UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Rating the acoustic privacy of plasterboard party walls Kho, Alphonse H. 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1977_A7_3 K36.pdf [ 16.62MB ]
Metadata
JSON: 831-1.0094075.json
JSON-LD: 831-1.0094075-ld.json
RDF/XML (Pretty): 831-1.0094075-rdf.xml
RDF/JSON: 831-1.0094075-rdf.json
Turtle: 831-1.0094075-turtle.txt
N-Triples: 831-1.0094075-rdf-ntriples.txt
Original Record: 831-1.0094075-source.json
Full Text
831-1.0094075-fulltext.txt
Citation
831-1.0094075.ris

Full Text

FATING THE ACOUSTIC PRIVACY Of P ISSTEEBGARD PARTY WALLS by ALEHONSE B. KHO B . S c . A r c h i t e c t u r e U n i v e r s i t y o f t h e P h i l i p p i n e s , 1972 THESIS SUBMITTED IN PART IAL F U L F I L L M E N T THE REQUIREMENTS FOB THE DEGREE OF MASTEE Of ARCHITECTURE i n THE FACULTY OF GRADUATE STUDIES ( S c h c o l c f A r c h i t e c t u r e ) we a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY Of ERIT ISf i COLUMBIA A p r i l , 1977 © Alphonse Kho, 1977 In presenting t h i s thesis in p a r t i a l f u l f i l l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t freel y available f o r reference and study. I further agree that permission f o r extensive copying of th i s thesis for scholarly purposes may be granted by the Head of my Department or his representatives- It i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed sithout my written permission. School of Architecture The University of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 115 22 A p r i l 1977 The growing t r e n d towards m u l t i - f a m i l y d w e l l i n g u n i t s combined w i t h t h e predominant use of l i g h t c o n s t r u c t i o n m a t e r i a l s , has broug h t about an i n c r e a s i n g awareness of the need f o r g r e a t e r a c o u s t i c p r i v a c y . A l t h o u g h t h e t o t a l e v a l u a t i o n o f a c o u s t i c p r i v a c y i s dependent on many f a c t o r s , t h e p a r t y w a l l i s g e n e r a l l y t h e most i m p o r t a n t element i n a c h i e v i n g t h a t g o a l . The concept o f 'masking*, w i t h r e g a r d t o a i r b o r n e sound t r a n s m i s s i o n , was a p p l i e d t o a p r i v a c y model d e r i v e d from o t h e r s t u d i e s . T h i s model was used t o e v a l u a t e d i f f e r e n t p l a s t e r b o a r d w a l l c o n s t r u c t i o n s i n a s e r i e s o f c o m p u t e r - s i m u l a t e d t e s t s . The method compares t h e a n t i c i p a t e d 'masking' c a l c u l a t e d from the s i n g l e - f i g u r e STC r a t i n g and from a c t u a l T r a n s m i s s i o n Loss v a l u e s . F u r t h e r t e s t s were c a r r i e d o u t t o e v a l u a t e a s i m p l i f i e d a c o u s t i c measurement u s i n g t h e A-weighted sound l e v e l d i f f e r e n c e s o f v a r i o u s n o i s e s p e c t r a . The v a l i d i t y o f t h i s s i m p l i f i e d measurement e n a b l e s i t s use i n t h e a p p l i c a t i o n o f a b u i l d i n g s t a n d a r d -i s e r e s u l t s o f t h e d i f f e r e n t w a l l d a t a were th e n e v a l u a t e d t o determine a l e v e l o f u s e r s a t i s f a c t i o n based on p r e d i c t e d s u b j e c t i v e r e s p o n s e . Comparison o f t h i s l e v e l w i t h CHHC and o t h e r s t a n d a r d s , shows the l a t t e r t o be v e r y m a r g i n a l v a l u e s . .. Some w a l l s were a l s o a n a l y s e d as t o the e f f e c t of d e s i g n and d i f f e r e n t components on t h e i r a c o u s t i c i i i performance. l a s t l y , the re s u l t s of the s i m p l i f i e d measurement technique indicates the a p p l i c a b i l i t y of a general household noise spectrum in evaluating the acoustic privacy between dwelling units. The implementation of th i s method in conjunction with a Privacy Index i s an e f f e c t i v e way of specifying a minimum l e v e l cf acoustic privacy. Prcf. E. A. Wetherill Thesis Supervisor IMhl OF CONTENTS i v ABSTRACT i i ACKNOWLEDGEMENT v i i i 1- INTRODUCTION 1 1.1 Statement of the Problem 2 1.2 O b j e c t i v e s 4 I I . THEORETICAL CONCEPTS 6 2.1 The Masking Concept 10 2.2 The P h y s i c a l Parameters o f Sound I n s u l a t i o n 16 (A) T r a n s m i s s i o n Loss and Noise R e d u c t i o n (B) E f f e c t o f Room C h a r a c t e r i s t i c s on Sound A t t e n u a t i o n (C) Sound T r a n s m i s s i o n C l a s s 2.3 S u b j e c t i v e Response 29 (A) A P r i v a c y Model 2- 4 A S i m p l i f i e d A c o u s t i c Measurement 33 I I I . TEST SIMULATIONS 36 3.1 S i n g l e P a n e l Versus Double H a l l 37 3.2 T e s t Elements and C o n d i t i o n s 41 (A) Room S i z e and A b s o r p t i o n (B) The H a l l s (C) The N o i s e S p e c t r a 3.3 R e s u l t s 56 (A) The Test S i m u l a t i o n s V (B) M:STC (C) MtFREQ 3.4 Comparison o f Some H a l l Types 81 3.5 A S i m p l i f i e d A c o u s t i c Measurement 100 IV. CONCLUDING REMARKS 119 REFERENCES AND BIBLIOGRAPHY 127 APPENDIX I G l o s s a r y 133 APPENDIX I I N u m e r i c a l R e s u l t s o f M:STC and H:FREQ 138 APPENDIX I I I N u m e r i c a l R e s u l t s o f 'dBA D i f f e r e n c e ' T e s t 171 APPENDIX I ? T r a n s m i s s i o n L o s s V a l u e s o f H a l l Data 183 APPENDIX V A p p l i a n c e N o i s e S p e c t r a 200 i l S T OF FIGURES AND ILLUSTRATIONS v i Figure Page 2.1 A wall as a •sound barrier* 9 2.2 NC curves 13 2.3 PNC curves 14 2.4 Noise Rating curves 15 2.5 Graph of normal speech l e v e l s 15 2.6 TL measurement test setup 17 2-7 Difference between TL and Dn 22 2-8 Relationship of NR and TL 22 2-9 Effect of room size and absorption 23 2-10 Comparison of STC and average TL 27 2-11 Comparison of national standards 27 2-12 STC rating method 28 2-13 Predicted subjective response to •masking* 32 2- 14-2-16 Comparison of various acoustical c r i t e r i a 35 3.1 Panel behaviour in three frequency regions 39 3.2 Coincidence e f f e c t 40 3.3 Schematic TL for a double wall 40 3.4 Comparison of l i v i n g room St 45 3.5-3.6 Typical household noise spectra 51 3- 7 Graph of a a enclosed sound f i e l d 52 3.8 Marginal value of * masking' 60 3.9 Graphical r e s u l t of M:STC tes t s 61 3.10-3.11 Graphical re s u l t s of H:FREQ(household noise) 64-65 3.12-3.20 Graphical re s u l t s of M:FREQ (appliance noise) 69-77 v i i 3 . 21 Graph o f AI vs- STC+NC 80 3 . 22 G r a p h i c a l r e s u l t o f AI vs- STC+PNC 80 3. 23- •3-28 Comparison o f w a l l data 83 -88 3- 29 T h e o r e t i c a l behav iour of sheet m a t e r i a l s 93 3 . 30- •3-35 Comparison of w a l l data 94 -99 3 . 36 R - l e v e l d i f f e r e n c e o f t h e o r e t i c a l w a l l 103 3 . 37- 3-38 Comparison o f household n o i s e s p e c t r a 104- 105 3 . 39- •3-50 G r a p h i c a l r e s u l t s o f 1 dBA D i f f - • t e s t s 107- 118 The author wishes to acknowledge the assistance provided him by d i f f e r e n t persons; p a r t i c u l a r l y h i s t h e s i s committee, Prof. 8. Gerson, who provided the o v e r a l l d i r e c t i o n ; Dr. A. J. Price, whose help i n the i n i t i a l work made t h i s study possible; and Prof. E. A. fletherill, who provided the c r i t i c i s m and guidance i n the eventual development and completion of t h i s thesis. Special thanks are also due the acoustical consultants. Acoustical Engineering (Clair Wakefield), and Barron £ Associates (Douglas Whicker, Gordon H a l l ) , who were most generous i n providing the assistance and technical information used i n t h i s study. F i n a l l y , the author wishes to thank the Central Mortgage and Housing Corporation for the Graduate Scholarship which helped support t h i s study. X- INTRODUCTION 1.1 Statement of t h e Problem 1.2 O b j e c t i v e s 2 I- INTRODUCTION 1-1 STATEMENT OF THE PROBLEM The necessity of economical building design has dictated the trend towards l i g h t e r construction materials. This, combined with more closely spaced dwelling units and increased use of household equipment has brought about an increasing awareness of sound intrusion and the need f o r greater acoustic privacy. The r e s p o n s i b i l i t y to provide for t h i s need often f a l l s on the architect who has to consider i t within the t o t a l context of the designed environment. There i s available a wide variety of acoustic information ranging from simple recommended d e t a i l s suggested by manufacturers to esoteric reports published by researchers and engineers. Because t h i s information i s so varied and confusing, there i s a tendency by the architect to disregard i t and search for a simpler and more d i r e c t design approach to acoustic privacy. The p r o l i f e r a t i o n of acoustic standards and terminology i s enough to baf f l e even the experts, l e t alone the ar c h i t e c t . In addition, acoustic data from Europe are often presented in a seemingly d i f f e r e n t configuration than that from North America. This only worsens the confusing array of data one has to sort through- On the other hand, there i s a pressing need for a more thorough understanding by the architect of the acoustic concepts involved i n building design-Although the problems involved i n providing for 3 a c o u s t i c p r i v a c y a r e many, th e y can be c a t e g o r i z e d i n t o any of t h e t h r e e f a c t o r s t h a t a f f e c t t h e a u r a l s e n s a t i o n ; namely s o u r c e o f sound, path o f sound, and t h e r e c e i v e r . The b a s i c approach t o p r i v a c y i s the c o n t r o l o f one or a c o m b i n a t i o n of t h e s e f a c t o r s . F o r example, e l i m i n a t i o n o f the s o u r c e would r e s u l t i n no n o i s e i n t r u s i o n . T h i s s o l u t i o n i s o f t e n r e s o r t e d t o i n c a s e s of s e v e r e n o i s e c o n d i t i o n s , e.g. banning n o i s y a i r c r a f t , or e v i c t i n g t h e n o i s y t e n a n t . Y e t , even i f we assume normal c o n d i t i o n s , t h e r e are a l s o common n o i s e s o u r c e s one has t o contend w i t h . The key t o p r i v a c y g e n e r a l l y l i e s i n t h e combined m a n i p u l a t i o n of t h e t h r e e elements. But s i n c e f a c t o r s a f f e c t i n g t h e c o n t r o l of t h e n o i s e s o u r c e a r e u s u a l l y o u t s i d e t h e scope o f a r c h i t e c t u r a l a c o u s t i c s , t h i s s t u d y s h a l l f o c u s i t s e l f on t h e a t t e n u a t i o n of sound heard by t h e r e c e i v e r -T h i s s t u d y w i l l i n v e s t i g a t e t h e p r i v a c y a f f o r d e d by d i f f e r e n t w a l l s when s u b j e c t e d t o some common n o i s e s o u r c e s . S p e c i f i c a l l y , i t w i l l demonstrate t h e use o f a p r i v a c y model d e r i v e d from work done by Cavanaugh, et a l . ( R e f 13) and Young (Ref 4 2 ) . T h i s model w i l l be used t o r a t e a s e r i e s o f p l a s t e r b o a r d w a l l c o n s t r u c t i o n s u s i n g the s u b j e c t i v e r e s p onse as a c r i t e r i o n f o r a c o u s t i c p r i v a c y . The r e s u l t s c o u l d t h e n y i e l d not o n l y c o l l e c t e d i n f o r m a t i o n on p r a c t i c a l m a t e r i a l a p p l i c a t i o n s but a l s o a s i m p l e r approach towards u n d e r s t a n d i n g a co n c e p t o f a c o u s t i c p r i v a c y . 4 1.2 OBJECTIVES This thesis has three objectives. The f i r s t i s to evaluate d i f f e r e n t plasterboard wall systems using the privacy model mentioned above. The main body of data w i l l be derived from the compilation of plasterboard walls by the Division of Building Research, National Research Council of Canada (Ref 28). Some additional data made availa b l e by l o c a l acoustical consultants w i l l also be included. These wall systems w i l l be rated only for airborne sound intrusions because the analysis of impact, i . e . structure-borne, sound would involve d i f f e r e n t concepts that are outside the scope of t h i s thesis. Within t h i s context, the values attained i n these tests should be considered as a 'laboratory* value, as opposed to actual f i e l d data. This i s s e l f evident because, f i r s t , the DBR data are laboratory values and second, the use of computer simulation i n these tests would by i t s nature be of semi-idealized conditions. There i s a difference between laboratory and f i e l d data because the former uses c a r e f u l l y b u i l t test panels under a r i g i d l y controlled environment while the l a t t e r i s based on exis t i n g f i e l d conditions and construction q u a l i t y . The second objective i s to demonstrate the use of a sound i s o l a t i o n test procedure derived from work done by Cavanaugh, et a l . (.Ref 13) and subsequently modified by Young (Ref 42). This w i l l not only explain the t h e o r e t i c a l concepts behind acoustic privacy but w i l l also demonstrate the r e l a t i o n of predicted subjective responses to the Sound 5 Transmission Class (STC) categorization scheme. This would re s u l t i n a design t o o l which i s readily understandable and r e l a t i v e l y easy to manipulate. The t h i r d objective i s to simultaneously test a s i m p l i f i e d rating scheme s i m i l a r to that proposed by Seikraan, et a l . (Ref 37) using the A-weighted curve. Numerous papers (Ref 31,35-38) have been written on the • s i m p l i f i e d f i e l d measurement' of transmission loss or more cor r e c t l y , noise reduction. The results of t h i s t e s t are offered as a further q u a l i f i c a t i o n of the proposed rating scheme. The renewed i n t e r e s t i n t h i s area i s due to i t s s i m p l i c i t y i n contrast to the cumbersome methods embodied i n the equivalent American Society for Testing and Materials (ASTM) standards. This feature may well encourage more testing of finished buildings which would in turn result i n an increased feedback to the architect concerning user s a t i s f a c t i o n -6 II- THEORETICAL CONCEPTS 2.1 The Masking Concept 2-2 The Physical Parameters of Sound Insulation (A) Transmission Loss and Noise Reduction (B) Effect of Room Characteristics on Sound Attenuation (C) Sound Transmission Class 2-3 Subjective Response (A) A Privacy Model 2-4 A Simplified Acoustic Measurement 7 I I - IHEOBETIG&L CJDNCJPTJ5 Acoustic privacy i s a function of numerous f a c t o r s . These range from purely objective quantities such as the physical parameters of the space to the q u a l i t a t i v e aspect of i n d i v i d u a l subjective response. I t would be advantageous i n any study that involved both subjective and objective q u a l i t i e s to f i n d some manner of associating both g u a l i t i e s by means of a physical rating. One could then rate physical quantities by t h e i r given subjective q u a l i t i e s . A s i g n i f i c a n t work in t h i s area was undertaken by Cavanaugh,et a l . (Ref 13) which dealt with speech privacy i n buildings. This quite comprehensive work was based on experiments which were conducted to determine the importance of i n t e l l i g i b i l i t y to speech privacy. Subsequently, a rather elaborate but precise r a t i n g scheme was developed to predict the subjective response for a defined physical environment. This lent i t s e l f to an accurate design scheme which would require such quantities as room configuration and ambient noise levels- (Ref 26). A l a t e r study by Young (Ref 42) which was based on the work of Cavanaugh, et a l . s i m p l i f i e d the l a t t e r 1 s method. Using e x i s t i n g design c r i t e r i a , Young's work proposed a step-by-step c a l c u l a t i o n which, with the aid of three graphs, enabled the designer to predict user s a t i s f a c t i o n . This modification proved sat i s f a c t o r y and i s referenced by several sources such as Beranek(Ref 5), and Lawrence(Ref 24). The l a t t e r has even modified the graphs f o r metric 8 a p p l i c a t i o n . A l t h o u g h these s t u d i e s were based on speech p r i v a c y , i t s concept s have been made a p p l i c a b l e to o t h e r problems o f a c o u s t i c p r i v a c y * (Ref 2 2 , 3 6 ) . The a p p l i c a b i l i t y o f t h i s p r i v a c y concept i s based on f o u r c o n s i d e r a t i o n s - the i n t r u d i n g no i se source ( s i g n a l ) , the ambient n o i s e l e v e l (background n o i s e ) , and the p h y s i c a l parameters o f sound i n s u l a t i o n and s u b j e c t i v e r e s p o n s e . SOURCE'SIDE •RECEIVING'SIDE Figure 2.1 A wall as a "sound b a r r i e r " ; 10 2-1. THE MASKING CONCEPT The intruding noise source and the ambient noise l e v e l are related to each other by the concept of masking. In general, most spaces have an ' a c t i v i t y noise l e v e l ' which we s h a l l consider as background noise. This may be the sound of sh u f f l i n g paper and whispered talk i n a l i b r a r y or the general sound of operating machinery in a factory. Our experience has taught us what to expect from d i f f e r e n t spaces i n terms of an aural environment* Just as we would expect a l i b r a r y to be quiet, we would also expect a factory to be noisy- The concept of an ambient noise l e v e l has been well studied and subsequently compiled in the indoor Noise C r i t e r i a (NC) curves by Beranek (Ref 1) i n 1957- These are a series of c r i t e r i o n curves that portray sound pressure le v e l s for background noises which generally should not be exceeded, or should be maintained, i n various human environments. From Figure 2-2, i t can be observed how the discrimination of the human ear against low frequency sounds has been considered- This graph was la t e r modified and presented as the Preferred Noise C r i t e r i a (PNC) curves (Ref 5) (Figure 2.3) due to objections that sound spectra generated to conform to the NC curves were not pleasant or neutral sounding, but tended to be both hissy and rumbly. Thus the PNC curves show a substantial reduction i n l e v e l at both the lower and higher frequencies when compared to the NC curves-11 The International Standards Organization (ISO) has developed the Noise Bating (NR-not to be confused with Noise Reduction i n North American terminology) curves which combine several methods of specifying noise c r i t e r i a - These are quite s i m i l a r to the NC curves but have even higher values for the low frequencies and lower values for the high frequencies- (Figure 2-4) The e f f e c t of the background noise i s to obscure (or •mask') any noise source of a lesser magnitude- It should be noted however that t h i s basic concept of masking i s most e f f e c t i v e when applied to sounds having a s i m i l a r spectrum. The importance of freguency should not be overlooked, because i t often determines whether a sound i s heard or not, esp e c i a l l y i f the degree of masking i s small. I t should be also noted that low frequency sound masks high freguency sound better than vice-versa.(Ref 24,29) The problem of speech interference in t h i s masking concept i s even more dependent on frequency. The study by Cavanaugh, et a l . confirms that speech i n t e l l i g i b i l i t y i s re l a t e d to frequency, with some frequencies contributing more to i n t e l l i g i b i l i t y than others. (Figure 2.5) Their study has also shown that speech privacy i s more a function of i n t e l l i g i b i l i t y than of the actual l e v e l . And furthermore i n t e l l i g i b i l i t y due to peak signals i n speech i s destroyed when sub s t a n t i a l l y masked by the background noise l e v e l s . "The acceptable l e v e l scheme assumes that people's reactions to a sound are uniquely related to i t s l e v e l (or loudness). While i t may be true that the annoyance and sound-pressure l e v e l are related for c e r t a i n sounds such as a i r conditioning or t r a f f i c noise, we have come to believe,......that annoyance due to information-carrying sounds, such as intruding speech, i s determined primarily by the INTELLIGIBILITY and, to f i r s t order, has nothing at a l l to do with the l e v e l . " (Ref 13, p. 476) 13 Old octave-bond limiting frequencies, Hz €3 125 250 500 1.000 2.000 4,000 -8000 New octowe-bond center frequencies. Hz Figure2.2 Indoor noise c r i t e r i a (NC) curves. (Ref. 1) Ik 31.5 125 250 500 1,000 2.000 Preferred octove-bond center frequencies,Hi 4 .000 8 ,000 F i g u r e 2 , 3 P r e f e r r e d n o i s e c r i t e r i a (PNC) c u r v e s . ( R e f . 5 ) 315 63 125 250 500 lk 2K 4k 8k centre frequency Hz Figure 2.4 Noise Rating curves . (ISO) 3 - I V 1— I l i 1 V * 5 >C l t> I' • \ t T • ? - III! * • > to tc ivo wo *'JC I?»O *COO ?t-x> «>:* *53C ti no. *o 743 *OC • *> lOOO l*O0 I V W *ODO .4KK) IOOOS tHiRD OCTAVE BANC* CCh^ IA r K E O U t N C f '** CiCvE? PL« SCCOK'D Figure 2.5 G r a p h i c a l representat ion of normal speech l eve l s i n a 100 sabine room. Number of dots i n each th ird-oc tave band s i g n i f i e s r e l a t i v e c o n t r i b u t i o n to a r t i c u l a t i o n index. The data are derived from studies referenced i n Cavanaugh, et a l . (Ref 13 ) 16 2.2 THE PHYSICAL PARAMETERS OF SOUND INSOLATION I d e a l l y , i t i s advantageous to use N o i s e R e d u c t i o n (NR) i n s t e a d o f the T r a n s m i s s i o n Loss (TL) f o r s p e c i f y i n g a c o u s t i c p r i v a c y . ( R e f 23,24) T h i s i s because NR i s more i n d i c a t i v e t h a n TL o f t h e a c t u a l sound i n s u l a t i o n a t t a i n e d . U n f o r t u n a t e l y , NR i s a f u n c t i o n o f numerous f a c t o r s , i n c l u d i n g TL, which makes i t dependent not o n l y on d e s i g n but a l s o c o n s t r u c t i o n q u a l i t y . T h i s makes i t a more d i f f i c u l t and complex method t o use. The TL of a p a r t i t i o n , on the o t h e r hand, i s r e l a t i v e l y easy t o e s t a b l i s h , and TL data a r e t h u s a v a i l a b l e on a wide v a r i e t y o f w a l l systems. G r a n t e d t h a t t h e s e a r e m o s t l y l a b o r a t o r y f i g u r e s , i t i s g e n e r a l l y a c c e p t e d t h a t w i t h i n a " r e a s o n a b l e " scope of c o n s t r u c t i o n q u a l i t y , t h e l a b o r a t o r y v a l u e s i n d i c a t e t h e l e v e l o f sound i n s u l a t i o n t h a t may be a c h i e v e d . (Ref 20,23). (A) T r a n s m i s s i o n Loss and N o i s e R e d u c t i o n T r a n s m i s s i o n l o s s i s " t h e amount i n d e c i b e l s by which sound i s reduced by p a s s i n g from one s i d e o f the s t r u c t u r e t o t h e o t h e r " . ( R e f 16). T h i s i s a c h a r a c t e r i s t i c of the s t r u c t u r e i t s e l f and i s t o t a l l y detached from the o t h e r e n v i r o n m e n t a l f a c t o r s . The t r a n s m i s s i o n l o s s f o r a p a n e l i s e x p r e s s e d by the f o r m u l a : TL = 10 l o g ( 1 / t ) , d e c i b e l s ( d B ) where (t) , t h e 'sound t r a n s m i s s i o n c o e f f i c i e n t ' o f a p a n e l Il LOUDSPEAKER LI L2 [CROPHONE TT NR = LI - L2 = TL - 10 log TL = LI - L2 + 10 log Figure 2 . 6 Transmission-loss measurement tes t setup. 18 i s d e f i n e d as t h e r a t i o o f t h e t r a n s m i t t e d t o t h e i n c i d e n t sound energy f o r a i r b o r n e sound. Noise r e d u c t i o n on t h e o t h e r hand, d e a l s w i t h the a t t e n u a t i o n o f sound from one room (source room) t o a n o t h e r ( r e c e i v i n g room). T h i s a l s o means t h a t the two rooms need no t share a common p a r t i t i o n ; but s i n c e t h i s s t u d y d e a l s w i t h t h e sound i n s u l a t i o n o f p a r t i t i o n s , NS i n t h i s c o n t e x t w i l l be t h a t between two a d j a c e n t rooms. T h i s i n v o l v e s n o t o n l y the t r a n s m i s s i o n l o s s o f t h e common p a r t i t i o n but a l s o room s i z e s , a b s o r p t i o n c h a r a c t e r i s t i c s and any s u b s t a n t i a l amount of sound l e a k s o r " f l a n k i n g " t r a n s m i s s i o n -The r e l a t i o n s h i p between t h e NS and TL o f two rooms i s g i v e n by : TL = NB + 10 l o g (S/A) where, L 1 , i s t h e average sound p r e s s u r e l e v e l (SPL) i n t h e s o u r c e room, i n dB; L2, i s t h e average sound p r e s s u r e l e v e l i n t h e r e c e i v i n g room, i n dB; and, NR = L1 - L2 S , i s t h e a r e a of the common p a r t i t i o n , i n s q . f t . ; A, i s t h e t o t a l a b s o r p t i o n o f t h e r e c e i v i n g room, i n s g . f t . s a b i n s . Thus TL i s d e r i v e d by measuring NR and n o r m a l i s i n g t o the a b s o r p t i o n and p a r t i t i o n s i z e . I n the ISO s t a n d a r d s used i n most European c o u n t r i e s , NR i s n o r m a l i s e d e i t h e r t o a b s o r p t i o n or r e v e r b e r a t i o n t i m e . The concept b e h i n d t h i s 19 i s t h a t r e g a r d l e s s o f room c o n d i t i o n s d u r i n g measurement, t h e r e s u l t s are c o r r e c t e d t o some s e t average v a l u e . T h i s i s known as t h e N o r m a l i s e d L e v e l D i f f e r e n c e , Dn which i s g i v e n by : Dn = L1 - L2 + 1 0 log(Ao/A) where A , i s t h e measured a b s o r p t i o n i n the r e c e i v i n g room; Ao , i s t h e r e f e r e n c e sound a b s o r p t i o n (10 s q m s a b i n s o r 108 sg f t s a b i n s ) T h i s f o r m u l a might v a r y i n some c o u n t r i e s which p r e f e r t o n o r m a l i s e t o r e v e r b e r a t i o n t i m e i n s t e a d o f a b s o r p t i o n : Dn = I I - L2 + 10 log(T/To) where T , i s t h e measured Sabine r e v e r b e r a t i o n t i m e i n t h e r e c e i v i n g room; To , i s t h e r e f e r e n c e r e v e r b e r a t i o n time (0.5 sec.) The l a t t e r two e q u a t i o n s a r e r e l a t e d by t h e room a b s o r p t i o n and r e v e r b e r a t i o n time i n Sab i n e ' s f o r m u l a (Hef 33) : Rt = (KV)/A , seconds where K , i s a c o n s t a n t , 0.161 f o r m e t r i c u n i t s , 0.04 9 f o r E n g l i s h u n i t s ; V , i s t h e room volume, s g . m. o r s q . f t . ; A , i s t h e room a b s o r p t i o n , s q . m. s a b i n s o r s g . f t . s a b i n s The 0.5 s e c r e v e r b e r a t i o n t i m e i s a g e n e r a l l y - a c c e p t e d v a l u e based on t h e average l i v i n g room. 20 (B) E f f e c t o f Room C h a r a c t e r i s t i c s on Sound A t t e n u a t i o n The d i f f e r e n t c o n f i g u r a t i o n s o f t h e e q u a t i o n f o r sound a t t e n u a t i o n a l l t a k e i n t o a ccount some form o f t h e r e v e r b e r a n t e f f e c t i n t h e r e c e i v i n g room. F i g u r e 2.7 shows t h e d i f f e r e n t n o r m a l i s i n g f a c t o r s used f o r TL and Dn. A s t u d y by van den E i j k ( R e f 17) r a t i o n a l i s e s t h e advantage o f u s i n g the ( 10 l o g (T/To) ) c o r r e c t i o n o v e r t h e ( 10 l o g (S/A) ) where t h e r e f e r e n c e d r e v e r b e r a t i o n time 'To' i s assumed as 0.5 s e c . F u r t h e r on though, he n o t e s "how t h e poor a r c h i t e c t c o u l d c a l c u l a t e Dn i n a g i v e n case from the R d a t a p r o v i d e d by t h e l a b o r a t o r i e s " , and s u b s e q u e n t l y proceeds t o show the r e l a t i o n s h i p between the two fo r m u l a e : Dn = L1 - L2 + 10 log(T/0.5) = L1 - L2 + 10 l o g ( 2 T ) then u s i n g S a b i n e ' s e q u a t i o n : Rt = (0.049 V)/A Dn = L1 - L2 + 10 l o g [ (0.10 V)/A ] = L1 - L2 + 10 l o g [ V/(10 A) ] c o n v e r t i n g V(volume) t o S ( a r e a o f t r a n s m i t t i n g w a l l ) and h (dimension o f the r e c e i v i n g room p e r p e n d i c u l a r t o t h e t r a n s m i t t i n g w a l l ) we have : Dn = L1 - L2 + 10 logC (h S)/(10 A) ] Dn = L1 - L2 + 10 log(S/A) + 10 l o g ( h / 1 0 ) (Note : The above e q u a t i o n s were c o n v e r t e d from the o r i g i n a l m e t r i c u n i t s t o E n g l i s h u n i t s . ) The a d d i t i o n a l c o r r e c t i o n of ( 10 l o g ( h / 1 0 ) ) i s c l e a r l y n e g l i g i b l e f o r rooms of moderate s i z e and s h o u l d be viewed as a f u r t h e r r e f i n e m e n t f o r p r e c i s i o n , much i n the 21 same way t h e E y r i n g e q u a t i o n r e f i n e s t h e concept o f S a b i n e ' s r e v e r b e r a t i o n e q u a t i o n . I t i s s u f f i c i e n t t o say t h a t when d e a l i n g w i t h extremes i n room s i z e and a b s o r p t i o n , c o r r e c t i n g f a c t o r s must be c o n s i d e r e d . ( F i g u r e s 2.8 and 2.9). 22 L a b o r a t o r y Measurement TRANSMISSION LOSS TL = L I - L2 + 10 l o g d i f f u s e sound f i e l d , a l l sound t r a n s m i t t e d t h r o u g h t e s t p a n e l F i e l d Measurement NORMALISED LEVEL DIFFERENCE D = L I - L2 + 10 l o g ^ 2-n A d i f f u s e sound f i e l d , may be some f l a n k i n g t r a n s m i s s i o n F i g u r e 2.7 D i f f e r e n c e between TL and D. n R a t i n g o f l i s t e n i n g room f l o o r a r e a t o t r a n s m i t t i n g a r e a A p p r o x i m a t e c o r r e c t i o n , NR r e TL K 2L -— * ' 1 ' ' ' ' 2 t 1 + 3 dB 1 i 1 0 dB L 1 1 t 2 - 3 dB F i g u r e 2.8 The r e l a t i o n s h i p of NR and TL i n rooms of v a r i o u s shapes. (Ref 13 , p.4-79) 23 SOUND ISOLATION: Transmission Loss and Noise Reduction Between Rooms The TL is a material property that cannot be viewed as a unique value for a given wall construction for all conditions. The examples below demonstrate that the same partition is more effective when trans-mitting sound into a large, highly absorbent receiving room than into a small, reverberant receiving room. A . ; •o o o — -j cc r- 2 Source roorn O S |ft2h pfr Receiving room HI m "-2 <x | 4ns) J . *2 (sabins) Small, reverberant room Frequency in Hz NOTE: The TL curves shown on both graphs are identical, as tame partition is used in both examples. s -H Z • T R^eceiving room : 11111 > ' S ift 2 )— " - i Source room 1 © «2 (sabins) -I Largo, highly absorbent room ' • Frequency In Hi ' * ' -• ' Nohe reduction betw/een rooms Is the actual difference in intensity levels between the source room and receiving room, that il NR D IL, ~ ILj in dB. Also, NR between rooms can be predicted by NR-TL+IOlog o2/s 4 t Factors that determine NR • Area of portltlon In ft2 ' Absorption In receiving room in sabins' -Transmission loss of common partition in decibels F i g u r e 2.9 E f f e c t o f room s i z e and a b s o r p t i o n . (Ref 16 . p.66) 24 (C) Sound T r a n s m i s s i o n C l a s s The p r e v i o u s method o f r a t i n g the t r a n s m i s s i o n l o s s o f a p a r t i t i o n used a s i n g l e f i g u r e averaged from t h e v a r i o u s TL v a l u e s o ver a f r e g u e a c y range- As such i t i s v u l n e r a b l e t o the numerous d i s a d v a n t a g e s i n h e r e n t i n a s i n g l e - f i g u r e r a t i n g . A s i n g l e - f i g u r e r a t i n g o f t e n b e l i e s t h e i m p o r t a n c e o f sound f r e q u e n c y i n r e l a t i o n t o s u b j e c t i v e r e s p o n s e . ( F i g u r e 2.10) The development o f t h e Sound T r a n s m i s s i o n C l a s s (STC) i n North America , and i t s European e q u i v a l e n t , i s an e f f o r t t o d e a l w i t h such c o n d i t i o n s . H i s t o r i c a l l y , both i n Europe and i n No r t h A m e r i c a , s i n g l e - f i g u r e t r a n s m i s s i o n l o s s r a t i n g s were based on the a r i t h m e t i c a verage o f t r a n s m i s s i o n l o s s e s a t d i f f e r e n t p r e s c r i b e d f r e q u e n c i e s . The o l d ( p r i o r t o 1948) B r i t i s h s t a n d a r d p r e s c r i b e d measurements a t t h e f o l l o w i n g f r e q u e n c i e s : 100,150,200,300,500,700,1000,1600,2000,3000,400 0 Hz w h i l e t h e American s t a n d a r d used : 125,175,250,350,5 00,700,1000,2000,4 000 Hz The d i s a d v a n t a g e s to t h i s system are "(1) i t g i v e s e q u a l weight t o a l l t e s t f r e g u e n c i e s r e g a r d l e s s of t h e i r i m p o r t a n c e i n sound i n s u l a t i o n problems ( a l t h o u g h by i n c l u d i n g t h e h a l f r o c t a v e s below 1000cps the U.S. n i n e - f r e q u e n c y average g i v e s e x t r a w e i ght t o t h e low f r e q u e n c y r a n g e ) ; (2) i t g i v e s e q u a l weight t o both h i g h and 25 low transmission losses, as i f superlatively high values at some frequencies could compensate for d e f i c i e n c i e s at other frequencies." (Ref 26). This l e d to the development of the grading curves which were more representative of subjective responses and auditory discrimination towards frequencies. The early development of these curves occurred i n Europe where d i f f e r e n t nations developed quite s i m i l a r grading contours. (Figure 2.11). In North America, development of a grading curve was i n the form of a proposed c l a s s i f i c a t i o n BM-14-2 in the ASTM standards.Eventually t h i s was revised and adopted to the present Sound Transmission Class (ASTM E413-73) . (Ref 46). The Sound Transmission Class i s a si n g l e - f i g u r e rating which describes the airborne sound insulating properties of pa r t i t i o n s and barrie r s . A p a r t i t i o n or ba r r i e r , i n t h i s case, may be a f l o o r or wall of a single or composite material constructed i n any of various methods to form a complete separation between two areas. The nature of t h i s test involves a prescribed method as contained i n ASTM standard E9Q-70 for laboratory tests (Ref 4 4) and ASTM standard E338-71 for f i e l d tests (Ref 45). The r e s u l t s are then plotted on a graph and subjected to a c u r v e - f i t t i n g process using a prescribed contour to determine the single-number rating (ASTM E413-73) (Bef 46). (Figure .2.12) . This rating system i s based on studies which used subjective response to determine t o l e r a b l e l i m i t s of relevant frequencies and noise levels.(Ref 26).The nature of 26 t h i s s t a n d a r d c o n t o u r i s an i d e a l i z e d T r a n s m i s s i o n L o s s c u r v e based on the d i s c r i m i n a t o r y performance of man's a u d i t o r y r e sponse t o v a r i o u s sound s o u r c e s p r e s e n t i n an o f f i c e o r d w e l l i n g environment. I t e x c l u d e s o t h e r s o u r c e s such as i m p a c t sound, i n d u s t r i a l n o i s e , l i v e c o n c e r t m u s i c , e x t e r i o r n o i s e s due t o motor v e h i c l e s and a i r c r a f t , and even l o w - f r e g u s n c y " h i - f i " sounds because t h e s e i n c l u d e f r e q u e n c i e s o u t s i d e t h e range o f t h e g r a d i n g c u r v e . 27 . Part i t ion with 31 d B aver., 22 STC " S o u n d t ransmiss ion c lass contour Part i t ion with 31 d B aver., 32 STC " S o u n d t ransmiss ion c lass contour F i g u r e 2.11 Comparison of t y p i c a l n a t i o n a l r e q u i r e m e n t s f o r a i r b o r n e sound i n s u l a t i o n ( f i e l d measurements). 28 F i g u r e 2 . 1 2 Sound T r a n s m i s s i o n C l a s s r a t i n g method. SOUND TRANSMISSION CLASS (STC). 03 cn o _1 o cn cn < or TEST J A T A C / / -^ -A / _ S T C 46 ... . - i M \ / / V 7 z < 1 r The Sound Transmission Class i s a method of rating the airborne sound transmission performance of a wall or a f l o o r - c e i l i n g structure at different treq>:cncies by means of a single number. U J i | M » ) 1 » BAND CENTER FREQUENCY- Hz The STC rating method is based on the laboratory test procedure specified in the ASTM Recommended Practice E 90-70, iri which the sound transmission loss of a test specimen is measured at 16 frequencies at 1/3-octave intervals covering the range from 125 to 4000 Hi. To determine the STC of a given specimen, i t s measured transmis-sion loss values are plotted against f r e -quency and compared with a reference f r e -quency curve (STC contour), as shown in the i l l u s t r a t i o n at l e f t . The STC rating may then be determined by means of transparent overlay on which the STC contour is drawn. The STC contour is shifted v e r t i c a l l y r e l a t i v e to the test data curve to as high a position as possible while f u l f i l l i n g the following conditions. 1. The maximum deviation of the test curve below the contour at any single test frequency shall not exceed 8 dB. 2 . The sum of the deviations at a l l 16 frequencies of the test curve below the contour shall not exceed 32 dB. This is an ivcragc deviation of 2 dB When the STC contour is thus adjusted (in integral decibels) the STC value is re:'1 from the v e r t i c a l scale of the test curve -is the TL value corresponding to the intersection >f the STC contour and the 500-112 frequency line. in the example, the STC value is governed by the S dB deviation at 32 )lz, although the total deviation adds up to only 27 dB. PKWARE OF SINCH.I- NUMBP.lt RATINGS ! (They don't t e l l the whole story) 29 2-3 SUBJECTIVE RESPONSE After the various physical properties of t h i s acoustic environment have been determined, the f i n a l l i n k i s to be able to quantify these values i n terms of subjective response* The studies done by Cavanaugh, et a l . and Young show a precise and r a t i o n a l approach to t h i s objective* (A) k Privacy Model The STC grading contour correlates subjective impressions of sound insulation over a frequency range- The shape of the contour shows the r e l a t i v e weighting assigned to the 16 third-octave bands over the 125-4000 frequency range- Young's model uses the STC rating or ( i t s ISO equivalent) of a p a r t i t i o n and relates i t to the o v e r a l l Noise Seduction and masking e f f e c t to predict the subjective response-from- R.W. Young, Re-vision of the J . Acoust. Soc. A m . , vol. 38 , Speech-privacy pp. 524 - 530 , Calculations , 1 9 6 5 . 30 The practical prediction of acoustical privacy, de-scribed above, consists in combining estimates, or measured values, of the following quantities: ,'JS is the source level, the typical sound level (A), in decibels, at a distance of 3.3 ft (1 m) from the sound source; use 60 for conversational voice, 06 for raised ! voice, 72 for loud voice. F is the room function, the number to be added to the source level (A) to obtain the typical sound level ihroughout a room; estimate from Fig. A-l(a). ..'.'. P is the privacy allowance; use 15 for "confidential," . l) for "normal," or other value selected in consideration of the nature of the sound involved., ,. 7 is the rating of sound insulation of "a partition, such . as the sound-transmission class (STC) or ISO : index. . •..•'. '-•• . A" is the quantity to be added to the sound insulation / of the common partition (the wall or floor-ceiling separating.two rooms) to obtain effective sound isola-' lion between rooms; from ratio of area of common par- • tition to that of floor of receiving room, estimate K . from Fig. A-l(b). '• "•• Y , ' , - ; ' ' . v . ' / „ D—I+K is the sound isolation between rooms. ••„*•$' A1 is the background-noise level (A) in receiving room. ;. . • •• 15 10 F , D B - 5 B A RE - F U R N I S H E : (oj 1 S A T I S F A C T I O N 100 2 0 0 3 0 0 5 0 0 S O U R C E F L O O R A R E A , F T 2 1 0 0 0 K . O B C 2 ' 3 5 R E C E I V I N G F L O O R A R E A C O M M O N PARTITION A R E A ' Fit), A- l . Estimated of nnd A' from room tlimonHir)ns, for stud-and-plastcr construction and room he ight* l i k e 10 ft. ..' Compute sound excess X4(JS+F)+J'-'D-N. (Al) Read. expected degree satisfaction with acoustical privacy from Fig. A-2, Values for K and for the room function F, as read from Fig. A - l (a) and (b), are based on the approxima-tions that the absorption is equal to the flour area of u furnished room, (stud-and-plaster construction), and .that the reverberation time of a bare room is about three times that of a furnished room. Both of these stem from field experience. The first is consistent with the observation that the,reverberation time T, in many M I L D M O D E R A T E o < in in 5 S T R O N G • E X T R E M E o io .20 . ; ,-• S O U N D E X C E S S X , D B . • h o , A - 2 . Sal•isfhcllon'' with' acoustical privacy vs sound rexccss.Y, furnished rooms, tends*-1 to be hear 0,5 sec; if typical' room height, were 10 ft, it follows that,'in a furnished room of floor surface.5 (ft2), the Sabine absorption / l is •approximately equal to the floor area, because . f : ; /r:=().n40K/7'=o.o49Xiox.v/o;5«ji.>AAiy The "nilc (if thumb" may be remembered by noting that the room function is zero for a well-furnished room of floor area 5(K) ft2 (50 m2), and 5 dB greater for a bare; room, and that a doubling of the floor area reduces the room function by 3 (IB. • ••0 , ! : "-' : -. *~' 0 . Hrami l , in Proceedings of the fourth International Congress on Acoustics, Copenhagen, 1962 (Organization Committee of the 4th I C A and Harlang & Toksvig, Copenhagen, 196,1), Vol . 2, pp. 31-54, csp. i>. 45. "j, -. , ,. . t} • ; • ' V • '•-31 The 'sound e x c e s s ' f o r m u l a uses t h e v a l u e s F and K which are a c t u a l l y c o r r e c t i o n s f o r room d i m e n s i o n s and a b s o r p t i o n - For f u r n i s h e d rooms, the v a l u e K would be z e r o i f t h e f l o o r a rea were e q u a l t o t h e p a r t i t i o n a r e a - T h i s r e l a t e s t o t h e c o r r e c t i n g v a l u e of ( 10 l o g (S/A) ) which would be z e r o i f t h e average v a l u e of a b s o r p t i o n 'A' were assumed as 100 s a b i n s and the p a r t i t i o n 'S' as 100 s q . f t . (Ref 26) ( C o r r e c t i o n s due t o Room S i z e and A b s o r p t i o n a r e d i s c u s s e d i n a l a t e r s e c t i o n . ) T h i s l e a v e s the v a l u e »D' as j u s t the T r a n s m i s s i o n L o s s v a l u e (STC o r ISO e g u i v a l e n t ) . In s i m p l i f i e d form, the above f o r m u l a a c t u a l l y r a t e s t h e masking e f f e c t (which we s h a l l r e f e r t o as M) o f the background n o i s e (BN) over the i n t r u d i n g sound l e v e l i n the r e c e i v i n g room ( L ) . The model can thus be g i v e n as M = BN - L2 and from NR =•L1 - L2 M = BN - (L1 - NR) S i n c e we have assumed t h e absence of any c o n s i d e r a b l e amount o f f l a n k i n g , we can c o r r e l a t e NR t o STC. T h i s t o o can be assumed from Young's f o r m u l a i f the v a l u e f o r K i s n e g l i g i b l e . Masking M can thus be r e l a t e d t o t h e s u b j e c t i v e response by t h e v a l u e s o f P ( p r i v a c y a l l o w a n c e ) and X (sound excess) : M = P - X Thus, when v a l u e s f o r P a r e d e f i n e d , P=15 f o r c o n f i d e n t i a l p r i v a c y and P=9 f o r normal p r i v a c y , the l a s t graph i n Young's model can be r e - l a b e l l e d . ( F i g u r e 2.13) 32 sot isfaction S moderate "5 o o «n to =5 strong I— extreme (A) for confidential privacy (B) for normal privacy F i g u r e 2.13 P r e d i c t e d s u b j e c t i v e r e s p o n s e t o masking 'M' f o r two p r i v a c y l e v e l s , ( a f t e r Young, Ref 42 ) 33 2.4 A SIMPLIFIED ACOUSTIC MEASUREMENT The measurement o f sound l e v e l s i n dBA i n v o l v e s a method of r a t i n g sound p r e s s u r e l e v e l s through a f i l t e r o r w e i g h t i n g v a l u e s which q u a n t i t a t i v e l y r e d uce the e f f e c t o f low f r e q u e n c y n o i s e . There are a l s o dBB and dBC r a t i n g methods which show more s e n s i t i v i t y towards the lower f r e g u e n c i e s r e s p e c t i v e l y . ( F i g u r e 2.14). O r i g i n a l l y , dBA was d e s i g n a t e d f o r use on sounds l e s s t han 55 dB, w h i l e dBB and dBC were used f o r 55-85 dB, and over 85 dB r e s p e c t i v e l y . (Ref 30) . T h i s had brought about a disagreement over t h e c o r r e l a t i o n o f t h e s e methods w i t h s u b j e c t i v e i m p r e s s i o n s o f l o u d n e s s . P r e s e n t l y , t h e wide use o f dBA f o r a l l l e v e l s o f sound i s a t t r i b u t e d t o I t s c l o s e c o r r e l a t i o n w i t h t h e a u r a l response o f the human e a r . C e r t a i n l y , comparison w i t h o t h e r s c a l e s and p r o c e d u r e s has shown none of t h e s e t o be s i g n i f i c a n t l y b e t t e r t h a n t h e A - w e i g h t i n g l e v e l i n c o r r e l a t i n g w i t h s u b j e c t i v e r e s p o n s e - ( R e f 3 4 ) . I t s wide a c c e p t a n c e and s i m p l i c i t y o f use a l s o makes i t advantageous f o r i m p l e m e n t a t i o n on an i n t e r n a t i o n a l s c a l e -There i s a c o n s i d e r a b l e amount o f renewed i n t e r e s t i n t h e dBA r a t i n g method because of i t s p o s s i b l e use as an a l t e r n a t i v e t o t h e r i g o r o u s and time-consuming p r o c e d u r e s s t i p u l a t e d by t h e p r e s e n t ASTM and ISO s t a n d a r d s f o r f i e l d measurement of Noise R e d u c t i o n - ( R e f 31,35). The s t u d y by Seikman, e t a l . (Ref 37) has shown a c o r r e l a t i o n of f i e l d STC t e s t s and t h e i r s i m p l i f i e d f i e l d t r a n s m i s s i o n t e s t u s i n g t h e 34 difference i n dBA sound l e v e l s between the source and receiving room. A subsequent investigation (Ref 12) under laboratory conditions was made to further g u a l i f y t h i s work. I t showed that while the procedure by Seikman, et a l * provides an estimate of STC i t "actually measures the Noise Isolation Class, as defined by ASTM E 336-67T" (Sef 12). A further proposal by Schultz(Ref 35,36) presents a scheme where the difference between background noise (dBA) and intruding sound (dBA) i s used as a c r i t e r i o n for privacy. The r e l a t i o n of the A-weighting contour to the NC and STC curves i s shown on Figure 2.15. There i s another proposal by Stephens (Ref 38) which c a l l s for the adoption of the A-weighted l e v e l as a standardized grading curve in B r i t a i n . His work presents the A-weighted l e v e l as a compromise between the B r i t i s h House Party Wall Grade curve and the ISO R717 reference curve , the l a t t e r being s i m i l a r to the STC curve. (Figure 2.16). Since the A-weighted l e v e l i s i n t e r n a t i o n a l l y recognized, i t s adoption would r a t i o n a l i z e and unify acoustic c r i t e r i a . I t would also enable a s i m p l i f i e d t e s t to be evolved. 1 r — • 1 -"B" RESPONSE RESPONSE • -"C" RESPONSE• " 35 500 IK 5K IOK FREQUENCY (Hz) F i g u r e 2.1*1-A, B, and C r e s p o n s e s of s t a n d a r d s o u n d - l e v e l m e t e r s . S J 1 ill A " p i ii! il j! / s STC i 1 1. |j w i Ii llii • l! i I 100 1000 FrtqtMncy (Mt) F i g u r e 2 . 1 5 Curve shape c o m p a r i s o n of v a r i o u s a c o u s t i c a l c r i t e r i a . NC c u r v e i s an i n v e r t e d NC - 3 5 » F i g u r e 2 . 1 6 Comparison of ISO R 717-1968 r e f e r e n c e c u r v e , w i t h House P a r t y W a l l Grade, and w i t h the *A* w e i g h t i n g c u r v e f r o m 56 dB datum. I l l - TEST SMULATIjONS 3.1 Single Panel Versus Double Hall 3.2 Test Elements and Conditions (A) Boom Size and Absorption (B) The Walls (C) The Noise Spectra 3.3 Results (A) The Test Simulations (B) M:STC (C) M : FBEQ 3.4 Comparison of Some Wall Types 3.5 A Simplified Acoustic Measurement 37 III- ISI IISI SIMULATIONS 3-1 SINGLE PANEL VERSOS DOUBLE WALL In t h e o r y , a s i n g l e s o l i d p a n e l r e a c t s a c c o r d i n g t o the Mass Law (Ref 3) which r e l a t e s a 6 dB i n c r e a s e i n t r a n s m i s s i o n l o s s t o e v e r y d o u b l i n g of i t s mass and a l s o a 6 dB i n c r e a s e f o r each d o u b l i n g of f r e q u e n c y f o r t h a t g i v e n mass- The Mass Law c h a r a c t e r i s t i c s o f p a n e l s a r e c o n t r o l l e d a t low f r e q u e n c i e s by p a n e l resonance- T h i s o c c u r s when the f r e q u e n c y of the i n c i d e n t sound i s s i m i l a r t o t h e n a t u r a l r e s o n a n t f r e q u e n c y o f t h e w a l l - The w a l l t h e n v i b r a t e s i n phase w i t h the i n c i d e n t sound wave, p r o v i d i n g l i t t l e a t t e n u a t i o n t o t h e i n c i d e n t sound energy- At h i g h e r f r e q u e n c i e s , t h e t r a n s m i s s i o n l o s s c h a r a c t e r i s t i c s a r e c o n t r o l l e d by t h e c o i n c i d e n c e e f f e c t . T h i s o c c u r s when the wavelength o f the i n c i d e n t sound c o i n c i d e s w i t h t h e bending wavelength of t h e p a n e l , t h u s p r o v i d i n g poor a t t e n u a t i o n a t t h e s e f r e q u e n c i e s . ( F i g u r e s 3.1 6 3-2). T h i s s i n g l e p a n e l c o u l d be a sheet of p l a s t e r b o a r d , c o n c r e t e , o r even b u i l d i n g board bonded on t o both s i d e s o f a c o r e m a t e r i a l such as foamed p o l y s t y r e n e . The d i s a d v a n t a g e o f a s i n g l e p a n e l i s t h a t t o upgrade i t t o t h e d e s i r e d t r a n s m i s s i o n l o s s c o u l d r e q u i r e such an i n c r e a s e o f i t s mass as t o prove q u i t e i m p r a c t i c a l . By c o n t r a s t , s t u d i e s p e r t a i n i n g t o t h e advantages o f a double w a l l a r e numerous and w e l l documented. These s t u d i e s show the e f f e c t s o f v a r y i n g t h e a i r c a v i t y between w a l l s u r f a c e s (wythes), f i l l i n g t h e c a v i t y w i t h d i f f e r e n t m a t e r i a l s , and 3 8 numerous other conditions which seek to achieve greater sound attenuation. (Ref 4, 25,32) - (Figure 3.3). The main reason that a double wall i s superior to a single panel of each mass i s "impedance mismatch". The different media encountered by sound energy moving through a double wall makes for a poor energy transfer from one side to another. How well t h i s i s achieved in actual fact, however, i s dependent on the materials and construction method involved. The results considered here are based on the assumption that the panels are completely separated, without benefit of common t i e s , plates, or studs. The following quotation indicates the e f f e c t of p r a c t i c a l construction l i m i t a t i o n s on the e f f i c i e n c y of double walls. " F i r s t , the reflected energy tends to build up in both the solids and the interveninq a i r space; secondly, the a i r space has s t i f f n e s s and tends to couple the two skins together; t h i r d l y coupling takes place through wall t i e s , common footings, f l o o r s , c e i l i n g s , side walls, etc. The o v e r a l l e f f e c t in practice i s that the low frequency insulation i s a l i t t l e l ess or equal to that of an equivalent single wall and the high frequency insulation i s improved." (Ref 24, pp.73-74) 73 > CO CO o o CO CD C L CD REGION I ' small damping •—• medium — — " ~ • large . :—» — resonances ^ stiffness controlled REGION H — REGION HE. ; — * H extension of mass law. coincidence ! dip-Frequency Hz F i g u r e 3.1 S e p a r a t i o n of the be h a v i o u r of a p a n e l i n t o t h r e e f r e q u e n c y r e g i o n s t ( I ) s t i f f n e s s c o n t r o l l e d and resonances; ( I I ) mass c o n t r o l l e d ; ( I I I ) w a v e - c o i n c i d e n c e c o n t r o l l e d . The c r i t i c a l f r e q u e n c y i s c a l l e d f . (Ref 1, p.287) 4o' Direction ^ % of wave motion ' \ Partition showing ;^/&flexural vibration F i g u r e 3 .2 The c o i n c i d e n c e e f f e c t . Log Irequehcy Schematic transmission loss for a double wall with' identical panels, mi l l liti Hanking transmission, indicating ihc con-.'If o i l ing factors. T h e lower (dashed curve) is the nold-itieidence transmission loss of a s l n ^ e panel , wliilu the upper dashed curve is twice this (in decibels). T h e double-wall resonance frequency is '/o .unci the critical frequency of the panel is/ t... Curve a is for no added absorptive material in the cavity, and curve b is for'.spine. Curve c is for a cavity uni formly filled with absorptive material. Figure 3 .3 (Ref ^ , p.319) 41 3.2 TEST ELEMENTS AND CONDITIONS The advantage o f a dou b l e w a l l i s more e f f e c t i v e f o r m a t e r i a l s w i t h poor sound a t t e n u a t i o n q u a l i t i e s t h a n f o r t h o s e which perform q u i t e a d e q u a t e l y as a s i n g l e p a n e l , such a s s o l i d b r i c k w o r k . For t h e f o l l o w i n g t e s t s i m u l a t i o n s , a c o l l e c t i o n o f p l a s t e r b o a r d w a l l s was drawn from t h r e e s o u r c e s . The main body o f d a t a comes from the D i v i s i o n o f B u i l d i n g B e a s e a r c h , N a t i o n a l B e s e a r c h C o u n c i l o f Canada (Bef 28) , and the r e s t from f i l e d a t a made a v a i l a b l e by two a c o u s t i c a l c o n s u l t a n t s i n Vancouver - A c o u s t i c a l E n g i n e e r i n g and B a r r o n & A s s o c i a t e s (Bef 49,40). The data from t h e c o n s u l t a n t s were chosen on t h e b a s i s t h a t the r e s u l t s were i n d i c a t i v e o f t h e w a l l t y p e . C o n s e q u e n t l y , data which showed i n a d e q u a t e performance due t o poor d e s i g n o r c o n s t r u c t i o n were e x c l u d e d . T h i s i s i n k e e p i n g w i t h t h e s e m i - i d e a l i z e d c o n d i t i o n s assumed f o r the c o m p u t e r - s i m u l a t e d t e s t s . (A). Boom S i z e and A b s o r p t i o n Two p h y s i c a l parameters which vary from one a p p l i c a t i o n t o a n o t h e r a r e room d i m e n s i o n s and a b s o r p t i o n . These two parameters a r e dependent on each i n d i v i d u a l a p p l i c a t i o n , making i t d i f f i c u l t t o assume an averaged o r i d e a l i z e d v a l u e . A s u r v e y of the l i t e r a t u r e showed some s t u d i e s r e g a r d i n g t h e s e p a r a m e t e r s , but due t o t e s t c o n d i t i o n s and o t h e r c o n s i d e r a t i o n s , t h e y were not c o n s i d e r e d a p p r o p r i a t e f o r use i n t h i s s t u d y . N e v e r t h e l e s s , t h e y w i l l be d i s c u s s e d 42 i n t h i s s e c t i o n . The room a b s o r p t i o n comes i n t o c o n s i d e r a t i o n because i t i s one of t h e f a c t o r s used t o n o r m a l i s e n o i s e r e d u c t i o n (NR) f o r the t r a n s m i s s i o n l o s s (TL) v a l u e s . T h i s i s because i t a f f e c t s the magnitude o f t h e i n t r u d i n g sound both i n s o u r c e and r e c e i v i n g rooms. I n t h e f o l l o w i n g d i s c u s s i o n , a b s o r p t i o n s h a l l be assumed s i m i l a r f o r b o t h rooms. T h i s i s c o n s i d e r e d v a l i d because of the p r e v a l e n t use o f s y m m e t r i c a l d e s i g n i n m u l t i - f a m i l y d w e l l i n g u n i t s , where p a r t y w a l l s o f t e n o c c u r between rooms of s i m i l a r s i z e and f u n c t i o n . T h i s type of d e s i g n i s a c o u s t i c a l l y advantageous a l s o because i t m i n i m i z e s the l i k e l i h o o d o f d i s s i m i l a r a c t i v i t i e s which c o u l d c o n t r i b u t e t o more c r i t i c a l n o i s e c o n d i t i o n s -h study undertaken by J a c k s o n and L e v e n t h a l l (Ref 21) i n 1972 s u r v e y e d 50 l i v i n g rooms and k i t c h e n s t o o b t a i n t y p i c a l r e v e r b e r a t i o n t i m e c h a r a c t e r i s t i c s . I t s h o u l d be noted t h a t t h i s s u r v e y was conducted i n Great B r i t a i n and may o r may not be a p p l i c a b l e t o t h e average North American house. The s t u d y has shown t h a t o ver a s p r e a d o f 25 t o 76 c u . meters, the average l i v i n g room volume was 44 c u . meters (approx. 1554 c u . f e e t ) . The average k i t c h e n volume was 23 cu- meters (approx- 812 cu- f e e t ) , f o r an even g r e a t e r s p r e a d o f 8 t o 78 cu- meters- The r e s u l t i n g r e v e r b e r a t i o n t i m e v a l u e s were l o n g e r a t t h e low f r e q u e n c i e s then s t e a d i l y d e c r e a s i n g as t h e y approached the h i g h e r f r e q u e n c i e s - T h i s t r e n d was t r u e f o r both l i v i n g room and k i t c h e n , a l t h o u g h t h e v a l u e s f o r t h e k i t c h e n were h i g h e r 43 (due t o l e s s a b s o r p t i o n ) than f o r the l i v i n g room. F i g u r e 3.4 i l l u s t r a t e s t h e r e s u l t s f o r the l i v i n g room compared w i t h o t h e r s t u d i e s . The mid-frequency r e v e r b e r a t i o n t i m e f o r the l i v i n g room was i n t h e 0.5 sec r a n g e , which a g r e e s w i t h t h e assumed average. F o r the k i t c h e n , i t was 0.76 sec a t 125 Hz, d e c r e a s i n g t o 0.63 see s a t 4000 Hz, w i t h mid f r e q u e n c y v a l u e s around 0.68 s e e s . From t h e s e d a t a t h e c a l c u l a t e d a b s o r p t i o n v a l u e s ranged from 110 sg- f t . s a b i n s a t t h e low f r e q u e n c i e s t o about 177 s g . f t . s a b i n s a t t h e h i g h f r e q u e n c i e s - The a b s o r p t i o n f o r t h e k i t c h e n was even l e s s . The r e s u l t s showing a b s o r p t i o n c h a r a c t e r i s t i c s t y p i c a l o f a " h a r d " room. An even more d i f f i c u l t v a l u e t o assume was t h e s i z e o f the t e s t p a r t i t i o n . The d a t a from B a r r o n & A s s o c i a t e s , showed w a l l d i m e n s i o n s r a n g i n g from a minimum of 64 s q . f e e t t o about 150 s q . f e e t , a v e r a g i n g a t about 110 s q . f e e t . The measured a b s o r p t i o n v a l u e s from t h e i r d a t a were a much lo w e r v a l u e t h a n a n t i c i p a t e d . I t was co n c l u d e d t h a t most o f t h e s e t e s t s were p r o b a b l y conducted i n u n f u r n i s h e d a r e a s . Combining t h e v a l u e s o f p a r t i t i o n s i z e and a b s o r p t i o n would y i e l d t h e n o r m a l i s i n g f a c t o r used t o a d j u s t NR t o TL (namely 10 log(S/A) , where A i s t h e a b s o r p t i o n and S i s t h e a r e a o f t h e common p a r t i t i o n . S i n c e t h e v a l u e s of S and A ar e not t o o a p a r t , t h e i r r a t i o would be q u i t e s m a l l , r e s u l t i n g i n an adjustment of 1 t o 2 dB, p o s i t i v e o r 4 4 n e g a t i v e depending on the r a t i o - In t h i s case we s h a l l assume the TL v a l u e t o be i n d i c a t i v e of the NE a t t a i n e d under f u r n i s h e d c o n d i t i o n s -45 I o o » o.a 01 Q_ ni I : U. 1 . — — - 1 ; 1 • L— 125 250 500 IK 2K 4K O C T A V E - BAND MID- F R E Q U E N C Y ( H i ) , , F i g u r e 3 »4 Comparison of t h e s u r v e y of J a c k s o n and L e v e n t h a l l w i t h t h e BBC ( B r i t i s h B r o a d c a s t i n g C o r p o r a t i o n ) and BSI ( B r i t i s h S t a n d a r d s I n s t i t u t i o n ) l i v i n g - r o o m r e v e r b e r a t i o n t i m e s . (Ref 21 ) 46 (B) . The W a l l s The d i f f e r e n t w a l l d a t a were, as p r e v i o u s l y mentioned, c o m p i l e d from t h r e e s o u r c e s - Those from t h e a c o u s t i c a l c o n s u l t a n t s were are a l l " a s - b u i l t " p a r t y w a l l s . W a l l d a t a d e r i v e d from t h e p u b l i s h e d work of DBR, N a t i o n a l Research C o u n c i l were chosen on a b a s i s o f a minimum a t t e n u a t i o n v a l u e o f STC 45 and a p p l i c a b i l i t y as a p a r t y w a l l . T h e r e f o r e t h o s e d e s c r i b e d as "no s t u d s " were e x c l u d e d . The i n c l u s i o n o f one w a l l r a t e d STC 44 was t o s e r v e as a comparison f o r o t h e r data which w i l l be d i s c u s s e d l a t e r -W a l l data from v a r i o u s m a n u f a c t u r e r s were c o l l e c t e d but not i n c l u d e d because t h e i r valu.es tended t o be more o p t i m i s t i c i n comparison w i t h s i m i l a r w a l l s from o t h e r s o u r c e s - A l s o , the TL s p e c t r a o f these w a l l s were checked and, where n e c e s s a r y , a d j u s t e d f o r any d i p s o f more th a n 8 dB which would have brought down th e STC r a t i n g s - T h i s s t e p was based on t h e s t u d y by C l a r k (Ref 14) which c o n c l u d e d t h a t the e i g h t - p o i n t maximum d e f i c i e n c y may be t o o s t r i n g e n t . THE FOLLOWING I S THE LIST OF WALLS COMPILED FOB THIS TEST : LEGEND : REF. NO.=REFEBS TO FILE OR WALL NO. USED BY "SOURCE" "DBS" -DIVISION OF BUILDING BESEABCH, NSC OF CANADA "AE" -ACOUSTICAL ENGINEERING "B&A" -BARRON & ASSOCIATES STC = SOUND TRANSMISSION CLASS REF. NO.=214 SOURCE=DBR STC=44. SPECIFICATION=1/2 PLASTEHBD EACH SIDE, 3-5/8 ST CHANN ELS AT 24 OC, 2"ABSOBPTION REF. NO.=226 SOUBCE=DBR STC=46. SPECIFICATI0N=1/2 PLASTERBD EACH SIDE, STAG 2X4 STUDS AT 24 ON 2X6 PL, 2"ABS0RPTI0N REF. NO.=233 SOURCE=DBR STC=47. SPECIFICATION=BOTH SIDES-3/16 PLYWD FACED, 1/2 PLASBD , 1/2 WD FIBBBD; 2X4 STUDS AT 16 OC SEF. NO.=236 SOUECE=DBR STC=48. SPECIFICATION=1/2 PLBD EACH SIDE, 3-5/8 CHAN AT 24 OC , 1 LB LEAD ONE SIDE, 2"A8SORPTION REF. NO.=314 SOUBCE=DBR STC=47. SPECIFICATION=5/8 PLASTERBD, 3-5/8 CHANNELS AT 24 OC, 2«ABSOSPTION REF. NO.=324 SOUSCE=DBR STC=46. SPECIFICATION=5/8 PLBD EACH SIDE,STAG 2X4 STUDS AT 24 ON 2X6 PL,ABSORPTION REF. NO.=333 SOURCE=DBR STC=46. SPECIFICATION=5/8 PLBD EACH SIDE, 3-5/8 CHAN 24 OC, 1 /2 GLASS FIBSEBD ONE SIDE SEF- NO.=334 SOUHCE=DBR STC=49. SPECIFICATION=5/8 PLBD EACH SIDE, 3-5/8 CHAN 24 OC, 1 /2 GLASS BD WITH 2"MINERAL WOOL REF. NO.=339 SOUSCE=DBR STC=48. SPECIFICATION=5/8 PLBD EACH SIDE, 2X4 STDS 16 OC, HO8 RESIL BASS AT 24, ONE SIDE, 2"ABSORP REF. NO.=340 SOURCE=DBR STC=50. SPECIFICATI0N=5/8 PLBD EACH SIDE, 2X4 STDS 16 OC, HOB RESIL BARS AT 24,BOTH SIDES, 2"ABS0RP REF. NO.=406 SOURCE=DBH STC=50. S P E C I F I C A T I O N LYRS 1/2 PLBD : 3-5/8 CHAN 24 OC. 2 G LASS FIBRE : 1 LYR 1/2 PLBD REF. N0.=414 SOURCE=DBR STC=51. SPECIFICATI0N=2 LYRS 1/2 PLBD EACH SIDE, 3-5/8 CHAN A T 24 OC, 2»GLASS FIBRE REF. NO.=424 SOURCE=DBR STC=50, SPECIFICATION=2 LYRS 5/8 PLBD : 2X4 STDS 16 OC,RESIL BAR ONE SIDE,2"GLASFIBRE : 1 LYR 5/8 REF. NO.=432 SOUECE=DBR STC=45. SPECIFICATIONS LYR 1/2, 1 LYR 5/8, 2-1/2 CHAN AT 24 OC, 2»G1ASS FIBRE REF. NO.=435 SOURCE=DBR STC=49. S P E C I F I C A T I O N LYES 1/2, 1 LYR 5/8, 3-5/8 CHAN 24 OC , 2-1/2 HGLASSFIBRE REF. NO.=436 SOORCE=DBR STC=53. SPECIFICATI0N=3 LYRS 1/2, 1 LYR 5/8, 3-5/8 CHAN 24 OC , 2-1/2"GLASSFIBRE REF. NO.=437 SOURCE=DBE STC=46. SPECIFICATIONS LYR 1/2, 1 LYR 5/8, STAG 2X4 AT 24 OC ON 2X6 PLATE, ABSORPTION REF. NO.=7255-1 SO0RCE=AE STC=53. S P E C I F I C A T I O N S ^ PLBD : 2X4 WITH ABSORP,1/2 PLBD,1"A IR GAP,2X4 WITH ABSORP : 1/2 PLBD REF. NO.=7353-3 SOURCE=AE STC=53. SPECIFICATI0N=5/8 PLBD : 2X4 WITH ABSORP,1/2 PLBD,1»A IR GAP,2X4 WITH ABSORP : 5/8 PLBD SEF. NO.=7453-1 S0UECE=AE STC=54. SPECIFICATI0N=5/8 PLBD:2-1/2 CHAN W/ ABSORP,5/8 PLBD, 4"AIR GAP,2-1/2 CHAN H/ ABS0RP:5/8 PLBD REF. N0.=7482-1 S0USCE=AE STC=56. SPECIFICATI0N=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1"AIR GAP,'CELUFIBSE' BLOW-IN INSUL REF. N0.=7482-1 SOURCE=AE STC=49. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1"AIR GAP,1«CELUFIBRE»SPRY INSUL 1 SIDE REF. NO.=542501 SOURCE=BSA STC=49. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,2»«BORDEN' SPRAY INSUL ONE SIDE REF. NO.=450201 SOURCE=B&A STC=51. SP£CIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1»AIR GAP,'CELUFIBRE' BLOW-IN INSUL REF. NO.=541401 SOURCE=B&A STC=54. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 AT 16 HAL L,3/4«AIR GAP,2"MINERAL FIBRE INSUL REF. NO.=192761 SOUSCE=BSA STC=50-SPECIFICATION=1/2 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1«AIR GAP,2 LYRS R-7 INSUL REF. NO.=537401 SOURCE=B&A STC=49. SPECIFICATI0N=5/8 PLBD EACH SIDE,STAG 2X4 STUD AT 16 ON 2X6 PL,2 LYRS R-10 INSUL REF. NO.=561401 S0URCE=B6A STC=46. SPECIFICATION=5/8 PLBD EACH SIDE,STAG 2X4 STUD AT 16 ON 2X8 PL,2-1/2"MINEPAL WOOL INSUL REF. NO.=542401 SOURCE=BSA STC=46. SPECIFICATION=1/2 PLBD EACH SIDE,STAG 2X4 AT 24 ON 2X 6 PL,1-1/2*" MO NOTHERM'SPRAY INSUL 1 SIDE REF. NO.=2024Q1 SOURCE=BSA STC=47. SPECIFICATION=1/2 PLBD ON 1/2 WD FIBREBD EACH SIDE,2X 4 AT 16 ON 2X6 PL,2-1/4"GLASFIBRE INSUL REF. NO.=202306 SOURCE=BSA STC=48. SPECIFICATION=1 LYR 1/2 : 3-1/2 CHAN AT 24,2"GLASFIBR E INSUL : 1 LYR 3/8+1 LYR 1/2 REF. NO.=155503 SOURCE=BSA STC=45. SPECIFICATION=1/2 PLBD EACH SIDE,DOUBLE 2X4 AT 16 STA G ON 2X3 PL EACH, R-7 BATT INSUL 5 0 (C). The Noise Spectra The intruding noise spectra used in these tests can be divided into three categories : t y p i c a l household noise, appliance noise, and speech. Household Noise Two spectra were used as t y p i c a l household noise (Figures 3 . 5 and 3 . 6 ) . The f i r s t , which i s generally more widely usad, i s the contour presented by Northwood (Ref 27). It was also used to develop the STC rating scheme. The second noise spectrum i s that used by Berendt, Winzer, and Burroughs in a 0 . S. Department of Housing and Urban Development (HUD) publication. (Ref 7). These were much higher l e v e l s representing "anticipated peak l e v e l s and frequency d i s t r i b u t i o n of noise produced by household appliances and everyday a c t i v i t i e s " . This represents a rather severe condition and i s dealt with here as a near-extreme value. In the same empirical approach, NR was reasonably assumed to be egual to TL f o r "medium-sized rooms in residences". (Ref 8) . appliance Noise A t o t a l of nine d i f f e r e n t appliance noise spectra were chosen for t h i s category. The source for t h i s was a report undertaken by Eolt Beranek and Newman Inc. for the U. S. Environmental Protection agency in 1971 (Ref 10). Excluding 51 eo 70 h " | 5 60 to r j O o tr i u. (0 < x z 40 30 — RADIO NOISE VACUUM CLEANER \ . --SPEECH-PEAK LEVELS \ . _ -•• AIR CONDITIONER \ „ STANDARD HOUSEHOLD NOISE I 1 L _ J I I 125 250 500 1000 2000 4000 MID-BAND FREQUENCY, CYCLES/SEC F i g u r e 3.5 H a l f - o c t a v e band s p e c t r a o f t y p i c a l h o u s e h o l d n o i s e s , ( a f t e r Northwood, Ref 2? ) g (D-(2)-—"T'fT r—nn— — n r r ~ — m — I T T1 1 i — r v v " -i - -i r •i \ 1 X — -\ mLAJ ~. i-A.i— • 250 JO0 FREQUENCY, Hz •Anticipated peak notse levels. 'Assumed acceptable levels. (NC-20 adjusted to 1/2-octave band levels) F i g u r e 3.6 Household n o i s e s p e c t r u m i n h a l f - o c t a v e hands. (HUD) ( a f t e r B e r e n d t , e t a l . , Ref 7 ) 52 T3 •O c 3 O CO Di 0 -5 -10 -15 -20 '5 "25 -30 -35 TT I I I Mill Direct soun inverse 'square law (Equation 4.39) Total sound pressure level Direct sound field I I I I I III \\ Reverberant sound I level 1 * . " . P . - , „ . Increasing absorpt ion ' (Equation 4.38) . • Reverberant sound field o.i 1 10 DISTANCE FROM ACOUSTIC CENTER OF SOURCE 100 F i g u r e 3.7 The t o t a l sound f i e l d i s composed of two sec the DIRECT f i e l d w h i c h the s o u r c e and i s ind e and t h e REVERBERANT f i dent upon a b s o r p t i o n ( The d i s t a n c e f r o m t h e two f i e l d s produce the l e v e l i s known as the r e v e r b e r a t i o n ' , RR. (fief 15 ) i n a l a r g e e n c l o s u r e ondary sound f i e l d s J dominates c l o s e t o pendent of a b s o r p t i o n , e l d w h i c h i s depen-but n o t d i s t a n c e ) • s o u r c e a t w h i c h t h e s e same sound p r e s s u r e ' r a d i u s of 53 machines such as the lawn mower, t h e s e n i n e r e p r e s e n t e d t h o s e a p p l i a n c e s which g e n e r a t e d s i g n i f i c a n t l y h i g h n o i s e l e v e l s - A l l of t h e s e w i t h the e x c e p t i o n o f t h e C l o t h e s D r y e r , e x h i b i t e d an average sound l e v e l g r e a t e r than 60 dBA. The C l o t h e s Dryer showed a v a l u e of around 57 dBA- These n o i s e s p e c t r a were o f d i f f e r e n t shapes, such t h a t one c o u l d a l s o use them t o gauge o t h e r a p p l i a n c e s d i s p l a y i n g s i m i l a r c h a r a c t e r i s t i c s . A problem o c c u r r e d however i n t h e use of t h e measured d a t a . As s t a t e d i n the r e p o r t , measurements were t a k e n a t 3 f e e t from the a p p l i a n c e , i m p l y i n g a sound p r e s s u r e l e v e l due t o t h e d i r e c t sound f i e l d . I t f u r t h e r s t a t e s t h a t " n o i s e l e v e l s i n the r e v e r b e r a n t f i e l d o f the room i n which t h e a p p l i a n c e i s b e i n g o p e r a t e d may be on t h e o r d e r of 2 to 3 dBA l e s s t h a n t h e measurement a t 3 f e e t . " (Ref 11) Yet i f we compute f o r t h e d i r e c t • • f i e l d * s r a d i u s of r e v e r b e r a t i o n (RR) based on t h e a b s o r p t i o n d i s c u s s e d e a r l i e r , t h e d i r e c t f i e l d i s much l e s s than 3 f e e t ( i . e . a t 3 f e e t we a r e a l r e a d y i n t h e r e v e r b e r a n t f i e l d ) . Sound w i t h i n t h e d i r e c t f i e l d i s t o t a l l y i n d e p e n d e n t o f room a b s o r p t i o n u n t i l a t a c e r t a i n d i s t a n c e t h e d e c r e a s i n g sound p r e s s u r e l e v e l s f l a t t e n s out due t o t h e r e v e r b e r a n t f i e l d w i t h i n the room. ( F i g u r e 3.7). The more a b s o r p t i o n t h a t i s p r e s e n t , the g r e a t e r the r a d i u s o f r e v e r b e r a t i o n , t h e p o i n t a t which sound p r e s s u r e l e v e l due t o t h e d i r e c t and r e v e r b e r a n t f i e l d a r e e g u a l -54 Lpr = Lw - 10 l o g (A) + 16.5 Lpd ~ Lw - 20 l o g (r) •- 0.5 where : L p r , i s t h e sound p r e s s u r e l e v e l due t o r e v e r b e r a n t f i e l d ; Lpd, i s t h e sound p r e s s u r e l e v e l due t o t h e d i r e c t f i e l d ; a , i s t h e a b s o r p t i o n ; r , i s t h e d i s t a n c e from t h e s o u r c e . (Ref 15). E q u a t i n g t h e s e two f o r m u l a e , and g i v e n r=3 f e e t , 'A* s h o u l d t h e n be about 447 s a b i n s . T h i s means t h a t f o r t h e l e s s e r a b s o r p t i o n v a l u e s p r e v i o u s l y p r e s e n t e d , the d i r e c t sound p r e s s u r e l e v e l a t 3 f e e t i s l e s s than t h e a c t u a l r e v e r b e r a n t sound p r e s s u r e l e v e l . Because o f t h i s c o n f l i c t , and the l a c k o f s u f f i c i e n t d a t a a p p l i c a b l e t o North American s i t u a t i o n s , i t i s perhaps b e s t t o l e a v e the measured a p p l i a n c e n o i s e data as they a r e , remembering o n l y t h a t a d j u s t m e n t s are e a s i l y made when s i t u a t i o n s d i f f e r . For f i e l d a p p l i c a t i o n s , the a d j u s t m e n t s can be made u s i n g t h e above f o r m u l a e . F o r d e s i g n a p p l i c a t i o n s , t h e y can be a d j u s t e d by methods p r e s e n t e d by Cavanaugh, e t a l (Ref 13) and Young (Ref 4 2 ) . I n t h e meantime the p r e s e n t approach i s j u s t i f i a b l e as a s i m p l i f i e d method towards an a r c h i t e c t u r a l d e s i g n t o o l . Speech The t h i r d c a t e g o r y i s speech. T h i s t e s t w i l l be based 55 on the A r t i c u l a t i o n Index calculations and therefore uses the male speech spectrum presented in that ANSI standard. (Bef H 2 ) . The measured data here are also presented as a function of d i r e c t f i e l d sound pressure l e v e l s (3 f e e t ) , but in t h i s case they wera converted to the reverberant sound pressure l e v e l at 100 sabins absorption. This was to enable a comparison between the results of t h i s study and that presented in Northwood^s paper (Bef 26) which used the same absorption values. 56 3.? BESDLTS F i r s t of a l l , there was a need to standardize octave measurements of ths sound pressure l e v e l s and the transmission loss values. Since a l l the measured wall data were in t h i r d octave band measurements, i t was more p r a c t i c a l to adjust the other reference contours to the measured data. The measurements in octave and half-octave bands were adjusted by subtracting the value of (10 log n , dB). To convert octave band to third-octave, n=3 which gives 5 dB when rounded to the nearest whole number. Likewise for half octaves, n=2 which gives 3 dB , the value to be subtracted . (Ref 9) . ( A ) . The Test Simulations The t e s t consists of each wall being subjected to a l l the d i f f e r e n t noise spectra under the predefined conditions. The transmitted noise i s then compared with four d i f f e r e n t background noise l e v e l s representing the anticipated range i n dwelling units, and other s i m i l a r applications, e.g. motels, etc. (Ref 6). These values ranged from PNC 25 to PNC 40, equivalent to a range of 34 to 47 dBA. The difference between the transmitted sound and the background noise l e v e l then gives ths degree of masking ('$') or intrusion i f the value excaeds the PNC l e v e l - Two 'M» values are presented for purposes of comparison- The f i r s t value c a l l e d M:STC i s the masking calculated from single figure values, i . e . where transmission l o s s i s given by i t s 57 STC ra t i n g , and both background noise(BN) and noise source (L1) in t h e i r single figure dBA l e v e l s . These are related by the formula derived e a r l i e r : M:STC = BN - (L1 - STC) Since we are dealing with single figures in t h i s case, the most c r i t i c a l conditions for M:STC would be due to the highest values of L1, which in t h i s case are the two household noise l e v e l s . The second masking value i s c a l l e d M:FEEQ. As the l a b e l implies , t h i s would be based on the same masking formula, but in t h i s case, cal c u l a t i o n s w i l l be made fo r each third-octave band over the whole frequency range. This would be more c r i t i c a l and would y i e l d a more r e a l i s t i c value based on each wall's actual TL spectrum. The value for M:FBEQ i s the sum of the levels of masking for each of the third-octave band over the whole STC range (125 to 4000 Hz). If the value i s zero, that means that the transmitted noise was not masked by the given PNC contour. The re s u l t s are presented in two formats - a graphical format which w i l l be used for discussion, and a numerical format which i s included in one of the appendices. The graphical format plots M:STC or M:FEEQ against the value STC+PNC(dBA). This was done to f a c i l i t a t e comparison with a general rule of thumb often used as a quick check, and also 5 8 with the proposed Privacy Index (Ip) .(Ref 34,35). The PNC values used i n these calculations are the dBA equivalents. For the graphs involving M:FREQ , each dot represents one background noise l e v e l for each wall. Therefore each wall has four dots representing i t s combined performance with each of the PNC 25, 30, 35, 40 background noise l e v e l s . (B). »M:STC* The masking M:STC i s calculated from the si n g l e - f i g u r e ratings of background noise, source room noise, and transmission lo s s . This M:STC value i s subsequently rated according to the privacy model derived from Young . From that model the marginal value to be used i s *5'. (Figure 3.8). Although this l i e s i n the region of "Mild D i s s a t i s f a c t i o n " , there apppears to be no s i g n i f i c a n t difference between the d e f i n i t i o n of "Mild D i s s a t i s f a c t i o n " and "Apparent S a t i s f a c t i o n " . (Ref 36). The d e f i n i t i o n s of these two subjective responses as defined i n the o r i g i n a l work by Cavanaugh, et a l . follows "Mild D i s s a t i s f a c t i o n - Situations where complaints are sporadic and perhaps not serious enough to • c a l l i n a consultant* would f a l l in t h i s category. Cases of t h i s sort include those triggered by an excessively loud neighbor or a p a r t i c u l a r l y fussy occupant. L i t t l e , i f any, corrective action i s usually taken in these cases, and the complaints most l i k e l y disappear with time. Apparent Satisfaction - There i s no apparent awareness of speech privacy as a 5 9 problem." (Ref 13, p.447) For normal conditions, i t i s therefore reasonable to assume M=5 as a marginal condition for acoustic privacy-Figure 3-9 shows the results for the d i f f e r e n t noise spectra when M:STC i s calculated from the STC+PNC (dBA) values of the 32 walls- although the graph i s dominated by both of the household noise values, the c r i t i c a l value that w i l l be used i s that of Northwood's since the HUD value probably represents an extreme condition. The minimum value for STC+PNC (dBA) , due to M:STC i s then equal to 84. masking 'M' (A) for confidential privacy (B) for normol privacy F i g u r e 3 « 8 The m a r g i n a l v a l u e o f masking •M' f o r n o r m a l p r i v a c y i s t a k e n as * 5 * • CM r>-vo u OJ OJ . c >> to U rt P Se 10 OJ +> o to 0J •p o H o o \ to o u to X H « H P S . c TJ TJ CO o o •i - l o o P fx. ft. u OJ Xi 10 • •< ^ pq rt T3 T3 T3 <t! cq O tHMD 73 ts-61 C H rH 0) W CO 0J C ^ rt 0) 0J rH C O 0J rH s pq C\ (X O o fx, pq •O OJ ON 03 CN- to pq •H>— o o 2 CM O T j O rH O rH o ? o<~^ .C Xi Xi O -P OJ P to k 10 13 3 o O 2 o 9 \ • \ -10 50 60 70 80 STC+PNC(dBA) 90 100 110 F i g u r e 3*9 Graph showing v a l u e s of 'M* as c a l c u l a t e d from s i n g l e f i g u r e r a t i n g s o f d i f f e r e n t n o i s e s p e c t r a , MiSTC = BN - (LI - STC) where BN i s the dBA e q u i v a l e n t of PNC l e v e l , and LI i s t h e n o i s e spectrum i n dBA. The v a l u e '5 ' i s chosen as t h e m a r g i n a l l e v e l f o r a c o u s t i c p r i v a c y . 6 2 (C). • M : FEEQ' Household Noise The graphical output for the two household noise spectra are shown on Figures 3-10 and 3-11 - As stated e a r l i e r , M:FREQ represents the sum of masking by the PNC contour i n the 125 to 4000 Hz frequency range. The zero values for M:FEEQ represents those conditions where the transmitted noise was not masked by the PNC contour. Northwood's Household Noise The graph for th i s household noise spectrum shows that the minimum value of STC+PNC(dBA) i s 87, compared to that value of 84 calculated from M:STC. Further inves t i g a t i o n showed that the actual spread could be less. where the value was 86 and 87 , the transmitted noise exceeded the PNC contour by f r a c t i o n s of a decibel. At STC+PNC(dBA) = 86, Mall No. 202306 (B6A), exceeded PNC contour by 0.1 dB at 160 Hz. At STC*PNC(dBA) = 87, wall No. 7353-3 (AE), exceeded PNC contour by 0.6 dB at 160 HZ. Hall No. 7482-1B (AE) , exceeded PNC contour by 0.6 dB at 160 Hz. Hall No. 537401 (B5A), exceeded PNC contour by 0.1 dB at 63 160 Hz. Because these differences are so small, they may be ignored. Thus, the actual minimum STC+PNC (dBA) to be assumed i s 85 which i s quit® comparable to the value calculated from M:STC. HOD's Household Noise For t h i s household noise curve, the minimum value i s shown to be 94 compared to a value of 87 calculated from M:STC. In t h i s case, subsequent investigation showed that the r e a l i s t i c value to assume was 91 because the wall conditions that f a i l e d at 92 and 94 were the same walls as some of those that f a i l e d at 88, which when combined with higher PNC contours could s t i l l not mask the transmitted noise. At any rate, the excess i n these cases (3) were only 1 to 2 dB i n one band (125 Hz). SOUND PRESSURE LEVEL (dB) (IE 1 > Ifrl N / m l OR 0 00C2 MtCROBAK) fl> VjJ CO O c P. w o c CO CO o ct •1 P. 2 pj CO, o 6 o M CO w 25 o c+ o o ^ o S3 S3 52 M O — o N s? 3 Z O TJ z z Z Z n o o o to i VJ 1 V*> t VA o VA o <l9 0.0 ~ i TM-FREQ HSEHOI.D (NCR) - I X 1 0 1 ) - \ ^ ± ~ r — r r h - n _ v ~ ~ 4 ~ : — 0 0 ! 10.0 , - 2u.O 30.0 40.0 5 0 . 0 - — 1 6 0 . 0 •_. - -jzi" SOUND PRESSURE LEVEL (dB) (KC 1 • tfr> N/ml OM 0 0OCJ UlCnOBAR) •a (0 oo o p. CQ <T> O c+ *i C 3 3 ^3 tt JO CO I S3 tt k S K o 6 •3 o ~ g 00 § W o - s 1 s i *tj *Tj *tj Z Z Z o o o o • I I I IO \*> -tr VA O VA O 10.0 : 0.0 :M-FREQ HSEH0LD (HUD, - (XiO 1 ) -10.0 • 20.0 30.0 - 40.0 -.. t t ...... t—... t — _ 50.0 60.0 -t— 66 Appliance Noise In t h i s section, the intruding noise i s represented by different types of household appliances which are considered n o i s i e r than others. In some cases the noise spectrum used was a mean of several measurements taken from d i f f e r e n t makes. It i s i n t e r e s t i n g to compare the d i f f e r e n t minimum STC+PNC (dBA) values calculated from M:STC and those from M:FREQ. Listed below are the appliances i n order of decreasing values of their dBA sound l e v e l s : STC+PNC(dBA) due to M:STC M:FEEQ Food Blender (79 dBA) 83.5 93 Vacuum Cleaner (76 dBA) 81 85 Sewing Machine (71 Db A) 76 85 E l e c t r i c Knife (70 dBA) 75 83 Fooo Mixer (67 dBA) 72 81 Food Disposer (66 dBA) 71.5 90 Dishwasher (64 dBA) 69 81 Clothes washer (62 dBA) 67 94 Clothes Dryer (57 dBA) 62 — The difference between the values calculated from M:STC and M:FREQ i s quite clear. An averaged value often belies other frequency considerations. The values from M:FREQ also show a decreasing order i n r e l a t i o n to the dBA noise l e v e l , with the exception of the Food Disposer and Clothes Washer-Furthermore, aside from the Food Blender, the Food Disposer, 67 and the Clothes Washer, one can conclude that the other intruding noise spectra could be masked by our assumed c r i t e r i o n of 85. There i s no value for the Clothes Dryer because i t s transmitted sound was t o t a l l y masked f o r a l l wall conditions. It should be noted however that t h i s i s within the STC frequency range - 125 to 4000 Hz. ks the Clothes Dryer contour shows an increasing trend towards even lower frequencies outside the tested range, there i s s t i l l the p o s s i b i l i t y of very low frequency sounds being transmitted. This would be quite s i m i l a r to the low frequency intrusions due to music from a stereo set. Food Blender, Food Disposer, Clothes Washer These three noise spectra a l l show peaks, which were not readily masked at di f f e r e n t frequencies. These peak frequencies coincide with the ears' frequency response as characterized i n both the equal loudness and PNC contours. For the Food Blender, the spectrum peaks at three d i f f e r e n t frequencies - 250, 500, 2000 Hz- The c r i t i c a l frequency i n th i s case i s 2000 Hz where aural stimulation i s quite s e n s i t i v e . Combining t h i s condition with the coincidence dip c h a r a c t e r i s t i c of plasterboard i n the walls in the higher frequencies, the transmitted sound becomes quite c r i t i c a l . For the Food Disposer and Clothes Washer, the c r i t i c a l 68 f r e q u e n c y i s a t 125 H z , where b o t h s p e c t r a show a h i g h p e a k , a l t h o u g h t h e PNC c o n t o u r d i s c r i m i n a t e s a g a i n s t low f r e g u e n c y s o u n d s , t h e t r a n s m i t t e d n o i s e a t t h i s f r e g u e n c y was o f t e n l a r g e e n o u g h t o e x c e e d t h e PNC l e v e l s . T h i s i s a l s o due t o t h e p o o r t r a n s m i s s i o n l o s s v a l u e s f o r p l a s t e r b o a r d i n t h e l o w e r f r e q u e n c i e s -S u m m a r i z i n g t h e d a t a f o r a l l t h e a p p l i a n c e n o i s e , t h e e x c e s s o f t r a n s m i t t e d n o i s e o y e r t h e b a c k g r o u n d n o i s e u s u a l l y o c c u r s a t t h e two c r i t i c a l a r e a s m e n t i o n e d . T h i s was due t o a c o m b i n a t i o n o f p o o r t r a n s m i s s i o n l o s s c h a r a c t e r i s t i c s a n d p e a k n o i s e l e v e l s a t t h o s e f r e q u e n c i e s . SOUND P R E S S U R E L E V E L (dB) IKE 1 I 10-1 N/ml OR OOCOJ MICHOBA*) C •1 <T> ro co o o § o a oo •a a> o c+ •1 co co o CO w so *«J o S3 S X Z H O N O w z n 8 f 3 ft 3 O 2 z z O o 1 o 1 o L ro VJ V*> o VA o M-FREQ FOOD DISPOSER ( X ' 0 J J 10.0 20.0 30.0 40.0 J I I L SOUND PRESSURE LEVEL (dB) <»C 1 • ! » • N / « l 0* 0 0002 uic«oe»*i CO o 3 Q. CQ t3 0) O ct c 3 P a 2C co o o a trJ S3 V. M S3 o ^ o 33 N o M Z n a z o PN z PN 2 o o O o i to 1 1 v*> VA o VA o o • o CD O • CO —I O + 5 b C D 3D o • c - - j z f — ' T T - F R E Q FOOD BLENDER TxiO1 ) 0.0 0.0 .0.0 20.0 30.0 40.0 i . ; i ; i i i 50.0 _ J 60.0 _ J _ -1. . „ • . . . . ; _ r t : r-:  I c co o § p. CO •d % c 3 3 •d 3" co o o 25 tt •UJ o S3 Z M o o N o w z SOUND PRESSURE LEVEL (dB) l«C 1 I 10-1 N/ml OR 0 0002 MICROBAR) z z z z o o n o 1 1 i 1 to VJ VJ J> VA o VA o 3 0 . 0 0 . 0 i M-FREQ VRC CLEBNER ~ -io.0 20.0 30.0 (X10 J T 40.0 5 0 . 0 '"."I 6 0 . 0 9 n (D VJV M o O I CO t> (D O e+ •1 1 3 0t» P> CO B L 0 I w S3 £ 53 M Bi o w 58 SOUND PRESSURE LEVEL (dB) ( R E 2 I t O - l N / m l O R 0 0002 M I C R O B A R ) 8? a o a *d TJ M z a s» a rj o o o t i i i M VJ VJ |r VA O VA O 10.0 :.iT;:::r::.:.M-FREQ SEW MRCHINE IXIL* ) 0.0 " 10.0 20.0 30.0 40.0 50.0 60.0 _J ~:.L 'E3 a: CD CN 09 M 3 O w CQ M CD O W o S3 Z M K § O N p P. 3 P 3* CO o w z S O U N D P R E S S U R E L E V E L (dB) («£. 2 I I M N / m l O R 0 0002 U I C R O B A H ) s? z o •0 *d »tf »tj z z z a n o o n • • I I W VJ W -fc-VA O VA O CO —) n + • -o B B CD X) o 0;0 :i ::::: M-FREQ ELEC KNIFE (X10J ) D.O . •; 10.0 20.0 30.0 40.0 _ J I • I - L 50.0 60.0 Band No. t l 13 14 11 M IT i» t » »Q W M 15 M M M IT M 1 » 0- ^ ~ t ~ ^ M n ~ r w i 4 < i o ~ T ~ « l o « < l « l ~ T ~ « l i « B ~ ' ~ » M » i a ~ ' ~ « O B « M ~ ' 63 125 250 500 1000 2000 4000 8000' ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) F i g u r e 3.17 FOOD MIXER Sound spectrum and 'MtFREQ' graphs m •o UJ u > i UJ cc w _ </) £ Ul ' CC a. A a z ~ D _ O « w ONE-THIRD O C T A V E BAND CENTRE F R E Q U E N C Y ( H E R T Z ) Figure 3.18 DISHWASHER Sound spectrum and 'MiFREQ' graphs eo.o go.o STC+PNC(DBA) 1 0 0 . 0 no.o 3^ VJ1 c CD NO Ui O O f P. CD O c+ *1 Pu TO CO O •-3 CO Ui Ui mo 5 5 n o 33 M o w as SOUND PRESSURE LEVEL (dB) ( R E 2 I 10-1 N / m l O R 0 0002 M I C R O B A R ) o . L . _ JO.O j Q!.0 I 9^  M-FREQ CLOTHE? WRSH - IX101 j n: -10.D 20.D 30.0 40.0 , 50.0 -60.0 "" I I —I— ' ' ' ...:. SOUND PRESSURE LEVEL (dB) mt 2 • tO-> N / m l O R 0 0002 M I C R O S * * ) 00 o c O. CO CO o c+ C 3 P 3 cm p 3" o w Z •3 *TJ * ^ *TJ z z z o o o o • • I ro ^ \_j V A O V A z o CD O " CO —) o + 5 ° CD b o.o i "M-FREQ CLOTHES DRYR IX10J "):. 10.0 - 20.0 - 30.0 40.0 zrfizz • H - — - - 1 • i • • 78 Speech T h i s p a r t o f the s i m u l a t e d t e s t d e t e r m i n e s speech p r i v a c y as c a l c u l a t e d from t h e A r t i c u l a t i o n Index method (ANSI s t a n d a r d S3.5-1969). (Ref 4 2 ) . The speech spectrum used was "male v o i c e sound p r e s s u r e l e v e l s " (peak v a l u e s ) a t one meter d i s t a n c e as d e f i n e d i n t h a t s t a n d a r d . These v a l u e s were c o n v e r t e d t o sound p r e s s u r e l e v e l s i n a r e v e r b e r a n t f i e l d c o n t a i n i n g 100 s a b i n s o f a b s o r p t i o n . T h i s was done t o f a c i l i t a t e c omparison w i t h a graph by Northwood ( F i g u r e 3.21) which used t h e f o l l o w i n g c o n d i t i o n s - room a b s o r p t i o n o f 100 s a b i n s and p a r t i t i o n a r e a o f 100 s g . f e e t . (Ref 26) -The graph on F i g u r e 3.21 i s based on an i d e a l i z e d p a r t i t i o n , i . e . i t s t r a n s m i s s i o n l o s s v a l u e s b e i n g d e f i n e d by an STC c o n t o u r . From th e s t u d y by Cavanaugh, e t a l . t h e c r i t i c a l A r t i c u l a t i o n Index v a l u e t o be assumed i s 0.05; w i t h d e c r e a s i n g v a l u e s i n d i c a t i n g b e t t e r speech p r i v a c y . T h e r e f o r e , based on AI = 0.05, and r e a d i n g from the 0.01 c u r v e on Northwood 1s graph, STC+NC = 6 6 . T h i s v a l u e would i n c r e a s e t o around 73 to 75 i f t h e dBA e q u i v a l e n t o f NC were used. The l a t t e r range w i l l be t h e b a s i s o f comparison w i t h our t e s t r e s u l t s . The main d i f f e r e n c e between t h i s t e s t and the f o r e g o i n g graph i s t h e use o f a c t u a l t r a n s m i s s i o n l o s s i n s t e a d o f t h e i d e a l i z e d STC v a l u e s . The AI range i s from 200 t o 500 Hz, w h i l e STC i s from 125 t o 4000 Hz; t h e r e f o r e t h e m i s s i n g v a l u e a t 5000 Hz was n e c e s s a r i l y e x t r a p o l a t e d from t h e 7 9 e x i s t i n g measured d a t a . The g r a p h i c a l o u t p u t p r e s e n t s a s c a t t e r g r a m o f t h e d i f f e r e n t AI v a l u e s o v e r l a i d by a l e a s t - s q u a r e s f i t c u r v e . Test r e s u l t i n d i c a t e t h e v a l u e of STC+PNC(dBA) t o be around 82- Although t h i s i s a much h i g h e r v a l u e compared t o t h a t o f t h e i d e a l i z e d p a r t i t i o n , i t i s w i t h i n our o v e r a l l c r i t i c a l l e v e l o f 84-85. ( F i g u r e 3.22) 8o lsowo-TR»N5ms3KW CI/.SS)MNC msr.wo COKTOUBl • : / " • Figure 3.21 Combined e f f e c t of ide a l i z e d p a r t i t i o n (conforming to a given STC contour) and a given ambient-noise l e v e l (conforming to modified NC contour) on AI ( A r t i c u l a t i o n Index) of transmitted speech. (S - Area of p a r t i t i o n ; A l and A2 are absorptions of source and rec e i v i n g rooms.) (Ref 26 ) Ttittf M i l ! T 80 .0 90 .0 STC+PNCCDBA) 100.0 i i : ! I ! ! n o . o Figure 3«22 Graph showing AI ( A r t i c u l a t i o n Index) f o r STC+PNC(dBA). AI i s calculated from actual Transmission Loss values of the walls. 81 3,4 COMPARISON OF SOME WALL TYPES A l t h o u g h i t i s not t o t a l l y w i t h i n t h e scope o f t h i s s t u d y , t h e c o m p i l a t i o n of w a l l data a f f o r d s us an o p p o r t u n i t y t o compare t h e performance o f d i f f e r e n t w a l l s as a f f e c t e d by t h e i r components- In the DBE s t u d y (Ref 2 8 ) , i t was found t h a t f o r a p a r t i c u l a r n o m i n a l t h i c k n e s s , t h e r e was no measurable d i f f e r e n c e i n t h e performance o f p l a s t e r b o a r d a s s u p p l i e d by d i f f e r e n t m a n u f a c t u r e r s . F u r t h e r m o r e , t h e a c o u s t i c a l performance o f a c o n v e n t i o n a l board and a f i r e - r e s i s t a n t one d i d not d i f f e r . E a r l i e r , i t was shown t h a t the advantage o f a double w a l l over a s i n g l e p a n e l was due t o the d i f f e r e n t l a y e r s which c o n t r i b u t e d t o sound a t t e n u a t i o n . T h i s t h e o r e t i c a l approach was based on the premise of t o t a l i s o l a t i o n f o r each l a y e r . I n p r a c t i c a l s i t u a t i o n s t h e need f o r m e c h a n i c a l f a s t e n e r s and c o u p l i n g s o f t e n a c t as a s h o r t c i r c u i t between l a y e r s . The b a s i c aim f o r improved a c o u s t i c a l performance i n a p r a c t i c a l s i t u a t i o n i s t o a c h i e v e a t l e a s t some measure o f i s o l a t i o n between t h e s e l a y e r s . F i g u r e 3.2 3 compares t h e t r a n s m i s s i o n l o s s c h a r a c t e r i s t i c s of two s i m p l e w a l l s - one w i t h wood s t u d s t h e o t h e r w i t h m e t a l s t u d s . To t h e layman, t h e f l i m s y appearance of a m e t a l s t u d o f t e n b e l i e s i t s advantage i n a c o u s t i c a l performance; but i t i s p r e c i s e l y t h i s q u a l i t y t h a t makes i t s u p e r i o r t o t h e wood s t u d . The r e s i l i e n c y p r o v i d e d by the m e t a l s t u d g i v e s b e t t e r i s o l a t i o n t h a n i s p r o v i d e d by t h e s t i f f e r wood s t u d . A way o f i m p r o v i n g t h e 82 performance o f wood s t u d s i s t h e a d d i t i o n of r e s i l i e n t c h a n n e l s between s t u d and p l a s t e r b o a r d . I n c o m p a r i s o n , t h e a c o u s t i c a l performance o f me t a l s t u d s would l i e somewhere between wood s t u d s and wood s t u d s w i t h r e s i l i e n t c h a n n e l s . F i g u r e 3.24 shows the t r a n s m i s s i o n l o s s c h a r a c t e r i s t i c s o f a t y p i c a l w a l l u s i n g wood s t u d s w i t h r e s i l i e n t c h a n n e l s . I t a l s o compares t h e use o f t h e s e c h a n n e l s on one s i d e o n l y and b o t h s i d e s . The use o f r e s i l i e n t c h a n n e l s on one s i d e o f t e n p r o v i d e s enough i s o l a t i o n between the mass-air-mass l a y e r s , such t h a t t h e a d d i t i o n a l advantage o f u s i n g c h a n n e l s on both s i d e s i s p r o b a b l y not worth t h e e x t r a c o s t . F i g u r e s 3.25 and 3.26 show t h e s i m i l a r i t y of the w a l l s * performance i n a t t e n u a t i n g some t y p i c a l n o i s e . Another approach t o i s o l a t i o n i s t h e use o f s t a g g e r e d wood s t u d s on a common p l a t e . T h i s advantage of h a v i n g s e p a r a t e w a l l frames i s o f t e n not f u l l y r e a l i z e d because o f th e f l a n k i n g path a f f o r d e d by t h e common p l a t e . F i g u r e 3.27 i l l u s t r a t e s t h e t r a n s m i s s i o n l o s s c o n t o u r f o r t h i s w a l l t y p e . I t i s compared w i t h t h e c o n t o u r o f a w a l l w i t h a t o t a l l y s e p a r a t e f r a m i n g system f o r each s i d e t o a c h i e v e even b e t t e r i s o l a t i o n . F i g u r e 3.28 compares t h e a t t e n u a t i o n o f some t y p i c a l n o i s e by t h e s e two w a l l t y p e s -Band No. 83 3 w CP o w Q to to o o to to to 2 St 33 34 36 » • BT M 3» 63 125 250 500 1000 2000 4000 8000 ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3.23 Comparison of TL spectra of Wall 31^ STC 1*7 Wall 313 STC 39 p — 5 / 8 gyp. bd. 3-5/8 chan./ 24oc 2" batt i n s u l , p .5/8 gyp, bd. 2 X 4 studs/ 2*toc 2 M batt i n s u l . Band No. 84 2 o w Q CO 00 O z o M cn CO CO 63 125 250 500 1000 2 0 0 0 4 0 0 0 8 0 0 0 ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3.24- Comparison of TL spectra Wall 3^ 0 STC 50 — Wall 339 STC 48 > <—5/8 gyp. bd. 2X4 Btuds/l6oc hor. r e s i l i e n t chanl both sides 2 M b a t t i n s u l . < 5/8 gyp. bd* 2X4 8tuds/l6oc hor. r e s i l . chan. one side 2" batt i n s u l . CD -s < 10 LU u > 2 LU UJ 2 cc —' o CO E UJ 5 rr „ CL o Q * => UJ O £ co 85. 6 3 125 280 500 1000 2000 4000 8000 ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3.25 Performance of Wall 340 (STC 50) and Wall 339 (STC 48) — due to Clothes Washer Band No. 86 CD -— u. I l l u > 5 UJ UJ | OC => g CO „ CO e £ ! Q. o D « 2 « 3 ui O * CO 80 fr tt t t 50 51 3f 53 S4 » M I t » »> 0- >~ «" « n • "«» 1 " M «OQ I «30 BOO T ~ 129 - WO 250 518 } Mft, 080 6 3 125 250 500 1000 2000 4000 6000 ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3 . 2 6 Performance of Wall 3 4 0 (STC 50) and Wall 339 (STC 48) — — due to Household Noi se (NOR) Band No. 80 j . 87 t 4 »e t* IT n » »o »i at w 34 ae 3« ar 5» at 3 w CO o w Q CO CO o 1-3 z o M CO C O CO z 2 125 250 500 1000 2000 4000 8000 ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3;27 Comparison of TL spectra of Wall 192761 FSTC 50 Wall 324 STC 46 1/2 gyp. bd. double 2X4 wd std with 1 M a i r gap 2 layers fi-7 i n s u l a t i o n F—5/8 gyp. bd. staggered 2X4/ 24oc on 2X6 common plate i n s u l a t i o n ; Band No. • i n ma i HIP a j " . | JIB TW i -YYY i 1*1 - l i f r — r- i n wiw - r - — — - . 63 125 150 500 1000 2000 4000 8000 ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3.-28 Performance of Wall 192761 (FSTC 50) -«• — and Wall 324 (STC 46) — — . due to Household Noise (NOR) 89 Although t h e s e v a r i o u s methods of i s o l a t i o n i n c r e a s e the t r a n s m i s s i o n l o s s v a l u e s of a w a l l , t h e c h a r a c t e r i s t i c shape o f t h e c u r v e remains r e l a t i v e l y u n a l t e r e d . T h i s i s p a r t i c u l a r l y t r u e f o r the c o i n c i d e n c e d i p around t h e 2000 Hz f r e q u e n c y band. The a d d i t i o n of a l e a d s h e e t o f t e n d e c r e a s e s t h i s d i p . A c c o r d i n g t o t h e Mass Law, s i n g l e p a n e l s o f the same weight s h o u l d g i v e s i m i l a r t r a n s m i s s i o n l o s s v a l u e s but because o f t h e c o i n c i d e n c e e f f e c t , an i n t e r r u p t i o n i n t h e form of a p l a t e a u appears on the t r a n s m i s s i o n l o s s c u r v e . T h i s p l a t e a u h e i g h t i s dependent on m a t e r i a l t y p e . F i g u r e 3.29 shows t h a t l e a d b e i n g v e r y dense and n a t u r a l l y l i m p , p e r f o r m s n e a r l y a c c o r d i n g t o t h e Mass Law o v e r much o f t h e r e l e v a n t f r e q u e n c y . Note however t h a t i t s " l i m p n e s s " i s reduced when bonded t o a r i g i d m a t e r i a l such a s p l a s t e r b o a r d . F i g u r e 3.30 shows t h e improved performance due t o a d d i t o n o f a l e a d s h e e t . The use o f l e a d s h e e t s though i s q u i t e l i m i t e d due t o the h i g h m a t e r i a l c o s t i n v o l v e d . F i g u r e 3.31 i l l u s t r a t e s t h e advantage of u s i n g double l a y e r p l a s t e r b o a r d t o i n c r e a s e s u r f a c e d e n s i t y . T h i s double l a y e r e d w a l l i s o f a s i m i l a r type t o t h a t recommended by 0. S. Gypsum as " b e s t v a l u e of d r y w a l l metal s t u d p a r t y w a l l s i n t h e 50-54 STC range" (Ref 4 0 ) . A l s o note the s h i f t i n f r e q u e n c y f o r t h e c o i n c i d e n c e d i p o f a s i n g l e l a y e r e d w a l l . As weight i n c r e a s e s , t h e c o i n c i d e n c e d i p i s lowered 90 i n f r e q u e n c y . F i g u r e 3.32 shows t h e a t t e n u a t i o n o f some t y p i c a l n o i s e by t h i s d ouble l a y e r e d p l a s t e r b o a r d w a l l . Even w i t h t h e b e n e f i t o f a b s o r p t i o n i n the c a v i t y , t h e c o i n c i d e n c e d i p was s i g n i f i c a n t enough t o p e r m i t the sound e x c e s s a t t h a t f r e q u e n c y . F i g u r e s 3.33 and 3-34 show t h e c o n s t r u c t i o n d e t a i l s and t r a n s m i s s i o n l o s s c u r v e s f o r t h r e e s i m i l a r w a l l t y p e s w i t h d i f f e r e n t c a v i t y a b s o r p t i o n - ' C e l u f i b r e * i s a t r a d e name f o r an i n s u l a t i o n manufactured from c e l l u l o s e f i b r e s - I t g e n e r a l l y comes i n two forms - spray - o n , and b l o w - i n f o r f i l l i n g t h e e n t i r e c a v i t y - *Fiberglas» i s a t r a d e name f o r i n s u l a t i o n made from g l a s s f i b r e s . A lthough the e f f e c t on sound a t t e n u a t i o n by a b s o r p t i v e m a t e r i a l s i n t h e w a l l c a v i t y i s known, t h e r e i s some disagreement as t o t h e r e a s o n s f o r t h e i r p erformance, e s p e c i a l l y w i t h r e g a r d t o the e f f e c t of m a t e r i a l d e n s i t y . "The e x a c t p r o c e s s by which energy i s absorbed i n a c o u s t i c a l m a t e r i a l s i s s t i l l under i n v e s t i g a t i o n - H i g h l y a b s o r p t i v e m a t e r i a l s a r e porous o r f i b r o u s and i t i s th o u g h t t h a t the sound waves l o s e energy by the d i s s i p a t i o n o f t h e v i b r a t i o n t h e y c r e a t e i n t h e s t r u c t u r e t h a t makes up the a i r c h a n n e l s , p r o d u c i n g h e a t . " (Bef 19, p. 13) From F i g u r e 3.34, i t seems t h a t performance o f H a l l s 91 7353-3 and 7482-1A a r e q u i t e s i m i l a r . F u r t h e r , i t appears t h a t the b l o w - i n i n s u l a t i o n performs b e t t e r a t low f r e q u e n c i e s w h i l e the g l a s s f i b r e i s b e t t e r i n t h e h i g h e r f r e q u e n c i e s . The t h i r d c o n t o u r , w a l l 7482-1B, d i d not perform as w e l l , presumably because th e s p r a y - o n i n s u l a t i o n was j u s t n o t t h i c k enough t o p r o v i d e as much a b s o r p t i o n . The l a t t e r c o n t o u r compares c l o s e l y w i t h a s i m i l a r w a l l ( F i g u r e 3.35) t e s t e d by t h e o t h e r a c o u s t i c a l c o n s u l t a n t and p r o b a b l y i n d i c a t e s t h e e x p e c t e d l e v e l o f performance f o r t h i s w a l l t y p e . A c e r t a i n amount o f d i f f e r e n c e i s a t t r i b u t e d t o t h e s e data coming from d i f f e r e n t s o u r c e s . " GLASS FIBRE VERSOS SPRAYED CELLULOSE INSOLATION The a c o u s t i c a l a b s o r p t i o n p r o p e r t i e s of g l a s s f i b r e and s p r a y e d c e l l u l o s e f i b r e i n s u l a t i o n a r e s i m i l a r . F u r t h e r , some i n v e s t i g a t i o n s have i n d i c a t e d t h a t t h e amount of a c o u s t i c a l a b s o r p t i o n i n t h e s t u d space i s not c r i t i c a l , once a c e r t a i n minimum v a l u e has been reached. The r e a s o n i s a t t r i b u t e d t o the f a c t t h a t most r a d i a t e d sound t r a v e l s h o r i z o n t a l l y i n the w a l l s and must t r a v e l t h r o u g h a l o n g d i s t a n c e o f i n s u l a t i o n . F u r t h e r , t h e o r y i n d i c a t e s t h a t t h e t r a n s m i s s i o n l o s s s h o u l d not be a f f e c t e d by t h e damping o f the i n s u l a t i o n , a t f r e q u e n c i e s w e l l below t h e c o i n c i d e n c e f r e q u e n c y , say below 1000 Hz- w e l l c o n s t r u c t e d i s o l a t e d w a l l s w i t h i n s u l a t i o n a r e i n v a r i a b l y l i m i t e d a t t h e v e r y low f r e q u e n c i e s , i n t h e o r d e r o f 160 Hz- F o r t h e s e r e a s o n s , t h e t y p e o f i n s u l a t i o n used s h o u l d t h e o r e t i c a l l y not be too c r i t i c a l . However, Owens-Corning F i b r e g l a s have conducted s t u d i e s which i n d i c a t e a s i g n i f i c a n t improvement i n i s o l a t i o n f o r l a r g e t h i c k n e s s e s o f F i b e r g l a s , and t h i s may be j u s t i f i e d i n c r i t i c a l s i t u a t i o n s . . . . . I n summary, both t h e o r y and our f i e l d e x p e r i e n c e i n d i c a t e no s i g n i f i c a n t d i f f e r e n c e 92 between t h e a c o u s t i c a l performance o f a s p r a y e d c e l l u l o s e f i b r e o r a g l a s s f i b r e i n s u l a t i o n . A v a i l a b e l a b data does appear t o i n d i c a t e a p r e f e r e n c e f o r t h e s p r a y e d i n s u l a t i o n , b u t as t h i s i n f o r m a t i o n i s e n t i r e l y s u p p l i e d by t h e m a n u f a c t u r e r s , and t h e r e i s a f a i r l y wide s c a t t e r i n t h e d a t a we s u s p e c t t h a t t h e a v a i l a b l e data may r e p r e s e n t t h e upper bounds o f performance." From a r e p o r t o f B a r r o n S A s s o c i a t e s ( F i l e 541-401, pp5-6) An a d d i t i o n a l note to w a l l 7353-3 on F i g u r e 3.33 - f o r p r a c t i c a l p u r p o s e s , th e middle l a y e r p l a s t e r b o a r d a l s o appears t o be a s a f e g u a r d a g a i n s t p o s s i b l e l e a k s from o u t l e t b oxes, e t c . on e i t h e r s i d e of t h e p a r t y w a l l . Except f o r t h i s c o n s i d e r a t i o n , t h e m i d d l e l a y e r would be more e f f e c t i v e i f a p p l i e d t o an o u t e r l a y e r which t h e n maximizes th e e f f e c t o f t h e a i r c a v i t y . !00 IJGOO 3 4 5 6 7 0 9 • • . IO.COQ F R E Q U E M C Y C/S FIG. Figure 3#29 Comparison of the t h e o r e t i c a l behaviour of d i f f e r e n t sheet materials of l i k e weight per square f o o t . Plateaus i n the graph ar© the r e s u l t s of coincidence e f f e o t . ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3.30 Comparison of TL spectra of Wall 236 STC 48 Wall 214 STC 44 1/2 gyp; bd. 1 l b . lead sheet one side 3-5/8 chan./24oc 2" batt i n s u l . 1/2 gyp. bd. 3-5/8 chan./24o< 2" batt i n s u l . Band No. 80 I, I, «0 tl t t ti t* »» t6 t f t . t » 80 31 3t 33 84 88 >« 3T 3 . i t 95 3 o w o to to o o M to to n to S3 5 0 5 0 0 iOOO 2 0 0 0 4 0 0 0 8 0 0 0 , ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3.31 Comparison of TL spectra of Wall 414 STC 51 Wall 214 STC 44 £ — 2 layers J/2 gyp, bd,, each side 3-5/8"channels/24oc M batt i n s u l . " 1/2 gyp. bd, each side 3-5/8 chan./24oc 2" batt i n s u l . Band No. ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3.32 Performance of Wall klk (STC 51) due to Household Noise (NOR) — Clothes Washer .«•-«. Wall 7353-3 (AE) -2 X 4 wood studs _ —1/2" gypsum bd. "* a i r space 2-1/2" batt i n s u l . 5/8" gypsum bd. Wall 7^82-lA (AE) ( 1 • • ^ j r - • • > —2 X 4 wood studs •1" space & 1.5/8" gypsum bd. .'Celufibre' blow-in i n s u l a t i o n Wall 7482-1B (AE) l/f — 2 X k wood studs -1" space -5/8" gypsum bd. •'Celuf ib r e ' 1" spray-on i n s u l a t i o n Figure 3.33 ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3«34 Comparison of TL spectra of Wall 7353-3 FSTC 53 mmmm Wall 7^82-lA FSTC 56 o»-«-o Wall 7482-1B FSTC 49 * — * 99 r i a w o I ino 880,71 Bin w L,M» W T «»-#q ~ w «io r - W t a o 63 125 850 500 iOOO 2000 4000 . 8000 Figure 3.35 ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) TL spectra of Wall 7482-1B (FSTC 49) — 5/8 gyp. bd. each side, double 2X4 stud w a l l , 1" a i r space, 1" 'Celufibre' spray-on i n s u l . Wall 542501 (FSTC 49) -5/8 gyp. bd. each side, double 2X4 stud wall, 2" 'Borden' spray-on i n s u l a t i o n 100 3.5 A SIMPLIFIED MEASUREMENT USING A-WEIGHTED SOUND LEVEL DIFFERENCES Numerous s t u d i e s (Ref 31 ,35-39) have proposed t h e use o f a s i m p l i f i e d measurement u s i n g A-weighted sound l e v e l d i f f e r e n c e s but t h e y a l s o show some d i f f e r e n c e i n t h e t y p e o f n o i s e spectrum t o be used. There i s no doubt as t o the imp o r t a n c e o f t h e s o u r c e room spectrum. The f o l l o w i n g d a t a a r e p r e s e n t e d as a f u r t h e r q u a l i f i c a t i o n t o the r e s u l t s o f o t h e r s t u d i e s . I n p r i n c i p l e , t h e proposed method measures the n o i s e r e d u c t i o n and n o t n e c e s s a r i l y t h a t o f t r a n s m i s s i o n l o s s a l o n e , but t h i s s t u d y s h a l l assume t h e l a t t e r c o n d i t i o n s due t o t h e i d e a l i z e d c o n d i t i o n s d i s c u s s e d e a r l i e r - T h i s i s p r o b a b l y not as c r i t i c a l , f o r t h e main purpose o f t h i s s e c t i o n i s t o p r e s e n t the e f f e c t s o f d i f f e r e n t n o i s e s p e c t r a on t h e c a l c u l a t e d d i f f e r e n c e . A l t h o u g h t h e A - w e i g h t i n g and STC c o n t o u r s a re g u i t e s i m i l a r , t h e o r e t i c a l r e s u l t s of a s t u d y by Stephens (Ref 39) show t h a t f o r a l e v e l n o i s e spectrum, t h e A-weightad sound l e v e l measured i n t h e r e c e i v i n g room would emphasize t h e low f r e q u e n c i e s - T h i s i s because the two s p e c t r a show a minor d i f f e r e n c e i n t h e i r c o n t o u r s at t h e l o w e r f r e q u e n c y bands. T h i s i s shown on F i q u r e 3.36, which uses an i d e a l i z e d p a r t i t i o n whose t r a n s m i s s i o n l o s s v a l u e s a r e d e f i n e d by an R 717 (ISO e q u i v a l e n t o f STC) c o n t o u r . The measured e f f e c t o f t h e i n c r e a s e d low f r e q u e n c i e s , i n t h i s c a s e , i s s m a l l ; but when combined w i t h o t h e r c o n d i t i o n s , c o u l d g r e a t l y a f f e c t 101 some o f t h e measured d i f f e r e n c e s - Another s t u d y by B r i t t a i n (Ref 12) which e x p e r i m e n t a l l y e v a l u a t e d t h e t e s t procedure proposed by Seikman, e t a l (Ref 3 7 ) , a l s o found problems a s s o c i a t e d w i t h t h e l o w e r f r e q u e n c i e s - In t h i s c a s e , w a l l s which showed s i g n i f i c a n t d e v i a t i o n s below th e r e f e r e n c e c u r v e t e n d e d t o g i v e l o w e r r e s u l t s compared t o t h e STC v a l u e . The o v e r a l l e f f e c t o f t h e s e two c o n d i t i o n s i s t h a t any s i g n i f i c a n t d e v i a t i o n i n the r e c e i v e d sound l e v e l spectrum would a f f e c t t h e o v e r a l l measured d a t a . T h i s i s e v i d e n t i n the t e s t r e s u l t s o f the n i n e a p p l i a n c e n o i s e s p e c t r a . The s p e c t r a (Food D i s p o s e r , C l o t h e s Washer, Dishwasher, e t c . ) which showed dominant low f r e q u e n c y sounds tended t o show l o w e r r e s u l t s compared t o t h e STC r a t i n g . C o n v e r s e l y , t h o s e s p e c t r a which were dominant i n t h e h i g h e r f r e q u e n c i e s ( E l e c t r i c K n i f e , Food B l e n d e r , e t c . ) showed more o p t i m i s t i c r e s u l t s . F u r t h e r m o r e , a d v e r s e d e v i a t i o n s such as peaks i n t h e n o i s e spectrum r e s u l t e d i n a f a i r l y wide s c a t t e r o f t h e d a t a p o i n t s . On t h e o t h e r hand, t h e Sewing Machine and Food Mi x e r which had a f a i r l y even d i s t r i b u t i o n i n t h e i r s p e c t r a showed v e r y good c o r r e l a t i o n . The r e s u l t s f o r b o t h Household Noise s p e c t r a a l s o showed v e r y good c o r r e l a t i o n - T h i s i s i m p o r t a n t because i t e n a b l e s t h e use o f t h i s method i n measuring a c o u s t i c p r i v a c y between d w e l l i n g s . T h i s has been proposed by S c h u l t z (fief 35) and i s now embodied i n a t e n t a t i v e ASTM Recommended P r a c t i c e (Ref 46) r e l e a s e d a t t h e t i m e o f t h i s w r i t i n g . 102 F i g u r e s 3-37 and 3-38 compares both Household N o i s e s p e c t r a and t h e n o i s e spectrum from t h a t ASTM document. The l a t t e r spectrum vas a d j u s t e d downwards t o e n a b l e comparison o f shapes. The t e s t r e s u l t s f o r t h e Speech spectrum though not a s good as t h a t f o r household n o i s e , shows a f a i r amount o f c o r r e l a t i o n . But t h e s e d a t a a r e p r o b a b l y n o t d e f i n i t i v e due t o t h e o m i s s i o n o f t h e two l o w e r f r e q u e n c y bands. 103 'A' <*e j M e a source meaSuremen! 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500-3150 I / 3 O c t a v e band centre frequency Figure 3.36 Sound pressure l e v e l s during the measurement of an i d e a l R 717 shaped wall by the difference i n A-weighted levels on both sides. (Ref 39 ) Band No 10k ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) Figure 3.37 Comparison of HOUSEHOLD NOISE (NOR) spectrum and the ASTM Tentative Recommended Practice (Ref 47 ) spectrum. (The ASTM spectrum represents the allow-able range. It has been adjusted down-wards to enable comparison of contours.) ONE-THIRD OCTAVE BAND CENTRE FREQUENCY (HERTZ) j Figure 3.38 Comparison of HOUSEHOLD NOISE (HUD) spectrum • and the ASTM Tentative Recommended Practice (Ref 47 ) spectrum. (The ASTM spectrum represents the allow-able range. I t has been adjusted down-wards to enable comparison of contours.) 1 106 The f o l l o w i n g graphs f o r 'dBA Difference» vs 'STC* i n c l u d e s d a t a f o r t h e l i n e a r l e a s t - s g u a r e s f i t . The l i n e a r f i t i s based on t h e e q u a t i o n f o r a l i n e : Y = mX + b where, X, i s t h e STC v a l u e Y, i s t h e 'dBA D i f f . • v a l u e m, i s t h e s l o p e P (2) b, i s t h e Y i n t e r c e p t . P(1) S i n c e the i d e a l c o n d i t i o n i s »STC* = 'dBA D i f f . * , a good c o r r e l a t i o n s h o u l d have v a l u e s of * m* ne a r • 1* (45° s l o p e ) and 'b 1 near '0*. A l s o i n c l u d e d i s t h e v a l u e f o r 'Sum of Sguares*. T h i s v a l u e i n d i c a t e s t h e spread o f t h e data p o i n t s - The g r e a t e r the v a l u e , t h e g r e a t e r i s t h e s p r e a d o f d a t a . cm P C O H*' cm c ro NO SOUND PRESSURE LEVEL (dB) ( A E 2 I 10-1 N / m l O R 0 0002 U I C R O B A R ) CO o O c CO O- tt CQ O f ro b o c+ o M 3 CO w P 3 P . o *i cr 3*-O O — < mo B3 JO I 18 o M •§ o M 3 O »0 as S3 o o o 1 1 1 M V»» VJ VA o CO m w O II II CO O I »o • o C vo • P -N3 V/V ON ON (!l -P- ^ CO O U> n •• - O ON 0 0 2b : DBA DIFF (HSEHOLD (NOR)) .0 30.0 - 40.0 50.0 •60;0 — j -• •-1-CM d CD VjJ o 0 0 x o o c a 3 w P. w X co o •d f l CD O c+ *1 C 3 m o Z M 3 o CO M a p. w •d co o o S O U N D P R E S S U R E L E V E L (dB) ( A E 2 I 10-1 N / m l Oft 0 0002 M t C R O B A R ) 3 z o •0 •0 •t) z Z z z o o o o • ro • V J 1 VA) o V A o 80T CO •p H * v -O M» t| || CO o o IP • • C vO vO p ro o ^ V7\ CD CO -v3 ON o 0 0 ro o -2b .1 . DBH DIFF (HSEHDLD (HUDJ) .D • 3 0 . 0 40 . 0 , 5 0 . 0 6D.D 1....... ONE-THIRD OCTAVE BAND CENTRE. FREQUENCY (HERTZ) • _ • / ";- .. f ' -Figure 3.41 FOOD DISPOSER o Sound spectrum and 'dBA D i f f . ' graphs ex bd > a cm (J) CQ tt H * cm C; • V*) • • SOUND PRESSURE LEVEL (dB) ( R E 2 « 10-1 N / m l O R 0 0002 M I C R O B A R ) CO tt O O c O 3 O CX cr) CQ tr1 tt fO o a r r w d 3 S» 3 CX m o S3 JO I S3 Z M S S o S3 N o w as •TJ" *rj *d *v) •2 =S 55 S * o o o o • I I I tO VA) VA) - F V A O V A O 2b CO •T3 «"••» g ro o H> n CO i •a • c -P-pj l-» • •1 (D ro CO -p-II ro O • O H . •TizDBR DIFF;.(FOOD BLENDER) .0 ! 30.D 40.0 50.0 60.0 i ^ C >1 VjJ *fl O 01 .3 W " S O U N D P R E S S U R E LEVEL (dB) ( R E 2 I 10 > N / m ! O R 0 0002 M I C R O B A R I P. P. 0«J 3* ra o B 2 O •d *0 O O o o • ro 1, V J 1 v*> V A o V A o ITT W •TJ hrj C ^ — V 3 N H O H II | | . V A P U ) o 1 VO 0 0 <D ON - \ J CO o n V/\ rv> O ro 4 — r .DBR DIFF:(VAC CLEANER) 20.0 30;0 | 40,0 -r- ' 50.0 6D.0 S O U N D P R E S S U R E LEVEL (dB) ( R E 2 I 10-1 N / m l O R 0 0002 M I C R O B A R ) CD V j j c, -P-•P" •"JO CO c o g s o w g ™ Cj ^ q ^3 <D ° 3 M g 3 CX O po 3* • CQ ss z z o o o 1 • 1 to v*> UJ O V A o 2TT CO *rj • t l Cd H It II M O O g co -vj |S H N 4 v J U (0 H* vO CO VjJ II o do ON o 20 DBR DIFF. (SEW MACHINE) .0 - i - 30.0 •,- 40.0 - 50.0 ? CD U ) • •, • • M O 2 tl jo i § Sag co hd o o co c+ 3 » < 3 tt £ S O U N D P R E S S U R E LEVEL (dB) ( R E 2 • 10-1 N / m l O R 0 0002 M I C R O B A R ) P 3 P-P-a CM •1 p •co o w z • 9 B. as o M 'rJ *t) z z z 0 0 0 I I I M V J V J vn o V A o o CO *— 3 w — ' 0 II II 1 0 • • vO VO P 00 •1 V>) ro CD ON VA CO vO II 2D — D B R DIFF. (ELEC KNIFE). ... .0 . 30.0-1- 40.0 ; 50.0 • 6D.0 tt cm c »1 (0 •p-ON c+ c 3 P 3 p . p . cm P 3* CQ mo o 0 < CO tt M 5 S O O W M c 3 P. SS M CQ S - t d X o N o M S ! 3 SOUND PRESSURE LEVEL (dB) ( R E 2 • 10-1 N / m l O R 0 .0002 M I C R O B A R ) I I ss ss ss ss 0 O O o 1 • I I to V J U ) t -V A O V A O 'VET, CO hi 3 ro w o II (i CO o ON •5 • • V OD ON P •P" •i -sj •p-CD vo vO CQ VJJ 11 l-» • S3 * h n DBR DIFF (FOOD MIXER) D.O - 30.0 40.0 50.0 J -JLL _ i _ ? , <o VO S O U N D P R E S S U R E L E V E L (dB) ( R E t I 1 0 1 N / m l O R 0 0002 M I C R O B A R ) co O c p. CQ CO (0 O <+ •1 CO PD-fX CM P co m o Is o o w a 3 o 2d W hi hj I N H o w w H> It II CO O H> >Q • • C -v3 NO P CO N >1 r~* NO (0 vn vn a II Nl CO • -p-VA VjJ : DBR DIFF:(DISHWRSHER) ;0 30.0 40.0 ••• 50.0 tt cm c *•* v>> • . 0 0 mo ? S B P S MS Q , . -T< 5 2 M H SS CQ CO o >» c+ CO » 5 3 W to o & 3 p. a JO 3* CQ S O U N D P R E S S U R E LEVEL (dB) («E 1 I 10-1 H/ml O R 0.0002 M I C R O B A R ) O V n o 9TT CO hj *t) 3 "ro <—* o Hi II II CO O V A tO • • P> -sj VjJ •1 N M (0 CQ II ro V j • 00 „ h n DBR DIFF:(CLOTHES WRSH) 2D.0 30.0 40.0 50.0 " '" 1 X ^ o o c sE aS g.sS a-as I i o 4 13 P. a H * ' H i '9->d 3* SOUND PRESSURE LEVEL (dB) IR< > • loi n/mi on o.ooo MICHOBAR) 3 o *-z tz o o o 1 1 1 N VJ VJ Vn O Vn o o 20 CO d 3 ro o II II CO O • . • d ON oo so H» V>> 0 0 CD O N> CO o II oo' VjJ VjJ _L. ..J_. _L_ =::iDBn DIFF (CLOTHES DRYR) .0—1 30.0 •-•! 40.0 ; 50.0 60.0 • tt cm V j J v A . o m p CO CO O T) *?. ' c w ag 3 W _ P. O o » CQ (0 o 3 CX a H * o 83 N o w z 8 S O U N D P R E S S U R E LEVEL (dB) (RE 2 • 10-1 N/rrt! OR 0 0002 MICROBAR) | I I I I I I I I 1 I 1,1 I I I I I I I I I I I I *r) UJ UJ Z Z Z Z o o o o t i l l M v*» v*J -P" V A O VA O cm P 3* CQ • • • DBF) DIFF (SPEECH) 1 : 20.0 30.0 40.0 • - 50.0 • ......... . . . . . . , CG1CXDDING i M A l M 120 I I - CONCLUDING R E 8 A S K S The f i r s t o b j e c t i v e o f t h i s t h e s i s was t o e v a l u a t e d i f f e r e n t p l a s t e r b o a r d p a r t i t i o n s used i n p a r t y w a l l s . The r e s u l t s have shown t h a t o v e r a wide range of T r a n s m i s s i o n L o s s v a l u e s , t h e d i f f e r e n t w a l l systems had two common c h a r a c t e r i s t i c s which a f f e c t e d t h e o v e r a l l a c o u s t i c performance. These were poor sound a t t e n u a t i o n a t b o t h the c o i n c i d e n c e d i p and t h e l o w e r f r e q u e n c y bands. Even the b e t t e r a c o u s t i c a l l y - r a t e d w a l l s show these spectrum c h a r a c t e r i s t i c s , though a t h i g h e r TL v a l u e s . The c o n t r o l o f sound t r a n s m i s s i o n i n t h e s e two a r e a s i s o f utmost i m p o r t a n c e . F i r s t , the c o i n c i d e n c e d i p f o r p l a s t e r b o a r d w a l l s o c c u r s i n t h e v i c i n i t y o f t h e 2000 Hz. band where a u r a l s t i m u l a t i o n i s p a r t i c u l a r l y s e n s i t i v e . Second, a l t h o u g h the e a r d i s c r i m i n a t e s a g a i n s t low f r e q u e n c y sounds, poor sound a t t e n u a t i o n a t t h e s e f r e q u e n c i e s i s o f t e n the cause f o r c o m p l a i n t s of n o i s e i n t r u s i o n . T h i s i s p a r t i c u l a r l y t r u e f o r i n t r u s i o n caused by music emanating from s t e r e o s e t s - a s i t u a t i o n where t h e STC r a t i n g seems t o be d e f i c i e n t . These two problems are t o be e x p e c t e d i n l i g h t , s t i f f w a l l s . T h e r e f o r e t h e key t o b e t t e r a c o u s t i c performance i s not j u s t a h i g h STC r a t i n g but a l s o an improvement of TL c h a r a c t e r i s t i c s a t t h e s e two weak a r e a s . A g u i d e l i n e f o r improved w a l l d e s i g n can be a c h i e v e d by s t u d y i n g t h e i n f o r m a t i o n d e r i v e d from t h e performance o f d i f f e r e n t w a l l s as a f f e c t e d by t h e i r components and d e s i g n . T h i s can be g l e a n e d from the comparison o f d i f f e r e n t d a t a 121 p r o v i d e d i n S e c t i o n 3.4 and Appendix I V . The second o b j e c t i v e was t o r a t e t h e s e w a l l s u s i n g a d e r i v e d p r i v a c y model. T h i s was a c h i e v e d by c o r r e l a t i n g s u b j e c t i v e r e s p o n s e t o the amount o f n o i s e p e r c e i v e d . Man's t o l e r a n c e f o r i n t r u d i n g n o i s e i s o f t e n a f a c t o r o f h i s s u b j e c t i v e f e e l i n g s , as s u c h , the i m p l e m e n t a t i o n o f any g u i d e l i n e f o r a c o u s t i c p r i v a c y can o n l y be based on * s t a t i s t i c a l d a t a . The p r a c t i c a l o b j e c t i v e i s t o s a t i s f y "most o f t h e p e o p l e most o f the t i m e " . The o b v i o u s c o r o l l a r y t o t h i s i s t h a t t h e more n o i s e - s e n s i t i v e people a r e p r a c t i c a l l y never s a t i s f i e d . I t i s i n t e r e s t i n g t o compare the r e s u l t s o f t h i s s t u d y w i t h o t h e r r e s e a r c h , and p r e s c r i b e d codes. U s i n g our v a l u e o f 84 f o r STC+PNC (dBA), t h e f o l l o w i n g t a b l e r e s u l t s : f o r PNC 25 STC 51 f o r PNC 30 STC 47 f o r PNC 35 STC 43 f o r PNC 40 STC 38 Although PNC 40 was i n c l u d e d i n t h i s s t u d y , i t i s h i g h e r t h a n n o r m a l l y a c c e p t e d f o r a background n o i s e . PNC 35 s h o u l d be r e g a r d e d as t h e maximum v a l u e f o r a d e s i g n c r i t e r i o n -From t h e d a t a , i t appears t h a t t h e CMHC ( C e n t r a l Mortgage and Housing C o r p o r a t i o n ) minimum re g u i r e m e n t o f STC 122 45 (Ref 47) i s a v e r y m a r g i n a l r a t i n g . The r e s u l t e o f t h i s s t u d y compare more f a v o r a b l y t o t h e performance c r i t e r i a s e t by t h e U- S. Dept. Of Housing and Urban Development which s e t s t h r e e s t a n d a r d s f o r i s o l a t i o n between d w e l l i n g u n i t s . ( f i e f 7 ) . Grade I r e p r e s e n t s suburban a r e a s , i n c l u d i n g l u x u r y a p a r t m e n t s . Grade I I , i s t h e most i m p o r t a n t because i t r e l a t e s t o the m a j o r i t y of m u l t i - f a m i l y c o n s t r u c t i o n . T h i s i s a p p l i c a b l e f o r urban and suburban a r e a s i n "average" e n v i r o n m e n t s . Grade I I I r e p r e s e n t s t h e recommended m i n i m a l v a l u e . Grade I STC >55 (NC 20-25) Grade I I STC >52 (NC 25-30) Grade I I I STC >48 (not g r e a t e r t h a n NC 35) The P r i v a c y Index (Ip) recommended by S c h u l t z (Sef 35) s e t s the minimum v a l u e as 75, and 80-85 f o r a b e t t e r grade. Comparably t h e minimum v a l u e o f 75 i s r a t h e r l o w , g u i t e s i m i l a r t o t h e CMHC r a t i n g of STC 45. I t i s recommended t h a t t h i s minimum r e g u i r e m e n t be i n c r e a s e d by 4-5 p o i n t s , a l t h o u g h t h e i n c r e a s e i s s m a l l , i t can be j u s t i f i e d by the f o l l o w i n g r e a s o n . H a n u f a c t u r e r s 1 d a t a c o n s i s t e n t l y r e p r e s e n t t h e upper bounds of v a r i o u s l a b o r a t o r y r e s u l t s , so w a l l s o f r e l a t i v e l y poor performance a r e sometimes used as p a r t y w a l l s on t h e b a s i s of o p t i m i s t i c t e s t r e s u l t s . 123 Test r e s u l t s from d i f f e r e n t l a b o r a t o r i e s show a spread i n t h e t e s t d a t a - T h i s i s o f t e n due t o d i f f e r e n c e s i n t e s t f a c i l i t i e s and pro c e d u r e s a l t h o u g h a l l a r e based on the same s t a n d a r d s - a s t u d y by Voorhees and P a l l e t t (Ref 41) p r e s e n t s and d i s c u s s e s t h e r e s u l t s o f a su r v e y by the I n s t i t u t e f o r E n v i r o n m e n t a l S c i e n c e s o f d i f f e r e n t l a b o r a t o r y f a c i l i t i e s . a s i d e from d i f f e r e n c e s i n t e s t samples and room d i m e n s i o n s , i t was ob s e r v e d t h a t from t h e twenty seven TL t e s t f a c i l i t i e s i d e n t i f i e d , o n l y " t e n res p o n d e n t s r e p o r t e d e x p l i c i t adherence t o ASTH E90-7Q,.--.(and t h a t a l s o ) o n l y t e n - - - - i n d i c a t e d t h a t t h e y had e x p l i c i t l y e v a l u a t e d t h e a c c u r a c y and/or p r e c i s i o n o f more t h a n one t r a n s m i s s i o n l o s s measurement." T h e r e f o r e , s i n c e t h e average d w e l l i n g i s u s u a l l y b u i l t t o minimum co m p l i a n c e of s t a n d a r d s , the recommended i n c r e a s e c o u l d e f f e c t i v e l y e l i m i n a t e the lower l i m i t s r e p r e s e n t e d by each w a l l t y p e . The t h i r d o b j e c t i v e was to t e s t a s i m p l i f i e d a c o u s t i c measurement u s i n g t h e d i f f e r e n c e o f a - l e v e l measurements. S t a t i s t i c a l r e s u l t s show t h a t t h e g e n e r a l Household Noise spectrum p r o v i d e s a good i n d i c a t i o n o f the STC r a t i n g . F u r t h e r m o r e , i t s s i m i l a r i t y t o the spectrum used i n the new ASTM Recommended P r a c t i c e (fief 4 7) c o n f i r m s i t s a p p l i c a b i l i t y i n r a t i n g t h e Noise R e d u c t i o n between s p a c e s . The i m p l e m e n t a t i o n o f t h i s ASTM Recommended P r a c t i c e t o g e t h e r w i t h a P r i v a c y Index i n t h e method d e s c r i b e d by S c h u l t z (Ref 35) c o u l d prove t o be a most e f f e c t i v e way o f a s s u r i n g c o n f o r m i t y t o a b u i l d i n g s t a n d a r d . T h i s c o u l d t h e n 124 e l i m i n a t e m a r g i n a l performance due t o i n a d e q u a t e d e s i g n and/or poor c o n s t r u c t i o n q u a l i t y . A p p l i a n c e N o i s e The r e q u i r e m e n t s f o r a c o u s t i c p r i v a c y from some a p p l i a n c e s appear t o be q u i t e c r i i t c a l . The s o l u t i o n t o t h i s can be approached i n two ways. The f i r s t and more s i m p l e approach i s t o l o c a t e t h e n o i s y a p p l i a n c e away from t h e p a r t y w a l l . The second and more d i r e c t approach i s a r e d e s i g n e d a p p l i a n c e . The r e p o r t by B o l t Beranek and Newman (Ref 10) o f f e r s a comprehensive s t u d y i n t o the problems a s s o c i a t e d w i t h t h i s . There i s a l s o t h e problem of n o i s e d i s t u r b a n c e w i t h i n t h e d w e l l i n g u n i t where t h e a p p l i a n c e i s used. I n c r e a s e d annoyance due t o t h e s e n o i s e l e v e l s r e f u t e s the argument t h a t t h e u s e r has t a k e n t h e n o i s e o p t i o n i n exchange f o r a p p l i a n c e use. A l t h o u g h q u i e t e r a p p l i a n c e s a r e a v a i l a b l e , t hey a r e o f t e n marketed as t o p - o f - t h e - l i n e models and a r e s o l d at a premium. Arguments most o f t e n used by m a n u f a c t u r e r s o p p o s i n g r e d e s i g n c i t e t h e b e l i e f t h a t t h e p u b l i c a s s o c i a t e s n o i s e w i t h power, and t h a t t h e added c o s t would put t h e i r p r o d u c t s a t a p r i c e d i s a d v a n t a g e . A l t h o u g h the r e p o r t b e l i e v e s t h a t a 10 dBA n o i s e r e d u c t i o n i s p o s s i b l e w i t h s t a t e - o f - t h e - a r t t e c h n i q u e s , some consumer 125 l o b b y i n g would be r e q u i r e d t o cause t h i s change- However, the p r o l i f e r a t i o n o f consumer a p p l i a n c e s makes i t i n e v i t a b l e t h a t e v e n t u a l l y more r i g i d s t a n d a r d s s i l l be a p p l i e d t o l i m i t n o i s e - The u l t i m a t e b e n e f i t o f t h i s change i s not t h e d i s t u r b e d n e i g h b o r but the user h i m s e l f who, aware of the i n c r e a s i n g n o i s e i n h i s environment, doss not have t o t r a d e o f f r e l a t i v e q u i e t w i t h the convenience o f a p p l i a n c e use. I n c o n c l u s i o n , t h i s t h e s i s has s t u d i e d o n l y some problems a s s o c i a t e d w i t h p r i v a c y a f f o r d e d by p a r t y w a l l s . A l t h o u g h t h e s e a r e major s o u r c e s o f n e i g h b o r c o m p l a i n t s , the t o t a l c o n c e p t of a c o u s t i c p r i v a c y has a f a r wider scope than can be d e a l t w i t h i n one s t u d y . T h i s may range from t e c h n i c a l problems such as impact n o i s e and f l o o r c o n s t r u c t i o n t o c i v i l a s p e c t s such as n o i s e l e g i s l a t i o n . T h i s s t u d y i s t h e r e f o r e o f f e r e d as a c o n t r i b u t i o n t o a c h i e v i n g b e t t e r p r i v a c y by means o f a more c o n s c i o u s a c o u s t i c d e s i g n a pproach. 126 REFERENCES a-nd MBLIOGRAPSI 128 (1) L. L. Beranek, N o i s e R e d u c t i o n , McGraw H i l l Book Company, New York, 1960. ~* ~~ (2) L. L. Beranek, N o i s e and V i b r a t i o n C o n t r o l , McGraw H i l l Book Company, New York, 1971, Chap. 1?. (3) I b i d . , pp. 282-283. (*») I b i d . , pp. 317-320. (5) I b i d . , Chap. 18, pp. 564-567. (6) I b i d . , p. 5 85. (7) R. D. B e r e n d t , G. E. Winzer, C A i r b o r n e . Impact, and S t r u c t u r e Borne Noise C o n t r o l i n M u l t j f a m i l y D w e l l i n g , Sup. Of Documents, 0. S~*Gov 7t P r i n t i n g O f f i c e , Washington, D. C., 1967 (8) I b i d . , pp. 9.2-9.4-(9) I b i d . , p. 9.8. (10) B o l t , Beranek, and Newman, N o i s e from Construction Egui£ment and O p e r a t i o n s . B u i l d i n g Equipment, a n j Some A l l i a n c e s , Sup. Of Documents, 0. S. G o v f t . P r i n t i n g o f f i c e , Washington, D- C. , 1971. (11) I b i d . , pp. 29-(12) F. H- B r i t t a i n , " E x p e r i m e n t a l E v a l u a t i o n o f a Simple Method f o r E s t i m a t i n g Sound T r a n s m i s s i o n C l a s s i n B u i l d i n g s " , 1972 I n t r i . Conf. On Noise C o n t r o l E n g i n e e r i n g P r o c e e d i n g s , M. J . C r o c k e r ( E d . ) , pp.77-82-(13) Hi. J . Cavanaugh, S. R. F a r r e l l , P. W. H i r t l e , B. G. S a t t e r s , "Speech P r i v a c y i n B u i l d i n g s " , J . Acoust- Soc. Am-, Vol.34, pp. 475-492, 1962. (14) D. M. C l a r k , " S u b j e c t i v e Study o f t h e Soun d - T r a n s m i s s i o n C l a s s System f o r R a t i n g B u i l d i n g P a r t i t i o n s " , J . Acoust. Sco. Am. V o l . 47, pp. 676-682, 1970~ (15) M. J - C r o c k e r , A. J . P r i c e , Noise • and - Noise • C o n t r o l . V o l . 1, CRC P r e s s I n c . , Ohio, 19757~ppT™ "18T-182. (16) B. Da v i d Egan, Concepts i n A r c h i t e c t u r a 1 A c o u s t i c s , McGraw H i l l Book Company, New York, 1972-(17) J . van den E i j k , "Sound I n s u l a t i o n Between D w e l l i n g s ; C o r r e c t i o n t o 10.log S/A or 10.log T/0.5?", A££lAsd A c o u s t i c s , V o l - 5,pp. 305-307, 1972. 129 (18) I b i d . , p.307. (19) . ' F i b e r g l a s s a c o u s t i c a l Manual, F i b e r g l a s Canada L t d . , 48 S t . C l a i r Ave. H. T o r o n t o , O n t a r i o . (20) T. B. HeebinJc, J . B. Grantham, " F i e l d / L a b o r a t o r y STC R a t i n g s of Wood Framed P a r t i t i o n s " , S o u n d and V i b r a t i o n , pp. 12-16, O c t . 1971. (21) G. M. J a c k s o n , H. G. L e v e n t h a l l , "The A c o u s t i c s o f Domestic Rooms", AppJ.ied A c o u s t i c s , V o l . 5, pp. 265-277, 1972. (22) R. E. J o n e s , "Improved A c o u s t i c a l P r i v a c y i n M u l t i F a m i l y d w e l l i n g s " , Sound and V i b r a t i o n , pp. 30-37, Sept. 1973. (23) J . Lang, " D i f f e r e n c e s Between A c o u s t i c a l I n s u l a t i o n P r o p e r t i e s Measured i n t h e L a b o r a t o r y and R e s u l t s of Measurements IN SITO," A p p l i e d A c o u s t i c s . V o l . 5, pp. 21-37, 1972-(24) A. Lawrence, A r c h i t e c t u r a l A c o u s t i c s , E l s e v i e r P u b l i s h i n g Company L t d - , London, 1970, Chap- 6-(25) K. A- M u l h o l l a n d , "Sound I n s u l a t i o n Measurements on a S e r i e s of Double P l a s t e r b o a r d P a n e l s w i t h V a r i o u s I n f i l l s " , . A p p l i e d A c o u s t i c s , V o l - 4, pp. 1-12, 1971. (26) T. D. Northwood, "Sound I n s u l a t i o n R a t i n g s and t h e New ASTM Sound T r a n s m i s s i o n C l a s s " , J * Acoust. Soc* Am-, V o l . 34, pp. 493-501, 1962. (27) T. D. Northwood, "Sound I n s u l a t i o n and t h e Apartment D w e l l e r " , J . Aco u s t . Soc. Am., V o l . 36, pp.725-728, 1964. (28) T- D. Northwood, " T r a n s m i s s i o n Loss o f P l a s t e r b o a r d H a l l s " , B u i l d i n g R esearch Note No. 66, D i v i s i o n o f B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l o f Canada, Ottawa, Oct. 1968 (Bev. Dec. 1968 and J u l y 1970). (29) P. H. P a r k i n , H. R. Humphreys, A c o u s t i c s , N o i s e and B u i l d i n g s , Faber and Faber, London, 1969. (30) K. S. P e a r s o n s , 8. B e n n e t t , Handbook o f Noise R a t i n g s . N a t i o n a l T e c h n i c a l I n f o r m a t i o n S e r v i c e , 0. S. Dept. Of Commerce, 1974. (31) T. L. Q u i n d r y , D- R. F l y n n , "On a S i m p l i f i e d F i e l d Measurement o f Noise R e d u c t i o n Between Spaces", 1973 In t i l . Conf- On No i s e .Control - g a g^neg'fJilg- P r o c e e d i n g s , oT J u h l Pedersen (Ed7) ~ pp7T99-207. ~ 130 (32) P. E. S a b i n e , A c o u s t i c s and A r c h i t e c t u r e , McGraw H i l l Book Company, Sew York,""" 193 2, ~~p pi" * 268-2677. (33) W- C- S a b i n e , C o l l e c t e d - Papers on A c o u s t i c s . Dover P u b l i c a t i o n I n c 7 , New"York, 1922, ( R e p r i n t e d " 964) , pp. 3-68. (34) T. J - Schultz.Community Nois e • R a t i n g s , A p p l i e d S c i e n c e P u b l i s h e r s L t d . , London, 1972, pp. 12-16. (35) T. J . S c h u l t z , "How N o i s e Creeps Past t h e B u i l d i n g Codes", Noise C o n t r o l E n g i n e e r i n g , pp. 4-15, Summer 1973. (36) T. J - S c h u l t z , " A - L e v e l D i f f e r e n c e s f o r Noise C o n t r o l i n B u i l d i n g Codes", Noise C o n t r o l Engineering,- pp. 90-97, Autumn 1973. (37) «. Seikman, J . F. Y e r g e s , L. F. Y e r g e s , " A S i m p l i f i e d F i e l d Sound T r a n s m i s s i o n T e s t " , Sound and V i b r a t i o n , pp. 17-22, O c t . 1971. (38) D. H. Stephens, , " A i r b o r n e Sound I n s u l a t i o n R e f f e r r e d R e f e r r e d t o t h e 'A'-Weighting Curve", A p p l i e d A c o u s t i c s , V o l . 6, pp. 151-165, 1973. (39) D. H. Stephens, "Measurement o f Sound I n s u l a t i o n w i t h a Sound L e v e l Meter", Ap.plied A c o u s t i c s , V o l . 9, pp. 131-138, 1976- ~ ~ ~ * (40) USG M e t a l Framed D r v w a l l Systems, SA 923, U n i t e d S t a t e s Gypsum, 101 South Hacker D r i v e , C h i c a g o , I l l i n o i s . (41) C. R. Voorhees, D. S. P a l l e t t , " L a b o r a t o r y Measurements i n A c o u s t i c s " , Noise C o n t r o l - E n g i n e e r i n g . pp. 52-56, September-October 1976. (42) R. W. Young, " R e v i s i o n o f t h e Speech P r i v a c y C a l c u l a t i o n " , J . Acoust. Soc. Am., V o l . 38, pp. 524-530, 1965-(43) ANSI S3.5-1969 "Methods f o r t h e C a l c u l a t i o n o f A r t i c u l a t i o n I ndex", Am. N a t i o n a l S t a n d a r d s I n s t i t u t e , 1430 Broadway, New Y o r k , N. Y. (44) ASTM•E9Q-70 -, " L a b o r a t o r y Measurement o f the A i r b o r n e Sound T r a n s m i s s i o n Loss o f B u i l d i n g P a r t i t i o n s " , Am. S o c i e t y f o r T e s t i n g and M a t e r i a l s , 1916 Race S t . , P h i l a d e l p h i a , PA. (**5) ASTM E336-71. "Measurement o f A i r b o r n e Sound I n s u l a t i o n i n B u i l d i n g s " , Am. S o c i e t y f o r T e s t i n g and M a t e r i a l s , 1916 Race S t . , P h i l a d e l p h i a , PA. 131 (46) ASH E413-73 , "Determination of Sound Transmission Class", Am. Society f o r Testing and Materials, 1916 Race St., Philadelphia, PA. (47) "Tentative Recommended Practice for Measuring a Single Number Rating of the Airborne Sound Insulation i n Multifamily Dwellings Suitable for Use i n Building S p e c i f i c a t i o n s " , Am. Society f o r Testing and Materials, 1916 Race St., Philadelphia, PA. (48) Residential Standards, Canada, 1975, Associate Committee on the National Building Code, National Research Council of Canada, Ottawa, pp. 40-41. (49) Acoustical Engineering, Consulting Engineering D i v i s i o n , Aero Acoustic Systems Ltd., 1727 Best Second Avenue, Vancouver, B- c. (50) Barron and Associates, Consulting Acoustical Engineers, 3284 Heather Street, Vancouver, B.C. 132 GENERAL REFERENCES 0. B r a n d t , "European E x p e r i e n c e w i t h Sound I n s u l a t i o n R equirements", J . A c o u s t . Soc. Am., V o l . 36, pp. 719-724, 1964. L. L. D o e l l e , E n v i r o n m e n t a l A c o u s t i c s , McGraw H i l l Book Company, New York, T972. E. E l l w o o d , "The Anatomy o f a H a l l " , Sound and Vlb£.ation, pp. 14-18, June 1972. Gypsum A s s o c i a t i o n , F i r e • R e s i s t a n c e De s i g n Data Manual, 1973-74 E d i t i o n , C h i c a g o ! 19737 ~ ~ ' G- M. J a c k s o n , H. G. L e v e n t h a l l , "Household A p p l i a n c e N o i s e " , A££li€d A c o u s t i c s , V o l . 8, pp. 101-118, 1975-G. M. J a c k s o n , G. P a r k e s , H. G. L e v e n t h a l l , "A Computer Study o f t h e R e l a t i o n s h i p Between Noise R a t i n g Assessment and dBA L e v e l s " , A p p l i e d A c o u s t i c s , V o l . 5, pp. 191-204, 1972. S. E. J o n e s , "How t o A c c u r a t e l y P r e d i c t t h e Sound I n s u l a t i o n o f P a r t i t i o n s , " Sound and V i b r a t i o n , pp. 14-25, June 1976. T. D. Northwood, H. B. D i c k e n s , A. T. Hansen, " N o i s e C o n t r o l i n R e s i d e n t i a l B u i l d i n g s , 1 ^ Sec.hnical Pap.er No- 213* D i v i s i o n o f B u i l d i n g R e s e a r c h , N a t i o n a l Research C o u n c i l of Canada, Ottawa, Feb. 1967. T. D. Northwood, " N o i s e T r a n s m i s s i o n i n B u i l d i n g s " , Canadian B u i l d i n g D i g e s t No. .10, D i v i s i o n o f B u i l d i n g R e s e a r c h , N a t i o n a l Research C o u n c i l o f Canada, Ottawa, Oct. 1960-A. P. G. P e t e r s o n , E. E. Gross J r . , Handbook of Noise -.. Measurement, S i x t h E d i t i o n , G e n e r a l Radio Company, 1967-U n i t e d S t a t e s Gypsum, Sound C o n t r o l - C o n s t r u c t i o n , Second E d i t i o n , C h i c a g o , 1972- -E. A- w e t h e r i l l , " N o i s e C o n t r o l i n B u i l d i n g s " , Sourjd ajid V i b r a t i o n , pp. 20-26, J u l y 1975-L. F. Yerges, Sound. N o i s e , and V i b r a t i o n C o n t r o l , Van Nostrand R e i n h o l d Company, New Yo r k , 1969. R. ¥- Young, "Single-Number C r i t e r i a f o r Room N o i s e " , J - A c o u s t . Soc. Am-, V o l . 36, pp.. 289-295, 1964. APPENDIX I GLOSSARY 134 The f o l l o w i n g g l o s s a r y i n c l u d e s most terms a r c h i t e c t s and e n g i n e e r s a r e l i k e l y t o e n c o u n t e r working w i t h a c o u s t i c and sound c o n t r o l problems. A-SCA1E SOUND LEVEL (dbA) a q u a n t i t y i n d e c i b e l s , read from a s t a n d a r d sound l e v e l meter s w i t c h e d t o t h e w e i g h t i n g s c a l e l a b e l e d 'a.* The A - s c a l e d i s c r i m i n a t e s a g i n s t l o w e r f r e q u e n c i e s as does t h e human e a r a t moderate sound l e v e l s . Measures the r e l a t i v e ' n o i s i n e s s ' or 'annoyance' of many command sounds. ACOUSTICS t h e s c i e n c e o f sound, i t s p r o d u c t i o n , t r a n s m i s s i o n and e f f e c t s . AMBIENT OB BACKGBOOND NOISE t o t a l o f a l l n o i s e i n a system o r s i t u a t i o n , i ndependent of t h e presence o f t h e d e s i r e d s i g n a l . Ambient n o i s e may come from b u i l d i n g ' s m e c h a n i c a l equipment, o u t s i d e t r a f f i c , a c t i v i t i e s i n a d j a c e n t rooms o r o t h e r s o u r c e not d i r e c t l y r e l a t e d t o t h e d e s i r e d s i g n a l . ANECHOIC CHAMBEB OB BOOM a f r e e f i e l d a c o u s t i c t e s t i n g environment i n which a l l sound emanating from a source i s e s s e n t i a l l y absorbed i n the w a l l s . Hence, t h e r e a r e no r e f l e c t i o n s and t h e r a t i a l sound r a d i a t i o n p a t t e r n o f a s o u r c e may be d e t e r m i n e d . An ' e c h o l e s s ' o r a c o u s t i c a l l y •dead* room. ATTENUATION t h e i n t e n s i t y r e d u c t i o n o f a sound s i g n a l . C-SCALE SOUND LEVEL (dbC) a q u a n t i t y i n d e c i b e l s , r e a d from a s t a n d a r d sound l e v e l meter s w i t c h e d t o t h e w e i g h t i n g s c a l e l a b e l e d »c.» The C - s c a l e w e i g h t s t h e f r e q u e n c i e s between 70 Hz. and 1,000 Hz. u n i f o r m l y , but below and above these l i m i t s f r e q u e n c i e s a r e s l i g h t l y d i s c r i m i n a t e d a g a i n s t . G e n e r a l l y , C - s c a l e measurements a r e e s s e n t i a l l y t h e same as o v e r a l l sound p r e s s u r e l e v e l s , which r e q u i r e no d i s c r i m i n a t i o n a t any f r e q u e n c y . CRITERION s t a t e m e n t o f t h e d e s i r e d a c o u s t i c a l e n v i r o n m e n t , g i v e n i n an a p p r o p r i a t e n u m e r i c a l system o f v a l u e s . DAMPING d i s s i p a t i o n o f s t r u c t u r e borne n o i s e ( v i b r a t i o n a l energy) u s u a l l y by c o n v e r s i o n t o heat. DECIBEL (db) l o g a r i t h m i c u n i t o f measure f o r sound p r e s s u r e (or power) c a l c u l a t e d a c c o r d i n g t o an a p p l i c a b l e f o r m u l a . Zero on t h e d e c i b e l s c a l e c o r r e s p o n d s t o a s t a n d a r d i z e d r e f e r e n c e p r e s s u r e o f 0.0002 micro b a r -DIFFRACTION t h e a b i l i t y o f a sound wave t o ' f l o w ' around an o b j e c t o r th r o u g h o p e n i n g s w i t h l i t t l e energy l o s s . 135 DIFFUSION d i s p e r s i o n o f sound w i t h i n a space so t h a t a u n i f o r m d e n s i t y o f energy e x i s t s t h r o u g h o u t . ECHO a r e f l e c t e d sound l o u d enough and r e c e i v e d l a t e enough t o be heard as s e p e r a t e from the s o u r c e . FLOW RESISTANCE r a t i o of t h e p r e s s u r e d i f f e r e n t i a l a c r o s s a sample of porous m a t e r i a l t o t h e a i r v e l o c i t y t h r o u g h i t . Flow r e s i s t a n c e i s one o f t h e most i m p o r t a n t q u a n t i t i e s d e t e r m i n i n g the sound a b s o r b i n g c h a r a c t e r i s t i c s of a m a t e r i a l . FREQUENCY number o f t i m e s a s i n e wave r e p e a t s i t s e l f i n each sound. I n a c o u s t i c s , t h e u n i t s of f r e g u e n c y i s the h e r t z (Hz) which i s n u m e r i c a l l y e q u a l t o t h e c y c l e per second (cps) . HERTZ (Hz) u n i t o f measure f o r sound freguency--one c y c l e per second. KILOHERTZ (kHz) 1,000 Hertz o r 1,000 c y c l e s per second. LOUDNESS i n t e n s i v e a t t r i b u t e of an a u d i t o r y s e n s a t i o n , which may be o r d e r e d on a s c a l e from ' s o f t ' t o ' l o u d . 1 LOUDNESS LEVEL ex p r e s s e d i n Phons, e q u a l t o t h e average sound p r e s s u r e l e v e l , i n d e c i b e l s , o f a f r e e - p r o g r e s s i v e sound wave of 1,000 Hz-, t h a t , i n a number of t r i a l s , i s judged by l i s t n e r s w h i l e t h e y a r e f a c i n g t h e s o u r c e -HASKING p r o c e s s by which t h e t h r e s h o l d of a u d i b i l i t y f o r one sound i s r a i s e d by t h e presence o f a n o t h e r (masking) sound. NOISE-CRITERION CURVES (NC CUBVES) s e r i e s of c r i t e r i o n c u r v e s t h a t p o r t r a y sound p r e s s u r e l e v e l s f o r background n o i s e s which g e n e r a l l y s h o u l d not be exceeded, or s h o u l d be m a i n t a i n e d , i n v a r i o u s human en v i r o n m e n t s . NOISE REDUCTION (NB) d i f f e r e n c e i n t h e sound p r e s s u r e l e v e l s , e x p r e s s e d i n d e c i b e l s , on e i t h e r s i d e of a s t r u c t u r a l c o n f i g u r a t i o n . N o i s e r e d u c t i o n i s e s s e n t i a l l y synonymous w i t h a t t e n u a t i o n -NOISE REDUCTION COEFFICIENT t h e average of sound a b s o r p t i o n c o e f f i c i e n t s a t 250, 500, 1,000 and 2,000 Hz. OCTAVE BAND f r e g u e n c y band w i t h l o w e r and upper c u t - o f f f r e q u e n c i e s h a v i n g a r a t i o of one-to-two. OVERALL SOUND PBESSDBE LEVEL sound p r e s s u r e l e v e l measured i n a broad f r e g u n c y band c o v e r i n g t h e f r e q u e n c y range o f i n t e r e s t . T h i s g e n e r a l l y extends a c r o s s the whole a u d i b l e f r e q u e n c y r a n g e — 2 0 t o 16,000 Hz. 136 PHGN a measure of l o u d n e s s l e v e l (on a l o g a r i t h m i c s c a l e ) t h a t compares t h e e f f e c t of a sound t o t h e e f f e c t o f a 1,000 Hz. tone o f a g i v e n sound p r e s s u r e l e v e l (see Loudness Le v e l ) -PITCH t h e s u b j e c t i v e p h y s i c a l r e s p o n s e o f t h e h e a r i n g mechanisms t o f r e g u e n c y . RESONANCE the n a t u r a l , s y m p a t h e t i c v i b r a t i o n of a m a t e r i a l a t a p a r t i c u l a r f r e g u e n c y r e s u l t i n g from e x c i t a t i o n by a v i b r a t i o n of t h a t f r e q u e n c y . REVERBERATION p e r s i s t e n c e o f sound i n e n c l o s e d space, as a r e s u l t of m u l t i p l e r e f l e c t i o n s , a f t e r t h e sound s o u r c e has s t o p p e d . REVERBERATION TIME (RT) t h e t i m e r e q u i r e d i n seconds f o r t h e mean-square sound p r e s s u r e l e v e l , o r i g i n a l l y i n a s t e a d y s t a t e , t o de c r e a s e by 60 db. a f t e r t h e s o u r c e i s s t o p p e d . SABIN one sound a b s o r p t i o n u n i t . One s a b i n e q u a l s one s q . f t . of p e r f e c t a b s o r p t i o n , a s an open window. SHIELDING p r o c e s s a t t e n u a t i n g sound by p l a c i n g a b a r r i e r : between a s o u r c e and a r e c e i v e r . SONE a measure o f l o u d n e s s (on a l i n e a r s c a l e ) t h a t compares . the e f f e c t o f a sound t o t h e e f f e c t o f a 1,000 Hz. tone o f 40 db. sound p r e s s u r e l e v e l . SO0ND ABSORPTION COEFFICIENT f r a c t i o n of i n c i d e n t sound energy absorbed o r o t h e r w i s e not r e f l e c t e d by a s u r f a c e . SOUND PRESSURE LEVEL (SPL) d e c i b e l q u a n t i t y which e q u a l s 20 t i m e s t h e l o g a r i t h m t o t h e base 10 of the r a t i o p r e s s u r e o f a sound t o t h e r e f e r e n c e p r e s s u r e . The common r e f e r e n c e p r e s s u r e f o r a c o u s t i c s i n a i r i s 0.0002 m i c r o b a r . SOUND TRANSMISSION CLASS (STC) a s i n g l e number r a t i n g system t h a t compares t h e sound t r a n s m i s s i o n l o s s o f a t e s t sample w i t h a s t a n d a r d c o n t o u r . SPECTRUM d e s c r i p t i o n o f t h e r e s o l u t i o n of a sound wave i n t o components, each o f d i f f e r e n t f r e q u e n c y and ( u s u a l l y ) ; d i f f e r e n t a m p l i t u d e and phase. SPEED OF SOUND IN AIR 344 meters per s e c , o r 1,128 f t . P e r s e c , a t 25°C o r 77°F. The speed o f sound i s an i m p o r t a n t c o n s i d e r a t i o n i n l a r g e room a c o u s t i c s where t h e r e l a t i v e t i m i n g of sound f r o n t s ( d i r e c t and r e f l e c t e d ) has a s t r o n g b e a r i n g on sound q u a l i t y . STANDING SAVE p e r i o d i c sound wave h a v i n g a f i x e d d i s t r i b u t i o n i n space. S t a n d i n g waves a r e p r e v a l e n t i n 137 s m a l l , r i g i d l y g e o m e t r i c rooms and d e t r a c t from the u s u a l l y d e s i r e d a c o u s t i c u n i f o r m i t y . THRESHOLD OF AUDIBILITY minimum sound p r e s s u r e l e v e l o f a s p e c i f i e d s i g n a l t h a t i s c a p a b l e of e v o k i n g an a u d i t o r y s e n s a t i o n . TRANSMISSION LOSS (TL) a b s o l u t e measure o f sound i s o l a t i o n o f a s t r u c t u r a l c o n f i g u r a t i o n , e x p r e s s e d i n d e c i b e l s . TL i s d e r i v e d from t h e c o n f i g u r a t i o n ' s n o i s e r e d u c t i o n , w i t h c o r r e c t i o n s f o r t h e t r a n s m i t t i n g s u r f a c e a r e a and f o r room a b s o r p t i o n on t h e • r e c e i v i n g 1 s i d e . ULTRASONICS t h e p h y s i c a l s c i e n c e o f t h o s e a c o u s t i c waves t h a t o s c i l l a t e i n t h e range of about 18 t o 80 kHz. WAVELENGTH p e r p e n d i c u l a r d i s t a n c e between analogous p o i n t s on any two s u c c e s s i v e p e r i o d i c waves. The wavelength o f sound i s i n v e r s e l y p r o p o r t i o n a l t o t h e f r e q u e n c y o f t h e sound. 138 APPENDIX I I NDflERICAL RESULTS OP «H:STC' AND ' f l : FR EQ * REF- NO.=214 SOURCE=DBR SPECIFICATI0N=1/2 PLASTERBD I l*S_AT _ j^^C^ 2 r A B ^ BACKGROUND"NOIS E=PNC-25. NOISE TYPE IN DBA STC=44. EACH SIDE, 3-5/8 ST CHANN FOOD DISPOSER 66. 48 FOOD BLENDER 78. 64 VAC CLEANER 75. 79 SEW MACHINE 70. 72 ELEC KNIFE 69. 67 FOOD MIXER 66. 57 DISHWASHER 63. 94 CLOTHES WASH 61. 89 CLOTHES DRYR 56. 72 HSEHOLD (NOR) 78. 84 HSEHOLD (HUD) 81. 77 ARTICULATION INDEX = 0.1 012 (34.DBA) STC 44. 44. 44. 44. 44. 44. 44. 44. 44. 44. 44. STC+PNC(DBA)= 78. M:STC 11.5 -0-6 2.2 7.3 8.3 11-4 14. 1 16. 1 21.3 -0-8 -3.8 I M:FREQ 0.0 0.0 0.0 0.0 0.0 0. 0 186-5 0-0 250-5 0.0 0.0 BACKGROUND NOISE=PNC-30. NOISE TYPE IN DBA (38.DBA) STC STC+PNC (DBA) = 82. M:STC j M:FREQ FOOD DISPOSER 66.48 44. 15.5 I 0.0 FOOD BLENDER 78.64 44. 3.4 I 0.0 VAC CLEANER 75.79 44. 6-2 I 0.0 SEW MACHINE 70.72 44. 11.3 I 189.5 ELEC KNIFE 69.67 44. 12-3 I 0.0 FOOD MIXER 66.57 44. 15.4 I 272.5 DISHWASHER 63.94 44- 18-1 I 257.5 CLOTHES WASH 61.89 44. 20.1 I 0.0 CLOTHES DRYR 56.72 44. 25.3 I 321-5 HSEHOLD (NOR) 78.84 44. 3.2 I 0.0 HSEHOLD (HUD) 81.77 44. 0.2 I 0.0 ARTICULATION INDEX= = 0.0382 BACKGROUND NOISE=PNC-35. (42.DBA) STC+PNC(DBA)= 86. NOISE TYPE IN DBA STC M : STC I M:FBEQ FOOD DISPOSER 66.48 44. 19.5 J 320.0 FOOD BLENDER 78.64 44. 7-4 I 0.0 VAC CLEANER 75.79 44. 10.2 I 221.0 SEW MACHINE 70-72 44. 15.3 I 264.5 ELEC KNIFE 69-67 44. 16.3 I 413.0 FOOD MIXER 66.57 44. 19.4 I 347.5 DISHWASHER 63.94 44. 22.1 I 332.5 CLOTHES WASH 61.89 44. 24.1 I 0.0 CLOTHES DRYR 56.72 44. 29.3 I 396.5 HSEHOLD (NOR) 78.84 44. 7-2 I 131-6 HSEHOLD (HUD) 81.77 44. 4.2 I 0.0 ARTICULATION INDEX= „, "„  ,„',, ||,',|ini„iii'| in. M mi', ) t, mi', ii. ", i| - 1 . it Zm mn mm — mm. ,im. BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC(DBA)^ 91. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 44. 24.5 j 400-0 FOOD BLENDER 78.64 44. 12.4 | 302.0 VAC CLEANER 75.79 44. 15-2 J 301.0 SEW MACHINE 70.72 44. 20-3 | 344.5 ELEC KNIFE 69.67 44. 21.3 | 493.0 FOOD MIXER 66.57 44. 24.4 I 427.5 DISHWASHER 63.94 44- 27.1 | 412-5 CLOTHES WASH 61.89 44. 29.1 j 442.5 CLOTHES DRYR 56.72 44. 34.3 | 476.5 HSEHOLD (NOR) 78.84 44. 12-2 I 211.6 HSEHOLD (HUD) 81.77 44. 9-2 | 155.3 ARTICULATION INDEX=0.0 140 REF. NO. = 226 SPECIFICATION= BACKGBOUND NOISE TY FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) ARTICULATION I SCURCE=DBR STC=46. 1/2 PLASTERBD EACH SIDE, PL. 2"ABSORPTION STAG 2X4 STUDS BACKGROUND l NOISE TY] FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) ARTISUIiATIOJLIJ BACKGROUND I NOISE TYl FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) AMICULATION_IJ BACKGROUND-! NOISE TYi FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) lITIiiUljATION^Ij =PNC-25. (34. DBA) STC+PNC(DBA)= 80. DBA STC M:STC | M:FREQ 66.48 46. 13.5 | 0.0 78.64 46. 1.4 | 0.0 75.79 46. 4.2 | 0.0 70.72 46. 9.3 I 0.0 69.67 46. 10.3 | 0.0 66.57 46. 13.4 | 0.0 63.94 46. 16.1 | 187.5 61.89 46. 18.1 I 0.0 56.72 46. 23.3 | 255.5 78. 84 46. 1.2 | 0.0 81.77 46. -1.8 | 0.0 0.1053 '=PNC-30. (38.DBA) STC+PNC(DBA)= 84. DBA STC M:STC | M:FREQ 66.48 46. 17.5 | 0.0 78.64 46. 5.4 | 0.0 75.79 46. 8.2 | 0.0 70. 72 46. 13.3 | 179.5 69.67 46. 14.3 J 324.0 66.57 46. 17.4 I 263.5 63.94 46. 20.1 | 258-5 61.89 46. 22.1 I 0-0 56.72 46. 27.3 I 326.5 78.84 46. 5.2 | 0.0 81.77 46. 2.2 | 0.0 0.0233 ± • •  •  I=PNC-35. ~"(42TDBA7 STC+PNC(DBA) = 88. DBA STC H:STC j M:FREQ 66.48 46. 21.5 | 310-0 78.64 46. 9.4 | 0-0 75.79 46. 12.2 | 211-0 70. 72 46. 17.3 | 254-5 69.67 46. 18.3 | 399.0 66.57 46. 21.4 | 338.5 63.94 46. 24. 1 | 333-5 61.89 46. 26.1 | 0.0 56.72 46. 31.3 | 401.5 78.84 46. 9.2 | 121.6 81.77 46. 6.2 | 0.0 I NPNC-40. ~747TDBAT STC+PNC(DBA)= 93. DBA STC M:STC | M:FREQ 66.48 46. 26.5 | 390-0 78.64 46. 14.4 | 292-0 75.79 46. 17.2 J 291.0 70.72 46. 22.3 J 334-5 69.67 46. 23.3 | 479-0 66.57 46. 26.4 | 418.5 63.94 46. 29.1 j 413.5 61.89 46. 31.1 | 447.5 56.72 46. 36.3 | 481-5 78.84 46. 14.2 | 201.6 81.77 46. 11.2 | 145.3 = 0. 0 REF- NO.=233 SPECIFICATION= x_ ! Z 2_fD_FIBRB BACKGROUND NOISE TY FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) ARTICULATION -I BACKGROUND NOISE TY FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) ARTICULATION I SOURCE=DBB BOTH SIDES-3/16 Si_2Xit.STUDS_AT N0ISE=PNC-25. PE IN DBA 66.48 78.64 75.79 70.72 69.67 66.57 63.94 61.89 56.72 78.84 81.77 NDEX=p^0319_ N0ISE-PNC-3G. PE IN DBA 66.48 78. 64 75.79 70.72 69-67 66.57 63.94 61.89 56.72 78.84 81.77 NDEX=Q-0079 S T C = 4 7 . P L Y W D F A C E D , 1/2 P L A S B D -JUL9JSL-. "(34.DBA7 S T C 47. 47. 47. 47. 47. 47. 47. 47. 47. 47. 47. "II D B IT S T C 47. 47. 47. 47. 47. 47. 47. 47. 47. 47. 47. BACKGROUND NOISE TY FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) ARTICULATION I NOISE=PNC-35. PE IN DBA 66.48 78.64 75.79 70.72 69.67 66.57 63.94 61.89 56.72 78.84 81.77 NDEX=0.0 ___ (42.DBA) STC 47. 47. 47-47. 47. 47. 47. 47. 47. 47. 47. S T C + P N C 7 D B I ) = ~ 8 1 . M : S T C | M : F R E Q 14.5 0.0 2.4 | 0.0 5.2 | 118.0 10-3 j 0.0 11.3 j 307-0 14.4 j 238.0 17.1 j 0-0 19-1 j 0-0 24.3 | 251-5 2.2 | 0-0 -0.8 | 0.0 - _ • _j_ S T C + P N C ( D B A ) = 85. M : S T C | M : F R E Q 18-5 | 0-0 6.4 | 190.0 9.2 | 189.0 14.3 0.0 15.3 378.0 18.4 | 309.0 21.1 j 262.5 23.1 j 0.0 28-3 | 322.5 6.2 j 0.0 3.2 0.0 S T C + P N C ( D B A ) = 89. M : S T C | M : F R E Q 22.5 j 0.0 10-4 j 265.0 13.2 | 264-0 18.3 | 307.5 19.3 | 453.0 22.4 j 384-0 25.1 | 337-5 27.1 | 0.0 32.3 397.5 10.2 j 174.6 7.2 | 0.0 I S T C + P N C ( D B A ) = 94-M : S T C j M : F R E Q 27-5 | 439.0 15.4 j 345.0 18.2 | 344.0 23. 3 | 387.5 24.3 | 533-0 27.4 | 464.0 30.1 417-5 32.1 | 0.0 37.3 | 477.5 15.2 j 254.6 12.2 | 0-0 I BACKGROUND NOISE=PNC-40- (47.DBA) NOISE TYPE IN DBA STC FOOD DISPOSER 66.48 47. FOOD BLENDER 78.64 47. VAC CLEANER 75.79 47. SEW MACHINE 70.72 47. ELEC KNIFE 69.67 47. FOOD MIXER 66.57 47. DISHWASHER 63.94 47. CLOTHES WASH 61.89 47. CLOTHES DRYR 56.72 47. HSEHOLD (NOR) 78-84 47. HSEHOLD (HUD) 81.77 47. ARTICULATION INDEX=0.0 BEF. NO.=236 SOURCE=DBR STC=48. SPECIFICATION=1/2 PLBD EACH SIDE, 3-5/8 CHAN AT 24 OC ,f, 1 LB ,LEAD ONE SIDE, -2/'ABSORPTION • • • _ _ BACKGROUND NOISE=PNC-25. (34.DBA) STC+PNC (DBA) = 82 NOISE TYPE IN DBA STC M: STC j M:FREQ FOOD DISPOSER 66.48 48. 15.5 j 210.0 FOOD BLENDER 78.64 48. 3.4 j 0-0 VAC CLEANER 75.79 48. 6.2 | 111.0 SEW MACHINE 70.72 48. 11. 3 j 154.5 ELEC KNIFE 69.67 48. 12.3 | 297.0 FOOD MIXER 66.57 48. 15.4 j 238.5 DISHWASHER 63.94 48- 18.1 | 206.5 CLOTHES WASH 61.89 48. 20-1 | 0-0 CLOTHES DRYR 56.72 48. 25.3 j 268.5 HSEHOLD (NOR) 78.84 48. 3.2 j 0-0 HSEHOLD (HUD) 81.77 48. 0.2 } 0.0 ARTICULATION INDEX= = 0.0340 I BACKGROUND NOIS1=PNC-30. (38.DBA) STC+PNC(DBA)= 86 NOISE TYPE IN DBA STC fi: STC | M:FREQ FOOD DISPOSER 66.48 48. 19.5 281.0 FOOD BLENDER 78.64 48. 7.4 j 183.0 VAC CLEANER 75.79 48. 10.2 j 182.0 SEW MACHINE 70.72 4 8. 15.3 j 225.5 ELEC KNIFE 69.67 48. 16.3 j 368.0 FOOD MIXER 66.57 48- 19.4 | 309.5 DISHWASHER 63.94 48- 22.1 | 277.5 CLOTHES WASH 61.89 48. 24.1 j 307.0 CLOTHES DRYR 56.72 4 8. 29.3 j 339-5 HSEHOLD (NOR) 78.84 48. 7.2 | 92.6 HSEHOLD (HUD) 81.77 48. 4.2 j 0-0 ARTICULATION INDEX= =0.0067 1 BACKGROUND NOISE-=PNC-35. __________ STC+PNC(DBA)= 90 NOISE TYPE IN DBA STC M:STC j M:FREQ FOOD DISPOSER 66.48 48. 23.5 | 356-0 FOOD BLENDER 78.64 48. 11.4 | 258.0 VAC CLEANER 75.79 48. 14.2 j 257.0 SEW MACHINE 70.72 4 8. 19.3 j 300.5 ELEC KNIFE 69.67 48. 20.3 ) 443.0 FOOD MIXER 66. 57 48- 23.4 j 384.5 DISHWASHER 63.94 48. 26. 1 | 352-5 CLOTHES WASH 61.89 48. 28.1 j 382-0 CLOTHES DRYR 56.72 48. 33.3 | 414.5 HSEHOLD (NOR) 78.84 48. 11.2 j 167.6 HSEHOLD (HUD) 81.77 4 8. 8.2 j 111.3 ARTICULATION INDEX= 0.0 i BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC (DBA) = 95 NOISE TYPE IN DBA STC M:STC j M:FREQ FOOD DISPOSER 66.48 48. 28.5 | 436.0 FOOD BLENDER 78.64 48. 16.4 j 338.0 VAC CLEANER 75.79 48. 19.2 j 337.0 SEW MACHINE 70.72 48. 24.3 j 380-5 ELEC KNIFE 69.67 48. 25.3 | 523.0 FOOD MIXER 66.57 48. 28.4 j 464.5 DISHWASHER 63.94 48. 31. 1 | 432.5 CLOTHES WASH 61.89 48. 33.1 j 462.0 CLOTHES DRYR 56.72 48. 38.3 j 494-5 HSEHOLD (NOR) 78.84 48. 16.2 j 247.6 HSEHOLD (HUD) 81.77 4 8. 13.2 | 191.3 ARTICULATION INDEX=0.0 \ HEP, NO.=314 SOURCE=DBR STC=47. SPECIFICATION: =5/8 PLASTERBD, 3-5/8 CHANNELS AT 24 OC, 2"ABSORPTION BACKGROUND NOISE=PNC-25. (34.DBA) STC+PNC (DBA)= 81. NOISE TYPE IN DBA STC M:STC j M:FREQ FOOD DISPOSER 66.48 47. 14.5 J 0.0 FOOD BLENDER 78.64 47. 2.4 | 0.0 VAC CLEANER 75.79 47. 5.2 | 0.0 SEW MACHINE 70.72 47. 10.3 | 0.0 ELEC KNIFE 69-67 47. 11.3 l 0.0 FOOD MIXER 66.57 47. 14.4 | 0.0 DISHWASHER 63.94 47. 17.1 | 0.0 CLOTHES WASH 61.89 47. 19-1 | 0-0 CLOTHES DRYR 56.72 47. 24.3 | 266-5 HSEHOLD (NOR) 78.84 47. 2.2 | 0.0 HSEHOLD (HDD) 81.77 47. -0.8 | 0-0 ARTICULATION INDEX=0.0831 _ _ 1 _ BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC (DBA) = 85 NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSES 66.48 47. 18.5 | 0.0 FOOD BLENDER 78.64 47. 6.4 J 0.0 VAC CLEANER 75.79 47. 9.2 | 0-0 SEW MACHINE 70.72 47. 14.3 | 208-5 ELEC KNIFE 69.67 47. 15.3 | 349.0 FOOD MIXER 66.57 47. 18.4 | 292.5 DISHWASHER 63.94 47. 21.1 | 276.5 CLOTHES WASH 61-89 47. 23.1 | 0- 0 CLOTHES DRYR 56.72 47. 28.3 | 337.5 HSEHOLD (NOR) 78-84 47. 6.2 | 0-0 HSEHOLD (HUD) 81.77 47. 3.2 | 0-0 ARTICULATION INDEX=0.0099 _ 1 . BACKGROUND NOISF=PNC-35- (42.DBA) STC+PNC(DBA) = 89 NOISE TYPE IN DBA STC M:STC | M: FREQ FOOD DISPOSER 66.48 47. 22.5 | 0.0 FOOD BLENDER 78-64 47. 10.4 | 0.0 VAC CLEANER 75.79 47. 13.2 | 240-0 SEW MACHINE 70.72 47. 18-3 | 283.5 ELEC KNIFE 69.67 47. 19.3 | 424.0 FOOD MIXER 66.57 47. 22.4 | 367.5 DISHWASHER 63.94 47. 25.1 | 351.5 CLOTHES WASH 61.89 47. 27.1 | 0.0 CLOTHES DRYR 56.72 47. 32- 3 | 412-5 HSEHOLD (NOR) 78.84 47. 10-2 J 150.6 HSEHOLD (HUD) 81-77 47- 7.2 | 0.0 ARTICULATION INDEX=0.0 _1. BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC (DBA) = 94 NOISE TYPE IN DBA STC M:STC | M:?REQ FOOD DISPOSER 66.48 47. 27.5 | 419.0 FOOD BLENDER 78. 64 47. 15.4 | 321.0 VAC CLEANER 75.79 47. 18.2 | 320.0 SEW MACHINE 70.72 47. 23.3 | 363.5 ELEC KNIFE 69. 67 47. 24.3 | 504.0 FOOD MIXER 66.57 47. 27-4 | 447.5 DISHWASHER 63.94 47. 30.1 | 431-5 CLOTHES WASH 61.89 47. 32.1 J 461.0 CLOTHES DRYR 56.72 47. 37.3 | 492-5 HSEHOLD (NOR) 78.84 47. 15.2 | 230-6 HSEHOLD (HUD) 81.77 47. 12.2 | 174-3 I 4 3 REF- N0.=324 SGUBCE=DBR STC=46. SPECIFICATION=5/8 PLBD EACH SIDE,STAG 2X4 STODS AT 24 _ON-2X6^ LA BSORPTION „._____.._; BACKGROUND NOISE =PNC-25. (34.DBA) STC+PNC (DBA) = 8 NOISE TYPE IN DBA STC M:STC j M:FREQ FOOD DISPOSER 66.48 46. 13-5 | 172-0 FOOD BLENDER 78.64 46. 1-4 J 0-0 VAC CLEANER 75.79 46. 4.2 | 0-0 SEW MACHINE 70.72 46. 9.3 l 0.0 ELEC KNIFE 69.67 46. 10-3 | 0.0 FOOD MIXER 66.57 46. 13.4 j 0.0 DISHWASHER 63.94 46. 16.1 | 193.0 CLOTHES WASH 61.89 46- 18-1 I 0.0 CLOTHES DRYR 56.72 46. 23.3 { 265.5 HSEHOLD (NOR) 78.84 46. 1.2 | 0.0 HSEHOLD (HOD) 81.77 46. -1.8 | 0.0 ARTICULATION INDEX= 0. 1293 I BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC (DBA)= 8 NOISE TYPE II I DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 46. 17.5 J 243.0 FOOD BLENDER 78.64 46. 5.4 J 0.0 VAC CLEANER 75.79 46. 8.2 | 0.0 SEW MACHINE 70.72 46- 13.3 | 187-5 ELEC KNIFE 69.67 46. 14.3 } 332.0 FOOD MIXER 66.57 46. 17.4 | 270.5 DISHWASHER 63.94 46. 20-1 | 264-0 CLOTHES WASH 61.89 46. 22.1 | 297.0 CLOTHES DRYR 56.72 46. 27.3 | 336.5 HSEHOLD (NOR) 78.84 46. 5.2 i 0-0 HSEHOLD (HUD) 81.77 46. 2.2 | 0.0 ARTICULATION INDEX= =0.0329 BACKGROUND NOISE=PNC-35. ~427DBI7 STC+PNC (DBA) = 8 NOISE TYPE IN DBA STC H:STC I M:FREQ FOOD DISPOSER 66.48 46. 21.5 | 318.0 FOOD BLENDER 78.64 46. 9-4 j 0.0 VAC CLEANER 75,79 46. 12.2 | 219.0 SEW MACHINE 70.72 46. 17.3 ! 262.5 ELEC KNIFE 69-67 46. 18.3 | 407.0 FOOD MIXER 66.57 46. 21.4 | 345.5 DISHWASHER 63.94 46. 24-1 | 339.0 CLOTHES WASH 61.89 46. 26.1 | 372-0 CLOTHES DRYR 56.72 46. 31-3 | 411.5 HSEHOLD (NOR) 78. 84 46. 9.2 | 129.6 HSEHOLD (HUD) 81.77 46. 6.2 | 0.0 ARTICULATION^  BACKGROUND INDEX-= 0.0 NOISE=PNC-40. (47.DBA) STC+PNC(DBA)= 9 NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 46. 26.5 | 398.0 FOOD BLENDER 78.64 46. 14.4 | 0.0 VAC CLEANER 75.79 46. 17.2 | 299-0 SEW MACHINE 70.72 46. 22.3 | 342.5 ELEC KNIFE 69.67 46. 23.3 | 487-0 FOOD MIXER 66.57 46- 26.4 | 425-5 DISHWASHER 63.94 46. 29.1 j 419.0 CLOTHES WASH 61.89 46. 31.1 | 452-0 CLOTHES DRYR 56. 72 46. 36-3 | 491.5 HSEHOLD (NOR) 78.84 46. 14-2 | 209.6 HSEHOLD (HUD) 81.77 46. 11-2 I 153.3 A1 TICULAT ION INDEX=0. 0 ;•_„_-•_ _____ ______________ REF- NO.=333 SOURCE=DBR STC=46. SPECIFICATION =5/8 PLBD EACH SIDE, 3-5/8 CHAN 24 OC, 1 /2 GLASS FIBREBD ONE SIDE BACKGROUND NOISE=PNC-25- (34.DBA7 STC+PNC(DBA)= NOISE TYPE I N DBA STC M:STC | M:FREQ FOOD DISPOSER 6 6 . 4 8 4 6 . 13.5 j 0.0 FOOD BLENDER 7 8 - 6 4 4 6 . 1.4 j 0.0 VAC CLEANER 7 5 . 7 9 4 6 . 4.2 j 0.0 SEW MACHINE 7 0 . 7 2 4 6 . 9.3 j 0.0 ELEC KNIFE 6 9 . 6 7 4 6 . 10.3 | 0.0 FOOD MIXER 6 6 . 5 7 4 6 . 13.4 j 0-0 DISHWASHER 6 3 . 9 4 4 6 . 16.1 | 196.5 CLOTHES WASH 6 1 . 8 9 4 6 . 18.1 j 0.0 CLOTHES DRYR 56 . 72 4 6 . 23.3 j 257.5 HSEHOLD (NOR) 78 . 84 4 6 . 1.2 | 0.0 HSEHOLD (HUD) 81 . 7 7 4 6 . -1.8 | 0.0 ARTICULATION INDEX-0.0787 . . . . . . . . . BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC(DBA)= NOISE TYPE I N DBA STC M:STC { M:FREQ FOOD DISPOSER 6 6 . 4 8 4 6 . 17.5 | 0.0 FOOD BLENDER 78.64 4 6 . 5.4 | 0.0 VAC CLEANER 7 5 . 7 9 4 6 . 8-2 | 0.0 SEW MACHINE 7 0 . 7 2 4 6 . 13.3 | 2 0 4 . 5 ELEC KNIFE 6 9 . 6 7 4 6 . 14.3 j 350.0 FOOD MIXER 6 6 . 5 7 4 6 . 17.4 | 287.5 DISHWASHER 63. 9 4 4 6 . 20-1 | 2 6 7 . 5 CLOTHES WASH 6 1 . 8 9 46- 22.1 | 0.0 CLOTHES DRYR 5 6 . 7 2 4 6 . 27-3 j 3 2 8 . 5 HSEHOLD (NOR) 7 8 . 8 4 46- 5.2 | 0.0 HSEHOLD (HUD) 8 1 . 77 4 6 . 2-2 j 0.0 INpEX=0. 0,1.53 l BACKGROOND ~NOISE=PIC-357" " " I ^ T D B A J STC+PNC(DBA)= NOISE TYPE I N DBA STC M:STC J M:FREQ FOOD DISPOSER 6 6 . 4 8 4 6 . 2 1 . 5 j 335-0 FOOD BLENDER 7 8 . 6 4 46 . 9.4 | 0-0 VAC CLEANER 7 5 . 7 9 4 6 , 12.2 | 2 3 6 . 0 SEW MACHINE 7 0 . 7 2 4 6 . 17.3 j 2 7 9 . 5 ELEC KNIFE 6 9 . 6 7 4 6 . 18.3 ) 425.0 FOOD MIXER 6 6 . 5 7 4 6 . 21.4 j 3 6 2 - 5 DISHWASHER 63 . 9 4 4 6 . 24. 1 | 3 4 2 . 5 CLOTHES WASH 61 . 8 9 4 6 . 26.1 \ 0.0 CLOTHES DRYR 5 6 . 7 2 4 6 . 31.3 j 4 0 3 . 5 HSEHOLD (NOR) 7 8 . 8 4 4 6 . 9.2 j 146.6 HSEHOLD (HUD) 81 . 7 7 4 6 . 6-2 j 0.0 ARTICULATION INDEX=O-0 BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC (DBA) = NOISE TYPE I N DBA STC H:STC | M:FREQ FOOD DISPOSER 6 6 . 4 8 4 6 . 26.5 | 415.0 FOOD BLENDER 7 8 . 6 4 4 6 . 14.4 j 317.0 VAC CLEANER 7 5 . 7 9 4 6 . 17.2 J 316.0 SEW MACHINE 7 0 . 7 2 4 6 . 22.3 j 3 5 9 - 5 ELEC KNIFE 6 9 . 6 7 4 6 . 23.3 j 505.0 FOOD MIXER 6 6 . 5 7 4 6 . 26.4 j 442-5 DISHWASHER 6 3 . 9 4 4 6 . 29.1 | 4 2 2 . 5 CLOTHES WASH 6 1 . 8 9 4 6 . 31.1 } 452.0 CLOTHES DRYR 5 6 . 7 2 4 6 . 36.3 j 4 8 3 . 5 HSEHOLD (NOR) 7 8 . 8 4 4 6 . 14.2 J 226.6 HSEHOLD (HUD) 8 1 . 7 7 4 6 . 11.2 | 170.3 ___ICULATION_ _JL8_X_;0»0____ J L REF. N0.=334 SOURCF—DBR STC=49. SPECIFICATION=5/8 PLBD EACH SIDE, 3-5/8 CHAN 24 OC, 1 Z2__LA_S_BD_WIT^ _____ -BACKGROUND NOISE !=PNC-25. (34.DBA) STC+PNC (DBA) = 82 NOISE TYPE IN [ DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 49. 16.5 I 0.0 FOOD BLENDER 78. 64 49. 4.4 I 0.0 VAC CLEANER 75.79 49. 7.2 I 0-0 SEW MACHINE 70.72 49. 12-3 I 0.0 ELEC KNIFE 69. 67 49. 13.3 I 0.0 FOOD MIXER 66.57 49. 16.4 I 248.5 DISHWASHER 63.94 4 9. 19.1 I 222.5 CLOTHES WASH 61.89 49. 21-1 I 0.0 CLOTHES DRYR 56.72 49. 26.3 I 280.5 HSEHOLD (NOR) 78.84 49. 4-2 I 0.0 HSEHOLD (HUD) 81.77 49. 1.2 I 0.0 ___I_n_12ION_INDEX= = 0.0419 ,_J BACKGROUND NOISE-PNC-30. (38.DBA) STC+PNC (DBA)= 8"] NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 49. 20-5 I 0-0 FOOD BLENDER 78.64 49. 8.4 I 0.0 VAC CLEANER 75.79 49. 11.2 I 193.0 SEW MACHINE 70.72 4 9. 16.3 I 236-5 ELEC KNIFE 69.67 49. 17.3 I 371.0 FOOD MIXER 66.57 49. 20-4 I 319.5 DISHWASHER 63.94 4 9. 23.1 I 293-5 CLOTHES WASH 61.89 49. 25.1 I 0-0 CLOTHES DRYR 56.72 4 9. 30.3 I 351-5 HSEHOLD (NOR) 78.84 49. 8.2 I 103*6 HSEHOLD (HUD) 81.77 49- 5.2 I 0.0 ARTICULATION INDEX= =0.0 ~L BACKGROUND NOISE=PNC-35. (42.DBA) STC+PNC(DBA)= 9 NOISE TYPE IN DBA STC M:STC I M :FREQ FOOD DISPOSER 66.48 49. 24.5 I 367.0 FOOD BLENDER 78.64 49. 12.4 I 269.0 VAC CLEANER 75.79 49. 15.2 I 268-0 SEW MACHINE 70.72 4 9- 20.3 I 311.5 ELEC KNIFE 69.67 4 9. 21-3 I 446.0 FOOD MIXER 66.57 49. 24.4 I 394.5 DISHWASHER 63.94 49. 27.1 I 368.5 CLOTHES WASH 61.89 49. 29.1 I 0-0 CLOTHES DRYR 56.72 49. 34.3 I 426.5 HSEHOLD (NOR) 78.84 49. 12.2 I 178-6 HSEHOLD (HUD) 81.77 49. 9.2 I 0-0 __TJCULATION_ INDEX; = 0.0 • ...1 L ". 1 l" _1 _ BACKGROUND NOISl=PNC-4Q. (47.DBA) STC+PNC (DBA) = 9 NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 4 9. 29.5 ! 447.0 FOOD BLENDER 78.64 49. 17.4 I 349.0 VAC CLEANER 75-79 49- 20.2 i 348.0 SEW MACHINE 70.72 49. 25.3 I 391.5 ELEC KNIFE 69-67 49. 26.3 \ 526.0 FOOD MIXER 66.57 4 9- 29.4 I 474.5 DISHWASHER 63.94 49. 32.1 I 448-5 CLOTHES WASH 61.89 49. 34.1 I 476.0 CLOTHES DRYR 56.72 4 9. 39.3 ! 506.5 HSEHOLD (NOR) 78.84 49. 17.2 I 258-6 HSEHOLD (HUD) 81. 77 49. 14.2 I 202.3 ARTICULATION INDEX" =0- 0 REF. NO.=339 SOURCE=DBR STC=48. u SPECIFICATION-= 5/8 PLBD EACH SIDE, 2X4 STDS 16 OC, HOR RESIL BARS AT 24. ONE SIDE. _"ABSORP BACKGROUND NOISE=PNC~25- (34.DBA) STC+PNC(DBA)= 82. NOISE TYPE 11 J DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 4 8- 15.5 | 0.0 FOOD BLENDER 78.64 48- 3.4 | 0.0 VAC CLEANER 75.79 48. 6.2 | 0.0 SEW MACHINE 70.72 4 8. 11.3 j 0.0 ELEC KNIFE 69.67 48. 12.3 ! 298-0 FOOD MIXER 66.57 48. 15.4 | 236-0 DISHWASHER 63.94 48. 18.1 | 208.5 CLOTHES WASH 61.89 48. 20-1 I 0.0 CLOTHES DRYR 56.72 4 8. 25.3 | 265.5 HSEHOLD (NOR) 78.84 48. 3.2 | 0-0 HSEHOLD (HUD) 81.77 48. 0.2 | 0.0 ARTICULATION INDEX= =0.0500 _ _ _ _ _ _ _ _ • BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC (DBA) = 86. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 4 8. 19-5 | 0.0 FOOD BLENDER 78.64 48- 7.4 I 0.0 VAC CLEANER 75.79 4 8. 10.2 | 184.0 SEW MACHINE 70.72 48. 15.3 | 227.5 ELEC KNIFE 69.67 48. 16.3 | 369.0 FOOD MIXER 66.57 4 8. 19.4 | 307.0 DISHWASHER 63.94 48. 22. 1 | 279-5 CLOTHES WASH 61.89 48. 24.1 | 0-0 CLOTHES DRYR 56.72 4 8. 29-3 | 336.5 HSEHOLD (NOR) 78.84 48. 7.2 | 94.6 HSEHOLD (HUD) 81.77 48. 4.2 | 0.0 ARTICULATION INDEX-=0.0023 1 -BACKGROUND NOISE=PNC-35. (42.DBA) STC+PNC(DBA)= 90. NOISE TYPE IN DBA STC M:STC j M:FREQ FOOD DISPOSER 66.48 48- 23.5 | 357-0 FOOD BLENDER 78.64 48. 11.4 | 0.0 VAC CLEANER 75.79 4 8- 14.2 j 259-0 SEW MACHINE 70.72 4 8. 19-3 | 302.5 ELEC KNIFE 69.67 48. 20.3 | 444.0 FOOD MIXER 66.57 48. 23.4 j 382.0 DISHWASHER 63.94 48. 26. 1 | 354.5 CLOTHES WASH 61.89 48. 28.1 | 0.0 CLOTHES DRYR 56.72 48. 33.3 J 411.5 HSEHOLD (NOR) 78. 84 48. 11.2 | 169.6 HSEHOLD (HUD) 81.77 48- 8-2 | 0.0 ARTICULATION INDEX =0.0 BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC (DBA) = 95. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 48. 28.5 | 437-0 FOOD BLENDER 78.64 48- 16.4 | 340.0 VAC CLEANER 75.79 48. 19.2 | 339.0 SEW MACHINE 70,72 48. 24.3 | 382.5 ELEC KNIFE 69.67 48. 25-3 | 524.0 FOOD MIXER 66.57 4 8. 28-4 | 462.0 DISHWASHER 63.94 48. 31-1 | 434.5 CLOTHES WASH 61-89 48. 33-1 J 462.0 CLOTHES DRYR 56.72 48- 38-3 j 491.5 HSEHOLD (NOS) 78.84 4 8. 16.2 i 249.6 HSEHOLD (HUD) 81.77 4 8. 13-2 | 193.3 _l_ICUJ.ATIi)__. INDEX. =0.0 n> mm* " •mum •i iwt i mi i mm i _____ REF. NO.=340 SOURCE=DBR STC=50. I4.3 SPECIFICATIONS --5/8 PLBD EACH SIDE, 2X4 STDS 16 OC, HOB RESIL BARS AT 24 ,BOTH SIDES _i 2»'ABSORP BACKGROUND NOISE =PNC-25. (34.DBA) STC+PNC(DBA)= 84. NOISE TYPE IN DBA STC M:STC | M.FBEQ FOOD DISPOSER 66.48 50. 17.5 j 0.0 FOOD BLENDER 78.64 50. 5.4 | 0.0 VAC CLEANER 75.79 50. 8.2 i 0-0 SEW MACHINE 70. 72 50. 13.3 | 202-5 ELEC KNIFE 69.67 50. 14.3 | 332-0 FOOD MIXER 66.57 50. 17.4 | 269.5 DISHWASHER 63.94 50. 20.1 | 229.5 CLOTHES WASH 61-89 50. 22.1 | 0.0 CLOTHES DRYR 56.72 50- 27.3 | 277.5 HSEHOLD (NOR) 78-84 50. 5.2 | 0.0 HSEHOLD (HUD) 81.77 50. 2.2 | 0.0 i iSI___lIIOJ_INDEX= = 0.0193 mmm-*• — i ul'• .IT i.w mm* |Ll ". I, |„n, I ' . •'„ „ BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC(DBA)= 88. NOISE TYPE II J DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 50. 21-5 l 0-0 FOOD BLENDER 78.64 50. 9-4 | 0-0 VAC CLEANER 75.79 50- 12.2 | 232-5 SEW MACHINE 70.72 50. 17.3 | 273.5 ELEC KNIFE 69.67 50. 18.3 j 403.0 FOOD MIXER 66.57 50. 21.4 j 340.5 DISHWASHER 63.94 50. 24.1 J 300-5 CLOTHES WASH 61.89 50. 26.1 | 0.0 CLOTHES DRYR 56.72 50. 31.3 | 348.5 HSEHOLD (NOR) 78.84 50. 9.2 | 143.6 HSEHOLD (HUD) 81.77 50. 6.2 | 0.0 ARTICULATION INDEX= = 0.0 003 BACKGROUND NOISE=PNC-35. (42.DBA) STC+PNC (DBA) = 92. NOISE TYPE IN DBA STC M:STC j M:FREQ FOOD DISPOSER 66.48 50. 25.5 | 387.5 FOOD BLENDER 78.64 50. 13.4 J 309.0 VAC CLEANER 75.79 50. 16.2 | 307-5 SEW MACHINE 70.72 50. 21.3 | 348.5 ELEC KNIFE 69.67 50- 22.3 | 478.0 FOOD MIXER 66.57 50- 25.4 | 415.5 DISHWASHER 63.94 50. 28.1 | 375.5 CLOTHES WASH 61.89 50. 30.1 | 0.0 CLOTHES DRYR 56.72 50. 35.3 | 423.5 HSEHOLD (NOB) 78.84 50. 13-2 | 218.6 HSEHOLD (HUD) 81.77 50. 10.2 | 0-0 A j ^ I C U M l I G J - INDEX; =0.0 ..•.;.-;„•:,;, „ • - . " BACKGROUND NOISE=PNC-40. (47. DBA) STC+PNC(DBA)= 97-NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 50. 30.5 | 467-5 FOOD BLENDER 78.64 50. 18.4 | 389-0 VAC CLEANER 75.79 50. 21.2 | 387-5 SEW MACHINE 70-72 50. 26.3 | 428.5 ELEC KNIFE 69.67 50. 27.3 | 558.0 FOOD MIXER 66.57 50. 30.4 | 495.5 DISHWASHER 63.94 50. 33.1 I 455.5 CLOTHES WASH 61.89 50- 35.1 j 478.0 CLOTHES DRYR 56.72 50. 40.3 | 503.5 HSEHOLD (NOB) 78.84 50- 18.2 I 298.6 HSEHOLD (HUD) 81.77 50. 15.2 | 242.3 ARTICULATION INDEX =0-0 _ _ _ _ • R E F . NO-=406 S 0 U R C E = D B 8 S T C = 5 0 . S P E C I F I C A T I O N L Y R S 1/2 P L B D : 3 - 5 / 8 CHAN 2 4 OC, 2 G ].M§^IIMli-l^l-hlE-lZ£\-.lllillll BACKGROOND N O I S E - P N C - 2 5 . ( 3 4 . DBA) S T C + P N C (DBA) = 8 4 . N O I S E T Y P E I N DBA S T C M:STC | M.FREQ FOOD D I S P O S E R 6 6 - 4 8 5 0 . 1 7 . 5 | 0-0 FOOD B L E N D E R 7 8 . 6 4 5 0 . 5.4 | 0.0 VAC C L E A N E R 7 5 - 7 9 5 0 . 8.2 | 1 3 3 . 0 SEW M A C H I N E 7 0 . 7 2 5 0 . 1 3 . 3 | 1 7 6 . 5 E L E C K N I F E 6 9 - 6 7 5 0 . 1 4 . 3 I 3 1 3 . 0 FOOD M I X E R 6 6 . 5 7 5 0 - 1 7 . 4 | 2 5 8 . 5 D ISHWASHER 6 3 . 9 4 5 0 . 2 0 - 1 | 2 2 6 . 5 C L O T H E S WASH 6 1 . 8 9 5 0 . 2 2 . 1 | 0.0 C L O T H E S DRYR 5 6 . 7 2 5 0 . 2 7 . 3 | 2 8 0 . 5 HSEHOLD (NOR) 7 8 . 8 4 5 0 . 5.2 | 4 3 - 6 H S E HOLD (HUD) 8 1 . 7 7 5 0 . 2.2 | 0.0 A R T I C U L A T I O N ENDEX= =0.0121 - -BACKGROOND N O I S E = P N C - 3 0 . ( 3 8 . DBA) S T C + P N C ( D B A ) = 8 8 N O I S E T Y P E I N DBA S T C M:STC j M:FREQ FOOD D I S P O S E R 6 6 . 4 8 5 0 . 2 1 - 5 | 0.0 FOOD B L E N D E R 7 8 . 6 4 5 0 - 9-4 | 0.0 VAC C L E A N E R 7 5 . ? 9 5 0 . 1 2 . 2 | 2 0 4 . 0 SEW M A C H I N E 7 0 - 7 2 5 0 - 1 7 . 3 | 2 4 7 . 5 E L E C K N I F E 6 9 . 6 7 5 0 . 1 8 . 3 J 3 8 4 . 0 FOOD M I X E R 6 6 . 5 7 5 0 . 2 1 . 4 I 3 2 9 - 5 D I S H W A S H E R 6 3 . 9 4 5 0 . 2 4 . 1 | 2 9 7 . 5 C L O T H E S WASH 6 1 . 8 9 5 0 . 2 6 . 1 | 0.0 C L O T H E S DRYR 5 6 . 7 2 5 0 . 3 1 . 3 | 3 5 1 . 5 HSEHOLD (NOR) 7 8 . 8 4 5 0 . 9.2 | 1 1 4 . 6 HSEHOLD (HUD) 8 1 - 7 7 5 0 . 6.2 | 0.0 A R T I C U L A T I O N I N D E X * = 0 . 0 0 0 3 BACKGROUND N O I S E = P N C - 3 5 . ( 4 2 . DBA) S T C + P N C ( D B A ) = 9 2 N O I S E T Y P E I N DBA S T C M:STC | M:FREQ FOOD D I S P O S E R 6 6 . 4 8 5 0 . 2 5 . 5 I 3 7 8 . 0 FOOD B L E N D E R 7 8 . 6 4 5 0 - 1 3 . 4 | 2 8 0 . 0 VAC C L E A N E R 7 5 . 7 9 5 0 . 1 6 . 2 | 2 7 9 . 0 SEW M A C H I N E 7 0 . 7 2 5 0 - 2 1 . 3 | 3 2 2 . 5 E L E C K N I F E 6 9 - 6 7 5 0 . 2 2 . 3 | 4 5 9 - 0 FOOD M I X E R 6 6 . 5 7 5 0 . 2 5 . 4 | 4 0 4 . 5 D ISHWASHER 6 3 - 9 4 5 0 . 2 8 . 1 | 3 7 2 . 5 C L O T H E S WASH 6 1 . 8 9 so- 3 0 . 1 | 3 9 9 . 0 C L O T H E S DRYR 5 6 . 7 2 so. 3 5 . 3 | 4 2 6 . 5 HSEHOLD (NOR) 7 8 . 8 4 5 0 . 1 3 . 2 | 1 8 9 . 6 H S E HOLD (HUD) 8 1 . 7 7 5 0 . 1 0 . 2 | 1 3 3 - 3 A R T I _ _ L _ T _ _ _ _ I N D E X - i _ _ . _ - . _ - - •-- ' - i—, " ' — — BACKGROUND N O I S E = P N C ^ 4 0 - ( 4 7 . DBA) S T C + P N C (DBA) = 9 7 N O I S E T Y P E I N DBA S T C M:STC | M:FREQ FOOD D I S P O S E R 6 6 . 4 8 5 0 . 3 0 . 5 j 4 5 8 . 0 FOOD B L E N D E R 7 8 . 6 4 5 0 . 1 8 . 4 j 3 6 0 . 0 VAC C L E A N E R 7 5 . 7 9 5 0 . 2 1 - 2 } 3 5 9 . 0 SEW M A C H I N E 7 0 . 7 2 5 0 . 2 6 . 3 | 4 0 2 . 5 E L E C K N I F E 6 9 . 6 7 5 0 - 2 7 . 3 J 5 3 9 . 0 FOOD M I X E R 6 6 . 5 7 5 0 . 3 0 . 4 1 4 8 4 - 5 D I S H W A S H E R 6 3 . 9 4 5 0 . 3 3 . 1 j 4 5 2 . 5 C L O T H E S WASH 6 1 . 8 9 5 0 . 3 5 . 1 | 4 7 9 . 0 C L O T H E S DRYR 5 6 . 7 2 so- 4 0 . 3 | 5 0 6 . 5 H SEHOLD (NOR) 7 8 - 8 4 so. 1 8 . 2 | 2 6 9 - 6 HSEHOLD (HUD) 8 1 . 7 7 5 0 . 1 5 . 2 | 2 1 3 - 3 A R T I C U L A T I O N I N D E X ; = 0.0 -mm linn, | | m .mm „ ,„ j,. „, —n — — — —r f ii J .____-__ REF. NO.=414 SOURCE=DBR STC=51. \>5C SPECIFICATION-= 2 LYRS 1/2 PLBD EACH SIDE, 3-5/8 CHAN A T 24 OC^ 2"GLASS FIBBE J-..-. - -BACKGROUND NOISE=PNC-25. (34.DBA) STC+PNC (DBA) = 85. NOISE TYPE IN DBA STC M:STC j M:FREQ FOOD DISPOSER 66.48 51. 18.5 | 246.5 FOOD BLENDER 78.64 51. 6.4 J 0.0 VAC CLEANER 75.79 51. 9.2 | 0.0 SEW MACHINE 70.72 51. 14.3 | 192.5 ELEC KNIFE 69.67 51. 15.3 | 314.0 FOOD MIXER 66.57 51. 18.4 j 271.5 DISHWASHER 63.94 51. 21.1 | 248.0 CLOTHES WASH 61.89 51. 23.1 | 0-0 CLOTHES DRYR 56.72 51. 28.3 | 302-5 HSEHOLD (NOR) 78. 84 51. 6.2 I 0-0 HSEHOLD (HOD) 81.77 51. 3.2 | 0-0 ARTICULATION INDEX=0-9386 _________ BACKGROUND NOISE=PNC-30. 1 3 8 7 D B A 7 STC+PNC(DBA)= 89. NOISE TYPE IN DBA STC M:STC } M:FREQ FOOD DISPOSER 66.48 51. 22.5 | 317.5 FOOD BLENDER 78.64 51. 10.4 | 0.0 VAC CLEANER 75.79 51. 13.2 | 221-0 SEW MACHINE 70.72 51. 18.3 | 263.5 ELEC KNIFE 69.67 51. 19-3 | 385.0 FOOD MIXER 66.57 51. 22.4 j 342-5 DISHWASHER 63. 94 51. 25-1 | 319.0 CLOTHES WASH 61.89 51. 27.1 | 347. 0 CLOTHES DRYR 56.72 51. 32.3 | 373-5 HSEHOLD (NOR) 78.84 51. 10.2 | 131.6 HSEHOLD (HDD) 81.77 51. 7.2 | 0.0 ABTICUiMION,. INDEX=0.0 | BACKGROUND N 0 I S E = P N C - 3 5 . N O I S E T Y P E I N DBA FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) 6 6 . 4 8 7 8 . 6 4 7 5 . 7 9 7 0 . 7 2 6 9 . 6 7 6 6 . 5 7 6 3 . 9 4 6 1 . 8 9 5 6 . 7 2 7 8 - 8 4 8 1 . 7 7 ( 4 2 . D B A ) STC 51. 51-51. 51. 51. 51. 51. 51. 51. 51. 51. STC+PNC M:STC 26.5 14.4 17.2 22.3 23.3 26.4 29. 1 31.1 36.3 14.2 11.2 ARTICULATION INDEX=0.0 BACKGROUND N O I S E = P N C - 4 0 . N O I S E T Y P E I N DBA FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) 66.48 78.64 75.79 70.72 69.67 66.57 €3.94 61.89 56.72 78.84 81-77 (47.DBA) STC 51-51. 51. 51. 51. 51. 51. 51. 51-51. 51-S T C + P N C M: S T C 31.5 19.4 22.2 27.3 28.3 31.4 34.1 36.1 41.3 19-2 16.2 (DBA) = 93. M.FBEQ 392-5 0.0 296.0 338-5 460-0 417-5 394.0 422.0 448.5 206.6 150.3 (DBA) = 98, B:FBEQ 472.5 377.0 376.0 418.5 540.0 497.5 474-0 502-0 528-5 286.6 230.3 ABTICULATION INDEX-0.0 R E F . N 0 . = 4 2 4 S O U R C E = D B R S T C = 5 0 . S P E C I F I C A T I 0 N = 2 L Y R S 5 / 8 P L B D : 2 X 4 S T D S 16 O C , R E S I L BAJ O N E S I J _ | x 2 _ G L A J f J B R J I__LYJ___5_8_„ B A C T V G 1 O U N D ™ N O I S E = P N C - 2 5 . (34.DBA) S T C + P N C ( D B A ) = 84. NOISE TYPE DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 50. 17.5 | 0.0 FOOD BLENDER 78.64 50. 5-4 | 0.0 VAC CLEANER 75-79 50. 8.2 | 140.0 SEW MACHINE 70-72 50. 13-3 | 183.5 ELEC KNIFE 69.67 50. 14.3 | 310.0 FOOD MIXER 66.57 50. 17.4 | 261-5 DISHWASHER 63.94 50. 20. 1 | 231.5 CLOTHES WASH 61.89 50- 22-1 | 0.0 CLOTHES DRYR 56.72 50. 27.3 | 294.5 HSEHOLD (NOR) 78.84 50. 5.2 | 0.0 HSEHOLD (HUD) 81.77 50. 2.2 | 0.0 ARTICULATION INDEX= =0.0170 BACKGROOND NOISE=PNC-30. (38.DBA) STC+PNC (DBA) = 88. NOISE TYPE IN DBA STC M:STC | MtFREQ FOOD DISPOSER 66.48 50. 21.5 | 309.5 FOOD BLENDER 78.64 50. 9.4 | 0.0 VAC CLEANER 75.79 50. 12.2 | 211-0 SEW MACHINE 70.72 50. 17.3 | 254.5 ELEC KNIFE 69.67 50. 18.3 | 381.0 FOOD MIXER 66- 57 50- 21-4 | 332-5 DISHWASHER 63.94 50. 24.1 | 302.5 CLOTHES WASH 61-89 50. 26.1 } 0.0 CLOTHES DRYR 56.72 50- 31.3 J 365.5 HSEHOLD (NOR) 78-84 50- 9.2 | 121.6 HSEHOLD (HUD) 81.77 50. 6.2 | 0.0 ARTICULATION INDEX. =0.0 _ ._______! BACKGROUND NOISE=PNC-35. (42-DBA) STC+PNC (DBA) = 92-NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 50. 25.5 | 384-5 FOOD BLENDER 78.64 50. 13.4 | 287-0 VAC CLEANER 75-79 50- 16.2 | 286.0 SEW MACHINE 70.72 50- 21-3 | 329.5 ELEC KNIFE 69.67 50. 22.3 J 456.0 FOOD MIXER 66.57 50. 25.4 | 407.5 DISHWASHER 63.94 50. 28.1 j 377.5 CLOTHES WASH 61.89 50- 30.1 | 408.0 CLOTHES DRYR 56.72 50. 35-3 | 440.5 HSEHOLD (NOR) 78.84 50. 13.2 | 196.6 HSEHOLD (HUD) 81.77 50. 10.2 | 140.3 ARTICULATION INDEX5 =0.0 BACKGROUND NOISE-PNC-40. (47.DBA) STC+PNC (DBA) = 97, NOISE TYPE IN DBA STC M:STC J M:FREQ FOOD DISPOSER 66.48 50. 30.5 | 464.5 FOOD BLENDER 78-64 50. 18.4 j 367.0 VAC CLEANER 75-79 50. 21.2 | 366.0 SEW MACHINE 70.72 50. 26.3 I 409.5 ELEC KNIFE 69.67 50. 27.3 | 536.0 FOOD MIXER 66-57 50- 30.4 | 487.5 DISHWASHER 63.94 50. 33.1 | 457.5 CLOTHES WASH 61.89 50. 35.1 | 488.0 CLOTHES DRYR 56.72 50. 40.3 | 520.5 HSEHOLD (NOR) 78.84 50. 18.2 | 276.6 HSEHOLD (HUD) 81.77 50. 15.2 | 220.3 MTICULAT ION_INDEX =0-0 I, ||, mi. ) .in, . j ui. . -JL REF. NO.=432 SOURCE=DBR STC=45. SPECIFICATIONS LYR 1/2, 1 L I E 5/8, 2-1/2 CHAN AT 24 BACKGROUND N0ISE=PNC-25. (34.DBA) STC+PNC (DBA)= 79 NOISE TYPE IS I DBA STC M:STC ! M:FREQ FOOD DISPOSER 66-48 45. 12.5 I 0.0 FOOD BLENDER 78. 64 45. 0.4 I 0.0 VAC CLEANER 75.79 45. 3.2 I 0.0 SEW MACHINE 70.72 45. 8.3 I 0.0 ELEC KNIFE 69.67 45. 9-3 I 0.0 FOOD MIXER 66-57 45. 12.4 I 0-0 DISHWASHER 63.94 45. 15-1 I 0.0 CLOTHES WASH 61.89 45. 17-1 \ 0.0 CLOTHES DRYR 56.72 45. 22.3 I 248.5 HSEHOLD (NOR) 78.84 45. 0-2 I 0. 0 HSEHOLD (HUD) 81.77 45. -2-8 I 0.0 ARTICULATION INDEX^ =0- 1051 . i . BACKGROUND NOISE=PNC-30. (38. DBA) STC+PNC(DBA)= 83 NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66. 48 45. 16-5 I 0.0 FOOD BLENDER 78.64 45. 4.4 I 0-0 VAC CLEANER 75.79 45. 7.2 I 0.0 SEW MACHINE 70. 72 45. 12.3 I 178.5 ELEC KNIFE 69-67 45. 13.3 \ 326.0 FOOD MIXER 66-57 45. 16.4 I 262-5 DISHWASHER 63.94 45- 19- 1 I 253.5 CLOTHES WASH 61.89 45. 21.1 ! 0.0 CLOTHES DRYR 56-72 45. 26.3 I 319.5 HSEHOLD (NOR) 78.84 45. 4.2 I 0.0 HSEHOLD (HUD) 81.77 45. 1.2 I 0.0 ARTICULATION : INDEX-=0.0220 BACKGROUND NO I S E= P N C- 3 5 . (42.DBA) STC+PNC(DBA)= 87 NOISE TYPE IN DBA STC M: STC I M:FREQ FOOD DISPOSER 66.48 45. 20.5 I 0.0 FOOD BLENDER 78.64 45. 8-4 I 0.0 VAC CLEANER 75.79 45. 11.2 ! 210.0 SEW MACHINE 70.72 45. 16-3 I 253.5 ELEC KNIFE 69.67 45. 17.3 I 401.0 FOOD MIXER 66. 57 45. 20.4 i 337- 5 DISHWASHER 63- 94 45. 23.1 I 328.5 CLOTHES WASH 61.89 45. 25. 1 I 0.0 CLOTHES DRYR 56.72 45. 30 - 3 I 394.5 HSEHOLD (NOR) 78.84 45- 8-2 I 120.6 HSEHOLD (HUD) 81.77 45. 5.2 I 0.0 ARTICULATION INDEX-= 0.0003 I BACKGROUND NOISE=PNC-40. (47-DBA) STC+PNC(DBA)= 92 NOISE TYPE IN DBA STC M:STC I M:FSEQ FOOD DISPOSER 66.48 45. 25.5 I 389.0 FOOD BLENDER 78.64 45. 13-4 I 291-0 VAC CLEANER 75.79 45. 16.2 I 290.0 SEW MACHINE 70.72 45. 21-3 I 333-5 ELEC KNIFE 69.67 45. 22.3 I 481.0 FOOD MIXER 66.57 45, 25-4 I 417-5 DISHWASHER 63.94 45. 28.1 I 408.5 CLOTHES WASH 61-89 45. 30-1 I 441-0 CLOTHES DRYR 56.72 45. 35.3 I 474.5 HSEHOLD (NOR) 78-84 45. 13.2 I 200-6 HSEHOLD (HUD) 81.77 45- 10.2 I 144.3 ARTICULATION, INDEX , _ i . REF* NO.=435 SOURCE=DBR STC=4 9. SPECIFICATION-=2 LYRS 1/2, 1 LYR 5/8, 3 -5/8 CHAN 24 OC ± 2-1/2"GLASSFIBRE BACKGROUND NOISE =PNC-25. (34.DBA) STC+PNC (DBA) = 83. NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 49. 16-5 I 216.0 FOOD BLENDER 78.64 49. 4.4 I 0.0 VAC CLEANER 75.79 49. 7.2 I 0.0 SEW MACHINE 70.72 4 9- 12.3 I 160.5 ELEC KNIFE 69.67 49. 13.3 I 293.0 FOOD MIXER 66.57 4 9. 16.4 I 244- 5 DISHWASHER 63.94 49. 19.1 I 225.5 CLOTHES WASH 61.89 49. 21.1 ! 0-0 CLOTHES DRYR 56.72 49. 26.3 I 286.5 HSEHOLD (NOR) 78.84 49. 4.2 I 0.0 HSEHOLD (HUD) 81-77 49. 1.2 I 0.0 ARTICULATION INDEX= =0.0499 I BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC (DBA) = 87. NOISE TYPE II I DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 49. 20.5 I 287.0 FOOD BLENDER 78-64 49. 8-4 I 0.0 VAC CLEANER 75.79 49. 11.2 I 188.0 SEW MACHINE 70-72 49. 16-3 I 231.5 ELEC KNIFE 69.67 49. 17.3 I 364-0 FOOD MIXER 66.57 49. 20.4 I 315.5 DISHWASHER 63.94 49. 23.1 I 296.5 CLOTHES WASH 61.89 49. 25.1 I 326.0 CLOTHES DRYR 56.72 49. 30.3 I 357.5 HSEHOLD (NOR) 78. 84 49. 8.2 I 98.6 HSEHOLD (HUD) 81-77 49. 5.2 I 0.0 ARTICULATION : INDEX= =0.0004 ___________ ._ .__!_ BACKGROUND NOISE=PNC-35. STC+PNC(DBA)= 91 NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 49- 24.5 ) 362-0 FOOD BLENDER 78.64 49. 12-4 I 264.0 VAC CLEANER 75.79 49- 15.2 I 263.0 SEW MACHINE 70.72 49. 20-3 ! 306.5 ELEC KNIFE 69.67 49. 21-3 I 439-0 FOOD MIXER 66. 57 49. 24.4 I 390.5 DISHWASHER 63.94 49. 27- 1 I 371.5 CLOTHES WASH 61.89 49. 29.1 I 401.0 CLOTHES DRYR 56.72 49- 34-3 I 432.5 HSEHOLD (NOR) 78.84 49. 12.2 I 173.6 HSEHOLD (HUD) 81.77 49. 9-2 I 11.7-3 ARTICULATION INDEX= -0.0 _1_ BACKGROUND NOISE=PNC-4G. (47.DBA) STC+PNC(DBA)= 96 NOISE TYPE IN DBA STC M:STC I M:F8EQ FOOD DISPOSER 66.48 49. 29-5 I 442-0 FOOD BLENDER 78.64 49. 17-4 I 344.0 VAC CLEANER 75.79 49. 20-2 I 343.0 SEW MACHINE 70.72 49. 25.3 I 386.5 ELEC KNIFE 69.67 49. 26.3 I 519-0 FOOD MIXER 66.57 49. 29.4 I 470.5 DISHWASHER 63.94 49. 32-1 I 451.5 CLOTHES WASH 61.89 49. 34. 1 I 481.0 CLOTHES DRYR 56.72 49- 39.3 I 512-5 HSEHOLD (NOR) 78.84 49. 17.2 I 253.6 HSEHOLD (HUD) 81.77 49. 14.2 I 197.3 BEF. NO.=436 SQURCE=DBR STC=53. IF4 SPECIFICATION^ = 3 LYRS 1/2, 1 LYR 5/8, 3 -5/8 CHAN 24 OC j_2~1/2"GL A S SFIBRE BACKGROUND NOISE =PNC-25. (34.DBA) STC+PNC (DBA) = 87. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSES 66.48 53- 20.5 | 274.0 FOOD BLENDES 78.64 53. 8.4 | 0-0 VAC CLEANER 75.79 53. 11.2 J 178.0 SEW MACHINE 70.72 53. 16.3 | 221-5 ELEC KNIFE 69.67 53. 17-3 | 338.0 FOOD MIXER 66. 57 53. 20.4 | 298.0 DISHWASHEB 63.94 53. 23-1 J 253-5 CLOTHES HASH 61.89 53. 25.1 | 280-0 CLOTHES DRYR 56.72 53. 30-3 | 310-5 HSEHOLD (NOR) 78.84 53. 8.2 | 88.6 HSEHOLD (HUD) 81.77 53. 5.2 | 0.0 ARTICULATION INDEX? •0.0043 BACKGROUND NOISE-PNC-30. (38.DBA) STC+PNC(DBA)= 91. NOISE TYPE IN DBA STC M:STC | M.FREQ FOOD DISPOSER 66.48 53. 24.5 } 345-0 FOOD BLENDER 78.64 53. 12.4 | 250.0 VAC CLEANEB 75.79 53- 15.2 | 249.0 SEW MACHINE 70.72 53. 20.3 | 292.5 ELEC KNIFE 69.67 53. 21.3 | 409.0 FOOD MIXER 66.57 53. 24.4 | 369.0 DISHWASHER 63.94 53. 27.1 | 324.5 CLOTHES WASH 61.89 53. 29.1 | 351.0 CLOTHES DRYR 56.72 53- 34.3 j 381-5 HSEHOLD (NOR) 78.84 53. 12-2 | 159.6 HSEHOLD (HUD) 81.77 53- 9.2 | 103.3 ARTICULATION INDEX= =0.0 BACKGROUND NOISE=PNC-35. (42.DBA) STC+PNC(DBA) = 95. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 53. 28.5 | 420.0 FOOD BLENDER 78.64 53. 16.4 | 325.0 VAC CLEANEB 75.79 53. 19.2 | 324.0 SEW MACHINE 70.72 53. 24.3 | 367.5 ELEC KNIFE 69.67 53. 25.3 | 484.0 FOOD MIXES 66.57 53- 28.4 | 444.0 DISHWASHEB 63.94 53. 31.1 | 399.5 CLOTHES WASH 61.89 53. 33.1 | 426-0 CLOTHES DRYR 56.72 53. 38.3 j 456-5 HSEHOLD (NOR) 78.84 53. 16-2 | 234-6 HSEHOLD (HUD) 81.77 53. 13.2 | 178-3 ABTICULATION_ I__1I-=0.0 BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC(DBA) =100. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 53. 33.5 I 500-0 FOOD BLENDER 78.64 53. 21.4 | 4 05.0 VAC CLEANER 75-79 53. 24.2 | 404.0 SEW MACHINE 70.72 53. 29.3 | 447.5 ELEC KNIFE 69.67 53. 30-3 | 564.0 FOOD MIXER 66.57 53. 33-4 | 524.0 DISHWASHER 63.94 53. 36.1 | 479-5 CLOTHES WASH 61.89 53. 38-1 | 506.0 CLOTHES DRYR 56-72 53. 43.3 | 536.5 HSEHOLD (NOR) 78.84 53. 21.2 | 314.6 HSEHOLD (HUD) 81.77 53. 18.2 | 258-3 ARTICULATION INDEX= =0.0 REF- NO.=437 SPECIFICATION" "BACKGROUND NOISE TY FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HOD) ARTICULATION I SOURCE=DBR 1 LYR 1/2, 1 L ABSORPTION NOISE-PNC-25. PE IN DBA 66-48 78-64 75.79 70.72 69-67 66-57 63.94 61-89 56.* 72 78- 84 81.77 NDEX=0_1084 __ STC=46. YR 5/8, STAG 2X4 AT 24 OC 55 (34. DBA) STC 46. 46. 46-46. 46. 46. 46. 46. 46. 46-46. BACKGROU D NOISE=PNC-30. NOISE TYPE IN DBA (38.DBA) STC STC+PNC M:STC 13.5 1-4 4.2 9-3 10.3 13-4 16.1 18-1 23.3 1-2 -1.8 "~iTC+PNC M:STC FOOD DISPOSER 66.48 46- 17.5 | FOOD BLENDER 78-64 46. 5.4 | VAC CLEANER 75.79 46. 8.2 f SEW MACHINE 70.72 46. 13.3 | ELEC KNIFE 69.67 46. 14.3 | FOOD MIXER 66.57 46. 17.4 | DISHWASHER 63.94 46. 20-1 | CLOTHES WASH 61.89 46. 22.1 | CLOTHES DRYR 56.72 46. 27-3 | HSEHOLD (NOR) 78.84 46. 5.2 | HSEHOLD (HUD) 81.77 46. 2.2 | ARTICULAT10N INDEX=0-Q140 i HII n  mi i i  l aim nm nun Ti i BACKGROUND NOISE-PNC-35. (4 2. DBA) STC+PNC NOISE TYPE IN DBA STC M:STC | FOOD DISPOSER 66.48 46. 21.5 | FOOD BLENDER 78.64 46. 9.4 | VAC CLEANER 75.79 46. 12.2 | SEW MACHINE 70. 72 46. 17.3 I ELEC KNIFE 69.67 46. 18.3 | FOOD MIXER 66.57 46. 21.4 | DISHWASHER 63. 94 46. 24.1 | CLOTHES WASH 61. 89 46. 26.1 | CLOTHES DRYR 56.72 46. 31.3 | HSEHOLD (NOR) 78.84 46. 9.2 | HSEHOLD (HDD) 81.77 46. 6.2 | ARTICULATION INDEX=0*0 BACKGROUND NOISE-PNC-40- (47.DBA) STC+PNC NOISE TYPE IN DBA STC M:STC | FOOD DISPOSER 66.48 46. 26.5 | FOOD BLENDER 78.64 46. 14.4 | VAC CLEANER 75.79 46. 17.2 | SEW MACHINE 70.72 46. 22.3 | ELEC KNIFE 69.67 46. 23.3 I FOOD MIXER 66.57 46. 26.4 | DISHWASHER 63.94 46. 29.1 | CLOTHES WASH 61.89 46- 31.1 | CLOTHES DRYR 56.72 46. 36.3 | HSEHOLD (NOR) 78. 84 46- 14.2 | HSEHOLD (HUD) 81.77 46. 11.2 | (DBA) = 80-M.FREQ 0.0 0-0 0.0 0.0 0.0 0.0 201-5 0.0 266.5 0.0 0-0 (DBA~~84 M:FREQ 248.0 0-0 0.0 192.5 335. 0 276.5 272-5 0.0 337.5 0.0 0.0 (DBA)= 88 M : FREQ 323.0 0.0 224.0 267.5 410.0 351-5 347.5 381.0 412-5 134.6 78.3 M:FREQ 403-0 305-0 304.0 347.5 490.0 431-5 427.5 461-0 492-5 214-6 158.3 ARTICULATION INDEX=0-;0i:_ _____ _________ .__ ._ , REF- NO. = 72 55-•1 SOURCE=AE STC=53. I5C5 SPECIFICATION= = 1/2 PLBD : 2X4 WITH ABSORP,1/2 PLBD,1"A IB GAP.2X4 WITH ABSORP : 1/2 PLBD BACKGBOUND NOISE=PNC-25. (34.DBA) STC+PNC(DBA)= 87. NOISE TYPE IN DBA STC M:STC | M:FBEQ FOOD DISPOSER 66.48 53. 20-5 | 0.0 FOOD BLENDER 78.64 53. 8.4 | 242-0 VAC CLEANER 75.79 53. 11-2 I 233-0 SEW MACHINE 70.72 53. 16.3 | 258.0 ELEC KNIFE 69.67 53. 17.3 | 371.5 FOOD MIXER 66. 57 53. 20.4 | 313.0 DISHWASHEB 63-94 53. 23.1 | 255.5 CLOTHES WASH 61.89 53. 25.1 | 0-0 CLOTHES DRYR 56.72 53. 30.3 | 301.5 HSEHOLD (NOB) 78. 84 53. 8.2 | 147-4 HSEHOLD (HUD) 81.77 53. 5.2 | 0-0 ABTICUL AT ION INDEX=0.0 00 1 _ • mm II II. . IM m* ii Ii i i . ..iwii'iiiii I ' I I H B • mr '-. » . •» BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC(DBA) = 91. NOISE TYPE IN DBA STC M:STC J M:FREQ FOOD DISPOSES 66. 48 53. 24.5 | 352-5 FOOD BLENDES 78.64 53. 12.4 | 313-0 VAC CLEANEB 75.79 53. 15.2 | 304-0 SEW MACHINE 70.72 53. 20.3 J 329.0 ELEC KNIFE 69.67 53. 21.3 | 442-5 FOOD MIXES 66.57 53. 24.4 | 384.0 DISHWASHER 63.94 53. 27.1 | 326.5 CLOTHES WASH 61.89 53. 29.1 | 0.0 CLOTHES DRYR 56.72 53. 34.3 | 372.5 HSEHOLD (NOR) 78.84 53. 12.2 | 218.4 HSEHOLD (HUD) 81.77 53. 9.2 | 0.0 ARTICULATION INDEX=0.0 BACKGROUND NOISE=PNC-35. (42.DBA) STC+PNC (DBA) = 95. NOISE TYPE IN DBA STC M:STC | fl:FBEQ FOOD DISPOSER 66.48 53. 28.5 | 427.5 FOOD BLENDER 78.64 53. 16,4 | 388.0 VAC CLEANEB 75.79 53. 19.2 | 379.0 SEW MACHINE 70.72 53. 24.3 J 404.0 ELEC KNIFE 69.67 53. 25.3 | 517.5 FOOD MIXER 66.57 53. 28.4 | 459.0 DISHWASHEB 63.94 53. 31.1 | 401.5 CLOTHES WASH 61.89 53. 33.1 | 422.0 CLOTHES DBYR 56.72 53. 38.3 | 447.5 HSEHOLD (NOB) 78.84 53. 16.2 I 293.4 HSEHOLD (HDD) 81.77 53. 13.2 | 248.1 ARTICULATION INDEX=0.0 l__ . • • BACKGROUND NOISE=PNC-40. ~ l 4 7 T D B i r STC+PNC(DBA)=100. NOISE TYPE IN DBA STC M:STC | M:FEEQ FOOD DISPOSER 66.48 53. 33-5 | 507-5 FOOD BLENDER 78.64 53. 21-4 | 468.0 VAC CLEANER 75.79 53. 24-2 | 459.0 SEW MACHINE 70.72 53. 29.3 | 484.0 ELEC KNIFE 69.67 53. 30-3 I 597.5 FOOD MIXER 66.57 53. 33.4 | 539.0 DISHWASHER 63-94 53. 36.1 | 481-5 CLOTHES WASH 61.89 53. 38.1 | 502.0 CLOTHES D R Y R 56.72 53. 43.3 J 527.5 HSEHOLD (NOR) 78.84 53. 21.2 | 373.4 HSEHOLD (HUD) 81.77 53. 18.2 | 328.1 ARTICULATION INDEX=0.0 _1 -BEF- NO.=7353-3 SOURCE=AE STC=53. 1^7 SPECIFICATION=5/8 PLBD : 2X4 WITH ABS0BP,1/2 PLBD,1«A IR_GAP_ 2 X 4_ W IT H_ A E_SO R P _ i _,5_8_PL B D BACKGROUND NGISF-PNC-25. (34.DBA) STC+PNC(DBA)= 87. NOISE TYPE IN DBA STC M:STC I M,FREQ FOOD DISPOSER 66.48 53. 20.5 I 0.-0 FOOD BLENDER 78-64 53. 8.4 I 273. 5 VAC CLEANER 75.79 53. 11.2 I 254.5 SEW MACHINE 70.72 53. 16.3 I 271.5 ELEC KNIFE 69-67 53. 17.3 I 366-5 FOOD MIXER 66-57 53. 20.4 I 309.0 DISHWASHER 63.94 53. 23.1 I 259.0 CLOTHES WASH 61.89 53. 25.1 I 0.0 CLOTHES DBYR 56.72 53. 30.3 I 296.5 HSEHOLD (NOB) 78. 84 53. 8.2 I 0.0 HSEHOLD (HUD) 81.77 53. 5.2 I 0.0 ARTICULATION I NDEX=0.0 .!_ BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC (DBA) = 91, NOISE TYPE IN DBA STC M:STC I M:FBEQ FOOD DISPOSER 66.48 53. 24.5 I 348.5 FOOD BLENDER 78. 64 53. 12.4 I 344-5 VAC CLEANER 75.79 53. 15.2 I 325.5 SEW MACHINE 70-72 53. 20.3 I 342.5 ELEC KNIFE 69.67 53. 21.3 I 437.5 FOOD MIXER 66.57 53. 24.4 I 380-0 DISHWASHER 63.94 53. 27.1 I 330.0 CLOTHES WASH 61.89 53. 29.1 J 0-0 CLOTHES DRYR 56.72 53. 34.3 I 367.5 HSEHOLD (NOB) 78.84 53. 12.2 I 249-0 HSEHOLD (HUD) 81.77 53. 9.2 I 0-0 ARTICULATION INDEX=0.0 1 BACKGROUND NOISE=PNC-35. (42.DBA) STC+PNC (DBA) = 95. NOISE TYPE IN DBA STC M:STC I M.FREQ FOOD DISPOSER 66. 48 53. 28.5 i 423.5 FOOD BLENDER 78.64 53. 16-4 I 419.5 VAC CLEANER 75.79 53. 19.2 I 400.5 SEW MACHINE 70.72 53- 24.3 I 417.5 ELEC KNIFE 69.67 53. 25.3 I 512-5 FOOD MIXES 66.57 53. 28.4 I 455.0 DISHWASHER 63.94 53. 31.1 I 405.0 CLOTHES WASH 61.89 53- 33.1 ! 420-0 CLOTHES DRYR 56.72 53. 38.3 I 442.5 HSEHOLD (NOB) 78.84 53. 16.2 I 324.0 HSEHOLD (HUD) 81-77 53. 13.2 I 281-3 ABTICULATION INDEX=0.0 _1. BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC (DBA) =100 NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 53. 33.5 I 503.5 FOOD BLENDER 78.64 53. 21.4 I 499.5 VAC CLEANER 75.79 5 3. 24.2 I 480.5 SEW MACHINE 70.72 53. 29.3 I 497.5 ELEC KNIFE 69.67 53. 30.3 I 592-5 FOOD MIXER 66. 57 53. 33.4 I 535.0 DISHWASHEB 63.94 53. 36.1 I 485.0 CLOTHES WASH 61.89 53. 38.1 I 500. 0 CLOTHES DBYR 56.72 53. 43.3 I 522-5 HSEHOLD (NOB) 78.84 53. 21.2 I 404.0 HSEHOLD (HUD) 81.77 53. 18.2 I 361.3 ARTICULATION INDEX=Q. 0 •_ I REF. N O . = 7 4 5 3 - 1 SOURCE=AE S T C = 5 4 . S P E C I F I C A T I O N = 5 / 8 P L B D : 2 - 1 / 2 CHAN W / ABSORP,5 / 8 PLBD, ^! l _ I i L J _ i y ? x 2 _ l Z 2 -CjHAJ__/_ABS©^ B A C K G R O O N D N O I S E = P N C - 2 5 . ( 3 4 . D B A ) S T C + P N C ( D B A ) = 8 N O I S E T Y P E I N D B A S T C M : S T C | H : F R E Q F O O D D I S P O S E R 6 6 . 4 8 5 4 . 2 1 . 5 j 0 . 0 F O O D B L E N D E R 7 8 . 6 4 5 4 . 9 - 4 | 2 7 7 . 5 V A C C L E A N E R 7 5 . 7 9 5 4 . 1 2 . 2 | 2 5 3 . 5 S E 8 M A C H I N E 7 0 . 7 2 5 4 . 1 7 . 3 | 2 7 3 . 0 E L E C K N I F E 6 9 . 6 7 5 4 . 1 8 . 3 | 3 6 8 . 5 F O O D M I X E R 6 6 . 5 7 5 4 . 2 1 . 4 J 3 1 7 . 0 D I S H W A S H E R 6 3 . 9 4 5 4 . 2 4 . 1 | 2 6 3 . 0 C L O T H E S W A S H 6 1 . 8 9 5 4 . 2 6 . 1 | 0 . 0 C L O T H E S D R Y R 5 6 . 7 2 5 4 . 3 1 . 3 | 3 0 4 . 5 H S E H O L D ( N O R ) 7 8 . 8 4 5 4 . 9 . 2 J 1 7 6 . 0 H S E H O L D ( H O D ) 8 1 . 7 7 5 4 . 6 . 2 J 0 - 0 A R T I C U L A T I O N I N D E X = 0 . 0 B A C K G R O U N D " N O I S E = P N C - 3 0 . ( 3 8 . D B A ) S T C + P N C ( D B A ) = < N O I S E T Y P E I N D B A S T C M : S T C | M : F R E Q F O O D D I S P O S E R 6 6 . 4 8 5 4 . 2 5 . 5 | 3 5 5 - 5 F O O D B L E N D E R 7 8 . 6 4 5 4 . 1 3 . 4 | 3 4 8 . 5 V A C C L E A N E R 7 5 . 7 9 5 4 . 1 6 . 2 | 3 2 4 . 5 S E W M A C H I N E 7 0 . 7 2 5 4 . 2 1 . 3 | 3 4 4 . 0 E L E C K N I F E 6 9 - 6 7 5 4 . 2 2 . 3 | 4 3 9 . 5 F O O D M I X E R 6 6 . 5 7 5 4 . 2 5 . 4 | 3 8 8 . 0 D I S H W A S H E R 6 3 . 9 4 5 4 . 2 8 - 1 I 3 3 4 , 0 C L O T H E S W A S H 6 1 . 8 9 5 4 . 3 0 . 1 | 0 . 0 C L O T H E S D R Y R 5 6 . 7 2 5 4 . 3 5 - 3 | 3 7 5 . 5 H S E H O L D ( N O R ) 7 8 . 8 4 5 4 . 1 3 - 2 | 2 4 7 . 0 H S E H O L D ( H U D ) 8 1 - 7 7 5 4 . 1 0 - 2 | 0 . 0 A R T I C U L A T I O N I N D E X = = 0 - 0 B A C K G R O U N D N O I S E = P N C - 3 5 . ( 4 2 . D B A ) S T C + P N C ( D B A ) = N O I S E T Y P E I N D B A S T C M : S T C | M : F R E Q F O O D D I S P O S E R 6 6 . 4 8 5 4 . 2 9 - 5 | 4 3 0 . 5 F O O D B L E N D E R 7 8 . 6 4 5 4 . 1 7 . 4 | 4 2 3 . 5 V A C C L E A N E R 7 5 . 7 9 5 4 . 2 0 . 2 | 3 9 9 . 5 S E W M A C H I N E 7 0 . 7 2 5 4 . 2 5 . 3 } 4 1 9 . 0 E L E C K N I F E 6 9 . 6 7 5 4 . 2 6 . 3 | 5 1 4 . 5 F O O D M I X E R 6 6 . 5 7 5 4 . 2 9 . 4 | 4 6 3 . 0 D I S H W A S H E R 6 3 . 9 4 5 4 . 3 2 . 1 f 4 0 9 . 0 C L O T H E S W A S H 6 1 . 8 9 5 4 . 3 4 . 1 | 4 2 5 . 0 C L O T H E S D R Y R 5 6 . 7 2 5 4 . 3 9 . 3 | 4 5 0 . 5 H S E H O L D ( N O R ) 7 8 . 8 4 5 4 . 1 7 - 2 | 3 2 2 . 0 H S E H O L D ( H D D ) 8 1 . 7 7 5 4 . 1 4 . 2 \ 2 8 1 . 3 A R T I C U L A T I O N I N D E X * = 0 - 0 1 B A C K G R O U N D N O I S F - P N C - 4 0 - ( 4 7 . D B A ) S T C + P N C ( D B A ) = 1 N O I S E T Y P E I N D B A S T C M : S T C | M : F R E Q F O O D D I S P O S E R 6 6 - 4 8 5 4 . 3 4 , 5 I 5 1 0 . 5 F O O D B L E N D E R 7 8 . 6 4 5 4 . 2 2 . 4 | 5 0 3 . 5 V A C C L E A N E R 7 5 . 7 9 5 4 . 2 5 - 2 | 4 7 9 . 5 S E W M A C H I N E 7 0 - 7 2 5 4 . 3 0 - 3 | 4 9 9 . 0 E L E C K N I F E 6 9 . 6 7 5 4 . 3 1 - 3 | 5 9 4 . 5 F O O D M I X E R 6 6 . 5 7 5 4 . 3 4 . 4 | 5 4 3 . 0 D I S H W A S H E R 6 3 . 9 4 5 4 . 3 7 . 1 ! 4 8 9 . 0 C L O T H E S W A S H 6 1 . 8 9 5 4 . 3 9 . 1 j 5 0 5 - 0 C L O T H E S D R Y R 5 6 . 7 2 5 4 . 4 4 - 3 | 5 3 0 . 5 H S E H O L D ( N O R ) 7 8 . 8 4 5 4 . 2 2 . 2 | 4 0 2 - 0 H S E H O L D ( H U D ) 8 1 . 7 7 5 4 . 1 9 - 2 | 3 6 1 - 3 A R T I C U L A T I O N I N D E X = 0 . 0 • i SEF. NO. = 7482--1 SODBCE=AE STC=56. I5<3 SPECIFICATION-= 5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL .1»AIR GAP.* CELOFIBRE' BLOW-IN INSUL BACKGROUND NOISE-PNC-25- (34.DBA) STC+PNC(DBA)= 90. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 56. 23.5 | 0.0 FOOD BLENDER 78.64 56. 11.4 j 272.5 VAC CLEANER 75.79 56. 14.2 | 254.5 SEW MACHINE 70.72 56. 19.3 | 276.0 ELEC KNIFE 69.67 56. 20.3 | 374.0 FOOD MIXER 66.57 56. 23.4 | 325.5 DISHWASHER 63-94 56. 26.1 | 271.0 CLOTHES WASH 61.89 56. 28.1 | 0.0 CLOTHES DRYR 56.72 56. 33.3 | 314.0 HSEHOLD (NOR) 78.84 56. 11.2 | 177.0 HSEHOLD (HUD) 81.77 56. 8-2 | 0.0 ARTICULATION -'. INDEX=0.0 _ _ _ _ _ _ _ _ _ _ _ -BACKGROUND NOISE=PNC-3Q- (38.DBA) STC+PNC (DBA) = 94. NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 56. 27.5 | 365.0 FOOD BLENDER 78. 64 56. 15.4 | 343.5 VAC CLEANER 75.79 56. 18.2 | 325.5 SEW MACHINE 70.72 56. 23. 3 | 347.0 ELEC KNIFE 69.67 56. 24.3 | 445.0 FOOD MIXER 66.57 56- 27.4 | 396.5 DISHWASHER 63.94 56. 30.1 | 342-0 CLOTHES WASH 61.89 56- 32.1 | 0-0 CLOTHES DRYR 56.72 56. 37.3 | 385.0 HSEHOLD (NOR) 78-84 56- 15.2 I 248.0 HSEHOLD (HUD) 81.77 56. 12.2 | 204.1 ARTICULATION INDEX=0.0 _____ _ -BACKGROUND NOISE-PNC-35. " ~ 4 2 ~ B A r STC+PNC(DBA)= 98. NOISE TYPE IN DBA STC M: STC | M:FREQ FOOD DISPOSER 66.48 56. 31.5 | 440.0 FOOD BLENDER 78.64 56- 19.4 | 418.5 VAC CLEANER 75.79 56. 22.2 | 400.5 SEW MACHINE 70.72 56. 27.3 I 422-0 ELEC KNIFE 69.67 56. 28.3 | 520-0 FOOD MIXER 66.57 56. 31.4 | 471.5 DISHWASHER 63-94 56. 34.1 | 417.0 CLOTHES WASH 61.89 56. 36.1 J 434-5 CLOTHES DRYR 56.72 56. 41.3 | 460.0 HSEHOLD (NOR) 78.84 56. 19.2 I 323.0 HSEHOLD (HUD) 81.77 56. 16.2 | 279.1 ARTICULATION INDEX=0.0 .• -BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC (DBA) = 103. NOISE TYPE IN DBA STC M:STC J M:FREQ FOOD DISPOSER 66.48 56. 36.5 | 520.0 FOOD BLENDER 78.64 56. 24.4 j 498.5 VAC CLEANER 75.79 56. 27.2 | 480.5 SEW MACHINE 70.72 56. 32.3 | 502.0 ELEC KNIFE 69.67 56. 33.3 | 600.0 FOOD MIXER 66.57 56. 36.4 | 551.5 DISHWASHER 63.94 56. 39.1 j 497.0 CLOTHES WASH 61-89 56- 41.1 | 514.5 CLOTHES DRYR 56.72 56. 46.3 | 540.0 HSEHOLD (NOR) 78.84 56. 24.2 | 403-0 HSEHOLD (HDD) 81.77 56. 21.2 J 359-1 ARTICULATION INDEX=0.0 BEF. NO.=7482-1 SGURCE=AE SPECIFICATION=5/8 PLBD EACH _________ I L - i _ O I i _ I I M JI_£_I. BACKGIOUND NOISE=PNC-25. NOISE TYPE IN DBA FOOD DISPOSER 66. 48 FOOD BLENDEB 78. 64 VAC CLEANER 75. 79 SEW MACHINE 70. 72 ELEC KNIFE 69. 67 FOOD MIXER 66. 57 DISHWASHER 63. 94 CLOTHES WASH 61. 89 CLOTHES DRYR 56. 72 HSEHOLD (NOR) 78. 84 HSEHOLD (HOD) 81. 77 ARTICULATION INDEX = 0.0130 STC=49. SIDE,DOUBLE .__SUL__SID__ ~ (34.DBA) STC 49. 49. 49. 49. 49. 49. 49. 49. 49. 49. 49. \<2>0 2X4 STUD WALL STC+PNC (DBA) = 83, BACKGROUND NOISE=PNC-30. NOISE TYPE IN DBA FOOD DISPOSER 66. 48 FOOD BLENDEB 78. 64 VAC CLEANEB 75. 79 SEW MACHINE 70. 72 ELEC KNIFE 69. 67 FOOD MIXES 66. 57 DISHWASHER 63. 94 CLOTHES WASH 61. 89 CLOTHES DRYR 56. 72 HSEHOLD (NOR) 78. 84 HSEHOLD (HUD) 81. 77 ARTICULATION .INDEX =0.0 019 ... BACKGROUND N0ISE=PNC-35. NOISE TYPE IN DBA (38.DBA) STC 49. 49. 49. 49. 49. 49. 49. 49. 49. 49. 49. *14_7DBA7 STC M:STC j M:FREQ 16.5 j 244.0 4.4 0.0 7.2 150.0 12.3 191.0 13.3 330.5 16.4 264.5 19.1 218.0 21.1 0.0 26.3 275.0 4.2 0.0 1.2 I 0.0 STC+PNC M:STC 20.5 8.4 11.2 16.3 17-3 20.4 23.1 25.1 30.3 8.2 5.2 """STC+PNC M:STC FOOD DISPOSER 66.48 49. 24. 5 FOOD BLENDER 78.64 49. 12. 4 VAC CLEANER 75.79 4 9. 15. 2 SEW MACHINE 70.72 4 9. 20- 3 ELEC KNIFE 69.67 49. 21. 3 FOOD MIXER 66.57 49. 24. 4 DISHWASHER 63. 94 49. 27. 1 CLOTHES WASH 61.89 49. 29. 1 CLOTHES DBYR 56.72 49. 34. 3 HSEHOLD (NOR) 78.84 49. 12. 2 HSEHOLD (HUD) 81.77 49. 9- 2 ARTICU L AT ION,, INDEX =p_.o BACKGROUND NOISE=PNC-40. (47.DBA) STC+P NC(DBA)= 96. NOISE TYPE IN DBA STC M:STC | M.FREQ FOOD DISPOSER 66.48 49. 29.5 | 470.0 FOOD BLENDEB 78.64 49. 17.4 | 379.5 VAC CLEANEB 75.79 49. 20.2 | 376.0 SEW MACHINE 70.72 49. 25.3 | 417.0 ELEC KNIFE 69.67 49. 26.3 | 556-5 FOOD MIXES 66.57 49. 29.4 | 490.5 DISHWASHEB 63.94 49. 32-1 | 444.0 CLOTHES WASH 61.89 49. 34.1 I 471-5 CLOTHES DRYR 56.72 .49. 39.3 | 501.0 HSEHOLD (NOR) 78.84 49. 17.2 | 289.1 HSEHOLD (HUD) 81.77 49. 14.2 | 233— 8 (DBA) = 87. M : FREQ 315-0 224.5 221.0 262.0 401-5 335.5 289.0 316.5 346.0 0. 0 0.0 TDBir=~9T M : FEE Q 390.0 299.5 296.0 337.0 476.5 410.5 364-0 391.5 421-0 209.1 0.0 ARTICULATION INDEX~0.0 REF- N0.=5425Q1 SOURCE=BSA STC=49. SPECIFICATI0N=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,2" » BORDENr :SPRAl^IN^S^L i, iONE_SIDE .; „hir. BACKGROUND NO I S I =PNC-25. (34.DBA) STC+PNC(DBA)= 83. NOISE TYPE ID DBA STC M:STC \ M:FREQ FOOD DISPOSER 66- 48 49. 16.5 J 233.5 FOOD BLENDER 78-64 49. 4.4 | 0.0 VAC CLEANER 75.79 49. 7.2 ] 146.5 SEW MACHINE 70.72 49. 12.3 ) 185.5 ELEC KNIFE 69. 67 49. 13.3 j 334.0 FOOD MIXER 66.57 49. 16.4 | 256.0 DISHWASHER 63.94 49. 19.1 | 208.5 CLOTHES WASH 61.89 49. 21.1 j 0.0 CLOTHES DRYR 56.72 49. 26-3 j 268.5 HSEHOLD (NOR) 78.84 49. 4.2 | 0.0 HSEHOLD (HUD) 81.77 49. 1.2 j 0.0 ARTICULATION INDEX= 0.0346 \ BACKGROUND NOISE-PNC-30. (38.DBA) STC+PNC(DBA)= 87-NOISE TYPE Ih DBA STC M:STC J M:FREQ FOOD DISPOSER 66.48 49. 20.5 j 304.5 FOOD BLENDER 78-64 49. 8.4 j 221.0 VAC CLEANER 75.79 49. 11.2 | 217.5 SEW MACHINE 70. 72 49. 16.3 j 256.5 ELEC KNIFE 69.67 49. 17.3 | 405.0 FOOD MIXER 66.57 49. 20.4 j 327.0 DISHWASHER 63.94 49. 23.1 j 279.5 CLOTHES WASH 61.89 49. 25.1 | 308.0 CLOTHES DRYR 56.72 49. 30.3 | 339.5 HSEHOLD (NOR) 78.84 49. 8.2 j 130.6 HSEHOLD (HUD) 81.77 49. 5.2 | 0.0 M_IJ_UMT__JL- INDEX= =0.0077 BACKGROUND NOISE=PNC-35. ~ 7 4 _ 7 D B A ) " STC+PNC (DBA)= 91. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 4 9. 24.5 379.5 FOOD BLENDER 78.64 49, 12-4 | 296.0 VAC CLEANER 75.79 49. 15-2 | 292-5 SEW MACHINE 70.72 4 9. 20.3 | 331-5 ELEC KNIFE 69-67 49. 21-3 J 480.0 FOOD MIXER 66.57 49. 24.4 | 402.0 DISHWASHER 63.94 49. 27. 1 354.5 CLOTHES WASH 61-89 49. 29. 1 383-0 CLOTHES DRYR 56.72 49. 34.3 | 414.5 HSEHOLD (NOR) 78.84 49. 12.2 | 205-6 HSEHOLD (HUD) 81.77 49. 9.2 j 149.3 ARTICULATION INDEX= =0. 0 _ i _ BACKGROUND NOISE-PNC-40. (47.DBA) STC+PNC (DBA) = 96. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 49. 29.5 j 459-5 FOOD BLENDER 78.64 49. 17.4 J 376.0 VAC CLEANER 75.79 49. 20.2 J 372-5 SEW MACHINE 70.72 49. 25.3 j 411.5 ELEC KNIFE 69.67 49. 26-3 | 560-0 FOOD MIXER 66.57 49. 29.4 j 482.0 DISHWASHER 63.94 49. 32. 1 J 434.5 CLOTHES WASH 61.89 49. 34- 1 j 463.0 CLOTHES DRYR 56.72 49. 39.3 ] 494-5 HSEHOLD (NOR) 78.84 49- 17.2 j 285.6 HSEHOLD (HUD) 81.77 49. 14-2 j 229.3 ARTICOJ.ATIJj___ I_D_I_ =0.0 .1, REF. NO.=450201 SODBCE=BSA STC=51. SPECIFICATION^ = 5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL . 1"AIR GAP, 'CELUFIBRE* BLOW-IN INSUL BACKGROUND N0ISE-PNC-25. (34.DBA) STC+PNC (DBA) = 85. NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66. 4.8 51. 18.5 I 0.0 FOOD BLENDER 78.64 51. 6.4 I 204.0 VAC CLEANER 75.79 51. 9.2 I 196.5 SEW MACHINE 70.72 51. 14. 3 I 226.0 ELEC KNIFE 69.67 51. 15.3 I 363.0 FOOD MIXER 66.57 51. 18.4 I 285.5 DISHWASHER 63.94 51. 21.1 I 227.5 CLOTHES WASH 61-89 51. 23.1 I 0.0 CLOTHES DRYR 56.72 51. 28.3 I 279-5 HSEHOLD (NOR) 78.84 51. 6.2 I 0.0 HSEHOLD (HUD) 81.77 51. 3.2 I 0-0 ARTICU1 AT ION INDEX=0. 0081 ___ . .1- " " " ~ ^  Imt / BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC(DBA)= 89-NOISE TYPE IN DBA STC M:STC 1 M:FEEQ FOOD DISPOSER 66.48 51- 22.5 1 327-5 FOOD BLENDER 78.64 51. 10.4 1 275.0 VAC CLEANER 75.79 51. 13.2 1 267.5 SEW MACHINE 70.72 51. 18.3 i 297.0 ELEC KNIFE 69.67 51. 19.3 1 434.0 FOOD MIXER 66.57 51. 22.4 1 356.5 DISHWASHER 63.94 51. 25-1 1 298.5 CLOTHES WASH 61.89 51. 27-1 1 0.0 CLOTHES DRYR 56.72 51. 32-3 1 350.5 HSEHOLD (NOR) 78.84 51. 10.2 1 182.2 HSEHOLD (HUD) 81.77 51. 7-2 1 0.0 ARTICULATION : INDEX-0.QO10 1 • BACKGROUND N0ISE=PNC-35. (42.DBA) STC+PNC (DBA) = 93. NOISE TYPE IN DBA STC M:STC 1 M:FREQ FOOD DISPOSER 66.48 51. 26.5 1 402-5 FOOD BLENDER 78.64 51. 14.4 1 350.0 VAC CLEANER 75.79 51. 17.2 1 342-5 SEW MACHINE 70.72 51. 22.3 I 372.0 ELEC KNIFE 69.67 51. 23.3 1 509.0 FOOD MIXER 66.57 51. 26.4 1 431.5 DISHWASHER 63.94 51. 29.1 1 373.5 CLOTHES WASH 61.89 51. 31.1 I 398.0 CLOTHES DRYR 56.72 51. 36.3 1 425-5 HSEHOLD (NOR) 78.84 51. 14.2 1 257.2 HSEHOLD (HUD) 81.77 51. 11.2 I 209.3 ARTICULATION,. INDEX=0.0 a. BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC(DBA)= 98. NOISE TYPE IN DBA STC M:STC i M:FREQ FOOD DISPOSER 66.48 51- 31.5 i 482-5 FOOD BLENDER 78.64 51. 19.4 i 430,0 VAC CLEANER 75.79 51. 22.2 i 422.5 SEW MACHINE 70.72 51. 27.3 i 452.0 ELEC KNIFE 69.67 51. 28.3 i 589.0 FOOD MIXER 66.57 51. 31.4 i 511.5 DISHWASHER 63.94 51. 34.1 i 453.5 CLOTHES WASH 61-89 51- 36.1 i 478.0 CLOTHES DRYR 56.72 51. 41.3 i 505.5 HSEHOLD (NOR) 78-84 51. 19-2 i 337.2 HSEHOLD (HUD) 81.77 51. 16.2 i 289.3 ARTICULATION INDEX=0.0 •KB I _ i . "' • ' ""|| I'II I REF- NO.=54140 SPECIFICATION= BACKGROOND NOISE TY FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) ARTICULATION.! 1 SOURCE=B5A 5/8 PLBD EACH 2"MINERAL FIBR NOISE=PNC-25. PE IN DBA 66-48 78.64 75-79 70.72 69.67 66.57 63-94 61.89 56.72 78.84 81.77 NDEX=0.0004 _ STC=54. SIDE,DOUBL E_INSUL___ " 3 4 7 D B A T ~ STC 54. 54. 54. 54. 54. 54. 54. 54. 54. 54. 54. 163 E 2X4 AT 16 WAL STC+PNC(DBA)= 88. BACKGROUND NOISE TY FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) ARTICULATION I NOISE=PNC-30. PE IN DBA 66.48 78.64 75.79 70- 72 69.67 66. 57 63.94 61.89 56.72 78.84 81.77 NDEX=0.0 BACKGROUND NOISE TY FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HUD) ARTICULATION I NOISE=PNC-35. PE IN DBA 66.48 78.64 75.79 70.72 69.67 66-57 63.94 61.89 56.72 78.84 81.77 NDEX=0.0 _ (38.DBA) STC 54. 54-54. 54. 54. 54. 54. 54. 54. 54. 54. ---------STC 54. 54. 54. 54. 54. 54-54. 54. 54. 54. 54. BACKGROUND NOISE=PNC-40. (47.DBA) NOISE TYPE IN DBA STC FOOD DISPOSER 66.48 54. FOOD BLENDER 78.64 54. VAC CLEANER 75.79 54. SEW MACHINE 70.72 54. ELEC KNIFE 69.67 54. FOOD MIXER 66.57 54. DISHWASHER 63.94 54. CLOTHES WASH 61.89 54. CLOTHES DRYR 56.72 54. HSEHOLD (NOR) 78.84 54. HSEHOLD (HUD) 81.77 54. ARTICULATION INDEX=6.0 M:STC 21.5 9.4 12.2 17.3 18.3 21.4 24. 1 26.1 31.3 9.2 6.2 "STC+P'NC M:STC 25.5 13.4 16.2 21.3 22.3 25 . 4 28.1 30. 1 35.3 13.2 10.2 STC+PNC M:STC 29.5 17.4 20.2 25.3 26. 3 29.4 32.1 34.1 39.3 17.2 14.2 M:FREQ 0.0 0.0 198.5 237.5 361.0 303-5 247-5 0.0 296.5 110-6 0.0 <DBA)*=~92. M : F RE Q 347-5 272-0 269.5 308-5 432-0 374.5 318.5 0.0 367.5 181-6 1 25- 3 1 DBA)"" 9 6, H:FREQ 422-5 347.0 344.5 383-5 507-0 449-5 393-5 417.0 442-5 256.6 200.3 STC+PNC (DBA) = 101-M:STC | M:FREQ 34.5 | 502-5 22.4 i 427.0 25.2 | 424.5 30.3 I 463-5 31.3 | 587.0 34.4 | 529-5 37.1 | 473.5 39-1 | 497.0 44.3 | 522.5 22.2 J 336.6 19.2 | 280-3 REF. NO.= 192761 SOUBCE=B&A STC=50. , l<34 SPECIFICATI0N=1/2 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL BACKGROUND NOISE !=PNC-25. (34 .DBA) STC+PNC(DBA) = 84. NOISE TYPE IN ! DBA STC M : STC I M.FBEQ FOOD DISPOSER 66.48 50. 17.5 I 0- 0 FOOD BLENDER 78.64 50. 5.4 I 206.0 VAC CLEANER 75.79 50. 8.2 I 197.5 SEW MACHINE 70.72 50. 13.3 I 224.0 ELEC KNIFE 69.67 50. 14.3 I 358.0 FOOD MIXER 66.57 50. 17.4 I 279-5 DISHWASHER 63.94 5 0. 20.1 I 221.5 CLOTHES WASH 61.89 50. 22.1 I 0.0 CLOTHES DRYR 56.72 50. 27.3 I 272.5 HSEHOLD (NOR) 78. 84 50. 5.2 I 0.0 HSEHOLD (HUD) 81.77 50. 2.2 I 0.0 ARTICULATION INDEX= = 0.0105 •  • -_ -J_-BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC (DBA) = 88. NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 50. 21.5 I 321.5 FOOD BLENDER 78.64 50. 9.4 i 277.0 VAC CLEANER 75.79 50. 12.2 I 268.5 SEW MACHINE 70.72 50. 17.3 I 295.0 ELEC KNIFE 69-^7 50. 18-3 J 429.0 FOOD MIXER 66.57 50- 21.4 I 350-5 DISHWASHER 63.94 50. 24.1 I 292.5 CLOTHES WASH 61.89 5 0. 26.1 I 0.0 CLOTHES DRYR 56.72 50. 31.3 I 343.5 HSEHOLD (NOR) 78.84 50. 9.2 I 186.6 HSEHOLD (HUD) 81. 77 5 0. 6.2 I 0.0 ARTICULATION : INDEX= =0.0014 .1 BACKGROUND N0ISE=PNC-35. (42-DBA) STC+PNC (DBA) = 92. NOISE TYPE IN DBA STC H:STC 1 M.FBEQ FOOD DISPOSER 66.48 50. 25.5 1 396-5 FOOD BLENDER 78.64 50. 13.4 1 352.0 VAC CLEANER 75.79 50. 16.2 1 343.5 SEW MACHINE 70.72 50. 21.3 1 370.0 ELEC KNIFE 69.67 50. 22.3 1 504-0 FOOD MIXER 66. 57 50. 25.4 1 425.5 DISHWASHER 63.94 50. 28.1 1 367. 5 CLOTHES WASH 61.89 50. 30-1 1 392.0 CLOTHES DBYR 56. 72 50. 35.3 1 418.5 HSEHOLD (NOR) 78.84 50. 13.2 1 261.6 HSEHOLD (HUD) 81.77 50. 10.2 I 210.3 ARTICULATION INDEX= = 0.0 1 BACKGROUND NOISE=PNC-40. (47.DBA) STC+PNC(DBA)= 97 NOISE TYPE IN DBA STC M:STC 1 M.FBEQ FOOD DISPOSER 66.48 50. 30.5 1 476.5 FOOD BLENDEB 78.64 50. 18.4 1 432-0 VAC CLEANEB 75-79 50. 21.2 1 423.5 SEW MACHINE 70.72 50. 26.3 1 450.0 ELEC KNIFE 69.67 so- 27.3 1 584.0 FOOD MIXER 66.57 so. 30.4 1 505.5 DISHWASHER 63.94 50. 33.1 i 447.5 CLOTHES WASH 61.89 50. 35-1 1 472.0 CLOTHES DBYR 56.72 50. 40.3 1 498-5 HSEHOLD (NOB) 78.84 50. 18-2 1 341-6 HSEHOLD (HUD) 81.77 50- 15.2 1 290.3 ASTIPULATION INDEX = 0.0 _1. REF- NO.=537401 SOURCE=B&A STC=49- \<2>S SPECIFICATION = 5/8 PLBD EACH SIDE,STAG 2X4 STUD AT 16 ON 2X6 PL.2 LYRS R-10 -INSUL BACKGROOND NOISE=PNC-25. (34-DBA) STC+PNC (DBA) = 83. NOISE TYPE IN DBA STC M:STC J M.FREQ FOOD DISPOSER 66.48 49. 16.5 | 0.0 FOOD BLENDER 78-64 49. 4.4 | 142-0 VAC CLEANER 75.79 49. 7.2 | 139-5 SEW MACHINE 70.72 49. 12.3 | 0-0 ELEC KNIFE 69.67 49. 13.3 | 321-0 FOOD MIXER 66.57 49. 16.4 j 251.5 DISHWASHER 63.94 4 9. 19.1 } 201.5 CLOTHES WASH 61.89 49. 21.1 | 0-0 CLOTHES DRYR 56.72 49. 26.3 | 261.5 HSEHOLD (NOR) 78.84 49. 4.2 | 0-0 HSEHOLD (HOD) 81-77 49. 1.2 | 0.0 ARTICULATION INDEX=0.0217 - •'• -BACKGROUND NOISE=PNC-30. (38-DBA) STC+PNC ]DBA)"=~87. NOISE TYPE IN DBA STC M.STC | M:FREQ FOOD DISPOSER 66.48 49. 20-5 | 0.0 FOOD BLENDER 78. 64 49. 8.4 J 213.0 VAC CLEANER 75.79 49. 11-2 | 210-5 SEW MACHINE 70.72 49. 16.3 | 251.0 ELEC KNIFE 69.67 49. 17.3 | 392-0 FOOD MIXER 66.57 49. 20.4 | 322-5 DISHWASHER 63.94 49. 23.1 J 272.5 CLOTHES WASH 61-89 49. 25.1 j 0.0 CLOTHES DRYR 56.72 49. 30-3 | 332.5 HSEHOLD (NOR) 78- 84 49. 8-2 | 0.0 HSEHOLD (HUD) 81.77 49. 5.2 | 0.0 _„TICULATIQN I NDEX = 0.001 4 : B. V ' | ' j BACKGROUND NOISE=PNC-35. (42.DBA) STC+PNC (DBA)= 91-NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 4 9. 24.5 I 371-0 FOOD BLENDER 78.64 49. 12-4 | 288.0 VAC CLEANER 75.79 49. 15.2 | 285-5 SEW MACHINE 70.72 49. 20.3 j 326.0 ELEC KNIFE 69.67 49. 21-3 | 467-0 FOOD MIXER 66.57 49. 24.4 j 397-5 DISHWASHER 63-94 49. 27.1 | 347.5 CLOTHES WASH 61.89 49. 29-1 | 0.0 CLOTHES DRYR 56.72 49. 34.3 | 407.5 HSEHOLD (NOR) 78.84 49. 12.2 | 197.6 HSEHOLD (HUD) 81-77 49. 9-2 i 0.0 ARTICULATION INDEX=0.0 BACKGROOND NOISE=PNC~40. (47.DBA) STC+PNC(DBA)= 96. NOISE TYPE IN DBA STC M:STC | M.FREQ FOOD DISPOSER 66.48 49. 29.5 | 451.0 FOOD BLENDER 78.64 49. 17.4 | 368.0 VAC CLEANER 75- 79 49. 20.2 | 365.5 SEW MACHINE 70. 72 49. 25.3 | 406-0 ELEC KNIFE 69.67 49. 26.3 | 547.0 FOOD MIXER 66.57 49. 29-4 | 477.5 DISHWASHER 63.94 49. 32.1 | 427,5 CLOTHES WASH 61.89 49. 34-1 | 456.0 CLOTHES DRYR 56-72 49. 39.3 | 487.5 HSEHOLD (NOR) 78.84 4 9. 17-2 } 277.6 HSEHOLD (HUD) 81-77 49. 14.2 | 221.3 ARTICULATION INDEX=0-0 _ i.'i ill ii-i nm . . . lill •" 1 'IT . • R E F . N O . = 5 6 1 4 0 1 S O U R C E = B 6 A S T C = 4 6 . S P E C I F I C A T I O N ^ = 5 / 8 P L B D E A C H S I D E , S T A G 2 X 4 S T U D A T 1 6 O N 2 X 8 P L > 2 - V 2 " M I N E R A L W O O L _ I _ _ U L _ . _ . _ _ " "ii, " " • B A C K G R O U N D N 0 I S E = P N C - 2 5 . 134.D B AT~ S T C + P N C ( D B A ) = N O I S E T Y P E I N D B A S T C M : S T C I M : F R E < F O O D D I S P O S E R 6 6 . 4 8 4 6 . 1 3 . 5 I 0 - 0 F O O D B L E N D E R 7 8 . 6 4 4 6 - 1 . 4 I 0 . 0 V A C C L E A N E R 7 5 . 7 9 4 6 . 4 . 2 I 9 8 . 5 S E W M A C H I N E 7 0 . 7 2 4 6 . 9 . 3 ! 1 3 9 . 5 E L E C K N I F E 6 9 . 6 7 4 6 . 1 0 . 3 I 2 8 9 . 0 F O O D M I X E R 6 6 . 5 7 4 6 - 1 3 . 4 I 2 1 5 - 5 D I S H W A S H E R 6 3 . 9 4 4 6 . 1 6 - 1 I 1 8 2 . 5 C L O T H E S W A S H 6 1 . 8 9 4 6 . 1 8 - 1 I 0 . 0 C L O T H E S D R Y R 5 6 . 7 2 4 6 . 2 3 - 3 I 2 4 4 . 5 H S E H O L D ( N O R ) 7 8 . 8 4 4 6 . 1 . 2 I 0 . 0 H S E H O L D ( H U D ) 8 1 . 7 7 4 6 . - 1 - 8 I 0 . 0 A R T I C U L A T I O N I N D E X = 0 . 0 6 0 5 _1_ „. B A C K G R O U N D N O I S 1 = P N C - 3 0 . ( 3 8 - D B A ) S T C + P N C ( D B A ) = N O I S E T Y P E I N D B A S T C M : S T C | M : F R E Q F O O D D I S P O S E R 6 6 . 4 8 4 6 . 1 7 . 5 1 0 - 0 F O O D B L E N D E R 7 8 . 6 4 4 6 . 5 . 4 I 0 . 0 V A C C L E A N E R 7 5 . 7 9 4 6 . 8 . 2 1 1 6 9 . 5 S E W M A C H I N E 7 0 - 7 2 4 6 . 1 3 . 3 1 2 1 0 - 5 E L E C K N I F E 6 9 . 6 7 4 6 . 1 4 . 3 1 3 6 0 . 0 F O O D M I X E R 6 6 - 5 7 4 6 . 1 7 . 4 1 2 8 6 - 5 D I S H W A S H E R 6 3 . 9 4 4 6 . 2 0 . 1 1 2 5 3 - 5 C L O T H E S W A S H 6 1 . 8 9 4 6 . 2 2 - 1 1 0 . 0 C L O T H E S D R Y R 5 6 . 7 2 4 6 . 2 7 . 3 1 3 1 5 . 5 H S E H O L D ( N O R ) 7 8 . 8 4 4 6 . 5 - 2 1 0 . 0 H S E H O L D ( H U D ) 8 1 . 7 7 4 6 . 2 . 2 1 0 . 0 A R T I C U L A T I O N : I N D E X = - 0 . 0 1 9 1 B A C K G R O U N D N O I S E = P N C - 3 5 . ( 4 2 . D B A ) S T C + P N C ( D B A ) = 8 8 . N O I S E T Y P E I N D B A S T C M : S T C 1 M : F R E Q F O O D D I S P O S E R 6 6 . 4 8 4 6 . 2 1 - 5 1 3 4 0 . 5 F O O D B L E N D E R 7 8 . 6 4 4 6 . 9 . 4 1 2 4 8 - 0 V A C C L E A N E R 7 5 . 7 9 4 6 . 1 2 . 2 1 2 4 4 . 5 S E W M A C H I N E 7 0 . 7 2 4 6 . 1 7 . 3 1 2 8 5 . 5 E L E C K N I F E 6 9 . 6 7 4 6 . 1 8 . 3 ! 4 3 5 - 0 F O O D M I X E R 6 6 . 5 7 4 6 . 2 1 . 4 1 3 6 1 - 5 D I S H W A S H E R 6 3 . 9 4 4 6 . 2 4 . 1 1 3 2 8 . 5 C L O T H E S W A S H 6 1 . 8 9 4 6 . 2 6 . 1 \ 0 - 0 C L O T H E S D R Y R 5 6 . 7 2 4 6 - 3 1 . 3 1 3 9 0 - 5 H S E H O L D ( N O R ) 7 8 . 8 4 4 6 . 9 . 2 1 1 5 7 . 6 H S E H O L D ( H U D ) 8 1 . 7 7 4 6 - 6 . 2 1 0 . 0 A R T I C U L A T I O N I N D E X - = 0 . 0 0 0 3 1 B A C K G R O U N D N O I S E = P N C - 4 0 . ( 4 7 . D B A ) S T C + P N C ( D B A ) = 9 3 . N O I S E T Y P E I N D B A S T C M : S T C 1 M : F R E Q F O O D D I S P O S E R 6 6 . 4 8 4 6 . 2 6 . 5 1 4 2 0 . 5 F O O D B L E N D E R 7 8 . 6 4 4 6 . 1 4 . 4 1 3 2 8 . 0 V A C C L E A N E R 7 5 . 7 9 4 6 . 1 7 - 2 1 3 2 4 . 5 S E W M A C H I N E 7 0 - 7 2 4 6 . 2 2 . 3 1 3 6 5 - 5 E L E C K N I F E 6 9 . 6 7 4 6 . 2 3 . 3 1 5 1 5 . 0 F O O D M I X E R 6 6 . 5 7 4 6 . 2 6 . 4 1 4 4 1 . 5 D I S H W A S H E R 6 3 . 9 4 4 6 . 2 9 . 1 1 4 0 8 - 5 C L O T H E S W A S H 6 1 . 8 9 4 6 . 3 1 . 1 1 4 3 9 . 0 C L O T H E S D R Y R 5 6 . 7 2 4 6 - 3 6 . 3 1 4 7 0 . 5 H S E H O L D ( N O R ) 7 8 . 8 4 4 6 . 1 4 . 2 1 2 3 7 . 6 H S E H O L D ( H U D ) 8 1 . 7 7 4 6 . 1 1 . 2 1 1 8 4 . 3 A R T I C U L A T I O N I N D E X = 0 . 0 , i. ^ mmm mm imm..— — — • . . i— _1. __________ REF. NO.=542401 SOURCE=B&A SPECIFICATION=1/2 PLBD EACH BACKGROUND NOISE=PNC-25. NOISE TYPE IN DBA FOOD DISPOSER FOOD BLENDER VAC CLEANER SEW MACHINE ELEC KNIFE FOOD MIXER DISHWASHER CLOTHES WASH CLOTHES DRYR HSEHOLD (NOR) HSEHOLD (HOD) 66.48 78.64 75.79 70.72 69.67 66.57 63.94 61.89 56.72 78.84 81-77 STC=46. SIDE,STAG INSUL 1SID ~* (34TDBA)* STC 46. 46. 46. 46. 46. 46. 46. 46. 46. 46. 46. I67 2X4 AT 24 ON 2X STC+PNC (51AJ= 80. M:STC | M:FREQ 13.5 | 0.0 1-4 | 0.0 4.2 | 109.5 9.3 | 147.5 10.3 | 296.5 13.4 | 223.5 16.1 | 0.0 18.1 | 0.0 23.3 | 239.5 1.2 | 0.0 -1.8 | 0.0 BACKGROUND NOISE ;=PNC-30. (38. DBA) STC+PNC (DBA) = 84. NOISE TYPE IN DBA STC M:STC I MrFREQ FOOD DISPOSER 66.48 46. 17.5 I 0.0 FOOD BLENDER 78.64 46. 5.4 I 184.0 VAC CLEANER 75.79 46. 8.2 I 180.5 SEW MACHINE 70.72 46. 13.3 I 218.5 ELEC KNIFE 69.67 46. 14.3 I 367.5 FOOD MIXER 66.57 46. 17.4 ! 294.5 DISHWASHER 63-94 46. 20. 1 I 247.5 CLOTHES WASH 61.89 46. 22.1 I 0.0 CLOTHES DRYR 56-72 46. 27.3 I 310.5 HSEHOLD (NOR) 78.84 46. 5.2 I 0.0 HSEHOLD (HUD) 81.77 46. 2.2 I 0.0 ARTICULATION I _L l i '" ' BACKGROUND NOISE=PNC-35. (42. DBA) STC+PNC(DBA)= 88. NOISE TYPE IS I DBA STC M:STC I M.FREQ FOOD DISPOSER 66.48 46. 21.5 I 342.5 FOOD BLENDER 78.64 46- 9.4 I 259.0 VAC CLEANER 75.79 46. 12.2 I 255.5 SEW MACHINE 70.72 46. 17.3 I 293.5 ELEC KNIFE 69.67 46. 18.3 I 442-5 FOOD MIXER 66.57 46- 21.4 I 369.5 DISHWASHER 63.94 46- 24.1 I 322-5 CLOTHES WASH 61.89 46- 26.1 I 0-0 CLOTHES DRYR 56.72 46. 31.3 I 385*5 HSEHOLD (NOR) 78.84 46. 9.2 I 168. 6 HSEHOLD (HUD) 81.77 46. 6.2 I 0.0 ARTICULATION INDEX= =0.0014 _1-BACKGROUND NOISE=PNC-40. (47. .DBA) STC+PNC(DBA) = 93. NOISE TYPE IN DBA STC M:STC I M:FREQ FOOD DISPOSER 66.48 46. 26.5 I 422-5 FOOD BLENDER 78.64 46- 14.4 I 339-0 VAC CLEANER 75.79 46. 17.2 I 335.5 SEW MACHINE 70.72 46. 22.3 I 373-5 ELEC KNIFE 69.67 46. 23.3 I 522-5 FOOD MIXER 66.57 46. 26.4 I 449.5 DISHWASHER 63.94 46. 29.1 I 402-5 CLOTHES WASH 61.89 46. 31. 1 I 434-0 CLOTHES DRYR 56.72 46. 36.3 I 465-5 HSEHOLD (NOR) 78.84 46. 14.2 I 248.6 HSEHOLD (HUD) 81.77 46. 11.2 ! 195-3 ARTICULATION INDEX-= 0.0 "IL J II mx . -•'.U.-L-'L.-.'. I" IN Y".'.'U REP. SO.=202401 SOURCE=BSA STC=47. \Gl SPECIFICATION 1/2 PLBD ON 1/2 WD FIBREBD EACH SIDE,2X 4 AT 16 ON 2X6 PL .2-1/4«GLASFIBRE INSUL BACKGROUND NOISE=PNC-25. (34. DBA) STC+PNC (DBA) = 81-NOISE TYPE IN DBA STC M:STC j M.FREQ FOOD DISPOSER 66-48 47. 14.5 | 0.0 FOOD BLENDER 78.64 47. 2.4 | 139.0 VAC CLEANER 75.79 47. 5.2 | 135.5 SEW MACHINE 70.72 47. 10.3 | 174.0 ELEC KNIFE 69.67 47. 11. 3 | 326.0 FOOD MIXER 66.57 47. 14.4 | 240.0 DISHWASHER 63.94 47. 17-1 | 186.5 CLOTHES WASH 61.89 47. 19-1 } 0.0 CLOTHES DRYR 56.72 47. 24.3 | 247.5 HSEHOLD (NOR) 78. 84 47. 2.2 | 0.0 HSEHOLD (HUD) 81.77 47. -0-8 | 0.0 ARTICULATION INDEX=0.0401 BACKGROUND NOISE=PNC-30. ™ 3 8 7 D B A ) ~ STC+PNC(DBA) = 85. NOISE TYPE IN DBA STC MtSTC | M:FREQ FOOD DISPOSER 66.48 47. 18.5 | 0.0 FOOD BLENDER 78.64 47. 6.4 | 210.0 VAC CLEANER 75.79 47- 9.2 | 206.5 SEW MACHINE 70.72 47. 14.3 | 245-0 ELEC KNIFE 69.67 47. 15.3 i 397-0 FOOD MIXER 66.57 47. 18.4 | 311.0 DISHWASHER 63.94 47. 21.1 | 257.5 CLOTHES WASH 61.89 47. 23.1 | 0.0 CLOTHES DRYR 56.72 47. 28.3 I 3 1 8 . 5 HSEHOLD (NOR) 78.84 47. 6.2 | 0.0 HSEHOLD (HUD) 81.77 47. 3.2 | 0.0 ARTICULAT!0__INDEX=0.0155 BACKGROUND NOISE=PNC-35. ( 4 2 7 D B A ) " STC+PNC (DBA) = 89. NOISE TYPE IN DBA STC M:STC | fi:FREQ FOOD DISPOSER 66.48 47. 22-5 | 359.5 FOOD BLENDER 78.64 47. 10.4 | 285.0 VAC CLEANER 75.79 47. 13.2 | 281.5 SEW MACHINE 70.72 47. 18.3 | 320-0 ELEC KNIFE 69.67 47. 19-3 | 472-0 FOOD MIXER 66.57 47. 22.4 | 3 8 6 - 0 DISHWASHER 63.94 47. 25. 1 | 332.5 CLOTHES WASH 61.89 47. 27.1 | 362.0 CLOTHES DRYR 56.72 47. 32-3 | 393-5 HSEHOLD (NOR) 78.84 47- 10.2 | 194.6 HSEHOLD (HUD) 81.77 47. 7.2 | 0.0 ARTICULATION INDjn(=j^0020 BACKGROUND NOISE=PNC-40. "~1477DBAT" STC+PNC(DBA)= 94. NOISE TYPE IN DBA STC M:STC I H.FREQ FOOD DISPOSER 66.48 47. 27.5 | 439.5 FOOD BLENDER 78.64 47. 15.4 | 365.0 VAC CLEANER 75.79 47. 18.2 I 361.5 SEW MACHINE 70.72 47. 23.3 j 400-0 ELEC KNIFE 69.67 47. 24.3 | 552.0 FOOD MIXER 66.57 47. 27.4 | 466.0 DISHWASHER 63.94 47. 30.1 | 412.5 CLOTHES WASH 61-89 47. 32.1 | 442.0 CLOTHES DRYR 56. 72 47. 37.3 | 473.5 HSEHOLD (NOR) 78. 84 47. 15.2 | 274.6 HSEHOLD (HDD) 81.77 47. 12.2 | 220.3 AJ_TI_S__2JOJ_INp^ ___„__.. REF, NO-=202306 SOURCE=BSA STC=48- l<33 SPECIFICATIONS LYR 1/2 : 3-1/2 CHAN AT 24,2"GLASFIBR J _ T__2i_l-Jl_iI___Z§±l-llM-lZ2--.~--~-.-.; " ""BACKGROUND NOISE=PNC-25. (34.DBA) STC+PNC (DBA) = 82-NOISE TYPE IN DBA STC M: STC | M:FREQ FOOD DISPOSER 66,48 48. 15-5 | 0.0 FOOD BLENDER 78.64 48. 3-4 J 0-0 VAC CLEANER 75.79 4 8. 6-2 | 109-0 SEW MACHINE 70.72 48. 11. 3 | 152-5 ELEC KNIFE 69.67 4 8. 12-3 | 297.0 FOOD MIXER 66.57 48. 15.4 | 233-5 DISHWASHER 63.94 48. 18.1 j 198-5 CLOTHES WASH 61.89 48. 20-1 ! 0.0 CLOTHES DRYR 56.72 48. 25.3 | 258-5 HSEHOLD (NOR) 78.84 4 8- 3-2 | 0-0 HSEHOLD (HUD) 81.77 4 8. 0-2 ! 0.0 ARTICULATION INDEX= =0.0322 - ••• - ' BACKGROUND NOISE-PNC-30. (38. DBA) STC+PNC (DBA) = 86. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 48- 19-5 | 279.0 FOOD BLENDER 78.64 48. 7.4 | 181-0 VAC CLEANER 75.79 48. 10.2 | 180.0 SEW MACHINE 70.72 4 8. 15.3 | 223.5 ELEC KNIFE 69.67 48. 16.3 | 368.0 FOOD MIXER 66- 57 4 8. 19.4 | 304.5 DISHWASHER 63-94 48- 22.1 | 269.5 CLOTHES WASH 61-89 48. 24. 1 | 0.0 CLOTHES DRYR 56.72 48- 29.3 | 329.5 HSEHOLD (NOR) 78- 84 48. 7.2 | 0.0 HSEHOLD (HUD) 81.77 48. 4.2 | 0,0 ARTICULATION INDEX= =0-0055 BACKGROUND NOISE-PNC-35- (42-DBA) STC+PNC (DBA) = 90. NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 48. 2 3 _' 5 | 354,0 FOOD BLENDER 78-64 48. 11.4 | 256-0 VAC CLEANER 75.79 48. 14.2 | 255.0 SEW MACHINE 70- 72 4 8. 19.3 | 298.5 ELEC KNIFE 69.67 48. 20.3 | 443-0 FOOD MIXER 66.57 48. 23.4 | 379.5 DISHWASHER 63. 94 48. 26. 1 | 344.5 CLOTHES WASH 61.89 48. 28.1 | 373.0 CLOTHES DRYR 56.72 48. 33.3 | 404.5 HSEHOLD (NOR) 78. 84 48. 11.2 j 165.6 HSEHOLD (HUD) 81.77 48. 8.2 | 0-0 ARTICULATION INDEX= = 0.0 BACKGROUND NOISE=PNC-4G. (47.DBA) STC+PNC(DBA)= 95 NOISE TYPE IN DBA STC M:STC | M:FREQ FOOD DISPOSER 66.48 48. 28.5 | 434-0 FOOD BLENDER 78.64 48. 16.4 | 336-0 VAC CLEANER 75.79 48. 19.2 | 335-0 SEW MACHINE 70-72 48. 24.3 | 378,5 ELEC KNIFE 69. 67 4 8. 25.3 | 523.0 FOOD MIXER 66-57 48. 28.4 | 459-5 DISHWASHER 63-94 4 8. 31.1 | 424.5 CLOTHES WASH 61.89 48. 33.1 | 453.0 CLOTHES DRYR 56.72 48. 38.3 | 484.5 HSEHOLD (NOR) 78.84 48. 16.2 | 245.6 HSEHOLD (HUD) 81.77 48. 13.2 | 189.3 BEF. NO.=155503 SOUSCE=B&A STC=45. no SPECIFICATION-= 1/2 PLBD EACH SIDE,DOUBLE 2X4 AT 16 STA G ON 2X3 PL EACH, B-7 BATT INSUL BACKGROUND NOISE=PNC-25. (34.DBA) STC+PNC (DBA) = 79. NOISE TYPE IN DBA STC M:STC | M.FBEQ FOOD DISPOSES 66.48 45. 12.5 | 0.0 FOOD BLENDER 78.64 45. 0.4 j 0.0 VAC CLEANER 75.79 45. 3.2 J 0.0 SEW MACHINE 70. 72 45. 8.3 | 0.0 ELEC KNIFE 69.67 45. 9.3 | 253.0 FOOD MIXER 66.57 45. 12.4 j 184-5 DISHWASHEB 63.94 45. 15.1 | 165.5 CLOTHES WASH 61.89 45. 17.1 j 0.0 CLOTHES DRYR 56.72 45. 22.3 j 234-5 HSEHOLD (NOR) 78.84 45. 0.2 j 0.0 HSEHOLD (HDD) 81.77 45. -2.8 J 0.0 ARTICULATION INDEX=0,0926 ! BACKGROUND NOISE=PNC-30. (38.DBA) STC+PNC(DBA)= 83. NOISE TYPE IN DBA STC M:STC j M.FREQ FOOD DISPOSER 66.48 45. 16.5 j 0.0 FOOD BLENDEB 78.64 45. 4.4 j 0.0 VAC CLEANER 75.79 45. 7.2 j 132.0 SEW MACHINE 70.72 45. 12.3 I 175.5 ELEC KNIFE 69.67 45. 13.3 j 324-0 FOOD MIXES 66.57 45. 16.4 j 255.5 DISHWASHEB 63.94 45. 19-1 I 236.5 CLOTHES WASH 61.89 45. 21.1 \ 0.0 CLOTHES DRYR 56.72 45. 26.3 \ 305.5 HSEHOLD (NOB) 78.84 45. 4.2 I 0.0 HSEHOLD (HUD) 81.77 45. 1.2 \ 0,0 ARTICULATION INDEX=0.0259 BACKGBOUND N0ISE=PNC-35. (42.DBA) STC+PNC(DBA)= 87. NOISE TYPE IN DBA STC M:STC I M.FBEQ FOOD DISPOSER 66.48 45- 20.5 j 306-0 FOOD BLENDER 78.64 45. 8.4 j 208.0 VAC CLEANER 75.79 45. 11.2 I 207.0 SEW MACHINE 70.72 45. 16.3 j 250-5 ELEC KNIFE 69.67 45. 17.3 j 399.0 FOOD MIXER 66. 57 45. 20.4 \ 330-5 DISHWASHER 63.94 45. 23. 1 I 311.5 CLOTHES WASH 61.89 45. 25.1 I 0-0 CLOTHES DBYB 56.72 45. 30.3 I 380.5 HSEHOLD (NOB) 78-84 45. 8.2 j 117-6 HSEHOLD (HOD) 81.77 45. 5.2 I 0.0 ABTICULATION. INDEX=0.QQ20_,_ BACKGROUND NOISE=PNC-40. 7^-DBA)* STC+PNC(DBA) = 92. NOISE TYPE IN DBA STC M:STC j M:FREQ FOOD DISPOSER 66. 48 45. 25.5 j 386.0 FOOD BLENDEB 78.64 45. 13.4 j 288.0 VAC CLEANEB 75.79 45. 16.2 I 287.0 SEW MACHINE 70.72 45. 21.3 I 330.5 ELEC KNIFE 69.67 45. 22.3 j 479.0 FOOD MIXES 66.57 45. 25.4 I 410.5 DISHWASHEB 63. 94 45- 28. 1 I 391.5 CLOTHES WASH 61.89 45. 30-1 j 423.0 CLOTHES DBYB 56.72 45. 35.3 j 460.5 HSEHOLD (NOB) 78. 84 45. 13.2 j 197.6 HSEHOLD (HUD) 81.77 45. 10.2 j 141.3 ABTICULATION INDEX=0.0 171 APPENDIX* I I I • NUMERICAL RESULTS OF 'DBA DIFFERENCE' TEST THE FOLLOWING ARE DBA DIFF. OF THE NOISE SPECTRA; 172-REF- NO.=214 SOURCE=DBR STC=44. SPECIFICATION- 1/2 PLASTERBD EACH SIDE, 3-5/8 ST CHANN ELS AT 24 OC, 2"ABSORPTION NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSES 66. 48 29. 24 37.24 FOOD BLENDER 78.64 31.36 47-28 VAC CLEANER 75.79 29.21 46.57 SEW MACHINE 70.72 27. 12 43.60 ELEC KNIFE 69.67 23-92 45.75 FOOD MIXES 66.57 21-97 44.59 DISHWASHER 63.94 26.56 37.38 CLOTHES WASH 61.89 31.27 30.62 CLOTHES DBYR 56.72 21.34 35.38 HSEHOLD (NOR) 78.84 34.97 4 3.87 HSEHOLD (HDD) 81.77 38.86 42-91 SPEECH DBA DIFFERENCE 3 46.61 REF. NO. = 226 SOURCE=DBR STC=46-SPECIFICATION 3 1/2 PLASTERBD EACH SIDE, STAG 2X4 STUDS AT 24 ON 2X6 PL, 2"ABSORPTION NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 28. 98 37.50 FOOD BLENDER 78.64 31. 72 46.92 VAC CLEANER 75.79 29.38 46.40 SE1 MACHINE 70.72 26.97 43.76 ELEC KNIFE 69.67 23. 54 46.13 FOOD MIXER 66.57 21.79 44.78 DISHWASHER 63.94 25.74 38.20 CLOTHES WASH 61.89 31. 17 30.72 CLOTHES DRYR 56.72 20. 63 36.09 HSEHOLD (NOR) 78.84 34.33 44.51 HSEHOLD (HUD) 81.77 38. 17 43.60 SPEECH DBA DIFFERENCE - 49.26 REF. NO.=233 SOURCE=DBS STC=47. SPECIFICATION 3 BOTH SIDES-3/16 PLYWD FACED, 1/2 PLASBD , 1/2 WD FIBRBD; 2X4 STUDS AT 16 OC NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 32. 16 34.31 FOOD BLENDER 78.64 26. 48 52.16 VAC CLEANER 75.79 26-41 49.38 SEW MACHINE 70.72 27. 70 43.03 ELEC KNIFE 69.67 15- 85 53.82 FOOD MIXER 66.57 19.88 46.69 DISHWASHER 63.94 27. 62 36.32 CLOTHES WASH 61-89 35- 02 26.87 CLOTHES DRYR 56.72 23.32 33.40 HSEHOLD (NOR) 78.84 34.03 44-80 HSEHOLD (HUD) 81.77 38.42 4 3.36 SPEECH DBA DIFFERENCE 3 50.70 172 REF. NO.=236 SOOSCE=DBR STC= 48. SPECIFICATION 31/2 PLBD EACH SIDE, 3-5/8 CHAN AT 24 OC , 1 LB LEAD ONE SIDE, 2"ABSORPTION NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSES 66.48 2 3.09 4 3.38 FOOD BLENDES 78.64 27. 83 50.81 VAC CLEANER 75.79 26.75 49.04 SEW MACHINE 70. 72 23. 23 47.50 ELEC KNIFE 69.67 18.46 51.21 FOOD MIXES 66.57 17.76 48.81 DISHWASHER 63.94 23. 12 40.82 CLOTHES WASH 61.89 24. 87 37.02 CLOTHES DRYR 56.72 17.30 39.42 HSEHOLD (NOS) 78.84 32.45 46.39 HSEHOLD (HOD) 81.77 36.09 45.68 SPEECH DBA DIFFERENCE 3 50.70 REF. NO.=314 SOURCE=DBR STC=47. SPECIFICATION=5/8 PLASTERBD, 3-5/8 CHANNELS AT 24 OC, 2"ABSORPTION NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 30. 31 36. 17 FOOD BLENDER 78.64 31-70 46.94 VAC CLEANER 75. 79 28. 13 47.65 SEW MACHINE 70.72 26.63 44.09 ELEC KNIFE 69.67 22.07 47.60 FOOD MIXER 66.57 20. 98 45.59 DISHWASHER 63-94 25. 14 38.80 CLOTHES WASH 61.89 33.01 28.88 CLOTHES DRYR 56.72 21. 12 35.60 HSEHOLD (NOR) 78.84 33.01 45.83 HSEHOLD (HUD) 81.77 37. 10 44.68 SPEECH DBA DIFFERENCE 3 50.17 REF. NO.=324 SOURCE3DBR STC=46. SPECIFICATION 3 5/8 PLBD EACH SIDE,STAG 2X4 STUDS AT 24 ON 2X6 PL,ABSORPTION NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 24.92 41.56 FOOD BLENDER 78.64 35.00 4 3-64 VAC CLEANER 75.79 30.09 45.70 SEW MACHINE 70.72 26.27 44-46 ELEC KNIFE 69.67 24. 13 45.54 FOOD MIXER 66.57 22. 43 44-14 DISHWASHER 63.94 24. 03 39.90 CLOTHES WASH 61.89 25- 83 36. 05 CLOTHES DRYR 56.72 18. 24 38.48 HSEHOLD (NOR) 78-84 34. 27 44.56 HSEHOLD (HUD) 81.77 37.60 44.17 SPEECH DBA DIFFERENCE 3 49.26 174 REF. NO.=333 SOURCE=DBB STC=46. SPECIFICATI0N=5/8 PLBD EACH SIDE, 3-5/8 CHAN 24 OC, 1 /2 GLASS FIBREBD ONE SIDE NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 2 8.70 37.78 FOOD BLENDER 78.64 31.20 47.44 VAC CLEANER 75-79 28.20 47.59 SEW MACHINE 70.72 26.29 44.44 ELEC KNIFE 69.67 21.58 48.09 FOOD MIXER 66.57 21-03 45.54 DISHWASHER 63-94 25.60 38.34 CLOTHES WASH 61.89 31. 17 30.72 CLOTHES DRYR 56.72 20.57 36. 15 HSEHOLD (NOR) 78.84 33.64 45-20 HSEHOLD (HOD) 81.77 37.57 44.20 SPEECH DBA DIFFERENCE" 50.17 REF. NO.=334 SOUECE=DBR STC=49. SPECIFICATIGN=5/8 PLBD EACH SIDE, 3-5/8 CHAN 24 OC, 1 /2 GLASS BD WITH 2"MINERAL WOOL NOISE TYPE IN DBA RECEIVING BOOM DBA DBA DIFF FOOD DISPOSER 66.48 29.23 37.25 FOOD BLENDER 78.64 29.69 4 8.95 VAC CLEANER 75.79 26. 16 49.62 SEW MACHINE 70-72 25.23 45. 4 9 ELEC KNIFE 69-67 20-09 49.58 FOOD SIXER 66-57 19. 19 47.38 DISHWASHER 63.94 23.86 4 0.08 CLOTHES WASH 61.89 31.99 29.89 CLOTHES DRYR 56.72 20-09 36.63 HSEHOLD (NOR) 78.84 31-27 47.56 HSEHOLD (HUD) 81-77 35.43 46.34 SPEECH DBA .DIFFERENCE= 51-31 REF. NO.=339 SOUBCE=DBS STC=48. SPECIFICATION= 5/8 PLBD EACH SIDE, 2X4 STDS 16 OC, HOR RESIL BARS AT 24, ONE SIDE, 2"ABSOBP NOISE TYPE IN DBA RECEIVING BOOM DBA DBA DIFF FOOD DISPOSER 66.48 29. 38 37. 10 FOOD BLENDER 78. 64 30.51 48-13 VAC CLEANEB 75.79 26.43 49.36 SEW MACHINE 70.72 25.96 44.76 ELEC KNIFE 69.67 19.71 4 9.96 FOOD MIXES 66.57 1 9. 89 46.68 DISHWASHEB 63.94 25.38 38.56 CLOTHES WASH 61.89 32- 07 29.82 CLOTHES DBYB 56.72 20.86 35.85 HSEHOLD (NOR) 78-84 32. 57 46.26 HSEHOLD (HUD) 81.77 36.67 45. 10 SPEECH DBA DIFFERENCE= 51.31 \75 REF. HO.=340 SOURCE=DBR STC=50. SPECIFICATION 35/8 PLBD EACH SIDE, 2X4 STDS 16 OC, HOR RESIL BARS AT 24 ,BOTH SIDES, 2"ABSORP NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66-48 28.32 38. 16 FOOD BLENDER 78.64 27.45 51.19 VAC CLEANER 75.79 23.60 52.19 SEW MACHINE 70. 72 24. 43 46.29 ELEC KNIFE 69.67 17.53 5 2. 14 FOOD MIXER 66.57 18.27 48.30 DISHWASHER 63.94 24. 13 39.80 CLOTHES WASH 61.89 31.05 30.83 CLOTHES DRYR 56.72 19.84 36.88 HSEHOLD (NOR) 78.84 30.51 48-33 HSEHOLD (HOD) 81.77 34.84 46.93 SPEECH DBA DIFFERENCE 3 52.01 REF- NO.=406 SOURCE3DBR STC=50. SPECIFICATION=2 LYRS 1/2 PLBD : 3-5/8 CHAN 24 OC, 2 G LASS FIBRE : 1 LYR 1/2 PLBD NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 26.44 40-04 FOOD BLENDER 78.64 26. 94 51.70 VAC CLEANER 75.79 24.91 50-88 SEW MACHINE 70-72 23.25 47.48 ELEC KNIFE 69.67 17.97 51.70 FOOD MIXER 66.57 16.92 49.65 DISHWASHER 63.94 22. 49 41-45 CLOTHES WASH 61.89 29. 12 32-77 CLOTHES DRYR 56. 72 18.19 38-53 HSEHOLD (NOR) 78.84 30.56 48.27 HSEHOLD (HUD) 81.77 34. 46 47.31 SPEECH DBA DIFFERENCE 3 52.01 REF. NO.=414 SOURCE=DBR STC=51. SPECIFICATIONS LYRS 1/2 PLBD EACH SIDE, 3 -5/8 CHAN A T 24 OC, 2»GLASS FIBRE NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 21.58 44.89 FOOD BLENDER 78.64 30. 15 48.49 VAC CLEANER 75.79 25.39 50.40 SEW MACHINE 70.72 21.81 48-91 ELEC KNIFE 69.67 19.91 49.76 FOOD MIXER 66.57 17.29 4 9- 28 DISHWASHER 63.94 18. 70 45.24 CLOTHES WASH 61.89 23.44 38.45 CLOTHES DRYR 56.72 14.51 42.21 HSEHOLD (NOR) 78. 84 29.66 49.18 HSEHOLD (HUD) 81.77 32. 87 48.91 SPEECH DBA DIFFERENCE- 52.85 176 REF- NO.=424 SCUBCE=DBR STC=50. SPECIFICATION 3 2 LYRS 5/8 PLBD : 2X4 STDS 16 OC, RESIL BAB ONE SIDE,2 "GLASFIBBE : 1 LYR 5/8 NOISE TYPE IN DBA BECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 24.60 41.88 FOOD BLENDER 78.64 27.40 51.24 VAC CLEANEB 75.79 25. 66 50. 12 SEW MACHINE 70.72 22.69 48.03 ELEC KNIFE 69.67 18.77 50.90 FOOD MIXES 66.57 16.75 4 9.82 DISHWASHER 63.94 20. 64 43.30 CLOTHES HASH 61.89 27. 13 34.76 CLOTHES DBYB 56.72 16.47 40.24 HSEHOLD (NOB) 78.84 30. 30 4 8.54 HSEHOLD (HOD) 81.77 33. 78 48.00 SPEECH DBA DIFFERENCE 3 50-70 BEF. NO.=432 SOURCE3DBR STC=45. SPECIFICATION 31 LYB 1/2, 1 LYB 5/8, 2-1/2 CHAN AT 24 OC, 2"GLASS FIBRE NOISE TYPE IN DBA BECEIVING ROOM DBA DBA DIFF FOOD DISPOSEB 66.48 30.59 35.89 FOOD BLENDEB 78.64 32-48 46. 16 VAC CLEANER 75.79 29.48 46.31 SEW MACHINE 70.72 27.76 4 2.97 ELEC KNIFE 69-67 22. 98 46.69 FOOD MIXER 66.57 22.27 44.30 DISHWASHER 63,94 26. 93 37.00 CLOTHES WASH 61.89 33. 11 28.78 CLOTHES DBYR 56. 72 22. 14 34.58 HSEHOLD (NOR) 78.84 34.95 43.88 HSEHOLD (HUD) 81.77 38. 87 42.90 SPEECH DBA DIFFERENCE 3 49-69 BEF. NO.=435 SOURCE 3DBB STC=49. SPECIFICATION 32 LYRS 1/2, 1 LYR 5/8, 3-5/8 CHAN 24 OC , 2-1/2"GLASSFIBBE NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSEB 66.48 23.41 43-07 FOOD BLENDER 78.64 29. 87 4 8.77 VAC CLEANEB 75.79 26.98 48-80 SEW MACHINE 70.72 22.86 47. 86 ELEC KNIFE 69.67 20.39 4 9-28 FOOD MIXER 66.57 18.38 48-19 DISHWASHEB 63-94 20.67 43.27 CLOTHES WASH 61-89 25. 36 36-52 CLOTHES DRYR 56.72 15.78 40.94 HSEHOLD (NOB) 78.84 31. 10 47.74 HSEHOLD (HUD) 81.77 34.63 47. 14 SPEECH DBA DIFFERENCE= 50.70 177 REF. NO.=436 SOURCE=DBR STC=53. SPECIFICATIONS LYRS 1/2, 1 LYE 5/8, 3 -5/8 CHAN 24 OC , 2-1/2"GLASSFIBRE NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 19. 36 47. 11 FOOD BLENDER 78.64 24. 89 53.75 VAC CLEANER 75.79 23. 43 52.35 SEW MACHINE 70.72 18. 97 51.75 ELEC KNIFE 69.67 16. 02 53.65 FOOD MIXER 66.57 14. 26 52.31 DISHWASHER 63.94 17. 63 46.31 CLOTHES WASH 61.89 21. 58 4 0-31 CLOTHES DRYR 56.72 13. 51 43.21 HSEHOLD (NOB) 78.84 27. 78 51-06 HSEHOLD (HUD) 81.77 31. 33 50.44 SPEECH DBA DIFFERENCE 3 52. 85 REF. NO.=437 SOURCE=DBR STC=46. SPECIFICATION 3 1 LYR 1/2, 1 LYR 5/8, STAG 2X4 AT 24 OC ON 2X6 PLATE, ABSORPTION NOISE TYPE IN DBA RECEIVING BOOM DBA DBA DIFF FOOD DISPOSER 66.48 25.28 41.19 FOOD BLENDEB 78.64 32.60 46.04 VAC CLEANEB 75.79 29.02 46.76 SEW MACHINE 70.72 25.45 45.27 ELEC KNIFE 69-67 23. 12 46.55 FOOD MIXEB 66.57 21.23 45.34 DISHWASHEB 63.94 24.02 39.91 CLOTHES WASH 61.89 26.63 35. 26 CLOTHES DBYB 56.72 18.49 38.23 HSEHOLD (NOR) 78.84 33. 73 45.11 HSEHOLD (HUD) 81-77 37.21 44.56 SPEECH DBA DIFFERENCE 3 4 9. 69 BEF. NO.=7255-1 SOUBCE=AE STC=53. SPECIFICATION31/2 PLBD : 2X4 WITH ABSORP,1/2 PLBD,1"A IR GAP,2X4 WITH ABSORP : 1/2 PLBD NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 25.23 41.24 FOOD BLENDER 78.64 18.32 60.32 VAC CLEANER 75.79 19.02 56.76 SEW MACHINE 70.72 20.67 50.06 ELEC KNIFE 69.67 12. 04 57.63 FOOD MIXER 66.57 14. 15 52-42 DISHWASHEB 63.94 20.60 43.34 CLOTHES WASH 61-89 28.06 33.83 CLOTHES DBYR 56.72 17.00 39.72 HSEHOLD (NOB) 78.84 26.49 52.35 HSEHOLD (HUD) 81.77 3 0.99 50.78 SPEECH DBA DIFFERENCE 3 55-29 17S REF. NO.=7353-3 SOUBCE=AE STC=53. SPECIFICATION=5/8 PLBD : 2X4 WITH ABSORP,1/2 PLBD,1"A IR GAP,2X4 WITH ABSORP : 5/8 PLBD NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 25.44 41.03 FOOD BLENDER 78. 64 16.69 61.95 VAC CLEANER 75.79 17.63 58.15 SEW MACHINE 70.72 21-90 48.82 ELEC KNIFE 69.67 12. 04 57.63 FOOD SIXER 66. 57 15.62 50. 95 DISHWASHER 63.94 22.20 41.74 CLOTHES WASH 61.89 28. 11 33-78 CLOTHES DRYR 56.72 17.68 39.04 HSEHOLD (NOR) 78.84 27. 17 51.67 HSEHOLD (HUD) 81.77 31.92 4 9.85 SPEECH DBA DIFFERENCE= 55-29 REF. NO.=7453- 1 SOUBCE-AE STC=54, SPECIFICATION= 5/8 PLBD:2-1/2 CHAN W/ ABSORP,5/8 PLBD, 4 MAIR GAP,2-1/2 CHAN W/ ABSORP.5/8 PLBD NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF; FOOD DISPOSER 66.48 25.30 41-18 FOOD BLENDER 78.64 15.87 62.77 VAC CLEANER 75. 79 17.43 58.36 SEW MACHINE 70.72 21. 17 49.55 ELEC KNIFE 69. 67 12. 04 57.63 FOOD MIXER 66.57 14. 90 51.67 DISHWASHER 63.94 21. 20 42.74 CLOTHES WASH 61,89 28.06 33.83 CLOTHES DRYR 56.72 17.21 39-51 HSEHOLD (NOR) 78.84 26. 16 52-68 HSEHOLD (HUD) 81-77 30.96 50.81 SPEECH DBA DIFFERENCE= 57.33 REF. NO.=7482- 1 SOURCE=AE STC=56. SPECIFICATION= 5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1»AIR GAP, 1CELUFIBRE * BLOW-•IN INSUL NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 22. 82 4 3. 65 FOOD BLENDEB 78.64 15.95 62.69 VAC CLEANER 75.79 18. 05 57.73 SEW MACHINE 70.72 18. 42 52.30 ELEC KNIFE 69-67 12. 04 57.63 FOOD MIXER 66.57 13.01 53.56 DISHWASHEB 63-94 18.27 4 5.67 CLOTHES WASH 61.89 25.62 36.27 CLOTHES DBYB 56.72 15. 14 41.58 HSEHOLD (NOR) 78.84 24.47 54.37 HSEHOLD (HUD) 81.77 28.83 52.94 SPEECH DBA DIFFERENCE= 57.33 179 REF. NO.=7482-1 SOURCE=AE STC=49. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1»AIR GAP,1"CELUFIBRE 1SPRY INSUL 1 SIDE NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 23.91 42-56 FOOD BLENDER 78.64 25.79 52-85 VAC CLEANER 75.79 24.36 51-43 SEW MACHINE 70.72 23-93 46.79 ELEC KNIFE 69.67 15.32 54.35 FOOD MIXER 66.57 18.05 48.52 DISHWASHER 63-94 24.64 39-29 CLOTHES WASH 61.89 25.73 36.16 CLOTHES DRYR 56.72 18.54 38.18 HSEHOLD (NOR) 78.84 31.69 47. 14 HSEHOLD (HUD) 81.77 35.72 46.05 SPEECH DBA DIFFERENCE= 51.31 REF. NO.=542501 SOURCE=B&A STC=49. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,2" 1 BORDEN * SPRAY INSUL ONE SIDE NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66-48 22. 19 44.29 FOOD BLENDER 78.64 25. 97 52.67 VAC CLEANER 75.79 26.09 49.69 SEW MACHINE 70.72 22.26 48.46 ELEC KNIFE 69.67 15.08 54.60 FOOD MIXER 66.57 16.69 49.88 DISHWASHER 63.94 23. 11 40.83 CLOTHES WASH 61.89 24. 19 37. 70 CLOTHES DRYR 56.72 17.31 39-41 HSEHOLD (NOR) 78.84 32.29 46.55 HSEHOLD (HUD) 81.77 35.91 45.87 SPEECH DBA DIFFERENCE 3 50.70 REF. NO.=450201 SOURCE=BSA STC=51. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1«AIR GAP,'CELUFIERE 1 BLOW-IN INSUL NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 24-79 41.68 FOOD BLENDER 78.64 21.67 56.97 VAC CLEANER 75-79 21. 90 53.89 SEW MACHINE 70.72 22. 08 48-65 ELEC KNIFE 69.67 12. 16 57.51 FOOD MIXER 66.57 15.78 50-79 DISHWASHER 63.94 23. 03 40.91 CLOTHES WASH 61.89 27.32 34.57 CLOTHES DRYR 56.72 17.98 38.74 HSEHOLD (NOR) 78.84 29.99 4 8. 85 HSEHOLD (HUD) 81.77 34.06 47.71 SPEECH DBA DIFFERENCE 3 51.31 leo R E F . NO.-541401 SOURCE=B&A STC=54. S P E C I F I C A T I O N 3 5/8 PLBD EACH SIDE,DOUBLE 2X4 AT 16 WAL L , 3 / 4 " A I R GAP, 2"MINERAL FIBRE INSUL NOISE TYPE I N DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66 .48 23 .49 42-98 FOOD BLENDER 78 .64 2 1 . 8 5 56-79 VAC CLEANER 75 .79 21-04 54 .75 SEM MACHINE 70 .72 20 .31 50.41 E L E C KNIFE 69 .67 13 .32 56 .35 FOOD MIXER 6 6 . 5 7 14 .29 52 .28 DISHWASHER 63 .94 20 .32 43 .61 CLOTHES WASH 6 1 . 8 9 26. 18 35 .71 CLOTHES DRYR 56 .72 16. 11 40 .60 HSEHOLD (NOR) 78 .84 27 .38 51-46 HSEHOLD (HUD) 8 1 . 7 7 3 1 . 5 0 50 .28 SPEECH DBA D I F F E R E N C E 3 52 .01 R E F . N O . 3 1 9 2 7 6 1 SOURCE=BSA STC=50. S P E C I F I C A T I O N 3 1 / 2 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL , 1 " A I R G A P , 2 LYRS R-7 INSUL NOISE TYPE I N DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66. 48 25. 90 40-58 FOOD BLENDER 78 .64 21 .45 5 7 . 1 9 VAC CLEANER 7 5 . 7 9 22. 41 5 3 . 3 8 SEW MACHINE 7 0 . 7 2 2 3 . 5 7 4 7 . 1 6 E L E C KNIFE 6 9 . 6 7 12 .23 57 .44 FOOD MIXER 6 6 . 5 7 17.24 49 .32 DISHWASHER 63 .94 24 .56 3 9 . 3 8 CLOTHES WASH 61 .89 28 .34 3 3 . 5 5 CLOTHES DRYR 56 .72 19 .08 37 .63 HSEHOLD (NOR) 78 .84 31.01 47 .82 HSEHOLD (HUD) 8 1 . 7 7 35. 25 46 .52 SPEECH DBA D I F F E R E N C E 3 52 .01 R E F . NO.=537401 SOURCE=B6A STC=49. SPECIFICATION=5/8 i PLBD EACH S I D E , S T A G 2X4 STUD AT 16 ON 2X6 P L , 2 LYRS R-10 INSUL NOISE T Y P E I N DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66 .48 29 .40 3 7 . 0 7 FOOD BLENDER 78 .64 24. 85 5 3 .79 VAC CLEANER 7 5 . 7 9 2 5 . 6 9 50. 09 SEW MACHINE 7 0 . 7 2 26 . 11 4 4-62 ELEC KNIFE 69 .67 14. 95 54 .72 FOOD MIXER 66 .57 18.99 47-58 DISHWASHER 63 .94 26 .23 37-70 CLOTHES WASH 6 1 . 8 9 32. 10 29-78 CLOTHES DRYR 5 6 . 7 2 2 1 . 1 9 35 .53 HSEHOLD (NOR) 78 .84 32 .84 4 6 .00 HSEHOLD (HUD) 8 1 . 7 7 37. 15 44 .62 SPEECH DBA D I F F E R E N C E 3 5 0 . 7 0 I S I REF- NO.=561401 SOURCE 3B&A STC=46-SPECIFICATION=5/8 PLBD EACH SIDE,STAG 2X4 STUD AT 16 ON 2X8 PL,2-1/2"MINERAL WOOL INSUL NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 27.91 38.57 FOOD BLENDER 78.64 30.02 48.62 VAC CLEANER 75.79 28.31 47.48 SEW MACHINE 70.72 26. 32 44.40 ELEC KNIFE 69.67 18. 04 51.63 FOOD MIXER 66.57 2 0.19 46.38 DISHWASHER 63.94 26. 60 37.33 CLOTHES WASH 61.89 30. 34 31.55 CLOTHES DRYR 56.72 20. 93 35.79 HSEHOLD (NOR) 78.84 34.76 44.07 HSEHOLD (HUD) 81.77 38.65 43. 12 SPEECH DBA DIFFERENCE 3 50.17 REF. NO.=542401 SOURCE 3B&A STC = 46. SPECIFICATION 31/2 PLBD EACH SIDE, STAG 2X4 AT 24 ON 2X 6 PL,1-1/2"»MONOTHERM»SPRAY INSUL 1SIDE NOISE TYPE IN DBA RECEIVING ROOM DBA DBA DIFF FOOD DISPOSER 66.48 28.89 37.59 FOOD BLENDER 78.64 27.33 51.31 VAC CLEANER 75.79 28.64 47.15 SEW MACHINE 70.72 27.20 43.53 ELEC KNIFE 69.67 16.58 53.09 FOOD MIXER 66.57 20.67 45.90 DISHWASHER 63.94 27. 66 36.28 CLOTHES WASH 61-89 31.35 30.54 CLOTHES DRYR 56.72 21.71 35.01 HSEHOLD (NOR) 78.84 35- 26 43.58 HSEHOLD (HUD) 81.77 39.33 42.44 SPEECH DBA DIFFERENCE 3 46.83 REF. NO.=202401 SOURCE 3B&A STC =47-SPECIFICATION 31/2 PLBD ON 1/2 WD FIBREBD EACH SIDE,2X 4 AT 16 ON 2X6 PL ,2-1/4"GLASFIBRE INSUL NOISE TYPE IN DBA RECEIVING ROOM DBi I DBA DIFF FOOD DISPOSER 66.48 27.24 39.24 . FOOD BLENDER 78.64 25. 84 52- 80 VAC CLEANER 75-79 26. 94 4 8-84 SEW MACHINE 70.72 25. 72 45.01 ELEC KNIFE 69.67 14. 00 55.67 FOOD MIXER 66.57 19.32 47.25 DISHWASHER 63.94 26.91 37.03 CLOTHES WASH 61.89 29.56 32.33 CLOTHES DRYR 56.72 21.07 35.65 HSEHOLD (NOR) 78.84 34.59 44.24 HSEHOLD (HUD) 81.77 38.49 4 3.28 SPEECH DBA DIFFERENCE 3 45.13 182-BEF- HO-=202306 SOUBCE=B&A STC=48. SPECIFICATION 1 LYR 1/2 : 3-1/2 CHAN AT 24,2»GLASFIBB E INSOL : 1 LYR 3/8+1 LYR 1/2 NOISE TYPE IN DBA RECEIVING BOOM DBA DBA DIFF FOOD DISPOSES 66.48 26.31 40.17 FOOD BLENDER 78.64 27.56 51.08 VAC CLEANER 75.79 26.66 4 9. 12 SEW MACHINE 70.72 25.20 45.52 ELEC KNIFE 69.67 17.89 51.78 FOOD MIXER 66.57 19.33 47- 23 DISHWASHER 63.94 25.68 38.26 CLOTHES WASH 61.89 28.49 33-40 CLOTHES DRYR 56.72 19.79 36-93 HSEHOLD (NOR) 78.84 33.31 45.52 HSEHOLD (HUD) 81.77 37. 27 44.50 SPEECH DBA DIFFEBENCE= 50-70 BEF- N0-=155503 SOUBCE=BSA STC=45. SPECIFICATI0N=1/2 PLBD EACH SIDE,DOUBLE 2X4 AT 16 STA G ON 2X3 PL EACH, R-7 BATT INSUL NOISE TYPE IN DBA BECEIVING ROOM DBA DBA DIFF FOOD DISPOSEB 66.48 29.83 36.64 FOOD BLENDEB 78.64 31. 16 47.48 VAC CLEANER 75.79 30.40 45.39 SEW MACHINE 70.72 27.99 4 2.74 ELEC KNIFE 69.67 20.68 48-99 FOOD MIXER 66.57 21.72 44. 85 DISHWASHEB 63.94 27.83 36.11 CLOTHES WASH 61.89 32.28 29.61 CLOTHES DBYB 56.72 22.33 34.39 HSEHOLD (NOB) 78.84 36.26 42.58 HSEHOLD (HUD) 81.77 40.02 41.75 SPEECH DBA DIFFEBENCE= 44.82 APPENDIX IV TRANSMISSION LOSS VALUES OF HALL DATA Legend : REF. NO. = r e f e r s t o f i l e o r w a l l no. used by "SOURCE" "DBR" - D i v i s i o n o f B u i l d i n g B e s e a r c h , NBC of Canada " AE" - A c o u s t i c a l E n g i n e e r i n g "BSA" - Barron & A s s o c i a t e s STC = Sound T r a n s m i s s i o n C l a s s (94-REF. NO.=214 SOUBCE=DBR STC=44. SPECIFICATION 31/2 PLASTERBD EACH SIDE, 3 - 5 / 8 ST CHANN ELS AT 24 OC, 2"ABSORPTION FREQ I T-L • i a _ L . i . . i _ B L 125 j 2 6 . 0 160 | 3 0 . 0 200 j 3 3 . 0 250 j 3 4 - 0 315 | 3 8 . 0 400 } 4 2 . 0 500 I 4 7 . 0 630 | 4 9 . 0 800 j 5 1 . 0 1000 i 5 2 . 0 12 50 j 5 5 . 0 1600 | 5 6 . 0 2000 I 5 4 . 0 2500 | 4 4 . 0 3 1 5 0 | 4 0 - 0 4000 1 4 4 . 0 REF. NO.=226 SOURCE=DBR STC=46. SPECIFICATIOH -1/2 PLASTERBD EACH SIDE, STAG 2X4 STODS AT 24 ON 2X6 PL, 2»ABSORPTION FREQ | T.L • . _ _ J _ _ i 125 | 2 6 - 0 160 | 3 0 . 0 200 | 3 4 . 0 250 J 3 7 . 0 315 I **1. 0 400 | 4 4 . 0 500 | 4 5 . 0 6 3 0 | 4 7 . 0 800 | 4 8 - 0 1000 l 5 0 . 0 1250 | 49. 0 1600 I 5 1 . 0 2000 | 5 0 . 0 2500 J 4 4 . 0 3150 I 4 2 . 0 4000 } 4 7 . 0 REF. NO.=233 SOORCE=DBR STC=47. SPECIFICATION 3BOTH SIDES-3/16 PLYWD FACED, 1/2 PLASBD , 1/2 WD FIBRBD; 2X4 STDDS AT 16 OC FREQ | T.L JS__-. i - _ _ _ L 125 } 22-0 160 | 30. 0 200 | 33. 0 250 ! 36. 0 315 J 41. 0 400 } 44. 0 500 | 46. 0 630 j 48. 0 800 I 51. 0 1000 | 54. 0 1250 | 57. 0 1600 I 56. 0 2000 j 56. 0 2500 | 54. 0 3150 | 54. 0 4000 | 56. 0 REF. NO. = 236 SOtTRCE=DBR STC=48. SPECIFICATION=1/2 PLBD EACH SIDE, 3-5/8 CHAN AT 24 OC , 1 LB LEAD ONE SIDE, 2"ABSORPTION FREQ | T.L • ia_L_i. .mm 125 J 33. 0 160 | 33. 0 200 | 35. 0 250 | 38. 0 315 | 42- 0 400 | 44. 0 500 | 44. 0 6 30 | 48. 0 800 | 51. 0 1000 j 50. 0 1250 | 52. 0 1600 | 54. 0 2000 J 54. 0 2500 | 52. 0 3150 j 50- 0 4000 | 51. 0 REF. NO.=314 SQURCE=DBR STC=47. SPECIFICATI0N=5/8 PLASTERBD, 3-5/8 CHANNELS AT 24 OC, 2"ABSORPTION FREQ I T.L . .1_1_BL 125 l 24. 0 160 | 35. 0 200 | 39. 0 250 ! 39. 0 315 | 42. 0 400 j 43. 0 500 | 46. 0 630 | 47. 0 800 \ 51. 0 1000 j 54. 0 1250 | 54. 0 1600 | 54. 0 2000 | 47. 0 2500 | 44. 0 3150 I 46. 0 4000 I 49. 0 REF. NO.=324 SOURCE=DBR STC=46. SPECIFICATION=5/8 PLBD EACH SIDE,STAG 2X4 STODS AT 24 ON 2X6 PL,ABSORPTION FREQ I T.L mt i H _ l _ l . i _ B l 125 | 32. 0 160 | 32. 0 200 34. 0 250 | 36. 0 315 | 42. 0 400 ! 45. 0 500 47. 0 630 i 46. 0 800 | 47. 0 1000 j 50. 0 1250 50. 0 1600 48. 0 2000 42. 0 2500 43. 0 3150 | 47. 0 4000 I 52. 0 \&7 REF. NO.=333 SOUSCE=DBR STC=46. SPECIFICATION=5/8 PLBD EACH SIDE, 3-5/8 CHAN 24 OC, 1 /2 GLASS FIBREBD ONE SIDE FREQ j T.L m 1__L. .1-1221 125 I 26. 0 160 | 30. 0 200 | 36. 0 250 | 37. 0 315 | 39. 0 400 j 43. 0 500 | 47. 0 630 | 48. 0 800 | 51. 0 1000 | 54. 0 1250 | 54. 0 1600 | 54. 0 2000 | 48. 0 2500 | 44. 0 3150 | 47. 0 4000 j 52. 0 REF. NO.=334 SOURCE=DBR STC=49. SPECIFICATION=5/8 PLBD EACH SIDE, 3-5/8 CHAN 24 OC, 1 /2 GLASS BD WITH 2"MINERAL WOOL FREQ | T.L . 1I_1_1_1-B1 125 | 25. 0 160 | 37. 0 200 | 39. 0 250 41. 0 315 44. 0 400 46. 0 500 | 48. 0 630 50. 0 800 52. 0 1000 54. 0 1250 55. 0 1600 55. 0 2000 4 9. 0 2500 46. 0 3150 49. 0 4000 I 52- 0 REF. SO.=339 SPECIFICATION=5/8 RESIL BARS AT 24 SOURCE=DBR STC=48. PLBD EACH SIDE, 2X4 , ONE SIDE, 2"ABSORP STDS 16 OC, HOR FREQ | T.L . i i z i . . l - i - i l 125 | 25. 0 160 | 31. 0 200 ] 35. 0 250 | 38. 0 315 | 42. 0 400 | 46. 0 500 | 48. 0 630 | 51. 0 800 } 52. 0 1000 ! 54. 0 1250 | 56. 0 1600 | 55. 0 2000 | 47. 0 2500 | 47. 0 3150 | 51. 0 4000 | 55. 0 REF. NO.=340 SOORCE=DBR STC=50. SPECIFICATION=5/8 PLBD EACH SIDE, 2X4 STDS 16 OC, HOR RESIL BARS AT 24,BOTH SIDES, 2"ABSORP FREQ | T.L i f lz__.L 125 | 26. 0 160 | 32. 0 200 | 36- 0 250 | 40. 0 315 | 45. 0 400 | 49. 0 500 | 52. 0 630 | 55. 0 800 | 57. 0 1000 | 59. 0 1250 | 59. 0 1600 | 60. 0 2000 | 51. 0 2500 | 48- 0 3150 | 54. 0 4000 | 59. 0 REF. NO.=406 SO0RCE=DBR STC=50. S P E C I F I C A T I O N LYRS 1/2 PLBD : 3-5/8 CHAN 24 OC, 2 G LASS FIBRE : 1 LYR 1/2 PLBD FREQ | T.L • _____ .!_____ 125 | 28. 0 160 | 36. 0 200 | 38. 0 250 | 41. 0 315 | 42. 0 400 | 46. 0 500 | 51. 0 630 | 51-0 800 | 53-0 1000 l 54. 0 12 50 I 52. 0 1600 | 53. 0 2000 | 52. 0 2500 | 52. 0 3150 | 51. 0 4000 I 53. 0 REF- NO.=414 SOURCE=DBR STC=51. SPECIFICATION 32 LYRS 1/2 PLBD EACH SIDE, 3-5/8 CHAN A T 24 OC, 2"GLASS FIBRE FREQ J T.L • i H _ _ - l - _____ 125 J 34. 0 160 | 41. 0 200 | 43. 0 250 | 43. 0 315 | 44. 0 400 | 48- 0 500 } 51. 0 630 | 52. 0 800 | 53- 0 1000 | 54. 0 1250 1 51- 0 1600 | 47. 0 2000 | 47. 0 2500 | 51. 0 3150 J 54. 0 4000 1 57. 0 \<30 REF. NO.=424 S0URCE=DBR STC=50. S P E C I F I C A T I O N LYRS 5/8 PLBD : 2X4 STDS 16 OC,RESIL BAR ONE SIDE,2 , ,GLASFIBRE : 1 LYR 5/8 FREQ | T.L _ -__!__. _____ 125 | 30. 0 160 | 38. 0 200 | 41. 0 250 | 43. 0 315 j 46. 0 400 | 47. 0 500 | 49. 0 630 | 50. 0 800 | 51. 0 1000 | 49. 0 1250 | 49. 0 1600 1 51. 0 2000 j 52- 0 2500 | 53. 0 3150 | 55- 0 4000 | 56. 0 REF. NO. = 432 S01?RCE=DBR STC=45. SPECIFICATION 31 LYR 1/2, 1 LYR 5/8, 2-1/2 CHAN AT 24 OC, 2"GLASS FIBRE FREQ J T.L • ___________ 125 | 24. 0 160 | 30. 0 200 33. 0 250 j 35. 0 315 | 40. 0 400 • 43. 0 500 j 45. 0 630 | 47. 0 800 48. 0 1000 | 51. 0 1250 52. 0 1600 52. 0 2000 47. 0 2500 43. 0 3150 45. 0 4000 49. 0 REF. NO.=435 SOURCE=DBR STC=49. S P E C I F I C A T I O N LYRS 1/2, 1 LYR 5/8, 3-5/8 CHAN 24 OC , 2-1/2»GLASSFIBRE FREQ j T.L . i M L . 125 | 32. 0 160 | 39. 0 200 | 40. 0 250 | 42. 0 315 | 43-0 400 | 45. 0 500 | 46. 0 630 j 48. 0 800 I 50. 0 1000 j 52. 0 12 50 | 53. 0 1600 | 52. 0 2000 | 49. 0 2500 | 47. 0 3150 | 48. 0 4000 I 51. 0 REF. NO.=436 SOURCE=DBR STC=53. S P E C I F I C A T I O N LYRS 1/2, 1 LYR 5/8, 3-5/8 CHAN 24 OC , 2-1/2"GLASSFIBRE FREQ | T.L •m _M_1 . l _ i 2 _ l 125" I 36. 0 160 | 42-0 200 | 44. 0 250 | 45. 0 315 I 47. 0 400 | 47. 0 500 | 49-0 630 \ 50-0 800 | 53-0 1000 \ 55. 0 1250 I 56. 0 1600 ! 57. 0 2000 | 55. 0 2500 | 53. 0 3150 | 53. 0 4000 | 56. 0 102. BEF. NO.=437 SOURCE=DBR STC=46. SPECIFICATION 31 LYR 1/2, 1 LYR 5/8, STAG 2X4 AT 24 OC ON 2X6 PLATE, ABSORPTION FREQ | T.L m . iP .I l 125 | 31- 0 160 | 33. 0 200 | 33. 0 250 } 36. 0 315 | 43. 0 400 | 46. 0 500 | 47. 0 630 j 46. 0 800 | 49. 0 1000 | 51. 0 1250 | 49. 0 1600 | 49. 0 2000 | 46. 0 2500 | 44. 0 3150 | 45. 0 4000 | 50. 0 REF. NO.=7255-1 SOUBCE=AE STC=53. SPECIFICATION=1/2 PLBD : 2X4 WITH ABSORP,1/2 PLBD,1"A IS GAP,2X4 WITH ABSORP : 1/2 PLBD FREQ | T.L . i H _ _ _ . l _ i D B l 125 | 29. 0 160 ! 37. 0 200 | 40. 0 250 | 46. 0 315 | 49. 0 400 ! 51. 0 500 54. 0 630 | 55. 0 800 58. 0 1000 | 61. 0 1250 63. 0 1600 | 62. 0 2000 64. 0 2500 66. 0 3150 67. 0 4000 71. 0 REF. NO.=7353-3 SOURCE=AE STC=53. SPECIFICATION=5/8 PLBD : 2X4 WITH ABSORP,1/2 PLBD,1»A IR GAP,2X4 WITH ABSORP : 5/8 PLBD FREQ ! T.L . 125 | 29. 0 160 | 31. 0 200 | 41. 0 250 | 45. 0 315 | 49. 0 400 } 55. 0 500 | 58. 0 630 J 60. 0 800 | 63. 0 1000 f 67. 0 1250 I 68- 0 1600 | 68-0 2000 j 67. 0 2500 | 70. 0 3150 I 71- 0 4000 I 71- 0 REF. NO.=7453-1 SOORCE=AE STC=54. SPECIFICATION=5/8 PLBD:2-1/2 CHAN W/ ABSORP,5/8 PLBD, 4»AIR GAP,2-1/2 CHAN W/ ABSORP:5/8 PLBD FREQ I T.L * i H _ i . 125 I 29. 0 160 | 33. 0 200 | 44. 0 250 | 47-0 315 | 50. 0 400 | 52. 0 500 I 57. 0 630 ] 58-0 800 | 62-0 1000 | 65-0 1250 | 67-0 1600 | 69-0 2000 | 70-0 2500 I 71. 0 3150 | 69. 0 4000 I 75. 0 194 BEF. NO.=7482-1 SOUBCE=AE STC=56. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1"AIE GAP, • CELUFIBBE* BLOW-IN INSUL FEEQ | T.L • i f i z i _ i . (DB) 125 | 31. 5 160 | 40- 5 200 j 44. 5 250 | 49- 0 315 j 48. 0 400 | 51. 0 500 | 57. 0 630 | 55. 0 800 | 59. 5 1000 I 62. 0 1250 | 67. 0 1600 | 68. 0 2000 J 67. 0 2500 | 66. 0 3150 | 68. 0 4000 I 71. 0 BEF. NO.=7482-1 SOUECE=AE STC=49. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1"AIR GAP,1«CELUFIBRE'SPBY INSUL 1 SIDE FEEQ j T.L JH_ 1 - . _ _ _ _ _ ) _ 125 | 3 2 . 0 160 | 2 7 . 5 200 | 3 6 . 5 250 | 3 7 . 5 315 | 4 5 . 0 400 | 4 7 . 5 500 | 4 8 . 5 6 30 I 5 1 . 0 800 | 5 2 . 0 1000 | 5 6 . 0 1250 | 5 7 . 0 1600 | 5 6 . 0 2000 | 5 4 . 0 2500 | 5 4 . 0 3 1 5 0 | 5 7 . 0 4 0 0 0 I 6 2 . 0 REF. NO.=542501 SOURCE=B&A STC=49. SPECIFICATI0N=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,2"'BORDEN' SPRAY INSUL ONE SIDE FREQ | T.L • i H Z l i .i2J_l 125~1~ 34. 0 160 | 35. 0 200 | 34. 0 250 | 37. 0 315 j 41. 0 400 j 44. 0 500 | 45. 0 6 30 l 47. 0 800 | 52. 0 1000 j 51. 0 12 50 | 58. 0 1600 | 58. 0 2000 j 56. 0 2500 | 57. 0 3150 | 59. 0 4000 | 61. 0 REF. NO.=450201 SOURCE 3B&A STC=51. SPECIFICATION=5/8 PLBD EACH SIDE,DOUBLE 2X4 STUD WALL ,1"AIR GAP,•CELUFIBRE' BLOW-IN INSUL FREQ | T.L • i _ Z l _ l _ i _ _ l 125 I 30. 0 160 I 32. 0 200 | 35. 0 250 | 39. 0 315 | 45. 0 400 ' 49. 0 500 | 50. 0 630 \ 53. 0 800 | 56. 0 1000 59. 0 1250 61. 0 1600 62. 0 2000 62. 0 2500 64. 0 3150 66. 0 4000 69. 0 1 % REF. NO.=541401 SOURCE=B&A STC=54. SPECIFICATION-5/8 PLBD EACH SIDE,DOUBLE 2X4 AT 16 HAL L,3/4»AIR GAP,2"MINERAL FIBRE INSUL FREQ l T.L. JA j . i f i - l 125 |" 31.0 160 | 35.0 200 | 41.0 250 | 44. 0 315 j 47.0 400 | 49.0 500 | 53.0 630 | 53.0 800 | 56. 0 1000 | 58.0 1250 | 60.0 1600 J 59.0 2000 | 58.0 2500 j 57.0 3150 | 59.0 4000 | 60.0 REF. NO.=192761 SOURCE=B&A STC=50. SPECIFICATION=1/2 PLBD EACH SIDE,DOUBLE 2X4 STUD HALL ,1»AIR GAP,2 LYRS R-7 INSUL FREQ | T.L •> J (DBJ_ 125 I 29. 0 160 i 29. 0 200 | 34. 0 250 | 39. 0 315 | 43. 0 400 | 49. 0 500 | 51. 0 630 | 53. 0 800 | 57. 0 1000 | 62. 0 1250 | 65. 0 1600 | 66. 0 2000 | 65. 0 2500 | 60. 0 3150 | 62. 0 4000 | 66. 0 197 REF. NO.=537401 SODRCE=BSA STC=49. SPECIFICATION=5/8 PLBD EACH SIDE,STAG 2X4 STDD AT 16 ON 2X6 PL,2 LYRS R-10 INSUL FREQ I T.L. 125 | 25.0 160 I 28.0 200 | 34. 0 250 | 40.0 315 | 42. 0 400 ! 46.0 500 46. 0 630 | 49. 0 800 51-0 1000 52. 0 1250 55.0 1600 58.0 2000 61.0 2500 58.0 3150 | 56.0 4000 60. 0 REF- NO.=561401 SOURCE=BSA STC=46. SPECIFICATION=5/8 PLBD EACH SIDE,STAG 2X4 STUD AT 16 ON 2X8 PL,2-1/2"D§INERAL WOOL INSUL F1EQ I T.L • 1 H_L | (P.B). 125" | 2 7 . 0 160 I 2 8 . 0 200 | 3 4 - 0 250 | 3 5 . 0 315 | 4 0 . 0 400 ] 4 1 . 0 500 | 4 2 . 0 630 | 4 6 - 0 800 | 4 9 - 0 1000 | 5 2 . 0 1'250 j 5 4 . 0 1600 | 5 4 . 0 2000 | 4 9 - 0 2500 | 5 2 - 0 3 1 5 0 | 5 7 . 0 4000 | 6 4 - 0 REF. NO.=542401 SOURCE=B&A STC=46. SPECIFICATI0N=1/2 PLBD EACH SIDE,STAG 2X4 AT 24 ON 6 PL,1-1/2"'MONOTHERH'SPRAY INSUL 1SIDE FREQ | T.L _____ . u m 125 | 26. 0 160 | 26. 0 200 | 32. 0 250 | 38. 0 315 | 38. 0 400 | 40. 0 500 | 43-0 630 | 45. 0 800 j 49. 0 1000 | 51-0 1250 | 52. 0 1600 | 54. 0 2000 | 58. 0 2500 | 59. 0 3150 I 60. 0 4000 | 64. 0 REF. NO.=202401 SOUECE=B&& STC=47. SPECIFICATION 31/2 PLBD ON 1/2 WD FIBREBD EACH SIDE 4 AT 16 ON 2X6 PL,2-1/4"GLASFIBRE INSUL FREQ j T.L • i M l . . i _ i _ _ l 125 | 28. 0 160 | 28. 0 200 | 31. 0 250 | 34. 0 315 | 39. 0 400 | 42. 0 500 | 46. 0 630 | 48. 0 800 | 50. 0 1O0O | 54. 0 1250 j 58. 0 1600 J 60. 0 2000 | 61. 0 2500 | 59. 0 3150 | 59-0 4000 j 63. 0 199 REF. NO.=202306 SOURCE=B&A STC=48. SPECIFICATION 31 LYR 1/2 : 3-1/2 CHAN AT 24,2"GLASFIBR E INSUL : 1 LYR 3/8+1 LYR 1/2 FREQ j T.L * _H_1 125" | 29. 0 160 | 28. 0 200 | 33. 0 250 | 37. 0 315 | 41. 0 400 | 45. 0 500 ! 46. 0 6 30 | 48. 0 800 I 51. 0 1000 | 53. 0 1250 | 54. 0 1600 | 55. 0 2000 } 54. 0 2500 | 50. 0 3150 I 51. 0 4000 | 54. 0 REF- NO.=155503 SOURCE=BSA STC=45. SPECIFICATION 31/2 PLBD EACH SIDE,DOUBLE 2X4 AT 16 STA G ON 2X3 PL EACH, R-7 BATT INSUL FREQ | T.L . JHZ), 1 _DBL 125 | 25. 0 160 | 28. 0 200 i 31. 0 250 34. 0 315 j 38. 0 400 | 41. 0 500 42- 0 630 47. 0 800 44. 0 1000 47. 0 1250 50. 0 1600 I 51- 0 2000 | 49-0 2500 | 49. 0 3150 | 5 0 . 0 4000 | 55. 0 APPLIANCE NOISE SPECTRA Compiled from data i n a r e p o r t b_ B o l t Beraaek and Newman I n c . (Ref FOOD DISPOSER. Fl^iIIlHZni_SPLl_JLDBL 125 | 70-0 160 | 58.0 200 | 58-0 250 | 56-5 315 56. 0 400 j 53.0 500 53.0 630 51.0 800 55-0 1000 57.0 1250 55.0 1600 56.0 2000 54.5 2500 56.0 3150 | 57.5 4000 I 55.5 FOOD BLENDER F l l E l I _ I~i - l £ L-IDBl 125 " 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 VAC FRE_IlIzi 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 51.054.0 55.0 63-0 55.0 58.5 69.0 62.0 64.0 65.0 67.0 67.5 74.0 69.0 65.0 61.0 SPL •Am. 53-0 56.0 58.0 57.5 65-5 63.5 65.0 69.0 70.0 67.0 65.5 63.0 64.0 64.5 61.0 58.5 SEW MACHINE - ___ I__2„iH_l„l_SPL__iDBl 125 64. 0 160 | 62. 0 200 j 58. 0 250 j 58- 0 315 | 58. 5 400 J 59. 0 500 | 58. 0 630 j 60- 0 800 j 62. 5 1000 | 63. 0 1250 j 61. 0 1600 | 60. 5 2000 j 60. 5 2500 j 59. 5 3150 J 57. 0 4000 • 56. 0 ELEC KNIFE FRE_ _HZ_ I SPL 125 38. 5 160 j 36. 0 200 j 38. 0 250 j 34. 0 315 j 40. 0 400 j 45. 0 500 | 49. 0 630 } 54. 5 800 j 55. .0 1000 j 58.5 1250 j 62-0 1600 J 60. .0 2000 j 60. .0 2500 j 61. .0 3150 j 59. .5 4000 58. •G FOOD SIXER FHE_ _HZ_ "125 I SPL (DB) 54.0 160 J 56-0 200 J 53.0 250 | 51-0 315 J 53 .0 400 | 51 .5 500 J 53 .5 630 | 56 .5 800 J 55 .5 1000 | 57 .0 1250 \ 55 .5 1600 J 55 .0 2000 j 58 -0 2500 | 59 -0 3150 | 54 .0 4000 j 51 . 0 DISHWASHER _M£__S___.l_SPL_iDBL 125 | 63-0 160 | 63.0 200 ! 62-0 250 | 62-0 315 | 61-0 400 60.0 500 59-0 630 j 56.5 800 54- 0 1000 52.0 1250 50-0 1600 48.5 2000 | 46.0 2500 | 45.0 3150 | 43.0 4000 | 42.0 CLOTHES WASH ., IJlEiHlLZsPL__.lDBl 125 | 73.0 160 I 55. 0 200 | 58.0 250 J 56.0 315 | 59.0 400 | 56.0 500 | 52.0 630 | 52-0 800 49-0 1000 51.0 1250 48-0 1600 46.5 2000 | 46.0 2500 ! 44.0 3150 | 42.5 4000 | 42.0 2__HZ) .i_SPL i D B l 125 | 60.0 160 | 55- 0 200 | 55.0 250 | 57.0 315 j 52.5 400 | 52.0 500 I 49.0 630 | 49.0 800 I 47-0 1000 | 45.0 1250 | 43.0 1600 | 43.0 2000 | 40.0 2500 J 39.0 3150 | 37.0 4000 } 34.0 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094075/manifest

Comment

Related Items