i n species composition was found between these two s t a t i o n s . During May, the p r i n c i p a l r e p r e s e n t a t i v e s at both were K. mucosum, Z_. i n s i g n e , and jS. mamillosum, which at S t a t i o n 1, occurred i n d i s t i n c t groups. I t appears that i n s t e a d of d i s c r i m i n a t i n g between two p o s s i b l e e f f e c t s , these 87 two have remained i n t e r t w i n e d . . In any event, the r e s u l t s thus f a r suggest that l i g h t a v a i l a b i l i t y and current v e l o c i t y were a f f e c t i n g the m i c r o d i s t r i -b u t i o n of a l g a l species at a wide reach of the North A l o u e t t e R i v e r on at l e a s t one date. I t i s presumed these f a c t o r s were a c t i n g independently, but present methods were unable to d i s c e r n between them. Table 8. Correlation between environmental factors and scores of the f i r s t three coordinate axes of the date ordination, given for three levels of significance (* = P < 0.05, ** = P < 0.01, *** = P < 0.001; data from Figs. 9, 12-15). CORRELATION WITH COORDINATE SCORES FACTORS AXIS 1 AXIS 2 AXIS 3 .1123 NS -.1093 NS -.1293 NS HC03 .0496 NS .1334 NS .0987 NS Cl~ .6448** .0006 NS -.0997 NS so, 2 -4 .6433** .0875 NS .0469 NS CURRENT .5614* -.1274 NS .2342 NS DEPTH .6280** -.3778 NS .1164 NS Ca -.1969 NS .7263*** -.0412 NS Na + -.2653 NS .6478** -.3479 NS Mg 2 + -.0337 NS .6570** -.3711 NS K + -.1901 NS .5131* .0552 NS Si0 2 -.4298 NS .0050 NS -.2008 NS N03" .3336 NS .6873** -.2536 NS NH.+ 4 .3970 NS -.0211 NS -.1674 NS TEMPERATURE -.4715* .6548** .2270 NS °2 .4135 NS -.7171*** -.2701 NS PH -.1229 NS .3586 NS -.1724 NS 89 B . IMPORTANCE OF MAJOR SPECIES AND THEIR LONGITUDINAL DISTRIBUTION By and l a r g e , the two most widespread and abundant species of algae i n the North A l o u e t t e stream system during t h i s study were the filamentous greens, Zygnema i n s i g n e and Klebsormidium r i v u l a r e . These species have not been reported widely i n North American streams (Blum, 1956; Whitton, 1975), nor s p e c i f i c a l l y i n nearby areas of Washington (Cushing, 1967), Oregon (Sherman and Phinney, 1971; Hansmann and Phinney, 1973), Montana (Gumtow, 1955; Parker et a l . , 1973), A l b e r t a (McCart et a l . , 1977), the Yukon (Bryan et a l . , 1973), or Northwest T e r r i t o r i e s (Moore, 1977c). This i s probably as much a r e f l e c t i o n of the s c a r c i t y of studies on B r i t i s h Columbia streams ( S t e i n , 1975; Stockner and Shortreed, 1976), as i t i s of the d i f f e r e n c e s that such systems have from more a l k a l i n e , c o n t i n e n t a l systems. The l a c k of Cladophora- or diatom-dominated communities (reported by the preceding authors) i n the North A l o u e t t e supports to a degree the g e n e r a l i z a t i o n s of Margalef (1960), f o r n u t r i e n t - p o o r mountain streams, which however, were not discussed i n any d e t a i l . The major species of the North Alouette system are comparable w i t h f l o r a l types i d e n t i f i e d i n Scandanavia ( I s r a e l s o n , 1949). In o l i g o t r o p h i c regions these streams were regarded as the "Zygnema type", where i n a d d i t i o n to a number of s t e r i l e and a few reproductive species as dominants, f u r t h e r p a r a l l e l s were present. I s r a e l s o n noted the coexistence of Batrachospermum  moniliforme, Stigonema mamillosum, Mougeotia sp., Spirogyra sp. and Bulbochaete sp. (the l a s t three s t e r i l e ) . A l l were abundant i n various segments of the North A l o u e t t e watershed. The Scandanavian f l o r a was a l s o 90 c h a r a c t e r i z e d by a "subtype", i n h e a v i l y shaded and pooled streams, w i t h the accumulation of humic substances. These were t y p i f i e d by l a r g e stands of Batrachospermaceae, as found i n segments of Upper Jacob's Creek and other s i m i l a r streams of the U.B.C. Research Forest not included i n t h i s study. Observations of crustose growths of Batrachospermum i n l e s s shaded reaches of Jacob's Creek, e s p e c i a l l y S t a t i o n 5, may l i k e l y be due to l i g h t i n h i b i t i o n . Klebsormidium, or r e l a t e d genera were not reported by I s r a e l s o n (1949). However, a number of s p e c i e s , i n c l u d i n g K. r i v u l a r e (as Hormidium r i v u l a r e ) , have been reported i n streams of lower pH i n England (Say et a l . , 1977) and Germany (Backhaus, 1968). A l p i n e streams i n A u s t r i a w i t h comparable n u t r i e n t chemistry, flow, and substrate type a l s o e x h i b i t a s i m i l a r community compos-i t i o n , i n c l u d i n g K. r i v u l a r e , Phormidium autumnale, T o l y p o t h r i x p e n i c i l l a t a , 13. moniliforme, and a number of other species (Kann, 1978). The probable causes f o r such a green and bluegreen dominated system i n the North A l o u e t t e are no more evident from t h i s work than from the l i t e r a -t ure. A very l a r g e species pool of diatoms from Jacob's Lake was a v a i l a b l e to the stream (Table 2). These were:successful c o l o n i z e r s i n number (33 t a x a ) , as compared w i t h other a l g a l groups, yet none were able to reach dominant proportions (rank of 5) i n fl o w i n g water any time of the year. Douglas (1958) reported a r e d u c t i o n of diatom growth i n streams of peaty areas as compared w i t h calcareous regions nearby. The same pH l e v e l s (Table 6) and geology (Roddick, 1965) occur throughout the watershed, yet diatoms d i d f l o u r i s h i n Jacob's.Lake. This does not support Douglas' theory based on a l k a l i n i t y . P a t r i c k and coworkers (1969) were able to demonstrate a s e l e c t i o n of bluegreen algae i n manganese-poor water and diatoms where l e v e l s were greater than 0.04 mg/1. Manganese was not measurable i n the 91 stream water of t h i s study, but concentrations were found to exceed 5 mg/1 i n the sediments of Jacob's Lake (Wali et a l . , 1972), where diatoms predomin-ated (rank of 5 i n a m a j o r i t y of samples). Although t h i s i s h i g h l y suggestive, the stream stu d i e d by P a t r i c k was of considerably greater pH, a l k a l i n i t y , and n u t r i e n t l e v e l s , and t h e i r communities d i d not produce l a r g e amounts of green algae, the p r i n c i p a l group at the North A l o u e t t e . The streams of the North A l o u e t t e system may p o s s i b l y be considered a l e s s s t a b l e environment than lake, sediment f o r diatom c o l o n i z a t i o n , due to scouring from the cur r e n t . However, a number of species commonly regarded as r h e o p h i l i c , i n c l u d i n g Hannaea arcus, Cocconeis p l a c e n t u l a , and Gomphonema  parvulum (Hustedt, 1937-1938; P a t r i c k and'Reimer, 1966; Lowe, 1974) were common, but never dominant i n the streams. In any event, the r e s u l t s f o r the North Alouette River do not agree w i t h previous f i n d i n g s ( P a t r i c k , 1967) that the a v a i l a b l e species pool (e.g., diatoms from Jacob's Lake) and an adequate " i n v a s i o n r a t e " ( v i a f l u s h i n g from the lake epipelon) w i l l necessar-i l y induce a d i v e r s i f i e d community. As there are few records i n the l i t e r a t u r e of a l g a l communities i n s i m i l a r streams to the North A l o u e t t e , an e x p l a n a t i o n of t h i s discrepancy must await f u r t h e r study. The comparisons between s t a t i o n s w i t h i n the watershed i n d i c a t e a degree of s i m i l a r i t y between S t a t i o n s 1, 2, 5, 6, and 7 f o r each of the four times of the year sampled. The concept of l o n g i t u d i n a l zonation expressed f o r many animals (Hynes, 1970) and l e s s f r e q u e n t l y f o r algae (Scheele, 1952; Kawecka, 1971) i n streams appears questionable f o r a l g a l communities i n the North A l o u e t t e system. I t may be that a l l s t a t i o n s l i e w i t h i n what l i l i e s and Botosaneanu (1963) regard as a s i n g l e zone, the r h i t h r o n . Their c l a s s i f i c a t i o n recognizes high flow r a t e , a l a c k of extremely warm tempera-92 t u r e s , and rocky substrates are important. Because these c h a r a c t e r i s t i c s p e r t ained to the d i s t r i b u t i o n of attached fauna, t h i s category may not adequately p o r t r a y those l i m i t s to which a l g a l species respond. Furt h e r , i t seems that r a t h e r than e n t i r e communities o c c u r r i n g i n d i s t i n c t zones, the r e s u l t s i n d i c a t e that many species were responding independently to changing environmental c o n s t r a i n t s along the stream g r a d i e n t , as observed by Backhaus (1968). For example, although a Zygnema or Klebsormidium a s s o c i a t i o n was found i n most instances at the l o t i c s t a t i o n s , A u d o u i n e l l a  hermanni was present only at the lower three s t a t i o n s , and a t t a i n e d dominant proportions (rank of 5) i n samples only from the lowest s t a t i o n (7). Trends i n species d i v e r s i t y l o n g i t u d i n a l l y were a l s o not d i s t i n c t . Mack (1953) found that i n one A u s t r i a n stream system, a l g a l communities were i n c r e a s i n g l y d i v e r s e f u r t h e r downstream. In the present study (Table 4 ) , the greatest l e v e l s of d i v e r s i t y among the streams were at times upstream, and i n other i n s t a n c e s , downstream. In e i t h e r c o n d i t i o n , no evidence was found f o r patterns of increase or decrease l o n g i t u d i n a l l y . The f a c t that Jacob's Lake was more diverse than a l l other s t a t i o n s i n d i c a t e s that species d i v e r s i t y , again, was not simply a matter of species l o a d i n g to downstream s t a t i o n s . Further, the above-lake S t a t i o n 6 showed greater d i v e r s i t y f o r three of the four periods than d i d the North Alouette at S t a t i o n 2, which was about 1.2 km below the lake outflow. The o r d i n a t i o n r e s u l t s ( F i g s . 3-7) i n d i c a t e there were gradual d i f f e r -ences i n species composition between s t a t i o n s along the stream, but d i d not c l e a r l y demonstrate a simple progression. For August, Jacob's Creek at the lake outflow (3) was h i g h l y d i s t i n c t from e i t h e r of i t s nearest neighbors among the f l o w i n g water s t a t i o n s (5, 2). Instead, the above-lake (6, 5) 93 and lowest (1, 2) stations sampled at t h i s time were highly s i m i l a r . This points out that the impoundment of Jacob's Creek precludes any p o s s i b i l i t y of a s t r i c t l y a l t i t u d i n a l basis for zonation. The changes i n species composition with time were such that the pattern of s i m i l a r i t i e s between stations during February (Fig. 5) had l i t t l e resemblance to that of August (Fig. 3). This f l u x of a f f i n i t i e s between communities at d i f f e r e n t stations was true for May and June as w e l l . These observations i n d i c a t e that a l g a l populations were s u f f i c i e n t l y modified by either seasonal (e.g., temperature) or periodic (e.g., flow regime) events, so that no consistent zonal pattern occurred over the year. 94 C. TEMPORAL VARIABILITY AND SEASONAL SUCCESSION AT STATION 1 Seasonal succession of a l g a l species at S t a t i o n 1 over one year d i d not f o l l o w the general model where species b u i l d up and disappear i n a " t r e e -by-tree replacement process", as g e n e r a l i z e d by Horn (1976), and which f o l l o w s f o r most freshwater phytoplankton communities of lakes (Hutchinson, 1967; Round, 1971). In the North A l o u e t t e R i v e r there was a p e r s i s t e n c e of the e n t i r e assemblage w i t h i n which the wax and wane of c e r t a i n species occurred. Round (1972) found that e p i p e l i c algae i n two pools had broader seasonal peaks, r e s u l t i n g i n longer periods of coexistence between species than i n phytoplankton. These species d i d not extend over the e n t i r e year, as d i d e p i l i t h i c algae i n the North A l o u e t t e R i v e r . Figure 17 compares h y p o t h e t i c a l growth curves f o r phytoplankton and epipelon of lakes ( F i g . 17A, B) w i t h the p a t t e r n of e p i l i t h i c algae from the stream i n t h i s study ( F i g . 17C). The growth of species 1 i n the l o t i c system i s s i m i l a r to that of Klebsormidium r i v u l a r e , species 2 as Zygnema i n s i g n e , species 3 as Phormidium autumnale, and species 4 comparable to Oedogonium sp. A. A greater degree of species coexistence i n communities g e n e r a l l y i s thought to be provided by greater niche space (Hutchinson, 1961). Lake sediment may provide m i c r o h a b i t a t s f o r a l g a l species (Round, 1972) and c e r t a i n l y the r e s u l t s of the cross-stream gradient a n a l y s i s suggest t h i s i s true at S t a t i o n 1 ( S e c t i o n VI-A). Some means of preventing species e x c l u -s i o n would be a c t i n g , i n that temporal s e p a r a t i o n i s not a f a c t o r (MacArthur, 1970) f o r t h i s system. The c y c l i n g p a t t e r n of succession (see F i g . 9) may not be a complete p i c t u r e i f the year to year v a r i a t i o n i s extreme. There i s no reason to assume that pulses i n current v e l o c i t y and low temperatures w i l l always c o i n c i d e , as they d i d during the year of t h i s study (1977-1978). I f a spate were to occur during August on a f o l l o w i n g year, the seasonal p a t t e r n may be q u i t e d i f f e r e n t from that p r e s e n t l y o u t l i n e d . The d r a s t i c changes i n community composition over short periods (e.g., e a r l y to l a t e September; e a r l y to mid-August) may be regarded as caused by c a t a s t r o p h i c events, that i s , f l o o d s and l a r g e n u t r i e n t pulses. In summary, the degree of environmental u n p r e d i c t a b i l i t y (from an alga's viewpoint) reduces the evenness of seasonal p a t t e r n i n g ( F i g s . 9, 17), and may a f f e c t the a b i l i t y of invading species to c o l o n i z e the. system (Slobodkin and Sanders, 1969). LENTIC P H Y T O P L A N K T O N B LENTIC E P I P E L O N LOTIC EPILITHON Figure 17A,B,C. Hypothetical gowth curves of major algal species for three freshwater environments, based on Round (1972: A,B) and the present study (C). 97 D. GENERAL PROBLEMS OF ENVIRONMENTAL HETEROGENEITY The major t h r u s t of argument has been that the stream environment of the North A l o u e t t e watershed i s s u f f i c i e n t l y v a r i e d that few species are excluded temporally ( d i s t i n c t seasonal communities) or s p a t i a l l y ( l o n g i t u d i n -a l zones). This r a i s e s the question of whether such c o n d i t i o n s should l e a d to high species d i v e r s i t y (Whittaker, 1969). In the year s t u d i e d , l a r g e numbers of species c o e x i s t e d w i t h i n a l o c a l i z e d r e gion ( F i g . 8 ) , but much of the time the great m a j o r i t y of species were r a r e . Hence, there were few species of high importance. Periods of higher d i v e r s i t y d i d occur, p a r t i c u -l a r l y a f t e r abrupt changes i n environmental c o n d i t i o n s , and e s p e c i a l l y , current v e l o c i t y . Thus, great changes i n the composition (preceding s e c t i o n ) and d i v e r s i t y peaks tended to c o i n c i d e . The incidence of disturbance has been suggested by L e v i n and Paine (1974) to b r i n g about greater environmental heterogeneity by p r o v i d i n g opportunity f o r random c o l o n i z a t i o n and i n t e r r u p t i n g the normal succession process. P r e l i m i n a r y r e s u l t s i n t h i s study show that the otherwise gradual process of seasonal succession was d r a s t i c a l l y a l t e r e d i n August-September, corresponding to periods of high d i v e r s i t y ( F i g . 9). This however, was not true f o r the l a r g e r e s h u f f l i n g of species between l a t e January and e a r l y March, when d i v e r s i t y was much lower ( F i g s . 8, 9). Connell (1978) and Huston (1979) have r e c e n t l y reemphasized the importance of disturbance, but suggested that c o n d i t i o n s of "intermediate disturbance" (frequency or i n t e n s i t y ) w i l l maintain high d i v e r s i t y r a t h e r than c a t a s t r o p h i c events, which could e l i m i n a t e a l l but a few h i g h l y adapted species. The most d i v e r s e l o c a l i t y s t u d i e d w i t h i n the watershed, Jacob's Lake, 98 may have been subject to a more moderate disturbance ( i . e . , lake f l u s h i n g ; E f f o r d , 1967) than the streams. Paine (1966) found that i n s p a c e - l i m i t e d communities (most s e s s i l e organisms), an absence of disturbance allowed competitive dominants to outcompete other s p e c i e s , hence reducing species d i v e r s i t y . The l e s s dynamic c o n d i t i o n s of June-July at S t a t i o n 1 ( F i g s . 13-16) were periods when one species, Zygnema i n s i g n e , was h i g h l y abundant. The data at present are not complete enough to produce convincing explanations as to the causes of l o c a l d i v e r s i t y patterns i n t h i s system. Nonetheless, the p r o p e r t i e s of such a h i g h l y f l u c t u a t i n g and heterogeneous environment suggest t h i s system i s worth f u r t h e r study. P o s s i b l e approaches are considered i n the f o l l o w i n g s e c t i o n . A fundamental problem i s q u a n t i f y -ing what l e v e l of current v e l o c i t y , or any other a b i o t i c f a c t o r s , c o n s t i t u t e a severe or c a t a s t r o p h i c c o n d i t i o n (Slobodkin and Sanders, 1969), and at what l e v e l s these become an "intermediate disturbance" ( C o n n e l l , 1978). That i s , when does a high flow c o n d i t i o n become a flood? F u r t h e r , i f d i v e r s i t y of stream algae i n . t h e North A l o u e t t e i s a f f e c t e d by a combination of v a r i a b l e s , and not p r e d i c t a b l e from one element alone (shown i n l a b o r a t o r y microcosms of phytoplankton; Reed, 1978), then the r e c o g n i t i o n of t h i s i s f u r t h e r complicated. 99 E. CONCLUSIONS AS TESTABLE HYPOTHESES The o b j e c t i v e s of t h i s study were l a r g e l y d e s c r i p t i v e , as there i s a pa u c i t y of b a s i c i n f o r m a t i o n r e l a t i n g to the ecology of a l g a l species and communities i n c o a s t a l streams of B r i t i s h Columbia. In f o l l o w i n g w i t h the "hypothetico-deductive philosophy" ( F r e t w e l l , 1972), experience i s best summarized i n the form of an explanation. Owing to the r a t h e r t e n t a t i v e understanding the data provide, the explanations must be approached w i t h caution. The explanations from any d e s c r i p t i v e study should then be form a l i z e d i n t o hypotheses which can be tested (H^ to H^, f o l l o w i n g ) . The p r e l i m i n a r y problem concerned causes of d i f f e r e n c e s i n species composition and t h e i r d i s t r i b u t i o n . Given that a l a r g e pool of green, bluegreen, diatom, and red a l g a l species e x i s t w i t h i n the stream-watershed (Table 1, Appendix A) and that these species are f r e e l y transported between s t a t i o n s (Table 2), a complex of f a c t o r s may be suggested i n causing the presence of any p a r t i c u l a r species. H e a v i l y shaded segments of Jacob's Creek and shaded near-shore h a b i t a t s were regions of great e s t accumulation of species of Rhodophyta. I t i s assumed that d i s t r i b u t i o n of red algae w i t h i n t h i s system i s most s t r o n g l y l i m i t e d by a v a i l a b i l i t y of shade, and only s e c o n d a r i l y by the absence of extreme current v e l o c i t y . (H^) The adverse e f f e c t s of l i g h t have been supported to a degree by Rider and Wagner (1972) i n l a b o r a t o r y experiments. One t e s t of t h i s i n the f i e l d would i n v o l v e the removal of a segment of stream-bank v e g e t a t i o n and the c o n s t r u c t i o n of a r t i f i c i a l shading w i t h i n an openly l i g h t e d stream ( a f t e r Mundie, 1974). A second t e s t of l i g h t as w e l l as current would be provided 100 by t r a n s p l a n t experiments of stones c o l o n i z e d by Au d o u i n e l l a or Batrachosperm-um to nearby l o c a l i t i e s of the stream where current or i r r a d i a n c e would be the only f a c t o r s a l t e r e d . A s i m i l a r experiment was done by Parker et a l . (1973) w i t h Hydrurus, Monostroma and Batrachospermum. Both t e s t s could be used to d i s c r i m i n a t e between causes of m i c r o d i s t r i b u t i o n that was exposed along the tr a n s e c t w i t h i n S t a t i o n 1. Determinants of community dominants may al s o be p r e d i c t e d . Based on the p r e l i m i n a r y r e s u l t s and l i t e r a t u r e discussed e a r l i e r , the occurrence of a green/bluegreen versus diatom dominated community appears to be a r e s u l t of some chemical f a c t o r ( s ) ( p o s s i b l y manganese), r a t h e r than current v e l o c i t y or some other p h y s i c a l f a c t o r . (rl^) A t e s t f o r t h i s would i n v o l v e the use of "header boxes" (Stockner and Short-reed, 1978) i n the stream w i t h a s e r i e s of troughs i n which are placed a random c o l l e c t i o n of stones w i t h t h e i r a s s o c i a t e d a l g a l assemblages. Some troughs would have c o n t i n u a l l y added to them a flow of ca t i o n s or other chemicals i n order to reach the l e v e l s found i n Jacob's Lake sediment, where diatoms were predominant. In a second t e s t , a sample of the e p i p e l i c community from Jacob's Lake would be r e i n o c u l a t e d i n t o acid-washed, s t e r i l -i z e d l a k e sediment and placed i n membrane-filter chambers ( S c h l i c h t i n g , 1976) suspended immediately above the lake bottom. This would allow only the d i s s o l v e d n u t r i e n t s from the lake water to a f f e c t a l g a l growth. I f r i c h e r n u t r i e n t s of the sediments were c a u s a l , a switch i n species composi-t i o n i n each manipulation would be expected. A l a c k of species change suggests p h y s i c a l f a c t o r s may be more i n f l u e n t i a l . The p a t t e r n of seasonal succession observed over one year was a combin-a t i o n of gradual and abrupt changes i n the community. I t was marked by a 101 greater degree of temporal coexistence than g e n e r a l l y observed f o r lake phytoplankton (Round, 1972; F i g . 17). A l a c k of temporal or l o c a l e x t i n c t i o n has been suggested to be a r e s u l t of environmental heterogeneity (Hutchinson, 1957) and p e r i o d i c disturbance (Paine, 1966). Hence, the seasonal changes i n species composition of t h i s stream are l i k e l y due to f a c t o r s w i t h a r e g u l a r , c y c l i c p a t t e r n (e.g., daylength, temperature, i r r a d i a n c e ) ; whereas abrupt or discontinuous events (e.g., n u t r i e n t p u l s e s , f l o o d s ) give r i s e to l a r g e - s c a l e changes i n the community. This aspect leads i n t o the general problem of heterogeneity and d i v e r s i t y . The g r a d u a l l y v a r y i n g environmental c o n d i t i o n s i n the stream lead to success of a few dominant sp e c i e s , whereas p e r i o d i c d i s a s t e r s (or minor d i s a s t e r s ? ) prevent l o c a l e x t i n c t i o n and r e s u l t i n higher d i v e r s i t y . (H^) A t e s t of these two problems would be considered from the same experimental design. Side channels of the stream could be constructed, a f t e r Warren et a l . (1964), which would allow d i f f e r e n t major manipulations. Through the use of weirs or flow d i v e r s i o n , the current v e l o c i t y could be more or l e s s constant, a l l o w i n g the g r a d u a l l y v a r y i n g f a c t o r s to exert a greater e f f e c t than p e r i o d i c ones. Other channels could be a r t i f i c i a l l y d i s t u r b e d or provided w i t h a d d i t i o n a l s t r u c t u r a l heterogeneity (Reed, 1978). I f H^ were t r u e , the o r d i n a t i o n of species succession i n the flow-c o n t r o l l e d channel would be l e s s e r r a t i c than shown by these p r e l i m i n a r y r e s u l t s ( F i g . 9) or by c o n t r o l s . I f H^ were t r u e , the more p r e d i c t a b l e environment should lead to reduced species d i v e r s i t y . A l s o , there should be greater temporal e x c l u s i o n of s p e c i e s , approaching the s i t u a t i o n f o r lake 102 p h y t o p l a n k t o n . O t h e r i m m e d i a t e s t r e s s e s , s u c h a s n u t r i e n t p u l s e s , c a n b e t e s t e d i n t h e s a m e m a n n e r . T h e s y s t e m s o f e n h a n c e d h e t e r o g e n e i t y ( e . g . , a d i v e r s i t y o f s u b s t r a t e s i z e s ) a r e p r e d i c t e d t o d o t h e o p p o s i t e . I f p r e -d i c t i o n s a r e n o t m e t , t h e p e r t u r b a t i o n c h o s e n m a y b e ( a s a s i n g l e c a u s a l e l e m e n t ) e x c l u d e d f r o m c o n s i d e r a t i o n . F i n a l l y , t h e s e v e r i t y o r f r e q u e n c y o f a n " i n t e r m e d i a t e d i s t u r b a n c e " ( C o n n e l l , 1 9 7 8 ) c a n b e c o n s i d e r e d i n a s t e p - w i s e c o m p a r i s o n w i t h s p e c i e s d i v e r s i t y d i r e c t l y . 103 V I I . LITERATURE CITED A l l e n , T. F. H. and J . F. Koonce. 1973. M u l t i v a r i a t e approaches to a l g a l stratagems and t a c t i c s i n systems a n a l y s i s of phytoplankton. Ecology 54: 1234-1246. American P u b l i c Health A s s o c i a t i o n . 1965. Standard Methods f o r the Examin-a t i o n of Water and Wastewater, I n c l u d i n g Bottom Sediments and Sludges. 12th ed. A.P.H.A., New York. 769 pp. Anderson, T. W. 1958. An I n t r o d u c t i o n to M u l t i v a r i a t e S t a t i s t i c a l A n a l y s i s . John Wiley, New York. 374 pp. A r c h i b a l d , R. E. M. 1972. D i v e r s i t y i n some South A f r i c a n diatom a s s o c i a -t i o n s and i t s r e l a t i o n to water q u a l i t y . Water Res. 6: 1229-1238. Armstrong, J . E. 1957. S u r f i c i a l geology of New Westminster map-area, B r i t i s h Columbia. Geol. Surv. Canada Paper 57-5; map 16-1957. 25 pp. . 1961. S o i l s of the c o a s t a l area of southwest B r i t i s h Columbia. _In R. F. Leggett, Ed. S o i l s i n Canada: G e o l o g i c a l , P e d o l o g i c a l , and Engineering Studies. Roy. Soc. Canada Spec. Publ. 3, Univ. Toronto Press, Toronto, pp. 22-32. B a r t e l l , S. M., T. F. H. A l l e n , and J . F. Koonce. 1978. An assessment of p r i n c i p a l component a n a l y s i s f o r d e s c r i p t i o n of phytoplankton p e r i o d -i c i t y i n Lake Wingra. Phycologia 17: 1-11. Backhaus, D. 1967. Okologische Untersuchungen an den Aufwuchsalgen der obersten Donau und i h r e r Q u e l l f l u s s e . I. Voruntersuchungen. Arch. Hyd r o b i o l . Suppl. 30: 364-399. . 1968. Okologische Untersuchungen an den Aufwuchsalgen der obersten Donau und' i h r e r Q u e l l f l u s s e . I I . Die r a u l i c h e und z e i t l i c h e V e r t e i l u n g der Algen. Arch. Hy d r o b i o l . Suppl. 34: 24-73. Belcher, J . H. and E. M. F. Swale. 1977; Species of T h a l a s s i o s i r a (Diatoms, B a c i l l a r i o p h y c e a e ) i n the plankton of E n g l i s h r i v e r s . Br. Phycol. J . 12: 291-296. Benedict, A. H., K. J . H a l l , and F. A. Koch. 1973. A p r e l i m i n a r y water q u a l i t y survey of the lower Fraser River system. Westwater Research Centre, Univ. B r i t i s h Columbia, Tech. Rep. No. 2. 50 pp. Bishop, J . E. 1973. Limnology of a small Malayan r i v e r Sungai Gombak. Monographiae B i o l o g i a e V o l . 22. W. Junk B. V. P u b l . , The Hague. 485 pp. 104 Blum, J . L. 1956. The ecology of r i v e r algae. Bot. Rev. 21: 291-341. __. 1957. An e c o l o g i c a l study of the algae of the S a l i n e R i v e r , Michigan. H y d r o b i o l o g i a 9: 361-408. B o t t , T. L., J . T. Brock. C. E. Cushings, S. V. Gregory, D. King, and R. C. Petersen. 1978. A comparison of methods f o r measuring primary produc-t i v i t y and community r e s p i r a t i o n i n streams. H y d r o b i o l o g i a 60: 3-12. B o u r r e l l y , P. 1957. Recherches sur l e s Chyrophycees. Morphologie, phylogenie, systematique. Rev. A l g o l . Mem. Hors-Serie 1: 1-412. . 1966. Les Algues d'Eau Douce. Tome I . Les Algues Vertes. N. Boubee et Ci e , P a r i s . 511 pp. . 1970. Les Algues d'Eau Douce. Tome I I I . Les Algues Bleus et Rouges, Les Eugleniens, P e r i d i e n s et Cryptomonadins. N. Boubee et C i e , P a r i s . 512 pp. B r a d f i e l d , G. E. 1977. A n a l y s i s of b u s h f i r e e f f e c t s i n the Dandendong Ranges, V i c t o r i a . Ph.D. Thesis, Botany Department, Monash U n i v e r s i t y . Melbourne, A u s t r a l i a . 152 pp. Braun-Blaquet, J . 1965. Pla n t Sociology: the Study of P l a n t Communities. Hafner, London. 439 pp. Bryan, J . E., C. E. Walker, R. E. Kendel, and M. S. Elso n . 1973. Freshwater aquatic ecology i n northern Yukon T e r r i t o r y . Environmental-Social Committee Northern P i p e l i n e s Rep. 73-21. Information Canada, Ottawa. 64 pp. Cleve-Euler, A. 1951, 1952, 1953a,b, 1955. Die Diatomeen von Schweden und Finnland. K. Svensk. Vedensk. Handl. 2(1): 3-163; 3(3): 1-153; 4(1): 1-158; 4(5): 1-255; 5(4): 1-232. Cochrane, D. G. 1972. A p r e l i m i n a r y f e a s i b i l i t y study of the North A l o u e t t e watershed. B.Sc. Thesis, F a c u l t y of F o r e s t r y , Univ. B r i t i s h Columbia, Vancouver. 51 pp. Co n n e l l , J . H. 1978. D i v e r s i t y i n t r o p i c a l r a i n f o r e s t s and c o r a l r e e f s . Science 199: 1302-1310. Cummins, K. W. 1962. An e v a l u a t i o n of some techniques f o r the c o l l e c t i o n and a n a l y s i s of benthic samples w i t h s p e c i a l emphasis on l o t i c waters. Am. M i d i . Nat. 67: 477-504. Gushing, C. E. 1967. Periphyton p r o d u c t i v i t y and r a d i o n u c l i d e accumulation i n the Columbia R i v e r , Washington, U.S.A. Hyd r o b i o l o g i a 29: 125-139. Dale, M. B. 1975. On o b j e c t i v e s of methods of o r d i n a t i o n . Vegetatio 30: 15-32. 105 Daubenmire, R. F. 1968. P l a n t communities: a Textbook of P l a n t Synecology. Harper and Row, New York. 300 pp. Deskachary, T. V. 1959. Cyanophyta. Indian C o u n c i l A g r i c u l t u r a l Research, New D e l h i . 686 pp. Dickman, M. 1969. Some e f f e c t s of lake renewal on phytoplankton p r o d u c t i v i t y and species composition. Limnol. Oceanogr. 14: 660-666. Douglas, B. 1958. The ecology of the attached diatoms and other algae i n a stony stream. J . E c o l . 46: 295-322. E f f o r d , I . E. 1967. The temporal and s p a t i a l d i f f e r e n c e s i n phytoplankton p r o d u c t i v i t y i n Marion Lake, B r i t i s h Columbia. J . F i s h . Res. Board Can. 24: 2203-2307. . 1969. Energy t r a n s f e r i n Marion Lake, B r i t i s h Columbia: w i t h s p e c i a l reference to f i s h feeding. I n t . Ver. Theor. Angew. Limnol. Verh. 17: 104-108. F a b r i , R. 1977. Vegetation, production p r i m a i r e et c a r a c t e r i s t i q u e s physico-chimiques d'une r i v i e r e de haute Ardenne (Bel g i q u e ) : l a Warche superieufe. L e j e u n i a 87: 1-43. F e l l e r , M. C. 1977. N u t r i e n t movement through Western Hemlock-Western Redcedar ecosystems i n southwestern B r i t i s h Columbia. Ecology 58: 1269-1283. F o t t , B. and M. Novakova. 1969. A monograph of the genus C h l o r e l l a . The freshwater species. In B. F o t t , Ed. Studies i n Phycology. Academia P r e s s , Prague, pp. 10-59. F r e t w e l l , S. D. 1972. Populations i n a Seasonal Environment. P r i n c e t o n Univ. Press. P r i n c e t o n , New Jersey. 217 pp. G e i t l e r , L. 1932. Cyanopyceae. In'L, Rabenhorst, Ed. Kryptogamen-Flora von Deutschland, O s t e r r e i c h , und der Schweiz. V o l . 14. Akad. V e r l a g s . , L e i p z i g . 1196 pp. Golterman, H. L., Ed. 1969. Methods f o r Chemical A n a l y s i s of Fresh Waters. I. B. P. Handbook No. 8, B l a c k w e l l S c i . P u b l . , Oxford. 172 pp. _. 1975. Chemistry. In B. A. Whitton, Ed. Ri v e r Ecology. B l a c k w e l l S c i . P u b l . , Oxford, pp. 39-80. Golubic, S. and E. Kann. 1967. Zur Klarung der taxonomischen Beziehungen zwischen T o l y p o t h r i x d i s t o r t a K u t z i n g und T_. p e n i c i l l a t a Thuret. (Cyanophyta). Schweiz. Z. Hydrol. 29: 145-160. Gower, J . C. 1966. Some dis t a n c e p r o p e r t i e s of l a t e n t root and vector methods used i n m u l t i v a r i a t e a n a l y s i s . Biometrika 53: 325-338. 106 Gruendling, G. K. 1971. Ecology of the e p i p e l i c a l g a l communities i n Marion Lake, B r i t i s h Columbia. J . Phycol. 7: 239-249. Giimtow, R. B. 1955. An i n v e s t i g a t i o n of the periphyton i n a r i f f l e of the West G a l l a t i n R i v e r , Montana. Trans. Am. Microscop. Soc. 74: 278-292. H a l l , K. J . and K. D. Hyatt. 1974. Marion Lake (IBP) - from b a c t e r i a to f i s h . J . F i s h . Res. Board Can. 31: 893-911. Hansmann, E. W. and H. K. Phinney. 1973. E f f e c t s of logging on periphyton i n c o a s t a l streams of Oregon. Ecology 54: 194-199. Haraguchi, K. and H. Kobayasi. 1969. On the d i f f e r e n t i a t i o n of the t h a l l u s of Batrachospermum moniliforme Roth d i r e c t l y from the p r o s t r a t e t h a l l u s of the Chantransia-stage without forming erect p a r t s . B u l l . Jpn. Soc. Phycol. 17: 61-65. Hargrave, B. T. 1970. The e f f e c t of a deposit-feeding amphipod on the metabolism of benthic m i c r o f l o r a . Limnol. Oceanogr. 15: 21-30. Hohn, M. H. and J . Hellerman. 1963. The taxonomy and s t r u c t u r e of diatom populations from three eastern North American r i v e r s , using three sampling methods. Trans. Am. Microscop. Soc. 82: 250-329. Holme, N. A. and A. D. M c l n t y r e , Eds. 1971. Methods f o r the Study of Marine Benthos. I.B.P. Handbook No. 16, B l a c k w e l l S c i . P u b l . , Oxford. 334 pp. Holmes, N. T. H. and B. A. Whitton. 1977. The macrophytes of the R i v e r Tees i n 1975: observed a n d p r e d i c t e d changes. Freshwater B i o l . 7: 43-60. Horn, H. S. 1976. Succession. In R. M. May, Ed. T h e o r e t i c a l Ecology: P r i n c i p l e s and A p p l i c a t i o n s . W. B. Saunders, P h i l a d e l p h i a , pp. 187-204. Hu b e r - P e s t a l o z z i , G. 1941. Das Phytoplankton des Susswassers. I n : A. Theinemann, Ed., Die Binnegewasser. Band 16(2). Chrysophyceen, Farblose F l a g e l l a t e n . Heterokonten. E. Schweizerbart V e r l a g s , S t u t t g a r t . 365 pp. 1942. Das Phytoplankton des Susswassers. In: A. Theinemann, Ed., Die Binnegewasser. Band 16 (2:2). Diatomeen. E. Schweizerbart Verlags, S t u t t g a r t , pp. 367-549. . 1950. Das Phytoplankton des Susswassers. In: A. Theinemann, Ed., Die Binnegewasser. Band 16(3). Cryptophyceen, Chloromonadien, P e r i d i n e e n . E. Schweizerbart V e r l a g s , S t u t t g a r t . 310 pp. . 1955. Das Phytoplankton des Susswassers. I n : A. Theinemann, Ed., Die Binnegewasser. Band 16(4). Euglenophyceen. E. Schweizerbart V e r l a g s , S t u t t g a r t . 1135 pp. 107 Hufford, T. L. and G. B. C o l l i n s . 1976. D i s t r i b u t i o n patterns of diatoms i n Cedar Run. Ohio J . S c i . 76: 172-184. Hustedt, F. 1927. Dies K i e s e l a l g e n Deutschlands, O s t e r r e i c h s und der Schweiz. I n : L. Rabenhorst, Ed., Kryptogamen-Flora von Deutschland, O s t e r r e i c h , und der Schwiez. Band V I I , T e i l 1(1-5). Akad. V e r l a g s , L e i p z i g . . 1930a. B a c i l l a r i o p h y t a (Diatomeae). In: A. Pascher, Ed., Die Susswasser F l o r a M i t t l e e u r o p a s . G. F i s c h e r , Jena Heft 10: I - V I I . 466 pp. • 1930b. Die K i e s e l a l g e n Deutschlands, O s t e r r e i c h s , und der Schweiz. _In: L. Rabenhorst, Ed., Kryptogamen- F l o r a von Deutschland, O s t e r r e i c h , und der Schweiz. Band V I I , T e i l 2(1-6). Akad. V e r l a g s , L e i p z i g . . 1937-1938. Systematische und Okologische Untersuchungen liber d i e Diatomeenflora von Java, B a l i , und Sumatra. Arch. H y d r o b i o l . Suppl. 15: 131-177; 16: 187-296; 16: 393-506. . 1961. Die K i e s e l a l g e n Deutschlands, O s t e r r e i c h s , und der Schweiz. J_n: L. Rabenhorst, Ed., Kryptogamen-Flora von Deutschland, O s t e r r e i c h , und der Schweiz. Band V I I , T e i l 3(1). Akad. V e r l a g s , L e i p z i g . . 1964. Die K i e s e l a l g e n Deutschlands, O s t e r r e i c h s , und der Schweiz. In: L. Rabenhorst, Ed., Kryptogamen-Flora von Deutschland, O s t e r r e i c h , und der Schweiz. Band V I I , T e i l . 3(3). Akad. V e r l a g s , L e i p z i g . Huston, M. 1979. A general hypothesis of species d i v e r s i t y . Am. Nat. 113: 81-101. Hutchinson, G. E. 1953. The concept of p a t t e r n i n ecology. Proc. Acad. Nat. S c i . P h i l a d e l p h i a 105: 1-12. . 1957. Concluding remarks. Cold Spring Harbor Symp. Quant. B i o l . 22: 415-427. . 1961. The paradox of the plankton. Am. Nat. 95: 137-146. . 1967. A T r e a t i s e on Limnology. V o l . I I . I n t r o d u c t i o n to Lake B i o l o g y and the Limnoplankton. John Wiley, New York. 1115 pp. Hynes, H. B. N. 1970. The Ecology of Running Waters. U n i v e r s i t y of Toronto P r e s s , Toronto. 555 pp. l i l i e s , J . 1961. Versuch e i n e r allgemein biozonotischen Gleiderung der Fliessgewasser. I n t . Rev. Gesamten Hyd r o b i o l . 46: 205-213. 108 l i l i e s , J . and L. Botosaneanu. 1963. Problems et m£thodes de l a c l a s s i f i -c a t i o n et l a zonation £cologique des eaux courantes, considerdes surtout du poi n t de vue f a u n i s t i q u e . I n t . Ver. Theor. Angew. Limnol. M i t t . 12: 1-57. I s r a e l s o n , G. 1942. The freshwater F l o r i d e a e of Sweden. Studies on the taxonomy, ecology, and d i s t r i b u t i o n . Symb. Bot. Ups. 6(1): 1-134. . 1949. On some attached Zygnematales and t h e i r s i g n i f i c a n c e i n c l a s s i f y i n g streams. Bot. Not. 1949: 313-358. Kann, E. 1972/1973. Zur Systematik und Okologie der Gattaung Chamaesiphon (Cyanophyceae). 1. S y s t e m a t i c ; 2. Okologie. Arch. Hy d r o b i o l . Suppl. 41: 117-171; Arch. Hy d r o b i o l . Suppl. 41: 243-282. . 1978. Systematik und Okologie der Algen B s t e r r e i c h i s c h e s Bergbache. Arch. H y d r o b i o l . Suppl. 53: 405-643. and J . Komarek. 1970. Sytematisch-bkologische Bemerkungen zu den Arten des Formenkreises Phormidium autumnale. Schweiz. Z. Hydrol. 32: 495-518. Kawecka, B. 1971. Zonal d i s t r i b u t i o n of alga communities i n streams of the P o l i s h High T a t r a Mountains. Acta Hydrobiol. 13: 393-414. K l i n k a , K. 1976. Ecosystem u n i t s , t h e i r c l a s s i f i c a t i o n , i n t e r p r e t a t i o n and mapping i n the U n i v e r s i t y of B r i t i s h Columbia Research Forest. Ph.D. Thesis, F a c u l t y of F o r e s t r y , Univ. B r i t i s h Columbia, Vancouver. 622 pp. Komarek, J . 1972. Temperatur.bedingte morphologische V a r i a b i l i t a t b e i d r e i Phormidium-Arten (Cyanophyceae) i n Ku l t e r e n . P r e s i l i a 44: 293-307. ; and E. Kann. 1973. Zur Taxonomie und Okologie der Gattung Homeothrix. Arch. P r o t i s t e n k . 115: 173-233. Koppen, J . D. 1975. A morphological and taxonomie c o n s i d e r a t i o n of T a b e l l a r i a ( B a c i l l a r i o p h y c e a e ) from the north c e n t r a l U.S. J . Phycol. 11: 236-244. Koppen, W. 1936. Das geographische system der Klimate. I n ; W. Koppen and G. Geiger, Eds. Handbuch der K l i m a t o l o g i e . V o l . 1(C), Gebruder Borntrager, B e r l i n . K r a j i n a , V. J . 1965. B i o g e o c l i m a t i c zones and biogeocoenoses of B r i t i s h Columbia. Ecology of Western North America 1: 1-17. . 1969. Ecology of f o r e s t t r e e s . i n B r i t i s h Columbia. Ecology of Western North America 2: 1-146. K r i s t i a n s e n , J . 1975. Chrysophyceae from A l b e r t a and B r i t i s h Columbia. Syesis 8: 97-108. 109 Lange-Bertalot, H. 1976. Eine r e v i s i o n zur taxonomie der N i t z s c h i a e  l a n c e o l a t a e Grunow. Die K l a s s i c h e n b i s 1930 beschriebenen Susswasserarten Europas. Nova Hedwigia 38: 253-307. L e c l e r c q , L. 1977. Vegetation et c h a r a c t e r i s t i q u e s physico-chimiques de deux r i v i e r e s de haute Ardenne (Belgique): l a H o l l e et l a Roer superieure. L e j e u n i a 88: 1-42. Levandowsky, M. 1972. An o r d i n a t i o n of phytoplankton populations i n ponds of v a r y i n g s a l i n i t y and temperature. Ecology 53: 398-407. L e v i n , S. A. and R. T, Paine. 1974. - Disturbance, patch formation, and community s t r u c t u r e . Proc. Nat. Acad. S c i . U.S.A. 71: 2744-2747. L i n d , 0..T. 1974. Handbook of Common Methods i n Limnology. C. V. Mosby, St. L o u i s . 154 pp. Lowe, R. L. 1974. Environmental requirements and p o l l u t i o n t o l e r a n c e of freshwater diatoms. U. S. Environmental Prot. Agency Publ. EPA-670/ 4-74-005. C i n c i n n a t i , Ohio. 334pp. MacArthur, R. H. 1970. Species packing and competitive e q u i l i b r i u m f o r many species. Theor. Popul. B i o l . 1: 1-11. Mack, B. 1953. Zur Algen und P i l z f l o r a des Liesingsbaches. Wetter Leben 2: 136-149. Margelef, R. 1960. Ideas f o r a s y n t h e t i c approach to the ecology of running waters. I n t . Rev. Gesamten Hyd r o b i o l . 45: 133-153. Marker, A. F. H. 1976. The benthic algae of some streams i n southern England. I . Biomass of the e p i l i t h o n i n some small streams. J . E c o l . 64: 343-358. Mathewes, R. W. 1973. A p a l y n o l o g i c a l study of p o s t g l a c i a l v e g e t a t i o n changes i n the U n i v e r s i t y Research F o r e s t , southwestern B r i t i s h Columbia. Can. J . Bot. 51: 2085-2103. May, R. M. 1976. Patterns i n m u l t i - s p e c i e s communities. In R. M. May, Ed., T h e o r e t i c a l Ecology: P r i n c i p l e s and A p p l i c a t i o n s . W. B. Saunders, P h i l a d e l p h i a , pp. 142-162. McCart, P., P. T s u i , W. Grant, and R. Green. 1977. B a s e l i n e s t u d i e s of aquatic environments i n the Athabasca R i v e r near Lease 17. Environmental Res. Monogr., Syncrude Canada, L t d . , Edmonton. 205 pp. M c l n t i r e , C. D. 1968. S t r u c t u r a l c h a r a c t e r i s t i c s of benthic a l g a l communi-t i e s i n l a b o r a t o r y streams. Ecology 49: 520-537. . 1973. Diatom a s s o c i a t i o n s i n Yaquina estuary, Oregon: a m u l t i v a r i a t e a n a l y s i s . J . Phycol. 9: 254-259. no McKee, B. 1972. Cascadia: the G l a c i a l E v o l u t i o n of the P a c i f i c Northwest. McGraw-Hill, New York. 394 pp. Moore, J . W. 1977a. Seasonal succession of algae i n a eutroph i c stream i n southern England. H y d r o b i o l o g i a 53: 181-192. . 1977b. Seasonal succession of algae i n r i v e r s . 2. Examples from Highland Water, a small woodland stream. Arch. H y d r o b i o l . 80: 160-171. . 1977c. Ecology of algae i n a s u b a r c t i c stream. Can. J . Bot. 55: 1838-1847. Mo r i , M. 1975. Studies on the genus Batrachospermum i n Japan. Jpn. J . Bot. 20: 461-485. Mueller-Dombois, D. 1965. I n i t i a l stages of secondary succession i n the Coastal D o u g l a s - f i r and Western Hemlock Zones. Ecology of Western North America 1: 38-41. and H. E l l e n b e r g . 1974. Aims and Methods of Vegetation Ecology. John Wiley, New York. 574 pp. M i i l l e r , H. 1972. Wachstum und Phosphatbedarf von N i t z s c h i a a c t i n a s t r o i d e s (Lemm.) V. Goor i n S t a t i s c h e n und homokontinuierlicher K u l t u r unter P h o s p h a t l i m i t i e r u n g . Arch. H y d r o b i o l . Suppl. 38: 399-484. Mundie, J . H. 1974. Opti m i z a t i o n of the salmonid nursery stream. J . F i s h . Res. Board Can. 31: 1827-1837. Munteanu, N. and E. J . Maly. 1978. P r e f e r e n t i a l d i s t r i b u t i o n of diatom species c o l o n i z i n g submersed g l a s s s l i d e s . Mimeograph A b s t r a c t , 41st Meet. Am. Soc. Limnol. Oceanogr., V i c t o r i a . Northcote, T. G. and P. A. L a r k i n . 1963. Western Canada. In D. G. Frey, Ed., Limnology i n North America. Univ. Wisconsin Press, Madison, pp. 451-485. O r l o c i , L. 1965. The C o a s t a l Western Hemlock Zone on the south-western B r i t i s h Columbia mainland. Ecology of Western North America 1: 18-34. . 1966. Geometric models i n ecology. I. The theory and a p p l i c a -t i o n of some o r d i n a t i o n methods. J . E c o l . 54: 193-215. . 1975. M u l t i v a r i a t e Methods i n Vegetation Research. W. Junk B. V., The Hague. 276 pp. Paine, R. T. 1966. Food web complexity and species d i v e r s i t y . Am. Nat. 100: 65-75. I l l Parke, M;.,. J . W. G. Lund, and I. Manton. 1962. Observations on the b i o l o g y and f i n e s t r u c t u r e of the type species of Chrysochromulina (C. parva Lackey) i n the E n g l i s h Lake D i s t r i c t . Arch. M i k r o b i o l . 42: 333-352. Parker, B. C , G. L. Samsel and G. W. P r e s c o t t . 1973. Comparison of mic r o h a b i t a t s of microscopic subalpine stream algae. Am. M i d i . Nat. 90: 143-153. Pasicnyk, V. 1976. A e s t h e t i c and engineering a n a l y s i s of A l o u e t t e R i v e r c r o s s i n g . M.For., F a c u l t y of F o r e s t r y , Univ. B r i t i s h Columbia, Vancouver. 130 pp. P a t r i c k , R. 1967. The e f f e c t of i n v a s i o n r a t e , species p o o l , and s i z e of area on the s t r u c t u r e of the diatom community. Proc. Nat. Acad. S c i . U.S.A. 58: 1335-1342. . 1970. Benthic stream communities. A d i s c u s s i o n of the f a c t o r s that a f f e c t t h e i r s t r u c t u r e and how they f u n c t i o n . Am. S c i . 58: 546-549. . 1975. Stream communities. In' M. L. Cody and J . M. Diamonds, Eds., Ecology and E v o l u t i o n of Communities. Harvard Univ. Press, Cambridge, pp. 445-459. and C. W. Reimer. 1966. The diatoms of the United S t a t e s , e x c l u s i v e of Alaska and Hawaii. V o l . I . Acad. Nat. S c i . P h i l a d e l p h i a , Monograph No. 13. 688 pp. . 1975. The diatoms of the United S t a t e s , e x c l u s i v e of Alaska and Hawaii. V o l . I I , Part 1. Acad. Nat. S c i . P h i l a d e l p h i a , Monograph No. 13. 213 pp. P a t r i c k , R., M. H. Hohn, and J . H. Wallace. 1954. A new method f o r deter-mining the p a t t e r n of the diatom f l o r a . Not. Nat. Acad. Nat. S c i . P h i l a d e l p h i a 259: 1-12. P a t r i c k , R., B. Crum, and J . Coles. 1969. Temperature and manganese as determining f a c t o r s i n the presence of diatom or blue-green a l g a l f l o r a s i n streams. Proc. Nat. Acad. S c i . U.S.A. 64: 472-478. P r e s c o t t , G. W. 1962. Algae of the Western Great Lakes Area. rev. ed., Wm. C. Brown, Dubuque, Iowa. 977 pp. P r i n t z , H. 1964. Die Chaetophoralen der BinnengewSsser (Eine systematische i j b e r s i c h t ) . H y d r o b i o l o g i a 23(1-3) : 1-376. Randhawa, M. S. 1959. Zygnemataceae. Academic Press, New York, and Indian C o u n c i l A g r i c u l t u r a l Research, New D e l h i . 478 pp. Reed, C. 1978. Species d i v e r s i t y i n aquatic microecosystems. Ecology 59: 481-488. R i c k e r , W.E. 1934. An e c o l o g i c a l c l a s s i f i c a t i o n of c e r t a i n Ontario streams. Univ. Toronto Stud. B i o l . Ser. 37: 1-114. 112 S i l v a , P. €. 1962. C l a s s i f i c a t i o n of algae. In R. A. Lewin, Ed., Physiology and Biochemistry of. Algae. Academic P r e s s , London, pp. 827-837. S i v e r , P. A. 1977. Comparison of attached diatom communities on n a t u r a l and a r t i f i c i a l s u b s t r a t e s . J . Phycol. 13: 402-406. Skuja, H. 1935. Untersuchungen iiber d i e Rhpdophyceen des Siisswassers. Beih. Botan. Centrabl. 52: 173-192. Sladeckova, A. 1962. L i m n o l o g i c a l i n v e s t i g a t i o n methods f o r the periphyton ("aufwuchs") community. Bot. Rev. 28: 286-350. S^rensen, T. 1948. A method of e s t a b l i s h i n g groups of equal amplitude i n p l a n t s o c i o l o g y based on s i m i l a r i t y of species content. K. Dansk. Vidensk. Selsk. B i o l . Skr. 5(4): 1-34. Slobodkin, L. B. and H. L. Sanders. 1969. On the c o n t r i b u t i o n of environ-mental p r e d i c t a b i l i t y to species d i v e r s i t y . Brookhaven Symp. B i o l . 22: 82-95. Smith, G. M. Phytoplankton of the i n l a n d waters of Wisconsin. P a r t I I . Wise. Geol. Nat. H i s t . Surv. B u l l . 57(2): 1-227. Squires, L. E., S. R. Rushforth, and C. J . Endsley. 1973. An e c o l o g i c a l survey of the algae of Huntington Canyon, Utah. Brigham Young Univ. S c i . B u l l . B i o l . Ser. 18(2): 1-87. S t a i n t o n , M. P., M. J . C a p e l , and F. A. J . Armstrong. 1974. The chemical a n a l y s i s of f r e s h water. Can. Dept. Environm., Freshwater I n s t . Misc. Spec. Publ. 25. 120 pp. S t a n i e r , R. Y., W. R. Sistrom, T. A. Hansen, B. A. Whitton, R. W. Casteholz, N. P f i e n n i g , V. N. Gorlenko, E. N. K o n d r a t i e r a , K. E. E i m h j e l l e n , R. Whittenbury, R. L. Gherna, and H. G. Trupper. 1978. Proposal to place the nomenclature of the Cyanobacteria (Blue-green algae) under the r u l e s of the I n t e r n a t i o n a l Code of Nomenclature of B a c t e r i a . I n t . J . Syst. B a c t e r i o l . 28: 335-336. S t e i n , J . R. 1975. Freshwater algae of B r i t i s h Columbia: the lower Fraser V a l l e y . Syesis 8: 119-184. and J . F. Gerrath. 1968. Freshwater algae of B r i t i s h Columbia: desmids of bog lakes i n Coast Mountain area. Syesis 1: 187-197. and C. A. Borden. 1979. C h e c k l i s t of freshwater algae of B r i t i s h Columbia. Syesis ( i n p r e s s ) . Stockner, J . G. and K. R. S. Shortreed. 1976. Autotrophic production i n Carnation Creek, a c o a s t a l r a i n f o r e s t stream on Vancouver I s l a n d , B r i t i s h Columbia. J . F i s h . Res. Board Can. 33: 1553-1563. 113 Stockner, J . G. and K. R. S. Shortreed. 1978. Enhancement of autotrophic production by n u t r i e n t a d d i t i o n i n a c o a s t a l r a i n f o r e s t stream on Vancouver I s l a n d . J . F i s h . Res. Board Can. 35: 28-34. S t r a h l e r , A. N. 1964. Q u a n t i t a t i v e geomorphology of drainage basins and channel networks. _In V. T. Chow, Ed., Handbook of A p p l i e d Hydrology. McGraw-Hill, New York, S e c t i o n 4-11. S t r i c k l a n d , J . D. H. and T. R. Parsons. 1972.. A p r a c t i c a l handbook of seawater a n a l y s i s . F i s h . Res. Board Can. B u l l . 167. 310 pp. Technicon I n d u s t r i a l Systems. 1971a, b, c, d, 1973. Ammonia i n sea water. Industr. Method AAII, no. 154-71W. 2 pp.; Chl o r i d e i n water and waste water. Industr. Method AAII, no. 99-70W, 2 pp.; Phosphate (ortho) i n water and waste water. Industr. Method AAII, no. 155-71W, 2 pp.; Sulphate i n water and waste water. Industr. Method AAII, no. 118-71W, 2 pp.; S i l i c a t e s i n water and.waste water. Industr. Method AAII, no. 105-71W. 2 pp. Te t t , P., C. Gallegos, M. G. K e l l e y , G. M. Hornberger, and B. J . Crosby. 1978. R e l a t i o n s h i p s among s u b s t r a t e , flow, and benthic m i c r o a l g a l pigment d e n s i t y i n the Mechums R i v e r , V i r g i n i a . Limnol. Oceanogr. 23: 785-797. Tippet, R. 1970. A r t i f i c i a l surfaces as a method of studying populations of benthic micro-algae i n f r e s h water. Br. Phycol. J . 5: 187-199. Titman, D. 1976. E c o l o g i c a l competition between algae: experimental con-f i r m a t i o n of resource-based competition theory. Science 192: 463-465. Transeau, E. N. 1951. The Zygnemataceae. The Ohio State Univ. P r e s s , Columbus. 244 pp. T r i s k a , F. J . and J . R. S e d e l l . 1976. Decomposition of four species of l e a f l i t t e r i n response to n i t r a t e manipulation. Ecology 57: 783-793. VanLandingham, S. L. 1969-1975. Catalogue of the f o s s i l and recent genera and species of diatoms and t h e i r synonyms. P a r t s I-V. J . Cramer, Lehre. 2963 pp. Vollenweider, R. A. 1969. A Manual on Methods f o r Measuring Primary Production i n Aquatic Environments. I.B.P. Handbook No. 12. B l a c k w e l l S c i . P u b l . , Oxford. 213 pp. W a l l , M. K., G. K. Gruendling, and.D. W. B l i n n . 1972. Observations on the n u t r i e n t composition of a freshwater l a k e ecosystem. Arch. H y d r o b i o l . 69: 452-464. Ward, J . H. 1963. H i e r a r c h i c a l grouping to optimize an o b j e c t i v e f u n c t i o n . J . Am. S t a t . Assoc. 58: 236-244. 114 Weber, C. I . and R. L. Raschke.. 1970. Use of a f l o a t i n g periphyton sampler f o r p o l l u t i o n s u r v e i l l a n c e . A n a l y t i c a l Qual. Contr. Lab. Rep. No. 20, Fed. Water P o l l u t . Contr. Admin., C i n c i n n a t i . 22 pp. West, W. and G. S. West. 1904, 1905, 1908, 1912. A monograph of the B r i t i s h Desmidiaceae. I-IV., Ray S o c i e t y , London. Vo l s . 82, 84, 88, 92. West, W., G. S. West, and N. Ca r t e r . 1923. A monograph of the B r i t i s h Desmidiaceae. V. Ray S o c i e t y , London. V o l . 108. Wetzel, R. G. 1975. Limnology. W. B. Saunders, P h i l a d e l p h i a . 743 pp. Whitford, L. A. and G. J . Schumacher. 1969. A manual of the freshwater algae i n North C a r o l i n a . North C a r o l i n a A g r i c . Expt. Sta. Tech. B u l l . No. 188. 313 pp. Whittaker, R. H. 1969. E v o l u t i o n of d i v e r s i t y i n p l a n t communities. Brookhaven Symp. B i o l . 22: 178-196. . 1970. Communities and Ecosystems. 2nd e d i t i o n . MacMillan, New York. 385 pp. Whitton, B. A., Ed. 1975. River Ecology. B l a c k w e l l S c i . P u b l . , Oxford. 725 pp. Wilhm, J . , J . Cooper, and H. Namminga. 1977. Species c o m p o s i t i o n , d i v e r s i t y , biomass, and c h l o r o p h y l l of periphyton i n Greasy Creek, Red Rock Creek and the Arkansas R i v e r , Oklahoma. Hy d r o b i o l o g i a 57: 17-23. 1 1 5 Appendix A. Abundance of a l l a l g a l taxa at S t a t i o n 1 f o r 17 sampling dates, where abundance values range from 0 - 1 (see Table 1 f o r species codes). D A T E ( D A Y / M O N T H / Y E A R ) S P E C I E S 0 7 0 6 7 7 2 1 U 6 7 7 0 5 0 7 7 7 1 9 0 7 7 7 0 2 0 8 7 7 1 6 0 8 7 7 0 6 0 9 7 7 2 7 0 9 7 7 0 9 1 0 7 7 2 7 0 1 7 8 0 3 0 3 7 8 3 1 0 3 7 8 1 7 0 4 7 8 0 4 0 5 7 8 2 6 0 5 7 8 0 8 0 6 7 8 2 9 0 6 7 8 C C O 0 1 N I C 0 1 GOCO 1 N P D 0 1 XENO 1_ C L S 0 1 CHrtO 1 C H N 0 2 C H H 0 3 C H M 0 4 _ C H M 0 5 C H B 0 6 O S C 0 1 O S C 0 2 O S C 0 3 _ PH BO 1 P H R 0 2 L Y G 0 1 L Y G 0 3 L Y G 0 4 _ L Y G 0 5 L Y G 0 6 C S P 0 1 A N B 0 1 E » C 0 1 _ C A L 0 1 C A L 0 2 B V U 0 1 H P L 0 1 T X P O 1 _ S T G 0 1 C D Y 0 1 EOD01 T T R 0 1 T T B 0 2_ A ECO 1 S H C 0 1 C O V 0 1 C O V 0 2 G O L 0 1 _ O S T 0 1 A K D 0 1 C B A 0 1 C B A 0 2 S C D 0 1 _ C H L 0 1 P D I 0 1 U K L 0 1 U K L 0 3 MCPO 1_ C E T 0 1 S G C 0 1 DPBO 1 O E D 0 1 O E D 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 2 0 . U 0 0 4 0 . 0 0 2 7 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 0 9 0 . 0 0 0 1 0, 0 . 0 0 2 6 0. 0 . 0 0 2 6 0. 0 . 0 0 0 8 0, 0 . 0 0 0 6 0 , 0 0 0 4 0 . 0 0 6 3 0 . 0 0 0 8 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 2 5 0 . 0 0 1 6 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 4 0 . 0 0 0 2 0 0 0 1 0 . 0 0 0 2 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 6 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 3 7 0 . 0 0 2 0 0 . 0 1 6 5 0 . 0 0 5 4 0 . 0 1 5 8 0 . 0 2 7 8 0 . 0 0 3 8 0 0 0 6 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 5 0 . 0 0 2 0 0 . 0 0 1 9 0 . 0 0 3 2 0 . 0 0 1 9 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 1 9 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 1 9 0 . 0 0 4 4 0 . 0 0 3 8 0 . 0 0 1 6 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 . 0 0 0 3 0 . 0 . 0 . 0 0 0 7 0 . 0 0 0 6 0 . 0 . 0 0 0 1 0 0 0 2 0 . 0 0 0 1 0 0 0 5 0 . 0 0 0 6 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 1 0 0 0 4 0 0 0 1 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 1 1 3 9 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 8 0 . 2 7 8 0 0 . 0 . 0 0 0 5 0 . 1 7 7 9 0 . 0 0 0 8 0 . 2 7 5 4 0 . 5 1 6 9 0 . 0 0 1 0 0 . 0 0 1 5 0 . 0 . 0 0 3 0 0 . 0 0 0 7 0 . 0 0 0 9 0 . 0 0 0 6 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 5 0 0 4 0 . 5 0 13 0 . 0 1 4 4 0 . 0 0 6 2 0 0 0 8 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 7 0 0 0 6 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 2 2 0 . 0 0 0 5 0 . 0 0 9 7 0 . 0 0 4 4 0 . 0 0 6 9 0 . 3 3 5 4 0 . 3 6 8 5 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 3 3 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 9 6 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 1 3 0 . 0 0 0 6 0 . 0 0 0 7 0 . 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 10 0 . 0 0 0 4 0 . 0 0 0 4 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 8 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 8 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 7 0 . 0 0 5 5 0 . 0 0 0 3 0 . 0 0 2 0 0 . 0 0 1 7 0 . 0 0 1 7 0 . 0 2 2 9 0 . 0 0 7 0 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 . 0 0 0 1 0 . 0 0 0 1 0 0 0 1 0 . 0 0 0 5 0 . 0 0 2 2 0 . 0 0 8 0 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 1 3 0 . 0 0 0 6 0 . 0 0 0 6 0 . 0 1 3 8 0 . 0 9 1 0 0 . 0 0 0 6 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 2 8 0 . 0 0 0 6 0 . 1 4 3 2 0 . 0 1 0 8 0 . 3 3 3 5 0 . 1 2 6 8 0 . 1 7 8 7 0 . 0 2 4 7 0 . 0 2 3 7 0 . 0 0 3 5 0 . 0 1 3 8 0 . 2 7 3 9 0 . 2 6 6 0 0 . 0 9 4 7 0 . 0 1 15 0 . 0 9 4 7 0 . 2 0 0 1 0 . 2 8 4 1 0 . 2 0 0 0 0 . 1 4 3 2 0 . 1 6 6 7 0 . 1 6 7 0 0 . 2 5 0 2 0 . 0 8 S S 0 . 1 6 8 4 0 . 1 4 3 0 0 . 0 1 8 4 0 . 0 0 0 3 0 . 0 0 0 9 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 2 0 . 9 0 3 2 0 . 0 2 4 2 0 . 1 8 6 7 0 . 1 0 1 5 0 . 4 2 1 0 0 . 3 6 10 0 . 0 . 6 3 8 2 0 . 1 2 0 2 0 . 0 2 0 4 0 . 1 2 3 2 0 . 0 1 3 5 0 . 0 . 0 0 2 1 0 . 0 0 1 2 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 1 4 3 9 7 0 . 2 3 3 1 0 . 0 2 1 2 0 . 0 0 0 8 0 . 0 0 0 8 0 . 0 0 5 5 0 . 0 1 1 1 0 . 0 6 1 9 0 . 3 1 9 6 0 . 1 8 1 0 0 . 2 0 4 2 0 . 2 0 0 5 0 1 1 3 0 . 1 3 3 1 0 . 5 3 4 4 0 . 4 111 0 . 7 2 2 1 0 . 0 0 7 0 0 . 3 8 9 6 0 . 4 3 4 3 0 . 1 0 4 8 0 . 2 5 3 1 0 . 0 0 7 5 0 . 0 0 3 7 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 1 7 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 5 1 7 0 0 . 2 4 4 7 0 . 2 8 4 4 0 . 2 0 2 2 0 . 0 0 1 6 0 . 0 0 0 4 0 . 0 0 1 7 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 2 0 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 7 _ _ DATE ( D A Y / M O N T H / Y E A R ) S P E C I E S 0 7 0 6 7 7 2 1 0 6 7 7 0 5 0 7 7 7 1 9 0 7 7 7 0 2 0 3 7 7 1 6 0 8 7 7 0 6 0 9 7 7 2 7 0 9 7 7 0 9 1 0 7 7 2 7 0 1 7 8 0 3 0 3 7 8 3 1 0 3 7 8 1 7 0 4 7 8 0 4 0 5 7 8 2 6 0 5 7 8 0 8 0 5 7 8 2 9 0 6 7 8 B U L 0 1 Z Y G 0 1 Z Y G 0 2 S P I O l MOU01_ DSMO1~ D S M 0 2 D S M 0 3 D S M 0 4 D S M 0 5 D S M 0 6 D S M 0 7 D S M 0 8 D S M 0 9 D S H 1 0 DSM1 1 D S M 1 2 D S M 1 3 D S H 1 4 D S M 1 5 DSH16" D S M 1 8 D S M 1 9 O S H 2 0 D S M 2 1 D S M 2 2 " O S H 2 3 D S M 2 4 D S M 2 5 D S M 2 6 _ D S M 2 7 D S M 2 8 D S H 2 9 D S H 3 0 D S M 3 1 _ D S « 3 2 D S N 3 4 D S M 3 5 D S M 3 6 D S M 3 7 _ D S M 3 8 D S M 3 9 D S N 4 0 DSM4 1 D S M 4 2 _ D S H 4 3 D S M 4 4 D S M 4 5 D S M 4 6 D S M 4 7 D S M 4 8 " D S M 4 9 D s n 5 o D S M 5 1 D S M 5 2 0 . 5 1 5 7 0 . 6 5 2 2 0 . 8 4 9 3 0 . 6 7 9 8 0 . 0 1 4 0 0 . 0 2 2 2 0 . 0 . 0 0 0 1 0 . 0 0 0 1 0 . 1 0 2 9 0 0 0 0 6 0 , 2 7 8 5 . 0 0 6 7 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 5 4 7 8 0 . 1 9 1 4 0 . 2 2 2 9 0 . 0 . 0 0 5 5 0 . 5 2 3 0 0 . 1 3 5 3 0 . 1 3 9 5 0 . 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 . 0 0 0 2 0 . 0 0 0 2 0 0 5 3 0 . 2 0 4 2 0 . 1 4 3 2 0 . 6 6 7 0 0 . 5 0 1 9 0 . 6 4 4 6 0 . 6 5 9 3 0 . 6 8 9 6 0 . 8 5 8 6 0 . 8 3 3 5 0 0 5 3 0 0 0 5 0 . 0 0 2 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 9 4 0 . 0 0 3 9 0 . 2 0 0 0 0 . 0 0 0 3 0 . 0 0 0 7 0 . 0 0 2 0 0 . 0 0 1 8 0 . 0 2 0 0 0 . 0 0 2 1 0 . 1 8 9 9 0 . 0 . 0 0 4 0 0 . 0 2 6 5 0 . 0 8 8 1 0 0 4 7 0 . 0 1 2 9 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 1 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 . 0 0 0 4 0 . 0 0 2 0 0 0 3 2 i 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 5 0 . 0 0 0 6 0 . 0 0 0 7 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 ' 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 7 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 ! 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 4 I 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 ) 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 > 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 9 0 0 2 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 2 I 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 1 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 ) 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 2 -a fD 0-Cu H-X > o o 0 r t H-0 C fD & . DATE ( D A Y / M O N T H / Y E A R ) S P E C I E S 0 7 0 6 7 7 2 1 0 6 7 7 0 5 0 7 7 7 1 9 0 7 7 7 0 2 0 8 7 7 1 6 0 8 7 7 0 6 0 9 7 7 2 7 0 9 7 7 0 9 1 0 7 7 2 7 0 1 7 8 0 3 0 3 7 8 3 1 0 3 7 8 1 7 0 4 7 8 0 4 0 5 7 8 2 6 0 5 7 8 0 8 0 6 7 8 2 9 0 6 7 8 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 DSN 5 3 DSM 54 D S M 5 5 DSN 5 6 D S M 5 7 E G L 0 1 C I P 0 1 OCBO 1 HALO 1 H A L 0 2 S B M 0 1 C X P O 1 DN SO 1 D N B 0 2 C H Y O 1 . S D C 0 1 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 1 C Y C 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 C Y C 0 2 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 1 B E L 0 1 0 . 0 0 0 6 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 H E L 0 2 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 2  C O S 0 1 0 . 0 0 0 2 C O S 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 2 T H A 0 1 0 . 0 0 0 1 T A B 0 1 0 . 0 1 2 7 0 . 0 1 2 4 0 . 0 1 2 2 0 . 0 0 7 0 0 . 0 0 8 5 0 . 0 1 1 5 0 . 0 1 0 0 0 . 0 2 1 2 0 . 0 1 0 0 0 . 0 0 8 8 0 . 0 2 9 3 0 . 0 0 8 5 0 . 0 1 0 0 0 . 0 1 0 0 0 . 0 1 0 0 0 . 0 1 5 1 0 . 0 0 8 5 T A B 0 2 0 . 0 0 0 1 0 . 0 0 0 5 0 . 0 0 0 1 , . — D A T 0 1 0 . 0 0 0 6 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 6 0 . 0 0 0 5 0 . 0 0 0 9 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 0 8 0 . 0 0 0 7 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 8 0 . 0 0 0 8 0 . 0 0 0 4 D A T 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 H D N 0 1 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 T C Y O 1 F G L O 1 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2  F G L 0 2 0 . Q 0 0 2 F G L 0 3 F G L 0 4 F G L 0 5 A S T 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 3 , . . S Y N O l 0 . 0 0 2 8 0 . 0 0 5 0 0 . 0 0 3 2 0 . 0 0 4 0 0 . 0 0 2 4 0 . 0 0 3 2 0 . 0 0 2 7 0 . 0 0 5 5 0 . 0 0 6 4 0 . 0 0 6 2 0 . 0 0 5 5 0 . 0 0 2 3 0 . 0 0 6 5 0 . 0 0 6 6 0 . 0 0 8 5 0 . 0 0 6 0 0 . 0 0 1 0 S Y N 0 2 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 4 0 . 0 0 3 5 0 . 0 0 0 8 0 . 0 0 0 7 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 0 4 S Y N 0 3 0 . 0 0 0 5 0 . 0 0 0 1 0 . 0 0 0 2 S Y N 0 4 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 S Y N 0 5 , , , S Y N 0 6 0 . 0 0 1 0 0 . 0 0 1 3 0 . 0 0 2 4 O . 0 0 O 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 S Y N 07 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 6 0 . 0 0 0 3 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 3 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 2 0 . 0 0 0 7 0 . 0 0 2 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 1 0 . 0 0 0 2 P E R 0 1 0 . 0 0 0 1 H A N O I 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 9 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 6 H A N 0 2 0 . 0 0 0 1 0 . 0 0 0 2  S H B 0 1 B O N 0 1 0 . 0 0 3 7 0 . 0 1 2 4 0 . 0 0 1 7 0 . 0 0 2 5 0 . 0 0 4 0 0 . 0 0 3 2 0 . 0 0 4 6 0 . 0 0 3 2 0 . 0 0 2 8 0 . 0 0 3 3 0 . 0 1 4 4 0 . 0 0 9 7 0 . 0 0 0 7 0 . 0 0 2 1 0 . 0 0 3 8 0 . 0 0 2 1 0 . 0 1 1 4 E U N 0 2 0 . 0 0 0 1 E U N 0 3 0 . 0 0 1 0 0 . 0 0 4 3 0 . 0 0 5 5 0 . 0 0 4 7 0 . 0 0 2 5 0 . 0 0 3 2 0 . 0 0 1 6 0 . 0 0 3 0 0 . 0 0 2 6 0 . 0 0 3 3 0 . 0 0 0 5 0 . 0 0 2 2 0 . 0 0 5 5 0 . 0 0 4 4 0 . 0 0 1 0 3 . 0 0 1 0 0 . 0 0 0 8 E U N 0 4 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 3 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 Q 5 0 . 0 0 0 6 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 0 6  E 0 N 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 0 6 0 . 0 0 0 8 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 8 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 8 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 8 0 . 0 0 1 0 0 . 0 0 0 7 E U N 0 6 0 . 0 0 0 1 0 . 0 0 0 2 E U N 0 7 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 E U N 0 8 0 . 0 0 0 1 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 5 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 8 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 4 E U N 1 0 0 . 0 0 0 2 D A T E ( D A Y / M O N T H / Y E A R ) S P E C I E S 0 7 0 6 7 7 2 1 0 6 7 7 0 5 0 7 7 7 1 9 0 7 7 7 0 2 0 8 7 7 1 6 0 8 7 7 0 6 0 9 7 7 2 7 0 9 7 7 0 9 1 0 7 7 2 7 0 1 7 8 0 3 0 3 7 8 3 1 0 3 7 8 1 7 0 4 7 8 0110578 2 6 0 5 7 8 0 8 0 6 7 8 2 9 0 6 7 8 E U N 1 1 E U N 1 2 E U N 1 3 E U N 1 4 E U N 1 5 _ EUN 16 E U N 1 7 EUN 18 EUN 1 9 E 0 N 2 0 _ E U N 2 1 A T N 0 1 A C N 0 1 ACNO 3 A C N 0 4 N V A 3 0 N V A 3 1 N V A 3 2 N V A 3 5 N V A 3 6 . 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 * 0 . 0 0 0 2 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 6 0 . 0 0 0 3 0 . 0 0 0 1 * 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 1 1 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 1 1 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 8 0 . 0 0 0 6 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 . 0 . 0 0 0 2 0 . 0 0 1 9 0 . 0 0 3 4 0 . 0 0 4 7 0 . 0 0 5 5 0 . 0 0 4 0 0 . 0 1 6 7 0 . 0 1 8 0 0 . 0 1 6 6 0 . 0 0 8 2 0 . 0 0 7 5 0 . 0 0 4 0 0 . 0 1 0 0 0 . 0 0 6 6 0 . 0 0 3 2 0 . 0 0 4 0 0 . 0 0 3 6 0 . 0 0 8 5 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 6 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 0 6 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 3 6 0 . 0 0 0 5 0 . 0 0 1 7 0 . 0 0 2 5 0 . 0 0 1 7 0 . 0 0 3 0 0 . 0 0 0 8 0 . 0 0 0 7 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 6 0 . 0 0 1 0 0 . 0 0 0 8 0 . 0 0 1 0 0 . 0 0 2 5 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 - 0 0 0 2  0 . 0 0 0 1 A C N 0 5 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 5 0 . Q 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 C N S 0 1 0 . 0 0 0 3 0 . 0 0 0 2 P R U 0 1 0 . 0 0 0 9 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 9 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 2 8 0 . 0 0 0 7 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 2 1 0 . 0 0 1 0 O . 0 O 1 O O . Q 0 2 0 0 . 0 0 2 5 F R 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 F B U 0 3 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 2 0 . Q 0 0 3 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 7 N V A 1 7 N V A 2 3 S N S 0 1 0 . 0 0 0 1 S N S 0 2 N V A 0 4 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 4 N V A 0 8 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 9 0 . 0 0 1 6 N 7 A 1 5 N V A 2 9 N E I 0 1 N E I 0 2_ H E I 0 3 D P N 0 1 D P N 0 2 N V A 0 1 N V A 0 5 N V A 0 7 " HVA 0 9 N V A 1 0 N V A 1 1 N V A 1 3 _ N V A 1 6 N V A 1 9 N V A 2 0 NVA 2 1 N V A 2 2 H V A 2 4 " N V A 2 5 N V A 2 6 N V A 2 7 N V A 2 8 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 O 0 3 0 . 0 0 0 4 0 . 0 0 0 1 0 . 0 0 0 7 0 . 0 0 0 9 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 6 0 . 0 0 1 0 0 . 0 0 0 8 0 . 0 0 0 8 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 0 7 0 . 0 0 0 2 _ _ _ _ _ 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 £L_ttoiL2 o . n n n ? o . o o o i . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 0 6 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 3 0 0 2 0 . 0 0 0 5 0 . 0 0 0 2 "•a n o 3 rt H-C (D 0 . 0 0 0 1 D A T E ( D A Y / M O N T H / Y E A R ) S P E C I E S 0 7 0 6 7 7 2 1 0 6 7 7 0 5 0 7 7 7 1 9 0 7 7 7 0 2 0 8 7 7 1 6 0 8 7 7 0 6 0 9 7 7 2 7 0 9 7 7 0 9 1 0 7 7 2 7 0 1 7 8 0 3 0 3 7 8 3 1 0 3 7 8 1 7 0 4 7 8 0 4 0 5 7 8 2 6 0 5 7 8 0 8 0 6 7 8 2 9 0 6 7 8 N V A 0 6 0 . 0 0 0 1 0 . 0 0 0 5 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 2 0 . 0 0 0 2 H V A 1 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 H V A 1 4 0 . 0 0 0 1 " 0 . 0 0 0 2 0 . 0 0 0 2 H V A 1 8 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 2 H V A 3 3 _ . . — _ N V A 3 4 G P N 0 1 0 . 0 0 1 6 0 . 0 0 2 6 0 . 0 0 2 4 0 . 0 0 4 0 0 . 0 0 2 5 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 3 8 0 . 0 0 1 0 0 . 0 0 0 8 0 . 0 0 5 5 0 . 0 0 2 5 3 . 0 0 4 9 0 . 0 0 2 5 G P N 0 2 0 . 0 0 0 4 G P N 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 1 6 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 0 6 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 3 7 0 . 0 0 0 8 G P N 0 4 _ 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 8 5 0 . 0 0 1 9 0 . 0 0 1 0 0 . 0 0 0 6 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 2 0 . 0 0 0 6 0 . 0 0 0 5 G P N 0 5 G P N 0 6 G P N 0 7 G P N 0 8 C Y M 0 2 C Y M 0 3 " C Y M 0 4 C Y N 0 5 C Y N 0 6 C Y M 0 7 _ C Y H 0 8 C Y N 0 9 CYM 1 0 CYM1 1 C Y M 1 2 C Y B 1 3 " APHO 1 A P H 0 2 EPMO 1 E P N 0 2 N Z A 0 2 " N Z A 0 3 N Z A 0 4 N Z A 0 5 N Z A 0 6 _ N Z A 0 7 S U R 0 1 S U R 0 2 S U R 0 3 NZAO 1 B A T O 1 ~ B A T 0 2 B A T 0 3 AUD01 C P T O 1 _ G L O 0 1 P D N 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 0 8 0 . 0 0 0 6 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 1 0 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 9 0 . 0 0 0 7 0 . 0 0 0 7 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 8 0 . 0 0 0 7 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 8 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 6 0 . 0 0 1 6 0 . 0 0 0 9 0 . 0 0 1 7 0 . 0 0 1 7 0 . 0 0 0 9 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 6 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 7 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 7 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 5 0 . 0 0 0 2 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 3 0 0 . 0 0 0 6 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 3 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 5 0 . 3 0 3 2 0 . 0 0 0 1 0 . 0 0 4 7 0 . 0 0 9 2 0 . 1 0 0 1 0 . 0 0 2 8 0 . 0 2 9 3 0 . 0 0 0 2 0 . 1 6 6 7 0 . 0 2 4 6 0 . 0 0 0 4 0 . 0 0 1 6 0 . 0 0 9 1 0 . 0 1 S 6 0 . 0 2 2 8 0 . 0 0 0 1 0 . 0 0 1 3 0 . 0 0 1 5 0 . 0 0 0 4 0 . 0 0 0 3 0 . 0 0 0 3  0 . 0 0 0 2 0 . 3 0 0 3 _ p. o o 0 C O 121 Appendix B. Abundance of a l l a l g a l taxa at a l t e r n a t e c o l l e c t i n g s t a t i o n s (2-7) f o r four dates (day/month/year), where values range from 0 - 1 (see Table 1 f o r species codes). S P E C I E S C C O 01 MIC 0 1 G O C 0 1 N P D 0 1 X EN 0 1 C L S 0 1 C H H 0 1 C H H 0 2 C B . M 0 3 C H N 0 4 C H M 0 5 C H M 0 6 O S C 0 1 O S C 0 2 O S C 0 3 P H 8 0 1 P H B 0 2 L Y G 0 1 L Y G 0 3 L Y G 0 4 L Y G 0 5 L Y G 0 6 C S P 0 1 A N B 0 1 E N C 0 1 C A L 0 1 C A L 0 2 B V U 0 1 H P L 0 1 T X P 0 1 S T G O l C D Y 0 1 . EOD01 T T B 0 1 T T R 0 2 A EC 01 S H C 0 1 C O V 0 1 C O V 0 2 G O L 0 1 OSTO 1 A K D 0 1 C B A 0 1 C B A 0 2 S C D 0 1 C M L 0 1 P D I 0 1 UKLO 1 U K L 0 3 M C P 0 1 C E T 0 1 SGCO 1 D P B 0 1 O E D 0 1 O E D 0 2 D A T E S FOR S T A T I O N 2 1 0 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 3 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOB S T A T I O N 4 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 5 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 3 7 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 1 0 0 0 . 0 0 5 5 0 . 0 3 2 3 0 . 0 3 2 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 5 0 0 . 0 2 7 3 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 1 0 0 0 . 0 0 5 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 0 5 0 1 . 0 0 0 0 0 . 5 6 8 2 0 . 0 0 5 0 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 3 2 3 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 3 7 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 5 5 0 . 0 0 5 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 10 0 . 0 2 7 8 0 . 0 2 7 3 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 1 3 7 0 . 0 0 2 5 0 . 0 2 7 8 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 5 0 0 0 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 6 8 7 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 2 7 3 0 . 0 0 5 0 1 . 0 0 0 0 0 . 5 3 6 6 0 . 5 0 5 0 0 . 5 6 8 2 0 . 0 0 0 3 0 . 0 5 4 6 0 . 0 0 2 5 0 . 0 0 3 4 0 . 0 0 5 0 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 5 0 . 5 0 0 0 0 . 0 2 7 3 0 . 0 0 1 0 0 . 0 0 0 5 0 . 1 3 6 4 0 . 0 2 7 3 0 . 0 2 7 3 0 . 5 0 0 0 0 . 5 0 0 0 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 5 0 0 . 0 2 7 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 1 . 0 0 0 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 3 2 3 0 . 0 9 5 5 0 . 0 3 2 3 0 . 2 8 9 1 0 . 5 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 3 3 3 7 0 . 0 0 0 5 0 . 0 0 0 5 1 . 0 0 0 0 0 . 5 6 8 2 0 . 0 2 7 8 0 . 5 6 8 2 0 . 0 9 5 5 0 . 0 7 3 2 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 2 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 5 0 • 0 . 0 0 0 4 0 . 0 5 4 6 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 1 0 IS3 S P E C I E S D A T S S FOH S T A T I O N 2 1 0 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOE S T A T I O N 3 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 4 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 5 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 B U L 0 1 Z Y G O l Z Y G 0 2 S P I O 1 MOUOI DSMO 1 D S H 0 2 DSMO 3 D S K 0 4 D S M 0 5 DSM 0 6 DSM 0 7 DSM 0 8 D S M 0 9 DSM 10 DSM 11 DSM 12 DSM 13 DSM 14 DSM 15 DSM 1 6 DSN 18 DSM 1 9 DSM 2 0 0 . 0 1 0 0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 0 . 2 8 4 1 0 . 0 2 7 8 0 . 0 6 8 7 0 . 0 5 4 6 0 . 0 2 7 3 0 . 5 0 0 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 5 0 0 . 0 0 1 4 0 . 0 7 7 8 0 . 0 0 1 0 0 . 0 1 0 0 0 . 0 5 4 6 0 . 5 0 0 0 0 . 5 0 0 0 0 . 5 6 8 2 0 . 0 5 4 6 0 . 0 2 7 3 0 . 5 7 7 3 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 1 3 7 0 . 0 0 1 0 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 9 5 5 0 . 5 0 0 0 0 . 6 6 6 7 0 . 5 0 5 0 0 . 0 0 5 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 5 0 0 . 0 0 7 0 0 . 0 0 1 0 0 . 0 1 0 0 0 . 0 0 1 0 0 . 0 2 7 8 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 n . n n o s 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 5 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 D S M 2 1 D S M 2 2 DSN 2 3 D S N 2 4 DSM 2 5 0 . 0 0 0 3 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 5 0 0 . 0 0 0 4 0 . 0 2 7 8 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 1 0 1 0 . 0 0 0 5 D S M 2 6 DSM 27 DSM 2 8 D S M 2 9 D S M 3 0 D S M 3 1 D S M 3 2 D S M 3 4 DSM 3 5 DSM 3 6 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 D S M 3 7 D S M 3 8 DSM 3 9 DSM 4 0 DSM4 1 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 3 7 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 1 0 D S M 4 2 D S M 4 3 DSM44 D S M 4 5 DSM 4 6 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 5 0 0 . 0 0 0 5 D S M 4 7 D S M 4 8 D S M 4 9 D S M 5 0 DSM 5 1 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 DSM 5 2 0 . 0 0 0 5 S P E C I E S D A T E S FOR 1 1 0 0 4 7 7 0 2 1 5 7 3 S T A T I O N 2 0 5 1 6 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 3 D A T E S POR S T A T I O N 4 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 1 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 5 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 5 0 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 . 5 0 0 0 0 1 8 5 0 . 0 2 7 8 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 2 7 8 0 . 0 0 0 5 0 . 0 . 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 5 0 0 5 0 . 0 0 3 7 0 . 0 0 1 0 0 0 0 4 0 . 0 0 0 5 3 3 4 0 0 . 5 0 5 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 5 4 6 0 . 0 1 0 0 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 1 0 0 0 . 0 0 0 5 0 . 0 5 4 6 0 . 0 6 1 4 0 . 0 2 7 8 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 0 0 7 0 . 0 0 1 0 0 0 7 0 0 . 0 3 2 3 0 . 0 5 4 6 0 . 0 0 5 5 0 . 0 1 0 0 0 . 0 3 2 3 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3  0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 10 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 5  0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 10 Q . 0 0 1 Q 0 . 0 0 10 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 1 0 0 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 0 5  0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 5 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 0 6 7  0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 3 7 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 D A T E S FOB S T A T I O N 2 S P E C l E s I 1 0 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOE S T A T I O N 3 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 4 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 5 0 3 0 9 7 7 0 2 1 5 7 B 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 2 7 8 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 1 0 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 1 0 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 5 3 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 1 0 0 0 . 0 1 0 0 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5  0 . 0 0 0 3 0 . 0 0 2 5 0 . 0 5 4 6 0 . 0 5 0 5 0 . 0 3 2 3 0 . 0 5 4 6 0 . 0 0 0 5 0 . 00 10 0 . 0 0 1 0 0 . 0 9 5 5 0 . 5 6 8 2 0 . 3 8 2 2 0 . 5 0 5 0 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 1 8 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 2 7 8 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 0 0 7 0 . 0 2 7 8 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 1 0 0 . 0 0 0 4 . 0 0 3 7 , 0 0 0 4 04 91 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 2 7 3 0 . 0 0 1 0 0 . 0 0 5 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 3 0 0 . 0 3 2 3 0 . 0 1 0 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 2 7 8 0 . 0 0 4 0 0 . 0 7 3 2 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 3 7 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 3 0 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 4 0 0 . 0 2 7 8 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0010 0 . 0 0 5 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 3 0 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 1 0 0 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 S P E C I E S D A T E S FOR S T A T I O N 2 1 0 0 9 7 7 0 2 1 5 7 3 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O N 3 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOR S T A T I O H 4 0 0 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S FOB S T A T I O N 5 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 N V A 0 6 N V A 1 2 NVA 1 4 N V A 1 8 N V A 3 3 N V A 3 4 G P N O l G P N 0 2 G P N 0 3 G E N 0 4 G P N 0 5 G P N 0 6 G P N 0 7 G P N 0 8 C Y N 0 2 C Y M 0 3 C Y M 0 4 C Y H 0 5 C Y H 0 6 C Y f i 0 7 C Y N 0 8 C Y M 0 9 C Y H 10 C Y N 1 1 C Y H 1 2 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 3 7 0 . 0 0 5 5 0 . 0 0 3 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 1 0 0 . 0 0 0 3 0 . 00 10 0 . 0 0 1 0 0 . 0 1 6 6 0 . 0 0 5 5 0 . 0 3 2 3 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 0 1 0 0 . 0 1 8 8 0 . 0 3 2 3 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 0 n . n n n s n . 0 0 0 5 o . n n n s 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 3 4 0 . 0 0 3 7 0 . 0 0 0 5 C Y H 1 3 A P H 0 1 A P H 0 2 E P H O I E P f l 0 2 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 6 8 7 n . n n n s 0 . 0 0 1 0 N Z A 0 2 N Z A 0 3 N Z A 0 4 N 2 A 0 5 N Z A 0 6 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 N Z A 0 7 S U B 0 1 S I I B 0 2 S I I B 0 3 NZAO 1 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 3 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 2 7 8 0 . 0 0 5 5 0 . 0 0 4 0 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 5 ( 1 . 0 0 0 5 B A T O 1 B A T 0 2 B A T 0 3 All D 0 1 C P T 0 1 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 5 0 . 5 0 0 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 G L D 0 1 P D N 0 1 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 D A T E S FOB S T A T I O N 6 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 D A T E S F O B S T A T I O N 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 5 0 0 . 0 2 7 8 0 . 0 0 5 5 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 2 7 3 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 2 7 8 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 5 0 0 . 0 5 4 6 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 3 7 0 . 5 0 5 0 0 . 5 6 8 2 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 3 4 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 0 0 5 0 . 0 0 5 5 0 . 0 0 5 0 0 . 0 0 10 0 . 0 2 7 3 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 3 2 3 0 . 0 6 8 2 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 00 10 0 . 0 9 5 5 0 . 5 0 0 0 0 . 0 0 0 5 0 . 0 0 5 0 1 . 0 0 0 0 0 . 5 6 8 2 0 . 5 6 8 2 0 . 5 6 8 2 0 . 5 6 8 2 0 . 0 3 2 3 0 . 0 1 0 0 0 . 0 0 3 4 0 . 1 3 6 4 0 . 5 6 8 2 0 . 3 7 8 8 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 1 8 2 0 . 0 0 0 5 0 . 0 0 5 0 X) 0 X w o O 0 rt H> 0 C n> D A : * S F 0 8 S T A T I O N 6 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 0 5 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 2 7 3 0 . 5 0 5 0 0 . 5 2 7 3 0 . 0 0 10 0 . 0 3 2 3 0 . 5 2 7 3 0 . 0 5 4 6 0 . 0 2 7 3 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 1 0 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 D A T E S F O P S T A T I O N 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 1 8 2 0 . 0 0 0 5 0 . 0 0 3 4 0 . 5 0 5 0 0 . 5 0 0 0 0 . 5 2 7 3 0 . 5 0 5 0 0 . 0 0 3 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 D A T E S F 0 3 S T A T I O N 6 D A T E S FOR S T A T I O N 7 S P E C I E S 0 3 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 5 4 6 0 . 0 1 0 0 0 . 0 5 4 6 0 . 0 3 2 3 0 . 0 0 1 0 0 . 0 3 9 7 0 . 0 1 0 0 0 . 0 1 0 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 4 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 1 0 0 0 . 0 3 2 3 0 . 0 2 7 8 0 . 0 0 0 5 0 . 0 0 0 7 0 . 0 0 5 5 0 . 0 1 0 0 0 . 0 0 0 4 0 . 0 0 5 5 0 . 0 0 0 7 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 10 0 . 0 3 2 3 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 10 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 7 0 0 . 0 0 1 0 0 . 0 0 0 5 0 - 0 0 0 4  0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 10 0 . 0 0 0 5 S P B C I E S EUN 11 E U N 12 EUN 1 3 EUN 1 4 EUN 15 EUN 16 EUN 17 EUN 18 E U N 1 9 E U N 2 0 E U N 2 1 A T N 0 1 A C N 0 1 ACN 0 3 A C N 0 4 ACN 0 5 C N S 0 1 F B 0 0 1 F R U 0 2 F B U 0 3 N V A 1 7 NV A 2 3 S N S 0 1 S N S 0 2 N V A 0 4 N V A 0 8 N V A 1 5 N V A 2 9 N E I 0 1 N E I 0 2 N E I 0 3 D P N 0 1 D F N 0 2 NVAO 1 N V A 0 5 NV A 0 7 N V A 0 9 N V A 1 0 NV A 11 N V A 1 3 N V A 1 6 NVA 19 N V A 2 0 N V A 2 1 N V A 2 2 N V A 2 4 N V A 2 5 NV A 26 N V A 2 7 N V A 2 8 NVA 3 0 N V A 3 1 N V A 3 2 NVA 3 5 NVA 36 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 0 10 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 1 0 0 0 . 0 0 5 5 0 . 0 5 4 6 0 . 0 0 5 5 0 . 0 2 1 9 0 . 0 0 5 5 0 . 0 1 0 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 7 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 (D 0 &. W o rf 0 c •fl) U) O D A T F S FOR S T A T I O N 6 D A T E S F O P S T A T I O N 7 S P E C I E S | 0 8 0 9 7 7 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 2 1 5 7 8 0 5 1 8 7 8 0 6 2 3 7 8 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 1 0 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 10 0 . 0 0 1 0 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 4 0 0 . 0 0 5 5 0 . 0 0 5 5 0 . 0 0 0 4 0 . 0 0 0 5 Q . 0 Q Q 4 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 0 4 0 . 0 0 0 5 0 . 0 0 0 4 0 . 0 0 0 4 0 . 0 0 0 7 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 0 0 5 0 . 0 2 7 3 0 . 0 0 0 4 0 . 5 0 0 0 0 . 0 6 8 2 0 . 3 3 6 7 0 . 0 6 8 2 0 . 0 2 7 3 0 . 0 0 0 5 132 APPENDIX C. Presence of a l l a l g a l taxa from Jacob's Lake ( S t a t i o n 4) i n d r i f t and attached h a b i t s to downstream s t a t i o n s (see Table 1 f o r species codes; PPL = phytoplankton, EPE = e p i p e l i c , EPH = e p i p h y t i c , EPL = e p i l i t h i c , MET = metaphytonic). SPECIES PREDOMINANT PRESENCE'.IN COLONIZED (+) OR DOMINANT STREAM CODE LAKE HABIT STREAM (+) DRIFT ONLY (-) HABIT I F ATTACHED CC0O1 PPL XEN01 PPL + -G0CO1 EPH MPD01 PPL + -MIC01 PPL + -ANB01 PPL CAL02 EPH + + EPH CAL01 EPH + + EPH LYG01 MET + -LYG04 MET + -0SCO1 MET + -PHR02 EPH + + EPH CSP01 MET + -TXPOl EPH + + EPL STGOl EPH + + . EPL CDY01 PPL + -E0DO1 PPL UKL01 MET + + EPL UKL03 EPH + + EPL MCP01 EPH + + EPL CET01 PPL + + EPH AKD01 PPL + -AEC01 PPL C0VO2 EPE + + EPL CML01 PPL 0STO1 PPL PDI01 PPL SCD01 PPL + -BUL01 EPH + + EPL 0EDO1 EPH + + EPL 0EDO2 EPH + + EPL DSM46 PPL DSMO 3 MET + -DSM12 MET + -DSM23 PPL + -DSM02 PPL + -DSM28 PPL + -DSM38 PPL + -DSM32 MET + -133 APPENDIX C. Continued. SPECIES" PREDOMINANT PRESENCE IN COLONIZED (+) OR DOMINANT STREAM CODE LAKE HABIT STREAM (+) DRIFT ONLY (-) HABIT IF ATTACHED DSM18 PPL + DSM14 PPL + DSM22 MET + DSM01 EPE + DSM56 MET DSM05 MET + DSM27 MET + DSM57 PPL + DSMO 7 PPL + + EPH DSM19 MET + DSM47 PPL DSM24 EPH + DSM50 EPH DSM10 MET + DSM42 PPL + DSM44 PPL + DSM37 PPL + DSM45 PPL DSM54 PPL DSM48 PPL DSM53 PPL + DSM49 EPH DSM40 MET + DSMO 6 PPL + DSM39 EPE + . -DSM41 PPL + DSM21 PPL + DSM52 PPL DSM55 PPL + M0UO1 EPH + + EPL SPIOl EPH + + EPL ZYGOl MET + + . . EPL ZYG02 EPH + CIP01 PPL + CXP01 EPH DNBOl PPL + DNB02 PPL MAL01 PPL + MAL02 PPL + 0CRO1 PPL + SRN01 PPL CRY01 PPL + + EPH CYC02 MET + CYCOl PPL + MEL02 EPH + MELOl PPL + SDCOl PPL + 134 APPENDIX C. Continued. SPECIES PREDOMINANT PRESENCE IN CODE LAKE HABIT STREAM (+). COLONIZED (+) OR DOMINANT STREAM DRIFT ONLY (-) HABIT IF ATTACHED AST01 PPL + -DAT02 PPL + + EPH FGL02 EPE + -FGL03 PPL + -FGL05 PPL FGL01 PPL + -SMB01 EPE + -SYN03 PPL + + EPH SYNOl EPE + + EPL TAB02 PPL + -TABOl PPL + + EPH ATNOl EPE + -EUN21 EPE + -EUN08 EPE + + EPH EUN12 EPE EUN13 EPE + + EPH EUN07 EPH + + EPH EUN02 MET + -EUN19 EPE + -EUN04 EPH + + EPH EUNOl EPH + + EPH EUN05 EPE + + EPH EUN14 EPE + -EUN20 EPE EUN06 EPE + -EUN16 MET + + EPH EUN 17 EPE + -EUN03 MET + + EPH EUN15 MET + -PEROl EPE + -ACNOl MET + + EPL ACN03 PPL + -NVA15 EPE + -NVA29 EPE + -NVA04 EPE + + EPH NVA08 EPE + + EPH CYM03 EPE + -CYM02 EPE + + EPH CYM05 EPH + + EPH CYM13 EPH DAT 01 PPL + + EPL CYM10 EPE + -CYM04 MET + + EPL CYM09 MET + -CYM12 EPE + -DPN01 EPE + -DPN02 EPE + -135 APPENDIX C. Continued. SPECIES PREDOMINANT PRESENCE IN CODE LAKE HABIT STREAM (+) COLONIZED (+) OR DOMINANT STREAM DRIFT ONLY HABIT IF ATTACHED EPM02 EPE EPM01 PPL + -FRU03 EPE + + EPH FRU01 EPH + + EPH FRU02 EPE + -GPN06 EPH + + EPL GPN07 EPE GPNOl MET + + EPL GPN03 EPH + + EPH GPN04 MET + + EPL NVAOl EPH + -NVA32 EPE + -NVA13 PPL + -NVA27 EPH + + EPH NVA10 EPH + -NVA35 EPE NVA26 EPE + -NVA16 MET + -NVA19 EPH + -NVA25 EPE + -NVA09 EPE + + EPH NVA22 EPE + -NVA07 PPL NVA37 EPE + -NVA21 EPH + -NVA20 PPL + -NEIOl EPE + -NEI02 . EPE + -NEI03 EPE NVA34 EPE NVA06 MET + + EPH NVA33 EPE NVA18 EPE + + EPH NVA12 EPE + -NVA14 EPE + -SNS02 MET + -NVA23 EPE + -NVA17 EPE + -SNS01 EPE + -NZAO 2 PPL + -NZA05 PPL + -NZAO 7 PPL + -NZA04 EPE + + EPH NZA06 EPE + + EPH NZAOl EPE + + EPH 136 APPENDIX C. Continued. SPECIES PREDOMINANT PRESENCE' IN COLONIZED (+) OR DOMINANT STREAM CODE LAKE HABIT STREAM (+) DRIFT ONLY HABIT IF ATTACHED SUR01 EPE + SUR03 EPH + SUR02 PPL + EGL01 PPL GLD01 PPL + PDN01 PPL CPT01 PPL + 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094615/manifest

Comment

Related Items