UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A qualitative and quantitative assessment of seaweed decomposition in the Strait of Georgia Smith, Barry D. 1979

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
[if-you-see-this-DO-NOT-CLICK]
UBC_1979_A6_7 S65.pdf [ 11.71MB ]
Metadata
JSON: 1.0094600.json
JSON-LD: 1.0094600+ld.json
RDF/XML (Pretty): 1.0094600.xml
RDF/JSON: 1.0094600+rdf.json
Turtle: 1.0094600+rdf-turtle.txt
N-Triples: 1.0094600+rdf-ntriples.txt
Original Record: 1.0094600 +original-record.json
Full Text
1.0094600.txt
Citation
1.0094600.ris

Full Text

A QUALITATIVE AND QUANTITATIVE ASSESSMENT OF SEAWEED DECOMPOSITION IN THE STRAIT OF GEORGIA by BARRY B.Sc.  (Honours),  DOUGLAS  University  SMITH  of  New  Brunswick,  A THESIS SUBMITTED IN PARTIAL FULFILMENT THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in  THE FACULTY OF GRADUATE STUDIES (Department o f Botany)  We  accept to  THE  this- thesis the  required  UNIVERSITY  OF  Barry  conforming  standard  BRITISH  June,  (c)  as  Douglas  COLUMBIA  1979  Smith,  1979  OF  1974  In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives.  It is understood that copying or publication  of this thesis for financial gain shall not be allowed without my written permission.  Department The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5  Date  ABSTRACT  Appropriate qualitative position and  and  rates  quantitative and  decomposition  species  within  British  Columbia,  a  A these  sampling  formation detritus  a  decomposing  rates;  simulation  (L.)  biomass,  food  total  l i t t e r  faunal  of  seaweed  in  community  programs  l i t t e r  nitrogen  distribution  seaweed  model  l i t t e r  the  ca L.  and  incorporating  programs  nitrogen  resource  distichvs  Lamouroux  changes  experimental  (Mertens)  1 lEtkeana  experimental  biomasses,  content;  patterns in  the  resulted  the  Strait  a  decom-  detritus  for  in  biomass  significant  of  Georgia,  Canada.  seaweed  Fucus  and  successional  Of tions,  and  assessment  concomitant  and  rates, as  sampling  for and  43  its  taxa  (41%),  Postels  and  The  and  the  Soluble  nitrogen  cordata  Ruprecht  (27%),  were  also  accounted  for  mean  peak  summer  biomass  with  this  figure  approaching  of  collec-  (26%),  more  a l l  from  l i t t e r  (4%)  Laminaria  of  determined.  Bory  Rosenvinge)  detritus  rates  seaweed  (Turner)  of  from  availability  release  the  and  obtained  prediction  matter  within  Irldaea  data  seasonal  content  identified  L. groenlandica  deposition.  facilitated  content  fauna.  suitable  Nereocystis  (L. than  l i t t e r  saccharina 97%  was  ca  of 5 g  2 ash-free and to the  dry  weight  February. conclude  L i t t e r  that  immediate  (AFDW)/m  distribution  most  l i t t e r  vicinity Litter  ficant of  contributors  seaweed  required six  days,  distichus  l i t t e r  for for .  Some  its  to  place  seaweed  lamina  of  similarity  to  of  and  there  was  underwent  experiments  sufficient  January evidence  decomposition,  disappear  performed  structure  compared  Nereocystis in  and  during  in  deposition.  community  rapidly  l i t t e r  patchy  retained,  decomposition  occurs  seaweed the  of  was  was  zero  to from  rrrn  lnetkeana,  decomposition  indicated  vascular 2  rates  on  plant  mesh to  ca  was  the that  most  bags  days,  observed  signi-  decomposition  l i t t e r .  l i t t e r 70  10  for  The  time  ranged  from  Fucus  amongst  species  displaying taxonomic  and/or morphologic a f f i n i t i e s .  Assessment of nitrogen  content of decomposing seaweed l i t t e r revealed that nine of the 10 species assayed l o s t nitrogen less rapidly than t o t a l l i t t e r biomass. As determined by assaying microbial consumption of p a r t i c u l a t e material, the time required for detritus decompose was short.  (particle size < 1 mm, dry) to f u l l y  Of the 10 species tested, Iridaea  cordata detritus decom-  posed most rapidly at a rate of 5.7% per day while rates for Gigartina (C. Agardh) J . Agardh, Laminaria groenlandica, tis  luetkeana ranged from 2-4% per day.  Laminaria saccharina  papillata  and Nereocys-  Data for the remaining species were less  conclusive although a l l decomposed at rates less than one percent per day. Variation i n s p e c i f i c decomposition rates was shown to be correlated with the s t r u c t u r a l composition of the d e t r i t u s .  Those species with a r e l a t i v e l y small  percentage of crude fibre as a component of t h e i r p a r t i c u l a t e f r a c t i o n decomposed more rapidly than those species with a higher percentage of crude f i b r e . the two most rapidly decomposing species, Iridaea  cordata and Nereocystis  For luet-  keana, a trend toward a more rapid decomposition rate as mean p a r t i c l e size decreased was evident. Natural detritus  ( p a r t i c l e size < 2 mm, wet) biomass accumulation 2  within the study s i t e peaked at ca 1.4 g AFDW/m 19 76.  during the l a t t e r h a l f of August  This value represents 1-5% of the quantity of detritus predicted to have  been formed from seaweed l i t t e r alone and a lesser percentage of the t o t a l quant i t y of seaweed detritus formed.  Exportation out of the seaweed zone i s believed  to be responsible for this discrepancy.  The predicted rates of detritus forma-  tion and soluble matter release from decomposing seaweed l i t t e r peaked at ca 0.6 2 and 0.5 g AFDW/m zero i n February.  per day, respectively,  i n early September 1976 from a low near  In t o t a l , ca 56% of l i t t e r biomass formed d e t r i t u s , the r e -  mainder being released as soluble matter.  The mean nitrogen contents of the  detritus formed and the soluble matter released were 2.48 ± 0.03% and 1.36 ± 0.03  of  t h e i r dry w e i g h t s , r e s p e c t i v e l y .  The annual c o n t r i b u t i o n o f seaweed  litter  biomass v i a d e t r i t u s and s o l u b l e matter t o l o c a l c o a s t a l waters i s e s t i m a t e d t o  2 be i n the range o f 70-85 g C/m . D e t r i t u s formed from seaweed l i t t e r was r a t i o o f 10-13:1, r e n d e r i n g i t s u i t a b l y n u t r i t i o u s  determined t o have a C:N  f o r u t i l i z a t i o n by fauna as  a f o o d r e s o u r c e , however i t c o u l d n o t be shown c o n c l u s i v e l y t h a t the c o i n c i d e n c e , en masse, o f s p e c i f i c fauna and maximum d e t r i t u s a v a i l a b i l i t y was a response t o the a v a i l a b i l i t y o f d e t r i t u s  as a f o o d r e s o u r c e .  The p o s s i b i l i t y o f such a  c o r r e l a t i o n i s d i s c u s s e d w i t h r e f e r e n c e t o two s p e c i e s o f c a p r e l l i d s , alaskana marmorata  Mayer and Metacaprella  anomala  Dall.  iv  Mayer, and the b e n t h i c g a s t r o p o d  Caprella Lacuna  TABLE OF CONTENTS ABSTRACT LIST OF TABLES  v i i  LIST OF FIGURES  ix  ACKNOWLEDGEMENTS  '.  xi  INTRODUCTION  1  METHODS The Study A r e a  7  Sampling L i t t e r assessment D e t r i t u s assessment F a u n a l assessment Field  7 10 11  Experiments L i t t e r decomposition experiments L i t t e r senescence experiments  Laboratory  12 13  Experiments  Detritus  decomposition  Experiment Experiment  1 2  (microbial (microbial  oxygen consumption) consumption of particulate  N i t r o g e n content o f decomposing  15 material)  15 17  litter  S t r u c t u r a l composition o f species c o n t r i b u t i n g t o l i t t e r Model Development and Data A n a l y s i s  ....  17 19  RESULTS L i t t e r assessment S t r u c t u r a l composition o f species c o n t r i b u t i n g t o l i t t e r L i t t e r decomposition experiments L i t t e r senescence experiments N i t r o g e n c o n t e n t o f decomposing l i t t e r D e t r i t u s decomposition Experiment Experiment  1 2  (microbial (microbial  oxygen consumption) consumption of particulate  20 .... 40 42 54 54 57 material)  62 D e t r i t u s assessment Faunal assessment  72 72  L i t t e r assessment L i t t e r decomposition experiments N i t r o g e n content o f decomposing l i t t e r D e t r i t u s decomposition D e t r i t u s assessment Faunal assessment  80 82 85 86 91 92  DISCUSSION  v  •  SIMULATION MODEL OF LITTER AND DETRITUS PROCESSING 9  Introduction Model development Results Discussion  8  99 1  0  5  I l l  SUMMATION  117  LITERATURE CITED  119  APPENDICES I II III IV V VT VTI VIII  L i t t e r assessment d a t a Faunal assessment d a t a D e t r i t u s assessment d a t a Depth d a t a L i t t e r decomposition e x p e r i m e n t a l d a t a D e t r i t u s decomposition d a t a (Experiment D e t r i t u s decomposition d a t a (Experiment S i m u l a t i o n model computer program  vi  1) 2)  12 7 144 153 156 157 159 160 161  LIST OF TABLES  Table  1:  Mean b i o m a s s pool  within  3 August Table  2:  Comparison l i t t e r on  Table  4:  5:  luetkeana  l i t t e r  o f the total  10 November  components  1  com-  at Site  2  .  31  o f the soluble,  moderately  o f the significant  resistant  species  within 41  o f days  cm m e s h  Percentage in  andspecific  the transect  required  f o r living  to the l i t t e r l i t t e r  b a g under  nitrogen  the l i t t e r  bags  pool  content  portions  within  shaded  o f t h e major  Site  1 t o leave  and exposed  o f the material  at the termination  a  conditions,  remaining  o f their  7:  with56  Analysis  o f variance  demonstrating and  length  microbes Table  8:  a)  Subsets subset cant ty  b)  table  the effects  o f incubation  u t i l i z i n g delimited  contains  Theaverage  period  the detritus by Duncan's  those  consumed percentage  o f Experiment  size,  detrital  on t h e oxygen as a carbon  New M u l t i p l e  d e t r i t a l  (p < . 0 5 ) d e g r e e  o f oxygen  f o r the results o f particle  species  Range  which  by  with  decomposing  respect  59  Test.  show  o f affinity  content  consumption  source.  by microbes soluble  1,  species  a  Each  s i g n i f i -  to the quantithe detritus,  o f the subsets  i n 63  Table 8a. Table  9:  Analysis  o f variance  demonstrating and  length  culate  table  the effects  o f incubation  material  f o r the results o f particle  period  by microbes  o f Experiment  size,  detrital  on t h e consumption  u t i l i z i n g  detritus  2,  species  o f p a r t i -  as a  carbon 65  source. Table  10:  Subsets set (p  delimited  contains <  55  incubation  period. Table  28  o f  Site  1.  Number  6:  quantity  belt.  composition  a t 95 m w i t h i n  collected within  o f each  lueto f  t h e same  andspecific  1 9 7 5 (gr A F D W / t r a n s e c t )  fibre  Nereocystis  andthe quantity  the transect  and  contributors  Table  to the l i t t e r  o f 27 J u l y a n d  collected within  quantity  T h ep e r c e n t a g e s  1.0  belt  1975 and t h e t o t a l  o f l i t t e r  crude  of living  a transect  9 November  Site Table  t h e number  within  collected within  position on  contributors  on t h e c o l l e c t i o n s  21  between  plants  Nereocystis 3:  o f the major  1 based  1976.  Comparison keana  Table  p e rm Site  .05) degree  particulate  b y Newman  those  d e t r i t a l  -  o f affinity  material  Keul's  species  consumed  with  Range which  respect  by microbes  Test. show  a  Each  sub-  significant  to the quantity  o f  decomposing t h e 68  detritus.  v i i  Table 11a:  Table l i b :  Table 12:  Table 13:  Table 14:  The t o t a l number of each faunal species summed over the 28 J u l y , 18 August and 12 September 1976 transect c o l l e c tions. The percentage that this number represents of the t o t a l number of occurrences over the entire sampling period i s i n parentheses.  74  The t o t a l dry weight of each faunal species summed over the 28 J u l y , 18 August and 12 September 1976 transect c o l l e c t i o n s . The percentage that this figure represents of the t o t a l dry weight of i n d i v i d u a l s c o l l e c t e d over the entire sampling period i s i n parentheses.  75  History of the occurrence (per m?) of two species of Capr e l l i d a e , Caprella alaskana and Metacaprella anomala, withi n the summer faunal c o l l e c t i o n s of Dr. R. E . Foreman (unpublished) .  95  Mean monthly temperatures (a) and the corresponding decomposition rate adjustment factor (b) for the period November 19 75 u n t i l October 1976.  102  Comparison of the percentage contributions by the major contributors to the l i t t e r pool within Site 1 as determined by l i t t e r biomass alone and application of the decomposition rates of these species to l i t t e r biomass data.  10 7  viii  LIST OF FIGURES  Figure 1:  Location of f i e l d study s i t e s .  Figure 2:  S p a t i a l characteristics of l i t t e r biomass for the major contributors to the l i t t e r pool within Site 1 based on the collections of 27 July and 3 August 1976.  22  Distribution of Laminaria l i t t e r collected along the t r a n sect at Site 2 on 10 November 1975 r e l a t i v e to depth below mean sea l e v e l .  29  Figure 4:  Depth contours (zn below mean sea level)  32  Figure 5:  Seasonal d i s t r i b u t i o n of l i t t e r biomass for the major contributors to the l i t t e r pool within Site 1 based on c o l l e c tions along the 95 m transect location at 3-4 week i n t e r v a l s for the period 20 August 1975 u n t i l 2 October 1976.  33  L i t t e r decomposition curves (submodels) calculated from data obtained i n the l i t t e r bag experiments.  43  Plot demonstrating an increase i n the r a t i o of nitrogen: dry weight biomass of decomposing l i t t e r r e l a t i v e to undecomposed l i t t e r .  58  Cumulative oxygen consumption by microbes decomposing the 10 d e t r i t a l species i n Experiment 1.  61  Figure 3:  Figure 6:  Figure 7:  Figure 8:  8  for Site 1.  Figure 9:  Relationship between the percentage soluble contents of the 10 d e t r i t a l species (exclusive of Iridaea cordata) and the quantity of oxygen consumed by microbes decomposing the d e t r i tus after five days of incubation, as determined i n Experiment 1. 64  Figure 10:  Cumulative loss of p a r t i c u l a t e material from the 10 d e t r i t a l species decomposed i n Experiment 2.  67  Cumulative loss of p a r t i c u l a t e material from Iridaea cordata and Nereocystis luetkeana (stipe and lamina combined) detritus. For each species the results for the three d e t r i t a l p a r t i c l e sizes are presented.  70  Relationship between the maximum percentage loss of p a r t i c u late material from the 10 d e t r i t a l species decomposed i n Experiment 2 and the percentage of crude fibre i n the p a r t i culate material of each d e t r i t a l species.  71  Contour representation of detritus biomass along the 95 m transect location within Site 1 for the period 28 May u n t i l 7 October 1976.  73  Figure 11:  Figure 12:  Figure 13:  Figure 14:  Seasonal d i s t r i b u t i o n histograms of the t o t a l number and dry weight (g) of Cancer oregonensis, Metacaprella anomala and Lacuna marmorata occurring within the seven transect c o l l e c tions from 25 May u n t i l 7 October 1976. ix  Figure  15:  Seasonal Lacuna  Figure  16:  distribution 1 o f Lacuna  Site  biomass  Tenth  Figure  Figure  18:  19:  from  sect  location  within  October  Flow  21:  curve  l i t t e r Site  fitted  with-  and d e t r i -  1 from  along  20 A u g u s t  biomass  t h e 95 m t r a n 1975 u n t i l  1976.  101 the major  profiles  release l i t t e r  rate  operations  within  predicted  1 based  matter Site  involved  processing  f o r the formation o f soluble  biomass  biomass  Site  78  i n the occurrence o f  to the seasonal  collections  and detritus  tion  location  o f  19 7 6 .  79  o f l i t t e r  Detritus  7 October  and biomass)  a coincidence  outlining  within  Figure  (numbers  chart  Seasonal  p e r individual  t h e 95 m t r a n s e c t  simulation  weed 20:  polynomic  obtained  the  Figure  degree  (g)  25 May u n t i l  abundances.  data 2  along  marmorata  demonstrating  maximum  dry weight  f o r the period  Spatial  their 17:  i n t h e mean  in tus  Figure  trend  marmorata  rate from  within  Site  1.  106  o f detritus and decomposing  sea-  1.  108  f o r t h e 95 m t r a n s e c t  on l i t t e r  i n the  collections  from  location'  that  loca-  only.  109  Detritus  biomass  lections  from  predicted  a l l transect  x  f o r Site locations  1 based within  on l i t t e r Site  1.  col110  ACKNOWLEDGEMENTS  Many ward of  persons  the successful  Dr.  Ronald  E.  completion  Foreman  perience  with  was  very  helpful  the  simulation  model.  was  the e f f o r t  of  L. The  Cabot  of  with  of  of  marine  computing Perhaps  be  credited  this  thesis.  problems, t h e most  excellent  buddy  I  service.  I  typing.  xi  their  f a c i l i t i e s  systems.  particularly  the  Library thank  f i e l d  and the  Ms.  the  and  Mr.  Thomas  during  Nancy  sampling  A.  Smith  hand  ex-  Nicol  development  grateful  U.B.C.  t o -  supervision  f i r s t  contribution  am e s p e c i a l l y of  contribution  I appreciate  important  f o r most  Biomedical  for  research  macrophyte  my S C U B A p a r t n e r s . my d i v i n g  the  to  who p r o v i d e d  t h e Woodward  provided  sistance  study with  who was  staffs  Centre  the  need  to  this  to  Mr.  work Eric  exercises.  Computing for her  of  as-  -  .1  -  INTRODUCTION  Primary major been  source shown  largely as  a  being  is  be  of  represent  defined  easily  demonstrated  studied  by  herbivore with  Teal  detritus  for  l i t t e r  (Rodin  of  the  cases  large  zooplankters This  to  primary a  is  such  as  and  Loisel  as  and  without  Zostera  Knauer  from  less  of  in  primary  aquatic  plants  In  cases  many  production  Darnell-  (1976a)  various  stages  sources  for  material  fractured  true  as  7%  of  47%  the  was  Spartina that  is  the  that  is  of  this  the  i t  has  involves  defines  detritus  microbial  consumer  material  study  whose  decom-  species".  This  interprets  biogenic  other  testudinum mangroves salt  marsh  source  for  east  coast  an  production  l i t t e r .  Similarly,  in  of  with  decomposer  net  origin  by  and  may  enter  conditions  dealt and  Banks  Mann ex  (Heald plants  systems  pass the  with  1975  Konig  1969) (Odum  and and  aquatic  the  Harrison  la  to  food  90%  such  gut  and  of  the  chain.  utilization  vascular  1970,  Spartina de  detritus.  Up In  the  1964).  formation  (Fenchel  enters  where  decomposer  a&b,  associated  forming  through  in  several  grazers.  (Cushing  detritus  mainly  for  has  marsh  utilized  production  zooplankton  consumed  salt  organisms  processing  based  consumers  was  data  primary  future  plankton  concerning  (Harrison  In  primary  consumed  have  food  by  1967)  bloom  a  u t i l i z e d  material  studies  L.  net  assimilated,  ecosystems  1977) ,  be  as  types.  62-100%  found  during  date,  Thalassia  well  detritus  ecosystem  may  being  marina  Ayers  of  Bazilevich  trend  portion  marine  et a l . 1 9 7 7 ) ,  only  production  especially  coastal  of  energy  includes  larger,  indicate  this  To in  but  while  derived  systems  exception  material  and  organisms.  detritus.  potential  several  (1962)  terrestrial  An  consumer  of  importance  respiration  pool  t e r r e s t r i a l  recognized. The  been  as  by  utilization  biogenic  appropriate,  ' l i t t e r ' ,  for  consumption  types  which  energy  heterotrophic  delayed  definition  can  food  that  " a l l  position  as  of  production  plants  1977,  Tenore  Wolff  1976,  alterniflora Cruz  1967,  de  la  Cruz  - 2 -  and  G a b r i e l 1974,  1976,  P i c k r a l and Odum 1976,  viewed by F e n c h e l in  G o s s e l i n k and K i r b y 1974,  de l a Cruz 19 75, G a l l a g h e r e t a l .  Hanson and Weibe 1977).  (1972, 1973).  The  importance  T h i s work has been r e -  of associated  t h i s p r o c e s s has been s t r e s s e d by Johannes' (1965), S e k i  Harrison  (1976), and H e i n l e e t al.  a q u a l i t a t i v e nature w i t h l i t t l e t i o n s to c o a s t a l energy There  (1977). attempt  microorganisms  (1972), F e n c h e l  and  These s t u d i e s have been l a r g e l y to q u a n t i f y p l a n t  detrital  of  contribu-  flow.  are but a few  a t t a c h e d marine macrophytes.  studies concerning d e t r i t u s  Although  f o r m a t i o n by  e s t i m a t e s o f primary p r o d u c t i o n f o r the  c o a s t a l seaweed zone i n d i c a t e t h a t these areas are amongst the most h i g h l y d u c t i v e i n the w o r l d  (Clendenning 19 71, Mann 19 72a)  fate of t h i s production.  With the m a c r o p h y t i c  very l i t t l e  s t a n d i n g crop e x c e e d i n g t h a t o f p h y t o p l a n k t o n by  near-shore  pallasii economy  Salmon  (Oncorhynchus  100  (Mann 19 72a)  fold  and  spp.)  f i s h s p e c i e s may and h e r r i n g  be  (Clupea  near-shore waters.  harengus Columbia  spend c r i t i c a l times o f t h e i r l i v e s i n  H e r r i n g are dependent on  spawn ( T a y l o r 1964).  flow i n  components  V a l e n c i e n n e s ) , c u r r e n t l y the most v a l u b l e f i s h t o the B r i t i s h ( S t a t i s t i c s Canada 1976)  a  ( B l i n k s 1955) , the  c o n t r i b u t i o n t o the energy  ecosystems o f which some commercial  becomes a r e a l i t y .  i s known o f the  f r i n g e o f the oceans h a v i n g a  p r o d u c t i v i t y t h a t may be up t o 40 times t h a t o f the ocean  p o s s i b i l i t y o f i t s h a v i n g a more than token  pro-  seaweed as s u b s t r a t e f o r t h e i r  Young salmon f e e d i n e s t u a r i n e waters  (Sibert et  al.1977).  Mann (1972b) e s t i m a t e s the y e a r l y p r o d u c t i v i t y o f the seaweed  2 zone i n S t . Margaret's  Bay  a t 1750 g  C/m  .  T h i s makes the seaweed zone the o n l y  primary marine r e s o u r c e w i t h a c o n f i r m e d y e a r l y p r o d u c t i o n g r e a t e r than 1 2  C/m .  Possible  f a t e s o f seaweed p r o d u c t i o n a r e :  1. e x u d a t i o n as s o l u b l e  matter  kg  -  weeds and  consumption  3.  erosion  and fragmentation  4.  release  as  5.  natural  mortality  1)  The release  by herbivores reproductive  demonstrated  (1968)  o f soluble by Craigie  andSieburth  i s  lie  5% a n d 3 5 % o f t o t a l  L. was e s t i m a t e d  culosis at  comparable  (1969)  macrophytes between  an average  obtained  rate  f o r other  Lamouroux,  at  carbon  fixed  Brylinsky (Vahl) phyta, and  to lose  Phaeophyta;  b y Laminaria  (1977)  a n d Chondria  Dictyota  dichotoma  disclosing  an a p p a r e n t  andMacLachlan  marine  (1964). exudation  which  Fogg  (1966)  carbon  These  rates  e t al.  determined  (L.) L a m o u r o u x each  Lamouroux  release  rates  i n release  (L.)  that  total  u p t o 36% o f  extracellularly.  Acanthophora  a n d Sargassum  rates  those  (L.) Le J o l i s ,  was r e l e a s e d  than  to  lower  C. Agardh,  o f less  exudate,  was s i g n i f i c a n t l y  o f Rhodophyta,  (Woodward)  as  to  vesi-  digitata  nodosum  (Rhodophyta)  (1977)  states  a r e comparable  a n d Ascophyllum  marine  Fucus  budget  3 7 . 8 a n d 3 1 . 3 f o r Laminaria  Sieburth  from  of i t s total  g/hr.  sea-  Later  30.7%  (Hudson)  disparity  that  from  a population.  dasyphylla  determined physiological  compounds  fixed within  two s p e c i e s  Borgesen  tips  carbon  saccharina  examined  organic  Stackhouse  Johnston  lamina  o f phytoplankton  44.6,  crispus  g/hr.  from  structures  established  Kjellman,  agardhii  Chondrus  4 . 4 mg C / 1 0 0  to that  o f 4 1 . 6 mg C / 1 0 0  Laminaria  respectively.  -  2.  was f i r s t  Jensen  3  spicifera  andnon-kelp  natans  (L.)  4 . 0 %o f t o t a l  between  kelp-like  Phaeo-  Meyen, carbon,  seaweeds a n d  others. 2) and  prominent  concluded  grazers  that  the  apparent  net  production  ensis  Sea urchins  i n temperate  the green  major  accounting  sea urchin  herbivore  during  are generally  their  seaweed  systems.  Canada,  o f study.  f o r 80% o f t h e h e r b i v o r y  as  in'this  significant  a n d Mann  droebachiensis  consumed  With  t h e most  Miller  Strongylocentrotus  i n eastern period  recognized  only  1-7% o f  Strongylocentrotus area  (Miller  e t al.  (1973) Muller, seaweed  droebachi1971),  -  consumption  of  seaweed On  turbated  the  Leighton  1971,  occasion  seaweed  1977).  This  area  both  direct  ing  these  other  in  erosion  growing of  in  annual  tion via  from  to  a  contributing  or  might  by  decay.  bacteria were  at  be  guishable need  partially  from to  the  death  l i t t e r  of  where  detritus  and  the they  undergo  detritus  budget'  an  into  pools  of of  for  of  soluble  mortality initiates  Loch  that  Laminaria  Dur-  from  l i t t e r . information  saccharina Scotland, in  a  whether  growing of  in  contribu-  the  more  their  40-50%  loss  exposed  carbon  populations de  longicruris  is  budget  of la  Pylaie  decay. structures or  loss  separately  their  material  resulting  large  affected  substrate.  Creran,  on  1977,  the  Laminaria  percentage  constitutes  decomposition  for  Plants  matter  losses  plant  depending  reproductive  of  the  per-  1969,  Foreman  quantitative  of  distal  severely  Vadas  plant  decay,  higher  tips  from  dead  that  head  and  denudation  marine  demonstrated  reproductive  Natural  of  have  1976,  plants  distal  a  lamina  Mann  total  respectively. lose  Paine  present  the  by  responsible  exudation  pool  near  (1974)  release  in  production.  urchins  complement  l i t t e r  to  the  seaweeds  In 'biomass  As  consider 5)  The  with  and  estimate  lost  or  expected Laycock  4)  the  detrital  associated least  is  fragmentation,  locations distal  They  net  sea  detaching  the  of  al. 1 9 6 6 ,  al. ( 1 9 7 7 )  et  of  Breen  plants  location  production the  by  to  tips.  sheltered  either  erosion  Johnston  et  resulted  and  10%  numbers  1973,  detached  lamina  gross  Mann  sometimes  the  3) on  large  grazing  -  approached  (Leighton  and  has  periods  sources  zone  Miller  Mann  by  biomass  4  entry  is  the into  concomitant  would  of  be  indistin-  particulate  biomass,  precluded.  final the with  exit  pool the  pathway.  of  marine  formation  plant of  processing. attempt  to  place  perspective,  the  Khailov  various and  aspects  Burlakova  of  the  (1969)  seaweed  proposed  a  -  quantitative  partitioning  of  the  5 -  total  gross  suitable  compartments.  From experiments  rophytes  and  of  sumption  by  duction via  is  13  species  herbivores  or  l i t t e r  With duction  to  to  fold  processing confirm  the  is  this  decomposition tion  be  i t  the  an  does  five  macrophytes  11.2%  living  and  biomass,  realization pool  not  hypothesis  may  seem  essential  along  ca  Sea  with  of  seaweeds  species  they  of  judge  into  Barents  loss  37.3%  due  of  Sea  mac-  to  con-  gross  pro-  calculate  that  the  major  source  of  detritus,  the  contribution  of  seaweed  either  pathways.  detrital  with  exceed  is  its  unreasonable  aspect  i t  that  of  or  energy  necessary  subsequent  consumption premature  flow  that  the  detritus  in  by  herbivores  to  suggest  near  shore  dynamics  formation,  of  proby  that  three detritus  ecosystems.  seaweed  processing,  To  l i t t e r and  u t i l i z a -  investigated. This  thesis  descriptively  seaweed  l i t t e r  biomass  tribution  of  the  were:  study  be  r e p r e s e n t e d by  erosive  four  to  Black  production  1)  2)  to  determine  source  detritus  to  to  of  determine  the  total  of  seaweed  the  selected  quantity  l i t t e r  in  a  rate  seaweed  the  seasonal  its  biomass  defined  tance to  as  a  area,  food  characterize  terms  of  their  for  assess  fibre'  components  rates  and  of  in  the  with  l i t t e r  a  formed  and  detritus  its  seaweed  'crude  seasonal as  content impor-  fauna species  'moderately components relative observed  in  resis-  and  cor-  quantities decomposi-  detritus.  the  objectives  longevity  nitrogen  selected  differences  these  rates and  'soluble',  and  tion  rate, detritus  for  relate  The  area  resource  tant', of  and  assesses  species  predict a  pool.  available  defined  of  formation, for  quantitatively  d e t r i t a l  formation  decomposition  from  4)  the  abundance  and  3)  to  and  conof  - 6 -  These o b j e c t i v e s were r e a l i z e d by c o n d u c t i n g s p e c i f i c sampl i n g and e x p e r i m e n t a l programs and by e x e c u t i o n o f a s i m u l a t i o n model o f l i t t e r and d e t r i t u s p r o c e s s i n g based on d a t a a c q u i r e d from these programs.  - t -  METHODS  THE  STUDY  AREA  A l l  f i e l d  work  adjacent  to the southeastern  ern  most  of a cluster  are  ca  32 km w e s t  extension The  Gulf  geological and  hectare  component  cribed  plot  (Muller  well  (Foreman  .1977).  near  Site  This  at  the University  Island  sandstone  as T h e F l a t River,  i s  Postels plot  be referenced  laboratory o f British  Thep l o t  work  b e known  as S i t e  These  islands  i n area,  i s  called  i t s  amounts  a gently  main  o f  shale  sloping one  canbe appropriately  to the extensive  and Ruprecht w i l l  the east-  o f islands  minor  area  b e d duep a r t i c u l a r l y  Columbia,  zone  andhug the southeastern  o f a group  research  sublittoral  Tops.  3.2 h e c t a r e s  to the southeast. kelp  British  complemented w i t h  Themain  onehectare  1, w i l l A l l  Bath  (Mertens)  luetkeana  known  o f the Fraser  1971).  exposed  Island,  t h e northernmost  1).  being  out i n the shallow  o f Bath  islands  Island,  as a s u c c e s s i o n a l  Nereocystis  tion,  o f small  (Figure  conglomerate  shore  o f t h e mouth  o f Gabriola Islands  was c a r r i e d  which  does  as S i t e  1.  stand  well  desof  there  A second  loca-  2.  was performed  i n t h e Department  o f  Botany  Columbia.  SAMPLING Three 1)  seaweed  Litter  within  fauna  andspatial within  Site  distribution  Site  the seasonal  invertebrate  implemented:  o f  1  andspatial  within  distribution 1  Site  distribution  1.  Assessment: The  shore  biomass  the seasonal  biomass  to determine of  were  the seasonal  l i t t e r  t o determine detritus  3)  programs  t o determine of  2)  sampling  a t 95 m along  main,  permanently  t h e 100 m shore  marked front  transect  forming  location  t h e base  intersected the  o f Site  1.  At  times  - 8-  Figure  1.  Locations a)  Fiat of  b)  of  Top  f i e l d  study  Islands  in  British  Site  sites.  relation  to  the  lower  mainland  Columbia.  1 and S i t e  2  in  relation  to  the  Flat  Top  Islands.  of  sampling  zone  (upper  cover.  a  line  limit  sampled.  that  lay within  segmented  into  a metre t e n 20 m  a standard  quadrats carried data  were  used  along  t h e base  Site  1.  Site  2 , ca  two areas  from  quadrat  On o c c a s i o n ,  was more  than  i n a representative intervals  transects  t o determine  1975u n t i l  sampled  the spatial  (10 November  1975)  exposed  Site  being  placed  l i t t e r  at this  5,  allowing  s i t e was  1976.  o f seaweed  transect  1,  of  October  These  l i t -  35 a n d 6 5 : m  distribution  a single  than  from  l i t t e r  collected, the  Sampling  o f t h e biomass  were  each  be easily  fashion.  o fthe  The t r a n s e c t was  the quantity  could  from August  the seasonality  and less  when  outside  a l l seaweed  the collections  bag.  seaweed  of l i t t e r  within  was c o l l e c t e d a t a  comparison  o f  t o be made.  When could  proceeded to collect  with  On o n e o c c a s i o n 2 0 0 m away  observed  quadrats  1976s i m i l a r  i n order  then  were  i n t e r t i d a l  o f most  line.  2  2  o f l i t t e r  t h e zone  o f the transect  labelled  20 m  beyond  side  t o determine  On 3 A u g u s t  t o a point  from t h e high  on e i t h e r  subsampled  ter.  i t  divers  o u t a t c a 3-4 week  were  was e x t e n d e d  accumulations  Two s c u b a  an appropriately  within  the  o f barnacles)  No s i g n i f i c a n t  zone  in  100 m i n l e n g t h  collections  were  made  a seaweed  be described by one o f t h e following 1)  detached bottom, rocks  2) 3)  andhaving generally  o r  attached  lying  l i t t e r  i f  tothe  amongst  debris but apparently  i n t h e case stipes,  as  phrases:  settled  snagged  was c l a s s i f i e d  dead  o f Nereocystis  attached  prone,  luetkeana  o r unattached and  t h e pneumatocyst  having  flooded. For quadrat Nereocystis  each  the substrate luetkeana  site  a transect  was d e s c r i b e d . plants  i n each  depth  profile  On 3 August quadrat  was r e c o r d e d  1976t h e number  o f the four  transects  and f o r each o f  living  located  -  within  Site  1 was enumerated. A l l  were  sorted  (1973,  and i d e n t i f i e d  were  groenlandica  F o r each  1 0 0 C)  taxon  biomass  drat  actual  to the laboratory  as p o s s i b l e  (1974).  al.  a n d s o were  d r y weight  the wetweight,  (12 h o u r s  Laminaria  recorded  stipe  or  dry weight  a t 4 2 5 C) w e r e  they  Widdowson  and  often  as e i t h e r  where  to  saccharina  was s u b s c r i p t e d quadrat  according  Laminaria  distinguishable  i n every  May 1 9 7 6 u n t i l  of detritus  locations  transect  transported  only  as  lamina (24 h o u r s  recorded.  Assessment: From  the  et  luetkeana  and ash-free  Detritus  were  as p r e c i s e l y  n o t always  Nereocystis  l i t t e r . at  collections  1974) and L i n d s t r o m  Laminaria.  10 -  were  fixed,  perpendicular  positioning  within  October  Site  roughly  a t ca  three  1 was d e t e r m i n e d .  Nine  corresponding  t o the shore  o f the quadrat  19 76  week  permanent  t o 2 0 , 3 0 . . . 100  a t 95 m a l o n g  was d e t e r m i n e d  t h e base  intervals qua-  m along  of Site  1.  by the a v a i l a b i l i t y  a  The of  rela2  tively  flat,  quadrat. a  wire  continuous  Each  brush,  substrate  o f these  quadrat  and again  small  boats.  port. the  quadrat,  by drawing  substrate.  Upon  through  2 mm m e s h  through  preweighed  a  ash-free  sampling using  i n a normal  material  into  returning  to shore,  Whatman  GF/C^glass  d r y weighed  a hand  fashion, into  fibre  The residuum  (4 h o u r s  pump  a t 42 5 C ) .  m  clean  designed  f o r bailing  plastic passing  with  bag t o t h e exhaust the intake Control  the intake  the contents  t o remove  a 0.0625  scrubbed  the bag.  the bag while  screening  t o accommodate  period.  a n 1 1 lb  was s u c k e d  s e a water  apparatus.  enough  was i n i t i a l l y  by securing  household  M i l l i p o r e ® f i l t e r  and  t h e pump  a l l loose  each  was c o l l e c t e d  was m o d i f i e d  By o p e r a t i n g  collected the  It  locations  following  Detritus  extensive  large  f i l t e r s  port  o f each  over  samples  were  was w e l l  b a g were  particles, ( 2 - 3 pm p o r e  was d r y weighed  port  screened  then  passed  size)  (12 h o u r s  above  using  a t 100C)  - 11 -  Faunal  Assessment: From May u n t i l October 1976 a t a p p r o x i m a t e l y t h r e e week i n t e r v a l s ,  f a u n a l c o l l e c t i o n s were made w i t h i n S i t e 1.  The sampling p r o c e d u r e i n v o l v e d t h e  2 c o l l e c t i o n o f 0.0625 m  q u a d r a t s a t 30,40...100 m a l o n g the permanently  t r a n s e c t a t 95 m a l o n g t h e base o f S i t e 1. an underwater a i r l i f t panty hose.  (Foreman  The organisms were c o l l e c t e d  located using  1977) and t r a p p e d i n a c o l l e c t i n g bag made from  Samples were t r a n s p o r t e d t o t h e l a b o r a t o r y w h i l e f r e s h where they  were s o r t e d , i d e n t i f i e d a c c o r d i n g t o K o z l o f f (24 hours a t 100 C) weighed.  (1974), counted, and wet and dry  FIELD EXPERIMENTS Two  field  experiments were performed d u r i n g J u l y and August 19 76.  The f i r s t was d e s i g n e d t o o b t a i n in situ  r a t e s o f decomposition f o r k i l l e d s e a -  weeds, t h e second t o e s t i m a t e senescence times f o r those s p e c i e s  contributing  s i g n i f i c a n t l y t o t h e l i t t e r w i t h i n S i t e 1. L i t t e r Decomposition Experiments:  Seaweeds were chosen f o r t h e l i t t e r the  decomposition experiments on  b a s i s o f t h e i r c o n t r i b u t i o n s t o t h e s t a n d i n g crop o f l i v i n g seaweed biomass  w i t h i n S i t e 1 ( c o r a l l i n e algae excluded).  As S i t e 1 o v e r l a p s almost  the  one h e c t a r e p l o t Foreman (1977) d e f i n e d f o r h i s biomass  his  d a t a were used as a c r i t e r i o n  cending o r d e r o f t h e i r Iridaea  cordata  Constantinea Laminaria  s t u d i e s i n 1972,  f o r r a n k i n g the seaweeds.  'importance v a l u e s '  entirely  They a r e , i n de-  (Foreman unpub.) :  (Turner) Bory  subulifera (L. saccharina,  Setchell L. groenlandica  Rosenvinge)  Fucus distichus L. Odonthalia floccosa (Esper) F a l k e n b e r g Rhodomela larix (Turner) C . Agardh Plocamium  coccineum  var.  Gigartina  papillata  ( C . Agardh) J . Agardh  Nereocystis  pacificum  (Kylin)  Dawson  luetkeana  The above s p e c i e s accounted f o r j u s t o v e r 80% o f seaweed s t a n d i n g crop biomass, e x c l u s i v e o f c o r a l l i n e a l g a e , as t h e i r c o n t r i b u t i o n t o l i t t e r would be minor. In  groenlandica of  Nereocystis  to  11.  for at  t h e l i t t e r b a g experiments Laminaria  saccharina  and  Laminaria  were c o n s i d e r e d s e p a r a t e l y as were t h e s t i p e and lamina s e c t i o n s luetkeana,  b r i n g i n g t h e t o t a l count o f i n d i v i d u a l  The a p p r o p r i a t e seaweeds were c o l l e c t e d l i v e ,  t h e l i t t e r bags, wet weighed ca 50 C f o r 10-15 minutes.  experiments  cut into portions  suitable  and k i l l e d by p l a c i n g them i n a seawater b a t h  A s e p a r a t e p o r t i o n o f each seaweed, a c o n t r o l ,  was wet and d r y weighed w i t h o u t u n d e r g o i n g d e c o m p o s i t i o n .  - 13 -  The  remaining  (2 mm mesh).  made from p l a s t i c h o u s e h o l d s c r e e n i n g pared  Three l i t t e r bags were p r e -  f o r each seaweed t e s t e d w i t h the e x c e p t i o n o f Fucus distichus  f o u r bags were p r e p a r e d . bag  cm x 15 cm l i t t e r bags  p o r t i o n s were p l a c e d i n 15  Each l i t t e r bag was  and suspended from the mesh (5 cm)  cage (2.0 m x 1.5  m x 0.5  m)  p l a c e d i n a l a r g e r (1 cm mesh)  forming the r o o f o f an aluminum framed  c o n s t r u c t e d as a p r e c a u t i o n t o reduce the  f e r e n c e o f l a r g e animals which might graze upon o r otherwise decomposing seaweed.  The  (Site 2).  inter-  i n t e r a c t with  p l a c e d on the bottom a t ca  cage was  s e a l e v e l i n a r e l a t i v e l y s h e l t e r e d embayment experiments i t was  f o r which  6 m  the  below mean  From p r e l i m i n a r y  judged t h a t the breakdown o f the seaweeds would be r a p i d ,  t h e r e f o r e the l i t t e r bags were r e t r i e v e d based on v i s u a l o b s e r v a t i o n s o f the p r o g r e s s i o n o f the decomposition mined s c h e d u l e .  The  process  r a t h e r than a c c o r d i n g t o a p r e d e t e r -  m a t e r i a l which remained i n the l i t t e r bags a t the  t i o n o f the i n c u b a t i o n p e r i o d was  termina-  removed, dry weighed and saved f o r n i t r o g e n  determination.  F o l l o w i n g completion  o f a l l i n c u b a t i o n s the dry weights were  normalized with  r e s p e c t t o the c o n t r o l and expressed  as a p e r c e n t a g e o f  o r i g i n a l dry w e i g h t o f the m a t e r i a l p l a c e d i n the l i t t e r  the  bags.  L i t t e r Senescence Experiments: A second experiment was for  performed t o determine the time r e q u i r e d  the seaweeds which appeared t o be the more s i g n i f i c a n t c o n t r i b u t o r s t o the  l i t t e r w i t h i n S i t e 1 t o d i e once h a v i n g e n t e r e d the l i t t e r p o o l .  Death i s con-  s i d e r e d t o be the time when t i s s u e breakdown by a u t o l y t i c o r s a p r o p h y t i c means begins.  The  s p e c i e s chosen were Nereocystis  t i o n s ) , Laminaria  saccharina,  p o r t i o n s o f each o f these  Laminaria  ca  3-5  m depth.  groenlandica  ( s t i p e and lamina and  Iridaea  sec-  cordata.  seaweeds were p l a c e d i n 1 cm mesh l i t t e r bags  n e c e s s a r i l y a s i n g l e s p e c i e s p e r bag) at  luetkeana  Live  (not  and s e c u r e d t o the s u b s t r a t e w i t h i n S i t e  1  Some bags were l e f t exposed w h i l e o t h e r s were p l a c e d between  rocks o r w i t h i n shaded c r e v i c e s .  These bags were observed  over  f i v e weeks,  - 14 -  noting changes i n the condition of their contents. The time required for a seaweed to die was estimated by assuming that once dead, the number of days required for seaweed biomass  to  leave a 1 cm mesh l i t t e r bag was about one h a l f the number of days required for i t to leave a 2 mm mesh bag. decomposition experiments.  The l a t t e r data are known from the  litter  By subtracting the l a t t e r number of days from  the number of days required for the u n k i l l e d seaweed to disappear from the 1 cm mesh bags, the length of time required for fresh l i t t e r to die was e s t i mated.  - 15 -  LABORATORY EXPERIMENTS  Detritus  Decomposition: D e t r i t u s was c r e a t e d from seaweed s p e c i e s which had been  collec-  ® t e d l i v e , washed, c l e a n e d , d r i e d , c r u s h e d by hand and p r o c e s s e d i n a W i l e y mill.  Three s i z e f r a c t i o n s o f d e t r i t u s  (1000-420 ym, 250-149 ym and 44-0 pm) q  were then c o l l e c t e d by s h a k i n g the c r u s h e d seaweed through a s e r i e s o f E n d i c o t t sieves.  The r a t i o o f s u r f a c e a r e a exposed t o m i c r o b i a l a t t a c k f o r t h e t h r e e  s i z e c a t e g o r i e s w i l l be, from t h e l a r g e s t t o t h e s m a l l e s t , ca 1:4:32, when a l l are p r e s e n t i n e q u a l mass.  By s e t t i n g t h e upper l i m i t o f d e t r i t a l  particle  s i z e a t 1.0 mm (dry) the d e t r i t u s decomposition experiments can be c o n s i d e r e d a c o n t i n u a t i o n o f the l i t t e r tion  decomposition experiments which  rate o f d e t r i t a l p a r t i c l e s  < 2.0 mm (wet).  a s s e s s e d the forma-  The d e t r i t u s was d e r i v e d  from  the same 10 s p e c i e s used i n the l i t t e r bag experiments, t h e s t i p e and lamina s e c t i o n s o f Nereocystis Two  luetkeana b e i n g c o n s i d e r e d s e p a r a t e l y .  experiments were performed t o a s s e s s the m i c r o b i a l  t i o n o f t h i s d e t r i t u s , one based on oxygen consumption, m i c r o b i a l consumption  of particulate material.  utiliza-  the second based on  Both experiments were s t r u c t u r e d  around a 3 x 3 x 11 f a c t o r i a l d e s i g n (Hicks 19 73) i n c o r p o r a t i n g t h r e e p a r t i c l e s i z e s , t h r e e i n c u b a t i o n p e r i o d s , and 11 e x p e r i m e n t a l s e t s  Experiment 1 (Microbial Assessment  Oxygen Consumption):  o f oxygen consumption  B i o c h e m i c a l Oxygen Demand (BOD) b o t t l e s was  (10 s p e c i e s ) .  r e q u i r e d 12 acid-washed,  f o r each i n c u b a t i o n s e t .  Oxygen c o n t e n t  assayed by the W i n k l e r method ( S t r i c k l a n d and Parsons 1972) .  Into three o f  each s u b s e t o f f o u r b o t t l e s , a 1.0 mg p l u g o f d e t r i t u s o f a s i n g l e s i z e was  300 mL  p l a c e d ; the f o u r t h remained a c o n t r o l .  o t h e r two s i z e c l a s s e s .  class  T h i s procedure was r e p e a t e d f o r the  An i n o c u l u m o f 1.0 mL o f f r e s h seawater was p i p e t t e d  i n t o each BOD b o t t l e as a s o u r c e o f microbes, f o l l o w i n g which a l l b o t t l e s were  - i n f i l l e d with f i l t e r e d and  (0.45  ym) and a e r a t e d seawater.  i n c u b a t e d i n a 15 C water b a t h and a g i t a t e d  t i n g each p a r t i c l e s i z e , and a c o n t r o l o f 5, 10, and 20 days o f i n c u b a t i o n . appropriate reagents.  The b o t t l e s were capped  daily.  Bottles  represen-  (four i n t o t a l ) were removed a f t e r each They were immediately  f i x e d w i t h the  Twenty days was s u f f i c i e n t time t o a l l o w a s i g n i f i c a n t  drop i n t h e oxygen content o f t h e b o t t l e s w h i l e a v o i d i n g  depletion.  This  procedure was r e p e a t e d f o r a l l 11 s e t s . Experiment  2  (Microbial  Consumption  Each i n c u b a t i o n c u l a t e matter r e q u i r e d class)  as c u l t u r e  set  of  Particulate  Material)  f o r t h e experiments t o a s s e s s l o s s o f p a r t i -  e i g h t e e n 250 mL Erlenmyer f l a s k s  vessels.  .-  (six flasks per size  A 0.1 g p l u g o f d e t r i t u s r e p r e s e n t i n g  c l a s s was added t o each f l a s k .  These 18 f l a s k s were d i v i d e d  a single  i n t o two equal  To one s e t , the c o n t r o l , 100 mL o f 0.45 pm f i l t e r e d , s t e r i l e seawater KCN  a t a c o n c e n t r a t i o n o f 0.1% ( H a r r i s o n  set received  and Mann 1975b) was added.  1974)  and was i n o c u l a t e d  w i t h 1.0 mL o f f r e s h  Each e x p e r i m e n t a l f l a s k was thus p a i r e d w i t h a c o n t r o l i n c u b a t e d a t 15 C and a g i t a t e d  the  regularly.  flask.  That s t e r i l i t y  f l a s k s was confirmed by the c l a r i t y o f the c o n t r o l  containing The second  seawater.  A l l f l a s k s were  prevailed  i n the con-  f l a s k s when compared t o  experimental f l a s k s . At  trol  sets.  100 mL o f t h e s t e r i l e seawater enhanced w i t h 0.15 g/L o f NaNO^  ( G o s s e l i n k and K i r b y  trol  size  10, 20, and 30 day i n t e r v a l s an e x p e r i m e n t a l f l a s k and a con-  f l a s k o f each p a r t i c l e s i z e ( s i x i n t o t a l ) were r e t r i e v e d .  The contents o f  ® each f l a s k were f i l t e r e d through preweighed Whatman GF/C The  f i l t e r s were d r i e d  terial  (4 hours a t 100 C) and weighed.  glass  filters.  The l o s s o f p a r t i c u l a t e ma-  f o r any treatment group was determined by s u b t r a c t i n g  f o r each e x p e r i m e n t a l f l a s k from t h a t o f t h e c o n t r o l  fibre  flask.  t h e r e s i d u e weight  N i t r o g e n Content o f Decomposing  Litter:  The t o t a l n i t r o g e n c o n t e n t o f the seaweed m a t e r i a l which r e mained i n the l i t t e r bags a t the time they were r e t r i e v e d was a m a c r o - K j e l d a h l method i n each assay was ial  (Skoog and West 1969).  determined u s i n g  The q u a n t i t y o f n i t r o g e n o b t a i n e d  e x p r e s s e d as a p e r c e n t a g e o f the t o t a l dry weight o f the mater-  assayed.  S t r u c t u r a l Composition o f S p e c i e s C o n t r i b u t i n g t o L i t t e r : For Nereocystis ponents  a l l 10 seaweed s p e c i e s and the s t i p e and l a m i n a s e c t i o n s o f  luetkeana  the c o n t r i b u t i o n by each o f t h r e e b a s i c s t r u c t u r a l com-  t o l i v i n g seaweed biomass was  determined on a dry weight b a s i s .  components w i l l be r e f e r r e d to as t h e ' s o l u b l e ' , 'crude f i b r e '  'moderately  These  resistant'  and  components. For  of  2-3  to  m a t e r i a l which  e x p e r i m e n t a l purposes m a t e r i a l which p a s s e d through a  pm pore s i z e was  classified  as 'soluble'-  'Moderately r e s i s t a n t '  filter  refers  i s p a r t i c u l a t e and e a s i l y m e t a b o l i z e d by m i c r o b e s , b e i n g com-  posed l a r g e l y o f low m o l e c u l a r weight and n o n - s t r u c t u r a l p o l y m e r i c compounds w i t h i n the c e l l m a t r i x .  'Crude f i b r e '  c o n s i s t s mainly o f c e l l u l o s i c sugar p o l y -  mers t h a t are somewhat r e s i s t a n t t o the a t t a c k o f microbes.  These polymers  g e n e r a l l y r e s p o n s i b l e f o r the s t r u c t u r a l i n t e g r i t y o f c e l l w a l l s Both the s o l u b l e and crude f i b r e plicitly.  The q u a n t i t y o f s o l u b l e matter was  d e t r i t u s decomposition experiments. filtering  (Steward  components were determined  determined i n Experiment  are  1974). ex-  2 o f the  The weight o f the residuum o b t a i n e d from  (2-3 ym pore s i z e ) the contents o f the c o n t r o l f l a s k s a t the end o f  each i n c u b a t i o n p e r i o d was  s u b t r a c t e d from the i n i t i a l weight  (0.1 g) o f the  m a t e r i a l i n the f l a s k s , t h i s b e i n g the q u a n t i t y o f m a t e r i a l passed through the f i l t e r , i . e . the s o l u b l e c o n t e n t .  Accepted v a l u e s f o r s o l u b l e c o n t e n t were ob-  t a i n e d by a v e r a g i n g the r e s u l t s o f the 10 and 20 day i n c u b a t i o n p e r i o d s s i n c e  - 18 -  by day 30 there were indications that some of the control flasks were no longer sterile.  An analysis was performed using the method described by Strickland  and Parsons (1972) to determine the percentage of crude f i b r e present i n seaweed biomass.  The dry weight of the crude f i b r e f r a c t i o n was determined following  extraction of the a l k a l i / a c i d - s o l u b l e components of 30 mg samples of ground seaweed (0-44 urn p a r t i c l e s i z e ) .  Crude f i b r e carbohydrate content  (expressed as  an equivalent amount of glucose) was determined spectrophotometrically. sizes were 1.0 mg.  Sample  - 19 -  MODEL DEVELOPMENT AND DATA ANALYSIS  Much o f the data r e q u i r e d from the p r e v i o u s l y d e s c r i b e d samp l i n g and e x p e r i m e n t a l  programs were s u i t a b l e f o r i n c o r p o r a t i o n i n t o a mathe-  m a t i c a l model c r e a t e d t o s i m u l a t e through d e t r i t a l pathways. mind. and  the t r a n s p o r t o f decomposing seaweed biomass  Most o f t h e data were a c q u i r e d w i t h  The model a l s o i n c o r p o r a t e d  e n v i r o n m e n t a l data measured d u r i n g 1975  1976 as a p a r t o f an ongoing program by Foreman  the m e t e o r o l o g i c a l  t h i s end i n  (unpublished) t o d e s c r i b e  and o c e a n o g r a p h i c c o n d i t i o n s o f t h e a r e a .  The model was  w r i t t e n i n FORTRAN G and debugged and e x e c u t e d by the IBM 370 computer a t the U n i v e r s i t y o f B r i t i s h Columbia Computing Centre. support  programs and s u b r o u t i n e s  presentation of results.  In a d d i t i o n ,  numerous  were used i n t h e a n a l y s i s o f experiments and  -3.0-  RESULTS  L i t t e r Assessment: Five species (four genera)  of seaweeds were responsible  for  more than 97% of the plant l i t t e r collected over the 14 month sampling period from 20 August 1975 u n t i l 2 October 1976. Iridaea  cordata,  Nereocystis  saccharina  and  distichus, Laminaria  collec-  Table 1 summarizes the d i s t r i b u t i o n of l i t t e r biomass c o l l e c t e d from  the transects 1976.  Laminaria  Fucus  In a l l , about 43 taxa were recognized within the l i t t e r  groenlandica.  tions.  luetkeana,  These species were  at 5, 35 and 65 m within Site 1 on 3 August and at 95 m on 2 7 July  These transects w i l l be referred to c o l l e c t i v e l y as the midsummer l i t t e r  collections. Figure 2 (a-e)  presents s p a t i a l representations  of the d i s t r i b u -  tion of l i t t e r at midsummer of 1976, near the time of maximum l i t t e r accumulation.  The area defined by the abcissa and ordinate represents Site 1 as though  i t were being observed from above. and  distichus  Iridaea  cordata,  Note that the l i t t e r derived from  Fucus  whose normal habitats are the i n t e r t i d a l and  upper subtidal zones, respectively  (Lindstrom 1973), i s retained almost exclu-  s i v e l y within the shallow subtidal zone.  Nereocystis  luetkeana  and  Laminaria  l i t t e r i s retained i n deeper water, i n the zone where these plants grow ^abundantly. living  Table 2 demonstrates a p o s i t i v e correlation between the number of Nereocystis  lections  plants observed during each of the midsummer c o l -  luetkeana  and the quantity of  collections,  Nereocystis  luetkeana  l i t t e r within these same  i n d i c a t i n g that l i t t e r tends to be retained where i t was deposited.  From Figure 3 i t can be seen that  Laminaria  l i t t e r at Site 2 was  almost e n t i r e l y within the outer extent of the transect, 4-5 m below MSL.  i n a depth range of  This range is comparible to the kelp community zone delimited  by Lindstrom (1973). crop biomass of  collected  Visual examination of the area confirmed a large standing  Laminaria  i n the v i c i n i t y of Site 2 and within t h i s depth range.  T a b l e 1.  Mean biomass p e r m o f the major c o n t r i b u t o r s t o t h e l i t t e r p o o l w i t h i n S i t e 1 b a s e d on t h e c o l l e c t i o n s o f 27 J u l y and 3 August 1976 •  Wet weight  (%1  Dry weight  (%1  distichus  27.3  (65.8)  5.40  (70.3)  3.96  (72.0)  cordata  4.6  (11.1)  1.20  (15.6)  0.83  (15.0)  Species  Fucus Iridaea  Ash-free dry w e i g  Nereocystis  luetkeana  (stipe)  1.2  ( 2.9)  0.16  ( 2.1)  0.11  ( 2.0)  Nereocystis  luetkeana  (lamina)  6.3  (15.2)  0.62  ( 8.1)  0.41  ( 7.5)  Laminaria  0.88  (2.1)  0.13  ( 1.7)  0.09  ( 1.6)  A l l other species  1.18  ( 2.8)  0.17  ( 2.2)  0.11  ( 2.0)  TOTAL  41.46  7.68  5.51  - 22 -  F i g u r e 2.  S p a t i a l c h a r a c t e r i s t i c s o f l i t t e r biomass f o r the major c o n t r i b u t o r s t o the l i t t e r p o o l w i t h i n S i t e 1 b a s e d on t h e c o l l e c t i o n s o f 27 J u l y and 3 August 1976. Contour i n t e r v a l s are i n g a s h - f r e e dry weight p e r 10 IT?. S o l i d c i r c l e s i n d i c a t e pockets o f l i t t e r . Contour i n t e r v a l a)  Fucus  b)  Iridaea  distichus  as l a b e l l e d  cordata  as l a b e l l e d  c) Nereocystis  luetkeana  (stipe)  1.0  Nereocystis  luetkeana  (lamina)  4.0  d)  e) Laminaria  as l a b e l l e d  - 23 -  distichus  a) Fucus  o a  143  68  0.0  M  56  M  1261  1  1  1  1  20.0  40.0  60.0  80.0  DISTRNCE ALONG SHORE M)  1  100.0  -  b)  Iridaea  24  -  cordata  a 16  LU (Da C C S "  1  cr: l—  CD 51 —I  • ,  LU CJ  -z. cr i— co°.  227  •—io_|  1  0.0  1  20.0  40.0  1  60.0  D I S T A N C E ALONG S H O R E (M)  I  80.0  1  100.0  -  c) Nereocystis  luetkeana  -  (stipe)  - 26 -  e)  Laminaria  - 28 -  Table 2.  Comparison between t h e number o f l i v i n g Nereocystis luetkeana p l a n t s w i t h i n a t r a n s e c t b e l t and t h e q u a n t i t y o f Nereocystis luetkeana l i t t e r c o l l e c t e d w i t h i n t h e same b e l t . T r a n s e c t s a t 5, 35, 65 and 95 m a l o n g the base o f S i t e 1 were c o l l e c t e d e i t h e r on 27 J u l y o r 3 August 1976. The t r a n s e c t a t S i t e 2 was c o l l e c t e d on 10 November 1975.  Number o f l i v i n g Nereocystis  (per  luetkeana  Quantity  litter  o f Nereocystis  collected  luetkeana  (g AFDW/transect)  transect) Stipes  Lamina  Total  S i t e 1: 05  14  4.21  32.04  36.25  35  7  6.18  27.47  33.65  65  9  4.55  26.17  30.72  95  38  27.90  S i t e 2:  0  2.71  76.57  4.09  104.47  6.80  F i g u r e 3.  D i s t r i b u t i o n o f Laminaria l i t t e r c o l l e c t e d a l o n g the t r a n s e c t a t S i t e 2 on 10 November 1975 r e l a t i v e t o depth below mean sea l e v e l .  - 30 -  T a b l e 3 i n d i c a t e s t h a t a t both S i t e s I and 2 more than 90% o f t h e l i t t e r ted  was composed o f t h e seaweeds most c h a r a c t e r i s t i c o f each a r e a ,  luetkeana  and Laminaria/Agarum  a s i g n i f i c a n t Nereocystis  f o r S i t e s 1 and 2, r e s p e c t i v e l y .  luetkeana  the i n t e r p r e t a t i o n t h a t l i t t e r place o f deposition.  c o n t r i b u t i o n t o the l i t t e r  Nereocystis  The l a c k o f at S i t e 2 supports  i s n o t t r a n s p o r t e d l o n g d i s t a n c e s away from i t s  The n e a r e s t l i v i n g Nereocystis  luetkeana  plant to Site 2  The l a r g e accumulation o f Laminaria  was no c l o s e r than 100 m.  collec-  l i t t e r at Site 2  may be due t o i t s s h e l t e r e d l o c a t i o n , t h e r e b y r e n d e r i n g the a r e a p a r t i c u l a r l y s u i t a b l e f o r r e t e n t i o n o f l i t t e r d e p o s i t e d w i t h i n t h e immediate W i t h i n S i t e 1 t h e r e was a s i m i l a r tendency t a i n e d i n s h e l t e r s o r pockets formed by t h e s u b s t r a t e .  vicinity.  f o r l i t t e r t o be r e -  A l l large deposits o f  l i t t e r were found i n d e p r e s s i o n s o r where t h e s l o p e o f t h e s u b s t r a t e was more g r a d u a l than u s u a l . for to are  T h i s can be c o n f i r m e d by r e f e r r i n g t o the depth  S i t e 1 (Figure 4 ) .  Comparison o f the r e g i o n s o f l i t t e r  t h e contour l i n e s demonstrates  cordata  and Fucus  distichus  k e t s , although t h e p o c k e t c o n t a i n i n g Iridaea the p o c k e t c o n t a i n i n g Fucus  distichus.  litter cordata  ( F i g u r e 2)  I t i s important t o  c o l l e c t e d i n s e p a r a t e poci s o n l y 1.1 m deeper  This i s f u r t h e r evidence that  tends t o remain i n t h e zone where i t was d e p o s i t e d . in  retention  t h a t the g r e a t e s t accumulations o f l i t t e r  where r e c o g n i z a b l e d e p r e s s i o n s i n t h e s u b s t r a t e e x i s t .  note t h a t Tridaea  contours  than  litter  This e f f e c t i s less evident  the o u t e r e x t e n t o f S i t e 1 where much l e s s l i t t e r was c o l l e c t e d .  Litter  entrapment i n t h i s r e g i o n i s f a c i l i t a t e d by rocks and b o u l d e r s which p r o v i d e t h e t o p o g r a p h i c r e l i e f a i d i n g i n t h e r e t e n t i o n o f the l i t t e r . The s e a s o n a l t r e n d i n t h e biomasses  o f s p e c i f i c and t o t a l  c o l l e c t e d within S i t e 1 i s presented i n Figure 5 ( a - f ) .  litter  The most i m p o r t a n t  t u r e o f each o f these p r o f i l e s i s t h a t a peak p e r i o d o f l i t t e r  fea-  accumulation  o c c u r s i n August o r September i n b o t h o f 1975 and 1976, w i t h a low near z e r o i n January and February 1976. Nereocystis  F i g u r e 5c demonstrates  luetkeana s t i p e s i n the l i t t e r  t h a t t h e presence o f  i s p r o l o n g e d o v e r t h e autumn  season.  - 31 -  Table  3.  Comparison o f t h e t o t a l q u a n t i t y and s p e c i f i c composition o f l i t t e r c o l l e c t e d w i t h i n the t r a n s e c t a t 95 m w i t h i n S i t e 1 on 9 November 1975 and the t o t a l q u a n t i t y and s p e c i f i c composition o f l i t t e r c o l l e c t e d w i t h i n the t r a n s e c t a t S i t e 2 on 10 November 1975 (g AFDW/transect)• S i t e 1 and S i t e 2 are s e p a r a t e d by ca 200 m, t h e l a t t e r b e i n g a l e s s exposed a r e a .  Species  95 m w i t h i n S i t e 1  (j0  Site 2  (%)  Fucus distichus  0.66  ( 0.66)  7.81  ( 0.49)  Iridaea  0.51  ( 0.51)  16.70  ( 1.05)  90.28  (90.28)  2.71  (0.17)  4.79  ( 4.79)  4.09  ( 0.26)  Laminaria  1.24  ( 1.24)  1385.26  (86.77)  Agarum *  1.82  ( 1.82)  94. 39  ( 5.91)  All  0.71  ( 0.70)  85.81  ( 5.37)  cordata  Nereocystis  luetkeana  (stipe)  Nereocystis  luetkeana  (lamina)  other species  TOTAL  * Agarum fimbriatum  100.01  Harvey & Agarum cribrosum  1596.47  (Mertens) Bory  - 32 -  F i g u r e 4.  Depth contours (m below mean s e a l e v e l ) Contour i n t e r v a l s are 0.5 m.  for Site  1.  - 33 -  Figure  5.  S e a s o n a l d i s t r i b u t i o n o f l i t t e r biomass f o r the major c o n t r i b u t o r s t o the l i t t e r p o o l w i t h i n S i t e 1 based on c o l l e c t i o n s a l o n g the 95 m t r a n s e c t l o c a t i o n a t 3-4 week i n t e r v a l s f o r t h e p e r i o d 20 August 1975 u n t i l 2 October 19 76. Contour i n t e r v a l s a r e g a s h - f r e e dry weight p e r 10 m . Contour i n t e r v a l 2  a) b) c) d) e) f)  distichus  Fucus Iridaea Nereocystis  cordata luetkeana  Nereocystis Laminaria  luetkeana  Total  litter  (stipe) (lamina)  5 .0 5 .0 5 .0 5 .0 5 .0 10 .0  a) Fucus a  distichus  c) Nereocystis  luetkeana  (stipe)  0  S I 230.0  0 275.0  1  1975  N 320.0  1  D  I 365.0  J  I  F 45.0  I  M  I  f  90.0  DRY OF THE YEAR  l  l  M I T 135.0  1976  J  I  J  I  ~i  180.0  225.0  270,  d)  Nereocystis  luetkeana  (lamina)  DRY OF THE YEAR  e)  Laminaria  f) T o t a l  litter  DRY OF THE YEAR  - 40 T h i s i s expected s i n c e Nereocystis  luetkeana  i s the most l o n g - l i v e d o f the  annual p l a n t s which c o n t r i b u t e s i g n i f i c a n t l y The s t i p e s p r e v a i l i n t h e l i t t e r keana  t o t h e l i t t e r w i t h i n S i t e 1.  l o n g e r than the lamina o f Nereocystis  luet-  as the lamina are more e a s i l y detached d u r i n g rough weather. S t r u c t u r a l Composition o f S p e c i e s c o n t r i b u t i n g t o L i t t e r :  The r e s u l t s f o r a l l 10 seaweed s p e c i e s a r e p r e s e n t e d i n Table 4.  There a r e c o n s i d e r a b l e d i f f e r e n c e s i n the p e r c e n t a g e s o f s o l u b l e ,  moderately  r e s i s t a n t and crude f i b r e components i n each s p e c i e s , b u t i t i s e v i d e n t t h a t some s p e c i e s h a v i n g s i m i l a r percentages o f these components a l s o taxonomic  and/or m o r p h o l o g i c a l a f f i n i t i e s .  display  Both s p e c i e s o f Laminaria  have  s i m i l a r percentage c o m p o s i t i o n s o f these components as have the s t i p e and lamina o f Nereocystis  both p a r t i c u l a r l y  luetkeana.  Iridaea  cordata  and Gigartina  l e a s t percentage o f moderately r e s i s t a n t m a t e r i a l centage o f s o l u b l e matter  (65.6%).  and s o l u b l e m a t e r i a l . Iridaea  cordata  subulifera  has the  (29.4%) and the h i g h e s t p e r -  I t i s f o l l o w e d by Fucus  these c a t e g o r i e s , 32.8% and 60.7%, r e s p e c t i v e l y ,  fibre  are  low i n crude f i b r e c o n t e n t .  Of a l l the s p e c i e s a n a l y s e d , Constantinea  of  papillata  distichus  f o r moderately  i n both resistant  has both the l e a s t percentage o f crude  (0.86%) and the g r e a t e s t percentage o f moderately r e s i s t a n t  material  (71.0%). The v a r i a b i l i t y  i n the p e r c e n t a g e s o f these components among  the  v a r i o u s s p e c i e s has f a c i l i t a t e d  the  r e l a t i v e amounts o f these components i n each s p e c i e s and decomposition  parameters  o f these s p e c i e s .  the r e c o g n i t i o n o f c o r r e l a t i o n s between  These r e l a t i o n s h i p s w i l l be d i s c u s s e d i n the  c o n t e x t o f t h e a p p r o p r i a t e experiments.  Of p a r t i c u l a r consequence i s t h e  i n f l u e n c e o f the percentage c o n t e n t o f s o l u b l e matter on observed r a t e s o f oxygen consumption  (Experiment 1) and t h e i n f l u e n c e o f t h e percentage  f i b r e c o n t e n t on observed r a t e s o f p a r t i c u l a t e matter consumption  crude  (Experiment 2) .  - 41 -  T a b l e 4.  The percentages o f each o f t h e s o l u b l e , moderately r e s i s t a n t and crude f i b r e components o f t h e s i g n i f i c a n t s p e c i e s w i t h i n S i t e 1. Each v a l u e i s e x p r e s s e d as a percentage o f d r y weight biomass. Crude f i b r e g l u c o s e r e f e r s t o t h e amount o f c a r b o h y d r a t e i n t h e crude f i b r e component e x p r e s s e d as an e q u i v a l e n t amount o f g l u c o s e . The s o l u b l e content and crude f i b r e components are means o f two d e t e r m i n a t i o n s .  Soluble Component  Species  Plocamium  coccineum war. pacificum  Rhodomela  larix  Odonthalia Iridaea  floccosa cordata  Gigartina  papillata  Constantinea Fucus  subulifera  distichus  Moderately Resistant Component  Crude F i b r e Total  Component As g l u c o s e  28.1  59.2  12.70  (3.39)  30.1  60.0  9.86  (4.28)  40.3  54.7  5.01  (3.44)  28.1  71.0  0.86  (0.58)  41.0  57.7  1.30  (1.21)  65.6  29.4  4.99  (2.26)  60.7  32.8  6.48  (1.86)  Nereocystis  luetkeana  (stipe)  41.1  55.4  3.48  (2.29)  Nereocystis  luetkeana  (lamina)  44.7  51.6  3.71  (2.27)  Laminaria  saccharina  41.1  52.6  6.30  (3.14)  Laminaria  groenlandica  36.6  55.7  7.67  (3.37)  ±0.62  ±0.61  Standard  error:  —  L i t t e r  Decomposition The  Figure  6  Laminaria the  (a-k).  results  decomposition were  was l o s t , rates  a  error  smooth,  the series  and there  o f both  curve  being  negative  species  the data,  sent  percent  asymptotically.  models  were  the criterion  slope.  represent zero  from  bag experiments  being  are presented  o f l i t t e r  an apparent  o f Laminaria,  bags  where  2.0% o f o r i g i n a l  The five  a  models  data  as t h i s a r e as  curve  curve  model  Y = aX +  2.  Quadratic:  Y = aX  3.  Logarithmic:  lnY = a(lnX)  4.  Parabolic:  Y =  5.  Hyperbolic:  Y = a +  from  X  i s  t h e independent  Y  i s  t h e dependent  a,  b  ln  i s  requiring creasing  ca  approaches  papillata  (27 d a y s ) ,  Odonthalia  floccosa  repre-  the X-axis  100.0 + bX +  (X -  100.0  +  100.0  a) /4b; 2  (b/(X-  a /4b  =  2  c ) ) ; a -  100.0 (b/c) =  100.0  variable  logarithm the l i t t e r  was v a r i a b l e most  rates  slowly  (46 days)  the species.  the l i t t e r  luetkeana  only  s i x days  bags.  (ca  Listed  o f  Nereo-  disappear  distichus,  i n order  cordata  18 d a y s ) ,  Constantinea  coccineum  to  was Fucus  a r e Iridaea  stipe  but the timing and  The lamina  species  species  (27 d a y s ) ,  a n d Plocamium  was r a p i d  requiring  the remaining  larix  bags  decomposing  from  Nereocystis  Rhodomela  among  rapidly,  to disappear  14 d a y s ) ,  (ca  from  The most  decomposition  Laminaria  to  variable  the natural  o f biomass  bags.  70 d a y s  chosen  to  and c a r e c o e f f i c i e n t s  decomposed  the l i t t e r  was chosen  1  o f decomposition  luetkeana  maintained  follows:  Linear:  2  t h e minimal  t h e curve  was a r b i t r a r i l y  1.  Loss  cystis  between  f o r these two  s e t with  provided  logarithmic  dry weight  purposes,  curve  t o each  f o r acceptance,  F o rplots  f o r graphic  applied  where:  pattern  containing  similarity  the data  i n  combined. Five  residual  f o r a l l 11 l i t t e r  As one l i t t e r - b a g  saccharina  species  Experiments:  (13  days),  Gigartina (43  subulifera  v a r . pacificum  of de-  (49  days),  days).  -  Figure  6.  L i t t e r  decomposition  obtained text),  curves  i n the l i t t e r  (a,b,c)  (r^) a r e given  Species  Model  Plocamium  (submodels)  calculated  bag experiments.  the coefficients  determination  a)  4tJ -  The curve  from  data  model (see  and the c o e f f i c i e n t o f  below  f o r each  species.  a  b  £  r  (%)  49.40  6.099  -  99.45  3.720  100.0  -  98.46  45.69  5.220  -  97.52  -0.448  -1.978  coccineum var.  P  pacificum  b)  Rhodomela  L  c)  Odonthalia  d)  Iridaea  e)  Gigartina  f)  Constantinea  g)  Fucus  h)  Nereocystis  luetkeana  (stipe)  i)  Nereocystis  luetkeana  (lamina)  j)  Laminaria  larix  P  floccosa cordata  Q P  papillata  P  subulifera  LN  distichus  LN P LN  L:  linear  Q:  quadratic  LN:  logarithmic  P:  parabolic  H:  hyperbolic  100.00  99.90  27.00  1.823  -  99.94  43.42  4.712  -  97.65  -0.059  4.605  -  94.06  -0.210  4.605  -  99.90  6.022  0.907  -  98.56  -0.277  4.605  -  96.80  PERCENTAGE OF ORIGINAL DRY WEIGHT  A  PERCENTAGE OF ORIGINAL DRY WEIGHT  a—•  TIME (DAYS)  -  Only  Iridaea  a n d Rhodomela  cordata  pattern  with  terized  by an i n i t i a l  Rhodomela  a decelerating  Litter  Senescence The  tributors  of  i n Table  5.  The  probably  means  condition  only.  time  l i t t e r  as  giving  is  a t least  a more  in  that  taken  modelled.  a similarity  general  estimate  longer  expected  time,  Content  The decomposition  most  notable  cordata of  decisive  senescence  performed  partially  the  times,  estimate  con-  are presen-  significance  therefore  l i t t e r this  obtained  detritus  could be  s i x days  significance  existing  were  components  Fucus  f o r the  o f t h e time  data  t o form  l i t t e r  upon  shaded;  These  l i t t e r  i n modelling.  but the overall  content  presented  feature  demonstrated  material  o f Decomposing  nitrogen  i s  remaining  loss.  due t othe  Ther e s u l t s  o f new l i t t e r  to occur.  As t h e s p e c i f i c  i n their  f o r the significant  tested  demon-  was a c c e p t e d  distichus o f this  as a  may h a v e  error  a  i s  t o be minor.  Nitrogen  of  o f biomass  t o d i e was d e t e r m i n e d  r e a l i s t i c  f o r seaweed  f o r simplicity  senescence  rate  was u n d e r e s t i m a t e d .  deposition  o f t h e seaweed  t h e time  were  f o r a seaweed  Continual  most  strated  was c h a r a c -  rate.  t h e time  experiments  distichus  estimated  was a c c e p t e d  precisely  decomposition  cordata  of the observations.  f o r the death  more  Iridaea  not particularly  required order  to a  by an a c c e l e r a t i n g  to determine  these  b y Fucus  that  loss.  decomposition  t o d i e were  A t t h e time  condition  followed  and infrequency  the contribution  shaded  o f biomass  a linear  experiments  nature  d i d not subscribe  larix  Experiments:  to the l i t t e r  qualitative ted  l a g phase  maintained  larix  rate  54 -  o f these  L i t t e r :  o f seaweed  i n Table results  an increase  l i t t e r  6 f o r t h e 10 s p e c i e s i s  that  a l l species  i n the nitrogen:total  i n the l i t t e r  at various  bags  assayed.  except  biomass  as decomposition  stages The  Iridaea  ratio  proceeded,  -  55 -  Table  Number tributors under  o f days  to the l i t t e r  shaded  and exposed  an  estimation  to  d i e once  pool  required within  f o r unkilled  Site  conditions.  o f t h e number  having  5.  entered  o f days  1 t o leave  portions  The 'estimated required  the l i t t e r  pool.  o f t h e major  a 1 . 0 cm m e s h time  f o r senescence'  f o r a specific See t e x t  l i t t e r  f o r a f u l l  Iridaea  Exposed  cordata  Shaded  explanation.  10-14  5  15-2 3  9  luetkeana  (stipe)  24-30  Nereocystis  luetkeana  (lamina)  15-23  time  f o r senescence  24-30  Nereocystis  i s  component  Estimated Species  con-  l i t t e r bag  6-10  6  Laminaria  saccharina  24-30  10-14  5  Laminaria  groenlandica  24-30  10-14  5  -  56 -  Table  Percentage within  the l i t t e r  bags  nitrogen  6.  content  at the termination  o f the material o f their  Percentage Species  original  Plocamium  coccineum  Rhodomela  fi cum  larix  Odonthalia  Iridaea  v a r . pad  floccosa  cordata  Gigartina  Constantinea  papillata  subulifera  100.00  Nereocystis  Nereocystis  Laminaria  Laminaria  luetkeana  luetkeana  saccharina  groenlandica  (stipe)  (lamina)  Percentage 3.74  65.26  3.68  42.50  3.89  28.22  4.64  100.00  4.24  86.20  4.43  48.73  4.74  100.00  4.24  55.35  3.71  34.51  4.50  100.00  1.94  97.39  1.94  55.66  1.63  100.00  2.54  38.50  3.14  16.79  4.26  2.72  6.34  100.00  2.61  62.30  2.70  100.00  distichus  period.  o f  dry weight  45.20  Fucus  remaining  incubation  -  3.17 1.73  61.08  2.21  39.99  2.37  100.00  1.50  29.70  2.16  100.00  2.38  52.80  3.76  100.00  1.98  13.70  3.70  100.00  2.64  30.14  4.10  11.16  5.20  nitrogen  -  although content most  total  nitrogen  was o b s e r v e d  fully  papillata  by  Figure  250%.  demonstrates  nitrogen:total in  l i t t e r  position  7, w h i c h  that  biomass  their  impact  brevity  experiments  Gigartina  .papillata  assayed, of  increasing  an a c c e l e r a t i n g  biomass  was t h e  decomposed  the trend  components  consumption  increase  as  decom-  of the incubation  Source  of  Size  of  concluded  that  incubation  Analysis obtained  only  period,  effect,  7.  w i l l  effects  period  created  particles  often  be r e f e r r e d  and ' p a r t i c l e  i n this  (ANOVA)  experiment.  Referring  effects,  was p e r f o r m e d The r e s u l t s  to the three  the d e t r i t a l  are significant  a response  size'  t o as  the  'incuba-  respectively.  Consumption):  of Variance  i n t h e oxygen  such  major  i . e. t h e  i t was  Oxygen  two o f them,  differences  latter  effects  species',  1 (Microbial  i n Table  which  of the d e t r i t a l  these  'detrital  the detritus,  from  three  rates:.  Length  data  presented  the following  1.  An  the  fully  i t  c o n t e n t was  a l l species  indicating  to other  tested  on decomposition  each  period',  observed  from  approximates  well,  relative  nitrogen  o f undecomposed  2.  Experiment  the  very  final  because  nitrogen  Decomposition:  seaweed  are  curve  likely  of nearly  data  percentage  proceeds.  3.  tion  that  most  when  ratio  incorporates  ratio  content  Both  For  over  a hyperbolic  nitrogen  Detritus  for  biomass  increased  The greatest  papillata,  of a l l the species  The n i t r o g e n : t o t a l  Gigartina  -  decreased.  f o r Gigartina  decomposed  analyzed.  content  57  (p <  species  o f the  effects,  rates.  be expected  In  since  oxygen  analysis  i t  and t h e length  .05) c o n t r i b u t o r s  comsumption must  major  on the  can be of  to the  consideration t h e oxygen  of  within  gure  7.  Plot  demonstrating  weight a  biomass  ratio  of  1:1  of for  are  incorporated  the  best  f i t  an  increase  decomposing  in  undecomposed  within  through  the  the  the  l i t t e r  l i t t e r .  plot.  points.  ratio  of  expressed  The  A l l solid  10  nitrogen:dry relative species  line  to assayed  indicates  Table 7.  A n a l y s i s o f v a r i a n c e t a b l e f o r the r e s u l t s o f Experiment 1, demonstrating the e f f e c t s o f p a r t i c l e s i z e , d e t r i t a l s p e c i e s and l e n g t h o f i n c u b a t i o n p e r i o d on the oxygen consumption by microbes u t i l i z i n g the d e t r i t u s as a carbon s o u r c e .  Source o f v a r i a n c e  Degrees o f freedom  P a r t i c l e s i z e (PS):  2  Sum o f squares  Mean sum o f squares  Probability  0.12379E-02  0.61894E-03  0.6 3799  D e t r i t a l s p e c i e s (DS):  10  0.65865  0.65865E-01  0.0 *  PS - DS i n t e r a c t i o n :  20  0.18062E-01  0.90311E-03  0.84772  3  5.1409  1.1736  0.17613E-52  PS - IP i n t e r a c t i o n :  6  0.21561E-02  0.35934E-03  0.95198  DS - IP i n t e r a c t i o n :  30  0.29697  0.98989E-02  0.72414E-10  Residual  60  0.82011E-01  0.13668E-02  Incubation p e r i o d  Total:  error:  (IP)  131  6.2000  * s i g n i f i c a n t f o r a = 0.05  -  the  BOD  bottle  biogenic the  origins  oxygen  more  consumption  effect,  oxygen have  continually contributed  susceptible  major  to  species  could  have  The  second  can  and  be  a  that  the  relatively  steep  day  incubation  period  to  the  was  seen  the  incubation  attempt  Both  to  rendered  the  terms  over  the  for  Newman  and  the  an  incubation of  the  8,  which  of  the  the  in  relates period  of  among  the  may  the for  the  detrital  a l l  of  bottles detritus.  cumulative  term  the  the  essence  BOD the  distichus of  third  within  The  the  origin  heterogeneity  are  that  between  periods.  Fucus  in  chance.  interaction  by  the  response  variation  oxygen  biogenic  detritus  difference  Any to  different  variation  For  interaction  incubation  'a  posteriori'  effects.  Duncan's  New  Newman  Keul's  3.  Tukey's  Not  unexpectedly,  effect  -  and  Multiple  10 is  species, a  result  during  slopes  oxygen  the  within  i t of  10-20 the  Keul's  were  performed  outliers  tests  were:  Range  Test  among  on the  the  data  responses  Test  Test  each  independent. of  tests  detect  These  1.  and  range  a f f i n i t i e s  2.  -  of  maintained to  sizes.  of  of  period.  major  unique the  slope  detectable  attributed  the  significance  delimit  significant  subsets  in  of  no  significant  u t i l i z a t i o n  length  Three an  of  Figure  the  was  easily  observing  that  in  others.  By  be  day  than  upon  can  10-15  microbes  dependent  to  observed  species  pattern  consumption  the  detritus  some  particle  source  to  That  that  there  been  response  is  by  three  explained  their  interaction  follows  the  consumed.  implies  size,  of  -  significantly  rates  particle  occurred  being  breakdown  consumptions  experiment  the  is  60  d e t r i t a l Test  and  incubation Only  species Tukey's  period  Duncan's on Test  oxygen  Test  (0,5,10, defined  consumption  permitted  entities  and  20  days)  exclusive rates. to  have  61  Figure  8.  Cumulative 10 the  d e t r i t a l mean  oxygen  consumption  species  result  -  in  for the three  Plocamium Rhodomela  by  Experiment  microbes 1.  d e t r i t a l  coccineum larix  Each  decomposing data  particle  var.  sizes.  pacificum  Odonthalia floccosa Iridaea cordata Gigartina papillata Constantinea subulifera Fucus distichus Nereocystis luetkeana (stipe) Nereocystis Laminaria Laminaria  point  luetkeana (lamina) saccaharina groenlandica  the is  -  0.0  5.D  U a -  10.0  15.0  INCUBATION TIME (DAYS)  20.0  -  a membership i n more than one c u l t to detect. Table  The  62  -  subset such t h a t a f f i n i t i e s were more d i f f i -  subsets d e f i n e d by Duncan's T e s t are p r e s e n t e d i n  8a. To t e s t f o r the p o s s i b l e i n f l u e n c e o f the s o l u b l e compon-  ent on the r e s u l t s o b t a i n e d ,  the oxygen consumed by  a f t e r f i v e days o f i n c u b a t i o n  (mean o f t h r e e p a r t i c l e s i z e s ) was  on the percentage s o l u b l e c o n t e n t o f each s p e c i e s . cant  (p < .01)  consideration.  and  conclusive  The  i f Iridaea  i n c r e a s i n g l y higher  9.  About 77%  comprising  from  soluble  o f the v a r i a t i o n i n oxygen  each s u b s e t .  percentage s o l u b l e c o n t e n t s f o r the  the more r a p i d l y decomposing s p e c i e s cordata  d e t r i t u s i s excluded  Reference t o T a b l e 8b i n d i c a t e s the mean p e r c e n t a g e  s o l u b l e c o n t e n t o f the s p e c i e s  Iridaea  result is signifi-  accounted f o r by d i f f e r e n c e s i n the s o l u b l e c o n t e n t o f  the d e t r i t a l s p e c i e s .  by  cordata  The  species regressed  r e l a t i o n s h i p between oxygen consumption and  content i s presented i n Figure consumption can be  each d e t r i t a l  The  trend  subsets  of  characterized  i s e v i d e n t , w i t h the e x c e p t i o n  decomposes r a p i d l y a l t h o u g h c o n t a i n i n g a r e l a t i v e l y  that  small  percentage o f s o l u b l e m a t t e r .  Experiment  2  The  (Microbial  Consumption  of Particulate  r e s u l t s o f an ANOVA on the d e c o m p o s i t i o n d a t a  i n t h i s experiment are p r e s e n t e d i n T a b l e 9. there  are  d e t r i t a l species.  As was  major e f f e c t s were s i g n i f i c a n t , Two  other  the  incubation  s i g n i f i c a n t sources of v a r i a t i o n  were an i n t e r a c t i o n between i n c u b a t i o n p e r i o d and i n t e r a c t i o n between p a r t i c l e s i z e and  obtained  Reference t o i t shows t h a t  f o u r s i g n i f i c a n t s o u r c e s o f v a r i a t i o n (p < .05) .  case i n Experiment 1, o n l y two p e r i o d and  Material):  detrital  d e t r i t a l s p e c i e s and  species.  an  T a b l e 8.  a)  Subsets d e l i m i t e d by Duncan's New M u l t i p l e Range T e s t . Each subset c o n t a i n s those d e t r i t a l s p e c i e s which show a s i g n i f i c a n t (p < .05) degree o f a f f i n i t y w i t h r e s p e c t t o the q u a n t i t y o f oxygen consumed by microbes decomposing the d e t r i t u s .  Subset 1  Plocamium  Subset 3  Subset 2  coccineum  Nereocystis  Iridaea  luetkeana  Subset 4  cordata  Fucus  distichus  (stipe) va r .  pacificum  Constantinea Nereocystis  Gigartina Rhodomela Odonthalia  Subset 1  ± 7.2%  luetkeana  (lamina)  larix  Laminaria  floccosa  Laminaria  The  b)  34.9  papillata  subulifera  saccharina groenlandica  average percentage s o l u b l e content o f t h e subsets i n Table 8a.  Subset 3  Subset 2  40.9  ± 4.1%  C. subulifera  65.6 ± 2.8%  I.  28.1 ± 0.1%  cordata  Subset 4  60.7  ± 3.8%  Figure  9.  Relationship the  10  the  quantity  detritus  of  after  Experiment the  between  d e t r i t a l  points.  1.  the  species oxygen five The  percentage (exclusive  consumed by  days solid  of  soluble of  microbes  incubation,  line  contents  Iridaea  indicates  as the  of and  cordata) decomposing  determined best  f i t  the  in through  Table  Analysis  of  effects  of  particle  size,  consumption  of  particulate  variance  Degrees  the  Source  of  Particle  size  Detrital  species  PS  -  DS  (PS)  :  period  of  (DS):  (IP)  table  d e t r i t a l  material  2  interaction:  Incubation  variance  by  freedom  9.  for  the  species  and  microbes  results  of  Experiment  2,  length  of  incubation  period  on  carbon  Source.  u t i l i z i n g  Sum o f  squares  10  41877.0  20  1875.8  3  14200.0  -  IP  interaction:  6  DS  -  IP  interaction:  30  15227.0  60  3116.1  131  76795.0  Total:  error:  Mean  135.22  PS  Residual  detritus  as  sum  a  of  demonstrating the  squares  Probability  67.611  0.27960  4187.7  0.0  9 3.788  0.4082  4733.4  363.59  0.33608  507.56  0.15329E-12  5 1 . 9 35  significant  3E-01  0.95989E-21  60.599  *  *  for  a  =  0.05  - 66 -  The was  expected  i a l  as time  cant  as t h e g e n e r a l proceeds;  response  detrital which some  a n d Fucus  o f particulate  matter  incubation provide  range  tests  period, insight  Test  member  o f two o f them.  to  that  est  o f the subsets  detrital whose Closer  species.  c i e s , Iridaea  cle to the  size  size  experimental  i s  a trend  i s  error  i ndry  species  None  which  o f the three  w a s Newman  -  being  groenlandica groenlandica (stipe),  a  was  closer  i t s  near-  i t was p l a c e d  unique  i n  composition.  i n Table 10.  interaction  the size  that  rapid  difference  f o r t h e most  between  may b e some  (stipe  species  rapidly  and lamina  decomposition  rate  i n decomposition rapidly  proportion  particle  o f the d e t r i t a l  t h e two most  luetkeana  be a smaller  larix,  any groupings  definitive  a l l t h e subsets  upon  a more  t o be  d e t r i t a l  i t was p l a c e d ,  dependent revealed  appear  an i n c r e a s e  luetkeana  there  likely  would  i n which  cordata  Rhodomela  between  f o r Laminaria  that  toward  there  show  Laminaria  i s  A detectable most  mean  i s presented  a n d Nereocystis  f o r Iridaea  to delimit  T h e most  a significant  o f t h e data  decreased.  particle  rate  cordata  bined) , displayed  also  rate  f o r the interaction.  rendered  Theimplication  decomposition inspection  i s  interaction  with  s i g n i f i -  incubation.  o f Nereocystis  o f the subsets This  o f  mater-  o f the various  pacificum,  a l l o f which  performed  subsets,  than  saccharina  There  were  decay  var.  Thesecond  rates  period  o f particulate  occur.  comparison,  10 days  subsets.  five  In  coccineum  t h e reasons  saccharina.  composition  an i n i t i a l  As t h e o v e r a l l  i n each  Laminaria  tests  continual  decomposition  following  range  delimited  o f Laminaria  neighbours  with The  which  loss  distichus,  exclusive  Keul's  be a  was a s i g n i f i c a n t  into  delimited  o f the incubation  d i d n o t always  f o r Plocamium  there  f o r the length  i n 18 days.  flocossa,  might  this  10 i n d i c a t e s  i t t o zero  results  As and  trend would  however,  Figure  reduce  anomalous  Odonthalia  response  was due t o t h e d i f f e r e n t  species.  would  weight  significant  o f the total  o f  detritus  particles.  decomposing sections a s mean  rates  decomposing  size and  i n  species  spe-  com-  p a r t i -  response since  variance  than  - 67 -  Figure  10.  Cumulative species mean  loss  of  decomposed  result  particulate in  f o r the  material  Experiment  three  2.  detrital  Plocamium  coccineum  Rhodomela Odonthalia Iridaea  larix floccosa cordata  from  Each  particle  var.  groenlandica  point  sizes.  pacificum  Gigartina papillata Constantinea subulifera Fucus distichus Nereocystis luetkeana (stipe) Nereocystis luetkeana (lamina) Laminaria saccharina Laminaria  t h e 10  data  detrital is  the  PERCENTAGE OF ORIGINAL DRY WEIGHT  Table  Subsets detrital  species  quantity  of  Subset  which  d e l i m i t e d by show  particulate  Subset  1  a  Newman  significant  material  consumed  2  10.  - Keul's (p  <  .05)  Range degree  by microbes  Subset  Test. of  Each  affinity  decomposing  3  the  Subset  subset with  contains respect  to  those the  detritus.  Subset  4  5  i  Plocamium coccineum var. pacificum F u c u s distichus  Gigartina  papillata  Laminaria  saccharina  Laminaria  groenlandica  Nereocystis  luetkeana  Odonthalia Constantinea  floccosa subulifera  co 1  Nereocystis  larix  cordata  (stipe)  luetkeana (lamina)  Rhodolema  Iridaea  - 69 -  f o r l e s s r a p i d l y decomposing s p e c i e s . F i g u r e 11 (a,b) g r a p h i c a l l y p r e s e n t s the r e s u l t s these s p e c i e s .  f o r both o f  Note i n p a r t i c u l a r t h a t the d i f f e r e n c e i n decomposition  rates  f o r the t h r e e p a r t i c l e s i z e s i s most e v i d e n t a f t e r o n l y 10 days o f i n c u b a t i o n , w h i l e t h e c o n d i t i o n s w i t h i n the c u l t u r e v e s s e l s are s t i l l t o maximize t h e e x p e r i m e n t a l e f f e c t s .  sufficiently  Because o f adverse e f f e c t s  fresh  caused by t h e  l e n g t h i e r p e r i o d s o f i n c u b a t i o n , the e f f e c t o f p a r t i c l e s i z e c o u l d n o t be shown t o be s t a t i s t i c a l l y s i g n i f i c a n t  for either  species.  Two r e g r e s s i o n a n a l y s e s were performed t o t e s t the h y p o t h e s i s t h a t t h e decomposition r a t e s o f seaweed d e t r i t u s were a t l e a s t p a r t i a l l y t i o n o f the crude f i b r e  content o f the d e t r i t u s .  cases was the maximum percentage l o s s  The dependent v a r i a b l e i n both  (mean o f 3 p a r t i c l e  t e r i a l observed f o r each d e t r i t a l s p e c i e s i n Experiment which showed an i n i t i a l  a func-  sizes) of p a r t i c u l a t e  2.  ma-  F o r the s p e c i e s  i n c r e a s e i n dry weight as time proceeded,  the rate o f  l o s s o f p a r t i c u l a t e m a t e r i a l was determined i n r e l a t i o n t o the maximum dryweight a t t a i n e d .  The independent v a r i a b l e s were crude f i b r e  f i b r e carbohydrate e x p r e s s e d i n g l u c o s e e q u i v a l e n t s . percentage o f the t o t a l p a r t i c u l a t e component tant  c o n t e n t and crude  Both were e x p r e s s e d as a  (crude f i b r e p l u s moderately  resis-  material). The  r e s u l t s o f both r e g r e s s i o n a n a l y s e s were s i g n i f i c a n t ( p  F i g u r e 12a demonstrates  < .05).  t h e r e l a t i o n s h i p between maximum p e r c e n t a g e l o s s o f p a r -  t i c u l a t e m a t e r i a l and percentage crude f i b r e c o n t e n t .  F i g u r e 12b p r e s e n t s  an e q u i v a l e n t r e l a t i o n s h i p u s i n g p e r c e n t g l u c o s e as t h e independent  variable.  S i n c e decomposition r a t e s would t h e o r e t i c a l l y never be e x p e c t e d to reach z e r o , an e x p o n e n t i a l decay  curve was c o n s i d e r e d the most a p p r o p r i a t e model.  The r e -  g r e s s i o n a n a l y s e s accounted f o r 42.8% and 39.9% o f t h e v a r i a n c e observed i n F i g u r e s 12a and 12b, r e s p e c t i v e l y .  - 70 -  F i g u r e 11.  Cumulative l o s s o f p a r t i c u l a t e m a t e r i a l a)  Iridaea  from  cordata  b) Nereocystis  luetkeana  ( s t i p e and lamina combined)  detritus. F o r each s p e c i e s the r e s u l t s f o r the t h r e e d e t r i t a l p a r t i c l e s i z e s are p r e s e n t e d . The t h r e e p a r t i c l e s i z e s a r e as f o l l o w s : a) 1000-420 urn 0)  250-149 urn  y)  44-0 ym  PERCENTAGE OF ORIGINAL DRY WEIGHT  _T>0£-  - 71 -  Figure 12.  Relationship between the maximum percentage loss of p a r t i c u l a t e material from the 10 d e t r i t a l species decomposed i n Experiment 2 and the percentage of crude fibre i n the p a r t i c u l a t e material of each d e t r i t a l species. The s o l i d lines indicate the best f i t through the points. a) crude fibre expressed as a percentage of the dry weight of the p a r t i c u l a t e material. b) crude fibre carbohydrate expressed as an equivalent amount of glucose and as a percentage of the dry weight of the p a r t i c u l a t e material.  PERCENTAGE OF CRUDE FIBRE GLUCOSE  -  Detritus  Assessment:  The 1 i s  biomass  within  Site  sional  representation  maximum  o f ca  near  t h e time  weed  bed.  of  best  represented  o f maximum  The quantity  of  Its  variously  tomaceous  material.  Faunal  July, the  18 A u g u s t  Tables cides the been  f o r each  seven  order  This  three-dimen-  of detritus  i n 1976.  the central  towards  natural  reached  The peak zone  the inner  accounted  detritus  which  a  occurs  o f the sea-  and outer  edges  might  was p e r i o d i c a l l y e x -  a i d i n determination  t o be amorphous,  unidentifiable  availability occurring  a n d 12 S e p t e m b e r  collections  from  particles,  f o r ca  consisting  as w e l l  of  mostly  a s some d i a -  10% o f t h e m a t e r i a l  r e p r e s e n t e d b y more collections.  coincidence  within  were  observed.  arbitrary, than  The three  October.  Cancer  Lacuna  These  Those  criterion.  results  met t h i s  anomala Dall  Mayer  o f 28  of the total  are presented  whose  delimited  number  specific  and dry  collections  The q u a l i f y i n g  Dall  oregonensis  marmorata  were  total  which  faunal  species  of  by numbers  as a p e r c e n t a g e  of detritus  species  Wetacaprella.  t h e sums,  expressed  75% o f t h e i r  o f the occurrence  t h e summer  (dryweight).  availability  somewhat  a  of detritus»  May u n t i l  and l i b  t h e maximum  following,  summer  o f 1 9 75  to recognize  species  11a (numbers) with  13.  location  value.  was d e t e r m i n e d  The l a t t e r  a n d t h e maximum  weights,  diminishes  transect  Assessment:  In fauna  o f August  andwithin  f o r characteristics  colourless  by Figure  the availability  biomass  t h e summer  t h e permanent  the middle  of detritus  composition  shaped  that  o f t h e maximum  microscopically  origin.  about  l i t t e r  along  graphically  demonstrates  During  its  of detritus  1 . 4 g AFDW/m  t h e b e d t o 15-30%  amined  72 -  occurrence on the basis  species  and dry weight  qualification  must  f o r  i n coinof have  during the  were:  - 73 -  Figure  13.  Contour r e p r e s e n t a t i o n o f d e t r i t u s biomass a l o n g the 95 m t r a n s e c t l o c a t i o n w i t h i n S i t e 1 f o r the p e r i o d 28 May u n t i l 7 October 1976. Contour i n t e r v a l s are 0.2 g a s h - f r e e dry weight p e r nr.  - 74 -  Table 11a.  The t o t a l number o f each f a u n a l s p e c i e s summed over t h e 28 J u l y , 18 August and 12 September 1976 t r a n s e c t c o l l e c t i o n s . The percentage t h a t t h i s number r e p r e s e n t s o f t h e t o t a l number o f o c c u r r e n c e s o v e r t h e e n t i r e sampling p e r i o d i s i n parentheses. An * denotes those s p e c i e s which are r e p r e s e n t e d by more than 75% o f t h e i r t o t a l number o f o c c u r r e n c e s w i t h i n the samples c o l l e c t e d on the above t h r e e d a t e s .  Species Acmaea  Number mitra  Rathke  Alvinia spp. Amphilochus sp. Amphithoe sp. Balcis mi cans C a r p e n t e r Bittium eschrichtii Middendorff Cancer oregonensis Chlamys hastatus Sowerby Clinocardium sp. Granulina margaritula Hemigrapsus nudus Dana Hiatella arctica L. Lacuna marmorata Lirularia  lirulata  Margarites  pupillus  Gould  (juvenile)  Margarites pupillus (parental) Metacaprella anomala Mitrella gouldii Carpenter Mytilus  edulis  Nereis  pelagica  Notoacmea  scutum  Ocenebra sp. Odostomia spp. Pag.urus kennerlyi Pugettia  L.  richii  Strongylocentrotus Tonicella lineata  L. Rathke  Stimpson Dana droebachiensis Wood  1 119 11 1 9 56 19 4 12 161 3 6 6018 66 1111 449 9 109 858 1 8 25 116 1 10 4 53  Percentage  of total  (12.5) (16.9) (44.0) (1.4) (60.0.) (49.1) (100.0) * (33.3) (34.4) (54.9) (50.0) (31.6) (88.6) * (57.4) (37.6) (39.5) (100.0) * (46.5) (30.6) (11.1) (40.0) (48.1) (70.1) (8.3) (30.4) (33.3) (31.8)  - 75 -  Table  lib.  The t o t a l d r y weight o f each f a u n a l s p e c i e s summed o v e r t h e 28 J u l y , 18 August and 12 September 1976 t r a n s e c t c o l l e c t i o n s . The p e r c e n t a g e t h a t t h i s f i g u r e r e p r e s e n t s o f t h e t o t a l dry w e i g h t o f i n d i v i d u a l s c o l l e c t e d o v e r t h e e n t i r e sampling p e r i o d i s i n p a r e n t h e s e s . An * denotes those s p e c i e s which a r e r e p r e s e n t e d by more than 75% o f t h e i r t o t a l dry w e i g h t w i t h i n the samples c o l l e c t e d on t h e above t h r e e d a t e s .  Species  Dry Weight  Acmaea mitra Alvinia spp. Amphilochus sp. Amphithoe Balcis Bittium  sp.  mi cans eschrichtii  Cancer oregonensis Chlamys hastatus Clinocardium sp. Granulina margaritula Hemigrapsus nudus Hiatella arctica Lacuna marmorata Lirularia lirulata Margarites pupillus (juvenile) Margarites pupillus (parental) Metacaprella anomala Mitrella gouldii Mytilus edulis Nereis Notoacmea Ocenebra Odostomia Pagurus Pugettia  pelagica scutum sp. spp. kennerlyi richii  Strongylocentrotus Tonicella lineata  droebachiensis  2.178 0.1963 0.0100 0.0029 0.0378 3.474 0.1142 0.0460 0.3748 0.4882 1.115 1.66 7 12.2 3 0.6519 3.247 11.49 0.0108 3.711 62.94 0.0079 2.163 1.061 0.3368 0.1475 1.942 0.4500 8.064  Percentage o f t o t a l (14.8' (18.6) (33.6 (0.7] (57.7 (42.1 (100.0) (41.0 (31.6 (54. 3) (94.2) (47.1, (75.0 (52.1 (26.9] (42.7) (100.0) (41.5) (62.1) (4.5) (42.7) (21.5) (63.3) (55.1) (27.9) (6.3) (21.0)  - 76 -  For each o f these s p e c i e s histograms a r e p r e s e n t e d i n F i g u r e 14  (a-c) t o des-  c r i b e t h e temporal d i s t r i b u t i o n s o f numbers and dry weight over the p e r i o d sampled,  p e r m i t t i n g a g r a p h i c i n t e r p r e t a t i o n o f t h e i r s e a s o n a l abundances.  t h r e e s p e c i e s demonstrate a t r e n d o f i n c r e a s i n g numbers and biomass  All  toward a  s t r o n g midsummer peak f o l l o w e d by a d e c r e a s e i n these parameters i n September and October, i m p l y i n g t h a t the sampling program  i s a sufficient  documentation  o f t h e i r s e a s o n a l abundance p a t t e r n s i n 1976. For Lacuna  marmorata,  which was p a r t i c u l a r l y abundant  the summer months, a d d i t i o n a l t r e n d s were e v i d e n t . i n numbers and dry weight o f Lacuna weight per i n d i v i d u a l .  marmorata  throughout  Concomitant w i t h an i n c r e a s e  i s a decrease i n the mean dry  F i g u r e 15 i n d i c a t e s t h a t the g r e a t e r i n c r e a s e i n numbers  r e l a t i v e t o dry weight appears f o l l o w i n g t h e second sampling date  (14 June  and i s due t o t h e o c c u r r e n c e o f a l a r g e number o f j u v e n i l e i n d i v i d u a l s . Lacuna  marmorata,  1976)  Most  and i n p a r t i c u l a r the j u v e n i l e s , were g e n e r a l l y found amongst  the d e t r i t u s and d e b r i s accumulated on t h e bottom and c o n s o l i d a t e d by the p l a n t s c o m p r i s i n g the s u b t i d a l t u r f  community.  There i s e v i d e n c e t h a t t h e abundance o f j u v e n i l e Lacuna  marmorata  i n the d e t r i t u s and d e b r i s i s due t o t h e i r u t i l i z i n g the d e t r i t u s as a food r e source. Lacuna  F i g u r e 16 demonstrates t h a t 100% o f the t o t a l number and dry weight o f  marmorata  the t r a n s e c t .  were c o l l e c t e d w i t h i n the q u a d r a t s a t 30, 40 and 50 m R e s u l t s from the d e t r i t u s c o l l e c t i o n s o f 20 August 1976  t h i s t o be the a r e a where most d e t r i t u s r e t e n t i o n o c c u r r e d .  along determined  -  Figure  14.  Seasonal dry  distribution  weight  occuring until  77 -  (g)  histograms  of the total  number a n d  of a)  Cancer  b)  Metacaprella  c)  Lacuna  marmorata  t h e seven  transect  within  oregonensis  7 October 1976.  Open Solid  bars: bars:  numbers biomass  anomala  collections  from  25 M a y  NUMBER 0  2.5E3  5.0E3  I  I  I  -  Figure  15.  Seasonal  trend  78 -  in  The  occurrence  decrease second  in  (14  the for  Lacuna marmorata of  the June)  mean the  juvenile  mean  dry  dry  period  25  (g)  May  individuals  weight  sampling  weight  per  per  until is  individual 7 October  evidenced  individual  date.  rv a  Di  <C Q UJ JS-  a CS -P  s  3  3  co  CO CN  in CN  tn  2 <  co  u CD -P OH Q) 1/3  M <D  Xi o +J o  o  after  by  of  1976. a  the  -  Figure 16.  Spatial Site  maximum *  distribution  1 o f Lacuna  biomass  79 -  along  demonstrating  t h e 95 m t r a n s e c t (numbers  marmorata  a coincidence  location  andbiomass)  i n the occurrence  A collection  a t 20 m o n t h i s  date  contained  no  Lacuna  o  Detritus (20  biomass  August 1976)  1— T-H m CD 00 LU  >-  cr:  d d o o o  Lacuna  00  (18  marmorata  (numbers)  August 1976)  LU o 1 CD Q_ CO  O  1 <n o 1— CM o I— 11  O  O i i i O CD 00 <C h— O L U CD C_> cr: LU O Q_  Lacuna (18  marmorata  (biomass)  August 1976)  o  CSl  o 20.0  o f  abundances.  marmorata.  CD s: \ r-i CD *—' CXI  within  and detritus  30.0 40.0 50.0 60.0 70.0 80.0 90.0 D I S T A N C E ALONG TRANSECT  (M)  100.0  their  DISCUSSION  L i t t e r Assessment: In o r d e r  t o assess d e t r i t u s f o r m a t i o n  w i t h i n S i t e 1, i t i s n e c e s s a r y t o know the o f d e t r i t u s w i t h i n the system. input  plankton,  In such a c o a s t a l a r e a t h e r e  domestic sewage i n p u t ,  faunal excreta,  portant  contributor,  excreta  i s not  likely  seaweed.  P l a n k t o n w i l l not be  Perhaps the most s i g n i f i c a n t a l l o c h t h o n o u s wood (Perkins  c h a r a c t e r i z e d by considered  is difficult  studied.  1974).  the o n l y  Zobell  o f seaweeds p e r  150  litter  of l i t t e r  o f wood p a r t i c l e s , litter.  l i t t e r was  l i t t e r p o o l i n both s t u d i e s , a t 75% a wet  weight b a s i s .  and  86%  The  San  In  collected intertidally  or  collected subtidally The  d e p o s i t i o n i s a t t r i b u t a b l e t o beaches b e i n g areas.  the  1954, e s t i m a t e d as much as  the q u a n t i t y o f l i t t e r  t h a t can be made i s t h a t the phaeophytes were the  r e s p e c t i v e l y , on  of  m o f s h o r e l i n e on the beach a t c e r t a i n times.  areas whereas rocky shores are e x c r e t i o n  source  seaweeds c a s t upon  s m a l l i n comparison t o Z o b e l l ' s i n t e r t i d a l assessment. regions  Faunal  accumulation a t Bath I s l a n d  (1971), i n a study o f d r i f t  s u p r a t i d a l l y a t Bath I s l a n d , and  im-  seaweed zone o f  i m p o r t a n t source o f  t o compare l i t t e r  c o n t r a s t t o Z o b e l l ' s r e s u l t s v i r t u a l l y no  the  The  a noticeable settlement  Diego County beaches i n C a l i f o r n i a between 19 36 and  very  an  to  t r o p h i c l e v e l s removed  areas as q u a n t i t i e s are a f u n c t i o n o f the geology and b i o l o g y  area b e i n g  184  i s potential for  Bath I s l a n d i s removed from  t o exceed t h a t amount as i t i s two  such t h a t seaweeds can be It  sources  so the p o t e n t i a l sources are reduced  wood and  Columbia waters i s d r i f t  Bath I s l a n d i s not  to o t h e r  drift  processing  a t a biomass ca 1% t h a t o f seaweed ( B l i n k s 1955).  from p l a n t p r o d u c t i o n . in B r i t i s h  subsequent  contributions of s i g n i f i c a n t  from both t e r r e s t r i a l and marine s o u r c e s .  s a l t marshes and  and  only  was  difference i n accretion  significant  comparison  dominant c o n t r i b u t o r s t o  f o r C a l i f o r n i a and Bath  Island,  the  - 81  The  seaweeds c o n t r i b u t i n g the most biomass t o the l i t t e r  S i t e 1 are r e l a t i v e l y p r o d u c t i v e luetkeana  grow r a p i d l y d u r i n g  biomasses d u r i n g the summer. deposition.  -  species.  Both J r i d a e a cordata  Nereocystis  and  the s p r i n g , a t t a i n i n g t h e i r maximum s t a n d i n g T h i s i s f o l l o w e d by a p e r i o d of i n c r e a s i n g  luetOccasion-  a l l y h e a l t h y p l a n t s become detached a t t h e i r bases and d r i f t s u b j e c t to e f f e c t s of winds and  c u r r e n t , due  t o a pneumatocyst keeping the p l a n t s  course o f t h i s study are known; however i t i s known t h a t they are not  fragment observed upon the shore and luetkeana  litter  not unexpected as rocky  o n l y once d u r i n g  the e n t i r e study  Laminaria  generally  was This i s  t o be p e r e n n i a l , c o n t r i b u t e s i g n i f i c a n t l y t o the  f i n i s h e d most o f t h e i r s e a s o n a l i n the l i t t e r  growth.  not c o l l e c t e d d u r i n g  the l i t t e r  litter  dis-  and Fucus  litter  Slower growing seaweeds Constantinea  collections.  a dominant, l o n g - l i v e d c o n t r i b u t o r t o seaweed s t a n d i n g  i n S i t e 1 was  the  luetkeana  c o l l e c t e d w i t h i n an i n t e r t i d a l q u a d r a t .  are d i s p r o p o r t i o n a t e l y r e p r e s e n t e d subulifera,  a Nereocystis  shores are a r e a s o f e x c r e t i o n .  although tending  p o o l a f t e r having  R a r e l y was  the afloat.  N e i t h e r the f a t e o f these p l a n t s nor the number t h a t l e f t S i t e 1 d u r i n g  c a s t ashore a t e i t h e r S i t e 1 or S i t e 2.  resul-  For Nereocystis  the lamina are the more s i g n i f i c a n t c o n t r i b u t o r s t o the l i t t e r .  tichus,  litter  the o n s l a u g h t of c u r r e n t and waves, t h e i r v u l n e r a b i l i t y  t i n g i n some p l a n t s becoming detached from the s u b t r a t e .  Nereocystis  crop  A t t h i s time the p l a n t s have reached a s i z e where they become l e s s  able to withstand  keana  in  crop biomass  sampling program.  By v i r t u e o f the sampling scheme undertaken, i t has been p o s s i b l e t o assess  the biomass o f seaweed l i t t e r w i t h i n S i t e 1 i n f o u r dimensions.  midsummer c o l l e c t i o n s c r e a t e an a r e a l p r o f i l e f o r the s i t e and c h a r a c t e r i s t i c s of l i t t e r  distribution.  The  The  d e l i m i t the s p a t i a l  14-month sampling program a t  95 m t r a n s e c t l o c a t i o n w i t h i n S i t e 1 c o n t r i b u t e s a temporal dimension.  the  This  *  - 82 -  f a c i l i t a t e s an e x t r a p o l a t i o n o f the midsummer a r e a l p r o f i l e over the p e r i o d o f a f u l l year f o r the f i v e species contributing s i g n i f i c a n t l y  to the l i t t e r .  I t w i l l be seen i n a l a t e r d i s c u s s i o n c o n c e r n i n g t h e development of  a mathematical model t o s i m u l a t e l i t t e r  decomposition t h a t the most  impor-  t a n t o b s e r v a t i o n w i t h r e s p e c t t o t h e temporal d i s t r i b u t i o n o f l i t t e r biomass i s the  s i m i l a r i t y o f the s e a s o n a l p a t t e r n s o f the f i v e major c o n t r i b u t o r s .  the  l o n g e v i t y o f Nereocystis  other l i t t e r ,  luetkeana  s t i p e s w i t h i n the l i t t e r  t h e i r t o t a l c o n t r i b u t i o n i s r e l a t i v e l y minor.  The q u a n t i t y o f l i t t e r  that of  Any l o s s o f i n f o r m a -  t i o n r e s u l t i n g from usage o f a s i n g l e curve model t o approximate d i s t r i b u t i o n f o r t o t a l l i t t e r w i l l be almost  exceeds  Although  the seasonal  negligible.  a v a i l a b l e f o r decomposition i s the u l t i -  mate d r i v i n g v a r i a b l e i n an attempt t o s i m u l a t e i t s e n t r y i n t o , and p r o c e s s i n g within, l i t t e r  and d e t r i t a l pathways.  s e n t a t i v e o f the l i t t e r not  d i s t r i b u t i o n patterns within Site  1, one must be c a r e f u l  t o a c c e p t immediately t h a t t h e s e d a t a r e p r e s e n t the t r u e p r o p o r t i o n o f each  species' contribution to t o t a l l i t t e r for  Although these c o l l e c t i o n s are most r e p r e -  i n p u t s i n c e n e i t h e r t h e decomposition  each s p e c i e s nor the r e s i d e n c e time f o r l i t t e r  L i t t e r Decomposition  i n S i t e 1 have been c o n s i d e r e d .  Experiments:  There are t h r e e components o f p l a n t l i t t e r which f l u e n c e i t s decomposition r a t e . fibre  rate  The s o l u b l e , moderately  are known t o i n -  r e s i s t a n t and crude  components respond d i f f e r e n t l y d u r i n g t h e decomposition p r o c e s s .  i n f l u e n c e s must be c o n s i d e r e d as w e l l . moisture, n u t r i e n t a v a i l a b i l i t y  Extrinsic  E n v i r o n m e n t a l f a c t o r s such as temperature,  and m i c r o b i a l c o m p o s i t i o n i n t e r a c t i v e l y e x e r t an  e f f e c t on t h e decomposition r a t e s and p a t t e r n s a d d i n g t o the complexity o f the process. Some authors  (Grill  and R i c h a r d s 1964, Minderman 1968, O t s u k i and  Hanya 1972) chose a ' t h e o r e t i c a l l y p r e f e r a b l e ' d a t a on l i t t e r  decomposition which O l s o n  curve model t o r e p r e s e n t t h e i r  (1963) i n t r o d u c e d as an e x p o n e n t i a l  - 83 -  decay  curve w i t h a c o n s t a n t 'k' r e l a t e d t o t h e h a l f - l i f e o f the substance  going decomposition.  F o r such a s i m p l e model t o be s a t i s f a c t o r y  d e s c r i b e s must be simple as w e l l . tion.  decomposi-  Although t h e curve may adequately d e s c r i b e t h e i n d i v i d u a l components o f  (1977) demonstrated  (1972).  description.  t h i s p o i n t w e l l and i l l u s t r a t e d t h e u n s u i t a b i l i t y o f  a p p l y i n g an e x p o n e n t i a l decay The r e s u l t produced  curve t o the decomposition d a t a o f P e n d l e t o n curves which o b v i o u s l y m i s r e p r e s e n t e d t h e d a t a .  With t h i s i n mind i t was more s u i t a b l e t o s e l e c t a curve which fit  the p r o c e s s i t  T h i s i s not t h e case w i t h l i t t e r  the decomposition p r o c e s s , t h e i r combination may defy a s i m p l e Hunt  under-  extrinsically  the data w e l l r a t h e r than accept an i n t r i n s i c model based s o l e l y on  theoretical considerations. duces the p r o b a b i l i t y  Furthermore,  acceptance o f an i n t r i n s i c model r e -  f o r success o f a p r a c t i c a l a p p l i c a t i o n o f such i n f o r m a t i o n  when compared t o e f f o r t s based on a more r e a l i s t i c r e p r e s e n t a t i o n o f the d a t a . The most c o n s i s t e n t t r e n d observed i n the l i t t e r bag experiments was t h e i n i t i a l  r a p i d l o s s o f m a t e r i a l f o l l o w e d by a decrease i n t h i s  time proceeds.  A s i m i l a r t r e n d i s n o r m a l l y observed f o r t e r r e s t r i a l l i t t e r , a l -  though initial  o v e r a much l o n g e r time p e r i o d , and i s e x p l a i n e d as f o l l o w s . r a p i d l o s s through  components  l e a c h i n g o f t h e s o l u b l e and more e a s i l y  ( N y k v i s t 1963, P e t e r s e n and Cummins 1974, Suberkropp  r a t e as  There i s an metabolised  e t al. 1976)  l e a v i n g b e h i n d a s t r u c t u r a l backbone o f r e f r a c t o r y m a t e r i a l which s l o w l y decomposes over a p e r i o d o f months ( L o u s i e r and P a r k i n s o n 1975, S t a c h u r s k i and Zimka 1975, 1976  a&b, G a s i t h and Lawacz 1976).  As t h e r e f r a c t o r y m a t e r i a l becomes more p r e v -  a l e n t i t s r e s i s t a n c e t o metabolism by microbes  r e s u l t s i n t h e decomposition p r o -  cess s l o w i n g down. Only two s p e c i e s , Rhodomela t h i s trend.  Iridaea  cordata  time proceeded w h i l e Rhodomela Iridaea  cordata  and crude f i b r e  larix  and Iridaea  cordata,  d i s p l a y e d an a c c e l e r a t i n g decomposition larix  differed r a t e as  m a i n t a i n e d a l i n e a r r a t e o f decomposition.  i s unique by h a v i n g t h e lowest observed p e r c e n t a g e s o f s o l u b l e components.  from  Having a low s o l u b l e c o n t e n t would reduce t h e  •  - 84 -  l e n g t h o f an i n i t i a l p e r i o d o f l e a c h i n g and t h e p a u c i t y o f crude f i b r e would facilitate a relatively initial the  r a p i d decomposition r a t e f o l l o w i n g t h i s p e r i o d .  l a g phas'e may be due t o t h e maintenance  The  of s t r u c t u r a l i n t e g r i t y during  primary stages o f decomposition and t h e i n a b i l i t y o f t h e s m a l l amount o f  s o l u b l e matter t o mask t h i s e f f e c t as i t a p p a r e n t l y does f o r o t h e r s p e c i e s . The l i n e a r decomposition curve f o r Rhodomela larix  can perhaps be e x p l a i n e d by  i t s h a v i n g a predominance o f s h o r t , stubby branches which may become s u i t a b l y f r a c t u r e d t o escape t h e l i t t e r bag b e f o r e i t s r e l a t i v e l y h i g h crude f i b r e  content  l i m i t s i t s decomposition r a t e i n the l a t e r s t a g e s . Loss o f seaweed biomass from t h e l i t t e r bags was r a p i d . compared t o t e r r e s t r i a l l i t t e r , f a s t e r . Odum and de l a Cruz  When  seaweed l i t t e r decomposes a t l e a s t f i v e  (1967) and de l a Cruz  (1975) demonstrated  times  that  s a l t marsh p l a n t s decompose a t about t h e same r a t e as t e r r e s t r i a l p l a n t s .  Most  p l a n t s they s t u d i e d had a c o n s i d e r a b l e amount o f t h e i r o r i g i n a l d r y weight r e m a i n i n g a f t e r 300 days.  S i m i l a r l y , de l a Cruz and G a b r i e l  l o s s o f Juncus  S c h e e l e from l i t t e r bags t o be ca 40% p e r y e a r .  roemerianus  (1974) determined  Adding a q u a t i c v a s c u l a r p l a n t s t o t h e comparison, H a r r i s o n and Mann (1975b) found t h a t Zostera  marina  l o s t o n l y 35% o f i t s o r i g i n a l d r y weight i n 100 days,  under l a b o r a t o r y c o n d i t i o n s . Lemna minor  Hunter  L. and Chara contraria  (1976) s t u d i e d two f r e s h w a t e r p l a n t s ,  A. Braun ex K u t z i n g , and found both t o r e -  t a i n ca 75% o f t h e i r o r i g i n a l dry weight a f t e r t e n weeks o f submersed i n c u b a t i o n in  l i t t e r bags.  That t e r r e s t r i a l , a q u a t i c and marine  v a s c u l a r p l a n t s decompose  much more s l o w l y than seaweeds, even when submersed, i m p l i e s t h a t t h e r a p i d i t y of  seaweed decomposition i s more a f u n c t i o n o f t h e i r c o m p o s i t i o n than o f t h e i r  environment.  The i n f l u e n c e o f t h e r e l a t i v e q u a n t i t i e s o f seaweed s t r u c t u r a l  components on decomposition r a t e s i s d i s c u s s e d i n r e l a t i o n t o t h e d e t r i t u s de-: composition experiments  (Experiments 1 and 2 ) .  - 85  Nitrogen  Content o f Decomposing  The they  results  gen  Litter:  o f t h i s study  are p a r t i c u l a r l y s i g n i f i c a n t i n t h a t  demonstrate a d i f f e r e n c e between v a s c u l a r p l a n t decomposition and  decomposition w i t h is  -  r e s p e c t t o n i t r o g e n content.  For v a s c u l a r p l a n t l i t t e r  g e n e r a l l y an i n c r e a s e i n both the c o n c e n t r a t i o n and  absolute  content  ( N y k v i s t 1963,  Petersen  and  Cummins 1974,  As most n i t r o g e n escapes as s o l u b l e m a t t e r i t has  t o be  rounding  the  environment by  ternatively,  t h i s study  organisms a s s o c i a t e d w i t h  of n i t r o -  stituents  low  Suberkropp e t al.  i n nitrogen.  i s due  litter  to a p r e f e r e n t i a l  That the i n c r e a s e i s due  i n o r g a n i c n i t r o g e n i n t o the l i t t e r by  t o the i n c o r p o r a t i o n o f  d e m o n s t r a t i n g t h a t C:N  very d i f f i c u l t t o a t t a i n by m e t a b o l i c the data o b t a i n e d  p e r c e n t a g e n i t r o g e n contents  obtained  aria a C:N  larix  (4.74%) are r e l a t e d  saccharina  (26.76%) and  r a t i o o f 6-8:1  t h i s study  results,  percentage carbon The  acicularis  incorpora-  1 i s at a  processes.  i n t h i s study.  f o r Laminaria  ratios  saccharina  an u n s p e c i f i e d Rhodomela With a value o f 6.4% papillata  (28.32%)  and  (Wulfen) Lamouroux ( N i e l l 1976)  assuming t h e r e i s a reasonable  and for  (Vinogradov  a value o f 24% a C:N  ratios  highest  (3.70%)  n i t r o g e n content  of  C:N  I f the  t o the p e r c e n t a g e carbon contents  f o r 9 7% decomposed Gigartina  t e n t f o r Gigartina than 4:1  results.  as i t  Dodimead 1957).  o f t h i s o r d e r are i m p l i e d by  Rhodomela  con-  the a c t i v i t y o f microbes i s u n l i k e l y  T h i s argument i s enhanced by o r l e s s would be  Al-  content  r e l e a s e o f chemical  t i o n r a t e s a t a time when i n o r g a n i c n i t r o g e n i n the seawater a t S i t e ( T u l l y and  sur-  (Bocock 1964).  r e q u i r e s t h a t the microbes have phenomenally r a p i d growth and n i t r o g e n  concentration  1976).  r e a c q u i r e d from the  i n d i c a t e s t h a t the r e l a t i v e i n c r e a s e i n n i t r o g e n  o f decomposing seaweed l i t t e r  8:1  there  f o l l o w i n g an i n i t i a l p e r i o d o f l e a c h i n g d u r i n g which most o f the s o l u b l e com-  ponents escape  low  seaweed  Lamin1953),  obtained i n carbon conratio of  less  degree o f g e n e r i c s i m i l a r i t y i n  contents. C:N  r a t i o f o r b a c t e r i a i s ca  5.7:1  (Spector 1956). To  attain  - 86 C:N r a t i o s approaching be  this  f i g u r e t h e m a t e r i a l i n t h e l i t t e r bags would have t o  composed almost e n t i r e l y o f m i c r o b i a l biomass, u n l e s s  a considerable  t i o n o f t h e n i t r o g e n was a component o f t h e i n i t i a l seaweed biomass. Englar  (1975) suggest  cystis  luetkeana  wall.  T h i s would p r e v e n t  a particularly is  propor-  Whyte and  t h a t a l a r g e p r o p o r t i o n o f t h e p r o t e i n i n seaweeds,  Nereo-  i n p a r t i c u l a r , i s bonded t o t h e c e l l u l o s i c f i b r e s o f t h e c e l l t h e easy r e l e a s e o f p r o t e i n n i t r o g e n s i n c e c e l l u l o s e i s  r e s i s t a n t component.  consistent with  The h y p e r b o l i c curve p r e s e n t e d  a p r o t e i n - c e l l u l o s e bond h y p o t h e s i s .  crease i n r e l a t i v e n i t r o g e n content  i n Figure 7  An a c c e l e r a t i n g i n -  implies the rate o f nitrogen loss i s inde-  pendent o f t h e r a t e o f l o s s o f t h e more abundant biomass components. Hunter of  Fucus  vesiculosus  (1976) used l i t t e r bags t o assess on a rocky shore  comparable t o those p r e s e n t e d  and w i t h i n a s a l t marsh.  i n t h i s study w i t h  r e l a t i v e n i t r o g e n content and C:N r a t i o . Lemna  minor  and Chara  contraria,  the decomposition  he demonstrated no c o n s i s t e n t  group a f f i n i t i e s s i n g l e taxonomic  f o r the  regard.  d e l i m i t e d i n Experiment 1 (Table 8a) t h e w i t h i n -  are somewhat apparent.  A l l groups a r e composed o f s p e c i e s o f a  c l a s s and can be c a t e g o r i z e d a c c o r d i n g t o t h e morphology and  h a b i t o f t h e seaweeds they  contain.  Rhodophyta which a r e found  i n t e r t i d a l l y o r i n the shallow  Subset 1 c o n t a i n s  2 contains three species o f s u b t i d a l kelp  ophyte,  trend  Decomposition: F o r t h e subsets  set  Fucus distichus,  i s p l a c e d by i t s e l f  f o u r s p e c i e s o f branched s u b t i d a l zone.  (Laminariales). i n Subset 4.  i n h a b i t i n g t h e i n t e r t i d a l zone.  known t o c o e x i s t i n t h e s h a l l o w  I t resembles the  Subset 3 c o n t a i n s two b l a d e d  s u b t i d a l zone  branched  rhodophytes  (Foreman unpub.).  S i m i l a r l y , f o r Experiment 2, t h e w i t h i n group a f f i n i t i e s e a s i l y detected.  Sub-  One o t h e r phae-  o t h e r phaeophytes n e i t h e r i n morphology n o r h a b i t , b e i n g dichotomously and  rates,  f o r the aquatic p l a n t s  same parameters, m a i n t a i n i n g the uniqueness o f seaweeds i n t h i s Detritus  His r e s u l t s are  r e s p e c t t o decomposition  Additionally,  rate  can be  Subset 1 c o n t a i n s a l l t h e ' r e s i s t a n t ' s p e c i e s , those which d i d  - 87 -  not e x h i b i t a c o n t i n u a l • los.s o f p a r t i c u l a t e biomass, fera.  Constantinea  subulifera  and Constantinea  subuli-  decomposed f a s t e r than a l l o t h e r s p e c i e s i n  Subset 1 and i s the o n l y s p e c i e s t h a t d i d n o t e x h i b i t an i n c r e a s e i n p a r t i c u l a t e biomass as decomposition proceeded. Subset 1.  I t i s the o n l y b l a d e d seaweed i n  Although Newman-Keul's T e s t d i d n o t s e p a r a t e Constantinea  sublifera  from the o t h e r s p e c i e s , Duncan's T e s t d e l i m i t e d an e q u i v a l e n t subset e x c e p t i n g Constantinea  subulifera.  The  i n c r e a s e i n p a r t i c u l a t e biomass can be e x p l a i n e d as a r e s u l t  o f i n c r e a s e d m i c r o b i a l biomass due t o p r e f e r e n t i a l metabolism o f s o l u b l e matter as demonstrated  i n Experiment  1.  u t i l i z i n g the s o l u b l e matter exceeds  I f the growth r a t e o f microbes  the d e c o m p o s i t i o n r a t e o f the p a r t i c u l a t e  f r a c t i o n o f the d e t r i t u s a n e t i n c r e a s e i n p a r t i c u l a t e biomass w i l l Fucus distichus  (60.7%) and Constantinea  subulifera  (65.6%) have s o l u b l e  t e n t s c o n s i d e r a b l y h i g h e r than the e i g h t o t h e r s p e c i e s . s o l u b l e c o n t e n t , Rhodomela Plocamium  coccineum  larix  v a r . pacificum  crude f i b r e c a r b o h y d r a t e .  result.  (4.28%), Odonthalia  con-  Although low i n  flocossa  (3.44%) and  (3.39%) have the h i g h e s t percentages o f  Experiments  1 and 2, r e s p e c t i v e l y ,  demonstrated  t h a t s o l u b l e matter i s p r e f e r e n t i a l l y m e t a b o l i z e d and d e c o m p o s i t i o n i s slower f o r seaweeds w i t h a h i g h crude f i b r e c o n t e n t . Laminaria  saccharina  and Laminaria  groenlandica  comprise Sub-  s e t 3.  Subset 4 c o n t a i n s the lamina and s t i p e s e c t i o n s o f Nereocystis  keana.  K e l p b e i n g d e l i m i t e d from the o t h e r seaweeds i n d i c a t e s  s i m i l a r i t i e s w i t h r e g a r d t o decomposition  o f i t s r a p i d decomposition r a t e .  Iridaea  Gigartina  p l a c e d between Subset 1 and the s u b s e t s c o n t a i n i n g more e a s i l y species.  taxonomic  susceptability.  Subsets 2 and 5 c o n t a i n s i n g l e s p e c i e s each. i s i s o l a t e d because  luet-  cordata  papillata  decomposable  I t i s the o n l y i n t e r t i d a l s p e c i e s n o t c o n t a i n e d w i t h i n Subset 1.  I t has an a f f i n i t y w i t h t h e s p e c i e s i n the o t h e r t h r e e s u b s e t s , a l l o f which  is  a r e b l a d e d seaweeds, i n t h a t i t has a tendency t o be f o l i o s e .  -  88  -  There i s a b a s i c s i m i l a r i t y d e l i m i t e d i n Experiment 1 and p l a i n e d by  the  i n the  Experiment 2.  Any  composition o f the differences  can  i n f l u e n c e o f d e t r i t a l s o l u b l e matter c o n t e n t on  gen  consumption o b t a i n e d i n Experiment 1.  the  high  soluble  contents of  Fucus  r e a d i l y be  and  Constantinea  ex-  the r a t e s o f oxy-  R e f e r r i n g t o T a b l e 8a,  distichus  subsets  the e f f e c t o f  subulifera  on  t h e i r oxygen consumption r a t e s can be negated by p l a c i n g them i n Subset 1 w i t h the o t h e r valents tis  'resistant' species.  o f those d e l i m i t e d i n T a b l e 10.  luetkeana  tina  A l l f o u r s u b s e t s are now  from Laminaria  papillata  saccharina  The  inability Laminaria  and  from the o t h e r members o f the  less dissected  Subset 1 i s l i k e l y  and  due  a l y s i s becoming l e s s p o w e r f u l as a r e s u l t o f the e r r o r c o n t r i b u t e d variance  o f oxygen consumption w i t h the q u a n t i t y  t u s , as demonstrated by As i n g the  Figure  9 and  a f i n a l judgement, t h r e e  decomposition r a t e s observed.  i s apparently  Table  Detritus derived  by  more q u i c k l y than d e t r i t u s d e r i v e d  the  o f s o l u b l e matter i n the  ancodetri-  8b. generalizations  Detritus derived  from the  Gigar-  t o the  can be made concern-  from i n t e r t i d a l seaweeds  more r e s i s t a n t t o decomposition than d e t r i t u s d e r i v e d  t i d a l seaweeds.  Nereocys-  to d i s s o c i a t e groenlandica,  equi-  from sub-  f a s t e r growing seaweeds decomposes  from the  slower growing seaweeds.  Seaweed  morphology appears t o c o r r e l a t e w i t h decomposition s u s c e p t i b i l i t y , the more f o l i o s e the seaweed, the more q u i c k l y d e t r i t u s d e r i v e d three  o f the above c o n s i d e r a t i o n s  l i k e l y t o be tack by  involved  microbes.  are  closely interrelated.  as w e l l , i n p a r t i c u l a r  The  from the seaweed decomposes.  the  Other f a c t o r s  (Sieburth  are  r e s i s t a n c e o f seaweeds t o  p r e s e n c e o f a n t i b a c t e r i a l chemicals i n some s p e c i e s  known to enhance r e s i s t a n c e  All  atis  1968).  In Experiment 1 oxygen consumption r a t e s were shown t o c o r r e l a t e w i t h the s o l u b l e for species data  content o f s p e c i f i c d e t r i t u s ( F i g u r e 9 ) .  h a v i n g r e l a t i v e l y h i g h s o l u b l e matter c o n t e n t s .  defied t h i s trend.  The  Consumption was Only Iridaea  higher cor-  oxygen consumption r a t e o f microbes decomposing  - 89  .Iridaea  cordata  d e t r i t u s was  second o n l y  the  lowest percentage s o l u b l e c o n t e n t  Its  r a p i d decomposition r a t e may  small quantity quantity  -  to Fucus distichus,  (28.1%) observed amongst a l l s p e c i e s .  be p a r t i a l l y  o f crude f i b r e at 0.86%  cordata  due  to i t containing only a  o f i t s dry weight.  observed amongst a l l the s p e c i e s .  r e n d e r Iridaea  a l t h o u g h i t has  more v u l n e r a b l e  This  T h i s was  the  very  lowest  lack of r e s i s t a n t material  may  t o a t t a c k by microorganisms such t h a t i t  decomposes r a p i d l y r e l a t i v e t o o t h e r s p e c i e s w i t h a s i m i l a r o r g r e a t e r  percentage  o f s o l u b l e matter. The Iridaea  plementary. little By  cordata  crude f i b r e , a low  provides  the b e s t  i n Experiments 1 and comparison due  s o l u b l e matter c o n t e n t , and  1.07  mg o f oxygen would be  mg p l u g o f d e t r i t u s i n t r o d u c e d  first  10 days o f i n c u b a t i o n ,  detritus.  The  during  first  the  20.5  bottle.  days would be  10 days o f i n c u b a t i o n  ment w i t h the 20.5  days e s t i m a t e d by  decompose the  by  de  1.8  mg 0 /g 2  .2.7-7.0 mg 02/g var. pacificum  cordata  over  f o r Iridaea 5.7%  the  decompose  per  the  cordata day.  At  this  agree-  the oxygen consumption method. and  o t h e r persons f o r v a s c u l a r p l a n t d e t r i t u s , the most  ap-  r a p i d i t y o f seaweed d e t r i t u s decomposition.  l a Cruz (1967) measured oxygen consumption o f n a t u r a l c o a r s e  alterniflora  the  i n Experiments 1  p a r e n t d i f f e r e n c e i s the r e l a t i v e Odum and  of  d e t r i t u s , i n close  Comparing the decomposition r a t e s o b t a i n e d 2 t o those o b t a i n e d  decompose  required to f u l l y  i n Experiment 2 was  required to f u l l y  very  At the average oxygen  observed f o r Iridaea  day  r a t e o f l o s s o f p a r t i c u l a t e matter o b t a i n e d  r a t e , 18 days would be  ca  to i t s having  a r a p i d decomposition r a t e .  required to f u l l y  i n t o each BOD  consumption r a t e o f 0.052 mg O2 p e r  tina  2 are com-  assuming t h a t the p a r t i c u l a t e component o f d e t r i t u s i s composed mostly  carbohydrate, ca 1.0  decomposition r a t e s o b t a i n e d  d e t r i t u s ( t h a t which was AFDW/hr at 15  C.  r e t a i n e d by  T h i s study o b t a i n e d  a 0.239 mm a p e r t u r e ) at r a t e s i n the range o f  AFDW/hr f o r e q u i v a l e n t l y s i z e d d e t r i t u s from Plocamium and Iridaea  cordata,  Spar-  r e s p e c t i v e l y , a l s o a t 15 C.  The  coccineum data were  -  most  reliable  affected  f o r these  observed  two species  oxygen  aquatic  leaves link  vascular  (Hargrave  andKirby  response cates  exposed  1974)  was shown  that  plant  1972),  size  there  being  fractory and  i s  only  decompose'over  largely  these  constituents,  lignin  present  marized ching  ranging  lignin  nin, 1974)  although which  assayed vascular  detritus  i s  a n d Iridaea  contrast cell  study  proportion  a n d Lawacz  a  Gosse-  similar  detritus  indi-  o f surface  a  (Otsuki  walls  1976).  area  t o conclude  from  a much that  greater  the rapid  partially  The crude  1935).  fraction  o f crude  due t o a paucity  (1974),  o f  lost e t al.  by  content  rates  1976),  contain  no  l i g -  (Steward  f o r t h e 10 s p e c i e s component.  than  seaweeds  o f seaweed  of resistant  lea-  o f the detritus.  algae  fibre  o f  who sum-  andhemicelluloses  fibre  decomposition  T h e amount  Suberkropp  o f theparticulate  amount  resistant  a t 30 C a n d u n d e r  macrophytic  celluloses  slowly  Stachurski and  o f material  1974,  Re-  detritus,  which  t h e most  by Jensen  t h e amount  1.2-17.7%  i s  (Acharya  plants,  par-  biomass.  plant  1975,  one year  andWetzel  resistant.  i n seaweed  o f vascular  o f 16-42%  With  between  1 a n d 2 may b e e x p l a i n e d b y  Lignin  o f about  do c o n t a i n  relationship  andParkinson  range  t o vascular  a  andhemicelluloses  decomposition  authors.  ranged  contain  at least  Trinius  1967,  That  cordata  present  celluloses  a h a l f - l i f e  27-40%  fibre  (Lousier  was g i v e n  are moderately  plants  1970).  sizes  communis  a n d de l a Cruz  (Fenchel  f o r up t o 70% o f t h e p a r t i c u l a t e  their  i n this  reasonable  having  ca  may a c c o u n t  (Odum  i n Experiments  o f crude  f o r microbial  from  particle  f o r Phragmites  i n determining  f o r a large  of several  In  tested  o f months  i n leaves  t h e work  f o r various  shown  luetkeana  amount  1976a&b, G a s i t h  conditions  been  testudinum  o f lignins,  a period  1975,  rates  alterniflora  o f the d i f f i c u l t y  accounts  Zimka  minimally  attack.  a small  material  contents  may b e i n f l u e n c e d b y t h e a m o u n t  and t h e parameters  composed  optimal  rate  low s o l u b l e  rates.  have  f o r Nereocystis  Part t i c l e  detritus  a n d Thalassia  t o microbial  their  i n decomposition  Spartina  decomposition  since  consumption  Differences of  90 -  As i t  i s  l i t t e r and  material.  F i g u r e s 12a  (crude f i b r e ) and 12b  r e l a t i o n s h i p between decomposition t h i s parameter was  r a t e and r e s i s t a n t m a t e r i a l c o n t e n t ; however  shown t o account  w i t h F i g u r e 12a and  39.9%  l i m i t a t i o n s i n the d a t a , but  No  doubt some o f the v a r i a n c e i s due  are l i k e l y t o p l a y important  process independently.  i s o l a t e d from the remaining two  metabolized.  From the r e s u l t s o f Experiment  the g r e a t e r the q u a n t i t y o f crude  rate.  The  In Experiment  components as b e i n g 2 the crude  i d e n t i f i e d as an i n f l u e n c e on t h e decomposition tion;  Other to  susceptibilroles.  t h r e e major s t r u c t u r a l components o f seaweeds have been shown  i n f l u e n c e the decomposition  matter was  o f the v a r i a n c e a s s o c i a t e d  f a c t o r s d e t e r m i n i n g the r e s i s t a n c e and  o f seaweeds t o a t t a c k by microbes The  to  f o r o n l y 42.8%  o f the v a r i a n c e a s s o c i a t e d w i t h F i g u r e 12b.  f a c t o r s must be i n v o l v e d as w e l l .  ity  (glucose) demonstrate the  preferentially  f i b r e component  r a t e s o f the p a r t i c u l a t e  f i b r e , the s l o w e r the  t h r e e components can thus be ranked  1 soluble  was frac-  decomposition  i n order of soluble,  moderately  r e s i s t a n t and crude f i b r e w i t h r e s p e c t t o the ease w i t h which each i s m e t a b o l i z ed, as has been p r e v i o u s l y documented f o r v a s c u l a r p l a n t m a t e r i a l .  D e t r i t u s Assessment: The  accuracy o f d e t r i t u s biomass e s t i m a t i o n s i s q u e s t i o n a b l e .  A major c r i t i c i s m i s the assumption  t h a t the f l a t , h o r i z o n t a l areas chosen as  c o l l e c t i n g s u r f a c e s are e q u a l l y as r e c e p t i v e t o d e t r i t u s s e t t l e m e n t as uneven surfaces.  Such s u r f a c e s would be e x p e c t e d t o r e t a i n a  the d e t r i t u s than the l e v e l s u r f a c e s .  A second  greater proportion of  c r i t i c i s m i s t h a t the biomass  d a t a do not take i n t o c o n s i d e r a t i o n the decomposition  rate of natural detritus.  Data i n t h i s study i n d i c a t e t h a t t u r n o v e r o f seaweed d e t r i t u s i s r a p i d . Iridaea  cordata  d e t r i t u s ca  a l o n g e r t u r n o v e r time.  18-21  days are r e q u i r e d , o t h e r s p e c i e s r e q u i r i n g  With sampling  i n t e r v a l s o f about t h r e e weeks, the quan-  t i t y o f d e t r i t u s d e p o s i t e d on the bottom i n S i t e 1 w i l l p o t e n t i a l l y be e s t i m a t e d by 50%,  For  i f i t s b i o g e n i c o r i g i n i s seaweed biomass.  As  under-  microscopic  -  examination material, Georgia enough  ing  t h e most  to account  and Lucas  however, the fate  Faunal  this  within w i l l  and  invertebrates  and  Seymour  L.  19 7 6 ,  (Roman  (Newell  food  1975). such  In that  Cancer  oregonensis  is  e t al.  detritus  was a t t a i n e d .  seaweed  an u n l i k e l y  individuals adequate  not  It  o f making  abundant  is  perhaps  anomala  abundant  Farlow  has been  1973,  likely  that than  b y more  judgements  regard-  detritus shown  Parastichopus  experiments  derived  from  t h e phaeo-  t o be i n g e s t e d  Pennant  seaweed  study  delimited as  numbers  a  as p o s s i b l e  food  resource  and biomass  consideration as  shrimp  Cancer  that  as o n l y  t h e summer  species  carnivorous  w i l l may a l s o  a n d Macoma  nine  o f 1976,  individuals Metacaprella  balthica  was t h e o n l y  f o r this  food r e and  anomala  to the availability  midsummer that  faunal  only  19  of i n -  any f u r t h e r .  as t h e r e a s o n  f o r  collected.  anomala  of at  oregonensis  may b e a n a r t i f a c t  were  o f  collec-  Cancer  and, furthermore,  n o t be considered be argued  tonsa  o f the occurrence  reveals  i t s qualification  oregonensis sampling  i s  the three  19 7 6 ) .  (Yingst  Acartia  Metacaprella  respondents  by the e p i -  Clark  detritus  on the basis  during  o f these  i t s habit  such  marmorata,  fish  Kostalos  parvimensis  ulvae  f o r  1975,  u t i l i z e d by the brine Hydrobia  o f food  Tenore  Lacuna  this  qualifying  during  Iverson  Seaweed  o f these  collected  sampling.  1968,  source  In  respondent  were  a confirmed  o f t h e animals' preference  Inadequate caprella  source  biomass.  no i n d i c a t i o n  detritus  A c r i t i c a l  is  19 7 7 ) .  has been  each  were  75% o f t h e i r  tions.  the only  of  biomass.  seaweed  a n d Hynes  zonarioid.es  source  natural  10% d i a t o m a c e o u s  i n the Strait  be underestimated,  detritus  1977) a n d t h e m o l l u s c s  source  least  plant  Sibert  vesiculosus  Dana  remains  the possibility  from  deposit-feeding holothurian  benthic  o f phytoplankton  90% o f d e t r i t u s  1 w i l l  formed  (Kaushik  Dictyopteris  Fucus  Site  o f ca  Assessment: Vascular  phyte  t o b e composed  19 3 1 ) , s e a w e e d  not preclude  of detritus  i t  component  f o r the remaining  deposition  -  determined  significant  (Hutchinson  detritus 50%;  of the detritus  92  has been  Meta-  Although abundant  - 93 -  at  Site  1 i n previous  Metacaprella were  individuals 1976  when  i s  anomala  observed  years  attached  about  their  about  70,000/m  (Figure  crease  was  lesser  percentage  a t a 50% a c c e p t a n c e  Carpenter  a n d Granulina  consideration 1949).  as  biomass,  collected  o f juvenile  time  that  study  i n numbers  when  from  during  they  10-100  t h e summer  1 during  at densities i s  t h e more  Lacuna  a r e undocumented  the availability  i n this  of  t h e summer  of  approaching than  10-fold i n individuals  marmorata  density detritus  Mayer  over  is  o f detritus  that  to occur  was o b s e r v e d  the bottom,  o f seaweed  i n Site  1.  metre.  particularly  of  Also  which  would  have  lirulata from  a n d Graham  not particularly  midsummer  peaks  juveniles  and as  occurrence  i n  abunnumbers  their  i n  relation  perspective. of specific as  o f August,  caprellid They  significantly  (Fretter  their  detritus  the middle  'bloom'  o f  to discuss  the occurrence  about  p e r square  strong  quali-  c a n be removed  were  lirulata  a positive  to be  species  i n habit  of the occurrence  from  likely  may h a v e  s p p ., L i r u l a r i a  ectoparasitic  not possible  which  Odostomia  d i d not display  no evidence  less  Additional  and Lirularia  an e x t e n s i v e  o f hundreds  were  species  a r e Odostomia  are generally  indication  study  they  Carpenter.  t o the availability  o f 1975 when  alaskana  level  margaritula  i t  of other  o f detritus.  collections,  presented  a response  pulse  margaritula  i n the faunal  shown mer  they  Granulina  An be  i n this  at Site  significance  indicated  qualified  to  bags  abundant  consideration  o n a summer  diets  being  and dry weight  dependent  or  l i t t e r  evidence  midsummer.  at a  dant  was o b t a i n e d  was t h e o n l y  was very  16). Of p a r t i c u l a r  Preliminary fied  This  Circumstantial  obvious.  individuals  i n t h e number  during  to the experimental  marmorata  7400  unpub.).  u t i l i z e r  the end o f July.  Lacuna  2  a detritus  presence  19 76 w i t h  (Foreman  were  a  marine  food  estimated at this  i n the central  source,  was o b t a i n e d  amphipods,  evident  fauna  area  mainly  w h i c h was  i n t h e sum-  Caprella  to be present time  was a  o f the kelp  might  at a  'scum' bed.  o f That  -  this  is  at least  (unpub.) of  faunal  520/m2  and  a periodic data  which  utilize  detritus.  strated  (with  the  setae  neither  second  one i s  authors)  amount  o f their  The  second  those  food  o f both  that  and detritus  significantly  weak. the  time  the  of the spring  bloom  o f diatoms  al.1929,  Gran  (Hutchinson levels  comprised  with  o f 1976  et  i n the Strait  only  i n Site  1 during  this  a n d Metacaprella  certainty  but i t i s  and/or  t o conclude  a n d Thompson  of Georgia  such  earlier  of  Caine consisted  contributes Caprella  alasi s  i n the year i n the Strait  at o f  t h e summer  and Dodimead collected  1957). from  1975.  Thescarcity  t h e summer  unusual  matter.  o f diatoms  not during  samples  a  Caprella  setae  that  phytoplankton  of detritus  obtaining  detritus  a r e low ( T u l l y  Food plumose  and since  with  was d e t e c t e d w i t h i n  during that  setae,  o f  and  anomala  1930),  b y 15 o f  particulate  to the availability  was c o n d u c t e d .  possible  antennae  Any argument  and other  h e demon-  and scraping.  o r absence  that  may  was v a r i a b l e , i n -  filtering  o f caprellids  t h e summer  anomala  such  expected to occur  o f caprellids study  with  o f plumose  c a 10% o f t h e b i o m a s s  'bloom'  when  been  of feeding  Metacaprella  responding  have  was f e d upon  scavenging  two s p e c i e s .  would  No  alaskana  o f these  a response  substratum  summer  reasonable  are  nutrient  Diatoms  is  contents  anomala  Such  Georgia when  to the diet  a n d Metacaprella  kana  i t  mode  species  observed  diatoms  two species  to the presence  are characterized by t h e presence  of  these  detritus  feeding,  alaskana  75% o f t h e s t o m a c h  that  that  by scraping  antennae  density  respectively,  represented i n h i s study,  Their  of f i l t e r  antennae,  at a  alaskana  i n 1973a n d 1972,  evidence  he investigated.  combinations  2  Foreman's  (Table 1 2 ) .  was d e t e r m i n e d t o b e r e l a t e d  on t h e i r  significant  presents  Although  which  various  acquisition  (1977)  312/m  years  reference to other  16 s p e c i e s  volving  i n other  a r e c o r d o f Caprella  at  anomala  densities Caine  phenomenon was c o n f i r m e d b y r e f e r e n c e t o contained  a n d Metacaprella  at lesser  94 -  Site  1 during the  o f both  o f 1976 cannnot  environmental  Caprella be explained  conditions  during  Table 12.  History lidae,  Caprella  collections are  used,  o f the occurrence  (perm )  a n d Metacaprella  anomala,  alaskana  o f D r . R.  b u t they  E.  Foreman  (unpublished).  are essentially  equivalent  o f two species within  o f  Caprel-  t h e summer  Foreman's  faunal  transect  to the transect  units  units i n  this  study.  Number Year  Distance  August 1972  along  transect  jm)  C.  alaskana  M.  75  anomala  8  80 J u l y 1973  312  60  200  65  2 76  70  324  75  456  80  520  85  8  95  4  28  J u l y 1975  August  1 9 75  55  4  60  16  85  8  90  4  95  16  50-90  several  *  visual  estimation  hundred/m  of  abundance  *  -  August,  generally  Vancouver  t h e warmest  Weather  Office,  Airport, reported August temperature August ture on  is  1 7 . 1 C.  recorded  daily  the  f o r August  f i r s t  1975  readings half  (12.36  peratures b i a l the  1976  resource,  species  i n  and  o f detritus  this  material  as  since  was a  less  when  l i t t e r  lower  t h e mean  temperature  Caprella  would  In  sufficient  i t  rates  reducing  interpreta-  during  August a  reasonable  o f both  large  to  sug-  Caprella  availability  a proliferation  tem-  Micro-  i n 19 75 w h e n i s  low d e t r i t u s  to prevent  cool  affected,  on a v i s u a l  observed  on t h e growth  abundant.  o f an organism.  conclusion,  coupled with  persistent  on the bottom  the quantity  f o r August  was v e r y  alaskana  only  Based  temperature f o r  be s i m i l a r l y  based  a i r tempera-  influenced.  water  accumulated  than  mean  t h e mean  potential  Although  T h e mean a i r  a i r temperature f o r  o f temperature,  t h e growth  which  anomala, been  1937  The  International  on record.  mean  function  o f low temperatures  has n o t been a  food  material  latter  shown  source,  Lacuna  collected near whose  material  a r e known  Lacuna  f e d upon  biogenic as  grazers  Constantinea  grazing  upon  experimentally  however  E.  that  (pers.  1 and found  origin while  could  of  as  a  these  o f seaweeds.  luetkeana  Lacuna comm.)  conceding  examined  an abundance  Powell  The author lamina.  i t  during (1964)  u t i l -  marmorata  may h a v e  thegut  of  not be identified.  due t o m a s t i c a t i o n  subulifera.  Nereocystis  Cabot  Site  detritus  rendered unrecognizable  tion.  marmorata  a t Vancouver  The normal  was o b s e r v e d .  alaskana  of individuals  amorphous  s i f i e d  a  responsible.  1976.  detritus  contents  i s  lower  t o b e much  It izes  partially  Island  unpub.)  respectively)  available.  may h a v e  least  was 3.64 C below  of detritus  the effect  at  temperature was s i m i l a r l y  (Foreman  1976  a n d Metacaprella  alaskana  1  o f seaweed  o f Caprella that  Water  rates  was o b s e r v e d  gest  Site  appreciably  the quantity  bloom  two occasions  metabolism  decomposition  tion,  food  could  quantity  1976was 1 5 . 9 C.  a n d 1 6 . 2 C, As  were  3 5 km f r o m B a t h  August.  near  -  1976 t o b e one o f t h e c o l d e s t  o f August  C  month,  ca  On o n l y  during  96  diatoms  He  clas-  been  living  and following  inges-  demonstrated  has observed  adult  that  Lacuna  -  These prised  the bulk  during  the period  o f the total  zone  30-50  zone  (Lindstrom  and  during  seaweed  reasonable  Lacuna as  a  number  m along  the results  cate  o f maximum  food  which  t h e summer from  to infer  resource.  i s  (see also  to be suitably the success  individuals  i s  o f Lacuna  also  Figure  i s  were  this  and detritus f o r fauna,  o f a midsummer  the turf  detritus  73).  com-  Site  collected  o f the detritus  maximum  nutritious  snails  16 d e m o n s t r a t e s  marmorata  1 3 , page  o f l i t t e r  dependent  Figure  Not only  where  Juvenile  collected within  marmorata  i n the retention  the simulation  that  snails.  availability.  transect.  aids i t  to adult  o f Lacuna  and dry weight  marmorata,  detritus  marmorata  only  detritus  t h e permanent  1973),  f o r Lacuna  observed  refer  of the individuals  100%  habitat  reports  97 -  Based  i n the  community a  b i o m a s s was on this  i t does  on t h e a v a i l a b i l i t y  that  andprovides  processing  recruitment  1  of  evidence,  which  indi-  n o t seem u n juvenile  o f seaweed  detritus  -  -  SIMJLATION MODEL OF LITTER AND DETRITUS PROCESSING Introduction: To pects  of  l i t t e r  environment.  date  and  detritus  Boling  branch  l i t t e r  decomposition  fractionation  tioning  of  deal  composition  on  the  the  another  to  ence  changing  of  assess  complexity  gen  tension  the  be  of  1977,  Reuss  availability 1971,  Nichols  many  buffering  and  and  trations  drop  Oxygen tly  a  to  a  in  100% of  in  saturation  l i t t e r  were  abrasion  and  Bunnell  oxygen,  specific  the  t e r r e s t r i a l  microbial  (1976)  condi-  developed  with  plants  an  interaction  temperature  terrestrial  as-  simulating the  and  associated  system  (Nyhan  Strait  many  limiting  and  under  a  l i t t e r  l i t t e r ,  and  the  i n f l u -  and  occasionally  Dodimead found  and  influencing  requires  that  processes  dependent (Kaushik  as  the they (Hunt  upon and  oxy-  the  Hynes  1976).  the  in  but  the  also  nitrogen  i t  1957).  containing  contents  is  unlikely  rates  Strait  can  potential  the  decomposition m of  This  complications  alleviate  Georgia,  10  are  apparent  temperature  decomposition  Fisher these  more  greatly  1976).  rates  variations  the  upper  (Tully  of  helps  of  content,  t e r r e s t r i a l  and  becomes  seasonally,  particularly  seasonal  the  Moisture and  Howarth  seawater  the  to  considering  resolution  Decomposition  1973,  are  level  concentrations  near  pockets  oxygen  of  of  l i t t e r  nutrients,  marine  There  daily  simulating  1977).  of  rates  increases.  borne  models  quality  by  microbes  degree  vary  s o i l  Keeney  parameters.  nitrogen  can  inorganic  In The  of  of  limited  concerned with  physical  moisture,  rates  this  system  Innis  of  of  simulate  quality.  for  soil  by  to  been  primarily  Flanagan  decomposition  the  into  and  influence  need  rates  incorporated  material  particles.  substrate  within  decomposition  the  respiration  The the  of  resulting with  have  were  between  to  decomposition  developed  (1975)  of  the  and  models  al.  et  aspect  model  leaf  decomposition  of  of  Georgia  During some  the  be  avoided.  variability of  inorganic  their  concen-  species are  l i t t e r  seaweeds  in  studied.  consisten-  collections, undergoing  - 99 -  a n a e r o b i c decomposition, the amount o f l i t t e r to  however, the q u a n t i t y was i n s i g n i f i c a n t  undergoing  a e r o b i c decomposition.  compared t o  As seaweed l i t t e r  r e t a i n n i t r o g e n p r e f e r e n t i a l l y d u r i n g the decomposition  tends  process, the a v a i l -  a b i l i t y o f n i t r o g e n i s p r o b a b l y n o t a f a c t o r i n f l u e n c i n g t h e decomposition of  most seaweed l i t t e r .  S u b s t r a t e q u a l i t y , temperature,  remain the major f a c t o r s t o be c o n s i d e r e d . accounted  content  The e f f e c t o f s u b s t r a t e q u a l i t y i s  f o r i n t r i n s i c a l l y w i t h i n the derived l i t t e r  l e a v i n g temperature  and moisture  rate  decomposition  curves  t h e o n l y e f f e c t n e e d i n g t o be i n c o r p o r a t e d i n t o the model.  M o i s t u r e i s o b v i o u s l y n o t an i n f l u e n t i a l  factor.  The n u m e r i c a l o b j e c t i v e s o f the s i m u l a t i o n were: 1) t o p r e d i c t the s e a s o n a l f o r m a t i o n r a t e s , biomass, and l o n g e v i t y o f d e t r i t u s d e r i v e d from d e c a y i n g seaweed l i t t e r w i t h i n S i t e 1 2) t o p r e d i c t the s e a s o n a l r e l e a s e r a t e s and q u a n t i t y o f s o l u b l e matter r e l e a s e d from s e a weed l i t t e r a t S i t e 1 3)  t o e s t i m a t e the n i t r o g e n contents o f t h e d e t r i t u s formed and s o l u b l e matter r e l e a s e d from decomposing seaweed l i t t e r .  D e t e r m i n a t i o n o f these parameters f a c i l i t a t e d a comparison between the biomass o f d e t r i t u s p r e d i c t e d t o be a v a i l a b l e as a food r e s o u r c e w i t h in  S i t e 1 and the biomass o f d e t r i t u s o b t a i n e d from the sample  collections.  A d d i t i o n a l l y , an e s t i m a t e o f the s e a s o n a l c o n t r i b u t i o n o f d e t r i t u s and s o l u b l e matter d e r i v e d from seaweed l i t t e r  t o the S t r a i t o f G e o r g i a was o b t a i n e d .  Model Development: I n i t i a l l y , a f o u r d i m e n s i o n a l m a t r i x r e p r e s e n t i n g the p o o l o f s e a weed l i t t e r ,  t h e d r i v i n g v a r i a b l e i n t h e model, was c r e a t e d t o p e r m i t l i t t e r t o  be r e f e r e n c e d i n terms o f i t s b i o g e n i c o r i g i n , t h e quadrat w i t h i n t h e t r a n s e c t from which i t was c o l l e c t e d , distichus,  Iridaea  cordata,  sidered individually)  and the l o c a t i o n o f t h e t r a n s e c t . Nereocystis  and Laminaria  luetkeana  (L. saccharina  (stipe  Only  Fucus  and l a m i n a s e c t i o n s  and L. groenlandica  the s p e c i e s a c c o u n t i n g f o r more than 97% o f the q u a n t i t y o f l i t t e r  con-  combined), collected,  -  were incorporated into the model. of  100 -  Extrapolation of the areal p r o f i l e for each  these species (Figure 2) was f a c i l i t a t e d by prorating the 14 month seasonal  collections  (Figure 5) according to a tenth degree polynomic curve which approx-  imates the seasonal trend i n l i t t e r biomass.  This curve i s presented i n Figure  17 for t o t a l l i t t e r biomass. The l i t t e r decomposition curves for these species are presented in Figure 6 ( d , g , h , i , j ) , page 43. (stipe) and Laminaria,  For Fucus distichus,  Nereocystis  luetkeana  which decompose exponentially, 1.0% of o r i g i n a l dry weight  was considered the termination of the decomposition process.  The rates were  modified by a temperature dependent adjustment factor which accounts for the effect of seasonal temperature differences on decomposition rates.  Monthly mean  temperatures are presented i n Table 13a, based on regular measurements taken at or near Site 1.  Temperatures were converted to a decomposition rate adjustment  factor (Table 13b) by the following formula, assuming a the effect of temperature on decomposition rates  of 2.0 approximates  (Boling et al 1975, Reuss and  Innis 1977). where : 13.4 - T F = 2 10  F i s the decomposition rate adj ustment factor T is the temperature i n C  The mean temperature during the period when the l i t t e r bag experiments were performed was 13.4 C. The adjustment factor was estimated for each day of the year by f i t t i n g the following c y c l i c a l curve to the adjustment factors determined from the above formula. Croxton et  The formulae for calculation of the following curve are i n  al.(1967).  F = 1. 375  + (0.20187 s i n ( 2 T r / 3 6 6 )  + 0.29821 c o s (2TT/366) )  x I  where: F i s the decomposition rate adjustment factor I i s the day of the year The model was operated over the time period of 28 February 1976,  - 101 -  Figure 17.  Tenth degree polynomic curve f i t t e d to the seasonal biomass data obtained from l i t t e r collections along the 95 m transect location within Site 1 from 20 August 19 75 u n t i l 2 October 1976. Biomass i s i n g ash-free dry weight per The curve model i s as follows:  PB = Z ( p D Y i  1 _ 1  ) ; i = 1,11  where: PB i s the predicted l i t t e r biomass DY i s the day of the year p. are the coefficients l The coefficients are as follows: 1)  0. 3115825195312500E+01  2) - 0 . 155 3213977813721E+00 3)  0. 5167517066001892E- 02  4) - 0 . 9613301604986191E-•04 5)  0. 1075271284207702E- 05  6) - 0 . 7727231263743306E-•08 7)  0. 3657364633369298E-•10  8) -0. 1130370536756020E- 12 9)  0. 2186710082213890E- 15  10) - 0 . 2393779959900677E-•18 11)  0. 1127717301078564E-•21  -  102  -  Table  Mean sition  rate  19 7 6 .  The  unpub.).  Month  monthly  adjustment temperature  See  text  for  a)  temperatures  factor data an  13.  (b)  are  for  based  explanation  Temperature  (C)  the on of  (a)  and  period periodic the  the  corresponding  November readings  adjustment  b)  1975  decompo-  until  near  Site  factor.  Adjustment  January  5.6  1.717  February  6.1  1.659  March  6.4  1.625  April  7.6  1.495  May  8.4  1.414  June  11.8  1.117  July  13.4  1.000  August  12.5  1.064  September  13.6  0.986  October  9.6  1.301  November  7.7  1.485  December  6.3  1.636  factor  October 1  (Foreman  - 10 3 -  when l i t t e r biomass was e s s e n t i a l l y litter  zero, u n t i l  c o l l e c t i o n s were made beyond 2 October  31 December 1976.  S i n c e no  1976, d a t a from t h e autumn o f 19 75  were used f o r t h e p e r i o d o f October through December 1976. With d a i l y  increments  b e g i n n i n g on 28 February 1976 l i t t e r was m a t h e m a t i c a l l y p r o c e s s e d a c c o r d i n g t o the temperature  c o r r e c t e d s p e c i f i c submodels.  L i t t e r biomass a v a i l a b l e t o be  decomposed each day was determined by a p p l y i n g t h e e q u a t i o n f o r the curve i n F i g u r e 17 t o t h e r a t i o o f s p e c i f i c l i t t e r : t o t a l l i n g date.  litter  f o r the most r e c e n t samp-  The o n s e t o f decomposition was d e l a y e d by an e s t i m a t e d  d e l a y o f s i x days  senescence  (temperature adjusted) as e x p l a i n e d on page 5 4 .  Specific l i t t e r during the simulation.  i n each quadrat was p r o c e s s e d i n d e p e n d e n t l y  S t a r t i n g on 28 February 1976, l i t t e r which decomposed on  t h i s date was s u b t r a c t e d from the l i t t e r biomass a t the b e g i n n i n g o f the day. T h i s c a l c u l a t i o n was then performed  f o r every subsequent  t h e l i t t e r biomass t o z e r o , assuming no f u r t h e r l i t t e r these subsequent  deposition.  F o r each o f  days, t h e r e m a i n i n g l i t t e r biomass was s u b t r a c t e d from  biomass a t the b e g i n n i n g o f t h e day t o account l i t t e r w i l l be supplemented t i o n on f u t u r e  day r e q u i r e d t o reduce  f o r d a i l y biomass l o s s .  with freshly deposited l i t t e r  litter Remaining  and undergo decomposi-  days. F o l l o w i n g performance  o f t h i s c y c l e f o r each s p e c i e s i n every  q u a d r a t , t h e d a t a were summed t o y i e l d t h e t o t a l q u a n t i t y o f d e t r i t u s  formed and  s o l u b l e matter r e l e a s e d on 28 February 1976, w i t h p a r t i a l sums f o r t h e immediately subsequent for  days.  T h i s e n t i r e procedure was then r e p e a t e d , w i t h d a i l y  increments,  the duration o f the simulation. During the s i m u l a t i o n a l l s o l u b l e matter was r e l e a s e d i n advance  of  the p a r t i c u l a t e m a t e r i a l .  U n t i l the r e m a i n i n g l i t t e r biomass reached the p e r -  centage e q u a l t o the p a r t i c u l a t e m a t e r i a l c o n t e n t f o r t h a t s p e c i e s , a l l e x p o r t a t i o n was r e g i s t e r e d as s o l u b l e matter. Concomitant the d e t r i t u s  F u r t h e r decomposition formed  detritus.  with l i t t e r decomposition, the n i t r o g e n content o f  formed and the s o l u b l e matter r e l e a s e d was determined.  Unfortun-  -  ately,  due t o t h e rapid  lation,  minimal  sufficient for  t h e purpose  were  selected  being  data  firm  were  from  those  They  rates  Curve  f o r these  models  i n t r o d u c e d on page  a r e as  Y Y  42, with  yielding  = -1.09E-02X  Y  = -9.33E-03X  Nereocystis Laminaria  luetkeana  (lamina)  Y  = -2.92E-03X  Y  =  X i s Y  N. l  matter  t h e percentage the l i t t e r bag  i s  thepercentage  = QL. (PLU. , 1 1-1  derived i s  as  PLU.) 1  7.85E-05X  in  material  and soluble  those  + 2.83  i n -  trends  nitrogen  content  the best  f i t  (L)  7 . 0 4 E - 0 3X + 1 . 2 4  (stipe)  tritus  are  f o r approximating l i t t e r  luetkeana  formula  The data  f o r estimating  Nereocystis  The  i n the simu-  follows:  cordata  where:  involved  species.  b u t are' s u i t a b l e  distichus  Iridaea  o f the species  obtained  conclusions  of modelling.  accepted. Fucus  decomposition  nitrogen  to support  104 -  (L)  + 2.44  (L)  + 5.30  (L)  3.39E-02X  --  2  o f l i t t e r nitrogen  remaining  + 4 . 9 2 (Q)  remaining content  o fthe  i n the l i t t e r bag  f o r calculating  the nitrogen  content  o fd e -  follows:  (PN. + PN. J l 1-1  2  ( (PN.  ,)  1-1  *  ( ( P N . .) l - l  (PLU. J / P L U . ) - PN. 1-1 1 _ (PLU. _)/PLU.) l - l l  -  PN  i-1  where: N  i s  the quantity  matter QL i s on PLU i s (a  i  the quantity  ment rates  2.  rates  F o r Fucus  were  linear  theproportion function  as  soluble  on day i f o r decomposition  theproportion  i s  a counter  l i t t e r  y e t undecomposed  decomposition  o f nitrogen  nitrogen  submodels,  0-10  the decomposition  a n d a r e as  submodels  was s i m u l a t e d  f o r the i n i t i a l  distichus  i n the l i t t e r  content  f o r t h e day during  decomposition  obtained  o f older  6)  the l i t t e r  0.76%  by usage  f o r  20-30  p e r day  Nereocystis  luetkeana  (stipe)  3.12%  p e r day  Nereocystis  luetkeana  (lamina)  3.48%  p e r day  Laminaria  above)  o f the detritus d e -  5.65% p e r day  cordata  function  the simulation  day incubation rate  (a  l i s t e d  follows:  distichus  Iridaea  available  o f the l i t t e r  i s  Fucus  released  o f detritus  o f l i t t e r  of  Detritus composition  o f nitrogen component  day i  Figure PN  o r as a  2.93% p e r d a y  period days  i n Experi-  was used.  A l l  -  As not  determined,  other  detritus  t h e change  To incremental resolution  data  reduce were  A  flow  i t  matter  t h e volume  summed  content  as though  Soluble  was s u p e r f l u o u s  performance  i n nitrogen  i t was m o d e l l e d components.  105 -  decomposed  d e t r i t u s was  a t t h e same  rate  as  was n o t decomposed.  o f output  and averaged  o f decomposing  produced  over  by the simulation,  3-4 week  intervals.  daily  Greater  and unmanageable.  chart  outlining  o f the simulation  i s  t h e major  presented  operations  involved  i nthe  i n Figure 18.  Results:  Operation contributions  each  alone.  species  lower  decomposition a l l other  (lamina). tity  to their  As e x p e c t e d ,  siderably  by  than  rate  indicated  which  1.  andrelease Both  most  Nereocystis  the true  species.  biomass  decomposition  o f soluble  the seasonal matter  phenomena  from  with  biomass  was c o n -  due t o i t s p a r t i c u l a r l y  f o r Nereocystis  slow  contributions  luetkeana o f the true  quan-  apparent. profile  f o r the rate  decomposing  peaks  l i t t e r  distichus  as an estimator  i s  contributions  Theproportional  dramatically  and  luetkeana  on sampled  b y Fucus  data,  the proportional  proportional  based  contribution  o f l i t t e r  19 d i s p l a y s  are seasonal  cordata,  by t h e biomass  increased,  undergoes  determined  contributions  t o the other  The u n r e l i a b i l i t y  model  14 c o m p a r e s  estimated  relative  species  o f l i t t e r  formation  Table  Iridaea  theproportional  Figure  Site  distichus,  t o the l i t t e r .  Laminaria of  o f Fucus  o f the simulation  occurring  seaweed during  o f  detritus  l i t t e r late  within  summer.  2 Maximum o b s e r v e d  rates  tion  matter  andsoluble  l i t t e r  forms  detritus, Figure  l i t t e r 21  deposited  presents  along  a similar  were  c a 0 . 6 a n d 0 . 5 g AFDW/m  release,  respectively.  the remainder 20 displays  released  thepredicted  t h e permanent picture  being  In  based  transect on t o t a l  p e r day f o r d e t r i t u s total,  56% o f  as s o l u b l e  detritus  location l i t t e r  ca  decomposing  matter.  biomass  formed  ( 9 5 m) i n S i t e  deposition  forma-  within  from  1. Site  Figure 1.  -  Figure  18.  Flow the  chart  LITTER  the  l i t t e r  BIOMASS  within  Site  1:  transect  and  day  from  equation  for  Figure  the  specific  NITROGEN  SPECIFIC  l i t t e r : t o t a l  sampling  on  CONTENT  page  the  the  l i t t e r ,  DETRITAL  TOTAL  formed w i t h i n ted  to  sect  1:  day  of  DETRITUS  AND  DETRITAL  PREDICTED  the  DETRITUS  within  Site  quadrat, year.  1.  of  from  6,  p a ge  43.  l i t t e r  percentage  matter  and  and  DECOMPOSIT I O N  LATION:  specific  soluble  detrital  i n t r o d u ce d  biomass of  RATE  ADJLSTMENT on  processed  soluble  matter  nitrogen  nitrogen  are  are  CALCUpage  100.  is in  released;  formed.  AND  subscriptran-  NITROGEN  SPECIFIC  AND  on  page  104.  DETRITAL  and  day  to of  PREDICTED AND  ACCUMULATION  subscripted  transect  Figure  RATE introduced  year.  introduced  NITROGEN BIOMASS  SUBMODEL S :  BIOMASS  and  SUBMODELS:  ratio  D E C O M P O S IT I O N  input  quadrat,  RATE  the  immediately  TEMPERATURE  detritus  Site  DECOMPOSITION  species,  determined by  the  LITTER  DETRITUS  species,  in  within  NITROGEN  soluble  NITROGEN  for  introduced  equivalent  alternatively,  PREDICTED  involved  processing  to  as  prorated  in  MATTER  percentage  than  17  year;  LITTER  104.  104; r e q u i r e s  the  subscripted the  SPECIFIC  CALCULATION:  less  operations  detritus  date.  LITTER BIOMASS, LITTER DECOMPOSITION RATE a n d NITROGEN CONTENT SPECIFIC SUBMODELS.  IF  and  l i t t e r  CONTENT  DETRITAL/SOLUBLE page  of  SUBMODELS:  introduced  major  1.  preceding  on  of  quadrat, of  LITTER  -  outlining  simulation  Site  106  the  TOTAL SOLUBLE  SOLUBLE  within  Site  day  the  of  NITROGEN 1:  MATTER  released  subscripted  year.  to  -  10 7  -  Table 14.  Comparison contributors  pool  a)  l i t t e r  b)  application to  These  o f the percentage  to the l i t t e r  percentages  biomass  l i t t e r  were  within  Site  contributions  alone  o f the decomposition  biomass  rates  dryweight Litter  Fucus  Litter  o f these  biomass  with  basis.  biomass  71.98  40.84  cordata  15.07  26.22 3.57  Nereocystis  luetkeana  (stipe)  1.95  Nereocystis  luetkeana  (lamina)  7.36  Laminaria  1.69  coupled  decomposition  distichus  Iridaea  species  data.  determined on an a s h - f r e e  Species  by t h e major  1 as determined b y :  23.72 3.70  rates  Figure  19.  Seasonal the  profiles  release  rate  l i t t e r  biomass  weight  per  m  for of  within per  the  formation  soluble  day.  Site  matter 1.  rate from  Rates  are  of  detritus  decomposing in  g  and seaweed  ash-free  dry  -  Figure  20.  Detritus  109  biomass  within  Site  only.  Contour  -  predicted  1 based  on  for  l i t t e r  intervals  are  the  95  m transect  collections 2.0  g  from  ash-free  dry  location  that  location  weight  per  m  2  - 110  Figure  21.  Detritus  biomass  collections Contour  from  intervals  -  predicted a l l are  for  transect 10.0  g  Site  1  based  locations ash-free  on  within  dry  l i t t e r Site  weight  per  1  - Ill Reference ancy  between  detritus  predicted  biomass  along  to  Figure  13  and  observed  the  permanent  (page  73)  detritus  highlights  biomass.  transect  an  Based  location  obvious  on  peaked  discrep-  sampling  at  1.4  data, AFDW/n  g  2  9  whereas on  the  ating the is  the  predicted  substrate. a l l  data that  l i t t e r  If data  incorporated detritus  detritus  formed  quantity  was  detritus  biomass  for  1,  Site  into  the  accumulation from  seaweed  Alternatively, detritus  biomass  position  elsewhere,  ments of  discount  the  same  is  this  simulation  the  disappearance  predicted  tion.  The  amount  at  result  its  of  Very  of  all  3%  mean  nitrogen  be  2.48  -  to  quantity  of  0.03%  nitrogen  AFDW/m  in  Site  of  only  1,  the  its  released  dry  l i t t e r  the  Accepting  the of  Site very  was  1  the  over  being and  observed  Three  soluble  near  decomargustands  the  seaweed  zone.  could  account  for  the the  of  exported.  undergoing  within  at  quantity  collected  rates  that  implication  short.  outside  detritus  with  incorpor-  remainder  deposited  weight  p r e d i c t e d by  1-5%  within  observed  of  deposited  predicted  decomposition  content  was  accurate,  1 being  specific  l i t t e r  detritus  estimated.  between  Site  was  a l l  to  deposited  the  is  2  reasonably  l i t t e r  of  i f  accurately  amounts  l i t t e r  The  more  difference  Most  that  AFDW/ra  within  time  l i t t l e  but  1  l i t t e r  residence  demonstrated  1.36  the  hypothesis.  species.  The  was  a  are  Site  l i t t e r  is  80 g  ca  model in  30 g  ca  Site  time  of  period  matter  1. its  of  was  formation  the a  simula-  lesser  0 . 0 3%.  t  Discussion: Data detritus to  this  was  formed  figure  i t  obtained from  is  in  seaweed  increased  to  this  study  l i t t e r 145 g  indicate  during  that  1976.  AFDW/n . 2  ca  When  80  AFDW/fa  g  soluble  2  matter  With  carbon  accounting  matter  (Round  1965),  of is for  added 50-  2 60% is  of the  the  elemental  estimate  decomposition  in  for  composition the  Site  1.  amount  of  of  the  carbon  organic leaving  seaweed  biomass  via  70-85 g l i t t e r  C/m  - 112 This mass  lost  crop  biomass  detritus leaving mated  from  t h e same  (Foreman  formation Site  without  crop  biomass  from  seaweeds.  9.8  to lose  must  also  Mann  seaweed Such  constituting  zone,  these  an extensive  estimating  total  40-50%  through  the l i t t e r  pool.  seasonal  the ratio  o f yearly  portion  kelps  can account  turnover  o f biomass  results  andsubsequent  i n standing  detritus  to  i n  e s t i -  form  standing formed  longicruris  crop  portion  f o rb y  productionrinitial  at 4.2.  o f the standing  f o r a large  (1977)  o f detritus  a n d Lan i n a r i a productive  standing  production by  changes  estimates  bio-  luetkeana  be expected  quantity  a major  e t al.  primary  would  was l e s s  be accounted  Johnston  o f which  digitata  i n  a n d b y Nereocystis  the total  Agarum  production  must  o f i t s gross  that  o f seaweed  differences  estimate  o f Laninaria  and 7.2, respectively.  biomass  a n dwaves.  be considered  (1972b)  seasonal  t i p erosion  percentage  may i n a d e q u a t e l y  f o r populations  necessarily  by winds  shunted  from  The remaining  v i a lamina  a certain  being  f o r c a 45% o f t h e q u a n t i t y  as determined  unpub.).  saccharina  It  biomass  area  detached  t i p erosion,  detritus  accounts  directly  1 when  Laninaria  lamina  amount  Thus,  biomass  t o be without  within the  o f the net production. crop  formation  biomass  under-  andsoluble  matter  release. As Mann's  (1972b)  indications the  plants  system  are that within  tenth  in  i t s contribution  system  this  1  i n 'importance'  i s  total  which  indicate  below  mean  that  (Foreman  unpub.).  This  pool,  formation i s  45% o f t h e biomass This  i s  t h e zone  1and  however, t h e turnover  A s Nereocystis  luetkeana  was  species  Site  within  i n biomass  andsoluble  matter  by Foreman's  loss  Site  biomass  changes  supported  o f both  appropriate;  has the highest  of the 'significant'  detritus  sea level.  i s probably  luetkeana  t o the l i t t e r  considered.  are characteristic  consideration  Nereocystis  Site  ed  underestimate  a n d Agarum  Laminaria  occurred  dominated  rank-  1 and t h i r d  may n o t s e v e r e l y release  seasonal  when  biomass  i n the depth  b y Fucus  o f  range  distichus  the entire data 0-3m  and  Iridaea  -  cordata,  t h e two dominant  turnover  has n o t been  maining most  biomass  o f which  Of  these,  by  high  loss  biomass  l i t t e r  respectively)  indicate  occurs  late  maximum  a  peak  at  l i t t e r ,  biomass,  equivalent stations  t o 15% o f t o t a l  were  alone  Data the  peaks  this  seaweed  posed  mean  r e -  species  sea level.  are characterized  Site  1,  zone,  i n coastal  when  indicate  leaving waters,  Lenz  of total  production  likely  at least along  (1977)  by three  production  origin  obtained  the soluble results  formed  from  traps  study fold,  detritus  matter  which  detritus  spring, 1972a).  from seaweed  must b e  o f organic placed  Data  at  from  matter  deep shallower  Laminaria  produc-  andwith  t h e major  was l o w , they  80% t o b e e x p o r t e d ,  with  formed  o f the organic  < 5% o f s e a w e e d  early  been  Scotia.  imply  B a y (Mann  a n amount  o f their  (1972a)  which  during  o f seaweed  B a y , Nova  that  on Mann's (1972)  t o have  i n sediment  seaweed  a hypothesis  based  detritus  and 20 a n d 2 1 ,  from  seaweed  collected  the year  plankton  with  5,  i n St. Margaret's  production  that  from  predicted  (1975)  During  t o b e t h e most  study  derived  i n St. Margaret's  reliable.  formation  months,  the majority  e t al.  (Figures  and S u t c l i f f e  productivity  plant  occurring  detritus  from  biomass  exceeded phytoplankton  settlement seaweed  less  (1967)  percentage  Webster  (60 a n d 65 m )  stations tion  within  data  be consistent  1-5% o f d e t r i t u s  and a lesser  elsewhere.  biomass  t h e summer  o f Krey  seaweed  only  accumulated  processed  The  'significant'  Laminaria  o f detritus  would  during  material  o f maximum  period  This  o f the results  As seaweed  t h e peak  occurs  i n particulate  t h e time  and d e t r i t u s  summer.  productivity  interpretation  biomass  species.  o f 10-30 m below  andpossibly  luetkeana  eight  A large  turnover. The  during  range  pool.  o f these  f o r by the other  i n the depth  Nereocystis  to the l i t t e r  to be characteristic  accounted  a r e found  only  contributors  shown i s  113 -  conclude  matter i s  collected.  deposited  and subsequently  within decom-  released.  may b e c o n s i d e r e d  evidence  -  of a  thepresence positive  and/or only  The to  correlation  zooplankton  data  above  o f seaweed  from  15 m d e p t h  suggestion Lenz's  borne  results  i s  that  the Kiel has been  Bight  arine  i s  double  If  these  data  butions the  from  seaweed  feature salt for  Moody  plant In  present  is  no evidence  marina  the salt  area  Baltic Sea, In  were  nature,  obtained.  such  as  b u t seaweeds Baltic  a possible  water  contrary  Sources  o f the Western  systems  this  a i r -  were n o t  coastline,  explanation  marsh  rate  o f detritus  formed  unless  from  such  systems.  It  where  n o t the case.  of h i s  w i l l i s  There  near  e t al.  that  Robert's 1977).  abundant zone  may b e  pathways.  exceed  contrithan  i s  a  marked  estuarine  b u t they  account  marina)  Bank  Rates  higher  detritus  formed  (Zostera  f o r the ecosystem  be significantly unlikely  should  estu-  seaweed  from erosive  Rivers,  o f Georgia, Sibert  from  a r e major  Eelgrass  o f 1.4 g  coast  amount  t h e seaweed  coastline.  1975,  an east  a r e more  and Squamish  rate  formation  seaweeds  systems  o f Georgia,  are not available they  from  by detritus  o f the Fraser  detritus  matter  complemented  i n the Strait  to suggest  o f organic  a maximum  but the total  i s  (Foreman  determined  2  of the total  and Nanaimo  Zostera  when  the Strait  proportion  1978)  West  correlations  discounted  show  phytoplankton  h i s hypothesis.  g AFDW/m ,  detritus  a t t h e mouths  of  for  figure  of the coastline,  are also  were  ( 1 9 6 7)  daily  o f 0.2-0.4  are typical,  zone.  a small  dows  The average  this  other  marshes  Bight,  autochthonously.  an e n c l o s e d  and de l a Cruz  i n t h e range  least  o f  to  overlooked.  marsh.  at  an attempt  o f an allochthonous  feature  p e r day f o r t h e e x p o r t a t i o n  salt  l i t t e r  i s  In  biomasses  supported  and sediment  being  crop  nonsignificant)  i t was formed  a r e a normal  water.  i n the Kiel  15 m d e p t h  the detritus  erosion  Odum AFDW/m^  the standing  (although  that  Seaweeds  i n coastal  of detritus  below  negative  coastal  referenced. and w i t h  and that  hypothesis  dust,  detritus  between  stations  114 -  (Forbes of  level  than  1972,  formation b u t there  those  originating  mea-  obtained from  either  - 115 system in  w i l l  exceed  t h e immediate  the quantity  vicinity The  detritus  w i l l  sonally  available  tively,  vascular  for  fauna  ecological  Seaweed  during  in  this  This to  i s  study  same of  content  58). rate  primary  less than  components.  rate  when  and vascular  than  i s  considering  1967b). determined  incorporated i n -  i n the relative  by t h e trend  d e t r i t a l  probably  resource  underestimated.  increases  decomposed  food  detritus,  f o r the species  indicated  sea-  Alterna-  term  low (Darnell  i s probably  rapid  This  andonly  as a long  i s  plant  undergoing  f o r fauna.  o f seaweed  submodels  the simulation  detrital  decomposition  documented  content  l i t t e r  other  o f t h e biomass  resource  production  104) g e n e r a t i n g  Additionally,  food  o f i t s dry weight,  o f decomposing  as o t h e r  i t s true  when  h a s been  predicted nitrogen  (page  detritus  to be t o o s h o r t - l i v e d  term  due t o t h e s p e c i f i c  the simulation  (page  detritus  biomass  systems.  o f seaweed  appears  a long  t o b e c a 2.48%  partially  nitrogen  detritus  periods The  roles  seaweed  due t o t h e composition  to provide plant  from  o f the respective  be d i s s i m i l a r  decomposition.  originating  nitrogen  an  the pattern  i n Figure  7  atthe  underestimation  observed  f o r l i t t e r  o f seaweed  detritus  decomposition. To as  a  food  Generic tage  obtain  resource  and/or  f o r fauna  class  o f dry weight,  Nereocystis Fucus  an i n d i c a t i o n  o f the suitability  a C:N r a t i o  estimates  was e s t i m a t e d  o f the elemental  f o r the five  species  ca  andFucus  vesiculosus  Laminaria Rhodophyta These  data  species the  ( i n general) prorated  t o detrital  value  content  were  rendering  a  according  biomass  o f 1 7 : 1which food  carbon  modelled  luetkeana  spiralis  resource  (1970)  suitably  as a  formed.  percen-  follows:  20% ( J . Whyte  pers.  comm.)  33-36%  (Vinogradov  1953,  N i e l l  1976)  12-27%  (Vinogradov  1953,  N i e l l  1976)  20-38%  (Niell  a C:N r a t i o  Russell-Hunter  contents,  a r e as  t o thepercentage  to yield  f o r the detritus  1976)  contribution  of 10-13:1.  considers  nutritious  by each  This  i s  t h e minimum  f o r most  fauna.  less  than  nitrogen The  C:N  - 116 ratio  of the soluble  considered  matter  nutritively  overestimation,  released  poor.  i s  i n t h e range  As t h e C:N r a t i o  i t  follows  that  In  comparison,  the ratio  o f 18-24:1  f o r detritus  for soluble  i s  matter  a n d must be probably  i s  an  an  under-  estimation.  considerable  degree  renders  i t  (19 75b)  found  duce to  t h e C:N r a t i o  less  than  onstrated  of processing  suitable that  between  i t  (1973) leaves  attains  were  detritus  marina  Iverson  detritus  by potential  35 a n d 1 0 2 d a y s  o f Zostera  decomposing  plant  before  f o r consumption  17:1.  that  vascular  performed were  a  usually nutritive  consumers. required  from  value  Harrison  value  experiments  until  nitrogen  a  that a n d Mann  f o r microbes  an i n i t i a l  preference  n o t f e d upon  undergoes  tor e -  of  20.2:1  which  dem-  enrichment  occurred. In  caprella  tion  i s  based  patterns.  summer It  pulse  Lacuna  delimited  on t h e i r  that  experiments  and their  detritus  with as a  growth  habit,  was t h a t  Caprella  utilizers spatial  these  be performed  that  resource.  they  of natural  seaweed  temporal  nutritious  u t i l i z i n g  can respond  Meta-  distribu-  may b e r e s p o n d i n g  to determine  while  and  alaskana  and/or  species  of sufficiently  and s u r v i v a l  certainty food  marmorata,  as p o s s i b l e  morphology,  The i m p l i c a t i o n  to conclude  seaweed  study  i n the availability  necessary  preference, order  were  anomala  detritus,  this  seaweed these  this  to a  detritus.  species'  resource,  food i n  to the availability  of  -  \ n -  SUMMATION Previous coastal  ecosystems  tribution 1972,  by  1973,  contribute by  Mann  detritus Perkins  particulate  It  tent  of  Bay,  Kiel  to  is  from  via  late  erosion  waters  a  annual  summer. kelp  to  the  a  very  This  amount  lamina  least  partially  ism  by  material  from  detritus  inability  to  1972,  This  has  probably  soluble  and  matter  coastal  distinguish  phytoplankton  (Sutcliffe  paucity  other  et  is  of  zone  of  estimated  to  detritus by  source  material  detritus  soluble  least  formation  con-  biomass.  and  at  and  Margaret's  seaweed  be  of  non-bloom  (e.g. St.  formed  detritus  Columbia,  during  from  may  considered  seaweed  British  con-  Fenchel  biomass  particulate  detritus  al.  indicated  been  45%  being  formed  a  reason  macrophytes  1975) .  between further  seaweed  and  that  material  contributions  biomass  that  short-lived,  structural  adequately  seaweed  Webster  is  that  the  1967b,  seriously  sources  the  of  macrophytic  Georgia,  complemented  detritus  its  to  major  seaweed  seaweed  experiments  to  and  relative  is  f i r s t  contribution  rate  seaweed  in  derived  observed directly  tips.  seaweed  due  microbes.  seaweed  The  rapidly,  of  maximum  of  that  a  studied  with  the  planktoriic  extrapolate  system  Decomposition poses  Strait  significant  (Darnell  from  was  detritus  significance  interpretation  likely  from  organic  the  derived  the  is  of  biomass  energetics  the  quantity  role  seaweed  detritus  supports  for  the  c h a r a c t e r i z e d by  receives  l i t t e r ,  of  study  contribution  from  from  coastal  material  areas  Bight)  released  during  to  reasonable  enclosed  seaweed  That  coastal  the  The matter  underplayed  1974).  organic  exceeds  periods.  consistently  originating  This  exported  perhaps  of  significantly  (1972a).  biomass  have  examinations  for to  based  l i t t e r  this  was  resistant  to  underestimations total on  organic  coastal  sampled material  complicates  this  decomat metabolof  organic  biomass  alone.  originating problem  - 118 Previous detritus  biomass  interpretation distribution suitably weed C:N to not upon  species  the  is  for  kelps with  specific  least  implication  is  that  that and  one  detritus must  function  of  general  fauna,  quantity i t  that  coastal  i t  a  C:N  than  seaweed there  is  has  a  ecosystems.  very  to  of  has  detritus  is  food  its high  suitable  as  significant  1972a)  and  this  study  evidence  food  role  in  Sea-  which  resource  nitrogen  faunal is  less.  the  40:1 could  some  The  content  resource  has  relied  that  availability.  a  an  pelagic  biomass  Although a  seaweed  detritus or  (Mann  circumstantial upon  and  10-13:1  Laminaria  which  precluded  seaweed  seaweed  1970).  to  benthic  that  living  relatively  particularly  degree  resources  ratio  for  dependent and  the  resource  (Russell-Hunter that  of  confirmed  27.2:1  periodically the  has  having  to  food  this  acceptable  13.8:1  renders  expect of  more  benthic  at  coastal  study  fauna,  certainty  are  seaweed  This  from in  to  unawareness  importance  for  thus  ranging  conclude by  of  nutritious  ratios 80:1  contributes  patterns.  detritus  authors'  of such  structure  -  uq-  LITERATURE CITED  Acharya, C.N., 19 35: S t u d i e s on the a n a e r o b i c decomposition o f p l a n t m a t e r i a l s . J J J . Comparison o f the course o f decomposition o f r i c e straw under a n a e r o b i c , a e r o b i c and p a r t i a l l y a e r o b i c c o n d i t i o n s . Biochem. J . 29 :1116-1120 Bocock, K.L., 1964: Changes i n the amounts o f dry matter, n i t r o g e n , carbon and energy i n decomposing woodland l e a f l i t t e r i n r e l a t i o n t o the a c t i v i t i e s o f the s o i l fauna. J . E c o l . 52:2 73-284 B l i n k s , L.R., 1955: P h o t o s y n t h e s i s J . Mar. Res. 14:363-373  and p r o d u c t i v i t y o f l i t t o r a l  marine  algae.  B o l i n g , R.H., J r . , E.D. Goodman, J.A. van S i c k l e , J.O. Zimmer, K.W. Cummins, R.C. P e t e r s e n and S.R. R e i c e , 1975: Toward a model o f d e t r i t u s p r o c e s s i n g i n a woodland stream. E c o l . 56:141-151 Breen, P.A., and K.H. Mann, 1976: Changing l o b s t e r abundance and the d e s t r u c t i o n o f k e l p beds by sea u r c h i n s . Mar. B i o l . 34:137-142 B r y l i n s k y , M., 19 77: Release o f d i s s o l v e d o r g a n i c matter by some marine macrophytes. Mar. B i o l . 39:213-220 Caine,  E.A., 1977: Feeding mechanisms and p o s s i b l e r e s o u r c e p a r t i t i o n i n g o f the C a p r e l l i d a e ( C r u s t a c e a : Amphipoda) from Puget Sound, U.S.A. Mar. B i o l . 42:331-336  Clendenning, K.A., 1971: O r g a n i c p r o d u c t i v i t y i n k e l p a r e a s . (Ed.), The b i o l o g y o f g i a n t k e l p beds (Macrocystis) 259-263. Nova Hedwigia 32 (Suppl.)  I n : W.J. North in California:  C r a i g i e , J.S., and J . McLachlan, 1964: E x c r e t i o n o f c o l o u r e d u l t r a v i o l e t i n g substances by marine a l g a e . Can. J . Bot. 42:23-33 C r o x t o n , F.E., ed.  D.J. Cowden and S. K l e i n , 1967: P r e n t i c e - H a l l , N.Y., 754 pp  absorb-  Applied general s t a t i s t i c s .  3rd  Cushing, D.H., 1964: The work o f g r a z i n g i n t h e sea. I n : D.J. C r i s p ( E d . ) , Grazi n g i n t e r r e s t r i a l and marine environments:207-225. B l a c k w e l l , London D a r n e l l , R.M., 1967a: The o r g a n i c d e t r i t u s problem. I n : G.H. L a u f f (Ed.), Estuaries:374-375. Amer. Ass. Adv. S c i . P u b l . 83, Washington, D.C. D a r n e l l , R.M., 1967b: O r g a n i c d e t r i t u s i n r e l a t i o n to the e s t u a r i n e ecosystem. I n : G.H. L a u f f (Ed.), E s t u a r i e s : 3 7 6 - 3 8 2 . Amer. Ass. Adv. S c i . P u b l . 83, Washington, D.C. de l a Cruz, A.A., and B.C. G a b r i e l , 1974: C a l o r i c , e l e m e n t a l , and n u t r i t i v e changes i n decomposing Juncus roemerianus l e a v e s . E c o l . 55:882-886 de  l a Cruz, A.A., 1975: Proximate n u t r i t i v e value changes d u r i n g o f s a l t marsh p l a n t s . H y d r o b i o l . 47:475-480  decomposition  - 120  -  F e n c h e l , T., 1970: S t u d i e s on the decomposition o f o r g a n i c d e t r i t u s d e r i v e d from the t u r t l e grass Thalassia testudinum. L i m n o l . Oceanogr. 15:14-20 F e n c h e l , T., 1972: Aspects o f decomposer f o o d c h a i n s i n marine b e n t h o s . Deutch. Z o o l . G e s e l l . 65:14-22  Verh.  F e n c h e l , T., 1973: Aspects o f the decomposition o f sea g r a s s e s . Manuscript. I n t e r n a t i o n a l Seagrass Workshop, L e i d e n , N e t h e r l a n d s , 18 pp F e n c h e l , T., and P.G. H a r r i s o n , 1976: The s i g n i f i c a n c e o f b a c t e r i a l g r a z i n g and m i n e r a l c y c l i n g f o r the decomposition o f p a r t i c u l a t e d e t r i t u s . In: J.M. Anderson and A. Macfadyen ( E d s . ) , The r o l e o f t e r r e s t r i a l and a q u a t i c organisms i n decomposition processes:285-299. 17th Symposium of the B r i t i s h E c o l o g i c a l S o c i e t y , 15-18 A p r i l 1975, B l a c k w e l l , Oxford Flanagan,  P.W., and F.L. B u n n e l l , 1976: Decomposition models based on c l i m a t i c v a r i a b l e s , s u b s t r a t e v a r i a b l e s , m i c r o b i a l r e s p i r a t i o n and p r o d u c t i o n . In: J.M. Anderson and A. Macfadyen ( E d s . ) , The r o l e o f t e r r e s t r i a l and a q u a t i c organisms i n decomposition processes:437-457. 17th Symposium o f the B r i t i s h E c o l o g i c a l S o c i e t y , 15-18 A p r i l 1975, B l a c k w e l l , Oxford  Fogg, G.E.,  Forbes,  1966: The e x t r a c e l l u l a r p r o d u c t s o f a l g a e . I n : H. Barnes, G. A l l e n ( E d s . ) , Oceanogr. Mar. B i o l . Ann. Rev. 4:195-212. Unwin L t d . , London  R.D., 1972: A f l o r a l d e s c r i p t i o n o f the F r a s e r R i v e r e s t u a r y and Boundary and Mud Bays, B.C. Report to B.C. Dept. o f Rec. & Cons., F i s h & W i l d l i f e B r . , 94 pp  Foreman, R.E., 1975: Nanaimo R i v e r e s t u a r y macrophyte s t u d y . 75-3, 41 pp  B.E.R.P. Report  Foreman, R.E., 1977: B e n t h i c community m o d i f i c a t i o n and r e c o v e r y f o l l o w i n g i n t e n s i v e g r a z i n g by Strongylocentrotus droebachiensis. Helgolander w i s s . Meeresunters. 30:468-484 F r e t t e r , V. and A. Graham, 1949: The s t r u c t u r e and mode o f l i f e o f the Pyramid e l l i d a e , p a r a s i t i c opisthobranchs. J . Mar. B i o l . Ass. U.K. 28:49 3532 G a l l a g h e r , J.L., W.J. P f e i f f e r and L.W. Pomeroy, 1976: L e a c h i n g and m i c r o b i a l u t i l i z a t i o n o f d i s s o l v e d o r g a n i c carbon from l e a v e s o f Spartina alterniflora. E s t . Coast. Mar. S c i . 4:467-471 G a s i t h , A., and W. Lawacz, 1976: Breakdown o f l e a f l i t t e r i n the l i t t o r a l of a e u t r o p h i c l a k e . E k o l . P o l . 24:421-430 G o s s e l i n k , J.G., arid C.J. K i r b y , 1974: Decomposition o f s a l t marsh g r a s s , tina alterniflora Loisel. L i m n o l . Oceanogr. 19:825-832 Gran, H.H.,  zone  Spar-  and T.G. Thompson, 1930: The diatoms and p h y s i c a l and c h e m i c a l cond i t i o n s o f the seawater o f t h e San Juan A r c h i p e l a g o . Pub. Puget Sound B i o l . S t a . 7:169-204  -  G r i l l ,  E.V., and F.A. Richards, ton  Hanson,  decomposing  R.B., and W.J. particulate  Hargrave,  Sapelo  o f growth  1975a:  and detritus content.  shelf  as  a  Limnol.  J . F .  Fundamental  Biol.  the  marina  Res. Board formation  seasonsal  L.)  onthe  Can. 32:615-621 from  eelgrass  o f fragmentation,  leaching  detritus  i n a south  and D.A. Flemer,  Mar. B i o l .  concepts  Florida  estu-  1 1 0 pp 1977:D e t r i t u s  as  food  40:341-353  i n the design  o f experiments.  Holt,  and phosphorus  dynamics  N . Y . , 3 4 9 pp  R.W., a n d S . G . F i s h e r , decay  e f -  20:924-934  o f Miami,  Ustach  i n seawater:  during  {Zostera  effects  o f organic  Univ.  copepods.  changes  Detritus  Oceanogr.  and Winston,  leaf  Chemical J . Fish.  detritus  28:165-169  i n eelgrass  1975b:  The production  C.R., 1973:  water Hunt,  Limnol.  estuarine  during  and the continental  and organic  Oikos  L . ) : the relative  D.R., R.P. H a r r i s ,  Howarth,  with  salt-marsh  o f sediment  o f macrophyte  o f Canada.  Ph.D.thesis,  Rinehart  associated  alterniflora  U.S.A.,  area  by amphipods.  and decay  marina  1969:  for Hicks,  coast  decay.  ary.  phytoplank-  17:583-596  P . G . , a n d K . H . Mann,  E . J . ,  Heinle,  surface  P . G . , a n d K . H . Mann,  and Heald,  Georgia,  decomposition  of particle  of grazing  (Zostera  activity  i n a Spartina  from  22:51-69  42:321-330  P . G . , 1977:Decomposition  Atlantic Harrison,  Island,  B . T . , 1 9 7 2 :A e r o b i c  cycle  regeneration  J . Mar. Res.  1 9 7 7 :H e t e r o t r o p h i c  fractions  Mar. B i o l .  fects Harrison,  Wiebe, size  estuary,  Oceanogr. Harrison,  1 9 6 4 :N u t r i e n t  i n seawater.  waters.  function  121 -  1 9 7 6 :Carbon,  i n nutrient  nitrogen,  enriched  stream  microecosysterns.  Fresh-  6:221-228  H . W . , 1 9 7 7 :A s i m u l a t i o n  model  f o r decomposition  i n grasslands.  Ecol.  58:469-484 Hunter,  R.D., 1976:Changes of  three  biol. Hutchinson,  i n carbon  macrophytes  water  content  and marine  during  decomposition  environments.  Hydro-  51:119-128  A . M . , C . C . Lucas  chemical in  and nitrogen  i n fresh  a n d M. M c P h a i l ,  and physical  relation  properties  to phytoplankton.  1929:  Seasonal  o f water  Trans.  variations  i n the Strait  Royal  of  i n the  Georgia  Soc. Can. Series  3,  23:177-183 Iverson,  T . M . , 1 9 7 3 :D e c o m p o s i t i o n and  Jensen,  i t s significance  V . , 1974:Decomposition Dickinson tion,  and G.J.F.  V o l 1:69-104,  o f autumn-shed  f o r the fauna. o f angiosperm Pugh  (Eds.),  Academic  beech  Arch. tree  leaf  Biology  Press,  London  leaves  Hydrobiol. l i t t e r .  o f plant  i n a  springbrook  72:305-312 In: C.H.  l i t t e r  decomposi-  -  Johannes,  R . E . , 1965: Limnol.  Johnston,  Influence  Oceanogr.  laminarian  Khailov,  Knauer,  leaves  marine  to  inshore  seaweeds  Kostalos,  Kozloff,  Helgolander  1969:  Release  Limnol.  1977:  Oceanogr.  a  (Amphipoda).  Keys  t o t h e marine  Archipelago,  autumn  organic  matter  organic  production  nitrogen,  adenosine  Thalassia  testudinum  22:408-414 Role  o f Gammarus  of  14:521-52 7  i n carbon,  1976:  of microbial  enriched  Oikos  invertebrates  and adjacent  regions.  detritus  i n the  27:512-516  o f Puget  Sound,  t h eS a n  Univ.  o f Washington  sea.  In:  Press,  2 2 6 pp  Detritus  i n t h e ocean  Estuaries:389-396. R.A., 1974:  Amer.  The d e t r i t a l  associated  with  D . L . , 1971: California kelp  f o r  wiss.  on t h e r o l e  total  i n decomposing  minus  J . ,1967:  budget  56:229-243  o f dissolved  o f their  Oceanogr.  Changes  and chlorophyll  study  J . Ecol.  nutrition  Seattle,  Leighton,  carbon  sea-loch.  Experimental  and distribution  Ayers,  Limnol.  E . N . , 1974:  regeneration.  A seasonal  M . , a n d R.L. Seymour,  Juan  Lacock,  1968:  environments.  communities.  triphosphate,  Krey,  Hynes,  i n aquatic  G.A., and A.V. leaves.  1977:  i n a Scottish  K.M., and Z.P. Burlakova, by  on nutrient  30:527-545  N.K., and H.B.N. shed  protozoa  and R.D. Hunt,  population  Meeresunters Kaushik,  o f marine  10:434-442  C . S . , R.G. Jones a  122 -  beds  food  chain  the surface  Grazing kelp  and adjacent  Ass. Adv. S c i . Publ.  on seaweeds.  o f Laminaria  activities  beds.  based  fronds.  o f benthic  I n : W . J .North  (Ed.), D.C.  J . Bacteria  Mar. B i o l .  invertebrates  (Ed.),  i n  Thebiology  i n California:421-453.  (Macrocystis)  G.H. Lauff  83, Washington,  Nova  2 5 : 2 2 3-2 31 southern  o f  giant  Hedwigia  32  (Suppl.) Leighton,  D . L . , L . G . Jones giant and  kelp  J.L.  andW.J.  McLachlan  (Eds.),  Symposium:141-153. Lenz,  J . ,1977:  On d e t r i t u s  Biol. Lindstrom,  marine  script, J.D.,  relationships  Proceedings  o f the 5th International  food  Press, source  benthic  Islands.  between  I n : E . G . Young Seaweed  Oxford f o r pelagic  f i l t e r  feeders.  Mar.  algal  communities  M.Sc. thesis,  Univ.  i n the Flat o f British  Top Islands Columbia,  1 0 7 pp  S . C . , R . E . Foreman the  Lousier,  Marine  o f the Gulf  Vancouver, Lindstrom,  Ecological California.  Permagon as a  1966:  i n southern  41:39-48  S . C . , 1973: area  North,  and sea urchins  and J . C .  macrophytes  Root,  1974:  of the Strait  An i l l u s t r a t e d  o f Georgia.  f i e l d  Unpublished  key to manu-  8 8 pp  a n d D. P a r k i n s o n ,  deciduous  forest.  1976:  L i t t e r  Can.J . Bot.  decomposition  54:419-436  i n a cool  temperate  -  Mann,  K . H . , 1972a:  Macrophyte  waters. Mem. Mann,  Mar.  Ecological  Biol.  and detritus role  food  i n aquatic  chains  i n  ecosystems:  coastal 353-383.  29(Suppl.)  energetics  coast  o f t h e seaweed  o f Canada.  zone  i n a marine bay  Productivity  II.  o f t h e seaweeds.  14:199-209  K.H., 1977:Destruction menon  and i t s  Idrobiol.  the Atlantic  -  production  Detritus  1st Ital.  K . H . , 1972b: on  Mann,  In:  12 3  of kelp-beds  or irreversible  by sea-urchins:  degradation?  Helgolander  A cyclical wiss.  pheno-  Meeresunters  30:455-467 Miller,  R . J . , K . H . Mann seaweed Can.  Miller,  -  Minderman,  a marine  R.,  i n  J . E . ,  and leaf  Zool.  gical  position N.,  1963:  from  Influence of  Columbia,  trans-  o f organic  crop,  mat-  Vancouver,  Bank,  1 0 6 pp  Island  and Gulf  f i l e map o f two marine  a n d Macoma  ulvae  turion  on Roberts  map o f V a n c o u v e r  i n the nutrition  Hydrobia  L.  marina  S u r . C a n . , Open  Hydrobiol.  i n some  marine  Bot. Mar. of soil  carbon-14  Leaching  different  on standing  Zostera  1 9 7 3 :N i t r o g e n  m i l f o i l .  rate  zone  Energy  deposit Proc.  balthica.  144:25-45  significance.  J.W.,-1976:  III.  18:99-114  elevation o f  o f British  of detritus  a n d D.R. K e e n e y , water  o f t h e seaweed  and accumulation  reconnaissance  Geol.  F . X . , 1976: C:N r a t i o  Nykvist,  Univ.  the prosobranch  Soc. Lond.  caying  Nyhan,  Revised.  1965:The role  D.S.,  o f a  Res. Board  56:355-362  o f tidal  1 9 7 1 :G e o l o g i c a l  feeders,  Nicols,  potential  J . Fish.  o f Canada.  Mar. B i o l .  measurement  M.Sc. thesis,  Islands. R. ,  Canada.  energetics  coast  decomposition,  J . Ecol.  1978:The influence B.C.  Newell,  by sea urchins.  forests.  density  Muller,  1 9 7 3 :E c o l o g i c a l  bay on the A t l a n t i c  G . , 1968:A d d i t i o n , ter  1 9 7 1 :P r o d u c t i o n  i n eastern  28:1733-1738  formations  Niell,  community  R . J . , a n d K . H . Mann, in  Moody,  and D.J. Scarratt,  lobster  and phosphorus  macrophytes  temperature labelled  o f leaf  from d e -  and i t s possible  ecolo-  19:347-350  and decomposition  types  release  43:509-525  and water  herbage.  tension  Soil.  S c i .  o f water-soluble  and needle  l i t t e r .  on t h e decom121:288-293  organic  Stud.  substances  F o r . Suec.  3:1-31 Odum,  E . P . , a n d A . A . de l a C r u z , salt  marsh-estuarine  383-388. Olson,  Amer.  ecological  In:  Ass. Adv. S c i . Publ.  J . S . , 1 9 6 3 :Energy in  1967:P a r t i c u l a t e  ecosystem.  storage  systems.  detritus (Ed.),  83, Washington,  and the balance Ecol.  organic  G.H. Lauff  o f producers  14:322-331  i n a  Georgia  Estuaries:  D.C. a n d decomposers  -  Otsuki,  A . , and T. Hanya, dead  green  Oceanogr. Otsuki,  A . , and R.G. Wetzel,  1974:  Oceanogr.  1969:  Univ., 1974:  Pugh  J.H.,  Reuss,  J.O.,  Rodin,  thesis,  organic  material by Limnol.  subterminalis.  o f grazing  algal  Colorado,  environment.  by s e a urchins,  populations.  Limnol.  plants.  M.S. t h e s i s ,  Colorado  3 7 pp In:  l i t t e r  1974:  1976:  C H . Dickinson  decomposition,  and G.J.F.  V o l . 2:683-721,  Leaf  processing  i n a woodland  stream.  Benthic  detritus  i n a salt  marsh  t i d a l  2:280-292  history  Univ.  o f the r e d alga  o f Washington, 1977:  Constantinea  Seattle,  A grassland  subulifera.  1 5 4 pp  nitrogen  flow  simulation  model.  58:379-388 Bazilevich,  t e r r e s t r i a l  288 Roman,  Odum,  and G.S. Innis,  L . E . , and N.I. in  from Limnol.  4:343-368  1 9 6 4 :T h e l i f e  Ecol.  Scirpus  o f grassland  o f plant  E s t . Processes  Ph.D.  matter  London  Biol.  and W.E.  creek. Powell,  Biology  R . C . , a n d K.W. Cummins,  J.C.,  o f dissolved  The e f f e c t s  Collins,  Themarine  Press,  Freshwater Pickral,  Fort  (Eds.),  Academic  organic  decomposition.  14:710-719  D . F . , 1 9 7 2 :D e g r a d a t i o n  E.J.,  Petersen,  Release  macrophyte,  spp. on benthic  Strongylocentrotus  Perkins,  microbial  19:842-845  R . T . , and R.L. Vadas,  State  o f dissolved  J . Aerobic  o f a submersed  Oceanogr.  Pendleton,  Production  cells  17:248-257  autolysis  Paine,  1972:  algal  124 -  1967:  vegetation.  Production  English  and mineral  ed. Oliver  cycling  and Boyd,  Edinburgh,  pp  M.R., 1977:  Feeding  o f t h e copepod  and brown  closterium  algae  Acartia  (Fucus  tonsa  on the diatom detritus.  vesiculosos)  Nitzschia  Mar. B i o l .  42:149-155 Round,  F.E.,.  1965:  Russell-Hunter,  Seki,  Thebiology  W . D . , 1970:  o f the algae.  Aquatic  aspects  o f biological  London,  3 0 6 pp  H . , 1972: role  Microorganisms i n aquatic  E.  Arnold,  productivity:  oceanography  i n t h e marine  ecosystems:  London,  an i n t r o d u c t i o n  and limnology.  food  247-259.  chain.  2 6 9 pp t o some  basic  Collier-MacMillan,  In:  Mem. 1 s t I t a l .  Detritus  andi t s  Idrobiol.  29  (Suppl.) Sibert,  J . ,T . J . B r o w n , webs:  Science Sieburth,  ces  and B.A. Kask,  by juvenile  chum  1977:  salmon  Detritus-based  {Oncorhynchus  food  keta)  .  196:649-650  J . M c N . ,1968: marine  M.C. Healey  exploitation  Theinfluence  microorganisms.  i n Microbiology  In:  o f algal M.R. Droop  o f t h e S e a : 63-64.  antibiosis  on the ecology  and E.J.F. Academic  Wood  Press,  (Eds.), London  o f Advan-  and N.Y.  -  Sieburth,  J .  McN.,  1969:  production  Sieburth,  J.  Exp.  J .  McN.,  Mar.  script.  Skoog,  D.A.,  Spector,  A.,  in  and  some  Stachurski,  A.,  25  West,  J.R.  and  in  the  by  l i t t o r a l  sea.  The  III.  marine  algae.  Production l i t t o r a l of  and  transformation  marine  Natural  algae;  Waters,  a  of  extra-  resume.  September  Manu-  1968,  pp Fundamentals  Winston  Inc., of  of  analytical  U.S.A.,  biological  835  chemistry.  2nd  pp  data.  W.B.  Saunders,  pp 1975:  habitats.  J.R.  Zimka,  microorganism  from  Chemistry  Zimka,  forest  matter  3:290-309  Handbook  554  substances  organic  1968:  1969:  1956:  Philadelphia, Stachurski,  on  Rinehart,  (Ed.),  algal  Ecol.  matter  Alaska,  D.M.  on  Jensen,  Symposium  Holt,  W.S.,  A.  organic  of  and  ed.  Studies  -  extracellular Biol.  and  cellular Univ.  of  125  and  Leaf  Ekol.  1976a:  f a l l  the  rate  of  l i t t e r  decay  23:103-108  Methods  saprophage  and  Pol.  of  studying  consumption  in  the  forest  ecosystems:  l i t t e r .  Ekol.  Pol.  24:57-67 Stachurski,  A.,  and  nutrient Statistics  Canada, logue  Steward,  Strickland,  of  J.D.H.,  K.,  1976b:  from  the  Fisheries  statistics  1974:  Algal  California  and  T.R.  Parsons,  ed.  Bull.  G.L.  of  studying  l i t t e r .  of  physiology  Press,  2nd  Godshalk  composition  Methods  decomposing  forest  Ekol.  Canada,  ecosystems:  Pol.  Canada  24:253-262  summary  (Cata-  Annual).  (Ed.),  Univ.  analysis. Suberkropp,  Zimka,  1976:  24-201  W.D.P., 10,  J.R.  release  of  and  leaves  1972:  Fish. M.J.  during  and  biochemistry.  Berkeley, A  Board 1976:  processing  handbook  Can.  167,  Changes in  a  Bot.  Mono.  pp  practical  Res.  Klug,  989  in  of  seawater  310  pp  the  chemical  woodland  stream.  Ecol.  57:720-727 Sutcliffe,  Taylor,  W.H.  J r . ,  materials  Res.  Board  F.H.C.,  J.M.,  1962:  Some  and  Can.  1964:  herring Teal,  1972:  late  catch  of  in  land  two  drainage,  eastern  nutrients,  Canadian  bays.  particuJ .  Fish.  29:357-362  Life  stocks. Energy  relations  fish  history Bull.  flow  in  and  Fish. the  present Res.  salt  status  Board  marsh  Can.  of  British  143,81  ecosystem  of  Columbia  pp Georgia.  Ecol.  43:614-624 Tenore,  K.R., J.  Tenore,  1975: Mar.  K.R., tion  J.H. of  Nephthys  Detrital  Res.  Tietjen aged  utilization  by  the  polychaete,  Capitella  capitata.  33:261-274 and  J . J . Lee,  eelgrass,  incisa.  J .  Zostera  Fish.  Res.  1977:  Effect  marina, Board  of  detritus Can.  meiofauna by  the  34:563-567  on  incorpora-  polychaete  -  Tully,  J . P . ,  and A . J .  Dodimead,  of  Georgia,  British  Res. Vinogradov,  Board  A . P . ,1953:  isms. Webster,  Can.  1957:  o f the water  and influencing  The elementary Found.  M.A. Paranjape  matter  Properties  Columbia  i n the Strait  factors.  J . Fish.  14:241-319  Mem. S e a r s  T.J.M.,  126 -  chemical  composition  o f marine  organ-  M a r . R e s . N o . 2 , 6 4 7 pp  a n d K . H . Mann,  i n St. Margaret's  B a y , Nova  1975:  Sedimentation  Scotia.  J . Fish.  o f  organic  R e s .B o a r d C a n .  32:1399-1407 Whyte,  J.N.C., the  and J.R.Englar, alga  Nereocystis  Board  Can.  Tech.  Res. Widdowson,  T.B.,  1973:  Washington: Syesis Widdowson,  T.B.,  1974:  algae). T . , 1976:  organic  chemical  over  luetkeana  parameters  t h e growing  o f  season.  Fish.  R e p . 5 8 9 , 4 2 pp  The marine revised  Basic  algae  l i s t  o f British  andkeys.  Part  Columbia I.  and northern  Phaeophytes  (brown  algae).  6:81-96  Washington:  Wolff,  1975:  marine  The marine revised  Syesis  algae  l i s t  o f British  andkeys.  Part  Columbia  and northern  Rhodophyceae ( r e d  II.  7:143-186  Utilization  o f seagrass  i n t h e deep  sea.  Aqua.  B o t . 2:161-  174 Yingst,  Zobell,  J.Y.,  1976:  Theu t i l i z a t i o n  ments  b y an e p i b e n t h i c  Biol.  Ecol.  C . E . ,1971: (Ed.),  matter  i n shallow  marine  J . Exp.  sediMar.  23:55-69  Drift  seaweeds  T h eb i o l o g y  269-314.  o f organic  deposit-feeding holothurian.  Nova  on San Diego  o f giant  Hedwigia  32  kelp  beds  (Suppl.)  County  beaches.  (Macrocystis)  In: W.J.  North  i n California:  -  12 7  -  APPENDIX A)  Numerical  B) C)  species  code  f o r l i t t e r  Litter  assessment  data  for seasonal  Litter  assessment  data  f o r collections  on D)  I  either  l i t t e r  A.  27 J u l y  assessment  or  assessment  collections at  for the collection  0 1 Plocamium coccineum var. 02 Gigartina papillata 03 Fucus distichus 0 4 ' Rhodomela larix 05 Odonthalia floccosa 06 Iridaea cordata  at  Site  luetkeana  (stipe)  Nereocystis  luetkeana  (lamina)  09 10 11 12  Laminaria saccharina Laminaria groenlandica Constantinea subulifera Ulva spp./Monostroma spp.  13  Prionitis  lanceolata  14  Sargassum  muticum  15 16  Agarum Zostera  spp. marina costata  19  Laminaria  I  (B,C,D). Site  a n d 95 m w i t h i n  1. Site  2 o n 10 N o v e m b e r 1 9 7 5 .  pacificum  Nereocystis  Costaria  Appendix  95 m w i t h i n  3 5 , 65  08  Laurencia  at  5,  07  17  in  3 August 1976.  data  18  data  Harvey (Yendo)  Fensholt  (Turner)  Saunders  Postels  spectabilis  and Ruprecht  spp.  20  Rhodymenia  21  Halymenia  spp.  22  Analipus  japonicus  23  Gracilariopsis  24 25  Enteromorpha spp. Ceramium spp.  26  Cryptopleura  27 28  Gelidium Gigartina  29  Microcladia  30  Rhodymenia  31  Gymnogrongus  32  Alaria  33  Porphyra  34  Gloiosiphonia  35  Fauchea  (L.) G r e v i l l e  palmata  (Harvey)  Wynne (Kylin)  sjoestedtii  ruprechtiana  Dawson  ( J . Agardh)  Kylin  spp. spp. Ruprecht  borealis  (Postels  pertusa  and Ruprecht)  (Turner)  linearis  J .  Agardh  J . Agardh  spp. Krishnamurthy  torta  (Hudson)  capillaris  lanciniata  36  Rhodoptilum  37  Bossiella  38  Pterosiphonia  39  Desmarestia  40  Polyneura  41  Callophyllis  42  Bonnemaisonia  43  Gigartina  99  Unidentified  Carmichael  J . Agardh (Harvey  plumosum  and Bailey)  Kylin  spp. (Postels  bipinnata  viridis latissima  Lamouroux  (Harvey)  Kylin  flabellulata nootkana  exasperata l i t t e r  and Ruprecht)  (Muller)  Harvey (Esper) Harvey  Silva  and Bailey  Falkenberg  1  - 128 -  DATE  1 2 3 4 5 6  7 8 9 10 11  12 13  14 15 16 17 16  19 20 21 22 23  24 25 26 27  26 29 3C 31 32 33  34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  LOCATION SPECIES QUADRAT  20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 2Q/08/75 20/03/75 20/08/75 20/03/75 20/03/75 20/08/75 20/03/75 20/C6/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/08/75 20/0 8/75 20/08/75 20/08/75 20/08/75 20/08/75 20/0 8/75 20/03/75 20/08/75 20/08/75 20/08/75 20/08/75 02/09/75 02/09/75 02/09/75 02/09/75 02/09/75 02/09/75 02/09/75 02/09/75  '1 '1 '1 J '1 '1 '1 1 "1 1 '1 1 '1 '1 '1 '1 'I 1 '1 '1 " '1 •1 '1 ' ' '1 '1 " '1 '1 '1 " " '1 '1 ' • '1 '1 '1 '1 '1 '1 '1 '1 '1 '! '1 '1 '1 'I '1 1 '1 1  1  95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95  10 - 2 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 -30 30 - 4 0 30 - 4 0 40 - 5 0 40 - 5 0 40 -50 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 6 0 -70 60 -70 60 - 7 0 60 - 7 0 60 - 7 0 60 - 7 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 30 - 9 0 80 - 9 0 80 - 9 0 80 - 9 0 9 0 - 100 9 0 - 100 9 0 - 100 9 0 - 100 00 - 1 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 -30 20 - 3 0  03 03 14 18 12 13 07 14 07 08 06 19 15 05 32 12 18 14 26 44 03 07 19 06 13 18 15 17 21 07 03 19 21 32 12 07 08 19 06 07 08 14 19 07 08 12 19 07 03 06 12 07 13 04 28  WET WEIGHT 2  (G/10W ) 3.5400 24.6050 0. 4400 1.0050 0.1150 0.2200 0.3550 1.7700 133.9301 275.9500 404.7849 110.9500 18.0500 8.0500 3.4400 10.8050 6.6650 0.8100 0.5200 0.2400 316.0300 489.5400 98.3850 7.9600 0.0800 0.8200 1.4550 2.1000 0. 7 7 0 0 332.5100 342.2148 64 . 9 3 5 0 2.1650 2.0250 7.6100 62.1850 187.8149 68.1050 0.1250 132.0900 125.2050 0.7400 0.3900 85.6050 133.4850 5.5100 14.4050 10.6000 191.1400 6.3200 1. 9 7 0 0 0.5800 2. 1 5 0 0 0.7390 0.3467  DRY WEIGHT 2  (G/10M ) 0. 6950 3.9450 0.0859 0. 1616 0 . 017 1 0. 069 1 0.0367 0.2740 19. 6850 28. 1050 84.2100 13.0650 2.7100 1.9150 0. 3592 1.9350 0. 8 7 0 2 0. 1258 0.0098 0. 0256 39.9350 60. 5550 18.5900 0.9600 0. 0097 0.0094 0. 2 0 5 9 0. 258 1 0. 0958 43.2400 42.5750 11.3650 0. 2593 0.3252 1.8600 6.3430 21.0950 8. 3 4 0 0 0. 0148 13. 6600 12.9400 0.1592 0. 0446 12. 0700 14.3700 0.7350 1.9150 0.9300 52.9150 1.0400 0. 3 1 3 8 0.0669 0.4837 0. 1219 0. 1017  ASH-FREE DRY WEIGHT 2  (G/10M ) 0.4650 2.8650 0.0457 0.1052 0.0107 0.0407 0.0252 0. 1 5 9 3 10.6700 16.2350 51.2200 8.4050 1.5350 1.0850 0.2023 1. 2 7 5 0 0.4911 0.0713 0 . 0 044 0.0155 24.0850 36.9200 9.1000 0. 5 5 0 1 0. C049 0.0060 0.1107 0.1491 0.0583 24.5650 25.8650 6.4200 0.1608 0.1973 1.0850 3.C050 13.0900 5 . 3 6 00 0.0091 9.0600 8.0700 0.0982 0.0236 7.0050 8.815C 0.4850 1.0850 0.4620 39.9000 0.6912 0.2020 0.0464 0.3166 0.0788 0.0517  -129-  56 57 58 59 60 61 62 63 6a 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87  88 89 90 91 92 93 94 95 96 97 98 99 1 00 101 102 103 1 04 105 106 107 108 109 1 10 1 11 112 1 13 1 14 1 15  0 2 / 0 9 / 7 5 1 95 20 - 3 0 0 2 / 0 9 / 7 5 1 95 20 - 3 0 0 2 / 0 9 / 7 5 1 95 20 - 3 0 0 2 / 0 9 / 7 5 1 95 30 - 4 0 0 2 / 0 9 / 7 5 1 95 30 - 4 0 0 2 / 0 9 / 7 5 1 95 30 - 4 0 0 2 / 0 9 / 7 5 1 95 30 - 4 0 0 2 / 0 9 / 7 5 1 95 30 - 4 0 0 2 / 0 9 / 7 5 1 95 30 - 4 0 0 2 / 0 9 / 7 5 1 95 30 -40 0 2 / 0 9 / 7 5 1 95 30 - 4 0 0 2 / 0 9 / 7 5 1 95 30 - 4 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 40 - 5 0 0 2 / 0 9 / 7 5 1 95 5 0- 6 0 0 2 / 0 9 / 7 5 1 95 50 - 6 0 0 2 / 0 9 / 7 5 1 95 50 - 6 0 0 2 / 0 9 / 7 5 1 95 50 - 6 0 50 - 6 0 0 2 / 0 9 / 7 5 1 95 0 2 / 0 9 / 7 5 1 95 50 - 6 0 0 2 / 0 9 / 7 5 1 95 60 - 7 0 0 2 / 0 9 / 7 5 1 95 60 -70 0 2 / 0 9 / 7 5 1 95 6 0- 7 0 0 2 / 0 9 / 7 5 1 95 60 -70 0 2 / 0 9 / 7 5 1 95 6 0- 7 0 0 2 / 0 9 / 7 5 1 95 60 - 7 0 0 2 / 0 9 / 7 5 1 95 60 -70 0 2 / 0 9 / 7 5 1 95 60 - 7 0 0 2 / 0 9 / 7 5 1 95 60 - 7 0 0 2 / 0 9 / 7 5 1 95 60 -70 0 2 / 0 9 / 7 5 1 95 70 -80 0 2 / 0 9 / 7 5 1 95 70 - 8 0 0 2 / 0 9 / 7 5 1 95 70 - 8 0 0 2 / 0 9 / 7 5 1 95 70 - 8 0 70 - 8 0 0 2 / 0 9 / 7 5 1 95 0 2 / 0 9 / 7 5 1 95 70 -80 0 2 / 0 9 / 7 5 1 95 70 - 8 0 0 2 / 0 9 / 7 5 1 95 80 - 9 0 0 2 / 0 9 / 7 5 1 95 80 - 9 0 0 2 / 0 9 / 7 5 1 95 80 - 9 0 0 2 / 0 9 / 7 5 1 95 80 - 9 0 0 2 / 0 9 / 7 5 1 95 80 - 9 0 0 2 / 0 9 / 7 5 1 95 80 - 9 0 0 2 / 0 9 / 7 5 1 95 80 - 9 0 80 - 9 0 0 2 / 0 9 / 7 5 1 95 1 95 02/09/75 80 - 9 0 0 2 / 0 9 / 7 5 1 95 9 0 - 1 0 0 0 2 / 0 9 / 7 5 1 95 9 0 - 100 0 2 / 0 9 / 7 5 1 95 9 0 - 100 0 2 / 0 9 / 7 5 1 95 9 0 - 100 0 2 / 0 9 / 7 5 1 95 9 0 - 100 0 4 / 1 0 / 7 5 1 95 10 - 2 0 0 4 / 1 0 / 7 5 1 95 20 - 3 0  14 18 01 03 06 14 13 18 12 07 08 05 19 06 07 08 17 18 16 12 18 07 08 28 12 19 06 15 06 07 08 15 17 18 01 12 20 19 03 07 08 12 21 16 14 07 08 03 12 14 19 21 18 08 12 06 16 23 07 03  0.1428 0.0893 0.1867 86.4250 6.5150 3. 2900 0.9300 7.3050 6.2350 0.2585 0.2145 0.1892 163.8250 177.6851 406.4399 124.0600 8.8750 1.7550 2.4650 32.4100 7. 8 9 0 0 5.5250 6.2000 0 . 6 950 7.0000 7. 8300 85.3900 49.0550 17.9800 99.1050 26.9900 8.6150 2.2300 0.7417 0.0437 0.4406 1.1362 19.9100 10.0000 67.2600 45.6300 12.0400 8.8900 0.2935 0.3370 71.4450 71.0200 6.2100 9.1550 1.3217 23.7550 1 .8252 0.3439 43.2150 4.1100 0.0538 0.7178 0.2474 12.3900 6.1 100  0. 0450 0.0225 0. 0435 22.9030 1.5850 0.5950 0. 1849 0.8750 1.0300 0.0350 0.0350 0. 0470 2 8 . 6450 38.5400 1 4. 4 7 5 0 3.0250 1.0100 0.2300 0. 2900 5.3050 1. 3 7 0 0 0.7726 0. 8397 0.2063 1 .3150 5.0300 12.7150 7.3200 3.6400 8.4450 3. 1100 1. 4 8 5 0 0.2250 0.0430 0.0071 0.0705 0. 1 2 5 6 2.8450 2.3850 7.3500 4. 8150 1.5150 1. 3 4 5 0 0. 0 2 7 1 0. 0 4 1 2 8.0600 6.8750 1. 3 9 5 0 1.3300 0.2309 2.6500 0.2312 0.0392 3.7600 0.8450 0.0040 0.0626 0.0531 1.4100 1.3400  0.0319 0 . 0 147 0.0311 16.4900 1. 0 900 0. 4225 0.1176 0. 6550 0.6226 0.0212 0.0199 0. 0291 13.9150 27.0650 8.1700 1.8300 0.4850 0.1521 0 . 1872 3. 5800 0.9050 0.4500 0.5051 0. 1006 0.8450 2.5700 9.0950 4. 0650 2.5450 5. 3200 1.7700 0.8300 0.1162 0.2930 0.C049 0.0459 0.0656 1.4050 1.8150 4. 3550 2.8700 0.9750 0.9350 0.0170 0.0281 4.2500 3.9550 1.0350 0.8700 0.1592 1.3400 0.1610 0.0270 2.1100 0.5150 0.0023 0.0400 0.0322 0.8300 1.0200  - 130 -  116 1 17 1 18 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175  04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 0 4/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 04/10/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 09/11/75  '1 '1 1 1 '1 '1 '1 * 1 "1 *1 '1 "1 '1 1 '1  1  1  1  "I 1 '1 "1 '1 ? '1 '1 1 1 '1 '1 '1 '1 '1 '1 1 1 ! '1 1 1 '1 '1 '1 1 1 ! 1 1 1 •1 1 1 1 1 '1 1 '1 1 '1 1 1  95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95  20 -30 07 20 -30 12 40 -50 07 40 -50 08 40 -50 06 40 -50 12 40 -50 18 50 -60 07 50 -60 08 50 -60 19 50 -60 15 50 -60 06 50 -60 12 07 60 -70 60 -70 08 60 -70 19 60 -70 12 60 -70 16 70 -80 08 70 -80 07 70 -80 12 70 -80 21 70 -80 19 80 -90 19 80 -90 07 80 -90 08 90- 100 07 90- 100 08 90- 100 16 90- 100 03 14 90- 100 90- 100 12 90- 100 19 90- 100 25 90- 100 24 10-20 03 30 -40 07 30 -40 16 30 -40 18 40 -50 06 40 -50 08 07 40 -50 40 -50 12 -50 40 19 50 -60 07 50 -60 05 50 -60 06 07 60 -70 60 -70 08 60 -70 15 60 -70 12 19 60 -70 70 -80 08 70 -80 07 70 -80 19 70 -80 12 80 -90 08 80 -90 07 80 -90 • 19 90- 100 07  0.8700 0.1150 60.9600 83.1600 19.2900 10.1500 9.4900 262.1899 30.9300 12.9100 6.5450 13.9450 3.6850 1 14.9350 72.3450 1.2200 2.3250 0.2228 38.9950 100.8450 5.9800 1.4557 19.4400 108.1300 11.2000 23.5900 55.7900 33.8800 0.3900 0.7050 0.4450 0.8600 3.1100 0.2549 0.0909 5.0100 34.8600 0.5560 0.8350 0.4977 4.9605 225.6000 0.5860 1.8 114 106.3600 1.0163 1.2730 652.5750 11.9618 8.0589 0.5 117 1.8080 17.0100 39.0100 1.9064 0.5899 15.4150 78.8750 13.6350 73.4850  0. 0950 0.0181 7.2450 9. 6650 5. 1450 1. 8900 1. 3700 42.4400 3.8550 2. 6950 1. 1450 3.4800 0.5350 17.7100 9.2500 0. 1800 0. 3800 0. 021 0 4.3850. 13.0300 1.0500 0.1303 2. 6600 20. 2000 1.3600 3.2100 5.1950 3.6400 0. 0635 0. 1465 0. 1070 0. 1765 0.4755 0. 0289 0. 007 3 0. 8650 4.7850 0. 0577 0. 1046 0. 0980 0.4310 32.0000 0. 0893 0.2257 15. 8550 0. 2070 0.3269 99.5700 1. 1097 3. 2286 0.0870 0.2693 1.8850 6. 0805 0.2548 0.0915 1.3650 7.3100 1.7300 7. 5550  0. 0518 0. 0T19 4. 3 250 5. 6300 3. 7 150 1.2000 0. 9450 23. 5800 2. 2550 1. 3600 0. 6250 2. 4750 0. 3291 10.2800 5. 5300 0. 1024 0. 2303 0. 0127 2. 6 150 7. 4350 0. 6585 0. 0910 1. 3750 10. 3550 0. 8350 1. 8650 2. 7350 2. 2 6 50 0. 0409 0. 1 069 0. 0755 0. 1 170 0. 2560 0. 0129 0. 0 035 0. 6600 3. 4300 0. 0351 0.0685 0. 0682 0. 2520 17. 4800 0. 0585 0. 1201 9. 0 100 0. 1 281 0. 2370 48. 5550 0. 6444 1. 8150 0. 0606 0. 1 378 1. 1000 3. 3594 0. 1280 0. 0613 0. 7821 4. 4250 0. 8524 4. 0200  176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235  09/11/75 09/11/75 09/11/75 09/11/75 09/11/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 10/12/75 16/01/76 16/01/76 16/01/76 16/01/76 16/01/76 16/01/76 16/01/76 28/02/76 28/02/76 28/02/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76  1 1 1 1 'I 'I 'I 'I 1I ' * 1 'I 'I 'I 'I 'I 'I 'I ' 'I 'I 'I H  'I I 'I 1 'I 1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 1 1 '1 '1 1 1 1 '1 '1 1 '1 '1 '1 1 '1 \  95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95  9 0 - 100 9 0 - 100 9 0 - 100 9 0 - 100 9 0 - 100 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 60 - 7 0 60 - 7 0 60 - 7 0 60 -70 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 7 0-80 70 - 8 0 80 - 9 0 80 - 9 0 80 - 9 0 80 - 9 0 9 0 - 100 . 9 0 - 100 9 0 - 100 30 - 4 0 50 - 6 0 50 - 6 0 60 - 7 0 70 - 8 0 80 - 9 0 9 0 - 100 30 - 4 0 50 - 6 0 80 - 9 0 20 - 3 0 20 - 3 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0  -. 131 08 06 18 26 16 08 18 16 03 07 08 12 03 13 07 18 03 12 08 07 16 19 08 08 07 19 06 12 13 07 08 12 19 08 07 12 07 07 16 07 07 07 07 32 32 07 03 12 16 18 26 12 33 19 03 31 19 30 12 18  12.6350 0.9593 0.4932 0.9806 0.5208 2.2775 0.2334 0.9128 1.0582 119.4450 4.6847 0.6439 4. 1573 0.0621 31.4500 0.1078 2.8950 0.0571 7.6800 73.3900 0.9771 1.0150 1.9200 25.7900 65.5350 3.8498 0. 9337 0 . 4 138 0.0911 57.4550 12.7201 1.9476 0. 2939 7.1852 63.8800 0.4747 8.2700 15.5100 0.5458 51.9050 34.8800 79.0600 67.2750 22.5050 12.4850 13.7050 17.8300 0.7910 0.2738 0.9937 0.5304 4.3806 3.7850 5.1550 4.4800 0.1194 13.5950 0.1392 2.7204 0.7566  1. 0 6 0 0 0. 2815 0. 075 2 0. 2 6 3 8 0. 1235 0. 2320 0. 026 5 0. 0884 0. 2 2 7 9 6. 4950 0. 3865 0 . 097 1 1. 1 5 6 7 0. 006 2 2. 8400 0. 0135 0.7572 0. 0090 0. 7192 6. 6 2 0 0 0. 1 0 0 3 0 . 1 175 0. 1798 2. 6700 4. 3500 0. 4575 0. 1858 0. 0617 0.0288 7. 2650 1. 3 7 7 0 0. 4317 0. 0455 0 . 727 1 3. 6650 0. 0855 1. 9 1 5 0 2. 6900 0. 0633 6. 4650 5. 2 8 0 0 11. 7350 9. 1 3 0 0 4. 0750 2. 2650 2. 1550 3. 2100 0. 1609 0. 0473 0. 1 3 0 4 0. 0 9 2 4 0. 2 6 2 0 • 0. 8 6 5 0 0. 6750 0. 8600 0. 0 2 2 9 1. 9 8 5 0 0. 0298 0. 4863 0. 1 3 8 0  2 . 0 150 0. 2023 0. 0 5 4 9 0. 1701 o. 0784 0.1359 0. 0179 0. 0556 0 . 1731 3. 1250 0. 2253 0. 0518 0. 7032 0. 0042 1. 8 4 0 0 0. 0 1 0 0 0 . 5 572 0.0590 0. 4325 4. 6200 0. 0641 0. 0612 0 . 1 039 1. 5 7 0 0 2. 6650 0. 2369 0. 1 405 0. 0373 0.0155 4. 0 150 0. 7991 0. 2925 0. 0235 0. 4500 1. 9 5 5 0 0. 0549 1. 2 7 5 0 1. 4 2 5 0 0. 3993 3 . 5 100 3. 4100 9. 2850 4. 5800 2. 4500 1. 4 1 5 0 1. 3 3 5 0 2. 3900 0. 1 0 8 6 0. 0316 0. 0 9 1 4 0. 0 6 2 2 0. 1772 0. 3490 0. 3840 0. 6249 0 . 0 137 1. 0 2 0 0 0 . 0 157 0 . 3219 0. 0960  - 132 -  236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 2 57 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295  14/0 3/76 14/03/76 14/03/76 14/03/76 14/03/76 14/03/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/0 4/76 18/04/76 18/04/76 18/0 4/7 6 18/04/76 18/04/76 18/04/76 18/0 4/76 18/0 4/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 18/04/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76 13/0 5/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76 13/0 5/76 13/05/76 13/05/76 13/05/76 13/05/76 13/05/76  11  11 '1 '1 '1 " "1 '1 "1 '1 '1 '1 '1 '1 '1 '1 '1 1  1 '1 •1 '1 1 '1 '1 '1 '1 '1 1 '1 1 '1 •J ' •1 "1 '1 '1 '1 '1  1  J  '1 '1 1 "1 '1 "1 '1 1 '1 "1 1 1 1 '1 "1 1 '1 "1 1  95 50 -60 95 60 -70 95 60 -70 95 60 -70 95 60 -70 95 70 -80 95 1 0-20 95 10 -20 95 10 -20 95 10 -20 95 10 -20 95 20 -30 95 30 -40 95 30 -40 95 30 -40 95 30 -40 95 40 -50 95 40 -50 95 40 -50 95 40 -50 95 50 -60 95 50 -60 95 50 -60 95 50 -60 95 50 -60 95 50 -60 95 60 -70 95 60 -70 60 -70 95 95 70 -80 95 70 -80 95 70 -80 95 80 -90 95 80 -90 95 90- 100 95 90- 100 95 90- 100 95 20 -30 20 -30 95 95 30 -40 95 30 -40 95 40 -50 95 40 -50 95 40 -50 40 -50 95 95 40 -50 95 40 -50 95 40 -50 40 -50 95 95 40 -50 95 40 -50 95 40 -50 95 50 -60 95 50 -60 95 50 -60 95 50 -60 95 50 -60 95 50 -60 95 50 -60 95 50 -60  33 19 12 26 23 19 06 03 12 01 34 06 12 18 35 36 37 38 12 19 07 08 12 16 01 06 08 12 99 08 07 16 12 19 08 03 19 03 12 12 01 19 05 06 30 39 40 12 01 26 08 03 08 12 06 01 17 18 32 36  1.5219 33.3650 4.4150 0.7586 0.7683 3. 5262 33.5350 3.9550 1.3579 0.1 107 0.4318 0. 1964 0.9776 0.0486 0.4103 0.0078 0.6554 0.2803 0.3239 2.2882 2.8460 3.2728 3.7472 0.8896 0.3636 0.0931 0.0709 0.5282 0.0509 0.2627 0.2610 0.3000 2.0972 1.9176 0.9496 7.5500 6.7250 33.1000 2.7590 1.0404 3.9977 9.0550 4.6226 0.6 114 0.8033 0. 4857 0.4606 2.4051 0.3726 0.3832 0. 8949 6.2472 15.8850 1.9601 1.5374 0.9067 4.6083 0.7720 2.0154 0.3038  0. 3209 3. 4900 0.6050 0.1240 0.0613 0. 8484 6.3150 0.9200 0. 1828 0.0227 0. 0667 0. 0448 0. 1829 0. 0113 0.0799 0.0050 0.5 100 0. 042 1 0.0622 0.431 5 0. 2307 0.3249 0.5568 0. 1290 0. 0524 0. 0146 0. 0142 0. 0845 0. 0 168 0. 0420 0.0250 0.0347 0. 3388 0.4783 0.0968 1. 3400 0.7950 5.5850 0.3973 0. 2515 0. 7109 1.2250 0. 6578 0. 1356 0. 1418 0.0716 0.0773 0.3856 0.0574 0. 083 1 0.1187 1. 4914 1.7550 0.2736 0.3080 0.1276 0. 4984 0. 1075 0.4179 0. 0562  0.1363 1.7900 0.4278 0.0822 0.0400 0.4551 4. 6000 0.7182 0. 1251 0.0 151 0.0435 0.0306 0.1385 0.0078 0.0545 0.0038 0.0720 0.0254 0.4720 0.2497 0.0894 0. 1882 0.3665 0.0825 0.0371 0.0102 0.0 102 0.0610 0.0073 0.0252 0. 0109 0.0221 0. 2303 0.2449 0.0558 0.9851 0.5001 4.0319 0.2761 0.1991 0.4999 0.7850 0.4434 0.0974 0.0924 0.0488 0.0522 0.2720 0.0360 0.0581 0.0768 1.1313 0.8450 0.1696 0.2148 0.0756 0.2685 0.0620 0.1991 0.0242  - 133 -  296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355  13/05/76 "I 13/05/76 "I 13/0 5/76 1 13/05/76 1 13/05/76 '1 13/05/76 '1 13/05/76 "1 13/05/76 1 13/05/76 '1 13/05/76 <1 13/05/76 •1 13/05/76 1 27/05/76 '1 27/0 5/76 •1 27/05/76 "1 27/05/76 '1 27/05/76 '1 27/05/76 'I 27/05/76 '1 27/05/76 1 27/05/76 "1 27/05/76 "1 27/05/76 "1 27/05/76 1 27/05/76 '1 27/05/76 ' 27/05/76 •1 27/05/76 "1 27/05/76 '1 27/05/76 '1 27/05/76 '1 27/05/76 1 27/05/76 "1 27/05/76 '1 27/0 5/76 '1 27/05/76 1 27/05/76 "1 27/05/76 '1 27/05/76 1 27/05/76 "1 27/05/76 '1 27/05/76 "1 27/0 5/7 6 1 27/05/76 1 27/05/76 '1 27/05/76 1 27/05/76 "1 27/05/76 •1 27/05/76 •1 27/05/76 1 27/05/76 I 27/05/76 1 27/05/76 '! 27/05/76 '1 27/05/76 1 27/05/76 1 27/05/76 J 27/05/76 1 27/05/76 "1 27/05/76 '1  95 6 0-70 95 60- 70 95 60- 70 95 70- 80 95 70- 80 95 70- 80 95 70- 80 95 80- 90 95 80- 90 95 8 0-90 95 80- 90 95 90-100 95 20- 30 95 3 0-40 95 30- 40 95 30- 40 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 40- 50 95 50- 60 95 50- 60 95 50- 60 95 50- 60 95 50- 60 95 50- 60 95 50- 60 95 50- 60 95 50- 60 95 5 0- 60 95 50- 60 95 50- 60 95 50- 60 95 50- 60 95 60- 70 95 60- 70 95 60- 70 95 6 0- 70 95 60- 70 95 70- 80 95 70- 80 95 70- 80 95 70- 80 95 70- 80 95 80- 90 95 80- 90 95 80- 90 95 80- 90 95 50- 60 95 50- 60 95 50- 60 95 50- 60  12 19 08 19 08 21 12 32 08 07 17 08 03 08 06 12 12 07 08 21 39 05 06 30 18 99 28 19 08 03 17 26 12 19 06 13 21 05 28 18 41 99 19 12 05 08 07 07 08 12 39 16 08 07 12 19 17 15 26 39  3.8245 6.3100 6.3 182 60.1800 14.5000 0.9292 8.3423 4.8430 2.2702 0.7471 0.9479 5.9302 23.2200 16.6071 1.1753 0.9594 2.0550 0.7146 166.0100 0.2598 2.2138 3.0646 7.2250 2.6233 4.1712 8.8300 2. 2480 97.6350 394.7700 53.4600 26.5650 2.6600 18.5000 162.4150 32.9950 8.3400 4.3400 14.2650 4.8000 13.2500 1.5500 1 5. 5350 6.3724 1 .3167 0.0697 109.5050 0.2621 40.3400 56.5000 5.1486 1. 4528 0.6 961 61.9600 3.0702 50.0400 3.6000 1.7334 3.6784 0.1844 0.5353  0.4063 0. 721 1 0. 6107 6.8250 1.6200 0. 2889 0.9848 0.7709 0.2221 0. 0873 0.0558 0. 5884 3.7100 3.0046 0. 2220 0. 2078 0.2802 0. 0560 19.3800 0. 0269 0. 2408 0.5944 1. 5250 0.4636 0.6603 1. 6100 0. 1582 13.7150 41.5150 11.2350 2. 9600 0.5650 2.2850 19.9450 6. 1750 1.2650 0. 8400 2. 6250 1.0700 1.9300 0.2700 2.9000 0. 7580 0. 162 1 0.0120 10. 1850 0.0214 5.3600 5.735 0 0.6758 0. 1386 0.0794 5.815 0 0. 4064 5. 1600 0. 5200 0.1906 0. 5265 0. 0317 0.0530  0.2288 0.4 162 0.2747 3. 9050 0.8800 0.2023 0.5673 0.5019 0.1154 0.0455 0.0300 0.2707 2.2250 1.0604 0.1148 0.1218 0.1687 0.0258 9. 1350 0.0142 0. 1261 0.3627 0.6750 0. 2867 0.3398 0. 7250 0.0773 7.7 100 20.1500 8.3050 1.7 2 00 0. 4100 1.5350 12.6600 4. 2350 0. 8400 0.6500 1. 4150 0.8050 1.0800 0. 1750 1.3300 0.4949 0.0983 0.0080 4.9050 0.0111 3.5550 3.1100 0.4 133 0.0738 0.0521 3. 0450 0.2312 3.4700 0. 3500 0.1218 0.3591 0.0214 0.0273  - 134 -  356 357 358 359 360 36 1 362 363 36U 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 38a 3 85 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 . 404 405 406 407 408 409 410 411 412 413 4 14 415  2 7 / 0 5 / 7 6 1 95 50 - 6 0 2 7 / 0 5 / 7 6 1 95 9 0 - 100 2 7 / 0 5 / 7 6 1 95 9 0 - 100 2 7 / 0 5 / 7 6 1 95 9 0 - 100 2 7 / 0 5 / 7 6 1 95 9 0 - 100 1 6 / 0 6 / 7 6 1 95 20 - 3 0 1 6 / 0 6 / 7 6 1 95 20 - 3 0 1 6 / 0 6 / 7 6 1 95 20 - 3 0 1 6 / 0 6 / 7 6 1 95 20 - 3 0 1 6 / 0 6 / 7 6 1 95 2 0-30 1 6 / 0 6 / 7 6 1 95 20 - 3 0 1 6 / 0 6 / 7 6 1 95 30 -40 1 6 / 0 6 / 7 6 1 95 30 - 4 0 1 6 / 0 6 / 7 6 1 95 30 - 4 0 1 6 / 0 6 / 7 6 1 95 30 - 4 0 1 6 / 0 6 / 7 6 1 95 30 - 4 0 1 6 / 0 6 / 7 6 1 95 30 - 4 0 1 6 / 0 6 / 7 6 1 95 30 - 4 0 1 6 / 0 6 / 7 6 1 95 40 - 5 0 1 6 / 0 6 / 7 6 1 95 40 - 5 0 1 6 / 0 6 / 7 6 1 95 40 - 5 0 1 6 / 0 6 / 7 6 1 95 40 - 5 0 1 6 / 0 6 / 7 6 1 95 40 - 5 0 1 6 / 0 6 / 7 6 1 95 40 - 5 0 1 6 / 0 6 / 7 6 1 95 50 - 6 0 1 6 / 0 6 / 7 6 1 95 50 - 6 0 1 6 / 0 6 / 7 6 1 95 50 - 6 0 1 6 / 0 6 / 7 6 1 95 50 - 6 0 1 6 / 0 6 / 7 6 1 95 50 - 6 0 5 0- 6 0 1 6 / 0 6 / 7 6 1 95 1 6 / 0 6 / 7 6 1 95 50 - 6 0 1 6 / 0 6 / 7 6 1 95 50 - 6 0 1 6 / 0 6 / 7 6 1 95 50 - 6 0 1 6 / 0 6 / 7 6 1 95 6 0- 7 0 1 6 / 0 6 / 7 6 1 95 60 - 7 0 1 6 / 0 6 / 7 6 1 95 60 - 7 0 1 6 / 0 6 / 7 6 1 95 60 - 7 0 1 6 / 0 6 / 7 6 1 95 60 - 7 0 1 6 / 0 6 / 7 6 1 95 60 - 7 0 1 6 / 0 6 / 7 6 1 95 70 - 8 0 1 6 / 0 6 / 7 6 1 95 70 - 8 0 1 6 / 0 6 / 7 6 1 95 70 - 8 0 1 6 / 0 6 / 7 6 1 95 80 - 9 0 1 6 / 0 6 / 7 6 1 95 80 - 9 0 1 6 / 0 6 / 7 6 1 95 80 - 9 0 1 6 / 0 6 / 7 6 1 95 80 - 9 0 1 6 / 0 6 / 7 6 1 95 80 - 9 0 1 6 / 0 6 / 7 6 1 95 8 0- 9 0 1 6 / 0 6 / 7 6 1 95 80 - 9 0 1 6 / 0 6 / 7 6 1 95 9 0 - 100 1 6 / 0 6 / 7 6 1 95 9 0 - 100 1 6 / 0 6 / 7 6 1 95 9 0 - 100 0 7 / 0 7 / 7 6 1 95 20 - 3 0 0 7 / 0 7 / 7 6 1 95 20 - 3 0 0 7 / 0 7 / 7 6 1 95 30 - 4 0 0 7 / 0 7 / 7 6 1 95 30 - 4 0 0 7 / 0 7 / 7 6 1 95 30 - 4 0 0 7 / 0 7 / 7 6 1 95 40 - 5 0 0 7 / 0 7 / 7 6 1 95 40 - 5 0 0 7 / 0 7 / 7 6 1 95 40 - 5 0  42 08 12 18 19 03 28 14 18 08 12 08 07 19 04 16 18 42 08 07 21 18 12 19 07 08 12 18 39 06 19 31 99 19 30 08 07 12 06 08 07 19 07 08 12 26 21 32 39 07 08 03 19 08 06 26 12 08 06 19  24. 7700 6 1 . 2000 2. 3793 1. 3 1 9 1 0. 5567 8. 0000 0 . 2831 2 . 8084 2. 0012 1. 8 1 2 5 0. 4779 8. 7181 0. 3423 4. 8449 0. 2732 0. 3695 1.3930 0. 9429 53. 0450 1 .7719 1. 7 3 6 9 1. 0 0 2 6 6. 1 983 71 . 0 2 5 0 1. 3 1 1 9 132. 6150 1. 6 8 5 2 1 .2 1 6 9 1. 8 8 3 4 8. 0944 48. 3250 0. 7347 0. 6639 43. 4150 5. 0800 3 6 . 5900 11. 0400 0. 9285 2 . 3621 52. 6150 14.4000 2. 9389 7 8 . 7900 2 6 . 8700 0. 2207 1. 5 1 6 9 0 . 6624 1 .5 5 2 9 2 . 9886 20. 5400 24.9850 4 . 8500 4. 3446 0. 3828 10. 5881 1. 9508 0 . 2 424 3 1 3 . 4749 5 4 . 9250 3 . 8012  1.5900 5. 1950 0.2678 0. 1743 0.0558 1.6600 0. 0804 0. 4003 0.2546 0. 2145 0.0594 0. 8376 0. 0450 0.5625 0. 038 1 0. 0387 0. 1868 0.0774 6. 1950 0. 3196 0.1940 0.1224 0. 9872 9.0350 0 . 196 4 18.4750 0.4256 0. 2002 0.3029 1.9966 7. 5250 0. 1765 0. 1714 5. 5450 0. 7635 4. 2300 1.5600 0 . 1 136 0. 4602 6. 0200 2. 1950 0. 3173 10.6300 2. 9200 0. 0640 0.2424 0.0974 0.2156 0.4057 2.0950 2.3850 0.9800 0. 7538 0.051 1 1.7868 0.281 3 0.0299 36.9900 8. 9 0 0 0 0 . 536 1  0.8600 2. 3750 0.1590 0.0634 0.0389 1.2350 0.0602 0.2846 0.1596 0.1251 0.0373 0.5146 0.0311 0.3795 0.0262 0.0235 0.0771 0.0420 3.4950 0.1513 0.0923 0. 0621 0.6219 5. 2500 0.1209 1 1.3200 0.2531 0.1140 0.1953 1.3814 4.9750 0.0745 0.0679 3. 3850 0.4141 3 . 1 6 50 0.9700 0.0677 0.2811 5 . 1000 1.4750 0. 1807 6.5700 1.8650 0.0423 0.1331 0.0629 0.1379 0.2240 1.3450 1.3650 0.4450 0.5292 0.0335 1.2479 0.2076 0.0215 23.4950 6.0650 0.3453  -. 13b  4 1 6 4 1 7 4 18 4 1 9 4 2 0 4 2 1 4 2 2 4 2 3 4 2 4 4 2 5 4 2 6 4 2 7 4 2 8 4 2 9 4 3 0 431 4 3 2 4 3 3 4 3 4 4 3 5 4 3 6 4 3 7 4 3 8 4 3 9 4 4 0 441 4 4 2 4 4 3 444 4 4 5 446 4 4 7 4 4 8 4 4 9 4 5 0 451 4 5 2 4 5 3 4 5 4 4 5 5 4 5 6 4 5 7 4 5 8 4 5 9 4 6 0 4 6 1 4 6 2 4 6 3 4 6 4 4 6 5 4 6 6 4 6 7 4 6 8 4 6 9 4 7 0 471 4 7 2 4 7 3 4 7 4 4 7 5  0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 0 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 2 7 / 0 1 8 / 0  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8  / / / / / / / / / / / / / / / 7 / / / / / 7 / / / / / / / / / 7 / / / / / / / / / / / / / / / / 7 7 / / / / 7 / / / 7 /  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 / 7 7 7 7 7 / 7 7 7 7 7 7 7 7 7 / 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 / / 7 7 7 7 / 7 7 7 / 7  6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 6 6 6 6 7 6 6 6 6 7 6 6  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  95 95 9 5 95 95 95 9 5 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 9 5 95 95 95 95 95 95 95 95 95 95 95 9 5 95 95 95 95 95 95 95  9 9 9  9 9  4 0 - 5 4 0- 5 50 - 6 5 0- 6 60 - 7 6 0 - 7 6 0 - 7 6 0- 7 70 - 8 7 0 - 8 7 0 - 8 70 - 8 8 0 - 9 8 0- 9 80 - 9 80 - 9 80 - 9 0 - 1 0 0 - 10 0 - 1 0 20 - 3 2 0 - 3 20 - 3 2 0 - 3 2 0 - 3 3 0- 4 30 - 4 30 - 4 3 0 - 4 3 0 - 4 30 - 4 40 - 5 40 - 5 4 0 - 5 40 - 5 4 0 - 5 4 0 - 5 4 0 - 5 40 - 5 40 - 5 5 0 - 6 5 0 - 6 50 - 6 50 - 6 50 - 6 5 0 - 6 6 0 - 7 6 0- 7 6 0 - 7 6 0 - 7 70 - 8 70 - 8 70 - 8 8 0- 9 8 0 - 9 8 0 - 9 80 - 9 0 - 10 0 - 10 20 - 3  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  18 12 0.8 19 12 08 07 19 07 19 18 08 19 17 06 07 08 19 07 08 0 3 19 12 0 8 18 03 06 18 08 19 12 08 07 19 06 01 18 21 12 03 0 8 07 19 12 21 16 08 07 12 19 08 07 32 03 19 08 0 7 08 07 03  -  2 1 1 1 2  1  1  5  1  2  1 1  1 . 2 2 0 1 7 . 1 4 7 8 2 4 . 8 3 0 0 9 4 . 0 5 5 0 8 6 . 6 0 5 0 3 0 . 9 1 5 0 7 1 . 7 9 0 0 5 3 . 0 9 5 0 1 4 . 4 1 0 0 5 6 . 6 4 0 0 0 . 3 6 6 1 5 3 . 8 1 0 1 2 8 . 7 0 0 0 1 3 . 1 6 0 0 0 . 8 0 2 5 2 0 . 3 5 5 0 1 4 . 0 9 5 0 1 . 0 9 8 1 3 . 4 1 3 5 9 1 . 0 6 5 0 5 . 5 7 1 0 5. 1550 2 . 8 3 7 7 6 . 4 1 8 4 5. 1469 0 1 . 5 1 5 0 v 7 . 7 1 5 0 1 2 . 1 0 5 0 2 5 . 7 8 5 0 8 . 2 5 0 0 1 6 . 7 5 0 0 7 0 . 7 8 4 9 2 6 . 5 2 0 0 2 5 . 8 3 0 0 37.8 100 2 . 6 0 6 2 1 . 5 8 2 1 2 . 1 9 8 9 11. 4400 7 . 6 9 0 0 0 8 . 6 1 0 0 3 1 . 0 8 0 0 5 2 . 5 5 0 0 8 . 5 8 0 0 9 . 0 0 0 0 0 . 9 0 1 5 0 5 . 9 9 5 0 7 1 . 4 0 0 0 2 3 . 3 5 6 5 9 . 5 6 9 4 8 . 4 7 0 0 3 4 . 9 3 0 0 1 4 . 1 9 5 0 5 . 2 7 4 1 1 . 7 0 2 3 2 9 . 2 2 5 0 0 8 . 9 7 0 0 4 6 . 2 1 5 0 3 2 . 4 7 5 0 3 8 . 1 4 5 0  0. 0 . 2 7 . 1 1 . 1 0 . 1 3 . 4. 1 7 . 8 . 6 . 0 . 2 6 . 1 . 2 . 0 . 2. 12. 0. 0. 9 . 1 . 0 . 0 . 0. 0 . 1 8 . 1. 1. 2 . 1 . 1 . 4 7 . 2 . 3. 5 . 0. 0. 0. 1 . 1. 1 3 . 5 . 1 8 . 1 . 1 . 0. 21. 1 0 . 0. 1 . 0 . 5 . 2. 1 . 0. 3. 1 5 . 2 0 . 2. 8 .  1341 5 8 4 6 5 0 6 5 0 5 5 0 5 0 0 1100 9 7 5 0 7 1 5 0 4 4 0 0 0 4 7 0 3 7 0 0 8 3 5 0 9 1 5 0 1 6 1 7 6550 1100 1423 341 5 4 4 0 0 1 9 1 1 6 7 3 4 3 2 8 8 6369 5 8 9 6 8 7 0 0 3300 1250 1 6 0 0 3 1 0 0 9 0 5 0 2 1 0 0 0 7 5 0 1900 3 7 0 0 3195 1304 2472 2 0 0 0 2900 7 9 0 0 5 5 5 0 7 7 0 0 5 4 5 0 1 6 0 0 1039 1850 3 5 5 0 3875 0 7 2 3 9 5 5 0 2 0 0 0 1800 0 2 5 7 2125 1600 7 8 5 0 2 5 5 0 8300 0 9 5 0 9 1 5 9 4  0 . 0 . 1 8 . 5 . 6 . 8 . 2 . 1 0 . 5. 3 . 0 . 1 6 . 1 . 1 . 0 . 1. 7 . 0 . 0 . 5 . 0 . 0 . 0 . 0. 0 . 1 5 . 0 . 0. 1 . 1 . 1 . 3 3 . 1 . 1 . 4 . 0 . 0 . 0 . 1 . 1 . 9 . 3 . 1 5 . 1 . 0 . 0 . 1 3 . 7 . 0 . 0 . 0 . 3. 1 . 0 . 0. 2 . 9 . 1 4 . 2 . 6.  0 7 2 9 9 5 2 9 4 0 6 2 6 1 6 0 2 7 8 4 1 3 2 9 4 0 5 5 8 0 1 0 1 0 0 1 6 6 2 9 0 9 2 2 5 7 5 7 2 9 5 1  8 0 6 0 7 5 4 5 0 4 5 0 9 5 0 7 5 0 3 5 0 1 0 0 1250 3 5 0 2 7 3 9 5 0 0 5 0 3 5 0 1 2 9 6500 3 0 0 7 0 0 0 5 8 5 0 0 1 2 8 7 1 8 9 9 1 4476 4 1 0 2 0 0 1 5 0 7850 8 0 0 8 5 0 9 5 0 8 8 5 0 1 5 0 3 5 0 6 5 0 7 2 4 8 9 0 5 6 3 0 5 0 1 5 0 5 5 0 7 5 0 0 5 0 2 0 0 6 0 0 5 6 8 8 5 0 1 0 0 4 2 6 1 8 3 7 0 0 4250 6 5 0 3 4 5 1396 8 0 0 7 0 0 6 5 0 0 0 0 3150  476 4 77 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 4 97 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535  18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/7 6 18/08/76 18/08/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76  1 '1 1 "1 '1 1 '1 '1 '1 '1 '1 '1 'I '1 1 "1 1  '1 1 '1 '1 '1 1 '1 '1 '! 1 "1 ' '1 1 '1 '1 '1 1 '1 ' '1 1 '1 '1 "1 1 •1 '1 1 '1 '1 1 1 1 'I •1 1 1 1 1 1 1 1  95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95  20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0 30 -40 30 - 4 0 30 - 4 0 40 - 5 0 40 - 5 0 40 -50 40 -50 40 - 5 0 40 - 5 0 40 - 5 0 40 -50 40 - 5 0 40 -50 50 - 6 0 50 - 6 0 50 - 6 0 50 -60 50 - 6 0 50 -60 50 - 6 0 50 -60 60 - 7 0 60 - 7 0 60 - 7 0 60 -70 70 - 8 0 70 -80 70 - 8 0 70 -80 70 - 8 0 80 -90 80 - 9 0 80 -90 90- 100 9 0 - 100 90- 100 9 0 - 100 20 - 3 0 20 - 3 0 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0 30 -40 30 - 4 0 30 -40 30 -40 40 -50  - 136 05 11.6100 18 1. 5821 1.8356 12 01 1.0314 26 6.2800 03 108.9950 08 142.3800 12 163.6450 41 5.3937 18 28.4650 06 103.9550 26 26.6850 05 15.2850 01 0. 2523 08 502.6599 12 220.1250 19 32.6950 06 215.9700 03 135.1050 18 27.5050 05 8.1789 26 39. 5900 21 8.4 910 28 1.5597 08 485.7649 17 38.6100 12 21.2300 21 23.8450 19 63.3800 3.9344 01 26 28.3250 07 1.3701 08 191.6700 07 17.0700 2.3436 12 17 14. 2900 07 34.6350 08 3 5 . 1 150 12 0.7280 2.0366 19 18 0.1193 07 64.4550 2 . 4 27.8 08 19 5.9485 07 23.0500 6.3524 08 0.346 1 21 17 16.9200 08 23.2000 14 10.6000 14 69.6250 94.9050 03 06 93.5450 19 106.8550 08 242.0400 12 49.2850 41 21.3200 18 37.2750 26 11.6500 08 494.0750  2.0200 0. 1717 0. 1718 0. 0882 1. 1698 16. 7100 16.6500 20.4550 0. 6902 3. 0950 15.4400 3.9900 2.2650 0. 0313 5 5 . 1850 29.3550 4. 3900 40.8100 24.2950 5.4500 1.0795 5.4500 1. 0280 0.3126 51.4300 4. 0050 2.2950 3.0150 6.9200 0.6301 3. 0300 0. 1348 21.4300 2.7150 0. 271 1 5.7050 5.0950 4. 1850 0. 1040 0. 276 1 0. 0152 10.0350 0. 3023 0.7400 3.6700 0. 7209 0.0468 2.8200 2.4700 1.8350 10.0350 19.6250 19.3950 19.7150 27.2200 7.6000 2.0650 5.8450 2.2050 53.0150  1. 5200 0. 1033 0. 1192 0. 0478 0. 8461 11. 1 500 11. 2500 14. 4 6 50 0. 4241 1. 8600 11. 2000 2. 5300 1. 3950 0. 0185 36.1600 2 0 . 18 50 2. 7400 2 8 . 3000 17. 9800 3. 6150 0. 7041 3 . 6150 0. 7041 0.2304 35. 4600 3 . 1 8 50 1. 5850 2. 1 2 50 4. 7250 0. 3C80 1. 7850 0. 0914 14. 6600 1 .7600 0. 1 897 2. 3450 3. 2250 2. 1 400 0. 0832 0. 1289 0. 0097 6. 5900 0. 1847 0. 4008 2. 5250 0. 4139 0. 0307 1. 5300 1. 4400 0. 9850 5. 7150 14.1200 13. 2500 14. 6200 16. 9900 5. 0550 1. 7150 2 . 7900 1. 1950 3 3 . 1 850  - 137 -  536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595  .  12/09/76 12/09/76 12/09/76 12/0 9 / 7 6 12/09/76 12/0 9 / 7 6 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/0 9/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95  40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 4 0 '- 5 0 40 - 5 0 40' - 5 0 40 - 5 0 40 - 5 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 5 0- 6 0 60 - 7 0 6 0- 7 0 60 - 7 0 60-- 7 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 80 - 9 0 80 - 9 0 80 - 9 0 80 - 9 0 80 - 9 0 80 - 9 0 80 - 9 0 9 0 - 100 9 0 - 100 9 0 - 100 9 0 - 100 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0 30 - 4 0  07 12 26 19 03 18 43 06 21 14 01 41 19 08 12 06 05 13 26 07 18 41 01 03 08 07 19 12 07 08 32 12 01 18 03 16 19 08 12 07 16 13 17 19 17 08 07 12 03 12 06 14 18 05 19 08 06 26 28 03  6.7943 110.7150 16.8000 424.7200 167.2500 35.0950 26.4500 94.0550 45.6350 2.5160 3.0232 7.0569 163.5000 100.5550 24.4950 12.2150 0.9159 0.2111 7.1013 7.0305 5.1796 8.9100 4. 6600 5.7300 94.4600 1.8890 50.1850 14.5500 49.1700 70.5900 3.1765 3.4576 0.4577 0.6422 1.2381 1.2396 0.3588 29.1750 0. 7766 29.2950 0 . 4 123 0.6259 1.7170 2.8581 5.0999 3 .9500 6.5977 0.0684 77.0000 2.9621 8.2050 3.6172 1.4642 0.2628 250.6851 547.3850 133.7350 36.4550 12.1550 48.5350  0.7635 16. 3100 2.8600 70. 0050 30. 9400 4. 8500 4.0750 18.1000 6.4750 0. 3758 0.3604 0.8647 23.5150 10.8800 4.0650 2.7050 0.2738 0.0845 1.3148 0. 8064 0. 8388 1. 2 2 5 0 0. 6750 1.3850 10. 7150 0. 2702 7. 2950 2.0600 9. 1950 8. 1500 0.5835 0.4796 0. 0929 0. 1059 0. 2448 0. 1758 0. 0595 2. 9950 0. 1930 4.2350 0.0803 0. 1 6 3 0 0.2763 0.4127 0. 641 3 0.4527 1. 0 5 3 8 0.0172 17.8100 0.6880 2.5350 0. 8 0 4 6 0. 3 2 1 2 0. 1382 47.4450 52.4300 35.0600 7. 8300 2.5100 10.4250  0. 4 7 2 8 2500 7800 4300 5900 5200 7300 4500 3200 2594 1587 0. 4 5 0 7 15.1800 6. 7650 2. 6050 1. 8 0 5 0 0.1134 0 . 0 4 82 0. 8489 0 . 4694 0. 3636 0. 4850 0. 4600 0.3000 6. 6150 0 . 1686 4. 8100 1. 2 7 0 0 5. 8850 5. 2500 0. 3575 0. 3367 0. 0407 0. 0579 0 . 1720 0 . 1249 0.0338 1. 7 3 0 0 0 . 1 180 2. 5950 0. 0479 0 . 0806 0 . 1578 0. 2221 0. 3992 0. 2 7 2 0 0 . 7129 0 . 0 126 1 2 . 1050 0. 5202 1. 8 1 0 0 0. 4 3 1 2 0 . 1 420 0. 0954 3 3 . 9450 3 1 . 7250 2 4 . 8400 4. 5650 1. 3 9 5 0 7. 5450  11. 1. 49. 22. 2. 2. 12. 4. 0. 0.  - 138 -  596 597 598 599 600 601 6 02 603 604 605 606 607 608 609 6 10 6 11 612 6 13 6 14 6 15 6 16 6 17 618 619 620 621 622 623 624 625  02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76 02/10/76  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  30 - 4 0 95 95 30 - 4 0 95 30 - 4 0 95 40 - 5 0 95 40 - 5 0 40 - 5 0 95 95 40 - 5 0 40 - 5 0 95 40 - 5 0 95 40 - 5 0 95 40 - 5 0 95 95 50 - 6 0 50 - 6 0 95 95 50 - 6 0 95 50 - 6 0 95 50 - 6 0 95 60 - 7 0 60 - 7 0 95 95 60 - 7 0 95 6 0- 7 0 95 60 - 7 0 95 70 - 8 0 95 70 - 8 0 95 70 - 8 0 95 70 - 8 0 95 80 - 9 0 95 80 - 9 0 95 80 - 9 0 95 9 0 - 100 95 9 0 - 100  05 18 12 19 08 12 03 14 26 18 06 08 07 12 03 19 07 08 03 19 12 07 08 32 19 08 07 19 08 07  11.8950 5 1 . 2 05 0 56.9350 271.4250 356.4199 32.4350 15.6200 10.4550 1 3 . 4 150 1.9460 17.5400 248.4351 64.6100 0.6199 3.6947 34.4100 85.7700 29.2000 12.1650 2 . 7 120 2.2073 135.8199 42.5650 10.5100 7 . 6 931 17.4650 43.5850 7.2600 6.0332 26.5850  3. 8100 8. 0500 8. 3 7 5 0 5 3 . 1700 32. 8100 5. 1750 4. 4700 1. 8 3 5 0 2. 9 8 0 0 0. 3532 4. 6700 22.0700 4. 9000 0. 1287 0. 7197 4. 2600 7. 7900 4. 2600 2. 3900 0. 2795 0. 5147 27.4400 4. 4700 0.5750 0. 9847 1. 9 9 5 0 7. 6800 0. 9 4 0 0 0. 5654 4. 3300  2. 4800 3. 7950 5. 6 400 3 9 . 3750 19. 4250 3. 5 4 5 0 2. 9450 1. 0 9 5 0 1 .8500 0 . 17 75 3. 0 6 5 0 12. 5000 2. 5300 0. 0917 0. 5092 2 . 6 100 4. 2400 2. 4050 1. 7 2 0 0 0. 1468 0. 2864 14. 8400 2. 4300 0. 3700 0. 4548 0.9450 4. 3200 0. 4650 0. 2909 2. 3450  - 139 -  DATE  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  LOCATION SPECIES QUADRAT  03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 0 3 / 0 8/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 0 3/0 8 / 7 6 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 0 3 / 0 8/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 0 3 / 0 8/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05  20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20 - 3 0 20-- 3 0 20 - 3 0 20 - 3 0 30 - 4 0 30 - 4 0 30 - 4 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 4 0-50 40 - 5 0 40 - 5 0 40 - 5 0 40 - 5 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 50 - 6 0 60 - 7 0 60 - 7 0 60 - 7 0 60 - 7 0 60 - 7 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 70 - 8 0 80 - 9 0 80 - 9 0 80 - 9 0 80 - 9 0 9 0 - 100 9 0 - 100 9 0 - 100 9 0 - 100  03 06 26 08 18 14 28 05 19 04 12 06 12 13 06 03 26 28 12 05 01 17 04 18 13 19 21 06 12 08 07 03 21 18 26 19 08 19 14 21 06 17 08 19 03 04 12 08 06 19 03 19 06 08 07  WET WEIGHT (G/IOM ) 2  484.6650 1140.0000 16.4550 7.6588 12.6600 2.7200 2.1704 28.5400 15.7750 21.5350 44.2800 7.1800 9.2500 3.2001 320.5850 104.6800 8.4350 0.9000 13.8050 12.3300 10.1650 2.5400 0.0933 1. 2 9 5 8 3.9750 1. 9 421 0.2569 81.3450 16.5950 25.5950 4.6602 12.7750 2.5422 1.3132 0.0822 35.7500 35.6100 6.2579 6.2900 1.9572 1.1912 36.7900 152.0551 73.9400 8.8400 0.0239 0.2479 85.1200 4.5886 75.2100 1.2371 16.5350 16.5450 188.2300 53.6950  DRY WEIGHT  (G/10W ) 88.6950 3 3 8 . 5798 2.7000 0.8080 1.4950 0.3694 0.5108 4.9250 2.4950 3.5000 5.7100 1.5450 1.9250 0.5774 69.7750 20.8350 1. 8 1 0 0 0.2450 2. 3 1 5 0 2.2100 1.4200 0.3200 0. 020 1 0. 1641 0.9650 0.3449 0. 0330 15.0000 2.5400 2.3450 0.7386 2.8100 0.2946 0. 1538 0.0118 0. 0464 3.5950 0.8419 0.9050 0.2372 0 . 188 1 4.2850 16.5450 10.0150 1.5800 0.0080 0.0419 8. 5 0 0 0 0.8636 7.6600 0. 248 3 2.6100 2.4800 19.9550 6.2000 2  ASH-FREE DRY WEIGHT  (G/10/f ) 2  68.0250 227.5250 1.7650 0.5588 1.0150 0.2613 0.3060 3.0600 1. 9 3 5 0 2.4050 3.7150 0.8750 1.1050 0.4277 51.6050 12.4600 1. 2 7 5 0 0.1750 1.4200 1 . 3600 0.8800 0. 2150 0.0111 0.0911 0.5950 0.2367 0.0177 11.4100 1.3350 1.4450 0.5394 2.1950 0.1662 0.0790 0.0061 0.0284 2.2700 0.4437 0.6400 0.1358 0.1023 2.5350 10.3250 6.3350 0.9900 0.0050 0.0246 5.2650 0.3296 4.6950 0.1741 1.6150 1.4950 12.1750 3.6750  56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 1 10 11 1 112 1 13 1 14 1 15  03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 0 3/0 8/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/03/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76 03/08/76  'I 'I 'I "I 'I 1 1 '1 'J 1 1 '1 1 '1 1 '1 1 'I *1 •1 '1 '1 '1 '1 1 -1 '1 '1 1 ' '1 '1 1 '1 •1 '1 1 '1 '1 "! 1 1 '1 '1 1 1 1 1 1 '1 1 '1 1 1 1 1 1 ] 1 1  35 2 0 - 30 35 2 0 - 30 2 0- 30 35 2 0 - 30 35 35 2 0 - 30 35 2 0 - 30 3 5 2 0 - 30 35 2 0 - 30 35 30- 40 3 0 - 40 35 3 0 - 40 35 3 5 3 0 - 40 35 30- 40 35 3 0 - 40 35 3 0 - 40 35 3 0 - 40 35 3 0 - 4 0 35 4 0 - 50 35 4 0 - 5 0 35 4 0 - 50 35 4 0 - 50 35 5 0 - 60 3 5 5 0-6 0 35 5 0 - 60 35 6 0 - 7 0 35 6 0 - 70 35 6 0-7 0 35 6 0 - 70 35 70- 80 35 7 0 - 80 8 0 - 90 35 8 0 - 90 35 8 0 - 90 35 35 8 0 - 90 35 9 0 - 100 35 9 0 - 1 0 0 2 0 - 25 65 2 0 - 25 65 65 2 0 - 2 5 65 2 0 - 2 5 65 2 0 - 25 2 0 - 25 65 65 3 0 - 40 65 3 0 - 40 5 0 - 60 65 65 5 0 - 60 6 5 5 0 - 60 65 5 0 - 60 60- 70 65 65 6 0 - 70 6 5 6 0 - 70 65 7 0 - 80 7 0 - 80 65 7 0 - 80 65 65 7 0 - 80 65 7 0 - 80 7 0 - 80 65 7 0 - 80 65 8 0 - 90 65 8 0 - 90 65  140 03 373.0649 76.5350 56.0650 08 17. 8 6 5 0 1. 7 5 0 0 1.2850 06 49.2500 10.5650 7.6650 05 11.3616 2.002 1 1.1739 12 2.7305 0.4110 0.2495 28 1.8208 0. 4 0 8 6 0.2102 18 12.0039 1. 5 0 5 1 0.7785 01 0.6768 0. 0 8 4 6 0.0421 03 1036.5000 203.9650 143.2050 06 39.7750 7. 9 5 5 0 5.7700 2 8 3.9950 1.0200 0.7950 05 2.6954 0. 5 4 3 0 0.3551 18 0.3607 0. 0 5 0 8 0.0310 26 2.3150 0. 5 0 5 0 0.3650 29 1.8300 0. 2 3 5 2 0. 1 5 2 0 12 1.5361 0. 1 9 6 4 0.1146 14 14.0000 1.9850 1.3550 07 21. 7600 3.3450 2.3150 08 154.9600 15.2900 10.1 100 06 34.9750 6.3100 3.1750 19 1.2517 0. 1 2 8 0 0.0739 29 3. 3 6 7 3 0. 4 5 0 5 0.2928 19 1.4 92 8 0. 1 9 9 8 0.1199 08 18.5050 2. 1 3 0 0 1 .9300 08 102.9800 1 1 . 1450 7.1450 07 35.4350 4. 8 4 5 0 3. 2 8 0 0 12 1.1846 0. 1 5 5 3 0.0865 19 3.7344 0.4829 0.2993 08 52 . 7 9 5 0 5.8350 3.8250 12 2.1478 0.2111 0.1122 03 12.6550 1.970 0 0. 6 7 0 0 19 1.8483 0.2728 0.1511 08 177.6650 6.3100 3.1750 07 12.9500 1. 0 6 0 0 0.5850 06 104.7050 20.5750 16.0650 03 66.6900 15.4900 9.4050 8607.0000 1708.7400 1261.3799 03 12 10.4262 1. 2 3 1 8 0.6441 18 2.1294 0. 2 8 0 8 0.1809 0.4581 01 5.9601 0. 8 3 8 8 26 2.1747 0.5115 0.3 0 6 0 28 1.2237 8.9331 2.0253 03 78.3000 15.0300 1 1.2 250 12 7.2684 0. 7 4 2 5 0.4899 19 2.3463 0. 4 2 8 3 0.3075 08 0.4096 • 0.0615 0.0410 07 3.3800 37.5000 5. 1 5 0 0 18 0.1538 0. 0 2 6 5 0.0132 08 15.4350 1.2950 1. 7 95 0 19 0 .2500 2.9700 0.4900 06 4.1600 0.8750 0.5600 19 1.8850 1.1050 13. 2 4 5 0 08 119.1200 12.8800 8.4250 07 13.3850 1.5500 1.0450 03 0.2005 0.0993 0.0765 26 0.0 84 1 0. 0 2 9 9 0.0157 1.2598 18 0. 1914 0.0651 1. 7 9 2 7 12 0. 2 9 7 2 0.1431 08 159.4600 16.6100 9.4 350 07 0.9458 0.1261 0. 1 7 6 0  - 141 -  1 16 117 118 1 19 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156  03/08/76 03/08/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76 2 7/07/76 27/07/76 27/0 7/76 27/07/76 27/07/76 27/07/76 27/07/76 27/07/76  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  65 65 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95  90- 100 90- 100 20 -30 20 -30 20 -30 20 -30 20 -30 30 -40 30 -40 30 -40 30 -40 30 -40 30 -40 40 -50 40 -50 40 -50 40 -50 40 -50 40 -50 40 -50 40 -50 40 -50 50 -60 50 -60 50 -60 50 -60 50 -60 50 -60 60 -70 60 -70 60 -70 60 -70 70 -80 70 -80 70 -80 80 -90 80 -90 80 -90 8 0-90 90- 100 90- 100  08 05 03 19 12 08 18 03 06 18 08 19 12 08 07 19 06 01 18 21 12 03 08 07 19 12 21 16 08 07 12 19 08 07 32 03 19 08 07 08 07  102.8700 0.0289 5.5710 5. 1550 2.8377 6.4184 5. 1469 101.5150 7.7150 12.1050 25.7850 8.2500 16.7500 570.7849 26.5200 25.8300 37.8100 2.6062 1.5821 2. 1 989 11.4400 7.6900 108.6100 31.0800 52.5500 8.5800 9.0000 0. 9015 2 05.9 95 0 71.4000 23.3 565 9.5694 8.4700 34.9300 14.1 950 5.2741 1.7023 29.2250 108.9700 146.2150 32.4750  10.6850 0. 0115 1.1911 0.6734 0. 3288 0.6869 0.5896 18.8700 1. 3300 1. 1250 2. 1600 1.3100 1.9050 47.2100 2.0750 3. 1900 5.3700 0.3195 0. 1304 0. 2472 1.2000 1. 2900 13.7900 5. 5550 18. 7700 1.5450 1. 1600 0. 1039 21. 1850 10.3550 0. 3875 1. 0723 0.9550 5.2000 2. 1800 1.0257 0.2125 3. 1600 15.7850 20.2550 2. 8300  6. 6050 0.0072 0.8128 0.4718 0.1991 0.4476 0.3410 15.2200 0.9150 0.7850 1.4800 1.0850 1.5950 33.8850 1. 5150 1.8350 4.0650 0. 1724 0.0890 0.1563 1.0050 1.0150 9.1550 3.6750 15.6050 1.2200 0.9600 0.0568 13.9850 7.2100 0.2426 0. 5183 0.7700 3. 4250 1.5650 0.7345 0.1396 2.2800 9.9700 14.5650 2.1000  - 142 -  DATE  1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  LOCATION SPECIES QUADRAT  10/1 1/75 10/1 1/75 i o / r 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 '1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 i o / r 1/75 10/1' 1/75 10/1' 1/75 10/1 1/75 10/1' 1/75 10/1 1/75 10/1 1/75 i o / r 1/75 10/1 '1/75 10/1"1/75 10/1' 1/75 10/1 1/75 1 0 / r 1/75 10/1 1/75 10/1 1/75 10/1 1/75 1 0 / T 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75 10/1 1/75  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  40- 50 15 40- 50 19 40- 50 21 40- 50 27 40- 50 16 40- 50 12 50- 60 19 50- 60 28 50- 60 15 50- 60 11 50- 60 26 50- 60 23 50- 60 03 50- 60 13 50- 60 08 50- 60 12 50- 60 21 50- 60 01 50- 60 16 50- 60 18 50- 60 05 50- 60 07 50- 60 06 60- 70 27 60- 70 19 60- 70 15 60- 70 06 60- 70 26 60- 70 12 60- 70 11 60- 70 08 60- 70 05 60- 70 18 60- 70 23 70- 80 19 70- 80 15 70- 80 12 70- 80 13 70- 80 26 70- 80 05 70- 80 01 70- 80 28 70- 80 18 70- 80 27 70- 80 17 70- 80 29 70- 80 30 80- 90 15 80- 90 19 80- 90 06 80- 90 11 80- 90 07 80- 90 . 08 80- 90 12 80- 90 03  WEIGHT  ASH-FREE WEIGHT DRY WEIGHT (G/10M ) (G/10M )  (G/io/r) So.3100 13.0600 26.1500 3.5400 1.7950 1.8549 0. 2727 0.1930 0.6478 0. 1043 0.0568 0.C886 0.0579 0.5302 9.1300 1.5100 1.1500 590.7000 8 1. 6 20 0 43.2650 33.1100 6. 4 100 3. 2950 90.9900 11 . 4200 6.9050 166.4399 26.8500 14.2150 29.7000 4. 0100 2.7850 1.2938 0.8025 11.0400 8.5600 6.5050 34.9100 9.0900 2. 0218 1.3464 19.1500 2. 1899 1.3032 9.8900 1. 1897 0.8325 18. 0400 2.1508 1.5943 0.0839 0. 0108 0.0071 0.5793 0.0702 0.0450 2.3471 0.2741 0.1905 0.3337 0. 0666 0.0414 10.0801 1.9792 0.9223 0.5 20 5 0.1276 0.0S18 0.1726 0. 0654 0.0313 616.5100 92.7200 48.9200 302.3599 41.3500 24.7450 58.1200 12.8300 9.3200 22.5000 4. 2200 2.7400 1.0600 0.7250 5.9400 60.5000 20.3900 1 1.9400 31.9000 2. 7600 1.6600 0.5842 3.2400 0.8537 3.3416 0.4581 0.3434 0.6200 0. 1018 0.0639 15020.6500 2268.9805 1151.5C50 781 .5999 87. 1000 49.5400 12.5550 111.5000 18.7000 10.8000 3.7795 2.6450 37.7500 5. 2895 3.8552 5.3965 1. 1315 0.8472 1.6910 0. 1560 0.2190 29.6500 8.1000 4.1550 1.7778 0. 2200 0.1478 8.1455 1.4740 0.8067 57.3500 7.6000 4.3700 21.3720 2.2630 1.5358 0.9002 9.1785 1.5230 46.8200 7.1250 4.1800 1306.7649 200.6600 104.2400 9.6150 7.2650 26.3450 24.4850 5.0300 3.2100 41.5800 2. 7650 1.6550 16.2400 1.8950 1. 1250 31.9700 5.8300 3.9100 2.5750 0.6550 0.5300 2  2  - 143 -  56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73  10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75 10/11/75  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  80 -90 80 -90 80 -90 80 -90 80 -90 90- 100 90- 100 90- 100 90- 100 90- 100 90- 100 90- 100 90- 100 90- 100 90- 100 90- 100 90- 100 90- 100  26 27 23 16 01 19 03 15 18 01 06 16 17 11 21 31 07 12  15.1850 0.2763 0.7448 2.9408 0.1499 400.4800 3.8900 4.1800 1.3172 0.0603 0.2573 0.4718 7.3291 0.3866 1.6267 0.2648 1.9939 0.6059  2. 9 150 0. 0824 0. 1144 0. 4470 0. 0324 64. 5100 1. 0567 0. 5678 0. 1758 0. 0095 0. 0366 0. 0538 0. 6472 0. 1014 0. 212 1 0. 0762 0. 2807 0. 0777  1. 8100 0. 4553 0. 0730 0. 2853 0. 0215 35. 5350 0. 7789 0. 3295 0. 0668 0. 0069 0. 0263 0. 0344 0.3303 0. 0587 0.1379 0. 0388 0. 1322 0. 0549  -  144  -  APPENDIX I I  A) Numerical  s p e c i e s code f o r f a u n a l assessment d a t a i n Appendix I I (B).  B) F a u n a l assessment d a t a f o r s e a s o n a l c o l l e c t i o n s a t 95 m  A.  01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  Mytilus edulis Amphithoe sp. Notoacmea scutum Margarites pupillus (parental) Margarites pupillus (juvenile) Strongylocentrotus droebachiensis Lacuna marmorata Mitrella gouldii Tonicella liniata Gnorimosphaeroma oregonense Dana Idotea wosnesenskii Brandt U n i d e n t i f i e d polycheate Pugettia richii Amphilochus sp. Metacaprella anomala Alvinia spp. Pandora sp. Strongylocentrotus purpuratus Stimpson Disporella sp. Ocenebra sp. Acmaea mitra Cancer oregonensis Odostomia spp. Hiatella arctica Granulina margaritula Balcis mi cans Bittium eschrichtii Lirularia lirulata Chi amys hastatus Cancer branneri Rathbun Nereis pelagica Pagurus kennerlyi Hemigrapsus nudus Clinocardium sp. Anatanias normani Richardson Crepipatella lingulata Gould Leptosynapta clarki Heding Searlesia dira Reeve Hyas lyratus Dana  within Site  1.  - 145 -  B. DATE  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  SPECIES N/M QUADRAT  25/05/76 30 25/05/76 30 25/0 5/76 30 25/05/76 30 25/05/76 30 30 25/05/76 2 5/0 5/76 30 25/05/76 30 25/05/76 30 30 25/05/76 25/05/76 30 25/05/76 40 25/05/76 40 25/05/76 40 25/05/76 40 25/05/76 40 25/05/76 40 25/0 5/76 40 40 25/05/76 40 25/05/76 40 25/05/76 50 25/05/76 25/05/76 50 50 25/05/76 25/05/76 50 25/0 5/76 50 50 25/05/76 50 25/05/76 25/05/76 50 25/05/76 50 25/05/76 60 25/05/76 60 60 25/05/76 25/05/76 60 25/05/76 70 25/05/76 70 70 25/05/76 25/0 5/76 70 25/0 5/76 70 25/05/76 70 70 25/05/76 25/05/76 70 25/05/76 80 80 25/05/76 2 5/0 5/76 80 25/05/76 80 25/0 5/76 80 80 25/05/76 25/05/76 80 80 25/05/76 80 25/05/76 25/05/76 90 25/0 5/76 90 25/05/76 90 25/05/76 100  04 06 01 07 08 09 02 10 1 1 12 13 04 09 02 07 08 01 14 27 16 17 04 06 01 09 08 07 18 19 20 21 17 03 16 01 07 09 04 16 23 03 24 13 17 03 09 04 23 16 25 26 09 01 24 09  1744 32 48 336 128 16 384 64 16 16 32 73 6 144 16 16 32 48 48 16 64 32 640 16 16 96 48 16 16 32 48 16 16 16 16 608 16 64 64 32 32 16 16 16 16 48 16 48 16 32 16 16 192 848 16 64  WET WEIGHT (G/M ) 2  74. 7920 50.3296 0.3216 5.0624 8.7632 15.0528 11.3696 0.6432 0.5712 0.3072 6.0544 8.7520 9.8592 0.9824 0.3008 2.2448 1.2480 0.2416 0.7040 0.2592 1. 3008 23.0720 51.5792 0.1760 3.8592 1.9360 0.2640 15.2992 2.6224 1.0960 108.5984 1 .2720 0. 5952 0.0208 4.7440 0.3136 10.0368 0.4912 0.1104 0.2688 1. 0912 0.4080 0.8288 0.7472 7.1456 16.5360 2.1504 0.0752 0.0784 0.0656 0.0896 95.3872 15.4192 0.8448 34.8784  DRY WEIGHT (.G/M ) 2  4 8. 539 2 21.2704 0. 2912 4. 0352 6. 7760 9. 0064 1. 9808 0.244 8 0. 2448 0. 1424 1. 6736 4. 1920 3.3936 0. 1456 0. 187 2 1.3536 0. 4576 0.0400 0. 5408 0. 2384 0. 6880 13.8928 1 6. 3488 0. 1744 2. 4976 1. 4672 0. 1808 8.0816 0. 5712 0. 6368 81.137 6 0. 7936 0.3296 0. 0064 2. 3152 0. 1376 4.2112 0. 3040 0. 0768 0. 0912 0 . 4656 0 . 1408 0. 3328 0.5712 3.4768 8. 7424 0 . 7872 0. 0592 0. 0544 0.046 4 0. 056 0 4 1. 3648 4.2960 0. 3232 18. 5936  56 57 58 59 60 61 62 63 6a 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 1 10 111 112 1 13 114 1 15  25/05/76 100 128 01 2.4640 25/05/76 100 16 28 0.4208 25/05/76 100 23 32 0.0960 25/05/76 100 16 26 0.1536 14/06/76 30 13 96 46.2352 14/0 6/76 30 08 400 20.4720 14/06/76 30 27 192 19.4672 14/06/76 30 19 64 20.3312 14/06/76 30 01 64 0.4560 14/06/76 30 80 20 13.5344 14/06/76 30 16 17 0.4640 14/0 6/76 30 09 32 4.9920 30 07 14/06/76 96 1.7424 14/06/76 30 25 0. 6784 192 14/06/76 30 29 32 0.6304 14/0 6/76 30 04 2112 49.9344 30 14/06/76 16 112 0.0496 14/06/76 30 16 31 1.0048 30 14/06/76 256 0.6064 02 14/06/76 30 14 48 0.4960 14/06/76 30 1.8624 48 32 80 14/06/76 30 23 0.2304 14/06/76 40 04 1264 53.1856 14/06/76 40 06 64 37.1632 14/06/76 40 96 58.1264 13 27 14/06/76 40 64 5.2336 40 14/06/76 240 02 11.2000 14/06/76 40 31 32 8.3056 14/06/76 40 96 01 3.0976 48 14/06/76 40 09 8.9104 40 07 14/06/76 144 3.1280 40 14/0 6/76 08 96 6.4160 14/06/76 40 29 32 0.5360 14/06/76 40 16 2. 7008 33 14/06/76 4 0 34 48 8.0576 14/06/76 50 1728 01 45.4352 14/06/76 50 04 16.1040 432 14/06/76 50 1.7104 48 02 14/06/76 50 14 32 0.2496 14/06/76 50 09 80 1 1. 8240 50 27 14/06/76 48 1 .5856 50 24 96 14/06/76 2.2208 14/06/76 50 16 20 0.9648 50 2.8400 14/06/76 16 03 50 14/06/76 16 0.0784 25 48 14/06/76 50 31 2.2560 60 160 20.7024 14/06/76 09 14/06/76 17 60 16 8.5616 14/06/76 60 04 48 1.1328 60 14/06/76 24 32 0.8640 60 16 14/06/76 32 1.0064 60 16 14/06/76 16 0.0352 60 07 16 0.9856 14/06/76 60 14/06/76 32 25 0.1568 60 14/06/76 01 15968 1047.8113 60 14/06/76 26 0.1920 32 60 16 14/06/76 03 0.6736 5648 14/06/76 70 01 293.9121 14/06/76 70 21 16 18.5600 14/06/76 70 64 09 71. 2096  1. 2656 0. 2144 0. 0560 0. 1280 16. 4960 1 4. 2064 16.2656 8. 0240 0.4400 10. 6256 0.4592 3.6784 1.3664 0. 5392 0. 2768 26. 0752 0.0464 0. 0608 0. 1456 0. 1024 0.3712 0.2016 34.3632 52. 2160 1 8. 9584 4.4192 2. 8640 2.1440 1. 9424 6. 0048 2. 1504 4. 6064 0. 4784 0. 1952 4. 5248 1 5. 4976 27.7840 0. 403 2 0. 0400 6.1936 1. 3024 0. 9856 0. 7664 1.7952 0. 0560 0. 2832 1 0. 2160 5. 0768 0. 7376 0.4016 0. 1360 0. 022 4 0. 6656 0. 0832 313.5952 0. 0528 0. 3280 129.1760 1 2. 6832 39.2668  116 1 17 118 1 19 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175  14/06/76 14/06/76 14/06/76 14/06/76 14/0 6/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 14/0 6/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 14/06/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76  70 70 80 80 80 80 80 90 90 90 90 90 90 90 100 100 100 100 1 00 100 100 100 1 00 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50  25 03 01 09 08 16 28 09 01 20 03 25 28 35 31 14 02 01 18 20 09 08 36 09 08 04 21 25 14 23 26 13 02 27 31 07 01 34 37 13 01 24 34 07 20 25 04 27 08 32 29 02 25 23 02 14 09 07 04 28  16 16 112 32 16 32 80 128 2832 32 48 256 16 48 16 32 48 16 16 32 48 64 16 112 96 2048 16 80 32 16 16 16 32 16 16 54 4 32 16 16 48 16 32 48 288 32 32 768 304 416 64 32 16 16 32 16 32 32 176 496 112  147 -  0.0608 34. 81 12 1.7824 3.4384 0.8400 0.0752 0.6256 49.4336 84.0800 35.3648 16.2544 0.9808 0.0656 0.1952 1.3696 0.0512 0.1072 0.0800 3.0864 8.0512 6.8960 2.1040 1.4592 65.0576 6.9744 86.1360 0.3680 0.36 16 0.1792 0.0736 0.0208 1.8592 0.4896 1. 0416 0.2512 3.8736 8.4880 0.5328 126.2608 85. 2464 18.9696 1. 2384 1.2448 3.1168 4.8912 0.1376 26.5008 39.3072 25.4128 3.5104 0.4688 0.5136 0.1056 0.1072 0.1184 0.2224 3.2336 1.8496 23.6528 5.2784  0. 0240 23.1152 0. 9040 2. 2128 0. 6336 0. 0528 0. 3872 26.8400 33.0752 25. 7392 9. 6464 0. 6704 0. 0400 0. 0608 0. 0688 0.0368 0.0336 0. 0352 2. 1232 5. 9120 3.0128 1.4880 0. 9072 36.7824 5. 139 2 53. 0400 0. 3232 0. 2496 0. 0432 0. 0560 0.0112 0. 3696 0. 107 2 0. 8528 0. 1296 2. 5424 4. 7728 0. 3984 7. 9184 1 8. 0976 9. 0544 0. 7296 0. 931 2 1. 8688 3.7920 0.0784 14.5776 31. 0624 17.1744 1. 1184 0. 3024 0. 1440 0. 0640 0. 0720 0. 0288 0. 0544 1. 6320 0. 9504 12.6944 2. 8544  176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235  08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 2 8/07/7 6 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 23/07/76 28/07/76  50 50 50 50 50 60 60 60 60 60 60 60 60 70 70 70 70 70 80 80 80 80 80 80 90 90 90 90 90 90 100 100 1 00 100 30 30 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 50 50 50 50 50  13 32 16 33 48 01 19 48 08 16 09 96 07 80 21 32 25 16 08 16 01 32 28 16 20 16 09 32 01 1296 25 48 64 08 28 32 09 32 12 16 16 21 25 16 01 112 07 16 01 512 96 09 16 21 25 32 20 48 16 33 28 32 02 48 80 09 25 272 07 57088 04 640 08 176 16 13 09 48 01 32 29 16 34 16 27 32 25 32 27 176 01 16 80 09 08 1 12 16 02 16 14 29 32 256 07 13 32 39 16 2064 04 128 01 24 48 13 32 27 16 14 16  50.4272 5.6192 0.7936 11.9664 0.8400 67.9712 1.5200 20.5600 0.0976 0.7200 0.8272 0.7776 0.4112 289.1968 93.9984 0.2608 2.7376 0.3536 62.1408 33.2800 112.5360 0.0912 2.5792 1.5536 25.7472 39.6304 16.6560 0.2352 2.3056 0.2592 0.2032 0.1792 19.3760 1.1824 175.6880 32. 8736 12.9984 29.8256 13.5872 3.3152 0.6176 2.1728 4.3168 0.2032 22.4224 2.4400 13.4672 7.4816 0.1776 0.0896 0.7056 2.5216 41.3696 9.0400 89.1056 3. 8032 1 .3872 8.3280 0.7456 0.0384  1 1. 5120 1.2320 0.3664 3. 1264 0. 5888 35. 321 6 0. 8352 15.0272 0. 0608 0. 5632 0. 596 8 0. 5024 0. 3360 133.9840 41.6960 0. 1760 1.8864 0. 2176 32. 3648 0. 2720 79.9024 0.0736 1.5712 0. 4720 12.8496 21. 7296 11.5264 0. 1760 1. 8544 0. 1200 0. 1504 0. 0560 1 0. 0704 0. 7488 86.3280 18. 2752 8. 7072 6.9984 6. 854 4 1. 6688 0. 3008 1. 3952 3.3664 0. 1472 17.3808 0. 9456 6. 6160 4. 9728 0. 0432 0. 0576 0. 4352 1. 5376 13. 1232 1.9120 48. 844 8 . 0. 9872 0. 5600 2. 4432 0. 5536 0. 017 6  236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 2 53 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295  28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 28/07/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/0 8/7 6 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/03/76 18/08/76 18/08/76 18/08/76 18/08/76  50 50 50 50 50 50 50 50 60 60 60 60 60 70 70 70 70 70 70 80 80 80 80 90 90 90 90 90 1 00 100 1 00 100 100 100 1 00 30 30 30 30 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 50 50  08 16 28 96 05 80 09 32 16 32 23 16 07 48 26 16 01 624 20 48 09 32 03 32 08 80 3984 01 09 32 25 64 07 16 08 32 26 16 16 21 09 16 25 16 16 16 5888 01 09 48 20 48 24 16 25 32 09 48 33 16 22 16 16 16 25 16 08 16 20 32 23 16 07 11680 05 2048 04 1168 34 112 08 64 09 16 13 16 24 16 27 32 25 32 25 320 04 896 2208 05 15 32 07 3008 16 80 23 160 08 16 13 16 22 32 09 32 27 16 05 5920 07 368  0.9472 3.4016 0.4448 1.3008 0.0800 0.0368 0.6432 0.0912 60.5008 2.4768 16.1616 1 1.8912 5.3120 680.6001 8.0448 0.3760 0.7680 2.2256 0.0912 55. 1056 24.7504 0. 1024 0.0336 951.0400 6.6208 4.8304 0.6192 0.2144 9.4768 0.2240 36.9072 0.0256 0. 1040 0.9200 6.3760 0.0848 65.5968 4. 5472 62.0896 5.2224 4.2688 3.2416 4.8176 3.2352 4.1568 0.1776 1.6000 28.0512 9.2720 0.1008 1 5.7056 0. 1616 0.4032 1.2432 0.3120 0.4208 3.3232 0.2608 37. 5568 1. 2928  0.6272 1. 8768 0. 2256 0. 673 6 0. 0368 0. 0192 0.3936 0. 0496 19. 4144 1.2976 5.5120 5. 2208 3. 1232 312.9919 3.2096 0. 2128 0. 5248 1. 435 2 0. 0272 34. 8400 10.0736 0. 0640 0. 0272 433. 9199 2. 5856 3. 2272 0.2736 0. 1184 3.96 8 0 0. 0480 12.7424 0. 0080 0. 0656 0. 5888 4. 0384 0. 0656 24.6576 2. 6832 35.0544 3. 3408 2. 9536 1.8192 1. 4304 1. 4384 3.2576 0.1104 1.0112 15. 5920 4. 3888 0. 0423 7. 5888 0. 0816 0. 1872 C . 9200 0. 2416 0. 1536 1.4880 0. 203 2 1 9. 7600 0. 8320  -  296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331. 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355  18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 1 8/08/76 18/08/76 18/08/76 18/03/76 18/0 8/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 18/08/76 18/08/76 18/0 8/76 18/08/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76  50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 70 70 70 70 70 70 70 70 80 80 80 80 80 80 90 90 90 90 90 90 90 100 100 100 1 00 1 00 1 00 100 1 00 100 30 30 30 30 30 30 30 30 30 30 40 40  23 928 16 688 15 32 25 288 06 32 04 176 28 528 27 448 34 32 20 80 09 16 08 496 01 560 09 48 03 16 25 16 23 32 16 16 01 912 09 32 33 16 15 48 25 64 23 16 08 112 16 16 09 48 03 16 08 48 20 32 25 48 28 32 0 1 256 03 32 09 32 48 20 25 64 20 16 28 16 28 128 15 32 08 144 22 160 25 272 09 112 20 48 13 16 64 14 05 1648 07 1 1760 23 96 16 176 16 13 06 16 34 16 24 16 04 672 160 08 05 54"0 07 9840  IbU -  3.7280 1.8960 0.1216 1.0528 0.6912 6. 9392 7. 1216 17.2064 0.4432 2.1872 0.9040 10.6928 57. 0384 30.5504 0.3088 0.0640 0.1552 0.0304 193.1456 7.2976 8.9952 0.1712 0.3312 0.0656 6.7600 0.0272 46.9456 0.6192 1 .8448 1.0048 0.2784 0.4112 10.7168 18.4032 8.3744 0.9872 0.2912 1.8368 0.2768 2.0704 0.0816 7.1424 2.3824 1. 3600 11.6592 1.9680 2.5883 0.0976 5.9104 62.9824 0.5104 0.5376 14.5312 14. 4016 0.8496 1.0144 37.5696 9.8400 22.1040 50.6720  2. 6880 1.2128 0. 0304 0. 6560 0. 3872 4.0704 4. 0272 13. 7136 0. 3424 1. 6208 0. 5648 5. 8048 39. 0960 1 5. 1232 0. 3008 0. 0384 0. 1056 0. 0144 103.9456 3.7664 4. 3280 0.0720 0. 2160 0. 0288 4. 8432 0. 0176 22.8896 0. 3872 1. 3008 0. 784 0 0. 1936 0. 2464 6.516 8 1 1. 7728 5. 0496 0. 7824 0. 2192 1. 3920 0. 2032 1. 3728 0. 0272 4. 9152 0. 7984 0..9056 6.435 2 1.4816 0. 8160 0. 0352 3.7936 33.3792 0. 3200 0. 2832 3. 6832 6.6304 0. 5552 0. 395 2 22.0496 7. 064 0 16. 0640 33.7200  - 151 -  356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 4 10 411 412 413 4 14 4 15  12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76  40 40 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 70 70 70 70 70 70 70 70 70 70 80 90 90 90 90 1 00 1 00 100 100 1 00 1 00 100 30 30 30 30 30 30 30 40  25 23 16 04 12 27 08 32 13 20 28 27 08 33 05 07 23 16 28 09 01 22 07 05 06 28 08 26 16 23 01 09 05 22 34 20 28 25 26 31 09 09 01 03 25 22 09 25 13 28 14 20 05 07 30 34 20 08 25 13  800 480 560 1568 16 128 240 16 16 16 112 48 16 16 5472 2192 64 27 2 96 16 352 32 32 320 16 16 16 16 32 48 608 16 80 32 16 16 16 160 96 16 16 80 368 32 80 32 48 . 176 16 16 80 16 1 488 3072 16 32 16 112 144 16  3.0080 1.8560 1.0240 70.8944 2.4160 18.5264 15.6912 4.9376 9. 8672 0.5728 1.4336 2.5504 1 .1360 0.3520 29.5776 8.2304 0.4272 0.5856 1.1488 1.6224 50.8896 0.5088 0.7232 0.9552 0.1984 0.4144 0.9088 0.0848 0.0896 0.1088 85.0928 3. 1792 0.2768 0.2736 0.4096 0. 1776 0.4832 0.7664 0.6128 0.2048 19.5952 14.5488 32.1248 25.2224 0.3408 0.2784 7.8256 0.7904 0.5328 0.3552 0.0800 2.0464 11.2128 35. 5760 2.2464 0.7920 11.1072 7.9808 0.6432 38.8848  2. 3120 1.6160 0. 8880 39. 9840 0.4336 14. 9632 10.5376 2. 3600 2. 7264 0. 4976 0. 9824 2.1616 0.9072 0. 2656 20. 1536 6. 2720 0. 2816 0. 5040 0. 836 8 1. 3680 29. 939 2 0. 3872 0. 4128 0.7312 0. 1824 0. 3008 0. 684 8 0. 0576 0. 0672 0. 0848 34.4528 2. 0640 0.219 2 0. 2080 0.3632 0. 1264 0. 3248 0. 6096 0. 4704 0. 1264 12. 9728 10.4736 23. 2128 16. 9328 0. 2624 0. 2320 5.5136 0. 6384 0. 4336 0.2592 0. 0496 1. 72C0 7.4160 2 1. 0624 0. 8032 0. 6544 8.9712 6. 004 8 0. 4544 1 2. 0320  416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 45 1 452 453 454 455 456 4 57 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475  07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 0 7/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76  40 40 40 40 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 70 70 70 70 70 70 80 80 80 80 80 80 80 80 80 80 90 90 90 90 90 1 00 1 00 1 00 1 00 100 100 100 1 00 100  30 48 06 16 09 16 34 160 27 128 08 320 01 32 144 25 07 1648 05 2480 04 176 23 32 16 16 25 464 28 304 05 20064 07 5776 464 23 16 8976 04 80 27 160 20 32 34 16 30 16 09 16 16 32 16 32 64 05 0 1 112 07 48 09 16 08 80 48 28 704 01 20 16 30 32 16 01 64 05 09 16 20 32 32 16 32 25 08 16 28 112 128 16 64 23 64 09 112 0 1 16 12 03 16 32 02 09 32 64 38 32 20 08 80 24 16 384 25 64 07 26 16 28 16  18.9936 34.2896 0.9008 7.1328 17.2544 21.2240 0.7584 0.5744 20.5664 25. 8608 8.2272 0. 1344 0. 0624 2.3104 5.0768 174.7696 22.9680 2.8576 18.6352 5.6576 9.1904 2. 1 152 1.2976 1.0704 5.5120 0.2448 0. 1248 0.3120 0.5376 0.4640 13.9712 4.5664 0.6208 53. 5872 0.7312 0.8192 0.2208 1.4656 2.4128 0.6960 0.1600 0.1712 0.7424 1. 9696 0.2352 0.3856 16.5152 0.7088 0.5856 11.5568 0.0352 7.1264 49.2656 1.1936 2.7808 0.4592 2.0944 0.2288 0.2480 0.3200  7. 5088 17. 3856 0. 6960 5. 5264 1 4. 6784 16.2288 0. 4400 0. 4256 13.3760 16.1504 5.7280 0. 0928 0. 0224 1.2464 3. 2384 100.8064 15.2000 2. 1888 13.0112 3. 4848 7. 4688 1. 6080 0. 9056 0. 3648 2. 9552 0.108 8 0.0912 0. 2256 0. 3584 0. 3088 8. 7120 3. 4224 0.5088 36. 8704 0. 5312 0. 5712 0. 0992 0. 9264 1. 1328 0.4992 0. 0944 0. 0992 0. 5088 1. 2480 0. 1664 0. 2960 10. 0528 0. 6144 0.5040 7.3088 0. 0160 3. 0128 34. 3504 0. 9504 2. 0432 0.4192 1. 3008 0. 1920 0. 1952 0. 2368  -  153  -  APPENDIX  Detritus  assessment  data  for  seasonal  III  collections  at  95  m within  Site  1.  - 154 -  DATE  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  DRY ASH-FREE WEIGHT DRY WEIGHT QUADRAT ( G/ti ) ( G/M )  28/05/76 28/05/76 28/05/76 28/05/76 28/05/76 28/05/76 28/05/76 28/05/76 28/05/76 17/06/76 17/06/76 17/06/76 17/06/76 17/06/76 17/06/76 17/06/76 17/06/76 17/06/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 08/07/76 29/07/76 29/07/76 29/07/76 29/07/76 29/07/76 29/07/76 29/07/76 29/07/76 29/07/76 20/08/76 20/08/76 20/08/76 20/08/76 20/08/76 20/08/76 20/08/76 20/08/76 20/08/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 12/09/76 07/10/76  2  20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20  0. 13 0. 62 1. 15 1. 01 0. 60 1. 39 1. 61 1. 75 1. 54 0. 25 1. 19 0. 87 0. 86 1. 01 1. 17 0. 76 1. 23 1. 48 0. 32 2. 20 4. 46 4. 13 2. 11 3. 97 2. 52 3. 63 2. 98 0. 28 2. 99 2. 87 1. 98 2. 06 1. 66 2. 19 2. 17 2. 24 0. 31 5. 38 6. 60 6. 00 1. 57 3. 35 0. 58 1. 17 1. 05 0. 45 1. 48 0. 61 1. 02 0. 61 0. 78 0. 49 0. 99 0. 82 0. 29  2  0. 07 0. 12 0. 15 0. 19 0. 15 0. 28 0. 33 0. 27 0. 27 0. 11 0. 32 0. 30 0. 27 0. 32 0. 43 0. 15 0. 24 0. 37 0. 14 0. 55 0. 43 0. 76 0. 61 0. 74 0. 60 0. 58 0. 54 0. 12 0.72 0. 48 0. 50 0. 57 0. 46 0. 54 0. 50 0. 54 0.16 1. 11 1.39 1. 20 0.42 0. 69 0. 13 0. 26 0. 23 0. 16 0. 32 0. 13 0. 19 0. 10 0. 21 0. 09 0.20 0. 20 0. 10  -  56 57 58 59 60 61 62 63  07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76 07/10/76  30 40 50 60 70 80 90 100  0. 52 0. 97 1. 91 0. 93 0. 72 0. 78 0. 61 1 .75  l b b  -  0. 12 0. 28 0. 55 0. 30 0. 23 0. 34 0. 22 0. 45  - 156 -  APPENDIX IV  Depth d a t a (m below mean s e a l e v e l ) w i t h i n S i t e 1.  f o r the t r a n s e c t s  Transect Distance along transect  (m)  05  m  35  m  a t 5, 35, 65 and 95 m  location 65  m  95  m  00  -1.4  -1.2  -1.1  -0.9  05  -0.6  -0.6  -0.8  -0.3  10  0.5  0.3  -0.2  0.6  15  0.8  1.2  0.8  1.2  20  2.3  2.1  2.0  1.5  25  2.9  2.3  1.8  2.1  30  2.3  2.4  1.3  2.7  35  2.6  2.4  1.5  3.7  40  2.9  2.6  1.8  4.1  45  3.4  2.7  2.3  4.9  50  3.8  3.7  2.9  5.5  55  4.1  4.3  3.7  5.5  60  4.4  4.9  4.4  6.1  65  4.9  5.5  4.7  6.4  70  5.0  6.1  5.3  6.4  75  5.5  6.4  6.1  6.7  80  6.3  7.0  6.9  6.7  85  6.7  7.9  7.5  7.0  90  7.2  8.5  8.1  7.3  95  7.6  9.1  9.0  7.6  100  8.1  9.8  9.6  7.9  - 157 -  APPENDIX V  Litter  decomposition e x p e r i m e n t a l d a t a . Length o f i n c u b a t i o n p e r i o d (days)  Species Plocamium  coccineum  Rhodomela  larix  Odonthalia  Iridaea  floccosa  cordata  Gigartina  papillata  Constantinea  Fucus  v a r . pacificum  subulifera  distichus  Nereocystis  luetkeana  (stipe)  Nereocystis  luetkeana  (lamina)  Percentage o f o r i g i n a l dry weight  0  100.00  10 16 24  65.26 42.50 28.22  0  100.00  6 13 25  86.20 48.73 6.48  0  100.00  8 19 33  55.35 34.51 9.23  0  100.00  2 8 13  97.39 55.66 0.13  0  100.00  10 16 24  38.50 16.79 2.72  0  100.00  6 14 29  62.30 45.20 11.57  0  100.00  6 13 19 44  61.08 39.99 44.38 8.67  0 6 13 19  100.00 29.70 5.38 0.01  0 2 4 6  100.00 52.80 5.49 0.08  - 158 -  Appendix V  Laminaria  Laminaria  (continued)  saccharina  groenlandica  0  100.00  8 9  13.70 11.30  0  100.00  3 8 9  30.14 11.16 10.13  - 159 -  APPENDIX VI  Oxygen consumed (mg) by microbes decomposing t h r e e p a r t i c l e s i z e s o f t h e 10 d e t r i t a l s p e c i e s i n Experiment 1 f o l l o w i n g t h r e e p e r i o d s o f i n c u b a t i o n .  Species  5 days  Plocamium  coccineum  Rhodomela  larix  Odonthalia  Iridaea  Gigartina  pacificum  floccosa  cordata  papillata  Constantinea  Fucus  var.  subulifera  distichus  10 days  20 days  0.17 0.20 0.17  0.32 0.36 0. 33  0.49 0.47 0.47  0.22 0.16 0.25  0.31 0.29 0. 31  0.42 0.45 0.42  0.19 0.15 0.19  0.37 0.28 0. 34  0.46 0.49 0.49  0.50 0.42 0. 33  0.57 0.45 0.55  0.65 0.64 0.71  0.26 0.20 0.22  0.28 0.33 0.30  0.38 0.42 0.36  0. 35 0. 37 0.35  0.60 0.54 0.52  0.62 0.67 0.64  0. 38 0.46 0. 39  0.57 0.55 0.63  0.84 0.71 0.85  Nereocystis  luetkeana  (stipe)  0.28 0.29 0. 34  0. 36 0.35 0.40  0.52 0.50 0.50  Nereocystis  luetkeana  (lamina)  0.29 0. 36 0.27  0.36 0.47 0.41  0.57 0.47 0.49  0.25 0.29 0.29  0.39 0. 37 0.32  0.54 0.46 0.47  0. 31 0.25 0.29  0.35 0. 38 0.45  0.45 0.50 0.48  Laminaria  Laminaria  saccharina  groenlandica  44-0 250-149 1000-420  particle size  -160 -  APPENDIX V I I  Percentage o f p a r t i c u l a t e m a t e r i a l r e m a i n i n g f o l l o w i n g t h r e e p e r i o d s o f i n c u b a t i o n f o r t h r e e p a r t i c l e s i z e s o f t h e 10 d e t r i t a l s p e c i e s decomposed i n Experiment 2.  Species Plocamium  coccineum  Rhodomela  larix  Odonthalia  pacificum  floccosa  Iridaea  cordata  Gigartina  papillata  Constantinea  Fucus  var.  subulifera  distichus  10 days  20 days  30 days  100.0 114.8 94.9  101.4 86.7 109.5  95.6 77.3 94.5  98.1 102.6 107.7  102.0 110.0 106.6  95.0 96.7 103.5  111. 3 123.3 95.0  101.3 110.7 92.4  100.0 104.6 97.7  22.4 45.4 62.8  20.7 22.5 24.0  24.2 29.5 25.8  74.1 101.1 89.1  70.0 99.6 89.4  77.3 97.2 63.1  100.7 94.9 93.3  97.1 109.5 89.3  88.1 94.5 75.5  123.7 101.1 104.8  100.9 99.6 106.4  96.0 97.2 103.5  Nereocystis  luetkeana  (stipe)  54.2 70.9 81.2  44.4 52.2 60.6  48.2 35.0 62.2  Nereocystis  luetkeana  (lamina)  63.9 65.0 66.7  51.2 47.4 59.6  49.2 49.1 37.1  73.6 77.2 81.4  71.1 70.1 67.2  72. 3 45.1 70.6  60.4 62.8 68.6  67.1 59.6 63.6  72.5 55.1 61.8  Laminaria  Laminaria  saccharina  groenlandica  1  44-0 urn" particle 250-149 urn| size 1000-420 um;  - 161  APPENDIX  -  VIII  FORTRAN G computer program f o r the s i m u l a t i o n model of l i t t e r p r o c e s s i n g w i t h i n S i t e 1.  Main program:  and  detritus  Accepts parameters d e t e r m i n i n g the data t o be p r o c e s s e d , i . e . wet, dry o r a s h - f r e e dry weight; s e t s the s i g n i f i c a n c e l e v e l of the c h i - s q u a r e t e s t f o r p a t c h i n e s s i n l i t t e r d i s t r i b u t i o n ; c a l l s s u b r o u t i n e s Ml, M2, M3 and M4.  Ml:  Creates a three d i m e n s i o n a l m a t r i x ( s p e c i e s , q u a d r a t , t r a n s e c t ) o f l i t t e r biomass d a t a d e f i n i n g the a r e a l d i s t r i b u t i o n o f l i t t e r w i t h i n S i t e 1. The m a t r i x i s based on data from the t r a n s e c t c o l l e c t i o n s a t 5, 35, 65 m w i t h i n S i t e 1 on 3 August and a t 95 m on 27 J u l y 1976.  M2:  T e s t s (chi-square) f o r p a t c h i n e s s i n the d i s t r i b u t i o n o f s p e c i f i c l i t t e r w i t h i n e q u i v a l e n t quadrats o f the f o u r t r a n s e c t s d e f i n i n g the a r e a l d i s t r i b u t i o n o f l i t t e r w i t h i n S i t e 1. I f the r e s u l t i s n o n - s i g n i f i c a n t , the d a t a are averaged t o reduce the i n f l u e n c e o f sampling v a r i a b i l i t y .  M3:  C a l c u l a t e s the e q u a t i o n ( F i g u r e 17) f o r the s e a s o n a l b u t i o n o f t o t a l l i t t e r biomass w i t h i n S i t e 1.  M4:  Performs the o p e r a t i o n s o u t l i n e d i n the flow c h a r t i n F i g u r e 18.  distri-  - 162 -  1 2 3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  INTEGER WTPAR COMMON WTPAR /AREA1/ WTDAS(5,4,10) /AREA2/ DAY1(17), P ( l l ) , REGWT( +17) COMMON /AREA3/ WT(4,5,17,10) , SDET(4,5,17,10) , SSOMP (4,5,17,10) , S +PROD(4,5,17,10), SPRODP(4,5,17,10), SPROSP(4,5,17,10), SDETP(4,5,1 +7,10) 15 WRITE(6,1) 1 FORMAT(' ','ENTER: WTPAR(I1) /'WET WT=1'/'DRY WT=2'/'AFDW=3 ) RE AD (5, 2) WTPAR 2 FORMAT(II) IF((WTPAR.GT.3) .OR.(WTPAR.EQ.0)) GO TO 15 16 WRITE (6,3) 3 FORMAT(' ','ENTER: PROB-LEVEL(F4.0) @ .01,.05 OR .10') READ(5,4) PROB 4 FORMAT(F4.0) X2=0. IF(ABS(PROB-.01).LT..0001) X2=11.341 IF(ABS(PROB-.05).LT..0001) X2=7.815 IF(ABS(PROB-.10).LT..0001) X2=6.251 IF(X2.EQ.O.) GO TO 16 WRITE (6.14) PROB,X2 14 FORMAT('-','PROB LEVEL=',F4.2,3X, X2=',F6.3) CALL Ml CALL M2 CALL M3 CALL M4 STOP END 1  1  1  BLOCK DATA COMMON /AREA1/ WTDAS(5,4,10) DATA WTDAS/200*0./ END SUBROUTINE Ml INTEGER SP,WTPAR,DAS2,DATE,DAS,TX DIMENSION DAS1(4) COMMON WTPAR /AREA1/ WTDAS(5,4,10) DAS=2 DO 2 N=l,156 READ(2,4) DAS2,SP 4 FORMAT(7X,I3,6X,I2) IF(N.EQ.l) DAS1(1)=DAS2 IF((SP.NE.3).AND.(SP.NE.6).AND.(SP.NE.7).AND.(SP.NE.8).AND.(SP.NE. +19) ) GO TO 2 BACKSPACE2 IF(WTPAR.EQ.l) READ(2,5) TXDX1,DATA IF(WTPAR.EQ.2) READ(2,5) TXDX1,B1,DATA IF(WTPAR.EQ.3) READ(2,5) TXDX1,B1,B2,DATA 5 FORMAT(10X,F3.0,6X,3F10.0) IF(SP.EQ.3) SP=1 IF(SP.EQ.6) SP=2 IF(SP.EQ.7) SP=3 IF(SP.EQ.8) SP=4 IF(SP.EQ.19) SP=5 IF(DAS2.EQ.DAS1(DAS-1)) GO TO 6  - 163 -  51 52 53 54 55 56 57 58 59 60  DAS1(DAS)=DAS2 DAS=DAS+1 6 DO 7 TX=1,10 7 IF((TXDX1.EQ.(TX*10.)-10.).AND.(SP.LE.5)) WTDAS(SP,DAS-1,TX)=DATA+ +WTDAS(SP,DAS-1,TX) 2 CONTINUE RETURN END  SUBROUTINE M2 COMMON WTPAR /AREA2/ WTDAS(5,4,10) COMMON /AREA3/ WT(4,5,17,10), SDET(4,5,17,10), SSOMP(4,5,17,10), S +PROD(4,5,17,10), SPRODP(4,5,17,10), SPROSP(4,5,17,10), SDETP(4,5,1 +7,10) 61 INTEGER SP, TXDX1, TX, WTPAR, DATE, DAS 62 DIMENSION SUM1(5), SUM2(5), WT(5,10), FREQ(5,10), CHISQ(5,10), CHI +WT(5,4,10), STAND(5,10) 63 DATA SUMl/5*0./, SUM2/5*0./, WT/50*0./ 64 DO 1 N=l,625 65 IF(WTPAR.EQ.l) READ(1,2) TXTXl,SP,DATA 66 IF(WTPAR.EQ.2) READ(1,2) TXDX1,SP,B1,DATA 67 IF(WTPAR.EQ.3) READ(1,2) TXDX1,SP,B1,B2,DATA 68 2 FORMAT(10X,I3,3X,I2,1X,3F10.0) 69 IF((SP.NE.3).AND.(SP.NE.6).AND.(SP.NE.7).AND.(SP.NE.8).AND.(SP.NE. +19) ) GO TO 1 70 IF(SP.EQ.3) SP=1 71 IF(SP.EQ.6) SP=2 72 IF(SP.EQ.7) SP=3 73 IF(SP.EQ.8) SP=4 74 IF(SP.EQ.19) SP=5 75 TX=(TXDX1/10) 76 WT(SP,TX+1)=WT(SP,TX+1)+DATA 77 SUM1(SP)=SUM1(SP)+DATA 78 1 CONTINUE 79 DO 3 SP=1,5 80 DO 3 TX=1,10 81 FREQ(SP,TX)=WT(SP,TX)/SUM1(SP) 82 3 SUM2(SP)=SUM2(SP)+WTDAS(SP,1,TX) 83C ** CORRECTIVE ADJUSTMENT FOR AN UNREPRESENTATIVE DATUM FOR 'IRIDAEA 84C ** CORDATA' OBTAINED FOR THE 2 7 JULY 1976 COLLECTION AT 95 M. 85 SUM2(2)=SUM2(2)+20. 86 DO 4 SP=1,5 87 DO 4 TX=1,10 88 4 STAND(SP, TX) =FREQ (SP, TX) *SUM2 (SP) 89 DO 5 SP=1,5 90 DO 5 TX=1,10 91 UNIT=WTDAS(SP,1,TX) 92 CHIWT(SP,1,TX)=STAND(SP,TX) 93 DO 12 DAS=2,4 94 CHIWT(SP,DAS,TX)=WTDAS(SP,DAS,TX) 95 12 IF((WTDAS(SP,DAS,TX).LT.UNIT).AND.(WTDAS(SP,DAS,TX).NE.O.)) UNIT=W +TDAS(SP,DAS,TX) 96 IF(UNIT.EQ.O) GO TO 5 97 IF((WTPAR.EQ.l).AND.(UNIT.GT.10.)) UNIT=10. 98 IF((WTPAR.EQ.2).AND.(UNIT.GT.2.)) UNIT=2. 99 IF((WTPAR.EQ.3).AND.(UNIT.GT.l.)) UNIT=1.  - 164 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 12 3 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155  6  7  8 5  13  10 11 9  SUM1=0. SUMl=SUMl+(STAND(SP,TX)/UNIT) IF(SUM1.EQ.0.) GO TO 5 DO 6 DAS=2,4 SUM1=SUM1+(WTDAS(SP,DAS,TX)/UNIT) EXP=SUMl/4. SUM2=0. SUM2=SUM2+((STAND(SP,TX)/UNIT)**2) DO 7 DAS=2,4 SUM2=SUM2+((WTDAS(SP,DAS,TX)/UNIT)**2) CHISQ(SP,TX)=(SUM2/EXP)-SUM1 IF(CHISQ(SP,TX).GE.X2) GO TO 5 DO 8 DAS=1,4 CHIWT(SP,DAS,TX)=EXP*UNIT CONTINUE DO 11 DAS=1,4 DO 11 SP=1,5 WRITE (7,13) DAS, SP FORMAT( -',3X,'DAS=',12,3X,'SP=',12) DO 11 DATE=1,17 DO 10 TX=1,10 WT(DAS,SP,DATE,TX)=(REGWT(DATE)/REGWT(14))*CHIWT(SP,DAS,TX) WRITE(7,9) DATE, (WT(DAS,SP,DATE,TX),TX=1,10) FORMAT(' ', DATE=',12,2X,10F10.4) RETURN END 1  1  SUBROUTINE M3 COMMON WTPAR /AREA2/ DAYl(17), P ( l l ) , REGWT(17) DIMENSION YRES(17), WT(17), SPRYY(411) DIMENSION S ( 1 1 ) , SIGMA(IO),'A(IO), B ( 1 0 ) , DATEWT(17) DOUBLE PRECISION YY(411), EXPO, RDATE LOGICAL LK, ANSWER INTEGER WTPAR,D,Y,DATE,DAS,TX DATE=1 SUM1=0 REWIND1 DO 10 N=l,625 IF(WTPAR.EQ.l) READ(1,12) D,M,Y,DATA IF(WTPAR.EQ.2) READ(1,12) D,M,Y,B1,DATA IF(WTPAR.EQ.3) READ(1,12) D,M,Y,Bl,B2,DATA 12 FORMAT(312,13X3F10.0) DAY2=JULDAY(M,D,Y+1900)-JULDAY(8,18,1975) IF(N.EQ.l) DAY1(1)=DAY2 IF(DAY2.NE.DAY1(DATE)) GO TO 11 SUM1=SUM1+DATA/100. IF(N.NE.625) GO TO 10 11 DATEWT(DATE)=SUM1 DATE=DATE+1 DAY1(DATE)=DAY2 IF(DATE.EQ.18) GO TO 10 SUM1=DATA 10 CONTINUE NWT=0 K=10 N=17 LK=.TRUE. 1  - ico 156 157 158 159 160 161 162 163 164 165  CALL OLQF(K.N.DAY1,DATEWT,REGWT,YRES,WT,NWT,S,SIGMA,A,B,SS,LK,P) MAX=K+1 WRITE(7,2) ( J , P ( J ) , J=1,MAX) 2 FORMAT(' ',3('P(',12,')',E20.12,2X)) WRITE (7, 3) K, SS 3 FORMAT(' ','K= ',I2,2X,'SS= ',F10.4/) WRITE(7,4) (L, DATEWT(L), REGWT(L), YRES(L),L=1,N) 4 FORMAT(' ',2('DAY=' ,12 , ' DATEWT= ',F6.2,' REGWT= ',F6.2,' YRES= ', +F6.2,5X)) WRITE (6,13) 13 FORMATC ','IS A PLOT OF *'TOTAL LITTER VS TIME'' DESIRED? (T OR F  +) ') 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198  199 200 201 202 203  READ(5,14) ANSWER 14 FORMAT(Ll) IF(.NOT.ANSWER) GO TO 15 DO 5 DATE=1,411 YY(DATE)=0. RDATE=DATE DO 5 J=1,MAX EXPO=J-l 5 YY(DATE)=YY(DATE)+(P(J)*(RDATE**EXPO)) DO 9 DATE=1,411 9 SPRYY(DATE)=YY(DATE) CALL SCALE(SPRYY,411,6.,YMIN,DY,1) CALL AXIS(0.,0.,'1975*,-4,3.,0.,230.,40.) CALL PLOT(3.,0.,3) CALL PLOT(4. ,0.,2) CALL AXIS(4.,0.,'1976',-4,7.,0.,25.,40.) CALL AXIS(0.,0.,'LITTER BIOMASS (G/M2:AFDW)',26,6.,90.,YMIN,DY) CALL PLOT(0.05,SPRYY(2),3) DO 7 DATE=3,411 W=DATE*0.025 7 CALL PLOT(W,SPRYY(DATE),2) DO 8 DATE=1,17 V=DAY1(DATE)*0.025 U= DATEWT(DATE)*0.0 2 8 CALL SYMBOL(V,U,0.28,30,0.,-1) CALL SYMBOL(3.7,-.5,.2,'DAY OF THE YEAR',0.,15) CALL SYMBOL(4.,5.,.2,'TOTAL LITTER' ,0 . ,12) CALL PLOTND 15 RETURN END SUBROUTINE M4 COMMON /AREA2/ DAY1(17), P ( l l ) , REGWT(17) COMMON /AREA3/ WT(4,5,17,10), SDET(4,5,17,10), SSOMP(4,5,17,10), S +PROD(4,5,17,10), SPRODP(4,5,17,10), SPROSP(4,5,17,10), SDETP(4,5,1 +7,10) INTEGER DATE1, DATE2, DATE3, DATE4, DATE5, DATE6, DATE7, DATE8, DA +TE9, DATE11, DATE12, SP, DAS, TX DIMENSION DETP(523), SOMP(523), PROD(523), PRODP(523), PROSP(523), +DRATE(5), DET(523), DOM(5), YPROI(5), TEMFAC(523), SQLX(17) DOUBLE PRECISION SUMl, SUM2, RATIO, P R A T I O ( l l ) , EXPO, DATE10 DOUBLE PRECISION QL, QLR(523), YWT(5,80), YWTI, YWTP, YWTC, YPRO(5 +,80), YPROP, YPROC, QLX(523) DATA DRATE/.00760,.05651,.03123,.03479,.02934/, DOM/.393,.717,.589 +,.553,.611/, QLX/523*0./  -  204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 22 3 224 225 226 227 228 229 230 231 232 233 234 235 2 36 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256  Ibb  -  DATA YPROI/.10892347,.12155714,.09405,.14905,.14466232/ DO 13 DATE12=1,80 YWT(1,DATE12)=EXP((-.059039*DATE12)+4.60517) YWT(2,DATE12) = (-.448099 *DATE12 **2)-(1,97802*DATE12)+100. YWT(3,DATE12)=EXP((-.209873*DATE12)+4.60517) YWT(4,DATE12)=((DATE12-6.022245)**2)/(4*.0906686) YWT(5,DATE12)=EXP((-.277057*DATE12)+4.60517 YPR0(1,DATE12)=(-.067956*YWT(1,DATE12))+17.688 YPR0(2,DATE12)=(.0440286*YWT(2,DATE12))+7.75285 YPRO(3,DATE12)=(-.05 8322*YWT(3,DATE12))+15.2 371 YPR0(4,DATE12)=(-.182204*YWT(4,DATE12))+33.1254 YPRO (5,DATE12) = (.490 395E-0 3*YWT(5,DATE12)* *2)-(.21176*YWT(5,DATE12 +))+30.7386 13 CONTINUE A=0.20187 B=0.29821 DO 8 DATE11=1,52 3 8 TEMFAC(DATE11)=1.375+A*SIN((8.*ATAN(1.)/366.)*(DATEll+231))+B*COS( +(8.*ATAN(l.)/366.)*(DATE11+231)) DO 1 DAS=1,4 DO 1 SP=1,5 DO 1 TX=1,10 RATIO=WT(DAS,SP,1,TX)/(REGWT(1)*10.) DO 5 1=1,11 EXPO=I 5 PRATIO(I)=(P(I)*RATIO)/EXPO DO 12 DATE11=1,52 3 DETP(DATEll)=0. SOMP(DATE11)=0. PROD(DATE11)=0. PRODP(DATE11)=0. PROSP(DATE11)=0. DET(DATEll)=0. QLR(DATEll)=0. 12 CONTINUE DO 16 DATE11=194,522 DATE1=DATE11 IF(DATEll.GT.410) DATEl=DATEll-407 DATE10=DATE1 SUM1=0. SUM2=0. DO 2 1=1,11 EXPO=I SUMl=SUMl+(PRATIO(I)*(DATE10**EXPO)) 2 SUM2=SUM2+(PRATIO(I)*(DATE10+1.D0)**EXPO) QL=SUM2-SUM1-QLR(DATE11) IF(QL.LT.O-) QLX(DATE11+1)=QLX(DATE11+1)-QL IF(QL.LE.O.) GO TO 16 IF(DATEll.LE.201) QLR(DATEll+l)=QL+QLR(DATEll) YWPT=1.D0 YPROP=YPROI(SP) DO 3 DATE2=1,80 DATE 3=DATE 2 +DATE11+(6 *TEMFAC(DATE11)) IF(DATE3.GT.523) GO TO 16 DATE3=(TEMFAC(DATE3)*DATE2)+DATE11+(6*TEMFAC(DATEll))  -  257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 2 73 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310  J.O /  -  YPR0C=YPR0(SP,DATE2)/100. YWTC=YWT(SP,DATE2)/100. IF((DATE3.GT.523).OR.(YWTC.LT..01)) GO TO 16 QLR(DATE3)=QL*YWTC+QLR(DATE3) YWTI=YWTP-YWTC IF(YWTC.GE.DOM(SP)) GO TO 4 DETP(DATE 3)=DETP(DATE 3)+(YWTI*QL) PR0DP(DATE3)=PR0DP(DATE3)+YWTI*QL*((YPROC+YPROP)/2.)*(((YPROP*YWTP +)/YWTC-YPROC)/((YPROP*YWTP)/YWTC-YPROP GO TO 10 4 SOMP(DATE3)=SOMP(DATE3)+(YWTI*QL) PROSP(DATE3)=PROSP(DATE3)+YWTI*QL*((YPROC+YPROP)/2.)*(((YPROP*YWTP +)/YWTC-YPROC)/((YPROP*YWTP)/YWTC-YPROP 10 YPROP=YPROC YWTP=YWTC 3 CONTINUE 16 CONTINUE DO 15 DATE7=194,523 DO 11 DATE8=1,80 DATE9=DATE 7+DATE8-1 IF(DATE9.GT.523) GO TO 15 DATE9=TEMFAC(DATE9)*(DATE8-1))+DATE7 IF(DRATE(SP)*(DATE8-1) .GT.1.) .OR. (DATE9.GT.52 3)) GO TO 15 DET(DATE9)=DETP(DATE 7)*(1.-(DRATE(SP)*(DATE8-1)))+DET(DATE9) 11 PROD(DATE9)=PRODP(DATE7)*(1.-(DRATE(SP)*(DATE8-1)))+PROD(DATE9) 15 CONTINUE DO 6 DATEll=412,52 3 QXL(DATE11-409)=QLX(DATE11) DETP(DATE11-409)=DETP(DATE11) DET(DATE11-409)=DET(DATE11) PRODP(DATE11-409)=PRODP(DATE11) PROD(DATE11-409)=PROD(DATE11) SOMP(DATE11-409)=SOMP(DATE11) 6 PROSP(DATE11-409)=PROSP(DATE11) SDET(DAS,SP,1,TX)=0. SSOMP(DAS,SP,1,TX)=0. SPRODP(DAS,SP,1,TX)=0. SPROSP(DAS,SP,1,TX)=0. SDETP(DAS,SP,1,TX)=0. SPROD(DAS,SP,1,TX)=0. SUM3=0. SUM4=0. SUM5=0. SUM6=0. SUM7=0. DATE5=1. DO 14 DATE4=2,411 SUM3=SOMP(DATE4)+SUM3 SUM4=PRODP(DATE4)+SUM4 SUM5=PROSP(DATE4)+SUM5 SUM6=DETP(DATE4)+SUM6 SUM7+QLX(DATE4)+SUM7 IF(ABS(DAY1(DATE5)-DATE4).GT..001) GO TO 14 S DET(DAS,SP,DATE5,TX)=DET(DATE 4) SSOMP(DAS,SP,DATE5,TX)=SUM3 SPRODP(DAS,SP,DATE5,TX)=SUM4  -  311 312 313 314 315 316 317 318 319 320 321 322 32 3 324 325 326 327 328 329 330 331 332 33 3 334 335 336 337  ibB  -  SPROSP(DAS,SP,DATE5,TX)=SUM5 SDETP(DAS,SP,DATE5,TX)=SUM6 SPROD(DAS, SP,DATE5,TX)=PROD(DATE4) SQLX(DATE5)=SUM7 SUM3=0. SUM4=0. SUM5=0. SUM6=0. SUM7=0. DATE5=DATE5+1 14 CONTINUE 1 CONTINUE DO 7 DAS=1,4 DO 7 SP=1,5 DO 7 DATE6=1,17 WRITE(8,9) DAS,SP,DATE6,(SDET(DAS,SP,DATE6,TX),TX=1,10) WRITE(10,9) DAS,SP,DATE6,(SSOMP(DAS,SP,DATE6,TX),TX=1,10) WRITE(11,9) DAS,SP,DATE6,(SPRODP(DAS,SP,DATE6,TX),TX=1,10) WRITE(12,9) DAS,SP,DATE6,(SPROSP(DAS,SP,DATE6,TX),TX=1,10) WRITE(13,9) DAS,SP,DATE6,(SDETP(DAS,SP,DATE6,TX),TX=1,10) 7 WRITE(14,9) DAS,SP,DATE6,(SPROD(DAS,SP,DATE6,TX),TX=1,10) 9 FORMAT(II,11,12,IX,10E11.4) DO 18 DATE6=1,17 18 WRITE(6,17) DATE6, SQLX(DATE6) 17 FORMAT(' ',12,2X,E11.4) RETURN END  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 97 2
United States 11 0
Ireland 9 5
United Kingdom 4 0
Canada 4 0
Azerbaijan 4 0
Germany 3 0
Bangladesh 2 0
Philippines 2 0
Portugal 1 0
Tunisia 1 0
City Views Downloads
Hangzhou 57 0
Unknown 21 5
Guangzhou 9 0
Shanghai 6 0
Beijing 4 2
Changchun 4 0
Hebei 4 0
Ürümqi 3 0
Frankfurt am Main 3 0
Dhaka 2 0
Hamilton 2 0
Mapleville 2 0
Ashburn 2 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094600/manifest

Comment

Related Items