Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Uptake, leaching, and storage of micronutrient metals in response to heavy applications of poultry manure Safo, Ebenezer Yeboah 1978

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1978_A1 S24.pdf [ 6.52MB ]
Metadata
JSON: 831-1.0094551.json
JSON-LD: 831-1.0094551-ld.json
RDF/XML (Pretty): 831-1.0094551-rdf.xml
RDF/JSON: 831-1.0094551-rdf.json
Turtle: 831-1.0094551-turtle.txt
N-Triples: 831-1.0094551-rdf-ntriples.txt
Original Record: 831-1.0094551-source.json
Full Text
831-1.0094551-fulltext.txt
Citation
831-1.0094551.ris

Full Text

UPTAKE, LEACHING, AND STORAGE OF MICRONUTRIENT METALS IN RESPONSE TO HEAVY APPLICATIONS OF POULTRY MANURE by . EBENEZER YEBOAH SAFO B . S c , U n i v e r s i t y of Science and Technology, Kumasi, Ghana, 1967 M.Sc, U n i v e r s i t y of B r i t i s h Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Dept. of S o i l Science) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard. THE UNIVERSITY OF BRITISH COLUMBIA J u l y , 1978 0 Ebenezer Yeboah Safo, 1978 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head of my Department o r by h i s r e p r e s e n t a t i v e . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f S o i l S c i e n c e The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 ABSTRACT The p a r t i t i o n i n g among p l a n t u p t a k e , l e a c h i n g f r o m and s t o r a g e i n s o i l o f m i c r o n u t r i e n t m e t a l s f o l l o w i n g heavy a p p l i c a t i o n s o f p o u l t r y manure was s t u d i e d i n t h r e e greenhouse e x p e r i m e n t s . F o l l o w i n g t h e s e e x p e r i m e n t s , t h e s t u d y examined t h e e f f e c t o f manure a p p l i c a t i o n on c o n t e n t and c o m p o s i t i o n of s o i l o r g a n i c m a t t e r and a l s o t h e d i s t r i b u t i o n o f m e t a l s i n t h e o r g a n i c f r a c t i o n s . P o u l t r y manure was s u r f a c e - a p p l i e d t o G r i g g and Monroe s i l t loam s o i l columns a t r a t e s o f 0, 20 and 40 t / h a i n each ••; of t h e f i r s t two e x p e r i m e n t s , whereas t h e t h i r d t e s t e d t h e r e s i d u a l e f f e c t of t h e manure a p p l i c a t i o n s . T r eatments were r e p l i c a t e d f o u r t i m e s and c o m p l e t e l y randomized. The s o i l columns were p l a n t e d t o c o r n (Zea mays L.) and l e a c h e d d a i l y w i t h d e m i n e r a l i z e d w a t e r a t an a v e r a g e r a t e of 1.0 cm/day f o r 30-40 days. F o l l o w i n g l e a c h i n g and h a r v e s t o f t h e c o r n , t h e s o i l columns were sampled i n two s e c t i o n s f o r c h e m i c a l a n a l y s i s . M e t a l s i n t h e s o i l s , l e a c h a t e s and c o r n t i s s u e were d e t e r m i n e d by a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y . Manure a p p l i c a t i o n s i g n i f i c a n t l y (P < 0.01) i n f l u e n c e d c o r n y i e l d i n E x p e r i m e n t s I and I I . The 20 t / h a r a t e i n c r e a s e d y i e l d more t h a n t h e 40 t / h a t r e a t m e n t . Y i e l d i n c r e a s e s o v e r t h e check t r e a t m e n t i n E x p e r i m e n t I were about 400% and 300% from t h e 20 and 40 t / h a t r e a t m e n t s r e s p e c t i v e l y . I n E x p e r i m e n t I I , y i e l d r e s p o n s e was s i g n i f i c a n t l y c u r v i l i n e a r (P < 0.01), w i t h t h e 20t r a t e g i v i n g t h e h i g h e s t y i e l d . The p o s s i b i l i t y o f NH Q t o x i c i t y and e x c e s s i i i i i s o l u b l e s a l t i n j u r y r e s u l t i n g f r o m t h e 40 t / h a r a t e was s u g g e s t e d . I n E x p e r i m e n t I I I y i e l d i n c r e a s e s o v e r t h e check t r e a t m e n t were about 300% and 500% f r o m t h e 20 and 40 t / h a p r e v i o u s r a t e s r e s p e c t i v e l y . The s t u d y f o u n d no e v i d e n c e f o r s i g n i f i c a n t u p t a k e o r l e a c h i n g o f t h e t o x i c heavy m e t a l s (Cd, C r , o r P b ) , s u c h as i s u s u a l l y e n c o u n t e r e d w i t h sewage s l u d g e a p p l i c a t i o n . I n E x p e r i m e n t s I and I I , t o t a l u p t a k e o f Mn, Fe, Zn, and Cu i n c r e a s e d w i t h t h e a p p l i c a t i o n of 20 t / h a and t h e n d e c r e a s e d w i t h t h e 40 t r a t e . I n E x p e r i m e n t I I I , p r e v i o u s manure a p p l i c a t i o n s l e d t o i n c r e a s e s i n u p t a k e o f t h e s e m e t a l s . The c o n c e n t r a t i o n o f t h e s e m e t a l s i n c o r n t i s s u e d e c r e a s e d w i t h t h e a p p l i c a t i o n o f 20 t / h a and t h e n i n c r e a s e d w i t h t h e 40 t r a t e i n E x p e r i m e n t I . However, I n b o t h E x p e r i m e n t s I I and I I I t h e t i s s u e m e t a l c o n c e n t r a t i o n d e c r e a s e d w i t h manure a p p l i c a t i o n . These e f f e c t s were a t t r i b u t e d l a r g e l y t o changes i n y i e l d . However, i n no c a s e d i d changes i n c o n c e n t r a t i o n o f m e t a l s e x c e e d s u g g e s t e d t o l e r a n c e l i m i t s . These r e s u l t s s u g g e s t e d " t h a t r e l a t i v e l y h i g h r a t e s of p o u l t r y manure may be a p p l i e d t o t h e s o i l w i t h o u t a p p r e c i a b l e danger o f d e v e l o p i n g c o n d i t i o n s o f m i c r o n u t r i e n t m e t a l t o x i c i t i e s . H i g h manure r a t e s l e d t o i n c r e a s e d l e a c h i n g l o s s e s o f K and Na. However, l e a c h i n g l o s s e s o f Mn, F e , Zn, and Cu d e c r e a s e d w i t h t h e a p p l i c a t i o n o f 20 t / h a and t h e n i n c r e a s e d w i t h t h e 40 t r a t e . i y . . Assuming i n d e p e n d e n t c o n t r i b u t i o n s o f m e t a l s f r o m v a r i o u s p o t e n t i a l s o u r c e s , r a t i o s o f u p t a k e and l e a c h i n g l o s s e s t o t h e i n p u t s o u r c e s were examined. B o t h u p t a k e and l e a c h i n g l o s s e s o f m e t a l s were s m a l l i n magnitude i n c o m p a r i s o n w i t h i n i t i a l s o i l t o t a l l e v e l s and manure i n p u t . D e s p i t e t h e v a r i e d p a t t e r n s o f u p t a k e and l e a c h i n g l o s s e s o f m e t a l s i n r e s p o n s e t o t h e manure a p p l i c a t i o n , t h e i r s t o r a g e i n s o i l i n c r e a s e d w i t h r a t e s o f a p p l i c a t i o n . There was no c o n s i s t e n t p a t t e r n i n t h e d i s t r i b u t i o n o f m e t a l s i n t h e top and l o w e r h a l v e s o f t h e s o i l columns a f t e r E x p e r i m e n t s I and I I . E x a m i n a t i o n o f t h e d i s t r i b u t i o n of o r g a n i c f r a c t i o n s and a s s o c i a t e d m e t a l s f o l l o w i n g t h e greenhouse e x p e r i m e n t s i n d i c a t e d t h a t s o i l o r g a n i c m a t t e r c o n t e n t i n c r e a s e d w i t h manure a p p l i c a t i o n . The humic a c i d f r a c t i o n made up 69 t o 75% and t h e f u l v i c f r a c t i o n 25 t o 31% o f t h e s o i l e x t r a c t a b l e o r g a n i c m a t t e r . D e s p i t e s u c h a h i g h p r o p o r t i o n o f o r g a n i c m a t t e r i n t h e humic f r a c t i o n , t h e d a t a i n d i c a t e t h a t a g r e a t e r p r o p o r t i o n o f m e t a l s i n t h e o r g a n i c f r a c t i o n was a s s o c i a t e d w i t h t h e f u l v i c f r a c t i o n . TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS : v LIST OF FIGURES : i x LIST OF TABLES x i ACKNOWLEDGEMENT . x i v I . INTRODUCTION 1 I I . LITERATURE REVIEW 4 1. The S o i l - P l a n t Complex 4 1.1 S o u r c e s o f M e t a l s i n S o i l 4 1.2 G e n e r a l C h e m i s t r y and D i s t r i b u t i o n o f Cu, Zn, F e , and Mn 5 1.3 R e a c t i o n s o f M e t a l s w i t h O r g a n i c M a t t e r 7 1.4 E n v i r o n m e n t a l C y c l i n g o f M e t a l s . . 11 1.5- Uptake o f M e t a l s by P l a n t s 15 1.6 Measurement o f M e t a l A v a i l a b i l i t y i n S o i l s . . . . 15 1.7 G e n e r a l A s p e c t s o f M e t a l T o l e r a n c e i n P l a n t s . . . 19 1.8 I n t e r a c t i o n s o f M i c r o n u t r i e n t s i n P l a n t s 20 2. L e a c h i n g o f M e t a l s 21 3. The Use of A n i m a l Wastes 23 I I I . MATERIALS AND METHODS 26 1. S o i l Samples 26 2. P o u l t r y Manure 26 3. P r e p a r a t i o n o f Columns 26 4. Greenhouse E x p e r i m e n t s 28 5. C h e m i c a l A n a l y s i s 31 5.1 S o i l and L e a c h a t e pH . . . 31 5.2 E l e c t r i c a l C o n d u c t i v i t y 31 5.3 E x t r a c t i o n Methods f o r M e t a l s 31 5.4 D e t e r m i n a t i o n o f M e t a l s i n E x t r a c t s and L e a c h a t e s . 32 v v i Page i 6. M e t a l - O r g a n i c M a t t e r Study w i t h E x p e r i m e n t a l Samples 32 6.1 F r a c t i o n a t i o n and E l e m e n t a l A n a l y s i s o f O r g a n i c , Humic and F u l v i c A c i d S e p a r a t e s 32 6.1.1 P r e p a r a t i o n o f O r g a n i c E x t r a c t s 34 6.1.2 S e p a r a t i o n o f O r g a n i c E x t r a c t s i n t o F u l v i c and Humic F r a c t i o n s 34 6.1.3 D i g e s t i o n o f O r g a n i c , Humic and F u l v i c A c i d E x t r a c t s 35 6.2 E l e m e n t a l A n a l y s i s o f A c i d E x t r a c t s and D i g e s t e d O r g a n i c Components 36 6.3 O r g a n i c M a t t e r D e t e r m i n a t i o n s of A c i d , O r g a n i c , Humic A c i d and F u l v i c A c i d E x t r a c t s , and T o t a l S o i l 36 7. S t a t i s t i c a l A n a l y s i s 37 IV. RESULTS AND DISCUSSION 38 1. Dry M a t t e r P r o d u c t i o n 38 2. C o n c e n t r a t i o n o f M e t a l s i n Corn Tops i n Response t o Manure A p p l i c a t i o n 42 3. T o t a l Uptake of M e t a l s by Corn S e e d l i n g s (Tops o n l y ) . . 46 4. L e a c h i n g L o s s e s o f M e t a l s 56 5. R a t i o s o f M e t a l Uptake and L e a c h i n g L o s s e s t o M e t a l I n p u t s ( O r i g i n a l S o i l T o t a l , S o i l 0.005 M DTPA E x t r a c t a b l e , S o i l 0.1 N HC1 E x t r a c t a b l e and Manure) . 64 6. E l e c t r i c a l C o n d u c t i v i t y and pH o f L e a c h a t e s 66 7. 0.005 M DTPA and 0.1 N HC1 E x t r a c t a b l e M e t a l s i n t h e S o i l s a t t h e end o f E x p e r i m e n t s I and I I 72 8. C o n t e n t and C o m p o s i t i o n of S o i l O r g a n i c M a t t e r F o l l o w i n g Heavy A p p l i c a t i o n s o f P o u l t r y Manure. . . . 77 v i i Page 8.1 D i s t r i b u t i o n o f M e t a l s i n t h e O r g a n i c F r a c t i o n s o f t h e E x p e r i m e n t a l M a t e r i a l s 80 8.2 M e t a l : O r g a n i c M a t t e r R a t i o s A s s o c i a t e d w i t h t h e Humic A c i d and F u l v i c A c i d Components 90 V. SUMMARY AND CONCLUSIONS 97 V I . LITERATURE CITED 103 APPENDICES ' 119 A p p e n d i x A.1 Dry M a t t e r P r o d u c t i o n o f Corn S e e d l i n g s (Tops) i n E x p e r i m e n t s I , I I , and I I I 119 2 Dry M a t t e r P r o d u c t i o n o f Corn S e e d l i n g s ( R o o t s ) i n E x p e r i m e n t s I , I I and I I I 120 A p p e n d i x B . l Sources o f Mn and i t s P a r t i t i o n between U p t a k e , L e a c h i n g and S t o r a g e i n E x p e r i m e n t s I , I I and I I I 121 : . .-2 Sources o f Fe and i t s P a r t i t i o n between U p t a k e , L e a c h i n g , and S t o r a g e i n E x p e r i m e n t s I , I I , and I I I 122 3 Source o f Zn and i t s P a r t i t i o n between U p t a k e , L e a c h i n g , and S t o r a g e i n E x p e r i m e n t s I , I I , and I I I 123 4 So u r c e s o f Cu and i t s P a r t i t i o n between U p t a k e , L e a c h i n g , and S t o r a g e i n E x p e r i m e n t s I , I I , and I I I . 124 -.5 Sources o f K and i t s P a r t i t i o n between U p t a k e , L e a c h i n g , and S t o r a g e i n E x p e r i m e n t s I , I I , and I I I 125 : 6 Sources o f Na and i t s P a r t i t i o n between U p t a k e , L e a c h i n g , and S t o r a g e i n E x p e r i m e n t s I , I I , and I I I . 126 A p p e n d i x C . l R a t i o s o f M e t a l Uptake t o Manure I n p u t ( x l O O ) . 127 2 R a t i o s of L e a c h i n g L o s s e s o f M e t a l s t o Manure I n p u t (xlOO) 128 v i i i Page A p p e n d i x C.3 R a t i o s o f M e t a l Uptake t o S o i l 0.005 M DTP A e x t r a c t a b l e f o r m (xlOO) 129 4 R a t i o s o f M e t a l U p t a k e . t o S o i l 0.1 N H C l E x t r a c t a b l e f o r m (xlOO) 130 5 R a t i o s o f L e a c h i n g L o s s e s o f M e t a l s t o S o i l 0.005 M DTPA E x t r a c t a b l e f o r m (xlOO) 131 6 R a t i o s o f L e a c h i n g L o s s e s o f M e t a l s t o S o i l 0.1 N H C l E x t r a c t a b l e Form (xlOO) 132 Ap p e n d i x D E l e c t r i c a l C o n d u c t i v i t y Measurements o f S o i l L e a c h a t e s (mmhos/cm) 133 Ap p e n d i x E pH o f S o i l L e a c h a t e s 134 Ap p e n d i x F . l T o t a l Mn and Fe C o n c e n t r a t i o n s i n S o i l s a t t h e End o f E x p e r i m e n t s I and I I 135 2 T o t a l Zn and Cu C o n c e n t r a t i o n s i n S o i l s a t t h e End o f E x p e r i m e n t s I and I I 136 Ap p e n d i x G Co, C r , and N i C o n c e n t r a t i o n s i n t h e E x p e r i m e n t a l M a t e r i a l s 137 LIST OF FIGURES F i g u r e Page 1. S c h e m a t i c Diagram o f O r g a n i c M a t t e r R e a c t i o n s I n v o l v i n g M i c r o n u t r i e n t s i n S o i l s . A dapted f r o m Hodgson (1963) 13 2. Diagram o f Complete Column 27 3. G e n e r a l Set-up o f E x p e r i m e n t i n t h e Greenhouse. . . . 29 4. F l o w Diagram Showing t h e F r a c t i o n a t i o n o f O r g a n i c Components and D i g e s t i o n f o r E l e m e n t a l A n a l y s i s . . 33 5A. Mn Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . . . . 49 5B. Fe Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . . . . 50 5C. Zn Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . . . . 51 5D. Cu Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . . . . 52 5E. K Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . . . . 53 5F. Na Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . . . . 54 6A. L e a c h i n g L o s s e s o f Mn f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I 57 6B. L e a c h i n g L o s s e s o f Fe f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . 58 i x X F i g u r e Page 6C. L e a c h i n g L o s s e s o f Zn f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I 59 6D. L e a c h i n g L o s s e s o f Cu from Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I 60 6E. L e a c h i n g L o s s e s o f K f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I 61 6F. L e a c h i n g L o s s e s o f Na f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I 62 7A. E l e c t r i c a l C o n d u c t i v i t y o f S o i l L e a c h a t e s and Treatment L e v e l s ( 0 , 20, 40 t / h a ) i n E x p e r i m e n t I . 67 7B. E l e c t r i c a l C o n d u c t i v i t y o f S o i l L e a c h a t e s and Treatment L e v e l s ( 0 , 20, 40 t/ha) i n E x p e r i m e n t I I 68 7C. E l e c t r i c a l C o n d u c t i v i t y o f S o i l L e a c h a t e s i n P r e v i o u s Treatment L e v e l s ( 0 , 20, 40 t / h a ) i n E x p e r i m e n t I I I 69 8. pH o f L e a c h a t e s and Treatment L e v e l s ( 0 , 20, 40 t / h a ) i n E x p e r i m e n t s I , I I , and I I I 70 LIST OF TABLES T a b l e Page 1. Some C h e m i c a l C h a r a c t e r i s t i c s o f P o u l t r y Manure and t h e S o i l s used i n t h e Study 39 2. Dry M a t t e r P r o d u c t i o n o f Corn S e e d l i n g s 40 3A. C o n c e n t r a t i o n o f Mn, F e , and Zn i n Corn Tops . . . . 43 3B. C o n c e n t r a t i o n o f Cu, Na, and K i n Corn Tops 44 4A. C o r r e l a t i o n C o e f f i c i e n t s ( r ) R e l a t i n g R a t e o f Manure A p p l i c a t i o n , Weight o f Corn Tops and Ro o t s t o C o n c e n t r a t i o n o f M e t a l s i n Tops, R o o t s , and L e a c h a t e s ( E x p e r i m e n t I ) 47 4B. C o r r e l a t i o n C o e f f i c i e n t s ( r ) R e l a t i n g R ate o f Manure A p p l i c a t i o n , Weight o f Corn Tops, and R o o t s t o C o n c e n t r a t i o n o f M e t a l s i n Tops, R o o t s , and L e a c h a t e s ( E x p e r i m e n t I I ) 48 5A. 0.005 M DTPA and 0.1 N H C l E x t r a c t a b l e Manganese C o n t e n t i n S o i l s a t the End o f E x p e r i m e n t s I and I I 73 5B. 0.005 M DTPA and 0.1 N H C l E x t r a c t a b l e I r o n C o n t e n t i n S o i l s a t t h e End o f E x p e r i m e n t s I and I I . . . . 74 5C. 0.005 M DTPA and 0.1 N H C l E x t r a c t a b l e Z i n c C o n t e n t i n S o i l s a t t h e End o f E x p e r i m e n t s I and I I . . . . 75 5D. 0.005 M DTPA and 0.1 N H C l E x t r a c t a b l e Copper C o n t e n t i n S o i l s a t the End o f E x p e r i m e n t s I and I I 76 x i x i i T a b l e Page 6A. D i s t r i b u t i o n o f O r g a n i c M a t t e r i n P o u l t r y Manure, G r i g g S o i l and Monroe S o i l ( A i r D r i e d S amples). . . 78. 6B. O r g a n i c M a t t e r C o n t e n t and D i s t r i b u t i o n i n G r i g g and Monroe S o i l s a t the End o f Ex p e r i m e n t I I I ( A i r D r i e d , S o i l ) . 79 7. D i s t r i b u t i o n o f O r g a n i c M a t t e r i n t h e Humic and F u l v i c F r a c t i o n s C a l c u l a t e d as P e r c e n t T o t a l O r g a n i c M a t t e r i n t h e O r g a n i c E x t r a c t o f G r i g g and Monroe S o i l s a t t h e End of E x p e r i m e n t I I I . . . 81 8A. D i s t r i b u t i o n o f M e t a l s i n O r g a n i c E x t r a c t , Humic and F u l v i c A c i d s , Humin R e s i d u e and A c i d E x t r a c t o f the P o u l t r y Manure, G r i g g and Monroe S o i l s 82 8B. D i s t r i b u t i o n o f M e t a l s i n O r g a n i c E x t r a c t , Humic and F l u v i c A c i d s , Humin R e s i d u e and A c i d E x t r a c t o f t h e G r i g g S o i l a t t h e End o f Ex p e r i m e n t I I I 83 8C. D i s t r i b u t i o n o f M e t a l s i n O r g a n i c E x t r a c t , Humic and F u l v i c A c i d s , Humin R e s i d u e and A c i d E x t r a c t o f t h e Monroe S o i l a t t h e End o f Ex p e r i m e n t I I I 84 9A. D i s t r i b u t i o n o f M e t a l s i n E x p e r i m e n t a l M a t e r i a l s (Manure, G r i g g and Monroe S o i l s ) C a l c u l a t e d as P e r c e n t T o t a l ( A i r D r i e d b a s i s ) 86 9B. D i s t r i b u t i o n o f M e t a l s i n G r i g g S o i l a t the End o f Ex p e r i m e n t I I I C a l c u l a t e d as P e r c e n t T o t a l M e t a l ( A i r D r i e d S o i l ) 87 x i i i T a b l e Page 9C. D i s t r i b u t i o n o f M e t a l s i n Monroe S o i l a t t h e End o f E x p e r i m e n t I I I C a l c u l a t e d as P e r c e n t T o t a l M e t a l ( A i r D r i e d S o i l ) 88 10A. D i s t r i b u t i o n o f M e t a l s i n t h e Humic and F u l v i c F r a c t i o n s C a l c u l a t e d as P e r c e n t T o t a l M e t a l s i n t h e O r g a n i c E x t r a c t o f E x p e r i m e n t a l M a t e r i a l s (Manure, G r i g g , and Monroe S o i l s ) 91 10B. D i s t r i b u t i o n o f M e t a l s i n t h e Humic and F u l v i c F r a c t i o n s C a l c u l a t e d as P e r c e n t T o t a l M e t a l s i n t h e O r g a n i c E x t r a c t o f G r i g g S o i l a t t h e End o f E x p e r i m e n t I I I 92 IOC. D i s t r i b u t i o n o f M e t a l s i n t h e Humic and F u l v i c F r a c t i o n s C a l c u l a t e d as P e r c e n t T o t a l M e t a l s i n t h e O r g a n i c E x t r a c t o f Monroe S o i l a t t h e End o f E x p e r i m e n t I I I 93 I I A . M e t a l : O r g a n i c M a t t e r R a t i o s i n t h e Humic and F u l v i c F r a c t i o n s o f t h e E x p e r i m e n t a l M a t e r i a l s (Manure, G r i g g , and Monroe S o i l s ) 94 I I B . M e t a l : O r g a n i c M a t t e r R a t i o s i n t h e Humic and F u l v i c F r a c t i o n s o f G r i g g S o i l a t t h e End o f E x p e r i m e n t I I I 95 I I C . M e t a l : O r g a n i c M a t t e r R a t i o s i n t h e Humic and F u l v i c F r a c t i o n s o f Monroe S o i l a t t h e End o f E x p e r i m e n t I I I 96 ACKNOWLEDGEMENTS The a u t h o r i s e x t r e m e l y g r a t e f u l t o Dr. L. E. Lowe' under whose s u p e r v i s i o n t h e p r o j e c t and t h e s i s p r e p a r a t i o n was c a r r i e d o u t . H i s encouragement and c o - o p e r a t i o n a r e g r e a t l y a p p r e c i a t e d . Thanks a r e a l s o due t o Dr. G. W. E a t o n , Department o f P l a n t S c i e n c e , f o r h i s v a l u a b l e a d v i c e i n s t a t i s t i c a l a n a l y s i s , and a l s o t o t h e o t h e r members o f t h e t h e s i s committee, Dr. C. A. R o wles, Dr. T. M. B a l l a r d , and Dr. A. A. Bomke. A p p r e c i a t i o n i s a l s o e x p r e s s e d f o r t h e t e c h n i c a l a d v i c e o f M e s s r s . B. von S p i n d l e r and W. Cheang a t some s t a g e s o f t h e p r o j e c t . F i n a n c i a l s u p p o r t f r o m b o t h t h e Government o f Canada ( t h r o u g h a C.I.D.A. programme) and t h e U n i v e r s i t y o f S c i e n c e and T e c h n o l o g y , Kumasi, Ghana a r e g r a t e f u l l y acknowledged. x i v . I. INTRODUCTION D u r i n g t h e p a s t decade c o n s i d e r a b l e c o n c e r n has been e x p r e s s e d by e n v i r o n m e n t a l s c i e n t i s t s o v e r t h e i n c r e a s i n g l e v e l s o f a range o f t o x i c e l e m e n t s i n t h e e n v i r o n m e n t . The te r m " t r a c e e l e m e n t " has been l o o s e l y used i n t h e l i t e r a t u r e f o r t h e s e e l e m e n t s w h i c h o c c u r i n n a t u r a l systems i n s m a l l c o n c e n t r a t i o n s . Among t h e most h a z a r d o u s a r e t h e s o - c a l l e d "heavy m e t a l s " , a te r m u s u a l l y r e s t r i c t e d t o t h o s e m e t a l s w h i c h have d e n s i t i e s g r e a t e r t h a n 5.0 g/ml. Other terms w h i c h have been used, and w h i c h f o r many p r a c t i c a l p u r p o s e s have been c o n s i d e r e d synonymous w i t h t h e terms " t r a c e e l e m e n t s " and "heavy m e t a l s " a r e " t r a c e m e t a l s " , " t r a c e i n o r g a n i c s " , " m i c r o e l e m e n t s " , and " m i c r o n u t r i e n t s " . However, use of t h e te r m " m i c r o n u t r i e n t " has u s u a l l y been r e s t r i c t e d t o t h o s e t r a c e e l e m e n t s known t o be e s s e n t i a l i n s m a l l amounts f o r t h e growth o f h i g h e r p l a n t s , e.g. Cu, Zn, Mo, B, Mn, and Fe. A number o f m i c r o n u t r i e n t m e t a l s c y c l e f r o m g e o c h e m i c a l r e s e r v e s t h r o u g h p l a n t s , a n i m a l s , and man and t h e n r e t u r n t o t h e r e s e r v e s . The s o i l - p l a n t s y s t e m e x e r t s an e f f e c t i v e b u f f e r i n g a c t i o n on such an e n v i r o n m e n t a l c y c l i n g o f some o f t h e s e m e t a l s . I t i s a w e l l known f a c t t h a t t h e t o t a l amount o f many o f t h e m e t a l s p r e s e n t i n t h e s o i l w i t h i n t h e p l a n t r o o t i n g zone i s g r e a t l y i n e x c e s s o f t h e a n n u a l uptake by p l a n t s ( A l l a w a y , 1968). Low c o n c e n t r a t i o n s , p a r t i c u l a r l y i n l i v i n g t i s s u e s , must o f t e n be m a i n t a i n e d w i t h i n n a rrow l i m i t s i n o r d e r t o p e r m i t optimum b i o l o g i c a l p e r f o r m a n c e o f c r o p p l a n t s . 1 2 Among the s e v e r a l mechanisms by which metals are introduced i n t o the environment, the use of animal wastes ( p a r t i c u l a r l y p o u l t r y manure) as f e r t i l i z e r has r e c e i v e d l i m i t e d a t t e n t i o n . There are numerous references to data r e l a t i v e to the f e r t i l i z e r value of p o u l t r y manure (Bandel et al., 1975; Hileman, 1967 and 1972; S i e g e l et at., 1975). However, most s t u d i e s on p o u l t r y manure as a f e r t i l i z e r have been concerned w i t h the major n u t r i e n t s , although i t s composition suggests that t h i s m a t e r i a l i s a l i k e l y source of some tr a c e metals. L i t t l e work has been d i r e c t e d toward the e f f e c t s of p o u l t r y manure a d d i t i o n s on s o i l chemistry and s o i l water i n general and more s p e c i f i c a l l y i t s p o s s i b l e m o d i f i c a t i o n of the organic component i n r e l a t i o n to the s o l u b i l i t y and m o b i l i t y of metals. In order to minimize the t h r e a t of s o i l and ground water p o l l u t i o n , a c c u r a t e l y p r e d i c t i n g the movement and c y c l i n g of metal contaminants i s imperative. In view of the importance of the s o i l - p l a n t system to the o v e r a l l c o n t r o l of environmental c y c l i n g of t r a c e elements, i n f o r m a t i o n r e l a t i n g to both r a t e and hence the absolute q u a n t i t y of these metals deposited w i t h i n such a system i s necessary. Such i n f o r m a t i o n can be gathered f a s t e r through c o n t r o l l e d environment s t u d i e s w i t h subsequent f i e l d v e r i f i c a t i o n . The o b j e c t i v e s of t h i s greenhouse study were: i v To examine the p a r t i t i o n between uptake, l e a c h i n g and storage of some metals i n response to heavy a p p l i c a t i o n s of p o u l t r y manure, i i . To examine the e f f e c t s of such manure a p p l i c a t i o n on some chemical p r o p e r t i e s of the leachates. 3 i i i . To examine the e f f e c t of manure a p p l i c a t i o n on content and composition of organic matter and a l s o the d i s t r i b u t i o n of metals i n the organic f r a c t i o n s . II. LITERATURE REVIEW 1. The Soil - Plant Complex 1. 1 Sources of Metals in Soil Several extensive reviews have been published r e c e n t l y concerning the occurrence, d i s t r i b u t i o n , and chemistry of t r a c e elements i n s o i l s and p l a n t s , however, most of these reviews have g e n e r a l l y considered s o i l - b o r n e metals from a t r a c e q u a n t i t y p e r s p e c t i v e (Allaway, 1968; Antonovics et al., 1971; and L i s k , 1972). According to L i s k (1972) metals i n s o i l s i n c l u d e those from the f o l l o w i n g sources: a) metals contained o r i g i n a l l y i n rocks and minerals from which the s o i l was formed; b) metals added as i m p u r i t i e s i n f e r t i l i z e r s and lime, as c o n s t i t u e n t s of p e s t i c i d e s and manure or as contaminants i n sewage sludge; c) metals as atmospheric inputs i n d e b r i s from i n d u s t r i a l and mining wastes, f o s s i l f u e l combustion products, wind-eroded s o i l p a r t i c l e s , atomic t e s t i n g , p o l l e n , sea spray, and meteoric and v o l c a n i c m a t e r i a l which i s brought down i n p r e c i p i t a t i o n ; d) metals d i s s o l v e d or suspended i n s o i l water. Several a r t i c l e s have considered problems w i t h metals a p p l i e d i n sludge (Leeper, 1972; LeRiche, 1968; Lindsay, 1973; Page, 1974). However, s p e c i f i c conclusions on sludge metal i n p u t s , s o l u b i l i t i e s and crop responses u s u a l l y cannot be reached because of l a c k of i n f o r m a t i o n . 4 5 1.2 General Chemistry and D i s t r i b u t i o n of Cu, Zn, Fe and Mn . The l i t e r a t u r e ( F o l l e t t and L i n d s a y , 1970; L e e p e r , 1972) s u g g e s t s t h a t t h e t o t a l Cu c o n t e n t o f m i n e r a l s o i l s v a r i e s from 1 t o 100 ppm, w h i l e t h e a v a i l a b l e Cu ranges from 0.1 t o 10 ppm. Much o f t h e v a r i a t i o n i n r e p o r t e d v a l u e s f o r a v a i l a b l e Cu may be a t t r i b u t e d t o extreme v a r i a t i o n s among s o i l t y p e s and a l s o t o t h e many e x t r a c t i o n t e c h n i q u e s used f o r i t s measurement. The l e v e l o f Cu i n t h e s o i l i s f u r t h e r c o m p l i c a t e d by t h e f a c t t h a t Cu f u n g i c i d e s , Cu a d d i t i o n s t o f e r t i l i z e r s and Cu f e e d s upplements have been u s e d i n a g r i c u l t u r e f o r a l o n g t i m e . The t o t a l Zn c o n t e n t o f s o i l s a c c o r d i n g t o r a t h e r e x t e n s i v e s u r v e y s ( J e n s e n and Lamm, 1961; Swaine, 1955) i s g e n e r a l l y i n t h e range o f 10-300 ppm. The c h e m i s t r y o f Zn i n s o i l s i s s i m p l e r t h a n t h a t o f many o t h e r heavy m e t a l s because i t shows o n l y t h e s i n g l e 2+ v a l e n c e s t a t e o f Zn i n n a t u r a l e n v i r o n m e n t s ( L i n d s a y , 1972). 2+ Jenne (1968) p r o p o s e d t h a t Zn , a l o n g w i t h s e v e r a l o t h e r heavy m e t a l i o n s , may be o c c l u d e d and c o p r e c i p i t a t e d w i t h h y d r o u s o x i d e s o f Mn and F e , and t h a t t h e s e o x i d e s form t h e p r i n c i p a l m a t r i x i n w h i c h t h e l e s s abundant heavy m e t a l s a r e h e l d . The c h e m i s t r y o f Cu and Zn appears t o be r e g u l a t e d l a r g e l y by r e a c t i o n s w i t h m i n e r a l and o r g a n i c s u r f a c e s . Numerous s t u d i e s have d e m o n s t r a t e d a h i g h c o r r e l a t i o n between o r g a n i c m a t t e r and c h e m i c a l l y e x t r a c t a b l e o r a v a i l a b l e Zn ( F o l l e t t and L i n d s a y , 1970; Ma r t e n s et al., 1966). I n 1936, Jones et al. r e p o r t e d t h a t a p o r t i o n 6 o f t h e Zn added t o s e v e r a l F l o r i d a s o i l s c o u l d n o t be r e c o v e r e d by ammonium a c e t a t e e x t r a c t i o n . H i b b a r d (1940) f o u n d s i m i l a r r e s u l t s i n C a l i f o r n i a s o i l s , a d d i n g t h a t t h e s t r o n g l y bound Zn c o u l d be r e p l a c e d by u s i n g a c i d e x t r a c t a n t s . H i b b a r d ' s work showed t h a t even v e r y sandy s o i l s combined w i t h Zn and Cu i n such a way t h a t t h e m e t a l s c o u l d n o t be removed w i t h n e u t r a l s a l t s o l u t i o n . Fe and Mn e n t e r i n t o many o f t h e same r e a c t i o n s as d e s c r i b e d f o r Zn and Cu. The d i v a l e n t forms o f Fe and Mn a r e l e s s s t r o n g l y h e l d by s o i l s u r f a c e s t h a n Cu and Zn. However.,, t h e p r o p e r t y o f . b e i n g o x i d i z e d t o h i g h e r v a l e n c e s t a t e s , c o u p l e d w i t h pH i n t e r a c t i o n , w h i c h l e a d s . t o t h e f o r m a t i o n o f v e r y i n s o l u b l e o x i d e s and p h o s p h a t e s , r e n d e r s t h e s e elements much l e s s a v a i l a b l e t o p r o c e s s e s o f l e a c h i n g . I t i s t h i s p r o p e r t y t h a t e x p l a i n s t h e i r c o n c e n t r a t i o n d u r i n g t h e f o r m a t i o n o f s o i l s f r o m r o c k s o f t h e e a r t h ' s c r u s t (Hodgson, 1963). Fe and Mn under c o n d i t i o n s o f s a t i s f a c t o r y a e r a t i o n a r e bound i n most s o i l s p r i n c i p a l l y as p r e c i p i t a t e s o f o x i d e s and p h o s p h a t e s . I t i s t h e way t h e o x i d e s o f t h e s e m e t a l s r e s p o n d t o changes i n pH, o x i d a t i o n p o t e n t i a l , and t h e p r e s e n c e o f s o l u b l e c o m p l e x i n g a g e n t s t h a t f o r t h e most p a r t g o v e r n t h e movement and a v a i l a b i l i t y o f t h e s e e l e m e n t s t o p l a n t s . A knowledge o f Mn o x i d e s i n s o i l s comes as much fr o m t h e use o f e x t r a c t a n t s f o r a v a i l a b i l i t y t e s t s as f r o m s t a n d a r d m i n e r a l o g i c a l a p p r o a c h e s . L e e p e r (1935) i n i t i a l l y c o n s i d e r e d f i v e forms o f Mn. By t h e use of e x t r a c t a n t s , i n c l u d i n g 2% h y d r o q u i n o n e 7 2+ i n n o r m a l ammonium a c e t a t e , ;he s e p a r a t e d Mn and f o u r d e g r e e s o f i n s o l u b l e "manganic o x i d e s " . The ease w i t h w h i c h MnO^ a c c e p t s hydrogen from a v a r i e t y o f r e d u c i n g a g e n t s , i n c l u d i n g m i c r o b i o l o g i c a l s y s t e m s , was d e m o n s t r a t e d by Mann and Q u a s t e l (1946 ) . Of perhaps g r e a t e r s i g n i f i c a n c e i s t h e a t t e n t i o n t h e s e a u t h o r s c a l l t o t h e p r e s e n c e o f t r i v a l e n t Mn i n s o i l s and t h e 3+ 2+ 4+ f a c t t h a t Mn i s known t o d i s m u t a t e s p o n t a n e o u s l y t o Mn and Mn From t h e s e c o n s i d e r a t i o n s , t h e a u t h o r s were l e d t o p o s t u l a t e a Mn c y c l e i n s o i l s i n w h i c h Mn02 i s formed t h r o u g h t h e b i o l o g i c a l 2+ 3+ o x i d a t i o n o f Mn t o Mn w i t h subsequent d i s m u t a t i o n o f t h e l a t t e r , 2+ and i s r e d u c e d d i r e c t l y t o Mn by b i o l o g i c a l r e d u c t i o n . The f a c t t h a t Fe o c c u r s as t h e n a t i v e element and i n two common v a l e n c e s t a t e s makes t h e m e t a l and i t s compounds s e n s i t i v e i n d i c a t o r s o f o x i d a t i o n c o n d i t i o n s i n n a t u r a l e n v i r o n m e n t s ( K r a u s k o f f , 1972). A c c o r d i n g t o L i n d s a y (1972) t h e s o l u b i l i t y o f Fe i n s o i l s i s l a r g e l y c o n t r o l l e d by t h e s o l u b i l i t y o f h y d r o u s Fe ( I I I ) o x i d e s . The t o t a l i n o r g a n i c Ee; ( I I I ) . i n s o l u t i o n v a r i e s w i t h pH and r e a c h e s a minimum i n t h e pH range o f 6.5 t o 8.0. The h y d r o l y s i s s p e c i e s c o n s t i t u t e a m a j o r p a r t o f t h e Fe ( I I I ) i o n s i n s o l u t i o n . Above pH 8 , F e ( 0 H ) 4 i s t h e major i o n . 1. 3 Reactions, of Metals with Organic Matter The r o l e o f o r g a n i c m a t t e r i n t h e r e a c t i o n s o f m i c r o n u t r i e n t s has been s t u d i e d and emphasized by many w o r k e r s (Bremner et al., 1946; Hodgson, 1963; S t e v e n s o n and A r d a k a n i , 1972). Most 8 m i c r o n u t r i e n t s have been shown t o be r e l a t e d t o t h e o r g a n i c m a t t e r d i s t r i b u t i o n i n many s o i l s ( J e n s e n and Lamm, 1961; M i s r a and M i s h r a , 1969). The r e l a t i v e i m p o r t a n c e of o r g a n i c m a t t e r and c l a y m i n e r a l s i n r e t a i n i n g m i c r o n u t r i e n t s a p p l i e d t o s o i l i s unknown. However, numerous s t u d i e s on t h e s u b j e c t , r e v i e w e d by Hodgson (1963), have shown t h a t r e t e n t i o n o f t e n c o r r e l a t e s w e l l w i t h o r g a n i c m a t t e r c o n t e n t . Wei (1959) o b t a i n e d d a t a t h a t i n d i c a t e d t h a t Cu was f i r s t a d s o r b e d by o r g a n i c m a t t e r u n t i l i t s exchange c a p a c i t y was s a t i s f i e d and t h e n by c l a y m i n e r a l s . The o r g a n i c compounds i n s o i l s t h a t f o r m s t a b l e complexes w i t h m e t a l i o n s can be s e p a r a t e d i n t o two main g r o u p s : a) b i o c h e m i c a l s o f t h e t y p e known t o o c c u r i n l i v i n g o r g a n i s m s , and b) a s e r i e s o f complex p o l y m e r s formed by s e c o n d a r y s y n t h e s i s r e a c t i o n s and w h i c h b e a r no r e s e m b l a n c e t o the n a t u r a l p r o d u c t s (Dubach and Mehta, 1963; Kononova, 1966; S t e v e n s o n and B u t l e r , 1969). I n c l u d e d w i t h t h e f i r s t group a r e t h e o r g a n i c a c i d s , p o l y p h e n o l s , amino a c i d s , p e p t i d e s , p r o t e i n s , and p o l y s a c c h a r i d e s . C o l l e c t i v e l y , t h e s e compounds form 10-15% of t h e t o t a l s o i l o r g a n i c m a t t e r (Kononova, 1966). The second group, w h i c h i n d e v e l o p e d s o i l s forms up t o 85-90% o f t h e t o t a l o r g a n i c m a t t e r (Kononova, 1966), i n c l u d e s t h e humic and f u l v i c f r a c t i o n s . S t e v e n s o n and A r d a k a n i (1972) d e s c r i b e d humic and f u l v i c f r a c t i o n s as a s e r i e s o f h i g h l y a c i d i c , y e l l o w - - t o b l a c k - c o l o u r e d , , m o d e r a t e l y h i g h m o l e c u l a r w e i g h t p o l y e l e c t r o l y t e s whose a b i l i t y t o combine w i t h m e t a l s i s due p r i m a r i l y t o t h e i r u n u s u a l l y h i g h d e n s i t y o f a c i d i c f u n c t i o n a l 9 g r o u p s . These f u n c t i o n a l groups i n c l u d e c a r b o x y l s , p h e n o l i c and a l c o h o l i c h y d r o x y l s , and c a r b o n y l s . The humic f r a c t i o n i s t h e m a t e r i a l e x t r a c t e d from s o i l by a l k a l i n e s o l u t i o n s and p r e c i p i t a t e d upon a c i d i f i c a t i o n . The f u l v i c f r a c t i o n i s t h e a l k a l i - s o l u b l e m a t e r i a l t h a t r e m a i n s i n s o l u t i o n on a c i d i f y i n g . The i n t e r a c t i o n s between humic s u b s t a n c e s and m e t a l i o n s have been d e s c r i b e d by M o r t e n s e n (1963) as i o n - e x c h a n g e , s u r f a c e - a d s o r p t i o n , c h e l a t i o n , c o a g u l a t i o n , and p e p t i z a t i o n r e a c t i o n s . The c h e m i s t r y o f t h e p r o d u c t s o f s u c h r e a c t i o n s ( o r g a n o -m e t a l l i c complexes) i n s o i l i s complex and n o t w e l l u n d e r s t o o d , even though i t i s an a r e a o f a c t i v e r e s e a r c h ( B l o o m f i e l d et at., 1976; B u n z l et at., 1976; E l l i s and Knezek, 1972; S c h n i t z e r and Khan, 1972). E v i d e n c e o f complex f o r m a t i o n and c h e l a t i o n by humic s u b s t a n c e s has been based upon t h e i n a b i l i t y o f e x c h a n g e a b l e + 2+ c a t i o n s , s u c h as K and Ba , t o r e p l a c e a d s o r b e d m i c r o n u t r i e n t s , t h e c o r r e l a t i o n between o r g a n i c m a t t e r c o n t e n t and m i c r o n u t r i e n t r e t e n t i o n by s o i l s , t h e a b i l i t y o f n a t u r a l and s y n t h e t i c c h e l a t i n g a g e n t s t o e x t r a c t m e t a l s and o r g a n i c m a t t e r f r o m s o i l s , and t h e s e l e c t i v e r e t e n t i o n o f m e t a l s by humic and f u l v i c a c i d s i n t h e p r e s e n c e o f c a t i o n exchange r e s i n s . These a s p e c t s a r e a d e q u a t e l y d i s c u s s e d by M o r t e n s e n (1963) and Hodgson (1963). From t i t r a t i o n d a t a , a number o f w o r k e r s ( B e c k w i t h , 1959; Khanna and S t e v e n s o n , 1962) r e p o r t e d t h a t m e t a l s o f t h e f i r s t t r a n s i t i o n s e r i e s of t h e p e r i o d i c t a b l e formed complexes w i t h humic 10 s u b s t a n c e s , and t h a t t h e o r d e r o f s t a b i l i t i e s o f t h e d i f f e r e n t m e t a l complexes f o l l o w e d t h a t o f t h e I r v i n g - W i l l i a m s (1948) /T,t2+ „ 2 + >T.2+ ~ 2+ „ 2+ ,2+ 2+ 2+ 2+, s e r x e s (Pb > Cu > N i > Co > Zn > Cd > Fe > Mn > Mg ). S i m i l a r r e s u l t s were o b t a i n e d by Khan (1969) f o r m e t a l complexes o f humic a c i d s e x t r a c t e d f r o m a Chernozem and two Gray Wooded s o i l s . 3+ S c h n i t z e r and Hansen (1970) a l s o f ound t h a t Fe forms t h e most s t a b l e complex w i t h f u l v i c a c i d . They r e p o r t e d t h a t t h e o r d e r o f 3+ 3+ 2+ 2+ 2+ s t a b i l i t i e s a t low pH was Fe >: A l > Cu > N i > Pb 2+ 2+ 2+ 2+ Ca > Zn > Mn > Mg . R e u t h e r et al. (1952) s t u d i e d t h e r e l a t i v e movement o f Cu, Zn and Mn i n c i t r u s " : o r c h a r d s o i l s rand found t h a t t h e y were" i m m o b i l i z e d i n t h e o r d e r g i v e n . The humic and f u l v i c f r a c t i o n s f o r m b o t h s o l u b l e and i n s o l u b l e complexes w i t h p o l y v a l e n t c a t i o n s , d e p e n d i n g upon t h e degree o f s a t u r a t i o n w i t h m e t a l s ( S t e v e n s o n and A r d a k a n i , 1972). Due t o t h e i r h i g h a c i d i t i e s and r e l a t i v e l y l o w m o l e c u l a r w e i g h t s , m e t a l complexes o f t h e f u l v i c f r a c t i o n a r e much more m o b i l e . The m e t a l s i n s o i l , w i t h a n o t a b l e e x c e p t i o n o f t h o s e i n p o d z o l i c B h o r i z o n s , t h a t o c c u r i n i n s o l u b l e c o m b i n a t i o n s w i t h o r g a n i c m a t t e r a r e l a r g e l y t h o s e t h a t a r e bound t o components o f t h e humic f r a c t i o n , p a r t i c u l a r l y humic a c i d s ( S t e v e n s o n and A r d a k a n i , 1972). There i s e v i d e n c e t o i n d i c a t e t h a t m e t a l i o n s i n t h e s o l u t i o n phase o f s o i l o c c u r l a r g e l y as m e t a l - o r g a n i c m a t t e r complexes ( G e e r i n g and Hodgson, 1969: G e e r i n g et al., 1969; Hodgson et al., 1965, 1966). The work o f G e e r i n g and Hodgson (1969) s u g g e s t s t h a t b o t h i n d i v i d u a l 11 b i o c h e m i c a l compounds and f u l v i c a c i d - t y p e c o n s t i t u e n t s a r e i n v o l v e d , w i t h t h e l a t t e r b e i n g t h e more e f f i c i e n t i n c o m p l e x i n g m e t a l s even though t h e y were p r e s e n t i n c o n s i d e r a b l y l o w e r amounts t h a n t h e b i o c h e m i c a l compounds. The i m p o r t a n c e of n a t u r a l c o m p l e x i n g b i o c h e m i c a l s i n t h e t r a n s p o r t o f m i c r o n u t r i e n t s t o p l a n t r o o t s has been emphasized by E l g a w h a r y et al. ( 1 9 7 0 ) . S t e v e n s o n and A r d a k a n i (1972) s u g g e s t e d t h a t s o i l s amended w i t h manures and o t h e r o r g a n i c w a s t e s may be r e l a t i v e l y r i c h i n m e t a l -b i n d i n g b i o c h e m i c a l s . A d d i t i o n of o r g a n i c supplements t o s o i l s , w h i l e commonly i n c r e a s i n g t h e e x t r a c t a b l e form o f an e l e m e n t , may n o t n e c e s s a r i l y i n c r e a s e i t s a v a i l a b i l i t y t o p l a n t s . M i l l e r and O h l r o g g e (1958a,b) o b s e r v e d t h a t w a t e r e x t r a c t s o f manure and o t h e r o r g a n i c r e s i d u e s s o l u b i l i z e d Zn i n s o i l , b u t a t t h e same t i m e r e d u c e d i t s u p t a k e by p l a n t s . They a l s o f o u n d a d e p r e s s i o n of Zn and Fe u p t a k e f r o m n u t r i e n t s o l u t i o n and Cu u p t a k e from s o i l r e s u l t i n g f r o m a d d i t i o n s o f manure e x t r a c t s . P l a n t u p t a k e of Mn was, however, i n c r e a s e d . A c c o r d i n g t o A l l i s o n ( 1 9 7 3 ) , one o f t h e most i m p o r t a n t f u n c t i o n s o f s o i l humus i s i t s a b i l i t y t o h o l d heavy m e t a l s n e c e s s a r y f o r t h e g r o w t h o f c r o p p l a n t s f o r l o n g p e r i o d s o f t i m e and t o r e l e a s e them as needed. 1. 4 Environmental Cycling of Metals I n n a t u r a l e n v i r o n m e n t s a d e l i c a t e b a l a n c e e x i s t s between t h e m e t a l i o n s t h a t o c c u r i n t h e s o i l s o l u t i o n ( f r e e i o n s , s o l u b l e 12 c h e l a t e s ) and i n s o l u b l e m i n e r a l and o r g a n i c forms. The d i f f e r e n t forms a r e summarized i n F i g . 1. Each f o r m i s r e l a t e d d i r e c t l y o r i n d i r e c t l y t o t h e s o i l s o l u t i o n t h r o u g h some e q u i l i b r i u m d i s t r i b u t i o n t h a t i s a f u n c t i o n o f s e v e r a l f a c t o r s , i n c l u d i n g pH, o x i d a t i o n p o t e n t i a l , and s u p p l y and a c t i v i t y o f i n d i v i d u a l s o i l c o n s t i t u e n t s (Hodgson, 1963). I n h i s d i s c u s s i o n o f t r a c e element c y c l i n g , A l l a w a y (1968) i l l u s t r a t e d 12 c o n n e c t e d s o u r c e s o r s i n k s f o r t r a c e e l ements t h a t s e r v e as pathways f o r t h e i r e n v i r o n m e n t a l movement. I n many i n s t a n c e s , t h e r e i s a s t r o n g i n t e r d e p e n d e n c e among t h e d i f f e r e n t r o u t e s o f movement. The e x i s t e n c e o f a l t e r n a t e pathways may c o m p l i c a t e t h e development and use o f c o n t r o l s o v e r t h e s o i l - t o - p l a n t movement o f t r a c e e l e m e n t s . The q u a n t i t y o f m i c r o n u t r i e n t s a v a i l a b l e t o p l a n t s a t any one t i m e i s a f f e c t e d n o t o n l y by t h e p r o d u c t i o n and d e s t r u c t i o n o f c h e l a t i n g s u b s t a n c e s , b u t a l s o by t r a n s f o r m a t i o n s c a r r i e d out by m i c r o o r g a n i s m s . A l e x a n d e r (1962) l i s t s s i x ways t h a t m i c r o o r g a n i s m s may a f f e c t t h e a v a i l a b i l i t y o f n u t r i e n t e l e m e n t s i n t h e s o i l . The f i v e o f t h e s e t h a t a p p l y t o t h e m i c r o n u t r i e n t e l e m e n t s a r e summarized as f o l l o w s : ( i ) t h e r e l e a s e o f i n o r g a n i c i o n s d u r i n g t h e d e c o m p o s i t i o n o f o r g a n i c m a t e r i a l s ; ( i i ) i m m o b i l i z a t i o n o f i o n s by i n c o r p o r a t i o n i n t o m i c r o b i a l t i s s u e ; ( i i i ) o x i d a t i o n o f an e l e m e n t , g e n e r a l l y t o a l e s s a v a i l a b l e form; ( i v ) r e d u c t i o n o f an o x i d i z e d f o r m o f an element under c o n d i t i o n s where oxygen i s l i m i t e d ; (v) i n d i r e c t t r a n s f o r m a t i o n s ; e.g. due t o changes i n pH o r o x i d a t i o n - p o t e n t i a l . 13 Rocks and M i n e r a l s r Ch W e a t h e r i n g MCh ( I n s o l u b l e complexes) Uptake by p l a n t s M ( F r e e i o n i n s o l n . ) ' MCh (Complexed i o n i n S o l n . ) MX ( S o r p t i o n by c l a y s ; i n s o l u b l e p r e c i p t a t e s ) I n c o r p o r a t i o n i n t o m i c r o b i a l t i s s u e FIGURE 1: S c h e m a t i c Diagram of O r g a n i c M a t t e r R e a c t i o n s I n v o l v i n g M i c r o n u t r i e n t s i n S o i l . Adapted from Hodgson (1963) . 14 An e x t e n s i v e r e v i e w o f t h e f a t e o f a p p l i e d m i c r o n u t r i e n t s i n s o i l has been g i v e n by Hodgson (1963) and L e e p e r (1972) . L e e p e r (1972) s t a t e d t h a t an i o n e n t e r i n g t h e s o i l , w hether added as s o l i d o r i n s o l u t i o n , may e i t h e r (A) pass unchanged t h r o u g h t h e s o i l p r o f i l e , o r (B) be h e l d by t h e s o i l i n an i n s o l u b l e f o r m , o r (C) be t a k e n up by a p l a n t g r o w i n g on t h e s o i l , w h i c h may l a t e r be h a r v e s t e d and removed. L e e p e r e x p l a i n e d t h a t an example where p r o c e s s A dominates i s t h e c h l o r i d e i o n , w h i c h does n o t r e m a i n i n t h e s o i l b u t appears i n t h e d r a i n a g e i n even h i g h e r c o n c e n t r a t i o n s because o f e v a p o t r a n s p i r a t i o n f r o m t h e c r o p . An example where B dominates b u t C a l s o i s i m p o r t a n t i s p h o s p h a t e , w h i c h i n many s o i l s when a p p l i e d as top d r e s s i n g a c c u m u l a t e s w i t h i n about 4 cm o f t h e s u r f a c e , b u t w h i c h may s t i l l be s u f f i c i e n t l y a v a i l a b l e t o p r o v i d e a l l t h e need o f a c r o p . W i t h heavy m e t a l s , what dominates i s B, h o l d i n g by s o i l , though the r e m o v a l by h a r v e s t i n g , C w i l l sometimes be s u b s t a n t i a l . L e e p e r p o s t u l a t e d t h a t any added c a t i o n s i n t h e i n c o m i n g s o l u t i o n e n t e r i n t o c o m p e t i t i o n + + w i t h t h o s e a l r e a d y i n o c c u p a t i o n , and i f M i s t h e added i o n and A t h a t o r i g i n a l l y p r e s e n t t h e r e a c t i o n M + + AX A + + MX ( s o l u t i o n ) ( s o l i d ) ( s o l u t i o n ) ( s o l i d ) w i l l go f o r w a r d t o an e x t e n t d e p e n d i n g on t h e n a t u r e o f M +, A + , and X , and t h e c o n c e n t r a t i o n s o f M + and A + , but some M + w i l l s t a y b e h i n d a t each s i t e , so t h a t i t w i l l be p r o g r e s s i v e l y f i l t e r e d o ut as t h e w a t e r seeps t h r o u g h t h e s o i l . 15 An i n t e r e s t i n g e c o l o g i c a l r e l a t i o n s h i p has been described by Fraser (1961), who concluded t h a t the accumulation of t o x i c amounts of Cu i n what he described as a " f o r e s t peat" was due to a sequence of events t h a t included removal of Cu from a l a r g e volume of the surrounding s o i l by p l a n t r o o t s , upward t r a n s l o c a t i o n i n t o the l e a f t i s s u e , i n c o r p o r a t i o n i n t o the humus l a y e r of the s o i l , and t r a n s p o r t to the swamp i n seepage water as a s o l u b l e organic complex. 1. 5 Uptake of Metals by Plants Agronomists have long debated to what extent the s o i l or the p l a n t d i c t a t e s i o n uptake by r o o t s . I t i s g e n e r a l l y known that the nature of the p l a n t i n c l u d i n g i t s s p e c i e s , s i z e , growth r a t e , extent and depth of r o o t i n g , t r a n s p i r a t i o n r a t e , and n u t r i t i o n a l requirements may a f f e c t i t s e f f i c i e n c y f o r metal absorption from s o i l . Moore (1972) reviewed the broad aspects of mi c r o n u t r i e n t uptake by p l a n t s , n o t i n g that data on absorption of mi c r o n u t r i e n t s was very l i m i t e d . He summarized non-metabolic and a c t i v e t r a n s p o r t and the e f f e c t s of temperature, oxygen, and i n h i b i t o r s l a r g e l y i n terms of what i s known about macronutrients. 1. 6 Measurement of Metal Availability in Soils The uptake of metals by p l a n t s i s the obvious c r i t e r i o n of t h e i r a v a i l a b i l i t y . I t i s necessary to e s t a b l i s h crop responses to metals under c o n t r o l l e d c o n d i t i o n s and to c o r r e l a t e uptake and y i e l d w i t h s o i l measured values. However, there are problems 16 a s s o c i a t e d w i t h t h e g e n e r a l use o f p l a n t s t o d e t e r m i n e m e t a l a v a i l a b i l i t i e s , s i n c e u p t a k e v a r i e s between s p e c i e s and w i t h d i f f e r e n t s o i l c o n d i t i o n s s u c h as c o m p o s i t i o n , m o i s t u r e s t a t u s and f e r t i l i t y l e v e l . Other c o m p l i c a t i n g f a c t o r s i n c l u d e s e a s o n a l changes i n p l a n t c o m p o s i t i o n and v a r i a t i o n s w i t h i n t h e p l a n t . The s o i l volume e f f e c t i v e l y c o n t a c t e d by r o o t s f o r non m o b i l e elements i s low and e s t i m a t e d a t 1 t o 5% by Wiersum (1962) and 3% by B a r b e r et al. (1963). However, i n v i e w o f t h e g r o w i n g body o f e v i d e n c e , b a s e d on r o o t and d i f f u s i o n s t u d i e s , t h a t a p l a n t c o n t a c t s o n l y a s m a l l f r a c t i o n o f t h e t o t a l s o i l volume, V i e t s and L i n d s a y (1973) f e l t t h a t t h e g o a l o f 1:1 r a t i o between c h e m i c a l and p l a n t e x t r a c t i o n o f a m i c r o n u t r i e n t c a t i o n f r o m t h e s o i l a p p e a r s t o be u n j u s t i f i e d and u n r e a s o n a b l e . Thus, t h e a v a i l a b i l i t y o f m e t a l s i n s o i l s i s as much a f u n c t i o n o f t h e p l a n t as o f t h e s o i l and i t i s d e s i r a b l e t o be a b l e t o make some a r b i t r a r y assessment of a v a i l a b i l i t y by a c h e m i c a l e x t r a c t i o n t e c h n i q u e . Numerous e x t r a c t a n t s have been e v a l u a t e d and i n some c a s e s recommended f o r t h e assessment o f a v a i l a b l e t r a c e e l e m e n t s i n s o i l s , w i t h v a r y i n g degrees o f s u c c e s s . L e e p e r (1972) l i s t s f o u r g e n e r a l k i n d s o f e x t r a c t a n t s t h a t a p p l y t o most heavy m e t a l s . These a r e as f o l l o w s : a. E a s i l y e x c h a n g e a b l e - e x t r a c t e d w i t h 1.0 N ammonium a c e t a t e . b. D i f f i c u l t l y e x c h a n g e a b l e - e x t r a c t e d w i t h 0.1 N H C l 17 c. E x t r a c t e d w i t h s t r o n g c h e l a t o r s - example: d i e t h y l e n e -t r i a m i n e p e n t a a c e t i c a c i d (DTPA), o r e t h y l e n e -d i a m i n e t e t r a a c e t i c a c i d (EDTA). d. A n o t h e r k i n d o f e x c h a n g e a b l e - e x t r a c t e d w i t h 0.5 N a c e t i c a c i d . C a t i o n exchange c a p a c i t y and t h e use of m i l d e x t r a c t a n t s have been m a i n s t a y s i n t h e s t u d y o f n u t r i e n t a v a i l a b i l i t y ( B l a c k , 1965; Cox and Kamprath, 1972; D o l l and L u c a s , 1973). Jenne (1968) s u g g e s t e d t h a t t h e e n v i r o n m e n t a l f i x a t i o n o f t r a c e m e t a l s i s n o t r e l a t e d t o c a t i o n exchange, p r o p o s i n g i n s t e a d c o n t r o l by h y d r o u s o x i d e s o f Fe and Mn. T h i s t h e o r y i s f u r t h e r s u p p o r t e d by f i n d i n g s t h a t Mn and f r e e Fe o x i d e c o n t e n t a r e h i g h l y c o r r e l a t e d w i t h t h e q u a n t i t y o f t r a c e m e t a l s i n t h e s o i l ( T a y l o r and M c K e n z i e , 1966; K o r t e et al., 1976). L e e p e r (1972) m a i n t a i n s t h a t t h e i d e a o f " e x c h a n g e a b l e c a t i o n " i s s i m p l e f o r Ca, Mg, K, and Na f o r w h i c h i t was f i r s t d e v e l o p e d , b u t i t i s n o t a u s e f u l c o n c e p t f o r t h e heavy m e t a l s . L e e p e r c o n t i n u e s t h a t t h e heavy m e t a l forms t h a t have r e s i s t e d t h e NH^ + i o n a r e m o s t l y e x t r a c t e d by 0.1 N HC1. T h i s , a c c o r d i n g •to h im, i s a p o w e r f u l e x t r a c t o r , w h i c h w i l l c e r t a i n l y d e s o r b t h e f i r m l y - h e l d e x c h a n g e a b l e m e t a l b u t w h i c h may a l s o d i s s o l v e some m e t a l w h i c h has moved i n t o more t i g h t l y h e l d f o r m s . Gupta and MacKay (1968) recommended t h e use o f 0.2 M ammonium o x a l a t e (pH 3.0) w i t h a 1:10 s o i l t o e x t r a c t a n t r a t i o and 18 a 16-hour s h a k i n g t inie. They c o n c l u d e d t h a t 0.2 M ammonium o x a l a t e was s u p e r i o r t o 0.1 N H C l , w h i c h has been used f r e q u e n t l y (Chapman, 1971; H i n e s l y et al., 1972; L a g e r w e r f f , 1967) t o e x t r a c t s o i l Cu. R e s u l t s p r e s e n t e d by Gupta (1971) u s i n g t h i s e x t r a c t a n t t o s t u d y t h e ieffeet o f cow manure, compost, and p e a t on t h e r e l e a s e o f Cu and Mo i n d i c a t e d t h a t a f t e r 12 weeks, manure i n c r e a s e d amounts o f Cu r e l e a s e d w h i l e p e a t d e c r e a s e d i t . S o l u t i o n s o f c h e l a t i n g a g e n t s a r e w i d e l y used f o r e s t i m a t i n g t h e heavy m e t a l s u p p l i e s a v a i l a b l e t o p l a n t s r a t h e r t h a n f o r i d e n t i f y i n g t h e s t a t e i n w h i c h t h e m e t a l i s h e l d . Brown et al. (1960) f o u n d t h a t r o o t s r e a c t l i k e c h e l a t i n g a g e n t s i n t h e i r c a p a c i t y t o compete f o r Fe i n a growth medium. For t h i s and o t h e r r e a s o n s i t i s f e l t by s e v e r a l w o r k e r s t h a t c h e l a t i n g a g e n t s may be t h e most a p p r o p r i a t e s o i l e x t r a c t o r s f o r p r e d i c t i n g s o i l m i c r o n u t r i e n t a v a i l a b i l i t y t o p l a n t s . As a c h e l a t i n g a g e n t , EDTA has been e x t e n s i v e l y used i n s o i l a n a l y s e s f o r p r e d i c t i n g Zn ( J e n s e n and Lamm, 1961; T r i e r w e i l e r and L i n d s a y , 1969), Mn (Brownam et al., 1969), and Cu ( M c K e n z i e , 1966). More r e c e n t l y , L i n d s a y and N o r v e l l (1969a) r e p o r t e d t h e use o f 0.005 M DTPA ( d i e t h y l e n e t r i a m i n e p e n t a a c e t i c a c i d ) a t pH 7.3 as an e x t r a c t a n t f o r d e t e c t i n g d e f i c i e n c i e s o f Zn, Fe, Mn and Cu i n s o i l s . The t h e o r e t i c a l b a s i s f o r i t s development can be seen f r o m t h e c h e l a t e e q u i l i b r i u m s t u d i e s o f L i n d s a y and N o r v e l l (1969b). S e l e c t i o n o f pH 7.30 and 0.01 M CaCl„ e n a b l e s t h e e x t r a c t t o a t t a i n 19 e q u i l i b r i u m w i t h CaCO^. In. t h i s way, CaCO„ i s n o t d i s s o l v e d f r o m c a l c a r e o u s s o i l s . S i n c e t h e d i s s o l u t i o n o f Fe and Mn i s h i g h l y pH-dependent, t h e e x t r a c t i n g s o l u t i o n must be h i g h l y b u f f e r e d ( V i e t s and L i n d s a y , 1973). The f o u r t h t y p e on L e e p e r ' s l i s t , an example b e i n g 0.5 N a c e t i c a c i d , i s a compromise between t h e second and t h i r d . The a c i d i t y i s weak, b u t t h e a n i o n has some c o m p l e x i n g t e n d e n c y so t h a t the r e a g e n t i s u s e f u l f o r e s t i m a t i n g t h e m o b i l e r e s e r v e s o f an element. One argument ( L e e p e r , 1972) f o r k e e p i n g t o such a method i s t h a t t h e more i t i s used the more u s e f u l i t becomes f o r making c o m p a r i s o n s . On t h e o t h e r hand, i t i s t o o weak an a c i d t o e x t r a c t Cu f r o m an o r g a n i c complex, and so i s i n f e r i o r t o DTPA f o r Cu a t l e a s t . 1. 7 General Aspects of Metal Tolerance in Plants M e t a l t o l e r a n c e i n p l a n t s has been r e v i e w e d by A n t o n o v i c s et al. (1971) f r o m an e c o l o g i c a l p o i n t o f v i e w , and by Chaney (1972, 1 9 7 4 ) , L e e p e r ( 1 9 7 2 ) , P a t t e r s o n (1971) and Webber (1972) f r o m an a g r i c u l t u r a l p o i n t o f v i e w . P l a n t s p e c i e s d i f f e r e n c e s i n r e l a t i o n t o n u t r i t i o n a l r e q u i r e m e n t s have been r e v i e w e d by G e r l o f f ( 1 9 6 3 ) . V a r i e t a l d i f f e r e n c e s i n p l a n t n u t r i t i o n have a l s o been r e v i e w e d by Vose (1963) . However, l i t t l e i s c u r r e n t l y known about mechanisms by w h i c h c r o p s d i f f e r i n m e t a l t o l e r a n c e . On s o i l s h i g h i n m e t a l s one o f t e n f i n d s an u n u s u a l o r • . s e l e c t e d u n c u l t i v a t e d v e g e t a t i o n . A c c o r d i n g t o Bradshaw 20 and c o workers (see A n t o n o v i c s et at., 1971), the e v o l u t i o n a r y n a t u r e o f t h i s t o l e r a n c e i s s i m p l y s e l e c t i o n o f t o l e r a n t p r e - e x i s t i n g g e n e t i c c o m b i n a t i o n s . These t o l e r a n t l i n e s a r e seldom c r o p p l a n t s and u s u a l l y have s l o w growth r a t e s and poor v i g o u r on n o r m a l s o i l s . A c c o r d i n g t o Chaney (1975) one s h o u l d n o t e x p e c t t o be a b l e t o m o d i f y c r o p p l a n t s t o t o l e r a t e e x c e s s i v e l e v e l s o f t o x i c m e t a l s as a g e n e r a l r u l e . He m a i n t a i n s t h a t a g r i c u l t u r e ' s a d a p t a t i o n t o heavy m e t a l d i s p o s a l on s o i l s w i l l l i k e l y be l i m i t e d t o management o f s o i l pH and f e r t i l i t y , and r e s t r i c t i o n t o g e n e r a l l y t o l e r a n t c r o p s ; t o l e r a n t v a r i e t i e s a r e u n l i k e l y t o become an i m p o r t a n t management t o o l . 1. 8 Interactions of •Micronutrients in Plants and Soils Many s t u d i e s have shown a n t a g o n i s t i c r e l a t i o n s h i p s among Zn, Mn, Fe, and Cu i n a wide v a r i e t y o f c r o p s grown i n d i f f e r e n t s o i l e n v i r o n m e n t s . I n maize (Zea mays L.) p l a n t s c u l t i v a t e d i n Z n - d e f i c i e n t s o i l , u p t a k e o f Mn was s u b s t a n t i a l l y r e d u c e d by Zn a p p l i c a t i o n ( S i n g h and S t e e n b e r g , 1974). Hawf and Schmid (1967) showed, i n a s o l u t i o n c u l t u r e e x p e r i m e n t w i t h bush bean p l a n t s , 65 t h a t Mn as an added c a t i o n had an e f f e c t on Zn u p t a k e a t h i g h c o n c e n t r a t i o n s o n l y , b u t d i d n o t a l t e r t h e i n t e r n a l d i s t r i b u t i o n . I s h a z u k a and Ando (1968) w o r k i n g w i t h r i c e (Oryza sativa L.) found t h a t t h e amount of Mn a b s o r b e d by p l a n t s was r e m a r k a b l y r e d u c e d w i t h i n c r e a s i n g Zn c o n c e n t r a t i o n and t h a t t h e Zn p r e v e n t e d Mn t o x i c i t y . 21 A number o f examples o f Z n - i n d u c e d Fe d e f i c i e n c y (Watanabe et al., 1965) and F e - i n d u c e d Zn d e f i c i e n c y ( R o s e l l and U l r i c h , 1964) have been r e p o r t e d . I r o n - i n d u c e d Mn d e f i c i e n c y (Hanger, 1965; Somers and S h i v e , 1942) and Mn-induced Fe d e f i c i e n c y Knezek and G r e i n e r t , 1971; V l a m i s and W i l l i a m s , 1964) a l s o o c c u r . A n t a g o n i s t i c r e l a t i o n s h i p s between Cu-Zn ( G i l b e y et al., 1970; Hawf and Schmid, 1 9 6 7 ) , Cu-Fe ( C h e s h i r e et al., 1967; Moore et al., 1957), Mo-Mn (Cheng and O u e l e t t e , 1972 and M u l d e r , 1 9 5 4 ) , and Mo-Fe ( G e r l o f f et al., 1959 and Hanger, 1965) have a l s o been r e p o r t e d . 2. Leaehing of Metals M o b i l i t y o f an element i n s o i l i s no more t h a n a r e f l e c t i o n o f i t s s o l u t i o n c o n c e n t r a t i o n , as i t i s a f f e c t e d by t h e movement of w a t e r t h r o u g h t h e p r o f i l e . Any f a c t o r t h a t a f f e c t s t h e s o l u b i l i t y o f an element must i n t h e same way a f f e c t i t s movement (Hodgson, 1963). I n g e n e r a l , most s t u d i e s of m e t a l l e a c h i n g have found t h a t t h e pH, o r g a n i c m a t t e r c o n t e n t , and i o n exchange c a p a c i t y a r e t h e dominant f a c t o r s i n m e t a l movement t h r o u g h s o i l s . S m i th et al. (1962) o b s e r v e d t h e movement o f Cu and Zn o n l y i n s o i l s o f low C.E.C. and low o r g a n i c m a t t e r c o n t e n t ; low pH promoted l e a c h i n g . P e t e r s o n and Geschwind (1972) a l s o f o u n d t h e l e a c h i n g o f heavy m e t a l s f r o m a c i d i c s t r i p mine s p o i l s amended w i t h sewage s l u d g e o n l y a t low pH. I t has l o n g been known t h a t , o r g a n i c c o n s t i t u e n t s p l a y a r o l e i n t h e downward movement o f m e t a l s i n s o i l s . . A c c o r d i n g t o J a c k s o n and 22 Sherman ( 1 9 5 3 ) , t h e movement t o l o w e r h o r i z o n s o r o u t o f t h e p r o f i l e i s , i n g e n e r a l , due t o t h e c h e l a t i n g c h a r a c t e r i s t i c s o f o r g a n i c c o n s t i t u e n t s . The p r o c e s s has been r e f e r r e d t o by S w i n d a l e and J a c k s o n (1956) as c h e l u v i a t i o n . S i n c e d i f f e r e n t i a l movement o f i o n s o c c u r s a c c o r d i n g t o t h e i r s u s c e p t i b i l i t y t o c h e l a t i o n , F e , A l , and o t h e r s t r o n g l y c h e l a t e d e l e m e n t s a r e e l u t e d f a s t e r t h a n S i and s i m i l a r w e a k l y c h e l a t e d ones.. S o l u b l e o r g a n i c compounds a r e th o u g h t t o be e f f e c t i v e i n p r o m o t i n g t h e movement o f Fe i n two ways: ( i ) by s t a b i l i z i n g h y d r o s o l s o f Fe i n t h e s o i l s o l u t i o n , o r ( i i ) by f o r m i n g s t r i c t l y s o l u b l e o r g a n i c complexes. S c h n i t z e r (1957) and B l o o m f i e l d (1955, 1958) p r o v i d e d c o n c i s e summaries of t h e two o p p o s i n g p o i n t s o f v i e w . L y s i m e t e r s have been w i d e l y used by a g r i c u l t u r a l r e s e a r c h e r s t o measure t h e q u a l i t y and q u a n t i t y o f l e a c h a t e s as i n f l u e n c e d by v a r i o u s t r e a t m e n t s . Most o f t h e l y s i m e t e r s have been f i l l e d w i t h d i s t u r b e d s o i l t h a t has been d r i e d , ground and packed i n t h e c o n t a i n e r s t o b u l k d e n s i t i e s comparable t o t h o s e i n t h e f i e l d . U n f o r t u n a t e l y w a t e r ( R i t c h i e et al., 1972) and i o n s ( K i s s e l et al., 1973; McMahon et al., 1971) move d i f f e r e n t l y i n d i s t u r b e d s o i l columns t h a n i n u n d i s t u r b e d columns where t h e n a t u r a l s t r u c t u r e r e m a i n s i n t a c t . A c c o r d i n g t o Low and A r m i t a g e (1970) t h r e e o t h e r drawbacks w i t h l y s i m e t e r s a r e : (1) t h e r a t h e r u n n a t u r a l r e s t r i c t i o n o f w a t e r movement and r o o t development by t h e c o n t a i n i n g w a l l s ; (2) t h e tendency f o r s h r i n k a g e c r a c k s t o d e v e l o p p a r t i c u l a r l y a l o n g t h e w a l l s w h i c h can l e a d t o a b n o r m a l l y h i g h d r a i n a g e r a t e s ; and (3) t h e r e d u c e d 23 s u c t i o n f o r c e o w ing t o t h e d i s c o n t i n u i t y w i t h t h e s u b - s o i l a t t h e ba s e o f t h e l y s i m e t e r . R e s u l t s o f s e v e r a l e x p e r i m e n t s (Cochran et al., 1970; C o l e et al. , 1961; Low and A r m i t a g e , 1970) l e a d t o t h e c o n c l u s i o n t h a t w h i l e l y s i m e t r i c methods p r o v i d e a v a l u a b l e t o o l i n m o n i t o r i n g downward w a t e r and n u t r i e n t f l u x e s I n s o i l s , t h e i r l i m i t a t i o n s must be r e c o g n i z e d . 3. The Use of Animal Wastes There has been a l o n g h i s t o r y o f r e s e a r c h on t h e use o f a n i m a l w a s t e s on a g r i c u l t u r a l l a n d . Most o f t h i s work has been p r i m a r i l y c o n c e r n e d w i t h t h e f e r t i l i z i n g v a l u e o f t h e m a t e r i a l s and t h e i r e f f e c t s on c r o p y i e l d s . There have been a few s t u d i e s d e s i g n e d t o e v a l u a t e t h e l o n g - t e r m e f f e c t s o f a p p l y i n g a n i m a l w a s t e s on l a n d . Many r e s e a r c h e r s have found manure t o be a s o u r c e o f N ( B u n t i n g , 1963; G a r n e r , 1966b; H e r r o n and E r h a r t , 1 965), P (Abbot and L i n g l e , 1968; B u n t i n g , 1 963), and K ( B u n t i n g , 1963; G a r n e r , 1966a and 1966b) f o r improved s o i l f e r t i l i t y as r e f l e c t e d i n i n c r e a s e d y i e l d s . O t h e r s ( B i s h o p et al., 1962; B u n t i n g , 1963; H o l l i d a y et al., 1965) r e p o r t e d i n c r e a s e d y i e l d s t h a t c o u l d n o t be t r a c e d t o impro v e d a v a i l a b i l i t y o f N, P o r K. Such u n e x p l a i n e d y i e l d i n c r e a s e s c o u l d be due t o improved s o i l s t r u c t u r e ( B u n t i n g , 1963; H o l l i d a y et al., 1965; Page, 1967; W i l l i a m s and Cooke, 1961) and subsequent p o s i t i v e e f f e c t s on p e r m e a b i l i t y , w a t e r h o l d i n g c a p a c i t y o r s o i l a e r a t i o n , o r due t o m i c r o n u t r i e n t s c o n t a i n e d i n t h e manure. 24 There a r e numerous r e f e r e n c e s t o d a t a r e l a t i v e t o t h e f e r t i l i z e r v a l u e o f p o u l t r y manure ( B a r n e t t , 1973; H i l e m a n , 1967; and P e r k i n s and P a r k e r , 1971). I t has been used s u c c e s s f u l l y on a w i d e v a r i e t y o f c r o p s e i t h e r as t h e o n l y d i r e c t s o u r c e o f p l a n t f o o d o r as a supplement t o c o m m e r c i a l f e r t i l i z e r s o r as a s o i l amendment. I n a greenhouse s t u d y , M i l l e r et al. (1969) c o r r e c t e d Zn d e f i c i e n c i e s and p a r t i a l l y c o r r e c t e d Fe d e f i c i e n c i e s i n c o r n i n a Zn- and F e - d e f i c i e n t s o i l by a p p l y i n g p o u l t r y manure. C a r s o n et al. (1961) found manure t o be a s o u r c e of Zn f o r c o r n (Zea mays L.) i n a Z n - d e f i c i e n t s u b s o i l . P o u l t r y manure has a l s o r e d u c e d s o i l e r o s i o n i n t h e r o l l i n g h i g h l a n d r e g i o n s o f t h e S o u t h e a s t e r n S t a t e s ( B a r n e t t et al., 1969). There i s no doubt, t h e r e f o r e , t h a t p o u l t r y manure i s a v a l u a b l e w a s t e m a t e r i a l when p r o p e r l y u s e d i n a sound f a r m management s y s t e m . The c h e m i c a l c o m p o s i t i o n o f p o u l t r y manure v a r i e s c o n s i d e r a b l y , d e p e n d i n g on t h e f e e d consumed by t h e b i r d s , and t h e q u a n t i t y and k i n d o f l i t t e r - b a s e m a t e r i a l used. A c c o r d i n g t o H i l e m a n (1967) f a c t o r s , s u c h as m o i s t u r e and t e m p e r a t u r e , w h i c h a f f e c t t h e a c c u m u l a t i n g manure p l u s t h e l i t t e r a l l c o n t r i b u t e t o t h i s v a r i a t i o n . C o n t i n o u s a p p l i c a t i o n s o f l a r g e amounts o f p o u l t r y manure t o t h e s o i l may s a t u r a t e t h e s o i l s ' exchange complex w i t h c e r t a i n i o n s . T h i s may r e d u c e t h e e f f e c t i v e n e s s o f s o i l as a f i l t e r f o r w a t e r and hence may a l l o w q u a n t i t i e s o f u n d e s i r a b l e e l e m e n t s t o r e a c h t h e groundwater s u p p l y ( H i l e m a n , 1972). A p p l i c a t i o n o f e x c e s s i v e r a t e s o f manure a l s o has a d v e r s e e f f e c t s on seed g e r m i n a t i o n and cr o p y i e l d . S h o r t a l l and L i e b h a r d t (1975) c o n s i d e r e d e x c e s s i v e s o i l s a l i n i t y t o be t h e most i m p o r t a n t cause o f 25 y i e l d r e d u c t i o n f o l l o w i n g t h e a p p l i c a t i o n o f h i g h r a t e s o f p o u l t r y manure. F r e s h p o u l t r y manure a p p l i e d a t moderate t o heavy r a t e s have a l s o been shown t o r e l e a s e damaging amounts of ammonia w h i c h can i n h i b i t seed g e r m i n a t i o n ( H i l e m a n , 1971; S i e g e l et al., 1975). T h i s r e v i e w l e a d s t o t h e c o n c l u s i o n t h a t s t u d i e s t h a t a t t e m p t t o p r e d i c t t h e g e n e r a l c y c l i n g o f m e t a l s i n t h e e n v i r o n m e n t i n v o l v e many c o n c e p t s o f s o i l and p l a n t s c i e n c e s . Some o f t h e p r e l i m i n a r y work f o r s u c h p r e d i c t i o n s has been r e p o r t e d by s o i l c h e m i s t s who f o r y e a r s have s t u d i e d t h e f a t e of m i c r o n u t r i e n t s i n s o i l s and p l a n t s ( A l l a w a y , 1968; L e e p e r , 1972; L i s k , 1972). Much r e s e a r c h s t i l l r e m a i n s t o be done i n o r d e r t o u n d e r s t a n d f u l l y t h e complex r e l a t i o n s h i p between e n v i r o n m e n t a l f a c t o r s and t h e d i s t r i b u t i o n o f heavy m e t a l s and a l s o t h e i n d i v i d u a l o r combined r o l e s o f t h e heavy m e t a l s i n b i o l o g i c a l s y s t e m s . The movement o f m e t a l s and t h e i r r a t e s o f f l o w t h r o u g h e n v i r o n m e n t a l media must be t r a c e d f r o m t h e i r s o u r c e s t o u l t i m a t e d e p o s i t i o n s i t e s . R e s e a r c h r e s u l t s s h o u l d s u g g e s t means of r e g u l a t i n g t h e c o n c e n t r a t i o n o f a number o f t h e s e m e t a l s i n s u c h d e p o s i t i o n s i t e s . I n f o r m a t i o n on u p t a k e , l e a c h i n g and s t o r a g e o f m i c r o n u t r i e n t m e t a l s i n r e s p o n s e t o a p p l i c a t i o n s o f complex m a t e r i a l s , l i k e a n i m a l w a s t e s , w o u l d be a v a l u a b l e c o n t r i b u t i o n t o u n d e r s t a n d i n g t h e e n v i r o n m e n t a l c y c l i n g o f t h e s e m e t a l s . III. MATERIALS AND METHODS 1. Soil Samples The two s o i l s used i n t h e s t u d y were G r i g g s e r i e s , an O r t h i c Dark Gray G l e y s o l from the C h i l l i w a c k a r e a , and Monroe s e r i e s , a Degraded E u t r i c B r u n i s o l from the M i s s i o n a r e a , b o t h i n t h e Lower F r a s e r V a l l e y o f t h e P r o v i n c e o f B r i t i s h C o l u m b i a . B o t h s o i l s were c u l t i v a t e d s i l t loams. B u l k Ap (0 - 15 cm) samples were c o l l e c t e d , a i r - d r i e d , c r u s h e d w i t h a wooden r o l l e r , and p a s s e d t h r o u g h a 2 mm s i e v e . These samples were used f o r c h e m i c a l a n a l y s i s and greenhouse e x p e r i m e n t s . 2. Poultry Manure The manure used i n the s t u d y was o b t a i n e d from l a y i n g hens under a "Hig h R i s e P o u l t r y House" sy s t e m i n A l d e r g r o v e , B.C. The manure was used a t a m o i s t u r e c o n t e n t o f l e s s t h a n 20%. 3. Preparation of Columns As i l l u s t r a t e d i n F i g . 2, 20 cm h i g h columns were made u s i n g a 15 cm ( i n n e r d i a m e t e r ) P l e x i g l a s t u b e . The base o f t h e P l e x i g l a s tube was f i x e d on a 15.5 cm ( d i a m e t e r ) alundum t e n s i o n l y s i m e t e r p l a t e . The l y s i m e t e r p l a t e w h i c h i s c o n s t r u c t e d w i t h an aluminum o x i d e f u s e d d i s k was s e a l e d on t h e bottom w i t h P l e x i g l a s s h e e t i n g and on t h e s i d e s w i t h r u b b e r cement. C o n s t r u c t i o n d e t a i l s o f t h e base o f t h e column a r e r e p o r t e d by C o l e and G e s s e l ( 1 9 6 8 ) . 26 27 20 cm PLEXIGLAS CYLINDER RUBBER C E M E N T ALUNDUM DISK PLEX IGLAS BASE OUTLET FIGURE 2: Diagram o f Complete Column. 28 4. Greenhouse Experiments F a c t o r i a l e x p e r i m e n t s w i t h t h e two s o i l s ( G r i g g and Monroe s e r i e s ) , t h r e e manure r a t e s ( 0 , 20, and 40 t/ha) and f o u r r e p l i c a t i o n s o f e a ch c o m b i n a t i o n were s e t up i n t h e greenhouse. A l l t w e n t y - f o u r e x p e r i m e n t a l u n i t s were a r r a n g e d i n a c o m p l e t e l y randomized d e s i g n . 2.5 kg o f s o i l was pac k e d i n t o each o f t h e t w e n t y - f o u r columns and s e t t l e d by w a t e r i n g . T h i s r e s u l t e d i n an av e r a g e _3 b u l k d e n s i t y o f 0.95 g cm . P o u l t r y manure was s u r f a c e - a p p l i e d a t t h e 0, 20, and 40 t / h a r a t e s and t h e n mixed w i t h t h e top 6 cm o f s o i l . S i x p r e - g e r m i n a t e d c o r n s e e d l i n g s (Zea mays L., " P i o n e e r Brand H y b r i d 3909") were p l a n t e d i n each column and l a t e r t h i n n e d t o f o u r . D e m i n e r a l i z e d w a t e r was added t o t h e s o i l d a i l y a t an av e r a g e r a t e o f 1.0 cm/day, and d r a i n e d a t a t e n s i o n o f a p p r o x i m a t e l y 100 cm of w a t e r . T h i s w a t e r i n g r a t e , w h i c h was h i g h e r t h a n t h e av e r a g e d a i l y p r e c i p i t a t i o n of <0.6 cm f o r t h e Lower F r a s e r V a l l e y , was used t o s a t i s f y t h e h i g h e v a p o t r a n s p i r a t i o n demand i n t h e greenhouse and a l s o a l l o w f o r an i n t e n s i v e l e a c h i n g . L e a c h a t e s were c o l l e c t e d w e e k l y , t h e t o t a l volumes r e c o r d e d , and aliquots"..taken t o t h e l a b o r a t o r y f o r immediate c h e m i c a l a n a l y s i s . The g e n e r a l s e t - u p o f e x p e r i m e n t i s shown i n F i g . 3. Three greenhouse e x p e r i m e n t s were c o n d u c t e d s e q u e n t i a l l y w i t h t h e same s e t o f s o i l samples. The f i r s t e x p e r i m e n t was done i n J u l y (1976) and t h e c o r n p l a n t s were grown f o r 37 days. I n a l l t h e e x p e r i m e n t s 29 30 h a r v e s t i n g was done by c u t t i n g t h e c o r n p l a n t s a t t h e s o i l s u r f a c e . The p l a n t t i s s u e was d r i e d i n a f o r c e d - a i r oven a t 70°C, w e i g h e d , and ground w i t h a s t a i n l e s s s t e e l W i l e y M i l l t o p a s s a 40 mesh s t a i n l e s s s t e e l s c r e e n . F o l l o w i n g l e a c h i n g and h a r v e s t of t h e c o r n i n each e x p e r i m e n t , t h e s o i l i n each column was c o r e - s a m p l e d i n two s e c t i o n s -t h e t o p and l o w e r h a l v e s . The i n t e n t was t o o b t a i n a s i m p l e d i s t r i b u t i o n o f m e t a l s i n t h e s o i l . The s o i l s were a i r - d r i e d and t h e n p r e p a r e d as done p r e v i o u s l y . I n t h e second e x p e r i m e n t ( J a n u a r y , 1977) manure a p p l i c a t i o n was r e p e a t e d as i n E x p e r i m e n t I and t h e p l a n t s were grown f o r 42 days. S u p p l e m e n t a l l i g h t i n g was p r o v i d e d t o m a i n t a i n a day l e n g t h o f 16 h o u r s a t 1600 l u x and 8 h o u r s o f d a r k and a t e m p e r a t u r e of 23°C. The l i g h t s o u r c e was f l u o r e s c e n t , s l i m l i n e , s t a n d a r d c o o l - w h i t e , and 60 W i n c a n d e s c e n t b u l b s . S upplementary N was added t o a l l t h e s o i l s i n t h e second e x p e r i m e n t -so as t o e l i m i n a t e a c u t e d e f i c i e n c i e s o f t h i s n u t r i e n t and t h e i r p o s s i b l e e f f e c t s on u p t a k e o f t h e m e t a l s . A f t e r h a r v e s t i n g t h e c o r n i n E x p e r i m e n t I I , t h e s o i l s were a i r - d r i e d and a g a i n p r e p a r e d f o r E x p e r i m e n t I I I ( J u l y , 1977). No manure was a p p l i e d i n E x p e r i m e n t I I I b u t l e a c h i n g was' done as i n th e p r e c e d i n g e x p e r i m e n t s . P l a n t s were grown f o r 42 days. I n a l l t h e e x p e r i m e n t s f o l l o w i n g c o r n - t o p h a r v e s t and s o i l s a m p l i n g , the c o r n r o o t s were removed. The r o o t s were washed w i t h d i s t i l l e d w a t e r and d r i e d i n t h e oven a t 70°C and weighed. G r i n d i n g was done as d e s c r i b e d f o r t h e t o p s and r o o t samples were a n a l y s e d f o r m e t a l s . 31 5. Chemical Analysis 5.1 Soil pH was d e t e r m i n e d u s i n g a s o i l r w a t e r r a t i o o f 1:1. L e a c h a t e pH was d e t e r m i n e d on t h e l e a c h a t e s d i r e c t l y a f t e r c o l l e c t i o n . A l l pH measurements were made w i t h a F i s h e r Accumefc Model 230 pH/lon meter. 5.2 Electrical. Conductivity (EC) measurements were made u s i n g a Radio m e t e r Type CDM2e c o n d u c t i v i t y meter and t h e CDC 104 c o n d u c t i v i t y c e l l . C o n d u c t i v i t y measurements on l e a c h a t e s were made d i r e c t l y a f t e r c o l l e c t i o n . E.C. was d e t e r m i n e d i n s a t u r a t e d s o i l and manure p a s t e e x t r a c t s ( J a c k s o n , 1958). 5. 3 Extraction Methods for Metals S o i l s were e x t r a c t e d b e f o r e and a f t e r t h e c o r n c r o p . I n t h e s e e x t r a c t i o n s a l l f i l t e r i n g was done t h r o u g h Whatman No. 42 f i l t e r p a p e r . M e t a l s were d e t e r m i n e d d i r e c t l y u s i n g t h e f i l t r a t e . 0.005M DTPA Extraction DTPA e x t r a c t a b l e n u t r i e n t s i n t h e s o i l s were d e t e r m i n e d u s i n g t h e p r o c e d u r e o f L i n d s a y and N o r v e l l (1969). The e x t r a c t i n g s o l u t i o n c o n s i s t e d o f 0.005M DTPA ( d i e t h y l e n e t r i a m i n e p e n t a a c e t i c a c i d ) , 0.01M C a C l 2 and 0.1M TEA ( t r i e t h a n o l a m i n e ) a d j u s t e d t o pH 7.3 w i t h H C l . 10 g o f a i r - d r i e d s o i l was shaken w i t h 20 ml o f t h e e x t r a c t i n g s o l u t i o n f o r 2 h o u r s and f i l t e r e d . 0.1N HCl Extraction 5 g o f a i r - d r i e d s o i l was shaken w i t h 50 m l o f 0.1N H C l f o r one ho u r and f i l t e r e d . 32 Total Metals in Soil and Plant Tissue A 2 g sample i n a V y c o r c r u c i b l e was ashed o v e r n i g h t (16 h o u r s ) a t 450°C i n a m u f f l e f u r n a c e . 10 m l of 2N H C l were added and h e a t e d on a h o t p l a t e f o r about 20 m i n u t e s a t 80°C. The s u s p e n s i o n was f i l t e r e d and made up t o a volume (50 o r 100 ml depen d i n g on e x p e c t e d . c o n c e n t r a t i o n o f m e t a l s ) . 5.4 Determination of Metals in Extracts and Leachates The l e a c h a t e s were f i l t e r e d t o remove t r a c e s o f p a r t i c l e s (where n e c e s s a r y ) p r i o r t o t h e e l e m e n t a l a n a l y s i s . The s o i l and t i s s u e e x t r a c t s , as w e l l as t h e l e a c h a t e s were a s p i r a t e d d i r e c t l y i n t o a Model 306 P e r k i n - E l m e r a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t e r (AAS) w i t h a i r - a c e t y l e n e f l a m e and t h e f o l l o w i n g o p e r a t i n g c o n d i t i o n s : Wavelength S l i t S e t t i n g S e n s i t i v i t y M e t a l (nm) (nm) (yg/ml) Mn 279.5 0.2 0.055 Fe 248.3 0.2 0.12 Zn 213.9 0.7 0.018 Cu 324.7 0.7 0.09 K 766.5 1.4 0.04 Na 589.6 1.4 0.015 Cr 357.9 0.7 0.1 Co 240.7 0.2 0.15 N i 232.0 0.2 0.15 6. Metal-Organic Matter Study with Experimental Samples A f t e r h a r v e s t i n g t h e t h i r d c r o p , s o i l samples were t a k e n f o r a m e t a l - o r g a n i c m a t t e r s t u d y d e s c r i b e d below. 6.1 Fractionation and Elemental Analysis of Organic, Humic Acid  and Fulvic Acid Separates The f l o w d i a g r a m ( F i g . 4) summarizes t h e p r o c e d u r e s f o l l o w e d i n t h e f r a c t i o n a t i o n and d i g e s t i o n o f e x t r a c t s . 33 SOIL 0.1N H„SO, I 4 A c i d E x t r a c t A c i d Washed S o i l 0.1N NaOH O r g a n i c E x t r a c t Humin R e s i d u e F u l v i c A c i d ( S o l u t i o n ) 30% H 2 0 2 2N H 2 S 0 4 O r g a n i c E x t r a c t 30% H 2 0 2 Humic A c i d ( P r e c i p i t a t e d ) 2N NaOH Humic A c i d S o l u t i o n 30% H 2 0 2 D i g e s t e d F u l v i c A c i d D i g e s t e d O r g a n i c E x t r a c t D i g e s t e d Humic A c i d FIGURE 4: F l o w Diagram Showing t h e F r a c t i o n a t i o n o f O r g a n i c Components and D i g e s t i o n f o r E l e m e n t a l A n a l y s i s . 34 6.1.1 Preparation of Organic Extract Ten g portions of a i r - d r i e d <2 mm samples were weighed int o 250 ml centrifuge b o t t l e s ; 100 ml of 0.1N H^SO^ were added and shaken f o r one-half hour. The suspensions were centrifuged at 5000 rpm (S o r v a l l , RC-2B) for 10 minutes. The supernatant s o l u t i o n which contained undigested plant material was poured through an ac i d washed Whatman No. 1 f i l t e r paper to remove unhumified material and made up to 200 ml with d i s t i l l e d water. This was saved as ACID EXTRACT for organic matter and elemental analysis. 150 ml portions of 0.1N NaOH were then added to a l l the b o t t l e s and s t i r r e d into suspension. The suspensions were shaken f o r three hours, centrifuged as before and the supernatant solutions decanted into 600 ml beakers. Two more extractions were made with 150 ml portions of 0.1N NaOH. Shaking times for these two extractions were two hours and one hour, r e s p e c t i v e l y . A f t e r c e n t r i f u g i n g , the supernatants were added to the f i r s t extracts i n the 600 ml beaker. The extracts were f i l t e r e d through Whatman No. 1 f i l t e r paper, made up to one l i t e r with d i s t i l l e d water and saved as ORGANIC EXTRACTS. 6.1.2 Separation of Organic Extract into Fulvic and Humic  Fractions Aliquots (500 ml) of the organic extract i n 600 ml beakers were brought to pH 1.1 with 2N H 0SO / to p r e c i p i t a t e 35 humic a c i d . The s u s p e n s i o n s were l e f t u n d i s t u r b e d u n t i l t h e humic a c i d had c o m p l e t e l y p r e c i p i t a t e d . The p r e c i p i t a t e s were s e p a r a t e d by d e c a n t i n g t h e s u p e r n a t a n t f u l v i c a c i d s i n t o 600 m l b e a k e r s . The humic a c i d s were r e d i s s o l v e d w i t h 5 ml o f 2N NaOH and 100 m l o f d i s t i l l e d w a t e r . The pH o f t h e s u s p e n s i o n s was r a i s e d t o > 8 w i t h 2N NaOH. Humic a c i d s were r e p r e c i p i t a t e d by a d d i n g 2N H^SO^ t o b r i n g pH below 1.3. The humic a c i d s were a l l o w e d t o c o m p l e t e l y s e t t l e and t h e s u p e r n a t a n t f u l v i c a c i d s were added t o t h e f i r s t s e p a r a t e s i n t h e 600 ml b e a k e r s . The combined s u p e r n a t a n t s were f i l t e r e d t h r o u g h Whatman No. 1 f i l t e r p a p e r , made up t o one l i t e r and saved as FULVIC ACID EXTRACTS. The humic a c i d p r e c i p i t a t e s were r e d i s s o l v e d w i t h 2N NaOH, r a i s e d t o pH 9, made up t o 200 ml and saved as HUMIC ACID EXTRACTS. 6.1.3 Digestion of Organic, Humic Acid and Fulvic Acid Extracts  Organic extract - 25 ml o f t h e e x t r a c t s were p i p e t t e d i n t o 600 ml b e a k e r s and 10 ml 30% &2®2 a c ^ e c * ' ^ e m i x t u r e was h e a t e d i n a w a t e r b a t h f o r 1/2 hour a t 90°C. Some f r o t h i n g o c c u r r e d . A f u r t h e r 10 ml H^O^ was added and h e a t e d i n t h e w a t e r b a t h u n t i l t h e s o l u t i o n became c l e a r . 2 m l p o r t i o n s o f 3N H C l were added t o d i s s o l v e t h e w h i t e p r e c i p i t a t e . The s o l u t i o n s were f i l t e r e d and made up t o 50 m l . These were t r a n s f e r r e d t o p l a s t i c b o t t l e s f o r s t o r a g e as DIGESTED ORGANIC EXTRACTS. 36 Humio Acid Extract - 25 ml a l i q u o t s o f t h e humic a c i d e x t r a c t s were t r e a t e d as above f o r t h e o r g a n i c e x t r a c t and saved as DIGESTED HUMIC ACID EXTRACTS. Fulvic Acid Extract - 25 ml a l i q u o t s o f f u l v i c a c i d e x t r a c t s were t r e a t e d as above e x c e p t t h a t o n l y one a d d i t i o n o f H^O^ was r e q u i r e d t o e f f e c t o x i d a t i o n . The s o l u t i o n s were saved as DIGESTED FULVIC ACID EXTRACT. B l a n k s were r u n u s i n g t h e same r e a g e n t s as w i t h t h e samples. 6. 2 Elemental Analysis of Acid Extracts and Digested Organic  Components Mn, F e , Zn and Cu were d e t e r m i n e d on t h e a c i d e x t r a c t s and t h e H^O^ d i g e s t e d o r g a n i c e x t r a c t s , humic a c i d and f u l v i c a c i d e x t r a c t s by AAS. 6. S Organic Matter Determinations of Acid, Organic Humic Acid and  Fulvic Acid. Extracts, and Total Soil 5-25 ml a l i q u o t s o f e x t r a c t s (depending on c o l o u r ) were t a k e n t o i n c i p i e n t d r y n e s s omaAhot p l a t e and a n a l y s e d by t h e W a l k l e y - B l a c k method ( J a c k s o n , 1958). A n a l y s i s o f o r g a n i c m a t t e r c o n t e n t o f t o t a l s o i l was made u s i n g t h e W a l k l e y - B l a c k wet o x i d a t i o n method ( B l a c k , 1965). P e r c e n t a g e o r g a n i c m a t t e r i n t h e Humin r e s i d u e was d e t e r m i n e d by t h e d i f f e r e n c e between t h e p e r c e n t a g e o r g a n i c m a t t e r i n t h e t o t a l s o i l and t h e sum o f o r g a n i c m a t t e r i n t h e o r g a n i c e x t r a c t and t h e a c i d e x t r a c t . 37 7. Statistical Analyses S t a t i s t i c a l a n a l y s e s used i n t h e s t u d y i n v o l v e d t h e IBM 370/168 computer and t h e MFAV and TRP programmes s t o r e d i n t h e Programme L i b r a r y a t The U n i v e r s i t y o f B r i t i s h C o l u m b i a (Halm and L e , 1975; Le and T e n i s c i , 1977). Two-way a n a l y s i s o f v a r i a n c e was used i n t e s t i n g t h e e f f e c t s o f manure t r e a t m e n t s and s o i l t y p e on y i e l d o f c o r n d r y m a t t e r , u p t a k e and l e a c h i n g l o s s e s o f m e t a l s . The t e s t s i n c l u d e d o r t h o g o n a l c o n t r a s t s among t r e a t m e n t means i n o r d e r t o examine whether t h e changes i n mean r e s p o n s e s were l i n e a r o r q u a d r a t i c . S i m p l e l i n e a r c o r r e l a t i o n a n a l y s i s was a l s o used i n e x a m i n i n g t h e r e l a t i o n s h i p s between manure r a t e s and i ) y i e l d o f c o r n d r y m a t t e r , i i ) u p t a k e o f m e t a l s , and i i i ) l e a c h i n g l o s s e s o f m e t a l s . IV. RESUL'TS AND DISCUSSION Some c h e m i c a l c h a r a c t e r i s t i c s o f t h e m a t e r i a l s used i n t h e s t u d y a r e p r e s e n t e d i n T a b l e 1. The c h e m i c a l c o m p o s i t i o n o f t h e manure a g r e e s w i t h r e p o r t e d v a l u e s i n t h e l i t e r a t u r e ( H i l e m a n , 1967; Baker and C h e s n i n , 1975). Baker and C h e s n i n r e p o r t e d t h a t on an o v en-dry b a s i s K i n p o u l t r y manure ran g e s from 1.0 t o 4.5%. Samples used i n t h i s s t u d y c o n t a i n e d 1.57% on an a i r - d r y b a s i s . Such r e l a t i v e l y h i g h K l e v e l c o u l d l e a d t o m e t a l i m b a l a n c e and must be c o n s i d e r e d i n m i c r o n u t r i e n t m e t a l s t u d i e s . I t i s i n t e r e s t i n g t o n o t e t h a t on b o t h s o i l s , 0.IN HC1 e x t r a c t e d h i g h e r l e v e l s o f m e t a l s ( e x c e p t Fe) t h a n 0. 005M DTPA. However, DTPA was more e f f e c t i v e t h a n HC1 i n e x t r a c t i n g m e t a l s from t h e manure sample. Some d a t a on Co, Cr and N i i n t h e e x p e r i m e n t a l m a t e r i a l s a r e p r e s e n t e d i n A p p e n d i x G. These and o t h e r heavy m e t a l s , l i k e Pb and Cd, were e x c l u d e d f r o m t h e s t u d y because t h e i r l e v e l s i n the l e a c h a t e s •and c o r n t i s s u e were g e n e r a l l y n e a r o r below d e t e c t i o n l i m i t s . 1. Dry Matter Production The d r y m a t t e r y i e l d s . o f c o r n ( t o p s and r o o t s ) f o r t h e t h r e e e x p e r i m e n t s a r e p r e s e n t e d i n T a b l e 2. Graphs f o r t h e s e d a t a a r e p r e s e n t e d i n A p p e n d i c e s A.1 and A.2. The r e l a t i v e l y l o w e r v a l u e s f o r t h e second e x p e r i m e n t may be a t t r i b u t e d t o t h e low l i g h t c o n d i t i o n s under w h i c h t h e e x p e r i m e n t was p e r f o r m e d . T h i s e x p e r i m e n t was c a r r i e d out i n t h e w i n t e r o f 1976 under s u p p l e m e n t a l l i g h t i n g w h i c h i n no way 38 TABLE 1: Some C h e m i c a l C h a r a c t e r i s t i c s o f P o u l t r y Manure and the S o i l s Used i n t h e S t u d y . * P o u l t r y Manure G r i g g S o i l Monroe S o i l O r g a n i c m a t t e r (%) 45.05 7.72 5.95 pH 6.8. 5.0 5.3 C.E.C. (meq/lOOg) — 24.6 25.3 E.C. (mmhos/cm) 87.50 0.12 0.09 T o t a l m e t a l s : Mn (ppm) 182.70 361.10 348.80 Fe (%) 0.10 2.88 2.44 Zn , (ppm) 179.90 67.20 114.10 Cu (ppm) 23.30 18.70 16.50 K (%) 1.57 0.10 0.13 Na (%) 0.57 0.03 0.03 0.005M DTPA e x t r a c t a b l e m e t a l s (ppm) Mn 30.6 8.6 4.7 Fe 78.0 291.0 139.3 Zn 56.4 2.7 10.3 Cu 5.8 2.2 3.1 K 8,646.4 5.5 29.9 Na 2,941.4 9.9 6.2 0.1 N H C l e x t r a c t a b l e m e t a l s (ppm) Mn 18.1 37.2 28.4 Fe 50.0 182.8 77.5 Zn 5.9 5.9 20.1 Cu 3.0 3.4 4.0 K 8,258.3 45.1 129.4 Na 3,008.9 25.3 24.2 * V a l u e s f o r p o u l t r y < 20%. V a l u e s f o r manure a r e based s o i l samples a r e on a m o i s t u r e based on a i r c o n t e n t o f d r i e d w e i g h t . TABLE 2: Dry M a t t e r P r o d u c t i o n o f Corn S e e d l i n g s . G r i g g S o i l Monroe S o i l Manure _ A p p l i e d E x p t . I E x p t . I I E x p t . I l l E x p t . I E x p t . I I E x p t . I l l t / h a g/column Tops 0 7.30 2.30 3.50 7.68 3.72 5.43 20 27.30 9.01 8.28 30.05 8.48 19.08 40 19.88 4.71 18.85 26.55 4.83 26.00 L i n e a r e f f e c t ** N.S. ** ** N.S. ** Q u a d r a t i c e f f e c t ** ** N.S. Ro o t s ** ** N.S. 0 1.43 0.27 0.68 2.55 0.65 1.38 20 7.18 1.11 1.78 10.55 0.85 3.08 40 2.43 0.44 3.73 4.55 0.36 6.33 L i n e a r e f f e c t N.S. N.S. A* N.S. N.S. ** Q u a d r a t i c ** ** N.S. A* A* N-. S. e f f e c t 70°C w e i g h t b a s i s . No manure was a p p l i e d i n E x p t . I I I . N.S. - Not s i g n i f i c a n t (P = 0.05). ^ S i g n i f i c a n t (P = 0.01). 41 approached t h e n o r m a l s u n s h i n e i n t e n s i t y o f t h e o t h e r two "summer" e x p e r i m e n t s . I n b o t h E x p e r i m e n t s I and I I , t r e a t m e n t s had h i g h l y s i g n i f i c a n t e f f e c t s ; on d r y m a t t e r ( t o p s ) p r o d u c t i o n (P < 0.01). I n E x p e r i m e n t I , h i g h manure r a t e s were r e f l e c t e d i n t h e y i e l d , b u t y i e l d i n c r e a s e s were n o t the same f o r t h e 20 and 40 t r a t e s . I n E x p e r i m e n t I I , however, y i e l d r e s p o n s e was s i g n i f i c a n t l y c u r v i l i n e a r (P < 0.01), w i t h t h e 20 t r a t e g i v i n g t h e h i g h e s t y i e l d . S i m p l e l i n e a r c o r r e l a t i o n a n a l y s i s between r a t e o f manure a p p l i c a t i o n and d r y m a t t e r ( t o p ) p r o d u c t i o n p r o d u c e d c o r r e l a t i o n c o e f f i c i e n t s o f 0.60 and 0.73 f o r G r i g g and Monroe s o i l s r e s p e c t i v e l y f o r E x p e r i m e n t I . I n E x p e r i m e n t I I t h e r v a l u e s d e c r e a s e d t o 0.27 and 0.17 r e s p e c t i v e l y f o r t h e two s o i l s . T h i s o b s e r v a t i o n and t h e f a c t t h a t t h e r e l a t i o n s h i p between manure r a t e s and y i e l d o f d r y m a t t e r was s i g n i f i c a n t l y c u r v i l i n e a r a r e p o s s i b l e i n d i c a t i o n s t h a t t h e second a d d i t i o n o f 40 t / h a a d v e r s e l y a f f e c t e d t h e y i e l d o f c o r n t o p s . P o s s i b l e c auses f o r t h i s o b s e r v a t i o n may i n c l u d e NH^ t o x i c i t y and e x c e s s amounts o f s o l u b l e s a l t s . S h o r t a l l and L i e b h a r d t (1975) have i n d i c a t e d t h a t h i g h r a t e s o f manure a p p l i c a t i o n may i n c r e a s e s a l i n i t y s u f f i c i e n t l y t o r e d u c e c r o p y i e l d . H i l e m a n (1971) a l s o f o u n d t h a t moderate t o heavy r a t e s o f p o u l t r y manure r e l e a s e d damaging amounts o f NH^. I n t h i s s t u d y i t was o b s e r v e d t h a t i n i t i a l g rowth o f s e e d l i n g s i m m e d i a t e l y a f t e r t r a n s p l a n t i n g was a major p r o b l e m w i t h columns t h a t r e c e i v e d 40 t / h a . The s e e d l i n g s , however, s u r v i v e d a f t e r t h e i n i t i a l i n t e n s i v e 42 l e a c h i n g . P erhaps s u c h heavy a p p l i c a t i o n s f o l l o w e d by some t i m e l a p s e may r e d u c e p a r t o f t h e s e p r o b l e m s . I n a l l e x p e r i m e n t s s o i l t y p e d i d n o t s i g n i f i c a n t l y (P < 0.05) i n f l u e n c e c o r n ( t o p s ) d r y m a t t e r p r o d u c t i o n . I t must be emphasized, however, t h a t t h e s e r e s u l t s a r e b a s e d on o n l y two s o i l t y p e s . Manure a p p l i c a t i o n s i g n i f i c a n t l y i n f l u e n c e d r o o t d r y m a t t e r p r o d u c t i o n i n b o t h E x p e r i m e n t s I and I I . I n b o t h e x p e r i m e n t s r o o t d r y m a t t e r p r o d u c t i o n was h i g h e s t w i t h t h e 20 t r a t e ( T a b l e 2 ) . I n E x p e r i m e n t I I I , t h e r e s i d u a l e f f e c t o f t h e manure a p p l i c a t i o n i n t h e two p r e v i o u s e x p e r i m e n t s was e v a l u a t e d . A n a l y s i s o f v a r i a n c e i n d i c a t e s t h a t t h e p r e v i o u s manure t r e a t m e n t s h i g h l y s i g n i f i c a n t l y (P < 0.01) i n f l u e n c e d t h e c o r n ( t o p and r o o t ) d r y m a t t e r p r o d u c t i o n . Corn y i e l d s i n E x p e r i m e n t I I I i n c r e a s e d w i t h p r e v i o u s r a t e s o f manure a p p l i c a t i o n ( T a b l e 2 ) . Such e f f e c t s might be even more marked i n c o o l e r c l i m a t e s where r a t e o f m i n e r a l i z a t i o n and g e n e r a l d e c o m p o s i t i o n o f o r g a n i c m a t t e r i s s l o w . 2. Concentration of Metals in Corn Tops in Response to Manure  Appligation T a b l e s 3A and 3B show t h e c o n c e n t r a t i o n o f m e t a l s i n c o r n t o p s . I n E x p e r i m e n t I , t r e a t m e n t s had a h i g h l y s i g n i f i c a n t e f f e c t on c o r n t i s s u e c o n c e n t r a t i o n o f Mn, F e , Zn, and Na (P .< 0.01) and Cu (P < 0.05). The e f f e c t s o f manure t r e a t m e n t v a r i e d w i t h t h e d i f f e r e n t m e t a l s . F o r example: i n E x p e r i m e n t I t h e c o n c e n t r a t i o n o f Mn, Fe, 43 TABLE 3A: C o n c e n t r a t i o n o f Mn, Fe, and Zn i n Corn Tops* Manure A p p l i e d Mn Fe Zn S o i l t / h a ppm Ex p e r i m e n t I G r i g g 0 20 40 322 ( 49) 222 ( 7) 239 ( 7 4 ) 488 (328) 109 ( 12) 135 ( 9) 64 (11) 40 ( 2) 54 ( 4) Monroe 0 20 40 136 ( 7) 103 ( 5) 130 ( 21) 248 (164) 100 (. 14) 135 ( 40) 106 ( 3) 66 ( 4) 88 (12) G r i g g 0 20 40 E x p e r i m e n t I I 488 (154) 213 ( 40) 170 ( 27) 939 (336) 191 ( 53) 325 (244) 82 ( 2) 43 (12) 36 ( 7) Monroe 0 20 40 246 ( 79) 163 ( 21). 117 ( 22) 623 (190) 575 (129) 553 (228) 113 (..5) 59 ( 4) 57 ( 8 ) . G r i g g 0 20 40 E x p e r i m e n t I I I 470 ( 94) 218 ( 26) 151 ( 15) 952 (374) 725 ( 76) 294 ( 81) 72 (16) 65 (25) 39 ( 8) Monroe 0 20 40 332 ( 57) 146 ( 45) 143 ( 43) 490 ( 75) 158 ( 25) 153 ( 85) 103 (14) 61 (12) 53 (18) *70°C w e i g h t b a s i s . V a l u e s i n p a r e n t h e s i s r e p r e s e n t s t a n d a r d e r r o r o f the mean. 44 TABLE 3B: Concentration of Cu, Na, and K i n Corn Tops* Manure Applied Cu Na K S o i l t/ha ppm % Experiment I Grigg 0 20 40 15 ( 2) 12 ( 1) 13 ( 1) 18 (10) 20 ( 3) 54 ( 9). 0.71 (0.04) 1.08 (0.09) 2.04 (0.39) Monroe 0 20 40 15 12 14 (• 1) ( 1) ( 2) 35 ( 9) 24 ( 9) 53 (11) 2.85 (0.30) 1.88 (0.25) 2.66 (0.45) Grigg 0 20 40 Experiment II 34 (25) 13 ( 3) 9 ( 1 ) 57 (28) 37 (19) 62 (19) 0.57 (0.04) 2.44 (0.90) 3.51 (0.63) Monroe 0 20 40 14 ( 1) 11 ( 1) 9 ( 4) 35 40 98 ( 6) (12) (32) 1.06 2.42 (0.12) (0.20) 3.15 (1.11) Grigg 0 20 40 Experiment III 12 ( 1) 9 ( 0) 8 ( 1) 15 ( 4) 25 ( 8) 18 ( 8) 0.34 0.62 1.31 (0.03) (0.12) (0.24) Monroe 0 20 40 12 8 ( 2) (-1) ( 1). 16 16 18 ( 4) ( 5) ( 6) 0.68 (0.09) 0.66 (0.08) 1.28 (0.52) *70 C weight basis. Values i n parenthesis represent standard error of the mean. 45 and Zn d e c r e a s e d w i t h t h e a p p l i c a t i o n o f 20 t and i n c r e a s e d s l i g h t l y w i t h t h e 40 t r a t e , whereas h i g h manure r a t e s were r e f l e c t e d i n t h e c o n c e n t r a t i o n o f Na. I n E x p e r i m e n t I I t h e t i s s u e c o n c e n t r a t i o n o f t h e heavy m e t a l s d e c r e a s e d as t h a t o f Na and K i n c r e a s e d w i t h manure r a t e s ( T a b l e s 3A and 3B). A n a l y s i s o f v a r i a n c e a l s o i n d i c a t e s t h a t i n E x p e r i m e n t I , s o i l t y p e s i g n i f i c a n t l y (P < 0.01) i n f l u e n c e d Mn and Zn c o n c e n t r a t i o n s i n t h e t o p s . I n E x p e r i m e n t I I Zn and K (P < 0.01) and Cu (P < 0.05) c o n c e n t r a t i o n s were s i g n i f i c a n t l y a f f e c t e d by t r e a t m e n t s . S o i l t y p e a l s o s i g n i f i c a n t l y (P < 0.01) i n f l u e n c e d Zn c o n c e n t r a t i o n i n E x p e r i m e n t I I . I n E x p e r i m e n t I I I , t h e p r e v i o u s manure t r e a t m e n t s s i g n i f i c a n t l y (P < 0.01) d e c r e a s e d t h e c o n c e n t r a t i o n o f Mn, Zn, and Cu, b u t i n c r e a s e d t h a t o f K i n t h e t o p s . R e s u l t s o f some f i e l d work w i t h p o u l t r y manure by Bomke and Lowe ( p e r s o n a l communication) showed t h e same g e n e r a l t r e n d s f o r K and t h e heavy m e t a l s . The r e l a t i v e l y l o w e r p l a n t c o n c e n t r a t i o n s o f heavy m e t a l s f o l l o w i n g manure a p p l i c a t i o n on b o t h s o i l s may r e f l e c t i n c r e a s e d y i e l d o r i m m o b i l i z a t i o n i n t h e s o i l i n u n a v a i l a b l e forms. These o b s e r v a t i o n s a r e i n agreement w i t h r e p o r t e d d a t a by A t k i n s o n et al. (1958) and H e n s l e r et al. (1970). These d a t a s u g g e s t t h a t r e l a t i v e l y h i g h r a t e s of p o u l t r y manure may be a p p l i e d t o t h e s o i l w i t h o u t a p p r e c i a b l e danger o f d e v e l o p i n g c o n d i t i o n s t o x i c t o p l a n t s . I t does n o t f o l l o w , however, t h a t an a n n u a l o r b i e n n i a l a p p l i c a t i o n w i l l c o n t i n u e t o be h a r m l e s s , s i n c e as t h e o r g a n i c m a t e r i a l i s c o n t i n u a l l y o x i d i z e d , 46 th e n e t c o n c e n t r a t i o n o f t h e heavy m e t a l s may c o n t i n u a l l y r i s e . I t i s i m p o r t a n t i n s u c h a s t u d y t o c o n s i d e r t h e p o s s i b l e v a r i a t i o n o f t h e o r g a n i c c o l l o i d w i t h t i m e . Some c o n c e r n may a l s o be e x p r e s s e d o v e r t h e p o s s i b i l i t y t h a t a l a r g e e x c e s s o f some heavy m e t a l s and Na o v e r p l a n t needs and s o i l a b s o r p t i v e c a p a c i t y m ight r e s u l t from v e r y h i g h r a t e s of manure a p p l i c a t i o n and cause c o n t a m i n a t i o n o f t h e groundwater. S i m p l e c o r r e l a t i o n c o e f f i c i e n t s were c a l c u l a t e d t o :'. i n v e s t i g a t e t h e r e l a t i o n s h i p between r a t e o f manure a p p l i c a t i o n , and d r y m a t t e r p r o d u c t i o n (as i n d e p e n d e n t v a r i a b l e s ) and t h e c o n c e n t r a t i o n o f me.tals i n t h e t o p s , r o o t s , and l e a c h a t e s (as dependent v a r i a b l e s ) . The c o r r e l a t i o n c o e f f i c i e n t s ( r ) f o r E x p e r i m e n t s I and I I a r e p r e s e n t e d i n T a b l e s 4A and 4B. The r e s u l t s show an i n v e r s e c o r r e l a t i o n between r a t e of manure a p p l i c a t i o n , w e i g h t o f c o r n t o p s and r o o t s on one hand, and t h e c o n c e n t r a t i o n of heavy m e t a l s i n t h e c o r n t o p s , on t h e o t h e r . S p e c i f i c a l l y as t h e r a t e o f manure a p p l i c a t i o n i n c r e a s e d and hence d r y m a t t e r ( t o p ) p r o d u c t i o n i n c r e a s e d i n E x p e r i m e n t I , t h e c o n c e n t r a t i o n o f heavy m e t a l s i n t h e t o p s d e c r e a s e d . A s i m i l a r t r e n d o c c u r r e d i n E x p e r i m e n t I I , but w i t h d i f f e r e n t i n t e n s i t y . 3. Total Uptake of Metals by Corn Seedlings (tops only) I n t h i s t h e s i s , t h e t e r m t o t a l u p t a k e i s d e f i n e d and used t o d e s c r i b e t h e amount o f a g i v e n m e t a l removed f r o m a s p e c i f i c w e i g h t o f s o i l by c o r n s e e d l i n g s . The t o t a l u p t a k e o f m e t a l s by c o r n s e e d l i n g s i s p r e s e n t e d i n A p p e n d i c e s B . l - B.6. Graphs o f t o t a l u p t a k e a g a i n s t r a t e s of manure a p p l i c a t i o n a r e p r e s e n t e d i n F i g s . 5A -5F. An e x a m i n a t i o n o f F i g s . 5A - 5F and A p p e n d i c e s B . l - B.6 r e v e a l s 47 TABLE 4A: C o r r e l a t i o n C o e f f i c i e n t s ( r ) R e l a t i n g R a t e o f Manure A p p l i c a t i o n , Weight o f Corn Tops, and R o o t s t o C o n c e n t r a t i o n o f M e t a l s i n Tops, R o o t s , and L e a c h a t e s ( E x p e r i m e n t I ) . Rate of Manure — A p p l i c a t i o n — G r i g g Monroe S o i l . S o i l Wt. o f Corn Tops G r i g g Monroe S o i l S o i l Wt. o f Corn Roots G r i g g Monroe S o i l S o i l C orn Tops Mn Fe . Zn Cu K Na Corn R o o t s Mn Fe Zn Cu K Na L e a c h a t e Mn Fe Zn Cu K Na -0.54 -0.14 -0.60* -0.44 -0.36 -0.42 -0.45 -0.27 0.91** -0.15 0.83** 0.51 -0.18 0.70** -0.93** -0.11 -0.80** -0.15 -0.78** -0.14 0.81** 0.80** 0.82** 0.92** 0.42 0.02 0.32 -0.47 -0.25 0.27 -0.46 -0.42 0.65* 0.72** 0.70** 0.59* -0.79** -0.70** -0.65* -0.52 -0.83** -0.88** -0.79** -0.83** 0.28 -0.76** 0.14 -0.11 0.35 0.72** -0.52 0.28 -0.53 0.42 -0.46 0.45 0.47 0.31 0.67* 0.67* -0.23 -0.37 -0.24 -0.48 -0.46 -0.34 -0.63* -0.72** -0.08 0.21 -0.07 0.02 -0.58* -0.81** -0.45 -0.44 -0.85** -0.77** -0.67* -0.89** -0.12 -0.85** -0.29 -0.60* 0.66* 0.52 -0.13 0.75** -0.17 0.85** -0.09 0.85** 0.08 -0.33 0.33 0.18 -0.38 -0.36 -0.29 -0.31 -0.51 -0.51 -0.58* -0.46 -0.45 -0.17 -0.42 -0.29 * S i g n i f i c a n t a t P 0.05 l e v e l . * * S i g n i f i c a n t a t P 0.01 l e v e l . 48 TABLE 4B: C o r r e l a t i o n C o e f f i c i e n t s ( r ) R e l a t i n g R a t e of Manure A p p l i c a t i o n , Weight o f Corn Tops, and Roots t o C o n c e n t r a t i o n o f M e t a l s i n Tops, R o o t s , and L e a c h a t e s (E x p e r i m e n t I I ) . Rate o f Manure — A p p l i c a t i o n — G r i g g Monroe S o i l S o i l Wt. o f Corn Tops G r i g g Monroe S o i l S o i l Wt. o f Corn — — R o o t s G r i g g Monroe S o i l S o i l Corn Tops Mn Fe Zn Cu K Na Corn R o o t s Mn Fe Zn Cu K Na L e a c h a t e Mn Fe Zn Cu K Na -0.80** -0.77** -0.65* -0.17 -0.88** -0.86** -0.60* -0.65* 0.90** 0.82** 0.10 0.77** 0.40 0.88** 0.01 0.39 -0.27 0.02 -0.02 0.43 0.39 0.28 0.69* 0.70** -0.04 0.49 -0.20 0.24 -0.85** -0.44 0.25 0.74** 0.75** 0.80** 0.89** 0.97** -0.57* -0.45 -0.65* -0.17 -0.65* -0.55 -0.45 -0.31 0.14 0.07 -0.72** -0.35 -0.33 -0.01 -0.17 -0.05 -0.43 -0.26 -0.37 -0.47 0.11 0.29 -0.06 -0.19 -0.61* -0.21 -0.52 -0.28 -0.47 -0.22 -0.45 -0.34 -0.19 -0.32 -0.03 0.05 -0.43 -0.02 -0.52 -0.10 -0.52 0.05 -0.34 0.06 0.02 -0.40 -0.73** -0.72* -0.39 -0.58* -0.17 -0.37 -0.37 -0.01 -0.45 -0.62* 0.14 0.22 -0.18 -0.48 -0.59* -0.51 -0.48 -0.43 -0.39 0.06 -0.45 -0.70** -0.27 -0.77** -0.15 -0.46 * S i g n i f i c a n t a t P 0.05 l e v e l . * * S i g n i f i c a n t a t P 0.01 l e v e l . 49 FIGURE 5A: Mn Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . 50 FIGURE 5B: Fe Uptake by Corn Seedlings (Tops) from Manure Amended S o i l s „in Experiments I , I I , and I I I . 51 FIGURE 5C: Zn Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s I n E x p e r i m e n t s I , I I , and I I I . 52 GRIGG SOIL 0 I 1 1 1 1 0 2 0 4 0 MANURE APPLIED (t/ha) FIGURE 5D: Cu Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . 53 MANURE APPLIED (t/ha) FIGURE 5E: K Uptake by Corn S e e d l i n g s (Tops) f r o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . 54 FIGURE 5F: Na Uptake by Corn Seedlings (Tops) from Manure Amended S o i l s i n Experiments I , I I , and I I I . 55 t h a t i n g e n e r a l t h e u p t a k e o f heavy m e t a l s from G r i g g s o i l i n E x p e r i m e n t s I and I I i n c r e a s e d w i t h t h e a p p l i c a t i o n o f 20 t / h a and t h e n d e c r e a s e d as the r a t e o f manure a p p l i c a t i o n i n c r e a s e d t o 40 . .t/ha. W i t h Fe, t h e c o n c e n t r a t i o n i n t h e c o r n t o p s f e l l f r o m 487.8 t o 108.8 ppm ( T a b l e 3) as t h e r a t e o f manure a p p l i c a t i o n i n c r e a s e d t o 20 t / h a i n E x p e r i m e n t I . T h i s seems t o be more t h a n mere c a r b o h y d r a t e d i l u t i o n due t o i n c r e a s e d d r y m a t t e r p r o d u c t i o n . The t o t a l u p t a k e o f Fe i n t h e c o r n t o p s f e l l f r o m .3.64 mg i n t h e check sample t o 2.98 and 2.65 mg f o r samples t h a t r e c e i v e d 20 and 40 t / h a of manure r e s p e c t i v e l y (Appendix B.2). A s i m i l a r p a t t e r n o f d e p r e s s e d Fe u p t a k e w i t h manure a p p l i c a t i o n o c c u r r e d i n E x p e r i m e n t I I on t h e G r i g g s o i l . The r e a s o n f o r such a d e p r e s s e d Fe c o n t e n t o r u p t a k e i s n o t known, but i t does p o i n t out a p o s s i b l e p h y s i o l o g i c a l p r o b l e m t h a t w i l l need t o be c o n s i d e r e d when a p p l y i n g l a r g e q u a n t i t i e s o f manure on a g r i c u l t u r a l l a n d s . On t h e Monroe s o i l t h e u p t a k e of Mn, F e , Zn, and Cu i n c r e a s e d w i t h r a t e s o f manure a p p l i c a t i o n i n E x p e r i m e n t I . However, i n E x p e r i m e n t I I t h e g e n e r a l u p t a k e t r e n d f r o m t h i s s o i l was a l s o t h a t o f an i n c r e a s e and t h e n a d e c r e a s e w i t h manure a p p l i c a t i o n . T h i s g e n e r a l p a t t e r n o f d e c r e a s e d t o t a l u p t a k e o f t h e heavy m e t a l s w i t h t h e h i g h e s t r a t e o f manure a p p l i c a t i o n i s p r o b a b l y due t o a d e c l i n i n g r e s p o n s e i n y i e l d and n u t r i e n t u p t a k e w i t h s u c c e s s i v e i n c r e m e n t s of added manure. The u p t a k e o f K and Na f r o m t h e two s o i l s i n b o t h E x p e r i m e n t s I and I I was g e n e r a l l y d i f f e r e n t f r o m t h a t shown by the heavy m e t a l s . K and Na u p t a k e g e n e r a l l y i n c r e a s e d w i t h manure a p p l i c a t i o n . 56 I n E x p e r i m e n t I I I t o t a l u p t a k e o f t h e i n d i v i d u a l n u t r i e n t s ( A p p e n d i c e s B . l - B.6) g e n e r a l l y i n c r e a s e d in..response t o t h e p r e v i o u s manure a p p l i c a t i o n s . 4. Leaching Losses of Metals Data on t h e t o t a l l e a c h i n g l o s s e s o f m e t a l s a r e p r e s e n t e d i n A p p e n d i c e s B . l - B.6. F i g s . 6A - 6F show t h e t o t a l l e a c h i n g l o s s e s of m e t a l s as a f u n c t i o n o f manure a p p l i c a t i o n . The amount of d r a i n a g e (volume o f l e a c h a t e ) was g e n e r a l l y l e s s e n e d by e v a p o t r a n s p i r a t i o n and t h e much h e a v i e r d r y m a t t e r p r o d u c t i o n i n t e n s i f i e d m e t a l u p t a k e p a r t i c u l a r l y on t h e columns t h a t r e c e i v e d 20 t / h a . The l o s s e s o f a l l heavy m e t a l s by l e a c h i n g were t h e r e f o r e r e l a t i v e l y l o w e r f o r columns t h a t r e c e i v e d 20 t / h a t h a n t h o s e t h a t r e c e i v e d no manure. T h i s same p a t t e r n i s t r u e f o r K and Na i n E x p e r i m e n t I and K i n E x p e r i m e n t I I on G r i g g s o i l . However, Na l o s s e s i n E x p e r i m e n t I I o n ( G r i g g s o i l , and K and Na i n b o t h e x p e r i m e n t s on Monroe s o i l i n c r e a s e d i n l e a c h i n g l o s s e s w i t h r a t e s o f manure a p p l i c a t i o n . L e a c h i n g l o s s e s o f a l l m e t a l s s t u d i e d ' e x c e p t K i n E x p e r i m e n t I a r e h i g h e r f r o m G r i g g s o i l compared t o Monroe s o i l . However, i n E x p e r i m e n t I I , e x c e p t f o r t h e no-manure t r e a t m e n t , l o s s e s a r e h i g h e r f r o m Monroe compared t o t h e G r i g g s o i l . S i m p l e l i n e a r c o r r e l a t i o n a n a l y s i s between the r a t e o f manure a p p l i c a t i o n and l e a c h i n g l o s s e s o f m e t a l s ( T a b l e s 4A and 4B) i n d i c a t e s h i g h p o s i t i v e c o r r e l a t i o n i n E x p e r i m e n t s I and I I f o r Na and K ( r v a l u e r a n g i n g f r o m 0.59 t o 0.97). These r e s u l t s s u g g e s t t h a t as manure r a t e s MANURE APPLIED (t/ha) FIGURE 6A: L e a c h i n g L o s s e s o f Mn from Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . 58 c E O O CP E Q UJ X o < _J CD U-120 r 8 0 4 0 120 r 80 4 0 0 GRIGG SOIL MONROE SOIL II • x 0 2 0 4 0 MANURE APPLIED (t/ha) FIGURE 6B: Leaching Losses of Fe from Manure Amended S o i l s i n Experiments I, I I , and I I I . 0.6 0.4 c E "I 0.2 o E Q UJ X o < GRIGG SOIL m 0.4 0.2 MONROE SOIL EE TL — o •X-0 20 40 MANURE APPLIED (t/ha) FIGURE 6C: L e a c h i n g L o s s e s o f Zn fro m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . 0.15 r O.IO-*-c | g 0.05^ e GRIGG SOIL o 0.20 < UJ _J O 0.15 Hy s m MONROE SOIL 31 0.10-0.05 0 , L —' * 20 4 0 MANURE APPLIED (t/ha) FIGURE 6D: Leaching Losses of Cu from Manure Amended S o i l s i n Experiment I , I I , and I I I . FIGURE 6E: Leaching Losses of K from Manure Amended S o i l s i n Experiments I , I I , and I I I . 150 GRIGG SOIL 100 h c E o o 5 0 E 0 Q LU X o < LU |50 a 2 100 5 0 0 MONROE SOIL I E / / ..x 0 20 MANURE APPLIED (t/ha) 4 0 FIGURE 6F: L e a c h i n g L o s s e s o f Na fr o m Manure Amended S o i l s i n E x p e r i m e n t s I , I I , and I I I . 63 i n c r e a s e d , l e a c h i n g l o s s e s o f Na and K a l s o i n c r e a s e d . The r e s p o n s e i n t h e c a s e o f t h e heavy m e t a l s v a r i e d . I n E x p e r i m e n t s I and I I t h e r e were s i g n i f i c a n t t r e a t m e n t by s o i l i n t e r a c t i o n e f f e c t s on t h e l e a c h i n g o f t h e heavy m e t a l s . D a t a on t h e s e a r e t h e r e f o r e d i s c u s s e d f r o m t h e graphs ( F i g s . 6A - 6D). Only i n t h e c a s e o f Zn and Cu i n E x p e r i m e n t I I d i d s i g n i f i c a n t l i n e a r r e l a t i o n s h i p s e x i s t between manure r a t e s and l e a c h i n g l o s s e s . C o r r e l a t i o n c o e f f i c i e n t s were -0.85 f o r Zn on G r i g g s o i l and 0.74 f o r Cu on Monroe s o i l , i n d i c a t i n g t h a t i n E x p e r i m e n t I I i n c r e a s i n g manure r a t e s d e c r e a s e d Zn l e a c h i n g l o s s e s on G r i g g s o i l , b u t i n c r e a s e d Cu l o s s e s on Monroe s o i l . E x a m i n a t i o n of F i g s . 6A - 6C r e v e a l t h a t i n E x p e r i m e n t s I and I I , l e a c h i n g l o s s e s o f Mn, Fe, and Zn g e n e r a l l y d e c r e a s e d w i t h t h e a p p l i c a t i o n o f 20 t / h a and t h e n i n c r e a s e d w i t h t h e 40 t r a t e . I n E x p e r i m e n t I I I t h e l e a c h i n g l o s s e s o f K and Na i n c r e a s e d whereas t h a t o f t h e heavy m e t a l s g e n e r a l l y d e c r e a s e d w i t h p r e v i o u s manure r a t e s . These r e s u l t s s u g g e s t t h a t t h e r e i s t h e p o s s i b i l i t y o f i n t e r a c t i o n w i t h p o u l t r y manure, or w i t h o r g a n i c d e g r a d a t i o n p r o d u c t s o f i t , t h e r e b y r e d u c i n g t h e m o b i l i t y o f t h e s e heavy m e t a l s . C o r r e l a t i o n c o e f f i c i e n t s between y i e l d o f c o r n d r y m a t t e r and l e a c h i n g l o s s e s o f m e t a l s ( T a b l e s 4A and 4B) were g e n e r a l l y n e g a t i v e . T h i s s u g g e s t s f u r t h e r t h a t t h e r e d u c t i o n i n l e a c h i n g l o s s e s o f heavy m e t a l s w i t h i n c r e a s e d manure r a t e s was p r o b a b l y due, t o a l a r g e e x t e n t , t o i n c r e a s e d d r y m a t t e r p r o d u c t i o n and hence u p t a k e . I n c r e a s e d w a t e r r e t e n t i o n by t h e added o r g a n i c m a t e r i a l may a l s o have c o n t r i b u t e d t o d e c r e a s e d l e a c h i n g . 64 5. Ratios of Metal Uptake and Leaching Losses to Metal Inputs (Original  Soil Total, Soil 0.005M DTPA Extractable, Soil 0.1N HCl Extractable  and Manure) Assuming i n d e p e n d e n t c o n t r i b u t i o n s o f t h e v a r i o u s i n p u t s o u r c e s t o t h e q u a n t i t y o f m e t a l s t a k e n up by t h e c o r n p l a n t s , as w e l l as t h o s e l o s t t h r o u g h l e a c h i n g , t h e i r r e s p e c t i v e r a t i o s on p e r c e n t b a s i s a r e c a l c u l a t e d i n A p p e n d i c e s C . l - C.6. R a t i o s o f b o t h m e t a l u p t a k e and l e a c h i n g l o s s e s t o t h e o r i g i n a l s o i l t o t a l i n d i c a t e t h a t u p t a k e and l e a c h i n g l o s s e s s e p a r a t e l y c o n s t i t u t e d o n l y a s m a l l f r a c t i o n o f t h e o r i g i n a l s o i l t o t a l m e t a l s . Assuming t h a t u p t a k e and l e a c h i n g l o s s e s o f m e t a l s were s o l e l y f r o m t h e o r i g i n a l s o i l t o t a l s o u r c e , t h e a p p r o x i m a t e r a t i o s a r e summarized below: Uptake t o L e a c h i n g L o s s e s S o i l T o t a l t o S o i l T o t a l M e t a l I n p u t (xlOO) I n p u t (xlOO) Mn 0.09 - 0.67 0.01 - 2.06 Fe <0.10 <0.01 - 0.20 Zn 0.09 - 0.80 0.01 - 0.29 Cu 0.09 - 0.87 0.05 - 0.49 K 0.50 -20.48 0.05 - 0.92 Na 0.01 - 0.17 0.35-17.67 The d a t a i n d i c a t e t h a t t h e r a t i o s a r e r e l a t i v e l y h i g h e r f o r K i n up t a k e and Na i n l e a c h i n g l o s s e s compared w i t h t h e heavy m e t a l s . These r a t i o s f o r K and Na g e n e r a l l y i n c r e a s e d w i t h t h e r a t e o f manure a p p l i c a t i o n . 65 R a t i o s o f m e t a l u p t a k e t o manure i n p u t i n b o t h E x p e r i m e n t s I and I I (Appendix C . l ) g e n e r a l l y "decreased w i t h i n c r e a s e d r a t e o f a p p l i c a t i o n . The r e l a t i v e l y h i g h e r r a t i o s r e c o r d e d f o r Mn (132.58) on t h e G r i g g s o i l and K (142.90) on t h e Monroe s o i l , b o t h of w h i c h r e c e i v e d 20 t / h a , p r o b a b l y i n d i c a t e t h a t s o u r c e s o t h e r t h a n manure were i m p o r t a n t i n s u p p l y i n g t h e s e m e t a l s . The r a t i o s o f K and Na l o s t t h r o u g h l e a c h i n g t o manure i n p u t s ( A ppendix C.2) i n c r e a s e d w i t h r a t e s of manure a p p l i c a t i o n on b o t h s o i l s . There was some v a r i a t i o n w i t h r e s p e c t t o t h e heavy m e t a l s . F o r example, i n b o t h E x p e r i m e n t s I and I I l e a c h i n g l o s s e s t o manure i n p u t of Fe and Mn i n c r e a s e d w i t h r a t e s o f manure a p p l i c a t i o n on t h e G r i g g s o i l . On t h e same s o i l , t h e r a t i o s f o r Zn and Cu d e c r e a s e d o r showed l i t t l e change w i t h manure a p p l i c a t i o n . On Monroe s o i l , however, Fe and Cu r a t i o s d e c r e a s e d w i t h manure a p p l i c a t i o n i n b o t h E x p e r i m e n t s I and I I . The r e a s o n f o r t h e v e r y h i g h r a t i o s o f Mn and Fe l e a c h i n g l o s s e s t o manure i n p u t i n E x p e r i m e n t I I (Appendix C.2) i s n o t known. However, i t does s u g g e s t t h a t manure a l o n e c o u l d n o t have a c c o u n t e d f o r t h e l e v e l s o f t h e s e m e t a l s i n t h e l e a c h a t e s . Comparisons o f u p t a k e and l e a c h i n g l o s s e s o f m e t a l s as f r a c t i o n s o f e i t h e r s o i l DTPA o r HC1 e x t r a c t a b l e forms ( A p p e n d i c e s C.3 - C.6) show t h a t e x c e p t f o r Fe, t h e DTPA f r a c t i o n s a r e g e n e r a l l y h i g h e r . T h i s i n d i c a t e s t h a t p r o b a b l y 0.005M DTPA measures a more l a b i l e f o r m o f t h e heavy m e t a l s t h a n 0.1N HC1. R a t i o s o f K u p t a k e t o e i t h e r s o i l DTPA o r HC1 e x t r a c t a b l e form ( A p p e n d i c e s C.3 and C.4) a r e 66 e x c e p t i o n a l l y h i g h . Such h i g h r a t i o s a r e n o t s u r p r i s i n g s i n c e i t i s r e a l i z e d t h a t f o r t h i s n u t r i e n t element t h e b e s t measure of p l a n t a v a i l a b i l i t y i s t h e e a s i l y e x c h a n g e a b l e ( u s u a l l y e x t r a c t e d w i t h 1.0N ammonium a c e t a t e ) . C o m p a r a t i v e l y , the r a t i o s i n d i c a t e t h a t t h e 0.1N H C l s o l u b l e ( b e l i e v e d t o be a measure o f d i f f i c u l t l y e x c h a n g e a b l e forms by L e e p e r (1972)) K i s a much b e t t e r measure o f a v a i l a b i l i t y t h a n t h e 0.005M DTPA. D a t a showing ( i ) t h e p o t e n t i a l s o u r c e s of m e t a l i n p u t ( o r i g i n a l s o i l t o t a l , s o i l 0.005M DTPA e x t r a c t a b l e , s o i l 0.1N H C l e x t r a c t a b l e and manure); ( i i ) m e t a l s i n k s ( c r o p u p t a k e and l e a c h i n g l o s s e s ) ; and ( i i i ) m e t a l s t o r a g e a r e p r e s e n t e d i n A p p e n d i c e s B . l - B.6 E x a m i n a t i o n of t h e d a t a i n d i c a t e t h a t d e s p i t e t h e v a r i e d p a t t e r n s of u p take and l e a c h i n g l o s s e s o f m e t a l s i n r e s p o n s e t o t h e manure a p p l i c a t i o n , s t o r a g e o f m e t a l s seems to i n c r e a s e w i t h r a t e s o f a p p l i c a t i o n . I t i s , however, n o t c e r t a i n t o what e x t e n t such g r a d u a l a c c u m u l a t i o n i n s o i l w i t h l o n g t e r m a d d i t i o n s o f manure c o u l d l e a d t o t h e l e a c h i n g o f more m e t a l s . 6. Electrical Conductivity and pH of Leachates F i g s . 7A, 7B, and 7C show t h e e l e c t r i c a l c o n d u c t i v i t y o f l e a c h a t e s p l o t t e d a g a i n s t weeks o f l e a c h i n g . F i g . 8 a l s o shows pH o f l e a c h a t e s p l o t t e d a g a i n s t weeks o f l e a c h i n g . D a t a f o r t h e s e p l o t s a r e p r e s e n t e d i n A p p e n d i c e s D and E r e s p e c t i v e l y . A n a l y s i s - o f . v a r i a n c e f o r t h e s e d a t a i n d i c a t e s t h a t t r e a t m e n t s s i g n i f i c a n t l y (P < 0. i n f l u e n c e d pH v a l u e s of l e a c h a t e s i n t h e f o u r t h week of l e a c h i n g i n E x p e r i m e n t I and t h e f i f t h week i n E x p e r i m e n t I I . T r eatments a l s o 67 0.4 GRIGG SOIL .x-40/ ~ 0.2 E o \ to o JC E E > I— 0.41 O O z o o MONROE SOIL o o 0.2 40.-* -o. TIME (WEEKS OF LEACHING) FIGURE 7A: E l e c t r i c a l C o n d u c t i v i t y of S o i l Leachates and Treatment Levels (0, 20, 40 t/ha) i n Experiment I. I.Or 0.5 E o \ CO o JZ E E >-I— 0 GRIGG SOIL 4 0 x-'X-. --o O Q 1.0 z o o 0.5 0 MONROE SOIL > °> x. r 40K h 2 0 or X-.. ± 0 2 4 6 TIME (WEEKS OF LEACHING) FIGURE 7B: E l e c t r i c a l C o n d u c t i v i t y o f S o i l L e a c h a t e s and Treatment L e v e l s ( 0 , 20, 40 t/ha) i n E x p e r i m e n t I I . 69 .0 I 2 0 o v 0.5 E o \ cn O sz e E ^ 1.0 r 4 0 x GRIGG SOIL O O z o o L 4 0 x-.. L 20c-0.5 MONROE SOIL •x 0 2 4 6 TIME (WEEKS OF LEACHING) FIGURE 7C: E l e c t r i c a l C o n d u c t i v i t y o f S o i l L e a c h a t e s and P r e v i o u s Treatment L e v e l s ( 0 , 20, 40 t/ha) i n Exp e r i m e n t I I I . 9 8 g I i I . i . i i I i i i i i L 0 2 4 6 0 2 4 6 TIME (WEEKS OF LEACHING ) FIGURE 8: pH o f L e a c h a t e s and Treatment L e v e l s ( 0 , 20, 40 t/ha) i n E x p e r i m e n t s I , I I , and I I I . 71 c o n t r i b u t e d s i g n i f i c a n t l y t o t h e v a r i a b i l i t y i n e l e c t r i c a l c o n d u c t i v i t y measurements o f t h e l e a c h a t e s i n t h e 2nd, 3 r d , 4 t h , and 5 t h weeks i n E x p e r i m e n t I and t h r o u g h o u t t h e seven weeks o f l e a c h i n g i n E x p e r i m e n t I I . F i g . 7A i n d i c a t e s t h a t i n E x p e r i m e n t I , t h e 40 t / h a t r e a t m e n t gave t h e h i g h e s t EC of l e a c h a t e i n t h e 4 t h week o f l e a c h i n g . From F i g . 7B i t i s a l s o seen t h a t i n E x p e r i m e n t ' I I t h e 40 t / h a t r e a t m e n t r e s u l t e d i n t h e h i g h e s t EC i n t h e 3 r d week. I n E x p e r i m e n t I I I w h i c h t e s t e d t h e r e s i d u a l e f f e c t s o f t h e two p r e v i o u s manure a p p l i c a t i o n s , t r e a t m e n t s h i g h l y s i g n i f i c a n t l y i n f l u e n c e d t h e pH v a l u e s of l e a c h a t e s f o r weeks 1, 2, 5, and 6. I n t h i s e x p e r i m e n t , p r e v i o u s manure a p p l i c a t i o n s a l s o s i g n i f i c a n t l y a f f e c t e d t h e EC o f l e a c h a t e s f o r weeks 1, 2, 3, and 5. F i g . 7C i n d i c a t e s t h a t a t t h e b e g i n n i n g o f E x p e r i m e n t I I I the EC of l e a c h a t e s f r o m columns t h a t had r e c e i v e d 40 and 20 t / h a were r e l a t i v e l y h i g h e r . These h i g h EC v a l u e s d e c r e a s e d v e r y s h a r p l y w i t h l e a c h i n g w i t h i n 4 weeks t o l e v e l s below t h e check t r e a t m e n t . The r e a s o n f o r t h i s d e c l i n e i n t h e r e l e a s e o f s o l u b l e s a l t s f r o m manured columns i s n o t known. However, i t i s p o s s i b l e t h a t r e a c t i o n w i t h an o r g a n i c component o r w i t h an immediate d e g r a d a t i o n p r o d u c t of t h e decomposing manure or b o t h c o u l d have a c c e l e r a t e d t h e l o s s o f s o l u b l e s a l t s . 72 7. 0.005M DTPA and 0.1H HCl Extractable Metals in the Soils at the  End of Experiments I and II T a b l e s 5A, 5B, 5C, and 5D show t h e 0.005M DTPA and 0.1N HC1 s o l u b l e Mn, Fe, Zn, and Cu r e s p e c t i v e l y i n t h e s o i l s a t two d e p t h s . T o t a l s o i l l e v e l s o f t h e m e t a l s a t t h e two dept h s a r e p r e s e n t e d i n A p p e n d i c e s F . l and F.2. As w o u l d be e x p e c t e d f r o m t h e a d d i t i o n o f manure t o t h e s e s o i l s , a wide range i n DTPA and HC1 e x t r a c t a b l e m e t a l c o n t e n t i s e v i d e n t . There i s no c o n s i s t e n t p a t t e r n i n t h e d i s t r i b u t i o n o f m e t a l s i n t h e t o p and l o w e r h a l v e s o f t h e columns. A n a l y s i s o f v a r i a n c e i n d i c a t e s t h a t o n l y i n t h e case o f t h e HC1 e x t r a c t a b l e Mn and Fe a t t h e end o f E x p e r i m e n t I I do s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s o c c u r between t h e two s o i l l a y e r s i n t h e columns. T h i s i s w i t h o u t r e g a r d t o s o i l t y p e o r t r e a t m e n t . A l l Mn and Fe v a l u e s a r e g e n e r a l l y h i g h e r i n t h e l o w e r h a l f o f t h e columns. T h i s s u g g e s t s an a p p r e c i a b l e movement fr o m t h e top and c o n c e n t r a t i o n i n t h e l o w e r h a l f o f t h e columns i n t h e HC1 s o l u b l e Mn and Fe. T h i s o b s e r v a t i o n a g r e e s w i t h i n f o r m a t i o n i n t h e l i t e r a t u r e (Hodgson, 1963) t h a t e x p l a i n s t h e c o n c e n t r a t i o n o f Fe and Mn i n some h o r i z o n s d u r i n g s o i l f o r m a t i o n . The many f a c t o r s t h a t may c o n t r i b u t e t o t h i s phenomenon i n c l u d e changes i n pH, o x i d a t i o n p o t e n t i a l and t h e p r e s e n c e o f s o l u b l e c o m p l e x i n g a g e n t s . An i n t e r a c t i o n o f a l l t h r e e f a c t o r s c o u l d have c o n t r i b u t e d t o t h i s o b s e r v a t i o n . A n a l y s i s o f v a r i a n c e and a l s o e x a m i n a t i o n o f T a b l e 5C r e v e a l t h a t a t t h e end o f E x p e r i m e n t I I , s i g n i f i c a n t d i f f e r e n c e s i n DTPA and HC1 s o l u b l e Zn o c c u r r e d between s o i l s and a l s o among t r e a t m e n t s w i t h i n s o i l s . G e n e r a l l y , Monroe s o i l showed r e l a t i v e l y 73 TABLE 5A: 0.005 M DTPA and 0.1 N H C l E x t r a c t a b l e Manganese C o n t e n t i n S o i l s a t t h e End o f E x p e r i m e n t s I and I I . E x p t . I E x p t . I I Manure Top H a l f Lower H a l f Top H a l f Lower H a l f A p p l i e d o f Column o f Column o f Column o f Column S o i l v ( t / h a ) ppm 0.005 M DTPA S o l u b l e G r i g g 0 9.03 10.12 13.67 16.92 20 16.87** 9.25 18.20 12.12 40 38.38** 17.55 20.37 14.67 Monroe 0 4.25 14.90** 18.00 21.68 20 15.77 12.55 43.82** 26.47 40 26.32** 16.85 59.35** 37.60 LSD(0.05) 4.14 11.15 LSD(0.01) 5.67 15.27 0.1 N H C l S o l u b l e G r i g g 0 149.80 143.70 134.00 148.80 20 117.00 118.10 147.20 156.80 40 108.40 135.20** 157.20 161.60 Monroe 0 28.82 55.57** 108.80 127.50 20 64.47 52.07 120.70 136.60 40 76.90** 50.80 126.90 131.70 LSD(0.05) 14.64 21.57 LSD(0.01) 20.05 29.54 * * S i g n i f i c a n t l y h i g h e r a t P 0.01 l e v e l . * S i g n i f i c a n t l y h i g h e r a t P 0.05 l e v e l . 74 TABLE 5B: 0.005 M DTPA and 0.1 N H C l E x t r a c t a b l e I r o n C o n t e n t i n S o i l s a t t h e End o f E x p e r i m e n t s I and I I I . E x p t . I E x p t . I I Manure Top H a l f Lower H a l f Top H a l f Lower H a l f A p p l i e d o f Column of Column o f Column o f Column S o i l ( t / h a ) — ppm 0.005 M DTPA S o l u b l e G r i g g 0 337.1 351.5 439. 5 • 456. 8 20 318.4 340.4* 418. 3 429. 0 40 381.8 421.5** 423. 3 422. 8 Monroe 0 176.8 210.3** 359. 0 422. 8* 20 220.5* 199.8 381. 1 404. 3 40 242.3** 206.8 388. 3 411. 3 LSD(0.05) 18.4 61. 7 LSD(0.01) 25.2 84. 5 0. 1 N H C l S o l u b l e G r i g g 0 1115.0 1081.0 1145. 0 1522. o** 20 553.1 690.6 896. 9 1289. o** 40 393.8 800.0** 946. 9 1308. o** Monroe 0 137.6 179.3 615. 6 782. 8 20 172.3 157.0 478. 2 736. 0* 40 166.9 150.0 517. 2 725. 0 LSD(0.05) 281.1 219. 2 LSD(0.01) 384.9 300. 2 * * S i g n i f i c a n t l y h i g h e r a t P 0.01 l e v e l . * S i g n i f i c a n t l y h i g h e r a t P 0.05 l e v e l . 75 TABLE 5C: 0.005 M DTPA and 0.1 N H C l E x t r a c t a b l e Z i n c C o n t e n t i n S o i l s a t the End of E x p e r i m e n t s I and I I . E x p t . I E x p t . I I S o i l Manure A p p l i e d ( t / h a ) Top H a l f o f Column Lower H a l f of Column Top H a l f o f Column ppm Lower H a l f o f Column 0.005 M DTPA S o l u b l e G r i g g 0 20 40 1.03 1.53 3.15** 1.10 1.23 1.90 0.75 1.70 2.30 0.65 0.83 1.45 Monroe 0 20 40 LSD(0.05) LSD(0.01) 11.22** 8.73 10.32 10.67 10.47** 11.05** 0.36 0.49 4.35** 6.00** 8.23** 2.40 3.45 4.65 0.92 1.27 0.1 N H C l S o l u b l e G r i g g 0 20 40 6.65 7.25** 9.55** 7.08 5.43 5.68 5.70 8.08** 12.82** 5.43 6.08 8.18 Monroe 0 20 40 LSD(0.05) LSD(0.01) 21.57** 19.40 22.20** 20.65 19.80 20.07 0.45 0.62 16.65 19.50* 26.22** 15.95 18.05 19.82 1.15 1.57 * * S i g n i f i c a n t l y h i g h e r a t P 0.01 l e v e l . * S i g n i f i c a n t l y h i g h e r a t P 0.05 l e v e l . 76 TABLE 5D: 0.005 M DTPA and 0.1 N H C l E x t r a c t a b l e Copper C o n t e n t i n S o i l s a t t h e End o f E x p e r i m e n t I and I I . E x p t . I E x p t . I I Manure Top H a l f Lower H a l f Top H a l f Lower H a l f A p p l i e d o f Column of Column o f Column o f Column S o i l (.t/ha) ppm —: 0.005 M DTPA S o l u b l e G r i g g 0 1.23 1.18 1.30 1.33 20 1.43 1.08 1.98 1.35 40 2.30** 1.35 2.53 2.03 Monroe 0 4.48 4.53 3.95 3.65 20 4.43 4.28 5.95** 4.00 40 4.80 4.50 7.00** 5.23 LSD(0. 05) 0. 40 0. 72 LSD(0. 01) 0. 54 0. 99 0.1 N HCl S o l u b l e G r i g g 0 9.50 9.55 8.90 10.72** 20 6.93 7.53 8.30 9.43 40 5.65 8.65** 9.38 10.22 Monroe 0 6.88 6.90 11.15 12.85** 20 6.63 6.58 9.98 12.70** 40 5.40 6.35 9.15 12.50** LSD(0. 05) 1. 06 1. 20 LSD(0. 01) 1. 45 1. 65 * * S i g n i f i c a n t l y h i g h e r a t P 0.01 l e v e l . * S i g n i f i c a n t l y h i g h e r a t P 0.05 l e v e l . 77 h i g h e r v a l u e s o f Zn t h a n G r i g g S o i l , and w i t h i n s o i l s , v a l u e s i n c r e a s e d w i t h r a t e o f manure a p p l i c a t i o n i n b o t h l a y e r s . Between t h e two s o i l l a y e r s , g e n e r a l l y t h e H C l s o l u b l e Zn was h i g h e r i n t h e t o p t h a n t h e l o w e r h a l f i n b o t h s o i l s . Some columns t h a t had r e c e i v e d manure showed s i g n i f i c a n t l y h i g h e r l e v e l s o f DTPA s o l u b l e Mn and Cu i n t h e upper h a l f . H i g h e r l e v e l s o f H C l s o l u b l e Cu a l s o o c c u r r e d i n t h e l o w e r t h a n t h e upper h a l f o f t h e column. 8. Content and Composition of Soil Organic? Matter Following Heavy  Applications of Poultry Manure V a l u e s f o r o r g a n i c and m e t a l c o n t e n t s o f t h e b l a n k s r u n w i t h e x p e r i m e n t a l samples were n e g l i g i b l e . T h i s means t h a t t h e r e was v e r y l i t t l e o r no c o n t r i b u t i o n f r o m r e a g e n t s t o t h e s e r e c o r d e d v a l u e s . T a b l e s 6A and 6B show t h e d i s t r i b u t i o n o f o r g a n i c m a t t e r i n t h e e x p e r i m e n t a l m a t e r i a l s ( p o u l t r y manure, and t h e two s o i l s b e f o r e and a f t e r t h e e x p e r i m e n t s ) . The d a t a i n d i c a t e t h a t t h e i n i t i a l 0.1N ^ S O ^ t r e a t m e n t i n t h e o r g a n i c m a t t e r f r a c t i o n a t i o n t e c h n i q u e removed v a r i e d amounts o f o r g a n i c m a t t e r r a n g i n g f r o m 1.42 t o 2.28% o f t h e t o t a l s o i l o r g a n i c m a t t e r and about 4.84% f r o m t h e manure sample. T h i s f r a c t i o n i s b e l i e v e d (Lowe, 1978) t o be p r e d o m i n a n t l y p o l y s a c c h a r i d e s i n n a t u r e . O r g a n i c m a t t e r c o n t e n t o f s o i l s a t the end of E x p e r i m e n t I I I i n c r e a s e d w i t h manure a p p l i c a t i o n . I n c r e a s e s ranged f r o m 1 t o 3% f o r s o i l s t h a t r e c e i v e d 20 t / h a and 3 t o 7% f o r t h o s e t h a t r e c e i v e d 40 t / h a of manure. The o r g a n i c c a r b o n of t h e o r g a n i c e x t r a c t ranged 78 TABLE 6A: D i s t r i b u t i o n o f O r g a n i c M a t t e r i n P o u l t r y Manure, G r i g g S o i l , and Monroe S o i l ( A i r : D r i e d S a m p l e s ) . Sample % O r g a n i c M a t t e r Method A i r d r i e d manure A i r d r i e d manure Manure f r a c t i o n s : O r g a n i c E x t r a c t Humic A c i d F u l v i c A c i d A c i d E x t r a c t G r i g g S o i l ( A i r d r i e d ) S o i l f r a c t i o n s : O r g a n i c E x t r a c t Humic A c i d F u l v i c A c i d A c i d E x t r a c t Monroe S o i l ( A i r d r i e d ) S o i l f r a c t i o n s : O r g a n i c E x t r a c t Humic A c i d F u l v i c A c i d A c i d E x t r a c t 45.05 69.05 10.03 3.31 59 18 7.72 4.21 3.05 1.28 0.11 5.95 59 90 02 W a l k l e y - B l a c k L o s s on I g n i t i o n A i o cd rH PQ I >. 0J rH A i rH Cfl IS 0.11 79 TABLE 6B: O r g a n i c M a t t e r C o n t e n t and D i s t r i b u t i o n i n G r i g g and Monroe S o i l s a t the End o f E x p e r i m e n t I I I ( A i r D r i e d S o i l ) . Manure T o t a l O r g a n i c Humic F u l v i c A c i d A p p l i e d S o i l O.M. E x t r a c t A c i d A c i d E x t r a c t S o i l t / h a % G r i g g 0 7.76 4.21 2.98 1.14 0.13 20 7.98 4.05 2.88 1.21 0.13 40 8.33 4.41 2.60 0.88 0.14 Monroe 0 5.95 2.67 1.64 0.69 0.12 20 6.02 3.12 1.64 0.74 0.12 40 6.14 2.88 1.69 0.74 0.14 80 f r o m 44.93 t o 54.22% of the t o t a l s o i l c a r b o n f o r t h e s o i l s a t t h e end o f E x p e r i m e n t I I I . On t h e s e same s o i l s most of t h e o r g a n i c c a r b o n was a s s o c i a t e d w i t h t h e humic f r a c t i o n . T a k i n g t h e sum o f o r g a n i c m a t t e r c o n t e n t s of t h e humic and f u l v i c f r a c t i o n s as t h e t o t a l o r g a n i c m a t t e r i n t h e o r g a n i c e x t r a c t t h e r e l a t i v e p e r c e n t a g e s o f o r g a n i c m a t t e r i n t h e s e two f r a c t i o n s a r e c a l c u l a t e d i n T a b l e 7. The d a t a show t h a t t h e humic f r a c t i o n makes f r o m 69 t o 75% and t h e f u l v i c f r a c t i o n 25 t o 31% of t h e t o t a l o r g a n i c m a t t e r . The raw p o u l t r y manure sample, however, shows ( T a b l e 11A) a r e l a t i v e l y h i g h e r p e r c e n t a g e of o r g a n i c m a t t e r i n t h e f u l v i c f r a c t i o n ( 6 3 % ) . 8.1 Distribution of Metals in the Organic Fractions of the  Experimental Materials T a b l e s 8A, 8B, and 8C show t h e d i s t r i b u t i o n o f m e t a l s i n t h e e x p e r i m e n t a l m a t e r i a l s and t h e i r o r g a n i c s e p a r a t e s o f o r g a n i c e x t r a c t , i n s o l u b l e humin, humic and f u l v i c f r a c t i o n s and t h e i n i t i a l a c i d e x t r a c t . I n t h i s s t u d y s i n c e no work was done on t h e humin r e s i d u e , v a l u e s i n T a b l e s 8A, 8B, and 8C (and any r e l e v a n t subsequent t a b l e s ) were c a l c u l a t e d by t h e d i f f e r e n c e between t h e t o t a l s o i l l e v e l and t h e sum o f t h e o r g a n i c and i n i t i a l a c i d e x t r a c t s . R e s u l t s o f C r o s s (1975) show t h a t d a t a o b t a i n e d when o r g a n i c e x t r a c t s were a s p i r a t e d d i r e c t l y i n t o t h e a t o m i c a b s o r p t i o n flame were n o t s a t i s f a c t o r y . She a l s o f ound hydrogen p e r o x i d e t o be a b e t t e r c h o i c e as an o x i d i z i n g agent i n e x p e r i m e n t s l i k e t h i s 81 TABLE 7: D i s t r i b u t i o n of Organic Matter i n the Humic and F u l v i c Fractions Calculated as Percent T o t a l Organic Matter* i n the Organic Extract of Grigg and Monroe S o i l s at the End of Experiment I I I . Manure Applied Humic. Acid. .. F u l v i c Acid S o i l (t/ha) % Grigg 0 72 28 20 70 30 40 75 25 Monroe 0 70 30 20 69 31 40 70 30 *Total organic matter i n organic extract equals the sum of % organic matter i n the humic + f u l v i c f r a c t i o n s from Table 6B. 82 TABLE 8A: D i s t r i b u t i o n of Metals i n Organic Extract, Humic and F u l v i c Acids, Humin Residue and Acid Extracts of the Poultry Manure, Grigg and Monroe S o i l s . Elemental Organic Humic F u l v i c Humin Acid Analysis Extract Acid Acid Residue* Extract Sample Metal ppm • Manure Mn 182.7 16.0 2.4 8.0 50.7 116.0 Fe 959.2 40.0 16.0 80.0 871.2 48.0 Zn 179.9 26.0 6.4 52.0 '78.3 75.6 Cu 23.3 14.0 6.4 44.0 8.1 1.2 Grigg Mn 361.1 33.0 6.8 38.0 285.5 42.6 S o i l Fe 28,773.0 2,750.0 936.0 2,140.0 25,683.0 340.0 Zn 67.2 4.0 1.2 8.0 59.6 3.6 Cu 18.7 8.0 5.6 34.0 8.5 2.2 Monroe Mn 348.8 21.0 4.4 24.0 298.4 29.4 S o i l Fe 24,448.0 1,390.0 764.0 1,020.0 22,898.0 160.0 Zn 114.1 6.0 2.4 14.0 95.9 12.2 Cu 16.5 12.0 6.0 24.0 .1.7 2.8 Humm _ ,Organic Acid . T-J . i = Elemental - („ ° _ + _ Residue » , . • Extract Extract Analysis 83 TABLE 8B: D i s t r i b u t i o n of Metals i n Organic Extract, Humic and F u l v i c Acids, Humin Residue and Acid Extracts of the Grigg S o i l at the End of Experiment I I I . Total Manure Elemental Organic Humic F u l v i c Humin Acid Applied Analysis Extract Acid Acid Residue* Extract t/ha : ppm MANGANESE 0 260.9 27.5 5.8 22.0 106.0 127.4 20 257.8 28.5 6.2 25.0 110.5 118.8 40 310.2 31.5 6.8 21.0 164.5 114.2 IRON 0 19,500.0 4,675.0 1,540.0 2,790.0 13,515.0 1,310.0 20 20,125.0 4,200.0 1,454.0 2,440.0 14,845.0 1,080.0 40 20,906.3 3,975.0 1,550.0 2,260.0 16,041.3 890.0 ZINC 0 55.8 7.0 2.8 10.0 45.6 3.2 20 61.1 7.0 3.0 9.0 49.9 4.2 40 63.6 3.3 2.0 5.0 54.6 5.7 COPPER 0 16.3 18.0 6.8 14.0 - 6.4 20 17.3 26.5 5.8 17.0 - 5.3 40 17.2 7.0 6.0 15.0 5-.0 5.2 TT • T o t a l _ . . ., . Humin , .Organic , Acid . * . , = Elemental - („ ? _ + „ _ A Residue . , . Extract Extract Analysis 84 TABLE 8C: D i s t r i b u t i o n of Metals i n Organic Extract, Humic and F u l v i c Acids, Humin Residue and Acid Extracts of the Monroe S o i l at the End of Experiment I I I . Tot a l Manure Elemental Organic Humic F u l v i c Humin Acid Applied Analysis Extract Acid Acid Residue* Extract t/ha — ; : ppm ; MANGANESE 0 301.6 16.5 5.2 13.0 181.3 103.8 20 343.8 23.0 5.2 20.0 265.5 55.3 40 356.3 21.0 4.4 19.0 248.1 87.2 IRON 0 18,687.5 1,990.0 1,162.0 880.0 15,947.5 750.0 20 18,781.3 1,915.0 916.0 850.0 16,416.3 450.0 40 20,937.5 1,955.0 1,038.0 850.0 18,542.5 440.0 ZINC 0 105.6 7.0 3.0 10.0 88.8 9.8 20 117.9 10.0 3.0 11.0 98.4 9.5 40 121.9 6.5 3.0 10.0 103.6 11.8 COPPER 0 15.3 7.0 6,8 21.0 1.3 7.0 20 22.3 12.5 7.8 18.0 4.3 5.5 40 21.8 6.0 8.4 22.0 10.3 5.5 TT • Total n . . ., *Humm .. -Organic . Acid N * . , = Elemental - C + „ _ J) Residue . , . Extract Extract Analysis 85 as i t brought about good o x i d a t i o n w h i l e not i n t r o d u c i n g i n t o the system any other metals l i k e sodium as i n the case of sodium h y p o c h l o r i t e . Hydrogen peroxide was t h e r e f o r e used to o x i d i z e the organic f r a c t i o n s p r i o r to elemental a n a l y s i s . There was g e n e r a l l y no agreement between the sum of the metal contents of the humic and f u l v i c f r a c t i o n s and that of the bulk organic .extract. In most cases the sum of the metal contents of the humic and f u l v i c f r a c t i o n s exceeded that of the organic e x t r a c t . S i m i l a r r e s u l t s were found by Cross (1975). The reason f o r such a discrepancy i s not known but i t does p o i n t out the p o s s i b i l i t y of v a r i e d metal-organic carbon i n t e r a c t i o n s and hence the v a r i e d a b i l i t i e s of the atomic absorption flame to d i s s o c i a t e such complexes. One i n t e r e s t i n g observation i n t h i s organic matter s e p a r a t i o n and elemental a n a l y s i s was the f a c t that the 0...1N ^SO^ pretreatment removed not only some organic m a t e r i a l s but a l s o some heavy metals. Tables 9A, 9B, and 9C show the d i s t r i b u t i o n metals i n the experimental m a t e r i a l s c a l c u l a t e d as a percent of the t o t a l metal content. Data f o r the raw p o u l t r y manure (Table 9A) i n d i c a t e that 63% of Mn i n t h i s m a t e r i a l was e x t r a c t e d by the 0.1 N H^SO^ pretreatment. While 91% of Fe remained i n the humic resi d u e , i t could not be explained i n t h i s study what amount was a s s o c i a t e d w i t h the organic and mineral r e s i d u e s . Perhaps i n the case of s o i l m a t e r i a l s i t could be speculated, from the work of 8 6 TABLE 9A: D i s t r i b u t i o n of Metals i n Experimental Materials (Manure, Grigg and Monroe So i l s ) Calculated as Percent T o t a l * Metal (Air Dried B a s i s ) . Sample Manure Metal Mn Fe Zn Cu Organic Extract 9 4 1 4 6 0 Humin Residue 28 91 44 35 Acid Extractable 63 5 42 5 Grigg s o i l Mn Fe Zn Cu 9 10 6 43 79 89 89 45 12 1 5 12 Monroe s o i l Mn Fe Zn Cu 6 6 5 73 86 94 84 10 8 1 11 17 Total = Organic Extract + Humin Residue + Acid Extractable from Table 8A. 87 TABLE 9B: D i s t r i b u t i o n of Metals i n Grigg S o i l at the End of Experiment I II Calculated as Percent T o t a l * Metal (Air Dried S o i l ) . Manure Organic Humin Acid Applied Extract Residue Extractable t/ha % 0 20 40 11 11 10 MANGANESE 41 43 53 49 46 37 IRON 0 24 69 7 20 21 74 5 40 19 77 4 ZINC 0 13 82 6 20 11 82 7 40 5 86 9 COPPER 0 110 - 39 20 153 - 31 40 41 29 30 *Total = Organic Extract + Humin Residue + Acid Extractable from Table 8B. 88 TABLE 9C: D i s t r i b u t i o n of Metals i n Monroe S o i l at the End of Experiment III Calculated as Percent T o t a l * Metal (Air Dried S o i l ) . Manure Organic Humin Acid Applied Extract Residue Extractable t/ha • % MANGANESE 0 5 60 34 20 7 77 25 40 6 70 24 IRON 0 11 85 4 20 10 87 2 40 9 89 2 ZINC 0 7 84 9 20 8 83 8 40 5 85 10 COPPER 0 46 , 8 46 20 56 19 25 40 28 47 25 Total = Organic Extract + Humin Residue + Acid Extractable from Table 8C. 89 Cross (1975), that Zn and Fe i n the humin residue might be associated with the mineral component. Zn i n the manure i s f a i r l y evenly d i s t r i b u t e d between the humin residue and the. acid extract, both accounting f o r 44 and 42% r e s p e c t i v e l y . Thus only 14% of Zn occurred i n the organic extract. The p i c t u r e with Cu was rather i n t e r e s t i n g f or the purpose of t h i s study. R e l a t i v e l y higher percentages of Cu occurred i n the organic extract of most of the experimental materials. The Cu content of the organic extract was 60% of the t o t a l i n the manure sample, 43% i n Grigg s o i l and 73% i n Monroe s o i l . In the Monroe s o i l s at the end of Experiment I I I , the Cu content of the organic extract was higher than the t o t a l s o i l Cu before f r a c t i o n a t i o n . This was i n t e r e s t i n g because i t points out the fact that the dry ashing technique used i n the determination of t o t a l s o i l Cu was e i t h e r not e f f i c i e n t or caused some losses of organic Cu. This discrepancy also suggests that part of the extra Cu i n the organic extract came from that which may have been strongly bonded to organic matter as a "bridge" i n organo-clay complexes. Such strongly bonded Cu may have been released by the oxidation with hydrogen peroxide. This observation seems to agree, even though not d i r e c t l y with Tan et al. (1971), who, while studying the metal complexing capacity and the nature of the chelating ligands of water extract of poultry l i t t e r , found Cu ions to be the most e f f e c t i v e i n the formation of complexes. 90 8.2 Metal: Organic Matter Ratios Associated with the Humic Acid  and Fulvic Acid Components Using the sum of the metal contents of the humic and f u l v i c f r a c t i o n s as t o t a l i n the organic extract, the d i s t r i b u t i o n of the r e l a t i v e percentages of metals i n these two f r a c t i o n s was calculated and presented i n Tables 10A, 10B, and IOC. The data in d i c a t e that a greater proportion of metals i n the organic f r a c t i o n i s associated with the f u l v i c component. Tables 11A, 11B, and 11C show the metal:organic matter r a t i o s i n the humic and f u l v i c f r a c t i o n s . These r a t i o s were calculated using the r e l a t i v e percentages of metals i n the humic and f u l v i c f r a c t i o n s and the percentages of organic matter i n these components. Data quoted e a r l i e r i n t h i s thesis showed that the humic f r a c t i o n made from 69 to 75% and the f u l v i c f r a c t i o n 25 to 31% of the t o t a l organic matter i n the organic extract of s o i l samples. Despite these high proportions of organic matter i n the humic f r a c t i o n , the data i n Tables 11A, 11B, and 11C lead to the conclusion that by f a r the greater complexing a c t i v i t y l i e s with the f u l v i c f r a c t i o n . These r e s u l t s agree with the general view that even though the f u l v i c f r a c t i o n has a lower molecular weight than the humic f r a c t i o n , i t has a higher number of f u n c t i o n a l groups per unit weight than the humic f r a c t i o n . TABLE 10A: D i s t r i b u t i o n of Metals i n the Humic and F u l v i c Fractions Calculated as Percent T o t a l Metals* i n the Organic Extract of Experimental Materials (Manure, Grigg,.and Monroe S o i l s ) . Sample Metal Humic Acid F u l v i c Acid Manure Mn 23 77 Fe 17 83 Zn 11 89 Cu 13 87 Grigg S o i l Mn 15 85 Fe 30 70 Zn 13 87 Cu 14 86 Monroe S o i l Mn 15 85 Fe 43 57 Zn 15 85 Cu 20 80 *Total metals equals the sum of metals i n Humic acid and F u l v i c acid from Table 8A. TABLE 10B: D i s t r i b u t i o n of Metals i n the Humic and F u l v i c Fractions Calculated as Percent T o t a l Metals* i n the Organic Extract of Grigg S o i l at the End of Experiment I I I . Manure Humic F u l v i c Applied Acid Acid t/ha % MANGANESE 0 21 79 20 20 80 40 24 76 IRON 0 36 64 20 37 63 40 41 59 ZINC 0 22 78 20 25 75 40 29 71 COPPER 0 33 67 20 25 75 40 29 71 *Total metals equals the sum of metals i n Humic acid and F u l v i c a c i d from Table 8B. TABLE IOC: D i s t r i b u t i o n of Metals i n the Humic and F u l v i c Fractions Calculated as Percent T o t a l Metals* i n the Organic Extract of Monroe S o i l at the End of Experiment I I I . Manure Humic F u l v i c Applied Acid Acid t/ha % :  0 20 40 MANGANESE 29 21 19 71 79 81 0 20 40 IRON 57 52 55 43 48 45 ZINC 0 23 77 20 21 79 40 23 77 COPPER 0 24 76 20 30 70 40 38 72 *Total metals equal the sum of metals i n Humic acid and F u l v i c acid from Table 8C. 94 TABLE 11A: Metal: Organic Matter Ratios i n the Humic and F u l v i c Fractions of the Experimental Materials (Manure, Grigg, and Monroe S o i l s ) . Sample Metal Humic Acid F u l v i c Acid Manure Mn Fe Zn Cu % Organic Matter 0.62 0.46 0.30 0.35 37 1.22 1.32 1.41 1.38 63 Grigg S o i l Mn Fe Zn Cu % Organic Matter 0.21 0.43 0.19 0.20 70 2.83 2.33 2.90 2.87 30 Monroe S o i l Mn Fe Zn Cu % Organic Matter 0.23 0.66 0.23 0.31 65 2.43 1.63 2.43 2.29 35 Type c a l c u l a t i o n : % Mn i n Manure Humic Fraction (Table 10A) % Organic Matter i n Humic Fracti o n 23 37 = 0.62 % Mn i n Manure F u l v i c Fraction (Table 10A) = U- = \ 22 % Organic Matter i n F u l v i c F r a c t i o n 63 TABLE 11B: Metal: Organic Matter Ratios i n the Humic and F u l v i c Fractions of Grigg S o i l at the End of Experiment I I I . Manure Applied Humic F u l v i c (t/ha) Acid Acid MANGANESE 0 0.29 2.82 20 , 0.29 2.67 40 0.32 3.04 IRON 0 . 0.50 2.29 20 0.53 2.10 40 0.55 2.36 ' ZINC 0 0.31 2.79 20 0.36 2.50 40 0.39 2.84 COPPER 0 0.46 2.39 20 0.36 2.50 40 0.39 2.84 Type Ca l c u l a t i o n % Mn i n Humic Fraction (Table 10B) 21 = ^ % Organic Matter i n Humic Fraction (Table 7) 72 % Mn i n F u l v i c Fraction (Table 10B) = 79 _ Q 2 % Organic Matter i n F u l v i c Fraction (Table 7) 28 96 TABLE 11C: Metal: Organic Matter Ratios i n the Humic and F u l v i c Fractions of Monroe S o i l at the End of Experiment I I I . Manure Applied Humic " F u l v i c • t/ha Acid Acid MANGANESE 0 0.41 2.37 20 0.30 2.55 40 0.27 2.70 IRON 0 0.81 1.43 20 0.75 . 1.55 40 0.79 1.50 ZINC 0 0.33 2.57 20 0.30 2.55 40 0.33 2.57 COPPER 0 0.54 2.53 20 0.43 2.26 40 0.54 2.40 Type C a l c u l a t i o n : % Mn i n Humic Fract i o n (Table IPC) = 29 = % Organic Matter i n Humic Acid (Table 7) 70 % Mn i n F u l v i c Fraction (Table IPC) 71 = % Organic Matter i n F u l v i c Acid (Table 7) 30 V. SUMMARY AND CONCLUSIONS Poultry manure applications of 20 t/ha led to increased corn dry matter production. Increasing manure rate to 40 t/ha reduced y i e l d . Such y i e l d reduction was much greater when manure a p p l i c a t i o n was repeated i n Experiment I I . C o r r e l a t i o n c o e f f i c i e n t s (r) of 0.60 and 0.73 for' Grigg and Monroe s o i l s were obtained between rate of manure a p p l i c a t i o n and dry matter (top) production. Repeating the manure a p p l i c a t i o n i n Experiment II led to decreased r values of 0.27 and 0.17 re s p e c t i v e l y f o r the two s o i l s . Further s t a t i s t i c a l t ests indicated that i n Experiment II the y i e l d response to manure ap p l i c a t i o n was c u r v i l i n e a r , with the 20 t rate giving the highest y i e l d . The p o s s i b i l i t y of NH^ t o x i c i t y and excess soluble s a l t i n j u r y wasu suggested. Results i n d i c a t e that i f rates of a p p l i c a t i o n are kept to 20 t/ha or l e s s , p o t e n t i a l t o x i c i t y problems could be eliminated. However, higher rates but l e s s frequent applications may be used. S o i l type had no signdf l e a n t ef feet on dry matter (top) production. However, the use of only two s o i l types i n t h i s study, and hence the l i m i t a t i o n of such a conclusion was recognized. Concentrations of K and Na i n corn tops generally increased with the a p p l i c a t i o n of 20 and 40 t/ha of manure, whereas that of Mn, Fe, Zn, and Cu i n Experiment I decreased, and then rose as the manure rate increased. In Experiments II and I I I , however, tissue concentration of the heavy metals decreased with manure a p p l i c a t i o n . 97 98 Such r e l a t i v e l y lower plant concentrations following manure a p p l i c a t i o n may r e f l e c t increased y i e l d or immobilization i n the s o i l i n unavailable forms. The data suggest that r e l a t i v e l y high rates of poultry manure may be applied to the s o i l without appreciable danger of developing conditions of micronutrient metal t o x i c i t i e s . The study found no evidence f o r s i g n i f i c a n t uptake or leaching of the toxic heavy metals (Cd, Cr, or Pb), such as i s usually encountered with sewage sludge a p p l i c a t i o n (LeRiche, 1968) . The t o t a l uptake of K and Na from the two s o i l s generally increased with manure ap p l i c a t i o n . The uptake of the micronutrient metals, however, increased with the a p p l i c a t i o n of 20 t/ha and then decreased as the manure rate increased to 40 t/ha. In Experiment I I I , previous manure applications l e d to corresponding increases i n the uptake of a l l metals studied. Results indicated the p o s s i b i l i t y that a large amount of soluble s a l t s ( p a r t i c u l a r l y of K and Na) might be leached down and cause contamination of ground water. Such a concern stemmed from the f a c t that manure a p p l i c a t i o n contributed s i g n i f i c a n t l y to the v a r i a b i l i t y i n e l e c t r i c a l conductivity measurements of s o i l leachates. The amount of drainage (volume of leachate) was generally lower from columns that received manure. This was a t t r i b u t e d to the much heavier dry matter production on the manured columns, coupled with higher evapotranspiration. Since the heavier dry matter production also 99 i n t e n s i f i e d metal uptake, lo s s e s by l e a c h i n g of the heavy metals were r e l a t i v e l y lower f o r columns that r e c e i v e d 20 t/ha than those that r e c e i v e d no manure. Simple l i n e a r c o r r e l a t i o n a n a l y s i s between the r a t e of manure a p p l i c a t i o n and l e a c h i n g l o s s e s of metals i n d i c a t e d high p o s i t i v e c o r r e l a t i o n f o r Na and K (r values ranging from 0.59 to 0. 97.. These suggested t h a t high manure rat e s increased the l e a c h i n g l o s s e s of Na and K. The response i n the case of the heavy metals v a r i e d . There were treatment by s o i l i n t e r a c t i o n e f f e c t s on the l e a c h i n g of the heavy metals and data were discussed from graphs. Data i n d i c a t e d that g e n e r a l l y the l e a c h i n g l o s s e s of Mn, Fe, Zn, and Cu decreased w i t h the a p p l i c a t i o n of 20 t and then increased w i t h the 40 t r a t e . C o r r e l a t i o n c o e f f i c i e n t s between y i e l d of corn dry matter and l e a c h i n g l o s s e s of metals were negative. These observations l e d to the f o l l o w i n g c o n c l u s i o n s : 1. That the r e d u c t i o n i n l e a c h i n g l o s s e s of metals w i t h increased manure r a t e s could have occurred because of increased dry matter production and hence uptake. 2. That there was the p o s s i b i l i t y of i n t e r a c t i o n w i t h p o u l t r y manure, or w i t h organic degradation products of i t , thereby reducing the m o b i l i t y of these metals. Assuming independent c o n t r i b u t i o n s of metals from the v a r i o u s p o t e n t i a l sources, comparisons between the r a t i o s of uptake and l e a c h i n g l o s s e s of metals to the input sources l e d to the f o l l o w i n g general conclusions: 100 1. Uptake and leaching losses of metals separately constituted a small f r a c t i o n of the o r i g i n a l s o i l t o t a l l e v e l s . These f r a c t i o n s were r e l a t i v e l y higher for K and Na compared with the heavy metals. 2. Ratios of metal uptake to manure input generally decreased with increased rate of a p p l i c a t i o n . 3. Ratios of leaching losses of K and Na to manure inputs increased with rate of a p p l i c a t i o n . However, there was no . consistent pattern with the heavy metals. 4. Uptake and leaching losses of the heavy metals as a f r a c t i o n of s o i l 0.005 M DTPA extractable form was generally higher (except for Fe) than that of the s o i l 0.1 N HCl extractable form. This suggested that probably 0.005 M DTPA measured a more l a b i l e form of the heavy metals than 0.1 N HCl. Despite the varied patterns of uptake and leaching losses of the metals i n response to the manure a p p l i c a t i o n , t h e i r storage i n s o i l increased with rates of a p p l i c a t i o n . There was no consistent pattern i n the d i s t r i b u t i o n of metals i n the top and lower halves of the s o i l columns at the end of Experiments I and I I . S t a t i s t i c a l l y s i g n i f i c a n t differences i n 0.1 N HCl extractable Mn and Fe occurred between the two s o i l layers i n the columns at the end of Experiment I I . The HCl extractable Mn and Fe values were generally higher i n the lower h a l f of the columns, suggesting an appreciable movement and concentration. Factors, l i k e changes i n pH, oxidation p o t e n t i a l , and the presence of soluble complexing agents, were suggested as contributing to t h i s phenomenon. 101 Examination of the content and composition of s o i l organic ter at the end of the study led to the following conclusions: Manure a p p l i c a t i o n led to increases i n organic matter content of s o i l s at the end of Experiment I I I . Increases ranged from 1 to 3% fo r s o i l s that received 20 t/ha and 3 to 7% f o r those that received 40 t/ha of manure. The i n i t i a l 0.1 N H^SO^ treatment i n the organic matter f r a c t i o n a t i o n technique removed varied values of organic matter ranging from 1.42 to 2.28% of the t o t a l s o i l organic matter and about 4.84% from the manure sample. These were believed to be predominantly polysaccharides i n nature (Lowe, 1978). Taking the sum of organic matter contents of the humic and f u l v i c f r a c t i o n s as the t o t a l organic matter i n the organic extract, the humic f r a c t i o n r e l a t i v e l y made from 69 to 75% and the f u l v i c f r a c t i o n 25 to 31% of the t o t a l organic matter. The raw poultry manure sample, however, showed a r e l a t i v e l y higher percentage of organic matter i n the f u l v i c f r a c t i o n (63%). There was generally no agreement between the sum of the metal contents of the humic and f u l v i c f r a c t i o n s and that of the bulk organic extract. In most cases the former exceeded the l a t t e r . The reason suggested f or such a discrepancy was the p o s s i b i l i t y of varied metal-organic carbon i n t e r a c t i o n s and hence the var i e d a b i l i t i e s of the atomic absorption flame to d i s s o c i a t e such complexes. 102 5. Despite the high p r o p o r t i o n of organic matter i n the humic f r a c t i o n , r e s u l t s of t h i s study i n d i c a t e that a greater p r o p o r t i o n of metals i n the organic f r a c t i o n was a s s o c i a t e d w i t h the f u l v i c component. In c o n c l u s i o n the study found no evidence of heavy metal t o x i c i t y f o l l o w i n g heavy a p p l i c a t i o n s of p o u l t r y manure, however, the storage of metals i n s o i l increased w i t h r a t e s of manure a p p l i c a t i o n . LITERATURE CITED Abbott, J . L. and J. C. L i n g l e . 1968. E f f e c t of s o i l temperature on the a v a i l a b i l i t y of phosphorus i n animal manures. S o i l S c i . 105: 145-152. Alexander, M. 1961. Introduction to s o i l microbiology. Wiley, N. Y. pp. 402-422. Allaway, W. H. 1968. Agronomic controls over the environmental c y c l i n g of trace elements. Adv. Agron. 20: 235-274. A l l i s o n , F. E. 1973. S o i l organic matter and i t s r o l e i n crop production. E l s e v i e r S c i . Pub. Co., Amsterdam. 637 p. Antonovics, J . , A. D. Bardshaw, and R. G. Turner. 1971. Heavy metal tolerance i n plants. Adv. Ecol. Res. 7: 1-85. Atkinson, H. J . , G. R. G i l e s , and J . G. Desjardins. 1958. E f f e c t of farmyard manure on the trace element content of s o i l s and of plants grown thereon. Plant and S o i l 10: 32-36. Baker, D. E. and L. Chesnin. 1975. Chemical monitoring of s o i l s for environmental q u a l i t y and animal and human health. Adv. Agron. 27: 305-374. Bandel, V. A., C. S. Shaffner, and C. A. McClurg. 1972. Poultry manure -A valuable f e r t i l i z e r . Co-op. Ext. Service, Univ. of Maryland Fact Sheet 39. Barber, S. A., J. M. Walker, and E. H. Vasey. 1963. Mechanisms for the movement of plant nutrients from the s o i l and f e r t i l i z e r to the plant root. J . Agr. Food Chem. 11: 204-207. 103 104 B a r n e t t , A. P. 1973. The v a l u e of p o u l t r y manure on c r o p l a n d . P r o c . , 7 t h a n n u a l p o u l t r y h e a l t h and management s h o r t c o u r s e . P o u l t r y S c i . Dept., Clemson U n i v . , Clemson, S. C. pp. 29-37. B a r n e t t , A. P., W. A. J a c k s o n , and W. E. Adams. 1969. A p p l y more n o t l e s s p o u l t r y l i t t e r t o r e d u c e p o l l u t i o n . Crop S o i l s 2 1 ( A p r i l - M a y ) , p. 24. B e c k w i t h , R. S. 1959. T i t r a t i o n c u r v e s o f s o i l o r g a n i c m a t t e r . N a t u r e 184: 745-746. B i s h o p , R. F., L. B. MacLeod, L. P. J a c k s o n , C. R. MacEachern, and E. T. G o r i n g . 1962. A l o n g t e r m f i e l d e x p e r i m e n t w i t h c o m m e r c i a l f e r t i l i z e r and manure. Can. J . S o i l S c i . 42: 49-60. B l a c k , C. A. ( e d . ) . 1965. Methods o f s o i l a n a l y s i s . P a r t 2. C h e m i c a l and m i c r o b i o l o g i c a l p r o p e r t i e s . Agronomy Monograph No. 9. Amer. Soc. A g r on. M a d i s o n , Wise. B l o o m f i e l d , C. 1955. L e a f l e a c h a t e s as a f a c t o r i n p e d o g e n e s i s . J . S c i . Food Agr. 6: 641-651. B l o o m f i e l d , C. 1958. M o b i l i z a t i o n o f i r o n i n p o d z o l s o i l s by aqueous l e a f e x t r a c t s . Chem. and I n d . (London) pp. 259-260. B l o o m f i e l d , C., W. I . K e l s o , and G. Pruden. 1976. R e a c t i o n s between m e t a l s and h u m i f i e d o r g a n i c m a t t e r . J . S o i l S c i . 27: 16-31. Bremner, J . M., P. J . G. Mann, S. G. H e i n t z e , and H. L e e s . 1946. M e t a l l o - o r g a n i c complexes i n s o i l . N a t u r e 158: 790-791. 105 Brown, J. C., L. 0. T i f f i n , and R. S. Holmes. 1960. Competition between chelating agents and roots as factors a f f e c t i n g absorption of i r o n and other ions by plant species. Plant P h y s i o l . 35: 878-886. Brownam, M. G., G. Chesters, and H. B. Pionke. 1969. Evaluation of tests for p r e d i c t i n g the a v a i l a b i l i t y of s o i l manganese to plants. J. Agr. S c i . , Camb. 72: 335-340. Bunzl, K., W. Schmidt, and B. Sansoni. 1976. K i n e t i c s of ion exchange i n s o i l organic matter. IV Adsorption and desorption o j 2H- 2H~ 2~f" 2 j of Pb , Cu , Cd , Zn , and Ca by peat. J. S o i l S c i . 27: 32-41. Bunting, A. H. 1963. Experiments on organic manure. J. Agr. S c i . 60: 121-140. Carlson, C. W., D. L. Grunes, J . A l e s s i , and G. A. Reichman. 1961. Corn growth on Gardena surface and s u b s o i l as affected by a p p l i c a t i o n of f e r t i l i z e r and manure. S o i l S c i . Soc. Amer. Proc. 25: 44-47. Chaney, R. L. 1973. Crop and food chain e f f e c t s of t o x i c elements i n sludges and e f f l u e n t s , pp.. 129-141. In "Recycling municipal sludges and e f f l u e n t s on land". Nat. Assoc. State Univ. and Land-Grant C o l l . Wash., D.C. Chaney, R. L. 1974. Recommendations for management of p o t e n t i a l l y t o x i c elements, pp. 97-120. In "Factors involved i n land a p p l i c a t i o n of A g r i c u l t u r a l and Municipal Waste". USDA, ARS. B e l t s v i l l e , Maryland. 106 Chaney, R. L. 1975. Metals i n plants - absorption mechanisms, accumulation, and tolerance. Paper presented at a symposium on metals i n the Biosphere, Univ. of Guelph, Jan. 7, 1975. Chapman, H. D. 1971. Evaluation of the micronutrient status of s o i l . Proc. Intern. Symp. S o i l F e r t i l i t y Evaluation, New Delhi 1: 940. Cheng, B. T. and G. J . Quelette. 1972. Sugar beets n u t r i t i o n . S o i l S c i . 114: 55-60. Cheshire, M. V., P. C. Dekock, and R. H. E. Inkson. 1967. Factors a f f e c t i n g the copper content of oats grown i n peat. J. S c i . Food Agr. 18: 156-160. Cochran, P. H., G. M. Marion, and A. L. Leaf. 1970. Variations i n tension lysimeter leachate volumes. S o i l S c i . Soc. Amer. Proc. 34: 309-311. Cole, D. W., S. P. Gessel, and E. E. Held. 1961. Tension lysimeter studies of ion and moisture movement i n G l a c i a l T i l l and Coral A t o l l s o i l s . S o i l S c i . Soc. Amer. Proc. 25: 321-325. Cole, D. W. and S. P. Gessel. 1968. Cedar River Research - A program for studying the pathways, rates, and processes of elemental c y c l i n g i n a forest ecosystem. Forest Resources Monograph. Contrib. No. 4. 53 p. Univ. Wash., Seattle. 107 Cox, F. R. and E. J. Kamprath. 1972. Micronutrients s o i l t e s t s . pp. 289-317. In " J . J. Mortvedt, P. M. Goirdano, and W. L. Lindsay (eds.). Micronutrients i n a g r i c u l t u r e " . S o i l S c i . Soc. Amer., Inc., Madison, Wise. Cross, C. H. 1975. The r e l a t i o n s h i p of metals and s o i l organic components with p a r t i c u l a r reference to copper. Ph.D. Thesis, U.B.C., Vancouver. Cross, 0. E., A. P. Mazurak, and L. Chesnin. 1973. Animal waste u t i l i z a t i o n for p o l l u t i o n abatement. Amer. Soc. Agr. Eng. Trans. 16: 160-163. D o l l , E. C. and R. E. Lucas. 1973. Testing s o i l s for K, Ca, and Mg. pp. 133-151. In "L. M. Walsh and J . D. Beaton (eds.). S o i l t e s t i n g and plant a n a l y s i s " . S o i l S c i . Soc. Amer., Inc., Madison, Wise. Dubach, P. and N. C. Mehta. 1963. The chemistry of s o i l humic substances. S o i l s Fert. 26: 293-300. Elgawhary, S. M., W. L. Lindsay, and W. D. Kemper. 1970. E f f e c t of complexing agents and acids on the d i f f u s i o n of zinc to a simulated root. S o i l S c i . Soc. Amer. Proc. 34: 211-214. E l l i s , B. G. and B. D. Knezek. 1972. Adsorption reactions of micronutrients i n s o i l s , pp. 59-78. In " J . J. Mortvedt, P. M. Giordano, and W. L. Lindsay (eds.). Micronutrients i n ag r i c u l t u r e " . S o i l S c i . Soc. Amer., Inc., Madison, Wise. F o l l e t t , R. H. and W. L. Lindsay. 1970. P r o f i l e d i s t r i b u t i o n of Zn, Fe, Mn, and Cu i n Colorado s o i l s . Colo. Agr. Exp. Sta. Tech. B u l l . 110. 108 F r a s e r , D. C. 1961. O r g a n i c s e q u e s t r a t i o n o f copper. Econ. G e o l . 56: 1063-1078. G a r n e r , H. V. 1966a. E x p e r i m e n t s on t h e d i r e c t , c u m u l a t i v e and r e s i d u a l e f f e c t s o f town r e f u s e manures and sewage s l u d g e a t Rothamsted and o t h e r c e n t r e s . J . A g r . S c i . 67: 223-233. G a r n e r , H. V. 1966b. Comparison o f f a r m y a r d manure, sewage s l u d g e , and o t h e r o r g a n i c manures t e s t e d on p o t a t o e s and a s u c c e e d i n g c e r e a l c r o p a t Rothamsted. J . A g r . S c i . 67: 267-280. G e e r i n g , H. R. and J . F. Hodgson. 1969. M i c r o n u t r i e n t c a t i o n complexes i n s o i l s o l u t i o n : I I I . C h a r a c t e r i z a t i o n o f s o i l 2+ 2+ s o l u t i o n l i g a n d s and t h e i r complexes w i t h Zn and Cu . S o i l S c i . Soc. Amer. P r o c . 33: 54-59. G e e r i n g , H. R., J . F. Hodgson, and C. Sdano. 1969. M i c r o n u t r i e n t c a t i o n complexes i n s o i l s o l u t i o n : IV. The c h e m i c a l s t a t e o f manganese i n s o i l s o l u t i o n . S o i l S c i . Soc. Amer. P r o c . 33: 81-85. G e r l o f f , G. C. 1963. C o m p a r a t i v e m i n e r a l n u t r i t i o n o f p l a n t s . Ann. Rev. P l a n t P h y s i o l . 14: 107-124. G e r l o f f , G. C., P. R. S t o u t , and L. H. P. J o n e s . 1959. Molybdenum-manganese-iron a n t a g o n i s m i n t h e n u t r i t i o n o f tomato p l a n t s . P l a n t P h y s i o l . 34: 608-613. G i l b e y , D. J . , K. D. G r e a t h e a d , and J . W. G a r t e l l . 1970. Copper r e q u i r e m e n t s f o r S o u t h - e a s t e r n W h e a t b e l t . J . A g r . West. A u s t . 11: 70-72. 109 Gupta, U. C. 1971. Influence of various organic materials on the recovery of molybdenum and copper added to a sandy clay loam s o i l . Plant and S o i l 34: 249-253. Gupta, U. C. and D. C. MacKay. 1968. Procedure for the determination of exchangeable copper and molybdenum i n Podzol s o i l s . Can. J . S o i l S c i . 48: 235-242. Halm, J. and C. D. Le. 1975. U.B.C. MFAV (Analysis of Variance/ Covariance). Univ. of B r i t i s h Columbia Computing Centre. Hanger, B. C. 1965. The influence of i r o n upon the t o x i c i t y of manganese, molybdenum, copper, and ir o n i n red clover (Tvifolium pratense L.). J . Aust. Inst, of Agr. S c i . 31: 315-317. Hawf, L. R. and W. E. Schmid. 1967. Uptake and tra n s l o c a t i o n of zin c by i n t a c t plants. Plant and S o i l 27: 249-260. Hensler, R. F., R. J . Olsen, and 0. J . Attoe. 1970. E f f e c t of s o i l pH and a p p l i c a t i o n rate of dairy c a t t l e manure on y i e l d and recovery of twelve plant nutrients by corn. Agron. J . 62: 828-830. Herron, G. M. and A. B. Erhart. 1965. Value of manure on i r r i g a t e d calcareous s o i l . S o i l S c i . Soc. Amer. Proc. 29: 278-281. Hibbard, P. L. 1940. A s o i l zinc survey i n C a l i f o r n i a . S o i l S c i . 49: 63-72. Hileman, L. H. 1967. The f e r t i l i z e r value of b r o i l e r l i t t e r . Univ. of Arkansas, Agr. Exp. Sta. Rpt. Ser. No. 158: 3-12. 110 H i l e m a n , L. H. 1971. E f f e c t o f r a t e o f p o u l t r y manure a p p l i c a t i o n on s e l e c t e d s o i l c h e m i c a l p r o p e r t i e s . L i v e s t o c k Waste Management and P o l l u t i o n Abatement, P r o c . I n t l . . Symp. on L i v e s t o c k Wastes. Amer. Soc. A g r . Eng. P u b l . P r o c . 271: 247-248. H i l e m a n , L. H. 1972. T r a n s a c t i o n a l dynamics o f p o u l t r y manure i n s o i l . Amer. Soc. A g r . Eng. Paper 72-956. H i n e s l y , T. D., R. J . J o n e s , and E. L. Z i e g l e r . 1972. E f f e c t s on c o r n by a p p l i c a t i o n o f h e a t e d a n a e r o b i c a l l y d i g e s t e d s l u d g e . Compost S c i . J u l y - A u g . : 26-30. Hodgson, J . F. 1963. C h e m i s t r y of t h e m i c r o n u t r i e n t e l e m e n t s i n s o i l s . Adv. Agron. 15: 119-159. Hodgson, J . F., H. R. G e e r i n g , and W. A. N o r v e l l . 1965. M i c r o n u t r i e n t c a t i o n complexes i n s o i l s o l u t i o n : P a r t i t i o n between complexed and uncomplexed forms by s o l v e n t e x t r a c t i o n . S o i l S c i . Soc. Amer. P r o c . 29: 665-669. Hodgson, J . F., W. L. L i n d s a y , and J . F. T r i e r w e i l e r . 1966. M i c r o n u t r i e n t c a t i o n c o m p l e x i n g i n s o i l s o l u t i o n : I I . C o m p l exing o f z i n c and c o p p e r i n d i s p l a c e d s o l u t i o n f r o m c a l c a r e o u s s o i l s . S o i l S c i . Soc. Amer. P r o c . 30: 723-726. H o l l i d a y , R., P. M. H a r r i s , and M. R. Baba. 1965. I n v e s t i g a t i o n s i n t o t h e mode o f a c t i o n o f f a r m y a r d manure. J . Agr. S c i . 64: 161-166. I r v i n g , H. and R. J . P. W i l l i a m s . 1948. Order of s t a b i l i t y o f m e t a l complexes. N a t u r e 162: 746-747. I l l Ishizuka, Y. and T. Ando. 1968. Interaction between manganese and zinc i n growth of r i c e plants. S o i l S c i . Plant Nutr. (Tokyo) 14: 201-206. Jackson, M. L. 1958. S o i l chemical analysis. P r e n t i c e - H a l l , Inc., Englewood C l i f f s , N. J . Jackson, M. L. and G. D. Sherman. 1953. Chemical weathering of minerals i n s o i l s . Adv. Agron. 5: 219-318. Jenne, E. A. 1968. Controls of Mn, Fe, Co, Ni, Cu, and Zn concentrations i n s o i l s and water. The s i g n i f i c a n t r o l e of hydrous Mn and Fe oxides. In "Trace inorganics i n water". Adv. Chem. Ser. 73: 337-387. Jensen, H. L. and C. G. Lamm. 1961. On zinc content of Danish s o i l s . Acta Agr. Scand. 11: 63-81. Jones, H. W., 0. E. G a l l , and R. M. Barnette. 1936. The reaction of zinc sulphate with the s o i l . F l o r i d a Agr. Exp. Sta. B u l l . 298, 42 p. Khan, S. U. 1969. Interaction between the humic acid f r a c t i o n of s o i l s and c e r t a i n m e t a l l i c cations. S o i l S c i . Soc. Amer. Proc. 33: 851-854. Khanna, S. S. and F. J. Stevenson. 1962. Metallo-organic complexes: 1. Potentiometric t i t r a t i o n of some s o i l organic matter i s o l a t e s i n the presence of t r a n s i t i o n metals. S o i l S c i . 93: 298-305. K i s s e l , D. E., J. T. R i t c h i e , and E. Burnett. 1973. Chloride movement i n undisturbed swelling clay s o i l s . S o i l S c i . Soc. Amer. Proc. 37: 21-24. 112 Knezek, B. D. and H. G r e i n e r t . 1971. I n f l u e n c e o f s o i l Fe and Mn n u t r i t i o n o f bean p l a n t s . Agron. J . 63: 617-619. Kononova, M. M. 1966. S o i l o r g a n i c m a t t e r . Pergamon P r e s s , I n c . , N. Y. 544 p. K o r t e , N. E., J . Skopp, E. E. N e i b l a , and W. H. F u l l e r . 1976. A b a s e l i n e s t u d y on t r a c e m e t a l e l u t i o n f r o m d i v e r s e s o i l t y p e s . Water, A i r , S o i l P o l l u t . 5: 149-156. K r a u s k o f f , K. B. 1972. G e o c h e m i s t r y o f m i c r o n u t r i e n t s . pp. 7-40. In " J . J . M o r t v e d t , P. M. Giodano, and W. L. L i n d s a y ( e d s . ) . M i c r o n u t r i e n t s i n a g r i c u l t u r e " . S o i l S c i . Soc. Amer., I n c . M a d i s o n , Wise. L a g e r w e r f f , J . V. 1967. Heavy m e t a l c o n t a m i n a t i o n of s o i l s . In "N. C. B r a d y ( e d . ) . A g r i c u l t u r e and t h e q u a l i t y o f o u r e n v i r o n m e n t " . Amer. A s s o c . Adv. S c i . Pub. 85: 343-364. L e , C. D. and T. T e n i s c i . 1977. U.B.C. TRP ( T r i a n g u l a r R e g r e s s i o n P a c k a g e ) . U n i v . o f B r i t i s h C o l u m b i a Computing C e n t r e . L e e p e r , G. W. 1935. Manganese d e f i c i e n c y of c e r e a l s : P l o t e x p e r i m e n t s and new h y p o t h e s i s . P r o c . Roy. Soc. V i c t o r i a 47: 225-261. L e e p e r , G. W. 1972. R e a c t i o n s of heavy m e t a l s w i t h s o i l s w i t h s p e c i a l r e g a r d t o t h e i r a p p l i c a t i o n i n sewage w a s t e s . Dept. of t h e Army, Corps of E n g i n e e r s . C o n t r a c t No. DACW 73-73-C-0026. 70 p. L e R i c h e , H. H. 1968. M e t a l c o n t a m i n a t i o n o f s o i l i n t h e Woburn Ma r k e t - G a r d e n e x p e r i m e n t r e s u l t i n g f r o m t h e a p p l i c a t i o n o f sewage s l u d g e . J . A g r . S c i . 7: 205-208. 113 L i n d s a y , W. L. 1972. Zn i n s o i l s and p l a n t n u t r i t i o n . Adv. A g r o n . 24: 147-186. L i n d s a y , W. L. 1973. R o l e o f c h e l a t i o n i n m i c r o n u t r i e n t a v a i l a b i l i t y . C hapt. 17. In "E. W. C a r s o n ( e d . ) . The p l a n t r o o t and i t s e n v i r o n m e n t " . U n i v . o f V i r g i n i a P r e s s , C h a r l o t t e s v i l l e . L i n d s a y , W. L. and W. A. N o r v e l l . 1969a. Development o f a DTPA m i c r o n u t r i e n t s o i l t e s t . A g r o n. A b s t r . p. 84. L i n d s a y , W. L. and W. A. N o r v e l l . 1969b. E q u i l i b r i u m r e l a t i o n s h i p s of Zn , Fe , Ca , and H w i t h EDTA and DTPA i n s o i l s . S o i l S c i . Soc. Amer. P r o c . 33: 62-68. L i s k , D. J . 1972. T r a c e m e t a l s i n s o i l s , p l a n t s , and a n i m a l s . Adv. Agron. 24: 267-325. Low, A. J . and E. R. A r m i t a g e . 1970. The c o m p o s i t i o n o f t h e l e a c h a t e t h r o u g h c r o p p e d and uncropped s o i l s i n l y s i m e t e r s compared w i t h t h a t o f t h e r a i n . P l a n t and S o i l 33: 393-411. Lowe, L. E. 1978. C a r b o h y d r a t e s i n s o i l . In "M. S c h n i t z e r and S. U. Khan ( e d s . ) . S o i l O r g a n i c M a t t e r " . E l s e v i e r S c i . Pub. Co., N. Y. pp. 65-94. Mann, P. J . G. and J . H. Q u a s t e l . 1946. Mn m e t a b o l i s m i n s o i l s . N a t u r e 158: 154-156. M a r t e n s , D. C., G. C h e s t e r s , and L. A. P e t e r s o n . 1966. F a c t o r s c o n t r o l l i n g t h e e x t r a c t a b i l i t y o f s o i l z i n c . S o i l S c i . Soc. Amer. P r o c . 30: 67-69. 114 McKenzie, R. M. 1966. The r e l a t i o n of l a b o r a t o r y analyses f o r Cu, Zn, and Mo i n some V i c t o r i a n s o i l s to the r e s u l t of f i e l d t r i a l . Aust. J . Exp. Agr. Anim. Hubs. 6: 170-174. McMahon, M. A., S. E. Rhodemyre, and G. W. Thomas. 1971. S o i l aggregate s i z e and e l e c t r i c a l charge e f f e c t s on c h l o r i d e displacement from s o i l columns. Agron. A b s t r . p. 74. Melsted, S. W. 1973. S o i l - p l a n t r e l a t i o n s h i p s (some p r a c t i c a l c o n s i d e r a t i o n s i n waste management). pp. 121-128. In "Proceedings of the J o i n t Conference on R e c y l i n g M u n i c i p a l Sludges and E f f l u e n t s on Land". Champaign, Univ. of I l l i n o i s . M i l l e r , B. F., W. L. Lindsay, and A. A. Parsa. 1969. Use of p o u l t r y manure f o r c o r r e c t i o n of Zn and Fe d e f i c i e n c i e s i n p l a n t s . Animal Waste Management, Proc. 1972. C o r n e l l Univ. Agr. Waste Mgmt. Conf., Ithaca, N. Y. pp. 120-123. M i l l e r , M. H. and A. J . Ohlrogge. 1958a. Water-soluble c h e l a t i n g agents i n organic m a t e r i a l s : I. C h a r a c t e r i z a t i o n of c h e l a t i n g agents and t h e i r r e a c t i o n s w i t h t r a c e metals i n s o i l s . S o i l S c i . Soc. Amer. Proc. 22: 225-228. M i l l e r , M. H. and A. J . Ohlrogge. 1958b. Water-soluble c h e l a t i n g agents i n organic m a t e r i a l s : I I . Infl u e n c e of c h e l a t e -c o n t a i n i n g m a t e r i a l s on the a v a i l a b i l i t y of t r a c e metals to p l a n t s . S o i l S c i . Soc. Amer. Proc. 22: 228-231. M i s r a , S. G. and P. C. Mishra. 1969. Forms of Mn as i n f l u e n c e d by organic matter and i r o n oxide. P l a n t and S o i l 30: 62-70. 115 Moore, D. P. 1972. Mechanisms o f m i c r o n u t r i e n t u p t a k e by p l a n t s . pp. 171-192. In " J . J . M o r t v e d t , P. M. G i o r d a n o , and W. L. L i n d s a y ( e d s . ) . M i c r o n u t r i e n t s i n a g r i c u l t u r e " . S o i l S c i . Soc. Amer., I n c . , M a d i s o n , Wise. Moore, D. P., M. E. Harward, D. D. Mason, R. J . Hader, W. L. L o t h , and W. A. J a c k s o n . 1957. An i n v e s t i g a t i o n on some of t h e r e l a t i o n s h i p s between Cu, Fe, and Mo i n t h e g r o w t h and n u t r i t i o n of l e t t u c e : I I . Response s u r f a c e s o f growth and a c c u m u l a t i o n o f Cu and Fe. S o i l S c i . Soc. Amer. P r o c . 2 1 : 65-74. M o r t e n s e n , J . L. 1963. Complexing of m e t a l s by s o i l o r g a n i c m a t t e r . S o i l S c i . Soc. Amer. P r o c . 27: 179-186. M u l d e r , E. G. 1954. Molybdenum i n r e l a t i o n t o growth o f h i g h e r p l a n t s and m i c r o o r g a n i s m s . P l a n t and S o i l 5: 368-415. Page, A. L. 1974. F a t e and e f f e c t s of t r a c e e l e m e n t s i n sewage s l u d g e when a p p l i e d t o a g r i c u l t u r a l l a n d s . A l i t e r a t u r e r e v i e w s t u d y . USEPA-670/2-74-005. 96 p. Page, E. R. 1967. The e f f e c t of f a r m y a r d manure on m a t r i x s u c t i o n s p r e v a i l i n g i n sandy loam s o i l . J . S o i l S c i . 18: 318-328. P a t t e r s o n , J . B. E. 1971. M e t a l t o x i c i t i e s a r i s i n g f r o m i n d u s t r y . In " T r a c e e l e m e n t s i n s o i l s and c r o p s " . M i n . A g r . F i s h Food Tech. B u l l . 21: 193-207. P e r k i n s , H. F. and M. B. P a r k e r . 1971. C h e m i c a l c o m p o s i t i o n of b r o i l e r and hen manure. U n i v . o f G e o r g i a , A g r . Exp. S t a . B u l l . No. 90. 17 p. 116 Peterson, J . R. and J . Geschwind. 1972. Leachate and q u a l i t y from a c i d i c mine s p o i l f e r t i l i z e d w i t h l i q u i d d i g e sted sewage sludge. J . Environ. Qual. 1: 410-412. Reuther, W., P. F. Smith, and A. W. Specht. 1952. Accumulation of the major bases and heavy metals i n F l o r i d a c i t r u s s o i l s i n r e l a t i o n to phosphate f e r t i l i z a t i o n . S o i l S c i . 73: 375-381. R i t c h i e , J . T., D. E. K i s s e l , and E. Burnett. 1972. Water movement i n undisturbed s w e l l i n g c l a y s o i l . S o i l S c i . Soc. Amer. Proc. 36: 874-878. R o s e l l , R. A. and A. U l r i c h . 1964. C r i t i c a l z i n c c oncentrations and l e a f minerals of sugar beet p l a n t s . S o i l S c i . 97: 152-167. S c h n i t z e r , M. 1957. M o b i l i z a t i o n of i r o n i n podzol s o i l s by aqueous l e a f e x t r a c t s . Chem and Ind. (London). p. 1594. S c h n i t z e r , M. and E. H. Hansen. 1970. Organo-metallic i n t e r a c t i o n s i n s o i l s : 8. An e v a u l a t i o n of methods f o r the determination of s t a b i l i t y constants of m e t a l - f u l v i c a c i d complexes. S o i l S c i . 109: 333-340. S c h n i t z e r , M. and S. U. Khan. 1972. Reactions of humic substances w i t h metal ions and hydrous oxides. Chap. 6. In "Humic substances i n the environment". Marcel Dekker, Inc., N. Y. S h o r t a l l , J . G. and W. C. Liebhardt. 1975. Y i e l d and growth of corn as a f f e c t e d by p o u l t r y manure. J . Environ. Qual. 4: 186-190. S i e g e l , R. S., A. A. R. Hafez, J . Azevedo, and P. R. Stout. 1975. Management procedures f o r e f f e c t i v e f e r t i l i z a t i o n w i t h p o u l t r y manure. Compost S c i . Jan.-Feb.: 5-9. 117 S i n g h , B. R. and K. S t e e n b e r g . 1974. P l a n t r e s p o n s e t o m i c r o n u t r i e n t s : I I I . I n t e r a c t i o n between manganese and z i n c i n maize and b a r l e y p l a n t s . P l a n t and S o i l 40: 655-667. S m i t h , P. F., G. K. Rasmussen, and G. H r n c i a r . 1962. L e a c h i n g s t u d i e s w i t h m e t a l s u l p h a t e s i n l i g h t sandy c i t r u s s o i l i n F l o r i d a . S o i l S c i . 94: 235-238. Somers, I . I . and J . W. S h i v e . 1942. The iron-manganese r e l a t i o n i n p l a n t m e t a b o l i s m . P l a n t P h y s i o l . 17: 582-602. S t e v e n s o n , F. J . and M. S. A r d a k a n i . 1972. O r g a n i c m a t t e r r e a c t i o n s i n v o l v i n g m i c r o n u t r i e n t s i n s o i l s , pp. 79-110. In " J . J . M o r t v e d t , P. M. G i o r d a n o , and W. L. L i n d s a y ( e d s . ) . M i c r o n u t r i e n t s i n a g r i c u l t u r e " . S o i l S c i . Soc. Amer., I n c . M a d i s o n , Wise. S t e v e n s o n , F. J . and J . H. A. B u t l e r . 1969. C h e m i s t r y o f humic a c i d s and r e l a t e d p i g m e n t s , pp. 534-557. In "G. E n g l i n t o n and S i s t e r M. J . J . Murphy ( e d s . ) . O r g a n i c g e o c h e m i s t r y " . S p r i n g e r - V e r l a g , B e r l i n . Swaine, D. J . 1955. The t r a c e element c o n t e n t o f s o i l s . Commonwealth Bur. S o i l S c i . Tech. Commun. No. 48. S w i n d a l e , L. D. and M. L. J a c k s o n . 1956. G e n e t i c p r o c e s s e s i n some r e s i d u a l p o d z o l i z e d s o i l s o f New Z e a l a n d . T r a n s . I n t e r n . Congr. S o i l S c i . ( 6 t h ) , P a r i s , F r a n c e . E: 233-239. Tan, K. H., R. A. L e o n a r d , A. R. B e r t r a n d , and S. R. W i l k i n s o n . 1971. The m e t a l c o m p l e x i n g c a p a c i t y and t h e n a t u r e o f t h e c h e l a t i n g l i g a n d s o f w a t e r e x t r a c t o f p o u l t r y l i t t e r . S o i l S c i . Soc. Amer. P r o c . 35: 265-269. 118 Taylor, R. M. and R. M. McKenzie. 1966. The association of trace elements with Mn minerals:in A u s t r a l i a n s o i l s . Aust. J. S o i l Res. 4: 29-39. T r i e r w e i l e r , J . F. and W. L. Lindsay. 1969. EDTA-ammonium carbonate s o i l test f o r Zn. S o i l S c i . Soc. Amer. Proc. 33: 49-54. V i e t s , F. G., J r . and W. L. Lindsay. 1973. Testing s o i l s for Zn, Cu, Mn, and Fe. pp. 153-172. In "L. M. Walsh and J. D. Beaton (eds.). S o i l t e s t i n g and plant a n a l y s i s " . S o i l S c i . Soc. Amer., Inc., Madison, Wise. Vlamis, J. and D. E. Williams. 1964. Iron and manganese r e l a t i o n s h i p i n r i c e and barley. Plant and S o i l 20: 221-231. Vose, P. B. 1963. V a r i e t a l differences i n plant n u t r i t i o n . Herbage Abstr. 33: 1-13. Watanabe, F. S., W. L. Lindsay, and S. R. Olsen. 1965. Nutrient balance in v o l v i n g phosphorus, i r o n and zinc. S o i l S c i . Soc. Amer. Proc. 29: 562-565. Webber, J. 1972. E f f e c t s of tox i c metals i n sewage on crops. Water P o l l . Contr. 71: 404-413. Wei, L. S. 1959. The chemistry of s o i l copper. Ph.D. Thesis. Univ. of I l l i n o i s , Urbana. Wiersum, L. K. 1962. S o i l structure, rooting, and plant n u t r i t i o n . Landbouwk. Tij d s c h r . 74: 961-972. Williams, R. J. B. and G. W. Cooke. 1961. Some e f f e c t s of farmyard manure and of grass residues on s o i l structure. S o i l S c i . 92: 30-39. 119 MANURE APPLIED (t/ha) APPENDIX A.1: Dry Matter Production of Corn Seedlings (Tops) i n Experiments I , I I , and I I I . 120 APPENDIX A.2: Dry Matter Production of Corn Seedlings (Roots) i n Experiments I , I I , and I I I . APPENDIX B l : Sources of Mn and i t s P a r t i t i o n Between Uptake, Leaching, and Storage i n Experiments I, I I , and I I I . S o i l Manure Applied (t/ha) I n i t i a l S o i l T o t a l 0.005 M DTPA Sol. 0.1 N HCl Sol. Manure Input , mg/column -Uptake* (Tops Only) Leaching Losses Storage EXPERIMENT I Grigg 0 902.75 21.50 93.00 0 2.37 1.15 899.23 20 902.75 21.50 93.00 4.57 6.06 0.71 900.55 40 902.75 21.50 93.00 9.14 4.51 2.77 904.60 Monroe 0 872.00 11.75 71.00 0 1.05 0.20 870.76 20 872.00 11.75 71.00 4.57 3.09 0.08 873.41 40 872.00 11.75 71.00 9.14 3.38 0.20 877.55 EXPERIMENT II Grigg 0 898.88 23.46 359.60 0 1.01 13.28 884.59 20 898.38 32.00 287.95 4.57 1.83 3.54 897.57 40 904.05 64.51 298.44 9.14 0.80 12.55 899.84 Monroe 0 870.43 23.46 103.39 0 0.81 9.58 860.04 20 871.50 34.70 142.77 4.57 1.40 12.77 861.90 40 876.70 52.89 156.43 9.14 0.55 18.09 867.20 EXPERIMENT III Grigg 0 884.55 36.72 339.33 - 1.55 10.24 872.76 20 897.25 36.39 364.80 - 1.78 5.14 890.33 40 899.68 42.06 382.59 - 2.86 1.98 894.84 Monroe 0 859.93 47.61 283.62 - 1.79 5.46 852.67 20 861.68 84.36 308.73 - 2.74 0.62 858.32 40 867.05 116.34 310.38 — 3.75 1.77 861.53 *70°c weight basis APPENDIX B2: Sources of Fe and i t s P a r t i t i o n Between Uptake, Leaching, and Storage i n Experiments I, I I , and I I I . Manure I n i t i a l 0.005 M 0.1 N Manure Uptake* Leaching Applied S o i l T o t a l DTPA Sol. HCl Sol. Input (Tops Only) Losses Storage S o i l (t/ha) mg/column — EXPERIMENT I Grigg 0 71,932.50 727.50 457.00 0 3.64 6.40 71,922.50 20 71,932.50 727.50 457.00 23. 98 2.98 3.66 71,949.80 40 71,932.50 727.50 457.00 47. 96 2.65 18.30 71,959.50 Monroe 0 61,120.00 348.25 193.75 0 1.96 0.37 61,117.70 20 61,120.00 348.25 193.75 23. 98 2.97 0.03 61,141.00 40 61,120.00 348.25 193.75 47. 96 3.67 0.02 61,164.30 EXPERIMENT II Grigg 0 71,907.50 843.57 2,690.56 0 1.91 100.06 71,805.50 20 71,895.00 806.97 1,523.59 23. .98 1.58 23.28 71,894.10 40 71,947.50 983.98 1,462.34 47. ,96 1.54 72.48 71,921.40 Monroe 0 61,100.00 474.08 388.17 0 2.06 88.00 61,009.90 20 61,050.00 514.81 403.33 23. .98 4.76 85.14 60,984.10 40 61,140.00 549.11 388.17 47. .96 2.92 120.86 61,064.20 EXPERIMENT III Grigg 0 71,808.50 1,075.50 3,200.70 2.96 105.31 71,694.20 20 71,880.00 1,016.70 2,623.17 5.89 21.41 71,852.70 40 71,915.00 1,015.20 2,705.64 5.44 10.34 71,899.20 Monroe 0 61,005.00 938.10 1,678.17 2.66 27.38 60,975.00 20 61,977.50 942.45 1,456.98 2.97 0.24 60,974.30 40 61,060.00 959.40 1,490.70 3.72 7.47 61,048.80 NO *70°C weight basis APPENDIX B3: So u r c e s o f Zn and i t s P a r t i t i o n Between U p t a k e , L e a c h i n g , and S t o r a g e i n E x p e r i m e n t s I , I I , and I I I . Manure I n i t i a l 0.005 M 0.1 N Manure Up t a k e * L e a c h i n g A p p l i e d S o i l T o t a l DTPA S o l . H C l . S o l . Input (Tops Only) L o s s e s S t o r a g e S o i l ( t / h a ) : — mg/column G r i g g 0 168.00 20 168.00 40 168.00 Monroe 0 285.25 20 285.25 40 285.25 G r i g g 0 167.20 20 170.58 40 175.68 Monroe 0 284.10 20 285.75 40 291.43 G r i g g 0 166.65 20 174.48 40 184.38 Monroe 0 283.35 20 289.48 40 299.95 EXPERIMENT I 6.75 14.75 0 6.75 14.75 4.50 6.75 14.75 9.00 25.75 50.25 0 25.75 50.25 4.50 25.75 50.25 9.00 EXPERIMENT I I 2.60 16.82 0 3.37 15.53 4.50 6.19 18.65 9.00 26.83 51.73 0 23.52 48.02 4.50 26.18 51.79 9.00 EXPERIMENT I I I 1.68 13.35 3.03 16.98 4.50 25.20 8.10 39.12 11.34 45.06 15.45 55.26 0.47 0.12 167.41 1.08 0.06 171.36 1.06 0.08 175.85 0.81 0.04 284.40 1.99 0.03 287.73 2.27 0.05 291.92 0.19 0.33 166.68 0.35 0.19 174.53 0.16 0.11 184.40 0.42 0.25 283.43 0.50 0.20 289.55 0.27 0.16 299.99 0.24 0.42 165.98 0.53 0.50 173.44 0.74 0.38 183.26 0.56 0.41 282.38 1.13 0.15 288.19 1.32 0.15 298.48 *70°C w e i g h t b a s i s APPENDIX B4: Source of Cu and i t s P a r t i t i o n Between Uptake, Leaching, and Storage i n Experiments I, I I , and I I I . S o i l Manure Applied (t/ha) I n i t i a l S o i l T o t a l 0.005 M DTPA Sol. 0.1 N HCl Sol. Manure Input mg/column Uptake* (Tops Only) Leaching Losses Storage EXPERIMENT I Grigg o- 46.75 5.50 8.50 0 0.11 0.05 46.60 20 46.75 5.50 8.50 0.58 0.32 0.03 46.99 40 46.75 5.50 8.50 1.16 0.25 0.03 47.63 Monroe 0 41.25 7.75 10.00 0 0.12 0.03 41.10 20 41.25 7.75 10.00 0.58 0.34 0.02 41.48 40 41.25 7.75 10.00 1.16 0.36 0.02 42.03 EXPERIMENT II Grigg 0 46.32 2.94 23.34 0 0.06 0.12 46.13 20 46100 3.06 17.70 0.58 0.11 0.07 46.41 40 47.46 4.47 17.52 1.16 0.04 0.14 48.44 Monroe 0 40.83 11.03 16.87 0 0.05 0.12 40.65 20 39.37 10.66 16.17 0.58 0.10 0.14 39.72 40 41.59 11.39 14.39 1.16 0.04 0.20 42.51 EXPERIMENT III Grigg 0 46.13 3.15 23.55 - 0.04 0.10 45.99 20 46.38 3.99 21.27 - 0.08 0.08 46.22 40 48.43 5.46 23.52 - 0.14 0.09 48.19 Monroe 0 40.64 9.12 28.80 - 0.06 0.10 40.47 20 39.70 11.94 27.21 - 0.14 0.05 39.51 40 42.50 14.67 25.98 — 0.20 0.08 42.22 *70°C weight basis APPENDIX B5: Sources of K and i t s P a r t i t i o n Between Uptake, Leaching, Storage i n Experiments I, I I , and I I I . S o i l Grigg Monroe Grigg Monroe Grigg Monroe Manure Applied (t/ha) I n i t i a l S o i l Total 0.005 M DTPA Sol. 0.1 N HCl Sol. Manure Input mg/column Uptake* (Tops Only) Leaching Losses Storage EXPERIMENT I 0 2,512.50 13.75 15.25 0 20 2,512.50 13.75 15.25 392. 19 40 2,512.50 13.75 15.25 784. 38 0 3,343.75 75.00 323.50 0 20 3,343.75 75.00 323.50 392. 19 40 3,343.75 75.00 323.50 784. 38 EXPERIMENT II 0 2,456.50 8.09 99.90 0 20 2,587.50 3.31 85.60 392, ,19 40 2,885.00 20.43 148.01 784. .38 0 3,112.25 9.37 192.45 0 20 3,126.75 8.30 166.97 392 .19 40 3,397.00 34.61 170.80 784 .38 EXPERIMENT III 0 2,438.00 8.82 90.09 20 2,783.00 38.07 171.69 40 3,478.75 179.40 633.30 0 3,063.25 26.19 189.33 .20 3,302.25 53.31 284.10 40 4,009.50 217.41 776.16 — 52.09 295.45 394.79 217.78 560.43 684.81 13.31 192.11 163.48 38.22 203.29 140.85 12.09 50.42 246.84 36.69 125.45 313.38 1.59 1.32 3.46 2.39 3.46 7.15 4.80 3.57 26.56 10.04 11.99 30.85 3.83 6.53 21.36 6.00 4.79 19.29 2,458.83 2,607.92 2,898.63 3,123.58 3,172.04 3,436.17 2,438.39 2,784.00 3,479.33 3,063.99 3,303.66 4,009.68 2,422.08 2,726.05 3,210.56 3,020.56 3,172.01 3,676.84 *70°C weight basis APPENDIX B6: Sources of Na and i t s P a r t i t i o n Between Uptake, Leaching, and Storage i n Experiments I, I I , and I I I . S o i l Grigg Monroe Manure Applied (t/ha) I n i t i a l S o i l T o t a l 0.005 M DTPA Sol. 0.1 N HCl Sol. Manure Input mg/column Uptake* (Tops Only) Leaching Losses Storage Grigg Monroe Grigg Monroe 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 688.25 688.25 688.25 782.75 782.75 782.75 682.08 815.15 952.00 778.88 909.78 1,050.00 665.58 913.88 1,094.50 769.23 979.50 1,150.75 24.75 24.75 24.75 15.50 15.50 15.50 33.93 60.64 129.18 17.36 56.23 135.70 25.11 122.49 181.02 16.95 103.83 194.43 EXPERIMENT I 112.75 112.75 112.75 60.50 60.50 60.50 EXPERIMENT II 79.47 147.03 218.02 65.08 135.67 245.03 EXPERIMENT III 69.06 209.79 337.08 67.47 215.40 349.77 0 143.51 287.02 0 143.51 287.02 0 143.51 287.02 0 143.51 287.02 0.13 0.55 1.05 0.27 0.72 1.36 0.11 0.27 0.27 0.12 0.33 0.44 0.05 0.02 0.32 0.09 0.29 0.44 5.07 4.09 16.29 2.78 3.06 8.74 16.32 44.09 144.05 9.24 78.01 185.53 11.36 38.12 43.35 8.16 16.14 36.03 683.05 827.11 957.94 779.75 922.49 1,059.68 665.64 914.30 1,094.70 768.51 979.94 1,151.06 654.17 875.55 1,050.83 760.83 963.08 1,114.28 NJ ON *70°C weight basis 127 APPENDIX C l : Ratios of Metal Uptake to Manure Input (xlOO)*. S o i l Manure Applied (t/ha) Mn Fe Zn Cu K Na EXPERIMENT I Grigg 0 20 40 0 132.58 49.34 0 0 0 0 0 12.42 24.01 54.64 75.33 0.39 5.52 11.77 21.73 50.33 0.37 Monroe 0 20 40 0 67.56 36.99 0 0 0 0 0 12.37 44.26 58.52 142.90 49.84 7.66 25.19 31.20 87.31 0.47 EXPERIMENT II Grigg 0 20 40 0 39.98 8.75 0 6.61 3.21 0 7.87 1.83 0 18.95 3.70 0 48.98 20.84 0 0.19 0.09 Monroe 0 20 40 0 30.61 6.00 0 19.83 6.09 0 11.19 2.98 0 16.72 3.45 0 51.83 17.96 0 0.23 0.15 *These data assume that manure was the only source of the metals. 128 APPENDIX C2: Ratios of Leaching Losses of Metals to Manure Input (xlOO)*. Manure Applied •Soil (t/ha) Mn Fe Zn Cu K Na EXPERIMENT I Grigg 0 20 40 0 15.51 30.39 0 15.27 38.16 24 0.94 0 4.30 2.75 0 0.34 0.44 0 2.85 5.67 Monroe 0 20 40 0 1.68 2.23 0 0.12 0.04 0 0.57 0.61 0 2.82 1.63 0 0.88 0.91 0 2.13 3.04 EXPERIMENT II Grigg 0 20 40 0 77.57 137.33 0 97.10 151.12 0 4.16 1.18 0 11.81 12.43 0 0.91 3.39 0 30.72 50.19 Monroe 0 20 40 0 279.66 198.05 0 355.03 252.00 0 4.41 1.80 0 23.43 17.50 0 3. 3. 06 93 0 50.87 64.64 *These data assume that manure was the only source of the metals. 129 APPENDIX C3: Ratios of Metal Uptake to S o i l 0.005 M DTPA Extractable Form (xlOO)*. S o i l Manure Applied (t/ha) Mn Fe Zn EXPERIMENT I Cu K Na Grigg Monroe 0 11.03 0.50 7.01 1.94 378.82 0.53 20 28.17 0.41 16.00 5.79 2148.72 2.24 40 20.96 0.36 15.69 4.60 2871.17 4.24 0 8.93 0.56 3.15 1.51 290.37 1.74 20 26.77 0.85 7.73 4.40 747.24 4.61 40 28.77 1.05 8.80 4.69 913.08 8.76 EXPERIMENT II Grigg Monroe 0 4.33 0.23 7.53 2.20 165.77 0.39 20 5.70 0.20 10.84 3.80 5778.35 0.45 40 1.17 0.16 2.64 0.96 1708.71 0.21 0 3.85 0.44 1.56 0.46 423.99 0.75 20 4.06 0.93 2.14 0.92 2580.48 0.60 40 1.08 0.57 1.02 0.35 628.67 0.33 EXPERIMENT III Grigg Monroe 0 4.19 0.27 14.80 1.31 149.62 0.20 20 4.97 0.58 17.52 1.92 257.14 0.16 40 7.25 0.54 16.83 2.65 139.42 0.18 0 3.79 0.29 8.69 0.69 161.22 0.52 20 3.22 0.32 10.11 1.18 295.76 0.28 40 3.24 0.39 8.56 1.35 147.05 0.23 *These data assume that the s o i l 0.005 M DTPA extractable form was the only source of the metals. 130 APPENDIX C4: Ratios of Metal Uptake to S o i l 0.1 N HCl Extractable Form (xlOO)*. S o i l Grigg Monroe Manure Applied (t/ha) 0 20 40 0 20 40 Mn Fe EXPERIMENT I 2.55 0.80 6.51 0.65 4.85 0.58 1.48 4.35 4.76 1.01 1.53 1.90 Zn 3.21 7.32 7.18 1.61 3.96 4.51 Cu 1.25 3.74 2.98 1. 3. 3. 17 41 63 K 46.20 262.04 350.14 67.32 173.24 211.69 Na 0.21 0.88 1.66 0.45 1.18 2.24 Grigg Monroe 0 20 40 0 20 40 0.28 0.63 0.28 0.81 1.00 0.36 EXPERIMENT II 0.07 0.10 0.10 0.54 1.18 0.81 1.14 2.26 0.89 0.81 1.05 0.52 0.27 0.61 0.26 0.30 0.61 0.28 13.24 223.94 119.95 19.79 123.03 82.60 0.16 0.19 0.12 0.19 0.25 0.18 EXPERIMENT III Grigg Monroe 0 20 40 0 20 40 0.45 0.49 0.75 0.67 0.88 1.21 0.09 0.23 0.21 0.17 0.21 0.26 1.87 3.20 2.92 1.44 2.51 2.40 0.17 0.36 0.62 0.22 0.52 0.77 13.40 35.30 39.02 19.63 44.53 40.77 0.07 0.10 0.10 0.13 0.13 0.13 *These data assume that the s o i l 0.1 N HCl extractable form was the only source of the metals. 131 APPENDIX C5: Ratios of Leaching Losses of Metals to S o i l 0.005 M DTPA Extractable Form (xlOO)*. Manure Applied S o i l • (t/ha) Mn Fe Zn Cu K Na EXPERIMENT I Grigg 0 5. 36 0. 88 1. 74 0. 83 11. 54 20. 47 20 3. 29 0. 50 0. 83 0. 46 9. 57 16. 54 40 12. 91 2. 52 1. 25 0. 58 25. 17 65. 80 Monroe 0 1. 67 0. 11 0. 16 0. 39 3. 18 17. 59 20 0. 65 0. 01 0. 10 0. 21 4. 62 19. 74 40 1. 73 0. 01 0. 21 0. 25 9. 53 56. 37 EXPERIMENT II Grigg 0 58. 44 12. 07 13. 05 4. ,20 71. ,42 53. ,88 20 11. 48 2. 82 5. ,72 2. ,30 109. ,69 74. ,08 40 18. ,12 7. ,32 1. ,72 3. ,22 185. ,11 111. ,32 Monroe 0 38. .34 18. ,42 0. ,94 1, .14 107. .31 51, .75 20 36. .26 16. .23 0. ,84 1. .27 144. .22 128, .81 40 35. .69 23. .61 0. .63 1. .80 125. .89 139, .94 EXPERIMENT I l l Grigg 0 27 .78 9 .65 25 .48 3 .08 46 .79 44 .76 20 14 .54 2 .11 16 .86 2 .09 25 .03 31 .13 40 5 .40 1 .02 8 .72 1 .69 11 .67 24 .12 Monroe 0 11 .40 2 .95 6 .67 1 .15 23 .33 48 .29 20 0 .68 0 .03 1 .36 0 .45 9 .28 15 .53 40 1 .57 0 .76 0 .98 0 .54 9 .17 19 .28 *These data assume that the s o i l 0.005 M DTPA extractable form was the only source of the metals. 132 APPENDIX G6: Ratios of Leaching Losses of Metals to S o i l 0.1 N HCl Extractable Form (xlOO)*. Manure Applied S o i l (t/ha) Mn Fe Zn Cu K Na EXPERIMENT I Grigg 0 1. 24 1. 40 0. 80 0. 55 1. 40 8. 01 20 0. 76 0. 80 0. 38 0. 29 1. 17 6. 47 40 2. 98 4. 00 0. 57 0. 38 3. 07 25. 75 Monroe 0 0. 28 0. 19 0. 08 0. 30 0. 74 4. 51 20 0. 11 0. 01 0. 05 0. 16 1. 07 5. 06 40 0. 29 0. 01 0. 11 0. 19 2. 21 14. 44 EXPERIMENT II Grigg 0 3. 73 4. 13 1. 98 0. 51 5. 08 21. ,80 20 1. 26 1. 63 1. 22 0. 39 4. 28 31. ,02 40 4. ,17 4. ,80 0. ,57 0. 83 17. ,64 65. ,18 Monroe 0 8. ,94 22. ,66 0. ,49 0. ,73 5. ,25 14. .00 20 8. ,73 20. ,63 0. .41 0. ,84 7. ,14 53. .95 40 12. .00 33. .38 0, .32 1. .42 17. .96 76, .53 EXPERIMENT III Grigg 0 3 .06 3 .31 3 .13 0 .42 4 .19 16 .16 20 1 .43 0 .83 3 .03 0 .39 4 .13 19 .44 40 0 .51 0 .36 1 .51 0 .39 3 .33 12 .70 Monroe 0 1 .93 1 .71 1 .07 0 .37 3 .13 12 .14 20 0 .19 0 .02 0 .34 0 .19 1 .60 7 .48 40 0 .55 0 .46 0 .28 0 .32 2 .56 10 .45 *These data assume that the s o i l 0.1 N HCl extractable form was the ,ohly source of the metals. 133 APPENDIX D: E l e c t r i c a l Conductivity Measurements of S o i l Leachates (mmhos/cm) S o i l Manure Applied (t/ha) Weeks EXPERIMENT I Grigg 0 20 40 0.15 0.14 0.21 0.15 0.21 0.29 0.12 0.19 0.37 0.09 0.09 0.41 0.09 0.04 0.26 0.10 0.04 0.11 Monroe 0 20 40 0.10 0.09 0.12 0.10 0.17 0.21 0.06 0.17 0.34 0.05 0.09 0.37 0.04 0.04 0.25 0.04 0.03 0.08 EXPERIMENT II Grigg 0 20 40 0.19 0.38 0.67 0.26 0.40 0.87 0.34 0.55 0.'92 0.33 0.39 0.83 0.31 0.25 0.79 0.29 0.15 0.71 0.30 0.10 0.55 Monroe 0 20 40 0.21 0.44 0.68 0.25 0.78 1.10 0.32 0.82 1.32 0.27 0.65 1.16 0.25 0.48 0.87 0.23 0.40 0.68 0.23 0.31 0.58 EXPERIMENT III Grigg 0 20 40 0.21 0.63 1.03 0.25 0.40 0.74 0.22 0.26 0.34 0.22 0.17 0.14 0.23 0.14 0.09 0.14 0.10 0.08 Monroe 0 20 40 0.19 0.71 0.94 0.24 0.49 0.86 0.18 0.17 0.50 0.11 0.05 0.11 0.10 0.05 0.09 0.06 0.04 0.08 134 APPENDIX E: pH of S o i l Leachates Manure W e e k s Applied • S o i l (t/ha) 1 2 3. 4 Grigg 0 20 40 Monroe 0 20 40 EXPERIMENT I 7.2 6.8 6.9 6.9 7.0 6.9 7.1 7.0 6.7 6.8 7.0 6.9 7.3 6.8 6.9 6.3 6.8 6.0 7.0 6.8 6.4 7.1 6.5 6.2 6.4 6.7 7.2 6.7 6.5 6.5 6.6 6.3 6.4 6.1 6.2 6.4 EXPERIMENT II Grigg 0 7.1 6.8 6.8 6.7 7.1 7.1 6.9 20 6.8 6.6 6.7 7.0 7.2 6.9 7.3 40 6.5 6.6 6.6 6.8 7.1 7.1 7.2 Monroe 0 6.6 7.2 7.0 7.1 7.5 7.1 7.0 20 7.3 7.2 6.8 7.1 8.0 7.1 7.3 40 7.2 7.1 6.9 6.9 7.1 7.2 7.2 Grigg 0 20 40 Monroe 0 20 40 EXPERIMENT III 7.1 6.8 7.2 7.0 7.0 7.8 7.5 7.7 8.5 6.6 6.9 8.1 6.9 7.1 8.0 7.7 7.9 8.5 7.8 8.0 8.0 8.0 7.9 8.1 8.0 7.7 7.8 8.1 7.7 7.6 7.6 7.4 7.4 7.5 7.1 7.3 135 APPENDIX F l : T o t a l Mn and Fe Concentrations i n S o i l s .at the End of Experiments L a n d I I . Expt, Expt. II S o i l Manure Applied .(t/ha) Top Half of Column Lower Half of Column Top Half of Column Lower Half of Column MANGANESE (ppm) Grigg 0 328.10* 282.80 219.50 209.00 20 273.50 268.80 218.00 229.70 40 196.80 203.10 224.60 232.10 Monroe 0 20 40 LSD (0.05) LSD (0.01) 259.40 278.10 242.20 243.80 250.00 225.00 39.80 54.50 239.50 243.40 266.80 268.00 275.40 260.60 29.80 40.81 IRON (%) Grigg 0 2.24* 1.95 1.38 1.39 20 1.87 2.00 .1.27 1.43 40 1.75 1.68 1.31 1.43 Monroe 0 2.00 2.26 1.42 1.38 20 1.86 1.85 1.68 1.66 40 1.84 1.72 1.50 1.50 LSD (0.05) 0.28 0.22 LSD (0.01) 0.39 0.31 * S i g n i f i c a n t l y higher at P 0.05 l e v e l . 136 APPENDIX F2: Total Zn and Cu Concentrations.in S o i l s at the-End of Experiments I and I I . Expt. I Expt. II S o i l Manure Applied (t/ha) Top Half of Column Lower Half of Column Top Half of Column Lower Half of Column ZINC (ppm) Grigg 0 67.00 59.00 49.37 50.50 20 57.60 58.20 48.63 49.95 40 61.95 62.20 54.50 53.27 Monroe 0 106.60 112.10 95.92 96.90 20 108.20 109.50 105.5 103.3 40 112.80 105.60 110.3 99.50 LSD (0.05) 11.66 6.80 LSD (0.01) 15.97 9.31 COPPER (ppm) Grigg 0 19.15 17.00 12.20 12.35 20 15.50 16.95 12.80 13.45 40 15.72 13.80 13.72 13.95 Monroe 0 19.42 21.27 13.62 14.25 20 16.52 16.62 14.62 15.75 40 16.13 14.97 15.90** 12.72 LSD (0.05) 2.19 1.89 LSD (0.01) 3.00 2.59 * * S i g n i f i c a n t l y higher at P 0.01 l e v e l . 137 APPENDIX G: Co, Cr,and Ni Concentrations i n the Experimental Materials. Poultry Grigg Monroe "Manure S o i l S o i l ppm Tot a l Metals Co Cr Ni 5.0 2.6 3.0 17.9 34.2 29.3 16.1 30.6 28.5 0.005 M DTPA Extractable Co Cr Ni 1.2 <0.1 <1.0 <0.1 3.10 <1.0 <0.1 3.33 0.1 N HCl extractable Co Cr Ni 1.0 <0.1 1.92 0.57 6.05 1.22 0.52 6.07 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0094551/manifest

Comment

Related Items