UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Benthic algal ecology and primary pathways of energy flow on the Squamish River Delta, British Columbia Pomeroy, William M. 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1977_A1 P64.pdf [ 11.33MB ]
Metadata
JSON: 831-1.0094311.json
JSON-LD: 831-1.0094311-ld.json
RDF/XML (Pretty): 831-1.0094311-rdf.xml
RDF/JSON: 831-1.0094311-rdf.json
Turtle: 831-1.0094311-turtle.txt
N-Triples: 831-1.0094311-rdf-ntriples.txt
Original Record: 831-1.0094311-source.json
Full Text
831-1.0094311-fulltext.txt
Citation
831-1.0094311.ris

Full Text

BENTHIC ALGAL ECOLOGY AND PRIMARY PATHWAYS OP ENERGY FLOW ON THE SQUAMISH RIVER DELTA, B R I T I S H COLUMBIA by WILLIAM MARTIN POMEROY B. S c . , U n i v e r s i t y  o f V i c t o r i a , V i c t o r i a , B.C.,  1972  M. S c . , U n i v e r s i t y  o f M a n i t o b a , W i n n i p e g , Man.,  197^  A THESIS SUBMITTED I N PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES DEPARTMENT  OF BOTANY  We a c c e p t t h i s t h e s i s a s c o n f o r m i n g to the required  standard  THE UNIVERSITY OF B R I T I S H COLUMBIA October, ©  William  1977  M a r t i n Pomeroy,  1977  In presenting this thesis in partial  fulfilment of the requirements for  an advanced degree at the University of B r i t i s h Columbia, I agree that the Library  shall make it freely available for  reference and study.  I further agree that permission for extensive copying of this  thesis  for scholarly purposes may be granted by the Head of my Department or by his representatives.  It  is understood that copying or publication  of this thesis for financial gain shall not be allowed without my written permission.  Department of  Bo  / /9/^]  The University of B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5  Date  f? <r. C  /T77  ii ABSTRACT  Benthic a l g a l ecology  and primary  pathways o f energy  flow were considered on the Squamish R i v e r d e l t a at the head o f Howe Sound, a f j o r d - t y p e e s t u a r y .  The study  e l u c i d a t e d the s t r u c t u r e and f u n c t i o n o f major a u t o t r o p h i c components o f the e s t u a r i n e ecosystem.  Benthic  algae were i n v e s t i g a t e d with regard t o s p e c i e s composi t i o n and d i s t r i b u t i o n and the c a p a c i t y f o r energy c o n v e r s i o n , input t o the system and s t o r a g e .  Compari-  sons were made with e x i s t i n g i n f o r m a t i o n on the v a s c u l a r p l a n t component o f the ecosystem. The b e n t h i c a l g a l community was s t u d i e d by r e g u l a r f i e l d sampling  o f major macroalgae and m i c r o a l g a l a s s o c i -  a t i o n s with a monitoring mental f a c t o r s . was  of physical-chemical environ-  Presence o f an a l g a i n the estuary  a f u n c t i o n o f i t s osmoregulatory  Establishment  capabilities.  and t e m p o r a l - s p a t i a l d i s t r i b u t i o n p a t t e r n s  were c o n t r o l l e d by s u b s t r a t e - h a b i t a t p r e f e r e n c e and a v a i l a b i l i t y and the i n t e r a c t i o n o f l i g h t , i n t e r s p e c i e s c o m p e t i t i o n , d e s i c c a t i o n , temperature and s a l i n i t y , l i g h t being o f g r e a t e s t importance.  Carex  lyngbyei  Hornem., the dominant v a s c u l a r p l a n t , had a s i g n i f i c a n t e f f e c t on d i s t r i b u t i o n o f b e n t h i c algae through  light  r e s t r i c t i o n d u r i n g I t s summer growth p e r i o d and a c t i o n as a s u b s t r a t e d u r i n g the w i n t e r .  T o t a l species d i v e r -  s i t y , biomass and d i s t r i b u t i o n a l area o f b e n t h i c were g r e a t e s t at the l a t t e r p e r i o d .  algae  iii The e f f e c t o f ecosystem s t r u c t u r e on f u n c t i o n was i n v e s t i g a t e d by a n a l y s i s o f energy f l u x through major benthic a l g a l producers.  Comparisons  were made o f the  t o t a l amount o f energy input a t t r i b u t a b l e t o b e n t h i c algae and v a s c u l a r p l a n t s .  The importance o f an a l g a l  _ p  producer t o energy flux-m  was a f u n c t i o n o f e i t h e r  h i g h primary p r o d u c t i v i t y , p h o t o s y n t h e t i c e f f i c i e n c y and c a l o r i c c o n t e n t , or i n the case o f diatom dominated m i c r o a l g a l a s s o c i a t i o n s , h i g h c a l o r i c content alone. b u t i o n , r e f l e c t i n g the presence o f s u i t a b l e habitat, modified t h i s pattern. energy input*m Pylaiella  littoral-is  (Monoetroma  substrate-  Macroalgae having h i g h  oxyapermum  (Kutz.) Doty,  (Lyngb.) K j e l l . ) were o f minimum  importance t o t o t a l energy i n p u t . ations  Distri-  Two m i c r o a l g a l a s s o c i -  ( A s s o c i a t i o n E , diatom dominated, A s s o c i a t i o n G,  Ulothrix  flaoca  energy input-m  ( D i l l . ) Thur. dominated), each w i t h low but w i t h wide d i s t r i b u t i o n and h i g h  p h o t o s y n t h e t i c e f f i c i e n c y and c a l o r i c content c o n t r i b u t e d a t o t a l o f 8H% o f a v a i l a b l e energy a t t r i b u t a b l e t o b e n t h i c algae. Benthic algae account f o r a maximum o f ca. 7% o f t o t a l energy input t o the d e l t a ecosystem compared t o ca.  9 0 $ by v a s c u l a r p l a n t s and 3% by a d d i t i o n o f o r g a n i c  matter.  The m a j o r i t y o f energy f o r the d e t r i t a l based  ecosystem comes from v a s c u l a r p l a n t s and becomes  avail-  able a f t e r a l a g p e r i o d a l l o w i n g decomposition.  Benthic  algae are s i g n i f i c a n t t o the ecosystem as a r e a d i l y  iv available, continually  present energy source r e q u i r i n g  l i t t l e o r no breakdown f o r u t i l i z a t i o n and not f o r t o t a l energy i n p u t . Energy i s a v a i l a b l e as e i t h e r d i s s o l v e d u l a t e o r g a n i c matter.  Of the l a t t e r , ca.  or p a r t i c -  49$ i s removed  to the e s t u a r y , 33% i n c o r p o r a t e d i n t o the sediments o f the  d e l t a and 1 8 $ used by consumers i n the d e l t a eco-  system.  V TABLE OF CONTENTS Page ABSTRACT  i  L I S T OP TABLES  viii  L I S T OP FIGURES  i  x i  L I S T OP APPENDICES  xiv  ACKNOWLEDGEMENTS  xvi  INTRODUCTION  1  STUDY AREA  4  MATERIALS AND METHODS I.  11  Physical-Chemical A.  Factors  11  S a l i n i t y , temperature,  precipitation,  light  11  B.  A l k a l i n i t y , pH, n u t r i e n t s  13  C.  Sediment and o r g a n i c  deposition  patterns D. II.  I * 1  T i d a l creek flow rates  15  B i o l o g i c a l Factors A.  16  D i s t r i b u t i o n (coverage area) and biomass  B.  C.  Primary  16 production  16  Carbon-l*! method  17  D i s s o l v e d oxygen method  21  Removal, d e p o s i t i o n o f p a r t i c u l a t e organic matter  (POM)  22  D.  Caloric equivalents  E.  A l g a l , p l a n t and d e t r i t u s u t i l i z a t i o n by  25  amphipods Field  26  studies  Laboratory  27  studies  < 27  F a t t y a c i d s p e c t r a comparison III.  Analysis of Factors Production  Influencing  28  Primary 29  vi 30  RESULTS I.  Physical-Chemical Factors  30  A.  S a l i n i t y , temperature, l i g h t  30  B.  pH, n u t r i e n t s  34  C.  Sediment and o r g a n i c d e p o s i t i o n  D. II.  patterns  36  T i d a l creek fiow r a t e s  38  B i o l o g i c a l Factors  . .  A.  Species composition  B.  Biomass and p r o d u c t i o n 14  C.  Comparison o f oxygen primary  D.  and d i s t r i b u t i o n . . .  C and d i s s o l v e d production estimates....  Dissolved organic material  6l  A d d i t i o n and removal o f p a r t i c u l a t e Addition  6l 6l  .  Removal  64 69  F.  Caloric equivalents  G.  Benthic a l g a e , v a s c u l a r p l a n t , d e t r i , 72  tus u t i l i z a t i o n by amphipods S t a t i s t i c a l Analysis of Factors encing Primary  Influ-  Production  II.  77 79  DISCUSSION I.  58  (DOM)  o r g a n i c m a t e r i a l (POM)  III.  40 49  exuded d u r i n g p r o d u c t i o n E.  40  Ecosystem S t r u c t u r e  79  Ecosystem F u n c t i o n . .  92  A.  Energy sources, c o n v e r s i o n and 95  storage  95  Energy sources Energy c o n v e r s i o n , i n p u t and  98  storage 1)  Vascular plants  2)  Benthic algae  3)  Seasonal  98 102  v a r i a t i o n i n energy  c o n v e r s i o n and storage  108  vii B.  Annual energy f l u x and g e n e r a l ecosystem function  110  Sand/mud f l a t h a b i t a t  112  Carex III.  marshland  Ilk  The Squamish R i v e r D e l t a as a P r o d u c t i v e , Energy Rich Ecosystem  12*1  LITERATURE CITED  131  APPENDICES  144  viii  L I S T OF TABLES Table 1.  Page Photosynthetically reaching  2.  available radiation 31  the study area  Shading of the d e l t a surface vascular  plants.  Light  by  attached  attenuation  as 33  percent incident r a d i a t i o n 3.  Nutrient surface ples  4.  concentrations  1  waters surrounding the d e l t a  taken at high  Major a l g a l species substrate  5.  (Ag-at•l~ )iin 37  tide) with  their  preferred 41  a n d l o c a t i o n on t h e d e l t a  A p p e a r a n c e , c o m p o s i t i o n , and d i s t r i b u t i o n of m u l t i s p e c i f i c m i c r o a l g a l  6.  (sam-  associations..  S e a s o n a l o c c u r r e n c e o f m a c r o a l g a e and m i c r o 52  algal associations 7.  Maximum b i o m a s s v a l u e s f o r m a c r o a l g a e a n d microalgal  8.  46  52  associations  N e t p r o d u c t i v i t y maximum a n d minimum r e c o r d e d f o r m a c r o a l g a e and m i c r o a l g a l 54  associations 9.  Monthly 10  C net production  estimates  ) f o r m a c r o a l g a e and m i c r o a l g a l  t i o n s p e r d i s t r i b u t i o n (.coverage; corrected  (g C x  associaarea,  f o r coverage-exposure time  56  ix 10.  Net primary p r o d u c t i o n o f macroalgae  and  m i c r o a l g a e a s s o c i a t i o n s on t h e d e l t a (g C - m ~ - d a y ~ ) 2  59  1  14 11.  C p r o d u c t i o n as p e r c e n t oxygen p r o d u c t i o n ( a v e r a g e s o f 10 d e t e r m i n a t i o n s )  12.  60  O r g a n i c e x u d a t i o n as p e r c e n t t o t a l n e t p r i m a r y p r o d u c t i o n m e a s u r e d by t h e " ..  method 13.  C 62  A d d i t i o n o f p a r t i c u l a t e organic matter t othe ) (mean o f 4 s a m p l i n g  sites  i n each a r e a , s a m p l i n g p e r i o d over 1  tidal  delta  (mg C*m  65  cycle) 14.  P a r t i c u l a t e o r g a n i c m a t t e r Removed f r o m t h e d e l t a by Snag and P i l e h i g h and low w a t e r  creeks  (mg C - l  - 1  ) at 68  levels —2  15.  P a r t i c u l a t e organic matter  (mg C.m  'flood  tide""*") r e m o v e d f r o m t h e m a j o r h a b i t a t  types  on t h e d e l t a 16.  70  Caloric equivalents f o r algae,  sediments,  d e t r i t u s and p a r t i c u l a t e o r g a n i c m a t t e r . . . . 17.  71  Results o f analysis using a 2 x 2 contingency t a b l e showing r e l a t i o n s h i p s o f macroalgae 2 and a m p h i p o d s i n a 30 x 30 m marshland a t  18.  P  0.05  at low t i d e  g r i d on t h e  (Tabulated=  3.84  )  7 3  C o v e r a n d f e e d i n g p r e f e r e n c e shown b y a m p h i p o d s t e s t e d i n t h e l a b o r a t o r y ( t o t a l o f 300 a d u l t s a n d j u v e n i l e a m p h i p o d s - 15 t r i a l s o f 20 e a c h )  )  74  X  19.  Patty acid analysis of selected  food 76  sources and amphipods f e d on them 20.  S t a t i s t i c a l a n a l y s i s o f primary product i o n data using stepwise m u l t i p l e r e g r e s s i o n (p = 0.05). = net p r o d u c t i o n ; salinity,  Dependant v a r i a b l e ,  independent v a r i a b l e s =  l i g h t , temperature, n i t r a t e ,  phosphate and ammonia.... 21.  T o t a l energy input storage losses  78  (gross  production),  (net productionaas  DOM,  ( r e s p i r a t i o n ) f o r benthic  producers i n f a l l , w i n t e r , summer as k e a l x 10 *mo 22.  POM), and algal  s p r i n g , and  'study area  Annual energy f l u x f o r sand/mud f l a t s .,' 2 &area = 15875 ni ) and sedge marshlands (area = 111125 m )....  113  2  23.  I l l  Comparison o f net p r o d u c t i o n -2  storage) as g C*m  (energy  -1  «yr  for  Carex  l y n g b y e i and v a s c u l a r p l a n t s o f other marsh areas 24.  128  Comparison o f net p r o d u c t i o n —2 1 storage) as g C-m  (energy  •yr"' f o r diatom-  dominated m i c r o a l g a l a s s o c i a t i o n s i n e s t u a r i n e and marine h a b i t a t s  130  xi  L I S T OP FIGURES Figure 1.  Page Southern coast o f B r i t i s h Columbia showing t h e l o c a t i o n o f Howe S o u n d w i t h t h e  Squamish 5  d e l t a a t t h e head 2.  Squamish  River estuary, B r i t i s h  Columbia  showing p h y s i o g r a p h i c d e t a i l s o f the d e l t a . . 3.  D e t a i l e d map  of Central delta  showing 12  sampling s t a t i o n s 4.  6  D i a g r a m o f cage u s e d f o r s t u d i e s o f p a r t i c u l a t e o r g a n i c r e m o v a l i n p l a c e on t h e 23  delta L i g h t a t t e n u a t i o n w i t h depth In water column a d j a c e n t t o t h e d e l t a  (data  appear 32  i n Appendix I ) 6»a,  b , c.  A i r t e m p e r a t u r e , p p t . , w a t e r temp-  e r a t u r e , pH and s a l i n i t y J u n e 1975 7.  1974-August 35  (Data appear i n Appendix I I )  Seasonal patterns of sedimentation sediment o r g a n i c content ( s i t e  and  descriptions 39  and d a t a appear i n Appendix I V ) 8 , a , b.  Macroalgae showing g r o s s appearance o f Pylaiella minima  c , d.  littovalis  ( a ) and  Enteromorpha  (b)  44  M i c r o a l g a l a s s o c i a t i o n s showing g r o s s a p p e a r a n c e o f ( c ) A s s o c i a t i o n D and (d) A s s o c i a t i o n F  44  xii 9. 10.  Total  coverage  a r e a and a l g a l biomass  D i s t r i b u t i o n o f b e n t h i c a l g a e on t h e d e l t a i n A) f a l l  (September),  ( D e c e m b e r ) , C) s p r i n g  B) w i n t e r  (March) and  D) summer ( J u n e ) 11.  .  P a r t i c u l a t e organic matter delta  expressed  microalgae (average a. b. 12.  48  •••• 50  added t o t h e  as p e r c e n t d e t r i t u s  (^)  ,  , a n d m a c r o a l g a e (^^) •  of four stations)  63  Marshland Sand/mud f l a t s  Particulate  o r g a n i c m a t t e r removed  Snag and P i l e  c r e e k s as p e r c e n t  (^) , m i c r o a l g a e (composite  through  detritus  , and macroalgae  d a t a from low and h i g h  creek  levels) 13.  Cavex  66  lyngbyei  meadow i n e a r l y  March,  s h o w i n g mat o f d e c a y e d v e g e t a t i o n , a n d i n late July 14.  a t t h e t i m e o f maximum g r o w t h . . . .  99  Energy i n p u t (gross p r o d u c t i o n ) f o r each major producer,  separated into  o r g a n i c (^) , p a r t i c u l a t e  dissolved  o r g a n i c (JJJj)* a n d  r e s p i r a t i o n (fy^) .  The numbers ilndeEgteach -2 r e f e r t o a v a i l a b l e PAR (kcal«m  producer -1  y  5  x 10"; o v e r t h e g r o w t h p e r i o d a n d  photosynthetic efficiency  {%), r e s p e c t i v e l y .  ( M i n o r p r o d u c e r s , e . g . A s s o c i a t i o n s B, C not i n c l u d e d )  103  xiii 15.  Energy Input (gross p r o d u c t i o n ) f o r each major producer, separated i n t o o r g a n i c (^) , p a r t i c u l a t e and r e s p i r a t i o n  .  dissolved  o r g a n i c (JJJj) ,  (Minor A s s o c i a t i o n s  B and C not i n c l u d e d )  106  —2 16.  Energy flow (kcal-m  —1 -md  ) through major  b e n t h i c a l g a l producers i n f a l l winter((December), s p r i n g summer (June).  (September),  (March) and  Numbers above each b a r  r e f e r t o d i s t r i b u t i o n a l area i n square meters 17.  109  Seasonal p a t t e r n o f energy storage (net p r o d u c t i o n ) by Carex  lyngbye-C  and b e n t h i c  a l g a e , energy removal as POM and the r a t e s of energy removal/energy 18.  storage  Proposed energy f l u x through(7ares  119 lyngbyei  (above and below ground) and b e n t h i c a l g a e . R e l a t i v e percentages d e r i v e d from Table 22 represent flux i n a " c h a r a c t e r i s t i c " meter o f d e l t a  surface  square :,.125  xiv  LIST OF APPENDICES Appendix I.  Page L i g h t a t t e n u a t i o n i n the water  column  adjacent t o the d e l t a , as % i n c i d e n t 144  radiation II.  S a l i n i t y , temperature and i n c i d e n t radiation  III.  145  (PAR)  N u t r i e n t c o n c e n t r a t i o n s i n t i d a l creeks (see F i g . 3 f o r sampling l o c a t i o n s ) 147  CAg-at-l" ) 1  IV.  Annual s e d i m e n t a t i o n r a t e s and sediment o r g a n i c content (.LOI) determined from cores taken i n 1974 from l o c a t i o n s i indicated A.  below.  S p a t i a l v a r i a t i o n i n mean sediment148  ation rates B. V.  Year o f d e p o s i t i o n , depth and LOI.... 149  Seasonal changes i n s p e c i e s composition of microalgal a s s o c i a t i o n s .  Numbers  r e p r e s e n t r e l a t i v e percent composition... 151 VI.  Distribution  (coverage area) and biomass  data f o r macroalgae and m i c r o a l g a l  associ-  ations VII.  154  T o t a l biomass f o r macroalgae and m i c r o a l g a l a s s o c i a t i o n s as kg C ' d i s t r i b u t i o n area  - 1  15 8  XV  VIII.  14  C p r o d u c t i o n and o r g a n i c e x u d a t i o n  data 160  (g C . m " . d a y ) 2  IX.  - 1  Estimated monthly percent  emersion  (exposed) and immersion (covered) f o r t h e Squamish d e l t a as from t i d e X.  time  determined 166  tables  Turnover times  f o r major producers  on a v e r a g e b i o m a s s a n d p r i m a r y  based  production 167  values XI.  Annual net primary f o r Carex  production  estimates  l y n g b y e i based on growth 168  increments XII.  Net energy p r o d u c t i o n f o r major producers. percent  Pro-rated values  algal  represent  o f t o t a l f o r e a c h month  (calcul12)  a t i o n s based on d a t a from T a b l e XIII.  N e t e n e r g y p r o d u c t i o n 6f m a j o r producers. percent period Table  XIV.  Pro-rated values  169  algal  represent  d i s t r i b u t i o n over t h e growth ( S a l c u l a t i o n s based on d a t a  from  12)  Primary  170  p r o d u c t i o n and p h o t o s y n t h e t i c  efficiency  data f o rconstructing  energy f l o w pathways  seasonal 172  xvi ACKNOWLEDGEMENTS  I wish t o express my s i n c e r e thanks  t o Dr. J.R.  S t e i n f o r her advied, guidance, p a t i e n c e and f i n a n c i a l support p r o v i d e d by funds from NRC grant A1053. Research  facilities,  equipment and s h i p time were made  a v a i l a b l e . b y the P a c i f i c Environment  Institute,  Department o f F i s h e r i e s and Environment, F i s h e r i e s and Marine S e r v i c e .  I am deeply indebted t o Dr. C D .  Levings and Dr. J.G. Stockner f o r t h e i r i n t e r e s t , encouragment and advice throughout study. of  the course o f t h i s  The h e l p f u l s u g g e s t i o n s , c r i t i c i s m s and comments  Dr. R.E. Foreman and Dr. P.G. Harrl'son concerning  p r e p a r a t i o n o f t h i s t h e s i s are g r a t e f u l l y acknowledged. F i e l d a s s i s t a n c e was p r o v i d e d by Mr. W. Fung, Mr. A. Shearon and Mr. R. Prange, a l l o f whom I thank for  p u t t i n g up w i t h the o f t e n unpleasant  muddy c o n d i t i p n s o f the Squamish d e l t a .  and always  1 INTRODUCTION  E s t u a r i e s and t h e i r a s s o c i a t e d d e l t a s and marshes form a b i o l o g i c a l l y  important  the m a r i n e and f r e s h w a t e r  t r a n s i t i o n zone between  environments  Remane a n d S c h l & e p e r 1971).  (Odum 1971,  Their vulnerability to  i n d u s t r i a l development ( d r e d g i n g , l a n d f i l l ,  dyking  and  (Odum  p o l l u t i o n ) has f r e q u e n t l y been d i s c u s s e d  1971, P e r k i n s 1974). and  shallow-water  i n t e r t i d a l marshes o f e s t u a r i e s as f e e d i n g and  nursery fish  A l s o , the value of  areas  f o r commercially  important  f i s h and s h e l l -  (Anonymous 1972, P e r k i n s 1974) a n d as a s o u r c e  of  organic matter ( d e t r i t u s ) f o r ecosystems o f adjacent c o a s t a l waters  ( M e l c h i o r r i - S a n t o l i n i and H o p t o n 1972,  H e i n l e a n d F l e m e r 1976) h a s b e e n  noted.  E s t u a r i e s a r e among t h e most h i g h l y p r o d u c t i v e o f n a t u r a l ecosystems.  Most i n f o r m a t i o n r e l a t i n g t o t h e  a u t o t r o p h i c components  (primarily benthic  e s t u a r i n e ecosystems has been g a t h e r e d p l a i n s a l t m a r s h e s on t h e e a s t  algae) o f  from c o a s t a l  coast o f the United  States  (Pomeroy 1959, W i l l i a m s 1962, G a l l a g h e r a n d  Daiber  1973, 1974, S u l l i v a n 1 9 7 7 ) , Canada  ( H a t c h e r and  Mann 1 9 7 5 ) , E n g l a n d ( C a r t e r 1932, 1933, H o p k i n s and  South A f r i c a  Fjord-type  1966)  (Day 1950, Day et al 1952, 1953).  e s t u a r i e s o f Norway a n d Denmark h a v e a l s o  provided  c o n s i d e r a b l e i n f o r m a t i o n (Grontved  Nienhuis  1971, G a r g a s 1972).  l i t e r a t u r e on t h e b e n t h i c  I960,  A summary o f e x i s t i n g  a l g a l component  of estuaries  2 is  g i v e n b y Pomeroy (1974) and  by  K e e f e (1972) and Past  research  that for vascular  plants  (1976).  Turner  i n estuarine  e c o s y s t e m s has  generally  been d i r e c t e d to s t r u c t u r e ( s p e c i e s  composition  distribution-abundance)  attention paid t o  function The  ( e n e r g y and  work by T e a l  with  little  m a t e r i a l flow through the  and  system).  (1962) o n a s a l t m a r s h e c o s y s t e m i n  Georgia i s the best  documented study  o f energy  flow.  A s i m i l a r approach I s needed f o r o t h e r  types o f  e s t u a r i e s to gain a f u l l  of their  t a n c e and The  understanding  operation. present  study  i n d i c a t i o n o f the  was  formulated  s t r u c t u r e and  to provide  f u n c t i o n of the  s t u d i e d f j o r d - t y p e e s t u a r i e s common t o B r i t i s h The  impor-  Squamish R i v e r e s t u a r y  was  (Levings  placed  on the  et al.  1976).  autotrophic  little  Columbia.  s e l e c t e d as " t y p i c a l "  o f t h e s e i n v i e w o f i t s p h y s i c a l and arity  some  biological  simil-  P a r t i c u l a r emphasis i s  components o f t h e  intertidal  marshes. Field a.)  and  identify  t i o n and  l a b o r a t o r y e x p e r i m e n t s were d e s i g n e d t o :  factors limiting  primary production  o rcontrolling  of benthic  a l g a e ; b.)  m i n e t h e amount o f e n e r g y f l o w i n g i n t o and v a s c u l a r p l a n t s and in c.)  the  ecosystem  benthic  algae  and  distribudeter-  through  the r o l e o f each  ( I . e . p r i m a r y pathways o f energy  d e l i n e a t e the magnitude o f seasonal  ways o f e n e r g y f l o w ; and  d.)  and  determine the  annual  flow); path-  Importance  3  o f t h e t i d a l marsh as an e n e r g y  source f o r e s t u a r i n e  organisms  as w e l l  Data  t h e s e q u e s t i o n a r e a s , when c o m b i n e d ,  from  have a p r e d i c t i v e  as t h o s e o f a d j a c e n t c o a s t a l  value r e g a r d i n g the e f f e c t s  environmental a l t e r a t i o n  on e n e r g y  f l o w and  waters. may of  ecosystem  function. This ing  study r e p r e s e n t s the f i r s t  an u n d e r s t a n d i n g o f e c o s y s t e m  type e s t u a r y , a very Understanding  vascular plants highly  and  function  c o m p l e x , .-dynamic  the primary  attempt  at g a i n -  in a  environment.  pathways o f e n e r g y  flow  b e n t h i c a l g a e i n such a system  i m p o r t a n t , ISor I t i s t h e b a s e upon w h i c h  remainder  fjord-  o f the ecosystem  is built.  from is  the  4  STUDY AREA  The Squamish R i v e r estuary i s l o c a t e d approximately  (49°4l' N, 123°lo' W)  48 km n o r t h o f Vancouver,  B r i t i s h Columbia at the head o f Howe Sound ( P i g . 1). The area Is r e p r e s e n t a t i v e o f a t u r b i d outwash f j o r d ( B u r e l l and Matthews 1974)  and i s bounded on both s i d e s  by steep mountains. The e n t i r e Squamish estuary has been a f f e c t e d by i n d u s t r i a l development and p h y s i c a l a l t e r a t i o n (Anonymous 1972).  The most s i g n i f i c a n t has been the  c o n s t r u c t i o n o f a r i v e r t r a i n i n g dyke running the l e n g t h o f the estuary  ( F i g . 2), and the establishment  of two r a t h e r d i s t i n c t h a b i t a t s (Pomeroy and Stockner 1976).  The r e g i o n west o f the dyke i s under s t r o n g  freshwater  i n f l u e n c e as a r e s u l t o f the r e d i r e c t i o n o f  v i r t u a l l y the e n t i r e flow o f the Squamish R i v e r t o t h i s area.  In comparison, the r e g i o n £ 0 the east o f the  dyke i s now a r e l a t i v e l y s t a b l e h a b i t a t d i s p l a y i n g mari n e c o n d i t i o n s , r e s u l t i n g from blockage o f the east arm of the Squamish R i v e r and formation o f the C e n t r a l B a s i n ( F i g . 2). The Squamish estuary has been separated  into  West,  C e n t r a l and East d e l t a s on the b a s i s o f major p h y s i o g r a p h i c f e a t u r e s ( t r a i n i n g dyke and C e n t r a l B a s i n ( F i g . 2).  Of t h e s e , the seaward p o r t i o n o f the C e n t r a l d e l t a  best f i t s the two main requirements f o r t h i s  study.  F i r s t l y , s i n c e the d e l t a i s l o c a t e d w i t h i n an area  5  F i g u r e 1.  S o u t h e r n coast o f B r i t i s h Columbia showing the l o c a t i o n o f Howe Sound w i t h t h e Squamish e s t u a r y a t the head.  JO-  6  F i g u r e 2.  Squamish R i v e r e s t u a r y , B r i t i s h  Columbia,  showing p h y s i o g r a p h i c d e t a i l s o f the (  delta  i n d i c a t e s extent of sand/mud f l a t s  exposed at low t i d e ;  d o t t e d a r e a of the  C e n t r a l d e l t a i n d i c a t e s study r e g i o n ; indicates l o c a t i o n of l i g h t  meter).  L  7 removed from the u n s e t t l i n g and c o m p l i c a t i n g e f f e c t s o f d i r e c t r i v e r flow, more a c c u r a t e s t u d i e s r e l a t i n g t o annual primary p r o d u c t i o n , n u t r i e n t c y c l i n g , removal and d e p o s i t i o n o f p a r t i c u l a t e o r g a n i c matter  and other  parameters r e q u i r e d f o r the f o r m u l a t i o n o f energy budgets may be undertaken. through  Secondly,  the area chosen d r a i n s  two major t i d a l c r e e k s , thus f a c i l i t a t i n g t h e  measurement o f o r g a n i c and n u t r i e n t removal. 5 The  2  study area o f ca. 1.27 x 10^ m  i s character-  i z e d by an i n t e r t i d a l zone o f e x t e n s i v e , low e l e v a t i o n marshlands i n combination  w i t h sand/mud f l a t s .  The area  has been separated Into t h r e e r e c o g n i z a b l e zones by Levlngs  (1974).  above c h a r t datus  The lower i n t e r t i d a l zone (0.0-1.5 m (O.D.)) has sand/mud sediments f r e e  of v a s c u l a r p l a n t s .  Marshlands s u p p o r t i n g v a s c u l a r  p l a n t communities common t o d e v e l o p i n g a l l u v i a l  lands  are i n d i c a t i v e o f the m i d - i n t e r t i d a l zone (1.6-3.0 m O.D.).  The t r a n s i t i o n between t h i s zone and the lower  i n t e r t i d a l i s g e n e r a l l y d e l i n e a t e d by a n a t u r a l embankment ranging I n height from 0.3-1.8 m. hanging  mat o f Carex  extending  lyngbyei  A dense over-  Hornem. rhizomes i s common,  out i n t o the low i n t e r t i d a l sand f l a t s f o r  approximately  0.2 m (Levlngs 1974).  The m i d - i n t e r t i d a l  marshland i s dominated by e x t e n s i v e sedge meadows o f C. lyngbyei  and Eleoolnavie  d i s s e c t e d by t i d a l creeks  paluatris  (L.) R. and S.  (Lim and Levlngs 1973). D i e -  o f f o f sedge occurs g r a d u a l l y beginning I n l a t e August and by December aimat o f dead v e g e t a t i o n I s p r e s e n t .  8  A g r a d a t i o n e x i s t s from sedge to grasses on the h i g h e r l e v e l s o f the upper I n t e r t i d a l lands (3.1-4.5 m O.D.). Deciduous  shrubs and mixed  c o n i f e r o u s t r e e s such as  Douglas f i r (Pseudotsuga  menziesii  western hemlock (Tsuga  heterophylla  the  ( M i r b e l ) F r a n c e ) and (Raf.) Sarg.) occupy  i n f r e q u e n t l y f l o o d e d landward p o r t i o n o f the d e l t a  above the i n t e r t i d a l .  Orloci  (1961) and K r a j i n a (1970)  i n d i c a t e the Squamish d e l t a as being w i t h i n the c o a s t a l western hemlock zone o f the P a c i f i c c o a s t a l forest  meso-thermal  region.  Climate i n the study a r e a i s c l a s s e d as moderate maritime w i t h a mean annual p r e c i p i t a t i o n o f 203 (Hoos and V o i d 1975).  Average monthly  a i r temperatures  range from near 0 C i n January t o 17 C In J u l y . mountains  cm  and a frequent i n d u s t r i a l haze l a y e r  l y reduce d u r a t i o n and i n t e n s i t y o f s u n l i g h t .  Steep effectiveWind  p a t t e r n s are t y p i c a l o f those p r e v a i l i n g i n many B r i t i s h Columbia f j o r d s  (Hoos and V o i d 1975).  Strong n o r t h e r l y  o u t f l o w s , common d u r i n g December and January, f r e q u e n t l y •reach 56-64 km'h " " and may -  1  p e r s i s t f o r 3-5  days.  e r l y Inflow winds (October t o March) are l e s s but  more frequent than n o r t h e r l y winds.  breeze c i r c u l a t i o n  South-  persistent  A d i u r n a l sea  (25-37 km'h" ), r e s u l t i n g from s t r o n g 1  thermal h e a t i n g i n the i n t e r i o r , i s evident d u r i n g the summer. immediate  Strong a m p l i f i c a t i o n o f winds occurs i n the v i c i n i t y o f the Squamish estuary on sunny  days,  being a t t r i b u t e d to v a l l e y winds or overheated a i r i n the  e s t u a r y r i s i n g up the steep mountain  sides  9 (Anonymous 1972).  D i s c u s s i o n o f wind and o t h e r  f a c t o r s a r e g i v e n by S t a t h e r s  climatic  (1958) a n d Hops a n d V o i d  (1975).  2 The  S q u a m i s h R i v e r s y s t e m d r a i n s 2500 km  westerly  slopes o f t h e Coast Mountains i n southern  B r i t i s h Columbia. acteristic  Annual discharge  are (oa.  patterns  ,  During  common ( J u n e , J u l y ) ( B e l l " 1 9 7 5 ) . 71 m -s  ) generally occur  pronounced r u n o f f can occur  thehigh  runoff  p e a k f l o w s o f aa. 658 m ' S  (May t h r o u g h A u g u s t ) ,  Minimum f l o w  i nMarch.  i nthe f a l l  h e a v y r a i n s o r p r e m a t u r e snow The  are char-  o f g l a c i e r f e d s y s t e m s w i t h a mean a n n u a l  f l o w r a t e o f aa. 292 n r * s period  of the  rates  A second  as a r e s u l t o f  melt.  Squamish R i v e r i s h e a v i l y laden w i t h  s e d i m e n t s a t t h e t i m e o f maximum r u n o f f  glacial  (June-July).  R i v e r w a t e r i s c a r r i e d around t h e dyke and sediments become d e p o s i t e d  at thedelta front.  Bell  (1975)  i n d i c a t e s an average r a t e o f d e l t a f r o n t advancement a p p r o a c h i n g 6.0 m - y r " . 1  c l a s s e d as P l u v i a l  Sediments o f t h e d e l t a a r e  ( a l l u v i a l ) - G l a c i a l Marine w i t h a  s l o p e o f l e s s t h a n 5% (Anonymous 1972). ments become d e p o s i t e d delta.  sedi-  on t h e u p p e r p o r t i o n s o f t h e  Finer colloidal particles  f l o c c u l a t e w i t h the mixing and  Coarser  (glacial flour)  o f f r e s h and marine waters  s e t t l e towards t h e seaward p o r t i o n o f t h e d e l t a .  D a t a on m i n e r o l o g y , sediment d i s t r i b u t i o n and g r a i n size areprovided  (1975).  by M a t t h e w s  a l . (1966) a n d B e l l  10 Tides a f f e c t i n g the d e l t a are o f the mixed type t y p i c a l of the P a c i f i c Coast w i t h two low p e r i o d s i n a t i d a l day. from 0 to 4.8 O.D.  m O.D.  h i g h and  T i d a l amplitude  two  varies  w i t h mean t i d a l range being  (Anonymous 1972).  3.2m  During p e r i o d s of s t r o n g winds  and h i g h r u n o f f , these l i m i t s can be g r e a t l y exceeded. Thus, the extent and d u r a t i o n o f exposure and of the i n t e r t i d a l r e g i o n can be extremely  coverage  variable.  11  MATERIALS AND METHODS  F i e l d s t u d i e s were conducted from June 1974 through August 1975. Sampling was done weekly o r biweekly from June t o September  1974 and 1975. F o r  the p e r i o d September 1974 through A p r i l 1975, sampling was done monthly.  Station locations f o r physical,  chemical and b i o l o g i c a l f a c t o r s appear i n F i g u r e 3-  I. A.  Physical-Chemical Factors  S a l i n i t y , temperature, p r e c i p i t a t i o n ,  light.  F i e l d determinations o f s a l i n i t y and temperature at h i g h t i d e were made at the s u r f a c e and at 1 and 2m.  A YSI Model 33 SCT meter was used June-August"  1974, f o l l o w e d by a Beckman Model RS5-3 SCT meter f o r subsequent work.  S a l i n i t y o f samples c o l l e c t e d i n the  f i e l d was determined u s i n g a Bissett-Berman S a l i n o m e t e r (Model 6230) on r e t u r n t o the l a b o r a t o r y . Temperature determinations i n t i d a l pools were made w i t h standard mercury  thermometers.  A i r temperature and p r e c i p i t a t i o n data were o b t a i n e d from the Squamish-St. Davids m o n i t o r i n g s t a t i o n o f the Atmospheric Environment S e r v i c e of  (AES) l o c a t e d j u s t  north  Squamish. —2 Daily incident solar radiation  (g cal*cm  —1 -day  was recorded on a B e l f o r t Pyranometer s i t u a t e d , t o prevent vandalism, at Squamish Terminals on the East d e l t a ( F i g . 2 ) . Days were i d e n t i f i e d as sunny o r  )  12  Figure 3.  D e t a i l e d map  of C e n t r a l  d e l t a showing  sampling s t a t i o n s , of sand/mud f l a t s  indicates exposed at low  t i d a l creek flow  extent tide.  rates  l i g h t attenuation  with depth  salinity-temperature  stations  •  seasonal  nutrients  •  nutrient  l o s s from t i d a l  J2f  sedimentation and  V  addition  •  removal of p a r t i c u l a t e organic matter  sediment o r g a n i c s  of p a r t i c u l a t e o r g a n i c matter  -delta <8>  creeks  surface  removal of p a r t i c u l a t e organic matter -tidal  creeks  ^ *- —  ' CENTRAL  BASI N  13 overcast based on data from the AES s t a t i o n and from pyranometer t r a c i n g s .  On o v e r c a s t days, s o l a r energy  was assumed t o be e n t i r e l y p h o t o s y n t h e t i c a l l y r a d i a t i o n (PAR = 400-700 nm) ( S z e i c z 1966).  available However,  due t o the r e d u c t i o n i n atmospheric f i l t e r i n g on sunny days, the value obtained from the pyranometer was m u l t i p l i e d by 0.47 t o determine PAR ( V o l l e n w e i d e r 1974). Monthly PAR estimates were d e r i v e d u s i n g weekly meter  pyrano-  charts. A Montedoro-Whitney  underwater photometer  (Model  LMT-8a) was used t o measure percent l i g h t  attenuation  w i t h depth i n the water column  Percent l i g h t  ( F i g . 3).  r e d u c t i o n a t the sediment s u r f a c e by marsh v e g e t a t i o n was determined using a simple hand-held Gossen  light  meter.  B.  A l k a l i n i t y , pH, n u t r i e n t s . Samples o f water t o be used f o r i n c u b a t i o n i n  primary p r o d u c t i o n experiments c o l l e c t e d at the edge of t h e d e l t a were a n a l y s e d f o r pH and a l k a l i n i t y  using  an O r i o n D i g i t a l pH meter, Model 801.  alkal-  Carbonate  i n i t y f o r use i n p r o d u c t i v i t y equations was determined a c c o r d i n g t o S t r i c k l a n d and Parsons (1972).  Analyses  were done w i t h i n 6 h o f c o l l e c t i o n . Sample c o l l e c t i o n and subsequent analyses f o r ortho-phosphate, ammonia, n i t r a t e and n i t r i t e were done u s i n g methods o f S t r i c k l a n d and Parsons (1972).  Samples  were t r a n s p o r t e d t o the l a b o r a t o r y i n i c e chests and  14 immediately  4  f r o z e n u n t i l a n a l y s i s , conducted  within  wk. Surface water samples were taken on the east s i d e  of for  the dyke at monthly I n t e r v a l s at h i g h s l a c k water seasonal n u t r i e n t analyses  ( P i g . 3).  N u t r i e n t l o s s e s from P i l e and Snag creeks were monitored  at 3-4  month i n t e r v a l s .  Samples were taken  when the t i d e f e l l below the marsh s u r f a c e , a g a i n at about mid-ebb t i d e , and f i n a l l y near low s l a c k water at a p o i n t 10 m from the creek mouths ( P i g . 3). n u t r i e n t l e v e l s present p r i o r to ebb  Background  t i d e were d e t e r -  mined from samples taken over the d e l t a on the preceeding high t i d e .  Values were c o r r e c t e d f o r background concen-  t r a t i o n s and combined w i t h i n f o r m a t i o n on flow r a t e s o f the creeks to p r o v i d e estimates of n u t r i e n t s "leached" from the sediment and c a r r i e d o f f the d e l t a over ebb  tide.  C.  Sediment and o r g a n i c d e p o s i t i o n p a t t e r n s .  an  Pour sediment cores (5 cm diam.) were taken i n June 1974  from the seven major sediment-habitat  types  on the d e l t a ( P i g . 3, see Appendix V f o r a r e a d e s c r i p tions).  The  cores were extruded, wrapped i n aluminum  f o i l and r e t u r n e d t o the l a b o r a t o r y f o r a n a l y s i s . were i n i t i a l l y  Cores  s e c t i o n e d l o n g i t u d i n a l l y to expose  s u r f a c e s u n d i s t u r b e d by the c o r i n g p r o c e s s . l a y e r s , i d e n t i f i e d by d i f f e r e n c e s i n sediment s i z e and presence  Annual particle  o f v a s c u l a r p l a n t remains, were  15 measured and separated. thoroughly and the wet  Each l a y e r was  taken, mixed  weight determined.  Pour weighed  subsamples were then taken from which moisture o r g a n i c content were determined weight at 100 4 h at 500  C, weighing  C.  50  by d r y i n g t o constant  and ashing i n a m u f f l e  furnace  M u l t i p l i c a t i o n o f the a s h - f r e e dry weight  ( i . e . o r g a n i c content) by 0.5 dry wt  and  gave estimates o f g  s e d i m e n t , as o r g a n i c matter was -1  Og  assumed to be  % carbon based on estimates g i v e n by Westlake  (1963).  Estimates o f sedimentation d u r i n g f r e s h e t were made by s e c u r i n g centimeter r u l e r s v e r t i c a l l y t o s o l i d s u b s t r a t e s and r e c o r d i n g depth changes over  D.  time.  T i d a l creek flow r a t e s . Flow r a t e s were determined  f o r P i l e and Snag creeks  at 20 min i n t e r v a l s over an ebb t i d e i n A p r i l and June 1975.  A p o l e , marked o f f i n 5 cm i n t e r v a l s , was  i n p l a c e v e r t i c a l l y i n the deepest bed.  p a r t o f the  secured  creek  On the f o l l o w i n g day, measurements of flow r a t e (F)  were begun when the l e v e l of the creek f e l l below the marsh s u r f a c e .  The time  (T) i n seconds f o r a wooden  b l o c k 4 x 6 cm t o t r a v e l a d i s t a n c e (L) o f 1 m and width  (W) and depth  noted.  The  (D) i n m of water i n the creek were  s e c t i o n s o f the creeks chosen f o r the d e t e r -  m i n a t i o n o f flow r a t e s ( P i g . 3) thus an equation based derived:  the  approximated  rectangles;  on the volume o f a r e c t a n g l e was  16 , *  (1-s  - 1  , ) =  ( L x W x D ) x 10^  (1)  T 3 w h e r e : 10  Distribution Four quadrat  -1 as  J  II. A.  _1  -3  = f a c t o r f o r expressing m »s  1-s  Biological Factors  (coverage)area), samples  (0.06  biomass.  m^)  of a macroalgal  s p e c i e s o r a m i c r o a l g a l a s s o c i a t i o n were randomly s e l e c t e d from w i t h i n the coverage s c r a p e d t o a d e p t h o f 0.2  cm  area.  Sediments were  f o r diatom  associations.  M a c r o a l g a l samples were c l e a n e d o f v a s c u l a r p l a n t m a t e r i a l and  sediment  o v e n d r i e d a t 100  prior to analysis.  C t o constant w e i g h t , ground  r e d r i e d 2 h p r i o r t o dry weight equally weighted  Samples were and  determinations.  sub-samples were t h e n removed  Three and  t r e a t e d i n t h e same manner as o r g a n i c m a t t e r i n t h e sediment  cores  (partiC, preceedlng).  Standing  crop  _2 b i o m a s s was  e x p r e s s e d as g  Om  D i s t r i b u t i o n or coverage  a r e a f o r each  s p e c i e s and m i c r o a l g a l a s s o c i a t i o n was a combination o f ground  s u r v e y and  macroalgal  estimated using  aerial  photographs.  P l o t s w e r e made f r o m t h e s e d a t a s h o w i n g s e a s o n a l b u t i o n o f a l g a e f o r f a l l , w i n t e r , s p r i n g , and B.  summer.  Primary production. Two  of  distri-  methods were employed f o r t h e d e t e r m i n a t i o n  benthic a l g a l primary production.  The  first  was  14 the r a d i o a c t i v e carbon  (  C) t e c h n i q u e b a s e d  on  uptake  17 and f i x a t i o n o f CC^.  The  second was  the d i s s o l v e d  ..oxygen method based on an e q u i v a l e n c e o f oxygen evolved and o r g a n i c m a t e r i a l produced.  The b a s i c  techniques  are d e s c r i b e d i n d e t a i l by S t r i c k l a n d and Parsons and V o l l e n w e i d e r  (1972)  (1974).  14 The  C technique was  p r o d u c t i o n estimates  used t o o b t a i n seasonal  f o r reasons  of g r e a t e r  accuracy  i n waters having h i g h d i s s o l v e d o r g a n i c content  and  h i g h n u t r i e n t c o n c e n t r a t i o n s such as were present Squamish ( S t r i c k l a n d and  Parsons 1972).  at  Gross p r o d u c t i o n  14  v a l u e s , u n a t t a i n a b l e by the C method, are d e s i r a b l e f o r the c o n s t r u c t i o n of energy budgets. D i s s o l v e d oxygen p r o d u c t i o n data p r o v i d e d an experimental  basis for extra-  14 polating  C values which were assumed to approximate net  p r o d u c t i o n (Parsons and Takahashi 1973). Carbon-14 method. Water samples f o r i n c u b a t i o n were c o l l e c t e d at the edge o f the d e l t a  ( F i g . 3)  and  o  f i l t e r e d through  a 10/<>m mesh N i t e x s c r e e n .  t i v i t y b o t t l e s (two  135 ml dark) 2 were f i l l e d and a sample of a l g a e , aa. 0.5 cm , cleaned o f extraneous o r g a n i c matter and sediment, was added to each b o t t l e . 2 the 0.5 0.2  cm  cm and  135 ml l i g h t  Produc-  In mud  and  and one  sand m i c r o a l g a l a s s o c i a t i o n s ,  sediment sample was  scraped t o a depth o f  added t o the b o t t l e s .  Production b o t t l e s  were i n o c u l a t e d w i t h 1 ml o f r a d i o - i s o t o p e stock 14  solution (pH 9.5)  100/*-CI (New  C-NaHCO^ i n 10 ml s t e r i l e water  England  Nuclear) d i l u t e d w i t h 75  d i s t i l l e d d e i o n i z e d w a t e r , u s i n g ah automatic  ml  pipette.  18 Control sets without for metabolic through was  a l g a l m a t e r i a l were r u n t o  activity  the screen.  of micro-organisms  E a c h day  passing  a production  experiment  d o n e , t h e number o f d i s i n t e g r a t i o n s p e r m i n u t e  p e r ml were d e t e r m i n e d  by p l a c i n g 1 m l  i n t o each of t h r e e v i a l s (New  account  England  stock  c o n t a i n i n g 15 m l  S a m p l e i n c u b a t i o n was out the s t u d y .  During  done a t two  either totally  Aquasol  Cocktail).  depths  t h e l a t e s p r i n g and  when d a y t i m e l o w t i d e s p r e d o m i n a t e d  solution  of  Nuclear, Liquid S c i n t i l l a t i o n  (dpm)  through-  summer,  l e a v i n g the  algae  exposed or i n s h a l l o w p o o l s , b o t t l e s  w e r e i n c u b a t e d i n t i d a l p o o l s aa.  15  cm  deep.  However,  during the f a l l  and w i n t e r , when h i g h t i d e s  d u r i n g the day,  b o t t l e s w e r e s u s p e n d e d as d e s c r i b e d  Pomeroy ( 1 9 7 4 ) a t aa. of the d e l t a .  The  15 cm  occurred by  below the s u r f a c e i n the  v a l u e s o b t a i n e d from these  a r e r e f e r r e d t o as s u r f a c e p r o d u c t i o n . b o t t l e s w e r e s u s p e n d e d a t 1 m.  The  In  area  Incubations  addition,  production  values  o b t a i n e d , when c o m b i n e d w i t h i n f o r m a t i o n on t i d e  cover,  p r o v i d e d more a c c u r a t e d a i l y p r o d u c t i o n e s t i m a t e s .  All  i n c u b a t i o n s , o f c a . 4 h d u r a t i o n , w e r e done i n  y  g e n e r a l l y b e t w e e n 1000  and  1400  situ  h.  F o l l o w i n g i n c u b a t i o n , 2 drops concentrated  formalin  were added t o each b o t t l e b e f o r e r e t u r n t o t h e l a b o r a t o r y , with analyses  done w i t h i n 3 h .  The  control  sets  p  w e r e f i l t e r e d o n t o S a r t o r i o u s 0.45/*-m p o r e cellulose acetate f i l t e r s o f c o n e . HC1  f o r 10 m i n  diameter  w h i c h w e r e t h e n e x p o s e d t o fumes  t o r e m o v e d any  active  C0  0  19 p r e c i p i t a t e d as  carbonate.  s c i n t i l l a t i o n vials with  F i l t e r s were t h e n p l a c e d  15  ml  Aquasol.  Bottles  i n g m i c r o a l g a l a s s o c i a t i o n s f r o m sand/mud w e r e s h a k e n and the heavier was  Macroalgal  b l o t t e d dry  (thalli,  again  t r e a t e d as  and  was  as the filters.  weighed  (wet  wt.).  Small  fila-  15  ml  f o r 24 h a t 50  placed (New  C.  Subse-  of s p e c i a l l y prepared s c i n t i l l a t i o n  plus  50  (v/v)  mg  POPOP (New  fluor  England Nuclear) to  2 - e t h o x y e t h a n o l , t o l u e n e ] (UNESCO  added t o each Dissolved  digested  Protosol  were removed  A l l a l g a l m a t e r i a l t h u s t r e a t e d was 1 ml  from  fumes,  sand/mud m i c r o a l g a l a s s o c i a t i o n s  E n g l a n d N u c l e a r ) and  1:2  treated  exposed t o cone. HCl  i n glass s c i n t i l l a t i o n vials with  1 with  supernatant  f o r m a c r o a l g a e e x c e p t t h e m a t e r i a l was  scraping.  g PPO  and  of  l a r g e f i l a m e n t s ) were removed  and  m e n t o u s a l g a e and  [5.5  The  samples were removed from  f i l t e r s , b l o t t e d dry  quently,  substrates  f i l t e r i n g onto pre-weighed S a r t o r i u s  Intact algae  contain-  s e c when much  settled.  f i l t e r e d onto S a r t o r i u s f i l t e r s  b o t t l e s by  by  t o s e t t l e 10  sediment p a r t i c l e s  described.  the  allowed  in  1 1973)  vial.  organic  material  (DOM)  algae during^^^C incubation periods  released may  from  represent  a  14 s i g n i f i c a n t p o r t i o n of the production and  total daily  ( S i e b u r t h 1969).  To  account f o r t h i s  possible underestimates of production,  collected  from  lif  C production  r e t a i n v o l a t i l e organic  and loss  filtrates  l i g h t b o t t l e s (Watt  w e r e t r e a t e d t o remove a c t i v e i n o r g a n i c and  C uptake  carbon  m a t e r i a l exuded  1965)  dioxide  during  20 production  (carbohydrates, n i t r o g e n o u s ,  materials).  polyphenolic (1969),  M o d i f y i n g the method o f S i e b u r t h  f o u r r e p l i c a t e s of 2 ml f i l t r a t e  from each l i g h t  bottle  were p l a c e d i n g l a s s s c i n t i l l a t i o n v i a l s , a c i d i f i e d 0.2  ml 3 % phosphoric  with  a c i d and purged 15 min with pure  n i t r o g e n , f o l l o w e d by the a d d i t i o n o f 15 ml  Aquasol.  Tests were a l s o run on f i l t e r e d water without  added  a l g a l m a t e r i a l t o check f o r background l e v e l s o f  dis-  solved organic m a t e r i a l . The  a c t i v i t i e s o f stock s o l u t i o n , c o n t r o l s e t s ,  a l g a l samples and  l i g h t b o t t l e f i l t r a t e s were determined  on a Packard T r i - C a r b L i q u i d S c i n t i l l a t i o n  Spectro-  photometer (Model 3375). 14 The  equation used to convert dpm  released  d  _2 Om~  C-DOM  was L, _ x P  mg  to mg  mg "day"  m  algae  67.5 (wet  A  -x i, C 0 wt.)  2  x  (2)  1.05  =  x P x  Dw  Lt x a where:  ~ P  b o t t l e ; 67.5  = f a c t o r to express  4C0  2  d  = t o t a l C0  2  l  m  n  2 ml sub-sample from  i n b o t t l e as mg  Parsons 1972); 1.05  dpm/135 ml  activity  (dpm)  (mg«m  a = absolute  o f added i s o t o p e s t o c k ; P =  ).  and  = isotope c o r r e c t i o n f a c t o r ;  d u r i n g I n c u b a t i o n / d a i l y PAR;  algae  bottle;  C (Strickland  Lt = PAR  f a c t o r f o r wet  light  to dry wt.  of a l g a e ; Dw  conversion  = dry wt.  of  21 The equation used t o convert dpm t o mg p a r t i c u l a t e _2 C fixed*m was: R x3.C0 mg C m " ' d a y 2  where:  - 1  =  x 1.05  2  x P x Dw  Lt x a  (3)  R = dpm/unit wet wt l i g h t b o t t l e - dpm/unit  wet wt dark  bottle.  Estimates o f t o t a l net primary p r o d u c t i o n were then made by combining  the values from Equation 2 on o r g a n i c  exudates (DOM) and Equation 3 on p a r t i c u l a t e o r g a n i c s (POM) (Parsons and Takahashi  1973, S e l l n e r et a l . 1976).  D i s s o l v e d oxygen method.  At i n t e r v a l s  the study, primary p r o d u c t i o n was determined m o d i f i e d l i g h t and dark b o t t l e d i s s o l v e d technique  ( S t r i c k l a n d and Parsons  of ca. 4 cm  2  1972).  throughout with a  oxygen (DO) A l g a l samples  were added t o 300 ml DO b o t t l e s  (2 l i g h t ,  1 dark) c o n t a i n i n g water p r e t r e a t e d as d e s c r i b e d f o r the 14 C method w i t h c o n t r o l s e t s minus algae and incubated as d e s c r i b e d . P r o d u c t i o n values a r e expressed  as mg O ^ l  -  1  _2 ( S t r i c k l a n d and Parsons day  - 1  1972) and converted t o mg  u s i n g the equation: mg 0 * 1  x 0.3 x C  - 1  9  mg C m  —2  —1  -day  Cm  =  x W  (4)  Lt where:  0.3 = c o r r e c t i o n  factor f o r 0  2  content i n  300 ml b o t t l e ; C = c o n v e r s i o n f a c t o r f o r mg 0 mg C (macroalgae  2  to  PQ = 1.20, C = 0.278; microalgae  22 with h i g h e r f a t content PQ = 1.25, C • 0-.300 (Westlake 1963)); L t = PAR d u r i n g  incubation/daily  -2 PAR;{ W = dry wt o f algae'm  / dry wt o f algae  incubated. C.  Removal, d e p o s i t i o n o f p a r t i c u l a t e o r g a n i c matter  (POM).  For removal o f POM ( i n t a c t macroalgae, m i c r o a l g a e and d e t r i t a l m a t e r i a l — d e a d o r g a n i c matter o f p l a n t o r animal o r i g i n w i t h a s s o c i a t e d micro-organisms d u r i n g f l o o d t i d e and I t s a d d i t i o n t o the water  (Mann 1972)) column,  two sampling t r a n s e c t s were s e l e c t e d at the d e l t a  front,  one on the western s e c t o r and one on the e a s t e r n ( F i g . 3 ) . Seven s t a t i o n s were sampled along each, c o v e r i n g the major a l g a l growth forms and h a b i t a t s . a l s o made i n the upper  Samplings were  Intertidal. p  Wooden cages (50 cm 2 s i d e s w i t h 352>\m  x 40 cm high) covered on f o u r  N i t e x s c r e e n i n g were used ( F i g . 4 ) .  The mesh s i z e allowed r e l a t i v e l y  f r e e water movement  i n t o the cages f o r "normal" removal o f POM but r e s t r i c t e d entry o f l a r g e r p l a n t m a t e r i a l .  The cages were i n i t i a l l y  p l a c e d on the sand/mud f l a t s at the seaward edge o f the d e l t a and secured w i t h s t e e l pegs.  P r i o r t o the incoming  t i d e r e a c h i n g the l e v e l where the cages were l o c a t e d , two 1 1 water samples were taken o u t s i d e the cage f o r a n a l y s i s o f "background" POM (amount b e f o r e the t i d e reaches a s p e c i f i c l e v e l on the d e l t a ) and microscope examination.  Subsequently, when the incoming t i d e  reached a predetermined depth and thus a known water  23  F i g u r e 4.  Diagram o f cage used f o r s t u d i e s o f p a r t i c u l a t e o r g a n i c removal i n p l a c e on the  delta.  23a  i  2k volume i n the cages, 1 1 water samples were taken i n s i d e f o r the above noted a n a l y s e s .  The  from  cages were  r i n s e d and then moved back t o an area o f the d e l t a not yet  reached by the incoming  procedure was  t i d e where the  sampling  repeated.  Samples f o r microscope  examination were p r e s e r v e d  i n Lugol's s o l u t i o n and examined u s i n g the Utermohl (1958) sedimentation technique.  I d e n t i f i c a t i o n of  algae as to p l a n k t o n i c and b e n t h i c , the r e l a t i v e dominance and estimates o f the p r o p o r t i o n o f macroalgae, microalgae and d e t r i t u s were made.  One  samples were f i l t e r e d onto pre-ashed GPC  glass f i b e r f i l t e r s .  was  as p r e v i o u s l y d e s c r i b e d .  mg  C removed«m  and weighed Whatman  A n a l y s i s f o r o r g a n i c content  The o r g a n i c content was -2  l i t e r water  estimated  -1 • flood tide  by:  C. - C, x V 1  b  =  (5) a  where:  C  i  = mg  C ' l " i n s i d e cage; C 1  b  = mg C - l  - 1  background l e v e l o u t s i d e cage; V = water volume i n s i d e cage ( 1 ) ; a = area o f e n c l o s u r e (m  To study removal o f POM  _ p  ).  v i a t i d a l creeks on  an  ebb t i d e , measurements were done In the major creeks when the water l e v e l f e l l to the s u r f a c e of the marsh. S t a t i o n s were e s t a b l i s h e d aa. of  Snag and P i l e creeks  10 m back from the mouths  ( P i g . 3).  Two  1 1 samples were  taken at h i g h (15 cm below water s u r f a c e ) and low  (near  creek bottom) water l e v e l , w i t h d e t e r m i n a t i o n o f o r g a n i c  25  content and microscope examination c a r r i e d out as described.  Estimates o f the t o t a l amount o f  POM  l e a v i n g the marsh through t i d a l creeks on an ebb  tide  were p o s s i b l e by combining d a t a on g C«l~^" w i t h that on flow r a t e s . The a d d i t i o n o f POM  was  determined monthly by  measurements o f amounts d e p o s i t e d on the mud/sand f l a t s and on the marshland over a t i d a l c y c l e .  Sampling  sites  were l o c a t e d i n the low, mid, and upper i n t e r t i d a l  zones  (Pig. 3 ) .  Large s i z e p l a s t i c p e t r i dishes o f known  a r e a were secured w i t h t h e i r openings aa. 3 cm above the s u r f a c e o f the sediment at one low t i d e and r e t r i e v e d on the f o l l o w i n g low t i d e .  The sample was  s p l i t , with  h a l f b e i n g used f o r microscope examination and h a l f f o r d e t e r m i n a t i o n o f o r g a n i c content as d e s c r i b e d . R e s u l t s are expressed as mg  D.  Caloric  C deposited*m  -2  'tidal  cycle  -1  equivalents.  C a l o r i c e q u i v a l e n t s were determined f o r the major benthic a l g a l producers, vascular p l a n t s , d e t r i t u s , sediment o r g a n i c s and m a t e r i a l removed from and d e p o s i t e d on the d e l t a .  Sediments w i t h m i c r o a l g a l a s s o c i a t i o n s  and d e t r i t a l d e p o s i t s were scraped to a depth o f 0 . 5 M a t e r i a l c o l l e c t e d from removal and d e p o s i t s i t e s  cm.  ( F i g . 3)  was r e t u r n e d t o the l a b o r a t o r y i n i c e chests w i t h i n 3 h where i t was water.  immediately c e n t r i f u g e d t o remove excess  The samples were p l a c e d i n p l a s t i c bags  f r o z e n u n t i l a n a l y s i s c o u l d be performed  and  (up t o 10 mo  26 after  collection). At the time o f a n a l y s i s , macroalgae and v a s c u l a r  p l a n t m a t e r i a l were l i g h t l y washed i n d i s t i l l e d water to remove sediment p a r t i c l e s .  A l l samples were d r i e d  to constant weight at 80 C r a t h e r than 100 C t o reduce the p r o b a b i l i t y o f d e n a t u r i n g p r o t e i n s o r v o l a t i l i z i n g energy  r i c h m a t e r i a l s (Paine 1971).  ground t o a f i n e powder.  Samples were  F o r sediment o r g a n i c s and  m i c r o a l g a l a s s o c i a t i o n s w i t h low c a l o r i c  content/g  m a t e r i a l , a known amount o f benzoic a c i d standard was added t o the sample t o b r i n g the value t o a readable level.  R e p l i c a t e s were taken f o r each sample and burned  In a P h i l l i p s o n Microbomb C a l o r i m e t e r t o determine c a l * g dry w t . - 1  A p p l y i n g o r g a n i c content t o c a l o r i c _ i  v a l u e , estimates were made o f g c a l ' g o r g a n i c m a t e r i a l E q u i v a l e n t s were not determined  for dissolved  o r g a n i c matter due t o t e c h n i c a l l i m i t a t i o n s .  Values  d e r i v e d f o r the corresponding algae were used and are c o n s i d e r e d t o be minima s i n c e the exudates are known to have h i g h e r c a l o r i c values than are i n t a c t  cells  w i t h c e l l u l o s e o r s i l i c a w a l l s (Paine 1971). E.  A l g a l , p l a n t and d e t r i t u s u t i l i z a t i o n by amphipods. Abundant gammarid amphipods (Anisogammarue  vioolus  (Stimpson)), an important  salmonids  aonfer-  food source f o r  (Anonymous 1972), were a s s o c i a t e d w i t h v a s c u l a r  p l a n t s , b e n t h i c algae and d e t r i t u s i n the f i e l d . were undertaken  to determine  the importance  Studies  o f these  27 to both a d u l t  ( s e x u a l l y mature) and j u v e n i l e i n terms  o f p r o t e c t i o n and a source o f food. F i e l d studies.  Observations were made on the  r e l a t i o n s h i p o f amphipods and cover type at low t i d e on each sampling date.  Each macroalga and m i c r o a l g a l  a s s o c i a t i o n was examined as w e l l as d e t r i t a l m a t e r i a l . A d e t a i l e d examination o f a s e c t i o n o f the marshland was  made (30 x 30 m g r i d i n t h e m i d - I n t e r t l d a l zone)  noting associations at 1 m i n t e r v a l s .  Observations  were made as t o whether or not amphipods were a c t i v e l y feeding  (mouth p a r t s being manipulated) on the p l a n t  m a t e r i a l w i t h which they were a s s o c i a t e d . were made and amphipods p l a c e d formalin.  Collections  immediately i n 10 %  Subsequently, the gut was removed and opened  f o r microscope examination t o r e l a t e gut appearance to food  consumed.  Laboratory s t u d i e s .  Amphipods c o l l e c t e d i n May and  June 1975 f o r cover p r e f e r e n c e  s t u d i e s were f e d on a  mixture o f decayed v a s c u l a r p l a n t s , macroalgae and d e t r i t u s c o l l e c t e d from the study area w h i l e acclimated  f o r 1 wk a t 15 °/oo S.  being  Subsequently, the  amphipods were p l a c e d i n a t r a y c o n t a i n i n g  separate  clumps o f each m a t e r i a l i n ca. 2 cm water at normal room l i g h t .  The number o f amphipods a s s o c i a t e d  each clump was noted a f t e r 5 min.  The short time i n t e r -  v a l was s e l e c t e d t o avoid the onset o f f e e d i n g f o l l o w i n g a f r i g h t / c o v e r response.  with  activity  28 Experiments  were conducted  i n the l a b o r a t o r y to  i n d i c a t e food p r e f e r e n c e by s t a r v i n g f i e l d amphipods a c c l i m a t e d to 15 °/oo  S.  collected  Trays were set up  as d e s c r i b e d f o r cover s t u d i e s , but were covered  with  black p l a s t i c sheeting to insure a "safe" feeding situation.  The number of amphipods a c t i v e l y f e e d i n g  on each food source was  noted a f t e r 10  Cover and f e e d i n g experiments  min.  were repeated a  number of times, v a r y i n g the arrangement o f m a t e r i a l s i n the t r a y s and the p o i n t at which the amphipods were introduced. F a t t y a c i d s p e c t r a comparison.  Past s t u d i e s show  t h a t algae d i s p l a y c h a r a c t e r i s t i c f a t t y a c i d s p e c t r a i n the C ^ experiments  - C  range (Mclntyre et aV.  2 2  1969).  Thus,  were designed to I d e n t i f y gut contents  thus food source based on f a t t y a c i d s p e c t r a .  and  Determin-  a t i o n s were made o f the v a r i o u s food sources as w e l l as s t a r v e d amphipods, amphipods f e d on a s i n g l e food and amphipods c o l l e c t e d from the f i e l d . method used was  The  extraction  a m o d i f i c a t i o n of those suggested  Mclntyre et a l . (1969), J e f f r i e s  source  by  (1972) and S c h u l t z and  Quinn(:(J973). Ten g t i s s u e a f l a s k w i t h 100  ( a i r dry wt) was ml of chloroform  a c i d i f i e d w i t h 2 ml cone. HC1.  ground and p l a c e d i n : methanol ( 2 : 1  v/v),  E x t r a c t i o n proceeded  f o r 24 h at 15 C, a f t e r which the contents o f the were g r a v i t y f i l t e r e d through a Whatman # 1 f i l t e r p r e v i o u s l y leached with the chloroform  flask paper  : methanol a c i d  29 solution.  The  e v a p o r a t o r and e t h e r and  f i l t r a t e was  concentrated i n a  t h e r e s i d u e d i s s o l v e d i n 10 m l  transferred to a v i a l .  was  2  gas  i n a water  bath  The (30  s o l u b i l i z e d w i t h 2 ml p e t r o l e u m  e x t r a c t was C).  The  e t h e r and  immediately  f o r t o t a l f a t t y a c i d c o n t e n t on a  Packard  Chromatograph (Model  Gas  i n s t r u m e n t had  m x 2.5  mm  a t 180  w e r e h e l d a t 200  C Isothermal.  abundance o f f a t t y  Coated  Open  The  Tubular  C and  temperature  column  I n j e c t e d and  an  relative  acids.  influencing  production  A stepwise m u l t i p l e r e g r e s s i o n analysis 370  c e r t a i n environmental  ('TRIP)  computer t o t e s t the e f f e c t factors—salinity,  temperature,  n i t r a t e , p h o s p h a t e and  production.  S i n c e i t cannot  f a c t o r s operate independently (Zaneveld 1969),  with  injection  Analysis of factors  r u n on t h e UBC  fitted  D e t e c t o r and  A 5 / * - l s a m p l e was  primary  was  Hewlett  A-F.I.D.).  i n t e g r a t o r p r o v i d e d r e t e n t i o n t i m e s and  III.  analyzed  i n s i d e diameter)*packed  diethylene glycol succinate. temperatures  5711  then  sample  f l a m e i o n i z a t i o n d e t e c t o r s and was  w i t h a s t a i n l e s s s t e e l Support c o l u m n (49  petroleum  Methylation followed  w i t h 1 m l d i a z o m e t h a n e f o r 30 m i n . d r i e d under N  rotary  T R I P was  be  light  of  intensity,  ammonia—on  net  assumed t h a t any  of  to control production  c h o s e n as a p p r o p r i a t e .  these  30 RESULTS  I. A.  Physical-Chemical Factors  S a l i n i t y , temperature,  light.  D a i l y means and monthly estimates o f photosynthetically  a v a i l a b l e r a d i a t i o n (400-700 nm) r e a c h i n g the  study a r e a appear i n Table 1.  Maximum values o c c u r r e d  i n J u l y 1975, w i t h the minimum i n January  1975.  L i g h t a t t e n u a t i o n i n the water column adjacent t o the d e l t a was g r e a t e s t d u r i n g the maximum r i v e r period  flow  (June, J u l y ) ( F i g . 5 ) . Values immediately  the s u r f a c e averaged  aa. 50% o f i n c i d e n t  below  radiation  whereas i l l u m i n a t i o n at 2 m was as low as 2%.  Minimum  l i g h t a t t e n u a t i o n o c c u r r e d d u r i n g the w i n t e r w i t h 90% of  i n c i d e n t r a d i a t i o n recorded j u s t below the s u r f a c e .  I l l u m i n a t i o n at 1 m averaged  aa. 30% o f i n c i d e n t  radial  t i o n and aa. 15% a t 2 m ( F i g . 5 ) . Reductions  i n the amount o f i n c i d e n t  radiation  r e a c h i n g the sediment s u r f a c e on the marshland were evident w i t h i n c r e a s e d h e i g h t o f v a s c u l a r p l a n t s (Table 2).  Stands o f Carex  lyngbyei  had a much g r e a t e r  shading  e f f e c t at the sediment s u r f a c e than d i d  Eleooharis  paluetvis.  incident  F o r the former, percent t o t a l  r a d i a t i o n r e a c h i n g the sediment was lowest at times o f peak growth (aa. 6-14JS i n J u l y ) and upon formation o f the dead v e g e t a t i o n mat i n November (aa. 2%).  In  comparison, the growth form o f E. paZu8tris p e r m i t t e d much more l i g h t p e n e t r a t i o n , w i t h a minimum o f 37%  31  Table 1.  Photosynthetically  available radiation  (400-700 nm)  r e a c h i n g the study a r e a .  Month  D a i l y mean (g cal'cm  —2  Monthly )  estimate  (kcal*cm  2  June  255.0  July  250.0  7.75  August  149.0  4.63  September  154.0  4.62  October  101.0  3.03  '  ^  xlO- )  7.65  November  30.8  0.92  December  28.9  0.90  January  20.0  0.63  February  29.8  0.83  March  26.0  0.81  April  94.2  2.83  May  210.6  6.53  June  264.6  7.94  July  266.4  8.26  August  134.2  4.16  1975  5  32  F i g u r e 5.  L i g h t a t t e n u a t i o n with depth i n water column adjacent i n Appendix 1 ) .  t o the d e l t a (data appear  33a  33  Table  2.  Shading of the d e l t a s u r f a c e by attached plants.  L i g h t a t t e n u a t i o n as percent  vascular  incident  radiation Date  1974  19  Carex  July  27 August  13  17  September  October  lyngbyei  Eleocharis  •palustvie  % Incident  height  % Incident  height  (cm)  radiation  (cm)  50 60 110  14 14 6  15 30  60 48  40 60 80  26 12 10  15 40  58 44  20 40 50  24 10 6  15 40  60 50  20 30 40  20 12 10  15 20  49 37  -  —  —  radiation  —  —  November - P r o s t r a t e mat o f dead v e g e t a t i o n (ca. 15 cm high) w i t h 2% o f s u r f a c e r a d i a t i o n noted. 1975  19 March 16  April  14 May  .  20 June  18 J u l y  10 August  5  46  5  80  5 10 15  40 30 25  5 10  80 65  10 15 20  35 25 15  10 15  70 60  20 40 60  20 15 12  15 20  60 48  40 65 100  20 14 8  20 30  55 44  —  —  40 50 85  25 20 12  20 35  55 42  —  —  -  —  —  -  a-*  34  i n c i d e n t r a d i a t i o n recorded i n October A i r temperatures  (Table 2 ) .  d u r i n g the day were h i g h e s t i n  August and lowest In January Daytime water temperatures  and February  (Fig. 6 a ) .  j u s t below the s u r f a c e  1 0 C d u r i n g the h i g h r u n o f f p e r i o d  averaged  (May-  August), w i t h w i n t e r values near 5 C ( F i g . 6 b ) .  Temp-  e r a t u r e s at 1 m were 1 C h i g h e r than s u r f a c e f o r most of the study  (Appendix I I ) .  Monthly p r e c i p i t a t i o n Increased from 1 8 cm i n September 1 9 7 4 to 7 1 cm i n December ( F i g . 6 a ) , w i t h a g e n e r a l decrease t o August 1 9 7 5 .  Seasonal v a r i a t i o n i n  freshwater r u n o f f caused d i s t i n c t  s a l i n i t y patterns i n  the estuary ( F i g . 6 c ) . more) was  A low s a l i n i t y  i n c r e a s e o f only 1 - 2  °/op  ca.  2 - 3 °/oo  over 1 m.  s a l i n i t i e s o c c u r r e d In November-December  pH,  °/oo  (Fig. 6 a , c).  i n January.  nutrients.  Seasonal v a r i a t i o n s i n pH ranged to  concur-  values through the w i n t e r were g e n e r a l l y h i g h ,  reaching 27.9  B.  w i t h an  A second p e r i o d o f  r e n t with a time of h i g h p r e c i p i t a t i o n Salinity  ( 3 m or  present d u r i n g the p e r i o d . o f h i g h r u n o f f .  The mean s u r f a c e s a l i n i t y was  reduced  layer  7 . 9 6 (January)  (Fig. 6 b ) .  from 6 . 9 3 ( J u l y )  A second minimum was  noted  i n December d u r i n g the low s a l i n i t y w i n t e r r u n o f f p e r i o d . The pH i n Snag and P i l e  creeks was  0 . 1 t o 0 . 2 lower  from the surrounding waters ( F i g . 6 b , Appendix I I I ) , w i t h l i t t l e v a r i a t i o n between the c r e e k s .  than  35  Figure  6 a , b , c.  A i r temperature, water  temperature,  pH,  and  salinity  1975  (data  precipitation,  J u n e 1974 appear  - Aygust  i n Appendix I I ) .  35a  Hg.6a  36 N i t r a t e , ammonia and ortho-phosphate i n s u r f a c e waters adjacent ably.  N i t r a t e reached  concentrations  to the d e l t a v a r i e d c o n s i d e r -  a high i n January, with  values o c c u r r i n g i n summer and e a r l y f a l l  low  (Table 3 ) .  Phosphate, l e s s than one t e n t h the maximum c o n c e n t r a t i o n o f n i t r a t e , was  a l s o h i g h e s t i n January, whereas ammonia,  w i t h a s l i g h t l y higher c o n c e n t r a t i o n , was during  at i t s maximum  May.  N u t r i e n t c o n c e n t r a t i o n s were g e n e r a l l y h i g h e r P i l e and Snag creeks compared to surrounding with seasonal p a t t e r n s appearing Table 3 ) . ebb  similar  In  waters,  (Appendix I I I ,  N u t r i e n t c o n c e n t r a t i o n s i n the creeks at  t i d e were u s u a l l y h i g h e r than at other t i d e  N i t r a t e and phosphate c o n c e n t r a t i o n s i n P i l e  times.  creek,  d r a i n i n g the m i d - i n t e r t i d a l marsh, were h i g h e r  Ammonia c o n c e n t r a t i o n s were  twice as high i n Snag  C.  c  than  those recorded f o r Snag creek, d r a i n i n g the upper t i d a l marsh.  mid-  inter-  approximately  creek.  Sediment and o r g a n i c d e p o s i t i o n p a t t e r n s . Maximum sedimentation  o c c u r r e d d u r i n g the  high  r u n o f f p e r i o d (May-August), with an average o f 0.95  +  0.09  and  July.  cm d e p o s i t e d d u r i n g the maximum r u n o f f i n June Sedimentation  t o t a l l i n g 0.15  cm.  from October to March was Over the 15 mo  low,  study p e r i o d ,  cm were d e p o s i t e d with an average annual estimated 1.50  + 0.03  cm.  2.05 at  37  Table 3.  Nutrient concentrations  v  waters surrounding high  Cug-at«l" ) i n s u r f a c e  the d e l t a (samples taken a t  tide).  Date  NO3  NHJ  PO^  0.00 0.00 0.79  0.60 0.00 1.30  1.86 0.00 0.30  29.72 15.83  0.00 0.00  2.09 1.10 0.87 0.00 0.02 0.02 0.02  3  1974 8 August 6 September 22 December  1975 22 January 19  March  _a  1.14  14 May  6.14  11  3.70 2.19 3.10  2.90 0.00 2.56 0.36  30 A p r i l June  20 June 9 July  a  sample m i s s i n g  38 Sedimentation  and sediment o r g a n i c content  s p a t i a l l y and temporally over the d e l t a  varied  (Fig. 7).  D e p o s i t i o n o f sediment was g e n e r a l l y g r e a t e s t i n 1969 and 1970 p r i o r t o dyke c o n s t r u c t i o n and r e d i r e c t i o n o f the r i v e r , averaging 3.2 + 0.3 cm, d e c r e a s i n g towards the upper i n t e r t i d a l zone.  Rates o f sedimentation  from 1972 t o 1974 were approximately  h a l f those  noted  noted  f o r the 1970 t o 1971 p e r i o d when r i v e r dredging and land f i l l  o p e r a t i o n s were i n p r o g r e s s .  Total  sedimenta-  t i o n from 1969 t o 1974 was g r e a t e s t a t the d e l t a i n Areas A, B, and C, averaging 20 + 1 . 3  cm.  front  Lowest  sedimentation was recorded i n Area D, w i t h an average o f 12.5 cm d u r i n g the same p e r i o d . The o r g a n i c content  (mg CO- o f sediments I n Areas  A through D g e n e r a l l y decreased w i t h depth  (Fig. 7).  Area A (low i n t e r t i d a l ) w i t h coarse sand had t h e lowest o r g a n i c content.  Areas B, C, and D ( m i d - i n t e r t i d a l ) were  s i m i l a r i n terms o f o r g a n i c content but were about 4 mg C*g dry wt s e d i m e n t "  1  h i g h e r than comparable depths i n  the low I n t e r t i d a l zone.  Area E, a creek bottom i n the  low I n t e r t i d a l zone, had the h i g h e s t o r g a n i c content on the d e l t a .  D.  T i d a l creek flow r a t e s . P i l e creek d i s c h a r g e d aa. 703 x 1 0  J  1 over an ebb  t i d e whereas Snag creek was h i g h e r at aa. 810 x 10  1.  These values apply only t o a complete drainage o f the creeks and an adjustment,  u s i n g t i d e t a b l e s t o account  39  Figure  7.  Seasonal  patterns of sedimentation  sediment  organic content  cores taken indicated  on t h e d e l t a  (site  as d e t e r m i n e d at  descriptions  appear i n Appendix  IV).  and  locations and  data  from  4  *  20-  -OA  15-  (mg  >k  8  12  16  20  ©  ©  20-  15-  15-  10  10  LO  10  o  ©  20  1766  5-  512  16  20  4  8  12  16  20  4  8  12  16  20  18  0  16-  o 3  12108  T516  ©  8(H  20  60  120-  40  80-  204M  408  12  16  Sediment depth (cm)  20  2  4  6  8  10  40 for incomplete  d r a i n a g e , i s n e e d e d t o a r r i v e a t more  r e a l i s t i c monthly discharge  II. A.  Species  Biological  composition  Benthic  values.  and  algae present  s h o w i n g z o n a t i o n and  Factors  distribution. belonged to seven c l a s s e s ,  substrate-habitat specificity  w i t h i n the i n t e r t i d a l r e g i o n (Table 4 ) . p h y t e s and  The  rhodo-  d i n o f l a g e l l a t e s were r e s t r i c t e d t o t h e  low  I n t e r t i d a l w h i l e phaeophytes were d i s t r i b u t e d o v e r low  and m i d - i n t e r t i d a l z o n e s a t t h e p e r i p h e r y o f  marshland. both  Chlorophytes  the mid-  and  and  upper i n t e r t i d a l r e g i o n s .  present  chloro-  minima  a l l year.  w i t h t h e e x c e p t i o n o f Rivularia  The  in  distributed  m a c r o a l g a e on t h e d e l t a w i t h Enteromorpha oxyspermwn  the  cyanophytes occurred  p h y t e s w e r e t h e most common and w i d e l y  Monostroma  and  Cyanophytes,  biasolettiana  which  p e r s i s t e d at the periphery of the d e l t a , occurred multispecific microalgal associations i n small z o n e s " and  open a r e a s w i t h i n t h e m a r s h l a n d .  p h y t e s were a l s o f o u n d i n a s s o c i a t i o n w i t h mats i n t h e u p p e r  the  In  "dead  The  cyano-  xanthophyte  intertidal.  Macroalgae l i s t e d  i n Table  % w e r e f o u n d as mono-  s p e c i f i c g r o w t h s w i t h some a s s o c i a t e d m i c r o a l g a l epiphytes  ( F i g . 8 a, b ) .  M i c r o a l g a l a s s o c i a t i o n s con-  s i s t i n g o f diatoms and/or f i l a m e n t o u s d i s t r i b u t e d over the d e l t a .  chlorophytes  Each a s s o c i a t i o n had  c h a r a c t e r i s t i c appearance i n the  field  ( F i g . 8 c,  were a d)  H.  Table  Major a l g a l s p e c i e s w i t h t h e i r p r e f e r r e d s u b s t r a t e and  l o c a t i o n on  the  delta.  Species  Substrate  Intertidal  Area  location  Chlorophyceae Cladophora  sp.  Enteromorpha  minima  vascular plants  upper  tidal  pools  logs and p i l i n g s  mid-upper  periphery  sedge  mid  f r o n t of d e l t a  vascular plants  mid-upper  t i d a l pools and mud bank at p e r i p h e r y of d e l t a  soft  upper  adjacent creeks  vascular plants  upper  tiidal  sedge  mid-upper  marshland  upper  open areas i n sedge marsh  of d e l t a  (Nag.) ex Kutz.  E.  prolifera  (Mull.) J .  Ag.  Monostroma  oxyspermum  (Kiitz.) Doty  Rhizoolonium  (Dill.)  implexum  Kiitz^  Spirogyra  sp.  Ulothrix  flaeea  (Dill.)  mud  to  tidal  pools  Thur.  Xanthophyceae Vauoheria  (L.)  V.  Ag.  diohotoma  intermedia  Vauoheria  ...Continued  spp.  h sediment  Table 4.  Continued.  Substrate  Species  Intertidal  Area  location  Phaeophyceae Fucus  distichus  subsp. edentatus (De La Py.) Powell  logs  low  sand  flats  low  sand  flats  Laminaria  sp.  sediment  Pylaiella  littoralis  sedge  d e l t a p e r i p h e r y and front  (Lyng.) K j e l l . low-mid  Rhodophyceae Antitiiamnion  pacificum  sand f l a t s front  logs  (Harv.) K y l i n low  Dinophyceae Amphidinium  sp.  Gymnod-inium  sp.  Pevidinium  at d e l t a  -sediment  low  creek banks and sand flats  mid-upper  bank at p e r i p h e r y o f the d e l t a  sp.  Cyanophyceae Rivularia  Menegh. ...Continued  biasolettiana  sediment  Table 4.  Continued.  Species  Substrate  Intertidal  Area  location  Calothvix  soopulorum  Calothvix  spp.  Lyngbya  aestuarii  Ag.  (Merr.) Lyngb.  Osoillatovia  (Kutz.)  0.  brevis  Gom.  tenuis  J-sediment  mid-upper  Ag.  Phovmidium  open areas i n sedge marsh  sp.  Spirulina  eubealsa  Qejest. B a c i l l a r i o p h y c e a e (major s p e c i e s o n l y , others appear i n Appendix Meloeira  (Mull.) M.  moniliformis  sedge  mid  marsh  Ag.  sedge  mid  marsh  sediment-consolIdated mud  low  near t i d a l mouths  sediment-consoli d a t e d mud  low  bottom of creeks  sediment-uncons o l i d a t e d mud  low  banks of creeks  Ag.  nummuloidee  Naviaula  canoellata  CI. N.  grevillei  Nitz8ohia  (Ehrbg.) W. Pleurosigma  V)  (ag.)  CI.  alosterium  Sm. aestuarii  CI,  creek tidal  tidal  F i g u r e 8 a,b.  Macroalgae showing gross p f Pylaiella morpha  8 c,d.  littoralis  appearance (A) and  Entero-  minima ( B ) .  Microalgal associations  showing  gross  appearance o f A s s o c i a t i o n D (C) and F (D).  44 a  45  and was a s s o c i a t e d w i t h a s p e c i f i c ( T a b l e 5)-  s u b s t r a t e and h a b i t a t  With t h e e x c e p t i o n o f A s s o c i a t i o n s E and  G, d i s t r i b u t i o n o f m i c r o a l g a l a s s o c i a t i o n s was g r e a t l y restricted. tions  Complete l i s t i n g s  composi-  f o r e a c h a s s o c i a t i o n a p p e a r i n A p p e n d i x V. Enteromorpha  by P r a n g e  minima  (1976)  ( K j e l l ) Scagel. the  of the species  i s t h e same s p e c i e s  a s B l i d i n g i a minima Some c o n t r o v e r s y  l a t t e r i s a v a l i d genus.  reported  var. subsalsa  e x i s t s as t o w h e t h e r  Chapman a n d Chapman  (1973)  s t a t e d t h a t t h e r e I s no j u s t i f i c a t i o n f o r t h e r e t e n t i o n , as c h a r a c t e r s u s e d t o i d e n t i f y g e n u s Enteromorpha  tified  size).  1972,  P r a n g e 1976)  most s p e c i e s o f Enteromorpha.  this  Recently, sexual  and i s s i m i l a r t o  Based on t h e s e  c l a s s i f i c a t i o n o f Enteromorpha  i s used i n  changes i n d i s t r i b u t i o n and s p e c i e s  o s i t i o n o f b e n t h i c a l g a e were a p p a r e n t 9, A p p e n d i x I V ) . minima.  M a c r o a l g a e such as  Monostroma distiohus  oxyspermum,  Vauoheria  s u b s p . edentatus,  E and P were always p r e s e n t . for  features,  thesis. Seasonal  Fucu8  repro-  as l a c k i n g i n B l i d i n g i a , h a s b e e n i d e n -  (Tatewaki  the e a r l i e r  In the  ( i . e .prostrate disc giving rise to  erect p l a n t s , small c e l l duction,hgiven  i t a l s o occur  (Table  comp-  6, P i g .  Enteromorpha dichotoma,  and  a s w e l l as A s s o c i a t i o n s  The r e m a i n d e r w e r e  found  o n l y a few months a n d i n d i c a t e d a p a r t i c u l a r s e t o f  p h y s i c a l , chemical p r i m a r i l y these  and/or b i o l o g i c a l c o n d i t i o n s .  algae which produce t h e seasonal  b u t i o n p a t t e r n s noted  i n F i g u r e 9,  along with  It i s distri-  biomass.  Table 5.  Appearance, composition,  and d i s t r i b u t i o n o f m u l t i s p e c i f i c m i c r o a l g a l  associations. Association  Growth form  Major species  Substrate  location  (size)  B  D  G  Intertidal  mid  dense brown f i l amentous clumps (-5.0 cm long)  Melosira moniliformis M. nummuloides  sand-mud a s s o c i ated with sedge  unconsolidated green mat (ca. 2.0 mm t h i c k )  Navicula cancellata  cons o l i d a t edecl mud i n open areas adjacent to P i l e Creek  low-mid  red-brown f i l amentous clumps (^5.0 cm long)  Navicula grevillei M. nummuloides  coarse sand on P i l e Creek bottom  low  l i g h t brown f i l amentous clumps (^8.0 cm long)  N. g r e v i l l e i Melosira spp.  consolidated mud, shallow pools  mid  brown l a y e r , extensive (ca. 1.0 mm t h i c k )  Navicula  unconsolidated mud  green f e l t l i k e mat (<0.5 cm t h i c k )  Vauoheria dichotoma Vauoheria  Ulothrix green f i l a m e n t s with epiphytes (ca. 2.0 mm t h i c k )  spp.  consolidated mud, sand  low-mid  upper  spp. flacoa  on dead v a s c u l a r plants  mid-upper  Table  6.  Seasonal  occurrence  o f m a c r o a l g a e and m i c r o a l g a l  1974  associations.  1975  J u n J u l Aug  Sep  X  X  X  X  X  X  X  X  X  X  X  X  Oct  Nov  Dec  J a n Feb  Mar  Apr  May  Jun J u l  Aug  Macroalgae Cladophora  sp.  Enteromorpha  minima  X  Enteromorpha  prolifera  Monostroma  oxyspermum  X  X  X  X  X  implexum  X  X  X  X  X  X  X  X  X  X  X  X  X  X  Rhizoolonium Spirogyra  sp.  Rivularia  biassolettiana  X  Pylaiella  littoralis  X  Fuous  distiohus  ssp.  edentatus X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  .croalgae Association  A B  X  X  X  X  X  C  X  X  X  X  X  X  X  X  X  D E  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  F  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  11  12  13  13  12  12  12  11  11  G  Total  present  X  12  11  11  10  8  7  48  Figure  9.  Total  distribution  a r e a and  algal  biomass.  Total  biomass  (x 10 kg C)  49 G r o w t h p r e s e n t i n t h e f a l l , c h a r a c t e r i z e d by S e p t e m b e r , c o v e r e d ca. 10 x 10-' m A s s o c i a t i o n E on t h e s a n d f l a t s  ( P i g . 9),  accounting  A l g a e were r e s t r i c t e d t o t h e p e r i p h e r y tidal  pools  (Pig.  10 a ) . W i n t e r  species  and an i n c r e a s e f o r the f a l l  was ca. 110 x 1 0  J  m  (Table  Ulothrix  Associflacca,  f o r 90$ o f t h e c o v e r a g e ( F i g . 10 B ) . The  E a n d G d o m i n a n t ( F i g . 10 S ) .  d i v e r s i t y was h i g h e s t chlorophytes  i n the  (Table 6 ) .  ( M a r c h ) d i s t r i b u t i o n p a t t e r n was s i m i l a r ,  Associations  creeks  i n micro-  ( F i g . 9) w i t h  a t i o n G, d o m i n a t e d by t h e c h l o r o p h y t e  spring  of the delta,  (December) showed a r e d u c t i o n  a l g a l a s s o c i a t i o n s over that  responsible  f o r 80%.  and open a r e a s a d j a c e n t t o t h e t i d a l  number o f c h l o r o p h y t e  Distribution  with  with  Species  a t t h i s time w i t h reappearance o f  and c o n t i n u a t i o n  of microalgal  associations  6 ) . Summer g r o w t h , c h a r a c t e r i z e d by J u n e , was  again  r e s t r i c t e d t o the periphery  pools  a n d c r e e k a r e a s as i n t h e f a l l  phytes dominated over m i c r o a l g a l  of the delta,  tidal  ( F i g . 10 d ) .  associations  Chloro-  (Table 6 ) , o 2  w i t h t o t a l d i s t r i b u t i o n a m o u n t i n g t o ca. 8 x 10  m  Pig. 9). B.  Biomass and p r o d u c t i o n . S t a n d i n g crop biomass considered  basis  i n d i c a t e d Pylaiella  on a s q u a r e m e t e r  l i t t o r a l i s as t h e d o m i n a n t  c o n t r i b u t o r , f o l l o w e d by Enteromorpha  minima a n d t h e  chlorophyte-dominated A s s o c i a t i o n G (Table  7).  t i o n E , d o m i n a t e d by d i a t o m s , h a d t h e l o w e s t  Associa-  biomass  50  F i g u r e 10.  Distribution i n A) f a l l C) s p r i n g  o f b e n t h i c a l g a e on t h e d e l t a  ( S e p t e m b e r ) , B) W i n t e r  (December),  ( M a r c h ) , a n d D) summer ( J u n e ) .  Cladophora  sp.  Enteromorpha  WA  minima  Enteromorpha  prolifera  Monostroma  oxyspermum  Rhizoolonium Spirogyra Pylaiella  Association  implexum sp. littoralis  A  m  B  »A  C D E  m  F G  52  Table 7.  Maximum biomass v a l u e s f o r macroalgae and m i c r o algal  associations.  Maximum biomass gC-m"  2  Pylaiella  littoralis  Enteromorpha  minima  Association G Enteromorpha Spirogyr.a Cladophora  prolifera  24.83 17.42  17.31 12.00  sp.  11.92  sp.  Monoetroma  69.65  oxyspermum  9.04  Association A  8.12  Association D  7.96  Association F  5.72  Rhizoolonium  implexum  4.06  Association B  3.92 3.92  Association E  2.17  Association C  53 v a l u e a t aa.  2.17  g Om  each s a m p l i n g appear  _2  .  . Biomass d e t e r m i n a t i o n s f o r  i n Appendix  VI.  T o t a l a l g a l s t a n d i n g c r o p on t h e d e l t a r a n g e d aa.  17 k g C I n O c t o b e r t o aa.  (Fig.  9).  1600  kg C i n F e b r u a r y  Monthly biomass e s t i m a t e s f o r each  a l g a and m i c r o a l g a l a s s o c i a t i o n I n t e r m s d i s t r i b u t i o n appear  i n Appendix  VII.  Pylaiella  littoralis  Association G  These a l g a e were  biomass f o r these p e r i o d s .  Cladophora  sp.,  8).  Monostroma  and A s s o c i a t i o n s B and C made m i n i m a l  biomass  of the  total  (Appendix V I I ) .  o r d e r o f dominant net p r i m a r y p r o d u c e r s  different 7,  significant  o f t h e . s t a n d i n g crop  c o n t r i b u t i o n s , a v e r a g i n g l e s s t h a n 10%  The  biomass,  O t h e r i m p o r t a n t a l g a e were  i n t h a t t h e y made up o v e r 50%  monthly  most p r o d u c t i v e m a c r o a l g a e  s p . and Monostroma  oxyspermum.  were  than those f o r macroalgae A s s o c i a t i o n A was  (Tables  Spirogyra  Net p r o d u c t i o n maxima  f o r m i c r o a l g a l a s s o c i a t i o n s w e r e l o w e r s on t h e  the l e a s t .  was  t o t h a t noted f o r s t a n d i n g crop biomass  The  was  and A s s o c i a t i o n E , b o t h r e a c h i n g  maximum v a l u e s I n A p r i l .  oxyspermum,  macro-  of i t s t o t a l  the g r e a t e s t c o n t r i b u t o r t o standing crop e s p e c i a l l y i n February.  from  by 50$  o r more ( T a b l e  average, 8).  t h e most p r o d u c t i v e and A s s o c i a t i o n D  Primary p r o d u c t i o n over the y e a r f o r macro-  and m i c r o a l g a e a t 1 m a v e r a g e d the s u r f a c e (Appendix V I I I ) .  about  However, at t h e time  maximum r i v e r f l o w , p r o d u c t i v i t y between 5 and  h a l f that noted  at 1 m dropped  20% o f s u r f a c e p r o d u c t i o n .  to  of  at  54  Table  8.  Net p r o d u c t i o n maxima and minima r e c o r d e d . Production (gCm" -day" ) 2  Maxima  Macroalgae Spirogyra Monostroma Pylaiella  sp. oxyspermum littoralis  Enteromorpha Cladophora  minima sp.  Enteromorpha  prolifera  Rhizoolonium  implexum  Microalgae Association A  P D E C G B  1  Minima  surface  1 m  surface  1 m  2 .67 21 Jun 2 .55 19 Mar 2 .03 19 Mar 1.93 6 Jun 1 .01 19 J u l 0 .94 29 J u l 0 .88 16 J u l  0 .68 13 Aug 0 .98 20OFebb 0 .67 19 Mar 0 .65 6 Jun 0 .44 27 Aug 0 .28 16 Apr 0 .33 27 Aug  0 .30 30 Oct 0 .35 2 Sep 0 .23 20 Jun 0 .13 22 Jan 0 .54 12 Jun 0 .17 20 Feb 0 .12 30 Oct  0.12 30 Oct 0 .14 5 Jul 0 .04 21 Jun 0 .00 18 Dec 0 .14 12 Jun 0 .07 20 Feb 0 .06 30 Oct  1 .43 29 J u l 1.08 21 Jun 0 .72 20 Feb 0 .58 20 Jun 0 .45 22 Jan 0 .35 22 Nov 0 .20 22 Jan  0 .38 14 May 0 .36 14 May 0 .36 22 Jan 0 .35 14 May 0 .31 22 Jan 0 .20 22 Nov 0 .09 22 Jan  0 .41 19 J u l 0 .12 18 Dec 0 .25 16 Apr 0 .02 18 Dec 0 .14 14 May 0 .10 19 Mar 0 .10 19 Mar  0 .04 19 J u l 0 .02 18 Dec 0 .15 15 Mar 0 .05 29 J u l 0 .07 14 May 0 .05 18 Dec 0 .02 19 Mar  55 The  r e d u c t i o n i n d a i l y net primary  a s s o c i a t e d w i t h i n c r e a s e d water depth  production  ( T a b l e 8,  Appendix  V I I I ) i n d i c a t e d t h e need f o r a c o r r e c t i o n f a c t o r g e t a more a c c u r a t e e s t i m a t e o f m o n t h l y n e t  s u r f a c e ) and tables  covered  (Appendix  ( 1 m),  as d e t e r m i n e d  cm  from  below  tide  I X ) , to production data provides b e t t e r  e s t i m a t e s o f monthly net p r o d u c t i o n than values  production. (15  A p p l i c a t i o n o f t h e t i m e an a l g a i s e x p o s e d  to  f r o m t h e s u r f a c e and  1 m.  Values  at were c o r r e c t e d f o r d i s t r i b u t i o n  averaging thus  (coverage)  arrived area  of  -1 a producer ( T a b l e 9).  and  expressed  importance  a s s o c i a t i o n to the The  as g C ' d i s t r i b u t i o n a r e a  These d a t a g i v e b e t t e r e s t i m a t e s o f  c o n t r i b u t i o n and  -1 'mo  the  of a macroalga or m i c r o a l g a l  delta.  algae making the g r e a t e s t c o n t r i b u t i o n t o  t o t a l n e t p r o d u c t i o n were m i c r o a l g a l A s s o c i a t i o n s G E, o f w h i c h t h e f o r m e r During aa.  74$  was  by  i t s w i n t e r growth p e r i o d , A s s o c i a t i o n G of the t o t a l monthly p r o d u c t i o n .  l i t t o v a l i s was  18%  f o r oa.  in April.  A s s o c i a t i o n s B and  C,  f o r 1%  the lowest c o n t r i b u t o r s of t o t a l monthly  produc-  the h i g h e s t net p r o d u c t i o n  the study, w i t h values at other times (Table  production  9).  November-March had  half  averaged  Pylaiella  of the tot.al monthly  to p r o d u c t i o n , accounted (Table  9).  (Table  the h i g h e s t macroalgal c o n t r i b u t o r ,  accounting  tion  f a r the dominant  and  9).  one  over  quarter to  one  Table 9.  C net p r o d u c t i o n estimates (gC x 1 0 ° ) f o r macroalgae and  Monthly  m i c r o a l g a l a s s o c i a t i o n s per coverage a r e a , c o r r e c t e d f o r coverageexposure  time.  tt  o  « • *»>  1974  June July August September October November December  ft  3 .16 9 • 90 7 .32 1 .55  1975  January February March April May June July August  Total a  o  rH tt  O  E ,«  E  o  2 .73 2 .25 7 .89 4 .83 39.62  tt Cg  S'  7..65 8,.90 5..12 2,.45 2,.31 1,.21 0,.33  4» O  tt E E 3 o E  Ss i s <0 Cu,  o  CO  S Si  5: o  4*1.4 6, .16 1,.71 0,.54  0,.22 0,.76 1,.17 1..67 2..37 2..05 5..26 3..34  0,.12 0,.39 0..67 1..63 2..63 4..38 1..50  44.81  23.81  assume 20.00 g C minimum net p r o d u c t i o n ...Continued  E  6 .08 4 .37 1 .16 1 .32 2 .33 0 .92 1 .12 1 .59 2 .91 7 .74 7 .25 7 .25 6 .61 4 .75 2 .17 57.58  si o  tt  s> tt> o  tt  o •t* rC  Cu ft CQ ra  20,.oo 23..60 19..07 8,.63 2..40  tt  a  Cu E  10,.09 15..35 10,.23 4,.09 1,.55  tt +^  4,.74  0.^93  24..60 25..42 22..48  0..62 1..22 4..71 5..10 7..29 8..25 13-.64 10..90  1,.34 10..07 37..69 33..18 30..32 4..58  146.17  92.85  122.85  Table 9-  Continued.  Association  1974  1975  June July August September October November December January February March April May June July August  Total  A  B  C  17.18 3.10  —  _  —  —  —  —  _  -  —  —  —  —  — —  — — —  17.55 16.90 11.32  0.08  0.80  0.15 0.10 0.11 0.06 0.04  — — —  -  -  66.05  2.72  0.50  F  G  Total  37.15  18.00 15.58 7.06 4.65 2.30 13.42 1.58  —  128.19  41.85 67.12 62.39 34.01 31.47 5 .58 10 .11 12 .40 33 998  _ —  -  E  37.13  -  0.30 0.87 0.53 0.22  D  32.07  97.59 127.63 107.42  1.98  3.28  -  —  90.35 73.28  381.60 223.26  431.16 254.07  209.70 315.90  319.57 472.98 469.54 181.22 140.26  289.80  58.99 67.20 24.78 34.16  7.58 7.34 12.09 13.73 12.21 6.05  950.69  124.55  1420.26  121.80  124.17 93.52  -  148.80  109.65 85.23  58  Three subgroupings  o f b e n t h i c a l g a e can  e s t a b l i s h e d w i t h reference to the time of and  be  distribution  p r o d u c t i o n maxima, i n d i c a t i n g o p t i m a l c o n d i t i o n s  (Table 10).  A l g a e most s e n s i t i v e t o h i g h l i g h t ,  e r a t u r e and  d e s s i c a t i o n ( l o w LTD  p h a e o p h y t e s and  chrysophytes  group) are  (diatoms).  primarily  Pylaiella  l i t t o r a l i s , d i a t o m - d o m i n a t e d A s s o c i a t i o n s B, E, a l o n g w i t h c h l o r o p h y t e - d o m i n a t e d in this  category.  h i g h LTD  category  Less and  ( A s s o c i a t i o n P) and Monostroma  C.  Comparison o f  14  production  s e n s i t i v e species are i n the  species  which Is placed i n a  Vauoheria except  separate  species.  C and  d i s s o l v e d oxygen  primary  14  C net primary  production  estimates  f r o m t h e o x y g e n m e t h o d show t h e f o r m e r  be h i g h e r by  are  estimates.  Comparison of w i t h those  and  Association G  other chlorophyte  g r o u p as a medium LTD  C, D,  Include the xanthophyte  oxyspevmum,  temp-  an a v e r a g e o f 8.8%  (Table  to  10!).  14 The of  C values of net primary  gross primary  tested  (Table 11).  Chlorophytes  had  a s s o c i a t i o n s w e r e 70 - 82%,  somewhat h i g h e r  a s s o c i a t i o n s , ranging  - 86.1$, w i t h an a v e r a g e o f 76%.  w h e r e a s Pylaiella  percent  p r o d u c t i o n v a r i e d , w i t h each a l g a  values than d i d the diatom 64.7  p r o d u c t i o n as  Estimates  w i t h an a v e r a g e o f  l i t t o r a l i e was  lower at  68.5%.  from for  75%,  59  T a b l e 10.  N e t p r i m a r y p r o d u c t i o n o f m a c r o a l g a e and m i c r o -  —2  a l g a l a s s o c i a t i o n s on t h e d e l t a ( g C*m Species  —1  .day  Maxima  Month  2.03 0.72 0.45 0.33 0.20  March  2.55  March  ).  Low LTD g r o u p Pylaiella  littoralis  Association D Association C Association G Association B  February January November January  Medium LTD g r o u p Monostroma  oxyspermum  H i g h LTD g r o u p Spirogyra  sp.  Enteromorpha  minima  Association A Association F Cladophora  sp.  Enteromorpha  prolifera  Rhizoclonium  implexum  Association E  2.67 1.93 1.43 1.08 1.01 0.94 0.88 00.58  June June July June July July July June  60  Table 11.  C production  as percent oxygen p r o d u c t i o n  (averages o f 10 d e t e r m i n a t i o n s ) .  percent 0gross p r o d u c t i o n  b  percent above 0 e net p r o d u c t i o n  Macroalgae Cladophora  sp.  78.0  6.7  Enteromorpha  minima  75.4  9.1  Enteromorpha  p r o l i f era  73.8  7.3  86.1  10.2  64.7  7.4  Monostroma Spirogyra  oxyspermum sp.  Rhizoolonium  implexum  78.2  10.7  Pylaiella  littoralie  68.5  11.3  Association A  75.6  9-7  B  74.1 71.4 78.0  5.8 7.6 8.4  73.0 70.0 82.2  10.9 5.1 12.4  Microalgae  C D E F G  Mean  c o r r e c t e d f o r o r g a n i c exudation 14 C net p r o d u c t i o n engross p r o d u c t i o n  14 C net p r o d u c t i o n Op net p r o d u c t i o n  8.8  61  D.  D i s s o l v e d o r g a n i c m a t e r i a l (DOM) e x u d e d  during  production. D i s s o l v e d o r g a n i c m a t e r i a l e x u d e d by b e n t h i c  algae  amounted t o b e t w e e n 0 and 30% o f t o t a l n e t p r o d u c t i o n (Table 12). Pylaiella  Chlorophytes  littoralis  exudation. high rates.  had t h e lowest  and A s s o c i a t i o n B t h e h i g h e s t  A l l m i c r o a l g a l a s s o c i a t i o n s had r e a s o n a b l y The t i m e  o f e x u d a t i o n maxima v a r i e d , w i t h  J u n e o r J u l y t h e m o s t common  E.  v a l u e s and  (Table 1 2 ) .  A d d i t i o n and removal o f p a r t i c u l a t e o r g a n i c  matter  (POM). P a r t i c u l a t e organic matter  ( > 0.45/^diameter)  d e p o s i t e d on and removed from t h e d e l t a o v e r a t i d a l cycle consisted o f phytoplankton, and m i c r o a l g a e Addition. matter  benthic  and d e t r i t a l m a t e r i a l . Species  composition  o f t h e added  changed s e a s o n a l l y . P P l a n k t o n i c diatoms  a t i n g f r o m Howe Sound ( S t o c k n e r Squamish R i v e r were n o t e d Thalassiosira  pao-ifioa  and C l i f f  a n d Skeletonema  species of d i n o f l a g e l l a t e s . by Navioula  eaneellata*  r e t u r n e d on t h e s u c c e e d i n g  a b u n d a n t f r o m December t o J u n e . also l i f t e d  origin-  The m a r i n e  aoetatum  dominated  s p . and t h r e e  Benthic  apparently  organic  1976) and t h e  a t each sampling.  i n M a r c h a n d A p r i l a s d i d Chaetoaeros  and  macroalgae  diatoms,  lifted  dominated  from t h e d e l t a  ebb t i d e , w e r e most Benthic  macroalgae,  f r o m t h e d e l t a , w e r e most p r e v a l e n t  from  62 Table 12.  Organic exudation as percent t o t a l net primary p r o d u c t i o n measured by the  Depth (m)  Cladophora  June July  0 1  4-10 4-9  7 5  June November  0 1  4-19 3-12  7 6  July August  0 1  4-8 4-13  6 9  July June  0 1  9-20 5-16  13 15  0 1  0-16 3-11  8 8  July July  0 1  14-30 3-13  22 7  June June  0 1  10-28 4-20  19 7  July July  B  0 1  10-30 0-20  20 16  December December  C  0 1  4-18 0-9  13 8  January December  D  0 1  7-16 5-6  13 6  April February  E  0 1  8-25 4-20  15 11  June July  F  0 1  5-24 0-17  12 10  June July  G  0 1  5-22 5-7  10 6  February February  minima prolifera  Monostroma  oxyspermum  sp.  Rhizoolonium  implexum  littoralis  Microalgae Association A  a  15  Time o f maximum  7 6  Enteromorpha  Pylaiella  Exudation Range Ave.  4-10 2-9  sp.  Enteromorpha  Spirogyra  o 1  C method.  cm below water s u r f a c e  a  June October  63  Figure  11.  Particulate  o r g a n i c m a t t e r added  d e l t a expressed microalgae  as p e r c e n t d e t r i t u s , and m a c r o a l g a e  (average o f f o u r A.  to the  stations)  Marshland  B. Sand/mud  flats  (^)  (???) •  ,  63a  64 October  t o A p r i l , w i t h Rhizoclonium  Pylaiella  littoralis  implexum  and  t h e main s p e c i e s .  S p a t i a l and temporal  variations  i n deposition of  POM e x i s t e d b e t w e e n . t h e sand/mud f l a t s a n d t h e m a r s h l a n d (Fig.  1 1 ) . On t h e m a r s h l a n d ,  October-January, and May.  m a c r o a l g a e were l o w e s t i n  w i t h values f o u r times higher i n A p r i l  Microalgae accounted  f o r ca. 20% o f t h e t o t a l  o r g a n i c d e p o s i t i o n , r i s i n g t o 40$ i n M a r c h .  The p e r c e n t  a d d i t i o n o f d e t r i t a l m a t e r i a l was g r e a t e s t d u r i n g t h e summer arid f a l l , The  a v e r a g i n g a b o u t 50% ( F i g . 1 1 ) .  c o m p o s i t i o n of.POM a d d e d t o sand/mud f l a t s i n  the low i n t e r t i d a l proved the marshland (ca.  somewhat more v a r i a b l e  ( F i g . 1 1 ) . Macroalgae  contributed least  11$), being greatest i n A p r i l .  23$.  Detrital  judged  than  Microalgae  averaged  m a t e r i a l washed from t h e m a r s h l a n d ,  as  from s p e c i e s c o m p o s i t i o n , and d e p o s i t e d on t h e  sand/mud f l a t s made up ca. 60% o f t h e t o t a l  organic -2  matter  deposited.  A d d i t i o n o f organic matter  ( g C*m  d a y " ) was g e n e r a l l y 50% h i g h e r I n t h e m a r s h l a n d 1  Removal.  Seasonal  v a r i a t i o n s I n POM l e a v i n g t h e  d e l t a v i a t i d a l c r e e k s were d i f f e r e n t creeks  (Fig. 12). In Elle  (April-May),  Rhizoclonium  morpha prolif'era abundant.  f o r Snag a n d P i l e  creek, Pylaiella implexum  littoralia  (June) and  Entero-  ( A u g u s t - S e p t e m b e r ) w e r e r e c o r d e d as  The l o w e s t m a c r o a l g a l c o m p o s i t i o n was I n  November ( 8 $ ) a n d t h e h i g h e s t i n A p r i l The  (Table 1 3 ) .  species noted  (50$) ( F i g . 1 2 ) .  f o r P i l e w e r e a l s o common i n S n a g  c r e e k b u t i n l o w e r a m o u n t s , m a k i n g up a maximum o f ca.  65  Table 13.  A d d i t i o n o f p a r t i c u l a t e o r g a n i c matter t o the delta  (mg C«m  ) (mean o f 4 sampling s i t e s i n  each a r e a , sampling p e r i o d over 1 t i d a l  Month  Marshland  cycle).  Sand/mud  1974 June  76  31  July  92  40  112  60  September  64  29  October  42  27  November  32  18  December  4  2  January  10  5  February  30  18  March  120  3'4  April  150  40  May  139  37  June  92  38  July  89  34  104  30  August  1975  August  flats  66  Figure  12.  Particulate Snag and (^)  organic matter  Pile  creeks  , microalgae  (composite  removed  as p e r c e n t , and  A. ) Snag  creek  B. ) P i l e  creek  detritus  macroalgae^) ,  o f d a t a f r o m h i g n and  levels).  through  low  creek  66a  67  25%.  Microalgae  (diatoms) r e c o r d e d from both  h i g h numbers w e r e Melosira removal  of microalgae  s p p . a n d Navicula  creeks i n spp.  showed b a s i c a l l y t h e same  The  seasonal  p a t t e r n s as m a c r o a l g a e w i t h November a n d A p r i l b e i n g t h e high periods i n both creeks.  D e t i r l t a l m a t e r i a l i n Snag  c r e e k was h i g h e r t h a n t h a t r e c o r d e d f r o m P i l e  creek,  r e a c h i n g ca. 80% i n J a n u a r y . The p a r t i c u l a t e o r g a n i c c o n t e n t o f w a t e r s  draining  t h e c r e e k s was h i g h e r ( g r e a t e r t h a n 60%) when t h e w a t e r l e v e l was j u s t b e l o w t h e d e l t a s u r f a c e c o m p a r e d t o when it  reached  t h e creek bottoms  (Table 1 4 ) .  E s t i m a t e s o f POM a n d n u t r i e n t r e m o v a l c r e e k may r e p r e s e n t o v e r e s t i m a t e s  from  c o r r e c t e d t o some  e x t e n t by r e m o v i n g b a c k g r o u n d c o n c e n t r a t i o n s . area east o f the creek at the d e l t a front at  a lower e l e v a t i o n , water  i s brought  Since the  ( P i g . 2) i s  n o t d r a i n i n g cJff t h e d e l t a  i n and i n c l u d e d i n t h a t sampled.  placement o f t h e sampling  Pile  However,  station at the delta  front  r a t h e r t h a n f a r t h e r up t h e c r e e k whereeeO>evatdjo.ns'«were e q u a l o n b o t h s i d e s . was c o n s i d e r e d b e s t a s t h e l a t t e r would r e s u l t i n a c o n s i d e r a b l e underestimate  by o n l y  monitoring a part of the delta surface. The s p e c i e s c o m p o s i t i o n o f i d e n t i f i a b l e matter  r e m o v e d f r o m t h e d e l t a s u r f a c e i n f l o o d t i d e was  directly of  year.  forms  Ulothrix  organic  r e l a t e d t o l o c a t i o n o f sampling  s i t e and t i m e  A l g a e most r e a d i l y removed were f i l a m e n t o u s  (Pylaiella  flacca)  littoralis  3  Enteromorpha  along w i t h diatom  prolifera  3  dominated m i c r o a l g a l  68  Table , Ik.  P a r t i c u l a t e o r g a n i c matter removed from the d e l t a by Snag and P i l e Creeks ( m g C ' l ) at -1  h i g h and low water  levels ". 3  Snag Creek  P i l e Creek  High  Low  Ave.  High  Low  Ave.  June  21 .9  15..3  18..6  24..2  12 .7  18 .4  July  20 .2  15..4  17..8  21..1  11 .4  16 .3  August  20 .0  17..6  17 .1  12..9  17..4 15..2  13 .1  September  15..2 8,.7  14 .1  15 .3 14 .7  October  7..2 8,.7  11..9 10..2  17.,1 18.,2  9 .7  13 .4  November  16 .5 11 .7  9 .5  13 .9  December  6 .9  4,.9  5..9  8..9  5 .7  7 .3  January  11 .4  8..6  9 .0  23 .7  13..9 19..4  4 .1  February  5,.7 15..8  12 .0  15 .7  March  24 .7  17..0  25..4  17 .9  21 .7  April  19 .1  10,.1  17..1  8 .7  12 .9  May  15 .3  12,.0  21,.9  12 .0  June  20 .4  17,.2  13..7 18,.8  22,.7  15 .2  16 .9 18 .9  July  20 .0  14,.7  17,.4  27,.2  14 .9  21 .1  August  19 .9  14,.9  17,.4  17..2  10 .8  14 .0  1974  5  T  a  19..8 20,.9 14,.6  h i g h water l e v e l c a . 15 cm below d e l t a s u r f a c e ; low water l e v e l near creek bottom.  69 associations.  The  g r e a t e s t abundance o f each  r e c o r d e d a t t h e end The and  of i t s growth p e r i o d .  amount r e m o v e d was  time of year  a l s o dependent upon  ( T a b l e 15).  and u p p e r i n t e r t i d a l had  Sedge-free removal  a b l y h i g h e r t h a n t h e sand/mud f l a t s . the m i d - i n t e r t i d a l removal  site  Removal r a t e s from  f l a t s w e r e l o w e s t i n Julyy 1974. mid-  was  sand/mud  areas i n the  rates considerValues  varied with  r a t e s more t h a n t w i c e  the  upper i n t e r t i d a l at c e r t a i n times o f the y e a r , r e a c h i n g h i g h s i n M a r c h ( T a b l e 15).  The  marshland  h i g h e r v a l u e s w i t h maximum r e m o v a l  had g e n e r a l l y  i n March, f a l l i n g  to  a l o w i n November.  F.  Caloric equivalents. Caloric equivalents (kcal'g o r g a n i c  - 1  ) f o r macro-  a l g a e were g e n e r a l l y l o w e r t h a n t h o s e o f t h e  diatom  d o m i n a t e d m i c r o a l g a l a s s o c i a t i o n s ( T a b l e 16).  Associa-  t i o n s d o m i n a t e d fey Vaucheria  ( F ) and  had  content o f sediments  low v a l u e s .  The  caloric  Ulothrix  (G) a l s o  c o n s i d e r a b l y as a f u n c t i o n o f s e d i m e n t t y p e , w i t h i n the i n t e r t i d a l plant In the area greatest caloric  zone and  S e d i m e n t A r e a F had  and A r e a G t h e l e a s t .  m a t e r i a l from the d e l t a averaged t o some d i a t o m  associations.  added t o t h e d e l t a a l s o h a d s p r i n g and  summer p e r i o d .  location  the species of v a s c u l a r  ( T a b l e 16). content  varied  a caloric  the  Detrital  content  M a t e r i a l removed from  similar and  high c a l o r i c values i n the F a l l - w i n t e r v a l u e s were  by more t h a n 1 k c a l - g o r g a n i c  - 1  !  lower  70  Table 15,  P a r t i c u l a t e o r g a n i c matter (mgOm~ - f l o o d t i d e " ) removed from the major h a b i t a t types on the d e l t a .  Sand/mud f l a t s  Marshland (sedge-free)  Marshland (Carex  meadow)  mid  upper  98.0 113.0 115.0 113.0 118.5 121.5  199.6 194.4 253.4  127.0  305.3  1974  August  24.5  September  23.5  October  28.0  November  26.5  December  22.5  163.5 201.5 191.0 184.0 153.0 136.0 216.0  35.0  296.0  June  27.5  July  18.5  1975 January February  a  March  53.0  April  51.0  May  a  -  37.5  June  27.5  July  22.0  August  20.0  data missing  114.5  _a  _a  362.0 218.0 178.5 288.5 206.0 216.5  168.5 98.0 105.5 108.5 98.5 109.5  268.4 261.7 268.6 204.0  _a  337.4 239.0 230.4 266.0 259.9 251.4  71  Table 1$,  C a l o r i c e q u i v a l e n t s f o r a l g a e , sediments, d e t r i t u s , and  Material  POM.  No.  %LOI  kcal* g dry wt"  Cladophora Enteromorpha Enteromorpha Mono8troma Spirogyra Rhizoclonium Pylaiella  Association  sp. minima prolifera oxyspermum sp. implexum littoralis  A  B  C D  E F  G  Sediment Area A  B C D  E P G  Detritus Removed o r g a n i c matter March-August September-February Added o r g a n i c matter March-August September-February Carex  lyngbyei  Intact Decomposed  kcal* 1  g organic  5 10 5 10 5 10 10 5 5 5 5 5 3 3  52,.9  74 .2 63 .1 89 .9 91 .2 74 .8 73 .0 53 .1 50 .2 59 .1 60 .2 41 .9 75 .9 80 .1  2.,24 3..05 3.,01 3.,06 3..64. 3..49 3..41 2..61 2..57 2..98 3..09 2..62 3..02 3..13  4 .32 4 .84 4 .49 4 .29 3 .99 4 .65 4 .67 4 .92 5 .12 5 .04 5 .13 6 .25 3 .98 3 .91  + + + + + + + + + + + + + +  0 .18 0 .09 0 .05 0 .04 0 .10 0 .23 0 .07 0 .19 0 .23 0 .17 0 .10 0 .05 0 .09 0 .09  5 6 5 6 6 4 5 8  11 .2 17 .7 15 .3 42 .5 46 .9 18 .9 49 .1 50 .8  0,.51 0,.91 0,.79 1,.79 2,.39 1..08 1,.93 3 .07  4 .55 + 5 .14 + 5 .16 + 4 .21 + 5 .09 + 5 • 71 + 3 .91 + 6 .04 +  0 .05 0 .21 0 .14 0 .18  5 5  48 .0 59 .3  3 .28 3 .00  6 .83 + 0 .37 5 .05 + 0 .27  5 5  45 .0 51 .0  2 .95 2 .72  6 .56 + 0 .29 5 .33 + 0 .14  3 3  85 .5 71 .4  3 .49 2 .95  4 .08 + 0 .10 4 .13 + 0 .09  0 .20 0 .12 0 .10 0 .39  72 G.  Benthic  algae,  vascular plant, detritus u t i l i z a t i o n  by a m p h i p o d s . p  Within  t h e 30 x 30 m  grid  sampled a t low t i d e  a m p h i p o d s w e r e n o t e d i n k6% o f t h e e x a m i n a t i o n p o i n t s , and  o f t h e s e , m a c r o a l g a e w e r e u s e d as c o v e r 90% o f  the  time.  A n a l y s i s o f d a t a c o l l e c t e d showed a  statistically  s i g n i f i c a n t r e l a t i o n s h i p between  and  Pylaiella  l i t t o r a l i s , a filamentous  17).  R e l a t i o n s h i p o f Enteromorpha  (Table  brown  very amphipods alga  minima  and  a m p h i p o d s was a l s o s i g n i f i c a n t b u t t o a much l o w e r d e g r e e , w h e r e a s t h e a s s o c i a t i o n w i t h Monostroma  oxysper-  mum was n o t s i g n i f i c a n t . Adult  and j u v e n i l e amphipods t e s t e d i n t h e l a b o r -  atory preferred filamentous  algae f o r cover,  with  littoralis  as i n t h e f i e l d  (Table  Adult  ranking  highest,  a m p h i p o d s c h o s e E. minima  18).  a n d M. oxyspermum  o f t e n t h a n d i d t h e j u v e n i l e s who p r e f e r r e d a s s o c i a t i o n s and d e t r i t u s .  P.  Carex  more  diatom  s h o o t s were c h o s e n  l e a s t by b o t h g r o u p s . Careful examination i n the f i e l d active feeding  occurred  indicated  by b o t h a d u l t a n d J u v e n i l e  a m p h i p o d s a s s o c i a t e d w i t h P. l i t t o r a l i s  a n d E.  when s u b m e r g e d a t l o w t i d e i n p o o l s .  Laboratory  on f e e d i n g  f o r P.  by a d u l t s  that  showed t h e same p r e f e r e n c e and j u v e n i l e s (Table  a d u l t s s e l e c t e d E. minima  18).  As w i t h  a n d M. oxyspermum  t h e n t h e j u v e n i l e s who c h o s e t h e m i c r o a l g a l  minima studies  littoralis cover, more  often  association  73  Table 1$.  Results of analysis  u s i n g a 2 x 2 contingency  t a b l e showing r e l a t i o n s h i p o f macroalgae and amphipods i n a 30 x 30 m at low t i d e .  g r i d on the marshland  (TabulatedX  2  = 3.84 at P  Q  Q [  .).  a  A s s o c i a t e d algae  Pylaiella  littoralis  Enteromorpha Monostroma  indicates  o  "Y^  computed  minima  43.79* 4.46*  oxyspermum  2.66  significance  Table 18.  Cover and feeding preference shown by amphipods t e s t e d i n the laboratory  ( t o t a l o f 300 adult o r j u v e n i l e amphipods - 15 t r i a l s  o f 20 each).  Source  Cover Adult  Vylaiella  littoralia  Enteromorpha Mono8troma  minima oxyapermum  Association A Detritus Carex  lyngbyei  ( p a r t l y decayed brown shoots)  Feeding  Juvenile  Adult  Juvenile  138  156  122  145  102  69  91  31  24  12  31  16  6  14  10  25  25  44  46  79  5  5  0  4  75 and  detritus.  A g a i n , sedge s h o o t s were not  f o o d s o u r c e e x c e p t by A n a l y s e s o f gut feeding in  juveniles  u s e d as  when g r e a t l y  decayed.  c o n t e n t s from amphipods i n c o n t r o l l e d  e x p e r i m e n t s showed a c h a r a c t e r i s t i c c o l o r  some c a s e s i t was  of algae.  a  possible  H o w e v e r , i t was  to locate  impossible  intact  fragments  to r e l a t e  c o n t e n t s from amphipods c o l l e c t e d I n the  and  field  gut to  a  p a r t i c u l a r f o o d s o u r c e even though t h e y were f o u n d i n g on  i t at the  analysis  technique did give  i z a t i o n i n the The fatty  on  The  detritus tested  i n the  species  could  Analysis feeding  i n the  which could Pylaiella  varies  be  characteristic  t i m e i n sec  t o a peak  and  c e r t a i n l y can  be  I n each of the macroalgae, traced.  detrital material  amphipods u s i n g  the  had  f a t t y a c i d s p e c t r u m o f amphipods  a s p e c i f i c alga.  peaks o f the  util-  number o f f a t t y a c i d p e a k s w h i c h a p p e a r  u n i q u e t o any  fatty acids  fatty acid  some i n d i c a t i o n o f f o o d  a c i d s , as d e t e r m i n e d by  identified  The  field.  a l g a e and  ( T a b l e 19). t o be  time of c o l l e c t i o n .  feed-  t h i s as  a food  traced  littoralis  could  two  be  located  in  source.  i n d i c a t e d two  actively  fatty acid  b a c k t o Enteromorpha and  fed  In a d d i t i o n , f a t t y acid  o f amphipods c o l l e c t e d w h i l e field  be  detrital material.  peaks  minima* The  a t t r i b u t e d t o d e t r i t u s w e r e somewhat h i g h e r and  peaks of  76  19.  Table  Fatty  acid analysis o fselected  food sources and  a m p h i p o d s f e d o n them.  Food  source  Monostroma  Time t o p e a k (s)  oxyspermum  Amphipods u s i n g f o o d s o u r c e , t i m e t o peak (s)  177* 820* 973*  Pylaiella  littoralis  Enteromorpha  minima  230* 460*  123 130 147  388*  173* 214  252 817* 183 237* 459* 627 135 151 386* 522*  525*  Association A  161* 590*  nil  Field  136* 171* 410* 466* 490* 550*  119 134* 142* 174* 408* 493* 590  detritus  F a t t y a c i d peak from amphipods f e e d i n g i n the f i e l d  170*D* 234*P 384*E 468*P 493*D  527*E 553*D 813*M  " c h a r a c t e r i s t i c f a t t y a c i d peak f o r a f o o d (+ 5 s d i f f e r e n c e ) a  source  l e t t e r s i n d i c a t e peaks I n f i e l d f e d amphipods w h i c h c o r r e s p o n d t o t h o s e f o u n d i n d e t r i t u s ( D ) , Enteromorpha Pylaiella  ( P ) , a n d Monostroma  (M).  (E),  77 longer d u r a t i o n i n comparison to those of I n t a c t algae. T h u s , i t a p p e a r s t h a t d e t r i t u s may source  III.  be  the favored  food  f o r amphipods.  Statistical  Analysis of Factors I n f l u e n c i n g Primary  Production  Results of a previous study using simple r e g r e s s i o n suggest significant  salinity,  i n limiting  (Pomeroy and  temperature  primary  1976).  Stockner  and  linear light  p r o d u c t i o n at Squamish,  Extending  m u l t i p l e r e g r e s s i o n ( 'TRIP) was  this,  stepwise  run to t e s t the  combined  e f f e c t o f t h e s e t h r e e f a c t o r s p l u s n u t r i e n t s on p r o d u c t i o n t o p o i n t o u t t h e most l i k e l y f l u e n c i n g each algav-  f l u e n c e net p r o d u c t i o n  attributed to  and  temperature  ( T a b l e . 20).  t o a l e s s e r degrees?  a t i v e f o r Spivogyra  which i s neg-  sp., a freshwater a l g a .  f o r a short time.  F,  T h i s r e s u l t e d i n sample  l a r g e enough t o p r o v i d e good a n a l y s e s  probability  level  used  (p=0.05).  However,  may  at  the  examination  of the c o r r e l a t i o n m a t r i x i n d i c a t e s t h a t e i t h e r erature or l i g h t  salinity  C o r r e l a t i o n s are  M i c r o a l g a l a s s o c i a t i o n s , a s i d e f r o m E and  s i z e s not  a  strongly In-  P h o s p h a t e and  p o s i t i v e w i t h the e x c e p t i o n of s a l i n i t y  were p r e s e n t  as  cause.  For macroalgae, l i g h t  are important  factors i n -  This approach i s necessary  f l u c t u a t i o n s i n p r o d u c t i o n c a n n o t be s i n g l e f a c t o r or  net  i n f l u e n c e net p r o d u c t i o n of  tempthese.  78  Table 20.  S t a t i s t i c a l a n a l y s i s o f primary p r o d u c t i o n data u s i n g stepwise m u l t i p l e r e g r e s s i o n  (p = 0.05).  Dependent v a r i a b l e = net p r o d u c t i o n , independent variables = s a l i n i t y ,  l i g h t , temperature, n i t r a t e ,  phosphate, and ammonia.  Factor  Individual F prob  Cladophora  sp.  light  0.0002  PO  0.0095  4  light  Enteromorpha  0.0005 0.0027  minima  Combined F prob  RSQ  0.0004  0.7620  0.0009  0.7993  0.0004  0.6629  0.0067  0.4658  0.0006  0.5112  0.0000  0.8842  0.0007  0.6943  0.0014  0.4699  temperature E.  0.0004  prolifera  light 0.0360  Monostroma oxyspermum Rhizoolonium  light  0.0019  temperature  0.0002 0.0078  implexum  light Spirogyra  sp.  Association E  Association F  salinity  0.0075  light  0.0000  light  0.0009  temperature  0.0085  salinity  0.0042  temperature  0.0079  79 DISCUSSION  C o n s i d e r a t i o n must be f u n c t i o n a l aspects ecosystem. ization  given to structural  i n attempting  to understand  any  A n a l y s i s of ecosystem s t r u c t u r e or  organ-  ( s p a t i a l d i s t r i b u t i o n o f components, t h e i r  abundance o r coverage a r e a , s p e c i e s controlling provides  p h y s i c a l , c h e m i c a l and  composition  biological  plus  factors)  a b a s i s f o r i n t e r p r e t i n g t h e more d y n a m i c  f u n c t i o n a l s i d e o f an e c o s y s t e m . revealed through the is  and  characteristic The  Function  or  i s best  f l o w o f e n e r g y and m a t e r i a l s  of a particular  and  ecosystem.  following discussion represents  a structure-  f u n c t i o n a n a l y s i s o f t h e a u t o t r o p h i c components  (vas-  c u l a r p l a n t s and  delta.  Operation  benthic  of t h i s l e v e l of the  ponse t o e n v i r o n m e n t a l considerable It  o f the Squamish e c o s y s t e m and  first  and  of  ecosystem f u n c t i o n . Structure  E c o s y s t e m s t r u c t u r e I n an e s t u a r y  i s regulated  f a c t o r s which govern entry of a species  secondary f a c t o r s which determine establishment spatial-temporal patterns affecting primary  have  components.  step i n the understanding  I . Ecosystem  primary  i t s res-  change are s i g n i f i c a n t  influence over heterotrophic  i s a necessary  overall  algae)  these  of d i s t r i b u t i o n .  are a l s o s i g n i f i c a n t  production  in  as w i l l l b e d i s c u s s e d .  and  by by  and  Factors  controlling Structure  of  80 t h e b e n t h i c a l g a l c o m m u n i t y w i l l be f o l l o w e d by  considered  first,  that of the v a s c u l a r p l a n t s .  Osmoregulatory c a p a b i l i t y i s the primary  (degree  of e u r y h a l i n i t y )  f a c t o r c o n t r o l l i n g e n t r y o f an a l g a  the Squamish e s t u a r y .  A notable  feature of a l g a l  on t h e d e l t a i s s l a c k o f s p e c i e s r i c h n e s s , w i t h chlorophytes  and  diatoms p r e s e n t .  ( L i t t l e r and  M u r r a y 1974)  p l a i n e s t u a r i e s ( F o r e m a n 1975) o f p h a e o p h y t e s and  and  through noted and  The  the i n a b i l i t y  and  gradual  Schlelper  Newhouse 1954,  1971).  coastal  and  o f many common  survive i n  drop i n marine  r e g i o n s o f l e s s s a l i n e w a t e r s has  (Doty  rocky  Impoverishment  i n t e r t i d a l m a r i n e s p e c i e s t o e n t e r and of reduced s a l i n i t y .  primarily  w i t h a g r e a t e r abundance  rhodophytes.  species v a r i a t i o n r e f l e c t s  flora  This Is i n contrast  t o o t h e r c o a s t a l i n t e r t i d a l h a b i t a t s s u c h as marine shores  into  Zaneveld  areas species  b e e n commonly  1969,  Remane  At Squamish t h i s r e s u l t s i n a  a t y p i c a l " e s t u a r i n e a l g a l community s t r u c t u r e c o n s i s t ing of a mixture coming from the  s e v e r a l algae estuaries  o f low sea  salinity  (Fuoue  3  tolerant species  laminaria  a  Pylaiella),  common a n d ; s o m e t i m e s r e s t r i c t e d  (Enteromorpha  diatoms), plus a very  Rhizoolonium*  3  few  freshwater  to  Vauoheria  species  and  (Spirogyra*  Cladophora).  The  establishment  of, an a l g a  physiologically  a b l e t o e n t e r t h e Squamish e s t u a r y i s dependent upon I n t e r a c t i o n of secondary f a c t o r s - p h y s i c a l , chemical  the and  81 b i o l o g i c a l i n nature- which vary over the year. r e s u l t i s seasonal  s p e c i e s p a t t e r n s and a l t e r e d  The eco-  system s t r u c t u r e . A l g a l s u b s t r a t e and h a b i t a t p r e f e r e n c e , at Squamish (Tables  4,5)  i s important  i n determining  spatial-temporal distribution patterns.  The  o f s u b s t r a t e on a l g a l c o l o n i z a t i o n h a s b e e n ed u s i n g a number o f a r t i f i c i a l ( R i s k 1973,  1975).  The g e n e r a l c o n c l u s i o n i s t h a t f i n e r  a pattern helps  effect investigat-  substrates including  plastic  surfaces are less  evident  H a r l i n 1973)  and c o n c r e t e  (Foster textured  favorable f o r algal settlement.  Such  e x p l a i n the d i s t r i b u t i o n o f algae at  S q u a m i s h , w i t h many g r o w i n g o n s u r f a c e s rough i n t e x t u r e .  Substrate  r e f l e c t i o n of a chemical  relatively  s p e c i f i c i t y may a l s o be a  l e a c h i n g from t h e s u r f a c e ,  e i t h e r s t i m u l a t i n g o r i n h i b i t i n g growth o f an a l g a (e.g.  Enteromorpha  minima  on  wood).  T h e o r e t i c a l p a t t e r n s o f d i s t r i b u t i o n and e c o s y s t e m s t r u c t u r e b a s e d s o l e l y on s u b s t r a t e p r e f e r e n c e c o i n c i d e w i t h observed  p a t t e r n s on t h e S q u a m i s h  Modifying t h i s i s the problem o f h a b i t a t For example, P y l a i e l l a l i t t o r a l i s Carex  lyngbyei  surfaces only i n t h e lower  intertidal.  delta.  preference.  was e p i p h y t i c on  at the periphery of the d e l t a but not  i n the central portions.  oxyspermum  do not'-  E. minima  was f o u n d o n wood  i n t e r t i d a l a n d Mono stroma  was l o c a t e d I n t i d e p o o l s o n l y I n t h e u p p e r Factors includingsalinity-osmoregulation,  82  t e m p e r a t u r e , l i g h t i n t e n s i t y and and  competition operate  quality, desiccation  a t Squamish t o produce o b s e r v e d  ecosystem s t r u c t u r e . Interspecific i s an i m p o r t a n t  competition  , chemical  factor regulating structure of  a u t o t r o p h i c components a t Squamish. significant  and p h y s i c a l ,  The  most  example i s seen w i t h r e s p e c t  the dramatic,  to  Carex  l y n g b y e i , t h e d o m i n a n t v a s c u l a r p l a n t on t h e d e l t a . vegetation height i n g the  i n c r e a s e s , t h e amount o f l i g h t  sediment i s d r a s t i c a l l y reduced  T h i s r e d u c t i o n r e s u l t s I n two  things.  (Table  As  reach2).  F i r s t , an  en-  hancement o f d i s t r i b u t i o n a n d , a l o n g w i t h i t , p r o d u c t I o n f o r s p e c i e s o f a l g a e w i t h low 20).  l i g h t preference  S e c o n d , i n s p e c i e s r e q u i r i n g more l i g h t  photosynthesis,  t h e r e s u l t I s 'reduced  t r i c t e d d i s t r i b u t i o n to areas of l i g h t ( p o o l s , o p e n a r e a s ) and  penetration  suitable substrate.  level.  D a t a on p r i m a r y  (Appendix V I I I ) , d i s t r i b u t i o n  Complete  production  of  Increased  b o t h o f w h i c h f a v o r low  significant discussed.  for production  littoralis  light. and  The  the  c o l o n i z a t i o n and  d i s t r i b u t i o n i s s e e n o n l y as a r e s u l t o f Carex as a s u b s t r a t e f o r P y l a i e l l a  biomass  algal  g r o w t h I s i n p a r t c o n t r o l l e d by  presence of vascular p l a n t s .  G,  falls  ( A p p e n d i x V I I ) and  (Appendices V I , VII) i n d i c a t e suppression c o l o n i z a t i o n and  f o r optimum  production,res-  r e m o v a l o f t h e s p e c i e s c o u l d o c c u r when l i g h t below the c r i t i c a l  (Table  and  acting  Association  increase i s  e n e r g y f l o w as w i l l  be  83 In addition to a competitive vascular  plants  and b e n t h i c  between s p e c i e s ciations.  algae,  there  competition asso-  V e r y l i m i t e d g r o w t h o f Enteromorpha  preferred  substrate  l a r g e s t a n d s o f Fucus of both  (wood).  conditions  of substrate, s a l i n i t y ,  e i t h e r by i t s e x t e n s i v e ,  a meter,  u n d e r t h e same  light  robust  minima  on t h e  Within  a r e l u x u r i a n t s t a n d s o f E. minima  Fucus,  is  o f macroalgae and/or m i c r o a l g a l  occurs mixed i n w i t h  there  response between  and t e m p e r a t u r e .  growth  form  w h i c h r e s u l t s i n s h a d i n g , o r by means o f a l a r g e of organic  exudate  (1976)  Hruby  (Sieburth  1969),  w o r k i n g w i t h iiamiWarfta  notes a s i m l l i a r  amount  e x c l u d e s E.  minima.  s p . a n d Iridea  s i t u a t i o n i n which the zonation  sp., line  b e t w e e n t h e two v a r i e s , d e p e n d e n t u p o n g r o w t h o f t h e larger  species.  nificant  Light reduction  i s s u g g e s t e d as  i n inter-species competition,  to findings o f the current  lending  Ion p a t t e r n s . Fucus known.  h a s b e e n m e n t i o n e d b u t no s u p p o r t i v e However, B e r g l u n d  (1969)  from  data are  mentions a substance  sp., which g r e a t l y  stimulates  species.  e x p l a i n t h e l a r g e u n i a l g a l g r o w t h s o f E.  E. prolifera  be  a l g a l d i s t r i b u t i o n and p r o d u c t -  I t s own g r o w t h b u t n o t t h a t o f o t h e r  and  also  The p o s s i b l e e f f e c t o f e x u d a t i o n  e x u d e d by Enteromorpha  could  support  study.  C o m p e t i t i o n o f a c h e m i c a l n a t u r e may active i n determining  sig-  observed a t Squamish.  This minima  Once t h e a l g a  becomes e s t a b l i s h e d i n t h e a b s e n c e o f a d o m i n a n t  light  84  reducing  s p e c i e s , i t c o u l d grow undisturbed  competitors. antagonists algae and  Converse to t h i s , exudation  by  o f growth  or i n h i b i t o r s Is noted f o r other marine  c o u l d c o n t r i b u t e to the formation  patches (Conover and S i e b u r t h 1964, Russel and F i e l d i n g 1974, u l a t o r s may  also e x i s t .  of u n i a l g a l  Sieburth  F l e t c h e r 1975).  1968,  Growth s t i m -  Much work remains to be done  i n t h i s area but s i n c e a t i d a l marsh environment i s under s t r e s s , a c o n d i t i o n f a v o r i n g r e l e a s e o f exudates, these may  be important  i n c o n t r o l l i n g ecosystem s t r u c t u r e .  L i g h t , i n view o f i t s s i g n i f i c a n c e f o r photosynt h e s i s , i s an obvious f a c t o r c o n t r o l l i n g and primary p r o d u c t i o n .  distribution  In the presence of a s u i t a b l e  s u b s t r a t e , the lower l i m i t o f growth f o r an a l g a at Squamish i s p r i m a r i l y under the i n f l u e n c e o f reduced l i g h t I n t e n s i t y and with depth.  The  changed s p e c t r a l q u a l i t y  o f t e n t u r b i d nature  experienced  of e s t u a r i e s ,  e s p e c i a l l y the f j o r d - t y p e t y p i f i e d by Squamish, i n c r e a s e the a t t e n u a t i o n r a t e r a p i d l y ( F i g . 4)  and r e s u l t s i n a  compression o f v e r t i c a l zonation with depth i n a r e l a t i v e l y short d i s t a n c e  (Druehl  1967).  The  appearance at  Squamish o f brown algae h i g h e r up on the shore r e l a t i v e to other c o a s t a l i n t e r t i d a l h a b i t a t s i s suggestive t h i s compression.  In a d d i t i o n t o l i g h t , s a l i n i t y s  of may  a f f e c t the lower l i m i t of d i s t r i b u t i o n d u r i n g f r e s h e t .. when s t r o n g low  salinity  lens i s p r e s e n t .  would be l o s s o f s p e c i e s with low ities .  The  result  osmoregulatory c a p a b i l -  85 The  upper l i m i t o f an a l g a i s v a r i a b l e and con-  t r o l l e d by s e v e r a l f a c t o r s .  High l i g h t i n t e n s i t y , known  to be damaging t o attached marine algae  (Hellebust  197^) may be a l i m i t a t i o n t o s p e c i e s normally  found  In the lower i n t e r t i d a l r e g i o n which, due t o v e r t i c a l compression, experience on exposure.  longer p e r i o d s o f high  Being l e s s w e l l adapted, they  s u r v i v e even i f able t o c o l o n i z e . common t o the upper i n t e r t i d a l tolerate increased l i g h t  and Burns 1971).  Cladophora  Chlorophytes  ( B l e b l 1 9 5 1 ) , o f t e n having f o r net photosynthesis  T h i s i s r e f l e c t e d In the  wide d i s t r i b u t i o n o f Monostroma implexum,  cannot  seem b e t t e r adapted t o  h i g h e r optimal l i g h t requirements (Mathieson  light  oxyspermum,  sp. and Spirogyra  Ehizoolonium  s p . on the upper  r e g i o n s o f the d e l t a . Primary  p r o d u c t i o n o f these s p e c i e s i s p o s i t i v e l y  c o r r e l a t e d with l i g h t i n t e n s i t y  (Table 2 0 ) .  Rapid  light  a t t e n u a t i o n on immersion during the high r u n o f f p e r i o d of summer r e s t r i c t s  algae t o a h i g h e r p o s i t i o n i n the  i n t e r t i d a l where a l l but the most l i g h t t o l e r a n t are s e l e c t e d a g a i n s t on emersion.  The Increased  light  regime  and v e r t i c a l  compression s e l e c t s f o r algae o f the upper  intertidal.  T h i s i s evident comparing s p e c i e s composi-  t i o n between the study  area and the extreme e a s t e r n  p a r t o f the estuary where e f f e c t s o f r i v e r  f r e s h e t are  l e a s t , r e s u l t i n g In low l i g h t a t t e n u a t i o n and reduced vertical  compression.  The lower l i m i t o f growth f o r a  86 given  a l g a appears g r e a t e r i n the  light  attenuation.  with  seasonal  r e g i o n and  the  decrease  salinity  study  tne p o s s i b i l i t y  area  Accompanying  two  the  for this  (Levlngs  e§  tion,  temperature  on  c o n s i d e r a t i o n must be  immersion temperatures.  6)  and  in  limiting  statistical  c y c l e throughout snow t h i s  of algae  by  and  night-time  during  determining  and  producand  remain  the year change  20).  (Pig.  significant  on  is  an the  emersion ( F i g .  daytime emersion d u r i n g the w i n t e r ,  temp-  However,  temperature  extremes o f water t o a i r temperature experience  an  tolerant of high  even g r e a t e r i n f l u e n c e e x e r t e d  Aigae  In  g i v e n to emersion  10,  6).  distri-  to which  Water temperatures  analyses  production  reduce  intensities  distribution  d e s i c c a t i o n (Table  e r a t u r e and  1976)  al.  ( i . e . eurythermal).  a tidal  eastern  regions.  of temperature  moderate over  diversity.  i n f l u e n c i n g species  conditions of Increased  effects  abundant  i n chlorophyte  i n c r e a s e d summer l i g h t  a l g a must a l s o a d a p t  reduced  are  patterns  of s a l i n i t y  b u t i o n between the  are  S e v e r a l brown a l g a e  a concommitant  Similar  region of  exposing  summer  them t o  temperature extremes t n r o u g n o u t .  Spatial-temporal  tribution  are  by  the  Studies and  and  production  patterns  degree to which a s p e c i e s i s by  Healey  an  relations  adaptive  dis-  partially  eurythermal.  (1972), Yokohama (1972), and  N o r a l l (1975) s u g g e s t  duction-temperature  explained  great  shift  Mathieson  i n the  f o r s e v e r a l algae  pro-  present  87 throughout the year, w i t h lower optimal temperatures f o r n e t p r o d u c t i o n i n w i n t e r c o m p a r e d t o summer.  Algae  p r e s e n t f o r a p a r t o f t h e y e a r may h a v e a l i m i t e d  toler-  ance t o t e m p e r a t u r e changes.  D u r a t i o n o f exposure t o  a h i g h e r o r l o w e r t e m p e r a t u r e r a t h e r t h a n t h e amount o f c h a n g e may be I m p o r t a n t , as e x p o s u r e t i m e  increases  with height i n the i n t e r t i d a l . R e s i s t a n c e t o d e s i c c a t i o n shown by an a l g a i s another f a c t o r determining the s t r u c t u r e o f the benthic algal  community a t S q u a m i s h .  Emersion-immersion  time  and d u r a t i o n , a i r t e m p e r a t u r e a n d d r y i n g e f f e c t s o f w i n d s , f r e q u e n t d u r i n g t h e summer, a l l a f f e c t r a t e o f desiccation. oxyspermum  A l g a e s u c h as Cladophora  a n d Spirogyra  s p . , Monostroma  s p . have l i t t l e  apparent  resis-  t a n c e , b e i n g r e s t r i c t e d t o t i d e p o o l s on e m e r s i o n . Others  s u c h as Enteromorpha  Pylaiella  minima,  E. prolifera  and  l i t t o r a l i s withstand d e s i c c a t i o n very w e l l .  I n t e r m e d i a t e b e t w e e n t h e s e two g r o u p s a r e d i a t o m d o m i n a t e d a s s o c i a t i o n s r e q u i r i n g some m o i s t u r e , e i t h e r i n t h e form o f g r a d u a l r u n o f f o r t i d e  pools.  D e s i c c a t i o n f o r a p o r t i o n o f t h e time appears t o be o f b e n e f i t t o some a l g a e . B r i n k h u i s et al.  (1976)  (1974)  J o h n s o n et al.  and  report that f o r i n t e r t i d a l  s p e c i e s t e s t e d , e s p e c i a l l y those i n t h e mid-upper  regions,  p r o d u c t i o n on e m e r s i o n o f t e n exceeds t h a t on i m m e r s i o n by 1.6  - 6.6  times.  Species from t h e lower  intertidal  have e q u a l o r l o w e r e m e r s i o n p r o d u c t i o n r a t e s  compared  88  to immersion, being light et LTD  and  a d v e r s e l y a f f e c t e d by  d e s i c c a t i o n (Brown and  a l . 1970).  Enteromorpha,  t o l e r a n t chlprophytes  J o h n s o n 1964,  ( T a b l e 10),  may  Imada  along with other ( T a b l e 10),  may  high  have  capacity f o r greater emersion production. s p e c i e s f a v o r i n g low  increased  the  Similarly,  l i g h t , s u c h as P y l a i e l l a  littoralis  b e n e f i t from emersion d u r i n g the  when l i g h t i s r e d u c e d . d e s i c c a t i o n may  Thus, i t i s suggested  winter  that  affect benthic algal d i s t r i b u t i o n  production i n a negative  or p o s i t i v e  f a s h i o n , depending  upon s p e c i e s , l o c a t i o n i n t h e I n t e r t i d a l and V e r t i c a l compression r e s u l t s  and  season.  i n a selection for  mid-  upper i n t e r t i d a l h i g h l i g h t t o l e r a n t s p e c i e s i n the summer.  Increased  p r o d u c t i o n on d e s i c c a t i o n may  t o maximum b e n t h i c a l g a l p r o d u c t i o n i n an Euryhalinity  (osmoregulatory  a d d i t i o n to governing  lead  estuary.  capability), in  t h e e n t r y o f an a l g a i n t o an  c a n a l s o a c t as a c o n t r o l l i n g f a c t o r I n s e a s o n a l s p a t i a l p a t t e r n s o f d i s t r i b u t i o n and  ous  over  a tidal  The  m a j o r i t y o f w i d e and  The  homogen-  c y c l e (+ 3°/oo) f o r most o f t h e rapid salinity  changes  on e x p o s u r e t o e i t h e r c o n d i t i o n s o f r a i n , i n shallow t i d a l pools show t h i s  and  production.  water column over the d e l t a remains r e l a t i v e l y  or d e s i c c a t i o n .  year. occur  evaporation  Certain species  l i m i t a t i o n c l e a r l y , w i t h S p i r o g y r a sp.  most n o t a b l e .  I t s presence i n t i d a l pools  correlated with salinity  ( T a b l e 20),  area  the  i s negatively  disappearing  on  89 increased the to  salinity  same s e a s o n a l salinity Van  the  after freshet. patterns  (slightly  der  more  (i960)  Werff  d i s t r i b u t i o n and  estuaries.  but  production  have p r o v i d e d  Admiraal  states  that  in  net  production  salinity. the  high  This  6,  affect  the  of benthic  to  30%  tolerance  Appendix V I I I ) . species  data.  going  f r o m 4 t o 60  of estuarine Salinity  d i v e r s i t y o f an  does a p p e a r  I n o o r d e r t o p e r s i s t o v e r an a l g a must be to  able  to  surrounding waters. classified tolerate haline) 15  o r 15  i n t o two  salinity  30  °/oo  o f m a c r o a l g a e and euryhaline.  and  Algae  salt  ranges  (0  Sullivan (benthic)  marshes.  decreasing  c o l o n i z i n g the  -  to  extended p e r i o d ,  g r o u p s b a s e d on  whereas o t h e r s -  diversity.  a d a p t t o r a p i d c h a n g e s as  continually increasing  diatoms  association, with  a s i m i l a r s i t u a t i o n f o r edaphic Jersey  °/oo  benthic  (1977)  i n New  drop  showing  producing greater  diatom a s s o c i a t i o n s  a  change, showing a  lower s a l i n i t y reports  and  d i a t o m s a c t u a l l y have  salinity  of only  In  (1964)  contradictory  benthic  governs  diatoms  s u p p o r t s d a t a from Squamish  salinity  (Table  salinity  However, more r e c e n t l y W i l l i a m s  tolerance  shows  less sensitive  suggests that  (1977)  high  appears  sp.  euryhaline).  Admlraal  very  Cladophora  —  well  salinity  of  d e l t a can  salinity.  30 °/oo  an  Some  strongly  be can  -  The  majority  m l c r o a l g a l j . a s s o c i a t i o n s are  strongly  Thus, w i t h the  euryhaline).  the  eury-  a r e more r e s t r i c t e d , ( e i t h e r 0  —weakly  as  exceptions  o f Spivogyva  sp.  90 and  Cladophora  major f a c t o r algae  on  sp.,  salinity  controlling  controlling is  the  Macrovegetation  by  lyngbyei  Carex  Levings  , has  U 9 7 3 ) and  f r o m low  to high  to grasses  and  salinity. habitat its  and  C.  face.  the  and  Moody  noted.  lyngbyei  the  vascular  Lim  (.1976).  dominated and  Zonatlon  sedge t o h i g h  sedge  This i s considered availability,  originated i n a salinity  over  virtually  intensity  o f C.  lyngbyei  limitation,  a  and  freshwater  concurrent  with  lack of substrate-habitat  and  g r o w t h o f emergent v e g e t a t i o n .  through l i g h t  community,  v i e w e d as m a j o r f a c t o r s p e r m i t t i n g  High l i g h t  dense n a t u r e  algal  Squamish d e l t a ,  o f low  1950), low  establishment  of  studied.  been i n v e s t i g a t e d by  Levings  g r o w t h p e r i o d and are  benthic  Immersion, l i g h t  (Stebbins  preference  on  c l o v e r was  Since  production  o f f a c t o r s f o r the  intertidal  response to t o t a l  a  complex i n t e r a c t i o n s o f f a c t o r s  simplicity  plants.  and  Squamish d e l t a  s t r u c t u r e o f the  apparent  a p p e a r t o be  distribution  the p o r t i o n of the  In c o n t r a s t to the  does n o t  the  entire  entry  delta  sur-  daytime emersion  favor  Rapid  the  g r o w t h and  remove t h e as was  the  low  case  light  species  for benthic  algae. C.  lyngbyei  m a r s h s u c h as  i s w e l l a d a p t e d t o e x i s t e n c e on  S q u a m i s h and  e c o s y s t e m s t r u c t u r e and  exerts  f u n c t i o n , as w i l l  I n summary, s t r u c t u r e o f t h e o f the  a strong  a  tidal  influence be  autotrophic  on  discussed. component  t i d a l marsh e c o s y s t e m a t Squamish c a n be  described  91 i n terms o f s p e c i e s dispersions  composition,  and abundance.  spatial  arrangements,  Species composition i s  initially  g o v e r n e d by o s m o r e g u l a t o r y c a p a b i l i t i e s o f  an a l g a .  Species succession  throughout the year i s  seen as p r i m a r i l y a r e s p o n s e t o l i g h t sedge g r o w t h h a v i n g a s t r o n g  i n t e n s i t y , with  Influence.  Desiccation,  w i t h t h e c o n c o m i t a n t e f f e c t s o f t e m p e r a t u r e and s a l i n i t y , is  also considered  a significant  factor.  Spatial  a r r a n g e m e n t a n d d i s p e r s i o n a r e c o n t r o l l e d by habitat preference  and degree o f h a b i t a t  Producers showing s t r o n g aggregated  specificity  specificity.  t e n d t o be  ( e . g . S p i r o g y r a s p . , A s s o c i a t i o n B ) , whereas  those w i t h weaker s p e c i f i c i t y uted  substrate-  (e.g.Associations  Interspecific ing spatial  appear randomly  E a n d G, Monostroma  competition  distriboxyspermum),  i s yet another f a c t o r a f f e c t -  arrangement.  The a b u n d a n c e o f e a c h p r i m a r y p r o d u c e r i s a n important aspect o f ecosystem s t r u c t u r e , o r g a n i z a t i o n , and  function.  Measured as s t a n d i n g  abundance r e f l e c t s  crop biomass,  t h e amount o f p r e f e r r e d  substrate-  habitat a v a i l a b l e , the a d a p t a b i l i t y o f the producer t o the  environment  form (micro-  ( I . e . n e t p r o d u c t i v i t y ) and t h e growth  v s m a c r o a l g a e ) . Car ex  major c o n t r i b u t o r o f biomass. and  Pylaiella  (Appendix V I ) . and  littoralis The v a l u e  the character  l y n g b y e i i s ;the  Associations  are next highest  G and E  i n abundance  o f abundant p r e f e r r e d  o f weak h a b i t a t  substrate  s p e c i f i c i t y are  92  reasons  f o r t h e i r dominance, s i n c e a l l have wide  distribution  ( F i g . 10).  A s s o c i a t i o n s E and delta  (Table  On  a square meter b a s i s ,  G have t h e l o w e s t  Structural  Ecosystem F u n c t i o n  a n a l y s i s o f an e c o s y s t e m I s o f  value i n understanding  ecosystem o p e r a t i o n .  i n d i c a t i o n o f what I s p r e s e n t , how  i t Is  an e s t i m a t e o f t h e amount p r e s e n t .  factors  the  7).  II.  and  b i o m a s s on  c o n t r o l l i n g s t r u c t u r e may  done i n t h i s t h e s i s .  limited  I t i s an  distributed, Possible  a l s o be  d e r i v e d , as  Comparisons o f d i f f e r e n t  tems a r e p o s s i b l e u s i n g s u c h d a t a . the f u n c t i o n i n or importance  ecosys-  However, n e i t h e r  of a p a r t i c u l a r  component  t o t h e e c o s y s t e m n o r o p e r a t i o n o f t h e e c o s y s t e m as unit  are  revealed.  Ecosystem processes  and  interrelations  (functions)  are best d e s c r i b e d i n terms o f energy r a t h e r straight  organic matter  ( L l e t h 1968).  than  Energy  a more c o m p a r a t i v e  b a s i s , removing v a r i a t i o n s  and  of different  carbon  content  of ecological  e n e r g e t i c s (energy  i n p u t o f energy  (primarily  organisms.  (primary producers)  solar  and  and  consumers).  provides i n organic  The  study  flow) deals with  s o l a r ) and  m a g n i t u d e and  and  autotrophs  u t i l i z e d by h e t e r o t r o p h s The  the  the pathways  e f f i c i e n c i e s w i t h w h i c h i t I s c o n v e r t e d by  posers  a  (decom-  efficiency  e n e r g y c o n v e r s i o n , i t s manner o f s t o r a g e  as  of  93 chemical  energy and subsequent u t i l i z a t i o n a r e  c h a r a c t e r i s t i c o f a p a r t i c u l a r ecosystem it  functional identity).  (I.e. give  However, even though t h e  a u t o t r o p h i c a n d h e t e r o t r o p h i c c o m p o n e n t s may the i n i t i a l  differ,  pathways o f energy t r a n s f e r a r e b a s i c a l l y  t h e same a n d c a n be p r e s e n t e d  v  as a u n i v e r s a l energy  flow model. Energy storage (Net p r o d u c t i o n ) Dissolved  Energy c o n v e r s i o n  Particulate  The  f l o w p a t t e r n may r e p r e s e n t  the study  of energetics.  d u c e r , s u c h a s Enteromorpha on f o o d and  two a p p r o a c h e s t o  By r e p r e s e n t i n g a s i n g l e p r o minima,  an emphasis i s p l a c e d  chain or population analysis.  The i m p o r t a n c e  u s e o f e a c h p r o d u c e r i s d e t e r m i n e d and c o m p a r e d  with that of others.  This r e s u l t s i n s p e c i f i c  t i o n on mechanisms i n f l u e n c i n g energy f l o w .  informa-  Examining  energy f l o w on ancommunlty ( v a s c u l a r p l a n t o r b e n t h i c a l g a l ) o r ecosystem b a s i s provides  f o r a broader  view.  H a v i n g d e t e r m i n e d s p e c i f i c and g e n e r a l p a t h w a y s , l t i s p o s s i b l e t o p r e d i c t the sources  and e f f e c t s o f energy  94 l o s s f r o m an e c o s y s t e m and structural  p o t e n t i a l consequences  alteration.  Energy f l o w r e p o r t e d over d e f i n e d measure.  a year provides  M o s t c o m m u n i t i e s and  natural periodicities chemical  a well  species  r e l a t e d to changing  have  physical-  f a c t o r s , m a k i n g a measurement o v e r  p e r i o d d e s i r a b l e and  t h e common p r a c t i c e I n  i n g energy pathways.  W i t h i n the long term  this  i c a n t producers  change.  A producer  Determination  may  be  time  establishvariation,  short term or seasonal patterns e x i s t , i n which  valuable.  of  signif-  of t h i s i s  a p r e f e r r e d food  source  f o r a p a r t i c u l a r consumer i n a d d i t i o n t o c o n t r i b u t i n g t o the g e n e r a l energy p o o l o f the ecosystem. (1976a, b) n o t e s e n t i r e year  the v a l u e o f measurements over  f o r p e r s i s t e n t s p e c i e s and  period f o r seasonal  over  species i n determining  o f a s p e c i e s w i t h i n an  the  f o u r months r e a s e a r c h  f o r a p e r i o d o f m e t h o d o l o g y d e v e l o p m e n t and  The  growth  the f u n c t i o n  i n c l u d e d i n f o r m u l a t i o n o f energy pathways.  A u g u s t 1975  the  ecosystem.  Data from the f i r s t  T h u s , t h e one  Brinkhuls  are  This  not allows  improvement.  y e a r p e r i o d f r o m S e p t e m b e r 1974  through  i s selected.  study  to other areas  o f energy f l o w i s i n I t s i n f a n c y compared of ecology  on numerous a s s u m p t i o n s .  and  i s u n f o r t u n a t e l y based  Unless  a l l energy  sources,  m e t h o d s and  rates of storage, conversion, input,  i z a t i o n and  losses f o r e i t h e r a s i n g l e producer  utilor  the  95 ecosystem as a u n i t can be determined i n d e p e n d e n t l y , many assumptions and estimates must be made i n d e r i v i n g energy pathways.  Ecosystem s t r u c t u r e p r o v i d e s some  i n f o r m a t i o n w i t h r e s p e c t to these a r e a s , as w i l l  be  discussed.  A.  Energy s o u r c e s , c o n v e r s i o n , input and s t o r a g e . Energy s o u r c e s .  Squamish.  Three energy sources e x i s t at  The f i r s t ,  and that common to o t h e r ecosys-  tems, i s r a d i a n t energy.  Two  b a s i c components o f the  r a d i a t i o n energy environment, s o l a r and longwave thermal r a d i a t i o n f l u x , are Important.  To c o n s i d e r one i n the  absence o f the o t h e r p r o v i d e s only a p a r t i a l understanding  o f t o t a l r a d i a t i o n change at the earth's s u r f a c e .  However, Odum  $1971)  p o i n t s out that even though the  " t o t a l r a d i a t i o n f l u x determines the ' c o n d i t i o n s o f e x i s t e n c e ' to which an organ!smsmust adapt, i t i s the integrated solar radiation...which i s of greatest  inter-  est  i n terms o f p r o d u c t i v i t y and n u t r i e n t c y c l i n g w i t h i n  the  ecosystem." S o l a r r a d i a t i o n reaches the b i o s p h e r e at a constant  -2 r a t e o f 2 g cal*cm  -1 -min  , becoming  a t t e n u a t e d exponen-  t i a l l y due to s c a t t e r i n g and a b s o r p t i o n by cloud cover and water vapor i n the atmosphere 67% may  (Odum  1971).  At most,  reach sea l e v e l on a c l e a r summer day, w i t h  a t t e n u a t i o n o c c u r r i n g to v a r y i n g degrees as a f u n c t i o n of  wavelength and frequency (Gates  and L u l l  (1965)  1965).  Reifsnyder  estimate t h a t on a c l e a r day sea l e v e l  96 r a d i a t i o n i s composed o f oa. 10% u l t r a v i o l e t 455? v i s i b l e  (400-700 nm), and 1*5% i n f r a r e d  (<400 nm),  (>700 nm).  However, under c o n d i t i o n s o f dense c l o u d cover, dust and vapor, f u r t h e r a t t e n u a t i o n and a l t e r a t i o n o f s p e c t r a l d i s t r i b u t i o n occurs p e r m i t t i n g p r i m a r i l y v i s i b l e a t i o n t o pass through the atmosphere.  radi-  Attenuation  becomes e s p e c i a l l y s i g n i f i c a n t at Squamish where c l o u d cover and i n d u s t r i a l haze are common. V i s i b l e radiation (photosynthetically  available  r a d i a t i o n — P A R ) i s that p o r t i o n o f t o t a l s o l a r r a d i a t i o n a c t u a l l y a v a i l a b l e t o and usable by primary Phillipson  producers.  (1966) estimates annual PAR Input f o r areas  at d e c r e a s i n g l a t i t u d e s w i t h B r i t a i n .{oa. 55° N) r e c e i v i n g 2.5 x 1 0  5  kcal'm" , 2  and Georgia (oa. and L u l l  Michigan  (oa.  44° N) 4.7 x 1 0  o 'S —2 3 2 N) 6.0 x 10^ kcal'm .  5  Reifsnyder  (1965) g i v e a t h e o r e t i c a l maximum annual PAR  f o r the northwestern U n i t e d S t a t e s  N) o f 6.95  (ca.k$l°  •5 -2 x 10"^ kcal«m , assuming a h o r i z o n t a l s u r f a c e . 5  Estimated —2  annual PAR input f o r Squamish o f 4.15 x 10^ kcal'm" '{Table 1) f a l l s w e l l below t h i s and s l i g h t l y below that f o r Michigan.  The d i s c r e p a n c y from the t h e o r e t i c a l PAR  can be a t t r i b u t e d to steep mountains surrounding Squamish and t o the frequent presence o f an i n d u s t r i a l haze l a y e r . Both tend t o decrease i n t e n s i t y and d u r a t i o n o f r a d i a tion.  S o l a r r a d i a t i o n r e p r e s e n t s the s i n g l e most  important  source o f energy  t o an ecosystem.  A second source o f energy  f o r producers on the  Squamish d e l t a i s t h a t o f t i d a l a c t i o n .  The mean t i d a l  97 o f ca. 4 m, s u p p l e m e n t e d b y c u r r e n t a n d w i n d s ,  amplitude provides  a c o n s i d e r a b l e energy s u b s i d y .  This tends t o  reduce t h e cost o f i n t e r n a l self-maintenance producers,  maximizing  t h e energy going  into  o f primary production  ( s t o r a g e ) and m i n i m i z i n g t h a t t o r e s p i r a t i o n . p r i n c i p l e o f an e s t u a r y has  as a n e n e r g y s u b s i d i z e d s y s t e m  b e e n w e l l d o c u m e n t e d (Odum 1971,  1973,  N i x o n a n d O v i a t t 1973}  1976)  and t h e b e n e f i t s a r e c l e a r .  certain tidal  amplitude,  ish,  This negative  as suggested  Odum a n d B a n n i n g  Odum 1974,  et al.  However, p a s t a  damage) o u t w e i g h s t h e  effect I s not evident  a t Squam-  by h i g h p r o d u c t i o n o f v a s c u l a r p l a n t s  d u r i n g t h e summer a n d a l g a l e p i p h y t e s Maintenance o f p o s i t i v e throughout t h e year fluctuation.  Steever  d i f f e r i n g between systems,  p h y s i c a l s t r e s s (mechanical benefits.  The  during the winter.  production over t h e d e l t a  does n o t i n d i c a t e e x c e s s i v e  tidal  A  A t h i r d source  o f energy a f f e c t i n g t h e Squamish  d e l t a i s a d d i t i o n (import) o f p a r t i c u l a t e and d i s s o l v e d organic matter. ton),  T h i s o r i g i n a t e s f r o m Howe Sound  t h e landward p o r t i o n o f t h e C e n t r a l Basin  (plank(benthic  a l g a e , d e t r i t u s ) a n d f r o m Fucus b e d s s e a w a r d o f t h e study two  area.  sources  Energy f r o m . a d d i t i o n i s u n l i k e t h e p r e v i o u s i n t h a t i t does n o t r e q u i r e a v a i l a b l e t o consumers.  conversion,  being  immediately  tidal  e n e r g y , i t a c t s as a bonus t o t h e d e l t a e c o s y s t e m ,  enhancing a v a i l a b l e energy i n t h e primary  Along  with  trophic level.  98 A l t h o u g h a d d e d o r g a n i c s a c c o u n t f o r o n l y oa. 5% o f t o t a l a v a i l a b l e energy, t h e i r presence i sconsidered significant  t o t h e s y s t e m , a c t i n g as a s u b s t r a t e f o r  h e t e r o t r o p h i c u p t a k e , growth s t i m u l a t o r s and/or itors  a n d as f o o d f o r g r a z i n g a n d d e t r i t a l Energy  thetic  Enerjgy  e c o s y s t e m p r i m a r i l y by p h o t o s y n -  conversion ( I . e . gross primary production).  1) oa.  organisms.  c o n v e r s i o n , i n p u t and s t o r a g e .  e n t e r s t h e Squamish  inhib-  Vascular plants.  Caress  l y n g b y e i , which occupies  80$ o f t h e I n t e r t i d a l m a r s h l a n d a t S q u a m i s h ,  i s the  m a j o r s i t e o f energy c o n v e r s i o n and s t o r a g e on t h e delta.  Due t o i t s d o m i n a n c e ,  f l o w t h r o u g h Carex  l y n g b y e i i s assumed t o r e p r e s e n t  that f o rthe vascular plant L e v l n g s a n d Moody biomass  a d i s c u s s i o n o f energy  community o n t h e d e l t a .  (1976)  p r e s e n t growth and  d a t a upon w h i c h p r o d u c t i o n and energy  are based I n t h i s t h e s i s .  I n e a r l y March  flow  the t i d a l  m a r s h i s a f l a t mat o f d e c a y i n g v e g e t a t i o n r e m a i n i n g f r o m t h e p r e v i o u s y e a r ( F i g . 13), becoming  apparent.  w i t h some,new s h o o t s  The d e c a y i n g mat d i s a p p e a r s b y  May a n d i n m i d J u n e d i e - b a c k o f f r e s h g r o w t h becomes apparent  ( E e v i n g s a n d Moody  reached i n J u l y  ( F i g . 13)  end o f t h e g r o w i n g s e a s o n  1976).  Maximum g r o w t h i s  a n d minimum i n A u g u s t (Appendix X I ) .  at the  Decomposition  p r o c e e d s o v e r w i n t e r a n d I n t o s p r i n g a n d summer o f t h e following year. N e t p r o d u c t i o n ( a b o v e a n d b e l o w g r o u n d ) was e s t i m a t e d t o be oa.  2067  —2 g organic«m  -season  -1 (Appendix X I ) .  99  Figure  13.  Cares: mat at  lyngbyei  meadow i n e a r l y M a r c h ,  o f decayed v e g e t a t i o n , t h e t i m e o f maximum  and i n l a t e  growth.  showing July  99a  100 Assuming o r g a n i c matter t o be 50%  C, t o t a l net —2  p r o d u c t i o n amounts to about 1034  g C«m  primary  —1  *yr  value l i k e l y r e p r e s e n t s an underestimate.  .  This  Basing net  p r o d u c t i o n on s t a n d i n g crop biomass o f t e n f a i l s account  f o r turnover of l i v e m a t e r i a l between  periods  ( K i r b y and G o s s e l i n k  1976,  Turner  to  sampling  1976).  Unmeasured h e r b i v o r y , t i s s u e decay and e r o s i o n , exudation, t i d a l amplitude  (energy s u b s i d y ) , c u r r e n t a c t i o n  winds, along with f a v o r a b i l i t y o f the growing all  a f f e c t t u r n o v e r r a t e (Vollenweider  r a t e appears  f a s t e r In h i g h energy,  ments such as t i d a l marshes.  i n g biomass f o r s a l t marshes. i n d i c a t e a l o s s o f 10  -  15%  season  1974)'.  Turnover  subsidized environ-  Hatcher  l o s s of 28.5%  estimate an average  and  and Mann  (1975)  o f end o f year stand-  Nixon and O v i a t t (1973)  f o r s i m i l a r marshes.  Thus,  assuming l o s s o f above ground o r g a n i c matter t o be a minimum o f 10%,  a t o t a l p r o d u c t i o n estimate of  -2 g organic.m  2177  -1 *yr  i s a r r i v e d a t , based on above and  below ground e s t i m a t e s . C a l o r i c content determined (4.08  f o r Carex  lyngbyei  k c a l ' g o r g a n i c " ^ ) compares f a v o r a b l y with values  r e p o r t e d by S t r a s k r a b a o t h e r Carex rhizomes) was  species.  (1968)  and Grabowske  Below ground energy  (1973)  for  content ( I . e .  assumed to be the same as above ground  (Dykyjova and P r i b i l  1975).  Thus, energy  available to  the d e l t a ecosystem as end o f year s t a n d i n g crop o f aa.  8880  kcal'm  —2  i s separated i n t o  4707  kcal'm  —2  above  101 ground and  4173  kcal m  _2  below ground.  Utilization is  e s s e n t i a l l y r e s t r i c t e d to the area o f p r o d u c t i o n . Assuming a r e s p i r a t i o n r a t e of 505? f o r l y n g b y e i with i t s freshwater  origin  Carex  (Stebbins  1950),  under b r a c k i s h c o n d i t i o n s , the above values must be doubled  to o b t a i n estimates  of gross p r o d u c t i o n .  -2 amounts to oa.  97 kcal«m  This  -1 »day  , approaching  the upper  _2  l i m i t o f energy Input  (100 kcal'm  ) noted by Odum (1971).  I f the r e s p i r a t i o n estimate were lowered to 30$( average f o r macroalgal still  m  r e s p i r a t i o n ) , the d e l t a would  rank high i n terms o f energy input  -2  an  (oa.  67  kcal*  -1 'day  ), i n d i c a t i n g i t s great p r o d u c t i v e c a p a c i t y .  Energy c o n v e r s i o n by Carex efficient.  l y n g b y e i i s very  Average p h o t o s y n t h e t i c  efficiency  (net  productipn/PAR) o f 3.04/J c a l c u l a t e d over the growing season i s high compared t o most t e r r e s t r i a l systems at  1-3%  (McNaughton and Wolf 1973).  Peak p h o t o s y n t h e t i c  e f f i c i e n c i e s of 4.95/2 i n June compare w i t h the maximum o f 5% noted by P h i l l i p s o n  (1966).  Abundant  moisture,  n u t r i e n t s and the i n f l u e n c e of t i d a l energy subsidy l e a d t o e f f i c i e n t use o f s o l a r energy. The m a j o r i t y o f energy c o n v e r s i o n and i e d on by v a s c u l a r p l a n t s remains as POM,  storage  with only a  s m a l l f r a c t i o n leached as o r g a n i c exudates (DOM) 1970, ail.  Wetzel and Manny 1972,  1976).  Turner  1974,  Assuming 3-45? o f converted  DOM,??.and a c a l o r i c content  carr-  (Tukey  Gallagher  et  energy goes to  equal to that f o r POM,  an  102 —2 estimated  236 kcal«m  —1 «yr  DOM i s exuded above ground  d u r i n g the growth p e r i o d o f Carex  lyngbyei.  Although  t h i s r e p r e s e n t s a very low p o r t i o n o f p r o d u c t i o n , i t i s s i g n i f i c a n t i n terms o f the t o t a l amount added over the l a r g e growth a r e a . 2)  Benthic a l g a e .  Fourteen major b e n t h i c  s p e c i e s and/or a s s o c i a t i o n s with d i f f e r i n g p a t t e r n s , p r o d u c t i v i t y and ecology f l o r a o f Squamish.  algal  seasonal  dominate the a l g a l  The c a p a c i t y o f each f o r energy  c o n v e r s i o n and storage and t h e i r c o n t r i b u t i o n t o a v a i l able energy on the d e l t a , . a t t r i b u t a b l e t o b e n t h i c  algae  are d i s c u s s e d . To f a c i l i t a t e examination  o f energy flow through  a square meter o f each producer, (gross p r o d u c t i o n )  i s separated  energy  conversion  i n t o r e s p i r a t i o n and  a v a i l a b l e s t o r e d energy (DOM,POM) F i g . 14). Monostroma  oxyspermum  and Pylaiella  littoralis  are the p o t e n t i a l l y most v a l u a b l e s p e c i e s ( F i g . 14). These are both ima  (Table 10).  minima  Two h i g h LTD s p e c i e s ,  and Spirogyra  major sources The  low LTD forms with high p r o d u c t i o n maxEnteromorpha  sp. (Table 10) a l s o appear as  o f energy input and s t o r a g e (Fig~. 14). 0  c o n c l u s i o n drawn I s t h a t s p e c i e s , e i t h e r p e r s i s t e n t  o r s e a s o n a l , are present throughout the year with a h i g h p o t e n t i a l i n p u t o f a v a i l a b l e energy. on h i g h storage r a t e (net p r o d u c t i o n ) photosynthetic e f f i c i e n c i e s  T h i s i s based  and reasonably  (Fig.14) and c a l o r i c  high  content  103  Figure  14.  Energy  Input  ( g r o s s p r o d u c t i o n ) f o r each  major producer  The  separated Into  dissolved  numbers u n d e r e a c h p r o d u c e r  available  PAR  (kcal'm  the growth p e r i o d efficiency  and  • yr  x 10 )  to  over  to photosynthetlc  (%), r e s p e c t i v e l y .  A s s o c i a t i o n s (SL and  refer J  B not  (Minor  included  i n graph).  kcal-nT .yr 2  *»  oo  i«o  j  o> t  ro o i  -1  ro -i*. i  3.15 0-19^  (x10 ) 2  ro oo i_  -J  I  I  C ladophor a  37  4.15 0.30 /  I  L  sp.  En t e r o m o r p h a  3.60 0.22^1  J  minima  E . p r o l i ( e ra  4.15  .Monos t r o m a  0.52%  3.96 0.24^  o x y s p e r m urn  Rhizoclonium  2.80 0.37/  Spi rog y ra  implexum  sp.  2.05 Pylaiella  0.732 2.27  littoralis  Association  A  .Association  D  4.15 0.28/  Association  E  4.15 0.19/  ..Association  F  Association  G  0.37^ 0.51 0.6l/  0.41 0.30/  1 Carex  2.64 3.04^  lyngbyei  CO CO CO  o  w  o w  B£0T  104  ( T a b l e 16).  The h i g h r a n k i n g o f A s s o c i a t i o n E , a  p e r s i s t e n t diatom-dominated grouping  o f low produc-  t i v i t y , i s p r i m a r i l y due t o t h e h i g h c a l o r i c  (aa.  1.5  times  importance  content  that o f the noted macroalgae).  The  o f b a s i n g e c o s y s t e m f u n c t i o n on e n e r g y  r e l a t i o n s i s emphasized.  The v e r y m i n o r e n e r g y  contri-  p b u t i o n by a m  o f A s s o c i a t i o n G s h o u l d be n o t e d a t  this point f o r future reference. ( T a b l e 10), b i o m a s s  (energy  Low  productivity  s t o r a g e ) and c a l o r i c  ( T a b l e 016) d i c t a t e i t s a p p a r e n t  minor  role.  I n summary, t h e h i g h r a t e s o f e n e r g y and  s t o r a g e by t h e above n o t e d  content  conversion  a l g a l producers  i s attrib-  u t a b l e t o : 1) b e i n g h i g h l y a d a p t e d t o a n d t o l e r a n t o f the e s t u a r i n e environment eurythermal  (persistent species-strongly  and e u r y h a l i n e ) o r b e i n g  "bloom" s p e c i e s  t a k i n g a d v a n t a g e o f o p t i m u m c o n d i t i o n s as s u g g e s t e d K i n g a n d Schramm (1976) ( s e a s o n a l s p e c i e s - w e a k l y thermal  by  eury-  a n d e u r y h a l i n e ) ; o r 2) b e i n g o f t h a l l o s e o r  f i l a m e n t o u s m o r p h o l o g y ; o r 3) h a v i n g  a high  t h e t i c e f f i c i e n c y r e l a t i v e to other algae, i n higher net production  (energy  case o f A s s o c i a t i o n E, h a v i n g tent i n the presence synthetic efficiency. p o t e n t i a l importance the Squamish  delta.  photosynresulting  s t o r a g e ) ; | o r 4) i n t h e  a very high c a l o r i c  o f l o w n e t p r o d u c t i o n and These f a c t o r s o f a producer  con-  photo-  determine  t o e n e r g y f l o w on  105 F i g u r e 14 c l e a r l y shows how Carex the energy environment a t Squamish. from a square meter i s a t l e a s t u t e d by t h e most p r o d u c t i v e The  l y n g b y e i dominates A v a i l a b l e energy  4.5 t i m e s  that c o n t r i b -  alga.  e f f e c t o f e c o s y s t e m s t r u c t u r e on t h e m a g n i t u d e  o f e n e r g y c o n v e r s i o n a n d s t o r a g e by v a r i o u s algae  i s evident  benthic  i n F i g u r e 15 w h i c h c o n s i d e r s t h e  d i s t r i b u t i o n a l a r e a o f each producer.  Microalgal  A s s o c i a t i o n s E a n d G make t h e g r e a t e s t c o n t r i b u t i o n to  a v a i l a b l e e n e r g y r a t h e r t h a n m a c r o a l g a e as c o n s i d e r e d  on a s q u a r e m e t e r b a s i s . Association G (primarily  The h i g h e n e r g y i n p u t o f U l o t h r i x ) , w h i c h had t h e l o w e s t  input p e r square meter, i s a t t r i b u t e d t o growth  during  a p e r i o d o f optimum p h y s i c a l - c h e m i c a l c o n d i t i o n s ( l o w LTD),  concurrent  w i t h the presence of uniform r>  (Carex)  c o v e r i n g some 90 x 10  substrate  2  m .  Energy a v a i l a b l e  for  u s e o v e r t h e y e a r o f 111 x 1 0 ^ k c a l r e p r e s e n t e d  43%  of the t o t a l a t t r i b u t e d t o benthic algae.  Annual  a v a i l a b l e e n e r g y f o r A s s o c i a t i o n E o f aa. 104 x 10 3 2 over  a n a r e a o f 10 x 1 0  D  m  1962,  G a l l a g h e r and D a i b e r  kcal  amounted t o 4 1 % o f t h e t o t a l .  This h i g h l y productive nature a s s o c i a t i o n s has been noted  oa.  o f sand/mud f l a t  diatom  (Pomeroy 1 9 5 9 , W i l l i a m s 1 9 7 4 ) a n d w i l l be d i s c u s s e d  further. A s s o c i a t i o n s E a n d G a c c o u n t e d f o r 84% o f t o t a l a v a i l a b l e energy o r i g i n a t i n g from b e n t h i c a l g a e . It -2 m  i s thus  not simply the productive capacity  (kcal*  -1 ' y r ) o f an a l g a which determines i t s importance t o  106  Figure  15.  Energy  input  (gross production)  major producer, organic and  , particulate  respiration  B and  C not  separated (f^)•  included.)  into  f o r each dissolved  o r g a n i c (JJJj)  (Minor  ,  Associations  107 the d e l t a ecosystem but a l s o i t s a b i l i t y  to colonize  extensive r a t h e r than r e s t r i c t e d h a b i t a t s ( i . e . having wider  t o l e r a n c e t o l i g h t , s a l i n i t y , d e s i c c a t i o n and  temperature).  Highly productive species with  t o l e r a n c e ranges c o v e r i n g s m a l l areas of l e s s importance Benthic  study  are generally  ( F i g . 15).  a l g a e r e l e a s e a l a r g e p o r t i o n (up t o  og d a i l y n e t p r o d u c t i o n as DOM. this  are considered  Determinations  as minimum v a l u e s .  e f f e c t o f i n c r e a s e d l i g h t was c o n s i d e r e d .  s a l i n i t y , d e s i c c a t i o n and subsequent  30%)  made i n Only t h e  Other s t r e s s  f a c t o r s shown t o e n h a n c e DOM r e l e a s e i n c l u d e  temperature,  re-immersion  ( S i e b u r t h 1969, P e n h a l e a n d S m i t h 1977). operate  narrow  A l l these  a t S q u a m i s h , as d i s c u s s e d , w h i c h c o u l d l e a d  t o even h i g h e r e x u d a t i o n by c h l o r o p h y t e s  (Table 1 3 )  compared t o o t h e r b e n t h i c a l g a e , s u g g e s t i n g  the former  a r e more t o l e r a n t o f t h e s t r e s s e s o f a t i d a l  marsh  existence. P r o - r a t i n g t o t a l net production indicates seasonal  shifts In the d i s t r i b u t i o n of a v a i l -  a b l e e n e r g y among p r o d u c e r s fall  f o r e a c h month  (Appendix X I I ) .  and w i n t e r d i s t r i b u t i o n i s p r i m a r i l y  In the  i n Associations  E a n d G (up t o 90%), w h e r e a s i n s p r i n g a n d summer,  dist-  r i b u t i o n i s w i d e r , w i t h more e m p h a s i s p l a c e d on m a c r o algae, especially In a similar each producer  chlorophytes. f a s h i o n , p r o - r a t i n g over  identifies  the year of  t h e s e a s o n o f maximum e n e r g y  108 conversion  and s t o r a g e  (Appendix X I I I ) .  peak f o r each v a r i e s , a p p r o x i m a t e l y  Time o f t h e  coinciding with i t s  c l a s s i f i c a t i o n i n t h e h i g h , medium a n d l o w LTD g r o u p s ( T a b l e 10). Data from p r o r a t i n g I n d i c a t e t h a t seasonal  distribu-  t i o n o f e n e r g y i n p u t i s s u c h t h a t maximum p e r i o d s a r e staggered, system. storage  r e s u l t i n g i n c o n t i n u a l energy storage  i n the  However, v a r i a t i o n s i n t h e magnitude o f t h i s v a r i e s , causing  3)  distinct  seasonal  patterns.  S e a s o n a l v a r i a t i o n I n energy c o n v e r s i o n and  storage.  C h a r a c t e r i s t i c energy f l o w p a t t e r n s e x i s t i n  f a l l , w i n t e r , s p r i n g , a n d summer f o r t h e b e n t h i c community. o f energy  T h e s e a r e b a s e d o n v a r i a t i o n s I n 1) (solar, tidal);  (species composition  sources  2) e c o s y s t e m s t r u c t u r e  a n d d i s t r i b u t i o n ) ; a n d 3) p r o d u c -  t i o n p o t e n t i a l (energy  conversion  and s t o r a g e )  ( P i g . 16).  V a r i a t i o n s i n a l g a l producers over t h e year p h y t e s - summer, f a l l ;  and a t t r i b u t e d t o l i g h t ,  and c o m p e t i t i o n .  The i n c r e a s e d  energy i n p u t o f p e r s i s t e n t producers such as oxyspermum  reflects  a n d Enteromorpha  minima  Taking  a n d summer  conditions  species.  d i s t r i b u t i o n a l area o f benthic  a c c o u n t , energy i n p u t and s t o r a g e increases  i n spring  Monostroma  t h e p r e s e n c e o f more f a v o r a b l e g r o w t h  j u s t as w i t h seasonal  (chloro-  diatoms and phaeophytes - w i n t e r ,  s p r i n g ) have been d i s c u s s e d temperature, s a l i n i t y  algal  algae  shows v e r y  Into  definite  f r o m summer t h r o u g h t o t h e f o l l o w i n g s p r i n g  109  F i g u r e 16.  Energy  flow  ( k c a l ' m " .mo" ) t h r o u g h  benthic a l g a l producers i n f a l l winter  (December),  summer  (June).  spring  (September),  (March) and  Numbers a b o v e e a c h b a r  refer to distributional  area i n square  meters. Cl!\yEm — Ep — Mo — Ri — S — Pl —  Cladophora sp. Enteromorpha minima E. prolifera Monostroma oxyepermum Rhizoclonium implexum Spirogyra sp. Pylaiella littoralie  A B C D E F G  Association Association Association Association Association Association Association  — — — — — — —  major  A B C D E F G  109a  110  ( T a b l e 21).  This i s l o g i c a l i n view o f past discussion:;  o f ecosystem s t r u c t u r e and t h e c o n t r o l l i n g e f f e c t o f Carex  l y n g b y e i o n t h e e x t e n t o f t h e b e n t h i c a l g a l com-  munity.  I t tends  t o r e s t r i c t d i s t r i b u t i o n and t o t a l  e n e r g y i n p u t d u r i n g summer v i a s h a d i n g  and promote d u r i n g  w i n t e r a n d s p r i n g by a c t i n g a s a s u b s t r a t e . atory costs of winter i n d i c a t e reduced  (17%) c o m p a r e d w i t h s p r i n g (35%)  s t r e s s and l e s s energy d i v e r t e d t o  metabolic processes. on t h e a v e r a g e ,  Low r e s p i r -  Whittaker  (1975) s u g g e s t s  e n e r g y i n p u t i s ca. 1.5 t i m e s  storage f o r a q u a t i c systems.  that,  energy  At Squamish, t h i s  value  is  1.6 d u r i n g t h e w i n t e r a n d 1.38  f o r the year.  This  is  a s l i g h t l y h i g h e r r a t e o f energy s t o r a g e on t h e  Squamish d e l t a compared t o o t h e r systems and i s c r e d i t e d t o t h e d e l t a being an energy s u b s i d i z e d ecosystem.  B.  Annual energy f l u x and g e n e r a l ecosystem f u n c t i o n . E n e r g y c o n v e r s i o n a n d s t o r a g e by t h e m a j o r  trophic  components ( v a s c u l a r p l a n t s and b e n t h i c  autoalgae)  on t h e S q u a m i s h d e l t a h a v e b e e n c o n s i d e r e d , a l o n g  with  controlling physical-chemical factors.  this  w i t h d a t a on energy l o s s ( g r a z i n g and d e t r i t a l  (organic removal),  i t i s possible to discuss  ways o f e n e r g y f l u x f o r t h e p r i m a r y ecosystem.  utilization-  f e e d i n g ) , and r e t e n t i o n ( i n c o r -  poration into sediments),  delta  Combining  path-  l e v e l o f t h e Squamish  Table  21.  T o t a l energy  Input  (gross p r o d u c t i o n ) , storage  (net produc-  t i o n as DOM, POM), a n d l o s s e s ( r e s p i r a t i o n ) f o r b e n t h i c a l g a l producers k c a l x 10 mo  Production  (energy  Winter  Spring  Summer  (September)  (December)  (March)  (June)  Net  %  3  kcal-10  %  3  2905.3  2453.9  kcal-10  %  3  6588.0  kcal-10  3  2144.4  input)  Respiration (energy  area  Fall  kcal-10  Gross  i n f a l l , w i n t e r , s p r i n g a n d summer as 'study  J,  629-9  26  493.6  17  2304.7  35  543-9  28  190.7 1637.3  8 66  387.0  13 70  436.0 3847.3  7 58  190,7 1359.8  9 63  loss)  Production  (energy  DOM POM  storage)  2024.7  112 Two  h a b i t a t s c a n be i d e n t i f i e d on t h e  Squamish  d e l t a b a s e d on d i f f e r e n c e s i n s t r u c t u r e and The  energetics.  sand/mud f l a t s h a b i t a t o f t h e l o w e r i n t e r t i d a l i s  s i m p l e w i t h r e s p e c t t o s t r u c t u r e and e n e r g y f l u x m e n t ) , w h e r e a s t h e Carex  marshland i n the  (move-  mid-upper  i n t e r t i d a l i s much l a r g e r and more c o m p l e x .  Energy  f l u x t h r o u g h a square meter o f each i s d i s c u s s e d . Sand/mud f l a t h a b i t a t . are  Energetics of this  b a s e d on a s i n g l e p r o d u c e r , t h e d i a t o m  A s s o c i a t i o n E.  A p p r o x i m a t e l y %1%  area  dominated  o f t o t a l energy  input  and s t o r a g e r e s u l t i n g f r o m t h e a c t i v i t y  of benthic algae  comes f r o m c o n t i n u e d p r o d u c t i o n o f t h i s  association  t h r o u g h o u t t h e y e a r ( T a b l e 22).  —2 (850  kcal'm  «yr  Available  energy  —1 ) f r o m n e t p r o d u c t i o n and o r g a n i c  a d d i t i o n amounts t o aa.  78%  o f t o t a l energy i n p u t .  Over  h a l f o f t h e a v a i l a b l e e n e r g y i s r e m o v e d , e i t h e r as or  POM  Sound.  DOM  t o t h e s u r r o u n d i n g e s t u a r y and w a t e r s o f Howe A p p r o x i m a t e l y 17%  i s r e t a i n e d and  incorporated  i n t o t h e s u b s t r a t e w h e r e i t e i t h e r a c t s as a f o o d s o u r c e for  micro-organisms or i s permanently  lost  i n the  sediment. A t u r n o v e r t i m e o f f o u r days the  for Association  most r a p i d on t h e d e l t a , p l u s l o w r e t e n t i o n  e n e r g y s u g g e s t t h e sand/mud f l a t efficient  of  h a b i t a t t o be v e r y  i n terms o f energy c y c l i n g .  production f o r the year  E,  Net  phyto-  (gross primary production +  organic a d d i t i o n ) - ( r e s p i r a t i o n + o r g a n i c removal)  113 Table  22.  Annual energy f l u x f o r sand/mud f l a t s (area = 15875 m 2 ) and sedge marshlands (area = 111125 m2).  Sand f l a t s kcal'm  -2  «yr  -1  Marshland above below ground ground -2 -1 kcal-m «yr  A. Input Gross primary production b e n t h i c algae vascular plants Added organic matter  910 -  178 9416  8347  185 1095  543 10137  8347  t o t a l = 18484 B. Losses Respiration b e n t h i c algae vascular plants Losses t o turnover vascular plants Removed p a r t i c u l a t e organic matter Exuded o r g a n i c matter Unmeasured grazing and undet e c t e d removal  245 -  36  4708  4173  471  -  170  2350  86  154  404  1480  190  930  13  Incorporation i n sediment  1095  10137 total =  a  assume r e s p i r a t i o n o f Carex obtained  c  4173  8347 18484  = 50%  by d i f f e r e n c e (Input  - other  expenditures)  assume oa. '.%% going t o g r a z i n g  ^ I n c l u d i n g 3% o f v a s c u l a r p l a n t net p r o d u c t i o n 141 k c a l  as DOM o f  114 amounts to +239 kcal'm i n p u t on the d e l t a . (storage  of t o t a l  energy  T h i s i s a measure of the net  i s valuable  a l . 1973).  i n appraising function  change  Carex  a  (Woodwell  I n t h i s case, i t i s f u r t h e r i n d i c a t i o n  of a s t r o n g l y e x p o r t i n g marshland.  ated i n t o above and by  storage  or l o s s ) i n the amount o f carbon h e l d by  system and et  or 22%  habitat. The  Carex  marsh h a b i t a t i s separ-  below ground components as d i c t a t e d  s t r u c t u r e , energy i n p u t , storage  and  utilization.  Above ground energy input i s d i s t r i b u t e d between Carex  (93%),  benthic  (5%),  together  algae  (2%),  c o n t r i b u t i n g oa.  and  added  organics  10 times the energy  square meter o f the sand/mud f l a t s  (Table  22).  The  g r e a t e r a d d i t i o n o f o r g a n i c matter over t h a t o f the Is due  to the  " t r a p p i n g " nature o f the Carex,  p a r t i c l e s to s e t t l e  found on the  54$  f l a t s but  r e s p i r a t i o n p l u s a turnover (Appendix X) are r e s p o n s i b l e efficiency. 67%  sand/mud f l a t s . emphasized.  added  over t h a t  yr  ).  Higher r a t e s  time averaging  19  of  days  f o r the drop i n energy  However, o f t h i s s t o r e d energy,  an  surrounding  e i g h t times t h a t c o n t r i b u t e d by The  organics)  —1  i s removed from the d e l t a to  waters, or oa.  causing  a s u b s t a t i a l i n c r e a s e i n terms  o f a c t u a l energy (5474 kcal'm  estimated  and  o f i n p u t , a drop o f 27%  —2  storage  flats  out.  A v a i l a b l e energy (net p r o d u c t i o n amounts to oa.  per  the  importance of the marshland i s  115 C a l c u l a t i o n o f net p h y t o - p r o d u c t i o n —2  of  +1338  kcal'm  gives a  value  —1  «yr  or  12%  o f t o t a l energy i n p u t .  T h i s i n d i c a t e s t h a t t h e m a r s h i s e v e n more h i g h l y  export-  ing  i n nature  percent  and  actual contributions. In  t h a n t h e sand/mud f l a t s  i n terms o f  c o n t r a s t , the below ground p o r t i o n o f the marsh  a p p e a r s as a v i r t u a l l y ( i m p o r t ) and  little  i s o l a t e d s y s t e m w i t h no a d d i t i o n  removal of m a t e r i a l except  sedge 22).  rhizomes at the periphery of the d e l t a (Table Combining data from the t h e Carex  sand/mud f l a t  to benthic algae.  The  a very minor r o l e i n t o t a l maximum o f 1.4% The  of the  estimated  underestimate (I.e.  3%  due  habitat plays  energy f l u x , adding  v a l u e o f 3%  i s considered  a  t o be  t o methodology used i n t h i s  1.6  -  6.6  study  times  from  Algae  greater i n  at Squamish  the exper-  i e n c e c o n s i d e r a b l e d e s i c c a t i o n a t low t i d e d u r i n g summer due  t o w i n d and  high temperatures.  al.  the  However, d e s i c c a t i o n r e d u c e s  degree of p r o d u c t i o n i n a i r .  an  J o h n s o n et  i n d i c a t e production of benthic algae  than i n water.  Input  energy.  m i d - u p p e r i n t e r t i d a l t o be air  o f energy  sand/mud f l a t  i n c u b a t i o n o f samples i n w a t e r ) .  'lM3%k)  and  marsh, i t i s c l e a r t h a t Squamish i s a v a s c u l a r  p l a n t d o m i n a t e d s y s t e m , w i t h o n l y ca. due  habitat  the  Therefore,  a s s u m i n g an i n c r e a s e o f f o u r t i m e s w a t e r p r o d u c t i o n , i n air, day  and  e x p o s u r e o f t h e a l g a e a t low t i d e d u r i n g  f o r ca.  50%  o f t h e i r growth p e r i o d , net  the  primary  116 f o r b e n t h i c algae c o u l d amount to oa.  production  r a t h e r than 3%•  T h i s estimate  o f net p r o d u c t i o n ,  a i r i n t o account i s considered f a c t t h a t not Species  a l l algae  7% taking  r e a l i s t i c i n view of  show i n c r e a s e d p r o d u c t i o n  from the lower i n t e r t i d a l areas ( i . e .  the  in air.  P y l a i e l l a  and' some m i c r o a l g a l a s s o c i a t i o n s ) o f t e n show  l i t t o v a l i s  reduced r a t e s o f p r o d u c t i o n  (Johnson et  al.  1974).  I n c r e a s i n g energy input a t t r i b u t a b l e to  benthic  algae to 7% approximates an estimate  o f 8% made f o r  b e n t h i c algae on the Nanaimo estuary  (SIbert and  unpublished  data).  However, t h i s value must a l s o be  i n c r e a s e d to account f o r p r o d u c t i o n s i n g i t to oa.  15%.  Naiman,  on exposure, i n c r e a -  On both the Nanaimo and  Squamish  e s t u a r i e s i n t e r t i d a l microalgae p l a y a l a r g e r r o l e than do macroalgae, a f a c t which may able h a b i t a t and Pew  r e f l e c t greater  avail-  growth e f f i c i e n c y .  s t u d i e s e x i s t comparing e n e r g e t i c s o f Teal  benthic  algae and  v a s c u l a r p l a n t s on d e l t a s .  (1962),  preparing  an energy budget f o r a s a l t marsh i n  estimated  t h a t of t o t a l a v a i l a b l e energy, b e n t h i c  Georgia, algae  ( p r i m a r i l y sand/mud f l a t  diatoms) accounted f o r  25%.  More r e c e n t l y , G a l l a g h e r  and Daiber (1973, 1974)  report  an estimate Spartina  o f 25 - 30$  f o r benthic  f o r a Delaware s a l t marsh.  algae r e l a t i v e to The  projected  value  o f 7% estimated  f o r the Squamish d e l t a i s much lower  In comparison.  T h i s may  o f gross p r o d u c t i o n  by  be due  Carex  to: 1) an  overestimate  ( i . e . assuming  50%  117 r e s p i r a t i o n ) , 2) a v a r i a t i o n i n a l g a l s p e c i e s a n d restricted d i s t r i b u t i o n of highly productive a s s o c i a t i o n s due t o s h a d i n g  diatom  by s e d g e a n d c o v e r i n g by  s e d i m e n t d u r i n g f r e s h e t , a n d 3) a more n o r t h e r l y l o c a t i o n , r e s u l t i n g i n r e d u c e d s o l a r e n e r g y and  conver-  sion rates. In It  a t i d a l m a r s h s y s t e m d o m i n a t e by Carex  lyngbyei  i s t h e manner i n w h i c h e n e r g y i s p u t i n t o t h e s y s t e m  by b e n t h i c a l g a e r a t h e r t h a n t h e a b s o l u t e amount t h a t is  the important  crop biomass). readily by  feature Benthic  ( I . e . f l u x r a t h e r than algae  a v a i l a b l e sources  standing  a c t as c o n t i n u a l l y p r e s e n t ,  o f energy d i r e c t l y  utilizable  a t l e a s t one m a j o r c o n s u m e r o n t h e d e l t a ( a m p h i p o d s ) .  A l t e r n a t i v e l y , on r a p i d b r e a k d o w n , a l g a e  contribute  energy t o t h e g e n e r a l d e t r i t a l pathway.  There i s l i t t l e  lag  between t h e time  s t o r e d energy.  o f c o n v e r s i o n and u t i l i z a t i o n o f  C. l y n g b y e i d i s p l a y s a d e f i n i t e t i m e l a g  between p r o d u c t i o n , d e c o m p o s i t i o n , T h u s , t h e m a r s h may be r e g a r d e d l a t o r w i t h h i g h energy storage out  and u t i l i z a t i o n .  as a l a r g e e n e r g y and t i m e d  release  reguthrough-  the year. Energy f l o w and e c o s y s t e m f u n c t i o n a t Squamish a r e  cyclic  i n n a t u r e , as s u m m a r i z e d i n F i g u r e 17.  the important  f e a t u r e s w i l l be d i s c u s s e d .  Some o f  The b u l k o f  e n e r g y c o n v e r s i o n and s t o r a g e , a b o v e a n d b e l o w g r o u n d , o c c u r s by C. l y n g b y e i i n s p r i n g and summer.  During  period l i t t l e  occurs,  consumption o f l i v i n g m a t e r i a l  this  118 a s i d e f r o m t h a t g o i n g t o as y e t u n i d e n t i f i e d and i n s e c t s Anisogammarus the  delta  C. D. L e v i n g s , p e r s o n a l c o m m u n i c a t i o n ) .  oonfervioolus  (Anonymous unless f i r s t  lyngbyei  Low  ( 5%,  invertebrates  , an I m p o r t a n t consumer on  1972),  i s not able t o u t i l i z e  decomposed ( T a b l e  l e v e l r e l e a s e o f DOM  (4%)  17,  Chang  Carex  1975).  over t h e l a r g e growth  c o u l d have a c o n s i d e r a b l e impact on ecosystem  area  function  by a c t i n g as a n e n e r g y s o u r c e f o r b a c t e r i a , w h i c h a r e u t i l i z e d by f i l t e r  and d e t r i t a l f e e d e r s .  and G a l l a g h e r et al.  (1976)  (1974)  I n d i c a t e t h e Importance o f  t h i s pathway i n e s t u a r i e s dominated niflora,  Turner  by Spartina  alter-  s u g g e s t i n g t h a t much o f t h e DOM I s m e t a b o l i z e d  w i t h i n t h e marsh ecosystem. and S m i t h  (1977),  Contrary t o t h i s ,  w o r k i n g w i t h Zostera,  Penhale  believe that the  m a j o r i t y o f DOM i s f l u s h e d o u t o f t h e e s t u a r y b y t i d a l action.  Low l e v e l s o f DOM i n w a t e r s a d j a c e n t t o t h e  d e l t a a n d i n u p p e r Howe S o u n d s u g g e s t r a p i d u p t a k e a n d in  situ  (1976)  utilization,  a s i n d i c a t e d b y G a l l a g h e r et al.  f o r s a l t marshes.  More s t u d y i s n e e d e d i n t h i s  a r e a o f energy s t o r a g e and u t i l i z a t i o n . Energy  i n p u t by b e n t h i c a l g a e I s l o w d u r i n g  spring  and summer, b e i n g r e s t r i c t e d by t h e p r e s e n c e o f v a s c u l a r p l a n t g r o w t h , hi;gh l i g h t , t e m p e r a t u r e a n d l o w s a l i n i t y (Fig. the  17).  I t s i m p o r t a n c e a t t h i s t i m e , as t h r o u g h o u t  y e a r , I s as a r e a d i l y a v a i l a b l y  from t h i s  food source.  Results  s t u d y i n d i c a t e p r e f e r e n t i a l f e e d i n g on f i l a -  m e n t o u s (Pylaiella  littoralis  a n d Enteromorpha  minima)  119  Figure  17.  Seasonal  p a t t e r n o f energy  p r o d u c t i o n ) by a l g a e , energy of  energy  Carex  storage  lyngbyei  r e m o v a l as POM  outflow/energy  and and  Inflow.  (net benthic  the  ratio  119a  Carex (net p r o d u c t i o n )  20-  in  15-  o  "x10 5H r  T  40  Benthic algae (net  30H  production)  104 ©-  20-  POM ©  15CM O  .removed  @  :io-  ~i 8  1  1  r-  JEnergy^Outflow E n e r g y . J n f low  6-I 4  2H 1 S  0  1  1974  1  1 N  D  J  1  F  ® M  & 1  • "j  I  A  1975  M  J  r J  i  r  120 and,  t o some e x t e n t ,  algae  by  amphipods  mentous a l g a e juvenile  o f amphipods  approximately  suggests  littoralis cover  at  and  low  remaining 17).  the  on  benthic  Enteromorpha  tide,  Studies  of this  function of benthic Removal o f POM  is  reflecting g r e a t e r by  pared the  to the  POM  sition in and  light  and  serve  algae  i s high  and  Pylaiella sites  of  amphipods  (Tables  other  16,  consumers  likely  marsh  i n s p r i n g and  times  (Table  exist.  The on  previous  grazer-decomposer organisms.  and  origin  the year.  showing  summer i n r e s p o n s e t o h i g h e r increased a c t i v i t y  Removal  t h e m a r s h com-  15).  the winter,  ecosystem.  summer ( F i g .  rates.  on  present  produced the over  as  tide  a l g a e in> a Carex  traced to algae  low  from  required to f u r t h e r i n d i c a t e  sand/mud f l a t s  remains  Data  In a d d i t i o n  desiccation of  a v e r a g e o f 10  t o Carex  s p r i n g and  conditions.  f o r amphipods  are  diet  analysis indicate  increased decomposition  an  c a n be  primarily  acid  t h e m a r s h s u r f a c e a t low  to that d e s c r i b e d  i n the  survival.  minima,  preventing  nature  species  algae, primarily  Associations of benthic  17),  consume s u c h  need f o r a l g a e  fatty  similar  the  c o i n c i d e s with that-'for  under f i e l d  source,  fila-  under l a b o r a t o r y c o n d i t i o n s .  s t u d i e s b a s e d on  energy  oxyspermum)  Peak b i o m a s s o f  f o r maximum g r o w t h and  i n g e s t i o n of algae t o an  17).  (Table  littoralis  (1975)  feeding  (Monostroma  amphipods w h i c h r e a d i l y  as Pylaiella Chang  thallose  delta  of and  Decompo-  increases temperatures  abundance  of  P r e l i m i n a r y s t u d i e s done  121  In t h i s  thesis  on POM show t h e amount and c o m p o s i t i o n  o f m a t e r i a l removed growth,  depth  t o be a f u n c t i o n o f  ( T a b l e 1 5 ) , c u r r e n t and  type  o f water  i n tidal  creeks  t y p e o f a r e a d r a i n e d by t h e c r e e k s High v a r i a b i l i t y  respect et  the delta  substrate-habitat  wave a c t i o n , and  from  t o POM r e m o v a l  1975).  Gardner problems  Schultz  salt  Heald  and Q u i n n  (197D,  (1973),  (1977)  (1967),  Mann  Valiela  a l l note  marshes and e s t u a r i e s .  note  ( 1 9 7 4 ) and  and T e a l  t h e importance As j u d g e d  dominated  ecosystems  m a r s h e s i s as g r e a t as i n s a l t  removed  m a j o r i t y o f POM p r o d u c e d from  Gosselink  the delta  (1976)  alterniflora. removal  rate  of this  rate  (1973)  Spartina reports a  marsh i n G e o r g i a .  o f the factors  noted  o f POM r e t a i n e d  delta  afe S q u a m i s h becomes i n c o r p o r a t e d  layer  o f t h e marsh d u r i n g heavy  K i r b y and  o f removal f o r  by  o f only 21% f o r a s i m i l i a r  The p o r t i o n  Carex  over the year i s  a similiar  However, de l a C r u z  page.  by  marshes.  marsh dominated  V a r i a t i o n may be a r e s u l t top  o f POM, i t s  (dt. 7 0 % ) T a b l e 2 2 ) .  suggest  POM i n a L o u s i a n a s a l t  o f POM t o  from r e s u l t s a t  importance  i n estuarlne  States.  (1972a),Riley (1973),  rates  The  similar',  B i g g s and  S q u a m i s h o n p r o d u c t i o n and r e m o v a l  tidal  with  and S t e v e n s o n 1 9 7 5 ,  marshes o f t h e e a s t e r n U n i t e d  et al. ( 1 9 7 7 )  Heinle  over the d e l t a  and J o b b i n s  Odum and de l a C r u z  (1971),  (Pig.1 2 ) .  ( D e w i t t a n d D a l b e r 1 9 7 3 , Odum  Shisler  i n salt  (1962),  Plemer  exists  Boon 1 9 7 5 , E r k e n b r e c h e r  al. 197-2.  Teal  thus  (Table 14),  into  at the on t h e  t h e upper  sedimentation at freshet  122  (June-July).  Approximately 40-50% o f what i s i n -  corporated i s m o b i l i z e d by micro-organisms and r e t u r n e d to the system t o p a r t i c i p a t e i n e s t u a r i n e p r o c e s s e s . The remaining energy i s l o s t i n a "sediment s i n k " o f v a r y i n g depth, i n d i c a t e d by l i t t l e content  change i n o r g a n i c  ( i . e . beyond depth o f r e w o r k i n g ) .  Biggs and  Flemer (1972) a l s o i n d i c a t e a m o b i l i z a t i o n o f ca. 50%. A d d i t i o n o f POM t o the d e l t a i s a l s o h i g h e s t i n s p r i n g and summer ( F i g . 17) and v a r i a b l e from sand/mud f l a t s t o Carex o f macroalgae  marsh ( F i g . 1 1 ) . A g r e a t e r p r o p o r t i o n are added t o the marsh i n response t o the  f i l t e r i n g nature o f Carex,. energy  I t i s a c t i n g as a t r a p f o r  ( o r g a n i c matter) e n t e r i n g from e x t e r n a l sources  and a r e t e n t i o n mechanism f o r energy s t o r e d and broken down on the d e l t a .  I n t h i s way, energy i s a v a i l a b l e f o r  the marsh ecosystem and not t o t a l l y removed by the twice d a i l y t i d a l f l u s h i n g .  Retention of a larger  p r o p o r t i o n o f d e t r i t u s on the sand/mud f l a t s a reduced a b i l i t y t o t r a p l a r g e p a r t i c l e s algae).  reflects  ( i . e . macro-  The nature o f the s u b s t r a t e , l a r g e sand t o mud,  f a v o r s s e t t l e m e n t and I n c o r p o r a t i o n o f d e t r i t u s . The r a t i o o f energy removal/energy  storage (net  p r o d u c t i o n + o r g a n i c a d d i t i o n ) i s a good i n d i c a t i o n o f energy f l u x throughout the year ( F i g . 1 7 ) . A r a t i o < 1.0 r e f l e c t s accumulation o f energy, whereas>1.0 r e f l e c t s removal i n excess o f s t o r a g e .  Based on t h i s  r a t i o , s p r i n g and summer are times o f h i g h energy accum-  123 u l a t i o n whereas f a l l and w i n t e r are times when the e s t u a r i n e ecosystem i s drawing h e a v i l y on s t o r e d energy (Fig.  17). The only source o f energy  t i o n t o the d e l t a d u r i n g f a l l  input v i a primary  produc-  and w i n t e r are b e n t h i c  algae ( F i g . 17). T o t a l c o n v e r s i o n and energy  storage  reaches i t s peak d u r i n g the w i n t e r when the c o m p e t i t i v e a c t i o n o f Carex  i s at a minimum and low LTD t o l e r a n t  algae (Table 10) can c o l o n i z e and add t o energy  storage.  POM removal i s low d u r i n g the f a l l , an i n d i c a t i o n t h a t much o f the Carex  from the p r e v i o u s year has oeen  removed, l e a v i n g minimal  amounts on tne d e l t a .  Increase i n POM removal over the w i n t e r p a r a l l e l s i n c r e a s e d a l g a l growth and may oe r e f l e c t i n g tne onset of  breakdown o f the present year's crop o f Carex  (Levlngs and Moody 1976) by decomposers f a v o r i n g lower temperatures.  A m p l i f y i n g removal r a t e are i n c r e a s e d  wave and c u r r e n t a c t i o n i n w i n t e r . The below ground p o r t i o n o f the marsh was d e s c r i b e d s t r u c t u r a l l y and from an energy  f l u x standpoint as a  separate u n i t c o n t r i D U t i n g l i t t l e e s t u a r i n e ecosystem. in  energy  t o energy  f l u x i n the  However, seasonal changes e x i s t  s t o r e d i n tne rnizomes.  Bernard  (1974; and  Bernard and MacDonald (1974; note a n e g a t i v e p r o d u c t i o n (i.e. to  u t i l i z a t i o n o f s t o r e d energy;  the next growing season  r i n g i n wetland  situations.  be the case f o r Carex  i n winter  f o r s p e c i e s o f Carex  through occur-  T h i s i s a l s o c o n s i d e r e d to  at Squamish.  Breakdown o f rhizomes  124 below ground p r o v i d e s energy f o r organisms which the sediment, r e l e a s i n g n u t r i e n t s and o r g a n i c to the surface.  rework  material  I n l i g h t o f these f e a t u r e s , t h e below  ground p o r t i o n o f t h e marsh i s seen as Important i n above g r o u n d e c o s y s t e m s t r u c t u r e and f u n c t i o n .  III.  The S q u a m i s h  R i v e r D e l t a as a  P r o d u c t i v e , Energy R i c h The  Squamish  Ecosystem  R i v e r d e l t a I s a v e r y dynamic  a n n u a l l y c o n v e r t i n g , s t o r i n g and c o n t r i b u t i n g  large  amounts o f e n e r g y t o t h e s u r r o u n d i n g e s t u a r y . pathways  o f energy f l u x are.summarized  system,  Primary  I n F i g u r e 18 f o r  ease o f u n d e r s t a n d i n g . It i s clear that the delta Is a detrital-based s y s t e m , w i t h most o f t h e e n e r g y i n p u t a n d s t o r a g e a t t r i b u t a b l e t o v a s c u l a r p l a n t s growing, on t h e t i d a l m a r s h ( F i g . 18, T a b l e 2 2 ) . Odum a n d de l a C r u z  (1963), a n d Pomeroy et al (1969)  note s i m i l a r f i n d i n g s i n G e o r g i a s a l t marshes. marshes,  70 - 90% o f a v a i l a b l y  originates  (1963),  S m a l l e y (1959), Odum  I n these  energy g o i n g t o d e t r i t u s  f r o m s p e c i e s o f Juncue  and S p a v t i n a .  (1975) r e p o r t s 90% o f p r o d u c t i o n f r o m t u r t l e g r a s s i n F l o r i d a enters theaidetrital chain.  These  Zieman beds  data are  c o m p a r a b l e t o those f r o m S q u a m i s h , w h i c h i n d i c a t e s ca. 90% I n p u t o f v a s c u l a r p l a n t p r o d u c t i o n t o t h e d e t r i t a l chain.  125  F i g u r e 1.8.  Proposed (above  energy  f l u x t h r o u g h Carex  lyngbyei  and b e l o w g r o u n d ) and b e n t h i c  Relative  percentages  algae.  d e r i v e d from Table  represent f l u x In a " c h a r a c t e r i s t i c " meter of d e l t a  surface.  after respiratory partitioned  i n t o g r a z i n g , DOM  PAR  100%  s u b s i d y , AO  remaining  and  (TS =  = added o r g a n i c  = photosynthetically  POM,  of available  i s similarly partitioned.  energy  square  c o s t s a r e removed i s  representing a t o t a l POM  Energy  22  available  energy. tidal  matter, radiation).  126 B e n t h i c algae w i t h t h e i r low energy  i n p u t and  storage (3%) p r i m a r i l y f u n c t i o n as:;. 1) an energy  source  f o r s p e c i a l i z e d consumers, 2) a p o s s i b l e requirement  in  the d i e t o f c e r t a i n i n v e r t e b r a t e s (e.g. amphipods (Chang 1975)) and 3) an a u x i l i a r y source o f d e t r i t u s , b e i n g most abundant when breakdown of Carex to be  i s thought  lowest. Large amounts o f DOM,  from sources i n d i c a t e d i n  F i g u r e 18, supply ample s u b s t r a t e f o r h e t e r o t r o p h i c a c t i v i t y , promoting  v a s c u l a r p l a n t breakdown.  Pomeroy  et a l . (1975) p r o v i d e an e x c e l l e n t d i s c u s s i o n and i n d i c a t e the "importance estuaries.  o f DOM  to m i c r o b i a l a c t i v i t y i n  The p r o p o r t i o n r e s u l t i n g from b e n t h i c a l g a l  exudation Is minimal  and may  f u n c t i o n more i n i n t e r -  s p e c i e s c o m p e t i t i o n w i t h other algae or i n determining s p e c i e s composition o f a s s o c i a t e d consumers. P a r t i c u l a t e o r g a n i c matter, which forms the base o f the d e t r i t a l food c h a i n , o r i g i n a t e s p r i m a r i l y v a s c u l a r p l a n t s ( F i g . 18). ^9% o f energy  I t i s estimated t h a t aa.  a v a i l a b l e as POM  i s removed from the d e l t a  t o f u n c t i o n i n the d e t r i t a l food c h a i n o f the e s t u a r i n e ecosystem.  from  surrounding  T h i s value compares very w e l l w i t h  the estimate o f 45% by T e a l (1962) f o r a Georgia  salt  marsh. Approximately  18% o f a v a i l a b l e energy  is utilized  by d e t r i t i v o r e s on the d e l t a as i t i s produced. estimate o f " i n e i t u "  u t i l i z a t i o n i s lower than  This those  127 g i v e n by T e a l  (1962)  f o r a Georgia s a l t marsh and  Thayer et al.  (1975)  f o r an e e l g r a s s (Zostera  bed i n North C a r o l i n a .  The g r e a t e r use may  reflect  o f more consumers (micro- and macrofauna)  and the breakdown o f Zostera usable form compared t o Due  55$  Both s t u d i e s i n d i c a t e  u t i l i z a t i o n by consumers. the presence  marina)  and Spartina  to a more  Carex.  t o heavy sedimentation at Squamish, i t i s  estimated t h a t ca.  33% o f a v a i l a b l e energy  (POM)  is  r e t a i n e d on the d e l t a and becomes i n c o r p o r a t e d i n t o the sediment  ( F i g . 18).  M o b i l i z a t i o n by decomposers  occurs s l o w l y , r e t u r n i n g ca. rients, etc.  nut-  An equal amount remains trapped i n the  sediment along w i t h aa. Carex  50% t o the system as  rhizomes.  50% o f the energy  The remaining  stored i n  50% i n Carex  Is r e t u r n e d  to the system v i a the a c t i o n o f decomposers ( F i g .  18).  Some data e x i s t i n the l i t e r a t u r e with which t o compare Squamish i n terms of primary p r o d u c t i o n . Carex  t i d a l marsh,which dominates t o t a l energy  The  flow on  the d e l t a , i s among the most p r o d u c t i v e o f those r e p o r t e d In the l i t e r a t u r e  (Levings and Moody 1976)  —2 An average  o f ca.  550 g C«m  (Table  23).  —1 *yr  (Appendix  XI) exceeds  estimates f o r wetlands In the i n t e r i o r o f B r i t i s h Columbia.  Higher p r o d u c t i o n r a t e s are a t t r i b u t e d to abundant  nutrients (Odum  (Bernard 1973)^retained and r a p i d l y r e c y c l e d  1971);  daytime emersion  during productive parts of  the y e a r ; low s a l i n i t y , r e d u c i n g m e t a b o l i c s t r e s s ; the b e n e f i t s o f a t i d a l energy  subsidy.  and  —2 Table.  23.  Comparison o f net production lyngbyei  and v a s c u l a r p l a n t s o f o t h e r marsh  Location  Habitat  Squamish R i v e r D e l t a B r i t i s h Columbia  tidal  Praser Delta B r i t i s h Columbia  tidal  marsh  W e s t e r n New USA  C.  laoustris  wet-land  York  Carex C.  lyngbyei lyngbyei  Spartina  New E n g l a n d , Maryland, Virginia  S.  Sapel'dElsland  S.  B r i d g e w a t e r Bay Southern England Puget Sound Washington  salt salt salt  S.  salt  marsh  foliosa  alterniflora  marsh  f o r Carex  areas. Reference  550  Levlngs  450  Yamanaka  735  B e r n a r d and MacDonald  a n d Moody 1975  Mahall  215 - 690  N i x o n a n d O v i a t t 1973b K e e f e a n d B o y n t o n 1973 Teal  and P a r k  1962  1600  alterniflora  380  Ranwell  518  Phillips  marina  1976  135 - 345  marsh  Zostera  «yr  alterniflora  marsh  marine  a s g C*m  Net P r o d u c t i o n (energy storage) P c • -2 -1 | C-m -yr  marsh  San F r a n c i s c o Bay California  Georgia  (energy storage)  —1  1961  1974  1976  1974  129 The  estimated net p r o d u c t i o n o f Carex  lyngbyei is  s i m i l a r to values g i v e n i n the l i t e r a t u r e f o r S p a r t i n a spp. on s a l t marshes o f the U n i t e d S t a t e s .  The  latter  are among the most n a t u r a l l y p r o d u c t i v e ecosystems (Odum 1971). Comparative data f o r b e n t h i c a l g a l p r o d u c t i o n i n t i d a l and  s a l t marsh e s t u a r i n e ecosystems are not t h a t  abundant i n the l i t e r a t u r e .  Estimates  r e l a t i n g to  diatom-dominated miscroalgal a s s o c i a t i o n s are best documented (Table 2k).  Net p r o d u c t i o n estimates  deter-  mined Itor Squamish appear somewhat lower than those f o r other e s t u a r i n e and marine i n t e r t i d a l s i t u a t i o n s .  This  i s a r e f l e c t i o n of a more n o r t h e r l y l o c a t i o n , with reducedophotosynthetically  available radiation,  l i k e l y v a r i a t i o n s i n s p e c i e s composition  of the  and micro-  algal associations. Taken as a u n i t , the Squamish R i v e r d e l t a ranks among the most h i g h l y p r o d u c t i v e n a t u r a l l y o c c u r r i n g ecosystems.  T h i s may  be a t t r i b u t e d t o : t l ) presence o f  a t i d a l energy s u b s i d y , r e d u c i n g energy going to metab o l i c p r o c e s s e s ; 2) extreme nature o f the environment, which s e l e c t s f o r s p e c i e s w e l l adapted to year round e x i s t e n c e or. o p p o r t u n i s t i c s p e c i e s with h i g h p r o d u c t i v i t y f o r a s h o r t p e r i o d ; and $)  c o n t i n u a l i n p u t o f energy  i n t o the system by b e n t h i c a l g a e .  Schelske  (1961) note s i m i l a r reasons  the h i g h p r o d u c t i v i t y  o f Georgia s a l t marshes.  behind  and Odum  Table 24.  Comparisons of net p r o d u c t i o n  (energy  storage) as g Cm"  ?  *yr  1  f o r diatom-  dominated m i c r o a l g a l a s s o c i a t i o n s i n e s t u a r i n e and marine h a b i t a t s .  Location  Habitat  Net P r o d u c t i o n (energy storage) -2 -1 g Cm «yr  Squamish R i v e r D e l t a B r i t i s h Columbia  sand/mud f l a t Carex t i d a l marsh  Deleware, USA  s a l t marsh  D u p l i n R i v e r marsh G e o r g i a , USA  Spartina  Great S i p p e w i s s e t t Marsh, Falmouth, Massachusettes, USA  s a l t marsh  Washington, USA  i n t e r t i d a l marine sand f l a t s  143  Denmark  i n t e r t i d a l marine sediments  115-178  114 150*  60  G a l l a g h e r and Daiber  l  274  a  average over a square meter o f marsh s u r f a c e  b  assume r e s p i r a t i o n = 25$  gross  production  c  assume r e s p i r a t i o n = 10% gross  production  maximum value ;based on estimate of 75 mg  estimated from Appendix V I I I t h i s study  190^  alter-  n i f l o r a dominated s a l t marsh  Cm"  «hr~  -  Reference  Pomeroy  1974  1959  d  Van  R a a l t e et a l .  226  Pamatmat  1968  Grontved  i960  1968  131 LITERATURE CITED  A d m i r a a l , W. 1977. S a l i n i t y t o l e r a n c e o f b e n t h i c e s t u a r i n e diatoms as t e s t e d w i t h a r a p i d p o l a r o g r a p h i c measurement o f p h o t o s y n t h e t i s . M a r .  B i o l . 39: 11-18.  Anonymous. 1972. E f f e c t s o f e x i s t i n g a n d p r o p o s e d i n d u s t r i a l development on t h e a q u a t i c e c o s y s t e m o f t h e Squamish E s t u a r y . F e d e r a l - P r o v i n c i a l Task Force Report. October. 38 p p . + a p p e n d i c e s . B e l l , L . M. 1975. Factors I n f l u e n c i n g t h e Sedimentary Environments o f t h e Squamish R i v e r D e l t a I n Southw e s t e r n B r i t i s h C o l u m b i a . M. S c . T h e s i s , D e p a r t m e n t of G e o l o g i c a l Sciences, U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B. C. 145 p p . B e r g l u n d , H. 1969. S t i m u l a t i o n o f g r o w t h b y t w o marine algae by o r g a n i c substances e x c r e t e d by Enteromorpha l i n z a i n u n i a l g a l and axenic c u l t u r e s . P h y s i o l . P l a n t . 22: 1069-1075• B e r n a r d , J . M. 1973. P r o d u c t i o n e c o l o g y o f w e t l a n d s e d g e s : t h e g e n u s Carex. P o l . Arch. Hydrobiol. 20: 207-214. B e r n a r d , J . M. 1974. S e a s o n a l changes i n s t a n d i n g crop and p r i m a r y p r o d u c t i o n i n a s e d g e w e t l a n d a n d a n adjacent d r y o l d - f i e l d i n c e n t r a l Minnesota.  E c o l o g y , 5 5 : 350-359.  B e r n a r d , J . M. a n d J . G. M a c D o n a l d , J r . 1974. Primary p r o d u c t i o n a n d l i f e h i s t o r y o f Carex l a o u s t r i s . C a n / J . B o t . 52: 117-123. B i e b l , R. 1956. L i c h t r e s i s t e n z v o n M e e r e s a l g e n . P r o t o p l a s m a 46: 75-86. B i g g s , R. B. a n d D. A. F l e m e r . 1972. The f l u x o f p a r t i c u l a t e c a r b o n i n a n e s t u a r y . M a r . B i o l . 12: 11-17. B o o n , J . D. 1975- T i d a l d i s c h a r g e asymmetry i n a s a l t m a r s h d r a i n a g e s y s t e m . L i m n o l . O c e a n o g r . 20: 71-80. B r i n k h u i s , B. H. 1976a. The e c o l o g y o f t e m p e r a t e s a l t marsh f u c o i d s . I . O c c u r r e n c e and d i s t r i b u t i o n o f Asoophyllum nodosum e c a d s . M a r . B i o l . 34: 325-338. B r i n k h u i s , B. H. 1976b} The e c o l o g y o f t e m p e r a t e s a l t m a r s h f u c o i d s . I I . In s i t u g r o w t h o f t r a n s p l a n t e d Asoophyllum nodosum e c a d s . M a r . B i o l . 34: 339-348.  132 B r i n k h u i s , B. H., N. R. Tempel, and R. F. Jones. 1976. Photosynthesis and r e s p i r a t i o n o f exposed s a l t marsh f u c o i d s . Mar. B i o l . 3 4 : 3 4 9 - 3 5 9 . Brown, J . M. A. and A. Johnson. 1 9 6 4 . Preliminary s t u d i e s on the ecology and p h y s i o l o g y o f Saytothamnu8 australis ( J . Agardh) HK, et Harv. 1 8 4 5 . Bot. Mar. 6 : 233-246. B u r e l l , D. C. and J . B. Matthews. 1 9 7 4 . T u r b i d outwash fjords. In: C o a s t a l E c o l o g i c a l Systems o f the U n i t e d S t a t e s . H. T. Odum, B. J . Copeland, and E. A. McMahan ( e d s . ) . Conservation Foundation, Washington, D. C , 3 : 1 1 - 1 6 . C a r t e r , N. 1932. A comparative study o f the a l g a l f l o r a of two s a l t marshes. Part I . J . E c o l . 2 0 : 341-370. C a r t e r , N. 1 9 3 3 . A comparative study of the a l g a l f l o r a o f two s a l t marshes. P a r t e I I . J. Ecol. 21: 128-208. Chang, B. D. 1975. Some F a c t o r s A f f e c t i n g D i s t r i b u t i o n and P r o d u c t i v i t y M the e s t u a r i n e amphipod Anisogammavue  pugattensie.  M.  Sc.  T h e s i s , Department  of  Zoology, U n i v e r s i t y o f B r i t i s h Columbia, Vancouver, B. C. 116 pp. Chapman, V. J . and D. J . Chapman. 1 9 7 3 . The Algae. 2 n d . ed. McMillan and Co., Toronto. 497 PP. Conover, J . J . and J . McN. S i e b u r t h . 1964. E f f e c t s of Sargassum d i s t r i b u t i o n on I t s e p i b i o t a and a n t i b a c t e r i a l a c t i v i t y . 'Bot*. Mar. 6 : 1 4 7 - 1 5 7 . Day,  J . H. 1950. The ecology o f South A f r i c a n e s t u a r i e s . Part I . A review o f e s t u a r i n e c o n d i t i o n s In g e n e r a l . T r a n s . Roy. Soc. S. A f r . 3 3 : 5 3 - 9 1 .  Day,  J . H., N. A. H. M i l l i a r d , and A. D. H a r r i s o n . 1952. The ecology o f South A f r i c a n e s t u a r i e s . Part I I I . Knysna: A c l e a r open e s t u a r y . Trans. Roy. Soc. S. A f r . 3 3 : 4 6 7 - 5 1 3 -  Day,  J . H-, N. A. H. M i l l i a r d , and G. J . Brockhuysen. 1953. The ecology o f South A f r i c a n e s t u a r i e s . Part IV. The S t . L u c i a system. Trans. Roy. Soc. S. A f r . 3 4 : 1 2 9 - 1 5 6 .  de l a Cruz, A r A. 1973. The r o l e of t i d a l marshes i n the p r o d u c t i v i t y o f c o a s t a l waters. ASB B u l l . 2 0 : 147-156.  133 D e W l t t , P. and P. C. D a l b e r . 1973. The h y d r o g r a p h y o f the B r o a d k l l l R i v e r E s t u a r y , Delaware. Chesapeake  S c i . 14: 28-40.  D o t y , M. S. and J . Newhouse. 1954. The d i s t r i b u t i o n o f marine algae i n t o e s t u a r i n e waters. Am. J . B o t .  41: 508-515.  D r u e h l , L. D. 1967. V e r t i c a l d i s t r i b u t i o n s o f some b e n t h i c marine algae i n a B r i t i s h Columbia I n l e t as r e l a t e d t o some e n v i r o n m e n t a l f a c t o r s . J. Fish. R e s . B o a r d Can. 24: 33-46. D y k j o v a , D. and S. P r i b i l . 1975. Energy content I n the b i o m a s s o f e m e r g e n t m a c r o p h y t e s and t h e i r e c o l o g i c a l efficiency. A r c h . H y d r o b i o l . 75: 90-108. E r k e n b r e c h e r , C. W. and L. H. S t e v e n s o n . 1975. The i n f l u e n c e o f t i d a l f l u x on m i c r o b i a l b i o m a s s i n s a l t m a r s h c r e e k s . L i m n o l . O c e a n o g r . 20: 618-625. F l e t c h e r , R. L. 1975. Heteroantagonism mixed a l g a l c u l t u r e s . Nature,253:  observed  534-535.  in  F o r e m a n , R. E. 1975. Nanaimo R i v e r E s t u a r y m a c r o p h y t e study. Seasonal aspects of macrophyte p r o d u c t i o n and s t a n d i n g c r o p on t h e Nanaimo R i v e r E s t u a r y mudflats. BERP R e p o r t 75-3. F o s t e r , M. S. 1975. Regulation of a l g a l .development i n a Maorooyetis pyrifera B i o l . 32: 313-329.  community f o r e s t . Mar.  G a l l a g h e r , J . L. and F. C. D a i b e r . 1973. D i e l rhythms i n e d a p h i c community m e t a b o l i s m s i n a D e l e w a r e s a l t m a r s h . E c o l o g y 5 4 : II6O-H63. 0  G a l l a g h e r , J . L. and F. C. D a i b e r . 1974. Primary prod u c t i o n o f edaphic a l g a l communities In a Deleware s a l t m a r s h . L i m n o l . O c e a n o g r . 19: 390-395. G a l l a g h e r , J . L., W. J . P f e i f f e r , and L. R. Pomerpy. 1976. L e a c h i n g and m i c r o b i a l u t i l i z a t i o n o f d i s s o l v e d o r g a n i c carbon from l e a v e s o f Spavtina alterniflora. E s t u a r i n e C o a s t a l Mar. S c i . 4: 467-  471.  G a r d n e r , L. R. 1975. R u n o f f f r o m an i n t e r t i d a l m a r s h d u r i n g t i d a l e x p o s u r e — r e c e s s i o n c u r v e s and c h e m i c a l characteristics. L i m n o l . O c e a n o g r . 20: 8I-89. G a r g a s , E. 1972. Measurements o f m i c r o a l g a l p r i m a r y p r o d u c t i o n ( p h y t p p l a n k t o n and m i c r o b e n t h o s ) i n t h e S m a l a n d s h a v e t ( D e n m a r k ) . O p h e l i a 10: 75-89.  134 G a t e s , D. M. 1965. R a d i a n t e n e r g y , i t s r e c e i p t a n d disposal. M e t e r o l . Monogr. 6 : 1 - 2 6 . G r a b o w s k i , A. 1 9 7 3 . The b i o m a s s , o r g a n i c c o n t e n t s a n d c a l o r i f i c values o f macrophytes I n t h e lakes o f t h e Szeszuga drainage area. P o l . Arch. Hydrobiol. 20: 269-282. G r o n t v e d , J . I960. On t h e p r o d u c t i v i t y o f m i c r o b e n t h o s and p h y t o p l a n k t o n i n some D a n i s h f j o r d s . Medd. Danm. P i s k . H a v u n d . N.Y. S e r i e 3: 55-92. H a r l i n , M. M. 1973. " O b l i g a t e " a l g a l e p i p h y t e : Smithora naiadum grows o n a s y n t h e t i c s u b s t r a t e . J . P h y c o l .  9: 230-232.  H a t c h e r , G. B. a n d K. H. Mann. 1975. Above g r o u n d p r o d u c t i o n o f marsh c o r d g r a s s ( S p a r t i n a a l t e r n i f l o r a ) near t h e n o r t h e r n end o f i t s range. J . P i s h . R e s . B o a r d C a n . 32: 8 3 - 8 7 . H e a l d , E. J . 1971. The p r o d u c t i o n o f o r g a n i c d e t r i t u s i n a south F l o r i d a estuary. Tech. B u l l . Sea Grant Program. U n i v e r s i t y o f Miami. 6: 1-110. H e a l e y , F. P. 1972. P h o t o s y n t h e s i s a n d r e s p i r a t i o n i n some a r c t i c s e a w e e d s . P h y c o l o g i a 11: 267-271. H e i n l e , D. R. a n d D. A. F l e m e r . 1976. P l o w s o f m a t e r i a l s hetween p o o r l y f l o d d e d t i d a l marshes and an e s t u a r y . Mar. B i o l . 35: 359-373. H e i n l e , D. R., R. P. H a r r i s , 31. F. U s t a c h , a n d D. A. Flemer. 1977. D e t r i t u s a s f o o d f o r e s t u a r i n e c o p e p o d s . M a r . B i o l . 40: 341-353H e l l e b u s t , J . A. 1974. E x t r a c e l l u l a r p r o d u c t s . I n : A l g a l P h y s i o l o g y and B i o c h e m i s t r y . W. D. P. S t e w a r t (ed.) U n i v e r s i t y o f C a l i f o r n i a P r e s s , B e r k e l e y , pp. 8 3 8 - 8 6 3 . H o o s , L. M. a n d C. L . V o i d . 1975. The S q u a m i s h R i v e r E s t u a r y — s t a t u s o f e n v i r o n m e n t a l k n o w l e d g e t o 1974. Estuary Working Group, R e g i o n a l Board P a c i f i c R e g i o n , Department o f t h e Environment, S p e c i a l E s t u a r y S e r i e s , R e p o r t 2. 361 p p . H r u b y , T. 1976. O b s e r v a t i o n s o f a l g a l z o n a t i o n r e s u l t i n g from c o m p e t i t i o n . E s t u a r i n e C o a s t a l Mar. S c i .  4: 231-233.  135 I m a d a , 0., Y. S a i t o , a n d S. M a e k i . 1970. R e l a t i o n s h i p s b e t w e e n t h e g r o w t h o f Porphyra t e n e r a and I t s c u l t u r i n g c o n d i t i o n s i n the sea. I I Influence o f a t m o s p h e r i c exposure on p h o t o s y n t h e s i s , growth and o t h e r s o n Porphyra fronds. B u l l . Jap. Soc. s c l e n t . F i s h . 36: 369-376. J e f f r i e s , H. P. 1972. F a t t y - a c i d e c o l o g y o f a t i d a l m a r s h . L i m n o l . O c e a n o g r . 17: 433-440. J o h n s o n , W. S., A. G i g o n , S. L . Gulman a n d H. A. Mooney. 1974. C o m p a r a t i v e p h o t o s y n t h e t i c c a p a c i t i e s o f i n t e r t i d a l a l g a e under exposed and submerged conditions. E c o l o g y . 5 5 : 450-453. K e e f e , C. W. 1972. M a r s h p r o d u c t i o n : a summary o f t h e literature. C o n t r i b . M a r . S c i . 16: 63-181. K e e f e , C. W. a n d W. R. B o y n t o n . 1973. S t a n d i n g c r o p o f s a l t marsh s u r r o u n d i n g Chincoteague B a y , Maryland, V i r g i n i a . C h e s a p e a k e S c i . 14: 117-123. K i n g , R. J . a n d W. S c h r a m m ® l i l 9 7 6 ^ 9 ? K ° y ' rates of benthic marine algae i n r e l a t i o n t o light; I n t e n s i t y and seasonal v a r i a t i o n s . M a r . B i o l . 37: t o s  n  t n e t i c  :  215-222.  K i r b y , C. J . a n d J . G. G o s s e l i n k . 1976. P r i m a r y p r o d u c t i o n i n a L o u i s i a n a G u l f Coast S p a r t i n a a l t e r n i f l o r a m a r s h . E c o l o g y , 5 7 : 1052-1059. K r a j i n a , V. J . 1970. E c o l o g y o f f o r e s t t r e e s i n B r i t i s h Columbia. Ecology o f Western North America, ica ( V a n c o u v e r , C a n a d a ) 2: 1-146. L e v l n g s , C. D. 1974. R i v e r d i v e r s i o n a n d i n t e r t i d a l benthos a t t h e Squamish R i v e r d e l t a , B r i t i s h Columbia. FreshwWater on t h e Sea. Proceedings f r o m a Symposium o n t h e I n f l u e n c e o f F r e s h - w a t e r O u t f l o w on B i o l o g i c a l P r o c e s s e s i n F j o r d s and C o a s t a l Waters. 22-25 A p r i l , 1974. G e i l o Norway,  pp.  193-202.  L e v l n g s , C. D. a n d A. I . Moody. 1976. S t u d i e s o f i n t e r t i d a l v a s c u l a r p l a n t s , e s p e c i a l l y sedge (Carex l y n g b y e i ) on t h e d i s r u p t e d Squamish R i v e r d e l t a , B r i t i s h Columbia. F i s h . Res. Board,Can. T e c h n i c a l R e p o r t No. 606, 51 p p . L e v l n g s , C. D., W. M. P o m e r o y , R. K. P r a n g e , N. G. M c D a n i e l a n d A. G. C h r i s t i e . 1976. D a t a r e c o r d o f p h y s i c a l - c h e m i c a l measurements a t t h e Squamish R i v e r estuary—temperature, s a l i n i t y , d i s s o l v e d oxygen d a t a 1974-1975. R i s h . R e s . B o a r d C a n . M a n u s c r i p t R e p o r t S e r i e s No. 1407? 39 p p .  136 L i e t h , H. 1968. The measurement o f c a l o r i f i c values o f b i o l o g i c a l m a t e r i a l and the d e t e r m i n a t i o n o f e c o l o g i c a l e f f i c i e n c y . UNESCO V: 233-242. Lim, P. G. and C. D. L e v l n g s . 1973. D i s t r i b u t i o n and biomass o f i n t e r t i d a l v a s c u l a r p l a n t s on the Squamish d e l t a . P i s h . Res. Board Can. Manuscript Report No. 1219. 26 pp. L i t t l e r , M. M. and S. N. Murray. 1974. The primary p r o d u c t i v i t y o f marine macrophytes from a rocky i n t e r t i d a l communi,ty. Mar. Bot. 27: 131-136. M c l n t y r e , C. D., I . J . T i n s l e y and R. R. Lowry. 1969. F a t t y a c i d s i n l o t i c p e r i p h y t o n : another measure of community s t r u c t u r e . J . P h y c o l . 5: 26-32. McNaughton, S. J . and L. L. Wolf. 1973. General Ecology. H o l t Rinehart and Winston, Inc., New York, 710 pp. M a h a l l , B. E. and R. B. Park. between Spartina  foliosa  1976.  The ecotone  T r i n . and  Salioornia  v i r g i n i a a L. i n s a l t marshes o f n o r t h e r n San F r a n c i s c o Bay. I„ Biomass and p r o d u c t i o n . J . E c o l . 64: 421-433. Mann, K. 1972. I n t r o d u c t o r y remarks. I n : Proceedings o f the IBP-UNESCO Symposium on D e t r i t u s and i t s , Role In Aquatic Ecosystems. V. M e l c h i o r r i - S a n t o l i n i and ,3;. W. Hopton ( e d s ) . P a l l a n z a , I t a l y , May 2327;'1972. Mem. 1 s t . I t a l . I d r o b i o l . 29 ( S u p p l ) : 13-16. Mann, K. H1972a. Macrophyte p r o d u c t i o n and d e t r i t u s food chains i n c o a s t a l waters. I n : Proceedings o f the IBP-UNESCO Symposium on D e t r i t u s and i t s Role i n Aquatic Ecosystems. V. M e l c h i o r r i - S a n t o l i n i and J . W. Hopton ( e d s . ) . P a l l a n z a , I t a l y , May 23-27, 1972. Mem. 1 s t . I t a l . I d r o b i o l . 29 ( S u p p l ) : 353-383. Mathieson, A. C. and R. L. Burns. 1971. E c o l o g i c a l s t u d i e s o f ecomonic r e d a l g a e . I Photosynthesis and r e s p i r a t i o n o f Chondrus c r i s p u s Stackhouse and G i g a r t i n a s t e l l a t a (Stackhouse) B a t t e r s . J . Exp. Mar. B i o l . E c o l . 7: 197-206. Mathieson, A. C. and T. L. N o r a l l . 1975. P h y s i o l o g i c a l s t u d i e s o f s u b t i d a l r e d a l g a e . J . Exp. Mar. B i o l . E c o l . 20: 237-247.  137  M a t t h e w s , W. H, J . W. M u r r a y , a n d N. J . M c M i l l a n . 1966. Recent sediments and t h e i r environment o f d e p o s i t i o n , S t r a i t o f G e o r g i a and F r a s e r R i v e r delta. (A m a n u a l f o r f i e l d c o n f e r e n c e s . ) Prepared by T e n n e c o O i l a n d M i n e r a l s L t d . , C a l g a r y , A l b e r t a . s  M e l c h i o r r i - S a n t o l i n i , V. a n d J . W. H o p t o n . 1 9 7 2 . (eds.) P r o c e e d i n g s o f t h e IBP-UNESCO Symposium o n D e t r i t u s and i t s R o l e i n A q u a t i c E c o s y s t e m s . Pallanza, I t a l y , May 2 3 - 2 7 , 1 9 7 2 . Mem. 1 s t . I t a l . I d r o b i o l . 2 9 ( S u p p l ) , 540 p p . M i l n e r , C. a n d R. E. H u g h e s . . 1 9 6 8 . M e t h o d s f o r t h e . Measurement o f t h e P r i m a r y P r o d u c t i o n o f G r a s s l a n d s . I B P Handbook No. 1 6 . B l a c k w e l l S c i e n t i f i c P u b l . , Oxford,'Edinburgh., 7 0 pp. N i e n h u i s , P. H. 1 9 7 1 . The b e n t h i c a l g a l communities o f f l a t s a n d s a l t m a r s h e s . i n t h e G r e v e l i n g e n , a-, s e a arm i n t h e s o u t h w e s t e r n N e t h e r l a n d s . Neth. J . Sea Res.  5:  20-49.  N i x o n , S. W. a n d C. A. O v i a t t . 1 9 7 3 . E c o l o g y o f a New E n g l a n d s a l t m a r s h . E c o l . Monogr. 4 3 : 4 6 3 - 4 9 8 . r  N i x o n , S. W. a n d C. A. O v i a t t . 1973a. Analysis of l o c a l v a r i a t i o n i n the standing crop o f S p a r t i n a alterniflora.  B o t . Mar. 1 6 :  103-109.  Odum, E. P. 1 9 6 3 . P r i m a r y a n d s e c o n d a r y i n r e l a t i o n . t o ecosystem s t r u c t u r e . I n t e r n . Congr. Z o o l . 4 : 3 3 6 - 3 3 8 .  energy f l o w Proc. XVI  Odum, E. P. 1 9 7 ! - E s t u a r i n e e c o l o g y . I n : Fundamentals of Ecology. E. P. Odum ( e d . ) . W. B. S a u n d e r s a n d Co., T o r o n t o , p p . 3 5 2 - 3 6 2 . Odum, E. P. 1 9 7 4 . H a l o p h y t e s , e n e r g e t i c s a n d e c o s y s tems. I n : Ecology o f Halophytes. R. J . R e i m o l d and W. Queens ( e d s ) . A c a d e m i c P r e s s , New Y o r k . Odum, E. P. a n d A. A. de l a C r u z . 1967. Particulate o r g a n i c d e t r i t u s i n a G e o r g i a s a l t marsh e s t u a r i n e ecosystem. I n : Estuaries. G. L a u f f ( e d . ) . Am. A s s o c . A d v . S c i . P u b l . 8 3 : 3 8 3 - 3 8 8 . Odum, E. P. a n d M. E. F a n n i n g . productivity  o f Spartina  1973-  Comparisons o f t h e  alterniflora  and  oynosuroides i n Georgia c o a s t a l marshes. Acad. S c i . 3 1 : 1 - 1 2 .  Spartina  Bull.  G.  138  Odum, W. E . , J . C. Zieman and E. J . Heald. 1 9 7 2 . The importance o f v a s c u l a r p l a n t d e t r i t u s t o e s t u a r i e s . Ih: C o a s t a l Marsh and Estuary Management. R. H. Chabreck ( e d . ) . Proceedings o f the 2 n d Symposium. J u l y 17-18, 1 9 7 2 . Louisiana State U n i v e r s i t y , Baton Rouge, L o u i s i a n a , pp. 91-114. O r l o c i , L. 1 9 6 1 . F o r e s t Types o f the C o a s t a l Western Hemlock Zone. M. Sc. T h e s i s . Department o f B i o l o g y and Botany, U n i v e r s i t y o f B r i t i s h Columbia, Vancouv e r , B. C. 2 0 6 pp. Paine, R. T. 1 9 7 1 . The measurement and a p p l i c a t i o n o f the c a l o r i e t o e c o l o g i c a l problems. Ann. Rev. E c o l . S y s t . 2 : 145-164. Pamatmat, M. M. 1 9 6 8 . Ecology and metabolism o f a b e n t h i c community on an i n t e r t i d a l s a n d f l a t . I n t . Rev.  ges. H y d r o b i o l . 5 3 :  211-298.  Parsons, T. R. and M. Takahashi. 1 9 7 3 . Biological Oceanographic Processes. Pergamon P r e s s , Toronto. 1 8 6 pp. Penhale, P. A. and W. 0 . Smith, J r . 1 9 7 7 . E x c r e t i o n of d i s s o l v e d organic carbon by e e l g r a s s ( Z o s t e r a marina) and i t s e p i p h y t e s . Limnol. Oceanogr. 2 2 : 400-407.  P e r k i n s , E. J . 1 9 7 4 . The B i o l o g y o f E s t u a r i e s and C o a s t a l Waters. Academ'l'c@Eress, London. 6 7 8 pp. P h i l l i p s , R. C. 1 9 7 4 . Temperate grass f l a t s . I h : C o a s t a l E c o l o g i c a l Systems o f the U n i t e d S t a t e s : a Sourcebook f o r E s t u a r i n e P l a n n i n g . H. T. Odum, B. J . Copeland and. E. A. McMahan ( e d s . ) . Conserv a t i o n Foundation, Washington, D. C. pp. 2 4 4 - 2 9 9 P h i l l i p s o n , J . 1 9 6 6 . E c o l o g i c a l E n e r g e t i c s . The I n s t i t u t e o f B i o l o g y ' s Studies i n B i o l o g y , No. 1 . Edward A r n o l d ( P u b l . ) , London. 5 7 pp. Pomerpy, L. R. 1 9 5 9 . A l g a l p r o d u c t i v i t y I n s a l t marshes of Georgia. Limnol. Oceanogr. 4 : 386-397. Pomeroy, L. R., K. B a n c r o f t , J . Breed, R. R. C h r i s t i a n , D. F r a n k l e n b e r g , J . R. H a l l , L. G. Maurer, W. J . Wiebe, R. G. Wiegert, and R. L. Wetzel. 1 9 7 5 Flux o f o r g a n i c matter through a s a l t marsh. Estuarine. Processes I I .  pp  270-279.  139 Pomeroy, L. R., R. E. Johannes, E. P. Odum, and B. Roffman. 1969. The phosphorus and z i n c c y c l e s and p r o d u c t i v i t y o f a s a l t marsh. I n : Proceedings o f the 2nd Symposium on Radioecology. D. J . Nelson, and P.. C. Evans ( e d s . ) . U. S. Atomic Energy Commission Conference 670503. pp. 412-419. Pomeroy, W. M. 1974. D i s t r i b u t i o n and Primary Product i o n o f B e n t h i c Algae on the Squamish R i v e r D e l t a , B r i t i s h Columbia. M. Sc. T h e s i s , Department o f Botany, U n i v e r s i t y o f Manitoba, Winnipeg, Manitoba. 192 pp. Pomeroy, W. M. and J . G. Stockner. 1976. Effects of environmental d i s t u r b a n c e on the d i s t r i b u t i o n and primary p r o d u c t i o n o f b e n t h i c algae on a B r i t i s h Columbia e s t u a r y . J . F i s h . Res. Board Can. 33:  1175-1187.  Prange, R. K. 1976. Autecology o f B l i d i n g i a minima v a r . s u b s a l s a (Chlorophyceae) i n the Squamish R i v e r E s t u a r y , B r i t i s h Columbia. M. Sc. T h e s i s , Department o f Botany, U n i v e r s i t y o f B r i t i s h Columbia, Vancouver, B. C. 112 pp. Ranwell, D. S. 1961. S p a r t i n a s a l t marshes i n Southern England. I The e f f e c t s o f sheep g r a z i n g at the upper l i m i t s o f S p a r t i n a marsh i n Bridgewater Bay. J . E c o l . 49: 325-340. R e i f s n y d e r , W. E. and W. H. L u l l . 1965. Radiant energy i n r e l a t i o n t o f o r e s t s . U. S. Department o f A g r i c u l t u r e , F o r e s t S e r v i c e , Tech. B u l l . No. 1344. i l l pp. R i l e y , G. A. 1973. P a r t i c u l a t e and d i s s o l v e d o r g a n i c carbon In the oceans. I n : Carbon and the B i o s p h e r e . G. M. Woodwell and E. V. Pecan ( e d s . ) . Proceedings o f the 24th Brookhaven Symposium i n B i o l o g y . Upton, New York, May 16-.18, 1972. pp. 204-220. Remane, A. and C. S c h l i e p e r . 1971. B i o l o g y o f B r a c k i s h Waters. John Wiley and Sons, Toronto. 372 pp. R i s k , M. F. 1973. S e t t l i n g plates of cold-cure a c r y l i c p l a s t i c r e p l i c a t e d from n a t u r a l s u r f a c e s . L i m n o l . Oceanogr. 18: 801-802. R u s s e l l , G. and A. H. F i e l d i n g . 1974. The competitive p r o p e r t i e s o f marine algae i n c u l t u r e . J . E c o l .  62: 689-698.  140 S c h e l s k e , C. L. and E. P. Odum. .1962. Mechanisms m a i n t a i n i n g high p r o d u c t i v i t y i n Georgia e s t u a r i e s . Bui.. C a r i b b . P i s h . I n s t . , Univ. Miami Proc. 14: 75-80. S c h u l t z , D. M. and J . G. Quinn. 1973. Fatty acid composition o f o r g a n i c d e t r i t u s from Spartina alterniflora. E s t u a r i n e C o a s t a l Mar. S c i . 1:  177-190.  S e l l n e r , K. G., R. G. Zingmark, and T. G. M i l l e r . 1976. I n t e r p r e t a t i o n s o f the 14-C method o f measuring the t o t a l annual p r o d u c t i o n o f phytoplankton i n a South C a r o l i n a E s t u a r y . Bot. Mar. 19: 119-125. S h i s l e r , J . K. and D. M. J o b b i n s . 1977. Tidal variat i o n s i n the movement o f o r g a n i c carbon i n New J e r s e y s a l t marshes. Mar. B i o l . 40: 127-134. S i e b u r t h , J . McN. 1968. The i n f l u e n c e o f a l g a l a n t i b i o s i s on the ecology o f marine micro-organisms. Adv. M i c r o b i o l . S e a . l : 63-94. S i e b u r t h , J . McN. I969. S t u d i e s on a l g a l substances In the sea. I l l The p r o d u c t i o n o f e x t r a c e l l u l a r o r g a n i c matter by l i t t o r a l marine a l g a e . J . Exp. Mar. B i o l . E c o l . 3:'290-309. Smalley, A. E. 1959. The Role o f two I n v e r t e b r a t e p o p u l a t i o n s , L i t t o r i n a inorata and Orchelimum f i d i c i n i u m , i n the Energy Flow o f a S a l t Marsh Ecosystem. D o c t o r a l D i s s e r t a t i o n , U n i v e r s i t y o f Georgia, Athens, Georgia. 126 pp. S t a t h e r s , J . K. 1958. A Geographical I n v e s t i g a t i o n o f Development P o t e n t i a l I n the Squamish V a l l e y Region, B r i t i s h Columbia. M. Sc. T h e s i s , Department o f Geography, U n i v e r s i t y o f B r i t i s h Columbia, Vancouver, B. C. 194 pp. S t e b b i n s , G. L., J r . 1950. V a r i a t i o n and E v o l u t i o n i n Plants. Columbia U n i v e r s i t y P r e s s , New York. 643 pp. S t e e v e r , E. Z., R. S. Warren, and W. A. N i e r i n g . 1976. T i d a l energy subsidy and s t a n d i n g crop p r o d u c t i o n of Spartina a l t e r n i f l o r a . E s t u a r i n e C o a s t a l Mar.  S c i . 4: 473-478.  Stockner, J . G. and D. C. C l i f f . 1976. Phytoplankton s u c c e s s i o n and abundance i n Howe Sound, B r i t i s h Columbia: a c o a s t a l marine embayment-fiord under s t r e s s . F i s h . Mar. Serv. T e c h n i c a l Report No. 658. 24 pp.  141 S t r a s k r a b a , M. 1968. Der A n t e i l der hoheren P f l a n z e n an der Produktion der stehenden Gewasser. M i t t . I n t . V e r . Theor. Angew. Limnol. 14: 212-230. S t r i c k l a n d , J . D. H. and T. R. Parsons. 1972. P r a c t i c a l Handbook o f Seawater A n a l y s i s . Res. Board Can. B u l l e t i n 167. 311 pp.  A Pish.  S u l l i v a n , M. J . 1977. Edaphic diatom communities a s s o c i a t e d with Spartina a l t e r n i f l o r a and S. i n New J e r s e y . H y d r o b i o l o g i a 52: 207-211.  patens  1966. F i e l d measurements o f energy i n the micron range. I n ; L i g h t as an E c o l o g i c a l F a c t o r . R. B a i n b r i d g e , G. C. Evans, and 0. Ractham ( e d s . ) . Symposium B r i s t . E c o l . Soc. B l a c k w e l l S c i e n t i f i c P u b l . , Oxford. 6: 41-51.  S z e i c z , G. 0  0.4-0.7  1972. L i f e h i s t o r y and s y s t e m a t i c s i n I n : C o n t r i b u t i o n s t o the Systematics o f B e n t h i c Marine Algae o f the North P a c i f i c . I . A. Abbott and M. Kurogi ( e d s . ) . Japanese Soc. o f Phycology, Kobe U n i v e r s i t y , Japan, pp. 1-15.  Tatewake, M. Monostroma.  T e a l , J . M. 1962. Energy flow i n the s a l t marsh ecosystem o f G e o r g i a . Ecology 43: 614-624. Thayer, G. W., S. M a r s h a l l Adams, and M. W. L a C r o i x . 1975. S t r u c t u r a l a a n d f u n c t i o n a l aspects o f a r e c e n t l y e s t a b l i s h e d Zostera marina community. I n : E s t u a r i n e Research. V o l . I . Chemistry, B i o l o g y , and the E s t u a r i n e System. L. E. C r o n i n ( e d . ) . Academic P r e s s , New York. pp. 518-540. Tukey, H. B., J r . from p l a n t s .  1970. The l e a c h i n g o f substances Ann. Rev. P l . P h y s i o l . 21: 305-324.  Turner, R. E. 1974. Community Plankton R e s p i r a t i o n In a S a l t Marsh,, T i d a l Creek - and E s t u a r y i n the C o n t i n e n t a l S h e l f Water o f Georgia. D o c t o r a l D i s s e r t a t i o n , U n i v e r s i t y o f G e o r g i a , Athens, Georgia. Turner, R. E. 1976. Geographic v a r i a t i o n s i n s a l t marsh macrophyte p r o d u c t i o n : a review. Contr.  Mar. S c i . 20: 47-68.  UNESCO. 1973. A Guide t o the Measurement o f Marine Primary P r o d u c t i o n under Some S p e c i a l C o n d i t i o n s . UNESCO, P a r i s . 73 PP. Utermohl, H. 1958. F u r vervollkommung d e r q u a n t i t a t i v e n Phytoplanktonmethodik. M i t t . I n t . V e r . Theor. Angew. Limnol. 9' 1-38.  142 V a l l e l a , I . and j . M. T e a l . 1974. N u t r i e n t l i m i t a t i o n i n s a l t marsh v e g e t a t i o n . I n : Ecology o f Halophytes. R. J . Relmold and W. H. Queen (eds.) Academic P r e s s , New York. pp. 547-563. Van R a a l t e , C , W. C. Stewart, I . V a l i e l a , and E. J . Carpenter. 1974. A 14-C technique f o r measuring a l g a l p r o d u c t i v i t y i n s a l t marsh muds. Bot. Mar. 17: 186-188. V o l l e n w e i d e r , R. A. 1974. A Manual on Methods f o r Measuring Primary P r o d u c t i o n i n A q u a t i c Environments. 2nd ed. IBP Handbook No. 12, B l a c k w e l l S c i e n t i f i c P u b l . , Oxford. 225 pp. Watt, W. D. 1965. Release o f d i s s o l v e d o r g a n i c materi a l from the c e l l s o f phytoplankton p o p u l a t i o n s . Proc. R. Soc. London, S e r . B, 164: 521-551. Werff, A. van d e r . i960. Die Diatomeen des D o l l a r t Emsgebietes. Verh. k. ned. g e o l . - m i j n b . Genrot. (Geol. Ser.) 19: 153-201. Westlake, D. P. 1963. Comparisons B i o l . Rev. 38: 385-425.  of plant  productivity.  Wetzel, R. G. and B. A. Manny. 1972. S e c r e t i o n o f d i s s o l v e d o r g a n i c carbon and n i t r o g e n by a q u a t i c macrophytes. Verh. I n t . V e r . Theor. Angew. Limnol.  18: 162-190.  W h i t t a k e r , R. H. 1975. Communities and Ecosystems. 2nd ed. MacMillan P u b l . Co., New York. 385 pp. W i l l i a m s , R. B. 1962. The Ecology o f Diatom P o p u l a t i o n s i n a G e o r g i a S a l t Marsh. D o c t o r a l D i s s e r t a t i o n , Department o f B i o l o g y , Harvard U n i v e r s i t y , Cambridge, Massechusettes. 143 pp. W i l l i a m s , R. B. 1964. D i v i s i o n r a t e s o f s a l t - m a r s h diatoms i n r e l a t i o n t o s a l i n i t y and c e l l s i z e . Ecology 45: 877-886. Woodwell, G. M., P. H. R i c h , and C. A. S. H a l l . 1973. Carbon i n e s t u a r i e s . I n : Carbon and the B i o s p h e r e . GooM. Woodwell and E. V. Pecan ( e d s . ) . Proceedings o f the 24th Brookhaven Symposium i n B i o l o g y . Upton, New York, May 16-18, 1972. pp. 221-240. Yamanaka, K. 1975. Primary P r o d u c t i v i t y o f the P r a s e r R i v e r D e l t a Foreshore Y i e l d Estimates o f Emergent V e g e t a t i o n . M. Sc. T h e s i s . Department o f P l a n t S c i e n c e , U n i v e r s i t y o f B r i t i s h Columbia, Vancouver, B. C. 130 pp.  143 Yokohama, Y. 1972. Photosynthesis-temperature relationships i n s e v e r a l b e n t h i c marine a l g a e . Proc. I n t . Seaweed Symp. 7: 286-291. Zaneveld, J . S. 1969. F a c t o r s c o n t r o l l i n g the d e l i m i t a t i o n o f l i t t o r a l b e n t h i c marine a l g a l z o n a t i o n . Am. Z o o l . 9: 367-391. Zieman, J . C. 1975. Q u a n t i t a t i v e and dynamic aspects o f the ecology o f t u r t l e g r a s s , T h a l a s s i a t o s t u dinium. I n : E s t u a r i n e Research V o l . I . Chemistry, B i o l o g y and the E s t u a r i n e System. L. E. Cronin ( e d . ) . Academic P r e s s , New York. pp. 541-562.  144  Appendix I .  Light  attenuation  In the water column  adjacent t o the d e l t a , as %  Incident  radiation. Depth  Date 0m  a  lm  2m  9  1  1974 2 0 June  40  5  July  60  10  1  19  July  65  10  2  1 1 August  70  15  5  2 7 August  75  20  8  2  September  75  22  10  13  September  80  25  15  October  90  30  18  3 0 October  90  37  23  2 2 November  90  35  25  1 8 December  90  38  24  2 2 January  90  36  22  2 0 February  90  54  28  19  March  92  38  20  16 A p r i l  80  26  10  14 May  86  30  13  12  June  70  8  1  16  July  65  10  1  55  8  2  70  20  10  17  1975  29 July 1 3 August  15  cm below water  surface  Appendix I I .  S a l i n i t y , temperature and i n c i d e n t r a d i a t i o n  Date  1974  21 19  Depth  Salinity'  (m)  °/oo  June  0' 1  3.5  4.0  9.0  17.9  14.0  192.4  July  0 1  4.3 4.8  10.2 10.6  17.4  15.1  174.0  1.2  12.0  17.9  17.8  140.0  15.4  15.6  125.4  20 August 18 September 17 17 17  1975  (PAR).  October November December  21 January 19 February  0 1 0 1 0 1 0 1 0 1 0 1 0 1  Temperature water  1.7  5.8 9.0  10.7  a  tide pool  Light b  air  (PAR)  22.2  8.6 8.8  10.1  109.8  11.5  8.5 10.5  4.5  32.8  5.1  5.8  4.0 4.7  3.4  25.9  27.3 27.5  6.0  0.1  19.8  25.6 27.5  5.2 5.7  0.6  32.7  24.5  12.0  5.8  .... Continued  Date  Depth  Salinity  (m)  °/oo  19 March  0 1  9.0 16.0  18 A p r i l  0 1  6.2 12.6  7.9 9.0  15 May  0 1  4.0 6.0  8.6  20 June  0 1  2.5 3.0  9.1  1.6 J u l y  0 1  1.8 2.9  13 August  0 1  2.0 3.1  Temperature  a  water'  air  (PAR)  8.0  4.1  39.0  12.0  7.6  U7.0  14.7  10.9  180.0  18.2  13.8  289.0  10.0 10.8  17.4  17.5  271.2  11.4 11.8  19.3  20.5  175.0  a  -  -  -  from Levlngs et a l (1976) k determined with a standard mercury thermometer 15 cm below water s u r f a c e  tide pool  Light b  £ C7\  Appendix I I I .  N u t r i e n t concentrations i n t i d a l creeks sampling l o c a t i o n s ) (ug-at•1-1).  Date  Creek  1974  19 2  1975  22  Level  Pile  Snag  Pile  H  2.41  1.83 2.17 1.92 0.21 0.74 0.37  4.14  July  September  January  19  April  12  June  „  H=just below d e l t a M=mid creek l e v e l L=creek bottom  M L  2.77 2.01  H M L  0.50 1.12 0.74  H M L  31.40  PO -3 4  NHt  NO"  a  pH  Snag  Pile  Snag  7.19  3.10 4.92  9.41  1.32 0.99 1.17  1.19 0.79 1.02  6.98 6.90 6.94  3.40  5.71 6.33  2.30 2.49 1.90  1.72 1.98 1.32  7.08 7.12 7.10  3.90 2.49  27.29  1.74 3.12 2.94  39.90 33.71 21.07  (see P i g . 3 f o r  6.03  5.46  3.98  3.14  4.39 4.90 4.19  3.17 2.88  7.66 7.55 7.58  —  —  H M L  3.93 4.80 4.17  4.39 5.12 4.72  1.39 2.43 2.01  2.75 3.91 3.49  0.94 1.32 0.89  1.19 1.98 0.94  7.67 7.62 7.69  H M L  1.92 4.71 3.12  1.35 2.99  6.21 9.42 7.49 12.31 5.12 9.99  9.72 0.91 0.61  1.12  7.15 7.16 7.19  surface  2.42  1.401  1.19  M •Cr  148  Appendix I V .  Annual sedimentation r a t e s and sediment  organic  content (LOI) determined from cores taken i n 1974 A. Area  from l o c a t i o n s  indicated  below.  S p a t i a l v a r i a t i o n i n mean sedimentation  Core numbers  Mean sediment-  rates.  Area d e s c r i p t i o n  ation^yr"^ (cm) A  1-4  2.25  sand f l a t , intertidal  low  B  5-8  2.56  Eleocharis  paluetris,  C  9-12  2.06  D  13-16  1.79  C. l y n g b y e i short growth (<0.5 m), c o n s o l i d a t e d mud, mid-intertidal  E  17-20  2.03  creek bottom, uncons o l i d a t e d mud, low intertidal  P  21-24  1.58  dead zone, s t r o n g l y decomposing, unconsoli d a t e d mud, upper intertidal  G  c o n s o l i d a t e d mud, mid-intertidal  25-28  -  a  Carex  lyngbyei  Potentilla  paoifica  zone, compact humid sediment, upper i n t e r tidal  ct  years not i d e n t i f i e d , » s e c t i o n e d  tall  growth (0.5-1.5 m) c o n s o l i d a t e d mud, mid-intertidal  i n cm i n t e r v a l s  149  Appendix Core  IV B.  Year o f d e p o s i t i o n , depth, and LOI.  Year ;posited  Depth  L0l  interval  (mg C*g  (cm) Area A  1974 73 72  71  70  69 68  67  66 Area B  1974 73 72 71 70  69 68  67  66  1.50  1974 73 72 71 70  69 68  67  66 Area D  1974 73 72  71  70  69 68  LOI  wtT ) 1  11.6 11.7 10.7 10.9 10.0 5.5 6.2 6.0 5.8  2.4 2.4 1.8 2.3 1.4 1.1 1.3 1.2 1.2  15.8 11.1 10.7 7.6 8.4 9.5 6.7 8.7 8.3  3.1 2.2 2.1 1.7 1.9 1.9 1.3 1.7 1.7  3.50  20.1 18.2 18.2 10.8 9.6 9.9 10.5 8.0 3.0  4.0 3.6 3.6 2.1 1.9 2.0 2.2 1.5 0.6  1.50 1.00 1.25 2.75 2.50 1.50 2.00 12.50  19.2 20.4 19.8 12.7 12.7 11.1 9.9  38.6 40.9 38.8 25.3 25.7 22.4 19.4  1.00 1.00 2.50 3.50  2.50  3.00 2.75 2.50 20,2.5 1.75 1.50 1.50 2.75 4.50 3.00 3.50 3.00 1.50  23.00 Area C  dry  Percei  a  1.50  1.25  1.25  2.50  2.00 2.00 2.00 2.50 18.50  ....Continued  150  Core  Year  Depth  deposited  interval (cm)  Area E  1974 73 72 71 70  69  68  67 Area F  1974 73 72  71  70  69 68  67 66  2.20 2.00 2.50 2.00 3.00 3.50 1.00 1.00  16.20 0.50 1.00 1.00 1.50 2.00 2.50 2.00 2.00  1.75  14.25 Area G  1974  mean of 6 samples  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10T0"  from each  annual l a y e r s not d e t e c t e d  LOI' (mg dry  C*  g  LOI  wtT  115.0 111.0 187.1 124.5 177.5 98.5  175.6  103.1 41.7 74.7 24.3 37.0  19.1 25.0 28.0  57.3  86.9  104.9 58.5 43.4 51.5 56.0 35.6 35.7  30.5  34.8 22.8  layer  Percent  22.9 22.2 37.4 25.0 35.4 19.7 35.1 20.6 8.3  14.9 4.9  7.5 3.8 5.1 5.8 11.3 17.3 20.9 11.7 8.6 10.3 11.2 7.1 7.1 6.1 6.8 4.6  Appendix V.  Seasonal changes i n s p e c i e s composition o f m i c r o a l g a l Numbers r e p r e s e n t r e l a t i v e percent  Association A Melosira moniliformis M. nummuloides Synedra spp. Thalassionema sp. Navioula grevillei Rhizoclonium implexum Association B  74 60  Jun  10 10 20 74 80 10 10  Dec Navioula oanoellata Pleurosigma sp. Eantzsohia sp. Nitzehia sp. Association C  74 75 -1 ko  Dec Navioula grevillei Melosira nummuloides M. moniliformis Thalassionema sp. Synedra spp. Nitzsohia sp. Gomphonema sp. Aohnanthes sp. Ulothrix flaooa  composition.  74 0 0 10 . 10 20 60  Jul  75  10  75 90 5  Mar  75 80 5  Feb  Y5 10  Jun  10  75 0 0 10 15 20 50  75 50  Jul  15 5 30 75 90 5  Feb  90 5  80 5  75 80 0 5 10 5  May  Jan"75  Jan  associations.  75 70 20  Mar  75 90 5  Apr  Apr 75 40 40  75 30 20  May  5  20  15  30  ....Continued  Appendix V.  Continued.  Association D  Association E Navicula cancellata N. grevillei Navicula spp. Melosira nummuloides M. moniliformis Melosira spp. Pleurosigma aestaurii Synedra tabulata Synedra sp. Pinnularia trevelyana Thalassionema sp. Nitzschia sp. Aohnanthes sp. Hantzschia sp. Licmorph&ravsv.  75  }30  75 30  } 9  35  40  30  J-40  30  20  30  } 20  5  0  0  Jan  Havioula grevillei Navicula spp. Melosira moniliformis M. nummuloides Thalassionema sp. Synedra sp. Hantzschia sp. Pleurosigma aestaurii  Feb  Mar.75  Apr 75  40  40  1974 1975 Jun J u l Aug Sep Oct Nov Dec Jan Feb 60 65 60 50 40 20 5 20 20 0 0 0 5 0 5 5 5 5 10 10 20 30 10 15 20 25 15 -0  0  0  10  10  10  0  15  10  0  5 -10  hl5  0  35 5 25  50 5 15  May Jun J u l Aug  70 5 15  75 5 10  70 75 0 0 10 10  5  10  10  0  0  0  0  10  20  10  0  0  0  0  55  20  40  10  10  20  15  20  50 •5 25  30  30  ....Continued  Appendix V.  Continued.  1974  Association P  Jun J u l Vaucheria Phormidium Navioula  diohotoma sp. sp.  Thalas8ionema  Synedra Pinnularia Nitzschia Diploneis Rhizoclonium  sp.  tabulata sp. sp. sp. implexum  85 5 5  80 5 10  15  Aug  Sep  80 80 5 5 10 10 5  Oct Nov  80  70 0 0  20  300  0 b  Dec  1975  60 0 0 40  Jan Feb Mar Apr May Jun 50 5 0 60 70 80 80  0 0  50  Association G Ulothrix flaooa Synedra tabulata Navioula grevillei Melosira sp. Licmorpharapsp. Achnanthee sp/ Thalassionema sp. Nitz8chia  sp.  Nov 74 70  L30  Dec 74 70  30  Jan  60  40  0 0 0 0 10 10  50  75  5 10  Aug  80 5 10  5 10  20  30  Feb  70  30  75  Mar  80  20  75  Appendix V I .  D i s t r i b u t i o n (coverage area) and biomass d a t a f o r macroalgae and microalgal  Date  1974  6 21 5 19 11 27 2 13 30 22 18  June June July July August August September September October November December  22 20 19 16 14 12 20 16 29 13 28  January February March April May June June July July August August  1975  associations.  Cladophora -2 „  sp.  -2  m  gC«m  150 180 400 400 400 400 180 150  8.74 9.21 10.74 11.92 9.00 7.12 6.12 5.31  -—  -  — —  -  _  —  —  —  -  —  —  110 150 150 400 420 480 400  2.92 5.72 6.18 7.19 10.30 8.89 8.12  E.  m  -2  160 200 250 250 200 200 200 200 200 180 160 140 120 120 120 130 150 180 250 280 220 200  minima  _  gC-m «  3.74 20.12 24.83 20.28 20.12 13,42 —  9.90 7.82 3,75  2.51 1.88  1.96 1.48 2.72 3.30 —  18.42 17.10 18.12 18.49  2  E. p r o l i f e r a -2 -2  m  gC*m  250 250 300 250 150 150 150 100  —  8.42  8.9.1 9.92 9.81 7.84  5.03  3.41  2.02  -  —  _  50 50 50 150 150 200 250 200 150 100  1.92 7.74 9.31 11.39 14.92  17.31  14.72  12.00 12.11 9.31  M. -2  oxyspevmum -2  200 220 200 200 200 180 180 180 120 120 120  7.21  m  125 120 180 220 220 250 250 220 200 200 200  gC»m  8.14  7.32 7.00 4.19 —  4.39 4.21 3.98 3.71 3.00 1.50 2.72 3.94 7.17 7.92  9.04  9.00 8.92 7.10 5.21 4.99  • ...Continued  Appendix V I .  Continued.  Date  1974  6 June  21  5 19 11  27: 2  13 30  22  18  1975 22 20 19 16 14 12 20 16  June July July August Augiisifci, ; September September October November December  January February March April May June June July 29 J u l y 13 August 28 August  R.  implexum  Spirogyra  sp,  P. l i t t o r a l i s  Association A  m -2  gC«m -2  -2 m  -2 gC-m  m -2  gC •m~  600  500  750 750 750  3.15 3.72 3.64 3.71 3.05  3.42 3.91 4.08  550 580  5.98 6.12  -  600 600 400  2.00 2.72 1.50  800 800 600 400  -  -  -  -  -  -  280  2.96  -  150 300 400 600 600 650 650 700 700 800 800  1.30 1.61 2.36 3.28 4.06  —  —  — _  -—  400 950 1050 1400 900 500 400  6.10  — —  600  750  —  —  3.10  3.52 3.41  3.10  2.74  500 400 600  800  600 600 500 600 850 900  —  10.20 —  5.90 5.27 2.09  3.43 —  3.94 4.21 11.72  12.00  —  — —  —  -  —  —  9.15 12.80 69.65 22.52 6.88  5.00  -  m -2  gC •m -2  900 600 280 280  8.12 7.40  3.80  —  10001  -5.32  4oo  3.41 3.98  500 500 300  -  7.83 7.60  -  ....Continued  Appendix V I .  Continued.  Date  Association B m"  2  1974  6 21 5 19 11 27 2 13 30 22 18 1975 22 20 19 16 14 12 20 16 29 13 28  June June July July August August September September October November December January February March April May June June July July August August  -—  gC-m"  2  Association C -2 gC-m" m 2  —  -— —  -— —  -— -—  320  0.74  180  1.01  320 425 220 110  1.24 3.92 2.18 0.81  180 210 160 160 140  2.31 2.21 1.36 1.41 0.62  —  — — —  -  -  -— -  — -  Association D -2 gC-m m -2  -— — 800 1000 1400 1000  -  -— 3.83 7.11 7.96 3.84  -  Association E 2 -2 gC-m" m 5000 5000 4000 4000 4500 4500 8000 8000 100001 10100 14500  0.75 0.90 0.86 0.61  -  0.95 0.90 0.99 1.07 1.14  14500 1.78 14500 1.76 14000 1.59 14000 2.17 10000 1.94 5000 5000 0.95 4000 0.74 4000 0.78 4500 0.59 4500 0.59 ....Continued  -  Appendix V I . Continued Date  Association F m"  2  gC-m"  2  Association m-  2  gC-m"  1974 6 21 5 19 11 27 2 13 30 22 18 1975 22 20 19 16 14 12 20 16 29 13 28  June June July July August August September September October November December  750 750 750 750 750 750 750 750 750 750 750  4.98  January February March April May June June July July August August  750 750 750 750 750 750 750 750 750 750 750  1.20 1.94  4.71  5.14  5.72 5.10 5.92  -  4.01 3.98 1.49 2.41 2.14  4.12 5.30  5.40  5.12 5.43 4.94 4.34  90000  0.75  90000 90000 90000  4.92  90000  -  1.99  17.42  8.72  -  G 2  158  Appendix V I I .  T o t a l biomas s f o r macroalgae and m i c r o a l g a l a s s o c i a t i o n s as k g C ' d i s t r i b u t i o n a r e a " . 1  o  O  Ss e O 5s  O tt  E  Cu  19  16 14 12 20 16 29 13 28  June June July July August August September September October November December January February March April May June June July July August August  Cu  is  E  o  Ss  E  tt • ft to to  4*  K  •XJ  1974 6 21 5 19 11 27 2 13 30 22 18 1975 22 20  E  Cu  Ss  Date  o  e  K>  1.31 1.66 4.30 4.77 3.60 2.85 1.10 0.80  -—  —  -— —  0.32 0.86 0.93 2.88 4.33 4.27 3.25  W  fe) E  0.60  0.75 5.03 6.21 4.06 4.02 2.68 2.33 1.98 1.41 0.60 0.35 0.23 0.24 0.18 0.35 0.50 3.30 4.61 4.79 3.99 3.70  ,<a Ss * t» O K  44  C  Q  52 Ss  &q  Cu  2.11 2.22 2.93 2.95 1.18 0.75 0.51 0.20 — —  _  0.10 0.39  0.41  1.71  3.24 3.46  3.68  2.40  1.82 0.93  O E  E 3  o s  i s Ss  ca  co Cu O CO 52 S>  5  H  1.44 1.79 1.46  1.40  0.84  0.86 0.79 0.73  0.48  0.45 0.36  0.19 0.33 0.71 1.58 1.74 2.26 22255 1.96 1.42 1.04  1.00  8  O t-4  E  O  Cfl  3  O H  t« t-4 *t4 Cu E  ft; v  1.89 2.23 2.73 2.78 2.29 1.74 1.20 1.63  ,0.60 —  -  0.20 0.48 0.84  1.97 2.44 2.23 2.02 2.46  2.39 2.48  2.19  CO  tt  tt M t~4 t*4  Ss  3J <3J O Ss  •«4  •  Cfi Ss •«4 O O 44 V-4 +4  Cu ft  a>v  1.71 1.96 1.63 4.90 8.16 1.44 4.72 2.16  3.29 3.55  CQ  CQ  0.84  -— _  -— _  —  _  -  0.83  — —  -— 2.06 2.01 1.97 2.53 9-96 10.80  2.44 8.69 13.44 97.51 20.29 3.44 2.00 — — —  -  ....Continued  159  Appendix V I I .  Continued.  Date 1974 6 June 21 June 5 July 19 J u l y 11 August 27 August 2 September 13 September 30 October 22 November 18 December 1975 22 J anuary 20 February 19 March 16 A p r i l 14 May 12 June 20 June 16 J u l y 29 J u l y 13 August 28 August  Association A  B  7.31 4.44 2.75 1.06  -— -—  -— —  -  — —  -— — —  5.32 3.91 3.80 1.02 1.59 —  -  —  C  D  E  -  —  -  —  —  3.75 4.50 3.44 2.94 2.75 4.58 7.60 7.20 9.90 10.70 16.53  —  -— -—  —  —  —  0.24 0.18 0.40 1.67 0.48 0.09 —  — —  -— -  Total  -— -— —  F 3.74 3.53 3.69 3.86 4.24 3.83 4.44 3.72 3.01 2.99 1.12  G  algal  1 biomass-mo" 27.14 26.63  28.06  30.87 27.13 20.07  23.05  67.50 179.10  18.78 16.80 83.04 198.95  0.42 3206 25.18 0.90 442.80 476.56 0.46 7 . H 25.52 1.46 1567.80 1613.84 0.22 11.14 22.26 1.81 784.80 836.32 138.78 0.23 3.84 30.38 1.61 19.40 3.09 54.73 0.09 — 64.28 3.98 6.63 — — 27.64 4.75 4.05 3.84 25.38 2.96 3.12 4.07 26.63 — — 2.66 3.70 29.91 2.57 3.26 27.69  -  -  l6o IH  Appendix V I I I .  C p r o d u c t i o n and o r g a n i c exudation  data.  (gCm~ «day~ ) 2  Cladophora  sp.  Date  1974  6 21 5 19 11 27 2 13 1975  Production lm s*  June June July July August August September September  14 May 12 June 20 June 16 J u l y 29 J u l y 13 August 28 August  Enteromorpha  6 21 5 19 11 28 2 13 30 22 18 1975 22 20 19 16  0.64  0.55  0.52  0.49 0.68 0.77 0.90 0.68 0.63  0.22 0.23 0.29 0.21 0.49 0.43 0.28 0.29 0.32 0.13  0.14  0.18 0.18 0.29 0.32  Exudation s* lm  0.05 0.05  0.07 _  —  0.01 0.02 —  0.03 0.03  0.02 0.01 0.02 0.02  0.04 0.04  0.01 0.01 0.01  0.04 0.05  0.08 0.08 0.07  0.05 0.04  _  0.02 —  0.03  minima  Production s lm  June June July July August August September September October November December  January February March April 14 May 12 June 20 June 16 J u l y 29 J u l y 13 August 28 August  * s = 15  0.72 0.79 0.87 1.10 0.71  0.52  Date  1974  1  cm below s u r f a c e  ' 0.63 0.51 1.12 0.28 0.46 0.19 0.75 0.79 0.98 0.79 0.39 0.27 0.48 0.49 — 0.52 0.24 . 0.10 1.74  -  —  —  Exudation s lm  0.10 —  0.11  0.04  0.06 0.09 0.03 0.02 0.03 0.01  0.02 0.02 0.02 0.01 0.05 0.03 0.02 0.02 —  0.02 _  0.12 0.47 0.51 0.69 0.74 0.98 1.09 0.94  0.09 0.30  0.01 0.03  0.02 —  0.52 0.51 0.36 0.15 0.39  0.05  0.03  0.08 0.09  0.02 0.01  0.66  0.31 0.39  0.05 0.03  0.02 0.02  -  0.41  —  -  0.04 —  — —  —  —  — —  .Continued  161 Appendix V I I I . Enteromorpha  Continued  prolifera  Production s lm  Date 1974 6 21 5 19 11 27 2 13 1975 20 19 16 14 12 20 16 29 13 28  June June July July August August September September February March April May June June July July August August  Monostroma  1975 22 20 19 16 14 12 20 16 29 13 28  0.04  0.33 0.26  0.10 0.11 0.13 0.13 0.25 0.17 0.30 0.19  0.16  0.06  0.01 0.03  0.01 0.01  0.03  0.01 0.01 0.03 0.01 0.01 0.02 0.01  0.46  0.76 0.83 0.90 0.53 0.46  0.42  0.55 0.45 0.54 0.60 0.70 0.86  0.42 0.41  0.17  0.07 0.08 0.07 0.03 0.01 0.03 0.02  0.28  0.04  0.25  —  0.24  -  0.17 0.21 0.15 0.25  0.06 0.07 0.09 —  0.04  0.01  -  0.01 0.01 0.02 0.01 0.01 0.01 —  oxyspermum  Date 1974 6 21 5 19 11 27 2 13 30 22 18  Exudation s lm  June June July July August August September September October November December January February March April May June June July July August August  Production lm s  0.92 1.22 0.74 0.99 0.34 0.47 0.33  0.10 0.16  0.11  0.12  0.54 0.67 0.97  0.20 0.17 0.25 0.30 0.25 0.39  0.84  0.42  1.24  0.22  0.48  1.99 2.43 1.74 1.43 0.91 0.90 0.54 0.52 0.37  0.91 0.90 0.90  -  0.14  0.17 0.15 0.20 0.17  Exudation s lm  0.08 0.09 0.05 0.07 0.02 0.03 0.02 0.03 0.05  0.04  0.05 _  0.01 0.02 0.02  -  0.01 0.01 0.01 0.01 0.02 0.02 0.03 _  0.10 0.3)2 0.09 0.05  0.07 0.08 0.07  0.07 0.08 0.05 0.04 0.03  0.02 0.02 0.02 0.02 0.01  —  -—  . ...Continued  162 Appendix V I I I . Rhizoclonium  implexum  Date 197 *  Continued.  Production s lm  2  6 21 5 19 11 27 2 13 30 1975 22 20 19 16 14 12 20 16 29 13 28  June June July July August August September September October  0.23 0.11  J anuary February March April May June June July July August August  0.42 0.49 0.63 0.79 0.50 0.43 0.48 0.75 0.76 0.58 0.69  Spirogyva  6 21 5 19 11 27 2 13  30  June June July July August August September September October  28  June June July July August August  1975 12 20 16 29 13  0.32  0.12 0.16 0.16 0.15 0.19 0.31 0.16 0.09 0.06  0.23  0.21 0.20 0.28 0.13 0.10 0.10 0.19 0.16 0.18 0.17  0.06 0.09 0.10  0.07  0.04 0.04 0.01 0.02 0.01  0.01 0.01 0.02 0.01 0.01 0.02 0.02 _  mm  0.02 0.00  0.02  0.03 0.04 0.07 0.04 0.13 0.11 0.04 0.05  0.01 0.01 0.02  mm  _  mm  0.02 0.02 0.01 0.01  sp.  Date 1974  0.59 0.67 0.74 0.69 0.51 0.75  Exudation s lm  Production s lm _  _  2.13 2.04 1.49 1.12 1.34  0.32 0.27 0.21  0.93  0.27  0.43 —  1.14 0.26  0.25 0.10  1.74 1.39  0.37 0.24 0.30 0.23 0.62 0.47  1.90  1.62 1.07 0.92  Exudation s lm 0.54 0.46 —  0.17 0.20 0.09 0.11 0.04  mm  0.16 _  0.02 0.03 _  0.02 0.04 0.02  0.06 0.30 _ 0.22 0.28 0.11 0.10 0.29 0.12 0.07 0.16 0.04 .Continued  163 Appendix V I I I . "Pylaiella  Continued •  littoralis  Date  1974  Production s lm  Exudation lm s  6 June 21 June 18 December  0.23 0.22  0.08  0.04  0.10 0.07  0.01  22 20 19 16 14 12 20  0.36 0.65  0.13 0.32 0.65 0.61  0.10 0.11 0.31 0.17  0.01 0.01 0.02 0.02  0.07  0.09 0.06  0.01  1975  January February March April May June June  0,24  1.72  1.07 1.29  0.24  0.17  —  0.48 0.04  —  —  —  —  —  -  Association A Date  1974  6 19 5 19  June June July July  14 12 20 16 29  May June June July July  1975  Production s lm  1.00  0.64  O.38  0.31 0.84  1.21  1.04 0.46  1.13  0.22 0.22 0.08  0.04  0.36 0.35 —  0.14  0.20  Exudation lm s  0.24  0.18 0.09 0.10 0.09 0.22 0.20 0.38 0.30  0.01 0.01 0.02 —  0.02 0.02 — —  0.01  Association B Date  1974  Production lm s  18  December  0.08  0.04  22 20 19 16  January February March April  0.16 0.12 0.09 0.11  0.08 0.05 0.02 0.05  1975  Exudation s lm  0.01  0.04 0.04  0.01  0.01 0.02  0.00 0.01  -  ....Continued  -  164 Appendix V I I I .  Continued.  Association C Date  1974 18 1975  Production s lm  Exudation s lm  December  0.29  0.17  0.06  0.02  22-January 20 February 19 March 16 A p r i l 14 May  0.37 0.27  0.14  0.29  0.08  0.15 0.10 0.07  0.01  0.02 0.01 0.00  0.24  0.17 0.12  0.04  -  0.02  -  —  Association D Date  1975 22 20 19 16  January February March April  Production s lm  0.58 0.65 0.37 0.21  0.34 0.33 0.14  -  Exudation lm s  0.10 0.09 0.03  0.04  0.02 0.02 0.01 —  Association E Date  1974  6 21 5 19 11 27 2 13 30 22  Production s 31m  June June July July August August September September October November 18 December  0.31 0.21 0.29 0.32  January February March April 14 May 12 June 20 June 16 J u l y 29 J u l y 13 August 28 August  0.16 0.17 0.39 0.47 0.55 0.51 0.49 0.31 0.30 0.29 0.27  1975 22 20 19 16  0.41  0.30 0.39 0.47  0.24  0.11 0.02  Exudation s lm  0.05 0.05 0.06 0.07 0.16 0.21 0.21 0.23 0.17 0.08  0.05 0.07 0.06 0.08 0.06  0.09 0.07 0.11 0.23 0.33 0.11  -  0.14  0.12  0.04  0.11 0.19  0.01 0.01 -  0.04  0.02 0.01  0.07 0.02 0.01  0.01 0.01 0.01  0.03 0.03  0.01 0.01  -  -  0.06  0.04  0.09 0.08 0.08 0.06  -  0.01 0.02  0.02 0.01 0.01 0.02 0.02  . ...Continued  165 Appendix V I I I .  Continued.  Association P Date 1974 5 21 5 19 11 27 2 13 30 22 18 1975 22 20 19 16 14 12 20 11 29 13 28  June June July July August August September September October November December January February March April May June June July July August August  Production s lm  0.84  0.14  Exudation s lm  0.91 0.62 0.76  0.13 0.17 0.15  0.19 0.17 0.14 0.13  0.59  0.05 0.02 0.02 0.02 0.02 0.01  0.01 0.02 0.02 0.01  0.11  0.23 0.23 0.25 0.11 0.09 0.02  0.28  0.14  0.06  0.01  0.59 0.68 0.57 0.59 0.54 0.50 0.41  0.22 0.31 0.13 0.16 0.10 0.12 0.14  0.05 0.06 0.16 0.19 0.12  0.02 0.02 0.02 0.02 0.02 0.02 0.01  0.40 0.48  0.23  0.14  0.14  0.03  0.02 0.02 0.02  0.00  Association G Date 1974 22 18 1975 22 20 19  Production lm s  Exudation s lm  November December  0 .30 0 .15  0.19 0.05  0.01 0.01  January February March  0 .11 0 .17 0 .09  0.09 0.13  0.01 0.01 0.01  -  0.01  0.01  166  Appendix  IX,  Estimated monthly percent emersion and immersion  (exposed)  (covered) time f o r the Squamish  d e l t a as determined from t i d e t a b l e s . Month  Covered  Exposed  1974 June  25  75  July  25  75  August  50  September  75  50 25  October  75  25  November  84  16  December  84  16  January  84  16  February  84  16  March  50  50  April  75  25  May  50  50  June  25  75  July  25  75  August  50  50  1975 >  167 Appendix X.  Turnover times f o r major producers based on average biomass and primary p r o d u c t i o n values.  Cladophora  sp.  Enteromorpha E.  minima  prolifera  Monostroma Rhizoolonium Spirogyra Py.laiella  S  Time  Time  (days)  (days)  17  Association A  8  20  Association B  21  24  Association C Association D  8  17  oxyspermum  8  implexum  6 9  Association E  4  Association P  15  40  Association G  48  p. littoralis  168 Appendix XI.  Annual net primary p r o d u c t i o n estimates f o r ct  Carex  l y n g b y e i based on growth increments .  Biomass g organic-m"  Growth increment _2 g organic.m  1974  29 28 28 19 5 30 18 18  May  32.8 92.8 391.0  June  475.6  July  831.4 1023.8 1095.7  March April  July August  32.8 60.0 298.2 84.6 355.8 192.4 71.9 negative  466.5  September  1Q95.7  Above ground net p r o d u c t i o n = b Below ground net p r o d u c t i o n =  a f t e r Levings and Moody (1976) u s i n g harvest method o f M i l n e r and Hughes  b  (1968)  assuming below ground p r o d u c t i o n i s 47% o f t o t a l net p r o d u c t i o n (Yamanaka  -1  g organic•m -season -2 -1 971.7 g o r g a n i c m " 'season" -2 -1 = 2067.4 g organic-m -season  T o t a l net p r o d u c t i o n  a  1095.7  -2  1975)  Appendix X I I . Net energy p r o d u c t i o n f o r major a l g a l producers.  P r o - r a t e d values r e p r e s e n t  percent o f t o t a l f o r each month ( c a l c u l a t i o n s based on data from Table 11).  co Q  •  1974 October November December  •* a  »  Cu  o tJ a* O »S a September  3  CC)  a RO O  a* a  hi HO cc 2 a hs a* a  o s: Ho «s: a CO o CO o h! 3 Q S 3 3 a  to  3 a* t3 «». M  03 Oj  •  «> o B cj K 3 O a K  o «a <c •3 a  2.7  0.6  1.5  4.5  9.5  -  3.1  -  3.2  2.1  3.3  0.2 0.4  -  -  -  0.06  -  0.05  0.02  -  0.1  Association  CO*  3  1.7  0.3  ct- a o v*. hj co a <r-*  0.4  A  B  c  D  E  F  6  -  -  -  74.3  5.2  85.1  3.1  -  8.1  0.3  91.0  12.1  0.6  86.2  0.1  0.03  -  _  0.2  0.04  1.7  30.5  0.6  65.6  -  0.2  0.02  2.1  27.0  0.6  66.8  0.1  0.02  2.6  22.9  1.6  61.7  0.1  0.03  2.2  67.2  4.0  -  0.02  42.1  8.6  -  -  45.2  9.2  22.6  11.1  —  —  40.1  7.1  1975 January February March April  0.2  0.02  0.6  0.3  0022  0.08  1.6  1.0  0099  0.3  4.0  2.8  0.4 2.1 8.0 18.3 21.6  12.5  16.5  3.1  11.4  12.4  23.2  -  10.3  12.5  26.4  —  May  1.9  1.7  1.2  5.2  5.2  June  1.5  1.4  1.8  4.4  5.5  July  4.3  4.8  3.9  4.3  August  5.7  3.9  1.8  2.5  —  —  —  170  Appendix X I I I .  Net energy p r o d u c t i o n o f major a l g a l producers.  P r o - r a t e d values r e p r e s e n t  percent d i s t r i b u t i o n over the growth period.  ( C a l c u l a t i o n s based on data  from Table  tt o  o tt • C j to  1974  SH  O  E  o tt  E <» «t» K  52 •*» bl E  -  10.6 9.9 5.2  December  -  1.4  January  -  September October November  1975  8.0  May  14.1  June  11.7  July  40.9  0.9 3.3 5.1 7.2 10.3 8.9 22.7  August  25.3  14.4  February March April  11.)  «Cu  E  ts tt O ts  E .« O *K  ts  o  C ts  4.5  -  1.0 3.2 5.2 13.4  21.7 36.2 14.4  O E E 3 O E is ts  to Cu O to K SO  O  H  2s o  2.9 5.1 2.0  3  C O O  E  3 H  O <a  »«: E  7.2 2.7  CO  a  tt *ti  ts  s> o» o  t-4 « Q> ts  M  tt  ts  cu  to  a  to  O  r-i +» Fti r4  -  10.3 2.9  -  -  16.8 15.8 15.8  1.1 2.1 8.2 8.9 12.7  14.4  14.4  -  29.5  3.8  10.3 4.7  23.8  30.4  18.7  26.9  -  2.4  3.5 6.3  0.8  1.1 8.5 31.9 28.1  25.7  ....Continued  171  Appendix X I I I .  Continued. Association B  A  [  September October November December  1975  -  -  -  c  -  -  11.2  15.5  January  —  29.4  28.3  February  -  31.8  17.6 20.7 10.9 7.2  March April May June July August  38.4 36.9 24.7  -  19.4  8.1  -  -  -  -  -  -  -  E  F  G  8.0 7.5  -  4.0  -  3.8  6.3 3.1 1.9 2.1  26.9 15.7  11.7  2.7  14.8  D  -  31.5 38.7  15.3  4.4  22.2  12.9  20.4  12.4  14.6  10.2 9.9  -  -  7.1 8.1 3.0  16.3 18.5 16.5  4.1  8.1  -  —  172  Appendix XIV.  Primary p r o d u c t i o n and p h o t o s y n t h e t i c e f f i c i e n c y data f o r c o n s t r u c t i n g seasonal energy flow pathways.  Pall  (September) Gross  Respiration  Production Cladophora  sp.  Enteromorpha minima Enteromorpha prolifera Monostroma oxyspermum Rhizoclonium implexum Spirogyra  sp.  Net P r o d u c t i o n a b Dis. Part.  P/S  c  103..78  22,.83  5..26  75..69  0,.17  55..84  13..74  2..53  39..57  0,.09  148,.80  38,.98  7-.14  102,.68  0,.24  72,.85  10..13  5..02  57..70  0,.13  80,.98  17..64  5..07  58,.26  0,.13  151..94  53..63  13..76  84,.55  0,.21  143..64  38..78  13..63  91..23  0,.22  70,.50  21,.15  5..42  43..93  0,.10  Pylaiella littoralis  Association A  t\  Association B Association ri 0  Association D Association E Association •ct  Association G  a  D i s . = d i s s o l v e d o r g a n i c exudation  b  P a r t . = p a r t i c u l a t e organic  c  P/S = p h o t o s y n t h e t i c  efficiency ....Continued  173  Appendix XIV.  Continued.  Winter (December) Gross  Respiration  Production  Net P r o d u c t i o n Dis.  a  Part.  P/S°  b  Cladophora  sp.  Enterqmorpha minima Enteromorpha prolifera Monoetroma oxyspermum Rhizoolonium implexum Spirogyra  26.63  6.55  1.20  18 ,88  0.22  92.74  12.89  5.98  73 .87  0.89  _  _  Pylaiella littoralis  45.45  14.14  4.51  26 .62  0.35  Association B Association  13.14  3.40  1.75  . 7 .99  0.11  6.47  1.85  0.49  4 .13  0.05  Association  -  _  sp.  Association A  n O  V  Association E Association r Association G a  -  -  _-  37.21  7.05  3.53  . .26 .63  .0.34  24.01  7.20  1.85  14 .95  0.19  23.58  4.20  1.55  17 .83  0.22  D i s . = d i s s o l v e d o r g a n i c exudation Part. = p a r t i c u l a t e organic  0  P/S = p h o t o s y n t h e t i c  efficiency .Continued  174  Appendix XIV. Spring  Continued.  (March) Gross  Respiration  Production  Net  Production  Dis.  a  Part.  P/S°  b  Cladophora  sp.  Enteromorpha minima Enteromorpha prolifera Monostroma oxyspermum Rhizoolonium implexum Spirogyra  125. .11  .  30 .78  .  94,.78  24  .83 .  5, .66  88 .67  1. .16  4,.58 .  65 .37  0,.86  428, .56  59 .57  27, .68  341  .31  4,.56  140, .11  30 .54  8,.76  108  781  1. .35  489, .42  172 .17  48, .61,  286  .64  3,.92  33. .18  8 .59  4,.42  20 .17  ,0, .30  9..93  22,884  0,.74  Association D Association  116, .50  25 .00  8,.81,  131, .47  35 .50  12, .47  Association  114, .99  34 .50  30,.61  5 .45  sp.  Pylaiella littoralis  Association A  A  Association B Association n  V  TP  r Association G a  6 .35 , 0,.09 82 .69  1, .13  83 .50  1, .18  8,.85  71  .64  0,.99  2,.01  23 .15  0,.31  D i s . = d i s s o l v e d o r g a n i c exudation Part. = p a r t i c u l a t e organic  c  P/S  = photosynthetic  efficiency .Continued  175  Appendix XIV.  Continued.  Summer (June) Gross  Respiration  Production  Net  Production a b Dis. Part.  P/S  166 •15  36 .55  8. 42  121. ,18  0 .16  Enteromorpha minima Enteromorpha pvolifera Monostroma  159 .67  39 .28  7. 23  113. .16  0 .15  183 .13  48 .46  8. 80  126. .35  0 .17  263 .61  36 .64  17. 02  209- .95  0 .29  Rhizoclonium implexum Spirogyra  150 .86  32 .89  9. 44  108. .53  0 .15.  505 .69  178 .51  45. 81  281, .37  0 .41  138 .73  43 .70  13. 77  81,.26  0 .01  117 v62  43-. •22  289. ,30  0 .42  230 .09  62 .12  21. 84  146, .13  0 .21  208 .13  62 .44  166 021  129 .67  0 .18  Cladophora  sp.  oxy8permum  sp.  Pylaiella littoralis  Association A il  439' M  Association B Association r>  Association D  Association E Association G  a  D i s . = d i s s o l v e d o r g a n i c exudation  b  Part. = p a r t i c u l a t e organic  c  P/S  = photosynthetic  efficiency  c  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094311/manifest

Comment

Related Items