Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Simulation of integrated hydro-electric & thermal plant systems using GPSSV Riley, William V. 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1977_A4_5 R54.pdf [ 10.69MB ]
Metadata
JSON: 831-1.0093955.json
JSON-LD: 831-1.0093955-ld.json
RDF/XML (Pretty): 831-1.0093955-rdf.xml
RDF/JSON: 831-1.0093955-rdf.json
Turtle: 831-1.0093955-turtle.txt
N-Triples: 831-1.0093955-rdf-ntriples.txt
Original Record: 831-1.0093955-source.json
Full Text
831-1.0093955-fulltext.txt
Citation
831-1.0093955.ris

Full Text

SIMULATION OF INTEGRATED HYDRO-ELECTRIC & THERMAL PLANT SYSTEMS USING GPSSV by Will iam V. Ri ley B.S., Univers ity of Colorado, 1975 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION in the Faculty of Commerce We accept th i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1977 © Will iam V. R i l ey , 1977 In presenting th i s thesis in pa r t i a l fu l f i lment of the requirements f< an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree tha the L ibrary shal l make it f ree ly ava i l ab le for reference and study. I fur ther agree that permission for extensive copying of th i s thes i s for scho lar ly purposes may be granted by the Head of my Department or by his representat ives. It is understood that copying or pub l i ca t ion of th is thesis fo r f inanc ia l gain sha l l not be allowed without my written permission. Department of COMMFRCF  The Univers i ty of B r i t i s h Columbia ... 2075 W e s b r o o k P l a c e V a n c o u v e r , C a n a d a V 6 T 1W5 D a t e ^ - / 3 - 7 7 ABSTRACT T h i s t h e s i s d e m o n s t r a t e s the u t i l i t y o f computer s i m u l a t i o n i n the m o d e l l i n g o f h y d r o - e l e c t r i c and t he rma l p l a n t o p e r a t i o n s . I t f o c u s e s on models o f s e l e c t e d f a c i l i t i e s i n the B r i t i s h Co lumb ia Hydro and Power A u t h o r i t y ' s i n t e g r a t e d s y s t em. Four d i f -f e r e n t s i m u l a t i o n models a r e d e v e l o p e d . Each s u c -c e s s i v e model d e v e l o p s a v a r i a t i o n o f the b a s i c program to accommodate the d i f f e r e n t h y d r o - e l e c t r i c and t he rma l p l a n t c o n f i g u r a t i o n s . When more than one energy p r o d u c i n g f a c i l i t y i s i n c l u d e d i n a p a r -t i c u l a r s i m u l a t i o n , t hey a r e o p e r a t e d on a c o o r d i -na ted b a s i s . The pu rpose o f the models i s t o a s s e s s the energy p r o d u c i n g c a p a b i l i t i e s o f a l t e r n a t i v e c o n f i g u r a t i o n s . Two t ype s of e x p e r i m e n t s a r e p e r -formed on the mode l s : model c o n f i g u r a t i o n and o p e r a t i n g c o o r d i n a t i n g p o l i c y . In terms o f the h y d r o - e l e c t r i c f a c i l i t i e s , the scope of the models e x tend s f rom the s i m u l a t i o n o f r i v e r i n f l o w s to r e s e r v o i r s , t h r ough the energy g e n e r a t i o n pha se , to the r e s u l t a n t down r i v e r f l o w . G e n e r a l l y , t he rma l p l a n t o p e r a t i o n i s a f u n c t i o n o f r e s e r v o i r s t a t u s . The IBM GPSSV computer l anguage i s used i n the m o d e l l i n g p r o c e s s . By c o n s i d e r i n g the s i m u l a t i o n o u t p u t o v e r the - i -two t ype s o f e x p e r i m e n t s , i t i s p o s s i b l e to draw c o n c l u s i o n s c o n c e r n i n g the a b i l i t y o f c e r t a i n f a c i l -i t y c o n f i g u r a t i o n s to meet s p e c i f i e d energy demands. These c o n c l u s i o n s can f a c i l i t a t e B.C. Hydro i n the management o f i t s i n t e g r a t e d sys tem w i t h r e s p e c t to p l a n n i n g the c o n s t r u c t i o n o f new f a c i l i t i e s and e s -t a b l i s h i n g c o o r d i n a t i n g - o p e r a t i n g p o l i c i e s . A d d i -t i o n a l l y , the v a l u e o f u s i n g GPSSV i n the m o d e l l i n g p r o c e s s i s d i s c u s s e d . - i i -TABLE OF CONTENTS Chapter Pages Preface iv L i s t of Tables v L i s t of Figures v i I Introduction 1-4 II Formulation of the Problem 5 1. Primary Objectives 5-7 2. Physical Character i s t ics of System 8-16 3. Engineering Considerations-Energy Generation 17-26 4. Implementation of GPSSV Computer Language 26-30 III Data Co l lect ion 31-36 IV Physical & Mathematical Relationships 37-42 V Computer Programs 43 1. General Logic Flow Chart 44 2. GPSSV Flow Charts 45-63 VI Val idat ion 64-80 VII Experiments 81-112 VIII Conclusions 113-114 Footnotes 115 References 116-117 Appendix A 118 Appendix B 119 Glossary of Terms 120-121 - i i i -PREFACE T h i s t h e s i s expands on one of many a reas o f i n d u s t r y where a b l e n d i n g of e n g i n e e r i n g and manage ment s c i e n c e s i s a v i t a l e lement to the p roper func t i o n i n g of the o r g a n i z a t i o n . ( I ndeed, the au tho r has found i t q u i t e r ewa rd i n g i n augment ing both e n -g i n e e r i n g and management t r a i n i n g i n t h i s p r o j e c t . I s i n c e r e l y hope t h i s paper proves v a l u a b l e to Mr. F o r r e s t and Mr. S p a f f o r d a t B.C. Hydro whose e f f o r t s r e g a r d i n g the problem f o r m u l a t i o n and model v a l i d a t i o n a re g r e a t l y a p p r e c i a t e d . My w i f e C indy de se rve s much c r e d i t as w e l l f o r the encouragement and t y p i n g so n e c e s s a r y to comp le te the j o b . U n i v e r s i t y of B r i t i s h Co lumbia LISJ OF TABLES Table Page I B.C. Hydro Exist ing Integrated System Generating F a c i l i t i e s 15 II Potential Major Generation Projects 16 III Representative Data Set - G.M. Shrum Generating Station 34 IV Representative Data Set - Burrard Thermal Plant ...36 V Experiments 82 -v -LIST OF FIGURES Figure Page I Natural Water Cycle With Reservoir -9 II Location of Hydro-electr ic Projects in B r i t i s h Columbia 11 III Energy Transformation Cycle 18 IV Stream Flow Correlat ion 20-21 V Two Primary Model Segments ^ 30 VI Head = f(storage) 38 VII Q m a x = f(head) 38 VIII Sample Energy Calculat ion - G.M. Shrum Generating Station 42-42 IX General Logic Flow Chart 44 X Model #1 Flow Chart in GPSSV 45-47 XI Model #2 Flow Chart in GPSSV 48-51 XII Model #3 Flow Chart in GPSSV 52-55 XIII Model #4 Flow Chart in GPSSV 56-63 XIV Let ter ' From B.C. Hydro & Power-Authority, „ 70-71 XV Attachment From B.C. Hydro & Power Authority 72-73 XVI Burrard Thermal Plant Comparison 77 XVII W i l l i s t on Lake Days Bottomed-out Comparison 78 XVIII S i te One Output Comparison 79 XIX Mica Output Comparison 80 XX Mica Operating C r i t e r i a 83 -v i -INTRODUCTION The f u n c t i o n o f the B r i t i s h Co lumbia Hydro and Power A u t h o r i t y i s : " t o s upp l y the demands of i t s c u s t o -mers f o r energy a t the l o w e s t c o s t c o n s i s t e n t w i t h s a f e t y to i t s em-p l o yee s and p u b l i c , good q u a l i t y of s e r v i c e t o i t s c u s t o m e r s , and sub-j e c t to the s o c i a l , economic , and e n v i r o n m e n t a l p o l i c i e s of the Gove rn -ment . " ' ' A t t e m p t i n g to o p e r a t e w i t h i n t h i s f ramework , B,C. Hydro s u p p l i e s e l e c t r i c a l s e r v i c e to over n i n e t y p e r c e n t of the p o p u l a t i o n of B r i t i s h C o l u m b i a . The number o f e l e c t r i c cus tomers se rved on March 31 , 1974, was 677,366 r e s i d e n t i a l , 103,058 c o m m e r c i a l , 826 ; i n d u s t r i a l and 18 o t h e r s . The p r i m a r y sou rce of e l e c t r i c power s e r ved to the se cus tomers r e s u l t e d f rom h y d r o - e l e c t r i c g e n e r a t i o n . In the f i s c a l y e a r 1973/74, 86 p e r c e n t of energy s o l d was produced by h y d r o - e l e c t r i c p l a n t s . At p r e s e n t , 95 p e r c e n t comes from h y d r o - e l e c t r i c s o u r c e s . The ba l ance of e l e c -t r i c energy needs i s p roduced by t he rma l g e n e r a t i o n . P r e s e n t p l a n n i n g i n c l u d e s deve lopment of c o a l -bu rn i ng f a c i l i t i e s as w e l l as a d d i t i o n a l h y d r o - e l e c -t r i c p l a n t s . T h i s p l a n n i n g i s the r e s u l t o f e x t e n -s i v e r e s e a r c h r e g a r d i n g the deve lopment of a l t e r -n a t i v e s unde r taken by a s p e c i a l t a sk f o r c e from -1 -- 2 -B.C. Hydro . The chosen a l t e r n a t i v e i s o p t i m a l o n l y under c e r t a i n assumed c o n d i t i o n s and i t s v a l i d i t y v u l n e r a b l e to e n v i r o n m e n t a l p r e s s u r e s . S h i f t s i n p u b l i c d e s i r e s , economic c o n d i t i o n s , or f o r e c a s t e d energy demand as p r e d i c t e d by the a n a l y s t s c o u l d d i c -t a t e the need f o r subsequent r e v a l u a t i o n of a l t e r -n a t i v e s . A s i m p l e example r e v e a l s the s e n s i t i v i t y i n h e r e n t i n the a n a l y s i s : a s l i g h t i n f l a t i o n of c oa l m in i ng p r i c e s would wa r r an t a s h i f t i n emphasis from c o a l - b u r n i n g o p e r a t i o n s to i n t e n s i v e c o n s t r u c t i o n o f h y d r o - e l e c t r i c f a c i l i t i e s f rom an economic p o i n t of v i ew. Cos t f a c t o r s , however, a re not the o n l y c r i -t e r i a i n the e v a l u a t i o n of a l t e r n a t i v e s . The p h y s i -c a l e n v i r o n m e n t a l e f f e c t s of energy p r o d u c t i o n are of equa l c o n c e r n . For examp le , gove rnment s , both a t the p r o v i n c i a l and f e d e r a l l e v e l s , have s e t out p r o v i s i o n s t h a t must be adhered to by B.C. Hydro i n the p l a n n i n g and c o n s t r u c t i o n of new f a c i l i t i e s . These p r o v i s i o n s combined w i t h a dynamic economic s i t u a t i o n and o t h e r e n v i r o n m e n t a l f a c t o r s c o n t r i b u t e towards the c o m p l e x i t y of the p l a n n i n g p r o c e s s . I n -deed , s e v e r a l y ea r s l e a d t i m e , o f t e n app r oach i n g ten y e a r s , i s r e q u i r e d i n the p l a n n i n g and c o n s t r u c t i o n o f any new h y d r o - e l e c t r i c p l a n t . - 3 -In a cco rdance w i t h the o b j e c t i v e s of the u t i l i t y as s e t ou t above, a s u b s i d i a r y goa l o f B.C. H y d r o ' s o p e r a t i o n s and p l a n n i n g i s to con se r ve ene rgy . T h e r e -f o r e , the t i m i n g and sequenc ing of c o n s t r u c t i o n o f new f a c i l i t i e s must be s e r i o u s l y c o n s i d e r e d i n o r d e r to meet t h i s c r i t e r i o n . In summary, B.C. Hydro i s charged w i t h a t h r e e -f o l d r e s p o n s i b i l i t y i n i t s p r o d u c t i o n of e l e c t r i c a l ene rgy . Th i s energy must be produced a t the l o w e s t p o s s i b l e c o s t c o n s i s t e n t w i t h c o n s e r v a t i o n demands and r e s t r i c t i o n s on a c c e p t a b l e l i m i t s of env i r onmen -t a l damage. Th i s t h e s i s unde r t a ke s to p r o v i d e a m o d e l l i n g framework to e x p l o r e the energy p r o d u c i n g c a p a b i l i t y of an i n t e g r a t e d h y d r o - e l e c t r i c and t h e r -mal p l a n t s y s tem. Four models w i l l be c o n s t r u c t e d d e m o n s t r a t i n g the v a r i o u s t e c h n i q u e s . S e v e r a l e x -pe r imen t s w i l l be conducted on the models a f t e r they have been v a l i d a t e d as a mean i ng f u l and a c c u r a t e management t o o l . Among the v a r i a b l e s to be e x p e r i -mented w i t h a r e : 1. Y e a r l y energy demand 2 . I n i t i a l r e s e r v o i r s t o r a g e s 3 . Thermal p l a n t ou tpu t p o l i c y 4. R e s e r v i o r o p e r a t i n g p o l i c y R e s u l t s o f these s i m u l a t i o n e xpe r imen t s a re summa-r i z e d and system energy c a p a b i l i t i e s a s s e s s e d . Con-c l u s i o n s a re then drawn c o n c e r n i n g the u t i l i t y of - 4 -the GPSSV computer language i n the m o d e l l i n g o f such sy s tems . Hav ing demons t ra ted the m o d e l l i n g t e c h n i q u e s and use of the GPSSV computer l a n guage , models of f u r t h e r i n t e r e s t can be deve l oped by B.C. Hydro . In t h i s manner, energy c a p a b i l i t i e s can be d e t e r -mined f o r any f e a s i b l e system c o n f i g u r a t i o n and o p e r a t i n g p o l i c y . Th i s can a s s i s t B.C. Hydro i n i t s management r e s p o n s i b i l i t i e s w i t h r e s p e c t to e f f i c i e n t u t i l i z a t i o n of system c a p a b i l i t i e s and deve lopment of f e a s i b l e s c hedu l e s f o r the c o n s t r u c -t i o n of new f a c i l i t i e s . - 5 -FORMULATI ON OF THE PROBLEM In t h i s s e c t i o n the p r ima r y o b j e c t i v e s of the model are s t a t e d . To unde r s t and the o b j e c t i v e s and the m o d e l l i n g p r o c e s s , the p h y s i c a l c h a r a c t e r i s t i c s of the i n t e g r a t e d system a re d e s c r i b e d . The e n g i -n e e r i n g c o n s i d e r a t i o n s i n v o l v e d i n the g e n e r a t i o n of e l e c t r i c energy a re a l s o e x p l a i n e d . F i n a l l y , the i m p l e m e n t a t i o n of GPSSV i s r e l a t e d to the m o d e l -l i n g p r o c e s s . P r i m a r y O b j e c t i v e s of the Model Much o f the v a l u e of the s i m u l a t i o n model r e -s u l t s f rom the i n s i g h t i t o f f e r s i n terms of the a r t i c u l a t i o n of the h y d r o - t h e r m a l - e l e c t r i c system o p e r a t i o n . A d d i t i o n a l v a l u e i s ga i ned from the mo-d e l ' s a b i l i t y to s a t i s f y s p e c i f i c r e q u i r e m e n t s r e -g a r d i n g the system's r e l i a b i l i t y and c a p a b i l i t y i n meet ing energy demands. To o p e r a t i o n a l i z e these s p e c i f i c r e q u i r e m e n t s , the f o l l o w i n g p r i m a r y o b j e c -t i v e s have been e s t a b l i s h e d f o r each mode l : 1) g i ven ' i an o p e r a t i n g p o l i c y , e v a l u a t e the p a r t i c u l a r hydro-thermal-re Tec t r i e system ; under c o n s i d e r a t i o n i n terms of the p r o -b a b i l i t y of meet ing s p e c i f i e d energy de -mands; 2) a s c e r t a i n the l i k e l i h o o d of s t o r a g e r e s e r -v o i r s b o t t o m i n g - o u t ; t h a t i s , r e a c h i n g water l e v e l s a t which energy p r o d u c t i o n i s no 1onger f e a s i b l e ; 3) a s c e r t a i n the l i k e l i h o o d of r e s e r v o i r s hav-i ng to s p i l l w a t e r . - 6 -The f o l l o w i n g models w i l l be d e v e l o p e d : Model #1. One R e s e r v o i r Sys tem. Th i s model s i m u l a t e s the o p e r a t i o n of the G.M. Shrum G e n e r a t i n g S t a t i o n s e r v i c i n g W i l l i s t o n Lake on the Peace R i v e r . The system w i l l be mod-el led i n i s o l a t i o n f o r purposes of e a s i e r un -d e r s t a n d i n g . The system i s s u b j e c t e d to v a r i o u s y e a r l y energy demands and i n i t i a l s t o r -age vo lumes. R e p r e s e n t a t i v e r e s u l t s a re t a b u -l a t e d to demons t ra te t h i s s i m p l e m o d e l ' s c a p a -b i l i t i e s . Model #2. One R e s e r v o i r and One Thermal P l a n t Sys tem. Th i s model i s b a s i c a l l y the same as Model #1 e x cep t f o r the i n t r o d u c t i o n of B u r r a r d Thermal P l a n t and a few m o d e l l i n g m o d i f i c a t i o n s to a c h i e v e more r e a l i s t i c f l o w p a t t e r n s . The two energy g e n e r a t i n g p l a n t s o p e r a t e on a c o o r -d i na ted b a s i s . Model #3. Two R e s e r v o i r s i n s e r i e s and One Thermal P l a n t . Th i s model expands Model #2 by add ing ano the r r e s e r v o i r known as Peace S i t e One to the system downstream of W i l l i s t o n Lake . S i t e One i s a r u n - o f - t h e - r i v e r f a c i l i t y . Th i s expanded model demons t ra te s the c o o r d i n a t e d o p e r a t i o n of two h y d r o - e l e c t r i c f a c i l i t i e s 7 -o p e r a t i n g i n s e r i e s on the same r i v e r and the dependenc ie s between t h e i r o p e r a t i o n and energy p r o d u c i n g c a p a b i l i t y . The the rma l s t a t i o n a t B u r r a r d i s a l s o i n c l u d e d as b e f o r e i n the mode l . Model #4. Two R e s e r v o i r s i n s e r i e s , and i n p a r a l l e l w i t h a t h i r d , and one the rma l p l a n t . T h i s i s the f i n a l and most comprehens i ve mode l . The system i n Model #3 i s expanded to i n c l u d e ano the r r i v e r b a s i n and r e s e r v o i r s y s tem. The new system i s t h a t of M ica Dam on the Co lumbia R i v e r . Th i s r e s e r v o i r formed by M ica Dam o f f e r s yea r to yea r r e g u l a t o r y c a p a b i l i t i e s , a l t h o u g h not to as g r e a t an e x t e n t as t h a t of W i l l i s t o n Lake . The two r e s e r v o i r s y s t ems , G.M. Shrum (and a l s o S i t e One) and M ica Dam are o p e r a t e d on a c o o r d i n a t e d b a s i s , s t i l l w i t h the p re sence of B u r r a r d Thermal P l a n t . With the i n t r o -d u c t i o n of ano the r r i v e r b a s i n i t i s now n e c e s -s a r y to i n c o r p o r a t e i n t o the model the concep t of c o r r e l a t e d s t ream f l o w s . Th i s model demon-s t r a t e s the p r i m a r y m o d e l l i n g t e c h n i q u e s r e q u i r e d to i n c l u d e any o t h e r r e s e r v o i r s , the rma l p l a n t s , o r r i v e r b a s i n s t h a t may be of i n t e r e s t . Each s u c c e s s i v e model i n t r o d u c e s a m o d e l l i n g t e c h n i q u e to accommodate the a d d i t i o n of ano the r f a c i 1 i t y . -8-P h y s i c a l C h a r a c t e r i s t i c s of System F i g u r e I i l l u s t r a t e s the r e l e v a n t p o r t i o n of the n a t u r a l h y d r o l o g i c a l c y c l e a l o n g w i t h the i n t r o -d u c t i o n of a t y p i c a l h y d r o - e l e c t r i c f a c i l i t y . P r e -c i p i t a t i o n i n the form of snow and r a i n c o n t r i b u t e to the y e a r l y r i v e r f l o w s . En v i r onmen ta l f a c t o r s ( i . e . , t e m p e r a t u r e , g e o l o g y , g eog r aph i c c o n s i d e r a -t i o n s ) cause sea sona l p a t t e r n s to o c cu r i n the run o f f , and hence i n the s t ream f l o w s . T h i s i s e v i -denced by the c y c l i c n a t u r e of the da ta r e g a r d i n g i n f l o w to most r e s e r v o i r s . Once the p r e c i p i t a t i o n i s r e l e a s e d from the c o u n t r y s i d e and e n t e r s a r i v e r , i t t r a v e l s down the b a s i n u n t i l i t r eaches the r e -s e r v o i r . At t h i s p o i n t the f l o w becomes r e s e r v o i r s t o r a g e and c o n t r i b u t e s to the energy p r o d u c i n g c a p a -b i l i t y of the r e s p e c t i v e g e n e r a t i n g s t a t i o n . The energy i s r e a l i z e d when a p o r t i o n o f the s t o r e d water i s r e l e a s e d from the r e s e r v o i r , r e s u l t i n g i n a de -c r e a s e i n water e l e v a t i o n i n the r e s e r v o i r and a downstream water f l o w . The water i s r e l e a s e d a c c o r d i n g to an o p e r a t i n g p o l i c y which i s u s u a l l y a f u n c t i o n o f the r e s e r v o i r ' s i n i t i a l water l e v e l , t ime of y e a r , the energy demand, and the c o n c u r r e n t s t a n d i n g o f o t h e r r e s e r v o i r s i n the i n t e g r a t e d system w i t h r e s p e c t to t he se f a c t o r s . The r e l e a s i n g p o l i c y , however, can be e s t a b l i s h e d a t - 9 -Figure I. Natural Water Cycle With Reservoir. - 1 0 -the b e g i n n i n g of the y ea r and used i n a d e t e r m i n i s t i c f a s h i o n . For example , a t a r g e t o u t f l o w and end ing water e l e v a t i o n can be s p e c i f i e d on a month ly b a s i s f o r a p a r t i c u l a r r e s e r v o i r i ndependent of the o t h e r r e s e r v o i r ' s p r e s e n t s t a t u s . T h i s type of p o l i c y i s o f t e n augmented when b i l a t e r a l agreement i s made be-tween a d j a c e n t c o u n t r i e s c o n c e r n i n g the a l l o c a t i o n of water r e s o u r c e s . M ica Dam on the Co lumbia R i v e r i s o p e r a t e d under such a p o l i c y . Rega rd l e s s of the type of p o l i c y i n u se , i t i s a c r i t i c a l d e t e r m i n a n t of the e f f i c i e n c y i n wh ich the n a t u r a l p o t e n t i a l energy i s u t i l i z e d by the r e s e r v o i r s y s tem. A f t e r be ing r e l e a s e d , the water resumes i t s j o u r n e y down the r i v e r u n t i l i t i s s t o r e d aga in a t a downstream r e s e r v o i r or u n t i l i t s i m p l y e n t e r s the ocean . Ob-v i o u s l y , the i n f l o w to a downstream r e s e r v o i r w i l l be a f u n c t i o n of the upstream r e s e r v o i r ' s r e l e a s i n g p o l i c y and i n f l o w from o t h e r r i v e r s of d i f f e r e n t run o f f b a s i n s . These types o f f l o w r e l a t i o n s can be e f f i c i e n t l y and a p p r o p r i a t e l y s i m u l a t e d by the GPSSV model . F i g u r e II i n d i c a t e s the e x i s t i n g and p o t e n t i a l h y d r o - e l e c t r i c p l a n t l o c a t i o n s i n the B r i t i s h Co lumbia i n t e g r a t e d s y s tem. In B r i t i s h Co lumbia the bu l k of h y d r o - e l e c t r i c energy p r o d u c t i o n i s g ene r a t ed f rom the ba s i n s of the Co lumbia and Peace R i v e r s wh ich Figure I I . LOCATION OF HYDROELECTRIC PROJECTS IN BRITISH COLUMBIA Legend • E x i s t i n g H y d r o e l e c t r i c S i t s Potential H y d r o e l e c u . c Site - 1 2 -have been o n l y p a r t i a l l y d e v e l o p e d , a l t h o u g h numerous o t h e r l o c a t i o n s c o n t r i b u t e to the t o t a l energy s u p p l y . W i l l i s t o n Lake formed by the W.A.C. Benne t t Dam on the Peace R i v e r has tremendous s to rage- c a p a b i 1 i t i e s r e l a t i v e to the o t h e r f a c i l i t i e s . The G.M. Shrum G e n e r a t i n g S t a t i o n s e r v i c e s t h i s r e s e r v o i r and a c -count s f o r a p p r o x i m a t e l y f i f t y p e r c e n t of the average annual e xpec ted h y d r o - e l e c t r i c energy c a p a b i l i t y o f the e n t i r e hydro s y s tem, t h a t i s , 12,250 m i l l i o n KWH. Mica Dam on the Co lumbia R i v e r has a 7512 m i l l i o n KWH expec ted annual energy c a p a b i l i t y . These f a c i l i -t i e s a re the p r i m a r y f o cu s f o r the s i m u l a t i o n demon-s t r a t i o n s . The e x i s t i n g annual c a p a b i l i t y of the thermal p l a n t s i s 5600 m i l l i o n KWH, most of t h i s coming from the B u r r a r d f a c i l i t y . F u r t h e r f a c i l i t i e s on the p a r t i a l l y deve loped r i v e r b a s i n s have been p r opo sed : the Kootenay D i v e r -s i o n , McGregor D i v e r s i o n , S i t e s One, C, and E on the Peace R i v e r and Seven M i l e and Murphy Creek S i t e s on the Co lumbia R i v e r . There a re s e v e r a l undeve loped r i v e r b a s i n s t h a t o f f e r tremendous p o t e n t i a l f o r energy g e n e r a t i o n . The West Coast p r o j e c t s i n c l u d e the E laho R i v e r p r o -j e c t , the C u t o f f Mounta in p r o j e c t on the Skeena R i v e r , the Homathko R i v e r p r o j e c t , and the I s k u t - S t i k i n e - 1 3 -p r o j e c t s . Because of the mounta inous t e r r a i n where these s i t e s e x i s t , however, t h e i r deve lopment i s not as f a v o r a b l e as o t h e r a l t e r n a t i v e s . No r t he r n p r o j e c t s a re b e l i e v e d to be of the g r e a t e s t v a l u e of a l l i n the p r o v i n c e . They i n c l u d e the L i a r d R i v e r and Yukon-Taku p r o j e c t s . On the F r a s e r R i v e r , numer-ous p o t e n t i a l s i t e s e x i s t f o r h y d r o - e l e c t r i c f a c i l i -t i e s . E n v i r o n m e n t a l c o n s i d e r a t i o n s such as l o s s of salmon runs and f a r m i n g l a nd has p r e c l u d e d s e r i o u s i n t e r e s t i n the deve lopment of the F r a s e r R i v e r b a s i n f o r h y d r o - e l e c t r i c pu rpo se s . Based on economic and e n v i r o n m e n t a l s t u d i e s , the f o l l o w i n g l i s t has been e s t a b l i s h e d f o r the i n t r o d u c t i o n of h y d r o - e l e c t r i c f a c i l i t i e s on undeve loped r i v e r b a s i n s : 1) L i a r d R i v e r deve lopment 2) E laho p r o j e c t 3) I s k u t - S t i k i n e deve lopment 4) C u t o f f Mounta in p r o j e c t 5) Yukon-Taku deve lopment These p r o j e c t s o r deve lopments a re not c o n s i d e r e d i n the p r e s e n t t h e s i s . The m o d e l l i n g framework deve loped i n t h i s t h e s i s , however, c o u l d be a p p l i e d to them. Tab l e s I and II g i v e an expec ted average annual energy c a p a b i l i t y of the e x i s t i n g and p o t e n -t i a l h y d r o - e l e c t r i c f a c i l i t i e s , r e s p e c t i v e l y . I t - 1 4 -i s n e ce s s a r y to n o t e , however, t h a t because of the s t o c h a s t i c n a t u r e of annual p r e c i p i t a t i o n , u n c e r t a i n t y i s c r e a t e d r e g a r d i n g the r e a l a v a i l a b l e energy i n any g i v en y e a r . - I t i s t h i s u n c e r t a i n t y t h a t a s i m u l a t i o n model can i d e n t i f y , q u a n t i f y , and r e l a t e to the energy demand to e s t a b l i s h a f e e l i n g f o r the r e l i a -b i l i t y of the i n t e g r a t e d h y d r o - t h e r m a l - e l e c t r i c system as a who le . TABLE I Generating Plant Buntzen Clowmoh Cheakemas Alovette Stove Ruskin Wahleach La Joie Bridge River Seton Jordan River Ash River Puntledge John Hart Ladore Serathcona Shuswap Aberfeldie Elko Spillimacheen Whatshan G. M. Shrum Exist ing B. C. Hydro Generating F a c i l i t i e s Average Annual Capabi l i ty (mi l l ions of 180 90 775 50 270 310 240 170 2600 355 190 180 160 755 235 210 50 150 100 12250 Total Hydro-electr ic 19320 TABLE II Potential Major Generation Projects Average Annual Hydro-electr ic Projects Energy (mi l l ions of P a r t i a l l y Developed River Basins: S i te One 3150 Seven Mile 3150 Revel stoke 7970 McGregor Diversion 3110 Kootenay Diversion 875 Kemano II 6480 Peace S i te C. 5010 Peace S i te E 3920 Murphy Creek 2100 Duncan Bay 270 Kokish 255 Undeveloped River Basins: Elaho 1710 Homathko Projects 7550 Cutoff Mountain 6370 I skut-St ik ine 19500 Liard River 23600 Yukon-Taku 22800 Upstream Fraser 29850 Downstream Fraser 15510 - 1 7 -E n g i n e e r i n g C o n s i d e r a t i o n s - E n e r g y G e n e r a t i o n The a c c u r a t e m o d e l l i n g of the r e l a t i o n between r i v e r i n f l o w to a r e s e r v o i r and e v e n t u a l d e r i v e d energy upon r e l e a s i n g water f rom the r e s e r v o i r i s o f c r u c i a l impor tance i n o b t a i n i n g a v a l i d mode l . The p roce s s i s o u t l i n e d i n F i g u r e I I I . (a) The month ly i n f l o w to a r e s e r v o i r i s s t o c h a s t i c i n n a t u r e , f o l l o w i n g some k i nd of sea sona l p a t t e r n . The month ly f l o w i s computed by a l l o c a t i n g a s p e c i f i e d p o r t i o n o f the t o t a l annual i n f l o w to each month. A t y p i c a l r e l a t i o n f o r any r i v e r b a s i n might l ook as f o l l o w s : P e r c e n t of Month Y e a r l y Flow October 6 .4 November 4 .5 December 2 .7 Janua ry 1 .9 Feb rua r y 1 .6 March 1 .7 A p r i l 3 .8 May 1;8 .4 June 26 .9 J u l y 1 6 .6 August 9 .2 September 6 .3 100.0 INFLOW STORAGE POTENTIAL ENERGY M o n t h l y r e s e r v o i r i n f l o w ; s t a t e d i n terms o f c u b i c f e e t p e r s e c o n d ( c f s ) S t o r a g e o f w a t e r ; terms o f e l e v a t i o & v o l u m e - f e e t and c u b i c f e e t , r e s p e c t i v e l y T o t a l u s a b l e h e a d -" l i v e s t o r a g e " ? ? ENERGY DERIVED "S OUTFLOW M o n t h l y ene r gy r e a l i z e d as some f (d rawdown) ; terms o f k i l o w a t t hours ( kwh ) M o n t h l y r e s e v o i r o u t f l o w ; terms o f c u b i c f e e t p e r s e c o n d ( c f s ) S (a) (b) (c) (d) (e) F i g u r e I I I . E n e r g y T r a n s f o r m a t i o n C y c l e - 1 9 -A phenomenon t h a t must be c o n s i d e r e d when c o n -c u r r e n t l y m o d e l l i n g s e v e r a l r i v e r b a s i n s i s t h a t o f c o r r e l a t i o n of r i v e r f l o w s . I t seems r e a s o n a b l e to e xpec t t h a t i n a d j a c e n t r i v e r b a s i n s i f one r i v e r e x p e r i e n c e s a b n o r m a l l y h igh or low sea sona l f l o w s , the o t h e r r i v e r w i l l a l s o be a f f e c t e d by g e o g r a p h i -c a l and c l i m a t o l o g i c a l c o n s i d e r a t i o n s . T h i s phe-nomenon, i n f a c t , has been ob se rved to a g r e a t e x -t e n t i n B r i t i s h C o l u m b i a . For t h i s r e a s o n , c o r r e l a -t i o n o f s t ream f l o w s w i l l be i n c o r p o r a t e d i n t o the program. A p rocedu re used by B.C. Hydro to a c c o m p l i s h the c o r r e l a t i o n i s used i n t h i s t h e s i s . F i g u r e IV d i s p l a y s the p rocedu re and demons t ra te s i t s use i n an example. (b) The s t o r a g e c a p a c i t y of a h y d r o - e l e c -t r i c p l a n t d i c t a t e s i t s v a l u e as an energy r e g u l a -t i n g f a c i l i t y . Four p r i m a r y types of f a c i l i t i e s can r e a d i l y be i d e n t i f i e d : 1) M u l t i p l e y ea r r e s e r v o i r s - - These r e -s e r v o i r s have the s t o r a g e c a p a c i t y to r e g u l a t e energy p r o d u c t i o n from y e a r to y ea r as w e l l as d u r i n g s ea sona l p e r i o d s . In the fo rmer f u n c t i o n , the r e s e r v o i r a c t s as an " ene rgy bank" to even out v a r i a t i o n s i n the annual energy o u t p u t s of o t h e r h y d r o - e l e c t r i c p l a n t s i n the s y s tem. C o n s e q u e n t l y , - 2 0 -Figure IV- Stream Flow C o r r e l a t i o n . 8 E ( y / ) - u + p -2-(x - u ) • . x y s x J x 2 s = s (1 - p ) y. y X where E(^/ x) = expected average yearly flow of r i v e r basin y given the average y e a r l y flow of r i v e r basin x. s = the expected standard d e v i a t i o n of x y e a r l y flow i n r i v e r basin y given the standard d e v i a t i o n f o r r i v e r basin x. Uy = average yearly flow i n r i v e r basin y. u = average yearly flow i n r i v e r basin x. X p = c o r r e l a t i o n c o e f f i c i e n t . x = a random sample from the y e a r l y flow d i s t r i b u t i o n of r i v e r basin x. 8 ^ = standard d e v i a t i o n of y e a r l y flow i n r i v e r basin y. s x = standard d e v i a t i o n of y e a r l y flow i n r i v e r basin x. On the following page, a b r i e f h y p o t h e t i c a l example demonstrates the use of the proceedure. Given: p - .50 u - 35 y u - 50 s = 12 x Assume that a random sample from the x r i v e r basin flow d i s t r i b u t i o n ( u x = 50, s x = 12) y i e l d s x = 58. Then the expected average yearly flow f o r r i v e r basin y i s found to be and the new standard d e v i a t i o n of y e a r l y flow i n r i v e r basin y i s The new yearly flow d i s t r i b u t i o n f o r r i v e r basin y (u = 37, s = 5.19) i s now sampled from and the y y r e s u l t a n t value used as the y e a r l y flow f o r the r i v e r . NOTE: A l l r i v e r flow, d i s t r i b u t i o n s are assumed to be normally d i s t r i b u t e d . E ( Y / ) = 35 + .5 Y| (58 - 50) = 37 8 - 6 (1 - .52) - 5.19 - 2 2 -they tend to shape the o p e r a t i o n s o f the e n t i r e s y s tem. C u r r e n t l y the W.A.C. Benne t t Dam on the Peace R i v e r o f f e r s the o n l y such c a p a b i l i t y , a l t h o u g h the M ica Dam p r o j e c t , soon to become o p e r -a t i o n a l , w i l l a l s o o f f e r such b e n e f i t s on a s m a l l e r s c a l e than W.A.C. Benne t t Dam. Annual r e g u l a t o r y r e s e r v o i r s - - These p l a n t s o f f e r l e s s e r s t o r a g e p o t e n t i a l . The r e s e r v o i r s t o r a g e i s sma l l i n r e -l a t i o n to the annual i n f l o w and i t i s not f e a s i b l e to a ccumu la te water i n s t o r a g e d u r i n g wet yea r s f o r energy g e n e r a t i o n i n dry y e a r s . The s t o r a g e , however, can be drawn down i n the w i n t e r to meet heavy system l oad s and r e f i l l e d i n the f o l l o w i n g summer d u r -i ng the h igh r u n o f f p e r i o d . These f a c i l i t i e s , then, o p e r a t e on an annual s ea sona l b a s i s . R u n - o f - r i v e r p r o j e c t s . These h y d r o -e l e c t r i c p l a n t s have no s t o r a g e c a p a -c i t y a t a l l and hence no r e g u l a t o r y a b i l i t y . Month l y i n f l o w becomes month ly o u t f l o w . The g e n e r a t i n g s t a t i o n , how-e v e r , has a month l y e n e r g y - p r o d u c i n g - 2 3 -c a p a b i l i t y . In l i g h t of the s ea sona l f l u c t u a t i o n s i n s t ream f l o w , the p l a n t w i l l t y p i c a l l y be o p e r a t i n g below c a p a c i t y or w i l l be f o r c e d to s p i l l (waste) water t h a t exceeds i t s month l y c a p a c i t y . 4) D i v e r s i o n s . These p r o j e c t s p r o v i d e no e n e r g y - p r o d u c i n g or s t o r a g e c a p a -b i l i t y . T h e i r purpose i s to d i v e r t one r i v e r ' s f l o w from i t s b a s i n to an a l t e r n a t i v e b a s i n where an energy p r o -duc i ng f a c i l i t y e x i s t s , c o n t r i b u t i n g to the month l y i n f l o w o f t h a t r e s e r -v o i r and/or month ly energy p r o d u c t i o n of the g e n e r a t i n g s t a t i o n . There i s , o b v i o u s l y , a l i m i t to the volume of wate r any f a c i l i t y can s t o r e a c c o r d i n g to i t s s i z e and d e s i g n . Any f l o w over and above the dam's c a p a -b i l i t y must be s p i l l e d and w a s t e d , a p r a c t i c e t h a t i s a vo i ded whenever p o s s i b l e . A d d i t i o n a l l y , maximum r e s e r v o i r l e v e l s are o f t e n s e t to meet s p e c i f i c r e -qu i r ement s such as f l o o d c o n t r o l . S i m i l a r l y , when l o c a t e d i n a park a r e a , minimum r e s e r v o i r l e v e l s are o f t e n s e t i n v iew of r e c r e a t i o n a l c o n s i d e r a t i o n s . For each h y d r o - e l e c t r i c p l a n t , s t o r a g e volume i s - 2 4 , c a l c u l a t e d a t the end of each month by add ing the i n i t i a l r e s e r v o i r s t o r a g e to the month ly i n f l o w , l e s s the volume of water r e l e a s e d or s p i l l e d . (c ) The s t o r a g e of water i n the r e s e r v o i r s i s the es sence of the p o t e n t i a l energy i n the s y s tem. The s t o r a g e i s c h a r a c t e r i z e d by vo lumeof water and e l e v a t i o n head. A d e f i n i t e f u n c t i o n a l r e l a t i o n s h i p e x i s t s between the vo lumenof s t o r e d water and the e l e v a t i o n head i n the r e s e r v o i r as d i c t a t e d by the l o c a l geography of the r e s e r v o i r s i t e . A t y p i c a l r e l a t i o n may appear as f o l l o w s : - 2 5 -As p r e v i o u s l y m e n t i o n e d , l i m i t s a re e s t a b l i s h e d f o r the upper and lower l e v e l s of water i n the r e s e r v o i r . These l i m i t s d e f i n e what i s termed as " l i v e s t o r a g e " , or u s eab l e head i n the r e s e r v o i r . G e n e r a l l y , the wate r l e v e l w i l l be between the two l i m i t s . (d) The energy d e r i v e d from the wa te r i s a f u n c t i o n of the amount o f water r e l e a s e d and the e l e v a t i o n a t wh ich i t i s r e l e a s e d . A h y d r o - e l e c t r i c g e n e r a t o r ' s o p e r a t i n g e f f i c i e n c y v a r i e s w i t h the e l e v a t i o n head. E l e v a t i o n head i s measured as the d i f f e r e n c e between wate r i n t a k e and wate r e x i t l e v e l s f rom the g e n e r a t o r . As e l e v a t i o n head d e c r e a s e s , more and more water must be r e l e a s e d to g a i n the same energy o u t p u t ; t h a t i s , Energy = f ( h e a d , f l o w ) In a t y p i c a l energy e q u a t i o n f o r a g e n e r a t i n g s t a -t i o n , head and f l o w a re based on averages o ve r a p e r i o d of t ime ( u s u a l l y one month ) . For t h i s r e a -s on , i t i s d e s i r a b l e to o p e r a t e the r e s e r v o i r s a t as h igh an e l e v a t i o n head as p o s s i b l e c o n s i s t e n t w i t h the o p e r a t i o n s of the o t h e r r e s e r v o i r s i n the i n t e g r a t e d s y s tem. For dams w i t h no s t o r a g e c a p a -b i l i t y the energy d e r i v e d i s computed by c o n s i d e r -ing the t o t a l volume of water r e l e a s e d (wh ich i s equa l to the i n f l o w l e s s s p i l l a g e ) a t a c o n s t a n t e l e v a t i o n head. - 2 6 -(e) The r e l e a s i n g of water f o r the de -r i v i n g of energy r e s u l t s i n a dec r ea se i n r e s e r v o i r s t o r a g e and e l e v a t i o n head and an accompanying o u t -f l o w . Th i s f l o w , t o g e t h e r w i t h the c o n f l u e n c e of o t h e r r i v e r s , forms the i n f l o w to downstream r e s e r -v o i r s i n the s y s tem. Imp lemen ta t i on of GPSSV Computer Language M o d e l l i n g of h y d r o - t h e r m a l - e l e c t r i c systems i s not a t o p i c t h a t has been i g n o r e d i n pa s t y e a r s . The m o d e l l i n g has been a t t empted u s i n g s e v e r a l man-agement s c i e n c e t e c h n i q u e s : dynamic programming2 , l i n e a r programming3, Markov p r o c e s s e s ^ and s i m u l a -t i o n ^ . The ma thema t i c a l programming approaches o f -f e r an advantage i n t h a t they o p t i m i z e the system under s t u d y . Not a l l h y d r o - t h e r m a 1 - e l e c t r i c s y s t ems , however, can be o p t i m i z e d by these programming p r o -c e d u r e s . T h i s c o n d i t i o n a r i s e s when a h y d r o - t h e r m a l -e l e c t r i c system i s composed o f more than one r e s e r -v o i r w i t h l a r g e ( y e a r - t o - y e a r ) s t o r a g e c a p a b i l i t y . S i m u l a t i o n , on the o t h e r hand, can e f f e c t i v e l y model such a s y s tem. A l t hough s i m u l a t i o n cannot produce o p t i m a l r e s u l t s , good s u b - o p t i m a l r e s u l t s can be ob -t a i n e d th rough c a r e f u l l y p lanned e x p e r i m e n t a t i o n . A d d i t i o n a l l y , s i m u l a t i o n models foster - . " the unde r -s t a n d i n g of the system under s tudy because t h e i r - 2 7 -f o r m u l a t i o n more c l o s e l y p a r a l l e l s the s y s t e m ' s r e a l s t r u c t u r e . S i m u l a t i o n models of e n e r g y - p r o d u c i n g f a c i l i -t i e s to date have been deve loped p r i m a r i l y u s i n g one of the s c i e n t i f i c computer languages such as FORTRAN. These languages a re f o r g e n e r a l purpose use and n o r m a l l y o f f e r the advantage of low r unn i n g t ime on the computer . S p e c i a l purpose l a n g u a g e s , GPSSV f o r example , p r o v i d e many f e a t u r e s t h a t are e x t r e m e l y u s e f u l i n the m o d e l l i n g of i n t e g r a t e d energy p r o d u c i n g f a c i l i t i e s : 1. Modu la r c o n s t r u c t i o n a l l o w s e x p e r i m e n t a t i o n w i t h a l t e r n a t i v e system c o n f i g u r a t i o n s and o p e r a t i n g p o l i c i e s w i t h l i t t l e change to the b a s i c mode l . 2. GPSSV o f f e r s s u p e r i o r e r r o r c h e c k i n g t e c h -n i q u e s . 3. Fewer s t a t emen t s a re r e q u i r e d i n the p r o -gramming s i n c e much of the i n t e r n a l up-d a t i n g i s done a u t o m a t i c a l l y . 4. Data g e n e r a t i o n i s e a s i l y f a c i 1 i t a t e d w i t h GPSSV. 5. As w e l l , i n d i r e c t a d d r e s s i n g of v a r i a b l e s , f u n c t i o n s and o t h e r s t a n d a r d n u m e r i c a l a t -t r i b u t e s dec rea se s the r e q u i r e d number of c omputa t i on s to be p e r f o r m e d . - 2 8 -I t i s p o s s i b l e , t h e r e f o r e , t h a t much i s y e t to be l e a r n e d from the a p p l i c a t i o n of GPSSV to the p r o -blem i n terms o f o b t a i n i n g system r e l i a b i l i t y f a c -t o r s based on s t o c h a s t i c i n p u t s and a r t i c u l a t i o n of the i n t e g r a t e d h y d r o - t h e r m a 1 - e l e c t r i c system c o n c e p t . As i l l u s t r a t e d i n F i g u r e V, each model f o r m u l a -t i o n w i l l c o n s i s t o f two p r i m a r y segments: 1) h y d r o - e l e c t r i c f a c i l i t y c o n f i g u r a t i o n ; and, 2) o p e r a t i n g - c o o r d i n a t i n g p o l i c y . The h y d r o - e l e c t r i c f a c i l i t y c o n f i g u r a t i o n segment w i l l t y p i c a l l y c o n s i s t of s e v e r a l sub - segment s , one f o r each r i v e r b a s i n under c o n s i d e r a t i o n . New f o r -m u l a t i o n s w i l l be a c c o m p l i s h e d by chang ing one or more sub - segment s , c r e a t i n g a new system c o n f i g u r a -t i o n . For any system c o n f i g u r a t i o n , o p e r a t i n g - c o o r -d i n a t i n g p o l i c i e s , i n t u r n , can be t r i e d . The GPSSV " t r a n s a c t i o n " w i l l be gene ra ted on a month ly i n t e r v a l by the GENERATE b l o c k . The t r a n s a c t i o n w i l l c a r r y w i t h i t , by the use of i t s p a r a m e t e r s , v a r i o u s r e l e -vant q u a n t i t i e s , such as month, amount of f l o w , p e r -cen t o f y e a r l y f l o w f a c t o r , e t c . . The t r a n s a c t i o n parameter v a l u e s w i l l be s p e c i f i e d d i r e c t l y or f u n c -t i o n a l l y by the use of ASSIGN b l o c k s . The t r a n s a c -t i o n w i l l p roceed th rough the model ( p a r a l l e l i n g the n a t u r a l water c y c l e of F i g u r e I) and w i l l , i n - 2 9 -acco rdance w i t h the o p e r a t i n g - c o o r d i n a t i n g p o l i c y , change the s t a t u s of r e s e r v o i r s t o r a g e , energy o u t -put and downstream f l o w . I n f l o w s and o u t f l o w s to r e s e r v o i r s , energy g e n e r a t e d , and the r e s u l t a n t s t o r a g e and e l e v a t i o n head w i l l be computed w i t h F - t ype VARIABLES a t SAVEVALUE b l o c k s w i t h the he lp of ENTER and LEAVE b l o c k s r e p r e s e n t i n g r e s e r v o i r s t o r a g e . Other b l o c k s such as TABULATE and SAVEVALUE w i l l be r e q u i r e d to d e r i v e d e s i r e d data o u t p u t . A d d i t i o n a l l y , TEST, TRANSFER and GATE b l o c k s w i l l be r e f e r e n c e d from the o p e r a t i n g - c o o r d i n a t i n g segment of the program f o r c o n t r o l pu rpo se s . The o p e r a t i n g - c o o r d i n a t i n g p o l i c i e s w i l l be r e l a t e d to the c o n f i g u r a t i o n segment by the i n d i r e c t a d d r e s s i n g of p a r a m e t e r s , s a v e v a l u e s and o t h e r s t a n d a r d n u m e r i -c a l a t t r i b u t e s . For each c o m b i n a t i o n of e l e m e n t s , m u l t i p l e s i m u l a t i o n s are run f o r purposes of g e n e r a t i n g s y s -tem s t a t i s t i c s . Th i s i s done by chang ing the seed of the random number g e n e r a t o r s u s i n g the RMULT c a r d . The t ime u n i t used i n the s i m u l a t i o n i s one month. Th i s u n i t adapt s w e l l to the a v a i l a b l e s t ream f l o w and energy demand d a t a . -30-INPUT A / HYDRO-THERMAL-ELECTRIC SYSTEM CONFIGURATION OPERATING-COORDINATING POLICY v / SIMULATION MODEL F i g u r e V . Two P r i m a r y M o d e l Segments . -31 -DATA COLLECTION T h i s s e c t i o n w i l l i n t r o d u c e a r e p r e s e n t a t i v e s e t o f da ta f o r a r i v e r - r e s e r v o i r - g e n e r a t i n g s t a t i o n system and therma l p l a n t o p e r a t i o n . The v a r i o u s components of the data w i l l be e x h i b i t e d , p r o ce s s ed f u r t h e r , and shown i n the form ready f o r i n p u t to the mode l . P h y s i c a l u n i t s between the v a r i o u s data components are e x p l a i n e d and made c o m p a t i b l e where n e c e s s a r y . S i m i l a r s e t s of da ta a re a v a i l a b l e f o r a l l r i v e r b a s i n s t h a t w i l l be c o n s i d e r e d . Tab l e I I I d i s p l a y s the f i r s t r e p r e s e n t a t i v e s e t of d a t a . T h i s da ta r e f e r s to the W i l l i s t o n Lake r e s e r v o i r and G.M. Shrum G e n e r a t i n g S t a t i o n s y s tem. The v a r i o u s components have been s u b d i v i -ded f o r e x p l a n a t o r y pu rpo se s . (a) Water l e v e l e l e v a t i o n s . Minimum and maximum water e l e v a t i o n s d e f i n e l i v e s t o r a g e . These e l e v a t i o n measure-ments a re made r e l a t i v e to sea l e v e l . T a i l r a c e e l e v a t i o n i s the l e v e l a t wh ich wate r i s e m i t t e d f rom the down-s t ream s i d e o f the dam, or the o u t f l o w e l e v a t i o n . The u n i t s of t h i s v a r i a -b l e a re measured i n f e e t . (b) S t o r age t a b l e . Th i s t a b l e shows c o r -r e s p o n d i n g v a l u e s between e l e v a t i o n - 3 2 -and s t o r a g e . E l e v a t i o n i s a ga i n measured i n u n i t s of f e e t . S t o r age i s s t a t e d i n terms of c u b i c f e e t per second day s . Stream f l o w s . Stream f l o w s a re mea-sured on a month ly b a s i s i n u n i t s of c u b i c f e e t per second ( c f s ) . B.C. H y d r o ' s o p e r a t i n g y ea r runs from . <: October th rough September. When e n -t e r e d i n t o the mode l , y e a r l y f l o w i s o b t a i n e d by s amp l i ng from the y e a r l y f l o w d i s t r i b u t i o n . T h i s y e a r l y f l o w i s then a l l o c a t e d by means of we i gh ted averages to each month. T h i s we i gh ted average i s found by c o n s i d e r i n g the number of days i n the month and t h a t month ' s a v e r a g e . Us ing the a l l o c a t e d month ly f l o w as a month ly mean ,':f<low; and the month ly s t a n d a r d d e v i a t i o n , a sam-p l e i s drawn from t h i s d i s t r i b u t i o n and used as the a c t u a l month ly f l o w . In o t h e r words , two l e v e l s of s t o c h a s -t i c i t y a re e v i d e n t i n d e t e r m i n i n g month ly f l o w s . A l l f l o w d i s t r i b u t i o n s are assumed to be n o r m a l . The da ta f o r most r i v e r s i s based on s t ream f l o w r e c o r d s f o r the most r e c e n t 20 y e a r s and o f t e n l o n g e r . - 3 3 -P1 ant e f f i c i e n c y . T h i s f a c t o r a c -count s f o r f r i c t i o n a l and o t h e r mechan i c a l l o s s e s o c c u r r i n g i n the o p e r a t i o n of the g e n e r a t o r s . Because of the na t u r e of energy c o n v e r s i o n p r o c e s s e s , comp le te e f f i c i e n c y ( f a c -t o r of 1) i s never o b t a i n e d . T u r b i n e r e l e a s e l i m i t s . Maximum and minimum l i m i t s have been e s t a b l i s h e d a t which the f l o w to the t u r b i n e s must be c o n s i s t e n t . The minimum l e v e l i s a c o n s t a n t , s t a t e d i n terms of c u b i c f e e t per s e cond ; w h i l e the maximum one i s a v a r i a b l e dependent upon the e l e -v a t i o n head of water i n the r e s e r v o i r d u r i n g r e l e a s e . U n i t s a re a ga i n s t a t e d i n terms o f c u b i c f e e t per second and e f f e c t i v e e l e v a t i o n head. Load f a c t o r . These f a c t o r s a l l o c a t e a c e r t a i n p o r t i o n of the t o t a l y e a r l y energy demand to each month based on h i s t o r i c a l energy demand t r e n d s . The y e a r l y energy demand w i l l be an e x p e r i -menta l v a r i a b l e . I t s s b o u l d .be.'.noted t h a t t he se f a c t o r s are not p e c u l i a r to the G.M. Shrum s y s t em, but r a t h e r p e r t a i n to any c o n f i g u r a t i o n of r e s e r -Table III Representative Data Set - G. M. Shrum Generating Station (a) Water level elevations ( f t ) minimum elevation = maximum elevation = t a i l r a ce elevation = (b) Storage tab le ; 2100 2205 1645-(d) Plant e f f i c i ency factor = .90 (e) Turbine release l i m i t s ; minimum release = 10,000 cfs maximum release vs. head table 3 3 storage(ft /sec x days x 10 ) 13492 14061 14648 15225 15822 16529 17194 17878 18585 19314 20067 20847 21656 22496 23368 24273 25788 27278 28625 30349 elevation 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2183 2190 2197 2205 head ( f t ) 446 497 514 543 551 (f) Load shape; month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Q (cfs) ^maxv ' 63940 68850 63370 65920 64960 factor .0825 .0852 .0897 .0926 .0873 .0888 .0819 .0813 .0772 .0773 .0802 .0796 (c) Stream/flows;[(cfs) month mean std. dev. Oct 28130 8038 Nov 20560 7625 Dec 12050 4414 Jan 8582 3281 Feb 8010 3592 Mar 7440 2578 Apr 17090 8937 May 79330 21320 Jun 120800 30130 Jul 71850 18030 Aug 39350 12950 Sep 27940 6431 Year 36890 4796 - 3 5 -v o i r s and g e n e r a t i n g s t a t i o n s t h a t may be under c o n s i d e r a t i o n . Tab l e IV p r e s e n t s a s t a n d a r d r u l e cu r ve f o r the o p e r a t i o n of the B u r r a r d t h e r m a l - e l e c t r i c p l a n t . The ou tpu t a t B u r r a r d i s dependent upon water e l e v a -t i o n i n W i l l i s ton Lake and the month o f the y e a r . The cu r ve a t t empt s to s upp l y s u f f i c i e n t thermal o u t -put to m a i n t a i n the wate r e l e v a t i o n l i s t e d f o r a c e r t a i n month. Example: month = November For water e l e v a t i o n = 2196 (2196 - 2200) x (-100) = 400 GWH For wate r e l e v a t i o n = 2201 (2201 - 2200) x (-100) = -100 = s e t to 0 GWH For water e l e v a t i o n = 2190 (2190 - 2200) x (-100) = 1 0 0 0 = s e t : t o 495 GWH For each month, the h y d r o - e l e c t r i c f a c i l i t i e s supp lement the therma l p l a n t s i n meet i ng month ly energy demands. When energy demands a re too h i g h , however, the thermal p l a n t ' s energy c o n t r i b u t i o n c o u p l e d w i t h t h a t of the hydro f a c i l i t i e s i s s t i l l not s u f f i c i e n t to meet the demand. In such a c a s e , the therma l p l a n t me re l y s e r ve s to i n c r e a s e the a v e r -age annual e xpec t ed energy p r o d u c i n g c a p a b i l i t y o f the two f a c i l i t y s y s tem. - 3 6 -Table IV Representative Data Set - Burrard Thermal Plant Rule curve f o r Burrard month G. M. Shrum G. S. e l e v a t i o n max output (GWH) Oct 2200 426 Nov 2194 495 Dec 2191 512 Jan 2188 512 Feb 2185 462 Mar 2182 512 Apr 2177 495 May 2185 426 Jun 2196 413 J u l 2200 426 Aug 2201 426 Sep 2201 413 - 3 7 -PHYSICAL AND MATHEMATICAL RELATIONSHIPS In t h i s s e c t i o n the data i s f u r t h e r p r o ce s s ed and c e r t a i n f u n c t i o n a l r e l a t i o n s h i p s a re d e v e l o p e d . The a l l i m p o r t a n t energy e q u a t i o n i s d e f i n e d and e x p l a i n e d . F i n a l l y , a sample c a l c u l a t i o n i s o f f e r e d u s i n g these r e l a t i o n s to demons t ra te the l o g i c of the computer program. The a c t u a l water e l e v a t i o n used i n c h a r a c t e r -i z i n g the energy p o t e n t i a l of the s t o r e d water i s c a l l e d the e f f e c t i v e e l e v a t i o n head, o r s i m p l y , head. In e q u a t i o n f o rm: HEAD = ( a c t u a l wa te r e l e v a t i o n ) - ( t a i l r a c e e l e v a t i o n ) where a c t u a l water e l e v a t i o n l i e s somewhere between (o r a t ) the maximum and minimum wate r e l e v a t i o n s . For the data of the G.M. Shrum G e n e r a t i n g S t a t i o n ; HEAD = ( a c t u a l water e l e v a t i o n ) - 1654 f e e t . In the program the " t r a n s a c t i o n " s i m u l a t e s a c e r t a i n q u a n t i t y of f l o w . To check t u r b i n e r e l e a s e c o n s t r a i n t s and to c a l c u l a t e energy d e r i v e d q u a n t i t i e s , the head must a l s o be c o n s t a n t l y upda ted . From the s t o r a g e t a b l e the nece s s a r y f u n c t i o n can be f o u n d . As an examp le , f o r W i l l i s t o n L a ke , the e l e v a t i o n / s t o r -age r e l a t i o n s h i p i s p l o t t e d i n F i g u r e V I . By -38-2220 J t i i i I I I I I I I 12 14 16 18 20 22 24 26 28 30 32 O ' . ' . .. .... • •; g'\ Storage ( f t /sec x days x 10 ) Figure VI. - f ( HEAD ) u u i » a i 440 465 480 505 530 555 Head ( f t ) Figure VII. - 3 9 -s u b t r a c t i n g the t a i l r a c e e l e v a t i o n from the water l e v e l e l e v a t i o n , as shown above , the head can a l s o be e a s i l y de te rm ined as a f u n c t i o n of s t o r a g e . The r e l a t i o n i s f a i r l y smooth and s l i g h t l y convex r e f l e c t -i ng the n a t u r e of the l o c a l geography. H y d r o - e l e c t r i c g e n e r a t o r s can accommodate a maximum q u a n t i t y of f l o w and any a d d i t i o n a l wate r becomes s p i l l . T h i s maximum f l o w v a r i e s a c c o r d i n g to the head a t which the water i s r e l e a s e d . F i g u r e VI I shows the f u n c t i o n a l r e l a t i o n f o r the G.M. Shrum G e n e r a t i n g S t a t i o n . For the G.M. Shrum G e n e r a t i n g S t a t i o n the energy e q u a t i o n i s : E = Q A V x H A V x n x D x 2.0306 x I O - 6 where E = d e r i v e d energy ( m i l l i o n s of KWH) Q Ay = average volume r a t e o f f l o w ( c f s ) H^y = average o p e r a t i n g head ( f e e t ) n = e f f i c i e n c y f a c t o r (no u n i t s ) D = days r e l e a s i n g (days ) For any r e s e r v o i r - g e n e r a t i n g s t a t i o n s y s t e m , the energy e q u a t i o n w i l l re semble t h i s one w i t h any changes p r i m a r i l y i n the c o n s t a n t . The energy d e r i v e d i s dependent upon the f l o w and head a l ong w i t h an - 4 0 -e f f i c i e n c y f a c t o r and the l e n g t h of t ime of the l e a s i n g o f w a t e r . In f u n c t i o n a l f o r m , E = f ( Q A V ' H A V N ' D ) A sample c a l c u l a t i o n u s i n g these f u n c t i o n a l r e l a t i o n s h i p s i s g i v e n i n F i g u r e V I I I . - 4 1 -Figure VIII Sample Energy C a l c u l a t i o n - G. M. Shrum G. S. Data: S^ n^ t ( i n i t i a l storage) F^ (monthly inflow) (monthly outflow) 20800000 f t /sec x days 940300 " 600000 " Cal c u l a t i o n s : H = (H, + H ,)I2 av i n i t end where H i n i t = i n i t i a l head at beginning of month Hend = f i n a * h e a d a t e n d o f m o n t n From storage table or Figure VI, head ( f t ) 496 H i n i t 506 storage ( f t /sec x days) 20067000 20800000 20847000 Using l i n e a r i n t e r p o l a t i o n , H, ,„ - 505 f t i n i t S i m i l a r l y f o r H e n d using the table or graph, H , - 507 f t end ( c a l c u l a t i o n continued on next page) - 4 2 -Figure VIII (contd) The average head, i s then determined as H - (505 + 507)/2 - 506 f t av 3 3 Q a v = Y^/ltdaya (ft /sec x days/days = f t /sec) 3 F 2 = 600000 f t /sec x days //days = 30 Q = 600000/30 = 20000 ft 3 / s e c av 3 Minimum release = 10000 f t /sec For maximum release, Qfflax « f(H f l v). From Figure VII, Hav ( f t ) V x ( c f 8 ) 497 68850 514 68370 Again using linear interpolation, 3 Q m a x = 68596 f t /sec Check release constraints: minimum release Q maximum release av 10000 20000 68596 O.K. The energy derived i s then calculated to be E - 20000 x 506 x .90 x 2.0306 x 10 - 6 • 554 million kwh - 4 3 -COMPUTER PROGRAMS Th i s s e c t i o n f i r s t d i s p l a y s a g e n e r a l f l o w c h a r t , F i g u r e IX, of the l o g i c employed i n the GPSSV mode l s . T h i s i s f o l l o w e d by GPSSV f l o w d iagrams f o r each of the f o u r mode l s . I n c l u d e d i n Append ix B i s a sample s i m u l a t i o n o u t p u t f o r each of the mode l s . -44-CALCULATE YEARLY RESEVOIR INFLOW CALCULATE MONTHLY RESET* VOIB INFLOW CALCULATE MONTHLY RE-LEASE QUANT. FROM POLICY ENTER INFLOW & REMOVE OUT-I FLOW FROM RESEVOIR ADJUST RESE DVOIR LEVELS ACCORDING TO TEST RESULTS TESTS Figure I& General Logic Flow Chart. -45-Figure X. MODEL f l . CM. SHRUM GENERATING STATION ON TUB PEACE RIVER MAIN MODEL SEGMENT Time unit • one month. Generate one transaction every month. Count the months ( SAVEVALUE with S-E TWO. Reset monthly energy derived to 0. Reset monthly spill to 0. Test to see if 3 0 , 5 12 months have passed. If yes, continue. If no, bypass monthly S-Es. Reset yearly energy derived to 0 SAVEVALUE j ENRGYf0,|i I Set back month counter^  SAVEVALUE ) i to l(0ct.) V- . rwo.i.H I J Calculate yearly (SAVEVALUE flow for present Count the years with S-E TEAR. S^AVEVALUE ^ y S^AVEVALUE ^  |fEAR+,l.H| (AAA). Assign to parameter P' X H $ T W 0 1 the month number. Calculate & hold monthly flow in parameter 2. Test to see if storage WILL is full. If not, proceed. If yea, spill all monthly flow. (FFF) S^AVEVALUE/ ^  Spill all flow I ,for month & V. • •» record in S-E |SPIL1,P2) SPILl. \ Assign to para-meter 2 a monthly flow of 0. GGG Go bacl? to main model J _ 0 _ I I ASSIGN J segment. TIMER SEGMENT Terminate simulation at end of IS years (12 x 15 - 180) (Continue on next page) - 46 -Test to BOB tf a l l monthly R$W1LJ flow w i l l enter reservoir- If not, go to OVER. Calculate head at beginning of S^AVEVALUE °°N T H- ELET,FN?*HEAD^ ,H OVER (OVER) SPLIT (CCC) Monthly flow enters reservoir (or fraction of I t ) . ENTER P2 DATA INPUT: yearly energy demand. B B B ( B B B ) I t2.R$WIT.I.| SAVEVALL'E ^ SPiu.V.$fULlTH 7, ( ASSIGN ) (SAVEVALUE J energy demand. DJMDI ,v$LO|J>TH Put Into reservoir portion of monthly Inflow It w i l l hold. Note that S-E SPIL1 Is used here as'well as above l n segment PPP. Test to see XH$NRGJ^L \JCH$DMND1 If releasement of water Is \ . TEST needed to satisfy energy demands. If not, go to TER. _ 13,100 Release increment -J • ^ of water(100KSPD)f ASSIGN J Record total number of monthly Increments released. I ASSIGN Tet to see If reserve* Is bottoming out. If so, go to OUT. (DDD) Release water from reservoir (amount held ln parameter 3). From, this test block to block LLL and segment WW: used to put back Into tesnvoir water that was unneccessarlly spilled earlier. LEAVE sWl L L ^ P3 (OUT) 1 |3,V$B0T1| ( ASSIGN J S^AVEVALUE ^  tBOUTl+ . l lH Set parameter 3 equal to amount of water that can be released to hit bottom out level. Record number of .bottom outs on monthly basis. Parameter 8 used as test later to see If reservoir has hit bottom out condition for month. Go back to DDD and release adjusted Increment. ( continued on next page ) -47-1 1 LEAVE 0 ^^ WILL/ I S^AVEVALUE ^ IsPILl.O,$ (LLL) _JT Calculate new A A V E V A I U E "\ head(before I 5AVLVALUb I release of another*; J 1 increment if E L E t p there is one). ^ Calculate average operating head J E E j,F N S H E A D \ , H » B e ^ I 4,V$HAVI| ASSIGN ^ Calculate average , M ™ 1 ^ outflow(cf Test to see if maximum turbine release has been exceeded. If so, go to TER. Calculate monthly^  SAVEVALUE ) energy derived. T I 7 NRitY.V$ENCljH Test parameter 8 to see if reservoir has bottomed out. If so, go to TER. Go to MORE to test energy demand vs energy derived. (WWW) ^ SAVEVALUE ^ SPlbl . V S B A c k . H INITIAL STORAGE SEGMENT Supply one transaction at ,,, 1 time - 0 DATA INPUT: set Initial storage ln resevoir. Enter storage with value of parameter 1 as assigned above. Leave storage with parameter] 2 equal to 0. ENTER PI ^WILLN I LEAVE P2 Remove transaction from model. / TERM. M T V I [ TERM. JO ( T E R ) ] ^ SAVEVALUE ^ E1JRGY+, XH $tJRGY, H Calculate energy derisd for year. TABULATE WILL ERGY^  WILL * PRINT t #S,A PRINT ,,XH,A PI ^«*v. 12 If month 12, continue E END to print stats.. *» If not, go to END. Tabulate the yearly energy derived ln table ERGY. (END) AERM. y\ Print storage stats. Print halfword S-E stats.. .End of months operations Terminate transaction and begin next months cycle of operations. - 48 -Ugur* XI. MODEL »1. G.M. SHRUM GENERATING STATION AND BURRARD THERMAL PLANT. MAIN MODEL SEGMENT Time unit " one month. Generate one transaction every month. ' Count tho montW SAVEVALUE of the year. N. l J 0 N T H + , l , j S^AVEVALUE ^ Set monthly f SAVenergy to 0 for beginning of JNRGY,0,H| months operations. ^ Set number of daily spills - 0. Set bottom out quantity - 0. Set number of dally bottom outs - 0. S^AVEVALUE ^  tPIL2,0,H| S^AVEVALUE ^  frOTOM^O | S^AVEVALUE ^ k0UT,0,H I Set daily spillC SAVEVALUE quantity - 0. V f c P I L 1 0 ) H f XH$M0NTR/~V. 12 Test to see if G AAA next year has ( y Bw been reached. If so, continue. If not, go to AAA. ( SAVEVALUE ) Set month number^ j,.,._., • ..i back to 1. f 0 N T V r H . l t S^AVEVALUE ^  tEAR4jl-»i S^AVEVALUE ^ jfNRGY.O.Hl S^AVEVALUE J BURR.O.H I _ , , . ( SAVEVALUE ) Calculate new y J yearly Inflow YFfOW.VSFLCyTH Count the years Set yearly energy derived » 0 (hydro). et yearly thrmal energy - 0. to reeetYtir INITIAL STORAGE SEGMENT Generate one trans- \ ^ ,,. 1,2 action at time - 0. DATA INPUT: Specify initial ASSIGN storage in resevolr. 1 Enter Initial ENTER storage via parameter 1. PI Leave storage with 0 units. LEAVE 0 Remove transactl from model. o^ r m ^ T j TIMER SEGMENT Terminate simulo-(GENERATE tion at end of V ig0 IS years (12 x 15 - 180) (continued on next page) -49-( A A A ) DATA INPUT: yearly energy demand. Calculate monthly enrgy demand. ^SAVEVALUE IfDMND, _,H ^SAVEVALUE ^  tTOMND.VSN^ED.H Calculate Initial! SAVEVALUE head (average head V. . at that time). ELE1.FNSHEADl.H a SAVEVALUE iADl TOO S-E XXX is used as |cxX,V$MOp| a special month counter for . thremal plant * ' * x x rule curve manipulation. XXX la always one less than the month number. / SAVEVALUE Calculate monthly rjr — — - r -thermal energy X BupAD,VSTHE)lM,H contribution. XH$BU Test to see if i t ^ G E \ S E E is greater than 0. ^ \ T E S T If so, proceed. If not, set to 0. XH$BURAD/*\MH1 (XH$M0NTH,5) Test to see if ^ L E ^ „w. , thermal capacity J *** is exceeded. If so, set to max.. ( J J J ) |ACTUL,V$hET Calculate actual monthly energy load on hydro system. (SAVEVALUE J thermal plant BUJqt-SXHSBURjp.H energy contributions"-~" for the year. X$ACJ Test to see If actual load on hydro plants la greater (KKK) than 0. GOO ^SAVEVALUE ^ Calculate monthlyM^E^3^H Inflow to reservoir (TOOL. Q SAVEVALUE J pa, 12 j (COO) S^AVEVALUE~D  frCTUL.O I (NOT) ' SAVEVALUE BURAD.ftTU(XHSM0irrH.5).H ^SAVEVALUE ^ (SEE) ^SAVEVALUE ^  |BURAD.0.tl (continued on next page) -50-Calculate dally Inflow to reserve"-. r - 1 — y S^AVEVALUE J  iDFLOW.VSrJAY.H Calculate dally energy derumd on _______ hydro system. DqMJ»U,VSLO/<U,H .axcuxace cne f >. required release ( SAVEVALUE j quantity to meet V S this daily demandREIES,V$0UT|H ^SAVEVALUE ^ R^AL,XH$RE^ES • (AGAIN) Assign the I SA EVALUE quantity to S-E REAL. Enter the dally ENTER flow into the reservem XH$DFL0W Remove from res. LEAVE VWILW the calculated release quantity. XH$REAL S$WILL, Test to see if spillage has occurred. If so, go to SSS and adjust Test to see if S$WILL bottoming out has occurred. If so, go to UUU and adjust (TTT) T . .. ic XSREAL^ ,., Test to see if / L h maximum release quantity for turbine has been exceeded. EXIT (BACK) Calculate the energy derlv«_ for the day. Calculate the new water head. ELE J~E_ Use parameter 1 as a day counter.! ASSIGN (SSS) S^AVEVALUE ^ SqiLl.ySOVq'ir Reset storage ln reservoir to maximum position and record another day of spillage Store number of day. spill has occur- ' during this month ln S-E SPIL2. TTT LEAVE XH$SPIL1 •c SAVEVALUE ^ SJIL2+.I.HT TRANS (UUU) Reset storage in reservoir to bottoi) out position and record another daj of bottoming out status. Store the number of days in S-E BOUT. 't^SAVEVALUE~^ ByUT+,l,a"j (EXIT). c I S^AVEVALUE ^ SAVEVALUE R*AL,V$TRU| Adjust the release to be • . . y vithln REpX,FN$qMAft.l allowable limits. (continued on next page) -51-/ ^ gyl SAVEVALUE ) Add dally energy montnly total. «#^g«gqS .M Test to see If •Inst day ln month has been simulated. If so, proceed. IF not, go to AGAIN. Add monthly energy derived yearly total. S^AVEVALUE ^  t Q J T N R C Y + . X H y M N R O Y.H L _ Tabulate the number of spills (days spill occurred) and tota for each month. Tabulate days bottomed out on a monthly basis. TABULATE SPSLS TABULATE Boutrs MATRIX MU1 3 4 i l l 1 f i l l § 3 8 !Si XH$Y For year 10, print stats, on a monthly basis. For all other years, print stats, for month 12 only. Tabulate yearly energy output of hydro system. Tabulate yearly energy output of thermal system. (ZZZ) XH SMOOTH TABULATE TJ SMT^  End of months operations. Begin new month at first generate block. -52-Jlgure XII. MODEL #3. G.M. SHRUM GENERATING STATION, SITE ONE, AND BURRARD THERMAL PLANT. MAIN MODEL SECMENT Time unit • one month. I GENERATE) Generate one trans-action every month. savevalue Count the months. Set months energy • 0. Set dally spills - 0. Set b-o quantity • 0. Set dally b-o • 0. Set spill quant. » 0. Set months energy • 0 or Site One. , XH$M01 Test to see If next year has been reached. It y*s, proceed. If no, go to AAA. 3 MONTH+,1,4 MNRGY.0.H SPIL2.0.H BOTOM.O B0UT.0.H SPIL1.0.H SITE1.0.H Set month to 1. Count the years. Set yearly energy - 0 Set thermal yearly- 0. Calc. new yearly flow. Set site 1 yearly • o. DATA INPUT: (AAA) Monthly energy demand Calc. water head. Set head at Site One. Thermal plant rule curve counter. MONTH,l.H YEAR+,1,H YNRGY.O.H BURR.0.H YFLOW,V$F4OW,H YSIT1.0.H YDMND, MDMND,V$NiED,H ELEI,FN$H|ADI,H ELE3.135 XXX,V$M0D MATRIX MH1 3 * 5 AAA ,H YEARLY ENERGY DEMAND (continued on next page) -53-S-E XXX is used as a special month counter for thermal plant rule curve manlpu- (pfp) latIon. Calculate monthly thermal energy contribution. HX$BURAD Test to see i f i t is greater than 0. If yes, proceed. IF no, set to 0. X$XX TOO (TOO) 1 ^SAVEVALUE ^ BUkADiV$THR^M.H MAVEVALUE ) |XX^ ,12 | XH$BURAD Test to see If thermal plant capac ity is exceeded. If so" set to maximum. (JJJ) Total the monthly thermal plant energ; contributions for the year. 1(XH$M0HTH,S) NOT (NOT) ^SAVEVALUE ^ BURADLMHI(XHSMDNTH.i),H Calculate the actual energy load on the hydro system. Test to see i f actual load Is greater than 0. I BURR+.XHTBURAD.H _ L (SEE) ^SAVEVALUE""^  BURAD.OTHJ SAVEVALUE Monthly inflow. (KKK) Daily inflow. Daily energy demand. Release quant, reqd. Actual (AGAIN) release quantity. MFL0W,V$W/TER,H DFL0W,V$D/ Y.H DDMND,V$L( AD.H RELES.VSGl NE.H REAL,XH$R1 LES (COO) ^SAVEVALUE ^ | ACTUL.Ol Enter daily flow Into reservoir. the actual release quantity. ENTER XH$DFL0W LEAVE V J I L L ^ XH$REAL 1 (continued on next page) -54-Teat to aoc If S$WILL spillage has occurred. If yes, go to SSS and adjust Test to see i f SSWIL1 bottomlng-out has occurred.If so, go to Uim and adjust. 30349 13492 Test to see i f maximum release turbine quantItly has been exceeded. (8S8) SSS qSAVEVALUE  ^PILI.V$OTER _JL LEAVE XH$SPlll UUU , (TTT) X$REAL FN$QMAX1 EXIT SAVEVALUE Reset storage ln reservoir to max. position-and record another day of s p i l l . Storr the number of days s p i l l has occurred thin month in S-E SPIL2. Calc. dally eng(BACK) Site One dally energy Calc. new head. Day counter. Total days energy. Total dally energy produced at Site One. DNRGY,V$DiRIV S0NE,V$RACI0,H ELE1,FN$U SAD1.H (assign block) MNRGY+,Xr SDNRGY,H SITE1,XH$ 50NE (UUU) c SAVEVALUE Test to see If last day in month has been reached. If no, go to again. Calculate yearly energy produced for total system and for only Site One, respectively. MH1(XH$M0NTH,3) AGAIN. B0T0M,V$l NDER BOUT+,1,1 REAL,V$T1 UE ENTER X$B0T0M Reset storage ln reservoir to bottom-out position and record another day of bottoming out status. Store the number of days ln S-E BOUT. Tabulate the number of days s p i l l occurred for each month during entire length of simulation. YNRGY+.X l$MNRGY,H YSTTH-.xtl$SITEl TTT TABULATE Tabulate nureber of days bottomed-out ln similar manner. SP L s \ |/WILL*\ TRANS. TABULATE BO r r s \ (EXIT) ^SAVEVALUE""*) REIAL , FN $QMAyI 1 (continued on next p a g e ) -55-XHSYEA For year 10,print stats, on a monthly basis. (ZZZ) XH$M0NTH For all other years, print stats, for month 12 only. Tabulate yearly energy output of hydro system. TABULATE HYDRO Tabulate yearly energy output of thermal system. TABULATE THIML End of months operations. Begin new J TERM month at first generate block. IHITIAL STORAGE SEGMENT TIMER SEGMENT Sun simulation for 13 years DATA INPUT: specify beginning storage volume ln Hllllston Lake. -56-Flgure X I I I . M O D E L # 4 . C M . S H R U M G E N E R A T I N G S T A T I O N & S I T E O N E O N P E A C E R I V E R , B U R R A R D T H E R M A L P L A N T , A N D M I C A D A M O N C O L U M B I A R I V E R . C O L U M B I A R I V E R / M I C A D A M S E G M E N T Time unit « 1 month. Generate one transaction each month. Count the months. Reset monthly engyj Reset monthly s p i l l stats. Reset monthly bot-out stats. MONTH+.l.H, MENGY.O.H WASTE,0,H WAST1,0,H BOTl.O.H XH$MONTH Test to see i f new year is to begin. If yes, proceed. If no, NEW NEW Reset month count. Count the years. Reset years energy Yearly COL. flow. Yearly PEACE flow.. Calc. head. (NEW) Monthly COL. flow. Dally COL. flow. MONTH,1,H YEAR+,1,H YENGY.O.H YFL0C,V$FI0W1,H YFLOP,V$FI0W4,H ELE2,FN$HI AD2.H MFLOC,V$FI AC.H DFLOC,V$D(G,H ( S O S ) (HELP) BVl Determine type of operating criterion In use on reservoir. Release quantity for target end of year storage. Q S A V E V A L U E 3 Release quantity | L E T G Q , M H ( ( X H $ M O N T H . 10) , H for target monthly outflow. X H $ M O N T H , 9 ) , H (continued on next page) -57-(BINO) Fnter d a l l y flow Into reservoir as storage. ENTER XH$DFLOl: Release targeted monthly quantity] of outflow. LEAVE N-nf—<^  XU$LETGCt Test to see If.*, s p i l l a g e has occured. I f yes,' run amount through* turbines to avoid s p i l l a g e . S$HICA 10121 Test to see I f bottomlng-out condit i o n has been reached. I f yes, go to HHH. (000) Calc. new head. XH$LET( Test max. turbine release c o n s t r a i n t . I f exceeded, go to FPF. (DDD) I I I — a » HHH FN$QMAX2 PPP Calc. d a l l y energyj output. Total d a l l y outputl f o r a month. Use parameter to t e s t f o r end of month DENGY,V3GEN,H MENGY+,XH$DENGY,H 1+,1 ASSIGN Test to see I f e n t i r e month has been simulated. I f yes, proceed go to HELP and continue d a l l y operation. MH1(XH$H0NTH,3) HELP (HHH) Record the bottomlng-out co n d i t i o n l n terms of time and amount. Adjust reservoir l e v e l . Tabulate yearly |YCTGY+,Xl|$HENCY.H energy produced. . ENTER V$SII0RT rx»itr_Nh (PPP) t^SAVEVALUE^ Calcu l a t e quant of s p i l l caused by exceeding turbine release c o n s t r a i n t s . DDD rco 2ZZ.H XYZ,XH$LEr WASTE+,V$! WASTl+,1,1 LETGO,FN$3MAX.2 TRANS. _ TEST Avoid s p i l l i n g water under t h i s c r i t e r i o n . Run c a l c . s p i l l quant. ^ SAVEVALUE through turbine and adjust r e s e v o l r l e v e l . (continued on next page) -58-Tabulate the number of days s p i l l occurred. Tabulate the number of days bottomlng-out occurred. TABULATE XH$WAST1 XH$MONT! If end of year, record monthly ststs. Tabulate yearly] energy output for Mica Dam. (HOPE) (WHY) ^SAVEVALUE ^ |LETCO,V${IIP,H Avoid s p i l l i n g water by running s p i l l quatit through turbine. Test turbine release constraint at later time LEAVE V$MUCH ^ 000 -59-INITIAL WILISTON STORAGE CONTENT DATA INPUT: Specify i n i t i a l storage volume ln Hllliston Lake. ENTER ?! /^WTLL\ LEAVE 0 INITIAL MICA STORAGE SEGMENT DATA INPUT: Specify i n i t i a l storage volume ln Mica Dam. ENTER PI 1 LEAVE kWILT^ 0 TIMER SEGMENT Run simulation for 15.years (12 * IS - 180) i i -60-PEACE RIVER/CM. SHRUM G.S./SITE ONE SEGMENT Time unit - 1 [GENERATE month. Generate one . transaction each •-, 11111 * month with priority This will cause thin segments monthly simulation to I SAVEVALUE follow that of the Peace River segment] Reset monthly spill] quant. • 0. Reset bottom-out quant. - 0. MNRGY,0,H SITE1.0.H SPIL2.0.H SPIL1.0.H BOTOM.O BOUT.O.H Rest monthly energy * 0 for both G.M. Shrum and Site One. Test to see ra$M01 If new year Is to begin. If no, go to NNN. N N N ( L O W ) Reset yearly engy. for both plants. Reset yearly engy. for thermal " 0. Calc. monthly demd. Calc. head. (NNN) Thermal, month countj Set head for Site One. XH$MENGY Test to see i f energy produced already in month "\TEST by Mica satisfies the monthly demand. X$XXX XXX Is used as special month counter for operation of thermal plant *ule C U r V e « (FFF) YNRGY.O.H YSIT1.0.H BURR.O.H YDMND, MDMND,V$N| ELE1,FN$HEAD1,H XXX,V$M0D| ELE3.135 Set actual energyT" demand on this Is! river basin -0 for this month CAN SAVEVALUE J •CTUL.O I because energy needa have already been meet at another site. feED.H DATA INPUT: Specify yearly energy demand. ( T O O ) Calc. monthly thermal output. IIERM.H (continued on next page) . -61-XHSBURAD, Test to see If thermal rule curveS^TEST has given a positive quantity. If no, go to SEE and adjust. XH$BIT Test to sec that ^ maximum monthly "NICEST thermal output has not been exceeded. Red holds sum of energy outputs from thermal and otherhydro plants. Test to see If monthly energy demand has already been met by other Facilities. If no, proceed. (USA) Calc actual energy* demand on.this hydro system. ( c a n ; . Calc. dally demand Calc.release quant Calc. monthly flow Calc. daily flow. Calc real (AGAIN) release quantity in view of constraints. MH1(XH$M0NTH,S) NOT (SEE) SAVEVALUE ACTUL,V$N; DDMND.VSLJJAD.H )NE,H MFLOP,V$WlTER,H (JOCK) DFLOP,V$D lY.H REAIlXIlSRELES Enter daily flow into reservoir. Remove actual release quantity from reserwif. ENTER XH$DFLOP i LEAVE S m v ' XH$REAL S$WILL Test for spillage If no, proceed. . , S$WILL • Test for bottom-out condition. If no, proceed. Test maximum turbine release1 constraints. If satisfied, proceed 30349 c Set thermal energy output "0 if given as negative on rule c u r ^ j j SAVEVALUE ^  ] BURAD,0.[l (NOT) ^ SAVEVALUE ^ BURAtj,MHl(Xll$H'0NTH.3).H Set thermal energy output • maximum allowable. ^ (TON) If only part o thermal energy Is needed to satisfy remaining' energy needs, set appropriate level CAN BURAD,V$COOD,H (GOO) Set actual energy demand on this hydro segment = 0 because already met; KRK S^AVEVALUE ^   )ACTUL,O*J (EXIT) TRANS. Q SAVEVALUE ^ Set release quantity to allowable limit B A C K iREAL, FN$QMAX1 TRANS. (continued on next page) -62-C SAVEVALUE . , . . . (BACK) DNRGY,V$D*RIV,H Calc. dally energy t •» j i for basin. SONE Is pONE.VSRA'jlO.H portion produced at Site One. Calc. head. ) (SSS) IELEIFNSHEADI.H ^ S A V E V A L U E ) Uae parameter to test for end of months operation. ^ A S S I G N ^ 1 5PILl,V$aVER,H Record amount 3pti2+°1 and occurrence E L_ of spillage and adjust reserva|_ level. LEAVE X H $ S P I L : c T T T S A V E V A L U E Total dally energy for month for total system and portion . produced at Site Oner T R A N S . MNRGY+.DNfcCY SITE1+.XH1 SONE Test to see If end of month has been reached. If no, continue dally operation. If yes, tabulate state. (XH$H0NTU,3) AGAIN (UUU) c SAVEVALUE Record occur rence of bottomf out condition and adjust xesentor level Calc. yearly Site One and total basin energy. YS1T1+,X1$SITEI YNRGY+,M»RGY,H BOTOM,V$U)DER B0UT+,1,H REAL,V$TR J E^ Tabulate the number of days spill occurred for month. TABULATE SPILS ENTER X$B0T0t f^TJillX Tabulate the number of days a botcoming-out condition occurred) for month. XHSYEAR Teat for end of year 10. If yes print star on a monthly basis at YYY. (continued on next page) -63-(ZZZ) XH$M0NTH Tent to see If end of year has been reached l n simulation I f yes, tabulate yearly energy outputs, f o r hydro and thermal systems. Terminate tra n s a c t i o n and begin monthly process over s t a r t i n g w i t h Columbia River/ Mice Dam segment. BYE TABULATE HYDkO TABULATE T H R H L a (YYY) P r i n t s t a t s , on monthly basis f o r year 10. MATRIX MH1 3 A 5 * 7 8 9 10 i - 6 4 -• VALIDATION V a l i d a t i o n i s conducted on a t w o f o l d b a s i s : the t e s t i n g of s y n t h e t i c a p r i o r i p remi ses f o l l o w e d by t e s t s f o r goodness of f i t . S y n t h e t i c a p r i o r i p remi ses are based on p r e v i o u s l y a c q u i r e d g e n e r a l knowledge of the system to be s i m u l a t e d . Te s t s f o r goodness of f i t a re measures of the degree of c o n -f o r m i t y of s i m u l a t e d t ime s e r i e s da ta to ob se r ved or h i s t o r i c a l d a t a . Both a s p e c t s o f the v a l i d a t i o n p roce s s are d e v i s e d to i n d i c a t e when t ime paths gene ra ted by the s i m u l a t i o n model agree s u f f i c i e n t l y w i t h h i s t o r i c a l t ime paths so t h a t such agreement cannot be a t t r i b u t e d mere l y to chance. In common w i t h most v a l i d a t i o n p r o c e d u r e s , the one proposed here i s not i n t e n d e d to c l a s s i f y the model as t r u e or not t r u e but r a t h e r to p r o v i d e a c e r t a i n degree of c o n f i d e n c e i n the s i m u l a t e d d a t a . A P r i o r i P remi se s S i m u l a t i o n s were run to v e r i f y each of the f o l -l ow i ng p r e m i s e s . 6 R e s u l t s of a p o r t i o n of these s i m u l a t i o n s are g i v e n i n the next c h a p t e r , " E x p e r i m e n t s " , i n g r a p h i c a l f o rm. D u p l i c a t i o n of the s i m u l a t i o n s which were run f o r v a l i d a t i o n purposes not graphed can be a c c o m p l i s h e d by s u p p l y i n g the models w i t h de -s i r e d data i n p u t s as sugges ted by the p r e m i s e s . - 6 5 -Premi se 1. For y e a r l y t o t a l system energy demands a p p r o x i m a t e l y equa l to the sum o f the expec ted annual energy c a p a b i l i t i e s of each f a c i l i t y i n c l u d e d i n a mode l , W i l l i s t o n Lake water e l e v a t i o n measured over t ime shou ld f l u c t u a t e about the i n i t i a l e l e v a t i o n a t the b e g i n n i n g of the s i m u l a t i o n showing p o s s i b l y o n l y a s l i g h t upward or downward s h o r t term t r e n d . P remi se 2 . For y e a r l y t o t a l system energy demands i n exces s o f the sum o f the expec ted annual energy c a p a b i l i t i e s o f the f a c i l i -t i e s i n c l u d e d i n a mode l , W i l l i s t o n Lake water e l e v a t i o n w i l l d e c r ea se to near minimum l e v e l and f l u c t u a t e about t h i s l e v e l f o r the d u r a t i o n of the s i m u l a t i o n . The magnitude of the d i f f e r e n c e between energy demand and energy c a p a b i l i t y w i l l d e te rm ine how r a p i d l y the minimum wate r e l e v a t i o n i s reached and the number of days b o t t o m i n g - o u t o c c u r s . P remi se 3 . For y e a r l y t o t a l sys tem energy demands l e s s than the sum of the expec ted annual energy c a p a b i 1 i t i e s of the f a c i l i t i e s i n c l u d e d i n a mode l , W i l l i s t o n Lake water - 6 6 -e l e v a t i o n w i l l i n c r e a s e to near maximum l e v e l and f l u c t u a t e about t h i s p o i n t f o r the d u r a t i o n of the s i m u l a t i o n . The mag-n i t u d e of the d i f f e r e n c e between energy demand and energy c a p a b i l i t y w i l l d e t e r -mine how r a p i d l y the maximum water e l e -v a t i o n i s reached and the number o f days and q u a n t i t y of s p i l l a g e . P remi se 4. For months i n wh ich b o t t o m i n g - o u t o c c u r s d u r i n g a s i m u l a t i o n , energy o u t p u t w i l l be l e s s than the energy demand f o r t h a t month. P remi se 5. For Model #2, the i n t r o d u c t i o n of B u r r a r d Thermal P l a n t w i l l l e s s e n the magnitudes o f water e l e v a t i o n f l u c t u a t i o n s measured ove r t ime i n W i l l i s t o n Lake . A d d i t i o n a l l y , the energy o u t p u t f rom B u r r a r d w i l l depend on system energy demands: h igh demand g r a d u a l l y dec rea se s W i l l i s t o n Lake water e l e v a t i o n and r e s u l t s i n B u r r a r d o p e r a t i n g a t maximum ou tpu t w h i l e low demand g r a d u a l l y i n c r e a s e s W i l l i s t o n Lake water e l e v a t i o n and r e s u l t s i n B u r r a r d o p e r a t i n g a t m in ima l energy o u t p u t . P remi se 6. For Model #3, energy o u t p u t a t S i t e One - 6 7 -as a pe r cen t age o f the t o t a l r i v e r b a s i n ' s o u t p u t w i l l v a r y a c c o r d i n g to W i l l i s t o n Lake water e l e v a t i o n and energy demand. Th i s c h a r a c t e r i s t i c deve l op s due to the head-dependent o p e r a t i o n of G.M. Shrum G e n e r a t i n g S t a t i o n . Be ing a r u n - o f - r i v e r f a c i l i t y , S i t e One o p e r a t e s i ndependent of head. A d d i t i o n a l l y , P remi se 5 i s a p p l i c a b l e to Model #3. P remi se 7. For Model #4, month ly water l e v e l f l u c -t u a t i o n s i n M ica Dam w i l l depend s t r i c t l y on month ly i n f l o w . Th i s c h a r a c t e r i s t i c a r i s e s because the o p e r a t i n g c r i t e r i o n f o r M ica Dam i s based on month ly r e l e a s e s and end ing month ly water e l e v a t i o n s . Energy o u t p u t , t h e r e f o r e , i s dependent o n l y upon i n f l o w and i ndependen t o f t o t a l system energy demand. A d d i t i o n a l l y , P remi se s 5 and 6 are a p p l i c a b l e to Model #4. -68-Va lue s n e c e s s a r y to d u p l i c a t e the v a l i d a t i o n e xpe r imen t s a re g i v en be low: C u m u l a t i v e Expec ted Average Model F a c i 1 i t i es Energy C a p a b i l i t y (GWH) li W 12,250 2 W,B 17,750 3 W,B,S 20,900 4 W,B,S,M 28,410 W: W i l l i s t o n Lake & G.M. Shrum G e n e r a t i n g S t a t i o n B: B u r r a r d Thermal P l a n t S: S i t e One on Peace R i v e r below G.M. Shrum Genera-t i n g S t a t i o n M: M ica Dam on Co lumbia R i v e r -69-Goodness o f F i t T e s t s f o r goodness of f i t must be c e n t e r e d around a v a i l a b l e r e c o r d s kept by B.C. Hydro. In v iew o f t h i s r e q u i r e m e n t , the f o l l o w i n g l e t t e r and a t t a c h m e n t , F i g u r e s XIV and XV were p repa red by Mr. Doug F o r r e s t and Mr. Ken S p a f f o r d f rom B.C. Hydro . Model #4 p r o v i d e d the f ocu s f o r the v a l i d a t i o n . Two minor e r r o r s were i d e n t i f i e d as i n d i c a t e d i n the l e t t e r . The f i r s t e r r o r r e s u l t e d from a m i s p l a c e d b l o c k r e f e r e n c e and was r e c t i f i e d b e f o r e the v a l i -d a t i o n p roce s s was u n d e r t a k e n . The second e r r o r i s caused by the two l e v e l s t o c h a s t i c i t y of the model -y e a r l y r i v e r f l ow s a re s t o c h a s t i c a l l y d e r i v e d and from month ly percentages of t he se numbers, used as month ly mean f l o w s , month ly f l o w s a re d e r i v e d s t o -c h a s t i c a l l y . Only by c o i n c i d e n c e would the sum of these f i n a l month ly f l o w s be equal to the o r i g i n a l y e a r l y i n f l o w . I t i s p o s s i b l e , however, to i n c o r -p o r a t e a program segment i n t o the model to gua ran tee such a r e l a t i o n s h i p . T h i s r e l a t i o n s h i p was no t augmented i n t h i s t h e s i s as the a u t h o r f e e l s i t to be of minor impo r tance and o u t s i d e the sphere of the p r o j e c t o b j e c t i v e s . The data assembled by B.C. Hydro i n A t tachment 1 o f f e r s a compar i son between s e v e r a l c r u c i a l o u t p u t -72-Flgure XV. COMl'ARISON OF CPSS AND GENERATION PLANNING SIMULATION 1) Burrard Opera I: ion Upper Limit Frequency Frequency (GWH) G?SS • (Historical) 500 0 0 1000 0 0 1500 0 0 2000 0 1 2300 0 1 3000 1 0 3500 0 1 . 4000 4 1 4500 3 1 5000 1 1 5500 5 0 6000 26 34 2) Reservoir Bottoming Out Month Oct Nov Dec Jan Feb Mar Apr 3) Site One Operation Upper Limit GWH 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Days) GPSS 0 0 29 .' 59 84 142 192 Frequency GPSS 0 0 0 0 3 1 29 7 • Frequency (Days) (Historical) 0 4 31 31 43 152 270 Frequency (Historical) 0 0 0 0 1 4 25 10 ... 2 - 7 3 -Mica Operation Upper L i m i t (GWH) Frequency GPSS Frequency (Historical) 6000 6500 7000 7500 8000 overflow 0 3 3 9 13 12 0 3 6 • 6 12 13 Based on Load RMULT 29500 0 GPSS and H i s t o r i c a l study done at B.C. Hydro with suitable modifications to correct the error in monthly loads. Prepared by: K.R. Spafford 28 October 1976 - 7 4 -v a r i a b l e s i n the GPSSV and G e n e r a t i o n P l a n n i n g s imu -l a t i o n mode l s . The GPSSV Model #4 s t a t i s t i c s a re d e r i v e d f rom one f o r t y - y e a r s i m u l a t i o n w i t h o u t -put da ta p r i n t e d a t the l a s t day of the t w e l f t h month f o r each yea r of the s i m u l a t i o n , e x c e p t i n g y ea r ten where p r i n t i n g was o r d e r e d f o r each month of t h a t y e a r . The G e n e r a t i o n P l a n n i n g Model ( d e v e l -oped p r e v i o u s l y by B.C. Hydro) uses f o r i n p u t r e c o r d e d s t r e a m f l o w s f o r the p e r i o d 1928 to 1968. The two mode l s , t h e r e f o r e , a re s u b j e c t e d to two v a r y i n g s e t s of i n p u t , or s t r e a m f l o w d a t a . Item 1) of the a t t achment compares annual energy o u t p u t s f o r B u r r a r d Thermal P l a n t between the two mode l s . The f r e q u e n c y c l a s s e s a re i n c l o s e agreement a c c e p t i n g a s l i g h t downward b i a s i n the GPSSV mode l . Weighted averages show the GPSSV model w i t h 5525 and B.C. H y d r o ' s model w i t h 5637 GWH annual o u t p u t . Item 2) has t a b u l a t e d the number of days t h a t W i l l i s t o n Lake has bottomed out over the f o r t y yea r s i m u l a t i o n . Summing the number of days f o r each y i e l d s 506 and 531 f o r the GPSSV and B.C. Hydro mode l s , r e s p e c t i v e l y . With the t o t a l number of days i n the f o r t y y e a r s equa l to 40 x 365 = 14 ,600, t he se numbers appear to be i n c l o s e agreement. The GPSSV model produces a h i g h e r p r o p o r t i o n o f days bottomed out - 7 5 -d u r i n g the e a r l i e r months of the y e a r than does the B.C. Hydro mode l . Th i s i s undoub ted l y p a r t i a l l y due to d i f f e r e n c e s i n s t ream f l o w sequences . Items 3 and 4) compare annual energy o u t p u t s between the two models f o r S i t e One and Mica h yd ro -e l e c t r i c f a c i l i t i e s . F i g u r e s XVI to XIX p r o v i d e a g r a p h i c a l c o m p a r i -son of Items 1) th rough 4 ) . As e s t a b l i s h e d a t the b e g i n n i n g of t h i s c h a p t e r , an a c c e p t a b l e degree of model v a l i d i t y would be the o b j e c t i v e of the v a l i d a t i o n p r o c e d u r e . In c o n d u c t -ing t h e i r p o r t i o n of the v a l i d a t i o n , B.C. Hydro has f o cu sed on a reas of paramount i n t e r e s t to them ( i . e . , days bottomed- out of a r e s e r v o i r , annual energy o u t -p u t s ) . The g r a p h i c a l r e p r e s e n t a t i o n s of the s i m u l a -ted da ta i n d i c a t e a d e f i n i t e c o r r e l a t i o n i n t r e n d s and f r e q u e n c y c l a s s e s i n r ega rd s to annual energy o u t p u t s and b o t t o m i n g - o u t s t a t i s t i c s . B.C. Hydro conducted a d d i t i o n a l da ta a n a l y s i s , not shown here but ment ioned i n the l e t t e r , t h a t c o n f i r m e d the l o a d - r e s o u r c e b a l a n c i n g p o r t i o n of the mode l . Load -r e s o u r c e b a l a n c i n g i n v o l v e s p r o p o r t i o n i n g c e r t a i n q u a n t i t i e s of r e s o u r c e (wate r ) a t a c e r t a i n e l e v a t i o n head o b t a i n i n g the d e s i r e d energy o u t p u t . Th i s b a l a n c i n g i s done on a month ly b a s i s . - 7 6 -The two t o p i c s d i s c u s s e d above, showing a g r e e -ment o f the two da ta s e t s on an annual and month ly b a s i s over a f o r t y yea r p e r i o d , c oup l ed w i t h the s a t i s f y i n g of a l l a p r i o r i p remi ses i s deemed s u f -f i c i e n t s uppo r t t h a t the model i s a c t i n g p r o p e r l y . F u r t h e r , the c l o s e agreement ob se r ved i n means of f r e q u e n c y c l a s s e s between da ta s e t s i n d i c a t e s a h igh degree o f v a l i d i t y . FREQUENCY (years) o cn o O O o o cn O O CO -+-cn —4-ro —«-K - ro co l-> ro ro co o CO co CO CD CO -H O 3> • -a _• _ < o CO fD B CO -J TJ -j 3 _ ZC cu CT ua -< o —— a> a o -h TO m TJ O o r- —  1 _ cu _ _s _ ca _ o _ a -5 -— m -s r— CU m • • • • -5 =3 cn cn O. ro cn cn -s CO ro i_ cn *<o fD _C _c 3 ca _ -5 "5 Cu -s a. _--5 3 Cu T J CU _ o o 3 T J CU -5 i. CO o _ g..i.n. ,i ..^ '.... ••. nffgwMfg i p t ^ i i i i M i ^ -LL-Figure XVII . W i l l i s t on Lake Days Bottomed-Out Comparison Total Number of Days W i l l i s t on Lake Bottomed-Out MONTH OF YEAR </> s_ >-o 36 33 4 30 27 24 21 13 • 15 " 12 9 6 3 1 0 Figure XVIII . S i te One Output Comparison Average Annual Energy Output for S i te One ; v . : | GPSS MODEL B.C HYDRO MODEL 3500 GWH 3550 GWH i vo i 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 • ' ' A N N U A L ENERGY OUTPUT (GWH) " * Figure XIX . Mica Output Comparison >> >-ar Ui OS 33 30 *J 27 24 21 18 15 12 9 6 3 0 * Average Annual Energy Output for Mica Dam GPSS MODEL B.'C. HYDRO MODEL 7700 GWH 7663 GWH i CO o I I I 1 t 1 I I • • I . 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 ANNUAL ENERGY OUTPUT (GWH) OVERFLOW -81 -EXPERIMENTS T a b l e V l i s t s the e xpe r imen t s conducted on the f o u r mode l s . The p r ima r y purpose o f e xpe r imen t s w i t h the f i r s t t h r e e models was the o b s e r v a t i o n of wate r l e v e l f l u c t u a t i o n i n W i l l i s t o n Lake f o r v a r i o u s energy l o a d s . Emphasis was g i v en to Model #4. R e s e r v o i r l e v e l f l u c t u a t i o n , energy o u t p u t , s p i l l and bo t t om-out s i m u l a t i o n data were c o n s i d e r e d . For a l l e x p e r i -ments the r e l e v a n t ou tpu t was t a b u l a t e d or graphed i n a manner c o n s i s t e n t w i t h the p r a c t i c e s of B.C. Hydro. The magnitude of energy l oad s examined was d e t e r -mined by summing the expec ted annual energy c a p a b i l i -t i e s of a l l f a c i l i t i e s under c o n s i d e r a t i o n i n the mode l . Energy l oad s i n exces s o f these r e s u l t i n c o n t i n u o u s b o t t o m i n g - o u t of r e s e r v o i r s . S i m i l a r l y , energy l o ad s below t h i s l e v e l r e s u l t i n c o n t i n u o u s s p i l l i n g of w a t e r . I n i t i a l s t o r a g e volumes were u s u a l l y s e t a t near-maximum l e v e l s as sugges ted by o B.C. Hydro. L e s s e r s t o r a g e volumes were a l s o assumed to demons t ra te the model ' s f l e x i b i 1 i t y . Model #4 r e q u i r e d the d e f i n i t i o n of an o p e r a -t i n g c r i t e r i a f o r M ica Dam. The c r i t e r i a used i n the se expe r imen t s i s g i v e n i n F i g u r e XX. The s i m u -l a t i o n program was c o n s t r u c t e d i n a g e n e r a l f a s h i o n Table V. Experiments MODEL TOTAL SYSTEM ENERGY INITIAL STORAGE WILLISTON INITIAL STORAGE LENGTH OF LOAD (GWH) LAKE (KSFD x 103) MICA DAM(KSFD x lO 3). SIMULATION(YEARS) 2 3 11,000 30,000 N/A 15 12,000 30,000 N/A 15 13,000 30,000 N/A 15 12,000 20,000-= N/A- 15 16,000 20,000 N/A 15 18,000 20,000 N/A 115 16,000 30,000 N/A 15 18,000 30,000 N/A -.15 20,000 30,000 N/A 15 22,000 30,000 N/A 15 26,000 30,000 10121 15 28,000 RMULT 791 30,000 10121 15 30,000 30,000- 10121 15 26,000 30,000 10121 15 28,000 RMULT 017 30,000 10121 15 30,000 30,000 10121 15 26,000 30,000 10121 15 28,000 RMULT 335 30,000 10121 15 30,000 30,000 10121 15 29,000 30,000 10121 40 - 8 3 -FIGURE XX . Mica Project Operating C r i t e r i a TARGET END OF YEAR TARGET AVERAGE MINIMUM MONTH STORAGE CONTENT (KSFD) OUTFLOW (CFS) OUTFLOW(CFS) Aug 10121 N/A 10,000 Sep 10121 N/A 10,000 Oct . N/A 15,000 10,000 Nov N/A 18,000 10,000 Dec N/A 28,000 15,000 Jan N/A 29,000 15,000 Feb N/A 29,000 15,000 Mar N/A 15,000 15,000 Apr N/A 15,000 15,000 May N/A 10,000 10,000 Jun N/A 10,000 10,000 Jul 10121 N/A 10,000 - 8 4 -such t h a t e x p e r i m e n t a t i o n w i t h a l t e r n a t i v e p o l i c i e s c o u l d be a c c o m p l i s h e d by chang ing a p p r o p r i a t e i n p u t v a l u e s . The f i r s t g r aph , marked Model #1, p l o t s s t o r a g e i n W i l l i s t o n Lake a g a i n s t t ime f o r v a r i o u s y e a r l y energy demands f o r Model #1. The h o r i z o n t a l dashed l i n e s r e p r e s e n t the l i m i t s of l i v e s t o r a g e f o r W i l l i s t o n Lake . End of y ea r s t o r a g e l e v e l s a re p l o t t e d r e f l e c t i n g the net change i n y e a r - t o - y e a r water l e v e l s . Bo t toming 'Out i s noted w i t h hash marks on the l i n e segment c o n n e c t i n g e n d - o f - y e a r s t o r a g e l e v e l p o i n t s . Due to the d i f f e r e n c e i n t ime between maximum energy demand and g r e a t e s t r i v e r f l o w , bo t toming out may o c cu r d u r i n g the w i n -t e r months f o l l o w e d by r e c o v e r y i n the l a t t e r s p r i n g months. The s e n s i t i v i t y of water l e v e l i n W i l l i s t o n Lake i s ob se r ved f o r d i f f e r e n t energy l o a d s . From t h i s graph i t can be e s t a b l i s h e d t h a t the average energy c a p a b i l i t y f o r W i l l i s t o n Lake l i e s between 11,000 and 13,000 GWH, p r o b a b l y near 12,000 GWH. A s e r i e s of e xpe r imen t s u s i n g v a r i o u s seeds i n the random number g e n e r a t o r to change s t ream f l o w sequences would enab l e a more a c c u r a t e p r e d i c t i o n of the e xpec ted average annual energy c a p a b i l i t y . The next g r aph s , marked Model #2, p l o t r e s u l t s - 8 5 -from f i f t e e n yea r s i m u l a t i o n s u s i n g Model #2. End-o f - y e a r water s t o r a g e i s p l o t t e d a g a i n s t t ime i n the f i r s t graph f o r two energy demands and two i n i t i a l s t o r a g e v a l u e s . The f u n c t i o n of the B u r r a r d Thermal p l a n t i s to s teady the wate r e l e v a t i o n i n W i l l i s t o n by a d j u s t i n g i t s the rma l o u t p u t . The magni tude of water l e v e l changes from yea r to y e a r , however, r e f l e c t the l i m i t e d a b i l i t y of B u r r a r d Thermal P l a n t to o p e r a t e i n t h i s c a p a c i t y . The average annual energy c a p a b i l i t y o f the system as a whole has i n -c r ea s ed by a p p r o x i m a t e l y the maximum p o s s i b l e o u t -put o f B u r r a r d Thermal P l a n t . The second graph f o r Model #2 shows s t o r a g e as a f u n c t i o n of the month of the y e a r . Year ten was a r b i t r a r i l y chosen to be g raphed . The y e a r l y t r e n d i n water l e v e l movement appears f a i r l y u n i f o r m r e g a r d -l e s s o f water l e v e l a t the b e g i n n i n g of the y e a r . E x a m i n a t i o n of month ly changes i n water l e v e l a i d i n d e v e l o p i n g r u l e cu r ve s f o r t he rma l p l a n t o p e r a t i o n . Remembering t h a t more e f f i c i e n t use o f s i m i l a r amounts of water i s made a t h i g h e r e l e v a t i o n heads , a p r o p e r l y formed r u l e cu rve c o u l d i n c r e a s e the average annual energy c a p a b i l i t y of the system w h i l e r e d u c i n g the use of coa l i n the the rma l p l a n t s . Model #3 i n c l u d e s the S i t e One h y d r o - e l e c t r i c f a c i l i t y wh ich i n c r e a s e s the average energy c a p a b i l i t y - 8 6 -of the system by a p p r o x i m a t e l y 3,500 GWH. The g r a p h s , marked Model #3, d i s p l a y a s e r i e s o f s i m u l a t i o n s : u s i n g v a r i o u s seeds i n the random number g e n e r a t o r . In t h i s manner, one can deve lop a c l o s e a p p r o x i m a t i o n of the energy c a p a b i l i t y o f the s y s tem. For Model #4 s e v e r a l groups of graphs a re p r e -p a r e d . The f i r s t group p l o t s s t o r a g e a g a i n s t t ime f o r M ica Dam u s i n g d i f f e r e n t s t ream f l o w sequences f o r the same o p e r a t i n g c r i t e r i a . The e f f e c t s of randomness on s t ream f l o w s and r e l a t e d s t o r a g e l e v e l s i s c l e a r l y e v i d e n t from t h i s g r aph . The second and t h i r d group of graphs f o r Model #4 show s t o r a g e as a f u n c t i o n of t ime f o r v a r i o u s f l o w sequences and energy l o a d s . Graphs a re c o n s t r u c t e d f o r both e n d - o f - y e a r and end -o f -month s t o r a g e q u a n t i -t i e s as f o r Models #2 and #3. The f o u r t h s e t of g r a p h s , marked Model #4, shows the sum of energy c o n t r i b u t i o n s f o r each yea r from each f a c i l i t y f o r v a r i o u s energy l oad s and r a n -dom f l o w sequences . At r e l a t i v e l y low energy demands the B u r r a r d Thermal P l a n t c o n t r i b u t e s n o m i n a l l y to the t o t a l energy o u t p u t . The o u t p u t from B u r r a r d v a r i e s from yea r to yea r more than f o r the o t h e r f a c i l i t i e s r e f l e c t i n g the s e n s i t i v i t y of the the rma l p l a n t r u l e c u r v e . A s t eady i n c r e a s e i n energy o u t p u t f o r B u r r a r d - 8 7 -i s e v i d e n t as the energy demand i s i n c r e a s e d . For y e a r l y demands of 30,000 GWH, B u r r a r d o p e r a t e s t y p i -c a l l y a t or near i t s maximum c a p a b i l i t y and i n some i n s t a n c e s i s unab le to c o n t r i b u t e s u f f i c i e n t l y to meet the t o t a l energy demand. Output f rom M ica remains f a i r l y c o n s t a n t as i s e xpec ted from the i ndependent o p e r a t i n g c r i t e r i a . D i f f e r e n c e s i n o u t p u t s f rom Mica f o r c o r r e s p o n d i n g y e a r s r e s u l t from d i f f e r e n t s t ream f l o w sequences and the o c c a s i o n a l i n a b i l i t y of the f a c i l i t y to s a t i s f y the p a r t i c u l a r o p e r a t i n g p o l i c y . S i t e One ou tpu t appears f a i r l y c o n s t a n t as i s e x p e c t e d . For r u n - o f - r i v e r type f a c i l i t i e s , energy o u t p u t v a r i e s d i r e c t l y w i t h r i v e r f l o w and i s i n d e -pendent o f e l e v a t i o n head. F u r t h e r , because W i l l i s t o n Lake o p e r a t e s d i r e c t l y above S i t e One on the Peace R i v e r , water r e l e a s e q u a n t i t i e s f rom W i l l i s t o n Lake de te rm ine the energy o u t p u t f o r S i t e One. For t h i s r e a s o n , and remembering the e n e r g y - h e a d - q u a n t i t y r e -l a t i o n s h i p f o r s t o r a g e r e s e r v o i r s , r e l a t i v e l y l a r g e energy o u t p u t s f o r G.M. Shrum G e n e r a t i n g S t a t i o n a t W i l l i s t o n Lake are not n e c e s s a r i l y accompanied w i t h l a r g e o u t p u t s a t S i t e One. T h i s method of p l o t t i n g energy o u t p u t s f o r t o t a l systems matches t h a t o f B.C. Hydro. - 8 8 -Energy c o n t r i b u t i o n s of f a c i l i t i e s to be added to the model may be p l o t t e d on the e x i s t i n g graphs i n keep ing the graphs c u r r e n t and m e a n i n g f u l . For Model #4, one f o r t y - y e a r s i m u l a t i o n was run and a gragh p l o t t i n g W i l l i s t o n Lake e l e v a t i o n head a g a i n s t t ime a s semb led . I t appear s t h a t 29,000 GWH energy demand i s a p p r o x i m a t e l y the t o t a l system energy c a p a b i l i t y . Over the f o r t y - y e a r s i m u l a t i o n water l e v e l s d i pped to bo t tom-ou t l e v e l s t w i c e w h i l e s p i l l a g e o c c u r r e d t h r e e t i m e s . Stream f l o w s f o r the s i m u l a t i o n s are p l o t t e d i n the f i n a l g r aph . The dashed l i n e i n d i c a t e s the mean y e a r l y f l o w as i n p u t to the mode l . Flows below the mean a re c oup l ed w i t h the e xpec ted e l e v a t i o n head dec rea se s on the p r e c e d i n g f i g u r e . E l e v a t i o n head appears ve ry s e n s i t i v e to changes i n f l o w t r end s when compar ing the two f i g u r e s . For t h i s r e a s o n , a c c u r a t e d e t e r m i n a t i o n s of s t ream f l o w means and s t anda rd d i v i a t i o n s f o r i n p u t to the model are ve r y c r u c i a l to model v a l i d i t y and u s e f u l n e s s . One c o u l d run numerous o t h e r e xpe r imen t s on these models to f u r t h e r d e f i n e system c h a r a c t e r i s -t i c s . The management of B.C. Hydro may indeed p e r -form such e xpe r imen t s to i d e n t i f y system c a p a b i l i t i e s more p r e c i s e l y . The a b i l i t y to e xpe r imen t w i t h - 8 9 -a 1 t e r n a t i v e energy l o a d s , system c o n f i g u r a t i o n s and o p e r a t i n g c r i t e r i a enab l e s the u l t i m a t e goal of the p r o j e c t to be reached . . . t h a t of e s t a b l i s h i n g the average energy c a p a b i l i t y o f an i n t e g r a t e d h y d r o -e l e c t r i c and thermal p l a n t s y s tem. -90-* Y e a r l y e n e r g y demand = 11,000 GWH * Y e a r l y e n e r g y demand = 12,000 GWH * Y e i r l y e n e r g y demand - 13,000 GWH A 2205 L2197 / L2183 12170 « z o M H <: 12160 ?3 w 12150 £ NOTE: Hash marks i n d i c a t e number o f months d u r i n g t h e y e a r t h a t t he r e s e r v o i r was , bo t tomed -ou t . 7 8 TIME ( y e a r s ) To L2140 2130 L2120 2110 2100 11 12 13 14 15 MODEL 1. W i l l i s t on Lake Water 'Elevation vs. Time-End of Year Levels - 9 1 -Yearly energy demand Yearly energy demand 16,000 GWH 18,000 GWH o o >> T3 X o to ro o 6 7 0 9 10 TIME (years ) 13 14 15 K)DEr2. Wi l l i s ton Lake Water Elevation vs. Time Yearly energy demand = Yearly energy demand = 16,000 GWH 18,000 GWH - 9 3 -Yea r l y energy demand = 20,000 GWH Yea r l y energy demand = 22,000 GWH NX ^ \ v \ \ \ \ V / / / /\ 1 \ \ \ I ' I I I I I I K I I I I I I ' 0 1 2 3 4 5' 6 7 3 9 10 11 . 12 13 14 15 TIME (years ) MODEL 3 . W i l l i s tun Lake Water E l e v a t i o n vs. Time-End o f Year Leve l s -94-Yearly energy demand = 20,000 GWH Yearly energy demand = 22,000 GWH M0DEL#3. TIME (months) Wil l iston Lake Water Elevation vs. Time-Year Ten, End of/Month Levels - 9 5 -_ _ R M U L T 7 9 1 r2460 2445 LU LU # ~r 6 7 . 8 9 10 TIME (years) 14 15 MODEL 4. Mica Dam Water Elevat ion vs. Time- End of Year Levels 31 30 29 23 27 26 25 24 23 22 21 20 19 13 17 16 15 14 13 -96-RMULT 791 " 0 1 7 " 335 \ V V \ v \ / / v / 1 2 3 4 5 6 7 3 9 10 11 12 31 W TIME (years) # ODEL 4. W i l l i s t o n Lake Water Elevation vs. Time-End of Year Levels System Energy Demand = 26,000 GWH -57-13 » » H i l l I |> H » I H I « • 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TIME (years) M0DEL#4. Williston Lake Water Elevation vs. Time-End of Year Levels System Energy Demand = 28,000 GWH -98-- R M U L T 0 1 7 - " 7 9 1 _ " 3 3 5 3 1 3 0 2 9 2 8 2 7 1 V CO b 2 6 X o 2 5 > » « j x 2 4 -I o cu to c o " " 2 3 — 2 2 LU O 2 2 1 o t- 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 V \ \ ' \ \ \ \ \ \ A / \ V / •» \ w v A /V \ V \ \ \ \ \ V x A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VIHE (years) M0DEL*4. Williston Lake Water Elevajlon vs. Time-End of Year Levels System Energy Demand = 30,000 GWH -99-RMULT 017 " 791 " 335 31 i 18 ' 17 ' 16 " 15 " 14 • 13 ' 6 1 2 3 4 5 6 :. 7 8 :9 10 11 12 TIME (months) M0DEL#4. W i l l i s t o n Lake Water Elevation vs. Time-End of Month Levels System Energy Demand = 26,000 GWH 1 00-p 1 1 i 4 -5 76 ^ "8 S»° 10 11 12 TIME (months) M0DEL#4. W i l l i s t o n Lake Water Elevation vs. Time-End of MoothLLevels System Energy Demand = 28,000 GWH - 1 0 1 -RMULT 017 # 'II V It 3 4 5 6 7 TIME (months) 9 10 11 12 MODEL 4. Williston Lake Water Elevation vs. Time-End of Month Levels System Energy Demand = 30,000 GWH 33 30 4 M0DEL#4. Yearly Energy Outputs-Yearly Energy Demand = 26,000 GWH-RMULT 791 27 1 24 o 8 21 X Z 18 cn u i u i 15 12 3 0 BURRARD G.M. SHRUM .S. SITE ONE MICA 4 5 6 7 8 9 10 11 12 13 14 15 TIME (years) 33 f MODEL 4. Y e a r l y Energy Outputs-Yearly Energy Demand = 26,000 GWH-RMULT 017 12 i-9 6 1 G. M. SHRLIM G.S BITE QNE MICA BURRARD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TIME (years) M0DEL#4. Yearly Energy Outputs-Yearly Energy Demand = 26,000 GWH-RMULT 335 G.M . S H R U I 'A G.SJ SITE ONE MICA BURRARD 6 7 8 TIME (years) 10 11 12 13 14 15 33 MODEL 4,Yearly Energy Outputs- Yearly Energy Demand = 28,000 GWH-RMULT 791 30 J 27 i 2 4 C3 § 2 1 1 x v—> GO 18 i— a . -o 15 C D L U 12 0 *" MICA G.M. BURRARD 1 2 3 SHRUM G.S s i m ONE 6 7 8 TIME (years) 10 11 12 13 14 15 MODEL 4. Yearly Energy Outputs-Yearly Energy Demand = 28,000 GWH-RMULT 017 33 30 27 ^ 24 C 9 O o o ° 21 co 18 _ CL. t; 15 H C 9 S 12 9 6 3 0 :.M. SHRUM G.S. SITE O N E MICA t URRAR 6 7 8 9 TIME (years) 10 11 12 13 14 15 33 30 M0DEL#4. Yearly Energy Outputs-Yearly Energy Demand = 28,000 GWH-RMULT 335 27 24 CO § 21 o ^ 18 CO =3 CL. ZD O 15 CD f* 12 6 3 G.M. SHRUM G LS. MICA BURRARD SIT E ONE o i 0 I i i : 1 i . • * , • i > > i * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TIME (years) 33 M0DEL#4. Yearly Energy Outputs-Yearly Energy Demand = 30,000 GWH-RMULT 791 30 27 i 2 4 CD § 2 1 o t—i X CO K— ID D_ 18 15 >-CD £ 12 G.M BIURRARD SHRUM G.S. SITE ONE MICA 1 2 3 4 5 6 7 8 -9 10 .11 12 13 TIME (years) 33 MODEL 4. Yearly Energy Outputs-Yearly Energy Demand = 30,000 GWH-RMULT 017 30 27 — 24 to o o 21 o X co _> > -C D f_ 18 15 12 6 1 G.M. SHRUM G.S. SITE MICA ONE BURRARD 5 6 7 TIME (years) 8 10 11 12 13 14 15 MODEL 4. Yearly Energy Outputs-Yearly Energy Demand = 30,000 GWH-RMULT ##% G.M. SHRUM G.S MICA SITE (NE BURRARD 6 7 8 TIME (years) 10 11 12 13 14 15 MODEL-4. W i l l i s t o n Lake Water Head y s . Time - System Energy Demand = 29,000 GWH MODEL 4. Yearly Peace River Flow Relative to S t a t i s t i c a l Yearly Mean Flow I I I 1 I 1 1 I 1 " 1 1 I 1 1 1 I " I l i t ! 0 2 4~ 6 8 10 12 14 16 18 20 22 24 26 23 30 32 34 36 38 40 TIME (years) - 1 1 3 -CONCLUSION As e s t a b l i s h e d a t the o u t s e t of t h i s p r o j e c t , " T h i s t h e s i s u nde r t a ke s to p r o v i d e a m o d e l l i n g framework and r e l a t e d t e c h n i q u e to e x p l o r e the energy p r oduc i n g c a p a b i l i t y of an i n t e -g r a t ed h y d r o - e l e c t r i c and therma l p l a n t s y s t e m . " Th i s o b j e c t i v e has been met i n t h a t the mode l -i ng t e c h n i q u e s have been v a l i d a t e d and r e l e v a n t data ou tpu t has been made a v a i l a b l e f o l l o w i n g s i m u l a t i o n e x p e r i m e n t s . Such i m p o r t a n t data o u t p u t i n c l u d e s annual energy o u t p u t s , s p i l l and b o t t o m i n g - o u t s t a -t i s t i c s . Other da ta may be ou tpu t a t the d i s c r e t i o n of the a n a l y s t . The model deve lopment sequence p r o v i d e s the nece s s a r y t e c h n i q u e s to expand f u r t h e r the model c o n -f i g u r a t i o n s , a p r i m a r y conce rn of B.C. Hydro. The GPSSV computer language combined withi the modular na tu re of the i n d i v i d u a l r i v e r b a s i n model segments y i e l d s a f l e x i b l e m o d e l l i n g framework a d a p t a b l e to many system c o n f i g u r a t i o n s . The impo r t ance o f t h i s f l e x i b i l i t y l i e s i n the a b i l i t y of B.C. Hydro to i n -c l u d e a l l energy p r o d u c i n g f a c i l i t i e s of i n t e r e s t i n one l a r g e mode l . In t h i s way, the u l t i m a t e goal of B.C. Hydro i n d e v e l o p i n g a s i m u l a t i o n model can be r e a c h e d ; -114-" . . . t o d e v i s e a method f o r measu r i ng the f i r m energy c a p a b i l i t y o f the B .C. .Hydro system u s i n g s t o c h a s t i c stre.amflows r a t h e r than the d e t e r -m i n i s t i c s t r e a m f l o w s t h a t a re now u s e d . " 7 In a d d i t i o n to expand ing the model as ment ioned above , ano the r p o s s i b l e model e x t e n s i o n shou ld be r e c o g n i z e d . A s s o c i a t e d w i t h the o p e r a t i o n and c o n -s t r u c t i o n of h y d r o - e l e c t r i c and therma l p l a n t systems a re f i x e d and v a r i a b l e expense s . A t r a d e - o f f , t h e r e -f o r e , e x i s t s between o p t i m i z i n g the e n e r g y - p r o d u c i n g c a p a b i l i t i e s of a l t e r n a t e f a c i l i t y c o n f i g u r a t i o n s and the p o s s i b l e economy o f s u b - o p t i m a l i n t e g r a t e d f a c i l i t y o p e r a t i o n s . In a t t e m p t i n g to s a t i s f y the demands made upon the model deve lopment by B.C. Hydro , a u s e f u l p r a c t i -c a l a p p l i c a t i o n o f the GPSSV language has r e s u l t e d . A d d i t i o n a l l y , some programming p rocedu re s were i m p l e -mented i n the models to be c o n s i s t e n t w i t h c u r r e n t p r a c t i c e a t B.C. Hydro. In l i g h t of such a p r a c t i c a l a p p l i c a t i o n , the t r u e v a l u e of s i m u l a t i o n as a manag-ment t o o l has been d e m o n s t r a t e d . More s p e c i f i c a l l y , B.C. Hydro c l a i m s t h a t "The GPSSV language appears to be i d e a l l y s u i t e d to model a problem such as the one deve l oped i n your p r o j e c t . In l o o k i n g th rough your program we have been impres sed w i t h the power of the v a r i o u s ..GPSS com-mands and the appa ren t ease of making program changes and e x t e n -s i o n s ." ° - 1 1 5 -FOOTNOTES ' B r i t i s h Co lumbia Hydro and Power A u t h o r i t y , A l t e r n a t i v e s 1975 to 1990 (Repo r t of the Task Fo rce on Fu tu re G e n e r a t i o n and T r a n s m i s s i o n R e q u i r e m e n t s , May, 1 975) , p. 12. ^W. A. H a l l and W. S. Bu t che r and A. Esogbue, " O p t i m i z a t i o n of the O p e r a t i o n of a M u l t i p l e Purpose R e s e r v o i r by Dynamic P rog ramming " , Water Resources  Research 4 (June 1968) : 471-477. 3 G . K. Young, " F i n d i n g R e s e r v o i r O p e r a t i n g R u l e s " , J o u r n a l of the H y d r a u l i c s D i v i s i o n , ASCE 93 (Nov. 1967 ) : 297 -321 . 4R. A. Howard, "Dynamic Programming and Markov P r o c e s s e s " , MIT P re s s ( 1960 ) . 5M. M. H u f s c h m i d t , " S i m u l a t i o n Techn iques f o r the Des ign o f Water Resource S y s t e m s " , Ha rva rd U n i v e r - s i t y P re s s ( 1966 ) . i n t e r v i e w s w i t h D. R. F o r r e s t and K. R. S p a f f o r d , B.C. Hydro and Power A u t h o r i t y , Vancouve r , B r i t i s h C o l u m b i a , J u l y - A u g u s t , 1976. ^ L e t t e r f rom B.C. Hydro i n c l u d e d i n t h i s t h e s i s , p . 71. 8 1 b i d . -116-REFERENCES Agar iva l , S. K., and Nagrath, I. J . , Optimal Scheduling of Hydro-thermal Systems. I.E.E.E. Proceedings, Vo l . 119 No. 2, February, 1972. B r i t i s h Columbia Hydro and Power Authority. Alternat ives  1975 to 1990. Report of the Task Force on Future Generation and Transmission Requirements, May, 1975. Buras, N., S c i e n t i f i c A l locat ion of Water Resources. American Elsevier Environmental Science Ser ies, New York, N.Y., 1972. Butcher, W. S., discussion oh Finding Reservoir Operating Rules by George K. Young J r . , Journal of the Hydraulics D iv i s i on , ASCE, Vo l . 96, HY1, Proc. Paper 6200, Nov., 1968, pp. 1570-1573. Gulke, C. B., and Kadak, A., Planning the U t i l i z a t i o n of a Large Reservoir in a Power System. Engineering Journal, Vo l . 55, No. 5, May, 1972. H a l l , W. A., Askew, A. J . , and Yeh, W. W., Use of the C r i t i c a l  Period in Reservoir Analys is . Water Resources Research, Vol . 5, D e c , 1969, pp. 1205-1215. H a l l , W. A., Butcher, W. S., and Esogbue, A., Optimization of  the Operation of a Mult ip le Purpose Reservoir by Dynamic  Programming. "Water Resources Research", Vo l . 4, June, 1968, pp. 471-477. H a l l , W. A., and Dracup, J . A., Water Resources Systems  Engineering. McGraw-Hill Book Company Inc., New York, N.Y., 1970. Hufschmidt, M. M., and F ie r ing , M. B., Simulation Techniques  for Design of Water Resource Systems. Harvard Univers ity Press, Cambridge, Mass., 1966. Naylor, Thomas H., and Finger, J . M., Ve r i f i c a t i on of Computer  Simulation Models. "Management Science", Vo l . 14, No. 2, October, 1967. Schriber, Thomas J . , Simulation Using GPSSV. John Wiley & Sons, Toronto, 1974. -117-REFERENCES Van Horn, Richard L., Val idat ion of Simulation Results. "Management Science", Vo l . 17, No. 5, January, 1971. Young, G. K., Finding Reservoir Operating Rules. "Journal of the Hydraulics D i v i s i on " , ASCE, Vo l . 93, No. HY6, Proc. Paper 5600, Nov., 1967, pp. 297-321. -1 1.8-APPENDIX A G iven below i s a summary of computer run t imes and c o s t s f o r Models #1 th rough #4 on an IBM 370/168 computer . SIMULATED MODEL CPU T IME(sec) T IME (yea r s ) C0ST ($ ) * 1 5.22 15 2.14 2 6.08 15 2.80 3 7.09 15 3.23 4 13.43 15 5.73 4 29.74 40 10.42 * C o s t i n c l u d e s pages p r i n t e d , ca rd s r e a d , and s t o r a g e . - 119 -APPENDIX B SAMPLE COMPUTER PRINTOUTS . . P F G ? . . . 1 . . P t l . S . . . 2. . PEGS. . . 3. . P J M . S . . . 4 . . P t i . U . ..*>. .PkC!>. . .<>.. I f( .S . . . 7 . . P E l > S . . . n . . ' t G S . . . V . . P u O S . . . O . . P = S S . . . l . . r . . . 2 PE j i . . . i . HPS NC. C53273 UUVcftSTTV f j F " S ' C COMPUTTNC" CETiTBT TTTTIUNT7ST TSTttTO '»JO~TCT TaTTb -» tSICNCN NUOE T»lO P=30 NN NNNN HH NN NN NN NN _NN NN" NN NN UU u u iv u u u u u u u u " u u u u u u c u o o q u r n n o r.) oo EEEEEEEEfEEE EEEE^EEfcCEE EE E £ ' EE HH su HH m HH HH NN NN NN _ NN NN "NNNN NNN NN UU UU UU u u " u u u u u u u u _ u u 111) PI) no c n on J I T u c o o o n n o UUt.t.lUlttA'UU DOPunDOOOO " T E t P T j E T EEEEEEEE EE E E EE EEtEfcEEFrEEE NN u u u t ' u u u u u u D . i u O O D n o n t b k t t t t t t h t t H-1 I—' t o • •LAST S I G M N WAS: 1<>:57:57 USfP "NUOE" SIGNET CN AT 20:Q8:»1 CN WED JUL 28/76 SPUN •GPSTV : EXECUTtON BEGINS G P S S V - M T S V F P i I O N 9LCCK »'**"TEPI'T^UOHAW I'WCTJttl b f JA -XSJ IV1H3F F O P U P - T O - D A T E IflFCRMAT ICN REGARDING »GPSSV ' H . I S T NEWS m GPSSV* N U M f c E F eLCC SIMULATE . C . O . E , F , G , H , T " C0H-4ENTS CEFIf-t FUNLTJUNS **** SNC*» FUNCTION PNI.C25 STATEMENT "NUMBER 1 2 C , - 5 " > T O 0 O ' C i 7 ^ / V C r j l 3 6 , - 3 7 T 0 T O ? l , - Z ; 5 / . O Z - ? 7 5 , - » " . C 6 6 1 1 . - ! . , > / . l t 5 C 7 , - ! . 2 / . I SHOf. , - 1 / . 2 1 i i i j , - . a/.27<,>5.-.3**SP,- .4/. ' .2C7<.,-.,'V .5.0/.^7 , »26, . 2 / . 6 5 5 4 ? . . « " .725?5,.«-/.737 ! * . . s / . j A i 3 A , T 7 ; - 8 ( r ' i 9 - r r : . 2 r r ^ ? : ' r?r . 5 -. 9 7 7 2 S . 2 / . t r . 3 70, .? .S/. 'J ' .P6S. j/ .9SS97, <,/1. 5 HEA01 F ' J \ r . T l O f : S*«IL!..C?0 i3*S2.4A«./ ! VIS 1 .451/ ' i t * 3; ' .«./! '.Z^t^t.l/l «ia»2 16!>2*».*71/l7l'J'..4 7ft/l/h/fc, v * l / l 8 f >tS : . . 4 <t ' . / l * U * . « ' U 2C04 7.*9ft/2Ca*7 , , ;Ul/?l(.56. ,501,/^i ' iv' J .Jl l/?3?()«.Slb ! 119.2 • > a rt «* UJ r. cj *v u* i/i - u. «4 1£. r » o • *-— ^ CT »~ t~ •* — i : •«-• -r M rt K <*> _| K < » . j ft •ro <• x • rt rt w rt rt rt ' e y - k p m " i ri rt Hi -» >r # . o - co f» b \ « p > Q 9 0 i x f- rt -H N p <r m o ^ * • x i r y; •v. ' c «v «s. - O p * -rt rt X T ET X > > 51 * • K- v. . J B 5 l\| (M fM f\| rsj PA vt x x b. ». a' 4* in • — »- r • ~< •-« r _rt rt -» N p f rt * j • r\j * *^  P' ^ u _« (A *0 r\i ~+ w m p >r « p- tf a, p- «~ — < ^ • i fN -• i — » r . ro rg o . x t> — ~ C T T X T . 3T If. *s. X N M UP In ^ •f l~t ir> — -o rv 1*1 u. » • r rg o • — cj - — C T « —« -> x : T. J v : >, rt o 4 <4 < 1 - K- I- P- I z .r *: z:, I M t ? 1 O) H Q •o x •-*; x f\j • *r • * o • » U. * »u • ft f X «J . • ~ * a •* •Hit - i/i n a t U- kl> I UJ U. U; lu 1 ' —I _ l _ l _J _J u j j i r u i a T T a > h J. II »" 1 u. ir i i t <— — « 4 ^ L i -J. <1 « i H p>- »- u- u. — £ u . Z > U. U U. .1 _• — ,| o - j > i - ;ti i i < M X I? S -X 1-L r. 3 I Q t - O iLI p [ J f CI T5 • " L" ? n • _j h' u» tr b v - K < L. B - e o o i a: tu P UJ - J LI - T j r ' UP — M K 1 Q. I-T .-» I I. i. ' ;r -J - i t. U. ^ U; PJ^  \t « t * • « « t r « 9 H |< a < •> « • « « « HI • 4. 0 « » * it « * «i * « « ( * l « * B X K Iu t— u j itt 2- K E 't CJ < r> > 7 i ii | W W 1^ 4 r O J | -|> r j t/» n i l» » « * I* # t « it i- * • 553 {if «/> z <u J.t - a 1 3 - U •J tl J - » -I 1 - UJ a \-- l Z - O * o J a: - 3 o • » •D * * K a * z p-z> fi ^ > c B < • >• e « cr" to u. UJ « •T O Z * o » UJ « —• t « - J o _ i • -i,-J •q • —• a . 3 « 2- 1 * * a >• O <; * O <C Of. CC > « Ui CJ O 2 •- or * UU (/> UJ * o • B a * • • < UJ •  C • < ft * • * « * 4 ft ti 11 * * « ft « * ft a « • « # « « « « « • • • • * • ••• MAIN PCDFL SEGMENT *••* 7 5 •»*» PF ACE RIVEF / HILLISTCN LAKE / G. H. S M B U 1 G. S . 7 6 V 7 7 I GEKESATE ~r,T . . i~ ~" " " ' . . ~ 7 8 2 SAVEVALUE THO*,1,H 7 9 3 JAVf VALUE NRGY.O.H 8 0 * StVtVALUE SPILl.O.H 31 5 TEST f. X H i T w C * 1 2 i A A A 3 2 6 SAVEV»LUE ENB^Y.O.H 8 3 T SAVFVAlUE ""TlNU.l.H"""' " " " ' ' o 4 8 SAVt VALUE r.Nf ,V*FLCW,H SS 9 SAVEVALUE Y £ A R * ' . 1 . H 8 6 10 A A A ASSIGN l.XHiT - . o d7 1 1 ASSIGN 2.VIMQNTH 8 8 12 GATE SME WILL,FFF 8 3 13 TEST CE R » W l L L , P 2 . G V c R _ " " " — 9 0 : 1* SAVEVALUE ELEI»FN$ H E A D 1.H 9 1 1 5 C C C ENTrP WILL.P2 9 2 1} ***************ft?*?*****#*****«***#**«*#**********«**«***•*««***«* 9 4 *> •••••••«*»»**»»SPC1HD NUMBER IH CA3D REPRESENTS **«*«**»**••»*•«•*«•«*•«*••*** • 9 6 : ~ ~ ~ ' «»•»«•««•.e»**iYE4°l ¥ ENERGY DEMAND •*•*«•»•»»««•»»*•«•«•«»«**«»»« 9 7 1 6 GGG ASSIGN ? , 1 1 0 0 3 , ^ _ 9d 9 3 i o a 17 SAVFVALUF 0 > N H t V * l C A C . h 1 0 1 18 MOPE TEST L XMiN-GV j'XHiOMNDl'VTER * - 1 0 2 .... . 1 9 ASSIGN 3,100 1 0 3 20 ASSIGN 6»,100 1 0 4 2 1 TEST LE 1J!> 2 2 ODD LEAVE WILL,P3 1 0 6 2 3 TEST G P3,XHiSPILl,Www 1 0 7 2 + E N T E P W I L L . X h i S P I L l lOd 2 5 LEAVE WIIL.O 1 0 9 2 6 SAVFVALUE SPILl.O.H 1 1 0 2 7 I L L SAVEVALUE E L E l l . F N J H t A U l . H U l 2 8 ASSIGN 4 , V « M A V 1 1 1 2 2 9 ASSIGN • 5 . V S F L 0 1 1 1 3 30 " TEST LE P5,(-ri»UfAXl. ' tH 1 1 4 ' 31 SAVEVALUE NfGYtVlENGl.H 1 1 5 3 2 TEST N E »8.l,TER 1 1 6 3 3 TRANSFER ,MC<fc 1 1 / 34 OVER SPLIT 1 ,bW 1 1 8 3 5 SAVEVALUE S P I L t . V I F U L L l . h 1 1 9 36 T f ' ^ l N S T T 0 1 2 0 — 3 7 F F F SAVEVALLE S P I L 1 , V $ F U L L 1 , H 1 2 1 38 ASSIGN ? . 0 1 2 2 3 9 TUANSFfcR . . l.(>l> 1 2 3 40 8 8 B ASSIGN 2.» tWlLL 1 2 4 4 1 TRAKSFER , c r c 1 2 5 4 2 - OUT ASS ICH j . v i u O T i 1 2 6 • " 43 SAVEVALUE R O U U * , l . H 1 2 7 44 ASSIGN 9,1 1 2 8 4 5 T * i t . 5 F E 5 • I;M!J U 9 4 6 TEB SAVEVALUE EM>GY».X(-*NRGY,H 1 3 3 47 TFST F P 1 . 1 2 . E N 0 1 3 1 48 "TAHl't AT E ' 'SPOr " ' ~ " " " 1 3 2 — • — ' - - — — 49 PRINT . .S,A 1 3 3 50 PP I NT ..XH.A 1 3 4 119.4 119.5 2 <.» 55 wi m T. a ' ro U J ! U- U' I m z »• o 3 uimlft 5 *C u i Ul >• l ~ I- f Ui Cj I X 5 • 3 4 L "> * HE I-3T UJ <-* — >- ru b. o /: •- •<» u jr Tf uj o ^3 pi — •a Lj D I E < a 6 " i o 3 "I I- -o UJ - . c •J 3 . PS (< c. -o 1 1 ITI-N | 3 I N r u i d — 1- IM K X 1 o VI » . T. <J 1 £ * V- h- -/) m 1 ' X 1- I O a I l l i O o ' U J V at i 3 i <* r ° ui W u o! i v * • i _> jfi > j 1 r- — 1 5 -i ul — o (/» r» ; on» a. <0 ! Ui ' UJ -J o < T. . 1 * j o •*  1 1 i : .u ^ Z 3 UJ 1-Ui ~+ <x < (D »4 b. t-I" U J => 3 -i LJ Z ui 1 1 « • » « • O « II i • z. • ft « ft * —1 * » l/» p. H * ne uj « * f- *7» ft « 3 «« T * a <» * O > ft * l« « < 1-a « p » « • ft • Z 3 « • a ft « O • *j 0 « » iA ft ft « * vu • i ! » » < • • * * I « KI -J UJ * -J * K l ft « Jt * < it Ul -* | t » _J < — * > » OJ U J D */> — > »-it « a. -4• ft U J • »- < • > » 3 Ui ft O • 3 « < » ^ i ft < *ft » or - * 1 * » o * UJ mi O » O « r- « O < d. J » or. cn r»» m » « < 1- ». IT* O ft » II 01 C J ^ • * » ir (*» ft i • » U. » U J tf* ! » i • > ' * ' • < • i * X ft u ; » a » o s » • i 1- « o ft * ! f UJ — I*I • ft 1 » 1 * l l i n « ft ft • « 3 • • • oc la « tr ^ o « ft UJ UL. • ft a J Z K £ > X ft ft rob ft 1 • W a. ft « D a i* • *-0 0 • « 2? O • « « • * 1 / 1 7 1/1 I - » f » i f «r UJ IT u. > ^ S C O •«• <r sr 2 w £ u) IM IN. UJ Q Iut S l-'UJJ » YEAR 3 UMNDl 875 B0LT1 STCPAOE HILL CAPACITY 3C349 AVERAGE -CONTENTS 166 55.664 "ENTRIES 71028 « * • STORAGES * *«*«••••• TIHF/UNIT 11.25t -AVLRAGE t l 1LI7ATIGN E I NG-TTjTTC J~viTT: UNlVaR . TIME TIME TIME .548 CURHtM STATUS PTTICTST AVAILABILITY 100.0 Cu^ENT CONTENTS 19706 • MA»I»UM CONTENTS 21274 (««»««»>««• • _ • HALFHORO SAVE VALUES * — «•*«*»**»«*««»«*•«•*»•*********»**»»*••« NUMBER - CONTENTS NUMhER - CONTENTS TWO 1Z ENRGV }"H-—YEAR 4 "WNOl 375 NUMBF° ONE BGUT1 CONTENTS 1385 7 3 NLHSR - CONTENTS EL E l 414 NUMBER ELE11 CONTENTS 493 - CTfTg-*'* * « « » * « * * « « * * * * * * * * * * * * * * * * * * * * * * * • STORAGFS _*. «»»»••«»••••«**•"•*«•*•*»»•••*** • • • • * • • • • NUMBER NRGY CONTENTS 891 CO CTi STORAGE WILL CAPACITY 30349 S7ETAGT" CONTENTS 17143.H16 "T=N TRIE'S— 86477 -AVERAGE UTILIZATION OUTING-AVERAGE— TOTAL AVAIL. UNAVAIL. CURRENT TIME/UNIT TIPE TIME TIME 11.825 , 5 H PETfCtNt STATUS AVAILABILITY 100.0 CUnkENT MAXIMUM CONTENTS C3NTENTS 22055 2 3094 ******* a' HALPwORC SAVEVALUES NUMBER Two YEAR CONTENTS 12 r NUMBER - COITENTS NUMBER FNRGY 11443 ONE 875—enun — CONTENTS 15453 NUMER E l t l CONTENTS 508 NUMBER E L E l l CONTENTS 508 NUMBER - CONTENTS NRG Y 919 « STORAGES * -•- - - -• » -AVERAGE UTILIZATION DURING-* STORAGE CAPACITY AVS*»i.E CONTENTS HItL 303*9 17512.375 E'lTRIfcS 98106 AVERAGE TOTAL AVAIL. UNAVAIL. CJJRrttM TIME/UNIT TIME TIME TIME STATUS 12.852 .577 PERCENT C U K K E N T MAXIMUM * AVAILABILITY CONTENTS CONTENTS 100.0 20784 23094 « HALFUODD SAvtVALUES * • « NUMBER - CONTENTS NUMBER TfcO 12 FNRGY - CONTENTS 11463 NUMBER - CONTENTS NUMBER - CONTENTS NUMBER -ONE 11633 E l t l 502 E L E l l flf.UTl 3 CONTENTS NUMBER - CONTENTS _ 5P° _ . h R G y _ 9 0 6 YEAR" 6 0MN01 875 • • » STORAGES • • ' * • ""'' • • «»«»••*••*••*•••«** «•«»«•«•*»« M M M I X -AVERAGE UTILIZATION 1>J R ING-AVEPAGE " "TOTAL AVAIL. UNAVAIL. CURRENT TIME/UNIT T I M E TIME TIME STATUS 13.477 . 581 PEPCENT ~ CURRENT "MAXIMUM" AVAILABILITY CONTENTS CONTENTS 100.0 14630 23094 STORAGE C A P A C H Y AVfclAGE CONTENTS W i l l 30349 17656.6 75 tTTTTTES 11C052 «*«*••«****«•«**•***«(«•**»*«**•***«***«• * 0 « HALFWOPO SAVFVALUES * m • NUMBER - CONTENTS NUMBER TWO 12 ENRGY - CONTENTS 11417 NUMBER CONTENTS NUMBER - CONTENTS NUMBER -ONE 11430 ELEl 414 E L E l l CONTENTS NUMBER - CONTENTS 493 N*GY 891 —YcAfc / UKMU1 B/5 BUUIl i • - • e STORAGES • > « «««*©«•••««»•»••»«»«•••»•««»«»•»••<>«•««« w_ , ; -AVERAGE UTILIZATION OUFING-STORAGE toILL CAPACITY 3C349 AVERAGE CONTENTS 17494.000 ENTRIES 123782 AVE'ACE TIMf/UNIT 13.723 TOTAL TI "i .563 AVAIL. TIME UNA-/ AIL. TIME CURRENT STATUS PERCENT AVAILA3IL ITY 100.0 CUKKEM CONTENTS 2026» MAX I MUM CONTENTS 23094 « HALFwCRO SAVEVALUES « • * ****************************** NUMBER - CONTENTS NUMP.SR - CONTENTS r.oMBEF - CONTENTS NLKEE* - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS TWO 12 ENRGV 11333 ONE 13734 E L E l 498 E L E l l 497 NAGY 899 " T « « " 8 DM NCI ""' 875" 3CLT1 ~ 3 -*****-**-*-¥******************************* • • • STORAGES * « '- * STOiMGE MILL CAPACITY 33349 -AVcPAGE UTILIZATION DU-»I\G-AVERAGE ENTRIES AVERAGE TOTAL AVAIL. LiNAVAH. CURRENT CONTENTS TIME/UNIT TI*E TIME TIME STATUS 17797.359 " 137630 13.966 .566 ~ PERCENT AVAILABILITY 100.0 CURRENT MAXIMUM CJNTtNTS CONTENTS 210u6 23094 r—1 VO CO * * £ e t V * « - * - « 7 * - * * *% * * « * 6 *M*~1TVVT***t Wj« BER - CONTENTS NUMtVER - CONTENTS NUMBER - CONTENTS NU» 3ER - CONTENTS NUMB Eh - CONTENTS NUMBER - CONTENTS Tup 12 ENRQY 11435 ONE 1385C El E l 502 E L E l l 501 NRG V 906 YEAR 9 DKNQ1 7TS JUL'I 1" J -«••«•*«««••**•**«•********************** • • « STfJR Av»F S • STCPAGE WILL "TATTCTTT" 301*9 -CONTENTS 17939."46 -N!"1ES 15C720 —avr~sT7t— TI ME/UN I T 14.233 -AVERAGE T'.VAL TI«l .591 UTILIZATION —AVAIL. DURING-c r a v e n . TIME T| ME LUKKfc NT" STATUS f t K U b N T AVAILAilLITY 100.0 LU*RbNT~ Cu-.IcNli 2139 a CONTENTS 23094 119. 9 T i/i on z o-1/1 > X »- o 3 Z r-* ui * — I - IN K Z «t O X o 2 a j Ir t- CO: p ^ i - ni t ' 5 i ^ 1/1 o> i z m ^3 i 7 m z - i Ui — o o « or < O I ui * i o I o. — » on 4 or. t-3 "1 »; ui 3 -I z ui z o w Z 3 a z o cn ui 5 s. z M _1 Ul — V. _1 •« — > »->- «S 3 l p ui z o cfl 7 u T O 3 z a m o« In t- •» r» z •» CO Ul > HJOO T t Z 3 Z 3L < ; U I a IUOK C J l . < 1 » - 11! 3 * I 0 •< Ul 0> 1 *- & in I a O -* Uil- K in o> O z cn -I 3 • tr •» * U l U l *H > z < — u K SI •a z <o C ut • o o oo • >J a • I - co J z m ui m | i—« z o I- .T z in 111 -4 o u I X o iP z CC Ul O c an x . a: i - i I 5 Ui w> CM ID *- m ( 6 ml ft ui • £u »- in | p S ml u cc NUMBER - CCMENTS TwO 12 NU*bER -ENRGV CONTENTS 11567 NUMHER - CONTENTS NUKBER - CONTENTS NUMBER -ONE 156d6 ELEl 534 E L E l l CONTENTS NUMBER _ 534 NRSY - CONTENTS 878 YEAR 12 0MN01 875 BOLT 1 3 > — , **************************************** • • STORAGES • • K M •»«»»•»« »•»•••<> * * * * * * * * * * * * * * * * * * * * -AVERAGE UTILIZATION OURING-AVE3AGP TOTAL AVAIL. UNAVAIL. CURRENT TIME/UN IT T I f t TIME TIME STATUS 15.125 .630 " PERCENT CURRENT MAXIMUM AVAILABILITY CONTENTS CONTENTS 100.0 30349 30349 STORAGE CAPACITY M I L 30349 AVfE^ AG"E" CONTENTS 19136.722 " ENTRIES 197371 • * • HAIFWORO SAVEVALUES * • • — ^ «*G»n«*V4*ft«t«*>r*vc* ********* NUMBER - CONTENTS TWO 12 NUMBER -FNRGY CONTENTS 11364 NUMBER - CONTENTS NUMBER - CONTENTS NUMBER -ONE 15667 ELEl 524 E L E l l CONTENTS NUMBER 551 SP1L1 - CONTENTS 75 NRGY 883 Vein 13 DHNU1 H/i ULLI1 J ***************************************** • • * STORAGES * — X : 1 -AVERAGE UTILIZATION ODRING-•' - — STORAGE CAPACITY U l l L 30249 A v m i , ? CONTENTS 19833.582 20SO»9 AV- CAGE tOIAL AVAIL. UNAVAIL. CURHtNI TIME /UN IT TICE TIME TIME STATUS 15.9 36 .653 ' Pc-ClNI LuriKfcJ.I TAA! MUM AVAILABILITY CU.TcNTS CONTENTS 100.0 3J207 30349 m e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * • c HALFMGRU SAVEVALUES • « * m e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~" NUMBER - CCMENTS THO 12 YEAP 1* NUMBER -ENT.V ~ rt'Kci — CONTENTS 11508 875 NL'MRCR - CONTENTS Ku-'BER - CONTENTS NUMBER -0-1: 1314E E l E l 530 E L E l l 30UT1 3 CONTENTS NUMBER 550 NRilY - CONTENTS 863 STOP ACES STORAGE WILL CAPACI TV 3G349 AVERAGE CONTENTS 20440.500 "ENTRIES 220936 -AVERAGE LTILI2ATI0N OURING- _ AVEPAGE TOTAL AVAIL. UNAVAIL. CURRENT PERCENT TIME/UNIT TI HE TIME TIME STATUS AVAILABILITY 16.653 .673 10°- a .**•.••«....«»..*« ^ HALFwORD SAVEVALUES • i i » i » » » n i « i v " » " « » u i m » « ' " "CURRENT MAXIMUM CONTtsTS CONTENTS 3JJ14 30349 NUMBER T«0 "YEAP CONTENTS 12 I T " NUMBER - CONTENTS EMGY 11527 CHNU1 8TTT NUMBER - CONTENTS ONE 13911 B0UT1 3" NU^bER - CONTENTS ELEl 531 NUMB ER E L E l l CONTENTS 550 NUMBER - CONTENTS NRGV 388 119.12 n ! y— i ml ro rt rt |rt I o Z 1 O -5\t • 1 O 3 3 1 ki- * «r * •» •» < o e> o b o o o o o < o o o I - o> 0* 0* U IM iM r\j o K| I M ( M r- ••• •» b» 0* Ct O O O k- f- £7* 0* 7" U O O O O O l } 2 h| *MIM IM J O O H Ln rt o 3 %t ^ 40oif-|dscoaioop o - " 3 ml a r> o o o o r» 1^  m *o os o" > i/i z;o e> o J r * U I ' 3 a: jo j, • oo: ~ m rtl - o o J u o i o o.o o o o 1 1/1 0* ! ! • • ( 3 Z rt I. mo ' — r- <4* |x r" " rJx o |Z >- •» iu Z rt U U 3 ii -» 3 kj .fJ • .TOO M. m --« - ~ >» o o o O j / i c r t l M * * . ••4 O I A «» tf\ O i/s vi m .in m ml « 41 • • » ~ > -« O < • N J I L .~ X — S i * -tu J rt O < _ J r-< - a. -o 3 — • Ui - 1-3» 1 Is z -o « 3 • O N * •0 rt l/» o kjhli' ot Si • | > z <r! It c --o o •Xl I I 7 */> o t- o ^ o U l • • X I A . 3 rt O O a o 7Pit^ 4 / r t 4 I - p. 3* * M 4* **• 0 * —• X > c iu or Ou. M 4f <n <0 O <M O o IM 4T •» 0>-o fl* 0* 0* 0* o* t- Z < ~ ml < rt rt rt f rt m rt rt rt rt o» 0* 0* o* 0* » : • * i * * * * • z o o o o M o r- .< m .-• in > 47 UJ a — < a V- 1— or. < z < -1 LU Q 3 0 Z X or. < ml U l o a V) b JJ < 4i < ".i (- * Z 45 LU 40 X . 1 3 m: u tn i a. ml < •*> Z i o > UJ o > r u. UJ u. ui C» a. LU U a . Hoooo 3 UJ U M - J *4 ry i j -a. ; u i < 1 a X > (- |  •» u: Z 1 UJ j i n a. ! -"" ID »- 1 <I Z 1 u- u i ! o o o o o oooool r» o o o o o| O O tf- O O <M W* O •"•-'I o o o u 11500 11750 REMAINING FREOUENCIES ARE 10 4 AIL 2EP0 66.66 26.66 73.3 26.6 1.014 100.0 .0 1.036 .377 • *52 ««*«*««• ******* ************************* —< ....... a » • HALFWORO SAVI VALUES * « • - •' - •- -NUMBER - CCNTEMS TtaO 12 - - ' Y f i p ~ - • 15 NUMF.ER -ENRGV 0MN01 " CONTENTS NUMBER 11527 ONE 875 BCUT1 - CONTENTS KLKBER - CONTENTS NUMBER 13911 E l E l 531 E L E l l 3 - CONTENTS NUMBER 550 NRuV - CONTENTS 863 • • • MALFhCkO MATRICES • fi • w*m* ************************** ********* HAlFwORD MA TO IX 1 RC./CCLUKN 1 2 3 1 6*77 31 825 2 45.51 3 2774 4 1907 3C 31 31 852 897 926 5 1664 6 1713 7 3819 28 31 30 837 866 a 19 8 9 26915 10 16 542 31 3C 31 81J 772 773 • - - i i s c s r 12 6225 END 31 3C 302 796 EXECUTION TERMINATED *•«<* TOTAL RUN TIME t ! NCLUDTKG ASSEMBLY) « .06 MINUTES •*•«• (SIGftCFF -CNT3 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXAXAXAXXXXXXXAXXXXXAXXXXXXXXXXXXXXXXXXAXXAAXAXXAXXXXXXXXXXXXXAXXXXXXXXXXXAXXXXXXXXXXX .H£AT...1..HEAT...2..HEAT...3..HFAT...4..HEAT...5..HFAT. ..<>.. ni AT . . . 7 . . H E A T . . . 8 . .HE AT . .. 9 . . HTa T. . . 0 . .HE AT. 1 . . H ; A ' . . . 2 . .Hf AT . 3 . R F S N O . 1 3 2 1 b l U N I V E R S I T Y C F b C C C M P U T 1 N G C E N T R E M T S I U b 0 3 6 l 1 9 5 2 1 . 3 4 T U E A U G 1 7 / 7 6 , A S I G N O N N U O E T « 1 C P - 3 5 > N N N N UU UU J O O O O O O D O E E E E E E E E E E E c NNN NN U U U U C C C C C C C 0 0 3 E E E F F E l E E t E E NNNN NN U U U U C O 0 0 E E NN NN NN C t U U 0 0 0 0 E E NN NN N N U U U U O D D C F E N N NN N N L U U U 0 0 C O E E E E E c E E NN NN NN U U U U 0 0 0 0 E E E E E E E E NN NN NN U U U U O D C O EE NN NNNN U U U U C D " 0 0 EE NN NNN U U U U 0 0 0 0 E E NN N N L U U t t ' l U U L U U ' J C O C C C D U O O D E E E c E E E E E E E c NN . N t U t t U U U U U U O O O O C D O C D E E E E E E E E E E E c —- - - -- ----- r - • — -1 ;  - - — - — - — - .... . • • L A S T S I G N O N h A S : 1 6 : 5 4 : 4 4 US E d " N U D E " S I G N E D Of. A T 1 9 : 2 1 : 3 4 O N T U E A U G 17/76 » R U N » G P S S V P A R = S U E « = C E X E C U T I O N B E G I N S -tt * * G P S S V - M T S V E R S I O N • » • » » l o M F F O G R A M P R O D U C T 5 7 3 4 - X S 2 I V I M 3 I F O R U P - T O - D A T E I N F C R M A T I G N F E G A f U I N G • G P S S V " * L 1 S T N£NS:CPSSV> S T A T E M E N T N U M B E R R E A L L O C A T E S T 0 . 1 . X A C , 3 5 , P i r . , 9 0 . F A C . l , F U N . 4 , U U E . l 1 R E A L L O C A T E F S v . i C L f i G . l . F P S . l . H M S . l t C H A . 1 . C C M » 1 4 0 0 3 2 B L O C * S T A T E M E N T N U M B E R » L C C C P E F A T I T M A , e , C . C , c . F , G , H , I C O M M E N T S N U M B E R 3 4 0 5. 6 * 7 c e 8 9 13 « » * • » « * * < * « . . • • » o « a < « « * . . » . * . « « t . . . . « > . H i . R P > Y E A r L Y T u t k M A L C U T P U T 11 12 119.15 im *> m 43 r» -o'c o -« CM rn -r l tn 43 ui g* C J ' - * CM m «t> I A -o 4 m4 IM »4 — I N N N N fM,fM (M N N N M > > O , I > tt. Z J Ul ' U J uC Z Ul Ul >- Z 1 3 •» I a 3 i t- t- o. < -> 3 e- i u u. 3 . : ^ i • o • 3,< O Z : »';U Z < I J . J < 31 c r , t l rt m Ui;>- U J O j lu. J" , _I:.JJ > u • lui . ui V o o . :!>•' O X • >- >-J I J>-u. - J : < « M _j v> I U D * M > > a: n <i <i n n it a o > > > II H j 'J j _j«-«; z «: U J u '>• »: o co Ii j al .. -l l r t O Z lU cr: iu - u_'o > J o|> v _ l 3 | I J I vi a: r-•> >-l • < ^ • <'C;uj r S% > 5T ii I it n II CM; - J o O J J z z — | i - T. ST J - j a VI. 4: v- 5 — z I O S.t 1 - 3 U J - I U . | C J — -j u, ,_J -J >- * •I U . 3 «f >• O ui, -1 > - J J ui >\x u t n 3 J t > — l u j X I tu — t r > Z X 1-ZU.JI iu >|o. 3 O • ai v o ^ mien * j i J J ^ * co o" o I M m * i n rn •» ur *:.»•» + ur •» *: •»* u> vn * i u-i m un 4? r» co o- o'*u nj rn 4> I A 43 j n u n u n t n 4 - i 4 9 j 4 3 < V 4 3 43 43 43, J - _ i 1 > >--1 j: i-'-J «s 1 o 3 •» , Z 3 Ol3 -4 1 II * « A • « tl < J J J » « l • • • ? i : * : : • » • • w 1 tt « » • * • » J • i I • • * #• a |» * « 0 B • » 4£ 4 I Ui 1 X > « « * • * * tt tt « * fl * « » * II * « II « * ft 0 ^  v * cu uij CM — Mi O 3 s O OD ^ * f •* X» I M -3 • » m J • B -s, CO IT —• >. * M f t ^ \T\ O <f* CO INJ •o «r -o •33 <NJ 30 •s. V . " X ^ «o o co 0 m a; _j *f 1 ou co —1 • II) -U H , i*» • "VJ "SJ I • I » *A U> Z 0-» a «f H — 1 • u m r o u> o STI ^ » rM f- * * c *H w i • N co N a > * ro m — * <» r«- V H- • N . « tf» U * # \ • -tf " t 4) v D -I t N ( L • • » t* OJ yTV -ft lT( N N O < •* CM UJ o »r J 1 - -1 '•i o x • * X ( > «< . O X • O T. ' O * i u. o < • CM *-« W-1 * iu a w. £ -J .10 2- 1 - Ui *4 U S. <** K r t.' x 1 -» X K Wl 1 iu x x J J — K *» UJ -4 — OJ o. r» a» ^  O «-* « f*. Iw) «** A. I U rvjl vT h tti J' * » ^ o. s u m X V — o r- i/» r\i a» # «ft T r-U. # , 0 n •# 3 J- -» X I • — I'. X K K -<1 U. Ui Ui U. Ul I tt a. u n rr 4 < <4 <4 «1 «1 > > > > > > u. a, a. u> u. • O" « 3 h O 4 U UJ ot iu y J l O t - Z 5 0> I o i * H- O n ^ I-J O C k ft *. o I ^ i : J l J _ i x n « w O .* <-4) * X X Wi I I K — 0 a tn —I Z » • m i l X — •iLJ O X1*-7 a> k 0 « 7 I *> C r*> >; X • •* ^ T I , — a xi • — o —tx X z 1 i/i X ST: * UU J J II J u. V >. c* o •M r- «a j . »r -< x — x Ul Ul UJ Ul i i * o, .* J ~4 J> .4 -4 . ^ X JC C n . » • inrt • » • 0^(0 o ° >Hi r a u! 1-X X K Xl ^ UJ mJ U J _ j aj 14 D 4 at ^ Ell U J U J JU J.tl4|<41«I.-. u —r « ** » •> — » ^ 0 , Ck ii l a a ' X rr « 4 4 « I M t J< X O a T -4| T. I ^ ». r— r. j | CM! • 1 xl u. > u, u, 1 I- J» O _ - T t- » u a > 4 3 4 J O u s n o u. j O m _ _, u i O u t tt O UJ g x z >' Z S I- I- X! J J J J ru mi t i ro > at > > > >|> «l » 1 «,«• 4| u. U, u. > Ik r- f- « « Z * I- » • «j) u i t in *'-"=.5 a o t/t CD INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL _1NJ TI AL INITIAL INITIAL INITIAL INITIAL INITIAL J N I T I A L _ INITIAL INITIAL INITIAL INITIAL M I L L STCPAGf MH1( 2.1 >,4 58I/MM|.(2,2) ,7625/MHl12,3).30/MH1(2.41 ,£52 f.Hll 2 , 5 1. 4<?5 /*H 1 (2 , 6». 2194 HHH 3. II ,2774/CHI(3,2» ,44l4/PH1.3,3l.31/>*Hli3t4>.t.97-r*HlC3.5>,512/MHH 3,6) ...141 HHH4. 1), 1917/j.n 114,2* ,32el/MHl(4,3).31/*Hl(4,4».426 Hnl(4.5l ,512/^HU4,6l.^lbb __ .... PH1C 5.1~l. Ut4/Mril I 5,i'l , 5 594/MHl ( 5 , 31 , 2 b/MMl ( 5 ,4 ) , 63 7 KH115, 51,462/"H11 5, 5),«: 1 i>5 MHH6.1 1,1713/MMl (6,21 ,2i7rt/MHl(6,3).31/KHl(6.41,833 t«Hl(o.5),512/. ,'Hl(6,ol.2iei I'MI 7,l).380o/«Hll7.2i ,d9 3 7/MHU7,3l.3C/"Hl(7,4>,bl9 JtHU Tjb) ,_4?5/MHl ( 7, t I ,2177 *: h 11 e, l V, i e'L t> $ i0 H I ( D, 21i. i 3 i) / M H n a, j V ,31 HriH8,41,bl3/VHl( 8,5 >,<,2t>/MHl (8 ,6) ,21d5 Hhll9t l l . 2 t 415/MHK 9,2) .3G130/MHM S,3J ,30 Mr-119,4). 7 72/HHl ( <i, i ) , i , 13/«H1( 9,61 ,219t HHH 10,11.16542/HHH 13,2>,16030/VH1U0.51 .31 HHH l ' lTl ) .4659/MHli 1 1. <.) , 1295 J/MHl ( 1 1, i) , i l O H 11.4 I,602/MM U 11,51 ,42L/*M1.11,6 1.2 20. MHl (12, 11 ,6225/"HII 12, 21,0431/MHH 12,31,33 HHl(12.4l,79t>/HHl(12,5l,412/MriH 12,61, 2201 4'JOOD INITIAL XHtMCNTH,12 • • »»•«••»..»..•»•«»»«»»»«» TA3LE HYORC MEASURES ANNUAL HfCROHECTRIC ,««.«»»««...»....».......« EUFBGY OUTPUT.  ..»*.......,....,.«.,...» TABLE ThPML MEASURES ANNUAL THE ° r*./-l •••»••»»»»»»•»»*»»«»«*»«« ENERGY OUTPUT. * .»•»...»........ft..-•«..... TABLE SFILS LISTS,FOR EACH HCNTH, « » » » . » . » « » » « • . « • r « . » » » » » « » » IKICT,12'=SFP)Ti-£ .MJMbE * Qf_ CAYS THAT THE , H M » » » M « » ) t t i t < t t * HESEVMP IS SPILLING WATER liuaf-NG. LENGTH CF *»„.,,,.,.,.....>.,....«<.,. SIMULATICN 73 74 75 76 77 _ T J _ 79 80 m 82 33 64_ 65 86 e 7 88 as 9C_ 91 c2 93 94 95 _ 9jt_ 97 48 99 100 101 102 103 134 105 106 1C7 ICS TABLE HOUTS LISTS.BY HCNTM,TH^ NUMBER-GF uAVS THE PESEvOIP IS BOTTGMtu C:UT DURING LENCTH OF THE S1HU1 AT_ir>: GENERATE ASSIGW 1.300CC ,1,2 ••" , . . . • . » . , DATA INPUT INITIAL STPRiSi.f ENTEF WILL,PI LEAVE t t l L L . J TE RMI MA T c 0 6 7 8 9 10 GENERATE SAVEVALUE SAVEVALUF SAVEVALl E 1....1 H C N T H » , I , H _ K N R G V , 0 , H ~ S M L 2 . 0 . H SAVEVAL LF SPIL1.0.H 109 110 111 112 113 "lis 116 117 118 119 120 121 122 . 123 124 125 _ l ? c _ 127 128 129 130 131 132 119.17 , ^ „ ^ i 'j 1 I 1 1 ! i i I ! ! m 4> tti <*> * co i 4> -0 r- rs» <n ^ - A O 1 ft- cO U»o fg rt 4* in -0 «o m «o ft* so i/» o 1 «•« <M rt •# I Afl i r~ «o cr o -«rJ m m m « 4* * 4> * * * 4" U V I A «n w\ »A J*\ rf. m i/A tA <o o o -o o <o <o ft-»• - f> p» s « vcogowa)xacoja7w*o>w*| ! •—I ncl «-* •-• j i • 1 i • • • • • * * If « « * « # • « ft « « « * * « * tt * » • • O « i | z • < • X # | 1 Q • 1 j > * CL tt ! z * Ui tt • > • ! •J tI X • < « ft-• ft a _ ! t # 1 i z i ; tA «I • « X ft- ft H «t 3 « Z a « u X 1 z « & U J X m X i X iHD • • t X X • X wl D — X > X X >- U' < X «t * x • UJ X o - X W> D X •• O • ft- *M > >- X < ft- T • • •—» jiui-.cc o a X >z I/I * » <t > a ? o ft J >• u 'a « —* - 4 M < • • u o a Wl - 4 Q C? l*J • O * U J tr <M x i." o 13 z> — > * U J X fi ^ X IM O C J O ft UJ < U Ui • X z> *~ o »-> *1 h J « J >f 0» U 'j£ - J < 5. X C- O • (M G U Ui Ul •! - j O Ii Ui X O *• a- u< » «at< C_> D u» M ^ ^ O . * iiw « v t X b l >4 Z ft- D > a X -3L * x r X li- o « Z X O ft- ft-• • * o i : t _ j c a: c UJ O rt Z Q X 1 X X ** •> D o x a U Wl • CJ> X X - * X ft 4» • -r * cr* u • «**'o R J X ** * "* 1^* <A <M «* U.lrt U> <A X «»»» X X X X X *» a: » ft- •* «* O » • - — * « - « • C J -> • -« • > Z 1. -1 > < < X > - J > '> > > x X • * * > • *< <-» » X X •* ft- ^ ^ —- •* > X •> z < « • x * > • X • u. X • o x * • Jft J* ft c * LJ ft > X ZJ z> + -> > * 4 O w> • » • - J -j < >- > * I J> * / ) ! / ! U-i Ui . 1 L J . *. * * » — » *M » St O K I ft- a. Jt o u • Z. K «c: • X •4 a x .i D o c «: u. - i _J *j — - i o o —• - 4 a j w >• A t >. a • 1 • 1- J H J h -* _* -1 ft- .J o a - J » JC « 3L U I « <M a. *>• < - I -j a. -J < _i-J * x a a. ut u< * * O. 3 4* <M X or o x N J ft- - J J «J •-— j ft- --j -a ir u. ft , J • C J _J I L O IU u< M M 4 * 4 «i «i! J * z c a X X » r i - • S Q M U Ul ft> a — a ft- iu x CD ft, X x >» <c > *- tt. *. tt ft tt *: u X X x x c «a x 3x C J Q u u: jl wi wl X O X u> H 1 ft O J vi X X • 1 - i o- • • ccx a. * wi J I wi ft a. • U J U J UJ Ul U U. Ul « * a u. « U J Ui Ui u u ui u 'Ui U J UJ U' UJ U' UJ U ' U J u: ui U J Ul U J u< - z> * -j, • — U 1> Z) D => O 3 UJ Ul U I U K a- 3 D 3 (  zi Do :> i -J ^ - i -J -J - J —- » _ i « - J —J -J a. I U Ui —• - i Ui —l - I ^ w -J U- iii U . - J . j —' U _ i ft- ft-U I - 1- < tu ^  J ^ Ul J J Ui j I I •a «a O < *J *• «f« < i «  «t < (J •4 IO J < < J < •4 < <1 O * i «i ? tr «t *t < Z III ^ < [u. «i t « a 4 1 <X <t U. > > > > > > > • > • -> j> > J> > > -> > J> > > a U J > > > O > - J _ J 1 - - I ml — »• W I > Q L >>W>'J > UJ ftWl >Wl i j U r» U J ' II U U~ Ul  u f Ui UJ •Ju ft-; L r> K U . I U K U Ul Ul U, U UJ > ft- ft- ft- a- u a ft* u- J 3 ft~ ft-Z 3 3 s: Z : ? w u i u : u > 2 ill) > u: Z U > ? > > VI > > > J> > tt > ft > > > wl J» Wl W» > > W» J* : > > > > i>- Wl Wl Wl > > > wi wi > n OP %r Wl —i :0 U u: — |*1 > ft- Jft>«flJ»*t <I 4 *1 •{ < 4 < II< ft «a -a< u •4 Ul U «f »l Ul < i t < « *« z Uv Ul U<UI 4 < < Wl Ul < 1 < u Ur K 4 4 > a •c < z «f < a 4 Ul 4 K i a i/i vi K vi w» wl « Wl tt Wl l / l W) ft- F - ft- Wl Wl ft- W" Wl Wl Wl Wl uu ft- ft- ft- Wl Wl Wl < ft- Wl ft- ft-ft-ft-a i- i- r- a. ft- l/l Uj Wl V I ft-Wl J Wl ft- Wl ft-tt * Z tt tt li- ft-tt < « ti. -1 ft- o >J Ul > . 3 • w> M « < « U. ft- < " 4 > >• 3 • Wl X * 4 tt Uu -> m < - CO ft-l CO l> Wl U J • » • • ft I ! 1 tt* CO O - 4 N rt <# in 4> r* so o> a M rt •* tn •a 1** CO 0* O *M rt 4> *s o -fl w* O -4 CM lf| Jf iA 0 f- 38 0* 0 <M I M rt Jj A «0 t-t I M «M M INJ "N N ( M N ( M f l rt rt rt rt rt rt rt rt jft • ^ •» * I A ( A lt> I A I T lA (A tA iA A 4 | 4 « « « 4 « ^ ! i -67 68 6? 70 71 _72_ 73 7* 75 76 TOO SAVEVALUE XXX,12 TRANSFER , FFF SEE SAVEVALUF . BURAO.C.H TRANSFER , J J J NOT SAVEVALUE BURAC.Mhl IXHtMCNTM, 5» ,H TRANSFFF , J J J GOO SAVE VALUE ACTUl.C TRANSFER ,KKK GENERATE 180 TERMINATE 1 START ENO 193 194 195 196 197 _19R 199 200 201 20 2 203 2°*_ "205 206 J -t I 4 I i f -, HAtFtaCPC SAVEVALUES • 0 » * * * * * * * * * * - B * ? * * * a a » « B t v t « « « * * » i i 4 i » « * * t « NUMBER E L E l - CONTENTS 545 NUMBER MONTH - CONTENTS 12 NUMBER VF L0« - CONTENTS 9882 NUMBER - CONTENTS NUMfifR -RELES 33 MOMNO CONTENTS 1114 NUMBER -2U CAD CONTENTS 103 OOM.NO 33 MFLCV e57 YLMNO 14000 BURR 1939 YNRGY 11822 "MNFGY 590 VE4R 1 DFLOW 28 ONRGY 33 tt**«at»«***«»**e0v ****** *«*•***•«***«**«* • _e "•" " HALFMORU S A V E V A L U E S • a « • a.**** ****»•,*•**»*•******•****•*«*»*•**• r—' VO CO NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS E L E l 548 MONTH 12 VFLCta 13148 MFLOW 544 YDMNP 14000 BURR 1C00 OFLOrf 18 CNRGY 37 NUMHfcR- CONTENTS NUMBER — 'CONTENTS NUMBER - CCNTE.dS RELES 36 MOMNO 1114 OOMNO 37 YNRGY 12873 MNRGY 1110 YEAR 2. ( * • r -> \ 1 NUMBER - CONTENTS NUMEER - CONTENTS NUMBER - CONTENTS N'JHSER - CONTENTS NUMBER - CCNTCNTS NUMdFR - CONTENTS E L E l 5*6 MONTH 12 YFLUM 12*73 RcLc S 36 MOMND 111* OOMNO 37 < MFLCW 74 YCMNC 1*C0C HLkR 600 YNFGV 13218 MNP. LY 11CC YEAR 3 DEL Ok) 2 ONRGY 36 * * HALFhORi) • SAVEVALUES * * • NUMBER - CONTENTS NUMBER - CONTENTS NUM8EK - CONTENT'S NUMP.ER - CONTENTS NUMBER - CONTENTS \L'"3ER - CONTENTS E L E l 550 MCNTh 12 YFLLK l*o27 RELtS 36 KOMND U l * OOMNJ 37 MFLOW 92* YOMNO 1*000 bURR 53C YNPGY 13J12 HNPGV 1113 YEAR * OFLGvl 30 ONRGY 37 I. J * _ 8 • HALF»0°D SAVEVALUES • " * NUMBER - CONTENTS NUMB FF - CONTENTS E L E l 5*9 MONTH 12 MFLOH 6*7 VOrf.O 1*000 NUMBER - CONTENTS YFLUM 1126V BUj-R 900 OFLOM 28 ONRGY 37 NUMfSR - CONTENTS NUMBER JELES 36 MOMNO YNPGY 12?** PNFGV CCNTrNTS NUMBER 111* DOMNO 1110 YEA8 CONTENTS 37 5 _± HAL FJNOFC_ S.»V E V ALJJE S_. * NUMBER - CONTENDS NUMBf - CONTENTS NLMhER - CONTENTS NU"H£R_ E L E l 5*0 CONTH 12 YfLO« lOSuS ' PELFS OJMNO 23 PFLCW * 9 l Yii.VNJ 1*J00 8 U C 0 VEAR _ _ 6 OFLCh _ 16 ONRGY 23 ..CONTENTS NUMBER 23 MO "NO 2078 YNRGY CONTENTS U l * 117*0 _NUH?ER - CCNTENTS BU'AJ *13 MNPGY 690 HALFKORC SAVEVALUES I—1 VD • I—1 VD NUMBER - CONTE'.TS NUMPFF - CONTENTS NUHbEk - CONTENTS NUMBER - CONTENTS NUMPF.R - CONTENTS NUMBER - CONTENTS ELEl 5*5 PON TH 12 VFLC- 1*351 RELES 27 MOMNO U l * 3UFA0- 300 OOMNO 27 HFLCh 1C0C YLMNO 1*000 BURR 2021 YNRGY 11824 MNFGV 810 > YEAR 7 OFLO. 33 ONKGY 27 **************************************** < * HAlFtaORJ • SAVF VALUES » « n NUMBER - CONTENTS NUMPEF — CONTENTS NUMbFfc - CONTENTS ELEl 5*9 MONTH 12 YFi&w 15990 JIFLCb ?C4 YOMNO 1*000 BOP F 6CC OFLQw 30 ONRGY 37 NjrtFR RELES YNRGY CCNTFNTS NU MBE° 36 MOMNO 13251 MNSGV CONTENTS U l * 1110 NUMBER - CONTENTS DDMNO 3 7 Y FAR B B v a S * ******** *t«»),«ti>«»B9|| «»• m* ****** • e • HALFbOFO SAVE VALUES • **************************************** NUMBER - CONTENTS NU M fcFP - CONTENTS ELEl MFLOW DFLOM 5*5 MONTH 598 YLMNO 19 JNRGY 12 1*000 37 NLMBFK - CONTENTS YFLCH 15335" BURR 100 Ji\)"b£* j - _ CONTENTS NU*EEF R r l E S 37 MOMNO ~ VN'GY 13663 MNPGV _CCN'TEjvTS N'U"efJL i i i * OOKNO 1110 YEAR CONTENTS 37 S **************************************** * ' " * » _ HALFhORO SAVEVALUES -NUMBER - CONTE'.TS NUME-ES - CONTENTS NUMBER - CONTENTS NUMBER E L E l 5** MONTH 1 YFLCK 13516 RELES •30MN0 2 3 MFLCt. 7*1 YOMNJ 1*000 BLFS YEAR 10 OFLCk. 23 CMGY 30 CONTENTS NU»BEF - CONTENTS NUMBER - CONTENTS 30 MOMNO _ U5> f?URAJ _ 200 iOC YNRGY 933 »NRGY 93C HALFbOFC SAVEVALUES NUM8EF - CONTENTS NUMPFF - CONTENTS NUHeFi. - CONTENTS E L E l 5*2 MONTH 2 YFICP 13510 00»ND 33 »FLO» 5*9 YLMNO 1*000 NUftEK - CCNTFNTS NUMBER - CONTENTS R E l t S 33 MOMNO 1192 BUM* *00 YNRGY 1920 NUMBER - CONTENTS BURAO 200 MNPGY 99C VD • O YEAS. 10 OFLO 18 ONRGY 33 **************************************** * HALFfcCRO SAVEVALUES « NUM3ER EL E l MFLOU 0FL04 - CONTENTS NUfetP - CONTENTS 53 7 2 C7 9 MONTH VOfND V'lf GV 3 1*300 40 NUMBEf - CONTENTS NUMBER "VFLUH ""' i i i i 6 " S E L E S BURR 4UC VNFGV CON TE r. T S f:U"8 ER_ •,0 MOMNO 3160 MNRGY CONTENTS 1255 1240 NUMBER OP^NO YEAR CONTENTS 40 IC ************* r-AlFV.0FC SAVEVALUES **************************************** NUMBER E L E l MFLOM DFLOH CONTENTS 533 377 12 NUMB f F MONTH YOMFC ONFGY CONTENTS 4 14000 40 NW.bEfi YFLC* bUFR CONTENTS 13516 400 NUMfcER - CONTENTS NUMPER RfclFS 41 MO-NO YNFGV 4425 M.NPGV CONTENTS NU"SER - CONTENTS 1296 OC-ND 41 1265 YEA? IC VD to **************************************** • * » HALFUOKC SAVEVALUES * NUMBER E L E l DO-NO CONTENTS 523 39 YEAR NUMBER MONTH MFICI. CCNTENTS 5 lie 10 OFLCW NUMBER - CONTENTS NUMBER - CONTENTS NUMPER YFLCiM l i s l t «ELCS 39 MOMNO jrj s r N J 14000 DU*" 5C0 YNRGY DNkGV 33 CONTENTS NUK3ER 1171 8U C»0 r»489 MNRGY CONTENTS 100 1C64 * * * * * * * * * * * * * * * * * * » i * t » > t 4 « i | f t t t 4 l l * > t C • HALFbCR C SAVFVALUES *************************************** NUMBER - CONTENTS NUMPFF E L E l DOM NO YEAR NUHfcEk - CONTENTS NUVb Ek -^CONTENTS NU»eER_ Yi-LOh 13516 RELES ~ 31 MOMNO* YLMNO 14000 BURR 60C YNRGY ONKOV 30 CQNJtNTi NUMBER - CrNTENTS 1243 60=40 300 6419 "NRGY 530 **************************************** HAlFttOFC1 SAVFVALUES NUMBER - CONTENTS N'JMBEC - CONTENTS ELEl 524 HOI.TH 7 OJMNJ 21 MFLOb 709 YEAR 10 DFLCb 23 NUMLFR - CONTENTS NUMBER YFICI. .13516 SELES VbMNO 140CC' BL'BR ONRGY 21 CTNTENTS NUMBE? 21 MOMNO 1295 VN»GV C O N T E N T S NUMBER 1 1 4 6 7 C 4 9 MNFGY CONTENTS 4 9 5 63 C 0 * * * » » * * • > * . • • t « f o B t f f f t » » * « * * * * « « * * * * * * * * « * • HALFhOfrC SAVE VALUES • * * A******************************* * * * * * * * * NUMBER - CONTENTS NUMBER - CONTENTS E L E l 531 MONT h 8 MfLOM 2597 YOMNO 14000 DFLCJ*1 NUMBER - CONTENTS YFLCVt 13516 BUPF 1295 NU Me ER - CONTENTS NUMBER RELES 37 MOMNO YNBGY S165 MNRGY 63 ONFGY 36 CONTENTS NUMBER U 3 o OOMND 1116 YEAR CONTENTS 36 IC ««*•********««••*•***«******•*•********* » • * MALFKCRC SAVEVALUES * NUMBER CCNTFNTS M,H«FP - CnHTE-jTS EL E l MFLOM OFLOU S43 MONT h 4545 YCMNC 151 DNPuV 9 14C00 37 ^UMBE~ - CONTENTS ~VFLCi> "13516 b l i R R 1295 NU"SEK RELES ~ VNFGY CONTENTS 3 7 .NUMJLli. MOMNO 9272 MNSGY CONTENTi 1080" 1107 MJ»BEP -30MN0 YEAR CONTENTS 3e 10 HALFHORC S A V E V A L U E S NUMBER - CCNTEMS NUMeFR - CGNTENTS NUKEf» - CONTENTS NU-iiE^ - CONTENTS NUMRER - CONTENTS NUMBER E L E l 553 MONTH 13 YFLCh 13516 RELES 33 MOMNO 1082 OOMNO PFLCM 1637 VOMNC 14CCC tLFR 1295 YNK&Y 10326 MNRCY 1C54 YEAR O F LOU 52 •3NRGY 34 CONTENTS 34 10 HALFxO-i) SAVFVALUES NUMBER E L E l MFLOW SPIL1 CCNIFNTS 551 1*09 10 NUMBER MONTH YDMNT YEAR CONTENTS 11 l*CO0 10 NuMeER - CONTENTS VF LOW laS16 bLRP 1295 OFLOW *5 NUMt-ER - CONTENTS NUMBER - CONTENTS R E l f S 35 MOMNO 1122 YNFGY 11**2 MNRCY 1116 ONRGY 36 * * * * * * * * * * * * * * * * * * * * * * * * * * * A * * * * * * * * * * * * « • • HALFWORC SAVEVALUES • ft ft **+***9***9****v*mB***mm*m**w***B9****** NUMBER - CONTENTS 30"NO * 36 SPIL2 25 NUMBER - CONTENTS NUMB EF - CONTENTS" NijMbER - CONTENTS E L E l 5*9 MONTH 12 VFLCW 13516 MFLOM 7*9 YDMNC 1*000 b'JKR 1295 OFLOu) 2* ONRGY 3 7 NUMfER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS 0ELE S 36 MOMNO 111* OD»NO 37 YNRGY 12552 MNRGV 1110 YEAR IC **************************************** ft a * HALFWORO SAVEVALUES » I i NHJM3ER - CONTENTS NUMBF" - CONTENTS NUMBER - CONTENTS NU"CER - CONTENTS NUMPER - CONTENTS NUMBER - CONTENTS E L E l 5*9 MUNTH 12 YFLUW 13516 KELTS 36 MOMNO 111* OOM.NO 37 MFLOW 7*9 YOMNC 1*000 bLFR U 9 S YNFoY 12552 MNRGY 1110 YEAR 10 1 OFLOW 2* ONRGY 37 1 • • • HALFwOPC SAVEVALUES • • 1 1 NUMBER - CONTENTS HUM 8 5 P. - CONTENTS NUMBER - CONTENTS NJJ'UEK - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS E L E l 5*9 MONTH 12 YFLUW l * 7 a * REL t S 36 MOMND 111* OOMND 37 MFLCM 825 YCMNC 1*CGC tURR 500 YNFGY 13325 MNRGY 1110 YEAR 11 • OFLOVt 27 ONRGY 37 - ********************************m*******. * • HALFWORJ SAVE VAL UES * NUMBER - CONTENTS NUMBEF - CONTENTS riUMliEF- - CONTENTS NUMltR - CONTENTS NUMBER - CONTENTS NUMBER - CONTFNTS E L E l 5*3 MONTH 12 YFLGW 921* RELFS 23 MOMNO U l * BU = AO *13 - OOMNO 23 MFLOW P26 YOMNJ 1*000 *U-R 2338 YNRGY U5-6JL MNFGY 690 ... f i -1 I \ Y E A R 1 2 DFLOW 27 O N R ( , Y 2 i * ' ' . • • • H A L F W O c O S A W f V A L U E S • *> N U M B E R - C O N T E N T S N U M B E R - C O N T E N T S N U M B E R - C C N T E N T S N U M B E R - C C N T E N T S NUMeE» - C C N T E N T S N U M B E R - C O N S E N T S 1 E L E l MFLOW S » I L l 5 5 1 1220 4 M O N T H Y D M N C YEAK _ 1 2 1 4 0 0 0 1 3 _ YFLON 1 4 7 1 8 P E L E S 3 6 M O « N D K U f i R 1 5 1 3 Y N ° G Y 1 2 2 9 1 M N R G Y O F L O t a ... 4 0 J N I - G Y 3 7 1 1 1 4 1 1 1 0 DOr»N0 SPIL2 3 7 3 C ! • — • t a • H A L F f e O t i i ) S < W C V A L U E S * • a N U M B E R E L E l J J M N O Y E A R - C C N T E N T S 5 4 5 2 7 1 4 N U M B E R M O N T H HFl'Cw" DFLCfe - C O N T E N T S 1 2 9 5 3 3 1 • . U M B E R - C C N T E N T S N U M B E * - C O N T E N T S M J f B E P -Y F I O V . 1 1 3 6 6 P . t L E S 2 7 N O M N D V j M f . 0 1 * 0 0 0 B U F R 1 1 0 0 Y N B G Y O N P G Y 27 C C N T E N T S 1 1 1 4 1 2 6 5 5 N U M B E R B U B AO > » N P G Y - C C N T E N T S 300 8 1 C * a » » * « i a e a e » « » « » » * » • • • * * » • • • • • » » » » w » « i • * * » * • • • ' « • • h A L F U C R C S A V E V A L U E S • • • •**»w9m***w**+***wmm+**+*B*w9*********** N U M B E R E L E l MF L O -" f C H E r i ' T S " " 5 5 J 9 4 0 ITUMSFR" M O N T M Y C V N C " ^ C O N T E N T S -1 2 1 4 C 0 C ' N U M B E R ' - C O N T E N T S N U M B E R - C C N T E N T S N U K E E F . -Y F L O W 1 5 8 0 6 3 £ L f S 3 6 M J M N D 6LF" 6 0 0 Y N & G Y 1 3 2 2 7 M N R G Y C O N T E N T S 1 1 1 4 1 1 1 0 N U K B E R Y E A R - C O N T E N T S " 3 7 1 5 OP L O * 3 1 O N K G Y 3 7 — • — % •- - - — : " - — to RELATIVE CLcCK 180 <-FSPLUTE CLOCK 180 . BLOCK COUNTS BLOCK CURRENT TOTAL BLOC K CUPPcNT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CU°R6 NT TCTAL 1 0 1 11 C 180 21 0 180 31 0 183 41 0 54 75 Z 0 1 12 3 180 22 0 l e o 32 0 183 42 C 5475 3 0 1 13 c IPO 23 c U J 33 0 t ac 43 0 54 75 A } 4 0 1 14 c Id 24 c 180 34 0 5475 44 0 5475 5 0 1 15 0 15 25 0 tdv) 35 c 54 75 45 0 180 o C 180 16 0 1» 26 c 88 36 0 5415 46 0 180 7 0 l e c 17 o 15 27 c 180 37 0 5475 47 3 13C 8 0 1EC IP 0 15 28 0 180 38 0 5151 48 0 180 9 0 l e c 19 0 180 29 0 180 39 0 5475 45 c 160 10 0 180 2C C IP j 30 G 180 40 0 54 75 50 0 15 BLOCK CURRENT TTTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL 8L0CK CURR ENT TOTAL BLOCK CURRENT TCTAL 51 0 15 61 0 324 71 0 12 52 0 15 62 0 324 72 C 12 53 0 1 SO 63 0 3?4 73 0 0 54 0 12 o4 0 324 74 0 0 55 c 12 65 0. 0 75 0 1 56 0 0 66 0 0 76 0 1 5T 0 c 67 3 15 58 0 c 6B 0 15 59 0 0 69 r «2 b J 0 c 7C 3 92 VO to Ln STORAGES STORAGE MILL CAPACITY 4CC0C AVERAGE CONTENTS 2759C.CBS ENTRIES 230945 AVERAGE TIME/UNIT 21.504 -AVERAGE TOTAL TIME .6Mf _UTILJ2ATJCN_DUP.NG^ AVAIL. UNAVAIL. CURRENT TIME TIME STATUS PERCENT AVAILABILITY 1C0.C CU C 0 ENT MAXIMUM CONTENTS CONTENTS 3C199 30533 • TABLES • • » Q999*vm*9*B0B**Bm********wmmmmn TAuLE THRML ENTRIES IN TABLE . 15. UPPER LIMIT ObSERVEC FREQUENCY MEAN ARGUMENT 1136,, 933 _ STANDARD DEVIATION 690.000 PER CENT OF TC TAL 0 SOC 1000 15CC 2000 250?.. .CO 19.99 33.33 13.33 13.33 1.9.S9 CUMULATIVE PERCENTAGE .0 19.9 5 3 . i 6b. o 74.5 10_0_.3_ CU»iJ LATIVE _R_EMAINJ£>t l u o . o . 80.0 46.6 33.3 20.0 .0 SUM CF ARGUMENTS 17054.030 MULTIPLF OF -E AN NON-WEIGHT ED -.030 .439 .879 1.319 1.759 . X J Y A -DEVI AT ION FRO** MEAH -1.647 -.923 -,14e .526 1.25C ua.T»_ r REMAINING FREQUENCIES ARE ALL ZEPO TAdLE HYDRO ENTRIES IN TABLE 15 MEAN ARGUMENT 12677.531 UPPER L I M I T 8000 U5CC 9000 OBSERVED FREQUENCY 0 0 0 PER OF CENT TOTAL .00 .00 .CO 9503 lOOCO 10500 110OO 115CC 12000 .00 .00 .00 .03 6.66 19.99 13QCC 135C0 14CCC 6.66 26.66 33 .33 6.66 REMAINING FREQUENCIES ARE ALL Z E P P STANDARD DEVIATION O97.0C0 SUN OF ARGUMENTS 190163.000 CUMULATIVE PERCENTAGE .0 .0 .0 .3 .0 .0 .0 6.0 2 6 . 6 33.3 59.9 93.3 100.0 CUMULATIVE .REMAINDER 100.0 100.0 ipo_.p_ 103.0 103.0 100.0 100.0 93.3 73.3 66.6 40.0 6.6 .0 MULTIPLE OF MFAN .631 .670 .709 .'749" .786 .828 .067 .907 .946 .V85 1.025 1.064 1.1C4 N O N - W E I G H T E i ) OEVIATJCN FRCM MEAN -6.710 -5.993 -5. 2 76_ -4.558 -3.841 -3.124 -2.4C6 -1.669 -^254 .462 1.1P3 1.897 TA3LE S P I L S ENTf IES IN TABLE 180 324 _MEAN ARGUMENT 6.500 10.663 STANDARD DEVIATION 3.4b0 .672 UPPER LIMIT 0 1 2 3 ChSERVEC FREQUENCY _ C 0 0 0 PEP OF CENT TOTAL .00_ .00 .03 .CO .00 • CO .00 " .cb ..co 2. 16 10 125 36 .Se 11 162 5 0 . 0 0 12 30 9 .25 R E V I S I N G FREQUENCIES AP E ALL ZEFO CUMULATIVE PERCENTAGE _ >3 .0 .0 ._0 .6 .0 _ .o .0 .0 2.1 40.7-90.7 100.0 SUM OF ARGUMENTS 1173.000 3435.OOC CUMULATIVE REMAINDER 100.0 1UU.0• 130.0 1CU.0 10U.0 100.0 100.0 103.0 100.0 _ 97.8 ~59.2~ 9.2 .0 MULTIPLE OF MrAN -.OCO .153 .3C7 • 4 6 l _ .615 .769 .022 1.J76 1.230 l.3e4 1.338 1.692 1.846 NON-hEIGHTED •.EIGHT EO OEVIAMCS FROM MEAN -1.878 -1.5e9 -1.300 -1.011 -.722 -.433 -.144 .144 .433 .722 1.011 1.300 1.589 TAHLE BCUTS ENTRIES IN TABLE MEAN ARGUMENT _ __181 6.503 0 -.000 REMAINING FREQUENCIES A*b ALL iEPC STANDARD DEVIATION 3.460 .000 SUM OF ARGUKCNTS 1170.100 -.ooc NONSIGHT EC WEIGHTED Wmm*mm**n.******m**r*m**m** + **m****m*mm* F U L L . O K J S A V E V A L U E S r NUMBER - CONTENTS NLMBE*" - CONTENTS NUFbER - CONTENTS - CONTENTS NUMBER - CONTENTS NUMBE R - C:NTENTS HE at 26 ACTUL H I * XXX 11 > — * * • HALFMCRC SAVEVALUES • m -••**«*«***•*•(• »««*«***«* NUMBER - CONTENTS NUMBER - CONTENTS NUNtER - CONTENTS \ii*t E" - CCNTENTS NU"BER - CONTENTS NUMBER - C:NTE\TS E L E l 550 MONTH 12 YFLCw 13806 s.ELES 36 MOMNO 1114 OOMfiD 37 MFLCh 540 TCMNC 14CCC 6LF F 600 YNRLV 13227 MNRCY 1110 V E A i V 15 OFLOM 31 DNPGV 37 * • " HALF hCRO * "AT FILES • • HALF«0»D MATRIX 1 ROW/COLUMN 1 2 3 4 5 b 1 6*77 EC36 31 825 426 22C3 2 4561 7625 3 0 852 495 2194 3 2 774 4414 31 847 512 2191 * 1957 32E1 31 926 512 2188 5 166* 3544 28 837 462 2185 6 1713 2578 31 <Jh6 512 2 i e 2 7 3EJP 8937 30 619 495 2177 8 18265 21320 31 813 426 2185 9 26415 3C120 30 772 413 2196 10 16542 16030 31 773 426 2200 11 9054 12S50 31 802 426 2201 12 6225 6431 30 796 413 2201 EMC »»»»» TOTAL RUN TIME I INCLUDING A S S c »?LYI » .09 MINUTES ••»•* EXECUTION TERMINATED •SIGNOFF — — C N T 3 XXXXXXXX*XXX*XXX*XXX;i*»>X*>^>XXXXiJ.*^ ..PLt]D...l..PLCD...2..PL0D...3..FLrg...4..PLCC...5..PL00...6..PLG0...7..PLnU...^^ RFS N3. 1 3 2 1 9 0 L'MVEPSITY CP b C C C P u r i N U CENTfE Mrs(UG036> 19.22:23 TUE AUG 1 7 / 7 * * »SIGNON NUOE T»10 ? » 3 5 < NN NN UU uu c o o c o o n o D EEEEFFEEEEEE NNN NN UU uu JOOOJODJOO FEEEFFEEEEEE NNNN NN uu uu DO 0 0 EE NN NN NN uo LU CC DO EE NN NN NN uu uu 00 0 0 EE NN NN NN t u uu DD CC EEEEEEEE NN NN NN uu LU CO CC EE-EEEcc NN NN NN u u uu 00 CO FE NN NNNN u u uu C2 CD E-NN NNN uu uu DU 0 0 EE NN NN ULUUUUUUUUUU c c c c n c c c D C EEEEEE5FEEEE NN N UOLULUU'JUU OOOOJOODO EEEEEEtcEEEE .... . — - • - • - ----- • — . ••LAST SIGNON I»AS: 19:21:3'. USER "NUOE" SICNEO ON AT 19.Z2523 ON TUE AUG 17/76 "SRUN """ »GPSSV PAR»SUE»C EXECUTION BEGINS ' : « " * G P S S M T S . V E R S I O N •»» ItM PRO.RAM PRCUUCT 5734-XS2 IV113I *** FOR tP-TO-OATE INFCPMATION KEGAROING «GPSSV 'UIST NEUStGPSSV REALLOCATE STO,1,XAC,35,BLC.90.FAC,I.FUN,4,uUE.I REALLOCATE FSV. 10 ,LCG. 1. Ti»S , 1 .HMS , 1 ,C't-A. 1 ,CCM,_12030 BLOCK NUMBER «LCC CPEPAT1CN A,E,C,C.E.F,G.F, 1 COMMENTS » ; ... ._ _. * ' ?*•*»»•»»••*•**•*'_."*•"— • * * _ * t ? . * * * * * > _ * ' ' * v i r l A B , - E DEFINITIONS mm*o9**w»***m**********»* + + * * B » v » * » * » ThFkMAL CUTPUT »»««»«•»»>»«*»»»»»»»»»»» »».»>..-..... «»-guH AO«»UN THLV ThEJ"jV L _CA.'TP_U T 119,29 L : u-i <9 f> ?> u< -~i —• r*4 r-l J> Xi yj.h- Ou0^i>jn^ Ji<:r-iJ'0'4'NJ''' J'J>^J'»*OU' -'>Jrn-#JAJr*jjl / u^w NNNNIM m,in m i l m ci) cO|.«. mn, *, .I- .ft wi ui .n »i;«iui «i *> .« »;0 <) o -o o o , |ui A i ~* • I £ I Z i - :J i c i » * IJ . 3 «J .5 -I u tt -J i a *t .y, or - i O < ~i r u *r «i o X ,u. « »• t l l ' l 3T I o r. -u • u. :>- _ I uj >-, ^ L5 CC >• I Ml OL .11 J i X u. — Z HI > -I- *J L/1 r -I - I I i d >- > : Q -• _ i : iu i ; n < i <•>. J . u£ ui — D . u> £!ui x i — :r. > , -• ' .£ — Z u. u> I 1- a J i O 1* -1 — u. • -I I > >- '£ O I 3C >• O > >: CJ _i,3i «u [ J J J u J . c c. » * « « * * * * * « M * ft ft • ft ft fl •1 r • « a • » f ft ft • * * • ft ft * i ft « « * « f * • » * • * 1 # o • • • i < >-|5. c . . tl Oi Jt II X II -J — f t - .1 ft [t ft ft II ft hit « » * U *|* * « < * « « * « « ; • ft n * s i n # • « » « ! » « « , ;• it r t I b!v « « » « * 4 ft (fr ft • « ft . ft • • ft ft 1 ft ft U ft fl V ft R • ft ft II fl » a ft ft |* * * • • ' O B •>*-!> * » ft j • H » • a i I* . < « r •) ,0 • ft • ft « • fl • « » • • • (• « * « * »!* * > . • * . I : ; 1 1 ; i « * « « • lo fl-it « « |« « 1 " • l f t««i«fl«i * h # « • • « « « ft * !-* ft r u* ft • -O > 'A l** - » J <UJIM •* • S, i •* 4 IMI • • • «if. ft-«. • !o» C •t *)> u* rvj'tx tf* «",«: J* r-i • » vO <-4 <0 -4 •O IT- «-« J**. ^ if» n IM <t JO; o "i i«i rf*, J" O -« -« '-J..-1 •Si >» N.I'V /M X "J t> '(Iff 1-O <w • -* rn o <— rsj;iv —> •s >. hs «n i O'J o 1 ! o I 1 * 1 1 i •0 t -4 o o 1 *M o o X j •«« o o X 4 X i O <ft 1 -4 uft < 1 >. — J —• 1 5» f*l .A —I ad ! fl * ft 3"! X 1 -4 X — i » u l a. Ui fr- c J . H i to * i vr *r IM O. U' UJ -Z x> m •A >. -u Xl <0 o » X •A T •Ml n «JJ •K r + •* 4> -+ trt O; •< r: 1. •M • * >» — a. X UJ u o -> o -J O O O j O X z Ui vA O Ot U It. */• X •A 1 X "H. <«. X X c-4 J^ —4 uu * • •> f-o O • tn *r s, ^  c J> ^ * *- i • »- • •*» U .*> iA ^ • 3 O U, U I i cr ViUi ^ w • • • • • 4* * O — y (NO, ft* • JJ JJ -U -J —• * - J _ i -C X t ** ^'./> IA Uk V 00 iAjP»» OJ O (A <0 '•'iiA O « x -ol ft- «— ft- U- J\ S. -vlN. J. Oi •mi -Ml if X O * 4* J>' -1 * • •••<•> —4 . » 4 s i - o i. -A - c-, 0C .ft- - -f ft. 4 * f* ft- 0 -4 t-i MJiM KJ> • / s N s > ;! f" D O — -O -• 3 C1 u, 4 * g - u . 4> 4* * s, •4 ft ft ft! * «-4 •* u - 4 g » r - i m x o 4 o 1 M - o r <i • U.' 'fl O N f 43 x rt 4> o i 4 - a -r «4 «4 I M I M -t 4 x -.rt J U U x <^  UJ -a «* , a o -* •» x . i _ i : MM r. x x r c-S. x i *.\c: — ui u .. . X .- u> HI I i " * w IL j «i K- - a O ft-, x X >. j J I — x X -i « j X ' . r *) u. a. — x fc j < «u a N - j i x x u. ^  •- x j o -* o <z *4 UJ rr r J 1 ft-i— * *. .J* U —'s: *M -r >• >-| J. — • * a «- -4 * N FH'I* I M M «<l X i j i - X X .<! -»;x M 1 ^ *» A ' X X X Xi u- U'jixi i,. a. ui U' iu u> UJ u. w UJ! u a. UJ a. i; 'U jj a: .L 1" IJ ci a. V iti J £ <t *11 «1 »t «t «- < *(|.T •! «j •! <u m, .t " 4 »-< —!•-. — — i — <u — ft- — MI.! M U. UJ Uij tt. II Kt a o. n a n I" a o -i n a i * - 1 a «j «J J I ' ! • I 4 4 « t » t | u 1 < 4 4 4I'.I 4 U CJ XI '!>>>>>>•<>>>>> >:*i > < *r <* feU,«Ji>U>lfk>ULU,y.WbU,[ukU> •» ft- ft-» tv O I X J O WrJ — «fci Ul 0C ^  -« JjtlJOl UL Jt ft- «j-?T a' 3 ft- O ui!/ f- >• o «T iu O Ui O ui Jl t,0 L J ft- z 3 O ' X C L O U . J 4C a: ft- ft- X O; 119.30 n i i i r»p*> »>«. h- co rou 9 a] CD Q Q K tv 9> N CI >l kft 4) N OJ tf O «VrO -Tun 4)rV«v,'j>0-*tNl(*^*tn Of "- tf» IT i/» g> V-ILT U» */• O O O!O U O O O 010 — -* m* m* -• i . ao iu-s *r -* .gj> a r» **** 0 o A X «e «: CJ U y x •M •» 1 X X X O O J * t> ;g w ^ -O «•> 4 Mf »^ M,*- -«>/•-• -l n —t :ij y> —•• » g; » r\j tktM • * \j • r\j •rg-r\i — tM *»« rg -» rg —. ro —. IM rg *> *><•¥> » •£ • *0 * MJ •> J •> •>4 «• 'pg *>rn •*• » •> gj * r*- *»!«. •«<* IM — m — gr'"- a*\ —• .0 «•* x -*!r — T x -i*x ^ x - • 1 a. 1.1 x >• x it T'.X x y T r x y >. a: v »: > *v "v 5 >. r- *s >v ^f'vf-'vr's.mv. x r- OI<= »r\ r» rg g> \j o N M O s* IM i/t cr* r» ~*',-a a r* -« t) gg *rjg? H* 0. /1 ^  (*"»(—• -J" —« »n n» a_4 1 1*4 a C x> 0 ' i «\| — ~4 [•g • • f\JI M rg —» ft1 • • f*> • •> .M 0 *** X 0 -* TNt BH -0 -.;x mm (—1 *-1 X < -!> X X O m-i » •4 «•» -n x o 3 >» X 0 -> >. .rt >: 9 •n £ (i; >..j» "x» i*> 5. OjM 0 f rM -g 0 1*1 mm. •r! • J* • «>J mm fM ( < »T • • •*« mm • > . » • « pg • un •mf mm •»• mm H- —* •-4 X mm •»< ~ w a. - • . I X mm X -4 >. T X X . V. C r-l r i ^ •r >s a* XX 4- <•*.:</• < >. •-« y>1 i A rg r v -0 J> <J MO •M •J-0 P* 43 rg r-I— I— 1 . . . . . ~* ^f'M IM n i«i ^  ^!ui m « O N . . . . . O U | - -. IM M «a uu u* u~ ^tw ^- —« • I X l X i - J . J - i J . X I X J . i m l t u r i i i i - U i . 1 i:X J- I I i I J. X i X n <i »i .[ «i *i «j 4 o TJ X I-« < < Z I . — 3 0. O z z z z r z r z i r ^ z i z z z z z z z z ? z D Z Z «« i/> UJ u < 'U . X c a a *-C CD Ul < Z IM I I i.1 . X » ^ a. 1 >-: " 3, I o ! Ul IS -J ct m tu < Z; 4 >-U 3 » O IU a: cn u. <t z < 1* Ui UJ < an jx _ i a. '/) u. ul i/> _ i n « i : ~ IM c-a o 1/1 . • t- c <t III O > _ l J C t i . J CO It l/l JJ. < Ul «-. t- t t Ul -.IM(*1*(Tjh.fiC-0«N CM (M 'M ru M .^ '.v N IM PI PI ml u < JI 0 r o — fr— UJ IN-- ic < r u -1 «- r- J Z ^ u o — X J3 Ul > Ul :u 10 — r t . *— ui JC 1 H- — U.' • ^ > J « l i I I-Ul Ul o »- o- Z ,3 Ui, IC UJ _ l •a X I- 13 Ul Z -I u< — • CO > rC. a n< ^1 Of • # • « 119.31 i'w» o rg m •#! o -• f« M -t\ *y o a* a* o —» » M m *r in < » n - < i M I* jt O X 4 0- -> a ui a. > x r i i 'O > St ft-z 1^* - X X I X a xx * - * i • ** o o c O 11 —t • Uj > > - 4 N < H ! *|C; X • • >j •* O U . J ^) 1^} • - • " - i n O l U r- >-• M ( - J ' * " •>• *1 •> -1 - J mm Q. O. C I.'' 1 l/l U Li' D <L'a. x v > v ^ ^ c c i i i | j < > - a. > ai H*" UJ U . IH U. U. U l U i i ' J u. -,. J | a D => 3 3 : 1_ J J J J -I — - i -w -»!• •a < "i «j »i -T ;sJ> -a -J *x -I 4 i < •!>>.*>>.>. .>>>>> >|> Z* 4\\ UJ UMA. 11/ u U. uj|»— U. U UJ u. «MIU-< Q- ^ >!_> > > > > >;-yi > > •> > >|> j r * O v / l i t l i/1 l/l i/IVI VI t— VI t/1 V) V) VIU/1 m * m *9N •t J* «0 K (B 9> ft « « • * « * • ft • * • * * * « • * ft « ft » » aft * O * 4 X « Ul * o » r * OL U J ft JJ * • JW • - J * it 4 u. • >• « • • * * 1*- • ft o. • r ft 9 ft < ft *- X ft < • o ft o ft ft « O J * *> f\J • a ft o ft » ft * X ft m ft 0 > 11 ft ft « * Ml II « * Zx « It "4 * c > • « U' * * > • « •a • R ut ft ft « • • « < * « < « * < « * u T *A X i r: «•: x X * : x t - 1 - i • • in <_ • , • *: -<\ > mm . ' ^. — «•) » i » * > K ' • m * K • UJ L U X X I I -I - J X m : < A . >- 4 , X U J hU t/» - H j£ U Ul •» I U H O H C X U; Ui • • ! * • •» W O .1 c_) u a. • •••">• — X. > -I >, > > >• .1. a »> * ZJ *( • • HO - J * _J t - c|.t (Tj <D a D *_) c u z -» «A rt' i - < - J i - » x. » X X D O •» u» x U ) H K X <4 X >. O CI Ln T3 ; * ^  X *^ x xi-H x * • * X > X X mm %.] U l • t i : » UJ u> J| fM >. > > » • ! M I' *~ 'J V _J >- 3 J . o -do rj o -- .T! o — >• • cr -j a: «— a i »4 */"» * a. *o x o a. » <*SJ * * g f - A i L . i — « M u i - » » «- »i »H| a. «n o D n - i c « t : i i i a. i h M -n - 4 iL «« i !^<-<K X H X X X • I • • > » > • » »j^ r • — • •• x A a. u> Ul u> 3 mi Zi iu. UJ UJ Ul _ l -I _* W UJ . j l l . j U 4 _ l - J U» mJ > > * -» U, OJ UJ Ut I— U ' i r - (— U: .U t— l i l > > > > v i > 'wi »/» > > tn * 1 < < < ID <<U> UJ 4 4 «*l 1/1 VI t/1 I- - ••• 1 N A|N <M N fM p i *M f*> f*1 rn r*1 • r «t 4 > > > Ul U Ul > > > < 4 4 VI VI V) < * J. Ul .1: U J • > -a < Z UJ v> UJ j l 4> tn p*. oo tr »«1 m >*> m n j o u< j. . .L i l t» » ^ » a -i C C vl >. Ul t i. u.l - -— . . . • < / < • —• r - « > v i v i u - c j * - • U J - i l i - j l i - X •— • •>•-• ir.; 3 • — • » • » • K • U i/i n a j . > l j j i ^ K X * I U< y . - - - i — ;> r. U J u. U J JJ IL> mi mJ mJ'mJ mJ U l _ l _ i | V>- l>. U J mJ J> -J *l *t • 1 *>l r f j « *; «4 »] 7 UJ > > >!> > o > >'^j -J i-h K M IU U i UJiuj U i fc- U - UJ" r - »•• ^ 1/1 t/l l/l > > >i> 7 > V 1 v i > J> O it </l VI * • U J iu U ' 4 < <:•! < i/)u; < c ' < < ui U J it r- H J - 1/1 to </) < k- v ) v*. I* I- f>- o. I- U K> < I- (0 4? -r * * JJ> * "^j r * gj> iji mJ t*jj ft% J> n J) p J g> gr gr rt a^j I A I A «r\ a> u>' J 119.32 ' 1 ' I 1 ! 1 | 1 1 1 | ! 1 1 .1 • Wl mt 9 m ft-j\ ^. < -u ^ t I 1 j 1 ' 5 "* i u 1 1 1 1 ! j 1 . 1 1 or i u< O > Ul • rr ^ O 3» k a n. i_i j i i 2{> > <*\ %f IA 4j ft* «x *J* O — A* ft J/ 4"t 4* ft* 3D tf*O -• C4 rt •# iA 4-l]ft» go 0s O ^  N J« IT 0/ J> «» y If OOOO O'O o o o o«- ««Hft«*<ft« H •u mm m* Al Al Ai A| Al Ai Al A* IN* Al Al Al Al Al Al N N N N N N 1 • ui « m m 1 i rv i k: CO 1 iv i 1 »-! • j I z I [ u 1 u i i a 1 U. ur cc ai j i cu U J LL. C J i > -J 3 ml | I 17, ui S3 U> j a a i « « ft ft I * « ft a ft Wi j/ O m* ft & ft-«• U 1 i « « IM CU V a IM ! ! ft t z ; : ft a C i ! 1 ft « u i 1 • Wl J I j i ft Z> • — J a ct ft < a u. o o ec ft > » X JT Z < j 0 U- ft X £ V IU i ft > • O C3 >• 0 < *•ft Wl • j i ft o i ft a ft wi rv ft- O ft CJ ft ft- CO Irt J/ ft .* » CO 35 M « u. # OJ J> ft -J ft 1-ft < « a" • X 4 C_ ft a i ••• . °i ft » i i 1 I. i l « • * i Ujl 1 jl mi • » 1^ .3UW ft « JL j _l X 0 # D. U. O. —• ! • ft ft z >- a. i/i I i VA j i i x' ( 1/1 ru * o ft- >- ~* <e tit 1 z m o X X t-ot «-4 «4 z i l u X a: x. X o 1 O U UJ Ul —<• <• X; u ft- O > cv X X O l a c; i/i • o z — 1 <ft> CO » ft- M M _ l W* • X > —1 M > X » A.- CJ JL O • ft j b •a • X » > • X • U. .•4 • A » ft • 1 Ui u * X ft 4> ft *H «. <M •> o u -* • • CO •- o o: 4 ft | a. Z cc ec * a ft a z * J- *ft4 o •» U til ft- u» a ft- u> aj X u. D -» D O X « a> ft i ml z o o • • «• • U> « • Wl jl wl » rn ft X * al • cQ • < • * —) ft4 t *4 * • « • ft UJ U> Ui U U.I Ul Ui Ui Ui UJ Ui « u> ft IA ru rt # U J UJ ft- U. *J -J -J n D 3 u. i a. _j u. 3 a 3 a 3 a a UJ ft-ft t- rt 1-ft- ft- < ui _j J J Ui . J •J UJ _ i U « J U _ J UJ _ J Ui _ J UJ « ft- «1 ft z n * * -I «ar «ir u «t •4 <4 U> *T «1 U «S u. «i u> <4 U> "t U. < U. % u. rt -* «i i - wi > a > J» i/> > Ui > Wl J» l/> > v> > Wl > «/» > ^ » a. ~« ft ft. H-iu UJ ui / ai > ui *; OJ UJ z w ic ;• • u- t « O Z ai oo a *i > ft- «J» > < > «4  «i J* «a > «t > «4 jft t > <a • «r « • < O CI 4 4 U i t a 1 z < «* ac «a ui < a < a «> o «t ac < * < a ft Ul UJ • f- «r u H K K a h vi Uj t/1 VI ft- t/t u Wlft. wi ft- Wl ft-Wl t- Wl ft- Wl ft-1 OH • Wl Ui ft ft 1 i • * It « UL •*« O o. UJ >• 3 l/» O UJ ft- p « Ul Wl " K o ui o a ft It LU < au *» 5 Wl Ul ft-wf z o ft * I - j at ] j . 1 • ft iu Dun; i i i X a >; 1 1 «t> O •< AI *A 4> (A O K -O 9 O AI rt J> >ty 4) ft* o» <J» O «•* *»4 rt j i i 1 tAtA *9 4> <d 4) j .. j i' J t • M*M to*)***, IU— • •*•«•*•«• 119.33 i/l <4 r*j OB <J- iA O ^ f» — Ul m* 4} \S>\m4 09 TO r>- n O Wl >-f # C0| •- U> f*> «f P* 4> UJ «M 43 1, 1 u •—>' tolz o z CCMZ J z > Ix t& Ci 3 o z in Zl» *• ui u» a jv C l i i a u X -J 3 -I 3 UJ CD u. Z t» O t/» ,f O IM — * O z o or y 3 a i r ' u. Z Z « X X X u. I/I » * o t- * * * Z -• .ft *M Ul 5 3 J O J i X J J I* 3 a. »fc i ' t l «l 1/1 CM H> IM P- * -j| UJ Z u u I 1 *• J} K O O ». z a- a. 3 C Z Z z x a s i/l CO i l m i- en ~» ml ^ m * - i • « ft • ft » « * ft * « * s » ft -1 • < ft -> ft IO » > * < ft f i • -1 0 o-* O ft Ji » u. ft -1 ft « ft X II ft-• ft n •* « a u 1 UJ -* o ? UJ « p-J l i -S 111 3m CO >• t/>l 4» O ro p- r» r» 4* Z > 1 4 U J <M a •! • u i t i i ; i>'3 3 UJ Z I si l ^ i l *- > «.;•- o n X Z 0L U . 3|U Z <Ci Z X I.I x. 1/llN. J | MlM P * z|*> •» Ci — O — ui < p-_ j ft 22 u. i/i ex. CL UJ a X _J 3 3 UJ to z cc m • o . I- * o z u i • ca X X X I 3 O <3 1 Z O J» 1/1 P* •!* I p- M (M . z 4 v i u. -r u t_j I VI <M •* CJ p--* **. *M| UJ p-z L I , w 11 I M X ** > 4) p- o c; x z u. a 3 b Z Z z x o x I / I M P I P J z to ** o z o u I I I H t l J CQ U J < p-» J i* H 3 ui 3 in 2 ca » to c u U uijl/1 CD OJ >. :-J 3IUJ i.' at a. I u. U 3 _ l CO u. c t o l ^ z i * u- D 'JJ z o m o o o a z <» X U J O >• UJ'-p- I tu<3 ' x: J . 3 ' J . i • f o ' a * O IM X J- > • C O .-• a t*. i a z z : x a x i H fl * I i|-< u — I UJ 4 p. L i o ~ I|UJ 3 « i CD >> I HALFtiORO JAVFVALUES W B E R - CCNTENTS I.UKBFF - CONTENTS E L E l 5?* HONTM 12 BUI-AO 413 ONPGY 44 TS1T1 3QSZ MNPG > 132Q MJHbER - C ONU NTS NU*FEft YFLOW 10908 (WM.O "FLnii 491 Y3 u f i0 S1TE1 240 YEAR CONTENTS NUMBER 44 RELES 22CC0 BLP» 6 DFLCW CONTENTS NUMBER - CCNTENTS 36 MC MNJ 1751 5294 YN°GY 16*C3 16 SfiNE 8 f-ALF(.OFP SAVE VALUES NUMafP - CPNTENTS r.'Ui»6rF - CONTENTS NUVb EP E L E l BUB AC V S I T l s;o *13 3202 MONTh GNPCY >NRGV 12 43 1293 VFLLa ••.FLOU S1TE1 C_C_NJFNTS_ 14351 10C0 2*0 NU*PE» - CCNTENTS NUWBEP uOKNU "44 FELES YJHNJ 22000 BOP* YEAR 7 OFLCta CCNTENTS 36 MO KM) 5518 YNPGY 33 SCNE NU"bER - C1NTf.\T S_ 1751 16220 • HALFUORC SAVEVALUES « * • NUMoER - CCNTENTS NUMEtF - CONTENTS E L E l 535 HONTH 12 BURAO 413 CNRGY 43 YS1T1 31ST »NPGT 1290 NU*EER - CCNTENTS NUMCE* YFLO* 15990 DOMND "FLO* 90* YOVNO SITE! ^40 YEAR CCNTENTS NUMbfR ** RELES 22GOO BLFR e JFLCW CONTENTS NUM3FR - CONTENTS 35 MO»ND 1751 5518 YNfGY 16232 33_ SGNE B » * • * « • » * « * » t i a M » * * * * t i t » « • • MALFBOPQ SAVEVALUES • NUMBER - CONTENTS 533 413 E L E l BUR AC VS I T l 3047 NUKeSe - CCNTENTS NUMBER. - CCNTENTS _ flU^fER MONTh 12 YFLC'h 15355 OJCND " ONRGY 43 MFLCM 596 VOPNO WNPC-Y 1290 SITE1 240 YEAR _CCNTENTS NUMBER 44 TELES 2230C BljRR 9 OFLOK ER - CC.NTENT5 NUMBER. - CONTENTS 35 MOMND 5518 VNPGY 19 SCNE 1751 16197 8 « • * H A L F t a C R O S A V ? V A L U E S « • N U M B E R - C O N T E N T S N U M H E R - C O N T E N T S E L E l 5 3 1 M O N T H 1 B U R A O * 2 6 O N R G Y ** V S I T l 2 4 8 M N R G V 1 3 6 4 N u M b F R - C O N T E N T S Y r L C W l i . l t H F L U b 7 4 1 S I T E 1 2 4 8 N U M P E R - C O ' . ' T E N T S N U M E E R n n M r . 0 4 4 R E L E S Y O V r . O 2 2 0 0 0 B U » R Y E A R , 1 0 O F L O W C C N T E N T S N U M B E R - C O N T E N T S 3 6 H O M N O 1 8 1 5 * 2 6 Y N P G Y 1 3 6 * 2 3 SCNE 8 « » « • H A L F n i O F 0 S A V E V A L U E S • ••*«•««* ***«e****«o***aj»«««4a*»***M**»*** N U M B E R - C O N T E N T S N U M H E R - C O N T E N T S N U M B E R - C O N T E N T S E L E l BUR AO Y S I T l 5 2 8 4 9 5 5 1 8 M O N T H C N R G Y M N R G Y 2 4 5 1 3 5 0 YFL'-iai M F L C n S I T f c l 1 3 5 1 6 5 4 9 2 7 0 1 U M . 6 E R - C O N T E N T S N U » B E P O O M N D " 4 5 R E L E S V O M N O 2 2 C 0 0 3 L < - R Y E A R 1 0 O F L G M CCNTENTS,. NUMBER - CCNTENTS 3 7 "MO M.N D 1 6 7 4 9 2 1 Y N H G Y 2 7 1 4 1 8 SCNE _ 9 VO ««#9«a><i»ae.t.**«»*a^9*aaa«ai 9*«ata> ** «w«i9ip*ai» « • • h A l F « O P D S A V E V A L U E S • CO Ln N U M B E R - C C N T E N T S N U M B E P - ^ C O N T E N T S " E L E l 5 2 3 " M O N T r * '"" " 3 B U R A C 5 1 2 C N R G Y 4 6 Y S I T l 7 9 7 M N O G Y 1 4 2 6 N U M t C R _ - C C N T E N T S N u M B E * Y F L C - 1 3 5 1 6 l i O M r . C M F L C t o 2 9 7 Y O M N C S I T E 1 2 7 9 Y E A R C C N T E N T S N U M R E R 4 7 R E L E S 2 2 C O O 9 U R R 1 0 O F L C t a C C N T E N T S N U M B F R - C O N T E N T S 3 8 MBMNO 1 9 7 3 1 4 3 3 Y N R G V 4 1 4 0 9 S C N E 9 HALFMCRC S A V E V A L U E S • *4»a>4.x»t.*.s***e.ft*Biitt*a«»«*«j»»,»*«a£a^»*« N U M B E R - CONTENTS N U M B E P - C O N T E N T S E L E l B U R A C Y S I T l 5 i e 5 1 2 1 0 7 6 M . G N T H C N R G Y M r j r G Y 4 4 8 1 * 8 8 NUHbtR - C O N T E ' ; T S _ V F L C a a " 1 3 5 1 6 M F L C w 3 7 7 S I T U 2 7 9 f j U M K E R j ^ C C N T E N T S N U M B E R " O J M . N J 4 9 " R C L c S Y O M N D 2 2 0 0 0 B U R R Y E A R 1 0 O F L O K C O N T E N T S N U M B E R - C O N T E N T S , O M J M N O 2 C 3 7 1 9 * 5 Y N P G Y 5 6 2 S 1 2 S C N E 9 1 1 9 . 3 6 Ul -* o o p - * 'J Z CO o Ul o > ui co z o ir x x u o 3 o * ui 3 r > u» «. ^ * * r> z o UJ Ul Cf 1 tB ul a CJ 3 Ul co u. z or a ui o> o o p- * o — z u u i cf , u . o O a 1 if » u. 3 o o » z o > U I 0 O I O Z /I A J z u UJ J> J I - c J> 3 a uj Ul l A p - •» P . Z <*i UJ PH p-Z o u ~ X »• CO p. o o x z x a 3 O Z z Z X O X - * o 41. Z tfW "1 I I I ^ Q p i J J U J 4 P -I j a -3 ui 3 ui z 3 o UJ: 3! at UJ O >. ui ol:r o z J i ». u . U 3 Q Z Ul z,r v I ivies o> 4) i— fO *L V UJ rs* 1— Z f u u t ac Ui via X CD UJ i l 3 >. - i O -J 3 U ' C D l k IT. a o t/V .J O O »-: * o -t z , o •! t r 1 w 3 O a. J) z < * : x >: UJ Z-3 »• u>! -«» u» o> p-;-j » p» Z JI -• IM co'a 3 u j T l j 3 f o: j . u. — Z]>- X Ul «3 O L/1 * o-J . >- >-I- o o z ^ ct a z z I U X ui|-< a - i colui 4 p -l i j a » • • • • Ul *J Al COl p- n o O «J U i H I T 1 1. a c, 3 O z ui Z X J -3» 3 O IU ul K it CO Ut Cf ST. -J -» -J, T> ill CO u. z a ui m o o p - * o z u x : U' o o a. Z Z -J X X Z U. 3 o O >; z = >-- i o .o Z J % P» OJI Ul 1*1 U J J I i t . uj O CJ i 3 u. u. z >» X m OJ r- O O X z u. at 3 O Z Z Z X Ci 1. Ul IA fM ] P- o V o Z tfl <* ./> UJ * . rj a: ui < p-X J or -? U J 3 Ul CO i a* in co • CO -* : P» u uta r-ui ce! z o z x! a I I U I —\n% * co 1 cr UJ a. UJ ca O >- _i j ^ O UJ St Ik *£ v i n O o P- * CJ z o u i | Al O «->l ^ Q U li a. z z «t X. X X U 3'0 O »• Ul) 4 » X »» J" p- o c Z o: Cf. o z z X C. X m -o © —I A | 4J IA •* » H Ul 3 Ul CO > ( - - • MALFWOFO SAVE VALUES * • • — —--! • • -' -NUMBER - CONTENTS NUMBER - CCNTENTS NUMBEP - CONTENTS NUMBER - CONTENTS NUMBER - CCNTENTS NUMBER - CONTENTS E L E l MONTH 9 YF LL*. 13516 OUMND 42 RELES 35 MCMNJ 1698 61)1! AO 413 ONRGY 43 "FLOW 4545 YO'/NC 22C30 BUfiR 4253 YNPGY 12286 Y S I T l 240O ihSGV 1273 S1TE1 240 YEAR 10 OFLCM 151 SCNE 8 * • HALFbOP C SAVEVALUES * • • NUMBER - CONTENTS NUMBER - CONTENTS NUMbEF - CONTENTS NUMf*ER - CCNTENTS NUMBEP - CCNTENTS NUMBER - CONTENTS ELEl 534 MONTH 10 YFLUW 13516 (JUMND" " '"' 41 RELES 33 MDMNO 1700 BURAC 426 CNRGY 41 Mr-LUW lb37 VJMNO 22CCO BLRR 4679 YNRGV 13557 Y S I T l 2646 MNRGY 1271 S 'TL* «,4b YEAR 10 OF LOW 52 SOME 8 c e HALFKORD SAVEVALUES • • KUMBER CCNTENTS _ NUMEfcP. CLE I 536 MONTH " BURAC 426 ONFGY YS I T l 28f6 MNRGY NUMBER - CCNTENTS YFLUW 13516 MFLOW 1409 SITE1 248 NUKtER - CONTENTS NUMBER DDVr.0 43 RELES YOMNO 22000 BURR JTEAR 13 pFLOU CONTENTS NUUKER - CONTENTS 35 MQMNO 1764 5105 YNRGY l4e9C 45 SCNE 8 • * * NALFWORC SAVEVALUES » MJM9ER - CCNTENTS NUMPEP - CONTENTS NUHEEC - CCNTENTS NUMBER - CONTENTS NUMBER - CONTENTS . NUMBER - CONTENTS ELEl 534 MOUTH 12 Y F LOM "13516" " Soy no' 44 RELES 35 WMNO 1751 8URA0 413 CNFGY 43 M F LOW 74 9 Y'JfN 0 22C00 BLRR 5518 YNRGY l u i a o Y S I T l 3136 M N C Q t 1290 SITE1 240 YEAR 10 OFLOH 24 SuNE a vo to — I f * •*> • -< I . . . . . " hALFWCRO SAVEVALUES * * • --r NUMBER E L E l BURAS VS I T l - CONTENTS 52* 413 31?6 NUMP.FR MONTH ONRGY MNPG V - CONTENTS 12 *3 1290 NUMbtR - CCNTENTS NUMBER - CCNTENTS V r - L C 13516 DDMNO ** MFLCw 7*9 VUMND 22C00 SIT E l 2*0 YEAR 10 NUMBER -RELES BLRP OF LCW CONTENTS 35 5518 2* NUMBER -MOMNO YNPGY SCNE CCNTENTS 1751 1618C 8 < 1 I * * HALFKOFC SAVEVALUES • • ... t * 1 NUMBER - CCNTENTS NUMPCR - CONTENTS * NUMBER - CONTENTS WJ"bER - CCNTENTS • NUMBER - CCNTENTS NUMBER - CONTENTS .. . i E L E l BURAC VSIT l 5*2 300 3126 MONTH ONRGY MNRGY 12 *7 1*20 VFLL* l * 7 b * DUMf.U 4b MFLOw 82 5 YJMNO 22000 S I T E l 270 YEAR 11 RELFS BURR OFLCH 3d 5*05 27 MOMNO YNPGY SCNE 1751 16287 9 -• — — .... . »«**»• *« »*« »• »*• » »*• •»»*••» »* * e • MALFuCRC SAVEVALUES • » » — • VO LO CO NUMBER - CONTENTS NUMBER E L E l """ 526 MONTH BURAC *13 ONRGY Y S I T l 3053 MNFGY CONTENTS 12 *4 1320 •IUM8EK - CONTENTS VFLO. 921* MFLCW 826 SITEl 240 NUM.F ER OUT.O YOMNO YEAR CCNTENTS NUMBER ** RELES 22CO0 BLRR 12 QFLCM CCNTENTS NUMBER 36 "DMND 5*C6 YNPGY 27 SONE CONTENTS 1751 16326 8 J^UMBEJ_ EL E l BUR AO Y S I T l CONTENTS NUMFfR -529 MDNTh *13 ONRGY 3135 MNRGY CCNTENTS NUM6EK. - _C_CN'TENTS 12 YFLOW 1*718 ** MELOW 1220 132C S I T E l 2*0 _NUuhER - CCNTFNTS OJ»KO ** YOMNO 22C0C YEAR 13 CCNTENTS NUMBER 36 MCMNO 5518 YNPGY *0 SONE CCNTENTS 1751 16233 S • — NUMficR - CONTENTS E L E l 51 e 6URA0 4 1 3 V S I T l 3191 NUMBER - CONTENTS MONTH 12 i)N»GY 43 MNFGV 1290 HUMoER - CCNTENTS VFLtW "" 115o6 MFLCh 953 SITE1 240 NUMBER - CCNTENTS 00MNO 44 V3MNC 22C00 VEAr 14 NUM.6ER - CCNTENTS NUMriER - CCNTENTS RELES 36 "OMNO 1751 BU^R 5518 YNPGY 14235 DFLCW 31 SC'lE 8_ * HALF.ORC SAVEVALUES NUMBCR - CCSTEr:TS NUMBER - CONTENTS E L E l BURAC V S I T l 5*1 413 3191 MCNTH CNFSV MN=GV 12 4* 1320 JlUfceFR - CONTENTS V>LL:» " 15606 WFLUta 940 SITE1 2">0 NUMF.E«i .-^ _.CCNTEN_TS "liuMNO " 44 VJMNO 22 COO YEAR 15 NU«BF° - C C N T e K T S _ RELES " 35 BLRR 5518 DFLCW . 31 _NUMtER_ MJJMNO VNFGY SC'IF CC1TEM S_ 1751 16181 8 I—1 VO vo / RELATIVE CLCCK lbO AESCLUTE CLCCK lbO BLOCK CCUNTS TOTAL BLOCK SLCCK CURRENT TOTAL BLCCK CURRENT TOTAL bLPCK CUPRE.NT 1 0 1 11 0 180 21 C 180 31 2 0 . 1 ''• 12 C 180 22 C 180 32 3 0 i 13 0 IPO 23 c 160 33 >— 4 0 l 1* 0 180 24 0 180 34 5 0 l 15 0 15 25 0 183 35 0 0 IPC 16 0 15 26 c 130 36 7. 0 180 17 0 15 27 0 180 37 8 0 180 IP 0 15 2P 0 180 3 e i 9 0 i t o 19 0 15 29 c 17B 39 [ 10 0 180 20 3 15 30 0 180 40 } 1 BLOCK CURRENT TCTCl BLOCK CURRENT TCTAL BLCCK CURRENT TOTAL BLCCK ! 51 0 1KC 61 0 l i 71 C 0 81 j . 52 0 IPC c2 0 U 72 0 0 82 i i 53 0 160 63 0 0 73 0 0 83 54 0 180 64 c 0 7* 0 15 55 0 IPO 65 3 0 75 0 IS i 56 0 15 66 0 0 _ 76 0 2 —... 57 0 15 67 0 u 77 0 2 5b 0 15 6 ? 0 0 78 0 167 l 59 0 15 L9 c 0 79 0 167 i ed 0 IPC 7C 0 0 PC 0 • STORAGES 1_ TCTAL lbO 180 loO_ 180 IPO 160 5475 5475 54 75_ 54/5 TCTAL 0 1 1 BLOCK CU D S?NT 41 0 42 3 43 0 44 45 46 47 48 49 50 0 PLCCK CUF°ENT TCTAL 54 75 54 75 5475 54 75 54 75 5*75 34 75 5475 54 75 180 TOTAL O ST On AGE oILL C AR AC I TV 40000 AVESviCE CQhTC NTS 24634.736 ENTRIES 230945 AVcF AGE T1»E/UN!T 19.200 -AVERAGE UT 1JL12AT.ICN_ OU'INC- IC! AL "'AVAIL. UNAVAIL. CU»*r»!T TP'f TIME TIME S T M L i . b l 5 PERCENT AVAILAo ILITT 100.0 CU?°EN T KAXI1UM CONTENTS COSTElTS 28226 30029 • TABLES * • • • »*9< t> * * * » * » » * • • » » « » « * ' < * » • > « * » • * • » » • • * • * » * TABLE T H O . M l ENTRIES IN TABLE 15 UPPER LIMIT 0 5CC 1000 15CC 20C0 NEA»; ARGUMENT 5345.£63 OOSEKVEC c" 0 0 c PER CENT OF TOTAL .00 .00 .00 .00 .00 _ .. . C O . STANDARD DEVIATION 41b.WJ LU"<ULAT IVE PE_kCE_NTAGE_ .6 .0 .0 .0 .0 ..o_. CUMULATIVE _(-tptAlNJt«< 100.3 100.0 100.3 100.0 100. J IQO.J. SU» CF ARGUMENTS dOlBS.COO MULTIPLE _UF_ME AN -.000 .093 .187 .?80 .374 **6_T NHM-WEIGHTEr UEVI AT ICK f PCM M E A N -12.7E9 -11.592 -10.396 -4.2CC -8. 304 -6.0O8. 30C0 0 3500 0 4CCC 1 4J>00 0 5UC0 0 S_5C0 5 6 0 C J s REMAINING FRECUENCIES ARE ALL /.FRO .00 .00 6.66 .00 .00 J 3 . 3 3 59. TA8LE HVORO ENTr. I E S I N T A B L ? 15 MEAN APGUMENT 16378.863 UPPER LIMIT 8030 ?5 00_ 9333 95C0 1G003 105CC 11000 U 5 : c CFSERVEO FctCUENCV 0 0 PER CENT OP TOTAL .00 .00 .00 .00 .00 .00 .00 .10 1200C 12530 13303 13500 14)30 15330 15500 loCCC 16500 17CC3 _17»C0 .00 .CO .00 .00 .CO .00 0 0 0 13 1 0 .00 .00 .CO 86. 66 6.66 .00 lBuuO 1 REMAINING FREQUENCIES APE ALL ifRO 6.66 TA3LE ONE ENTRIES IN TABLE 15 MEAN ARGUMENT 3 1*4. 466 UPPER LIMIT 5C0 1000 C3SERVEC FREQUENCY 0 0 PER CENT OF TOTAL" .00 .00 15C3 200C 2500 3CCC 3500 0 0 0 0 15 .00 .00 .33 .09 IOC.00 REMAINING FRECLENCIES A3E ALL ZfJQ TABLE SPILS e.T-UES IN TABLE MEAN ARGUMENT 183 6.533 3 -.000 .0 .3 6.6 6.6 6.6 _39.9_ 100.0 103.0 100.9 93.3 9J.3 93.3 _60.0 .3 .561 .65* .7*8 .8*1 .935 1_.0»8_ 1. 122 -5.612 -*.*15 -3.219 -2.022 -.627 1.5c* STANDARD OEVIATICN_ ~~42 7.0G3 SUM PF ARGU"FNTS " 2".56ii3^000 MOfl-nEIGHTEO CUMULATIVE PEi-LiMTtGt .0 .0 .0 .3 .0 .0 .0 .0 .6 .0 86.6 93. J 93.3 130.0 CUMULATIVE RE^AINUER 103.0 _100 t3_ 100.0 10 J . 3 IwO.O 100.0 103.0 _ 133.3_ lbO.O 100.0 100.0 100.0 130.3 J 0 0 . 0 _ 10U.6 100.3 100.0 13.3 6.6 a.t>_ .3 MULTIPLE OF "SAN .*88 .51E_ .5*9 .580 .6 10 .6*1 .671 .7C_2_ .732 .763 .793 .82* .85* • 385_ .915 .9*6 .976 1.307 1.037 1.06E 1.398 DEVIATION FRCM MEAN' -19.622 -1S.*51 -1 7.2S0 - I t . ICS -14.93P -13.767 -I2.59o M 1.425 -1C.254 -9.063 -7.913 -6.7*2 -5.571 -*i*OC -3.229 -2.05? - ,ee7 .283 1.454 2.625_ 3.796 STANJAR_0_3fc VI AT I f.N 91.000 SUM_CF ARGUMENTS 47167.00C NON'-MC IGHTEO CUMULATIVE PERCENTAGE .0 .0 .0 .0 •3 .0 100.0 CUMULATIVE RFFAINOER 100.0 100.3 100.3 100.0 130.3 100.0 .0 MULTIPLE OF MEAN .159 .31P_ .4"77 .636 .795 .95* 1.113 OEVIATICN FRCM MEA>\ -29.06C -23.565_ -ib.*b>i -12.576 -7.0E2 -1.587 3.906 STANOARO OtVIATIfN SU*4 CF ARGUMENTS 3.460 117C.000 NON-WEIGHTEO .030 .000 WRIGrtTEC r- • R E M A I N I N G F R E Q U E N C I E S A c £ A L L 2 E « < C > T A B L E B O U T S • - S U M CF A R G U M E N T S - - — ... E N T R I E S I N T A B L E M E A N A R G U M E N T S T A N D A R D D E V I A T I O N 1 8 J 6 . 5 0 3 3 . 4 6 3 1 1 / C . 0 0 0 N O N - H E I G H T E D < >— 3 - . 0 0 0 . 0 3 0 . 0 0 0 W E I G H T E C R E M A I N I N G F R E Q U E N C I E S ARE A L L 2 E R 0 « « -* F U L L k O R D S A V E V A L U E S m * - -N U M B E R - C O N T E N T S . N U M B E R - C O N T E N T S N U M B E R - C O N T E N T S N U M B E R - C O N T E N T S N U M B E R - C O N T E N T S N U P 6 E R - C O N T E N T S R E A L 3 5 A C T U L 1 3 3 8 >.XX 1 1 E L E 3 1 3 5 • • • H A L F n O R O S A V F V A L U E S « N U P t l E R - C O N T E N T S NUMoSP - C O N T E N T S NUMBER - C U N T c N T S NUWBEr. -C O N T E N T S NUMSFR -C C N T E N 7 S N U M B E R - C O N T E N T S E L E l 5 * 1 M O N T H 1 2 VFLLM 1 5 a 0 6 D D M N D 4 4 R E L E S 3 5 M D M N D 1 7 5 1 BUR AC 4 1 3 O N P G Y . 4 4 M F L G M 9 4 0 Y J M N O 2 2 0 0 0 r l U R R 5 5 1 8 TNJ-GT 1 6 1 6 1 V S I T l 3 1 5 1 M N R G V 1 3 2 0 " S I T E ! 2 4 0 T E A R 1 5 D F L P W 3 1 SC'IE 8 -- —- - * M A L F h O R O M A T F I C E S • HALFKORO_ M A T R I X 1 R O W / C O L U M N 1 2 3 * 5 6 1 6 4 7 7 e 0 3 3 3 1 8 2 5 4 2 6 2 2 0 0 2 4 5 B 1 7 4 2 5 3 0 6 5 2 495 2 1 9 4 3 2 7 7 4 4 4 1 4 3 1 8 9 7 5 1 2 2 1 9 1 * 1 9 9 7 3 2 8 1 3 1 9 2 6 5 1 2 2 1 8 8 5 1 6 6 4 3 5 9 4 2 8 8 3 7 4 6 2 2 1 8 5 6 - 1 7 1 3 2 5 7 8 3 1 e e e 512 2 1 8 2 7 3 S O B £ 9 2 7 3C 6 1 9 495 ^ l 7 7 8 1 8 2 6 5 2 ! ? 2 0 3 1 8 1 3 4 2 b 2 1 8 5 9 2 6 9 1 5 3 C 1 3 0 3 0 7 7 2 4 1 3 2 1 9 6 1 3 1 6 5 4 2 1 6 C 3 0 3 1 7 7 3 4 2 6 2 2 0 0 11 9 3 5 9 1 2 9 5 0 3 1 8 3 2 4 * 6 2 2 0 1 k 1 2 6 2 2 5 6 4 3 1 3Q 7 9 6 4 1 3 2 2 0 1 ENO • — EXECUTION TERMINATED * * * * * TOTAL RUN T im i INCLUDING ASSEMBLY, • .n MINUTES • • • • • . . . . . . i > — »SlGNOFF .. . _. -• — • ' • • — — - - -- - . - v -- — - - • -. • - — -- • — - - . - - — - . . ••- .- - - . . . . . -; ' •• ~ ' - — . _ •- - - — " — . . . - ••• • . — -—' •• - - • • • — ' — : _ . .. _ . •- . --• = - -- — . _. . -- - ' -- • — - — — — C:»T3 XXXXXXXXXXXXX KXXXXXXXXXXXXXXXXXXXXXXXXXXAXXXXXXXXXXXXXXXXXXAXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXAXXXXXXAAXAXXXXXXXXX4XX . . R U ' . r . . . i . . i < i \F ... 2. .ROUE... 3. .RUNE...*..RUNC. .. 5. .HUNE . . . a . .RUNH . . . 7 . .°UHE . . . a . .a UNE .. . 9 . .RUNE .. . 0 . .RUNE . . . I . . * I J N C . . . / : . . * U W ; . . . 3 . RFS NO. 173388 UNIVERSITY OF » C COMPUTING CENTRE MT~S(UG036I 23:*3:02 FRI AUG 20/7t • •• SYSTEM SHUTTING DOWN AT 2*:00 - PLEASE 3E SIGNED OFF" *Sir,NON NUOE TM5 P«35 NN NNN NNNN NN UU NM UU NN UU NN U'J UU u u u u Ul) NN F'N NN NN - S U -NN NN UU NN NN UU ...NN . NN__UU.. NN MN UU NNI.'N UU NNN L'U UU UU UVJ UU UU ODDDDODDD mOOODDOOO 00 DO ao oa_ 00 OD 00 no 00 on FEEEEEEEEEFF EEEcEEEEEEEF EE FE OD DD 00 DO OD DD EE E E E E E E E E E E C C L E E E E E E E E E NN NN NN N L'lJUULU'JUUlIUU UUUL'UUUUUU liDDDDCOODO IJDDDODODD EEESEErEEEEE EEEEtfcfEEEEE • •LAST SIGNGM_wAS: 23 :20 :58 USF> "NLiC :" SI&NFP GN AT 2 3 : 4 0 : 0 3 ON FRI AUG 20/76 SHUN 'GPSSV P»F=SIi.E=C • « • G P S S V - M T S V E R S I O N • • • •«« irlM PROGRAM PROD'JCT 573*-XS2 1VIM3I «•• FOR UP-TO-OATH INFORMATION REGARL'lNi *JPSSV '»LIST NEUS:GPSSV« BLOCK •,U«.B£s «toc CPEFATIGN A.O.C.D.E.F.G.H.I COMMENTS STATEMENT NUM8LR SIMLLAJE SF.RRM FU*;CT?-!N e.M ,C25 C . -5/.1 l & C3 . - 4 / . 001 3 5.-3/. 011,21 , - 2 . 5/.022 75 ,-2 . O t 6 3 l . - 1 . 5 / . U 5 0 7 . - 1 . 2 / . l 5 < > u 6 , - l / . 2 U 3 6 , - . 8 / . 2 7 * 2 5 . - . 6 . 3 * * 5 3 . - . * / . * 3 07 4 , - . ? / . 5 . 0 / . 5 7 1 2 6 , . 2 / . 6 5 0 42, .4 " .72 57 5 . . 6/. Tit ! 4 . .1/.M*'.3*,l /. Sil-»9? , I . 2 / . 9 3 3 1 9 , 1 . 5 .9 7 7 2 5 . 2 / . 9 5 3 7o ,2 . j/ .")9dt5 ,3 / . ' ) < ' 9 9 r , ' . / l ,5 MFAD! FUf.fTU'-: S t t . U L . C 2 0  3 13 '11 12 13 13492,446/ ! 4 0 6 1 , 4 5 i / l ; . f c 4 - i , 4 5 6 / 1 5 2 5 5 , 4 A l / 1 3 ? 2 2,4o6 16524,4 71/17114,4 76/'. 7»73.-,nl/lcl535,4c)6/19314,4')l-?0C67.496/>C<i47,501/21655,5:ic./2249f..511/2»36 9.516 242 73.571/2 57^8, 52 ;/?7173. 5 3*,/28625.543/30349, 551 C.«AXI pUN'CTI'3N XH»CLF; ,C5 446,64/497.69/514.6 8/54 3.66/551,65  HEA!>2 Fl^.CTK.N 5S-IC4.C17 4048,450/4310.460/4580.470/5156,490/5470,500/5954,5:5/6 170,520 6555.5 3 3/4 965,54 0/742 2.550/7175,560/8202,567 /3580,5 75/8981, 583 9335.5<:0/9855,60C/13121 ,605 0»Ax: FUNCTION' X*$SIE2.C5 450, >3/ ;>90.55/533.58/577,60/605 .57  KATE? FVAFIA9LE (MHUXHfyMTH.ll'XHtYFlCP I /100000* V*«Cr E FOR? FVAF I ABLE "HlCXHtyOMM, 2 I «FN »S.\U?.M/10CO«*Hl ( XHtMC NT H,3 ) GEN 'FVAF I A3L E XWtL-; TGC«*9/1 000*203/lCOOC'XfllELE 2*1 CE.'iV fVAFlAtUc X«- Ei;.-iyr-t;LEl«<</13»12I)«2330fc/lG000/1300*12/10 ITONl" FVAF U3LE XH«;)nKMO/2330b«l0030«10CiO/l9/10-XHSELt U1211/13*1 TP.LE FVAf IA-LE XhKELES-XJiVtTOM NET FVAFIA3LE XF*HD.«.!:r-XHIRUPAO-XHUcNGY UNOEC FVAFIAtLE 134<)?-St..ILL TVE3 FVAMAELE S*W!LL-23349 fAHY VAFIA?LE MH1IXH»,'«V:TH.3»-I  FATIX FV A° 1 A*L t 121»XH»I'<':0t/:xHiLLEl',?/l0*121t OAY FVAFIAdLE XH»MFLf}P/?ril,XH.,>'.l3NTH.3> LCAO F V A M i t L E XiACTUL/"M! IXHVluNTH, 3 » NEED FVABIAHLE ^ H l l Xh iMilMrt, 41 •X4Y0MND/1003O "CO VARIABLE XHV10NTH-! THE1?'-' FVtFIA?LF (l-2)« (X>l«ELEl«-i.r>54-rH! 1 X*XXX.6))«130 1 BV»H.".HLE XHtHC\TH«r,E'10 TOTE FVAFIA3LE XhtYEN&Y»Xi«»H03.P»XH»Yt,FGY ALL FVAF ! A^L F XHt.Hl.lPAO*XHHENuY GCO!> FVAPIS3LE XhtlDMND-XHiMENGY FLOW! F VAP I At! LE I 2P545*FNSSNjR>'*i992) *365/1000 FLOW? FVApIV.LE I346S»5/10»47"6/1992«I XHSYFLOC-20545*365/10031 F10«3 VAOIAPLE 1505 FL0«4 F V A H A i L E V»>:L0«?*VlFL3K3»F.\tS.Ml*H FPAC1 FV AFI ABL S X HITFLCC"VM1(XHS11NTH,7)/1C3000*V»FRAC2 FPAC2 >V.*.S IA3LE MHHXHIM-NTH.ai-FNtSNCOI/lOOO'MHl tXH4M0NTH.3> »L'CH FVAF JA^LE <-«u;CA-lCl2l 5HQ3T FVAPIA*LE 4043-St"If.A 222 FVAFIASLE X »xrZ-P MU^AX 2 PEN FVAF IAELE Mf-lt XH*.'"CNTH, 91 »V*MUCH HIP FVAF I ABLE Mr-KXHtTjNTH, 131*V»MJCH INN FVAR I ABLE •'HI t XH «>»0':TM, 91-V* SHORT GOG FVAF IARLE Xr-.tMFLCC/MHU XH«MO'<TH, 31 TOTU TAfLE V*TCTE ,loOCJ,5C0.40 T.HF"L TAblE XHtaUR*.3,503,14 HYPRCJABLE XH»YNRGY,3000,500 , 28 "ONE TABLE ~xi-*YSITl t 5C3,503,10 SP1LS TABLE XHi^PVTH.0,1.V.14 EPL'TS TAPL C XH*.irNTH,C.l.W14 14 15 16 17 13 H 23 21 22 23 24 25 2b 27 23 2) 33 31 32 33 34 35 36 37 38 39 40 41 42 43 4 V 45 46 47 48 47 50 51 52 53 54 55 5b 57 58 59 63 61 62 63 64 o5 66 67 "IKEA • ATS BCTS TAELE XH1YEN1Y,0,503,13 TABLE Xn»MCNTr».0,l,W14 TABLE _ XHSICNTH.O.l, «14 MATRIX H.12,11 INITIAL HH1I 1.1),6477 /KH111.2),8038 /MHII1,31.31/MH1( 1,4) ,825 69 69 70 71 72 7) 119.46 • 4* ft* l O <M -4 -« CO IO «0 tr ^  O rg'-n iv o ,* «\) » r j o rg <»|rsj * — • -* * — I * M — CM — fM *J * -i> • o *\~o ft rM • f*l • g>| » J L x i i r • ff- .n • f i rg • O — in •** irt -Oft. D r « U ^  IM m 4 »N O o o O —« —) «-« «-> r» rg , > — * X -1 > a: c r i M - >* — -n'x • r> o ; i : r*> r T - V . >. -.i J J . C. >. ft.fJ m o ^ g * o m o ** .4 • •*• r-i —• rg • H M; ^  o < w ft r-« k f | « -1 • -* ». .-4 • .*>. ft -» r - » ^ - H « . ft-o r ~ X. r g S - i gft 'ir in in . ix. oo -g - * -«| j • 53 ru • » — o x >; - i o — v O ~ ~ i . -• — a- , — cr ft • .ti ~ -' v. m N . ' J O •" r. • . o M i • *r » j < ' — — x r <-* ft* r r >. x r- m . rg • rg •» rg —. «* , 4|4) er m r • ire -* ~4 r. v. y. v x *s «-* ,t »-O m N C f\| rf\ t7> ft. r~» Q. / M* *| M m n i >M — M »•*>•! O » ft* — .0 —(•* X gj 4) -« 4> r >. X a N . * . ; •* — (!>'(*« ( _ 4 f*. ~| O — l ~< ~ l » ^  O CT-r m x in •-. m .-• in ~* n. »H m —t m -^j^ , • rg rg n c ^ m m * -o M r - i X X X X I X X X X X X T x. X J" r r r; r x -•u «i <r ^  *x n Z JL Z Z Z Z ft- r- l ~ I - I 7* z -r 2 ; «n x. i * HJ t*» - * i r -; N r - •! • : Z 7 ' ' — -* — —:«M . -• T . * • ; T r ' . r v. >. : ' v m V ' I M M J , CT" uo o ft-- o i - t o gj f u^  T .v T X' *». —> 7 N . o m a- o — u -xi., CO | • • f »[ ft oc -j« x T. H I : J T N . r s fV -g ** O r-i • rg — ^ ~* ^ . i ^ - » X X X X X 4 < «J K - l •4" »-« 4" > ~: rg rg *». V *s. r*\ ft •o n p-i 4* nj ^ ::. »s "»•. r^ aj ni ~4 4-C IM rg I y* ^g _| •.*! rsj m-4 fM T X ro _ . ,N O -* -g if. < ft- ft* P4 ^-.1^* rsj m gr u> x i x i x x i x i x i -X X IT X I 7 >. S" >" >. T X" ft- K ft- ft- ft- ft-1 z z z z r^! z s. z z z r — —- — o sr mfr- g^ co • X I 1 X X X x: > x >. < < < < *u 7. Z Z Z Z Z X X x r o o o c O rg U U . • a u ft-O J B . o z z «* , < X X . U- 3 ^* u ^ 4 - D O * - * > - J ft-ft- O «n ifi" u, '.j rt T U J H I , * — If ft- - J x c II II a c. c z z ;y >: x - . > X O a » • • • * < —> 1 O -J U ft— —J — X — X 2 ft-K < ft- «4 I H < U ] .1 — jl w3 .« X O -J rJ ^ u. j I a J J. 4 I ui » uj u. > — > ft- K *- T u. at ft->• -I >• Jt - J x: _ J a ft- u a -1 Z < a. i it II II _ * i> « « I 6 tt I • • • • • « 1 3 % 1 3 5 1 3 6 1 3 7 1 1 0 1 3 9 * i * « * « « a « » « » » * f : » * » a a « a a a « « » » » « « » « » a » « » » » £ | _ E 2 « E L E V A T I O N H E A i ) A T M I C A t— *»»••»>«•«»*»•«*»*•»««•»*«*«••«••**«•«•« L r T C L ' = K O N T H L y R E L E A S E Q U A N T I T Y A T M I C A t . i . . « i t » « r . « « « i > i > i » « t . m w « « « » « | i > » t . » C ! W l O A I L Y R E L E A S E Q U A N T . . W I L L • • • • • • • • • • • * « « * w * « » * » » * « » « » * « « * » * » » » « > » * a £ L E S = U A I L Y k E L f c A S e Q U A N T I T Y R E O U I R E D » T U M E E T E N E K G Y L C A U C N W I L L I S T O N 5 • S I T E O N E 1 M D M N D - B U F 4 0 - M E N G V 1 l t O 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 * % »»0»*»m***mm**************mam*.*m*9ta>s*SVff-y.Aill't T h E P P A L C U T P U T « * « . « e « « M M « . « « « e » » « » « . » » » « « « « » » e « « « « » ! ) l j P J O = > ( i ) N T r l l Y T H E R M A L C U T P U T ~" " " • » « * . » « » » » « » « » « » « * » « « » » « * « « « « « ^ E N E R G Y O U T P U T A T M I C A • • • • • • • • • * » » * » » » « « « « » * » « « * * * * * * « » » * « « « « M i N G Y = M O N T H L Y E N E P 3 Y O U T P U T A T K I C A * * * « « f t e * « * * * * « « a * « a * a « e « * * « * * * » a a ^ a a a a a Q e ^ Q y = O A I L Y E N E R G Y P U T P u T A T M I C A -1 4 6 1 4 7 1 4 3 1 4 9 1 5 3 1 5 1 a a « « . . » » » a « . • • « « « • « « • « « « • • « • » • • » « • » • » < " • Y \ - < G Y * Y E A ^ I Y E N E R G Y C U T P U T F R O M ft W I L L I S T O . ' . A N O S I T E O N E * » * • » « » « • * « * » » • » • « » » • « * « • « * * « * * * » » E N E R G Y O U T P U T A T W I L L * I S I T E O N E « » » » « * » » » « * » * » » » * « * » * « « » » « » * » » * » » « * * » » * C V E N E R G Y O U T P U T F R O M • W I L L I S T O N A M D S I T E O N E 1 5 2 1 5 3 1 5 4 1 5 5 1 5 6 1 5 7 - - -» • « • « « * » * » « . * < • » » « « o t « « » « » « « « « « « m « « « « » v S I T t = Y E A - > L Y E N E R G Y O U T P U T A T S I T E • C N E - T H I S Q U A N T I T Y I S A P O R T I O N C F • Y N R G Y F O R B O T H H I L L t S I T E O N E ' • * • « * « » » * « « • • * * * * » * « • • « • » • • • * « • • » • » » « « > • « S I T E 1 = " 1 0 N T M L Y E N E K G Y O U T P U T A T S I T E O N E • # » « « « * * » « t » » « * » » « « * * * » * » e * « « * « * * « « « » « » a i , A S T E = M O . S P I L L O U A N T I T Y A T M I C A 1 s o -l i ? i . 6 0 1 6 1 1 6 2 1 6 3 — —• » * * » « « » » « « * « » « » * » * « * « « * « * » * * » « * « « « « « « » « T , A S T l = O A Y S S P I L L P r P M O . A T M I C A « « » » « « « « • » « * i n « • « • » • o « » o « • * « . s o • « « o « e « « T 1 = C 1 Y S B - O U T P E R M O . A T M I C A « » « « * « * » » * « » « * « * « * « » « * » » « * « « * « « « * « « « * « » S P I L 1 = D M L Y S P I L L Q U A N T I T Y A T W I L L » « • » « • « » » « • » • « « « • « « « « • « . o « « » » » « t o « « : « » * ^ s o I L 2 = 0 A Y S S P I L L P E R M O N T H A T W I L L » » « » * « * » * « « » « * » * « * * » » » » » * » * » * * « * * * * * * * « B O U T » O A Y S B - O U T P E R M O N T H A T M I L L • 1 6 4 1 6 5 1 6 6 1 5 7 1 6 3 1 6 9 ... . _ . * • « « « « • • * * * » • * « * • * * * • * • « * • T A B L E T O T A L M E A S U R E S T H E T O T A L A N N U A L E N E R G Y • a a a a . a a . a t . • . « • * • « « . . ! < « . . O F W I L L I S T O N £ S I T E O N E C O M B I N E D 1 7 J 1 7 1 1 7 2 1 7 3 1 7 4 1 7 5 — k . . a . * . « . « . « » * - » * « . . < . * . a » . ^ « T A B L E M I K E A M E A S U R E S A N N U A L E N E R G Y O U T P U T A T M I C A * » • « • > • . < • < • « > • ) « > • « • > • T A 3 L E , O N E M E A S U R E S A N N U A L E N E R G Y C U T P U T A T S I T E O N E • 1 7 b 1 7 7 1 7 8 1 7 3 1 8 0 1 8 1 - :. . — — ft » « . » • * * • * « • » « . * * • » » « * « « * • T A B L E S P I L S L I S T S , F O R E A C H M O N T H • • • » * « • « « * * » * * • » * • « « « • » « ( i = C C T , 1 2 « S E P I T H S N U M B E R O F C A Y S S P I L L H A S 1 3 2 1 8 3 1 8 4 » . . . . r e . . . . . . . a a a - > » « . a « . » a O C C U R E D A T W I L L I S T O N D U R I N G E N T I R E S I M U L A T I O N • • • * • « » « * « • • » • « » » » • * » « « « « « T A B L E S C U T S L I S T S T H E N U M B E R O F D A Y S B O T T O M E D O U T 1 8 5 1 S 6 1 8 7 • « * • « • • » « * » • * • * * • * * » « « * * « AT W I L L I S T O N • • • • • * » • « • « • « * « « • » « * • « « < = » • T A r l L E W A T S L I S T S T H E N U M B E R O F O A Y S - S P I L L H A S • « * « • * * * « * • * » * » * • • • « * « « * » * T A 3 L E B O T S L I S T S T H E N U M B E R L ' F D A Y S B O T T O M E O O U T 1 8 3 1 8 9 1 9 3 " 1 9 1 1 9 2 -1 9 3 -n 119.48 > O mp fm, OO O v j* r> ^ o <y,< o -o o r> o o o o -4 f\i fM I M 'M fM rg U J o 4 rt O I a < » |-# —t —* mm} mm mA KM fM M IN fM IM O » a » o • » * z • X U J a O • « « • mm « a. o ** » * - i _J * - i - J •> i. « * » « UJ # r- * < « Z *CK Ui « a Ui > X uu H < a * Z Z ui UJ « Ui UJ mJ t~ * « « • * a ia) il* n ^ N m l ^ J I o r - s o * l - J ^ o l f y ^ i M l l M N N r i l N f M l > l c i l f t l # > i f M « M j i M i M i \ l i \ | f M f \ l • o • Z • • O • u i » u i « z a i z UJ Ul z <x a < u « > r. < u> Ui U : J r-! J [O —I fM rt •*> Uf» rt rt rt rt f*i IfM fM *M fM «M < N O 9i f)> O —• •*> rt rt rt -# fM fM fM ""M «M fM • x x : ' C O ' > UJ . I UJ «J • x * : U> Ul I U UJ UJ 3 Z> Z> D i » J J J J J 4 4 4 4 O > > > > > U i UJ Ui Iu l b K > > > > > V I 4 4 4 4 4 u VI V> t/i VI H X T U. U I -*-*>> rt 4f 0% 4> Pm-J> * J ? *t t tM fM <M fM fM fM I U » O *4 M rt * »n «n «n A h i fM fM <M fM fM IM rt +T M» -0 M 2 < -O Ui ii T > I O • 1 r- u i 4 1.1 K J K JC U •* U. U J UL O </»<-« O - J v* O ZZ tf* «*j o ; ' ( > > on ?" x r » u.! • • * •» X x > • W U *•*• C J • • , 13 fM' ~1 O • 1 3 4 4 ' 2 U J ' -J M H u tv u. u. > aj —| > u.ly. O O J J » . X , u> U J Ui U J U J u.' 3 3 3 3 3 : ) -J mJ -J mJ .J mi •4 4 4 < 4 * l > > > > > > lly U : l l . I . > > > > > > 4 4 4 4 4 «J t/> %A %n %n *sA ro C* O : fM H *>4 •>« rsi' fM ru r U 4 4 UL. 4 I > > > u a . UJ ul K X U l > 4 4 UJ 4 ii U.| wi ifl r- u) u, — 1 X 4 — X • x —I f O •* • fM CD 4 Z ^ UJ Ui Ui O O X • o •I < «* (J f • - I ? > — mm r\i - J " » ( 3T U J *• z ; * J I l L i l1-: U J U J Z) => is LU tM *J IU mJ ,J - J O 4 . - J 4 « J > > > H- r- U. »- u. U-V> W > t/1 > > UJ UJ 4 Ul 4 I- K W d 4> «t>,r>- fj>! CM fM * V IM f»" J O f f rt 4* U N i*J U J I rt X •> •> 3. > C t»J »~ —« -x tr* >- rg •»•»«* o I I I C -K X v. *J% X — • • T T • x x X >- • • (J * * j ••• •* • f 4 U J 4 a x ' O. >• 3 U X U* mJ f-Z C 4 4 4 > -> _ » « r- av ^ y v» u> > x a :« /» t/> UJ 4 4 4 4 f - V) t*- H- f-« F» an O H f s 1 * * TABULATE NOPE T E P*INATE I I I TFST E M I K E A 0 3V1.1.WMV 254 255 256 \ i * 5 SAVEVALUE LETSO . V S P E N . H 257 46 LEAVE »!CA,V*M ' JCH 258 TRANSPEP. 259 r S O S SAVE VALUE L E TOO t MH1(XH IMONTH.101»H 263 49 TRAHSFE" .PING 261 50 W H Y SAVE VALUE LETGO.VtNIP.H 262 51 LEAVE MICA ,V$MUCH 263 52 TRANSFER .ocio 264 53 PPP SAVFV'.IUE XY/.XHtLETGG 265 54 SAVEVALUE wASTE*,Villi,H 266 - 55 SAVE V A L L ' E KAST1»,',H 267 56 SAVFVAL'IE LETGO .Fp. JCMAX2 .H 26* 5/ TRANSFER . 0 0 0 269 51 H H H SAVEVALUE BOTl»,l,H 2 73 59 SAVEVALUE LETGO.VtlNN.H 271 60 ENTER M I C A . V $SHORT 2 72 61 TRANSFER • .000 273 2/4 <r *«*«a**»«»*»***a«**«»***»***p£ACE R I V E R / G . M . S . G . S . / S I T E O N E SEGMENT*»«*•*•**** 275 * 2 75 tf GENERATE 1 .. ..1 277 53 SAVE VALUE MNRGY.OtH 273 64 SiVFVALUE SITEl.O.H 2 79 65 SAVVAIU? S°IL2,0.H 230 66 SAVEVALUE SP1L1.0.H 281 67 SAVEVALUE POTOM.O 282 69 SAVE VALUE BCUT.O.H 233 69 TEST E XhtMONTH,l.NNN 28* 70 SAVEVALUE YNRGY.0,H 235 7* SAVEVAL'n" YSITl.O.H 286 72 " S A V S V A L L E * HU»R .O.H 23/ 283 239 73 SAV? VALUE Y G M N I : . 2 6 0 0 0 2*3 291 • 292 7 4 ~ MNN SAVE VALUE " MCMNH.V.NEED.H 293 75 "... SiVFVALUE EIE1.FN*HEAC1,H 294 76 S A V ? VALUE XXX.Vl^CO 2*5 77 SAVE V A I UE ELE3.135 2*6 78 TEST L X H *ME MG V , Xt) H O iNO, LQri 297 79 T E S T GE X i X X X . l . T O O 293 80 F F F SAVEVALUE TL'AC,VtTHE°1.H 299 81 T E S T GE XHtOtcAO.O.SiE 303 82 T F S T IE X H V i U c AD. MHL ( XH IMONTHt 5 ) . N U T 331 Hi . . J J J SAVEVALUE =.FO,V«ALL 332 84 T E S T LE x»REO,XH»yDiND,raN 333 85 U S A SAVf VALUE ACTUL.ViNET 334 86 CAN SAVtVlLLE DPM.ML .V1LCA0.H 305 87 SAVEVALUE 9L'»R*.XHSSU?AD,M 306 88 SAVEVALUE s6lHS.V»SCt.r:.H 30/ 89 SAVEVALUE M F L 3 P . V « » 4 T ; « , H 303 90 SAVEVALUE n F L O P . V t O A Y , * 339 91 AGAIN SAVEVALUE »E"L.X*»PELiS 313 92 E N T E R WILL.XHSORLUiP 311 91 L E A V E i . I L L,X\PEAL 312 94 T E S T LE S « H I L ! . 3 C 3 4 9 . S S S . 313 31* 3 IS 316 317 318 319 320 321 322 323 324 325 ^ 2 6 327 328 32) 330 332 333 334 335 336 337 338 339 5*3 " 3*1 3*2 3*3_ "T** 3*5 3*6 "3*7 3*8 3*9 35J 351 352 3a3 35* 355 357 358 35» 360 361 T 6 T " «>5 TEST G= S1WILL.13*92,UUU 96 TTT TEST LE X WEAL ,FN»0"A XI ,E X IT e>7 BACH SAVEVALUE CNFCV, V10EP. IV ,H 98 " SAVEVALUE SCNE ,V*RAT13,H 99 SAVEVALUE M.NRGY».XMSD'iSGV,H 1JQ ?AViVALUE gjri.FNtMEAOl.H  U l 102 133 13* 135 136. SAVEVALUE SITE!*,XritSO'iE,H ASSIGN l « . l TEST G c "l,1M1{XH»M0NTH,3»,AGAIN SAVEVAILE VSIT:*,XH*S1TE1.H SAVEVALUE Vf.'OGV*,XH*MM*GY,H TABULATE BOUTS,XMtHGUT  137 108 139 110 111 I I ? Ill TABULATE TEST NE J E S T E PRINT TABULATE TABU ATE SPILS.XHISPIL2 XMtYEAP,10.YVY XH1MCNTH,12,'»YE ..XH.A THRML HYORO 113 11* 116 117 UR BYE 119 120 121 12» 123 12* t o w TABULATE TAPLLATE TERMINATE pa INT TRAf.SPEP SAVEVALUE ONE ' TOTAL 0 ,,XH,A .III ACTUL.O U U U TRANSFER SAVE VALUE ENTER SAVEVALUE SAVEVALUE TRANSFER .CAN 3CT3M.VJUNDER MILL.X»BOTO* P C U T » . l , H REAL .VtTRUE .TTT  125 126 127 128 129 130 SSS EXIT SAVE VALUE LEAVE SAVEVALUE TRAf.SFfP SAVEVALUE T1A?;Sr'R SPIL1,V*OVE«.H UILL.XHSSPIL1 SPI L 2 * . l . H .TTT RE*L.FN»0*AXI . BACK 131 TOO SiVFV/LUE XXX.X2 132 TRANSFER .FFF 133 SEE SAVFVALUE HU=AO.O.H 134 " T»A'SFER " . J J J 135 NOT SAV'VUU? RIJRAC'.MH1IXH»X0NTH,5J,H 1^6 T^ANS"" . J J J  137 138 T39 1*0 TCN SAVEVU'JE TRANSFER GENERATE TERMINATE STAtT  END dL'OAC.VtGCCD. H .CAN 180 1 1 139 GENERATE 180 1*0 TERMINATE 1 START 1 • HALFWORD SAVEVALUES NUMBER - CGNTENTS NUMHER E L E l 544 ELE2 REl?S 29 MDMNO YENOV 71t3 BUFR CONTENTS NUMBER 605 MONTH 21*5 BuRAD 1552 YNRGY CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS 12 YFLOP 1*2*7 LETGO 26 200 MENGV 870 ONRGY 37 17337 YFLOC 7310 MFCOC 79* NUMBER - CONTENTS OOM.ND 35 •4FLJP 80* YSITl 3295 YEAR SONE OFLOC 26 OENGY 29 MNFGY 1110 S I T E l 210 JFL'JM 26 MALFwORO SAVEVALUES NUMBER - CCNTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CUNlEiTS ELEl 536 ELE2 605 MONTH 12 YFLUP 13369 LETGO 22 ODMND 32 RELES 27 MOMNO 21*5 BURAO 413 MENGY 750 DNSGV 3* MFLOP 1104 YENGY 3023 HU=R 3660 YNRGY 1*3*6 "YFLOC 6676 MFLOC 68 7 YSITl 2717 YEAR 2 OFLOC 22 OENGY 25 MNKGY 1020 SITE 1 180 OFLoP 36 SCNE 6 •«*»**«************ * HALFWORD SAVEVALUES • • * *****V*** ****** **V******~******V«**V***** NUMBER -E l E I CCNTENTS 526 NUMBER ELE2 - CONTENTS 605 NUMBER -MONTH CONTENTS 12 NUMBER YFLOP - CONTENTS 10670 NUMBER LETGO - CONTENTS 19 NUMBER -OD.MND CONTENTS 40 RELES - 3* MOMNO 21*5 bUkAD 413 K N G Y 513 ONRGY 42 IF LOP 833 YENGY 6554 BUPR 5120 YNRGY 1*378 YFl IJC 6273 MFLOC 583 YSITl 27 9 5 YEAR 3 OFLOC 19 OENGY 21 MNFGY 1260 SITE 1 2*0 OFLOP 27 SONE 8 • f i a a * * * i t * * « t t l t * « * s » i * M « t * * * * * * * * * * * * * • • • HALFwCRO SAVEVALUES • N U M B E R -! E l E l | R E L E S V F N G V I Y E A R C C N T F N T S 5 4 1 2 0 8 6 7 4 4 N U M B E R E L E 2 M D M N U B U R R D F L O C - C O N T E N T S 6 0 5 2 1 4 5 5 5 1 3 3 0 N U M O F R - C O N T E N T S N U ) B E R - C O N T F N T S N U M B E R M O N T H 1 2 V F I L P 1 1 6 6 7 L F T G O B U F A D 4 1 3 M E N G Y 4 9 0 O N R G Y Y N R G Y . 1 1 8 9 2 Y F L I X 6 4 . 1 9 M F L O C O E N G Y 3 3 » N P G V 7 5 0 S I T E l - C O N T E N T S 3 0 2 5 9 1 8 1 2 0 N O M b E R -U C M N D M F L u P Y S I T l O F L l i P C O N T E N T S 2 4 9 9 0 2 2 0 3 3 3 4 f S O N ' E 4 1 ..... • * * * * : • « • • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * m • * H A L F W O R D S A V E V A L U E S * » • « « * * * • * * * • • * • * • » * • * * * • * « * * * • • • * * * * * * * * • • N U M B E R - C C N T F N T S N U M P E R - C O N T E N T S N U M B E R - C O N T E N T S N U M B E R - C O N T E N T S N U M B E R - C O N T E N T S N U M B E R - C O N T E N T S E L E l R E L E S Y E N G Y Y E A R S C N E 5 4 3 2 2 8 9 7 4 5 5 E L E 2 M O M N D B U R R O F L O C 6 0 5 2 1 4 5 4 6 2 0 2 7 M O N T H 1 2 Y F L O P 1 2 9 9 7 L E T G O H U R A O 4 1 3 M E N G Y 9 0 0 O N R G Y Y N R G Y 1 2 4 5 4 Y F L O C 7 7 5 5 M F L O C D E N G V 3 0 M N F G Y 8 4 0 S I T E l 2 7 2 8 8 1 0 1 5 0 O C M N O M F L U P Y S I T l D F L U P 2 7 1 1 4 2 2 3 3 4 3 8 - — « * * • * • * * * « * * » * * * • • * • » » * « * * * * » • * « * * * * • » > « • • H A L F t a C R D S A V E V A L U E S • * « a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * N U M B E R -E L E l ? E L F S C C N T E N T S 5 4 5 3 4 N U M B E R F L E 2 M D M N D - C O N T E N T S 6 0 5 2 1 4 5 N U M B E R - C O N T E N T S N U M B E R - C O N T E N T S N U M B E R M O N T H 1 2 Y F L O P 1 2 2 1 9 L E T G O B U R A O 2 0 0 M E N G Y 6 9 0 O N R G Y - C O N T E N T S 2 1 4 3 N U M B E R -O G M N O M F L U P C O N T E N T S 4 1 9 2 0 Y E N G Y Y E A R S O N E 9 4 2 7 6 R B U R R D F L O C 3 3 4 8 2 1 Y N R G Y 1 3 4 2 2 Y F L O C 8 9 2 5 M F L 3 C O E N G Y 2 3 M N F G Y 1 2 9 0 S I T E l 6 3 1 2 4 0 Y S I T l O P I J P 2 5 2 2 3 0 •*•**««*****•A********,***************** • * • H A I F K O R C S A V E V A L U E S • • • - * « « « * * * * * * * * * * * * * * * * * * * « « * • * * « • * * * * * * * * * N U M B E R -E I E 1 C C N T E N T S 5 4 5 N U M B E R E L E 2 - C O N T E N T S 6 0 5 N U M B E R - C O N T E N T S N U M B E R - C C N T E N T S N U M B E R M O N T H 1 2 V F L C P 1 3 5 8 9 L E T G O - C O N T E N T S 2 3 N U M B E R -O 0 H . N O C O N T E N T S 3 5 R E L E S Y E N G Y Y E A R 2 9 7 7 4 2 7 MCMND B U R R D F L O C 2 1 4 5 3 0 3 4 2 3 U U R A O 3 0 C M E N G Y 7 8 0 O N R G Y V N V . G V 1 5 2 7 1 Y F L O C 7 3 8 7 M F L O C P E N G V 2 6 M N K G Y 1 1 1 0 S I T E l 3 7 7 1 5 2 1 0 M F L O P Y S I T l O F L U P 9 1 6 2 9 6 0 3 0 S O N E 7 • « * « « * * • & « • * « * « « « • * * * * » * * * * « * * * * * * • • * * * * * > • H A I F W D R C ' S A V E V A L U E S • • f ELEl 542 ELF2 605 MONTH 12 VFLUP • 12256 LETGO 15 OGHMO *0 < RELES 33 MOMNO 21*5 BUR AO * I 3 MENGY 510 ONRGY * I MFLQP 951 YENGY 6917 BURC 2052 YNRGY 17035 YFLCC 7371 MFLOC *70 YSITl 3209 YEAR 8 OFLOC 15 OENGY 17 MNKGY 1230 S I T E l 2*0 •FLOP 31 SONE 8 «•••*«****«••**»****••«*•**••••»»*«••••* * HALFkORC SAVEVALUES * NUMBER - CCNTENTS NUMBER -ELEl 5*5 ELE2 RELES ** MPMNO YENGY 8006 BU?R YEAR 9 OFLOC SONE 10 CONTENTS NUMBER - CONTENTS 605 MONTH 12 21*5 BIJRAO 10 C_ 3373 YN°GY 1*652 12 DENGY I * NUMBER - CONTENTS NUM3ER -YFLUP 1590* LETGO _MENGY *20 DNRGY Y K OC TiTl MFLOC MNFGY 1650 S I T E l CONTENTS NUMDER- CONTENTS 12 OCMNO 5* 55 MFLQP 1101 363 YSITl 276T 300 OF LOP 36 NUMBER - CONTFNTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS _ - E L ! l _ RELES YENGY YFAP 5** ELE2 37 MOMNO 527 BUPR 10 OFLOC 605 MONTH 21*5" 6URAD 200 YNRGY 15 CENGV 1 20C 1*57 17 YFLOP MENGY" YFLCC MNFGY 15085 LETGO 527 ONRGY 6062 MFL3C 1*57 SITE 1 15 OOMNO 47 " MFLUP *69 YSITl 279 OFLUP *3 1099 279 35 • * « * * * * » * * * * « * * A « « * « t t « * « NLM3E? - CCKTENTS N"M?ER - CONTENTS NUMBE•» - CONTENTS ELEl 5*2 rLE 2 598 MONTH 2 . RELES 36 MOMNO 21<»5 BURAC 20C YENGY 1127 eUPR *00 YNRGY 2807 YEAR " 10 OFLOC 6 OENGY 20 SONE 8 NUFBER - CONTENTS NUM3 ER - CONTENTS .<U.<3ER - CONTENTS YFlOt> " T50B5 C£TG"C Tel OuMNO ?* MENGY 600 ONRGY *5 MFLQP 568 YFLCC 80o2 MFL3C 185 YSITl 519 MNFGY 1350 SITE 1 ~ 2*0 . OF LOP 18 • HALFHORC SAVfcVALUES NUMBER ELEl RELES BUOR - CCNTENTS 31 • 40? NUHBER ELE2 MDMNO VN»GY - CONTENTS 5B3 2145 4016 NU"BER - CONTFNTS NUKBER - CONTENTS NUMBER -MONTH 3 YFLUP 15065 LETGO MFNGY 939 ONRGY 39 MFLOP YFLOC B062 MFIGC 154 Y S I T l CONT fcNTS 28 615 736 NUH3ER -OU.MNO YE .NOV YEAR CONTENTS 38 2066 10 OFLCC 4 D^NGV 30 MNRGY 1209 SIT E l 217 OFLOP 19 so;.E 7 8**0***»******* ******************* ****** • e • HALFwORC SAVEVALUES • * * • -a * * * * * * * * * * * * * * * * * • * * • • • • • * * « * « • * * * * * * * • • -• NUMRER ELE l RELES BURR OFIOC - CCNTEMS 537 31 400 4 NUH3FR ELE2 MDMNO VMGY OENGY - CONTENTS 567 2145 5225 30 NI'"BEF - CONTENTS NUMBER - CONTENTS NUMBER -MONTH 4 YFLUP 15085 LFTGO MENGY 951 DNr GY 39 MFLOP YFLOC 8062 MFLUC 138 Y S I T l MNOGY 1209 SIT E l 217 OFLOP CONTENTS 29 334 953 13 NL.ioe* -DOMNO YE .NG Y YEA* SU.NE CONTENTS 38 3017 13 7 • — - -- -« * * « * * * « * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * • • • HALFtriORO SAVEVALUES * • * - - — ' • * • • * • * * « * * * •***•***••* *********** ****** NUMBER - CCNTENTS El E l 574 NUMPER ELF? CONTENTS 552 RELES 38 MOMNO Bl»R 400 YNRGY OFLOC _ 4 CfNGY 21.45 6541 29 NUMBER - CONTENTS MONTH 5_ KENGY 837 YFLOC 8062 MNRGY 1316 NUMBER _YFIUP ONFGY MFLCC SITEl CONTENTS 1508 5 4 7 119 252 NUM.3 ER - CONTENTS LETGO 29 MFLCP Y S I T l OFLOP NUMBER - CdNTcNTS OmNP 46 412 1205 14 YfcNOY YEAR SONc 3d 54 10 9 *****•«*«*****«***«*«««****«*«(* ********* • « 6 HALFnORL SAVEVALUES * • • • ********* ********* <** ******************** JUMPER - CCNTFNTS NUMBER - CONTENTS NUMBER - CONTfcNTS NUMBER - CONTENTS NUMBER - CONTENTS NU-MatR - CONTENTS EIE1 527 ELF? 544 MONTH 6 YFIUP 15085 LETGO 15 OiUNO 54 RELES 45 MO»NO 2145 MCSGY 465 CNKGY 55 MFLOP 155 YENGY 4319 a..co i n n m r . v O U T V F i n r fifl<»? M f l . V 117 Y S I T l 1546 YEAR 10 OFLOC CFNGY 15 MNRGY 1714 SITE1 3*1 DFLOP SONE 11 • • s * * * * * * * * * * * * * * * * * * * * * * # * * * * a 9 * * * * * * * * • HALFWU*D SAVEVALUES • a • • A * * * * * * * * * * * * * * * * * * V * * * * * * * * * * » * * * * * « • • NUMBER ELEl RFLE$ YENGY YEAR SCNE CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS 52* ELE2 5*2 MONTH 7 YFLOP 15085 LETGO 15 ODMNO 53 ** MOMNO 21*5 BL'RAO 100 MENGY *50 DNPGY 5* MFLuP 800 *769 BUFR 500 YNRGY 987 7 YFLOC 8062 MFLOC 373 YSITl 1857 IC CFLOC 12 DENGV 15 MNRGY 1620 SITE1 311 OF LOP 26 •* * *««* * *«* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * • • HALFtiORD SAVEVALUES « •*****«*««•**«*****»**************«**•*« NUMBER E'-El CONTENTS NUMBER 530 ELE2 CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS 559 MONTH 8 YFLOP 1508 5 RFLES 8URR OFLOC *9 MUMNO 500 YNRGY 3* OENGY 21*5 MENGY 1173 7 YFLOC 11 FNRGY 321 8062 186C CNF.GY MFLOC S l f E l 60 1380 372 NUMBER LETGO CONTENTS 10 NUMBER - CONTESTS oc mo 59 MFLOP VSIT1 OFLOP 2568 2229 82 YE.MUY YEAA SONE 50 90 10 12 VD ******************** *»«****•*«*•*•****** • • • HALFwORO SAVE VALUES * _N UMBER EL E l RELES TFNGY CCNTENTS HUlbfcR - CONTENTS NUMflEP - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NU13ER - CONTENTS 5*5 ELF 2 •7 MOMNO 5*20 P.UPR YEAR SONF 10 11 OFLOC 583 MONTH 21*5 BUR AD 600 YNP.CY *9 OENGY 9 YFLOP IOC MENGY 13*90 VFt.CC TI M NkC V 15385 LETGO 330 ONRGY 8062 MFLUC — I T 5 3 SITE1 10 OD.iNO 59 MFLOP 1*87 YSIT1 330 OFLOP 57 *66S 2559 155 «c«n*«*«*«****************************** f NUMBER - CONTENTS NUMBER - CONTENTS NU'tBES - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS 1 E l E l 550 ELE2 605 M1NTH IC YFIOP 15085 LETGO 57 OUMND 39 "FLES 32 MPMNO 21*5 MENGY 91 8 DNF GY * l MFLOP 19*0 YENGY 63 38 1 BL'RR 600 YNRGY 1*753 YE LOC 8062 MF'.CC 20** YSIT1 2799 MAST E 88 i MAST1 11 YEAR 10 OFLOC 65 CENoY 63 MNRGY 1263 S I T c l 2*0 1 DEI OP 62 SONE 8 c \ **************************************** • « e HALFWORC SAVEVALUES • *************** **************** ********* NUMBER - CONTENTS E l E l 551 NUHRER FLF2 CONTENTS 605 RELES BURP OF IOC OFLOP 23 MCMN9 600 YNRGY 37 DENGY 33 SONE 21*5 15667 * l 5 M'MBER MONTH MENGY YFLOC MNRGY CONTENTS NUMBER - CONTENTS NUMBER 11 VFLUP L5.0 ^ L? LETGO 12/1 LNFGV 3 0" HFLOP B062 MFLOC 1176 YSIT1 91* SITE1 155 SPIL2 CONTENTS 37 NUMJER ObttNO CUNTcNTS 28 1035 YENGY 295* YEAR 16 SPIL1 76 09 10 10 ******************a«******************** • * » HALFUORO SAVEVALUES • • • **************************************** NUMBER - CONTENTS NUH3ER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS NUMBER - CONTENTS FLE1 550 ELE2 605 MONTH 12 YFLOP 15335 LETGO 21 OOMND *S RELES 39 MOMNO 21*5 MENGY 690 CNF GY *9 MFLOP 990 VfcNGV S2 99 BL'RS 600 YNRGY 17138 YFLOC 806 2 MFIOC 630 YSIT1 322* YEAR 10 OFLOC 21 I'ENGY 23 MNRGY 1*71 SITE1 270 OFLOP 33 SONE 9 HAlr>WO°0 S AVE VALUES NUMBER - CCNTENTS NUMBER - CONTENTS NUMBER - CONTENTS NLKoER - CONTENTS NCMBE* - CONTENTS NCticR - CJNieiTS E L E l 553 ELE2 60S MONTH 12 YFLOP 1508 5 LETGO 21 OUMNO * G R t l E S 39 MOMNO 21*5 MENGY 690 LNKGY *9 MFLOP 990 YENGY 82 99 BU«R 6C0 VNRGY 17138 VFLOC 8062 MFLOC 630 YSIT1 322* YEAR 13 OFLOC 21 OENGY 23 MNRGY 1*71 S1TEI 270 OFLOP 33 SONE 9 ****** ********************************** « • • HALFbORO SAVEVALUES • 1 1 9 . 5 7 n Z Ul O X «--3 - J Z - I m ta Cf fM ta >» ar uj '.S < z 7- UJ O JU >- Vi-ta AJ ta m .r d |cv ta a rj ta o *A O 0 * 4 O ta t'.-t m ta ^ *M( rsj z a « ' UJ 3 . CO ZJ X. -J r> u. Z >-i5 8 U J I J I ta ta z u. i u I. o 1/1 /MIO ta ta ta tai^ ;A ta < Z O t a * Z a ot u. I > o >-x >-:o o o X z!z - J at O Olui U. 7 Z XIX >• Z un -0 r> 4- ru IM ta ta O > > z o o r a ' z c z u. i_ > O 8 3 2 ujj ul ot O ar c «/) 4 OB rg I - * N I M '/I N >0 N ft- »M IM Z O U J O Ok a i/» m*4 f* m 4* •"*'l*> z o +i m. Z a r\) f j rv» \J H M li> 9 N Z O l f M I U> I > U — x H a oiu, X Z Z J r-;) 3 u. a. I— z X x i v * v» u> ui m »- o m z « ~«o U J CM f-I of bi N ra u e u: r ol x _ i r - i | Z X > W O N * K m PI *M| z iO K Ul Ul C X -J -J u l ; oj iu r -4 *0 *M co mi 0 0.-4 0, -J ~» . J Id u. ^  u> n > o I 1-3 »*- f*i O •# IM a > o >- Ofi .J OJ <: v. M 1 © »«•» «r «-t CD a a o o X - i Z -J d. D'x ui u. Z Z|J- X >- X r\| "1 *T »-t .-4 r> ~ 4> .Q, U J ' X O > > os:*- «t a J x l z Q . K 2 D:C D z uv Z!X c3 J*> 3 ?> U> CO (Q t- -it r* tM rg N Q S U u. .1 u. O -J X 3 -* UJ O CD U. E O <o o in m c •-*»/»> Ot UJ u. U J c < z • i ^ id LU C UJ Ul Ui>- VI </» -O 4» *fi 2 ni n a to z o T. < J 3 Q U. z i r ta ta * ,z z o 0 3 1 ) 0 X ta cr J IU i f Z - J o i / l IA o ta ru r i z * -UJ IA o UJ O . > s o u IA O B ui • I JL ta Z ! - J ut J U . t a . X Z z >• JJ. I)» ». 1 Jrw ta Irt IN n r -z u u i l O > > > to ta < ,o o r r a a z 3 o o l z UJ Z X .T>!»- O 1/1 4> IA ta 0* * r m ta U. fM C a: u. .'. T -I > J l i i C Z X i/l IM an 'ta * on ot O u. O 3 - J 1^  u. O iC3 UJ U Ik. ta ta 13 UJ U' > Ut UJ O «l Z ! Z Ul O i • HALFWCRD SAVE VALUES • a • « « « , • « » • » » « • » > • < « » • » • • • • < • • < » * » • * " » • • NUK9ER - C C M F M S ELE l RELFS YENGY YEA" SCNE 536 36 6313 15 F'UMHER ELE2 MO*NO BU«R PFLOC CONTENTS 594 2145 3542 18 NUMPER MONTH 8URA0 YNRCY OENGY CONTENTS 12 412 16147 11 NUMBER YFLOP MENGY YFLOC MNRGY CONTENTS 11816 330 6101 1410 NUMBER LETGO ONRGY MFLCJC S I T E l CONTENTS 10 47 542 270 NUMBER O0M.4O MFLOP YSITl DFLOP CONTENTS 46 6e7 3C52 22 H vo CO RELATIVE CLOCK BLOCK COUNTS BLCCK CUPPENT 1 o 2 0 L _ 2 TGTA 10 0 BLOCK CURRENT 51 0 52 0 13- 0_ 180 ABSCLUTE CLOCK BLOCK CUPPE^T 11 0 12 0 13 0 14 15 16 17 18 19 20 0 0 0 0 0 0 0 5* 55 57 58 59 TCTAL 0 0 B6_ 86 86 86 86 0 O BLOCK CURRENT 61 3 62 3 63 3 64 65 66 67 68 69 60 3 BLCCK CURRENT 101 0 102 0 103 0 TOTAL 5475 5475 5475 70 3 BLOCK CUPRE'JT U l 3 112 0 113 0 104 105 J 0 6 1C7 1C8 109 110 130 130 180 iao 180 130 15 114 115 116 117 118 119 TOTAL 180 180 _ 1 B 0_ "iao 160 180 180 15 15 15 TOTAL 0 183 180 180 180 180 180 180 180_ 15 TOTAL 15 15 15_ 15 180 12 12 0 0 180 BLOCK CURRENT 21 0 22 0 23 0 _ 24 0 25 0 26 0 27 ii 23 0 29 0 30 SLOCK CURRENT 71 72 _73 74 75 76 77 78 79 "80" BLOCK CU^ENT 121 L' 122 0 123 0_ 120 124 125 126 127 128 _129_ 130 0 c 0 0 0 0 TOTAL 15 15 18 0_ 180 180 5475 1380 54 75 5475 BLOCK CURRENT 31 0 32 0 33 0 " 3 4 u 35 0 36 0 37 0 38 0 39 0 TOTAL 4C37 5.75 54 75 5.75 54 75 5475 5.75 133 180 BLOCK CURRENT 41 0 42 0 43 0 44 45 46 47 43 49 5475 TOTAL 15 IS 15 15 180 180 1B0 180 J B O 180" TOTAL 0 0 0 40 0 BLOCK CURRENT 81 0 82 0 83 0 0 0 0 0 0 0 34 85 86 87 86 89_ 90 0 37 37 37 37 0 BLOCK CURRENT 131 3 132 0 133 0__ 134 0 135 0 136 0 137 0 138 0 139 0 1 SO TOTAL 180 131 lbO 50 0 B L O C K C U R R E N T 91 0 92 0 93 u 180 179 180 180 180 183 94 95 96 9/ 98 99 130 TOTAL 15 15 49 100 BLOCK CURRENT 49 62 62 1 1 1 TOTAL 133 15 Ia3 Hi 733 733 733 4095 4095 TOT AL 5475 5475 5475 5475 5439 5»75 5W5 5475 54 75 54 75 TOTAL 140 * STORAGES STORAGE _>ILL PICA CAPACITY 40C00 123CC AVERAGE CONTENTS 26799.937 8431.082 T N T R T E T " 215423 118719 AVERAGE TIME/UNIT 72.393 12.783 -AVERAGE UTILIZATION DURING-— T J T A T SVATTT ONSVAT l'. CUR RENT TI ME TIME TIME STATUS . 669 .702 AVAILABILITY 100.0 100.0 C J r l k t . « I CG:.TcNTS 2731o 959 2 MAXIMO* CO.. TENTS 30333 10211 • • • TABLES • • * TAeiS TOTAL ENTRIES IN TABLE .. 15 UPPFR H « I T MF AN ARGUMENT 26C50.000 16 0T3 165C0 17J00 I 7500 18000 l e s r o CBSFRVEO FR CQ'J£NCV 190CO 195C0 z c o c o 20500 210C0 21*00 PER CENT OF TOTAL .00 .00 .30 .00 .00 . .00 22f 00 22500 23000 2 35C0 24CC3 2*500 25000 25*00 26000 26 5 CO 0 0 c 15 .30 .30 .03 .00 .00 .00 . 00 .00 .00 .00 .00 .00 REMAINING FREQUENCIES ARE ALL ZERO .30 .03 .00 103.00 TABLE THRVL ENTRIES IN TABLE 15 UPPER MEAN ARGUMENT 28 59. 73 3 LIMIT 0 _ 50C 1030 1500 2000 2500 3 0 0 .3500 4000 4590 5000 __SR?LR-Y5_D_ F R E ' J i I F N C Y 1 1 1 0 1 PER OF _CFNT TOTAL 6.66 6.66 6.66 .00 6.66 5510 I 5000 I -RJ- M*jNXNG^FRtOUENCIES ARE ALL 2ER0_ 13. 33 .30 19.99 13.33 6.66 6. 66 6. 66 6.66 TABLE H Y C R P ENTRIES IN T/BLF • MEAN ARGUMENT-15 15529.863 G9SERVED FPEOUENCY 0 PER CENT OF TOTAL .00 STANOARO DEVIATION SU> OF ARGUMENTS -1 45.375 390750.003 NON-wEIOHTEC • CUMULATIV E CUMULATIVE MULTIPLE OEVIATION PFRCENTAG t REMAINDft) •F MEAN F^OM MEAN . > 100.c .614 -221.437 — < .< > 100.0 .633 -210.468 .( > 100.c .652 -199. 44} .1 > i o o . a .671 -188.429 .1 > 130.0 .690 -177.413 .( > 100.0 .710 -166.391 .1 > 100.0 .729 -155.371 • C > 100.0 .748 -144.352 .1 ) 100.0 .767 -133.333 • C 100.0 .786 -122.314 — . c 100.0 .806 - l l l . 2 9 t .c 100.0 .825 -100.5 75 .( 130.3 .844 -89.255 .0 100.0 .863 -78.235 .0 100.0 .882 -67.21/ .0 103.0 .902 -56.198 • G 100.0 .921 -45.179 .0 100.0 .940 -34.159 • C 100.0 .959 -23.14J .0 100.0 .978 -12.121 .0 100.0 .998 -1.101 100.0 .3 1.017 9.917 STANDARD DEVIATION SUM OF ARGUMENTS 1732.000 42896.000 NON-HE IGrtTED — - CUMULATIVE CUMULATIV= MULTIPLE OEVIATION PERCENTAGE REMAINDER OF MEAN FROM MEAN 6.6 93.3 -.000 -1.6S1 13. 3 86.6 .174 -1.362 19.9 80.0 .349 -1.073 — • - . - _ 19.9 80.0 .524 -.785 26.6 73.3 .699 -.494 39.9 60.0 .874 -.207 39.9 60.0 1.049 .083 59.9 40.0 1.223 • 369 73.3 26.6 1.398 .658 — • - — 79.9 20.0 1.573 .947 86.6 13.3 1.748 1.235 93 • 3 6.6 1.923 1.524 100.0 STANDARD DOU .0 1 AT mm CI I M 2.098 1.813 J r ARGUMENTS 1957.000 232948.003 NON-HE IiHTED CUMULATIVE CUMULATI VE MULTIPLE OEVIATION — . . PERCENTAGE REMAINDER OF MEAN F30M NEA1 .0 100.0 .515 -3.847 8500 o c o o 9500 1"300 10501 115C0 120C0 12E00 13000 135GO 1*000 14500 15000 15500 16000 16SC0 1 7 3 Q 175f 0 18000 .??iyiNI\Q FRFCUENCIFS ARE ALL ZERO .00 .00 .00 .00 .00 .00 .00 6.66 6. 66 .30 6.66 ._00 13.33 6.66 6.66 6.66 6.66 . 00_ 19.99 19.99 -IAfit£_ _£N = ENTRIES IN TAP.L F 15 MEAN ARGUMENT 2938.266 UPPER LIMIT SPO 10CO 1500 2000 2SC0 3C00 3500 CPSEFVEC FREOUENCr 0 PER CENT OF TOTAL .00 REMAINING FRECUENCIES ARE ALL ZERO .00 .00 .00 13.33 39.99 46.66 MBLE SPILS ENTRIES IN TAELE MEAN ARGUMENT UJ_Q 6.500  37 11.000 y o p f s OPSEPVEC °ER CENT LIMIT FREOJENCT DF ,TOTAL 0 0 .00 1 0 .00 2 3 .00" 3 0 .00 - 4 ^ 0 _ .00 5 0 " .00 6 • 0 .00 7 o ^00^ 8 0 .00 9 0 .00 10 0 .00 11 37 100.00 REMAINING FRECUENCIES ARE ALL ZERO .0 100.0 .547 -3.592 -> .0 100.0 .579 -3.336 .0 100.0 .611 -3.031 .0 100.0 .643 -2.325 — . .0 100.3 .676 - 2 . 3 / 0 .0 100.0 .708 -2.314 .0 100.0 .740 -2.039 < 6.6 93.3 .772 -1.303 )3.3 86.6 • C04 -1.548 13.3 86.6 .837 -1.292 19.9 80.0 .869 -1.037 19.9 80.0 .901 -.781 33.3 66.6 .933 -.525 39.9 60.0 .965 -.270 46.6 53.3 .998 -.315 53.3 46.6 1.030 .243 59.9 40.0 1.062 .495 59.9 40.0 1.394 .751 79.9 20.0 "1.126 1.036 100.0 .0 1.159 1.262 STANDARD CEVIATI ON 38 2.000 CUMULATIVE PERCENTAGE .0 .0 .0 .0 13.3 53.3 1C0.0 CUMULATIVE REMAINDER i p o . o _ _ 100.0 100.0 100.0 86.6 46.6 .0 ~'~SVM OF ARGUMENT'S-44074.000 MULTIPLE OF MEAN .170 NON-WEIGHTED DEVIATION) FKOM MEAN -6.382 .340 .510 .680 .850 1.021 1.191 -5.073 -3.7o5 -2.456 -1.147 .161 1.473 r— 1 h-1 LO STANOARD DEVI AT ION SUM OF ARCUMENTS 3.46 C 1170 . 0 3 3 NON-rtcIGHTEO . 3 0 G 407.COO • cIGiiTtu CUMULATIVE CUMULATIVE MULTIPLE DEVIATION PERCENTAGE REMAINDER OF MEAN FRUN MEA* ' " "~ .0 100.0 -.000 -1.878 .0 X — 100.0 .153 -1.589 .0 100.0 .307 - 1 . 3 0 J .0 100.0 .461 -1.011 .0 100.0 .615 -.722 .0 100.0 .769 -.433 .0 100.0 .923 -.144 .0 100.0 1.076 .14* • 0 100.0 1.230 .433 .0 100.0 1.384 .722 .0 100.0 1.538 ' 1.011 100.0 .0 1.692 "1.300 ~ ~ ENTRIES IN TABLE MEAN ARGUMENT STANOARO OEVIATION SUM OF ARGUMENTS 180 6.530 3.46 0 1170.000 NON-WEIGHTED i 0 -.300 .000 .000 WEIGHTED REMAINING FREQUENCIES ARE ALL 2ERC < r— TABLE MIKEA ENTRIES IN TABLE MEAN ARGUMENT STANOARD OEVIATION SUM OF ARGUMENTS 15 7660. 398 1035.300 114906.000 NON-WEIGHTED UPPFR OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION LIMIT FREOUENCV OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 0 .00 . 0 100 . 0 -.000 -7.401 5C0 0 .00 . 0 100.0 .065 -6.913 1000 0 .00 . 0 100.0 .130 -6.435 1500 0 .00 .0 100.0 .195 -5.952 2300 0 .00 .0 100.0 .261 -5.468 2500 0 .00 .0 100.0 .326 -4.985 3CL0 0 .00 .0 100.0 .391 -4.502 350G 0 .00 .0 100.0 .456 -4.019 4oro 0 .00 .0 100.0 .522 -3.536 45C0 0 .00 .0 100.0 .587 -3.0i3 5000 0 .00 .0 100.0 .652 -2.570 5500 0 .00 .0 100.0 .717 -2.087 6-JCO 0 .00 .0 100.0 .783 -1.604 6530 3 19.99 19.9 80.0 .848 -1.121 7CC0 " 2 13.33 33.3 66.6 .913 -.6 33 7500 1 6.66 39.9 60.0 .979 -.154 8 )00 1 6.66 46.6 53.3 1.044 .328 OVERFLOW 8 53.33 100.0 .0 AVERAGE VALUE CF OVERFLOW 8469.25 TABLE .ATS ENTRIES |M TAELE MEAN ARGUMENT STANOARO DEVIATION SUM OF ARGUMENTS 180 6.500 3.46 0 1170.000 NON-WEIGHTED 86 10.000 .000 860.000 ME1GHTE0 UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE 0EVIATI3M LIMIT FREOUENCV OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN 0 0 .00 .0 100.0 -.000 -1.878 1 0 .00 . 0 100.0 .153 -1.589 2 0 .00 . 0 100 . 0 .307 -1.300 3 0 .00 . 0 100.0 .461 -1.011 4 0 .00 .0 100.0 .615 -.722 5 0 .00 . 0 100 . 0 .769 -.433 6 0 .00 . 0 100.0 .923 -.144 7 c .00 .0 100.0 1.076 .144 8 0 .00 . 0 10G.0 1.230 .433 9 0 .00 .0 100 . 0 i.3b4 .111 IC 86 100.00 100 . 0 . 0 1.538 1.011 REMAINING FRECJEI^CIES AR<= ALL 7ER0 TABLE BQTS ENTRIES IN TAELE MEAN ARGUMENT STANOARO OEVIATION SUM OF ARGUMENTS 180 6.5C0 3.46 0 1170.000 NON-wEIGHTEO C -.000 .000 .000 ME1GHTE0 REMAINING F^EOUCff ;FS ARE ALL ZERO E N O «••*• TOTAL RUN TIHF (INCLUDING ASSENBIVI • .23 MINUTES *•••• EXECUTION TERMINATED tSIGNCFF «3 L^ . -120-GLOSSARY OF TERMS Capabi l i ty : maximum average energy output from an energy producing system for a given period of time. c f s . : cubic feet per second. A measure of volume rate of flow, cfs days: cubic feet per second days. A measure of volume. Demand: the rate at which e l e c t r i c energy i s de-l i vered to the system over a spec i f ied period of time. Drawdown: the distance that the water surface of a • reservoir i s lowered as the resu l t of w i th-drawal of water. Elevation head: a measure of the depth of water used to characterize i t s potential energy. Energy: The doing of work. E l e c t r i c energy is usually measured in ki lowatt-hours. Integrated system: that portion of the B. C. Hydro energy system which can be operated on a coor-dinated basis. kwh: an abbreviation for 1000 watt-hours, a unit of energy. Live storage: that volume of water usable by the gener-. at ing s t a t i on , usual ly defined between upper and lower elevation heads. -121-GLOSSARY OF TERMS Regulated stream flow: the control led discharge resu l t ing from reservoir operation. Seasonal storage: storage held over from the annual high water season to the fol lowing low water season. S p i l l : water that i s not used to advantage in reservoir operation; can occur dur-ing release or overflow conditions. Storage plant: a hydro-e lectr ic plant having a large reservoir . Stream flow: the quantity of water passing a given point in a stream or r i ve r in a given period of.t ime, usually expressed in cubic feet per second. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0093955/manifest

Comment

Related Items