Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Arctic/subarctic urban housing : responses to the northern climates Ross, John Frederick 1977

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1977_A7_3 R68.pdf [ 31.28MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0094049.json
JSON-LD: 1.0094049+ld.json
RDF/XML (Pretty): 1.0094049.xml
RDF/JSON: 1.0094049+rdf.json
Turtle: 1.0094049+rdf-turtle.txt
N-Triples: 1.0094049+rdf-ntriples.txt
Original Record: 1.0094049 +original-record.json
Full Text
1.0094049.txt
Citation
1.0094049.ris

Full Text

ARCTIC/SUBARCTIC URBAN HOUSING: RESPONSES TO THE NORTHERN CLIMATES by JOHN FREDERICK ROSS Arch., U n i v e r s i t y of C a l i f o r n i a , Berkeley, 1  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF  ARCHITECTURE  in THE FACULTY OF GRADUATE STUDIES (School of A r c h i t e c t u r e ) . . •  We a c c e p t t h i s t h e s i s a s c o n f o r m i n g to the r e q u i r e d  standard  THE UNIVERSITY OF BRITISH COLUMBIA May,  ©  1977  John F r e d e r i c k Ross, 1977  In p r e s e n t i n g t h i s t h e s i s  in p a r t i a l  an advanced degree at the U n i v e r s i t y the L i b r a r y  s h a l l make i t f r e e l y  f u l f i l m e n t o f the requirements of B r i t i s h C o l u m b i a , I agree  available for  I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e  r e f e r e n c e and copying o f t h i s  It  i s understood that copying or  thesis  permission.  Department of The U n i v e r s i t y  iTgCTUr^Eo f B r i t i s h Columbia  2075 Wesbrook Place Vancouver, Canada V6T 1W5  Date  Z f r API&IU , 1 ^ 7 7  or  publication  o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d without my written  that  study.  f o r s c h o l a r l y purposes may be g r a n t e d by the Head of my Department by h i s r e p r e s e n t a t i v e s .  for  ii  ABSTRACT T h i s s t u d y i n v e s t i g a t e s the e f f e c t s o f the a r c t i c and s u b a r c t i c c l i m a t i c c o n d i t i o n s on the b u i l t onment, urban h o u s i n g i n p a r t i c u l a r .  envir-  The method o f  r e s e a r c h and development o f t h i s t h e s i s has been through a l i t e r a t u r e s e a r c h c o u p l e d w i t h my own  work-  i n g / d e s i g n e x p e r i e n c e i n the N o r t h ( F a i r b a n k s , A l a s k a ) for three years. t h e s i s i s i n t h r e e p a r t s ( c h a p t e r s 2 , 3»  The k)»  The  f i r s t p a r t makes a comparison  o f the  and  climatic  c o n d i t i o n s i n the d i f f e r e n t n o r t h e r n c l i m a t i c  zones  w i t h i n the s t a t e o f A l a s k a , as w e l l as comparing t h e s e t o more s o u t h e r n c l i m a t i c The  second  zones.  p a r t (main body o f the t h e s i s ) i n v e s -  t i g a t e s the b u i l d i n g d e s i g n r e s p o n s e s the v a r i e d c l i m a t i c c o n d i t i o n s :  (solutions) to  s o l a r r a d i a t i o n , tem-  p e r a t u r e , p r e c i p i t a t i o n , wind, and s p e c i a l  climatic  c o n d i t i o n s ( h u m i d i t y / m o i s t u r e p o t e n t i a l , b l o w i n g snow, p e r m a f r o s t , and f r o s t heave). ized into "planning l e v e l s " .  T h i s a n a l y s i s i s organFour p l a n n i n g l e v e l s a r e  e s t a b l i s h e d which d e a l w i t h ^ ) patterns,  (2)  site  b u i l d i n g s i z e , shape, and  a c t i v i t y / s p a c e arrangement, and the b u i l d i n g  layout/circulation orientation,  (J) d e t a i l i n g of  fabric.  U s i n g t h e parameters  e s t a b l i s h e d i n part 2,  plan-  n i n g l e v e l 1, p a r t 3 i l l u s t r a t e s a t o w n s i t e l a y o u t f o r a s p e c i f i c s i t e , the Willow S i t e i n s u b a r c t i c A l a s k a where t h e new  A l a s k a S t a t e C a p i t a l i 6 t o be  located. The m a j o r i t y o f people who  l i v e i n the n o r t h e r n  urban areas look t o the south f o r t h e i r housing and d e s i g n s a s w e l l as a s s e s s h o u s i n g q u a l i t y "southern standards".  styles  by  P r e s e n t l y t h e r e a r e few ways  f o r people l i v i n g l n the N o r t h t o e v a l u a t e t h e of housing f o r t h a t p a r t i c u l a r c l i m a t e except  quality through  iii  t r i a l and  quite often error.  an o r d e r e d  T h i s t h e s i s produces  l i s t i n g of b u i l d i n g / h o u s i n g responses to  the n o r t h e r n c l i m a t e s which can be d i s s e m i n a t e d the p u b l i c who  can t h e n b e t t e r a s s e s s h o u s i n g  to perform-  ance and q u a l i t y f o r t h e i r p a r t i c u l a r p h y s i c a l e n v i r onment. The  information contained w i t h i n t h i s  t h e s i s would a l s o be o f use t o p r o f e s s i o n a l s i n a r r i v i n g at design decisions for housing/building i n northern  areas.  iv TABLE OF CONTENTS  CHAPTER 1:  INTRODUCTION  .  1  1.1 THE PROBLEM 1.1.1 S o c i o - C u l t u r a l Background 1 . 1 . 2 E x i s t i n g Urban/Suburban Environment 1 . 1 . 3 The W i l l o w S i t e : New C a p i t a l C i t y 1.2 GOALS 1.3 SCOPE 1.if METHODOLOGY 1.5 APPLICATION 1.6 IMPLEMENTATION 1.7 DEFINITIONS 1.8 REFERENCES CHAPTER 2 :  CLIMATIC COMPARISON  25  2.1 INTRODUCTION 2 . 2 SOLAR RADIATION 2.2.1 Objective/Background 2 . 2 . 2 Apparent Sun P a t h ( A l t i t u d e & Azimuth) 2 . 2 . 3 Albedo 2.2.i+ C l o u d Cover 2.2.5 Implications 2 . 3 TEMPERATURE 2.3.1 Objective 2 . 3 . 2 D u r a t i o n o f C o l d Extremes 2 . 3 . 3 S e a s o n a l Temperature D i f f e r e n c e s : Average and Extreme 2 . 3 . i f D i u r n a l Temperature V a r i a t i o n s 2.3.5 Implications 2.if PRECIPITATION 2.if.1 O b j e c t i v e 2 . 4 . 2 Normal Y e a r l y P r e c i p i t a t i o n 2 . i f . 3 Extreme p r e c i p i t a t i o n Amounts Over Short Periods 2 . i f . i f Snow Cover Amount and D u r a t i o n 2.if.5 I m p l i c a t i o n s 2 . 5 WIND 2.5.1 Objective 2 . 5 . 2 Mean W i n t e r Wind Speed and D i r e c t i o n 2 . 5 . 3 Mean Summer Wind Speed and D i r e c t i o n 2 . 5 * i f Maximum Wind Speeds and D i r e c t i o n s 2 . 5 . 5 K a t a b a t i c Wind 2.5.6 Implications 2 . 6 SPECIAL CLIMATIC CONDITIONS 2.6.1 Objective 2.6.2  Humidity/Moisture P o t e n t i a l  V 2 . 6 . 3 B l o w i n g Snow 2.6.4 Permafrost 2.6.5 Active Layer/Frost 2.7  Heave  SUMMARY  2 . 8 REFERENCES CHAPTER 3 :  BUILDING DESIGN RESPONSES  . 7 0  3.1 INTRODUCTION 3 . 2 PLANNING LEVEL 1: SITE LAYOUT/CIRCULATION PATTERNS 3.2.1 Objective 3.2.2 Solar Radiation 3 . 2 . 3 Temperature 3.2.4 P r e c i p i t a t i o n 3 . 2 . 5 Wind 3.2.6 S p e c i a l C l i m a t i c Conditions (Blowing snow) 3 . 2 . 7 Summary 3.2.8 References 3 . 3 PLANNING LEVEL 2 : BUILDING S I Z E , SHAPE, AND ORIENTATION 3.3.1 O b j e c t i v e 3.3.2 Sol r Radiation 3 . 3 . 3 Temperature 3.3.4 P r e c i p i t a t i o n 3 . 3 . 5 Wind 3.3.6 S p e c i a l C l i m a t i c Conditions (Blowing Snow) 3 . 3 . 7 Summary 3.3.8 References 3 . 4 PLANNING LEVEL 3 : ACTIVITY/SPACE ARRANGEMENT 3.4.1 Objective 3.4.2 Solar Radiation 3 . 4 . 3 Temperature 3.4.4 Precipitation 3 . 4 . 5 Wind 3.4.6 S p e c i a l C l i m a t i c Conditions (Blowing Snow) 3 . 4 . 7 Summary 3.4.8 References 3 . 5 PLANNING LEVEL 4 : DETAILING OF THE BUILDING FABRIC 3.5.1 Objective 3.5.2 Solar Radiation 3 . 5 . 3 Temperature 3.5.4 P r e c i p i t a t i o n 3 . 5 . 5 Wind 3.5.6 Special Climatic Conditions A. H u m i d i t y / M o i s t u r e P o t e n t i a l B. B l o w i n g Snow C. P e r m a f r o s t D. F r o s t Heave 3 . 5 . 7 Summary 3.5.8 References  vi CHAPTER 4 :  SITE APPLICATION  217  4.1 INTRODUCTION 4 . 2 PHYSICAL FACTORS 4 . 2 . 1 Summary o f C l i m a t i c F a c t o r s 4.2.2 Site Factors A. Topography B. G e o l o g y / S o i l s C. H y d r o l o g y D. V e g e t a t i o n 4 . 3 TOWNSITE LAYOUT AND ANALYSIS 4.3.1 Solar Radiation 4 . 3 * 2 Temperature 4.3.3 Percipitation 4 . 3 . 4 Wind 4.3.5 Special Climatic Conditions 4 . 4 REFERENCES 23S  BIBLIOGRAPHY 1. R e f e r e n c e M a t e r i a l c i t e d 2. S o u r c e s  Consulted  APPENDIX  A:  ANALTSIS OF THE CLIMATIC FACTORS I N THE SUSITNA VALLEY AREA 255  APPENDIX  B:  BUILDING SPACING AND TOPOGRAPHY . . 2 9 0  •ii ACKNOWLEDGEMENT  I w i s h t o e x t e n d my t h a n k s t o t h o s e who have worked w i t h i n my s u b j e c t a r e a and h e l p e d t h r o u g h conversations literature:  and/or t h e s u p p l y i n g  of informative  B o r i s C u l j a t (Ralph Erskine's  firm i n  Sweden), B u r g e s s L e d b e t t e r (CRRE1, Hanover, N.H.), and  t h e N a t i o n a l R e s e a r c h C o u n c i l o f Canada.  Thanks  go to- Dr. John Hay o f t h e Geography Department f o r r e v i e w on t h e p o r t i o n o f my t h e s i s d e a l i n g w i t h t h e c l i m a t i c analysis along with supplying r a d i a t i o n data.  the northern  Thanks t o N a t a l i e H a l l o f t h e  A r c h i t e c t u r e R e a d i n g Room f o r h e r h e l p i n t h e l i t e r a ture search.  S p e c i a l t h a n k s go t o my t h e s i s committee  who had t h e m a j o r t a s k o f h e l p i n g me b r i n g a l l my m a t e r i a l together i n t o a cohesive format:  Ray c o l e ,  Wolfgang G e r s o n , and my mentor, P a u l W i s n i k i .  1  CHAPTER  1  INTRODUCTION 1.1  THE PROBLEM 1.1.1 S o c i o - C u l t u r a l  Background  1.1.2 E x i s t i n g Urban/Suburban  Environment  1.1.3 The W i l l o w S i t e : New C a p i t a l 1.2  GOALS  1.3  SCOPE  1.4  METHODOLOGY  1.5  APPLICATION  1.6  IMPLEMENTATION  1.7  DEFINITIONS  1.8  REFERENCES  City  r i ^ u r e  1.1  3  1.1  THE PROBLEM  1.1.1  S o c i o - C u l t u r a l Background When d e a l i n g w i t h t h e b u i l t environment i n  n o r t h e r n Canada and A l a s k a , one i s c o n f r o n t e d w i t h c l i m a t i c as w e l l as c u l t u r a l d i f f e r e n c e s . for  The d e s i g n  t h e need o f an i n d i g e n o u s p o p u l a t i o n which r e -  t a i n s i t s h i s t o r i c c u l t u r a l p a t t e r n s , and t h e d e s i g n for  t h e needs o f "newcomers" from t h e s o u t h w i t h d i f -  f e r i n g c u l t u r a l o r i g i n s and p a t t e r n s p r e s e n t d i f f e r i n g c r i t e r i a f o r d e s i g n i n g i n the harsh northern c l i m a t e s . T h i s t h e s i s f o c u s e s on those people who a r e t i e d  into  the m a i n s t r e a n o f t h e more s o u t h e r n c u l t u r e , those who i d e n t i f y w i t h t h e c u l t u r e and b u i l t of  environment  n o r t h e r n U.S. and s o u t h e r n Canadian c i t i e s .  My  c o n c e r n i s t o l e t t h e s e people know t h e e f f e c t s o f the more extreme c l i m a t i c c o n d i t i o n s on t h e i r h o u s i n g image which n o r m a l l y responds more temperate  t o t h e i r needs under  environmental conditions.  "Given a c e r t a i n c l i m a t e , the a v a i l a b i l i t y of c e r t a i n m a t e r i a l s , a n d ' c o n s t r a i n t s and capa b i l i t i e s o f a g i v e n l e v e l o f t e c h n o l o g y , what f i n a l l y d e c i d e s t h e form o f a d w e l l i n g , and molds t h e spaces and t h e i r r e l a t i o n s h i p s , i s t h e v i s i o n t h a t people have o f t h e i d e a l l i f e . The environment sought r e f l e c t s many s o c i o - c u l t u r a l f o r c e s , i n c l u d i n g r e l i g i o u s b e l i e f s , f a m i l y and c l a n s t r u c t u r e , s o c i a l o r g a n i z a t i o n , way o f g a i n i n g a l i v e l i h o o d , and s o c i a l r e l a t i o n s between i n d i v i d u a l s . T h i s i s why s o l u t i o n s a r e much more v a r i e d t h a n b i o l o g i c a l needs, t e c h n i c a l d e v i c e s , and c l i m a t i c c o n d i t i o n s , and a l s o why one a s p e c t may be more dominant i n one c u l t u r e t h a n i t i s i n o t h e r s . B u i l d i n g s and s e t t l e m e n t s a r e the v i s a b l e e x p r e s s i o n o f t h e r e l a t i v e i m p o r t a n c e a t t a c h e d t o d i f f e r e n t a s p e c t s o f l i f e and t h e v a r y i n g ways o f p e r c e i v i n g r e a l i t y . " 1  One major f o r c e s l o w i n g t h e a c c e p t a n c e o f a h o u s i n g s t y l e o r d e s i g n which i s unique t o t h e suba r c t i c c l i m a t e l i e s i n t h e s o c i o - c u l t u r a l make up o f the m a j o r i t y o f people l i v i n g i n t h e s u b - a r c t i c  urban  areas.  ties  to  These people have s t r o n g s o c i o - c u l t u r a l  t h e mainstream  o f American  c u l t u r e which i s  5  c e n t e r e d i n t h e more s o u t h e r n l a t i t u d e s o f t h e c o n t i n ental United States.  These people s t i l l  look t o the  " s o u t h " f o r t h e i r h o u s i n g s t y l e s and d e s i g n s a s w e l l as a s s e s s h o u s i n g q u a l i t y by " s o u t h e r n s t a n d a r d s " only s l i g h t l y modified. "A t r i c k y problem t h a t sometimes b e d e v i l s the a r c t i c d e s i g n e r i s t o determine what c o n s t i t u t e s a p r o p e r house. F o r many people t h e " i d e a l d w e l l i n g " i s i d e n t i c a l t o whatever i s i n f a s h i o n " s t a t e s i d e " : i f t h i s means R a n c h - S t y l e w i t h - S l i d i n g - G l a s s - P a t i o - w a l l s , so be i t . I f i t means New-England-Salt-Box, t h a t t o o c a n be done. B e l i e v e i t o r n o t , t h e r e a r e colonnaded Southern C o l o n i a l mansions i n Anchorage and Fairbanks."2 A l o o k a t t h e h o u s i n g i n the major c i t i e s i n A l a s k a , one c a n see t h e same d e s i g n s and s t y l e s a s the h o u s i n g i n t h e " l o w e r 48" m o d i f i e d by t e c h n i c a l s o l u t i o n s t o make them work b e t t e r i n t h e N o r t h , such as i n c r e a s e d i n s u l a t i o n , more window panes, e t c .  The  c i r c u l a t i o n p a t t e r n s , s i t e l a y o u t s , and b u i l d i n g s i z e s , shapes, and o r i e n t a t i o n s a r e n e a r l y i d e n t i c a l t o those i n t h e " l o w e r 48" showing l i t t l e  design  response t o t h e n o r t h e r n s u b - a r c t i c c l i m a t i c The  l o c a l media h e l p s t o p e r p e t u a t e t h i s  conditions. housing  image w i t h a r t i c l e s w r i t t e n i n t h e " l o w e r 48" showing h o u s i n g which would have d i f f i c u l t i e s a d a p t i n g t o t h e s u b - a r c t i c environment.  A r t i c l e s on t h e f o l l o w i n g  pages a r e from t h e F a i r b a n k s D a i l y New6-Miner3 and t h e Anchorage Times.4  6  It  1!  {car'  »?  ti^j-i  ^ r i ^ i -  v —  tj,  i l A N C H H O U S E — T h e r e is a l i m i t e d a m o u n t of b r i c k o n 'he f a c a d e of t h i s t h r e e - b e d r o o m r a n c h h o u s e , w i t h t h r e e .vindows in the l i v i n g r o o m , a n i n t e r e s t i n g d e p a r t u r e f r o m  the u s u a l p i c t u r e w i n d o w a r r a n g e m e n t . T h e g a r a g e c a n be for either one or two c a r s without detracting f r o m the e x t e r i o r a p p e a r a n c e of the house.  .(&D<Q>dl plamiininmis ByANDY LANG A compact floor plan that takes advantage of the concept of open planning makes ths interior of this ranch seem more spacious than Its 1,234 square feet of habitable area. At the front c' the house, the living room and dining room run together for 26 feet. At the rear, the kitchen and family room are similarly arranged a'cng the same distance. The result is a feeling of size that ordinarily might not be experienced in a house with such modest dimensions. This must be considered a plus for most persons, since the amount of living space has a bearing on construction costs. Should even further budget economies be necessary, the plan can be adjusted downward, as suggested by architects Herman York end Raymond Schenke. T h e private bathroom for the main bsdreom can be omitted, as can the lavatory off ths laundry room • behind the garage. Beth of these spaces could then be used as walkin storage areas.  1?^  ©Aft  At the other side of the house are the three bedrooms, with generous wall spaces for furniture placement. Design R-188 is a solid house for fjood living. F u l l study plan information on this archi'ect-der.ijTned House of the Week is available in a SI baby blueprint which yon c.?n order by" sending SI to: House of the Week, c/o Daily News-Miner, The Associated Fress, 50 Rockefeller Plaza, New York, N.V., ]C'J20.  The long sweep of the family room and kitchen makes for a feeling i of open space, yet the kitchen is self-contained with its principle work areas hidden from view. Access is provided from the family room to the rear terrace and. to make matters more convenient, a pass-through serving shelf is between the kitchen and the outdoor dining portion of the terrace. Beyond the kitchen and still convenient to the re3r part of the lot is the laundry, stairway to the basement, mud closet, lavatory and ! garage. Should it be possible to hang clothe., and linens i n the sun, i this can be done with convenience in this layout.  7." -V .7j^' ^ii^»^*"^ui.|jf !l  u  ft  F L O O R P L A N — N o w a s t e s p a c e i n t h i s floor l a v o u t . A m i n i m u m a m o u n t of h a l l w a y i n t h e b e d r o o m area" i s p a r t of t h e a r r a n g e m e n t to u t i l i z e a s m u c h avr.ilr.ble s p a c e a s p o s s i b l e , t h u s p e r m i t t i n g t h e r o o m s to b e l a r g e r t h a n might otherwise h a v e b e e n possible within modest dimensions.  FAMILY HOOM-PorliojiK of llic- family rofim,rfirmttcnrca nnrl kitclu'ii are shown 31-'",. j\\ * in thin artist'« rcndorini;. .SlUiiup fl.iss hi >^ *"> I ''"^rs It-nd ton ronr let i nco.  "  __*_.„  ..  7  By ANDY L A N G  1?«»n»i!cT .  • Oa tfc« s:!K5 !evc! ers a kitcLta-Craa. three t s i v a s a are buffered ircrn th; iiv:r.a area by the stair; and bathrooms. The caster bcdroca is in ths rear v.-ith tia'aeie cxparare, a=aa cia:at space cr.i a private lull bath *-i:h nica Ehowar staii. Tha main bath icaturca a lu-insus ce'.as* a-.; taccacsiceliy cc;a.-a::dc:j.-aastfan. Meierr:: la la every every reapec:, r tha titci.a:'. prcviiaa cii tha aa r.r.i ccr.vtaiar.caa , a bjJ:-;n oven . :r.-:a -cat offcabitaa.'aaraa erd r?rr^- ref/i^aratar and a cr. i_a tipper main level. Uvea fuil C'-.i.:!ar/.ar.i cf ceur.icr space, c::r.:.-.:^.-.3 cn car.:..-a::ian anti s t o r a g e earj, >: see-a ta ta larger trash-tr.aher ar.ci iarba;a rr.'jihar. Deca-aao c' the nar_-.ar in chic:) thsUrtajrcarr. er.dtts da".; ciaaite is ee.'£csr.t to craia'.ricut. the rear sarv:cs entrar.es that Placed in lino by architect laaitotharaars'.T.aar::. T.'i'.Iiam G. Ch!r;c::a, they Dav.-r. Uca the entrance RSJSS restC i r . c h a ; f a y c r . err: raiead just esctra tent c' the haaee ta a c'aai; a: tc c:irr.:r.a:a the sae:errcncan The vieta is e:rr.eep.-.:r: cithe !cv:a-level. ' I s s e i ' t t e l y vlaihle en is ;he car.:.'?': far.iiv reachan;; th? i:p ct tha ;her; rccan v.-.:'- c'ia.r.- ca.r acccaa £ a ! n ~ y . r.::h a r.-rca;!:: itca ta lha : ; - r yr:>.: laundry, raihrc preiuciaj a balccrucj lava-.cry, tie.-, tad th? ever- sized trv:ar £r:a»» to stewcard:.-, tail:, :c, j . iasracrils tidti::!;:::-. The charm cf Ccicr.ir.'. itylias is ecSsiicd in 6a gabled rca; c.r.ranca panic;, the shuttcr-ti-ir.: r.iC ta-H-zi vviaiiavra a - i f.? Ue&& of l.:i:'.; vcr.c:.- a.-.a' rci AfetaialtfssitnKciosssa plan in this . . ^rcarn hatsa, csiad 1c to'oa a i d with Ifcr.-aifvcstiss. The c::::-i:r racapfjrcs th:tha past s-hi.a tha th? reams the lite s:v!-acf to prcaar.:. It's a bi-leve! remati.-cs ler.:r;n caa hir.h rar.ch, ci:h a rah: cr.try  .Early Aaerfcsn Touches AisunJ En Gracs:^:y-£:;-!cd i:=  ,(ca;6ina!:::fcy:3fcai0i.::::::. alar;e Ic*. i: r.aircr/airc i. c a n  R'.UI a rear cr.:ra:.aa t: ;ij  ' e a s y . /-'• '<•• i:z-i'----  tta: v:::: c~i '•••^z jgcr;!;-:.y::a..a".-.:a:r.r.v. -. p.-ir-::AT:3~cs C K : ; T r:-i.*J has a :i;:rj  naa, er.t«; rear;. hU::iar:,  .thraa b^araaras ar.a T O tathrac.T.ian the r.air.: levt!, tcrcin: UCi aq-aar J . at etUvins Cn ths : r - ; r laye!, wh'Ji !: a-tL-a:> 'a •rfr^Jtw t.-a atara r.ra SSI a;-:a.-a hy tha araiuua: :...a a . c**a,!. ' fisiss rasa tsd i.itaaan a : i ; C> sijare fea: ta tis haa.aa.:a  UPPER LEVEL PLAN  <:'-C  """' '••S^ s  8 #  Supply and Demand V e r s e s H o u s i n g  Quality  There a r e o t h e r l i m i t a t i o n s i n a c h i e v i n g h o u s i n g q u a l i t y which a r e unique i n the a r c t i c and environment.  sub-arctic  The s u p p l y and demand mechanism, w h i c h  c o n t r o l s the degree o f h o u s i n g q u a l i t y i n most e n v i r onments, i s r a r e l y i n f a v o r o f the consumer ( h i g h e r q u a l i t y a t a r e a s o n a b l e p r i c e ) s i n c e the s u p p l y n o r m a l l y l a g s f a r b e h i n d the demand. environment,where dependent  I n the n o r t h e r n  the i n f l u x o f people comes i n s p u r t s  on the development  o f r e s o u r c e s , the demand  f o r h o u s i n g i s g r e a t e r t h a n the s u p p l y most o f the time.  An extreme example i s the A l a s k a o i l  development  pipeline  which b r o u g h t thousands o f people t o the  N o r t h c r e a t i n g such a h i g h demand on h o u s i n g t h a t the p r i c e s s k y r o c k e t e d w h i l e the q u a l i t y o f h o u s i n g was k e p t t o an a b s o l u t e minimum i n o r d e r t o maximize profits.  The s u p p l y and demand method o f c o n t r o l l i n g  q u a l i t y has not had b e n e f i c i a l e f f e c t s f o r the u s e r / buyer i n the d e v e l o p i n g a r e a s o f the n o r t h . The o n l y mechanism which p o t e n t i a l l y " i m p r o v e s " h o u s i n g q u a l i t y ( a t a d e t a i l l e v e l ) i s the mortgage l o a n p r o c e s s i n which the banks o r l e n d i n g  institu-  t i o n s want t o see a t y p i c a l , f a m i l i a r house d e s i g n , a w a l l s e c t i o n , and heat l o s s d a t a i n o r d e r t o make s u r e t h e i r i n v e s t m e n t w i l l l a s t and t h a t i t i s marketable.  While t h i s mechanism h e l p s t o make s u r e t h e  house has p r o p e r i n s u l a t i o n and a v a p o r b a r r i e r , i t a l s o r e s t r i c t s any new o r i n n o v a t i v e i d e a s w h i c h  may  respond b e t t e r t o the c l i m a t i c c o n d i t i o n s i f t h e y r e s u l t e d i n h o u s i n g which d i d not f a l l i n t o  their  image o f a " m a r k e t a b l e " house.5 •  Guidelines/Controls Any attempt t o s e t up g u i d e l i n e s o r c o n t r o l s r e g a r d i n g h o u s i n g o r e n v i r o n m e n t a l q u a l i t y which r e s p o n d s w e l l t o the n o r t h e r n environment  would  p r o b a b l y meet w i t h d i s a p p r o v a l from t h e p e o p l e t h e  c o n t r o l s would be t r y i n g t o p r o t e c t .  Many o f t h o s e  l i v i n g i n the N o r t h a r e t h e r e t o be f r e e from the r e s t r i c t i o n s and r e g u l a t i o n s found i n the more s o u t h e r n urban a r e a s .  This "frontiersman" a t t i t u d e runs  h i g h among n o r t h e r n i n h a b i t a n t s and t h e y g e n e r a l l y do not want r e g u l a t i o n s which r e s t r i c t t h e i r e s p e c i a l l y when i t a p p l i e s t o t h e i r home  freedom  environment.  A s t u d y i n a more remote a r e a , I n u v i k , N.W.T., r e i n f o r c e s the presence o f t h i s " f r o n t i e r s m a n " attitude: "About h a l f o f a l l c i v i l i a n s s a i d t h a t t h e y were l u r e d n o r t h w a r d , w h o l l y o r i n p a r t , by t h e d e s i r e f o r a d v e n t u r e , t r a v e l , new e x p e r i e n c e , or the excitement o f " p i o n e e r i n g " . Indeed, i f t o t h e s e we add the people who spoke o f the North'B r e c r e a t i o n a l a t t r a c t i o n s ( n o t a b l y h u n t i n g and f i s h i n g ) and o f the w i s h t o escape c i t y l i f e , t h e n i t can be s a i d t h a t more t h a n t w o - t h i r d s o f c i v i l i a n s i n the sample were m o t i v a t e d , a t l e a s t i n p a r t , by a d e s i r e t o escape a r o u t i n e e x i s t e n c e i n the South."6 Due  t o the problems  confronting northern housing,  the b e s t method t o approach inate  them would be t o dissem-  i n f o r m a t i o n r e g a r d i n g b u i l d i n g responses f o r  the h a r s h and v a r i a b l e s u b - a r c t i c c l i m a t i c f a c t o r s t o the u s e r s , b u y e r s , and b u i l d e r s o f h o u s i n g .  People  can t h e n b e t t e r a s s e s s t h e q u a l i t y o f h o u s i n g i n the s u b - a r c t i c n o r t h e s t a b l i s h i n g t h e i r own  form o f  n o r t h e r n h o u s i n g which r e f l e c t s t h e i r p r i o r i t i e s f o r c l i m a t i c f a c t o r s or opposing s o c i o - c u l t u r a l  factors.  10  1.1.2  E x i s t i n g Urban/Suburban E n v i r o n m e n t s How  have the m a j o r A l a s k a n c i t i e s  and what i s t h e i r p r e s e n t  form?  c i t i e s o f Anchorage (around  The  developed  two l a r g e s t  170,000 population i n  the a r e a ) and F a i r b a n k s (around 7 0 , 0 0 0 p o p u l a t i o n i n the a r e a ) a r e l i t t l e  d i f f e r e n t from any o t h e r  c i t y i n most r e s p e c t s , y e t F a i r b a n k s  (65  north  t u d e ) has a c o n t i n e n t a l s u b - a r c t i c c l i m a t e and orage (61  U.S. latiAnch-  n o r t h l a t i t u d e ) has a somewhat m i l d e r  t r a n s i t i o n a l sub-arctic climate. "Anchorage was founded as the c o n s t r u c t i o n h e a d q u a r t e r s and s u r v e y camp f o r the b u i l d i n g o f the A l a s k a R a i l r o a d i n 1914. B e f o r e World War 11 the p o p u l a t i o n o f the town was about 3 » 7 0 0 , but w i t h the advent of the army and a i r f o r c e , and the tremendous c o n s t r u c t i o n a c t i v i t y c o n t i n g e n t upon d e f e n s e , t h e p o p u l a t i o n s o a r e d . Population growth has c o n t i n u e d t o a c c e l e r a t e w i t h d e v e l o p ment o f the Cook I n l e t o i l b a s i n . Anchorage i s a s u p p l y c e n t e r f o r the new o i l i n d u s t r y on the N o r t h S l o p e , as w e l l as Cook I n l e t . Many l a r g e o i l companies m a i n t a i n r e g i o n a l o f f i c e s h e r e , as do s u b s i d i a r y o r g a n i z a t i o n s c o n t r i b u t i n g t o the industry. E. T. B a r n e t t e e r e c t e d the f i r s t b u i l d i n g i n F a i r b a n k s , a l o g c a b i n cache f o r t r a d e goods, i n A u g u s t , 1901. When he was u n a b l e t o proceed beyond B a t e s R a p i d s i n the Tanana R i v e r he t u r n e d back and cached h i s g e a r on the Chena. B e f o r e B a r n e t t e c o u l d b u i l d a more p o w e r f u l boat w i t h which t o get h i s goods p a s t the r a p i d s , F e l i x Pedro found g o l d and s t a k e d c l a i m s on what were s h o r t l y named Pedro Creek and C l e a r y Creek. T h i s was on J u l y 2 2 , 1902, and the e n s u i n g stampede o f p r o s p e c t o r s i n t o the a r e a a s s u r e d the growth o f the new community. I n 1906, w i t h a popu l a t i o n o f 8 , 0 0 0 , the p r o d u c t i o n o f g o l d i n the F a i r b a n k s d i s t r i c t was v a l u e d a t more t h a n $9 m i l l i o n . F a i r b a n k s today i s a c e n t e r o f t r a d e and t r a n s p o r t a t i o n f a r beyond t h a t w h i c h i s superf i c a l l y i n d i c a t e d by p o p u l a t i o n f i g u r e s . It i s the second l a r g e s t p o p u l a t i o n c e n t e r i n the s t a t e . The S t e e s e , R i c h a r d s o n , E l l i o t , A l a s k a and Ancho r a g e - F a i r b a n k s Highways converge a t F a i r b a n k s ; the A l a s k a R a i l r o a d e x t e n d s from F a i r b a n k s t o t i d e w a t e r a t Anchorage and Seward; I n t e r c o n t i n e n t a l p l a n e s as w e l l as i n t r a - A l a s k a a i r c r a f t use the modern I n t e r n a t i o n a l A i r p o r t . " 7  11  Housing i n these c i t i e s i n i t i a l l y c o n s i s t e d of l o g c a b i n s c l u s t e r e d around a "downtown" n e a r t h e r i v e r where goods were s h i p p e d by steamboats e r s (Chena R i v e r i n F a i r b a n k s ) . was not u n t i l World War  and  paddlewheel-  C o n n e c t i o n by r o a d  11 when the army b u i l t  the  A l a s k a Highway. I n the 1950'6 and 1960's, t h e a r e a s around towns began d e v e l o p i n g w i t h s u b d i v i s i o n s up i n v a r i o u s l o c a t i o n s .  the  springing  These h o u s i n g a r e a s a r e much  l i k e any o t h e r h o u s i n g s u b d i v i s i o n i n o t h e r U.S. A l o o k a t the F a i r b a n k s map  (page 13)  cities.  one can see the  s u b d i v i s i o n s o f H a m i l t o n A c r e s , A u r o r a , and A r c t i c  Park  w i t h t h e i r n e a t l y l a i d out n o r t h / s o u t h , e a s t / w e s t s t r e e t g r i d w i t h the m a j o r i t y o f t r a c t houses s i t u a t e d a l o n g the e a s t / w e s t  streets.  Downtown Anchorage i s a l s o on t h i s g r i d w i t h the c i t y ' s l a r g e r b u i l d i n g s now way,  east/west s t r e e t s .  pattern  f a c i n g l a r g e one-  The h o u s i n g s u b d i v i s i o n s have  d e v e l o p e d a t v a r i o u s s p o t s f a r t h e r and f a r t h e r from the c i t y c e n t e r making a u t o t r a n s p o r t a t i o n a n e c e s s i t y and p u b l i c t r a n s p o r t u n f e a s i b l e due t o the d i s p e r s i o n o f the p o p u l a t i o n . At p r e s e n t F a i r b a n k s has one bus ( p u b l i c  transport  system) which t r a v e l s from downtown out t o the U n i v e r s i t y (4 m i l e s ) a l o n g C o l l e g e Road. n e c e s s a r y f o r most people who  T h i s makes i t  need t o go downtown o r  t o s h o p p i n g a r e a s t o d r i v e t h e i r own v e h i c l e s . it  When  i s v e r y c o l d people o f t e n l e a v e t h e i r a u t o s  idling  so the c a r w i l l not get c o l d w h i l e t h e y do t h e i r ping or other business.  D u r i n g the  shop-  periods of cold  t e m p e r a t u r e i n v e r s i o n s , the a i r s t a g n a t e s and the c a r bon monoxide r e a c h e s l e v e l s h i g h e r t h a n n e a r l y o t h e r American  any  city.  As t h e s e c o n d i t i o n s i n d i c a t e , the e x i s t i n g  urban  a r e a s have not been planned f o r the n o r t h e r n e n v i r o n ment i n which t h e y a r e s i t u a t e d .  While s o l u t i o n s are  b e i n g r e f i n e d a t the d e t a i l l e v e l , l i t t l e  i s b e i n g done  a t h i g h e r p l a n n i n g l e v e l s which have a d i r e c t  impact  on t h e h a b i t a b i l i t y o f the h o u s i n g and s u r r o u n d i n g environment.  ANCHORAGE  14  1.1.3  The W i l l o w S i t e :  The New  C a p i t a l C i t y of Alaska  T h i s t h e s i s f o c u s e s on a p a r t i c u l a r s i t e which i s d e s i g n a t e d f o r the f u t u r e development o f a new the new A l a s k a S t a t e C a p i t a l . all  town,  Climatic planning at  d e s i g n l e v e l s has p a r t i c u l a r i m p o r t a n c e i n t h i s  case s i n c e t h e r e i s no e x i s t i n g urban a r e a which would predetermine  the h o u s i n g d e s i g n p o t e n t i a l a t the h i g h e r  p l a n n i n g l e v e l s (see f i g u r e  1.9).  Background on t h i s p a r t i c u l a r s i t e shows t h a t i n 1976  the people o f A l a s k a v o t e d t o have t h e S t a t e  C a p i t a l moved from i t s p r e s e n t l o c a t i o n i n Juneau, i n s o u t h e a s t e r n A l a s k a , t o an undeveloped n o r t h o f Anchorage.  The new  s i t e 40 m i l e s  l o c a t i o n , the W i l l o w  S i t e , i s on the e a s t s i d e o f the l o w e r S u s i t n a R i v e r Valley.  T h i s l o c a t i o n , a p p r o x i m a t e l y 62  tude and  150  of  north  lati-  west l o n g i t u d e , l i e s on the s o u t h s i d e  the A l a s k a Range and t o the southwest  keetna Mountains.  o f the T a l -  The A l a s k a R a i l r o a d and the  Anchor-  a g e - F a i r b a n k s Highway a r e w i t h i n c l o s e p r o x i m i t y t o the s i t e . 8 While the h o u s i n g d e s i g n r e s p o n s e s d e v e l o p e d  by  t h i s s t u d y c o u l d be u t i l i z e d i n many c o l d c l i m a t e areas with l i t t l e of  o r no m o d i f i c a t i o n , the a p p l i c a t i o n  the d e s i g n r e s p o n s e s  (chapter 4)  i s focused  towards  o p t i m a l e n e r g e t i c r e s p o n s e s t o the c l i m a t i c and c o n d i t i o n s p r e s e n t a t the W i l l o w S i t e .  Other  ments i n the w o r l d near t h i s same l a t i t u d e  site  settle-  include:  Y e l l o w k n i f e , N.W.T.; F r e d e r i k s h a a b , G r e e n l a n d ; Sundsv a l l , Sweden; P e t r o z a v o d s k and Y a k u t s k , R u s s i a . The new  town a t W i l l o w i s s c h e d u l e d t o have s t a t e  employees b e g i n moving i n by 1980  and i s e x p e c t e d t o  have a p o p u l a t i o n o f 2 5 , 0 0 0 by 1990.  Housing c o s t s  a r e e x p e c t e d t o be n e a r l y 3 5 % o f the t o t a l c u m u l a t i v e c o s t o f the new type mix was (40%  town by the y e a r 1 9 9 0 . 9  The  housing  p r o j e c t e d a t 60% 6 i n g l e f a m i l y houses  @ 4 u n i t s / a c r e and 2 0 % @ 9 u n i t s / a c r e ) ,  m u l t i f a m i l y (2 o r more c o n n e c t e d u n i t s ) , and  30% 10%  15  m o b i l e homes m a j i n g a t o t a l o f 4 6 0 5 d w e l l i n g u n i t s by 1 9 9 0 .  1 0  T h i s e s t i m a t e was s u p p o s e d l y based on h i s -  t o r i c a l d a t a on c o m p a r a t i v e  A l a s k a communities.  f i g u r e s published i n the A l a s k a Statewide  The  Housing  Study i n 1 9 7 1 , show q u i t e a d i f f e r e n t mix o f h o u s i n g types:  1 1  Total Units  1Unit  2 or more units  Mobile Homes  Nation  69.4%  27.9%  2.8%  State  52.5%  37.5%  10.1%  88,343  Anchorage  42.4%  45.8%  11.7%  37,622  Fairbanks  39.3%  52.8%  7.9%  12,488  Juneau  49.4%  40.5%  10.0%  4,519  67,607,842  S i n c e t h i s s t u d y i n 1971 t h e r e has been a g r e a t d e a l o f h o u s i n g c o n s t r u c t i o n due p r i m a r i l y t o t h e o i l pipeline construction.  There h a s been a marked i n -  c r e a s e i n t h e amount o f compact h o u s i n g u n i t s  built  (2 o r more u n i t s ) which c o u l d s h i f t t h e above f i g u r e s even h i g h e r i n t h a t c a t a g o r y .  W i t h t h i s i n mind, a  more r e a s o n a b l e h o u s i n g m i x p r o j e c t i o n f o r t h e new C a p i t a l would have 40% s i n g l e f a m i l y h o u s e s , 50% m u l t i p l e / c o m p a c t h o u s i n g , and 10% m o b i l e homes. t h i s i n mind, t h i s t h e s i s p r e s e n t s b u i l d i n g  responses  t o t h e c l i m a t i c f a c t o r s which c o u l d be a p p l i e d t o b o t h s i n g l e f a m i l y houses and m u l t i p l e / c o m p a c t housing.  With  16  17  1.2  GOALS To enhance the q u a l i t y / h a b i t a b i l i t y o f n o r t h e r n  housing through b e t t e r  responses t o the s u b - a r c t i c  environmental factors  ( c l i m a t i c and s i t e f a c t o r s ) .  To maximixe energy e f f i c i e n c y by c o n t r o l and use o f t h e c l i m a t i c  optimizing  factors.  To d e v e l o p h o u s i n g d e s i g n r e s p o n s e s f o r t h e suba r c t i c environment w i t h a p p l i c a t i o n  to a s p e c i f i c  site. To p r o v i d e a h o u s i n g d e s i g n / e v a l u a t i o n . b a s e f o r u s e r e d u c a t i o n and p a r t i c i p a t i o n . 1.3  SCOPE W i t h i n the context o f the t o t a l design process,  the a r e a o f i n v e s t i g a t i o n i s l i m i t e d t o t h e c l i m a t i c factors:  6 o l a r r a d i a t i o n , temperature, p r e c i p i t a t i o n ,  w i n d , and s p e c i a l c l i m a t i c c o n d i t i o n s  (humidity/  m o i s t u r e p o t e n t i a l , b l o w i n g snow, p e r m a f r o s t , and active  l a y e r / f r o s t h e a v e ) ; a s w e l l axe the s p e c i f i c  site factors: and  topography, g e o l o g y / 6 o i l s ,  vegetation.  hydrology,  The f u n c t i o n a l r e q u i r e m e n t s which  d e t e r m i n e i n t e r i o r space arrangements o f h o u s i n g designs are d e l t with only as they r e l a t e t o the climatic/site factors The  (figure  1.8).  f i r s t p a r t , chapter 2 , deals w i t h the c l i m a t e ,  comparing t h e d i f f e r e n t c l i m a t i c zones w i t h i n t h e State of Alaska ( a r c t i c , continental, t r a n s i t i o n a l , and  m a r i t i m e ) , a s w e l l as comparing t h e s u b - a r c t i c  t r a n s i t i o n a l zone w i t h more f a m i l i a r " c o l d  climate"  zones i n the " l o w e r 4 8 " and s o u t h e r n Canada. The  purpose o f t h i s i n t r o d u c t o r y  part of the  t h e s i s i s t o p o i n t o u t t h e major r e g i o n a l o f t h e c l i m a t i c f a c t o r s which i n f l u e n c e  differences  o u r way o f  l i f e and performance o f o u r b u i l d i n g s . B o t h s o c i a l and p h y s i c a l by  the s u b - a r c t i c  problems a r e i n t e n s i f i e d  climatic conditions.  Such s o c i a l  18  i m p l i c a t i o n s as " c a b i n f e v e r " and i n t e n s i f i e d  inter-  a c t i o n i n c o n f i n e d spaces can e i t h e r be r e l i e v e d o r i n t e n s i f i e d by the b u i l t e n v i r o n m e n t .  The  social  i m p l i c a t i o n s r e l a t e d t o the n o r t h e r n environment a r e i m p o r t a n t and more q u a n t i t a t i v e s t u d i e s s h o u l d be done in this field.  T h i s type o f s t u d y i s not w i t h i n the  scope o f t h i s t h e s i s .  I t i s hoped t h a t t o some e x t e n t  the h o u s i n g u s e r s / b u y e r s  can i d e n t i f y t h e i r own  social  needs w i t h r e g a r d t o t h e i r l i v i n g environment and make adjustments  a c c o r d i n g l y , g i v e n the c o n t r o l and  flex-  i b i l i t y needed. The  second p a r t , c h a p t e r 3» aims a t o p t i m i z i n g  the c o n t r o l and use o f the c l i m a t i c s t r e s s o r s and resources.  T h i s p a r t p r e s e n t s the c l i m a t i c  t i o n s on b u i l d i n g  implica-  and i l l u s t r a t e s the d e s i g n  t o the c l i m a t i c f a c t o r s .  responses  These d e s i g n r e s p o n s e s  are  planning l e v e l  1,  s i t e l a y o u t / c i r c u l a t i o n patterns; planning l e v e l  2,  treated at four planning l e v e l s :  b u i l d i n g s i z e , shape, and o r i e n t a t i o n ; p l a n n i n g 3,  level  a c t i v i t y / s p a c e arrangement; and p l a n n i n g l e v e l 4»  d e t a i l i n g o f the b u i l d i n g f a b r i c ( f i g u r e 1 . 9 ) .  Proper  e n v i r o n m e n t a l d e s i g n a t the h i g h e r p l a n n i n g l e v e l s h e l p t o l e s s e n the impact o f the c l i m a t i c  factors  which must be d e l t w i t h a t the lower p l a n n i n g l e v e l s (building fabric).  T h i s p a r t c o u l d be used as a  program f o r d e s i g n / e v a l u a t i o n f o r the c l i m a t e , which can be a p p l i c a b l e t o much o f the n o r t h e r n e n v i r o n m e n t . The  t h i r d p a r t , chapter 4,  t i o n s and r e s p o n s e s  e v a l u a t e s the  implica-  under the c l i m a t i c f a c t o r s p r e s e n t -  ed i n c h a p t e r 3 and s t a t e s a p r e f e r e n c e o f d e s i g n t r a d e o f f s a t the h i g h e r p l a n n i n g l e v e l s as t h e y p e r t a i n t o a p a r t i c u l a r s i t e , the W i l l o w  Site.  19  20  PUAMNtNa IMPACT: LEVfcU OF  OFIMFA^T:  U^VeL-  1  •Layout o f the main v e h i c l e and p e d e s t r i a n c i r c u l a t i o n p a t t e r n s and independent b u i l d i n g s w i t h i n t h e s u r - I r o u n d i n g environment. I •Problems a s s o c i a t e d w i t h auto t r a n s p o r t a t i o n and j m i c r o - c l i m a t e problems c r e a t e d w i t h s o l a r shadowing •and w i n d - i m p a c t . • C i t y P l a n n i n g and Development B o a r d s , d e v e l o p e r s o f s u b d i v i s i o n s , and concerned c i t i z e n * s committees, j •The l a r g e P o l a r i 6 b u i l d i n g on t h e s o u t h s i d e o f 1 s t ave. ( e a s t - w e s t s t r e e t ) i n F a i r b a n k s shadows both s i d e s o f t h e s t r e e t c r e a t i n g a d a r k , c o l d m i c r o - c l i ma-  PUANNINlCq  UEY£U  Z  SCOPE.  Determination o f the i n d i v i d u a l building's s i z e , shape, and o r i e n t a t i o n .  | i  IMPACT:  •Increase o r d e c r e a s e i n energy e f f i c i e n c y , s u n l i g h t ; d i s t r i b u t i o n , s o l a r shadowing, and wind i m p a c t . | C i t y P l a n n i n g Approval Boards, c o n t r a c o r s , a r c h i t e c t s , c i t i z e n ' s g r o u p s , and i n d i v i d u a l b u y e r s / b u i l d e r s .  EW-IPL^OF  IMFJ^or:  The use o f l o n g , low r a n c h s t y l e houses which have a h i g h p o t e n t i a l f o r h e a t l o s s and n o r t h s i d e shadowing.  PU A M Kl IN C*  L-fe-V^U  3  IMPACT'  The arrangement o f spaces and a c t i v i t i e s w i t h i n and around t h e h o u s i n g u n i t a s t h e y r e l a t e t o t h e c l i m ta i c factors. •Increase o r d e c r e a s e i n the h a b i t a b i l i t y and comfor t l e v e l s o f c e r t a i n spaces and a c t i v i t i e s .  Cfr IMf^^cH":  'Designers, b u i l d e r s , and u s e r s / b u i l d e r s t o some e x t e n t depending on f l e x i b i l i t y w i t h i n and around t h e houscinl unit. 'The misplacement o f i n t e r i o r spaces o r e x t e r i o r a c t i v i t y spaces t o t h e n o r t h s i d e where s e a s o n a l use i s l i m i t e d due t o a l a c k o f s o l a r r a d i a t i o n .  *>com:  5COPE-5  'The d e t a i l i n g and s e l e c t i o n o f t h e b u i l d i n g materials.  1HPACT*.  'Increase o r d e c r e a s e t h e l o n g e v i t y o f t h e s t r u c t u r e and t h e c o s t s o f o p e r a t i o n and maintenance.  i_£.Y£U Or EXAM rue  fabric  'Designers, b u i l d e r s , and t h e i n d i v i d u a l u s e r s / b u y e rs depending on the amount o f i n p u t when the house i s d e s i g n e d and b u i l t . •Poorly i n s u l a t e d houses w i t h o u t p r o p e r v a p o r b a r r i e r s and w i t h l a r g e window a r e a s w i l l have m a t e r i a l d e t e r i o r a t i o n along with high operating costs. j  21  1.4  METHODOLOGY The methodology employed i n t h i s t h e s i s i n v o l v e s  the e v a l u a t i o n o f l i t e r a t u r e , p u b l i s h e d and as w e l l as e v a l u a t i o n o f my e x p e r i e n c e i n the The  unpublished,  p e r s o n a l l i v i n g and  design  North.  l i t e r a t u r e search i n c l u d e d :  material avail-  a b l e on the U.B.C. campus; m a t e r i a l r e c e i v e d from o t h e r s c h o o l s ( U n i v . of Washington and U n i v . o f Manitoba) ; and s o l i c i t e d m a t e r i a l from v a r i o u s  sources  ( R a l p h E r s k i n e ' s f i r m i n Sweden, CRREL i n Hanover, New  Hampshire, Canadian N a t i o n a l Research  Council i n  Ottawa, and the N a t i o n a l Weather S e r v i c e (U.S.) i n North  Carolina). The  personal experience i n c l u d e d : a r c h i t e c t u r a l  d e s i g n work w i t h Gray, Rogers M y e r s , & Morgan; E l l e r b e A r c h i t e c t s ; and G.D.M. and A s s o c i a t e s a l l i n F a i r b a n k s , A l a s k a , from 1972 A r c t i c E n g i n e e r i n g 603  t o 1975;  and 604  completion  of  a t the u n i v e r s i t y o f  A l a s k a from Dr. Eb R i c e ; and p e r s o n a l c o n v e r s a t i o n s w i t h n o r t h e r n i n h a b i t a n t s a l o n g w i t h my  own  exper-  iences. 1.5 •  APPLICATION To make the u s e r s and b u i l d e r s more aware o f  design responses •  which respond  b e t t e r t o the c l i m a t e .  User p a r t i c i p a t i o n i n u p g r a d i n g the q u a l i t y o f h o u s i n g through demand on c o n t r a c t o r b u i l t h o u s i n g  and  s e l f - h e l p b u i l d i n g programs. •  E s t a b l i s h a g r e a t e r energy c o n s c i o u s n e s s  i n hous-  i n g d e s i g n - a c l o s e r l o o k a t the o p e r a t i o n and maintenance c o s t s when a s s e s s i n g q u a l i t y i n h o u s i n g . m  U6e  by a l l income l e v e l s i n e v a l u a t i n g h o u s i n g :  s i n g l e f a m i l y h o u s i n g , compact h o u s i n g , co-op h o u s i n g , s e l f - h e l p h o u s i n g , and t r a i l e r p a r k / m o b i l e selection.  home  22 1.6  IMPLEMENTATION Weekly o r b i w e e k l y newspaper a r t i c l e s showing  h o u s i n g which responds w e l l w i t h i n the n o r t h e r n environment. U n i v e r s i t y o r A l a s k a e v e n i n g c o u r s e f o r home builders/buyers. U n i v e r s i t y Cooperative Extension Service publicat i o n s , i n d i v i d u a l pamphlets f o r b u i l d i n g i n A l a s k a . A r t i c l e s f o r The N o r t h e r n E n g i n e e r and interested  other  publications  •  A p p l i c a t i o n t o my own  1.7  DEFINITIONS A. Housing  d e s i g n work i n the N o r t h .  Quality:  L e v e l one - as i t r e l a t e s t o s a t i s f y i n g b a s i c needs:  adequate space,  shelter/protection  from the e l e m e n t s , and a b i l i t y t o r e a c h work, s c h o o l s , and  services.  L e v e l two - as i t r e l a t e s t o h a b i t a b i l i t y and c o m f o r t : environment  provides a comfortable  living  w i t h r e g a r d t o s u n l i g h t , day-  l i g h t , t e m p e r a t u r e , and h u m i d i t y w h i l e expending the l e a s t amount o f energy  to  achieve these. L e v e l t h r e e - as i t r e l a t e s t o c o s t s o f o p e r a t i o n and maintenance:  energy  efficient  d e s i g n w i t h the a b i l i t y t o w i t h s t a n d the s e a s o n a l c l i m a t i c s t r e s s e s as w e l l as  normal  abuse w i t h adequate d e t a i l i n g t o m i n i m i z e m a t e r i a l d e t e r i o r a t i o n and m a l f u n c t i o n i n g . B. O p t i m a l D e s i g n f o r C l i m a t e : T h i s r e l a t e s t o the energy b a l a n c e between p o t e n t i a l i n c o m i n g n a t u r a l energy o u t f l o w o f energy  and  the  (heat) w i t h i n the housing  u n i t ( a r t i f i c i a l and  natural).  23  C. P l a n n i n g L e v e l s These a r e e s t a b l i s h e d  i n this thesis  from  l e v e l 1 (highest) t o l e v e l 4 (lowest) decisions  since  made a t t h e h i g h e r p l a n n i n g l e v e l s  have an e f f e c t on t h e o p t i o n s a t t h e l o w e r planning l e v e l s .  F o r example, i f a l a r g e ,  t a l l b u i l d i n g i s s i t e d to the south of a smaller building t h i s may  (planning l e v e l 1 ) , then  e f f e c t the smaller  building's  o r i e n t a t i o n , shape, a c t i v i t y space and  locations,  fabric d e t a i l i n g regarding solar .  radiation. D. P h y s i c a l  Factors:  These r e f e r t o b o t h t h e c l i m a t i c f a c t o r s and site  factors.  E. C l i m a t i c  Factors:  These r e f e r t o c l i m a t e and c l i m a t i c combinations  of solar radiation  ( l i g h t and h e a t ) ,  t e m p e r a t u r e , p r e c i p i t a t i o n , w i n d , and humidity/moisture  potential.  F. S i t e F a c t o r s : These r e f e r t o t h e n a t u r a l l y o c c u r i n g s i t e conditions  w i t h r e g a r d t o t o p o g r a p h y , geo-  l o g y / s o i l s , h y d r o l o g y , and v e g e t a t i o n . G. D e s i g n Responses: These r e f e r t o t h e s o l u t i o n s which can be i n c o r p o r a t e d i n t o t h e b u i l t environment t o make use o f o r m i n i m i z e t h e s t r e s s the  physical  factors.  from  24  1.8  REFERENCES  Amos R a p o p o r t , House Form and C u l t u r e , P r e n t i c e H a l l , I n c . , Englewood C l i f f s , New J e r s e y , 1 9 6 9 , p. 47 1  Eb R i c e , "The I d e a l A r c t i c House - 1 1 , " The N o r t h e r n E n g i n e e r , Summer 1 9 7 3 * p.18 2  3 "House o f t h e Week," Anchorage D a i l y Times, Anchorage, A l a s k a , May 2 1 , 1 9 7 6 . k "House o f t h e Week." F a i r b a n k s D a i l y News M i n e r , F a i r b a n k s , A l a s k a , September 1 0 , 1 9 7 6 5 Problems were e n c o u n t e r e d w i t h g e t t i n g h o u s i n g l o a n s f o r s e v e r a l houses w h i c h had e x c e p t i o n a l l y low heat l o s s c h a r a c t e r i s t i c s but appeared u n c o n v e n t i o n a l i n appearance ( n o t t h e t y p i c a l r a n c h s t y l e h o u s e ) . 6 G. F. P a r s o n s , A r c t i c Suburbs: A Look a t t h e N o r t h ' s Newcomers. M a c k e n z i e D e l t a R e s e a r c h P r o j e c t No. 8 , N o r t h e r n S c i e n c e R e s e a r c h Group, Dept. o f I n d i a n A f f a i r s and N o r t h e r n Development, O t t a w a , 1970 7 The M i l e p o s t , A l l - t h e - N o r t h T r a v e l G u i d e , E d i t e d by Bob Henning, A l a s k a Northwest P u b l i s h i n g Co., Anchorage, A l a s k a , 1974 C a p i t a l S i t e S e l e c t i o n Committee, "The S e l e c t i o n o f a C a p i t a l S i t e W i l l Soon Be I n Your Hands," Supplement t o a l l A l a s k a n newspapers, summer 1976 8  9  Ibid.  Naramore, B a i n , B r o d y , and J o h a n s o n , A l a s k a S t a t e C a p i t a l R e l o c a t i o n S t u d y , B o e i n g Computer S e r v i c e s , I n c . , J u l y 1974 1 0  State o f A l a s k a , Alaska Statewide Housing Study 1971 % V o l . 1: H o u s i n g C o n d i t i o n s and Needs, J u n e a u , A l a s k a , 1971 1 1  }  25 CHAPTER  2  CLIMATIC COMPARISONS 2.1  INTRODUCTION  2.2  SOLAR RADIATION 2.2.1  Objective/Background  2.2.2 Apparent Sunpath ( A l t i t u d e and Azimuth) 2.2.3  Albedo  2.2.4  Cloud  Cover  2.2.5 B u i l d i n g I m p l i c a t i o n s 2.3  TEMPERATURE 2.3.1  Objective  2.3.2 D u r a t i o n o f C o l d Extremes 2.3.3  S e a s o n a l Temperature D i f f e r e n c e s  2.3.4 D i u r n a l Temperature V a r i a t i o n s 2.3.5 B u i l d i n g I m p l i c a t i o n s 2.4  PRECIPITATION 2.4.1  Objective  2.4.2  Normal Y e a r l y  Precipitation  2.4.3 Extreme P r e c i p i t a t i o n Amounts Over S h o r t Periods 2.3.4  Snow Cover Amounts and D u r a t i o n  2.3.5 B u i l d i n g I m p l i c a t i o n s 2.5  WIND 2.5.1  Objective  2.5.2 Mean W i n t e r Wind Speed and D i r e c t i o n 2.5.3 Mean Summer Wind Speed and D i r e c t i o n  2.5*4  Maximum Wind Speeds and D i r e c t i o n s  2.5.5 K a t a b a t i c Wind 2.5.6 B u i l d i n g I m p l i c a t i o n s 2.6  SPECIAL CLIMATIC CONDITIONS 2.6.1  Objective  2.6.2 H u m i d i t y / M o i s t u r e  Potential  2.6.3 B l o w i n g Snow 2.6.4 Permafrost 2.6.5 A c t i v e L a y e r / F r o s t Heave 2.7  SUMMARY  26  27  28 1.1  INTRODUCTION Since most o f the  people l i v i n g i n the  urban a r e a s r e l a t e to more southern with comforts patterns areas,  it  is  first  ences i n the performance in  factors  housing  planning  f o r temperate  necessary to p o i n t out  climatic  climatic  the  differ-  which i n f l u e n c e  the  of b u i l d i n g s as w e l l as the way of  the N o r t h .  indicate  forms o f  and conveniences as w e l l as  which were developed  northern  the  life  The o b j e c t i v e of t h i s chapter i s pertinent  climatic  differences  to  between  " n o r t h e r n zones" w i t h i n A l a s k a as w e l l as  differences  between these zones and more southern " c o l d zones". There are four major c l i m a t i c S t a t e o f A l a s k a : the a r c t i c  zones w i t h i n  zone, the n o r t h e r n most  r e g i o n b o r d e r i n g the A r c t i c Ocean; the zone, t h a t a r e a encompassing .state; the  the  transitional  influence  the  continental  the i n t e r i o r of  the  zone, n o r t h e r n a r e a s under  of l a r g e b o d i e s of water g i v i n g the  both c o n t i n e n t a l  and maritime i n f l u e n c e s ;  zone  and the  maritime zone, p r i m a r i l y s o u t h e a s t e r n A l a s k a yet encompassing G u l f of  Alaska.  First, is  much o f the r e g i o n b o r d e r i n g on the the  explained,  differences  then the  i n these n o r t h e r n zones  climatic differences  are  compared with those of lower l a t i t u d e s i n which people are more f a m i l i a r . In o r d e r to use e x i s t i n g c l i m a t o l o g i c a l  data,  s e t t l e m e n t s w i t h r e c o r d e d data have been p i c k e d represent  the d i f f e r e n t  climatic  zones.  t i v e n o r t h e r n zones and r e p r e s e n t a t i v e  to  The comparasettlements  i n Alaska are: The A r c t i c  Zone  Barrow, Ak.  7 1 ° 1 8 ' N. L a t .  The C o n t i n e n t a l Zone  F a i r b a n k s , Ak.  6k°  49'  The T r a n s i t i o n a l Zone  Anchorage, Ak.  6l  10'  T a l k e e t n a , Ak.  62° 18'  Juneau, Ak.  58° 22 V  The M a r i t i m e Zone  d  29 The comparative  southern zones and representative  settlements are: The Continental Zone  Minneapolis, Minn.  4 4 ° 53'N. Lat.  The Maritime  Vancouver, B. C.  49° 11'  Zone  With the exception of Barrow and Talkeetna, the c i t i e s are well known urban centers within Alaska, Minnesota (north-central U.S.) and B r i t i s h (Western Canada).  Columbia  Talkeetna i s a small settlement  i n the Susitna V a l l e y , 80 a i r miles north of Anchorage, Alaska's largest c i t y , and 44m. north of the l o c a t i o n for the Alaska State Capital c i t y at Willow. These areas are compared with regard t o : 1. Solar Radiation 2. Temperature 3.  Precipitation  4 . Wind 5. Special Climatic Conditions a. Humidity/Moisture  Potential  b. Blowing Snow c. Permafrost d. Active Layer/Frost Heave The implications of these c l i m a t i c conditions on building design w i l l be mentioned i n t h i s chapter with the next chapter elaborating on the design responses  (solutions).  ALASKA SCALE OF MILES  0  SO  100  150  200  ONE INCH EQUALS APPRO* 198 MILES •MHHMM Paved  Old Crow  fys&\ McPh.  Gravel  Pawd  Gravol  Dwt  Pav«d  Gravel  D>rt  no  Controlled Access Hmpmays  cO-IMATIC  Principal T h r o u g h Highways  Other Through Highways Connecting Highway;  wrmiki ALASKA  / \ R0dR>  -  O  31  32 2.2  SOLAR RADIATION  2.2.1  Objective/Background T h i s s e c t i o n shows the e x t e n t t o which s o l a r .  r a d i a t i o n c h a r a c t e r i s t i c s change w i t h l a t i t u d e change ( s o l a r a n g l e s and a z i m u t h s ) as w e l l as c l i m a t i c zone types ( d u r a t i o n o f c l o u d c o v e r ) , and the i m p l i c a t i o n s these d i f f e r e n c e s have on the b u i l t D i f f e r e n c e s i n the apparent path  environment.  sun  are d i s c u s s e d i n terms o f the l a t i t u d e change  i n s t e a d o f c l i m a t i c zones s i n c e the l a t i t u d e these d i f f e r e n c e s . The  determines  e f f e c t s of cloud cover, % of  p o s s i b l e s u n s h i n e , and albedo are d i s c u s s e d i n terms o f the c l i m a t i c  zones.  S i n c e the l a t i t u d e change w i t h i n A l a s k a r a n g e s from c l o s e t o 51°  i n the A l e u t i a n I s l a n d s and 55°  s o u t h e a s t e r n A l a s k a t o over 71*  a t Barrow (20°  d i f f e r e n c e ) , i t ' s i m p o r t a n t t o know the  in  latitude  characteristics  o f the sun f o r each p a r t i c u l a r a r e a where development occurs.  The  20°  l a t i t u d e change would be comparable  t o the d i s t a n c e from j U 6 t n o r t h of San F r a n c i s c o i n n o r t h e r n C a l i f o r n i a t o the Yukon b o r d e r .  Even the  more s o u t h e r n p o r t i o n s o f A l a s k a , i e , K e t c h i k a n a t  55*  ;  a r e c l o s e t o 10°  f u r t h e r n o r t h than M i n n e a p o l i s , M i n n .  (i+5° n o r t h l a t i t u d e ) . 2.2.2  Apparent Sun Path ( A l t i t u d e and  Azimuth)  Lower midday sun a n g l e s and h i g h s e a s o n a l i n s o l a r azimuth latitude.  t r a v e l i n c r e a s e w i t h an i n c r e a s e i n  F i g u r e 2.5  shows the midday sun a n g l e f o r  v a r i o u s l a t i t u d e s on December 21st s o l s t i c e s , and March 21st noxes.  and June 21st,  the  and September 21st,the e q u i -  A l s o , the a n g l e i s shown f o r e a s t and west  o r i e n t a t i o n s on June 21st row  variation  r e a c h e s o n l y k3°  a t 6am and 6pm.  The  sun a t  a l t i t u d e a t noon on the l o n g e s t  day, y e t the sun i s 22°  above the h o r i z o n when coming  from e a s t and west (6am  and 6pm),  from the n o r t h .  The M i n n e a p o l i s sun, k5°  a noon a l t i t u d e o f 68° on June 21st, 6pm,  and 3i°  and no m i d n i g h t  sun.''  l6£  d  at  midnight  N. L a t . , has a t 6am  and  Bar  3k The l o w e r sun a n g l e s i n h i g h e r l a t i t u d e s  cause  a r e d u c t i o n i n t h e sun's r a d i a t i o n i n t e n s i t y .  The  r e d u c t i o n o f r a d i a t i o n due t o t h e e a r t h ' s atmosphere depends on t h e c o m p o s i t i o n o f t h e atmosphere and t h e l e n g t h o f a t m o s p h e r i c path t r a v e r s e d . !  — - 1 —  ATMOSPHERIC AIR MASS  j  1  '  t  !  1 (o & A *> 2.  j i  i  I  O  5*  \o° J5*  I £0*  !  2s?  -  *0°  4o°  Prom t h e graph, which r e l a t e s t h e a t m o s p h e r i c mass 2  through which the s o l a r r a d i a t i o n passes w i t h t h e sun a n g l e , t h e a t m o s p h e r i c mass b e g i n s h a v i n g a marked e f f e c t when t h e sun a n g l e drops below 20°-25° • From 20° sun a n g l e t o 10° sun a n g l e t h e a t m o s p h e r i c mass d o u b l e s and from 10° t o 5 ° sun a n g l e t h e mass d o u b l e s a g a i n , so t h e s o l a r i n t e n s i t y drops o f f q u i t e r a p i d l y when t h e sun a n g l e drops below 20°. Another f a c t o r e f f e c t i n g s o l a r i n t e n s i t y i s t h e s p r e a d o f t h e s o l a r r a d i a t i o n over a g r e a t e r d i s t a n c e as t h e sun's r a y s approach t h e p o l e s . <^  Sun r a y , x, s p r e a d over distances y and z on e a r t h ' s surface  T h i s f a c t o r i s more i m p o r t a n t i n h e a t i n g s u r f a c e s p a r a l l e l t o t h e e a r t h ' s s u r f a c e ( h o r i z o n t a l ) such a s i n a g r i c u l ture.  B u i l d i n g s counter thi6 f a c t o r with b u i l d i n g '  s u r f a c e s t h a t a r e more p e r p e n d i c u l a r t o t h e sun's r a y s .  35 D u r i n g t h e w i n t e r season t h e sun's a l t i t u d e i s v e r y low, w i t h Barrow g e t t i n g no sun f o r over two months, F a i r b a n k s w i t h a 1£* a n g l e a t noon on t h e s h o r t e s t day compared t o  21-J- 0  angle f o r M i n n e a p o l i s .  5  This  w i n t e r sun h i t s and p e n e t r a t e s b u i l d i n g s i n t h e more n o r t h e r n l a t i t u d e s o n l y from t h e s o u t h due t o t h e s h o r t s o l a r azimuth  t r a v e l at the winter s o l s t a c e .  I n more  s o u t h e r n l a t i t u d e s t h e sun p e n e t r a t e s more from t h e e a s t and west as w e l l as from t h e s o u t h , see f i g u r e From March 2 1 s t t o September 2 1 s t , h i g h e r  2.6.  latitu-  des e x p e r i e n c e more p o t e n t i a l s u n l i g h t h o u r s than l o w e r l a t i t u d e s due t o t h e i n summer.  l a r g e s o l a r azimuth  North o f the A r c t i c C i r c l e  (66?*)  travel  the  s e a s o n a l s u n l i g h t change i s from 0 h o u r s o f w i n t e r s u n l i g h t t o 24 h o u r s o f s u n l i g h t i n summer w h i l e i n t h e n o r t h e r n U.S. and s o u t h e r n Canada t h e range i s from a low o f 8 t o 9 hours i n December t o around 16 hours i n June, a change o f r o u g h l y 8 h o u r s over the year a s compared t o 24 h o u r s , 6ee  figure  2.7.  The y e a r l y d i s t r i b u t i o n o f s o l a r energy becomes more l o p s i d e d t h e f u r t h e r n o r t h one goes.  The l o n g e r  summer days g i v e t h e p o t e n t i a l f o r l a r g e amounts o f s o l a r heat g a i n w h i l e t h e s h o r t w i n t e r days g a i n l i t t l e s o l a r heat w h i l e t h e l o n g n i g h t s r a d i a t e l a r g e amounts o f heat out t o t h e atmosphere.  A NNUAL SUNLIGHT^V Latitude ,  Winter % Summer % (Mar. 21 t o Se Jt.21)(Sept.21 t o Mar.21)  55*  63  60°  66  65°  71 79  70°  37 34 29 21  36  W l N i T ^  4 S U M M I T  e g > U ^  Af-I KitTK T K A V ^ l -  37  FIGURE  38 2.2.3  Albedo I n t h e w i n t e r and s p r i n g when t h e ground i s  covered  w i t h snow, t h e s u n l i g h t can go t h r o u g h mul-  t i p l e r e f l e c t i o n s between snow and c l o u d c o v e r g i v i n g so  f a i r l y high i n t e n s i t i e s of d i f f u s e d l i g h t . 5  while  the sun may be c l o s e r t o t h e h o r i z o n ( l o w a l t i t u d e ) , w i t h t h e a i d o f snow and c l o u d s i t s t i l l h a s t h e p o t e n t i a l o f s u p p l y i n g a f a i r amount o f r e f l e c t e d and d i f f u s e l i g h t d u r i n g t h e s h o r t days o f w i n t e r . 2.2.4  Cloud  Cover  I n a d d i t i o n t o t h e e f f e c t o f l a t i t u d e change, weather systems and c l o u d cover e f f e c t t h e amount o f s u n l i g h t a v a i l a b l e t o any p a r t i c u l a r a r e a .  The c l o u d  c o v e r i s more a f u n c t i o n o f t h e a r e a s l o c a t i o n i n r e l a t i o n t o oceans and predominant weather z o n e s , ie,  c l i m a t i c zones.  The a r c t i c zone i s t h e d r i e s t o f  all  northern c l i m a t i c regions yet s t i l l experiences  good d e a l o f h i g h c l o u d c o v e r .  a  The c o n t i n e n t a l zone  has l e s s c l o u d c o v e r and more s u n l i g h t t h a n a l l o t h e r regions i n Alaska. combination  The t r a n s i t i o n a l zone, b e i n g a  o f t h e c o n t i n e n t a l and m a r i t i m e zones  n o r m a l l y r e c e i v e s more c l o u d c o v e r t h a n t h e c o n t i n e n t a l but l e s s t h a n t h e m a r i t i m e r e g i o n s .  The m a r i t i m e zone  r e c e i v e s t h e most c l o u d c o v e r w i t h t h e l o w e s t of possible s u n l i g h t . ^  percent  39  2.2.5  Building Implications The  lack of winter sunlight e f f e c t s b u i l d i n g  design mainly with regard t o the p s y c h o l o g i c a l importance o f m a x i m i z i n g  w i n t e r s u n l i g h t a s w e l l as t h e need  f o r more a r t i f i c i a l l i g h t d u r i n g t h e l o n g e r w i n t e r period.  I n b u i l d i n g design i t ' 6 l e s s important  to optimize the mid-winter to minimize  to t r y  s o l o r heat g a i n than i t i s  t h e l o s s o f heat r a d i a t i n g out t o t h e  atmosphere. The  lower s o l a r a l t i t u d e causes g r e a t e r s o l a r  shadowing p o t e n t i a l i n w i n t e r e s p e c i a l l y when t h e 6un comes o n l y from t h e s o u t h . D u r i n g t h e summer months, t h e l o n g e r  azimuth  t r a v e l and lower sun a n g l e s produce l o n g e r p e r i o d s o f p o s s i b l e heat g a i n on s o u t h , e a s t , and west v e r t i c a l s u r f a c e s s i n c e t h e sun r a y s a r e c l o s e r t o p e r p e n d i c u l a r t o these s u r f a c e s .  The lower a n g l e s a l s o  permit  the sun's r a y s t o p e n e t r a t e i n s i d e a b u i l d i n g f u r t h e r through  t h e openings i n v e r t i c a l s u r f a c e s .  become n e c e s s a r y  I t may  t o p r o t e c t a g a i n s t unwanted s o l o r  p e n e t r a t i o n due t o l o w a n g l e s u n l i g h t coming from t h e northwest, The  n o r t h , and n o r t h e a s t .  h i g h albedo  d u r i n g w i n t e r and s p r i n g can  c r e a t e g l a r e problems.  The i n c r e a s e d g l a r e p o t e n t i a l  can be bothersome e s p e c i a l l y d u r i n g t h e s p r i n g when t h e r e a r e more s u n l i g h t h o u r s and t h e snow i s s t i l l on t h e ground r e f l e c t i n g t h e s u n l i g h t . Cloud c o v e r c a u s e s v a r y i n g degrees o f d i f f u s e s o l a r r a d i a t i o n which y i e l d s l e s s s o l a r h e a t g a i n t o the b u i l d i n g s u r f a c e s t h a n d i r e c t s u n l i g h t d u r i n g c l e a r sky c o n d i t i o n s .  So a r e a s w i t h a l o t o f c l o u d  c o v e r such a s Juneau i n t h e m a r i t i m e  r e g i o n would  n o r m a l l y r e c e i v e much l e s s s o l a r h e a t g a i n t h a n t h e A l a s k a n i n t e r i o r d u r i n g s p r i n g and summer.  40  2.3 2.3.1  TEMPERATURE Objective This s e c t i o n describes the d i f f e r i n g  climatic  zones by t h e l e n g t h o f time t h a t c o l d t e m p e r a t u r e s e x i s t , t h e s e a s o n a l t e m p e r a t u r e d i f f e r e n c e s , as w e l l as d i u r n a l v a r i a t i o n s .  The i m p l i c a t i o n s o f t h e s e on  the b u i l t environment a r e d i s c u s s e d a t t h e end o f t h i s section. 2.3.2  D u r a t i o n o f C o l d Extremes A l o o k a t t h e f o u r major A l a s k a n c l i m a t i c  zones  on f i g u r e Z.") shows t h e average y e a r l y temperature range from 9.3°F a t Barrow t o 40.3°F a t Juneau. Anchorage and T a l k e e t n a average 32°to 34°F, about 8°F warmer t h a n F a i r b a n k s on a y e a r l y a v e r a g e . ^ F i g u r e Z,t> shows t h e number o f days p e r month t h a t the temperature i s below 0* F.  F a i r b a n k s and T a l k e e t n a  have 0°F t e m p e r a t u r e s from O c t o b e r t h r o u g h A p r i l (7 months) w h i l e Juneau e x p e r i e n c e s 0*F t e m p e r a t u r e s from December t h r o u g h March (4 months).  I n January,  F a i r b a n k s averages 29 days below 0° F, T a l k e e t n a 16 d a y s , and Juneau 5 d a y s . ^ The h e a t i n g  * days (base temperature o f  65°)  show a comparison o f heat r e q u i r e d over t h e y e a r f o r Minneapoles 8,159 Degree Days Juneau 9»155 Anchorage 10,911 Talkeetna 11,708 Fairbanks 14,344 Barrow 20,265 W h i l e t h e c o n t i n e n t a l zones ( F a i r b a n k s and M i n n e a p o l i s ) each a r e a ; ^  both experience c o l d temperatures, the d u r a t i o n o f the c o l d i n t h e n o r t h causes a 76% h i g h e r h e a t i n g r e q u i r e ment over t h e y e a r f o r F a i r b a n k s . The t r a n s i t i o n a l zone a r e a s r e q u i r e about 40% more heat t h a n t h e more s o u t h e r n c o n t i n e n t a l zone.  3 ft 0  J  m •UPON  V  fir  i  ft  •  4  if IS  42 2.3.3  S e a s o n a l Temperature extreme  D i f f e r e n c e s - average and  The average y e a r l y v a r i a t i o n s i n t e m p e r a t u r e from w i n t e r t o summer a r e :  1 0  Minneapolis  12.2*F t o 71.9°F  (59.7*F)  Anchorage  11.8*F t o 5 7 . 9 ° F  (46.1°F)  Talkeetna  9.0*F t o 57.9°F  (48.9*F)  Fairbanks  - 1 1 . 9 * F t o 60.7°F  (72.6°F)  The n o r t h e r n c o n t i n e n t a l zone e x p e r i e n c e s t h e g r e a t e s t v a r i a t i o n i n t e m p e r a t u r e making i t more d i f f i c u l t t o d e s i g n f o r b o t h summer and w i n t e r c o n d i t i o n s . T h i r t y y e a r s e a s o n a l extreme  temperature  differ-  ences range from 157*F a t F a i r b a n k s , 108°F a t Juneau, t o 92*F a t Vancouver.  The range o f t e m p e r a t u r e  do n o t v a r y g r e a t l y between c o n t i n e n t a l zones.  extremes Fair-  banks h a s extreme temperature d i f f e r e n c e s o n l y 14% g r e a t e r t h a n t h a t o f M i n n e a p o l i s (157°F v s 135°F) w i t h the summer h i g h s and w i n t e r lows b o t h l o w e r a s shown on f i g u r e Z . l o . Temperature  extremes a r e more pronounced  c o n t i n e n t a l zones than i n t h e a a r i t i m e z o n e s .  i n the Each  s p e c i f i c zone, i e , c o n t i n e n t a l , h a s l o w e r l o w extreme t e m p e r a t u r e s and l o w e r h i g h t e m p e r a t u r e s t h a n t h e same c l i m a t i c zone i n a l o w e r l a t i t u d e .  43 *  a& a $  kk 2.3.4  D i u r n a l Temperature  Variations  The d i u r n a l t e m p e r a t u r e v a r i a t i o n s  (nighttime  low temperature v e r s u s daytime h i g h t e m p e r a t u r e ) a r e greatest  i n the c o n t i n e n t a l  zones ( F a i r b a n k s ,  with  up  to a 15 deg. F v a r i a t i o n and M i n n e a p o l i s w i t h up t o a 21 deg. F v a r i a t i o n ) becoming l e s s the more the temperatures are influenced  by l a r g e b o d i e s o f water  as i n the m a r i t i m e r e g i o n s . t i o n s a r e n o r m a l l y around ence o f Cook I n l e t .  Anchorage's  such  diurnal varia-  15 deg. F due t o the i n f l u -  While moving up the  Susitna  V a l l e y , Talkeetna's d i u r n a l temperature v a r i a t i o n s range from 17 deg. F t o 25 deg. F, see f i g u r e s and  2.12.  1 /  10'  /  2.11  1 1  i  I  x  < L - j - - t  If  \0* (J?*iPf MAXIMUM - P » ^ Y  0°1  M.  I I &*>. M*.  ! Af*.  I  I  I  l^f  Flt^UfTfe-  g.H  MM"*»NV  I  ^€jmu)  i  i  ^r.  ar.  I hbo.  1^ p*u  45  u.  o  46 D u r i n g w i n t e r months t h e d i u r n a l temperature change i s n e g l i g i b l e s i n c e t h e c l o u d c o v e r c o n t r o l s the  t e m p e r a t u r e v a r i a t i o n s more t h a n t h e l o w s o l a r  radiation. The d i u r n a l v a r i a t i o n s i n t h e n o r t h e r n zones a r e not b a l a n c e d around a t e m p e r a t u r e which i s c o n s i d e r e d c o m f o r t a b l e such as i n a warmer c l i m a t e where the range may be between  50°F and 100°F.  The n o r t h e r n  c o n t i n e n t a l and t r a n s i t i o n a l zones n o r m a l l y have b o t h h i g h and low t e m p e r a t u r e s below t h e 65°F t e m p e r a t u r e for  most o f t h e y e a r r e q u i r i n g s u p p l e m e n t a l heat t o  reach comfortable temperatures. Normal D a i l y Maximum above 65°F May June J u l y ! August 65.6° ; Anchorage Talkeetna  65.7°  67.5°  Fairbanks  70.7°  71.8°  65.8°  77.1°  82.4°  80.8°  Minneapolis  2.3.5  Sept.  67.9°  70.7°  Building Implications The most i m p o r t a n t b u i l d i n g i m p l i c a t i o n s r e l a t e  to  t h e d u r a t i o n o f t h e extreme c o l d t e m p e r a t u r e s . F i r s t , t h e d u r a t i o n o f t h e extreme c o l d  a t u r e s e f f e c t s t h e f u n c t i o n i n g o f an urban  temper-  environment  based on o u r c u r r e n t modes o f t r a n s p o r t a t i o n airplanes).  The a u t o m o b i l e e x p e r i e n c e s many problems  i n v o l v i n g s t a r t i n g , o p e r a t i o n , and maintenance the  (autos,  cold winters.  during  I n a d d i t i o n t o t h i s , the autos,  t r u c k s , b u s e s , and a i r p l a n e s produce i c e f o g which can accumulate o v e r a p e r i o d o f a week o r two r e d u c i n g v i s i b i l i t y t o a minimum and o c c a s i o n a l l y b r i n g i n g a i r t r a f f i c t o a h a l t (most s i g n i f i c a n t i n t h e I n t e r i o r where c l e a r s k y s and m i n i m a l wind combine t o produce the  extreme c o l d t e m p e r a t u r e s ) . Second, t h e c o l d t e m p e r a t u r e s produce t h e f r o z e n  ground c o n d i t i o n s ( p e r m a f r o s t ) a s w e l l a s t r i g g e r t h e mechanism o f f r o s t heave i n the s o i l .  These c o n d i t i o n s  V?  can have adverse e f f e c t s on t h e f o u n d a t i o n s t a b i l i t y of s t r u c t u r e s . T h i r d , t h e amount o f h e a t i n g degree days has a d i r e c t e f f e c t on the c o s t o f o p e r a t i o n o f any h e a t e d structure.  E c o n o m i c a l l y s p e a k i n g i t i s most i m p o r t a n t  t o m i n i m i z e t h e b u i l d i n g heat l o s s t o t h e c o l d e x t e r i o r temperatures.  T h i s can be done i n a number o f  ways which a r e o u t l i n e d i n c h a p t e r J>. Fourth, the conduction of the c o l d  temperatures  i n t o the b u i l d i n g i n t e r i o r through " t h e r m a l b r i d g e s " or p o o r l y i n s u l a t e d s u r f a c e s (windows) can cause a g r e a t many problems from f r o s t b u i l d up i n b u i l d i n g m a t e r i a l s t o t h e f r e e z i n g and f r o s t a c c u m u l a t i o n on i n t e r i o r s u r f a c e s (windows, c o r n e r s ) .  48 2.4 2.4.1  PRECIPITATION Objective The p r i m a r y c o n c e r n w i t h p r e c i p i t a t i o n i s t h e  t o t a l y e a r l y amount o f p r e c i p i t a t i o n , extreme amounts i n s h o r t p e r i o d s , and t h e amount and d u r a t i o n o f snow cover  f o r the d i f f e r i n g c l i m a t i c regions.  The i n t e n t  i n t h i s s e c t i o n i s t o p o i n t out these d i f f e r e n c e s and i n d i c a t e the i m p l i c a t i o n s t o the b u i l t 2 . 4 . 2 Normal Y e a r l y  environment.  Precipitation  The m a r i t i m e zone r e c e i v e s t h e g r e a t e s t amount o f p r e c i p i t a t i o n o f a l l A l a s k a zones a s f i g u r e 2 . 1 3 shows; 55 i n c h e s f o r Juneau ( a s much as 1 8 8 " per y e a r i n p a r t s of southeastern Alaska's maritime region)  while  Barrow i n t h e a r c t i c zone b a r e l y r e c e i v e s 5 " per year.* The i n t e r i o r o f A l a s k a i s r e l a t i v e l y d r y w i t h averaging  2.  Fairbanks  11" a y e a r w h i l e on t h e south s i d e o f t h e  A l a s k a Range, t h e weather system changes g i v i n g T a l k e e t na n e a r l y 3 0 " a y e a r .  C l o s e r t o Cook I n l e t , t h e p r e c i p -  i t a t i o n drops o f f t o 1 5 " a year BN4  f o r Anchorage.  f=KfcCIPITATlgtJ Tc?TAUS  Jl  Yearly p r e c i p i t a t i o n  (inches)  i n c l u d e s b o t h r a i n and snow. The c o n v e r s i o n  from snow t o  p r e c i p i t a t i o n i s normally 10 t o 1.  5  O I*  \7 <i fr - M A ft ;ij  49 In  t h e c o n t i n e n t a l zones, M i n n e a p o l i s g e t s more  t h a n t w i c e as much p r e c i p i t a t i o n as F a i r b a n k s , m o s t l y i n t h e s p r i n g and summer. to  T h i s d i f f e r e n c e may be due  t h e d r y n e s s caused by f r o z e n c o n d i t i o n s d u r i n g a  l a r g e r p o r t i o n o f the year i n the northern c o n t i n e n t a l zone. 2.4.3  Extreme p r e c i p i t i o n Amounts O v e r S h o r t P e r i o d s Maximum P r e c i p i t a t i o n i n 24  hours  Precipitation  Area  1 4  Snow  Anchorage  1.66"  (Nov.)  16.4"  (Nov.)  Talkeetna  3.12"  (Sept.)  36.0"  (Feb.)  Fairbanks  3.42"  (Aug.)  20.1"  (Feb.)  Minneapolis  4.12"  (July)  16.2"  ( Nov.)  The  g r e a t e s t p o t e n t i a l h a z a r d o c c u r s when  the extreme r a i n o r snow i s much h i g h e r t h a n t h e average c a u s i n g e x c e s s i v e r u n o f f e r o s i o n , f l o o d i n g , and s t r u c t u r a l f a i l u r e . 3.42"  As an example, t h e  24 hour p r e c i p i t a t i o n f o r F a i r b a n k s h e l p e d  cause  the 1967 August f l o o d which put t h e whole c i t y under s e v e r a l f e e t o f water.  The 36"  (3')  o f snow f a l l i n 24  h o u r s i n T a l k e e t n a c o u l d cause s t r u c t u r a l damage t o r o o f s not d e s i g n e d t o h a n d l e t h e heavy snow l o a d s . 2.4.4  Snow Cover Amount and D u r a t i o n The l e n g t h o f time i n which t h e ground i s c o v e r e d  w i t h snow v a r i e s from 61 months i n F a i r b a n k s t o 3 months i n M i n n e a p o l i s , see f i g u r e 2 . 1 4 .  Once t h e snow  f a l l s i n t h e f a l l i n A l a s k a ' s a r c t i c , c o n t i n e n t a l , and t r a n s i t i o n a l zones, i t n o r m a l l y s t a y s u n t i l t h e s p r i n g when t h e w i n t e r ' s a c c u m u l a t i o n m e l t s away.  I n more  s o u t h e r n r e g i o n s such as M i n n e a p o l i s , t e m p e r a t u r e s i n the 40's o c c u r i n w i n t e r months c a u s i n g snow t o melt from time t o time • In the maritime  zones, Juneau and Vancouver a r e  c l o s e when i t comes t o t o t a l p r e c i p i t a t i o n , see f i g u r e 2.13.  Juneau's peak month i 6 O c t o b e r w h i l e V a n c o u v e r ' s  f a l l s i n December.  The b i g d i f f e r e n c e between t h e two  50 i s t h e presence  o f lower t e m p e r a t u r e s  farther north  c a u s i n g much more s n o w f a l l as can be seen by Juneau's 107" v e r s u s V a n c o u v e r ' s 18" o f snow p e r y e a r .  Juneau's  snow w i l l thaw, c a u s i n g s l u s h , d u r i n g warm p e r i o d s during the w i n t e r , l a t e r f r e e z i n g i n t o i c e .  This  seldom o c c u r s f a r t h e r n o r t h i n t h e t r a n s i t i o n a l and c o n t i n e n t a l zones due t o t h e more c o n s t a n t c o l d e r winter  temperatures.  More s o u t h e r n m a r i t i m e r e g i o n s e x p e r i e n c e  less  s n o w f a l l such as V a n c o u v e r ' s average o f l8"/year  which  n o r m a l l y m e l t s away i n s e v e r a l days o r a week a f t e r the s t o r m , c a u s i n g s l u s h f o r s h o r t p e r i o d s o f time i n the w i n t e r . 2.i+.5 B u i l d i n g I m p l i c a t i o n s B u i l d i n g design i m p l i c a t i o n s f o r p r e c i p i t a t i o n become most c r i t i c a l i n t h e n o r t h e r n m a r i t i m e  region  where problems a r e r e l a t e d t o snow and i c e . Icy  w i n t e r c o n d i t i o n s make t r a n s p o r t a t i o n , t h e  d i r e c t i o n and s l o p e o f r o a d s and c i r c u l a t i o n  systems,  a major d e s i g n f a c t o r i n c i t y p l a n n i n g and o p e r a t i o n . The l a r g e a c c u m u l a t i o n s make  o f heavy, water s a t u r a t e d snow  snow p r o t e c t i o n , r e m o v a l , and s t r u c t u r a l d e s i g n  o f b u i l d i n g s more c r i t i c a l i n t h e n o r t h e r n  maritime  r e g i o n than i n t h e o t h e r n o r t h e r n r e g i o n s where t h e snow i s l i g h t and d r y and a c c u m u l a t i o n i s l e s s . In t h e a r c t i c r e g i o n , t h e presence  of blowing  snow becomes a major d e s i g n i m p l i c a t i o n s i n c e t h e d r i f t i n g p o t e n t i a l can b l o c k a c c e s s and c o v e r p o r t i o n s o f b u i l d i n g s , t h i s i s d i s c u s s e d i n more detail i n a later In  section.  t h e n o r t h e r n t r a n s i t i o n a l and c o n t i n e n t a l r e -  g i o n s i t becomes more i m p o r t a n t t o f o c u s b u i l d i n g d e s i g n towards the use o f snow's i n s u l a t i n g  qualities  (more c r i t i c a l f o r warmth, f u e l c o n s u m p t i o n , and t h e functioning of u t i l i t i e s ) .  51  52 2.5 2.5.1  WIND Objective The average wind speeds and d i r e c t i o n s f o r both  w i n t e r and summer a r e i m p o r t a n t when t r y i n g t o m i n i m i z e wind c h i l l , heat l o s s , and snow d r i f t i n g .  Extreme  wind speeds and d i r e c t i o n s a r e i m p o r t a n t p r i m a r i l y i n the s t r u c t u r a l d e s i g n o f the b u i l d i n g .  The a r e a s  w i t h k a t a b a t i c winds a r e i m p o r t a n t t o know i n o r d e r t o a v o i d extreme c o l d t e m p e r a t u r e s . 2.16,  and 2.17  The f i g u r e s  2.15,  compare the wind d a t a from the d i f f e r i n g  c l i m a t i c zones which h e l p t o show which r e g i o n s have the g r e a t e s t d e s i g n i m p l i c a t i o n s f o r wind. 2.5.2  Mean W i n t e r Wind Speed and D i r e c t i o n I n the A l a s k a n c l i m a t i c zones, F a i r b a n k s i n the  c o n t i n e n t a l zone has the l e a s t amount o f wind d u r i n g the w i n t e r months (3.4  mph)  w i t h calm c o n d i t i o n s  48%  o f the t i m e , Anchorage and T a l k e e t n a , under the i n f l u ence o f Cook I n l e t , have a t l e a s t 1-J- t i m e s the mean wind speed o f F a i r b a n k s (5-?mph) w i t h calm c o n d i t i o n s 20%  o f the t i m e .  Juneau, b e i n g m a r i t i m e , r e c e i v e s a  h i g h e r c o n s t a n t wind t h r o u g h o u t the y e a r w i t h a mean speed from November t o F e b r u a r y o f 8.8mph w i t h calm c o n d i t i o n s about 5% o f the t i m e .  Barrow, i n the a r c t i c  zone, has c o n t i n u a l wind d u r i n g the w i n t e r w i t h calm c o n d i t i o n s o n l y 1% o f t h e t i m e , see f i g u r e  2.15.  The wind d i r e c t i o n d u r i n g t h e s e c o l d months r e m a i n s n e a r l y c o n s t a n t f o r each l o c a t i o n .  The  dir-  e c t i o n i t s e l f depends on the topography o f each p a r t i c u l a r a r e a i n c o m b i n a t i o n w i t h the a i r movement o f the region.  So a h i g h e r l a t i t u d e o r the t y p e o f c l i m a t i c  zone i s not always a major d e t e r m i n e n t i n wind d i r e c t i o n , each i n d i v i d u a l a r e a w i l l have i t s own wind p a t t e r n s which need t o be known f o r e f f e c t i v e  building  design f o r that area. I n the c o n t i n e n t a l zones, F a i r b a n k s and  Minneapo-  l i s v a r y g r e a t l y i n wind movement t h r o u g h o u t the w i n t e r . M i n n e a p o l i s (10.6mph mean speed) i s much more exposed t o w i n t e r storms and the movement o f a i r masses w h i l e  ALASKA ONE INCH EQUALS APPRO*.  MMMHMI^HMH Pawed  Giave*  -SUfttCB-  WIMP  198 MILES  Controlled Access Highways . ,.-  Principal Through Highways Pawed  Giawel  ,  0«r  _  ^ ... .  Other Through Highways  % fJr*nMe WIMP  WAS* C A t M  54 Fairbanks and the Alaska i n t e r i o r , due to persistent snow cover during the winter months, experience  little  heat gain since the white surface prevents absorbtion therefore creating l i t t l e a i r movement. The maritime regions are more subject to an eastwest wind d i r e c t i o n pattern, Juneau i s sandwiched i n between mountains running north and south which break up t h i s pattern somewhat.  Yet, during the cold months  Juneau receives most of i t s wind from the east - southeast with the occasional "Taku Wind" coming from the north.  S i m i l a r l y Vancouver's winter winds blow from  the east and southeast with occasional strong blows from the west or northwest. 2.5.3  Mean Summer Wind Speed and Direction In  the a r c t i c region, Barrow's wind speed increases  s l i g h t l y during summer with calm conditions only 2.% of the time while the d i r e c t i o n remains s i m i l a r to that during winter.  Fairbanks has s l i g h t l y increased wind  speeds with calm conditions droping to 12% of the time, the predominant d i r e c t i o n i s from the southwest, 180° from the winter wind.  The Cook I n l e t / Susitna  V a l l e y area has summer wind similar i n speed to winter wind with calm conditions 10% of the time and a predominent d i r e c t i o n opposite that of the winter wind. Southeastern Alaska (Juneau) has a s l i g h t drop i n summer wind speed and a change i n d i r e c t i o n from eastsoutheast to north (+100 2.5.4  s h i f t ) , see figure  2.16.  Maximum Wind Speeds and Directions Juneau g e t 6 i t s winter "Taku Winds", strong north-  e r l y winds most often caused by the flow of cold a i r from northwestern Canada through nearby mountain passes and over the Juneau Ice F i e l d .  Anchorage gets  strong, g U 6 t y , north winds which occur, on the average, once or twice during the winter which can cause d r i f t ing  and packing of snow cover.  Talkeetna experiences  r e l a t i v e l y l i g h t north-northeast winter winds.  Fair-  banks normally has only l i g h t winds i n the winter months, while Barrow receives a constant coastal wind, see figure  2.17.  ALASKA SCALE Of MILES 100  ISO  ?O0  SLKR^B  WIMP  f ^ g £ 3 , JUt-V  %  Of T)Mfc WIWt7  WAS- CAl-M I  I I <*f  I  I I  57  2.5.5  Katabatic Katabatic  elevations  Wind w i n d s , the c o l d a i r f l o w from h i g h e r  t o low a r e a s , are e x p e r i e n c e d t h r o u g h o u t  A l a s k a b e i n g most pronounced i n the c o l d e r r e g i o n s i n the i n t e r i o r , a l t h o u g h even Juneau e x p e r i e n c e s a wide difference  on t e m p e r a t u r e s between u p l a n d  a r e a s ) and  the low  (sloping  f l a t t e r r a i n which r e c e i v e s  c o l d a i r d r a i n a g e from h i g h e r e l e v a t i o n s . a l i g h t t o moderate wind or c l o u d  Normally  cover w i l l  up the s t r a t i f i e d a i r r e l i e v i n g the low from the extreme c o l d t e m p e r a t u r e s .  the stir  l y i n g areas  This factor i s  i m p o r t a n t when s e l e c t i n g b u i l d i n g s i t e s w i t h i n  a  p a r t i c u l a r area. 7 1  2.5.6  Building  Implications  In b u i l d i n g design considerations  f o r w i n t e r wind,  the d e s i g n p r i o r i t y f o r the d i r e c t i o n o f the mean wind or t h a t of the two  strong,  or t h r e e t i m e s a season would have t o be  f o r each i n d i v i d u a l a r e a . environment a l s o has t e r n s which can the  resolved  I n a d d i t i o n , the  i t s influence  either increase  blems e n c o u n t e r e d . has  g u s t y wind w h i c h o c c u r s built  on t h e s e wind p a t -  or d e c r e a s e the  This micro climate  pro-  which i s c r e a t e d  p o s s i b i l i t y o f e n h a n c i n g or d e g e n e r a t i n g  h a b i t a b i l i t y o f the  the  area.  I n r e g i o n s w i t h p e r s i s t e n t winds such as i n a r c t i c , the m a j o r b u i l d i n g i m p l i c a t i o n s 1. 2.  are:  the p o t e n t i a l f o r snow d r i f t i n g about buildings,  the  the  and  the c o l d a i r and  a i r b o r n snow i n f i l t r a t i o n  i n t o the b u i l d i n g I n the c o n t i n e n t a l  and  interior. t r a n s i t i o n a l regions,  w i n t e r wind can have a b e n e f i c i a l e f f e c t by  the  stirring  up the extreme c o l d a i r which s e t t l e s i n low  lying  a r e a s t h e r e b y r a i s i n g the a i r t e m p e r a t u r e s i n t h e s e areas. the  Then the major b u i l d i n g i m p l i c a t i o n becomes  i n f i l t r a t i o n t h r o u g h c r a c k s and  o p e n i n g s as  as the c o o l i n g e f f e c t on e x t e r i o r b u i l d i n g  well  surfaces  58 (especially  glass).  H i g h winds pose s t r u c t u r a l problems as w e l l the  i n c r e a s e d heat l o s s problem.  as  Regions adjacent  t o b o d i e s o f water such as the A r c t i c Ocean, B e a r i n g Sea, Cook I n l e t , and the G u l f o f A l a s k a e x p e r i e n c e t h e h i g h e r winds which would have a g r e a t e r i n p a c t on building  forms such as h i g h r i s e h o u s i n g t h a n on  low r i s e , compact h o u s i n g which c o u l d be from the c o l d  winds.  protected  59 2.6  SPECIAL CLIMATIC CONDITIONS  2.6.1 Objective This section points out the combination of climatic conditions i n the north which cause s p e c i a l building problems for d i f f e r i n g areas within the north. The intent of t h i s section i s to define these conditions, indicate where they are most c r i t i c a l , and state the building implications due to t h e i r presence. 2.6.2 Humidity/Moisture Potential The mechanics of humidity concerning moisture potential and temperature are explained i n Appendix A under "Relative Humidity Chart and Moisture Potential Graph". * 1  The moisture p o t e n t i a l of any p a r t i c u l a r area i s dependent upon the temperature,since the continental zone experiences the coldest temperatures i t also would have less moisture potential i n the a i r .  During the  winter months Barrow and Fairbanks would have the l e a s t p o t e n t i a l for moisture i n the a i r . Talkeetna, Anchorage, and Minneapolis would be s i m i l a r , while Juneau and Vancouver would have the greatest moisture p o t e n t i a l . Many problems occur i n the cold dry areas where the moisture created by people, cooking, and washing within buildings migrates towards the exterior which i s cold and cannot r e t a i n the high moisture content i n the a i r .  This moisture i s often frozen i n or on b u i l d -  ing materials. High humidity becomes a comfort problem during summer when the temperature i s high enough, see comfort zone on the bioclimatic chart, Appendix A. areas i n Alaska have temperate  Most  summer temperatures.  The i n t e r i o r region gets temperatures i n the 80's and occasionally i n the 90's, yet the r e l a t i v e humidity during the warm months ranges from 40% (2pm i n the afternoon i n June) to 78% (2am i n the morning i n J u l y ) . The lowest value occuring during the warmest part of the day makes the area comfortable even during the warmer periods.  During these same periods i n Minn-  60 e a p o l i s t h e d a i l y maximum temperature average i s i n the 80's w i t h maximums around 100*F w h i l e t h e r e l a t i v e h u m i d i t y ranges from 53% t o 82%.  From t h e b i o c l i -  m a t i c c h a r t , 80°F and 60% h u m i d i t y i s beyond t h e c o m f o r t zone f o r most p e o p l e . The d e s i g n f o r summer h e a t and h u m i d i t y , v e n t i l a t i o n from t h e wind and more openings i n b u i l d i n g s , has a much h i g h e r p r i o r i t y i n more s o u t h e r n l a t i t u d e s such as M i n n e a p o l i s than i t has i n a l l r e g i o n s o f Alaska. 2.6.3  B l o w i n g Snow Combining wind, p r e c i p i t a t i o n ( d r y snow), and  t e m p e r a t u r e ( c o l d ) produces c o n d i t i o n s i d e a l f o r blowi n g 6now which has a tendency t o accumulate b e h i n d any s o l i d b a r r i e r on t h e down wind s i d e b l o c k i n g e x i t s , c o v e r i n g windows, e t c .  building  The a r e a s i n A l a s k a  where t h i s i s a major b u i l d i n g d e s i g n problem i s a l o n g the a r c t i c s l o p e and west c e n t r a l A l a s k a , a r e a s which b o r d e r t h e A r c t i c Ocean, B e a u f o r t S e a , C h u k c h i S e a , and B e a r i n g Sea, see f i g u r e 2.18.  Coastal areas further  south experience milder temperatures during winter n o r m a l l y making t h e snow t o o heavy t o be t r a n s p o r t e d by t h e w i n d .  2 0  61 2.6.4  Permafrost Permafrost i s permantly f r o z e n s o i l ,  material  which n o r m a l l y s t a y s a t or c o l d e r t h a n 32°F over the y e a r s . northernmost  Continuous  (0*C)  permafrost r e f e r s to the'  a r e a s i n which a l l the t e r r a i n i s per-  m a n t l y f r o z e n ground t o v a r y i n g depths below the a c t i v e layer.  D i s c o n t i n u o u s p e r m a f r o s t r e f e r s t o the a r e a s  g e n e r a l l y f u r t h e r s o u t h which tend t o have p e r m a f r o s t on the n o r t h s l o p e s o f h i l l s and f l a t a r e a s which have poor d r a i n a g e .  N o r m a l l y the s o u t h f a c i n g h i l l s i d e s  and w e l l d r a i n e d f l a t a r e a s a r e f r e e o f p e r m a f r o s t . F u r t h e r s o u t h i s the a r e a o f s p o r a d i c p e r m a f r o s t where the p e r m a f r o s t i s o n l y found i n i s o l a t e d s p o t s where l i t t l e s o l a r heat i s o b t a i n e d , poor d r a i n a g e  exists,  t e m p e r a t u r e s s t a y low t h r o u g h o u t the y e a r , o r combinat i o n s of these c o n d i t i o n s . I n A l a s k a , c o n t i n u o u s p e r m a f r o s t e x i s t s from the Brooks Range n o r t h t o the A r c t i c Ocean. f r o s t i s p r e s e n t throughout  D i s c o n t i n u o u s perma-  the i n t e r i o r w h i l e s p o r a t i c  p e r m a f r o s t o c c u r s i n the t r a n s i t i o n a l zone encompass i n g Anchorage and T a l k e e t n a , see f i g u r e 2.19.  South-  eastern Alaska i s v i r t u a l l y free of permafrost. B u i l d i n g i m p l i c a t i o n s a s s o c i a t e d with- p e r m a f r o s t d e a l w i t h f o u n d a t i o n s t a b i l i t y s i n c e m e l t i n g o f the p e r m a f r o s t can cause d i f f e r e n t i a l s e t t l e m e n t o r even c o l l a p s e o f the s t r u c t u r e .  I c e l e n s e s and i c e wedges  are present i n permafrost, should these melt they l e a v e a v o i d i n the s o i l which s i n k s i n l e a v i n g anyt h i n g r e s t i n g on the s u r f a c e i n an u n s t a b l e c o n d i t i o n . The a r e a s o f d i s c o n t i n u o u s p e r m a f r o s t i n the A l a s k a n i n t e r i o r a r e more c r i t i c a l t o b u i l d on t h a n the perma_ f r o s t i n the a r c t i c r e g i o n s i n c e the t e m p e r a t u r e the p e r m a f r o s t i n the i n t e r i o r may ing.  of  be c l o s e t o m e l t -  Any change on the s u r f a c e such as c l e a r i n g the  the b r u s h may  melt the p e r m a f r o s t .  B u i l d i n g on  this  type o f ground s h o u l d be a v o i d e d whenever p o s s i b l e .  62  '2.6.5 A c t i v e L a y e r / F r o s t Heave The a c t i v e l a y e r o f t h e ground i s t h a t depth which f r e e z e s and thaws a n n u a l l y a s t h e seasons change.  A r e a s o f t h e g r e a t e s t a c t i v e l a y e r depth a r e  t h o s e w i t h t h e g r e a t e s t t e m p e r a t u r e d i f f e r e n c e s from w i n t e r t o summer c a u s i n g f r e e z i n g t e m p e r a t u r e s t o go deeper i n t h e w i n t e r and a g r e a t e r depth o f thaw i n t h e summer.  The i n t e r i o r o r c o n t i n e n t a l c l i m a t i c zone i n  A l a s k a has t h e g r e a t e s t v a r i a t i o n o f a c t i v e l a y e r , from 2 f e e t up t o 20 f e e t .  S h o u l d t h e s o i l on which a  b u i l d i n g i s c o n s t r u c t e d have a low m o i s t u r e c o n t e n t ( b a c k f i l l e d w i t h n o n - f r o s t s u s c e p t a b l e m a t e r i a l ) and good d r a i n a g e , t h e f r e e z i n g ( e x p a n s i o n ) and t h a w i n g o f the^ a c t i v e l a y e r p r e s e n t s l i t t l e  problem.  2.2.  63 Since n e a r l y a l l of Alaska experiences f r e e z i n g t e m p e r a t u r e s , an a c t i v e l a y e r o f v a r y i n g depths can be found throughout the s t a t e .  More s o u t h e r n m a r i t i m e  a r e a s such as Vancouver do n o t e x p e r i e n c e t h e f r e e z i n g of  t h e ground t o any g r e a t e x t e n t w h i l e i n t h e c o n t i n -  e n t a l zone o f M i n n e a p o l i s an a c t i v e l a y e r may be s i m i l a r t o t h a t found i n t h e Anchorage r e g i o n i n Alaska. F r o s t heave o c c u r s w i t h i n the a c t i v e l a y e r o f the s o i l and i s t h e r e s u l t a n t b u i l d i n g a s s o c i a t e d w i t h the a c t i v e l a y e r .  implication  By d e f i n i t i o n ,  frost  h e a v i n g i s t h e e x p a n s i o n o f s o i l due t o t h e growth w i t h i n i t o f e x t e n s i v e i c e whose volume i s g r e a t e r t h a n t h e (thawed) v o i d s - v o l u m e o f t h e s o i l . for  f r o s t heave t o o c c u r , we need f r e e z i n g  ( w i n t e r ) , water i n t h e s o i l  In order temperatures  ( s i l t s ) , and t h e c a p i l a r y  a c t i o n o f t h e s o i l t o b r i n g t h e water towards t h e s u r f a c e where i t f r e e z e s and expands (wick a c t i o n ) .  2 5  Hence, any a r e a w i t h i n A l a s k a can e x p e r i e n c e f r o s t heave depending on t h e s o i l makeup and m o i s t u r e content w i t h i n the s o i l .  I n the c o l d e s t areas the  h e a v i n g w i l l o c c u r once i n t h e f a l l when t h e ground begins t o freeze f o r the w i n t e r .  I n more  temperate  a r e a s t h e f r e e z e / t h a w c y c l e may o c c u r s e v e r a l t i m e s over a w i n t e r due t o i n t e r m i t t a n t c o l d s p e l l s and warm p e r i o d s (above  freezing).  S o u t h e r n m a r i t i m e r e g i o n s do not e x p e r i e n c e f r o s t heave due t o t h e l a c k o f n o n - f r e e z i n g t e m p e r a t u r e s , yet  more s o u t h e r n c o n t i n e n t a l r e g i o n s encounter pro-  blems w i t h f r o s t heave due t o l o n g p e r i o d s below 32°F (0°C) d u r i n g t h e w i n t e r . W h i l e f r o s t heave i s p r e s e n t i n more s o u t h e r n l a t i t u d e s t h a n A l a s k a i t becomes a more c r i t i c a l  pro-  blem i n many a r e a s i n t h e n o r t h due t o t h e c o m b i n a t i o n of  p o o r l y d r a i n e d s o u l ( p a r t l y caused by s u r r o u n d i n g  p e r m a f r o s t ) and t h e presence o f s i l t y  soils.  64 2.7  SUMMARY Some c l i m a t i c c o n d i t i o n s a r e more c r i t i c a l i n  b u i l d i n g design f o r c e r t a i n r e g i o n s w i t h i n the State of A l a s k a than other areas.  The most i m p o r t a n t  cli-  m a t i c c o n d i t i o n s f o r each r e g i o n a r e : A. The A r c t i c R e g i o n a. B l o w i n g snow and snow d r i f t i n g b. Constant  wind  c. C o n t i n u o u s  blowing  permafrost c o n d i t i o n s  d. S m a l l a c t i v e l a y e r / f r o s t heave p o t e n t i a l e. C o l d t e m p e r a t u r e s f.  y e a r round  Low sun a n g l e s w i t h no s u n l i g h t i n w i n t e r and 24 h o u r s i n summer  In  t h i s r e g i o n the primary b u i l d i n g i m p l i c a t i o n s  a r e (?) t h e p o t e n t i a l f o r snow d r i f t i n g and (5) t h e need t o r e t a i n t h e s t a b i l i t y o f t h e f r o z e n ground (permafrost).  The l a t t e r causes s p e c i a l problems  w i t h r e g a r d t o f o u n d a t i o n s and u t i l i t y systems and s e w e r ) .  (water  The p o s s i b i l i t y o f c r e a t i n g a more d e s i r -  a b l e micro c l i m a t e through windbreaks i s r e s t r i c t e d by t h e p o s s i b i l i t y o f snow d r i f t i n g . B. The S u b - A r c t i c R e g i o n a. C o l d t e m p e r a t u r e s  f o r long periods  b. Low sun a n g l e s w i t h s h o r t w i n t e r days and l o n g summer days c. Dryness d u r i n g c o l d months d. i c e f o g p r o d u c t i o n e. Less wind t h a n a r c t i c o r m a r i t i m e  regions  f. H i g h degree o f m o i s t u r e m i g r a t i o n (warm t o c o l d ) g. D i s c o n t i n u o u s p e r m a f r o s t more s e n s i t i v e when disturbed h. Large a c t i v e l a y e r / f r o s t heave p o t e n t i a l The  l o c a t i n g / s i t i n g of housing i n the s u b - a r c t i c  environment i s v e r y i m p o r t a n t s i n c e p i c k i n g t h e r i g h t s p o t can  a l l e v i a t e many p o t e n t i a l problems.  Areas  65 w i t h p e r m a f r o s t , p o t e n t i a l f r o s t heave,and low  lying  c o l d a i r d r a i n a g e s h o u l d be a v o i d e d whenever p o s s i b l e . I f t h i s can be done, t h e n the p r i m a r y b u i l d i n g  concerns  d e a l w i t h temperature and s o l a r r a d i a t i o n . There i s a tremendous c o n t r a s t between the v e r y c o l d r e l a t i v e l y dark w i n t e r s , and the r e l a t i v e l y warm, b r i g h t summers.  T h i s g r e a t d i f f e r e n c e between  summer and w i n t e r i s one o f the most i m p o r t a n t c h a r a c t e r i s t i c s o f the s u b - a r c t i c . environment  Planning a l i v i n g  which responds t o b o t h summer and w i n t e r  c o n d i t i o n s becomes a c h a l l e n g e i n the s u b - a r c t i c s i n c e the s e a s o n a l v a r i a t i o n s are so  extreme.  C. The Southern C o n t i n e n t a l R e g i o n The more s o u t h e r n c o n t i n e n t a l r e g i o n , i n c o n t r a s t t o the s u b - a r c t i c r e g i o n has more w i n t e r s u n l i g h t , s h o r t e r w i n t e r s e a s o n , and much warmer summer temperatures.  T h i s p r i m a r i l y l e s s e n s the impact on o p e r a t i n g  c o s t s f o r h e a t i n g and problems r e l a t e d t o c o l d temperature penetration (thermal bridging with r e l a t e d icing). D. The N o r t h e r n M a r i t i m e  Region  a. G r e a t e r r a i n , snow, and i c e b. H i g h e r winds c. Presence o f ocean f o g d. More moderate t e m p e r a t u r e s o v e r the y e a r T h i s r e g i o n , b e i n g more damp and windy, p r i m a r i l y needs p r o t e c t i o n a g a i n s t w i n t e r winds and l a r g e snow a c c u m u l a t i o n s which may  cause s t r u c t u r a l damage as  w e l l as maintenance problems.  I c y c o n d i t i o n s through-  out t h e w i n t e r make v e h i c l e t r a n s p o r t a t i o n  hazardous  e s p e c i a l l y when c i r c u l a t i o n p a t t e r n s a r e l o c a t e d  on  slopes. E. The S o u t h e r n M a r i t i m e  Region  The more s o u t h e r n m a r i t i m e r e g i o n e x p e r i e n c e s r e l a t i v e l y m i l d t e m p e r a t u r e s as w e l l as more s u n l i g h t d u r i n g t h e w i n t e r months.  Summer t e m p e r a t u r e s  are  66 more moderate than continental regions making solar heat desirable for a large portion of the year.  The  absence of permafrost and heaving s o i l s s i m p l i f i e s foundations and the moderate temperatures have less of an impact on the b u i l d i n g f a b r i c .  67  68 2.8  REFERENCES  ^ Sunpath diagram f o r 62°north l a t i t u d e by the a u t h o r , see appendix A.  constructed  A t m o s p h e r i c A i r Mass C h a r t p r e p a r e d by the a u t h o r from ASHRAE, Handbook o f Fundamentals, p. 469, a i r mass = c o s e c a n t o f s o l a r a l t i t u d e x r a t i o o f b a r o m e t r i c p r e s s u r e : 29.92 i n . h g . 2  S o l a r a t l i t u d e s c a l c u l a t e d from the f o r m u l a shown i n Appendix A, P a r t C. ^ P h i l i p R. Johnson and C h a r l e s W. Hartman, E n v i r onmental A t l a s o f A l a s k a , U n i v e r s i t y o f A l a s k a , 1969 John Hay, " S o l a r R a d i a t i o n F e a s i b i l i t y i n Canada," Canadian M e t e o r o l o g i c a l S o c i e t y L e c t u r e a t U n i v . o f B r i t i s h C o l u m b i a , Feb. 26, 1976 9  ^U.S., Department o f Commerce, N a t i o n a l Oceanic and A t m o s p h e r i c A d m i n i s t r a t i o n (NOAA), N a t i o n a l C l i m a t i c Center, A s h v i l l e , North C a r o l i n a . Local C l i m a t o l o g i c a l D a t a . Annual Summary With Comparative Data: Anchorage,Alaska 1973 Talkeetna, Alaska 1974 Fairbanks, Alaska 1974 Juneau, A l a s k a 1974 M i n n e a p o l i s , Minn.  1974  7 Ibid. Ibid.  &  ^ Ibid. 1 0  Ibid.  Ibid. 1* U.S. (NOAA), M o n t h l y Normals o f Temperature. P r e c i p i t a t i o n , and H e a t i n g and C o o l i n g Degree Days 1941 - 701 A l a s k a , August 1973* and M o n t h l y Averages o f Temperature and P r e c i p i t a t i o n f o r S t a t e C l i m a t i c D i v i s i o n s 1941 - 70. A l a s k a , J u l y 1973 1 1  * Canada, Department o f T r a n s p o r t , M e t e o r o l o g i c a l B r a n c h , Temperature and P r e c i p i t a t i o n T a b l e s f o r B r i t i s h C o l u m b i a , T o r o n t o , 1967 3  U.S., ^  (NOAA), L o c a l C l i m a t o l o g i c a l Data  Johnson and Hartman, E n v i r o n m e n t a l A t l a s  69 Canada, Department o f T r a n s p o r t , M e t e o r o l o g i c a l B r a n c h , C l i m a t i c Normals, Volumn 5, Wind, T o r o n t o , 1<c>  1968  Eb R i c e , " A r c t i c E n g i n e e r i n g o f A l a s k a , c l a s s n o t e s , 1973 1 7  1  *  (C.E. 603),  G i v o n i , Man, C l i m a t e and A r c h i t e c t u r e ,  * V i c t o r O l g y a y , D e s i g n With C l i m a t e , U n i v e r s i t y P r e s s , New J e r s e y , 1963 9  7  0  Univ.  R i c e , C.E.  603  Johnson and Hartman, E n v i r o n m e n t a l R i c e , C.E.  Princeton  603  Atlas  70  CHAPTER  3  BUILDING DESIGN RESPONSES 3.1 INTRODUCTION 3.2 PLANNING LEVEL 1: SITE LAYOUT/CIRCULATION PATTERNS 3.2.1 O b j e c t i v e 3.2.2 S o l a r R a d i a t i o n 3.2.3 Temperature 3.2.4 P r e c i p i t a t i o n 3.2.5 Wind 3.2.6 S p e c i a l C l i m a t i c C o n d i t i o n s ( B l o w i n g Snow) 3.2.7 Summary 3.2.8 References 3.3 PLANNING LEVEL 2: BUILDING SIZE, SHAPE, AND ORIENTATION 3.3.1 O b j e c t i v e 3.3*2 S o l a r R a d i a t i o n 3.3.3 Temperature 3.3.4 P r e c i p i t a t i o n 3.3.5  Wind  3.3.6 Special Climatic Conditions (Blowing Snow) 3.3.7 Summary 3.3.8 References 3.4 P L A N N I N G L E V E L 3: ACTIVITY/SPACE ARRANGEMENT 3.4.1 O b j e c t i v e 3.4.2 S o l a r R a d i a t i o n 3.4.3 Temperature 3.4.4 P r e c i p i t a t i o n 3.4.5 Wind 3.4.6 S p e c i a l C l i m a t i c C o n d i t i o n s ( B l o w i n g Snow) 3.4.7 Summary 3.4.8 R e f e r e n c e s 3.5 PLANNING LEVEL 4: DETAILING ON THE BUILDING FABRIC 3.5.1 O b j e c t i v e 3.5.2 S o l a r R a d i a t i o n 3.5*3 Temperature 3.5.4 P r e c i p i t a t i o n 3.5.5 Wind 3.5.6 S p e c i a l C l i m a t i c C o n d i t i o n s A. H u m i d i t y / M o i s t u r e P o t e n t i a l B. B l o w i n g Snow C. P e r m a f r o s t D. F r o s t Heave 3.5.7 Summary 3.5.8 R e f e r e n c e s  71  3.1  INTRODUCTION This chapter i l l u s t r a t e s b u i l d i n g responses t o  the  c l i m a t i c conditions stated  i n c h a p t e r 2.  The p r e v i o u s c h a p t e r compared s e v e r a l climatic regions.  northern  The b u i l d i n g d e s i g n r e s p o n s e s i n  t h i s c h a p t e r may be a p p l i c a b l e  t o a wide range o f  n o r t h e r n c l i m a t i c r e g i o n s , but t h e p r i m a r y f o c u s w i l l be on t h e s u b - a r c t i c  r e g i o n a s shown on f i g u r e 2 . 2 0  a t t h e end o f c h a p t e r 2. The format i s b r o k e n down i n t o t h e f o u r p l a n n i n g l e v e l s w i t h each l e v e l i l l u s t r a t i n g r e s p o n s e s due t o implications  caused by s o l a r r a d i a t i o n ,  temperature,  p r e c i p i t a t i o n , w i n d , and s p e c i a l c l i m a t i c  conditions.  The f o u r p l a n n i n g l e v e l s a r e o r d e r e d from # 1 ( h i g h e s t ) t o #4 ( l o w e s t ) s i n c e d e c i s i o n s made a t t h e h i g h e r p l a n n i n g l e v e l s have an e f f e c t on t h e impact o f t h e climate at the lower planning l e v e l s . include:  1  Arrangement, and k  levels  Patterns, 2  Site Layout/Circulation  i n g S i z e , Shape, and O r i e n t a t i o n ,  Planning  3  Build-  Activity/Space  D e t a i l i n g of the B u i l d i n g  Fabric,  1.9 i n c h a p t e r 1.  refer to figure  Each p l a n n i n g l e v e l i s summarized i n d i c a t i n g t h e r e l a t i v e importance o f the v a r i o u s responses t o the climate.  The p r i o r i t i e s o f many o f t h e d i f f e r i n g  d e s i g n r e s p o n s e s w i l l depend on t h e u s e r ' s needs and preferences plus the p a r t i c u l a r s i t e c o n d i t i o n s .  Be-  cause o f t h i s , t h e r e s p o n s e s have been i l l u s t r a t e d s e p a r a t e l y f o r each c l i m a t i c f a c t o r  (solar  radiation,  t e m p e r a t u r e , e t c . ) so t h a t u s e r s / b u i l d e r s c a n d e s i g n / e v a l u a t e h o u s i n g a s i t r e s p o n d s t o each i n d i v i d u a l climatic factor.  The next c h a p t e r p r o v i d e s an example  of e v a l u a t i o n f o r a p a r t i c u l a r s i t e , c o m b i n i n g t h e s i t e f a c t o r s with the c l i m a t i c f a c t o r s t o e s t a b l i s h a possible  s e t o f b u i l d i n g response p r i o r i t i e s f o r the  more s p e c i f i c  condition.  72 PLANNING LEVEL 1: SITE LAYOUT/CIRCULATION PATTERNS  K O s U o M a | H «« U M.  REFERENCE MATRIX  h  3.2.1  PLANNING  LEVEL  1  PLANNING  LEVEL  2  PLANNING  LEVEL  }  PUNNINO  LEVEL  it  g  FACTORS  to O F-i o u  »H  K  SITE  FACTORS  g  £ U 2 o f-  GEOLOGY  CLIMATIC  SFECIAL  3.2  o s !-• •< s B o a w w 111 I** a  Objective This s e c t i o n i s intended t o p o i n t out design  r e s p o n s e s a t t h i s f i r s t l e v e l o f p l a n n i n g which h e l p to  l e s s e n the adverse e f f e c t s o f the c l i m a t e a t the  lower l e v e l s o f p l a n n i n g . The e s t a b l i s h m e n t  of a c i t y infrastructure  v a r i o u s r e s t r i c t i o n s on t h e b u i l t environment. h o u s i n g must f o l l o w v e h i c u l a r and u t i l i t y  puts The  circulation  p a t t e r n s and be r e g u l a t e d by p r o p e r t y l i n e s  adjacent  to  infra-  these c i r c u l a t i o n p a t t e r n s .  s t r u c t u r e were planned  I f the c i t y  to minimize  the a d v e r s e e f f e c t s  o f t h e w i n t e r c l i m a t i c c o n d i t i o n s and maximize t h e d e s i r a b l e c l i m a t i c e f f e c t s , the micro c l i m a t e c r e a t e d at  t h i s f i r s t p l a n n i n g l e v e l c o u l d g r e a t l y enhance t h e  h a b i t a b i l i t y o f t h e a r e a and l e s s e n t h e c l i m a t i c i m p l i c a t i o n s on t h e b u i l t environment.  73 3.2.2 S o l a r R a d i a t i o n  CLIMATIC FACTORS ic  PLANNN I Q LEVEL PLANNINfJ LEVEL PUNNINQ LEVEL PLANNING LEVEL One  1 2 3 k  SITE FACTORS  O n  »H  BB  g EH «<  e  M  o »~t U. h-t  sw  s »H BB  eo u •J  <  M C>  w o . "1  > o• 3 S  > o* SOILS  M  TOPOGRAPHY  REAFT ER M RE IXNCE  SOLAR RADIATION  W  O  3 * o a rr.  U O w  a  o f t h e most i m p o r t a n t a s p e c t s o f d e s i g n i n  the s u b a r c t i c r e g i o n i s t h e use o f s o l a r r a d i a t i o n and n a t u r a l l i g h t i n t h e s i t i n g , l a y o u t , s i z e , shape, and o r i e n t a t i o n o f b u i l d i n g s w i t h r e s p e c t t o one a n o t h e r s i n c e they d i r e c t l y e f f e c t t h e time and d u r a t i o n t h a t s u n l i g h t w i l l be d i s t r i b u t e d t o each b u i l d i n g ( e s p e c i a l l y d u r i n g t h e w i n t e r months). Does a person have a r i g h t t o s u n l i g h t ? Does h i s home have a r i g h t t o s u n l i g h t , e s p e c i a l l y i f i t i s d e s i g n e d t o maximize s o l a r r a d i a t i o n i n o r d e r t o make i t h a b i t a b l e and conserve non-renewable r e s o u r c e s ? In N o r t h A m e r i c a , z o n i n g o r d i n a n c e s a r e n o r m a l l y the o n l y r e g u l a t i o n which i n d i r e c t l y have an e f f e c t on the l i g h t and s u n l i g h t p a t t e r n s . S i n g l e f a m i l y h o u s i n g w i t h i n a c i t y would n o r m a l l y have z o n i n g c o n t r o l s which r e s t r i c t t h e l o t s i z e s , s e t b a c k s , b u i l d i n g u s e , and b u i l d i n g h e i g h t s which e f f e c t t h e s u n l i g h t c h a r a c t e r i s t i c s o f t h e s u r r o u n d i n g environment.  Most  z o n i n g o r d i n a n c e s do n o t use a q u a n t i t a t i v e o r q u a l i t a t i v e measure o f s u n l i g h t and/or s k y l i g h t a v a i l a b l e to  t h e e x t e r i o r use spaces o r t h e b u i l d i n g s  themselves.  So, from t h e s o u t h e r n l a t i t u d e s o f F l o r i d a t o t h e n o r t h e r n l a t i t u d e s o f A l a s k a , t h e s i z e and s p a c i n g o f h o u s i n g i s v e r y s i m i l a r s i n c e z o n i n g c r i t e r i a changes l i t t l e w i t h l a t i t u d e , see c i t y maps i n c h a p t e r 1, f i g u r e s and  1.6 f o r s t r e e t / c i t y l a y o u t .  1.5  B u t , t h e amount o f  s u n l i g h t and d e s i r a b i l i t y f o r s u n l i g h t changes r a d i c a l l y w i t h l a t i t u d e and c l i m a t i c c o n d i t i o n s , and y e t t h e b u i l t environment ( m i c r o - c l i m a t e c r e a t e d ) does n o t r e f l e c t  thi6.  7k For c e n t u r i e s laws have been passed to the r i g h t t o s u n l i g h t . periods and  of g r e a t  c o n c e r n f o r the p r o t e c t i o n o f working  detrimental  proved t h a t the l a c k o f  t o ones w e l l b e i n g .  c o n c e r n f o r s u n l i g h t t a k e s on a new i s based on the  The  light  environ-  These c o n c e r n s were o r i g i n a l l y based on  r e a s o n s s i n c e i t was was  H i s t o r i c a l l y t h e r e have been  s u n l i g h t w i t h i n the l i v i n g and  ment.  protect  health  sunlight  present  day  dimension since i t  f u n c t i o n i n g o f the b u i l d i n g t o make i t  habitable. " L i g h t and s u n l i g h t , a c c o r d i n g to the consensus o f q u a l i f i e d o p i n i o n , c o n s t i t u t e the most i m p o r t a n t f a c t o r i n d e t e r m i n i n g the d e s i r a b l e maximum h e i g h t and b u l k o f b u i l d i n g s . Many a t t e m p t s have been made t o reduce the minimum d e s i r a b l e s t a n d a r d s o f l i g h t and s u n l i g h t to a q u a l t i t a t i v e b a s i s . The B r i t i s h Law o f A n c i e n t L i g h t s i s the e a r l i e s t a t t e m p t t o a s s u r e a minimum s t a n d a r d o f l i g h t t o the ground s t o r y windows o f a l l b u i l d i n g s . ... the Law o f A n c i e n t L i g h t s d a t e s back t o the . r e i g n of R i c h a r d Coeur de L i o n i n the y e a r 1 1 8 9 . " I n the U.S.,  many s t u d i e s were done which a t t e m p t e d  t o e s t a b l i s h a minimun s t a n d a r d o f s u n l i g h t a l o n g a means f o r e v a l u a t i o n .  Unfortunately  f o r t done i n t h i s r e s e a r c h  was  much o f the  with ef-  not put i n t o p r a c t i c e .  " I t i s a matter of record that i n d e v e l o p i n g a z o n i n g o r d i n a n c e f o r New York we spent a g r e a t d e a l o f time t r y i n g t o see i f t h e r e might not be some way o f i n t e r p r e t i n g t h e s e q u a n t i t a t i v e s t a n d a r d s i n the terms o f a z o n i n g o r d i n a n c e t h a t might be r e a d i l y a p p l i e d by the average a r c h i t e c t , b u i l d e r , or r e a l t o r . The upshot was t h a t we found t h e r e were so many o t h e r c o m p l i c a t i n g f e a t u r e s t h a t i t would be i m p r a c t i c a b l e t o t r y t o use a d e f i n i t e q u a n t i t a t i v e minimum s t a n d a r d o f l i g h t and s u n l i g h t i n the z o n i n g o r d i n a n c e ; " 2 Most q u a n t i t a t i v e s t a n d a r d s a t the t i m e t r i e d  to  e s t a b l i s h a t l e a s t \ hour o f s u n l i g h t ( e q u i v i l e n t of noon s u n l i g h t i n t e n s i t y ) t o a home u n i t window on s h o r t e s t day  o f the  year.  the  75 It was claimed back i n 1930  that New  through i t s zoning, had accomplished  York,  the same sunlight  and skylight standards as London even though i t allowed greater building heights. the sun angle i n New  York  This was j u s t i f i e d because  (25i°)  on the shortest day  of the year i s 11° higher than i t i s i n London  (15°)  therefore allowing greater building heights while achieving equal sunlight standards.^ So, what are the consequences i f t h i s were applied to the far northern l a t i t u d e s where the winter sun angle i s only 5* instead of 25^r°?  Figure 3.1  gives some idea with regard to  the building spacing required for d i f f e r e n t l a t i t u d e s to receive similar amounts of winter sunlight. The r a t i o of v e r t i c a l height to horizontal spacing required to allow winter sunlight penetration varies from  1:1.67  for 45°N.Lat. (higher l a t i t u d e than  York City) to 1:8.5  at 62*N.Lat.  buildings being spaced 25' to be spaced 127'  Instead of 15'  New high  apart, the buildings need  apart to receive s i m i l a r sunlight  exposure on the shortest day of the year.  This i s not  feasible since the buildings would have to be so spread out that they would use up too much land while providing housing for only a few people. Since i n the north i t would be even more d i f f i c u l t to arrive at a quantitative standard to assure sunlight to a l l housing units, i t makes more sense to evaluate building s i z e , shape, orientation, and spacing on t h e i r shadowing (sun blocking) potential of exterior space and other buildings.  The building response  criteria  put foreward i n t h i s section i s meant to be a t o o l for evaluating solar shadowing p o t e n t i a l instead of t r y i n g to prescribe quantitative standards for sunlight or daylight.  76  77 The  o r i e n t a t i o n of the c i r c u l a t i o n system  has  a major e f f e c t on the arrangement of b u i l d i n g s  and  the use  of e x t e r i o r spaces.  t a t i o n i s best for a l l o w i n g spaces and  North/south s t r e e t  s u n l i g h t onto e x t e r i o r  for establishing "corridors for  d u r i n g the w i n t e r .  orien-  Compact h o u s i n g forms  sunlight" orientated  p a r a l l e l t o the n o r t h / s o u t h s t r e e t would c a s t a mini m a l shadow d u r i n g midday, but  the u n i t s would  get  o n l y a s m a l l p o r t i o n of s u n l i g h t on the e a s t and/or west w a l l s and  windows.  The  most u n f o r t u n a t e pro-  blem w i t h n o r t h / s o u t h s t r e e t o r i e n t a t i o n s i s t h a t u s u a l l y have e a s t / w e s t s t r e e t c o n n e c t o r s , the grid pattern.  H a v i n g c l o s e l y spaced b u i l d i n g s  the e a s t / w e s t s t r e e t s i s the  least desirable  w i t h r e g a r d t o s o l a r shadowing s i n c e t h e y put s i d e e x t e r i o r spaces i n shadow f o r o v e r  they  famous along solution the  o f the  north year.  With t h i s i n mind, s t r e e t p a t t e r n s s h o u l d maximize n o r t h / s o u t h s t r e e t o r i e n t a t i o n s and m i n i m i z e e a s t / w e s t s t r e e t o r i e n t a t i o n s u t i l i z i n g d i a g o n a l s (nw/se,ne/sw) for connectors.  The  southeast/northwest s t r e e t s  will  get morning sun a l o n g w i t h a d j a c e n t e x t e r i o r y a r d s , and  i n the a f t e r n o o n the  receives  sunlight.  southwest/northeast  street  78 When buildings are placed along the c i r c u l a t i o n patterns, the property l i n e s should be f l e x i b l e enough to allow d i f f e r i n g b u i l d i n g o r i e n t a t i o n s . Having t h i s f l e x i b i l i t y the designer/builder can manipulate the structure more e a s i l y to respond to the c l i m a t i c conditions at planning l e v e l 2. The greatest potential f o r sunlight from the south occurs along diagonal street patterns since the distance which the buildings are spaced apart i s the greater diagonal distance.  5711  1=1 G U f ^  3.3  The i n d i v i d u a l buildings of any micro environment should be arranged so that the smaller buildings are to the south of larger more massive buildings i n order to minimize the shadowing e f f e c t of the larger buildings during winter.  79 The  l o c a l t o p o g r a p h y a l s o has an e f f e c t on sha-  dowing p o t e n t i a l .  B u i l d i n g on south  facing h i l l s  h e l p s t o reduce t h e l e n g t h o f shadows d u r i n g  winter  providing the opportunity f o r c l o s e r b u i l d i n g spacing while s t i l l r e c e i v i n g winter s u n l i g h t .  Similar to  c o n d i t i o n s on l e v e l ground, t h e t a l l e r more m a s s i v e b u i l d i n g s s h o u l d be l o c a t e d near t h e t o p o f t h e slope ( t o the north) with the smaller b u i l d i n g s to the s o u t h , s o u t h e a s t , and/or s o u t h w e s t .  For an example o f t h e t o p o g r a p h i c  e f f e c t on  b u i l d i n g spacing with regard to sunlight penetration, the s p a c i n g f o r 3 s t o r y (35') b u i l d i n g s range from 80' a t 4 5 * l a t i t u d e t o 375' a t 6 2 * l a t i t u d e f o r s i m i l a r w i n t e r s u n l i g h t p e n e t r a t i o n on f l a t topography.  The  375' s p a c i n g c a n be r e d u c e d t o 118' ( l e s s t h a n 1/3rd the d i s t a n c e ) when on a 10°slope and have e q u a l s u n l i g h t p e n e t r a t i o n , see f i g u r e s 3 , %>,A  i n Appendix  ^.  80  3.2.3  Temperature CLIMATIC FACTORS V. SB o  SITE FACTORS  Ui  REFERENCE MATRIX  a  Ct  *  PLANNING LEVEL PLANNING LEVEL PUNNING LEVEL PUNNINO LEVEL  ou «c U, o g t ua>. * "?  5 g «S K 1 2 3 k  3  M  •H  i  #  »J  >*  <  >*  o to s  SOS K<  O 3O o & u, f.l O f- (!» O « U r-i  U)  n..  A. T o p o g r a p h i c L o c a t i o n a l C o n s i d e r a t i o n s : H i l l s i d e s and h i g h e r e l e v a t i o n s s h o u l d be used f o r development due t o t h e c o l d a i r f l o w ( k a t a b a t i c wind) i n t h e w i n t e r which s e t t l e s i n the l o w e s t  areas.  T h i s c o l d a i r f l o w can make t h e v a l l e y f l o o r a s much as 30° t o 40°F c o l d e r t h a n the h i l l s i d e s s e v e r a l hundred f e e t h i g h e r .  Much l i k e t h e c o l d a i r f l o w , i c e f o g c o l l e c t s i n t h e low l y i n g a r e a s d u r i n g p e r i o d s o f extreme low t e m p e r a t u r e s (below -25°F) which a r e c h a r a c t e r i z e d by l i t t l e a i r movement and c l e a r s k i e s . c a s e s t h e f o g i s c r e a t e d by man  I n most  ( c a r s , homes, power  p l a n t s , i n d u s t r y - a n y t h i n g which p u t s m o i s t u r e i n t o the a i r ) . With i n c r e a s e d development, i t i s d i f f i c u l t t o a v o i d t h e p r o d u c t i o n o f i c e f o g d u r i n g extreme c o l d c o n d i t i o n s , but knowing t h a t t h e f o g s e t t l e s i n the  81 l o w e r e l e v a t i o n s a l o n g w i t h t h e c o l d a i r , development can a v o i d a r e a s o f h i g h i c e f o g p o t e n t i a l .  This i s  e s p e c i a l l y i m p o r t a n t when p l a n n i n g f o r development which needs good w i n t e r v i s i b i l i t y such a s an a i r p o r t .  B. P h y s i c a l / S o c i o - C u l t u r a l L o c a t i o n a l C o n s i d e r a t i o n s Compact P l a n n i n g v e r s u s D i s p e r s e d In  Planning:  the a r c t i c r e g i o n the c l o s e grouping of b u i l d -  i n g s and t h e containment o f many f a c i l i t i e s  i n one  s t r u c t u r e i s more c r i t i c a l t h a n i n t h e s u b a r c t i c r e g i o n due t o t h e presence o f y e a r round c o l d tempe r a t u r e s , continuous ing  permafrost,  c o n s t a n t wind, blow-  snow, and l a c k o f v e g e t a t i o n . "The c l i m a t e , t e r r a i n and p e r m a f r o s t c o n d i t i o n s severely i n h i b i t the options f o r s e r v i c i n g b u i l d i n g s i n t h e n o r t h . S e l f - c o n t a i n e d systems f o r h e a t i n g and r e c y c l i n g water a r e t e c h n o l o g i c a l l y f e a s i b l e , but p r o h i b i t i v e l y e x p e n s i v e on an i n d i v i d u a l h o u s i n g u n i t b a s i s . Even i f such systems become e c o n o m i c a l l y f e a s i b l e , t h e r e i s reason t o concentrate housing u n i t s i n t i g h t g r o u p i n g s because o f t h e e c o l o g i c a l d i s t u r b a n c e , the expense o f r o a d s and p a t h s , and t h e atmosp h e r i c e f f e c t s o f k e e p i n g an a u t o m o b i l e engine r u n n i n g w h i l e i t i s p a r k e d . " CP i n t h e s u b a r c t i c r e g i o n t h e r e i s a need f o r a  compact community d u r i n g w i n t e r and a d i s p e r s e d comm u n i t y d u r i n g summer i n o r d e r t o o p t i m i z e f o r t h e d i f f e r i n g seasons.  During the winter t r a n s p o r t a t i o n ,  u t i l i t i e s , and maintenance can be major problems/ expenses i n a d i s p e r s e d community. On t h e n a t i o n a l s c a l e , t r a n s p o r t a t i o n a c c o u n t e d for  25% o f t h e t o t a l end p r o d u c t  i n t h e U.S. i n 1970.  energy consumption  O n l y 25% o f t h i s energy was  82 converted  t o "work" w h i l e 75% was "waste" ( l o s t i n  heat and e x h a u s t ) .  -t  C a r e f u l l c o n s i d e r a t i o n must be made i n t h e n o r t h e r n environment when e s t a b l i s h i n g t r a n s p o r t a t i o n means and p a t t e r n s .  F i r s t , i s the automobile the  a p p r o p r i a t e means o f t r a n s p o r t a t i o n ?  Besides the  numerous h a s s l e s i n v o l v e d w i t h t h e c o m f o r t ,  cost,  and maintenance o f an auto i n t h e w i n t e r , t h e auto g e t s much l e s s m i l a g e p e r g a l l o n o f gas i n c o l d tempe r a t u r e s ( q u i t e o f t e n about \ n o r m a l ) . bad e f f i c i e n c y drops even l o w e r .  So t h e a l r e a d y  When combining  t h i s w i t h t h e f a c t t h a t the a u t o s , t r u c k s , and buses a c c o u n t f o r n e a r l y 20% o f t h e t o t a l U.S. f u e l consumed, while producing important  o n l y 25% e f f i c i e n c y , i t would seem  t o p l a n a r e l i a b l e t r a n s i t system and / o r  a compact s i t i n g o f s e r v i c e s , s c h o o l s , o f f i c e s , and l i v i n g e n v i r o n m e n t s which would m i n i m i z e t h e need f o r the p r i v a t e a u t o w i t h i n t h e c i t y environment. S i n c e i n d i s p e r s e d developments t h e a u t o m o b i l e w i l l not be e l i m i n a t e d and a r e a s w i l l be developed which a r e remote enough t o r e q u i r e an auto ( q u i t e o f t e n a U, wheel d r i v e ) some a d v e r s e c o n d i t i o n s must be  considered: 1. Steep i n c l i n e s , a p p r o x i m a t e l y  10% o r g r e a t e r  with i c y conditions l i m i t : A c c e s s i b i l i t y o f p r i v a t e autos S c h o o l bus p i c k up and drop o f f P o s t a l and garbage s e r v i c e Emergency  access  2. P a r k i n g l o t s i n downtown a r e a s where people shop f o r an hour o r two tend t o have h i g h c a r b o n monoxide r e a d i n g s due t o t h e i n v e r s i o n l a y e r s o f a i r ( p r e v e l e n t i n w i n t e r ) combined w i t h t h e i d l i n g o f c a r s which people do f o r h o u r s i n o r d e r t o a l w a y s have a warm c a r . These a r e a s a l s o accumulate l a r g e amounts o f i c e f o g d u r i n g extreme c o l d p e r i o d s .  Plug-  i n s a r e c o s t l y to i n s t a l l as w e l l as f o r the the consumer t o u s e .  83 3» Snow r e m o v a l from O c t o b e r t o A p r i l w i t h a w i n t e r ' s a c c u m u l a t i o n v a r y i n g from (2i f e e t ) t o o v e r 170"  (14  30"  feet)  4. The a v a i l a b i l i t y o f e l e c t r i c a l p l u g - i n s or h e a t e d p a r k i n g garages becomes more i m p o r t a n t the  c o l d e r i t becomes.  When t e m p e r a t u r e s  d r o p below -20°F f o r any l e n g t h o f time many c a r s w i l l not s t a r t o r o p e r a t e w e l l i f t h e engine and b a t t e r y have had time t o c o o l o f f . In F a i r b a n k s , e l e c t r i c a l p l u g - i n s are a v a i l a b l e ( n o r m a l l y a t a c o s t ) so t h a t the c i r c u l a t i n g h e a t e r s / o i l pan h e a t e r s can keep the engine warm and the e l e c t r i c b a t t e r y b l a n k e t can keep the b a t t e r y from c o o l i n g o f f and l o o s i n g power. The i s s u e s o f t r a n s p o r t a t i o n and  location  ( d i s t a n c e ) from p l a c e s o f work, s c h o o l , e t c . a r e complex.  I t ' s been my e x p e r i e n c e t h a t those who  can  a f f o r d t o use a p r i v a t e auto w i l l use i t j u s t as i n any o t h e r a r e a i n the U.S. make i t n e c e s s a r y .  especially i f conditions  Should a t r a n s i t system  be  d e v e l o p e d , i t s d e p e n d a b i l i t y i s c r i t i c a l because people a r e not w i l l i n g t o spend any l e n g t h o f time w a i t i n g i n -30°F t e m p e r a t u r e s i n the w i n t e r d a r k n e s s . A l s o , once people a r e a b l e t o e s t a b l i s h t h e i r  sub-  urban s p r a w l w i t h homes, s h o p p i n g a r e a s , s c h o o l s , o f f i c e s , and i n d u s t r y s p r e a d out i n many a r e a s i t becomes more d i f f i c u l t  to e s t a b l i s h a t r a n s i t  system  which can s a t i s f y most o f t h e p e o p l e . Reduced c a p i t a l c o s t s and reduced  maintenance  c o s t s add t o the d e s i r a b i l i t y o f compact p l a n n i n g . Reduced c a p i t a l c o s t s r e s u l t from s h o r t e r a c c e s s routes.  C a p i t a l c o s t s i n c l u d e such i t e m s as paved  r o a d s , c u r b s , s i d e w a l k s , sewers, storm sewers, water mains, s t r e e t l i g h t i n g , f i r e h y d r a n t s , and power distribution.  Reduced maintenance  costs result  from  s e r v i c i n g a shorter l i n e a r footage of access r o u t e s . Maintenance  c o s t s i n c l u d e such i t e m s as r o a d mainten-  ance, snow c l e a r a n c e and p o l i c i n g .  °  84 i Problems With Compact  Compact C i t y  planning  communities a l s o  can produce  a s s o c i a t e d with l i v i n g  in  the  performance  town o f  the  designer,  riding the  "tight"  Ralph E r s k i n e ,  did  community.  The  very  little  the  practice  perhaps light  the  into  types  to  whole the  the  active  of  but  proved  not  mented p l a n  providing  plexity,  a better  in  a  environment community.  all  innight  there  only too  one large  retrospect,  a surrounding  appropriate.  wall  to  ^  reflect  snow a n d w i n d  P e r h a p s a more  more v a r i e t y solution.  in  grouping).  community and p r o v i d e  is  that  community  variety,  dwellings  designer:  idea of  over-  compact p l a n  people  per  the  use the  groupings  (70 f a m i l i e s  protection,  is  of  one  living  unique  the  summer; a l a c k  and f a m i l y  According  of  o n how t o  disturbances,  alternative  "situation";  this  Sweden,  f a c e d was of  developers  of  evaluating  that  community  disadvantages  long  In  Svappavaara,  a tradition  instruction  the  north.  states  people moving i n t o  cluded noise during  the  have  the  Some o f  that  not  gave  in  the  difficulty  people  were  of  the  problems  and v i s u a l  frag-  com-  85 Another s t u d y ( m i l i t a r y h o u s i n g a t F t . W a i n w r i g h t , Alaska) i n d i c a t e d t h a t respondents i n c o u r t s ( f i g . 3 . 9 ) were more d i s s a t i s f i e d w i t h t h e i r compact c o n d i t i o n s t h a n r e s p o n d e n t s l i v i n g i n t h e row houses ( f i g . 3 . 1 0 ) . They f e l t crowded i n d o o r s and o u t , c o m p l a i n i n g t h a t the y a r d s were i n a d e q u a t e .  The e x c e p t i o n s t o t h i s  were t h e r e s p o n d e n t s l i v i n g i n end apartments t h e y had t h r e e y a r d s i n s t e a d o f two. C h i l d r e n  since tended  t o p l a y i n t h e p a r k i n g l o t a r e a which a d j o i n e d t h e backyard area w i t h i n the enclosed court area amplif y i n g n o i s e d i s t u r b a n c e s and t h e compacted f e e l i n g .  J IL  Front, with Arctic Entronc*  Reor, without Arctic Entronc*  f A r . o s tok.n o v e r  by dogs  J L Front.without Arctic Entronce  L  io  86 •  Conclusions With p r o p e r s i t e l a y o u t t h e compact c i t y p l a n can c r e a t e a d e s i r a b l e p l a c e t o l i v e and work.  Some  guidelines i n t h i s respect a r e : A. M i n i m i z e  t h e everyday use o f automobile  trans-  p o r t a t i o n t o t h e downtown by k e e p i n g t h e d i s t a n c e s from h o u s i n g  t o work, s e r v i c e s and  s c h o o l s w i t h i n easy w a l k i n g d i s t a n c e o r on t h e r o u t e o f a p u b l i c t r a n s p o r t system. B. Create a d e s i r a b l e m i c r o - c l i m a t e through t h e c o n t r o l o f w i n t e r winds and t h e maximum penet r a t i o n o f winter s u n l i g h t ( o r i e n t a t i o n o f the c i r c u l a t i o n p a t t e r n s and t h e arrangement o f the b u i l d i n g  sizes).  C. C o n t r o l development beyond t h e " t o w n s i t e " i n o r d e r t o r e t a i n n a t u r a l f o r e s t and r e c r e a t i o n a l potential within close proximity. D. A v o i d e n c l o s i n g h o u s i n g  i n too t i g h t a design courts at F t .  Wainwright o r the wind p r o t e c t e d " c l o s e d " environment i n Swedish compact towns /rz  87 Precipitation CLIMATIC FACTORS o  <  IT,  w a.  &  o  t-i  •< H  2 o  w  PRECIF:  w  g  SOLAR 1  t* <  m  PLANNING LEVEL 1  O  g t-H *  o  Ul a*  s=  >*  £  >*  o  o  OC  o o S a. obl o  vegeta1  »5 O  REFERENCE MATRIX  SITE FACTORS  3O  SOILS  3.2.4  t—t  tK  a  >>  r! 7  PLANNINO LEVEL 2 PLANNING LEVEL 3 PLANNING  LEVEL  4  D u r i n g w i n t e r months, t h e l a n d s c a p e i s  covered  w i t h snow which i s v i t a l f o r i n s u l a t i n g underground u t i l i t i e s a g a i n s t t h e extreme c o l d .  Snow  accumulation  causes c o n f l i c t s between a u t o s and p e d e s t r i a n s . During  t h e w i n t e r months, t h e snow  accumulation  obscures t h e normal a u t o m o b i l e b u f f e r s such a s c u r b s , c a r s t o p s , and o t h e r s e p a r a t o r s designed auto s e p a r a t e d  t o keep t h e  from b u i l d i n g s , p e d e s t r i a n s , and I  vegetation.  Ft^Dgfc 5.11 T h i s c o n d i t i o n coupled  w i t h t h e f a c t t h a t people  want t o park a s c l o s e t o t h e i r d e s t i n a t i o n a s p o s s i b l e d u r i n g the c o l d w i n t e r causes c o n f l i c t s between a u t o s and  p e d e s t r i a n s as w e l l as b u i l d i n g s .  B a r r i e r s high  enough t o s t o p c a r s i n w i n t e r s h o u l d be c o n s i d e r e d f o r most b u i l d i n g s and p e d e s t r i a n r o u t e s where t h e b u i l d i n g e x t e r i o r , p e d e s t r i a n s , and v e g e t a t i o n need t o be p r o t e c t e d .  o  88 The l i g h t , d r y snow i n t h e n o r t h has i n s u l a t i n g q u a l i t i e s s i m i l a r to that of f i b e r g l a s s  insulation.  This i n s u l a t i n g q u a l i t y i s o f t e n e f f e c t i v e i n reducing  the  depth o f f r e e z i n g  keeping u t i l i t i e s snow i s c l e a r e d the  i n t h e ground, hence  from f r e e z i n g .  I n a r e a s where the  away d u r i n g w i n t e r ( s t r e e t s ,  depth o f f r e e z i n g  t h i s , t a l l buildings  goes deeper.  etc.),  In addition  which c a s t a l o n g shadow  to may  b l o c k t h e summer sun which n o r m a l l y h e l p s t o thaw the ground.  These f a c t o r s c o u l d l e a d  t o the  freezing  of v i t a l u t i l i t y l i n e s o r i n c r e a s e the depth which they have t o be  burried.  89. Wind  as o *-* UI 6-a g •t < < H •H  £  U.  •J <  f  a  a.  PLANNING  LEVEL  1  PLANNING  LEVEL  2  PLANNING  LEVEL  3  PLANNING  LEVEL  k  o u  • M  u  E  g o M o. tt "J  >«  o  >~  u  3  S  3  o  o;  VEGETATION  o  SOILS  ae REFERENCE MATRIX  SITE FACTORS  TIOKS  CLIMATIC FACTORS  TOPOGRAPHY  3.2.5  Depending on the location within the North, the wind can become one of the major physical factors i n design ( a r c t i c and maritime regions). In most areas of the subarctic region the need f o r breaking the wind i s not as c r i t i c a l . On the macro scale, land forms (tppography) and vegetation (stands of evergreen trees) can function as windbreaks.  By b u i l d i n g on the leeward side of  a h i l l , avoiding the brow of a h i l l or ridge where higher winds occur and the v a l l e y floor where cold a i r movement occurs, wind v e l o c i t y can be minimized. Stands of evergreen trees (approx. 40 feet high) can reduce the wind v e l o c i t y up to 50% 200 feet downwind from the trees.  Reduction i n wind v e l i c i t y reduces  building heat loss and wind c h i l l  factors.  The s i z e , shape, and placement of buildings have an e f f e c t on l o c a l i z e d wind conditions and blowing snow patterns.  Acting as s o l i d windbreaks, buildings  (approx. 40 feet high) can reduce the wind v e l o c i t y 100%  just lee of the b u i l d i n g and 50% at distances  400 to 600 feet downwind.  Where buildings blocking  winter winds have spaces between them, the wind get  may  funneled through those spaces increasing the wind  speed.  Where blowing snow i s a p o s s i b i l i t y , snow  d r i f t i n g can occur on the lee side of windbreaks such as hedges, trees, fences, and buildings.  90  The  town o f Fermont i n n o r t h e r n Quebec i s a com-  pact town d e s i g n w i t h a l i n e a r wind s c r e e n b u i l d i n g a l o n g the n o r t h s i d e o f the s i t e .  Housing i s on  the  south s i d e w i t h south-southwest/north-northeast  and  southeast/northwest  street  street patterns.  While the  o r i e n t a t i o n s were p r i m a r i l y s i t u a t e d t o reduce snow drifting  potential  from p r e v a i l i n g wind d i r e c t i o n s ,  the l a y o u t a f f o r d s morning and a f t e r n o o n s u n l i g h t corridors.  The  t a l l e r s t r u c t u r e s a r e t o the n o r t h  (wind s c r e e n b u i l d i n g ) so as not t o b l o c k s u n l i g h t i n habitable areas. The  site  ^  s l o p e s t o the s o u t h e a s t and  southwest  h e l p i n g t o expose more a r e a t o t h e w i n t e r s u n l i g h t from the  south.  91  Plan f o r town of 1,200 scr-jlation F i r s t stage under ccns"T»;f ion Plan/desiqn by R a i d fc.r?*;**; Bennetto/Deroixe  The concept  o f t h e wind s c r e e n b u i l d i n g a p p e a r s  i n s e v e r a l town d e s i g n s by R a l p h E r s k i n e , Svappavaara i n n o r t h e r n Sweden ( f i g u r e 3.2> ) and R e s o l u t e B a y , N.W.T., Canada ( f i g u r e 3 . 1 k ) .  R e s o l u t e Bay i s i n t h e  w e l l f r o z e n , t r e e l e s s A r c t i c a t 74°N. l a t i t u d e . windscreen  The  p e r i m e t e r s t r u c t u r e , open t o t h e s o u t h ,  i n c l u d e s t h e town c e n t e r , shops, h o t e l , a p a r t m e n t s and row h o u s i n g .  offices,  The i n d i v i d u a l b u i l d i n g s  w i t h i n t h e wind p r o t e c t e d m i c r o c l i m a t e a r e d e s i g n e d to m i n i m i z e wind r e s i s t a n c e , t u r b u l e n c e and u n d e s i r a b l e snow d r i f t i n g . minimized.  P r o j e c t i o n s and i r r e g u l a r i t i e s a r e  A d d i t i o n s and a l t e r a t i o n s by t h e u s e r t o  the aerodynamic forms w i l l be d i s c o u r a g e d , b u t t h e open plans are designed t o a l l o w f l e x i b i l i t y s t r u c t u r e s . 13  i n s i d e the  92  3.2.6  S p e c i a l Climatic Conditions CLIMATIC  S I T E  FACTORS  FACTORS  REFERENCE MATRIX  PLANNING LEVEL  1  PLANNINO LEVEL  2  PUNNING LEVEL  i  PUNNING LEVEL  k  Elowing Snow/Snow D r i f t i n g The amount of snow carried and deposited by the wind depends on: 1. the amount of snowfall and type of snow (wet or dry), 2. the wind v e l o c i t y , and 3. the sweep of snow cover upwind Blowing snow occurs at wind v e l o c i t i e s i n excess 15  of about 8 mph.  The sweep of snow cover upwind  could come from large cleared areas, large parking l o t s , or even many f l a t rooftops.  The downwind side  of large open areas should be assessed as to the e f f e c t s of snowdrifting. At the s i t e planning l e v e l i t ' s important to protect major access routes from being blocked by snowdrifts.  Building e x i t s and c i r c u l a t i o n routes  (roads, pedestrian ways) should have p r i o r i t y .  2  ^ V.*«' I4  I  93  To remedy the problem of snow d r i f t i n g i n unwanted places three approaches have been used: 1. keep upwind sweep areas to a minimum using vegetation wherever possible, 2. create b a r r i e r s upwind of places to be protected such as the snow fences near highways, 3. l e t the blowing snow pass on through such as i s done i n the A r c t i c where the buildings are elevated to enable the wind to blow the snow on past the buildings.  This does not,  however, protect the building from the cold wind.  2.  9k 3.2.7 Summary Listing  of p l a n n i n g o b j e c t i v e s  at  planning l e v e l  A.  Solar Radiation  to be  considered  1 are:  a . O r i e n t a t e c i r c u l a t i o n system to maximize winter b.  sunlight  L a y o u t / s p a c e b u i l d i n g s f o r maximum s u n l i g h t distribution  c.  Use o f topography to maximize w i n t e r light  sun-  distribution  B . Temperature a . Avoid b u i l d i n g i n low l y i n g c o l d a i r b . Avoid development  i n high ice  fog  pockets  potential  areas c.  Advantages o f compact c i t y  planning  Transportation:  p e d e s t r i a n r o u t e s and p u b l i c  t r a n s p o r t more  feasible  Utilities:  shorter runs, less c a p i t a l costs  Less o p e r a t i o n and maintenance  costs  Greater p o t e n t i a l m o d i f i c a t i o n of microclimate d . Disadvantages  o f compact c i t y  planning  S o c i o - c u l t u r a l makeup: people l i v i n g i n a compact  not used  to  environment  Noise d i s t u r b a n c e s and the  feeling  of  being  crowded S e a s o n a l a c t i v i t y changes i n t e n s i f y confined C.  the  feeling  Precipitation a. Avoid c o n f l i c t s  between autos and  pedestrians/  b u i l d i n g s d u r i n g the w i n t e r season when ground is  covered with snow  b . Use w i n t e r snow cover as an i n s u l a t o r cold  against  temperatures  D. Wind a.  Slow o r b l o c k u n d e s i r a b l e w i n t e r  winds  b . A v o i d f u n n e l i n g c o l d wind i n t o h a b i t a b l e  areas  95  E. Special Climatic Conditions: Blowing Snow a. Minimize the blocking of roads and the blocking of entrances, e x i t s , and windows by snow d r i f t i n g b. Control the location of snow d r i f t i n g When condidering a l l the climatic factors together some have a greater impact than others, especiall y from one climatic region to another.  The following  are the most important i n creating a desirable l i v i n g environment: A. Avoid building i n low l y i n g areas which have poor drainage (high frost heave p o t e n t i a l ) , accumulate  cold a i r during winter, and have  greater potential f o r retaining i c e fog. B. Layout  buildings and c i r c u l a t i o n patterns  to maximize sunlight, minimize snow d r i f t i n g , control winter winds, and avoid wind funneling. C o n f l i c t s can occur e s p e c i a l l y i n areas where the snow d r i f t i n g potential i s high.  In most  areas within the subarctic the maximizing for sunlight would take preference over control of wind and snow d r i f t i n g since winds are normally l i g h t and snow d r i f t i n g minimal.  In the a r c t i c  region design f o r snow d r i f t i n g and wind would take preference over sunlight design. C. Use the e x i s t i n g topography  to maximize sun-  l i g h t and minimize winter wind.  A similar  c o n f l i c t occurs with the use of topography,  in  the sub-arctic region a south facing h i l l s i d e i s normally much preferred over a north facing 6lope even i f winter winds are from the south. Permafrost on north facing h i l l s i d e s i s also a potential problem i n the subarctic.  East  or west facing slopes may be preferred where views and/or wind protection predominate since solar r a d i a t i o n i s s t i l l attainable during winter.  96  3*2.8 R e f e r e n c e s George F o r d , B u i l d i n g H e i g h t B u l k and Form. H a r v a r d C i t y P l a n n i n g S t u d i e s 1 1 , 1931, p. 62. 1  ^ I b i d . , p. 67. 5  I b i d . , p. 63.  4Wayne H e y d e c k e r and E r n e s t G o o d r i c h , " S u n l i g h t and D a y l i g h t f o r Urban A r e a s " , 1929, R e g i o n a l Survey o f New York and i t s E n v i r o n s , V o l . V l l , pp. 142-201. K.O.L.F. Jayaweera, G. Wendler, and T. Ohtake, "Low C l o u d Cover and t h e W i n t e r Temperature o f Fairbanks", Climate of the A r c t i c , 5  ^ B l a n c h e Lemco v a n G i n k e l , "New Towns i n The N o r t h " , C o n t a c t : B u l l e t i n o f Urban and E n v i r o n m e n t a l A f f a i r s , V o l . 8, No. 3, August 1976. 1 E a r l Cook, "The Flow o f Energy i n an I n d u s t r i a l S o c i e t y " , S c i e n t i f i c A m e r i c a n , September 1971,  pp. 135-144.  6 N o r b e r t Schoenauer, "New Town D e s i g n and C l i m a t i c F a c t o r s " , Man i n t h e N o r t h T e c h n i c a l Paper, Conference on B u i l d i n g i n N o r t h e r n Communities: 1973, The A r c t i c I n s t i t u t e o f North America. ^ R a l p h E r s k i n e , "Feedback on Commumity P l a n n i n g " , Man i n t h e N o r t h T e c h n i c a l Paper, Conference on B u i l d i n g i n N o r t h e r n Communities: 1973, PP. 126-129. ^° Burgess L e d b e t t e r , P a r t 111, The Temporary Environment o f F o r t W a i n w r i g h t : H o u s i n g , u n p u b l i s h e d s t u d y , C o l d Regions Research E n g i n e e r i n g L a b r a t o r y , Hanover, N.H., 1976. W.A. D a l g l i e s h and D.W. Doyd, Wind on B u i l d i n g s . CBD 2 8 , 1962, N a t i o n a l Research C o u n c i l , Ottawa. f1  12- N o r b e r t Schoenauer, "Fermont, a New V e r s i o n o f The Company Town", J o u r n a l o f A r c h i t e c t u r a l E d u c a t i o n , V o l . XXIX, No. 3 , F e b r u a r y 1976. * ^ v a n G i n k e l , "New Towns i n t h e N o r t h " . ^ Eb R i c e , " N o r t h e r n C o n s t r u c t i o n : S i t i n g and F o u n d a t i o n s " , The N o r t h e r n E n g i n e e r , S p r i n g 1973. ^ P.A. S c h a e r e r , C o n t r o l o f Snow D r i f t i n g B u i l d i n g s , CBD 146, 1972, NRC, Ottawa. 1  about  97 3.3  PLANNING LEVEL 2: BUILDING SIZE, SHAPE, and ORIENTATION  PUNNINQ LEVEL  1  PLANNING LEVEL  2  PUNNINQ LEVEL  3  PUNNINQ LEVEL  i»  u  g  o t~* t* «<  Q o u  < H  e  •*-t  u.  s 85ow  g M  < M t> u PL.  ")  >•  >-  s s  o 3 o  IX  a >* PI  VEGETATION  is o l-l  SOILS  REFERENCE HATRIX  s n E FACTORS  TOPOGRAPHY  SOUR RADIATION  CLIMATIC FACTORS  5  3.3.1 Objective This section i s intended to point out building design responses at the second l e v e l of planning (the i n d i v i d u a l building s i z e , shape, and orientation) which help to lessen the adverse climatic implications and maximize the desirable c l i m a t i c implications. Planning f o r solar r a d i a t i o n ,  temperature,  p r e c i p i t a t i o n , wind, and s p e c i a l climatic conditions at t h i s planning l e v e l can lessen the impact of adverse climatic conditions on a c t i v i t y spaces as well as the building f a b r i c , planning l e v e l s 3 and 4.  98 Radiation  PLANNING LEVEL  1  PLANNING LEVEL  2  PLANNING LEVEL  3  PLANNING LEVEL  It  the  size,  a  g  can have  shape,  a major  these  factors  Possible  solutions  for  interior  of  buildings  Building  shapes which  on e x t e r i o r buildings  subarctic it's  of  size,  north  important  for  a major  shape,  where  on  Building which  shadowing, a c c e s s to  the  loss,  for  solar  sunlight  maximum h e a t  on one a n o t h e r  solar  is  at  In  gain. as  design influence  sunlight  to minimize the  heat  and  and o r i e n t a t i o n .  winter  the  (size),  winter  buildings  space i s  solar  optimize  and o r i e n t a t i o n  shadowing  o re w a >Pi  influence  sunlight  heat  Optimum o r i e n t a t i o n s  Solar  the  larger  and c o n d u c t i v e  (visual)  i-» tr* •< H U  are:  2.  4.  so  section  Optimum s h a p e s t o m i n i m i z e  input  as  this  1.  3.  o  and o r i e n t a t i o n .  design responses mentioned i n influence  as o  >*  SOILS  W OH  TOPOGRAPHY  •  radiation  building  g < cr,  SPECIAL CONDITIONS  SOLAR RADIATION  REFERENCE MATRIX  Solar  sn 'E FACTORS  CLIMATIC FACTORS  GEOLOGY  -  PRECIFITATION  3.3.2 S o l a r  well  on the  a premium,  shadowing  of  buildings. Some o f exterior as  the  surface  basic  similar  or  compare t h e s e volumn,  thin  shapes which  area also  dome, p y r a m i d ,  diagrams  tall,  the  with  building  cast  cube  a m i n i m a l shadow  form.  s h a p e s , which  less  energy  and the  e x p o s e minimum  long,  The all  following have  efficient narrow  such  a  shapes, building.  the  99  100  •  /^pa>x.-^5u^  lianas-  Liuyft  WVM,  &cu\;  vcwvwS'  BJIUPIM<=|  ova*-)  iin&y*. veuwN^  101  T a l l , t h i n and l o n g , narrow ( e a s t / w e s t r u n n i n g ) buildings light  cast  l o n g e r and w i d e r shadows d e n y i n g sun-  to a greater area.  Closely  spaced  building  u n i t s r u n n i n g e a s t / w e s t w i l l have a s i m i l a r shadow e f f e c t as t h e l o n g , narrow b u i l d i n g , p u t t i n g  streets,  y a r d s , and t h e s o u t h f a c e s o f o t h e r b u i l d i n g s i n shadow f o r much o f t h e w i n t e r . casts any  The t a l l  l o n g shadows i n a l l o r i e n t a t i o n s  building  as w e l l a s a t  time o f t h e day when t h e sun a n g l e i s low. The  l i n e a r b u i l d i n g c a s t s t h e l a r g e s t shadow when perpend i c u l a r t o t h e sun and a much s m a l l e r  shadow when  p a r a l l e l t o t h e sun. S i n c e t h e sun sweeps from e a s t t o west, a l o n g narrow b u i l d i n g , no m a t t e r t h e o r i e n t a t i o n , w i l l cast  t h e l a r g e s t shadow, as shown i n  f i g u r e 3 • 1*5 » sometime d u r i n g t h e day. The cube, h e m i s p h e r e , and pyramid c a s t shadows i n a l l d i r e c t i o n s  minimal  ( d i f f e r e n t solar azimuths).  As c a n be seen w i t h t h e p y r a m i d , t h e s m a l l e r t h e b u i l d i n g near t h e t o p , t h e s m a l l e r farthest  t h e shadow i s  from t h e b u i l d i n g .  No m a t t e r what t h e b u i l d i n g shape, the b u i l d i n g mass ,  the l a r g e r  t h e l a r g e r s o l a r shadow i t w i l l  have; s o , l a r g e b u i l d i n g s  can b l o c k s u n l i g h t  from a  s u b s t a n t i a l area to the north o f the b u i l d i n g f o r a large are  portion o f the year.  When l a r g e r  buildings  b u i l t , t h e a d j a c e n t a r e a s t o t h e n o r t h o f them  s h o u l d n o t be e x t e r i o r a c t i v i t y  spaces s i n c e i t ' s use  would be l i m i t e d t o a s h o r t summer p e r i o d when t h e sunlight  c o u l d p e n e t r a t e t h e space.  The s l o p i n g o f t h e s t r u c t u r e ' s  r o o f can a l s o  h e l p t o d e c r e a s e t h e shadowing e f f e c t . the  During winter,  shadow c a n be g r e a t l y d e c r e a s e d when t h e edge  farthest  from t h e sun i s l o w e r t h a n t h e near edge.  The r o o f a n g l e s h o u l d be a t l e a s t 1 0 ° ( a p p r o x . 2 i n 12). When t h e r i d g e  i sc e n t r a l l y located  as i n a pyramidal  shape t h e shadow i s m i n i m i z e d i n a l l d i r e c t i o n s , see f i g u r e 3.22.  102  t?l5TANCe^ • B u i l d i n g S i z e and S o l a r The  Radiation  l a r g e r t h e b u i l d i n g , e s p e c i a l l y a compact  b u i l d i n g form, t h e g r e a t e r sunlight penetration interior.  t h e problem o f a c h i e v i n g  to a large area of the b u i l d i n g  When l a r g e s t r u c t u r e s a r e used f o r h o u s i n g ,  p r o v i d i n g s u n l i g h t t o t h e maximum number o f r e s i d e n t s can be d i f f i c u l t . When p l a c i n g home u n i t s w i t h i n an e n c l o s e d compact b u i l d i n g shape i n s t e a d o f s i n g l e o r a t t a c h e d u n i t s (row h o u s i n g ) , t h e r e i s n o r m a l l y o n l y one e x t e r i o r exposure f o r each u n i t , t h e o t h e r exposure an i n t e r i o r space.  faces  Units facing i n a northerly  dir-  e c t i o n a r e d e n i e d s u n l i g h t f o r much o f t h e y e a r . Both t h e s e problems c o u l d be s o l v e d by o p e n i n g up t h e structure's i n t e r i o r to winter having a glazed has  s u n l i g h t w h i c h means  p o r t i o n f a c i n g south.  T h i s approach  been used i n a l a r g e h o u s i n g s t r u c t u r e i n n o r t h -  ern Russia  (+ 69°N. L a t . ) .  103 " T h i s concept has a l s o been developed f o r N o r i l s k i n the form o f a 26 s t o r y p y r a m i d a l b u i l d i n g t o house 2,000 p e r s o n s . I n t h i s c a s e , the c o u r t i s open t o the s o u t h s i d e o f the pyramid which i s g l a z e d , and the h o u s i n g u n i t s a r e on the t h r e e remaining sides." 1 See f i g u r e 3.23  f o r a diagrammatic  sketch of t h i s  approach.  FIGURE: 3>.26> • B u i l d i n g Shape and S o l a r R a d i a t i o n When o p t i m i z i n g b u i l d i n g shapes f o r s o l a r heat i n p u t and c o n d u c t i v e heat l o s s e s and v e n t i l a t i o n , the s e a s o n a l changes must be t a k e n i n t o a c c o u n t .  D u r i n g the c o l d e s t  months, i t i s more e c o n o m i c a l ( f u e l consumption)  to  m i n i m i z e the e x t e r i o r s u r f a c e a r e a , as w e l l as h i g h heat l o s s window a r e a , than i t i s t o maximize the s o u t h exposure t o c a p t u r e w i n t e r (Nov. t o Feb.) s o l a r heat g a i n , see f i g u r e  3.24.  104  -T^ZMAL.  MASS <2ki  fc^HWE-  "5*^  During spring, summer, and f a l l , i t becomes advantageous  to u t i l i z e the heat from the solar radia-  t i o n to help heat the home i n t e r i o r . ^ I f the building exterior s h e l l i s heavily insulated i n order to keep heat i n s i d e , i t does not make a good passive solar heat c o l l e c t o r ; the well insulated walls w i l l help prevent the solar heat from entering  the home.^" To use  the s o l a r heat i t becomes necessary t o : 1. open up the i n t e r i o r to d i r e c t solar r a d i a t i o n for immediate warmth, 2. expose elements of high thermal mass for passive solar heat storage, and/or 3.  open the home i n t e r i o r to solar heated "greenhouse spaces".  105 The o p t i m i z a t i o n o f s o l a r r a d i a t i o n on t h e e x t e r i o r shape  depends on the s l o p e and l o c a t i o n o f window  a r e a s a l l o w i n g s o l a r p e n e t r a t i o n , and t h e s l o p e and l o c a t i o n o f t h e r m a l masses a l l o w i n g t h e r m a l h e a t  storage.  S i n c e t h e sun's a n g l e o f i n c i d e n c e on a g l a s s window may v a r y as much as 45° from t h e 90°  perpendicular  without appreciable l o s s o f transmittance or increase o f r e f l e c t a n c e , t h e s h a p e / s l o p e o f t h e windowed e x t e r i o r can v a r y c o n s i d e r a b l e w i t h o u t r e d u c i n g t h e s o l a r heat p e n e t r a t i o n t o t h e b u i l d i n g  interior.  For t h e r m a l masses the sun a n g l e i s more  critical  s i n c e t h e same s o l a r heat which i s absorbed by the mass, becomes spread  out over a g r e a t e r a r e a when  the sun i s not p e r p e n d i c u l a r t o t h e s u r f a c e .  t>ISTAM<i& *  y  106 For i n t e r i o r t h e r m a l masses a t 62° n o r t h  latitude,  the o n l y time o f t h e y e a r t h a t a f l o o r can r e c e i v e h i g h e r s o l a r r a d i a t i o n v a l u e s than a v e r t i c a l  wall  i s from e a r l y May t h r o u g h e a r l y August on a s o u t h facing orientation. and  orientations  At a l l other times o f the year  t h e v e r t i c a l w a l l has a h i g h e r  p o t e n t i a l f o r s o l a r heat c o l l e c t i o n (more normal t o the  sun's d i r e c t r a y s ) .  A t h e r m a l mass w a l l w i t h  62° s o u t h f a c i n g s l o p e a s i n f i g u r e 3.2?  will  a  receive  + 30% more y e a r l y d i r e c t r a d i a t i o n t h a n a v e r t i c a l w a l l and _+ k5% more t h a n a h o r i z o n t a l The  surface.  e x t e r i o r shape can be d e s i g n e d t o m i n i m i z e  e x t e r i o r surface area with allow solar penetration  fenestration  located to  t o i n t e r i o r t h e r m a l mass w i t h  optimum shape f o r p a s s i v e s o l a r h e a t c o l l e c t i o n , see  f i g u r e 3«27.  i  Using thermal mass to optimize solar heat on the exterior skin l i m i t s the b u i l d i n g shape more than the use of i n t e r i o r thermal mass as well as having p o t e n t i a l l y higher heat loss due to l e s s resistance to heat flow than a well insulated exterior skin.  Figure 3«28 i l l u s t r a t e s how 6 o l a r r a d i a t i o n can  be maximized on the exterior thermal mass at the equinox, spring and f a l l , with the building shape - 62° south facing slope to 90° ( v e r t i c a l ) at east and west points.  Snow cover over the roof area helps keep  heat i n while sun heats sloped east, south, to west walls throughout  the day. Roof slope to the north  helps minimize the e f f e c t of solar shadowing.  108  • Building Orientation Orientating  and S o l a r  Radiation  a b u i l d i n g f o r maximum w i n t e r  f o r t h e g r e a t e s t number o f i n h a b i t a n t s  sunlight  becomes more  o f a problem when t h e h o u s i n g u n i t s a r e more compact such as townhousing and condominiums/apartments. O f t e n l i v i n g u n i t s end up w i t h t h e i r o n l y o r i e n t a t i o n to the n o r t h , northeast,  exterior  or northwest  i n which o n l y mid-summer s u n l i g h t has a p o s s i b i l i t y of making i t t o t h e u n i t . I t ' s i n t e r e s t i n g that i n Russia the b u i l d i n g i n s t r u c t i o n s w i l l not permit a s i n g l e l i v i n g u n i t t o be o r i e n t a t e d  t o t h e n o r t h (3^5°  t o 30°,  360°=north) w i t h t h a t o r i e n t a t i o n as i t s o n l y exposure. two  In larger l i v i n g units  rooms may be o r i e n t a t e d  d i r e c t i o n , see f i g u r e  As a s u n l i g h t  (2 t o 5 rooms) one o r  i n the r e s t r i c t e d north  3.29.  exposure minimum recommendation,  compact h o u s i n g u n i t s s h o u l d n o t have t h e i r o n l y o r i e n t a t i o n towards t h e n o r t h .  Any u n i t w i t h an  o r i e n t a t i o n t o t h i s d i r e c t i o n s h o u l d a l s o have exposure i n a n o t h e r , more s u n l i t , d i r e c t i o n .  109 F i g u r e 3.30  shows p o s s i b l e s o l u t i o n s f o r making  s u n l i g h t a v a i l a b l e t o h o u s i n g u n i t s which n o r m a l l y would o n l y have a n o r t h e r n e x p o s u r e .  I  T  -1  •4/ 7  7  i  As  ©  ©  4i  2.  3  i  i  U n i t s #1  4-  5  1 e -  ®  1 z  r  • — J —  3  i  ^<  4 _ <2>  and #4 have n o r t h exposure as w e l l as e a s t  or west e x p o s u r e . U n i t s #2 and #3 which o n l y have exposure t o the n o r t h  should:  (\) have c l e r e s t o r y windows t o the s o u t h allowing sunlight  penetration,  extend t h r o u g h t o the s o u t h s i d e o f the b u i l d i n g , or @  r e c e i v e s o u t h s u n l i g h t from an i n t e r i o r open space t o the s o u t h o f t h e u n i t s .  These c r i t e r i a s h o u l d a l s o be a p p l i e d t o n o r t h e a s t and  northwest o r i e n t a t i o n s .  110 The  f o l l o w i n g a n a l y s i s compares b u i l d i n g  t i o n s w i t h r e g a r d to s o l a r heat g a i n . c o m p a r a t i v e a n a l y s i s between the (townhouse type s t r u c t u r e )  and  orienta-  Based on  a  l o n g , narrow b u i l d i n g  the  compact b u i l d i n g  (cube form) w i t h v a r i o u s o r i e n t a t i o n s u s i n g d a t a f o r 61°  n o r t h l a t i t u d e ( W h i t e h o r s e ) , the  following  i s p r e s e n t e d based on d i r e c t s o l a r r a d i a t i o n vertical  ranking  on  surfaces:"^  Long, Narrow B u i l d i n g 3:1  wall ratio: wall surface area: 8 1 area:  II  N"  |  *  1  1  Compact B u i l d i n g wall ratio:  1:1  wall surface area: 6.92 area:  3  B u i l d i n g Type and radiation) A. T o t a l 1  Orientation  R a n k i n g (most t o  least  year:  B. W i n t e r (Nov. 1 A 2  -  Feb.) 3  C. March/September e q u i n o x : l o n g b u i l d i n g o r i e n t a t i o n s have a p p r o x i m a t e l y e q u a l r a d i a t i o n , compact b u i l d i n g s have _+ M\% l e s s r a d i a t i o n t h a n the l o n g b u i l d i n g s , D.  Spring, f  2.  Summer, and *>  F a l l ( A p r i l - October)  A  %  (P  Ill  With the l o n g narrow b u i l d i n g ,  orientation  change e f f e c t s t h e d i s t r i b u t i o n as w e l l as t h e amount of d i r e c t r a d i a t i o n on a s e a s o n a l b a s i s . west f  The  east/  + 35% more r a d i a t i o n  f orientation receives  i n w i n t e r and + 19% l e s s i n summer t h a n the n o r t h / south  £j  o r i e n t a t i o n . . T h e amount o f r a d i a t i o n on  the s o u t h e a s t / n o r t h w e s t \ \  and s o u t h w e s t / n o r t h e a s t ^ /  o r i e n t a t i o n s a r e i n between t h e v a l u e s f o r t h e n o r t h / s o u t h and e a s t / w e s t o r i e n t a t i o n s t h r o u g h o u t t h e y e a r , 10% t o 17% more t h a n j j | i n w i n t e r and 12% more than \ i n summer.  On a y e a r l y b a s i s , t h e l o n g ,  building receives  narrow  + 15% more r a d i a t i o n t h a n t h e compact  b u i l d i n g , but a l s o has 16% more s u r f a c e a r e a a t t h e e x t e r i o r w a l l s i n c r e a s i n g heat l o s s p o t e n t i a l overriding The  the i n c r e a s e d  s o l a r heat g a i n  possibly  input.  o r i e n t a t i o n o f t h e compact b u i l d i n g has more  of an e f f e c t on t h e s o l a r heat d i s t r i b u t i o n on the w a l l s u r f a c e s t h a n i t has on t h e t o t a l amount o f direct solar r a d i a t i o n received two  orientations  by the b u i l d i n g .  J^J , <^^. , have n e a r l y  1% t o 2% from each o t h e r .  The \ \  The  equal s o l a r  r a d i a t i o n f o r t h e y e a r w i t h each month v a r y i n g  only  o r i e n t a t i o n has  the w i n t e r s o l a r r a d i a t i o n d i s t r i b u t e d t o two o r i e n t a tions instead  o f one s o u t h f a c i n g  orientation  T h i s can h e l p d i s t r i b u t e heat and l i g h t t o more o f t h e house o r h o u s i n g u n i t s .  Since the greater d i s t r i b u -  t i o n o f t h e days l i g h t and heat i s r e g u l a t e d t h r o u g h t h e use o f f e n e s t r a t i o n , t h e  primarily  orientation  may a f f o r d a b e t t e r combined use f o r windows s i n c e g l a s s a r e a s can be combined which would l e t s o l a r heat and  ~]  l i g h t p e n e t r a t e (SE/SW) a s w e l l as a l l o w  taking  advantage o f more v i e w p o t e n t i a l from e a s t t o west. S i n c e s o l a r heat g a i n i s m i n i m a l d u r i n g t h e w i n t e r months, o r i e n t a t i o n s which maximize s o l a r h e a t g a i n f o r s p r i n g , summer, and f a l l s h o u l d be c o n s i d e r e d best f o r optimizing  solar radiation.  112  3.3.3  Temperature CLIMATIC FACTORS  sn  PE  FACTORS  PLANNING LEVEL 1 PLANNINQ LEVEL 2 PLANNINO LEVEL J PLANNINQ LEVEL 4  •A O  n  i  Si  & o  u  •J «< »-*  g o toa. M  w  ")  >•  £  15 O  a  o  B  a.  o  >i  SOILS  u g  PRECIFITATICN  REFERENCE .MATRIX  SOLAR RADIATION  i/i  3o tr.  a  >• PI  SB o  u a u  • B u i l d i n g S i z e and Temperature O p t i m i z i n g the b u i l d i n g s i z e f o r the c o l d w i n t e r t e m p e r a t u r e s cannot e a s i l y be s o l v e d by a l a r g e m e g a s t r u c t u r e and s t i l l t a k e i n t o account t h e needs and e x p e c t a t i o n s o f the i n h a b i t a n t s . to  According  a s t u d y a t the C o l d Regions Research E n g i n e e r i n g  L a b r a t o r y i n New Hampshire: "A t a l l t h i n s t r u c t u r e much above 6 s t o r i e s i s l e s s e c o n o m i c a l t h a n modules used a l o n e . S t r i p s t r u c t u r e s and f l a t square s t r u c t u r e s a r e b e t t e r than s i m i l a r modules used s i n g l y but c u b i c a l s t r u c t u r e s a r e most e c o n o m i c a l . The optimum c u b i c a l c o n d i t i o n appears t o o c c u r when 100 t o 200 modules a r e grouped i n t o a 5 t o 6 s t o r y cube." D e a l i n g w i t h the i m p l i c a t i o n s o f the compacted living  environment, R a l p h E r s k i n e s t a t e s the i m p o r t -  ance o f c o n t a c t w i t h the n a t u r a l environment  which  large megastructures h e l p t o e l i m i n a t e : "The s t r u c t u r e of the town i t s e l f can be o f v i t a l i m p o r t a n c e i n i m p r o v i n g the c l i m a t e w i t h i n i t s b o u n d a r i e s , and w i t h modern t e c h n i q u e s almost any degeee o f p r o t e c t i o n can be a c h i e v e d . One o f the most e x c i t i n g i d e a s which comes t o mind when f i r s t p r e s e n t e d w i t h t h e s e problems i s t h a t o f the t o w n s h i p which i s a s i n g l e enormous b u i l d i n g complex, o r a t o w n s h i p c o v e r e d by domes o r s u s pended membranes. I n the most extreme c o n d i t i o n s of the A r c t i c o r A n t a r c t i c , t h e s e c o u l d be t h e most s u i t a b l e ways o f p r o v i d i n g c l i m a t i c d e f e n s e . The p h y s i c a l convenience o f such a t o w n s h i p would be v e r y g r e a t , and i t would tend t o be e c o n o m i c a l to r u n and t o h e a t . The g r e a t e s t d i f f i c u l t i e s  113 w o u l d p r o b a b l y be o f s o c i a l and p s y c h o l o g i c a l n a t u r e s i n c e s u c h a town c o u l d e a s i l y be i n s t i t u t i o n a l and i n t r o v e r t , and though o p e n a b l e p a r t s o f the s t r u c t u r e c o u l d g i v e c e r t a i n c o n t a c t w i t h t h e o u t e r w o r l d , t h i s w o u l d t e n d t o be i n d i r e c t and t e n u o u s . N e g a t i v e e x p e r i e n c e has b e e n r e p o r t e d f r o m n o r t h e r n encampments where people have been a b l e t o l i v e w i t h o u t c o n t a c t w i t h t h e o u t e r w o r l d t h a t s u r r o u n d e d them, a n d i t has been s u g g e s t e d t h a t l e s s s o p h i s t i c a t e d o r g a n i z a t i o n h a s b e e n more s u c c e s s f u l . " 9 Since  the  solar  radiation  gain  during mid-winter,  this  season  w i n d , and  precipitation and  T h i s would  to a  lead  structures housing necessary  design.  building/home  i s b e t t e r determined  transportation,  to  the  service compact  and  may  convenience;  acre the  lots need  each  throughout  satisfies  need. A v a r i e t y prevail people  variations As Quebec of  t o meet  as w e l l as  an  dwelling units  the  i n the  example, the figure  and  new  3*15)  module  surroundings,  of the  northern  housing normally  environment.  four general About  are  townhouses o r s e r a i - d e t a c h e d d w e l l i n g s ; and single-family  dwellings.  types of  1/3rd  dwelling u n i t s are  detached  dwellings;  northern  1/3rd  the  are  apartment  of  seasonal  town o f F e r m o n t i n  townsite.  i  satisfy  needs of a v a r i e t y  developed  f o r the  businesses  homes on  home s i z e s  t a k i n g advantage  available  (see  natural  city  efficiency,  some p o r t i o n o f t h e  of b u i l d i n g  i n order  and  energy  individual  the  closer  compact  c o u n t r y s i d e may  f o r contact with  solution  larger  o r w i t h i n "200  placing the  -  services,  utility,  utility,  restrictions.  design with  facilities  satisfy  and  for  temperature,  g r e a t e r numbers o f p e o p l e  s e r v i c e s and  cubes"  the  c o s t s and  P l a c i n g a l l housing,  story  by  heat  size  c o n d i t i o n s along with  w i t h i n a s i n g l e megastructure 6  produces minimal  1/3rd  to  "Admittedly, the s i n g l e - s t o r y detached d w e l l i n g u n i t s , l i k e o t h e r l o w - p r o f i l e u n i t s , are not congruous to the s u b - a r c t i c c l i m a t e . However, c i t i z e n p a r t i c i p a t i o n i n the d e s i g n p r o c e s s necessitated t h e i r u t i l i z a t i o n although i n a m o d i f i e d form. I t was deemed i m p o r t a n t t o r e s p o n d t o p s y c h o l o g i c a l n e e d s o f some f u t u r e  114 r e s i d e n t s who a s p i r e d to l i v e i n "bungalows" l i k e "other people" f a r t h e r south." H S i m i l a r c i r c u m s t a n c e s have been e n c o u n t e r e d i n N o r t h e r n Europe: " C o n c e n t r a t i o n g i v e s e x c e p t i o n a l advantages i n the n o r t h i f once i t i s e m o t i o n a l l y a c c e p t a b l e , but I have e x p e r i e n c e d the d i f f i c u l t y of t h i s type of i n n o v a t i o n when w o r k i n g i n the town o f K i r u n a , i n n o r t h e r n Sweden." 1 2  " I t i s c u r i o u s , but perhaps i n e v i t a b l e , t h a t f a r t h e r s o u t h , where the need f o r these i d e a s i s f a r l e s s u r g e n t , I have u s u a l l y found them more r e a d i l y a c c e p t a b l e . P o s s i b l y the new b u i l d i n g t y p e s f o r n o r t h e r n Canada must f i r s t be b u i l t i n M o n t r e a l or V a n c o u v e r ? " 13 To e s t a b l i s h an optimum b u i l d i n g s i z e i n the a r c t i c north,  input  of the i n h a b i t a n t s the  physical  from the  s o c i o - c u l t u r a l makeup  as w e l l as the i m p l i c a t i o n s  f a c t o r s are  • B u i l d i n g Shape and  subfrom  needed.  Temperature  M i n i m i z i n g the s u r f a c e a r e a exposed t o the c o l d (the same u s a b l e i n t e r i o r space) e x t e r i o r a i r ^ h e l p s to keep heat l o s s i n w a l l s and r o o f t o a minimum.  E x t e r i o r s u r f a c e a r e a s which  approxi-  mate a hemisphere have l e s s s u r f a c e a r e a exposed t o the  cold temperatures than a l i n e a r 14  building.  or t a l l ,  Other forms such as cubes and  thin  pyramidal  shapes a l s o have l i m i t e d amounts of e x t e r i o r s u r f a c e area.  The  h e i g h t o f the b u i l d i n g s h o u l d be c l o s e  the w i d t h and  depth o f the b u i l d i n g , see  figure  to 3.31.  When comparing the i n t e r i o r usable volume to the exterior surface area c e r t a i n shapes contain space which has limited use due to the height and shape of the space (figure 3*32).  Standard f u r n i t u r e ,  appliances, and shelving/cabinets do not f i t r e a d i l y into those spaces although they could be used f o r storage or pipe chases i f not closed o f f from the warm i n t e r i o r a i r flow.  Building shape and volume can also influence the movement of i n t e r i o r a i r .  A dome shape with a c e n t r a l  heat source and clear space for a i r movement along the exterior walls, mixes i t s own a i r ; the warm a i r r i s i n g i n the center, then f a l l i n g back down towards the f l o o r along the walls where the a i r i s cooled, see figure 3.33.  Aire H<?VfcH£)JT  |M P<?M&'?HftfE  116 A n o t h e r f a c t o r e f f e c t i n g b u i l d i n g shape i s the use o f b u i l d i n g r e l i e f and a r t i c u l a t i o n .  Building  r e l i e f or unnecessary a r t i c u l a t i o n of the b a s i c b u i l d i n g shape have n e g a t i v e e f f e c t s on the b u i l d i n g ' s t h e r m a l performance.  R e l i e f on a facade causes added  t h e r m a l s t r e s s by shadowing p a r t s o f t h e facade a s w e l l as p r o v i d i n g  points  f o r heat e x t r a c t i o n  17  from  the b u i l d i n g , see f i g u r e 3*34. "Coming back, t o t h i s m a t t e r o f heat t r a n s f e r , you a l l know what an a i r c o o l e d m o t o r c y c l e engine l o o k s l i k e . To d i s s i p a t e heat g e n e r a t e d more q u i c k l y t h e s u r f a c e o f t h e engine i s enl a r g e d i n t h e form o f f i n s . I t would be f o o l i s h t o a p p l y t h i s same p r i n c i p l e t o b u i l d i n g s i n an e x t r e m e l y c o l d c l i m a t e . I n w i n t e r you n o t i c e that every e x t e r i o r corner i n a b u i l d i n g i s a point of f r o s t concentration."  117 3.3.4 P r e c i p i t a t i o n  PLANNING LEVEL  t  PLANNINO LEVEL  2  PLANNING LEVEL  3  £  g  • *  FACTORS  ss  >* o o t-l  >•  3 O W  SOILS  cr. W CU  TOPOGRAPHY  <  SPECIAL CONDITIONS  u  g  PRECIPITATION  SOLAR RADIATION  REFERENCE MATRIX  SITE  FACTORS  |  CLIMATIC  3 o  m  £.  «t W O U  >. H_  PLANNINO LEVEL it  • B u i l d i n g Shape and P r e c i p i t a t i o n Any  area with s u b s t a n t i a l  snow f a l l w i l l  exper-  i e n c e t h e problem o f snow and i c e b r e a k i n g o r s l i d i n g off buildings.  S t e e p e r s l o p i n g r o o f s have t h e h i g h e r  s l i d e p o t e n t i a l e s p e c i a l l y when made o f s h e e t m e t a l o r aluminum.  S h i n g l e type r o o f s w i l l reduce t h e chance  o f snow s l i d e s due t o t h e many i r r e g u l a r i t i e s t h e snow adheres t o .  South s i d e e x p o s u r e s q u i t e o f t e n  have  t h e i r snow m e l t away b e f o r e i t h a s a chance t o s l i d e o f f i n mass.  On t h e n o r t h s i d e , n o t g e t t i n g t h e s o l a r  r a d i a t i o n t o m e l t t h e snow, t h e snow may s l i d e o f f i n mass d u r i n g t h e s p r i n g when t e m p e r a t u r e s a r e h i g h enough t o l o o s e n t h e snow from t h e r o o f ( f i g u r e 3»35)« Taller buildings  adjacent to sidewalks, s t r e e t s ,  e t c . need t o be p a r t i c u l a r l y c a r e f u l l not t o have p o t e n t i a l snow s l i d e s onto t h e s e c i r c u l a t i o n r o u t e s , see  f i g u r e 3.36.  118 3.3.5 Wind SITE FACTORS  CLIMATIC FACTORS  REFERENCE MATRIX  PLANNING LEVEL  1  PLANNING LEVEL  2  PLANNING LEVEL  3  PLANNING LEVEL  4  B u i l d i n g S i z e and Wind I n a r e a s surrounded by v e g e t a t i o n ,  protected  by the t o p o g r a p h y , o r p r o t e c t e d by o t h e r s t r u c t u r e s , t a l l e r b u i l d i n g s can extend i n t o r e g i o n s o f h i g h wind velocities.  T h i s i n c r e a s e d wind v e l o c i t y can mean  greater strength r e q u i r e d i n the s t r u c t u r a l  design,  e x t e r i o r c l a d d i n g m a t e r i a l must be r e s i s t a n t t o t h e h i g h e r v e l o c i t y , and h i g h e r h e a t l o s s o c c u r s a t t h e b u i l d i n g surface f i g u r e 3.37.  ( e s p e c i a l l y window a r e a ) , see  1 9  A larger building micro-climate  c a n a l s o h e l p c r e a t e a low wind  t o i t s l e e s i d e , but s t i l l s u f f e r s the  consequences o f b l o c k i n g t h e c o l d wind ( f i g u r e 3«38). Examples o f t h e w i n d s c r e e n b u i l d i n g s a r e shown i n f i g u r e s 3.8, 3.15, and 3.16.  "uoti  ^  WIMP  V J  <r Z.  WIMP  119  • B u i l d i n g Shape and Wind Aerodynamic shapes w i t h rounded c o r n e r s h e l p t o reduce t u r b u l e n c e about t h e b u i l d i n g s u r f a c e decreasing  t h e i m p a c t o f h i g h e r w i n d s , making t h e s t r u c  t u r e more s t a b l e i n h i g h winds ( f i g u r e  # Building Orientation  3.^).  •2.1  and Wind  As mentioned w i t h t h e b u i l d i n g shape,  orientate  the minimum b u i l d i n g a r e a p e r p e n d i c u l a r t o t h e c o l d w i n t e r wind ( f i g u r e 3.40).  B l o w i n g snow and poten-  t i a l snow d r i f t i n g i s even a more i m p o r t a n t  implication  f o r o r i e n t a t i n g the minimum a r e a t o t h e wind. P L A M VIEW  120 3.3.6 S p e c i a l C l i m a t i c C o n d i t i o n s :  PLANNING LEVEL  1  PLANNING LEVEL  2  PLANNINQ LEVEL  5  fi  s  £  >-  o u  S <  .J  g  *  < M l> u a. "1  CE  •  £ 8  >*  o  SOILS  u  g  SIT E FACTORS  w o r-*  GEOLOGY  REFERENCE MATRIX  PRECIFITATION  SOUR RADIATION  CUNATIC FACTORS  B l o w i n g Snow  3 O  fn  Bi—  o M  <  B o w  PUNNING LEVEL k  • B u i l d i n g S i z e and B l o w i n g Snow L a r g e r b u i l d i n g s have t h e p o t e n t i a l o f p r o d u c i n g l a r g e r snow d r i f t s due t o t h e g r e a t e r a r e a o f reduced wind v e l o c i t y c r e a t e d by t h e w i n d s c r e e n  building.  T h i s causes t h e a i r b o r n e snow t o p r e c i p i t a t e o u t on tin the l e e s i d e o f t h e s t r u c t u r e ( f i g u r e 3«41).  Much o f t h e s e massive  d r i f t s could  e l e v a t i n g t h e whole s t r u c t u r e  be e l i m i n a t e d by  and l e t t i n g t h e wind  blow under t h e s t r u c t u r e , c l e a r i n g t h e snow from t h e downwind s i d e . • B u i l d i n g Shape and B l o w i n g Snow Aerodynamic shapes tend t o decrease t h e p o t e n t i a l snow d r i f t i n g a s shown i n f i g u r e 3.42, a snow d r i f t a n a l y s i s done f o r t h e BP A l a s k a / S o h o i ' s N o r t h Slope  •24-  O p e r a t i o n s C e n t e r a t t h e Prudhoe Bay o i l f i e l d .  121 B u i l d i n g i r r e g u l a r i t i e s on the b a s i c  building  shape a l s o e f f e c t t h e snow d r i f t i n g p o t e n t i a l as shown i n f i g u r e 3.43.  —  —  ——  WIND?  SteVATlOKf  Building Orientation  and Snow D r i f t i n g  The amount o f s u r f a c e a r e a p e r p e n d i c u l a r t o t h e b l o w i n g snow ( p r e v a i l i n g winds) t o a l a r g e e x t e n t mines t h e amount o f snow d r i f t i n g which w i l l  deter-  occur.  F i g u r e 3.44 shows t h e same b u i l d i n g a r e a , but o r i e n t a t i o n i s changed so t h e b u i l d i n g b l o c k s more b l o w i n g snow.  I f the s t r u c t u r e  were e l e v a t e d ,  the d r i f t i n g  becomes m i n i m a l as l o n g as t h e wind has a chance t o blow a l l t h e way t h r o u g h t h e u n d e r s i d e o f t h e b u i l d ing.  I n t h i s case t h e i n c r e a s e d  pendicular increase  s u r f a c e a r e a per-  t o t h e w i n d / b l o w i n g snow s t i l l h e l p s t o  heat l o s s , wind and snow i n f i l t r a t i o n , and  s t r e s s on t h e s t r u c t u r e  as w e l l as h a v i n g a c o l d bottom  when e l e v a t e d , and i s t h e r e f o r e  t o be a v o i d e d .  122 3.3.7  Summary The l i s t i n g o f p l a n n i n g o b j e c t i v e s t o be con-  s i d e r e d a t p l a n n i n g l e v e l 2, b u i l d i n g s i z e , shape and orientation, are:' A. S o l a r R a d i a t i o n a. M i n i m i z e s o l a r shadowing t h r o u g h optimum shapes, b. Maximize s o l a r r a d i a t i o n t o h o u s i n g u n i t s enclosed i n large  structures,  c. Use i n t e r i o r v e r t i c a l o r s l o p e d w a l l s as t h e r mal mass f o r s o l a r heat  collection,  d. A v o i d o r i e n t a t i n g h o u s i n g u n i t s t o the n o r t h w i t h no o t h e r e x p o s u r e , e. Use compact b u i l d i n g forms o r i e n t a t e d d i a g o n ally are E.  l° 6»  o r  n  n a  *row building  used, o r i e n t a t e d i a g o n a l l y , « ^ \  forms  or  Temperature a. O p t i m i z i n g b u i l d i n g s i z e must t a k e i n t o a c c o u n t s o c i o - c u l t u r a l needs/expectations along with p h y s i c a l f a c t o r s - a mix o f s i z e s may the  satisfy  g r e a t e s t number o f i n h a b i t a n t s ,  b. Use compact b u i l d i n g shapes: hemisphere, and  cube,  pyramid,  c. A v o i d b u i l d i n g r e l i e f and a r t i c u l a t i o n on the building C.  exterior.  Precipitation a. A v o i d snow s l i d e s o f f b u i l d i n g s onto a r e a s which c o u l d be h a z a r d o u s .  D. Wind a. A v o i d b u i l d i n g s h i g h e r t h a n the s u r r o u n d i n g wind p r o t e c t i o n ; v e g e t a t i o n , topography, and other b u i l d i n g s , b. I n a r e a s w i t h o u t p o t e n t i a l s n o w d r i f t i n g , the b u i l d i n g may  break the wind f o r a more d e s i r -  able micro-climate area, c. Have minimum s u r f a c e a r e a f a c i n g w i n t e r w i n d , d. Use aerodynamic the w i n d .  shapes t o l e s s e n impact o f  123 E. S p e c i a l C l i m a t i c C o n d i t i o n s :  B l o w i n g Snow  a. A v o i d l a r g e b u i l d i n g s when snow d r i f t i n g can o c c u r on t h e l e e s i d e , b. E l e v a t e s t r u c t u r e t o a l l o w wind t o sweep under c l e a r i n g snow t o l e e w a r d , c. Use aerodynamic the  shapes t o m i n i m i z e impact o f  wind,  d. A v o i d b u i l d i n g i r r e g u l a r i t i e s which would cause p o t e n t i a l snow d r i f t i n g , e. O r i e n t a t e t h e s m a l l e s t b u i l d i n g a r e a towards the  w i n d / b l o w i n g snow d i r e c t i o n .  Within t h i s l i s t i n g of planning o b j e c t i v e s t h e r e a r e c o n f l i c t s which need t o be r e s o l v e d .  The  c l i m a t i c r e g i o n i n which h o u s i n g w i l l be b u i l t n o r m a l l y d e t e r m i n e s t h e p r i o r i t i e s needed t o r e s o l v e t h e s e conflicts. 1. B u i l d i n g S i z e • Extreme Environment  (Arctic):  In t h i s r e g i o n t h e r e e x i s t s a c o n f l i c t between the economic  need f o r a l a r g e s t r u c t u r e  encompassing many a c t i v i t i e s and f u n c t i o n s w i t h i n i t 6 e n c l o s e d m i c r o - c l i m a t e (BP A l a s k a / S o h i o ' s N o r t h S l o p e O p e r a t i o n s C e n t e r , t h e 26 s t o r y p y r a m i d a l b u i l d i n g i n N o r i l s k , R u s s i a ) and the need to m i n i m i z e t h e impact o f t h e wind. In  the a r c i t c r e g i o n there i s l i t t l e  vegetation  or  topography ( a l o n g t h e N o r t h S l o p e ) t o h e l p  b l o c k t h e c o l d winds; s o , no m a t t e r what the b u i l d i n g s i z e , t h e wind w i l l have an impact on i t - t h e b u i l d i n g shape and o r i e n t a t i o n can h e l p reduce t h e s t r u c t u r a l impact o f the wind on l a r g e r structures.  B l o w i n g snow/snow d r i f t i n g which  n o r m a l l y a c c u m u l a t e s around b u i l d i n g s ( l a r g e o r s m a l l ) i n t h e a r c t i c r e g i o n can be m i n i m i z e d by e l e v a t i n g the s t r u c t u r e so t h a t the winds can c o n t i n u a l l y c l e a r the l e e side o f the s t r u c t u r e  12if o f d r i f t i n g snow.  L i m i t a t i o n s may o c c u r f o r  b u i l d i n g s i z e s which become t o o l a r g e t o be e l e v a t e d above t h e ground. • L e s s Extreme Environment  (Sub-arctic):  With t h e absence o f b l o w i n g snow and c o n s t a n t c o l d w i n d s , t h e e x t e r i o r spaces a r e l e s s h o s t i l e than i n the a r c t i c r e g i o n .  This factor leads to  the b u i l d i n g o f more d i s p e r s e d town f a c i l i t i e s and h o u s i n g i n s t e a d o f p u t t i n g e v e r y t h i n g i n a s i n g l e e n c l o s u r e which p e r m i t s people t o t o t a l l y a v o i d t h e e x t e r i o r n a t u r a l environment.  Smaller  b u i l d i n g s i n t h e s u b a r c t i c can be s h i e l d e d from w i n t e r winds by t h e f o r e s t c o v e r and t o p o g r a p h i c characteristics. A l t h o u g h wind and b l o w i n g snow a r e not major problems, t h e extreme c o l d t e m p e r a t u r e s i n t h i s r e g i o n h e l p t o advance t h e argument f o r megas t r u c t u r e s which would be l e s s c o s t l y t o o p e r a t e and m a i n t a i n t h a n a more d i s p e r s e d , open townsite.  The b i g g e s t problem w i t h the m e g a s t r u c t u r e  type o f t o w n s i t e i s i t s i n a b i l i t y t o t a k e advantage o f t h e b e a u t i f u l n a t u r a l environment which o c c u r s d u r i n g t h e summer.  I n a d d i t i o n , t h e compacted  b u i l t environment ( s i n g l e b u i l d i n g m e g a s t r u c t u r e ) could i n t e n s i f y s o c i a l c o n f l i c t s during winter s i n c e so much time i s spent i n s i d e . 2. B u i l d i n g Shape • Extreme Environment  (Arctic):  The g r e a t e s t c o n f l i c t which o c c u r s i s t h a t of b r e a k i n g t h e wind f o r a more d e s i r a b l e m i c r o c l i m a t e c o n d i t i o n a s w e l l a s h a v i n g t h e wind cont i n u a l l y c l e a r wind blown snow i n o r d e r t o m i n i mize snow d r i f t s about t h e b u i l d i n g .  The e l e v a t e d  b u i l d i n g a l l o w s t h e wind t o blow under i t ,  while  c l e a r i n g t h e d r i f t e d snow t h i s s o l u t i o n negates any low wind m i c r o - c l i m a t e c o n d i t i o n on t h e l e e s i d e o f the b u i l d i n g .  The degree t o which snow  125 d r i f t i n g o c c u r s v a r i e s t h r o u g h o u t the A r c t i c . some a r e a s d r i f t i n g can r e a c h 15' t o 20*  In  while  i n o t h e r l o c a t i o n s where p r e c i p i t a t i o n l e v e l s a r e l e s s , o n l y 2' t o 3  1  d r i f t s occur.  In l o c a t i o n s  where d r i f t i n g i s m i n i m a l , i t would be  advantageous  t o b l o c k the wind and h e l p c r e a t e a more p l e a s a n t e x t e r i o r environment and use the d r i f t e d  snow  f o r i n s u l a t i o n and r e c r e a t i o n . •  Less Extreme Environment ( S u b - a r c t i c ) : I n t h i s r e g i o n the major c o n f l i c t l i e s i n the o p t i m i z a t i o n o f heat l o s s and heat g a i n . M i n i m i z i n g heat l o s s t o the c o l d t e m p e r a t u r e s r e q u i r e s the use o f compact b u i l d i n g  shapes  w h i l e o p t i m i z i n g f o r s o l a r heat g a i n means exposi n g more a r e a t o the d i r e c t i o n w i t h the most sun. I t i s s u g g e s t e d t h a t a compact b u i l d i n g form s h o u l d be used w i t h the o r i e n t a t i o n s e l e c t e d t o maximize the s o l a r r a d i a t i o n .  Minimizing solar  shadowing o f b u i l d i n g s on each o t h e r and on e x t e r i o r spaces a l s o s u g g e s t s the use o f compact b u i l d i n g shapes. Building Orientation •  Extreme Environment  (Arctic):  Here a g a i n the c o n f l i c t l i e s i n the d e s i r e t o b l o c k the wind i n o r d e r t o h e l p c r e a t e a more p l e a s a n t e x t e r i o r environment o r t o m i n i m i z e o b s t r u c t i o n o f the wind i n o r d e r t o keep snow d r i f t i n g t o a minimum.  The s e l e c t i o n o f one p a r a -  meter o v e r the o t h e r would depend on the degree o f snow d r i f t i n g f o r the p a r t i c u l a r a r e a a l o n g w i t h the maintenance problem o f h a v i n g t o remove e x c e s s snow a c c u m u l a t i o n . •  L e s s Extreme Environment  (Sub-arctic):  O r i e n t a t i o n o f b u i l d i n g s i n the s u b - a r c t i c s h o u l d be based p r i m a r i l y on sun and v i e w .  Some  l o c a l i z e d c o n d i t i o n s may make wind p r o t e c t i o n  126 a dominant factor but over most of the region the b u i l t environment should be located on southeast, south, and southwest h i l l s i d e s i n order to maximize winter, spring, and f a l l solar radiation.  In addition, housing units should not  have t h e i r only orientation to the north denying them sunlight for most of the year.  12? 3.3.8 R e f e r e n c e s ^ B. L. van G i n k e l , "New Towns i n t h e N o r t h " , C o n t a c t , August 1967,  p.308  2- Dr John Hay, R a d i a t i o n Data f o r B.C. and A l b e r t a , Geography Department, U n i v e r s i t y o f B r i t i s h C o l u m b i a , Vancouver, B.C.,unpublished data analyzed ^  by J . Ross  R i c h a r d A. M i r t h , "The Sun Can Heat Our Homes -  Even i n The N o r t h " , The N o r t h e r n E n g i n e e r , F a l l 4  c . R. C r o c k e r , I n f l u e n c e  E x t e r i o r Cladding,  CBD 126,  o f O r i e n t a t i o n on  June 1970,  Ottawa, Canada  5 D . G. Stephenson, S o l a r Heat Gain Through W a l l s , CBD 39, March 1963,  1974  Glass  Ottawa, Canada  to S t a t e Committee o f t h e C o u n c i l o f M i n i s t e r s f o r B u i l d i n g Problems, I n s t r u c t i o n s f o r t h e D e s i g n o f T o w n s i t e s , F a c t o r i e s , B u i l d i n g s and S t r u c t u r e s i n the 1967,  N o r t h e r n C o n s t r u c t i o n - C l i m a t i c Zone, Moscow t r a n s l a t e d by v . Poppe, TT 1547,  1972,  Ottawa, Canada  22  p.  7  Hay, R a d i a t i o n D a t a , a n a l y s i s by J . Ross  £> L. R. Wang, Wayne T o b i a s s o n , " L i f e C y c l e  1976-77 Cost  E f f e c t i v e n e s s o f Modular M e g a s t r u c t u r e s i n C o l d  Regions",  1976,  I n t e r n a t i o n a l Symposium on H o u s i n g Problems:  1, I n t e r n a t i o n a l A s s o c i a t i o n f o r H o u s i n g S c i e n c e  Vol.  P u b l i c a t i o n , Clemson U n i v e r s i t y ^  R a l p h E r s k i n e , " A r c h i t e c t u r e and Town  Planning  i n t h e N o r t h " , P o l a r R e c o r d , v o l . 14, No. 89, P.  1968,  169 1 0  D a v i d C l u n i e , "Two New N o r t h e r n Communities",  C o n t a c t , August 1976, H  p. 311  N o r b e r t Schoenauer, "Fermont, a New V e r s i o n o f  the Company Town", J o u r n a l o f A r c h i t e c t u r a l E d u c a t i o n , Feb. 1976, p. 11 R a l p h E r s k i n e , " A r c h i t e c t u r e and Town i n the North", Polar Record, 1 3  1  1968,  pp.  Planning  167,168  I b i d . , p. 168  4 P h i l i p Steadman, E n e r g y , Environment and B u i l d i n g ,  Cambridge U n i v e r s i t y P r e s s ,  1975,  P. 27  128 ^  U n i v e r s i t y of Alaska short course,  "Geodesic  Domes", R a l p h Mathews, i n s t r u c t o r , t a k e n by J . Ross 1974, C o l l e g e , A l a s k a f C r  Ibid.  ^  Ralph E r s k i n e , "The C h a l l e n g e o f High  Latitudes",  RAIC J o u r n a l , J a n . 1964 1  1  d  Ibid.  ^ W. A. D a l g l i e s h , D. W. Boyd, Wind on B u i l d i n g s ,  CBD 2 8 , A p r i l 2  0  1962, Ottawa, Canada  R a l p h E r s k i n e , "Community D e s i g n f o r P r o d u c t i o n ,  f o r P u b l i c a t i o n , o r f o r t h e P e o p l e " , RAIC J o u r n a l , J a n . 1964 ^  P e t e r F l o y d , "The N o r t h S l o p e C e n t e r : How was I t  B u i l t ? " , The N o r t h e r n E n g i n e e r , F a l l 1974, P» 28 22 p. A. S c h a e r e r , C o n t r o l o f Snow D r i f t i n g About B u i l d i n g s , CBD 146, Feb. 1972, O t t a w a , Canada 2* i b i d . ^ F l o y d , "The N o r t h S l o p e C e n t e r : How Was I t  Built"  129 3.4  PLANNING LEVEL 3 :  ACTIVITY/SPACE ARRANGEMENT CLIMATIC  FACTORS  SN E  FACTORS  PLANNINQ LEVEL  3.4-1  M  e  *  13 U  a.  o  3 o  VEGETATION  u  SOILS  £O  HYDROLOGY  H  TOPOGRAPHY  PRECIFITATICN  REFERENCE MATRIX  o  TEMPERATURE  SOLAR RADIATION  to  1  PLANNINQ LEVEL  2  PLANNING LEVEL  3  PLANNINQ LEVEL  k  1  Objective This s e c t i o n i s intended t o point out b u i l d i n g  responses t o the t h i r d l e v e l o f planning (the a c t i v i t y / s p a c e arrangement) which h e l p t o improve h o u s i n g h a b l t a b i l i t y , l e s s e n the adverse c l i m a t i c i m p l i c a t i o n s , and maximize t h e d e s i r a b l e c l i m a t i c implications.  130 Solar Radiation SITE FACTORS  CLIMATIC FACTORS  MATRIX  a < a. OS  a PLANNINQ PUNNING  LEVEL 1 LEVEL 2 LEVEL 3  PUNNING LEVEL  The  8  g < C  PRECIFITATIOR  aoc  REFERENCE  PLANNINQ  to »c O i-t  g o u  s Pt O  •<  S tt. ") »-« o M  £ o t-  M *  K  3E0L0GT SOILS  3.4.2  o o  3 o rn  <  u  a >* SL. a u  k  great v a r i a t i o n i n s o l a r r a d i a t i o n  throughout  the y e a r has a major e f f e c t on t h e a c t i v i t i e s and space arrangements w i t h i n t h e h o u s i n g u n i t .  Due  t o the l i m i t e d w i n t e r s u n l i g h t , s u n l i g h t a v a i l a b i l i t y / p e n e t r a t i o n becomes v e r y d e s i r a b l e d u r i n g t h i s p e r i o d . How i m p o r t a n t i s s u n l i g h t i n t h e home?  A study  of 939 housewives i n H o l l a n d came up w i t h some interesting conclusions: "1. P r a c t i c a l l y a l l housewives wanted much l i g h t and sunshine i n t h e i r homes. They a t t a c h e d great value t o t h i s . 2. As f o r t h e l i v i n g - r o o m , t h e r e was some p r e f e r ence f o r a f t e r n o o n sun. P o s s i b l y , the i n s o l a t i o n one a c t u a l l y had g r e a t l y i n f l u e n c e d preferences f o r the i n s o l a t i o n . 3. As f o r t h e k i t c h e n and t h e bedrooms, t h e r e was a d i s t i n c t p r e f e r e n c e f o r sun i n the morning. 4. Most o f t h e housewives shared t h e v i e w t h a t the i n s o l a t i o n o f t h e l i v i n g r o o m i s t h e most i m p o r t a n t f e a t u r e and, i f n e c e s s a r y , they were prepared t o s a c r i f i c e the i n s o l a t i o n o f the bedroom t o ensure t h i s . 5. A s u r p r i s i n g l y h i g h percentage (70%) o f t h e housewives p r e f e r r e d an i n s o l a t e d room, w i t h out a f i n e v i e w , t o a room w i t h o u t sun b u t with a b e a u t i f u l view."1 The f a r t h e r n o r t h one goes, t h e g r e a t e r t h e d e s i r e i s t o o p t i m i z e w i n t e r s u n l i g h t , when a v a i l a b l e , s i n c e 2  i t i s s c a r c e d u r i n g t h e c o l d months.  S u n l i g h t penetra-  t i o n i s an i m p o r t a n t a s p e c t o f h o u s i n g q u a l i t y and a t l e a s t one space ( p r e f e r a b l y t h e " l i v i n g r o o m " ) s h o u l d r e c e i v e s u n l i g h t sometime d u r i n g the w i n t e r day.  131 Space arrangements may  v a r y when t r y i n g t o op-  t i m i z e s u n l i g h t f o r the v a r i e d s e a s o n a l c o n d i t i o n s . D u r i n g w i n t e r , s u n l i g h t i s p r e s e n t o n l y a t the  south  s i d e o f a b u i l d i n g p r o v i d e d i t i s not shadowed; d u r i n g summer, s u n l i g h t i s p r e s e n t a t a l l o r i e n t a t i o n s at  some time d u r i n g the l o n g day.  A c t i v i t y spaces  which most need w i n t e r s u n l i g h t s h o u l d be to  adjacent  a s o u t h , s o u t h e a s t , o r southwest s i d e .  By u s i n g  second f l o o r spaces ( h i g h e r e l e v a t i o n ) , these a c t i v i t i e s w i l l have a b e t t e r chance o f p i c k i n g  up  d i r e c t s u n l i g h t than i f t h e y were on the f i r s t  floor  or basement l e v e l . Should o n l y d a y l i g h t be needed, e a s t and west o r i e n t a t i o n s w i l l have good l i g h t when the sun i s h i g h enough t o r e f l e c t l i g h t o f f the snow cover and o t h e r j e c t s t o the e a s t o r west.  The  changing  solar  on e x t e r i o r o b j e c t s r e f l e c t s v a r i e d l i g h t  ob-  irradiation  throughout  the day; the e a s t s i d e r e c e i v i n g more morning t o noon l i g h t and the west s i d e r e c e i v i n g more noon t o a f t e r noon l i g h t , i n n o r t h e r n e x p o s u r e s , occurs during mid-winter i n shadow ( f i g u r e 3.*, 5). to  due  r e f l e c t e d l i g h t seldom  t o most o b j e c t s b e i n g  When the sun i s h i g h enough  l i g h t o b j e c t s t o the n o r t h , the n o r t h s i d e nor-  m a l l y p r o v i d e s the b e s t c o n s i s t e n t i n d i r e c t  lighting  r e f l e c t e d from o b j e c t s ( v e g e t a t i o n , b u i l d i n g s , snow c o v e r ) i n c o n s t a n t s u n l i g h t most o f the  day.  132 F l e x i b i l i t y o f the e x t e r i o r s k i n can h e l p the inhabitants  t o b e t t e r adapt t o t h e g r e a t s e a s o n a l  variation i n sunlight.  The o p e n i n g up o f t h e b u i l d i n g  i n t e r i o r t o t h e daytime v i e w s , s u n l i g h t , and s o l a r heat could  be a major d e s i g n f a c t o r s i n c e  i o r spaces s h o u l d be c l o s e d  o f f t o the c o l d  d u r i n g the long winter n i g h t s . w a l l panels) could  Whole w a l l s  exterior (insulated  be moved t o open up i n t e r i o r  onto sun h e a t e d daytime use s p a c e s . spaces c o u l d  the i n t e r -  Greenhouse type  become p a r t o f t h e i n t e r i o r  spaces d u r i n g t h e days and be c l o s e d  spaces  activity  o f f at night  t o keep heat l o s s t h r o u g h the g l a s s a r e a t o a minimum, see  figure  3.46.  Such " b u f f e r  s p a c e s " around the home u n i t would  need t o be o r i e n t a t e d  t o the d i r e c t i o n best s u i t e d f o r  the time o f day, time o f y e a r , and a c t i v i t y f o r which A.  i t would be used ( f i g u r e  3*47).  As an example, a  space o p e n i n g out t o t h e w e s t , n o r t h w e s t c o u l d be used f o r r e l a x i n g / e n t e r t a i n i n g / d i n i n g  i n the e v e n i n g  when t h e summer n i g h t a i r becomes c o o l making a g l a s s e n c l o s u r e h e a t e d by t h e a f t e r n o o n sun a c o m f o r t a b l e e n v i r o n m e n t , but t h i s o r i e n t a t i o n would have l i m i t e d use  during  winter.  A space u t i l i z i n g s o l a r r a d i a t i o n d u r i n g s p r i n g , and f a l l  winter,  c o u l d be opened o u t on t h e s o u t h  o r i e n t a t i o n and be used f o r daytime a c t i v i t i e s children's  p l a y a r e a , p l a n t i n g , d i n i n g , and " l i v i n g " .  A space t o t h e s o u t h , when opened d u r i n g a sunny w i n t e r day  would a l l o w  s u n l i g h t and s o l a r heat t o p e n e t r a t e  the home i n t e r i o r .  133  TIME/LOCATION DIAGRAM FOR EXTERIOR USE SPACE ADJACENT TO THE LIVING UNIT  134 Temperature  PLANNINO  LEVEL  1  PLANNINO  LEVEL  2  PUNNINQ LEVEL  3  PUNNINQ LEVEL  It  Temperature  <  8 &  i s important  £ o  u .-J t »-l [3  S w 0. Yl  M *  >*  o  SOILS  w g  GEOLOGY  REFERENCE HATRIX  S I T E FACTORS  O M  PRECIFITATION  SOUR RADIATION  CLIMATIC FACTORS  TOPOGRAPH!  3.4.3  3  o rr.  IE  o *-l H •* H U O U  to locating a c t i v i t i e s /  spaces such as e n t r a n c e s / e x i t s as w e l l a s spaces which s h o u l d o r s h o u l d n o t be a d j a c e n t ior wall surfaces.  to cold exter-  The i n f l o w o f t h e o u t s i d e c o l d  a i r a l s o e f f e c t s t h e t h e r m a l regime w i t h i n t h e structure. Doors t o t h e e x t e r i o r w i t h h i g h usage o f t e n have " a r c t i c e n t r i e s " ( f i g u r e 3.48) which a r e n o r m a l l y t r a n s i t i o n rooms where t h e c o l d a i r from t h e o u t s i d e w i l l be b l o c k e d by t h e o u t e r door when t h e i n n e r door i s opened.  The two door system i n t h e home dees n o t  a l w a y s work as i n t e n d e d  s i n c e people q u i t e o f t e n use  o t h e r e n t r i e s w i t h o n l y one door which p r o v i d e s t h e a c c e s s t o t r a n s p o r t a t i o n ( a u t o s ) and c h i l d r e n ' s p l a y a r e a s , w h i l e t h e " a r c t i c e n t r y " f i l l s up w i t h items.^  storage  135 More i m p o r t a n t t h a n the two d o o r s i n the suba r c t i c r e g i o n i s t h e e n t r y l e v e l when t r y i n g t o keep out t h e c o l d a i r .  When t h e e n t r y i s l o w e r i n r e l a t i o n  t o t h e heated i n t e r i o r , t h e r e i s l e s s heat l o s s when the door i s opened s i n c e c o l d a i r s t a y s low and warm air rises.  I f t h e e n t r y was i n the f l o o r a s done  i n some o f t h e i g l o o d e s i g n s ( f i g u r e 3»4 9), t h e heat <  l o s s would be m i n i m i z e d .  -JA«fc<JMI<JT  W I M T & F .  H O U S E -  T h i s " t r a p door" arrangement ( f i g u r e 3»50) i s i n c o n v e n i e n t f o r most people i n the "modern" home so a l o w e r e n t r y l e v e l space i s t h e next b e s t ( f i g u r e 3.51).  thing  T h i s c o n f i n e s the incoming c o l d a i r  t o t h e l o w e r f l o o r a r e a near t h e e n t r y w h i l e k e e p i n g the o u t f l o w o f warm a i r t o a minimum.  136 Another example o f t h i s l o w e r l e v e l e n t r y was d e v e l o p e d f o r I n u i t h o u s i n g i n A r c t i c Quebec, see f i g u r e 3.52. "A t h r e e - l e v e l house was d e v e l o p e d t o c o n s e r v e h e a t . The f u r n a c e has l o c a t e d on t h e e n t r a n c e f l o o r on f i r s t l e v e l . The c o l d a i r , b e i n g more dense t h a n warm, remains a t t h e lower l e v e l . The warm a i r would f l o w by n a t u r a l c o n v e c t i o n t o the upper l e v e l s and f o r c e t h e c o l d a i r t o t h e first level. The h i g h winds o f the A r c t i c n e c e s s i t a t e d an o u t s i d e porch ( a r c t i c e n t r y ) a s a t r a n s i t i o n t o t h i s lower l e v e l e n t r a n c e . The porch forms a t r a p f o r t h e main t h r u s t o f t h e wind. The home owner would e n t e r a g e n e r a l s t o r a g e and m e c h a n i c a l a r e a which would have o n l y ambient heat o f t h e f u r n a c e but no d i r e c t h e a t . T h i s space would be c o o l e r t h a n t h e o t h e r two l e v e l s o f t h e house." &  F i e r ^ E : .3,15,2 C l o s i n g o f f rooms i n a house causes to  temperatures  v a r y from space t o space s i n c e t h e a i r i s s e c t i o n e d  off.  When c l o s e d o f f , heat g e n e r a t i n g a c t i v i t i e s  ( p e o p l e , l i g h t s , a p p l i a n c e s ) have t h e i r heat to  restricted  s m a l l e r areas r e q u i r i n g v e n t i l a t i o n o f those  while others are cool.  A l l c l o s e d o f f spaces  spaces  would  have t o have t h e i r own heat s u p p l y which i s most o f t e n r e g u l a t e d by one t h e r m o s t a t l o c a t e d i n a c e n t r a l space. See f i g u r e 3*52 f o r u n r e s t r i c t e d a i r f l o w example.  137 Another c o l d temperature i m p l i c a t i o n i s the e f f e c t o f mean r a d i a n t temperature (MRT) heat l o s s from the body t o c o l d i n t e r i o r s u r f a c e s .  Exterior  w a l l s w i l l have c o o l i n t e r i o r s u r f a c e t e m p e r a t u r e s d u r i n g the c o l d w i n t e r s .  I n most c a s e s the c o l d e s t  s u r f a c e w i l l be a window which can be as much as 30 to kO deg F  below room t e m p e r a t u r e .  degF  These s u r f a c e s  cause a r a d i a t i v e heat l o s s from the body o f a p e r s o n . The p e r s o n i n t u r n w i l l a d j u s t the t h e r m o s t a t up h i g h e r t o be more c o m f o r t a b l e . T h i s r a d i a t i v e heat l o s s can be l e s s e n e d when the p e r s o n i s f a r t h e r away from the c o l d s u r f a c e s i n c e o t h e r i n t e r i o r  surfaces  (warmer) a l s o have a r a d i a t i v e e f f e c t on the p e r s o n . Spaces near expanses o f c o l d g l a s s s h o u l d not be used f o r s i t t i n g / r e l a x i n g s i n c e t h i s i s where the h i g h e s t r a d i a t i v e heat l o s s w i l l o c c u r .  Having a c t i -  v i t y and movement a r e a s a d j a c e n t t o the c o l d s u r f a c e s and a r e a s f o r s i t t i n g / r e l a x i n g f a r t h e r away w i l l h e l p c o u n t e r the c o o l i n g e f f e c t o f the s u r f a c e s ( f i g u r e  Other p o s s i b l e s o l u t i o n s i n c l u d e e x t e r i o r  3.53)  shutters  o v e r windows t o l e s s e n the MRT  e f f e c t by warming the  i n t e r i o r surface temperature.  Drapes o r i n t e r i o r  b l i n d s can be used o v e r windows (most common s o l u t i o n ) but p r e c a u t i o n s must be t a k e n t o a v o i d m o i s t u r e a c c u m u l a t i o n and i c i n g on the window s u r f a c e .  Also,  c l o t h i n g h e l p s t o m i n i m i z e t h i s f e e l i n g o f heat l o s s .  138 The  l o n g d u r a t i o n of w i n t e r , i n c o n j u n c t i o n w i t h i t s  c o l d t e m p e r a t u r e s n e c e s s i t a t e s the use o f much c o l d weat h e r c l o t h i n g and equipment. v i d e adequate s t o r a g e  I t ' s important  to  pro-  f o r t h i s c o l d weather equipment.  From p a r k a s t o "bunny" b o o t s , snow r e m o v a l equipment to s k i i s , most o f the equipment can be s t o r e d  out  i n the c o l d o r , as happens a l o t , i n the a r c t i c or covered  porch.  Due  t o the h i g h usage of  space d u r i n g the w i n t e r , i t ' s i m p o r t a n t enough s t o r a g e a d j a c e n t  interior  t o have  t o the house t o h a n d l e the  wide v a r i e t y of equipment. f i g u r e 3.54  entry  A space such as shown i n  a l s o p r o v i d e s a good b u f f e r from the  ex-  treme c o l d e x t e r i o r f o r the warm house i n t e r i o r . S t o r a g e o f f r o z e n goods o u t s i d e i s a l s o q u i t e o f t e n done t a k i n g advantage o f n a t u r e ' s  deep f r e e z e .  F r e e z e r s t h e m s e l v e s are o f t e n k e p t on c o l d porches or o u t s i d e adjacent Some h u n t e r s who  t o the n o r t h s i d e o f the house.  r e t u r n w i t h l a r g e amounts o f moose  o r c a r i b o o w i l l k e e p i t on t o p o f the house, f r o z e n and away from the dogs.  Florets.  139 3.4.4 P r e c i p i t a t i o n  PLANNINQ LEVEL * PLANNINQ LEVEL 2 PUNNING LEVEL 3 PUNNING LEVEL 4  The  <  Q  a.  & n  g *  SI1  •E FACTORS  TOPOGRAPHY GEOLOGY SOILS  u  g  SPECIAL CONDITIONS  REFERENCE MATRIX  PRECIFITATION  SOUR RADIATION  CLIMATIC FACTORS  •  SK  >•  o o 3 a o cr, o a u ««  >> n  use o f e x t e r i o r spaces d u r i n g w i n t e r  f i g u r e on t h e u t i l i z a t i o n o f snow c o v e r .  should  Snow  mounds, h i l l s , o r d r i f t s can be used f o r p l a y , s l e d d i n g , s k i i n g , o r even j u s t s i t t i n g out i n t h e sun.  F o r optimum use a d j a c e n t  t o a housing  unit,  the space s h o u l d r e c e i v e d i r e c t s u n l i g h t s i n c e a i r t e m p e r a t u r e s a r e so low d u r i n g much o f t h e w i n t e r . Outside  play areas adjacent  t o t h e house s h o u l d be  l o c a t e d on t h e s o u t h , e a s t , o r west s i d e t o maximize direct sunlight.  C l u s t e r i n g o f housing  u n i t s should  l e a v e " s u n l i g h t c o r r i d o r s " i n t o t h e p l a y spaces f o r w i n t e r use, see f i g u r e 3«55«  140 Pedestrian  entrances and e x i t s as well as  vehicular access should be located i n order to avoid r a i n runoff and  snow s l i d e s from the sloping roof,  see figure 3.5fe.  1i  141 3.4.5 Wind  PLANNING LEVEL  t  PLANNING LEVEL  2  PLANNING LEVEL  3  PLANNINQ LEVEL It  VI V.  O  &  g  w cu  <n  o SOILS  W n,  •J <t t-t O  GEOLOGY  < tr.  g o o  TOPOGRAPHY  u g  t-» E-« n  PRECIFITATICN  SOLAR RADIATION  RCFEREMCE MATRIX  s n E FACTORS  FACTORS  |  CLIMATIC  3 o  IT.  » >>  o En < U)  o w  •  As mentioned b e f o r e , t h e wind c h i l l e x p e r i e n c e d by people i s an i m p o r t a n t d e s i g n f a c t o r when e s t a b l i s h i n g the l o c a t i o n s o f the e x t e r i o r p l a y / r e s t a r e a s and c i r c u l a t i o n s p a c e s .  The g r e a t e r t h e wind  v e l o c i t y , t h e g r e a t e r t h e heat l o s s from t h e exposed s u r f a c e s o f t h e body c a u s i n g d i s c o m f o r t and p o s s i b l e freezing (frost  bite).  L o c a t i o n o f t h e e n t r y i s a l s o i n f l u e n c e d by the p r e v a i l i n g w i n t e r winds.  When a wind blows  c o n s t a n t l y a g a i n s t t h e e x t e r i o r d o o r , t h e two door a r c t i c e n t r y becomes more d e s i r a b l e s i n c e t h e t r a n s i t i o n space w i l l s t o p t h e wind from b l o w i n g t h r o u g h the c r a c k s around t h e i n t e r i o r door s l o w i n g t h e c o l d a i r i n f i l t r a t i o n , see f i g u r e 3.49. The o u t s i d e door s h o u l d n o t open d i r e c t l y toward t h e w i n t e r wind d i r e c t i o n , see f i g u r e 3.57*  142 3.4.6 S p e c i a l C l i m a t i c C o n d i t i o n s : B l o w i n g FACTORS  PLANNING LEVEL  1  PLANNING LEVEL  2  PLANNING LEVEL  J  PLANNING LEVEL  4  FACTORS  o  tr-" <  S 0.  &  e o u  i  M BE  .J •a. M O  w PL.  >*  o  3 o  H •<  o  SOILS  u g  GEOLOGY  M  TOPOGRAPHY  REFERENCE HATRIX  sn E  W  PRECIFITATION  SOLAR RADIATION  |  CLIMATIC  Snow  K a >-  2L.  i n a r e a s w i t h p o t e n t i a l snow d r i f t i n g ,  a  o w  avoid  l o c a t i n g f e n e s t r a t i o n (doors and windows) where snowd r i f t i n g w i l l make them u s e l e s s such a s on t h e lower p o r t i o n o f t h e l e e s i d e o f t h e b u i l d i n g ( f i g u r e 3.58). I n t h i s case t h e house s h o u l d have a second  exit.^  143 3.4.7  Summary The l i s t i n g o f p l a n n i n g o b j e c t i v e s t o be con-  s i d e r e d a t p l a n n i n g l e v e l 3, a c t i v i t y / s p a c e a r r a n g e ments, a r e : A. S o l a r R a d i a t i o n a. S u n l i g h t p e n e t r a t i o n i s an i m p o r t a n t of housing  aspect  q u a l i t y and a t l e a s t one space  ( p r e f e r a b l y t h e " l i v i n g room") s h o u l d r e c e i v e s u n l i g h t sometime d u r i n g the w i n t e r day b. Spaces r e q u i r i n g s u n l i g h t s h o u l d be l o c a t e d on the s o u t h e a s t ,  s o u t h , o r southwest p o r t i o n s  o f the s t r u c t u r e as h i g h as p o s s i b l e c. A r e a s r e q u i r i n g good d a y l i g h t i n g s h o u l d the n o r t h s i d e d u r i n g d. P r o v i d e  avoid  winter  f l e x i b i l i t y o f space - open up h o u s i n g  u n i t t o "daytime s p a c e s " l o c a t e d s o u t h e a s t t o southwest B. Temperature a. Locate  entry to housing  u n i t a t a low l e v e l  b. A l l o w i n t e r i o r h e a t e d a i r t o c i r c u l a t e  freely  t o a l l a r e a s r e q u i r i n g h e a t a t each l e v e l c. M i n i m i z e  body r a d i a n t heat l o s s t o the c o l d  • s u r f a c e s o f e x t e r i o r w a l l s / w i n d o w s by k e e p i n g i n a c t i v i t y spaces away from  surfaces  d. Adequate space f o r c o l d s t o r a g e s h o u l d be p r o v i d e d - i f i n t h e e n t r y way t h e e n t r y space s h o u l d be much l a r g e r t h a n t h e t y p i c a l arctic  entry  C. P r e c i p i t a t i o n a. Use snow f o r p l a y a r e a s on south  side  b. L o c a t i o n o f e n t r i e s / e x i t s and garage openings s h o u l d be p r o t e c t e d from r a i n , snow, and p o t e n t i a l snow s l i d e s o f f t h e r o o f D. Wind a. E x t e r i o r a c t i v i t y spaces s h o u l d be p r o t e c t e d from w i n t e r winds which i n c r e a s e wind factor  chill  144 b. L o c a t i o n o f e n t r a n c e / e x i t s and i n t e r i o r o p e n i n g s s h o u l d not f a c e w i n t e r wind d i r e c t i o n E. S p e c i a l C l i m a t i c C o n d i t i o n s : B l o w i n g  Snow  a. A v o i d l o c a t i n g f e n e s t r a t i o n (windows, d o o r s ) where snow d r i f t i n g w i l l make them u s e l e s s Areas w i t h wind and b l o w i n g have  snow ( a r c t i c  region)  d i f f i c u l t y a c h i e v i n g d e s i r a b l e south f a c i n g  e x t e r i o r use space which i s n o t covered  w i t h snow  d r i f t s ( e s p e c i a l l y on t h e N o r t h Slope where wind comes from t h e n o r t h e a s t ) o r s u b j e c t t o c o n s t a n t wind.  In  a d d i t i o n , t h e change i n s o l a r a z i m u t h t r a v e l i s so r a p i d (from no sun t o 2 4 hours o f d a y l i g h t ) i n o n l y a few months t h a t e a s t o r west o r i e n t a t i o n s c o u l d have n e a r l y equal importance as the south o r i e n t a t i o n w i t h regard to s o l a r r a d i a t i o n .  I n t h i s case p r o t e c t i o n  from t h e wind becomes a f i r s t  priority.  145  3.4.8  References  C. B i t t e r , J.F.A.A. I e r l a n d , " A p p r e c i a t i o n o f S u n l i g h t i n t h e Home," C I E P r o c e e d i n g s : S u n l i g h t i n B u i l d i n g s , e d i t e d by R. G. H o p k i n s o n , U n i v e r s i t y o f Newcastle-Upon-Tyne, A p r i l 1965 1  2 James Wechsberg, " M o r k e t i d e n , " New Y o r k e r , March 18,  1972  "When t h e House-Warming Sun Goes Down, Movable I n s u l a t i o n Goes I n t o P l a c e , " S u n s e t , Nov. 1976, 5  166-168  pp.  * Based on t h e sunpath diagram c o n s t r u c t e d by t h e a u t h o r f o r 62° n o r t h l a t i t u d e , see Appendix A ^ B u r g e s s L e d b e t t e r , "The Temporary Environment o f F o r t W a i n w r i g h t , Housing P a r t 111',' C o l d Regions Resea s e a r c h E n g i n e e r i n g L a b o r a t o r y (CRREL), Hanover, N.H., u n p u b l i s h e d 1976 Eb R i c e , "The I d e a l A r c t i c House - 11," The N o r t h e r n E n g i n e e r , Summer 1973, P . 19 I Wendell H. O s w a l t , A l a s k a n E s k i m o s , C h a n d l e r P u b l i s h i n g Co., 1967, p. 100 ^ Leo R. Z r u d l o , "User D e s i g n e d Housing f o r t h e I n u i t o f A r c t i c Quebec," The N o r t h e r n E n g i n e e r , F a l l 1975, P . JfO ^GSA, Energy C o n s e r v a t i o n D e s i g n G u i d e l i n e s f o r New O f f i c e B u i l d i n g s , G e n e r a l S e r v i c e s A d m i n i s t r a t i o n , Washington D.C, 1975, p. 5-9 B u r g e s s L e d b e t t e r , "The Temporary Environment"  1 0  R a l p h E r s k i n e , " C h a l l e n g e o f t h e High L a t i t u d e s , " RAIC J o u r n a l , J a n u a r y 1964 I I  B o r i s C u l j a t , C l i m a t e and The B u i l t Environment i n The N o r t h , A r k i t e k t u r s e k t i o n e n s t r y c k e r i , KTH, S t o c k h o l m , Sweden, 1975 1 2  1 5  1  R i c e , "The I d e a l A r c t i c House - 11," p. 19  * I b i d . , p. 23  146 3.5  PLANNING LEVEL 4: DETAILING OF THE BUILDING FABRIC CLIMATIC FACTORS  o  s Ml  o «< PS  w g  E  3 B LEVEL  1  PLANNINQ LEVEL  2  PLANNINQ L E V E L  3  PLANNI NO L E V E L  k  PLANNING  3.5.1  PRECIFITATICN  SB  REFERENCE HATRIX  S I T E FACTORS  ts o f  g o u .J  <  g  Mi c>  Id a. "i  s -<  >O  tt. >• t5 o  £ o  s a  .4 O  s  o n •*  a o w  mm\WL^Lmmmmm\\  Objective This section i s intended to point out building  design responses at the fourth l e v e l of planning (the d e t a i l i n g of the building fabric) which help to reduce the influence of adverse climatic e f f e c t s , and maximize the desirable climatic e f f e c t s . Selecting the materials within the building fabric as well as i t s placement becomes most noticable over time when a mistake has been made. I f no mistakes are made then the "good design" goes unnoticed and the house can "work" l i k e any other house i n a lower latitude with a more moderate climate.  1V7  3.5.2 S o l a r  Radiation  PLANNING LEVEL  1  PLANNINQ LEVEL  2  PLANNING LEVEL  3  PUNNING LEVEL  l»  0.  g  fi * f-i  >*  o SOILS  W  F ACT ORS  GEOLOGY  tr,  TOPOGRAPHY  g  SPECIAL CONDITIONS  REFERENCE MATRIX  SI1E  FACTORS  PRECIFITATION  SOUR RADIATION  CLIMATIC  a  o rn Q  as o < f-i U u  •  S o l a r r a d i a t i o n has an i n f l u e n c e  on the make up o f  e x t e r i o r w a l l s and t h e s u r f a c e s h a d e / c o l o r o f t h e e x t e r i o r s k i n o f the b u i l d i n g .  The g r e a t e s t  influ-  ence i s on t h e window a r e a ; t h e amount o f window a r e a , t h e l o c a t i o n o f window a r e a , and t h e c o n t r o l of t h e sun and g l a r e a t t h e window s u r f a c e .  These  f a c t o r s c o n t r o l h o u s i n g u n i t heat l o s s , heat  gain,  amount o f n a t u r a l l i g h t i n g , and v i s u a l d i s c o m f o r t . The s u r f a c e s h a d e / c o l o r a l s o i n f l u e n c e s  the housing  u n i t s heat g a i n and heat l o s s a s w e l l as t h e r m a l stresses •  i n the e x t e r i o r s k i n .  Amount o f Window A r e a The window a r e a on t h e e x t e r i o r envelope s h o u l d be k e p t t o a minimum ( n o r m a l l y  1  around  10% o f t h e  f l o o r a r e a ) p r i m a r i l y due t o heat l o s s d u r i n g t h e c o l d months (see  3*5.3  Temperature f o r more d e t a i l ) .  From  l a t e F e b r u a r y t i l l e a r l y November t h e p r o s p e c t s o f utilizing  s o l a r heat g a i n a r e good s i n c e t h e midday  s o l a r a l t i t u d e i s above 10° and t h e i n c r e a s e d  azimuth  t r a v e l makes s o l a r heat g a i n a v a i l a b l e t o more t h a n south f a c i n g o r i e n t a t i o n s , due  t o heat  I O B S  more d i f f i c u l t  i f window a r e a i s l i m i t e d  during the winter,  then i t becomes  t o optimize f o r solar r a d i a t i o n during  the s p r i n g , summer and f a l l . the d a y l i g h t and view a r e  D u r i n g those p e r i o d s  148  a v a i l a b l e f o r l o n g e r p e r i o d s and  the sun's r a d i a t i o n  can h e l p heat the house i n t e r i o r , the p e n e t r a t i o n o f s u n l i g h t i s d e s i r a b l e and more window a r e a becomes an  asset. S e v e r a l approaches can be t a k e n t o " s o l v e "  t h i s problem.  The  f i r s t and the most w i d e l y used  for  many y e a r s was  t o get out o f the house when i t  was  pleasant outside.  I n t h i s way  the homes were  more "dens" f o r h i b e r n a t i o n i n the w i n t e r t h a n y e a r round l i v i n g e n v i r o n m e n t s .  A second approach i s t o  have a house w i t h l a r g e window a r e a s so one constant  is in  c o n t a c t w i t h the e x t e r i o r environment, but  t h i s s o l u t i o n has h i g h o p e r a t i o n and maintenance c o s t s . A t h i r d approach i s to have a house w i t h a  flexible  e x t e r i o r s k i n ; p a r t s o f the house c o u l d be opened i n good weather i n o r d e r t o l e t l i g h t , v i e w , and i n t o the space and  up heat  closed o f f thermally during cold  p e r i o d s m i n i m i z i n g heat  loss.2  I n s u l a t e d p a n e l s c o u l d serve as " w a l l s " on  the  e a s t , s o u t h , t o west s i d e s which c o u l d swing open allowing: 1. a t h e r m a l mass or i n t e r i o r o b j e c t s and  people  to absorb d i r e c t s o l a r r a d i a t i o n , 2.  v i e w s o f the o u t d o o r s ,  3.  an abundance o f n a t u r a l l i g h t .  and  I n c o r p o r a t i n g t h i s f l e x i b i l i t y i n t o an o v e r a l l shape, i t i s s t i l l p o s s i b l e t o m i n i m i z e the b u i l d i n g ' s e x t e r i o r s k i n s u r f a c e a r e a as w e l l as p r o v i d e  glass  w i n d o w s / w a l l s w i t h movable i n s u l a t e d p a n e l s as shown in figure The  3.59. o p e n i n g and  c l o s i n g o f t h e home would be  much l i k e a p l a n t or f l o w e r which opens t o l e t i n v a l u a b l e s u n l i g h t when a v a i l a b l e and becomes dark and c o l d .  c l o s e s when i t  149  • L o c a t i o n o f Window A r e a When window.area i s k e p t t o a minimum, s u n l i g h t i s a t a premium and must be o p t i m i z e d w i t h r e g a r d v i e w and i l l u m i n a t i o n . the near s i t e  to  View c h a r a c t e r i s t i c s i n c l u d e  ( v e g e t a t i o n , b i r d s , and a n i m a l s , n a t u r a l  elements - r a i n f a l l and ( o t h e r homes, p e o p l e ,  s n o w f a l l ) , the m i d d l e d i s t a n c e  s t r e e t s , a u t o s ) , and  the d i s t a n t  view (mountains, v a l l e y s , c l o u d s , c i t y l i g h t s ) .  A  view i s a p e r s o n a l p r e f e r e n c e  give  his will  own  p r i o r i t y t o the v i e w  allow.  and each u s e r w i l l his  particular  site  150 To look at a view or a c t i v i t y outside usually means the use of a bay window or something similar which i s large, low, and centered i n a space (figure 3.60).  When placing windows for optimum i l l u m i n a t i o n , the bay window centered i n the room i s one of the l a s t choices.  V e r t i c a l s c r i p s of window adjacent to  an i n t e r i o r wall or h o r i z o n t a l window s t r i p s near c e i l i n g l e v e l bring i n l i g h t which washes the walls and/or c e i l i n g with l i g h t which increases the room i l l u m i n a t i o n (figure 3 . 6 1 ) .  This method depends on  the brightness and r e f l e c t i v i t y of the walls and c e i l i n g surfaces, a l i g h t shade of most colors increases the luminance and i l l u m i n a t i o n on a working plane.  Since natural l i g h t and view both compete for-the same limited window area, we should ask which i s most important during the winter months when the l i g h t a v a i l a b i l i t y i s so short, and are there ways to combine the two  u s e 6 ?  The answer to the f i r s t question i s not  151 simple s i n c e  i t may d i f f e r f o r each i n d i v i d u a l  O p t i m i z i n g the window placement  for natural l i g h t  may f r u s t r a t e  some people because  out so e a s i l y  while  for others  user.  they cannot  view  t h i 6 arrangement may  not bother them. Ways o f combining the two uses have been ed i n c o l d c l i m a t e a r e a s 1.  attempt-  f o r q u i t e some t i m e :  Lower the h o r i z o n t a l window band so that can view out w h i l e s t a n d i n g ( f i g u r e  one  3.62),  5>£ 2. Widen the v e r t i c a l window band near the so a view can be enjoyed while s i t t i n g  wall (figure  3.63),^  3. Use o f c o r n e r windows -  light  can be  reflected  on e i t h e r w a l l i n c r e a s i n g i l l u m i n a t i o n and the view angle i s tions  g r e a t l y i n c r e a s e d with no obstruc-  where the windows meet at the corner  (figure  3,64),  7  152 k* Open u p w a l l time  use  -  p a n e l s to the  sunlit  sunlit  use i n m i d - w i n t e r  may be i n  the movable p a n e l s f o r  (figure  Skylighting  c a n be v e r y  use f u l l  Skylights/clerestory  ed t o  light  into  the v e r t i c a l  wall  to  floor  ior  upper  space  natural  which  diffuse  The  the  sizes  natural  In  this  building in light.  light  to  space  the  windows  They  or  open to  also  quite  and  northern  c a n be  the  provide  floors,  central  the an  s o u r c e s on t h e small may n o t which  the  area  the  from  walls  such as moderate  be so n o t i c e a b l e a s i n interior  a  c a n be l a c k i n g  c a n be u s e d t o  these areas.*'  Govt-  inter-  farther  exterior  structures  light  interior.  surface  which are  than  providing  a b u i l d i n g which responds to  spaces  en-  position-  better  often into  several  to  Skylights  ctBtS^L,  area  light  building interior  windows.  interior  3»66).  homes,  larger  ural  larger  be warm  window  in  c l i m a t e w i t h a minimum o f  light/sunlight  (figure  the  lighting  shape o f  sub-arctic creates  is  yet  day-  3.65).^  vironment. bring  for  s p a c e may n o t  enough t o  view  the  spaces  supply  nat-  153  S k y l i g h t s and c l e r e s t o r y windows can a l s o b r i n g south  l i g h t and s u n l i g h t t o t h e n o r t h s i d e o f  the home d u r i n g w i n t e r by t h e p o s i t i o n i n g o f these windows ( f i g u r e  3.67).  »CT,t^f,^r,TT.tri-'«''''''''''-'^'''''.l.'.r-'.'i.'-'.'i'-'' ,  , :T r f f  / f , T >,  l  AV  J  S k y l i g h t s can a l s o be used as s u n l i g h t r e f l e c t o r s . R e f l e c t i v e s k y l i g h t s can p i c k up low s u n l i g h t and d i r e c t i t i n t o the b u i l d i n g i n t e r i o r ( f i g u r e  3.68).  B e i n g a b l e t o p i c k up t h e s u n l i g h t from t h e b u i l d i n g roof l e v e l helps t o capture  low angle s u n l i g h t p l u s  r e f l e c t e d l i g h t o f f t h e r o o f (snow) d u r i n g w i n t e r and spring (figure  3.69).  C l o s i n g t h e s k y l i g h t o f f w i t h an i n t e r i o r g l a s s pane can h e l p reduce heat  los6,  b u t t h e i n s i d e pane  s h o u l d be s e a l e d t o a v o i d m o i s t u r e o u t e r g l a s s pane ( f i g u r e  3.69).  migration to the  154 The window location can also influence i t s heat loss p o t e n t i a l .  For the exposed window/skylight, the  more i t i s angled towards the horizontal, the more it: 1. radiates heat (loss) to the atmosphere; 2. allows less winter (low angle) sun penetration; 3.  allows more sun penetration during the summer months (figure 3 « 7 0 ) .  In areas with appreciable winter winds the sloping window surface would help to reduce the force of the wind on the surface. During the winter the skylight with minimal slope would c o l l e c t snow which would melt to i c e due to the heat loss through the glass.  This normally  causes large i c i c l e s to form (figure 3*71 ) « ^  -Fiacre 3.70  155 •  Sun/Glare  Control  Through  During winter, faces of  Window  snow c o v e r s most h o r i z o n t a l  and s l o p i n g r o o f s .  the l i g h t  levels  which  as w e l l  Area  Since  snow r e f l e c t s  s t r i k e s i t , high  as glare  sur-  much  illumination  c a n be e x p e r i e n c e d  i n t h e home.  " D i r e c t s u n l i g h t f a l l i n g on a b r i g h t s u r f a c e c a n cause g l a r e with a t t e n d a n t v i s u a l discomfort unless the l e v e l o f i l l u m i n a t i o n i n the other p a r t s o f t h e room i s n o t t o o d i f f e r e n t f r o m t h a t o f t h e s u n l i t a r e a s . " 12. The major  low w i n t e r  sources  sun angle  helps  t o p r o d u c e two  of glare:  1.  the r e f l e c t i o n  of sunlight  o f finterior  2.  the r e f l e c t i o n  of sunlight  o f f snow o n t h e  objects,  exterior. The  first  type  of glare  c a n be b o t h e r s o m e  where i n t h e room when t h e r e f l e c t i n g bright  i n relation  second  type  the  to the r e s t  surface  o f t h e room.  anyappears  The  c a n " b l i n d " t h e p e r s o n when l o o k i n g o u t  window when t h e e y e s a r e a d j u s t e d  lighting  from  level  to the i n t e r i o r  3.72).  (figure  s  Solar exterior the  shading,  glazing  they normally block  c o l d months which  Exterior  shutters  types,  interior  s h a d i n g , and  I n t e r i o r shading,  the view.  cur-  the operating  Also,  they can  p r o b l e m s o n t h e windows d u r i n g i s discussed  can e l i m i n a t e  problems i f moisture causing  c a n be c o n t r o l l e d b y  s h a d e s , a n d b l i n d s , c a n c u t down on t h e l i g h t ,  cause m o i s t u r e / i c i n g the  and g l a r e  location of fenestration.  tains, but  penetration  section.  the moisture/icing  does not l e a k mechanism  i n another  from  t h e window  t o i c e up.  1%  Exterior Shading Shading by the building exterior such as overhangs are generally i n e f f e c t i v e for several reasons. Overhangs block south facing summer sun to a limited degree, but also block skylight from coming into the room i n t e r i o r through v e r t i c a l windows, reducing the 13  room i l l u m i n a t i o n (figure 3 * 7 3 ) •  I f the roof assembly i s a "hot roof" the overhang i s normally colder than the rest of the roof so any snow melt from the main part of the roof w i l l freeze on the overhang causing massive i c e dams during winter and s p r i n g . ^  157  E x t e r i o r s h u t t e r s ( i n s u l a t e d , movable  panels)  have a a v a r i e t y o f uses iii n the d i v e r s i f i e d n o r t h e r n conditions (figure  3.74) Winter  E a r l y Spring  2.  Spring/Fall  Spring/Fall or Summer E a s t / W e s t  Summer Nights  Summer Days  The use o f e x t e r i o r i n s u l a t e d wide spread  s h u t t e r s i s not  i n t h e A l a s k a n urban a r e a s , but I can  r e l a t e how two d i f f e r e n t f a m i l i e s i n F a i r b a n k s , manipulated  Alaska,  t h e i r own environment w i t h movable i n s u l -  a t e d s h u t t e r s on the o u t s i d e o f t h e i r windows. The o r i g i n a l purpose o f t h e s h u t t e r s was t o reduce the  158 h e a t l o s s t h r o u g h the g l a s s window a r e a .  T h i s nor-  m a l l y r e q u i r e d o p e n i n g the s h u t t e r s i n the morning and  c l o s i n g them a f t e r s u n s e t d u r i n g the c o l d months.  One  f a m i l y d i d e x a c t l y t h a t , w h i l e the o t h e r used  s h u t t e r s f o r sun shades on t h e i r south  the  f a c i n g windows  not b o t h e r i n g to c l o s e them e v e r y n i g h t .  They both  c l o s e d the s h u t t e r s when away from the house f o r s e v e r a l days o r more.  While the s h u t t e r s may  have been used as o r i g i n a l l y i n t e n d e d d e n t s , the o p t i o n was  not  by b o t h r e s i -  t h e r e f o r the i n d i v i d u a l t o  the s h u t t e r s as he wished p r o v i d i n g f l e x i b i l i t y ing  on the p e r s o n ' s p r i o r i t i e s and  one  case s o l a r s h a d i n g was more i m p o r t a n t  use  depend-  e n e r g i e s ; i n the and  less  b o t h e r t h a n c o n t r o l l i n g heat l o s s . The  flexibility  even more i m p o r t a n t each f a m i l y was  o f use  i n t h i s case was  perhaps  t h a n r e d u c i n g heat l o s s s i n c e  a b l e t o enhance the l i v a b i l i t y  t h e i r environment t h r o u g h the use  of  of the s h u t t e r s .  S h a d i n g By G l a z i n g Type S o l a r s b s o r b i n g and  r e f l e c t i n g glass could  be  used t o decrease b o t h heat and  light.  Solar control  by the use  i t s own  s p e c i a l problems.  of window g l a s s has  C l e a r f l o a t g l a s s (double normally  t r a n s m i t around 80%  of s o l a r h e a t . normally  g l a z i n g - thermal  pane) w i l l  o f v i s i b l e l i g h t and  70%  T i n t e d and/or r e f l e c t i v e g l a s s i s  used t o reduce the s o l a r heat d u r i n g summer  conditions.  I n a home and e s p e c i a l l y i n a c o l d c l i m a t e  where window a r e a i s m i n i m i z e d , s o l a r r e f l e c t i n g / absorbing ing  g l a s s i s not n e c e s s a r y s i n c e the absorb-  g l a s s r e d u c e s the r a d i a n t heat  to around 35%  and v i s i b l e t r a n s m i t t a n c e  R e f l e c t i v e g l a s s has h e a t and  transmittance  light.  t o around  even l o w e r v a l u e s , 25%  f o r both  S i n c e most o f the y e a r we are  t o maximize s o l a r h e a t and  40%.  trying  l i g h t , these t y p e s o f g l a s s  would o n l y be u s e f u l l d u r i n g the s p r i n g and  summer.  They c o u l d be u t i l i z e d as a movable s h u t t e r t o h e l p c u t down g l a r e and unwanted summer s u n l i g h t » see figure  3.75.  159 Interior  Shading  A shade o r c u r t a i n o f some type o v e r t h e lower p o r t i o n o f t h e window a r e a (up t o about 5 - 6  feet)  w i l l c u t down b o t h t y p e s o f g l a r e by c o n f i n i n g t h e b r i g h t n e s s t o t h e upper window a r e a where t h e r e f l e c t e d l i g h t from the snow w i l l l i g h t t h e c e i l i n g and t h e d i r e c t s u n l i g h t w i l l p e n e t r a t e deeper i n t o t h e room r e d u c i n g i n t e r i o r g l a r e p r o b a b i l i t y ( f i g u r e 3*75)•  S i n c e a major c r i t e r i a f o r window s h a d i n g i s t h e achievement  of privacy,  the i n t e r i o r b l i n d s ,  or shades a r e b e s t s u i t e d f o r t h i s purpose ease o f h a n d l i n g . be p o s i t i o n e d  curtains,  due t o  I n t e r i o r s h a d i n g d e v i c e s need t o  c o r r e c t l y (see Temperature  Section),  or t h e windows c o u l d become c o v e r e d w i t h i c e providing l i t t l e  o r no v i e w from e i t h e r  side.  160 C o n t r o l By F e n e s t r a t i o n L o c a t i o n H i g h windows keep t h e r e f l e c t e d g l a r e from snow out o f v i e w and s p r e a d t h e h i g h i n t e n s i t y l i g h t onto the c e i l i n g which h e l p s t o b r i g h t e n t h e e n t i r e room. D i r e c t s u n l i g h t p e n e t r a t e s deeper i n t o the room from h i g h windows.  E a s t and west f a c i n g windows a r e espe-  c i a l l y s u s c e p t i b l e t o g l a r e i n s p r i n g when the sun's a l t i t u d e i s r e l a t i v e l y low i n the e a s t and west and the ground i s s t i l l  c o v e r e d w i t h snow.  Orientations  from s o u t h t o west a r e t h e most c r i t i c a l due t o w i n t e r and s p r i n g sun l o c a t i o n / a l t i t u d e and the time o f day c e r t a i n spaces a r e most used.  I n greenhouse  type  spaces g l a r e becomes l e s s o f a problem due t o the o v e r a l l h i g h i l l u m i n a t i o n l e v e l w i t h i n the space.  Sky-  l i g h t s a r e l e s s o f a problem t h a n v e r t i c a l windows s i n c e t h e y n o r m a l l y p r o v i d e upward v i e w s and when the sun p e n e t r a t e s , i t i s a t a h i g h e r a l t i t u d e , see figure  3.76.  161 • S u r f a c e S h a d e / C o l o r and T e x t u r e  o f the E x t e r i o r S k i n  "With few e x c e p t i o n s , c o l o r , as such was found t o be non c r i t i c a l w i t h r e g a r d t o t e m p e r a t u r e c h a r a c t e r i s t i c s . However, shades o f l i g h t and dark were e x t r e m e l y important."TT A n o t h e r means o f c o n t r o l o r use o f s o l a r r a d i a t i o n i s t h r o u g h the use o f shades o f l i g h t and surfaces.  dark  S i n c e h i g h heat g a i n s a r e e x p e r i e n c e d  dark s u r f a c e s (as much as 9 0 ° F above  in  ambient a i r  t e m p e r a t u r e ) and o n l y moderate h e a t g a i n i n l i g h t  or  lb r e f l e c t i v e s u r f a c e s , the  b u i l d i n g surface should  be  e v a l u a t e d as t o : 1.  time o f day o f the g r e a t e s t s o l a r r a d i a t i o n ,  2. time o f y e a r  i t i s exposed t o s o l a r r a d i a t i o n ,  3. amount o f time exposed t o c l e a r n i g h t z e n i t h , i * . w a t e r t i g h t i n t e g r i t y d e s i r e d (minimize  freeze/  thaw c y c l e s ) . Dark s u r f a c e s which r e c e i v e s o l a r r a d i a t i o n w i l l have more s o l a r h e a t g a i n , more n i g h t r a d i a t i o n h e a t l o s s ( g r e a t e s t toward z e n i t h ) , more t h e r m a l s t r e s s on m a t e r i a l s ( e x t e r i o r s k i n ) , and more f r e e z e / t h a w  cycles  t h a n a l i g h t surface.^° Each o f t h e s e  f a c t o r s has v a r y i n g i m p o r t a n c e  depending on the o r i e n t a t i o n o f the s u r f a c e .  A hori-  z o n t a l o r r o o f s u r f a c e which r e c e i v e s i t s maximum s o l a r r a d i a t i o n a t midday d u r i n g the warmer months o f the year  (mid A p r i l t h r o u g h mid O c t o b e r ) would  require a l i g h t colored surface.  normally  This also holds  true  when a h i g h degree o f w a t e r t i g h t i n t e g r i t y i s e s s e n t i a l s i n c e h i g h t h e r m a l s t r e s s and  freeze/thaw  c y c l e s work  a g a i n s t the m a t e r i a l s a b i l i t y t o r e m a i n w a t e r t i g h t . One  o t h e r f a c t o r t o be c o n s i d e r e d  nighttime r a d i a t i o n .  i s the  outgoing  S i n c e a r o o f i s the c l o s e s t  s u r f a c e o r i e n t a t e d t o the s k y ' s z e n i t h , i t w i l l experi e n c e the most r a d i a t i v e h e a t l o s s d u r i n g c l e a r c o l d , dry n i g h t s .  A dark s u r f a c e ( b l a c k body) w i l l  increase  t h i s heat l o s s t o i t s maximum a t a time when the heat i s most d e s i r e d i n t h e home.  So, once a g a i n a l i g h t  c o l o r e d r o o f s u r f a c e would be p r e f e r r e d s i n c e i t would  162 reduce t h i s heat l o s s d u r i n g t h e n i g h t ( f i g u r e During  3.77).  t h e c o l d e s t months o f t h e y e a r , October  through A p r i l ,  the r o o f i s normally covered  w i t h snow  which w i l l negate t h e e f f e c t o f r o o f s u r f a c e shade o r color.  tyor Ave*  V e r t i c a l surfaces are: 1. n o t exposed t o t h e c l e a r n i g h t ' s s k y z e n i t h ; 2.  n o t r e q u i r e d t o be a s w a t e r t i g h t a s a f l a t r o o f ; and  3. r e c e i v e s o l a r r a d i a t i o n a t d i f f e r e n t t i m e s o f the day and a t d i f f e r e n t t i m e s o f t h e y e a r depending on t h e o r i e n t a t i o n . Due t o t h e s e  f a c t o r s i t becomes more advantageous t o  s e l e c t a dark s u r f a c e ( f o r t h e r m a l mass m a t e r i a l s ) f o r c e r t a i n o r i e n t a t i o n s which can c o l l e c t t h e s o l a r h e a t during cooler periods.  The s o u t h , s o u t h e a s t , and s o u t h -  west o r i e n t a t i o n s a r e b e s t f o r t h i s d u r i n g w i n t e r . S o l a r r a d i a t i o n becomes a v a i l a b l e on t h e n o r t h e a s t , n o r t h , and n o r t h w e s t o r i e n t a t i o n s d u r i n g t h e l a t e s p r i n g and summer months when t e m p e r a t u r e s a r e m i l d e r . These o r i e n t a t i o n s c o u l d c a p t u r e t h e s o l a r r a d i a t i o n when t h e sun a n g l e i s low i n t h e mornings and h e l p i n g t o balance The blem.  out the c o o l nighttime  temperatures.  e a s t and west e l e v a t i o n s a r e more o f a pro-  D u r i n g t h e summer, t h e sun i s a t an a l t i t u d e  o f 25° t o 30°  when p e r p e n d i c u l a r t o t h e e a s t and west  o r i e n t a t i o n s producing gain.  evenings,  a f a i r amount o f s o l a r heat  I n t h e morning t h i s heat c o u l d be used t o  e l i m i n a t e t h e morning c h i l l , y e t would be u n d e s i r a b l e to  be s t o r e d up i n a t h e r m a l mass o n l y t o be r e r a d i a t e d  163 d u r i n g t h e warmest p a r t o f t h e day.  so, the east  o r i e n t a t i o n s h o u l d have l i g h t s u r f a c e c o l o r s f o r b o t h the e x t e r i o r s k i n and any t h e r m a l mass which t h e sun might s t r i k e .  I n t h i s way t h e s o l a r heat c a n be used  d i r e c t l y , l i m i t i n g the storage of i t i n the b u i l d i n g structure.  F o r t h e west o r i e n t a t i o n , t h e use o f  t h e r m a l mass i s advantageous s i n c e i t w i l l h e l p warm  zz the c o o l e v e n i n g a i r . A dark s u r f a c e s t h e r m a l mass may tend t o overheat t h a t s i d e o f t h e house a t t i m e s .  {  P o s s i b l y the best  s o l u t i o n here i s t o have movable p a n e l s o r s h u t t e r s w h i c h have a l i g h t e x t e r i o r s u r f a c e so t h a t when s o l a r heat i s wanted t h e s e c a n be opened i n o r d e r t o h e a t the i n t e r i o r .  When s o l a r heat i s unwanted, t h e y c a n  be c l o s e d , e x p o s i n g  only the l i g h t e x t e r i o r surface  which w i l l n o t a b s o r b a s much s o l a r h e a t .  F o r more  i n f o r m a t i o n on t h e r m a l s t r e s s e s , see the next s e c t i o n on Temperature. E x t e r i o r S k i n Texture Smooth s u r f a c e s t e n d t o be more r e f l e c t i v e  with  rough s u r f a c e s b e i n g l e s s r e f l e c t i v e , h a v i n g a h i g h e r a b s o r p t i o n and d i s p e r s i o n o f l i g h t .  Light colored  s u r f a c e s r e f l e c t more l i g h t w h i l e dark c o l o r e d a b s o r b more l i g h t .  surfaces  So, a l i g h t c o l o r e d smooth s u r f a c e  w i l l have t h e h i g h e s t g l a r e p o t e n t i a l .  2 - 5  ^ the housing  unit i n t e r i o r , l i g h t , textured c e i l i n g s are quite often used because t h e l i g h t c o l o r d i s t r i b u t e s more o f t h e r e f l e c t e d l i g h t , and t h e s u r f a c e t e x t u r e d i f f u s e s i t more,minimizing g l a r e while maximizing the l i g h t . F l o o r s would have l e a s t g l a r e when d a r k and s l i g h t l y textured.  T h i s may be d e s i r a b l e s i n c e t h e g l a r e poten-  t i a l i s h i g h from t h e low a n g l e d i r e c t s u n l i g h t h i t t i n g the f l o o r  surface.  164 3.5.3 Temperature sn E  CLIMATIC FACTORS  O  se  IH  O  u  g  M  o u  <«  H »H u. sr. a. O a <  <  e  3 a  M BE  in  PLANNING LEVEL  «< I-t  o w  CL.  >-  o  >»  a  o r.i cn  SOILS  »<  t-i S•i  35  TOPOGRAPHY  o  DEFERENCE MATRIX  FACTORS  a o  (X a •*  to o <  G o u  1  PLANNING LEVEL  2  PLANNINO LEVEL  i  PLANNINO LEVEL  k  •  The v e r y c o l d w i n t e r t e m p e r a t u r e s a l o n g w i t h t h e great v a r i a t i o n i n seasonal temperatures  strongly  e f f e c t s t h e make up o f t h e b u i l d i n g f a b r i c .  It's  i m p o r t a n t t o m i n i m i z e t h e i m p l i c a t i o n s due t o l a r g e temperature d i f f e r e n c e s  between t h e b u i l d i n g  interior  and t h e e x t e r i o r w i t h r e g a r d t o : 1. Heat l o s s a. Make up o f e x t e r i o r s k i n - t h e r m a l mass versus the insulated  frame  structure,  b. O p t i m a l t h e r m a l i n s u l a t i o n f o r w a l l s , f l o o r s , and c e i l i n g / r o o f , c. C o n t r o l  o f f e n e s t r a t i o n heat l o s s ,  d. M i n i m i z e i n f i l t r a t i o n / a i r exchange h e a t loss, • e. L i m i t f r o s t p e n e t r a t i o n  i n the b u i l d i n g  interior. 2. Thermal b r i d g i n g :  minimize conduction of cold  temperatures through the b u i l d i n g m a t e r i a l s  (cold  s p o t s on t h e i n t e r i o r ) which accumulate m o i s t u r e and o f t e n have an i c e b u i l d up. a. M i n i m i z e c o l d p e n e t r a t i o n  by t h e a r r a n g e -  ment o f t h e b u i l d i n g f a b r i c such a s enclosing  t h e s t r u c t u r a l system w i t h an  insulating skin, b. Use o f t h e r m a l b r e a k s  165 3. M a t e r i a l t h e r m a l s t r e s s , e x p a n s i o n and contraction a. Care i n placement o f a d j a c e n t m a t e r i a l s , b. C o n t r o l impact o f s o l a r r a d i a t i o n on b u i l d i n g s k i n temperatures, c. M i n i m i z e l o s s o f m a t e r i a l s t r e n g t h and deterioration. Heat Loss The i m p o r t a n c e o f m i n i m i z i n g b u i l d i n g h e a t l o s s i s e s p e c i a l l y c r i t i c a l i n the n o r t h e r n areas s i n c e the  c o s t o f h e a t i n g a home t h r o u g h o u t t h e l o n g c o l d  p e r i o d can be v e r y h i g h .  F i g u r i n g t h e heat r e q u i r e d  based on t h e h e a t i n g i n d e x (° d a y s ) , a home i n t h e S u s i t n a V a l l e y i n A l a s k a would need a p p r o x i m a t e l y 40% more heat t h a n a comparable home i n t h e Minnea p o l i s a r e a ( 110% more t h a n a comparable home i n t h e Vancouver a r e a ) i n o r d e r t o m a i n t a i n t h e same i n t e r i o r temperatures. I n o r d e r t o m i n i m i z e t h e heat l o s s , f i r s t , i t becomes n e c e s s a r y t o i d e n t i f y and q u a n t i f y t h e major heat l o s s p a t h s . o f magnitude  Figure  3*78  shows t h e r e l a t i v e o r d e r  o f d i f f e r e n t components o f t h e t o t a l heat  l o s s i n an " a v e r a g e " d w e l l i n g .  Most o f t h e heat i s  l o s t t h r o u g h t h e w a l l s and from v e n t i l a t i o n and i n f i l tration,  s i n c e a " t i g h t house" b u i l t i n t h e n o r t h  n o r m a l l y keeps t h e c o l d a i r i n f i l t r a t i o n down t o about  a i r change p e r hour o r l e s s , t h e l a r g e s t  s i n g l e c o n t r i b u t o r t o heat l o s s i s t h e f e n e s t r a t i o n (windows and d o o r s ) ; t a k i n g up o n l y 9% t o 2 0 % o f t h e w a l l a r e a , t h e y a c c o u n t f o r 35% t o 60% o f t h e h e a t l o s s a t t r i b u t e d t o the w a l l s .  166  % HEAT LOSS OF ELEMENTS OF THE HOUSE  1.  2.  Reference  Ceiling  ASHRAE *  13%  HUDA  17% 14% 12% 14%  2  Detached "Bungalow" ee  a. Bungalow ( 1 0 8 0 * ) b. S p l i t - L e v e l  (1107*)  c. Semi-Detached (1080* )  3.  d. Row House ( 1 0 8 0 * ) Steadman* ^ Detached "Bungalow" 2  13%  Ventilation & Infiltration  Walls Floor (inc.doors & windows) 60%  22%  5%  26% f „ 227<# 4%tt 5 i•*  3% 3% 2 % % 1  54% 54% 60%  51% 42%  5%  33% i»> (1  40%  air change/ hour)  Decreased heat l o s s Exterior B l d g . Type (% o f w a l l a r e a i s windows & d o o r s ) W a l l s 1. HUDA a. Bungalow (9%) b. S p l i t - L e v e l  (13%)  c. Semi-Detached (11%) d. Row House (20%) 2. Steadman Detached "Bungalow"  Windows  Doors  Basement t y p e : % Less Walls Data Base  28%  28%  7%  37%  28%  34%  8%  30%  35%  35%  8%  22%  1 6 % Less 25% Less  24%  49%  11%  16%  39% Less  36%  64%  167 Make Up o f E x t e r i o r S k i n - Thermal Mass v e r s e s t h e I n s u l a t e d Frame S t r u c t u r e I s a b u i l d i n g w i t h h i g h t h e r m a l mass, b u i l t i n c o n c r e t e , b r i c k , s t o n e , o r even l o g s , b e t t e r f o r t h e n o r t h t h a n t h e l i g h t weight i n s u l a t e d frame s t r u c t u r e ? H i g h t h e r m a l mass i s u s u a l l y a s s o c i a t e d w i t h a heavy h e a t r e t a i n i n g m a t e r i a l such a s those l i s t e d below: Material  Time L a g i n Hours  8" c o n c r e t e  5.1 h o u r s  8" stone  5.5 hours  8" b r i c k  5.5 hours  8" wood ( e x t r a p o l a t e d )  5.2  The  hours^  advantage o f a b u i l d i n g w i t h h i g h  thermal  mass i s t h a t t h e heat from t h e daytime i s s t o r e d i n t h e mass and r e l e a s e d a t n i g h t when t h e o u t s i d e air  i s colder.  This e f f e c t balances  the d i u r n a l  t e m p e r a t u r e d i f f e r e n c e s w i t h i n t h e house i n t e r i o r when t h e e x t e r i o r t e m p e r a t u r e s may v a r y a s much a s 50°F t o 60°F. S i n c e t h e d i u r n a l temperature changes are s m a l l during the long winter with l i t t l e s o l a r h e a t i n p u t d u r i n g t h e day, t h e h i g h t h e r m a l mass house w i l l be c o n s t a n t l y i t s R value  l o s i n g h e a t , day and n i g h t , i f  ( r e s i s t e n c e t o heat f l o w ) i s l e s s t h a n  the i n s u l a t e d frame house. spacing  A 2x6 s t u d w a l l ( s t u d  16" on c e n t e r ) f i l l e d w i t h i n s u l a t i o n has  l e s s than  t h e heat l o s s o f a w a l l made o f 8"  d i a m e t e r round l o g s  (figure  3.79).  2=5  Because o f t h e h i g h t h e r m a l mass, once a l o g c a b i n i s h e a t e d i t r e t u r n s t h e heat from t h e l o g s f o r q u i t e some t i m e .  This i s important  i n t h e n o r t h whose e v e n i n g  t o those  people  f i r e warms t h e c a b i n  before  g o i n g t o bed and t h e l o g s r e r a d i a t e t h e heat back d u r i n g t h e n i g h t so t h a t t e m p e r a t u r e s a r e n o t 20° below z e r o by morning.  Homes i n t h e n o r t h w h i c h have  some type o f m e c h a n i c a l h e a t i n g system which keeps the i n t e r i o r w i t h i n t h e t e m p e r a t u r e range o f 55*F t o 75°F w i l l be l e s s e x p e n s i v e  t o operate  with walls  168  which have the least heat loss instead of one with high thermal mass and higher heat l o s s . Thermal mass could be used to best  advantage  when done i n conjunction with the greenhouse e f f e c t . Since the outside a i r temperatures are cold even during the day, the thermal mass could be on the interi o r of the house facing the sun, c o l l e c t i n g the solar r a d i a t i o n i n the f a l l and spring (figure 3.80). ^ °  HEAT U>se~Ttie^MAU M A S ^ C U ^ " )  C^DHPAI^ISOM i M s u u v m c ? Hs^r-nte  WALL  43. £> .  3" 10^ WALL WAUL  19" U>6| WALL HEAT  2y4*gTcPWAUL  2.i*<^-gr<JPWALL  WALL  S i m i l a r l y , a thermal mass could be used on the exterior wall with an insulated wall panel over the outside of the mass which slows heat loss and can be opened when solar heat c o l l e c t i o n i s desirable on the thermal mass.^  f^OEE. 3. go  169  The thermal mass of the earth can be used to the advantage  of a housing u n i t .  A basement which  puts heat out into the earth w i l l eventually (2 to 3 years) develop a heat bank i n which the earth w i l l take very l i t t l e of the basement's heat and should the house heat go o f f , the earth w i l l conduct the heat back into the house.  One precaution must be  taken and that i s to insulate the earth from the cold winter a i r temperatures.  This can be done with r i g i d  i n s u l a t i o n under the ground surface (figure 3«81). ?>Z  ! 1  4/  1  J  '  i ^  miiiiwmwifiiiwM  170 •  O p t i m a l T h e r m a l I n s u l a t i o n f o r W a l l s , F l o o r s , and Ceiling/Roof When u s i n g h i g h h e a t f l o w r e s i s t e n t m a t e r i a l s such a s i n s u l a t i o n t o r e t a r d t h e h e a t l o s s from  going  from t h e warm i n t e r i o r t o t h e c o l d e x t e r i o r , how t h i c k s h o u l d t h e i n s u l a t i o n be? To f i g u r e t h i s o u t c e r t a i n i n f o r m a t i o n must be o b t a i n e d  f o r the area t o  be b u i l t i n : 1. H e a t i n g Degree Days (° D a y s ) , 2. Cost o f m a t e r i a l s , 3. Cost o f l a b o r , k* Cost o f f u e l , 5. M e c h a n i c a l  system e f f i c i e n c y , and  6. A m o r t i z a t i o n p e r i o d . F i g u r e 3«82 p l o t s t h e c o s t o f h e a t w i t h t h e c o s t o f l a b o r and m a t e r i a l s . The l o w p o i n t i n t h e sum o f the two graphs g i v e s t h e optimum amount o f i n s u l a t i o n for the area  considered.' *  Hs)CHE«D Or  2  IMSULATIONl  171  I n w a l l s , t h e i n s u l a t i o n i s r e s t r i c t e d by t h e s t u d s i z e , 3 i " , 5 i " , and 7 i " f o r 2 x 4 s , 2 x 6 s , and 2x8s. The c o s t o f g o i n g  from one s t u d s i z e t o t h e n e x t  l a r g e r s i z e adds t o t h e m a t e r i a l c o s t s r o u g h l y 20 t o 30% a t each jump.  I n t h e w a l l s , 7 i " (2x8 s t u d s )  more e c o n o m i c a l t h a n 5^-" ( 2 x 6 ' s )  appears  on t h e graph b u t  t h i s may change depending on t h e a c t u a l c o s t jump f o r g o i n g from 2 x 6 s t u d s t o 2 x 8 s t u d s .  I t ' s more  critical  h e r e t o p o i n t o u t t h a t 2 x 4 s t u d w a l l s , even when f i l l e d w i t h 3 £ " o f i n s u l a t i o n , a r e i n a d e q u a t e and w i l l be more c o s t l y i n t h e l o n g r u n t h a n 2 x 6 and 2 x 8 s t u d walls. Since c e i l i n g i n s u l a t i o n i s normally i n confined c a v i t i e s , a thicker  not i n s t a l l e d  i n s u l a t i o n c a n be used  such a s t h e 9" o r more w i t h v e r y l i t t l e added m a t e r i a l cost. F l o o r i n s u l a t i o n need n o t be so t h i c k  since  a minimum o f h e a t l o s s o c c u r s t h r o u g h the f l o o r , t h e horizontal  dead a i r space j u s t under t h e f l o o r a c t s  as an e f f i c i e n t i n s u l a t o r , and t h e u n d e r f l o o r space ( c l o s e d ) s t a y s warmer t h a n the c o l d temperature. air  crawl  outside  N o r m a l l y 2" o f i n s u l a t i o n w i t h a dead  space between t h e i n s u l a t i o n and t h e f l o o r i s  s u f f i c i e n t f o r b o t h c o m f o r t and minimum h e a t (figure 3.83)*  loss  S h o u l d t h e u n d e r f l o o r space be used  as an a i r plenum, t h e n t h e i n s u l a t i n g v a l u e s o f t h e dead a i r 6 p a c e a r e l o s t and more i n s u l a t i o n would be required ( 6 " ) .  When f l o o r s a r e c o n s t r u c t e d  open c r a w l s p a c e s which r e a c h o u t s i d e  over  temperatures,  a minimum o f 6 " o f i n s u l a t i o n s h o u l d be used f o r comfort;  when i t ' s -40°F o u t s i d e , t h e i n t e r i o r f l o o r  s u r f a c e t e m p e r a t u r e i s about 66°F a s opposed t o 60°F w i t h 2" o f i n s u l a t i o n  (figure  3.83).^  172 \NtT&eigR. £ fob ? evrvx*^ 0  -AO'f  One s i t u a t i o n encountered when the f l o o r s are too cold ( i n s u f f i c i e n t insulation)  i s for the resident  to n a i l up plywood s k i r t i n g around the open a i r space under the house.  This makes the f l o o r s warm  and the crawl space warmer also.  The problem occurs  a f t e r a winter or two when the ground begins to s h i f t under the building.  In areas of permafrost, the  closed i n crawl space w i l l eventually begin to melt the permafrost under the b u i l d i n g causing d i f f e r e n t i a l settlement or even building collapse.  3  5  173 Control of Fenestration Heat Loss Limit fenestration or control heat loss from windows with e x t e r i o r insulated shutters.  Double and  t r i p l e glazing help reduce heat loss considerably  over  single glazing e s p e c i a l l y i n a wind as shown i n figure 3.84a.  The dead a i r spaces (•£" to 1" optimum)  between the glass panes give the window i t s i n s u l a t i n g q u a l i t i e s against the cold temperatures.  As shown i n  figure 3.84b, the use of insulated shutters can help much more than adding more panes of glass.  The  manual functioning of the shutters on a d a i l y basis becomes the weakest part of t h i s solution since i t ' s up to the user to open and close them.  MEAT LO€>S £OMPAvf^SONJ (xtfwn?* WIMP)  ©  WltSJt7<9W H E A T  HEAT U>&?/'&riAppm<?i^i- A>it_<sfi*^e v^Hunt^e  WlKift9\M HEAT  4= 1^*  1*  174 M i n i m i z e I n f i l t r a t i o n / A i r Exchange Heat  L O B S  M i n i m i z e t h e heat l o s s a t openings due t o i n f i l tration.  T h i s c a n u s u a l l y be h a n d l e d by weather-  s t r i p p i n g around windows, d o o r s , aid o t h e r o p e n i n g s , and u s i n g l o u v e r s o r dampers o v e r a i r i n t a k e s .  Dampers  on s t a c k s , one near t h e t o p ( i n s u l a t e d ) and one near the bottom reduce c o l d a i r p e n e t r a t i o n and t h e d r a w i n g o f warm a i r out o f t h e b u i l d i n g  interior.T  F i r e p l a c e s can draw a l o t o f warm a i r up t h e chimney when b u r n i n g .  N o r m a l l y t h e combustion a i r  comes from the warm i n t e r i o r space c a u s i n g more c o l d a i r t o i n f i l t r a t e i n t o t h e b u i l d i n g as w e l l a s c a u s i n g a d r a f t along the f l o o r i n f r o n t of the f i r e p l a c e . s p e c i a l combustion a i r d u c t from t h e o u t s i d e  A  directly  t o t h e f i r e p l a c e f i r e b o x c a n reduce t h i s e f f e c t ( f i g u r e 3»85)«  The l o u v e r e d d u c t c a n s u p p l y the f i r e -  p l a c e w i t h i t s combustion a i r from t h e o u t s i d e and be c l o s e d o f f when t h e f i r e p l a c e i s n o t i n u s e . ^ 5  CXft^&c- Alt*,  t=xnag.ioft  175 When t r y i n g t o m i n i m i z e c o l d a i r i n f i l t r a t i o n around windows, one o f t h e most d i f f i c u l t t o make t i g h t i s the s l i d i n g g l a s s door.  These s h o u l d be  used v e r y s p a r i n g l y t o the o u t s i d e s i n c e t h e y e x p e r i e n c e h i g h heat l o s s .  Many windows i n a home a r e  o p e r a b l e , meaning t h e y can be opened and c l o s e d t o r e g u l a t e a i r f l o w and v e n t i l a t i o n .  In figure  casement and awning t y p e windows would be  3.86,  preferred  o v e r double hung and hopper t y p e windows s i n c e the double hung has more c r a c k s t o l e t heat and m o i s t u r e escape t o t h e o u t s i d e o r t o a storm window where t h e m o i s t u r e c o u l d f r e e z e , and the hopper type window w i l l b r i n g i n r a i n o r snow when opened i f not p r o t e c t e d by an  sufficiently  overhang.^  The f u n c t i o n o f a window ( l i g h t , s u n l i g h t p e n e t r a t i o n , v i e w s ) can be s e p a r a t e d from t h e need t o v e n t i l a t e t h e space.  A mechanical v e n t i l a t i n g  system  would be t o o e x p e n s i v e f o r the home, but w a l l  openings  (independent o f the windows) i n s t r a t e g i c p l a c e s i n e x t e r i o r w a l l s c o u l d be used f o r summer v e n t i l a t i o n and become an i n s u l a t e d p a r t o f t h e w a l l i n the w i n t e r ( f i g u r e 3.87). ^ U s i n g t h i s method f o r v e n t i l a t i o n , 4  the windows c o u l d be s e a l e d and r e m a i n i n o p e r a b l e m i n i m i z i n g a i r and m o i s t u r e l e a k s t o the e x t e r i o r .  176  WIKILTCW  4  V£Krr\uvrgR.  WALL  • M i n i m i z e Heat L o s s e s Due t o A i r Exchanges S i n c e a i r exchanges  pose the h i g h e s t heat l o s s  problem, i t ' s most i m p o r t a n t t o r e u s e the h e a t from the  existing interior air.  I n l a r g e r b u i l d i n g s heat  exchangers and heat r e c o v e r y wheels a r e used t o e x t r a c t the heat from the e x h a u s t a i r and  transfer  i t t o the i n c o m i n g a i r . " I n the home a s i m p l i f i e d 4 2  v e r s i o n o f t h i s heat exchange  can t a k e p l a c e .  "Buffer  s p a c e s " such as a t t i c s , u n d e r f l o o r , and s t o r a g e spaces a l o n g e x t e r i o r w a l l s can be used f o r d r a w i n g i n f r e s h outside a i r .  The c o l d a i r e n t e r s the b u f f e r space and  warms t o an i n t e r m e d i a t e t e m p e r a t u r e b e f o r e i t e n t e r s the  house, see f i g u r e 3.55  and f i g u r e  3.88.  A n o t h e r method i s a i r f i l t e r i n g and r e d i s t r i b u tion.  Have a f a n i n a h i g h l o c a t i o n i n the h o u s i n g  u n i t suck the warm a i r down t o the basement l e v e l , t h r o u g h a i r c l e a n i n g and m o i s t u r e r e d u c i n g f i l t e r s . The r e d i s t r i b u t e d a i r can t h e n r i s e a g a i n through the  i n t e r i o r spaces.  bathrooms  " D i r t y " a i r from k i t c h e n s and  can be v e n t e d d i r e c t l y t o the o u t s i d e so  t h a t the a i r c l e a n i n g f i l t e r s would not have t o cope w i t h the more d i f f i c u l t o d o r s , g r e a s e s , and h i g h m o i s t u r e c o n t e n t , see f i g u r e 3.88.^  177  A K . lzteu?dATiNK=f f=AM 3 Pu>OT  '  Use o f a ' s t a c k r o b b e r ' ( s e e f i g u r e 3»85) on a f i r e p l a c e chimney o r h e a t e r exhaust duct can e x t r a c t heat from t h e h o t s t a c k o r d u c t , h e a t i n g i n t e r i o r a i r a t upper  levels.^  L i m i t F r o s t Formation i n the B u i l d i n g The  Interior  c l o s i n g o f f o f s m a l l e r spaces a d j a c e n t t o  e x t e r i o r w a l l s c a n cause f r e e z i n g problems. c l o s e t s , c a b i n e t s , plumbing  Bookcases,  c h a s e s , a i r d u c t s , and  even windows b e h i n d c u r t a i n s o r s h u t t e r s can experi e n c e c o n d e n s a t i o n , f r o s t , f r e e z i n g p i p e s , and i t e m s f r o z e n t o t h e w a l l s u r f a c e ( f i g u r e 3.89a). s m a l l a i r spaces  These  ( e s p e c i a l l y t h e a r e a next t o the ex-  t e r i o r w a l l ) need t o be w e l l v e n t i l a t e d w i t h t h e i n t e r i o r warm a i r so t h a t t h e w a l l s u r f a c e does not r e a c h dew p o i n t o r f r o s t p o i n t .  The use o f l o u v e r s i n  c a b i n e t and c l o s e t d o o r s o r t h e e l i m i n a t i o n o f t h e d o o r s h e l p s warm a i r t o c i r c u l a t e b e t t e r through spaces.  these  With t h e e x c e p t i o n o f t h e windows, most o f  t h e s e s m a l l spaces c a n be moved t o t h e b u i l d i n g i o r away from t h e e x t e r i o r w a l l .  inter-  This i s especially  i m p o r t a n t f o r p i p e chases s i n c e f r e e z i n g p i p e s can cause a l o t o f damage.  178 Windows p r e s e n t a unique problem.  Covering  the i n t e r i o r g l a s s s u r f a c e w i t h a c u r t a i n , b l i n d s , o r s h u t t e r s c a n cause t h e a i r space between t o a c t l i k e a dead a i r space between window panes.  The space  w i l l c o o l , allowing the i n s i d e glass surface to reach dew p o i n t temperature o r even f r o s t p o i n t t e m p e r a t u r e Afg  ( f i g u r e 3*89b).  By p l a c i n g h e a t e r s o r f o r c e d a i r  r e g i s t e r s under t h e windows o r between windows and c u r t a i n s / s h u t t e r s , t h e a i r space c a n have a i r movement and heat which keeps t h e window s u r f a c e warm.^ A n o t h e r s o l u t i o n i s t o have i n s u l a t i n g p a n e l s which c o v e r t h e window on t h e o u t s i d e and t h e e l i m i n a t i o n of i n t e r i o r  coverings.  cv^ee? err T&  fOF.I^'tlOKJ  I WA*M All?.  \  I U T E ^ R .  179 Inside corners can also have frost problems due to reduced a i r convection that lowers the surface temperatures i n conjunction with more studs and less i n s u l a t i o n (figure  3.90a).  Corners could be rounded  Apt  to reduce t h i s e f f e c t , more i n s u l a t i o n could be applied to corners, or heaters or fans could be i n s t a l l e d closer to corners i n order to increase the a i r convection currents (figure 3.90b,c).  180 Thermal B r i d g e s L i m i t the conduction o f c o l d through b u i l d i n g m a t e r i a l s .  temperatures  Conduction o f the c o l d  e x t e r i o r temperatures i n t o the b u i l d i n g  interior  through a t h e r m a l b r i d g e i n c r e a s e s b u i l d i n g heat T h i s problem  loss.  i s minor compared t o t h e o t h e r s c r e a t e d  6uch a s m o i s t u r e and i c e f o r m a t i o n , t h e r m a l s t r e s s w i t h a d j a c e n t m a t e r i a l s , d e f o r m a t i o n , and movement. • M i n i m i z e C o l d P e n e t r a t i o n By B u i l d i n g F a b r i c  Arrange-  ment On l a r g e r b u i l d i n g s many problems can be e l i m i n a t e d by a p p l y i n g t h e i n s u l a t i o n o v e r t h e e n t i r e e x t e r i o r s u r f a c e k e e p i n g t h e s t r u c t u r a l components i n the heated p o r t i o n o f t h e b u i l d i n g .  This helps to  r e t a i n heat i n the t h e r m a l mass o f t h e s t r u c t u r e , e l i m i n a t e s s t r u c t u r a l thermal b r i d g e s t o the e x t e r i o r , and r e d u c e s t h e e x p a n s i o n and c o n t r a c t i o n o f t h e s t r u c t u r a l m a t e r i a l s s i n c e t h e y a r e n o t exposed w i n t e r extreme t e m p e r a t u r e s  (figure  3*91  to the  181 Any m e t a l which extends from t h e c o l d t o t h e warm i n t e r i o r c a n cause problems.  exterior M e t a l window  frames, door frames, t h r e s h o l d s , m e t a l s t r u c t u r a l c o n n e c t o r s ( b o l t s , f a s t e n e r s ) , m e t a l s t r u c t u r a l memb e r s ( j o i s t s , d e c k i n g , c o l u m n s ) , r o o f d r a i n s , and a i r d u c t s a l l have low r e s i s t a n c e t o h e a t f l o w . s o l u t i o n s c a n be used.  Several  The i t e m can be i n s u l a t e d  as i t e n t e r s t h e h e a t e d space such a s i s dene w i t h r o o f d r a i n s ( f i g u r e 3.92) and a i r d u c t s , o r the i t e m can i n c o r p o r a t e a t h e r m a l b r e a k u n i t so t h e m a t e r i a l does n o t conduct t h e c o l d i n t o t h e i n t e r i o r .  Thermal  break m e t a l window frames and t h r e s h o l d s a s w e l l a s the use o f wood i n s t e a d o f m e t a l can m i n i m i z e t h e problem i n t h e s e c a s e s ( f i g u r e 3.93).•51  ^ <?rJ  fcjcreJ^Ofc, WALL --jtifmnL  i  n  n  n  182 One o f t h e most common t h e r m a l b r i d g e s i n t h e home i s a n a i l d r i v e n i n t o a 2x4 e x t e r i o r w a l l s t u d from t h e i n s i d e .  The n a i l , h a v i n g a h i g h c o n d u c t a n c e ,  t r a n s m i t s t h e c o l d t e m p e r a t u r e near t h e o u t s i d e end of  t h e s t u d t o t h e warm i n t e r i o r s p a c e .  Here t h e c o l d  n a i l head, c o v e r e d w i t h w a l l paper o r p a i n t e d o v e r , w i l l c o l l e c t m o i s t u r e on which s m a l l amounts o f d i r t w i l l accumulate o v e r t i m e .  I t i s not uncommon t o  be a b l e t o count a l l t h e n a i l s i n a w a l l due t o t h e •?2. s m a l l round d a r k s p o t s v i s i b l e on the w a l l s . of  U6e  t h i c k e r s t u d s (2x6) n o r m a l l y e l i m i n a t e s t h i s prob-  lem, b u t t h i s p o i n t s out one o f t h e major problems with thermal bridges - the c o l l e c t i o n o f moisture on t h e i n s i d e s u r f a c e which c a n c o l l e c t d i r t o r e x p e r i e n c e i c e b u i l d up. D e f o r m a t i o n o r movement c a n o c c u r when m o i s t u r e f r e e z e s on t h e c o l d s u r f a c e . i s i n the a i r ,  I f s u f f i c i e n t moisture  i c e b u i l d up can o c c u r f o r c i n g a d j a c e n t  m a t e r i a l s t o deform, b r e a k o f f o r move away from t h e cold  surface. Heat can a l s o f l o w from t h e i n s i d e t o t h e o u t s i d e  a l o n g a t h e r m a l b r i d g e where i t can m e l t snow which w i l l f r e e z e f o r m i n g i c e on e x t e r i o r s u r f a c e s . frames can f r e e z e  Window  s h u t i f snow i s m e l t e d a t t h e s i l l  ( f i g u r e 3«94), l o u v e r s c a n f r e e z e open o r s h u t , r o o f d r a i n s c a n f r e e z e s o l i d w i t h i c e , doors c a n f r e e z e open ( o r c l o s e d ) when i c e a c c u m u l a t e s i n t h e h i n g e s . * 6  ^Ki0W M E L T 4  \OE> &v\u?ur  HEAT CD\tiX)G?S> TO &$m<K-  183 M a t e r i a l Thermal S t r e s s , E x p a n s i o n and C o n t r a c t i o n Minimizing  t h e a d v e r s e e f f e c t s o f m a t e r i a l expan-  s i o n and c o n t r a c t i o n i s i m p o r t a n t and  since  deformations  s e p a r a t i o n s / c r a c k i n g can take p l a c e i n b u i l d i n g  m a t e r i a l s r e s u l t i n g from changes i n t e m p e r a t u r e .  Most  m a t e r i a l s expand when h e a t e d and c o n t r a c t when c o o l e d . I n t h e n o r t h , m a t e r i a l s can e x p e r i e n c e  temperature  extremes o f o v e r 230°F due t o t h e c o l d w i n t e r tempe r a t u r e s and s o l a r heat a b s o r p t i o n on dark s u r f a c e d materials.  Each m a t e r i a l moves d i f f e r e n t amounts  under t h e s e extreme c o n d i t i o n s h a v i n g t h e i r c o e f f i c i e n t of thermal  individual  expansion.  A comparison o f d i f f e r e n t  expansion/contraction  c o e f f i c i e n t s shows normal dense c o n c r e t e moving t w i c e the d i s t a n c e b r i c k , marble and dense l i m e s t o n e  would  move; s t e e l , 2 1/3 t i m e s ; c o p p e r , 3 1/3 t i m e s ; alumi n i u m , k 2/3 t i m e s ; and p l a s t i c s r a n g i n g from 7 t o 36 t i m e s .  5 7  S t r u c t u r a l l y most m e t a l s can take t h e move-  ment w i t h l i t t l e  problem, y e t c o n c r e t e c o u l d f a i l i n  t e n s i o n i f not p r o p e r l y d e s i g n e d  w i t h "temperature  steel". The  m a t e r i a l s a b i l i t y t o move i n r e l a t i o n t o  o t h e r m a t e r i a l s c a u s e s t h e b i g g e s t problems.  Mater-  i a l s s e p a r a t e where w a t e r t i g h t i n t e g r i t y i s needed such a s i n r o o f f l a s h i n g and membranes a l l o w i n g moisture penetration.  A range o f s o l u t i o n s e x i s t t h r o u g h  the c h o i c e o f m a t e r i a l s , f i x i n g and j o i n t i n g t e c h n i ques, s i z e l i m i t a t i o n s , and r e i n f o r c i n g .  I n t h e case  o f r o o f s , f l e x i b l e f l a s h i n g ( n a t u r a l r u b b e r has more e l a s t i c i t y t h a n s y n t h e t i c s ) i s used i n most a r e a s where m a t e r i a l movement may cause l e a k s ( a t d r a i n s , r o o f p e n e t r a t i o n s , and p a r a p e t w a l l s ) . ^ 9  Since the combination and  o f c o l d a i r temperatures  h i g h s o l a r heat a b s o r p t i o n by m a t e r i a l s cause t h e  g r e a t e s t t h e r m a l s t r e s s s i t u a t i o n s , t h e most l o g i c a l s o l u t i o n i s t o minimize the s o l a r heat a b s o r p t i o n a t the areas o f g r e a t e s t s t r e s s .  The b u i l d i n g c o r n e r s ,  r e c e s s e s , and r o o f l i n e a r e g e n e r a l l y t h e a r e a s o f  184  greatest stress since the solar r a d i a t i o n can be absorbed by one surface and not the other causing the greatest temperature d i f f e r e n t i a l , ( f i g u r e 3 . 9 5 ) .  One way to help minimize t h i s stress i s to spread the solar heat around the corner gradually with rounded corners (figure 3 . 9 6 ) .  Another way to reduce the thermal stress i s ~ through the use of l i g h t and dark color shades.  The  materials near the corners could be a l i g h t shade so that l e s s solar heat i s absorbed near the corner ^ (figure 3 . 9 7 ) .  185 The  s t r e n g t h o f m a t e r i a l s i s a l s o e f f e c t e d by  extreme t e m p e r a t u r e s .  I n extreme c o l d t e m p e r a t u r e s ,  p l a s t i c s and s y n t h e t i c f l e x i b l e m a t e r i a l s can become b r i t t l e and s u b j e c t t o c r a c k i n g s h o u l d e x c e s s i v e movement o c c u r .  Many m e t a l s become more b r i t t l e i n c o l d  t e m p e r a t u r e s w i t h t h e shear s t r e n g t h b e i n g t h e most sensitive.  6 5 0  D e t e r i o r a t i o n i s one o f t h e major problems w i t h concrete,  D e t e r i o r a t i o n i s a c c e l e r a t e d due t o t h e  f r e e z e / t h a w c y c l e ( f r o s t a c t i o n ) happening f r e q u e n t l y when exposed t o s o l a r r a d i a t i o n , c o l d n i g h t a i r temperas a t u r e s , and h i g h m o i s t u r e c o n t e n t (use a i r e n t r a i n e d Timber moves l i t t l e  cone).  with temperature, y e t , the  d r y i n g out o f t h e wood can cause c r a c k s o r s p l i t s which can become e s p e c i a l l y bad on glulam moisture content  beams.  Low  wood (12%) must be used i n o r d e r t o  m i n i m i z e t h e c r a c k i n g and t w i s t i n g caused when wood d r i e s out d u r i n g  winter.  S e l e c t i o n o f t h e most f l e x i b l e s e a l a n t s i s e s s e n t i a l s i n c e they must e l o n g a t e  most when they a r e l e a s t  a b l e because o f t h e h a r d i n i n g e f f e c t o f t h e c o l d temperatures.  186 Precipitation SITE FACTORS  REFERENCE MATRIX  PLANNINO LEVEL  2  PLANNINO LEVEL  i  PLANNINO LEVEL  It  V,  r-t  o g *< {-• •« t-t cr, W ft, u,  2 ) H Ul  e  1  PLANNINO LEVEL  to O  I"  CJ u .-1 g  *  £«<  3  «< *-*  t) w u,  ")  >• o  ><  a. t3 A. O O f * to  3 o «  VEGETATION  SOLAR RADIATION  CLIMATIC FACTORS  SOILS  3.5.4  2L_i  #  Several i m p l i c a t i o n s with regard  to precipitation  e f f e c t t h e b u i l d i n g f a b r i c make up: 1. The " c o l d r o o f " u s e s t h e i n s u l a t i n g q u a l i t y o f snow w h i l e t h e t y p i c a l " h o t r o o f " causes problems. 2. The f u n c t i o n i n g o f p a n e l s o v e r s k y l i g h t s a s w e l l as the s k y l i g h t s themselves can a l s o e x p e r i e n c e problems w i t h snow m e l t and i c e dams. 3. Care s h o u l d be t a k e n i n t h e placement o f appendages on t h e e x t e r i o r s i n c e snow and i c e may act together  t o remove them.  4. The e x t e r i o r b u i l d i n g s k i n must a l l o w m o i s t u r e t o m i g r a t e o u t o f t h e w a l l s a s w e l l a s keep r a i n and snow from e n t e r i n g from t h e o u t s i d e . # C o l d Roof V e r s u s The Hot Roof Snow i s most o f t e n used a s a n i n s u l a t o r on r o o f s where t h e c o o l a t t i c space (vented keeps t h e snow from m e l t i n g . "cold roof".  t o the outside)  T h i s i s known a s t h e  To r e t a i n t h i s c o n d i t i o n d u r i n g t h e  w i n t e r t h e house i n t e r i o r must be i n s u l a t e d from t h e the a t t i c space which i s v e n t e d t o t h e o u t s i d e . The space s t a y s c o o l enough under t h e r o o f s o a s n o t t o Co?  m e l t t h e snow c o v e r .  The c o o l a t t i c space becomes a  b u f f e r zone f o r b u i l d i n g h e a t l o s s , i t ' s t e m p e r a t u r e on 15°F t o 25°F i s more temperate t h a n t h e -20°F t o -40°F t e m p e r a t u r e s o u t s i d e .  I nlarger buildings,  c o n t i n u o u s b u i l d i n g s such a s row h o u s i n g , and b u i l d i n g s  187 w i t h f l a t r o o f s proper v e n t i n g o f the a t t i c  space  becomes more d i f f i c u l t and c a r e s h o u l d be t a k e n t o a l l e v i a t e t h e heat and m o i s t u r e b u i l d up under t h e  A h o t r o o f c o n d i t i o n o c c u r s when the i n s i d e heat moves t h e 32° F ( f r e e z i n g ) i s o t h e r m outward  into  t h e snow, t h e snow b e g i n s t o m e l t r e d u c i n g i t s t h i c k ness u n t i l  t h e f r e e z i n g p o i n t moves back i n s i d e t h e  building.  The m e l t e d snow r u n s down u n t i l i t r e a c h e s  a c o l d eave and t h e n f r e e z e s c r e a t i n g an i c e dam and i c i c l e s . The i c i c l e s can be hazardous s h o u l d t h e y  fall.  The m e l t i n g snow/ice a l s o w i l l m i g r a t e up through r o o f s h i n g l e s and i n t o t h e b u i l d i n g i n t e r i o r due t o water b a c k i n g up b e h i n d t h e i c e dam ( f i g u r e  3.99).^  188 • Windows I n The Poof How does snow c o v e r n o r m a l l y lights?  e f f e c t s l o p i n g sky-  A s k y l i g h t i n s u l a t e d w i t h a movable s h u t t e r  w i l l normally  o p e r a t e u n t i l a heavy snow f a l l moves  the 32 F i s o t h e r m 6  p o r t i o n adjacent  o u t i n t o t h e snow, m e l t i n g t o the roof.  When t h a t m e l t e d snow  f r e e z e s back, i t w i l l f r e e z e t h e s h u t t e r s cold periods.  that  closed  during  With t h e h e l p o f t h e i n t e r i o r heat and  e x t e r i o r s o l a r h e a t , t h e s h u t t e r s s h o u l d be movable from F e b r u a r y t h r o u g h November .  Should l i g h t be  d e s i r e d t h r o u g h t h e s e s k y l i g h t windows d u r i n g  winter,  a p o r t i o n o f t h e s h u t t e r o r t h e whole s h u t t e r  could  be g l a s s , much l i k e a storm window ( f i g u r e 3.100).  When t h e s k y l i g h t i s l e f t uncovered t o t h e c o l d w i n t e r snow a c c u m u l a t i o n , t h e h e a t l o s s from t h e i n t e r i o r g o i n g t h r o u g h t h e g l a s s w i l l m e l t t h e snow which a c c u m u l a t e s on t h e g l a s s s u r f a c e .  I n t h i s way l i g h t  can pass t h r o u g h t h e s k y l i g h t t h e whole y e a r a t t h e expense o f r a d i a t i v e and c o n d u c t i v e Watertightness  heat l o s s e s .  and i c e darning become s p e c i a l problems  a s s o c i a t e d w i t h m e l t i n g snow on a r o o f / s k y l i g h t sloping surface  (figure  3.101).^  189 • E x t e r i o r Appendages The  b u i l d i n g i t s e l f may have a s t a c k ,  g u t t e r , o r o t h e r appendage which c o u l d when snow s l i d e s o f f t h e r o o f . grab h o l d o f g u t t e r s off  with  deck,  get ripped o f f  On t h e e a v e , i c e w i l l  and f a c i a s which a r e t h e n p u l l e d  t h e s l i d i n g snow and i c e ( f i g u r e 3.102).  • Moisture Migration  6,5  Through The S k i n  While the e x t e r i o r w a l l s o f b u i l d i n g s serve the purpose o f k e e p i n g t h e r a i n and e x t e r i o r m o i s t u r e o u t of the b u i l d i n g , they  al6o  must a l l o w  f o r the migra-  t i o n o f m o i s t u r e t o t h e o u t s i d e which has l e a k e d o u t from t h e i n s i d e (warmer).  One r u l e o f thumb i s t h a t  the e x t e r i o r w a l l s u r f a c e be 5 t i m e s more permeable than the i n s i d e w a l l surface (normally a p l a s t i c vapor barrier).  Using s h i p l a p s i d i n g o r shingles  a r e pre-  f e r r e d o v e r plywood which a l l o w s l i t t l e m o i s t u r e m i g r a t i o n t h r o u g h i t s g l u e j o i n t s , r e q u i r i n g h o l e s t o be d r i l l e d through i t i n order t o a l l o w moisture t o escape.  190 3.5.5 Wind  PLANNINQ LEVEL  1  PLANNINQ LEVEL  2  PLANNINQ LEVEL  J  u, a. CJ W  &  g o u  <  g  E  M t) w 0, ")  >•  u  3 o  rr. a >.  VEGETATION  u O gf- «< •t Or. Ul  1 ]  o >-« t»--<»  ir.  SOILS  REFERENCE HATRIX  SITE FACTORS  TOPOGPAPHY GEOLOGY  SOLAR RADIATION  CLIMATIC FACTORS  £i_  PLANNINQ LEVEL k  Wind has a g r e a t e r heat l o s s i n f l u e n c e on window a r e a t h a n on o t h e r a r e a s o f t h e e x t e r i o r s k i n . A i r movement ( w i n d ) , a l o n g t h e o u t e r s u r f a c e s o f b u i l d i n g s , c o n v e c t s heat away from t h a t surface;- t h e i n s u l a t i n g a i r f i l m c l o s e t o the surface i s reduced, i n c r e a s i n g the  heat l o s s o f t h e s u r f a c e .  Wind b l o w i n g i n t h r o u g h  c r a c k s around windows, d o o r s , and o t h e r openings a l s o i n c r e a s e heat l o s s .  I n h i g h wind a r e a s t h e s u c t i o n  e f f e c t on t h e l e e w a r d s i d e o f t h e b u i l d i n g can draw a i r out o f t h e b u i l d i n g t h r o u g h t h e c r a c k s and openings of that side. When t h e wind ( a p p r o x i m a t e l y I5*nph) blows a g a i n s t g l a s s windows, t h e heat l o s s t h r o u g h t h e g l a s s can i n c r e a s e n e a r l y 60% w i t h s i n g l e pane g l a s s and around 12% w i t h double i n s u l a t i n g g l a s s . On a normal  insul-  a t e d w a l l t h e same wind w i l l i n c r e a s e heat l o s s about 2% t o 3%. M i n i m i z i n g g l a s s a r e a s exposed t o w i n t e r winds can be a major f a c t o r i n k e e p i n g b u i l d i n g heat l o s s t o a minimum.  C o v e r i n g t h e window a r e a w i t h  e x t e r i o r s h u t t e r s a s w e l l a s b r e a k i n g up t h e wind w i t h v e g e t a t i o n o r wind p o l e s ( f i g u r e 3 . 1 0 3 ) h e l p t o v a r y i n g degrees t o r e d u c e heat  loss.  191 Minimizing c r a c k 6 around windows, door, and other openings (use of weatherstripping, figure  3.104)  as well as orientating fenestration away from the p r e v a i l i n g wind d i r e c t i o n helps reduce building heat loss and discomfort close to those openings (figure  3.105).  IN^JLATEP MIL THE.WL.  ItJ&UUrlgfAL.  FEMKO  Flc^UfiE  -3.104-  jo  Baa?  5£CTii.S^  A WOOL PILE.  3lj:4-;--, 4:"-:_ R  IO"  MIMIMLg& m i f e ^ T g A T r o i  192 3.5.6 S p e c i a l C l i m a t i c C o n d i t i o n s  u  SB O H*  g  <  (X < *-t u. »-t n. o w & g  |  H M  £ o  u  e  *M  •< M O  w a.  SB  E-< » £ o  >* O  SOILS  REFERENCE MATRIX  SIT E FACTORS  VJ mC O  GEOLOGY  SOUR RADIATION  CLIMATIC FACTORS  3  o  <  o  «  U  w  Cr.  a  PUNNINQ LEVEL 1 PLANNINQ LEVEL 2 PLANNINQ LEVEL 3 PUNNINO LEVEL 4  •  A. H u m i d i t y / M o i s t u r e P o t e n t i a l "Water v a p o r causes problems f o r everyone and most o f us don't even know i t . We know we have problems, a l l r i g h t , b u t we blame them on some o t h e r c a u s e , some o t h e r mechanism. F o r i n s t a n c e , when we g e t a heavy s n o w f a l l i n Decemb e r , and water s t a r t s d r i p p i n g t h r o u g h t h e c e i l i n g , we d i a g n o s e t h e cause a s a l e a k y r o o f , and blame t h e m a t e r i a l o r t h e b u i l d e r . Or when t h e base o f t h e w a l l t u r n s d a r k and damp d u r i n g a J a n u a r y thaw, and water seeps out t o wet t h e k i t c h e n f l o o r , we s u s p e c t bad plumbing. Or when c a r e f u l l y f i t t e d m u l t i - p a n e windows f r o s t o v e r i n O c t o b e r and don't r e g a i n t r a n s p a r e n c y u n t i l March we s i g h , s h r u g , and c o n c l u d e t h a t " s u c h i s l i f e i n t h e F a r N o r t h " , and t h a t n o t h i n g can be done. When t h e o u t s i d e w a l l s become d i s e a s e d w i t h p e e l i n g p a i n t , o r when t h e t a r r e d r o o f b l i s t e r s and b r e a k s , we a r e q u i c k t o blame t h e p a i n t , the p a i n t e r , o r t h e r o o f e r . Always we know t h e s e t h i n g s w i l l happen, and we a r e c o n f i d e n t t h a t we know why. We a r e wrong. O f t e n . I n each c a s e , t h e v i l l a i n i s p r o b a b l y water v a p o r - o r , more p r o p e r l y , t h e v i l l a i n i s a d e s i g n e r n o t y e t accustomed t o d e s i g n f o r l o n g , c o l d w i n t e r s : h i s agent i s water v a p o r . " < ^ The e f f e c t s o f h u m i d i t y on b u i l d i n g d e s i g n c a n be b r o k e n down i n t o two c a t a g o r i e s : 1. C o n d e n s a t i o n / f r o s t on b u i l d i n g  interior  s u r f a c e s which have t e m p e r a t u r e s below the  dew p o i n t t e m p e r a t u r e , and  2. Moisture migration i n t o b u i l d i n g m a t e r i a l s from i n t e r i o r t o e x t e r i o r (warm t o c o l d ) .  7 0  193 Interior  Surface Frost/Condensation  I n most houses t h e window c o l l e c t s  most o f t h e  surface condensation since i t s i n t e r i o r surface t e m p e r a t u r e i s n o r m a l l y much l o w e r t h a n a normal insulated wall.  T h i s f a c t o r c a n r e n d e r a window use-  l e s s f o r 4 t o 5 months i n t h e N o r t h s i n c e t h e e x t e r i o r c o l d t e m p e r a t u r e s can keep t h e i n t e r i o r g l a s s below dew-point.  A second  temperature  ( o r even t h i r d ) window pane  can h e l p remedy t h i s problem, o n l y i f t h e m o i s t u r e l a d e n warm a i r cannot m i g r a t e t h r o u g h t o t h e second window pane where i t can condense and f r e e z e on i t s i n t e r i o r s u r f a c e which i s below dew-point  temperature.  I t becomes e s s e n t i a l t o s e a l t h e i n s i d e window pane and n o t s e a l t h e o u t s i d e pane(s) t o a l l o w m o i s t u r e an escape r o u t e ( f i g u r e  3.106)."^  F a c t o r y made double  g l a z i n g u n i t s a r e n o r m a l l y s e a l e d so t h i s  problem  s h o u l d n o t o c c u r w i t h them.  V  To ALUW ANifK  M o i s t u r e / f r o s t c a n a l s o accumulate masonry, t h e r m a l b r i d g e s a s mentioned  -SEAL IUS4PE-  on doornobs,  b e f o r e - any  c o l d s u r f a c e which h a s a c c e s s t o t h e i n t e r i o r a i r with higher moisture content.  heated  Remedies t o t h i s  include: 1. Keep i n t e r i o r h u m i d i t y t o a minimum d u r i n g t h e c o l d months (20% o r l e s s ) ,  7 2 -  2. I n s u l a t e m a t e r i a l s so t h e i n t e r i o r s u r f a c e temp e r a t u r e s s t a y above dew-point  temperature."^  The h u m i d i t y l e v e l i n t h e b u i l d i n g i n t e r i o r i s r e g u l a t e d by t h e i n t e r i o r s u r f a c e s - t h e c o l d s u r f a c e s w i l l c o n t i n u a l l y remove e x c e s s h u m i d i t y from t h e a i r .  194  • Moisture  Migration Into B u i l d i n g Materials  Water v a p o r which m i g r a t e s i n t o t h e w a l l s and c e i l i n g (warm i n t e r i o r t o c o l d e x t e r i o r ) c a n cause a g r e a t d e a l o f m a t e r i a l damage a s w e l l a s r e d u c i n g the e f f e c t i v e n e s s o f t h e t h e r m a l i n s u l a t i o n (impregnated with i c e ) .  S t e p s must be t a k e n t o m i n i m i z e  this effect: 1. P r o v i d e  enough v e n t i l a t i o n t o keep t h e r e l a -  t i v e h u m i d i t y low on t h e warm s i d e o f t h e wall/ceiling, 2.  I n s t a l a " l e a k - f r e e " v a p o r b a r r i e r on t h e warm s i d e , and  3.  Use h i g h l y permeable m a t e r i a l s on t h e c o l d s i d e o r i n d u c e v e n t i l a t i o n t o c a r r y t h e water vapor out of the b u i l d i n g m a t e r i a l s . "  7 4  A c c o m p l i s h i n g s t e p 2 becomes t h e most d i f f i c u l t i n normal housing c o n s t r u c t i o n . cautions  Some d e s i g n  pre-  include:  "1.  Use l a r g e v a p o r - p r o o f s h e e t s near t h e warm s i d e o f an o u t e r w a l l o r r o o f i n s u l a t i o n . 2. S e a l t h e h o l e s and j o i n t s i n i t . 3* A s s u r e t h a t m a t e r i a l s c o l d e r t h a n t h e v a p o r b a r r i e r a r e able t o breathe t o the outside a i r only. 4* C a l c u l a t e , t o make c e r t a i n t h a t t h e d e s i r e d r e l a t i v e humidity i s p o s s i b l e , f o r the design. I f i t i s not, adjust e i t h e r the design or the humidity. 5* Where w a l l s a r e o f masonry, c o n s i d e r p l a c i n g i n s u l a t i o n on t h e o u t s i d e . 6. C o n s i d e r an " u p s i d e down" r o o f , w i t h t h e waterp r o o f membrane s e r v i n g a l s o a s t h e vapor barrier. 7 . A v o i d any p o s s i b i l i t i e s f o r m u l t i p l e v a p o r b a r r i e r s ( t h e s e form v a p o r t r a p s ) . " 75 Another precaution  i n w a l l s i s t o use 2 x 2 f u r r i n g  s t r i p s o v e r t h e r e g u l a r 2x6 w a l l .  I n s u l a t e t h e 2x6  w a l l space, place the vapor b a r r i e r over t h a t , then p l a c e t h e 2 x 2 s t r i p s o v e r t h e v a p o r b a r r i e r and i n s u l ate t h i s space, then apply the i n t e r i o r w a l l m a t e r i a l (figure 3.107).  The major r e a s o n f o r d o i n g t h i s t y p e  of c o n s t r u c t i o n i s t o avoid vapor l e a k s through the  195 vapor b a r r i e r most often cut through by the e l e c t r i c a l contractor who i n s t a l l s the e l e c t r i c a l wiring and fixtures.  76.  C e i l i n g l i g h t f i x t u r e s should be avoided  i f they c o n f l i c t with the vapor b a r r i e r i n the ceiling.  Step 3» v e n t i l a t i o n of the cold side of the building materials, becomes most important i n roof construction.  In chosing between a pitched roof or  a f l a t roof, the pitched roof should p r e v a i l due to the problems of venting a f l a t roof (natural a i r flow w i l l vent the sloped roof, figure 3»108). the f l a t roof normally used vapor tight which w i l l not permit vapor to e s c a p e .  In a d d i t i o n ,  coverings 77  -5LOFEP  <?or  m  196 Use of the "upside down" roof (figure 3.109) for f l a t roofs helps to keep the b u i l d i n g mass on the warm side and the i n s u l a t i o n on the cold side of the vapor v a r r i e r so there should be l i t t l e or no moisture buildup on the underside of the structure.  T=)6jQg>rS 3.1 Q°l  197 B. B l o w i n g Snow I n f i l t r a t i o n o f b l o w i n g snow i n t o t h e b u i l d i n g i n t e r i o r t h r o u g h door c r a c k s and windows c a n be a major problem i n t h e A r c t i c Zone where t h e a i r b o r n snow i s c o n s t a n t l y  w o r k i n g i t s way i n t h r o u g h any  c r a c k s o r openings ( f i g u r e  3.110)."^  \^Snow infiltration around a window.  Snow infiltration around a door.  instead  o f u s i n g windows f o r v e n t i l a t i o n , v e n t i l -  a t i o n hoods mounted on t h e b u i l d i n g e x t e r i o r  over  v e n t i l a t i n g openings a r e designed t o e l i m i n a t e i n f i l t r a t i o n i n t o the b u i l d i n g  (figure  3.111).  snow The  hood works i n p r i n c i p l e a s a double s w i r l chamber c a u s i n g t h e 6now t o be dropped b e f o r e i t e n t e r s t h e building interior.  The opening o f t h e hood i s sub-  s t a n t i a l l y s m a l l e r t h a n t h e i n s i d e space o f t h e hood which w i l l cause t h e a i r t o a c c e l e r a t e  through t h e  e n t r a n c e and t h e n s l o w down once i n s i d e t h e hood and loose i t s carrying  capacity.^  0  198  To reduce t h e i n f i l t r a t i o n o f snow and i c e b u i l d up on door h i n g e s , c o m m e r c i a l r e f r i g e r a t o r doors which open o u t were used f o r t h e e x t e r i o r doors on p. 4 the BP A l a s k a / S o h i o ' s N o r t h S l o p e O p e r a t i o n s C e n t e r . As mentioned e a r l i e r , o r i e n t a t i n g openings away from the d i r e c t f o r c e o f t h e wind a s w e l l as t h e use o f a r c t i c e n t r i e s h e l p s t o keep b l o w i n g snow from e n t e r i n g the b u i l d i n g  interior.  199 C.  Permafrost There a r e s e v e r a l ways o f b u i l d i n g on permafrost : 1.  B u i l d as you would on normal s o i l s ( m e l t i n g the p e r m a f r o s t ) ,  2.  Keep t h e p e r m a f r o s t f r o z e n .  z > e  -  I w i l l d e a l p r i m a r i l y w i t h the second s t e p , k e e p i n g the permafrost f r o z e n . The most o b v i o u s way  t o a c h i e v e t h i s would be  t o s e p a r a t e t h e warm b u i l d i n g from the c o l d  ground  so no h e a t can t r a v e l from t h e b u i l d i n g t o the ground.  The b e s t method so f a r i s the e l e v a t e d  s t r u c t u r e w i t h a t l e a s t 2 f e e t o f open a i r space between t h e bottom o f t h e s t r u c t u r e and the (figure  3.112).  ground  65  ±2'  T h i s t y p e o f f o u n d a t i o n ( p i l e s , p o s t s , p i e r s ) keeps t h e heat from t h e s t r u c t u r e from r e a c h i n g the f r o zen ground, and promotes t h e unimpeded f l o w o f a r c t i c &4r  winds which d i s c o u r a g e s the f o r m a t i o n o f snow d r i f t s . I f p i l e s cannot be used f o r the b u i l d i n g found a t i o n , p o s t s and pads can be an a l t e r n a t i v e  3.113).  T h i s type o f f o u n d a t i o n may  (figure  e x p e r i e n c e pro-  blems w i t h f r o s t heave which i s d i s c u s s e d i n the next  section.^  200 Other methods f o r b u i l d i n g on permafrost have been t r i e d with l e s s success than the elevated structure.  The " f l o a t i n g slab"has been used but i s r i s k y  even when thick i n s u l a t i o n i s used beneath i t . The reinforced concrete slab (at l e a s t 8" thick) i s designed to span any minor settlement i n the ground (figure 3 . H 4 ) , hut i f the builder i s unfortunate enough to place the slab and house over a s i z a b l e i c e wedge the whole slab, house and a l l could end up i n an undesirable position (figure  3.115).^  f ^ u g e -3.114-  /  201 D.  F r o s t Heave The're two a c t i o n s i n the s o i l which c o n c e r n d e s i g n e r s and b u i l d e r s , a d f r e e z i n g and  f r o s t heave.  A d f r e e z i n g r e f e r s t o the s t r o n g bond t h a t the ground i c e g r i p s the f o u n d a t i o n w i t h , and  winter  f r o s t heave  i s the upward movement o f the s o i l caused by the i c e f o r m i n g i n the s o i l . ^ A d f r e e z i n g i s not n e c e s s a r i l y 0  u n d e s i r a b l e but when i t o c c u r s i n c o n j u n c t i o n w i t h f r o s t heaving  i t can cause problems such as p i l e  jacking. Most d e s i g n r e s p o n s e s t o f r o s t heave and  ad-  f r e e z i n g a r e i n the form o f p r e v e n t i o n which i n c l u d e : 1.  ^  Remove f r o s t s u s c e p t i b l e m a t e r i a l ( f i n e sand and  silts)  and r e p l a c e w i t h n o n - f r o s t  sus-  c e p t i b l e m a t e r i a l ( c o u r s e sands.and c l e a n gravels). 2.  P r o v i d e adequate d r a i n a g e : a d r a i n p i p e a d j a cent t o the f o o t i n g and  weep h o l e s i n r e t a i n i n g  OA  3.  w a l l s ( f i g u r e 3.116). P l a c e f o o t i n g s below the maximum depth o f °>o p e n e t r a t i o n ( t h i s can be d i f f i c u l t a r c t i c - Fairbanks'  frost  i n the sub-  f r o s t p e n e t r a t i o n i s as  much a s 15 f e e t y e t s t a n d a r d  practice allows  f o o t i n g s t o be s e t a t a k f o o t  depth),  if. P r o v i d e f o r movement a t the warm/ c o l d i n t e r face ( f i g u r e 5.  3.117).*"  B r e a k the a d f r e e z i n g bond (on p i e r 6 and  Should  the f r o s t h e a v i n g  not be p r e v e n t e d ,  pilings). then  the house owner must t u r n t o j a c k i n g equipment, s h i m s , wedges, and t u r n b u c k l e s i n o r d e r t o c o n s t a n t l y a d j u s t t h e house t o the s h i f t i n g 6 0 i l c o n d i t i o n s . ,rzxjt-vfir[\oKi W A L L .  202  —  WAr^M  The use of non-frost susceptible material, good drainage, and the allowance f o r a c e r t a i n amount of movement i s important when the house has attached "buffer spaces" such as an attached garage, storage room, or greenhouse (figure 3 * U 8 ) »  203 Breaking the adfreezing bond on p i l i n g s i s very important i f the p i l i n g i s to stay i n the ground since the frost action can remove them completely from the ground.  Notching the p i l i n g , placing an  "anchor" below the active layer, and breaking the adfreezing bond with a sheet of p l a s t i c wrapped around the p i l i n g a l l help to keep the p i l i n g i n place (figure 3.119).^  4  204 3.5*7 Summary Listing  of b u i l d i n g d e s i g n r e s p o n s e s t o  considered at planning l e v e l A. S o l a r  be  4:  Radiation  a. L i m i t the amount of exposed window a r e a d u r i n g winter b. M i n i m i z e window heat l o s s by u s i n g movable i n s u l a t e d e x t e r i o r panels ( a l s o , window c. Use  increase  area).  daytime ( b u f f e r or greenhouse) spaces  d. L o c a t e window a r e a s a c c o r d i n g to needs/ d e s i r e s of i n h a b i t a n t s and  - view v e r s e s l i g h t  s u n l i g h t , c o r n e r windows and  are good f o r v i e w and e. Use s k y l i g h t s t o :  ,  daytime s p a c e s  light/sunlight.  1. l i g h t the c e n t e r a r e a of compact b u i l d i n g forms, 2. B r i n g 3.  l i g h t t o the n o r t h end  of the  P i c k up d i r e c t s u n l i g h t which may  house, be  b l o c k e d a t lower l e v e l s . f. A v o i d h i g h heat l o s s and  i c i n g on non  vertical  window a r e a s . g. C o n t r o l  d i r e c t s u n l i g h t and  glare with  exterior  shutters h. S p r i n g and  summer sun  can be c o n t r o l l e d  the s o l a r r e f l e c t i n g g l a z i n g  with  (used b e s t as  movable i n t e r i o r or e x t e r i o r s h a d i n g  a  device).  i . Shade the l o w e r p o r t i o n o f windows (up t o about 5 f e e t ) from low a n g l e j . Have l i g h t c o l o r e d k.  glare.  roofs  (horizontal  Use  dark c o l o r s on t h e r m a l masses on the  and  north  1. Use  l i g h t c o l o r s on t h e r m a l masses f a c i n g s o l a r heat t o p e n e t r a t e i n t e r -  i o r f o r more immediate h e a t Use  south  orientations.  e a s t , but a l l o w m.  surfaces).  p a n e l s or s h u t t e r s  gain.  o v e r dark c o l o r e d  masses  on the west s i d e t o c o n t r o l the s o l a r h e a t i n p u t on the t h e r m a l masses.  205 n. Use  l i g h t c o l o r e d , t e x t u r e d c e i l i n g and  wall  s u r f a c e s t o maximize w i n t e r n a t u r a l l i g h t from m i n i m a l window a r e a . B. Temperature a. Use  l i g h t w e i g h t i n s u l a t e d c o n s t r u c t i o n over  heavy t h e r m a l mass c o n s t r u c t i o n . b. Use  t h e r m a l mass "heat bank" e a r t h a t base-  ment l e v e l by i n s u l a t i n g a g a i n s t c o l d a i r temperature p e n e t r a t i o n . c. O p t i m i z e  thermal i n s u l a t i o n thickness - 5 i or  7i i n c h e s i n w a l l s , 9"  or more i n c e i l i n g / r o o f ,  and 2"  t o 6" i n the f l o o r f o r the S u s i t n a  Valley  area.  d. Use  t h e r m a l mass on b u i l d i n g i n t e r i o r .  e» A v o i d use o f s i n g l e pane windows. f . Use  e x t e r i o r i n s u l a t e d s h u t t e r s f o r windows.  g. Reduce c o l d a i r i n f i l t r a t i o n w i t h  fireplace  dampers i n the s t a c k and a combustion a i r d u c t t o the h. Use  exterior.  o f s e a l e d windows b e s t w i t h v e n t i l a t i o n  handled with separate i.  Use  openings.  " b u f f e r s p a c e s " f o r warming i n c o m i n g a i r  used i n a i r exchanges. j.  F i l t e r and r e d i s t r i b u t e ( r e u s e ) warm i n t e r i o r air.  k. Use o f a s t a c k r o b b e r on f i r e p l a c e o r s t a c k s can put waste heat t o  heater  use.  1. A v o i d c r e a t i n g " c o l d s p a c e s " - s m a l l spaces n e x t t o e x t e r i o r w a l l s c l o s e d o f f t o the  inter-  i o r warm a i r and w i t h no heat source o f t h e i r own. m.  A v o i d c r e a t i n g " c o l d s p a c e s " between window c o v e r i n g s and  n. A v o i d f r o s t o. E n c l o s e  windows, formation at b u i l d i n g corners,  the b u i l d i n g s t r u c t u r a l system under  an i n s u l a t e d e x t e r i o r s k i n t o a v o i d bridging.  thermal  206 p. I n s u l a t e o r p r o v i d e t h e r m a l b r e a k s f o r m e t a l and masonry ( c o n c r e t e ) which e x t e n d s from the warm i n t e r i o r t o the c o l d  exterior.  q. Use o f f l e x i b l e f l a s h i n g m a t e r i a l where h i g h t h e r m a l movement o c c u r s and w a t e r t i g h t i n t e g r i t y i s needed. r.  Use o f rounded c o r n e r s w i l l reduce c o r n e r s t r e s s due t o s o l a r h e a t b u i l d  up.  s. Use o f l i g h t c o l o r s a t c o r n e r s w i l l a l s o r e duce m a t e r i a l s t r e s s due t o s o l a r heat b u i l d u p . t . S e l e c t s t r u c t u r a l m e t a l which does not l o o s e s t r e n g t h a t v e r y low t e m p e r a t u r e s . u. Keep f r e e z e / t h a w c y c l e s t o a minimum on masonry and c o n c r e t e . v . Use s p e c i a l d r y lumber where s t r e n g t h and no movement i s r e q u i r e d . w. Use t h e most f l e x i b l e s e a l a n t s f o r a r e a s exposed t o c l i m a t i c  extremes.  Precipitation a. Use " c o l d r o o f " d e s i g n t o u t i l i z e  insulating  q u a l i t i e s o f snow and a v o i d i c e dams and related  problems.  b. A v o i d i c e dam  b u i l d up on c o l d  eaves  c. P r o v i d e s h u t t e r s f o r s l o p i n g s k y l i g h t s  (with  window a r e a i n s h u t t e r so l i g h t can p e n e t r a t e when s h u t t e r i s f r o z e n s h u t ) . d. A v o i d e x t e r i o r appendages which might be removed by snow s l i d i n g o f f the r o o f . e. A l l o w f o r m o i s t u r e m i g r a t i o n out from the e x t e r i o r s k i n , but s t i l l keep snow and  rain  from e n t e r i n g from the o u t s i d e . Wind a. O r i e n t a t e f e n e s t r a t i o n ( d o o r s , windows) away from the w i n t e r winds. b. Use o f "wind p o l e s " , v e g e t a t i o n , and o t h e r b u i l d i n g s t o break the wind.  207 c. Cover o u t s i d e o f the window a r e a s w i t h d. W e a t h e r s t r i p E. S p e c i a l C l i m a t i c  shutters.  a l l openings i n f e n e s t r a t i o n . Conditions  1. H u m i d i t y / M o i s t u r e P o t e n t i a l a. S e a l i n s i d e window panes (vapor b a r r i e r ) and l e a v e the o u t s i d e pane l o o s e . b. Keep h u m i d i t y low  (+ 20%)  d u r i n g c o l d months.  c. I n s u l a t e over (on the o u t s i d e ) c o l d  spots/  materials. d. I n s t a l l a " l e a k - f r e e " v a p o r b a r r i e r on  the  warm s i d e o f the i n s u l a t i o n . e. Use  permeable m a t e r i a l on the c o l d s i d e o f  the b u i l d i n g f a b r i c . f. P l a c e i n s u l a t i o n on the o u t s i d e o f masonry/ concrete g. Use  walls.  the " u p s i d e down" r o o f c o n s t r u c t i o n f o r  flat roofs. h. A v o i d m u l t i p l e v a p o r b a r r i e r s . i.  V e n t i l a t e the c o l d s i d e o f the  wall/ceiling  i n s u l a t i o n where p o s s i b l e . 2. B l o w i n g Snow a. Use  v e n t i l a t i o n hoods to e l i m i n a t e the snow  p a r t i c l e s from e n t e r i n g the b. Use  interior.  r e f r i g e r a t o r t y p e d o o r s i n extreme c l i m a t i c  conditions 3«  Permafrost a. A v o i d b u i l d i n g on  permafrost  b. I f b u i l d i n g on p e r m a f r o s t , keep the  permafrost  f r o z e n ( i s o l a t e the b u i l d i n g ' s h e a t ) . c. E l e v a t e the s t r u c t u r e o f f the f r o z e n ground with p i l i n g s or p i e r s . 4.  F r o s t Heave a. A v o i d b u i l d i n g on f r o s t s u s c e p t i b l e  soils.  b. R e p l a c e f r o s t s u s c e p t i b l e s o i l w i t h  non-frost  susceptible  soil.  208 c. P r o v i d e adequate s o i l d r a i n a g e a t t h e base o f footings.  *  d. P l a c e f o o t i n g s below depth o f f r o s t  penetra-  tion. e. P r o v i d e f o r l i m i t e d movement a t t h e warm/ cold  interface.  f. Break t h e a d f r e e z i n g bond on p i l i n g s and p i e r s w i t h p l a s t i c s h e e t s which a l l o w the  6 o i l  to  s l i d e up and down w i t h o u t moving t h e p i l i n g . g. Use j a c k i n g equipment, shims, and wedges f o r a d j u s t i n g the foundation t o d i f f e r e n t i a l ground movement. h. Anchor p i l i n g s i n the ground t o a v o i d f r o s t jacking. Summary o f Responses The  primary b u i l d i n g c o n s i d e r a t i o n a t t h i s planning  l e v e l i n b o t h t h e A r c t i c and S u b - a r c t i c r e g i o n s r e l a t e s t o t h e s o i l c o n d i t i o n s i n c e b u i l d i n g on uns t a b l e s o i l s can negate t h e b e s t t h e r m a l l y i n s u l a t e d s t r u c t u r e b u i l t by c a u s i n g f o u n d a t i o n f a i l u r e  follow-  ed by s t r u c t u r a l f a i l u r e o f t h e b u i l d i n g . Since permafrost  i n the s u b a r c t i c r e g i o n i s so  c l o s e t o m e l t i n g , i t becomes v e r y u n s t a b l e when any change t a k e s p l a c e above i t - even t h e c l e a r i n g o f v e g e t a t i o n can m e l t t h e p e r m a f r o s t .  Therefore,  p l a c i n g a h e a t e d b u i l d i n g on f r o z e n ground i n the suba r c t i c s h o u l d be a v o i d e d i f a t a l l p o s s i b l e . In  t h e a r c t i c r e g i o n t h e r e i s no c h o i c e , so i t  i s necessary  t o i s o l a t e t h e warm b u i l d i n g from the  f r o z e n ground n o r m a l l y by e l e v a t i n g t h e b u i l d i n g . The  f r o s t h e a v i n g i n bad s o i l s c a n a l s o cause  f o u n d a t i o n d e f o r m a t i o n s and f a i l u r e which a g a i n would r e n d e r t h e home u s e l e s s . The n e x t major c o n s i d e r a t i o n i n v o l v e s t h e combina t i o n o f m o i s t u r e m i g r a t i o n and temperature, t h e a b i l i t y of i n t e r i o r moisture t o migrate i n t o the c o l d building materials.  Cold temperatures  freeze the  209 m o i s t u r e i n the m a t e r i a l s and i c e a c c u m u l a t e s f o r l o n g p e r i o d s o f time due t o the d u r a t i o n o f c o l d tures.  tempera-  S i n c e the i c e n o r m a l l y f r e e z e s i n the t h e r m a l  i n s u l a t i o n , i t r e d u c e s the i n s u l a t i n g q u a l i t i e s o f the m a t e r i a l and when the i c e b e g i n s t o m e l t i t s t a i n s o r r o t s i n t e r i o r f i n i s h m a t e r i a l s i n the house a l o n g w i t h the f u r n i s h i n g s .  T h i s i s why  i t i s extremely  i m p o r t a n t t o get an e f f e c t i v e v a p o r s e a l on the i n s i d e o f the i n s u l a t i n g m a t e r i a l s . S i n c e the house i s now on s t a b l e ground and the m a t e r i a l s can be p r o t e c t e d from the m i g r a t i o n o f moist u r e and i c e a c c u m u l a t i o n , the next c o n s i d e r a t i o n i s t h a t o f m i n i m i z i n g heat l o s s .  I n most cases the  f e n e s t r a t i o n (windows, d o o r s , o p e n i n g s ) i s the p r i m a r y c o n c e r n i n heat l o s s .  The use o f more window panes,  s m a l l e r window a r e a , s p e c i a l e n t r i e s , l i m i t e d c r a c k space ( o p e r a b l e windows and openings t o the e x t e r i o r ) and w e a t h e r s t r i p p i n g a l l h e l p t o reduce t h e heat l o s s a t t r i b u t e d to f e n e s t r a t i o n .  A l o n g w i t h the f e n e s t r a -  t i o n i n i m p o r t a n c e i s the i n f i l t r a t i o n and a i r changes. As mentioned above, the use o f w e a t h e r s t r i p p i n g and m i n i m i z i n g o p e r a b l e windows, and o t h e r openings h e l p s reduce t h e h e a t l o s s caused by i n f i l t r a t i o n and a i r changes, but the house s t i l l needs " f r e s h a i r " oxygen.  and  T h i s can be s u p p l i e d t h r o u g h " b u f f e r s p a c e s "  i n which the i n c o m i n g f r e s h a i r can be  partially  h e a t e d from the l o s t heat o f t h e b u i l d i n g  interior.  The use o f s o l a r r a d i a t i o n i s a l s o i m p o r t a n t i n the heat g a i n / h e a t l o s s b a l a n c e .  The o p t i m i z a t i o n o f  s o l a r heat d u r i n g much o f the y e a r can h e l p t o keep the home environment a t c o m f o r t a b l e t e m p e r a t u r e s r e d u c i n g the need f o r e x t e r n a l f u e l s .  The s o l a r r a d i a -  t i o n can s u p p l y v e r y l i t t l e heat i n the w i n t e r , so d u r i n g t h i s p e r i o d the h o u s i n g u n i t s h o u l d have a heavi l y i n s u l a t e d e x t e r i o r s k i n o v e r i t s compact shape i n o r d e r t o m i n i m i z e the heat l o s s t o the c o n s t a n t c o l d .  210 3.5.8  References  A. S o l a r R a d i a t i o n ^ A b u i l d i n g code minimum f o r most h a b i t a b l e rooms i n housing. 2- Eb R i c e , "Windows", The N o r t h e r n E n g i n e e r , S p r i n g 1974. 3  A Q u a l i t a t i v e C h e c k l i s t f o r Compact  H o u s i n g , G r e a t e r Vancouver Depatrment, V a n c o u v e r , ^  Regional D i s t r i c t , Planning  1975,  P.42.  R. G. H o p k i n s o n , P P e t h e r b r i d g e , J . Longmore,  D a y l i g h t i n g , E n g l a n d , 1966, p.276. ^ The window s t r i p a t eye l e v e l was used i n t h e F a i r b a n k s ' News M i n e r A d d i t i o n , F a i r b a n k s ; t h e N o r t h P o l e J u n i o r S e n i o r H i g h S c h o o l , N o r t h P o l e ; and t h e Plumbers/Steamfitters Office B u i l d i n g , Fairbanks. Wider s i d e windows were used i n t h e N o r t h P o l e  fo  High S c h o o l c l a s s r o o m s f o r v i e w and l i g h t a l o n g t h e wall. 1 C o r n e r window d e s i g n was used on t h e s o u t h f a c i n g c o r n e r s o f t h e Cook R e s i d e n c e , F a i r b a n k s . t>  "When t h e House-Warming Sun Goes Down,  Movable I n s u l a t i o n Goes i n t o P l a c e " , S u n s e t , Nov. 1976,  pp. 166-168. ^  R a l p h E r s k i n e , "The C h a l l e n g e o f t h e High L a t i t u -  d e s " , RAIC J o u r n a l , J a n . 1964. 1 0  B o r i s C u l j a t , C l i m a t e and The B u i l t  Environment  i n t h e N o r t h , p. 87. 1* The i c i c l e s which form e v e r y w i n t e r on t h e greenhouses a t t h e U n i v e r s i t y o f A l a s k a a r e an extreme example o f t h i s . 12- D. G. Stephenson, P r i n c i p l e s o f S o l a r S h a d i n g , CBD 59, NRC, Ottawa, J 5  1964.  R i c e , "Windows", p. 11.  211 ^  A x e l C a r l s o n , D e s i g n o f Roofs f o r N o r t h e r n R e s i -  d e n t i a l C o n s t r u c t i o n , Cooperative Extension S e r v i c e , U n i v e r s i t y o f A l a s k a , 1973. y  * R a l p h E r s k i n e , "The C h a l l e n g e o f t h e High  Latitudes". 1  &  CPI,  A r c h i t e c t u r a l Glass Products, Canadian  P i t t s b u r g h I n d u s t r i e s , M a n f a c t u r e r s Pamphlet, 1976. L o r e n W. Neubauer, "The S e m i - S o l a r Low Cost House Saves Energy Through E n v i r o n m e n t a l O r i e n t a t i o n " , IAHS P r o c e e d i n g s : I n t e r n a t i o n a l Symposium on Housing  Problems-1976, V o l . 2, p. 1417. C. R. C r o c k e r , I n f l u e n c e o f O r i e n t a t i o n o f E x t e r -  1 g >  i o r C l a d d i n g , CBD 126, NRC, Ottawa, 1970. ^  V i c t o r O l g y a y , D e s i g n w i t h C l i m a t e , 1963, P. 34.  ^  C. R. C r o c k e r , I n f l u e n c e o f O r i e n t a t i o n on E x t e r -  1  i o r Cladding. GSA,  21  Energy C o n s e r v a t i o n D e s i g n G u i d e l i n e s  f o r New O f f i c e B u i l d i n g s , GSA, 1975, P. 5-15. C u l j a t , C l i m a t e and The B u i l t Environment i n The N o r t h . 1975, PP. 297,298. Z  ?  Stephenson, P r i n c i p l e s o f S o l a r Shading,  1963.  B. Temperature 24  ASHRAE, Handbook o f Fundamentals, American S o c i e t y  of H e a t i n g , R e f r i g e r a t i n g and A i r C o n d i t i o n i n g E n g i n e e r s (ASHRAE), New Y o r k , 2^ HUDA,  1967  A B u i l d e r s ' Guide t o Energy C o n s e r v a t i o n ,  H o u s i n g and Urban Development A s s o c i a t i o n o f Canada, T o r o n t o , 1975, pp. 8,9. P h i l i p Steadman, Energy Environment and B u i l d i n g ,  1975, PP. 31,32.  212 O l g y a y , D e s i g n w i t h C l i m a t e , p.  2 7  I b i d . , e x t r a p o l a t e d from 2"  119. 1.3  thickness with  h o u r s time l a g . A e l C a r l s o n , E f f e c t o f W a l l Framing on Heat  loss.  x  1972.  Cooperative Extension S e r v i c e , Univ. of Alaska, 5 ? S i m i l a r t o the Trumbe/Michel  s o l a r w a l l ; Steadman,  158, 159.  PP.  *1 S i m i l a r t o i d e a used i n GSA's F e d e r a l O f f i c e B u i l d i n g i n M a n c h e s t e r , New ^  Hampshire.  J . K. L a t t a , G. G. B o i l e a u , Heat L o s s e s From  House Basements,  NRC  Housing Note No. 31,  9 2 A. C. V e a l e , I n s u l a t i o n T h i c k n e s s F o r NEC H o u s i n g Note No. 21,  1964.  1969.  Ottawa, Houses,  R. K. Beach, D e t e r m i n -  i n g the Optimum T h i c k n e s s o f I n s u l a t i o n F o r Heated B u i l d i n g s , NRC  8151,  Ottawa,  1965.  A x e l C a r l s o n , Warm F l o o r s a r e E s s e n t i a l For  5 4  1972.  C o m f o r t , Coop. E x t . S e r v i c e , U n i v . o f A l a s k a , 5© Eb R i c e , " N o r t h e r n C o n s t r u c t i o n : S i t i n g and d a t i o n s " , The N o r t h e r n E n g i n e e r , S p r i n g 1973,  Foun-  P.  14.  Heat l o s s c a l c u l a t e d by a u t h o r from ASHRAE f i g u r e s . ^  Used i n the Snedden R e s i d e n c e i n F a i r b a n k s . J . L e c k i e , G. M a s t e r s , H. Whitehouse, L. Young,  Other Homes and Garbage, S i e r r a C l u b Books,  1975,  pp. 25.26. ^  F i r e p l a c e d e t a i l used I n the Snedden R e s i d e n c e  and the Cook R e s i d e n c e , F a i r b a n k s . *° D e t a i l i n g p r a c t i c e i n a r c h i t e c t u r a l o f f i c e i n Fairbanks. Window d e t a i l used i n the Bob S i g o n e s House i n  4 1  Fairbanks area. 4£ steadman, E n e r g y , Environment and B u i l d i n g , p.  34. 4 - 5  I b i d . , p.  32.  1975,  213 Eb R i c e , " H e a t i n g The I d e a l A r c t i c House - 1 1 1 ,  4 4  The N o r t h e r n E n g i n e e r , F a l l  1973,PP. 19,20.  4^ Axel Carlson, Special Considerations for Building i n A l a s k a , Coop. E x t . S e r v i c e , U n i v . o f A l a s k a , 1972. R i c e , "Windows".  A<e>  4  T  J . R. S a s a k i , E f f e c t o f I n d o o r Shading and H e a t e r  C o n f i g u r a t i o n s on t h e S u r f a c e Temperature of a S e a l e d Double  G l a z e d Window, NRCC  Performance  13565,  Ottawa,  1973. ^  R a l p h E r s k i n e , "The C h a l l e n g e o f t h e High  des", 4*1  Latitu-  1964. GSA,  Energy C o n s e r v a t i o n D e s i g n G u i d e l i n e s  f o r New O f f i c e B u i l d i n g s , GSA, 1975, p. 5-14. &° D e t a i l i n g p r a c t i c e i n a r c h i t e c t u r a l o f f i c e i n Fairbanks. ^  1  ^  Ibid. A l l n a i l heads c a n be seen t h r o u g h t h e w a l l  c o v e r i n g i n the E l l e r b e a r c h i t e c t u r a l o f f i c e i n Fairbanks. ^  R i c e , A r c t i c E n g i n e e r i n g 603, t h e i n s u l a t i o n  was b e i n g f o r c e d o f f t h e w a l l s i n a shower room due to i c e b u i l d u p on t h e c o l d s i d e o f t h e i n s u l a t i o n . ^"4m  a new t r a c t house i n Anchorage, a woman had  t o be thawed o u t o f h e r house by a n e i g h b o r who came o v e r and used a h a i r d r y e r around t h e door t o m e l t t h e ice  buildup,  when t h e y asked t h e c o n t r a c t o r f o r a  remedy, he s u g g e s t e d l e a v i n g t h e door open a b i t . ^  M. C. B a k e r , Thermal and M o i s t u r e D e f o r m a t i o n s i n  B u i l d i n g M a t e r i a l s , CBD 56, 1964. ^  Ibid.  ^7 A B l a g a , P r o p e r t i e s and B e h a v i o r o f P l a s t i c s , CBD  157, Ottawa,  1973.  £2> T y p i c a l d e t a i l i n g f o r r o o f s i n a r c h i t e c t u r a l o f f i c e i n Fairbanks.  214 B a k e r , Thermal and M o i s t u r e D e f o r m a t i o n s i n Building Materials. Eb R i c e , A r c t i c E n g i n e e r i n g 603,  ^  l e c t u r e , Univ. o f A l a s k a , <i>1  John B u r d i c k  1973.  E. G. Swenson, D u r a b i l i t y o f C o n c r e t e under  W i n t e r C o n d i t i o n s , CBD 116,  1969.  Precipitation toZ A x e l C a r l s o n , D e s i g n o f Roofs f o r N o r t h e r n R e s i d e n t i a l C o n s t r u c t i o n , Coop. E x t . S e r v i c e , U n i v . of A l a s k a ,  1973.  M. C. B a k e r , I c e on R o o f s , CBD 89, ^  1967.  M a s s i v e i c e f o r m a t i o n s on t h e eave o f t h e U n i v .  o f A l a s k a greenhouses  i n the w i n t e r ( h i g h h u m i d i t y  inside). ^  The apartment  where I l i v e d i n F a i r b a n k s had  i t s f a c i a board p u l l e d o f f on t h e n o r t h s i d e by t h e i c e dam g r a b b i n g i t and t h e snow s l i d i n g o f f t h e r o o f removing  it.  Wind (t>(e>  QSA,  Energy C o n s e r v a t i o n D e s i g n G u i d e l i n e s  f o r New O f f i c e B u i l d i n g s , GSA, 1975,  P.  3-7.  6 , 1  C a l c u l a t e d by a u t h o r from ASHRAE f i g u r e s .  6 , &  Amos R a p o p o r t , House Form and C u l t u r e ,  p.  101.  1969,  215  E. S p e c i a l C l i m a t i c C o n d i t i o n s 1. H u m i d i t y / M o i s t u r e P o t e n t i a l ^  Eb R i c e , "Vapor B a r r i e r s , The I d e a l A r c t i c House  I V " , The N o r t h e r n E n g i n e e r , W i n t e r 1 9 7 3 , 1974,PP. 18-24. n  o  N. B. Hutcheon, H u m i d i t y and B u i l d i n g s , NRC 8 1 5 2 ,  O t t a w a , 1964. 71 R i c e , "Vapor B a r r i e r s " . 72 H. W. O r r , C o n d e n s a t i o n i n E l e c t r i c a l l y  Heated  Houses, NRCC 1 4 5 8 8 , O t t a w a , 1 9 7 4 . 7  5  Hutcheon, H u m i d i t y and B u i l d i n g s .  74 R i c e , "Vapor B a r r i e r s " . * Ibid.  7  7 t o  7  7  Ibid. H. B. D i c k e n s , N. B. Hutcheon, M o i s t u r e Accumu-  l a t i o n i n Roof  Spaces Under Extreme W i n t e r C o n d i t i o n s ,  NRC 9 1 3 2 , O t t a w a , 1 9 6 6 . 7  6  R i c e , "Vapor B a r r i e r s " .  2 . B l o w i n g Snow Leo Z r u d l o , "User Designed H o u s i n g  f o r the I n u i t  o f A r c t i c Quebec", The N o r t h e r n E n g i n e e r , F a l l  1974.  P. 3 8 . & ° B o r i s C u l j a t , C l i m a t e and The B u i l t  Environment  i n The N o r t h , pp. 2 9 2 , 2 9 4 . 2»1 P e t e r F l o y d , "The N o r t h S l o p e C e n t e r : How Was I t B u i l t ? " , The N o r t h e r n E n g i n e e r , F a l l 1 9 7 4 , P. 3 1 .  216 3.  Permafrost ^  C. B. C r a w f o r d , G. H. J o h n s t o n , C o n s t r u c t i o n on  P e r m a f r o s t , NRCC ^  11843,  Ottawa,  1971.  J . A. P i h l a i n e n , P e r m a f r o s t and B u i l d i n g s ,  B e t t e r B u i l d i n g B u l l e t i n #5, ^  NRC,  Ottawa,  1955.  Eb R i c e , " N o r t h e r n C o n s t r u c t i o n : S i t i n g  and  F o u n d a t i o n s " , The N o r t h e r n E n g i n e e r , S p r i n g 1973, I b i d . , p.  18.  ft^ I b i d . , p.  13.  R  &  4.  P.  F r o s t Heave E. Penner, K. N. Burn, A d f r e e z i n g and  H e a v i n g o f F o u n d a t i o n s , CBD  128,  Ottawa,  E. Penner, Ground F r e e z i n g and F r o s t 26,  CBD  Frost 1970. Heaving,  1962.  Ottawa,  #9penner and B u r n , A d f r e e z i n g and F r o s t Heaving Foundations. °*> Penner, Ground F r e e z i n g and F r o s t  Heaving.  ^1 E n g i n e e r i n g D e t a i l used i n F a i r b a n k s . ^  Eb R i c e , " N o r t h e r n C o n s t r u c t i o n : S i t i n g  Foundations", ^ Ibid., 5  Ibid.  p.17.  p. 18.  and  of  14.  217  CHAPTER 4 SITE APPLICATION 4.1  INTRODUCTION  4.2  PHYSICAL FACTORS 4.2.1 Summary o f C l i m a t i c A. S o l a r R a d i a t i o n B. Temperature C. P r e c i p i t a t i o n D. Wind 4.2.2  Factors  Site Factors A. Topography B. G e o l o g y / S o i l s C. H y d r o l o g y D. V e g e t a t i o n  4.3  TOWNSITE LAYOUT 4.3.1 A n a l y s i s o f t h e T o w n s i t e Layout A. S o l a r R a d i a t i o n B. Temperature C. P r e c i p i t a t i o n D. Wind E. S p e c i a l C l i m a t i c C o n d i t i o n s B l o w i n g Snow Permafrost F r o s t Heave  4.4  CONCLUDING REMARKS  4.5  REFERENCES  218 k.1  INTRODUCTION T h i s chapter a p p l i e s the b u i l d i n g design respon-  s e s from c h a p t e r 3 t o a s p e c i f i c s i t e s i t u a t i o n i n the S u b a r c t i c N o r t h , t h e W i l l o w S i t e . The W i l l o w s i t e l i e s a t t h e s o u t h e a s t p o r t i o n of the S u s i t n a V a l l e y i n the Alaskan T r a n s i t i o n a l C l i m a t i c Zone.  As mentioned i n c h a p t e r 1, t h i s  site  has been s e l e c t e d by the people o f A l a s k a f o r t h e development o f a new c i t y , t h e A l a s k a S t a t e C a p i t a l . F o r a complete  c l i m a t i c a n a l y s i s o f t h i s a r e a see  Appendix A. The f i r s t s e c t i o n i n t h i s c h a p t e r d e s c r i b e s t h e p h y s i c a l f a c t o r s o f the s i t e ( c l i m a t i c f a c t o r s and site factors).  The second s e c t i o n d e s c r i b e s and  analyzes a p o t e n t i a l s i t e l a y o u t f o r the Willow S i t e u s i n g the design responses i n c h a p t e r 3.  from " P l a n n i n g L e v e l 1"  The s p e c i f i c s i t e c o n d i t i o n s e s t a b l i s h  p r i o r i t i e s t o the design responses d e s c r i b e d i n c h a p t e r 3.  The d e s c r i p t i o n f o l l o w i n g t h e s i t e l a y o u t  f i g u r e s t e l l s which d e s i g n r e s p o n s e s t o o k i n the s i t e l a y o u t .  priority  219 4.2 PHYSICAL FACTORS 4.2.1  Summary o f C l i m a t i c F a c t o r s The  f o l l o w i n g d a t a i s a summary o f t h e c l i m a t i c  conditions a t the Willow S i t e . climatic information A. S o l a r  F o r more d e t a i l  see c h a p t e r 2.  Radiation  a. Sun a l t i t u d e ( s o u t h )  4 i ( D e c . ) t o 51°(June)  b. S o l a r a z i m u t h t r a v e l  ?0°(Dec.) t o 290°(June)  6  2-  5 h o u r s (Dec.) t o 20 h o u r s (June) d. % o f p o s s i b l e s u n s h i n e 45% t o 50%/year 4 c. Hours o f d a y l i g h t  B. Temperature a. Mean t e m p e r a t u r e s b. Temperature  10°F ( w i n t e r ) , 57°F(summer)  extremes  -40°F t o 90°F ^  c. D i u r n a l t e m p e r a t u r e d i f f e r e n c e  15°F t o 24°F"  1  + 11,300 ^  d. H e a t i n g degree days (65°F base) C. P r e c i p i t a t i o n a. Average r a i n f a l l  10" t o ^ " / y e a r *  b. Average s n o w f a l l  80"(6'8")/year  c. Maximum s n o w f a l l i n 24 h o u r s  9  1 0  +30" ( 2 i * )  1 1  D. Wind a. W i n t e r :  L i g h t winds from n o r t h e r l y  direction,  3 t o 7 mph average v e l o c i t y 12Maximum wind v e l o c i t y b. Summer:  4.2.2 S i t e  1  L i g h t winds from s o u t h e r l y d i r e c t i o n , 3 t o 6 mph a v e r a g e v e l o c i t y 14  Factors  Specific A.  40 mph *  s i t e f a c t o r s a t the Willow S i t e  include:  Topography The W i l l o w S i t e i s l o c a t e d on t h e g e n t l y  rising  s o u t h and southwest s l o p e s o f Mt. B u l l i o n i n t h e southwestern f o o t h i l l s o f the Talkeetna Mountains. Deception Creek, which t r a v e r s e s the s i t e , s e p a r a t e s the meadow u p l a n d s from t h e b r o a d t e r r a c e l o w l a n d s . The u p l a n d s a r e c h a r a c t e r i z e d by u n d u l a t i n g t o p o g r a phy ( f i g u r e  4.1). ^ 1  220  221 The  e l e v a t i o n s w i t h i n the 100  range from a low o f 300  square m i l e  f e e t t o a h i g h o f 3150  site feet,  w i t h i n the development a r e a shown i n f i g u r e 4.2 e l e v a t i o n range i s from 450  f e e t t o 1500  1 t o  the  feet with  t h e e l e v a t i o n change i n the t o w n s i t e a r e a r a n g i n g from 900 The 12%  f e e t t o 1150  feet.  s l o p e s above D e c e p t i o n Creek a r e l e s s t h a n  except i n r a v i n e s .  Below the c r e e k s l o p e s a r e  g e n e r a l l y not g r e a t e r t h a n 2% w i t h the e x c e p t i o n o f i s o l a t e d hummocky m o r a i n e s . The u p l a n d a r e a s have a wide c h o i c e o f p o t e n t i a l views: a. E a s t :  The Matanuska V a l l e y (20 m i l e s )  b. S o u t h e a s t :  K n i k G l a c i e r (80 m i l e s ) Chugach M o u n t a i n s (40 m i l e s )  Anchorage (35 m i l e s ) K n i k Arm (25 m i l e s ) d. Southwest: Cook I n l e t (40 m i l e s ) Mt. S u s i t n a (35 m i l e s ) e. West: S u s i t n a V a l l e y (10 m i l e s ) T o r d i l l o M o u n t a i n s (80 m i l e s ) f . N o r t h w e s t : A l a s k a M o u n t a i n Range/Mt. M c K i n l e y (100 miles).  c. South:  223 B. G e o l o g y / S o i l s The s u b s u r f a c e g e o l o g y o f t h e W i l l o w S i t e cons i s t s o f G l a c i a l T i l l o v e r 8 0 % o f t h e development a r e a ; 10% i s a t 10 f o o t depth o v e r bedrock and 10% i s s a n d / g r a v e l / l o o s e r o c k p r o v i d i n g good c o n d i t i o n s f o r spread f o o t i n g f o u n d a t i o n s . There i s no a p p a r e n t p e r m a f r o s t i n t h e development area of the s i t e . C. H y d r o l o g y S e v e r a l i s o l a t e d s m a l l swampy a r e a s a r e d i s p e r s e d t h r o u g h o u t t h e a r e a , p a r t i c u l a r l y around t h e t e r r a i n below D e c e p t i o n Creek.  The m a j o r i t y o f t h e  s i t e i s well drained. The c l e a r water D e c e p t i o n  Creek t r a v e l s t h r o u g h  the  W i l l o w S i t e from e a s t t o n o r t h w e s t .  the  n o r t h j o i n s D e c e p t i o n Creek j u s t e a s t o f t h e  development  area.  A c r e e k from  Several small lakes are located  t o t h e west o f t h e development  a r e a i n t h e broad  t e r r a c e l o w l a n d s below D e c e p t i o n Creek ( f i g u r e k»3)• For  d o m e s t i c w a t e r , w e l l s c o u l d be d r i l l e d o r  water c o u l d be pumped up from t h e L i t t l e S u s i t n a R i v e r o r W i l l o w Creek.  The upper e l e v a t i o n s o f Mt.  B u l l i o n c o u l d p r o v i d e a good p l a c e f o r water s t o r a g e u s i n g g r a v i t y f l o w t o s e r v i c e t h e t o w n s i t e below.  22k  225 D» Vegetation The Willow Site has good birch and spruce forests with stands of spruce and cottonwood near Deception Creek (figure  k»k)»  Open grassy meadows  and r e l a t i v e l y sparse forests are found above Deception Creek (figure  k*5)»  The Willow Site is characterized by birch, spruce and cottonwood forests.  figures A. A  227 4.3  TOWNSITE LAYOUT The  f o l l o w i n g pages c o n t a i n a p o t e n t i a l l a y o u t  for a townsite 4.7,  w i t h i n the W i l l o w S i t e ( f i g u r e s  and 4.8).  The  town c e n t e r i s s i t u a t e d on  4.6, the  s o u t h f a c i n g s l o p e o f Mt. B u l l i o n j u s t above D e c e p t i o n Creek w i t h the m a j o r i t y o f h o u s i n g (medium and d e n s i t y ) t o the s o u t h o f the town c e n t e r on  low  the  s o u t h s i d e o f the Creek. Through the p o s i t i o n i n g on the s l o p e , the town c e n t e r has the n o r t h e a s t west.  The  p o t e n t i a l v i e w s from  around t o the s o u t h and  up t o the  b u i l d i n g arrangement w i t h i n the  north-  townsite  r e g u l a t e s the g e n e r a l l o c a t i o n o f b u i l d i n g s by  size;  the t a l l e r more m a s s i v e b u i l d i n g s are r e s t r i c t e d the n o r t h , n o r t h e a s t  or northwest s i d e s .  massive b u i l d i n g s are permitted c l o s e r t o D e c e p t i o n Creek.  to  Lower, l e s s  on the s o u t h s i d e  Open a r e a s and  park space  i s l a c a t e d a d j a c e n t t o the C r e e k on the s o u t h s i d e  of  the town c e n t e r . The  h i g h e r d e n s i t y h o u s i n g i s l o c a t e d t o the  north  o f the town c e n t e r on the h i l l s i d e g i v i n g many r e s i d e n t s maximum exposure t o s u n l i g h t and v i e w s w h i l e limiting  the shadowing o f the b u i l d i n g s t o the  d e v e l o p e d a r e a t o the  un-  north.  On the s o u t h s i d e o f the C r e e k , the medium density housing i s located i n close proximity  to  the town c e n t e r so a maximum number o f r e s i d e n t s would be a b l e t o commute v i a p e d e s t r i a t i o n / b i c y c l e r o u t e s . The  medium d e n s i t y h o u s i n g i s a l s o l o c a t e d here so  t h a t i t s l a r g e r b u i l d i n g forms do not shadow the d e n s i t y h o u s i n g t o the The  lower  south.  l o w e r d e n s i t y h o u s i n g s p r e a d s out i n a  shape towards the s o u t h e a s t ,  s o u t h , and  fan  southwest.  S i n g l e f a m i l y h o u s e s , d u p l e x e s , and m o b i l e homes a r e s i t u a t e d a l o n g nw/se, n o r t h / s o u t h , patterns.  The  and ne/sw s t r e e t  i n d i v i d u a l housing u n i t s are  on the s i t e i n o r d e r t o a l l o w w i n t e r s u n l i g h t t o r e a c h the s o u t h s i d e s o f  J (^^J^  staggered |  228 most l i v i n g u n i t s as well as the adjacent exterior spaces. Development outside of the "townsite" area i s controlled with c e r t a i n areas established for d i s persed development.  In t h i s way many areas adjacent  to the townsite can remain n a t u r a l , r e c r e a t i o n areas and not be fenced up by property owners.  With the  development of the outer dispersed areas, the towns i t e would have private v e h i c l e parking around the periphery of the town center and t r a n s i t through the townsite i t s e l f would be on a public transport system. This would cut down on the p o t e n t i a l pedestrian/ automobile  c o n f l i c t s and reduce the production of  carbon monoxide and i c e fog within the town center.  229  230  231  232 4.3.1  A n a l y s i s o f the T o w n s i t e Layout L i s t e d below a r e the i m p l i c a t i o n s o f the town-  s i t e l a y o u t w i t h r e g a r d t o the c l i m a t i c f a c t o r s and site factors: A. S o l a r R a d i a t i o n The  s o u t h f a c i n g h i l l s i d e a l l o w s the  maximum w i n t e r , s p r i n g , and ( p r i m a r i l y from the s o u t h ) .  townsite  f a l l solar radiation The  c e n t r a l north/south  a x i s o f the t o w n s i t e i s l o c a t e d t o maximize exposure t o the e a s t and west as w e l l a s the s o u t h  (figure  4.9).  The  t o w n s i t e s t e p s up the h i l l s i d e u s i n g the  topography t o maximize s u n l i g h t e x p o s u r e . ing  s i z e s are a r r a n g e d  The  build-  w i t h the l a r g e s t / t a l l e s t a t  the n o r t h end o f the s i t e ( h i g h e r d e n s i t y h o u s i n g ) and the s m a l l e s t t o the south  end o f the  ( s i n g l e f a m i l y h o u s i n g ) , see f i g u r e s 4.7 The  site and  4.8.  d i a g o n a l s t r e e t p a t t e r n s i n the town c e n t e r  p r o v i d e morning and a f t e r n o o n s u n l i g h t c o r r i d o r s , and  the main b u i l d i n g e x p o s u r e s are t o the  and southwest ( f i g u r e  4*6).  southeast  233 The  r a d i a l s t r e e t p a t t e r n i n the h o u s i n g  area  t o the south o f the town c e n t e r a l l o w s w i n t e r sunl i g h t t o p e n e t r a t e from the s o u t h e a s t southwest.  around t o the  H o u s i n g o r i e n t a t i o n s would range from  southeast/northwest,  east/west,  to  southwest/north-  e a s t i f t h e y were a l l i g n e d w i t h the s t r e e t p a t t e r n s ( f i g u r e 4.6 E.  ).  Temperature The  whole a r e a i s an upland h i l l s i d e which a v o i d s  the s e t t l e m e n t o f v e r y c o l d a i r masses. will  f l o w t o the s o u t h and west a l o n g the  Creek d r a i n a g e .  K e e p i n g the a r e a around  Cold a i r Deception Deception  Creek i n i t s n a t u r a l s t a t e w i l l h e l p t o keep the w i n t e r c o l d a i r f l o w from b e i n g b l o c k e d by b u i l d i n g s . The  compact arrangement o f the p l a n c o u l d h e l p  to minimize  the use o f p r i v a t e a u t o s i n and out  the town c e n t e r .  A public s h u t t l e could l i n k  of  the  l o w e r d e n s i t y h o u s i n g a r e a t o the downtown c e n t e r . C.  Precipitation Care s h o u l d be t a k e n d u r i n g c o n s t r u c t i o n t o a v o i d e r o s i o n on the s l o p i n g l a n d .  Protecting exist-  i n g v e g e t a t i o n d u r i n g the i n i t i a l development h e l p r e d u c e t h e e r o s i o n p o t e n t i a l d u r i n g the  will late  summer r a i n s . The  s t r e e t p a t t e r n s i n the s t e e p e r p o r t i o n o f the  t o w n s i t e are d i a g o n a l t o the s t e e p p a r t o f the  slope  m i n i m i z i n g the i n c l i n e s on which v e h i c l e s must c l i m b i n the w i n t e r snow and i c e c o n d i t i o n s ( f i g u r e 4 . 1 0 ) .  234 D. Wind The  t o w n s i t e s h o u l d be k e p t f a r enough below t h e  brow o f t h e h i l l  (Mt. B u l l i o n ) t o use b o t h topography  and v e g e t a t i o n t o h e l p b l o c k t h e w i n t e r winds from the n o r t h .  The t o w n s i t e s h o u l d e x t e n d no f a r t h e r  t h a n about  way up t h e s l o p e above D e c e p t i o n  Creek  i n order t o r e t a i n the f o r e s t e d area t o the north o f the t o w n s i t e . The  t a l l e r b u i l d i n g s on t h e n o r t h e a s t and n o r t h -  west s i d e o f t h e town c e n t e r c o u l d slow t h e c o l d winds from t h e n o r t h h e l p i n g t o c r e a t e a more tempera t e m i c r o - c l i m a t e i n t h e town c e n t e r ( f i g u r e  4.11).  E. S p e c i a l C l i m a t i c C o n d i t i o n s • B l o w i n g Snow B l o c k i n g w i n t e r winds w i t h t h e f o r e s t cover and b u i l d i n g s t o t h e n o r t h s i d e o f t h e t o w n s i t e would h e l p t o minimize  any snow d r i f t i n g i n t h e town c e n t e r  w h i c h might o c c u r . of s u f f i c i e n t  Due t o t h e v e g e t a t i o n and l a c k  w i n d , b l o w i n g snow and snow d r i f t i n g  i s n o t a major problem. • Permafrost The  s i t e i s f r e e o f permafrost p e r m i t t i n g  standard spread f o o t i n g foundations w i t h the s t r u c t u r e s s i t t i n g on o r i n t h e ground. • F r o s t Heave Most o f t h e s i t e i s w e l l d r a i n e d .  The a r e a immed-  i a t e l y t o the southeast o f the housing area appears t o have poor d r a i n a g e and s h o u l d be a v o i d e d i f e x p a n s i o n of the housing area occurred.  WESTGATE  5  J  -  A  I ' l l "  ^*  i  j  »! _j  T^TiaVrJcetvfT^.. V**YAMl.)  1 STREET  { :*tiiafe  ; •• P w n K of  RtStRVAHON/'  /  MMM 1 Tr* KM  *«..«-» ..<•  t  HAP O F  *M!>I. .  tt,-  ct  *«  e«'t>'.a  ta.'-wi.«i  ~;Y f!  ~«  SSTiil" " 1 1  gsag-:|j  n^uge 4 . 1 2  Gouiha Co.  !';• '. - 5 *  • '  .  .  pE«« Ev jjjts  Bp&i  it sas^y s;i\:;.L  :  TST.-.  &"! S J  K3| •  P31  ®t  II  fed  236 4.5  CONCLUDING REMARKS T h i s l a s t p a r t has been an example o f t h e a p p l i -  c a t i o n o f t h e d e s i g n r e s p o n s e s from c h a p t e r 3 as they r e l a t e t o a s p e c i f i c s i t e c o n d i t i o n . of t h i s t h e s i s i s not t o provide a c l i m a t i c  The i n t e n t analysis  f o r d e s i g n a t one p a r t i c u l a r a r e a , t h e W i l l o w S i t e , but t o d e s c r i b e many d i f f e r i n g b u i l d i n g  responses  which c o u l d be a p p l i e d t o n e a r l y any s p e c i f i c  site  c o n d i t i o n i n t h e A r c t i c and S u b a r c t i c R e g i o n s . The d e s c r i p t i o n s o f t h e b u i l d i n g d e s i g n r e s p o n s e s at the d i f f e r e n t planning l e v e l s i n chapter 3 are the main body o f t h i s t h e s i s and t h e i m p l e m e n t a t i o n o f t h e s e i s viewed a s an ongoing p r o c e s s dependent on the i n d i v i d u a l needs and s p e c i f i c s i t e  conditions.  237 k*k  REFERENCES 1 Computed from sun path diagrams  by  constructed  the author 2 ibid. & Number o f h o u r s o f p o s s i b l e  sunshine p r i n t e d i n  the Anchorage D a i l y Times, v a r i o u s  issues during the  year. ^ U.S. Dept. o f Commerce, NOAA, L o c a l  Climatological  D a t a , A n n u a l Summary w i t h Comparative D a t a , T a l k e e t n a , 1974 and Anchorage, 1973» N a t i o n a l N. C., e x t r a p o l a t i o n for  Climatic Center,  of data to a r r i v e a t f i g u r e s  Willow. ^ C a p i t a l S i t e S e l e c t i o n Committee, "The S e l e c t i o n  of a c a p i t a l S i t e W i l l Soon Be i n Your Hands", supplement t o a l l A l a s k a n newspapers, summer, 1976. U> E x t r a p o l a t i o n  o f NOAA d a t a f o r T a l k e e t n a and  Anchorage. 7 Ibid. & Ibid. ^ Ibid. ^ C a p i t a l S i t e S e l e c t i o n Committee, "The S e l e c t i o n " . 11 E x t r a p o l a t i o n o f NOAA d a t a f o r T a l k e e t n a and Anchorage. 12 i b i d . t 5  Ibid.  1 4  Ibid.  ^ C a p i t a l S i t e S e l e c t i o n Committee. 1 f a  Ibid.  17 T o p o g r a p h i c d e r i v e d by a u t h o r from USGS TopoA  g r a p h i c Map (Anchorage m i n o r r e v i s i o n s 1971  C-8),1"= l m i l e , 1950 w i t h  238 1fr C a p i t a l S i t e S e l e c t i o n  Committee.  °> I b i d .  1  ™  Ibid.  ^  Map o f h y d r o l o g i c a l  features  derived  from USGS  map, Anchorage C-8. z  ^  ^ Capital Site Selection  Committee.  Map o f v e g e t a t i o n d e r i v e d  Map (Anchorage C-8).  from USGS T o p o g r a p h i c  239  BIBLIOGRAPHY  EXPLANATION OF BIBLIOGRAPHY 1. REFERENCE MATERIAL CITED 2. SOURCES CONSULTED A* Energy Conservation/Thermal Design B. Solar Radiation  Studies/Applications  C. Northern Studies/Building  240 EXPLANATION OF BIBLIOGRAPHY The b i b l i o g r a p h i c m a t e r i a l i s d i v i d e d i n t o two major h e a d i n g s : 1. R e f e r e n c e M a t e r i a l C i t e d , a n d 2. Sources C o n s u l t e d . The f i r s t  s e c t i o n , reference  bibliography  m a t e r i a l c i t e d , i s the  o f t h e s o u r c e s c i t e d a t t h e end o f each  c h a p t e r (end o f each s e c t i o n i n c h a p t e r 3) p l a c e d i n a l p h a b e t i c a l o r d e r by t h e a u t h o r ' s l a s t name, o r title  o f work i f no a u t h o r i s g i v e n . The second s e c t i o n , s o u r c e s c o n s u l t e d ,  i sa  b i b l i o g r a p h i c l i s t i n g of the m a t e r i a l consulted  which  r e l a t e s t o v a r i o u s areas o f concern w i t h i n the t h e s i s . T h i s s e c t i o n i s broken i n t o t h r e e  subsections:  A. Energy C o n s e r v a t i o n / T h e r m a l D e s i g n , B. S o l a r R a d i a t i o n S t u d i e s / A p p l i c a t i o n s , and C. N o r t h e r n  Studies/Building.  The m a t e r i a l i s p l a c e d  i n a l p h a b e t i c a l o r d e r by t h e  a u t h o r ' s l a s t name o r t h e t i t l e o f t h e work i f no a u t h o r i s g i v e n ; t h e Canadian government p u b l i c a t i o n s have 7 s u b t a g o r i e s c a  where t h e p u b l i c a t i o n s a r e l i s t e d  by p u b l i c a t i o n number from e a r l i e s t t o l a t e s t t i o n date.  publica-  241 1.  REFERENCE MATERIAL CITED A l a s k a , S t a t e o f . A l a s k a S t a t e w i d e Housing S t u d y , 1971, V o l . 1: H o u s i n g C o n d i t i o n s and Needs. Juneau, A l a s k a . Anderson, B e t t e Roda. Weather i n t h e West. American West P u b l i s h i n g Co., P a l o A l t o , C a l i f . , 1975. A r c h i t e c t u r a l G l a s s P r o d u c t s . M a n u f a c t u r e r s Pamphlet. Canadian P i t t s b u r g h I n d u s t r i e s , 1976. ASHRAE.  Handbook o f Fundamentals. American S o c i e t y of H e a t i n g , R e f r i g e r a t i n g and A i r C o n d i t i o n i n g E n g i n e e r s , New York, 1967.  B i t t e r , C., and I e r l a n d , J.F.A.A. " A p p r e c i a t i o n o f S u n l i g h t i n t h e Home." C I E P r o c e e d i n g s : S u n l i g h t i n B u i l d i n g s , pp. 27-37. E d i t e d by R. G. Hopkinson. U n i v e r s i t y o f NewcastleUpon-Tyne, E n g l a n d , 1965. Canada. Department o f T r a n s p o r t . M e t e o r o l o g i c a l Branch, Toronto. C l i m a t i c Normals, Volumn 5, Wind, 1968. Temperature and P r e c i p i t a t i o n T a b l e s f o r B r i t i s h Columbia, 1967. Canada. N a t i o n a l Research C o u n c i l . D i v i s i o n o f B u i l d i n g R e s e a r c h , Ottawa. B e t t e r B u i l d i n g B u l l e t i n #5. P e r m a f r o s t and B u i l d i n g s , 1955. CBD 26. Ground F r e e z i n g and F r o s t H e a v i n g ,  1962. CBD 28. CBD 39*  Wind on B u i l d i n g s , 1962. S o l a r Heat G a i n Through G l a s s W a l l s ,  1963. CBD 56.  Thermal and M o i s t u r e D e f o r m a t i o n s i n B u i l d i n g M a t e r i a l s . 1964.  CBD 59.  P r i n c i p l e s o f S o l a r Shading,  1964.  H o u s i n g Note No. 21. I n s u l a t i o n T h i c k n e s s f o r Houses, 1964. NRC 8151. D e t e r m i n i n g t h e Optimum T h i c h n e s s o f I n s u l a t i o n f o r Heated B u i l d i n g s ,  T965T  NRC 8152.  >  H u m i d i t y and B u i l d i n g s ,  1964.  NRC 9132. M o i s t u r e A c c u m u l a t i o n i n Roof Spaces Under Extreme W i n t e r c o n d i t i o n s , 1966. CBD 89.  I c e on R o o f s ,  1967.  242 116. D u r a b i l i t y o f C o n c r e t e Under W i n t e r C o n d i t i o n s , 1969T "  CBD  Housing Note No. 31. Heat L o s s e s From House Basements, 1969. CBD  126. I n f l u e n c e o f O r i e n t a t i o n on E x t e r i o r C l a d d i n g , 1970.  CBD  128. A d f r e e z i n g and F r o s t Heaving o f F o u n d a t i o n s , 1970.  11843.  NRCC  1971.  146. C o n t r o l o f Snow D r i f t i n g About B u i l d i n g s , 1972.  CBD TT  C o n s t r u c t i o n on P e r m a f r o s t ,  1547. S t a t e Committee o f t h e C o u n c i l o f M i n i s t e r s f o r B u i l d i n g Problems. I n s t r u c t i o n s F o r The Design o f T o w n s i t e s , F a c t o r i e s , B u i l d i n g s and S t r u c t u r e s i n The N o r t h e r n C o n s t r u c t i o n - C l i m a t i c Zone, Moscow 1967. T r a n s l a t e d by V. Pope,  1972.  CBD  157.  P r o p e r t i e s and B e h a v i o r o f P l a s t i c s ,  NRCC  1973. 13565.  NRCC  14588.  E f f e c t o f I n d o o r Shading and H e a t e r C o n f i g u r a t i o n s on t h e S u r f a c e Temperat u r e Performance o f a S e a l e d Double G l a z e d window, 1973. Condensation i n E l e c t r i c a l l y Heated Houses, 1974.  C a p i t a l S i t e S e l e c t i o n Committee. "The S e l e c t i o n o f a C a p i t a l S i t e W i l l Soon Be I n Your Hands." Supplement t o a l l A l a s k a n newspapers, Summer  1976.  C a r l s o n , A x e l . D e s i g n o f Roofs f o r N o r t h e r n R e s i d e n t i a l Construction. Cooperative Extension Service, University of Alaska, College, Alaska,  1973.  C a r l s o n , A x e l . E f f e c t o f W a l l Framing on Heat L o s s . Cooperative Extension S e r v i c e , Univ. o f A l a s k a ,  1972.  Carlson, Axel. Special Condiderations for Building i n Alaska. Cooperative Extension S e r v i c e , U n i v . o f A l a s k a , 1972. C a r l s o n , A x e l . Warm F l o o r s A r e E s s e n t i a l f o r Comfort. C o o p e r a t i v e E x t e n s i o n S e r v i c e , U. o f A., 1972. C l u n i e , D a v i d . "Two New N o r t h e r n Communities." C o n t a c t . B u l l e t i n o f Urban and E n v i r o n m e n t a l A f f a i r s , V o l . 8, No. 3 (August 1976): 309-315. F a c u l t y o f Environmental S t u d i e s , Univ. of Waterloo, Ontario.  243 Cook, E a r l . "The Society."  135-144.  Flow o f Energy i n an I n d u s t r i a l S c i e n t i f i c American (September 1971):  C u l j a t , B o r i s . C l i m a t e and t h e B u i l t Environment i n the North. A r k i t e k t u r s e k t i o n e n s t r y c k e r i , KTH, S t o c k h o l m , Sweden, 1975. E r s k i n e , R a l p h . "The C h a l l e n g e o f H i g h L a t i t u d e s . " RAIC J o u r n a l ( J a n u a r y 1964). .  "Community D e s i g n f o r P r o d u c t i o n , f o r Publ i c a t i o n , o r f o r the P e o p l e . " RAIC J o u r n a l ( J a n u a r y 1964).  .  " A r c h i t e c t u r e and Town P l a n n i n g i n The N o r t h . " P o l a r R e c o r d , V o l . 14, No. 89 (1968); 165-171.  .  "Feedback on Community P l a n n i n g . " Man i n the N o r t h T e c h n i c a l Paper, Conference on B u i l d i n g i n N o r t h e r n Communities: 1973, PP. 126-129, U n i v e r s i t y o f M o n t r e a l . The A r c t i c I n s t i t u t e o f N o r t h A m e r i c a , Ottawa.  F l o y d , P e t e r . "The N o r t h S l o p e C e n t e r : How B u i l t ? " The N o r t h e r n E n g i n e e r ( F a l l  22-36.  Was i t  1974):  F o r d , George. B u i l d i n g H e i g h t B u l k and Form. C i t y P l a n n i n g S t u d i e s 11, 1931.  Harvard  "Geodesic Domes". U n i v e r s i t y o f A l a s k a S h o r t Course. I n s t r u c t e d by R. Mathews. C o l l e g e , A l a s k a ,  1974.  G i n k e l , B l a n c h e Lemco van. "New Towns i n The N o r t h . " C o n t a c t , B u l l e t i n o f Urban and E n v i r o n m e n t a l A f f a i r s , V o l . 8, No. 3 (August 1976): 298-308. G.S.A.  Hay,  Energy C o n s e r v a t i o n D e s i g n G u i d e l i n e s f o r New O f f i c e B u i l d i n g s . General Services Administrat i o n , Washington, D.C, 1975.  John. R a d i a t i o n Data f o r B.C. and A l b e r t a . U n p u b l i s h e d a t t i m e o f use. Geography Department, U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r ,  1976.  H e y d e c k e r , Wayne, and G o o d r i c h , E r n e s t . " S u n l i g h t and D a y l i g h t f o r Urban A r e a s . " 1929. Regional Survey o f New York and I t s E n v i r o n s , V o l . V l l . pp. 142-201. Committee on R e g i o n a l P l a n of New York and I t s E n v i r o n s , 1929. H o p k i n s o n , R.G.; P e t h e r b r i d g e , P.; and Longmore, J . D a y l i g h t i n g . E n g l a n d , 1966. Heinemann: London.  244 "House o f t h e Week." F a i r b a n k s D a i l y News M i n e r . F a i r b a n k s , A l a s k a , September 10, 1976. "House o f t h e Week." Anchorage D a i l y Times. age, A l a s k a , May 21, 1976.  Anchor-  H.U.D.A. A B u i l d e r s ' Guide t o Energy C o n s e r v a t i o n . Housing and Urban Development A s s o c i a t i o n o f Canada, T o r o n t o , 1975. Jayaweera, K.O.L.F.; Wendler, G.; and Ohtake, T. "Low Cloud Cover and t h e W i n t e r Temperature of Fairbanks." Climate i n the A r c t i c . Geophysical I n s t i t u t e , Univ. o f A l a s k a , F a i r b a n k s , 1975. L e c k i e , J . ; M a s t e r s , G.; Whitehouse, H.; and Young, L. Other Homes and Garbage. S i e r r a C l u b Books, San F r a n c i s c o , 1975. L e d b e t t e r , B u r g e s s . P a r t 111, The Temporary E n v i r o n ment o f F o r t W a i n w r i g h t : Housing. Unpublished a t time o f use. C o l d R e g i o n s R e s e a r c h E n g i n e e r i n g L a b o r a t o r y (CRREL), Hanover, N. H. 1976. The M i l e p o s t , A l l - t h e - N o r t h T r a v e l Guide. E d i t e d by Bob Henning. A l a s k a Northwest P u b l i s h i n g Co. Anchorage, A l a s k a , 1974. M i r t h , R i c h a r d A. "The Sun Can Heat Our Homes - Even I n The N o r t h . " The N o r t h e r n E n g i n e e r ( F a l l 1974):  3-10.  Naramore, B a i n , B r o d y , and Johan6on. A l a s k a S t a t e C a p i t a l R e l o c a t i o n Study. B o e i n g Computer S e r v i c e s , J u l y 1974. Neubauer, L o r e n W. "The S e m i - S o l a r Low Cost House Saves Energy Through E n v i r o n m e n t a l O r i e n t a t i o n . " IAHS P r o c e e d i n g s : I n t e r n a t i o n a l Symposium on H o u s i n g Problems - 1976, V o l . 2. pp. 1415-1429. Clemson U n i v e r s i t y , 1976. O l g y a y , V i c t o r . D e s i g n With C l i m a t e . P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n , New J e r s e y , 1963. O s w a l t , W e n d e l l H. A l a s k a n Eskimos. i n g Co., 1967.  Chandler P u b l i s h -  A Q u a l i t a t i v e C h e c k l i s t f o r Compact Housing. G r e a t e r Vancouver R e g i o n a l D i s t r i c t (GVRD), P l a n n i n g Department, V a n c o u v e r , 1975* R a p o p o r t , Amos. House Form and C u l t u r e . P r e n t i c e - H a l l I n c . , Englewood C l i f f s , N. J . , 1969.  245 R i c e , Eb. " N o r t h e r n C o n s t r u c t i o n : S i t i n g and Foundat i o n s . " The N o r t h e r n E n g i n e e r ( S p r i n g 1973):  11-18.  . "The I d e a l A r c t i c House - 11.» E n g i n e e r (Summer 1973): 18-24.  The  Northern  . " H e a t i n g The I d e a l A r c t i c House - 111." The N o r t h e r n E n g i n e e r ( F a l l 1973): 16-23. . "Vapor B a r r i e r s , The I d e a l A r c t i c House - I V . " The N o r t h e r n E n g i n e e r ( W i n t e r 1973/74): 18-24. .  "Windows."  1974):  10-14.  The N o r t h e r n E n g i n e e r  (Spring  R i c e , Eb. I n s t r u c t o r o f A r c t i c E n g i n e e r i n g (CE 603 & CE 604), C l a s s Notes. U n i v e r s i t y o f A l a s k a ,  1973.  Road Map o f Southern A l a s k a . C a l i f o r n i a (Chevron). San J o s e , 1973.  S t a n d a r d O i l Company o f The H. M. Gousha Co.,  Schoenauer, N o r b e r t . "New Town D e s i g n and C l i m a t i c F a c t o r s . " Man i n t h e N o r t h T e c h n i c a l Paper. Conference on B u i l d i n g i n N o r t h e r n Communities: 1973, U n i v e r s i t y of M o n t r e a l , pp. 41-47. The A r c t i c I n s t i t u t e o f N o r t h A m e r i c a . Schoenauer, N o r b e r t . "Fermont, a New V e r s i o n o f t h e Company Town." J o u r n a l o f A r c h i t e c t u r a l Educat i o n ( J A E ) . V o l . XXIX, No. 3 ( F e b r u a r y 1976):  10,11.  Steadman, P h i l i p . E n e r g y , Environment and B u i l d i n g . Cambridge U n i v e r s i t y P r e s s , London/New Y o r k ,  1975.  U.S.  Department o f Commerce, N a t i o n a l Oceanic and Atmospheric A d m i n i s t r a t i o n (NOAA). N a t i o n a l C l i m a t i c C e n t e r , A s h v i l l e , N. C. L o c a l C l i m a t o l o g i c a l D a t a . Annual Summary w i t h Comparative D a t a : Anchorage, Alaska. 1973. Fairbanks, Alaska. 1974. T a l k e e t n a , A l a s k a . 1974* Minneapolis-St. P a u l , Minnesota. 1974. M o n t h l y Normals o f Temperature, P r e c l p l t a t i o n and H e a t i n g and C o o l i n g Degree Days, 1941-70,-Alaska. August 1973.  T  M o n t h l y Averages o f Temperature and P r e c i p i t a t i o n for State Climatic Divisions, 1941-70. A l a s k a , J u l y 1973.  246 U.S. G e o l o g i c a l S u r v e y . Anchorage 1950, minor r e v i s i o n s 1971.  (C-8) Quadrangle, 1" = 1 m i l e .  Wang, L. R., and T o b i a s s o n , Wayne. " L i f e C y c l e Cost E f f e c t i v e n e s s o f Modular Megastructures i n C o l d R e g i o n s . " IAHS P r o c e e d i n g s : I n t e r n a t i o n a l Symposium on Housing Problems: 1976, V o l . 1, pp. 760-776. I n t e r n a t i o n a l A s s o c i a t i o n f o r H o u s i n g S c i e n c e (IAHS) P u b l i c a t i o n , Clemson U n i v e r s i t y , 1976. Wechsberg,  James.  18, 1972).  "Morketiden."  New Y o r k e r (March  "When t h e House-Warming Sun Goes Down, Movable I n s u l a t i o n Goes I n t o P l a c e . " Sunset (November 1976):  166-168.  Z r u d l o , Leo R. "User Designed Housing f o r t h e I n u i t o f A r c t i c Quebec." The N o r t h e r n E n g i n e e r ( F a l l 1975): 36-44.  247 SOURCES CONSULTED Energy C o n s e r v a t i o n / T h e r m a l D e s i g n : AIA.  Energy and the B u i l t Environment* American I n s t i t u t e o f A r c h i t e c t s Research C o r p o r a t i o n , Washington D.C, 1974. AIA. Energy C o n s e r v a t i o n i n B u i l d i n g D e s i g n . American I n s t i t u t e o f A r c h i t e c t s , Washington D.C, 1974. Arums and Dodge. "Energy C o n s i d e r a t i o n s : Q u a n t i t a t i v e Methods i n T e a c h i n g A r c h i t e c t u r e . " DMG-DRS J o u r n a l ( J u l y - S e p t . 1975). B r a i n e r d , John. Working w i t h N a t u r e . s i t y P r e s s , New Y o r k , 1973.  Oxford Univer-  C a u d i l l , W.W. A Bucket o f O i l : H u m a n i s t i c Approach t o B u i l d i n g D e s i g n f o r Energy C o n s e r v a t i o n . Cahners Books, B o s t o n , 1974. C l e g g , P e t e r . New Low-Cost S o u r c e s o f Energy f o r t h e Home. Garden Way P u b l i s h i n g , C h a r l o t t e , Vermont, 1975. D u b i n , M i n d e l l , and Bloome A s s o c i a t e s . T o t a l Energy. A T e c h n i c a l Report from E d u c a t i o n a l F a c i l i t i e s L a b o r a t o r i e s , New York, May 1970. D u b i n , F r e d S. "GSA's Energy C o n s e r v a t i o n T e s t B u i l d i n g - A Report." A c t u a l S p e c i f y i n g E n g i n e e r (August 1973): 8 4 - 9 2 . ' Egan, M. D a v i d . Concepts i n Thermal Comfort. H a l l , Englewood C l i f f s , N. J . , 1975.  Printice  E n g l a n d . Department o f the Environment. Energy Cons e r v a t i o n : A Study o f Energy Consumption i n B u i l d i n g s and P o s s i b l e Means o f S a v i n g Energy i n H o u s i n g . BRE Working P a r t y R e p o r t , B u i l d i n g Research E s t a b l i s h m e n t , G a r s t o n , W a t f o r d , E n g l a n d , 1975. Gordon, A l e x . " F u t u r e O f f i c e D e s i g n : Energy I m p l i c a t i o n s . " J o u r n a l o f A r c h i t e c t u r a l Research (JAR) (September 1974): 6-14. G r i f f i n , C. W. Energy C o n s e r v a t i o n i n B u i l d i n g s , Techniques f o r E c o n o m i c a l D e s i g n . The C o n s t r u c t i o n S p e c i f i c a t i o n s I n s t i t u t e , Washington D.C,  1974.  248 GSA.  Energy C o n s e r v a t i o n G u i d e l i n e s f o r E x i s t i n g O f f i c e B u i l d i n g s . General S e r v i c e s Administ r a t i o n , P u b l i c B u i l d i n g s S e r v i c e , Washington D. C , 1975.  Hanna, Sherman. "Energy C o n s e r v a t i o n and D u r a b i l i t y C o n s i d e r a t i o n s i n D e s i g n i n g Houses f o r Low Income F a m i l i e s . " IAHS P r o c e e d i n g s : I n t e r n a t i o n a l Symposium on H o u s i n g P r o b l e m s , 1976, V o l . 2. Clemson U n i v e r s i t y , 1976. Knowles, R a l p h . Energy and Form, approach t o urban growth. b r i d g e , Mass., 1974.  an e c o l o g i c a l MIT P r e s s , Cam-  McGuinness, W i l l i a m J . , and S t e i n , Benjamin. M e c h a n i c a l and E l e c t r i c a l Equipment f o r B u i l d i n g s . John W i l e y and Sons, I n c . , New Y o r k , 1971. McHarg, I a n L. D e s i g n w i t h N a t u r e . P u b l i s h e d f o r The American Museum o f N a t u r a l H i s t o r y , Doubleday and Co, I n c . , Garden C i t y , New York, 1969. Paperback ed. 1971. Meer, W. J . v a n d e r . "Underground and E a r t h Covered H o u s i n g Deserves C o n s i d e r a t i o n . " IAHS Proceedi n g s , 1976, V o l . 2. Meng, E r i c G. The A P P l i c a t i n o f P a s s i v e and A c t i v e Energy C o n s e r v a t i o n P r i n c i p l e s i n The D e s i g n o f Low-Rise Apartment U n i t s . M a s t e r s o f A r c h i t e c t u r e T h e s i s , U n i v e r s i t y o f Washington, S e a t t l e , 1974. N i c h o l l s , Robert. "Determination of Optimal Investment T r a j e c t o r i e s f o r S i z i n g I n s u l a t i o n , H e a t i n g , and C o o l i n g Components o f Homes." IAHS Proceedi n g s , 1976, V o l . 2. Page, J . K. "The O p t i m i z a t i o n o f B u i l d i n g Shape t o Conserve Energy." J o u r n a l o f A r c h i t e c t u r a l R e s e a r c h ( J A R ) , (September 1974): 20-28. R o g e r s , T. S. D e s i g n o f I n s u l a t e d B u i l d i n g s f o r V a r i o u s C l i m a t e s . A r c h i t e c t u r a l Record Book. R o b e r t s P r i n t i n g Co., T o l e d o , O h i o , 1951. R o g e r s , T. S. Thermal D e s i g n o f B u i l d i n g s . John W i l e y and Sons, I n c . , New Y o r k , 1964. Smith and G l o s t e r . "The E c o - D e s i g n P r o j e c t . " J o u r n a l ( J u l y - S e p t . 1975).  DMG-DRS  S u n s h i n e , Donald R. "Space and Energy C o n s e r v a t i o n Housing P r o t o t y p e U n i t Development." IAHS P r o c e e d i n g s , 1976, V o l . 2.  249 U. S. N a t i o n a l S c i e n c e F o u n d a t i o n . R e s e a r c h A p p l i e d t o N a t i o n a l Needs (RANN). Energy Research and Technology. Washington D. C., 1975. Three Summaries From the N a t i o n a l S c i e n c e F o u n d a t i o n on the P o t e n t i a l Use o f S o l a r Energy F o r H e a t i n g and C o o l i n g B u i l d i n g s i n V a r y i n g L o c a t i o n s . Washington D. C., U. S.  Department o f Commerce. N a t i o n a l Bureau o f S t a n d a r d s . D e s i g n and E v a l u a t i o n C r i t e r i a f o r Energy C o n s e r v a t i o n i n New B u i l d i n g s . Washington D. C., 1974.  V a l e , Brenda and R o b e r t . Autonomous House. D e s i g n and P l a n n i n g f o r S e l f - s u f f i c i e n c y . Thames and Hudson, London, 1975. W h i t e , D a l e . " D e s i g n Methods f o r Energy onservation i n B u i l d i n g s . " DMG-DRS J o u r n a l ( J u l y - S e p t .  1975).  W i s n i k i , P a u l . " B u i l d i n g s and Energy." DMG-DRS J o u r n a l ( J u l y - September 1975).  250 Solar Radiation Studies/Applications: Addleson, L y a l l .  S u n l i g h t Geometry.  D a n i e l s , F a r r i n g t o n . D i r e c t Use o f the Sun's Energy. B a l l a n t i n e Books, New Y o r k , 1974. D e C h i r a , J . , and Koppelman, L. » Manual o f H o u s i n g / P l a n n i n g and D e s i g n C r i t e r i a . Printice- Hall, Englewood C l i f f s , N. J . , 1975. Hand, I r v i n g F. " C h a r t s t o O b t a i n S o l a r A l t i t u d e s and A z i m u t h s . " H e a t i n g and V e n t i l a t i n g (October 1948). M o o r c r a f t , C o l i n . " S o l a r Energy i n Housing." J o u r n a l (October 1973): 634-661.  A. D.  Morgan, C. J . " S u n l i g h t and I t s E f f e c t on Human B e h a v i o r and Performance." CIE Proceedings: S u n l i g h t i n B u i l d i n g s , pp. 21-26. E d i t e d by R. G. Hopkinson. E n g l a n d , 1965. R i t c h i e , J . H., and Page, J . K. " S t a n d a r d s f o r Suns h i n e and Sun C o n t r o l . " CIE Proceedings: S u n l i g h t i n B u i l d i n g s , pp. 39-47. R o b i n s o n , Nathan. S o l a r R a d i a t i o n . l i s h i n g Co, New York, i y b b .  E l s e v i e r Pub-  Snowden, Raymond D. H e l i o t h e r m i c P l a n n i n g : A Comparat i v e A n a l y s i s o f the E f f e c t s o f S o l a r R a d i a t i o n on the Thermal Balance (by p a s s i v e means) i n a Modeled B u i l d i n g S i t u a t i o n . M a s t e r s o f A r c h i t e c t u r e T h e s i s , U n i v e r s i t y o f Washington, S e a t t l e , 1975. Thomason, H a r r y . S o l a r House H e a t i n g and A i r Condit i o n i n g Systems. Edmund S c i e n t i f i c Co., New J e r s e y , 1975. Walsh, J . W. T. The S c i e n c e New York, 1961.  of Daylight.  Pitman,  251 C. Northern Studies/Building Brody, Hugh. The Peoples' Land. Penguin, 1975.  Harmondswarth:  Canada. National Research Council. Building Reaearch, Ottawa. 1.  D i v i s i o n of  General: Kan and His Thermal Environment, 1960.  NRC.5514. CBD 14.  Weather and Buildings, 1961.  2. S o i l s / Foundations: CBD 3.  S o i l s and Buildings, 196O.  CBD 62. Trees and Buildings, 1965. NRCC  11373. 1970.  CBD 148. NRCC  Permafrost as an E c o l o g i c a l Factor,  Foundation Movements, 1972.  12716. 1972.  CBD 156.  Thermal E f f e c t s i n Permafrost,  ~  Drainage Around Buildings, 1973.  3. Material Performance: CBD 117. Weathering of Organic Building Materi a l s , 1969. CBD 123. Cold Weather Masonry Construction, 1970. NRCC 12443. F i e l d Study of Thermal Performance of Exterior Steel Frame Walls, 1972. NRCC  13858.  Thermal Performance of Exterior Steel-Stud Frame Walls, 1972.  CBD 149. Thermal Resistance of Building Insulation, 1972. NRCC  14403.  Cold-Weather Performance of Hinged Exterior Doors, 1974.  4. Solar Radiation/Windows: CBD 17.  Daylight Design, 1961.  CBD 25.  Window A i r Leakage, 1962.  CBD 58. NRC  Thermal C h a r a c t e r i s t i c s of Double Windows, 1964.  9528.  Tables of Solar A l t i t u d e , Azimuth, Intensity and Heat Gain Factors for Latitudes from 43 to 55 Degrees North, T9T7I DBR No.355. Performance Standards for Space and Site Planning f o r R e s i d e n t i a l Development,  1968.  252 CBD  101.  Reflective Glazing Units, 1968.  NRC  11111. Solar 1969.-  CBD  122.  CBD  129. Potential f o r Thermal Breakage of Sealed Double-Glazing Units, 1970.  Radiation on Cloudy Days,  Radiation and Other Weather Factors,  1970.  5. Roof Design; CBD 70. Thermal Considerations i n Roof Design,  196T  CBD 73.  Moisture Considerations i n Roof Design, 196X CBD 99. Application o f Roof Design P r i n c i p l e s ,  ]9Zo~. CBD  151.  ~  Drainage From Roofs, 1972.  6. Humidity/Moisture: CBD  1.  CBD 4.  Humidity i n Canadian Buildings,  i960.  Condensation on Inside Window Surfaces,  196^  " ~~  CBD 5* Condensation Between Panes of Double Windows, I960. ~~ CBD 9.  Vapor B a r r i e r s i n Home Construction,  1960T  Housing Note No. 7. N a i l Popping: Moisture i s the Trouble-Maker, 1962. CBD 57.  Vapor D i f f u s i o n and Condensation, 1964.  NRC 9131. Moisture Accumulation i n Walls Due to A i r Leakage, 1966. 7. A i r Movement: CBD  10i+.  Stack E f f e c t i n Buildings. 1968.  CBD  107. ^Stack E f f e c t i n Building Design.  CBD  110.  V e n t i l a t i o n and A i r Quality. 1969.  Carlson, Axel. Windows Regulate Relative Humidity. Building i n Alaska, Cooperative Extension Service, University of Alaska, College, Alaska, May 1971. . Comparative Insulation Values and Weights of T y p i c a l Wall Sections. Coop, Ext. Service, Univ. o f Alaska, Feb. 1972.  253 C a r l s o n , A x e l . Heat L o s s C o e f f i c i e n t s o f B u i l d i n g M a t e r i a l . Coop. E x t e n s i o n S e r v i c e , U n i v . o f A l a s k a , Nov. 1972. . Heat L o s s and C o n d e n s a t i o n i n N o r t h e r n R e s i d e n t i a l C o n s t r u c t i o n ^ Coop. E x t . S e r v i c e , U n i v . o f Ak., Nov 1972. . "Design o f F l o o r s f o r A r c t i c S h e l t e r s . " The N o r t h e r n E n g i n e e r ( W i n t e r 1974/75): 38-46. E r s k i n e , Ralph. "Indigenous A r c h i t e c t u r e : A r c h i t e c t ure i n t h e S u b a r c t i c R e g i o n . " P e r s p e c t a 8, The Y a l e A r c h i t e c t u r a l J o u r n a l , 1963. Hartman, James R. A r c h i t e c t u r a l D e s i g n i n Heavy Snow C o u n t r y . M a s t e r s o f A r c h i t e c t u r e Thesi6, U n i v . o f Washington, S e a t t l e , 1975. Johnson,  P h i l i p R., and Hartman, C h a r l e s W. E n v i r o n ental Atlas o fAlaska. University of Alaska, C o l l e g e , A l a s k a , 1969.  Man  i n t h e N o r t h , 1970. Community Development i n the North. Progress Reports, Project Reports. A r c t i c I n s t i t u t e o f N o r t h A m e r i c a , Ottawa.  Man  i n the N o r t h T e c h n i c a l Paper. Conference on B u i l d i n g i n N o r t h e r n Communities, 1973, U n i v . o f M o n t r e a l . The A r c t i c I n s t i t u t e o f N o r t h A m e r i c a . 1973* Roundthewaite, C.F.T. " B u i l d i n g D e s i g n and C l i m a t i c F a c t o r s . " pp. 43-47. Aamot, H.W.C.  "The  PP. 47-51.  Design o f F l a t  A l l e n , G.B. "Low-Ri6e H o u s i n g  PP. 47-51.  Roofs."  Program."  Z r u d l o , Leo. " P s y c h o l o g i c a l Problems and onmental D e s i g n . " pp. 118-126.  Envir-  S t a i r s , K.W. "Community Development i n the N o r t h . " pp. 129-13L C r i t t e n d e n , E.B. "Psycho-Graphic ceedures." pp. 131-133. Man  D e s i g n Pro-  i n t h e N o r t h T e c h n i c a l Paper» B u i l d i n g i n N o r t h e r n Communities, 1974. Report on C o n f e r e n c e / Workshop i n I n u v i k , N.W.T. Feb. 10-15, 1974. E d i t e d by M. G l o v e r . A r c t i c I n s t i t u t e o f N o r t h A m e r i c a , Ottawa. 1974.  M a t t h i a s s o n , J . S. R e s i d e n t P e r c e p t i o n s o f Q u a l i t y o f L i f e i n Resource F r o n t i e r Communities. Center of Settlement S t u d i e s , U n i v e r s i t y of Manitoba, Winnipeg, 1971.  254 McFadden, T e r r y . " E x p e r i m e n t a l H o u s i n g P r o j e c t . " The N o r t h e r n E n g i n e e r ( S p r i n g 1972): 12-18. O s t e r g a a r d , P e t e r E. Q u a l i t y o f L i f e i n a N o r t h e r n C i t y : A S o c i a l Geography o f Y e l l o w k n l f e , N.W.T. M a s t e r s T h e s i s , Department o f Geography, U n i v . o f B r i t i s h C o l u m b i a , V a n c o u v e r , 1976. P a r s o n s , G. F. A r c t i c Suburbs: A Look a t t h e N o r t h ' s Newcomers" Mackenzie D e l t a Research P r o j . No.8. Ottawa: N o r t h e r n S c i e n c e R e s e a r c h Group, Department o f I n d i a n A f f a i r s and N o r t h e r n Development, 1970. R i c e , Eb. " P e r m a f r o s t : I t s Care and F e e d i n g . " The N o r t h e r n E n g i n e e r ( W i n t e r 1972): 21-26. S c h a r f e r , David. Regions."  4-6.  " M o b i l e and Modular Homes f o r C o l d The N o r t h e r n E n g i n e e r ( S p r i n g 1971):  Searby, H a r o l d W., and B r a n t o n , C. I v a n . "Climatic C o n d i t i o n s i n A g r i c u l t u r a l Areas i n A l a s k a . " Climate i n the A r c t i c . Geophysical I n s t i t u t e , U n i v e r s i t y o f A l a s k a , F a i r b a n k s , 1975. Siemens, L.B. " S i n g l e - E n t e r p r i s e Communities on Canada's Resource F r o n t i r e . " C o n t a c t , B u l l e t i n o f Urban and E n v i r o n m e n t a l A f a a i r s , V o l . 8, No. 3 (August 1976). . P l a n n i n g Communities f o r t h e N o r t h , Some S o c i a l and P s y c h o l o g i c a l I n f l u e n c e s . C e n t e r f o r settlement S t u d i e s , U n i v e r s i t y of Manitoba, S e r i e s 5: O c c a s i o n a l P a p e r s , No. 1, 1969. S t a n f o r d Research I n s t i t u t e . Planning Guidelines f o r the S t a t e o f A l a s k a , Prepared f o r the O f f i c e o f t h e Governor, S t a t e o f A l a s k a , Dec. 1969. Wentink, T u n i s , J r . "Wind Power f o r A l a s k a , An Imposs i b l e Dream?" The N o r t h e r n E n g i n e e r ( W i n t e r  1973/74): 8-17.  255 APPENDIX  A  ANALYSIS OF THE CLIMATIC FACTORS IN THE SUSITNA VALLEY AREA 1.  INTRODUCTION  2.  GEOGRAPHIC AREA  3.  SOLAR RADIATION A. Sunpath Diagram B. R a d i a t i o n C a l c u l a t o r C. Sun A l t i t u d e D. Sun A s i m u t h E. Number o f D a y l i g h t Hours F. Mean C l o u d Cover G. S o l a r R a d i a t i o n on B u i l d i n g S u r f a c e s H. A n a l y s i s o f N o r t h e r n S o l a r R a d i a t i o n Data  4.  TEMPERATURE  5.  PRECIPITATION  6.  WIND  7.  RELATIVE HUMIDITY/MOISTURE POTENTIAL  8.  BIOCLIMATIC CHART  9.  TIMETABLE OF CLIMATIC NEEDS  256 1.  INTRODUCTION T h i s i s an a n a l y s i s o f s o l a r r a d i a t i o n , temp-  e r a t u r e , p r e c i p i t a t i o n , w i n d , and  humidity/moisture  p o t e n t i a l f o r the S u s i t n a V a l l e y l o c a l i n the T r a n s i t i o n a l Zone. v a r i o u s c h a r t s and  Alaskan  E x p l a n a t i o n s are g i v e n f o r the graphs p r e s e n t e d  here.  Comfort  f a c t o r s a r e d e s c r i b e d i n the b i o c l i m a t i c c h a r t  and  t i m e t a b l e o f c l i m a t i c needs a t the end o f the a p p e n d i x . There are two gain.  The  " s e c t i o n s " d e a l i n g w i t h s o l a r heat  f i r s t i s based on t h e sunpath diagram  V i c t o r o l g y a y ' s r a d i a t i o n c a l c u l a t o r , w h i l e the  and other  i s based on John Hay's computer programmed r a d i a t i o n v a l u e s f o r W h i t e h o r s e , Yukon T e r r i t o r y , (61° latitude).  north  I f discrepencies i n information e x i s t ,  John Hay's v a l u e s would most l i k e l y be more a c c u r a t e . Much o f the i n f o r m a t i o n from t h i s a n a l y s i s i s used w i t h i n the t e x t .  Chapter 2, the c l i m a t i c com-  p a r i s o n s , draws h e a v i l y from t h i s m a t e r i a l .  257 2. GEOGRAPHIC AREA The  T a l k e e t n a weather s t a t i o n ,  +350  feet eleva-  t i o n above s e a l e v e l , i s l o c a t e d 80 m i l e s n o r t h o f Anchorage and 44 m i l e s n o r t h o f t h e W i l l o w development area.  I t l i e s a t t h e upper end o f t h e broad S u s i t n a  R i v e r V a l l e y near t h e j u n c t i o n o f t h e S u s i t n a , T a l k e e t n a , and C h u l i t n a R i v e r s .  To t h e e a s t the  Talkeetna Mountains r i s e r a p i d l y i n a north/south l i n e w h i l e t h e A l a s k a Range r i s e s some d i s t a n c e t o the n o r t h w i t h Mt. M c k i n l e y a p p e a r i n g  t o the northwest.  The v a l l e y a r e a v a r i e s between low l y i n g swamp l a n d and  s l i g h t l y h i g h e r ground s u p p o r t i n g t h e growth o f  b i r c h and s p r u c e t r e e s .  The r i v e r f l o w s  south  w i n d i n g i t s way i n t o Cook I n l e t west o f Anchorage. The  v a l l e y o r i e n t a t i o n being north/south  leaves a  broad a r e a open t o t h e low w i n t e r sun and i n f l u e n c e s the wind p a t t e r n s i n t o a n o r t h / s o u t h  profile.  258  r  - ••  £ £ * - • <*  • K m * 4' ***  .*}f -^  *•- ^po"* 1  '- * t  •' $ **\  fjS  I /  •'  -' • Jia. ••• 1  '-Jr.* / -  259 3 .  SOLAR RADIATION  A. SUNPATH DIAGRAM The sunpath diagram p l o t s t h e path o f t h e sun f o r each month, p r o j e c t i n g them onto a f l a t  surface.  There a r e s e v e r a l t y p e s o f sunpath d i a g r a m s , I chose t o c o n s t r u c t t h e e q u i d i s t a n t t y p e because: 1.  I t i s t h e most commonly used by d e s i g n e r s , b e i n g manufactured and d i s t r i b u t e d by a major g l a s s company, and  2. The s o l a r a l t i t u d e a n g l e s a r e p l o t t e d e q u a l l y from t h e o u t s i d e o f t h e c i r c l e t o t h e c e n t e r (90°  (0°  altitude)  altitude).  T h i s becomes more c r i t i c a l a t h i g h l a t i t u d e s due t o the low sun a n g l e much o f t h e t i m e . Twelve noon i s r e p r e s e n t e d by t h e c e n t e r n o r t h / s o u t h l i n e w i t h t h e hour l i n e s g o i n g o f f t o b o t h s i d e s , am (morning) t o t h e e a s t and pm ( a f t e r n o o n ) t o t h e west. From t h e diagram one can f i n d : 1. Azimuth o f t h e sun a t anytime o f t h e day i n any month o f t h e y e a r , 2. S o l a r a l t i t u d e anytime o f t h e day i n any month o f t h e y e a r , and 3. Length o f t h e day d u r i n g any month.  260  261 B.  RADIATION CALCULATOR The r a d i a t i o n from V i c t o r used i n mine of  Olgyay's  conjunction  the  possible  the y e a r .  for  the  while  center  surface  with  solar  the  give  and t o t a l  a horizontal  while  when t h e  area.  lines  radiation  radiation  sun  on a h o r i z o n t a l  i n BTU's  on a n y  day  calculator  on t h e  sun-  on a v e r t i c a l The  deter-  curved for  surface lines a  vertical  projecting on a  (direct  can  out  from  horizontal  and d i f f u s e )  on  surface.  t h e more r a d i a t i o n are  the  is  available  radiation  straight  The maximum r a d i a t i o n available  of  radiation  direct  projected  sunpath diagram to  radiation  and d i f f u s e the  graphically  Radiation Calculator,  any o r i e n t a t i o n .  combine d i r e c t surface  Total  By r o t a t i o n  path d i a g r a m , the be r e a d  calculator,  is  per hour  on a v e r t i c a l  • s altitude surface  the  is  surface  close  higher  the  t o 32°, altitude  received.  Radiation values  per  foot  square  of  is  surface  262  p ^ s t ^ M wrm QUNVOB.  263 SUN ALTITUDE T h i s c h a r t p l o t s the l a t i t u d e o f t h e sun above the h o r i z o n a t mid-day f o r each month.  For the  S u s i t n a V a l l e y , t h e s m a l l e s t a n g l e i s about Decern e r ' 2 1 s t and 5 l £ ° on June 2 1 s t .  on  D u r i n g the  e q u i n o x e s , September 2 1 s t and March 2 1 s t , t h e a n g l e would be 7 way between t h e s e two a n g l e s , 28° a l t i t u d e . I t has been documented t h a t t h e b i o l o g i c a l of s o l a r r a d i a t i o n i s non-existent  effect  below 6 ° a l t i t u d e ,  w h i l e t h e u l t r a - v i o l e t r a d i a t i o n d i s a p p e a r s when the a l t i t u d e i s l e s s than 1 2 * .  From t h e f i r s t  part o f  November t o t h e f i r s t o f F e b r u a r y the sun remains below t h e 10* l e v e l so t h a t s o l a r h e a t g a i n  during  t h i s time i s m i n i m a l . The s o l a r a l t i t u d e may be c a l c u l a t e d by the equation, s i n - cos © c o s ^ cos t + s i n © s i n S , S = s o l a r d e c l i n a t i o n ( 0 * a t e q u i n o x e s t o +23%" t o -23-?" a t s o l s t a c e s ) , t = h o u r s from noon ( 1 5 * = 1 h o u r , 0 a t noon), © = l a t i t u d e ( 6 2 ° i n t h i s case). As an a l t e r n a t i v e , t h e sun a n g l e may be s c a l e d graphi c a l l y o f f t h e sunpath diagram w i t h a p i v o t i n g sun altitude scale. SUN AZIMUTH The sun's a z i m u t h i s the a n g l e t r a v e l e d by the sun d u r i n g t h e day p r o j e c t e d on a h o r i z o n t a l surface.  The sunpath diagram i s an e q u i d i s t a n t  p r o j e c t i o n o f t h e sun's a z i m u t h t r a v e l d u r i n g each month.  So on March 2 1 s t o r September 2 1 s t t h e sun  r i s e s i n t h e E a s t , 90® a z i m u t h , and s e t s i n the West, 2 ? 0 ° a z i m u t h , w i t h a t o t a l t r a v e l on 1 8 0 ° i n 12 h o u r s . The a z i m u t h i s measured from N o r t h , 0 ° .  The c h a r t  shows t h e change o f a z i m u t h s o v e r the y e a r by months. The h i g h e r t h e l a t i t u d e , t h e g r e a t e r t h e a z i m u t h change from season to s e a s o n , t h e sun t r a v e l s g r e a t e r d i s t a n c e s i n t h e summer and s h o r t e r d i s t a n c e s i n t h e winter.  At h i g h e r l a t i t u d e s , t h e l o n g e r t h e summer  264 days become and the shorter the winter days become t i l l we reach the a r c t i c c i r c l e where there i s no sun during the winter solstace and 24 hours of sun during the summer solstace (azimuth t r a v e l from 0° to 360°).  265  » LlAKJ  FPP-> , I ^ L . A f K  H A Y Jt'iJ  J U L . AOS., 5 3 ^  •  r4°Y, '..PES-,  266 E. NUMBER OF DAYLIGHT HOURS T h i s graph p l o t s the e s t i m a t e d a c t u a l hours o f s u n s h i n e per day on a monthly b a s i s .  T h i s graph does  not d i s t i n g u i s h when the s u n s h i n e most o f t e n o c c u r s d u r i n g the day (morning, a f t e r n o o n , e v e n i n g , or n i g h t ) as t h i s i n f o r m a t i o n i s not a v a i l a b l e . I t can be seen t h a t some months f a l l above the 50%  l i n e , w i t h the peak o c c u r i n g i n l a t e  May/early  June b e f o r e the summer s o l s t a c e , w i t h an average 10 h o u r s o f s u n s h i n e i n a day  l8-£  of  hours l o n g .  F. MEAN CLOUD COVER The m a j o r i t y o f c l e a r days o c c u r i n the w i n t e r months o f December and J a n u a r y d u r i n g which the days are  t o 6 h o u r s , and the n i g h t s l o n g , 18 t o  short,  19-J h o u r s .  From A p r i l t o August  the number o f c l e a r  days a r e s m a l l , from 1 t o 6 per month.  During  t i m e , the c o m b i n a t i o n o f p a r t l y c l o u d y and  this  clear  days t o t a l l e s s t h a n 50% o f the time - most o f  this  time the s k i e s are c l o u d y . March and September have the h i g h e s t p e r c e n t o f sunshine.  D u r i n g these months the l e n g t h o f day  and  n i g h t a r e c l o s e t o e q u a l , 12 h o u r s , and the c l e a r and p a r t l y c l o u d y days t o t a l 15 t o 17 per month. The h o r i z o n t a l s u r f a c e g e t s more r a d i a t i o n t h a n any o t h e r s u r f a c e from m i d - A p r i l t h r o u g h p e a k i n g i n June.  August,  The s o u t h f a c i n g v e r t i c a l s u r f a c e  r e c e i v e s t h e most s o l a r r a d i a t i o n f o r the  remainder  of t h e y e a r . An e a s t o r west v e r t i c a l s u r f a c e w i l l get approxi m a t e l y the same amount o f r a d i a t i o n d u r i n g the summer s o l s t a c e as the s o u t h f a c i n g v e r t i c a l s u r f a c e g e t s d u r i n g the e q u i n o x e s .  267 \  268 G. SOLAR RADIATION ON BUILDING  SURFACES  Using the sunpath diagram for 62  north latitude  and the r a d i a t i o n c a l c u l a t o r , the amount of t o t a l r a d i a t i o n (no cloud cover) was plotted for v e r t i c a l surfaces facing north, south, east, and west, and for a h o r i z o n t a l surface f o r each month of the year. The h o r i z o n t a l surface and the north, east, and west v e r t i c a l surfaces pick up only diffuse r a d i a t i o n during the winter months making their winter values much lower than those of the south facing v e r t i c a l -surface. The south facing v e r t i c a l surface reaches i t s peak during the equinoxes dropping down i n the summer when the sun angle i s higher.  With the sun angle  lower i n the mornings and afternoons the maximum r a d i a t i o n for the north, east, and west v e r t i c a l surfaces occur during the summer solstace, the east surface picking up the majority of r a d i a t i o n i n the mornings and the west surface getting i t s i n the afternoons.  The north side v e r t i c a l surface gets  summer sun i n early mornings and late  evenings.  269  JAU  FBg  HAg-'APg.  MAY  OUM  JIM  AU5  Sep-  <flsr  Kigy  PSi.  aw*  E3 =1  3  -9-JSSL  :::-rt::  hdnrrr:  : : - : : : : : t : .• £*XJTH : :  •ten  Mi  mm  :  270 H. ANALYSIS OF NORTHERN SOLAR RADIATION DATA P e r c e n t a g e comparison c h a r t s  were c o n s t r u c t e d  u s i n g Dr. John Hay s s o l a r r a d i s t i o n d a t a f o r Whiteh o r s e , Y.T., a p p r o x i m a t e l y 61°north l a t i t u d e .  The  data gives s o l a r r a d i a t i o n values f o r a l l i n c l i n a t i o n s (10°  i n t e r v a l s ) and o r i e n t a t i o n s  each month o f t h e y e a r .  (45°  intervals) for  I t i s assumed t h a t the S u s i t n a  V a l l e y w i l l e x p e r i e n c e more c l o u d  cover t h a n White-  h o r s e c a u s i n g l e s s d i r e c t s o l a r r a d i a t i o n o v e r the y e a r l y p e r i o d , e s p e c i a l l y i n t h e l a t e summer and e a r l y f a l l when t h e S u s i t n a V a l l e y g e t s i t s m a j o r i t y of  rainfall.  CHART 1:  D i r e c t , D i f f u s e , and R e f l e c t e d  This chart  Radiation  compares t h e s e t h r e e d i f f e r e n t  s o u r c e s o f s o l a r r a d i a t i o n (%) f o r each month.  The  c o l d e s t months have t h e h i g h e s t p e r c e n t a g e s f o r d i r e c t r a d i a t i o n w h i l e from Feb. t h r o u g h A p r i l the d i r e c t r a d i a t i o n d r o p s and the r e f l e c t e d r a d i a t i o n becomes high (albedo).  The d i r e c t r a d i a t i o n a v e r a g e s a  l i t t l e o v e r 52% o f t h e t o t a l r a d i a t i o n ; the d i f f u s e r a d i a t i o n , 35%> CHART 2:  % of Yearly Total  This chart  Radiation  p l o t s the t o t a l r a d i a t i o n ( d i r e c t ,  d i f f u s e , and r e f l e c t e d ) f o r each month. months, mid-October t h r o u g h M i d - F e b r u a r y , o n l y 10% o f t h e t o t a l y e a r l y CHARTS  \3%*  and t h e r e f l e c t e d r a d i a t i o n ,  3,4,5, & 6: Radiation West, and  The  coldest  receive  radiation.  % o f D i r e c t , D i f f u s e , and  on O r i e n t a t i o n s :  Reflected  North, East, South,  Horizontal  These c h a r t s  compare t h e d i r e c t , d i f f u s e , and  r e f l e c t e d s o l a r r a d i a t i o n on the 5 o r i e n t a t i o n s by seasons.  C h a r t 3 p l o t s t h e w i n t e r season (November  t h r o u g h F e b r u a r y ) ; c h a r t 4 p l o t s the s p r i n g (March t h r o u g h J u n e ) ; c h a r t  season  5 p l o t s t h e summer season  ( J u l y t h r o u g h O c t o b e r ) ; and c h a r t 6 p l o t s t h e % o f t o t a l r a d i a t i o n f o r t h e whole y e a r t o t h e 5 o r i e n t a t i o n s .  271 During the winter season, the south orientation receives  far more r a d i a t i o n than any other orientation.  In the spring and summer the d i s t r i b u t i o n evens out more with the horizontal surface  receiving  more than the south v e r t i c a l surface  slightly  and the south  v e r t i c a l surface receiving s l i g h t l y more radiation than east or west orientations. Over the entire year, the solar r a d i a t i o n would have i t s greatest  (2if.8%)  impact on the south v e r t i c a l  surface  of the yearly t o t a l ) , with the horizontal  close behind (2i+% of the yearly t o t a l ) .  The east  and west orientations both receive about 19% of the yearly r a d i a t i o n while the north orientation  receives  10% (nearly a l l diffuse and r e f l e c t e d r a d i a t i o n ) .  2?2  273  274  276 k* TEMPERATURE The w i n t e r p e r i o d , d u r i n g which t h e ponds, l a k e s , and r i v e r s a r e f r o z e n , f a l l s between mid-October t o mid-April.  P e r i o d s o f c l e a r , c o l d weather  alternate  w i t h c l o u d y , m i l d weather d u r i n g t h e w i n t e r .  First  snow w i l l o c c u r around l a t e September and w i l l on t h e ground from mid-October  stay  t i l l A p r i l w i t h an  o c c a s i o n a l "January Thaw" which r e d u c e s t h e snow l e v e l accumulation. The A l a s k a Range i s an e f f e c t i v e b a r r i e r between the  v e r y c o l d a i r i n the i n t e r i o r and t h e warmer a i r  i n t h e Cook I n l e t a r e a .  The extreme c o l d w i n t e r  weather, a s s o c i a t e d w i t h a h i g h p r e s s u r e system over I n t e r i o r A l a s k a , may l e a d t o a s u c c e s s i o n o f c l e a r days w i t h t e m p e r a t u r e s d r o p p i n g t o -20° t o -35°F (extremes t o -1+0°F do n o t o c c u r e v e r y y e a r ) . D u r i n g December and J a n u a r y , because o f t h e low sun a n g l e , t h e d i u r n a l e f f e c t on temperature i s minimal.  The major e f f e c t on temperature i s c l o u d  c o v e r , when t h e s k i e s c l e a r , t h e temperature drops r a p i d l y i n t h e low l y i n g a r e a s when t h e r e i s l i t t l e wind.  These a r e t h e c o l d t e m p e r a t u r e i n v e r s i o n s  which account f o r most o f t h e e x t r e m e l y c o l d tures.  tempera-  The c o l d e s t t e m p e r a t u r e s a r e n o r m a l l y i n t h e  l o w e s t v a l l e y a r e a s s i n c e t h e c o l d a i r f l o w s down t o these areas ( k a t a b a t i c wind). hundred  On h i l l s i d e s  several  f e e t up, t h e t e m p e r a t u r e s may be a s much as  25° t o 30°F warmer t h a n t h e lower a r e a s . L o o k i n g a t t h e g r a p h s , g r e a t temperature changes o c c u r r a p i d l y i n A p r i l and May, warming up, and i n September and O c t o b e r , c o o l i n g o f f . The summer tempe r a t u r e average h i g h i n J u l y i s l e s s than 68°F. Extremes may r e a c h 90°F on a r a r e day w i t h a maximum extreme o f 80°F more o f t e n . The d u r a t i o n o f t h e w i n t e r i s an i m p o r t a n t d e s i g n factor. or ing  The average d a i l y temperature i s 32°F ( f r e e z i n g )  below f o r seven months o f t h e y e a r .  F o r t h e remain-  5 months t h e average temperature i s s l i g h t l y more  t h a n 50°F, w i t h t h e h i g h e s t monthly average o f 58°F.  277  278  279 5. PRECIPITATION Average a n n u a l p r e c i p i t a t i o n i s a p p r o x i m a t e l y 28", n e a r l y t w i c e t h a t o f Anchorage t o t h e south and more t h a n t w i c e t h a t o f F a i r b a n k s i n t h e i n t e r i o r . The average a n n u a l s n o w f a l l o f 100"  (8'4") f a l l s w i t h  n e a r l y even d i s t r i b u t i o n from November t o March w i t h l e s s t h a n 20" per month.  The extremes drop 30" t o  40" per month e v e r y few y e a r s w h i l e 50" t o 70" have been r e c o r d e d (maximum o v e r 40 y e a r p e r i o d ) .  Maximum  y e a r l y ^ r a n g e s from 202" t o a minimum o f 31" over t h e 40 y e a r p e r i o d .  I n t h e extreme  case over 24 h o u r s ,  t h r e e f e e t o f snow has f a l l e n . With t h e absence  of strong persistent winter  w i n d s , w i t h t h e e x c e p t i o n o f an o c c a s i o n a l g u s t y p e r i o d , i t i s assumed t h a t b l o w i n g snow i s n o t a major i n the a r e a .  problem  W h i l e snow may d r i f t some d u r i n g windy  p e r i o d s , t h e problem i s n o t such a c r i t i c a l d e s i g n c o n s i d e r a t i o n as i t i s i n the n o r t h e r n c o a s t a l a r e a s such as Barrow and Kotzebue. Summer storms and c l o u d i n e s s from l a t e  July  t h r o u g h September have a c o o l i n g e f f e c t on the daytime temperatures d u r i n g t h i s p e r i o d , a l l o w i n g l e s s s o l a r r a d i a t i o n through t h e c l o u d c o v e r .  280  281 6. WIND Due t o t h e n o r t h / s o u t h o r i e n t a t i o n o f t h e lower S u s i t n a V a l l e y , t h e winds blow from e i t h e r t h e n o r t h , n o r t h e a s t , o r from t h e s o u t h , and southwest.  September  through A p r i l , t h e c o l d e r months, t h e wind i s pred o m i n a t e l y from t h e n o r t h , n o r t h w e s t  with the higher  wind speeds coming from t h e n o r t h e a s t . August the wind i s p r e d o m i n a t e l y  May through  from the s o u t h w i t h  the h i g h e r wind speeds coming from s o u t h e a s t t o s o u t h west. Average monthly speeds range from 3 t o 6 mph i n the w i n t e r and 3 t o k mph i n the summer.  The wind  speed o f 38 mph was a maximum r e c o r d e d over a 7 y e a r period.  Over t h e same p e r i o d t o t h e s o u t h , Anchorage  e x p e r i e n c e d winds over 60 mph.  Wind v e l o c i t y  aver-  ages f o r t h e T a l k e e t n a a r e a a r e r e l a t i v e l y low d e c r e a s i n g chances o f d r i v i n g r a i n and b l o w i n g snow.  282  283 7. RELATIVE HUMIDITY/MOISTURE POTENTIAL The a i r ' s c a p a c i t y f o r water vapor i n c r e a s e s w i t h an i n c r e a s e i n a i r t e m p e r a t u r e a s shown on t h e M o i s t u r e P o t e n t i a l C a p a c i t y o f A i r graph.  The p o t e n t i a l  shown f o r vapor p r e s s u r e , a b s o l u t e h u . n i d i t y , and s p e c i f i c h u m i d i t y would be under conditions.  100% r e l a t i v e h u m i d i t y  T a k i n g o n l y the vapor p r e s s u r e , we c a n  see t h a t i n January (mean temperature 9°F) we get a range from 1.09 t o 1.23 mmhg vapor p r e s s u r e (62% t o 70%  r e l a t i v e humidity).  I n J u l y (mean temperature  58°F) we get a range o f 7.5 t o 11.13 mmhg vapor p r e s s u r e (60% t o 89% r e l a t i v e h u m i d i t y ) .  There i s 7  t o 9 t i m e s the vapor p r e s s u r e i n J u l y than i n January even though the r e l a t i v e h u m i d i t y does not d i f f e r  that  much. The major problem c o n c e r n i n g h u m i d i t y i s the low m o i s t u r e p o t e n t i a l i n the a i r a t c o l d t e m p e r a t u r e s . When brought i n t o a warm i n v i r o n m e n t ( b u i l d i n g i n t e r i o r ) , the r e l a t i v e h u m i d i t y v a l u e drops v e r y low. To remedy t h i s people i n c r e a s e the h u m i d i t y w i t h i n t h e home which then m i g r a t e s out towards the c o l d  exterior  c a u s i n g p o t e n t i a l damage. D u r i n g t h e summer months, r e l a t i v e h u m i d i t y o v e r a 24 hour p e r i o d may range from 50% t o 90%. The c o o l summer t e m p e r a t u r e s keep the p o t e n t i a l f o r a h o t humid day v e r y low, s e e the b i o c l i m a t i c  chart.  284  285  S ^ C ^ < ^  " ^ ^ I P I ^  i : - H -  3.-13  tV\oite :tis*LVT& -:-::-—TtT-t-rr:t  .  ,  r  t  xLw/f>/ry- tiffin  f^f^ ^T r  f  286 BIOCLIMATIC CHART T h i s c h a r t p l o t s t h e temperature and h u m i d i t y together.  The human comfort zone i s shown w i t h  r e g a r d t o s o l a r r a d i a t i o n (BTU/hr.), r e l a t i v e h u m i d i t y {%), and temperature ( F ) . Even d u r i n g t h e summer months we need the presence o f s o l a r r a d i a t i o n t o a t t a i n the d e s i r e d degree o f c o m f o r t .  O c c a s i o n a l l y an extreme maximum  t e m p e r a t u r e may put us above t h e comfort zone; t h e s e happen so r a r e l y t h a t t h e y would be welcomed extremes. Between mid-September and raid-May, even i f i t were p o s s i b l e t o g e t o v e r 300 B T U / h r / s q . f t . , we would s t i l l be below t h e p h y s i c a l c o m f o r t zone.  Optimizing  f o r the c l i m a t i c elements, s o l a r r a d i a t i o n , e t c . , the p h y s i c a l r e q u i r e m e n t s cannot be met w i t h o u t t h e i n t r o d u c t i o n o f m e c h a n i c a l h e a t i n g systems. C l o t h i n g and a c t i v i t y a r e a l s o t o be c o n s i d e r e d when d e s c r i b i n g t h e comfort r a n g e .  287  288 9 . TIMETABLE OF CLIMATIC NEEDS I n most a r e a s i n the " l o w e r 4 8 "  t h i s chart  would t e l l what time o f y e a r and time o f day  that  s h a d i n g and c o o l i n g b r e e z e s a r e n e c e s s a r y as w e l l as s o l a r heat and wind p r o t e c t i o n .  There i s no o v e r -  h e a t e d p e r i o d so the a r e a needs s o l a r heat 100% the time a l t h o u g h d u r i n g some summer days 100%  of of  the sun's r a d i a t i o n would cause o v e r h e a t i n g , c o n s i d e r i n g the sun r i s e s c l o s e t o 3am and s e t s around 9pra g i v i n g over 18 h o u r s o f p o s s i b l e s u n s h i n e t o exposures from n o r t h e a s t , e a s t , s o u t h , west, t o n o r t h w e s t . The s u n r i s e and sunset l i n e s show the r a p i d i n c r e a s e and d e c l i n e o f d a y l i g h t over the y e a r . I n c r e a s e s and d e c r e a s e s o c c u r a t the r a t e o f 6 t o 8 m i n u t e s a day.  289  290  APPENDIX  B  BUILDING SPACING AND TOPOGRAPHY  291 The topography can be used t o i n c r e a s e the a v a i l a b i l i t y o f w i n t e r s u n l i g h t by b u i l d i n g on s o u t h facing h i l l s i d e s .  C h a r t s B.1  t h r o u g h B.4  p l o t the  s p a c i n g r e q u i r e d between b u i l d i n g s a t d i f f e r e n t l a t l tudes f o r s i m i l a r s u n l i g h t p e n e t r a t i o n f o r f l a t t o p o g r a p h y , 5°  s l o p e , 10  P  s l o p e , and  slope.  292  293  i  294  T  '  49  b&  "V  1/  (ec VZ  /  6&  295  3tt  I  3*?  L*>0  100  1  \oe>  p&auip&p i=»gg. goto PfcMgTR^rig^i !  y  ^ p £  I  /  -  296  gUlLCTltJ^  ^PA<IKJ6[  fegUTH)  ?£<RU\t-)£,C> Fez SUM  45*  ^<?'  6>5'  PBJSTRATUM  6«*  297  ^ A ^ I M ^ C'Z&JTtf)  »  4*>*  1  ^ LATITUDE  —  ~~  «s*&'  G>if  PI PTE*: 5s) <S£  CHAPX  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 14 0
Canada 8 1
Republic of Korea 5 0
China 4 8
United Kingdom 1 1
Brazil 1 0
Poland 1 0
Ukraine 1 0
City Views Downloads
Unknown 10 17
Ashburn 6 0
Winnipeg 4 0
Shenzhen 4 8
Kansas City 3 0
Norfolk 2 0
Montreal 2 1
Wilmington 1 0
Jenison 1 0
San Ramon 1 0
Vancouver 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0094049/manifest

Comment

Related Items