Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A study of water quality relationships in the Brunette River Basin McNeill, Brenda Elizabeth 1978

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1978_A8 M34.pdf [ 9.75MB ]
Metadata
JSON: 831-1.0094406.json
JSON-LD: 831-1.0094406-ld.json
RDF/XML (Pretty): 831-1.0094406-rdf.xml
RDF/JSON: 831-1.0094406-rdf.json
Turtle: 831-1.0094406-turtle.txt
N-Triples: 831-1.0094406-rdf-ntriples.txt
Original Record: 831-1.0094406-source.json
Full Text
831-1.0094406-fulltext.txt
Citation
831-1.0094406.ris

Full Text

A STUDY OF WATER QUALITY RELATIONSHIPS IN THE BRUNETTE RIVER BASIN by BRENDA ELIZABETH McNEILL Hons. B . S c , Queen 's U n i v e r s i t y , 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS i n THE FACULTY OF GRADUATE STUDIES i n the Department o f Geography We a c c e p t t h i s t h e s i s as c o n f o r m i n g to the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA F e b r u a r y , 19 7 8 © Brenda Elizabeth McNeil l , 1978 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of Brit ish Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of Brit ish Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 ABSTRACT The q u a l i t y of s u r f a c e r u n o f f i n an u r b a n i z e d w a t e r -shed was s t u d i e d i n o r d e r to d e t e r m i n e the e f f e c t s o f l a n d use and h y d r o l o g i c c o n d i t i o n s . S a m p l i n g s i t e s were e s t a b l i s h e d so as to be r e p r e s e n t a t i v e o f v a r y i n g l a n d uses and were m o n i t o r e d over a s i x month p e r i o d so as to r e f l e c t c h a n g i n g f l o w c o n -d i t i o n s . Twelve s i t e s , sampled w e e k l y , were e s t a b l i s h e d i n the B r u n e t t e R i v e r B a s i n , an urban w a t e r s h e d l o c a t e d i n the Lower M a i n l a n d o f B r i t i s h C o l u m b i a . Water s a m p l e s , taken a t each s i t e , were a n a l y z e d f o r n i n e t e e n water q u a l i t y p a r a m e t e r s . I n f o r m a t i o n r e l a t i n g to the h y d r o l o g y and l a n d uses o f the b a s i n was taken from e s t a b l i s h e d s o u r c e s . M u l t i p l e r e g r e s s i o n and a n a l y s i s o f v a r i a n c e t e c h n i q u e s were used to r e l a t e the l a n d use and h y d r o l o g y o f the b a s i n to the water q u a l i t y . T o t a l p h o s p h o r u s , suspended s o l i d s and t u r b i t y c o n -c e n t r a t i o n s were d i r e c t l y r e l a t e d to the p e r c e n t a g e open s p a c e . S p e c i f i c conductance and the n i t r o g e n compounds were d i r e c t l y r e l a t e d to the p e r c e n t a g e r e s i d e n t i a l l a n d . E i g h t p a r a m e t e r s , but p a r t i c u l a r l y t u r b i d i t y and suspended s o l i d s , were dependent on s tream d i s c h a r g e . The s e n s i t i v i t y of the d a t a v a r i e d from s i t e t o s i t e depending on the c h a r a c t e r i s t i c s o f the c o n t r i b u t i n g a r e a s . D i s c u s s i o n was d i r e c t e d toward the s p a t i a l and t e m p o r a l n a t u r e o f the d a t a , the v a r i a n c e i n the d a t a , and the a s s o c i a t e d problems o f s c a l e . TABLE OF CONTENTS CONTENTS PAGE ABSTRACT i i TABLE OF CONTENTS i i i L I S T OF FIGURES v LIST OF TABLES v i i LIST OF PLATES v i i i A C K N O W L E D G E M E N T S i x CHAPTER ONE - INTRODUCTION 1. G e n e r a l 1 2. L i t e r a t u r e 4 3. Q u e s t i o n s Posed 12 CHAPTER TWO - THE BRUNETTE RIVER DRAINAGE BASIN 1. G e n e r a l 15 2. S u r f i c i a l Geology 18 3. R e l i e f 20 4. D r a i n a g e Network 22 5. H y d r o l o g y 24 A : H i s t o r i c a l Data 24 i ) P r e c i p i t a t i o n 24 i i ) Runoff 27 B : Measured Data 2 8 i ) P r e c i p i t a t i o n 28 i i ) Runoff 2 8 6. Land Use 35 CHAPTER THREE - EXPERIMENTAL DESIGN 1. G e n e r a l 41 2. System I d e n t i f i c a t i o n 41 3. Water Q u a l i t y Sampling System 42 i i i CONTENTS PAGE 4. Parameters 44 5. Sampling Frequency 45 6. Sampling P r o c e d u r e s 47 7. Summary 4 9 CHAPTER FOUR - PRESENTATION OF RESULTS 1. G e n e r a l 54 2. Water Q u a l i t y Data A : G e n e r a l 54 B : S p a t i a l A s p e c t s o f the Data 55 i ) Means 60 i i ) C o - e f f i c i e n t s o f V a r i a t i o n 66 C : Temporal A s p e c t s o f the Data 70 D: Summary o f the Water Q u a l i t y Data 82 3. Water Q u a l i t y R e l a t i o n s h i p s 86 A : G e n e r a l 86 B : S p a t i a l R e l a t i o n s h i p s 8 7 C : Temporal R e l a t i o n s h i p s 94 D: Summary o f the Water Q u a l i t y R e l a -t i o n s h i p s 9 8 CHAPTER FIVE - DISCUSSION AND CONCLUSIONS 101 L I S T OF REFERENCES 112 APENDIX A 117 APENDIX B 129 APENDIX C 135 i v FIGURE DESCRIPTION PAGE 16 WATER QUALITY - STILL CREEK 80 AT GILMORE AVENUE 17 CONTINUOUS SAMPLING - S T I L L 83 CREEK AT DOUGLAS ROAD 18 CONTINUOUS SAMPLING - STILL 84 CREEK AT DOUGLAS ROAD v i L I S T OF TABLES DESCRIPTION CONCENTRATIONS IN URBAN LAND RUNOFF AT A CINCINNATI, OHIO SAMPLING POINT UNRECORDED POLLUTION MORRIS-TOWN AREA, 19 72 SUMMARY OF PRECIPITATION DATA FOR STUDY AREA RUNOFF CO-EFFICIENTS ACREAGE OF LAND USES FOR CATCHMENT AREAS PERCENTAGE CONTRIBUTIONS OF LAND USES MEANS OF THE DATA STANDARD ERRORS OF THE MEANS OF THE DATA RANGES OF THE DATA CO-EFFICIENTS OF VARIATION OF THE DATA RANKED CO-EFFICIENTS OF VARIATION FOR'THE WATER QUALITY PARAMETERS RANKED CO-EFFICIENTS OF VARIATION FOR THE SITES DOMINANT LAND USE CONTRIBUTING TO THE SITE - CASE A DOMINANT LAND USE CONTRIBUTING TO THE SITE - CASE B F-VALUES FROM MULTIPLE REGRESSION ANALYSES PARAMETERS DEPENDENT ON MEAN D I S -CHARGE AT SPECIFIED SITES v i i LIST OF PLATES PLATE DESCRIPTION PAGE 1 A u t o m a t i c sampler - S t i l l Creek a t Douglas Avenue 51 2 V i s i b l e s u r f a c e p o l l u t i o n - S t i l l Creek at Douglas Avenue 51 v i i i ACKNOWLEDGEMENTS The author would l i k e to thank Dr. 0. Slaymaker f o r h i s experience and guidance as a teacher and a d v i s o r . His encouragement a t v a r i o u s stages d u r i n g t h i s study was g r e a t l y a p p r e c i a t e d . The author i s inde b t e d to the Westwater Research Centre f o r t h e i r f i n a n c i a l and t e c h n i c a l a s s i s t a n c e f o r the p r o v i s i o n o f l a b o r a t o r y f a c i l i t i e s and s u p p o r t i v e data. A s p e c i a l thanks should go to Lorene M o f f e t t f o r her a s s i s t a n c e i n the f i e l d , to Linda P e a r s e l l f o r her pa t i e n c e and encouragement w h i l e t y p i n g t h i s t h e s i s , and to W i l l i a m M c N e i l l f o r c r i t i c i z i n g and e d i t i n g the many d r a f t s . i x I CHAPTER ONE INTRODUCTION 1. G e n e r a l Recent p u b l i c awareness and s c i e n t i f i c i n q u i r y have p l a c e d emphasis upon urban l a n d use as a s o u r c e o f r u n o f f p o l l u t i o n . I t i s r e c o g n i z e d t h a t the i n c i d e n c e o f p o l l u t e d streams i s h i g h l y c o r r e l a t e d w i t h major urban p o p u l a t i o n c o n c e n t r a t i o n s (Whipple e t a l . , 19 74). C o n s e -q u e n t l y , urban r u n o f f has become an i m p o r t a n t emphasis i n water q u a l i t y r e s e a r c h . The purpose o f t h i s t h e s i s i s to show r e l a t i o n s h i p s between the water q u a l i t y o f an u r b a n i z e d watershed and the l a n d uses and h y d r o l o g i c c o n d i t i o n s c o n -t r i b u t i n g to i t . Urban r u n o f f d e r i v e s p o l l u t a n t s f rom p o i n t and n o n - p o i n t ( d i f f u s e ) s o u r c e s , b u t i n t h i s s tudy emphasis w i l l be p l a c e d on the n o n - p o i n t s o u r c e s as they a r e , i n g e n e r a l , the more d i f f i c u l t to manage. By the t w e n t y - f i r s t c e n t u r y , i t i s e s t i m a t e d t h a t n i n e t y p e r c e n t o f N o r t h A m e r i c a ' s p o p u l a t i o n w i l l r e s i d e i n urban areas (McPherson, 1969) . W i t h t h e s e growing c o n c e n t r a t i o n s o f p e o p l e , the demand on t h e use o f the water r e s o u r c e w i l l i n c r e a s e and m u n i c i p a l water s u p p l i e s , r e c r e a t i o n a l demands on w a t e r , and i n d u s t r i a l d i s c h a r g e s i n t o water w i l l be i n o b v i o u s c o n f l i c t . Each f a c e t o f u r b a n i z a t i o n r e q u i r e s a d i f f e r e n t use o f , and 1 consequently p l a c e s a d i f f e r e n t p r i o r i t y on, the q u a l i t y of the water r e s o u r c e . For example, standards which are a p p l i c a b l e t o i n d u s t r i a l e f f l u e n t d i s c h a r g e s i n t o a stream o f t e n c o n f l i c t with a downstream use of the stream as a domestic water supply. W i t h i n the urban environment, t h e r e are d i f f e r e n t l a n d use p r a c t i c e s . R e s i d e n t i a l and commercial areas, park l a n d and open space, and i n d u s t r i a l c e n t r e s have a d i s t i n c t e f f e c t on the q u a l i t y o f a stream's water. T r a d i t i o n a l l y , the management o f water q u a l i t y has been aimed a t the con-t r o l o f p o i n t source as opposed to non-point source forms o f p o l l u t i o n . P o i n t source contaminants are e a s i l y i d e n t i -f i e d and measured and have been t r e a t e d and c o n t r o l l e d w i t h r e l a t i v e s uccess. Non-point sources of contamination, not e a s i l y i d e n t i f i e d , can account f o r more than one h a l f the t o t a l p o l l u t i o n l o a d i n g i n a stream (Whipple e t a l . , 1974). Only non-point sources o f p o l l u t i o n i n the urban e n v i r o n -ment are d e a l t w i t h here. In urban areas, contaminants from the l a n d are c o n t r i b u t e d to a stream by v a r i o u s k i n d s of urban r u n o f f , i n c l u d i n g s a n i t a r y and storm sewerage, d i r e c t e f f l u e n t d i s c h a r g e s , s u r f a c e r u n o f f , groundwater flow and i n t e r f l o w . S a n i t a r y and storm wastes can be c o l l e c t e d i n combined o r separate sewerage systems and t r a n s p o r t e d to treatment f a c i l i t i e s b e fore d i s c h a r g e i n t o the r e c e i v i n g waters. The 2 combined sewerage system has the advantage of t r e a t i n g both s a n i t a r y and storm wastes d u r i n g normal weather con-d i t i o n s . However, d u r i n g wet p e r i o d s the treatment f a c i -l i t i e s o f t e n do not have the c a p a c i t y to accomodate the i n c r e a s e d l o a d i n g i n the combined system and s a n i t a r y and storm wastes are by-passed u n t r e a t e d t o the r e c e i v i n g waters. The separate sewerage systems e l i m i n a t e t h i s o v e r l o a d i n g problem but the storm wastes are r a r e l y t r e a t e d b e f o r e t h e i r d i s c h a r g e to the stream. Storm d r a i n -age, s u r f a c e r u n o f f , groundwater flow and i n t e r f l o w c o l l e c -t i v e l y make up t h a t p a r t of urban r u n o f f which i s c o n s i -dered h e r e i n as a non-point source of p o l l u t i o n . D i f f e r i n g l a n d use p r a c t i c e s c o n t r i b u t e v a r y i n g amounts or c o n c e n t r a t i o n s of c e r t a i n p o l l u t a n t s to the stream and d i f f e r e n t l a n d uses, a c c o r d i n g to t h e i r nature, d i s c h a r g e contaminants a t v a r y i n g r a t e s . Knowledge o f the s p a t i a l and temporal as p e c t s o f the water q u a l i t y a l l o w s an assessment o f the impact of urban l a n d use on the stream's q u a l i t y . In a d d i t i o n , b ut beyond the scope of t h i s t h e s i s , knowledge of the impact on the r e s o u r c e a l l o w s the e s t a b l i s h m e n t o f sound management techniques and p l a n n i n g p r a c t i c e s to guide urban development. I t i s hoped, of course, t h a t through proper r e s o u r c e s management, the optimum use of the stream can be p r o t e c t e d . 3 T h i s t h e s i s i s based on the r e s u l t s o f a s tudy e s t a b l i s h e d i n t h e F a l l o f 1972 t o m o n i t o r the water q u a l i t y o f a s t ream network i n the G r e a t e r Vancouver R e g i o n a l D i s -t r i c t . The Burnaby Lake and B r u n e t t e R i v e r sys tem, r e -f e r r e d t o h e r e i n as the B r u n e t t e R i v e r D r a i n a g e B a s i n (see F i g u r e s 1 and 2 ) , d r a i n s f o r the most p a r t urban l a n d . T h i s watershed extends f rom the e a s t e r n l i m i t s o f the C i t y of Vancouver t o the M u n i c i p a l i t y o f C o q u i t l a m . The B r u -n e t t e R i v e r i s t r i b u t a r y to the F r a s e r R i v e r a t S a p p e r t o n , B r i t i s h C o l u m b i a . The q u a l i t y o f the water i n the B r u n e t t e R i v e r D r a i n a g e B a s i n i s poor and can s i m p l y be r e f e r r e d to as p o l l u t e d (subsequent v e r i f i c a t i o n o f t h i s s ta tement i s p r o v i d e d ) . With the concerns f o r urban p o l l u t i o n i n g e n e r a l ; f o r the water q u a l i t y o f the Lower F r a s e r R i v e r ; and f o r r a p i d u r b a n i z a t i o n i n the Lower M a i n l a n d o f B r i t i s h C o l u m b i a ; the c h o i c e o f the B r u n e t t e R i v e r B a s i n f o r a s t u d y area was c o n s i d e r e d to be a l o g i c a l o n e . B a s i c a l l y , the s t e p s taken i n the s t u d y were as f o l l o w s : (a) the d e t e r m i n a t i o n o f the l a n d use p a t t e r n ; (b) the e s t a b l i s h m e n t of the s p a t i a l and t e m p o r a l v a r i a t i o n s i n the s t r e a m ' s water q u a l i t y ; and (c) the e s t a b l i s h m e n t o f r e l a t i o n s h i p s between l a n d uses and water q u a l i t y . 2. The L i t e r a t u r e W i t h the i n c r e a s e d c o n c e r n , i n r e c e n t y e a r s , f o r the p o l l u t i n g e f f e c t s o f urban r u n o f f , t h e r e has been an 4 a s s o c i a t e d r a p i d i n c r e a s e i n the l i t e r a t u r e d e a l i n g w i t h the q u a l i t y of urban r u n o f f . A r e v i e w o f the l i t e r a t u r e i n d i c a t e s a v a r i e t y o f approaches to the s t u d y of n o n -p o i n t s o u r c e p o l l u t i o n . Douglas (19 72) s u g g e s t s t h a t geographers are i n t e r e s t e d i n r i v e r water q u a l i t y because o f t h e i r c o n -c e r n w i t h g e o m o r p h o l o g i c a l , h y d r o l o g i c a l and b i o g e o g r a p h i -c a l p r o c e s s e s and t h r o u g h t h e i r i n v o l v e m e n t i n r e s o u r c e management. A number o f e a r t h s c i e n t i s t s have a p p l i e d r e s e a r c h from t h e i r own f i e l d to the f i e l d o f water q u a l i t y r e s e a r c h . F o r example, the work o f p h y s i c a l geographers i n d i c a t e s the use o f water q u a l i t y d a t a to determine r a t e s o f w e a t h e r i n g and d e n u d a t i o n , Hembree and Rainwater (1961), T r i c a r t and C a i l l e u x (1965) ; a n d S t o d d a r t (1969) ; the work o f R u s s i a n s c i e n t i s t s i n r e l a t i n g s o i l s c i e n c e and vege-t a t i o n s t u d i e s to water q u a l i t y , P o l u n i n (1971); the work o f human geographers and economis ts i n e n v i r o n m e n t a l p e r -c e p t i o n and b e h a v i o u r to p o l l u t i o n h a z a r d s , Lowenthal (1967), S e w e l l (1971), Fox (1974); and the work o f numerous h y d r o -l o g i s t s , p e d o l o g i s t s , and groundwater s p e c i a l i s t s i n t h e i r c o n t r i b u t i o n s to the u n d e r s t a n d i n g o f the n a t u r a l s y s t e m s , M'einzer (1949) , Chow (1964) and Kovda (1971) . S i g n i f i c a n t c o n t r i b u t i o n s t o stream water q u a l i t y management c o n c e r n e d w i t h the i n s t r e a m water q u a l i t y r a t h e r than the more t r a d i -t i o n a l 'sewage t rea tment p l a n t ' approach have been made by 5 e n g i n e e r s and e n g i n e e r i n g a s s o c i a t i o n s , S t r e e t e r and P h e l p s (1925), W e i b e l e t a l . (1963), McGauhey (1968), E c k e n f e l d e r (1970), H o w e l l s (1971), McPherson (1972), the American S o c i e t y o f C i v i l E n g i n e e r i n g and the A s s o c i a t i o n o f P r o -f e s s i o n a l E n g i n e e r s o f O n t a r i o . When d e c i d i n g the approach t o be taken i n a water q u a l i t y s t u d y , the c h o i c e o f s c a l e , both s p a t i a l and t e m p o r a l , so as t o a c h i e v e o n e ' s o b j e c t i v e s , i s of u l t i m a t e c o n c e r n . I t i s p o i n t e d out by Hagget t and C h o r l e y (1965) t h a t t h e r e i s the need to ask d i f f e r e n t q u e s t i o n s a t the d i f f e r e n t s c a l e s o f e n q u i r y and as the s c a l e o f e n q u i r y changes from macro - to m i c r o - r e g i o n a l , so a number o f changes o c c u r . The number o f p o t e n t i a l examples o f the o b j e c t s t u d i e d i n c r e a s e s , the c o m p l e x i t y o f each example d e c r e a s e s and the d a t a become amenable to more p r e c i s e s t a t i s t i c a l t e s t i n g and c o m p a r i s o n . In view o f t h i s , the f o l l o w i n g approaches to a water q u a l i t y s tudy are a p p a r e n t . (a) S c a l a r Approaches — The f i r s t o f the s c a l a r approaches and the l e a s t complex i s t o sample water q u a l i t y at one s i t e a t one p o i n t i n t i m e . The d a t a , because o f ': t h e i r r e l i a b i l i t y , become e x t r e m e l y u s e f u l as a t o o l f o r e n f o r c i n g water q u a l i t y s t a n d a r d s . F o r example, such d a t a are a good check on the c o n c e n t r a t i o n s o f p o l l u t a n t s f rom an e f f l u e n t d i s c h a r g e from an i n d u s t r y , a sewage t rea tment p l a n t o r a s torm sewer. However, the d a t a say l i t t l e 6 about c o n t r i b u t i n g areas and h y d r o l o g i c c o n d i t i o n s and say n o t h i n g about the t e m p o r a l o r s p a t i a l v a r i a t i o n s o f water q u a l i t y . T h e r e f o r e , the f i r s t o f the s c a l a r approaches i s o n l y u s e f u l when v i e w i n g contaminants as p o i n t s o u r c e s of p o l l u t i o n . The d a t a are a c c u r a t e f o r one s i t e a t one t ime o n l y . The second o f these approaches i s t o sample water q u a l i t y a t s e v e r a l s i t e s a t one p o i n t i n t ime ( s p a t i a l e f f e c t ) o r a t one s i t e a t s e v e r a l p o i n t s i n t ime ( temporal e f f e c t ) . The s p a t i a l e f f e c t a l l o w s r e l a t i o n s h i p s between p o i n t s to be e s t a b l i s h e d and the degree o f p o l l u t i o n w i t h r e s p e c t t o c o n -t r i b u t i n g a reas to be a s s e s s e d w i t h o u t r e g a r d f o r v a r y i n g h y d r o l o g i c f a c t o r s . S i m i l a r l y , the t e m p o r a l e f f e c t a l l o w s an assessment o f the v a r i a t i o n s a t one s i t e due to changes i n h y d r o l o g i c c o n d i t i o n s w i t h o u t c o n c e r n f o r d i f f e r i n g c o n -t r i b u t i n g a r e a s . The s p a t i a l o r t e m p o r a l e f f e c t s a re more complex than those o f the f i r s t approach b u t are a c h i e v e d w i t h l e s s r e s o l u t i o n . The t h i r d approach i s t o sample s e v e r a l s i t e s over s e v e r a l p o i n t s i n t ime so as to combine the s p a t i a l and t e m p o r a l e f f e c t s . The r e s u l t i n g d a t a can r e f l e c t b o t h the n a t u r e of the c o n t r i b u t i n g areas and the v a r y i n g h y d r o -l o g i c c o n d i t i o n s . T h i s i s s u b s e q u e n t l y r e f e r r e d to as the w a t e r s h e d approach i n t h i s t h e s i s . The w a t e r s h e d approach a c c o u n t s f o r b o t h ,the s p a t i a l ( l a n d use) and the t e m p o r a l ( h y d r o l o g i c ) a s p e c t s o f the water q u a l i t y d a t a . T h i s 7 a p p r o a c h , due s i m p l y to the i n c r e a s e d number o f v a r i a b l e s , i s the most complex and has the l e a s t r e s o l u t i o n . T h i s i s c o n f i r m e d by Hagget t and C h o r l e y (1965). T h i s a p p r o a c h , t o g e t h e r w i t h another r e f e r r e d to b e l o w , was t a k e n i n the s tudy o f the B r u n e t t e R i v e r D r a i n a g e B a s i n . (b) O t h e r Approaches — T h e o r e t i c a l r e s e a r c h has c o n t r i b u t e d t o the u n d e r s t a n d i n g o f the n a t u r e o f q u a l i t y parameters and t h e i r uses i n d e t e r m i n i n g r a t e s o f w e a t h e r i n g , d e n u d a t i o n and s o i l p r o c e s s e s . Hembree and Rainwater (1961) used c h e m i c a l parameters i n s t ream r u n o f f to e s t i m a t e w e a t h e r i n g r a t e s i n the Wind R i v e r Range, Wyoming. By comparing c h e m i c a l l o a d s t o c l a s t i c l o a d s , the t y p e and source o f w e a t h e r i n g c o u l d be d e t e r m i n e d . T h i s k i n d o f water q u a l i t y r e s e a r c h approach does n o t have the p r a c t i c a l a p p l i c a t i o n s t h a t the p o l l u t i o n - o r i e n t e d programmes h a v e . A n o t h e r a p p r o a c h , i n v o l v i n g the l a r g e s t group o f workers concerned w i t h the maintenance o f a c c e p t a b l e water q u a l i t y , i s the t r e a t m e n t o f s a n i t a r y and i n d u s t r i a l w a s t e s . The o b j e c t o f t h i s approach i s t o t r e a t c o n t a m i n a -t i o n a f t e r a source has been i d e n t i f i e d . Major urban areas o f N o r t h A m e r i c a a re sewered and p r o v i d e d w i t h a t l e a s t p r i m a r y t r e a t m e n t . The U n i t e d S t a t e s ' F e d e r a l Water P o l -l u t i o n C o n t r o l A c t s t a t e s t h a t waste t r e a t m e n t management p l a n s and p r a c t i c e s s h a l l p r o v i d e f o r the a p p l i c a t i o n o f the b e s t p r a c t i c a b l e waste t r e a t m e n t t e c h n o l o g i e s , 8 (Whipple e t a l . , 1974) . T h i s can mean e x p e n s i v e t e r t i a r y t r e a t m e n t p l a n t s w i t h e f f e c t i v e n u t r i e n t r e d u c t i o n s . S i m i -l a r l y , by recommendation o f the I n t e r n a t i o n a l J o i n t Com-m i s s i o n :(IJC) on t h e G r e a t L a k e s , a l l communities d r a i n i n g to Lake O n t a r i o , Lake E r i e and Lower Lake Huron r e q u i r e d f u l l secondary t r e a t m e n t and phosphate removal by December 31, 19 75. A l l communities d r a i n i n g to Lake Simcoe , Upper Lake Huron and the Ottawa R i v e r r e q u i r e s i m i l a r f a c i l i t i e s by December 31, 19 77. T h i s r e c o g n i t i o n o f the b e s t p o s s i b l e t rea tment o f e s t a b l i s h e d causes o f p o l l u t i o n , i s , o f c o u r s e , a s t e p i n the r i g h t d i r e c t i o n . However, i t i s s t r o n g l y p o i n t e d out by Whipple e t a l . (1974), t h a t once the s tage o f secondary t rea tment o f r e c o r d e d . w a s t e s i s a r r i v e d a t , the u n r e c o r d e d p o l l u t i o n s o u r c e s w i l l a c c o u n t f o r more than h a l f o f the p o l l u t i o n i n the s t r e a m s . In a l l a r e a s , the u n r e c o r d e d wastes w i l l be found too l a r g e to be i g n o r e d i n p l a n n i n g . The f a i l u r e to r e c o g n i z e u n r e c o r d e d p o l l u t i o n a s p e c t s w i l l l e a d to g r o s s l y uneconomic p o l l u t i o n c o n t r o l p l a n s i n many c a s e s . The f i n a l approach t o be mentioned i n t h i s c o n t e x t r e c o g n i z e s the need to manage the l a n d s c a p e so as t o p r o v i d e t r e a t m e n t p r i o r to the cause o f water q u a l i t y d e t e r i o r a -t i o n . T h i s approach r e c o g n i z e s n o n - p o i n t s o u r c e p o l -l u t i o n as a major f a c t o r i n s tream d e t e r i o r a t i o n and sugges ts t h a t the p r e v e n t i o n (or m i n i m i z a t i o n ) o f such 9 d e t e r i o r a t i o n r e s t s w i t h p r o p e r l a n d use management. F o r example, W e i b e l e t a l . (1963) c o n d u c t e d a s tudy on a 27 a c r e urban s i t e i n C i n c i n n a t i , O h i o . The s i t e was p r i -m a r i l y r e s i d e n t i a l - c o m m e r c i a l w i t h 37 p e r c e n t o f the s u r f a c e impermeable . Samples were a u t o m a t i c a l l y c o l l e c t e d as f l o w commenced i n the s torm sewer d r a i n i n g the s i t e . R e s u l t s from t h i s s t u d y a r e summarized i n T a b l e I . The average c o n c e n t r a t i o n s o f COD and BOD are s i m i l a r to v a l u e s found i n secondary t r e a t m e n t p l a n t e f f l u e n t s . The average v a l u e o f suspended s o l i d s i s comparable to t h a t found i n raw sewage. The n u t r i e n t s and t u r b i d i t y are a l s o h i g h . A s i d e from the i n t e r e s t i n g r e s u l t s , W e i b e l ' s approach o f a t t e m p t i n g to r e l a t e water q u a l i t y to the type o f l a n d use and h y d r o -l o g i c c o n d i t i o n s i s worth n o t i n g . Whipple e t a l . (1974) r e c o g n i z e d t h a t r e s u l t s c o l l e c t e d by W e i b e l e t a l . (1963) and Bryan (1971) v a r i e d g r e a t l y . The r e s u l t s were s p e c i f i c t o the l a n d uses w i t h -i n the s i t e , the e f f e c t i v e n e s s o f waste removal i n the s t r e e t s and the l e n g t h o f t ime s i n c e a p r e v i o u s r a i n f a l l , but s a i d l i t t l e about the s i z e , geomorphology and geology o f the catchment a r e a . Whipple c o n c l u d e d t h a t o n l y d a t a s y s t e m a t i c a l l y g a t h e r e d and c l a s s i f i e d w i t h r e s p e c t to l a n d uses and h y d r o l o g i c c o n d i t i o n s c o u l d be u s e f u l f o r p l a n n i n g p u r p o s e s . Whipple conducted s u r v e y s o f M i l e Run, New B r u n s w i c k , New J e r s e y and the Whippany R i v e r near M o r r i s -10 T A B L E I C O N C E N T R A T I O N S I N U R B A N L A N D R U N O F F A T A C I N C I N N A T I , O H I O S A M P L I N G P O I N T , J U L Y , 1962 T H R O U G H S E P T E M B E R , 196 3 ( E X C L U D I N G J A N U A R Y A N D F E B R U A R Y ) ( W E I B E L E T A L . 1963) P A R A M E T E R R A N G E M E A N u n i t s T U R B I D I T Y 30 - 1000 170 C O L O U R 10 - 380 81 PH 5.3 - 8.7 7.5 mg/1 A L K A L I N I T Y 10 - 210 59 H A R D N E S S ' ( T O T A L A S CaC0 3) 29 — 240 78 C I " 3 - 35 12 "SS VSS 5 1 — 1200 290 210 53 C O D 20 - 610 99 B O D 2 - 84 19 N0 2 0.02 - 0.2 0. 05 N O T N I T R O G E N 3 (as N ) N H 3 0.1 0.1 1.5 1.9 0.4 0.6 O R G . 0.2 - 4.8 1.7 P 0 4 ( T O T A L S O L U B L E AS P0 4) 0. 07 - 4.3 0.8 11 town, New J e r s e y . On the Whippany R i v e r , a mass b a l a n c e s tudy was made. The r e s u l t s f rom M i l e Run r e f l e c t e d s e r i o u s l o a d i n g s o f u n r e c o r d e d p o l l u t i o n from i n d u s t r i a l and commercial s i t e s and the r e s u l t s f rom the Whippany R i v e r near M o r r i s t o w n (Table II) r e f l e c t e d the e f f e c t s o f r e s i d e n t i a l areas on the s t ream q u a l i t y . The M o r r i s -town data are i n t e r e s t i n g i n showing the e f f e c t s o f f l o w on the l o a d i n g s and c o n c e n t r a t i o n s . The s i g n i f i c a n c e o f u n r e c o r d e d urban r u n o f f has been n o t e d by many o t h e r a u t h o r s and a g e n c i e s (Thomas and S c h n e i d e r , 1970; S o d e r l u n d , L e h t i n e n , and F r i b e r g , 1970; the Thames R i v e r B a s i n S t u d y , 19 74; K . J . H a l l , I . Y e s a k i and J . C h a n , 1976; the O n t a r i o M i n i s t r y o f the E n v i r o n m e n t ; the I J C : Westwater Research C e n t r e ; and o t h e r s ) . The f i n a l a p p r o a c h c o n c e r n e d w i t h l a n d manage-ment i s c o u p l e d w i t h the w a t e r s h e d approach ment ioned above f o r use i n t h i s t h e s i s . 3. The Q u e s t i o n s Posed The l a n d management-watershed approach taken i n t h i s t h e s i s c o n s i d e r s the n a t u r e o f the water q u a l i t y o f the B r u n e t t e R i v e r D r a i n a g e B a s i n as r e l a t e d to the l a n d uses o f the catchment a r e a . The q u e s t i o n s p o s e d were as f o l l o w s : 1. Where s h o u l d the s a m p l i n g s t a t i o n s be l o c a t e d i n o r d e r t o a d e q u a t e l y m o n i t o r the w a t e r s h e d response? 12 T A B L E I I U N R E C O R D E D P O L L U T I O N , M O R R I S T O W N A R E A , 1 9 7 2 ( A F T E R W H I P P L E E T A L . , 1 9 7 4 ) PARAMETER B O D 2 0 Average Flow 8 . 5 e f s August 8 - 1 1 Average Flow 5 1 . 8 c f s March 1 8 - 2 4 Flow 5 5 c f s March 2 2 1 1 A . M . l b / d a y mg/1 l b / d a y mg/1 l b / d a y mg/1 3 2 0 — 1 2 9 0 — 4 0 5 0 — 1 . 5 X B O D 5 3 0 0 6 . 6 1 2 0 0 4 . 3 4 7 9 0 1 6 . 2 S S 1 7 4 0 0 3 8 0 2 0 6 0 0 7 4 4 4 6 0 0 1 5 0 P O 4 7 0 1 . 5 5 8 0 2 . 1 1 2 8 0 4 . 3 N O 3 1 3 0 2 . 9 3 4 0 1 . 2 4 5 0 1 . 5 N H 3 1 5 0 3 . 2 1 1 0 0 . 4 3 6 0 1 . 2 What frequency of sampling i s r e q u i r e d i n order to p i n p o i n t water q u a l i t y v a r i a t i o n s ? What parameters of upstream l a n d use c o n s i s t e n t l y g i v e the h i g h e s t e x p l a n a t i o n o f water q u a l i t y ? What l e v e l s of e x p l a n a t i o n o f water q u a l i t y v a r i a t i o n s does upstream la n d use pro v i d e ? What other e f f e c t s on the water q u a l i t y data need t o be c o n s i d e r e d i n order to understand the unexplained v a r i a n c e i n the data? 14 II CHAPTER TWO THE BRUNETTE RIVER DRAINAGE BASIN 1. G e n e r a l The B r u n e t t e R i v e r D r a i n a g e B a s i n i s a r e l a t i v e l y s m a l l watershed l o c a t e d i n the c e n t r a l e a s t p o r t i o n o f the G r e a t e r Vancouver R e g i o n a l D i s t r i c t (see F i g u r e s 1 and 2 ) . I t i s a p p r o x i m a t e l y 15,000 a c r e s i n s i z e and i s t r i b u t a r y to the F r a s e r R i v e r a t S a p p e r t o n , B r i t i s h C o l u m b i a . A l -though s m a l l , i t i s one o f the major d r a i n a g e areas of the B u r r a r d P e n i n s u l a . The B r u n e t t e R i v e r D r a i n a g e B a s i n i s s i t u a t e d i n a t r o u g h w i t h i t s a x i s r o u g h l y i n an e a s t - w e s t d i r e c -t i o n . Much of the t r o u g h f l o o r i s f i l l e d w i t h h i g h l y u n -s t a b l e , h i g h m o i s t u r e c o n t e n t o r g a n i c s o i l s . C o n s e q u e n t l y , most o f the development i n the w a t e r s h e d i s r e s t r i c t e d to the v a l l e y s i d e s . F o r the most p a r t , the d r a i n a g e b a s i n i s u r b a n i z e d . The o n l y s e c t i o n l a r g e l y undeveloped i s the s o u t h s l o p e o f Burnaby M o u n t a i n . However, even i n t h i s a r e a , the f o r e s t cover i s b e i n g removed to a l l o w e x p a n s i o n o f Simon F r a s e r U n i v e r s i t y , o i l tank s t o r a g e areas and i n d u s t r i a l p a r k s . 42 p e r c e n t o f the w a t e r s h e d i s r e s i d e n t i a l l a n d u s e , 37 p e r c e n t open space (undeveloped l a n d and p a r k l a n d ) , 15 p e r c e n t commercia l and i n s t i t u t i o n a l l a n d u s e , and 6 p e r -15 LOCATION OF BRUNETTE RIVER DRAINAGE BASIN FIG. I. 16 S I T E M A P FIGURE 2 cent i n d u s t r i a l l a n d use. I t has been es t i m a t e d t h a t a p p r o x i -mately 25 percent of the watershed i s impervious (Swan Wooster Eng., 1966). 2. S u r f i c i a l Geology (Figure 3) The predominant s u r f i c i a l d e p o s i t s found i n the Brunette R i v e r Drainage B a s i n , and p a r t i c u l a r l y on the s i d e s l o p e s o f the b a s i n , are Newton Stony C l a y and Surrey T i l l (3). The g l a c i a l Surrey T i l l i s g e n e r a l l y l e s s than twenty-f i v e f e e t t h i c k and i s o v e r l a i n by g l a c i o - m a r i n e stony c l a y which i s u s u a l l y no more than ten f e e t t h i c k . These g l a c i a l and i n t e r g l a c i a l d e p o s i t s are mantled by Bose G r a v e l (11) on the lower h a l f o f the south slope o f Burnaby Mountain. The Bose G r a v e l r e p r e s e n t s an o l d wave-washed marine shore de-p o s i t . The Newton Stony Clay and Surrey T i l l are f l a n k e d by Sapperton Sediments (2e) (marine, d e l t a i c and g l a c i o -marine deposi t s ) i n the lower reaches o f the Brunette R i v e r . Sunnyside Sand ( r a i s e d l i t t o r a l and beach d e p o s i t s ) (10a) r e s t i n g on Newton Stony C l a y and Surrey T i l l i s found i n Coquitlam. F l o o d p l a i n , channel and slope-wash sand o f the S a l i s h Group (12A) i s found along Stoney Creek, S t i l l Creek and the Lower Brunette R i v e r . The banks of S t i l l Creek, Burnaby Lake and the Brunette R i v e r are o v e r l a i n w i t h Post-G l a c i a l d e p o s i t s . The area near the mouth of the Brunette R i v e r shows F r a s e r F l o o d p l a i n and Richmond D e l t a Deposits (18a) o f the S a l i s h Group. Areas adjacent to Burnaby Lake 18 braiffigaTwr^ cfi — id BRUNETTE RIVER BASIN (•) tampl ing t i l * .liaarnt iniiinu>lii>< SURFICIAL GEOLOGY (AFTER G.S.C. M A P 16 - 1 9 5 7 ) FIGURE 3 lb PREG L A CI A L - TERTI.A RY 100,11,120 POSTGLACIAL B E A C H I | 17a,18a ,19c POSTGLACIAL CHANNEL J FLOODPLAIN | | T j L L 2 e , 3 and the Upper B r u n e t t e R i v e r are s i m p l y Lowland Stream D e p o s i t s (17a) o f the S a l i s h G r o u p . A r e a s upstream o f Burnaby Lake and Deer Lake are swamp and p e a t d e p o s i t s o f the S a l i s h Group (19c) up to 25 f e e t t h i c k . The o n l y P r e -g l a c i a l bedrock exposures apparent a re found on Burnaby Mountain and C a p i t o l H i l l and i n c l u d e T e r t i a r y S a n d s t o n e , S i l t s t o n e and S h a l e ( l b ) . 3. R e l i e f The r e l i e f o f the B r u n e t t e R i v e r D r a i n a g e B a s i n ranges f rom an e l e v a t i o n o f 1,210 f e e t on Burnaby Mountain to the c o n j u n c t i o n o f the B r u n e t t e R i v e r and the F r a s e r R i v e r . The e l e v a t i o n o f the F r a s e r R i v e r v a r i e s w i t h the t i d a l c y c l e . Burnaby Lake i s m a i n t a i n e d i n the e l e v a t i o n range o f 131 to 133 f e e t . T h i s e l e v a t i o n range i s r e f e r e n c e d to the G r e a t e r Vancouver Sewerage and D r a i n a g e D i s t r i c t (GVS & DD) datum, which i s 91.37 f e e t below G e o d e t i c Mean Sea L e v e l (Swan Wooster , 19 66) . The f l o o r o f the w a t e r s h e d i s r e l a t i v e l y f l a t w i t h s l o p e s g e n e r a l l y l e s s than f i v e p e r c e n t . The v a l l e y s i d e s are s t e e p e r w i t h s l o p e s w i t h i n the range o f f i v e to ten p e r c e n t . S l o p e s g r e a t e r than t e n p e r c e n t are found on Burnaby Mountain and o t h e r i s o l a t e d l o c a t i o n s i n the d r a i n a g e b a s i n ( F i g u r e 4 ) . The s t ream g r a d i e n t s are lower f o r the two main streams t h a n the t r i b u t a r i e s . S t i l l Creek has a s l o p e o f 20 BRUNETTE RIVER BASIN (i) wambling RELIEF FIGURE 4 5 % SLOPE 5—10 % SLOPE >- 10 % SLOPE 0.7 p e r c e n t and the B r u n e t t e R i v e r has a s l o p e o f 0.3 p e r -c e n t . The r e m a i n i n g t r i b u t a r i e s have s l o p e s g r e a t e r than 1.0 p e r c e n t . 4. D r a i n a g e Network The a r e a o f the watershed as p l a n i m e t e r e d from the G r e a t e r Vancouver R e g i o n a l D i s t r i c t (GVRD) l a n d use maps (1:25,000) i s 15,177 a c r e s . The B r u n e t t e R i v e r system has t h r e e p r i n c i p a l components - S t i l l C r e e k , Burnaby Lake and the B r u n e t t e R i v e r ( F i g u r e 2 ) . Water f l o w i n g i n t o the B r u n e t t e R i v e r from Burnaby Lake i s c o n t r o l l e d a t C a r i b o o Dam. S i n c e t h e r e i s o n l y one s i g n i f i c a n t t r i b u t a r y t o the B r u n e t t e R i v e r downstream o f the dam, the f l o w o f the B r u -n e t t e R i v e r i s e s s e n t i a l l y d e t e r m i n e d a t C a r i b o o Dam. F o r p u r p o s e s o f t h i s s t u d y , the w a t e r s h e d i s viewed as b e i n g c o m p r i s e d o f e i g h t catchment a reas o f s i g n i -f i c a n c e . W i t h r e f e r e n c e to F i g u r e 2, these a r e a s are as f o l l o w s : a) above G i l m o r e Avenue 1. S t i l l Creek — b) c) above Douglas Avenue above S p e r l i n g Avenue 2. E a g l e Creek 3. Lake C i t y Creek 4. Deer Lake Creek 5. R o b e r t Burnaby Creek 6. Burnaby Lake 7. Stoney Creek 8. B r u n e t t e R i v e r - - a) above C a r i b o o Road b) above B r u n e t t e S t r e e t c) above B r a i d S t r e e t 22 S t i l l Creek i s the l a r g e s t s i n g l e drainage area i n the Brunette R i v e r B a s i n w i t h an acreage of 6,121. For study purposes, t h i s area was s u b d i v i d e d i n t o three s e c t i o n s . These s e c t i o n s are the area above Gilmore Avenue (2,653 a c r e s ) , the area below Gilmore Avenue and above Douglas Avenue (1,7 84 a c r e s ) , and the area below Douglas Avenue and above S p e r l i n g Avenue (1,684 a c r e s ) . Eagle Creek, Lake C i t y Creek, Deer Lake Creek, Robert Burnaby Creek, and the Burnaby Lake s e c t i o n a l l con-t r i b u t e to the l a k e above Cariboo Dam. Eagle Creek and Lake C i t y Creek d r a i n the steep, wooded slop e s of the n o r t h s i d e o f the drainage b a s i n . Eagle Creek has an area o f 1,415 acres and Lake C i t y Creek has an a r e a o f 190 a c r e s . Deer Lake Creek and Robert Burnaby Creek d r a i n the southern, r e s i d e n t i a l slopes o f the watershed. Deer Lake Creek has an area o f 2,133 acres and Robert Burnaby Creek an area o f 187 a c r e s . Areas p r i m a r i l y on the lower v a l l e y s i d e slopes and f l o o r d r a i n i n g d i r e c t l y t o the l a k e c o n s i s t o f 1,844 a c r e s . Stoney Creek d r a i n s the steep, wooded n o r t h - e a s t s l o p e s d i r e c t l y to the Brunette R i v e r and has an area o f 1,700 a c r e s . The Brunette R i v e r , l i k e S t i l l Creek, i s a l s o s u b d i v i d e d i n t o three s e c t i o n s f o r study purposes. The f i r s t s e c t i o n i s a l l the area upstream o f Cariboo Road (at Cariboo Dam). T h i s r e p r e s e n t s a summation o f a l l t r i b u t a r i e s pre-v i o u s l y mentioned except Stoney Creek. The area above Cariboo 23 Dam i s 11,9 39 acres which r e p r e s e n t s 78.7 percent of the area o f the t o t a l drainage b a s i n . The second s e c t i o n of the Brunette R i v e r i s the area below Cariboo Road and above Brunette S t r e e t . T h i s i s an area o f 3,175 acres (1,475 ac r e s i f e x c l u d i n g Stoney Creek). The t h i r d sec-t i o n i s the area below Brunette S t r e e t and above B r a i d S t r e e t which adds o n l y an a d d i t i o n a l 6 3 a c r e s . The watershed d i v i d e f o l l o w s , f o r the most p a r t , the storm drainage boundary as e s t a b l i s h e d by the GVS & DD. Only on p a r t s of Burnaby Mountain does the d i v i d e f o l l o w the n a t u r a l c o n t o u r s . T h i s means t h a t the d i v i d e takes on a s t r a i g h t - e d g e d appearance a l i g n e d w i t h c i t y s t r e e t s . T h i s a r t i f i c i a l i t y o f the contours i l l u s t r a t e s w e l l the s u p e r p o s i t i o n of u r b a n i z a t i o n on a n a t u r a l drainage b a s i n . 5. Hydrology T h i s s e c t i o n i s d i v i d e d i n t o two p a r t s i n order to d i s t i n g u i s h between data c o l l e c t e d from h i s t o r i c a l r e -cords and data measured d u r i n g the course o f t h i s study. A-: H i s t o r i c a l Data i) P r e c i p i t a t i o n : The Greater Vancouver a r e a e x p e r i -ences a moderate maritime c l i m a t e . The annual r a i n f a l l , a l -though i t v a r i e s from p o i n t to p o i n t , averages approximately 60 inches f o r the B u r r a r d P e n i n s u l a (Swan Wooster E n g i n e e r i n g Co. L t d . , 1966). There are two networks of r a i n f a l l measuring 24 s t a t i o n s i n the v i c i n i t y and c o v e r i n g the w a t e r s h e d a r e a . One network i s o p e r a t e d by the GVS & DD and the o t h e r by the A t m o s p h e r i c Environment S e r v i c e . E i g h t s t a t i o n s o p e r a t e d by the A t m o s p h e r i c Environment S e r v i c e are used i n t h i s s t u d y (see F i g u r e 5) and the d a t a a r e t a b u l a t e d i n Appendix A . The f o l l o w i n g t a b l e summarizes p r e c i p i t a t i o n d a t a f o r the months o f s tudy (January - June , 19 7 3) as compared to the average p r e c i p i t a t i o n f o r such months d u r i n g the p r e -v i o u s t e n y e a r s . TABLE I I I SUMMARY OF PRECIPITATION DATA FOR STUDY AREA TOTAL MONTH PERIOD RAINFALL (INCHES) SNOWFALL (INCHES) PRECIPI-TATION (INCHES) SUNSHINE (TOTAL HOURS) J a n u a r y 1973 8.49 5.1 9 .00 59. 0 1963-1972 7.37 10.7 8.45 45 .6 F e b r u a r y 1973 4.25 TR 4.25 88.4 1963-1972 5.62 5.3 6.15 80 .2 March 1973 4.83 TR 4.83 105.9 1963-1972 5. 72 1.2 5.84 120 A p r i l 1973 1.09 NIL 1. 09 219.2 1963-1972 3.49 0.2 3. 51 166.4 May 1973 3.13 NIL 3.13 258.8 1963-1972 2.72 NIL 2. 72 227. 3 June 1973 3.71 NIL 3. 71 207.4 1963-1972 1.95 NIL 1. 95 206.9 SOURCE: A t m o s p h e r i c Environment S e r v i c e f o r Vancouver C i t y 25 HYDROLOGIC A PRECIPITATION GAUGE MONITORING STATIONS • STAFF GAUGE AUTOMATIC WfiTER LEVEL RECORDER FIGURE 5 I i i ) R u n o f f : The most r e l i a b l e s t r e a m f l o w r e c o r d s a v a i l a b l e f o r the d r a i n a g e b a s i n a r e a are those from an a u t o m a t i c water l e v e l r e c o r d e r on S t i l l Creek a t G i l m o r e Avenue (Water Survey o f Canada - S t a t i o n Number 08MH061 -S t i l l Creek a t B u r n a b y ) . These r e c o r d s i n d i c a t e a mean f l o w o f a p p r o x i m a t e l y ten c u b i c f e e t per second w i t h a range o f 2.9 to 10 3 c f s . An a u t o m a t i c water l e v e l r e c o r d e r t h a t had measured B u r n e t t e R i v e r f l o w s a t S a p p e r t o n was no l o n g e r i n o p e r a t i o n d u r i n g t h i s s t u d y . A l t h o u g h water l e v e l s were a v a i l a b l e f o r S t i l l Creek a t S p e r l i n g Avenue , the b a c k -v water from the l a k e d i s t u r b e d the r a t i n g c u r v e here and the water l e v e l s seemed to s i m p l y r e f l e c t l a k e l e v e l s . T h e r e -f o r e , such r e c o r d s were not used i n t h i s s t u d y . The o n l y o t h e r measured f l o w s i n the d r a i n a g e b a s i n a r e a are those t h r o u g h C a r i b o o Dam. The dam i s o p e r a -t e d by the GVS & DD and water l e v e l s are f r e q u e n t l y r e c o r d e d , a lmost on an h o u r l y b a s i s . The dam i s a c o n c r e t e s t r u c t u r e w i t h t h r e e c e n t r e r a d i a l gates and s t o p - l o g s i n e i t h e r s i d e . Records o f f l o w s through the dam were c a l c u l a t e d f o r the time p e r i o d s d u r i n g w h i c h s a m p l i n g f o r t h i s s t u d y o c c u r r e d (see C h a p t e r Two - 5 B : i i ) . Of the water i n f l o w i n t o Burnaby L a k e , d u r i n g the summer, S t i l l Creek c o n t r i b u t e s 58 p e r c e n t o f the t o t a l , Deer Lake Creek 20 p e r c e n t , the r e m a i n i n g c r e e k s 15 p e r c e n t and r a i n f a l l 7 p e r c e n t . Summertime o u t f l o w s c o n s i s t o f r e -27 l e a s e s p a s t the dam which account f o r 88 p e r c e n t and e v a p o t r a n s p i r a t i o n which a c c o u n t s f o r the r e m a i n i n g 12 p e r c e n t (va lue t a k e n from C l a s s " A " pan a t U . B . C . , Swan Wooster E n g i n e e r i n g S e r v i c e s , L t d . , May, 1966) . B : Measured Data i ) P r e c i p i t a t i o n : No p r e c i p i t a t i o n d a t a was c o l -l e c t e d i n t h e f i e l d . The A t m o s p h e r i c Environment S e r v i c e r e c o r d s were r e l i e d upon e n t i r e l y (Appendix A ) . The s t a t i o n s are l i s t e d below and are shown on F i g u r e 5. 1 . B u r q u i t l a m 2. P o r t C o q u i t l a m C i t y Y a r d 3. Vancouver Oak 5 3 *4. Simon F r a s e r U n i v e r s i t y 5. Burnaby C a p i t o l H i l l 6. P o r t Moody, G u l f O i l R e f i n e r y 7. New W e s t m i n s t e r , B . C . P e n i t e n t i a r y *8. Burnaby Mounta in T e r m i n a l * l o c a t e d w i t h i n d r a i n a g e b a s i n ; o t h e r s are p e r i p h e r a l i i ) R u n o f f : The h y d r o g r a p h f o r S t i l l Creek at G i l m o r e Avenue ( S t a t i o n No. 08MH061) i s s e t o u t as F i g u r e 6 and i s p l o t t e d w i t h average p r e c i p i t a t i o n d a t a . The h y d r o g r a p h a t C a r i b o o Dam was c a l c u l a t e d from water l e v e l s r e c o r d e d through the dam. The dam o p e r a t o r u s u a l l y opened o n l y one gate and a l l o w e d s p i l l o v e r the top 28 of the gate. The h e i g h t o f the gate was a d j u s t e d d u r i n g the day, sometimes as o f t e n as ten times and the flow might vary from 0 - 2 0 0 c f s i n one day's p e r i o d . The flows were c a l c u l a t e d over the sampling p e r i o d ( i . e . day p r i o r t o , day o f , and day a f t e r sampling). The formula, Q = CLH f o r flow over a r e c t a n g u l a r weir, was used to c a l c u l a t e the s p i l l over the dam; and the formula Q = 2 / 3 J 2 g " c M H i 3 / 2 - H2 3 / / 2) f o r gated o r i f i c e flow, was used to c a l c u l a t e the gate flow ( a f t e r Design of Small Dams, U.S. Bureau of Reclamation 1965). The two values were summed and p l o t t e d to g i v e the r e s u l t a n t hydrographs (Figure 7). A f i r s t hydrograph was p l o t t e d to r e c o r d flow a t the a c t u a l time o f sampling. A second hydrograph r e -p r e s e n t i n g an average o f the d i s c h a r g e s through the dam over the time p e r i o d — day b e f o r e , day o f , and day a f t e r — of sampling was p l o t t e d . The second i s c e r t a i n l y more r e a l i s t i c o f the a c t u a l flow c o n d i t i o n s o f the Brunette R i v e r s i n c e the f i r s t i s a p l o t o f o n l y one hour i n the day o f each week o f the study p e r i o d . The second hydro-graph approximates t h a t o f S t i l l Creek a t Gilmore Avenue. I t i s s i m i l a r i n p a t t e r n and d i f f e r e n t i n magnitude. T h i s second hydrograph i s used as r e p r e s e n t a t i v e o f flows on the Brunette R i v e r a t Cariboo Road. Since the water l e v e l r e c o r d e r a t Sapperton was not o p e r a t i o n a l d u r i n g t h i s study, i t was necessary t o e s t i -3 0 mate the flows on the Brunette River a t B r a i d S t r e e t . Time c o n s t r a i n t s d i d not allow the i n s t a l l a t i o n and use of flow measuring d e v i c e s and t h e r e f o r e drainage b a s i n apportionment methods were used f o r such e s t i m a t e s . By t h i s method, i t was estimated t h a t the flow a t B r a i d S t r e e t was 1.27 times g r e a t e r than the flow a t Cariboo Dam (see F i g u r e 7 ) . The v a l i d i t y and accuracy o f t h i s method was checked by employing the same method at a l o -c a t i o n where r e s u l t i n g data c o u l d be compared a g a i n s t e x i s t i n g accurate data. Data was t h e r e f o r e c o l l e c t e d through t h i s method a t Cariboo Dam and then compared to the e x i s t i n g hydrograph f o r the dam. The comparison was s a t i s f a c t o r y and the method determined to be s u f f i c i e n t l y v a l i d and a c c u r a t e . The flows f o r Stoney Creek, the onl y s i g n i f i c a n t t r i b u t a r y to the Brunette R i v e r downstream of the dam, are the d i f f e r e n c e s between flows a t B r a i d S t r e e t and Cariboo Dam (Figure 7). A s i m i l a r approach to c a l c u l a t i n g flows at Stoney Creek was taken by Swan Wooster Eng. S e r v i c e s , May, 1966. To supplement the flow r e c o r d s , s t a f f gauges were monitored a t the f o l l o w i n g seven l o c a t i o n s i n the drainage b a s i n (see F i g u r e 5 ) : 1. Deer Lake Creek 2. Eagle Creek 32 3. Robert Burnaby Creek 4. Stoney Creek 5. Burnaby Lake 6. S t i l l Creek a t Gilmore Avenue 7. Cariboo Dam The s t a f f gauge on Deer Lake Creek was i n s t a l l e d s p e c i f i -c a l l y f o r t h i s study and remained i n o p e r a t i o n throughout t h i s study. The gauge on Eagle Creek was a l s o i n s t a l l e d s p e c i f i c a l l y but was not used as i t was d i s l o c a t e d e i t h e r by r e s i d e n t s o f the area or by v a r y i n g flow c o n d i t i o n s . T herefore, records of water l e v e l f o r Eagle Creek were taken a t an e s t a b l i s h e d Water Survey o f Canada gauge down-stream of the sampling s i t e . The Robert Burnaby Creek s t a f f gauge was not s u c c e s s f u l , b e i ng c o n s t a n t l y removed by l o c a l r e s i d e n t s . Water l e v e l s on Stoney Creek were measured a t a road c u l v e r t . L e v e l s were taken from the top o f the c u l v e r t down to the water s u r f a c e and l a t e r con-v e r t e d to water depths. The gauges a t Burnaby Lake, S t i l l Creek a t Gilmore Avenue and Cariboo Dam were esta b -l i s h e d gauges. Runoff c o - e f f i c i e n t s (c values) were c a l c u l a t e d f o r each catchment area o f the study b a s i n . Weighted c values were c a l c u l a t e d ( a f t e r Veissman e t a l , 1972) and are t a b u l a t e d i n Table IV below. The hi g h e r c o - e f f i c i e n t s r e f l e c t those areas more i n t e n s e l y developed w i t h a conse-quent hi g h e r degree of impervious s u r f a c e . The h i g h e s t i s 33 Lake C i t y Creek which d r a i n s Lake C i t y I n d u s t r i a l P a r k . The second h i g h e s t i s S t i l l Creek above G i l m o r e Avenue which i s a dense r e s i d e n t i a l a r e a . The lower v a l u e s such as 0.31 and 0.35 f o r Stoney Creek and E a g l e Creek r e s p e c t i v e l y r e f l e c t the open space and l a c k o f d e v e l o p -ment on the south s l o p e o f Burnaby M o u n t a i n . TABLE IV RUNOFF CO-EFFICIENTS Catchment A r e a c v a l u e S t i l l Creek above G i l m o r e Avenue 0. 47 S t i l l Creek above Douglas Avenue 0. 46 S t i l l Creek above S p e r l i n g Avenue 0. 44 E a g l e Creek 0. 35 Lake C i t y Creek 0 . 52 Stoney Creek 0. 31 Deer Lake Creek 0 . 42 R o b e r t Burnaby Creek 0. 37 Burnaby Lake 0. 39 B r u n e t t e above C a r i b o o Road 0. 42 B r u n e t t e above B r u n e t t e S t r e e t 0. 40 B r u n e t t e above B r a i d S t r e e t 0. 40 The s a n i t a r y and storm sewerage systems are s e p a r a t e i n t h i s a r e a . T h e r e f o r e , t h e r e i s no c o n c e r n f o r s torm o v e r - f l o w s o f the s a n i t a r y sewer. No wastewater may be l e g a l l y d i s c h a r g e d i n t o the B r u n e t t e R i v e r system but must be t r a n s p o r t e d f o r d i s c h a r g e i n t o t h e F r a s e r R i v e r . 34 6. Land Use As p r e v i o u s l y ment ioned , the B r u n e t t e R i v e r B a s i n i s e s s e n t i a l l y u r b a n i z e d . To summarize, the f o u r major l a n d use c a t e g o r i e s o f the w a t e r s h e d are r e s i d e n t i a l (42.3 p e r c e n t ) , open space (37.0 p e r c e n t ) , commercia l and i n s t i -t u t i o n a l (15.3 percent ) and i n d u s t r i a l (5.4 p e r c e n t ) . Most of the i n d u s t r y i s l o c a t e d a l o n g the major t h o r o u g h f a r e s or a l o n g S t i l l Creek and t h e lower B r u n e t t e R i v e r . Land use c a t e g o r i z e d as open space i n v o l v e s a range o f t y p e s o f s u r f a c e c o v e r . Such t y p e s o f c o v e r i n c l u d e m u n i c i p a l p a r k l a n d which i s m a i n t a i n e d and g r a s s e d , m u n i c i p a l p a r k l a n d w h i c h i s l e f t i n n a t u r a l v e g e t a t i o n , u n d e v e l o p e d l a n d w i t h n a t u r a l v e g e t a t i o n and areas t r e e d , u n t r e e d and v a r i a b l e i n s l o p e . The l a n d use o f the a r e a was taken f rom GVRD Land Use Maps (1970) a t a s c a l e o f 1 :25 ,000 . These maps were ckecked i n the f i e l d f o r r e c e n t changes . The o r i g i n a l GVRD maps (Appendix B) were g e n e r a l i z e d i n t o the f o u r major l a n d use c a t e g o r i e s , as mentioned above , and mapped ( F i g u r e 8 r e d u c e d to a s c a l e o f 1 : 5 0 , 0 0 0 ) . T a b l e V i n d i c a t e s the acreage o f each l a n d use f o r each catchment a r e a . T a b l e VI e x p r e s s e s those l a n d use acreages as p e r c e n t a g e s o f : (a) the catchment a r e a ; (b) the B r u n e t t e R i v e r D r a i n a g e B a s i n ; and 35 ®sampling s i t e LAND USE OF THE BRUNETTE RIVER BASIN §§ r e s i d e n t i a l streams intermittent * 5 . o , , ,„„ • i n d u s t r i a l watershed boundary ^ l « i | | c o m r e r c i a l , i n s t i t u t i o n a l - — t r i b u t a r y boundary ' j • ' ' • o p e n space (c) the t o t a l area of t h a t l a n d use i n the Drainage B a s i n . From Table VI, i t can be seen t h a t S t i l l Creek above G i l -more Avenue has the h i g h e s t percentage (70.2) of r e s i d e n t i a l l a n d use o f i t s c o n t r i b u t i n g area, o f the whole watershed (12.3), and a l s o o f the r e s i d e n t i a l s e c t i o n s o f the whole watershed (29.1). S i m i l a r l y , Lake C i t y Creek has the lowest percentage (7.3, 0.1, 0.2 r e s p e c t i v e l y ) . Lake C i t y Creek has the h i g h e s t percentage (20.6) o f i t s c o n t r i b u t i n g area as i n d u s t r i a l l a n d but Eagle Creek r e p r e s e n t s a l a r g e r percentage (1.8) o f the i n d u s t r i a l l a n d of the whole water-shed and a l s o the i n d u s t r i a l s e c t o r s o f the whole watershed (33.0). T h i s i s due to the l o c a t i o n o f a l a r g e o i l tank storage farm, c l a s s i f i e d as i n d u s t r i a l , i n the headwaters of E a g l e Creek. Robert Burnaby Creek and Deer Lake Creek have no i n d u s t r i a l a reas. Eagle Creek has the h i g h e s t per-centage (64.5) o f i t s c o n t r i b u t i n g area i n open space, but Stoney Creek r e p r e s e n t s a l a r g e r percentage (7.2) o f the open space o f the whole watershed and a l s o a l a r g e r per-centage (19.2) of a l l open spaces i n the whole watershed. Lake C i t y Creek has the h i g h e s t percentage (34.2) o f com-m e r c i a l and i n s t i t u t i o n a l l a n d use o f i t s c o n t r i b u t i n g area. S t i l l Creek above Douglas Avenue and below Gilmore Avenue has the h i g h e s t percentage (3.0) of commercial and i n s t i t u t i o n a l l a n d use of the whole watershed and a l s o the h i g h e s t percentage (20.1) o f a l l commercial and i n s t i t u t i o n a l 37 TABLE V ACREAGE OF LAND USES FOR CATCHMENT AREAS CATCHMENT AREA LAND USE EXPRESSED IN ACRES RESIDENTIAL INDUSTRIAL OPEN SPACE COMMERCIAL SU-BSTITUTIONAL • STILL CREEK ABOVE GILMORE AVENUE 1863 154 201 435 STILL CREEK ABOVE DOUGLAS AVENUE 2573 232 736 896 STILL CREEK ABOVE SPERLING AVENUE 3566 288 1279 988 EAGLE CREEK 159 272 913 71 LAKE CITY CREEK 14 39 72 65 STONEY CREEK 431 31 1086 152 DEER LAKE CREEK 1132 0 602 399 ROBERT BURNABY CREEK 66 0 107 14 BURNABY LAKE 374 154 995 321 BRUNETTE RIVER AT CARIBOO ROAD 5311 765 3989 1874 BRUNETTE RIVER AT BRUNETTE STREET 6397 824 5599 2294 BRUNETTE RIVER AT BRAID STREET 6397 824 5662 2294 38 TABLE V I PERCENTAGE CONTRIBUTIONS OF LAND USES CATCHMENT AREA % LAND USE OF AREA , AREA. : EAGLE CR. ... i . e . Res. x 100 % LAND USE OF TOT. BRUNETTE R. WATE i.e. AREA^^^ : EAGLE CR. RSHED x 100 IA^BATEEOR? WMV SA-TERMEB U S i . e . AREARRF. : EAGLE CR. E OF x 100 IN AREA„ : EAGLE CR. T o t . AREA„ : BRUNETTE R. BASIN TOt. AREA : BRUNETTE R. BAS Res. Res. * Ind. Open Sp. Comm. & Ins t i t . Res. Ind. Open Sp. comm. tx I n s t i t . Res. Ind. Open Sp. uomm. iu I n s t i t . STILL CREEK ABOVE GILMORE AVENUE 70.1 5.8 7.6 16.4 12.3 1.0 1.3 2.9 29.1 18.7 3.6 19.0 STILL CREEK ABOVE DOUGLAS AVENUE AND BELOW GILMORE AVE. 39.8 4.4 30.0 25.8 4.7 0.5 3.5 3.0 11.1 9.5 9.4 20.1 STILL CREEK ABOVE SPERLING AVENUE AND BELOW DOUGLAS AVE. 59.0 3.3 32.2 5.5 6.5 0.4 3.6 0.6 15.5 6.8 9.6 4.0 EAGLE CREEK 11.2 19.2 64.5 5.1 1.0 1.8 6.0 0.5 2.5 33.0 16.1 3.1 BURNABY LAKE 20.2 8.4 54.0 17.4 2.5 1.0 6.6 2.1 5.8 18.7 17.6 14.0 LAKE CITY CREEK 7.3 20.6 37.9 34.2 0.1 0.3 0.5 0.4 0.2 4.7 1.3 2.8 STONEY CREEK 25.4 1.8 63.9 8.9 2.8 0.2 7.2 1.0 6.7 3.8 19.2 6.6 BRUNETTE RIVER 41.3 2.5 38.4 17.8 4.3 0.3 4.0 1.9 10.2 4.9 10.8 12.4 ROBERT BURNABY CREEK 35.1 0.0 57.3 7.6 0.4 0.0 0.7 0.1 1.0 0.0 1.9 0.6 DEER LAKE CREEK 53.1 0.0 28.2 18.7 7.4 0.0 4.0 2.6 17.7 0.0 10.6 17.4 * Residential, I n d u s t r i a l , Open Space, Commercial & I n s t i t u t i c l a n d . The Brunette R i v e r l a n d use r e f l e c t s an averaging of a l l upstream l a n d uses. I t i s important t o note t h a t the i n d u s t r i a l l a n d use a s s o c i a t e d with S t i l l Creek above Gilmore Avenue (5.8 percent) and w i t h S t i l l Creek above Douglas Avenue and below Gilmore Avenue (4.4 percent) s i t u a t e d on the banks of the stream i s predominantly t r u c k i n g f i rms and metal works. The i n d u s t r i a l l a n d use o f Lake C i t y Creek (20.6 percent) i s predominantly i n d u s t r i a l park. T h i s becomes s i g n i f i c a n t when d i s c u s s i n g water q u a l i t y . Deer Lake Creek i s s t r i c t l y a r e s i d e n t i a l area completely l a c k i n g i n i n -d u s t r i a l l a n d use. Robert Burnaby Creek i s predominantly open space except f o r a r e s i d e n t i a l s e c t i o n i n the upper reaches. In summary, the lan d use percentages o f a c a t c h -ment area tend to o v e r s i m p l i f y and g e n e r a l i z e the nature of the l a n d use. I t i s important t o look f u r t h e r a t the types of uses, t h e i r p r o x i m i t y to the stream and the acreage o f the la n d use. 40 I l l CHAPTER THREE EXPERIMENTAL DESIGN 1. G e n e r a l The e x p e r i m e n t a l d e s i g n i s o f c r i t i c a l i m p o r -tance to t h i s s t u d y f o r two main r e a s o n s . F i r s t , water q u a l i t y parameters by n a t u r e are e x t r e m e l y s e n s i t i v e to e n v i r o n m e n t a l change. I t i s e s s e n t i a l t h a t t h i s s e n s i t i v i t y n o t be l o s t i n an o v e r - s i m p l i f i e d d e s i g n . S e c o n d l y , water q u a l i t y s a m p l i n g , l o g i s t i c a l l y r e q u i r e s e x a c t t i m i n g and r e a d i l y a v a i l a b l e l a b o r a t o r y f a c i l i t i e s . Many samples c o l l e c t e d which are n o t i m m e d i a t e l y a n a l y z e d become m e a n i n g l e s s . T h e r e f o r e , i t i s n e c e s s a r y to s e l e c t an e x p e r i m e n t a l d e s i g n w h i c h a l l o w s f o r s a m p l i n g f r e q u e n t enough to p r e s e r v e the s e n s i t i v i t y o f the d a t a w i t h o u t o v e r l o a d i n g the d e s i g n w i t h l o g i s t i c a l problems such as l a b o r a t o r y space and equipment a v a i l a b i l i t y . 2. System I d e n t i f i c a t i o n The B r u n e t t e R i v e r D r a i n a g e B a s i n was d e s c r i b e d i n C h a p t e r Two. A s i d e from the f a c t t h a t i t i s one o f the few f u l l y u r b a n i z e d watersheds i n the Lower M a i n l a n d o f B r i t i s h C o l u m b i a , t h e r e are c e r t a i n o p e r a t i o n a l a d v a n -tages to t h i s a r e a . One, i t i s w i t h i n s u f f i c i e n t p r o x i m i t y 41 to the U n i v e r s i t y o f B r i t i s h Columbia to permit a regu-l a r l y monitored sampling and a n a l y s i s programme. Two, the area i s w e l l s e r v i c e d w i t h access roads to the stream channel. Three, there are good r e c o r d s of p r e c i p i t a t i o n and a t l e a s t one e s t a b l i s h e d gauging s t a t i o n on S t i l l Creek a t Gilmore Avenue. This study can be viewed as having three p r i n -c i p a l components. These components are the l a n d use, the hydrology, and the water q u a l i t y o f the drainage b a s i n . The l a n d use i s c e r t a i n l y the most s t a t i c of the t h r e e . W i t h i n the time p e r i o d of the study, i t was assumed t h a t no a p p r e c i a b l e change i n l a n d use o c c u r r e d . Water q u a l i t y i s the l e a s t s t a t i c of the components r e f l e c t i n g any v a r i -a t i o n i n hydrology or i n p u t from lan d use. The hydrology component l i e s somewhere between l a n d use and water q u a l i t y . Since l a n d use and hydrology have been d e a l t w i t h i n Chapter Two, i t remains to d e s c r i b e the water q u a l i t y sampling system. 3. Water Q u a l i t y Sampling System, Twelve s i t e s a t which to sample water q u a l i t y were s e l e c t e d . The s i t e s (see F i g u r e 2) were as f o l l o w s : 1. S t i l l Creek a t Gilmore Avenue 2. S t i l l Creek a t Douglas Avenue 3. S t i l l Creek a t S p e r l i n g Avenue 4. Deer Lake Creek 42 5. Eagle Creek 6. Burnaby Lake a t P i p e r Avenue 7. Lake C i t y Creek 8. Stoney Creek 9 . Brunette R i v e r a t Cariboo Road 10. Brunette R i v e r a t Brunette S t r e e t 11. Brunette R i v e r a t B r a i d S t r e e t 12. Robert Burnaby Creek The most s i g n i f i c a n t f a c t o r i n the s i t e s e l e c t i o n was the r e p r e s e n t a t i v e n e s s o f the s i t e o f a c e r t a i n l a n d use. For example, Robert Burnaby Creek was r e p r e s e n t a t i v e o f pre -dominantly open space and Deer Lake Creek was r e p r e s e n t a -t i v e o f r e s i d e n t i a l l a n d use. The second most important f a c t o r i n s i t e s e l e c t i o n was good a r e a l coverage o f the watershed. Th e r e f o r e , three s i t e s were chosen on each o f the two major streams — S t i l l Creek and the Brunette R i v e r — and one s i t e was s e l e c t e d on each o f the remaining t r i b u t a r i e s . The a v a i l a b i l i t y o f s u p p o r t i v e flow r e c o r d s , a c c e s s i b i l i t y by road, the u n i f o r m i t y o f stream c r o s s -s e c t i o n s , and the absence of human i n t e r f e r e n c e with equip-ment were the oth e r s i g n i f i c a n t f a c t o r s . Other sampling designs t h a t were c o n s i d e r e d are as f o l l o w s : 1. to sample upstream and downstream of a l l t r i b u t a r i e s and o u t f a l l s d r a i n i n g a par-t i c u l a r l a n d use. The number o f unre-corded connections and problems o f access made t h i s l o g i s t i c a l l y i m p o s s i b l e . 2. to sample l a n d uses f u r t h e r s u b d i v i d e d i n t o two slope c a t e g o r i e s ( l e s s than o r equal to 5% and g r e a t e r than 5%) so as 43 to i n c o r p o r a t e the r u n o f f c h a r a c t e r i s t i c s . The v a r i a b i l i t y o f s l o p e s w i t h i n s h o r t d i s t a n c e s a l s o l e d to too many s a m p l i n g s i t e s f r o m a l o g i s t i c a l p o i n t o f v i e w . 4. The Parameters The n e x t s t e p i n the d e s i g n was to s e l e c t the q u a l i t y parameters t o be m o n i t o r e d . Because o f the l a c k o f water q u a l i t y d a t a f o r the B r u n e t t e R i v e r system, i t was d e c i d e d t h a t a f u l l range o f parameters s h o u l d be a n a l y z e d . The parameters measured were temperature ( ° C ) , p H , s p e c i f i c conductance (umhos), t u r b i d i t y ( J . T . U . ' s ) , c o l o u r ( P i - C o . u n i t s ) , d i s s o l v e d oxygen (DO) ( m g/1), c h e m i c a l oxygen demand (COD) ( m g/1) , b i o c h e m i c a l oxygen demand (BOD) ( m g/1) , n i t r a t e n i t r o g e n ( N O 3 - N) ( m g/1), ammonia n i t r o g e n ( N H 3 - N) ( m g/1) , t o t a l k e l d a h l n i t r o g e n (N-T) ( m g/1) , o r t h o p h o s p h a t e phosphorus ( P 0 4 - P) ( m g/1), t o t a l phosphorus (P-T) ( m g/1) , suspended s o l i d s ( m g/1), d i s s o l v e d s o l i d s ( m g/1) , manganese ( m g/1) , copper ( m g/1), z i n c (mg/1) and i r o n ( m g/1) . F o r a l i s t i n g o f the p a r a -m e t e r s ' d a t a , see Appendix C . These n i n e t e e n parameters were a n a l y z e d r e g u l a r l y from each o f the twelve s i t e s . C o l i f o r m b a c t e r i a were not sampled f o r due to the l a c k o f l a b o r a t o r y f a c i l i t i e s . The n i n e t e e n parameters were s e l e c t e d to a d e q u a t e l y c h a r a c t e r i z e the p h y s i c a l , c h e m i c a l and a e s t h e t i c n a t u r e o f the water q u a l i t y , to p i n p o i n t water q u a l i t y problem areas and to r e f l e c t t h e e f f e c t s 44 of d i f f e r e n t l a n d uses on the water q u a l i t y . Of the n i n e t e e n parameters, f o u r were measured i n the f i e l d . These were temperature, pH, s p e c i f i c conductance and d i s s o l v e d oxygen. The remaining parameters were ana-l y z e d i n l a b o r a t o r i e s a t the U n i v e r s i t y o f B r i t i s h Columbia. 5. Sampling Frequency The frequency o f sampling i s an important aspect of the design and should be such t h a t no ' s i g n i -f i c a n t ' v a r i a t i o n s i n the q u a l i t y go unnoticed. What c o n s t i t u t e s a ' s i g n i f i c a n t ' v a r i a t i o n i s an open-ended q u e s t i o n ( e s p e c i a l l y s i n c e the frequency of sampling nor-m a l l y has to be d e c i d e d p r i o r to the a c q u i s i t i o n of any data capable o f a s s e s s i n g the adequacy o f the frequency i n t e r v a l ) and depends on the s e n s i t i v i t y o f the p a r a -meters to environmental change. For example, pH i s more co n s t a n t than the suspended s o l i d s c o n c e n t r a t i o n . The frequency o f sampling o f t e n becomes a compromise between the d e s i r e d p r e c i s i o n o f the data and the funds and time a v a i l a b l e . In the case of the Brunette R i v e r Drainage B a s i n Study, one week was the s h o r t e s t p o s s i b l e time i n -t e r v a l t h a t the a v a i l a b i l i t y o f l a b o r a t o r i e s , equipment, funds and sampler's time c o u l d manage. Fi g u r e 9 summarizes the experimental d e s i g n , as mentioned above, and i n d i c a t e s the format which the 45 FIGURE 9 EXPERIMENTAL DESIGN E X A M P L E O F O E S I G N L A Y O U T A C T U A L S A M P L I N G D E S I G N MT*' PAT* P*t* d a t a takes f o r a n a l y s i s i n C h a p t e r F o u r . 6. Sampl ing P r o c e d u r e s S a m p l i n g a t each s i t e was c a r r i e d o u t weekly from January 13, 19 7 3 u n t i l June 27, 19 7 3 (24 t i m e s ) . The f o l l o w i n g d e s c r i p t i o n o f the a c t u a l f i e l d s a m p l i n g and l a b o r a t o r y p r o c e d u r e s w i l l c l a r i f y the d e s i g n and the c o n s t r a i n t s on the d e s i g n : F i e l d S a m p l i n g : The f i e l d work i n v o l v e d the c o l l e c -t i o n o f water samples and suspended and d i s s o l v e d s o l i d s samples , t h e measurement o f f l o w s o r water l e v e l s (where a v a i l a b l e ) and the measurement o f the f o u r f i e l d p a r a -m e t e r s . Temperature was taken u s i n g a c e n t i g r a d e t h e r -mometer; pH u s i n g a pH - meter ; s p e c i f i c conductance u s i n g a 5-range p o r t a b l e d i o n i c c o n d u c t i v i t y meter (Evershed and V i g n o t e s , L t d . ) ; and d i s s o l v e d oxygen u s i n g a YSI meter . Three b o t t l e s (two 500 ml b o t t l e s and one 250 ml b o t t l e ) o f sample water were c o l l e c t e d a t each s i t e . These samples were t a k e n a t m i d - s t r e a m and m i d - d e p t h . The samples were s t o r e d on i c e i n c o v e r e d c o o l e r s f o r t r a n s p o r t a t i o n to the l a b o r a t o r i e s a t the U n i v e r s i t y o f B r i t i s h C o l u m b i a . A DH-4 8 suspended sediment sampler was used to take a d e p t h i n t e g r a t e d suspended and d i s s o l v e d s o l i d s s a m p l e . T h i s sample was taken a t m i d - s t r e a m a t each 47 s i t e except Burnaby L a k e . Temperature , p H , s p e c i f i c conductance and d i s s o l v e d oxygen were r e c o r d e d i n the f i e l d . L a b o r a t o r y P r o c e d u r e s : L a b o r a t o r y f a c i l i t i e s were l o c a t e d i n the C i v i l E n g i n e e r i n g Department , the A g r i c u l t u r a l S c i e n c e E n g i n e e r i n g Department , the G e o l o g i c a l S c i e n c e s Department and the Geography Department o f the U n i v e r s i t y o f B r i t i s h C o l u m b i a . One 500 ml sample b o t t l e was l e f t a t the C i v i l E n g i n e e r i n g l a b o r a t o r y to be used f o r a n a l y s e s o f t u r b i d i t y and c o l o u r . The o t h e r 500 ml sample b o t t l e was taken to t h e A g r i c u l t u r a l S c i e n c e E n -g i n e e r i n g Department to be used f o r the n u t r i e n t , BOD, and COD a n a l y s e s . The 250 ml sample b o t t l e was t r e a t e d w i t h a p r e s e r v a t i v e and l e f t a t the C i v i l E n g i n e e r i n g l a b o r a t o r y f o r p r e p a r a t i o n f o r the heavy meta l a n a l y s e s which were p e r f o r m e d i n the G e o l o g i c a l S c i e n c e s D e p a r t -ment. The suspended and d i s s o l v e d s o l i d s samples were a n a l y z e d a t t h e Department o f Geography. A n a l y s e s were performed w i t h i n a week o f s a m p l i n g to i n s u r e r e l i a b i l i t y i n t h e d a t a and a l s o t o make a v a i l -a b l e the b o t t l e s f o r s a m p l i n g the subsequent week. C o n s e -q u e n t l y , as soon as the sample was dropped o f f a t A g r i -c u l t u r a l S c i e n c e E n g i n e e r i n g , the author p r e p a r e d the samples f o r the BOD t e s t . The l a b o r a t o r y t e c h n i c i a n would 48 read and r e c o r d the r e s u l t s f i v e days l a t e r . The r e -maining water was s t o r e d at 4°C to be used f o r the nu-t r i e n t and COD ana l y s e s . The l a b o r a t o r y t e c h n i c i a n ran these t e s t s . A l l the n u t r i e n t s were determined u s i n g the Technicon I n d u s t r i a l A utoanalyzer I I . Wi t h i n 72 hours of c o l l e c t i o n , the samples were analyzed by the author f o r t u r b i d i t y and c o l o u r . The H e l l i g e t u r b i d i m e t e r and H e l l i g e a q u a t e s t e r a v a i l a b l e a t the C i v i l E n g i n e e r i n g l a b o r a t o r y were used. Samples f o r the heavy metal t e s t s were prepared f o r a n a l y s i s i n the C i v i l E n g i n e e r i n g l a b o r a t o r y . The samples were c h e m i c a l l y d i g e s t e d i n C i v i l E n g i n e e r i n g and then run by a l a b o r a t o r y t e c h n i c i a n on an atomic absorp-t i o n spectrophotometer a v a i l a b l e i n G e o l o g i c a l S c i e n c e s . The suspended and d i s s o l v e d s o l i d s c o n c e n t r a -t i o n s were determined by the author i n the Department o f Geography d u r i n g the summer o f 19 73, a l l o w i n g the samples time to s e t t l e . These samples were then analyzed u s i n g the standard e v a p o r a t i o n method and a computer programme ( a v a i l -able from G i l b e r t , 1972). 7. Summary The b a s i c design o f the study may t h e r e f o r e be summarized as f o l l o w s . The water q u a l i t y data were 49 c o l l e c t e d at twelve s i t e s over 24 weeks and were analyzed i n c o n j u n c t i o n w i t h the l a n d uses and h y d r o l o g i c c o n d i t i o n s c o n t r i b u t i n g to i t . Mention should now be given to a d d i -t i o n a l sampling done d u r i n g the study p e r i o d to complement the b a s i c d e s i g n . From the onset of the study, i t was r e c o g n i z e d t h a t the frequency of sampling, the. adequacy o f the parameters measured and the r e p r e s e n t a t i v e n e s s of the s i t e s o f the land uses, were c r i t i c a l to the study and needed to be checked f o r t h e i r v a l i d i t y . I t was a l s o r e c o g n i z e d t h a t , although not i n c o r p o r a t e d i n the b a s i c design, the settlement o f p o l l u t a n t s i n t o bottom sediments o f the streams and la k e c o u l d prove to be very important i n e x p l a i n i n g water q u a l i t y v a r i a t i o n s . A l s o , the l o c a t i o n of and d i s c h a r g e from o u t f a l l s i n t o the system c o u l d a l s o be important i n e x p l a i n i n g the e f f e c t s o f l a n d use on water q u a l i t y . In order to, a t l e a s t , attempt to assess these q u e s t i o n a b l e aspects o f the design, continuous m o n i t o r i n g was conducted three times d u r i n g the sampling p e r i o d . An automatic sampler (courtesy o f K. H a l l , West-water Research Centre) was i n s t a l l e d by K. H a l l and B. M c N e i l l on May 5, 1973 at S t i l l Creek a t Douglas Avenue ( P l a t e s 1 and 2). T h i s sampler took a sample a t a timed i n t e r v a l of two hours f o r 96 hours. These samples were subsequently analyzed and the r e s u l t s used as a check on the v a l i d i t y of the b a s i c design r a t h e r than as a data i n p u t to the design. T h i s sampler was again s e t up i n 50 P l a t e 1 Automatic Sampler - S t i l l Creek a t Douglas Avenue P l a t e 2 V i s i b l e s u r f a c e p o l l u t i o n -S t i l l Creek at Douglas Avenue J u l y , 1973 on Deer Lake Creek and E a g l e C r e e k . T h i s t ime i t was t imed on a two-hour i n t e r v a l o v e r a 48 hour p e r i o d . I t was hoped, b o t h on Deer Lake Creek and E a g l e C r e e k , t h a t sample c o l l e c t i o n s t a r t s i x to twelve hours p r i o r to a p r e d i c t e d r a i n f a l l . By t h i s , the q u a l i t y o f the water d u r i n g the a n t e c e d e n t d r y p e r i o d c o u l d be used to p i n p o i n t any changes i n q u a l i t y as the r u n o f f began as w e l l as the magnitude and t i m i n g o f t h a t change. In a d d i t i o n to the a u t o m a t i c sampler used above, water q u a l i t y and sediment data were c o l l e c t e d i n the B r u n e t t e R i v e r D r a i n a g e B a s i n by the Westwater Research C e n t r e i n c o n j u n c t i o n w i t h t h e i r o v e r a l l s t u d i e s o f the Lower F r a s e r R i v e r . Four s i t e s (Brunet te R i v e r a t B r a i d S t r e e t , E a g l e C r e e k , Deer Lake Creek and S t i l l Creek a t G i l m o r e Avenue) were m o n i t o r e d monthly by Westwater . The Westwater data were u s e f u l as a check on the d a t a c o l l e c t e d i n t h i s s t u d y . E x t e n s i v e work on c h l o r i n a t e d h y d r o c a r -bons and heavy m e t a l s h e l d i n the bottom sediments was done by K . H a l l e t a l . (1976). S e v e r a l p o i n t s from the sediment s t u d i e s c o n -d u c t e d by K . H a l l e t a l . (19 76) i n so f a r as they r e l a t e t o t h i s d i s c u s s i o n are worth n o t i n g . The m i d d l e r e a c h o f S t i l l Creek and the lower B r u n e t t e R i v e r were most s e v e r e l y contaminated w i t h the t r a c e m e t a l s . Both s t r e t c h e s have i n d u s t r i a l a c t i v i t y a s s o c i a t e d w i t h them. C o p p e r , z i n c , 52 manganese, and l e a d were, i n most cases, found i n the h i g h e s t c o n c e n t r a t i o n s . The c o n c e n t r a t i o n s measured were o f t e n h i g h e r than those measured i n h i g h l y u r b a n i z e d areas (such as the Rideau R i v e r near Ottawa and the I l l i n o i s R i v e r near P e o r i a , I l l i n o i s ) . The reasons given f o r such, high values were the nearby i n d u s t r i a l a c t i v i t i e s , the heavy volume of s t r e e t t r a f f i c , the decreased stream v e l o c i t i e s and the r e c e n t occurrence o f r u n o f f . The f i r s t two reasons r e l a t e to l a n d use and the second two to hydro-l o g i c c o n d i t i o n s . I t appeared t h a t the t r a c e metals were t r a n s p o r t e d i n the sediment l o a d and d e p o s i t e d i n low v e l o c i t y reaches (and p o s s i b l y i n S t i l l Creek due to back-water from Burnaby Lake). I t a l s o appeared t h a t a l l metal c o n c e n t r a t i o n s except manganese i n c r e a s e d d u r i n g o r imme-d i a t e l y a f t e r r u n o f f c o n d i t i o n s . I t was concluded t h a t the manganese i n the stream came from the groundwater zone. Comparative r e s u l t s from the Brun e t t e R i v e r B a s i n Study are i n d i c a t e d i n Chapter Four. These complementary sampling programmes recon-fir m e d the importance of sampling frequency, s i t e l o c a t i o n and i n ge n e r a l the experimental design and are d i s c u s s e d more f u l l y i n Chapter Four. 53 IV CHAPTER FOUR PRESENTATION OF RESULTS 1 . G e n e r a l I t s h o u l d be r e c a l l e d t h a t t h i s s tudy was com-p r i s e d o f t h r e e b a s i c components - the l a n d u s e , the h y d r o -l o g y and the water q u a l i t y o f the B r u n e t t e R i v e r D r a i n a g e B a s i n . T h i s c h a p t e r shows how the water q u a l i t y d a t a , as sampled r e l a t e d to the l a n d use and h y d r o l o g y . The s a m p l i n g programme p r o v i d e d d a t a f o r 18 p a r a -meters a t 12 s i t e s o v e r a p e r i o d o f 24 weeks. From the more than 5,000 p i e c e s o f data c o l l e c t e d , i t was expec ted t h a t t r e n d s , p a t t e r n s , c o r r e l a t i o n s and d i s c r e p a n c i e s would appear . In c e r t a i n c a s e s , as may be seen from the f o l l o w i n g d i s c u s s i o n , r e l a t i o n s h i p s were e s t a b l i s h e d between water q u a l i t y parameters and the c o n t r i b u t i n g l a n d uses and i n o t h e r cases between the water q u a l i t y parameters and s t ream d i s c h a r g e . The s i g n i f i c a n c e o f these r e l a t i o n s h i p s i s somewhat tempered by the amount o f u n e x p l a i n e d v a r i a n c e i n the d a t a b u t n o n e t h e l e s s the a u t h o r f e e l s t h a t such r e -l a t i o n s h i p s are v a l i d . 2. Water Q u a l i t y Data A : G e n e r a l The water q u a l i t y d a t a v a r i e d f rom s i t e to s i t e and f rom week to week i n r e s p o n s e to w a t e r s h e d changes . The 54 magnitude o f change i n the parameters themselves a l s o v a r i e d w i t h i n the s i t e o v e r t ime and from s i t e to s i t e o v e r t i m e . In summarizing the d a t a , i t was i m p o r t a n t to m a i n t a i n t h i s s e n s i t i v i t y i n the d a t a . F o r example, the means, s t a n d a r d d e v i a t i o n s , c o - e f f i c i e n t s o f v a r i a t i o n , maxima, minima and ranges were c a l c u l a t e d f o r each parameter a t each s i t e f o r the time p e r i o d i n q u e s t i o n . T h i s p r o v i d e d a p r e s e n -t a t i o n o f the s p a t i a l v a r i a t i o n o f the n e t w o r k ' s water q u a l i t y ( i . e . from s i t e to s i t e ; l a n d use t o - l a n d use) but the t e m p o r a l a s p e c t s o f the water q u a l i t y data became some-what b l u r r e d . T h e r e f o r e , i n the f o l l o w i n g two s e c t i o n s the water q u a l i t y d a t a i s d i s c u s s e d f i r s t w i t h r e s p e c t to s i t e d i f f e r e n c e s ( s p a t i a l or l a n d use e f f e c t s ) and second w i t h r e s p e c t t o t e m p o r a l changes ( h y d r o l o g i c e f f e c t s ) a t a s i t e . B : S p a t i a l A s p e c t s o f the Data The means, s t a n d a r d e r r o r s o f the means, r a n g e s , and c o - e f f i c i e n t s o f v a r i a t i o n are l i s t e d i n T a b l e s V I I , V I I I , IX and X, r e s p e c t i v e l y . A t t e n t i o n i s f o c u s e d on T a b l e s V I I and X, the means and c o - e f f i c i e n t s o f v a r i a t i o n , because the former r e p r e s e n t s average c o n d i t i o n s and the l a t t e r the v a r i a b i l i t y w i t h i n a s i t e and from s i t e to s i t e . The s t a t i s t i c s a v a i l a b l e f o r the B r u n e t t e R i v e r a t B r a i d S t r e e t , l o c a t e d a t the mouth o f the r i v e r , resemble 55 TABLE V I I MEANS OF THE DATA ON S t i l l Cr. at Gilmore Temp. pH S p e c i f i c Conduct. Tu r b i -d i t y Colour DO BOD COD NO3-N NH3-N N-T O-PO4-P P-T Susp . Solids Diss. S o l i d s Mn Cu • Zn 9.3 7.27 1. 04 6. 60 27.5 10.1 87.8 10.2 16. 0 1.02 0.101 0.415 0.021 0.091 9.87 179.32 0.154 0. 028 0. 043 S t i l l Cr. at Douglas 9.7 7.23 1.00 9.90 64 . 5 8.7 76. 3 5.1 27.9 0.67 0.121 0.498 0.034 0.085 18.28 118.58 0.222 0.033 0.073 S t i l l Cr. at Sperling 10.8 7.18 0.95 10. 30 70. 9 8.9 80.1 4.8 28. 6 0.64 0.109 0.521 0.030 0.102 25. 07 150.13 0.214 0.027 0. 081 Deer Lake Creek ID. 4 7.26 0. 85 6. 60 37.5 9.1 81.2 2.6 20.0 0.54 0.061 0.401 0.012 0.087 12. 34 99. 22 0.096 0.021 0.030 Eagle Creek 9.1 7. 34 0. 76 14.70 40.2 9.6 82. 8 3.1 23.5 0.88 0.024 0. 356 0.015 0.104 39.12 130.60 0.114 0.019 0.0 34 Burnaby Lake 12. 8 7. 22 0. 78 7. 90 67.4 8.2 77. 3 5.0 29.1 0. 36 0.078 0.592 0. 018 0.108 NA NA 0.156 ' 0.017 0.027 Lake C i t y . Creek 9.4 7. 32 0. 56 26. 80 30.0 9.8 85.2 2.1 17.1 0.43 0.024 0.236 0.019 0.156 348.95 98. 77 0.162 0.021 0.035 Stoney Creek 9.8 7.26 0.68 10.70 26.0 9.5 33. 3 2.6 14.4 0.59 . 0.014 0.222 0. 008 0. 098 14. 28 95.41 0.094 0.018 0.027 Brunette R. at Cariboo 10. 7 7. 25 0.83 10.4 63.2 8.4 76.4 3.1 28.3 0.40 0. 069 3. 546 0.014 0.095 17. 78 147.93 0.131 0.016 0.034 Brunette R. at Brunette 10. 8 7. 26 0.85 LI. 3 53.4 9.4 35.4 2.6 23.2 0. 50 0.049 3.494 0. 013 0.096 24. 30 157.08 0.116 0.020 0.032 Brunette R. at Braid 10. 6 7. 28 0. 88 LI.7 53.4 9.2 82.9 3-1 26.8 0.49 0.065 3. 462 0.012 0.097 32.11 140.59 0.120 0.019 0.030 Robert Burna-by Creek 9.5 7. 25 0.86 . 8.2 23. 6 9.7 B4.3 3.8 14. 6 0.87 0. 025 0.233 0. 044 0.112. 188.73 152.13 0.099 0.014 0. 028 TOTAL WATER-SHED 10. 2 7.26 0. 84 LI. 3 46.6 9.2 32.1 4.0 22.5 0.62 . 0.062 0.416 0. 020 0.10 3 67. 40 133.56 0.140 0.021 0. 040 Units °C pH umhos X 103 JTU Pl-'Co mg/1 i sat mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 TABLE V I I I STANDARD ERRORS OF THE MEANS OF THE DATA S t i l l Cr. at Gilmore Temp. PH Speci f i c Conduct. Tu r b i -d i t y Colour DO BOD COD NO3-N NH3-N N-T O- PO4-P P-T Susp . Solids Diss. Solida Mn Cu Zn 0. 727 0.026 0.096 1.539 2.389 1.443 2 .839 2. 635 0. 052 0.019 .0.035 0. 002 0.006 3.148 48.324 0. 024 0. 006 0.008 S t i l l Cr. at Douglas 0.991 0.034 0. 083 1.442 2.155 ). 571 0. 4 89 2. 452 0.043 0.024 0.0 36 0. 005 0.008 6.294 9. 520 0. 021 0.006 0. 008 S t i l l Cr. at Sperling 1.164 0.040 0.075 1. 665 1.908 3.426 0. 609 2. 714 0.043 0.016 0.033 0. 004 0.006 5.412 33.151 0. 023 0.003 0. 020. Deer Lake Creek 1.129 0.046 0.060 1. 343 1. 854 0.621 0. 288 2.810 0.048 0. 009 0.020 0.002 0.006 4.164 5.473 0.015 0.003 0.008 Eagle Creek 0. 852 0. 069 0.049 3.289 2.537 ). 561 0. 361 3. 479 0. 074 0.005 0.0 31 0.003 0.009 20 .015 42.995 0.022 0. 005 0.008 Burnaby Lake 1.191 0. 066 0.049 1. 257 3. 882 3.658 1. 900 2.683 0. 052 0.011 0.051 0. 003 0.009 NA NA -0.013 0. 003 0.003 Lake C i t y Creek 0. 817 0.047 0.045 6. 367 5. 128 3. 532 0.250 3.406 0. 052 0.008 0.053 0.006 0.048 L57.659 33.056 0.032 0. 004 0.009 Stoney Creek 0. 747 0. 049 0. 054 3. 356 2. 103 3.649 0.473 2. 336 0.040 0.004 0.041 0.002 0.015 4.62 3 11.115 0.017 0. 004 0.006 Brunette R. at Cariboo 1.112 0.05C 0.056 1.590 2. 292 3.514 0.606 2. 929 0.046 0.009 0.030 0,002 0. 006 4. 727 46.423 0.012 0.002 0.006 Brunette R. at Brunette 0. 998 0.035 0.071 1.686 2. 578 3.467 3. 312 2. 713 0.045- 0.007 0.049 0.002 0. 007 7.936 50.906 0. 016 0. 004 0. 008 Brunette R. at Braid 1. 029 0.03S 0. 080 1.900 2. 780 3. 456 3.481 3. 639 0. 041 0.008 0.032 0.002 1.007 15.329 33.543 0. 017 . 0.003 0.005 Robert Burna-by Creek 0.685 0.03] 0.049 2. 384 1.866 0 . 385 L..550 2. 980 0.020 0.005 0.029 0.004 0. 007 L76.713 45.651 0.037 0.003 0. 014 TOTAL WATER-SHED 0. 280 0..013 0.020 0. 829 1. 307 3.153 3. 34 8 0. 898 0. 018 0.004 0.013 0.001 0.005 23.908 10.957 0.007 0.001 0.003 TABLE IX RANGES OF THE DATA Ul 00 S t i l l Gr. at Gilmore Temp. pH S p e c i f i c Conduct. Turbi-d i t y Colour DO BOD COD NO3-N NH3-N N-T O-PO4-P P-T Susp . Solids Diss. S o l i d s Mn Cu Zn 10.8 0.6 1.66 33.7 50 6.0 48 .0 48 .0 0 .99 0.402 0.640 0.024 0.125 33.19 642.47 0. 560 0.129 0 .191 S t i l l Cr. at Douglas 16.-1 0 .7 1.60 28 .7 35 8.0 10.0 44.0 0 .79 0 .415 0.700 0.073 0 .158 64.93 107.88 0.477 0.112 0.150 S t i l l Cr. at Sperling 19.2 0 .9 1.30 37.5 40 6.0 15.0 52 .0 0.72 0.320 0.640 0.010 0.115 49.67 437.39 0.443 0 .057 0 .377 Deer Lake Creek 17 .3 0. 78 1. 00 29 .1 35 8.4 5 .0 52.0 0 .63 0.173 0.395 0.021 0.100 50.61 66 .07 0. 323 0 .037 0 .139 Eagle Creek 14 .1 1. 50 0.90 53.8 50 7.8 6.0 62.0 1 .53 0 .093 0.610 0.075 0.200 223.26 549.47 0.505 0.112 0.140 Burnaby Lake 18.6 1 .05 0.90 19.2 75 9 .9 41 .0 40 .0 0.82 0.186 1.070 0.046 0.180 NA NA 0.247 0.064 0.045 Lake C i t y Creek 12. 5 0. 90 0. 80 82.9 95 7.0 4 .0 69.0 0 .83 0.19 3 1.190 0.142 1.110 1394.44 434.49 0.714 0 .070 0.160 Stoney Creek 10. 8 0. 90 1.10 43 .1 40 8.1 9.0 44 .0 0 .57 , 0 .057 0.750 0.026 0. 270 35.47 122 .14 . 0. 347 0.081 0 .072 Brunette R. at Cariboo 17.1 1 .10 0. 80 26.5 30 7.2 14 .0 56.0 0.66 0.170 0.575 0.026 0.110 56.41 598.75 0. 202 0 .023 0.149 Brunette R. at Brunette 16. 8 0 .60 1.40 25.7 55 6.3 7.0 60 .0 0. 78 0.119 0.020 0. 027 0.125 71. 54 660.94 0. 382 0.064 0 .187 Brunette R. at Braid 16.6 0 .80 1.70 30. 6 55 6.6 11 .0 77.0 0 .66 0.135 0.490 0.032 0.150 179.48 426.41 0. 378 0 .050 0.108 Robert Burna-by Creek 11. 8 0 .60 0. 70 53 .1 40 5.9 30.0 61.0 0 .40 0.095 0.600 0.086 0.130 2127.50 577.24 0. 856 0.065 0. 300 TOTAL WATER-SHED 20. 2 1 .70 2.10 83.1 95 L0.1 48 .0 77.0 1 .80 0 .415 0. 320 0.142 1.148 2131.94 684.51 0.860 0.134 0 .397 TABLE X CO-EFFICIENTS OF VARIATION % S t i l l C r . a t G i l m o r e Temp. pH S p e c i f i c C o n d u c t . T u r b i -d i t y C o l o u r DO BOD COD N O 3 - N N H 3 - N N-T O - P O 4 - P P-T Susp . S o l i d s D i s s . S o l i d a Mn Cu Zn 38.23 1. 75 44 .12 111.91 40". 75 L8.66 .135.68 80.90 25.11 91.61 40.91 .39.42 30.21 100.85 93. 35 73.41 108.9; 91.82 S t i l l C r . a t Douglas 50. 06 2 . 32 39.88 69.72 15.66 27.94 47.10 42.12 31.33 97. 18 34.46 65.98 42 .09 108.89 27.81 44.91 93. 8( 54.96 S t i l l C r . a t S p e r l i n g 52.78 2. 74 37. 74 77.80 12.62 L9.83 62. 77 46. 52 33. 43 71.05 30. 30 57. 56 25.98 68.27 76.49 49.32 58. 65 115.52 Deer Lake Creek 53.10 3.05 34.16 98. 31 23.18 28.03 53. 65 67.27 43. 72 71. 45 24.56 S7.6- 30. 32 111.89 20.56 , 74.55 66. 50 120.53 E a g l e Creek 45.90 4.49 31. 34 107.17 29.58 24.19 57. 32 72 .39 41.34 101.25 41.56 115.75 42 .90 169.99 114.04 ' 89.45 120.83 111.11 Burnaby Lake 42.87 4.16 29 .06 72. 53 26.40 32.11 L75.85 42.26 65.0 38.73 68.57 68.57 37.97 NA 1 NA 38.97 83. 81 45.02 Lake C i t y Creek 42.69 3.10 37. 95 113.85 80.18 22. 36 57.74 97.21 59.21 166.94 L67.20 167.20 147.78 142.87 115.9 3 92.35 93.92 125.64 Stoney Creek 33.98 3. 02 35.21 140.27 36.17 16. 56 82. 92 72. 81 30. 33' 127.14 80.46 '78.57 67.48 85. 62 36.84 81.42 108.99 95.20 B r u n e t t e R. a t C a r i b o o 50.92 3.28 32. 39 73.04 17.02 >5. 22 94.98 50. 72 57.03 64. 84 ' 26.77 52.51 29.87 92 .07 108.71 1 4 3.02 47.27 89. 70 B r u n e t t e R. a t B r u n e t t e 45.44 2.29 40. 17 71.71 26.63 10. 38 59. 22 57. 37 43.98 71.37 47. 76 ! SO. 0 33.02 108.30 i 112.26 i 63. 38 83. 74 119.75 B r u n e t t e R. a t B r a i d 47. 56 2. 54 43. 96 77. 71 24.41 •0.43 76. 4:6 66.43 41.42 62.13 32.88 64.51 33.09 165.36 82.65 67.45 72.19 72.76 R o b e r t Burna-by Creek 35. 37 2.06 27. 06 139.05 37.03 L6. 3E L98.02 99.82 11.48 103.95 60. 31 ' 47.19 29.15 324.36 103.95 173.91 105.59 232 .85 TOTAL WATER-SHED 46. 02 2.98 39. 85 120.85 .45.37 23. 65 j 45.29 66. 68 49 .28 107.74 51.11 94.02 74 .66 382.05 93.54 77.73 93.84 120.45 those f o r the t o t a l watershed ( i . e . means o f each parameter f o r a l l s i t e s ) . Due to the s i m i l a r i t y between these two, the B r u n e t t e R i v e r a t B r a i d S t r e e t can be c o n s i d e r e d r e -p r e s e n t a t i v e o f the summary e f f e c t s o f upstream water q u a l i t y . i ) Means The mean t e m p e r a t u r e , as g i v e n f o r the t o t a l w a t e r s h e d , i n d i c a t e s a v a l u e o f 1 0 . 2 ° C . T h i s v a l u e does not i n c l u d e the warm summer and f a l l t e m p e r a t u r e s (from the temperature ranges g i v e n i n T a b l e IX, s t ream tempera-t u r e s would r e a c h the m i d - t w e n t y degrees mark d u r i n g the summer m o n t h s ) . The l o w e s t mean temperature ( 9 . 1 ° C ) was r e c o r d e d on E a g l e Creek w h i c h d r a i n s the wooded s l o p e s o f Burnaby M o u n t a i n . The h i g h e s t mean temperature ( 1 2 . 8 ° C ) was r e c o r d e d on s h a l l o w , s l o w - m o v i n g Burnaby L a k e . The parameter pH i s r e l a t i v e l y c o n s i s t e n t f rom s i t e to s i t e w i t h a mean v a l u e o f 7.26 f o r the t o t a l w a t e r -s h e d . The h i g h e s t mean pH was 7.34 ( r e c o r d e d a t E a g l e Creek) and the l o w e s t mean pH was 7.18 ( r e c o r d e d a t S t i l l Creek a t S p e r l i n g A v e n u e ) . No abnormal pH r e a d i n g s were taken and t h e r e were no s i g n i f i c a n t v a r i a t i o n s o f pH from s i t e to s i t e . S p e c i f i c conductance f o r the t o t a l w a t e r s h e d had a range o f 800 - 2,100 p i h o s . S t i l l Creek and the B r u n e t t e 60 R i v e r , the two a r t e r i e s with the h i g h e s t degree of indus-t r i a l l a n d use along t h e i r banks, had the h i g h e s t recorded values o f s p e c i f i c conductance. The h i g h e s t mean va l u e was 1040 /imhos recorded a t S t i l l Creek at Gilmore Avenue. The lowest mean va l u e was 560 jamhos reco r d e d on Lake C i t y Creek. The hig h c o n d u c t i v i t y readings were a s s o c i a t e d with r e s i d e n t i a l - i n d u s t r i a l areas o f the watershed w h i l e the lower values were a s s o c i a t e d w i t h the streams d r a i n i n g Burnaby Mountain. C l o s e l y a s s o c i a t e d with the s p e c i f i c conductance means are the mean d i s s o l v e d s o l i d s c o n c e n t r a t i o n s . The h i g h e s t mean c o n c e n t r a t i o n o f d i s s o l v e d s o l i d s was 179.3 mg/1 which, l i k e s p e c i f i c conductance, was a s s o c i a t e d w i t h S t i l l Creek a t Gilmore Avenue. The lowest mean c o n c e n t r a t i o n was 95.4 mg/1 a s s o c i a t e d w i t h Stoney Creek. I t i s worth n o t i n g the extremely high range i n values (684.5 mg/1) f o r the t o t a l watershed. S p e c i f i c conductance i s e s s e n t i a l l y a measurement of the d i s s o l v e d s o l i d s m a t e r i a l i n the stream and the high c o n c e n t r a t i o n s of d i s s o l v e d s o l i d s were asso-c i a t e d w i t h the r e s i d e n t i a l - i n d u s t r i a l areas. T u r b i d i t y r e s u l t s had s i m i l a r a s s o c i a t i o n s to those o f suspended s o l i d s . Average c o n d i t i o n s f o r the t o t a l watershed i n d i c a t e a mean t u r b i d i t y o f 11.3 JTU and a mean suspended s o l i d s c o n c e n t r a t i o n o f 67.4 mg/1. The 61 h i g h e s t mean c o n c e n t r a t i o n s o f t u r b i d i t y and suspended s o l i d s were 26.8 JTU and 349.0 mg/1, r e s p e c t i v e l y , r e -corded a t Lake C i t y Creek. During the study p e r i o d , c o n s t r u c t i o n o f a warehouse o c c u r r e d on a s i t e j u s t up-stream o f the sampling l o c a t i o n on Lake C i t y Creek. Disturbance t o the stream was severe as the stream was piped underground to a l l o w the c o n s t r u c t i o n o f p a r k i n g f a c i l i t i e s adjacent to the warehouse. During t h i s con-s t r u c t i o n p e r i o d , suspended s o l i d s c o n c e n t r a t i o n s a t Lake C i t y Creek were an or d e r o f magnitude g r e a t e r than the othe r s i t e s . From v i s u a l o b s e r v a t i o n , Lake C i t y Creek above the warehouse s i t e ran c l e a r and the h i g h readings o f t u r -b i d i t y and suspended s o l i d s were undoubtedly a r e s u l t of the c o n s t r u c t i o n . One e x c e p t i o n a l l y high r e a d i n g (2127.5 mg/1 suspended s o l i d s ) was recorded on Robert Burnaby Creek - a s m a l l , shallow creek d r a i n i n g p a r k l a n d . However, t u r b i d i t y on Robert Burnaby Creek was c o n s i s t e n t l y low d u r i n g the study p e r i o d . Other high mean co n c e n t r a -t i o n s o f t u r b i d i t y and suspended s o l i d s were recorded a t v a r i o u s times on Eagle Creek and Stoney Creek. T h e r e f o r e , i t i s apparent t h a t the h i g h e s t means and ranges of con-c e n t r a t i o n s o f t u r b i d i t y and suspended s o l i d s are a s s o c i a t e d w i t h those streams d r a i n i n g the undeveloped open space. The lowest mean c o n c e n t r a t i o n o f t u r b i d i t y was 6.6 JTU recorded a t both S t i l l Creek a t Gilmore Avenue and 62 Deer Lake C r e e k . S t i l l Creek a t G i l m o r e Avenue a l s o had the l o w e s t mean suspended s o l i d s c o n c e n t r a t i o n (9.9 mg/1) and Deer Lake Creek had the second l o w e s t mean c o n c e n t r a -t i o n o f suspended s o l i d s (12.3 m g / 1 ) . I t i s a p p a r e n t t h a t h i g h r e s i d e n t i a l areas c o n t r i b u t e l i t t l e suspended m a t e r i a l to the s t ream b u t l a r g e l o a d i n g s o f d i s s o l v e d s o l i d s , whereas , the o p p o s i t e i s t r u e f o r streams d r a i n i n g open s p a c e . Mean v a l u e s f o r c o l o u r were h i g h from S t i l l Creek a t Douglas Avenue downstream t h r o u g h the l a k e to the B r u -n e t t e R i v e r a t B r a i d S t r e e t . Low v a l u e s were r e c o r d e d at a l l the t r i b u t a r i e s d r a i n i n g to S t i l l C r e e k , Burnaby L a k e , and the B r u n e t t e R i v e r . F i g u r e 3 i l l u s t r a t e s t h a t peat d e p o s i t s u n d e r l i e the lower r e a c h e s o f S t i l l Creek and Burnaby L a k e . The peat impar ts an o r g a n i c s t a i n t o the water which p e r s i s t s as the water t r a v e l s down the B r u -n e t t e R i v e r to the F r a s e r R i v e r . S t i l l Creek at S p e r l i n g Avenue has the h i g h e s t mean c o l o u r w i t h a v a l u e o f 70.9 P i - C o u n i t s . Robert Burnaby Creek has the l o w e s t mean v a l u e f o r c o l o u r w i t h a v a l u e o f 2 3.6 P i - C o u n i t s . The g r e a t e s t range i n c o l o u r was a s s o c i a t e d w i t h Lake C i t y C r e e k , a r e s u l t o f the o n g o i n g c o n s t r u c t i o n . The l o w e s t range i n c o l o u r was r e c o r d e d on Burnaby Lake as i s a t t r i -b u t a b l e to s t a b l e water c o n d i t i o n s and the p r e s e n c e o f the p e a t d e p o s i t s . 63 The mean c o n c e n t r a t i o n o f d i s s o l v e d oxygen f o r the t o t a l watershed was 9.2 mg/1 o r 82.1 per cent s a t u r a -t i o n . The h i g h e s t v a l u e o f 10 .1 mg/1 o r 87.8 p e r c e n t s a t u r a t i o n was r e c o r d e d a t S t i l l Creek a t G i l m o r e Avenue and the l o w e s t v a l u e o f 8.2 mg/1 o r 76.3 p e r c e n t s a t u r a -t i o n was r e c o r d e d a t S t i l l Creek a t Douglas Avenue. No s i g n i f i c a n t v a r i a t i o n s i n the d i s s o l v e d oxygen c o n c e n t r a -t i o n s seemed t o e x i s t from s i t e to s i t e . As w e l l as h a v i n g the h i g h e s t mean DO, S t i l l Creek a t G i l m o r e Avenue had the h i g h e s t mean and range o f b i o c h e m i c a l oxygen demand. However, as w i l l be d i s c u s s e d l a t e r i n t h i s c h a p t e r , the h i g h D O's and BOD's d i d not o c c u r c o n c u r r e n t l y . The l o w e s t mean BOD o c c u r r e d on Lake C i t y C r e e k . Other than an o c c a s i o n a l h i g h BOD, the v a l u e s f o r DO and BOD were w i t h i n a c c e p t a b l e l i m i t s . However, i t s h o u l d be r e - s t a t e d t h a t the c r i t i c a l e f f e c t s o f the summer months on DO and BOD l o a d i n g s were n o t i n c l u d e d i n t h i s s t u d y . Burnaby Lake r e c o r d e d the h i g h e s t mean c h e m i c a l oxygen demand (29.1 mg/1) and Stoney Creek the l o w e s t (14.4 m g / 1 ) . However, S t i l l Creek a t Douglas Avenue and S p e r l i n g Avenue and the B r u n e t t e R i v e r a t C a r i b o o Road and B r a i d S t r e e t a l s o r e c o r d e d h i g h mean C O D 1 s . E x c l u d i n g the B r u -n e t t e R i v e r at C a r i b o o Road which d i r e c t l y f e e l s the e f f e c t s 64 o f the l a k e , the o t h e r t h r e e s i t e s are a s s o c i a t e d w i t h i n -d u s t r i a l l a n d u s e s . The h i g h mean c o n c e n t r a t i o n s o f t o t a l n i t r o g e n (N-T) seemed to be a s s o c i a t e d w i t h r e s i d e n t i a l - i n d u s t r i a l areas and the h i g h mean t o t a l phosphorus (P-T) c o n c e n t r a -t i o n s seemed to be r e l a t e d to areas w i t h a h i g h percentage o f open s p a c e . The h i g h e s t mean v a l u e f o r n i t r a t e - n i t r o g e n (NO3 - N) was 1.02 mg/1 r e c o r d e d a t S t i l l Creek a t G i l m o r e Avenue. The h i g h e s t mean c o n c e n t r a t i o n o f a m m o n i a - n i t r o -gen (NH3 - N) was 0.121 mg/1 r e c o r d e d on S t i l l Creek a t Douglas Avenue . The h i g h e s t mean v a l u e o f t o t a l n i t r o g e n (N-T) was 0.592 mg/1 r e c o r d e d on Burnaby L a k e . I t appears t h a t t h e r e i s a c u m u l a t i v e e f f e c t o f n i t r o g e n i n t h e l a k e c a u s i n g e x c e s s i v e p l a n t growth i n the l a k e . The h i g h e s t mean c o n c e n t r a t i o n o f o r t h o p h o s p h a t e - p h o s p h o r u s (PO4 - P) was 0.04 4 mg/1 r e c o r d e d a t Rober t Burnaby Creek and the h i g h e s t mean c o n c e n t r a t i o n o f t o t a l phosphorus (P-T) was 0.156 mg/1 on Lake C i t y C r e e k . Stoney Creek r e c o r d e d the l o w e s t mean c o n c e n t r a -t i o n s o f ammonia-ni t rogen (NH3 - N ) , t o t a l n i t r o g e n (N-T) and o r t h o p h o s p h a t e - p h o s p h o r u s (PO4 - P) w i t h v a l u e s o f 0.014 mg/1, 0.222 mg/1 , and 0.008 mg/1 r e s p e c t i v e l y . As i n d i c a t e d i n Chapter T h r e e , f o u r heavy m e t a l s -manganese, c o p p e r , z i n c and i r o n - were a n a l y z e d f o r . A l l 65 i r o n samples were contaminated d u r i n g l a b o r a t o r y procedures and t h e r e f o r e , i r o n i s not i n c l u d e d here. A l l h i g h mean c o n c e n t r a t i o n s o f manganese, copper and z i n c were a s s o c i a t e d w i t h S t i l l Creek which has the h i g h e s t c o n c e n t r a t i o n o f i n d u s t r y ( p a r t i c u l a r l y metal works and t r u c k i n g firms) adjacent t o the stream banks. The mean hig h value f o r manganese was 0.222 mg/1 a t S t i l l Creek a t Douglas Avenue, f o r copper was 0.0 33 mg/1 a t S t i l l Creek a t Douglas Avenue, and f o r z i n c was 0.081 mg/1 a t S t i l l Creek a t S p e r l i n g Avenue. The lowest mean values f o r manganese and z i n c were 0.004 mg/1 and 0.027 mg/1, r e s p e c t i v e l y , on Stoney Creek. The lowest mean c o n c e n t r a t i o n o f copper was 0.014 mg/1 on Robert Burnaby Creek. i i ) C o - e f f i c i e n t s o f V a r i a t i o n Table X l i s t s the c o - e f f i c i e n t s o f v a r i a t i o n f o r a l l the parameters a t a l l the s i t e s . The c o - e f f i c i e n t s o f v a r i a t i o n i n d i c a t e the r e l a t i v e d i s p e r s i o n i n the data ex-pressed as a percentage. The c o - e f f i c i e n t s o f v a r i a t i o n , independent o f u n i t s , are extremely u s e f u l i n comparing the v a r i a b i l i t y i n the parameters. The l a r g e r the co-e f f i c i e n t of v a r i a t i o n , the g r e a t e r the d i s p e r s i o n i n the data. Consequently, Table X i s important i n r e l a t i n g which parameters are most v a r i a b l e a t a s i t e and a t which s i t e 66 the parameter i s most v a r i a b l e . T a b l e XI r e c o r d s , i n o r d e r o f d e c r e a s i n g v a r i a -b i l i t y , the c o - e f f i c i e n t s o f v a r i a t i o n o f the p a r a m e t e r s . TABLE XI RANKED CO-EFFICIENTS OF VARIATION FOR THE WATER QUALITY PARAMETERS CO-EFFICIENT OF RANK PARAMETER VARIATION % 1 Suspended s o l i d s 382 .1 2 T u r b i d i t y 120.9 3 Z i n c 120.4 4 Ammon i a - n i t r o g e n 107.7 5 O r t h o p h o s p h a t e - p h o s p h o r u s 94 .0 6 Copper 93.8 7 D i s s o l v e d s o l i d s 93.5 8 Manganese 77.7 9 T o t a l phosphorus 74". 7 10 C h e m i c a l oxygen demand 66.7 11 T o t a l k e l d a h l n i t r o g e n 51.1 12 N i t r a t e - n i t r o g e n 49 . 3 13 Temperature 46. 0 14 C o l o u r 45.4 15 B i o c h e m i c a l oxygen demand 45. 3 16 S p e c i f i c conductance 39.8 17 D i s s o l v e d oxygen 32 .6 18 pH 3.0 The above t a b l e shows t h a t the suspended s o l i d s c o n c e n t r a t i o n s are the most v a r i a b l e and the pH v a l u e s are the l e a s t v a r i a b l e . T u r b i d i t y i s ranked second, b e i n g 67 c l o s e l y a s s o c i a t e d w i t h suspended s o l i d s . The parameters t h a t ranked h i g h i n v a r i a b i l i t y are those most s e n s i t i v e to f l u c t u a t i o n s i n the w a t e r s h e d . Suspended s o l i d s and t u r b i d i t y , f o r i n s t a n c e , r e s p o n d to r u n o f f c o n d i t i o n s more d r a m a t i c a l l y than parameters r a n k e d lower on the l i s t . The parameters w h i c h are ranked low i n v a r i a b i l i t y are assumed to be more c o n s t a n t o r s t a b l e . T h e r e f o r e , pH, d i s s o l v e d oxygen and s p e c i f i c conductance do not v a r y as g r e a t l y w i t h c h a n g i n g h y d r o l o g i c c o n d i t i o n s b u t r e f l e c t more the s t a b l e i n f l u e n c e o f the l a n d uses o f the w a t e r s h e d . Two p o i n t s are worth n o t i n g h e r e . F i r s t , the degree o f v a r i a -b i l i t y i n the data i s r e l a t e d to the a c c u r a c y a t w h i c h the parameter i s measured. T h i s i s d i s c u s s e d i n C h a p t e r F i v e . Second, the degree o f d i s p e r s i o n i n the parameter does not a f f e c t the r e c o r d e d magnitude o f c o n c e n t r a t i o n o f the p a r a m e t e r . I t f o l l o w s t h e n , t h a t the water q u a l i t y c o n -c e n t r a t i o n s are a r e s u l t o f the l a n d uses c o n t r i b u t i n g to the s a m p l i n g s i t e . The v a r i a b i l i t y i n the d a t a i s a r e s u l t o f c h a n g i n g e n v i r o n m e n t a l f a c t o r s ( i . e . h y d r o l o g i c c o n d i t i o n s ) which a f f e c t the l a n d uses d i f f e r e n t l y which then c o n t r i b u t e to the s t ream water q u a l i t y . The g r e a t e r the v a r i a b i l i t y , the more i n f l u e n t i a l the e f f e c t o f h y d r o -l o g i c c o n d i t i o n s ; the l e s s the v a r i a b i l i t y , the l e s s i n -f l u e n t i a l the e f f e c t o f h y d r o l o g i c c o n d i t i o n s and the more pronounced the l a n d use c o n t r i b u t i o n s . 68 T h i s t h e n l e a d s to T a b l e XII which shows the r a n k i n g o f the s a m p l i n g s i t e s i n o r d e r o f d e c r e a s i n g v a r i a b i l i t y o f a l l the parameters a t each s i t e . I t i s worth n o t i n g the v a r i a b i l i t y o f these s i t e s w i t h r e f e r e n c e to degree o f s l o p e and d r a i n a g e a r e a g i v e n i n F i g u r e 4 and T a b l e V , r e s p e c t i v e l y . TABLE XII RANKED CO-EFFICIENTS OF VARIATION FOR THE SITES CO-EFFICIENT OF RANK SITE VARIATION % 1 R o b e r t Burnaby Creek 97.1 2 Lake C i t y Creek 93.1 3 E a g l e Creek 73.4 4 Stoney Creek 67.9 5 S t i l l Creek a t G i l m o r e A v e . 64.9 6 B r u n e t t e R i v e r a t B r u n e t t e S t . 59 .0 7 B r u n e t t e R i v e r a t B r a i d S t . 58. 6 8 Deer Lake Creek 54 .6 9 Burnaby Lake 54 .2 10 B r u n e t t e R i v e r a t C a r i b o o R d . 53.3 11 S t i l l Creek a t S p e r l i n g A v e . 50.5 12 S t i l l Creek a t Douglas A v e . 49 .8 R o b e r t Burnaby Creek i s the most v a r i a b l e s t r e a m . I t a l s o has the l o w e s t f l o w . In f a c t , the f i r s t f o u r streams ranked above as b e i n g most v a r i a b l e are a l s o r a n k e d , as i s , as the l o w e s t f l o w s t reams . Any changes i n r u n o f f c o n d i -t i o n s o b v i o u s l y had r e l a t i v e l y more e f f e c t on the low f l o w 69 streams (a w e l l documented h y d r o l o g i c phenomenon). The two l e a s t v a r i a b l e stream reaches are very slow moving and a f f e c t e d by backwater from the l a k e . I t may be concluded t h a t streams of low flow are i n f l u e n c e d to a r e l a t i v e l y g r e a t e r degree by h y d r o l o g i c f l u c t u a t i o n s than by the e f f e c t s o f la n d use. Such hydro-l o g i c changes are t r a n s l a t e d i n t o water q u a l i t y v a r i a t i o n s of parameters such as the s o l i d s , heavy metals and c e r t a i n n u t r i e n t s . On the o t h e r hand, the h i g h e r stage streams r e f l e c t , i n a more pronounced f a s h i o n , the e f f e c t s of l a n d use as d e p i c t e d by such parameters as d i s s o l v e d oxygen, b i o c h e m i c a l oxygen demand, pH, c o l o u r and temperature. C: Temporal Aspects of the Data Trends or simply f l u c t u a t i o n s i n the data over the 24 weeks of sampling are c o n s i d e r e d to be the temporal apsects of the data. The important p o i n t s to be c o n s i -dered are the magnitude of change, the d i r e c t i o n of change ("i.e. i n c r e a s e or decrease) and the l a g time i n v o l v e d be-tween environmental v a r i a t i o n and water q u a l i t y change. The changes i n the data are i n response to e i t h e r v a r i a t i o n s i n land use or h y d r o l o g i c c o n d i t i o n s . Only one l a n d use v a r i a t i o n o c c u r r e d d u r i n g the study p e r i o d - t h a t of the c o n s t r u c t i o n a c t i v i t i e s (already mentioned e a r l i e r ) on Lake C i t y Creek. H y d r o l o g i c c o n d i t i o n s v a r i e d g r e a t l y . 70 The e f f e c t o f c o n s t r u c t i o n a d j a c e n t to Lake C i t y Creek was to i n c r e a s e t u r b i d i t y and the suspended s o l i d s l o a d i n g . The e f f e c t s o f h y d r o l o g i c v a r i a t i o n s are not n e a r l y as c l e a r . H y d r o l o g i c v a r i a t i o n s are e x p r e s s e d here i n terms o f d a i l y average p r e c i p i t a t i o n a t the s t a t i o n s mentioned i n C h a p t e r Two and i n terms o f s t ream f l o w o r s tage a t s e l e c t e d s i t e s ( F i g u r e s 10, 11, 12) . There e x i s t s a l a g time between r a i n f a l l and c o r r e s p o n d i n g r u n o f f . T h i s l a g t ime v a r i e s throughout the watershed and f o r a l l i n t e n t s and purposes i s n o t d i s c e r n i b l e a t the s c a l e a t which t h i s s tudy was c a r r i e d o u t ( f u r t h e r r e f e r e n c e to l a g t ime i s c o n t a i n e d i n C h a p t e r F o u r , 2D) . I t i s f e l t t h a t many o f the water q u a l i t y r e -sponses to h y d r o l o g i c c o n d i t i o n s are l i n k e d to the l a g t i m e . Records o f d i s c h a r g e and s tage are l i m i t e d f o r the w a t e r s h e d . The b e s t f l o w r e c o r d s a v a i l a b l e are f o r S t i l l Creek a t G i l m o r e Avenue. Records o f s tage a r e , i n most c a s e s , n o t a c c u r a t e enough t o r e l a t e to water q u a l i t y v a r i a t i o n s . T h e r e f o r e , d i s c u s s i o n o f the t e m p o r a l a s p e c t s o f the water q u a l i t y d a t a d e a l , f i r s t , w i t h p r e c i p i t a t i o n d a t a a n d , s e c o n d , w i t h most r e l i a b l e r e c o r d s o f f l o w . From T a b l e X I , i t i s a p p a r e n t t h a t t h e most v a r i -a b l e parameters are those w i t h the h i g h e s t c o - e f f i c i e n t s o f 71 v a r i a t i o n . I t i s f e l t t h a t these parameters are the ones most h i g h l y a f f e c t e d by h y d r o l o g i c v a r i a t i o n s . The top h a l f , i n d e s c e n d i n g o r d e r , are suspended s o l i d s , t u r b i d i t y , z i n c , ammonia-ni t rogen (NH3 - N ) , o r t h o p h o s p h a t e - p h o s p h o r u s (PO4 - P ) , c o p p e r , d i s s o l v e d s o l i d s , manganese and t o t a l phosphorus ( P - T ) . The v a l u e s f o r Rober t Burnaby Creek (the s tream w i t h the h i g h e s t c o - e f f i c i e n t o f v a r i a t i o n ) f o r each o f the parameters j u s t mentioned are p l o t t e d a g a i n s t average p r e c i p i t a t i o n f o r the s t u d y p e r i o d ( F i g u r e s 10, 11, 12 ) . C e r t a i n r e l a t i o n s h i p s between the water q u a l i t y c o n c e n t r a t i o n s and p r e c i p i t a t i o n are apparent from these f i g u r e s . C o p p e r , manganese and z i n c ( F i g u r e 10) i n c r e a s e c o r r e s p o n d i n g l y to the p r e c i p i t a t i o n o f June 6. However, r a i n f a l l s o f comparable magnitude e a r l i e r i n the y e a r do n o t produce s i m i l a r r i s e s i n the heavy m e t a l s . A l l t h r e e m e t a l c o n c e n t r a t i o n s h i t a minimum on F e b r u a r y 25 a f t e r a t e n - d a y d r y p e r i o d . Of the t h r e e m e t a l s d i s c u s s e d , manganese i s the most r e s p o n s i v e to v a r i a t i o n s i n p r e c i p i -t a t i o n . No s i g n i f i c a n t t r e n d s appear from the p l o t t i n g s o f NH3 - N , P 0 4 - P , and P - T ( F i g u r e 11) e x c e p t f o r the i n c r e a s e s i n c o n c e n t r a t i o n w i t h t h e p r e c i p i t a t i o n o f June 12-13 . From F i g u r e 12, i t can be seen t h a t i n c r e a s e s i n t u r b i d i t y c o r r e s p o n d to i n c r e a s e s i n p r e c i p i t a t i o n on March 3, 17, 31 and June 6. However, suspended and d i s -s o l v e d s o l i d s c o n c e n t r a t i o n s seem to o n l y be c o r r e l a t e d 72 F E B M A R ( 1 9 7 3 ) A P R M A Y J U N E J U L Y J A N . F E B . M A R . ( 1 9 7 3 ) A P R . M A Y J U N E w i t h the extremely high r a i n f a l l o f January 11. The r e s u l t s from F i g u r e s 10, 11 and 12 are l i m i t e d i n t h e i r e x p l a n a t i o n of the temporal r e l a t i o n s h i p s between the parameters and h y d r o l o g i c c o n d i t i o n s . However, the assumption t h a t the parameters and stream with the h i g h e s t c o - e f f i c i e n t s of v a r i a t i o n have the most pronounced response to h y d r o l o g i c change i s v e r i f i e d to a g r e a t e r de-gree d u r i n g the d i s c u s s i o n to f o l l o w on s t a t i s t i c a l a n a l y s e s . One p o s s i b l e e x p l a n a t i o n f o r the d i s c r e p a n c i e s apparent i n F i g u r e s 10, 11 and 12 i s t h a t the sampling time may not have been frequent enough to show the response or a t l e a s t , the complete response. In o t h e r words, because the l a g time between r u n o f f and response was so s h o r t , the weekly sampling p e r i o d may have missed the response (except when sampling o c c u r r e d d u r i n g such a time l a g ) . Other f a c t o r s , such as the l e n g t h o f the antecedent dry p e r i o d , s o i l m oisture c o n d i t i o n s , and the p o s s i b i l i t y o f s t r e e t c l e a n i n g s between sample times, c o u l d a l s o p r o v i d e e x p l a n a t i o n f o r the l a c k o f a temporal r e l a t i o n s h i p i n these f i g u r e s but are not c o n s i d e r e d here. Water q u a l i t y c o n c e n t r a t i o n s a t S t i l l Creek at Gilmore Avenue were a l s o p l o t t e d a g a i n s t time to d e t e r -mine whether temporal v a r i a t i o n s e x i s t e d i n the data. The b e s t records of d i s c h a r g e i n the watershed were a v a i l a b l e at t h i s s i t e , and are p l o t t e d i n F i g u r e s 13, 14, 15 and 16. 76 FLOW Q(ofa) 0-407 T u r b i d i t y and c o l o u r show i n c r e a s e s i n c o n c e n t r a t i o n w i t h i n c r e a s e s i n f l o w ( F i g u r e 1 3 ) . COD and BOD r e f l e c t i n -c r e a s e s w i t h f l o w whereas DO d e c r e a s e s w i t h the i n c r e a s e d BOD ( F i g u r e 1 4 ) . Manganese, copper and z i n c show r e -markable i n c r e a s e s w i t h the i n c r e a s e d f l o w o f June 6 ( F i g u r e 1 5 ) . A g a i n manganese i s the most v a r i a b l e o f the t h r e e m e t a l s . N i t r a t e - n i t r o g e n (NO3 - N ) , ammonia n i t r o -gen (NH3 - N) and t o t a l k e l d a h l n i t r o g e n (N-T) do not r e f l e c t any c l e a r p a t t e r n s w i t h changes i n f l o w ( F i g u r e 1 6 ) . R e l a t i o n s h i p s between the q u a l i t y and r u n o f f c o n d i t i o n s are more a p p a r e n t f o r S t i l l Creek a t G i l m o r e Avenue than f o r Robert Burnaby C r e e k . In a d d i t i o n , the m e t a l s , t u r b i d i t y and c o l o u r r e s p o n d most n o t i c e a b l y to changes i n f l o w . S i m i l a r p l o t t i n g s to the above were done f o r Stoney C r e e k , Deer Lake C r e e k , and S t i l l Creek a t Douglas Avenue . P a t t e r n s were s p o r a d i c and were not i n c l u d e d here f o r t h a t r e a s o n . The q u e s t i o n o f l a g time and the n a t u r e o f the r e s p o n s e o f water q u a l i t y to watershed change r e q u i r e s f u r t h e r a t t e n t i o n . A c o n t i n u o u s sampler (see P l a t e 1) was s e t up on S t i l l Creek a t Douglas Avenue on May 5. The sampler c o l l e c t e d a sample e v e r y two hours f o r a f o u r - d a y p e r i o d . On May 6-7, more than 0.5 i n c h e s o f r a i n f e l l . The water q u a l i t y r e s u l t s a r e p l o t t e d i n 81 F i g u r e s 17 and 18. Increases i n the metals on May 8 are extremely w e l l marked (Figure 18) and i n c r e a s e s i n t u r -b i d i t y and c o l o u r a l s o o c c u r r e d on May 8 but pH remained r e l a t i v e l y s t a b l e . Although the continuous sampling i s u s e f u l i n i n d i c a t i n g t h a t temporal v a r i a t i o n s i n the data are indeed present, i t s t i l l does not f u l l y e x p l a i n when the v a r i a t i o n s occur. The answer appears to l i e i n the cl o s e n e s s o f the t i m i n g of the sampling to the re c e n t r a i n -f a l l . However, i t i s c l e a r t h a t the heavy metals have a pronounced response to environmental changes, whereas ot h e r parameters respond s p o r a d i c a l l y o r not a t a l l . D: Summary o f the Water Q u a l i t y Data The f o r e g o i n g d i s c u s s i o n i n d i c a t e s t h a t , although there i s some unexplained v a r i a t i o n i n the data, s e v e r a l p o i n t s are c l e a r . High suspended s o l i d s and t u r b i d i t y c o n c e n t r a t i o n s were a s s o c i a t e d w i t h streams d r a i n i n g open space, p a r t i c u l a r l y E agle, Stoney and Lake C i t y c r e e k s . Low c o n c e n t r a t i o n s o f suspended s o l i d s and t u r b i d i t y were a s s o c i a t e d w i t h streams d r a i n i n g r e s i d e n t i a l areas, such as Deer Lake Creek and S t i l l Creek at Gilmore Avenue. How-ever, the r e v e r s e was true f o r s p e c i f i c conductance and d i s s o l v e d s o l i d s . These two parameters were low on the streams d r a i n i n g open space, e s p e c i a l l y Stoney Creek. On the o ther hand, they were high on S t i l l Creek and the Brunette R i v e r which d r a i n e d predominantly r e s i d e n t i a l and 82 CONTINUOUS SAMPLING STILL CREEK AT DOUGLAS ROAD •— PH FIGURE 17 * « _ COLOUR . (PI-CdUNITS 1 — - TURBIOITV (Itn) i n d u s t r i a l l a n d . T h e r e f o r e , open space c o n t r i b u t e d suspended m a t e r i a l t o the stream whereas r e s i d e n t i a l and i n d u s t r i a l areas c o n t r i b u t e d d i s s o l v e d m a t e r i a l . In a d d i t i o n , sus-pended s o l i d s and t u r b i d i t y c o n c e n t r a t i o n s were extremely v a r i a b l e parameters and were a s s o c i a t e d w i t h the most v a r i -a b l e t r i b u t a r i e s o f the Brunette R i v e r Drainage B a s i n . As f a r as n u t r i e n t c o n t r i b u t i o n s from the water-shed were concerned, n i t r o g e n l o a d i n g s were commonly asso-c i a t e d w i t h r e s i d e n t i a l - i n d u s t r i a l l a n d use and phosphorus l o a d i n g s were a s s o c i a t e d w i t h open space. The heavy metals - z i n c , copper and manganese were most co n c e n t r a t e d i n S t i l l Creek i n reaches a l o n g which t r u c k i n g firms were l o c a t e d (confirmed by K. H a l l , 1974). The metals were a l s o r e s p o n s i v e to environmental change. Increases i n r u n o f f produced s i m i l a r responses i n the c o n c e n t r a t i o n s o f metals. The most v a r i a b l e streams, r e a c t i n g most s t r o n g l y to h y d r o l o g i c change, were those d r a i n i n g open space and the s m a l l e s t areas ( i . e . Robert Burnaby Creek and Lake C i t y Creek). The l e a s t v a r i a b l e are the two l a r g e s t streams (i n terms o f flow) which were S t i l l Creek and the Brunette R i v e r . Even though r e l a t i o n s h i p s between the water q u a l i t y and the h y d r o l o g i c c o n d i t i o n s and l a n d use o f the 85 watershed appeared , i t s t i l l remained to g i v e these r e l a -t i o n s h i p s some s t a t i s t i c a l s i g n i f i c a n c e and, i n the p r o -c e s s , p i n p o i n t the u n e x p l a i n e d v a r i a n c e i n the d a t a and c l a r i f y the reasons f o r i t . T h i s i s done i n the next s e c t i o n . 3. Water Q u a l i t y R e l a t i o n s h i p s A : G e n e r a l S t a t i s t i c a l a n a l y s e s were p e r f o r m e d on the water q u a l i t y d a t a to e s t a b l i s h s t a t i s t i c a l l y sound r e l a t i o n s h i p s between the q u a l i t y o f the s t ream network and the l a n d uses and h y d r o l o g i c c o n d i t i o n s c o n t r i b u t i n g to i t . A n a l y s i s o f v a r i a n c e and m u l t i p l e r e g r e s s i o n t e c h n i q u e s were employed to e s t a b l i s h these r e l a t i o n s h i p s . The a n a l y s i s o f v a r i a n c e i s a s t a t i s t i c a l p r o -cedure f o r p a r t i t i o n i n g the t o t a l v a r i a t i o n o f the d a t a i n t o components t h a t measure d i f f e r e n t s o u r c e s o f v a r i a t i o n . In v e r y g e n e r a l te rms , the a n a l y s i s o f v a r i a n c e i s a mathe-m a t i c a l p r o c e d u r e f o r comparing two o r more means. Due to the n a t u r e o f t h i s t e c h n i q u e , i t was b e l i e v e d t h a t the a n a l y s i s o f v a r i a n c e would be u s e f u l i n e x p l a i n i n g the s p a t i a l p a t t e r n s i n the water q u a l i t y d a t a . In o t h e r words , a c e r t a i n amount o f v a r i a t i o n i n the water q u a l i t y d a t a would be a c c o u n t e d f o r by the n a t u r e o f l a n d uses c o n t r i -b u t i n g to i t . T h i s i s d e a l t w i t h i n the n e x t s e c t i o n . 86 M u l t i p l e r e g r e s s i o n a n a l y s i s i s used to d e t e r m i n e a f u n c t i o n a l r e l a t i o n s h i p i n which one v a r i a b l e i s dependent on s e v e r a l o t h e r s . C o n s e q u e n t l y , t h i s method was used to e s t a b l i s h the r e l a t i o n s h i p s t h a t e x i s t e d between the water q u a l i t y c o n c e n t r a t i o n s i n the streams and the d i s c h a r g e o r r u n o f f c h a r a c t e r i s t i c s o f the c o n t r i b u t i n g b a s i n . T h i s method was employed to e x p l a i n t e m p o r a l p a t t e r n s , r e s u l t i n g from h y d r o l o g i c change, i n t h e water q u a l i t y d a t a and i s d i s c u s s e d i n g r e a t e r d e t a i l i n the s e c t i o n f o l l o w i n g a n a l y s i s o f v a r i a n c e . B : S p a t i a l R e l a t i o n s h i p s one-way d e s i g n . The l a n d uses c o n t r i b u t i n g to each s a m p l i n g s i t e were l i s t e d as i n T a b l e X I I I . Each s i t e was then c a t e -g o r i z e d as to the dominant l a n d use c o n t r i b u t i n g to t h a t s i t e . T h e r e f o r e , each s i t e was e i t h e r p r e d o m i n a n t l y r e s i -d e n t i a l , i n d u s t r i a l , commercial or open s p a c e . The a n a l y s i s o f v a r i a n c e was s e t up as a n e s t e d TABLE X I I I DOMINANT LAND USE CONTRIBUTING TO THE SITE - CASE A RESIDENTIAL: 1. 2 . 3. 4 . Deer Lake Creek S t i l l Creek above G i l m o r e Avenue B r u n e t t e R i v e r above B r u n e t t e S t r e e t B r u n e t t e R i v e r above C a r i b o o Road INDUSTRIAL: 1. 2. S t i l l Creek above Douglas Avenue B r u n e t t e R i v e r above B r a i d S t r e e t 87 COMMERCIAL: 1. 2. S t i l l Creek above S p e r l i n g Avenue Lake C i t y Creek OPEN SPACE: 1. 2 . 3. 4 . Stoney Creek E a g l e Creek Rober t Burnaby Creek Burnaby Lake The v a r i a t i o n i n the d a t a f o r each parameter was a s s e s s e d a c c o r d i n g t o the e x p l a n a t i o n c o n t r i b u t e d by the l a n d use (as a s s i g n e d above) and i n terms o f the v a r i a b i l i t y i n the parameter f r o m s i t e to s i t e w i t h i n the l a n d u s e . In a l l b u t two o f the e i g h t e e n p a r a m e t e r s , the n u l l h y p o t h e s i s ( i . e . t h e r e was no s i g n i f i c a n t d i f f e r e n c e between the e f f e c t s o f l a n d uses) was a c c e p t e d . T h i s meant t h a t t h e l a n d uses d i d n o t s i g n i f i c a n t l y d i f f e r i n t h e i r c o n t r i b u -t i o n s to the water q u a l i t y . T h i s , o f c o u r s e , negates the o r i g i n a l s ta tement made t h a t the l a n d uses do c o n t r i b u t e d i f f e r e n t c o n c e n t r a t i o n s o f the p o l l u t a n t s t o t h e s t r e a m . The two parameters t h a t were s i g n i f i c a n t a t the 9 5 p e r c e n t l e v e l (so t h a t the a l t e r n a t e h y p o t h e s i s was accepted) were t o t a l phosphorus (P-T) and suspended s o l i d s . These two p a r a -meters d i d d i f f e r s i g n i f i c a n t l y from l a n d use to l a n d u s e . As i s shown, t o t a l phosphorus (P-T) and suspended s o l i d s v a r i a t i o n s are most h i g h l y a s s o c i a t e d w i t h the open space l a n d use c a t e g o r y . In such a r e a s , l a n d s u s c e p t i b l e t o e r o s i o n a l p r o c e s s e s produces suspended s o l i d s l o a d i n g s i n r e s p o n s e to r u n o f f c o n d i t i o n s . Phosphorus c o n c e n t r a t i o n s (perhaps from f e r t i l i z i n g programmes) are a s s o c i a t e d and 88 t r a v e l to the stream w i t h the suspended m a t e r i a l . F u r t h e r s tudy o f the a n a l y s i s o f v a r i a n c e r e s u l t s r e v e a l e d t h a t e l e v e n o f the e i g h t e e n parameters d i f f e r e d s i g n i f i c a n t l y from s i t e to s i t e w i t h i n the same l a n d u s e . T h e r e f o r e , the parameters a n a l y z e d a t s i t e s d r a i n i n g presumably s i m i l a r l a n d uses d i f f e r e d a t the 95 p e r c e n t l e v e l . O n l y tempera -t u r e , p H , d i s s o l v e d oxygen, t o t a l p h o s p h o r u s , suspended s o l i d s , d i s s o l v e d s o l i d s and copper d i d not v a r y from s i t e to s i t e w i t h i n the same l a n d u s e . I t i s worth commenting on t h i s w i t h i n l a n d use v a r i a t i o n . I d e a l l y , i t was e x p e c t e d t h a t each s i t e w i t h i n a l a n d use would respond s i m i l a r l y to e n v i r o n m e n t a l change. However, t h i s was n o t the c a s e . I t i s c l e a r t h a t a l a n d use d e s i g n a t i o n , as g e n e r a l i z e d as r e s i d e n t i a l or open s p a c e , i s a m i s r e p r e s e n t a t i o n or s i m p l i f i c a t i o n o f what a c t u a l l y e x i s t s . F o r example , the open space c a t e g o r y i n the B r u n e t t e R i v e r D r a i n a g e B a s i n i n c l u d e s p a r k l a n d , undeveloped l a n d , t r e e d l a n d and g r a s s -l a n d . T h i s i n d e e d p r e s e n t s an i n t e r e s t i n g problem o f s c a l e f o r t h e water q u a l i t y d a t a are r e s p o n d i n g d i f f e r e n t l y a t s i t e s a l l c l a s s i f i e d as a s i m i l a r l a n d u s e . These r e s u l t s were , as s t a t e d , a t t r i b u t e d to an improper (or perhaps o v e r - s i m p l i f i e d ) d e s i g n a t i o n o f s i t e w i t h predominant l a n d u s e . In f a c t , i t was v i s u a l l y c l e a r to the author t h a t o f t e n a s m a l l p e r c e n t a g e o f i n d u s t r i a l o r commercial l a n d a d j a c e n t to the s t ream had a much g r e a t e r 89 e f f e c t on the s t ream water q u a l i t y t h a n , say a l a r g e p e r -centage o f r e s i d e n t i a l l a n d . T h i s l e d to a second a n a l y s i s o f v a r i a n c e which r e c l a s s i f i e d the s i t e s i n t o t h r e e l a n d uses w i t h i n d u s t r i a l and commerc ia l s i t e s grouped t o g e t h e r (Table X I V ) . TABLE XIV DOMINANT LAND USE CONTRIBUTING TO THE SITE - CASE B RESIDENTIAL: 1. Deer Lake Creek 2 . B r u n e t t e R i v e r above C a r i b o o Road 3. B r u n e t t e R i v e r above B r u n e t t e S t r e e t 4. S t i l l Creek above G i l m o r e Avenue OPEN SPACE: 1. Stoney Creek 2 . E a g l e Creek 3 . R o b e r t Burnaby Creek 4 . Burnaby Lake INDUSTRIAL & COMMERCIAL: 1. S t i l l Creek 2 . S t i l l Creek above Douglas Avenue 3. Lake C i t y Creek 4. B r u n e t t e R i v e r above B r a i d S t r e e t The r e s u l t s f rom t h i s a n a l y s i s o f v a r i a n c e d i d n o t h i n g more than i n c r e a s e the l e v e l s o f s i g n i f i c a n c e a t w h i c h t o t a l phosphorus (P-T) and suspended s o l i d s d i f f e r e d f rom l a n d use to l a n d u s e . I t was c l e a r t h a t another a t tempt a t g r o u p i n g the s i t e s a c c o r d i n g to predominant l a n d use was not g o i n g to improve the r e s u l t s and c o u l d n o t be s t a t i s t i c a l l y 90 r a t i o n a l i z e d . T h e r e f o r e , i t was d e c i d e d t h a t each p a r a -meter would be a n a l y z e d w i t h the l a n d use a t each s i t e e x p r e s s e d i n a c r e s , i n p e r c e n t a g e o f l a n d use type and i n terms o f the r u n o f f c o - e f f i c i e n t (Tables I V , V , and V I , r e s p e c t i v e l y ) . Each s i t e would c o n s e q u e n t l y s t a n d on i t s own r a t h e r than be grouped i n t o a l a n d use t y p e . In o r d e r to a c h i e v e t h i s , a n a l y s i s o f v a r i a n c e t e c h n i q u e s had to be abandoned as t h e r e were no f a c t o r s . M u l t i p l e r e g r e s s i o n t e c h n i q u e s , o r i g i n a l l y s e t a s i d e as a means o f e x p l a i n i n g t e m p o r a l changes , had to be used i n the e x p l a n a t i o n o f s p a t i a l v a r i a t i o n s . E i g h t e e n m u l t i p l e r e g r e s s i o n s (one f o r each parameter) were performed i n t h r e e d i f f e r e n t c a s e s . In e v e r y r e g r e s s i o n , the dependent v a r i a b l e was the mean o f one parameter o f water q u a l i t y . However, i n case A , t h e r e were f o u r independent v a r i a b l e s (acres r e s i d e n t i a l , i n d u s t r i a l , open space and c o m m e r c i a l ) ; i n case B, t h e r e were t h r e e independent v a r i a b l e s (percentage r e s i d e n t i a l , i n d u s t r i a l and open space and commerc ia l was a l i n e a r c o m b i n a t i o n o f the o t h e r t h r e e ) ; and i n case C , t h e r e was one independent v a r i a b l e (the r u n o f f c o - e f f i c i e n t ) . Case C i s d e a l t w i t h f i r s t because the r u n o f f c o - e f f i c i e n t i s a c a l c u l a t i o n based on the f o u r c o n t r i -b u t i n g l a n d uses and c o n s e q u e n t l y , case A and case B do 91 l i t t l e more than narrow down the c o r r e l a t i o n s i s o l a t e d i n case C. From the c o r r e l a t i o n m a t r i x , two parameters had c o r r e l a t i o n c o - e f f i c i e n t s o f 0.95 o r g r e a t e r . COD (r = 0.97) was d i r e c t l y r e l a t e d to c o l o u r and suspended s o l i d s (r = 0.95) was d i r e c t l y r e l a t e d to t o t a l p h o s -phorus ( P - T ) . The c o l o u r - COD r e l a t i o n s h i p i s o f l i t t l e impor tance s i n c e the c o l o u r c o n c e n t r a t i o n s were due l a r g e l y t o n a t u r a l o r g a n i c s t a i n s . The suspended s o l i d s and phosphorus r e l a t i o n s h i p appears t o c o n f i r m t h a t the p h o s -phorus l o a d i n g s were t r a n s p o r t e d to the s t ream w i t h the s u s -pended m a t e r i a l , e s p e c i a l l y i n the open space l a n d u s e s . The r u n o f f c o - e f f i c i e n t i s i n v e r s e l y r e l a t e d to s u s -pended s o l i d s , t o t a l phosphorus (P-T) and t u r b i d i t y (r = - 0 . 7 1 , - 0 . 7 0 , -0 .62 r e s p e c t i v e l y ) and a l t h o u g h n o t s t a t i s t i c a l l y s i g n i f i c a n t , i t shows t h a t t h e lower the r u n o f f c o - e f f i c i e n t ( i . e . the g r e a t e r the degree o f open s p a c e ) , the h i g h e r the c o n c e n t r a t i o n s of these t h r e e p a r a m e t e r s . O t h e r than the heavy m e t a l s showing d i r e c t r e l a t i o n s h i p s w i t h one a n o t h e r , l i t t l e e l s e can be g a i n e d from the c o r r e l a t i o n m a t r i x . The F - s t a t i s t i c s c a l c u l a t e d f o r each parameter f o r e l e v e n degrees o f freedom i n t h e m u l t i p l e r e g r e s s i o n s are compared to the t a b l e d F - v a l u e s i n T a b l e XV. 92 TABLE XV F-VALUES FROM MULTIPLE REGRESSION ANALYSES F - S t a t i s t i c F - S t a t i s t i c Parameter ( c a l c u l a t e d ) ( tabled) = P - T 9.46 4 .84 Suspended s o l i d s 8.52 4. 84 T u r b i d i t y 6 .16 4 .84 pH 3.40 4 .84 S p e c i f i c conductance 2 .70 4. 84 N H 3 - N 1.85 4 .84 Copper 1.76 4 .84 BOD 1.70 4.84 Z i n c 0.92 4 .84 N 0 3 - N 0.29 4 .84 N - T 0 .20 4 .84 D i s s o l v e d Oxygen 0.19 4.84 P 0 4 - P 0 .15 4.84 Manganese 0.10 4 .84 C o l o u r 0.05 4. 84 COD 0.03 4. 84 D i s s o l v e d s o l i d s 0 .01 4 .84 Temperature 0 .01 4 .84 From T a b l e XV, t o t a l phosphorus ( P - T ) , suspended s o l i d s and t u r b i d i t y were the o n l y parameters s i g n i f i c a n t l y r e l a t e d , a t the 95% l e v e l , to the r u n o f f c o - e f f i c i e n t . The r e s u l t s f rom case A i n d i c a t e d the same t r e n d s as case C b u t were not as w e l l p r o n o u n c e d . Some i n t e r e s t i n g p o i n t s were noted from the c o r r e l a t i o n m a t r i x 93 of case B i n which the land uses were expressed as a percentage of the a r e a l coverage. Even though the r e -s u l t s were not s i g n i f i c a n t a t the 95% l e v e l , they were most s t r o n g l y marked wi t h the percentage open space. S p e c i f i c conductance and d i s s o l v e d s o l i d s were i n v e r s e l y r e l a t e d to the percentage open space whereas, t u r b i d i t y and suspended s o l i d s were d i r e c t l y r e l a t e d . S p e c i f i c conductance showed a r e l a t i v e l y s t r o n g r e l a t i o n s h i p (r = 0.83) w i t h percentage r e s i d e n t i a l . The n i t r o g e n compounds were i n v e r s e l y r e l a t e d to percentage open space and d i r e c t l y r e l a t e d t o percentage r e s i d e n t i a l . The o p p o s i t e was t r u e f o r t o t a l phosphorus (P-T). Although some s p a t i a l r e l a t i o n s h i p s are esta b -l i s h e d i n the data, much v a r i a t i o n remains unexplained. Temporal p a t t e r n s are s t u d i e d next. C: Temporal R e l a t i o n s h i p s M u l t i p l e r e g r e s s i o n techniques were used to r e l a t e the water q u a l i t y parameters a t each s i t e t o the r u n o f f c o n d i t i o n s a t t h a t s i t e . The most ^ r e l i a b l e flow r e c o r d s were a v a i l a b l e a t S t i l l Creek a t Gilmore Avenue where an automatic water l e v e l r e c o r d e r was o p e r a t i o n a l . Flows were then c a l c u l a t e d f o r each of the b a s i n s (based on p r o p o r t i o n a l areas) and the parameters were r e g r e s s e d a g a i n s t the c a l c u l a t e d f lows. The r e l a t i o n s h i p s t h a t 94 e x i s t a t the 95% l e v e l are summarized i n Table XVI. The t a b l e shows t h a t e i g h t o f the eighteen parameters r e l a t e to d i s c h a r g e . Suspended s o l i d s , d i s s o l v e d s o l i d s and t u r b i d i t y stand out as being dependent on stream d i s c h a r g e , p a r t i c u l a r l y on the Brunette R i v e r . In p h y s i c a l terms, these parameters r e p r e s e n t the s u r f a c e m a t e r i a l s t h a t be-come mobile w i t h r u n o f f but d u r i n g dry p e r i o d s have no means o f r e a c h i n g the stream. I t i s obvious t h a t such a s t r o n g r e l a t i o n s h i p should be shown wi t h d i s c h a r g e . The remaining parameters (temperature, pH, d i s s o l v e d oxygen, copper, z i n c , ammonia n i t r o g e n (NH3 - N) , n i t r a t e n i t r o -gen (NO3 - N), t o t a l phosphorus (P-T), s p e c i f i c conduc-tance and chemical oxygen demand) have no s i g n i f i c a n t r e l a t i o n s h i p with streamflow a t any s i t e . The Brunette R i v e r has the g r e a t e s t number of parameters dependent on d i s c h a r g e , e s p e c i a l l y the Brunette R i v e r at B r a i d S t r e e t s i t e . T h i s l a t t e r s i t e i s the one f u r t h e s t downstream w i t h the l a r g e s t flows. The f a c t t h a t the s t r o n g e s t r e -l a t i o n s h i p s are noted here p o s s i b l y suggests t h a t the upstream water q u a l i t y c o n d i t i o n s have had a chance to "average" out and consequently the h y d r o l o g i c e f f e c t s are more pronounced. No s i g n i f i c a n t r e l a t i o n s h i p s are apparent a t S t i l l Creek a t Gilmore Avenue and Douglas Avenue and Lake C i t y Creek (which was the stream on which c o n s t r u c t i o n 95 a c t i v i t i e s ) and r u n o f f c o n d i t i o n s ( d i s c u s s e d e a r l i e r i n Chapter Four) had such a pronounced e f f e c t on suspended s o l i d s and t u r b i d i t y . The r e s u l t s , although not d e c i s i v e , do suggest a number o f t h i n g s . As was shown i n the s p a t i a l a n a l y s e s , t o t a l n i t r o g e n (N-T) appears to be r e l a t e d to r e s i d e n t i a l l a n d use (Deer Lake Creek) and suspended s o l i d s seems to be a s s o c i a t e d w i t h open space (Stoney C r e e k ) . The Brunette R i v e r a t B r a i d S t r e e t , w i t h the h i g h e s t flow, has the g r e a t e s t number of s i g n i f i c a n t p ara-meters a p p a r e n t l y , as mentioned, i n d i c a t i n g the summation of upstream e f f e c t s . I t was f e l t t h a t the records o f stage kept f o r the t r i b u t a r y streams, because of t h e i r l e v e l s o f accuracy (other than t h a t o f the automatic water l e v e l r e c o r d e r ) , c o u l d not improve the s t a t i s t i c a l s i g n i f i c a n c e i n the data. The p r e c i p i t a t i o n data, although r e l i a b l e , was monitored a t s t a t i o n s which were, r e l a t i v e l y speaking, d i s t a n t from the streams. Because storm sewerage v a r i e d from l a n d use to l a n d use, i t was f e l t t h a t the use of p r e c i p i t a t i o n data was not j u s t i f i a b l e . F u r t h e r commentary on the u s e f u l n e s s o f the s t a t i s t i c a l a p p r a i s a l of the data f o r t h i s study i s given next. 96 TABLE XVI PARAMETERS DEPENDENT ON MEAN DISCHARGE AT SPECIFIED SITES S i t e S t i l l Creek at Gilmore Avenue Mean Discharge (cfs) 13.0 S i g n i f i c a n t Parameters ek = 0.05 S t i l l Creek at Douglas Avenue 21.0 S t i l l Creek at S p e r l i n g Avenue 27.8 Manganese Deer Lake Creek Eagle Creek Burnaby Lake Stoney Creek Lake C i t y Creek Brunette R i v e r at Cariboo Road 9.1 5.2 46.3 5.8 1.0 102.7 N - T BOD N - T Suspended S o l i d s BOD D i s s o l v e d S o l i d s Brunette R i v e r a t Brunette S t r e e t 127.6 T u r b i d i t y C olour PO4 - P D i s s o l v e d S o l i d s Brunette River at B r a i d S t r e e t 130.4 T u r b i d i t y Colour P 0 4 - P Suspended S o l i d s D i s s o l v e d S o l i d s Robert Burnaby Creek 0.6 PO4 - P 97 D: Surrirriary o f the Water Q u a l i t y R e l a t i o n s h i p s The s t a t i s t i c a l work accomplished on the s p a t i a l and temporal p a t t e r n s i n the data i s foremost i n i n d i c a t i n g the r e l a t i o n s h i p s t h a t do e x i s t and the amount o f v a r i a n c e not y e t e x p l a i n e d . A d d i t i o n a l computer programming i n v o l v i n g f a c t o r a n a l y s i s and time s e r i e s a n a l y s i s c o u l d p o s s i b l y im-prove the s i t u a t i o n . Upon d i s c u s s i o n w i t h computer a n a l y s t s , i t was decided t h a t more s o p h i s t i c a t e d programming was going to p r o v i d e l i t t l e a d d i t i o n a l e x p l a n a t i o n , and consequently, no f u r t h e r s t a t i s t i c a l analyses were warranted. However, the l a c k o f e x p l a n a t i o n i s , i n many i n -stances, as important as the e s t a b l i s h e d r e l a t i o n s h i p s to the d i s c u s s i o n o f the o v e r a l l experimental design o f such a study. This unexplained v a r i a n c e i s important to the d i s c u s s i o n i n Chapter V. To review b r i e f l y the s t a t i s t i c a l l y s i g n i f i c a n t f i n d i n g s , the f o l l o w i n g can be s a i d : 1. T o t a l phosphorus and suspended s o l i d s v a r i e d s i g n i f i c a n t l y w i t h l a n d use. 2. T o t a l phosphorus and suspended s o l i d s were d i r e c t l y r e -l a t e d . 3. T o t a l phosphorus, suspended s o l i d s and t u r b i d i t y were d i r e c t l y r e l a t e d to the percentage open space. 4. S p e c i f i c conductance and d i s s o l v e d s o l i d s were d i r e c t l y r e l a t e d . 98 5. S p e c i f i c conductance and the n i t r o g e n compounds were d i r e c t l y r e l a t e d t o the percentage r e s i d e n t i a l l a n d use. 6. E i g h t parameters, e s p e c i a l l y t u r b i d i t y and suspended s o l i d s were dependent on stream d i s c h a r g e . 7. Parameters on the Brunette R i v e r , e s p e c i a l l y a t B r a i d S t r e e t , had the s t r o n g e s t dependency on stream d i s -charge . The l a n d s u r f a c e s most s u s c e p t i b l e to e r o s i o n d u r i n g the r u n o f f process (namely, open space areas w i t h the h i g h e s t degree o f slope) c o n t r i b u t e d most t o the sus-pended l o a d i n g s i n the stream. T o t a l phosphorus (P-T) c o n c e n t r a t i o n s due t o f e r t i l i z e r a p p l i c a t i o n s , b i o l o g i c a l decay and/or the f a c t t h a t they adhered to the suspended m a t e r i a l were a l s o a s s o c i a t e d w i t h the open space category. On the o t h e r hand, s p e c i f i c conductance, d i s s o l v e d s o l i d s and the n i t r o g e n compounds were r e l a t e d to the s u r f a c e wash from r e s i d e n t i a l areas. In p r e v i o u s s t u d i e s (Swan Wooster, 1966), i t was thought t h a t n i t r o g e n products were r e l a t e d to s u r f a c e wash and t h a t phosphorus products were c o n t r i -buted by the groundwater flow. S i g n i f i c a n t r e l a t i o n s h i p s between the water q u a l i t y parameters and c o m m e r c i a l - i n d u s t r i a l l a n d uses were not d i s c e r n i b l e except f o r the v i s u a l p o l l u t i o n o f stream reaches adjacent to i n d u s t r i a l areas and the h i g h t r a c e metal c o n c e n t r a t i o n s (K. H a l l e t a l . , 1976) found i n the sediments at S t i l l Creek a t Douglas Avenue. The extremely complex and 99 d i f f u s e nature of i n d u s t r i a l l a n d may account f o r the l a c k o f c o r r e l a t i o n s . The parameters most dependent on stream d i s c h a r g e were those most e a s i l y eroded and mobile d u r i n g r u n o f f and most immobile d u r i n g dry p e r i o d s . 100 V CHAPTER FIVE DISCUSSIONS AND CONCLUSIONS T h i s s tudy i s an at tempt t o , e x p l a i n water q u a l i t y v a r i a t i o n s i n terms o f s p a t i a l and t e m p o r a l p h e -nomena. The c o n c e n t r a t i o n s o f the parameters were r e l a t e d to the l a n d uses c o n t r i b u t i n g to the s t ream r e a c h . The f l u c t u a t i o n s i n the c o n c e n t r a t i o n s were r e l a t e d to c h a n g i n g h y d r o l o g i c c o n d i t i o n s w h i c h a f f e c t e d , i n d i f f e r e n t ways, the l a n d uses c o n t r i b u t i n g to the water q u a l i t y . The premise f o r t h i s s t u d y was proven to be e s s e n t i a l l y c o r r e c t . I n h e r e n t l y , the author knows t h a t d i f f e r e n t f a c t o r s were a t p l a y as one p r o g r e s s e d f rom one l a n d use to a n o t h e r i n the w a t e r s h e d . Stream reaches a d j a c e n t t o i n d u s t r i a l a reas were v i s u a l l y p o l l u t e d w i t h f l o a t i n g d e b r i s , o i l s l i c k s and e x t r e m e l y t u r b i d w a t e r . Stream reaches d r a i n i n g open space a reas f l o w e d c l e a r and were a e s t h e t i c a l l y p l e a s i n g u n t i l p e r i o d s o f i n c r e a s e d r u n o f f , a t w h i c h time suspended and n u t r i e n t l o a d i n g s i n c r e a s e d g r e a t l y . T r i b u t a r i e s d r a i n i n g p r e d o m i n a n t l y r e s i d e n t i a l l a n d use had h i g h d i s s o l v e d s o l i d s l o a d i n g s d u r i n g normal weather p e r i o d s , and even h i g h e r l o a d i n g s d u r i n g wet p e r i o d s . C e r t a i n parameters (pH, c o l o u r , temperature) were v e r y c o n s i s t e n t o r s t a t i c from s i t e to s i t e . These parameters were r e l a t i v e l y u n a f f e c t e d by r u n o f f c o n d i t i o n s . 101 On the other hand, ot h e r parameters (namely, the heavy metals, d i s s o l v e d and suspended s o l i d s and t u r b i d i t y ) v a r i e d g r e a t l y - so much so, t h a t c o r r e l a t i n g t h e i r f l u c t u a t i o n s with h y d r o l o g i c change became d i f f i c u l t . T h i s chapter i s attempting to p l a c e some per-s p e c t i v e on these r e s u l t s to d e a l with unexplained v a r i a -t i o n and to assess water q u a l i t y r e s e a r c h i n the geogra-p h i c a l sense. I n i t i a l l y , i t was presumed t h a t non-point source p o l l u t i o n was a major contaminant o f water i n the urban en-vironment. I t was a l s o presumed t h a t water q u a l i t y v a r i e d from s i t e to s i t e and through time. T h i s c o n s t i t u t e d the watershed approach to t h i s water q u a l i t y study. I t was expected t h a t although the study was comprehensive w i t h r e s p e c t to l a n d use and hydrology, i t s r e s o l u t i o n and ex p l a i n e d v a r i a t i o n would be low. C e r t a i n q u e s t i o n s were posed i n Chapter One -Where should the sampling s i t e s be l o c a t e d ? How frequent should these s i t e s be sampled? What parameters b e s t ex-p l a i n the c o n t r i b u t i o n s o f upstream la n d use? What l e v e l s of e x p l a n a t i o n do these parameters p r o v i d e ? What p o s s i b l e s o l u t i o n s can be given f o r unexplained v a r i a n c e ? I t i s upon t h i s framework of q u e s t i o n s , t h a t the f o l l o w i n g d i s -c u s s i o n i s based. 102 The sampling s i t e s were s e l e c t e d so as to be r e p r e s e n t a t i v e o f upstream la n d uses and p r o v i d e good a r e a l coverage o f the watershed. The water q u a l i t y a t those s i t e s d r a i n i n g open space was more i n d i c a t i v e of the nature of the open space la n d use than the q u a l i t y a t Deer Lake Creek was of the r e s i d e n t i a l l a n d use. In other words, the responses i n the data were more apparent a t s i t e s d r a i n i n g open space. The water q u a l i t y a t s i t e s r e p r e s e n t a t i v e of i n d u s t r i a l and commercial areas was even l e s s i n d i c a t i v e of these uses than those d r a i n i n g r e s i -d e n t i a l a reas. T h e r e f o r e , i t i s b e l i e v e d t h a t , although the s i t e s p r o v i d e d r e l a t i v e l y good a r e a l coverage of the b a s i n , they o v e r s i m p l i f i e d the complexity o f the c o n t r i -b u t i n g l a n d uses. Even though the upstream la n d use was, perhaps, predominantly r e s i d e n t i a l , i t was extremely d i f f i c u l t to p i n p o i n t , i n the data, the e f f e c t s of the r e s i d e n t i a l use. F a c t o r s such as the e f f i c i e n c y o f the storm drainage system, l e n g t h s of time to the antecedent r a i n -f a l l and e f f e c t i v e n e s s o f s t r e e t c l e a n i n g s were not con-s i d e r e d . T h e r e f o r e , the g e n e r a l i z a t i o n of an area as r e s i d e n t i a l d i d not p r o v i d e any g e n e r a l i t i e s i n the data. On the c o n t r a r y , trends i n the data were o f t e n d i f f i c u l t to d i s c e r n . 103 For the same reasons, i t i s l i k e l y t h a t open space c a t e g o r i e s showed the best c o r r e l a t i o n s because the fewest f a c t o r s (such as those j u s t mentioned) were at p l a y . The q u e s t i o n of s c a l e a l s o needs c o n s i d e r a t i o n . Water q u a l i t y v a r i a t i o n s c o u l d be i n the order o f a p a r t per m i l l i o n or b i l l i o n . H y d r o l o g i c v a r i a t i o n s were measured, a t best, to one decimal p l a c e of one c u b i c f o o t per second. Land uses were g r o s s l y s i m p l i f i e d i n t o a c r e s o f use or a predominant percentage use. C o r r e l a t i n g a p a r t per b i l l i o n change i n the q u a l i t y data to a percentage l a n d use c o n t r i -b u t i o n i s somewhat open to c r i t i c i s m i n terms o f s c a l e . A sampling programme, such as was conducted i n t h i s study, t o t a l l y w i t h i n one l a n d use would undoubtedly c l a r i f y the r e s u l t s . The s i t e s were sampled weekly f o r 24 weeks. The l e n g t h of the study i s c o n s i d e r e d adequate but the frequency i s q u e s t i o n a b l e . F i r s t , i t was a n t i c i p a t e d t h a t the frequency i n t e r v a l d i d not l e t any a p p r e c i a b l e changes i n the water q u a l i t y data go unnoticed. Second, what 'appr e c i a b l e change' meant was d i f f i c u l t to d e f i n e . T h i r d , the frequency of sampling was very dependent on l o g i s t i c a l problems such as time, money, l a b o r a t o r y space, and equip-ment a v a i l a b i l i t y . The adequacy o f the frequency i n t e r v a l must r e a l l y be d i s c u s s e d w i t h the nature of the e f f e c t s o f h y d r o l o g i c change i n the watershed. C e r t a i n l y , the l a n d 104 uses remained s t a t i c t h r o u g h o u t the s tudy p e r i o d and were o f no consequence to the f r e q u e n c y o f s a m p l i n g . However, the r u n o f f d i f f e r e n c e s from l a n d use to l a n d use and the e f f e c t s on the water q u a l i t y were a p p r e c i a b l e . In an u r b a n i z e d w a t e r s h e d , and a r e l a t i v e l y s m a l l one a t t h a t , e v i d e n c e o f storm r u n o f f i s s h o r t - l i v e d . The h i g h degree o f i m p e r v i o u s s u r f a c e s i n g e n e r a l and the s t e e p s l o p e s on Burnaby Mounta in s h o r t e n e d the l a g time between r a i n f a l l and r u n o f f . W i t h s a m p l i n g t imes a week a p a r t , r u n o f f from a s torm o c c u r r i n g mid-week was complete and n o t n o t i c e a b l e i n t h e water q u a l i t y c o n c e n t r a t i o n s sampled on the weekend. S i m p l y by h a v i n g a l e n g t h y enough s t u d y p e r i o d ( i . e . 24 weeks) i t was a n t i c i p a t e d t h a t the t r e n d s i n the d a t a f rom h y d r o l o g i c change would a p p e a r . O n l y c e r t a i n parameters a t c e r t a i n s i t e s showed these c o r r e -l a t i o n s . The suspended and d i s s o l v e d s o l i d s , t u r b i d i t y and the phosphorus n u t r i e n t s were the o n l y parameters t h a t s i g n i f i c a n t l y showed t r e n d s w i t h t h e r u n o f f c o n d i t i o n s . These t r e n d s were most apparent i n the open space a r e a , p r o b a b l y because i t was here t h a t the g r e a t e s t range i n t h e c o n c e n t r a t i o n s o f the above parameters o c c u r r e d . Due to the importance o f the f r e q u e n c y o f s a m p l i n g to the o v e r a l l e x p e r i m e n t a l d e s i g n o f the s t u d y , c o n t i n u o u s m o n i t o r i n g o f the water q u a l i t y was u n d e r t a k e n a t t h r e e s i t e s a t t h r e e d i f f e r e n t p o i n t s i n t i m e . The r e s u l t s f rom 105 t h i s m o n i t o r i n g a r e o u t l i n e d i n C h a p t e r F o u r . The r e s u l t s i n d i c a t e t h a t c e r t a i n p a r a m e t e r s a r e i n d e e d e x t r e m e l y v a r i a b l e o v e r t i m e . To a c e r t a i n e x t e n t t h e s e v a r i a t i o n s a r e r e l a t e d t o t h e v a r y i n g f l o w c o n d i t i o n s . Heavy m e t a l s , f o r example, were v e r y r e s p o n s i v e t o ch a n g e . Many o f t h e c h a n g e s i n t h e m e t a l s were a s s o c i a t e d w i t h c h a n g e s i n r u n o f f . On t h e o t h e r hand, some o f t h e q u a l i t y c h a n g es d i d n o t r e l a t e t o f l o w c o n d i t i o n s . U n f o r t u n a t e l y , i t was n o t p o s s i b l e t o p u t s t a t i s t i c a l s i g n i f i c a n c e t o t h i s d a t a . However, i t i s s i g n i f i c a n t t o r e - e m p h a s i z e t h e p r o b l e m o f s c a l e . R e a l i z i n g t h a t c o r r e l a t i o n s between r u n o f f and w a t e r q u a l i t y w i t h c o n t i n u o u s m o n i t o r i n g were d i f f i c u l t t o p i n p o i n t , e m p h a s i z e d t h e d i f f i c u l t y o f r e l a t i n g w e e k l y w a t e r q u a l i t y v a r i a t i o n s t o r u n o f f c o n d i t i o n s . Water q u a l i t y was measured o n c e a week. R u n o f f o c c u r r e d a l l week l o n g . T h i s was o f t e n v i s u a l l y a p p a r e n t . A v i s i t t o t h e w a t e r s h e d d u r i n g o f f t i m e s f o r s a m p l i n g b u t d u r i n g p e r i o d s o f i n c r e a s e d r u n o f f made c l e a r t h e e f f e c t s o f r u n o f f on, a t l e a s t , t h e a e s t h e t i c p a r a m e t e r s , t h e e f f e c t s o f w h i c h were n o t a p p a r e n t when s a m p l i n g o c c u r r e d a few d a y s l a t e r . Two p a r a m e t e r s , s u s p e n d e d s o l i d s and t o t a l p h o s p h o r u s ( P - T ) , were s i g n i f i c a n t a t t h e 95 p e r c e n t l e v e l i n e x p l a i n i n g t h e c o n t r i b u t i o n s o f u p s t r e a m l a n d u s e t o w a t e r q u a l i t y . The o t h e r p a r a m e t e r s were n o t s t a t i s t i c a l l y s i g n i f i c a n t . T o t a l p h o s p h o r u s (P-T) and 106 suspended s o l i d s were p a r t i c u l a r l y s i g n i f i c a n t i n the open space a r e a s where t h e i r l o a d i n g s were c o n s i d e r a b l e d u r i n g p e r i o d s o f i n c r e a s e d r u n o f f . I t can o n l y be c o n c l u d e d t h a t the o t h e r water . q u a l i t y parameters d i d n o t p r o v i d e h i g h l e v e l s o f e x p l a n a t i o n o f the upstream l a n d u s e , a t l e a s t not w i t h i n t h e framework by which t h i s s tudy was u n d e r t a k e n . I t i s n e c e s s a r y , a t t h i s p o i n t , t o d i s c u s s more b r o a d l y the e x p e r i m e n t a l d e s i g n and b a s i c o b j e c t i v e s t h a t u n d e r l y t h i s t h e s i s . The s tudy o f water q u a l i t y can be a c c o m p l i s h e d i n a v a r i e t y o f d i f f e r e n t ways and the reasons f o r s t u d y i n g water q u a l i t y a l s o v a r y g r e a t l y . I t was d e c i d e d i n i t i a l l y t h a t the approach here would be t h a t o f a watershed a p p r o a c h . T h i s meant t h a t b o t h s p a t i a l and t e m p o r a l change would be a c c o u n t e d f o r . I t was r e a l i z e d from the o n s e t o f the s tudy t h a t such an approach t h a t i n -c l u d e d an e n t i r e w a t e r s h e d would have many i n t e r r e l a t e d v a r i a b l e s . Such c o m p l e x i t y , a l t h o u g h c o m p r e h e n s i v e , n o r m a l l y p r o v i d e s low l e v e l s o f r e s o l u t i o n i n the d a t a . T h i s i s e x a c t l y what o c c u r r e d i n t h e B r u n e t t e R i v e r D r a i n -age B a s i n . To improve on the r e s u l t s w i t h o u t a l t e r i n g the b a s i c approach to the s t u d y , i t would be n e c e s s a r y to i n c r e a s e the d e t a i l i n the s a m p l i n g d e s i g n . More s i t e s i s o l a t i n g d i s t i n c t types o f r e s i d e n t i a l l a n d use o r open space or i n d u s t r i a l o r commerc ia l s i t e s would be n e c e s s a r y . 107 B e s t r e s u l t s c o u l d be a c h i e v e d by m o n i t o r i n g the q u a l i t y i n the storm sewers d r a i n i n g the d e s i g n a t e d a r e a . However, i f the c o n c e r n i s f o r the p r o t e c t i o n o f s u r f a c e waters then s a m p l i n g s i t e s would have to remain on the s treams t h e m s e l v e s . I t would a l s o be n e c e s s a r y t o i n c r e a s e the f r e q u e n c y a t w h i c h the s i t e s were s a m p l e d . I t would be d e -s i r a b l e to i n c o r p o r a t e some s o r t o f r a i n f a l l p r e d i c t i o n s e r v i c e to the d e s i g n . When p r e c i p i t a t i o n o c c u r r e d , the water q u a l i t y would be sampled as r u n o f f o c c u r r e d . T h i s i s b e s t a c h i e v e d w i t h a u t o m a t i c s a m p l i n g d e v i c e s which s t a r t w i t h a p r e d e t e r m i n e d i n c r e a s e i n f l o w . The o t h e r approach taken i n t h i s s t u d y i s a p r a c -t i c a l approach to water and l a n d management. T h i s approach i s aimed a t i d e n t i f y i n g s o u r c e s o f water q u a l i t y d e t e r i o r a -t i o n p r i o r to the damage so t h a t p r o p e r l a n d c o n t r o l s can be i n s t i t u t e d to p r e v e n t the damage. Because water q u a l i t y problems were a p p a r e n t i n the B r u n e t t e R i v e r D r a i n a g e B a s i n , i t was hoped t h a t the i d e n t i f i c a t i o n o f the s o u r c e s o f such problems would h e l p to e s t a b l i s h g u i d e l i n e s f o r development i n watersheds n o t y e t u r b a n i z e d . Some s o u r c e s o f c e r t a i n parameters were i d e n t i f i e d b u t many s o u r c e s were n o t e x p l a i n e d . The measurement o f water q u a l i t y a t o u t f a l l s from i n d u s t r y , r e s i d e n t i a l s t r e e t s e t c . would i s o l a t e the problems but such an approach does not r e l a t e to the u l t i m a t e e f f e c t s 108 on the r e c e i v i n g water and i s o f l i t t l e p r a c t i c a l i t y to watersheds not d e v e l o p e d . T h e r e f o r e , the approaches taken here to n o n -p o i n t source p o l l u t i o n i n the urban environment are com-p r e h e n s i v e , p r a c t i c a l and e x t r e m e l y complex . A w e l l o r g a n i z e d team o f e x p e r t s to c a r r y o u t a d e t a i l e d s a m p l i n g programme would improve the r e s u l t s . C e r t a i n l y , w i t h i n the c o n t e x t o f t h i s s t u d y , the e x p e r i m e n t a l p r o c e d u r e was as d e t a i l e d as l o g i s t i c a l l y p o s s i b l e . F i n a l l y , the use o f t ime s e r i e s a n a l y s e s to p r e d i c t t e m p o r a l and c y c l i c a l r e s p o n s e s i n the d a t a (not w a r r a n t e d here due to the g e n e r a l l y low l e v e l s o f e x p l a n a t i o n a c q u i r e d ) would improve the s t a t i s t i c a l a n a l y s i s o f the d a t a . In c l o s i n g t h i s approach o f r e l a t i n g s u r f a c e water q u a l i t y d a t a to the l a n d uses and h y d r o l o g i c c o n d i -t i o n s c o n t r i b u t i n g to them was h i g h i n terms o f c o m p l e x i t y and r e l a t i v e l y low i n terms o f e x p l a n a t i o n . The number o f v a r i a b l e s a t p l a y , and the d i f f e r i n g s c a l e s a t which they were measured gave low l e v e l s o f r e s o l u t i o n . However, i t i s u n f a i r to judge the u s e f u l n e s s o f such an approach t o water q u a l i t y c o n t r o l by comparing i t to h i g h l y s i g n i f i c a n t , r e l a t i v e l y i s o l a t e d , t h e o r e t i c a l r e s e a r c h o r t o e x t r e m e l y w e l l - d e f i n e d , s o l u t i o n o r i e n t e d , 109 wastewater c o n t r o l programmes. N o n - p o i n t source urban r u n o f f , by d e f i n i t i o n , i s d i f f i c u l t to p i n p o i n t and, b e -cause o f the s e r i o u s s t ream l o a d i n g s a t t r i b u t e d to these d i f f u s e s o u r c e s , i t must be d e a l t w i t h i n an a p p r o p r i a t e manner. T h i s i s n o t t o say t h a t the e x p e r i m e n t a l d e s i g n used here was the most adequate but i t must be a s s e s s e d i n terms o f the l e v e l s o f e x p l a n a t i o n p o s s i b l y a c h i e v e d and n o t i n terms o f compar ison to a c h i e v a b l e l e v e l s from o t h e r approaches w i t h d i f f e r e n t o b j e c t i v e s . T h i s t h e s i s i n v o l v e d a g e o g r a p h i c a l approach t o the s t u d y o f s u r f a c e water q u a l i t y by i n c o r p o r a t i n g as many s p a t i a l and t e m p o r a l v a r i a b l e s as p o s s i b l e . The l e v e l s o f e x p l a n a t i o n were g e n e r a l l y l o w . I t i s b e l i e v e d t h a t the e s s e n t i a l reasons f o r the low l e v e l s o f e x p l a n a -t i o n were the o v e r - g e n e r a l i z a t i o n o f c o n t r i b u t i n g l a n d uses t o the water q u a l i t y and the l a c k o f i n f o r m a t i o n r e g a r d i n g the l a g t imes between r a i n f a l l , r u n o f f , and water q u a l i t y r e s p o n s e . A more d e t a i l e d and more f r e -quent s a m p l i n g d e s i g n would u n d o u b t e d l y have improved the r e s u l t s . Water q u a l i t y r e s e a r c h must c o n t i n u e i n the f u t u r e to ensure optimum p r o t e c t i o n of the a v a i l a b l e water r e s o u r c e . A l l approaches to the u n d e r s t a n d i n g o f water q u a l i t y c o n t r o l , i n c l u d i n g t h e o r e t i c a l , p r a c -t i c a l , g e o g r a p h i c a l and e n g i n e e r i n g , s h o u l d be p e r s u e d 110 so as to i n t e r f a c e w i t h one another. I f t h i s i s done, proper la n d and water management can be brought togeth f o r the b e n e f i t of a l l . I l l LIST OF REFERENCES American P u b l i c H e a l t h A s s o c i a t i o n , 19 71, S t a n d a r d Methods f o r the E x a m i n a t i o n o f Water and Wastewater : 13th e d i t i o n . A r m s t r o n g , J . E . , 1968, S u r f i c i a l Geology o f New Westminster Map A r e a , B r i t i s h C o l u m b i a : G e o l o g i c a l Survey o f Canada, Paper 57-5 . B r u c e , J . P . and C l a r k , R . H . , 1966, I n t r o d u c t i o n to H y d r o m e t e o r o l o g y : Pergamon P r e s s . B r y a n , E . H . , 1971, Q u a l i t y o f Stormwater D r a i n a g e from Urban L a n d : 7 th C o n f . American Water Resources A s s o c i a t i o n . C h a n l e t t , E . J . , 1973, E n v i r o n m e n t a l P r o t e c t i o n : M c G r a w - H i l l Book Co. Chow, Uen T e , 1964, Handbook o f A p p l i e d H y d r o l o g y : M c G r a w - H i l l Book C o . E c k e n f e l d e r , W.W., 1970, Water Q u a l i t y E n g i n e e r i n g f o r P r a c t i c i n g E n g i n e e r s : New Y o r k , Barnes and Noble I n c . E l r i c k , D . E . , e d . , 1970, E n v i r o n m e n t a l Change: Focus on O n t a r i o : New Y o r k , Simon and S c h u s t e r I n c . Environment Canada, 1974, A t m o s p h e r i c Environment S e r v i c e , A n n u a l M e t e o r o l o g i c a l Summary: 551 .506.1 (711 .33) . F r i e s a n , K . , 1975, An E s t i m a t i o n o f R u n o f f i n t o the F r a s e r R i v e r from the G r e a t e r Vancouver R e g i o n a l D i s t r i c t : Westwater Research C e n t r e , u n p u b l i s h e d . F r u h , E . G . , 1969, "Urban E f f e c t s on Q u a l i t y o f Stream-f l o w " , W . L . Moore and C.W. Morgan, e d s . , E f f e c t s o f Watershed Changes on S t r e a m f l o w : A u s t i n , U n i v e r s i t y o f Texas P r e s s . 112 G r a y , D . M . , e d . , 1973, Handbook on the P r i n c i p l e s o f H y d r o l o g y : New Y o r k , Water I n f o r m a t i o n C e n t r e P u b l i c a t i o n . Guy, H . P . , 1969, L a b o r a t o r y A n a l y s i s - L a b o r a t o r y Theory and Methods f o r Sediment A n a l y s i s : U . S . D . I . , U . S . G . S . , Book 5. H a g g e t t , P . and C h o r l e y R . J . , 1965, " F r o n t i e r Movements and the G e o g r a p h i c a l T r a d i t i o n " , P. Haggett and R . J . C h o r l e y e d s . , F r o n t i e r s i n G e o g r a p h i c a l T e a c h i n g : London, Methuen. H a l l , K . J . , Y e s a k i , I . , and Chan, J . , 1975, T r a c e M e t a l s and C h l o r i n a t e d Hydrocarbons i n t h e Sediment o f a M e t r o p o l i t a n W a t e r s h e d : T e c h n i c a l Report u n p u b l i s h e d , Westwater Research C e n t r e , U n i v e r s i t y o f B r i t i s h C o l u m b i a . H a l l , Warren A . , and D r a c u p , John A . 1970, Water Resources Systems E n g i n e e r i n g : M c G r a w - H i l l Book C o . Hembree, C . H . , and Rainwater F . H . , 1961, C h e m i c a l D e g r a d a t i o n on O p p o s i t e F l a n k s o f the Wind R i v e r Range, Wyoming: U . S . G . S . Water S u p p l y P a t e r , 1535-E. H o w e l l s , D . H . , 1971, Land Use F u n c t i o n i n Water Q u a l i t y Management: Water Resources B u l l e t i n (7) , A . W . R . A . K i n g , H.W. and B r a t e r , E . F . , 1963, Handbook o f H y d r a u l i c s : F i f t h E d i t i o n , M c G r a w - H i l l Book Co. K i n g , L . J . , 1969, S t a t i s t i c a l A n a l y s i s i n Geography: P r e n t i c H a l l I n c . Kovda, V . A . , 1971, "The W o r l d ' s S o i l s and Human A c t i v i t y " , N . P o l u n i n , e d . , The E n v i r o n m e n t a l F u t u r e : P r o c . o f 1st I n t e r . C o n f . on E n -v i r o n m e n t a l F u t u r e , F i n l a n d , M a c m i l l a n . L e o p o l d , L . B . , H y d r o l o g y f o r Urban Land P l a n n i n g -a guide book on the h y d r o l o g i c e f f e c t s o f urban l a n d u s e : U . S . D . I . , U . S . G . S . C i r c u l a r 554 113 L e o p o l d , L . B . , Woeman, M . G . , and M i l l e r , J . P . , 1964, F l u v i a l P r o c e s s e s i n Geomorphology: San F r a n c i s c o , W . H . Freeman & Co . L i n s l e y , R . K . , and F r a n z i n i , J . B . , 1964, Water Resources E n g i n e e r i n g : M c G r a w - H i l l Book Co . M a r s a l e k , J . , D i c k , T . M . and W i s n e r , P . , 1974, Modern Concepts i n Urban Drainage D e s i g n : C . C . I . W . Report u n p u b l i s h e d , Environment Canada. M e i n z e r , O . E . , e d . , 1949, "Ground W a t e r " , H y d r o l o g y : V o l . 9, M c G r a w - H i l l Book Co. McGauhey, P . H . , 1968, E n g i n e e r i n g Management o f Water Q u a l i t y : M c G r a w - H i l l Book Co. McKee, J . E . , and W o l f , H . W . , 1963, Water Q u a l i t y C r i t e r i a - Report to the C a l i f o r n i a Water Q u a l i t y C o n t r o l B o a r d : S . W . P . C . B . P u b l . 3A, 2nd e d i t i o n . McPherson, M . B . , 1972, H y d r o l o g i c E f f e c t s o f U r b a n i z a t i o n i n the U n i t e d S t a t e s : A . S . C . E . , Urban Water Resources Re-s e a r c h Program T e c h . Memo No. 17. McPherson, M . B . , 1969, "The Nature o f Changes i n Urban Watersheds and t h e i r Importance i n the Decades A h e a d " , W . L . Moore and C.W. Morgan, e d s . , E f f e c t s o f Watershed Changes on S t r e a m f l o w : A u s t i n , U n i v e r s i t y o f Texas P r e s s . McPherson, M . B . , 1972, Urban R u n o f f : A . S . C . E . , Urban Water Resources R e s e a r c h Program T e c h . Memo No. 18. M i l l e r , A l b e r t , 1971, M e t e o r o l o g y : Columbus, O h i o , C h a r l e s E . M e r r i l l P u b l . Co. Moore , H . G . , 1969, " E f f e c t s o f Watershed Changes on Water Q u a l i t y " , W . L . Moore and C.W. Morgan, e d s . , E f f e c t s o f Watershed Changes on S t r e a m -f l o w : A u s t i n , U n i v e r s i t y o f Texas P r e s s . 114 M o r i s a w a , M . , 1968, S t reams : t h e i r dynamics and morphology : M c G r a w - H i l l Book Co. Murphy, K . L . , e d . , 1972, Manual on Wastewater S a m p l i n g : Canadian I n s t i t u t e on P o l l u t i o n C o n t r o l , H a m i l t o n . P o l u n i n , N . , e d . , 1971, The E n v i r o n m e n t a l F u t u r e : P r o c . o f 1s t I n t e r . C o n f . on E n v i r o n m e n t a l F u t u r e , F i n l a n d , M a c m i l l a n . Schwab, G . O . , G r e v e r t , R.K., B a r n e s , K.K. and E d m i n s t e r , T . W . , 1971, E l e m e n t a r y S o i l and Water E n g i n e e r i n g : New Y o r k , John W i l e y and Sons , I n c . S laymaker , H . O . , 1969, " S c a l e Problems i n H y d r o l o g y " , E . G . Bowen, H . C a r t e r and J . A . T a y l o r , e d s . , Geography a t A b e r y s t r v y t h : C a r d i f f , Wales U n i v e r s i t y o f Wales P r e s s . S l a y m a k e r , H . O . and McPherson, H . J . , 1972, Mounta in Geomorphology: B . C . G e o g r a p h i c a l S e r i e s , Number 14, T a n t a l u s Research L t d . S 'dderlund, G. , L e h t i n e n , H . and F r i b e r g , S . , 1970, " P h y s i c o c h e m i c a l and M i c r o b i o l o g i c a l P r o p e r -t i e s o f Urban Storm - Water R u n o f f " , S . H . J e n k i n s , e d . , Water P o l l u t i o n R e s e a r c h : Pergamon P r e s s . S . P . E . C . , 1971, Burnaby Lake S t u d e n t s ' P r o j e c t s -A b s t r a c t s and E x c e r p t s : O p p o r t u n i t y f o r Y o u t h , Simon F r a s e r U n i v e r s i t y . S t e e l , C . W . , 1960, Water Supply and Sewerage: McGraw-H i l l Book Co. S t r e e t e r , H . W . , and P h e l p s , E . B . , 1925, A Study o f the P o l l u t i o n and N a t u r a l P u r i f i c a t i o n o f the Ohio R i v e r : U . S . P u b l i c H e a l t h B u l l e t i n 146. Swan Wooster E n g i n e e r i n g Co. L t d . , A s s o c i a t e d E n g i n e e r i n g S e r v i c e s L t d . , 1966, The Development o f Burnaby L a k e : S u b m i t t e d to the C o r p o r a t i o n o f the D i s t r i c t o f Burnaby. 115 Thomann, R . V . , 1972, Systems A n a l y s i s and Water Q u a l i t y Management: M c G r a w - H i l l Book C o . Thomas, H . E . , and S c h n e i d e r , W . J . , 1970, Water as an Urban Resource and N u i s a n c e : U . S . D . I . , U . S . G . S . C i r c u l a r 601-B. U n i t e d S t a t e s Department o f the I n t e r i o r , Bureau o f R e c l a m a t i o n , 1965, D e s i g n o f S m a l l Dams: Water Resources T e c h n i c a l P u b l i c a t i o n . V a l e n t i n e , B . , 1970, The P o l l u t i o n o f the B r u n e t t e R i v e r : F r a s e r R i v e r R e p o r t , S . P . E . C . Waananen, A . O . , 1969, "Urban E f f e c t s on Water Y i e l d " , W . L . Moore and C.W. Morgan, e d s . , E f f e c t s of Watershed Changes on S t r e a m f l o w : A u s t i n , U n i v e r s i t y o f Texas P r e s s . Water P o l l u t i o n A s p e c t s o f Urban R u n o f f : F . W . P . C . A . , WP-20-15. W e i b e l , S . R . , A n d e r s e n , R . J . , and Woodwards, R . L . , 1964, Urban Land R u n o f f as a F a c t o r i n Stream P o l l u t i o n : J o u r n a l o f Water P o l l u t i o n C o n t r o l F e d e r a t i o n , 36, No. 7, 914. W h i p p l e , W. , H u n t e r , J . V . and Y u , S . L . , 19 74, U n r e c o r d e d P o l l u t i o n from Urban R u n o f f : J o u r n a l o f Water P o l l u t i o n C o n t r o l F e d e r a t i o n , 46, No. 5, 873. Vessman, W. , Harbaugh, T . E . and Knapp, J . W . , 1972, I n t r o d u c t i o n to H y d r o l o g y : New York, I n t e x t E d u -c a t i o n a l P u b l i s h e r s . Yeomans, K . A . , 1968, I n t r o d u c i n g S t a t i s t i c s : S t a t i s t i c s f o r the S o c i a l S c i e n c e s : V o l . 1 and 2, Penguin Books . G i l b e r t , R . , 1973, p e r s . comm. 116 APPENDIX A PRECIPITATION A l l values expressed in inches of r a i n f a l l STATIONS DAY' SURQUIT-LAM PORT COQUIT-LAM CITY YARD VANCOUVER OAK 53 SIMON FRASER UNIVER-SITY BURNABY CAPITOL HILL PORT MOODY GULP OIL REFINERY NEW WEST BRITISH COLUMBIA PEN. BURNABY MOUNTAIN TERMINAL AVERAGE Jan. 1 .17 .36 .15 .24 .23 .22 .20 .21 .22 2 3 4 5 c .25 .40 .30 .47 .55 .32 .29 .24 .35 6 7 8 '. 9 10 I 1 i . i ! i .16 .25 .28 .50 .49 .06 .06 .12 .24 11 j 1.36 1.30 1.00 1.28 1.62 1.28 1.19 1.46 1.31 12 ' .80 i .77 .53 .85 .94 ; .89 .72 .79 .79 .13 | .95 ' .92 .91 .90 .80 1.06 .88 .62 .88 14 i j -67 .68 1.11 1.45 1.62 1.45 .60 .93 1.06 15 .29 .20 '•'.45 .37 .51 .34 .28 .56 .38 16 .12 .27 .08 .25 .26 .23 .11 .22 .19 17 i .01 18 1 .37 .40 .31 .50 .61 .54 .36 ' . .13 .40 00 DAY • BURQUIT-' LAM PORT CQQUIT-LAM CITY YARD VANCOUVER OAK 53 SIMON FRASER UNIVER-SITY BURNABY CAPITOL HILL PORT MOODY GULF OIL REFINERY NEW WEST BRITISH COLUMBIA PEN. BURNABY MOUNTAIN TERMINAL AVERAGE J a n 19 .03 .04 .02 .09 .09 .05 .03 .04 20 • .26 .36 .20 .37. .47 • .40 .27 .25 .32 21 .03 .14 .02 22 .01 ' .01 .01 .02 23 .18 .19 .30 .31 .63 ' .25 .20 .26 24 .21 .41 .27 .30 . .49 .23 .20 .46 .32 25 • .08 .01 26 27 .03 •03 .03 .03 .04 .04 .02 .03 28 29 .55 .54 .41 .63 .59 .70 .50 .55 .56 30 •42. .62 .32 .50 .55 •41 .35 .42 .49 31 .02 .01 .03 - 9.02 .01 .03 .01 BAY BURQUIT-LAM PORT COQUIT-LAM CITY YARD VANCOUVER OAK 53 SIMON FRASER UNIVER-SITY BURNABY CAPITOL HILL PORT MOODY GULF OIL REFINERY NEW WEST BRITISH COLUMBIA PEN. BURNABY MOUNTAIN TERMINAL Feb i .29 .21 .32 .42 .43 • .37 .19 .27 2 .71 .80 .28 .58 .64 .65 .68 .57 3 .04 .01 .04 .02 .03 .09 4 .12 .04 • 10 .05 5 \ 6 7 • 8 9 .02 .02 . .03 .04 .02 .03 .02 10 .04 .03 .06 .04 .05 .05 • .04 11 .01 12; 13 14 .30 .38 .17 .35 .38 .40 .25 .27 15 .35 .34 .39 .45 .50 .36 .37 .34 16 .70 .86 .42 .75 .63 .68 .72 .61 17 • ' AVERAGE .31 .61 .04 .04 .02 .04 .31 .39 .67 O DAY Feb 18 19 ' 20 21 22 23 24 25 26 27 28 BURQUIT-LAM PORT COQUIT-LAM CITY YARD .55 .26 .58 .08 .43 .47 .32 .73 .08 ,35 VANCOUVER OAK 53 .61 .29 .52 .13 .29 SIMON FRASER UNIVER-SITY .65 .32 .73 .10 .35 BURNABY CAPITOL HILL PORT MOODY GULF OIL REFINERY .74 .39 .66 . 16 .24 .58 .27 .66 .10 .45 NEW WEST BRITISH C0LUK3IA PEN .45 . 30 .61 .08 .50 BURNABY MOUNTAIN TERMINAL AVERAGE .79 .56 .08 .26 .51 .37 .63 .10 .36 DAY BURQUIT-LAM PORT COQUIT-LAM CITY YARD VANCOUVER 'OAK 53 SIMON , FRASER UNIVER-SITY BURNABY CAPITOL HIL  PORT MODY GULF OIL .REFINERY NEVJWEST BRITISH COLUMBIA PEN. BURNABY MOUNTAIN TERMINAL AVERAGE Mar 1 .44 .42 .26 . 39 • 34 .43. .25 • .35 .36 2 .01 .02 .14 .01 .01 .01 .02 3 .27 .20 .18 • 30 .22 .25 .20 .12 .22 4 .08 .19 .02 .05 .13 • 17 .05 .08 5. . c .03 .04 .03 .04 .03 .02 o 7 .03 .03 .06 .03 .02 8 .02 .06 .02 .08 .10 .06 .08 .05 9 1.03 1.08 .83 . 1.26 1.34 1.32 .96 1.15 1.12 10 .01 11 .26 .28 .21 .25 .21 .28 .16 • -11 .22 12 .72 .62 .61 .65 .54 .57 .60 .76 .63 13 .11 .02 .02 .04 .07 .02 .03 14 .27 .27 .06 .25 .26 .26 .19 .17 .22 15 .07 .06 . .08 • 35 .18 .13 .05 .06 .12 16 .03 .08 .03 .10 .21 .09 .09 .08 17 • 38 .25 .18 .30 .25 .35 .23 .10 .26 DAY BURQUIT-. LAM PORT COQUIT-LAM CITY YARD VANCOUVER OAK 53 SIMON FRASER UNIVER-SITY BURNABY CAPITOL HILL PORT MOODY GULF OIL REFINERY NEW WEST BRITISH C0LUM3IA PEN. BURNABY MOUNTAIN TERMINAL AVERAGE Mar 18 ' .26 .27 .19 .35 .31 .28 .22 .21 .26 19 .13 .08 .01 .17 .09 .13 .09 .13 .11 20 .01 .05 .02 .01 21 22 23 24 .06 • 07 .01 .06 .07 .05 .04 25 .07 .07 .07 .03 26 27 • • 28 29 .53 .55 .39 .59 .52 .64 .45 .57 .53 30 .34 .23 • 13 .45 .34 .51 .39 .50 .36 31 .22 .12 .27 .29 .39 .38 .29 .21 .27 to CJ DAY BURQUIT-LAM PORT COQUIT-LAM CITY YARD VANCOUVER OAK 53 SIMON FRASER UNIVER-SITY BURNABY CAPITOL HILL PORT MOODY GULF OIL .REFINERY NEW WEST BRITISH COLUMBIA PEN. BURNABY MOUNTAIN TERMINAL •AVERAGE Apr 1 ' 102 2 3 4 .02 .04 .01 .06 .05 .03' 5 6 7 .01 .04 .02 .04 .02 8 9 10 • • i i * 12 13 , t 14 .27 .03 15 .39 .41 .24 .38 .34 .41 .33 ,41 .37 16 .25 .30 .15 .38 .46 .35 .23 .03 .27 17 .14 .05 .03 .04 .03 .06 .03 .05 .05 to DAY • 3URQUIT-LAM PORT C O Q U I T -L A M C I T Y Y A R D VANCOUVER OAK 53 SIMON F R A S E R U N I V E R -S I T Y BURNABY C A P I T O L H I L L .10 .01 .10 .14 .14 .07 .03 .14 .09 .12 PORT MOODY GULF O I L R E F I N E R Y .09 .13 NEW WEST B R I T I S H C O L U M B I A P E N . BURNABY MOUNTAIN T E R M I N A L A V E R A G E ,09 .10 .03 .10 .07 .02 .09 DAY BURQUIT-LAM . PORT COQUIT-LAM CITY YARD VANCOUVER 1OAK 53 SIMON FRASER UNIVER-SITY BURNABY CAPITOL KIL  PORT MODY GULF OIL REFINERY NEVJ WEST BRITISH COLUM3IA PEN. BURNABY MOUNTAIN TERMINAL •AVERAGE M a y 1 2 .31. .41 .27 .50 .40 .39 .40 .34 3 .02 .01 4 5 .17 .31 .26 .2 3 .27 21 .20 .21 6 .24 .16 .20 .13 1 .14 .15 .10 .15 7 .5 .62 .52 .75 .65 .64 .38 .41 . .56 8 .19 .14 .03 .12 .26 .13 .27 .38 .19 9 ; .01 .01 .02 .08 .01 ' .02 10 • 11 12 13 14 15 .03 16 17 to DAY 3URQUIT-. LAM PORT COQUIT-LAM CITY YARD VANCOUVER OAK 53 SIMON FRASER UNIVER-SITY BURNABY CAPITOL HILL PORT MOODY GULF OIL REFINERY NEW WEST BRITISH COLUMBIA PEN. BURNABY MOUNTAIN TERMINAL •AVERAGE May 18 . 19 .04 .23 .02 .09 .02 .06 .06 20 21 .18 .23 .14 .23 .23 .21 .15 .18 .19 22 .17 .25 .13 .37 .28 .26 .17 .13 .22 23 1.01 .99 .96 1.36 1.26 1.05 1.08 1.28 1.12 24 .02 .01 .01 .01 25 .06 .06 .02 ; 26 , .13 .01 .18 .12 ,03 .07 27 28 • • 2? 30 i 31 • DAY 3URQUIT-LAM June! 18 19 20 21 22 23 24 25 ' 26 27 28 29 3C ,06 .15 .35 PORT COQUIT-LAM CITY YARD .10 ,12 .55 VANCOUVER OAK 53 .04 .02 .15 .11 SIMON FRASER UNIVER-SITY .10 .23 .53 BURNABY CAPITOL HILL PORT MOODY GULF OIL .REFINERY NEW WEST BRITISH COLUMBIA PEN. BURNABY MOUNTAIN TERi-ilNAJb AVERAGE .09 .08 J.0 .03 .08. ,04 .41 .06 .20- .16 29 .18 .42 .46 .61 .39 ' j — DAY BURQUIT-LAM PORT COQUIT-LAM CITY YARD VANCOUVER OAK 53 SIMON FRASER UNIVER-SITY BURNABY CAPITOL HILL PORT MOODY GULF OIL .REFINERY NEW WEST BRITISH COLUMBIA PEN. BURNABY MOUNTAIN TERMINAL AVERAGE June 1 2 .02 .06 .10 .15 .04 3 4 5 .17 .06 •11 .13 .10 .08 .04 .09 6 .74 .72 .62 .90 .77 • .91 £8 .81. .77 7 .25 .28 .26 .37 .24 .30 J.9 .28 .28 -8 .02 ' 9 .01 10 11 .25 .28 .32 .33 .32 .27 .22 .28 .28 12 .49 1.13 .36 1.02. .55 .94 •47. .65 .70 13 .11 .11 .06 .10 .09 .03 .05 .07 ' 14 .01 .02 15 .39 .29 .23 .29 .62 .33 .47 .33 16 .71 .57 .40 .86 .62 .58 .70 .81 .66 17 .33 .37 .01 .40 .33 . .61 .26 .21 .32 APPENDIX B LAND USE Land uses f o r the Brunette R i v e r Drainage Basin were taken from the GVRD l a n d use maps (1971). The f o l l o w i n g coding system i s with r e f e r e n c e to the accom-panying map. A l l lan d uses beginning w i t h the d i g i t 0 were c a t e g o r i z e d r e s i d e n t i a l . A l l l a n d uses b e g i n n i n g with the d i g i t s 1, 2 or 3 were c a t e g o r i z e d i n d u s t r i a l . A l l l a n d uses b e g i n n i n g w i t h the d i g i t s 4, 7 or V were c a t e g o r i z e d open space. A l l l a n d uses b e g i n n i n g w i t h the d i g i t s 5, 6 or 8 were c a t e g o r i z e d commercial and i n s t i -t u t i o n a l . Land Use Code (2 d i g i t ) 0 R e s i d e n t i a l 1. S i n g l e Family 2. Townhouse, Garden Apartment 3. Apartment 4. T r a i l e r Parks 5. Summer Cottages 6. Urban Vacant 7. Duplex and Conversion 9. S t r i p R e s i d e n t i a l 129 1 I n d u s t r i a l M a n u f a c t u r i n g 0. Food and Beverage 5. Tobacco 6. Rubber and P l a s t i c s 7. L e a t h e r 8. T e x t i l e s 9. Undetermined I n d u s t r i a l M a n u f a c t u r i n g 0. G e n e r a l I n d u s t r i a l 3. K n i t t i n g M i l l s 4. C l o t h i n g 5. Wood and Wood P r o d u c t s 6. F u r n i t u r e 7. Paper and A l l i e d 8. P r i n t i n g and P u b l i s h i n g 9. P r i m a r y M e t a l 3 I n d u s t r i a l M a n u f a c t u r i n g 0. M e t a l F a b r i c a t i n g 1. M a c h i n e r y 2. T r a n s p o r t a t i o n Equipment 3. E l e c t r i c a l P r o d u c t s 5. N o n - M e t a l l i c M i n e r a l and P r o d u c t s I n d u s t r y 6. P e t r o l e u m and C o a l 130 7. Chemical and Chemical Products 8. C o n s t r u c t i o n 4 A g r i c u l t u r e , F o r e s t r y and Open Land 0. Vacant, A g r i c u l t u r a l and F o r e s t e d Land 1. Farms and Greenhouses 2. Mink and Chicken Farms 6. F i s h i n g 7. Mining 8. Orchards T r a n s p o r t a t i o n and Communications 0. A r t e r i a l Roads 1. A i r p o r t s 2 . R a i l r o a d s 3. P i p e l i n e s 4. E l e c t r i c a l and Gas D i s t r i b u t i o n 5. Communications - Radio, T.V., Telephone, Telegraph 6 . S h i p p i n g and P o r t F a c i l i t i e s 7. Trucking, Storage and Warehousing 8. Bus Terminals 9. Commercial P a r k i n g Commercial Trade 0. Wholesaling - Machinery, Lumber, Scrapmetal, e t c . 3. R e t a i l i n g 131 4. F i r e 5. P e r s o n a l S e r v i c e s 6. Business S e r v i c e s 7. O f f i c e s 9. Medical R e c r e a t i o n 0. Park Development 1. Parks - Undeveloped 2. Beach Areas 3. S k i i n g Areas 4. D r i v e - i n Theatres 5 . Race Tracks 6. G o l f Courses, D r i v i n g Ranges and P u t t i n g Greens 7. R e c r e a t i o n a l 8. Campgrounds 9 . Marinas and M i s c e l l a n e o u s I n s t i t u t i o n s 0 . Schools 1. H o s p i t a l s 2. Churches 3. Cemetaries 4. M i l i t a r y Establishments 132 5. P e n a l I n s t i t u t i o n s 6. M u n i c i p a l 7. P r o v i n c i a l 8. F e d e r a l 9. U n i v e r s i t y 9 Water B o d i e s 0. S a l t Water B o d i e s 1. T i d a l F l a t s and Marshes 2. Lakes 3. R i v e r s 4. R e s e r v o i r s and Impoundments 5 . Bogs and Swamps 6. Dykes and Dams 133 APPENDIX C WATER QUALITY DATA The data are given f o r 19 parameters a t 12 s i t e s over a 24 week p e r i o d . The f o l l o w i n g codes r e f e r to the data p r o v i d e d . SITE DESCRIPTION 1 S t i l l Creek a t Gilmore Avenue 2 S t i l l Creek a t Douglas Avenue 3 S t i l l Creek a t S p e r l i n g Avenue 4 Deer Lake Creek 5 Eagle Creek 6 Burnaby Lake 7 Lake C i t y Creek 8 Stoney Creek 9 Brunette R i v e r at Cariboo Road 10 Brunette R i v e r a t Brunette S t r e e t 11 Brunette R i v e r at B r a i d S t r e e t 12 Robert Burnaby Creek 135 PARAMETER DESCRIPTION UNITS 1 Temperature °C 2 pH pH u n i t s 3 S p e c i f i c conductance ^umhos x 10 ^ 4 T u r b i d i t y J . T . U . 5 C o l o u r P l - C o 6 D i s s o l v e d Oxygen m g / l 7 B i o c h e m i c a l Oxygen Demand m g / l 8 C h e m i c a l Oxygen Demand m g / l 9 N i t r a t e n i t r o g e n m g / l 10 Ammonia n i t r o g e n m g / l 11 T o t a l K e l d a h l n i t r o g e n m g / l 12 Orthophosphate phosphorus m g / l 13 T o t a l phosphorus m g / l 14 Suspended s o l i d s m g / l 15 D i s s o l v e d s o l i d s m g / l 16 Manganese m g / l 17 Copper m g / l 18 Z i n c m g / l 19 D i s c h a r g e c f s WEEK DESCRIPTION 01 January 13, 19 73 weekly i n t e r v a l s 24 June 27, 1973 136 - 2 CO $ 101 1 5.3 2 7.1 0 3 0.0 102 5.5 7.25 2.00 103 4.8 7.30 2.00 104 5.4 7.25 1.70 10 5 5.9 7. 18 2.00 106 6.5 7.10 1.50 107 5.6 7.10 1.00 108 7.0 7.30 0.90 109 7. 8 7.20 0.34 110 5.9 7.3 0 0.80 111 7.8 7.25 1.00 112 7.5 7.35 0.80 113 12.8 7.20 1.00 114 9.3 7.30 0.90 115 10.0 7.20 0.80 116 9.9 7.20 0.90 117 9.6 7.30 0.90 118 13.0 7.30 0.80 119 14.8 7.20 0.80 120 11.7 7.3 0 0.90 121 14.2 7.45 0.70 122 13.5 7.70 0.60 123 14.2 7.40 0.90 124 15.6 7.35 0.80 201 4.1 7.40 0.0 202 4.9 6.7 0 1.80 203 3.7 7.20 1 .60 204 4.4 6.95 1.50 205 5.0 7.20 2.00 206 6. 1 6.95 1.30 20 7 5.1 7.15 1.00 208 6.5 7.20 0.90 209 7.4 7.30 0.60 210 5.0 7.20 0.80 211 7.2 7.2 5 0.90 212 6.5 7.3 5 0.60 213 10.1 7.3 0 0.90 214 12.0 7.30 0.90 215 11.5 7.05 0.90 216 12.3 7.30 1.00 217 9.5 7.30 0.80 218 17.3 7.40 0.90 219 14.2 7.3 5 0. 80 220 15.5 7.35 0.90 221 15.0 7.30 1.00 222 13.4 7.30 0.50 223 16.2 7.40 0.90 224 19.8 7.25 0.40 301 4.1 7.15 0.0 302 4.7 6.70 1.70 303 3.6 • 7.10 1 .60 4 5 6 7 8 0.0 0. 0.0 6. 4. 6.25 0. 0.0 3. 20. 4.30 20. 11.2 4. 16. 2.90 25. 7.5 4. 4. 9.40 20. 9.4 1. 8. 3.10 20. 0. 0 15. 12. 5.00 25. 0.0 1. 12. 4.7 0 20. 10.1 3. 12. 4.90 20. 11.5 7. 7. 4.00 30. 12.6 33. 10. 3.20 20. 12.2 40. 16. 20.00 35. 11.6 49. 40. 4.7 0 30. 10.6 28. 24. 3.20 20. 12.0 2. 12. 2.30 20. 7.9 24. 12. 3.30 20. 0. 0 2. 52. 4.00 20. 11.4 1. 16. 3.90 30. 10.6 1. 8. 7.00 40. 8.2 2. 16. 4.90 30. 11. 4 3. 8. 36.00 70. 6.6 1 1. 46. 8.20 30. 7.5 1. 4. 3.20 30. 8.8 3. 20. 3.20 30. 0.0 2. 4. 0.0 0. 0.0 10. 16. 8.25 0. 0.0 4. 24. 5.00 60. 10. 7 5. 32. 4.3 0 50. 7.6 6. 36. 5.70 50. 9.6 5. 36. 5.40 45. 0.0 5. 12. 8.90 60. 0.0 2. 20. 5.20 60. 10.2 5. 20. 10.00 55. 11.2 6. 15. 4.60 60. 10.8 6. 26. 5.75 70. 8.4 7. 27. 33.00 70. 11.8 4. 44. 6.10 70. 12.8 6. 40. 6.90 70. 8.8 6. 40. 7.5 0 70. 5.2 5. 22. 21.00 70. 0.0 7. 56. 10.00 70. 8.2 3. 12. 9.40 80. 7.6 3. 24. 8. 10 55. 4.8 12. 44. 8.50 70. 8.4 2. 20. 14.50 80. 5.0 5. 36. 23.00 55. 5.4 2. 16. 9.10 80. 9.6 3. 24. 8.00 70. 0.0 3. 0. 0.0 0. 0.0 6. 14. 6.00 0. 0.0 5. 20. 8.40 70. 10.5 3. 28. 9 10 0.89 0.005 1.30 0.005 1.15 0.135 1.40 0.040 1.03 0.129 1.07 0.110 1.2 8 0.407 1.18 0.225 1.28 0.075 1.17 0. 195 1.05 0. 160 0.8 5 0.026 0.87 0.194 0.65 0.089 0.80 0.036 0.88 0.148 0.98 0.117 0.99 0.086 0.54 0.005 I.10 0.032 0.92 0.086 0.41 0.014 1.40 0.110 1.2 0 0.00 5 0.67 0.005 0.94 0.005 0.82 0.184 1.04 0.029 0.72 0.200 0.76 0.078 0.92 0.400 0.88 0.139 0.92 0.040 0.84 0.280 0.73 0.204 0.50 0.062 0.56 0.150 0.33 0.060 0.46 0.062 0.5 8 0.420 0.49 0.045 0.52 0.098 0.68 0.005 0.44 0.072 0.8 3 0.043 0.2 5 0.032 0.70 0.165 0.46 0.0 0.63 0.010 0.9 3 0.041 0.85 0.084 1 3 7 II 12 , 101 0.350 0.012 102 0.300 0.020 103 0.350 0.014 104 0.300 0.012 105 0.300 0.013 106 0.575 0.026 107 0.600 0.025 108 0.300 0.008 109 0.650 0.013 110 0.400 0.018 111 0.400 0.017 112 0.750 0.032 113 0.540 0.031 114 0.340 0.012 115 0.32 0 0.014 116 0.500 0.031 117 0.320 0.025 118 0.280 0.032 119 0.300 0.019 120 0.260 0.030 121 0.860 0.025 122 0.220 0.029 123 0.330 0.031 124 0.0 0.010 201 0.250 0.006 202 0.275 0.014 203 0.500 0.019 204 0.300 0.015 205 0.475 0.028 206 0.400 0.018 2C7 0.800 0.034 208 0.400 0.020 209 0.480 0.007 210 0.630 0.021 211 0.660 0.071 212 0.700 0.060 213 0.500 0.012 214 0.460 0.024 215 0.450 0.025 216 0.920 0.079 217 0.380 0.023 218 0.480 0.070 219 0.530 0.023 220 0.450 0.060 221 0.650 0.051 222 0.220 0.041 223 0.550 0.056 224 0.0 0.0 301 0.275 0.006 302 0.330 0.015 3 03 0.900 0.022 1 3 14 0.100 36.83 0. 100 0.0 0.100 7.41 0.100 5.96 0.100 8.69 0.100 0.0 0. 100 6.57 0.100 14. 40 0.100 4. 19 0. 100 4.49 0.100 6. 54 0.175 3. 64 0.100 0.0 0.100 0.0 0.100 0.0 0.100 0.0 0.C70 0.0 0.080 0.0 0.050 0.0 0.C50 0.0 0.050 0.0 0.050 0.0 0. 06 0 0.0 0.0 0. 0 0.100 35.03 C.100 0.0 0.100 0.0 0.100 2.56 0. 100 1 8. 64 0. 100 6.38 0.100 3 . 14 0. 100 17. 16 0.100 17.74 0. 100 6.24 0.071 67.49 0.060 8.38 0.012 0.0 0.024 0.0 0.025 0. 0 0. 120 0. 0 0.070 0.0 0.170 0. 0 0.050 0.0 0.C80 0. 0 0. 130 0. 0 0.060 0.0 0.090 0.0 0.0 0.0 0.100 5 8.81 0.100 10. 30 0.100 11. 53 1 3 8 15 16 17 18 19 699.92 .0 .0 .0 48.0 110.02 .0 .0 .0 19.0 166.47 . 209 .015 .03 4 4.0 158.62 . 134 .011 .03 6 10.0 95.44 . 199 . 010 .036 3.0 130.62 .013 .008 .025 11.0 166.02 .179 .008 .027 4.0 176.47 . 043 .008 .026 14.0 124.44 . 02 5 .007 .023 9 5.0 12 5. 58 . 114 . O i l . 024 6.0 57.45 . 197 .009 .03 2 3.0 14 0.76 . 162 .088 .066 18.0 0. 0 . 141 .020 .019 4.0 0.0 . 173 .029 .027 4.0 0.0 . 170 . 018 .03 0 9.0 0.0 .204 .016 . 038 3.0 0.0 . 255 .029 .040 3.0 0.0 . 116 .047 .028 3.0 0.0 . 074 .029 .030 5.0 0. 0 . 137 .035 . 034 3.0 0.0 . 573 . 136 .210 26.0 0.0 . 058 .040 .067 9.0 0.0 . 1 18 .011 .046 3.0 0.0 .098 .030 .043 4.0 108. 64 . 0 .0 .0 78.0 111.31 .0 .0 .0 31.0 152.89 .26 0 .009 .046 6.0 110.70 .169 .012 .043 16.0 61.26 .288 .012 .047 5.0 116. 88 . 066 .010 .04 2 1 8. 0 153.20 . 126 .008 .040 6.0 169.14 . 223 .009 .054 2 3.0 93.15 . 044 .012 .040 155.0 12 8.78 . 194 .013 .09 0 10.0 72. 63 . 284 . 024 . 106 5.0 144.42 .200 .041 .082 29.0 0.0 . 262 .017 .044 6.0 0.0 .238 .044 .041 6,0 0.0 .263 .120 .050 14.0 0.0 . 353 .062 . 187 5.0 0.0 . 218 .024 .077 5.0 0.0 . 210 .025 . 047 5.0 0.0 .280 .028 . 107 8.0 0.0 . 15 3 .022 . 03 7 5.0 0. 0 . 521 .110 . 152 42.0 0.0 . 118 .044 .108 14.0 0.0 . 195 .023 .07 5 5.0 0.0 .218 .048 .083 6.0 500. 03 .0 .0 .0 103.0 146.33 . 0 .0 .0 41.0 161.13 .235 .016 .055 9.0 304 305 306 307 308 309 310 311 312 313 3 14 315 316 317 318 319 320 321 322 323 324 401 402 403 404 405 406 407 40 8 4 09 410 411 412 413 414 415 416 417 418 419 42 0 421 422 423 424 501 502 503 504 505 5C6 I 4.4 5.0 6.4 6.5 6.5 7.5 6.4 9.1 7.3 13.9 12.5 11.5 11.9 11.2 19.7 17.1 16.6 18.1 13.7 18.9 22.8 3.6 3.7 3.6 3.7 4.3 5.4 5.5 6.2 7.5 6.5 9.4 7.8 13.0 12.5 12.2 10.4 12.8 18.1 16.6 14.8 16.8 16.6 18.1 20.9 2.8 4.1 3.5 4.1 4.7 6.2 2 6.90 7.28 7.00 7. 15 6.95 7.15 7.15 7.35 7.3 5 7.30 7.35 6.95 7.2 0 7.1C 7.00 7.3 0 7.3 0 7.40 7.60 7.30 7.3 0 7.3 5 0.0 7.3 0 7. 15 7.58 7.00 7.3 0 6.85 7.05 7.2 0 7. 5 0 7.40 7.5 0 7.50 7.05 7.00 6.80 7.50 7.25 7.30 7.45 7.20 7.5C 7.30 7.3 0 0.0 7.3 5 7.35 7.58 7. 10 1.40 1.80 1.20 0.90 0.80 0.60 0.70 0.90 0.5 0 0.90 0.90 0.80 0.50 0.70 1.00 1.00 0.90 0.90 0.60 0.90 0.75 0.0 1.20 1.40 1.40 1.40 1.40 0.80 0.80 0.7 0 0.70 0.70 0.40 C.70 0.70 0.60 0.85 0.80 C.70 0.80 0.70 0.70 0-70 C.70 0.70 0.0 1.00 1.20 1.00 1.30 1.10 4.5 0 9.10 7.80 6.60 5.40 15.00 15.00 4.50 18.00 7.30 6.30 7.80 10.5 0 18.00 6. IC 5 .10 7,20 7.20 42.00 8.2C 10.00 0.0 16.00 7.40 5.90 5.40 6.20 4.30 7.80 4.20 4.60 2.8 0 16.00 ' 4.50 3.90 1.90 3.10 4.10 3.60 2.90 4.00 31.00 4.00 3.50 3.60 0.0 36.00 3.5 0 3.90 10.00 15.00 65. 65. 70. 70. 70. 60. 65. 80. 70. 80. 70. 70. 50. 70. 80. 60. 80. 70. 70. 90. 85. 0. 0. 30. 3 5. 30. 30. 3 0. 30. 40. 40. 30. 35. 30. 35. 25. 40. 40. 3 5. 40. 40. 60. 50. 50. 50. 0. 0. 25. 30. 20. 30. 7.7 0.0 0. 0 0. 0 11. 2 10.8 10.2 11.2 10.8 8.4 8.6 5.2 0.0 8.2 7.7 6.6 7.7 7.2 9.4 9. 2 0.0 0.0 0.0 12.0 8. 0 0.0 0.0 0.0 10. 8 12. 1 11.8 13.0 11. 5 8. 9 10.4 6. 1 0.0 9.3 6.6 4.6 7.4 5.4 8.0 9.4 0.0 0.0 0.0 8.4 8. 2 0.0 0.0 4. 7. 5. 2. 6. 7. 4. 8. 5. 5. 4. 4. 5. 1. 3. 16. 3. 1. 4. 3. 3, 6. 1. 6. 2. 2. 2. 3. 3. 3. 3. 3. 3. 1. 3. 3. 2. 1. 2. 2. 2. 5. i . 3. 1. 7. 2. 1-3. 1. 3. 8 12. 20. 12. 24. 24. 23. 34. 19. 22. 60. 32. 42. 64. 16. 24. 32. 40. 28. 24. 40. 32. 18. 56. 20. 24. 0. 16. 44. 20. 19. 6. 12. 34. 32. 16. 12. 16. 4. 12. 8. 12. 44. 4. 16. 16. 18. 28. 44. 32. 24. 28. 1.0 2 0.73 0.75 0.84 0.88 0.89 0.65 0.74 0.54 0.61 0.37 0.5 4 0.4 4 0.5 1 0.51 0.30 0.52 0.36 0.36 0.8 8 0.39 0.62 0.8 5 0.86 0.8 8 0.82 0.7 9 0.87 0,7 5 0.66 0.67 0.65 0.43 0.5 2 0.37 0.31 0.25 0.34 0.30 0.2 5 0.28 0.48 0.2 7 0.30 0.29 0.53 0.7C 0.88 0.84 0.96 1.03 I 0 0.034 0.200 0.064 0.330 0.204 0.052 0.228 0.204 0.130 0. 132 0.088 0.066 0.059 0. 132 0.132 0.045 0. 072 0.044 0.060 0. 140 0.060 0.072 0.070 0. 126 0.084 0.005 0.075 0. 178 0.110 0.088 0.050 0.062 0.038 0. 024 0.025 0.010 0.060 0.130 0.038 0. 022 0.030 0.008 0.050 0.075 0.025 0.005 0.005 0.058 0.005 0.005 0.024 139 II 12 13 14 304 0.300 0.012 0.100 0.0 305 0.550 0.032 0.100 28.66 306 0.400 0.023 0.100 0.0 30? 0.600 0. 026 0.100 9.14 3C8 0.450 0.031 0.100 16.00 3C9 C.490 0.005 0.100 33.25 310 0.550 0.021 0.100 11.91 311 0.570 0.106 0.170 47.55 312 0.750 0.023 C.175 23.54 313 0.520 0.030 0.100 0.0 314 C.420 0.035 0.100 0.0 315 0.670 0. 030 0.100 0.0 316 0.660 0.022 0.100 0.0 317 0.580 0.040 0.120 0.0 318 0.520 0. 032 0.120 0.0 319 0.730 0.024 C. C6 C 0.0 320 0.45 0 0.035 0.C70 0.0 321 0.470 0.02 8 C.C70 0.0 322 0.26C 0.06 0 C.08 0 0.0 323 0.530 0.045 0.C80 0.0 324 0.0 0.015 0.0 0.0 401 0.425 0.021 0.100 16.51 402 0.350 0.017 0.100 51.88 403 0.480 0.020 0.100 0.0 404 0.425 0.017 0.100 1.27 405 C.400 0.026 G.100 4. 90 406 0.45C 0.016 0.100 10.95 407 0.500 0.016 0.100 7.33 4C8 0.500 0.010 0.100 12.46 409 0.570 0.005 0.100 4.42 410 0.500 0.006 0.100 5.43 411 0.330 0.010 0.100 9.17 412 0.625 0.008 0. 150 11.44 413 0.300 0.006 C.100 0.0 414 0.300 0.005 0.100 0.0 415 0.32 0 0.005 0.100 0.0 416 0.380 0.005 0.100 0.0 417 0.420 0.008 0.060 0.0 418 0.230 0.005 0.C50 0.0 419 0.260 0.007 G.050 0.0 420 0.320 0.013 G.050 0.0 421 C.400 0.022 0.050 0.0 422 0.34C 0.022 0.050 0.0 423 0.390 0.024 0.050 0.0 424 C O 0.005 0.0 0.0 501 0.250 0.005 0.100 225.36 502 0.625 0.007 0.100 2.10 5C3 C.400 0.011 0.100 17.06 504 0.200 0.005 0.100 0.0 5G5 0.175 0.008 0.100 54.46 5G6 0.250 0.014 0.100 3.74 15 16 17 18 19 151.75 . 15 3 . G14 .044 22.0 62.64 . 272 . 02 0 . 04 2 6.0 113.37 .011 .008 .03 6 24. 0 146.33 . 024 .008 .0 23 9.0 112.53 . 184 .013 .046 30.0 76.29 . 024 .011 .035 204.0 128.10 . 145 . 019 .046 13.0 75.00 .271 .025 .078 6.0 128. 10 . 124 .028 . 07 0 39.0 0.0 .301 .02 8 .06 7 9.0 0.0 .315 .053 .04 5 9.0 0.0 . 291 .065 . 053 19.0 0.0 . 223 .025 .063 6.0 0.0 .209 .037 .08 0 6.0 0.0 .26 9 .014 .03 5 6.0 0.0 .454 .026 .065 11.0 0.0 .210 .026 .039 6.0 0.0 .219 .047 .036 56.0 0.0 .241 .046 . 102 19.0 0.0 .324 .015 .326 6.0 0.0 .220 .042 .400 9.0 105.21 . 0 .0 .0 34.0 95.52 . 0 .0 .0 13.0 65. 54 . 096 .011 .013 3.0 72.71 .094 .007 .014 7.0 93.61 . 090 .006 .017 2.0 80.87 . 005 . 006 .007 8.0 97.43 . 0C8 .006 .006 3.0 117.95 . 014 . 008 .011 10.0 83.01 .014 .008 .008 67.0 81.25 .011 .013 .005 4.0 81. 94 . 054 .042 .022 2.0 131.61 .086 .027 .056 13.0 0.0 .071 .033 .009 3.0 0.0 .096 .023 .010 3.0 0.0 . 081 . 043 .023 6.0 0. 0 . 103 .017 .016 2.0 0.0 . 124 .015 .016 2.0 0.0 . 106 .011 .015 2.0 0.0 .155 .019 .020 4.0 0.0 .138 .041 . 03 0 2.0 0.0 .328 .030 .07 3 18.0 0. 0 . 158 .03 5 .034 6.0 0.0 . 144 .010 . 144 2.0 0.0 . 125 .043 .116 3.0 599.98 .0 .0 .0 19.0 74.84 .0 .0 .0 8.0 81.63 . 108 .006 .013 2.0 95.60 . 075 . 006 .015 4.0 50.51 .129 .006 .017 1.0 98.27 .002 .C06 . 007 4.0 140 1 2 3 4 5 6 7 507 5.5 7.3 0 0.70 4.00 30. 0. 0 1. 508 6.5 6.90 0.60 28.00 40. 11.3 4. 509 7.4 7.15 0.50 22.00 50. 11.6 6. 510 5.4 7.3 0 0.50 23.0 0 40. 12. 8 4. 511 9.0 7.55 0.80 2.80 35. 12.2 2. 512 7.2 7.40 0.40 45.00 50. 13.2 5. 513 11.0 7.60 0.60 4.50 30. 9.2 2. 514 10.5 8.20 0.60 4.10 40. 11.4 3. 515 11.2 7.00 o.eo 2.20 30. 7. 2 2. 516 9.8 6.90 0.70 3.30 40. 0.0 2. 517 9.4 6.70 0.60 36,00 50. 9.8 6. 5 18 14.5 7.5 0 0.80 3.90 40. 8.9 2. 519 13.9 7.40 1.00 2.40 35. 5.4 1. 520 12. 1 7.30 0.6 0 4.70 40. 9.0 2. 521 15.0 7.3 5 0.60 56.00 70. 7.4 6. 52 2 13.0 8.00 0.60 20.0 0 60. 6. 1 3. 523 14.5 7.40 0.70 4.30 50. 10.3 3. 524 16.9 7.30 0.70 3.90 50. 0.0 3. 601 0.0 0.0 0.0 0.0 0. 0.0 0. 602 0.0 0.0 0.0 0.0 0. 0.0 0. 603 0.0 0.0 0.0 0.0 0. 0.0 0. 604 3.5 6.5 0 0.90 16.00 70. 8.4 3. 605 4.6 7.55 1.40 4.2 0 25. 0.0 2. 606 7.4 7. 15 1.40 22.00 55. 0. 0 3. 607 6.4 7.30 0.80 7.90 50. 0.0 3. 60 8 6.5 6.95 0.60 18.00 45. 10. 8 3. 609 9.9 7. 1 5 0.50 19.00 100. 10.4 8. 610 6.4 7,20 0.60 10.00 60. 10.8 3. 611 12.7 7.5 0 0.70 6.40 55. 13.0 3. 612 9.0 7.25 0.70 5.10 70. 10.7 2. 613 15.7 7.50 0.70 6.80 65. 7.7 4. 6 14 15.2 7.40 0.70 4.50 65. 9. 7 9. 615 13.4 7.05 0.70 4.10 60. 6.0 3. 616 15.0 6.85 0.80 4.30 60. 0.0 2. 617 13.3 6.5 5 0.80 6.00 60. 7.9 1. 618 20.6 7.5 0 0.80 3.10 70. 6. 8 3. 619 16.6 7.40 0.80 2.80 80. 5. 1 2. 620 17.2 7.40 0.70 4.50 80. 6.8 42. 621 18.0 7.45 0.70 3.80 80. 5. 2 2. 622 16.4 7.40 0.70 5.10 100. 3. 1 2. 623 18.1 7.45 0.60 9.20 75. 8.8 3. 624 22.1 7.2 0 0.70 4.00 90. 0.0 1. 701 3.8 7.45 0.0 0.0 0. 0.0 3. 702 4.0 0.0 0.70 85.00 0. 0.0 1. 703 3.7 7.4 0 1.00 5.50 5. 8.2 1. 704 4.4 7.35 0.80 5. 80 10. 8.3 1. 70 5 5.8 7.20 0.90 4.60 10. 0. 0 1. 706 6.5 7.15 1.00 9.40 10. 0. G 2. 707 6.2 7.40 0.50 6.40 10. 0.0 2. 708 6.3 7,00 0 . 50 66.00 45. 11.8 5. 709 8.3 7.15 0.5 0 15.00 20. 12.8 3. 8 4. 12. 11. 22. 16. 66. 44. 20. 22. 48. 8. 12. 12. 8. 58. 8. 8. 12. 0. 0. 0. 48. 26. 12. 40. 8. 42. 10. 39. 8. 28. 36. 46. 44. 24. 24. 32. 32. 36. 24. 24. 28. 20. 40. 28. 4. 4. 20. 4. 16. 3. 0.72 0.75 0. 73 0.75 0.8 0 0.32 0.7 8 0.50 0.44 1.68 0.74 1.44 0.67 1.2 5 0.88 0.88 1.0 5 1.85 0.0 0.0 0.0 0.42 0.97 0.7 8 0.62 0.6 5 0.29 0.66 0.23 0.44 0-3 1 0.18 0.22 0.17 0. 19 0.15 0.21 0.19 0.18 0.17 0. 3 2 0.25 0.59 0.5 5 0.8 0 0.88 0.72 0.61 0.76 0.48 0.7 0 10 0.098 0.020 0.020 0.075 0.005 0.023 0.021 0.035 0.015 0.020 0.032 0.052 0.005 0.015 0.010 0.018 0.005 0.005 0.0 0.0 0.0 0.005 0.026 0.055 0.09 5 0.085 0.022 0.061 0.138 0. 112 0.112 0. 117 0.024 0.088 0.191 0.033 0. 164 0.076 0.082 0.098 0.050 0.005 0.006 0.005 0.005 0.005 0.050 0.005 0.005 0.048 0.030 141 II 12 13 14 507 G.300 0,005 0,100 4, 13 508 0.350 0.005 0.100 3.72 509 0.440 0. 005 0. 100 77.76 510 0.490 0.009 0.100 3.38 511 0.250 0.005 0.100 27.28 512 0.750 0.022 G.250 11.20 513 0.220 0.008 0.100 0.0 514 0.280 0.014 C. 100 0.0 515 0.240 0.005 G.100 0.0 516 0.400 0.011 0.100 0.0 517 0.550 0,030 C.14G 0.0 518 0.440 0.080 0.200 0.0 519 0.140 0.005 0.050 0.0 520 0.330 0.012 0.050 0.0 521 0.400 0.043 0.080 0.0 522 0.360 0.026 0.060 0.0 523 0.350 0,011 0.050 0.0 524 C C 0.005 C O C O 601 0.0 0.0 0.0 0.0 6 02 C O 0.0 C O 0.0 603 C O C O C O C O 604 0.475 0.022 0.100 0.0 605 0.300 0.008 0.100 C O 606 0.500 0.033 0.100 0.0 6C7 0.430 0.008 0.100 0.0 608 0.680 0.051 0.230 C O 609 1.370 0.008 C 1 S 0 0.0 610 0.670 0.010 0.100 0.0 611 0.760 C 0 1 1 0.130 0.0 612 C.750 C C 2 9 C15G 0.0 613 0.460 0.018 C 1 0 0 0.0 614 C 7 8 0 0.011 0.100 C O 615 0.560 0.011 0.100 0.0 616 C 5 6 0 0.006 0.100 0.0 617 0.700 0.021 0.120 C O 618 0.340 0.009 0.120 0.0 619 0.520 0.008 C.C50 0.0 620 0.560 0.015 0.C60 0.0 621 0.420 0.024 0.060 0.0 622 0.570 CG36 C. G9C C O 623 0.430 0.024 0.080 0.0 624 0.0 0.005 C O 0.0 701 0.275 0.011 C 1 0 0 1080.49 702 0.225 0.015 0.100 10.37 703 0.35C 0.005 0.100 C O 704 0.125 0.005 C 1 0 0 403.74 705 C 1 0 0 0.006 0.100 102.70 706 0.175 0.007 0.100 0.0 7C7 0.150 0.005 0.100 11.57 7C8 0.480 0.146 C 4 0 C 10.94 709 0.220 0.005 0.100 1404.81 15 16 17 18 19 90.26 .065 .004 .009 2.0 116.27 .025 .006 .015 6.0 86. 14 . 013 .002 .004 3 8.0 81.79 .021 .008 .010 2.0 74.69 . 112 .025 .043 1.0 117.19 . 168 .023 . 14 4 7.0 0,0 . 112 .022 .011 2.0 0. C . 083 .03 8 .016 2.0 0.0 .093 .020 . 017 4.0 0.0 . 106 .006 . 016 1.0 0. 0 . 179 . 021 . 050 1.0 0.0 . 148 .017 .033 1.0 0. G . 178 .015 .030 2.0 0.0 . 137 .029 .022 1.0 C O .507 .114 . 141 10.0 C O . 115 .012 . 044 4.0 0.0 .072 .012 .043 1.0 0.0 . 056 .024 .05 3 2.0 0.0 .0 .0 .0 172.0 0. 0 . 0 .0 .0 68.0 C O . 0 .0 .0 14.0 0.0 . 131 ,012 . 03 1 36.0 0.0 . 138 .006 .024 11.0 0.0 . 02 9 .014 .0 2 8 39.0 0.0 .054 .008 .023 14.0 0. 0 . 081 .008 .023 50.0 0.0 .236 .015 .037 340.0 0. 0 .097 .019 .029 21.0 0.0 .119 .014 .029 11.0 C O . 186 .018 .03 6 64-0 0.0 . 147 .010 .016 14.0 0.0 .200 .070 . 02 1 14.0 0.0 .174 .043 , 026 32.0 0.0 .129 .010 .014 11.0 C O . 182 .010 ,016 11.0 0. 0 . 144 . O i l .017 11.0 0.0 .238 .009 .017 18.0 0.0 . 169 .011 .024 11.0 0.0 .276 .018 .018 93.0 C O .2 07 .021 ,023 32.0 0.0 . 156 .012 .058 1 1-0 0.0 .184 .02 5 .059 14.0 449.98 . 0 .0 .0 20.0 73.01 .0 .0 .0 8.0 51.04 .088 .009 .006 2.0 32. 73 . 041 .008 .006 4.0 33.26 . 0S4 .006 .008 1.0 15.49 .002 .002 .003 4.0 109.48 .066 .006 .005 2.0 58. 14 . 033 .006 .02 2 6.0 9 5. 06 . 007 .005 .004 40.0 142 2 710 6.0 7.35 711 9.3 7. 55 712 7.0 7.45 713 10.2 7.60 714 12.1 7.55 715 13.1 7.15 716 11.0 6.90 717 9.6 6.70 718 15.5 7.40 719 12.8 7.30 720 11.5 7. 3 5 721 15.8 7.50 722 12.5 7.35 723 13.5 7.60 724 16.2 7.45 801 0.0 0.0 802 0.0 0.0 803 0.0 0.0 804 0.0 0.0 805 5.4 7.3 5 806 6.2 7.20 807 5.5 7.3 5 808 6.5 6.95 809 8.3 7.15 810 5.7 7.30 811 8.8 7.3 0 812 7.2 7.40 813 7.9 7.60 814 9.5 7.60 815 10.8 7.15 816 9.6 6.90 817 9.3 6.70 818 14.0 7.45 819 12.8 7.30 820 11.6 7.30 82 1 14.3 7.40 822 13.7 7.3 5 823 13.3 7.3 5 824 16.2 7.20 901 2.8 7.50 902 3.8 0.0 903 3.4 7.20 904 4.4 7.15 905 4.4 7.30 906 6.3 7.05 907 6.8 7.3 0 908 6.7 6.95 909 7.8 7.10 910 5.4 7.25 911 10.1 7.25 912 8.8 7.2 0 3 4 5 0.40 21.00 30. 0.50 2.10 10. 0.40 85.00 50. 0.50 2.50 10. 0.50 3.50 10. 0.50 2.10 20. 0.20 2.90 30. 0.20 35.00 100. 0.80 51.00 30. 0.60 4.90 30. 0.50 25.00 50. 0.40 74.50 60. 0.50 82.00 70. 0.50 3.7 0 20. 0.60 24.00 30. 0.0 0.0 0. 0.0 0.0 0. 0. 0 0.0 0. 0.0 0.0 0. 1.50 3.30 20. 1.10 2.90 20. 0.60 2.70 10. 0.60 42.00 30. 0.60 5.90 30. 0.50 13.00 30. 0.60 3.40 20. 0.40 44.00 30. 0. 50 2.50 10. 0.60 2.60 20. 0.60 1 .90 20. 0.70 1.9 0 20. 0.70 8.00 30. 0.70 2.20 , 30. 0.80 1.90 20. 0.80 2.30 30. 0.5 0 45.00 40. 0.60 22.00 50. 0.60 3.60 3 0. 0.70 2.9 0 30. 0.0 0.0 0. 1.20 24.0 0 0. 1.40 14.00 50. 1.00 24.00 65. 1.40 7.20 50. 1.40 18.00 60. 0.70 8.7 0 50. 0.6 5 21.00 55. 0.70 29.00 60. 0.60 10.50 50. 0.60 5.10 55. 0.70 10.10 80. 6 7 8 11.2 5. 10. 12.8 2. 19. 13.2 2. 8. 8.2 1. 24. 8.5 3. 4. 6.6 1. 12. 0.0 3. 28. 11.2 2. 72. 9.4 2. 4. 6.2 1. 4. 8.6 2. 8. 8. 1 4. 48. 10.3 1. 12. 11.4 2. 8. 0.0 1. 12. 0. 0 0. 0. 0.0 0. 0. 0.0 0. 0. 0.0 0. 0. 0.0 10. 16. 0.0 1. 8. 0.0 3. 12. 12. 0 4. 12. 11.9 5. 4. 12.4 2. 18. 12.8 1. 19. 12.2 1. 8. 9. 8 2. 8. 9.6 4. 24. 7.0 1. 12. 0.0 2. 24. 10.0 1. 8. 9.1 1. 4. 4.7 2. 8. 6.8 3. 4. 7.7 3. 48. 6.4 2. 26. 9.6 2. 16. 0.0 1. 8. 0.0 15. 28. 0.0 3. 54. 7.4 2. 28. 7.6 2. 4. 0.0 1. 24. 0.0 4. 28. 0.0 2. 40. 11.8 5. 40. 10.4 6. 19. 10.2 3. 22. 11.6 5. 12. 11. 1 2. 34. 9 10 0.5 8 0.037 0.63 0.005 0.32 0.024 0.5 9 0.022 0.30 0.005 0.21 0.005 0.10 0.005 0.22 0.198 0.09 0.005 0.05 0.005 0.09 0.020 0.28 0.032 0.33 0.032 0.30 0.005 0.16 0.015 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.83 0.005 0.79 0.005 0.92 0.010 0.72 0.055 0.88 0.010 0.74 0.046 0.68 0.005 0.35 0.005 0.60 0.014 0.45 0.005 0.41 0.005 0.37 0.005 0.38 0.005 0.51 0.005 0.36 0.005 0.58 0.016 0.51 0.008 0.66 0.062 0.57 0.005 0.54 0.005 0.45 0.005 0.69 0.017 0.66 0.032 0.68 0.010 0.78 0.086 0.67 0.005 0.5 5 0.098 0.59 0.083 0.59 0.175 0.64 0.045 0.4 8 0.115 0.40 0.096 143 II 12 13 14 710 0.340 0. 005 0.100 27.39 711 0.160 0.005 0.100 366.09 712 0.500 0.028 0.225 71.41 713 0.100 0.005 0.100 0.0 714 0.100 0.005 0.100 C O 715 0.100 0.005 0.100 0.0 716 0.100 0.005 0. 100 C O 717 1.260 0.018 1.160 0.0 718 0.080 0.030 C 1 2 0 0.0 715 0.070 0.005 0.050 0.0 720 0.160 0.023 C 0 5 0 0.0 721 0.13C 0,027 0.050 0.0 722 0.140 0.072 0.080 0.0 723 0.080 0.004 C 0 5 0 0.0 724 0.0 0.005 C O C O 801 0.0 0.0 0.0 0.0 802 0.0 C O 0.0 0.0 803 0.0 C O 0.0 0.0 804 C O C O C O 0.0 805 0.250 0.006 0. 100 22.42 806 0.250 0.008 0.100 0.0 807 C 2 0 0 0.005 0.100 14.44 808 0.550 0.017 0.240 12.50 809 0.310 0.005 0.100 7.58 810 0.250 0.005 0.100 1.67 811 0.230 0.005 0.100 3 7.14 812 0.800 0.015 0.300 4.22 813 0.120 0.005 0.100 0.0 814 0.100 0,005 0.100 C O 815 0.100 0,005 0.100 0.0 816 0.120 0.005 0.100 0.0 817 0.120 0.009 0.050 C O 818 0.050 0.005 0.050 0.0 819 0.100 0.005 0.05 0 0.0 8 2 0 0.14 0 0 . 0 0 5 0 . 05 0 0 .0 821 0.160 0.015 0.050 C O 822 0.230 0.031 0.030 C O 823 0.140 0.007 0.050 0.0 824 0.0 0.005 C O 0.0 901 0.400 0.008 0.100 59.63 902 0.975 0.013 0.100 20.48 903 0.75 0 0.014 0.150 3.22 904 0.550 0.015 0.100 5.55 905 0.425 0.014 0.100 38. 12 906 0.450 0.031 0.100 3.70 907 0.450 0.010 0.100 13.53 9C8 0.580 0.014 C 1 6 0 12.79 909 0.730 0.020 0.100 17.79 910 0.720 0.009 C 1 0 0 9.28 911 0.480 0.010 0.100 21.09 912 0.750 0.016 0.125 8.24 1 5 16 17 18 19 76. 90 .078 .008 .01 1 12.0 101.09 .094 .044 .017 1.0 89.04 . 190 .051 .054 7.0 0.0 . 151 .042 .010 2.0 C O . 147 .013 .010 2.0 0.0 .134 .072 .018 4.0 0.0 .141 .007 .017 1.0 0.0 .716 .007 . 163 1.0 0.0 .246 .016 .022 1 .0 0,0 .236 .010 .020 2.0 0.0 .324 .023 .030 1.0 0.0 .225 -048 .146 11.0 0.0 .222 .035 .05 5 4.0 0.0 . 12 7 .008 .074 1.0 0.0 .204 . 044 . 071 2.0 0.0 .0 .0 .0 4.0 C O . 0 .0 .0 2.0 103.84 . 0 .0 .0 0.3 96.21 .0 .0 .0 0.8 33.80 .07 7 .006 . 016 0.2 51.65 .005 .004 .00 8 0.9 155. 54 .010 .004 .004 0.3 108.95 .061 .008 .019 1.0 88.04 .003 .008 .01 1 8.0 107.73 .039 .008 . 006 0.5 80.11 .092 .085 .021 0.2 127.79 . 18 2 .043 .06 5 1.0 0.0 . 101 .009 .016 0.3 0. 0 . 114 .026 .012 0.3 C O . 082 .012 . 017 0.7 0.0 .100 .010 .012 0.2 C O . 143 .014 .017 0.2 0.0 . 105 .012 .01 1 0.2 0. 0 . 062 .005 .008 0.4 0.0 .056 .006 .017 0.2 0.0 .350 .038 .074 2.0 0.0 . 148 .027 .05 7 0.7 0.0 . 107 .009 .076 0.2 0. 0 .048 .02 2 .076 0.3 650.02 . 0 .0 .0 310.0 101.70 .0 .0 .0 16 7.0 129.70 . 141 .013 .03 3 113.0 93.84 .108 .016 .041 5.0 51.27 . 143 .006 .028 7.0 57.14 . 018 .010 .031 167.0 137.94 .035 .006 .013 5.0 148.32 . 079 .009 .028 165.0 99. 11 . 120 .022 .030 165.0 84.69 .020 .010 .013 175.0 102.39 . 101 .029 .030 120.0 119.02 . 154 .02 5 .03 5 175.0 144 I 2 3 4 5 6 7 8 9 10 913 11.8 7.5.5 C.70 5.80 60. 8.2 2. 60. 0.33 0.073 914 14.0 7.55 C.70 4.80 60. 9.6 6. 48. 0.14 0.062 915 12.3 7.15 0.70 2.90 50. 7.1 2. 18. 0.12 0.023 916 15.0 6.90 0.80 3.90 55. 0.0 2. 32. 0.15 0.080 917 12.2 6.60 0.80 10.00 70. 8.6. 1. 16. 0.17 0.120 918 18.5 7.40 0.70 3.80 70. 7.4 1. 52. 0.16 0.113 9 19 16.3 7.30 1.00 2.50 75. 4.6 1. 20. 0.17 0.133 920 16.9 7.40 0.70 6.50 75. 6.1 2. 16. 0.16 0.032 921 17.3 7.40 0.70 5.50 70. 5.7 3. 24. 0.16 0.064 922 16.2 7.70 0.70 10.00 80. 6.8 1. 16. 0.23 0.089 923 15.6 7.30 0.60 8.90 80. 8.6 3. 28. 0.2S 0.085 924 19.9 7.30 0.60 4.00 70. 0.0 1. 16. 0.23 0.025 1001 2.8 7.50 0.0 0.0 0. 0.0 4. 4. 0.47 0.005 1002 5.0 0.0 1.30 28.00 0. 0.0 3. 64. 0.67 0.005 1003 3.4 7.25 1.30 13.00 50. 7.4 2. 24. 0.69 0.047 1004 4.6 7.25 1.20 17.50 45. 8.2 1. 20. 0.77 0.013 1005 7.6 7.25 2.CO 4.60 25. 0.0 1. 12. 0.82 0.051 1006 7.5 7.00 1.20 21.00 60. 0.0 3. 12. 0.74 0.046 1007 8.9 7.30 0.70 4.20 30. 0.0 1. 16. 0.61 0.075 1008 6.7 6.90 0.60 24.00 55. 11.8 .3. 12. 0.58 0.075 1CC9 8.0 7.05 0.60 21.00 55. 11.1 8. 42. 0.64 0.115 1010 5.9 7.20 0.60 11.00 55. 11.8 2. 30. 0.66 0.037 1011 9.5 7.30 0.70 5.40 45. 12.4 3. 12. 0.66 0.042 1012 8.5 7.30 0.60 14.50 60. 11.8 2. 42. 0.43 0.085 1013 12.1 7.35 C.70 6.20 60. 9.8 4. 28. 0.37 0.086 1014 13.8 7.50 0.70 5.10 50. 10.1 4. 32. 0.15 0.068 1015 12.8 7.15 0.70 2.30 40. 7.8 1. 18. 0.29 0.036 1016 11.7 6.90 0.80 3.30 50. 0.0 3. 28. 0.30 0.005 1017 12.5 7.40 0.80 9.90 65. 9.8 1. 16. 0.19 0.124 1018 17.8 7.35 0.80 3.30 55. 8.6 2. 16. 0.32 0.015 1019 15.5 7.25 1.00 4.20 60. 6.1 1. 20. 0.28 0.072 1020 14.4 7.35 0.80 4.60 50. 8.2 2. 16. 0.40 0.022 1021 17.2 7.40 0.60 18.00 70. 6.7 2. 40. 0.23 0.045 1022 15.9 7.30 0.60 23.00 80. 8.8 3. 16. 0.30 0.080 1023 16.4 7.40 0.60 12.50 55. 10.3 .3. 20. 0.45 0.020 1024 19.6 7.40 0.70 2.70 60. 0.0 3. 16. 0.93 0.005 1101 2.6 7.70 0.0 0.0 0. 0.0 12. 20. 0.46 0.005 1102 4.2 0.0 1.20 30.00 0. 0.0 2. 80. 0.70 0.005 1103 3.4 7.25 1.30 13.00 55. 7.3 2. 36. 0.68 0.038 1104 4.9 7.05 1.20 18.00 45. 7.9 3. 24. 0.70 0.027 1105 6.4 7.30 2.30 4.90 25. 0.0 3. 20. 0.82 0.072 1106 6.4 7.10 1.20 22.00 45. 0.0 2. 24. 0.79 0.045 1107 7.6 7.25 0.70 4.90 25. 0.0 1. 12. 0.65 0.122 1108 6.7 6.95 0.70 21.00 55. 11.6 5. 56. 0.61 0.140 1109 8.3 7.05 0.60 21.00 60. 10.5 6. 15. 0.66 0.118 1110 5.8 7.25 0.60 14.00 60. 10.0 4. 34. 0.67 0.105 1111 9.4 7.40 0.70 5.10 40. 12.7 3. 3. 0.67 0.050 1112 8.6 7.35 0.60 17.00 60. 12.6 1. 40. 0.43 0.085 1113 12.4 7.35 0.70 6.20 60. 9.2 1. 44. 0.37 0.078 1114 13.8 7.55 0.60 5.50 60. 9.5 5. 56. 0.16 0.062 1115 12.5 7.20 0.70 2.80 50. 8.2 3. 12. 0.30 0.029 145 II 12 13 14 913 0.400 0.012 0.100 0.0 914 0.520 0.009 0.100 0.0 915 0.560 0.007 0.100 0.0 916 0.540 0.006 0.100 0.0 917 0.560 0.010 0.100 0.0 918 0.400 0.016 0.100 0.0 919 0.460 0.006 C.050 0.0 920 0.460 0,011 0.050 0.0 921 0.440 0.018 0.050 0.0 922 0.520 0.030 0.060 0.0 923 0.45C 0.029 0.050 0.0 924 0.0 0.005 0.0 0.0 1001 0.350 0, 007 0.100 73.17 10G2 0.550 0.008 C.100 23.99 1003 0.750 0.014 0.100 0.0 1004 1.200 0.005 C.175 1.63 1005 0.325 0.021 0.100 5C.91 1006 0.900 0.026 0.100 9.97 1007 0.250 0.005 0.100 12.14 1008 0.630 0.030 0.150 3.92 10C9 0.680 0.012 0.100 13. 11 1010 0.600 0.012 0.100 4.84 1011 0.340 0.008 0.100 66.23 1012 0.675 0.015 0.150 7.39 1013 0.410 0.014 0.100 0.0 1014 0.480 0.010 0.100 0.0 1015 0.400 0.006 0.100 0.0 1016 0.32 0 0.005 0.100 0.0 1017 0.530 0.016 0. 100 0.0 1018 0.180 0.008 0,080 0.0 1019 0.360 0.008 C.050 0.0 1020 0.280 0.010 0.050 0.0 1021 0.40C 0.017 0.050 0.0 1022 0.480 G.032 0.C60 0.0 1023 0.280 0.017 0.050 ' 0.0 1024 0.0 0.005 0.0 0.0 1101 0.325 0.006 0.100 179.97 1102 0.580 0.008 0.100 10.73 1103 0.650 0.013 0.100 2.19 1104 0.650 0.012 0.100 9.94 1105 0.475 0.025 0.100 40.06 1106 0.30 0 0.024 0.100 0.49 1107 0.350 0.005 0.100 12.72 1108 0.680 0.024 C.20C 4.62 1109 0.73 0 0.010 0.100 22.81 1110 0.540 0.012 0.100 5,80 1111 0,330 0.008 0.100 91.79 1112 0.675 0.014 0.150 4.24 1113 G.400 0.014 0.10C 0.0 1114 0.500 0.008 0.100 0.0 1115 0.360 G.0C5 0.100 0.0 15 16 17 18 19 0.0 .117 .011 .022 118.0 0.0 . 127 .021 .020 50.0 0.0 .12 5 .028 .019 3.0 0.0 .135 .014 .015 3,0 0.0 . 157 .010 .021 117.0 0.0 . 141 .011 .017 3.0 0.0 .220 .012 .02 0 3.0 0.0 . 203 .028 .052 3.0 0.0 .210 .025 .03 1 17 7.0 0. 0 . 198 .016 .044 330.0 0.0 .17 5 .013 . 162 47.0 0.0 . 158 .028 . 043 36.0 700.00 .0 .0 .0 385.0 17 4.26 .0 .0 .0 207,0 196.61 . 124 .014 .03 0 140.0 66.30 .107 . 015 .03 1 6.0 93.08 . 109 .010 .017 9.0 39.06 .030 .014 .017 207.0 98.34 . 013 .008 .007 6.0 105.21 . 037 .C09 .025 205.0 95.37 .053 .011 .013 205.0 94. 76 . 030 .009 .014 217.0 87.51 .113 .060 .024 149.0 134.43 . 149 .070 .040 217.0 0.0 . 121 .006 .019 147.0 0.0 . 133 .023 .013 63.0 0.0 . 108 . 009 .012 4.0 d.o .099 .013 .020 4.0 0.0 . 146 . 035 . 021 146.0 0.0 • 099 .016 .016 4.0 0.0 .231 .012 .032 4.0 0.0 .084 .010 .020 4.0 0.0 .341 .031 .059 220.0 0.0 .206 . 037 . 03 5 409.0 0.0 .121 .009 .04 2 59.0 0. c .088 .025 . 19 4 45,0 500.03 .0 .0 .0 394.0 108.55 . 0 .0 .0 212.0 176.09 . 117 .011 . 02 9 143.0 89.87 . I l l .017 .03 5 6.0 84.30 .104 .008 .017 9.0 73.62 .03 5 .008 .020 212.0 108.41 . 005 .006 .00 8 6.0 120. 93 . 071 . 009 . 03 1 210.0 102.23 .024 .012 .017 210.0 104.06 . 036 .010 .015 222.0 91.32 .106 .018 .024 152.0 127.26 . 140 .033 .04 2 222.0 0.0 . 115 .013 .023 150.0 0.0 .117 .018 .015 64.0 O.G .096 .021 .024 4.0 146 1 2 3 4 5 6 7 8 9 10 1 116 11.8 6. 90 0.80 3.00 45. 0. 0 4. 16. 0.38 0.053 1117 12.4 7.40 0.80 11.00 60. 9. 2 1. 24. 0.20 0. 118 1118 18.1 7.4 0 0.80 3.10 50. 9.0 2. 12. 0.33 0,052 1119 16.0 7.30 1.20 2.40 60. 6. 1 2. 24. 0.20 0. 130 1120 14.2 7.30 0.80 3.20 55. 8.0 2. 16. 0.40 0.033 1121 17.4 7.45 0.70 14.00 75. 6.6 3. 24. 0.23 0.050 1122 16.1 7.2 5 0.60 33.00 80. 8.6 2. 28. 0.31 0. 081 1123 16.2 7.40 0.70 11.50 50. 9.6 4. 12. 0.5 3 0.040 1124 19.2 7.35 0.70 2.70 60. 0.0 1. 12. 0.45 0.015 1201 4.6 7.10 0.0 0.0 0. 0.0 2 5. 30. 0.7 3 0.005 1202 5.5 0.0 1.20 11.00 0. 0.0 1. 37. 0.84 0.005 1203 5.0 7.35 1.30 4.60 10. 8. 2 1. 16. 0,89 0.005 1204 5.5 7.10 1.30 4.10 20. 8.3 1. 28. 0.99 0.006 12 05 6.4 7.20 1.30 6.7 0 10. 0. 0 1. 8. 0.91 0.018 1206 7.4 7.20 1.20 6.80 25. 0.0 1. 4. 0.9 8 0. 028 120 7 8.2 7.3 0 0.70 4.50 10. 0.0 1. 8. 0.96 0.100 1208 7.2 6.95 0.70 22.00 20. 11.8 2. 4. 0.75 0. 020 1209 8.4 7. 10 0.60 6.40 30. 10.5 6. 3. 0.91 0.010 1210 6.0 7.25 0.7 0 15.00 30. 12. 6 1. 14. 0.7 6 0.093 1211 9.3 7.40 0.70 2.30 20. 11.8 2. 8. 0.89 0.051 1212 7.5 7.45 0.60 16.00 30. 11.7 1. 24. 0.63 0.005 1213 10.9 7.3 5 0.80 3. 10 20. 9. 0 3. 32. 0.92 0.010 1214 10.2 7.55 C.70 3.10 20. 9.7 31. 12. 0.8 7 0.013 1215 10.2 7.2 0 0.70 1.9 0 20. 6.7 1. 8. 0.84 0.021 1216 10.1 6.95 0.80 2.60 25. 0.0 1. 3. 0.8 8 0.005 1217 10.0 7.15 0.80 4.80 30. 10.8 1. 8. 0.73 0.050 1218 14.6 7.3 0 0.70 2.60 30. 9.4 1. 8. 0.84 0.012 1219 11.1 7.30 0.80 2.30 20. 9.2 1. 4. 0.78 0.039 1220 11.1 7.3 0 0.80 1.90 25. 9.3 2. 8. 0.81 0.005 1221 13.2 7.45 0.70 55.00 50. 8.8 4. 64, 0.91 0.008 1222 14.2 7.30 1.00 5.70 20. 8.5 1. 4. 0.9 8 0.034 1223 14.6 7.30 0.90 3.00 25. 8.8 2. 12. 1.03 0.025 1224 16.4 7.30 0.80 3.70 30. 0.0 1. 4. 0.97 0.040 147 II 12 13 14 1116 C.38C 0 . 005 0.100 0 .0 1117 0.530 0.007 0.100 0.0 1118 0.240 0.007 0.100 0.0 1119 0.580 0.012 0.050 0.0 1120 0.260 0.007 0.050 0.0 1121 0.35 C 0.016 0.05 0 0.0 1122 0.460 0.037 0.080 0.0 1123 0.280 0.014 0.050 0.0 1124 0.0 0.005 0.0 0.0 1201 0.300 0.009 0.100 2132.43 1202 0.350 0.015 0.100 16.78 1203 0.650 0.036 0.150 5.23 1204 0.15 0 0.033 0.100 6.31 1205 0.175 0.049 0.100 29.61 12C6 0.300 0.045 0.100 20.30 1207 C.30C 0.071 0.100 4.93 1208 0.350 0.025 0.180 7.84 1209 0.430 0. 008 0.100 7.80 1210 0.240 0.028 0.140 6.94 1211 0.190 0.047 0. 140 13.06 1212 0.350 0.033 0.175 13.48 1213 0.100 0.051 0.100 0.0 1214 0. 100 0.060 0.100 0.0 1215 0.100 0.058 0.100 0.0 1216 0.100 0.058 0.100 0.0 1217 0.260 0.053 0.140 0.0 1218 0.050 0.057 0.140 0.0 1219 0.130 0.058 0.070 0.0 1220 0.050 0.044 0.050 0.0 1221 0.180 0.036 0.060 0.0 1222 0.28C 0.094 0.120 0.0 1223 0.220 0.076 0.100 0.0 1224 0.0 0.025 0.0 0.0 15 16 17 18 19 0.0 .090 .015 .02 5 4.0 0.0 . 179 .011 .019 149.0 0. 0 . 092 .014 .015 4.0 0.0 . 226 .014 .02 8 4.0 0.0 .135 ,023 .02 8 4.0 0.0 . 383 .030 .048 225.0 0.0 .219 • 056 .04 2 419.0 0.0 . 120 .011 -041 60.0 0.0 . 108 .053 .116 46. 0 650.02 . 0 .0 .0 2.0 81.48 . 0 . 0 . 0 0.9 101.01 .076 -008 .007 0.2 93.77 . 068 .006 .004 0.5 104.06 . 068 .006 .004 0.1 72.78 . 024 .004 ,003 0.6 112.69 . 006 . 002 .003 0.2 105.74 .014 .006 . 005 0.7 108.80 .053 .010 .006 5.0 109.86 .053 .009 .003 0.3 146, 56 . 069 .045 ,015 0.1 138.78 . 102 .023 .020 0.9 0,0 .068 .006 .010 0.2 0.0 .067 .011 .006 0.2 0.0 .061 .018 .015 0.5 0.0 .057 .006 .008 0.1 0. 0 . 075 . 009 .007 0.1 0.0 . 063 .008 .00 9 0.1 0.0 . 078 .008 .007 0-2 0.0 .078 .023 .013 0. 1 0. 0 . 862 .06 7 .092 1.0 0.0 . 090 .010 .036 0.5 0.0 .081 .008 .303 0.1 0.0 . 062 .022 .033 0.2 148 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0094406/manifest

Comment

Related Items