UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Two dairy waste handling systems : a comparison of nitrogen balances 1978

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1978_A6_7 H64.pdf
UBC_1978_A6_7 H64.pdf [ 3.29MB ]
Metadata
JSON: 1.0094390.json
JSON-LD: 1.0094390+ld.json
RDF/XML (Pretty): 1.0094390.xml
RDF/JSON: 1.0094390+rdf.json
Turtle: 1.0094390+rdf-turtle.txt
N-Triples: 1.0094390+rdf-ntriples.txt
Citation
1.0094390.ris

Full Text

TWO DAIRY WASTE HANDLING SYSTEMS: A COMPARISON OF NITROGEN BALANCES BY NIELS ERIK HOLBEK B. Sc . AG., U N I V E R S I T Y OF B R I T I S H COLUMBIA , 1973 A T H E S I S SUBMITTED IN P A R T I A L F U L F I L L M E N T OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF S C I E N C E IN THE FACULTY OF GRADUATE ST U D I E S DEPARTMENT OF AGRICULTURAL MECHANICS WE ACCEPT THIS THESIS AS CONFORMING To THE REQUIRED STANDARD THE U N I V E R S I T Y OF B R I T I S H COLUMBIA MARCH 1978 ( £ ) N I E L S E R I K HOLBEK , 1978 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r ag ree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . It i s u n d e r s t o o d that c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . N i e l s H o l b e k Department o f A g r i c u l t u r a l M e c h a n i c s The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5 Date A p r i l 19 . , 19 7 8 . A b s t r a c t Two d a i r y farms on Vancouver I s l a n d , B.C., were s t u d i e d t o ev a l u a t e n i t r o g e n behavior under d i f f e r e n t h a n d l i n g and storage c o n d i t i o n s . The f i r s t farm (U.B.C.) spreads s l u r r y c o l l e c t e d d a i l y on a year round b a s i s , w h i l e ' t h e second (B.M.) s t o r e s i t s s l u r r y i n a concre t e p i t to l a n d dispose under f a v o u r a b l e c o n d i t i o n s . Feed a n a l y s i s , s l u r r y sampling, p i t p r o f i l e s and s o i l p r o - f i l e s were i n c l u d e d i n the study. R e s u l t s showed t h a t the n i t r o g e n content of the manure can be reasonably estimated from e i t h e r feed n i t r o g e n or milk p r o d u c t i o n . Losses of n i t r o g e n d u r i n g c o l l e c t i o n and storage i n these systems were minimal. Approved: Dr. N Ross B u l l e y ( i i ) TABLE OF CONTENTS PAGE A b s t r a c t i i Table of contents i i i L i s t o f t a b l e s v L i s t o f f i g u r e s v i i Acknowledgements v i i i I n t r o d u c t i o n 1 L i t e r a t u r e Review 3 Waste Management : General 3 Waste Management : N i t r o g e n Behaviour 6 M a t e r i a l s and Methods 12 The Farms 12 Experimental Design and Sampling Procedures 14 Feed N i t r o g e n 14 M i l k N i t r o g e n 14 Manure N i t r o g e n 15 S o i l N i t r o g e n 17 Crop N i t r o g e n 19 A n a l y t i c a l Techniques 20 Re s u l t s and D i s c u s s i o n 21 N i t r o g e n i n Manure Based on Feed 22 N i t r o g e n i n Manure Based on M i l k 29 N i t r o g e n Losses i n Storage 32 Ni t r o g e n Losses During Spreading 36 Ni t r o g e n Recovery 39 N i t r o g e n Movement A f t e r Sreading: B.M. 39 ( i i i ) TABLE OF CONTENTS continued: PAGE Re s u l t s and D i s c u s s i o n continued 21 Ni t r o g e n Movement A f t e r Spreading: U.B.C. 50 Summary and Conclus i o n s 6 3 L i t e r a t u r e C i t e d 66 Appendix A 71 Appendix B 72 Appendix C 75 Appendix D 76 Appendix E 77 (iv) LIST OF TABLES TABLE I Average D a i l y Feed Consumption and M i l k P r o d u c t i o n Per Cow a t Beaver Meadows, T r i a l 1 II Average D a i l y Feed Consumption and M i l k P r o d u c t i o n Per Cow a t Beaver Meadows, T r i a l 2 I I I Average D a i l y Feed Consumption and M i l k P r o d u c t i o n Per Cow a t U.B.C. Farm. IV Manure N i t r o g e n Based on Feed N i t r o g e n V N i t r o g e n Content of Fresh Manure VI Average P r o t e i n Content of M i l k VII Manure N i t r o g e n Based on M i l k P r o d u c t i o n V I I I C o n c e n t r a t i o n o f NH 3 - N, TKN and Moisture Content a f t e r Four Months P i t Storage a t Beaver Meadows, T r i a l 1. IX Beaver Meadows 2, P i t Study 19 77, TKN ppm X Beaver Meadows 2, P i t Study 1977, NH^-N ppm XI Beaver Meadows 2, P i t Study 1977, pH XII Beaver Meadows 2, P i t Study 1977, % Moisture Content XIII G r a s s - C l o v e r Y i e l d and N i t r o g e n Recovery from P l o t s R e c e i v i n g L i g h t and Heavy Manure A p p l i - c a t i o n s . Beaver Meadows I . (v) XIV G r a s s - C l o v e r Y i e l d s and N i t r o g e n Recovery from P l o t s R e c e i v i n g L i g h t and Heavy Manure A p p l i c a t i o n s During the Winter. Oyster R i v e r . ( v i ) LIST OF FIGURES FIGURE PAGE 1. Beaver Meadows Farm Building Layout 13 2. Manure P i t Sampler 16 3. S o i l Plot Design for the Land Application 18 of Dairy Wastes 4. Beaver Meadows T r i a l 1 Ammonia Nitrogen 43 P r o f i l e s 5. Beaver Meadows T r i a l 1 Nitrate-Nitrogen 44 P r o f i l e s 6. Beaver Meadows T r i a l 1 TKN P r o f i l e s 46 7. Beaver Meadows T r i a l 1 TKN Composite 47 8. Beaver Meadows T r i a l 2 Ammonia-Nitrogen 48 P r o f i l e s 9. Beaver Meadows T r i a l 2 Nitrate Nitrogen 4 9 P r o f i l e s 10. Beaver Meadows T r i a l 2 TKN P r o f i l e s 51 11. U.B.C. Ammonia Nitrogen P r o f i l e s November 52 Series 12. U.B.C. Ammonia Nitrogen P r o f i l e s January 53 Series 13. U.B.C. Ammonia Nitrogen P r o f i l e s March 54 Series 14. U.B.C. Nitrate Nitrogen November Series 56 15. U.B.C. Nitrate Nitrogen January Series 57 16. U.B.C. Nitrate Nitrogen March Series 58 17. U.B.C. TKN P r o f i l e s November Series 59 18. U.B.C. TKN P r o f i l e s January Series 60 19. U.B.C. TKN P r o f i l e s March Series 61 20. U.B.C. TKN P r o f i l e Composite 62 (vii) Acknowledgements S p e c i a l thanks to Dr. N. Ross B u l l e y f o r h i s guidance and support, t o Dr. Mike Miko f o r h i s per-' s i s t a n c e with the l a r g e numbers of analyses i n the l a b o r a t o r y , to Mr. Leo Kansky and Mr. Ed Smith f o r a l l o w i n g me to use t h e i r f a c i l i t i e s , to B.C.M.A. f o r funding and l a s t but not l e a s t to my f r i e n d s who helped me with sampling and moral support. Thank you. N i e l s Holbek ( v i i i ) Introduction Agriculture i n B r i t i s h Columbia, long immune from p o l l u t i o n controls i s facing increasing pressures to deal more acceptably with farm by-products. Measures to minimize p o l l u t i o n p o t e n t i a l and maximize waste u t i l i z a t i o n e f f i c i e n c y are required. In B r i t i s h Columbia, "certain plant and animal wastes may be applied to the s o i l as organic f e r t i l i z e r to promote crop production according to t r a d i t i o n a l farming practice. Disposal by t h i s method may be exempt under the regulations persuant to the P o l l u t i o n Control Act 1967" (B.C. P o l l u t i o n Control Act 1967). This clause, e s s e n t i a l l y , permits farmers to dispose of t h e i r wastes on t h e i r own recognizance. This system was not e n t i r e l y s a t i s f a c t o r y and therefore required the formation of an agency responsible to deal with complaints a r i s i n g against farmers. In order to respond to complaints and at the same time avoid cumbersome a n t i - p o l l u t i o n regulations, which would have to be based on l i m i t e d information, a system of Producer Environmental Committees has been established under the B r i t i s h Columbia Environmental Control Program (Barber, 1976). This program i s structured i n such a manner as to allow producers themselves to respond to complaints without the need for government interference. The B r i t i s h Columbia Ministry of Agriculture Engineering Branch i s available i n an advisory capacity and should the need arise may involve the P o l l u t i o n Control Branch at a le g a l l e v e l . This program provides a control over serious i n f r a c t i o n s but establishes l i t t l e i n the way of quantitative guidelines for producers. The." single most s i g n i f i c a n t factor i n the u t i l i z a t i o n and disposal of farm manures i s nitrogen. The significance 1 i s based on the f a c t t h a t n i t r o g e n i n v a r i o u s m o l e c u l a r forms i s r e a d i l y l o s t i n h a n d l i n g , storage, and d i s p o s a l . The r e a d i l y l o s t forms of n i t r o g e n may be c h e m i c a l l y or b i o l o g i c a l l y bound but i f they are found i n s u f f i c i e n t q u a n t i t i e s they may a l s o c o n s t i t u t e a p o l l u t i o n p o t e n t i a l . The Canada Animal Waste Management Guide (CD.A., 1974) d i s c u s s e s n i t r o g e n as a b a s i s f o r manure a p p l i c a t i o n r a t e s , but does not attempt to c a r r y out a n i t r o g e n balance f o r a farm, or e s t a b l i s h recommendations f o r l a n d l o a d i n g r a t e s . Required i s a r e g i o n a l formula f o r the on-farm d e t e r - mination o f animal wasted d i s p o s a l r a t e s . In order to produce u. such a formula the n i t r o g e n behaviour ..under d i f f e r i n g con- d i t i o n s o f s p e c i e s and breed, d i e t , c l i m a t e , h a n d l i n g of wastes and s o i l type i s r e q u i r e d . An a n a l y s i s of the n i t r o g e n content of manure i s r e q u i r e d to e s t a b l i s h l a n d l o a d i n g r a t e s . These analyses, however, are expensive and time consuming. I f manure n i t r o g e n c o u l d be c a l c u l a t e d from some oth e r i n p u t or output, recommendations f o r l a n d spreading r a t e s c o u l d be s i m p l i f i e d . The o b j e c t i v e o f t h i s paper i s to examine the movement of n i t r o g e n on two Vancouver I s l a n d d a i r y farms i n order to p r o v i d e some design c r i t e r i a towards es t a b l i s h m e n t o f B r i t i s h Columbia waste management g u i d e l i n e s . 2 L i t e r a t u r e Review Waste Management: General There i s o n l y one w e l l c i r c u l a t e d document on waste d i s p o s a l g u i d e l i n e s f o r farmers i n B.C. The Environmental G u i d e l i n e s f o r D a i r y Producers p r o v i d e s a good d i s c u s s i o n on d a i r y s t r u c t u r e s and v a r i o u s manure storage systems (B.C.M.A., 1975). However, the d i s c u s s i o n on the l a n d d i s p o s a l of d a i r y manure i s l e f t to a s i n g l e page with the key i n f o r m a t i o n p r o v i d e d i n the f o l l o w i n g statement - "Where p r a c t i c a l , d a i r y manure should be a p p l i e d t o the f i e l d s on a s u f f i c i e n t number o f acres so t h a t n u t r i e n t s can be r e c y c l e d through crops without the accumulation of s a l t s or n u t r i e n t s to l e v e l s t h a t w i l l p o l l u t e s u r f a c e o r groundwater s u p p l i e s . " S i m i l a r l y , the Canada Animal Waste Management Guide (1974), although more d e t a i l e d , summarizes t h e i r s e c t i o n on the U t i l i z a t i o n o f Manure f o r Crop p r o d u c t i o n by s u g g e s t i n g t h a t farmers "plan t h e i r manure u t i l i z a t i o n system a c c o r d i n g to p r o v i n c i a l p r a c t i c e . " In an unpublished B r i t i s h Columbia Animal Waste • Management Guide ( D r a f t 4) y i e l d s and n i t r o g e n requirements f o r v a r i o u s crops are t a b l e d with the assumption t h a t these are a f i r s t guide t o determining the r a t e of f i e l d a p p l i c a t i o n s (B.C.M.A., 1971). However, the only o t h e r data s u p p l i e d i s the f a c t t h a t one 545 kg. (1200 lh.) d a i r y cow produces 64 kg. (140 lb.) of n i t r o g e n per year and t h a t 50% of the n i t r o g e n i n the manure i s a v a i l a b l e i n the f i r s t year of a p p l i c a t i o n . Needless to say t h i s i s a naive b a s i s f o r l a n d a p p l i c a t i o n r a t e g u i d e l i n e s and t h i s i s perhaps why the document was never p u b l i s h e d . N e v e r t h e l e s s , w i t h the i n f o r - mation t h a t i s a v a i l a b l e on farm n i t r o g e n balances i t i s not unreasonable t h a t these f i g u r e s were used. A more d e t a i l e d approach has been c a r r i e d out i n the 3 P a c i f i c Northwest U n i t e d S t a t e s . Turner (1975) has prepared a s e t of r a t i o n a l equations f o r the P a c i f i c Northwest w i t h r e l a t e d i n p u t s i n order to permit the d e t e r m i n a t i o n of the q u a n t i t y of n i t r o g e n to be a p p l i e d to l a n d to o p t i m i z e crop y i e l d s . The f o l l o w i n g f a c t o r s are c o n s i d e r e d i n the formula: t o t a l n i t r o g e n e x c r e t e d i n f r e s h manure, n i t r o g e n remaining a f t e r a c c o u n t i n g f o r storage, treatment and h a n d l i n g l o s s e s , a v a i l a b i l i t y c o e f f i c i e n t s f o r f i v e y e a r s , d e n i t r i f i c a t i o n c o e f f i c i e n t s based:'on s o i l drainage and the n i t r o g e n removed by the h a r v e s t e d crop as i n f l u e n c e d by time and r a t e of a p p l i e d n i t r o g e n . The formula developed and the c o e f f i c i e n t s p resented r e q u i r e f u r t h e r t e s t i n g but there i s no doubt t h a t t h i s type o f on-the-farm d e t e r m i n a t i o n i s what farmers c u r r e n t l y r e q u i r e . Turner (1975) was concerned o n l y with the e f f i c i e n t use of manure f o r crop u t i l i z a t i o n . In more and more o p e r a t i o n s maximum l o a d i n g r a t e s on l i m i t e d areas are of concern. In a study on h i g h r a t e l a n d spreading of f r e s h d a i r y c a t t l e manure i n GeQgejia, U.S.A., Sund e t a l . (1975) found t h a t a p p l i c a t i o n s of 45 t/ha (dry weight b a s i s ) i n c o r p o r a t e d i n t o the s o i l produced forage o f good q u a l i t y w h i l e even h i g h e r y i e l d s were o b t a i n e d a t r a t e s of 90 t/ha (dry weight b a s i s ) . The h i g h e r r a t e of a p p l i c a t i o n produced forage with n i t r a t e l e v e l s above 2% and i t was f e l t t h a t t h i s feed c o u l d be d e t r i m e n t a l to the h e a l t h o f ruminants. In another study on the maximum r a t e s of a p p l i c a t i o n o f f r e s h d a i r y manure i n Minnesota, U.S.A., R a n d a l l e t a l . (1975) found t h a t a p p l i c a t i o n r a t e s o f 400 t/ha (dry weight b a s i s ) c o u l d be a p p l i e d and i n c o r p o r a t e d i n t o the s o i l d u r i n g the summer season. Corn was produced on the s o i l i n the f o l l o w i n g year, with l i t t l e s a c r i f i c e i n y i e l d . Mobile elements accum- u l a t e d i n the t i l l e d l a y e r and were expected to move downward i n the p r o f i l e . Fodder n i t r a t e l e v e l s were l e s s than 0.3% 4 which i s below the maximum a c c e p t a b l e l e v e l o f 0.5% r e - commended by Maynard and L o o s l i (1969). In a B r i t i s h Columbia study by Bomke and L a v k u l i c h (1975) heavy a p p l i c a t i o n s o f p o u l t r y manure were a p p l i e d to an Ab b o t s f o r d loam. S o i l n i t r a t e l e v e l s reached 335 ppm i n the 45-60 cm depth i n t e r v a l . V a r i a t i o n i n s o i l types, r a i n f a l l and the r e s u l t i n g data accumulated make i t apparent t h a t much work i s r e q u i r e d to e s t a b l i s h maximum p e r m i s s i b l e l o a d i n g r a t e s f o r B r i t i s h Columbia. Although l i m i t e d i n f o r m a t i o n i s a v a i l a b l e on the waste management g u i d e l i n e s i n B r i t i s h Columbia and farm n i t r o g e n balances the same can not be s a i d f o r the wealth o f i n f o r m a t i o n on the behaviour o f d i f f e r e n t forms o f n i t r o g e n i n the n i t r o g e n c y c l e . 5 Waste Management: N i t r o g e n Behaviour Many volumes have been w r i t t e n about the behaviour of n i t r o g e n i n farm and waste management. A complete review of the m a t e r i a l i s beyond the scope of t h i s t h e s i s . Review w i l l t h e r e f o r e be p r i m a r i l y concerned wi t h c u r r e n t i n f o r m a t i o n on the e f f e c t s and behaviour of i n p u t n i t r o g e n , product n i t r o g e n , and by-product n i t r o g e n . T h e i r behaviour i n storage and h a n d l i n g and f i e l d l o s s e s as they r e l a t e to t h i s study w i l l a l s o be examined. As w i t h almost anything there i s a p r o p o r t i o n a l i t y between i n p u t s and outputs. A farmer a n t i c i p a t e s a product which w i l l be r e l a t e d i n q u a l i t y and/or q u a n t i t y to the i n p u t s he i s p r o v i d i n g . N i t r o g e n , comprising approximately 16% of p r o t e i n w e i g h t i s a c r i t i c a l f a c t o r i n l i v e s t o c k feed i n p u t s . A l a c t a t i n g d a i r y cow has a p r o t e i n demand i n p r o p o r t i o n to the volume and weight of her p r o d u c t s . A c c o r d i n g to the N a t i o n a l Academy of Science (19 71) a l a c t a t i n g d a i r y cow weighing 600 kg., and producing 10 kg o f 3.0% f a t milk/day r e q u i r e s 229 g. of n i t r o g e n per day while the same cow producing 30 kg , o f 3.0% f a t milk/day r e q u i r e s 453 g. o f n i t r o g e n per day. F i s h e r (19 74) conducted a study on the i n f l u e n c e o f a f e e d i n g system, d i g e s t i b i l i t y o f the r a t i o n and p r o p o r t i o n on concentrate consumed on the q u a n t i t y and q u a l i t y of e x c r e t a v o i d e d by l a c t a t i n g cows. T h i s r e s u l t shows t h a t faeces y i e l d f l u c t u a t e d with r a t i o n dry matter d i g e s t i b i l i t y . While there appeared to be a d i r e c t r e l a t i o n s h i p between f e c a l n i t r o g e n p e r c e n t and d i g e s t i b l e dry matter t h e r e appeared t o be an i n v e r s e r e l a t i o n s h i p between d i g e s t i b l e dry matter and n i t r o g e n i n the u r i n e . 6 I t i s presumably: because of the r e s u l t s o b t a i n e d by F i s h e r (19 74) t h a t there appears to be c o n s i d e r a b l e f l u c t u a t i o n s o f manure c r i t e r i a presented i n the l i t e r a t u r e . The f r e s h waste c h a r a c t e r i s t i c s most commonly of concern i n d a i r y waste management are the volume or weight e x c r e t e d , moisture content and t o t a l n i t r o g e n content. The f o l l o w i n g data i l l u s t r a t e s some of the v a l u e s and u n i t s c i t e d i n the l i t e r a t u r e . The value and u n i t s f o r these c r i t e r i a vary c o n s i d e r a b l y . Day and Harmon (1975) determined t h a t the average volume of waste e x c r e t e d per cow per day amounted to 40 kg (wet weight b a s i s ) . They s t a t e d t h a t 9% of the e x c r e t a was s o l i d s and 4% of the s o l i d s was n i t r o g e n . The CD.A. (1974) expressed the d a i l y q u a n t i t y of e x c r e t a per cow as 0.38m3 (wet weight b a s i s ) of which 13-15% was K j e l d a h l n i t r o g e n . F o l e y e t a l . (1973) concluded t h a t 8% of body weight (wet weight) was e x c r e t e d per day and t h a t %% of t h i s c o u l d be c o n s i d e r e d K j e l d a h l n i t r o g e n . The l o s s of n i t r o g e n from d a i r y manure begins as soon as i t i s v o i d e d . The degree of l o s s and the r a t e s of l o s s e s are f u n c t i o n s of storage, h a n d l i n g and d i s p o s a l techniques employed. In a study on manure gases and a i r c u r r e n t s i n l i v e s t o c k housing, Skarp (1975) found some c a t t l e houses had ammonia c o n c e n t r a t i o n s i n the order o f 20-30ppm. However, no i n d i c a t i o n s of the r a t e of gaseous ammonia l o s s was g i v e n . Since gaseous l o s s e s present mostly odour problems r e s e a r c h e r s have had l i t t l e i n c e n t i v e to determine the t o t a l gaseous l o s s e s from manure. T h i s a p p l i e s t o f r e s h manure l y i n g on a c o n c r e t e s u r f a c e as w e l l as manure i n storage f a c i l i t i e s and l o s s d u r i n g d i s p o s a l . 7 In a study by Lauer e t a l . (1976) the ammonia v o l - a t i l i z a t i o n from d a i r y manure spread on the s o i l s u r f a c e was s t u d i e d . A p p l i c a t i o n r a t e s ranged from 8-45 t/ha (dry weight b a s i s ) . The group found t h a t i n a time span o f 5-25 days 61-99% o f the t o t a l ammonia n i t r o g e n was l o s t . Q u a n t i t i e s of n i t r o g e n v o l a t i l i z e d ammonia ranged from 17 t o 316 kg N/ha. A f t e r the i n i t i a l l o s s e s the r a t e o f v o l a t i l i z a t i o n slowed. The lower r a t e s o f a p p l i c a t i o n d r i e d more r a p i d l y because they were t h i n n e r r e s u l t i n g i n an i n c r e a s e d r a t e o f ammonia l o s s from the manure. A wealth o f i n f o r m a t i o n i s a v a i l a b l e r e g a r d i n g s u r f a c e r u n o f f l o s s e s as w e l l as n i t r a t e l e a c h i n g l o s s e s . When manure i s s t o r e d o r f r e s h manure i s a p p l i e d t o l a n d i t s n i t r o g e n c o n s t i t u e n t s c o n s i s t p r i m a r i l y o f o r g a n i c n i t r o g e n and ammonia. Organic n i t r o g e n i s i n time m i c r o b a l l y con- v e r t e d t o ammonia, ammonification. The f a t e o f ammonia when l a n d spreading i s f o u r f o l d . On a hot day, h i g h r a t e s o f v o l a t i l i z a t i o n are l i k e l y t o occur from s u r f a c e a p p l i e d manures. T h i s l o s s can be reduced by "ploughing i n " the manure or spreading d u r i n g p e r i o d s o f low temperatures. I f ammonia f i n d s i t s way i n t o the s o i l p r o f i l e i t may be absorbed by micro-organisms as a n u t r i e n t source o r o x i d i z e d by n i t r i f y i n g organisms r e s u l t i n g i n the formation o f n i t r i t e and n i t r a t e molecules. Ammonium may become . f i x e d by c l a y p a r t i c l e s . N i t r a t e i s the s i n g u l a r l y most important molecule i n waste management s t u d i e s . The formation o f n i t r a t e and i t s behaviour have been thoroughly documented^ The reason f o r t h i s concern r e s t s w i t h i t s p o t e n t i a l to do environmental damage. Bosch e t a l . (1950) r e p o r t e d f o u r t e e n i n f a n t deaths 8 which were attributed to n i t r a t e contamination of well water. As a r e s u l t of t h i s p o t e n t i a l threat to human health the U.S. Department of Health (1962) declared that potable water must not exceed 10 mg NO3N nitrogen per l i t r e or 45mg ni t r a t e per l i t r e . In other studies n i t r a t e has been held d i r e c t l y responsible for the accelerated eutrophication of lakes and the depletion of oxygen for f i s h stocks. In land application of dairy manure several factors are instrumental i n determining the p o t e n t i a l loss of n i t r a t e to groundwater - loading rate, nitrogen content of manure, s o i l type, moisture regime, temperature, r a i n f a l l d i s t r i b u t i o n , surface runoff and cropping. It follows that the greater the application of manure the greater the potential for p o l l u t i o n . In the Chino- Corona dairy area of C a l i f o r n i a there i s a cow population of 10 animals per i r r i g a t e d acre of land. This area, i n response to the high c a t t l e density,has been subject to intensive research into dairy c a t t l e waste management. Deep d r i l l i n g of s o i l p r o f i l e s i n t h i s area showed an average n i t r a t e concentration of 315 ppm NO^ (70 ppm NO^-N) i n the drainage water (Adriano et a l . , 1971). Murphy et a l . (1973) found a b u i l d up of ammonium nitrogen i n some upper s o i l horizons to 230 ppm on heavy applications of animal wastes. This was high enough to contribute s i g n i f i c a n t l y to lower seed germination and depressed seedling vigour. Total y i e l d s of corn s i l a g e were increasingly depressed with increased rates of manure app l i c a t i o n . That s o i l type, p a r t i c u l a r l y texture, e f f e c t s n i t r a t e losses i s well documented. Avinimelech (19 76) studied two s o i l s i n I s r a e l , one a clay loam and the other a sandy loam. 9 While the nitrogen input on the clay loam was roughly double that on the sandy loam the leaching from the sandy loam exceeded that of the clay loam by a factor greater than two under s i m i l a r water regimes. N i t r i f i c a t i o n rates i n s o i l s e f f e c t s the size of the n i t r a t e pool i n the s o i l . N i t r i f i c a t i o n rates are a function of many factors including s o i l type. Soulides and Clark (1958) found great variations i n n i t r i f i c a t i o n rates i n some grassland s o i l s . The differences i n rates were attr i b u t a b l e to d i f f e r e n t conditions such as s o i l carbon content, pH and texture. S o i l moisture regime e f f e c t s the leaching of nitrogen i n two ways. Generally the greater the moisture l e v e l the greater the loss of n i t r a t e . Adriano et a l . (1974) found a 26 and 39% loss of applied manure nitrogen at water sat- uration percentages of 60 and 90%, respectively. As well as increasing n i t r a t e loss with s o i l moisture content there i s a counteractive trend towards increased d e n i t r i f i c a t i o n as s o i l s become saturated. Turner (1975) has given a value of 0.0 to the d e n i t r i f i c a t i o n for an excessive to somewhat excessively drained s o i l and a value of 0.50 to a very poorly drained s o i l . This assumes that 50% of manure applied nitrogen w i l l be l o s t by d e n i t r i f i c a t i o n i n the f i r s t year, on a poorly drained s o i l . Gambrell et a l . (1975) indicated that i n a two year period 60 kg N/ha was l o s t by d e n i t r i f i c a t i o n from poorly drained s o i l f e r t i l i z e d with 196 kg N/ha. S o i l temperature exerts i t s e f f e c t s on nitrogen be- haviour i n s o i l s by i t s influence on microbial a c t i v i t y as well as the changes i n physical properties of frozen s o i l . Most microbial a c t i v i t y occurs i n the 15°C to 35°C range. Above and below these temperatures we can expect s i g n i f i c a n t reductions i n the dynamics of microbial a c t i v i t i e s a f f e c t i n g 10 n i t r o g e n b a l a n c e s . F r e e z i n g c o n d i t i o n s r e s u l t i n a s o i l s u r f a c e which becomes impervious. Manure, under c e r t a i n c o n d i t i o n s , can be a p p l i e d to f r o z e n s o i l w i t h minimal p o l l u t i o n (Klausner e t a l . , 1976, Young and Mutchler, (]976). However, manure spread under s i m i l a r c o n d i t i o n s can a l s o cause p o l l u t i n g c o n d i t i o n s i f s u r f a c e r u n o f f o c c u r s . The Environmental G u i d e l i n e s f o r D a i r y Producers i n B r i t i s h Columbia (19 75) s t a t e s t h a t " d a i r y manure should not be spread on f r o z e n or snow covered ground where r u n o f f to open watercourses might o c c u r . " N i t r o g e n i s an e s s e n t i a l n u t r i e n t f o r p l a n t growth. Grass samples analysed by S t a l e y (1976) showed n i t r o g e n contents of 2.5% dry weight b a s i s . A t h r i v i n g crop i s thus an extremely d e s i r a b l e method of r e c y c l i n g manure a p p l i e d n i t r o g e n . The B r i t i s h Columbia Animal Wastes Management Guide (1971) has t a b l e d n i t r o g e n removal by v a r i o u s crops i n B r i t i s h Columbia. The h i g h e s t n i t r o g e n removal l i s t e d i s 336 kg/ha f o r corn s i l a g e . A c c e p t a b l e l e v e l s of s e e d l i n g m o r t a l i t y and t o x i c p l a n t n i t r a t e l e v e l s can be used as i n d i c a t i o n s of maximum r a t e s of manure a p p l i c a t i o n s f o r crops, p r o v i d e d e x c e s s i v e n i t r a t e l e a c h i n g does not o c c u r . 11 M a t e r i a l s & Methods The Farms Beaver Meadows D a i r y Farm, Comox, B.C.* ( F i g .1) and U.B.C. Farm, Campbell R i v e r , B.C.** milk H o l s t e i n herds o f 250 and 150 l a c t a t i n g cows r e s p e c t i v e l y w i t h an average d a i l y p r o d u c t i o n o f approximately 2 3 kg/cow. Both farms use a f r e e s t a l l / m i l k i n g p a r l o u r system f o r housing and m i l k i n g . The Beaver Meadows herd i s d i v i d e d i n t o three p r o d u c t i o n groups o f approximately 128, 88 and 34 cows while the Oyster R i v e r herd i s d i v i d e d i n t o two groups of 20 and 130 cows. Group numbers are giv e n i n o r d e r o f de c r e a s i n g p r o d u c t i o n . Beaver Meadows t r a c t o r scrapes i t s manure s l u r r y from the h o l d i n g area, f e e d i n g area and comfort s t a l l area t o a conveyor which d e p o s i t s i t i n a l a r g e , open, sunken, r o o f e d c o n c r e t e p i t (30.5m x 24.4m x 3.0m)(Fig 1). Storage i s estimated at f o u r t o s i x months depending on herd s i z e . The p i t i s emptied u s i n g a L i q u i v a t o r and a p r o p e l l o r a g i t a t o r . Spreading i s c a r r i e d out i n the s p r i n g , summer and e a r l y f a l l as p i t volume and f i e l d c o n d i t i o n s a l l o w . Spreading has been accomplished u s i n g a r e a r d i s c h a r g e paddle spreader and a Hawk b u i l t s i d e d e l i v e r y f l a i l spreader. The f l a i l spreader was used on g r a s s l a n d being cropped where the r e a r d i s c h a r g e paddle spreader d i s t r i b u t i o n was found t o be u n s a t i s f a c t o r y . P a r l o u r wastes are s t o r e d i n a sma l l concrete p i t emptied on a r e g u l a r b a s i s by vacuum tanker. * - 235 km NW V i c t o r i a , B.C. **- 265 km NW V i c t o r i a , B.C. 12 M I L K I N G A R E A W A S T E S M I L K I N G P A R L O U R C O N C E N T R A T E B I N S C O M F O R T S T A L L S LLLJJJJJJ -LLL1. Ll I I I I I I I I I I I H I TFu I I I I I I I I I I I i I I I I I I I I I I I I I I I -fi I I F E E D I N G I S L E 11 I I I I I I J J J J ± J ^ U J J J J J . J X U . L L L I I M 11 n"i 1 i i i i i i i i i i i i 1 i 'i i i i i I T r n n - i ' i T - r r i A L F A L F A S T O R A G E A B O V E C O M F O R T S T A L L S B U N K E R S I L O S M A N U R E P I T F I G V - B E A V E R M E A D O W F A R M B U I L D I N G L A Y O U T Waste Management a t t h e U.B.G. Farm i n v o l v e s t r a c t o r s c r a p i n g o f t h e s l u r r y f r o m t h e h o l d i n g a r e a , f r e e s t a l l a r e a a n d f e e d i n g b a r n t o c o n v e y o r s , l o a d i n g i n t o a s i d e d e l i v e r y f l a i l s p r e a d e r a nd s p r e a d i n g o n t h e f i e l d s o n a d a i l y b a s i s . When f i e l d c o n d i t i o n s do n o t p e r m i t , s l u r r y i s s t o r e d b y m i x i n g w i t h d r i e r manure f r o m o t h e r s o u r c e s , h o w e v e r t h i s o c c u r r e n c e i s r a r e . P a r l o u r w a s t e s p a s s t h r o u g h a s e t t l i n g t a n k t o two f a c u l t a t i v e l a g o o n s . E x p e r i m e n t a l D e s i g n a n d S a m p l i n g P r o c e d u r e s F e e d N i t r o g e n S a m p l e s o f f e e d f o r a n a l y s i s w e r e t a k e n a t m o n t h l y i n t e r v a l s f r o m B e a v e r Meadows a n d O y s t e r R i v e r d u r i n g t h e W i n t e r 1 9 7 5 - 1 9 7 6 . F i v e i n d i v i d u a l g r a b s a m p l e s w e r e t a k e n f r o m e a c h f e e d t y p e , c o m p o s i t e d , m i x e d a n d s u b s a m p l e d . Q u a n t i t a t i v e d a t a o n t h e f e e d r a t i o n a t B e a v e r Meadows was o b t a i n e d f r o m t h e H e r d s m a n . T h e s e f i g u r e s w e r e r e a d i l y a v a i l a b l e a s m o s t o f t h e f e e d i s m e t e r e d i n t o a m i x i n g f e e d wagon w h i c h i n c o r p o r a t e s a s c a l e . A t O y s t e r R i v e r q u a n t i t a t i v e d e t e r m i n a t i o n s w e r e made by d i v i d i n g t h e t o t a l w e i g h t o f t h e i n d i v i d u a l f e e d i n g r e d i e n t s consumed o v e r a p e r i o d o f t i m e b y t h e p e r i o d o f t i m e a n d t h e number o f c o w s . The t o t a l w e i g h t s w e r e a v a i l a b l e f r o m f e e d s u p p l i e r s o r c a l c u l a t e d on t h e f a r m f o r f a r m f e e d s . M i l k N i t r o g e n M i l k p r o d u c t i o n f o r t h e two h e r d s was o b t a i n e d by 14 d i v i d i n g the m i l k shipped by the number of cow-days m i l k e d . Shipments of m i l k shipped are recorded every o t h e r day a t both farms. M i l k produced by each cow i s recorded each m i l k i n g a t U.B.C. P r o t e i n contents of the m i l k were o b t a i n e d through D a i r y l a n d i n Burnaby where bi-monthly a n a l y s i s of m i l k samples are kept from a l l s h i p p e r s . These val u e s are a l s o a v a i l a b l e on an i n d i v i d u a l cow b a s i s f o r p a r t i c i p a n t s from the Record of Performance and I.R.M.A. t e s t i n g f a c i l i t y of the B.C.M.A. Manure N i t r o g e n F r e s h manure samples were c o l l e c t e d a t both farms from November 1975 u n t i l May 1976 on a monthly b a s i s and i n June 1977 d u r i n g the second t r i a l a t Beaver Meadows. These samples c o n s t i t u t e d subsamples of f i v e samples which had been composited. They were c o l l e c t e d from the manure conveyor l e a d i n g o u t s i d e of the manure c o l l e c t i o n a r e a . During the f i r s t t r i a l a t Beaver Meadows the p i t was sampled from November 1975 u n t i l May 1976 (when emptying began) a t monthly i n t e r v a l s ( l o c a t i o n A, F i g 1 ) . P i t samples were taken a t s u c c e s s i v e 30 cm depths through the p r o f i l e u s i n g a 7.6 cm diameter aluminium tube w i t h a d j u s t a b l e caps at each end ( F i g 2 ) . The sampler was submerged i n the s l u r r y g e n t l y and sl o w l y t o a v o i d mixing. During the second t r i a l the p i t was sampled a t fo u r l o c a t i o n s (A,B,C, & D, F i g 1) to determine v a r i a t i o n s a c r o s s the p i t . Samples were a l s o c o l l e c t e d d u r i n g the emptying of the p i t , when a p p l i c a t i o n s were being made to f i e l d p l o t s . Manure samples were taken from the spreaders b e f o r e spreading on f i e l d p l o t s a t Beaver Meadows and Oyster R i v e r . 15 3 IN D I A M , 10 FT L O N G AL PIPE A p p l i c a t i o n r a t e s were determined by measuring weights 2 of samples c o l l e c t e d i n three 100 cm t r a y s p l a c e d a t each end of the p l o t s . N i t r o g e n l o s s e s were determined by a n a l y s i n g composite samples c o l l e c t e d from the t r a y s and c a l c u l a t i n g the d i f f e r e n c e between the n i t r o g e n content of the manure from the tank wagon' b e f o r e spreading and the n i t r o g e n content o f the samples c o l l e c t e d from the t r a y s . S o i l N i t r o g e n At Beaver Meadows on June 20th, 1976 f o l l o w i n g the removal o f the f i r s t crop, f i e l d p l o t s were e s t a b l i s h e d to a s c e r t a i n N-behaviour d u r i n g the growing season f o r two l e v e l s o f a p p l i c a t i o n s o f p i t s t o r e d s l u r r y on a loamy sand s o i l (complex o f a Bowser-Custer s e r i e s ) . The ex- pe r i m e n t a l d esign c o n s i s t e d o f a c o n t r o l and two d i f f e r e n t manure treatments t r i p l i c a t e d . P l o t d e s ign was as i n F i g 3. The s o i l was sampled p r i o r to spreading, seven days f o l l o w i n g spreading and forty-two days f o l l o w i n g s preading a t which time the second crop was removed. S o i l sampling was c a r r i e d out d i a g o n a l l y across the p l o t s to minimize the e f f e c t s of v a r i a t i o n s i n spreader d i s t r i b u t i o n . A t sampling, each p l o t was sampled i n s i x l o c a t i o n s , the samples composited and subsampled f o r a n a l y s i s . Sampling at d i f f e r e n t s o i l depths was c a r r i e d out a t 15 cm i n t e r v a l s to a depth o f 90 cm w i t h the assumption t h a t any n i t r o g e n i n the s o i l below 90 cm c o u l d be assumed l o s t to ground- water. The p l o t s r e c e i v e d two inches of i r r i g a t i o n water on June 20 and a g a i n on J u l y 11. At the time o f i r r i g a t i o n v i s u a l assessment i n d i c a t e d t h a t there d i d not appear to be any s a t u r a t e d flow below a depth of f i f t e e n c e n t i m e t r e s . 17 £ 6 m 7777711 7ZZZ21 7////. 11 2 m 1. m~r 2 m 2 m FIG 3 S O I L , P L O T D E S I G N FOR THE LAND APPLICAT ION OF DAIRY W A S T E S . j LIGHT APPLICATION, C CONTROL, |j HEAVY APPLICATION T h i s procedure was f o l l o w e d on a reduced s c a l e a second time d u r i n g the Summer of 1977. A s i n g l e r a t e o f a p p l i c a t i o n was spread on June 22, 1977. C o n t r o l p l o t s were sampled a t t h i s time with subsequent samplings on J u l y 4 and August 1. Sampling was reduced to the top three 15 cm i n t e r v a l s . The r e s u l t s from the f i r s t t r i a l i n d i c a t e d t h a t sampling to deeper depths was unnecessary. A p l o t d e sign was e s t a b l i s h e d a t U.B.C. Farm to a s c e r t a i n n i t r o g e n behaviour d u r i n g the extended winter p e r i o d (19 75) of i n a c t i v e b i o l o g i c a l a c t i v i t y . I n d i v i d u a l s o i l p l o t s ( F i g 3) were arranged i n a 3 x 6 mat r i x . The s o i l ranges from . loamy sand t o sandy loam (Cassidy S e r i e s ) . High and low r a t e s o f manure were a p p l i e d on separate t r i p l i c a t e d p l o t s i n November, January and March. S o i l samplings were c a r r i e d out, j u s t b e f o r e spreading, two months and fo u r months a f t e r manure a p p l i c a t i o n to determine l o s s e s . These months were chosen as i t was f e l t t h a t the most s i g n i f i c a n t l o s s e s of n i t r o g e n would occur d u r i n g these time p e r i o d s . A p p l i c a t i o n r a t e d e t e r m i n a t i o n and s o i l sampling were c a r r i e d out as at Beaver Meadows. No s u r f a c e r u n o f f was observed d u r i n g the experimental p e r i o d on these w e l l d r a i n e d s o i l s . Crop N i t r o g e n In August 1976 and 1977, f o l l o w i n g the t r i a l s a t Beaver Meadows, y i e l d and crop samples were taken of the second crop. S i m i l a r l y i n May, 1976 samples were taken from the f i r s t crop a t Oyster R i v e r . Y i e l d was determined u s i n g a 1: frame and c l i p p e r s to simulate h a r v e s t i n g . Samples were a i r d r i e d and t o t a l y i e l d and n i t r o g e n r e c o v e r y determined. 19 A n a l y t i c a l Techniques A l l a n a l y s e s , with the e x c e p t i o n of the milk samples and crop d r y i n g were c a r r i e d out i n the l a b o r a t o r y f a c i l i t i e s o f the U n i v e r s i t y o f B r i t i s h Columbia's A g r i c u l t u r a l Mechanics - Bio-Resource E n g i n e e r i n g Department. M i l k samples were analysed f o r p r o t e i n a t the D a i r y l a n d l a b o r a t o r y i n Burnaby, B.C. and the crop samples were d r i e d i n the l a b o r a t o r y f a c i l i t i e s o f the U.B.C. Farm. Feed samples were analysed f o r t o t a l s o l i d s , o r g a n i c matter and T o t a l K j e l d a h l N i t r o g e n (TKN). Manure samples were analysed f o r t o t a l s o l i d s , o r g a n i c matter, pH, ammonia, and TKN. The same analyses were c a r r i e d out on the s o i l samples as w e l l as n i t r a t e and some n i t r i t e and with the e x c l u s i o n o f pH. Analyses f o r t o t a l s o l i d s , v o l a t i l e s o l i d s , and pH were c a r r i e d out a c c o r d i n g to standard methods (APHA, 1971) .' Total.' K j e l d a h l N i t r o g e n was determined u s i n g a b l o c k d i g e s t o r and a Technicon AutoAnalyser I I a c c o r d i n g t o the method of Schummann (1973) which was checked a g a i n s t the standard Macro K j e l d a h l technique (APHA, 1971). Ammonia, n i t r a t e and n i t r i t e n i t r o g e n were e x t r a c t e d from s o i l s and manure a c c o r d i n g t o standard methods f o r s o i l s (Methods o f S o i l A n a l y s i s , 1965). N i t r a t e , n i t r i t e and ammonia were analysed by methods proposed by Technicon I n d u s t r i a l Systems (1971). When the term ammonia i s used i n t h i s t e x t i t i n c l u d e s ammonium where a p p l i c a b l e . 20 R e s u l t s a n d D i s c u s s i o n The c o m p a r i s o n o f t h e s t a n d a r d M a c r o K j e l d a h l N i t r o g e n d e t e r m i n a t i o n (APHA, 1971) a n d t h e b l o c k d i g e s t o r a n d T e c h n i c o n A u t o A n a l y s e r c a n be s e e n i n A p p e n d i x B. The e x p e r i m e n t a l e r r o r was f e l t t o be a c c e p t a b l e f o r t h i s s t u d y . The e f f e c t o f u t i l i z i n g I N KC1 s o l u t i o n f o r e x t r a c t i n g ammonium f r o m manure was a l s o s t u d i e d . T h i s i s t h e r e - commended e x t r a c t i o n p r o c e s s f o r r e m o v i n g ammonium f r o m s o i l s . I t was f o u n d t h a t t h e KC1 e x t r a c t i o n i n c r e a s e d t h e q u a n t i t y o f e x t r a c t e d ammonium by 10- 4 0 % ( A p p e n d i x C ) . I n l i g h t o f t h i s i n f o r m a t i o n i t was d e c i d e d t o u s e t h e KC1 e x t r a c t i o n f o r b o t h s o i l s a n d m a n u r e . The i n c r e a s e d e x - t r a c t i o n o f ammonium was a t t r i b u t e d t o c a t i o n e x c h a n g e s i t e s o n manure p a r t i c l e s . F u r t h e r r e s e a r c h i n t h i s a r e a s h o u l d be c a r r i e d o u t t o c o n f i r m t h e c a u s e o f t h e l a r g e v a r i a t i o n i n a p p a r e n t ammonia c o n c e n t r a t i o n a s a f f e c t e d b y a n a l y t i c a l t e c h n i q u e . A c o m p a r i s o n o f n i t r a t e e x t r a c t i o n s u s i n g KC1 v s . CaSO^ showed no s i g n i f i c a n t d i f f e r e n c e s ( A p p e n d i x D ) . The r e s u l t s o f t h e a n a l y s i s o f t h e s a m p l e d f e e d showed c r u d e p r o t e i n l e v e l s c o n s i d e r a b l y b e l o w v a l u e s q u o t e d b y m a n u f a c t u r e r s , r e s u l t s f r o m t h e B.C. F e e d A n a l y s i s S e r v i c e d e t e r m i n e d f o r U.B.C. F a r m a n d b e l o w v a l u e s i n t h e l i t e r a t u r e . F o r t h i s r e a s o n t h e p r o t e i n l e v e l s o f f e e d s f r o m B e a v e r Meadows h a v e b e e n d e r i v e d b y u t i l i z i n g t h e m a n u f a c t u r e r s q u o t e f o r c o n c e n t r a t e a n d e s t i m a t e s f r o m t h e l i t e r a t u r e f o r t h e o t h e r c o n s t i t u e n t s . The v a l u e s f o r U.B.C. Farms a r e r e s u l t s o b t a i n e d f r o m s i m i l a r s a m p l e s s e n t t o t h e B.C. F e e d A n a l y s i s S e r v i c e , K e l o w n a , B.C. ( A p p e n d i x E, T a b l e s I , I I 21 a n d I I I ) . To d e t e r m i n e t h e l a n d a p p l i c a t i o n r a t e s f o r d a i r y w a s t e s i t i s n e c e s s a r y t o know t h e amounts o f n i t r o g e n i n t h e w a s t e p r o d u c e d . I n o r d e r t o a v o i d e x t e n s i v e manure s a m p l i n g a n d a n a l y s i s f o r e a c h f a r m i n t h e f u t u r e , we a t t e m p t e d t o c o r r e l a t e n i t r o g e n e x c r e t i o n t o some more r e a d i l y a v a i l a b l e q u a n t i t y , s u c h a s f e e d n i t r o g e n o r m i l k p r o d u c t i o n . The s l u r r y p r o d u c e d a t b o t h f a r m s c o n t a i n s s m a l l q u a n t i t i e s o f s p i l l e d f e e d , w a t e r and .sawdust w h i c h a r e i n c l u d e d i n t h e s l u r r y b u t a r e c o n s i d e r e d i n c o n s e q u e n t i a l . N i t r o g e n i n Manure B a s e d on F e e d The q u a n t i t y o f n i t r o g e n i n t h e f e e d w h i c h i s c o n v e r t e d t o m i l k a n d u s e d f o r m a i n t e n a n c e c a n be c a l c u l a t e d u s i n g f e e d n i t r o g e n c o n v e r s i o n e f f i c i e n c y (FNCE) o f 0.29 ( F o l e y e t a l . , 1 9 7 3 ; N a t i o n a l Academy o f S c i e n c e s , 1 9 7 1 ; T u r n e r , 1975; Y e c k a t a l . , 1975) a n d t h e f o r m u l a : M a n u r e N i t r o g e n = F e e d N i t r o g e n X (1 - F N C E ) . The FNCE o f 0.29 u s e d i n t h i s s t u d y i s i n c l o s e a g r e e - ment w i t h t h e N a t i o n a l Academy o f S c i e n c e s (1971) f o r t h e w e i g h t a n d p r o d u c t i o n o f c a t t l e i n t h i s s t u d y . H o w e v e r , as p r o d u c t i o n d e c r e a s e s a n d i n c r e a s e s s o d o e s t h e FNCE i n r e l a t i o n t o p r o t e i n r e q u i r e m e n t s . T a k i n g t h e two i d e n t i c a l a n i m a l s d e s c r i b e d i n t h e L i t e r a t u r e R e v i e w (p. 6 ) , one m i l k i n g 10 k g / d a y a n d t h e o t h e r 30 k g / d a y t h e r e s u l t i n g FNCEs c a l c u l a t e d f r o m t h e N a t i o n a l Academy o f S c i e n c e s (1971) t a b l e s r e s u l t s i n c a l c u l a t e d FNCEs o f 0.22 a n d 0.34, r e - s p e c t i v e l y . 22 In the 19 76 study a t Beaver Meadows the farm was fe e d i n g 420 g of nitrogen/cow/day (Table I) and i n the 19 77 study they were f e e d i n g 396 g of nitrogen/cow/day (Table I I ) . U.B.C. Farm was f e e d i n g 496 g of nitrogen/cow/ day (Table I I I ) . A p p l y i n g the formula r e s u l t s i n a c a l c u l a t e d manure N output of 29 8 g/cow/day f o r Beaver Meadows i n 19 76 and 281 g/cow/day i n 1977 (Table I V ) . The measured va l u e o f f r e s h manure f o r Beaver Meadows on a per cow b a s i s was determined from the average weight of waste e x c r e t e d per day (9.7 kg/day, dry weight b a s i s ) and the n i t r o g e n content 2.9% N. dry weight b a s i s (Table V) i n 1975 and 2.7% N dry weight b a s i s i n 1977. T h i s i s equivalent: t o 283 and 262 g N/cow/day f o r the two s t u d i e s (Table I V ) . The n i t r o g e n i n the manure a t U.B.C. Farm based on feed was c a l c u l a t e d t o be 352 g/cow/day (Table I V ) . The measured value was determined using the weight e x c r e t e d per day at Beaver Meadows (9.7 kg/day, d r y weight b a s i s ) and the n i t r o g e n content a t the U.B.C. Farm (3.5% N, dry weight b a s i s , Table V) and equal t o 340 g/cow/day. The percentage d i f f e r e n c e between the l i t e r a t u r e FNCE value s f o r c a l c u l a t e d manure N and the a c t u a l measured values of manure N were 5%, 7% and 4%, r e s p e c t i v e l y f o r three t r i a l s (Table I V ) . I f the a c t u a l feed n i t r o g e n c o n v e r s i o n e f f i c i e n c i e s are c a l c u l a t e d (milk n i t r o g e n d i v i d e d by feed nitrogen) the r e s u l t i n g f a c t o r s are 0.28, 0.29 and 0.23 f o r Beaver Meadows I, Beaver Meadows I I and Oyster R i v e r r e s p e c t i v e l y . R e c a l c u l a t i n g the a n t i c i p a t e d n i t r o g e n i n the manure r e s u l t s i n d i f f e r e n c e s of 7%, 7% and 11%, i n the three s t u d i e s . 23 TABLE I AVERAGE DAILY FEED CONSUMPTION AND MILK PRODUCTION PER COM AT BEAVER MEADOWS - TRIAL I FEED FEED(WET) CRUDE PROTEIN I CRUDE PROTEIN NITROGEN SUMPTION (G) 7WET) (G) (DRY) CONTENT (G) ALFALFA HAY 2,300 14.5* 333.5 53.4 COf̂ CENTRATE 9,900 1 6 . 0 * * 1584.0 253.4 CORN * GRASS SILAGE 22,700 3.1* . 703.7 113.5 TOTAL 54,900 2,621.2 420.3 * - NATIONAL ACADEMY OF SCIENCES (1969) * * MANUFACTURERS QUOTATiai •Mil K PRODUCTION PER cow MILK CRUDE PROTEIN % NITROGEN _ _ _ _ _ _ _ CONTENT 22.7 KG 3 . 2 TABLE II AVERAGE DAILY FEED CONSUMPTION AND MILK PRODUCTION PER CO/I AT BEAVER PEADOWS - TRIAL II muc 'JBU CRUDE PROTEIN % CRUDE PROTEIN NITROGEN CONSUMPTION (WED (G) (DRY) CONTENT (G) GRASS-LEGUrE HAY 2,300 8.0%* 184.0 29.4 CONCENTRATE 9,900 16.0%** 158/1.0 253.4 SILAGE 22,700 3.1% 703.7 113.5 IDJiL 34,900 2471.7 396.3 * - NATIONAL ACADEMY OF SCIENCES (1969) ** - MANUFACTURERS QUOTATION MILK PRODUCTION PFR mw MILK CRUDE PROTEIN % NITROGEN CONTENT 22.5 KG 3.2 115 G TABLE III AVERAGE DAILY FEED CONSUMPTION AND MILK PRODUCTION PER CQ'/ AT U.B.C. FARM FEED CONSUMPTION FEED (WET) CRUDE PROTEIN •% (WED CRUDE PROTEIN (G) (DRY) NITROGEN • CONTENT (G) CONCENTRATE 4,548 15.5 705 113 ALFALFA CUBES 4,831 17.8 860 138 ALFALFA HAY 6,027 14.7 886 142 CORN SILAE 12,000 1.4 168 27 GRASS SILAGE 18,231 2.6 474 76 TOTAL 45,637 3,093 496 * - B.C. FEED ANALYSIS SERVICE, KELOHNA MILK PRODUCTION P E R cow MILK CRUDE PROTEIN I NITROGEN CONTENT 22.7 KG 3.2 116 G TABLE IV MANURE NITROGEN BASED ON FEED NITROGEN GRAMS WOWm FEED CALCULATED MANURE N* MEASURED MANURE N ^ DIFFERENCE BETWEEN LITERATURE FNCE MEASURED FNCE LITERATURE FNCE MANURE MEASURED FNCE MANURE FNCE MANURE N FNCE MANURE M AND MEASURED MANURE AND MEASURED MANURE BEAVER MEADOWS I 420 0.29 298 0.28 304 283 5% 7% BEAVER MEADOWS II 396 0.29 281 0.29 281 262 7% 7% OYSTER RIVER 496 0.29 352 0.23 380 340 4% 11% * FEED NITROGEN x ( 1 - FNCE) TABLE V NITROGEN CONTENT OF FRESH MANURE 05 DRY Iff. BASIS) DATE BEAVER MOWS I U.B.C. NOV. 75 ' - 4.9 JAN. 76 2.4 2.8 FEB. 76 3.4 3.3 MAR. 76 3.3 3.1 APR. 76 - 3.3 MAY 76 2.6 - MEAN 2.9 3.5 S2 0.75 0.6725 S 0.87 0.82 28 These values do not r e p r e s e n t an improvement i n accuracy (Table I V ) . In the area of waste management where v a r i a b i l i t y appears to be the r u l e these v a l u e s would i n d i c a t e t h i s to be a s a t i s f a c t o r y method of c a l c u l a t i n g manure n i t r o g e n l e v e l s from cows. Ni t r o g e n i n Manure Based on M i l k Both farms had a recorded d a i l y average milk p r o d u c t i o n o f 22.7 kg o f m i l k per cow i n 19 76 and 22.5 kg per cow per day i n 1977 f o r Beaver Meadows I I . At 3.2% p r o t e i n , wet weight b a s i s (Table VI) the n i t r o g e n content of the m i l k a t the two l e v e l s i s 116 and 115 g N/cow/day. Using a (1 - 0.29) c c . . . . -—(0.29) n i t r o g e n c o n v e r s i o n e f f i c i e n c y v alue the r e s u l t i n g c a l c u l a t e d manure n i t r o g e n l e v e l s would be 2 84, 2 84 and 282 g N/cow/day exc r e t e d i n the three s t u d i e s (Table V I ) . Comparing t h i s t o the three measured valu e s of 283, 262 and 340 g N/cow/day g i v e s d i s c r e p a n c i e s o f 0%, 7% and 16% i n each case. I f the n i t r o g e n c o n v e r s i o n e f f i c i e n c i e s are c a l c u l a t e d , (milk n i t r o g e n d i v i d e d by feed nitrogen) the c o n v e r s i o n e f f i c i e n c i e s become 0.28, 0.29 and 0.23, f o r Beaver Meadows I, Beaver Meadows II and Oyster R i v e r , r e - s p e c t i v e l y . R e c a l c u l a t i n g the a n t i c i p a t e d n i t r o g e n i n the manure us i n g the c a l c u l a t e d n i t r o g e n c o n v e r s i o n e f f i c i e n c i e s r e s u l t s i n d i f f e r e n c e s of 5%, 7% and 11% i n the t h r e e s t u d i e s . T h i s an improvement i n agreement f o r Oyster R i v e r but not f o r Beaver Meadows I. I t appears from the above determinations t h a t manure n i t r o g e n based on m i l k p r o d u c t i o n c o u l d be used i n waste 29 T A B L E V I A V E R A G E P R O T E I N C O N T E N T O F M I L K * (WET W F I G H T B A S I S ) D A i EARM B E A V E R MEADOWS U X X ' M 1 , 1 9 7 6 3 . 1 6 3 . 0 8 J A N 1 5 , 1 9 7 6 3 . 0 0 3 . 1 0 F E B 1 , 1 9 7 6 3 . 2 3 3 . 2 1 F E B 1 5 , 1 9 7 6 3 . 2 2 3 . 2 5 MAR 1 , 1 9 7 6 3 . 1 4 3 . 1 4 MAR 1 5 , 1 9 7 6 3 . 2 1 3 . 2 1 A P R 1 , 1 9 7 6 3 . 2 4 . . 3 . 1 8 A P R 1 5 , 1 9 7 6 3 . 1 9 3 . 1 1 MAY 1 , 1 9 7 6 3 . 1 7 3 . 2 1 MAY 1 5 , 1 9 7 6 3 . 1 1 3 . 1 8 J U N E 1 , 1 9 7 6 3 . 1 5 3 . 1 6 J U N E 1 5 , 1 9 7 6 3 . 1 8 3 . 1 6 J U L Y 1 , 1 9 7 6 L 2 1 MEAN 3 . 2 3 . 2 * D A I R Y L A N D , B U R N A B Y . TABLE VII MURE NITROGEN BASED ON MILK.PRODUCTION GRAMS N/CCWDAY MILK CALCULATED MANURE N* MEASURED MANURE N 1 DIFFERENCE BETWEEN LITERATURE FNCE MEASURED FNCE LITERATURE FNCE MANURE MEASURED FNCE MANURE FNCE MANURE N FNCE MANURE N AND MEASURED MANURE AND MEASURED MANURE BEAVER rEADOWS I 116** 0.29 284 0.28 298 283 OK 5% BEAVER rtAKWS II 115*** 0;29 282 0.29 282 262 7% 7% OYSTFR RIVER 116** 0.29 284 0.23 380 ' 340 16% US * NITROGEN CONTENT OF MILK X 1 - FNCE FNCE ** 22.7 KG MILK PER DAY AT 3.2% CRUDE PROTEIN »««22 ̂  n a n n " " " " d i s p o s a l f o r m u l a t i o n s . I t appears t h a t t h i s method i s best u t i l i z e d on farms which are fe e d i n g c l o s e to an op t i m a l l e v e l . Knowledge of the feed n i t r o g e n c o n v e r s i o n e f f i c i e n c y o r knowing t h a t a farm i s f e e d i n g c l o s e t o the op t i m a l l e v e l o f c o n v e r s i o n make t h i s a more u s e f u l t o o l . The high c o n v e r s i o n e f f i c i e n c y at Beaver Meadows can be i n p a r t a t t r i b u t e d t o the r a t i o n a l d i v i s i o n o f p r o d u c t i o n groups which t h e i r f a c i l i t i e s a l l o w . N i t r o g e n Losses i n Storage During the f i r s t t r i a l a t Beaver Meadows a p r o f i l e o f the manure i n the p i t a t 0.3 m depth i n t e r v a l s was taken u s i n g a core sampler p r e v i o u s l y d e s c r i b e d ( F i g 2). The core samples were taken approximately 2 m from the manure imput. The r e s u l t s show a g e n e r a l decrease i n ammonia, TKN and moisture c o n c e n t r a t i o n w i t h depth (Table V I I I ) . During the second t r i a l a t Beaver Meadows four s e t s of c r o s s s e c t i o n a l samples were taken from the p i t . The samples were taken a t d i f f e r e n t l o c a t i o n s around the p i t , approximately 1.0 m from the edge of the p i t (A,B,C and D, F i g 1). The study confirmed t h a t TKN decreased with depth; an average of 25,200 ppm a t the s u r f a c e to 19,900 ppm (dry weight b a s i s ) a t the bottom (Table I X ) . The r e s u l t s a l s o showed a decrease i n TKN, from an average o f 26,900 to 20,300 (dry weight b a s i s ) , as the sampling d i s t a n c e f r o n the imput i n c r e s e d (Table I X ) . The c o n c e n t r a t i o n o f ammonia d i d not change g r e a t l y a c r o s s the p i t but decreased w i t h depth a t a l l p o i n t s , from an average of 13,800 ppm a t the top to 8,400 (dry weight b a s i s ) a t the bottom (Table X). The pH of a l l 32 TABLE VIII CONCENTRATION OF NH3-N, TKN AND MOISTURE CONTENT AFTER FOUR MONTHS PIT STORAGE AT BEAVER MEADOWS TRIAL I. DEPTH (METRES) NH3-N (PPM)* TKN (PPM)* .... .M.C.%** TOP 11,200 32,533 85.0 .3 14.023" 37,714 86.0 .6 16,757 34,759 85.5 .9 13,226 36,126 84.5 1.2 14,121 30,915 83.5 1-5 13,667 31,030 83.5 1.8 9,086 18,757 71.0 2.1 7,754 13,0/(6 67.5 MEAN 12,492 29,314 81.5 * DRY WEIGHT BASIS ** WET WEIGHT BASIS 33 TABLE IX BEAVER FEADOWS II, PIT STUDY - 1977. TKN PPM* P I T SAMPLING LOCATION A B C D MEAN 0 - 0.3 30,724 26,541 21,981 21,626 25,218 0.3 - 0.6 31,492 31,525 24,482 19,277 26,69̂ f DEPTH (M) 0.6 - 0.9 24,865 25,663 25,432 19,061 23,755 0.9 - 1.2 23,613 26,673 22,102 20,922 23,328 . 1.2 - 1.5 26,556 24,354 18,705 20,671 22,574 1.5 - 1.8 24,200 19,007 16,291 20,123. 19,905 MEAN 26,908 .25,627 21,499 20,280 23,579 DISTANCE FROM INPUT * DRY WEIGHT B A S I S TABLE X BEAVER MEADOWS I L PIT STUDY - 1977. NH3 PPM* DEPTH (M) PIT SAMPLING LOCATION 0 - 0.3 A 14,27'} B 15,358 C 12,638 D 12,896 MEAN 13,792 0.3 - 0 . 6 14,616 16,059 14,491 10,726 13,973 0.6 - 0 . 9 10,969 13,744 13,393 10,722 12,207 0.9 - 1.2 11,063 13,807 11,880 11,743 12,123 1.2 - 1.5 10,928 10,767 7,554 11,755 10,246 1.5 - 1.8 8,879 8,840 6,398 9,496 8,403 MEAN 11,788 13,096 11,055 11,223 11,791 DISTANCE FROM INPUT * DRY WEIGHT BASIS 35 samples showed a s l i g h t i n c r e a s e w i t h depth. The pH ranged from 7.4 - 7.8 with an average o f 7.7 (Table X I ) . M o i s t u r e content decreased w i t h depth but not as s i g n i f i c a n t l y as i n the f i r s t study (Table X I I ) . The f i r s t study a t Beaver Meadows appeared to show an unexpectedly low l o s s o f n i t r o g e n when p i t i n p u t was compared to a sample taken d u r i n g the emptying of the p i t . The second t r i a l , however, r e v e a l e d the d i s c r e p a n c i e s which occur from the i n p u t end of the p i t t o the o p p o s i t e s i d e . The d i f f e r e n c e between TKN a t the i n p u t and the p i t mean TKN showed a decrease o f 12% i n 1977 (Table I X ) . O b s e r v a t i o n of the p i t d u r i n g f i l l i n g showed a l e v e l r i s e a cross the p i t w ith the e x c e p t i o n o f the p e r i o d f o l l o w i n g sawdust bedding o f the comfort s t a l l s . During t h i s time a mound, approximately 1.0 m h i g h , formed below the conveyor but disappeared i n a few days. The p i t appeared t o meet i t s storage c a p a c i t y w i t h the d a i l y volume o f 0.061 cu m of s l u r r y per cow added per day. T h i s volume appears to be h i g h e r than t h a t i n the l i t e r a t u r e (Canada Waste Management Guide, 1974; Loehr, 1974) but i n agreement with a study on another B r i t i s h Columbia farm (Luymes, 1976). N i t r o g e n Losses During Spreading The r a t e s o f a p p l i e d n i t r o g e n f o r Beaver Meadows I and O y s t e r R i v e r can be seen i n Ta b l e s XIII and XIV. Com- p a r i n g the n i t r o g e n content o f the manure bef o r e spreading to the n i t r o g e n c o l l e c t e d i n the t r a y s a f t e r spreading showed t h a t spreading a t Beaver Meadows r e s u l t e d i n a l o s s o f TABLE XI BEAVER MEADOWS I L PIT STUDY - 1977. PH. PIT SAMPLING LOCATION DEPTH (M) 0 - 0.3 0.3 - 0.6 0.6 - 0.9 0.9 - 1.2 1.2 - 1.5 1.5 - 1.8 A 7 A. 7,7 7J 7.8 7.7 7.8 B 7.6 7.7 7.7 7.7 7.8 7.9 C 7.7 7.7 7.6 7.7 7.7 7.8 G 7.7 7.7 7.8 7.8 7.8 7.7 MEAN 7.6 7.7 7.7 7.8 7.8 7.8 MEAN 7.7 7.7 7.7 7.8 7.7 DISTANCE FROM INPUT 37 TABLE XII BEAVERfEADOWS II, PIT STUDY - 1977, I MOISTURE CONTENT" PIT SAMPLING LOCATION A B C C MEAN "0.0 - 0,3 83,7 85.3 82.6 84,6 84,0 0.3 - 0.6 84.5 86.0 84.0 82.4 84.2 0.6 - 0.9 81.4 83.7 84.8 82.0 83.0 DEPTH (M) 0.9 - 1,2 81.2 84.4 83.7 83.3 83.2 1.2 - 1.5 83.0 83.3 82.2 83.1 82.9 1.5 - 1.8 84.0 82.0 81.9 86.6 83.1 MEAN 83.0 84.1 83,2 83.3 83.4 DISTANCE FROM INPUT * WET WEIGHT BASIS 38 5% of t o t a l a p p l i e d n i t r o g e n i n one t r i a l . In t hree t r i a l s a t Oyster R i v e r the l o s s e s were 4%, 6% and 9% of the a p p l i e d manure n i t r o g e n . The l o s s d u r i n g spreading i s a t t r i b u t e d to the v o l a t i l i z a t i o n of ammonia. N i t r o g e n Recovery The q u a n t i t i e s of n i t r o g e n removed by the g r a s s - c l o v e r crops are shown i n T ables XI11 and^XIV . At Beaver Meadows the l i g h t manure a p p l i c a t i o n i n c r e a s e d crop y i e l d by 30% over the c o n t r o l w h i l e the heavy a p p l i c a t i o n decreased the y i e l d by 50%. The data c o l l e c t e d from U.B.C. Farm shows hi g h e r y i e l d s on a l l the p l o t s r e c e i v i n g manure. The January and March heavy a p p l i c a t i o n s show a reduced y i e l d over the l i g h t a p p l i c a t i o n s . T h i s e f f e c t has presumably not o c c u r r e d i n the November heavy a p p l i c a t i o n due t o the i n c r e a s e d time f o r l e a c h i n g o f n i t r a t e , v o l a t i l i z a t i o n of ammonia, and a lower a p p l i c a t i o n r a t e o f manure. I t should be remembered t h a t these v a l u e s apply o n l y to the crop h a r v e s t e d immediately f o l l o w i n g the a p p l i c a t i o n . At Beaver Meadows a t l e a s t one a d d i t i o n a l crop would be expected to be h a r v e s t e d and a t Oyster R i v e r two a d d i t i o n a l c u t t i n g s would be made. The e f f e c t of manure on the sub- sequent h a r v e s t s from the t r e a t e d p l o t s need not n e c e s s a r i l y f o l l o w those of the p r e v i o u s h a r v e s t . N i t r o g e n Movement i n S o i l : A p p l i e d During the Growing Season At Beaver Meadows, changes i n T o t a l K j e l d a h l , ammonia and n i t r a t e n i t r o g e n were determined f o r a l l p l o t s . In TABLE XIII GRASS-CLOVER YIELD AND NITROGEN ECOVERY FROM PLOTS RECEIVING LIGHT AND HEAVY MANURE APPLICATIONS BEAVER renews MANURE APPLICATION:.JUNE 1976 CROP YIELD: AUG. 1976 DRY WT,* NITROGEN DRY IfT, NITRQGt PLOT t/ha kg/ha t/ha Kg/ha CONTROL 0 o 2.7 68 LIGHT APPLICATION 16 450 3.6 m HEAVY'APPLICATION 28 785 1.4 35 * MOISTURE CONTENT OF MANURE 81% (WET WEIGHT B A S I S ) . * * BASED ON 2.5% N (DRY WEIGHT BAS I S ) FOR CROP (STALEY, 1976). TABLE XIV GRASS-CLOVER YIELD AND INITIAL NITROGEN RECOVERY FROM PLOTS RECEIVING LIGHT AND HEAVY MANURE APPLI- CATIONS DURING THE WINTER. U.B.C. OYSTER RIVER FARM MANURE APPLICATION CROP YIELD; MAY 1976 DATE MANURE DRY WT,* NITROGEN DRY WT, NITROGEN** APPLIED t/ha Kg/ha t/ha Kg/ha NOV.- 75 CONTROL 0 0 0.58 14.5 LIGHT 4.6 161 1.10 27.5 HEAVY 13.9 486 1.22 30.5 JAN. 76 CONTROL 0 0 0.59 14.8 LIGHT 5,9 206 1.25 31.3 HEAVY 17.6 616 0.99 25.0 MAR. 76 CONTROL 0 0 0,96 24.0 LIGHT 5.5 192 1.20 30.0 HEAVY 16,5 577 0,74 18.5 * MOISTURE CONTENT OF MANURE 85% (NET WEIGHT BASIS). ** BASED ON 2.5% N (DRY WEIGHT BASIS) FOR CROP (STALEY, 1976). both t r i a l s the c o n t r o l p l o t s were sampled j u s t p r i o r t o a p p l i c a t i o n . S o i l s from the p l o t s r e c e i v i n g l i g h t and heavy a p p l i c a t i o n s of manure were sampled seven and f o r t y - two days a f t e r a p p l i c a t i o n . R e s u l t s f o r the ammonia n i t r o g e n behaviour through the p r o f i l e are shown i n F i g 4. A l l p o i n t s i n these f i g u r e s c o n s t i t u t e the mean of three samples, each of the t h r e e composited from s i x i n d i v i d u a l samples. T h i s i s e q u i v a l e n t t o e i g h t e e n samples. The h e a v i l y manured p l o t s ( F i g 4) show an average of 60 ppm NH^-N (dry weight b a s i s ) i n the 0-15 cm p r o f i l e (June 27). T h i s value dropped to 19 ppm by August 1, presumably through n i t r i f i c a t i o n . There i s no apparent i n c r e a s e or movement below the 30 cm depth. The n i t r a t e n i t r o g e n p r o f i l e s ( F i g 5) show t h a t one week a f t e r manure a p p l i c a t i o n the n i t r a t e l e v e l s i n a l l the p l o t s i n the 0-15 cm depth i n t e r v a l rose i n the f i r s t week a f t e r s p r e a d i n g . The i n c r e a s e i n the manured p l o t s was g r e a t e r than i n the c o n t r o l p l o t s . An i n c r e a s e of 41 ppm NO3-N was measured on the h e a v i l y manured p l o t s i n the 0-15 cm depth i n t e r v a l . By August 1, the n i t r a t e l e v e l s i n a l l the p l o t s had dropped. Only the h e a v i l y manured p l o t exceeded the o r i g i n a l l e v e l i n the top 15 cm. There appears to be a r e l a t i o n between an i n c r e a s e d ammonia c o n c e n t r a t i o n l e a d i n g t o an i n c r e a s e i n n i t r a t e c o n c e n t r a t i o n and a concurrent drop i n both. T h i s i s understandable s i n c e n i t r i f i c a t i o n i s i n p a r t a f u n c t i o n of ammonification. During the time p e r i o d s t u d i e d , there were no s i g n i f i c a n t d i f f e r e n c e s among treatments below the 15 cm l e v e l . A l l the p l o t s decreased g r a d u a l l y i n n i t r a t e c o n c e n t r a t i o n from approximately 10 ppm NO^-N (dry weight b a s i s ) a t the 30-45 cm l e v e l t o approximately 2 ppm a t the 75-90 cm l e v e l . There d i d not appear t o be any e x c e s s i v e movement of n i t r o g e n 42 o a S O I L DEPTH (CM) JUNE 20 15 30 45 XiNE 27 AUG 1 60 7* 90 L 10 20 PPM NH^-N 0 10 20 CONTROL L I G H T A P P L I C A T I O N 10 20 60 HEAVY A P P L I C A T I O N F I G 4 B E A V E R MEADOWS T R I A L I AMMONIA NITROGEN P R O F I L E S : CHANGES I N NH3N CONCENTRATION WITH T I M E FOR A S O I L (BOWSER-CUSTER S E R I E S ) R E C E I V I N G 0, 16 AND 28 T/HA (DRY WEIGHT B A S I S ) DAIRY MANURE ON J U N E 20, 1976 PPM NOT-N SOIL DEPTH (CM) 90 I CONTROL 68 LIGHT APPLICATION F I G 5 BEAVER MEADOWS T R I A L I NITRATE NITROGEN P R O F I L E S : CHANGES I N NO3N CONCENTRATION WITH T I M E FOR A S O I L (BOWSER-CUSTER S E R I E S ) R E C E I V I N G 0, 16 AND 28 T/HA (DRY WEIGHT B A S I S ) DAIRY MANURE ON JUNE 20, 1976 down the p r o f i l e based on the ammonia and n i t r a t e a n a l y s e s . Large unexplained decreases i n TKN were observed over the growing season f o r Beaver Meadows T r i a l I ( F i g 6 ) . No major d i f f e r e n c e s were observed among the c o n t r o l , l i g h t and h e a v i l y manured p l o t s , but the pooled data gave st r o n g support t o the apparent l a r g e decreases i n TKN (Fig 7 ) . The l a r g e decrease i s not suspected t o be a sampling e r r o r as each p o i n t r e p r e s e n t s the average of f i f t y - f o u r p o i n t s and nine a n a l y s e s . The second summer t r i a l a t Beaver Meadows (Beaver Meadows I I , 1977) was conducted t o v e r i f y the s o i l s data o b t a i n e d i n the f i r s t t r i a l , p a r t i c u l a r l y TKN r e s u l t s . A c o n t r o l and one l i g h t manure a p p l i c a t i o n were s t u d i e d . The p l o t s were t r i p l i c a t e d and sampled t o a depth of 45 cm as the f i r s t study r e v e a l e d t h a t any major f l u c t u a t i o n s o c c u r r e d i n the upper h o r i z o n s . Manure was a p p l i e d and c o n t r o l p l o t s sampled on June 22, 1977. Subsequent samplings were c a r r i e d out J u l y 4 and August 1. In both the c o n t r o l and the t r e a t e d p l o t s ammonia decreased from June 22 to J u l y 4 ( F i g 8 ) . Ammonia then i n c r e a s e d s u b s t a n t i a l l y i n the August 1 sampling but not t o the o r i g i n a l c o n c e n t r a t i o n . No o u t s t a n d i n g d i f f e r e n c e s o c c u r r e d between the c o n t r o l and t r e a t e d p l o t s . N i t r a t e c o n c e n t r a t i o n i n c r e a s e d d r a m a t i c a l l y i n the t r e a t e d p l o t s from 6 t o 20 ppm N0 3-N (dry weight b a s i s ) i n the 15-30 cm depth i n t e r v a l ( F i g 9) . I t subsequently decreased t o 9 ppm by August 1. The c o n t r o l p l o t s showed a s i m i l a r but much s m a l l e r i n c r e a s e and subsequent decrease. T h i s appeared t o c o n f i r m the r e l a t i o n s h i p between ammonia 45 PPM TKN 2 0 0 0 , 4000 0 2000 4000 0. 2000 4000 CONTROL F I G 6 BEAVER MEADOWS T R I A L I TKN P R O F I L E S : CHANGES I N TKN WITH T I M E FOR A S O I L (BOWSER-CUSTER S E R I E S ) R E C E I V I N G 0 , 16 AND 28 T/HA (DRY WEIGHT B A S I S ) D A I R Y MANURE ON J U N E 2 0 , 1976 P P M TKN 0 2 0 0 0 4 0 0 0 F I G 7 B E A V E R MEADOWS T R I A L I CO M P O S I T E D TKN ( C H A N G E S IN TKN W I T H T I M E ) F I G 8 BEAVER MEADOWS TRIAL I I AMMONIA NITROGEN CONCENTRATION WITH TIME FOR A SOIL (BOWSER-CUSTER AND A SOIL RECEIVING A LIGHT APPLICATION OF DAIRY PROFILES: CHANGES IN NH^N SERIES) RECEIVING NO MANURE MANURE ON JUNE 2 2 , 1977 SOIL DEPTH (CM) 0 15 30 45 20 PPM NO3-N 40 0 CONTROL 20 40 o JUNE 22 * JULY 4 Q AUG 1 LIGHT APPLICATION v o F I G 9 BEAVER'MEADOWS TRIAL I I NITRATE NITROGEN PROFILES: CHANGES IN NO 3N CONCENTRATION WITH TIME FOR A SOIL (BOWSER-CUSTER SERIES) RECEIVING NO MANURE AND A SOIL RECEIVING A LIGHT APPLICATION OF DAIRY MANURE ON JUNE 2 2 , 1977 and n i t r a t e i n the e a r l i e r study. At no time d i d the 30-45 cm i n t e r v a l s show n i t r a t e n i t r o g e n l e v e l s above 10 ppm. TKN showed l a r g e f l u c t u a t i o n s again i n t h i s study ( F i g 10). There i s no doubt t h a t some of the changes are due to s o i l v a r i a b i l i t y . N e v e r t h e l e s s , there again appears to be a decrease i n TKN c o n c e n t r a t i o n w i t h time. The magnitude of t h i s decrease from J u l y 4 t o August 1 i n the 15-30 cm i n t e r v a l of the l i g h t l y manured p l o t s amounted to approximately 75 kg/hectare furrow s l i c e (15cm x 100m x 100m). S i m i l a r l o s s e s o c c u r r e d i n the c o n t r o l p l o t s . These l o s s e s are d i f f i c u l t t o e x p l a i n a t t h i s time. N i t r o g e n Movement i n S o i l ; A p p l i e d Before the Growing Season At the U.B.C. Farm changes i n ammonia, n i t r a t e and T o t a l K j e l d a h l N i t r o g e n f o r p l o t s r e c e i v i n g heavy and l i g h t manure a p p l i c a t i o n s b e f o r e the growing season were determined. A p p l i c a t i o n s of manure were made i n November 1975, January and March, 1976. The ammonia p r o f i l e s a t U.B.C. Farm e x h i b i t e d s i m i l a r behaviour to those at Beaver Meadows wit h g e n e r a l l y lower i n c r e a s e s i n ammonia c o n c e n t r a t i o n i n the 0-15 cm i n t e r v a l ( Figs 11, 12#13). The l a r g e s t i n c r e a s e i n ammonia con- c e n t r a t i o n o c c u r r e d on the h e a v i l y manured January p l o t s where the May sampling reached an average l e v e l of 14 ppm NH^-N (dry weight b a s i s ) . Below the 0-15 cm h o r i z o n , w i t h one e x e p t i o n , a l l p r o f i l e s showed no c o n c e n t r a t i o n s ex- ceeding 5 ppm NH^-N (dry weight b a s i s ) and d e c r e a s i n g to 2-3 ppm NH-.-N at the 75-90 cm depth. 50 SOIL DEPTH (CM) 15 30 45 2000 4000 0 2000 CONTOL 4000 o JUN 22 X JUL 4 • AUG 1 LIGHT APPLICATION F I G 10 BEAVER MEADOWS TRIAL I I TKN PROFILES: CHANGES IN TKN CONCENTRATION WITH TIME FOR A SOIL (BOWSER-CUSTER SERIES) RECEIVING NO MANURE AND A SOIL RECEIVING A LIGHT APPLICATION OF DAIRY MANURE ON JUNE 22, 1977 F I G 1 1 UBC AMMONIA NITROGEN P R O F I L E S NOVEMBER S E R I E S : CHANGES IN NH^N CONCENTRATION WITH T I M E , FOR A S O I L ( C A S S I D Y S E R I E S ) R E C E I V I N G 0 , 4 . 6 AND 1 3 . 9 T/HA OF D A I R Y MANURE (DRY WEIGHT B A S I S ) I N NOVEMBER 1975 to (JO F I G 12 UBC AMMONIA NITROGEN P R O F I L E S JANUARY S E R I E S : CHANGES IN NH^N CONCENTRATION WITH T I M E FOR A S O I L ( C A S S I D Y S E R I E S ) R E C E I V I N G 0 , 5 , 9 AND 1 7 . 6 T/HA DAIRY MANURE (DRY WEIGHT B A S I S ) IN JANUARY 1976 F I G 13 UBC AMMONIA NITROGEN P R O F I L E S MARCH SERI CONCENTRATION WITH T I M E FOR A S O I L ( C A S S I D Y S E R I E S 1 6 . 5 T/HA DAIRY MANURE (DRY WEIGHT B A S I S ) I N MARCH ES: CHANGES IN NH3N ) R E C E I V I N G 0 , 5 . 5 AND 1976 N i t r a t e n i t r o g e n d i s t r i b u t i o n s i n the s o i l s are shown i n F i g s 14, 15 and 16. The h e a v i l y manured p l o t s showed n i t r a t e c o n c e n t r a t i o n s i n excess o f 10 ppm N O 3 - N (dry weight b a s i s ) above 4 5 cm f o r the sampling i n the month f o l l o w i n g a p p l i c a t i o n . Below 45 cm i n depth the c o n c e n t r a t i o n de- creased t o 4-5 ppm N O 3 - N (dry weight b a s i s ) . The January heavy a p p l i c a t i o n showed i n d i c a t i o n s of s u b s t a n t i a l down- ward n i t r a t e movement i n the March sampling. The TKN showed g e n e r a l f l u c t u a t i o n s w i t h time (Figs 17, 18, 19, and 20). As experienced w i t h o t h e r t r i a l s the magnitudes and sometimes the d i r e c t i o n s o f these changes appear i n e x p l i c a b l e . 20 40 PPM NO3-N 0 20 40 0 20 40 CONTROL F I G 14 UBC NITRATE NITROGEN P R O F I L E S NOVEMBER S E R I E S : CHANGES IN CONCENTRATION WITH T I M E FOR A S O I L ( C A S S I D Y S E R I E S ) R E C E I V I N G 0 , 4 , 6 1 3 . 9 T/HA D A I R Y MANURE (DRY WEIGHT B A S I S ) IN NOVEMBER 1975 NO3N AND F I G 1 5 UBC NITRATE NITROGEN P R O F I L E S JANUARY S E R I E S : CHANGES I N NO 3N CONCENTRATION WITH T I M E FOR A S O I L ( C A S S I D Y S E R I E S ) R E C E I V I N G 0 , 5 . 9 AND 1 7 . 6 T/HA OF DAIRY MANURE (DRY WEIGHT B A S I S ) I N JANUARY 1976 PPM NOVN 0 20 40 ,0 20 40 1 0 20 CONCENTRATION WITH T I M E FOR A S O I L ( C A S S I D Y S E R I E S ) R E C E I V I N G 0, 4.6 13.9 T/HA OF D A I R Y MANURE (DRY WEIGHT B A S I S ) IN MARCH 1976 " 00 PPM TKN 2000 4000 0 2000 4000 0 2000 F I G 1 7 UBC TKN P R O F I L E S NOVEMBER S E R I E S : CHANGES I N TKN CONCENTRATION WITH T I M E FOR A S O I L ( C A S S I D Y S E R I E S ) R E C E I V I N G 0 , 4 , 6 AND 1 3 . 9 T/HA (DRY WEIGHT B A S I S ) OF DAIRY MANURE I N NOVEMBER 1975 v o 2000 4000 PPM TKN 0 2000 4000 CONTROL 4000 LIGHT A P P L I C A T K MAY HEAVY A P P L I C A T I O N F I G 1 8 UBC TKN P R O F I L E S JANUARY S E R I E S : CHANGES I N TKN CONCENTRATION WITH T I M E FOR A S O I L ( C A S S I D Y S E R I E S ) R E C E I V I N G 0 , 5 . 9 AND 1 7 . 6 T/HA (DRY WEIGHT B A S I S ) OF DAIRY MANURE IN JANUARY 1976 F I G 19 UBC TKN P R O F I L E S MARCH S E R I E S : CHANGES IN TKN CONCENTRATION WITH T I M E FOR A S O I L ( C A S S I D Y S E R I E S ) R E C E I V I N G 0 , 5 . 5 AND 1 6 . 5 T/HA (DRY WEIGHT B A S I S ) OF DAIRY MANURE IN MARCH 1976 P P M TKN 0 2000 4000 15 30 S O I L DEPTH 45 ( C M ) 60 75 JAN MAR MAY 90 FIG 20 UBC CO M P O S I T E D TKN ( C H A N G E S I N TKN W I T H T I M E ) Summary and C o n c l u s i o n s Attempting to e s t a b l i s h c r i t e r i a f o r waste management g u i d e l i n e s i s an enormous task . In t h i s study of two d a i r y farms on Vancouver I s l a n d we f e e l we have e s t a b l i s h e d some p r i n c i p l e s which should improve f u t u r e s t u d i e s . As an a l t e r n a t i v e to r e p e t i t i v e a n a l y ses of manure f o r n i t r o g e n content, i t was found t h a t a knowledge of the t o t a l n i t r o g e n content o f the feed p r o v i d e d a good b a s i s f o r c a l c u l a t i n g the amount of n i t r o g e n which c o u l d be found i n the waste. The n i t r o g e n content of the manure c o u l d a l s o be c a l c u l a t e d knowing the n i t r o g e n content and the average t o t a l m i l k produced per cow over a g i v e n l e n g t h o f time. T h i s method i s more r a p i d and e a s i e r than the above. Both of these methods work w e l l f o r a farm herd which i s f e e d i n g a t c l o s e to o p t i m a l r a t e s and has a g e n e t i c p o t e n t i a l approaching the a n t i c i p a t e d feed n i t r o g e n con- v e r s i o n e f f i c i e n c i e s . The c l o s e r a farm i s f e e d i n g to the optimum r a t e s and the c l o s e r the herd i s to a c h i e v i n g i t s ' g e n e t i c p o t e n t i a l of an a n t i c i p a t e d feed n i t r o g e n c o n v e r s i o n e f - f i c i e n c y the g r e a t e r w i l l be the accuracy o f these two methods. Large e r r o r s i n e s t i m a t i n g the manure n i t r o g e n are p o s s i b l e i f excess n i t r o g e n i s being fed or i f the e f f i c i e n c y with which the herd i s c o n v e r t i n g the feed n i t r o g e n to m i l k n i t r o g e n i s s i g n i f i c a n t l y below average. N i t r o g e n l o s s e s i n p i t storage were smal l i n the 1976 t r i a l . More s i g n i f i c a n t l o s s e s had been expected. The p i t c r o s s s e c t i o n study (19 77) showed t h a t these l o s s e s were l i k e l y g r e a t e r due to the v a r i a b i l i t y i n n i t r o g e n content found i n the p i t a t d i f f e r e n t l o c a t i o n s . The d i f f e r e n c e between n i t r o g e n a t the i n p u t and the p i t mean n i t r o g e n l e v e l i n t h i s study was 12%. Spreading l o s s e s ranged from 4-9% of a p p l i e d manure n i t r o g e n i n fo u r t r i a l s . N i t r o g e n r e c o v e r y showed higher y i e l d i n a l l the t r e a t e d p l o t s . With the e x c e p t i o n of the November U.B.C. t r i a l , the y i e l d o f the l i g h t a p p l i c a t i o n s exceeded t h a t of the heavy a p p l i c a t i o n s . Based on t h i s data i t i s un- l i k e l y t h a t a farmer wishing to ensure high crop y i e l d s and e f f i c i e n t use of manure would l a n d spread a t a r a t e r e s u l t i n g i n environmental damage. However, the data c o l l e c t e d a t Beaver Meadows was o n l y f o r the second of three crops and t h a t a t the U.B.C. Farm an e a r l y h a r v e s t i n May to a l l o w f i e l d work which would be f o l l o w e d by a t l e a s t two subsequent c u t t i n g s . Thus f a r more e x t e n s i v e y i e l d data i s r e q u i r e d b e f o r e c o n c l u s i o n s on a p p l i c a t i o n r a t e v s . y i e l d can be made. The ammonia p r o f i l e s showed some b u i l d - u p i n the upper horizons, but l i t t l e downward movement as expected. Observations o f the n i t r a t e p r o f i l e s showed l e v e l s exceeding 10 ppm i n the upper h o r i z o n s but never i n ;the lower h o r i z o n s . I t i s u n l i k e l y t h a t the l o a d i n g r a t e s shown would cause environmental damage. TKN s o i l p r o f i l e s a t Beaver Meadows and U.B.C. Farms showed unexplained f l u c t u a t i o n s . It i s reasonable to conclude that in most farming operations i n B r i t i s h Columbia undesirable environmental impacts from waste management w i l l be generated p r i n c i p a l l y from poor manure handling and storage. The land base l im i ted operations are the obvious exceptions and w i l l require study into maximum permissible loading ra tes . 65 L i t e r a t u r e C i t e d 1. American P u b l i c H e a l t h A s s o c i a t i o n , 19 71. Standard Methods f o r the Examination of Water and Wastewater, 13th Ed., New York. 2. Adriano, D.C., A.C. Chang and R. S h a r p i e s , 1974. N i t r o g e n Loss from Manure as I n f l u e n c e d by Moisture and Temperature. J . E n v i r o n . Qual., V o l . 3 , No.3, pp. 258-261. 3. Adriano, D.C., P.F. P r a t t , S.E. Bishop, W. Broch, J . O l i v e r and W. Fairbank, 1971. N i t r o g e n Load of S o i l and Groundwater from Land D i s p e r s a l of D a i r y Manure, C a l i f . Agr. 4. Avinmelech, R. and J . Rareh, 1976. N i t r a t e Leakage from S o i l s D i f f e r i n g i n Texture and N i t r o g e n Load. J . E n v i r o n . Qual., V o l . 5, No. 1., pp 79-82. 5. Barber, E.M. , 1976. The B r i t i s h Columbia A g r i c u l t u r a l Environmental C o n t r o l Program, presented a t the 1976 Annual Meeting of the PNW ASAE. 6. Bomke, A.A. and L.M. L a v k u l i c h , 1975. Composition of P o u l t r y Manure and E f f e c t of Heavy A p p l i a t i o n on S o i l P r o p e r t i e s and P l a n t N u t r i t i o n , B r i t i s h Columbia, Canada. Managing L i v e s t o c k Wastes, The Proceedings of the t h i r d I n t e r n a t i o n a l Symposium of L i v e s t o c k Wastes, ASAE, Pub. Proc. 275, pp 614-617. 66 7. Bosch, H.M., A.B. R o s e n f i e l d , Roberta Huston, H.R. Shipman and F.L. Woodward, 1950. Methemoglobinemia and Minnesota Well S u p p l i e s . J . Amer. Water Works Ass., pp 161-170. 8. B r i t i s h Columbia M i n i s t r y of A g r i c u l t u r e , A g r i c u l t u r a l E n g i n e e r i n g Branch, 1971. B r i t i s h Columbia Animal Waste Management Guide, D r a f t 4. 9. B r i t i s h Columbia M i n i s t r y o f A g r i c u l t u r e , A g r i c u l t u r a l E n g i n e e r i n g Branch, 1975. Environmental G u i d e l i n e s f o r D a i r y Producers i n B r i t i s h Columbia. 10. Canada Department of A g r i c u l t u r e , 1974. Canada Animal Waste Management Guide, Pub. 1534. 11. Day, D.L. and B.G. Harmon, 19 75. P r o p e r t i e s r e l a t e d to U t i l i z a t i o n . S t a n d a r d i z i n g P r o p e r t i e s and A n a l y t i c a l Methods r e l a t e d t o Animal Waste Research. ASAE S p e c i a l Pub. SP-0275. 12. F i s h e r , L . J . , 1974. I n f l u e n c e on Feeding System, D i g e s t i b i l i t y of Ration and P r o p o r t i o n of Concentrate Consumed on the Q u a n t i t y and Q u a l i t y of E x c r e t a v o i d e d by L a c t a t i n g Cows. Proceedings of A g r i c . Waste Manage- ment Conf., C o r n e l l Univ., pp 283-290. 13. F o l e y , C.R., D.L. Bath, F.N. D i c k i n s o n , H.A. Tucker, 1973. D a i r y C a t t l e , P r i n c i p l e s , P r a c t i c e s , Problems P r o f i l e s . Lea & F e b i g e r , P u b l i s h e r s . 14. Gambrell, R.P., J.W. G i l l i a m and S.B. Weed, 1975. Losses from S o i l s o f the North C a r o l i n a C o a s t a l P l a i n . J . E n v i r o n . Qual., V o l . 4, No. 3, pp 317-323. 67 15. Klausner, S.D., P.J. Zwerman and D.F. E l l i s , 1976. N i t r o g e n and Phosphorus Losses from Winter D i s p o s a l o f D a i r y Manure. J . E n v i r o n . Qual., V o l . 5, No. 1, pp. 47-49. 16. Lauer, A.D., D.R. B o u l d i n and S.D. Klausner, 1976. Ammonia V o l a t i l i z a t i o n from D a i r y Manure Spread on the S o i l S u r f a c e . J . E n v i r o n . Qual., V o l . 5, No. 2, pp. 134-141. 17. Lund, Z.F., F.L. Long, B.D. Doss, F.E. Lowry, 1975. D i s p o s a l of D a i r y C a t t l e Manure on S o i l . Managing L i v e s t o c k Wastes, the Proceedings o f the t h i r d I n t e r - n a t i o n a l Symposium o f L i v e s t o c k Wastes, ASAE, Pub. Proc. 275, pp. 591-593. 18. Loehr, R.C, 19 74. A g r i c u l t u r a l Waste Management. Academic P r e s s , New York. 19. Luymes, J . C , 1977. Movement o f S o l i d s and N i t r o g e n on a D a i r y Farm from Feed I n g e s t i o n to Manure Storage. Unpublished B.A.Sc. T h e s i s , Un'versity of B.C. 20. Maynard, L.A., and J.K. L o o s l i , 1969. Animal N u t r i t i o n . McGraw H i l l P u b l i s h e r s . 21. Method o f S o i l A n a l y s i s , P a r t 2, 1965. Chemical and B i o l o g i c a l P r o p e r t i e s , No. 9, E d i t o r , C A . Black, Academic P r e s s . 22. Murphy, L.S., G.W. W a l l i n g f o r d andW.L. Powers, 1973. E f f e c t s of A p p l i c a t i o n Rate i n D i r e c t Land D i s p o s a l of Animal Wastes. J . of D a i r y S c i . , V o l . 56, No. 10, pp. 1367-1374. 68 23. National Academy of Sciences, 1971. Nutrient Re- quirements of Dairy C a t t l e , Pub. ISBN 0-309-01916-8, Nutrient Requirements of Domestic Animals Series. 24. National Academy of Sciences, 1969. United States- Canada Tables of Feed Composition, Pub. ISBN 0-309- 01684-3. 25. Province of B.C. P o l l u t i o n Control Act, 1967 and Regulations Chap. 34, 1968, Chap. 38, 1970, Chap. 36. Queens Pri n t e r , Province of B.C., V i c t o r i a . 26. Randall, G.W., R.H. Anderson and P.R. Goodrich, 1975. S o i l Properties and Future Crop Production as Affected by Maximum Rates of Dairy Manure. Managing Livestock Wastes, the Proceedings of the t h i r d International Symposium of Livestock Wastes, ASAE, Pub. Proc. 275, pp. 611-613. 27. Schuman, G.E., M.A. Stanley and D. Knudsen, 1973. Automated Total Nitrogen Analysis of S o i l and Plant Samples. S o i l Sci'. Soc. of Amer. P r o c , Vol. 37, pp. 480-481. 28. Soulides, D.A., and F.E. Clark, 1958. N i t r i f i c a t i o n i n Grassland S o i l s . S o i l Science Society of Amer. Proc., pp. 308-311. 29. Staley, L.M., 1976. Unpublished Data, University of B r i t i s h Columbia. 30. Techriicon" AutbAnalyzer" II,. 19 71. I n d u s t r i a l Method No. 100-70W, Nitrate and N i t r i t e i n Water and Wastewater, Method No. 98-70W, Ammonia i n Water and Wastewater. Technicon I n d u s t r i a l System, Tarrytown,N.Y., U.S.A., 10591 69 31. Turner, D.O., 1975. On the Farm Determination of Animal Wastes Disposal Rates for Crop Production. Managing Livestock Wastes, the Proceedings of the t h i r d International Symposium of Livestock Wastes, ASAE, Pub. Proc. 275, pp. 587-590. 32. U.S. Dept. of Health, Education and Welfare, Public Health Service, 1962. Pub. 956. 33. Yeck, R.C., L.W. Smith and C C . Calvert, 1975. Recovery of Nutrients from Animal Wastes - an Over- view of E x i s t i n g Options and Potentials f o r Use i n Feed. Managing Livestock Wastes, the Proceedings of the t h i r d International Symposium of Livestock wastes, ASAE, Pub. Proc. 275, pp. 192-194. 34. Young, R.A. and CK. Mutchler, 1976. P o l l u t i o n Potential of Manure Spread on Frozen Ground. J . Environ. Qual., Vol. 5, No. 2, pp. 174-179. 70 APPENDIX A OPERATION OF THE AGRICULTURAL ENVIRONMENTAL CONTROL PROGRAM APPENDIX B COMPARISON OF TOTAL NITROGEN DETERMINATION OF SOILS Determination o f TKN by two methods; a) Block d i g e s t i o n / A u t o A n a l y s e r b) Macro K j e l d a h l d e t e r m i n a t i o n Short D e s c r i p t i o n o f A n a l y t i c a l Procedures: A. BLOCK DIGESTION/AUTOANALYSER i . S o i l sample s i z e - approximately 1.0 g i i . D i g e s t i o n c a t a l y s t : 3 g o f premix c a t a l y s t 9 7% K2SO4 + 3% CuS0 4 + 10 ml o f co n c e n t r a t e d H 2 S 0 4 i i i . The mixture i n d i g e s t i o n tube i s d i g e s t e d a t 700°F a f t e r c o o l i n g and d i l u t e d i n t o 500 ml and analysed on Technicon AutoAnalyser f o r NH^+ by a l k a l i n e p h e nol-hypochloride r e a c t i o n B. MACRO KJELDAHL DETERMINATION i . S o i l sample - approximately 6 g i i . D i g e s t i o n c a t a l y s t : O f f i c i a l KEL PAK POWDER BAG(10 g K 2S04 + 0.3 g CuS0 4, C a n l a b - C u r t i s Matheson S c i e n t i f i c Inc. 50 ml of conce n t r a t e d ^ S O^ i s added and mixture i s d i g e s t e d f o r approximately 2-3 hours on K j e l d a h l D i g e s t e r Rack. Add 200 ml of H 20 a f t e r d i g e s t i o n i i i . A f t e r c o o l i n g add 150 ml o f 10 N NaOH and d i s t i l l about 75 ml i n t o 300 ml f l a s k c o n t a i n i n g 75 ml of B o r i c A c i d I n d i c a t o r S o l u t i o n u s i n g K j e l d a h l D i s t i l l a t i o n Rack i v . T i t r a t e the d i s t i l l a t e w i t h s t a n d a r d i s e d HCl. v. C a l c u l a t i o n ; N of HCl x 14.007 x ml HCl x 100 g s o i l x 10^ Normality of HCl = 0.104 NOTES Due to vio l e n t bumping during d i s t i l l a t i o n ( e v e n with excess of b o i l i n g chips)only two samples were d i s t i l l e d at a time on a 12 place D i s t i l l a t i o n Rack, and volume of d i s t i l l a t e was cut to 40-50 ml. With a l l precautions one Macro-Kjeldahl flask cracked but d i s t i l l a t e was recovered. RESULTS Six s o i l samples, from two f i e l d plots on Vancouver Island, were analysed i n duplicate by both methods. S o i l sampling was ca r r i e d out diagonally across the f i e l d plots as 15 cm i n t e r v a l s to a depth of 45 cm, thus giving four determination of TKN for each depth by both methods. Results are as follows: Block Digestion/ Macro Kjeldahl AutoAnalyzer Depth cm Sample Size g TKN ppm TKN Average ppm Sample Size g TKN TKN Average 0-15 6.14 6.47 1922 1848 1884 1.01 1.03 1866 1479 1672 15-30 6.21 6.11 2064 2122 209 3 1.01 .1.0.3 2250 2091 2170 30-45 7.45 7.52 626 639 632 1.08 1.03 608 459 533 0-15 6.32 5.34 1751 1664 1707 1.04 1.04 1568 1265 1416 15-30 6.31 6.15 1108 1090 1099 1.04 1.02 860 1082 971 30-45 7.44 7.42 274 314 294 1.03 1.03 4 34 459 446 At the 0.05 l e v e l of signifigance a t - t e s t shows that there i s not a s i g n i f i g a n t difference between the two methods of analysis. APPENDIX C NH^ - N ANALYSES— PRE RUN (WATER AND IN KCl EXTRACTIONS) Sample Water l.N KCl Difference Code ppm ppm ppm 1 1,340 1,480 140 10.4% 2 1,240 1,450 210 16.9% 3 1,060 1,480 420 39.6% 4 1,340 1,510 170 12.7 5 1,340 1,520 180 13.4 At the 0.05 l e v e l of signifigance a t - t e s t shows that there i s a s i g n i f i g a n t difference between the two methods of analysis APPENDIX D DETERMINATION OF NOg - N IN SOIL EXPERIMENTAL CONDITIONS: A - 5g o f s o i l e x t r a c t e d by 25 ml IN KC1 B - 5g o f s o i l e x t r a c t e d by 25 ml of H 20/CaS0 4(lg/1) STD - 2 ppm = 62.5 D i v . N0'3 - N ppm A B 4.80 4.80 4.55 4.80 4.80 4.80 4.12 4.80 4.35 4.58 4.58 4.58 4.58 4.58 4.80 4.80 4.58 4.80 4.80 5.03 Avg. 4.60 4.76 At the 0.05 l e v e l o f s i g n i f i g a n c e a t - t e s t shows t h a t t h e r e i s not a s i g n i f i g a n t d i f f e r e n c e between the two methods of a n a l y s i s . 76 APPENDIX E COMPARISON OF FEED RESULTS AT BEAVER MEADOWS AND U.B.C. FARMS. % CRUDE PROTEIN(WET WEIGHT BASIS) FEED MEASURED* FEED ANALYSIS MANUFACTURERS LIT SERVICE QUOTATION ALFALFA(B.M.) 12.3 _ 14 SILAGE(B.M.) 2.5 3. 0 3 CONCENTRATES(B.M.) 9.8 - 16% — ALFALFA(U.B.C.) 9.7 14. 7 14 GRASS SILAGE(U.B.C.) 2.8 2. 6 - CORN SILAGE(U.B.C.) 2.2 1. 4 - CONCENTRATE(U.B.C.) 10.6 15. 5 16% — * Measured Values are an average of 6 samples taken a t monthly i n t e r v a l s . These samples showed c o n s i d e r a b l e f l u c t u a t i o n s . 77

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 9 39
United States 2 0
Japan 2 0
City Views Downloads
Beijing 9 2
Tokyo 2 0
Redmond 1 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items