UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Recycling wastes through thermophilic fermentation Shepherd, David William 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1977_A6_7 S44.pdf [ 4.93MB ]
Metadata
JSON: 831-1.0094159.json
JSON-LD: 831-1.0094159-ld.json
RDF/XML (Pretty): 831-1.0094159-rdf.xml
RDF/JSON: 831-1.0094159-rdf.json
Turtle: 831-1.0094159-turtle.txt
N-Triples: 831-1.0094159-rdf-ntriples.txt
Original Record: 831-1.0094159-source.json
Full Text
831-1.0094159-fulltext.txt
Citation
831-1.0094159.ris

Full Text

RECYCLING WASTES THROUGH THERMOPHILIC FERMENTATION by i David W i l l i a m Shepherd B.Sc. (Agr.) U n i v e r s i t y o f B r i t i s h Columbia 1973 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES i n the Department o f A g r i c u l t u r a l Mechanics We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA October 1977 0 David W i l l i a m Shepherd, 1977 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced deg ree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t he L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Depar tment o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l no t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Depar tment o f Bio-Resource Engineering The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date O c t o b e r 4, 1977 ABSTRACT Efifiicient treatment ofi waste materials-firom a.QHiauJLtuA.al. operations is a problem in most ofi the countries ofi the world. This is particularly true-where Livestock arebeing reared in large high-production confiine.me.nt housing systems. There are several treatment systems available to handle the wastes fifiom this type, ofi operation. These systems are described with particular mphasis on thermophilic fiermentation. Thermophilic treatment ofi' wastes''o-fi'fi'crs'several advantage*-over "the other type* ofi waste treatment systems. The thermophilic system at the University ofi British Columbia dififieri,- firom most other high-temperature systems in that no external heat source is provided. Experiments were- carried out which show that the heat necessary to maintain the temperature in the thermophilic range comes solely firom microbial activity. The actions ofi agitation and aeration do not provide any input ofi heat into the fiermenter. The fioam which fiorms on the top ofi.the liquid during a fiermentation was shown to be a- good insulator. feeding trials conducted with the liquid product firom thermophilic fiermentation demonstrated that this Liquid can be substituted fior water in the diet ofi pigs older than twenty-eight days ofi age.with no harmfiuL efifiectt,.' Tt is possible that pigs' older than fiifity-six days ofi age wilt be able to utilize the nutrients in the liquid more' efifiiciently and increase their rate ofi' gain without increasing the amount ofi fieed consumed. - i i i -Expe.Kime.nti> with tan.ge.fi hizzd ^e.hme.nte,m> h.eJ>vJLte.d in a commeA.CA.al design fcon. a tkeAmophitic wa&te. tfie.atment &y&tnm with a total, capacity o{\ 4ix thousand gallons. VinaiZy, pKeXiminanxj txiaU> utAZizing ILgnocelZuJLo&e. at> a buhistnatz fan. tkcnmopkiZic bact&vLa indicated that that bactcnia ah.<L able, to utiLize. ceJUUrfio&e. ai> a natnie.nt' iouAce. . - i v -TABLE OF CONTENTS D Page ABSTRACT i i TABLE OF CONTENTS i v LIST OF TABLES - v i i LIST OF FIGURES v i i i ACKNOWLEDGEMENTS i x 1. INTRODUCTION 1 2. TYPES OF TREATMENT SYSTEMS 4 2.1 A n a e r o b i c D e c o m p o s i t i o n 4 2.1.1. A n a e r o b i c Lagoon 5 2.1.2 A n a e r o b i c D i g e s t e r 7 2.2 A e r o b i c D e c o m p o s i t i o n 9 2.2.1 O x i d a t i o n Ponds 10 2.2.2 M e c h a n i c a l l y A e r a t e d Lagoons 12 2.2.3 O x i d a t i o n D i t c h 14 2.3 T h e r m o p h i l i c D i g e s t i o n 17 2.3-1 Types o f M i c r o - o r g a n i s m s 17 2.3.2 F a c t o r s a f f e c t i n g the r a t e o f T h e r m o p h i l i c D i g e s t i o n 19 2.3.3 Advantages o f T h e r m o p h i l i c D i g e s t i o n . . . 22 2.3.4 T h e r m o p h i l i c D i g e s t i o n o f Farm Animal Wastes 23 - v -3. USE OF LIVESTOCK WASTES AS FEED FOR SWINE 27 3.1 Poul t r y Waste • • 27 3.2 Swine Wastes 27 4. EXPERIMENTAL 30 4.1 D e s i g n o f E x p e r i m e n t a l Equipment 30 4.1.1 T h e r m o p h i l i c P r o c e s s U n i t 30 4.1.2 Fermenter D e s i g n 30 4.1.3 M i x e r Des ign 32 4.1.4 A g i t a t i o n 37 4.1.5 A e r a t i o n 37 4.1.6 Foam B r e a k e r s 38 4.2 Energy Requirements f o r Ma i n t e n a n c e o f Fermenter Temperature 40 4.2.1 I n t r o d u c t ion 40 4.2.2 M a t e r i a l s and Methods 41 4.2.3 R e s u l t s and D i s c u s s i o n 46 4.3 F e e d i n g T r i a l 53 4.3.1 I n t r o d u c t i o n 53 4.3.2 M a t e r i a l s and Methods 53 4.3.3 R e s u l t s and D i s c u s s i o n 55 4.4 C o m m e r c i a l - S i z e A p p l i c a t i o n 57 4.4.1 I n t r o d u c t i o n 57 4.4.2 L o c a t i o n & Layout o f Farm 57 4.4.3 Waste C o l l e c t i o n System 61 4.4.4 E s t i m a t e d L e v e l s o f Waste P r o d u c t i o n . . . 62 4.4.5 Waste Treatment System 64 - v i -4 . 5 T h e r m o p h i l i c A e r o b i c F e r m e n t a t i o n o f L i g n o c e l l u l o s e . 7 1 I n t r o d u c t i o n 71 4 . 5 . 2 M a t e r i a l s and Methods 74 4 . 5 . 3 R e s u l t s and D i s c u s s i o n 75 5. SUMMARY AND CONCLUSIONS 79 6. SUGGESTIONS FOR FUTURE RESEARCH . 80 LITERATURE CITED 81 APPENDIX 93 - v i i -LIST OF TABLES T a b l e Page I R e s u l t s o f Heat M a i n t e n a n c e Experiment 47 I I Ambient Temperature °C 48 I I I T o t a l Weight Gain/Pen (Kg)' 55 IV Average D a i l y G a i n (Kg) 56 V D a i l y Water Requirement per Animal 69 VI P r o t e i n V a l u e s (N x 6.25) from T h e r m o p h i l i c D i g e s t i o n o f L i g n o c e l 1 u 1 o s e 77 — v FIT -LIST OF FIGURES F i g u r e Page 1 S c h e m a t i c o f Fermenter 31 2 Sol i d S h a f t M i x e r 34 3 Sol i d S h a f t M i x e r 34 4 M i x i n g A c t i o n 35 5 M i x i n g A c t i o n 36 6 A i r Sp a r g e r Type I 39 7 A i r Sp a r g e r Type II 39 8 Power Requirements f o r Temperature Maintenance . . 49 9 Heat Requirements f o r Temperature M a i n t e n a n c e . . . 50 10 Layout o f P o r t A l b e r n i O p e r a t i o n . . . . 60 11 L o n g i t u d i n a l S e c t i o n o f the Sump 63 12 Flow C h a r t f o r Commercial Treatment U n i t 65 13 Layout o f Commercial-Treatment U n i t .Jy}^t^ ^Q^W ]h 1 ,000 G a l . Fermenter 68 15 F e r m e n t a t i o n U s i n g 1,000 g a l . Fermenter 72 16 L i g n o c e l 1 u 1 o s e F e r m e n t a t i o n . . . . 76 0 - i x -ACKNOWLEDGEMENTS The a u t h o r w i s h e s t o e x p r e s s h i s a p p r e c i a t i o n f o r a s s i s t a n c e i n t h i s s t u d y t o : P r o f e s s o r T.L. C o u l t h a r d who d i r e c t e d t he r e s e a r c h , and p r o v i d e d s u g g e s t i o n s and g u i d a n c e t h r o u g h o u t t h e r e s e a r c h p e r i o d . Dr. H.S. Saben, Dr. D.B. Bragg, Dr. P.M. Townsley f o r s e r v i n g on the r e s e a r c h committee and r e v i e w i n g t h e m a n u s c r i p t . Dr. C H . Cros s f o r s u p p o r t and s u g g e s t i o n s d u r i n g t h e w r i t i n g o f the m a n u s c r i p t . Mr. N. J a c k s o n and Mr. J . P e h l k e f o r t h e i r h e l p i n d e s i g n i n g , c o n s t r u c t i n g and i n s t a l l i n g e x p e r i m e n t a l equ i pment. A s p e c i a l thank-you t o my w i f e f o r her p a t i e n c e and un d e r s t a n d i n g . W i t h o u t t h e f i n a n c i a l s u p p o r t o f t h e Canada Department o f A g r i c u l t u r e , t h i s s t u d y would not have been p o s s i b l e . 1. INTRODUCTION The t o t a l hog popu la t ion in B r i t i s h Columbia as of January 1> 1975 t o t a l l e d 56,000 a n i m a l s . Th is f i g u r e does not inc lude breeding s tock l e s s than s i x months of age (B.C. A g r i c u l t u r a l S t a t i s t i c s F a c t s h e e t ) . The m a j o r i t y of these animals were r a i s e d under p a r t i a l or t o t a l confinement systems. Th is method of r a i s i n g swine r e s u l t s in heavy, l o c a l i z e d accumulat ions of manure and a s s o c i a t e d wastes ( W i l l r i c h and Hines 1967). The obvious and n a t u r a l s o l u t i o n to t h i s problem and. .the one which i s c i t e d most f r e q u e n t l y i s to make optimum use of the waste as f e r t i l i z e r , that i s to spread the waste on the land at ra tes s t i m u l a t i n g maximum crop p r o d u c t i o n . Such handl ing was economica l l y unfavorab le compared to the use of commercial f e r t i l i z e r s s i n c e the low content o f minera l n u t r i e n t s in manure d i d not j u s t i f y the extended t r a n s p o r t and f i e l d spreading of the o r g a n i c bulk m a t e r i a l (Turner 1975). However, w i th the ever i n c r e a s i n g cost of commercial f e r t i l i z e r s , land spreading as a method of d i s p o s a l i s l i k e l y to become more widespread (Wilson 1975) There has been a great deal of research c a r r i e d out in the area of h i g h - r a t e land s p r e a d i n g . A review of the l i t e r a t u r e in t h i s area i s g iven in EPA p u b l i c a t i o n #660125-75-101 a v a i l a b l e from the Environmental P r o t e c t i o n Agency (Wa 1 1 i ngf ord et_ aj_. 1975). Land spreading assumes that the operator owns or has access to a la rge enough area o f land on which to spread the manure. Th is not always the case . Some operators own on ly the land on which the b u i l d i n g s are s i t u a t e d and o t h e r s , though owning l a r g e r ac reages , - 2 -may not own enough lan d t o h a n d l e t h e amount o f wastes produced. In England and Wales a p p r o x i m a t e l y 2k. p e r c e n t o f t h e p i g s a r e housed on farms w h i c h have t o o l i t t l e l a n d t o u t i l i z e t h e p l a n t n u t r i e n t s i n t h e f e c e s and u r i n e , o r t o d i s p o s e o f them w i t h o u t r i s k o f wa t e r p o l l u t i o n ( R i c h a r d s o n 1974). In c e r t a i n a r e a s o f N o r t h A merica where both swine and c o r n p r o d u c t i o n a r e combined on t h e same f a r m i n g u n i t , and where the swine wastes a r e u t i l i z e d 2 as t h e major f e r t i l i z e r i t has been found t h a t 335m o f land per animal i s r e q u i r e d f o r adequate waste d i s p o s a l (Laak 1970; Webber 1971). T h i s f i g u r e c o n v e r t s t o one a c r e o f l a n d r e q u i r e d f o r e v e r y t w e l v e hogs. Even when s u f f i c i e n t l a n d i s a v a i l a b l e t h e r e a r e o t h e r problems a s s o c i a t e d w i t h l a n d s p r e a d i n g . These i n c l u d e optimum a p p l i c a t i o n r a t e s f o r d i f f e r e n t c r o p s , t i m e o f a p p l i c a t i o n , p o s s i b l e p o l l u t i o n o f s u r f a c e and groundwaters and i n a r e a s w i t h urban development, o f f e n s i v e o d o r s and d u s t . The hog p r o d u c e r , t h e r e f o r e , r e q u i r e s a t r e a t m e n t system w h i c h w i l l reduce t h e p o l l u t i o n c h a r a c t e r i s t i c s and t h e t o t a l b u l k o f the manure. An i d e a l t r e a t m e n t system would p e r m i t maximum p i g per f o r m a n c e , reduce o b j e c t i o n a b l e o d o r s , gases, and p o l l u t i o n h a z a r d s , p r e v e n t d i s e a s e t r a n s m i s s i o n , r e s u l t i n a u s a b l e p r o d u c t and be r e l a t i v e l y a u t o m a t i c and eco n o m i c a l t o o p e r a t e . Some com p a r i s o n s have been made between waste from human p o p u l a t i o n s and swine w a s t e s . These comparisons a r e based on t h e B i o c h e m i c a l Oxygen Demand (B.O.D.) o f t h e w a s t e s . B.O.D. i s a term used t o q u a n t i f y t h e p o l l u t i o n c h a r a c t e r i s t i c s o f a waste; - 3 -i t r e p r e s e n t s t he amount o f oxygen r e q u i r e d by a e r o b i c b a c t e r i a f o r t h e b i o l o g i c a l d e c o m p o s i t i o n o f t h e o r g a n i c m a t t e r i n . a s t a n d a r d time o f 5 days and a s t a n d a r d t e m p e r a t u r e o f 20°C. The s t a n d a r d v a l u e f o r human d o m e s t i c sewage i s 0.08 kg B.O.D. per day per pe r s o n and an av e r a g e v a l u e f o r a 50 kg p i g i s 0.15 kg B.O.D. per day. A co m p a r i s o n o f t h e s e two f i g u r e s r e v e a l s t h a t one 50 kg. p i g would be e q u i v a l e n t t o a p p r o x i m a t e l y two p e o p l e i n s t r e n g t h o f waste produced per day. The normal market w e i g h t o f a p i g a v e r a g e s 100 kg. On t h i s b a s i s t he waste produced from one m a r k e t a b l e p i g would be e q u i v a l e n t t o t h a t produced by f o u r human b e i n g s . C o n s e q u e n t l y an o p e r a t i o n p r o d u c i n g 1,000 market w e i g h t hogs would a l s o produce waste m a t e r i a l w i t h a p o l l u t i o n a l s t r e n g t h comparable t o 4,000 human b e i n g s . However, t h e volume t o be t r e a t e d would be c o n s i d e r a b l y s m a l l e r s i n c e swine wastes a r e much more c o n c e n t r a t e d (Conrad £ Mayrose 1971) . E s t i m a t e s i n d i c a t e t h a t c o n s t r u c t i o n costs'^alone f o r a p p l y i n g m u n i c i p a l waste t r e a t m e n t t e c h n i q u e s t o sw i n e wastes would be a p p r o x i m a t e l y twenty t o f o r t y d o l l a r s per p i g c a p a c i t y o r 20,000 d o l l a r s t o 40,000 d o l l a r s f o r a 1,000 head o p e r a t i o n (Laak 1970). E c o n o m i c a l l y , t h i s s u g g e s t s t h a t some o t h e r t y p e o f waste t r e a t m e n t system w i l l be mandatory. - k -2. TYPES OF TREATMENT SYSTEMS Treatment systems f o r a g r i c u l t u r a l w a s t e s , i n c l u d i n g t h o s e from swine o p e r a t i o n s f a l l i n t o two g e n e r a l c l a s s e s , both o f whi c h u t i l i z e b a c t e r i a t o decompose t h e manure. One p r o c e s s t a k e s p l a c e i n t h e absence o f d i s s o l v e d oxygen and i s known as a n a e r o b i c d e c o m p o s i t i o n . w h i 1 e t h e o t h e r r e q u i r e s the p r e s e n c e o f d i s s o l v e d oxygen and i s known as a e r o b i c d e c o m p o s i t i o n . 2.1 A n a e r o b i c D e c o m p o s i t i o n A n a e r o b i c d e c o m p o s i t i o n i s a complex p r o c e s s i n v o l v i n g s e v e r a l groups o f organisms w h i c h s i m u l t a n e o u s l y a s s i m i l a t e and decompose o r g a n i c m a t t e r . T h i s d e c o m p o s i t i o n i s performed i n two s t e p s . The f i r s t s t e p i n v o l v e s a c i d - f o r m i n g b a c t e r i a which c o n v e r t t h e o r g a n i c m a t t e r i n t o v o l a t i l e o r g a n i c a c i d s such as a c e t i c , p r o p i o n i c and b u t y r i c among o t h e r s . The second s t e p i n t h e p r o c e s s i n v o l v e s the c o n v e r s i o n o f t h e s e v o l a t i l e o r g a n i c a c i d s i n t o g a s e s , m a i n l y methane and c a r b o n - d i o x i d e ( F a i r et_ a_l_. 1968) (DeWalle & C h i a n ) . A n a e r o b i c organisms o b t a i n t h e i r energy from the o x i d a t i o n o f complex o r g a n i c m a t t e r but u t i l i z e compounds o t h e r than d i s s o l v e d oxygen as o x i d i z i n g a g e n t s . An o x i d i z i n g agent may be b r o a d l y d e f i n e d as an e l e c t r o n a c c e p t o r . I t i s not n e c e s s a r y t o have f r e e oxygen m o l e c u l e s p r e s e n t t o s u p p o r t an o x i d a t i o n r e a c t i o n . Compounds o t h e r than f r e e oxygen w h i c h may be used as o x i d i z i n g a g e n t s i n c l u d e c a r b o n - d i o x i d e , i n o r g a n i c s u l f a t e s and n i t r a t e s - 5 -and p a r t i a l l y o x i d i z e d o r g a n i c m a t t e r s u c h as v o l a t i l e f a t t y a c i d s ( W i l l r i c h S S m i t h 1970), C o m p l e t e o x i d a t i o n o f t h e o r g a n i c m a t t e r r e s u l t s i n t h e p r o d u c t i o n o f m e t h a n e , c a r b o n - d i o x i d e , h y d r o g e n and n i t r o g e n g a s e s . These p r o d u c t s may be r e l e a s e d t o t h e e n v i r o n m e n t w i t h o u t any i l l e f f e c t s . I n c o m p l e t e o x i d a t i o n o f t h e o r g a n i c m a t t e r c a n r e s u l t when t h e b a l a n c e between t h e a c i d - f o r m i n g b a c t e r i a and t h e methane f o r m i n g b a c t e r i a i s u p s e t . T h i s i m b a l a n c e can o c c u r b e c a u s e o f c h a n g e s i n t h e pH , t e m p e r a t u r e o r s o l i d s c o n t e n t o f the i n c o m i n g w a s t e s t r e a m . I n c o m p l e t e o r p a r t i a l o x i d a t i o n r e s u l t s i n t h e p r o d u c t i o n o f m e r c a p t a n s , amines and v o l a t i l e a c i d s . These p r o d u c t s have o b n o x i o u s o d o r s and may e x e r t an u n d e s i r a b l e oxygen demand upon r e l e a s e t o t h e e n v i r o n m e n t ( L o e h r 1974). Two p o s s i b l e s y s t e m s w h i c h u t i l i z e a n a e r o b i c b a c t e r i a f o r t h e t r e a t m e n t o f f a r m a n i m a l w a s t e s a r e t h e a n a e r o b i c l a g o o n and t h e a n a e r o b i c d i g e s t e r . . . ' 2 . 1 . 1 A n a e r o b i c l a g o o n The p u r p o s e o f an a n a e r o b i c l a g o o n i s t h e d e s t r u c t i o n and s t a b i l i z a t i o n o f o r g a n i c m a t t e r and not w a t e r p u r i f i c a t i o n (Loehr 1974). The r a t e a t w h i c h t h i s d e c o m p o s i t i o n and s t a b i l i z a t i o n t a k e s p l a c e depends upon e n v i r o n m e n t a l f a c t o r s s u c h as t h e t e m p e r a t u r e o f t h e l a g o o n , t h e s t r e n g t h o f t h e i n c o m i n g w a s t e , t h e pH , s i z e o f t h e b a c t e r i a l p o p u l a t i o n and t h e amount o f m i x i n g t h a t t a k e s p l a c e . The m i x i n g i s a f u n c t i o n o f t h e g a s e s p r o d u c e d - 6 -i n t h e l a y e r o f o r g a n i c sediment a t the bottom o f t h e p o o l . As th e s e gas bubbles r i s e from t h e bottom l a y e r t h e y tend t o mix the c o n t e n t s o f the lagoon making t h e o r g a n i c m a t e r i a l more r e a d i l y a v a i l a b l e t o the a c t i v e o r g a n i s m s (Loehr 1974). The a n a e r o b i c lagoon began as a s i m p l e h o l d i n g tank f o r a n imal manures. I t was an open p i t , tank o r r e s e r v o i r deeper than f i v e f e e t w h i c h r e c e i v e d d i l u t e d a n i m a l wastes and was not m e c h a n i c a l l y mixed (W11Iri ch and Smith 1970). The m i c r o b i a l a c t i v i t y i n such a lagoon r a p i d l y reduces t h e d i s s o l v e d oxygen l e v e l t o a p o i n t a t w h i c h a e r o b i c b a c t e r i a cannot f u n c t i o n t h e r e f o r e a n a e r o b i c d e c o m p o s i t i o n t a k e s p l a c e . Recent s t u d i e s by Booram e t a 1. 1975 and N o r d s t e d t and B a l d w i n 1975 have shown t h a t t he a n a e r o b i c animal waste lagoon i s a c t u a l l y a complex system r e q u i r i n g c a r e f u l management o f the p r e v i o u s l y mentioned f a c t o r s such as pH, t e m p e r a t u r e , m i x i n g , b a c t e r i a l p o p u l a t i o n s , e t c . Temperature i s one o f th e most i m p o r t a n t f a c t o r s a f f e c t i n g t he performance o f an a n a e r o b i c lagoon ( W i l l r i c h & Smith 1970). Maximum d e c o m p o s i t i o n t a k e s p l a c e when the t e m p e r a t u r e o f t h e lagoon c o n t e n t s i s h i g h e r t h a n 17_19°C (Loehr 1974). In B r i t i s h Columbia and i n most o f Canada t h e a n a e r o b i c lagoon i s not w i d e l y used because i t remains i n a c t i v e t h r o u g h t h e w i n t e r and o p e r a t e s o n l y when t h e ambient t e m p e r a t u r e r i s e s enough t o p r o v i d e a s u i t a b l e environment f o r t h e b i o l o g i c a l d e c o m p o s i t i o n t o t a k e p l a c e . A l s o , even a t optimum t e m p e r a t u r e o f o p e r a t i o n the p o s s i b l e p r o d u c t i o n o f ob n o x i o u s odors can p r e y e n t the - 7 -a n a e r o b i c lagoon from b e i n g u t i l i z e d i n a r e a s o f h i g h p o p u l a t i o n d e n s i t y such as t h e Lower F r a s e r V a l l e y . I t s h o u l d a l s o be noted t h a t t h e d i s c h a r g e from an a n a e r o b i c lagoon c o n t a i n s s i g n i f i c a n t amounts o f oxygen demanding m a t e r i a l and i s u n s u i t a b l e f o r d i s c h a r g e t o s u r f a c e w a t e r s w i t h o u t f u r t h e r t r e a t m e n t (Loehr 1968). P e r i o d i c removal and l a n d d i s p o s a l o f a c c u m u l a t e d s o l i d s i s a l s o necessary, making t h i s t r e a t m e n t system u n s u i t a b l e f o r an o p e r a t i o n w i t h l i m i t e d l a n d a r e a . 2 . 1 . 2 A n a e r o b i c D i g e s t e r The o t h e r t r e a t m e n t system u t i l i z i n g a n a e r o b i c b a c t e r i a i s t h e a n a e r o b i c d i g e s t e r . T h i s form o f a n a e r o b i c d i g e s t i o n was f i r s t d e v e l o p e d f o r use by m u n i c i p a l i t i e s f o r use i n t r e a t i n g d o m e s t i c sewage (Lapp 1975, Lawrence 1971) . An a n a e r o b i c d i g e s t e r i s a c l o s e d v e s s e l equipped w i t h an e x t e r n a l m i x i n g d e v i c e as w e l l as a heat exchanger t o m a i n t a i n a t e m p e r a t u r e o f between 32°C and 35°C (Loehr 1974) . These d i g e s t e r s can be s i n g l e s t a g e , t w i n s t a g e o r t w i n s t a g e w i t h s o l i d s r e c y c l i n g and a r e u s u a l l y c o n s t r u c t e d w i t h c o n c r e t e (Lawrence 1971) . The s i n g l e s t a g e u n i t u t i l i z e s a s i n g l e t a nk. W i t h i n t h i s t a n k t h e r e i s a zone where t h e b i o l o g i c a l a c t i v i t y t akes p l a c e and a n o t h e r zone where t h e s o l i d s s e t t l e o ut and are.removed. A two-stage u n i t d i v i d e s t he d e c o m p o s i t i o n and s o l i d - l i q u i d - 8 -s e p a r a t i o n phases i n t o two s e p a r a t e t a n k s . T h i s a l l o w s each t a n k t o be d e s i g n e d f o r optimum o p e r a t i o n . S o l i d s r e c y c l i n g i n v o l v e s removing a p o r t i o n o f t h e a c t i v e b a c t e r i a l p o p u l a t i o n from the s o l i d - l i q u i d s e p a r a t i o n t a n k and a d d i n g i t t o w a s t e - s t r e a m f l o w i n g i n t o t h e d e c o m p o s i t i o n tank. T h i s a l l o w s t he p o p u l a t i o n o f t h e a c t i v e b a c t e r i a i n t h e d e c o m p o s i t i o n tank t o be kept a t a h i g h c o n c e n t r a t i o n i r r e s p e c t i v e o f t h e i n f l u e n t w a s t e - s t r e a m c o n c e n t r a t i o n and i s e s p e c i a l l y v a l u a b l e when d e a l i n g w i t h d i l u t e w a s t e s . In systems w i t h o u t s l u d g e r e c y c l i n g t he d i l u t e wastes may not s u p p o r t an adequate, a c t i v e m i c r o b i a l mass. Sl u d g e r e c y c l i n g p e r m i t s s m a l l e r u n i t volumes and e f f i c i e n t waste s t a b i l i z a t i o n . Systems u t i l i z i n g s l u d g e r e c y c l i n g r e q u i r e a s l u d g e t h a t w i l l s e p a r a t e and s e t t l e e f f i c i e n t l y . However, a n a e r o b i c a l l y d i g e s t e d swine wastes do not s e t t l e w e l l , and t h e r e f o r e t h i s t y p e o f system would be u n s u i t a b l e f o r use w i t h swine wastes (Schmid and L i p p e r 1969). A n a e r o b i c d i g e s t e r s produce methane gas as one o f t h e b y - p r o d u c t s . S u f f i c i e n t methane can be produced t o heat the d i g e s t e r and p r o v i d e some e x c e s s f u e l f o r o t h e r uses (Lapp et_ a_l_. 1975) -However, f o r use i n an a g r i c u l t u r a l s i t u a t i o n t h e r e a r e s e v e r a l l i m i t a t i o n s f o r such a f e r m e n t a t i o n . These i n c l u d e t h e h i g h c a p i t a l c o s t f o r p r o p e r s t r u c t u r e s , m e c h a n i c a l equipment and gas c o n t r o l d e v i c e s . Methane f e r m e n t a t i o n s r e q u i r e c o n t i n u a l c a r e t o a v o i d e x p l o s i o n s , and a t times a d a i l y f e e d i n g o f the waste t o t h e d i g e s t e r (Canada Animal Waste Management Guid e , 1974; J e w e l l and M o r r i s 1974 and Lapp 1974). Because o f t h e n e c e s s a r y equipment, the h i g h - 9 -i n i t i a l c o s t s , the p o t e n t i a l o p e r a t i n g p r oblems, the need f o r competent o p e r a t o r s , and the f a c t t h a t f u r t h e r t r e a t m e n t and d i s p o s a l o f t h e s l u d g e i s n e c e s s a r y , c o n t r o l l e d a n a e r o b i c d i g e s t i o n systems l i k e l y w i l l not be w i d e l y a p p l i e d t o a g r i c u l t u r a l wastes (Loehr 1974; J e w e l l and M o r r i s 1974 and Lawrence 1971). 2.2 A e r o b i c D e c o m p o s i t i o n A e r o b i c t r e a t m e n t systems u t i l i z e b a c t e r i a w h i c h r e q u i r e t h e pr e s e n c e o f f r e e oxygen i n t h e i r e n v i r o n m e n t . The a e r o b i c b a c t e r i a o r " a e r o b e s " r e q u i r e d i s s o l v e d oxygen (d.o.) f o r m e t a b o l i s m u s i n g oxygen as an e l e c t r o n a c c e p t o r , as opposed t o t h e p r e v i o u s l y mentioned anaerobes w h i c h use e l e c t r o n a c c e p t o r s o t h e r than oxygen ( l o e h r 1974). W i t h a e r o b i c breakdown o f the b i o d e g r a d e a b l e o r g a n i c m a t t e r the f i n a l p r o d u c t s o f d i g e s t i o n a r e c a r b o n - d i o x i d e , water and new b a c t e r i a l c e l l s . T h i s does not mean t h a t a f t e r d i g e s t i o n by a e r o b i c b a c t e r i a no r e s i d u e i s l e f t e x c e p t f o r c a r b o n - d i o x i d e and w a t e r , however, i t does mean t h a t a e r o b i c t r e a t m e n t b r e a k s down o r g a n i c m a t t e r w i t h o u t p r o d u c i n g o b n o x i o u s o d o r s . For a g i v e n o r g a n i c l o a d i n g , a e r o b i c c o n d i t i o n s w i l l produce a more o x i d i z e d end p r o d u c t o r e f f l u e n t than s i m i l a r a n a e r o b i c c o n d i t i o n s and w i l l p e r m i t a more e f f i c i e n t c o n v e r s i o n o f the c a r b o n s o u r c e t o m i c r o b i a l c e l l s . T h i s i n c r e a s e i n t h e number o f m i c r o b i a l c e l l s can be regarded as an a s s e t as w e l l as a l i a b i l i t y . The h i g h e r p o p u l a t i o n o f m i c r o b e s a l l o w s g r e a t e r m i c r o b i a l d e g r a d a t i o n , f a s t e r d e c o m p o s i t i o n and s h o r t e r d e t e n t i o n t i m e s . On the o t h e r hand, - 10 -the g r e a t e r number o f s y n t h e s i z e d m i c r o b i a l c e l l s i n an a e r o b i c d i g e s t e r w i l l i n c r e a s e t h e s l u d g e d i s p o s a l problem u n l e s s t h e c e l l s o r t h e i r c o n s t i t u e n t s a r e u t i l i z e d as a r e s o u r c e ( r e f e e d i n g o r p r o d u c t i o n o f s i n g l e - c e l 1 p r o t e i n ) i There a r e s e v e r a l t y p e s o f a e r o b i c t r e a t m e n t systems and many m o d i f i c a t i o n s t o the a e r o b i c p r o c e s s w h i c h can be used t o meet s p e c i f i c t r e a t m e n t r e q u i r e m e n t s . Such f a c t o r s as t h e degree o f t r e a t m e n t r e q u i r e d , c h a r a c t e r i s t i c s o f t h e w a s te, n u t r i t i o n a l and oxygen r e q u i r e m e n t s o f the b a c t e r i a , t e m p e r a t u r e and pH e f f e c t s and economic c o n s i d e r a t i o n s s e r v e as t h e b a s i s f o r t h e s e m o d i f i c a t i o n s ( M e t c a l f e £ Eddy 1972). A e r o b i c t r e a t m e n t systems i n c l u d e o x i d a t i o n ponds, l a g o o n s , o x i d a t i o n d i t c h e s , t r i c k l i n g f i l t e r s ( a l l o f t h e s e o p e r a t e a t ambient t e m p e r a t u r e s ) and a h i g h t e m p e r a t u r e system termed t h e r m o p h i l i c a e r o b i c f e r m e n t a t i o n . 2.2.1 O x i d a t i o n Ponds The o x i d a t i o n pond o r n a t u r a l l y a e r a t e d lagoon i s the s i m p l e s t t y p e o f a e r o b i c t r e a t m e n t system. These ponds a r e r e l a t i v e l y s h a l l o w , d i k e d s t r u c t u r e s w i t h a l a r g e s u r f a c e a r e a t o m a i n t a i n a e r o b i c c o n d i t i o n s . T h i s t y p e o f system has been w i d e l y used i n a r e a s where the l a n d i s f a i r l y f l a t , and i n e x p e n s i v e , and where th e c l i m a t i c c o n d i t i o n s o f s u n l i g h t , t e m p e r a t u r e and wind a c t i o n a r e f a v o r a b l e (Loehr 1971). The o x i d a t i o n pond i s not a - 11 -s t r i c t l y " a e r o b i c " system. The upper l a y e r o f the pond has ample d i s s o l v e d oxygen whi 1e t h e \ower l a y e r s may have l i t t l e o r no d i s s o l v e d oxygen. B a c t e r i a and a l g a e a r e the two i m p o r t a n t o r g a n i s m s i n t h e pond (Loehr 1974). The oxygen i s i n t r o d u c e d i n t o t h e upper p o r t i o n o f t h e pond t h r o u g h t h e p h o t o s y n t h e t i c a c t i o n o f the a l g a e w h i c h r e q u i r e s p r o p e r c o n d i t i o n s o f s u n l i g h t and t e m p e r a t u r e . The oxygen produced by the a l g a e a l o n g w i t h oxygen from t h e atmosphere i s mixed w i t h t h e l i q u i d by d i f f u s i o n and by t h e wave a c t i o n a t t h e s u r f a c e . M i c r o b i a l a c t i o n t a k e s p l a c e a t a l l l e v e l s o f the pond. A p o r t i o n o f t h e o r g a n i c m a t t e r s e t t l e s t o t h e bottom o f the pond and may be decomposed by a n a e r o b i c b a c t e r i a . O r g a n i c m a t t e r w h i c h remains i n s o l u t i o n may be f u r t h e r decomposed by a complex system i n v o l v i n g t r u e " a e r o b e s " and f a c u l t a t i v e " a e r o b e s " . F a c u l t a t i v e o r g a n i s m s have t h e a b i l i t y t o u t i l i z e oxygen as w e l l as o t h e r m a t e r i a l as an e l e c t r o n a c c e p t o r . Oxygen can t h e r e f o r e be used but i s not r e q u i r e d . The d e c o m p o s i t i o n o f t h e o r g a n i c m a t t e r r e s u l t s i n t h e r e l e a s e o f p r o d u c t s such as c a r b o n - d i o x i d e , ammonium, n i t r a t e and phosphate i o n s w h i c h a r e r e q u i r e d f o r t h e growth o f th e a l g a e , t h u s c o m p l e t i n g t h e c y c l e . O x i d a t i o n ponds a r e not w i d e l y used i n Canada. There a r e two main reaso n s f o r t h i s , one i s t h e f a c t t h a t t h e e n v i r o n m e n t a l r e q u i r e m e n t s f o r s u n s h i n e and warm t e m p e r a t u r e s a r e met o n l y f o r p a r t o f t h e y e a r i n l a t e s p r i n g and e a r l y summer, wh i c h means t h a t t h e a e r o b i c b a c t e r i a a r e i n a c t i v e f o r t h e r e s t o f t h e y e a r . T h i s can l e a d t o a n a e r o b i c c o n d i t i o n s d e v e l o p i n g w i t h a r e s u l t a n t l o s s i n e f f l u e n t q u a l i t y . The o t h e r r e a s o n i s t h e l a r g e l a n d a r e a r e q u i r e d - 12 -f o r an o x i d a t i o n pond. The Canada Animal Waste:Management Guide e s t i m a t e s t h a t an o x i d a t i o n pond t o h a n d l e t h e manure from a 1,000 swine o p e r a t i o n would r e q u i r e a s u r f a c e a r e a o f 19 a c r e s and a volume o f o v e r 15 m i l l i o n g a l l o n s o f water f o r i n i t i a l o p e r a t i o n . In a d d i t i o n i t i s d o u b t f u l t h a t t he r e l a t i v e l y smal1 volume o f manure added would m a i n t a i n a s a t i s f a c t o r y l i q u i d d e p t h i n t h e pond. In B r i t i s h C o l u m b i a , t h e h i g h c o s t o f l a n d e l i m i n a t e s t h e use o f an o x i d a t i o n pond f o r t h e t r e a t m e n t o f farm w a s t e s . 2.2.2 M e c h a n i c a l l y A e r a t e d Lagoons M e c h a n i c a l l y a e r a t e d lagoons a r e a n o t h e r common t y p e o f a e r o b i c t r e a t m e n t system used i n the h a n d l i n g o f an i m a l w a s t e s . An a e r a t e d lagoon d i f f e r s from an o x i d a t i o n pond i n t h a t a e r o b i c c o n d i t i o n s w i t h i n t h e medium a r e m a i n t a i n e d by m e c h a n i c a l a g i t a t i o n o r d i f f u s e d a e r a t i o n . The a c t u a l lagoon i s u s u a l l y c o n s t r u c t e d i n th e form o f an e a r t h e n b a s i n w i t h some p r o t e c t i o n on the bank from t h e wave a c t i o n caused by the a e r a t i o n u n i t (Loehr 1974). The me c h a n i c a l a e r a t o r s used u s u a l l y c o n s i s t o f a f l o a t i n g p l a t f o r m s u p p o r t i n g a s e t o f motor d r i v e n b l a d e s which a r e p a r t i a l l y submerged. When t u r n e d , t h e s e b l a d e s c r e a t e t u r b u l e n c e a t the s u r f a c e w h i c h has t h e e f f e c t o f " b e a t i n g " oxygen i n t o t h e l i q u i d . The d i f f u s e d a e r a t i o n system o p e r a t e s by s u p p l y i n g compressed a i r t o p e r f o r a t e d p i p e s l o c a t e d a t the bottom o f t h e b a s i n . The d i f f u s i o n method i s more p r a c t i c a l i n c o l d c l i m a t e s where i c e can a c c u m u l a t e on f l o a t i n g a e r a t o r s and reduce t h e i r e f f i c i e n c y - 13 -(Pos and Robi nson, 1973)'. S a t i s f a c t o r y t r e a t m e n t . o f 1 i v e s t o c k wastes has been o b t a i n e d i n a e r a t e d lagoons t h a t have a volume o f a p p r o x i m a t e l y f i f t y t i m e s t h e d a i l y manure p r o d u c t i o n . However, i f t h e a e r a t e d lagoon i s c o n s i d e r e d t o be f o r t h e f i n a l o r l o n g - t e r m s t o r a g e o f t h e s l u d g e a much l a r g e r w o r k i n g volume would be r e q u i r e d . I f the lagoon i s t o be d e - s l u d g e d once a y e a r o r more then the volume can be re d u c e d , o t h e r w i s e , a lagoon c a p a c i t y s u f f i c i e n t t o p e r m i t a d e t e n t i o n time o f two t o t h r e e y e a r s i s recommended (Jones e t a 1. 1972). Ludfington £t_'ajL 1967 conducted a s t u d y i n t o t h e e f f e c t s o f a e r a t i o n on odor l e v e l s . For c o n t i n u o u s o p e r a t i o n an a e r a t o r t h a t p r o v i d e s 1.5 time s t h e t o t a l d a i l y B.O.D.^ i s t h e minimum s i z e recommended t o o b t a i n waste s t a b i l i z a t i o n . The a e r a t i o n r e q u i r e m e n t f o r c o m p l e t e odor c o n t r o l i s not g r e a t l y d i f f e r e n t from t h i s f i g u r e , however, f o r p a r t i a l odor c o n t r o l an oxygen s u p p l y o f o n e - h a l f t o o n e - t h i r d t h e t o t a l d a i l y B.O.D. i s recommended. T h i s d e c r e a s e d r a t e o f a e r a t i o n d i s c o u r a g e s the r e l e a s e o f many o f t h e v o l a t i l e a c i d s and t h e a s s o c i a t e d gases such as hydrogen s u l f i d e and mercaptans. Edwards and Robinson 1969 found t h a t a c o n s i d e r a b l e r e d u c t i o n i n t h e n i t r o g e n c o n t e n t o f c h i c k e n manure may be e f f e c t e d by a e r a t i o n w h i c h can be o f g r e a t i m p o r t a n c e when land f o r d i s p o s a l i s a t a premium. - 14 -M e c h a n i c a l l y a e r a t e d lagoons r e q u i r e c o n t i n u o u s a e r a t i o n f o r maximum b a c t e r i a l a c t i v i t y t o t a k e p l a c e . When oxygen i s l i m i t e d , t h e o x i d a t i v e r e s p i r a t o r y mechanisms o f the b a c t e r i a cannot f u n c t i o n w i t h t h e r e s u l t t h a t a n a e r o b i c d e g r a d a t i o n o f the s u b s t r a t e p r e v a i l s . If t h i s c o n d i t i o n p e r s i s t s ; c o n s i d e r a b l e time i s r e q u i r e d t o r e t u r n t o normal a e r o b i c c o n d i t i o n s once t h e a e r a t o r i s r e s t a r t e d . F a c i l i t i e s h a v i n g a d e t e n t i o n time o f 1.5 t o 2 y e a r s may have a v o l a t i l e s o l i d s r e d u c t i o n o f as much as s i x t y t o s e v e n t y p e r c e n t (Jones e t a l . , 1972). There i s a b u i l d - u p o f s l u d g e i n an a e r a t e d lagoon s i m i l a r t o t h a t which o c c u r s w i t h an a n a e r o b i c l a g o o n . T h i s s l u d g e r e q u i r e s p e r i o d i c removal and d i s p o s a l n o r m a l l y by l a n d s p r e a d i ng. Even though m e c h a n i c a l l y a e r a t e d lagoons a r e e s s e n t i a l l y o d o r l e s s and reduce t h e p o l l u t i o n a l c h a r a c t e r i s t i c s and volume o f the waste t h e f a c t t h a t they r e q u i r e a s u b s t a n t i a l a r e a o f l a n d and a p e r i o d i c removal and d i s p o s a l o f t h e s l u d g e makes them i m p r a c t i c a l f o r use i n o p e r a t i o n s which a r e s i t u a t e d on s m a l l a c r e a g e s o r where l a n d v a l u e s a r e h i g h . 2.2.3 O x i d a t i o n D i t c h A n o t h e r t y p e o f a e r o b i c t r e a t m e n t system f o r l i v e s t o c k wastes i s t h e o x i d a t i o n d i t c h . T h i s system was o r i g i n a l l y d e v e l o p e d i n t h e e a r l y 1950 1s as an e c o n o m i c a l method f o r p u r i f y i n g m u n i c i p a l waste f l o w s from s m a l l communities and i n d u s t r i e s by t h e Research I n s t i t u t e f o r P u b l i c H e a l t h E n g i n e e r i n g (TNO) i n the N e t h e r l a n d s . - 15.-The s u c c e s s o f t h e o x i d a t i o n d i t c h i n meeting t h e l o w - c o s t t r e a t m e n t r e q u i r e m e n t s o f sma11 communitIes aroused t h e i n t e r e s t o f many l i v e s t o c k p r o d u c e r s i n No r t h A m e r i c a . A c c o r d i n g t o one s o u r c e (Canada Animal Waste Management Guide 1974) t h e r e were a p p r o x i m a t e l y 400 o x i d a t i o n d i t c h e s i n o p e r a t i o n i n t h e U n i t e d S t a t e s . A l a r g e number o f a r t i c l e s have been w r i t t e n d e s c r i b i n g t h e d e s i g n and i n s t a l l a t i o n o f o x i d a t i o n d i t c h e s f o r swine o p e r a t i o n s (Smart e t a l . 1975; Sutton'et_ a l _ . 1975; Eisenmann and White 1975; T a i g a n i d e s and White 1971; Robinson e t a_l_ 1970; Wi ndt et_ a]_. 1971; Foree and 01 Del 1 1969; Jones e t a l _ . 1972; Day et_ a_l_. 1971). These a r e j u s t a few of t h e a r t i c l e s w h i c h have appeared i n t h e l i t e r a t u r e i n t h e l a s t few y e a r s . The o x i d a t i o n d i t c h i s s i m i l a r t o t h e m e c h a n i c a l l y a e r a t e d lagoon i n t h e f a c t t h a t a s u r f a c e a e r a t o r i s used t o s u p p l y c t h e n e c e s s a r y oxygen. The key components o f t h e system a r e a c o n t i n u o u s open channel and a s u r f a c e a e r a t i o n r o t o r . The r o t o r i s used t o mix and p r o p e l t h e d i t c h c o n t e n t s a l o n g t h e channel as w e l l as t o s i m u l t a n e o u s l y s u p p l y oxygen t o t h e system. The i n f l u e n t waste stream does not r e q u i r e any p r e t r e a t m e n t , u n t r e a t e d wastes can be added d i r e c t l y t o the system. T h i s f a c i l i t a t e s t h e i n s t a l l a t i o n o f t h e d i t c h d i r e c t l y beneath s l a t t e d f l o o r s , t hus s a v i n g l a b o r and pumping expenses. The d e s i g n o f t h e d i t c h i s dependent upon t h e B.O.D.,. o f t h e waste w h i c h i s b e i n g t r e a t e d . In an o x i d a t i o n d i t c h , t he volume o f t h e d i t c h per animal i s l e s s i m p o r t a n t than t h e o x y g e n a t i o n c a p a c i t y o f t h e r o t o r . The r o t o r must s u p p l y t h e amount o f oxygen r e q u i r e d t o meet t h e demand (B.O.D.,.) o f th e wastes e n t e r i n g t h e d i t c h . Loehr (1974) - 16 -i n d i c a t e s t h a t i f the amount o f oxygen s u p p l i e d i s i n a d e q u a t e the d i t c h becomes oxygen 1 imi t e d < p o o r p r o c e s s e f f i c i e n c i e s r e s u l t , and o d o r s as w e l l as foaming problems o c c u r . The amount o f oxygen s u p p l i e d by t h e r o t o r i s c o n t r o l l e d by t h e d e p t h o f t h e r o t o r i n the l i q u i d , t h e r.p.m. o f t h e r o t o r and the d e s i g n o f t h e b l a d e s on the r o t o r (Loehr 1974). A c o mprehensive d i s c u s s i o n on t h e use and o p e r a t i o n o f t h e o x i d a t i o n d i t c h can be found i n t h e U.S. E.P.A. p u b l i c a t i o n " A e r o b i c Treatment o f L i v e s t o c k Wastes" by Jones e t a l . p u b l i s h e d i n 1972. Some o f t h e r e a s o n s t h a t t h e o x i d a t i o n d i t c h m i g ht be chosen o v e r t h e o t h e r p o s s i b l e t r e a t m e n t systems a r e : 1. I t i s an o d o r l e s s p r o c e s s , w i t h the e x c e p t i o n o f s m a l l amounts o f ammonia a t t i m e s and an e a r t h y odor g i v e n o f f by t h e c o n t e n t s . 2. I t has t h e a b i l i t y t o h a n d l e shock l o a d s . Once t h e system i s o p e r a t i n g p r o p e r l y , the d i t c h can a b s o r b b r i e f heavy l o a d i n g s w i t h o u t u p s e t t i n g t h e b i o l o g i c a l p r o c e s s . 3. I t f i t s w e l l i n t o the f a r m e r s work s c h e d u l e , r e q u i r i n g v e r y l i t t l e a t t e n t i o n o r ma i n tenance. 4. The p r o c e s s f i t s r e a d i l y under t h e l a b o r -s a v i n g s l a t t e d , f l o o r system, e l i m i n a t i n g e x t r a pumping o r f l u s h i n g systems. 5. I t i s a r e a s o n a b l y i n e x p e n s i v e p r o c e s s , both i n c a p i t a l c o s t and o p e r a t i n g c o s t . - 17 -The o x i d a t i o n d i t c h i s . n o t w i t h o u t i t s d i s a d v a n t a g e s as w e l l . Problems w i t h . b e a r i n g s , i m p r o p e r l y d e s i g n e d : r o t o r s , motors and b e l t s caused many f a i l u r e s w i t h t h e f i r s t u n i t s . The e x p e r i e n c e and knowledge g a i n e d from s o l v i n g t h e s e problems has been used i n t h e d e s i g n o f new equipment r e s u l t i n g i n fewer breakdowns and l e s s maintenance (Smart et_ aj_; 1975) • Most o x i d a t i o n d i t c h e s a r e o p e r a t e d on a c o n t i n u o u s f l o w b a s i s where the d i t c h i s kept f u l l t o the l e v e l o f an o v e r f l o w s l u i c e g a t e . The o v e r f l o w from the s l u i c e g a t e has l i t t l e o r no odor and i t s B.O.D.,. i s i n t h e range o f 2,000 t o 3,000 ppm. which i s u n a c c e p t a b l e f o r d i r e c t d i s c h a r g e i n t o a n a t u r a l body o f w a t e r . (Canada Animal Waste Management G u i d e ) . T h i s e f f l u e n t r e q u i r e s f u r t h e r t r e a t m e n t w h i c h u s u a l l y t a k e s the form o f an a e r a t e d lagoon o r s p r a y i r r i g a t i o n o n t o a land s u r f a c e . 2.3 T h e r m o p h i l i c D i g e s t i o n o f Animal Wastes Up t o t h i s p o i n t t h e a n a e r o b i c and a e r o b i c systems d e s c r i b e d i n t h e t e x t have been o p e r a t i n g a t ambient t e m p e r a t u r e s . Temperature i s one o f t h e most i m p o r t a n t e n v i r o n m e n t a l parameters a f f e c t i n g the growth, a c t i v i t y and e v o l u t i o n o f organisms ( A l l e n 1953)-2.3.1 Types o f M i c r o - o r g a n i s m s F a r r e l l and Campbell d e f i n e d t h r e e d i f f e r e n t t y p e s o f b a c t e r i a w h i c h may be i s o l a t e d from c u l t u r e media m a i n t a i n e d a t - 18 -t e m p e r a t u r e s above 55 C. They were as f o l l o w s : T. T h e r m o t o l e r a n t : These organisms a r e c o n s i d e r e d g e n e r a l l y t o b e a b l e t o grow and p r o l i f e r a t e best a t 28°C t o k Q ° C and m e r e l y t o l e r a t e o r s u r v i v e a t t h e h i g h e r t e m p e r a t u r e s f o r s h o r t p e r i o d s . They do not re p r o d u c e a t t h e s e h i g h e r t e m p e r a t u r e s . 2. F a c u l t a t i v e : These organisms a r e f a c u l t a t i v e i n t h a t they may grow a t more than one t e m p e r a t u r e range but p r e f e r t h e h i g h e r t h e r m o p h i l i c c o n d i t i o n s . 3. O b l i g a t e : These o r g a n i s m s a r e o b l i g a t e d t o grow i n the t h e r m o p h i l i c range. They usua11y . p r o l i f e r a t e b e s t a t 60°C t o 65°C and show no growth below 42°C. The t h e r m o p h i l i c o r heat l o v i n g d i g e s t i o n system was f i r s t d e v e l o p e d f o r t r e a t i n g m u n i c i p a l w a s t e w a t e r s . Kambhu and Andrews (1969) c o n d u c t e d a s e r i e s o f s i m u l a t i o n s t u d i e s u s i n g t h e r m o p h i l i c a e r o b i c b a c t e r i a . They showed t h a t by i n c r e a s i n g t h e oxygen t r a n s f e r e f f i c i e n c y and by t h i c k e n i n g t h e s l u d g e i t was t h e o r e t i c a l l y p o s s i b l e f o r t h e r m o p h i l i c a e r o b i c d i g e s t i o n o f m u n i c i p a l w a s t e w a t e r s t o be s e l f - g e n e r a t i n g w i t h r e s p e c t t o the heat r e q u i r e d . T h e r e f o r e , t h e r m o p h i l i c b a c t e r i a when s u p p l i e d w i t h enough oxygen and - 19 -c o n c e n t r a t e d n u t r i e n t s wi11 f u n c t i o n e x o t h e r m i c a l l y r e l e a s i n g s u f f i c i e n t heat t o m a i n t a i n t h e t e m p e r a t u r e o f t h e system above ambient c o n d i t i o n s . L a t e r works by Popel and Ohmnacht (1972) and Suruce e t a l . (1976) c o n t a i n n u m e r i c a l examples showing t h a t i t i s p o s s i b l e t o o p e r a t e a s e l f - s u s t a i n i n g system i n the t h e r m o p h i l i c range. 2-3-2 F a c t o r s a f f e c t i n g the r a t e o f T h e r m o p h i l i c D i g e s t i o n There a r e s e v e r a l f a c t o r s w h i c h i n f l u e n c e the r a t e a t w h i c h the b i o d e g r a d a b l e v o l a t i l e s o l i d s (BVSS) w i l l be o x i d i z e d . BVSS r e p r e s e n t s t h o s e s o l i d s w h i c h can be broken down i n t o CO^ and Ho0 by t h e b a c t e r i a . 1. C o n c e n t r a t i o n o f BVSS: An o p t i m a l c o n c e n t r a t i o n o f BVSS i n t h e waste s i n c e i t s e r v e s as t h e s o u r c e o f a v a i l a b l e n u t r i e n t s , m a i n l y c a r b o n and n i t r o g e n . When th e s e n u t r i e n t s , a l o n g w i t h o t h e r s , a r e a v a i l a b l e i n good s u p p l y they i n c r e a s e the growth r a t e w h i c h i n t u r n i n c r e a s e s t h e r e a c t i o n r a t e . 2. Temperature: Temperature a f f e c t s t h e r a t e o f b i o c h e m i c a l and c h e m i c a l r e a c t i o n s . A c c o r d i n g t o the c l a s s i c thermodynamic d i s c o v e r y o f A r r h e n i u s , the - 20 -b i o c h e m i c a l r e a c t i o n r a t e f o l l o w s an e q u a t i o n w h i c h can be e m p i r i c a l l y e x p r e s s e d as c o n s t a n t , T i s the a b s o l u t e t e m p e r a t u r e , R i s the gas c o n s t a n t and E i s t h e energy o f a c t i v a t i o n ( m o d i f i c a t i o n S i n g l e t o n et_a_l_. 1973). M i x i n g : Adequate m i x i n g i s v e r y i m p o r t a n t i n o r d e r f o r t h e r m o p h i l i c d i g e s t i o n t o t a k e p l a c e . M i x i n g o f t h e medium a c c o m p l i s h e s two t h i n g s ^ i t removes i n h i b i t o r y end p r o d u c t s from t h e v i c i n i t y o f m i c r o b i a l c e l l m e t a b o l i s m and i t b r i n g s t h e c e l l i n t o c o n t i n u o u s c o n t a c t w i t h f r e s h n u t r i e n t s i n c l u d i n g oxygen. Oxygen T r a n s f e r Rate: The t r a n s f e r o f oxygen from t h e a i r , t h r o u g h t h e medium and i n t o t he c e l l i s an i m p o r t a n t f a c t o r i n t h e r m o p h i l i c d i g e s t i o n . The f a s t e r and more e f f i c i e n t l y oxygen i s t r a n s f e r r e d i n t o t he system th e q u i c k e r i t i s a v a i l a b l e f o r s u b s t r a t e o x i d a t i o n and subsequent heat energy r e l e a s e . C o m p o s i t i o n o f Sol i d s : In o r d e r f o r maximum growth t o o c c u r the n u t r i e n t s e.g. Carbon, N i t r o g e n and Phosphorus must not o n l y be p r e s e n t but a l s o a v a i l a b l e t o the c e l l i n b a l a n c e d amounts ( C o u l t h a r d 1973). d - l r v k dt E where k i s t h e r e a c t i o n r a t e - 21 -6. C o n c e n t r a t i o n o f N u t r i e n t s : The c o n v e r s i o n o f hy d r o c a r b o n s and c a r b o h y d r a t e s i n t o m i c r o b i a l e e l 1s and heat i s g i v e n by t h e f o l l o w i n g e q u a t i o n s . I t i s noted t h a t f o r e v e r y K i l o g r a m o f e e l 1 wt. s y n t h e s i z e d , 3,000 t o 7,600 k i l o c a l o r i e s a r e produced, i ) f o r Hydrocarbons 2 CH, + 2 0„ + 0.19 NH, + (P, K, S e t c ) »-n k n 2 n k n (CH, A N , . Ash) + C0_ + 1.5 H.O + 200,000 K c a l . 1.70.5 0.19 n 2 n 2 i i ) f o r C a r b o h y d r a t e s 1.8 CH„0 + 0.8 0„ 0.19NH?" + (P, K, S e t c ) : n 2 n 2 H n (CH, _,0„ r N n , n A s h ) + 0.8 C 0 o + 1.3 H„0 + 80,000 K c a l . 1.7 0.5 0.19 n 2 n 2 T h e r e f o r e , a h i g h c o n c e n t r a t i o n o f Carbon a l o n g w i t h o t h e r n u t r i e n t s w i l l i n c r e a s e t he r a t e o f r e a c t i o n and t h e p r o d u c t i o n o f hea t . 7. C o n c e n t r a t i o n o f M i c r o - o r g a n i s m s : The v i a b l e e e l 1 d e n s i t y o r c o n c e n t r a t i o n o f m e t a b o l i z i n g m i c r o - o r g a n i s m s w i t h i n t h e medium w i l l d e t e r m i n e the. r a t e o f breakdown-of BVSS - 22 -i n t h a t the h i g h e r t h e p o p u l a t i o n t h e f a s t e r the r e a c t i o n r a t e . The s u r f a c e a r e a o f the a v e r a g e e e l 1 i s a measurement o f the e e l 1s a b i 1 i t y t o c o n t a c t t h e s u b s t r a t e and t o remove t h e r e a c t i o n p r o d u c t s . The s u r f a c e a r e a o f 0.8 gms o f wet 12 w e i g h t e e l 1s i . e . 10 c e l l s i s a p p r o x i m a t e l y 50 square f e e t . Thus a d o u b l i n g o f the c e l l p o p u l a t i o n d o u b l e s t h e r e a c t i o n r a t e , p r o v i d e d o t h e r f a c t o r s a r e o p t i m a l f o r normal c e l l m e t a b o l i sm. 8. Types o f M i c r o - o r g a n i s m s : The t y p e o f t h e r m o p h i l i c o r g a n i s m s found w i t h i n a t h e r m o p h i 1 i c p r o c e s s i s i n t e r - c o n n e c t e d w i t h t h e t e m p e r a t u r e and t i m e o f e x p o s u r e o f t h e system t o t h e r m o p h i l i c c o n d i t i o n s . A n o t h e r a s p e c t o f t h e t y p e o f m i c r o - o r g a n i s m s p r e s e n t i s t h e p o s s i b i l i t y o f p r e d a t o r s , i n h i b i t o r s and c o m p e t i t o r s i n t h e p o p u l a t i o n . The p r e s e n c e o f t h e s e m i c r o - o r g a n i s m s may lower t h e p o p u l a t i o n o f t h e r m o p h i l e s and a d v e r s e l y a f f e c t the r e a c t i o n r a t e . Surucu'i. (1975) found t h a t t h e n u t r i t i o n a l r e q u i r e m e n t s of pure c u l t u r e s were much more e x a c t i n g than t h e r e q u i r e m e n t s f o r a mixed c u l t u r e . T h i s may i n d i c a t e t h a t a t r u e s y n e r g i s t i c o r c o - o p e r a t i v e r e l a t i o n s h i p may e x i s t between s p e c i e s o f t h e r m o p h i l e s i . e . t h e a b i l i t y o f two o r g a n i s m s t o b r i n g about changes which n e i t h e r can a c c o m p l i s h a l o n e . - 23 -2.3-3 Advantages o f T h e r m o p h i l i c D i g e s t i o n T h e r m o p h i l i c d i g e s t i o n has s e v e r a l advantages o v e r th e t r e a t m e n t systems a l r e a d y d i s c u s s e d . The most o b v i o u s o f c o u r s e i s t h e h i g h r e a c t i o n . r a t e w h i c h means a s h o r t d e t e n t i o n t i m e . The t h e r m o p h i l i c b a c t e r i a w i l l e n a b l e t h e t r e a t m e n t o r d e g r a d a t i o n o f c o n c e n t r a t e d b i o d e g r a d a b l e o r g a n i c wastes t o be completed i n a s h o r t e r time (Surucu 1975)- Matsch and D r n e v i c h (1977) c a l c u l a t e d t h a t an a e r o b i c d i g e s t e r o p e r a t i n g a t 50°C c o u l d a c h i e v e t h e same degree o f d e g r a d a t i o n a t one h a l f t h e r e t e n t i o n t i m e o f a system o p e r a t i n g a t 20°C. Hig h e r maintenance energy r e q u i r e m e n t s and h i g h e r m i c r o b i a l decay c o e f f i c i e n t s f o r t h e r m o p h i l i c b a c t e r i a have been r e p o r t e d by Matsch and Andrews (1973) and A l l e n (1953)- T h i s means t h a t a t h e r m o p h i l i c d i g e s t e r has an advantage o v e r a m e s o p h i l i c one because the amount o f s l u d g e r e q u i r i n g u 11 i ma t e d i s p o s a l would be l e s s . P athogens, v i r u s e s , f u n g i and p a r a s i t e s cannot s u r v i v e i n the m o i s t , hot environment o f a t h e r m o p h i l i c d i g e s t e r (Bragg e t a l _ . 1975). 2.3.4 T h e r m o p h i l i c D i g e s t i o n o f Farm Animal Wastes The use o f t h e r m o p h i l i c d i g e s t i o n f o r t h e t r e a t m e n t o f farm animal wastes has not been w i d e l y s t u d i e d . At the U n i v e r s i t y o f B r i t i s h Columbia t h e r e has been a l a r g e amount o f work done i n t h e - 24 -a r e a o f t h e r m o p h i l i c d i g e s t i o n o f farm a n i m a l waste e s p e c i a l l y swine waste (Bragg £t a_l_. 1975; K i t t s e t a l _ . 1974; C o u l t h a r d 1973; C o u l t h a r d & Hendren 1973; C o u l t h a r d and Towns 1 ey 1973). These s t u d i e s have r e s u l t e d i n t h e d e s i g n o f a s i m p l e , e f f i c i e n t t h e r m o p h i l i c d i g e s t e r which can be adapted t o many uses both a g r i c u l t u r a l and m u n i c i p a l . C o u l t h a r d e t a l . (1974) c a r r i e d o ut f e r m e n t a t i o n s on m u n i c i p a l , p o u l t r y , s w i n e , d a i r y and beef f e e d l o t wastes i n both b a t c h and c o n t i n u o u s p r o c e s s i n g . The r e s u l t s o f the s e t e s t s show t h a t i t i s p o s s i b l e f o r a t h e r m o p h i l i c d i g e s t e r u t i l i z i n g f arm animal wastes t o be s e l f - s u s t a i n i n g i n terms o f te m p e r a t u r e . The two most i m p o r t a n t f a c t o r s f o r t h e maintenance o f t h e r m o p h i l i c b a c t e r i a have been found t o be an adequate s u p p l y o f oxygen i . e . D.O. l e v e l p r e f e r a b l y above 1.0 mg/1. c o u p l e d w i t h v i g o r o u s m i x i n g t o s t r i p t he CO^ from the c e l l s and b r i n g them i n t o c o n t a c t w i t h new s o u r c e s o f n u t r i e n t s . These r e s u l t s a g r e e w i t h t h o s e o f Popel and Ohnmacht (1972) and Matsch and D r n e v i c h (1977). However, t h e r e s u l t s o f t e s t s w i t h m u n i c i p a l s l u d g e a t U.B.C. show a much h i g h e r t e m p e r a t u r e i s a c h i e v e d than t h a t i n t h e s t u d y by Matsch and D r n e v i c h (1977). At U.B.C. t e m p e r a t u r e s o f 60°C-72°C have been normal w i t h m u n i c i p a l s l u d g e ( C o u l t h a r d 1975)- T h i s d i s a g r e e s w i t h Matsch and D r n e v i c h 1 s statement t h a t a u t o t h e r m a l a e r o b i c d i g e s t i o n i s a s e l f - l i m i t i n g u n i t w i t h an upper l i m i t o f 60°C. T h i s d i f f e r e n c e c o u l d be due t o a more c o n c e n t r a t e d s l u d g e a t U.B.C., d i f f e r e n t p o p u l a t i o n s o f m i c r o - o r g a n i s m s o r a more e f f i c i e n t oxygen t r a n s f e r i n t h e U.B.C. u n i t . - 25 -Other s t u d i e s c a r r i e d out a t U.B.C. have been co n c e r n e d w i t h the s u i t a b i 1 i t y o f the p r o d u c t o f f e r m e n t a t i o n as a fe e d supplement f o r a n i m a l s . W i t h t he i n g r e d i e n t s c u r r e n t l y i n use, swine d i e t s a r e 8$% d i g e s t i b l e . T h i s l e a v e s 15% t o be used as a s u b s t r a t e f o r f e r m e n t a t i o n by m i c r o - o r g a n i s m s . T h i s 15% which i s not d i g e s t e d b e g i n s t o undergo c h e m i c a l changes caused by s e c r e t i o n s i n t o t h e i n t e s t i n e and c o n t i n u e s t o change a f t e r b e i n g e x c r e t e d . M i c r o f l o r a m a r k e d l y change t h e n i t r o g e n o u s components i n f e c a l m a t e r i a l . (Harmon e t _ a j _ . 1970). The n i t r o g e n components a r e the most v a l u a b l e i n waste. W h i l e r u m i n a n t s can u t i l i z e t he s i m p l e r p r o d u c t s such as urea and u r i c a c i d , swine r e q u i r e t h a t a m i n o - a c i d s be preformed i n the d i e t . S t u d i e s performed by S i n g l e t o n e t al.(1973) showed t h a t p r o t e i n s from t h e r m o p h i l i c b a c t e r i a appeared t o be s i m i l a r t o t h a t o f m e s o p h i l i c o r g a n i s m s w i t h r e s p e c t t o m o l e c u l a r w e i g h t , a m i n o - a c i d c o m p o s i t i o n , and p r i m a r y sequences o f a m i n o - a c i d s . M a t e l e s (1968) c a r r i e d o ut s t u d i e s on the growth o f a t h e r m o p h i l i c m i c r o - o r g a n i s m on h y d r o c a r b o n s . He c o n c l u d e d t h a t t h e p r o t e i n c o n t e n t o f t h e r m o p h i l i c o r g a n i s m s and t h e a m i n o - a c i d c o m p o s i t i o n o f the p r o t e i n would be b e t t e r n u t r i t i o n a l l y than t h a t p r e v i o u s l y d e s c r i b e d f o r s o u r c e s o f s i n g l e - c e l l p r o t e i n . The U.B.C. s t u d i e s (Bragg e t _ a j _ . 1975) showed t h a t t h e r m o p h i l i c p r o c e s s e d animal waste can be i n c o r p o r a t e d i n t o a c h i c k s t a r t e r d i e t a t 5% and 10% o f the r a t i o n w i t h o u t a d v e r s e e f f e c t s on th e r a t e o f growth arid f e e d c o n v e r s i o n r a t i o . C o u l t h a r d (1973) l i s t e d - 26 -t h e p r o t e i n a n a l y s e s o f t h e v a r i o u s components o f t h e p r o c e s s e d s l u r r y . The t o t a l p r o c e s s e d s l u r r y had a c r u d e p r o t e i n v a l u e o f 17% (dry w e i g h t b a s i s ) . The f i n e , a p p r o a c h i n g c o l l o i d a l s i z e , s o l i d s which, s e t t l e o u t s l o w l y had a c r u d e p r o t e i n l e v e l o f 30%, and c o l l o i d a l c e n t r i f u g e d s o l i d s from t h e s u p e r n a t a n t was i n t h e range o f $0% c r u d e p r o t e i n . These r e s u l t s a g r e e w i t h t h o s e o f Holmes (1971) who found t h a t most o f t h e d r y m a t t e r and t h e p r o t e i n i n t h e c o n t e n t s o f an o x i d a t i o n d i t c h were c o n t a i n e d i n t h e p a r t i c l e s o f t h e s m a l l e s t s i z e . Subsequent a n a l y s e s o f f r a c t i o n s a r i s i n g . f r o m p a s s i n g t h r o u g h a 20, 50, 100 and 200 mesh s c r e e n show a l i n e a r i n c r e a s e i n amino a c i d c o n c e n t r a t i o n as p a r t i c l e s i z e d e c r e a s e s (Harmon 1972). - 27 -3. USE OF LIVESTOCK WASTES AS FEED FOR SWINE 3.1 P o u l t r y Waste T r i v e l i n (1961) s t u d l e d t h e a p p l i c a t i o n o f c h i c k ' s f e c e s from a b a t t e r y b r o o d e r i n the f e e d i n g o f w e a n l i n g p i g s . A b a s a l r a t i o n s u b s t i t u t e d w i t h 5%, 10% and 15% o f t h a t b a s a l r a t i o n was used w i t h s i m i l a r p r o p o r t i o n s o f c h i c k ' s f e c e s . S t a t i s t i c a l s i g n i f i c a n c e among t r e a t m e n t s were not o b s e r v e d . R e s u l t s measured i n terms o f aver a g e d a i l y g a i n and f e e d c o n v e r s i o n i n d i c a t e d t h a t s u b s t i t u t i o n i n the r a t i o n o f 5% t o 10% by equal p r o p o r t i o n s o f c h i c k f e c e s produced s a t i s f a c t o r y r e s u l t s , t h e 5% p r o p o r t i o n b e i n g the most advantageous. G e r i (1968) f e d young p i g s a d i e t c o n t a i n i n g p o u l t r y manure s u b s t i t u t e d f o r bran a t l e v e l s o f 7-10% f o r a p e r i o d o f f o u r weeks. Those a n i m a l s f e d manure c o n t a i n i n g d i e t s had lower d a i l y w e i g h t g a i n and h i g h e r f e e d i n t a k e per k i l o g r a m g a i n e d . The younger p i g s (17 k g . ) , when f e d t h e manure s u b s t i t u t e d d i e t s , were not as h e a l t h y as t h e c o n t r o l (many d e v e l o p e d d i a r r h e a ) . In a l a t e r t r i a l a n t i -b i o t i c s and v i t a m i n were added t o the d i e t and l a r g e r p i g s (33 kg.) were used. W i t h t h e s e changes the d a i l y g a i n and f e e d e f f i c i e n c i e s were s l i g h t l y b e t t e r than the c o n t r o l . F e e d i n g t r i a l s a t th e Harper Adams A g r i c u l t u r a l C o l l e g e ( B l a i r and K n i g h t 1973) have shown t h a t D r i e d P o u l t r y Waste (DPW) can be i n c l u d e d i n swine r a t i o n s a t a l e v e l o f 5% w i t h o u t i n f l u e n c i n g growth r a t e and fee d e f f i c i e n c y . A t l e v e l s o f 10% DPW i n the f e e d growth r a t e and f e e d e f f i c i e n c y were d e p r e s s e d . Perez-Aleman e t a l (1971) s t u d i e d t h e e f f e c t s o f - 28 -s t e r i l i z e d DPW as an a d d i t i v e t o a c o n v e n t i o n a l d i e t , a t l e v e l s o f 10%, 20% and 301, f o r g r o w i n g ; p i g s from 23 kg. t o 85 kg. l i v e w e i g h t . The p i g s remained h e a l t h y and no a d v e r s e a f f e c t s t o th e c a r c a s s e s were n o t e d . I t was found t h a t f o r e v e r y 10% a d d i t i o n o f manure, growth r a t e was reduced by 0.02. kg/day, f e e d c o n v e r s i o n e f f i c i e n c y by 0.25 u n i t s and d r e s s i n g o u t p e r c e n t a g e by 0.96%. L a t e r work by Denisov (1975) tended t o s u p p o r t t h e s e f i n d i n g s . In s p i t e o f i t s a d v e r s e e f f e c t on gro w t h , manure when i n c l u d e d i n t h e d i e t d e c r e a s e d t h e b a c k f a t t h i c k n e s s and i n c r e a s e d the m e a t : f a t r a t i o w h i c h might improve the o v e r a l l g r a d i n g o f th e c a r c a s s e s ( P e r e z -Aleman et_ aj_. 1971; O s t e r c 1972; Denisov et_ a_l_. 1975). S i n c e t h e manure c o n t a i n s l a r g e amounts o f f i b r e and ash and t h e r e f o r e r e l a t i v e l y low d i g e s t i b l e e n e r g y , O s t e r c (1972) c o n c l u d e d t h a t t h e use o f DPW f o r f i n i s h i n g swine was a c c e p t a b l e o n l y when t h e r a t i o n was a d j u s t e d t o b a l a n c e t he low energy v a l u e . 3.2 Swine Waste The r e f e e d i n g o f swine waste has not p r o g r e s s e d a t the same r a t e as t h e r e f e e d i n g o f DPW and c a t t l e waste t o r u m i n a n t s . Diggs e_t a_l_. (1965) r e p o r t e d t h a t a v e r a g e d a i l y g a i n and fee d e f f i c i e n c y o f swine f e d a f a t t e n i n g r a t i o n c o n t a i n i n g 15% d r i e d swine waste was s i m i l a r t o th e performance o f a n i m a l s f e d a t y p i c a l c o r n - s o y b e a n meal c o n t r o l r a t i o n . Other s t u d i e s w i t h swine manure s u b j e c t e d t o a n a e r o b i c d i g e s t i o n and added a t 24.5% t o a f o r t i f i e d c o r n soybean - 29 -meal d i e t , have shown t h i s m i x t u r e t o s u p p o r t s a t i s f a c t o r y g a i n and f e e d e f f i c i e n c y i n r a t s . (Harmon e t a l . 1969)- However, l a t e r s t u d i e s by Harmon et_a_l_. 1973 f a i l e d t o d u p l i c a t e t h e s e r e s u l t s . In t h i s second t r i a l d r i e d swine waste s o l i d s c o l 1ected from t h e s u r f a c e o f a s e t t l i n g skimming t a n k and i n c o r p o r a t e d i n t o t y p i c a l c o r n - s o y d i e t s a t 10% as a c o r n r e p l a c e m e n t o r a t 16.8% f o r r e p l a c i n g 3% o f t h e soybean meal d e p r e s s e d w e i g h t g a i n a n d f e e d e f f i c i e n c y i n r a t s . Orr e t a l . (1970 r e p o r t e d s i m i l a r growth d e p r e s s i o n s i n f i n i s h i n g swine as a r e s u l t o f u s i n g d r i e d swine waste t o r e p l a c e , o n e - t h i r d o f t h e p r o t e i n i n a c o r n - s o y d i e t c o n t a i n i n g 13% c r u d e p r o t e i n . F u r t h e r s t u d i e s by Harmon e t a l . (1973) w i t h swine waste o x i d a t i o n d i t c h l i q u o r seemed t o i n d i c a t e t h a t t he f l u i d , when mixed w i t h a 12% c o r n - s o y d i e t a t two p a r t s o f l i q u i d per p a r t o f d r y f e e d , caused a s m a l l , but c o n s i s t e n t improvement i n w e i g h t g a i n and f e e d e f f i c i e n c y when compared t o th e c o n t r o l group w h i c h had had t h e i r f e e d mixed w i t h w a t e r . H o l l a n d e t a l , . (1975) conducted a f e e d i n g t r i a l u s i n g u n p r o c e s s e d wet swine manure and d r i e d swine manure. The manure was c o l l e c t e d from f i n i s h i n g hogs and f e d t o g i l t s w i t h an aver a g e body w e i g h t o f 125 l b s . The f e c e s were found t o be o f l e s s n u t r i t i v e v a l u e than t h e b a s a l c o r n - s o y b e a n meal r a t i o n , however, the n u t r i e n t s c o n t a i n e d i n t he f e c e s were i n a form u s a b l e by th e a n i m a l . - 30 -4. EXPERIMENTAL 4.1 Design o f E x p e r i m e n t a l Equipment 4.1.1 T h e r m o p h i l i c P r o c e s s U n i t Most o f the e x p e r i m e n t a l work a t the U n i v e r s i t y o f B r i t i s h Columbia i n v o l v i n g t h e r m o p h i l i c a e r o b i c t r e a t m e n t o f wastes has been performed u s i n g the same p r o c e s s u n i t . The u n i t c o n s i s t s o f two f e r m e n t e r s each w i t h i t s own m i x e r and a i r s p a r g e r . 4.1.2 Fermenter D e s i g n F i g u r e 1, a s c h e m a t i c o f one o f t h e f e r m e n t e r s , s e r v e s t o i l l u s t r a t e t he d e s i g n and l a y o u t o f the tank. The two f e r m e n t e r s a r e c o n s t r u c t e d o f f i b r e g l a s s i n o r d e r t o reduce the c o s t and p r e v e n t t h e c o r r o s i o n and c o n t a m i n a t i o n w h i c h ' I s p o s s i b l e from a metal tank. Each f e r m e n t e r i s f i v e f e e t h i g h and f o u r f e e t i n d i a m e t e r . The bottom i s rounded on the i n s i d e t o a i d the m i x i n g a c t i o n . The o p e r a t i n g c a p a c i t y o f each o f t h e s e two tanks i s 50 c u . f t . (approx. 300 g a l l o n s ) w i t h a t o t a l c a p a c i t y o f 62 c u . f t . (388 g a l l o n s ) . F i t t i n g s a r e p r o v i d e d which e n a b l e t h e two t a n k s t o be j o i n e d i n s e r i e s so t h a t a c o n t i n u o u s f e r m e n t a t i o n can be c a r r i e d o u t i n a d d i t i o n t o t h e normal b a t c h o p e r a t i o n . Each t a n k has an o u t l e t and v a l v e l o c a t e d a t t h e bottom t o a l l o w d r a i n i n g of t h e c o n t e n t s when r e q u i r e d . I n s u l a t i o n f o r t h e t a n k s c o n s i s t s - 31 -- 32 -o f a one i n c h t h i c k s t y r o f o a m b l a n k e t bonded t o t h e o u t s i d e and c o v e r e d w i t h a p r o t e c t i v e l a y e r o f canvas and epoxy r e s i n . The t a n k s a r e p l a c e d d i r e c t l y on the ground w i t h no c o n c r e t e f o o t i n g s o r f o u n d a t i o n s . The tops o f t h e f e r m e n t e r s a r e not e n c l o s e d and a r e open t o t h e a i r . 4.1.3 M i x e r Des ign Adequate m i x i n g and a g i t a t i o n o f t h e l i q u i d i s a v i t a l p a r t o f the t h e r m o p h i l i c a e r o b i c d i g e s t i o n o f animal wastes ( C o u l t h a r d 1973). D u r i n g the e a r l y t e s t s much o f t h e r e s e a r c h was d i r e c t e d towards f i n d i n g a s u i t a b l e d e s i g n f o r a m i x e r . For a normal f e r m e n t a t i o n the depth o f l i q u i d i n t h e tank i s f o u r and a h a l f t o f i v e f e e t . The t o t a l l e n g t h o f the m i x e r s h a f t i s seven f e e t . Designs u s i n g a b e a r i n g a t e i t h e r end o f the s h a f t showed t h a t t h e b e a r i n g w h i c h was submerged was s u b j e c t t o r a p i d wear, and r e q u i r e d f r e q u e n t r e p l a c e m e n t ( C o u l t h a r d -p e r s o n a l c o m m u n i c a t i o n ) . T h i s l e d t o a d e s i g n w i t h both b e a r i n g s p l a c e d a t one end o f t h e s h a f t , above t h e l e v e l o f the l i q u i d i n t h e f e r m e n t e r . For t h i s d e s i g n the s h a f t was o f s t a i n l e s s s t e e l two i n c h e s i n d i a m e t e r and was h o l l o w i n o r d e r t o reduce the l o a d on t h e motor. S t a i n l e s s s t e e l was chosen because o f i t s r e s i s t a n c e t o c o r r o s i o n . I t was d i s c o v e r e d t h a t t h i s s h a f t had v a r i a t i o n s i n i t s d i a m e t e r a l o n g i t s l e n g t h o f p l u s o r minus f i v e t h o u s a n d t h s of an i n c h . T h i s was due t o t h e e x t r u s i o n p r o c e s s used i n the - 33 -m a n u f a c t u r i n g . These v a r i a t i o n s caused problems i n f i t t i n g t h e b e a r i n g s t o the s h a f t and a l s o caused t h e s h a f t s t o b e o u t o f b a l a n c e . The poor f i t o f the b e a r i n g s and the uneven w e i g h t d i s t r i b u t i o n caused e x c e s s i v e v i b r a t i o n i n t h e s h a f t which i n t u r n r e s u l t e d i n r a p i d wear and u n a c c e p t a b l y s h o r t b e a r i n g l i f e . The most r e c e n t d e s i g n , shown i n F i g u r e s 2 and 3 u t i l i z e s a s o l i d s t a i n l e s s s t e e l s h a f t one and a h a l f i n c h e s i n d i a m e t e r . The s o l i d s h a f t i s m anufactured by a d r a w i n g p r o c e s s w h i c h r e s u l t s i n the d i a m e t e r b e i n g much more u n i f o r m . Two heavy-d u t y f l a n g e b e a r i n g s mounted e i g h t i n c h e s a p a r t a r e used t o s u p p o r t and g u i d e the m i x e r s h a f t . These b e a r i n g s , i n t u r n , a r e b o l t e d t o a s u p p o r t i n g metal framework w h i c h a l s o s e r v e s as a mount f o r t h e motor. Because o f t h e i n c r e a s e d w e i g h t o f t h e s h a f t a two H.P. e l e c t r i c motor i s used i n s t e a d o f the normal one and a h a l f H.P. motor used i n t h e e a r l i e r d e s i g n s . A t o t a l l y e n c l o s e d motor i s used t o a v o i d damage due t o d u s t o r a b u i l d - u p of foam i n the f e r m e n t e r . The motor and m i x e r s h a f t a r e c o n n e c t e d by a d o u b l e V - b e l t p u l l e y which reduces t h e r.p.m. by 50 p e r c e n t r e s u l t i n g i n a f i n a l s h a f t speed o f 880 r.p.m. The m i x e r u n i t as a whole i s mounted on a wooden frame which r e s t s a c r o s s t h e top o f t h e f e r m e n t e r . Rubber b u s h i n g s a r e used between t h e m i x e r bases and t h e wooden frame i n o r d e r t o reduce t h e amount o f v i b r a t i o n t r a n s m i t t e d t o the tank. The s o l i d s h a f t m i x e r was i n s t a l l e d i n F e b r u a r y 1976 and has not r e q u i r e d a change o f b e a r i n g s t o - d a t e . - 34 -F I G U R E D S O L I D S H A F T M I X E R F I G U R E D S O L I D S H A F T M I X E R FIGURED M I X I N G A C T I O N - 36,-F ! G U R E : 5 M I X I N G A C T I O N - 37 -4.1.4 Ag i t a t i o n A g i t a t i o n o f . t h e l i q u i d i s a c c o m p l i s h e d by a f o u r b l a d e d p r o p e l l e r a t t a c h e d t o . t h e end o f t h e s h a f t . T h i s p r o p e l l e r has a d i a m e t e r o f f o u r i n c h e s from t i p t o t i p and the b l a d e s a r e p i t c h e d a t ; a 45°:angle. F i g u r e s 4 and 5 i l l u s t r a t e t he m i x i n g a c t i o n i n the tank. Four wooden b a f f l e s a r e spaced 90° a p a r t around t h e i n s i d e o f the tank t o i n s u r e c o m plete m i x i n g . The p r o p e l l e r has two f u n c t i o n s one i s a g i t a t i o n o f t h e l i q u i d and t h e o t h e r i s m i x i n g i n t h e a i r s u p p l i e d by t h e s p a r g e r s . T h i s c o m b i n a t i o n o f m i x i n g and a e r a t i o n g i v e s t h e most e f f i c i e n t t r a n s f e r o f oxygen from t h e gas t o t h e 1iquid (Hatch 1975)• 4.1.5 A e r a t i o n Oxygen i n t h e form o f compressed a i r i s s u p p l i e d t o both f e r m e n t e r s by a J a c u z z i Model 331 compressor mounted on a p r e s s u r e tank. Each f e r m e n t e r has i t s own a i r l i n e equipped w i t h a v a l v e and an a i r f l o w meter so t h a t the amount o f a i r b e i n g s u p p l i e d can be c a r e f u l l y c o n t r o l l e d and i n d e p e n d e n t l y r e c o r d e d . The f l o w meters used a r e Roger G i l m o n t S i z e #5 w h i c h measure a i r f l o w o v e r the range o f 5,000 ml/min t o 75,000.ml/min. In o r d e r t o maximize the oxygen t r a n s f e r e f f i c i e n c y a i r s p a r g e r s a r e used. These s p a r g e r s a r e mounted d i r e c t l y beneath the p r o p e l l e r s o f the m i x e r s . C u r r e n t l y , two ty p e s o f s p a r g e r s a r e i n use a t U.B.C. These a r e shown i n F i g u r e s 6 and 7- The f i r s t t y p e ( F i g u r e 6) c o n s i s t s o f - 38 -a f l a t p l a t e a t t a c h e d o v e r t h e a i r o u t l e t . The p u r p o s e o f t h i s p l a t e i s t o b r e a k t h e i n c o m i n g s t r e a m o f a i r i n t o smal1 b u b b l e s o v e r a w i d e r a r e a . The f u n c t i o n o f t h e b a l l b e n e a t h t h e p l a t e i s t o b l o c k t h e a p e r t u r e o f t h e a i r l i n e i n t h e e v e n t o f a c o m p r e s s o r f a i l u r e and p r e v e n t t h e a i r l i n e f r o m becoming p l u g g e d . The second t y p e o f s p a r g e r ( F i g u r e 7) i s shaped l i k e an i n v e r t e d c o n e , t h e s l o p i n g s i d e s o f t h i s cone have c h a n n e l s s p a c e d e v e n l y a r o u n d t h e i r c i r c u m f e r e n c e . The a i r s t r e a m f r o m t h e c o m p r e s s o r s t r i k e s t h e p o i n t o f t h e c o n e and s p r e a d s up t h e c h a n n e l s . T h i s i n s u r e s t h e b r e a k i n g -up o f t h e a i r s t r e a m and t h e f o r m a t i o n and even d i s t r i b u t i o n o f s m a l l b u b b l e s i n t o t h e l i q u i d . T h i s s e c o n d t y p e o f s p a r g e r i s a l s o e q u i p p e d w i t h a b a l l t o p r e v e n t p l u g g i n g o f t h e a i r l i n e . 4.1.'6 Foam B r e a k e r s D u r i n g t h e e a r l y s t a g e s o f a new f e r m e n t a t i o n l a r g e amounts o f foam a r e p r o d u c e d . T h i s f o a m , c o n s i s t i n g o f v e r y s m a l l b u b b l e s w i t h t h i c k membranes i s q u i t e f i r m and s t a b l e . T h i s s t a b i l i t y , can l e a d t o an a c c u m u l a t i o n o f foam i n t h e t o p o f t h e f e r m e n t e r t o such a d e g r e e t h a t i t o v e r f l o w s t h e s i d e s o f t h e f e r m e n t e r . O v e r f l o w i n g c a n r e s u l t i n a p h y s i c a l l o s s o f t h e s u b s t r a t e , i n t e r f e r e n c e w i t h e l e c t r i c a l e q u i p m e n t , r e d u c t i o n i n t e m p e r a t u r e a n d , b e c a u s e t h e t e m p e r a t u r e o f t h e foam i s l o w e r t h a n t h e t e m p e r a t u r e o f t h e l i q u i d , l e s s , e f f e c t i v e . p a t h o g e n k i l l . In t h e l a t e r s t a g e s o f t h e f e r m e n t a t i o n t h e i n c r e a s e i n t e m p e r a t u r e t e n d s t o d e c r e a s e t h e s u r f a c e t e n s i o n o f t h e l i q u i d . - 40 -A d e c r e a s e i n t h e s u r f a c e t e n s i o n produces a foam w h i c h has l a r g e r b u b b l e s w i t h t h i n n e r membranes.which a r e more s e n s i t i v e t o v i b r a t i o n , t u r b u l e n c e , wind c u r r e n t s e t c . and b u r s t more r e a d i l y . As a r e s u l t t h i s foam does not a c c u m u l a t e t o t h e p o i n t o f o v e r f l o w i n g . l n the e a r l y s t a g e s , c o n t r o l o v e r t h e l e v e l o f foam i n the f e r m e n t e r was a c c o m p l i s h e d by a m e c h a n i c a l d e v i c e c o n s i s t i n g o f a b l a d e welded t o a s h a f t w h i c h i s a t t a c h e d t o a 1/4 H.P. e l e c t r i c motor. O r i g i n a l 1 y , t h e b l a d e was b o l t e d t o the end o f the s h a f t , however, v i b r a t i o n tended to l o o s e n the b o l t and when c o u p l e d w i t h r o t a t i o n of the s h a f t caused t h e b o l t t o unscrew i t s e l f r e s u l t i n g i n the l o s s o f the b l a d e . The foam i s sheared m e c h a n i c a l l y by t h e b l a d e i n o r d e r t o m a i n t a i n a c o n s t a n t l e v e l . The motor i s e n c l o s e d and mounted on t h e same wooden framework w h i c h s u p p o r t s t h e m i x e r . 4.2 Energy Requirements f o r M a i n t e n a n c e o f Fermenter Temperature 4.2.1 I n t r o d u c t i o n S t u d i e s i n v o l v i n g t h e r m o p h i l i c a e r o b i c d i g e s t i o n a t U.B.C. have r e p e a t e d l y shown t h a t d u r i n g f e r m e n t a t i o n s , s u b s t r a t e t e m p e r a t u r e s o f 60°C-65°C can be m a i n t a i n e d o v e r a p e r i o d o f s e v e r a l days o r weeks ( C o u l t h a r d 1973)• However, whether o r not the t o t a l e nergy r e q u i r e d t o m a i n t a i n t h e t e m p e r a t u r e came from m i c r o b i a l a c t i o n was not known. In o r d e r t o i n v e s t i g a t e what e f f e c t s the m e c h a n i c a l a c t i o n o f a g i t a t i o n arid a e r a t i o n have on heat p r o d u c t i o n - 41 -and t e m p e r a t u r e m a i n t e n a n c e , and t h e r e l a t i v e i n s u l a t i o n v a l u e o f foam compared t o s t y r o f o a m a number o f e x p e r i m e n t s were d e s i g n e d r e l a t i v e t o the f o l l o w i n g o b j e c t i v e s : a. To i n v e s t i g a t e the e f f e c t o f m e c h a n i c a l energy from a g i t a t i o n on t h e t o t a l amount o f energy r e q u i r e d t o m a i n t a i n a g i v e n t e m p e r a t u r e . b. To i n v e s t i g a t e the combined e f f e c t s o f a g i t a t i o n and a e r a t i o n on the t o t a l energy r e q u i r e d t o m a i n t a i n a g i v e n t e m p e r a t u r e . c. To i n v e s t i g a t e t h e e f f e c t o f a e r a t i o n on the t o t a l amount o f energy r e q u i r e d t o m a i n t a i n a g i v e n t e m p e r a t u r e . d. To examine t h e v a r i a t i o n between t h e energy i n p u t r e q u i r e d f o r t e m p e r a t u r e maintenance w i t h a s t y r o f o a m c o v e r on the top f o r i n s u l a t i o n as compared t o d e t e r g e n t foam as i n s u l a t i o n . 4.2.2 M a t e r i a l s and Methods a. I n t r o d u c t i o n Fermenter #2 a t U .BiC.'s T h e r m o p h i l i c U n i t was d r a i n e d o f a l l o r g a n i c m a t t e r and t h e i n s i d e was then scrubbed w i t h a brush and r i n s e d s e v e r a l t i m e s w i t h hot w a t e r . Al1 accumu1 a t ions o f o r g a n i c m a t t e r were removed from t h e m i x e r s u p p o r t and foam - kl -b r e a k e r as w e l l . . T h e • e l i m i n a t i o n o f o r g a n i c m a t t e r was t o e n s u r e t h a t d u r i n g t h e e x p e r i m e n t s t h e r e would be no p o s s i b i l i t y o f s i g n i f i c a n t heat p r o d u c t i o n from m i c r o b i a l a c t i v i t y . Energy f o r i n c r e a s i n g and m a i n t a i n i n g t h e t e m p e r a t u r e , a s i d e from t h a t w h i c h might be s u p p l i e d by a e r a t i o n and a g i t a t i o n , would come from two 1,500 w a t t 220 v o l t water h e a t e r e l e m e n t s . These h e a t e r elements were mounted t h r o u g h the w a l l o f the f e r m e n t e r 15 i n c h e s above ground l e v e l and spaced T80 degrees a p a r t . The f e r m e n t e r was then f i l l e d w i t h t a p wat e r and a c o v e r made from a one i n c h t h i c k s t y r o f o a m s h e e t which was then f i t t e d t o t h e top o f t h e f e r m e n t e r . b. Temperature R e g u l a t i o n For t h i s s e t o f e x p e r i m e n t s a t e m p e r a t u r e o f 65°C was chosen as a r e p r e s e n t a t i v e f e r m e n t e r t e m p e r a t u r e l e v e l d u r i n g normal t h e r m o p h i l i c f e r m e n t a t i o n o f hog waste. The f e r m e n t e r t e m p e r a t u r e was r e g u l a t e d by c o n t r o l l i n g t h e amount o f e l e c t r i c power r e a c h i n g t h e h e a t e r e l e m e n t s . D u r i n g t h e i n i t i a l s t a g e o f t h e ex p e r i m e n t when a s t e e p r i s e i n t e m p e r a t u r e up t o 65°C was d e s i r e d th e power was u n i n t e r r u p t e d . Once t h e d e s i r e d t e m p e r a t u r e o f 65°C was reached the power was s u p p l i e d t o the h e a t e r s i n s m a l l p u l s e s . The f r e q u e n c y and s t r e n g t h o f t h e s e p u l s e s was r e g u l a t e d by a p r o p o r t i o n a l c o n t r o l l e r i n o r d e r t o m a i n t a i n t h e t e m p e r a t u r e a t 6.5° C + 3°C. A c i rcu i t d iagram f o r t h i s c o n t r o l l e r i s i n c l uded i n the append f e e s . - 43 -c. Power Measurement The amount o f power r e q u i r e d f o r maintenance o f t h e t e m p e r a t u r e d u r i n g t h e s e e x p e r i m e n t s was measured u s i n g a k i l o w a t t - h o u r (Kwhr) meter. T h i s i s t h e same t y p e o f meter used by t h e U t i l i t y Company t o measure h o u s e h o l d c o n s u m p t i o n o f power. Readings were t a k e n a t l e a s t once a day w i t h t h e t i m e o f day, f e r m e n t e r t e m p e r a t u r e and Kwhrs b e i n g r e c o r d e d . These f i g u r e s were then used t o compute t h e amount o f heat energy i n B r i t i s h Thermal U n i t s (B.T.U.) r e q u i r e d by t h e h e a t e r elements under the v a r y i n g c o n d i t i o n s o f a e r a t i o n and a g i t a t i o n . To c o n v e r t power consumption i n Kwhrs t o heat energy i n B.T.U. a m u l t i p l y i n g f a c t o r o f 3413 B.T.U./Kwhr was used. The r e s u l t from t h i s c a l c u l a t i o n was then d i v i d e d by t h e e l a p s e d t i m e ( h r s . ) t o o b t a i n B.T.U./hr. The number o f K i l o w a t t s used o v e r a g i v e n t i m e p e r i o d ( T j - ^ ) w a s d e t e r m i n e d by: A T " BT 1 *2 meter r e a d i n g (Kwhrs) a t t i m e T^ meter r e a d i n g (Kwhrs) a t t i m e 1^ E x p e r i m e n t a l C o n d i t i o n s where: A T  1 1 BT 2 d. - hk -i . No A g i t a t i o n - No A e r a t i o n Under c o n d i t i o n s o f no a g i t a t ion-and no a e r a t i o n i t i s p o s s i b l e t h a t a t e m p e r a t u r e g r a d i e n t c o u l d form between the h e a t e r s and the t e m p e r a t u r e probe. To pr e v e n t such a g r a d i e n t from f o r m i n g t h e m i x e r was s w i t c h e d on f o r a s h o r t p e r i o d o f time t o draw the warmer wa t e r up from t h e bottom o f the tank. T h i s a c t i o n was r e p e a t e d a t i n t e r v a l s t h r o u g h o u t t h e day. The t e m p e r a t u r e i n th e f e r m e n t e r f i r s t reached 65°C + 3°C on November 18. For the next s e v e n t y - t w o h o u r s , t h e tem p e r a t u r e was m a i n t a i n e d a t t h i s l e v e l w i t h no a g i t a t i o n o r a e r a t i o n p r o v i d e d , e x c e p t as noted above. The f i g u r e s o b t a i n e d d u r i n g t h i s t i m e were used as a b a s i s f o r comparison w i t h t he ex p e r i m e n t s which f o l l o w e d . i i . Agi t a t i o n To i n v e s t i g a t e t h e e f f e c t o f m e c h a n i c a l energy from a g i t a t i o n on th e energy r e q u i r e m e n t f o r maintenance o f t e m p e r a t u r e , a g i t a t i o n was begun on November 21 and c o n t i n u e d f o r a p e r i o d o f one-hundred and one hou r s . Throughout t h i s t i m e p e r i o d t h e t e m p e r a t u r e remained a t 65°C+ 3°C i i i . A g i t a t i o n and A e r a t i o n The combined e f f e c t o f a g i t a t i o n p l u s a e r a t i o n on t h e energy r e q u i r e d f o r t e m p e r a t u r e maintenance was de t e r m i n e d - h5 -by c o n t i n u i n g t h e a g i t a t i o n and s u p p l y i n g compressed a i r a t normal l e v e l s o f 11.5 t o 14 l i t r e s / m i n u t e . Readings were t a k e n o v e r a p e r i o d o f f o r t y - n i n e hours whi1e t h e t e m p e r a t u r e remained a t 65°C + 3°C. i v . A e r a t i o n To s t u d y t h e e f f e c t o f a e r a t i o n by i t s e l f on t h e energy r e q u i r e m e n t t h e m i x e r was s w i t c h e d o f f and a e r a t i o n was c o n t i n u e d a t t h e p r e v i o u s l e v e l s . Readings were o b t a i n e d o v e r a p e r i o d o f n i n e t y h o u r s . v. D e t e r g e n t Foam v s . S t y r o f o a m as I n s u l a t i o n At the c o n c l u s i o n o f t h e a e r a t i o n o n l y phase d e s c r i b e d abovey t h e wa t e r w h i c h had been l o s t due t o e v a p o r a t i o n was r e p l a c e d by t a p w a t e r . T h i s caused t h e t e m p e r a t u r e i n t h e f e r m e n t e r t o drop t o hS°C. Once the t e m p e r a t u r e was a g a i n s t e a d y a t 65°C + 3°C the s t y r o f o a m c o v e r was removed, a e r a t i o n and a g i t a t i o n begun and a s u r f a c t a n t - - added t o produce a foam s i m i l a r t o t h a t w h i c h forms d u r i n g a normal waste f e r m e n t a t i o n . S i n c e a e r a t i o n and a g i t a t i o n were both r e q u i r e d f o r the foam t o form i t was not p o s s i b l e t o i n v e s t i g a t e t h e i r independent e f f e c t s o n l y t h e i r combined e f f e c t s . » Commercial d e t e r g e n t m a n u f a c t u r e d by t h e Mandate Roman Company o f Vancouver, B.C. - 46 -4.2.3 R e s u l t s and D i s c u s s i o n The r e a d i n g s from t h e s e e x p e r i m e n t s a r e g i v e n i n T a b l e I and p r e s e n t e d graph i c a 11 y'. i n . F i g u r e s 8 and 9. The D a i l y Maximum and Minimum Temperatures f o r t h e ambient a i r d u r i n g t he ex p e r i m e n t a r e g i v e n i n T a b l e I I . These f i g u r e s were o b t a i n e d from the F a c u l t y o f A g r i c u l t u r a l S c i e n c e s P l a n t S c i e n c e Department Weather S t a t i o n w h i c h i s l o c a t e d i n t h e same g e n e r a l a r e a as t h e Thermophi1ic U n i t . a. No A g i t a t i o n & No A e r a t i o n For the f i r s t 72 hours w h i l e the t e m p e r a t u r e was m a i n t a i n e d a t 65°C + 3°C w i t h no a g i t a t i o n o r a e r a t i o n t h e h e a t e r s expended a t o t a l o f 273,040 B.T.U.s. On an h o u r l y b a s i s t h i s i s 3792 B.T.U.s/hr. T h i s f i g u r e was used as a b a s i s f o r • comp a r i s o n w i t h the r e s u l t s o f the e x p e r i m e n t s i n v o l v i n g a g i t a t i o n , a g i t a t i o n and a e r a t i o n , and a e r a t i o n . b. A g i t a t i o n A g i t a t i o n unaccompanied by a e r a t i o n was s u p p l i e d f o r a p e r i o d o f 101 hours. The t o t a l energy r e q u i r e m e n t f o r t h i s same p e r i o d was 416,386 B.T.U.s o r 4,133 B.T.U.s/hr. T h i s i s an i n c r e a s e o f 3% o v e r t h e energy r e q u i r e m e n t w i t h no a g i t a t i o n and T a b l e 1 . D a t e Temp °C T r e a t m e n t K w - h r s T i m e h r s Kw A v g . B . T . U . / h r Nov. 17 55 No A e r a t i o n S No A g i t a t i o n Nov. 18 66 I I I I kl 24:27 1.73 Nov. 19 -- — -- -- --Nov. 20 — -- -- --Nov. 21 65 A g i t a t i o n a f t e r r e a d i n g 80 72.08 1.11 3792 Nov. 22 65 Ag i t a t ion 32 22.38 1.43 Nov. 23 65 Ag i t a t i o n 26 24.62 1.06 Nov. 24 65 65 Ag i t a t ion 11 27 6 24.33 4.59 1.11 1.31 4133 Nov. 25 65.5 A e r a t i o n a f t e r r e a d i n g 31 24.83 1.25 Nov. 26 66 A e r a t i o n S A g i t a t i o n 23 19.58 •1.17 Nov. 2~> 65 A e r a t i o n & A g i t a t i o n 27 22.92 1.18 4075 -- A g i t a t i o n o f f a f t e r r e a d i n g 9 6.92 1.30 Nov. 28 A e r a t i o n -- --Nov. 29 60 A e r a t i o n 86 45.83 1.88 6839 Nov. 30 63 A e r a t ion 53 24.59 2.16 Dec. 1 62 A e r a t i o n o f f a f t e r r e a d i n g kl 19.91 2.11 66.5 No A e r a t i o n - N o A g i t a t i o n 8 5.00 1.6 Dec. 2 66 No A e r a t i o n - N o A g i t a t i o n 20 17.17 1.16 k5 H20 Added 2 1.91 1.05 53 No A e r a t i o n - N o A g i t a t i o n 9 4.84 1.86 Dec. 3 65 I I I I 37 17-5 2.11 66 I I I I 6 4.25 1.4 66 I I I I k 2.66 1.5 Dec. k 66 Styrofoam removed Foam added A g i t a t i o n & A e r a t i o n 2k 20.25 1.18 Dec. 5 68 A g i t a t i o n S A e r a t i o n 21.5 24.42 .880 Dec. 6 66 A g i t a t i o n S A e r a t i o n 12.5 21 .25 .588 2516 Dec. 7 66 I I I I 12 26.83 .447 Dec. 8 6k I I I I 15 20.91 .717 Dec. 9 66 I I I I 25 23.25 1.07 T a b l e 1 I . Date D a i l y Maximum D a i l y Minimum C o n d i t i o n s Nov. 17 10 8 C1 ear 18 8 6 O v e r c a s t 19 9 6 P a r t l y c l o u d y 20 9 5 C1oudy 21 8 6 Cloudy 22 8 6 C1oudy 23 8 6 O v e r c a s t 2k 8 7 C1 ear 25 9 6 Cl e a r 26 7 2 C l e a r 27 5 -2 P a r t l y c l o u d y 28 5 0 P a r t l y c l o u d y 29 5 0 P a r t l y c l o u d y 30 5 1 O v e r c a s t (fog) Dec. 1 2 1 O v e r c a s t 2 3 1 O v e r c a s t 3 5 3 O v e r c a s t k 3 3 O v e r c a s t 5 3 O v e r c a s t 6 6 O v e r c a s t 7 9 8 O v e r c a s t 8 9 6 O v e r c a s t 9 7 6 O v e r c a s t 22 23 24 25 26 27 28 29 30 1 Z 3 4 5 NOVEMBER DECEMBER F I G U R E * . P O W E R R E Q U I R E M E N T S - F O R T E M P E R A T U R E M A I N T E N A N C E 1976 10 T 91 7 or O 6 X \ O 5 CO (— od 3 4 1 D L E G E N D STYROFOAM INSULATION NO AERATION NO AGITATION STYROFOAM INSULATION NO AERATION . AGITATION STYROFOAM INSULATION AERATION AGITATION STYROFOAM • INSULATION AERATION - NO AGITATION DETERGENT FOAM INSULATION AERATION AGITATION FIGURED HEAT REQUIREMENTS FOR TEMPERATURE MAINTENANCE ! M A T ' L (Ui T R A N S T E X 19 10M-S-73 No. R E Q ' D C H ' D B Y D W G . No. - 51 -no a e r a t i o n . When the s o u r c e s o f e r r o r i n t h i s e x p e r i m e n t such as the use o f water i n s t e a d o f hog waste and t h e p o s s i b l e e f f e c t o f ambient t e m p e r a t u r e a r e c o n s i d e r e d t h e 3% i n c r e a s e i n t h e energy r e q u i r e m e n t may not be s i g n i f i c a n t . However, i t s h o u l d be noted t h a t i t was an i n c r e a s e and not a d e c r e a s e w h i c h i n d i c a t e s t h a t t he energy i n p u t from the m e c h a n i c a l a c t i o n o f a g i t a t i o n i s n e g l i g i b l e . c. A e r a t i o n and A g i t a t i o n The combined e f f e c t o f a e r a t i o n and a g i t a t i o n s r a i s e d t he energy r e q u i r e m e n t from t h e b a s i c l e v e l o f 3792 B.T.U. / h r . to 4075 B.T.U. S/hr. T h i s r e p r e s e n t s an i n c r e a s e o f 7-5%. As was the ca s e w i t h a g i t a t i o n t he amount o f the i n c r e a s e may not be s i g n i f i c a n t however t h e f a c t t h a t i t was an i n c r e a s e and not a d e c r e a s e i s i m p o r t a n t . d. A e r a t i o n The a c t i o n o f a e r a t i o n i n c r e a s e d t he energy r e q u i r e m e n t t o 6839 B.T.U. / h r . wh i c h r e p r e s e n t s an i n c r e a s e o f 80% o v e r the r e q u i r e m e n t w i t h no a g i t a t i o n o r a e r a t i o n . T h i s i n c r e a s e was p a r t l y due t o t h e f a c t t h a t a gap e x i s t e d between the s t y r o f o a m - 52 -and t h e m i x e r s h a f t . The incoming a i r f l o w caused the wa t e r t o bubble t h r o u g h t h i s gap and a c r o s s the top s u r f a c e o f t h e s t y r o f o a m w h i c h g r e a t l y i n c r e a s e d the heat l o s s e s due t o e v a p o r a t i o n and c o n t a c t w i t h ambient o u t s i d e t e m p e r a t u r e s . However, o t h e r r e s e a r c h e r s (Matsch and D r n e v i c h 1977) have s t a t e d t h a t t h e g r e a t e s t heat l o s s i n an a e r a t i o n system i s w i t h the a e r a t i n g gas. A e r a t i o n by i t s e l f would have the e f f e c t o f i n c r e a s i n g the amount o f energy r e q u i r e d f o r maintenance o f th e f e r m e n t e r t e m p e r a t u r e . e. Foam v s . S t y r o f o a m The use o f a d e t e r g e n t foam as i n s u l a t i o n f o r th e top of the f e r m e n t e r reduced the energy r e q u i r e m e n t t o 2516 B.T.U. / h r . T h i s i s a r e d u c t i o n o f 51% from t h e b a s i c c o n d i t i o n o f no a g i t a t i o n o r a e r a t i o n ' w i t h s t y r o f o a m i n s u l a t i o n . As p r e v i o u s l y noted i t was n e c e s s a r y t o p r o v i d e both a g i t a t i o n and a e r a t i o n i n o r d e r f o r t h e foam t o form. When compared t o t h e energy r e q u i r e m e n t f o r s t y r o f o a m w i t h a e r a t i o n and a g i t a t i o n t h e r e i s a 6h% r e d u c t i o n . These r e d u c t i o n s i n d i c a t e t h a t an a r t i f i c i a l d e t e r g e n t foam c o v e r i n g (which b e t t e r ) - 53 -a p p r o x i m a t e s the p h y s i c a l s t a t e o f t h e n a t u r a l d i g e s t i o n foam than s t y r o f o a m ) does i n f a c t p r o v i d e b e t t e r i n s u l a t i o n f o r the top o f t h e f e r m e n t e r than does s t y r o f o a m ; 4.3 F e e d i n g T r i a l 4.3-1 I n t r o d u c t i o n I t has been demonstrated t h a t compared t o u n t r e a t e d manure, a e r o b i c a l l y t r e a t e d swine waste from an o x i d a t i o n d i t c h has an enhanced p r o t e i n v a l u e (Holmes 1971, Harmon 1975). F u r t h e r work by Harmon £ Day r e s u l t e d i n a system f o r r e f e e d i n g t h e l i q u i d from an o x i d a t i o n d i t c h as a re p l a c e m e n t f o r H^O, w i t h an i n c r e a s e i n r a t e o f g a i n and f e e d c o n v e r s i o n e f f i c i e n c y (Harmon & Day 1974, Harmon &„ Day 1975) • The p r o d u c t from t h e r m o p h i l i c f e r m e n t a t i o n o f swine waste a l s o has an enhanced p r o t e i n v a l u e o v e r t h a t o f raw manure (Shepherd 1973, Bragg e _ t a j _ . 1975). To-date f e e d i n g t r i a l s w i t h t h i s p r o d u c t have been c o n f i n e d t o u s i n g t h e d r i e d p r o d u c t i n animal and p o u l t r y r a t i o n s ( K i t t s e t aJL 1974, Bragg et_a_l_. 1975, Kwok 1975). The purpose o f t h i s s t u d y was t o a s s e s s the a c c e p t a b i l i t y and p o t e n t i a l p e rformance o f T h e r m o p h i l i c P r o c e s s Mixed L i q u o r (TPML) when f e d as a l i q u i d t o young p i g s . 4.3.2 M a t e r i a l s and Methods - 5k -A t o t a l o f f o r t y - o n e p i g l e t s from f o u r 1 i t t e r s were used f o r t h i s s t u d y . They were d i v i d e d i n t o f o u r pens A, B, C, and D. The f o u r pens w e r e : f u r t h e r d i v i d e d i n t o two groups. Group I formed by.pens A + C had a t o t a l o f 20 a n i m a l s , Group II formed by pens B + D had a t o t a l o f 21 a n i m a l s . At the b e g i n n i n g o f t h e t r i a l t h e a n i m a l s were 28 days o l d and t h e i r a v e r a g e w e i g h t was 11 Kg. The t r i a l l a s t e d f o r a p e r i o d o f 28 days w i t h the p i g s b e i n g weighed e v e r y two weeks. Both Groups were f e d d r y fee d ad l i b i t u m . U.B.C.'s B2B r a t i o n was used t h r o u g h o u t t h e t r i a l . T h i s r a t i o n i s f o r m u l a t e d by a commercial f e e d company t o c o n t a i n a p p r o x i m a t e l y ]6% Crude P r o t e i n . Group I s e r v e d as t h e c o n t r o l group, t h e y were a l l o w e d f r e e a c c e s s t o t h e s e l f - w a t e r e r s l o c a t e d a t t he r e a r o f the pens. Group I I , t h e e x p e r i m e n t a l group, was s u p p l i e d w i t h TPML as a c o m p l e t e r e p l a c e m e n t f o r w a t e r . The s e l f - w a t e r e r s i n Group I I pens were plugged and t r o u g h s were i n s t a l l e d a t t he r e a r o f the pens. The TPML from t h e f e r m e n t e r was c o o l e d b e f o r e b e i n g fe d t o t h e a n i m a l s . P r e l i m i n a r y t r i a l s i n d i c a t e d t h a t the a n i m a l s would d r i n k t h e warm TPML but not as r e a d i l y as when i t had been a l l o w e d t o c o o l . No s o l i d s s e p a r a t i o n o r d r y i n g was a t t e m p t e d . Immediately b e f o r e p l a c i n g t he TPML i n t h e t r o u g h s i t was t h o r o u g h l y mixed t o e n s u r e t h a t any s e t t l e d s o l i d s would be p l a c e d back i n t o s u s p e n s i o n . The t r o u g h s were f i l l e d by b u c k e t s i n the morning and l a t e a f t e r n o o n , u s u a l l y a t t h e same t i m e t h a t the a n i m a l s were f e d . - 55 -4.3-3 R e s u l t s & D i s c u s s i o n There were no deaths o r s i g n s o f i l l n e s s i n e i t h e r Group I o r Group II d u r i n g o r a f t e r . t h e t r i a l . T h e . r e s u l t s shown i n T a b l e I I I a r e on a t o t a l w e i g h t g a i n / p e n b a s i s . Some o f t h e ear t a t t o o s were i11 e g i b l e and t h e r e f o r e i t was not p o s s i b l e t o r e c o r d i n d i v i d u a l w e i g h t g a i n s . An a n a l y s i s o f t h e s e r e s u l t s u s i n g t h e F t e s t showed t h a t the d i f f e r e n c e s i n w e i g h t g a i n s / p e n were not s i g n i f i c a n t l y d i f f e r e n t , i n d i c a t i n g t h a t TPML was a c c e p t a b l e as r t h e t o t a l r e placement f o r H^O f o r young p i g s i n t h i s t r i a l . These d a t a would f a l l between the two groups o f p i g s f e d o x i d a t i o n d i t c h mixed l i q u o r (ODML) by Harmon e t a l . Harmon and coworkers (1973) r e p o r t e d t h a t p i g s younger than 28 days o f age when f e d ODML grew l e s s r a p i d l y than t he c o n t r o l a n i m a l s . However, t h e s e same p i g s when f e d ODML a t 56 days o f age, grew f a s t e r than t h e c o n t r o l group. T a b l e I I I Weight ga i n (kg) Group I (H 20) Pen A 130.4 Peri C . 103-6 Avg. .... V ^ . 117-0 Group II (TPML) Pen B 86.6 Pen D 114.4 Avg. 100.5 - 56 -The a n i m a l s used i n t h i s f e e d i n g t r i a l w i t h TPML f a l l between t h e two age groups used by Harmon. S i n c e t h e r e was n o 1 s i g n i f i c a n t d i f f e r e n c e i n t h e growth between t h e c o n t r o l and t r e a t m e n t groups i t would i n d i c a t e t h a t t h i s d a t a i s : i n agreement w i t h Harmon (1973) f a l 1 i n g between t h e two age gr o u p s . Taken w i t h Harmon's e a r l i e r work (1973), t h e r e s u l t s s u g g e s t t h a t as t h e p i g g e t s o l d e r i t i s a b l e t o u t i l i z e t h e n u t r i e n t s from t h e r e c y c l e d f e e d more e f f i c i e n t l y . T h i s t r e n d can be seen i n the change i n a v e r a g e d a i l y g a i n s f o r t h e f i r s t two weeks as opposed t o t h e l a s t two weeks. The ave r a g e d a i l y g a i n per p i g i s shown i n T a b l e IV. T a b l e IV Average D a i l y G a i n (Kg) 0-14 days 14-28 days Group I (H,0) Pen A .335 .441 Pen C .446 .478 Avg. .390 .459 Pen B .271 .289 Pen D .320 .496 Avg. .296 • 392 Group I I (TPML) Group I the c o n t r o l group i n c r e a s e d t h e i r a v e r a g e d a i l y g a i n t o .459kg/day f o r t h e f i n a l two weeks from .390 kg/day f o r the f i r s t two weeks. T h i s i s an i n c r e a s e o f 17%.Group I I t h e TPML group i n c r e a s e d t h e i r - 57 -a v e r a g e d a i l y g a i n t o -392 kg/day from .296 kg/day an i n c r e a s e o f 32%. Th i s f a c t when cons i d e r e d wi t h H a r m o n s • r e s u l t s s u p p o r t s t h e t h e o r y t h a t as the animal g e t s o l d e r i t s d i g e s t i v e system i s a b l e t o u t i l i z e t h e n u t r i e n t s from t h e r e c y c l e d f e e d more e f f i c i e n t l y . T h i s i n c r e a s e i n e f f i c i e n c y i s most p r o b a b l y due t o t h e e s t a b l i s h m e n t of a p o p u l a t i o n o f m i c r o f l o r a i n t h e g a s t r o i n t e s t i n a l t r a c t w h i c h i s a b l e t o u t i l i z e t h e TPML more e f f i c i e n t l y . T r i a l s u s i n g o l d e r a n i m a l s a r e r e q u i r e d t o f u r t h e r e x p l o r e t h e p o s s i b i l i t i e s o f u s i n g TPML as a t o t a l H^O re p l a c e m e n t f o r p i g s . The r e s u l t s o f t h i s f e e d i n g t r i a l show t h a t T h e r m o p h i l i c P r o c e s s Mixed L i q u o r (TPML) can be used as a re p l a c e m e n t f o r wa t e r i n t h e d i e t o f p i g s between t h e ages o f 28 and 56 days w i t h no a p p a r e n t d e t r i m e n t a l e f f e c t on t h e i r h e a l t h o r r a t e o f g a i n . h.k C o m m e r c i a l - S i z e A p p l i c a t i o n k.k.\ I n t r o d u c t i o n As was p r e v i o u s l y mentioned the T h e r m o p h i l i c R e s e a r c h U n i t a t U.B.C. has a t o t a l o p e r a t i n g c a p a c i t y o f .600 g a l l o n s . A l t h o u g h t h i s i s adequate f o r p r e l i m i n a r y r e s e a r c h a l a r g e r u n i t would e n a b l e a w i d e r range o f e x p e r i m e n t s t o be c a r r i e d o u t . In a d d i t i o n , commercial s i z e o p e r a t i o n s would r e q u i r e l a r g e r f e r m e n t e r s f o r many s p e c i f i c a p p l i c a t i o n s . For t h e s e r e a s o n s a " s e a l i n g - u p " o f the f e r m e n t e r s i z e was proposed and p l a n n e d . I t was c o n v e n i e n t - 58 -t h a t a new swine o p e r a t i o n was b e i n g planned by Kriwokon E n t e r p r i s e s f o r i n s t a l l a t i o n a t P o r t A l b e r n f on Vancouver I s l a n d . The r e s e a r c h group a t U.B.C. was approached c o n c e r n i n g the p o s s i b i l i t y o f u t i l i z i n g t h e r m o p h i l i c f e r m e n t a t i o n t o h a n d l e the wastes from t h e new o p e r a t i o n . For t h i s new o p e r a t i o n , i t was d e c i d e d t o i n c o r p o r a t e t h e " s e a l i n g - u p " o f t h e f e r m e n t e r s w i t h a waste h a n d l i n g system which would i n c l u d e r e f e e d i n g o f the p r o d u c t . h.k.2 L o c a t i o n & Layout o f Farm Kriwokon E n t e r p r i s e s i s s i t u a t e d on a p p r o x i m a t e l y seven a c r e s o f land near P o r t A l b e r n i , B.C. Feed c r o p s a r e not grown on t h e farm because o f the s m a l l land a r e a , a l l t h e f e e d i s purchased from a commercial f e e d company. There i s , t h e r e f o r e , no c r o p l a n d on w h i c h t o sp r e a d t h e u n t r e a t e d manure nor i s t h e r e a s u f f i c i e n t a r e a f o r a lagoon w i t h an i r r i g a t i o n system. In s i t u a t i o n s such as t h i s a t h e r m o p h i l i c t r e a t m e n t system w i t h r e f e e d i n g o f the p r o d u c t has s e v e r a l a d v a n t a g e s : a. The f e r m e n t e r s do not r e q u i r e a l a r g e l a n d a r e a f o r i n s t a l l a t i o n . F or t h i s p a r t i c u l a r i n s t a l l a t i o n t h e e n t i r e u n i t i n c l u d i n g f e r m e n t e r s , p r o d u c t t a n k , c o n t r o l house, pumps and compressors can be p l a c e d on a 13 f t . x 41 f t . c o n c r e t e s l a b . - 59 -b. The p r o d u c t from the f e r m e n t a t i o n can be r e c y c l e d and : t h e r e f o r e does not r e q u i r e an i r r i g a t i o n system o r f i e l d s p r e a d i n g f o r f i n a l d i s p o s a l c. As a r e s u l t o f t h e h i g h t e m p e r a t u r e f e r m e n t a t i o n t h e : p r o d u c t i s p a s t e u r i z e d . d. The p r o d u c t from the f e r m e n t a t i o n has an enhanced p r o t e i n v a l u e and when r e c y c l e d as a f e e d can r e s u l t i n a r e d u c t i o n i n t h e amount o f commercial f e e d r e q u i r e d w i t h o u t s i g n i f i c a n t l y a f f e c t i n g t h e r a t e o f g a i n . The purpose o f t h i s new o p e r a t i o n i s t o produce and r a i s e w e i n e r p i g s f o r t h e f e e d e r hog market. The e s t i m a t e d y e a r l y p r o d u c t i o n i s 6,000 w e i n e r p i g s and p l a n s e x i s t f o r f u t u r e e x p a n s i o n t o a c o m p l e t e f a r r o w t o f i n i s h o p e r a t i o n . At t h e p r e s e n t t i m e , t h e b r e e d i n g herd c o n s i s t s o f 316 sows and 12 b o a r s . In a d d i t i o n , up t o 360 w e i n e r p i g s may be p r e s e n t a t any one t i m e . The a n i m a l s a r e housed i n two s e p a r a t e b u i l d i n g s . F i g u r e 10 shows the g e n e r a l l a y o u t o f the b u i l d i n g s and t h e i r d i m e n s i o n s . Both b u i l d i n g s a r e aluminum sheathed s t r u c t u r e s e r e c t e d on c o n c r e t e f o u n d a t i o n s . I n s u l a t i o n i s p r o v i d e d by s h e e t s o f r i g i d p o l y u r e t h a n e foam on t h e w a l l s and c e i l i n g s . The g e s t a t i n g sows a r e kept i n the l a r g e r b u i l d i n g a l o n g w i t h the b o a r s . The smal1er bui 1 d i n g i s d i v i d e d i n t o t h r e e s e c t i o n s . - 60 -BREEDING/GESTATION FARROWING/WEINfR EARN BARN 170 SUMP THERMOPHILIC TREATMENT -PLANT -166.5 -40'- -35'- r •40' F I G U R E : 10 L A Y O U T O F P O R T A L B E R N I O P E R A T I O N - 61 -The f a r r o w i n g a r e a w i t h s i x t y i n d i v i d u a l f a r r o w i n g c r a t e s i s l o c a t e d i n t h e w e s t e r n ha 1f o f the b u i 1 d i n g ; The e a s t e r n h a l f of t h e b u i l d i n g i s l a r g e l y o c c u p i e d by t h e pens f o r the w e i n e r p i g s . These pens a r e d i v i d e d i n t o t h r e e s e c t i o n s w i t h 6 pens t o a s e c t i o n f o r a t o t a l o f 18 pens. The s m a l 1 ' a r e a ' r e m a i n i n g • a t the extreme e a s t e r n end o f the b u i l d i n g i s used as an o f f i c e , d r e s s i n g room a r e a . 4.4.3 Waste C o l l e c t i o n System The wastes from both b u i l d i n g s a r e c o l l e c t e d by a system o f g u t t e r s beneath t h e f l o o r s . These g u t t e r s a r e c o v e r e d by metal g r a t i n g s . The manure f a l l s o r i s t r a m p l e d t h r o u g h t h e s e metal g r a t i n g s i n t o t h e g u t t e r s . Each g u t t e r has a f l u s h tank w h i c h p e r i o d i c a l l y f l u s h e s the wastes from t h e g u t t e r i n t o a sump. The use o f f l u s h t a n k s and g u t t e r s f o r the c o l l e c t i o n o f swine wastes has been c o v e r e d i n s e v e r a l papers ( B r o d i e 1975, Koch 1975, M i l l e r s Hansen 1973, Koel 1 i l.ar et_ aJL 1972 and Smi t h et_ aj_. 1971). In both b u i l d i n g s t h e g u t t e r s s l o p e from e i t h e r end towards t h e c e n t r e o f t h e b u i l d i n g . A l l o f t h e g u t t e r s have a 3% s l o p e (4" i n 10') i n c l u d i n g t h e g u t t e r s which c r o s s t h e c e n t r e o f t h e b u i l d i n g s and empty i n t o the sump. The g e s t a t i o n barn has a t o t a l o f seven g u t t e r s , f o u r a c r o s s t h e w e s t e r n end and t h r e e a c r o s s the e a s t e r n end. Each o f t h e s e g u t t e r s has a 250 g a l l o n f l u s h t a n k . The f a r r o w i n g a r e a has f o u r g u t t e r s each equipped w i t h a 250 g a l l o n f l u s h t a n k . The w e i n e r a r e a has t h r e e l a r g e waste - 62 -g u t t e r s , one l o c a t e d beneath each o f the t h r e e s e c t i o n s o f pens. These g u t t e r s a r e a p p r o x i m a t e l y 10 f t . wide and each one i s f l u s h e d from a 1,000 g a l l o n t a n k . A l l o f t h e s e t a n k s a r e f l u s h e d t w i c e d a i l y . The wastes from both b u i l d i n g s a r e c a r r i e d . t o t h e sump which i s l o c a t e d between.the two b u i I d i n g s . F i g u r e 11 i s a l o n g i t u d i s e c t i o n o f the sump showing t h e b a f f l e s l o c a t e d a t t h e two i n l e t s . The purpose o f t h e s e b a f f l e s i s t o d i r e c t t he incoming w a s t e s . t o w a r d s the bottom o f t h e sump. The s o l i d wastes s e t t l e t o t h e bottom o f the sump and the l i q u i d remains a t t h e t o p . The l i q u i d i s re - u s e d as f l u s h water and t h e s o l i d s a r e pumped from t h e sump i n t o t he t h e r m o p h i l i c t r e a t m e n t u n i t . The top l a y e r o f the l i q u i d i s a e r a t e d b e f o r e b e i n g r e - u s e d as f l u s h w a t e r . k.k.k E s t i m a t e d L e v e l s o f Waste P r o d u c t i o n Because the hog o p e r a t i o n was not y e t i n o p e r a t i o n t h e l e v e l o f waste p r o d u c t i o n i n each s e c t i o n had t o be e s t i m a t e d i n o r d e r t o d e s i g n t h e t r e a t m e n t system. Waste p r o d u c t i o n was c a l c u l a t e d on t h e b a s i s o f one g a l l o n o f waste produced per 100 l b s . 1iveweight per day. T h i s f i g u r e and t h o s e used f o r animal w e i g h t s were o b t a i n e d from , (OvercashJHumen i k and D r i g g e r s 1975). The e s t i m a t e d l e v e l s o f waste p r o d u c t i o n i n g a l l o n s / d a y c a l c u l a t e d f o r each s e c t i o n a r e shown below. Each i n d i v i d u a l e s t i m a t e was made f o r t he maximum p o p u l a t i o n i n each s e c t i o n . - 63 -INLET ' F IGURE: 11 L O N G I T U D I N A L S E C T I O N O F S U M P - 64 -A. F a r r o w i n g Barn 1 . F a r r o w i r i g Area 60 sows and l i t t e r s @ 374 l b s . ea. 224 g a l s . 2.. Weiner Area 360 w e i n e r @ 40 l b s ea. 144 g a l s . B. G e s t a t i o n Barn 1. G e s t a t i n g Sows 257 sows @ 275 l b s . ea. 707 g a l s . 2.. Boars 12 boars @ 350 l b s . ea. v 42 g a l s . T o t a l : 1,117 g a l s . The t o t a l e s t i m a t e d p r o d u c t i o n o f waste per day from both barns i s 1,117 g a l l o n s . The t h e r m o p h i l i c t r e a t m e n t p l a n t was d e s i g n e d u s i n g t h i s f i g u r e . 4.4.5 Waste Treatment System A f l o w c h a r t f o r t h e t r e a t m e n t system i s shown i n F i g u r e 12. For the P o r t A l b e r n i o p e r a t i o n s i x f e r m e n t e r s a r e used, a r r a n g e d i n two banks o f t h r e e each. Each f e r m e n t e r has a c a p a c i t y o f 1,000 g a l l o n s : making t h e t o t a l c a p a c i t y 6,000 gal Ions. The f e r m e n t e r s a r e a l l made from f i b r e g l a s s w i t h a o n e - i n c h t h i c k l a y e r o f u r e t h a n e f o r i n s u l a t i o n . D e t e n t i o n time i s f i v e t o . s i x days w h i c h w i l l e n s u r e an a c c e p t a b l e l e v e l o f pathogen ki11. The complete - 65 -Sump F l u s h Tanks Aq i t a t i on Thermoph i 1 i c F e rmenters A e r a t i on C o o l i ng Coi 1 IMake-up Water P r o d u c t Tank [FIGURE: 12 F L O W C H A R T F O R C O M M E R C I A L T R E A T M E N T ] UNIT - 66 -t r e a t m e n t p l a n t i s shown i n F i g u r e 13- Some minor d i f f e r e n c e s may e x i s t between t h e .'id raw i ng and t h e a c t u a I i n s t a l l a t i o n . The s u p p l y tank has been r e p l a c e d by t h e sump whi c h i s i n c r e a s e d i n s i z e and p l a c e d underground. A l s o . a e r a t i o n o f t h e f e r m e n t e r s , i s a c c o m p l i s h e d by s p a r g e r s p l a c e d i n t h e bottom o f t h e f e r m e n t e r s ; t h e s e a r e not shown i n t h e d i a g r a m - F i g u r e ]k i s a photograph o f one o f t h e s e l a r g e f e r m e n t e r s showing i t s r e l a t i v e s i z e . The m i x e r s f o r t h e s e new f e r m e n t e r s a r e d r i v e n by 5 H.P. motors and a r e o f the same g e n e r a l d e s i g n as t h o s e d e s c r i b e d e a r l i e r i n t h i s paper. The s h a f t s and p r o p e l l e r s a r e b a l a n c e d t o p r e v e n t e x c e s s i v e v i b r a t i o n and premature b e a r i n g f a i l u r e . As can be seen i n F i g u r e s 13 and 14, the tops o f these l a r g e f e r m e n t e r s a r e not open t o the atmosphere as they a r e w i t h t h e s j n a l l e r t a n k s a t U.B.C. B a f f l e s a r e used t o a i d i n t h e m i x i n g and a r e p l a c e d i n the same p o s i t i o n as they a r e i n the s m a l l e r U.B.C. t a n k s . Compressed a i r f o r each f e r m e n t e r i s s u p p l i e d by a s i n g l e compressor l o c a t e d i n t h e c o n t r o l house. Each f e r m e n t e r i s equ i p p e d w i t h an a i r f l o w val.ve f o r c o n t r o l l i n g the amount o f a i r f l o w i n g through t h e s p a r g e r . Thermocouples a r e mounted i n each f e r m e n t e r i n o r d e r t o m o n i t o r the t e m p e r a t u r e o f the c o n t e n t s d u r i n g f e r m e n t a t i o n . A l l the main c o n t r o l boxes f o r the pumps,mixers and compressor a r e l o c a t e d i n t h e c o n t r o l shed. N o r t h e r n P u r i f i c a t i o n Systems L t d . , the company which manufactured the f e r m e n t e r s , a l s o s u p p l i e d a l l o f t h e n e c e s s a r y p i p i n g , pumps, e l e c t r i c a l j u n c t i o n boxes, compressor a i r l i n e s e t c . as a package i n s t a l l a t i o n . - 67 -FIGURE 13 IS IN BACK POCKET SUMS - \3 Lo "x -^3~ \ N LET FR£?fc* S U N * ? * ' . ; F K o ^ A P^ LE-D L O O P S 7-p" V- O DuPLtX R e PLAN VIEW ) « FtovVEK. T p . l A v x e g : ^ ^ P L > \ P 5 V P E r o ^ i e s C C W T R O W TO A.IT2.: F u O w ^ — -S U P P L Y TO ^£f>croas 7 €>D &» tv\p ^ e R v i c e .11, I, 1 ,l' „— Pn p>e: CJ*J Rf>v.. i _ j. JL.—P > iOdtl''- «5*5KL •TteVV.Pe«RjK*t"OR,«v. C c w T T S O L u i L T S . 0*4 ... ^- 4 " p \ P i H G - ©LWL IRON c:«?. v/>5> G R O U T T*sV4U.-fe \H- P u ^ c . s . ELEVATION VIEW / , W.-U, 4"CVK,.FU>W T ~ Ruw 2" R£TURW U N £ To B O T T O M O V T i K M w ; T O C o O t Rus -A-V.-1 ^ 7 2 3 1 P 3 R E c y c u PUN\? )/3WP/llSV C E P 3 2 ^ 2.2: 1 2 0 1 9 \ / s 1 M A \ N f-owut Rjt-fc-i ^ Dtscowviurr Po.v.C^ K-2*^  \7 ! C O N T R O L P^NVE.V_ 1 5 6 6 13 \"l 6 II 6 .16 2 . L E v £ u S i T C n 9 \ 6 1 P i euPV'i-y P U M P l/a H P / I I S V Sit D - 50 7 1 F£.feD P£>i f^UKAp PUVAP <c 6 vA'iyrA2. M s S - 2 " Cow »4e«rnov4 piPiuc? ( A © ^ - ^ 4 " C o M M S . C T i O V 4 PtV'i.MCb ' 3 1 2. 6 R E ^ C T O R - I O O O J ^ M . F/ O >vi^ ,u. I I " S U P p L y Tfcsisl^- 7 5 0 C3KU / ^/«S-item recrd rev. DESCRIPTION REFERENCE BIONOTHERM SYSTEM S C A L E : I -O " A P P R O V E D B Y D R A W N B Y 14 VC . D A T E : J U U C 8 / 7 A NPS Sewage Treatment System Northern Purif icaition Services Ltd., 139 Riverside Drive, North Vancouver. D R A W I N G N U M B E R BT.01.01 /d1 A| r r z e K N . MASTER F O R M 1 B 8 M P PRINTCD O N DIETZOEN 1 S B M A O E P R O O F V E L L U M U4c 7 - 68 -FIGURE:14 1000 G A L L O N F E R M E N T E R - 69 -A standby e l e c t r i c a l g e n e r a t o r i s a l s o p r o v i d e d i n . case o f power f a i 1 u r e . Once t h e p l a n t i s i n o p e r a t i o n and s t e a d y s t a t e c o n d i t i o n s have been reached an e s t i m a t e d t o t a l o f 1,117 g a l l o n s o f waste per day wi11 be pumped i n t o ' t h e f i r s t f e r m e n t e r o f each bank. T h i s w i l l cause.an e q u a l amount o f s l u r r y t o f l o w from t h e f i r s t f e r m e n t e r t o the s e c o n d , from t h e second t o the t h i r d and from t h e t h i r d f e r m e n t e r t o the p r o d u c t tank. B a f f l e s a r e used t o p r e v e n t t h e f r e s h w a s t e from f l o w i n g s t r a i g h t t h r o u g h i n t o t h e p r o d u c t tank. The f l o w from one f e r m e n t e r to the next i s a i d e d by g r a v i t y s i n c e the o u t l e t . f r o m each f e r m e n t e r i s one i n c h h i g h e r than t h e i n l e t t o the a d j a c e n t f e r m e n t e r . The l i q u i d w hich f l o w s i n t o the p r o d u c t tank w i l l be r e c y c l e d t o t h e a n i m a l s as a replacement f o r w a t e r . T a b l e V shows t h e D a i l y Water Requirements f o r swine. T a b l e V. D a i l y Water Requirement per A n i m a l * Body We i g h t (1b) Imper ia1 Ga1 Ions 30 .50 60-80 .70 75-125 1.70 . 200-380 1 .2 -3 .0 Pregnant Sows 3.0-3-7 L a c t a t i n g Sows 4 0-5 0 M a n i t o b a Department o f A g r i c u l t u r e - Hog Manual. - 70 -From t h e s e f i g u r e s the t o t a l d a i l y r e q u i r e m e n t f o r the o p e r a t i o n a t P o r t A l b e r n i was c a l c u l a t e d as f o l l o w s . A. F a r r o w i n g Barn 1. F a r r o w i n g Area 60 sows @ 4.5 g a l l o n s ea. 270 g a l . 2. Weiners 360 a n i m a l s 40 -50 l b s . ea . § . 6 0 g a l . 216 g a l s . B. G e s t a t i o n Barn 1. Pregnant Sows 257 a n i m a l s @ 3-5 g a l l o n s ea. 900 g a l s . 2. Boars 12 a n i m a l s @ 4.5 g a l l o n s ea. 54 g a l s . T o t a l : 1,440 g a l s . The t o t a l w a t e r r e q u i r e m e n t o f 1,440 g a l l o n s i s more than t h e d a i l y p r o d u c t i o n o f 1,117 g a l l o n s o f TPML t h e r e f o r e an a d d i t i o n a l 323 g a l l o n s o f w a t e r w i l l be r e q u i r e d per day t o meet t h i s r e q u i r e m e n t . - 71 -The TPML w i l l b e l e a v i n g t he f e r m e n t e r a t a t e m p e r a t u r e o f 60-65°C. T h e r e f o r e , b e f o r e b e i n g r e c y c l e d t h i s p r o d u c t w i l l have to be c o o l e d . The a d d i t i o n a l water r e q u i r e d w i l l h e l p i n t h i s r e s p e c t and a c o o l i n g c o i 1 can be i n s t a l l e d i n t h e p r o d u c t t a n k i t s e l f i f n e c e s s a r y . From the p r o d u c t tank the l i q u i d i s pumped t o tr o u g h s l o c a t e d i n the pens. Any e x c e s s o r s p i l l a g e f a l l s i n t o t h e g u t t e r s and i s r e t u r n e d t o the sump. A t the t i m e o f w r i t i n g , t h i s t r e a t m e n t system was s t i l l under c o n s t r u c t i o n and development and had not reached i t s f u l l p o t e n t i a l . F i g u r e 15 i s a graph o f one o f the p r e l i m i n a r y f e r m e n t a t i o n s t h a t was c a r r i e d o ut i n t h e l a r g e f e r m e n t e r s . For t h i s f e r m e n t a t i o n t h e f e r m e n t e r was o n l y t w o - t h i r d s f u l l and t h e r e were r e p e a t e d problems w i t h t h e a i r s u p p l y and m i x e r s due t o an in a d e q u a t e e l e c t r i c a l c i r c u i t . However, even under t h e s e a d v e r s e c o n d i t i o n s a maximum t e m p e r a t u r e o f 75°C was o b t a i n e d . T h i s i n d i c a t e s t h a t t h e c a p a c i t y o f t h e f e r m e n t e r may be i n c r e a s e d from 300 g a l l o n s t o 1,000 g a l l o n s w i t h no a d v e r s e e f f e c t s . Subsequent f e r m e n t a t i o n s have been s u c c e s s f u l l y c a r r i e d o u t u s i n g t h e s e l a r g e f e r m e n t e r s , however, no • . f u r t h e r d a t a i s ava i 1 a b l e a t t h i s t i m e . 4.5 T h e r m o p h i l i c A e r o b i c F e r m e n t a t i o n o f Lignocel 1u 1ose 4.5.1 I n t r o d u c t i o n The i d e a o f u s i n g m a t e r i a l s such as wood as a fee d s o u r c e f o r d o m e s t i c a n i m a l s i s not new (Beckman, 1915; Haber l a n d t 1915; and Honcamp, 1931). The l i t e r a t u r e i n t h i s a r e a i s e x t e n s i v e 1 1 1 1 1 1 1 1 \ * , 1 I , 9 1 0 1 1 1 2 13 14 15 16 17 18 19 2 0 21 22 TIME (DAYS* FIGURE: 15 FERMENTATION USING 1000GAL. F E R M E N T E R - 73 -and has been c o v e r e d i n s e v e r a l r e v i e w a r t i c l e s ( K i t t s and S h e l f o r d 1968; K i t t s e t aJL , 1969; K i t t s and K r i s h h a m u r t i 1976). The prime o b s t a c l e i n u s i n g wood o r wood b y - p r o d u c t s i s t h e c h e m i c a l c o m p l e x i t y o f the r e l a t i o n s h i p between l i g n i n and e e l 1 u l o s e (Huffman et_ a_L , 1971)' F r e e c e l l u l o s e can be u t i l i z e d by r u m i n a n t a n i m a l s as a f e e d s o u r c e because o f the m i c r o b i a l p o p u l a t i o n p r e s e n t i n t h e rumen, a n o t h e r p o s s i b i l i t y would be m i c r o b i a l f e r m e n t a t i o n o f the c e l l u l o s e i n t o a p r o d u c t w h i c h c o u l d be used by m o n o g a s t r i c a n i m a l s ( E l g e e 1975). T h e r m o p h i l i c o r g a n i s m s , both a n a e r o b i c s p e c i e s and a e r o b i c s p e c i e s , a r e c a p a b l e o f decomposing c e l l u l o s e (Gaughran,1947; K e l l e r m a n and McBeth 1912; and Murray 1944), but b e f o r e t h i s can t a k e p l a c e t h e l i g n i n must be removed ( P o i n c e l o t and Day 1973)-C l a r k e (1938) d e s c r i b e d the r e l a t i o n s h i p between c e l l u l o s e and l i g n i n as b e i n g s i m i l a r t o a r e i n f o r c e d c o n c r e t e w a l l where the c e l l u l o s e f i b r e s a r e t h e r e i n f o r c i n g rods and the l i g n i n and o t h e r c o n s t i t u e n t s r e p r e s e n t the c o n c r e t e . L i g n i n o c c u r s i n p l a n t s c h i e f l y as 1 i g n o c e l l u l o s e (Crampton and Maynard 1935). The c h e m i s t r y and b i o c h e m i s t r y o f l i g n i n and i t s breakdown i s an e x t e n s i v e s u b j e c t and w i l l not be c o v e r e d h e r e . For a co m p l e t e d i s c u s s i o n o f t h i s s u b j e c t t h e r e a d e r i s r e f e r r e d t o the f o l l o w i n g s o u r c e s : Sarkanen and Ludwig 1971; Freudenberg and N e i s h I968; P e a r l 1967; Brown 1966; Sc h u b e r t 1965 and Brauns and Brauns i960. To-date most methods f o r t h e removal o f l i g n i n have i n v o l v e d s t r o n g c h e m i c a l s such as an a l k a l i s o l u t i o n under c o n d i t i o n s - Ik -o f h i g h t e m p e r a t u r e s and p r e s s u r e s (Swan and Lewis 1975), p h y s i c a l r e d u c t i o n i n s i z e " ( D e h o r i t y . and Johnson V96I) o r use o f gamma r a d i a t i o n (Hufmann e t a 1. 1971)• The use o f t h e r m o p h i 1 i c b a c t e r i a f o r t h e removal o f . l i g n i n and subsequent u t i 1 i z a t i o n o f the f r e e c e l l u l o s e i s a n o t h e r p o s s i b i l i t y (Surucu 1975). The f i r s t s t e p t o i n v e s t i g a t e t h i s p o s s i b i l i t y would be t o d e t e r m i n e whether o r not t h e t h e r m o p h i 1 i c b a c t e r i a c o u l d u t i l i z e a 1 i g n o c e l 1 u l o s i c s u b s t r a t e such as wood as an energy s o u r c e f o r growth and development. 4.5.2 M a t e r i a l s and Methods A p o p u l a t i o n o f t h e r m o p h i l i c b a c t e r i a was e s t a b l i s h e d u t i l i z i n g hog waste as t h e s u b s t r a t e i n one o f the f e r m e n t e r s a t U.B.C.'s T h e r m o p h i l i c U n i t . Once t e m p e r a t u r e s i n t h e t h e r m o p h i l i c range had been reached and m a i n t a i n e d f o r a p e r i o d o f t e n days a d d i t i o n a l hog waste s o l i d s were added t o the f e r m e n t e r . T h i s was t o e n s u r e t h a t a s u p p l y o f n u t r i e n t s would be a v a i l a b l e d u r i n g the i n t r o d u c t i o n o f t h e 1 i g n o c e l 1 u l o s e . A l d e r s a p l i n g s from a brushy a r e a a d j a c e n t t o t h e Swine U n i t a t U.B.C. were used as a s o u r c e o f 1 i g n o c e l 1 u 1 o s e . The a l d e r s a p l i n g s were shredded by a s m a l l , p o r t a b l e s h r e d d e r - c o m p o s t e r . * T h i s machine p r o c e s s e d the s a p l i n g s i n t o a shredded m a t e r i a l the i n d i v i d u a l p a r t i c l e s o f w h i c h were s m a l l e r than o n e - h a l f by o n e - h a l f by f o u r m i l l i m e t e r s . Two days l a t e r t h r e e k i l o g r a m s o f shredded a l d e r were added t o t h e f e r m e n t e r and o v e r t h e next one-hundred and e i g h t e e n days a t o t a l o f 100 * Amerind M c K i s s i c " M i g h t y Mac" s h r e d d e r - c o m p o s t e r . - 75 -k i l o g r a m s o f t h e shredded m a t e r i a l were added. No f u r t h e r a d d i t i o n s o f hog waste s o l i d s were made. A l l o f t h e a l d e r used was not shredded a t the same t i m e , i t was p r e p a r e d as r e q u i r e d t h r o u g h o u t the e x p e r i m e n t . 4.5-3 R e s u l t s and D i s c u s s i o n To d e t e r m i n e i f t h e p o p u l a t i o n o f t h e r m o p h i l e s i n t h e f e r m e n t e r was a b l e t o u t i l i z e t h e a l d e r a d a i l y r e c o r d o f the f e r m e n t e r t e m p e r a t u r e was k e p t ( F i g u r e 16). These r e s u l t s i n d i c a t e t h a t t h e t h e r m o p h i l i c b a c t e r i a i n t h e f e r m e n t e r were a b l e t o use t h e a l d e r as a n u t r i e n t s o u r c e . Whether o r not the t h e r m o p h i l i c b a c t e r i a were a b l e t o degrade the l i g n i n and f r e e t h e c e l l u l o s e f o r f u r t h e r f e r m e n t a t i o n can not be d e c i d e d from t h e s e r e s u l t s . The purpose o f t h i s e x p e r i m e n t was t o d e t e r m i n e i f t h e t h e r m o p h i l i c b a c t e r i a w h i c h d e v e l o p d u r i n g f e r m e n t a t i o n o f hog wastes a r e a b l e t o use a 1 i g n o c e l l u l o s i c m a t e r i a l as a n u t r i e n t s o u r c e . I t appears t h a t t h i s i s q u i t e p o s s i b l e . F u r t h e r r e s e a r c h i s needed t o d e t e r m i n e w h i c h c o n s t i t u e n t s o f t h e wood a r e b e i n g u t i l i z e d by t h e s e b a c t e r i a . Samples t a k e n near t h e end o f t h e f e r m e n t a t i o n were a n a l y z e d f o r c r u d e -p r o t e i n by K j e l d a h l a n a l y s i s . The r e s u l t s a r e shown i n T a b l e VI on a d r y m a t t e r b a s i s averaged o v e r n i n e samples t h e c r u d e p r o t e i n l e v e l was 2*K81%. However, some doubt e x i s t s as t o whether o r not K j e l d a h l a n a l y s e s o f samples c o n t a i n i n g wood p a r t i c l e s g i v e s a m e a n i n g f u l v a l u e o f the c r u d e p r o t e i n l e v e l i n FIGURE . 16 ; L I G N O C E L L U L O S E F E R M E N T A T I O N T a b l e VI . Sample % P r o t e i n D.M. 1-A-l 25.30 l-A - 2 24 .35 l-A - 3 25.06 l-A-4 26.10 l-A - 5 24 .80 1-A-l 24 .15 l-A - 2 24.23 l-A - 3 l-A-4 l-A - 5 23.65 l-A - 6 25.66 % Crude F i b r e % D.M. Average 24.81 A l d e r Shreds 1:56% 76.4% 56.6% - 78 -the sample ( C o u l t h a r d p e r s o n a l c o m m u n i c a t i o n ) . T h e r e f o r e , the v a l u e o f . t h e f i n a l p r o d u c t o f the f e r m e n t a t i o n as a l i v e s t o c k f e e d i s not known. Research i n t h e s e a r e a s i s c u r r e n t l y b e i n g c a r r i e d o u t a t U.B.C. i n v o l v i n g a l d e r sawdust as a n u t r i e n t s o u r c e f o r t h e r m o p h i 1 i c f e r m e n t a t i o n and subsequent i n c o r p o r a t i o n o f t h e p r o d u c t i n t o l i v e s t o c k r a t i o n s . T h i s r e s e a r c h has not been completed as y e t . T h e r e f o r e , t h e r e s u l t s a r e not a v a i l a b l e . f o r f u r t h e r d i s c u s s i o n . - 79 -5.0 SUMMARY AND CONCLUSIONS The major f i n d i n g s o f t h e p r e c e d i n g s e t o f e x p e r i m e n t s can be summarized as f o l l o w s : i . The heat r e q u i r e d f o r maintenance o f t h e t e m p e r a t u r e i n the t h e r m o p h i l i c range comes s o l e l y from m i c r o b i a l a c t i o n . A g i t a t i o n and a e r a t i o n have no s i g n i f i c a n t e f f e c t on t h e amount o f heat r e q u i r e d t o m a i n t a i n the t e m p e r a t u r e o f t h e s l u r r y . i i . The p r o d u c t from T h e r m o p h i l i c f e r m e n t a t i o n o f s w i n e waste can be f e d i n a l i q u i d form t o a n i m a l s o l d e r than 28 days o f age w i t h no d e t r i m e n t a l e f f e c t s , i i i . The c a p a c i t y o f t h e f e r m e n t e r s can be i n c r e a s e d t o 1,000 g a l l o n s w i t h no d e t r i m e n t a l e f f e c t on t h e a c t i v i t y o f t h e t h e r m o p h i l i c b a c t e r i a . i v . Shredded a l d e r can be used by t h e r m o p h i l i c b a c t e r i a as a n u t r i e n t s o u r c e . - 80 -6.0 SUGGESTIONS FOR FUTURE RESEARCH Based on t h e r e s u l t s from t h e s e e x p e r i m e n t s , and o b s e r v a t i o n s made d u r i n g t h e c o u r s e o f t h e s t u d y , t h e f o l l o w i n g a r e a s f o r f u t u r e r e s e a r c h a r e s u g g e s t e d : i i . F e e d i n g t r i a l s w i t h o l d e r a n i m a l s t o i n v e s t i g a t e t h e p o s s i b i l i t y t h a t they a r e b e t t e r a b l e t o u t i l i z e t h e a v a i l a b l e n u t r i e n t s . M. F u r t h e r e x p e r i m e n t s i n the a r e a o f 1 i g n o c e l 1 u l o s e f e r m e n t a t i o n t o d e t e r m i n e i f t h e r m o p h i l i c b a c t e r i a can decompose l i g n i n . i i i . E x p e r i m e n t a t i o n t o d e t e r m i n e the y i e l d and q u a l i t y o f s i n g l e c e l l p r o t e i n from wood, i v . I n v e s t i g a t i o n s i n t o u s i n g o t h e r o r g a n i c waste m a t e r i a l s e.g. cannery and p a c k i n g p l a n t wastes as a s u b s t r a t e f o r t h e r m o p h i l i c b a c t e r i a , v. The p o s s i b l e use o f the heat produced d u r i n g a f e r m e n t a t i o n f o r h e a t i n g p u r p o s e s . - 81 -LITERATURE CITED ALLEN, M.B. 1953-B a c t e r i o l "The T h e r m o p h i l i c A e r o b i c S p o r e f o r m i n g B a c t e r i a 1 ! Rev. 17:125-173-ANTHONY, W.B. 1971. Animal waste v a l u e - n u t r i e n t r e c o v e r y and u t i l i z a t i o n . J . Anim. S c i . , 32:799-802. BECKMAN, E. 1915- S i t z b . K g l . P r e s s A k a d W i s s 638(1915); Chem. A b s t r . 9, 3309-BELLAMY, W.D. 1975- C o n v e r s i o n o f I n s o l u b l e A g r i c u l t u r a l Wastes to SCP by T h e r m o p h i l i c M i c r o - o r g a n i s m s . I n t e r n a t i o n a l C o n f e r e n c e on SCP. S i n g e C e l l P r o t e i n I I . MIT P r e s s Cambridge, M a s s a c h u s e t t s , and London, England. BHATTACHARYA, A.N. and J.C. TAYLOR. as a F e e d s t u f f : A Review. V o l . 41:5- 1438-1457-1975. R e c y c l i n g Animal Wastes J o u r n a l o f Animal S c i e n c e . BLAIR, R. and D.W. KNIGHT. 1973- R e c y c l i n g animal w a s t e s . 2. Feed i n g r e c y c l e d wastes t o p o u l t r y , and l i v e s t o c k . Feeds t u f f s , 45(12):3V,35-36,55-BOORAM, C.V., T.E. MAZEN and R.J. SMITH. 1975- Trends and V a r i a t i o n s i n an A n a e r o b i c Lagoon w i t h R e c y c l i n g . Managing L i v e s t o c k Wastes. P r o c . o f the 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n pp .537 _540. BRAGG, D.B G. HENDREN, W B. WALSH and T.L of Animal Wastes A e r o b i c P r o c e s s . B r i t i s h Columbia D. KITTS, H. SABEN, P.M. TOWNSLEY, COULTHARD. 1975. The C o n v e r s i o n t o L i v e s t o c k Feed by a T h e r m o p h i l i c A Research P r o j e c t . U n i v e r s i t y o f 1975. BRAGG, D.B., T.L. COULTHARD, W.D. KITTS, and H.S. SABEN. 1975-C e l l P r o t e i n as Animal Feed from T h e r m o p h i l i c D i g e s t i o n o f Swine Wastes. Waste R e c y c l i n g and Canadian A g r i c u l t u r e The A g r i c u l t u r a l Economics Research C o u n c i l o f Canada, pp.126-135. BRAUNS, F.E. and D.A. BRAUNS. i960. The C h e m i s t r y o f L i g n i n : Supplement Volume Academic P r e s s . New York and London. BRODIE, H.L. 1975. E x p e r i e n c e w i t h Open-Gutter F l u s h Systems f o r Swine Manure Management. Managing L i v e s t o c k Wastes. P r o c . o f t h e 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp.150-153. BROWN, S.A. 1966. L i g n i n s - Annual Review o f P l a n t P h y s i o l o g y 17:223. - 82 -BRITISH COLUMBIA DEPARTMENT OF AGRICULTURE. A g r i c u l t u r a l S t a t i s t i c s F a c t s h e e t . May 1976. BUCHOLTZ, H.F., H.E. HENDERSON, J.W. THOMAS and H.C. ZINDEL. 1971. D r i e d a nimal waste as a p r o t e i n supplement f o r r u m i n a n t s . L i v e s t o c k Waste Management and P o l l u t i o n Abatement, P r o c . I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes, Columbus, Ohio. A.S.A1E. S t . J o s e p h s , M i c h i g a n , pp.308-310. CANADA DEPARTMENT OF AGRICULTURE. Canada Animal Waste Management Guide. P u b l i c a t i o n 1534, 1974. CLARKE, S.H. 1938. F i n e S t r u c t u r e o f the P l a n t C e l l W a l l . N a t u r e . 142:899 CONRAD, J.H. and V.B. MAYROSE. 1971. Animal waste h a n d l i n g and d i s p o s a l i n c o n f i n e m e n t p r o d u c t i o n o f swine. J . Anim. S c i . 32:811-815. C00LHAAS, C. 1928. Die D i s s , von Z e l l u l o s e Durch Therm. B a k t . , Cent. B a k t . P a r a s i t e n k . II 76:38. COULTHARD, T.L. 1973- The Treatment o f Hog Wastes by an A e r o b i c T h e r m o p h i l i c P r o c e s s . A.S.A.E. - Annual M e e t i n g o f the P a c i f i c Northwest R e g i o n , Paper No. 73~4o4. C a l g a r y , A l t a . COULTHARD, T.L. and G. HENDREN. 1973- P i l o t P l a n t S t u d i e s on the T h e r m o p h i l i c B a c t e r i a l Treatment o f Animal Wastes, C.S.A.E. Annual M e e t i n g , Paper No. 73"504. V i c t o r i a , B.C. COULTHARD, T.L. and P.M. TOWNSLEY. 1973- " N u t r i e n t , Temperature and R e s p i r a t i o n Rate E f f e c t s on M i c r o b i a l P r o c e s s e s i n Swine Waste", C.S.A.E., Annual M e e t i n g , Paper No. 73"209, V i c t o r i a , B.C. CRAMPTON, E.W. and L.A. MAYNARD. 1937. The R e l a t i o n o f C e l l u l o s e and L i g n i n Content t o t h e N u t r i t i v e V a l u e o f Animal Feeds. The J o u r n a l o f N u t r i t i o n , V o l . 15, No. 4, pp.383-395-CROSS, O.E. and A. DURAN. 1970. A n a e r o b i c d e c o m p o s i t i o n o f swine excrement. T r a n s a c t i o n s A.S.A.E. 13:320-322. CUNHA, T . J . , J.P. BOWLAND, J.H. CONRAD, V.W. HAYS, R.J. MEADE and H.S. TEAGUE. 1973- N u t r i e n t r e q u i r e m e n t s o f swine. NAS-NRC 2101 C o n s t i t u t i o n Avenue, N.W., Washington, D.C. 20418. DAY, D.L., D.D. JONES, J.C. CONVERSE, A.H. JENSEN and E.L.HANSEN,; 1971. O x i d a t i o n d i t c h t r e a t m e n t o f swine w a s t e s . Agr. Eng., 52:71-73. - 83 -DEHOR ITY, B.A. and R. R. JOHNSON. 1961. E f f e c t o f P a r t i c l e S i z e Upon t h e In V i t r o C e l 1 u l o s e D i g e s t i b i 1 i t y o f Forages by Rumen B a c t e r i a , J o u r n a l o f D a i r y S c i e n c e . 44:2242. DEN1S0V, N., M. KIROLOV, Y.U. ABAKUMOV, D. POPOV, A. SLAVIN and G. ROGOV. 1975- D r i e d p o u l t r y d r o p p i n g s i n f e e d i n g f o r p i g s . S v i n o v o d s t v o , 5:18-19. ( c i t e d i n N u t r . A b s t r . Rev., 46:5527). DeWALLE, F.B. and E.S.K; CHI AN. K i n e t i c s o f S u b s t r a t e Removal i n a Co m p l e t e l y Mixed A n a e r o b i c F i l t e r . B i o t e c h n o l o g y and B i o E n g i n e e r i n g V o l . X V I I . pp.1275"1295• DIGGS, B.G., B. BAKER, JR. and F.R. JAMES. 1965- V a l u e o f p i g f e c e s i n swine f i n i s h i n g r a t i o n s . Paper p r e s e n t e d a t 1965 M e e t i n g S o u t h e r n S e c t i o n , Amer. Soc. Anim. S c i . , D a l l a s , Texas, ( c i t e d i n J . Anim. S c i . , 24:291, A b s t r . No. 48). DURHAM, R.M. 1964. O b s e r v a t i o n s on coprophagy i n farm a n i m a l s . Paper p r e s e n t e d a t 56th .Annual M e e t i n g Amer. Soc. Anim. S c i . , U n i v e r s i t y o f Tenn. K n o x v i l l e ( c i t e d i n J . Anim. S c i . , (23:873 A b s t r . No. 111). ECKENFELDER, W.W. and D.L. FORD. 1970. Water P o l l u t i o n C o n t r o l - -r "° "({7 E x p e r i m e n t a l P r o c e d u r e s f o r P r o c e s s D e s i g n . Pemberton P r e s s , ' c ' f f " ^ - ! c J e n k i n s P u b l i s h i n g Company, A u s t i n and New York. EDWARDS, J.B. and J.B. ROBINSON. 1969- Changes i n c o m p o s i t i o n o f c o n t i n u o u s l y a e r a t e d p o u l t r y manure w i t h s p e c i a l r e f e r e n c e t o n i t r o g e n . Animal Waste Management. P r o c . C o r n e l l . U n i v . Conf. S y r a c u s e , N.Y. pp.178-184. EISENMAN, T.W. and R.K. WHITE. 1975- Double E. Farms Swine I n s t a l l a t i o n . Managing L i v e s t o c k Wastes. P r o c . 3rd I n t e r n a t i o n a l C o n f e r e n c e on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp.174-176. ELGEE, H. 1975. C e l 1 u l o s i c Wastes - Feed o r F i b r e . Waste R e c y c l i n g S Canadian A g r i c u l t u r e . The A g r i c u l t u r a l Economics Research C o u n c i l o f Canada, pp.67-85. ENVIRONMENTAL PROTECTION AGENCY. 625/1-74-006. 1974. P r o c e s s Design Manual f o r S l u d g e Treatment and D i s p o s a l . FAIR, G.M., J.C. GEYER and D.A. OKUN. I968. Water and Wastewater E n g i n e e r i n g . V o l . 2. Water P u r i f i c a t i o n and Wastewater Treatment and D i s p o s a l . John Wi 1 ey and Sons :, Inc . New York, London, Sydney. FARREL, J . , and L.L. CAMPBELL. 1969- " T h e r m o p h i l i c B a c t e r i a and B a c t e r i o p h a g e s " . Adv. M i c r o b i o l . P h y s i o l . 3:83, 109. - 84 -FOREE, G.R. and R.A. 01 DELL. 1969. Farm Waste d i s p o s a l f i e l d s t u d i e s u t i l i z i n g a mod i f ied Pasveer o x i d a t i o n d i t c h , s e t t l i n g tank , lagoon system. Animal Waste Management. P roc . C o r n e l l , Univ . Conf. Syracuse , N.Y. pp.185-192. FREUDENBERG, K. and A . C . NEISH. 1968. C o n s t i t u t i o n and B i o s y n t h e s i s of L i g n i n S p r i n g e r - V e r1a g B e r l i n - H e i d e l b e r g . New York. GAUGHRAN, E . R . L . 19^7• The Thermophi1 ic M i c r o - o r g a n i s m s , B a c t e r i o l . Rev. 11:189, 225-GERI, G. 1968. Growth, in take of feed and r e s u l t s of r e a r i n g of young p igs fed on mixtures c o n t a i n i n g p o u l t r y d ropp ings . A l imen . a n i m a l e . 12:559"567-HABERLANDT, G. 1915- S i t z b . K g l . Press Akad. 243(1915). Chem. A b s t r . 9, 1516. HARMON, B . G . , A . H . JENSEN and D.H. BAKER. 1369- N u t r i t i v e va lue of o x i d a t i o n d i t c h r e s i d u e . Paper presented at 61st Annual Meeting Amer. Soc. Anim. S c i . , Purdue U n i v e r s i t y , L a f a y e t t e Ind iana, ( c i t e d in J . A n i m . S c i . , -29:136). HARMON, B.G. 1972. Proceedings 23rd Ann. Meet ing . Minnesota Nutr . C o n f . , U n i v e r s i t y of Minnesota . HARMON, B.G* c D . L . DAY, A . H . JENSEN and D.H. BAKER. 1971. L i q u i d feed ing of o x i d a t i o n d i t c h mixed l i q u o r to swine. Paper presented at 1971 Meeting Midwestern S e c t i o n , Amer. Soc. Anim. S c i . , Ch icago, I l l i n o i s , ( c i t e d in J . Anim. S c i - , 33:1149, A b s t r . No.50). HARMON, B . G . , D.L. DAY, A . H . JENSEN and D.H. BAKER. 1971- N u t r i t i v e va lue ODML f o r r a t s . Paper presented at 1971 Meeting Midwestern S e c t i o n , Amer. Soc. Anim. S c i . , Ch icago , I l l i n o i s , ( c i t e d in J . Anim. S c i . 33:1149 A b s t r . No. 5 1 ) . HARMON, B.G. and D.L. DAY. 1974. N u t r i t i o n va lue of amino a c i d s produced in an o x i d a t i o n d i t c h from waste. P rocess ing and Management of A g r i c u l t u r a l Waste. Proceedings 1974 Co rne l l A g r i c u l t u r a l Waste Management Conference, p. 375 - 38l. HARMON, B.G. and D.L. DAY. 1975- N u t r i e n t A v a i l a b i l i t y from Ox idat ion D i t c h e s . Managing L i v e s t o c k Wastes. P roc . 3rd I n t ' l Symp. on L i v e s t o c k Wastes, A . S . A . E . S t . Josephs. M i c h i g a n , pp.199-202. HARPER, J . M . and D. SECKLER. 1975- Eng ineer ing and Economic Overview of A l t e r n a t i v e L i v e s t o c k Waste U t i l i z a t i o n Techniques. Managing L i v e s t o c k Wastes. P roc . of the 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A . S . A . E . S t . Josephs , M i c h i g a n , pp .22 -25 -- 85 -HATCH, R.T. 1975. Fermenter Design - S i n g l e C e l l P r o t e i n I I . Ed i ted by Tannenbaum and Wang. Ch. a MIT P r e s s , pp .46-67-HERMANSON, R.E. 1975- Lagoons f o r Ho ld ing and T r e a t i n g L i v e s t o c k Waste Before D i s p o s a l . Paper presented at the T h i r t i e t h Annual Meeting of the P a c i f i c Northwest Region A . S . A . E . Gregson, Montana. HINTZ, H.F. and H. HEETMAN JR. 1967• Sewage-grown a lgae as a p r o t e i n supplement f o r swine. Anim. Prod . 9:135-140. HOLLAND, M . R . , E.T. KORNEGAY, J . P . HEDGES. 1975. N u t r i t i v e Value of Swine Feces f o r Swine. Managing L i v e s t o c k Wastes. P r o c . 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes, A . S . A . E . S t . Josephs , M i c h i g a n , p p .214-217. HOLMES, L .W. J . 1971- Concent ra t ion of Prote inaceous S o l i d s from Aerated Swine Manure. M. Sc. t h e s i s , U n i v e r s i t y of I l l i n o i s , Urbana, I 11 i no i s . HONCAMP, F. and H. HILGERT. 1931. Landwir tsch Versuchs - S t a t . 113,201; Nut r . A b s t r . 1, 645-HUFFMAN, J . G . , W.D. KITTS and C R . KRISHNAMURTI . 1971- E f f e c t s of A l k a l i Treatment and Gamma I r r a d i a t i o n on the Chemical Composit ion and In V i t r o Rumen D i g e s t i b i l i t y of C e r t a i n Species of Wood. C a n . J . A n i m . S c i . 51:457 -464. HUSMANN, W. and F. MALE. 1959- Research on Aerob ic B i o l o g i c a l Sewage Treatment at Thermoph i l i c Temperatures. G a s - u . Wasser fach , 100, 8, 189. (1959). ( c i t e d in J . W . P . C . F . 32:9 p .1038. IRGENS, R.L , and D.L. DAY. 1966. Laboratory s t u d i e s of a e r o b i c s t a b i l i -z a t i o n of swine waste . J . Agr . Eng. Research. 11:140. JEWELL, W.J . and G.R. MORRIS. 1974. The Economic and Technica l F e a s i b i l i t y of Methane Generat ion from A g r i c u l t u r a l Wastes. Food, F u e l , F e r t i l i z e r . P r o c . Symposium on the Uses of A g r i c u l t u r a l Wastes. Canadian P l a i n s Research Center , Reg ina , Saskatchewan, p p .132-165. JONES, D.D. , D.L. DAY and A . C . DALE. 1972. Aerob ic Treatment of L i v e s t o c k Wastes.U.S Environmental P r o t e c t i o n Agency. Report S W-l6rg. JONES, ELMER E . , J R . , GEORGE B. WILLSON and WILLIAM F. SCHWIESOW. 1971. Improving Water U t i l i z a t i o n E f f i c i e n c y in Automatic H y d r a u l i c Waste Removal. Symp. L i v e s t o c k Waste Management and P o l l u t i o n Abatement, A . S . A . E . Colombus, Ohio. p p .154-158. - 86 -JONES, R.W., J . H , SLONEKER and G.E. INGLETT. Recovery of Animal Feed from C a t t l e Manure. P roc . I n s t i t u t e of Environmental S c i e n c e s , 18th Annual Techn ica l Meet ing , pp.267-269. KAMBHU, K. and JOHN F. ANDREWS. I969. Aerob ic t h e r m o p h i l i c process fo r the B i o l o g i c a l Treatment of Wastes - S i m u l a t i o n S t u d i e s . W . P . C . F . Journal 41. pp.R -127. KELLERMAN, K. and G. McBETH. 1912. The Fermentat ion of C e l l u l o s e . Cent. Bakt . P a r a s i t a n k . II 78:266. KITTS, W.D. , D.B. BRAGG, T . L . COULTHARD and H.S. SABEN. 1974. Thermophi l i c D i g e s t i o n of Swine Wastes: The Product ion of Feed Grade S i n g l e C e l l P r o t e i n fo r use in L i v e s t o c k R a t i o n s . Food Fuel F e r t i l i z e r - P roc . Symposium on the Uses of A g r i c u l t u r a l Wastes. Canadian P l a i n s Research Center , Reg ina , Sask. pp.76~95-KITTS, W.D. , C R . KRISHNAMURTI , J . A . SHELFORD and G. HUFFMAN. I969. Use of wood and wood by -products as a source of energy in beef c a t t l e r a t i o n s . Advan. Chem. Ser . 95:279-KITTS, W.D. and C R . KRISHNAMURTI. 1976. U t i l i z a t i o n of Wood Wastes in Feeding L i v e s t o c k . Paper presented at the "Wood Wastes as L i v e s t o c k Feed" . Symposium held February 20, 1976. Vancouver, B.C. KITTS, W.D. and J . A . SHELFORD. 1968. Paper presented at P a c i f i c Northwest Animal N u t r i t i o n Conference. Nov. 7 - 8 , 1968. KOCH, B . A . , R.H. MINES, G .L . ALEE and R . I . LIPPER. 1975- K . S . U . Aerob ic Swine Waste Handl ing System - S i x Years of Problems and P r o g r e s s . Managing L i v e s t o c k Wastes. P r o c . o f the 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A . S . A . E . S t . Josephs, M i c h i g a n , pp. I8I- I83-5. KOELLIKER, J . K . , J . R . MINER, T . E . HAZEN, H.L. PERSON and R . J . SMITH. 1972. An Automated H y d r a u l i c Waste Handl ing System fo r a 700 Head Swine F a c i l i t y Using R e c i r c u l a t e d Water. Waste Management Research. P roc . of the 1972 Co rne l l A g r i c u l t u r a l Waste Management Conference, pp.249 -261. LAAK, R. 1970. C a t t l e , swine and ch icken manure c h a l l e n g e s waste d i s p o s a l methods. Water and Sewage Works. A p r i l 1970. pp.134-138. LAPP, H.M. 1974. Methane Product ion From A g r i c u l t u r a l By -Products An Overview. Food Fuel F e r t i l i z e r P r o c . Symposium on the Use of L i v e s t o c k Wastes. Canadian P l a i n s Research Center , Reg ina , Saskatchewan. p p.5 " l l . - 87 -LAPP, H.M., D.O. SCHULTE, A.B. SPORLING and L.C. BUCHANAN. 1975-Methane P r o d u c t i o n from Animal Wastes. 1. Fundamental C o n s i d e r a t i o n s . Canadian A g r i c u l t u r a l E n g i n e e r i n g . V o l . 17, No. 2, pp.97-102. LAWRENCE, A.W. 1971. A n a e r o b i c B i o l o g i c a l Waste Treatment Systems. A g r i c u l t u r a l Wastes: P r i n c i p l e s and G u i d e l i n e s f o r P r a c t i c a l S o l u t i o n s , P r o c . C o r n e l l U n i v e r s i t y C o n f e r e n c e on A g r i c u l t u r a l Waste Management, C o r n e l l U n i v . , I t h a c a , New York. pp.79~92. LOEHR, R.C. 1968. E f f l u e n t : Q u a l i t y from A n a e r o b i c Lagoons T r e a t i n g L i v e s t o c k Wastes. J.W.P.C.F. 40, 83"94. LOEHR, R.C. 1974. A g r i c u l t u r a l Waste Management - Problems, p r o c e s s e s , a p p r o a c h e s . P u b l i s h e d by Academic Press.New York £ London. LUDINGTON, D.C, E.D. BL00DG00D and A.C. DALE. 1967 - S t o r a g e o f p o u l t r y manure w i t h minimum od o r . Paper No. 67~932. Amer. Soc. Agr. Eng. W i n t e r Meet., S t . J o s e p h s , M i c h i g a n . LUDINGTON, D.C. 1971. S o l i d s d e s t r u c t i o n o r s e v e r e t r e a t m e n t . A g r i c u l t u r a l Wastes: P r i n c i p l e s and G u i d e l i n e s f o r P r a c t i c a l S o l u t i o n s , P r o c . C o r n e l l U n i v e r s i t y C o n f e r e n c e on A g r i c u l t u r a l Waste Management, C o r n e l l U n i v . , I t h a c a , New York. pp.102-106. MANITOBA DEPARTMENT OF AGRICULTURE. 1971. Hog Manual. MATELES, R.I. 1968. " A p p l i c a t i o n s o f Co n t i n u o u s C u l t u r e " i n S i n g l e -C e l l P r o t e i n , e d i t e d by M a t e l e s , R.I., and Tannenbaum, S.R., p.208, The M.I.T. P r e s s (1968). MATSCHE, N.F. and J.F. ANDREWS. 1973- A M a t h e m a t i c a l Model f o r t he Con t i n u o u s C u l t i v a t i o n o f T h e r m o p h i l i c M i c r o - o r g a n i s m s . B i o t e c h n o l . B i o e n g . , Symp. 4, 77(1973). MATSCH, L.M. and R.F. DRNEVICH. 1977- A u t o t h e r m a l a e r o b i c d i g e s t i o n - W.P.C.F. J o u r n a l . Feb. 1977. pp.296-310. McALLISTER, J.S.V. 1964. S l u r r y changes i n c o m p o s i t i o n d u r i n g s t o r a g e . Farm B l d g . A s s o c . J . No. 8:32-36. ( c i t e d i n B i b l . Farm B u i l d i n g R e s e a r c h , P a r t I - B u i l d i n g s f o r P i g s , 2nd supplement, A b s t r . No. 105). MESSER, J.W., J . LOVETT, G.K. MURTHY, A . J . WEHLAY, M.L. SCHAFER and R.B. READ, JR. 1971. An assessment o f some p u b l i c h e a l t h problems r e s u l t i n g from f e e d i n g p o u l t r y l i t t e r t o a n i m a l s - m i c r o b i o l o g i c a l and c h e m i c a l p a r a m e t e r s . P o u l t r y S c i . 50:874-881. - 88 -McLAREN, A .D . and G.H. PETERSON. 1967- S o i l B i o c h e m i s t r y . Marcel Dekker, I n c . , New York. MEYER, R . C , F . C HINDS, H.B. ISAACSON and T .D. HINEDY. I97I. Porc ine E n t e r o v i r u s S u r v i v a l and Anaerobic Sludge D i g e s t i o n . L i v e s t o c k Waste Management and P o l l u t i o n Abatement. P r o c . I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes, Colombus, Ohio. A . S . A . E . S t . Josephs, M i c h i g a n , pp.308-310. MOORE, J . D . and W.B. ANTHONY. 1970. Enrichment of c a t t l e manure fo r feed by anaerobic f e r m e n t a t i o n . Paper presented at 1970 meet ing . Southern S e c t i o n , Amer. Soc. Anim. S c i - . , Memphis Tennessee, ( c i t e d in J . Anim. S c i . , 30:324, A b s t r . No.49). MILLER, E . C and C M . HANSEN. 1973- F l u s h i n g , AHSW 7330, C o - o p e r a t i v e Extens ion S e r v i c e , Mich igan S t a t e U n i v e r s i t y . MURRAY, H. 1944. Ae rob ic Decomposit ion of C e l l u l o s e by Theromophi1 ic Organisms, J . B a c t . , 47:117. NEGULESCO, C A . 1975- Two-stage A c t i v a t e d Sludge Treatment of E f f l u e n t from I n d u s t r i a l Hog Breeding Farms. Managing L i v e s t o c k Wastes. P r o c . of 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A . S . A . E . S t . Josephs , M i c h i g a n , pp.184-185. NORDSTEDT, R.A. and L .B . BALDWIN. 1975. Sludge Management f o r Anaerobic Dai ry Waste Lagoons. Managing L i v e s t o c k Wastes - P roc . of 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A . S . A . E . S t . Josephs, M i c h i g a n , pp.535~536. NYE, J . C , A .C . DALE, T.W. PERRY, E . J . KIRSCH, and R.B. HARRINGTON. 1972. Recover ing . P r o t e i n from Animal Waste. Paper presented at 1972 A . S . A . E . Annual Meeting A . S . A . E . Paper #72-955. ORR, D . E . , E.R. MILLER, P .K. KU, W.G. BERGEN and D.E. ULLRAY. 1971. R e c y c l i n g of d r i e d waste in swine. Paper presented at 1971 Meeting Midwestern S e c t i o n , Amer. Soc. Anim. S c i . , Ch icago, I l l i n o i s . ( c i t e d in J . Anim. S c i . 33:1152-1153, A b s t r . N o . 6 4 ) . OSTERE, J . 1972. P o s s i b i l i t y of us ing d r i e d p o u l t r y manure fo r feed ing p i g s . Zborn ik B i o t e h . F a k u l t e t e Univ . l y u b l j a n i , 19:175~185-( c i t e d in Nut r . A b s t r . R e v . , 40:3809). OVERCASH, M.R. , F . J . HUMENIK and L .B . DRIGGERS. 1975- Swine Product ion and Waste Management: S t a t e of the A r t . Managing L i v e s t o c k Wastes. P r o c . of the 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A . S . A . E . S t . Josephs, M i c h i g a n , pp.154-159-- 89 -PEARL, I.A. 1967. The C h e m i s t r y o f L i g n i n . M a r c e l Dekker, I n c . , New York. PERRY, R.H., e_t_.a_l_. "Chemical E n g i n e e r s Handbook". M c G r a w - H i l l New Y o r k , N.Y. I963. PEREZ-ALEMAN, S., D.G. DEMPSTER, P.R. ENGLISH and J.H. TIPPS. 1971. A note on d r i e d p o u l t r y manure i n the d i e t o f t h e growing p i g . Anim. P r o d . 13:361-364. PERSON, H.L., J.R. MINER, T.E. HAZEN and A.R. MANN. 1972. A Comparison o f Three Treatment Systems f o r T r a n s p o r t and Treatment o f Swine Manure. Paper p r e s e n t e d a t 1972 A.S.A.E. Annual M e e t i n g . A.S.A.E. #72-439. POINCELOT, R.P. and P.R. DAY. 1973- Rates o f C e l l u l o s e D e c o m p o s i t i o n D u r i n g t h e Composting o f Leaves Combined w i t h S e v e r a l M u n i c i p a l and I n d u s t r i a l Wastes. Compost S c i e n c e . J o u r n a l o f Waste R e c y c l i n g . V o l . 14, No. 3. pp.23-25-POPEL, F. and C. OHNMACHT. 1972. T h e r m o p h i l i c B a c t e r i a l O x i d a t i o n o f H i g h l y C o n c e n t r a t e d S u b s t r a t e s . Water Research .Pergamon P r e s s . 1972. V o l . 6, pp.807-815. POS, J . and J.B. ROBINSON. 1973- W i n t e r O p e r a t i o n o f A e r a t e d L i q u i d Animal Waste S t o r a g e Systems. Canadian A g r i c u l t u r a l E n g i n e e r i n g . V o l . 15, No. 1. pp.43-48. RALL, G.D., A . J . WOOD, R.B. WESCOTT and A.R. DOMMERT. 1970. D i s t r i b u t i o n o f b a c t e r i a i n f e c e s o f swine. A p p l . M i c r o b i o l . 20:789"792. RICHARDSON, S.J. 1974. Animal manures as p o t e n t i a l p o l l u t a n t s . P r o c e e d i n g s A.0.A.S./A.R.C. C o n f e r e n c e on A g r i c u l t u r e and Water Q u a l i t y . T e c h n i c a l B u l l e t i n No. 32, M i n i s t r y o f A g r i c u l t u r e , F i s h e r i e s and Food, London. ROBERTSON, A.M., G.A. BURNETT, P.N. H0BS0N, SHEELA BOUSFIELD and R. SUMMERS. 1975- B i o e n g i n e e r i n g A s p e c t s o f A n a e r o b i c D i g e s t i o n o f P i g g e r y Wastes. Managing L i v e s t o c k Wastes. P r o c . o f the 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp.544-548. ROBINSON, K., S.H. BAXTER and J.R. SAXON. 1970. A e r o b i c t r e a t m e n t o f farm w a s t e s . P r o c . Symp. Farm Wastes. Newcastle-upon-Tyne, pp.122-131. ( c i t e d i n P o l l u t . A b s t r . 2(6): A b s t r . No. 71-6TF-1114) ROBINSON, K., J.R. SAXON and S.H. BAXTER. 1971. M i c r o b i o l o g i c a l A s p e c t s o f A e r o b i c a l l y T r e a t e d Swine Wastes. Symp. L i v e s t o c k Waste Management and P o l l u t i o n Abatement, A.S.A.E. Colombus, Ohio, pp.225-228. - 90 -ROBINSON, K. 1974. Waste Treatment w i t h a P r o t e i n Bonus - P r o c . o f t he 1974 C o r n e l l A g r i c u l t u r a l Waste Management C o n f e r e n c e , pp.415-420. SARKANEN, K.V. and C H . LEWIS. 1971- L i g n i n s , O c c u r r e n c e , F o r m a t i o n , S t r u c t u r e and R e a c t i o n s . John W i l e y S Sons L t d . New York-London- Sydney -To ron t o . SCHMID, L.A. and R.I. LIPPER. 1969. Swine Wastes, C h a r a c t e r i z a t i o n and A n a e r o b i c D i g e s t i o n . P r o c . Agr. Waste Management C o n f e r e n c e , C o r n e l l U n i v e r i s t y , I t h a c a , New York. pp.50-57. SCHUBERT, W.J. 1965• L i g n i n B i o c h e m i s t r y . Academic P r e s s . New York. SHELFORD, J.A., W.D. KITTS and C.R. KRISHNAMURTI. 1970. U t i l i z a t i o n o f A l d e r Sawdust ( A l n u s Rubra) by Ruminants. Can.J. Anim. S c i . 50:208-209-SHEPHERD, D.W. 1973- P r o x i m a t e A n a l y s i s of A e r o b i c a l l y T r e a t e d Swine Manure.: B.Sc. T h e s i s , U.B.C. SINGH, Y.K. and W.B. ANTHONY. I968. Y e a s t p r o d u c t i o n i n Manure s o l u b l Paper p r e s e n t e d a t 60th Annual M e e t i n g Amer. Soc. Anim. S c i . , Oklahoma S t a t e U n i v . , S t i l l w a t e r , ( c i t e d i n J . A n i m . S c i . 1136, A b s t r . No. 64). SINGLETON, R. J r . , and R.E.. AMELUXEN. 1973- P r o t e i n s from Thermophi 1 i M i c r o o r g a n i s m s . B a c t e r i a l . Rev. 37=320-342 (1973). SMART, P., FLOYD McCAIN, D.L. DAY and B.G. HARMON. 1975- O x i d a t i o n D i t c h Waste Management System f o r a Large Confinement. Swine Farm. Managing L i v e s t o c k Wastes - P r o c . o f the 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp.190—191. SMITH, R.J., T.E. HAZEN and J.R. MINER. 1971. Manure Management i n a 700-Head S w i n e - F i n i s h i n g B u i l d i n g ; Two Approaches U s i n g Renovated Waste Water. Symp. L i v e s t o c k Waste Management and P o l l u t i o n Abatement; A.S.A.E. Columbus, Ohio. ppvl49 -153-SURUCU, G. 1975. T h e r m o p h i l i c A e r o b i c M i c r o b i o l o g i c a l Treatment o f High S t r e n g t h Wastewaters and Recovery o f P r o t e i n . Ph.D. T h e s i s , U n i v e r s i t y o f I l l i n o i s . SURUCU, G.A., E.S.K. CHI AN a n d ' R . S : ENGELBRECHT. 1976. A e r o b i c t h e r m o p h i l i c t r e a t m e n t o f h i g h s t r e n g t h w a s t e w a t e r . J o u r n a l Water P o l l u t i o n C o n t r o l F e d e r a t i o n . V o l . 48:4. pp.669-679. - 91 -SUTTON, A.L., D.H. BACHE, J.C. NYE, A.C. DALE, D.D. JONES, V.B. MAYROSE, M.P. PLUMLEE, and L.B. UNDERWOOD. 1975. A Waste Management System f o r a 2500-Head Swine O p e r a t i o n - A Case Study. Managing L i v e s t o c k Wastes - P r o c . o f t h e 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp.177~180. SWAN, H. and D. LEWIS. 1975- Feed Energy Sources f o r L i v e s t o c k . S t u d i e s i n t h e A g r i c u l t u r a l and Food S c i e n c e s N u t r i t i o n C o n f e r e n c e f o r Feed M a n u f a c t u r e r s . 9th U n i v . A. Nottingham. B u t t e r w o r t h s London-Boston. TAIGANIDES, E. PAUL and RICHARD K. WHITE. 1971. Automated H a n d l i n g Treatment and R e c y c l i n g o f Waste Water from an Animal Confinement P r o d u c t i o n U n i t . Symp. L i v e s t o c k Waste Management and P o l l u t i o n Abatement. A.S.A.E. Columbus, Ohio. pp.146-148. TISCHER, R.G., LEWIS R. BROWN and DAVID W. COOK. 1962. D e c o m p o s i t i o n o f Wastewater by T h e r m o p h i l i c M i c r o - o r g a n i s m s . W.P.C.F. J o u r n a l 34:1 pp.1244 -1255-TRIVELIN, A.P. 1961. Emprego de f e z e s de p i n t o s na a l i m e n t a c a de l e i t o e s . (Use of c h i c k e n f e c e s i n f e e d i n g o f p i g s ) . An. Es c . Super. A g r . , L u i z de Quel r o z , ' T8:206-216 ( c i t e d i n B i o l . A b s t r . , A b s t r . No. 2334). TURNER, D.O. 1975- On-the-Farm D e t e r m i n a t i o n o f Animal Waste D i s p o s a l Rates f o r Crop P r o d u c t i o n . Managing L i v e s t o c k Wastes. P r o c . o f t h e 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp .587. WALL INGFORD, G.W., W.L. POWERS and L.S. MURPHY. 1975. P r e s e n t Knowledge on t h e E f f e c t s o f Land A p p l i c a t i o n o f Animal V/astes. Managing L i v e s t o c k Wastes. P r o c . o f t h e 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp .580. WEBBER, L.R. and T.A. LANE. I969. The n i t r o g e n problem i n t h e lan d d i s p o s a l o f l i q u i d manure. Animal Waste Management, P r o c . C o r n e l l U n i v . Conf. S y r a c u s e , N.Y. pp.124-130. WEBBER, L.R. 1971. Animal Wastes. J o u r n a l S o i l and Water C o n s e r v a t i o n . 26(2):47-50. WELLS, D.M., R.C. ALBIN, W. GRUB and R.Z. WHEATON. I969. A e r o b i c d e c o m p o s i t i o n o f s o l i d wastes from c a t t l e : f e e d l o t s . Animal Waste Management P r o c . C o r n e l l U n i v e r s i t y C o n f e r e n c e on Agr l e u 1 t u r a l Waste Management, C o r n e l 1 U n i v : , I t h a c a , New York. pp.58-62. - 92 -WHETSTONE, G.A. 1974. The M a c r o b i o l o g i c a l U t i l i z a t i o n o f Manure. Food Fuel F e r t i l i z e r . P r o c . Symposium on t h e Use o f L i v e s t o c k Wastes. Canadian P l a i n s Research C e n t e r . R e g i n a , Saskatchewan. pp.'37-'55'.' WILLR1CH, T.L. and G.E. SMITH. 1970.. A g r i c u l t u r a l P r a c t i c e s and Water Qua 1 i t y . Iowa S t a t e U n i v e r s i t y P r e s s , Ames. Iowa. WILLRICH, T.L. and N.W. HINES. I967. Water Pol 1 u t i o n C o n t r o l and Abatement, Iowa S t a t e U n i v e r s i t y P r e s s , Ames, Iowa. WILSON, P.M. 1975. I f ^ y o u cannot Spread I t , T r e a t I t . Managing L i v e s t o c k Wastes. P r o c . o f t h e 3rd I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp.389. WINDT, T.A., N.R. BULLEY and L.M. STALEY. 1971. D e s i g n , I n s t a l l a t i o n and B i o l o g i c a l Assessment o f a Pasveer O x i d a t i o n D i t c h on a L a r g e B r i t i s h Columbia Swine Farm. L i v e s t o c k Waste Management and P o l l u t i o n Abatement - P r o c . I n t e r n a t i o n a l Symposium on L i v e s t o c k Wastes. A.S.A.E. S t . J o s e p h s , M i c h i g a n , pp.213-216. WOLF, D.C. 1965. Developments i n hog manure d i s p o s a l . T r a n s . Amer. Soc. Agr. Eng. 8: 107-109.' YECK, R.G., L.W. SMITH and C C . CALVERT. 1975. Recovery o f N u t r i e n t s f rom Animal Wastes - An Over v i e w o f E x i s t i n g O p t i o n s and P o t e n t i a l s f o r Use i n Feed. Managing L i v e s t o c k Wastes. P r o c . 3rd I n t ' l . Symp. on L i v e s t o c k Wastes. ATS.A.E. S t . J o s e p h s , M i c h i g a n , pp.192-194, I96. - 93 -APPENV1X W W 10% TEMP. S E T No. R E Q ' D DR 'N B Y D W G . No. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0094159/manifest

Comment

Related Items