Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Arctic/subarctic urban housing : responses to the northern climates 1977

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1977_A7_3 R68.pdf [ 31.28MB ]
UBC_1977_A7_3 R68.pdf
Metadata
JSON: 1.0094049.json
JSON-LD: 1.0094049+ld.json
RDF/XML (Pretty): 1.0094049.xml
RDF/JSON: 1.0094049+rdf.json
Turtle: 1.0094049+rdf-turtle.txt
N-Triples: 1.0094049+rdf-ntriples.txt
Citation
1.0094049.ris

Full Text

ARCTIC/SUBARCTIC URBAN HOUSING: RESPONSES TO THE NORTHERN CLIMATES by JOHN FREDERICK ROSS Arch., U n i v e r s i t y of C a l i f o r n i a , B e rkeley, 1 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF ARCHITECTURE i n THE FACULTY OF GRADUATE STUDIES (School of A r c h i t e c t u r e ) . . • We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1977 © John F r e d e r i c k Ross, 1977 In p resent ing t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the requirements fo r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e fo r reference and study. I f u r t h e r agree t h a t permiss ion for e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . It i s understood that copying or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l ga in s h a l l not be a l lowed without my w r i t t e n p e r m i s s i o n . Department of i T g C T U r ^ E - The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date Z f r API&IU , 1 ^ 7 7 i i ABSTRACT This study i n v e s t i g a t e s the e f f e c t s of the a r c t i c and s u b a r c t i c c l i m a t i c c o n d i t i o n s on the b u i l t e n v i r - onment, urban housing i n p a r t i c u l a r . The method of research and development of t h i s t h e s i s has been through a l i t e r a t u r e search coupled with my own work- ing/design experience i n the North ( F a i r b a n k s , Alaska) f o r three years. The t h e s i s i s i n three p a r t s (chapters 2 , 3» and k)» The f i r s t part makes a comparison of the c l i m a t i c c o n d i t i o n s i n the d i f f e r e n t northern c l i m a t i c zones w i t h i n the s t a t e of A l a s k a , as w e l l as comparing these to more southern c l i m a t i c zones. The second part (main body of the t h e s i s ) i n v e s - t i g a t e s the b u i l d i n g design responses ( s o l u t i o n s ) to the v a r i e d c l i m a t i c c o n d i t i o n s : s o l a r r a d i a t i o n , tem- perature, p r e c i p i t a t i o n , wind, and s p e c i a l c l i m a t i c c o n d i t i o n s (humidity/moisture p o t e n t i a l , blowing snow, permafrost, and f r o s t heave). T h i s a n a l y s i s i s organ- i z e d i n t o " planning l e v e l s " . Four planning l e v e l s are e s t a b l i s h e d which d e a l w i t h ^ ) s i t e l a y o u t / c i r c u l a t i o n p a t t e r n s , (2) b u i l d i n g s i z e , shape, and o r i e n t a t i o n , a c t i v i t y / s p a c e arrangement, and (J) d e t a i l i n g of the b u i l d i n g f a b r i c . Using the parameters e s t a b l i s h e d i n part 2 , plan- n i n g l e v e l 1, part 3 i l l u s t r a t e s a townsite l a y o u t f o r a s p e c i f i c s i t e , the Willow S i t e i n s u b a r c t i c A l a s k a where the new Alaska State C a p i t a l i 6 to be l o c a t e d . The m a j o r i t y of people who l i v e i n the northern urban areas look to the south f o r t h e i r housing s t y l e s and designs as w e l l as assess housing q u a l i t y by "southern standards". P r e s e n t l y there are few ways f o r people l i v i n g l n the North to evaluate the q u a l i t y of housing f o r t h a t p a r t i c u l a r c l i m a t e except through i i i t r i a l and q u i t e o f t e n e r r o r . This t h e s i s produces an ordered l i s t i n g of b u i l d i n g / h o u s i n g responses to the northern c l i m a t e s which can be disseminated to the p u b l i c who can then b e t t e r assess housing perform- ance and q u a l i t y f o r t h e i r p a r t i c u l a r p h y s i c a l e n v i r - onment. The i n f o r m a t i o n contained w i t h i n t h i s t h e s i s would a l s o be of use to p r o f e s s i o n a l s i n a r r i v i n g a t design d e c i s i o n s f o r h o u s i n g / b u i l d i n g i n northern areas. i v TABLE OF CONTENTS CHAPTER 1: INTRODUCTION . 1 1.1 THE PROBLEM 1.1.1 S o c i o - C u l t u r a l Background 1.1.2 E x i s t i n g Urban/Suburban Environment 1.1.3 The Willow S i t e : New C a p i t a l C i t y 1.2 GOALS 1.3 SCOPE 1.if METHODOLOGY 1.5 APPLICATION 1.6 IMPLEMENTATION 1.7 DEFINITIONS 1.8 REFERENCES CHAPTER 2 : CLIMATIC COMPARISON 25 2.1 INTRODUCTION 2 .2 SOLAR RADIATION 2.2.1 Objective/Background 2 . 2 . 2 Apparent Sun Path ( A l t i t u d e & Azimuth) 2 . 2 . 3 Albedo 2.2.i+ Cloud Cover 2 . 2 . 5 I m p l i c a t i o n s 2.3 TEMPERATURE 2.3.1 O b j e c t i v e 2 . 3 . 2 Duration of Cold Extremes 2 . 3 . 3 Seasonal Temperature D i f f e r e n c e s : Average and Extreme 2 .3.if D i u r n a l Temperature V a r i a t i o n s 2 . 3 . 5 I m p l i c a t i o n s 2 .if PRECIPITATION 2.if . 1 O b j e c t i v e 2 . 4 . 2 Normal Y e a r l y P r e c i p i t a t i o n 2 .if. 3 Extreme p r e c i p i t a t i o n Amounts Over Short Periods 2 . i f . i f Snow Cover Amount and Duration 2 .if. 5 I m p l i c a t i o n s 2 .5 WIND 2.5.1 O b j e c t i v e 2 . 5 . 2 Mean Winter Wind Speed and D i r e c t i o n 2 . 5 . 3 Mean Summer Wind Speed and D i r e c t i o n 2 . 5 * i f Maximum Wind Speeds and D i r e c t i o n s 2 . 5 . 5 K a t a b a t i c Wind 2 . 5 . 6 I m p l i c a t i o n s 2 .6 SPECIAL CLIMATIC CONDITIONS 2.6.1 O b j e c t i v e 2 . 6 . 2 Humidity/Moisture P o t e n t i a l V 2 . 6 . 3 Blowing Snow 2 . 6 . 4 Permafrost 2 . 6 . 5 A c t i v e Layer/Frost Heave 2.7 SUMMARY 2.8 REFERENCES CHAPTER 3 : BUILDING DESIGN RESPONSES . 7 0 3.1 INTRODUCTION 3.2 PLANNING LEVEL 1: SITE LAYOUT/CIRCULATION PATTERNS 3.2.1 O b j e c t i v e 3 . 2 . 2 S o l a r R a d i a t i o n 3 . 2 . 3 Temperature 3 . 2 . 4 P r e c i p i t a t i o n 3 . 2 . 5 Wind 3 . 2 . 6 S p e c i a l C l i m a t i c C o n d i t i o n s (Blowing snow) 3 .2 . 7 Summary 3 . 2 . 8 References 3.3 PLANNING LEVEL 2 : BUILDING SIZE, SHAPE, AND ORIENTATION 3.3.1 O b j e c t i v e 3 . 3 . 2 S o l r R a d i a t i o n 3 . 3 . 3 Temperature 3 . 3 . 4 P r e c i p i t a t i o n 3 . 3 . 5 Wind 3 . 3 . 6 S p e c i a l C l i m a t i c C o n d i t i o n s (Blowing Snow) 3 . 3 . 7 Summary 3 . 3 . 8 References 3.4 PLANNING LEVEL 3 : ACTIVITY/SPACE ARRANGEMENT 3.4.1 O b j e c t i v e 3 . 4 . 2 S o l a r R a d i a t i o n 3 . 4 . 3 Temperature 3 . 4 . 4 P r e c i p i t a t i o n 3 . 4 . 5 Wind 3 . 4 . 6 S p e c i a l C l i m a t i c C o n d i t i o n s (Blowing Snow) 3 . 4 . 7 Summary 3 . 4 . 8 References 3 . 5 PLANNING LEVEL 4 : DETAILING OF THE BUILDING FABRIC 3.5.1 O b j e c t i v e 3 . 5 . 2 S o l a r R a d i a t i o n 3 . 5 . 3 Temperature 3 . 5 . 4 P r e c i p i t a t i o n 3 . 5 . 5 Wind 3 . 5 . 6 S p e c i a l C l i m a t i c C o n d i t i o n s A. Humidity/Moisture P o t e n t i a l B. Blowing Snow C. Permafrost D. F r o s t Heave 3 . 5 . 7 Summary 3 . 5 . 8 References v i CHAPTER 4 : SITE APPLICATION 217 4.1 INTRODUCTION 4 . 2 PHYSICAL FACTORS 4.2.1 Summary of C l i m a t i c F a c t o r s 4 . 2 . 2 S i t e F a c t o r s A. Topography B. Geology/Soils C. Hydrology D. Ve g e t a t i o n 4 . 3 TOWNSITE LAYOUT AND ANALYSIS 4.3.1 S o l a r R a d i a t i o n 4 . 3 * 2 Temperature 4 . 3 . 3 P e r c i p i t a t i o n 4 . 3 . 4 Wind 4 . 3 . 5 S p e c i a l C l i m a t i c C o n d i t i o n s 4 .4 REFERENCES BIBLIOGRAPHY 23S 1. Reference M a t e r i a l c i t e d 2. Sources Consulted APPENDIX A: ANALTSIS OF THE CLIMATIC FACTORS IN THE SUSITNA VALLEY AREA 255 APPENDIX B: BUILDING SPACING AND TOPOGRAPHY . . 290 • i i ACKNOWLEDGEMENT I wish to extend my thanks to those who have worked w i t h i n my sub j e c t area and helped through conversations and/or the su p p l y i n g of i n f o r m a t i v e l i t e r a t u r e : B o r i s C u l j a t (Ralph E r s k i n e ' s f i r m i n Sweden), Burgess Ledbetter (CRRE1, Hanover, N.H.), and the N a t i o n a l Research C o u n c i l of Canada. Thanks go to- Dr. John Hay of the Geography Department f o r review on the p o r t i o n of my t h e s i s d e a l i n g w i t h the c l i m a t i c a n a l y s i s along wi t h s u p p l y i n g the northern r a d i a t i o n data. Thanks to N a t a l i e H a l l of the A r c h i t e c t u r e Reading Room f o r her h e l p i n the l i t e r a - ture search. S p e c i a l thanks go to my t h e s i s committee who had the major task of h e l p i n g me b r i n g a l l my m a t e r i a l together i n t o a cohesive format: Ray c o l e , Wolfgang Gerson, and my mentor, P a u l W i s n i k i . 1 CHAPTER 1 INTRODUCTION 1.1 THE PROBLEM 1.1.1 S o c i o - C u l t u r a l Background 1.1.2 E x i s t i n g Urban/Suburban Environment 1.1.3 The Willow S i t e : New C a p i t a l C i t y 1.2 GOALS 1.3 SCOPE 1.4 METHODOLOGY 1.5 APPLICATION 1.6 IMPLEMENTATION 1.7 DEFINITIONS 1.8 REFERENCES r i ^ u r e 1.1 3 1.1 THE PROBLEM 1.1.1 S o c i o - C u l t u r a l Background When d e a l i n g w i t h the b u i l t environment i n northern Canada and A l a s k a , one i s confronted with c l i m a t i c as w e l l as c u l t u r a l d i f f e r e n c e s . The design f o r the need of an indigenous p o p u l a t i o n which r e - t a i n s i t s h i s t o r i c c u l t u r a l p a t t e r n s , and the design f o r the needs of "newcomers" from the south w i t h d i f - f e r i n g c u l t u r a l o r i g i n s and p a t t e r n s present d i f f e r i n g c r i t e r i a f o r designing i n the harsh northern c l i m a t e s . T his t h e s i s focuses on those people who are t i e d i n t o the mainstrean of the more southern c u l t u r e , those who i d e n t i f y with the c u l t u r e and b u i l t environment of northern U.S. and southern Canadian c i t i e s . My concern i s to l e t these people know the e f f e c t s of the more extreme c l i m a t i c c o n d i t i o n s on t h e i r housing image which normally responds to t h e i r needs under more temperate environmental c o n d i t i o n s . "Given a c e r t a i n c l i m a t e , the a v a i l a b i l i t y of c e r t a i n m a t e r i a l s , a n d ' c o n s t r a i n t s and cap- a b i l i t i e s of a given l e v e l of technology, what f i n a l l y decides the form of a d w e l l i n g , and molds the spaces and t h e i r r e l a t i o n s h i p s , i s the v i s i o n that people have of the i d e a l l i f e . The environment sought r e f l e c t s many s o c i o - c u l t u r a l f o r c e s , i n c l u d i n g r e l i g i o u s b e l i e f s , f a m i l y and c l a n s t r u c t u r e , s o c i a l o r g a n i z a t i o n , way of g a i n i n g a l i v e l i h o o d , and s o c i a l r e l a t i o n s between i n d i v i d u a l s . T h i s i s why s o l u t i o n s are much more v a r i e d than b i o l o g i c a l needs, t e c h n i c a l d e v i c e s , and c l i m a t i c c o n d i t i o n s , and a l s o why one aspect may be more dominant i n one c u l t u r e than i t i s i n o t h e r s . B u i l d i n g s and settlements are the v i s a b l e e x p r e s s i o n of the r e l a t i v e importance attached to d i f f e r e n t aspects of l i f e and the v a r y i n g ways of p e r c e i v i n g r e a l i t y . " 1 One major fo r c e slowing the acceptance of a housing s t y l e or design which i s unique to the sub- a r c t i c c l i m a t e l i e s i n the s o c i o - c u l t u r a l make up of the m a j o r i t y of people l i v i n g i n the s u b - a r c t i c urban areas. These people have strong s o c i o - c u l t u r a l t i e s to the mainstream of American c u l t u r e which i s 5 centered i n the more southern l a t i t u d e s of the c o n t i n - e n t a l United S t a t e s . These people s t i l l look to the "south" f o r t h e i r housing s t y l e s and designs as w e l l as assess housing q u a l i t y by "southern standards" only s l i g h t l y m o d i f i e d . "A t r i c k y problem that sometimes b e d e v i l s the a r c t i c designer i s to determine what c o n s t i - t u t e s a proper house. For many people the " i d e a l d w e l l i n g " i s i d e n t i c a l to whatever i s i n fa s h i o n " s t a t e s i d e " : i f t h i s means Ranch-Style- w i t h - S l i d i n g - G l a s s - P a t i o - w a l l s , so be i t . I f i t means New-England-Salt-Box, that too can be done. B e l i e v e i t or not, there are colonnaded Southern C o l o n i a l mansions i n Anchorage and Fairbanks."2 A look at the housing i n the major c i t i e s i n A l a s k a , one can see the same designs and s t y l e s as the housing i n the "lower 48" modified by t e c h n i c a l s o l u t i o n s to make them work b e t t e r i n the North, such as increased i n s u l a t i o n , more window panes, e t c . The c i r c u l a t i o n p a t t e r n s , s i t e l a y o u t s , and b u i l d i n g s i z e s , shapes, and o r i e n t a t i o n s are n e a r l y i d e n t i c a l to those i n the "lower 48" showing l i t t l e design response to the northern s u b - a r c t i c c l i m a t i c c o n d i t i o n s . The l o c a l media helps to perpetuate t h i s housing image with a r t i c l e s w r i t t e n i n the "lower 48" showing housing which would have d i f f i c u l t i e s adapting to the s u b - a r c t i c environment. A r t i c l e s on the f o l l o w i n g pages are from the Fairbanks D a i l y New6-Miner3 and the Anchorage Times.4 6 1! It {car' »? ti^j-i ^ r i ^ i - v — t j , 1 ? ^ i l A N C H H O U S E — T h e r e is a l i m i t e d a m o u n t of b r i c k o n the u s u a l p i c t u r e w i n d o w a r r a n g e m e n t . T h e g a r a g e c a n 'he f a c a d e of this t h r e e - b e d r o o m r a n c h house , w i t h t h r e e be for e i ther one o r two c a r s wi thout d e t r a c t i n g f r o m the .v indows i n the l i v i n g r o o m , a n i n t e r e s t i n g d e p a r t u r e f r o m e x t e r i o r a p p e a r a n c e of the h o u s e . .(&D<Q>dl plamiininmis ©Aft B y A N D Y L A N G A compact floor plan that takes advantage of the concept of open planning makes ths interior of this ranch seem more spacious than Its 1,234 square feet of habitable area. At the front c' the house, the living room and dining room run together for 26 feet. At the rear, the kitchen and family room are similarly arranged a'cng the same distance. The result is a feeling of size that ordinarily might not be experienced in a house with such modest dimensions. This must be considered a plus for most per- sons, since the amount of living space has a bearing on construction costs. Should even further budget economies be necessary, the plan can be adjusted downward, as suggested by architects Herman York end Raymond Schenke. The private bathroom for the main bsdreom can be omitted, as can the lavatory off ths laundry room • behind the garage. Beth of these spaces could then be used as walk- in storage areas. The long sweep of the family room and kitchen makes for a feeling i of open space, yet the kitchen is self-contained with its principle work areas hidden from view. Access is provided from the family room to the rear terrace and. to make matters more convenient, a pass-through serving shelf is between the kitchen and the outdoor dining portion of the terrace. Beyond the kitchen and still convenient to the re3r part of the lot is the laundry, stairway to the basement, mud closet, lavatory and ! garage. Should it be possible to hang clothe., and linens in the sun, i this can be done with convenience in this layout. At the other side of the house are the three bedrooms, with generous wall spaces for furniture placement. Design R-188 is a solid house for fjood living. Ful l study plan information on this archi'ect-der.ijTned House of the Week is available in a SI baby blueprint which yon c.?n order by" sending SI to: House of the Week, c/o Daily News-Miner, The Associated Fress, 50 Rockefeller Plaza, New York, N.V., ]C'J20. 7." -V!l.7j^'u^ii^»^*"^ui.|jf ft F L O O R P L A N — N o w a s t e s p a c e i n this floor l a v o u t . A m i n i m u m a m o u n t of h a l l w a y i n the b e d r o o m area" is p a r t of the a r r a n g e m e n t to u t i l i z e as m u c h avr.ilr.ble s p a c e as poss ib le , thus p e r m i t t i n g the r o o m s to be l a r g e r t h a n m i g h t o t h e r w i s e h a v e b e e n p o s s i b l e within m o d e s t d i m e n s i o n s . FAMILY HOOM-PorliojiK of llic- family rofim, rfirmttc nrca nnrl kitclu'ii are shown 31-'",. j\\ * in thin artist'« rcndorini;. .SlUiiup fl.iss hi >̂  *"> I ''"^rs It-nd ton ronr let i nco. " __*_.„ .. 7 By ANDY LANG 1?«»n»i!cT . • Oa tfc« s:!K5 !evc! ers a kit- AfetaialtfssitnKciosssa cLta-Craa. three ts ivasa plan in this are buffered ircrn th; iiv:r.a . . ^rcarn hatsa, area by the stair; and csiad 1c to'oa a id with bathrooms. The caster Ifcr.-aifvcstiss. bcdroca is in ths rear v.-ith The c::::-i:r racapfjrcs th:- tia'aeie cxparare, a=aa cia:at tha past s-hi.a tha space cr.i a private lull bath th? reams *-i:h nica Ehowar staii. Tha the lite s:v!-acf main bath icaturca a lu-insus to prcaar.:. It's a bi-leve! ce'.as* a-.; taccacsiceliy remati.-cs ler.:r;n caa cc;a.-a::dc:j.-aastfan. hir.h rar.ch, ci:h a rah: cr.try Meierr: la every reapec:, tha : l titci.a:'. prcviiaa cii tha aa r.r.i ccr.vtaiar.caa , a bjJ:-;n oven . erd r?rr^- ref/i^aratar and a fuil C'-.i.:!ar/.ar.i cf ceur.icr anti s torage space, trash-tr.aher ar.ci iarba;a .Early Aaerfcsn Touches AisunJ En Gracs:^:y-£:;-!cd i:= rr.'jihar. :r.-:a -cat of fcabitaa.'a araa cr. i_a tipper main level. Uvea c::r.:.-.: .̂-.3 cn car.:..-a::ian earj, >: see-a ta ta larger Deca-aao c' the nar_-.ar in chic:) thsUrtajrcarr. er.dtts da".; ciaaite is ee.'£csr.t to craia'.ricut. the rear sarv:cs entrar.es that Placed in lino by architect laaitotharaars'.T.aar::. T.'i'.Iiam G. Ch!r;c::a, they Dav.-r. Uca the entrance RSJSS restC i r . c h a ; f a y c r . err: raiead just esctra tent c' the haaee ta a c'aai; a: tc c:irr.:r.a:a the sae:errcncan The vieta is e:rr.eep.-.:r: cithe !cv:a-level. ' I s se i ' t t e ly vlaihle en is ;he car.:.'?': far.iiv reachan;; th? i:p ct tha ;her; rccan v.-.:'- c'ia.r.- ca.r acccaa £ a ! n ~ y . r.::h a r.-rca;!:: itca raihrc preiuciaj a balccrucj ta lha : ; -r yr:>.: laundry, lava-.cry, tie.-, tad th? ever- - sized trv:ar £r:a»» to stew- card:.-, tail:, :c, j . iasracrils tidti::!;:::-. The charm cf Ccicr.ir.'. itylias is ecSsiicd in 6a gabled rca; c.r.ranca panic;, the shuttcr-ti-ir.: r.iC ta-H-zi vviaiiavra a - i f.? Ue&& of l.:i:'.; vcr.c:.- a.-.a' rci ,(ca;6ina!:::fcy:3fcai0i.::::::. alar;e Ic*. i: r.aircr/airc i . can R'.UI a rear cr.:ra:.aa t: ;ij ' easy . /-'• '<•• i:z-i'---- tta: v:::: c~i '•••^z jgcr;!;-:.y::a..a".-.:a:r.r.v. -. p.-ir-::AT:3~cs C K : ; T r:-i.*J has a :i;:rj naa , er.t«; rear;. hU::iar:, .thraa b^araaras ar.a T O tathrac.T.ian the r.air.: levt!, tcrcin: UCi aq-aar J . at etUvins Cn ths : r - ; r laye!, wh'Ji !: a-tL-a:> 'a •rfr^Jtw t.-a atara r.ra SSI a;-:a.-a hy tha araiuua: :...a a . c**a,!. ' fisiss rasa tsd i.itaaan a: i ; C> sijare fea: ta tis haa.aa.:a UPPER LEVEL PLAN <:'-C "s""' '••S^ 8 # Supply and Demand Verses Housing Q u a l i t y There are other l i m i t a t i o n s i n a c h i e v i n g housing q u a l i t y which are unique i n the a r c t i c and s u b - a r c t i c environment. The supply and demand mechanism, which c o n t r o l s the degree of housing q u a l i t y i n most e n v i r - onments, i s r a r e l y i n favor of the consumer (higher q u a l i t y at a reasonable p r i c e ) s i n c e the supply normally lags f a r behind the demand. I n the northern environment,where the i n f l u x of people comes i n s p u r t s dependent on the development of r e s o u r c e s , the demand f o r housing i s g r e a t e r than the supply most of the time. An extreme example i s the Alaska o i l p i p e l i n e development which brought thousands of people to the North c r e a t i n g such a high demand on housing that the p r i c e s skyrocketed while the q u a l i t y of housing was kept to an absolute minimum i n order to maximize p r o f i t s . The supply and demand method of c o n t r o l l i n g q u a l i t y has not had b e n e f i c i a l e f f e c t s f o r the user/ buyer i n the developing areas of the nor t h . The only mechanism which p o t e n t i a l l y "improves" housing q u a l i t y (at a d e t a i l l e v e l ) i s the mortgage loan process i n which the banks or l e n d i n g i n s t i t u - t i o n s want to see a t y p i c a l , f a m i l i a r house d e s i g n , a w a l l s e c t i o n , and heat l o s s data i n order to make sure t h e i r investment w i l l l a s t and that i t i s market- a b l e . While t h i s mechanism helps to make sure the house has proper i n s u l a t i o n and a vapor b a r r i e r , i t a l s o r e s t r i c t s any new or i n n o v a t i v e ideas which may respond b e t t e r to the c l i m a t i c c o n d i t i o n s i f they r e s u l t e d i n housing which d i d not f a l l i n t o t h e i r image of a "marketable" house.5 • G u i d e l i n e s / C o n t r o l s Any attempt to set up g u i d e l i n e s or c o n t r o l s r e g a r d i n g housing or environmental q u a l i t y which responds w e l l to the northern environment would probably meet with d i s a p p r o v a l from the people the c o n t r o l s would be t r y i n g to p r o t e c t . Many of those l i v i n g i n the North are there to be free from the r e s t r i c t i o n s and r e g u l a t i o n s found i n the more south- ern urban areas. T h i s "frontiersman" a t t i t u d e runs high among northern i n h a b i t a n t s and they g e n e r a l l y do not want r e g u l a t i o n s which r e s t r i c t t h e i r freedom e s p e c i a l l y when i t a p p l i e s to t h e i r home environment. A study i n a more remote area, I n u v i k , N.W.T., r e i n f o r c e s the presence of t h i s " f r o n t i e r s m a n " a t t i t u d e : "About h a l f of a l l c i v i l i a n s s a i d that they were l u r e d northward, wholly or i n p a r t , by the d e s i r e f o r adventure, t r a v e l , new experience, or the excitement o f " p i o n e e r i n g " . Indeed, i f to these we add the people who spoke of the North'B r e c r e a t i o n a l a t t r a c t i o n s ( n o t a b l y hunting and f i s h i n g ) and of the wish to escape c i t y l i f e , then i t can be s a i d t h a t more than t w o - t h i r d s of c i v i l i a n s i n the sample were motivated, at l e a s t i n p a r t , by a d e s i r e to escape a r o u t i n e e x i s t e n c e i n the South."6 Due to the problems c o n f r o n t i n g northern housing, the best method to approach them would be to dissem- i n a t e i n f o r m a t i o n r e g a r d i n g b u i l d i n g responses f o r the harsh and v a r i a b l e s u b - a r c t i c c l i m a t i c f a c t o r s to the u s e r s , buyers, and b u i l d e r s of housing. People can then b e t t e r assess the q u a l i t y o f housing i n the s u b - a r c t i c north e s t a b l i s h i n g t h e i r own form of northern housing which r e f l e c t s t h e i r p r i o r i t i e s f o r c l i m a t i c f a c t o r s o r opposing s o c i o - c u l t u r a l f a c t o r s . 10 1.1.2 E x i s t i n g Urban/Suburban Environments How have the major Alaskan c i t i e s developed and what i s t h e i r present form? The two l a r g e s t c i t i e s of Anchorage (around 170,000 p o p u l a t i o n i n the area) and Fairbanks (around 7 0 , 000 p o p u l a t i o n i n the area) are l i t t l e d i f f e r e n t from any other U.S. c i t y i n most r e s p e c t s , yet Fairbanks (65 north l a t i - tude) has a c o n t i n e n t a l s u b - a r c t i c c l i m a t e and Anch- orage (61 north l a t i t u d e ) has a somewhat m i l d e r t r a n s i t i o n a l s u b - a r c t i c c l i m a t e . "Anchorage was founded as the c o n s t r u c t i o n headquarters and survey camp f o r the b u i l d i n g of the Alaska R a i l r o a d i n 1914. Before World War 11 the p o p u l a t i o n o f the town was about 3 » 7 0 0 , but w i t h the advent of the army and a i r f o r c e , and the tremendous c o n s t r u c t i o n a c t i v i t y contingent upon defense, the p o p u l a t i o n soared. P o p u l a t i o n growth has continued to a c c e l e r a t e w i t h develop- ment of the Cook I n l e t o i l b a s i n . Anchorage i s a supply center f o r the new o i l i n d u s t r y on the North Slope, as w e l l as Cook I n l e t . Many l a r g e o i l companies maintain r e g i o n a l o f f i c e s here, as do s u b s i d i a r y o r g a n i z a t i o n s c o n t r i b u t i n g to the i n d u s t r y . E. T. Barnette erected the f i r s t b u i l d i n g i n F a i r b a n k s , a l o g cabin cache f o r trade goods, i n August, 1901. When he was unable to proceed beyond Bates Rapids i n the Tanana R i v e r he turned back and cached h i s gear on the Chena. Before Barnette could b u i l d a more powerful boat w i t h which to get h i s goods past the r a p i d s , F e l i x Pedro found gold and staked c l a i m s on what were s h o r t l y named Pedro Creek and C l e a r y Creek. T h i s was on J u l y 2 2 , 1902, and the ensuing stam- pede of prospectors i n t o the area assured the growth of the new community. In 1906, w i t h a pop- u l a t i o n of 8 , 0 0 0 , the production of gold i n the Fairbanks d i s t r i c t was valued at more than $9 m i l l i o n . Fairbanks today i s a center of trade and t r a n s p o r t a t i o n f a r beyond that which i s super- f i c a l l y i n d i c a t e d by p o p u l a t i o n f i g u r e s . I t i s the second l a r g e s t p o p u l a t i o n center i n the s t a t e . The Steese, Richardson, E l l i o t , A l a s k a and Anch- orage-Fairbanks Highways converge at Fairbanks; the Alaska R a i l r o a d extends from Fairbanks t o t i d e w a t e r a t Anchorage and Seward; I n t e r c o n t i n - e n t a l planes as w e l l as i n t r a - A l a s k a a i r c r a f t use the modern I n t e r n a t i o n a l A i r p o r t . " 7 11 Housing i n these c i t i e s i n i t i a l l y c o n s i s t e d of l o g cabins c l u s t e r e d around a "downtown" near the r i v e r where goods were shipped by steamboats and paddlewheel- ers (Chena R i v e r i n F a i r b a n k s ) . Connection by road was not u n t i l World War 11 when the army b u i l t the Alaska Highway. In the 1950'6 and 1960's, the areas around the towns began developing w i t h s u b d i v i s i o n s s p r i n g i n g up i n v a r i o u s l o c a t i o n s . These housing areas are much l i k e any other housing s u b d i v i s i o n i n other U.S. c i t i e s . A look at the Fairbanks map (page 13) one can see the s u b d i v i s i o n s of Hamilton Acres, Aurora, and A r c t i c Park wi t h t h e i r n e a t l y l a i d out north/south, east/west s t r e e t g r i d w i t h the m a j o r i t y of t r a c t houses s i t u a t e d along the east/west s t r e e t s . Downtown Anchorage i s a l s o on t h i s g r i d p a t t e r n w i t h the c i t y ' s l a r g e r b u i l d i n g s now f a c i n g l a r g e one- way, east/west s t r e e t s . The housing s u b d i v i s i o n s have developed at v a r i o u s spots f a r t h e r and f a r t h e r from the c i t y center making auto t r a n s p o r t a t i o n a n e c e s s i t y and p u b l i c t r a n s p o r t u n f e a s i b l e due to the d i s p e r s i o n of the p o p u l a t i o n . At present Fairbanks has one bus ( p u b l i c t r a n s p o r t system) which t r a v e l s from downtown out to the Univer- s i t y (4 m i l e s ) a l o n g College Road. T h i s makes i t necessary f o r most people who need to go downtown or to shopping areas to d r i v e t h e i r own v e h i c l e s . When i t i s very c o l d people o f t e n leave t h e i r autos i d l i n g so the car w i l l not get c o l d w hile they do t h e i r shop- ping or other business. During the periods of c o l d temperature i n v e r s i o n s , the a i r stagnates and the car- bon monoxide reaches l e v e l s higher than n e a r l y any other American c i t y . As these c o n d i t i o n s i n d i c a t e , the e x i s t i n g urban areas have not been planned f o r the northern environ- ment i n which they are s i t u a t e d . While s o l u t i o n s are being r e f i n e d at the d e t a i l l e v e l , l i t t l e i s being done at higher planning l e v e l s which have a d i r e c t impact on the h a b i t a b i l i t y of the housing and surrounding environment. ANCHORAGE  14 1.1.3 The Willow S i t e : The New C a p i t a l C i t y of Alaska This t h e s i s focuses on a p a r t i c u l a r s i t e which i s designated f o r the f u t u r e development of a new town, the new A l a s k a State C a p i t a l . C l i m a t i c planning a t a l l design l e v e l s has p a r t i c u l a r importance i n t h i s case since there i s no e x i s t i n g urban area which would predetermine the housing design p o t e n t i a l at the higher planning l e v e l s (see f i g u r e 1.9). Background on t h i s p a r t i c u l a r s i t e shows that i n 1976 the people of Alaska voted to have the State C a p i t a l moved from i t s present l o c a t i o n i n Juneau, i n southeastern A l a s k a , to an undeveloped s i t e 40 m i l e s north of Anchorage. The new l o c a t i o n , the Willow S i t e , i s on the east s i d e of the lower S u s i t n a R i v e r V a l l e y . T his l o c a t i o n , approximately 62 north l a t i - tude and 150 west l o n g i t u d e , l i e s on the south s i d e of the Alaska Range and to the southwest of the T a l - keetna Mountains. The Alaska R a i l r o a d and the Anchor- age-Fairbanks Highway are w i t h i n c l o s e p r o x i m i t y to the s i t e . 8 While the housing design responses developed by t h i s study could be u t i l i z e d i n many c o l d c l i m a t e areas w i t h l i t t l e or no m o d i f i c a t i o n , the a p p l i c a t i o n of the design responses (chapter 4 ) i s focused towards op t i m a l e n e r g e t i c responses to the c l i m a t i c and s i t e c o n d i t i o n s present at the Willow S i t e . Other s e t t l e - ments i n the world near t h i s same l a t i t u d e i n c l u d e : Y e l l o w k n i f e , N.W.T.; Frederikshaab, Greenland; Sunds- v a l l , Sweden; Petrozavodsk and Yakutsk, R u s s i a . The new town at Willow i s scheduled to have s t a t e employees begin moving i n by 1980 and i s expected t o have a p o p u l a t i o n of 2 5 , 000 by 1990. Housing c o s t s are expected to be n e a r l y 35% of the t o t a l cumulative cost of the new town by the year 1990.9 The housing type mix was p r o j e c t e d at 60% 6 i n g l e f a m i l y houses (40% @ 4 u n i t s / a c r e and 20% @ 9 u n i t s / a c r e ) , 30% m u l t i f a m i l y (2 or more connected u n i t s ) , and 10% 15 mobile homes majing a t o t a l of 4605 d w e l l i n g u n i t s by 1 9 9 0 . 1 0 T h i s estimate was supposedly based on h i s - t o r i c a l data on comparative Alaska communities. The f i g u r e s published i n the Alaska Statewide Housing Study i n 1 9 7 1 , show qu i t e a d i f f e r e n t mix of housing t y p e s : 1 1 1 U n i t 2 or Mobile T o t a l more Homes Un i t s u n i t s Nation 69.4% 27.9% 2.8% 6 7 , 6 0 7 , 8 4 2 State 52.5% 37.5% 10.1% 8 8 , 3 4 3 Anchorage 42.4% 45.8% 11.7% 3 7 , 6 2 2 Fairbanks 39.3% 52.8% 7.9% 12 ,488 Juneau 49.4% 40.5% 10.0% 4 , 5 1 9 Since t h i s study i n 1971 there has been a great d e a l of housing c o n s t r u c t i o n due p r i m a r i l y to the o i l p i p e l i n e c o n s t r u c t i o n . There has been a marked i n - crease i n the amount of compact housing u n i t s b u i l t (2 or more u n i t s ) which could s h i f t the above f i g u r e s even higher i n that catagory. With t h i s i n mind, a more reasonable housing mix p r o j e c t i o n f o r the new C a p i t a l would have 40% s i n g l e f a m i l y houses, 50% multiple/compact housing, and 10% mobile homes. With t h i s i n mind, t h i s t h e s i s presents b u i l d i n g responses to the c l i m a t i c f a c t o r s which could be a p p l i e d t o both s i n g l e f a m i l y houses and multiple/compact housing. 16 17 1.2 GOALS To enhance the q u a l i t y / h a b i t a b i l i t y of northern housing through b e t t e r responses to the s u b - a r c t i c environmental f a c t o r s ( c l i m a t i c and s i t e f a c t o r s ) . To maximixe energy e f f i c i e n c y by o p t i m i z i n g c o n t r o l and use of the c l i m a t i c f a c t o r s . To develop housing design responses f o r the sub- a r c t i c environment wi t h a p p l i c a t i o n to a s p e c i f i c s i t e . To provide a housing design/evaluation.base f o r user education and p a r t i c i p a t i o n . 1.3 SCOPE Wit h i n the context of the t o t a l design process, the area of i n v e s t i g a t i o n i s l i m i t e d to the c l i m a t i c f a c t o r s : 6 o l a r r a d i a t i o n , temperature, p r e c i p i t a t i o n , wind, and s p e c i a l c l i m a t i c c o n d i t i o n s (humidity/ moisture p o t e n t i a l , blowing snow, permafrost, and a c t i v e l a y e r / f r o s t heave); as w e l l axe the s p e c i f i c s i t e f a c t o r s : topography, g e o l o g y / 6 o i l s , hydrology, and v e g e t a t i o n . The f u n c t i o n a l requirements which determine i n t e r i o r space arrangements of housing designs are d e l t with only as they r e l a t e t o the c l i m a t i c / s i t e f a c t o r s ( f i g u r e 1 . 8 ) . The f i r s t p a r t , chapter 2 , deals w i t h the c l i m a t e , comparing the d i f f e r e n t c l i m a t i c zones w i t h i n the State of Alaska ( a r c t i c , c o n t i n e n t a l , t r a n s i t i o n a l , and m a r i t i m e ) , as w e l l as comparing the s u b - a r c t i c t r a n s i t i o n a l zone with more f a m i l i a r " c o l d c l i m a t e " zones i n the "lower 4 8 " and southern Canada. The purpose of t h i s i n t r o d u c t o r y part of the t h e s i s i s to point out the major r e g i o n a l d i f f e r e n c e s of the c l i m a t i c f a c t o r s which i n f l u e n c e our way of l i f e and performance of our b u i l d i n g s . Both s o c i a l and p h y s i c a l problems are i n t e n s i f i e d by the s u b - a r c t i c c l i m a t i c c o n d i t i o n s . Such s o c i a l 18 i m p l i c a t i o n s as " c a b i n f e v e r " and i n t e n s i f i e d i n t e r - a c t i o n i n confined spaces can e i t h e r be r e l i e v e d or i n t e n s i f i e d by the b u i l t environment. The s o c i a l i m p l i c a t i o n s r e l a t e d to the northern environment are important and more q u a n t i t a t i v e s t u d i e s should be done i n t h i s f i e l d . T h is type of study i s not w i t h i n the scope of t h i s t h e s i s . I t i s hoped that to some extent the housing users/buyers can i d e n t i f y t h e i r own s o c i a l needs wi t h regard to t h e i r l i v i n g environment and make adjustments a c c o r d i n g l y , given the c o n t r o l and f l e x - i b i l i t y needed. The second p a r t , chapter 3» aims at o p t i m i z i n g the c o n t r o l and use of the c l i m a t i c s t r e s s o r s and resources. This part presents the c l i m a t i c i m p l i c a - t i o n s on b u i l d i n g and i l l u s t r a t e s the design responses to the c l i m a t i c f a c t o r s . These design responses are t r e a t e d at four planning l e v e l s : planning l e v e l 1, s i t e l a y o u t / c i r c u l a t i o n p a t t e r n s ; planning l e v e l 2 , b u i l d i n g s i z e , shape, and o r i e n t a t i o n ; planning l e v e l 3 , a c t i v i t y / s p a c e arrangement; and planning l e v e l 4» d e t a i l i n g of the b u i l d i n g f a b r i c ( f i g u r e 1 . 9 ) . Proper environmental design at the higher planning l e v e l s h e l p to l e s s e n the impact of the c l i m a t i c f a c t o r s which must be d e l t with a t the lower planning l e v e l s ( b u i l d i n g f a b r i c ) . T h is part could be used as a program f o r d e s i g n / e v a l u a t i o n f o r the c l i m a t e , which can be a p p l i c a b l e to much of the northern environment. The t h i r d p a r t , chapter 4 , evaluates the i m p l i c a - t i o n s and responses under the c l i m a t i c f a c t o r s present- ed i n chapter 3 and s t a t e s a preference of design t r a d e o f f s at the higher planning l e v e l s as they p e r t a i n to a p a r t i c u l a r s i t e , the Willow S i t e . 19 20 P U A M N t N a U^VeL- 1 •Layout of the main v e h i c l e and pe d e s t r i a n c i r c u l a t i o n p a tterns and independent b u i l d i n g s w i t h i n the sur- I rounding environment. I IMPACT: •Problems a s s o c i a t e d with auto t r a n s p o r t a t i o n and j micro-climate problems created with s o l a r shadowing •and wind-impact. L E V f c U O F •City Planning and Development Boards, developers of s u b d i v i s i o n s , and concerned c i t i z e n * s committees, j O F I M F A ^ T : •The l a r g e P o l a r i 6 b u i l d i n g on the south s i d e of 1st ave. (east-west s t r e e t ) i n Fairbanks shadows both s i d e s of the s t r e e t c r e a t i n g a dark, c o l d m i c r o - c l i ma- PUANNINlCq U E Y £ U Z S C O P E . Determination of the i n d i v i d u a l b u i l d i n g ' s s i z e , | shape, and o r i e n t a t i o n . i IMPACT: •Increase or decrease i n energy e f f i c i e n c y , s u n l i g h t ; d i s t r i b u t i o n , s o l a r shadowing, and wind impact. | C i t y Planning Approval Boards, c o n t r a c o r s , a r c h i t e c c i t i z e n ' s groups, and i n d i v i d u a l b u y e r s / b u i l d e r s . t s , EW-IPL^- OF I M F J ^ o r : The use of long , low ranch s t y l e houses which have a high p o t e n t i a l f o r heat l o s s and north s i d e shadowing. PU AM Kl IN C* L-fe-V^U 3 *>com: The arrangement of spaces and a c t i v i t i e s w i t h i n and around the housing u n i t as they r e l a t e t o the c l i m a f a c t o r s . t i c IMPACT' •Increase or decrease i n the h a b i t a b i l i t y and comfor l e v e l s of c e r t a i n spaces and a c t i v i t i e s . t 'Designers, b u i l d e r s , and u s e r s / b u i l d e r s to some extent depending on f l e x i b i l i t y w i t h i n and around the houscinl u n i t . Cfr IMf̂ ĉH": 'The misplacement of i n t e r i o r spaces or e x t e r i o r act i t y spaces to the north s i d e where seasonal use i s l i m i t e d due to a l a c k of s o l a r r a d i a t i o n . i v - 5COPE-5 'The d e t a i l i n g and s e l e c t i o n of the b u i l d i n g f a b r i c m a t e r i a l s . 1HPACT*. 'Increase or decrease the l o n g e v i t y of the s t r u c t u r e and the c o s t s of ope r a t i o n and maintenance. i_£.Y£U Or 'Designers, b u i l d e r s , and the i n d i v i d u a l users/buyer depending on the amount of input when the house i s designed and b u i l t . s EXAM rue •Poorly i n s u l a t e d houses without proper vapor b a r r i e r s and with l a r g e window areas w i l l have m a t e r i a l d e t e r - i o r a t i o n along with high o p e r a t i n g c o s t s . j 21 1.4 METHODOLOGY The methodology employed i n t h i s t h e s i s i n v o l v e s the e v a l u a t i o n of l i t e r a t u r e , published and unpublished, as w e l l as e v a l u a t i o n of my personal l i v i n g and design experience i n the North. The l i t e r a t u r e search i n c l u d e d : m a t e r i a l a v a i l - able on the U.B.C. campus; m a t e r i a l r e c e i v e d from other schools (Univ. of Washington and Univ. of Mani- toba) ; and s o l i c i t e d m a t e r i a l from v a r i o u s sources (Ralph E r s k i n e ' s f i r m i n Sweden, CRREL i n Hanover, New Hampshire, Canadian N a t i o n a l Research C o u n c i l i n Ottawa, and the N a t i o n a l Weather S e r v i c e (U.S.) i n North C a r o l i n a ) . The personal experience i n c l u d e d : a r c h i t e c t u r a l design work with Gray, Rogers Myers, & Morgan; E l l e r b e A r c h i t e c t s ; and G.D.M. and A s s o c i a t e s a l l i n F a i r b a n k s , A l a s k a , from 1972 to 1975; completion of A r c t i c Engineering 603 and 604 at the u n i v e r s i t y of Alaska from Dr. Eb R i c e ; and personal conversations with northern i n h a b i t a n t s along with my own exper- ie n c e s . 1.5 APPLICATION • To make the users and b u i l d e r s more aware of design responses which respond b e t t e r to the c l i m a t e . • User p a r t i c i p a t i o n i n upgrading the q u a l i t y of housing through demand on c o n t r a c t o r b u i l t housing and s e l f - h e l p b u i l d i n g programs. • E s t a b l i s h a g r e a t e r energy consciousness i n hous- i n g design - a c l o s e r look at the o p e r a t i o n and main- tenance c o s t s when a s s e s s i n g q u a l i t y i n housing. m U6e by a l l income l e v e l s i n e v a l u a t i n g housing: s i n g l e f a m i l y housing, compact housing, co-op housing, s e l f - h e l p housing, and t r a i l e r park/mobile home s e l e c t i o n . 22 1.6 IMPLEMENTATION Weekly or biweekly newspaper a r t i c l e s showing housing which responds w e l l w i t h i n the northern environment. U n i v e r s i t y or Alaska evening course f o r home bu i l d e r s / b u y e r s . U n i v e r s i t y Cooperative Extension S e r v i c e p u b l i c a - t i o n s , i n d i v i d u a l pamphlets f o r b u i l d i n g i n A l a s k a . A r t i c l e s f o r The Northern Engineer and other i n t e r e s t e d p u b l i c a t i o n s • A p p l i c a t i o n to my own design work i n the North. 1.7 DEFINITIONS A. Housing Q u a l i t y : L e v e l one - as i t r e l a t e s to s a t i s f y i n g b a s i c needs: adequate space, s h e l t e r / p r o t e c t i o n from the elements, and a b i l i t y to reach work, s c h o o l s , and s e r v i c e s . L e v e l two - as i t r e l a t e s to h a b i t a b i l i t y and comfort: provides a comfortable l i v i n g environment w i t h regard to s u n l i g h t , day- l i g h t , temperature, and humidity while ex- pending the l e a s t amount of energy to achieve these. L e v e l three - as i t r e l a t e s to c o s t s of o p e r a t i o n and maintenance: energy e f f i c i e n t design with the a b i l i t y to withstand the seasonal c l i m a t i c s t r e s s e s as w e l l as normal abuse with adequate d e t a i l i n g to minimize m a t e r i a l d e t e r i o r a t i o n and m a l f u n c t i o n i n g . B. Optimal Design f o r Climate: T h i s r e l a t e s to the energy balance between p o t e n t i a l incoming n a t u r a l energy and the outflow of energy (heat) w i t h i n the housing u n i t ( a r t i f i c i a l and n a t u r a l ) . 23 C. Planning Levels These are e s t a b l i s h e d i n t h i s t h e s i s from l e v e l 1 (highest) to l e v e l 4 (lowest) s i n c e d e c i s i o n s made at the higher planning l e v e l s have an e f f e c t on the options at the lower planning l e v e l s . For example, i f a l a r g e , t a l l b u i l d i n g i s s i t e d to the south of a smal l e r b u i l d i n g (planning l e v e l 1 ) , then t h i s may e f f e c t the s m a l l e r b u i l d i n g ' s o r i e n t a t i o n , shape, a c t i v i t y space l o c a t i o n s , and f a b r i c d e t a i l i n g r e g a r d i n g s o l a r . r a d i a t i o n . D. P h y s i c a l F a c t o r s : These r e f e r t o both the c l i m a t i c f a c t o r s and s i t e f a c t o r s . E. C l i m a t i c F a c t o r s : These r e f e r to cli m a t e and c l i m a t i c combin- a t i o n s of s o l a r r a d i a t i o n ( l i g h t and h e a t ) , temperature, p r e c i p i t a t i o n , wind, and humidity/moisture p o t e n t i a l . F. S i t e F a c t o r s : These r e f e r to the n a t u r a l l y o c c u r i n g s i t e c o n d i t i o n s w i t h regard to topography, geo- l o g y / s o i l s , hydrology, and v e g e t a t i o n . G. Design Responses: These r e f e r to the s o l u t i o n s which can be in c o r p o r a t e d i n t o the b u i l t environment to make use of or minimize the s t r e s s from the p h y s i c a l f a c t o r s . 24 1.8 REFERENCES 1 Amos Rapoport, House Form and C u l t u r e , P r e n t i c e - H a l l , I n c . , Englewood C l i f f s , New Je r s e y , 1969, p. 47 2 Eb R i c e , "The I d e a l A r c t i c House - 1 1 , " The Northern Engineer, Summer 1973* p.18 3 "House o f the Week," Anchorage D a i l y Times, Anchorage, A l a s k a , May 2 1 , 1976. k "House of the Week." Fairbanks D a i l y News Miner, Fairbanks, A l a s k a , September 10,1976 5 Problems were encountered w i t h g e t t i n g housing loans f o r s e v e r a l houses which had e x c e p t i o n a l l y low heat l o s s c h a r a c t e r i s t i c s but appeared unconventional i n appearance (not the t y p i c a l ranch s t y l e house). 6 G. F. Parsons, A r c t i c Suburbs: A Look at the North's Newcomers. Mackenzie D e l t a Research P r o j e c t No. 8 , Northern Science Research Group, Dept. of Indian A f f a i r s and Northern Development, Ottawa, 1970 7 The M i l e p o s t , A l l - t h e - N o r t h T r a v e l Guide, E d i t e d by Bob Henning, Alaska Northwest P u b l i s h i n g Co., Anchorage, A l a s k a , 1974 8 C a p i t a l S i t e S e l e c t i o n Committee, "The S e l e c t i o n of a C a p i t a l S i t e W i l l Soon Be I n Your Hands," Supplement to a l l Alaskan newspapers, summer 1976 9 I b i d . 1 0 Naramore, B a i n , Brody, and Johanson, A l a s k a S t a t e C a p i t a l R e l o c a t i o n Study, Boeing Computer S e r v i c e s , I n c . , J u l y 1974 1 1 State of A l a s k a , Alaska Statewide Housing Study } 1971 % V o l . 1: Housing Con d i t i o n s and Needs, Juneau, A l a s k a , 1971 25 CHAPTER 2 CLIMATIC COMPARISONS 2.1 INTRODUCTION 2.2 SOLAR RADIATION 2.2.1 Objective/Background 2.2.2 Apparent Sunpath ( A l t i t u d e and Azimuth) 2.2.3 Albedo 2.2.4 Cloud Cover 2.2.5 B u i l d i n g I m p l i c a t i o n s 2.3 TEMPERATURE 2.3.1 O b j e c t i v e 2.3.2 Duration of Cold Extremes 2.3.3 Seasonal Temperature D i f f e r e n c e s 2.3.4 D i u r n a l Temperature V a r i a t i o n s 2.3.5 B u i l d i n g I m p l i c a t i o n s 2.4 PRECIPITATION 2.4.1 O b j e c t i v e 2.4.2 Normal Yearly P r e c i p i t a t i o n 2.4.3 Extreme P r e c i p i t a t i o n Amounts Over Short Periods 2.3.4 Snow Cover Amounts and Duration 2.3.5 B u i l d i n g I m p l i c a t i o n s 2.5 WIND 2.5.1 O b j e c t i v e 2.5.2 Mean Winter Wind Speed and D i r e c t i o n 2.5.3 Mean Summer Wind Speed and D i r e c t i o n 2.5*4 Maximum Wind Speeds and D i r e c t i o n s 2.5.5 K a t a b a t i c Wind 2.5.6 B u i l d i n g I m p l i c a t i o n s 2.6 SPECIAL CLIMATIC CONDITIONS 2.6.1 O b j e c t i v e 2.6.2 Humidity/Moisture P o t e n t i a l 2.6.3 Blowing Snow 2.6.4 Permafrost 2.6.5 A c t i v e Layer/Frost Heave 2.7 SUMMARY 26 27 28 1.1 INTRODUCTION Since most of the people l i v i n g i n the northern urban areas r e l a t e to more southern forms of housing with comforts and conveniences as we l l as planning patterns which were developed for temperate c l i m a t i c areas , i t i s f i r s t necessary to point out the d i f f e r - ences i n the c l i m a t i c factors which inf luence the performance of b u i l d i n g s as we l l as the way of l i f e i n the North. The object ive of t h i s chapter i s to ind ica te the pert inent c l i m a t i c d i f ferences between "northern zones" wi th in Alaska as wel l as d i f f erences between these zones and more southern "cold zones". There are four major c l i m a t i c zones wi th in the State of Alaska: the a r c t i c zone, the northern most reg ion bordering the A r c t i c Ocean; the cont inenta l zone, that area encompassing the i n t e r i o r of the . s t a t e ; the t r a n s i t i o n a l zone, northern areas under the inf luence of large bodies of water g i v i n g the zone both cont inenta l and maritime in f luences ; and the maritime zone, p r i m a r i l y southeastern Alaska yet encompassing much of the reg ion bordering on the Gulf of A l a s k a . F i r s t , the d i f ferences i n these northern zones i s expla ined, then the c l i m a t i c d i f f erences are compared with those of lower l a t i t u d e s i n which people are more f a m i l i a r . In order to use e x i s t i n g c l i m a t o l o g i c a l da ta , settlements with recorded data have been picked to represent the d i f f e r e n t c l i m a t i c zones. The compara- t i v e northern zones and representat ive sett lements i n Alaska are: The A r c t i c Zone Barrow, Ak. 7 1 ° 18 ' N. L a t . The Cont inenta l Zone Fa irbanks , Ak. 6k° 4 9 ' The T r a n s i t i o n a l Zone Anchorage, Ak. 6 l d 10 ' The Maritime Zone Talkeetna , Ak. Juneau, Ak. 62° 18' 58° 22 V 29 The comparative southern zones and representative settlements are: The Continental Zone Minneapolis, Minn. 44° 53'N. Lat. The Maritime Zone Vancouver, B. C. 49° 11 ' With the exception of Barrow and Talkeetna, the ci t i e s are well known urban centers within Alaska, Minnesota (north-central U.S.) and Bri t i s h Columbia (Western Canada). Talkeetna i s a small settlement in the Susitna Valley, 80 air miles north of Anchorage, Alaska's largest city, and 44m. north of the location for the Alaska State Capital city at Willow. These areas are compared with regard to: 1. Solar Radiation 2. Temperature 3 . Precipitation 4 . Wind 5. Special Climatic Conditions a. Humidity/Moisture Potential b. Blowing Snow c. Permafrost d. Active Layer/Frost Heave The implications of these climatic conditions on building design w i l l be mentioned in this chapter with the next chapter elaborating on the design responses (solutions). ALASKA SCALE OF MILES 0 SO 100 150 200 no ONE INCH EQUALS APPRO* 198 MILES •MHHMM Controlled Access Hmpmays Principal Through Highways Paved Gravel Pawd Gravol Dwt Pav«d Gravel D>rt Other Through Highways Connecting Highway; Old Crow / \ R0dR> fys&\ McPh. - cO-IMATIC wrmiki ALASKA O 31 32 2.2 SOLAR RADIATION 2.2.1 Objective/Background This s e c t i o n shows the extent to which s o l a r . r a d i a t i o n c h a r a c t e r i s t i c s change with l a t i t u d e change ( s o l a r angles and azimuths) as w e l l as c l i m a t i c zone types ( d u r a t i o n of cloud c o v e r ) , and the i m p l i c a t i o n s these d i f f e r e n c e s have on the b u i l t environment. D i f f e r e n c e s i n the apparent sun path are discussed i n terms of the l a t i t u d e change i n s t e a d of c l i m a t i c zones s i n c e the l a t i t u d e determines these d i f f e r e n c e s . The e f f e c t s of cloud cover, % of p o s s i b l e sunshine, and albedo are discussed i n terms of the c l i m a t i c zones. Since the l a t i t u d e change w i t h i n Alaska ranges from c l o s e to 51° i n the A l e u t i a n I s l a n d s and 55° i n southeastern Alaska to over 71* at Barrow (20° l a t i t u d e d i f f e r e n c e ) , i t ' s important to know the c h a r a c t e r i s t i c s of the sun f o r each p a r t i c u l a r area where development occurs. The 20° l a t i t u d e change would be comparable to the d i s t a n c e from jU6t north of San F r a n c i s c o i n northern C a l i f o r n i a to the Yukon border. Even the more southern p o r t i o n s of A l a s k a , ; i e , Ketchikan at 55* are c l o s e to 10° f u r t h e r north than M i n n e a p o l i s , Minn. (i+5° north l a t i t u d e ) . 2.2.2 Apparent Sun Path ( A l t i t u d e and Azimuth) Lower midday sun angles and high seasonal v a r i a t i o n i n s o l a r azimuth t r a v e l i n c r e a s e with an i n c r e a s e i n l a t i t u d e . Figure 2.5 shows the midday sun angle f o r v a r i o u s l a t i t u d e s on December 21st and June 21st, the s o l s t i c e s , and March 21st and September 21st,the eq u i - noxes. A l s o , the angle i s shown f o r east and west o r i e n t a t i o n s on June 21st at 6am and 6pm. The sun at Bar row reaches only k3° a l t i t u d e at noon on the longest day, yet the sun i s 22° above the h o r i z o n when coming from east and west (6am and 6pm), and 3i° at midnight from the north. The Minneapolis sun, k5° N. L a t . , has a noon a l t i t u d e o f 68° on June 21st, l 6 £ d a t 6am and 6pm, and no midnight sun.''  3k The lower sun angles i n higher l a t i t u d e s cause a r e d u c t i o n i n the sun's r a d i a t i o n i n t e n s i t y . The re d u c t i o n o f r a d i a t i o n due to the earth's atmosphere depends on the composition of the atmosphere and the length of atmospheric path t r a v e r s e d . ATMOSPHERIC AIR MASS 1 (o & A *> 2. I — - 1 — ! j 1 ' t ! j i i I ! - O 5* \o° J5* £ 0 * 2s? *0° 4o° Prom the graph, 2 which r e l a t e s the atmospheric mass through which the s o l a r r a d i a t i o n passes with the sun angle, the atmospheric mass begins having a marked e f f e c t when the sun angle drops below 20°-25° • From 20° sun angle to 10° sun angle the atmospheric mass doubles and from 10° to 5° sun angle the mass doubles again, so the s o l a r i n t e n s i t y drops o f f q u i t e r a p i d l y when the sun angle drops below 20°. Another f a c t o r e f f e c t i n g s o l a r i n t e n s i t y i s the spread of the s o l a r r a d i a t i o n over a greater d i s t a n c e as the sun's rays approach the poles. < ^ Sun ray, x, spread over d i s t a n c e s y and z on earth's surface This f a c t o r i s more important i n h e a t i n g s u r f a c e s p a r a l - l e l to the earth's surface ( h o r i z o n t a l ) such as i n a g r i c u l - t u r e . B u i l d i n g s counter thi6 f a c t o r with b u i l d i n g ' s urfaces that are more perpendicular to the sun's r a y s . 35 During the winter season the sun's a l t i t u d e i s very low, with Barrow g e t t i n g no sun f o r over two months, Fairbanks w i t h a 1£* angle at noon on the s h o r t e s t day compared to 21-J-0 angle f o r M i n n e a p o l i s . 5 This winter sun h i t s and penetrates b u i l d i n g s i n the more northern l a t i t u d e s only from the south due to the short s o l a r azimuth t r a v e l at the winter s o l s t a c e . In more southern l a t i t u d e s the sun penetrates more from the east and west as w e l l as from the south, see f i g u r e 2 .6 . From March 21st to September 21st, higher l a t i t u - des experience more p o t e n t i a l s u n l i g h t hours than lower l a t i t u d e s due to the l a r g e s o l a r azimuth t r a v e l i n summer. North of the A r c t i c C i r c l e (66?*) the seasonal s u n l i g h t change i s from 0 hours of winter s u n l i g h t to 24 hours of s u n l i g h t i n summer while i n the northern U.S. and southern Canada the range i s from a low of 8 to 9 hours i n December to around 16 hours i n June, a change of roughly 8 hours over the year as compared to 24 hours, 6ee f i g u r e 2 . 7 . The y e a r l y d i s t r i b u t i o n o f s o l a r energy becomes more l o p s i d e d the f u r t h e r north one goes. The longer summer days giv e the p o t e n t i a l f o r l a r g e amounts of s o l a r heat gain while the short winter days gain l i t t l e s o l a r heat while the long n i g h t s r a d i a t e l a r g e amounts of heat out to the atmosphere. A NNUAL SUNLIGHT^ V L a t i t u d e Summer % (Mar. 21 to Se Winter % Jt .21)(Sept .21 to Mar.21) , 55* 60° 65° 70° 63 66 71 79 37 34 29 21 36 W l N i T ^ 4 S U M M I T e g > U ^ A f - I K i t T K T K A V ^ l - 37 F I G U R E 38 2.2.3 Albedo In the winter and s p r i n g when the ground i s covered w i t h snow, the s u n l i g h t can go through mul- t i p l e r e f l e c t i o n s between snow and cloud cover g i v i n g f a i r l y high i n t e n s i t i e s of d i f f u s e d l i g h t . 5 so w h i l e the sun may be c l o s e r to the h o r i z o n (low a l t i t u d e ) , w i t h the a i d o f snow and clouds i t s t i l l has the p o t e n t i a l of sup p l y i n g a f a i r amount of r e f l e c t e d and d i f f u s e l i g h t d u r i n g the short days of wi n t e r . 2.2.4 Cloud Cover In a d d i t i o n to the e f f e c t of l a t i t u d e change, weather systems and cloud cover e f f e c t the amount of s u n l i g h t a v a i l a b l e to any p a r t i c u l a r area. The cloud cover i s more a f u n c t i o n of the areas l o c a t i o n i n r e l a t i o n to oceans and predominant weather zones, i e , c l i m a t i c zones. The a r c t i c zone i s the d r i e s t of a l l northern c l i m a t i c regions yet s t i l l experiences a good d e a l of high cloud cover. The c o n t i n e n t a l zone has l e s s cloud cover and more s u n l i g h t than a l l other regions i n Alaska . The t r a n s i t i o n a l zone, being a combination of the c o n t i n e n t a l and maritime zones normally r e c e i v e s more cloud cover than the c o n t i n e n t a l but l e s s than the maritime r e g i o n s . The maritime zone r e c e i v e s the most cloud cover w i t h the lowest percent of p o s s i b l e s u n l i g h t . ^ 39 2 . 2 . 5 B u i l d i n g I m p l i c a t i o n s The l a c k of winter s u n l i g h t e f f e c t s b u i l d i n g design mainly with regard to the p s y c h o l o g i c a l import- ance of maximizing winter s u n l i g h t as w e l l as the need f o r more a r t i f i c i a l l i g h t d u r i n g the longer winter p e r i o d . I n b u i l d i n g design i t ' 6 l e s s important to t r y to optimize the mid-winter s o l o r heat gain than i t i s to minimize the l o s s of heat r a d i a t i n g out to the atmosphere. The lower s o l a r a l t i t u d e causes g r e a t e r s o l a r shadowing p o t e n t i a l i n winter e s p e c i a l l y when the 6un comes only from the south. During the summer months, the longer azimuth t r a v e l and lower sun angles produce longer periods of p o s s i b l e heat gain on south, e a s t , and west v e r t i c a l s u r f a c e s s i n c e the sun rays are c l o s e r to perpendicu- l a r to these s u r f a c e s . The lower angles a l s o permit the sun's rays to penetrate i n s i d e a b u i l d i n g f u r t h e r through the openings i n v e r t i c a l s u r f a c e s . I t may become necessary to pr o t e c t a g a i n s t unwanted s o l o r p e n e t r a t i o n due to low angle s u n l i g h t coming from the northwest, n o r t h , and northeast. The high albedo during winter and s p r i n g can create g l a r e problems. The inc r e a s e d g l a r e p o t e n t i a l can be bothersome e s p e c i a l l y d u r i n g the s p r i n g when there are more s u n l i g h t hours and the snow i s s t i l l on the ground r e f l e c t i n g the s u n l i g h t . Cloud cover causes v a r y i n g degrees of d i f f u s e s o l a r r a d i a t i o n which y i e l d s l e s s s o l a r heat gain to the b u i l d i n g surfaces than d i r e c t s u n l i g h t d u r i n g c l e a r sky c o n d i t i o n s . So areas w i t h a l o t of cloud cover such as Juneau i n the maritime r e g i o n would normally r e c e i v e much l e s s s o l a r heat g a i n than the Alaskan i n t e r i o r d u r i n g s p r i n g and summer. 40 2.3 TEMPERATURE 2.3.1 O b j e c t i v e This s e c t i o n d e s c r i b e s the d i f f e r i n g c l i m a t i c zones by the length of time that c o l d temperatures e x i s t , the seasonal temperature d i f f e r e n c e s , as w e l l as d i u r n a l v a r i a t i o n s . The i m p l i c a t i o n s of these on the b u i l t environment are discussed at the end of t h i s s e c t i o n . 2.3.2 Duration of Cold Extremes A look at the four major Alaskan c l i m a t i c zones on f i g u r e Z.") shows the average y e a r l y temperature range from 9.3°F at Barrow to 40.3°F at Juneau. Anchorage and Talkeetna average 32°to 34°F, about 8°F warmer than Fairbanks on a y e a r l y average.^ Figure Z,t> shows the number of days per month that the temperature i s below 0* F. Fairbanks and Talkeetna have 0°F temperatures from October through A p r i l (7 months) while Juneau experiences 0*F temperatures from December through March (4 months). In January, Fairbanks averages 29 days below 0° F, Talkeetna 16 days, and Juneau 5 d a y s . ^ The heating * days (base temperature of 65°) show a comparison of heat r e q u i r e d over the year f o r each a r e a ; ^ Minneapoles 8,159 Degree Days Juneau 9»155 Anchorage 10,911 Talkeetna 11,708 Fairbanks 14,344 Barrow 20,265 While the c o n t i n e n t a l zones (Fairbanks and Minneapolis) both experience c o l d temperatures, the d u r a t i o n of the c o l d i n the north causes a 76% higher h e a t i n g r e q u i r e - ment over the year f o r Fairbanks. The t r a n s i t i o n a l zone areas r e q u i r e about 40% more heat than the more southern c o n t i n e n t a l zone. 0 V 3 J m ft •UPON if i fir 4 ft • IS 42 2.3 .3 Seasonal Temperature D i f f e r e n c e s - average and extreme The average y e a r l y v a r i a t i o n s i n temperature from winter to summer a r e : 1 0 Minneapolis 12.2*F to 71.9°F (59.7*F) Anchorage 11.8*F to 5 7 . 9 ° F (46.1°F) Talkeetna 9.0*F to 57.9°F (48.9*F) Fairbanks -11.9*F to 60.7°F (72.6°F) The northern c o n t i n e n t a l zone experiences the gr e a t e s t v a r i a t i o n i n temperature making i t more d i f f i c u l t to design f o r both summer and winter c o n d i t i o n s . T h i r t y year seasonal extreme temperature d i f f e r - ences range from 157*F at Fai r b a n k s , 108°F at Juneau, to 92*F a t Vancouver. The range of temperature extremes do not vary g r e a t l y between c o n t i n e n t a l zones. F a i r - banks has extreme temperature d i f f e r e n c e s only 14% greater than that of Minneapolis (157°F vs 135°F) with the summer highs and winter lows both lower as shown on f i g u r e Z . lo . Temperature extremes are more pronounced i n the c o n t i n e n t a l zones than i n the a a r i t i m e zones. Each s p e c i f i c zone, i e , c o n t i n e n t a l , has lower low extreme temperatures and lower high temperatures than the same c l i m a t i c zone i n a lower l a t i t u d e . 43 * a & a $ kk 2 . 3 . 4 D i u r n a l Temperature V a r i a t i o n s The d i u r n a l temperature v a r i a t i o n s (nighttime low temperature versus daytime high temperature) are greatest i n the c o n t i n e n t a l zones (Fairbanks, w i t h up to a 15 deg. F v a r i a t i o n and Minneapolis w i t h up to a 21 deg. F v a r i a t i o n ) becoming l e s s the more the tem- peratures are i n f l u e n c e d by larg e bodies of water such as i n the maritime r e g i o n s . Anchorage's d i u r n a l v a r i a - t i o n s are normally around 15 deg. F due to the i n f l u - ence of Cook I n l e t . While moving up the S u s i t n a V a l l e y , Talkeetna's d i u r n a l temperature v a r i a t i o n s range from 17 deg. F to 25 deg. F, see f i g u r e s 2.11 and 2 . 1 2 . 1 1 10' \0* I / 1 / i x < L - j - - t If (J?*iPf MAXIMUM - P » ^ Y MM"*»NV ^€jmu) 0°1 I I ! I I I I i i I 1̂ M. &*>. M*. Af*. l^f ^ r . ar. hbo. p*u Flt^UfTfe- g .H 45 u. o 46 During winter months the d i u r n a l temperature change i s n e g l i g i b l e s i n c e the cloud cover c o n t r o l s the temperature v a r i a t i o n s more than the low s o l a r r a d i a t i o n . The d i u r n a l v a r i a t i o n s i n the northern zones are not balanced around a temperature which i s considered comfortable such as i n a warmer cli m a t e where the range may be between 50°F and 100°F. The northern c o n t i n e n t a l and t r a n s i t i o n a l zones normally have both high and low temperatures below the 65°F temperature f o r most of the year r e q u i r i n g supplemental heat to reach comfortable temperatures. Normal D a i l y Maximum above 65°F Anchorage Talkeetna Fairbanks Minneapolis May June J u l y ! August Sept. 67.9° 65.7° 70.7° 77.1° 65.6° ; 67.5° 71.8° 82.4° 65.8° 80.8° 70.7° 2.3.5 B u i l d i n g I m p l i c a t i o n s The most important b u i l d i n g i m p l i c a t i o n s r e l a t e to the d u r a t i o n of the extreme c o l d temperatures. F i r s t , the d u r a t i o n of the extreme c o l d temper- atures e f f e c t s the f u n c t i o n i n g of an urban environment based on our current modes of t r a n s p o r t a t i o n (autos, a i r p l a n e s ) . The automobile experiences many problems i n v o l v i n g s t a r t i n g , o p e r a t i o n , and maintenance durin g the c o l d w i n t e r s . I n a d d i t i o n to t h i s , the autos, t r u c k s , buses, and a i r p l a n e s produce i c e fog which can accumulate over a pe r i o d of a week or two reducing v i s i b i l i t y to a minimum and o c c a s i o n a l l y b r i n g i n g a i r t r a f f i c to a h a l t (most s i g n i f i c a n t i n the I n t e r i o r where c l e a r skys and minimal wind combine to produce the extreme c o l d temperatures). Second, the c o l d temperatures produce the fro z e n ground c o n d i t i o n s (permafrost) as w e l l as t r i g g e r the mechanism of f r o s t heave i n the s o i l . These c o n d i t i o n s V? can have adverse e f f e c t s on the foundation s t a b i l i t y of s t r u c t u r e s . T h i r d , the amount of h e a t i n g degree days has a d i r e c t e f f e c t on the cost of op e r a t i o n of any heated s t r u c t u r e . Economically speaking i t i s most important to minimize the b u i l d i n g heat l o s s to the c o l d e x t e r - i o r temperatures. This can be done i n a number of ways which are o u t l i n e d i n chapter J>. Fourth, the conduction of the c o l d temperatures i n t o the b u i l d i n g i n t e r i o r through "thermal b r i d g e s " or poorly i n s u l a t e d s u r f a c e s (windows) can cause a great many problems from f r o s t b u i l d up i n b u i l d i n g m a t e r i a l s to the f r e e z i n g and f r o s t accumulation on i n t e r i o r s urfaces (windows, c o r n e r s ) . 48 2.4 PRECIPITATION 2.4.1 O b j e c t i v e The primary concern with p r e c i p i t a t i o n i s the t o t a l y e a r l y amount of p r e c i p i t a t i o n , extreme amounts i n short p e r i o d s , and the amount and d u r a t i o n of snow cover f o r the d i f f e r i n g c l i m a t i c r e g i o n s . The i n t e n t i n t h i s s e c t i o n i s to point out these d i f f e r e n c e s and i n d i c a t e the i m p l i c a t i o n s to the b u i l t environment. 2 . 4 . 2 Normal Yearly P r e c i p i t a t i o n The maritime zone r e c e i v e s the g r e a t e s t amount of p r e c i p i t a t i o n of a l l Alaska zones as f i g u r e 2 .13 shows; 55 inches f o r Juneau (as much as 188" per year i n p a r t s of southeastern Alaska's maritime region) while Barrow i n the a r c t i c zone b a r e l y r e c e i v e s 5" per year.* 2 . The i n t e r i o r of Alaska i s r e l a t i v e l y dry with Fairbanks averaging 11" a year while on the south s i d e of the Alaska Range, the weather system changes g i v i n g Talkeet- na n e a r l y 3 0 " a year. Closer to Cook I n l e t , the p r e c i p - i t a t i o n drops o f f to 15 " a year f o r Anchorage. BN4 f=KfcCIPITATlgtJ Tc?TAUS Jl Y e a r l y p r e c i p i t a t i o n (inches) i n c l u d e s both r a i n and snow. The conversion from snow to p r e c i p i t a t i o n i s normally 10 to 1. 5 O I* \7 <i fr - M A ft ;ij 49 In the c o n t i n e n t a l zones, Minneapolis gets more than twice as much p r e c i p i t a t i o n as Fairba n k s , mostly i n the s p r i n g and summer. This d i f f e r e n c e may be due to the dryness caused by frozen c o n d i t i o n s during a l a r g e r p o r t i o n of the year i n the northern c o n t i n - e n t a l zone. 2 . 4 . 3 Extreme p r e c i p i t i o n Amounts Over S h o r t P e r i o d s Maximum P r e c i p i t a t i o n i n 24 h o u r s 1 4 Area P r e c i p i t a t i o n Snow Anchorage 1.66" (Nov.) 16.4" (Nov.) Talkeetna 3 .12" (Sept.) 36 .0" (Feb.) Fairbanks 3.42" (Aug.) 20 .1" (Feb.) Minneapolis 4.12" ( J u l y ) 16.2" ( Nov.) The g r e a t e s t p o t e n t i a l hazard occurs when the extreme r a i n or snow i s much higher than the average causing excessive r u n o f f e r o s i o n , f l o o d i n g , and s t r u c t u r a l f a i l u r e . As an example, the 3.42" 24 hour p r e c i p i t a t i o n f o r Fairbanks helped cause the 1967 August f l o o d which put the whole c i t y under s e v e r a l feet of water. The 36" ( 3 ' ) of snow f a l l i n 24 hours i n Talkeetna could cause s t r u c t u r a l damage to r o o f s not designed to handle the heavy snow loads. 2 . 4 . 4 Snow Cover Amount and Duration The l e n g t h of time i n which the ground i s covered w i t h snow v a r i e s from 61 months i n Fairbanks to 3 months i n Mi n n e a p o l i s , see f i g u r e 2 .14 . Once the snow f a l l s i n the f a l l i n Alaska's a r c t i c , c o n t i n e n t a l , and t r a n s i t i o n a l zones, i t normally stays u n t i l the s p r i n g when the wi n t e r ' s accumulation melts away. In more southern regions such as M i n n e a p o l i s , temperatures i n the 40's occur i n winter months causing snow to melt from time to time • In the maritime zones, Juneau and Vancouver are c l o s e when i t comes to t o t a l p r e c i p i t a t i o n , see f i g u r e 2 . 1 3 . Juneau's peak month i6 October while Vancouver's f a l l s i n December. The b i g d i f f e r e n c e between the two 50 i s the presence of lower temperatures f a r t h e r north causing much more s n o w f a l l as can be seen by Juneau's 107" versus Vancouver's 18" of snow per year. Juneau's snow w i l l thaw, causing s l u s h , d u r i n g warm periods duri n g the w i n t e r , l a t e r f r e e z i n g i n t o i c e . This seldom occurs f a r t h e r north i n the t r a n s i t i o n a l and c o n t i n e n t a l zones due to the more constant c o l d e r winter temperatures. More southern maritime regions experience l e s s s n o w f a l l such as Vancouver's average of l8"/year which normally melts away i n s e v e r a l days or a week a f t e r the storm, causing s l u s h f o r short periods of time i n the wi n t e r . 2.i+.5 B u i l d i n g I m p l i c a t i o n s B u i l d i n g design i m p l i c a t i o n s f o r p r e c i p i t a t i o n become most c r i t i c a l i n the northern maritime r e g i o n where problems are r e l a t e d to snow and i c e . Icy w inter c o n d i t i o n s make t r a n s p o r t a t i o n , the d i r e c t i o n and slope of roads and c i r c u l a t i o n systems, a major design f a c t o r i n c i t y planning and o p e r a t i o n . The larg e accumulations of heavy, water s a t u r a t e d snow make snow p r o t e c t i o n , removal, and s t r u c t u r a l design of b u i l d i n g s more c r i t i c a l i n the northern maritime r e g i o n than i n the other northern regions where the snow i s l i g h t and dry and accumulation i s l e s s . In the a r c t i c r e g i o n , the presence of blowing snow becomes a major design i m p l i c a t i o n s i n c e the d r i f t i n g p o t e n t i a l can block access and cover p o r t i o n s of b u i l d i n g s , t h i s i s discussed i n more d e t a i l i n a l a t e r s e c t i o n . In the northern t r a n s i t i o n a l and c o n t i n e n t a l r e - gions i t becomes more important to focus b u i l d i n g design towards the use of snow's i n s u l a t i n g q u a l i t i e s (more c r i t i c a l f o r warmth, f u e l consumption, and the f u n c t i o n i n g of u t i l i t i e s ) . 51 52 2.5 WIND 2.5.1 O b j e c t i v e The average wind speeds and d i r e c t i o n s f o r both winter and summer are important when t r y i n g to minimize wind c h i l l , heat l o s s , and snow d r i f t i n g . Extreme wind speeds and d i r e c t i o n s are important p r i m a r i l y i n the s t r u c t u r a l design of the b u i l d i n g . The areas with k a t a b a t i c winds are important to know i n order to avoid extreme c o l d temperatures. The f i g u r e s 2.15, 2.16, and 2.17 compare the wind data from the d i f f e r i n g c l i m a t i c zones which help to show which regions have the greatest design i m p l i c a t i o n s f o r wind. 2.5.2 Mean Winter Wind Speed and D i r e c t i o n In the Alaskan c l i m a t i c zones, Fairbanks i n the c o n t i n e n t a l zone has the l e a s t amount of wind during the winter months (3.4 mph) with calm c o n d i t i o n s 48% of the time, Anchorage and Talkeetna, under the i n f l u - ence of Cook I n l e t , have at l e a s t 1-J- times the mean wind speed of Fairbanks (5-?mph) wit h calm c o n d i t i o n s 20% of the time. Juneau, being maritime, r e c e i v e s a higher constant wind throughout the year with a mean speed from November to February of 8.8mph with calm c o n d i t i o n s about 5% of the time. Barrow, i n the a r c t i c zone, has c o n t i n u a l wind during the winter with calm c o n d i t i o n s only 1% of the time, see f i g u r e 2.15. The wind d i r e c t i o n during these c o l d months remains n e a r l y constant f o r each l o c a t i o n . The d i r - e c t i o n i t s e l f depends on the topography of each p a r t i c - u l a r area i n combination with the a i r movement of the r e g i o n . So a higher l a t i t u d e or the type of c l i m a t i c zone i s not always a major determinent i n wind d i r e c - t i o n , each i n d i v i d u a l area w i l l have i t s own wind pat- t e r n s which need to be known f o r e f f e c t i v e b u i l d i n g design f o r that area. In the c o n t i n e n t a l zones, Fairbanks and Minneapo- l i s v a r y g r e a t l y i n wind movement throughout the w i n t e r . Minneapolis (10.6mph mean speed) i s much more exposed to winter storms and the movement of a i r masses while ALASKA ONE INCH EQUALS APPRO*. 198 MILES M M M H M I ^ H M H Controlled Access Highways Pawed Giave* . ,.- Principal Through Highways Pawed Giawel 0«r ^ ... . , _ Other Through Highways -SUfttCB- W I M P % fJr*nMe WIMP WAS* CAtM 54 Fairbanks and the Alaska interior, due to persistent snow cover during the winter months, experience l i t t l e heat gain since the white surface prevents absorbtion therefore creating l i t t l e air movement. The maritime regions are more subject to an east- west wind direction pattern, Juneau i s sandwiched i n between mountains running north and south which break up this pattern somewhat. Yet, during the cold months Juneau receives most of i t s wind from the east - south- east with the occasional "Taku Wind" coming from the north. Similarly Vancouver's winter winds blow from the east and southeast with occasional strong blows from the west or northwest. 2.5.3 Mean Summer Wind Speed and Direction In the arctic region, Barrow's wind speed increases slightly during summer with calm conditions only 2.% of the time while the direction remains similar to that during winter. Fairbanks has slightly increased wind speeds with calm conditions droping to 12% of the time, the predominant direction i s from the southwest, 180° from the winter wind. The Cook Inlet/ Susitna Valley area has summer wind similar in speed to winter wind with calm conditions 10% of the time and a pre- dominent direction opposite that of the winter wind. Southeastern Alaska (Juneau) has a slight drop in summer wind speed and a change in direction from east- southeast to north (+100 s h i f t ) , see figure 2 .16. 2.5.4 Maximum Wind Speeds and Directions Juneau get6 i t s winter "Taku Winds", strong north- erly winds most often caused by the flow of cold a i r from northwestern Canada through nearby mountain passes and over the Juneau Ice Field. Anchorage gets strong, gU6ty, north winds which occur, on the average, once or twice during the winter which can cause d r i f t - ing and packing of snow cover. Talkeetna experiences relatively light north-northeast winter winds. Fair- banks normally has only light winds in the winter months, while Barrow receives a constant coastal wind, see figure 2.17. ALASKA SCALE Of MILES 100 ISO ?O0 S L K R ^ B W I M P f ^ g £ 3 , JUt-V % Of T)Mfc WIWt7 WAS- CAl-M I I I <*f I I I  57 2.5.5 K a t a b a t i c Wind K a t a b a t i c winds, the c o l d a i r flow from h i g h e r e l e v a t i o n s to low areas, are experienced throughout Alaska being most pronounced i n the c o l d e r r e g i o n s i n the i n t e r i o r , although even Juneau experiences a wide d i f f e r e n c e on temperatures between upland ( s l o p i n g areas) and the low f l a t t e r r a i n which r e c e i v e s the c o l d a i r drainage from higher e l e v a t i o n s . Normally a l i g h t to moderate wind or cloud cover w i l l s t i r up the s t r a t i f i e d a i r r e l i e v i n g the low l y i n g areas from the extreme c o l d temperatures. This f a c t o r i s important when s e l e c t i n g b u i l d i n g s i t e s w i t h i n a p a r t i c u l a r area. 17 2.5.6 B u i l d i n g I m p l i c a t i o n s In b u i l d i n g design c o n s i d e r a t i o n s f o r w i n ter wind, the design p r i o r i t y f o r the d i r e c t i o n of the mean wind or that of the s t r o n g , gusty wind which occurs two or three times a season would have to be r e s o l v e d f o r each i n d i v i d u a l area. I n a d d i t i o n , the b u i l t environment a l s o has i t s i n f l u e n c e on these wind pat- te r n s which can e i t h e r i n c r e a s e or decrease the pro- blems encountered. This micro c l i m a t e which i s created has the p o s s i b i l i t y of enhancing or degenerating the h a b i t a b i l i t y of the area. In r e g i o n s w i t h p e r s i s t e n t winds such as i n the a r c t i c , the major b u i l d i n g i m p l i c a t i o n s a r e : 1. the p o t e n t i a l f o r snow d r i f t i n g about the b u i l d i n g s , and 2. the c o l d a i r and a i r born snow i n f i l t r a t i o n i n t o the b u i l d i n g i n t e r i o r . I n the c o n t i n e n t a l and t r a n s i t i o n a l r e g i o n s , the w i n t e r wind can have a b e n e f i c i a l e f f e c t by s t i r r i n g up the extreme c o l d a i r which s e t t l e s i n low l y i n g areas thereby r a i s i n g the a i r temperatures i n these areas. Then the major b u i l d i n g i m p l i c a t i o n becomes the i n f i l t r a t i o n through cracks and openings as w e l l as the c o o l i n g e f f e c t on e x t e r i o r b u i l d i n g s u r f a c e s 58 ( e s p e c i a l l y g l a s s ) . High winds pose s t r u c t u r a l problems as w e l l as the increased heat l o s s problem. Regions adjacent to bodies of water such as the A r c t i c Ocean, Bearing Sea, Cook I n l e t , and the Gulf o f Alaska experience the h i g h e r winds which would have a greater i n p a c t on b u i l d i n g forms such as high r i s e housing than on low r i s e , compact housing which could be protected from the c o l d winds. 59 2.6 SPECIAL CLIMATIC CONDITIONS 2.6.1 Objective This section points out the combination of climatic conditions in the north which cause special building problems for differing areas within the north. The intent of this section i s to define these conditions, indicate where they are most c r i t i c a l , and state the building implications due to their presence. 2.6.2 Humidity/Moisture Potential The mechanics of humidity concerning moisture potential and temperature are explained in Appendix A under "Relative Humidity Chart and Moisture Potential Graph".1* The moisture potential of any particular area i s dependent upon the temperature,since the continental zone experiences the coldest temperatures i t also would have less moisture potential in the a i r . During the winter months Barrow and Fairbanks would have the least potential for moisture in the a i r . Talkeetna, Anchorage, and Minneapolis would be similar, while Juneau and Vancouver would have the greatest moisture potential. Many problems occur in the cold dry areas where the moisture created by people, cooking, and washing within buildings migrates towards the exterior which i s cold and cannot retain the high moisture content in the a i r . This moisture i s often frozen in or on build- ing materials. High humidity becomes a comfort problem during summer when the temperature i s high enough, see com- fort zone on the bioclimatic chart, Appendix A. Most areas in Alaska have temperate summer temperatures. The interior region gets temperatures in the 80's and occasionally i n the 90's, yet the relative humidity during the warm months ranges from 40% (2pm in the afternoon in June) to 78% (2am in the morning in July). The lowest value occuring during the warmest part of the day makes the area comfortable even during the warmer periods. During these same periods in Minn- 60 e a p o l i s the d a i l y maximum temperature average i s i n the 80's with maximums around 100*F wh i l e the r e l a t i v e humidity ranges from 53% to 82%. From the b i o c l i - matic c h a r t , 80°F and 60% humidity i s beyond the comfort zone f o r most people. The design f o r summer heat and humidity, vent- i l a t i o n from the wind and more openings i n b u i l d i n g s , has a much higher p r i o r i t y i n more southern l a t i t u d e s such as Minneapolis than i t has i n a l l r e g i o n s of Al a s k a . 2.6.3 Blowing Snow Combining wind, p r e c i p i t a t i o n (dry snow), and temperature (cold) produces c o n d i t i o n s i d e a l f o r blow- i n g 6now which has a tendency to accumulate behind any s o l i d b a r r i e r on the down wind s i d e b l o c k i n g b u i l d i n g e x i t s , c overing windows, e t c . The areas i n Alaska where t h i s i s a major b u i l d i n g design problem i s along the a r c t i c slope and west c e n t r a l A l a s k a , areas which border the A r c t i c Ocean, Beaufort Sea, Chukchi Sea, and Bearing Sea, see f i g u r e 2.18. C o a s t a l areas f u r t h e r south experience m i l d e r temperatures durin g winter normally making the snow too heavy to be tr a n s p o r t e d by the w i n d . 2 0 61 2.6.4 Permafrost Permafrost i s permantly f r o z e n s o i l , m a t e r i a l which normally stays at or c o l d e r than 32°F (0*C) over the years. Continuous permafrost r e f e r s to the' northernmost areas i n which a l l the t e r r a i n i s per- mantly frozen ground to v a r y i n g depths below the a c t i v e l a y e r . Discontinuous permafrost r e f e r s to the areas g e n e r a l l y f u r t h e r south which tend to have permafrost on the north slopes of h i l l s and f l a t areas which have poor drainage. Normally the south f a c i n g h i l l s i d e s and w e l l drained f l a t areas are f r e e of permafrost. Further south i s the area of sporadic permafrost where the permafrost i s only found i n i s o l a t e d spots where l i t t l e s o l a r heat i s obtained, poor drainage e x i s t s , temperatures stay low throughout the year, or combina- t i o n s of these c o n d i t i o n s . In A l a s k a , continuous permafrost e x i s t s from the Brooks Range north to the A r c t i c Ocean. Discontinuous perma- f r o s t i s present throughout the i n t e r i o r while s p o r a t i c permafrost occurs i n the t r a n s i t i o n a l zone encompas- s i n g Anchorage and Talkeetna, see f i g u r e 2.19. South- eastern Alaska i s v i r t u a l l y f r e e of permafrost. B u i l d i n g i m p l i c a t i o n s a s s o c i a t e d with- permafrost d e a l with foundation s t a b i l i t y s i n c e m e l t i n g of the permafrost can cause d i f f e r e n t i a l settlement or even c o l l a p s e of the s t r u c t u r e . Ice lenses and i c e wedges are present i n permafrost, should these melt they leave a v o i d i n the s o i l which s i n k s i n l e a v i n g any- t h i n g r e s t i n g on the surface i n an unstable c o n d i t i o n . The areas of discontinuous permafrost i n the Alaskan i n t e r i o r are more c r i t i c a l to b u i l d on than the perma_ f r o s t i n the a r c t i c r e g i o n s i n c e the temperature of the permafrost i n the i n t e r i o r may be c l o s e to melt- i n g . Any change on the surface such as c l e a r i n g the the brush may melt the permafrost. B u i l d i n g on t h i s type of ground should be avoided whenever p o s s i b l e . 62 '2.6.5 A c t i v e Layer/Frost Heave The a c t i v e l a y e r of the ground i s that depth which f r e e z e s and thaws annually as the seasons change. Areas of the gre a t e s t a c t i v e l a y e r depth are those with the gre a t e s t temperature d i f f e r e n c e s from winter to summer causing f r e e z i n g temperatures to go deeper i n the winter and a greater depth of thaw i n the summer. The i n t e r i o r or c o n t i n e n t a l c l i m a t i c zone i n Alaska has the gre a t e s t v a r i a t i o n of a c t i v e l a y e r , from 2 feet up to 20 f e e t . Should the s o i l on which a b u i l d i n g i s constructed have a low moisture content ( b a c k f i l l e d w i t h non-frost susceptable m a t e r i a l ) and good drainage, the f r e e z i n g (expansion) and thawing of 2.2. the^ a c t i v e l a y e r presents l i t t l e problem. 63 Since n e a r l y a l l of Alaska experiences f r e e z i n g temperatures, an a c t i v e l a y e r of v a r y i n g depths can be found throughout the s t a t e . More southern maritime areas such as Vancouver do not experience the f r e e z i n g of the ground to any great extent while i n the c o n t i n - e n t a l zone of Minneapolis an a c t i v e l a y e r may be s i m i l a r to that found i n the Anchorage r e g i o n i n Alaska. Frost heave occurs w i t h i n the a c t i v e l a y e r of the s o i l and i s the r e s u l t a n t b u i l d i n g i m p l i c a t i o n a s s o c i a t e d with the a c t i v e l a y e r . By d e f i n i t i o n , f r o s t heaving i s the expansion of s o i l due to the growth w i t h i n i t of extensive i c e whose volume i s gr e a t e r than the (thawed) voids-volume of the s o i l . In order f o r f r o s t heave to occur, we need f r e e z i n g temperatures ( w i n t e r ) , water i n the s o i l ( s i l t s ) , and the c a p i l a r y a c t i o n of the s o i l to b r i n g the water towards the sur- face where i t freezes and expands (wick a c t i o n ) . 2 5 Hence, any area w i t h i n Alaska can experience f r o s t heave depending on the s o i l makeup and moisture content w i t h i n the s o i l . I n the c o l d e s t areas the heaving w i l l occur once i n the f a l l when the ground begins to freeze f o r the w i n t e r . In more temperate areas the freeze/thaw c y c l e may occur s e v e r a l times over a winter due to i n t e r m i t t a n t c o l d s p e l l s and warm periods (above f r e e z i n g ) . Southern maritime r e g i o n s do not experience f r o s t heave due to the l a c k of non-freezing temperatures, yet more southern c o n t i n e n t a l r e g i o n s encounter pro- blems with f r o s t heave due to long periods below 32°F (0°C) during the w i n t e r . While f r o s t heave i s present i n more southern l a t i t u d e s than Alaska i t becomes a more c r i t i c a l pro- blem i n many areas i n the north due to the combination of poorly drained s o u l ( p a r t l y caused by surrounding permafrost) and the presence of s i l t y s o i l s . 64 2.7 SUMMARY Some c l i m a t i c c o n d i t i o n s are more c r i t i c a l i n b u i l d i n g design f o r c e r t a i n r egions w i t h i n the State of Alaska than other areas. The most important c l i - matic c o n d i t i o n s f o r each r e g i o n are: A. The A r c t i c Region a. Blowing snow and snow d r i f t i n g b. Constant wind blowing c. Continuous permafrost c o n d i t i o n s d. Small a c t i v e l a y e r / f r o s t heave p o t e n t i a l e. Cold temperatures year round f. Low sun angles with no s u n l i g h t i n winter and 24 hours i n summer In t h i s r e g i o n the primary b u i l d i n g i m p l i c a t i o n s are (?) the p o t e n t i a l f o r snow d r i f t i n g and (5) the need to r e t a i n the s t a b i l i t y of the f r o z e n ground (permafrost). The l a t t e r causes s p e c i a l problems wit h regard to foundations and u t i l i t y systems (water and sewer). The p o s s i b i l i t y of c r e a t i n g a more d e s i r - a ble micro c l i m a t e through windbreaks i s r e s t r i c t e d by the p o s s i b i l i t y of snow d r i f t i n g . B. The Sub-Arctic Region a. Cold temperatures f o r long periods b. Low sun angles with short winter days and long summer days c. Dryness during c o l d months d. i c e fog production e. Less wind than a r c t i c or maritime r e g i o n s f. High degree of moisture m i g r a t i o n (warm to co l d ) g. Discontinuous permafrost more s e n s i t i v e when di s t u r b e d h. Large a c t i v e l a y e r / f r o s t heave p o t e n t i a l The l o c a t i n g / s i t i n g of housing i n the s u b - a r c t i c environment i s very important s i n c e p i c k i n g the r i g h t spot can a l l e v i a t e many p o t e n t i a l problems. Areas 65 with permafrost, p o t e n t i a l f r o s t heave,and low l y i n g c o l d a i r drainage should be avoided whenever p o s s i b l e . I f t h i s can be done, then the primary b u i l d i n g concerns deal with temperature and s o l a r r a d i a t i o n . There i s a tremendous c o n t r a s t between the very c o l d r e l a t i v e l y dark w i n t e r s , and the r e l a t i v e l y warm, b r i g h t summers. This great d i f f e r e n c e between summer and winter i s one of the most important char- a c t e r i s t i c s of the s u b - a r c t i c . Planning a l i v i n g environment which responds to both summer and winter c o n d i t i o n s becomes a challenge i n the s u b - a r c t i c s i n c e the seasonal v a r i a t i o n s are so extreme. C. The Southern C o n t i n e n t a l Region The more southern c o n t i n e n t a l r e g i o n , i n c o n t r a s t to the s u b - a r c t i c r e g i o n has more winter s u n l i g h t , s h o r t e r winter season, and much warmer summer tempera- t u r e s . T his p r i m a r i l y lessens the impact on o p e r a t i n g c o s t s f o r h e a t i n g and problems r e l a t e d to c o l d temp- erature p e n e t r a t i o n (thermal b r i d g i n g w i t h r e l a t e d i c i n g ) . D. The Northern Maritime Region a. Greater r a i n , snow, and i c e b. Higher winds c. Presence of ocean fog d. More moderate temperatures over the year This r e g i o n , being more damp and windy, p r i m a r i l y needs p r o t e c t i o n a g a i n s t w i n t e r winds and l a r g e snow accumulations which may cause s t r u c t u r a l damage as w e l l as maintenance problems. I c y c o n d i t i o n s through- out the winter make v e h i c l e t r a n s p o r t a t i o n hazardous e s p e c i a l l y when c i r c u l a t i o n p a t t e r n s are l o c a t e d on s l o p e s . E. The Southern Maritime Region The more southern maritime r e g i o n experiences r e l a t i v e l y m i l d temperatures as w e l l as more s u n l i g h t d u r i n g the winter months. Summer temperatures are 66 more moderate than continental regions making solar heat desirable for a large portion of the year. The absence of permafrost and heaving soils simplifies foundations and the moderate temperatures have less of an impact on the building fabric. 67 68 2.8 REFERENCES ^ Sunpath diagram f o r 62°north l a t i t u d e c o n s t r u c t e d by the author, see appendix A. 2 Atmospheric A i r Mass Chart prepared by the author from ASHRAE, Handbook of Fundamentals, p. 469, a i r mass = cosecant of s o l a r a l t i t u d e x r a t i o of barometric pressure: 29.92 in.hg. S o l a r a t l i t u d e s c a l c u l a t e d from the formula shown i n Appendix A, Part C. ^ P h i l i p R. Johnson and Charles W. Hartman, E n v i r - onmental A t l a s of A l a s k a , U n i v e r s i t y of A l a s k a , 1969 9 John Hay, " S o l a r R a d i a t i o n F e a s i b i l i t y i n Canada," Canadian M e t e o r o l o g i c a l S o c i e t y Lecture at Univ. of B r i t i s h Columbia, Feb. 26, 1976 ^U.S., Department of Commerce, N a t i o n a l Oceanic and Atmospheric A d m i n i s t r a t i o n (NOAA), N a t i o n a l C l i m a t i c Center, A s h v i l l e , North C a r o l i n a . L o c a l C l i m a t o l o g i c a l Data. Annual Summary With Comparative Data: Anchorage,Alaska 1973 Talkeetna, A l aska 1974 Fairbanks, A l aska 1974 Juneau, Alaska 1974 M i n n e a p o l i s , Minn. 1974 7 I b i d . & I b i d . ^ I b i d . 1 0 I b i d . 1 1 I b i d . 1* U.S. (NOAA), Monthly Normals of Temperature. P r e c i p i t a t i o n , and Heating and C o o l i n g Degree Days 1941 - 701 A l a s k a , August 1973* and Monthly Averages of Temperature and P r e c i p i t a t i o n f o r State C l i m a t i c D i v i s i o n s 1941 - 70. A l a s k a , J u l y 1973 * 3 Canada, Department of Transport, M e t e o r o l o g i c a l Branch, Temperature and P r e c i p i t a t i o n Tables f o r B r i t i s h Columbia, Toronto, 1967 U.S., (NOAA), L o c a l C l i m a t o l o g i c a l Data ^ Johnson and Hartman, Environmental A t l a s 69 1 < c > Canada, Department of Transport, M e t e o r o l o g i c a l Branch, C l i m a t i c Normals, Volumn 5, Wind, Toronto, 1968 1 7 Eb R i c e , " A r c t i c Engineering (C.E. 603), Univ. of A l a s k a , c l a s s notes, 1973 1 * G i v o n i , Man, Climate and A r c h i t e c t u r e , * 9 V i c t o r Olgyay, Design With C l i m a t e , P r i n c e t o n U n i v e r s i t y Press, New J e r s e y , 1963 7 0 R i c e , C.E. 603 Johnson and Hartman, Environmental A t l a s R i c e , C.E. 603 70 CHAPTER 3 BUILDING DESIGN RESPONSES 3.1 INTRODUCTION 3.2 PLANNING LEVEL 1: SITE LAYOUT/CIRCULATION PATTERNS 3.2.1 Objective 3.2.2 S o l a r R a d i a t i o n 3.2.3 Temperature 3.2.4 P r e c i p i t a t i o n 3.2.5 Wind 3.2.6 S p e c i a l C l i m a t i c C o n d i t i o n s (Blowing Snow) 3.2.7 Summary 3.2.8 References 3.3 PLANNING LEVEL 2: BUILDING SIZE, SHAPE, AND ORIENTATION 3.3.1 O b j e c t i v e 3.3*2 S o l a r R a d i a t i o n 3.3.3 Temperature 3.3.4 P r e c i p i t a t i o n 3.3.5 Wind 3.3.6 Special Climatic Conditions (Blowing Snow) 3.3.7 Summary 3.3.8 References 3.4 PLANNING L E V E L 3: ACTIVITY/SPACE ARRANGEMENT 3.4.1 O b j e c t i v e 3.4.2 S o l a r R a d i a t i o n 3.4.3 Temperature 3.4.4 P r e c i p i t a t i o n 3.4.5 Wind 3.4.6 S p e c i a l C l i m a t i c C o n d i t i o n s (Blowing Snow) 3.4.7 Summary 3.4.8 References 3.5 PLANNING LEVEL 4: DETAILING ON THE BUILDING FABRIC 3.5.1 O b j e c t i v e 3.5.2 S o l a r R a d i a t i o n 3.5*3 Temperature 3.5.4 P r e c i p i t a t i o n 3.5.5 Wind 3.5.6 S p e c i a l C l i m a t i c C o n d i t i o n s A. Humidity/Moisture P o t e n t i a l B. Blowing Snow C. Permafrost D. Frost Heave 3.5.7 Summary 3.5.8 References 71 3.1 INTRODUCTION This chapter i l l u s t r a t e s b u i l d i n g responses to the c l i m a t i c c o n d i t i o n s s t a t e d i n chapter 2. The previous chapter compared s e v e r a l northern c l i m a t i c r e g i o n s . The b u i l d i n g design responses i n t h i s chapter may be a p p l i c a b l e to a wide range of northern c l i m a t i c r e g i o n s , but the primary focus w i l l be on the s u b - a r c t i c r e g i o n as shown on f i g u r e 2 .20 at the end of chapter 2. The format i s broken down i n t o the four planning l e v e l s with each l e v e l i l l u s t r a t i n g responses due to i m p l i c a t i o n s caused by s o l a r r a d i a t i o n , temperature, p r e c i p i t a t i o n , wind, and s p e c i a l c l i m a t i c c o n d i t i o n s . The four planning l e v e l s are ordered from # 1(highest) to #4 (lowest) since d e c i s i o n s made at the higher planning l e v e l s have an e f f e c t on the impact of the clima t e at the lower planning l e v e l s . Planning l e v e l s i n c l u d e : 1 S i t e L a y o u t / C i r c u l a t i o n P a t t e r n s , 2 B u i l d - i n g S i z e , Shape, and O r i e n t a t i o n , 3 A c t i v i t y / S p a c e Arrangement, and k D e t a i l i n g of the B u i l d i n g F a b r i c , r e f e r t o f i g u r e 1.9 i n chapter 1. Each planning l e v e l i s summarized i n d i c a t i n g the r e l a t i v e importance of the v a r i o u s responses to the c l i m a t e . The p r i o r i t i e s of many of the d i f f e r i n g design responses w i l l depend on the user's needs and preferences plus the p a r t i c u l a r s i t e c o n d i t i o n s . Be- cause of t h i s , the responses have been i l l u s t r a t e d s e p a r a t e l y f o r each c l i m a t i c f a c t o r ( s o l a r r a d i a t i o n , temperature, etc.) so that u s e r s / b u i l d e r s can de s i g n / evaluate housing as i t responds to each i n d i v i d u a l c l i m a t i c f a c t o r . The next chapter provides an example of e v a l u a t i o n f o r a p a r t i c u l a r s i t e , combining the s i t e f a c t o r s w i t h the c l i m a t i c f a c t o r s t o e s t a b l i s h a p o s s i b l e set of b u i l d i n g response p r i o r i t i e s f o r the more s p e c i f i c c o n d i t i o n . 72 3.2 PLANNING LEVEL 1: SITE LAYOUT/CIRCULATION PATTERNS C L I M A T I C F A C T O R S S I T E F A C T O R S K O to O F-i R E F E R E N C E M A T R I X s a U | o M H « o u £ I** a s s a o K h »H U. M g g SFE CIA L U 2 o f- G EOL OGY  o 111 !-• •< B w w P L A N N I N G L E V E L 1 P L A N N I N G L E V E L 2 P L A N N I N G L E V E L } P U N N I N O LEVEL it 3.2.1 O b j e c t i v e This s e c t i o n i s intended to p o i n t out design responses at t h i s f i r s t l e v e l of planning which h e l p to l e s s e n the adverse e f f e c t s of the cli m a t e at the lower l e v e l s of planning. The establishment of a c i t y i n f r a s t r u c t u r e puts v a r i o u s r e s t r i c t i o n s on the b u i l t environment. The housing must f o l l o w v e h i c u l a r and u t i l i t y c i r c u l a t i o n p a tterns and be r e g u l a t e d by property l i n e s adjacent to these c i r c u l a t i o n p a t t e r n s . I f the c i t y i n f r a - s t r u c t u r e were planned to minimize the adverse e f f e c t s of the winter c l i m a t i c c o n d i t i o n s and maximize the d e s i r a b l e c l i m a t i c e f f e c t s , the micro c l i m a t e created at t h i s f i r s t planning l e v e l could g r e a t l y enhance the h a b i t a b i l i t y of the area and l e s s e n the c l i m a t i c i m p l i c a t i o n s on the b u i l t environment. 73 3.2.2 S o l a r R a d i a t i o n CLIMATIC FACTORS SITE FACTORS REFERENCE MATRIX SOL AR RA DIA TIO N M g EH «< e s BB o »~t U . h-t w s »H BB W ic O n »H M e o u • J < M C> w o. "1 T OPO GRA PHY  >• o 3 S a SOI LS >* o 3 o r r . a O * U O w PLANNINQ LEVEL 1 PLANNINfJ LEVEL 2 PUNNINQ LEVEL 3 PLANNING LEVEL k One of the most important aspects of design i n the s u b a r c t i c r e g i o n i s the use of s o l a r r a d i a t i o n and n a t u r a l l i g h t i n the s i t i n g , l a y o u t , s i z e , shape, and o r i e n t a t i o n o f b u i l d i n g s with respect to one another s i n c e they d i r e c t l y e f f e c t the time and d u r a t i o n that s u n l i g h t w i l l be d i s t r i b u t e d to each b u i l d i n g ( e s p e c i a l l y during the winter months). Does a person have a r i g h t to s u n l i g h t ? Does h i s home have a r i g h t to s u n l i g h t , e s p e c i a l l y i f i t i s designed to maximize s o l a r r a d i a t i o n i n order to make i t h a b i t a b l e and conserve non-renewable resources? In North America, zoning ordinances are normally the only r e g u l a t i o n which i n d i r e c t l y have an e f f e c t on the l i g h t and s u n l i g h t p a t t e r n s . S i n g l e f a m i l y housing w i t h i n a c i t y would normally have zoning c o n t r o l s which r e s t r i c t the l o t s i z e s , setbacks, b u i l d i n g use, and b u i l d i n g h e i g h t s which e f f e c t the s u n l i g h t char- a c t e r i s t i c s of the surrounding environment. Most zoning ordinances do not use a q u a n t i t a t i v e or qua l - i t a t i v e measure of s u n l i g h t and/or s k y l i g h t a v a i l a b l e to the e x t e r i o r use spaces or the b u i l d i n g s themselves. So, from the southern l a t i t u d e s of F l o r i d a t o the north- ern l a t i t u d e s of A l a s k a , the s i z e and spacing of housing i s very s i m i l a r s i n c e zoning c r i t e r i a changes l i t t l e w i th l a t i t u d e , see c i t y maps i n chapter 1, f i g u r e s 1.5 and 1.6 f o r s t r e e t / c i t y l a y o u t . But, the amount of s u n l i g h t and d e s i r a b i l i t y f o r s u n l i g h t changes r a d i c a l l y w i t h l a t i t u d e and c l i m a t i c c o n d i t i o n s , and yet the b u i l t environment (micro-climate created) does not r e f l e c t t h i 6 . 7k For c e n t u r i e s laws have been passed to p r o t e c t the r i g h t to s u n l i g h t . H i s t o r i c a l l y there have been periods of great concern f o r the p r o t e c t i o n of l i g h t and s u n l i g h t w i t h i n the l i v i n g and working environ- ment. These concerns were o r i g i n a l l y based on h e a l t h reasons s i n c e i t was proved t h a t the l a c k of s u n l i g h t was d e t r i m e n t a l to ones w e l l being. The present day concern f o r s u n l i g h t takes on a new dimension si n c e i t i s based on the f u n c t i o n i n g of the b u i l d i n g to make i t h a b i t a b l e . " L i g h t and s u n l i g h t , according to the consensus of q u a l i f i e d o p i n i o n , c o n s t i t u t e the most important f a c t o r i n determining the d e s i r a b l e maximum height and bulk of b u i l d i n g s . Many attempts have been made to reduce the minimum d e s i r a b l e standards of l i g h t and s u n l i g h t to a q u a l t i t a t i v e b a s i s . The B r i t i s h Law of Ancient L i g h t s i s the e a r l i e s t attempt to assure a minimum standard of l i g h t to the ground s t o r y windows of a l l b u i l d i n g s . ... the Law of Ancient L i g h t s dates back to the . r e i g n of Richard Coeur de L i o n i n the year 1 1 8 9 . " In the U.S., many s t u d i e s were done which attempted to e s t a b l i s h a minimun standard of s u n l i g h t along with a means f o r e v a l u a t i o n . Unfortunately much of the ef- f o r t done i n t h i s research was not put i n t o p r a c t i c e . " I t i s a matter of record that i n developing a zoning ordinance f o r New York we spent a great deal of time t r y i n g to see i f there might not be some way of i n t e r p r e t i n g these q u a n t i t a t i v e standards i n the terms of a zoning ordinance that might be r e a d i l y a p p l i e d by the average a r c h i t e c t , b u i l d e r , or r e a l t o r . The upshot was that we found there were so many other c o m p l i c a t i n g f e a - t u r e s that i t would be i m p r a c t i c a b l e to t r y to use a d e f i n i t e q u a n t i t a t i v e minimum standard of l i g h t and s u n l i g h t i n the zoning ordinance;" 2 Most q u a n t i t a t i v e standards at the time t r i e d to e s t a b l i s h at l e a s t \ hour of s u n l i g h t ( e q u i v i l e n t of noon s u n l i g h t i n t e n s i t y ) to a home u n i t window on the s h o r t e s t day of the year. 75 It was claimed back in 1930 that New York, through i t s zoning, had accomplished the same sunlight and skylight standards as London even though i t allowed greater building heights. This was justi f i e d because the sun angle in New York (25i°) on the shortest day of the year i s 11° higher than i t i s in London (15°) therefore allowing greater building heights while achieving equal sunlight standards.^ So, what are the consequences i f this were applied to the far northern latitudes where the winter sun angle i s only 5* instead of 25^r°? Figure 3.1 gives some idea with regard to the building spacing required for different latitudes to receive similar amounts of winter sunlight. The ratio of ve r t i c a l height to horizontal spacing required to allow winter sunlight penetration varies from 1:1.67 for 45°N.Lat. (higher latitude than New York City) to 1:8.5 at 62*N.Lat. Instead of 15' high buildings being spaced 25' apart, the buildings need to be spaced 127' apart to receive similar sunlight exposure on the shortest day of the year. This i s not feasible since the buildings would have to be so spread out that they would use up too much land while provid- ing housing for only a few people. Since in the north i t would be even more d i f f i c u l t to arrive at a quantitative standard to assure sunlight to a l l housing units, i t makes more sense to evaluate building size, shape, orientation, and spacing on their shadowing (sun blocking) potential of exterior space and other buildings. The building response c r i t e r i a put foreward in this section i s meant to be a tool for evaluating solar shadowing potential instead of trying to prescribe quantitative standards for sunlight or daylight. 76 77 The o r i e n t a t i o n of the c i r c u l a t i o n system has a major e f f e c t on the arrangement of b u i l d i n g s and the use of e x t e r i o r spaces. North/south s t r e e t o r i e n - t a t i o n i s best f o r a l l o w i n g s u n l i g h t onto e x t e r i o r spaces and f o r e s t a b l i s h i n g " c o r r i d o r s f o r s u n l i g h t " during the w i n t e r . Compact housing forms o r i e n t a t e d p a r a l l e l to the north/south s t r e e t would cast a min- i m a l shadow d u r i n g midday, but the u n i t s would get only a s m a l l p o r t i o n of s u n l i g h t on the east and/or west w a l l s and windows. The most unfortunate pro- blem with north/south s t r e e t o r i e n t a t i o n s i s that they u s u a l l y have east/west s t r e e t connectors, the famous g r i d p a t t e r n . Having c l o s e l y spaced b u i l d i n g s along the east/west s t r e e t s i s the l e a s t d e s i r a b l e s o l u t i o n with regard to s o l a r shadowing si n c e they put the north s i d e e x t e r i o r spaces i n shadow f o r over of the year. With t h i s i n mind, s t r e e t patterns should maximize north/south s t r e e t o r i e n t a t i o n s and minimize east/west s t r e e t o r i e n t a t i o n s u t i l i z i n g diagonals (nw/se,ne/sw) f o r connectors. The southeast/northwest s t r e e t s w i l l get morning sun along with adjacent e x t e r i o r yards, and i n the afternoon the southwest/northeast s t r e e t r e c e i v e s s u n l i g h t . 78 When buildings are placed along the circulation patterns, the property lines should be flexible enough to allow differing building orientations. Having this f l e x i b i l i t y the designer/builder can manipulate the structure more easily to respond to the climatic conditions at planning level 2. The greatest potential for sunlight from the south occurs along diagonal street patterns since the distance which the buildings are spaced apart i s the greater diagonal distance. 5711 1=1 G U f ^ 3.3 The individual buildings of any micro environ- ment should be arranged so that the smaller buildings are to the south of larger more massive buildings in order to minimize the shadowing effect of the larger buildings during winter. 79 The l o c a l topography a l s o has an e f f e c t on sha- dowing p o t e n t i a l . B u i l d i n g on south f a c i n g h i l l s h e lps to reduce the length of shadows during winter p r o v i d i n g the opp o r t u n i t y f o r c l o s e r b u i l d i n g spacing while s t i l l r e c e i v i n g winter s u n l i g h t . S i m i l a r to c o n d i t i o n s on l e v e l ground, the t a l l e r more massive b u i l d i n g s should be l o c a t e d near the top of the slope (to the north) w i t h the sma l l e r b u i l d i n g s to the south, southeast, and/or southwest. For an example of the topographic e f f e c t on b u i l d i n g spacing with regard to s u n l i g h t p e n e t r a t i o n , the spacing f o r 3 s t o r y (35') b u i l d i n g s range from 80' a t 4 5 * l a t i t u d e to 375' at 6 2 * l a t i t u d e f o r s i m i l a r w i n t er s u n l i g h t p e n e t r a t i o n on f l a t topography. The 375' spacing can be reduced to 118' ( l e s s than 1/3rd the d i s t a n c e ) when on a 10°slope and have equal s u n l i g h t p e n e t r a t i o n , see f i g u r e s 3 , %>,A i n Appendix ^ . 80 3.2.3 Temperature CLIMATIC FACTORS SITE FACTORS REFERENCE MATRIX SB a 5 * K 3 g i Ct •H «S U, o g * Ui V. o M o u »J «c t> u a. "? >* < O u, O f- >* 3 O f.l (!» to r-i O U) o s o « n.. SS O K < & U PLANNING LEVEL 1 # PLANNING LEVEL 2 PUNNING LEVEL 3 PUNNINO LEVEL k A. Topographic L o c a t i o n a l C o n s i d e r a t i o n s : H i l l s i d e s and higher e l e v a t i o n s should be used f o r development due to the c o l d a i r flow ( k a t a b a t i c wind) i n the winter which s e t t l e s i n the lowest areas. T h i s c o l d a i r flow can make the v a l l e y f l o o r as much as 30° to 40°F col d e r than the h i l l s i d e s s e v e r a l hundred feet higher. Much l i k e the c o l d a i r flow, i c e fog c o l l e c t s i n the low l y i n g areas durin g periods of extreme low temperatures (below -25°F) which are c h a r a c t e r i z e d by l i t t l e a i r movement and c l e a r s k i e s . In most cases the fog i s created by man ( c a r s , homes, power p l a n t s , i n d u s t r y - anything which puts moisture i n t o the a i r ) . With increased development, i t i s d i f f i c u l t to av o i d the production of i c e fog d u r i n g extreme c o l d c o n d i t i o n s , but knowing that the fog s e t t l e s i n the 81 lower e l e v a t i o n s along with the c o l d a i r , development can avoid areas of high i c e fog p o t e n t i a l . T his i s e s p e c i a l l y important when planning f o r development which needs good winter v i s i b i l i t y such as an a i r p o r t . B. P h y s i c a l / S o c i o - C u l t u r a l L o c a t i o n a l Considerations - Compact Planning versus Dispersed Planning: In the a r c t i c r e g i o n the c l o s e grouping of b u i l d - i ngs and the containment of many f a c i l i t i e s i n one s t r u c t u r e i s more c r i t i c a l than i n the s u b a r c t i c r e g i o n due to the presence of year round c o l d temp- e r a t u r e s , continuous permafrost, constant wind, blow- i n g snow, and l a c k of v e g e t a t i o n . "The c l i m a t e , t e r r a i n and permafrost condi- t i o n s s e v e r e l y i n h i b i t the options f o r s e r v i c i n g b u i l d i n g s i n the no r t h . S e l f - c o n t a i n e d systems f o r h e a t i n g and r e c y c l i n g water are technolo- g i c a l l y f e a s i b l e , but p r o h i b i t i v e l y expensive on an i n d i v i d u a l housing u n i t b a s i s . Even i f such systems become economically f e a s i b l e , there i s reason to concentrate housing u n i t s i n t i g h t groupings because of the e c o l o g i c a l d i s t u r b a n c e , the expense of roads and paths, and the atmos- pheric e f f e c t s of keeping an automobile engine running while i t i s parked." CP i n the s u b a r c t i c r e g i o n there i s a need f o r a compact community during winter and a dispersed com- munity during summer i n order to optimize f o r the d i f f e r i n g seasons. During the winter t r a n s p o r t a t i o n , u t i l i t i e s , and maintenance can be major problems/ expenses i n a dispersed community. On the n a t i o n a l s c a l e , t r a n s p o r t a t i o n accounted f o r 25% of the t o t a l end product energy consumption i n the U.S. i n 1970. Only 25% of t h i s energy was 82 converted to "work" while 75% was "waste" ( l o s t i n -t heat and exhaust). C a r e f u l l c o n s i d e r a t i o n must be made i n the north- ern environment when e s t a b l i s h i n g t r a n s p o r t a t i o n means and p a t t e r n s . F i r s t , i s the automobile the appropriate means of t r a n s p o r t a t i o n ? Besides the numerous h a s s l e s i n v o l v e d with the comfort, c o s t , and maintenance of an auto i n the w i n t e r , the auto gets much l e s s milage per g a l l o n of gas i n c o l d temp- er a t u r e s ( q u i t e o f t e n about \ normal). So the alre a d y bad e f f i c i e n c y drops even lower. When combining t h i s w i t h the f a c t t h a t the autos, t r u c k s , and buses account f o r n e a r l y 20% of the t o t a l U.S. f u e l consumed, while producing only 25% e f f i c i e n c y , i t would seem important to plan a r e l i a b l e t r a n s i t system and /or a compact s i t i n g of s e r v i c e s , s c h o o l s , o f f i c e s , and l i v i n g environments which would minimize the need f o r the p r i v a t e auto w i t h i n the c i t y environment. Since i n dispersed developments the automobile w i l l not be e l i m i n a t e d and areas w i l l be developed which are remote enough to r e q u i r e an auto ( q u i t e o f t e n a U, wheel d r i v e ) some adverse c o n d i t i o n s must be considered: 1. Steep i n c l i n e s , approximately 10% or greater with i c y c o n d i t i o n s l i m i t : A c c e s s i b i l i t y of p r i v a t e autos School bus pi c k up and drop o f f P o s t a l and garbage s e r v i c e Emergency access 2. P a r k i n g l o t s i n downtown areas where people shop f o r an hour or two tend to have high carbon monoxide readings due to the i n v e r s i o n l a y e r s of a i r (prevelent i n winter) combined with the i d l i n g of cars which people do f o r hours i n order to always have a warm c a r . These areas a l s o accumulate l a r g e amounts of i c e fog during extreme c o l d periods. Plug- i n s are c o s t l y to i n s t a l l as w e l l as f o r the the consumer to use. 83 3» Snow removal from October to A p r i l with a w i n t e r ' s accumulation v a r y i n g from 30" (2i f e e t ) to over 170" (14 f e e t ) 4. The a v a i l a b i l i t y of e l e c t r i c a l p l u g - i n s or heated parking garages becomes more important the c o l d e r i t becomes. When temperatures drop below -20°F f o r any length of time many cars w i l l not s t a r t or operate w e l l i f the engine and b a t t e r y have had time to c o o l o f f . In F a i r b a n k s , e l e c t r i c a l p l u g - i n s are a v a i l - a b le (normally at a c o s t ) so that the c i r c u - l a t i n g h e a t e r s / o i l pan heaters can keep the engine warm and the e l e c t r i c b a t t e r y blanket can keep the b a t t e r y from c o o l i n g o f f and l o o s i n g power. The i s s u e s o f t r a n s p o r t a t i o n and l o c a t i o n ( d i s t a n c e ) from places of work, s c h o o l , e t c . are com- plex. I t ' s been my experience that those who can a f f o r d to use a p r i v a t e auto w i l l use i t j u s t as i n any other area i n the U.S. e s p e c i a l l y i f c o n d i t i o n s make i t necessary. Should a t r a n s i t system be developed, i t s d e p e n d a b i l i t y i s c r i t i c a l because people are not w i l l i n g to spend any length of time w a i t i n g i n -30°F temperatures i n the winter darkness. A l s o , once people are able to e s t a b l i s h t h e i r sub- urban sprawl with homes, shopping areas, s c h o o l s , o f f i c e s , and i n d u s t r y spread out i n many areas i t becomes more d i f f i c u l t to e s t a b l i s h a t r a n s i t system which can s a t i s f y most of the people. Reduced c a p i t a l c o s t s and reduced maintenance c o s t s add to the d e s i r a b i l i t y of compact planning. Reduced c a p i t a l c o s t s r e s u l t from s h o r t e r access r o u t e s . C a p i t a l c o s t s i n c l u d e such items as paved roads, curbs, s i d e w a l k s , sewers, storm sewers, water mains, s t r e e t l i g h t i n g , f i r e hydrants, and power d i s t r i b u t i o n . Reduced maintenance c o s t s r e s u l t from s e r v i c i n g a s h o r t e r l i n e a r footage of access r o u t e s . Maintenance c o s t s i n c l u d e such items as road mainten- ance, snow clearance and p o l i c i n g . ° 84 i P rob lems Wi th Compact C i t y p l a n n i n g Compact communi t ies a l s o can produce prob lems a s s o c i a t e d w i t h l i v i n g i n the n o r t h . In e v a l u a t i n g the per fo rmance o f the town o f S v a p p a v a a r a , Sweden, the d e s i g n e r , R a l p h E r s k i n e , s t a t e s t h a t one o v e r - r i d i n g d i f f i c u l t y t h a t the community f a c e d was t h a t t h e p e o p l e d i d not have a t r a d i t i o n o f l i v i n g i n a " t i g h t " community . The d e v e l o p e r s o f the community gave the p e o p l e mov ing i n t o t h i s un ique env i ronment v e r y l i t t l e i n s t r u c t i o n on how t o use t h e community . Some o f the d i s a d v a n t a g e s o f the compact p l a n i n - c l u d e d n o i s e d i s t u r b a n c e s , p e o p l e a c t i v e a l l n i g h t d u r i n g the l o n g summer; a l a c k o f v a r i e t y , t h e r e were a l t e r n a t i v e t y p e s o f d w e l l i n g s but o n l y one " s i t u a t i o n " ; and f a m i l y g r o u p i n g s p roved too l a r g e i n p r a c t i c e (70 f a m i l i e s per g r o u p i n g ) . A c c o r d i n g t o t h e d e s i g n e r : i n r e t r o s p e c t , pe rhaps the whole i d e a o f a s u r r o u n d i n g w a l l to r e f l e c t l i g h t i n t o the community and p r o v i d e snow and wind p r o t e c t i o n , i s not a p p r o p r i a t e . Perhaps a more f r a g - mented p l a n p r o v i d i n g more v a r i e t y and v i s u a l com- p l e x i t y , i s a b e t t e r s o l u t i o n . ^ 85 Another study ( m i l i t a r y housing at F t . Wainwright, Alaska) i n d i c a t e d t h a t respondents i n co u r t s ( f i g . 3 . 9 ) were more d i s s a t i s f i e d w i t h t h e i r compact c o n d i t i o n s than respondents l i v i n g i n the row houses ( f i g . 3 . 1 0 ) . They f e l t crowded indoors and out, complaining that the yards were inadequate. The exceptions to t h i s were the respondents l i v i n g i n end apartments since they had three yards i n s t e a d of two. C h i l d r e n tended to play i n the parking l o t area which adjoined the backyard area w i t h i n the enclosed court area ampli- f y i n g noise disturbances and the compacted f e e l i n g . io J IL Front, with Arctic Entronc* f A r . o s tok.n over by dogs Reor, without Arctic Entronc* J L Front.without Arctic Entronce L 86 • Conclusions With proper s i t e layout the compact c i t y plan can create a d e s i r a b l e place to l i v e and work. Some g u i d e l i n e s i n t h i s respect a r e : A. Minimize the everyday use of automobile t r a n s - p o r t a t i o n to the downtown by keeping the dis t a n c e s from housing to work, s e r v i c e s and schools w i t h i n easy walking distance or on the route of a p u b l i c t r a n s p o r t system. B. Create a d e s i r a b l e micro-climate through the c o n t r o l of winter winds and the maximum pene- t r a t i o n of winter s u n l i g h t ( o r i e n t a t i o n of the c i r c u l a t i o n p a t t e r n s and the arrangement of the b u i l d i n g s i z e s ) . C. C o n t r o l development beyond the "townsite" i n order to r e t a i n n a t u r a l f o r e s t and r e c r e a t i o n a l p o t e n t i a l w i t h i n c l o s e p r o x i m i t y . D. Avoid e n c l o s i n g housing i n too t i g h t a design c o u r t s at F t . Wainwright or the wind protected " c l o s e d " environment i n Swedish compact towns /rz 87 3.2.4 P r e c i p i t a t i o n CLIMATIC FACTORS SITE FACTORS »5 O o w o REFERENCE MATRIX t* < w g t-i 2 O >* s= < •< H o £ >* o 3 O tK a >> r7! o t—t SOL AR 1 IT, w a. & PRE CIF : g t-H * o Ul a* OC o o a. o S o bl SOI LS ve ge ta 1 PLANNING LEVEL 1 m PLANNINO LEVEL 2 PLANNING LEVEL 3 PLANN ING L E V E L 4 During winter months, the landscape i s covered with snow which i s v i t a l f o r i n s u l a t i n g underground u t i l i t i e s a g ainst the extreme c o l d . Snow accumulation causes c o n f l i c t s between autos and pedes t r i a n s . During the winter months, the snow accumulation obscures the normal automobile b u f f e r s such as curbs, car s t o p s , and other separators designed to keep the auto separated from b u i l d i n g s , p e d e s t r i a n s , and ve g e t a t i o n . I Ft^Dgfc 5.11 This c o n d i t i o n coupled with the f a c t t h a t people want to park as clos e to t h e i r d e s t i n a t i o n as p o s s i b l e d u r i n g the c o l d winter causes c o n f l i c t s between autos and pedestrians as w e l l as b u i l d i n g s . B a r r i e r s high enough to stop cars i n winter should be considered f o r most b u i l d i n g s and ped e s t r i a n routes where the b u i l d i n g e x t e r i o r , p e d e s t r i a n s , and v e g e t a t i o n need to be protected. o 88 The l i g h t , dry snow i n the north has i n s u l a t i n g q u a l i t i e s s i m i l a r to that of f i b e r g l a s s i n s u l a t i o n . T h is i n s u l a t i n g q u a l i t y i s o f t e n e f f e c t i v e i n reduc- i n g the depth of f r e e z i n g i n the ground, hence keeping u t i l i t i e s from f r e e z i n g . I n areas where the snow i s c l e a r e d away during winter ( s t r e e t s , e t c . ) , the depth of f r e e z i n g goes deeper. In a d d i t i o n to t h i s , t a l l b u i l d i n g s which cast a long shadow may block the summer sun which normally helps to thaw the ground. These f a c t o r s could l e a d to the f r e e z i n g of v i t a l u t i l i t y l i n e s or inc r e a s e the depth which they have to be b u r r i e d . 89. 3.2.5 Wind CLIMATIC FACTORS SITE FACTORS ae o TI OK S R E F E R E N C E M A T R I X f *-* a < UI g < a a. as o • H 6-- •t H U. u E g tt £ o u •J < M o M o. "J TO PO GR AP HY  >~ u 3 S SO IL S >« o 3 o o; VE GE TA TI ON  P L A N N I N G L E V E L 1 • P L A N N I N G L E V E L 2 P L A N N I N G L E V E L 3 P L A N N I N G LEVEL k Depending on the location within the North, the wind can become one of the major physical factors in design (arctic and maritime regions). In most areas of the subarctic region the need for breaking the wind i s not as c r i t i c a l . On the macro scale, land forms (tppography) and vegetation (stands of evergreen trees) can function as windbreaks. By building on the leeward side of a h i l l , avoiding the brow of a h i l l or ridge where higher winds occur and the valley floor where cold air movement occurs, wind velocity can be minimized. Stands of evergreen trees (approx. 40 feet high) can reduce the wind velocity up to 50% 200 feet downwind from the trees. Reduction i n wind v e l i c i t y reduces building heat loss and wind c h i l l factors. The size, shape, and placement of buildings have an effect on localized wind conditions and blowing snow patterns. Acting as solid windbreaks, buildings (approx. 40 feet high) can reduce the wind velocity 100% just lee of the building and 50% at distances 400 to 600 feet downwind. Where buildings blocking winter winds have spaces between them, the wind may get funneled through those spaces increasing the wind speed. Where blowing snow i s a possibility, snow drif t i n g can occur on the lee side of windbreaks such as hedges, trees, fences, and buildings. 90 The town of Fermont i n northern Quebec i s a com- pact town design with a l i n e a r wind screen b u i l d i n g along the north s i d e of the s i t e . Housing i s on the south s i d e with south-southwest/north-northeast and southeast/northwest s t r e e t p a t t e r n s . While the s t r e e t o r i e n t a t i o n s were p r i m a r i l y s i t u a t e d to reduce snow d r i f t i n g p o t e n t i a l from p r e v a i l i n g wind d i r e c t i o n s , the layout a f f o r d s morning and afternoon s u n l i g h t c o r r i d o r s . The t a l l e r s t r u c t u r e s are to the north (wind screen b u i l d i n g ) so as not to block s u n l i g h t i n h a b i t a b l e areas. ^ The s i t e slopes to the southeast and southwest h e l p i n g to expose more area to the winter s u n l i g h t from the south. 91 Plan for town of 1,200 scr-jlation F i r s t stage under ccns"T»;f ion Plan/desiqn by R a i d fc.r?*;**; Bennetto/Deroixe The concept of the wind screen b u i l d i n g appears i n s e v e r a l town designs by Ralph E r s k i n e , Svappavaara i n northern Sweden ( f i g u r e 3.2> ) and Resolute Bay, N.W.T., Canada ( f i g u r e 3 . 1 k ) . Resolute Bay i s i n the w e l l f r o z e n , t r e e l e s s A r c t i c at 74°N. l a t i t u d e . The windscreen perimeter s t r u c t u r e , open to the south, i n c l u d e s the town c e n t e r , shops, h o t e l , o f f i c e s , apartments and row housing. The i n d i v i d u a l b u i l d i n g s w i t h i n the wind protected micro climate are designed to minimize wind r e s i s t a n c e , turbulence and undesirable snow d r i f t i n g . P r o j e c t i o n s and i r r e g u l a r i t i e s are minimized. A d d i t i o n s and a l t e r a t i o n s by the user to the aerodynamic forms w i l l be discouraged, but the open plans are designed to a l l o w f l e x i b i l i t y i n s i d e the s t r u c t u r e s . 13 92 3.2.6 Special Climatic Conditions REFERENCE MATRIX PLANNING LEVEL 1 PLANNINO LEVEL 2 PUNNING LEVEL i PUNNING LEVEL k C L I M A T I C F A C T O R S S I T E F A C T O R S Elowing Snow/Snow Drifting The amount of snow carried and deposited by the wind depends on: 1. the amount of snowfall and type of snow (wet or dry), 2. the wind velocity, and 3. the sweep of snow cover upwind Blowing snow occurs at wind velocities in excess 15 of about 8 mph. The sweep of snow cover upwind could come from large cleared areas, large parking lots, or even many fl a t rooftops. The downwind side of large open areas should be assessed as to the effects of snowdrifting. At the site planning level i t ' s important to protect major access routes from being blocked by snowdrifts. Building exits and circulation routes (roads, pedestrian ways) should have priority. 2 ^ V.*«' I I4 93 To remedy the problem of snow drift i n g in un- wanted places three approaches have been used: 1. keep upwind sweep areas to a minimum using vegetation wherever possible, 2. create barriers upwind of places to be pro- tected such as the snow fences near highways, 3. let the blowing snow pass on through such as i s done in the Arctic where the buildings are elevated to enable the wind to blow the snow on past the buildings. This does not, however, protect the building from the cold wind. 2. 9k 3.2.7 Summary L i s t i n g of planning objec t ives to be considered at planning l e v e l 1 are : A. So lar Radiat ion a . Orientate c i r c u l a t i o n system to maximize winter sunl ight b. Layout/space b u i l d i n g s for maximum sunl ight d i s t r i b u t i o n c. Use of topography to maximize winter sun- l i g h t d i s t r i b u t i o n B. Temperature a . Avoid b u i l d i n g i n low l y i n g co ld a i r pockets b. Avoid development i n high ice fog p o t e n t i a l areas c. Advantages of compact c i t y planning Transpor ta t ion: pedestr ian routes and publ i c transport more f e a s i b l e U t i l i t i e s : shorter r u n s , l e s s c a p i t a l costs Less operat ion and maintenance costs Greater p o t e n t i a l mod i f i ca t ion of micro- cl imate d . Disadvantages of compact c i t y planning S o c i o - c u l t u r a l makeup: people not used to l i v i n g i n a compact environment Noise disturbances and the f e e l i n g of being crowded Seasonal a c t i v i t y changes i n t e n s i f y the confined f e e l i n g C. P r e c i p i t a t i o n a . Avoid c o n f l i c t s between autos and pedes tr ians / b u i l d i n g s during the winter season when ground i s covered with snow b. Use winter snow cover as an i n s u l a t o r against c o l d temperatures D. Wind a . Slow or block undesirable winter winds b. Avoid funnel ing co ld wind in to habi table areas 95 E. Special Climatic Conditions: Blowing Snow a. Minimize the blocking of roads and the block- ing of entrances, exits, and windows by snow dri f t i n g b. Control the location of snow drift i n g When condidering a l l the climatic factors to- gether some have a greater impact than others, especial- ly from one climatic region to another. The following are the most important in creating a desirable l i v i n g environment: A. Avoid building in low lying areas which have poor drainage (high frost heave potential), accumulate cold air during winter, and have greater potential for retaining ice fog. B. Layout buildings and circulation patterns to maximize sunlight, minimize snow drifting, control winter winds, and avoid wind funneling. Conflicts can occur especially in areas where the snow drifting potential i s high. In most areas within the subarctic the maximizing for sunlight would take preference over control of wind and snow drift i n g since winds are normally light and snow drift i n g minimal. In the arctic region design for snow dri f t i n g and wind would take preference over sunlight design. C. Use the existing topography to maximize sun- light and minimize winter wind. A similar conflict occurs with the use of topography, in the sub-arctic region a south facing h i l l s i d e i s normally much preferred over a north facing 6lope even i f winter winds are from the south. Permafrost on north facing h i l l s i d e s i s also a potential problem i n the subarctic. East or west facing slopes may be preferred where views and/or wind protection predominate since solar radiation i s s t i l l attainable during winter. 96 3*2.8 References 1 George Ford, B u i l d i n g Height Bulk and Form. Harvard C i t y Planning S t u d i e s 11, 1931, p. 62. ^ I b i d . , p. 67. 5 I b i d . , p. 63. 4Wayne Heydecker and Ernest Goodrich, " S u n l i g h t and D a y l i g h t f o r Urban Areas", 1929, Regional Survey of New York and i t s Environs, V o l . V l l , pp. 142-201. 5 K.O.L.F. Jayaweera, G. Wendler, and T. Ohtake, "Low Cloud Cover and the Winter Temperature of Fa i r b a n k s " , Climate of the A r c t i c , ^ B l a n c h e Lemco van G i n k e l , "New Towns i n The North", Contact: B u l l e t i n of Urban and Environmental A f f a i r s , V o l . 8, No. 3, August 1976. 1 E a r l Cook, "The Flow of Energy i n an I n d u s t r i a l S o c i e t y " , S c i e n t i f i c American, September 1971, pp. 135-144. 6 Norbert Schoenauer, "New Town Design and C l i m a t i c F a c t o r s " , Man i n the North T e c h n i c a l Paper, Conference on B u i l d i n g i n Northern Communities: 1973, The A r c t i c I n s t i t u t e of North America. ^ Ralph E r s k i n e , "Feedback on Commumity P l a n n i n g " , Man i n the North T e c h n i c a l Paper, Conference on B u i l d i n g i n Northern Communities: 1973, PP. 126-129. ^° Burgess Ledbetter, Part 111, The Temporary Environment of F o r t Wainwright: Housing, unpublished study, Cold Regions Research Engineering Labratory, Hanover, N.H., 1976. f 1 W.A. D a l g l i e s h and D.W. Doyd, Wind on B u i l d i n g s . CBD 28, 1962, N a t i o n a l Research C o u n c i l , Ottawa. 12- Norbert Schoenauer, "Fermont, a New V e r s i o n of The Company Town", J o u r n a l of A r c h i t e c t u r a l Education, V o l . XXIX, No. 3 , February 1976. *^van G i n k e l , "New Towns i n the North". ^ Eb R i c e , "Northern C o n s t r u c t i o n : S i t i n g and Foundations", The Northern Engineer, S p r i n g 1973. 1 ^ P.A. Schaerer, C o n t r o l of Snow D r i f t i n g about B u i l d i n g s , CBD 146, 1972, NRC, Ottawa. 97 3.3 PLANNING LEVEL 2: BUILDING SIZE, SHAPE, and ORIENTATION CLIMATIC FACTORS s n E FACTORS REFERENCE HATRIX SO U R  R A D IA T IO N  u g < e s o t~* t* «< H •*-t u. o w 85 g M is o l-l Q o u < M t> u PL. ") TO PO GR AP HY  >- s s SO IL S >• o 3 o IX a >* PI V EG ET A TI O N PUNNINQ LEVEL 1 PLANNING LEVEL 2 5 PUNNINQ LEVEL 3 PUNNINQ LEVEL i» 3.3.1 Objective This section i s intended to point out building design responses at the second level of planning (the individual building size, shape, and orientation) which help to lessen the adverse climatic implications and maximize the desirable climatic implications. Planning for solar radiation, temperature, precipitation, wind, and special climatic conditions at this planning level can lessen the impact of adverse climatic conditions on activity spaces as well as the building fabric, planning levels 3 and 4. 98 3.3.2 S o l a r R a d i a t i o n - CLIMATIC FACTORS sn 'E FACTORS REFERENCE MATRIX SO LA R RA DI AT IO N g < cr, W OH a PRE CI FI TA TI ON  g SP EC IA L CO ND IT IO NS  TO PO GR AP HY  GE OL OG Y SO IL S >* o s o re a >-Pi as o i-» tr* •< H U o w PLANNING LEVEL 1 PLANNING LEVEL 2 • PLANNING LEVEL 3 PLANNING LEVEL It S o l a r r a d i a t i o n can have a major i n f l u e n c e on the b u i l d i n g s i z e , s h a p e , and o r i e n t a t i o n . B u i l d i n g d e s i g n r e s p o n s e s m e n t i o n e d i n t h i s s e c t i o n which i n f l u e n c e t h e s e f a c t o r s a r e : 1. Optimum shapes to m i n i m i z e s o l a r shadowing , 2 . P o s s i b l e s o l u t i o n s f o r s u n l i g h t a c c e s s to the i n t e r i o r o f l a r g e r b u i l d i n g s ( s i z e ) , 3. B u i l d i n g shapes which o p t i m i z e the s o l a r h e a t i n p u t and c o n d u c t i v e heat l o s s , and 4. Optimum o r i e n t a t i o n s f o r w i n t e r s u n l i g h t ( v i s u a l ) and o r i e n t a t i o n f o r maximum heat g a i n . S o l a r shadowing o f b u i l d i n g s on one a n o t h e r as w e l l a s on e x t e r i o r space i s a major d e s i g n i n f l u e n c e o n the b u i l d i n g s s i z e , s h a p e , and o r i e n t a t i o n . In the s u b a r c t i c n o r t h where w i n t e r s u n l i g h t i s a t a premium, i t ' s i m p o r t a n t to m i n i m i z e the s o l a r shadowing o f b u i l d i n g s . Some o f the b a s i c shapes which expose minimum e x t e r i o r s u r f a c e a r e a a l s o c a s t a m i n i m a l shadow such as the dome, p y r a m i d , o r cube f o r m . The f o l l o w i n g d i a g r a m s compare t h e s e s h a p e s , which a l l have a s i m i l a r v o l u m n , w i t h l e s s energy e f f i c i e n t s h a p e s , the t a l l , t h i n b u i l d i n g and the l o n g , narrow b u i l d i n g . 99 100 • /^pa>x.-^5u^ lianas- v c w v w S ' Liuyft BJIUPIM<=| ova*-) WVM, &cu\; iin&y*. veuwN^ 101 T a l l , t h i n and l o n g , narrow (east/west running) b u i l d i n g s cast longer and wider shadows denying sun- l i g h t to a greater area. C l o s e l y spaced b u i l d i n g u n i t s running east/west w i l l have a s i m i l a r shadow e f f e c t as the l o n g , narrow b u i l d i n g , p u t t i n g s t r e e t s , yards, and the south faces of other b u i l d i n g s i n shadow f o r much of the wi n t e r . The t a l l b u i l d i n g c a s t s long shadows i n a l l o r i e n t a t i o n s as w e l l as at any time of the day when the sun angle i s low. The l i n e a r b u i l d i n g c a s t s the l a r g e s t shadow when perpen- d i c u l a r to the sun and a much sma l l e r shadow when p a r a l l e l to the sun. Since the sun sweeps from east to west, a long narrow b u i l d i n g , no matter the o r i e n - t a t i o n , w i l l cast the l a r g e s t shadow, as shown i n f i g u r e 3 • 1*5 » sometime during the day. The cube, hemisphere, and pyramid cast minimal shadows i n a l l d i r e c t i o n s ( d i f f e r e n t s o l a r azimuths). As can be seen with the pyramid, the smaller the b u i l d i n g near the top, the smaller the shadow i s f a r t h e s t from the b u i l d i n g . No matter what the b u i l d i n g shape, the l a r g e r the b u i l d i n g mass , the l a r g e r s o l a r shadow i t w i l l have; so, l a r g e b u i l d i n g s can block s u n l i g h t from a s u b s t a n t i a l area to the north of the b u i l d i n g f o r a l a r g e p o r t i o n of the year. When l a r g e r b u i l d i n g s are b u i l t , the adjacent areas to the north of them should not be e x t e r i o r a c t i v i t y spaces since i t ' s use would be l i m i t e d to a short summer period when the s u n l i g h t could penetrate the space. The s l o p i n g of the s t r u c t u r e ' s r o o f can a l s o h e l p to decrease the shadowing e f f e c t . During w i n t e r , the shadow can be g r e a t l y decreased when the edge f a r t h e s t from the sun i s lower than the near edge. The r o o f angle should be at l e a s t 1 0 °(approx. 2 i n 12). When the r i d g e i s c e n t r a l l y l o c a t e d as i n a pyramidal shape the shadow i s minimized i n a l l d i r e c t i o n s , see f i g u r e 3.22. 102 t?l5TANCe^ • B u i l d i n g S i z e and Solar R a d i a t i o n The l a r g e r the b u i l d i n g , e s p e c i a l l y a compact b u i l d i n g form, the greater the problem of a c h i e v i n g s u n l i g h t p e n e t r a t i o n to a l a r g e area of the b u i l d i n g i n t e r i o r . When l a r g e s t r u c t u r e s are used f o r housing, p r o v i d i n g s u n l i g h t to the maximum number of r e s i d e n t s can be d i f f i c u l t . When p l a c i n g home u n i t s w i t h i n an enclosed compact b u i l d i n g shape i n s t e a d of s i n g l e or attached u n i t s (row housing), there i s normally only one e x t e r - i o r exposure f o r each u n i t , the other exposure faces an i n t e r i o r space. U n i t s f a c i n g i n a n o r t h e r l y d i r - e c t i o n are denied s u n l i g h t f o r much of the year. Both these problems could be solved by opening up the s t r u c t u r e ' s i n t e r i o r to winter s u n l i g h t which means having a glazed p o r t i o n f a c i n g south. T h i s approach has been used i n a l a r g e housing s t r u c t u r e i n north- ern Russia (+ 69°N. L a t . ) . 103 "This concept has a l s o been developed f o r N o r i l s k i n the form of a 26 s t o r y pyramidal b u i l d i n g to house 2,000 persons. In t h i s case, the court i s open to the south si d e of the pyramid which i s g l a z e d , and the housing u n i t s are on the three remaining s i d e s . " 1 See f i g u r e 3.23 f o r a diagrammatic sketch of t h i s approach. FIGURE: 3>.26> • B u i l d i n g Shape and S o l a r R a d i a t i o n When o p t i m i z i n g b u i l d i n g shapes f o r s o l a r heat i n p u t and conductive heat l o s s e s and v e n t i l a t i o n , the seasonal changes must be taken i n t o account. During the c o l d e s t months, i t i s more economical ( f u e l consumption) to minimize the e x t e r i o r surface area, as w e l l as high heat l o s s window area, than i t i s to maximize the south exposure to capture winter (Nov. to Feb.) s o l a r heat g a i n , see f i g u r e 3.24. 104 - T ^ Z M A L . MASS <2ki fc^HWE- " 5 * ^ During spring, summer, and f a l l , i t becomes ad- vantageous to u t i l i z e the heat from the solar radia- tion to help heat the home in t e r i o r . ^ If the building exterior shell i s heavily insulated in order to keep heat inside, i t does not make a good passive solar heat collector; the well insulated walls w i l l help prevent the solar heat from entering the home.̂ " To use the solar heat i t becomes necessary to: 1. open up the interior to direct solar radiation for immediate warmth, 2. expose elements of high thermal mass for pas- sive solar heat storage, and/or 3 . open the home interior to solar heated "greenhouse spaces". 105 The o p t i m i z a t i o n of s o l a r r a d i a t i o n on the e x t e r - i o r shape depends on the slope and l o c a t i o n of window areas a l l o w i n g s o l a r p e n e t r a t i o n , and the slope and loca- t i o n of thermal masses a l l o w i n g thermal heat storage. Since the sun's angle o f i n c i d e n c e on a g l a s s window may vary as much as 45° from the 90° perpendicular without a p p r e c i a b l e l o s s of transmittance or inc r e a s e of r e f l e c t a n c e , the shape/slope of the windowed e x t e r - i o r can vary considerable without reducing the s o l a r heat p e n e t r a t i o n to the b u i l d i n g i n t e r i o r . For thermal masses the sun angle i s more c r i t i c a l s i nce the same s o l a r heat which i s absorbed by the mass, becomes spread out over a greater area when the sun i s not perpendicular to the surfac e . t>ISTAM<i& * y 106 For i n t e r i o r thermal masses at 62° north l a t i t u d e , the o n l y time of the year that a f l o o r can r e c e i v e higher s o l a r r a d i a t i o n values than a v e r t i c a l w a l l i s from e a r l y May through e a r l y August on a south f a c i n g o r i e n t a t i o n . At a l l other times of the year and o r i e n t a t i o n s the v e r t i c a l w a l l has a higher p o t e n t i a l f o r s o l a r heat c o l l e c t i o n (more normal to the sun's d i r e c t r a y s ) . A thermal mass w a l l with a 62° south f a c i n g slope as i n f i g u r e 3.2? w i l l r e c e i v e + 30% more y e a r l y d i r e c t r a d i a t i o n than a v e r t i c a l w a l l and _+ k5% more than a h o r i z o n t a l s u r f a c e . The e x t e r i o r shape can be designed to minimize e x t e r i o r surface area with f e n e s t r a t i o n l o c a t e d to a l l o w s o l a r p e n e t r a t i o n to i n t e r i o r thermal mass with optimum shape f o r passive s o l a r heat c o l l e c t i o n , see f i g u r e 3«27. i Using thermal mass to optimize solar heat on the exterior skin limits the building shape more than the use of interior thermal mass as well as having potentially higher heat loss due to less resistance to heat flow than a well insulated exterior skin. Figure 3«28 illus t r a t e s how 6 o l a r radiation can be maximized on the exterior thermal mass at the equi- nox, spring and f a l l , with the building shape - 62° south facing slope to 90° (vertical) at east and west points. Snow cover over the roof area helps keep heat in while sun heats sloped east, south, to west walls throughout the day. Roof slope to the north helps minimize the effect of solar shadowing. 108 • B u i l d i n g O r i e n t a t i o n and S o l a r R a d i a t i o n O r i e n t a t i n g a b u i l d i n g f o r maximum winter s u n l i g h t f o r the greatest number of i n h a b i t a n t s becomes more of a problem when the housing u n i t s are more compact such as townhousing and condominiums/apartments. Often l i v i n g u n i t s end up with t h e i r only e x t e r i o r o r i e n t a t i o n to the n o r t h , n o r t h e a s t , or northwest i n which only mid-summer s u n l i g h t has a p o s s i b i l i t y of making i t to the u n i t . I t ' s i n t e r e s t i n g that i n Russia the b u i l d i n g i n s t r u c t i o n s w i l l not permit a s i n g l e l i v i n g u n i t to be o r i e n t a t e d to the north (3^5° to 30°, 360°=north) with that o r i e n t a t i o n as i t s only ex- posure. In l a r g e r l i v i n g u n i t s (2 to 5 rooms) one or two rooms may be o r i e n t a t e d i n the r e s t r i c t e d north d i r e c t i o n , see f i g u r e 3.29. As a s u n l i g h t exposure minimum recommendation, compact housing u n i t s should not have t h e i r only o r i e n t a t i o n towards the north . Any u n i t with an o r i e n t a t i o n to t h i s d i r e c t i o n should a l s o have exposure i n another, more s u n l i t , d i r e c t i o n . 109 -1 © Figure 3.30 shows p o s s i b l e s o l u t i o n s f o r making s u n l i g h t a v a i l a b l e to housing u n i t s which normally would only have a northern exposure. I 7 i As 2. i 4 i 3 i ® T 5 4- •4/ 7 © 1 1 z • — J — 3 i 4 e -r ^< _ <2> U n i t s #1 and #4 have north exposure as w e l l as east or west exposure. U n i t s #2 and #3 which only have exposure to the north should: (\) have c l e r e s t o r y windows to the south a l l o w i n g s u n l i g h t p e n e t r a t i o n , extend through to the south side of the b u i l d i n g , or @ r e c e i v e south s u n l i g h t from an i n t e r i o r open space to the south of the u n i t s . These c r i t e r i a should a l s o be a p p l i e d to northeast and northwest o r i e n t a t i o n s . 110 The f o l l o w i n g a n a l y s i s compares b u i l d i n g o r i e n t a - t i o n s with regard to s o l a r heat ga i n . Based on a comparative a n a l y s i s between the l o n g , narrow b u i l d i n g (townhouse type s t r u c t u r e ) and the compact b u i l d i n g (cube form) wit h v a r i o u s o r i e n t a t i o n s u s ing data f o r 61° north l a t i t u d e (Whitehorse), the f o l l o w i n g ranking i s presented based on d i r e c t s o l a r r a d i a t i o n on v e r t i c a l surfaces:"^ Long, Narrow B u i l d i n g w a l l r a t i o : 3:1 w a l l surface area: 8 1 area: I N" | I 1 * 1 Compact B u i l d i n g w a l l r a t i o : 1:1 w a l l surface area: 6.92 area: 3 B u i l d i n g Type and O r i e n t a t i o n Ranking (most to l e a s t r a d i a t i o n ) A. T o t a l year: 1 B. Winter (Nov. - Feb.) 1 A 2 3 C. March/September equinox: long b u i l d i n g o r i e n t a t i o n s have approximately equal r a d i a t i o n , compact b u i l d - i n g s have _+ M\% l e s s r a d i a t i o n than the long b u i l d i n g s , D. S p r i n g , Summer, and F a l l ( A p r i l - October) f 2. *> A % (P I l l With the long narrow b u i l d i n g , o r i e n t a t i o n change e f f e c t s the d i s t r i b u t i o n as w e l l as the amount of d i r e c t r a d i a t i o n on a seasonal b a s i s . The eas t / west f f o r i e n t a t i o n r e c e i v e s + 35% more r a d i a t i o n i n winter and + 19% l e s s i n summer than the no r t h / south £j o r i e n t a t i o n . .The amount of r a d i a t i o n on the southeast/northwest \ \ and s o u t h w e s t / n o r t h e a s t ^ / o r i e n t a t i o n s are i n between the values f o r the no r t h / south and east/west o r i e n t a t i o n s throughout the year, 10% to 17% more than j j | i n winter and 12% more than \ ~] i n summer. On a y e a r l y b a s i s , the long, narrow b u i l d i n g r e c e i v e s + 15% more r a d i a t i o n than the compact b u i l d i n g , but a l s o has 16% more surface area at the e x t e r i o r w a l l s i n c r e a s i n g heat l o s s p o t e n t i a l p o s s i b l y o v e r r i d i n g the increased s o l a r heat gain i n p u t . The o r i e n t a t i o n of the compact b u i l d i n g has more of an e f f e c t on the s o l a r heat d i s t r i b u t i o n on the w a l l surfaces than i t has on the t o t a l amount of d i r e c t s o l a r r a d i a t i o n r e c e i v e d by the b u i l d i n g . The two o r i e n t a t i o n s J^J , <^^. , have near l y equal s o l a r r a d i a t i o n f o r the year with each month v a r y i n g only 1% to 2% from each other. The \ \ o r i e n t a t i o n has the winter s o l a r r a d i a t i o n d i s t r i b u t e d to two o r i e n t a - t i o n s i n s t e a d of one south f a c i n g o r i e n t a t i o n T h is can h e l p d i s t r i b u t e heat and l i g h t to more of the house or housing u n i t s . Since the greater d i s t r i b u - t i o n of the days l i g h t and heat i s reg u l a t e d p r i m a r i l y through the use of f e n e s t r a t i o n , the o r i e n t a t i o n may a f f o r d a b e t t e r combined use f o r windows since g l a s s areas can be combined which would l e t s o l a r heat and l i g h t penetrate (SE/SW) as w e l l as a l l o w t a k i n g advantage of more view p o t e n t i a l from east to west. Since s o l a r heat gain i s minimal d u r i n g the winter months, o r i e n t a t i o n s which maximize s o l a r heat g a i n f o r s p r i n g , summer, and f a l l should be considered best f o r o p t i m i z i n g s o l a r r a d i a t i o n . 112 3 . 3 . 3 Temperature CLIMATIC FACTORS s n PE F A C T O R S REFERENCE .MATRIX SOL AR RAD IAT ION  u g i Si PRE CIF ITA TIC N g M to i/i • A O n & o u •J «< »-* o w a. ") >• £ 1 5 O a. o >i a B SO IL S o 3 o tr. a >• PI SB o u a u PLANNING LEVEL 1 PLANNINQ LEVEL 2 PLANNINO LEVEL J PLANNINQ LEVEL 4 • B u i l d i n g S i z e and Temperature Op t i m i z i n g the b u i l d i n g s i z e f o r the c o l d winter temperatures cannot e a s i l y be solved by a large megastructure and s t i l l take i n t o account the needs and expectations of the i n h a b i t a n t s . According to a study at the Cold Regions Research Engineering Labratory i n New Hampshire: "A t a l l t h i n s t r u c t u r e much above 6 s t o r i e s i s l e s s economical than modules used alone. S t r i p s t r u c t u r e s and f l a t square s t r u c t u r e s are b e t t e r than s i m i l a r modules used s i n g l y but c u b i c a l s t r u c t u r e s are most economical. The optimum c u b i c a l c o n d i t i o n appears to occur when 100 to 200 modules are grouped i n t o a 5 to 6 s t o r y cube." Dealin g with the i m p l i c a t i o n s of the compacted l i v i n g environment, Ralph E r s k i n e s t a t e s the import- ance o f contact w i t h the n a t u r a l environment which l a r g e megastructures h e l p to e l i m i n a t e : "The s t r u c t u r e of the town i t s e l f can be of v i t a l importance i n improving the cl i m a t e w i t h i n i t s boundaries, and with modern techniques almost any degeee of p r o t e c t i o n can be achieved. One of the most e x c i t i n g i d e a s which comes to mind when f i r s t presented with these problems i s that of the township which i s a s i n g l e enormous b u i l d i n g complex, or a township covered by domes or sus- pended membranes. In the most extreme c o n d i t i o n s of the A r c t i c or A n t a r c t i c , these could be the most s u i t a b l e ways of p r o v i d i n g c l i m a t i c defense. The p h y s i c a l convenience of such a township would be very g r e a t , and i t would tend to be economical to run and to heat. The grea t e s t d i f f i c u l t i e s 113 would pr o b a b l y be o f s o c i a l and p s y c h o l o g i c a l nature s i n c e such a town c o u l d e a s i l y be i n s t i - t u t i o n a l and i n t r o v e r t , and though openable p a r t s o f the s t r u c t u r e c o u l d g i v e c e r t a i n c o n t a c t with the o u t e r world, t h i s would tend to be i n d i r e c t and tenuous. Negative e x p e r i e n c e has been r e p o r t e d from n o r t h e r n encampments where people have been a b l e to l i v e without c o n t a c t with the o u t e r world t h a t surrounded them, and i t has been suggested t h a t l e s s s o p h i s t i c a t e d o r g a n i z a t i o n has been more s u c c e s s f u l . " 9 S i n c e the s o l a r r a d i a t i o n produces minimal heat g a i n d u r i n g mid-winter, the building/home s i z e f o r t h i s season i s b e t t e r determined by the temperature, wind, and p r e c i p i t a t i o n c o n d i t i o n s a l o n g with u t i l i t y , t r a n s p o r t a t i o n , and s e r v i c e c o s t s and r e s t r i c t i o n s . T h i s would l e a d to a compact d e s i g n with l a r g e r s t r u c t u r e s h o u s i n g g r e a t e r numbers o f people c l o s e r to n e c e s s a r y s e r v i c e s and f a c i l i t i e s - compact c i t y d e s i g n . P l a c i n g a l l h o u s i n g , s e r v i c e s , and b u s i n e s s e s w i t h i n a s i n g l e m egastructure o r w i t h i n "200 module 6 s t o r y cubes" may s a t i s f y u t i l i t y , energy e f f i c i e n c y , and convenience; and p l a c i n g i n d i v i d u a l homes on i a c r e l o t s throughout the c o u n t r y s i d e may s a t i s f y the need f o r c o n t a c t with the n a t u r a l s u r r o u n d i n g s , each s o l u t i o n s a t i s f i e s some p o r t i o n of the h o u s i n g need. A v a r i e t y o f b u i l d i n g and home s i z e s n o r m a l l y p r e v a i l i n o r d e r t o meet the needs of a v a r i e t y o f people as w e l l as t a k i n g advantage of the s e a s o n a l v a r i a t i o n s a v a i l a b l e i n the n o r t h e r n environment. As an example, the new town o f Fermont i n n o r t h e r n Quebec (see f i g u r e 3 *15 ) developed f o u r g e n e r a l types of d w e l l i n g u n i t s f o r the t o w n s i t e . About 1/3rd o f the d w e l l i n g u n i t s are apartment d w e l l i n g s ; 1/3rd a r e townhouses or serai-detached d w e l l i n g s ; and 1/3rd to are detached s i n g l e - f a m i l y d w e l l i n g s . " A d m i t t e d l y , the s i n g l e - s t o r y detached d w e l l i n g u n i t s , l i k e o t h e r l o w - p r o f i l e u n i t s , are not congruous to the s u b - a r c t i c c l i m a t e . However, c i t i z e n p a r t i c i p a t i o n i n the d e s i g n p r o c e s s n e c e s s i t a t e d t h e i r u t i l i z a t i o n a l t h o u g h i n a m o d i f i e d form. I t was deemed important t o respond t o p s y c h o l o g i c a l needs of some f u t u r e 114 r e s i d e n t s who a s p i r e d to l i v e i n "bungalows" l i k e "other people" f a r t h e r south." H S i m i l a r circumstances have been encountered i n Northern Europe: "Concentration gives e x c e p t i o n a l advantages i n the north i f once i t i s e m o t i o n a l l y a c c e p t a b le, but I have experienced the d i f f i c u l t y of t h i s type of i n n o v a t i o n when working i n the town of K i r u n a , i n northern Sweden." 1 2 " I t i s c u r i o u s , but perhaps i n e v i t a b l e , that f a r t h e r south, where the need f o r these ideas i s f a r l e s s urgent, I have u s u a l l y found them more r e a d i l y a cceptable. P o s s i b l y the new b u i l d i n g types f o r northern Canada must f i r s t be b u i l t i n Montreal or Vancouver?" 13 To e s t a b l i s h an optimum b u i l d i n g s i z e i n the sub- a r c t i c n o r t h , input from the s o c i o - c u l t u r a l makeup of the i n h a b i t a n t s as w e l l as the i m p l i c a t i o n s from the p h y s i c a l f a c t o r s are needed. • B u i l d i n g Shape and Temperature M i n i m i z i n g the surface area exposed to the c o l d (the same usable i n t e r i o r space) e x t e r i o r a i r ^ h e l p s to keep heat l o s s i n w a l l s and r o o f to a minimum. E x t e r i o r surface areas which approxi- mate a hemisphere have l e s s surface area exposed to the c o l d temperatures than a l i n e a r or t a l l , t h i n 14 b u i l d i n g . Other forms such as cubes and pyramidal shapes a l s o have l i m i t e d amounts of e x t e r i o r surface area. The height of the b u i l d i n g should be c l o s e to the width and depth of the b u i l d i n g , see f i g u r e 3.31. When comparing the interior usable volume to the exterior surface area certain shapes contain space which has limited use due to the height and shape of the space (figure 3*32). Standard furniture, appliances, and shelving/cabinets do not f i t readily into those spaces although they could be used for storage or pipe chases i f not closed off from the warm interior air flow. Building shape and volume can also influence the movement of interior a i r . A dome shape with a central heat source and clear space for air movement along the exterior walls, mixes i t s own a i r ; the warm air r i s i n g in the center, then f a l l i n g back down towards the floor along the walls where the air i s cooled, see figure 3.33. Aire H<?VfcH£)JT |M P<?M&'?HftfE 116 Another f a c t o r e f f e c t i n g b u i l d i n g shape i s the use of b u i l d i n g r e l i e f and a r t i c u l a t i o n . B u i l d i n g r e l i e f or unnecessary a r t i c u l a t i o n of the b a s i c b u i l d i n g shape have negative e f f e c t s on the b u i l d i n g ' s thermal performance. R e l i e f on a facade causes added thermal s t r e s s by shadowing p a r t s of the facade as w e l l as p r o v i d i n g p o i n t s f o r heat e x t r a c t i o n from 17 the b u i l d i n g , see f i g u r e 3*34. "Coming back, to t h i s matter of heat t r a n s f e r , you a l l know what an a i r cooled motorcycle engine looks l i k e . To d i s s i p a t e heat generated more q u i c k l y the surface of the engine i s en- la r g e d i n the form of f i n s . I t would be f o o l i s h to apply t h i s same p r i n c i p l e to b u i l d i n g s i n an extremely c o l d c l i m a t e . In winter you n o t i c e that every e x t e r i o r corner i n a b u i l d i n g i s a point of f r o s t c o n c e n t r a t i o n . " 117 3.3.4 P r e c i p i t a t i o n CLIMATIC FACTORS SITE FACTORS REFERENCE MATRIX SO LA R  R A D IA T IO N  |  u g < cr. W CU £ P R E C IP IT A T IO N  g * S P E C IA L  C O N D IT IO N S T O P O G R A P H Y >• 3 O W SO IL S >* o 3 o m £. >. H_ ss o t-l «t W O U PLANNING LEVEL t PLANNINO LEVEL 2 • PLANNING LEVEL 3 PLANNINO LEVEL it • B u i l d i n g Shape and P r e c i p i t a t i o n Any area with s u b s t a n t i a l snow f a l l w i l l exper- ience the problem of snow and i c e breaking or s l i d i n g o f f b u i l d i n g s . Steeper s l o p i n g r o o f s have the higher s l i d e p o t e n t i a l e s p e c i a l l y when made of sheetmetal or aluminum. Shingle type r o o f s w i l l reduce the chance of snow s l i d e s due to the many i r r e g u l a r i t i e s the snow adheres t o . South side exposures qu i t e o f t e n have t h e i r snow melt away before i t has a chance to s l i d e o f f i n mass. On the north s i d e , not g e t t i n g the s o l a r r a d i a t i o n to melt the snow, the snow may s l i d e o f f i n mass during the s p r i n g when temperatures are high enough to loosen the snow from the roof ( f i g u r e 3»35)« T a l l e r b u i l d i n g s adjacent to sidewalks, s t r e e t s , e t c . need to be p a r t i c u l a r l y c a r e f u l l not to have p o t e n t i a l snow s l i d e s onto these c i r c u l a t i o n r o u t e s , see f i g u r e 3.36. 118 3.3.5 Wind REFERENCE MATRIX CLIMATIC FACTORS SITE FACTORS PLANNING LEVEL 1 PLANNING LEVEL 2 PLANNING LEVEL 3 PLANNING LEVEL 4 B u i l d i n g S i z e and Wind In areas surrounded by v e g e t a t i o n , protected by the topography, or protected by other s t r u c t u r e s , t a l l e r b u i l d i n g s can extend i n t o regions of high wind v e l o c i t i e s . T his increased wind v e l o c i t y can mean greater s t r e n g t h r e q u i r e d i n the s t r u c t u r a l design, e x t e r i o r c l a d d i n g m a t e r i a l must be r e s i s t a n t to the higher v e l o c i t y , and higher heat l o s s occurs at the b u i l d i n g surface ( e s p e c i a l l y window a r e a ) , see f i g u r e 3.37. 1 9 A l a r g e r b u i l d i n g can a l s o h e l p create a low wind micro-climate to i t s l e e s i d e , but s t i l l s u f f e r s the consequences of b l o c k i n g the c o l d wind ( f i g u r e 3«38). Examples of the windscreen b u i l d i n g s are shown i n f i g u r e s 3.8, 3.15, and 3.16. "uoti WIMP V ^ J <r Z. WIMP 119 • B u i l d i n g Shape and Wind Aerodynamic shapes with rounded corners help to reduce turbulence about the b u i l d i n g surface de- cr e a s i n g the impact of higher winds, making the s t r u c •2.1 ture more s t a b l e i n high winds ( f i g u r e 3 .^ ) . # B u i l d i n g O r i e n t a t i o n and Wind As mentioned with the b u i l d i n g shape, o r i e n t a t e the minimum b u i l d i n g area perpendicular to the co l d winter wind ( f i g u r e 3.40). Blowing snow and poten- t i a l snow d r i f t i n g i s even a more important i m p l i c a t i o n f o r o r i e n t a t i n g the minimum area to the wind. P L A M VIEW 120 3.3.6 S p e c i a l C l i m a t i c C o n d i t i o n s : Blowing Snow CUNATIC FACTORS SIT E FACTORS REFERENCE MATRIX SO U R  R A D IA T IO N  u g fi s PR E C IF IT A T IO N  g * w o r-* £ o u . J < M l> u a. "1 >- S < CE £ 8 GEO LO G Y SO IL S >* o 3 O fn Bi— o M < B o w PLANNING LEVEL 1 PLANNING LEVEL 2 • PLANNINQ LEVEL 5 PUNNING LEVEL k • B u i l d i n g S i z e and Blowing Snow Larger b u i l d i n g s have the p o t e n t i a l of producing l a r g e r snow d r i f t s due to the greater area of reduced wind v e l o c i t y created by the windscreen b u i l d i n g . T h is causes the airborn e snow to p r e c i p i t a t e out on tin the l e e side of the s t r u c t u r e ( f i g u r e 3«41). Much of these massive d r i f t s could be e l i m i n a t e d by e l e v a t i n g the whole s t r u c t u r e and l e t t i n g the wind blow under the s t r u c t u r e , c l e a r i n g the snow from the downwind s i d e . • B u i l d i n g Shape and Blowing Snow Aerodynamic shapes tend to decrease the p o t e n t i a l snow d r i f t i n g as shown i n f i g u r e 3.42, a snow d r i f t a n a l y s i s done f o r the BP Alaska/Sohoi's North Slope •24- Operations Center at the Prudhoe Bay o i l f i e l d . 121 B u i l d i n g i r r e g u l a r i t i e s on the bas i c b u i l d i n g shape a l s o e f f e c t the snow d r i f t i n g p o t e n t i a l as shown i n f i g u r e 3.43. — — — — WIND? SteVATlOKf B u i l d i n g O r i e n t a t i o n and Snow D r i f t i n g The amount of surface area perpendicular to the blowing snow ( p r e v a i l i n g winds) to a large extent deter- mines the amount of snow d r i f t i n g which w i l l occur. Figure 3.44 shows the same b u i l d i n g area, but o r i e n - t a t i o n i s changed so the b u i l d i n g blocks more blowing snow. I f the s t r u c t u r e were e l e v a t e d , the d r i f t i n g becomes minimal as long as the wind has a chance to blow a l l the way through the underside of the b u i l d - i n g . I n t h i s case the incr e a s e d surface area per- pend i c u l a r to the wind/blowing snow s t i l l helps to incre a s e heat l o s s , wind and snow i n f i l t r a t i o n , and s t r e s s on the s t r u c t u r e as w e l l as having a c o l d bottom when elevated, and i s t h e r e f o r e to be avoided. 122 3.3.7 Summary The l i s t i n g of planning o b j e c t i v e s to be con- s i d e r e d at planning l e v e l 2, b u i l d i n g s i z e , shape and o r i e n t a t i o n , a r e : ' A. S o l a r R a d i a t i o n a. Minimize s o l a r shadowing through optimum shapes, b. Maximize s o l a r r a d i a t i o n to housing u n i t s enclosed i n l a r g e s t r u c t u r e s , c. Use i n t e r i o r v e r t i c a l or sloped w a l l s as t h e r - mal mass f o r s o l a r heat c o l l e c t i o n , d. Avoid o r i e n t a t i n g housing u n i t s to the north with no other exposure, e. Use compact b u i l d i n g forms o r i e n t a t e d diagon- a l l y o r l°n6» n a*row b u i l d i n g forms are used, o r i e n t a t e d i a g o n a l l y , «^\ or E. Temperature a. O p t i m i z i n g b u i l d i n g s i z e must take i n t o account s o c i o - c u l t u r a l needs/expectations along with p h y s i c a l f a c t o r s - a mix of s i z e s may s a t i s f y the g r eatest number of i n h a b i t a n t s , b. Use compact b u i l d i n g shapes: hemisphere, cube, and pyramid, c. Avoid b u i l d i n g r e l i e f and a r t i c u l a t i o n on the b u i l d i n g e x t e r i o r . C. P r e c i p i t a t i o n a. Avoid snow s l i d e s o f f b u i l d i n g s onto areas which could be hazardous. D. Wind a. Avoid b u i l d i n g s higher than the surrounding wind p r o t e c t i o n ; v e g e t a t i o n , topography, and other b u i l d i n g s , b. In areas without p o t e n t i a l s n o w d r i f t i n g , the b u i l d i n g may break the wind f o r a more d e s i r - able m icro-climate a r e a , c. Have minimum surface area f a c i n g winter wind, d. Use aerodynamic shapes to l e s s e n impact of the wind. 123 E. S p e c i a l C l i m a t i c C o n d i t i o n s : Blowing Snow a. Avoid l a r g e b u i l d i n g s when snow d r i f t i n g can occur on the l e e s i d e , b. Elevate s t r u c t u r e to a l l o w wind to sweep under c l e a r i n g snow to leeward, c. Use aerodynamic shapes to minimize impact of the wind, d. Avoid b u i l d i n g i r r e g u l a r i t i e s which would cause p o t e n t i a l snow d r i f t i n g , e. O r i e n t a t e the sm a l l e s t b u i l d i n g area towards the wind/blowing snow d i r e c t i o n . W i t h i n t h i s l i s t i n g of planning o b j e c t i v e s there are c o n f l i c t s which need to be r e s o l v e d . The c l i m a t i c r e g i o n i n which housing w i l l be b u i l t normally determines the p r i o r i t i e s needed to r e s o l v e these c o n f l i c t s . 1. B u i l d i n g S i z e • Extreme Environment ( A r c t i c ) : In t h i s r e g i o n there e x i s t s a c o n f l i c t between the economic need f o r a la r g e s t r u c t u r e encompassing many a c t i v i t i e s and f u n c t i o n s w i t h i n i t 6 enclosed micro-climate (BP Alaska/Sohio's North Slope Operations Center, the 26 s t o r y pyra- midal b u i l d i n g i n N o r i l s k , Russia) and the need to minimize the impact of the wind. In the a r c i t c r e g i o n there i s l i t t l e v e g e t a t i o n or topography (along the North Slope) to help block the c o l d winds; so, no matter what the b u i l d i n g s i z e , the wind w i l l have an impact on i t - the b u i l d i n g shape and o r i e n t a t i o n can h e l p reduce the s t r u c t u r a l impact of the wind on l a r g e r s t r u c t u r e s . Blowing snow/snow d r i f t i n g which normally accumulates around b u i l d i n g s ( l a r g e or small) i n the a r c t i c r e g i o n can be minimized by e l e v a t i n g the s t r u c t u r e so that the winds can c o n t i n u a l l y c l e a r the l e e side of the s t r u c t u r e 12if of d r i f t i n g snow. L i m i t a t i o n s may occur f o r b u i l d i n g s i z e s which become too large to be el e v a - ted above the ground. • Less Extreme Environment ( S u b - a r c t i c ) : With the absence of blowing snow and constant c o l d winds, the e x t e r i o r spaces are l e s s h o s t i l e than i n the a r c t i c r e g i o n . This f a c t o r leads to the b u i l d i n g of more dispersed town f a c i l i t i e s and housing i n s t e a d of p u t t i n g e v e r y t h i n g i n a s i n g l e enclosure which permits people to t o t a l l y a void the e x t e r i o r n a t u r a l environment. Smaller b u i l d i n g s i n the s u b a r c t i c can be s h i e l d e d from winter winds by the f o r e s t cover and topographic c h a r a c t e r i s t i c s . Although wind and blowing snow are not major problems, the extreme c o l d temperatures i n t h i s r e g i o n h e l p to advance the argument f o r mega- s t r u c t u r e s which would be l e s s c o s t l y to operate and maintain than a more di s p e r s e d , open town- s i t e . The biggest problem with the megastructure type of townsite i s i t s i n a b i l i t y to take advantage of the b e a u t i f u l n a t u r a l environment which occurs during the summer. In a d d i t i o n , the compacted b u i l t environment ( s i n g l e b u i l d i n g megastructure) could i n t e n s i f y s o c i a l c o n f l i c t s during winter s i n c e so much time i s spent i n s i d e . 2. B u i l d i n g Shape • Extreme Environment ( A r c t i c ) : The g r e a t e s t c o n f l i c t which occurs i s that of breaking the wind f o r a more d e s i r a b l e micro- c l i m a t e c o n d i t i o n as w e l l as having the wind con- t i n u a l l y c l e a r wind blown snow i n order to mini- mize snow d r i f t s about the b u i l d i n g . The elevated b u i l d i n g a l l o w s the wind to blow under i t , w hile c l e a r i n g the d r i f t e d snow t h i s s o l u t i o n negates any low wind micro-climate c o n d i t i o n on the l e e si d e of the b u i l d i n g . The degree to which snow 125 d r i f t i n g occurs v a r i e s throughout the A r c t i c . In some areas d r i f t i n g can reach 15' to 20* while i n other l o c a t i o n s where p r e c i p i t a t i o n l e v e l s are l e s s , o n l y 2' to 31 d r i f t s occur. In l o c a t i o n s where d r i f t i n g i s minimal, i t would be advantageous to block the wind and h e l p create a more pleasant e x t e r i o r environment and use the d r i f t e d snow f o r i n s u l a t i o n and r e c r e a t i o n . • Less Extreme Environment ( S u b - a r c t i c ) : In t h i s r e g i o n the major c o n f l i c t l i e s i n the o p t i m i z a t i o n of heat l o s s and heat g a i n . M i n i m i z i n g heat l o s s to the c o l d temperatures r e q u i r e s the use of compact b u i l d i n g shapes while o p t i m i z i n g f o r s o l a r heat gain means expos- i n g more area to the d i r e c t i o n with the most sun. I t i s suggested that a compact b u i l d i n g form should be used w i t h the o r i e n t a t i o n s e l e c t e d to maximize the s o l a r r a d i a t i o n . M i n i m i z i n g s o l a r shadowing of b u i l d i n g s on each other and on e x t e r - i o r spaces a l s o suggests the use of compact b u i l d - i n g shapes. B u i l d i n g O r i e n t a t i o n • Extreme Environment ( A r c t i c ) : Here again the c o n f l i c t l i e s i n the d e s i r e to b l o c k the wind i n order to help create a more pleasant e x t e r i o r environment or to minimize o b s t r u c t i o n of the wind i n order to keep snow d r i f t i n g to a minimum. The s e l e c t i o n of one para- meter over the other would depend on the degree of snow d r i f t i n g f o r the p a r t i c u l a r area along wit h the maintenance problem of having to remove excess snow accumulation. • Less Extreme Environment ( S u b - a r c t i c ) : O r i e n t a t i o n of b u i l d i n g s i n the s u b - a r c t i c should be based p r i m a r i l y on sun and view. Some l o c a l i z e d c o n d i t i o n s may make wind p r o t e c t i o n 126 a dominant factor but over most of the region the built environment should be located on south- east, south, and southwest hi l l s i d e s i n order to maximize winter, spring, and f a l l solar radia- tion. In addition, housing units should not have their only orientation to the north denying them sunlight for most of the year. 12? 3.3.8 References ^ B. L. van G i n k e l , "New Towns i n the North", Contact, August 1967, p.308 2- Dr John Hay, R a d i a t i o n Data f o r B.C. and A l b e r t a , Geography Department, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C.,unpublished data analyzed by J . Ross ^ Richard A. M i r t h , "The Sun Can Heat Our Homes - Even i n The North", The Northern Engineer, F a l l 1974 4 c . R. Crocker, Influe n c e of O r i e n t a t i o n on E x t e r i o r Cladding, CBD 126, June 1970, Ottawa, Canada 5 D . G. Stephenson, S o l a r Heat Gain Through Glass W a l l s , CBD 39, March 1963, Ottawa, Canada to State Committee of the C o u n c i l of M i n i s t e r s f o r B u i l d i n g Problems, I n s t r u c t i o n s f o r the Design of Townsites, F a c t o r i e s , B u i l d i n g s and S t r u c t u r e s i n the Northern C o n s t r u c t i o n - C l i m a t i c Zone, Moscow 1967, t r a n s l a t e d by v. Poppe, TT 1547, 1972, Ottawa, Canada p. 22 7 Hay, R a d i a t i o n Data, a n a l y s i s by J . Ross 1976-77 £> L. R. Wang, Wayne Tobiasson, " L i f e Cycle Cost E f f e c t i v e n e s s of Modular Megastructures i n Cold Regions", I n t e r n a t i o n a l Symposium on Housing Problems: 1976, V o l . 1, I n t e r n a t i o n a l A s s o c i a t i o n f o r Housing Science P u b l i c a t i o n , Clemson U n i v e r s i t y ^ Ralph E r s k i n e , " A r c h i t e c t u r e and Town Planning i n the North", Pol a r Record, v o l . 14, No. 89, 1968, P. 169 1 0 David C l u n i e , "Two New Northern Communities", Contact, August 1976, p. 311 H Norbert Schoenauer, "Fermont, a New V e r s i o n of the Company Town", J o u r n a l o f A r c h i t e c t u r a l Education, Feb. 1976, p. 11 Ralph E r s k i n e , " A r c h i t e c t u r e and Town Planning i n the North", P o l a r Record, 1968, pp. 167,168 1 3 I b i d . , p. 168 1 4 P h i l i p Steadman, Energy, Environment and B u i l d i n g , Cambridge U n i v e r s i t y P r e s s , 1975, P. 27 128 ^ U n i v e r s i t y of Alaska short course, "Geodesic Domes", Ralph Mathews, i n s t r u c t o r , taken by J . Ross 1974, C o l l e g e , A l a s k a f C r I b i d . ^ Ralph E r s k i n e , "The Challenge of High L a t i t u d e s " , RAIC J o u r n a l , Jan. 1964 1 d I b i d . 1 ^ W. A. D a l g l i e s h , D. W. Boyd, Wind on B u i l d i n g s , CBD 28, A p r i l 1962, Ottawa, Canada 2 0 Ralph E r s k i n e , "Community Design f o r Pro d u c t i o n , f o r P u b l i c a t i o n , or f o r the People", RAIC J o u r n a l , Jan. 1964 ^ Peter F l o y d , "The North Slope Center: How was I t B u i l t ? " , The Northern Engineer, F a l l 1974, P» 28 22 p. A. Schaerer, C o n t r o l of Snow D r i f t i n g About B u i l d i n g s , CBD 146, Feb. 1972, Ottawa, Canada 2* i b i d . ^ F l o y d , "The North Slope Center: How Was I t B u i l t " 129 3 .4 PLANNING LEVEL 3 : ACTIVITY/SPACE ARRANGEMENT CLIMATIC FACTORS S N E FACTORS REFERENCE MATRIX SO LA R  R A D IA T IO N  T EM P ER A T U R E P R E C IF IT A T IC N  e * to o M H £ O u 13 U a. TO P O G R A P H Y o 3 o S O IL S  H Y D R O LO G Y V E G E T A T IO N  PLANNINQ LEVEL 1 PLANNINQ LEVEL 2 PLANNING LEVEL 3 PLANNINQ LEVEL k 1 3.4-1 O b j e c t i v e This s e c t i o n i s intended to point out b u i l d i n g responses to the t h i r d l e v e l of planning (the a c t i v i t y / s p a c e arrangement) which help to improve housing h a b l t a b i l i t y , l e s s e n the adverse c l i m a t i c i m p l i c a t i o n s , and maximize the d e s i r a b l e c l i m a t i c i m p l i c a t i o n s . 130 3.4.2 S o l a r R a d i a t i o n CLIMATIC FACTORS SITE FACTORS REFERENCE MATRIX ac o a < a. OS a 8 g < C PRE CIF ITA TIO R S M * to » c O i-t g o u •< »-« o M tt. ") s Pt O £ o t- 3E0 L0G T SOI LS o 3 o rn a >* SL. K o < u a u PLANNINQ LEVEL 1 PLANNINQ LEVEL 2 PUNNING LEVEL 3 PUNNING LEVEL k The great v a r i a t i o n i n s o l a r r a d i a t i o n throughout the year has a major e f f e c t on the a c t i v i t i e s and space arrangements w i t h i n the housing u n i t . Due to the l i m i t e d winter s u n l i g h t , s u n l i g h t a v a i l a b i l i t y / p e n e t r a t i o n becomes very d e s i r a b l e during t h i s p e r i o d . How important i s s u n l i g h t i n the home? A study of 939 housewives i n Holland came up with some i n t e r e s t i n g c o n c l u s i o n s : "1. P r a c t i c a l l y a l l housewives wanted much l i g h t and sunshine i n t h e i r homes. They attached great value to t h i s . 2. As f o r the l i v i n g - r o o m , there was some p r e f e r - ence f o r afternoon sun. P o s s i b l y , the i n s o l a - t i o n one a c t u a l l y had g r e a t l y i n f l u e n c e d preferences f o r the i n s o l a t i o n . 3. As f o r the k i t c h e n and the bedrooms, there was a d i s t i n c t preference f o r sun i n the morning. 4. Most of the housewives shared the view that the i n s o l a t i o n of the li v i n g r o o m i s the most important feature and, i f necessary, they were prepared to s a c r i f i c e the i n s o l a t i o n of the bedroom to ensure t h i s . 5. A s u r p r i s i n g l y high percentage (70%) of the housewives p r e f e r r e d an i n s o l a t e d room, with- out a f i n e view, to a room without sun but with a b e a u t i f u l v i e w . " 1 The f a r t h e r north one goes, the greater the d e s i r e i s to optimize winter s u n l i g h t , when a v a i l a b l e , since 2 i t i s scarce during the c o l d months. S u n l i g h t penetra- t i o n i s an important aspect of housing q u a l i t y and at l e a s t one space ( p r e f e r a b l y the "livingroom") should r e c e i v e s u n l i g h t sometime during the winter day. 131 Space arrangements may vary when t r y i n g to op- t i m i z e s u n l i g h t f o r the v a r i e d seasonal c o n d i t i o n s . During w i n t e r , s u n l i g h t i s present only at the south side of a b u i l d i n g provided i t i s not shadowed; during summer, s u n l i g h t i s present at a l l o r i e n t a t i o n s at some time during the long day. A c t i v i t y spaces which most need winter s u n l i g h t should be adjacent to a south, southeast, or southwest s i d e . By using second f l o o r spaces (higher e l e v a t i o n ) , these a c t - i v i t i e s w i l l have a b e t t e r chance of p i c k i n g up d i r e c t s u n l i g h t than i f they were on the f i r s t f l o o r or basement l e v e l . Should only d a y l i g h t be needed, east and west o r i e n t a t i o n s w i l l have good l i g h t when the sun i s high enough to r e f l e c t l i g h t o f f the snow cover and other ob- j e c t s to the east or west. The changing s o l a r i r r a d i a t i o n on e x t e r i o r o b j e c t s r e f l e c t s v a r i e d l i g h t throughout the day; the east s i d e r e c e i v i n g more morning to noon l i g h t and the west side r e c e i v i n g more noon to a f t e r - noon l i g h t , i n northern exposures, r e f l e c t e d l i g h t seldom occurs during mid-winter due to most o b j e c t s being i n shadow ( f i g u r e 3.*, 5). When the sun i s high enough to l i g h t o b j e c t s to the n o r t h , the north s i d e nor- mally provides the best c o n s i s t e n t i n d i r e c t l i g h t i n g r e f l e c t e d from o b j e c t s ( v e g e t a t i o n , b u i l d i n g s , snow cover) i n constant s u n l i g h t most of the day. 132 F l e x i b i l i t y of the e x t e r i o r s k i n can help the i n h a b i t a n t s to b e t t e r adapt to the great seasonal v a r i a t i o n i n s u n l i g h t . The opening up of the b u i l d i n g i n t e r i o r to the daytime views, s u n l i g h t , and s o l a r heat could be a major design f a c t o r since the i n t e r - i o r spaces should be closed o f f to the c o l d e x t e r i o r d u r i n g the long winter n i g h t s . Whole w a l l s ( i n s u l a t e d w a l l panels) could be moved to open up i n t e r i o r spaces onto sun heated daytime use spaces. Greenhouse type spaces could become part of the i n t e r i o r a c t i v i t y spaces durin g the days and be clo s e d o f f at night to keep heat l o s s through the g l a s s area to a minimum, see f i g u r e 3.46. Such " b u f f e r spaces" around the home u n i t would need to be o r i e n t a t e d to the d i r e c t i o n best s u i t e d f o r the time of day, time of year, and a c t i v i t y f o r which A. i t would be used ( f i g u r e 3*47). As an example, a space opening out to the west, northwest could be used f o r r e l a x i n g / e n t e r t a i n i n g / d i n i n g i n the evening when the summer ni g h t a i r becomes c o o l making a g l a s s enclosure heated by the afternoon sun a comfortable environment, but t h i s o r i e n t a t i o n would have l i m i t e d use during w i n t e r . A space u t i l i z i n g s o l a r r a d i a t i o n d u r i n g w i n t e r , s p r i n g , and f a l l could be opened out on the south o r i e n t a t i o n and be used f o r daytime a c t i v i t i e s - c h i l d r e n ' s play a r e a , p l a n t i n g , d i n i n g , and " l i v i n g " . A space to the south, when opened during a sunny winter day would a l l o w s u n l i g h t and s o l a r heat to penetrate the home i n t e r i o r . 133 TIME/LOCATION DIAGRAM FOR EXTERIOR USE SPACE ADJACENT TO THE LIVING UNIT 134 3.4.3 Temperature CLIMATIC FACTORS SITE FACTORS REFERENCE HATRIX SO U R  R A D IA T IO N  w g < 8 & PRE C IF IT A T IO N  S M * O M £ o u .-J t »-l [3 w 0. Yl T O PO G R A PH ! G EO LO G Y SO IL S >* o 3 o rr. IE o *-l H •* H U O U PLANNINO LEVEL 1 PLANNINO LEVEL 2 PUNNINQ LEVEL 3 PUNNINQ LEVEL It Temperature i s important to l o c a t i n g a c t i v i t i e s / spaces such as e n t r a n c e s / e x i t s as w e l l as spaces which should or should not be adjacent to c o l d e x t e r - i o r w a l l s u r f a c e s . The i n f l o w of the outside c o l d a i r a l s o e f f e c t s the thermal regime w i t h i n the s t r u c t u r e . Doors to the e x t e r i o r with high usage o f t e n have " a r c t i c e n t r i e s " ( f i g u r e 3.48) which are normally t r a n s i t i o n rooms where the c o l d a i r from the outside w i l l be blocked by the outer door when the inner door i s opened. The two door system i n the home dees not always work as intended since people q u i t e o f t e n use other e n t r i e s with only one door which provides the access to t r a n s p o r t a t i o n (autos) and c h i l d r e n ' s play areas, while the " a r c t i c e n t r y " f i l l s up with storage i t e m s . ^ 135 More important than the two doors i n the sub- a r c t i c r e g i o n i s the entry l e v e l when t r y i n g to keep out the c o l d a i r . When the ent r y i s lower i n r e l a t i o n to the heated i n t e r i o r , there i s l e s s heat l o s s when the door i s opened since c o l d a i r stays low and warm a i r r i s e s . I f the entry was i n the f l o o r as done i n some of the i g l o o designs ( f i g u r e 3»4<9), the heat l o s s would be minimized. -JA«fc<JMI<JT W I M T & F . H O U S E - This " t r a p door" arrangement ( f i g u r e 3»50) i s inconvenient f o r most people i n the "modern" home so a lower entry l e v e l space i s the next best t h i n g ( f i g u r e 3.51). This confines the incoming c o l d a i r to the lower f l o o r area near the entry while keeping the outflow of warm a i r to a minimum. 136 Another example of t h i s lower l e v e l entry was developed f o r I n u i t housing i n A r c t i c Quebec, see f i g u r e 3.52. "A t h r e e - l e v e l house was developed to conserve heat. The furnace has l o c a t e d on the entrance f l o o r on f i r s t l e v e l . The c o l d a i r , being more dense than warm, remains at the lower l e v e l . The warm a i r would flow by n a t u r a l convection to the upper l e v e l s and force the col d a i r to the f i r s t l e v e l . The high winds of the A r c t i c necess- i t a t e d an outside porch ( a r c t i c entry) as a t r a n s i t i o n to t h i s lower l e v e l entrance. The porch forms a t r a p f o r the main t h r u s t of the wind. The home owner would enter a general storage and mechanical area which would have only ambient heat of the furnace but no d i r e c t heat. This space would be co o l e r than the other two l e v e l s of the house." & Fier^E: .3,15,2 C l o s i n g o f f rooms i n a house causes temperatures to vary from space to space since the a i r i s sectioned o f f . When clos e d o f f , heat generating a c t i v i t i e s (people, l i g h t s , appliances) have t h e i r heat r e s t r i c t e d to s m a l l e r areas r e q u i r i n g v e n t i l a t i o n of those spaces while others are c o o l . A l l c l o s e d o f f spaces would have to have t h e i r own heat supply which i s most o f t e n r e g u l a t e d by one thermostat l o c a t e d i n a c e n t r a l space. See f i g u r e 3*52 f o r u n r e s t r i c t e d a i r flow example. 137 Another c o l d temperature i m p l i c a t i o n i s the ef- f e c t of mean r a d i a n t temperature (MRT) heat l o s s from the body to c o l d i n t e r i o r s u r f a c e s . E x t e r i o r w a l l s w i l l have c o o l i n t e r i o r surface temperatures during the c o l d w i n t e r s . In most cases the c o l d e s t surface w i l l be a window which can be as much as 30 degF to kO deg F below room temperature. These surfaces cause a r a d i a t i v e heat l o s s from the body of a person. The person i n t u r n w i l l a d j u s t the thermostat up higher to be more comfortable. T h i s r a d i a t i v e heat l o s s can be lessened when the person i s f a r t h e r away from the c o l d surface since other i n t e r i o r surfaces (warmer) a l s o have a r a d i a t i v e e f f e c t on the person. Spaces near expanses of c o l d g l a s s should not be used f o r s i t t i n g / r e l a x i n g s i n c e t h i s i s where the highest r a d i a t i v e heat l o s s w i l l occur. Having a c t i - v i t y and movement areas adjacent to the c o l d surfaces and areas f o r s i t t i n g / r e l a x i n g f a r t h e r away w i l l h e l p counter the c o o l i n g e f f e c t of the surfaces ( f i g u r e 3.53) Other p o s s i b l e s o l u t i o n s i n c l u d e e x t e r i o r s h u t t e r s over windows to l e s s e n the MRT e f f e c t by warming the i n t e r i o r surface temperature. Drapes or i n t e r i o r b l i n d s can be used over windows (most common s o l u t i o n ) but precautions must be taken to avoid moisture accumulation and i c i n g on the window su r f a c e . A l s o , c l o t h i n g helps to minimize t h i s f e e l i n g of heat l o s s . 138 The long d u r a t i o n of w i n t e r , i n c o n j u n c t i o n with i t s c o l d temperatures n e c e s s i t a t e s the use of much c o l d wea- ther c l o t h i n g and equipment. I t ' s important to pro- vide adequate storage f o r t h i s c o l d weather equipment. From parkas to "bunny" boots, snow removal equipment to s k i i s , most of the equipment can be s t o r e d out i n the c o l d o r , as happens a l o t , i n the a r c t i c e n t r y or covered porch. Due to the high usage of i n t e r i o r space during the w i n t e r , i t ' s important to have enough storage adjacent to the house to handle the wide v a r i e t y of equipment. A space such as shown i n f i g u r e 3.54 a l s o provides a good b u f f e r from the ex- treme c o l d e x t e r i o r f o r the warm house i n t e r i o r . Storage of frozen goods outside i s a l s o q u i t e o f t e n done t a k i n g advantage of nature's deep f r e e z e . Freezers themselves are o f t e n kept on c o l d porches or outside adjacent to the north side of the house. Some hunters who r e t u r n with l a r g e amounts of moose or cariboo w i l l keep i t on top of the house, fr o z e n and away from the dogs. Florets. 139 3.4.4 P r e c i p i t a t i o n CLIMATIC FACTORS SI1 •E FACTORS REFERENCE MATRIX SO UR  RA DIA TIO N u g < Q a. & n PRE CIF ITA TIO N g * SP ECI AL CON DIT ION S TOP OGR APH Y GEO LOG Y SOI LS >• o 3 o cr, a >> n SK o «« a o u PLANNINQ LEVEL * PLANNINQ LEVEL 2 PUNNING LEVEL 3 • PUNNING LEVEL 4 The use of e x t e r i o r spaces during winter should f i g u r e on the u t i l i z a t i o n of snow cover. Snow mounds, h i l l s , or d r i f t s can be used f o r p l a y , s l e d d i n g , s k i i n g , or even j u s t s i t t i n g out i n the sun. For optimum use adjacent to a housing u n i t , the space should r e c e i v e d i r e c t s u n l i g h t since a i r temperatures are so low during much of the winter . Outside play areas adjacent to the house should be loc a t e d on the south, e a s t , or west side to maximize d i r e c t s u n l i g h t . C l u s t e r i n g of housing u n i t s should leave " s u n l i g h t c o r r i d o r s " i n t o the play spaces f o r winter use, see f i g u r e 3«55« 140 Pedestrian entrances and exits as well as vehicular access should be located in order to avoid rain runoff and snow slides from the sloping roof, see figure 3.5fe.1i 141 3.4.5 Wind CLIMATIC FACTORS s n E FACTORS RCFEREMCE MATRIX SO LA R  R A D IA T IO N  |  u g < tr. W n, & PRE C IF IT A T IC N  g VI V. O t-» E-« n g o o • J <t t-t O w cu <n T O P O G R A P H Y G EO LO G Y  S O IL S  o 3 o IT. » >> o En < U) o w PLANNING LEVEL t PLANNING LEVEL 2 PLANNING LEVEL 3 • PLANNINQ LEVEL It As mentioned before, the wind c h i l l experienced by people i s an important design f a c t o r when estab- l i s h i n g the l o c a t i o n s of the e x t e r i o r p l a y / r e s t areas and c i r c u l a t i o n spaces. The greater the wind v e l o c i t y , the greater the heat l o s s from the exposed surfaces of the body causing discomfort and p o s s i b l e f r e e z i n g ( f r o s t b i t e ) . L o c a t i o n of the entry i s a l s o i n f l u e n c e d by the p r e v a i l i n g winter winds. When a wind blows c o n s t a n t l y against the e x t e r i o r door, the two door a r c t i c entry becomes more d e s i r a b l e since the t r a n s i - t i o n space w i l l stop the wind from blowing through the cracks around the i n t e r i o r door slowing the c o l d a i r i n f i l t r a t i o n , see f i g u r e 3.49. The outside door should not open d i r e c t l y toward the winter wind d i r e c t i o n , see f i g u r e 3.57* 142 3.4.6 S p e c i a l C l i m a t i c C o n d i t i o n s : Blowing Snow CLIMATIC FACTORS sn E FACT ORS REFERENCE HATRIX SO LA R  R A D IA T IO N  |  u g tr-" < S 0. & PR E C IF IT A T IO N  i M BE W o M e o u . J •a. M O w PL. T O P O G R A P H Y  G EO LO G Y  S O IL S  >* o 3 o K a >- 2L. o H •< a o w PLANNING LEVEL 1 PLANNING LEVEL 2 PLANNING LEVEL J PLANNING LEVEL 4 i n areas with p o t e n t i a l snow d r i f t i n g , avoid l o c a t i n g f e n e s t r a t i o n (doors and windows) where snow- d r i f t i n g w i l l make them us e l e s s such as on the lower p o r t i o n of the l e e side of the b u i l d i n g ( f i g u r e 3.58). In t h i s case the house should have a second e x i t . ^ 143 3.4.7 Summary The l i s t i n g of planning o b j e c t i v e s to be con- s i d e r e d at planning l e v e l 3, a c t i v i t y / s p a c e arrange- ments, a r e: A. S o l a r R a d i a t i o n a. S u n l i g h t p e n e t r a t i o n i s an important aspect of housing q u a l i t y and at l e a s t one space ( p r e f e r a b l y the " l i v i n g room") should r e c e i v e s u n l i g h t sometime during the winter day b. Spaces r e q u i r i n g s u n l i g h t should be l o c a t e d on the southeast, south, or southwest p o r t i o n s o f the s t r u c t u r e as high as p o s s i b l e c. Areas r e q u i r i n g good d a y l i g h t i n g should avoid the north s i d e during winter d. Provide f l e x i b i l i t y of space - open up housing u n i t to "daytime spaces" l o c a t e d southeast to southwest B. Temperature a. Locate entry to housing u n i t at a low l e v e l b. Allow i n t e r i o r heated a i r to c i r c u l a t e f r e e l y to a l l areas r e q u i r i n g heat at each l e v e l c. Minimize body r a d i a n t heat l o s s to the c o l d • s u r f a c e s of e x t e r i o r walls/windows by keeping i n a c t i v i t y spaces away from surfaces d. Adequate space f o r c o l d storage should be provided - i f i n the ent r y way the ent r y space should be much l a r g e r than the t y p i c a l a r c t i c entry C. P r e c i p i t a t i o n a. Use snow f o r pla y areas on south s i d e b. L o c a t i o n of e n t r i e s / e x i t s and garage openings should be protected from r a i n , snow, and p o t e n t i a l snow s l i d e s o f f the roof D. Wind a. E x t e r i o r a c t i v i t y spaces should be protected from winter winds which increase wind c h i l l f a c t o r 144 b. L o c a t i o n of e n t r a n c e / e x i t s and i n t e r i o r openings should not face winter wind d i r e c t i o n E. S p e c i a l C l i m a t i c C o n d i t i o n s : Blowing Snow a. Avoid l o c a t i n g f e n e s t r a t i o n (windows, doors) where snow d r i f t i n g w i l l make them useless Areas wi t h wind and blowing snow ( a r c t i c region) have d i f f i c u l t y a c h i e v i n g d e s i r a b l e south f a c i n g e x t e r i o r use space which i s not covered w i t h snow d r i f t s ( e s p e c i a l l y on the North Slope where wind comes from the northeast) or subject to constant wind. In a d d i t i o n , the change i n s o l a r azimuth t r a v e l i s so r a p i d (from no sun to 2 4 hours of d a y l i g h t ) i n only a few months that east or west o r i e n t a t i o n s could have n e a r l y equal importance as the south o r i e n t a t i o n w i t h regard to s o l a r r a d i a t i o n . I n t h i s case p r o t e c t i o n from the wind becomes a f i r s t p r i o r i t y . 145 3 .4 .8 References 1 C. B i t t e r , J.F.A.A. I e r l a n d , " A p p r e c i a t i o n of Su n l i g h t i n the Home," CIE Proceedings: S u n l i g h t i n B u i l d i n g s , e d i t e d by R. G. Hopkinson, U n i v e r s i t y of Newcastle-Upon-Tyne, A p r i l 1965 2 James Wechsberg, "Morketiden," New Yorker, March 18, 1972 5 "When the House-Warming Sun Goes Down, Movable I n s u l a t i o n Goes Into Place," Sunset, Nov. 1976, pp. 166-168 * Based on the sunpath diagram constructed by the author f o r 62° north l a t i t u d e , see Appendix A ^Burgess Ledbetter, "The Temporary Environment of Fort Wainwright, Housing Part 111',' Cold Regions Resea search Engineering Laboratory (CRREL), Hanover, N.H., unpublished 1976 Eb R i c e , "The I d e a l A r c t i c House - 11," The Northern Engineer, Summer 1973, P . 19 I Wendell H. Oswalt, Alaskan Eskimos, Chandler P u b l i s h i n g Co., 1967, p. 100 ^ Leo R. Zrudlo, "User Designed Housing f o r the I n u i t of A r c t i c Quebec," The Northern Engineer, F a l l 1975, P . JfO ^GSA, Energy Conservation Design G u i d e l i n e s f o r New O f f i c e B u i l d i n g s , General S e r v i c e s A d m i n i s t r a t i o n , Washington D.C, 1975, p. 5-9 1 0 Burgess Ledbetter, "The Temporary Environment" I I Ralph E r s k i n e , "Challenge of the High L a t i t u d e s , " RAIC J o u r n a l , January 1964 1 2 B o r i s C u l j a t , Climate and The B u i l t Environment i n The North, A r k i t e k t u r s e k t i o n e n s t r y c k e r i , KTH, Stockholm, Sweden, 1975 1 5 R i c e , "The I d e a l A r c t i c House - 11," p. 19 1 * I b i d . , p. 23 146 3.5 PLANNING LEVEL 4: DETAILING OF THE BUILDING FABRIC CLIMATIC FACTORS SITE FACTORS REFERENCE HATRIX SB o s Ml o «< PS 3 w g E B PR E C IF IT A T IC N  g ts o f g o u .J < Mi c> Id a. "i s -< tt. o £ o >• t5 s a .4 O >- O s o n •* a o w PLANNING LEVEL 1 PLANNINQ LEVEL 2 PLANNINQ LEVEL 3 PLANNI NO LEVEL k mm\WL^Lmmmmm\\ 3.5.1 Objective This section i s intended to point out building design responses at the fourth level of planning (the detailing of the building fabric) which help to reduce the influence of adverse climatic effects, and maximize the desirable climatic effects. Selecting the materials within the building fabric as well as i t s placement becomes most noticable over time when a mistake has been made. If no mistakes are made then the "good design" goes unnoticed and the house can "work" like any other house in a lower latitude with a more moderate climate. 1V7 3.5.2 S o l a r R a d i a t i o n CLIMATIC FACTORS SI1 E F ACT ORS REFERENCE MATRIX S O U R  R A D IA T IO N  g tr, W 0. fi f-i P R E C IF IT A T IO N  g * SP E C IA L  C O N D IT IO N S  T O P O G R A P H Y  G E O LO G Y  S O IL S  >* o a o rn Q as o < f-i U u PLANNING LEVEL 1 PLANNINQ LEVEL 2 PLANNING LEVEL 3 PUNNING LEVEL l» • S o l a r r a d i a t i o n has an i n f l u e n c e on the make up of e x t e r i o r w a l l s and the surface shade/color of the e x t e r i o r s k i n of the b u i l d i n g . The greatest i n f l u - ence i s on the window area; the amount of window area , the l o c a t i o n of window are a , and the c o n t r o l of the sun and gl a r e at the window su r f a c e . These f a c t o r s c o n t r o l housing u n i t heat l o s s , heat g a i n , amount of n a t u r a l l i g h t i n g , and v i s u a l discomfort. The surface shade/color a l s o i n f l u e n c e s the housing u n i t s heat gain and heat l o s s as w e l l as thermal s t r e s s e s i n the e x t e r i o r s k i n . • Amount of Window Area The window area on the e x t e r i o r envelope should be kept to a minimum (normally around 10% of the 1 f l o o r area) p r i m a r i l y due to heat l o s s during the c o l d months (see 3*5.3 Temperature f o r more d e t a i l ) . From l a t e February t i l l e a r l y November the prospects of u t i l i z i n g s o l a r heat gain are good since the midday s o l a r a l t i t u d e i s above 10° and the increased azimuth t r a v e l makes s o l a r heat gain a v a i l a b l e to more than south f a c i n g o r i e n t a t i o n s , i f window area i s l i m i t e d due to heat I O B S d u r i n g the w i n t e r , then i t becomes more d i f f i c u l t to optimize f o r s o l a r r a d i a t i o n during the s p r i n g , summer and f a l l . During those periods the d a y l i g h t and view are 148 a v a i l a b l e f o r longer periods and the sun's r a d i a t i o n can h e l p heat the house i n t e r i o r , the p e n e t r a t i o n of s u n l i g h t i s d e s i r a b l e and more window area becomes an a s s e t . S e v e r a l approaches can be taken to " s o l v e " t h i s problem. The f i r s t and the most widely used f o r many years was to get out of the house when i t was pleasant o u t s i d e . In t h i s way the homes were more "dens" f o r h i b e r n a t i o n i n the winter than year round l i v i n g environments. A second approach i s to have a house with l a r g e window areas so one i s i n constant contact with the e x t e r i o r environment, but t h i s s o l u t i o n has high o p e r a t i o n and maintenance c o s t s . A t h i r d approach i s to have a house with a f l e x i b l e e x t e r i o r s k i n ; p a r t s of the house could be opened up i n good weather i n order to l e t l i g h t , view, and heat i n t o the space and c l o s e d o f f thermally during c o l d periods minimizing heat loss.2 I n s u l a t e d panels could serve as " w a l l s " on the e a s t , south, to west s i d e s which could swing open a l l o w i n g : 1. a thermal mass or i n t e r i o r o b j e c t s and people to absorb d i r e c t s o l a r r a d i a t i o n , 2 . views of the outdoors, and 3. an abundance of n a t u r a l l i g h t . I n c o r p o r a t i n g t h i s f l e x i b i l i t y i n t o an o v e r a l l shape, i t i s s t i l l p o s s i b l e to minimize the b u i l d i n g ' s e x t e r i o r s k i n surface area as w e l l as provide g l a s s windows/walls with movable i n s u l a t e d panels as shown i n f i g u r e 3.59. The opening and c l o s i n g of the home would be much l i k e a plant or flower which opens to l e t i n v a l u a b l e s u n l i g h t when a v a i l a b l e and c l o s e s when i t becomes dark and c o l d . 149 • L o c a t i o n of Window Area When window.area i s kept to a minimum, s u n l i g h t i s at a premium and must be optimized with regard to view and i l l u m i n a t i o n . View c h a r a c t e r i s t i c s i n c l u d e the near s i t e ( v e g e t a t i o n , b i r d s , and animals, n a t u r a l elements - r a i n f a l l and s n o w f a l l ) , the middle distance (other homes, people, s t r e e t s , a u t o s ) , and the d i s t a n t view (mountains, v a l l e y s , c l o u d s , c i t y l i g h t s ) . A view i s a personal preference and each user w i l l give h i s own p r i o r i t y to the view h i s p a r t i c u l a r s i t e w i l l a l l o w . 150 To look at a view or activity outside usually means the use of a bay window or something similar which i s large, low, and centered in a space (figure When placing windows for optimum illumination, the bay window centered in the room i s one of the last choices. Vertical scrips of window adjacent to an interior wall or horizontal window strips near ceiling level bring in light which washes the walls and/or ceiling with light which increases the room illumination (figure 3 .61) . This method depends on the brightness and r e f l e c t i v i t y of the walls and ceiling surfaces, a light shade of most colors increases the luminance and illumination on a working plane. Since natural light and view both compete for-the same limited window area, we should ask which i s most important during the winter months when the light a v a i l a b i l i t y i s so short, and are there ways to combine the two u s e 6 ? The answer to the f i r s t question i s not 3.60). 151 simple since i t may d i f f e r for each i n d i v i d u a l user . Opt imiz ing the window placement for n a t u r a l l i g h t may f r u s t r a t e some people because they cannot view out so e a s i l y while for others thi6 arrangement may not bother them. Ways of combining the two uses have been attempt- ed i n co ld cl imate areas for quite some time: 1. Lower the h o r i z o n t a l window band so that one can view out while s tanding ( f igure 3.62), 5 > £ 2. Widen the v e r t i c a l window band near the wal l so a view can be enjoyed while s i t t i n g ( f igure 3.63),^ 3. Use of corner windows - l i g h t can be r e f l e c t e d on e i t h e r wal l increas ing i l l u m i n a t i o n and the view angle i s grea t ly increased with no obstruc- t ions where the windows meet at the corner ( f igure 3,64), 7 152 k* Open up w a l l p a n e l s to s u n l i t s p a c e s f o r d a y - t ime use - the s u n l i t space may not be warm enough to use i n m i d - w i n t e r y e t window a r e a may be i n the movable p a n e l s f o r l i g h t and v i e w ( f i g u r e 3.65).^ S k y l i g h t i n g can be v e r y use f u l l i n the n o r t h e r n e n - v i r o n m e n t . S k y l i g h t s / c l e r e s t o r y windows can be p o s i t i o n - ed to b r i n g l i g h t i n t o the b u i l d i n g i n t e r i o r b e t t e r t h a n the v e r t i c a l w a l l windows. They a l s o p r o v i d e the l i g h t to the upper f l o o r space or q u i t e o f t e n i n t o an i n t e r - i o r space which i s open to s e v e r a l f l o o r s , p r o v i d i n g n a t u r a l d i f f u s e l i g h t i n g to the c e n t r a l i n t e r i o r . The shape o f a b u i l d i n g which r e s p o n d s to the s u b - a r c t i c c l i m a t e w i t h a minimum of s u r f a c e a r e a c r e a t e s l a r g e r i n t e r i o r s p a c e s which a r e f a r t h e r from the l i g h t / s u n l i g h t s o u r c e s on the e x t e r i o r w a l l s ( f i g u r e 3»66). I n s m a l l s t r u c t u r e s such as moderate s i z e s homes, t h i s may not be so n o t i c e a b l e as i n a l a r g e r b u i l d i n g i n which the i n t e r i o r can be l a c k i n g n a t u r a l l i g h t . S k y l i g h t s can be used to s u p p l y n a t - u r a l l i g h t to t h e s e a r e a s . * ' ctBtS^L, Govt- 153 S k y l i g h t s and c l e r e s t o r y windows can a l s o b r i n g south l i g h t and s u n l i g h t to the north side of the home during winter by the p o s i t i o n i n g of these windows ( f i g u r e 3.67). »CT,tĴ f,̂ r,TT.tri-'«''','''',':T'r'f-f'̂ '/'f','T'>,.l.'.r-'.'il.'-'.'i'-'AV' S k y l i g h t s can a l s o be used as s u n l i g h t r e f l e c t o r s . R e f l e c t i v e s k y l i g h t s can pick up low s u n l i g h t and d i r e c t i t i n t o the b u i l d i n g i n t e r i o r ( f i g u r e 3.68). Being able to pick up the s u n l i g h t from the b u i l d - i n g r o o f l e v e l helps to capture low angle s u n l i g h t plus r e f l e c t e d l i g h t o f f the roof (snow) during winter and s p r i n g ( f i g u r e 3.69). C l o s i n g the s k y l i g h t o f f with an i n t e r i o r g l a s s pane can h e l p reduce heat l o s 6 , but the i n s i d e pane should be sealed to avoid moisture m i g r a t i o n to the outer g l a s s pane ( f i g u r e 3.69). 154 The window location can also influence i t s heat loss potential. For the exposed window/skylight, the more i t i s angled towards the horizontal, the more i t : 1. radiates heat (loss) to the atmosphere; 2. allows less winter (low angle) sun penetration; 3 . allows more sun penetration during the summer months (figure 3«70) . In areas with appreciable winter winds the sloping window surface would help to reduce the force of the wind on the surface. During the winter the skylight with minimal slope would collect snow which would melt to ice due to the heat loss through the glass. This normally causes large i c i c l e s to form (figure 3*71 ) « ^ -Fiacre 3.70 155 • Sun/Glare C o n t r o l Through Window Area D u r i n g w i n t e r , snow c o v e r s most h o r i z o n t a l s u r - f a c e s and s l o p i n g r o o f s . S i n c e snow r e f l e c t s much of the l i g h t which s t r i k e s i t , h i g h i l l u m i n a t i o n l e v e l s as w e l l as g l a r e can be e x p e r i e n c e d i n the home. " D i r e c t s u n l i g h t f a l l i n g on a b r i g h t s u r f a c e can cause g l a r e w i t h a t t e n d a n t v i s u a l d i s c o m f o r t u n l e s s the l e v e l o f i l l u m i n a t i o n i n the o t h e r p a r t s o f the room i s not too d i f f e r e n t from t h a t o f the s u n l i t a r e a s . " 12. The low w i n t e r sun angle h e l p s to produce two major s o u r c e s o f g l a r e : 1. the r e f l e c t i o n of s u n l i g h t o f f i n t e r i o r o b j e c t s , 2. the r e f l e c t i o n o f s u n l i g h t o f f snow on the The f i r s t type o f g l a r e can be bothersome from any- where i n the room when the r e f l e c t i n g s u r f a c e appears b r i g h t i n r e l a t i o n to the r e s t o f the room. The second type can " b l i n d " the person when l o o k i n g out the window when the eyes are a d j u s t e d to the i n t e r i o r l i g h t i n g l e v e l ( f i g u r e 3.72). S o l a r p e n e t r a t i o n and g l a r e can be c o n t r o l l e d by e x t e r i o r s h a ding, g l a z i n g t y p e s , i n t e r i o r shading, and the l o c a t i o n of f e n e s t r a t i o n . I n t e r i o r shading, c u r - t a i n s , shades, and b l i n d s , can cut down on the l i g h t , but they n o r m a l l y b l o c k the view. A l s o , they can cause m o i s t u r e / i c i n g problems on the windows d u r i n g the c o l d months which i s d i s c u s s e d i n another s e c t i o n . E x t e r i o r s h u t t e r s can e l i m i n a t e the m o i s t u r e / i c i n g problems i f moisture does not l e a k from the window c a u s i n g the o p e r a t i n g mechanism to i c e up. e x t e r i o r . s 1% Exterior Shading Shading by the building exterior such as over- hangs are generally ineffective for several reasons. Overhangs block south facing summer sun to a limited degree, but also block skylight from coming into the room interior through vertical windows, reducing the 13 room illumination (figure 3 * 7 3 ) • If the roof assembly i s a "hot roof" the over- hang i s normally colder than the rest of the roof so any snow melt from the main part of the roof w i l l freeze on the overhang causing massive ice dams during winter and s p r i n g . ^ 157 E x t e r i o r s h u t t e r s ( i n s u l a t e d , movable panels) a v a r i e t y of uses i i c o n d i t i o n s ( f i g u r e 3.74) have  i n the d i v e r s i f i e d northern 2. Winter Early Spring Spring/Fall S p r i n g / F a l l o r Summer East / W e s t Summer Nights Summer Days The use of e x t e r i o r i n s u l a t e d s h u t t e r s i s not wide spread i n the Alaskan urban areas, but I can r e l a t e how two d i f f e r e n t f a m i l i e s i n Fairbanks, A l a s k a , manipulated t h e i r own environment with movable i n s u l - ated s h u t t e r s on the outside of t h e i r windows. The o r i g i n a l purpose of the s h u t t e r s was to reduce the 158 heat l o s s through the g l a s s window area. T h i s nor- m a l l y r e q u i r e d opening the s h u t t e r s i n the morning and c l o s i n g them a f t e r sunset d u r i n g the c o l d months. One f a m i l y d i d e x a c t l y t h a t , while the other used the s h u t t e r s f o r sun shades on t h e i r south f a c i n g windows not bothering to c l o s e them every n i g h t . They both cl o s e d the s h u t t e r s when away from the house f o r s e v e r a l days or more. While the s h u t t e r s may not have been used as o r i g i n a l l y intended by both r e s i - dents, the o p t i o n was there f o r the i n d i v i d u a l to use the s h u t t e r s as he wished p r o v i d i n g f l e x i b i l i t y depend- i n g on the person's p r i o r i t i e s and energies; i n the one case s o l a r shading was more important and l e s s bother than c o n t r o l l i n g heat l o s s . The f l e x i b i l i t y of use i n t h i s case was perhaps even more important than reducing heat l o s s since each f a m i l y was able to enhance the l i v a b i l i t y of t h e i r environment through the use of the s h u t t e r s . Shading By G l a z i n g Type Sol a r sbsorbing and r e f l e c t i n g g l a s s could be used to decrease both heat and l i g h t . S o lar c o n t r o l by the use of window g l a s s has i t s own s p e c i a l problems. Clear f l o a t g l a s s (double g l a z i n g - thermal pane) w i l l normally transmit around 80% of v i s i b l e l i g h t and 70% of s o l a r heat. T i n t e d and/or r e f l e c t i v e g l a s s i s normally used to reduce the s o l a r heat durin g summer co n d i t i o n s . In a home and e s p e c i a l l y i n a c o l d c l i m a t e where window area i s minimized, s o l a r r e f l e c t i n g / absorbing g l a s s i s not necessary since the absorb- i n g g l a s s reduces the r a d i a n t heat transmittance to around 35% and v i s i b l e transmittance to around 40%. R e f l e c t i v e g l a s s has even lower v a l u e s , 25% f o r both heat and l i g h t . Since most of the year we are t r y i n g to maximize s o l a r heat and l i g h t , these types of g l a s s would only be u s e f u l l during the s p r i n g and summer. They could be u t i l i z e d as a movable s h u t t e r to h e l p cut down g l a r e and unwanted summer s u n l i g h t » see f i g u r e 3.75. 159 I n t e r i o r Shading A shade or c u r t a i n of some type over the lower p o r t i o n of the window area (up to about 5 - 6 f e e t ) w i l l cut down both types of g l a r e by c o n f i n i n g the b r i g h t n e s s to the upper window area where the r e f l e c t e d l i g h t from the snow w i l l l i g h t the c e i l i n g and the d i r e c t s u n l i g h t w i l l penetrate deeper i n t o the room reducing i n t e r i o r g l a r e p r o b a b i l i t y ( f i g u r e 3*75)• Since a major c r i t e r i a f o r window shading i s the achievement of p r i v a c y , the i n t e r i o r b l i n d s , c u r t a i n s , or shades are best s u i t e d f o r t h i s purpose due to ease of h a n d l i n g . I n t e r i o r shading devices need to be p o s i t i o n e d c o r r e c t l y (see Temperature S e c t i o n ) , or the windows could become covered with i c e pro- v i d i n g l i t t l e or no view from e i t h e r s i d e . 160 C o n t r o l By F e n e s t r a t i o n L o c a t i o n High windows keep the r e f l e c t e d g l a r e from snow out of view and spread the high i n t e n s i t y l i g h t onto the c e i l i n g which helps to b r i g h t e n the e n t i r e room. D i r e c t s u n l i g h t penetrates deeper i n t o the room from high windows. East and west f a c i n g windows are espe- c i a l l y s u s c e p t i b l e to g l a r e i n s p r i n g when the sun's a l t i t u d e i s r e l a t i v e l y low i n the east and west and the ground i s s t i l l covered w i t h snow. O r i e n t a t i o n s from south to west are the most c r i t i c a l due to winter and s p r i n g sun l o c a t i o n / a l t i t u d e and the time of day c e r t a i n spaces are most used. In greenhouse type spaces glar e becomes l e s s of a problem due to the over- a l l h igh i l l u m i n a t i o n l e v e l w i t h i n the space. Sky- l i g h t s are l e s s of a problem than v e r t i c a l windows since they normally provide upward views and when the sun penetrates, i t i s at a higher a l t i t u d e , see f i g u r e 3 . 7 6 . 161 • Surface Shade/Color and Texture of the E x t e r i o r S k i n "With few e x c e p t i o n s , c o l o r , as such was found to be non c r i t i c a l w ith regard to temperature c h a r a c t e r i s t i c s . However, shades of l i g h t and dark were extremely important."TT Another means of c o n t r o l or use of s o l a r r a d i a - t i o n i s through the use of shades of l i g h t and dark s u r f a c e s . Since h i g h heat gains are experienced i n dark s u r f a c e s (as much as 90°F above ambient a i r temperature) and only moderate heat gain i n l i g h t or lb r e f l e c t i v e s u r f a c e s , the b u i l d i n g surface should be evaluated as t o : 1. time of day of the g r e a t e s t s o l a r r a d i a t i o n , 2. time of year i t i s exposed to s o l a r r a d i a t i o n , 3. amount of time exposed to c l e a r n i g h t z e n i t h , i * . w a t e r t i g h t i n t e g r i t y d e s i r e d (minimize f r e e z e / thaw c y c l e s ) . Dark surf a c e s which r e c e i v e s o l a r r a d i a t i o n w i l l have more s o l a r heat g a i n , more nig h t r a d i a t i o n heat l o s s ( g r e a t e s t toward z e n i t h ) , more thermal s t r e s s on m a t e r i a l s ( e x t e r i o r s k i n ) , and more freeze/thaw c y c l e s than a l i g h t surface.^° Each of these f a c t o r s has v a r y i n g importance depending on the o r i e n t a t i o n of the s u r f a c e . A h o r i - z o n t a l or r o o f surface which r e c e i v e s i t s maximum s o l a r r a d i a t i o n a t midday during the warmer months of the year (mid A p r i l through mid October) would normally r e q u i r e a l i g h t c o l o r e d s u r f a c e . T h i s a l s o holds true when a h i g h degree of w a t e r t i g h t i n t e g r i t y i s e s s e n t i a l s i n c e high thermal s t r e s s and freeze/thaw c y c l e s work a g a i n s t the m a t e r i a l s a b i l i t y to remain w a t e r t i g h t . One other f a c t o r to be considered i s the outgoing nighttime r a d i a t i o n . Since a r o o f i s the c l o s e s t s u r f a c e o r i e n t a t e d to the sky's z e n i t h , i t w i l l exper- ience the most r a d i a t i v e heat l o s s d u r i n g c l e a r c o l d , dry n i g h t s . A dark surface ( b l a c k body) w i l l i n c r e a s e t h i s heat l o s s to i t s maximum at a time when the heat i s most d e s i r e d i n the home. So, once again a l i g h t c o l o r e d r o o f surface would be p r e f e r r e d s i n c e i t would 162 reduce t h i s heat l o s s during the n i g h t ( f i g u r e 3.77). During the c o l d e s t months of the year, October through A p r i l , the r o o f i s normally covered with snow which w i l l negate the e f f e c t of r o o f surface shade or c o l o r . tyor Ave* V e r t i c a l s u r f a c e s a r e : 1. not exposed to the c l e a r n i g h t ' s sky z e n i t h ; 2. not r e q u i r e d to be as w a t e r t i g h t as a f l a t r o o f ; and 3. r e c e i v e s o l a r r a d i a t i o n a t d i f f e r e n t times of the day and a t d i f f e r e n t times of the year depending on the o r i e n t a t i o n . Due to these f a c t o r s i t becomes more advantageous t o s e l e c t a dark surface ( f o r thermal mass m a t e r i a l s ) f o r c e r t a i n o r i e n t a t i o n s which can c o l l e c t the s o l a r heat during c o o l e r p e r i o d s . The south, southeast, and south- west o r i e n t a t i o n s are best f o r t h i s d u r i n g w i n t e r . S o l a r r a d i a t i o n becomes a v a i l a b l e on the no r t h e a s t , n o r t h , and northwest o r i e n t a t i o n s during the l a t e s p r i n g and summer months when temperatures are m i l d e r . These o r i e n t a t i o n s could capture the s o l a r r a d i a t i o n when the sun angle i s low i n the mornings and evenings, h e l p i n g to balance out the c o o l nighttime temperatures. The east and west e l e v a t i o n s are more o f a pro- blem. During the summer, the sun i s at an a l t i t u d e of 25° to 30° when perpendicular to the east and west o r i e n t a t i o n s producing a f a i r amount of s o l a r heat g a i n . I n the morning t h i s heat could be used to e l i m i n a t e the morning c h i l l , yet would be undesirable to be s t o r e d up i n a thermal mass only to be r e r a d i a t e d 163 d u r i n g the warmest part of the day. so, the east o r i e n t a t i o n should have l i g h t surface c o l o r s f o r both the e x t e r i o r s k i n and any thermal mass which the sun might s t r i k e . I n t h i s way the s o l a r heat can be used d i r e c t l y , l i m i t i n g the storage of i t i n the b u i l d i n g s t r u c t u r e . For the west o r i e n t a t i o n , the use of thermal mass i s advantageous s i n c e i t w i l l h e l p warm zz the c o o l evening a i r . A dark sur f a c e s thermal mass may tend to overheat t h a t s i d e of the house at times. { P o s s i b l y the best s o l u t i o n here i s to have movable panels or s h u t t e r s which have a l i g h t e x t e r i o r surface so that when s o l a r heat i s wanted these can be opened i n order to heat the i n t e r i o r . When s o l a r heat i s unwanted, they can be c l o s e d , exposing only the l i g h t e x t e r i o r surface which w i l l not absorb as much s o l a r heat. For more i n f o r m a t i o n on thermal s t r e s s e s , see the next s e c t i o n on Temperature. E x t e r i o r S k i n Texture Smooth su r f a c e s tend to be more r e f l e c t i v e w i t h rough s u r f a c e s being l e s s r e f l e c t i v e , having a hi g h e r a b s o r p t i o n and d i s p e r s i o n of l i g h t . L i g h t c o l o r e d s u r f a c e s r e f l e c t more l i g h t w hile dark c o l o r e d s u r f a c e s absorb more l i g h t . So, a l i g h t c o l o r e d smooth surface w i l l have the h i g h e s t g l a r e p o t e n t i a l . 2 - 5 ^ the housing u n i t i n t e r i o r , l i g h t , t e x t u r e d c e i l i n g s are qu i t e o f t e n used because the l i g h t c o l o r d i s t r i b u t e s more of the r e f l e c t e d l i g h t , and the surface t e x t u r e d i f f u s e s i t more,minimizing g l a r e while maximizing the l i g h t . F l o o r s would have l e a s t g l a r e when dark and s l i g h t l y t e x t u r e d . T h i s may be d e s i r a b l e s i n c e the g l a r e poten- t i a l i s high from the low angle d i r e c t s u n l i g h t h i t t i n g the f l o o r s u r f a c e . 164 3.5.3 Temperature CLIMATIC FACTORS sn E FACTORS DEFERENCE MATRIX se o »< IH a < sr. 3 a in u g < a. 35 O M <« H »H u. O e M BE O t-i S- •i o u «< I-t o w CL. TO PO GR AP HY  >» a o r.i cn SO IL S >- o a o (X a •* to o < G o u PLANNING LEVEL 1 PLANNING LEVEL 2 PLANNINO LEVEL i PLANNINO LEVEL k • The very c o l d winter temperatures along wi t h the great v a r i a t i o n i n seasonal temperatures s t r o n g l y e f f e c t s the make up of the b u i l d i n g f a b r i c . I t ' s important to minimize the i m p l i c a t i o n s due to lar g e temperature d i f f e r e n c e s between the b u i l d i n g i n t e r i o r and the e x t e r i o r w i t h regard t o : 1. Heat l o s s a. Make up of e x t e r i o r s k i n - thermal mass versus the i n s u l a t e d frame s t r u c t u r e , b. Optimal thermal i n s u l a t i o n f o r w a l l s , f l o o r s , and c e i l i n g / r o o f , c. C o n t r o l of f e n e s t r a t i o n heat l o s s , d. Minimize i n f i l t r a t i o n / a i r exchange heat l o s s , • e. L i m i t f r o s t p e n e t r a t i o n i n the b u i l d i n g i n t e r i o r . 2. Thermal b r i d g i n g : minimize conduction of c o l d temperatures through the b u i l d i n g m a t e r i a l s ( c o l d spots on the i n t e r i o r ) which accumulate moisture and of t e n have an i c e b u i l d up. a. Minimize c o l d p e n e t r a t i o n by the arrange- ment of the b u i l d i n g f a b r i c such as en c l o s i n g the s t r u c t u r a l system with an i n s u l a t i n g s k i n , b. Use of thermal breaks 165 3. M a t e r i a l thermal s t r e s s , expansion and c o n t r a c t i o n a. Care i n placement of adjacent m a t e r i a l s , b. C o n t r o l impact of s o l a r r a d i a t i o n on b u i l d i n g s k i n temperatures, c. Minimize l o s s of m a t e r i a l s t r e n g t h and d e t e r i o r a t i o n . Heat Loss The importance of m i n i m i z i n g b u i l d i n g heat l o s s i s e s p e c i a l l y c r i t i c a l i n the northern areas s i n c e the cost of he a t i n g a home throughout the long c o l d p e r i o d can be very h i g h . F i g u r i n g the heat r e q u i r e d based on the heating index (° days), a home i n the S u s i t n a V a l l e y i n Alaska would need approximately 40% more heat than a comparable home i n the Minne- a p o l i s area ( 110% more than a comparable home i n the Vancouver area) i n order t o ma i n t a i n the same i n t e r - i o r temperatures. In order to minimize the heat l o s s , f i r s t , i t becomes necessary to i d e n t i f y and q u a n t i f y the major heat l o s s paths. F i g u r e 3*78 shows the r e l a t i v e order of magnitude of d i f f e r e n t components of the t o t a l heat l o s s i n an "average" d w e l l i n g . Most of the heat i s l o s t through the w a l l s and from v e n t i l a t i o n and i n f i l - t r a t i o n , s i n c e a " t i g h t house" b u i l t i n the north normally keeps the c o l d a i r i n f i l t r a t i o n down to about a i r change per hour or l e s s , the l a r g e s t s i n g l e c o n t r i b u t o r to heat l o s s i s the f e n e s t r a t i o n (windows and doors) ; t a k i n g up only 9% to 20% of the w a l l a r e a , they account f o r 35% to 60% of the heat l o s s a t t r i b u t e d t o the w a l l s . 166 % HEAT LOSS OF ELEMENTS OF THE HOUSE Reference C e i l i n g Walls (inc.doors & windows) F l o o r V e n t i l a t i o n & I n f i l - t r a t i o n 1. ASHRAE 2* Detached "Bungalow" 2. HUDA e e a. Bungalow (1080* ) b. S p l i t - L e v e l (1107*) c. Semi-Detached (1080* ) d. Row House (1080*) 3. Steadman* 2^ Detached "Bungalow" 13% 60% 5% 2% 17% 54% 3% 26% f „ 14% 54% 3% 24% 5i 12% 60% 2% 27<# tt •* 14% 51% 1% 3% i»> 13% 42% 5% 40% (1 a i r change/ hour) Bldg. Type (% of w a l l area i s windows & doors) E x t e r i o r Walls Windows Doors Basement Walls type: % Less 1. HUDA a. Bungalow (9%) b. S p l i t - L e v e l (13%) c. Semi-Detached (11%) d. Row House (20%) 2. Steadman Detached "Bungalow" 28% 28% 7% 37% Data Base 28% 34% 8% 30% 16% Less 35% 35% 8% 22% 25% Less 24% 49% 1% 16% 39% Less 36% 64% Decreased heat l o s s 167 Make Up of E x t e r i o r Skin - Thermal Mass verses the In s u l a t e d Frame S t r u c t u r e I s a b u i l d i n g with h i g h thermal mass, b u i l t i n concrete, b r i c k , stone, or even l o g s , b e t t e r f o r the north than the l i g h t weight i n s u l a t e d frame s t r u c t u r e ? High thermal mass i s u s u a l l y a s s o c i a t e d with a heavy heat r e t a i n i n g m a t e r i a l such as those l i s t e d below: M a t e r i a l Time Lag i n Hours 8" concrete 5.1 hours 8" stone 5.5 hours 8" b r i c k 5.5 hours 8" wood (ext r a p o l a t e d ) 5.2 h o u r s ^ The advantage of a b u i l d i n g w i t h high thermal mass i s t h a t the heat from the daytime i s stor e d i n the mass and r e l e a s e d at ni g h t when the outside a i r i s c o l d e r . T h i s e f f e c t balances the d i u r n a l temperature d i f f e r e n c e s w i t h i n the house i n t e r i o r when the e x t e r i o r temperatures may vary as much as 50°F to 60°F. Since the d i u r n a l temperature changes are s m a l l during the long winter with l i t t l e s o l a r heat input d u r i n g the day, the high thermal mass house w i l l be c o n s t a n t l y l o s i n g heat, day and n i g h t , i f i t s R value ( r e s i s t e n c e to heat flow) i s l e s s than the i n s u l a t e d frame house. A 2x6 stud w a l l (stud spacing 16" on center) f i l l e d w i t h i n s u l a t i o n has l e s s than the heat l o s s of a w a l l made of 8" diameter round logs ( f i g u r e 3.79). 2 = 5 Because of the high thermal mass, once a l o g cabi n i s heated i t r e t u r n s the heat from the logs f o r q u i t e some time. T h i s i s important to those people i n the north whose evening f i r e warms the cabin before going to bed and the log s r e r a d i a t e the heat back d u r i n g the night so that temperatures are not 20° below zero by morning. Homes i n the north which have some type of mechanical h e a t i n g system which keeps the i n t e r i o r w i t h i n the temperature range of 55*F to 75°F w i l l be l e s s expensive to operate w i t h w a l l s 168 which have the least heat loss instead of one with high thermal mass and higher heat loss. Thermal mass could be used to best advantage when done in conjunction with the greenhouse effect. Since the outside air temperatures are cold even during the day, the thermal mass could be on the inter- ior of the house facing the sun, collecting the solar radiation in the f a l l and spring (figure 3.80). ̂ ° HEAT U>se- C^DHPAI^ISOM ~Tt ie^MAU M A S ^ C U ^ " ) iMsuuvmc? Hs^r-nte W A L L 43. £> . 3" 10^ WALL W A U L 19" U>6| WALL HEAT W A L L 2y4*gTcPWAUL 2.i*< -̂gr<JPWALL Similarly, a thermal mass could be used on the exterior wall with an insulated wall panel over the outside of the mass which slows heat loss and can be opened when solar heat collec- tion i s desirable on the thermal mass.^ f^OEE. 3. go 169 The thermal mass of the earth can be used to the advantage of a housing unit. A basement which puts heat out into the earth w i l l eventually (2 to 3 years) develop a heat bank in which the earth w i l l take very l i t t l e of the basement's heat and should the house heat go off, the earth w i l l conduct the heat back into the house. One precaution must be taken and that i s to insulate the earth from the cold winter air temperatures. This can be done with r i g i d insulation under the ground surface (figure 3«81). ? > Z- ! 1 ' 1 J i miiiiwmwifiiiwM 4/ ^ 170 • Optimal Thermal I n s u l a t i o n f o r W a l l s , F l o o r s , and Ce i l i n g / R o o f When us i n g h i g h heat flow r e s i s t e n t m a t e r i a l s such as i n s u l a t i o n t o r e t a r d the heat l o s s from going from the warm i n t e r i o r to the c o l d e x t e r i o r , how t h i c k should the i n s u l a t i o n be? To f i g u r e t h i s out c e r t a i n i n f o r m a t i o n must be obtained f o r the area to be b u i l t i n : 1. Heating Degree Days (° Days), 2. Cost of m a t e r i a l s , 3. Cost of l a b o r , k* Cost of f u e l , 5. Mechanical system e f f i c i e n c y , and 6. A m o r t i z a t i o n p e r i o d . Figure 3«82 p l o t s the cost of heat with the cost of l a b o r and m a t e r i a l s . The low poin t i n the sum of the two graphs gives the optimum amount of i n s u l a t i o n f o r the area considered.' 2* Hs)CHE«D Or IMSULATIONl 171 In w a l l s , the i n s u l a t i o n i s r e s t r i c t e d by the stud s i z e , 3 i " , 5 i " , and 7 i " f o r 2x4s, 2 x 6 s , and 2x8s. The cost of going from one stud s i z e to the next l a r g e r s i z e adds to the m a t e r i a l c o s t s roughly 20 to 30% at each jump. In the w a l l s , 7 i " (2x8 studs) appears more economical than 5^-" ( 2 x 6 ' s ) on the graph but t h i s may change depending on the a c t u a l cost jump f o r going from 2x6 studs t o 2x8 studs. I t ' s more c r i t i c a l here to poin t out that 2x4 stud w a l l s , even when f i l l e d w i t h 3 £ " of i n s u l a t i o n , are inadequate and w i l l be more c o s t l y i n the long run than 2x6 and 2x8 stud w a l l s . Since c e i l i n g i n s u l a t i o n i s normally not i n s t a l l e d i n confined c a v i t i e s , a t h i c k e r i n s u l a t i o n can be used such as the 9" or more with very l i t t l e added m a t e r i a l c o s t . F l o o r i n s u l a t i o n need not be so t h i c k since a minimum of heat l o s s occurs through the f l o o r , the h o r i z o n t a l dead a i r space j u s t under the f l o o r a c t s as an e f f i c i e n t i n s u l a t o r , and the un d e r f l o o r c r a w l space (closed) stays warmer than the c o l d outside temperature. Normally 2" of i n s u l a t i o n w i t h a dead a i r space between the i n s u l a t i o n and the f l o o r i s s u f f i c i e n t f o r both comfort and minimum heat l o s s ( f i g u r e 3 . 8 3 ) * Should the u n d e r f l o o r space be used as an a i r plenum, then the i n s u l a t i n g values of the dead a i r 6pace are l o s t and more i n s u l a t i o n would be r e q u i r e d ( 6 " ) . When f l o o r s are constructed over open c r a w l spaces which reach outside temperatures, a minimum of 6 " of i n s u l a t i o n should be used f o r comfort; when i t ' s -40°F o u t s i d e , the i n t e r i o r f l o o r s u r f a c e temperature i s about 66°F as opposed to 60°F with 2" of i n s u l a t i o n ( f i g u r e 3 . 8 3 ) . ^ 172 -AO'f \NtT&eigR. £ fob0? evrvx*^ One situation encountered when the floors are too cold (insufficient insulation) i s for the resident to n a i l up plywood skirting around the open air space under the house. This makes the floors warm and the crawl space warmer also. The problem occurs after a winter or two when the ground begins to shift under the building. In areas of permafrost, the closed i n crawl space w i l l eventually begin to melt the permafrost under the building causing di f f e r e n t i a l settlement or even building collapse. 3 5 173 Control of Fenestration Heat Loss Limit fenestration or control heat loss from windows with exterior insulated shutters. Double and tri p l e glazing help reduce heat loss considerably over single glazing especially in a wind as shown in figure 3.84a. The dead air spaces (•£" to 1" optimum) between the glass panes give the window i t s insulating qualities against the cold temperatures. As shown i n figure 3.84b, the use of insulated shutters can help much more than adding more panes of glass. The manual functioning of the shutters on a daily basis becomes the weakest part of this solution since i t ' s up to the user to open and close them. © WltSJt7<9W H E A T MEAT LO€>S £OMPAvf^SONJ (xtfwn?* WIMP) HEAT U>&?/'&ri- Appm<?i^i- A>it_<sfi*̂ e v^Hunt^e WlKift9\M HEAT 4= 1^* 1* 174 Minimize I n f i l t r a t i o n / A i r Exchange Heat L O B S Minimize the heat l o s s a t openings due to i n f i l - t r a t i o n . T h is can u s u a l l y be handled by weather- s t r i p p i n g around windows, doors, aid other openings, and u s i n g louvers or dampers over a i r i n t a k e s . Dampers on s t a c k s , one near the top ( i n s u l a t e d ) and one near the bottom reduce c o l d a i r p e n e t r a t i o n and the drawing of warm a i r out of the b u i l d i n g i n t e r i o r . T F i r e p l a c e s can draw a l o t of warm a i r up the chimney when burning. Normally the combustion a i r comes from the warm i n t e r i o r space causing more c o l d a i r to i n f i l t r a t e i n t o the b u i l d i n g as w e l l as causing a d r a f t along the f l o o r i n f r o n t of the f i r e p l a c e . A s p e c i a l combustion a i r duct from the outside d i r e c t l y to the f i r e p l a c e f i r e b o x can reduce t h i s e f f e c t ( f i g u r e 3»85)« The louvered duct can supply the f i r e - place w i t h i t s combustion a i r from the outside and be clo s e d o f f when the f i r e p l a c e i s not i n use. 5^ CXft^&c- Alt*, t=xnag.ioft 175 When t r y i n g to minimize c o l d a i r i n f i l t r a t i o n around windows, one of the most d i f f i c u l t to make t i g h t i s the s l i d i n g g l a s s door. These should be used very s p a r i n g l y to the outside since they experience high heat l o s s . Many windows i n a home are operable, meaning they can be opened and c l o s e d to r e g u l a t e a i r flow and v e n t i l a t i o n . In f i g u r e 3.86, casement and awning type windows would be p r e f e r r e d over double hung and hopper type windows si n c e the double hung has more cracks to l e t heat and moisture escape t o the outside or to a storm window where the moisture could f r e e z e , and the hopper type window w i l l b r i n g i n r a i n or snow when opened i f not s u f f i c i e n t l y p r otected by an o v e r h a n g . ^ The f u n c t i o n of a window ( l i g h t , s u n l i g h t penetra- t i o n , views) can be separated from the need to v e n t i - l a t e the space. A mechanical v e n t i l a t i n g system would be too expensive f o r the home, but w a l l openings (independent o f the windows) i n s t r a t e g i c places i n e x t e r i o r w a l l s could be used f o r summer v e n t i l a t i o n and become an i n s u l a t e d part o f the w a l l i n the winter ( f i g u r e 3.87).4^ Using t h i s method f o r v e n t i l a t i o n , the windows could be sealed and remain inoperable m i n i m i z i n g a i r and moisture l e a k s to the e x t e r i o r . 176 WIKILTCW 4 W A L L V£Krr\uvrgR. • Minimize Heat Losses Due to A i r Exchanges Since a i r exchanges pose the highest heat l o s s problem, i t ' s most important to reuse the heat from the e x i s t i n g i n t e r i o r a i r . I n l a r g e r b u i l d i n g s heat exchangers and heat recovery wheels are used to e x t r a c t the heat from the exhaust a i r and t r a n s f e r i t to the incoming a i r . 4 2 " I n the home a s i m p l i f i e d v e r s i o n of t h i s heat exchange can take place. " B u f f e r spaces" such as a t t i c s , u n d e r f l o o r , and storage spaces along e x t e r i o r w a l l s can be used f o r drawing i n f r e s h o u t s i d e a i r . The c o l d a i r enters the b u f f e r space and warms to an intermediate temperature before i t enters the house, see f i g u r e 3.55 and f i g u r e 3.88. Another method i s a i r f i l t e r i n g and r e d i s t r i b u - t i o n . Have a fan i n a high l o c a t i o n i n the housing u n i t suck the warm a i r down to the basement l e v e l , through a i r c l e a n i n g and moisture reducing f i l t e r s . The r e d i s t r i b u t e d a i r can then r i s e again through the i n t e r i o r spaces. " D i r t y " a i r from k i t c h e n s and bathrooms can be vented d i r e c t l y to the outside so that the a i r c l e a n i n g f i l t e r s would not have to cope w i t h the more d i f f i c u l t odors, greases, and high moisture content, see f i g u r e 3.88.^ 177 A K . lzteu?dATiNK=f f=AM 3 Pu>OT ' Use of a'stack robber'(see f i g u r e 3»85) on a f i r e p l a c e chimney or heater exhaust duct can e x t r a c t heat from the hot stack or duct, h e a t i n g i n t e r i o r a i r at upper l e v e l s . ^ L i m i t F r o s t Formation i n the B u i l d i n g I n t e r i o r The c l o s i n g o f f of s m a l l e r spaces adjacent to e x t e r i o r w a l l s can cause f r e e z i n g problems. Bookcases, c l o s e t s , c a b i n e t s , plumbing chases, a i r ducts, and even windows behind c u r t a i n s or s h u t t e r s can exper- ience condensation, f r o s t , f r e e z i n g pipes, and items fr o z e n to the w a l l surface ( f i g u r e 3.89a). These s m a l l a i r spaces ( e s p e c i a l l y the area next to the ex- t e r i o r w a l l ) need t o be w e l l v e n t i l a t e d with the i n t e r - i o r warm a i r so that the w a l l surface does not reach dew point or f r o s t p o i n t . The use of louvers i n cabinet and c l o s e t doors or the e l i m i n a t i o n of the doors helps warm a i r to c i r c u l a t e b e t t e r through these spaces. With the exception of the windows, most of these s m a l l spaces can be moved to the b u i l d i n g i n t e r - i o r away from the e x t e r i o r w a l l . T h i s i s e s p e c i a l l y important f o r pipe chases s i n c e f r e e z i n g pipes can cause a l o t of damage. 178 Windows present a unique problem. Covering the i n t e r i o r g l a s s surface with a c u r t a i n , b l i n d s , or s h u t t e r s can cause the a i r space between to a c t l i k e a dead a i r space between window panes. The space w i l l c o o l , a l l o w i n g the i n s i d e g l a s s surface to reach dew point temperature or even f r o s t point temperature Afg ( f i g u r e 3*89b). By p l a c i n g heaters or forced a i r r e g i s t e r s under the windows or between windows and c u r t a i n s / s h u t t e r s , the a i r space can have a i r move- ment and heat which keeps the window surface warm.^ Another s o l u t i o n i s to have i n s u l a t i n g panels which cover the window on the outside and the e l i m i n a t i o n of i n t e r i o r coverings. fOF.I^ ' t lOKJ \ cv^ee? err T& I U T E ^ R . I WA*M All?. 179 Inside corners can also have frost problems due to reduced air convection that lowers the surface temperatures in conjunction with more studs and less insulation (figure 3.90a). Corners could be rounded Apt to reduce this effect, more insulation could be applied to corners, or heaters or fans could be in- stalled closer to corners in order to increase the ai r convection currents (figure 3.90b,c). 180 Thermal Bridges L i m i t the conduction of c o l d temperatures through b u i l d i n g m a t e r i a l s . Conduction o f the c o l d e x t e r i o r temperatures i n t o the b u i l d i n g i n t e r i o r through a thermal bridge i n c r e a s e s b u i l d i n g heat l o s s . T h i s problem i s minor compared to the others created 6uch as moisture and i c e formation, thermal s t r e s s with adjacent m a t e r i a l s , deformation, and movement. • Minimize Cold P e n e t r a t i o n By B u i l d i n g F a b r i c Arrange- ment On l a r g e r b u i l d i n g s many problems can be e l i m i n - ated by a p p l y i n g the i n s u l a t i o n over the e n t i r e e x t e r i o r surface keeping the s t r u c t u r a l components i n the heated p o r t i o n of the b u i l d i n g . T his helps to r e t a i n heat i n the thermal mass of the s t r u c t u r e , e l i m i n a t e s s t r u c t u r a l thermal b r i d g e s to the e x t e r i o r , and reduces the expansion and c o n t r a c t i o n of the s t r u c t u r a l m a t e r i a l s since they are not exposed to the winter extreme temperatures ( f i g u r e 3*91 181 Any metal which extends from the c o l d e x t e r i o r to the warm i n t e r i o r can cause problems. Metal window frames, door frames, t h r e s h o l d s , metal s t r u c t u r a l connectors ( b o l t s , f a s t e n e r s ) , metal s t r u c t u r a l mem- bers ( j o i s t s , decking, columns), r o o f d r a i n s , and a i r ducts a l l have low r e s i s t a n c e to heat flow. S e v e r a l s o l u t i o n s can be used. The item can be i n s u l a t e d as i t enters the heated space such as i s dene wit h r o o f d r a i n s ( f i g u r e 3.92) and a i r ducts, or the item can i n c o r p o r a t e a thermal break u n i t so the m a t e r i a l does not conduct the c o l d i n t o the i n t e r i o r . Thermal break metal window frames and thr e s h o l d s as w e l l as the use of wood i n s t e a d of metal can minimize the problem i n these cases ( f i g u r e 3.93). •51 ^ <?rJ fcjcreJ^Ofc, WALL --jtifmnL i n n n 182 One of the most common thermal b r i d g e s i n the home i s a n a i l d r i v e n i n t o a 2x4 e x t e r i o r w a l l stud from the i n s i d e . The n a i l , having a high conductance, t r a n s m i t s the c o l d temperature near the outside end of the stud to the warm i n t e r i o r space. Here the c o l d n a i l head, covered wi t h w a l l paper or painted over, w i l l c o l l e c t moisture on which s m a l l amounts of d i r t w i l l accumulate over time. I t i s not uncommon to be able t o count a l l the n a i l s i n a w a l l due to the •?2. s m a l l round dark spots v i s i b l e on the w a l l s . U6e of t h i c k e r studs (2x6) normally e l i m i n a t e s t h i s prob- lem, but t h i s p o i n t s out one of the major problems wit h thermal bridges - the c o l l e c t i o n of moisture on the i n s i d e surface which can c o l l e c t d i r t or exper- ience i c e b u i l d up. Deformation or movement can occur when moisture f r e e z e s on the c o l d s u r f a c e . I f s u f f i c i e n t moisture i s i n the a i r , i c e b u i l d up can occur f o r c i n g adjacent m a t e r i a l s to deform, break o f f or move away from the c o l d s u r f a c e . Heat can a l s o flow from the i n s i d e to the out s i d e along a thermal bridge where i t can melt snow which w i l l freeze forming i c e on e x t e r i o r s u r f a c e s . Window frames can freeze shut i f snow i s melted at the s i l l ( f i g u r e 3«94), louvers can freeze open or shut, r o o f d r a i n s can freeze s o l i d w i t h i c e , doors can freeze open (or closed) when i c e accumulates i n the h i n g e s . 6 * ^Ki0W MELT 4 \OE> &v\u?ur HEAT CD\tiX)G?S> TO &$m<K- 183 M a t e r i a l Thermal S t r e s s , Expansion and C o n t r a c t i o n M i n i m i z i n g the adverse e f f e c t s of m a t e r i a l expan- s i o n and c o n t r a c t i o n i s important s i n c e deformations and s e p a r a t i o n s / c r a c k i n g can take place i n b u i l d i n g m a t e r i a l s r e s u l t i n g from changes i n temperature. Most m a t e r i a l s expand when heated and c o n t r a c t when cooled. In the n o r t h , m a t e r i a l s can experience temperature extremes o f over 230°F due to the c o l d winter temp- er a t u r e s and s o l a r heat a b s o r p t i o n on dark surfaced m a t e r i a l s . Each m a t e r i a l moves d i f f e r e n t amounts under these extreme c o n d i t i o n s having t h e i r i n d i v i d u a l c o e f f i c i e n t of thermal expansion. A comparison of d i f f e r e n t e x p a n s i o n / c o n t r a c t i o n c o e f f i c i e n t s shows normal dense concrete moving twice the d i s t a n c e b r i c k , marble and dense limestone would move; s t e e l , 2 1/3 times; copper, 3 1/3 times; alum- inium, k 2/3 times; and p l a s t i c s ranging from 7 to 36 t i m e s . 5 7 S t r u c t u r a l l y most metals can take the move- ment w i t h l i t t l e problem, yet concrete could f a i l i n t e n s i o n i f not pr o p e r l y designed with "temperature s t e e l " . The m a t e r i a l s a b i l i t y to move i n r e l a t i o n to other m a t e r i a l s causes the biggest problems. Mater- i a l s separate where w a t e r t i g h t i n t e g r i t y i s needed such as i n r o o f f l a s h i n g and membranes a l l o w i n g mois- ture p e n e t r a t i o n . A range of s o l u t i o n s e x i s t through the choice of m a t e r i a l s , f i x i n g and j o i n t i n g t e c h n i - ques, s i z e l i m i t a t i o n s , and r e i n f o r c i n g . I n the case of r o o f s , f l e x i b l e f l a s h i n g ( n a t u r a l rubber has more e l a s t i c i t y than s y n t h e t i c s ) i s used i n most areas where m a t e r i a l movement may cause l e a k s (at d r a i n s , r o o f p e n e t r a t i o n s , and parapet w a l l s ) . 9 ^ Since the combination o f c o l d a i r temperatures and high s o l a r heat a b s o r p t i o n by m a t e r i a l s cause the g r e a t e s t thermal s t r e s s s i t u a t i o n s , the most l o g i c a l s o l u t i o n i s to minimize the s o l a r heat a b s o r p t i o n a t the areas of g r e a t e s t s t r e s s . The b u i l d i n g c o r n e r s , r e c e s s e s , and r o o f l i n e are g e n e r a l l y the areas of 184 greatest stress since the solar radiation can be absorbed by one surface and not the other causing the greatest temperature differential,(figure 3 . 9 5 ) . One way to help minimize this stress i s to spread the solar heat around the corner gradually with rounded corners (figure 3 . 9 6 ) . Another way to reduce the thermal stress i s ~ through the use of light and dark color shades. The materials near the corners could be a light shade so that less solar heat i s absorbed near the corner ^ (figure 3 . 9 7 ) . 185 The strength of m a t e r i a l s i s a l s o e f f e c t e d by extreme temperatures. In extreme c o l d temperatures, p l a s t i c s and s y n t h e t i c f l e x i b l e m a t e r i a l s can become b r i t t l e and subject to c r a c k i n g should e x c e s s i v e move- ment occur. Many metals become more b r i t t l e i n c o l d temperatures with the shear s t r e n g t h being the most s e n s i t i v e . 6 5 0 D e t e r i o r a t i o n i s one of the major problems with concrete, D e t e r i o r a t i o n i s a c c e l e r a t e d due to the freeze/thaw c y c l e ( f r o s t a c t i o n ) happening f r e q u e n t l y when exposed to s o l a r r a d i a t i o n , c o l d night a i r temper- as a t u r e s , and high moisture content (use a i r e n t r a i n e d c o n e ) . Timber moves l i t t l e with temperature, y e t , the d r y i n g out of the wood can cause cracks or s p l i t s which can become e s p e c i a l l y bad on glulam beams. Low moisture content wood (12%) must be used i n order to minimize the c r a c k i n g and t w i s t i n g caused when wood d r i e s out during w i n t e r . S e l e c t i o n o f the most f l e x i b l e s e a l a n t s i s essen- t i a l s i n c e they must elongate most when they are l e a s t able because of the h a r d i n i n g e f f e c t of the c o l d temperatures. 186 3.5.4 P r e c i p i t a t i o n CLIMATIC FACTORS SITE FACTORS REFERENCE MATRIX SO LA R R A D IA T IO N  g {-• •« cr, W ft, 2) H V, o *< t-t u, Ul e g * to O r-t CJ u .-1 «< *-* t) w u, ") I" £ «< a. t3 A. O f * >< 3 O to S OI LS  >• o 3 o « 2L_i V EG ET AT IO N PLANNINO LEVEL 1 PLANNINO LEVEL 2 PLANNINO LEVEL i PLANNINO LEVEL It # S e v e r a l i m p l i c a t i o n s w i t h regard to p r e c i p i t a t i o n e f f e c t the b u i l d i n g f a b r i c make up: 1. The " c o l d r o o f " uses the i n s u l a t i n g q u a l i t y of snow wh i l e the t y p i c a l "hot r o o f " causes problems. 2. The f u n c t i o n i n g of panels over s k y l i g h t s as w e l l as the s k y l i g h t s themselves can a l s o experience problems wi t h snow melt and i c e dams. 3. Care should be taken i n the placement of appen- dages on the e x t e r i o r s i n c e snow and i c e may act together to remove them. 4. The e x t e r i o r b u i l d i n g s k i n must a l l o w moisture to migrate out of the w a l l s as w e l l as keep r a i n and snow from e n t e r i n g from the o u t s i d e . # Cold Roof Versus The Hot Roof Snow i s most o f t e n used as an i n s u l a t o r on r o o f s where the c o o l a t t i c space (vented to the outside) keeps the snow from m e l t i n g . T h i s i s known as the " c o l d r o o f " . To r e t a i n t h i s c o n d i t i o n d u r i n g the win t e r the house i n t e r i o r must be i n s u l a t e d from the the a t t i c space which i s vented to the o u t s i d e . The space s t a y s c o o l enough under the r o o f so as not to Co? melt the snow cover. The c o o l a t t i c space becomes a b u f f e r zone f o r b u i l d i n g heat l o s s , i t ' s temperature on 15°F to 25°F i s more temperate than the -20°F to -40°F temperatures o u t s i d e . I n l a r g e r b u i l d i n g s , continuous b u i l d i n g s such as row housing, and b u i l d i n g s 187 w i t h f l a t r o o f s proper v e n t i n g of the a t t i c space becomes more d i f f i c u l t and care should be taken to a l l e v i a t e the heat and moisture b u i l d up under the A hot r o o f c o n d i t i o n occurs when the i n s i d e heat moves the 32° F ( f r e e z i n g ) isotherm outward i n t o the snow, the snow begins to melt reducing i t s t h i c k - ness u n t i l the f r e e z i n g point moves back i n s i d e the b u i l d i n g . The melted snow runs down u n t i l i t reaches a c o l d eave and then freezes c r e a t i n g an i c e dam and i c i c l e s . The i c i c l e s can be hazardous should they f a l l . The m e l t i n g snow/ice a l s o w i l l migrate up through r o o f s h i n g l e s and i n t o the b u i l d i n g i n t e r i o r due to water backing up behind the i c e dam ( f i g u r e 3 . 9 9 ) . ^ 188 • Windows In The Poof How does snow cover normally e f f e c t s l o p i n g sky- l i g h t s ? A s k y l i g h t i n s u l a t e d w i t h a movable s h u t t e r w i l l normally operate u n t i l a heavy snow f a l l moves the 32 6F isotherm out i n t o the snow, m e l t i n g that p o r t i o n adjacent to the r o o f . When that melted snow freezes back, i t w i l l freeze the s h u t t e r s closed during c o l d p e r i o d s . With the he l p of the i n t e r i o r heat and e x t e r i o r s o l a r heat, the s h u t t e r s should be movable from February through November . Should l i g h t be d e s i r e d through these s k y l i g h t windows during w i n t e r , a p o r t i o n of the s h u t t e r or the whole s h u t t e r could be g l a s s , much l i k e a storm window ( f i g u r e 3.100). When the s k y l i g h t i s l e f t uncovered to the c o l d winter snow accumulation, the heat l o s s from the i n t e r - i o r going through the g l a s s w i l l melt the snow which accumulates on the g l a s s s u r f a c e . In t h i s way l i g h t can pass through the s k y l i g h t the whole year at the expense of r a d i a t i v e and conductive heat l o s s e s . Watertightness and i c e darning become s p e c i a l problems a s s o c i a t e d with m e l t i n g snow on a r o o f / s k y l i g h t s l o p i n g surface ( f i g u r e 3 . 1 0 1 ) . ^ 189 • E x t e r i o r Appendages The b u i l d i n g i t s e l f may have a st a c k , deck, g u t t e r , or other appendage which could get r i p p e d o f f when snow s l i d e s o f f the r o o f . On the eave, i c e w i l l grab h o l d of g u t t e r s and f a c i a s which are then p u l l e d o f f with the s l i d i n g snow and i c e ( f i g u r e 3.102).6,5 • Moisture M i g r a t i o n Through The S k i n While the e x t e r i o r w a l l s of b u i l d i n g s serve the purpose of keeping the r a i n and e x t e r i o r moisture out of the b u i l d i n g , they a l 6 o must a l l o w f o r the migra- t i o n of moisture to the outside which has leaked out from the i n s i d e (warmer). One r u l e of thumb i s that the e x t e r i o r w a l l surface be 5 times more permeable than the i n s i d e w a l l surface (normally a p l a s t i c vapor b a r r i e r ) . Using s h i p l a p s i d i n g or s h i n g l e s are pre- f e r r e d over plywood which a l l o w s l i t t l e moisture migra- t i o n through i t s glue j o i n t s , r e q u i r i n g h o les to be d r i l l e d through i t i n order to a l l o w moisture t o escape. 190 3.5.5 Wind CLIMATIC FACTORS SITE FACTORS REFERENCE HATRIX SO LA R RA DI AT IO N u g f- •t Or. Ul a. & ir. O «< u, CJ W E g o >-« t-< »-» g o u < M t) w 0, ") T OP OG PA PH Y 1 GE OL OG Y ] SO IL S >• u 3 o rr. a >. £ i _ VE GE TA TI ON  PLANNINQ LEVEL 1 PLANNINQ LEVEL 2 PLANNINQ LEVEL J PLANNINQ LEVEL k Wind has a greater heat l o s s i n f l u e n c e on window area than on other areas of the e x t e r i o r s k i n . A i r movement (wind), along the outer surfaces of b u i l d i n g s , convects heat away from that surface;- the i n s u l a t i n g a i r f i l m c l o s e to the surface i s reduced, i n c r e a s i n g the heat l o s s of the s u r f a c e . Wind blowing i n through cracks around windows, doors, and other openings a l s o i n c r e a s e heat l o s s . I n hig h wind areas the s u c t i o n e f f e c t on the leeward si d e of the b u i l d i n g can draw a i r out of the b u i l d i n g through the cracks and open- ings of that s i d e . When the wind (approximately I5*nph) blows against g l a s s windows, the heat l o s s through the g l a s s can incre a s e n e a r l y 60% w i t h s i n g l e pane g l a s s and around 12% with double i n s u l a t i n g g l a s s . On a normal i n s u l - ated w a l l the same wind w i l l i n c r e a s e heat l o s s about 2% to 3%. M i n i m i z i n g g l a s s areas exposed to winter winds can be a major f a c t o r i n keeping b u i l d i n g heat l o s s to a minimum. Covering the window area with e x t e r i o r s h u t t e r s as w e l l as breaking up the wind with v e g e t a t i o n or wind poles ( f i g u r e 3 .103) h e l p to v a r y i n g degrees to reduce heat l o s s . 191 Minimizing c r a c k 6 around windows, door, and other openings (use of weatherstripping, figure 3.104) as well as orientating fenestration away from the prevailing wind direction helps reduce building heat loss and discomfort close to those openings (figure 3.105). Flc^UfiE -3.104- IN^JLATEP MIL THE.WL. I t J &UUr lg fAL . Baa? 5 £ C T i i . S ^ F E M K O jo A WOOL PILE. 3lj:4-;--,R4:"-:_ IO" MIMIMLg& mi fe^TgATro i 192 3.5.6 S p e c i a l C l i m a t i c C o n d i t i o n s CLIMATIC FACTORS SIT E FACTORS REFERENCE MATRIX SO UR  R AD IA TI ON  u g < n. & SB O H* < (X *-t u. »-t o w g e M * VJ mC O H M £ o u •< M O w a. E -< » £ o GE OL OG Y | SO IL S >* O 3 o Cr. U SB o < « a w PUNNINQ LEVEL 1 PLANNINQ LEVEL 2 PLANNINQ LEVEL 3 PUNNINO LEVEL 4 • A. Humidity/Moisture P o t e n t i a l "Water vapor causes problems f o r everyone - and most of us don't even know i t . We know we have problems, a l l r i g h t , but we blame them on some other cause, some other mechanism. For i n s t a n c e , when we get a heavy s n o w f a l l i n Decem- ber, and water s t a r t s d r i p p i n g through the c e i l - i n g , we diagnose the cause as a leaky r o o f , and blame the m a t e r i a l or the b u i l d e r . Or when the base of the w a l l t u r n s dark and damp during a January thaw, and water seeps out to wet the k i t c h e n f l o o r , we suspect bad plumbing. Or when c a r e f u l l y f i t t e d multi-pane windows f r o s t over i n October and don't r e g a i n transparency u n t i l March we s i g h , shrug, and conclude t h a t "such i s l i f e i n the Far North", and that nothing can be done. When the o u t s i d e w a l l s become diseased with p e e l - i n g p a i n t , or when the t a r r e d r o o f b l i s t e r s and breaks, we are quick to blame the p a i n t , the p a i n t e r , or the r o o f e r . Always we know these t h i n g s w i l l happen, and we are confi d e n t that we know why. We are wrong. Often. In each case, the v i l l a i n i s probably water vapor - o r , more p r o p e r l y , the v i l l a i n i s a design- er not yet accustomed t o design f o r l o n g , c o l d w i n t e r s : h i s agent i s water vapor."<^ The e f f e c t s of humidity on b u i l d i n g design can be broken down i n t o two c a t a g o r i e s : 1. Condensation/frost on b u i l d i n g i n t e r i o r s u r f a c e s which have temperatures below the dew poin t temperature, and 2 . Moisture m i g r a t i o n i n t o b u i l d i n g m a t e r i a l s from i n t e r i o r to e x t e r i o r (warm to c o l d ) . 7 0 193 I n t e r i o r Surface Frost/Condensation In most houses the window c o l l e c t s most of the surface condensation s i n c e i t s i n t e r i o r surface temperature i s normally much lower than a normal i n s u l a t e d w a l l . This f a c t o r can render a window use- l e s s f o r 4 to 5 months i n the North s i n c e the e x t e r i o r c o l d temperatures can keep the i n t e r i o r g l a s s temperature below dew-point. A second (or even t h i r d ) window pane can h e l p remedy t h i s problem, only i f the moisture laden warm a i r cannot migrate through to the second window pane where i t can condense and freeze on i t s i n t e r i o r surface which i s below dew-point temperature. I t becomes e s s e n t i a l to s e a l the i n s i d e window pane and not s e a l the outside pane(s) to a l l o w moisture an escape route ( f i g u r e 3.106)."^ Factory made double g l a z i n g u n i t s are normally sealed so t h i s problem should not occur with them. To ALUW ANifK V -SEAL IUS4PE- M o i s t u r e / f r o s t can a l s o accumulate on doornobs, masonry, thermal bridges as mentioned before - any c o l d s u r f a c e which has access to the i n t e r i o r heated a i r w i t h higher moisture content. Remedies to t h i s i n c l u d e : 1. Keep i n t e r i o r humidity t o a minimum during the c o l d months (20% or l e s s ) , 7 2 - 2. I n s u l a t e m a t e r i a l s so the i n t e r i o r surface tem- peratures stay above dew-point temperature."^ The humidity l e v e l i n the b u i l d i n g i n t e r i o r i s re g u l a t e d by the i n t e r i o r s u r f a c e s - the c o l d surfaces w i l l c o n t i n u a l l y remove excess humidity from the a i r . 194 • Moisture M i g r a t i o n Into B u i l d i n g M a t e r i a l s Water vapor which migrates i n t o the w a l l s and c e i l i n g (warm i n t e r i o r to c o l d e x t e r i o r ) can cause a great d e a l of m a t e r i a l damage as w e l l as reducing the e f f e c t i v e n e s s of the thermal i n s u l a t i o n (impreg- nated with i c e ) . Steps must be taken to minimize t h i s e f f e c t : 1. Provide enough v e n t i l a t i o n to keep the r e l a - t i v e humidity low on the warm side of the w a l l / c e i l i n g , 2 . I n s t a l a " l e a k - f r e e " vapor b a r r i e r on the warm s i d e , and 3 . Use h i g h l y permeable m a t e r i a l s on the c o l d s i d e or induce v e n t i l a t i o n to c a r r y the water vapor out of the b u i l d i n g m a t e r i a l s . " 7 4 Accomplishing step 2 becomes the most d i f f i c u l t i n normal housing c o n s t r u c t i o n . Some design pre- c a u t i o n s i n c l u d e : " 1 . Use l a r g e vapor-proof sheets near the warm si d e of an outer w a l l or roof i n s u l a t i o n . 2. S e a l the holes and j o i n t s i n i t . 3* Assure t h a t m a t e r i a l s c o l d e r than the vapor b a r r i e r are able to breathe to the outside a i r o n l y. 4* C a l c u l a t e , t o make c e r t a i n that the d e s i r e d r e l a t i v e humidity i s p o s s i b l e , f o r the design. I f i t i s not, adjust e i t h e r the design or the humidity. 5* Where w a l l s are of masonry, consider p l a c i n g i n s u l a t i o n on the o u t s i d e . 6. Consider an "upside down" r o o f , w i t h the water- proof membrane s e r v i n g a l s o as the vapor b a r r i e r . 7 . Avoid any p o s s i b i l i t i e s f o r m u l t i p l e vapor b a r r i e r s (these form vapor t r a p s ) . " 75 Another prec a u t i o n i n w a l l s i s to use 2x2 f u r r i n g s t r i p s over the r e g u l a r 2x6 w a l l . I n s u l a t e the 2x6 w a l l space, place the vapor b a r r i e r over t h a t , then place the 2x2 s t r i p s over the vapor b a r r i e r and i n s u l - ate t h i s space, then apply the i n t e r i o r w a l l m a t e r i a l ( f i g u r e 3 . 1 0 7 ) . The major reason f o r doing t h i s type of c o n s t r u c t i o n i s to av o i d vapor l e a k s through the 195 vapor barrier most often cut through by the e l e c t r i c a l contractor who i n s t a l l s the e l e c t r i c a l wiring and fixtures. 7 6 . Ceiling light fixtures should be avoided i f they conflict with the vapor barrier in the ceiling. Step 3» ventilation of the cold side of the building materials, becomes most important i n roof construction. In chosing between a pitched roof or a f l a t roof, the pitched roof should prevail due to the problems of venting a flat roof (natural a i r flow w i l l vent the sloped roof, figure 3»108). In addition, the f l a t roof normally used vapor tight coverings which w i l l not permit vapor to escape. 7 7 <?or - 5 L O F E P m 196 Use of the "upside down" roof (figure 3.109) for f l a t roofs helps to keep the building mass on the warm side and the insulation on the cold side of the vapor varrier so there should be l i t t l e or no moisture buildup on the underside of the structure. T=)6jQg>rS 3.1 Q°l 197 B. Blowing Snow I n f i l t r a t i o n of blowing snow i n t o the b u i l d i n g i n t e r i o r through door cracks and windows can be a major problem i n the A r c t i c Zone where the a i r born snow i s c o n s t a n t l y working i t s way i n through any cracks or openings ( f i g u r e 3.110)."^ Snow infiltration around a door. \^Snow infiltration around a window. i n s t e a d of using windows f o r v e n t i l a t i o n , v e n t i l - a t i o n hoods mounted on the b u i l d i n g e x t e r i o r over v e n t i l a t i n g openings are designed to e l i m i n a t e snow i n f i l t r a t i o n i n t o the b u i l d i n g ( f i g u r e 3.111). The hood works i n p r i n c i p l e as a double s w i r l chamber causing the 6now to be dropped before i t enters the b u i l d i n g i n t e r i o r . The opening of the hood i s sub- s t a n t i a l l y s m a l l e r than the i n s i d e space of the hood which w i l l cause the a i r to a c c e l e r a t e through the entrance and then slow down once i n s i d e the hood and loose i t s c a r r y i n g c a p a c i t y . ^ 0 198 To reduce the i n f i l t r a t i o n of snow and i c e b u i l d - up on door hinges,commercial r e f r i g e r a t o r doors which open out were used f o r the e x t e r i o r doors on p. 4 the BP Alaska/Sohio's North Slope Operations Center. As mentioned e a r l i e r , o r i e n t a t i n g openings away from the d i r e c t f o r c e of the wind as w e l l as the use of a r c t i c e n t r i e s helps to keep blowing snow from enter- i n g the b u i l d i n g i n t e r i o r . 199 C. Permafrost There are s e v e r a l ways of b u i l d i n g on perma- f r o s t : 1. B u i l d as you would on normal s o i l s ( melting the permafrost), 2. Keep the permafrost frozen. z > e- I w i l l d e a l p r i m a r i l y with the second s t e p , keeping the permafrost f r o z e n . The most obvious way to achieve t h i s would be to separate the warm b u i l d i n g from the c o l d ground so no heat can t r a v e l from the b u i l d i n g to the ground. The best method so f a r i s the elevated s t r u c t u r e w i t h at l e a s t 2 feet of open a i r space between the bottom of the s t r u c t u r e and the ground ( f i g u r e 3 .112) . 6 5 ±2' This type of foundation ( p i l e s , p o s t s , p i e r s ) keeps the heat from the s t r u c t u r e from reaching the f r o - zen ground, and promotes the unimpeded flow of a r c t i c winds which discourages the formation of snow d r i f t s . I f p i l e s cannot be used f o r the b u i l d i n g foun- d a t i o n , posts and pads can be an a l t e r n a t i v e ( f i g u r e 3.113). T h i s type of foundation may experience pro- blems with f r o s t heave which i s discussed i n the next s e c t i o n . ^ &4r 200 Other methods for building on permafrost have been tried with less success than the elevated struc- ture. The "floating slab"has been used but i s risky even when thick insulation i s used beneath i t . The reinforced concrete slab (at least 8" thick) i s designed to span any minor settlement i n the ground (figure 3.H4), hut i f the builder i s unfortunate enough to place the slab and house over a sizable ice wedge the whole slab, house and a l l could end up in an undesirable position (figure 3.115).̂ f ^ u g e -3.114- / 201 D. Frost Heave The're two a c t i o n s i n the s o i l which concern designers and b u i l d e r s , a d f r e e z i n g and f r o s t heave. Adfr e e z i n g r e f e r s to the strong bond that the winter ground i c e g r i p s the foundation w i t h , and f r o s t heave i s the upward movement of the s o i l caused by the i c e forming i n the s o i l . 0 ^ A d f r e e z i n g i s not n e c e s s a r i l y u n d e s i r a b l e but when i t occurs i n c o n j u n c t i o n w i t h f r o s t heaving i t can cause problems such as p i l e j a c k i n g . Most design responses to f r o s t heave and ad- f r e e z i n g are i n the form of prevention which i n c l u d e : ^ 1. Remove f r o s t s u s c e p t i b l e m a t e r i a l ( f i n e sand and s i l t s ) and r e p l a c e w i t h non-frost sus- c e p t i b l e m a t e r i a l (course sands.and c l e a n g r a v e l s ) . 2. Provide adequate drainage: a d r a i n pipe adja- cent to the f o o t i n g and weep holes i n r e t a i n i n g OA w a l l s ( f i g u r e 3.116). 3. Place f o o t i n g s below the maximum depth of f r o s t °>o p e n e t r a t i o n ( t h i s can be d i f f i c u l t i n the sub- a r c t i c - Fairbanks' f r o s t p e n e t r a t i o n i s as much as 15 f e e t yet standard p r a c t i c e a l l o w s f o o t i n g s to be set at a k foot depth), if. Provide f o r movement at the warm/ c o l d i n t e r - face ( f i g u r e 3.117).*" 5. Break the a d f r e e z i n g bond (on p i e r 6 and p i l i n g s ) . Should the f r o s t heaving not be prevented, then the house owner must t u r n to j a c k i n g equipment, shims, wedges, and t u r n b u c k l e s i n order to c o n s t a n t l y a d j u s t the house to the s h i f t i n g 6 0 i l c o n d i t i o n s . ,rzxjt-vfir[\oKi W A L L . 202 — W A r ^ M The use of non-frost susceptible material, good drainage, and the allowance for a certain amount of movement i s important when the house has attached "buffer spaces" such as an attached garage, storage room, or greenhouse (figure 3*U8)» 203 Breaking the adfreezing bond on pilings i s very important i f the piling i s to stay in the ground since the frost action can remove them completely from the ground. Notching the pi l i n g , placing an "anchor" below the active layer, and breaking the ad- freezing bond with a sheet of plastic wrapped around the piling a l l help to keep the piling in place (figure 3.119).^4 204 3.5*7 Summary L i s t i n g of b u i l d i n g design responses to be considered at planning l e v e l 4: A. S o l a r R a d i a t i o n a. L i m i t the amount of exposed window area during w i n t e r b. Minimize window heat l o s s by using movable i n s u l a t e d e x t e r i o r panels ( a l s o , increase window a r e a ) . c. Use daytime ( b u f f e r or greenhouse) spaces d. Locate window areas according to needs/ d e s i r e s of i n h a b i t a n t s - view verses l i g h t , and s u n l i g h t , corner windows and daytime spaces are good f o r view and l i g h t / s u n l i g h t . e. Use s k y l i g h t s t o : 1. l i g h t the center area of compact b u i l d i n g forms, 2. B r i n g l i g h t to the north end of the house, 3. P i c k up d i r e c t s u n l i g h t which may be blocked at lower l e v e l s . f. Avoid high heat l o s s and i c i n g on non v e r t i c a l window areas. g. C o n t r o l d i r e c t s u n l i g h t and g l a r e w i t h e x t e r i o r s h u t t e r s h. Spring and summer sun can be c o n t r o l l e d w i t h the s o l a r r e f l e c t i n g g l a z i n g (used best as a movable i n t e r i o r or e x t e r i o r shading d e v i c e ) . i . Shade the lower p o r t i o n of windows (up to about 5 f e e t ) from low angle g l a r e . j . Have l i g h t c o l o r e d r o o f s ( h o r i z o n t a l s u r f a c e s ) . k. Use dark c o l o r s on thermal masses on the south and north o r i e n t a t i o n s . 1. Use l i g h t c o l o r s on thermal masses f a c i n g e a s t , but a l l o w s o l a r heat to penetrate i n t e r - i o r f o r more immediate heat g a i n . m. Use panels or s h u t t e r s over dark c o l o r e d masses on the west s i d e to c o n t r o l the s o l a r heat inpu t on the thermal masses. 205 n. Use l i g h t c o l o r e d , t e x t u r e d c e i l i n g and w a l l s u r f a c e s to maximize winter n a t u r a l l i g h t from minimal window area. B. Temperature a. Use l i g h t w e i g h t i n s u l a t e d c o n s t r u c t i o n over heavy thermal mass c o n s t r u c t i o n . b. Use thermal mass "heat bank" earth at base- ment l e v e l by i n s u l a t i n g against c o l d a i r temperature p e n e t r a t i o n . c. Optimize thermal i n s u l a t i o n t h i c k n e s s - 5 i or 7i inches i n w a l l s , 9" or more i n c e i l i n g / r o o f , and 2" to 6" i n the f l o o r f o r the S u s i t n a V a l l e y area. d. Use thermal mass on b u i l d i n g i n t e r i o r . e» Avoid use of s i n g l e pane windows. f. Use e x t e r i o r i n s u l a t e d s h u t t e r s f o r windows. g. Reduce c o l d a i r i n f i l t r a t i o n with f i r e p l a c e dampers i n the stack and a combustion a i r duct to the e x t e r i o r . h. Use of sealed windows best with v e n t i l a t i o n handled w i t h separate openings. i . Use " b u f f e r spaces" f o r warming incoming a i r used i n a i r exchanges. j . F i l t e r and r e d i s t r i b u t e (reuse) warm i n t e r i o r a i r . k. Use of a s t a c k robber on f i r e p l a c e or heater s t a c k s can put waste heat to use. 1. Avoid c r e a t i n g " c o l d spaces"- s m a l l spaces next to e x t e r i o r w a l l s c l o s e d o f f to the i n t e r - i o r warm a i r and with no heat source of t h e i r own. m. Avoid c r e a t i n g " c o l d spaces" between window coverings and windows, n. Avoid f r o s t formation at b u i l d i n g corners, o. Enclose the b u i l d i n g s t r u c t u r a l system under an i n s u l a t e d e x t e r i o r s k i n to avoid thermal b r i d g i n g . 206 p. I n s u l a t e or provide thermal breaks f o r metal and masonry (concrete) which extends from the warm i n t e r i o r to the c o l d e x t e r i o r . q. Use of f l e x i b l e f l a s h i n g m a t e r i a l where high thermal movement occurs and w a t e r t i g h t i n t e g - r i t y i s needed. r . Use of rounded corners w i l l reduce corner s t r e s s due to s o l a r heat b u i l d up. s. Use of l i g h t c o l o r s at corners w i l l a l s o r e - duce m a t e r i a l s t r e s s due to s o l a r heat b u i l d u p . t . S e l e c t s t r u c t u r a l metal which does not loose s t r e n g t h at very low temperatures. u. Keep freeze/thaw c y c l e s to a minimum on masonry and concrete. v. Use s p e c i a l dry lumber where st r e n g t h and no movement i s r e q u i r e d . w. Use the most f l e x i b l e s e a l a n t s f o r areas exposed to c l i m a t i c extremes. P r e c i p i t a t i o n a. Use " c o l d r o o f " design to u t i l i z e i n s u l a t i n g q u a l i t i e s of snow and avoid i c e dams and r e l a t e d problems. b. Avoid i c e dam b u i l d up on c o l d eaves c. Provide s h u t t e r s f o r s l o p i n g s k y l i g h t s ( w i t h window area i n s h u t t e r so l i g h t can penetrate when s h u t t e r i s frozen s h u t ) . d. Avoid e x t e r i o r appendages which might be removed by snow s l i d i n g o f f the r o o f . e. Allow f o r moisture m i g r a t i o n out from the e x t e r i o r s k i n , but s t i l l keep snow and r a i n from e n t e r i n g from the o u t s i d e . Wind a. O r i e n t a t e f e n e s t r a t i o n (doors, windows) away from the winter winds. b. Use of "wind p o l e s " , v e g e t a t i o n , and other b u i l d i n g s to break the wind. 207 c. Cover outside of the window areas with s h u t t e r s . d. Weatherstrip a l l openings i n f e n e s t r a t i o n . E. S p e c i a l C l i m a t i c C o n d i t i o n s 1. Humidity/Moisture P o t e n t i a l a. S e a l i n s i d e window panes (vapor b a r r i e r ) and leave the outside pane l o o s e . b. Keep humidity low (+ 20%) d u r i n g c o l d months. c. I n s u l a t e over (on the o u t s i d e ) c o l d s p o t s / m a t e r i a l s . d. I n s t a l l a " l e a k - f r e e " vapor b a r r i e r on the warm s i d e of the i n s u l a t i o n . e. Use permeable m a t e r i a l on the c o l d s i d e of the b u i l d i n g f a b r i c . f. Place i n s u l a t i o n on the outside of masonry/ concrete w a l l s . g. Use the "upside down" roof c o n s t r u c t i o n f o r f l a t r o o f s . h. Avoid m u l t i p l e vapor b a r r i e r s . i . V e n t i l a t e the c o l d s i d e of the w a l l / c e i l i n g i n s u l a t i o n where p o s s i b l e . 2. Blowing Snow a. Use v e n t i l a t i o n hoods to e l i m i n a t e the snow p a r t i c l e s from e n t e r i n g the i n t e r i o r . b. Use r e f r i g e r a t o r type doors i n extreme c l i m a t i c c o n d i t i o n s 3« Permafrost a. Avoid b u i l d i n g on permafrost b. I f b u i l d i n g on permafrost, keep the permafrost fro z e n ( i s o l a t e the b u i l d i n g ' s h e a t ) . c. E l e v a t e the s t r u c t u r e o f f the frozen ground with p i l i n g s or p i e r s . 4. F r o s t Heave a. Avoid b u i l d i n g on f r o s t s u s c e p t i b l e s o i l s . b. Replace f r o s t s u s c e p t i b l e s o i l with non-frost s u s c e p t i b l e s o i l . 208 c. Provide adequate s o i l drainage at the base of f o o t i n g s . * d. Place f o o t i n g s below depth of f r o s t penetra- t i o n . e. Provide f o r l i m i t e d movement at the warm/ co l d i n t e r f a c e . f. Break the a d f r e e z i n g bond on p i l i n g s and p i e r s with p l a s t i c sheets which a l l o w the 6 o i l to s l i d e up and down without moving the p i l i n g . g. Use j a c k i n g equipment, shims, and wedges f o r a d j u s t i n g the foundation to d i f f e r e n t i a l ground movement. h. Anchor p i l i n g s i n the ground to avoid f r o s t j a c k i n g . Summary of Responses The primary b u i l d i n g c o n s i d e r a t i o n at t h i s planning l e v e l i n both the A r c t i c and S u b - a r c t i c regions r e l a t e s to the s o i l c o n d i t i o n s i n c e b u i l d i n g on un- s t a b l e s o i l s can negate the best t h e r m a l l y i n s u l a t e d s t r u c t u r e b u i l t by causing foundation f a i l u r e f o l l o w - ed by s t r u c t u r a l f a i l u r e of the b u i l d i n g . Since permafrost i n the s u b a r c t i c r e g i o n i s so cl o s e to m e l t i n g , i t becomes very unstable when any change takes place above i t - even the c l e a r i n g of v e g e t a t i o n can melt the permafrost. Therefore, p l a c i n g a heated b u i l d i n g on fro z e n ground i n the sub- a r c t i c should be avoided i f at a l l p o s s i b l e . In the a r c t i c r e g i o n there i s no c h o i c e , so i t i s necessary to i s o l a t e the warm b u i l d i n g from the fro z e n ground normally by e l e v a t i n g the b u i l d i n g . The f r o s t heaving i n bad s o i l s can a l s o cause foundation deformations and f a i l u r e which again would render the home u s e l e s s . The next major c o n s i d e r a t i o n i n v o l v e s the combin- a t i o n of moisture m i g r a t i o n and temperature, the a b i l i t y of i n t e r i o r moisture to migrate i n t o the c o l d b u i l d i n g m a t e r i a l s . Cold temperatures freeze the 209 moisture i n the m a t e r i a l s and i c e accumulates f o r long periods of time due to the d u r a t i o n of c o l d tempera- t u r e s . Since the i c e normally f r e e z e s i n the thermal i n s u l a t i o n , i t reduces the i n s u l a t i n g q u a l i t i e s of the m a t e r i a l and when the i c e begins to melt i t s t a i n s or r o t s i n t e r i o r f i n i s h m a t e r i a l s i n the house along w i t h the f u r n i s h i n g s . T h i s i s why i t i s extremely important to get an e f f e c t i v e vapor s e a l on the i n s i d e of the i n s u l a t i n g m a t e r i a l s . Since the house i s now on s t a b l e ground and the m a t e r i a l s can be protected from the m i g r a t i o n of mois- ture and i c e accumulation, the next c o n s i d e r a t i o n i s that of m i n i m i z i n g heat l o s s . In most cases the f e n e s t r a t i o n (windows, doors, openings) i s the primary concern i n heat l o s s . The use of more window panes, s m a l l e r window area, s p e c i a l e n t r i e s , l i m i t e d crack space (operable windows and openings to the e x t e r i o r ) and w e a t h e r s t r i p p i n g a l l h e l p to reduce the heat l o s s a t t r i b u t e d to f e n e s t r a t i o n . Along with the f e n e s t r a - t i o n i n importance i s the i n f i l t r a t i o n and a i r changes. As mentioned above, the use of w e a t h e r s t r i p p i n g and m i n i m i z i n g operable windows, and other openings helps reduce the heat l o s s caused by i n f i l t r a t i o n and a i r changes, but the house s t i l l needs " f r e s h a i r " and oxygen. This can be s u p p l i e d through " b u f f e r spaces" i n which the incoming f r e s h a i r can be p a r t i a l l y heated from the l o s t heat of the b u i l d i n g i n t e r i o r . The use of s o l a r r a d i a t i o n i s a l s o important i n the heat gain/heat l o s s balance. The o p t i m i z a t i o n of s o l a r heat d u r i n g much of the year can help to keep the home environment at comfortable temperatures red u c i n g the need f o r e x t e r n a l f u e l s . The s o l a r r a d i a - t i o n can supply very l i t t l e heat i n the w i n t e r , so d u r i n g t h i s p e r i o d the housing u n i t should have a heav- i l y i n s u l a t e d e x t e r i o r s k i n over i t s compact shape i n order to minimize the heat l o s s to the constant c o l d . 210 3.5.8 References A. S o l a r R a d i a t i o n ^ A b u i l d i n g code minimum f o r most h a b i t a b l e rooms i n housing. 2- Eb R i c e , "Windows", The Northern Engineer, Spri n g 1974. 3 A Q u a l i t a t i v e C h e c k l i s t f o r Compact Housing, Greater Vancouver Regional D i s t r i c t , P l anning Depatrment, Vancouver, 1975, P .42. ^ R. G. Hopkinson, P Petherbridge, J . Longmore, D a y l i g h t i n g , England, 1966, p.276. ^ The window s t r i p at eye l e v e l was used i n the Fairbanks' News Miner A d d i t i o n , F a i r b a n k s ; the North Pole J u n i o r Senior High School, North Pole; and the Plumbers/Steamfitters O f f i c e B u i l d i n g , Fairbanks. fo Wider s i d e windows were used i n the North Pole High School classrooms f o r view and l i g h t along the w a l l . 1 Corner window design was used on the south f a c i n g corners of the Cook Residence, Fairbanks. t> "When the House-Warming Sun Goes Down, Movable I n s u l a t i o n Goes i n t o P l a c e " , Sunset, Nov. 1976, pp. 166-168. ^ Ralph E r s k i n e , "The Challenge of the High L a t i t u - des", RAIC J o u r n a l , Jan. 1964. 1 0 B o r i s C u l j a t , Climate and The B u i l t Environment i n the North, p. 87. 1* The i c i c l e s which form every w i n t e r on the green- houses at the U n i v e r s i t y of Alaska are an extreme example of t h i s . 12- D. G. Stephenson, P r i n c i p l e s of S o l a r Shading, CBD 59, NRC, Ottawa, 1964. J 5 R i c e , "Windows", p. 11. 211 ^ A x e l C a r l s o n , Design of Roofs f o r Northern R e s i - d e n t i a l C o n s t r u c t i o n , Cooperative Extension S e r v i c e , U n i v e r s i t y of A l a s k a , 1973. y* Ralph E r s k i n e , "The Challenge of the High L a t i t u d e s " . 1 & CPI, A r c h i t e c t u r a l Glass Products, Canadian P i t t s b u r g h I n d u s t r i e s , Manfacturers Pamphlet, 1976. Loren W. Neubauer, "The Semi-Solar Low Cost House Saves Energy Through Environmental O r i e n t a t i o n " , IAHS Proceedings: I n t e r n a t i o n a l Symposium on Housing Problems-1976, V o l . 2, p. 1417. 1 g > C. R. Crocker, Influence of O r i e n t a t i o n of Ext e r - i o r C l a d d i n g , CBD 126, NRC, Ottawa, 1970. 1 ^ V i c t o r Olgyay, Design w i t h C l i m a t e , 1963, P. 34. ^ C. R. Crocker, Influence of O r i e n t a t i o n on E x t e r - i o r Cladding. 21 G S A , Energy Conservation Design G u i d e l i n e s f o r New O f f i c e B u i l d i n g s , GSA, 1975, P. 5-15. C u l j a t , Climate and The B u i l t Environment i n The North. 1975, PP. 297,298. Z ? Stephenson, P r i n c i p l e s of S o l a r Shading, 1963. B. Temperature 24 ASHRAE, Handbook of Fundamentals, American S o c i e t y of Heating, R e f r i g e r a t i n g and A i r C o n d i t i o n i n g Engin- eers (ASHRAE), New York, 1967 2^ HUDA, A B u i l d e r s ' Guide to Energy Conservation, Housing and Urban Development A s s o c i a t i o n of Canada, Toronto, 1975, pp. 8,9. P h i l i p Steadman, Energy Environment and B u i l d i n g , 1975, PP. 31,32. 212 2 7 Olgyay, Design with C l i m a t e , p. 119. I b i d . , e x t r a p o l a t e d from 2" t h i c k n e s s w i t h 1.3 hours time l a g . A x e l C a r l s o n , E f f e c t o f Wall Framing on Heat l o s s . Cooperative Extension S e r v i c e , Univ. of A l a s k a , 1972. 5? S i m i l a r to the Trumbe/Michel s o l a r w a l l ; Steadman, PP. 158, 159. *1 S i m i l a r to idea used i n GSA's Fe d e r a l O f f i c e B u i l d i n g i n Manchester, New Hampshire. ^ J . K. L a t t a , G. G. B o i l e a u , Heat Losses From House Basements, NRC Housing Note No. 31, Ottawa, 1969. 92 A. C. V e a l e , I n s u l a t i o n Thickness For Houses, NEC Housing Note No. 21, 1964. R. K. Beach, Determin- i n g the Optimum Thickness of I n s u l a t i o n For Heated B u i l d i n g s , NRC 8151, Ottawa, 1965. 5 4 A x e l C a r l s o n , Warm F l o o r s are E s s e n t i a l For Comfort, Coop. Ext. S e r v i c e , Univ. of A l a s k a , 1972. 5© Eb Rice,"Northern C o n s t r u c t i o n : S i t i n g and Foun- d a t i o n s " , The Northern Engineer, Spr i n g 1973, P. 14. Heat l o s s c a l c u l a t e d by author from ASHRAE f i g u r e s . ^ Used i n the Snedden Residence i n Fairbanks. J . L e c k i e , G. Masters, H. Whitehouse, L. Young, Other Homes and Garbage, S i e r r a Club Books, 1975, pp. 25.26. ^ F i r e p l a c e d e t a i l used In the Snedden Residence and the Cook Residence, Fairbanks. *° D e t a i l i n g p r a c t i c e i n a r c h i t e c t u r a l o f f i c e i n Fairbanks. 4 1 Window d e t a i l used i n the Bob Sigones House i n Fairbanks area. 4£ steadman, Energy, Environment and B u i l d i n g , 1975, p. 34. 4 - 5 I b i d . , p. 32. 213 4 4 Eb R i c e , "Heating The I d e a l A r c t i c House - 111, The Northern Engineer, F a l l 1973,PP. 19,20. 4 ^ A x e l C a r l s o n , S p e c i a l C o n s i d e r a t i o n s f o r B u i l d i n g i n A l a s k a , Coop. Ext. S e r v i c e , Univ. of A l a s k a , 1972. A < e > R i c e , "Windows". 4 T J . R. S a s a k i , E f f e c t of Indoor Shading and Heater C o n f i g u r a t i o n s on the Surface Temperature Performance of a Sealed Double Glazed Window, NRCC 13565, Ottawa, 1973. ^ Ralph E r s k i n e , "The Challenge of the High L a t i t u - des", 1964. 4*1 GSA, Energy Conservation Design G u i d e l i n e s f o r New O f f i c e B u i l d i n g s , GSA, 1975, p. 5-14. &° D e t a i l i n g p r a c t i c e i n a r c h i t e c t u r a l o f f i c e i n Fairbanks. ^ 1 I b i d . ^ A l l n a i l heads can be seen through the w a l l c o v e r i n g i n the E l l e r b e a r c h i t e c t u r a l o f f i c e i n Fairbanks. ^ R i c e , A r c t i c Engineering 603, the i n s u l a t i o n was being forced o f f the w a l l s i n a shower room due to i c e b u i l d u p on the c o l d s i d e of the i n s u l a t i o n . ^ "4m a new t r a c t house i n Anchorage, a woman had to be thawed out of her house by a neighbor who came over and used a h a i r dryer around the door to melt the i c e b u i l d u p , when they asked the c o n t r a c t o r f o r a remedy, he suggested l e a v i n g the door open a b i t . ^ M. C. Baker, Thermal and Moisture Deformations i n B u i l d i n g M a t e r i a l s , CBD 56, 1964. ^ I b i d . ^7 A Blaga, P r o p e r t i e s and Behavior of P l a s t i c s , CBD 157, Ottawa, 1973. £2> T y p i c a l d e t a i l i n g f o r r o o f s i n a r c h i t e c t u r a l o f f i c e i n Fairbanks. 214 Baker, Thermal and Moisture Deformations i n B u i l d i n g M a t e r i a l s . ^ Eb R i c e , A r c t i c Engineering 603, John Burdick l e c t u r e , Univ. of A l a s k a , 1973. < i > 1 E. G. Swenson, D u r a b i l i t y of Concrete under Winter C o n d i t i o n s , CBD 116, 1969. P r e c i p i t a t i o n toZ A x e l C a r l s o n , Design of Roofs f o r Northern R e s i d e n t i a l C o n s t r u c t i o n , Coop. Ext. S e r v i c e , Univ. of A l a s k a , 1973. M. C. Baker, Ice on Roofs, CBD 89, 1967. ^ Massive i c e formations on the eave of the Univ. of Alaska greenhouses i n the winter (high humidity i n s i d e ) . ^ The apartment where I l i v e d i n Fairbanks had i t s f a c i a board p u l l e d o f f on the north si d e by the i c e dam grabbing i t and the snow s l i d i n g o f f the ro o f removing i t . Wind (t>(e> QSA, Energy Conservation Design G u i d e l i n e s f o r New O f f i c e B u i l d i n g s , GSA, 1975, P. 3-7. 6 , 1 C a l c u l a t e d by author from ASHRAE f i g u r e s . 6 , & Amos Rapoport, House Form and C u l t u r e , 1969, p. 101. 215 E. S p e c i a l C l i m a t i c C o n d i t i o n s 1. Humidity/Moisture P o t e n t i a l ^ Eb R i c e , "Vapor B a r r i e r s , The I d e a l A r c t i c House IV", The Northern Engineer, Winter 1973, 1974,PP. 18-24. n o N. B. Hutcheon, Humidity and B u i l d i n g s , NRC 8152 , Ottawa, 1964. 71 R i c e , "Vapor B a r r i e r s " . 72 H. W. O r r , Condensation i n E l e c t r i c a l l y Heated Houses, NRCC 14588, Ottawa, 1974. 7 5 Hutcheon, Humidity and B u i l d i n g s . 74 R i c e , "Vapor B a r r i e r s " . 7 * I b i d . 7 t o I b i d . 7 7 H. B. Dickens, N. B. Hutcheon, Moisture Accumu- l a t i o n i n Roof Spaces Under Extreme Winter C o n d i t i o n s , NRC 9132 , Ottawa, 1966. 7 6 R i c e , "Vapor B a r r i e r s " . 2 . Blowing Snow Leo Zrudlo, "User Designed Housing f o r the I n u i t of A r c t i c Quebec", The Northern Engineer, F a l l 1974. P. 3 8 . &° B o r i s C u l j a t , Climate and The B u i l t Environment i n The North, pp. 2 92 , 294 . 2»1 Peter F l o y d , "The North Slope Center: How Was I t B u i l t ? " , The Northern Engineer, F a l l 1974, P. 3 1 . 216 3. Permafrost ^ C. B. Crawford, G. H. Johnston, C o n s t r u c t i o n on Permafrost, NRCC 11843, Ottawa, 1971. ^ J . A. P i h l a i n e n , Permafrost and B u i l d i n g s , B e t t e r B u i l d i n g B u l l e t i n #5, NRC, Ottawa, 1955. ^ Eb R i c e , "Northern C o n s t r u c t i o n : S i t i n g and Foundations", The Northern Engineer, Spring 1973, P. 14. R & I b i d . , p. 18. ft^ I b i d . , p. 13. 4. F r o s t Heave E. Penner, K. N. Burn, A d f r e e z i n g and Frost Heaving of Foundations, CBD 128, Ottawa, 1970. E. Penner, Ground F r e e z i n g and Frost Heaving, CBD 26, Ottawa, 1962. #9penner and Burn, A d f r e e z i n g and F r o s t Heaving of Foundations. °*> Penner, Ground F r e e z i n g and F r o s t Heaving. ^1 Engineering D e t a i l used i n Fairbanks. ^ Eb R i c e , "Northern C o n s t r u c t i o n : S i t i n g and Foundations", p.17. ^ 5 I b i d . , p. 18. I b i d . 217 CHAPTER 4 SITE APPLICATION 4.1 INTRODUCTION 4.2 PHYSICAL FACTORS 4.2.1 Summary of C l i m a t i c Factors A. S o l a r R a d i a t i o n B. Temperature C. P r e c i p i t a t i o n D. Wind 4.2 .2 S i t e F a c t o r s A. Topography B. Geology/Soils C. Hydrology D. Ve g e t a t i o n 4.3 TOWNSITE LAYOUT 4.3.1 A n a l y s i s of the Townsite Layout A. S o l a r R a d i a t i o n B. Temperature C. P r e c i p i t a t i o n D. Wind E. S p e c i a l C l i m a t i c C o n d i t i o n s Blowing Snow Permafrost F r o s t Heave 4.4 CONCLUDING REMARKS 4.5 REFERENCES 218 k.1 INTRODUCTION This chapter a p p l i e s the b u i l d i n g design respon- ses from chapter 3 to a s p e c i f i c s i t e s i t u a t i o n i n the S u b a r c t i c North, the Willow S i t e . The Willow s i t e l i e s at the southeast p o r t i o n of the S u s i t n a V a l l e y i n the Alaskan T r a n s i t i o n a l C l i m a t i c Zone. As mentioned i n chapter 1, t h i s s i t e has been s e l e c t e d by the people of Alaska f o r the development o f a new c i t y , the Al a s k a State C a p i t a l . For a complete c l i m a t i c a n a l y s i s of t h i s area see Appendix A. The f i r s t s e c t i o n i n t h i s chapter d e s c r i b e s the p h y s i c a l f a c t o r s of the s i t e ( c l i m a t i c f a c t o r s and s i t e f a c t o r s ) . The second s e c t i o n d e s c r i b e s and analyzes a p o t e n t i a l s i t e l a y o u t f o r the Willow S i t e u s i n g the design responses from "Planning L e v e l 1" i n chapter 3. The s p e c i f i c s i t e c o n d i t i o n s e s t a b l i s h p r i o r i t i e s t o the design responses d e s c r i b e d i n chapter 3. The d e s c r i p t i o n f o l l o w i n g the s i t e l a y o u t f i g u r e s t e l l s which design responses took p r i o r i t y i n the s i t e l a y o u t . 219 4.2 PHYSICAL FACTORS 4.2.1 Summary of C l i m a t i c F a c t ors The f o l l o w i n g data i s a summary of the c l i m a t i c c o n d i t i o n s at the Willow S i t e . For more d e t a i l c l i m a t i c i n f o r m a t i o n see chapter 2. A. S o l a r R a d i a t i o n a. Sun a l t i t u d e (south) 4 i 6 ( D e c . ) t o 51°(June) b. S o l a r azimuth t r a v e l ?0°(Dec.) to 290°(June)2- c. Hours of d a y l i g h t 5 hours (Dec.) to 20 hours (June) d. % of p o s s i b l e sunshine 45% to 50%/year 4 B. Temperature a. Mean temperatures 10°F ( w i n t e r ) , 57°F(summer) b. Temperature extremes -40°F to 90°F ^ c. D i u r n a l temperature d i f f e r e n c e 15°F to 24°F" 1 d. Heating degree days (65°F base) + 11,300 ^ C. P r e c i p i t a t i o n a. Average r a i n f a l l 10" to ^ " / y e a r * 9 b. Average s n o w f a l l 80"(6'8")/year 1 0 c. Maximum s n o w f a l l i n 24 hours +30" ( 2 i * ) 1 1 D. Wind a. Winter: L i g h t winds from n o r t h e r l y d i r e c t i o n , 3 to 7 mph average v e l o c i t y 12- Maximum wind v e l o c i t y 40 mph 1* b. Summer: L i g h t winds from s o u t h e r l y d i r e c t i o n , 3 to 6 mph average v e l o c i t y 14 4.2.2 S i t e F a c t o r s S p e c i f i c s i t e f a c t o r s at the Willow S i t e i n c l u d e : A. Topography The Willow S i t e i s l o c a t e d on the g e n t l y r i s i n g south and southwest slopes of Mt. B u l l i o n i n the southwestern f o o t h i l l s of the Talkeetna Mountains. Deception Creek, which t r a v e r s e s the s i t e , separates the meadow uplands from the broad t e r r a c e lowlands. The uplands are c h a r a c t e r i z e d by undul a t i n g topogra- phy ( f i g u r e 4 . 1 ) . 1 ^ 220 221 The e l e v a t i o n s w i t h i n the 100 square mile s i t e range from a low of 300 feet to a high of 3150 f e e t , 1 t o w i t h i n the development area shown i n f i g u r e 4.2 the e l e v a t i o n range i s from 450 f e e t to 1500 feet with the e l e v a t i o n change i n the townsite area ranging from 900 f e e t to 1150 f e e t . The slopes above Deception Creek are l e s s than 12% except i n r a v i n e s . Below the creek slopes are g e n e r a l l y not g r e a t e r than 2% with the exception of i s o l a t e d hummocky moraines. The upland areas have a wide choice of p o t e n t i a l views: a. E a s t : The Matanuska V a l l e y (20 m i l e s ) b. Southeast: Knik G l a c i e r (80 m i l e s ) Chugach Mountains (40 m i l e s ) c. South: Anchorage (35 m i l e s ) Knik Arm (25 m i l e s ) d. Southwest: Cook I n l e t (40 m iles) Mt. S u s i t n a (35 miles) e. West: S u s i t n a V a l l e y (10 miles) T o r d i l l o Mountains (80 miles) f. Northwest: Alaska Mountain Range/Mt. McKinley (100 m i l e s ) .  223 B. Geology/Soils The subsurface geology of the Willow S i t e con- s i s t s o f G l a c i a l T i l l over 80% o f the development area; 10% i s at 10 foot depth over bedrock and 10% i s sand/gravel/loose rock p r o v i d i n g good c o n d i t i o n s f o r spread f o o t i n g foundations. There i s no apparent permafrost i n the development area of the s i t e . C. Hydrology S e v e r a l i s o l a t e d s m a l l swampy areas are d i s - persed throughout the area, p a r t i c u l a r l y around the t e r r a i n below Deception Creek. The m a j o r i t y of the s i t e i s w e l l d rained. The c l e a r water Deception Creek t r a v e l s through the Willow S i t e from east to northwest. A creek from the north j o i n s Deception Creek j u s t east of the development area. S e v e r a l s m a l l l a k e s are l o c a t e d to the west of the development area i n the broad t e r r a c e lowlands below Deception Creek ( f i g u r e k»3)• For domestic water, w e l l s could be d r i l l e d or water could be pumped up from the L i t t l e S u s i t n a R i v e r or Willow Creek. The upper e l e v a t i o n s of Mt. B u l l i o n could provide a good place f o r water storage u s i n g g r a v i t y flow to s e r v i c e the townsite below. 22k 225 D» Vegetation The Willow Site has good birch and spruce for- ests with stands of spruce and cottonwood near Deception Creek (figure k»k)» Open grassy meadows and relatively sparse forests are found above Deception Creek (figure k*5)» The Willow Site is characterized by birch, spruce and cottonwood forests. figures A. A  227 4.3 TOWNSITE LAYOUT The f o l l o w i n g pages c o n t a i n a p o t e n t i a l layout f o r a townsite w i t h i n the Willow S i t e ( f i g u r e s 4.6, south f a c i n g slope of Mt. B u l l i o n j u s t above Deception Creek wi t h the m a j o r i t y of housing (medium and low d e n s i t y ) to the south of the town center on the south si d e of the Creek. Through the p o s i t i o n i n g on the s l o p e , the town center has p o t e n t i a l views from the northeast around to the south and up to the north- west. The b u i l d i n g arrangement w i t h i n the townsite r e g u l a t e s the general l o c a t i o n of b u i l d i n g s by s i z e ; the t a l l e r more massive b u i l d i n g s are r e s t r i c t e d to the n o r t h , northeast or northwest s i d e s . Lower, l e s s massive b u i l d i n g s are permitted on the south s i d e c l o s e r to Deception Creek. Open areas and park space i s l a c a t e d adjacent to the Creek on the south si d e o f the town center. The higher d e n s i t y housing i s l o c a t e d to the n o r t h of the town center on the h i l l s i d e g i v i n g many r e s i - dents maximum exposure to s u n l i g h t and views while l i m i t i n g the shadowing of the b u i l d i n g s to the un- developed area to the n o r t h . On the south s i d e of the Creek, the medium d e n s i t y housing i s l o c a t e d i n c l o s e p r o x i m i t y to the town center so a maximum number of r e s i d e n t s would be able to commute v i a p e d e s t r i a t i o n / b i c y c l e r o u t e s . The medium d e n s i t y housing i s a l s o l o c a t e d here so t h a t i t s l a r g e r b u i l d i n g forms do not shadow the lower d e n s i t y housing to the south. The lower d e n s i t y housing spreads out i n a fan shape towards the southeast, south, and southwest. S i n g l e f a m i l y houses, duplexes, and mobile homes are s i t u a t e d along nw/se, north/south, and ne/sw s t r e e t p a t t e r n s . The i n d i v i d u a l housing u n i t s are staggered on the s i t e i n order to a l l o w winter J (̂ Ĵ̂  | 4.7, and 4.8). The town center i s s i t u a t e d on the s u n l i g h t to reach the south s i d e s of 228 most l i v i n g units as well as the adjacent exterior spaces. Development outside of the "townsite" area i s controlled with certain areas established for dis- persed development. In this way many areas adjacent to the townsite can remain natural, recreation areas and not be fenced up by property owners. With the development of the outer dispersed areas, the town- site would have private vehicle parking around the periphery of the town center and transit through the townsite i t s e l f would be on a public transport system. This would cut down on the potential pedestrian/ automobile conflicts and reduce the production of carbon monoxide and ice fog within the town center. 229 230 231 232 4.3.1 A n a l y s i s o f the Townsite Layout L i s t e d below are the i m p l i c a t i o n s of the town- s i t e layout w i t h regard to the c l i m a t i c f a c t o r s and s i t e f a c t o r s : A. S o l a r R a d i a t i o n The south f a c i n g h i l l s i d e a l l o w s the townsite maximum w i n t e r , s p r i n g , and f a l l s o l a r r a d i a t i o n ( p r i m a r i l y from the south). The c e n t r a l north/south a x i s of the townsite i s l o c a t e d to maximize exposure to the east and west as w e l l as the south ( f i g u r e The townsite steps up the h i l l s i d e u s i n g the topography to maximize s u n l i g h t exposure. The b u i l d - i n g s i z e s are arranged with the l a r g e s t / t a l l e s t at the n o r t h end o f the s i t e (higher d e n s i t y housing) and the s m a l l e s t to the south end of the s i t e ( s i n g l e f a m i l y housing), see f i g u r e s 4.7 and 4.8. The d i a g o n a l s t r e e t p a t t e r n s i n the town center provide morning and afternoon s u n l i g h t c o r r i d o r s , and the main b u i l d i n g exposures are to the southeast and southwest ( f i g u r e 4*6). 4.9). 233 The r a d i a l s t r e e t p a t t e r n i n the housing area to the south of the town center a l l o w s winter sun- l i g h t to penetrate from the southeast around to the southwest. Housing o r i e n t a t i o n s would range from southeast/northwest, east/west, to southwest/north- east i f they were a l l i g n e d w i t h the s t r e e t patterns ( f i g u r e 4 . 6 ) . E. Temperature The whole area i s an upland h i l l s i d e which avoids the settlement of very c o l d a i r masses. Cold a i r w i l l flow to the south and west along the Deception Creek drainage. Keeping the area around Deception Creek i n i t s n a t u r a l s t a t e w i l l h e l p to keep the winter c o l d a i r flow from being blocked by b u i l d i n g s . The compact arrangement of the plan could h e l p to minimize the use of p r i v a t e autos i n and out of the town c e n t e r . A p u b l i c s h u t t l e could l i n k the lower d e n s i t y housing area to the downtown center . C. P r e c i p i t a t i o n Care should be taken during c o n s t r u c t i o n to a v o i d e r o s i o n on the s l o p i n g l a n d . P r o t e c t i n g e x i s t - i n g v e g e t a t i o n d u r i n g the i n i t i a l development w i l l h e l p reduce the e r o s i o n p o t e n t i a l d u r i n g the l a t e summer r a i n s . The s t r e e t p a t t e r n s i n the steeper p o r t i o n of the townsite are d i a g o n a l to the steep part of the slope m i n i m i z i n g the i n c l i n e s on which v e h i c l e s must climb i n the w i n t e r snow and i c e c o n d i t i o n s ( f i g u r e 4 . 1 0 ) . 234 D. Wind The townsite should be kept f a r enough below the brow of the h i l l (Mt. B u l l i o n ) to use both topography and v e g e t a t i o n to h e l p block the wi n t e r winds from the n o r t h . The townsite should extend no f a r t h e r than about way up the slope above Deception Creek i n order to r e t a i n the f o r e s t e d area to the north of the townsite. The t a l l e r b u i l d i n g s on the northeast and north- west s i d e of the town center could slow the c o l d winds from the north h e l p i n g to create a more temper- ate m i c r o - c l i m a t e i n the town center ( f i g u r e 4.11). E. S p e c i a l C l i m a t i c Conditions • Blowing Snow B l o c k i n g w inter winds wi t h the f o r e s t cover and b u i l d i n g s t o the north s i d e of the townsite would h e l p to minimize any snow d r i f t i n g i n the town center which might occur. Due to the v e g e t a t i o n and l a c k of s u f f i c i e n t wind, blowing snow and snow d r i f t i n g i s not a major problem. • Permafrost The s i t e i s f r e e of permafrost p e r m i t t i n g standard spread f o o t i n g foundations w i t h the s t r u c t - ures s i t t i n g on or i n the ground. • F r o s t Heave Most of the s i t e i s w e l l drained. The area immed- i a t e l y to the southeast of the housing area appears to have poor drainage and should be avoided i f expansion of the housing area occurred. 5 WESTGATE i S T R E E T H A P O F { :*tiiafe ; • • PwnK of MMM J - A I ' l l " » ! ^* j _j T^TiaVrJcetvfT^.. V**YAMl.) 1 t RtStRVAHON/' 1 Tr* KM Gouiha Co. / *«..«-» ..<• *M!>I. . ct e«'t>'.a t a . ' - w i . « i SSTiil" " 1 1 !';• '. - 5 * • ' . . tt,- * « ~;Y f! ~ « gsag-:|j pE«« Ev jjjts B p & i K3| P31 & " ! ®t II n^uge 4 . 1 2 it saŝ y s;i\:;.L: TST.- . S J • fed 236 4.5 CONCLUDING REMARKS Thi s l a s t part has been an example of the a p p l i - c a t i o n of the design responses from chapter 3 as they r e l a t e to a s p e c i f i c s i t e c o n d i t i o n . The i n t e n t of t h i s t h e s i s i s not to provide a c l i m a t i c a n a l y s i s f o r design at one p a r t i c u l a r a r e a , the Willow S i t e , but t o describ e many d i f f e r i n g b u i l d i n g responses which could be a p p l i e d to n e a r l y any s p e c i f i c s i t e c o n d i t i o n i n the A r c t i c and S u b a r c t i c Regions. The d e s c r i p t i o n s of the b u i l d i n g design responses at the d i f f e r e n t planning l e v e l s i n chapter 3 are the main body of t h i s t h e s i s and the implementation of these i s viewed as an ongoing process dependent on the i n d i v i d u a l needs and s p e c i f i c s i t e c o n d i t i o n s . 237 k*k REFERENCES 1 Computed from sun path diagrams constructed by the author 2 i b i d . & Number of hours of p o s s i b l e sunshine p r i n t e d i n the Anchorage D a i l y Times, v a r i o u s i s s u e s d u r i n g the year. ^ U.S. Dept. of Commerce, NOAA, Lo c a l C l i m a t o l o g i c a l Data, Annual Summary with Comparative Data, Talkeetna, 1974 and Anchorage, 1973» N a t i o n a l C l i m a t i c Center, N. C., e x t r a p o l a t i o n of data to a r r i v e at f i g u r e s f o r Willow. ^ C a p i t a l S i t e S e l e c t i o n Committee, "The S e l e c t i o n of a c a p i t a l S i t e W i l l Soon Be i n Your Hands", supplement to a l l Alaskan newspapers, summer, 1976. U> E x t r a p o l a t i o n of NOAA data f o r Talkeetna and Anchorage. 7 I b i d . & I b i d . ^ I b i d . ^ C a p i t a l S i t e S e l e c t i o n Committee, "The S e l e c t i o n " . 11 E x t r a p o l a t i o n of NOAA data f o r Talkeetna and Anchorage. 12 i b i d . t 5 I b i d . 1 4 I b i d . ^ C a p i t a l S i t e S e l e c t i o n Committee. 1 f a I b i d . 17 Topographic Aderived by author from USGS Topo- graphic Map (Anchorage C-8),1"= l m i l e , 1950 w i t h minor r e v i s i o n s 1971 238 1fr C a p i t a l S i t e S e l e c t i o n Committee. 1°> I b i d . ™ I b i d . ^ Map of h y d r o l o g i c a l f e a t u r e s d e r i v e d from USGS map, Anchorage C-8. z ^ C a p i t a l S i t e S e l e c t i o n Committee. ^ Map of v e g e t a t i o n de r i v e d from USGS Topographic Map (Anchorage C-8). 239 BIBLIOGRAPHY EXPLANATION OF BIBLIOGRAPHY 1. REFERENCE MATERIAL CITED 2. SOURCES CONSULTED A* Energy Conservation/Thermal Design B. Solar Radiation Studies/Applications C. Northern Studies/Building 240 EXPLANATION OF BIBLIOGRAPHY The b i b l i o g r a p h i c m a t e r i a l i s d i v i d e d i n t o two major headings: 1. Reference M a t e r i a l Cited,and 2. Sources Consulted. The f i r s t s e c t i o n , reference m a t e r i a l c i t e d , i s the b i b l i o g r a p h y of the sources c i t e d at the end of each chapter (end of each s e c t i o n i n chapter 3) placed i n a l p h a b e t i c a l order by the author's l a s t name, or t i t l e of work i f no author i s given. The second s e c t i o n , sources c o n s u l t e d , i s a b i b l i o g r a p h i c l i s t i n g of the m a t e r i a l consulted which r e l a t e s to v a r i o u s areas of concern w i t h i n the t h e s i s . T h i s s e c t i o n i s broken i n t o three subsections: A. Energy Conservation/Thermal Design, B. S o l a r R a d i a t i o n S t u d i e s / A p p l i c a t i o n s , and C. Northern S t u d i e s / B u i l d i n g . The m a t e r i a l i s placed i n a l p h a b e t i c a l order by the author's l a s t name or the t i t l e of the work i f no author i s g i v e n ; the Canadian government p u b l i c a t i o n s have 7 s u b c a t a g o r i e s where the p u b l i c a t i o n s are l i s t e d by p u b l i c a t i o n number from e a r l i e s t to l a t e s t p u b l i c a - t i o n date. 241 1. REFERENCE MATERIAL CITED A l a s k a , State o f . Alaska Statewide Housing Study, 1971, V o l . 1: Housing C o n d i t i o n s and Needs. Juneau, A l a s k a . Anderson, Bette Roda. Weather i n the West. American West P u b l i s h i n g Co., Palo A l t o , C a l i f . , 1975. A r c h i t e c t u r a l Glass Products. Manufacturers Pamphlet. Canadian P i t t s b u r g h I n d u s t r i e s , 1976. ASHRAE. Handbook of Fundamentals. American S o c i e t y of Heating, R e f r i g e r a t i n g and A i r C o n d i t i o n i n g Engineers, New York, 1967. B i t t e r , C., and I e r l a n d , J.F.A.A. " A p p r e c i a t i o n of Su n l i g h t i n the Home." CIE Proceedings: S u n l i g h t i n B u i l d i n g s , pp. 27-37. E d i t e d by R. G. Hopkinson. U n i v e r s i t y of Newcastle- Upon-Tyne, England, 1965. Canada. Department of Transport. M e t e o r o l o g i c a l Branch, Toronto. C l i m a t i c Normals, Volumn 5, Wind, 1968. Temperature and P r e c i p i t a t i o n Tables f o r B r i t i s h Columbia, 1967. Canada. N a t i o n a l Research C o u n c i l . D i v i s i o n of B u i l d i n g Research, Ottawa. B e t t e r B u i l d i n g B u l l e t i n #5. Permafrost and B u i l d i n g s , 1955. CBD 26. Ground F r e e z i n g and Fr o s t Heaving, 1962. CBD 28. Wind on B u i l d i n g s , 1962. CBD 39* S o l a r Heat Gain Through Glass W a l l s , 1963. CBD 56. Thermal and Moisture Deformations i n B u i l d i n g M a t e r i a l s . 1964. CBD 59. P r i n c i p l e s of S o l a r Shading, 1964. Housing Note No. 21. I n s u l a t i o n Thickness f o r Houses, 1964. NRC 8151. Determining the Optimum Thichness of I n s u l a t i o n f o r Heated B u i l d i n g s , T965T > NRC 8152. Humidity and B u i l d i n g s , 1964. NRC 9132. Moisture Accumulation i n Roof Spaces Under Extreme Winter c o n d i t i o n s , 1966. CBD 89. Ice on Roofs, 1967. 242 CBD 116. D u r a b i l i t y of Concrete Under Winter C o n d i t i o n s , 1969T " Housing Note No. 31. Heat Losses From House Basements, 1969. CBD 126. I n f l u e n c e of O r i e n t a t i o n on E x t e r i o r Cladding, 1970. CBD 128. Ad f r e e z i n g and Fr o s t Heaving of Foundations, 1970. NRCC 11843. C o n s t r u c t i o n on Permafrost, 1971. CBD 146. C o n t r o l of Snow D r i f t i n g About B u i l d i n g s , 1972. TT 1547. State Committee of the C o u n c i l of M i n i s t e r s f o r B u i l d i n g Problems. I n s t r u c t i o n s For The Design of Townsites, F a c t o r i e s , B u i l d i n g s and S t r u c t u r e s i n The Northern C o n s t r u c t i o n - C l i m a t i c Zone, Moscow 1967. T r a n s l a t e d by V. Pope, 1972. CBD 157. P r o p e r t i e s and Behavior of P l a s t i c s , 1973. NRCC 13565. E f f e c t of Indoor Shading and Heater C o n f i g u r a t i o n s on the Surface Tempera- ture Performance of a Sealed Double Glazed window, 1973. NRCC 14588. Condensation i n E l e c t r i c a l l y Heated Houses, 1974. C a p i t a l S i t e S e l e c t i o n Committee. "The S e l e c t i o n of a C a p i t a l S i t e W i l l Soon Be I n Your Hands." Supplement to a l l Alaskan newspapers, Summer 1976. C a r l s o n , A x e l . Design of Roofs f o r Northern Residen- t i a l C o n s t r u c t i o n . Cooperative Extension S e r v i c e , U n i v e r s i t y of A l a s k a , C o l l e g e , A l a s k a , 1973. C a r l s o n , A x e l . E f f e c t of Wall Framing on Heat Loss. Cooperative Extension S e r v i c e , Univ. of A l a s k a , 1972. C a r l s o n , A x e l . S p e c i a l Condiderations f o r B u i l d i n g i n A l a s k a . Cooperative Extension S e r v i c e , Univ. o f A l a s k a , 1972. C a r l s o n , A x e l . Warm F l o o r s Are E s s e n t i a l f o r Comfort. Cooperative Extension S e r v i c e , U. of A., 1972. C l u n i e , David. "Two New Northern Communities." Contact. B u l l e t i n of Urban and Environmental A f f a i r s , V o l . 8, No. 3 (August 1976): 309-315. F a c u l t y of Environmental S t u d i e s , Univ. of Waterloo, O n t a r i o . 243 Cook, E a r l . "The Flow of Energy i n an I n d u s t r i a l S o c i e t y . " S c i e n t i f i c American (September 1971): 135-144. C u l j a t , B o r i s . Climate and the B u i l t Environment i n the North. A r k i t e k t u r s e k t i o n e n s t r y c k e r i , KTH, Stockholm, Sweden, 1975. E r s k i n e , Ralph. "The Challenge of High L a t i t u d e s . " RAIC J o u r n a l (January 1964). . "Community Design f o r P r o d u c t i o n , f o r Pub- l i c a t i o n , or f o r the People." RAIC J o u r n a l (January 1964). . " A r c h i t e c t u r e and Town Planning i n The North." P o l a r Record, V o l . 14, No. 89 (1968); 165-171. . "Feedback on Community Planning." Man i n the North T e c h n i c a l Paper, Conference on B u i l d i n g i n Northern Communities: 1973, PP. 126-129, U n i v e r s i t y of Montreal. The A r c t i c I n s t i t u t e of North America, Ottawa. F l o y d , Peter. "The North Slope Center: How Was i t B u i l t ? " The Northern Engineer ( F a l l 1974): 22-36. Ford, George. B u i l d i n g Height Bulk and Form. Harvard C i t y Planning Studies 11, 1931. "Geodesic Domes". U n i v e r s i t y of Alaska Short Course. I n s t r u c t e d by R. Mathews. C o l l e g e , A l a s k a , 1974. G i n k e l , Blanche Lemco van. "New Towns i n The North." Contact, B u l l e t i n of Urban and Environmental A f f a i r s , V o l . 8, No. 3 (August 1976): 298-308. G.S.A. Energy Conservation Design G u i d e l i n e s f o r New O f f i c e B u i l d i n g s . General S e r v i c e s Administra- t i o n , Washington, D.C, 1975. Hay, John. R a d i a t i o n Data f o r B.C. and A l b e r t a . Unpublished at time of use. Geography Depart- ment, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, 1976. Heydecker, Wayne, and Goodrich, Ernest. " S u n l i g h t and D a y l i g h t f o r Urban Areas." 1929. Regional Survey of New York and I t s E n v i r o n s , V o l . V l l . pp. 142-201. Committee on Regional Plan of New York and I t s E n v i r o n s , 1929. Hopkinson, R.G.; Petherbridge, P.; and Longmore, J . D a y l i g h t i n g . England, 1966. Heinemann: London. 244 "House of the Week." Fairbanks D a i l y News Miner. Fairb a n k s , A l a s k a , September 10, 1976. "House of the Week." Anchorage D a i l y Times. Anchor- age, A l a s k a , May 21, 1976. H.U.D.A. A B u i l d e r s ' Guide to Energy Conservation. Housing and Urban Development A s s o c i a t i o n of Canada, Toronto, 1975. Jayaweera, K.O.L.F.; Wendler, G.; and Ohtake, T. "Low Cloud Cover and the Winter Temperature of Fairbanks." Climate i n the A r c t i c . Geophysical I n s t i t u t e , Univ. of A l a s k a , F a i r b a n k s , 1975. L e c k i e , J . ; Masters, G.; Whitehouse, H.; and Young, L. Other Homes and Garbage. S i e r r a Club Books, San F r a n c i s c o , 1975. L e d b e t t e r , Burgess. Part 111, The Temporary Environ- ment of Fort Wainwright: Housing. Unpublished at time o f use. Cold Regions Research Engin- e e r i n g Laboratory (CRREL), Hanover, N. H. 1976. The M i l e p o s t , A l l - t h e - N o r t h T r a v e l Guide. E d i t e d by Bob Henning. Alaska Northwest P u b l i s h i n g Co. Anchorage, A l a s k a , 1974. M i r t h , Richard A. "The Sun Can Heat Our Homes - Even I n The North." The Northern Engineer ( F a l l 1974): 3-10. Naramore, B a i n , Brody, and Johan6on. Alaska State C a p i t a l R e l o c a t i o n Study. Boeing Computer S e r v i c e s , J u l y 1974. Neubauer, Loren W. "The Semi-Solar Low Cost House Saves Energy Through Environmental O r i e n t a t i o n . " IAHS Proceedings: I n t e r n a t i o n a l Symposium on Housing Problems - 1976, V o l . 2. pp. 1415-1429. Clemson U n i v e r s i t y , 1976. Olgyay, V i c t o r . Design With Climate. P r i n c e t o n Univ- e r s i t y Press, P r i n c e t o n , New Jers e y , 1963. Oswalt, Wendell H. Alaskan Eskimos. Chandler P u b l i s h - i n g Co., 1967. A Q u a l i t a t i v e C h e c k l i s t f o r Compact Housing. Greater Vancouver Regional D i s t r i c t (GVRD), Planning Department, Vancouver, 1975* Rapoport, Amos. House Form and C u l t u r e . P r e n t i c e - H a l l I n c . , Englewood C l i f f s , N. J . , 1969. 245 R i c e , Eb. "Northern C o n s t r u c t i o n : S i t i n g and Founda- t i o n s . " The Northern Engineer (S p r i n g 1973): 11-18. . "The I d e a l A r c t i c House - 11.» The Northern Engineer (Summer 1973): 18-24. . "Heating The I d e a l A r c t i c House - 111." The Northern Engineer ( F a l l 1973): 16-23. . "Vapor B a r r i e r s , The I d e a l A r c t i c House - IV." The Northern Engineer (Winter 1973/74): 18-24. . "Windows." The Northern Engineer (Spring 1974): 10-14. R i c e , Eb. I n s t r u c t o r of A r c t i c Engineering (CE 603 & CE 604), Class Notes. U n i v e r s i t y of A l a s k a , 1973. Road Map of Southern A l a s k a . Standard O i l Company of C a l i f o r n i a (Chevron). The H. M. Gousha Co., San Jose, 1973. Schoenauer, Norbert. "New Town Design and C l i m a t i c F a c t o r s . " Man i n the North T e c h n i c a l Paper. Conference on B u i l d i n g i n Northern Communities: 1973, U n i v e r s i t y of Montreal, pp. 41-47. The A r c t i c I n s t i t u t e of North America. Schoenauer, Norbert. "Fermont, a New V e r s i o n of the Company Town." J o u r n a l of A r c h i t e c t u r a l Educa- t i o n (JAE). V o l . XXIX, No. 3 (February 1976): 10,11. Steadman, P h i l i p . Energy, Environment and B u i l d i n g . Cambridge U n i v e r s i t y P r e s s , London/New York, 1975. U.S. Department of Commerce, N a t i o n a l Oceanic and Atmospheric A d m i n i s t r a t i o n (NOAA). N a t i o n a l C l i m a t i c Center, A s h v i l l e , N. C. L o c a l C l i m a t o l o g i c a l Data. Annual Summary w i t h Comparative Data: Anchorage, Alaska. 1973. F a i r b a n k s , A l a s k a . 1974. Talkeetna, A l a s k a . 1974* M i n n e a p o l i s - S t . P a u l , Minnesota. 1974. Monthly Normals of Temperature, P r e c l p l t a t i o n T and Heating and C o o l i n g Degree Days, 1941-70,-Alaska. August 1973. Monthly Averages of Temperature and P r e c i p i t a - t i o n f o r State C l i m a t i c D i v i s i o n s , 1941-70. A l a s k a , J u l y 1973. 246 U.S. G e o l o g i c a l Survey. Anchorage (C-8) Quadrangle, 1950, minor r e v i s i o n s 1971. 1" = 1 m i l e . Wang, L. R., and Tobiasson, Wayne. " L i f e Cycle Cost E f f e c t i v e n e s s of Modular Megastructures i n Cold Regions." IAHS Proceedings: I n t e r n a t i o n - a l Symposium on Housing Problems: 1976, V o l . 1, pp. 760-776. I n t e r n a t i o n a l A s s o c i a t i o n f o r Housing Science (IAHS) P u b l i c a t i o n , Clemson U n i v e r s i t y , 1976. Wechsberg, James. "Morketiden." New Yorker (March 18, 1972). "When the House-Warming Sun Goes Down, Movable I n s u l a - t i o n Goes Into P l a c e . " Sunset (November 1976): 166-168. Z r u d l o , Leo R. "User Designed Housing f o r the I n u i t of A r c t i c Quebec." The Northern Engineer ( F a l l 1975): 36-44. 247 SOURCES CONSULTED Energy Conservation/Thermal Design: AIA. Energy and the B u i l t Environment* American I n s t i t u t e of A r c h i t e c t s Research C o r p o r a t i o n , Washington D.C, 1974. AIA. Energy Conservation i n B u i l d i n g Design. American I n s t i t u t e of A r c h i t e c t s , Washington D.C, 1974. Arums and Dodge. "Energy C o n s i d e r a t i o n s : Q u a n t i t a t i v e Methods i n Teaching A r c h i t e c t u r e . " DMG-DRS Jo u r n a l ( J u l y - Sept. 1975). B r a i n e r d , John. Working with Nature. Oxford Univer- s i t y P r ess, New York, 1973. C a u d i l l , W.W. A Bucket of O i l : Humanistic Approach to B u i l d i n g Design f o r Energy Conservation. Cahners Books, Boston, 1974. Clegg, Peter. New Low-Cost Sources of Energy f o r the Home. Garden Way P u b l i s h i n g , C h a r l o t t e , Vermont, 1975. Dubin, M i n d e l l , and Bloome A s s o c i a t e s . T o t a l Energy. A T e c h n i c a l Report from E d u c a t i o n a l F a c i l i t i e s L a b o r a t o r i e s , New York, May 1970. Dubin, Fred S. "GSA's Energy Conservation Test B u i l d i n g - A Report." A c t u a l S p e c i f y i n g Engineer (August 1973): 8 4 - 9 2 . ' Egan, M. David. Concepts i n Thermal Comfort. P r i n t i c e H a l l , Englewood C l i f f s , N. J . , 1975. England. Department of the Environment. Energy Con- s e r v a t i o n : A Study of Energy Consumption i n B u i l d i n g s and P o s s i b l e Means o f Saving Energy i n Housing. BRE Working Party Report, B u i l d i n g Research Establishment, Garston, Watford, England, 1975. Gordon, Alex. "Future O f f i c e Design: Energy I m p l i c a - t i o n s . " J o u r n a l of A r c h i t e c t u r a l Research (JAR) (September 1974): 6-14. G r i f f i n , C. W. Energy Conservation i n B u i l d i n g s , Techniques f o r Economical Design. The Construc- t i o n S p e c i f i c a t i o n s I n s t i t u t e , Washington D.C, 1974. 248 GSA. Energy Conservation G u i d e l i n e s f o r E x i s t i n g O f f i c e B u i l d i n g s . General S e r v i c e s Adminis- t r a t i o n , P u b l i c B u i l d i n g s S e r v i c e , Washington D. C , 1975. Hanna, Sherman. "Energy Conservation and D u r a b i l i t y C o n s i d e r a t i o n s i n Designing Houses f o r Low Income F a m i l i e s . " IAHS Proceedings: I n t e r - n a t i o n a l Symposium on Housing Problems, 1976, V o l . 2. Clemson U n i v e r s i t y , 1976. Knowles, Ralph. Energy and Form, an e c o l o g i c a l approach to urban growth. MIT Press, Cam- br i d g e , Mass., 1974. McGuinness, W i l l i a m J . , and S t e i n , Benjamin. Mechanical and E l e c t r i c a l Equipment f o r B u i l d i n g s . John Wiley and Sons, I n c . , New York, 1971. McHarg, Ian L. Design with Nature. Published f o r The American Museum of N a t u r a l H i s t o r y , Doubleday and Co, I n c . , Garden C i t y , New York, 1969. Paperback ed. 1971. Meer, W. J . van der. "Underground and Earth Covered Housing Deserves C o n s i d e r a t i o n . " IAHS Proceed- i n g s , 1976, V o l . 2. Meng, E r i c G. The A P P l i c a t i n of Passive and A c t i v e Energy Conservation P r i n c i p l e s i n The Design of Low-Rise Apartment U n i t s . Masters of Arch- i t e c t u r e T h e s i s , U n i v e r s i t y of Washington, S e a t t l e , 1974. N i c h o l l s , Robert. "Determination of Optimal Invest- ment T r a j e c t o r i e s f o r S i z i n g I n s u l a t i o n , Heating, and C o o l i n g Components of Homes." IAHS Proceed- i n g s , 1976, V o l . 2. Page, J . K. "The O p t i m i z a t i o n of B u i l d i n g Shape to Conserve Energy." J o u r n a l of A r c h i t e c t u r a l Research (JAR), (September 1974): 20-28. Rogers, T. S. Design of I n s u l a t e d B u i l d i n g s f o r Va r i o u s Climates. A r c h i t e c t u r a l Record Book. Roberts P r i n t i n g Co., Toledo, Ohio, 1951. Rogers, T. S. Thermal Design of B u i l d i n g s . John Wiley and Sons, I n c . , New York, 1964. Smith and G l o s t e r . "The Eco-Design P r o j e c t . " DMG-DRS J o u r n a l ( J u l y - Sept. 1975). Sunshine, Donald R. "Space and Energy Conservation Housing Prototype Unit Development." IAHS Proceedings, 1976, V o l . 2. 249 U. S. N a t i o n a l Science Foundation. Research A p p l i e d to N a t i o n a l Needs (RANN). Energy Research and Technology. Washington D. C., 1975. Three Summaries From the N a t i o n a l Science Foundation on the P o t e n t i a l Use of S o l a r Energy For Heating and Co o l i n g B u i l d i n g s i n V a r y i n g L o c a t i o n s . Washington D. C., U. S. Department of Commerce. N a t i o n a l Bureau of Standards. Design and E v a l u a t i o n C r i t e r i a f o r Energy Conservation i n New B u i l d i n g s . Washington D. C., 1974. V a l e , Brenda and Robert. Autonomous House. Design and Planning f o r S e l f - s u f f i c i e n c y . Thames and Hudson, London, 1975. White, Dale. "Design Methods f o r Energy onserv a t i o n i n B u i l d i n g s . " DMG-DRS J o u r n a l (July-Sept. 1975). W i s n i k i , P a u l . " B u i l d i n g s and Energy." DMG-DRS Jo u r n a l ( J u l y - September 1975). 250 S o l a r R a d i a t i o n S t u d i e s / A p p l i c a t i o n s : Addleson, L y a l l . S u n l i g h t Geometry. D a n i e l s , F a r r i n g t o n . D i r e c t Use of the Sun's Energy. B a l l a n t i n e Books, New York, 1974. DeChira, J . , and Koppelman, L. » Manual of Housing/ Planning and Design C r i t e r i a . P r i n t i c e - H a l l , Englewood C l i f f s , N. J . , 1975. Hand, I r v i n g F. "Charts to Obtain S o l a r A l t i t u d e s and Azimuths." Heating and V e n t i l a t i n g (October 1948). M o o r c r a f t , C o l i n . " S o l a r Energy i n Housing." A. D. Jo u r n a l (October 1973): 634-661. Morgan, C. J . "S u n l i g h t and I t s E f f e c t on Human Behavior and Performance." CIE Proceedings: S u n l i g h t i n B u i l d i n g s , pp. 21-26. E d i t e d by R. G. Hopkinson. England, 1965. R i t c h i e , J . H., and Page, J . K. "Standards f o r Sun- shine and Sun C o n t r o l . " CIE Proceedings: S u n l i g h t i n B u i l d i n g s , pp. 39-47. Robinson, Nathan. S o l a r R a d i a t i o n . E l s e v i e r Pub- l i s h i n g Co, New York, i y b b . Snowden, Raymond D. Hel i o t h e r m i c Planning: A Compara- t i v e A n a l y s i s of the E f f e c t s of So l a r R a d i a t i o n on the Thermal Balance (by passive means) i n a Modeled B u i l d i n g S i t u a t i o n . Masters of Arch- i t e c t u r e T h e s i s , U n i v e r s i t y of Washington, S e a t t l e , 1975. Thomason, Harry. S o l a r House Heating and A i r Condi- t i o n i n g Systems. Edmund S c i e n t i f i c Co., New Jersey , 1975. Walsh, J . W. T. The Science of D a y l i g h t . Pitman, New York, 1961. 251 C. Northern Studies/Building Brody, Hugh. The Peoples' Land. Harmondswarth: Penguin, 1975. Canada. National Research Council. Division of Building Reaearch, Ottawa. 1. General: NRC.5514. Kan and His Thermal Environment, 1960. CBD 14. Weather and Buildings, 1961. 2. Soils/ Foundations: CBD 3. Soils and Buildings, 196O. CBD 62. Trees and Buildings, 1965. NRCC 11373. Permafrost as an Ecological Factor, 1970. CBD 148. Foundation Movements, 1972. NRCC 12716. Thermal Effects in Permafrost, 1972. ~ CBD 156. Drainage Around Buildings, 1973. 3. Material Performance: CBD 117. Weathering of Organic Building Mater- i a l s , 1969. CBD 123. Cold Weather Masonry Construction, 1970. NRCC 12443. Field Study of Thermal Performance of Exterior Steel Frame Walls, 1972. NRCC 13858. Thermal Performance of Exterior Steel-Stud Frame Walls, 1972. CBD 149. Thermal Resistance of Building Insul- ation, 1972. NRCC 14403. Cold-Weather Performance of Hinged Exterior Doors, 1974. 4. Solar Radiation/Windows: CBD 17. Daylight Design, 1961. CBD 25. Window Air Leakage, 1962. CBD 58. Thermal Characteristics of Double Windows, 1964. NRC 9528. Tables of Solar Altitude, Azimuth, Intensity and Heat Gain Factors for Latitudes from 43 to 55 Degrees North, T9T7I DBR No.355. Performance Standards for Space and Site Planning for Residential Development, 1968. 252 CBD 101. Reflective Glazing Units, 1968. NRC 11111. Solar Radiation on Cloudy Days, 1969.- CBD 122. Radiation and Other Weather Factors, 1970. CBD 129. Potential for Thermal Breakage of Sealed Double-Glazing Units, 1970. 5. Roof Design; CBD 70. Thermal Considerations in Roof Design, 196T CBD 73. Moisture Considerations i n Roof Design, 196X CBD 99. Application of Roof Design Principles, ]9Zo~. ~ CBD 151. Drainage From Roofs, 1972. 6. Humidity/Moisture: CBD 1. Humidity i n Canadian Buildings, i960. CBD 4. Condensation on Inside Window Surfaces, 196^ " ~~ CBD 5* Condensation Between Panes of Double Windows, I960. ~~ CBD 9. Vapor Barriers i n Home Construction, 1960T Housing Note No. 7. Nail Popping: Moisture i s the Trouble-Maker, 1962. CBD 57. Vapor Diffusion and Condensation, 1964. NRC 9131. Moisture Accumulation in Walls Due to Air Leakage, 1966. 7. Air Movement: CBD 10i+. Stack Effect i n Buildings. 1968. CBD 107. ^Stack Effect i n Building Design. CBD 110. Ventilation and Air Quality. 1969. Carlson, Axel. Windows Regulate Relative Humidity. Building i n Alaska, Cooperative Extension Service, University of Alaska, College, Alaska, May 1971. . Comparative Insulation Values and Weights of Typical Wall Sections. Coop, Ext. Service, Univ. of Alaska, Feb. 1972. 253 C a r l s o n , A x e l . Heat Loss C o e f f i c i e n t s of B u i l d i n g M a t e r i a l . Coop. Extension S e r v i c e , Univ. of Ala s k a , Nov. 1972. . Heat Loss and Condensation i n Northern R e s i d e n t i a l C o n s t r u c t i o n ^ Coop. Ext. S e r v i c e , Univ. of Ak., Nov 1972. . "Design of F l o o r s f o r A r c t i c S h e l t e r s . " The Northern Engineer (Winter 1974/75): 38-46. E r s k i n e , Ralph. "Indigenous A r c h i t e c t u r e : A r c h i t e c t - ure i n the S u b a r c t i c Region." Perspecta 8, The Yale A r c h i t e c t u r a l J o u r n a l , 1963. Hartman, James R. A r c h i t e c t u r a l Design i n Heavy Snow Country. Masters of A r c h i t e c t u r e Thesi6, Univ. of Washington, S e a t t l e , 1975. Johnson, P h i l i p R., and Hartman, Charles W. Environ- e n t a l A t l a s of Alaska. U n i v e r s i t y of A l a s k a , C o l l e g e , A l a s k a , 1969. Man i n the North, 1970. Community Development i n the North. Progress Reports, P r o j e c t Reports. A r c t i c I n s t i t u t e of North America, Ottawa. Man i n the North T e c h n i c a l Paper. Conference on B u i l d i n g i n Northern Communities, 1973, Univ. of Montreal. The A r c t i c I n s t i t u t e of North America. 1973* Roundthewaite, C.F.T. " B u i l d i n g Design and C l i m a t i c F a c t o r s . " pp. 43-47. Aamot, H.W.C. "The Design of F l a t Roofs." PP. 47-51. A l l e n , G.B. "Low-Ri6e Housing Program." PP. 47-51. Z r u d l o , Leo. " P s y c h o l o g i c a l Problems and E n v i r - onmental Design." pp. 118-126. S t a i r s , K.W. "Community Development i n the North." pp. 129-13L C r i t t e n d e n , E.B. "Psycho-Graphic Design Pro- ceedures." pp. 131-133. Man i n the North T e c h n i c a l Paper» B u i l d i n g i n Northern Communities, 1974. Report on Conference/ Workshop i n I n u v i k , N.W.T. Feb. 10-15, 1974. E d i t e d by M. Glover. A r c t i c I n s t i t u t e of North America, Ottawa. 1974. M a t t h i a s s o n , J . S. Resident Perceptions of Qu a l i t y of L i f e i n Resource F r o n t i e r Communities. Center of Settlement S t u d i e s , U n i v e r s i t y of Manitoba, Winnipeg, 1971. 254 McFadden, T e r r y . "Experimental Housing P r o j e c t . " The Northern Engineer ( S p r i n g 1972): 12-18. Ostergaard, Peter E. Q u a l i t y of L i f e i n a Northern C i t y : A S o c i a l Geography of Y e l l o w k n l f e , N.W.T. Masters T h e s i s , Department of Geography, Univ. of B r i t i s h Columbia, Vancouver, 1976. Parsons, G. F. A r c t i c Suburbs: A Look at the North's Newcomers" Mackenzie D e l t a Research P r o j . No.8. Ottawa: Northern Science Research Group, Department of Ind i a n A f f a i r s and Northern Development, 1970. R i c e , Eb. "Permafrost: I t s Care and Feeding." The Northern Engineer (Winter 1972): 21-26. S c h a r f e r , David. "Mobile and Modular Homes f o r Cold Regions." The Northern Engineer (Spring 1971): 4-6. Searby, Harold W., and Branton, C. Ivan. " C l i m a t i c C o n d i t i o n s i n A g r i c u l t u r a l Areas i n A l a s k a . " Climate i n the A r c t i c . Geophysical I n s t i t u t e , U n i v e r s i t y of A l a s k a , Fairbanks, 1975. Siemens, L.B. " S i n g l e - E n t e r p r i s e Communities on Canada's Resource F r o n t i r e . " Contact, B u l l e t i n of Urban and Environmental A f a a i r s , V o l . 8, No. 3 (August 1976). . Planning Communities f o r the North, Some S o c i a l and P s y c h o l o g i c a l I n f l u e n c e s . Center f o r settlement S t u d i e s , U n i v e r s i t y of Manitoba, S e r i e s 5: Occasional Papers, No. 1, 1969. Stanford Research I n s t i t u t e . Planning G u i d e l i n e s f o r the State of A l a s k a , Prepared f o r the O f f i c e of the Governor, State of A l a s k a , Dec. 1969. Wentink, T u n i s , J r . "Wind Power f o r A l a s k a , An Impos- s i b l e Dream?" The Northern Engineer (Winter 1973/74): 8-17. 255 APPENDIX A ANALYSIS OF THE CLIMATIC FACTORS IN THE SUSITNA VALLEY AREA 1. INTRODUCTION 2. GEOGRAPHIC AREA 3. SOLAR RADIATION A. Sunpath Diagram B. R a d i a t i o n C a l c u l a t o r C. Sun A l t i t u d e D. Sun Asimuth E. Number of D a y l i g h t Hours F. Mean Cloud Cover G. S o l a r R a d i a t i o n on B u i l d i n g Surfaces H. A n a l y s i s of Northern S o l a r R a d i a t i o n Data 4. TEMPERATURE 5. PRECIPITATION 6. WIND 7. RELATIVE HUMIDITY/MOISTURE POTENTIAL 8. BIOCLIMATIC CHART 9. TIMETABLE OF CLIMATIC NEEDS 256 1. INTRODUCTION This i s an a n a l y s i s of s o l a r r a d i a t i o n , temp- e r a t u r e , p r e c i p i t a t i o n , wind, and humidity/moisture p o t e n t i a l f o r the S u s i t n a V a l l e y l o c a l i n the Alaskan T r a n s i t i o n a l Zone. Ex p l a n a t i o n s are given f o r the v a r i o u s c h a r t s and graphs presented here. Comfort f a c t o r s are described i n the b i o c l i m a t i c chart and t i m e t a b l e of c l i m a t i c needs at the end of the appendix. There are two " s e c t i o n s " d e a l i n g w i t h s o l a r heat g a i n . The f i r s t i s based on the sunpath diagram and V i c t o r olgyay's r a d i a t i o n c a l c u l a t o r , while the other i s based on John Hay's computer programmed r a d i a t i o n v a l u e s f o r Whitehorse, Yukon T e r r i t o r y , (61° north l a t i t u d e ) . I f d i s c r e p e n c i e s i n i n f o r m a t i o n e x i s t , John Hay's values would most l i k e l y be more accurate. Much of the i n f o r m a t i o n from t h i s a n a l y s i s i s used w i t h i n the t e x t . Chapter 2, the c l i m a t i c com- pa r i s o n s , draws h e a v i l y from t h i s m a t e r i a l . 257 2. GEOGRAPHIC AREA The Talkeetna weather s t a t i o n , +350 f e e t e l e v a - t i o n above sea l e v e l , i s l o c a t e d 80 m i l e s north of Anchorage and 44 m i l e s north of the Willow development area. I t l i e s at the upper end of the broad S u s i t n a R i v e r V a l l e y near the j u n c t i o n of the S u s i t n a , T a l k e e t n a , and C h u l i t n a R i v e r s . To the east the Talkeetna Mountains r i s e r a p i d l y i n a north/south l i n e while the Alaska Range r i s e s some distance to the north with Mt. Mckinley appearing to the northwest. The v a l l e y area v a r i e s between low l y i n g swamp land and s l i g h t l y higher ground sup p o r t i n g the growth of b i r c h and spruce t r e e s . The r i v e r flows south winding i t s way i n t o Cook I n l e t west of Anchorage. The v a l l e y o r i e n t a t i o n being north/south leaves a broad area open to the low winter sun and i n f l u e n c e s the wind pa t t e r n s i n t o a north/south p r o f i l e . r 258 - • • £ £ * - • <* I / • ' • K m * .*}f '-t* -' • '4*** - ̂  *•- ̂ po"*1 •' $ **\ Jia. 1 •• fjS '-Jr.* / - 259 3 . SOLAR RADIATION A. SUNPATH DIAGRAM The sunpath diagram p l o t s the path of the sun f o r each month, p r o j e c t i n g them onto a f l a t s u r f a c e . There are s e v e r a l types of sunpath diagrams, I chose to c o n s t r u c t the e q u i d i s t a n t type because: 1. I t i s the most commonly used by desi g n e r s , being manufactured and d i s t r i b u t e d by a major g l a s s company, and 2. The s o l a r a l t i t u d e angles are p l o t t e d e q u a l l y from the outside of the c i r c l e (0° a l t i t u d e ) to the center (90° a l t i t u d e ) . This becomes more c r i t i c a l at high l a t i t u d e s due to the low sun angle much of the time. Twelve noon i s represented by the center n o r t h / south l i n e with the hour l i n e s going o f f to both s i d e s , am (morning) to the east and pm (afternoon) to the west. From the diagram one can f i n d : 1. Azimuth of the sun at anytime of the day i n any month of the year, 2. S o l a r a l t i t u d e anytime of the day i n any month of the year, and 3. Length of the day d u r i n g any month. 260 261 B. RADIATION CALCULATOR The r a d i a t i o n c a l c u l a t o r , g r a p h i c a l l y p r o j e c t e d from V i c t o r O l g y a y ' s T o t a l R a d i a t i o n C a l c u l a t o r , i s used i n c o n j u n c t i o n w i t h the sunpath d iagram to d e t e r - mine the p o s s i b l e s o l a r r a d i a t i o n a v a i l a b l e on any day o f the y e a r . By r o t a t i o n o f t h e c a l c u l a t o r on the s u n - p a t h d i a g r a m , the r a d i a t i o n on a v e r t i c a l s u r f a c e c a n be r e a d f o r any o r i e n t a t i o n . The c u r v e d l i n e s combine d i r e c t and d i f f u s e r a d i a t i o n f o r a v e r t i c a l s u r f a c e w h i l e the s t r a i g h t l i n e s p r o j e c t i n g out from the c e n t e r g i v e d i r e c t r a d i a t i o n on a h o r i z o n t a l s u r f a c e and t o t a l r a d i a t i o n ( d i r e c t and d i f f u s e ) on a h o r i z o n t a l s u r f a c e . The maximum r a d i a t i o n on a v e r t i c a l s u r f a c e i s a v a i l a b l e when the sun • s a l t i t u d e i s c l o s e to 32°, w h i l e on a h o r i z o n t a l s u r f a c e the h i g h e r the a l t i t u d e the more r a d i a t i o n i s r e c e i v e d . R a d i a t i o n v a l u e s a r e i n B T U ' s per hour per s q u a r e f o o t o f s u r f a c e a r e a . 262 p ^ s t ^ M wrm QUNVOB. 263 SUN ALTITUDE This chart p l o t s the l a t i t u d e of the sun above the h o r i z o n at mid-day f o r each month. For the Su s i t n a V a l l e y , the sm a l l e s t angle i s about on Decern er '21st and 5 l £ ° on June 2 1 s t . During the equinoxes, September 2 1 s t and March 2 1 s t , the angle would be 7 way between these two angles, 28° a l t i t u d e . I t has been documented that the b i o l o g i c a l e f f e c t of s o l a r r a d i a t i o n i s non-existent below 6 ° a l t i t u d e , while the u l t r a - v i o l e t r a d i a t i o n disappears when the a l t i t u d e i s l e s s than 1 2 * . From the f i r s t part of November to the f i r s t of February the sun remains below the 10* l e v e l so that s o l a r heat gain d u r i n g t h i s time i s minimal. The s o l a r a l t i t u d e may be c a l c u l a t e d by the equation, s i n - cos © c o s ^ cos t + s i n © s i n S , S = s o l a r d e c l i n a t i o n ( 0 * at equinoxes to +23%" to -23-?" at s o l s t a c e s ) , t = hours from noon ( 1 5 * = 1 hour, 0 at noon), © = l a t i t u d e ( 6 2 ° i n t h i s case). As an a l t e r n a t i v e , the sun angle may be s c a l e d graph- i c a l l y o f f the sunpath diagram with a p i v o t i n g sun a l t i t u d e s c a l e . SUN AZIMUTH The sun's azimuth i s the angle t r a v e l e d by the sun during the day pr o j e c t e d on a h o r i z o n t a l s u r f a c e . The sunpath diagram i s an e q u i d i s t a n t p r o j e c t i o n o f the sun's azimuth t r a v e l d u r i n g each month. So on March 2 1 s t or September 2 1 s t the sun r i s e s i n the Ea s t , 90® azimuth, and s e t s i n the West, 2 ? 0 ° azimuth, with a t o t a l t r a v e l on 180° i n 12 hours. The azimuth i s measured from North, 0 ° . The chart shows the change of azimuths over the year by months. The higher the l a t i t u d e , the greater the azimuth change from season to season, the sun t r a v e l s greater d i s t a n c e s i n the summer and s h o r t e r d i s t a n c e s i n the wi n t e r . At higher l a t i t u d e s , the longer the summer 264 days become and the shorter the winter days become t i l l we reach the arctic circle where there i s no sun during the winter solstace and 24 hours of sun during the summer solstace (azimuth travel from 0° to 360°). 265 » LlAKJ FPP-> , I ^ L . A f K H A Y J t ' i J J U L . AOS., 5 3 ^ • r4°Y, '..PES-, 266 E. NUMBER OF DAYLIGHT HOURS This graph p l o t s the estimated a c t u a l hours of sunshine per day on a monthly b a s i s . T his graph does not d i s t i n g u i s h when the sunshine most o f t e n occurs durin g the day (morning, a f t e r n o o n , evening, or n i g h t ) as t h i s i n f o r m a t i o n i s not a v a i l a b l e . I t can be seen that some months f a l l above the 50% l i n e , w i t h the peak o c c u r i n g i n l a t e May/early June before the summer s o l s t a c e , with an average of 10 hours of sunshine i n a day l8-£ hours long. F. MEAN CLOUD COVER The m a j o r i t y of c l e a r days occur i n the winter months of December and January d u r i n g which the days are s h o r t , to 6 hours, and the n i g h t s l o n g , 18 to 19-J hours. From A p r i l to August the number of c l e a r days are s m a l l , from 1 to 6 per month. During t h i s time, the combination of p a r t l y cloudy and c l e a r days t o t a l l e s s than 50% of the time - most of t h i s time the s k i e s are cloudy. March and September have the highest percent of sunshine. During these months the l e n g t h of day and night are c l o s e to equal, 12 hours, and the c l e a r and p a r t l y cloudy days t o t a l 15 to 17 per month. The h o r i z o n t a l surface gets more r a d i a t i o n than any other surface from m i d - A p r i l through August, peaking i n June. The south f a c i n g v e r t i c a l surface r e c e i v e s the most s o l a r r a d i a t i o n f o r the remainder of the year. An east or west v e r t i c a l surface w i l l get approx- i m a t e l y the same amount of r a d i a t i o n during the summer s o l s t a c e as the south f a c i n g v e r t i c a l surface gets durin g the equinoxes. 267 \ 268 G. SOLAR RADIATION ON BUILDING SURFACES Using the sunpath diagram for 62 north latitude and the radiation calculator, the amount of total radiation (no cloud cover) was plotted for vertical surfaces facing north, south, east, and west, and for a horizontal surface for each month of the year. The horizontal surface and the north, east, and west ver t i c a l surfaces pick up only diffuse radiation during the winter months making their winter values much lower than those of the south facing vertical -surface. The south facing vertical surface reaches i t s peak during the equinoxes dropping down in the summer when the sun angle i s higher. With the sun angle lower in the mornings and afternoons the maximum radiation for the north, east, and west vertical surfaces occur during the summer solstace, the east surface picking up the majority of radiation in the mornings and the west surface getting i t s in the afternoons. The north side vertical surface gets summer sun in early mornings and late evenings. 269 J A U FBg H A g - ' A P g . M A Y OUM JIM AU5 Sep- <flsr Kigy P S i . a w * -9-JSSL E3 =1 3 hdnrrr: •ten :::-rt:: : : : - : : : : : t : .• £*XJTH : : M i mm 270 H. ANALYSIS OF NORTHERN SOLAR RADIATION DATA Percentage comparison c h a r t s were constructed u s i n g Dr. John Hay s s o l a r r a d i s t i o n data f o r White- horse, Y.T., approximately 61°north l a t i t u d e . The data gives s o l a r r a d i a t i o n values f o r a l l i n c l i n a t i o n s (10° i n t e r v a l s ) and o r i e n t a t i o n s (45° i n t e r v a l s ) f o r each month of the year. I t i s assumed that the S u s i t n a V a l l e y w i l l experience more cloud cover than White- horse causing l e s s d i r e c t s o l a r r a d i a t i o n over the y e a r l y p e r i o d , e s p e c i a l l y i n the l a t e summer and e a r l y f a l l when the S u s i t n a V a l l e y gets i t s m a j o r i t y of r a i n f a l l . CHART 1: D i r e c t , D i f f u s e , and R e f l e c t e d R a d i a t i o n This chart compares these three d i f f e r e n t sources of s o l a r r a d i a t i o n (%) f o r each month. The c o l d e s t months have the highest percentages f o r d i r e c t r a d i a t i o n while from Feb. through A p r i l the d i r e c t r a d i a t i o n drops and the r e f l e c t e d r a d i a t i o n becomes high (albedo). The d i r e c t r a d i a t i o n averages a l i t t l e over 52% of the t o t a l r a d i a t i o n ; the d i f f u s e r a d i a t i o n , 35%> and the r e f l e c t e d r a d i a t i o n , \3%* CHART 2: % of Ye a r l y T o t a l R a d i a t i o n T h is chart p l o t s the t o t a l r a d i a t i o n ( d i r e c t , d i f f u s e , and r e f l e c t e d ) f o r each month. The c o l d e s t months, mid-October through Mid-February, r e c e i v e o n l y 10% of the t o t a l y e a r l y r a d i a t i o n . CHARTS 3 ,4,5, & 6: % of D i r e c t , D i f f u s e , and R e f l e c t e d R a d i a t i o n on O r i e n t a t i o n s : North, East, South, West, and H o r i z o n t a l These c h a r t s compare the d i r e c t , d i f f u s e , and r e f l e c t e d s o l a r r a d i a t i o n on the 5 o r i e n t a t i o n s by seasons. Chart 3 p l o t s the w i n t e r season (November through February); chart 4 p l o t s the s p r i n g season (March through June); chart 5 p l o t s the summer season ( J u l y through October); and chart 6 p l o t s the % of t o t a l r a d i a t i o n f o r the whole year to the 5 o r i e n t a t i o n s . 271 During the winter season, the south orientation receives far more radiation than any other orientation. In the spring and summer the distribution evens out more with the horizontal surface receiving slightly more than the south vertical surface and the south vert i c a l surface receiving slightly more radiation than east or west orientations. Over the entire year, the solar radiation would have i t s greatest impact on the south vertical surface (2if.8%) of the yearly total), with the horizontal close behind (2i+% of the yearly total). The east and west orientations both receive about 19% of the yearly radiation while the north orientation receives 10% (nearly a l l diffuse and reflected radiation). 2?2 273 274  276 k* TEMPERATURE The winter p e r i o d , during which the ponds, l a k e s , and r i v e r s are f r o z e n , f a l l s between mid-October to m i d - A p r i l . Periods of c l e a r , c o l d weather a l t e r n a t e w i t h cloudy, m i l d weather d u r i n g the winter . F i r s t snow w i l l occur around l a t e September and w i l l s tay on the ground from mid-October t i l l A p r i l w i t h an o c c a s i o n a l "January Thaw" which reduces the snow l e v e l accumulation. The Alaska Range i s an e f f e c t i v e b a r r i e r between the very co l d a i r i n the i n t e r i o r and the warmer a i r i n the Cook I n l e t area. The extreme c o l d winter weather, a s s o c i a t e d with a high pressure system over I n t e r i o r A l a s k a , may lead to a succession of c l e a r days with temperatures dropping to -20° to -35°F (extremes to -1+0°F do not occur every y e a r ) . During December and January, because of the low sun angle, the d i u r n a l e f f e c t on temperature i s minimal. The major e f f e c t on temperature i s cloud cover, when the s k i e s c l e a r , the temperature drops r a p i d l y i n the low l y i n g areas when there i s l i t t l e wind. These are the c o l d temperature i n v e r s i o n s which account f o r most of the extremely c o l d tempera- t u r e s . The co l d e s t temperatures are normally i n the lowest v a l l e y areas s i n c e the c o l d a i r flows down to these areas ( k a t a b a t i c wind). On h i l l s i d e s s e v e r a l hundred feet up, the temperatures may be as much as 25° to 30°F warmer than the lower areas. Looking at the graphs, great temperature changes occur r a p i d l y i n A p r i l and May, warming up, and i n September and October, c o o l i n g o f f . The summer temp- era t u r e average high i n J u l y i s l e s s than 68°F. Extremes may reach 90°F on a r a r e day with a maximum extreme of 80°F more o f t e n . The d u r a t i o n of the winter i s an important design f a c t o r . The average d a i l y temperature i s 32°F ( f r e e z i n g ) or below f o r seven months of the year. For the remain- i n g 5 months the average temperature i s s l i g h t l y more than 50°F, with the highest monthly average of 58°F. 277 278 279 5. PRECIPITATION Average annual p r e c i p i t a t i o n i s approximately 28", n e a r l y twice that of Anchorage to the south and more than twice that of Fairbanks i n the i n t e r i o r . The average annual s n o w f a l l of 100" (8'4") f a l l s w ith n e a r l y even d i s t r i b u t i o n from November to March w i t h l e s s than 20" per month. The extremes drop 30" to 40" per month every few years while 50" to 70" have been recorded (maximum over 40 year p e r i o d ) . Maximum yearly^ranges from 202" to a minimum of 31" over the 40 year p e r i o d . I n the extreme case over 24 hours, three feet of snow has f a l l e n . With the absence of stron g p e r s i s t e n t winter winds, with the exception of an o c c a s i o n a l gusty p e r i o d , i t i s assumed t h a t blowing snow i s not a major problem i n the area. While snow may d r i f t some d u r i n g windy p e r i o d s , the problem i s not such a c r i t i c a l design c o n s i d e r a t i o n as i t i s i n the northern c o a s t a l areas such as Barrow and Kotzebue. Summer storms and c l o u d i n e s s from l a t e J u l y through September have a c o o l i n g e f f e c t on the daytime temperatures d u r i n g t h i s p e r i o d , a l l o w i n g l e s s s o l a r r a d i a t i o n through the cloud cover. 280 281 6. WIND Due to the north/south o r i e n t a t i o n of the lower S u s i t n a V a l l e y , the winds blow from e i t h e r the no r t h , n o r t h e a s t , or from the south, and southwest. September through A p r i l , the c o l d e r months, the wind i s pre- dominately from the no r t h , northwest with the higher wind speeds coming from the northeast. May through August the wind i s predominately from the south w i t h the higher wind speeds coming from southeast to south- west. Average monthly speeds range from 3 to 6 mph i n the winter and 3 to k mph i n the summer. The wind speed of 38 mph was a maximum recorded over a 7 year p e r i o d . Over the same period to the south, Anchorage experienced winds over 60 mph. Wind v e l o c i t y aver- ages f o r the Talkeetna area are r e l a t i v e l y low decreasing chances of d r i v i n g r a i n and blowing snow. 282 283 7. RELATIVE HUMIDITY/MOISTURE POTENTIAL The a i r ' s c a p a c i t y f o r water vapor i n c r e a s e s with an increase i n a i r temperature as shown on the Moisture P o t e n t i a l Capacity of A i r graph. The p o t e n t i a l shown f o r vapor pressure, absolute hu.nidity, and s p e c i f i c humidity would be under 100% r e l a t i v e humidity c o n d i t i o n s . Taking only the vapor pressure, we can see that i n January (mean temperature 9°F) we get a range from 1.09 to 1.23 mmhg vapor pressure (62% to 70% r e l a t i v e h u m i d i t y ) . In J u l y (mean temperature 58°F) we get a range of 7.5 to 11.13 mmhg vapor pressure (60% to 89% r e l a t i v e h u m i d i t y ) . There i s 7 to 9 times the vapor pressure i n J u l y than i n January even though the r e l a t i v e humidity does not d i f f e r t h a t much. The major problem concerning humidity i s the low moisture p o t e n t i a l i n the a i r at co l d temperatures. When brought i n t o a warm invironment ( b u i l d i n g i n t e r - i o r ) , the r e l a t i v e humidity value drops very low. To remedy t h i s people increase the humidity w i t h i n the home which then migrates out towards the c o l d e x t e r i o r causing p o t e n t i a l damage. During the summer months, r e l a t i v e humidity over a 24 hour period may range from 50% to 90%. The co o l summer temperatures keep the p o t e n t i a l f o r a hot humid day very low, see the b i o c l i m a t i c c h a r t . 284 285 S ^ C ^ < ^ " ^ ^ I P I ^ i : - H - -:-::-—TtT-t-rr:t 3 . - 1 3 tV\oite :tis*LVT& xLw/f>/ry- tiffin f^f^r^Tf . , r t 286 BIOCLIMATIC CHART This chart p l o t s the temperature and humidity together. The human comfort zone i s shown with regard to s o l a r r a d i a t i o n (BTU/hr.), r e l a t i v e humidity {%), and temperature ( F ) . Even durin g the summer months we need the presence of s o l a r r a d i a t i o n to a t t a i n the d e s i r e d degree of comfort. O c c a s i o n a l l y an extreme maximum temperature may put us above the comfort zone; these happen so r a r e l y that they would be welcomed extremes. Between mid-September and raid-May, even i f i t were p o s s i b l e t o get over 300 BTU/hr/sq.ft., we would s t i l l be below the p h y s i c a l comfort zone. O p t i m i z i n g f o r the c l i m a t i c elements, s o l a r r a d i a t i o n , e t c . , the p h y s i c a l requirements cannot be met without the i n t r o d u c t i o n of mechanical h e a t i n g systems. C l o t h i n g and a c t i v i t y are a l s o to be considered when d e s c r i b i n g the comfort range. 287 288 9 . TIMETABLE OF CLIMATIC NEEDS In most areas i n the "lower 4 8 " t h i s chart would t e l l what time of year and time of day that shading and c o o l i n g breezes are necessary as w e l l as s o l a r heat and wind p r o t e c t i o n . There i s no over- heated period so the area needs s o l a r heat 100% of the time although during some summer days 100% of the sun's r a d i a t i o n would cause overheating, consid- e r i n g the sun r i s e s c l o s e to 3am and sets around 9pra g i v i n g over 18 hours of p o s s i b l e sunshine to exposures from northeast, e a s t , south, west, to northwest. The s u n r i s e and sunset l i n e s show the r a p i d i n c r e a s e and d e c l i n e of d a y l i g h t over the year. Increases and decreases occur at the r a t e of 6 to 8 minutes a day. 289 290 APPENDIX B BUILDING SPACING AND TOPOGRAPHY 291 The topography can be used to increase the a v a i l a b i l i t y of winter s u n l i g h t by b u i l d i n g on south f a c i n g h i l l s i d e s . Charts B.1 through B.4 p l o t the spacing r e q u i r e d between b u i l d i n g s at d i f f e r e n t l a t l tudes f o r s i m i l a r s u n l i g h t p e n e t r a t i o n f o r f l a t topography, 5° s l o p e , 10P s l o p e , and slope. 292 293 i 294 T ' "V 1/ / 4 9 b& (ec VZ 6& 295 I 3*? 1 3tt L*>0 100 \oe> p&auip&p i=»gg. goto PfcMgTR^rig î ! I y ^ p £ / - 296 g U l L C T l t J ^ ^PA<IKJ6[ fegUTH) ?£<RU\t-)£,C> Fez SUM PBJSTRATUM 45* <̂?' 6>5' 6«* 297 ^ A ^ I M ^ C'Z&JTtf) » 1 — ~ ~ 4*>* ^ «s*&' G>if LATITUDE PI PTE*: 5s) <S£ C H A P X

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 5 0
Canada 2 1
Ukraine 1 0
City Views Downloads
Norfolk 2 0
Montreal 2 1
Ashburn 2 0
Unknown 1 6
San Ramon 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items