Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Ecosystem units, their classification, interpretation and mapping in the University of British Columbia… Klinka, Karel 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1976_A1 K59.pdf [ 73.59MB ]
Metadata
JSON: 831-1.0093887.json
JSON-LD: 831-1.0093887-ld.json
RDF/XML (Pretty): 831-1.0093887-rdf.xml
RDF/JSON: 831-1.0093887-rdf.json
Turtle: 831-1.0093887-turtle.txt
N-Triples: 831-1.0093887-rdf-ntriples.txt
Original Record: 831-1.0093887-source.json
Full Text
831-1.0093887-fulltext.txt
Citation
831-1.0093887.ris

Full Text

ECOSYSTEM UNITS, THEIR CLASSIFICATION, INTERPRETATION AND MAPPING IN THE UNIVERSITY OF BRITISH COLUMBIA RESEARCH FOREST by KAREL KLINKA Forest Engineer, Czechoslovak Technical Un ivers i t y , Prague, 1960 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Forestry We accept th is thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1976 0 Karel Klinka In presenting th i s thesis in pa r t i a l f u l f i l l m e n t of the requirements for an advanced degree at the Univers ity of B r i t i s h Columbia, I agree that the L ibrary shal l make i t f ree l y ava i lab le f o r reference and study. I further agree that permission for extensive copying of th i s thesis fo r scholar ly purposes may be granted by the Head of my Department or by his representatives. I t i s understood that pub l i ca t ion , in part or in whole, or the copying of t h i s thes is for f i nanc i a l gain sha l l not be allowed without my wr i t ten permission. KAREL KLINKA Department of Forestry The Univers i ty of B r i t i s h Columbia, Vancouver V6T 1W5, Canada Date H I iq-76  i i ABSTRACT A synecological study was conducted at the Univers i ty of B r i t i s h Columbia Research Forest , Haney, B r i t i s h Columbia. The object ives of the" study were to c l a s s i f y and map fores t ecosystems occurr ing in the area and to provide in terpreta t ions as to t he i r use fo r land and s i 1v i -cu l tu ra l management. One hundred and f i f t y eight sample p lo ts were es tab l i shed , each p lo t representing a sample of an ecosystem indiv idual—biogeocoenosis. Following an analys is of the vegetation and i t s environment by the phytosoci 'ological techniques of the Zur ich-Montpe l l ie r School as appl ied by K ra j i na , and the associated s o i l s , a synthesis of s im i l a r p lots in to abstract uni ts was car r ied out. The ecosystems were c l a s s i f i e d accord-ing to the system of synecological c l a s s i f i c a t i o n developed by Kraj ina and his students. Biogeocl imat ic and synsystematic uni ts were f l o r i s -t i c a l l y and environmentally described emphasizing environmental factors and processes which control t he i r d i s t r i bu t i on and development. Lower synsystematic units were grouped to form management uni ts for which r e l a t i v e l y uniform management procedures and techniques could be proposed. By analyzing the propert ies of vegetation and s o i l s , s u i t a b i l i t y of ecosystems for wood production was assessed along with suggested s i l v i c u l t u r a l systems for th i r teen management un i t s . The c l a s s i f i c a t i o n was v e r i f i e d by invest igat ions to substan-t i a te ecologica l s ign i f i cance of the d i f f e ren t ia ted un i t s . These involved chemical analys is of seepage water, fo l iage samples of under-story vegetat ion, and humus layers in the Coastal western hemlock biogeocl imat ic zone. Chemical concentrations in fo l iage of understory vegetation increased progressively along moisture and nutr ient gradients. Charac te r i s t i c species for the Pseudotsugetal ia menziesi i had the lowest concentrat ions, those f o r the Tsugetal ia heterophyllae had the intermediate concentrations and f i n a l l y those for the Thu je ta l ia p l ica tae had the highest concentrations of meta l l i c elements and ni t rogen. The cha rac te r i s t i c species fo r the ecosystem uni ts appear to have a high ind ica t i ve value in assessing the i r edatopes. Chemical concentrations in seepage water were found to vary with the season, forest stand type (based on age) and biogeocoenotic un i t s . Seepage water, supplying the ecosystems with addi t ional moisture and nut r ien ts , a f fects s o i l development through increased decomposition and minera l iza t ion of organic matter. These habitats consequently support very productive ecosystems of the Thu je ta l ia p l i ca tae . Thus, seepage water can be considered as a part of the ecosystem which counteracts leaching. The resu l ts of these analyses supported the appl ied methods of synecological c l a s s i f i c a t i o n . The d is t inguished ecosystem uni ts can be further character ized by s p e c i f i c indices of propert ies which were not used in the o r ig ina l c l a s s i f i c a t i o n procedure. i v On the b a s i s o f these s y n e c o l o g i c a l s t u d i e s a s y n e c o l o g i c a l a\ ' b/Oot map o f the 5,151 ha UBC Research Fo res t a t the s c a l e 1:12,000 was ^ / prepared by a combinat ion o f ground survey and a e r i a l photograph ic i n t e r p r e t a t i o n . Ecosystem type was employed as a mapping u n i t . The mapping u n i t s were des igna ted by s e l e c t e d c o l o r s and numer ica l symbols. In c o n c l u s i o n , i t became apparent t ha t the c l a s s i f i c a t i o n o f ecosystems i n t o the system o f s y n e c o l o g i c a l c l a s s i f i c a t i o n , us ing the desc r i bed methods, can p rov ide not on l y a b e t t e r unders tand ing o f f o r e s t ecosystems but a l s o a b a s i s on which to d i f f e r e n t i a t e manage-ment p r a c t i c e s . V TABLE OF CONTENTS Chapter Page 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1 2. THE APPROACH AND CONCEPT . . . . . . . . . . . . . . . . 4 3. METHODS OF ECOSYSTEM ANALYSIS AND SYNTHESIS . . . . . . . 10 Sample P lo t . . . . '.. . . . . . . . . . . . . . . . . 11 Methods of Vegetation Analys is . . . . . . . . . . . 13 Methods of So i l Analys is . . . . . . . . . . . . . . 16 Methods of Sampling and Chemical Analys is of Seepage Water . . . . . . . . . . . 22 Methods of Ecosystem Synthesis . . . . . . . . . . . 26 4. THE DESCRIPTION OF THE STUDY AREA . . . . . . . . . . . 31 The Area of Study 31 Climate 33 Geology 35 Pleistocene Events . 36 Physiography 39 Parent Mater ia ls . . . . 41 History of the Area 50 5. THE SYSTEM OF SYNECOLOGICAL CLASSIFICATION . . 55 6. ECOSYSTEM UNITS - THEIR CLASSIFICATION, DESCRIPTION AND INTERPRETATION . . . . . . . . . . . . 70 Biogeocl imat ic Units . . . . . . . . . . 70 C l a s s i f i c a t i o n of Synsystematic Units . . . . . . . . 88 Synsystematic Units above the Level of a Plant Assoc iat ion (Order, A l l i ance ) . 101 vi Chapter Page Synsystematic Units At-and-Below the Level of a Plant Associat ion . . . . . . . . 109 Xer ic Habitats . . . . . . . . . . . . . . . . . . 109 Amphimesic Habitats . . . . . . . . . . . . . . . 129 Hygric Habitats 149 Subhydric Habitats . . . . . . . . . 206 Forest Product iv i ty . . . . . - . 2 1 6 Compositional and Age Var ia t ions of B i o -geocoenotic Units . . . . . . . . 225 7. SOME ASPECTS OF THE CHEMICAL COMPOSITION OF UNDER-STORY VEGETATION 239 General Evaluation .... . . . . . . 242 Differences in the Chemical Composition between Charac te r i s t i c Species for the Synsystematic Orders . . 244 Ecological Evaluation of the Differences in the Chemical Composition . . . . . . . . . . . . . . . . . 249 8. SEEPAGE (GROUND) WATER IN SOILS OF FOREST ECO-SYSTEMS 255 Seepage Water Chemistry . . . . . . . . . 257 Ef fec t of Seepage Water on Vegetation . . . . . . . . 272 E f fec t of Seepage Water on S o i l s . . . . . 276 Numerical C l a s s i f i c a t i o n of Seepage Water Samples 284 Forest Management Interpretat ion . 291 . 9. SYNECOLOGICAL MAP 294 Ecosystem Type as a Mapping Unit 296 Synecological Mapping . . . . . . . 302 Synecological Map . . . . . . . . . . . . . . . . . . 306 vii Chapter Page > 10. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . ' . . . ' . 310 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . 320 APPENDICES (see Volume II) . 342 v i i i LIST OF TABLES Tab le Page 1. R e l a t i o n s h i p s Between Sampl ing U n i t s , Na tu ra l Bod ies and B a s i c Taxa i n the S o i l , Vege ta t i on and S y n e c o l o g i c a l c l a s s i f i c a t i o n 8 2 . Some P r o p e r t i e s o f Paren t M a t e r i a l s i n the UBC Research F o r e s t 42 3 . The S t r u c t u r e o f the S y n e c o l o g i c a l C l a s s i f i c a t i o n . . ' 5 8 4 . P l a n t A s s o c i a t i o n and I t s Ecosystem Types . . . . . . . . 65 5 . Zonal and Subzonal C h a r a c t e r i s t i c Combinat ions o f Spec ies . . . . . . . . . . . . . . . .. .. . . . . . . . . 72 6 . Some Chemical P r o p e r t i e s o f the Modal S o i l s o f Mes ic Ecosystems i n the CWHa and CWHb Subzones . . . . . . . . . 82 7. Some P r o p e r t i e s o f Humic F r a c t i o n s i n S o i l Organ ic Layers o f the Mes ic Ecosystems 84 8 . Synops is o f Synsys temat ic Un i t s . . . . . . . . 89 9. C h a r a c t e r i s t i c Combinat ions of Spec ies f o r the Synsys temat ic Un i t s . . . 93 10 . B iogeocoeno t i c and Management Un i t s i n the UBC Research F o r e s t . . . . 96 1 1 . Compos i t iona l V a r i a t i o n s o f the F o r e s t Cover . Abb rev i a t ed Env i ronment -Vegeta t ion Tab le f o r the RUBUS - POLYSTICHUM - WRC = . . . . . . . . . . . . . . . . 2 2 7 1 2 . Compos i t iona l V a r i a t i o n s o f the F o r e s t Cove r . Abbrev ia ted Env i ronment -Vegeta t ion Tab le f o r the Moss - 1'JH . . . . . . . . . . . . . . . . . . . . . . . . 230 13 . Age V a r i a t i o n s o f the F o r e s t Cover . Abb rev ia ted Env i ronment -Vegeta t ion Tab le f o r the BLECHNUM -, AF - WH . . . . . . . . . . . 233 i x Table Page 14. Age Var iat ions of the Forest Cover. Abbreviated Environment-Vegetation Table for the Vaccinium -Lysichitum - WRC 236 15. Elemental Analys is of Fol iage and Decayed Wood of Common Plant Species in the CWH zone . . . 243 16. Summary of Seepage Water Analys is . . . . . . 259 17. Elemental Analysis of So i l Organic Layers from Mesic, Subhygric and Hygric Ecosystems . . . . . . . . . 275 18. Ratios of Chemical Propert ies in a So i l Horizon Immediately Above One Affected by Seepage Water to Those in the Horizon Affected by the Water . . . . . . . 282 19. I den t i f i ca t i on and C l a s s i f i c a t i o n of Seepage Water Samples - - Seasons . . . . . . . . . 286 20. I den t i f i ca t i on and C l a s s i f i c a t i o n of Seepage Water Samples - - Forest Stand Types . . . . . . . . . . . . . 288 21. I den t i f i ca t i on and C l a s s i f i c a t i o n of Seepage Water Samples - - Plant Associat ions in the CWHa . . . . . . . 289 22. I den t i f i ca t i on and C l a s s i f i c a t i o n of Seepage Water Samples - - P l a n t Associat ions in the CWHb . 290 23. Complete Iden t i f i ca t i on Legend for Ecosystem Types and Their Mapping Units 298 24. Abbreviated Iden t i f i ca t ion Legend for the Synecolog-i ca l Map 308 X LIST OF FIGURES Figure Page 1. The topographic map of the study area 32 2. C l imat ic data for the southern part of the UBC Research Forest . . . . 34 3. Exposed loose t i l l over compacted t i l l . 43 4. Skeleta l col luvium 43 5. Del ta ic g l a c i o f l u v i a l deposits 45 6. Glaciomarine deposits 47 7. A g lac io lacus t r i ne terrace . . . ... . . . . . . . . . . 47 8. The present fo res t cover of the UBC Research Forest on a high a l t i t ude ae r ia l photograph (1:120,000) . . . . 52 9. A plant corrmunity of the GAULTHERIA - WH - DF assoc ia t ion 66 10. Loamy sand L i t h i c Mini Humo-Ferric Podzol 66 11. Sandy loam L i t h i c Podzol 67 12. L i t h i c Fo l i so l . . . . . . . . . 67 13. Var ia t ions of the fo res t cover w i th in the l i m i t s of the basic ecosystem uni t . . . . . 69 74. Relat ionship between potent ia l evapotranspirat ion and p rec ip i ta t i on . 76 15. Snow damage in a young immature Douglas- f i r stand in the montane CWHb subzone . 80 16. Snow damage in a mature second growth stand of Douglas- f i r in the montane CWHb subzone . . . . . . . . . 80 17. A representat ive so i l of mesic ecosystems in the CWHa subzone . 83 Figure Page 18. A representat ive s o i l of mesic ecosystems in the CWHb subzone 83 19. The sample p lo t no. 142 of the (LICHEN) -GAULTHERIA - DF . . . . . . . . . . . . . . 113 20. The sample p lo t no. 103 of the LICHEN - GAULTHERIA -LP - DF ... . . . . . ... 113 21. Natural regeneration of western hemlock fo l lowing windthrow at l i t h i c habitats of the VACCINIUM -GAULTHERIA - DF - WH . . . . . . . . . . . • 118 22. E f fec t of escaped slash f i r e on the s o i l and re-generation potent ia l at l i t h i c habi tats of the VACCINIUM - GAULTHERIA - DF - WH . . . . . . . . . . . . . . 118 23. The sample p lo t no. 007 of. the Gaulther ia - WH - DF in a f u l l y stocked second growth stand . . . . . . . . . . 122 24. The sample p lo t no. 083 of the Gaul ther ia - WH - DF in a poorly stocked second growth stand . . 122 25. The sample p lo t no. 063 of the VACCINIUM - GAULTHERIA -DF - WH in an old growth stand . . 127 26. Very slow recovery of ear ly xerosere stages fo l lowing s lash f i r e s a t the complex of xer ic and l i t h i c habitats of the VACCINIUM - GAULTHERIA - DF - WH . . . . . . . . . 127 27. The sample p lo t no. 002 of the Moss - WH in a second growth stand of western hemlock 134 28. Mahonia nervosa i s rare or absent on submesic habi tats on slopes in the montane CWHb subzone . . . . . . . . . . . 134 29. The sample p lo t no. 064 of the VACCINIUM - MOSS - WH in an o ld growth stand 140 30. Windthrow in an old growth stand at l i t h i c habi tats of the VACCINIUM - MOSS -WH . . . . . . 140 31. The sample p lo t no. 001 of the MOSS - (POLYSTICHUM) -WRC - WH in a f u l l y stocked second growth stand . . " . . . 146 32. The sample p lo t no. 028 of the MOSS - (POLYSTICHUM) -WRC - WH in a poorly stocked second growth stand . . . . 146 x i i Figure Page 33. A quar tzd ior i te rock fragment removed about 100 metres downslope from i t s o r i g ina l pos i t ion . . . . 152 34. The o r i g i na l pos i t ion of the rock fragment on a c l i f f . . 152 35. The sample p lo t no. 070 of the RIBES - VM in ear ly summer 1972 . . . . . . . . . . . . 154 36. The sample p lo t no. 132 of the P0LYP0DIUM - GAULTHERIA -DF - WRC in an immature stand 157 37. Very slow recovery a f te r the f i r e in 1931 on the complex of temporari ly subhygric and l i t h i c habi tats 157 38. Development of Ah horizon and moder humus as a resu l t of pedoturbation on a slope (the sample p lo t no. 003). .. 160 39. The view of the ground surface in the P0LYP0DIUM -POLYSTICHUM - DF - WRC (the sample p lo t no. 119) . . . . 165 40. The sample p lot no. 006 of the P0LYP0DIUM - POLY-STICHUM - DF - WRC in an open second growth stand . . . 165 41. The sample p lot no. 157 of the ADIANTUM - POLYSTICHUM -WRC in a mixed second growth stand 169 42. The sample p lo t no. 098 of the TIARELLA - POLYSTICHUM -WRC in a highly productive second growth stand of Douglas- f i r 177 43. The sample p lo t no. 066 of the RUBUS - POLYSTICHUM -WRC in a second growth stand of black cottonwood and red alder 177 44. The sample p lo t no. 095 of the BLECHNUM - AF - WH in an o ld growth stand 188 45. The sample p lo t no. 062 of the BLECHNUM - AF - WH in an old growth stand . 190 46. A second growth stand of amabil is f i r and western red cedar, of the BLECHNUM - STREPTOPUS - AF -WH 190 47. The sample p lo t no. 061 of the BLECHNUM - WH - WRC in an old growth stand 191 x i i i Figure Page 48. Ter r i c Humisol with a layer of vo lcanic ash in the depth from 50 to 60 cm (the sample p lo t no. 061) . . . . . 191 49. Exposed compacted t i l l ind icates slope i n s t a b i l i t y (the sample p lo t no. 045). , . . . . . . . . . . . . . . . 197 50. The sample p lo t no. 045 of the Ribes - Oplopanax -WRC along the creek and adjacent slopes . 197 51 . . The sample p lo t no. 138 of the ATHYRIUM -ARUNCUS -. RA - SA along the banks of the Raven Creek . . . . . . . . 203 52. The sample p lo t no. 137 of the ATHYRIUM - ARUNCUS -RA - SA along the banks of the North Alouette R iver . . . . 203 53. A rare ly occurr ing var ia t ion of the LYSICHITUM -WESTERN REDCEDAR a l l i a n c e : the CAREX (LEPTALEA) -LYSICHITUM - WRC 209 54. The sample p lo t no. 106 of the Vaccinium - Lysichi tum -WRC in a second growth stand of western redcedar . . . . 209 55. The sample p lo t no. 141 of the Vaccinium - Lysichitum -YC - WRC in an o ld growth stand . 213 56. Natural regeneration of western redcedar establ ished a f te r the harvesting in 1930 at subhydric habi tats of the Vaccinium - Lysichitum - WRC 213 57. Product iv i ty and density of fo res t stands of the eco-systems in the CWHa subzone . . . . . . . . . . . . . . . 218 58. Product iv i ty and density of fo res t stands of the eco-systems in the CWHb subzone 219 59. Discriminant analys is - - the p lo t of the f i r s t canon-i c a l var iab le against the second . . . . . . . . . . . . . 250 60. . E l e c t r i c a l conduct iv i ty and pH of seepage water co l lec ted in d i f fe ren t forest stand types (CWHa, TIARELLA - POLYSTICHUM - WRC, spr ing sampling) . . . . . . 262 61. S u r f i c i a l root system of Si tka wi l low over bedrock and compacted t i l l under the inf luence of in termi t tent water flow . . 265 62. S u r f i c i a l root system of Doug las- f i r on rock c l i f f under the inf luence of in termi t tent water flow . . . . . . 265 xiv Figure Page 63. Electrical conductivity and pH of seepage water collected in different forest ecosystems (CWHa, mature forest stand types, summer sampling) . ... . . . . . 267 64. Electrical conductivity and pH of seepage water collected in different forest ecosystems (CWHb, mature forest stand types, summer sampling) . . . . . 267 65. Calcium plus magnesium concentrations of seepage water collected in different forest ecosystems ; (CWHa, mature forest stand types, summer sampling) . . . . . . . . . . . . . . . . . . . 268 66. A soil profile of the Ribes - Oplopanax - WRC .. . . . . . 279 67. A soil profile illustrating the ratio calculation . . . . 280 68. A reproduction of a part of the synecological map 307 XV , ACKNOWLEDGEMENTS Foremost, I wish to express my deepest grat itude to Dr. V .J . Krajina for his guidance, help and encouragement given generously throughout th i s study. I should l i k e to thank the members of my Graduate Committee, Dr. P.G. Haddock, Dr. D.S. Lacate, Dr. J.P. Kimmins and Mr. J . Walters, Department of Forestry, and Dr. L.M. Lavkul ich, Department of So i l Science, who gave much advice, further guidance and valuable c r i t i c i s m of the manuscript. Thanks are extended to Dr. L.M. Lavkulich and Dr. L.E. Lowe, Department of So i l Science, for the help and advice concerning s o i l s and organic matter and the i r analys i s ; to Dr. A. Kozak and Mrs. L. Kerr, Faculty of Forestry, fo r support and assistance in data processing; to Mr. J . Walters for providing f i e l d f a c i l i t i e s ; to Dr. W.B. Schof ield and Mr. G.F. Otto, who ass isted in i d e n t i f i c a t i o n of bryophytes and l i chens ; and to the Department of Botany for providing study f a c i l i t i e s . I am grateful to my colleagues in graduate studies for assistance and many useful discussions. The help of my ass i stants given in the f i e l d , espec ia l l y that of Mr. M. Malecek i n f i e l d mapping, and laboratory analyses i s great ly appreciated. xvi L a s t l y , I would l i k e to thank my family for help, encourage-ment and pat ience. F inancia l support fo r the study was provided as fo l lows : Scholarships to the author by the Univers i ty of B r i t i s h Columbia (1971-1973) and by the National Research Council of Canada (1973-1974); by the National Research Council Grant No. A-92, awarded to V . J . Kraj ina (1972-1975); by the Faculty of Forestry (1971); and by the B r i t i s h Columbia Forest Serv ice , Research D iv is ion (1973). This support i s g ra te fu l l y acknowledged. 1 CHAPTER 1 INTRODUCTION Despite the growing understanding and desi re fo r a greater input of ecologica l information in forest management and operat ions, a complete system of ecosystem eva luat ion , which includes c l a s s i f i c a t i o n , in terpre ta t ion and mapping of fo res t ecosystems has not yet been appl ied on large areas. Therefore, an attempt has been made in th is study to demonstrate such a system for the area of the Univers i ty of B r i t i s h Columbia Research Forest, near Haney, B r i t i s h Columbia. I n i t i a l in teres t was st imulated by synecological mapping. Although the area was the subject of several major studies ( G r i f f i t h , 1960; Keser, 1960; Lesko, 1961; O r l o c i , 1961, 1964, 1965; E i s , 1962a, 1962b; Lacate, 1965; and o thers) , i t was found that the ava i lab le information was incomplete. Therefore, addi t ional sampling, pr imar i ly of s o i l s , was car r ied out in order to describe ecosystems by both the i r vegetation and s o i l components. The object ive of the synecological work car r ied out in th is study was to f i l l in the data gaps in the c l a s s i f i c a t i o n of ecosystems in the UBC Research Forest which was i n i t i a t e d by Lesko (1961) and Or loc i (1961, 1964), to develop in terpre ta t ions of ecosystems fo r management purposes, and to provide a synecological map of the Forest. 2 The research program star ted in the summer of 1971 and con-tinued through 1972, 1973 and 1974. The program was supervised mainly by Dr. V . J . K ra j i na , Department of Botany and Dr. D.S. Lacate, now with the Department of Environment of Canada. Ecolog ica l information fo r the Coastal western hemlock b iogeocl imat ic zone already ava i lab le from the work of Kraj ina (1959, 1965a, 1969), Wade (1965), Kojima (1971), Cordes (1972) and the authors mentioned above made i t poss ib le to concentrate research e f fo r ts on other aspects of synecological s tud ies . The program was conducted along the fo l lowing stages: c o l l e c t i o n of data, analys is of da ta , synthesis of data ( c l a s s i f i c a t i o n ) , v e r i f i c a t i o n of the c l a s s i f i c a t i o n , in terpre ta t ions and mapping. For the purpose of v e r i f i c a t i o n , several ecosystem parameters that had not been necessary fo r the o r ig ina l c l a s s i f i c a t i o n procedure were selected fo r a comparative ana lys i s . I t was assumed that these parameters would be d i f fe ren t among d i f fe ren t ecosystematic u n i t s , though at various in tegrat ion and genera l izat ion l e v e l s . Methods of synecological c l a s s i f i c a t i o n developed by Kraj ina and h is students were adopted and fur ther re f ined . Comparative ana lys is of observations as wel l as measured propert ies of fo res t ecosystems and t h e i r a t t r ibu tes were used as a major working t o o l . In th i s way co r re la t i ve re la t ions among various ecosystems and the i r components could be establ ished and working hypotheses could be b u i l t . Some conclusions are supported by s t a t i s t i c a l eva luat ion. However, the others require e i ther more sampling or confirmation by other experimental methods. 3 A potent ia l of numerical evaluation of a l l co l lected data has not been f u l l y u t i l i z e d . Such evaluation would exceed the scope of the study. I t i s hoped that future research opportunit ies of the author or those interested in the study w i l l make th i s poss ible. A l l important o r i g i na l data are provided in appended summaries for the UBC Research Forest and for those who may wish to use the data f o r s t a t i s t i c a l evaluation and comparative analys is with the i r own mater ia l . 4 CHAPTER 2 APPROACH AND CONCEPT The purpose of a c l a s s i f i c a t i o n i s to arrange the objects in such an order that ideas accompany or succeed one another in a way that gives us the greatest possible command of our knowledge and leads most d i r e c t l y to the acqu is i t i on of more knowledge. (So i l Survey S ta f f , 1960). A taxonomic c l a s s i f i c a t i o n of ecosystems i s then an arrangement of ecosystems based on the i r natural i d e n t i f i a b l e charac-t e r i s t i c s with the object ive to show the re la t ionsh ips in the greatest number and most important proper t ies . Comprehensive discussions and reviews of various approaches to c l a s s i f i c a t i o n problems have been given by Braun-Blanquet (1921, 1928, 1932, 1951, 1964), Kraj ina (1933, 1960a, 1960b, 1965b, 1972), Tansley (1935), Sukachev (1944, 1945, 1960), Major (1951, 1958, 1969), Rowe (1960a, 1960b, 1961a, 1961b, 1962), Poore (1955, 1956, 1962), Sukachev and D y l l i s (1964), Waring and Major (1964), Daubenmire (1952, 1967), Ivimey-Cook and Proctor (1966), Shimwell (1973) and others. S im i l a r l y the author has drawn on discussions and reviews of approaches and concepts to the s o i l c l a s s i f i c a t i o n given by Cl ine (1949, 1961, 1963), So i l Survey S ta f f (1960), Muir (1962), Johnson (1963), Kellogg (1963), Knox (1965), Simonson (1968) and others. 5 Tansley (1935) proposed the term ecosystem, which has been widely accepted. Ecosystems may be of various kinds and s i z e s ; they are open systems wi th an interchange of matter and energy not only between organisms but a lso between organisms and the inorganic part of the system. The ecosystem i s well understood as the basic funct ional uni t i n ecology inc luding both organisms and t he i r ab io t i c environment each in f luencing the other. These d e f i n i t i o n s , however, are too broad and the ecosystem lacks a d e f i n i t i v e l e v e l . Such broad concepts may lead to inconsis tenc ies when def in ing an ecosystem as the object of study or del ineat ing one fo r p rac t i ca l purposes. Further-more, not a l l ecological studies e x p l i c i t l y define the pa r t i cu la r ecosystems under inves t iga t ions . For these reasons an attempt was made to define c r i t e r i a fo r the smallest body that can be s t i l l ca l l ed an ecosystem. The need fo r a c l e a r l y defined unit has been recognized^namely^by plant eco log i s t s , geographers and s o i l s c i e n t i s t s . The concept of an ecosystem ind iv idua l must be c l e a r l y out l ined before forest ecosystems can be c l a s s i f i e d because d i f fe ren t concepts would lead to d i f fe ren t c l a s s i f i -cat ions as pointed out by So i l Survey Sta f f (1960) in the case of s o i l c l a s s i f i c a t i o n . Recently de f in i t i ons of pedon and polypedon have been proposed to c l a r i f y the log ic of the new system of s o i l c l a s s i f i c a t i o n (So i l Survey S t a f f , 1960). According to these concepts the pedon i s the smallest volume of s o i l that can be recognized as a s o i l i n d i v i d u a l . 6 I ts area! extent ranges from 1 to 10 sq m depending on cer ta in natural va r ia t i ons . Polypedon consists of one or many contiguous pedons, bordered by pedons of unl ike character in respect to one or more c h a r a c t e r i s t i c s , d iagnost ic for a s o i l s e r i e s , representing the lowest categor ical rank in the s o i l c l a s s i f i c a t i o n system. Pedons are the sampling units by means of which cha rac te r i s t i cs of polypedons are estimated in p rac t i ce . I t i s the polypedon not the pedon that i s c l a s s i f i e d . The p r inc ip les invo lved, however, imply that polypedons are bodies whose boundaries can be recognized in the f i e l d . The la te ra l boundaries are often gradational and d i f f i c u l t to locate prec ise ly in the f i e l d , yet they do e x i s t . S im i l a r l y in biocoenotic or phytocoenotic s tud ies , there i s a concept of a sample p lo t , based on noda(Poore, 1955, 1956), which re fers to an area g iv ing the most representat ive sample of a pa r t i cu l a r plant community. The areal extent of the sample p lo t can.vary, rang-ing from 1 to over 1,000 sq m depending on the s ize of plant cover. . I ts extent can be determined using minimal area methods (Braun-Blanquet, 1928, 1932; Shimwell, 1973; Mueller-Dombois and El lenberg, 1974).f\ Plant community then consists of one or more contiguous areas corresponding in s ize to that of a sample p l o t , bordered on a l l s ides by non-vegetative cover or by another plant community, which sample p lot (noda) are of unl ike character as to the f l o r i s t i c composition diagnost ic fo r a plant assoc ia t ion or i t s lower uni ts (subassociat ion or va r ian t ) . I t i s again the plant community not the sample p lo t that i s c l a s s i f i e d . 7 There i s l i t t l e doubt that ecosystem c l a s s i f i c a t i o n of forests should involve both s o i l and vegetat ion. The vegetation ( inc lud ing i t s fauna) and i t s s o i l s (environment) form counterparts c f the same system as s t ipu la ted by Dokuchaev (1898), Jenny (1941) and Major (1951), developing under the inf luence of ecosystem factors (Major, 1951). Therefore, the concept of the ecosystem ind iv idua l ( O r l o c i , 1964) must accommodate requirements l a i d out above for both s o i l and vegetation (Table 1) . Sukachev's (1944) biogeocoenosis or basic ecosystem (Kra j i na , 1972) was proposed to designate the ecosystem i n d i v i d u a l . Although s i m i l a r to the polypedon and plant community, the biogeocoenosis i s a de f in i te object of the study. Sukachev defined the fo res t biogeo-coenosis as any part of the fo res t homogeneous over a s p e c i f i c area in c l imate , s o i l ( inc luding s o i l organic l a y e r s ) , in s t ructure and •composition of vegetat ion, animal populations and micro-organisms; in the complex of environmental fac tors a f fec t ing fo res t p roduc t iv i t y and in the in teract ions among a l l i t s components. I f a landscape i s a geographical concept and the ecosystem i s a funct ional one, then the biogeocoenosis embodies the re la t i onsh ips . The b io log ica l con-cept common to both ecosystem and biogeocoenosis i s the important point (Major, 1969). In th i s synecological study the ecosystematic approach (Kra j ina , 1933, 1960a, 1960b, 1965b, 1972; Rowe, 1960a, 1960b; Brooke et al. .1970) was adopted. The biogeocoenosis was considered to be a concrete expression of an ecosystem i nd i v i dua l . Biogeocoenoses may TABLE 1 Relationships Between Sampling Units, Natural Bodies and Basic Taxa in the S o i l , Vegetation and Synecological Classi f icat ion Fundamental Units Soi l Classi f icat ion Vegetation Class i f icat ion Synecological Classi f icat ion Basic taxon in the c lass i f ica t ion system SOIL SERIES PLANT ASSOCIATION (and i ts lower units: sub-association and variant) TYPE OF BIOGEOCOENOSIS (basic ecosystem unit) Natural body (individual) POLYPEDON PLANT COMMUNITY BIOGEOCOENOSIS (basic ecosystem) Sampling unit (minimal size of an individual) PEDON SAMPLE PLOT (stand, association indiv id-ual) SAMPLE PLOT (including pedons) 00 9 be f a i r l y e a s i l y s t r a t i f i e d either by t h e i r plant communities, or polypedons or both. As Major (1973) pointed out the most objectively observed and at the same time meaningful phenomena are usually the species of plants which occur, not the physical o r chemical parameters of the s i t e . 10 CHAPTER 3 METHODS OF ECOSYSTEM ANALYSIS AND SYNTHESIS Methods employed were essen t i a l l y those used by Kraj ina and his students in B r i t i s h Columbia, Yukon T e r r i t o r i e s , Canadian A r c t i c , Hawaiian Islands and elsewhere in the P a c i f i c region. Deta i ls of these methods have been recent ly described by Brooke al. (1970). The sampling design used in the UBC Research Forest aimed to describe a l l recognizable vegetation and s o i l var ia t ions developed as a resu l t of d i f fe rent combinations of ecosystem forming fac to rs . Ana ly t i ca l data from twenty-seven sample p lots compiled by Lesko (1961) and Or loc i (1961, 1964), which were located wi th in the Forest , were used in the study. The o r ig ina l p lot numbers of these sample plots were increased by 500 so that they can be recognized in the environment-vegetation tab les . The sampling included fores t eco-systems which have not yet been described by previous workers (e .g . on coarse c o l l u v i a l mater ia ls , along streams and oh organic s o i l s ) or which were inadequately documented by the i r s o i l s . Several reconnaissance t r i ps were made during the summer of 1971 to become fam i l i a r with the study area. During the t r i ps s i t es sui table fo r sampling were marked on a map and the i r tentat ive c l a s s i f i c a t i o n attempted. This information formed a basis for a sample p lo t layout. The sampling began in ear ly May 1972 and continued 11 throughout the summers of 1972 and 1973. A to ta l of 158 plots were sampled, which represents a sampling in tens i t y of one p lot fo r every 32.6 ha (80.5 acres) . Vegetation on each p lo t was analyzed by the phytosociological techniques of the Zurich-Montpel 1 i e r School as modif ied by Kraj ina (1933 et seq.). Habitats are described in terms of e leva t ion , s lope, exposure, bedrock geology, s o i l parent mater ia ls , s o i l s and other habi tat features as suggested by Kraj ina et al. (1963). A complete re leve ( l i s t of plant species and habi tat features recorded on a sample p lot ) i s the basic uni t of reference fo r a l a t e r synthesis of ecosystem uni ts and comparative study. Sample Plots According to the previously out l ined in te rpre ta t ion of the eco-system, the sample p lot i s considered to be the smal lest s i ze of the fo res t ecosystem (ecosystem i n d i v i d u a l , biogeocoenosis). I ts s i z e extends hor i zon ta l l y fa r enough to allow sampling and accurate deter-mination of the propert ies that can be observed and measured in the f i e l d . Sample plots are selected in s i ze and loca t ion as to accommo-date requirements for both vegetation and s o i l sampling and the object ives of the study, espec ia l l y of mapping. A common experience of plant eco log is ts and s o i l s c i e n t i s t s i s that plants and s o i l s are general ly not randomly d is t r ibu ted 12 (K ra j ina , 1933; Poore, 1962; Greig-Smith, 1964; C l i n e , 1963; Rode, 1961). Some degree of geographic order e x i s t s , t h i s knowledge i s so common, that we have to come to accept i t unconsciously (C l i ne , 1963). Because the ecosystems may be s t r a t i f i e d e i the r by t he i r vegetation or s o i l s , they do not need to be randomized fo r the purpose of sampling. However, vegetation and s o i l s are not found as d i rec t e n t i t i e s c l ea r l y separated from a l l o thers, but they grade on the i r margins into other s o i l s and plant communities with unl ike proper t ies . The sample p lots in th is study were selected sub jec t ive ly in order that each p lo t would approximate a modal ecosystem i n d i v i d u a l . Such p lo ts are held by bonds of s i m i l a r i t y so strong that l i t t l e doubt can ex i s t as to t h e i r re la t ionsh ips (C l i ne , 1949). This c r i t e r i o n agrees wel l wi th the concept of noda (Poore, 1955, 1956). Trans i t iona l areas (ecotones) were, therefore, excluded from sampling. Furthermore, an ind iv idua l ecosystem selected for the sampling had to be la rger than the predetermined p lo t s ize to al low establishment of the sample p lo t . About ten rep l i cas are considered to be sa t i s fac to ry for the abstract ion of the plant assoc ia t i on , however, in a few cases a smal ler number of p lo ts was used due to the lack of su i tab le eco-systems for the sampling. The a r e a ! extent of a sample p lo t may vary, depending on the nature of vegetation and s o i l s . The concept of minimal area i s commonly used to determine the minimal s i ze of the sample p lo t for a plant 13 community. Following the work of Kraj ina and Spi lsbury (1952, 1953), Daubenmire (1967), Brooke et al. (1970) and others, a p lo t s i ze of 500 sq m or 1/20 of a hectare (5,381.9 sq f t or about 1/8 of an acre) was cons is tent ly used for the sampling. The s i ze of 500 sq m i s larger than the minimal area for fo res t communities in the region (Brooke et al. , 1970). The p lo t shape va r ied ; rectangular , square and sometimes c i r c u l a r shape of the p lo t was chosen depending on the natural extent of the ecosystem i n d i v i d u a l . P lo t boundaries were temporari ly marked in the f i e l d . The p lots were located in a part of an ecosystem which vegetation was judged to be r e l a t i v e l y undisturbed over the p lo t sur face. The p lo t was under la in by a polypedon, the cha rac te r i s t i cs of which were allowed to vary wi th in the d i s t r i bu t i ona l l i m i t s of the plant community. Method of Vegetation Analys is The analys is involved l i s t i n g of a l l vascular p lan ts , bryophytes and l ichens present in the p lo t with the exception of epiphytes, which were described for the Coastal western hemlock zone by Kra j ina (1959), Or loc i (1961, 1964, 1965), Kojima (1971) and Cordes (1972). Moss and l ichen f l o ra on decayed wood and rocks (boulders) was a lso l i s t e d . The unknown species were c o l l e c t e d , assigned to a p lo t by a number and l a te r i d e n t i f i e d . Their species s ign i f i cance (Kra j ina , 1960a, 1960b) was estimated in the f i e l d . The vegetation l i s t was subdivided into' s t ra ta based on height and growth form. For each species in each 14 strata estimates of species s ign i f i cance and v igor were made. Complete ana l y t i ca l scales fo r s t ra ta and l a y e r s , species s ign i f i cance and v igor are given in Appendix XI. In the case of species occurr ing in several l a y e r s , i t was decided that only tree species would be treated in a l l l a ye rs . A to ta l cover fo r t ree , shrub, herb and moss layers was a lso est imated. Fol iage of several plant species was co l lec ted from areas of sample p lots in midsummer (June - J u l y ) . Repl icated fo l iage co l l ec t i ons o f ind iv idua l species were made to br ing about 50 gm of dry matter. Fol iage was washed by tap water, a i r - d r i e d , ground in a Wiley m i l l and stored in paper conta iners. O r l o c i ' s (1964) l i s t of p lant species was used fo r species coding. Names and author i t ies f o r a number of species were corrected fo l lowing recent changes in the taxonomic nomenclature. A few species from the o r ig ina l l i s t were absent on sample p lots in the UBC Research Forest , but some of them were observed in the study area. The check l i s t of plant species (Appendix X) i s then representat ive of the UBC Research Forest f l o r a , inc luding rock c l i f f s and stream edge hab i ta ts . Nomenclature and i d e n t i f i c a t i o n fol lowed with few exceptions Hitchcock et al. (1955-1969) and Taylor (1966) for vascular p lan ts ; Crum, Steere and Anderson (1973), Frye and Clark (1937-1947), Lawton (1971), Nyholm (1956-1969), Schof ie ld (1968a, 1968b) and Schuster . (1966-1974) fo r bryophytes; and Hale and Culberson (1960) and Otto and Aht i (1967) fo r l i chens . The au thor i t ies for the species referred to in the text and the environment-vegetation tables are given in Appendix X. 15 Dr. V . J . Kraj ina i den t i f i ed some of the more d i f f i c u l t spec i -ment of d i f fe ren t p lants . Dr. W.B. Schof ie ld ass is ted and checked the i d e n t i f i c a t i o n of many specimens of bryophytes and Mr. G. Otto the i d e n t i f i c a t i o n of l i chens . Growth c l a s s , subst i tu t ing s i t e index in the study, was used as the measure of forest product iv i ty fo r three dominant tree species in the Forest: Doug las- f i r , western hemlock and western redcedar . The growth c lass refers to a re la t i ve scale of height growth as appl ied by Kraj ina (1969) and modified in the study to f i t the s i t e tables used by the B r i t i s h Columbia Forest Service (The Forest Club, Forestry  Handbook, 1971). The growth c lass for a tree species was determined as fo l lows: 1. Ar i thmet ic mean of the heights of dominant t rees was c a l -culated to el iminate v a r i a b i l i t y in tree heights caused by layer ing in forest stands. I f such trees were not present wi thin the sample p lo t or occurred in an i n s u f f i -c ien t number ( less than three i n d i v i d u a l s ) , then dominant trees outside the p lo t were measured, when the surrounding area was s t i l l considered to be a part of the same eco-system i nd i v i dua l . 2. Ar i thmet ic mean of age was ca l cu la ted , which was measured from increment borings taken at breast height from dominant t rees. A correct ion factor was added to the mean f igure using the tables of the B r i t i s h Columbia Forest Service (The Forest Club, Forestry Handbook, 1971). 16 3. The s i t e index was determined us ing the s i t e t a b l e s (The Fo res t C l u b , F o r e s t r y Handbook, 1971) and then s u b s t i t u t e d by the growth c l a s s (Appendix X I ) . Both number o f stems and basa l area i n sq m per hec ta re were used as measures o f s tand d e n s i t y . The number o f stems per hec ta re r e f e r s to a l l t r ees w i t h i n the sample p l o t which were more than 10 cm (about f ou r i nches ) i n d iameter a t 1.3 m h e i g h t . Basal a rea was c a l c u l a t e d from the measurements o f d iameters by a s t e e l c a l i p e r i n secondary s tands o r d iameter tape i n o l d growth s t a n d s . The data r ep resen t a t o t a l f o r a l l s p e c i e s p resen t w i t h i n the sample p l o t . They were changed from per sample p l o t f i g u r e s to per hec ta re f i g u r e s and then means were c a l c u l a t e d f o r b i ogeocoene t i c u n i t s . Methods o f S o i l A n a l y s i s In a d d i t i o n to the v e g e t a t i o n a n a l y s i s sample p l o t s were desc r i bed by a number o f h a b i t a t f e a t u r e s , which i n c l u d e d i n t e r n a l and e x t e r n a l s o i l c h a r a c t e r i s t i c s . Samples were ob ta ined from s o i l p i t s l o c a t e d w i t h i n each sample p l o t . One o r more s o i l p i t s were dug to o b t a i n i n f o rma t i on about s o i l s and t h e i r v a r i a t i o n a s s o c i a t e d w i th a p a r t i c u l a r p l a n t community. The p i t s were dug e i t h e r to the depth o f unweathered parent m a t e r i a l o r impermeable l a y e r , and i n a l l cases t h e i r depth met the s tandards s e t f o r the c o n t r o l s e c t i o n and exceeded the maximum r o o t i n g depth o f p l a n t s . 17 So i l samples were taken from described horizons except those horizons which were very th in or discont inuous. They were a i r - d r i e d shor t ly a f t e r the sampling at room temperature and crushed l i g h t l y with a wooden r o l l i n g pin to pass a 2 mm s ieve . A small amount of mineral samples was fur ther ground to pass 60 mesh and 100 mesh sieves as required for cer ta in chemical analyses. Samples of s o i l organic layers were taken as composite samples and when a i r - d r i e d they were ground by a Wiley m i l l to pass 40 mesh s ieve . The p o s s i b i l i t y of contamination by i ron was considered, however, a comparative ana lys is ruled th is out. Af ter the preparation the samples were stored in cardboard food containers and paper bags. Descr ipt ion of s o i l p ro f i l e s and s o i l sampling fol lowed pract ices and terminology of the Canadian So i l Survey Committee (CSSC, 1970, 1974) and of the So i l Survey S ta f f (1951). Individual horizons were described by moist co l o r s , mot t les, texture, s t ruc ture , consistency, root d i s t r i b u t i o n , coarse fragment contents (estimate of volume of coarse fragments greater than 1 cm in s ize in percent) and horizon boundaries. Other pert inent features observed during the descr ip t ion were a lso recorded. Representative s o i l p ro f i l es are presented in Appendix IV. So i l parent mater ia ls , inc luding unconsolidated l i t h o l o g i c a l d i s c o n t i n u i t i e s , were i den t i f i ed on each sample s i t e . Fu l ton 's (1972) nomenclature of genetic categories fo r landforms was used to designate various parent mater ia ls , which were fur ther character ized by texture and base satura t ion . 18 Following s o i l chemical ana lys is a tenta t ive s o i l c l a s s i f i -cat ion was f i n a l i z e d using the System of s o i l c l a s s i f i c a t i o n for Canada (CSSC, 1970, 1974). The Revised-system of s o i l c l a s s i f i c a t i o n fo r Canada (Soi l Research Ins t i t u te , 1973) was also consul ted, and c l a s s i f i c a t i o n categories of Kubiena (1953) were used fo r s o i l s with the l i t h i c contact less than 10 cm. According to the Revised system (So i l Research I ns t i t u te , 1973) the l i t h i c and gleyed subgroups were considered as subgroups modif iers for Podzol i c and Brum'sol i c orders. Gleyed modi f ie rs , in parenthesis, were used to ind icate poorly drained s o i l s which did not meet the c r i t e r i a set fo r the designation of the gleyed hor izon. The s o i l s of the podzol ic order were a lso appended by the modif iers with o r t s te in and with o r t s te in development, ind ica t ing presence of o r t s te in horizon or i nc ip ien t o r t s t e i n . The. c r i t e r i a set fo r the use of the modif iers were as fo l lows: (gleyed) - - these s o i l s , in addi t ion to the cha rac te r i s t i cs of the major subgroups and presence of mot t l i ng , do. not meet the spec i f ied l im i t s set fo r the designation of gleyed horizon being, however, under the permanent inf luence of seepage water; s (with o r t s te in development) - - these s o i l s have, in addi t ion to the cha rac te r i s t i cs of the major subgroups, advanced i n i t i a t i o n of. o r t s te in hor izon, that does not meet the spec i f ied l i m i t s set for the designation of a cemented ( i r r eve rs i b l e ) o r t s te in hardpan hor izon; and (w i th o r t s t e i n ) — these s o i l s have, i n a d d i t i o n to the c h a r a c t e r i s t i c s of the major subgroups, p resent o r t s t e i n h o r i z o n , t h a t i s s t r o n g l y cemented and t ha t occurs a t l e a s t i n o n e - t h i r d o f the exposure . For the c l a s s i f i c a t i o n o f s o i l o rgan i c l a y e r s m o i s t u r e , a e r a t i o n s t a t u s , pH, and the C/N r a t i o were used as suggested by B e r n i e r (1968) . Mor humus form was d i f f e r e n t i a t e d i n t o F- and H-mor r e f e r r i n g to a g r e a t e r t h i c k n e s s o f the r e s p e c t i v e l a y e r i n r e l a t i o n to the t o t a l t h i c kness o f s o i l o r g a n i c l a y e r s . Some o f the data such as e l e v a t i o n (m), s lope g r a d i e n t (%), a s p e c t , bedrock t ype , s o i l t e x t u r e , s o i l depth (cm), coarse fragment con ten t (%), s o i l mo is ture reg ime, seepage water depth (cm) , s o i l subgroup, humus form and t h i c k n e s s (cm), and pH o f s o i l o r g a n i c l a y e r s are p a r t o f the env i ronment -vege ta t ion t a b l e s , whereas the o the r s o i l data are presented elsewhere i n the t e x t or Append ices . The s o i l a n a l y s i s i n c l u d e d : i d e n t i f i c a t i o n o f bedrock and coarse fragments (Appendix I V ) , p a r t i c l e s i z e a n a l y s i s (Appendix V ) , s o i l chemical a n a l y s i s (Appendix V I ) . Methods o f e lementa l a n a l y s i s o f s o i l o rgan i c l a y e r s (Appendix V I I ) and o f p l a n t f o l i a g e (Appendix V I I I ) were desc r i bed by K l i n k a and Annas (1973) . Chemical a n a l y s i s o f .seepage (ground) water (Appendix IX) i s d e s c r i b e d s e p a r a t e l y . I d e n t i f i c a t i o n o f Bedrock and Rock Fragments To a s s i s t i n the de te rm ina t i on o f the nature o f s o i l s and parent m a t e r i a l s and to r e f i n e the d i s t r i b u t i o n o f v a r i o u s rock types i n the F o r e s t , seve ra l rock fragments were c o l l e c t e d from most o f the 20 s o i l p i ts from B and C horizons. These fragments were i d e n t i f i e d by Mr. G. Richards, Department of Geology, Univers i ty of B r i t i s h Columbia. For th is i d e n t i f i c a t i o n he appl ied Roddick's (1965) c l a s s i f i -cat ion and nomenclature fo r p lutonic rocks in the P i t t Lake map area. The resu l ts and explanations are given in Appendix IV. P a r t i c l e S ize Analys is P a r t i c l e s ize d i s t r i bu t i on of mineral horizons was determined by the hydrometer method (Bouyoucos, 1936, 1951; Day, 1950). The organic matter in these mineral samples was destroyed, however, i ron was not removed. P a r t i c l e s ize l i m i t s and s o i l textural c lasses were according to So i l Survey Sta f f (1951) and CSSC (1970, 1974), i . e . sand 2.00 - 0.05 mm; s i l t 0.05 - 0.002 mm; and c lay 0.002 mm and l e s s . The percent of sand, s i l t and clay in a s o i l sample ( in percent of weight of the f rac t ion less than 2 mm) was ca lcu la ted using the a v a i l -able computer program from the Department of So i l Sc ience, Un ivers i ty of B r i t i s h Columbia. Coarse fragments represent the f rac t i on of a crumbled s o i l sample with pa r t i c l es greater than 2 mm and approximately less than 1 cm. The complete resu l ts are given in Appendix V. So i l Chemical Analysis The s o i l chemical analys is was car r ied out at the Pedology Laboratory, Department of So i l Science, Univers i ty of B r i t i s h Columbia, by the author and his ass i s tan ts . Dr. L.M. Lavkul ich suggested the 21 ana ly t i ca l design and helped with the c l a s s i f i c a t i o n of some t rans-i t i o n a l s o i l s . About 700 samples, representing 158 s o i l p r o f i l e s , were analyzed by the methods used in the Pedology Laboratory (Department of So i l Science,1974)which are b r i e f l y described as fo l lows: JDH was determined according to two methods: on a 1:1 s o i l and 4:1 s o i l organic layers to water suspension, measured by a glass electrode and pH meter, and on a 1:2 s o i l and 4:1 s o i l organic layers to 0.01 C a C l 2 suspension. Total carbon {%) was determined fo r mineral samples using a Leco Gasometric Carbon Analyzer (Leco, 1959); organic samples were ashed and the to ta l C was ca lcu lated from loss on i gn i t i on using the fac tor 1.724. Total nitrogen (%) was determined c o l o r ime t r i c a l l y using pheno-lhypochlor i te react ion for determination of ammonia (Weatherburn, 1967; Beecher and Wit ten, 1970; Hinds, 1974, personal communication). Cation exchange capacity and exchangeable cat ions were determined according to the procedure out l ined by Chapman (1965), using 1 N NH40AC, adjusted to pH 7. The NH^ absorbed by the s o i l , which i s the measure of cat ion exchange capac i ty , was determined by semi-microkjeldahl procedure. The leached exchangeable cat ions of calc ium, magnesium, sodium and potassium were determined by atomic absorption spectro-photometry. The percent of base saturat ion was ca lcu lated from the sum of basic exchangeable cat ions and cat ion exchange capaci ty 22 (excluding H) and expressed as the percent of the cat ion exchange capaci ty . Acid ammonium oxalate extractable i ron and aluminum were de-termined on s o i l samples ground to pass a 100 mesh sieve according to the procedure of McKeague and Day (1966). Sodium pyrophosphate extractable i ron and aluminum were de-termined on s o i l samples ground to pass a 100 mesh sieve according to the procedure of Bascomb (1968). Extracted i ron and aluminum in both cases were determined by atomic absorption spectrophotometry. Fibre content was determined on samples from organic s o i l s according to the procedure of Sneddon, Farstad and Lavkul ich (1971). The complete resu l ts of the chemical ana lys is are given in Appendix VI . Methods of Sampling and Analys is of Seepage Water Forest Ecosystems The forest ecosystems were selected on subhygric, hygric and subhydric hygrotopes in both dry and wet subzones of the CWH zone. These hygrotopes, re fe r r ing to s o i l moisture regimes are defined as * In a new proposal fo r the s o i l drainage c l a s s i f i c a t i o n (Leskiw, 1973) equivalent classes are designated as imperfect ly , poorly and very poorly dra ined, respect ive ly . 23 fo l lows: subhygric - - with a temporary flow of seepage water passing through the s o i l mainly deeper than 60 cm below the s o i l surface or in s o i l s shallower than 60 cm deep with seepage water of longer durat ion; hygric — with a permanent flow of seepage water passing through the s o i l mainly at 30 - 60 cm below the s o i l sur face; and subhydric - - with a permanent flow of seepage water usua l ly less than 30 cm below the s o i l surface and moving very slowly or with a stagnant water tab le , saturat ing the whole p r o f i l e (a f te r K ra j i na , 1969). Seepage Water Samples Each sample of seepage water contains d isso lved substances whose concentrations may vary widely depending on season, c l imate , parent mater ia ls , vegetat ion, topography and geology o f the area con-cerned. Therefore, actual chemical concentrations i n seepage water are meaningful only i f these var iab les are f u l l y described for each seepage water sample taken. In th is study the samples were character ized by: (a) b iogeocl imat ic subzone in which sampling occurred; t h i s character ized the macroclimate and reduced var ia t ions in chemistry due to var ia t ions in c l imate ; (b) the time of sampling; th is reduced seasonal var ia t ions in chemistry; (c) the plant assoc ia t i on ; th i s reduced var ia t ions in chem-i s t r y due to var ia t ions in s o i l s and vegetat ion; and by 24 (d) the age of tree laye rs ; t h i s reduced var ia t ions in chemistry caused by d i f fe ren t age stages of fo res t cover. Spring sampling was car r ied out during A p r i l 1973 i n various v forest stand types wi th in the TIARELLA - POLYSTICHUM - WRC ecosystems with twenty-six samples being co l l ec ted . Seepage water was co l lec ted from the fo l lowing fores t stand types: mature (about 90 years o l d ) , immature, undisturbed (not s lash burnt) cut-over areas (planted) and disturbed cut-over areas (planted) where stumps and s o i l organic layers were removed and the land surface l e v e l l e d . Summer sampling was car r ied out during June and Ju ly of 1972 and 1973 in various mature ecosystems with forty-two samples being co l l ec ted . . Samples of seepage water were obtained from f resh ly dug p i t s , as the water seeped into them, to minimize contamination resu l t i ng from long exposure. Samples of streamwater and in termi t tent surface seepage on quar tzd ior i te bedrock were also co l l ec ted . An i n s u f f i c i e n t number of samples was taken to permit s t a t i s -t i c a l analys is of the s ign i f i cance of d i f ferences in seepage water chemistry between d i f fe ren t seasons, or between d i f fe ren t assoc ia t ions , or between d i f fe ren t forest stand types. Instead, a h ie ra rch ica l grouping analys is was employed to determine as to what extent natural groups ex i s t among the samples. 25 Chemical Analysis A l l water samples were co l lec ted in acid-washed (6NHC1) poly-ethylene bot t les and brought to the laboratory where pH, bicarbonate concentrat ion and e l e c t r i c a l conduct iv i ty were measured as soon as poss ib le , usual ly wi th in four hours of c o l l e c t i o n . I f th is was not poss ib le , samples were frozen un t i l these analyses could be performed. Samples were then stored at 0°C for a period of up to s i x weeks p r io r to being analyzed for cations and anions. Chemical analyses were car r ied out by Mr. M. F e l l e r , graduate student, Facul ty of Forest ry , Un ivers i ty of B r i t i s h Columbia. E l e c t r i c a l conduct iv i ty was measured using a Radiometer type CDM 2e conduct iv i ty meter with a CDC 104 conduct iv i ty c e l l . A l l measure-ments were corrected to 25°C. £H was measured using an Orion model 404. s p e c i f i c ion meter with standard glass and Ag/AgCl reference e lec t rodes. Bicarbonate was determined by t i t r a t i n g a 25 ml a l iquot of the sample with a standard 0.0005 M hydrochlor ic acid so lu t ion to an end-point of pH 4.5 (Black et al., 1965, p. 945). Cation concentrations (K, Na, Mg, Ca, and Fe) were measured on a Varian Techtron AA5 atomic absorption spectrophotometer, using an a i r -ace ty lene flame fo r K, Na, Mg and Fe, and a n i t rous oxide-acetylene flame for Ca. Ammonium, d issolved s i l i c a and anion concentrations ( ch lo r i de , phosphate, n i t ra te and sulphate) were measured on a Technicon auto-analyzer I I , using standard co lo r imet r i c methods (Johnson, 1972; Technicon Indust r ia l Systems, 1971 a -d , and 1973). C o r t i D l e t e resu l ts o f the chemical analys is f o r water samples are given in Appendix IX. Methods of Ecosystem Synthesis Following the ecosystem analys is the next step i s the synthes is , i . e . grouping and averaging of s im i l a r p lo t s . By the formation o f abstract uni ts ( t yp i f i ca t i on ) from the sample p lo ts selected i n order that each p lo t represented a sample of an ecosystem, ecosystem uni ts of various in tegrat ion and categor ical l eve ls are defined according to the systematics used by Kraj ina and his students. The essen t ia l task in th is process i s de l ineat ion of plant assoc ia t i ons , ca r r i ed out according to standard phytosociologieal methods (Braun-Blanquet, 1921, 1928, 1932, 1951, 1964; K ra j ina , 1933, 1960a, 1960b, 1965; Brooke et al.t 1970). A deta i led descr ip t ion of record ing, organizing and tabulat ion of vegetation data i s given by Poore (1955), El lenberg (1956), Becking (1957), Moore (1962), Kraj ina et al. (1963), Kuchler (1967), Shimwell (1972), and Mueller-Dombois and El lenberg (1974). The plant associat ions are fur ther subdivided to achieve homogeneity of t h e i r s o i l s (edatopes). Di f ferent s o i l s may develop a s i m i l a r 27 vegetation providing the i r to ta l edaphic and c l ima t i c e f fec t i s s im i l a r . Related plant associat ions are a lso subjected to a fu r ther abstract ion to define higher synsystematic uni ts (plant a l l i a n c e s and orders) on the basis of both f l o r i s t i c and edaphic parameters. The ra t iona le for employing the f l o r i s t i c composition in the synecological c l a s s i f i c a t i o n as a d i f f e ren t i a t i ng c r i t e r i o n can be substant iated by the essent ia l ro le of vegetation composition and st ructure in ecosystem funct ion ing. Furthermore, the vegetation component i s one of the most useful expressions of t o ta l e f fects of a l l b i o t i c and environmental factors integrated in the ecosystem. I t i s also read i l y observable so that an e f f i c i e n t f l o r i s t i c assessment can be done quite accurately and e f f i c i e n t l y (Sukachev and D y l i s , 1964; Major, 1969). Presence (or constancy) and species s i gn i f i cance (abundance plus dominance) are the main c r i t e r i a fo r descr ib ing and d i f f e r e n t i -a t ing the uni ts beside species vigor and layer ing . This was rec-ommended by Poore (1955) and Dahl (1956) in areas where plant communities may have only few species and p a r t i c u l a r l y where the f l o r a of the general area i s not as r i ch in species as i n continental Europe. Autecological evaluat ion of each species combined wi th a v isual com-parat ive procedure i s employed to assess s i m i l a r i t i e s or d i f ferences among re leves . To be eco log i ca l l y s i g n i f i c a n t the f l o r i s t i c composition cannot be reduced merely to absence or presence of spec ies. The species s ign i f i cance and v igor r e f l ec t the proport ionate ro le of • 2 8 a species in biogeochemical cyc l ing of a pa r t i cu l a r ecosystem. The cha rac te r i s t i c combination of species (Braun-Blanquet, 1932; K ra j ina , 1933) i s employed as a d i f f e ren t i a t i ng cha rac te r i s t i c between the un i t s . These cha rac te r i s t i c species may be completely or almost completely confined to one uni t (exc lus ive species) or found most frequent ly in a pa r t i cu la r uni t (se lec t i ve species) and f i n a l l y present in several units but with optimum occurr ing in one pa r t i cu la r un i t (preferent ia l spec ies) . The use of a species in the cha rac te r i s t i c combination i s based on the tabulated data (Appendix X I I ) , autecological evaluat ion and f i e l d experience in the study area. D i f f e ren t i a l spec ies, which may be non-character is t ic fo r a un i t , are Used to d is t ingu ish c l ose l y re lated uni ts (Braun-Blanquet, 1932; K ra j i na , 1933; McVean and R a t c l i f f e , 1962). Species without pronounced a f f i n i t i e s for any un i t (companions) and strange species that are rare and accidental intruders from another plant community (accidentals) are l i s t e d in Appendix XII. Due to the re la t i ve youth of the vegetation which i s not r i ch in the number of species and to prevalence of young, second growth fo res t stands in the UBC Research Forest , i t was not possib le to provide wel l defined cha rac te r i s t i c combinations of species for a l l un i t s . Nevertheless, the units were then d i f fe ren t ia ted on the basis of sa l i en t and obvious habi tat features. In such cases, the species with the highest presence and species 29 s ign i f i cance , although non-charac te r i s t i c , are used to name such un i t s . These species might have been employed as c h a r a c t e r i s t i c i f they were not present with a high species s ign i f i cance in other un i t s ; therefore, they were used as cha rac te r i s t i c fo r higher synsystematic uni ts or even fo r b iogeocl imat ic un i t s . Plant species l i s t e d in parenthesis are less cha rac te r i s t i c or of less frequent occurrence in a p a r t i c u l a r combination or group-i ng , although they may be more cha rac te r i s t i c of another grouping of plants for d i f fe ren t uni ts in the zone or even other b iogeocl im-a t i c zones. Plant subassociat ions and va r ian ts , fo r which the character-i s t i c combination of species i s not necessary, are d is t ingu ished by the d i f f e ren t i a t i ng combinations of spec ies, presence or absence of pa r t i cu la r spec ies, di f ferences in species s ign i f i cance and vigor or by habitat features. F i n a l l y , the c l a s s i f i c a t i o n was subjected to v e r i f i c a t i o n . A comparative procedure was employed to substant iate eco log ica l s i g n i f i -cance of the d i f fe ren t ia ted un i ts . Several invest iga t ions were made involv ing chemical analys is of s o i l organic layers (proximate ana l ys i s , humus f rac t i ona t i on , op t ica l propert ies of humic acids and elemental ana lys is ) and seepage water. The resu l ts of these analyses, par t l y reported elsewhere (Kl inka and Lowe, 1975, 1976a, 1976b), when grouped according to the un i t s , supported the appl ied c l a s s i f i c a t i o n methods. 30 In conc lus ion, a synthesiz ing procedure i s used where environ-mental and vegetational qua l i t a t i ve and quant i ta t ive cha rac te r i s t i cs are compared for s i m i l a r i t i e s and di f ferences to f i nd and explain a general pattern of re la t ionsh ips . The releves are grouped and re -grouped, t i l l the complete environment-vegetation tables were f i n a l i z e d . This time consuming procedure of successive studies of the tables can now be speedi ly and conveniently repeated several t imes, using a computer program (Appendix X I ) , un t i l the synthesis and s t r a t i f i c a t i o n of the data by both environmental and f l o r i s t i c var iab les reveal the maximum degree of consistency for each pa r t i cu la r group of re leves. As most of Appendices, inc luding the environment-vegetation tab les , were pr inted by a computer, a l l a lphabet ica l symbols appeared in cap i ta l l e t t e r s . The computer programming was car r ied out by Mrs. L. Kerr , Faculty of Forestry , the Univers i ty of B r i t i s h Columbia. The described t rad i t i ona l synthesiz ing procedure provides eco-l o g i c a l l y s i g n i f i c a n t d iv i s ions of the data which do not d i f f e r when mathematical techniques are appl ied instead (Ivemey-Cook and Proc to r , 1966). 31 CHAPTER 4 DESCRIPTION OF THE STUDY AREA The Area of Study The Univers i ty of B r i t i s h Columbia Research Forest i s located at the f o o t h i l l s of the Coast Mountains 6.5 kilometres (4 miles) north of Haney, B r i t i s h Columbia, Canada. L a t i t u d i n a l l y i t l i e s between 49°15' - 49°22' of N l a t i t u d e , and long i tud ina l l y between 122°31' -122°36' of W longi tude. The Forest i s bordered on the north and east by Golden Ears Prov inc ia l Park, on the northwest by P i t t Lake and on the southern part by developed urban and ag r i cu l tu ra l lands. I ts to ta l area i s 5,151 hectares (12,728 acres) . The Forest has a rectangular shape about 4 ki lometres (2.5 miles) wide and about 12.9 ki lometres (8 mi les) long or iented north-south in the longer dimension (Figure 1) . There are twelve lakes ins ide the Forest , the la rges t Loon Lake being 48.6 hectares (120 acres) in s i z e . Namely due to physiographic va r i a t i ons , the area i s heterogeneous with a great var ie ty of s o i l s and vegetat ion. In th is respect the Forest represents mountainous forested lands of the mainland. The Forest i s managed by the Faculty of Forestry, Un ivers i ty of B r i t i s h Columbia, as an experimental, research and demonstration f a c i l i t y . 32 Figure 1 The topographic map of the study area 33 Cl imate C l imat ic data has been co l lec ted fo r the study area, although most of i t or ig inated from the southern part of the Forest . Continuous weather records have been maintained since 1946 (Haney, U .B .C .R.F . : , Marc s t a t i o n , 171m e leva t ion) . Four weather s ta t ions have been establ ished in the southern part in 1971 by Environment Canada at the fo l lowing l o c a l i t i e s : Administrat ion Bu i l d i ng , Loon Lake, Spur 17 and Marc. C l imat ic studies in the Forest were car r ied out by G r i f f i t h (1960), Eis (1962a, 1962b) and Heathenngton (personal communication). The cl imate of the Forest , in genera l , i s mesothermal due to a substant ia l inf luence of the P a c i f i c Ocean. In addi t ion to the inf luence of the P a c i f i c Ocean the cl imate i s fur ther modif ied by mountainous r e l i e f and the inland locat ion of the Forest in the Lower Fraser Val ley imposing a s l i g h t inf luence of i n t e r i o r cl imate which i s detectable in summer and winter temperature extremes. Using Koppen (1936) c l imat i c c l a s s i f i c a t i o n system modified by Trewartha (1954) the cl imate of the Forest can be described as Cfb i . e . equable (marine) mesothermal humid to ra iny. The Cfb cl imate i s a maritime cl imate character ized by mild temperatures with common cloudiness and a small range of temperatures, wet and mi ld winters , cool and r e l a t i v e l y dry summers, long f ros t free per iod, and a heavy p rec ip i ta t i on most of which occurs during the winter season. Basic c l ima t i c data for the southern part of the Forest were summarized by Kraj ina (1969, and l a t e r , personal communication) (Figure 2) . 34 Figure 2 Climatic data for the southern part of the U.B.C. Research Forest 35 Geology The rugged Coast Mountains form a part of the southern end of a huge complex of p lu ton ic and metamorphic rocks. Once known as the Coast Range Ba tho l i t h , th is complex recent ly has been referred to in less de f i n i t e terms as the Coast C rys ta l l i ne Be l t . The predominant rock types are quar tzd io r i t e , d i o r i t e and gabbro in which hornblende i s more abundant than b i o t i t e (Roddick, 1966). The geology of the P i t t Lake area has been described and mapped by Roddick (1965). Major rock types occurr ing in the Forest are: h-quar tzd ior i te in the western par t ; b-quar tzd ior i te in the centra l par t ; and h-gabbro and d i o r i t e along the eastern boundary. The upper-most part of the Forest belongs to the Twin Island Group. . Quar tzd io r i te , containing more than ten percent quartz and less than ten percent potassium fe ldspar , belongs to phaner i t ic rocks. . The most abundant, medium grained h-quar tzd ior i te has a higher amount of bases and a lower amount of quartz than gran i te . An average com-pos i t ion of th is rock type was given by Roddick as fo l lows: 55.7 per-cent Ca-Na p lag ioc lase and 0.7 percent potassium fe ldspar ( l i g h t colored aluminum s i l i c a t e s ) ; 7.4 percent hornblende and 4.8 percent b i o t i t e (dark co lored, mafic minera ls ) ; 0.8 percent of minor minera ls ; and quartz forms only 30.6 percent of the to ta l content, which i s less than hal f of the amount in t y p i c a l , nut r ient de f i c ien t gran i tes . Gabbro and d i o r i t e contain less than ten percent of quartz and cons is t mainly of p lag ioc lase and mafic minera ls , ch i e f l y amphibole and 36 pyroxene. G lac ia l t i l l derived from quar tzd io r i te i s commonly coarse textured (loamy sand to sandy loam) with a high content of coarse fragments. So i l base status can be expected to be low due to the lack of c l ay , rather than to the mineralogical composition of the bedrock. Unless very c lose to the ground surface and not over la in by compacted t i l l , the d i rec t inf luence of bedrock on s o i l development i s diminished. Pleistocene Events In Pleistocene time ice covered the lower Mainland several times except fo r a few of the highest peaks. The area north of P i t t Lake s t i l l contains a number of a lp ine g l a c i e r s . To the north a g l a c i e r at the head of Stave River is the only va l ley g l ac i e r remaining in the area. Several stages have been recognized, inc lud ing a f i n a l period during which the lowlands were covered with f l oa t i ng s h e l f - i c e beneath which g l a c i o f l u v i a l and glaciomarine mater ia ls were deposited. A number of radio-carbon datings ind icate that the l a tes t i ce l e f t the lower Mainland about 10,000 years ago. Pleistocene strat igraphy of the lower Fraser Val ley has been invest igated by Armstrong (1957), Armstrong et al. (1965), Armstrong and Fulton (1965). A continental ice sheet of the Vashon Stade of the Fraser G lac ia t ion advanced into the northern end of the S t r a i t of Georgia reaching i t s maximum extent around 15,000 B.P. and l e f t the 37 area about 13,500 B.P. At th is t ime, ice covered a l l but the highest peaks of the Coast and Cascade Mountains. Mater ia ls deposited d i r e c t l y beneath the g lac ia l ice were termed by Armstrong (1957) as Surrey t i l l . This compacted (basal or lodgement) t i l l covers a substant ia l area of the Forest and decreases in th ickness or i s discontinuous with increasing e leva t ion . Textural analys is y ie lded an average of f i f t y - seven percent sand, forty-one percent s i l t and two percent c lay . However, Armstrong noted that the t i l l s in the mountain va l leys have a greater proport ion of sand than t i l l s of the same age in the lowlands. The c lay and s i l t of the Surrey t i l l are composed ch ie f l y of rock f l ou r produced by mechanical abrasion by the g l a c i e r s , and only to a very minor extent of secondary c lay minerals. The sands are pr imar i l y quar tz , but con-ta in many feldspars and rock fragments. The rounded ridges and mountain tops wi th in the area, general ly less than 1,000m, appear to have been modified by overr id ing i c e . They contrast markedly with the sharp crest topography of the Golden Ears mountain group. In post Vashon times and during land subsidence some of the t i l l at lower elevat ions was subjected to marine ac t i on . As a resu l t i t i s associated with and general ly underl ies a veneer of beach gravels and l i t t o r a l sand formed by water act ion or i t was reworked during marine recession (Armstrong and Brown, 1954; Lacate, 1965). A f te r the Vashon ice melted and as the land rose above the sea the g l a c i o f l u v i a l deposits were l a i d down. , 38 Above Vashon Stade deposits and over ly ing the Everson Inter-stade are Sumas Stade deposits formed by ice generated l o c a l l y . Wood co l lec ted from th is t i l l gives radiocarbon dates of not more than 11,400 years B.P. (Armstrong et aZ. ,1965; Mathews et aZ. ,1970; Ful ton, 1971). Though the readvance of the Cord i l le ran ice into the eastern part of the Lower Fraser Val ley in the Sumas Stade did not reach the area of the Forest , it. i s l i k e l y , that the Coast Mountains were continuously g lac ia ted . However, in i t s i n i t i a l advance stages th is ice sheet terminated in the sea and l a i d down Whatcom glaciomarine deposits in f ront and beneath i c e , as during each major g l ac ia t i on the land was depressed re l a t i ve to the sea. D is t r ibu t ion of s u r f i c i a l deposits in the Forest have been mapped by Armstrong (1957), Lacate (1965), Lewis (personal communica-t i o n ) , and in th is study. In general , in the central and northern parts ablat ion t i l l (a loose, unsorted, heterogeneous mixture of sand, s i l t , c lay and stones deposited from wi th in and from the surface of melt ing ice) over l ies compacted (basal) t i l l , or d i r e c t l y the under-ly ing bedrock. G l a c i o f l u v i a l , and glaciomarine (found up to 190 m elevat ion) and t i l l mater ials were deposited in the southern part of the Forest. At several places a l l these mater ia ls can be found together being, however, deposited in d i f fe ren t sequence. G lac io -f l u v i a l mater ia ls were deposited along the western and lower south and along the eastern part of the North Alouette River Val ley over t i l l mater ia ls . Several minor deposits of g lac io lacus t r i ne s i l t s and sands in the Forest were located by Lacate (1965) and by the author. 39 Physiography The Forest extends over low and medium a l t i t u d i n a l areas des ig-nated as submontane and montane. The e levat ion range i s from few metres above sea level at P i t t Lake to s l i g h t l y over 1,000 metres (3,300 f t ) on the slopes below the Golden Ears mountain group. This group of peaks with the highest e levat ion of 1,707 metres (5,598 f t ) gives a unique scenic background to the area. The general aspect i s towards south and west, but several north-south or iented ridges account fo r minor var ia t ions in th i s respect. The submontane (southern) part of the Forest i s f l a t to gently r o l l i n g landscape with a few h i l l y g ran i t i c -cored uplands, whereas the montane (northern) part i s mountainous, with strongly r o l l i n g g r a n i t i c -cored ridges and outcrops, imposing abrupt r e l i e f changes over short d is tances. The most northerly part i s character ized by a r idge sloping p rec ip i tous ly to Pi t t Lake to the west and steeply to Gwendoline, Katherine and Eunice Lakes to the east . Numerous knol ls of various s i z e s , whose f lanks are steep, rock outcrops and b lu f fs give to th is part a complex r e l i e f pat tern, the exception being the lower slopes above Raven Creek and Marion Lake. The main drainage i s provided by the north fork of the Alouette River f lowing south from the point where i t enters the Forest , forming there an outflow from Marion ( e a r l i e r Jacobs) Lake. There are many minor drainages and outflows from lakes f lowing e i ther south, un t i l they j o i n the North Alouette R ive r , or west, enter ing P i t t 40 Lake. There are three major va l leys oriented north-south: the western depression contains Loon Lake, the eastern va l ley Marion Lake and the North Alouette River and the central va l ley P lac id Lake, Blaney Lake and Blaney Creek. These va l leys are commonly V-shapes, with t he i r w a l l s , in p laces, furrowed by V-shaped g u l l i e s , which ev ident ly have been cut s ince g l a c i a t i o n . A geographic c l a s s i f i c a t i o n of the Forest based on topographic features has been provided by Lacate (1965), using land assoc ia t ions . Re l ie f as one of the ecosystem forming factors has a profound inf luence on the ecosystem d i s t r i bu t i on (pattern) in both the submon-tane and montane environment of the Forest. In the context of geomor-phic processes, the mountain environment i s often referred to as being a high energy s i t ua t i on . Modif ied by or in combination with other f ac to r s , r e l i e f a f fects the d i s t r i bu t i on of heat and energy, pre-c i p i t a t i o n and underground water and thereby the propert ies and develop-ment of the s o i l s and the way of material movement by grav i ty wi th in the s o i l s . E s s e n t i a l l y , r e l i e f controls s o i l moisture and a lso s o i l nut r ient regime. Furthermore, a mult i tude of s o i l morphological , physical and chemical propert ies i s commonly found to be re la ted to r e l i e f . I t i s not surpr is ing that wi th in an area of a r e l a t i v e l y uniform macroclimate (a biogeocl imat ic subzone) and parent mater ia ls many ecosystems tend to occur repeatedly at s p e c i f i c topographic pos i t i ons . 41 Parent Mater ia ls Pleistocene events caused s o i l formation to begin from various unconsolidated s u r f i c i a l deposits instead from a weathered loca l bed-rock. These mater ia ls inf luenced the respect ive s o i l development mainly by t he i r texture, content of coarse fragments, consistency and mineralogy. G lac ia l t i l l and col luvium are the predominant parent mater ia ls . The other mater ia ls include g l a c i o f l u v i a l , a l l u v i a l , g l a c i o -marine, g lac io lacus t r ine and organic deposits which are l im i ted in t he i r extent and d i s t r i b u t i o n . Some cha rac te r i s t i cs of these mater ia ls are given in the Table 2. G lac ia l t i l l , deposited over a var ie ty of r e l i e f pos i t i ons , i s cha rac te r i s t i c of l i t h o l o g i c a l d i s c o n t i n u i t i e s ; loose t i l l i s under-l a i n by compacted t i l l (Figure 3) . In the northern part of the Forest compacted t i l l may be absent, th in or discont inuous, and loose t i l l i s underlain by unweathered bedrock. Compacted t i l l i s of pa r t i cu la r s ign i f i cance to the s o i l moisture regime and the e f fec t i ve root ing depth. The impermeable layer of compacted t i l l predisposes the presence of seepage or perched water table in the above l y ing coarse and rap id ly permeable loose t i l l . This l i t h o l o g i c a l d i scon t inu i t y i s responsible fo r seasonal water saturat ion of the s o i l s thus reducing t he i r s t a b i l i t y , pa r t i cu l a r l y on steep s lopes. In r e l a t i v e l y shallow (about 100 cm) loose t i l l roots of fo res t trees are d is t r i bu ted in s o i l organic laye rs , and over the compacted t i l l l a ye r , creat ing organic matter TABLE 2 Some Properties of 'Parent Materials in the UBC Research Forest Genetic Category of Sur f ic ia l Deposits Sample Origin Number of Samples Texture Coarse Fragments (%) pH (H20) C {%) CEC (meq/100 gm) BS (%) Oxal. extr. (%) Sand S i l t Clay Fe .Al Moraine (glacial t i l l ) The upper l imi t of compacted t i l l 5 59.5 31.6 8.5 sandy loam 75 rubble 5.3 0.55 12.6 4.3 0.58 1.06 Col luvial The lower l imi t of B horizon 5 69.6 26.3 4.1 sandy loam 85 stones 5.0 2.74 30.4 3.9 0.55 1.62 Glaciof luvial The lower l imi t of B horizon 4 76.0 20.1 . 3.9 loamy sand 60 gravel 5.4 0.62 18.2 4.6 0.47 1.52 A l luv ia l The lower l imi t of C horizon 5 84.4 11.2 . 4.4 loamy sand ' 63 gravel 5.2 3.30 26.7 7.0 0.59 1.15 Glaciomarine C horizon 4 26.6 45.2 28.2 clay loam 12 gravel 5.3 1.00 21.9 20.0 0.67 0.91 Glacio-lacustrine C horizon 3 17.4 56.9 25.7 s i l t loam 8 gravel 5.4 0.84 19.3 34.4 0.32 0.56 Organic The lower l imit of Oh horizon 5 - 4.6 26.90 85.4 2.0 - -ro 1 Figure 3 Exposed loose t i l l over compacted t i l l Figure 4 Skeleta l (rubbly and stony) col luvium 44 buildup at the in te r face . The compacted t i l l in the Forest was found to be moderately coarse textured (sandy loam) with a high content of rounded and subrounded coarse fragments. A low cat ion exchange capaci ty was a t t r ibu ted to a lack of s i l i c a t e c lay p a r t i c l e s . Very low base saturat ion i s ind ica t i ve of ac id and leached environment in which most of the exchange complex i s dominated by exchangeable hydrogen and aluminum. The g l ac i a l t i l l (moraine) deposits of var iab le depth, pos i t ion on the slope and general loca t ion support a great number of d i f fe ren t ecosystems with contrast ing vegetation and s o i l s . Colluvium of var iab le thickness occupies extensive areas on mountaineous s lopes. I t has been deposited e i ther on the base of steep s lopes, accumulated la rge ly as rock fragments that have f a l l e n down from the slope under the inf luence of g rav i t y , or along long slopes with no apparent source of rock fragments, over ly ing the o r i g -ina l moraine deposits (Figure 4) . Continuous, imperceptible down-slope movement of the solum by creep and loca l wash makes i d e n t i f i -cat ion of the o r i g i na l parent mater ia ls d i f f i c u l t , i f not impossib le. Co l l uv ia l mater ials are quite stable unless located on excess ive ly steep slopes where rave l l i ng may occur a f te r serious disturbance. They have a sandy loam texture, va r i ab le , but usual ly a high content of i r r egu la r l y shaped coarse fragments and s i g n i f i c a n t inmixture of organic matter. As a r e s u l t , t he i r permeabi l i ty i s high and in ternal drainage i s rap id . A high cat ion exchange capacity can be accounted fo r by incorporated organic matter and r e l a t i v e l y more weathered mater ia ls . However, base saturat ion i s again low. Co l l uv i a l material are associated with several d i f fe ren t ecosystems. 45 G lac i o f l uv i a l mater ials were deposited over a f a i r l y large area in the southern part of the Forest (Figure 5) . Apart from postglac-i a l l y eroded terrace along the west side of the North Alouette River and minor occurrence of deep depos i ts , they o v e r l i e , as a poorly s t r a t i f i e d veneer, moraine and glaciomarine mater ia ls . Their physical and chemical charac te r i s t i cs resemble those of compacted t i l l . A high content of sand par t i c les and wel l rounded coarse fragments impose rapid permeabil i ty and in ternal drainage. Consequently the mater ia ls have a verylow moisture holding capacity despite t he i r nearly hor izontal pos i t i on . These g rave l l y , sandy mater ia ls , lack ing cohesion, are subjected to erosion under high water inputs . Cation exchange capacity was higher than that of compacted t i l l , perhaps due to d i f ferences in clay mineralogy. Deep g l a c i o f l u v i a l deposits in the Forest are usual ly associated with the ecosystems of the Pseudotsugetal ia menziesi i or the Tsugetal ia heterophyllae plant orders. Figure 5 Well s t r a t i f i e d de l t a i c g l a c i o f l u v i a l deposits in the south-western part of the UBC Research Forest 46 Alluvium is rather ra re , but occurs l o c a l l y along stream channels, at the base of slopes in the form of a l l u v i a l fans and in small bas ins. Numerous a l l u v i a l fans were i d e n t i f i e d in the eastern depression. These mater ia ls are very coarse textured with a high content of wel l rounded coarse fragments mostly less than 1 cm in ; diameter. S ign i f i can t amounts of incorporated organic matter account fo r the high cat ion exchange capaci ty . Permeabi l i ty and in ternal drainage are rap id , unless inf luenced by the water leve l of adjoining streams. A l l u v i a l mater ia ls support development of seve ra l , highly productive ecosystems of the Thu je ta l ia p l i ca tae and the Popu le ta l ia balsamiferae plant orders, the l a t t e r s t i l l under the inf luence of occasional f lood ing . F la t l y i n g , glaciomarine mater ials were deposited in several l o c a l i t i e s along the southern boundary of the Forest (Figure 6) . Coarse fragments are lack ing . These mater ia ls are moderately f ine textured, with a high content of s i l t and c lay p a r t i c l e s , which account fo r the r e l a t i v e l y high cat ion exchange capac i ty . Medium base satura-t ion i s ind ica t i ve of less leaching environment' and perhaps of d i f fe ren t mineralogical composition. Their permeabi l i ty and in ternal drainage are slow, which predisposes the presence of a perched water table and seasonal water saturat ion in the above ly ing solum. Under these condit ions the s o i l s lose cohesion and fo l lowing disturbance they may be suscept ib le to erosion and mass wasting even on very gentle s lopes. The glaciomarine mater ia ls are associated with a few, very productive ecosystems of the Thu je ta l ia p l ica tae plant order. • Figure 6 Exposed c lay loam glaciomarine deposits in the south-eastern part of the UBC Research Forest 1 Figure 7 A portion of s i l t y loam g l a c i o -lacust r ine terrace south of Marion Lake 48 Glac io lacus t r ine mater ia ls were i den t i f i ed in a very few l o c a -t ions in the proximity of lakes or streams near the va l l ey bottoms: (Figure 7) . Regular, year ly deposit ion of f ine 1 s o i l p a r t i c l e s in the quiet water of lakes i s expressed by t h i n , hor izonta l ly l y i n g layers— varves. These mater ials are medium textured with a prominent content of s i l t p a r t i c l e s . Physical and chemical. charac te r i s t i cs are s imi lar to those of glaciomarine mater ia ls . G lac io lacus t r ine deposi ts are associated wi th in the Forest with ecosystems of the Thu je ta l i a p l i ca tae plant order. Organic mater ia ls d i s t r i bu t i on i s confined to depressions and shallow basins where under the inf luence of excessive mois ture , accumulation of decomposition products takes p lace. They usual ly over-l i e the o r ig ina l mineral deposi ts . Var iable amounts of mineral matter, decayed wood and volcanic ash have been introduced into depressions from surrounding areas by wash. However, very th in organic materials ove r l i e numerous exposed rock outcrops. Organic mater ia ls have under-gone s u f f i c i e n t decomposition so that the mater ia ls are o f the humic nature. Co l l o ida l nature of humic mater ia ls determines very slow permeabi l i ty and in ternal drainage resu l t i ng in the i r high moisture holding capac i ty . High cat ion exchange capacity resu l ts from pre-dominant proport ion of pH-dependent charges on the exchange complex. However, under very ac id condit ions hydrogen i s t i g h t l y bound and non-replaceable by other ca t ions . Therefore, cat ion exchange capacity in the natural condit ions i s expected to be lower. Extremely low base saturat ion ind icates that much of the exchange complex i s domin-49 ated by exchangeable hydrogen and/or aluminum. Deep organic deposits are cha rac te r i s t i c of subhydric habitats of the VACCINIUM - LYSICHITUM -WRC and the BLECHNUM - WH - WRC assoc ia t ions , whereas shallow deposits are associated with ecosystems of the Pseudotsugetal ia menziesi i (CWHa) or with the Tsugetal ia heterophyllae (CWHb) plant orders. L i t ho log ica l d i scon t inu i t i es or l i t h i c contact with the under-l y ing bedrock are very common. The upper solum has often developed from one kind of material and the lower from another. In many s o i l s there i s l i t t l e or no material which could be designated as C horizon from which the over ly ing solum or at l eas t a port ion of i t has developed. This i s cha rac te r i s t i c of the s o i l s developed from col luvium and g lac ia l t i l l . In conc lus ion, g l a c i a l t i l l and re la ted col luvium prevai l in the Forest. Their chemical and physical propert ies show close re la t ionsh ip to mineralogical propert ies of the underlying quartz-d i o r i t e bedrock. Most of the rock fragments in s o i l p i t s were coarse to medium textured quar tzd io r i te (Appendix I I I ) . Rocks described as volcanics were few. The percent base saturat ion of the upper C horizons i s ind ica t i ve of the extent to which exchangeable basic cat ions have been removed from the s o i l and replaced by the hydrogen and aluminum (Buol et al. 1973). Low pH and extremely low base saturat ion of these mater ia ls in the Forest would then ind icate a highly leached environment of the CWVH zone. Under these condit ions abundant fe ldspars read i l y weather, however, t he i r weathering products are also qu ick ly removed, so that few secondary c lay minerals may 50 be formed. Many co l lec ted fragments showed considerable chemical weathering. They occas ional ly d is in tegrated into coarse mineral grains when removed from s o i l p i t s . The s o i l s developed from these mater ia ls can be then expected to be coarse textured, ac id and of low base s ta tus . The i r nutr ient s ta tus , in general , w i l l l i k e l y be described as submesotrophic to mesotrophic because the leaching may be s t i l l o f f se t by weathering in these young, r e l a t i v e l y unweathered s o i l s . His tory Descr ipt ion of natural ecosystems, which have developed in response to a complex e f fec t of environmental and b i o t i c fac tors i s a basic task of synecological s tud ies . These ecosystem uni ts serve as benchmarks for comparative ecology, against which to measure natural development (succession) of other re la ted uni ts and management prac-t i c e s . Information about the o r i g i na l vegetation composition and st ructure can help to assess s o i l and vegetation dynamics for the purpose of the c l a s s i f i c a t i o n as wel l as for fo res t management. Sam-p l i ng of o ld growth stands or at l eas t secondary fo res t stands com-posed of t ree species which are able to regenerate on the i r habi tats under the canopy, was car r ied out by Or loc i (1961, 1964, 1965), Lesko (1961) and E is (1962a, 1962b). Long before the Forest was Crown-Granted to the Univers i ty of B r i t i s h Columbia in March 1949 forest ecosystems had been s i g n i f i -51 cant ly inf luenced by man's a c t i v i t i e s in addi t ion to na tu ra l l y occur-r ing geomorphic and successional processes. There was an extensive f i r e in the Forest in 1868, in which year no ra in occurred from Apr i l to November and many f i r e s occurred along the P a c i f i c Coast. Eis suggested the occurrence of more or less in tensive f i r e s in the area in 1550, 1660, 1780, 1800 and 1840. In September 1925 a f i r e star ted near Alouette Lake, on cut-over areas which burnt out severely s o i l organic layers in the eastern part of the Forest. In Ju ly 1931 another f i r e star ted on cut-over areas at Raven Creek outside the Forest, which, however, spread ins ide and burnt the s lash and humus layers on exposed habi tats with shallow s o i l s in the eastern v a l l e y , extending over the area which had been previously burnt. Apparently a l l advanced natural regeneration of amabil is f i r was destroyed with the exception of wet habitats around Marion Lake. This may expla in the lack of amabi l is f i r throughout the eastern va l l ey belonging to the CWHb subzone. Almost the ent i re uppermost eastern slopes consis t of over-mature o ld growth stands composed of Doug las - f i r , amabil is f i r , western hemlock and western redcedar (Figure 8) . The proportions made up by these species vary considerably over the area. Not only f i r e s but also r e l a t i v e l y r i ch s o i l s (underlain by gabbro) support an ex-ce l l en t growth of Douglas- f i r and amabil is f i r . There are patches or ind iv idua l trees of o ld growth of Doug las- f i r and dead snags of western redcedar throughout the western part of the Forest. Apparen-t l y , the l a t t e r species had been of except ional ly high qua l i t y and 52 Figure 8 The present forest cover of the UBC Research Forest as shown on a high a l t i t u d e , aer ia l photograph (approximate scale 1:120,000, Ju ly 1971). To iden t i f y boundaries of the UBC Research Forest compare with Figure 1 53 therefore most o f i t s volume was salvaged. The o ldest trees are 800-year o ld Doug las - f i r s , however, the most common age of the o ld growth i s between 200 to 300 years . The second growth stands on the P i t t Lake slopes and along the southern boundary are about 120 years of age. The remainder of the second growth stands in the western part of the Forest , now being gradual ly harvested, became establ ished over a t h i r t y year period fo l lowing the f i r e of 1868. Doug las- f i r i s the major species by volume. I t i s lack ing only on subhydric hab i ta ts , where western redcedar and western hemlock are dominant. Amabil is f i r grows in a few pure stands. However, i t i s usual ly scattered in western hemlock stands above 335 m in e leva t ion . About 2,800 hectares of high volume, old growth stands in the eastern part of the Forest were harvested between 1920 and 1931. During the logging several f i r e s swept over the land in 1925, 1926 and 1931. The en t i re area logged i s i n various stages of regenerat ion. Stands about fo r ty years o ld cover the southeast corner, but on the remainder the regeneration i s younger. On l i t h i c and xer i c habitats the regen-erat ion i s patchy, interspersed with openings of brush or bare rock outcrops, which o r i g i n a l l y supported tree growth when covered by s o i l organic l aye rs . The middle and upper r idge west of Marion Lake and middle and upper slopes northeast of Marion Lake are s t i l l poorly stocked. Since 1957, a substant ia l area of o ld and second growth stands was harvested. Most of these lands were slash burnt and regenerated by plant ing to Doug las - f i r . 54 Natural fo res t f i r e s in the past , extensive c lea r - cu t t i ng associated with accidental s lash f i r e s or prescr ibed broadcast burns are the factors responsible for the e f fec t i ve reduction of s o i l organic l aye rs , thus promoting the establishment of Doug las- f i r over a wide var ie ty of habitats where i t could not regenerate na tura l l y and where i t grew as a minor species. Therefore secondary forests represent various serai stages and are composed of even-aged Douglas-f i r with shade to lerant western hemlock and western redcedar in lower tree layers . 55 CHAPTER 5 THE SYSTEM OF THE SYNECOLOGICAL CLASSIFICATION The problems of natural c l a s s i f i c a t i o n of ecosystems by t h e i r vegetat ion, environment-vegetation re la t i onsh ips , re la t ionsh ip to plant physiology, p roduc t i v i t y , mineral cycles and energy f low, were discussed by Kraj ina (1960a, 1960b, 1965b, 1972), Sukachev and D y l l i s (1964), Major (1961, 1969), Mueller-Dombrois and El lenberg (1974) and others. We wish to set up a c l a s s i f i c a t i o n system in such a way that each group has as many unique natural propert ies as poss ib le , and i t s name and i t s propert ies re la te to i t , yet separate i t from a l l others (C l ine , 1949). Drawing on Cl ine (1949), the natural c l a s s i f i -cat ion of ecosystem (synecological c l a s s i f i c a t i o n ) performs the * important funct ion of organiz ing, naming and def in ing the c lasses that are the basic units used to i den t i f y the ecosystems that are the object of research, to organize data of research for d iscover ing re la t ionsh ips wi th in the populat ion, and to formulate genera l izat ion to s p e c i f i c cases that have not yet been studied d i r e c t l y . * The term c l a s s , as used in c l a s s i f i c a t i o n , refers to a group of ind iv idua ls s im i l a r in selected propert ies and d is t inguished from a l l other c lasses of the same population by di f ferences in these proper t ies. Since 1949, Kraj ina and his students have been carry ing out the c l a s s i f i c a t i o n of fo res t ecosystems. Selected methods f o r the synecological studies and the c l a s s i f i c a t i o n were tested and appl ied throughout B r i t i s h Columbia and elsewhere. In t h i s system biogeoco-enot ic uni ts are f i r s t abstracted on the basis of vegeta t ion-so i l re la t ionsh ips as ind icated by d i f ferences in the f l o r i s t i c s t ruc ture and composition and s o i l p roper t ies ; these are then integrated by t he i r common macroenvironment in to biogeocl imat ic un i t s . The system and the systematics have evolved over the l a s t twenty-f ive years with concern to complete a c l a s s i f i c a t i o n of b iogeocl imat ic uni ts and t h e i r representat ive biogeocoenotic un i ts . Minor d i f ferences o f a technical nature in the app l i ca t ion of the system, p a r t i c u l a r l y at lower leve ls of genera l i za t ions , have pointed out a need to c l a r i f y the st ructure of the system in view of a growing demand fo r an ecolog ica l framework in forest management in B r i t i s h Columbia. With continuing synecological studies more information has been obtained to improve the system and reorganize the un i t s . Addi t ional changes in the c l a s s i f i c a t i o n should not only be accepted but a lso i n i t i a t e d , provided they are s c i e n t i f i c a l l y sound and documented. A recent r e -v i s i on of b iogeocl imat ic zonation in B r i t i s h Columbia by Kraj ina (1975) i s one such example. Four synecological and two population in tegra t ion l eve l s of the system were out l ined by Kra j ina (1972). Higher categories of the system can serve in many f i e l d s , but they are intended p r imar i l y 57 to serve those who work with the c l a s s i f i c a t i o n . The biogeocl imat ic and biogeocoenotic in tegrat ion l e v e l s , considered to be the most appl icable in ecosystem evaluat ion of f o res t s , are discussed fur ther in greater d e t a i l . The structure of the system, nature and kinds of d i f f e ren t i a t i ng cha rac te r i s t i cs employed for the various leve ls and categories are presented in Table 3. The edatopic as well as population in tegrat ion leve ls are not d i r e c t l y l inked into the st ructure of the system. However, they have been proved to be useful in expressing the ecologica l funct ion and in assessing general eco-l og i ca l information of vegetation elements. These leve ls were de-scr ibed in de ta i l by Kraj ina (1969, 1972). Biogeocl imat ic Integrat ion Level Biogeocl imat ic uni ts provide in tegrat ion of ecosystems occur-r ing over a large area that i s predominantly con t ro l led by the same macroclimate. I t i s therefore to our advantage to ou t l ine the areas in which vegetation and s o i l development are af fected by s im i l a r macroclimate and, as a r e s u l t , are bound by s im i l a r genetic processes. Such geographical areas ca l led biogeocl imat ic zones are character-ized by t he i r mesic ecosystems, macroclimatic parameters and cha rac te r i s t i c combination of species. Tree species which are shade to lerant on mesic ecosystems and able to perpetuate and s e l f -reproduce cont inua l ly in th is environment are used to character ize and name the biogeocl imat ic zones. One would expect that the c l ima t i c TABLE 3 The Structure of the Synecological C l a s s i f i c a t i o n Integrat ion Level Category Nature and Kinds o f D i f f e ren t i a t i ng Charac te r i s t i cs Biogeocl imat ic zonal uni ts Formation Region Zone Subzone The to ta l e f fec t of a macroclimate as ind icated by the presence of mesic ecosystems ( t he i r vegetation and s o i l s ) ; c l ima t i c para-meters; p reva i l ing pedogenic processes; c h a r a c t e r i s t i c combination of zonal or subzonal spec ies ; pattern of synsystematic uni ts such as orders, a l l i ances and plant assoc iat ions Higher synsystem-a t i c un i ts Class Order A l l i ance Progressively higher synsystematic uni ts above the level of the plant associat ion (according to vegetat ion and s o i l r e l a t i onsh ips ) ; cha rac te r i s t i c combination of spec ies; s o i l propert ies associated with moisture and nutr ient regimes; e f fec t of vegetation on s o i l development Lower synsystem-a t i c (biogeoco-enot ic) uni ts Plant associat ion The basic synsystematic un i t in the c l a s s i f i c a t i o n system (synsystem-a t i c s ) ; uniformity of the f l o r i s t i c s t ructure and composition in re la t ion to ecotope and vegetation development; cha rac te r i s i t e com-bination of spec ies ; s o i l propert ies important fo r a specia l type of vigour of p lants . Ecosystem type (Type of Biogeno-enosis, basic eco-system uni t ) Plant assoc iat ion (or i t s lower un i ts - subassociat ion and var iant) associated with homogeneous s o i l s , according to humus form, s o i l subgroup (kind and arrangement of hor izons, t h e i r c o l o r , tex ture, s t ruc ture , consistency, physical and chemical propert ies) and parent materials 0 0 59 c r i t e r i a (e .g . p r e c i p i t a t i o n , i t s proport ionate snowfa l l , temperature) could be used d i r e c t l y as d i f f e ren t i a t i ng cha rac te r i s t i cs among the un i ts . However, th is would be d i f f i c u l t , i f not impossib le, to measure. Important as average c l ima t i c condit ions are to de f in i t i ons of the un i t s , the extremes of weather occurr ing in a given macro-cl imate may also be more i n f l u e n t i a l in th is respect. Therefore, the mesic ecosystems are used to de l imi t a macroclimate and boundaries of b iogeocl imat ic units are out l ined according to t he i r d i s t r i b u t i o n . In evaluat ing the inf luence of c l imate , i t must be considered that i t has changed and i s changing. As a resu l t the biogeocl imat ic pattern f luctuates correspondingly to regional c l ima t i c changes, which may lead to new genet ical development and changes in the adaptation of new ind iv idua ls in the future population of species. Above the level of the zone there are higher zonal uni ts—region and format ion—unif ied by progressively broader aspects of t he i r macroclimate, s o i l s and physiognomic aspects of t he i r uppermost vegetat ional s t r a t a . Below the leve l of the zone there i s the subzone category, representing the least macroclimatic v a r i a b i l i t y ( re la t i ve to other ca tegor ies) . Sub-zonal vegeta t ion-so i l re la t ionsh ips determine the character and pro-duc t i v i t y of plant communities. Therefore, the subzones are considered to be su i tab le uni ts for the regulat ion and control of organic production in forest management. 60 Synsystematic Integrat ion Level The higher synsystematic uni ts (Braun-Blanquet, 1928, 1932, 1951, 1964) above the level of the plant assoc ia t ion (plant a l l i a n c e s , order and c lass) are the other synecological in tegrat ion leve ls necessary fo r a more complete understanding of the ecosystem c l a s s i f i -ca t i on . The higher synsystematic un i ts are more var iab le than the plant assoc ia t ion , however, they are important i n a more exact d i f f e r e n -t i a t i on of the biogeocl imat ic un i t s . They are character ized by another cha rac te r i s t i c combination of species which are more widely d is t r ibu ted and, therefore, funct ion in several plant assoc ia t ions belonging to them. The higher synsystematic uni ts enhance the system with another set of parameters, bound with some higher degrees of environmental and vegetation re la t i onsh ips . For instance, ecosystems of the Thujeta l ia p l i ca tae developed on subhydric habitats occur i n several subzones along the coast and in the i n t e r i o r of B r i t i s h Columbia. They have been found to have a s t r i k i n g l y s im i l a r f l o r i s t i c composition of understory vegetat ion. Presumably, the i r f l o r a i s adapted to such condit ions and is present in widely separated hab i ta ts . The precise locat ion of the uni ts (p lant a l l i a n c e or p lant assoc ia t ion) along such a macroclimatic gradient can be read i l y i den t i f i ed by species in tree layers and other species present in the habi tat but rather adapted to more l imi ted segments of the macroclimatic or ecological gradient. Biogeocoenotic Integrat ion Level This level consists of two lower synsystematic un i t s : p lant assoc ia t ion and ecosystem type. The plant assoc ia t ion (sensu Braun-Blanquet 1921, 1928, 1932; Kraj ina 1933, 1960a, 1960b; Brooke et al., 1970) i s the central category in the system. I t i s an abst ract ion of ecosystems, which plant communities are uniform in the i r f l o r i s t i c structure and composition as determined by the i r ana ly t i c and synthet ic cha rac te r i s t i c s , but which may d i f f e r in the i r ecotopes (hab i ta ts ) . V a r i a b i l i t y i s permitted for a number of s o i l p roper t ies , providing that the to ta l c l imat i c and edaphic (moisture and nutr ient) e f fec t upon the vegetation i s s i m i l a r . Therefore, the plant assoc ia t ion i s the category at the higher level of genera l izat ion than the type of biogeocoenosis. According to the Zur ich-Montpel l ier School , founded by Braun-Blanquet and followed by Kraj ina and his students, the plant assoc ia t ion has both sets of cha rac te r i s t i cs which are termed e i ther as ana l y t i ca l or .synthet ic ones. Thus, the plant assoc ia t ion corresponds to a type * The concept of the plant assoc ia t ion that i s i m p l i c i t in the present study was defined by Kraj ina (1960a, 1960b) as "a de f i n i t e uniform (homogeneous) phytocoenosis that i s in dynamic equi l ibr ium with a cer ta in complex of environmental factors (ecotope); i t s f l o r i s t i c structure - - i . e . s t r a t i f i c a t i o n ( layer ing ) , species s ign i f i cance (Artmachtigkeit , or abundance and dominance), s o c i a b i l i t y , , constancy, f i d e l i t y , and vigour of the component species — l i e s wi th in l i m i t s governed not only by the ecotope (c l imate, s o i l , substratum, topography, and b io t i c environmental f ac to r s ) , but a lso by the h i s t o r i c a l factors of the vegetat ional development (the fourth dimension or space-time f ac to r ) . " 62 (Cajander, 1926, 1949; Sukachev and D y l l i s , 1964). The plant assoc ia -t ion (as wel l as any other uni ts at higher leve ls of genera l izat ion) in th is sense cannot be described from a s ing le p lo t , but only through synthesis dependent upon several to many p l o t s . Charac te r i s t i c combination of species determined in the synthet ic process i s employed as the d i f f e ren t i a t i ng cha rac te r i s t i c for th is category. The combination of eco log i ca l l y re la ted spec ies , which eco-l o g i c a l l y funct ion in narrow l i m i t s , helps to assess s i m i l a r i t i e s and di f ferences between the un i t s . Other f l o r i s t i c features, such as laye r ing , s ign i f i cance and vigor are used to set apart c lose ly re lated un i t s , p a r t i c u l a r l y when the cha rac te r i s t i c combination of species for the un i t i s l ack ing . The species included in the combination for the plant associat ions and also for higher synsystematic uni ts are very precise i nd i ca to rs . According to Major (1969), they are more precise ind icators for the i d e n t i f i c a t i o n of ecosystem uni ts and fo r management than f igures descr ib ing a number of microc l imat ic and s o i l measurements. They are easy to determine and the i r determination i s more ob jec t i ve . The plant assoc ia t ion sensu Kra j ina i s a narrower uni t than that of Braun-Blanquet. I t i s not en t i r e l y dependent on cha rac te r i s t i c species which do not occur anywhere else but in plant communities of a pa r t i cu la r plant assoc ia t ion . Such species occas iona l ly do not e x i s t but the i r absence in no way detracts from the v a l i d i t y of the assoc ia -t ions determined by other means (Kra j ina , 1960a). The recent g l a c i a -t ion in B r i t i s h Columbia has been the cause of species poor f l o r a . Therefore, the presence as wel l as the absence of the cha rac te r i s t i c combination of species can d i f f e ren t i a te between re la ted plant assoc ia -63 t i ons . The same species may be included into more than one character -i s t i c combinations of species, where they occur with d i f f e ren t , but sometimes with s im i la r species s i gn i f i cance . In essence, eco log ica l l y wel l d is t inguished plant communities that have marked and measurable f l o r i s t i c and environmental d i f ferences form the conceptual basis of these un i t s . Habitat type (Daubenmire, 1967) and landtype (Lacate, 1969) are the comparable uni ts to the plant assoc iat ion as defined in the study. The habitat type (ecotope), r e -fers to areas of land character ized by and named a f te r the predicted climax plant assoc ia t ion (Daubenmire, 1967). Ecosystem Type Type of biogeocoenosis (Sukachev, 1960) and basic ecosystem unit (Kra j ina , 1965, 1972) have been introduced to designate the second category of the biogeocoenotic in tegrat ion l e v e l . The term ecosystem type* i s proposed instead in th is study, considering i t s operational use. The type of forest biogeocoenosis as defined by Sukachev implies homogeneity of a l l biogeocoenotic components, i . e . c l imatope, s o i l (edatope), vegetation (phytocoenose), animal population (zoocoenose) The term ecosystem type, although in the d i f fe ren t context, was used by Lemieux (1963) and Or loc i (1964, 1965). and microorganisms (microbocoenose). Plant communities, c l a s s i f i e d into a plant assoc ia t ion , however, may be associated with several d i f f e ren t , though in some aspects re la ted s o i l s (Table 4, Figures 9, 10, 11 and 12). Therefore, each plant assoc ia t ion may be then fur ther subdi -vided so as to obtain more homogeneous units—ecosystem types—for the object of research and management. For instance, there are s i x d i f f e r e n t s o i l s occurr ing with the GAULTHERIA - WH - DF plant assoc iat ion in the Forest. In general , these s o i l s have some common features, such as moisture and nutr ient regime, texture, humus form and some d i f fe ren t features, such as the depth, content of coarse fragments, number and arrangement of horizons and the i r proper t ies , parent materials and taxonomic c l a s s i f i c a t i o n at the leve l of s o i l subgroup. I t i s not surpr is ing to f i nd that these s o i l s might qua l i f y to be separated at the s o i l ser ies l e v e l . I,t i s suggested that the t y p i f i e d s o i l component of the ecosystem type wi th in the l i m i t s of the p lant assoc ia t ion corresponds to a s o i l s e r i e s . So i l texture, humus form, s o i l subgroup and parent mater ial were used as d i f f e ren t i a t i ng cha rac te r i s t i cs to subdivide a plant assoc ia t ion into ecosystem types. Although the ecosystem type i s d is t inguished by homogeneity ( s im i l a r i t y ) of i t s ecotopic components (macroclimate, r e l i e f , parent mater ia ls and to a cer ta in degree a lso s o i l s ) and successional t rends, t ree layers of ind iv idua l ecosystems (biogecoenoses) may be s t i l l very heterogenous. Dif ferences in the fores t cover may a f fec t the heterogenous composition and structure of understory vegetation and TABLE 4 Plant Associat ion and Its Ecosystem Types Ecosystem Types Plant Associat ion So i l Units (Polypedons) 1. on loamy sand L i t h i c Mini Humo-Ferric Podzol with moder humus developed on moraine veneer 2. on sandy loam L i t h i c Podzol with F-mor humus developed on moraine veneer GAULTHERIA - WH - DF 3. on L i t h i c Fo l i so l with F-mor humus developed from organic veneer 4. on sandy loam Mini Humo-Ferric Podzol with F-mor humus developed on moraine blanket 5. on sandy loam Mini Humo Fer r i c Podzol with moder humus developed on g l a c i o f l u v i a l deposits 6. on loamy sand Mini and Orthic Humo-Ferric Podzols with F-mor humus developed on c o l l u v i a l veneer on Figure 9 A plant community of the GAULTHERIA - WH - DF plant assoc iat ion (the sample p lo t no. 083) Figure 10 Ecosystem type no. 1: Loamy sand L i t h i c Mini Humo-Ferric Podzol with F-rr.or humus developed on moraine veneer (the sample p lo t no. 083) Figure 11 Ecosystem type no. 2: Sandy loam L i t h i c Podzol with moder humus developed on moraine veneer (the sample p lo t no. 100) Figure 12 Ecosystem type no. 3: L i t h i c Fo l i so l with F-mor humus developed from organic veneer (the sample p lo t no. 030) 68 some s o i l propert ies mainly those of s o i l organic l aye rs . Taking into considerat ion only two key var iab les of tree l aye rs , i . e . the tree species composition and age, a great v a r i a b i l i t y and dynamics of the forest cover w i th in the same habi tat i s evident (Figure 13). A l te rna -t ing cycles of s t ruc tura l changes in the forest cover can be expected to be permanent features in managed second growth f o res t s . These var ia t ions (syngenetic un i t s , Braun-Blanquet, 1932; d e r i -vat ive biogecoenosis, Sukachev and D y l i s , 1964) of the plant assoc ia t ion re fer to various successional changes (stage, phase, sere) that can be f l o r i s t i c a l l y and eco log ica l l y def ined. They describe the composition and structure of plant communities and propert ies of s o i l s with the emphasis on the uppermost s o i l layers as compared to optimal (mature) . developmental state of the studied plant community. Forest communities uniform in the tree species composit ion, age, density and the i r environment are abstracted into fo res t stand types by a per iodic fo res t inventory. Therefore, for the purpose of forest management the var ia t ions are designated as the fores t stand types ( B r i t i s h Columbia Forest Serv ice , Inventory D i v i s i on , 1962). Di f ferent forest stand types wi th in the l i m i t s of the plant assoc ia t ion or eco-system type do not const i tu te iden t i ca l ecosystems despite the s i m i l a r i t y in the i r s o i l and vegetative c h a r a c t e r i s t i c s . However, they are s im i l a r in the process of the res tora t ion of a cer ta in tree species composition through succession, though one cannot expect the reoccurrence of the ident ica l ecosystem subsequent to various disturbances, pa r t i cu -l a r l y of the s o i l component. Figure 13 Variations of the forest cover within the l imi ts of the ecosystem type Ecosystem type: CWHa, Moss - western hemlock on sandy loam Orthic Humo-Ferric Podzol with H-mor humus, developed on moraine deposits VARIATIONS IN THE COMPOSITION OF TREE LAYERS (FULLY STOCKED, SECOND GROWTH STANDS, 80 YEARS OLD) 44 44 J K ^ jfcr Je m WESTERN HEMLOCK DOUGLAS-F IR .4, A A 9 ^Er ^E* jl& g r *g£m *<S— WESTERN REDCEDAR MIXED CONIFEROUS STAN MIXED CONIFEROUS AND DECIDUOUS STAND BROADLEAF MAPLE AGE VARIATIONS OF TrjE FOREST COVER (THE TREE SPECIES COMPOSITION: WESTERN HEMLOCK) CUT-OVER (DISTURBED OR UNDISTURBED) EARLY IMMATURE F U L L Y STOCKED IMMATURE F U L L Y STOCKED i I 4 l l t l *br- ^a- *rST-fa* £». MATURE FULLY STOCKED MATURE UNDERSTOCKED (OPEN) OVERMATURE (OLD GROWTH STAND) 70 CHAPTER 6 ECOSYSTEM UNITS - THEIR CLASSIFICATION, DESCRIPTION AND INTERPRETATION Biogeocl imat ic Units The whole area of the Forest belongs mostly to the Coastal western  hemlock zone (CWH), the macroclimate of which i s mesothermal humid to rainy (Cfb). The zone has cool summers, mi ld winters (the snow is neither very deep nor of long duration) and a long vegetative season. Loca l i t i e s above approximately 1,000 m e levat ion belong to a microthermal subcontinental (subalpine) humid macroclimate with heavy snow cover (Dfc) . At th is e levat ion along the eastern boundary there are some t rans i t i ona l features towards the Mountain hemlock forested sub-zone (MHa). Few l o c a l i t i e s below 60 m (200 f t ) e levat ion in the south-western part of the Forest belong to a mesothermal marine subhumid to humid cl imate with dry summer (Csb). The vegetative cover of the Forest may be character ized as a temperate marine ra in coniferous fores t with minor occurrence of non-forested ecosystems, developed on rock outcrops, ta lus depos i ts , avalanche tracks and semi - te r res t r ia l hab i ta ts . Western hemlock, favored both c l i m a t i c a l l y and to a cer ta in degree a lso edaph ica l l y , i s the most frequently occurr ing species in the fores t cover. I t regenerates vigorously under a fores t canopy of mesic ecosystems and 71 also anywhere e l s e , i f there i s enough accumulation of ac id raw humus or decayed wood on the fores t f l o o r , the only exception being very xe r i c or permesotrophic to eutrophic edatopes (K ra j i na , 1969). I f undisturbed, western hemlock has the greatest potent ia l among a l l other tree species to dominate the fo res t cover; therefore, i t was designated as the c l ima t i c climax species. In addi t ion to western hemlock, Doug las- f i r i s a frequently occurr ing species in both subzones of the CWH zone in second growth forests as a pioneer t ree , fol lowed by western redcedar and ambi l is f i r . The d i s t r i bu t i on of the l a t t e r species in the respect ive subzones i s , however, more confined to cer ta in parts of the edaphic spectrum than that of Doug las- f i r . At the present time the proportions of western hemlock to the other tree species may great ly vary as a resu l t of various disturbances. Predominance of several moss species (espec ia l l y Hyloaomium splendens, Ehytidiadelphus lorens and Plagiothecium undulation), low presence of herbs and the high occurrence of western hemlock in a l l s t ra ta are the cha rac te r i s t i c f l o r i s t i c features of mesic ecosystems in the CWH zone. The cha rac te r i s t i c combination of zonal species i s shown in Table 5. • Accumulation of ac id decomposition products on the forest f l o o r , leaching and t rans locat ion of mater ia ls from the upper to the lower horizons or even out of the solum were described by Kraj ina (1959, 1965a, and 1969) as preva i l ing pedogenic processes. Associated s o i l s , developed from the base poor, coarse textured g l ac i a l t i l l , were v. Table CHARACTERISTIC COMBINATION OP SPECIES FOR THE CWH ZONE, THE DRIER (CWHa) AND WETTER (CWHb) SUBZONES. Biogeoclimatic zone Biogeoclimatic subzone Associat ion CWH zone: Tsuga heterophylla Blechnum spicant Dryopteris austriaca Plagiothecium undulatum Rhytidiadelphus loreus Isopterygivm elegans Isotbecium stoloniferum Scapania bolanderi Lepidozia reptans Bazzania ambigua Bazzania denudata Tetraphis pellucida Bazzania tricrenata CWHa subzone: C o a s t a l w e s t e r n hemlock The Drier or Douglas-f ir - western hemlock The Wetter or P a c i f i c s i l v e r f i r - western hemlock 1 13 21 31 63 64 71 72 . 73 81 91 12' 41 42 51 52 53 61 62 63 91 • 101 IV 4.5 V3.3 VA.7 V6.5 V4.9 V4.0 V5.2 V 5.1 IV 3.2 V5.2 V5.4 V2.9 V5.7 V7.1 V6.8 V5.0 V5.0 I +.0 V3.7 V 4.9 V 5.4 V 3.0 I +.0 I +.5 V2.1 II 1.5 V 2.1 V 4.6 IV3.5 II 1.0 V4.2 V3.9 I +.0 I 1.7 II 1.3 V4.4 V3.6 V3.1 V1.6 1+.0 II 1.5 V3.9 V 3.3 I +.2 II 1.7 IV3.1 IV3.0 V2.7 V3.4 V3.2 V2.8 V2.7 IV2.6 I  *.o V 3.5 IV2.0 1 «-.7 IV3.0 IV2.6 II 2.2 V 3.6 V3.9 V4.6 V4.3 V3.4 V3.9 V4.1 V2.4 V2.1 V3.6 V4.0 I 1.1 V4.6 V3.7 V5.2 IV2.2 V4.3 II +.5 II 3.2 V3.4 V4.0 I 1.1 IV 3.0 V3.0 V3.5 V3.8 V3.4 II 2.7 V 3.4 V 3.9 V4.6 V4.1 V4.2 IV1.6 V4.9 V5.2 V3.3 V3.0 V5.7 V5.4 IV5.0 V3.4 V4.2 IV2.8 V 1.6 V2.5 IV1.4 IV 1.1 V 3.6 II 1.2 IV2.4 IV+.1 V2.3 IV+.8 II 1.5 IV1.8 V2.6 IV1.6 IV2.3 V 3.1 II 1.8 V4.4 V3.6 II 1.5 IV1.8 IV 4.1 V 3.3 V3.4 V3.6 V 3.1 V 3.8 V3.6 II 3.0 V3.2 I 2.3 I 1.0 I +.3 " I ».oII 1.5 IV1.7 II+.4 II 1.8 IV1.8 V3.1 I 1.0 V 1.2 V3.0 V3.8 V3.0 V3.2 V3.3 V3.3 II 2.3 V 1.8 V 3.4 V3.0 IV 2.0 V3.0 V3.5 V 1.0 V 3.8 V 3.2 V 3.0 V t.7 IV 1.3 IV 1.4 IV1.4 IV1.4 II+.7 II 1.3 V 1.0 II 1.0 IV 1.1 V 1.0 V1.3 IV1.7 IV1.2 V2.0 IV 1.4 IV 1.1 I +.0 1+.0 II 1.0 II 1.1 IV 1.1 IV +.8 IV1.2 II *.0 I +.2 IV 2.1 IV 2.4 II +.4 V2.8 V 1.6 II +.0 II 1.1 IV 2.1 I +.7 I +.0 1 1.2 II +.0 I +.3 II 1.0 1 +.0 IV 1.0 II 1.0 1 *.o II 1.0 II +.0 I +.0 I+.0 IV+.1 I +.0 I-+.0 1 +.0 1+.0 1 *.o I +.0 I *.o I +.0 I  1.0 1 +.0 1 +.0 I +.0 1+.0 I +.0 Acer macrophyllum I +.0 I+.0 11.5 IV3.7 1+.0 I 3.5 I 1.5 V5.9 II 3.3 Cornus nuttallii I +.0 I +.7 I+.0 . I 1.1 1.1.0 I +.0 II 2.7 11 1.0 Corylus cornuta I -.0 I*.0 I +.0 1 +;o I 1.5 Gaultheria shallon V 8.0 V7.7 V4.2 V4.2 IV3.0 V1.7 IV2.0 IV1.8 IV1.6 I 1.5 V4.0 V7.2 Vaccinium parvifolium V 2.2 V3.3 V2.1 V2.5 V2.2 V 2.0 V 2.4 IV2.2 V1.6 V2.0 IV1.1 IV2.3 Mahonia nervosa II 1.3 I 2.1 V 5.0 I +.3 Stokesiella oregana V 6.5 V5.8 V4.7 V5.1 V3.9 V4.1 V3.7 V4.0 V2.9 V2.7 II 2.1 V 5.6 IV 4.1 V 2.8 V 3.2 IV3.3 II 1.1 IV 1.1 . V 1.8 I+.7 I 1.0 IV 1.3 CWHb subzone: Abies amabilis Vaccinium alaskaense Menziesia ferruginea (Vaccinium ovalifolium) (Clintonia uniflora) (Cornus canadensis) (Rubus pedatus) Lycopodium selago . ( v a r . myosh.) Rhytidiopsis robusta Diplophyllum albicans Pogonatum alpinum (Rhacomitrium lanuginosum) Rhacomitrium varium . Pilophoron clavatus 1 +.0 I +.0 IV3.7 1 +.2 II 1.1 1*.0 IV1.8 V5.4 IV3.0 V4.0 V 3.3 IV 1.8 V3.2 V2.2 IV1.1 IV1.8 V2.7 V3.9 V3.9 III 2.1 IV 3.3 I 2.2 I +.3 II 3.1 1 +.0 V3.2 V4.5 V4.0 V3.9 II 3.1 I +.7 I +.5 II 2.2 1 1.3 II1.3 IV 3.3 II 1.0 II 2.0 V 5.5 IV3.0 V5.2 V5.6 V4.5 V4.6 V5.6 V2.4 V2.1 1.3 V5.5 V2.6 I +.2 . I *9 II +.6 II 1.3 IV1.6 I+.2 V 1.8 I +.8 I 1 1.3 IV 2.0 IV 1.7 IV 2.4 V2.3 V2.4 . IV+6 V3.0 V3.7 V2.1 IV1.6 IV1.7 IV1.6 I *.2 1 +.0 1*.1 I  1.0 1. +.0 I +.4 I  1.5 IV 2.8 I 1.5 1 +.0 IV1.8 I +.2 IV1.0 I 1.4 I 1.5 IV2.9 I +.0 1 1.2 I +.0 II 1.2 1 +.8 V3.4 I *.0 I 1.2 I +.0 1+.2 I  1.3 I +.0 I+.2 II 2.6 II 1.0 I +.4 V2.9 IV 1.5 II 2.B IV2.1 IV2.4 V3.0 I 1.2 I t.6 1 *.2 V2.9 V2.4 1 +.0 1 +.0 I+.4 I  1.0 II 3.2 I +.0 I  1.6 I 1.7 V6.0 IV2.7 1 +.7 II 3.2 II O " 1 +.0 I +.0 12.2 1 +.0 I  +.0 I +.1 II +.7 I *.2 1+.0 1+.0 I *.1 II *.6 I 3.5 I 1.7 1 +.0 12.0 1 *.o 1 1.0 V3.3 V4.9 V5.5 1+.0 IV2.8 I 1.4 I 1.7 II 1.2 12.0 11.0 I +.0 1+.0 II +.0 1 *.5 II +.4 II+.0 1+.0 V 2.5 II 1.0 II +.0 II t.O I +.5-IV *.o 1 t.O 1 *.o IV+.8 1 +.0 II 1.4 I +.2 V 2.9 V 1.3 II 4.6 I 1.2 V 4.2 IV +.1 73 c l a s s i f i e d as Humo-Ferric or Ferro-Humic Podzol with mor humus. They were found to be ac id and of low base sa tura t ion . Accumulation of weathering products through kao l i n i za t i on and frequent ly subsequent c lay destruct ion by organic acids i s slow. On the contrary the leaching potent ia l in the humid and p a r t i c u l a r l y perhumid cl imate i s great. Therefore, conservation of nutr ients in the vegetation or in the organic layers under these environmental condit ions helps to minimize losses of nutr ients and thus to maintain s o i l f e r t i l i t y . The CWH zone i s d is t inguished by the highest production potent ia l fo r western hemlock, Doug las - f i r , western redcedar and amabi l is f i r ( re la t i ve to other zones), although absolute f igures of fo res t produc-t i v i t y for the Forest may be lower than those in other parts of the zone. In view of that , the dominant use of many ecosystems in the Forest fo r wood production represents s c i e n t i f i c a l l y the best management opt ion. Doug las - f i r , western hemlock, western redcedar and in the CWHb subzone ambi l is f i r are the eco log i ca l l y su i tab le species to be maintained in the composition of second growth fo res t s . Simple mixtures selected from these species are bel ieved to prdduce comparable or even greater volume y ie l ds than stands composed of a s ingle species--monocultures with respect to a r e l a t i v e l y short ro tat ion age in the fu ture. Clearcut t ing with f l e x i b i l i t y in s i ze and shape according to biogeocoenotic uni ts and the i r pattern followed by immediate regeneration by plant ing of species which cannot be ex-pected to regenerate natura l l y are proposed as an adequate s i l v i c u l t -74 ural system for th is part of the CWH zone. Se lec t i ve (ecosystem-speci f ic) use of s lash f i r e s i s mandatory in re la t i on to the conservation of nu t r ien ts , p a r t i c u l a r l y n i t rogen. A shelterwood system might be a lso successfu l ly appl ied as a v iab le subs t i tu te , to selected ecosystems. Combination o f mountainous r e l i e f , the macroclimate and l i t h o -l og i ca l d i scon t i nu i t i es gives a great potent ia l to s o i l e ros ion. The upper s o i l layers and horizons are eas i l y removed when the cont inu i ty of vegetative cover i s interrupted over large areas and espec ia l l y i f s o i l organic layers are destroyed by s lash f i r e s . When the e f fec t i ve rooting depth i s s i g n i f i c a n t l y reduced, a change to less productive eco-systems of the Pseudotsugetal ia menziesi i i s i nev i t ab le . An increase in r a i n f a l l and snowfall and a decrease of tempera-ture along the a l t i t u d i n a l gradient are associated with changes of other c l ima t i c parameters and consequently with changes in s o i l s and vegetat ion. On th is basis two d i f fe ren t subzonal var ia t ions of the macroclimate were recognized in the Forest represented by the d r i e r and the wetter b iogeocl imat ic subzones of the Coastal western hemlock zone. Their d i v i s i on occurs between 2,550 to 2,800 mm (100-110 in) isohyets ( O r l o c i , 1964, 1965), corresponding approximately to the e levat ion range from 300 to 400 m (1 ,000 - 1 ,300 f t ) . Mountainous r e l i e f , however, may great ly modify the c l ima t i c pat tern. Ra in fa l l recorded in the deep v a l l e y s , such as the eastern va l ley containing Marion Lake, may be f a r heavier than the a t t i t u -dinal pos i t ion would suggest. In th i s case the r a i n f a l l i s strongly inf luenced by a combination of the surrounding r idges with a progres-75 s i ve l y increasing a l t i t ude in the eastern d i r ec t i on and the narrow width of the va l ley causing a i r masses cont inua l l y to r i s e . Therefore, subzonal boundaries cannot be expected to fo l low a r b i t r a r i l y contour l i nes but t he i r pos i t ion must correspond to the pat tern of ecosystems cha rac te r i s t i c fo r each subzone, i n general» and to the occurrence of mesic ecosystems, in pa r t i cu l a r . The Dr ier Douglas- f i r - western hemlock subzone (CWHa) was iden-t i f i e d in the southern part of the Forest and i t s boundary was regis tered on the synecological map. The mean annual p r e c i p i t a t i o n i s less than 2,800 mm (110 i n ) . Snow depth and the duration o f the snow cover are i n s i g n i f i c a n t . As a resu l t of the warmer summer and longer vegetative season than in the CWHb subzone more complex and d i v e r s i f i e d ecosystems are present. Figure 14 shows the re la t ionsh ips between potent ia l evapotrans-p i r a t i on and p rec ip i ta t i on as wel l as water economy ca lcu la ted fo r the f u l l record of the Haney, U . B . C . R . F . , Marc s ta t ion fo l lowing Thornthwaite (1948) (c f . Major, 1963). This re la t i onsh ip suggests that there i s no s o i l moisture def ic iency in the CWHa subzone in the Forest . G r i f f i t h (1960) reported that even rap id ly drained s o i l s in th is sub-zone had ava i lab le water during a l l weeks i n summer on an average basis fo r f i v e years of record. However, MacMinn (1957, 1960, 1965) found s o i l moisture d e f i c i t s in the rap id ly drained s o i l s of the GAULTHERIA -DF assoc ia t ion in the CWHa subzone on Vancouver I s land . 76 E u c o •ri •P id u •H Ck m u -p o id > 0) c O D, •O CL, F M A M J A S N 0 J Water surplus S o i l waterl F W a t e r ' * discharge deficiency recharge Figure 14 Relat ionships between potent ia l evapotranspirat ion and p r e c i p i -ta t ion (af ter Thornthwaite 1948, c f . Major 1963) Note: Up to the point A there i s s o i l water surp lus . In June, p rec ip i ta t ion so i l - s t o red water i s being discharged to s a t i s f y vegetation needs, however, no s o i l water def ic iency is expected. From the point B to the point C cur-rent prec ip i ta t ions exceed water losses by evapotranspirat i on and s o i l i s being recharged to f u l l storage capacity which i s reached at the point C in October. Then, water surplus over current needs becomes streamflow. Rela t ive ly high mean annual p rec ip i ta t ion (over 2,000 mm) i s mainly responsible for the lack of very xe r i c ecosystems of the Pseudotsugetalia menziesi i plant order. This would ind icate that the CWHa subzone in the Forest has the pattern of ecosystem uni ts which i s rather cha rac te r i s t i c for i t s wetter par t . The MOSS - WH [Rhytidiadelpho ( l o r e i ) - P lag io thec io (undu la t i ) -Pseudotsugo (menz ies i i ) - Tsugetum heterophyl lae] assoc ia t ion on Orth ic or Mini Humo-Ferric.Podzol with f r i a b l e mor humus i s i d e n t i f i e d as the mesic ecosystem. The Wetter P a c i f i c s i l v e r f i r - western hemlock subzone (CWHb) occurs in the northern part of the Forest. I t has the annual to ta l p rec ip i ta t i on in excess of 2,800 mm (110 in) and a lower mean annual temperature than in the CWHa subzone by 2.2°C ( E i s , 1962a, 1962b). No s o i l moisture def ic iency during the shorter vegetat ive season i s expected in most of the s o i l s . The VACCINIUM - MOSS - WH [Rhytidiopsido (robustae) - Vacc in io (a laskens i s ) - Menziesio ( fer rug ineae)- Tsugetum heterophyl lae] a s s o c i -at ion on Orthic Humo-Ferric Podzols with mycel ial mor humus i s i d e n t i f i e d as the mesic ecosystem. Due to abundant supply of moisture, s o i l water i s removed only wel l to moderately wel l even from shal low, coarse textured s o i l s on mountainous s lopes, in th is part of the Forest. These circumstances promote the establishment of the Tsugetal ia heterophyl lae over most of the habi ta ts . D is t r ibu t ion of the Pseudotsugetal ia menziesi i i s l im i ted to xe r i c habitats and the Thuje ta l ia p l i ca tae are confined to 78 f looded hygric and subhydric hab i ta ts . Re la t i ve l y sharp r e l i e f d i f ferences in the northern part of the Forest account also for a d i s t i n c t temperature pattern of c r e s t s , ridges and summits and depressions, containing lakes . These l o c a l i t i e s are cha rac te r i s t i c of temperature extremes and general ly lower tempera-tures than neighbouring s lopes. I t i s not then surpr is ing to f i nd scattered vegetation elements of the neighbouring Mountain hemlock zone, such as Tsuga mertensiana, Chamaeoyparis nootkatensis3 Gaultheria ovatifolia, Phyllodoce empetri formis 3 Cladothamnus pyrolaeflorus3 Cassiope mertensiana, and other species. Two a l t i t u d i n a l var ia t ions of the wetter subzone may be rec-ognized in the area: the submontane--where most of the p rec ip i t a t i on f a l l s in the form of ra in and the vegetation season i s n o t . s i g n i f i c a n t l y d i f fe ren t from that of the CWHa subzone, i . e . about twenty-seven weeks (E i s , 1962b), and the montane--where the winter p rec ip i t a t i on i s . i n the form of snow and consequently the vegetation season, due to a long-ly ing snow cover, i s s i g n i f i c a n t l y shorter with the durat ion of twenty-four weeks or less ( E i s , 1962b). Even i f ra in i s not f a l l i n g , large amounts of water are often deposited on the vegetation in the montane wetter subzone during low pressure weather disturbances from low ly ing clouds, and through condensation. This subzonal va r ia t i on extends from about 670 m (2,200 f t ) e levat ion to 1,000 m (3,300 f t ) . The cha rac te r i s t i c combination of species for each subzone i s given in Table 5. Dif ferences in management in terpre ta t ions between the subzones are based pr imar i l y on the tree species se lec ted. While in the CWHa subzone Douglas- f i r w i l l be the leading species in most of the hab i ta ts , i n the CWHb subzone, p a r t i c u l a r l y i n the montane v a r i a t i o n s , i t should be proport ionately reduced and l i m i t e d , mainly to xe r i c or to hygric habitats in the lower e levat ional l i m i t . O v e r a l l , a low species s ign i f i cance of Douglas- f i r i n the tree layers of na tu ra l l y regenerated o ld or second growth stands over 670 m (2,200 f t ) i n the Forest , points out adverse c l ima t i c condit ions fo r which th i s tree species i s not adapted. Even when planted over large areas, damage by snow w i l l progressively el iminate many ind iv idua ls in ear ly stages or permanently a f fec t t he i r growth rate (Figures 15 and 16). Western hemlock with var iab le proport ions of amabi l is f i r , western redcedar and yellow-cedar should form the tree species composi-t ion in second growth stands over most of the habitats i n the montane CWHb subzone. Western hemlock i s the heaviest seed producer of these spec ies , so that natural regeneration (whether advanced or subsequent to harvesting) could be the p reva i l ing form of re fo res ta t i on . I ts root system i s dense but l a rge ly confined to the s o i l organic l aye rs . Therefore, slashburning e f f e c t i v e l y reducing s o i l organic l aye rs , destroying advance natural regeneration and poss ib ly tree seed stored in the humus l a y e r s , should not be appl ied. S i m i l a r i t y of parent mater ia ls , h is tory and vegetation a f f i n -i t i e s offered an opportunity to examine d i f ferences between the s o i l s of mesic ecosystems in the CWHa and the CWHb subzones. So i l ana ly t i ca l data from seven sample plots in the CWHa and eleven sample p lots in Figure 15 Snow damage in a young immature Doug las- f i r stand in the montane CWHb subzone Figure 16 Snow damage in a mature second growth stand of Doug las- f i r in the montane CWHb subzone 81 the CWHb were used to ca lcu la te average ana ly t i ca l values for LFH, a l b i c and spodic horizons in each subzone (Table 6 ) . Comparison of the obtained modal s o i l p r o f i l e s and propert ies with respect to mean values for a number of cha rac te r i s t i cs indicated both s i m i l a r i t i e s and d i f fe rences. The s i m i l a r i t i e s resul ted in the iden t i ca l c l a s s i f i c a t i o n of the s o i l s as Orthic Humo-Ferric Podzols with H-mor humus (Figures 17 and 18). Humus layers were found to be t h i ck , very ac id and with a wide C/N r a t i o . White and yel low fungi mycelia and fragments of decayed wood were present in s i gn i f i can t amounts. Considerable var ia t ions in thickness were apparent fo r both subzones, which were re la ted to the hummocky surface underneath western hemlock stands. Humus layers appeared to be more f r i a b l e in the CWHa subzone, than in the CWHb sub-zone, where they were compacted and matted by abundant roots of western hemlock. Higher pH and' to ta l N l e v e l s , and espec ia l l y lower C/N ra t i o were found in the CWHa subzone, which tend to r e f l e c t greater degree of decomposition, N minera l i za t ion rates and b io log i ca l a c t i v i t y than in the CWHb subzone. Exchange propert ies of the LFH horizons were not markedly d i f f e ren t . A l l exchangeable cat ion concentrations were low, with Ca being the la rgest contr ibutor to base sa tu ra t ion . Cation exchange capacity in the CWHa subzone was rather l a rge , con-s ider ing s i m i l a r proportions of L, F, and H layers in both subzones. This may be a t t r ibu ted to d i f ferences in funct ional groups of organic c o l l o i d s , between the subzones which number increases as decomposition TABLE 6 Some Chemical Properties of the Modal Soi ls of Mesic Ecosystems in the CWHa and CWHb Subzones Horizon Number of Samples Thickness (cm) PH (H20) Total c ( « ) Total N ( « ) • C/H Exch. Cat. ( meq/LO 0 gm) CEC (meq/ 100 gm BS (*) Oxal. Exch. Ca: Exch. Mg Exch. Ca: Exch. K Ca Mg Na K Fe Al Fe Al CWHa, Mo LFH Ae Bf ss - WH or 7 5 18 i Sandy Loam 11.1 4.4 85.4 Orthic H 3.88 3.94 4.82 jmo-Ferri 50.63 4.17 2.64 c Podzol 1.47 0.22 0.15 with H-m 34.5 17.7 16.9 or Humu 13.96 1.77 0.23 s Devel 2.24 0.25 0.04 oped o 0.59 0.09 0.06 n Mora 1.61 0.20 0.07 ne Deposi 166.0 36.7 23.9 ts 11.1 6.3 1.7 0.18 0.63 0.09 1.97 0.06 0.12 0.24 0.23 0.18 0.85 6.2 7.1 5.7 8.6 8.8 3.8 CWHb, VA LFH Ae Bfh XINIUM -11 10 . 14 MOSS - WH or 11.8 13.9 41.2 Sandy L( 3.62 3.63 4.74 3am Orthi 50.77 2.47 3.55 c Humo-Fe 1.26 0.19 0.16 r r i c Pod 42.1 16.4 28.7 zol wit 10.00 0.39 0.11 l H-mor 2.73 0.13 0.06 Humus 0.62 0.07 0.06 Develc 2.53 0.26 0.09 >ped on Mo 188.8 12.7 31.1 raine Dep 14.5 6.7 1.3 DSitS 0.14 1.07 0.06 2.08 0.05 0.04 0.41 0.14 0.07 1.01 3.7 3.0 1.8 3.9 1.5 1.2 co to Figure 17 A representat ive s o i l of mesic eco-systems in the CWHa subzone: sandy loam Orth ic Humo-Ferric Podzol with H-mor humus (the sample p lo t no. 032) Figure 18 A representative so i l of mesic eco-systems in the CWHb subzone: sandy loam Orthic Humo-Ferric Podzol with H-mor humus (the sample p lo t no. 044) .co 84 progresses. Differences in humus f rac t ions and op t ica l propert ies of humic acids in s o i l organic layers between the subzones were reported by K l inka and Lowe (1976a, 1976b) (Table 10). TABLE 7 Some Propert ies of Humic Fract ions in So i l Organic Layers of the Mesic Ecosystems Biogeo-c l ima t i c Subzone Humic Acid Fu lv ic Acid HA & FA Carbon of HA: Carbon of FA (Ch : Cf) E 4 / 6 "I0/ E/mn Of HA 400nm (% of Total Organic Matter) of HA CWHa CWHb 27.5 28.2 24.5 14.2 52.0 42.4 1.13 2.01 6.16 6.04 32.5 41.8 Proportions of humus fract ions[humic acids (HA) and f u l v i c acids (FA)] and op t ica l propert ies of humic acids appeared to be re la ted to c l imate , edaphic condit ions and l i t t e r o r i g i n . Increasing moisture leve ls were associated with increasing humic ac id leve ls and contrary to what might be expected from the Russian l i t e r a t u r e (Kononova, 1966), with increasing Ch : Cf r a t i o . I t was suggested that lower leve ls of f u l v i c acids in the CWHb subzone may wel l be due to greater downward movement of mobile f u l v i c ac id components, p a r t i c u l a r l y when more marked d i f f e ren t i a t i on of the underlying mineral horizons i s taken in to considerat ion. High ex t inc t ion ra t i o (E4/5) and low ex t inc t ion 1% coe f f i c i en t (E^QOnm^ ° f humic acids ( re la t i ve to other ecosystems) 85 were charac te r i s t i c fo r both subzones. The authors concluded that accumulation of r e l a t i v e l y immature humic acids i s i nd i ca t i ve of the environment imposing considerable res t ra in ts on microb io log ica l a c t i v i t y and hence humus synthesis as a resu l t of low pH, low temperatures, excessive moisture and l i t t e r material low in bases. The di f ference in thickness of the a l b i c horizons between the subzones was the most conspicuous morphological feature. In add i t i on , there were also marked di f ferences in co lo r and texture. In the CWHa subzone the a l b i c horizon was sandy loam and reddish gray (5 YR 5 /2 ) , whereas in the CWHb subzone i t was loam to s i l t loam and gray (10 YR 6/1) . This was para l le led by a sharp decrease in pH, to ta l C, to ta l N and extractable Fe and Al in the CWHb subzone. These di f ferences re f l ec t more intensive leaching and e l l u v i a t i o n of mater ia ls from the upper s o i l layers and the i r t rans locat ion to the lower port ion or out of the solum in the wet subzone. Color of the podzol ic horizons was s i m i l a r ; reddish brown (5 YR 4/4) "in the CWHa subzone and reddish brown to ye l lowish red (5 YR 5/4-6) in the CWHb subzone. Although the s o i l s in both subzones were coarse textured and c lay content was very low, increased amounts of c lay were detected for the Bfh horizon in the wet subzone. Levels of pH, to ta l N, exchange propert ies and base saturat ion a lso showed s i m i l a r i t y . Extractable Fe and Al l eve ls confirmed the c l a s s i f i c a t i o n of the podzol ic hor izons, which were designated as Bf in the CWHa and as Bfh in the CWHb subzone based on di f ferences in organic matter content. Levels of extractable Fe and Al increased in both subzones, however, the increase was more prominent in the CWHb subzone and, 86 furthermore, i t was associated by an increase in organic matter. Whether th i s t rans locat ion i s re la ted to the lack of f u l v i c ac id in humus layers of these s o i l s remains to be fur ther s tud ied. These, apparently highly mobi le, f u l v i c acids can mobi l ize Al and, complexed with Fe, they move downward and p rec ip i ta te in the Bfh hor izon. Consistent ly decreasing leve ls of exchangeable cat ions with depth and extremely low base saturat ion of mineral horizons in both subzones suggest that in the course of podzol formation accumulation of Ca, Mg, Ma, and K does not take p lace. These elements are e i ther concentrated in s o i l organic layers or mostly removed from the s o i l solum by leach ing, as i t had been a lso reported by Lesko (1961). The storage of nutr ients in the biomass or in s o i l organic layers humus layers of amphimesic (and p a r t i c u l a r l y of xe r i c habi tats) appears to be v i t a l , i f rap id deplet ion of the nut r ient cap i ta l i n the CWH zone i s to be avoided. Losses of mater ia ls by leaching can be, however, o f fse t by the i r addi t ions through weathering. The ra t io of exchange-able Ca to exchangeable Mg i s an ind ica to r of r e l a t i ve weathering and degree of s o i l development (Buol et aZ. ,1973) . This r a t i o i s lower in a l l horizons of the modal s o i l representat ive of the CWHb subzone. The s im i l a r trend was also found fo r the ra t i o of exchangeable Ca to exchangeable K. The greater and consistent deplet ion of Ca re l a t i ve to Mg or to K in the wet subzone might be then suggestive of more intensive weathering and more advanced s o i l development. Finer texture of the respect ive Bfh horizons seems to support t h i s deduction. Chemical weathering tends to proceed r a p i d l y , i f products of weathering are leached through the continual downward movement of percolat ing water (Loughnan, 1969). 87 The major i ty of both nutr ients and roots of fo res t trees i s concentrated in the humus layers of both s o i l s . Mor humus i s character-ized by slow decomposition by fungi and hence slow release of nutr ients and energy u t i l i z e d by s o i l microorganisms and even by higher plants l i v i n g in mycorrhizal symbiosis. I t may be possib le that in the ecosystem with mor humus in the CWH zone an organic nut r ient cycle predominates for many plant spec ies , inc luding trees (e .g . Abies amabilis), i . e . from organic mater ials to mycorrhizal fungi and then to plant roots. Such cycle has been termed d i rec t nut r ient cyc l ing (Frank, 1894; Stark, 1971), mainly because the nutr ients never leave an organic state fo r any appreciable amount of time and do not have a prolonged existence in the so lu t ion phase. The main feature of a d i rec t nut r ient cycle i s a conservation of nutr ients in s o i l organic l a y e r s , where the mycorrhizae permeate and act as a net to prevent the t rans fer to a soluble or mineral cat ion exchange phase (Hoi l e y , personal communication). This d i rec t nutr ient cyc le could be prominent in base poor s o i l s with low cat ion exchange capacity and in high leaching environment, where the t ransfer of nutr ients to mineral exchange complex means t he i r probable losses . It can be concluded that s o i l formation in both subzones i s governed by s im i l a r pedogenic processes but the s o i l s had varying expression of propert ies examined. I f accumulation of acid humified materials on the forest f l o o r , leach ing, t rans locat ion of organic matter and sesquioxides are considered to be the main cha rac te r i s t i c s of Podzols, then the i r formation in the CWHb subzone i s more in tensive 88 and pronounced. The prominent development of a l b i c horizon and accumulation of organic matter in the podzol ic horizon were of pa r t i cu -l a r s i gn i f i cance . This was a t t r ibu ted to the in te r re la ted e f fec ts of spec i f i c humus mater ials developed underneath western hemlock stands and of the macroclimatic se t t ing of the CWHb subzone. / • . C l a s s i f i c a t i o n of Synsystematic Units Four orders, ten a l l i a n c e s , twenty assoc iat ions and seventy ecosystem types are recognized in the Forest . A synopsis of synsystem-a t i c uni ts i s given in Table 8. Charac te r i s t i c combinations of species for the orders, a l l i a n c e s , and plant associat ions are presented in Table 9. Values given in th is table are Constance c lass and mean species s i gn i f i cance . The species which do not character ize the above mentioned synsystematic uni ts are ei ther, companions (more commonly occurr ing plants in many plant associat ions) or acc identa ls (occurr ing usual ly as cha rac te r i s t i c species in some other synsystematic uni ts) (Appendix X I I , Table 24). Complete vegetation-environment data for the units are included in the tabular form in Appendix XI I . The terminology used to describe the hab i ta t , input spec i f i ca t i ons and de ta i l s with explanatory notes to the environment-vegetation tables are given in Appendix XI . S c i e n t i f i c nomenclature of vegetation units fol lowed standard phytosociological pract ices (Braun-Blanquet, 1928; Drees, 1953; Neuhausl, 1968) to indicate systematic rank. Unit designations are Table 8. Synopsis of synsystematic units Indicating levels of generalization and relatlonshl Order Alliance I Pseudotsugetalia menziesii 1 Gaultherlo (shallonls) - Pseudotsuglon menziesii Krajina 1969 Kllnka S Krajina (n.n.; Kojlma J Krajina 1971: Gaulther!on shallonls) GAULTHERIA - DOUGLAS-FIR II Tsugetalla heterophyllas 2 Plaglotheclo (undulatl) - Rhytldladelpho. (lorel) -Krajina 1969 - Pseudotsugo (menziesii) - Tsuglon heterophyllae Kllnka 1 Krajina MOSS - WESTERN HEMLOCK Association and subassoclatlon 11 Cladlno (ranglferlnae) - Peltlgero (aphthosae 1 membranaceae) - Gaultherlo (shallonls) -. - [Pino (contortae)] - Pseudotsugetuoi menziesii (n.n.; Orloci 1964: Cladonleto - Pseudotsugetum menziesii; McMlnn 1957: Pseudotsuga men-ziesii - Plnus contorta - Gaultheria shallon - Peltlgera canlna - Peltlgera aphthosa) CWHa, (LICHEN) - GAULTHERIA - DF 12 Cladlno (ranglferlnae 1 arbusculae) - Dlcrano (ho«ell l ) - Rhytldlopsldo (robustae) - Rha-comltrio (lanuglnosl) - Vacclnlo (alaskaensls) - Gaultherlo (shallonls) - Pino (contortae) -- Pseudotsugetum menziesii Kllnka S Krajina [n.n.; Krajina 1969: Peltlgero (aphthosae) - Rhytldlopsldo (robustae) -- Mahonlo - Vacclnlo (membranacel) - Arctostaphylo (uvae-ursi) - Pino (contortae) - Pseu-dotsugo - Tsugetum (heterophyllae S mertenslanae)] CWHb, LICHEN - GAULTHERIA - LP - DF 13 Stokeslello (oreganae) - Hylocomio (splendentls) - Gaultherlo (shallonls) - Pseudotsugetum menziesii (n.n.; Orloci 1964: Gaultherleto - Pseudotsugetum menziesii; McMInn 1957: Pseudotsuga men-ziesii - Gaultheria shallon) CWHa, GAULTHERIA - DF 131 plagiothecio (undulatl) - rhytldladelpho (lorel) - tsugo (heterophyllae) - pseudotsugetosunt menziesii (n.n.; Orloci 1964: Gaultherleto - Pseudotsugetum menziesii tsugetosum heterophyllae) CWHa, Gaultheria - WH - DF 132 plagiothecio (undulatl) - rhytldladelpho (lorel) - mahonlo (nervosae) - tsugo (heterophyllae) -- pseudotsugetum menziesii (n.n.; Orloci 1964: Gaultherleto - Pseudotsugetum menziesii tsugetosum heterophyllae mahonlosum nervosae) CWHaSb, Mahonla - Gaultheria - WH - DF 21 Rhytldladelpho (lorel) - Plagiothecio (undulatl) - Pseudotsugo (menziesii) - Tsugetum heterophyllae (n.n.; Orlcd 1964: Tsugetum heterophyllae) CWHa, MOSS - WH CO Table 8. Synopsis of synsystematic units Indicating levels of generalization and relationships Order Alliance 3 Hylocomlo (splendentls) - Polystlcho (munltl) - Pseu-dotsugo (menzlesll) - Tsuglon heterophyllae Kllnka 8 Krajina [n.n.; Kojlna 8 Krajina 1971: Hylo-comlo (splendentls) - Pseudotsugo (menzlesll) - Tsu-glon heterophyllae] MOSS - (POLYSTICHUM) - WESTERN HEMLOCK 4 Rhytldlopsldo (robustae) - Vaccinlo (alaskaensls) -Menzleslo (ferruglneae) - Tsuglon heterophyllae Kllnka 8 Krajina VACCINIUM - WESTERN HEMLOCK 5 Rhytldladelphe (lorel) - Plaglotheclo (undulatl) -Blechno (spicantls) - Vaccinlo (alaskaensls) - Men-zleslo (ferruglneae) - Ableto (amabllls) - Tsuglon heterophyllae Kllnka 8 Krajina [n.n.j. Kojima 8 Krajina 1971: Vacci-nlo (alaskaensls) - Ableto (amabllls) - Tsuglon hete-rophyllae BLECHNUM - AMABILIS FIR - WESTERN HEMLOCK (continued) Association and subassoclatlon 211 rhytldladelpho (lorol) - plaglotheclo (undulatl) - pseudotsugo (nenzlesll) - tsugetosun heterophyllae (n.n.; Orlocl 1964: Tsugetum heterophyllae plaglothectetosum undulatl) CWHa, Moss - WH 212 stokes!el 1 o (oregant) - hylocomlo (splendentls) - nation!o (nervosae) - pseudotsugo (nen-zlesll) - thujetosuot plicatae (n.n.; Orlocl 1964: Tsugetum heterophyllae plaglothecletosun undulatl nahonlosum nervosae, Tsugetun heterophyllae eurhynchletosun oreganl) CWHaSb, Mahonla - moss - WRC - WH 31 Hylocomlo (splendentls) - Plaglotheclo (undulatl) - Polystlcho (munltl) - Pseudotsugo (aenzlesll) - Thujo (plicatae) - Tsugetun heterophyllae (n.n.; Orlocl 1964: Polystlcheto - Thujetun plicatae tsugetosun heterophyllae CWHaSb, MOSS - (POLYSTICHUM) - WRC - WH 41 Pleurozlo (schreberl) - Rhytldlopsldo (robustae) - liaultherlo (shallonis) - Vaccinlo (alas-kaensls) - Pseudotsugo (nenzlesll) - Tsugetun heterophyllae (n.n.; Orlocl 1964: Gaultherieto - Tsugetun heterophyllae) CWHb, VACCINIUM - GAULTHERIA - DF - WH 42 Rhytldlopsldo (robustae) - Vaccinlo (alaskaensls) - Menzleslo (ferruglneae) - Tsugetun hete-rophyl1 as (n.n.; Orlocl 1964: Ableto - Tsugetun heterophyllae) CWHb, VACCINIUM - MOSS - WH 51 Rhytldladelpho (lorel) - Plaglotheclo (undulatl) - Blechno (spicantls) - Vaccinlo (alaskaensls) - Menzleslo (ferruglneae) - Ableto (amabllls) - Tsugetum heterophyllae (n.n.; Orlocl 1964: Blechneto - Tsugetun heterophyllae) CWHb. BLECHNUM - AF - WH 52 Rhytldladelpho (lorel) - Streptopo (amplexlfolil 8 streptopoldtl) - Blechno (spicantls) -- Vacclnio (alaskaensls) - Ableto (amabllls) - Tsugetum heterophyllae (n.n.; Orlocl 1964: Blechneto - Tsugetum heterophyllae streptoposum rosel) CWHb, BLECHNUM - STREPTOPUS - AF - WH Table 8. Synopsis of synsystematic units Indicating levels ef generalization and relationships Order Alliance Thujetalia plicatae 6 Stokeslello (oreganl) - Hylocoml* (splendentls) - Poly-Krajlna In Brooke 1965, Kra- stlcho (munltl) - Pseudotsugo (menziesii) - Thujlon pll jlna 1969, Brooke e t a l , 1970 catae Kllnka 1 Krajina MOSS - POLYSTICHUM - DOUGLAS-FIR - WESTERN REDCEDAR 7 Plaglomnle (insignis) - Tlarello (trlfollatae) - Poly-stlcho (munltl) - Thujlon plicatae Kllnka S Krajina TIARELLA - POLYSTICHUM - WESTERN REDCEDAR Association and subassoctatton 53 Dlplophyllo (alblcantls) - Rhytldladelpho (lorel) - Plagiothecio (undulatl) - Blechno (splcantls) - Vacclnlo (alaskaensls) - Gaultherlo (shallonls) - Ableto (amabilis) -Tsugo (heterophyllae S mertenslanae) -Thujetum plicatae CWHb, BLECHNUM - WH - WRC / 61 Rhacomltrlo ( heterostlchi S canescentts) - Rhytldladelpho (lorel) - Blechno (splcantls) -Gaultherlo (shallonls S ovatlfollae) - Vacclnlo (alaskaensls) - Rlbeso (lacustrls) - Ace-retum clrcinatl CWHb, RIBES - VM 62 Heterocladic (macounll) - Hylocomlo (splendentls) - Polypodlo (glycyrrhlzae) - Pseudotsu-go (menziesii) - Thujetum plicatae CWHaSb, POLYPODIUM - GAULTHERIA - DF - WRC 63 Hylocomlo (splendentls) - Polypodlo (glycyrrhlzae) - Polystlcho (munltl) - Acero (macro-phylll S clrcinatl) - Pseudotsugo (menziesii) - Thujetum plicatae CWHaSb. POLYPODIUM - POLYSTICHUM - DF - WRC 64 Stokeslello (oreganl) - Polystlcho (munltl) - Mahonlo (nervosae) - Pseudotsugo (menziesii) - Thujetum plicatae CWHaSb, MAHONIA - POLYSTICHUM - DF - WRC 71 Plaglomnlo (insignis) - Tlarello (trlfollatae) - Polystlcho (munltl) - Pseudotsugo (menzle s l l ) - Thujetum plicatae (n.n.; Orloci 1964: Polystlcheto - Thujetum plicatae) CWHaSb. TIARELLA - POLYSTICHUM - WRC 72 Plagiomnio (insignis) - Tlarello (trlfollatae) - Athyrlo (flllcls-femlnae) - Polystlcho (munltl) - Rubo (spectabtls) - Thujetum plicatae (n.n.; Orloci 1964: Thujeto- Blechhetui rubetosum VltlfoTIl) CWHaSb; RUBUS - POLYSTICHUM - WRC 73 Leucolepldp (menziesii) - Plaglomnlo (insignis) - Adlanto (pedatl) - Athyrlo (flUcls-feml - Polystlcho (munltl) - Acero (uacrophyllt) - Pseudotsugo (menziesii) - Thujetum plicatae CWHaSb, ADIANTUM - POLYSTICHUM - WRC Table 8. Synopsis of synsystematic units Indicating levels of generalization and relationships (continued). Order IV Populetalla balsamlferae Krajina 1969 Alliance 8 Oplopanaco (horrldl) - Thujlon plicatae Kllnka S Krajina ( n.n.; Krajina In Brooke 1965, Brooke et a l . 1970: Oplopanaclon horrldl) 9 Lystchlto (amerlcanl) - Thujlon plicatae Kllnka S Krajina (n.n.; Krajina in Brooke 1965, Brooke et.al,1970: Lyslchltlon amerlcanl) LYSICHITUM - WESTERN REDCEDAR 10 Alnion rubrae S slnuatae Kllnka S Krajina RED ALDER - SITKA ALOER Association and subassoclatlon 81 Plaglomnlo (Insignis) - Leucolepldo (menzlesll) - Oplopanaco (horrldl) - Acero (clrclnatl) -- Thujetuit plicatae (n.n.; Orlocl 1964: Oplopanaceto - Thujetuti plicatae CWHaSb. 0PL0PANAX - WRC 811 plagiomnlo (insignis) - leucolepldo (menzlesll) - oplopanacb (horrldl)— acero.(clrclnatl)--- thujetosum plicatae CWHaSb, Polystlchum - Oplopanax - WRC 812 sambuco (pubentls) - rlbeso (bracteost) - thujetosum plicatae CWHaSb, Rlbes - Oplopanax - WRC . ( 91 Stokeslello (praelongl) - Rhlzomnlo (perssonll) - Athyrto (flltcls-femlnae) - Lysfchlts (amerlcanl) -Vaccinlo (alaskaensls) -Thujetum plicatae (n.n.; Orlocl 1964: Lyslchlteto - Thujetum plicatae) CWHaSb, VACCINIUM - LYSICHITUM - WRC 911 stokeslello (praelongl) - rhlzomnlo (perssonll) - athyrlo (flllcls-femlnae) - lyslchlto (amerlcanl) - vaccinlo (alaskaensls) - thujetosum plicatae (n.n.; Orlocl 1964: Lyslchlteto CWHaSb, Vaccinium - Lysichitum . . Thujetum plicatae vacclnletosum alaskaensls) WRC 912 plaglotheclo (undulatl) - rhlzomnlo (perssonll) - copteto (asplenlfolll S t r l fo l l l ) - l y s l -chlto (amerlcanl) - vaccinlo (alaskaensls) - chamaecypartdo (nootkatensls) - thujetosum plicatae (n.n.; Orlocl 1964: Copteto - Thujetum plicatae) CWHb, Vaccinium - Lysichitum - YC - WRC 101 Hypno (dieckii) - Athyrlo (flllcls-femlnae) - Arunco (sylvestrls) - Lonlcero (Involucratae) - Rubo (spectabills) - Al neturn rubrae S slnuatae CWHb, ATHYRIUM - ARUNCUS - RA - SA Abbreviations used here are explained In the following text. ro T a b l e 9. CHARACTERISTIC COMBINATION OP SPECIES POR THE ORDERS, ALLIANCES AND ASSOCIATIONS. 1 PSEUDOTSUGETALIA Order KH2IESII Alliance t Association 11 12 13 Biogeoclimatic subzone a b « Number of plots 5 4 ia Order I and Alliance li Pseudotsuga menziesii V5.5 V J.2 V 1.1 Gaultheria shallon V 8.0 V 7.2 V 7.7 Vaccinium parvi folium V 2.2 IV 2.3 V 3.3 (Holodiscus discolor) III 1.0 II t.5 Amelanchior alnifolia 1 t.2 II t.O 1 -.0 Rosa gymnncarpa I •.!) ! t.O Luzula multiflora 1 t.o II ..3 1 t.O Festuca occiden talis II t.O 1 t .o Hieracium albiflorum II ».o Stokcsiclla oregana V 6.5 II ».J v s.e Die ran um howellii V 4.0 V 5.0 IV 1.1 Ceratodon purpureus 1 ..0 ssociation 11i Polytrichum juniperinum IV 1.0 III 1.1 1 . . o Peitigera membranacea IV 1.2 III 1,0 1 t.o Peltigera aphthosa IV 1.0 III '.6 Cladonia impcxa 1 t.O Cladonia macrophylla 1 ..0 Grimmia apoca rpa 1 ..0 II TSUGEFAIA KTES0PHYLUE 2 3 4 5 21 31 41 ' 42 51 52 53 • •lb b b b b b 14 11 6 12 13 5 6 V 6.0 V5.4 V 3.9 III 3.5 IV 4,4 III t.4 V 4.2 V 4.2 V 5.6 IV 4.1 V 2.8 V 1.2 V 2.1 V 2.5 IV 3.3 III 1.1 IV 1.1 V I.B 1 t.2 V 4.7 V5.1 1 t.7 II 1.0 IV 1.3 II t.7 IV 2.6 II 2.7 III t.7 III 1.2 III 2.3 1 t.o II t.4 1 t.O Ml THUJETALIA rllCAItf 6 7 t 9 61 62 63 64 71 72 73 81 91 b • lb alb • lb • lb • lb • • lb • lb 5 6 19 6 13 11 4 12 11 IV POMIX ULIA 8ALSAJJ MIFERAE 10 101 b IV 1.6 IV 1.6 II ..6 II ..4 III 1.1 V 2.7 IV 4.0 V 3.6 V-5.0 V5.2 IV 5.1 III 3.3 IV 4.2 IV 4.4 1 t.8 V2.I V 5.4 IV 3.0 V 1.7 IV 2.0 IV 1.8 IV 1.6 II 1.5 V 4.0 V 3.3 V 3.2 V 2.2 V 2.0 V 2.4 IV 2.2 V 1.6 V 2.0 IV I.I IV 1.6 1 t.O II t.O II t.O 1 t.O 1 t . S II t.O 1 t.O 1 t.O III t.8 1 t.O 1 t.O II t.O II t.O V 3.9 V 3.9 V 4.1 V 3.7 V 4.0 V 2.9. « 2.7 III 2.1 IV 3.3 V 2.5 III 2.4 II 1.5 II 1.2 IV 2.0 III 1.0 IV 2.1 V 1.5 Association 12: P i n u s contorta Vaccinium mcmbranacoum (Cladothamnus pyrolaefloras) Arctostapltyios u v a - u r s i Selaginella uallacei Danthonia spicata (Saxi fraga ferruginea) Dicranum tauricum Diplophyllum taxi folium Cladina rangiferina Dryptodon pa tens Polytrichum piliferum (Gyimomitrion obtusum) Cladina arbuscula Cladina squamosa Rhacomitrium canescens Pscudoleskea baileyi Cladonia cariosa Storcocaulon alpinum Cladonia pocilium Cornicularia aculeata Douinia ovata Cladonia uncialis Agyrophora rigida O r d o r I I : V 5.4 III 2.6 II 3.7 II 1.1 IV 1.6 1 t.O V 1.5 1 t.O V 1.3 V 1.6 V 1.4 1 t.O III 1.9 V 3.2 1 t.1 1 t.2 IV 2.6 1 t.O III 1.6 IV 3.2 IV 1.6 IV t.8 IV t.2 IV 2.1 IV 5.5 1 «,4 III 2.0 III 1.6 III 1.1 III t.O III t.O III.t.O II 1.6 II ,.0 I 3.9 I t.O IV 1.8 I t.O I IV 1.0 IV t.5 I IV t.O III t.4 t.O I t.O I t.O I t.O I t.O 1 t.2 1 t.2 II 4,0 1 t.O II t.O III t.5 V 2.1 1 t.O II t.O III 1.3 1 t.O IV 2.5 III t.2 II 1.4 II t.4 II t.O 1 t.7 II 2.5 II t.2 III ..5 IV 1.2 V 2.8 V 5.0 IV 3.1 IV 1.4 II t.2 III t.O IV t.1 Tsuga hetcrophylla IV 4.S V 2.9 V 3.3 V 4.7 V6.5 V5.7 V 7.1 V 6.8 V 5.0 V 5.0 ill t.1 t.7 i t.S (Fjibus sitchensis) 1 t.O 1 t.O 1 t.O 1 t.O II t.4 Goodyora oblongifolia III t.E II t.1 II t.O 1 t.O V 1.5 IV 1.2 II t.4 l» t.5 llnnaoa boroalia ~ rn.o il " o IMTI ii II 1.4 III 1.4 n iXo II 1,8 -; III 1.2 Llntora caurlntx II t.O , 1 t.O III t.4 III t.6 1 t.O III t.6 IV 1.1 LlHtera vnrtltito 1 t.O III t.O 1 t.O 1 t.O 1 t.O III •.] 1 t.O II •.? Corallorhiza uortonslana II 1.0 1 t.O Ill t.t (Rhytidiopsis robusta) II 3.5 V 3.J II 1.7 1 t.O V 4.9 V 5.5 1 >.o IV 2.8 II 1.4 I t.O I t.O II t.1 i t .o II 1.; I t.O I t.O II 1.7 III 1.2 I 2,0 I t.O I t.O Alllanco 2 and Association 21t TrientaJis latifolla (HomiotteS congestion) Alliance 3 and Association 31: I t.2 II t.1 III 1.2 • I t.0| II t.J III t.7 IV 1.1 II 1.1 Aco r cj rci na t um It 1.3 IV 3.2 V 4.7 Folystichum munitum II t.S V 1.9 V 3.7 V 5.0 Tiareila triioliata 1 t.O II t.O V 1.8 Trillium ovatum II t.O II t.1 V t.O Alliance 4: (Pinus monticola) Chimaphila menziesii Coralorrhiza maculata (Rhytidiopsis robusta) Stcroocaulon glarcosum Alliance S: (Tiarclla unifoliata) Association 52: Streptopus amplcxifollus (Streptopus rose us) (Streptopus streptopoides) Association S3i (Chamaecyparis nootkatensis) (Lycopodium clavatum) (Sphagnum girgensohnii) Order I I I i Thuja plicata Acer macrophy Hum Bctula papyrifcra Acer circinatum Pubus spectabilis S.imbue us pubens Rhamnus purshiana Polystichum munitum II 4.8 Athyrivm filtx-femina Tiarclla trifoliata Streptopus amplcxifollus Trillium ovatum Luzula parviflora Lactuca muralis Montia sibirica Trisetum cernuum Tolmica menziesii Dicentra formoss Carex deweyana Festuca subuliflora Achlys triphylla Stellaria crispa Smilacina racemosa Carex hemic r son ii Plagiomnium insigne Lcucoicpi 3 jnenziosil Stokcsiclla praelonga Pogonatum macounii Hypnum subimponens Plagiothecium lac turn Plagiochila asplcnoldes Conocephallum conicum Porotrichum bigelovii Rhytidiadelphus triquetrus II M Hookeria lucens Mnium spinulosum Pellia epiphylla Pollia neesiana DlAfiinthecium cavi folium I t.O III 1.8 113.5 V3.3 111.7 I t.O II t.3 I t.O 1 t.O II t.O IV 3.2 II t.S II t.O III t.7 IV t.4 1 t.O V 4.9 V5.5 II t.2 IV 3.7 V 2.8 V 2.0 IV 2.8 l i l t.3 ' V 6.6 III 1.9 V 4.6 IV 2.3 IV 2.4 V 5.6 II 1.2 III 1.8 I 1.0 II t.6 V 3.6 V5.5 I t.O V 1.2 V 4.4 V 7.2 V 4.3 IV 1.2 V5.1 IV 3.2 VS.2 V 5.4 V 3.0 i t.e II i.S 1 t.O 1 t.O 1 t.O 1 SP II t.9 II 1.0 II t.9 1 t.O 1 t.O 1 1.0 1 t.4 II t.O 1 t.O It t.3 V 5.1 V 4.S V 4.3 II 1.4 V 4.4 V 4.9 V 7.8 V5.8 III 1.1 V 3.9 V4.5 V 2.9 V 3.2 IV 3.3 IV 1,6 III 1.1 IV 1,7 1 t.O II 1.1. I t.O . I t.O I t.O IV 2.8 II 1.4 II 1.7 III 1.2 I 2.0 IV 2.3 V 3.4 V 4.7 I t.O I t.O 1 t.O 1 t.O 1 t.O IV 1.0 1 t.O III 2.2 III 3.1 II t.O 1 t.O 1 t.O 1 t.O II t.O V 4.9 V 5.1 V 5.2 V 5.1 V 4.2 IV 5.0 1 t.O 1 t.O 1 1.5 1 t.O 1 t.2 II t.1 II 1.3 IV 3.2 V 4.7 IV 3.7 1 t.4 II t.7 IV 2.0 V 3.1 II t.4 III 1.1 II t.1 II ..1 1 t.O II t.O V 1.9 V 3.7 V 5.0 1 t.O II t.O V 2.8 1 t.O 1 t.O II t.O 1 t.O IV 1.6 1 t.O II t.O V 1.8 V 2.0 1 t.O 1 t.O 1 ».0 IV 1.0 II t.O II t.1 V t.O III t.1 1 t.O 1 t.O II t.1 1 t.O 1 t.O 1 t.O 1 t.O 1 t.O 1 t.O l.t.O 1 t.O • II t.5 1 t,0 1 t.O III 1.2 II 1.7 1 * . o -II t.7 1 t.O III t.9 1 t,5 II 2.1 1 t.O II t.S 1 t.2 1 t.O II t.7 III t.3 1 t.O 1 t.O II t.3 III t.S III t.9 111 1.5 1 t.O II t.1 1 t.O 1 t.O 1 t.0 1 *,0 II t.3 1 t.O 1 t.0 II t.Sj I t.2 III 1.0 I t.O It t.O II t.O III t.S III t.1 I t.O I t.O I t.O I t.O I t.0 II t.O II t.O I t.O I t.4 II t.3 III 1.0 I t.O I 1.3 I t.O I 1.0 IV t.S I «.0 113.8 I t.O I t.O II t.0 III 1.2 V 1.4 I t.O V 1.8 IV 2.8 V 1.6 I t.O - l - t . S -I t.O I t.O II t.6 I ».0 I t.O I t.O III 1.0 I 1.0 I t.O V6.6 II 1.4 IV 2.3 III I.S II 1.2 I t.2 I 1.0 III 1.0 II 1.7 II t.4 I t.2 III 1.0 I t.O I t.O I 1.0 IV t.S III 1.1 V 5.1 I t.O III t.S III 1.9 I t.7 I t.O IV 2.4 II t.2 I t.O II 1.5 I t.O V 5.5 IV 3.7 II 1.9 V 4.6 IV 2.8 II t.O I t.O VS.6 IV 2.1 III 1.8 II t.O II t.6 II t.S II t.1 II 1.0 I t.O II t.O I t.O I t.O I t.O I t.O I t.0 V5.7 I t.O I t.O V 3.8 III t.S I t.O V 5.5 I t.7 I t.O III t.S V 1.2 I t.O I t.7 I t.O IV 1.1 IV 1.2 IV t.1 III t.4 II 1.2 III 1.7 II t.4 V 2.0 I t.O IV 2.5 III 1.1 l l t . l II t.O II 1.0 II t.9 II t.2 I t.O II t.O III 1.0 IV 1.1 V 4.2 II 3.5 I t.O V 4.4 V 4.9 III 1.0 II t.2 V 7,2 V 3.2 V 4.3 III t.1 IV 1.2 IV t.S II 1.2 I t.O I t.O I t.O I t.O I 2.1 I t.O IV 3.2 V 2.2 IV 1.2 I t.3 II 1.0 II. t.O I t.O I t.O II t.0 II t.0 II 1.1 I t.O V 5.2 II 1.5 II t.7 V5.1 V 5.9 IV 2.4 II 1.7 V 4.9 V 3.8 V 4.5 II t.O III 1.1 IV 1.1 II 1.1 I 1.1 IV 1.0 III 1.4 I t.O ill 1.0 t t.O II 1.2 I t.O I t.O V 4.4 V 3.2 V 3.6 II 1.2 II 1.6 III t.6 II 1.4 II 1.0 II t.O I t.1 II t.2 V 5.8 V 5.9 V 4.3 V 4.2 IV 1.3 II 1.1 V 7.8 V 4.1 V 2.9 II t.3 III 1.1 IV 1.3 IV 1.6 II t.3 II t.3 II t.3 V 3.1 V 3.2 • V 4.2 V 1.2 III t.O V 1.4 IV 1.1 IV t.5 IV 1.1 II t.0 IVt.B III 1.6 V 5.2 III 3.3 II t.1 V 4.3 V 5.4 III 3.0 II t.4 V 5.8 V 3.2 V 3.2 111 1.0 IV 1.7 IV 1.2 III t.9 II t.4 III t.3 II t.O I t.O I t.O I t.O 11.1 I t.O V 4.0 V 3.4 V 4.4 III 1.5 II t.O IV 1.0 II t.O III 2.0 II t.1 I t.0 III t.t I t.O III t.5 II t.O V 5.5 I t.O II 1.4 IV 5.1 II t.8 III 1.1 IV 2.7 IV 3.3 IV t.S I t.O II t.O I t.O I t.O I t.O III t.O II t.O II t.O III t.6 t 4.1 III t.6 V 4.4 V 6.1 III t.6 V 3.9 V 1.1 IV 1.6 III 1.0 II 1.1 III t.S II t.3 IV 1.1 II t.3 II t.3 II t.7 III 3.1 II 1.6 II 2.7 IV 4.2 V 3.2 IV 1.1 II t.O II t.5 III 1.0 II 1.1 IV 1.6 III t.5 IV t.O 1 t.O II t.O II t.O II 2.2 II t.O II t.O II t.O Alliance 6 1 Association 61: Association 62: Polypodium glycyrrhiza Luzula mult •'tlora Carex interior Diplophyllum taxi folium Douinia ovata Heterocladium procurrens Diplophyllum obtusifolim . Amphiiium californicum Timmia austriaca Association 64: (Mahonia nervosa) Triontalis latifolia Alliance 7i Sambucus pubens Galium triflorum Tellima grandiflora • Brachythecium asperrimum ' Associ.iti.r>n__7?.i Circaea alpina Lysichitum americanum Osmorhiza chilonsis Veratrum viride Association 73: Adiantum pedatum Polypodium glycyrrhiza Asplenium trichomanes Lycopus uniflorus Neckera douglasli (Dichodontium pellucidum) Thamnobryum neckeroides I 4.2 III 1.3 II +.1 I t.O II 2.1 III 1.2 II +.3 II t.4 I t.O III 1.1 I t.O I +.0 II t.1 Ribes lacustie V 3.5 II t.8 II +.2 1 t.O 1 +.0 V 1.2 1 t.o Rub us leucodermis 1 +.0 1 +.0 II 2.0 1 1.4 1 •.0 Polypodium glycyrrhiza III t.5 III t.O II t.3 1 t.6 1 t.O II +.0 IV 1.3 V 2.1 IV 1.4 1 +.0 V1.5 III t.5 Rhacomitrium heterostichum V 1.9 V 4.0 II -t.1 IV 1.1 V 5.0 V 4,3 II +.8 1 Grimmia torquata III t.S II +.6 1 t.O (Cladonia gracilis) II +.4 III t.O (Gaultheria ovatifolia) 1 +.0 1 +.0 IV 2.8 (Carex rossii) 1 +.0 V 1.5 IV +.5 Calamagrostis canadensis IV +.7 (Cryptogramma crispa) III +.0 IV 1.5 III 1.1 Viola sempervirens 1 +.0 III 1.2 Dicranum pallidisetum III t.5 Pohlia cruda III 1.0 1 +.0 (Andreaea rupestris) III t.O III t.5 Barbula cylindrica II +.0 Brachythecium albicans 1 +.0 I +.0 I +.0 I t.O II t.J IV 1.4 II t.3 +.0 I t.O III +.5 III t.O II t.3 1 +.6 1 +.0 II t.O IV 1.3 V 2.1 IV 1.4 l+.O V1.5 mo II t.3 1 +.0 II +.3 I +.0 II t.4 III -t.8 II t.O 1 t.O II t.O V 1.4 II t.O 1 t.O 1 +.0 II t.O III t.5 V 2.1 1 +.0 II t.O III t.O II t.2 III t.O IV t.1 I +0 1 +.0 III 2.4 1 1 1 4- fl II t.O l+.O il l t.o III t.4 1 t.O II t.O III +.7 V 5.0 IV 1.1 I t.O II t.O III t.4 II t.4 II t.2 I t.O I +.0 III +.2 I11.1 1 t.4 III 1.0 IV 2.4 IV 1.3 V 1.9 V 2.4 IV 1.1 1 t.O 1 t.O II 1.1 III t.O II t.3 V 3.3 III t.6 1 t.O V 2.2 . 1 t.2 1 1.2 II t.O I +.0 II t.3 III 3.0 IV 1.3 I t.O -.0 I t.O III 1.0 I *.7 V 3.3 III -t.5 III t.O II «.3 I t.6 I t.O II t.O . I +.0 IV 1.3 III 1.1 Rhytidiadelphus squarrosus Alliance 8 and Association 81: . Oplopanax horridus Ribcs bractcosum Actaea rubra Dichodontium pellucidum Pogonatum contortum Riccardia sinuata I +.0 I t.O III 1.0 II t.4 I t.1 I t.O I +.0 V 1.4 I +.0 II t.4 V 1.9 I t.O I t.O III t.9 I t.O I t.O IV +,2 V 3.1 III 1.5 III t.O IV 1.0 III 1.1 II 1.0 III 2.1 I 1.3 I +.0 II t.O II t.3 II t.O II t.O II +.1 1 +.0 V 3.0 III 1.2 II 4.0 V 2,1 IV 1.4 1 +.0 V 1.5 III t.5 II t.3 1 +.0 II t.5 1 t.O V 1.2 1 t.O 1 +.0 II t.O 1 t.O V 2.2 1 t.O IV t.2 IV 1.0 IV 1.1 II t.2 IV t.2 II t.O 1 t.O II 1.1 II t.O V 2.6 IV 1.1 Hookeria acutifolia i +;o 1 t.O II t.O 1 ..0 Chiloscyphus pallescens . ' U . O 1 *.o II t.O 1 t.O Dicranum ma jus 1 t.O Alliance 9 and Association 91: Picca sitchensis i s i ' II 2.8 Chamaecyparis nootkatensis IV 2.3 III 2.2 III 3.1 II t.6 IV 4.0 1 t.O II 3.8 Malus fusca II 2.8 1 1.4 II t.O Lysichitum americanum II t.1 III 1.2 1 +.0 V 2.2 III 1.0 V 5.3 II t.O Maiahthemum dilatatum II 2.4 1 t.2 1 t.O 1 t.O II 2.4 1 t.O III 3.3 III 2.0 Habenaria saccata l+.O 1 t.O III O Coptis asplenifolia 1 t.O 1 t.O II 1.0 Cardaminc breweri 1 t.7 Sanguisorba menziesii • 1 t.7 Oenanthe sarmentosa 1 t.O II +.3 Carex laeviculmis 1 t.O 1 t.O II t.3 Equisetum telmateia 1 +.0 Rhizomnium perssonli 1 1.4 1 t.O V 5.0 V4.1 Sphagnum squarrosum 1 2.2 1 2.2 1 +.0 1 +.0 I t.O II t.2 II 3.5 II t.O Sphagum subnitens II t.4 1 t.8 Sphagnum palustre 1 +.0 1 +.0 1 t.O 1 *.1 Polytrichum commune 1 t.O Fontinalia howellii 1 t.O Ordor I V , Alliance 1.0 and Asnociation 101: Populus trichocarpa 1 t.O 1 t.O i t.O III 4.2 Alnus rubra ! +.2 1 t .O ! :,8 II! 3.5 i +.0 ii t.a 1 2.2 Iii 2.3 III 4.5 III 3.8 IV 5.0 Alnus s i n u a t a 1 +.0 II t.S II t.9 1 -t.O Taxus brevifolia II +.0 1 t.O 1 t.O 1 t.1 II t.O III t.5 I t.O 1 t.7 1 +.0 II t.9 1 t.9 1 4.1 Lonicera Involucrata 1 t.O III 1.0 Spiraea douglasil 1 1.0 1 1.0 1 1.0 1 1.0 (Rubus parviflorus) 1 t.1 II t.1 II 3.5 1 2.2 II t.5 1 t.O II 1.1 11 2.1 Salix sitchensis 1 t.O 1 t.O II 1.1 Viburnum edule II 1.4 Aruncus Sylvester 1 +.0 II +.4 II t.O 1 +.0 (Gyrmocarpi um dryopterls) • 1 +.1 II 1,7 II t.4 II 1.0 III 1.9 Heuchera glabra Viola glabella l t . 0 1 t.O 1 t.O 1 4 . 0 II 3.3 Prenanthes alata 1 t.O 1 1.0 III 2.8 III 2.0 II t.O II t.O III Scirpus microcarpus Equisetum arvense Montia parviflora Carex leptalea Juncus ensifolius Tiarclla laciniata Cinna latifolia Agrostis diegoensls Carox mertensii Cystopteris fragills Hypnum dieckii Scapania americana Harsupella sphacelate Pellia columhlana Solenostoma obovatum Gyrothyra undervoodiana Harpanthus flotovianus I +.0 II +.4 I +.7 I +.0 I +.1 I t.O III t.6 IV t.9 II t.O. II t.O I t.3 V 2.3 I t.O V 1.8 V4.2 111.5 I 1.0 III t.< I 4.0 IV 4.8 2.3 1 1.0 :i +.3 4.5 i i.3 V 5.7 t.1 V 5.7 4.1 II 1.2 IV 2.1 4.1 II t.8 V 3.0 t.O II 1.0 V 3.3 4 .0- V 3.1 1 1.3 IV 2.1 II 4.7 III 1.0 4.9 V 4,0 1.5 1 4.0 V 3.0 4.0 1 4.0 V 3,0 4.6 1 4.2 V 1.8 IV 4.8 III 1.0 4.0 III 1.0 III 1.0 III 4.6 III 4.0 II 4.3 1 4.0 II 4.0 II 4.3 II t.3 II t.O 4.0 V 5,7 V 4.5 V 3.4 V2.1 IV t.8 1 4.0 1 4.0 94 formed from the generic name of a tree species preceded by character-i s t i c or s i gn i f i can t species from moss, herb and shrub l aye rs . For that reason new names of units are introduced even i f the same uni t had been described by other authors, Add i t i ona l l y a s imp l i f i ed nomen-c la ture was developed to ease communication in the operat ional use (Table 8 ) . With the exception of plant orders, th is nomenclature i s used cons is ten t ly in the text and Tables. The plant assoc ia t ions are designated by usual ly two Lat in generic names of species from moss, herb or shrub layers and by abbreviated common names fo r t ree spec ies , e .g . Mahonia - Gaulther ia - WH - DF. The categor ica l rank of plant associat ions (and higher uni ts) and subassociat ions (and lower uni ts) was designated by cap i ta l and small l e t t e r s respect ive ly (Table 8 ) . The tree species were appreviated as fo l lows: AF -- ambi l is f i r (Abies amabilis) BC -• black cottonwood (Populus trichocarpa) BM -- broad lea f maple (Acer macrophyllum) . DF • - Douglas- f i r (Pseudotsuga menziesii) LP • - lodgepole pine (Pinus contorta) RA • - red alder (Alnus rubra) SA - S i tka alder (Alnus sinuata) VM • - vine maple (Acer circinatum) WH • - western hemlock (Tsuga heterophylla) WRC • - western redcedar (Thuja plicata) YC - yel low-cedar (Chamaecyparls nootkatensis). Nomenclature of ecosystem types consis ts of vegetat ion, s o i l and s o i l parent mater ia ls designat ions, e .g . Mahonia - Gaul ther ia - WH - DF on sandy loam Mini Humo-Ferric Podzol with F-mor humus developed on 95 c o l l u v i a l veneer over quar tzd io r i te bedrock. F i n a l l y , var ia t ions of the forest cover are add i t i ona l l y designated by s i g n i f i c a n t stand features, such as the tree species composit ion, age and dens i ty . The synsystematic uni ts are described and character ized at two l e v e l s : above the leve l and at-and-below the leve l of a plant assoc ia t ion . The l a t t e r (biogeocenotic) uni ts are presented according to t he i r in te rpre ta t i ve values instead of fo l lowing the out l ined synsystematics (Table 8 ) . From prac t i ca l and reading reasons the environment-vegetation tables fo r lower synsystematic uni ts are placed in Appendices and the descr ip t ions are kept as b r i e f as poss ib le . Such an approach i s seemingly suppressing the c l a s s i f i c a t i o n resu l t s but on the other hand i t al lows one to demonstrate p rac t i ca l aspects of the study and to el iminate a lengthy presentat ion. Within the l i m i t s of the CWH zone, the loca l condit ions of r e l i e f and s o i l parent mater ia ls control the d i s t r i b u t i o n of eco-systems and the i r development. To i l l u s t r a t e th is a table was pre-pared which accommodates macrocl imatic gradient (b iogeocl imat ic subzones) on the ve r t i ca l axis and moisture gradient on the hor izontal ax is (Table 10). The s o i l moisture regime i s shown in re la t i on to the acqu is i t i on and nature of movement of water and mater ia ls in the s o i l s as affected by the i r pos i t ion on the s lope. Examination of s o i l s in the CWH zone wi th in the ecosystem framework in th is and other synecological studies (Lesko, 1961; Kojima, 1971) revealed di f ferences in s o i l propert ies and p ro f i l e s namely those of moisture and nutr ient status in re la t i on to the pos i t ion on the s lope. On CWHb M o n t a n e S u b m o n t a n e H A B I T A T S L I C H E N - G A U L T H E K I A - L P - OF (LILHEN) - GAULTHERIA - DF V A C C I N I U M - G A U L T H E R I A - DF G a u l t h e r i a - . WH - DF fehonia - G a u l t h e r i a - WH - DF V A C C I N I U M -G A U L T H E R I A - DF -CO G a u l t h e r i a - WH - DF 1X1 M a h o n i a - G a u l t h e r i a - WH - DF V A C C I N I U M - MOSS VAC1NIUM - MOSS -CJ1 M o s s M a h o n i a - m o s s - WRC -c n MOSS - ( P O L Y S T I C H U M ) - WRC R I B E S - VM P O L Y P O D I U M - G A U L T H E R I A - DF BLECHNUM - AF -BLECHNUM - S T R E P T O P U S - AF - WH BLECHNUM - WH - WRC POLYPODIUM - P O L Y S T I C H U M - DF - UJ IA - P O L Y S T I C H U M - DF - WRC P O L Y S T I C H U M - WRC T I A R E L L A - P O L Y S T I C H U M - WRC CO RUBUS - P O L Y S T I C H U M - WRC P o l y s t i c h u m - O p l o p a n a x - WRC r\) R i b e s - O p l o p a n a x - WRC A T H Y R I U M - ARUNCUS - RA - SA V a c c i n l um -- L y s i c h i t u m - YC - WRC • V a c c i n l u m - L y s i c h i t u m -1^ c_n c_n co —« CD p o o —-CD •>* "5 X m CO c: cr -< cn I —* l O ~5 CO o cr cr -—• zr r+-CD Q - 3 ~ J - o —~ o o - j >— cu I CO cr 97 th is bas i s , x e r i c , amphimesic, hygric and subhydric habi tats are recognized and described as fo l lows: Xer ic habitats have s o i l s which acquire water from p r e c i p i t a -t i o n . They are usual ly located at height of lands, i . e . h i l l t o p s , rocky ridges and outcrops, c l i f f s , and at the upper parts of the con-vex, slopes adjacent to them. Water i s removed from the s o i l s very rap id ly in re la t ion to supply so that t he i r moisture status can be described as very xe r i c to subxer ic , i . e . the s o i l s are rap id ly drained. There are also s i g n i f i c a n t losses of mater ia ls removed by water, wind or gravi ty to s o i l s located downslope or to the s u b s o i l , point ing out the degradational geomorphic character of these hab i ta ts . Addit ions of water, mineral and organic matter from other sources than p r e c i p i -tat ion or weathering, are minimal. Relat ive to other s o i l s in the CWH zone the i r nu t r i t i ona l content was found to be the lowest (Lesko, 1961; Kojima, 1971). The xe r i c habitats are fur ther sub-divided as fo l lows: very xer ic and l i t h i c ; xe r i c and l i t h i c " ( w i t h a l i t h i c contact less than 50 cm from the mineral sur face) ; sub-xer ic to xe r i c with moderately deep s o i l s on slopes (the gradient greater than 30 percent) ; and subxeric to xe r i c with moderately deep s o i l s (the slope gradient less than 30 percent) . Amphimesic habitats have s o i l s which also acquire water la rge ly from p rec ip i t a t i on . They are usual ly located at the middle parts of s t ra igh t slopes of moderate gradients. Addi t ional acqu is i t i on of moisture and mineral and organic matter from upslope located s o i l s may be operat ing, however, i t merely compensates fo r the i r removal 98 to downslope located s o i l s or to the s u b s o i l . The s o i l moisture status i s submesic to subhygric, i . e . the extent of water removal from the s o i l i s less rapid (moderately wel l drained) in re la t i on to the supply than was the case fo r xe r i c hab i ta ts , the main fac to r being the pos i t ion on the s lope. Evident ly the pos i t ion of the s o i l on the slope can be compensated by other f ac to r s , e . g . the amphimesic habi tats may be located even at h i l l t o p s , assuming that the s o i l s there are deep, medium textured with a low content of coarse fragments, e tc . Losses of water, mineral and organic matter from the s o i l s by leaching or erosion are less pronounced than in the previous group, point ing out the intermediate geomorphic character of amphimesic hab i ta ts . Relat ive to other s o i l s i n the CWH zone t h e i r nu t r i t i ona l status was found to be intermediate (Lesko, 1961; Kojima, 1971). The amphimesic habitats are d i f f e ren t ia ted as fo l lows : sub-mesic and l i t h i c ; submesic to mesic with moderately deep s o i l s on slopes (the gradient greater than t h i r t y percent) ; and submesic to mesic with moderately deep s o i l s (the slope gradient less than t h i r t y percent) ; and subhygric with moderately deep s o i l s . S o i l development on mesic habi tats can be character ized by a cer ta in independence, since the biogeochemical cyc le i s af fected nei ther by s i gn i f i can t losses nor addi t ions re la t i ve to other hab i ta ts . Thus, the s o i l s and vegetation of the mesic habi tats are products of a loca l macroclimate which dominates the i r development in time and space. Therefore, they have been considered as d i f f e ren -t i a t i ng charac te r i s t i cs for the biogeocl imat ic un i t s . 99 Hygric habitats have s o i l s which acquire water by both p r e c i p i -ta t ion and subsurface or surface add i t ions . They are located at the lower parts of concave s lopes, on very steep slopes or on a l l u v i a l deposi ts. Water i s removed from the s o i l s , slow in re la t i on to supply, so that the i r moisture status can be described wi th in the range from subhygric to hygr ic . Seepage suppl ies the s o i l s not only with water but also with mineral and organic matter. Surface enrichment by mineral and organic matter brought e i ther by grav i ty and running water from s o i l s located upslope or deposited by f lood waters, const i tu tes another source of add i t ions. In the study area, humus flow i s the charac te r i s t i c feature of steep and excess ive ly steep slopes where-organic mater ia ls are redeposited from upslope to downslope loca t ions . Addi t ions of water and matter to the s o i l s by seepage or f lood waters and humus flow may exceed t h e i r losses by leaching and eros ion , pointing out the aggradational geomorphic character of these hab i ta ts . The hygric habitats are fur ther d i f f e ren t i a ted as fo l lows: temporari ly subhygric and l i t h i c ( ta lus) on steep slopes (with the gradient over 70 percent) ; subhygric to hygric on slopes (with the gradient over 30 percent) ; hygric and weakly g leyed; hygr ic (temporari ly subhydric) and gleyed; and hygric (temporari ly subhydric) and f looded. Subhydric habitats have s o i l s which may be character ized s im i -l a r l y as those of hygric hab i ta ts . However, the s o i l moisture status i s subhydric to temporari ly hydr ic ; i . e . water i s removed from the s o i l s very slowly in re la t i on to supply. A permanent or f luc tua t ing water table i s c lose to the s o i l sur face. These s o i l s are usual ly 100 located in depressions, f l a t or even at the lower part of the slopes when the p rec ip i ta t i on i s high and the evapotranspirat ion rate i s low. The subhydric habitats are d i f f e ren t i a ted into subhydric ( temporari ly hydric) and g l e y s o l i c , and subhydric (temporari ly hydric) and organic. The synecological c l a s s i f i c a t i o n i s a natural taxonomic c l a s s i -f i ca t i on used to c l a s s i f y ecosystems i r respec t i ve of t he i r use or responses to management. For most foresters there i s a need to s imp l i f y technical information by grouping ecosystem uni ts in to a few in te rpre t i ve categories with a few classes for s p e c i f i c needs and purposes. Inter-pretat ive c l a s s i f i c a t i o n i s more e f fec t i ve in th is respect than the taxonomic c l a s s i f i c a t i o n . I t i s an arrangement for grouping taxonomic units according to t he i r values f o r some s p e c i f i c purpose (Lavku l ich , 1972a, 1972b). An attempt has been made to design an in te rp re ta t i ve c l a s s i f i c a t i o n , using the ex is t ing framework of the synecological. c l a s s i f i c a t i o n for the purposes of s i l v i c u l t u r a l management. Following the descr ip t ions , in terpre ta t ions are made, emphasis being on s i l v i c u l t u r a l aspects. They are based on a comprehensive evaluat ion of biogeocoenotic u n i t s , ecology of tree species and assess-ment of management techniques. The object ive was to develop an eco-l o g i c a l l y sound basis for long term forest management. Due to frequent s i m i l a r i t i e s in use and su i tab le pract ices for re lated u n i t s , they are grouped into management uni ts so as to reduce t h e i r number and to s impl i fy the in te rp re ta t ions . S i m i l a r i t y of the tree species se lec t i on , uniformity of expected production leve ls and comparabi l i ty 101 of s i l v i c u l t u r a l procedures for the biogeocoenotic un i ts are the c r i t e r i a used to del ineate the management un i t s . D is t r i bu t ion of the units and t he i r in te rp re ta t i ve groupings in management uni ts in re la t i on to subzones and general environmental condit ions are summarized in Table 10 fo r the purpose of the fo l lowing tex t . Ecotopic aspects which are associated with genetic processes and pa r t i cu l a r l y those features which reveal the most obvious di f ferences in vegetation and s o i l s between habitats formed a basis for the presentat ion. This tab le , operating with the b iogeocl imat ic sub-zones and the i r hab i ta ts , al lows one to express under which general ecotopic condit ions each plant community type occurs in the biogeocl im-a t i c subzones. I t may become a useful tool fo r demonstration of s o i l vegetation re la t ionsh ips fo r a p rac t i s ing fo res te r . While maintaining the units of the synecological c l a s s i f i c a t i o n , the superimposed management uni ts in the matrix may be revised with the provis ion of new information a f fec t ing the nature of the in te rp re ta t ions . Synsystematic Units (Order, A l l i ance ) Above the Level of a Plant  Assoc iat ion Pseudotsugetalia menziesi i are d is t r ibu ted in the mesothermal or microthermal cont inental subhumid to humid cl imates (Csb or Dfb). In the CWH zone they can na tura l l y develop on xe r i c habi tats which provide necessary modi f icat ion of the humid macroclimate. Therefore, the Pseudo-tsugeta l ia menziesi i occur less in the more humid parts of the CWHb 102 subzone, where the i r d i s t r i bu t i on i s l im i ted only to very xe r i c habitats of rock outcrops. Base r i ch s o i l s which might favor the i r development outside these edatopes are lack ing in the Forest . The act ion of vegetation (Doug las- f i r and Gaultheria shallon) seems to counteract strong leaching in a d i rec t ion against the develop-ment of Orth ic Humo-Ferric Podzols in the CWHa subzone. This may be achieved by concentrating bases in fo l i age and s o i l organic laye rs . This e f fec t was reported by Tarrant et al. (1951), Kraj ina (1969), Kl inka and Lowe (1976b) and also in th is study. Mini Humo-Ferric Podzols associated with the Pseudotsugetal ia menziesi i have th in F-mor humus layers and lack a wel l developed a l b i c hor izon. Since F-layer i s the major zone of nut r ient release a thickened F- layer ( re la t i ve to L and H layers) impl ies nut r ient conservation by a slower rate of decomposition of l i t t e r and synthesis of humic mater ia ls . Though in the Tsugetal ia heterophyllae decomposition of l i t t e r i s also slow, nonetheless more mobile humic mater ia ls are formed as re f lec ted by the respect ive thickness of H-layer. Apparently the more extended period of des iccat ion in these xer ic ecosystems tends to i n h i b i t humic ac id accumulation. The development of F-mor humus i s character-i s t i c not only for the Pseudotsugetal ia menziesi i but also for those ecosystems of the Tsugetal ia heterophyl lae, which occur in the CWHb subzone on xer ic habi ta ts . Doug las- f i r i s the main species in uniform canopy stands fol lowed by western hemlock and western redcedar occurr ing in poorly developed lower tree and the upper brush layers . Pa r t i c i pa t i on of 103 western hemlock in the stand composition i s l im i ted because of xe r i c s o i l moisture s ta tus . Gaultheria shallon dominates dense lower shrub layers with the exception of young and dense stands. Herb and moss layers are less abundant and composed of a small number of species. In the Pseudotsugetalia menziesi i Doug las- f i r i s f requent ly a shade to lerant t ree , i . e . i t can regenerate natura l l y under i t s forest canopy when th is matures and becomes more open. This evidence substant iates separation of the CWH zone from the CDF zone, where Doug las- f i r can regenerate under the fores t canopy of mesic ecosystems, and the separation of the Pseudotsugetalia menziesi i from the other orders. The.Pseudotsugetalia menz ies i i , represented in the Forest by the a l l i ance GAULTHERIA - DOUGLAS-FIR are frequent ly occurr ing eco-systems due to a large area of l i t h i c s o i l s and broken r e l i e f . They represent a macroclimatic modi f icat ion of s im i l a r ecosystems d i s t r i -buted in the CDF zone (Kraj ina and Sp i l sbury , 1953; McMinn, 1957 ;. Mueller-Dombois, 1959, 1965). I t i s not su rp r i s i ng , that the cha rac te r i s t i c combination of species for th is order and a l l i ance (Table 9) in the Forest lacks several species such as Cetraria islandica, Cladonia gracilis, Cladonia mitis, Trachybryum megaptilum, e t c . Non-forested ecosystem, described by Or loc i (1964, 1965), represent i n i t i a l co lon iza t ion and ear ly xerosere successional stages cha rac te r i s t i c fo r the most extreme environment of exposed rock outcrops. Low production potent ia l and inherent habitat propert ies of the Pseudotsugetalia menziesi i impose serious l im i ta t i ons to fores t ry use. Their s u i t a b i l i t y fo r wood production i s marginal . The main 104 management object ive use should cons is t in protect ion of s o i l s ( so i l conservat ion, i . e . slowing down degradational geomorphic processes) and in providing w i l d l i f e hab i ta ts . Tsugetal ia heterophyl1ae are d is t r ibu ted in the mesothermal and microthermal continental humic macroclimates (Cfb and Dfb respec t i ve l y ) . They are the most frequently occurr ing ecosystems in the CWH zone where they develop on mesic edatopes in both subzones. Therefore, the Tsugetal ia heterophyllae are cha rac te r i s t i c of the humid macroclimate and represent the c l imat ic climax ecosystems in the CWH zone. The humid and cool macroclimate slows down decomposition of organic mater ia ls and newly synthesized organic products accumulate on fores t f l o o r . Western hemlock regenerates extremely wel l on ac id mor humus layers which are not developed under the Thu je ta l ia p l i ca tae unless subs t i -tuted by the accumulation of decayed wood. Decayed wood mater ia ls can compensate for s o i l moisture def ic iency as wel l as remove the d i rec t e f fec t of r i ch nutr ient supply. Windthrow, resu l t ing in accu-mulation of organic mater ia ls on fores t f loor> a lso contr ibutes to i t s propagation. Moist mor humus i s cont inua l ly supplying small quant i t ies of ava i lab le nu t r ien ts , thus favouring the growth of western hemlock, which roots are mainly d is t r ibu ted in s o i l organic laye rs . Then, i t i s understandable, that western hemlock returns to the s o i l much lower quant i t ies of nu t r ien ts , p a r t i c u l a r l y of Ca and Mg than Douglas- f i r and western redcedar through i t s l i t t e r . Thus, western hemlock 105 promotes mor humus formation and the act ion of those pedogenic processes which c o l l e c t i v e l y bring the formation of Podzols much more e f f i c i e n t l y than Douglas- f i r or western redcedar. Associated s o i l s developed from shallow to moderately deep, base poor parent mater ials were c l a s s i f i e d as L i t h i c Podzols, - Humo-Fer r i c and Ferro-Humic Podzols with d i s t i n c t a l b i c hor izon, i nc ip ien t or wel l developed o r ts te in hor izons, and mor humus. Influence of base r i ch parent mater ia ls or humus disturbance can temporari ly modify the macroclimatic e f fects in promoting the establishment of the Pseudo-tsugetal ia menziesi i or even the Thu je ta l ia p l i ca tae at mesic hab i ta ts . Forest stands of Doug las- f i r and western hemlock in var iab le proportions are usual ly f u l l y stocked and dense. Mixed stands are more frequent than those composed of a s ing le species. Doug las- f i r i s a cons is tent ly t a l l e r tree in both subzones than western hemlock although in the wettest parts of the CWHb subzone i t s growth may be comparable to that of western hemlock. Dense mature and immature stands in the CWHb subzone are almost void of any understory vegetat ion. Shrub and herb layers are sparse with a small number of spec ies. How-ever, well developed moss layers cons is t ing of ac id iph i lous mosses are the cha rac te r i s t i c f l o r i s t i c feature. Four a l l i a n c e s , the MOSS -WESTERN HEMLOCK, MOSS - (POLYSTICHUM) - WESTERN HEMLOCK, VACCINIUM -WESTERN HEMLOCK and the BLECHNUM - AMABILIS FIR - WESTERN HEMLOCK are recognized fo r th is plant order. The Tsugetal ia heterophyllae are very su i tab le for wood production with a r e l a t i v e l y low or temporary degree of in tegrat ion 106 with other uses. Intensi ty and a kind of s i v i c u l t u r a l management should be d i f fe ren t ia ted in re la t i on to biogeocl imat ic and biogeo-coenotic un i t s . The tree species s e l e c t i o n , p a r t i c u l a r l y the pro-port ion of western hemlock to Doug las- f i r in secondary fo res t stands, w i l l be the primary decis ion a f fec t ing the nature of s i l v i c u l t u r a l a c t i v i t i e s . Thuje ta l ia p l ica tae are confined in the CWH zone to hygr ic and subhydric habitats which provide moisture and nu t r i t i ona l addit ions for the i r development. These addi t ions are the resu l t of the pos i t ion on lower slopes or in depressions, medium or f ine s o i l tex ture, the presence of impervious s o i l layers and steep slope grad ients , which i nd i v idua l l y or in combination account fo r temporary or permanent seepage and deposit ion at the s o i l surface of organic and mineral materials removed from the ecosystems located upslope. Their s o i l moisture status i s subhygric to subhydric and the i r s o i l nutr ient status i s mesotrophic to eutrophic, i f considered together with a seepage water (see Jablanczy, 1964). On these habitats vegetation develops in which the l i t t e r i s r i ch in a l l macronutr ients. Relat ive to the preceding plant orders the b io log ica l a c t i v i t y , inc luding act ive nitrogen f i x a t i o n , decomposition and minera l i za t ion ra tes , in the Thu je ta l ia p l ica tae i s the most in tens ive . Therefore, the Thu je ta l ia p l ica tae counteract the development of Podzols in the CWH zone through the i r respect ive nutr ient cyc les . G le i za t ion and melanization are act ing in these s o i l s more in tens ive ly and in greater proportions than in other s o i l s . On these habitats Doug las - f i r , 107 western redcedar (CWHa&b) and amabi l is f i r (CWHb) reach the i r optimal growth. The Thu je ta l ia p l i ca tae represent edaphic climax ecosystems in the CWH zone. Shade to lerant western redcedar, regenerating wel l in s l i g h t l y ac id moder or mull humus laye rs , becomes the f i n a l species in tree layers . Huge, well preserved stumps in secondary stands, document the dominant ro le of western redcedar in tree layers of o ld growth stands. In the montane CWHb subzone the d i s t r i bu t i on of the Thu je ta l ia p l ica tae in the spectrum of hygric habitats i s s i g n i f i c a n t l y reduced, being replaced by the Tsugetal ia heterophyl lae. The f l o r i s t i c structure and composition of fo res t stands are great ly d i v e r s i f i e d . A l l tree layers are wel l developed ind ica t ing a considerable s t ructura l complexity. Moderately dense to very dense shrub and herb layers cons is t of va r ie ty of hygrohylophilous and meso-to eutrophophytic species. Several cha rac te r i s t i c species reported from Vancouver Island by Kojima (1971) occur very sporad ica l l y or are absent in the Forest. These are as fo l lows: Thalictrum occidentale, Symphoricarpus albus, Disporum hookeri, Adenocaulon bicolor, Trautvetteria cavoliniensis, Asarum caudaturn, Festuca subuliflora, Festuca subulata, Aquilegia formosa, Cinna l a t i f o l i a , Bromus vulgaris, Triarella laciniata and several others. Four a l l i a n c e s , the MOSS - POLYSTICHUM - DOUGLAS-FIR - WESTERN REDCEDAR, TIARELLA - POLYSTICHUM - WESTERN REDCEDAR, 0PL0PANAX - WESTERN REDCEDAR and the LYSICHITUM - WESTERN REDCEDAR are recognized for th is 108 plant order. Associated s o i l s , developed from a var ie ty of s u r f i c i a l deposi ts , inc lude: Gleyed Humo-Ferric and Ferro-Humic Podzols, Gleyed Sombric and Dystr ic B run iso ls , Regosols, Humic and Orth ic Gley-s o l s , Mes iso ls , Humisols and F o l i s o l s , with i nc ip i en t formation of Ah horizons and mull or moder humus laye rs . With some except ions, the Thuje ta l ia p l i ca tae represent a complex of highly productive ecosystems su i tab le for several uses. Their use fo r wood production deserves a specia l s i l v i c u l t u r a l a t ten t ion . Immediate plant ing a f te r harvest ing, s t r i c t control of the tree species composition and, i f app l i cab le , conversion of second growth deciduous stands are mandatory. Douglas- f i r should be a frequent pioneer tree here, associated with western redcedar and amabi l is f i r (CWHb). The Thu je ta l ia p l i ca tae are also important w i l d l i f e habitats and a t t rac t i ve areas fo r recreat ion . Accommodation of these use a l te rna t i ves requires wel l defined manage-ment ob jec t i ves , planning and operat ions. The d i s t r i bu t i on of the Popule ta l ia balsamiferae i s r e l a t i v e l y independent of macroclimate and, therefore, they are present in several biogeocl imat ic zones. They develop on f loodp la in deposits of r i ve rs and permanent streams under the inf luence of cumulizat ion of mater ia ls b y ' a l l u v i a l addit ions to the s o i l sur face. Abundant moisture and nutr ient supply provided by per iod ic f looding and slowly moving sub-surface water flow accounts for hygric to subhydric s o i l moisture status and eutrophic s o i l nutr ient s ta tus . The s o i l s are a lso benefi ted by the most ac t ive nitrogen f i xa t i on provided by free l i v i n g bacter ia and by Actinomyces alni growing in symbiosis on roots of Alnus rubra. 109 In the Forest the Popule ta l ia balsamiferae, represented by the a l l i a n c e RED ALDER - SITKA ALDER, are confined to streamedge habitats. Mixture of deciduous and coniferous species in t r ee layers, dense brush and herb layers and less abundant moss layers are ind ica t ive of t he i r stand s t ruc ture . The major s o i l s are Regosols w i th mull humus. The Popu le ta l ia balsamiferae are successional ecosystems de-veloping in the CWH zone into the Thu je ta l ia p l i ca tae . They represent a \complex of highly productive ecosystems which use f o r wood production requi res in tensive s i l v i c u l t u r a l management. However, the provisions of streambank protect ion fo r f i s h and w i l d l i f e habitats and the main-• -"ft. . tendnce of stream qt ia l i ty may be found more important. Synsystematic Units At-and-Below the Level of a Plant A s s o c i a t i o n t  Xer ic Habitats The assoc iat ions (LICHEN) - GAULTHERIA - DF (CWHa) and the LICHEN - GAULTHERIA - LP - DF (CWHb) are recognized on very xer ic and l i t h i c hab i ta ts . They occur on r idges , h i l l t o p s and neighbouring slopes covered with very shallow mineral or organic s o i l s d i r e c t l y over-l y i ng bedrock. Exposed bedrock surfaces form a large propor t ion of the ground coverage. As a resu l t s o i l water plus mater ia ls c a r r i e d in so lu t ion or suspension are very rap id ly removed from the s o i l s . The s o i l moisture status may be described as very xer ic and the s o i l no nutr ient status as o l igotrophies unless modif ied by loca l parent mater ia ls . So i l moisture def ic iency i s the main fac to r l i m i t i n g organic production of these plant communities. Wind, strongly in f luencing these hab i ta ts , removes.organic p a r t i c l e s , a f fec ts crown development and i s the cause of frequent windthrow. Subsequently, fo res t stands have an open canopy g iv ing l i t t l e protect ion to the lower s t ra ta and to the s o i l s . Loss of water and nutr ients i s the s i g n i f i c a n t eco log ica l factor a f fec t ing ecosystem development. Addi t ions of nu t r ien ts , ob-tained mainly by weathering, cannot f u l l y compensate for the l o s s . A strong act ion of vegetation and espec ia l l y of humic mater ia ls on release of mineral compounds from rock surfaces have been reported by Kononova (1966). Since organic and mineral mater ia ls are eas i l y removed by wind, water or grav i ty from the peaks, steep knol ls and the f lanks of rock outcrops, erosion slows down pedogenic development. I t i s obvious that these ecosystems can be the most e a s i l y returned, even by moderate disturbances, to very ear ly xerosere successional stages, which are represented by non-forested ecosystems. As a resu l t of these disturbances"new rock outcrops" have been cont inua l l y exposed fo l lowing fores t f i r e s , s lash f i r e s and logging. Lichens [Cladonia gracilis) and mosses (Polytrichum piliferum) cover very th in s o i l layers (Protoranker) of disturbed hab i ta ts . These associat ions are i den t i f i ed r e l i a b l y by t he i r habitats and the cha rac te r i s t i c combination of species. Both units occurs on small areas and are f a i r l y commonly d is t r ibu ted in the area of the I l l Forest . Many l o c a l i t i e s , however, represent successional stages of other ecosystem un i t s . Doug las- f i r , regenerates slowly i n moderate shade under the forest canopy, brush layer and in the open. (LICHEN) - GAULTHERIA - DF References: Table 1, Appendix VI ; Table 1, Parts 1 and 2 , Appendix XI I . Ecosystem types: 11.1 ; (LICHEN) - GAULTHERIA - DF on loamy sand L i t h i c Mini Humo-Ferric Podzol with mor humus developed on moraine veneer 11.2 (LICHEN) - GAULTHERIA - DF ; on loamy sand L i t h i c Podzol with mor humus developed on moraine veneer, 11.3 (LICHEN) - GAULTHERIA - DF on L i t h i c F o l i s o l with mor humus developed from organic veneer. . . The (LICHEN) - GAULTHERIA - DF ecosystems do not d i s p l a y a l l c h a r a c t e r i s t i c f l o r i s t i c features in t h i s r e l a t i v e l y more humid part o f the CWHa as they were described by Kra j ina and S p i l s b u r y (1953), Kra j ina (1969), McMinn (1957) and Or loc i (1964) elsewhere. For i n -stance Hodgepole pine does not occur in th is un i t at the Fo res t , however, i n other (d r ie r ) parts of the CWHa subzone i t may be a constant component of the assoc iat ion f l o r i s t i c s t ruc ture . D o u g l a s - f i r dominates the forest canopy and i s also present in a l l lower s t ra ta . 112 Western redcedar and western hemlock are present but mostly in brush laye rs , increasing in number towards the upper l i m i t s of the CWHa sub-zone. Gaultheria shallon forms a dense shrub undergrowth which i s reduced e i ther by rockiness and stoniness of the ground surface or in the upper l i m i t of the subzone by a high snow cover (Figure 19). Jhe herb layer i s very poorly developed and the moss layer i s usual ly confined to stony substratum. The s o i l s are coarse textured and extremely shallow ( less than twenty-f ive cm deep). There are occas iona l ly some deeper spots which can support better tree growth. The associated s o i l s were found to be d is t r ibu ted in a very i r regu la r pat tern, changing abruptly one into the other over a short d is tances. Loamy sand textured L i t h i c Mini Humo-Ferric Podzols with very ac id mor humus are the prevalent s o i l s . Rooting was quite intensive throughout the s o i l p ro f i l es but concen-trated in s o i l organic laye rs . LICHEN - GAULTHERIA - LP - DF References: Table 2, Appendix V I ; Table 2, Parts 1 and 2, Appendix XI I . Ecosystem types: 12.1 LICHEN - GAULTHERIA - LP - DF on sandy loam L i t h i c Orth ic Humo-Ferric Podzol with mor humus developed on moraine veneer 12.2 LICHEN - GAULTHERIA - LP - DF on sandy loam L i t h i c Podzol with mor humus developed on moraine veneer Figure 19 The sample p lo t no. 142 of the (LICHEN) - GAULTHERIA - DF at the upper l i m i t s (560 m) of the CWHa subzone Figure 20 The sample plot no. 103 of the LICHEN - GAULTHERIA - LP - DF 11 12.3 LICHEN - GAULTHERIA - LP - DF on L i t h i c F o l i s o l and Protoranker with mor humus developed from organic veneer. This newly described un i t , l i k e the (LICHEN) - GAULTHERIA - DF, occurs on numerous rocky r idges , knol ls or the f lanks of rock outcrops in the CWHb subzone (Figure 20). The s i ze of ind iv idua l ecosystems often approaches the s ize of the sample p l o t . I t forms a complex mosaic with other uni ts associated with deeper s o i l s . A great i r r e g u l a r i t y of the underlying bedrock, a f fec t ing s o i l depth, i s responsible fo r th is pat tern. Tree layers are very open with the average coverage less than t h i r t y percent. A mixture of seve ra l , heavi ly branched open grown coniferous species (lodgepole p ine, Doug las - f i r , western hemlock, mountain hemlock, western redcedar, yel low-cedar and white pine) i s cha rac te r i s t i c of the stand composit ion. Doug las - f i r , even in th is more humid subzone, s t i l l exh ib i ts a moderate shade to lerance, so that i t can compete in the process of natural succession with more shade to lerant species. These spec ies, however, do not to le ra te very xe r i c hab i ta ts ; subsequently they are par t l y el iminated during very dry years . A cool microclimate of these habitats favors establishment of several species cha rac te r i s t i c fo r the neighbouring MHa subzone such as Chamaecyparis nootkatensis, Tsuga mertensiana, Cladothamnus pyrolae-florus, Phyllodoce empetriformis, Cryptogramma crispa, Andreaea rupestris, Pseudoleskea baileyi, Orthocaulis floerkii, Stereocaulon alpinum and several others. Gaultheria shallon i s the constant dominant species in the wel l developed, lower shrub laye r . I t i s less vigorous, growing only up to twenty-f ive cm and root ing mainly in the humus layers . Herbs are almost absent. Bryophytes, l iverwor ts and l ichens are abundant, covering espec ia l l y rocky faces and stones. The dominant s o i l i s sandy loam L i t h i c Orth ic Humo-Ferric Podzol with extremely acid (pH 3 .5 ) , f ine textured, mycel ia l root mor humus. • Management Unit No. 1 The (LICHEN) - GAULTHERIA - DF and the LICHEN - GAULTHERIA -LP - DF were grouped into one management uni t on the basis of eco-log ica l s i m i l a r i t i e s and management considerat ions. L i t h i c var ia t ions of the Gaulther ia - DF - WH are a lso inc luded. Due to inherent ecotopic p roper t ies , imposing severe l im i ta t i ons for wood production and extreme hazards fo r most management a c t i v i t i e s , these ecosystems cannot be managed as commercial fo res ts . They should be designated instead as protect ion forests and excluded from harvest-ing . The main object ive of land use consists in protect ion of the s o i l s which are subjected to a strong geomorphic degradation unless protected by vegetative cover. When d is turbed, t he i r recovery w i l l l i k e l y extend over a century. If a p lantat ion attempted, then to el iminate heavy losses lodgepole pine may be used as the su i tab le species. These ecosystems contr ibute to a more intensive rock weathering and so to the release of mineral nu t r ien ts . With other 116 adjacent non-forested ecosystems on rock outcrops they represent a complex of extremely low wood producing lands, which become more valuable in w i l d l i f e and poss ib ly even fo r r es t r i c t ed recreat ional use. They are used by w i l d l i f e as a she l te r and winter range due to a low snow cover of a very short durat ion. Western redcedar, ye l l ow-cedar, Vaccinium parvifolium and Vaccinium ovalifolium in t he i r shrub layer exh ib i t consistent browsing by deer. * * * The associat ions GAULTHERIA - DF (CWHa) and the VACCINIUM -GAULTHERIA - DF - WH (CWHb) are recognized on xer i c and subxeric habi ta ts . Their strong drainage i s a t t r ibu tab le to the pos i t ion on the upper convex slopes and h i l l t o p s , coarse s o i l texture and shallow s o i l depth. However, f l a t l y ing but very coarse g l a c i o f l u v i a l or a l l u v i a l deposits may provide a s i m i l a r e f f ec t . Loss of s o i l moisture i s associated with losses of organic and mineral mater ia ls car r ied in suspension or so lu t ion . Therefore, the so i l nut r ient regime can be described as o l igo t roph ic to submesotrophic unless the s o i l s have developed from base r i ch parent mater ia ls . • These habitats support low productive plant communities in which s o i l moisture becomes the l im i t i ng factor for t he i r development. Tree layers are quite open due to considerable ground coverage by exposed rock surfaces or stoniness and consequent windthrow. The windthrow represents a high hazard to safety of wood product ion, 117 pa r t i cu l a r l y on l i t h i c habitats (Figure 21). I t usua l ly occurs in the ear ly spring when the s o i l s are s t i l l wet and storm winds occur. Forest p roduc t iv i t y was found to be corre la ted with s o i l moisture and thickness of s o i l organic layers ( E i s , 1962a, 1962b). The l a t t e r co r re la t ion was p a r t i c u l a r l y s i g n i f i c a n t in the VACCINIUM - GAULTHERIA -DF - WH. This ind icates that the presence of compacted, mycel ia l root mor humus layers may help to preserve more moisture with respect to the underlying rap id ly drained s o i l s . Furthermore, humus layers represent an important storage of nu t r ien ts . This i s indicated by the prevalent F-mor humus form. Considering moisture and nu t r i t i ona l requirements fo r western hemlock,i t becomes understandable that the mycel ia l root mor benef i ts hemlock establishment and growth in these plant communities. Therefore, removal of s o i l organic layers on xe r i c and subxeric habitats i s detrimental to future fores t produc-t i v i t y (Figure 22). Doug las- f i r (CWHa) or western hemlock (CWHb) are the dominant species in the fores t canopy. In wel l developed shrub layers Gaultheria shallon ro t ing in humus layers and mineral s o i l i s the cha rac te r i s t i c f l o r i s t i c feature. Herbs are sparse; shade in to le ran t Rteridium . aquilijium may become occas iona l ly more abundant. Moss f l o r a i s wel l developed; Stokesiella oregana, Hylocomium splendens (CWHa) and Rhytidiopsis robusta (CWHb) have the highest species s i gn i f i cance . The assoc ia t ion GAULTHERIA - DF combines biogeocoenotic uni ts occurr ing in both CDF and CWH zones which have been described by several authors. Var ia t ions occurr ing in d i f f e ren t biogeocl imat ic 118 Figure 22 Ef fec t of escaped slash f i r e on s o i l and regeneration potent ia l at l i t h i c habitats of the VACCINIUM -GAULTHERIA - DF - WH 119 subzones are c lose ly re lated so that they have been treated as sub-associat ions of the same assoc ia t i on . Two subassociat ions are recognized in the Forest : the Gaul ther ia - WH - DF and the Mahonia -Gaultheria - WH - DF. The Mahonia - Gaul ther ia - WH - DF i s d i s t r i -buted exc lus ive ly on slopes with the gradient greater than t h i r t y percent, which have easter ly to westerly aspect and are underlain by stony c o l l u v i a l mater ia ls . The d i f f e ren t i a t i ng combinations of species for the subassociat ion are as fo l lows: Gaultheria - WH - DF Mahonia - Gaul ther ia - WH - DF (Pinus aontovta) Comus nuttallii Dryopteris austriaea Mahonia nervosa Linnaea borealis Chimaphita menziesii Trientalis latifolia I t was observed that in young and dense immature stands (twenty to eighty years old) Gaultheria shallon can be completely lack ing due to the shading e f fec t . Such plant communities strongly resemble those of the MOSS - WH on amphimesic hab i ta ts , however, th is resemblance i s only temporary. The Mahonia - Gaul ther ia - WH - DF may extend wel l in to the CWHb subzone, p a r t i c u l a r l y on very steep south facing s lopes. Correspondingly, there i s an increase in species s ign i f i cance and vigour of western hemlock, whereas the opposite i s true for Gaultheria shallon. Eco log ica l l y equivalent habitats in the CWHb subzone support the VACCINIUM - GAULTHERIA - DF - WH. More humid macroclimate sustains the growth of western hemlock. These environmental and 120 b i o t i c factors have a strong e f fec t on the composition of the under-story vegetation and s o i l development. The f l o r i s t i c composition of th is uni t shows f l o r i s t i c re la t ionsh ips with the Pseudotsugetal ia menz ies i i , however, i t was c l a s s i f i e d in the Tsugetal ia heterophyl lae. In a process of natural succession western hemlock becomes the dominant tree species in the forest canopy. There are more vegetation elements cha rac te r i s t i c fo r the Tsugetal ia heterophyllae such as Vaccinium alaskaense, Menziesia fevvuginea, Plagiothecium undulatum,. Rhytididelphus loreus and Rhytidiopsis robusta. The associated s o i l s are d i s t i n g -uished by very ac id mycel ial root mor humus and the development of th ick a l b i c horizons. These f l o r i s t i c and edaphic d i f ferences sub-stant iated the c l a s s i f i c a t i o n of the VACCINIUM - GAULTHERIA - DF - WH in the Tsugetal ia heterophyl lae. Gaulther ia - WH - DF References: Table 3, Appendix VI ; Table 3, Parts 1 and 2, Appendix XII . Ecosystem types: 131.1 Gaultheria - WH - DF on loamy sand L i t h i c Mini Humo-Fer r i c Podzol with mor humus developed on moraine veneer 131.2 Gaultheria - WH - DF on loamy sand L i t h i c Podzol with mor humus developed on moraine veneer 131.3 Gaulther ia - WH - DF on L i t h i c Fo l i so l with mor humus developed from organic veneer 121 131.4 Gaultheria - WH - DF on sandy loam Mini Humo-Ferric Podzol with mor humus developed on moraine blanket 131.5 Gaulther ia - WH - DF on sandy loam Mini Humo-Ferric Podzol with mor humus developed on g l a c i o f l u v i a l deposi ts . This uni t occurs quite f requent ly , occas iona l ly even over an extensive area of h i l l t o p s in the lower parts of the Forest (Figures 23 and 24). Doug las- f i r i s a moderately shade to lerant t r ee , therefore, i t i s also present in the lower s t r a t a . I t can regenerate natura l l y under the forest canopy when the stand becomes more open or disturbance by windthrow takes p lace. Undoubtedly forest f i r e s in the past a lso favoured the establishment of almost pure stands of Doug las- f i r on these habi ta ts . Western redcedar and western hemlock occur as codo-minant or suppressed trees in the lower tree and shrub layers . Per iod ic occurrence of except ional ly dry years tends to el iminate western hemlock. Gaultheria shallon in shrub layers has the highest species s ign i f i cance and v igor . On these s i t es i t grows up to 50 cm t a l l . In wel l developed moss layer Stokesiella oregana, Eylocomium splendens and Plagiotheoium undulation are the most common bryophytes. Figure 23 The sample p lo t no. 007 of the Gaul ther ia - WH - DF in a f u l l y stocked second growth stand Figure 24 The sample p lo t no. 083 of the Gaultheria - WH - DF in a poorly stocked, second growth stand 123 Mahonia - Gaulther ia - WH - DF References: Table 4, Appendix V I ; Table 4, Parts 1 and 2, Appendix XII Ecosystem type: Mahonia - Gaul ther ia - WH - DF on sandy loam Mini and Orthic Humo-Ferric Podzols with mor humus developed on c o l l u v i a l veneer The d i s t r i b u t i o n of th is un i t i s associated with slopes with gradients in the range of t h i r t y to e igh ty - f i ve percent. The subassoc-i a t i on f l o r i s t i c composition and structure bear a c lose s i m i l a r i t y to that of the Gaulther ia - WH - DF, with the exception of high species s ign i f i cance and presence of Mahonia nervosa. S o i l s are deep but with a high content of coarse fragments (rubble and stones) . Due to the steep slope gradients, there i s a substant ia l down slope movement.of l i t t e r and f ine mineral pa r t i c l es resu l t i ng in a mechanical mixing of the uppermost s o i l 1ayers. • Management Unit No. 2 The Gaulther ia r WH - DF and Mahonia - Gaul ther ia - WH - DF on moderately deep, xer ic and subxeric habitats are included into th is management un i t . L i t h i c var ia t ions of these synsystematic uni ts were included in the previous management un i t . These ecosystems are only marginal ly su i tab le for wood product ion. They are used by w i l d l i f e as shel ter and winter range. Western redcedar 124 and Vaccinium parvifolium in the shrub layers exh ib i t a pers is ten t browsing (deer?). Forest product iv i ty i s low and inherent edaphic propert ies impose hazards for management a c t i v i t y . Such circumstances require more carefu l management and.operations in order not to diminish the i r p roduct iv i ty . The main management considerat ion should be to preserve s o i l moisture and s o i l organic l aye rs . Re la t i ve l y more favorable habitats for wood production are ecosystems developed on f l a t - l y i n g f l u v i a l depos i ts . Douglas- f i r must be maintained as the major species in the stand composition of second growth. Minor proportions of western r ed -cedar and Cornus nuttallii as amel iorat ion species are recommended, pa r t i cu l a r l y in the Mahonia - Gaulther ia - WH - DF. Narrow s t r i p c learcuts against the d i rec t i on of p reva i l ing storm winds, g iv ing the maximum shade e f fec t over the cut-over area are recommended. Smaller c learcuts w i l l a lso provide better w i l d l i f e hab i ta ts . Slash burning or heavy disturbance of s o i l s must be avoided. There fore , i t i s important, i f poss ib le , to separate harvesting of neighbouring, ecosystemat ical ly d i f f e ren t f o res t s , where moderate d i s -turbance of s o i l organic layers or even a s lash burn may be acceptable. Natural regeneration of Douglas- f i r can be expected but i t w i l l extend over a considerable time per iod. P lan t i ng , p a r t i c u l a r l y on stony c o l l u v i a l mater ia ls , w i l l be associated with predictable l osses . To el iminate a need for future improvement and to achieve a tree cover of the ground surface, a greater number of seedlings should be used in plant ing than in the past. Plant ing should be implemented in the 125 ear ly spring or in the f a l l when the s o i l s are s t i l l moist . Protected, r e l a t i v e l y moister s i t es in depressions or even in a moderate shade of brush [Gaultheria shallon, Vaccinium parvifolium* and Holodicus discolor) may help to improve p lantat ion s u r v i v a l . Moderate shading w i l l not a f fec t adversely the growth of the Doug las- f i r as would be the case in other ecosystems in the CWH zone, where Douglas- f i r becomes a shade in to le ran t t ree. Gaultheria shallon assumes a prostrate growth a f te r exposure(Muelle.r-pombqis, 1959, 1965). Therefore, i t w i l l not represent a high brush hazard for Douglas- f i r regenerat ion. Density control measures should be delayed wel l in to advanced immature stages so as to achieve suppression of Gaultheria shallon, competing fo r s o i l moisture. VACCINIUM - GAULTHERIA - DF - WH References: Table 8 , Appendix VI ; Table 8, Parts 1 and 2, Appendix XII Ecosystem types: 41.1 VACCINIUM;- GAULTHERIA - DF - WH on sandy-loam L i t h i c Orth ic Humo-Ferric Podzol with mor humus developed on monaine veneer 41.2 VACCINIUM - GAULTHERIA - DF - WH on loamy sand L i t h i c Podzol with mor humus developed on moraine veneer 41.3 VACCINIUM - GAULTHERIA - DF - WH on L i t h i c Fo l i so l with mor humus developed from organic veneer 41.4 VACCINIUM - GAULTHERIA - DF - WH on loamy sand L i t h i c and Orthic Humo-Ferric Podzols with mor humus developed on c o l l u v i a l veneer. 126 This assoc ia t ion was subdivided by Lesko (1961) and Or loc i (1961, 1964, 1965)-on the basis of s o i l depth. This subdiv is ion should be maintained, however, a t the leve l of the ecosystem type. In th is study the f l o r i s t i c composition between and structure of these plant communities on l i t h i c and moderately deep s o i l s did not provide d i f f e ren -t i a t i n g species. The VACCINIUM - GAULTHERIA - DF - WH i s a f requent ly occurr ing un i t i n the northern central part of the Forest (Figure 25). I t i s d is t r ibu ted on the upper slopes and h i l l t o p s . I r r e g u l a r i t i e s of the underlying bedrock cause i t s int imate d i s t r i b u t i o n together with other un i t s . Such areas were mapped as complexes. The fo res t canopy layer in old growth stands i s open and well d i f fe ren t ia ted into l aye rs . Douglas- f i r i s confined only to the upper-most tree laye r , whereas western hemlock occurs in a l l other l aye rs . Western white p ine, yel low-cedar, lodgepole p ine, mountain hemlock and amabi l is f i r may be sporad ica l l y present. Gaultheria shallon, Vaccinium alaskaense and Vaccinium ovalifolium are the dominant species i n shrub layers . In a very poorly developed herb layer Goodyeva oblongifolia and advance regeneration of western hemlock are the con-s tan t l y present spec ies. the coverage of bryophytes i s high on humus, decayed wood and rock sur faces. Rhytidiopsis vobusta, Hylocomium splendens, Rhytididelphus loreus and Plagiothecium undulatum are the prominent species in the moss laye r . 127 Figure 25 The sample p lo t no. 063 of the VACCINIUM - GAULTHERIA -DF - WH in an old growth stand Figure 26 Very slow recovery of ear ly xerosere stages fo l lowing accidental s lash f i r e s in 1931 at the complex of xer ic and l i t h i c habitats of the VACCINIUM - GAULTHERIA - DF -WH 128 Management Unit No. 3 Moderately deep habitats of the VACCINIUM. - GAULTHERIA - DF - WH are included in th is management un i t . L i t h i c habitats are included in the management un i t no. 1 and designated as. p ro tec t i on ' f o res t s . S i m i l a r l y as in the CWHa subzone, the product iv i ty of these ecosystems i s low and hazards and l im i ta t i ons for wood production a re high-. They represent a complex of lands marginal ly suitable; fo r wood production. Preservat ion of s o i l organic layers must be the main management cons idera t ion . Eco log i ca l l y incor rec t management may r e s u l t in a serious decrease of product iv i ty and s o i l degradation by e ros ion . Rela t ive to other ecosystems in the CWHb, snow duration here i s shorter and'these ecosystems provide temporary w i l d l i f e habi tats i n ear ly spr ing . Western hemlock w i l l be the major component in the tree layers of second growth stands.However, Douglas- f i r and western white pine could be introduced in substant ia l proportions as amel iorat ion species and to improve volume y i e l d s , p a r t i c u l a r l y on s lopes. Narrow s t r i p c learcuts against the d i rec t ion of p reva i l ing storm winds are recommended. Plantat ions of Doug las- f i r and other minor species in selected proportions to western hemlock should fo l low the harvesting promptly. P lant ing in depressions with longer l y ing snow cover and th ick mycel ia l root mor should be avoided. Natural regenerat ion of western hemlock over the area does not appear to be a problem, providing that slashburning has not been app l ied . Advance natural regeneration of western hemlock, present in great quant i ty i n the 129 understory responds wel l to re lease. However, older stagnating ind iv idua ls should be removed. In stands where dwarf mist letoe i s present, a temporary absence of western hemlock in the fo l lowing rotat ion may be necessary. Avoidance of s lash burning i s mandatory (Figure 26). L ight or moderate disturbance of compacted mycel ial , root mor can be advantageous for p lant ing and i t can improve humus decomposition, pa r t i cu l a r l y on f l a t t e r r a i n . Regulation of the stand species composition and densi ty should be car r ied out at ear ly immature stages to prevent extreme stand density due to p r o l i f i c regeneration of western hemlock. * Amphimesic Habitats The associat ions MOSS - WH (CWHa) and VACCINIUM - MOSS - WH (CWHb) are recognized on amphimesic habi tats not af fected by seepage. They are dependent for the i r water supply upon p rec ip i t a t i on of the loca l macroclimate. Seepage may be present for very short periods in summer and longer periods in winter , as re f lec ted in i nc ip i en t mott l ing of the s o i l horizons above the impermeable l aye r , however, i t does not act throughout the vegetat ive season. The s o i l water holding capacity i s much higher than on xe r i c hab i ta ts . Relat ive to other ecosystems, there are neither s i g n i f i c a n t losses nor addit ions of moisture and nut r ients . I t may be concluded that these plant communities and the i r associated s o i l s represent the mesic ecosystems. I f d i f ferences in the composition of parent mater ia ls are great enough *Amphimesic habitats are those, which are e i ther mesic or very s l i g h t l y (temporari ly) xer ic or very s l i g h t l y (temporari ly) hygr ic . 't ' • ; 130 as to cause development of d i f fe ren t s o i l s and vegetat ion under the mesic s o i l moisture regime then, there i s more than one mesic eco-system cha rac te r i s t i c for the respect ive biogeocl imat ic subzone due to nu t r i t i ona l l e v e l s . Dense tree laye rs , composed of western hemlock (CWHa&b) or Douglas- f i r (mainly in second growth in the CWHa), ind icate re la t i ve ease of natural regeneration a f te r disturbance. Shrub layers may be moderately dense to sparse, but the species s ign i f i cance other than coniferous species (advance regenerat ion), i . e . Gaultheria shallon, Menziesia ferruginea, Vaccinium alaskaense, and Vaccinium parvifolium, i s low. The coverage of the herb layer i s very low in contrast to that of the moss layer which i s very wel l developed even under dense fo res t canopy. These cha rac te r i s t i cs c l e a r l y d is t ingu ish these ecosystems from the others. The associated s o i l s , which have developed from base poor parent mater ia ls , are coarse textured Humo-Ferric o r Ferro-Humic Podzols with H-mor humus. An in te res t ing va r ia t ion of Podzols on l i t h i c habitats was designated as L i t h i c Podzol (Lavku l ich , personal communication) (Appendix IV, Figure 7) . L i t h i c Podzols cons is t of mor humus layers separated from the underlying bedrock by a th ick a l b i c hor izon. S im i la r s o i l s were c l a s s i f i e d as Podzol Rankers (Brooke et al. , 1970) or as Eluviated Acid Regosols (Lesko, 1961). Indiv idual bryophytes are ind ica t i ve of successional stages and concurrent c l i m a t i c , physical and chemical propert ies of s o i l organic l aye rs . These plant communities in the CWHa subzone a f ter disturbance develop towards the c l ima t i c climax plant community: the 131 PLAGIOTHECIUM (UNDULATUM) - WH. Soon a f te r disturbance of fo res t stands by fores t f i r e s , logging and s lash f i r e s , Douglas- f i r usua l ly regenerates. Well aerated and th in raw humus develops when the stands are s t i l l young (usual ly less than 150 years o l d ) . I ts propert ies are favorable f i r s t to Stokeslello. ovegana, which i s s t i l l xerophi lous, and l a t e r to Eylooomium splendens, which i s favored by s l i g h t l y deeper mor humus with greater water holding capac i ty . ( I f western hemlock regenerates soon a f te r disturbance, then Hyloeomium splendens may become dominant at the ear ly stages, promoted by greater a c i d i t y of western hemlock l i t t e r and more humid stand micro-c l imate) . The same habi ta t , i f undisturbed and when the stand gets older (200 years and more), develops much th icker and more compacted humus (compaction i s car r ied out mainly by temporary heavy snow accumulation in occasional yea rs ) , which becomes favorable for the establishment of Rhytididelphus loveus and Plagiothecium undulatum under the progressive suppression of Hyloeomium splendens. This raw humus i s character ized by slow decomposition by fungi and hence slow release of accumulated nutr ients and energy u t i l i z e d by s o i l microorganisms and even by higher plants l i v i n g in mycorrhizal symbiosis. Bhytidiadelphus loveus and Plagiothecium undulatum may be. present at a l l stages but they are confined (mainly to decayed wood). The subassociat ions Moss - WH (mesic habi tats) and Mahonia-moss - WRC - WH (submesic habi tats) are recognized in the CHWa subzone. The d i f f e ren t i a t i ng combination of species of the l a t t e r un i t inc lude: 132 {Acer macrophyllum), Mahonia nervosa, {Trientalis latifotia), Vknium. spinulosum and Pogonatum macounii. However, edaphic features, i . e . steep slope gradients (over t h i r t y percent) and c o l l u v i a l ma te r ia l s , are the r e l i a b l e d i f f e ren t i a t i ng cha rac te r i s t i cs used to separate the Mahonia - moss - WRC - WH from the Moss - WH. There i s s u r f i c i a l downslope movement of l i t t e r and f ine mineral pa r t i c l es along steep slopes in the Mahonia - moss - WRC - WH. The humus form i s moder to dry mor with better decomposition and release of accumulated nutr ients than in the Moss - WH. This may expla in the greater occurrence of western redcedar in th is subassociat ions f l o r i s t i c composit ion. Closely re la ted mesic ecosystems in the other parts of the CWH zone were described by Kojima (1971) on base r i ch parent mate r ia l s . Mature plant communities are character ized by a mixture o f Doug las- f i r and western hemlock in the tree layers and a high species s ign i f i cance of Hyloeomium splendens and Stokesiella oregana in the moss l aye r . The same bryophytes were found to be dominant in secondary fores t stands in the Forest . This resemblance i s , however, underlain by d i f f e ren t causes. Whereas i n the f i r s t case, i t i s a r esu l t o f r i c h s o i l nut r ient status (Dyst r ic B run i so l s ) , ear ly successional stages in the Forest are responsible fo r the same e f fec t . 133 Moss - WH References: Table 5, Appendix V I ; Table 5, Parts 1 and 2, Appendix XII Ecosystem types: 211.1 Moss - WH on sandy loam Mini and Orthic Humo-Ferric Podzols with mor humus developed on moraine deposits 211.2 Moss - WH on loamy sand Mini Humo-Ferric Podzol with mor humus developed on g lac io f l uv ia l deposi ts . This un i t occurs very frequent ly on small or extensive areas. I ts i d e n t i f i c a t i o n by ground survey or by aer ia l photographs i s expedient. Moderate canopy d i f f e r e n t i a t i o n , and high stand density are cha rac te r i s t i c features of tree layers . Western hemlock and western, redcedar dominate the lower tree and upper shrub layers . Gaultheria shallon, establ ished mainly on decayed wood, has the highest species s ign i f i cance (Figure 27). Menziesia jerruginea and Vaccinium alaskaense are constant ly but less frequent ly occur r ing . The herb layer i s very poorly developed with Pteridium aquilinum as the only constant species. Stokesiella oregana, Hyloeomium splendens, Plagiothecium undulatum and Rhytidiadelphus loreus are the constant dominant species in very dense moss l aye rs , g iv ing the cha rac te r i s t i c feature to the subassocia-t ion f l o r i s t i c s t ructure. Differences in moss f l o r a can be expected depending on the tree species composit ion, stand age and dens i ty , and accumulation of decayed wood on fores t f l o o r . 134 Figure 28 Mahonia nervosa i s rare or absent in the montane CWHb subzone 135 Mahonia - moss - WRC - WH References: Table 6, Appendix V I ; Table 6, Parts 1 and 2, Appendix XII Ecosystem types: 212.1 Mahonia - moss - WRC - WH on sandy loam Mini and Orthic Humo-Ferric Podzols with mor humus developed on c o l l u v i a l deposits 212.2 Mahonia - moss - WRC - WH on loamy sand Sombric Humo-Ferric Podzol with moder humus developed on c o l l u v i a l deposits This uni t occurs in the CWHa subzone, but i t may extend to very steep and south facing slopes wel l into the CWHb subzone. Mahonia nervosa occurs less frequently with the increasing a l t i t u d e , un t i l i t i s completely lacking in the montane CWHb subzone. From that point such ecosystems were c l a s s i f i e d as slope var ia t ions of the VACCINIUM -MOSS - WH (ecosystem type 42.3)(Figure 28). Douglas- f i r and western redcedar are the prevalent species in the tree layers ; western hemlock i s edaphical ly disadvantaged in secondary fo res ts . I ts pa r t i c i pa t i on becomes more frequent in higher elevat ions or with the increasing stand age. Shrub and herb layers are better developed than in the Moss - WH. Acer circinatum, Mahonia nervosa, Gaultheria shallon. Thuja plicata and Vaccinium parvifolium dominate the lower shrub l aye r , whereas Polystichum munitum i s the prominent species in herb layer . Coverage of bryophytes on humus i s 136 very low due to i n s t a b i l i t y of s o i l organic layers on steep s lopes. Stokesiella ovegana and Hyloeomium splendens were the only constant and dominant species. Management Unit No. 4 The Moss - WH and the Mahonia - moss - WRC - WH are included i n . th is management un i t . Forest p roduct iv i ty of these ecosystems i s medium, however, they are extremely wel l su i tab le fo r fo res t ry use. Low values for w i l d l i f e and rec rea t ion , low hazards and few l im i ta t i ons for wood production suggest that these ecosystems should be in tens ive ly managed as comnercial f o res ts . Recreation and w i l d l i f e should be r e l a t i v e l y subordinate, i f not excluded from these hab i ta ts . Douglas- f i r with minor proportions of western hemlock or western redcedar in the lower tree layers are recommended in the tree species composition of second growth. This composition should provide fo r se l f -pruning of Doug las- f i r , high volume y ie l ds and amel iorat ion e f fec ts on the s o i l s in preserving more basis in the ecosystem nutr ient cyc le . S t r i p c learcu t t ing of moderate s i ze ( re la t i ve to xe r i c habi tats) i s necessary for the establishment of shade in to le ran t Doug las- f i r . slash burning should not be necessary and i s not desi rable because the mor humus i s the major source of nu t r ien ts . The storage of nutr ients in vegetation and s o i l organic layers i s v i t a l i f excessive leaching and rapid deplet ion of the nutr ient c a p i t a l , namely n i t rogen, i s to 137 be avoided. Humus decomposition w i l l be fas te r in cut-over areas and more nutr ients w i l l be made ava i lab le in the period of ear ly growth of Doug las- f i r . Slash burning must not be appl ied on steep slopes because of the benef ic ia l e f fec ts of humus ( l i t t e r ) on surface s t a b i l i t y and physical and chemical propert ies of the p reva i l i ng coarse textured s o i l s . These steep slopes of the Mahonia - Moss - WRC - WH w i l l be l im i t i ng factors fo r mechanization of fo res t ry operat ions. Doug las- f i r p lantat ions w i l l l i k e l y be f i l l e d by natural regen-erat ion of western hemlock and western redcedar completing the f u l l stocking on harvested areas. Control of competing vegetation may not be necessary. There i s a chance of invasion by Ptevidium aquilinum. This can be e a s i l y overcome by immediate re fo res ta t ion a f te r cu t t ing and w i l l probably be less needed i f slash burning i s avoided. Ear ly crop tending should, favor Douglas- f i r tree species composition. Thinnings in advance immature stages should help to regulate stand densi ty in order to optimize volume y ie l ds and increase stand s t a b i l i t y . The control over c l ima t i c condi t ions of the understory by thinnings may have a s i g n i f i c a n t e f fec t on the decomposition rates and nutr ient a v a i l a b i l i t y . * * * The VACCINIUM - MOSS - WH is recognized on amphimesic habitats in the CWHb subzone. A high species s ign i f i cance of Vaccinium alaskaense, sporadic occurrence of amabil is f i r make an easy separation from i t s 138 counterparts in the CHWa subzone. This un i t i s re la ted to the VACCINIUM (ALASKAENSE & MEMBRANACEUM) - AF - MH occurring, in the neighbouring MHa . subzone on mesic habitats (Brooke et al.-t 1970). Lesko (1961) and Or loc i (1961, 1964, 1965) recognized two subassociat ions of the VACCINIUM -MOSS - WH, the f i r s t being cha rac te r i s t i c of mesic hab i t a t s , the l a t t e r being inf luenced by temporary seepage and d i f f e r e n t i a t e d f l o r i s t i c a l l y by the presence of Acer eiveinatvm,. Athyrium f-ilix-femina and Dryoptexn.s austviaea. The l a t t e r subassociat ion Vaccinium - Acer - WH ( O r l o c i , 1961; Lesko, 1961) or the synonymous Vaccinium. - Dryopter is - WH ( O r l o c i , 1964, 1965) does not occur in the Forest . I t i s c h a r a c t e r i s t i c o f the lower pos i t ions on slope with gentle gradients or o f f l a t l y ing f l u v i a l deposits in the lower a l t i t u d i n a l l i m i t s of the CWHb subzone. Pa r t i c i pa t i on of amabi l is f i r in the f l o r i s t i c composition of the VACCINIUM - MOSS - WH i s minimal. However, on amphimesic habi tats associated with base r i ch s o i l s , amabi l is f i r has a high species s i g n i f i -cance and presence values (Kojima, 1971). I t can be concluded, that the proport ion of th is species on amphimesic hab i ta ts i s a t t r ibu tab le to the s o i l nutr ient s ta tus . VACCINIUM - MOSS - WH References: Table 9, Appendix V I ; T a b l e 9 , Par ts 1 and 2 , Appendix XII Ecosystem types: 42.1 VACCINIUM - MOSS - WH on loamy sand L i t h i c Podzol with mor humus developed on moraine veneer 139 42.2 VACCINIUM - MOSS - WH on sandy loam L i t h i c and Orth ic Humo-Ferric Podzols with mor humus developed on moraine deposits 42.3 VACCINIUM - MOSS - WH on sandy loam L i t h i c and Orth ic Humo-Ferric Podzols with mor humus developed on c o l l u v i a l veneer over moraine deposi ts. The VACCINIUM - MOSS - WH covers extensive areas in the upper parts of the Forest . Submesic and l i t h i c habitats on slopes are more frequent than mesic and moderately deep habi tats on gentle s lopes. Very dense tree layers are dominated by western hemlock. Other species (Doug las- f i r , western redcedar, western white pine and amabi l is f i r ) occur in minor and i r regu la r proport ions. Vaccinium alaskaense i s the con-stant dominant species in the lower shrub layer (Figure 29). In a very poorly developed herb layer (sometimes almost lacking) advance regeneration of western hemlock predominates over Goody era oblongi folia, j uven i le Vaccinium parvifolium, Linnaea borealis, Cornus canadensis and Clintonia uniflora. Bryophytes have very high coverage and are represented by Hyloeomium splendens, Rhytidiadelphus loreus, Plagiothecium undulatum and Rhytidiopsis robusta. Figure 29 The sample p lo t no. 064 of the VACCINIUM - MOSS - WH in an o ld growth stand Figure 30 Windthrow in an old growth stand at l i t h i c habitats of the VACCINIUM - MOSS - WH 141 Management Unit No. 5 Moderately deep so i led habitats of the VACCINIUM - MOSS - WH both on gentle and steep slopes exceeding t h i r t y percent were included in th i s management un i t . L i t h i c habitats are included in the uni t no. 2 , comprising the VACCINIUM - GAULTHERIA - DF - WH, due to consider-able hazards and l im i ta t ions for wood production (Figure 30). S im i l a r l y as in the CWHa subzone, the value of these ecosystems fo r forest ry predominates over a l l other uses. Therefore, they should be designated as commercial forests and managed in tens ive ly fo r wood production. Western hemlock with minor proportions of western redcedar, Douglas- f i r (only in the submontane and in the lower l i m i t of the montane CWHb subzone) and amabi l is f i r in the tree species composition w i l l provide for optimum and balanced volume y ie l ds of second growth. Although a two-cut shelterwdod system might be considered, the app l ica t ion of s t r i p c lea rcu t t ing w i l l a lso resu l t in abundant natural regeneration of western hemlock. Advance regeneration in add i t ion to expected regeneration of western hemlock fo l lowing cut t ing w i l l provide a s u f f i c i e n t , i f not a surp lus, number of seedlings over the cut-over area. The proposed minor species (e .g . western redcedar) should be introduced by plant ing in a supporting ro le in disturbed mic ros i tes . Ground yarding by rubber- t i red skidders may be e f f e c t i v e , p a r t i c u l a r l y on gentle t e r ra in and with l i t t l e advance regeneration present, in d is turb ing th ick mor humus layers and breaking s l a s h , thus preparing the s i t e for natural and a r t i f i c i a l regenerat ion. Slash burning must 142 be avoided on the mesic hab i ta ts . With c lose u t i l i z a t i o n , a high leve l of protect ion and with respect to s o i l moisture status s lash burn-ing may not be required. I t would destroy advance regeneration of western hemlock and amabi l is f i r . Removal of s o i l organic layers by f i r e i s considered to have a more adverse impact than in the CWHa sub-zone in diminishing the growth potent ia l f o r western hemlock whose roots are l im i ted to mycel ial root mor l a y e r s . Ea r l y crop tending to prevent establishment of excessively dense stands and to maintain the selected proport ions of minor species i s mandatory. Thinning or other regulat ion of densi ty , qua l i t y and increment o f stock, should contr ibute at the same time to the s t a b i l i t y of stands and promote better microc l imat ic condit ions favoring humus decomposit ion. ic -k -k . The assoc ia t ion MOSS - (POLYSTICHUM) - WRC - WH i s recog-nized on amphimesic habitats af fected by temporary seepage. A combination of the lower pos i t ion on the slope and the presence of an impermeable s o i l layer resu l ts in a temporary in f luence by seepage. The s o i l nutr ient status due to some addit ions, o f moisture and nutr ients by seepage water can be designated as permesotrophic. The s im i l a r edaphic e f fec t may be provided in moderately deep and medium or f ine textured s o i l s located on undulating f l a t s o r very gentle slopes due to a high s o i l moisture holding capac i ty . 143 In addi t ion to the p reva i l i ng pedogenic processes in the CWH zone, weak g le i za t i on and strong i l l u v i a t i o n ( i . e . immobi l izat ion of humified mater ia ls and sesquioxides in podzol ic horizon) are i n t e n s i f i e d in the s o i l s of the MOSS - (POLYSTICHUM) - WRC - WH. The s o i l s of two eco log i ca l l y re la ted uni ts - - the MOSS - (POLYSTICHUM) - WRC - WH and those of the BLECHNUM - AF - WH (CWHb) with subhygric moisture re -gime—are cha rac te r i s t i c of o r t s te in formation. Or ts te in layers (coarse textured mineral pa r t i c l es cemented by i ron and humus mater ia ls) have developed usual ly above the impermeable layer in the coarse textured, base poor s o i l s with H-mor humus and substant ia l accumulation of decayed wood on forest f l o o r . In the MOSS - (POLYSTICHUM) - WRC -WH assoc ia t ion temporary absence of seepage water flow and o f pe rco la -t i ng water i n the vegetat ive season might force an in tens ive p r e c i p i -ta t ion of c o l l o i d s and solutes in the lower B hor izons. In the BLECHNUM - AF - WH assoc ia t ion great quant i t ies of humic substances and sesquioxides are e luv iated as co l l o i ds or in so lu t ion from the upper horizons and translocated into the lower solum under the inf luence of high p rec i p i t a t i on . A high pH environment and ox id i z ing condit ions immediately above the leve l of seepage water flow might force t he i r p r e c i p i t a t i o n . Doug las- f i r and western hemlock are the main species in dense fores t stands. Douglas- f i r i s usual ly in the upper tree l a y e r , whereas western hemlock dominates the lower tree and shrub l a y e r s . Herbs are less abundant as compared to the high coverage of mosses. HylocoTniwn splendensRhytidiadelphus loveus and Plagiothecium undulatum 144 are the prominent bryophytes on humus ( in the TIARELLA - POLYSTICHUM -WRC these ac id iph i lous species are confined to decayed wood). The intermediate pos i t ion of the MOSS - (POLYSTICHUM) - WRC - WH between the Tsugetal ia heterophyllae and the Thu je ta l ia p l i ca tae plant orders i s re f lec ted a lso in i t s fo res t p roduc t iv i t y . F l o r i s t i c a l l y , the MOSS - (POLYSTICHUM) - WRC - WH i s not a d i s t i n c t un i t due to i t s t rans i t i ona l character between amphimesic and hygric habi ta ts . I t was c l a s s i f i e d by Or loc i (1961, 1964, 1965) in to the Thu je ta l ia p l i ca tae , whereas in th is study i t i s included into the Tsugetal ia heterophyl lae. However, the MOSS - (POLYSTICHUM) - WRC -WH i s included in a d i f fe ren t a l l i a n c e , thus being separated from the other biogeocoenotic units of th is plant order. This a l l i a n c e combines plant communities with the s o i l s temporari ly af fected by seepage and also those developed from base r i ch parent mater ia ls . Plant commun-i t i e s associated with base r i c h s o i l s and also af fected by temporary seepage are f l o r i s t i c a l l y d i f f e ren t . Indeed, such edaphic va r ia t i ons , e .g . the ACHLYS - POLYSTICHUM - DF - WRC was described by Kojima (1971) for Vancouver Is land. The MOSS - (POLYSTICHUM) - WRC - WH extends into the submontane CWHb subzone. Presence of amabil is f i r and predominance of western hemlock over Douglas- f i r help to iden t i f y th is subzonal v a r i a t i o n . 145 MOSS - (POLYSTICHUM) - WRC - WH References: Table 7, Appendix V I ; Table 7, Parts 1 and 2 , Appendix XII Ecosystem types: 31.1 MOSS - (POLYSTICHUM) - WRC - WH on sandy loam Or th ic Humo-Ferric Podzol with mor humus and o r t s t e i n develop-ment developed on moraine deposits 31.2 MOSS - (POLYSTICHUM) - WRC - WH on loamy sand (Gleyed) Mini and Orth ic Humo-Ferric Podzols with moder humus developed on g l a c i o f l u v i a l deposits over moraine deposits 32.3 MOSS - (POLYSTICHUM) - WRC - WH on s i l t y c lay (Gleyed) Sombric Ferro-Humic Podzol with moder humus developed on glaciomarine deposi ts . This i s a commonly occurr ing un i t of var iab le extent and d i s t r i -but ion. I t may occupy e i ther bases of short slopes or extensive areas of gently s loping and r o l l i n g uplands, which are associated with deep s u r f i c i a l deposi ts . Correct i d e n t i f i c a t i o n requires carefu l a p p l i c a -t ion of both f l o r i s t i c and edaphic c h a r a c t e r i s t i c s . The use of ae r ia l photographs in th is respect cannot provide a r e l i a b l e de l im i ta t i on . Natura l ly establ ished second growth stands usual ly are f u l l y stocked and dense (Figure 31). Doug las- f i r occurs in the uppermost tree layer whereas western hemlock dominates in the lower t ree and Figure 31 The sample p lot no. 001 of the MOSS - (POLYSTICHUM) -WRC - WH in a f u l l y stocked second growth stand of Douglas- f i r and western hemlock Figure 32 The sample p lo t no. 028 of the MOSS - (POLYSTICHUM) -WRC - WH in a poorly stocked, second growth stand of western hemlock and Douglas- f i r 147 shrub l aye rs . Acer circinatum, Gaultheria shallon and Vaccinium parvifolium are the constant species in the lower shrub l a y e r . The herb layer i s bet ter developed than in the Moss - WH subassoc ia t ion . I t includes some species cha rac te r i s t i c fo r the Thujeta l ia p l i c a t a e , however, those cha rac te r i s t i c fo r the Tsugeta l ia heterophyllae are more abundant. Under f u l l y stocked and dense stands the coverage of understory vege-ta t ion may be very low. Hyloeomium splendens and Stokesiella oregana prevai l over Rhytidiadelphus loreus3 Plagiothecium\undulabum, and Rhizomnium glabrescens. Not f u l l y stocked stands are cha rac te r i s t i c of\dense shrub layer (Figure 32). O v e r a l l , the f l o r i s t i c composition i s i nd i ca t i ve of increased b io log ica l a c t i v i t y and l i t t e r decomposition. Mor humus t r ans i t i ona l towards moder i s found. N i t roph i lous species are lack ing or have low species s ign i f i cance . The associated s o i l s were c l a s s i f i e d as Orth ic or Mini Humo-Ferric (Ferro-Humic) Podzols with H-mor to moder humus and wel l to i n c i p i e n t l y developed o r t s te i n l aye r , i f underlain by moraine deposi ts . Management Unit No. 6 The MOSS - (POLYSTICHUM) - WRC - WH should be managed as commer-c i a l forests fo r wood production. Low hazards, a high po ten t ia l f o r mechanization and very good product iv i ty f o r Douglas- f i r o r western hemlock favor the app l i ca t ion of more in tens ive s i l v i c u l t u r a l techniques, which can be j u s t i f i e d here more than in the other ecosystems of the. Tsugetal ia heterophyl lae. Values for other uses are low, l imi ted by 148 the nature of these ecosystems. I f des i red , recreat ional and w i l d l i f e values may be p a r t i a l l y integrated or even increased along with wood production when a greater d i ve rs i t y in the tree species composition i s sought in stand establishment and crop tending. Doug las- f i r as the most productive spec ies , ought to be main-tained as the major component in the tree species composition of second growth. Var iab le but minor proportions of western hemlock (CWHa&b), western redcedar (CWHa&b) and amabil is f i r (CWHb) could help to increase the to ta l volume production and i t s qua l i t y (WH, AF) or to benef i t the nutr ient cyc l ing and retard the o r t s te in formation (WRC). E s t a b l i s h -ment of Acer circinatvm at l a t e r stages in shrub layers should be a lso regarded as bene f i c ia l in th is respect. In the wettest part of the submontane CWHb subzone, western hemlock instead of Doug las- f i r should be the major species due to i t s exce l len t growth under these c l ima t i c cond i t ions . At these habitats the to ta l volume y i e l d per area un i t of western hemlock stands might be comparable or even exceed that of Doug las- f i r stands. A. c lea rcu t t ing system i s recommended with the s i ze and shape of f e l l i n g s to be fur ther modified by loca l condi t ions of r e l i e f , cl imate and parent mater ia ls . I f Douglas- f i r i s to be planted l i g h t slashburning may be car r ied out , p a r t i c u l a r l y i f accumulation of decayed wood i s present on the s i t e . A higher densi ty of Douglas- f i r p lant ing than usual in the past may be desi rable in order to reduce the chance of brush hazard (red a lde r , Rteridium aquilium, Rubus , spectdbilis, Acer circinatum), p a r t i c u l a r l y a f te r a s lash burn. Natural 149 regeneration of western hemlock usual ly fol lows and may complete the stocking of tree seedlings on harvested areas. Control of competing vegetation i s usual ly not necessary. However, regulat ion of the tree species composition must be car r ied out rather ea r l y . Commercial thinnings should maintain the f u l l stand stocking whi le con t ro l l i ng stand densi ty . A simple two-cut shelterwood system (with the cuts perhaps 3-7 years apart) might be a lso su i tab le perhaps in second growth stands, i f a large component of western hemlock i s des i red. However, natural regeneration of western hemlock can be achieved in the CWH zone on c lea r -cu t areas, provided they are not extensively large and s l a s h -burning is not car r ied out. Mechanical disturbance of s o i l organic l aye rs , i f no advance regeneration i s present and accumulation of decayed wood i s s i g n i f i c a n t , w i l l be sa t i s fac to ry as to prepare the s i t e fo r the regenerat ion. Numerous seedlings of western hemlock establ ished under the mature stands of the MOSS - (POLYSTICHUM) -WRC - WH assoc ia t ion before cut t ing w i l l l i k e l y surv ive logging opera-t ions and,released by i t , give a lead s ta r t to the next crop. Hygric Habitats Two newly described assoc ia t ions , the RIBES - VM and the POLY- PODIUM - GAULTHERIA - DF - WRC are recognized on temporari ly subhygric l i t h i c ( ta lus) habi tats on steep slopes with the gradient over ten percent. A combination of the pos i t ion on the middle or upper s lope , 150 very steep slope gradient , bouldery (stony) ground sur face and the proximity of bedrock to the ground surface resu l ts i n marginal a d d i -t ions of water and mater ia ls . Intensive weathering o f exposed ske le ta l (fragmental) surfaces and rocks above ta lus deposi ts and accumulation of down-slope translocated and windborne organic and inorganic mater ia ls in i n t e r s t i ces from adjacent areas represent other sources of add i t i ons . These mater ia ls gradual ly f i l l the i n t e r s t i ces between rock fragments and provide habi tat for other than l i chen species. Where s u f f i c i e n t s o i l has accumulated shrub, herb and moss layers may be supported. The RIBES - VM i s a stage in primary succession on t a l u s , which cannot as yet support forest stands. The s o i l moisture regime i s s i g n i f i e d by extreme f l uc tua t i ons ; the s o i l nutr ient status can be described as permesotrophic. Habitats of the POLYPODIUM - GAULTHERIA - DF - WRC are c l i f f s , b lu f fs of rocks with discontinuous narrow ledges, r e e f s , crevasses, crevices and other i r r e g u l a r i t i e s . The average slope gradient i s 112 percent. Surface flow of water and mater ia ls cap-fared in f i s s u r e s , cracks and on ledges of rocks represent addi t ions o f moisture and nu t r ien ts . Frequent p rec ip i ta t ions in the CWHb subzone resu l t i n in termi t tent surface and subsurface seepage during and shor t ly a f t e r r a i n f a l l over the exposed rock surfaces and underneath the shallow humus on the mineral s o i l mantle. However, the s o i l s soon become dry. This i r r e g u l a r i t y of the s o i l moisture regime from xer ic to hygric to mesic and to xe r i c i s correspondingly r e f l e c t e d in the o s c i l l a t i o n of the s o i l nutr ient regime and hence, re f lec ted in the 151 f l o r i s t i c composition. The assoc ia t ion f l o r a represents a mixture of xerophyt ic, mesophytic and hygrophytic spec ies . The l im i t i ng fac tor to vegetation development i s " lack of s o i l s . " The s o i l s e i ther have not yet developed in the process of the primary succession or have been pers is ten t l y removed by degradational geornorphic processes. Trees can root only in deep f i ssures and cracks between the rocks which may act as a trap for surface flow of water and mater ia ls moved by g rav i t y . Surface runoff concentrates in marv&^intermi11ent drainages which erode eas i l y through shallow and loose organic layers and mineral s o i l . Steady displacement and mixing o f very th in humus layers and underlying s o i l horizons by raindrop splash in exposed p laces, runoff waters, s o l i f l u c t i o n , creep and other forms of mass wast-ing , proceeding in undisturbed condi t ions, are cha rac te r i s t i c features of these ecosystems. During the sampling in the POLYPODIUM - GAULTHERIA - DF - WRC ecosystems a rock f a l l was observed by Dr. D.S. Lacate and the author above Loon Lake on Ju ly 30, 1973 (Figures 33 and 34) . Later i t was found to be re lated to a minor registered earthquake which o r i g i n -ated in A laska. Most l i k e l y the earthquake t r iggered the s l i d e . A deta i led inspect ion of the o r ig ina l locat ion of the moved rock revealed decayed and l i v i n g root mass congested in a deep f i s s u r e . I t i s l i k e l y that th is large rock fragment had been slowly pul led along the s lope and sideways through the leverage of large roo ts . The act ion of move-ment of rocks by uprooting and root ing of l i v i n g trees was reported A quar tzd io r i te rock fragment moved about 100 meters downslope from i t s o r i g ina l pos i t ion (above Loon Lake) 153 by Lutz (1960). Common uprooting of t rees, on these habitats may con-t r ibute to downslope movement of s o i l s and rock mantle. Thus, forest trees may act as an important agent in physical d is in tegra t ion of rocks and the i r movement to the lower pos i t ion on the s lope. RIBES - VM References: Table 12, Appendix V I ; Table 12, Parts 1 and 2, Appendix XII Ecosystem types: 61.1 RIBES - VM on loamy sand, fragmental Typic F o l i s o l with moder humus developed on c o l l u v i a l blanket 61.2 RIBES - VM on loamy sand, fragmental Orth ic Dyst r ic Brunisol with mull humus developed on c o l l u v i a l blanket 61.3 RIBES - UM on loamy sand, fragmental Sombric Humo-Fer r ic Podzol with moder humus developed on c o l l u v i a l blanket. The RIBES - VM i s d is t r ibu ted in the northern part of the Forest , where i t occurs on few talus deposits (Figure 35). I t can be eas i l y recognized and accurately mapped using ae r ia l photography. Some talus deposits are almost bare. This ecosystem is confined to the low margin of the deposi ts . Acer circinatum dominates the shrub layers with sporad ica l ly occurr ing Doug las- f i r . Menziesia ferruginea, Ribes lacustre and Gaultheria 154 Figure 35 The sample plot no. 070 of the RIBES - VM in ear ly summer 1972 155 shallon are the constant dominant species, of the lower brush l aye r . A low coverage of herb layer i s corre lated to the low ground coverage by humus. A su rp r i s ing ly r i ch mixture of herbs was l i s t e d , in which species cha rac te r i s t i c fo r the Thu je ta l ia p l i ca tae p reva i l ed . Many species from shrub and herb layers exh ib i t pe rs is ten t and heavy browsing (deer). Rhytidiadelphus loveus, Rhaoomiivi-um eanesoens, Rhaeomitvivm hetevostiahum and Pleuvozium sehvebevi are the most abundant mosses. The moss layer i s developed exc lus ive ly on surfaces o f boulders and stones, which make up eighty-seven percent o f the ground surface. Several plant species {Gaulthevia ovatifol%a, Cvyptogvamma cvispa, Ovthoeaulis floevkii, Andvaaea vupestvis, e t c . ) are i nd i ca t i ve of c l ima t i c condit ions resembling a subalpine macroclimate. The ear ly stage of s o i l development on fragmental c o l l u v i a l deposits in the CWH zone i s represented by Typic F o l i s o l s . The s o i l s cons is t ing of organic layers underlain by fragmental (or ske le ta l ) mater ia ls with i n te rs t i ces e i ther p a r t i a l l y (more than f i f t y percent of the volume) or f u l l y f i l l e d by organic mater ia ls were c l a s s i f i e d as Typic F o l i s o l s (Appendix IV, Figure 16). This s o i l fu r ther develops into sandy loam Orthic Dyst r ic Brunisol and then to loamy sand Sombric Humo-Ferric Podzol . 156 POLYPODIUM - GAULTHERIA - DF - WRC References: Table 13, Appendix V I ; Table 13, Parts 1 and 2, Appendix XII Ecosystem types: OL. I K U L I KUUIUI'I - UMUL I M L K l M - Or - wKL On L I U l i C r U i I SO I and Protoranker with mor and moder humus developed from organic veneer 62.2 POLYPODIUM - GAULTHERIA - DF - WRC on sandy loam L i t h i c Podzol with mor and moder humus developed on c o l l u v i a l veneer. o This associat ion represents a t rans i t i on between the Pseudotsuge-t a l i a menziesi i and the Thu je ta l ia p l i ca tae . I t i s commonly d is t r ibu ted on steep!ands above P i t t Lake and west of Marion Lake e i ther i nd i v i dua l l y or in complexes with other uni ts on c o l l u v i a l ma te r ia l s . I ts habi tats are excessively steep and often inaccess ib le slopes where exposed bedrock makes up over eighty percent of the ground surface (Figure 36). The POLYPODIUM - GAULTHERIA - DF - WRC can be eas i l y i d e n t i f i e d by i t s habitat and out l ined using ae r ia l photographs. Western redcedar i s the main component of very open t ree layers (the average coverage i s 13.2 percent) . Gaultheria shallon, Vaccinium. parvifolium, Vaccinium alaskaense and Menziesia ferruginea are the constant species in a sparse shrub layer . Polypodium glycyrrhiza, as the cha rac te r i s t i c species fo r the assoc ia t i on , inhabi ts rocky faces. Figure 36 The sample p lo t no. 132 of the POLYPODIUM • GAULTHERIA - DF - WRC in an immature stand of Douglas- f i r and western redcedar. Note humus flow over the rock surface Very slow recovery a f te r the f i r e in 1931 on the complex of temporari ly subhygric and l i t h i c habi tats 158 Moss f l o r a on rocky surfaces i s abundant. High species s ign i f i cance values were recorded fo r Isopterygium elegans, Hyloeomium splendens, Heteroeladium macounii, Dieranum howellii, Dicvanum fuseeseens, Diplophyllum taxifolium, Rhacomitvium heterostiohum and Scapania amerieana. Protorankers (organic s o i l less than ten cm th i ck over bedrock), L i t h i c F o l i s o l s and L i t h i c Podzols with moder or mor humus were the associated s o i l s , occurr ing in int imate and i r regu la r pat terns. Management Uni t No. 7 The RIBES - VM, the POLYPODIUM - GAULTHERIA - DF - WRC and i n -cluded l i t h i c var ia t ions of biogeocoenotic uni ts on hygric habitas are designated as protect ion f o res t s . Their values in s o i l protect ion and as temporary w i l d l i f e habitats exceeds that for wood product ion. The management ob ject ive cons is ts in perpetual maintenance of fo res t cover. Removal of fo res t stands may soon resu l t in complete exposure of the underlying bedrock and habi tat devastat ion. A r t i f i c i a l re fores ta t ion of these topographical ly and edaphica l ly extreme s i t u -at ions i s hopeless and an undesirable s i l v i c u l t u r a l p ropos i t ion . Natural regeneration of these habitats i s very slow and may extend over a ha l f of the century (Figure 37). * * * 159 The three newly described assoc ia t ions , the POLYPODIUiM -POLYSTICHUM - WRC - DF, the MAHONIA - POLYSTICHUM - DF - WRC and the ADIANTUM - POLYSTICHUM - WRC, which occur exc lus ive ly on s lopes with the gradient over t h i r t y percent, are recognized on subhygric and hygric habitats in the Forest . In add i t ion , the slope var ia t ion o f the TIARELLA - POLYSTICHUM - WRC was also included for management reasons. Subhygric and hygric habitats are enriched by subsurface seepage water and s u r f i c i a l f low of organic and,, to an extent, by mineral materials (Figure 38). The l a t t e r addi t ions represent gains of e a s i l y decom-posable mater ia ls with high concentration of nut r ients , e s p e c i a l l y n i t rogen. These mater ia ls brought from upslope ecosystems by gravi ty and runoff are par t l y deposited on the res idual humus l a y e r s . Very th in L and F l aye rs , and a high mineral content of the H l a y e r are typ ica l features of s o i l organic laye rs . Enrichment by moisture and* nu t r ien ts , and pedoturbation ( i . e . churning and mixing) are the . prominent pedogenic processes operative in the s o i l s . The f i n a l ?' balance of a l l pedogenic processes resu l t s i n moder (mull) humus formation and weak horizon d i f f e r e n t i a t i o n . The s o i l moisture status can be described as subhygric to hygric and the s o i l nu t r i en t status as mesotrophic to eutrophic. Second growth fores t stands have frequent openings a l lowing development of moderately dense shrub layers . Doug las- f i r (CWHa&b) or western hemlock (CWHb) dominate the upper tree layer . Western redcedar forms a s i g n i f i c a n t proport ion in the lower tree and upper shrub l aye rs . I t may, however, dominate the forest , canopy even in 160 second growth at habitats strongly af fected by seepage water such as in the ADIANTUM - POLYSTICHUM - WRC assoc ia t ion . Acer macrophyllum and Comus nuttallii are corrmonly occurr ing minor spec ies , p a r t i c u l a r l y on skeleta l c o l l u v i a l mater ia ls . Broadleaf maple communities may tem-pora r i l y dominate fresh c o l l u v i a l deposi ts . Species cha rac te r i s t i c for the Thujeta l ia p l ica tae are present in the composition of understory vegetat ion. Predominance of ferns over other herb species i s a typ ica l feature of these plant communities. The newly described biogeocoenotic units of temporari ly subhygric and l i t h i c ( ta lus) hab i ta ts , subhygric and hygric habitats on steep slopes represent, perhaps an incomplete, l Figure 38 Development of Ah horizon and moder humus as a resu l t of ped-oturbation on a slope (the sample p lo t no. 003) 161 successional ser ies on c o l l u v i a l mater ia ls in the CWH zone. The assoc ia -ted s o i l s are s k e l e t a l , coarse textured, moderately deep to deep Humo-Fer r ic or Ferro-Humic Podzols, and Dystr ic or Sombric B run iso ls . The d i f f e ren t i a t i on of M in i , Orth ic and Sombric subgroups in Podzols or Brunisols has l i t t l e genetic meaning, as the upper s o i l layers and horizons are subjected to steady movement. The POLYPODIUM - POLYSTICHUM - DF - WRC i s a r e l a t i v e l y broad uni t with several f l o r i s t i c and edaphic va r i a t i ons . I ts cha rac te r i s t i c edaphic feature i s a high percentage of coarse fragments in the upper solum and on the ground surface with p a r t i a l l y f i l l e d i n t e r s t i c e s . By contrast the i n te rs t i ces in the lower solum are usua l ly completely f i l l e d with f ine s o i l mater ia ls and f resh ly weathered p a r t i c l e s . Correspond-i n g l y , roots of Douglas- f i r and western redcedar are concentrated deep in the lower solum. Roots of western hemlock, however, remain l im i ted to s o i l organic l aye rs ; The re la ted MAHONIA -POLYSTICHUM - DF - WRC occurs on deep s o i l s with a lower content of coarse fragments in the solum and on the ground sur face. I t i s usual ly associated with g l a c i o f l u v i a l or a l l u v -i a l ma te r ia l s . Permanent seepage f low, located c lose to the ground sur face, excessively high content of stones and boulders and presence of under-ground streams are the cha rac te r i s t i c edaphic features of the ADIANTUM -POLYSTICHUM - WRC. Excel lent growth of Douglas- f i r and western redcedar on these habitats can be explained by the strong inf luence of seepage water. 162 These habitats support good to exce l len t growth of Douglas- f i r and western redcedar, however, edaphic propert ies impose serious l i m i -tat ions to fo res t ry use. App l ica t ion of large c learcuts and s lash burning has frequent ly resul ted in habi tat degradation by surface erosion and mass s o i l movement, revert ing the ecosystems into ear ly stages of primary succession. Regeneration by p lant ing appears to be in most cases, d i f f i c u l t , i f not impossib le. Numerous recent studies concerning mass wast ing, s o i l erosion and s t a b i l i t y o f forest s o i l s on steep slopes in re la t i on to harvesting have ind icated that man's a c t i v i t y w i l l aggravate such natura l ly unstable condi t ions (Dyrness, 1967; O'Loughl in, 1972; Swanston, 1967, 1970; Swanston and Dyrness, 1973; Utz ig and Herr ing, 1974, 1975). Steep slope grad ients , subhygric to hygric s o i l moisture regime and presence of the impermeable layer (e i ther bedrock or compacted t i l l ) , integrated in these ecosystems, are the factors which c l ea r l y predispose s o i l i n s t a b i l i t y . Various forms of mass wasting and s o i l e ros ion , occurr ing i n undisturbed cond i t ions , are ind ica t i ve of the i r s u s c e p t i b i l i t y and degradational geomorphic character . Ef fects of s u r f i c i a l creep as the impercept-^ i b l y slow downhill movement of s o i l mater ia ls and o f snow creep are ind icated by curved tree boles (downslope curvature of tree trunks) and weak horizon d i f f e r e n t i a t i o n . The deposi t ion of mater ia ls around tree boles i s i nd ica t i ve of more rapid downhill movement under the d i r ec t inf luence o f g rav i t y . However, the most important fac tor a f fec t ing s o i l s t a b i l i t y i s the vegetat ive cover. The continuous vegetat ive cover keeps mass wasting and surface erosion to a minimum by improvement of shear stress cha rac te r i s t i cs of the s o i l s through 163 the maintenance of l i v i n g root systems which anchor the s o i l in the sub-stratum. Root systems of trees were found to be the most important s ing le factor in re ta in ing s o i l on steep s lopes. Logging and s lash burn-ing on c o l l u v i a l slopes with a subhygric s o i l moisture regime cause the increased s o i l movement (dry r a v e l , creep, s l i d i ng ) and return to the stages of primary succession, i . e . RIBES - VM assoc ia t ion on t a l u s . Log-ging and s lash burning on steep slopes with hygric s o i l moisture regimes may lead to s o i l saturat ion and slope f a i l u r e s . Extensive removal of f o res t stands and slashburning on such habitats may ser ious ly increase incidence of surface erosion (pedestal formation, r i l l i n g , channel scour ing, gu l ly ing) and debris avalanches, creeps, slumps and ear thf lows. POLYPODIUM - POLYSTICHUM - DF - WRC References: Table 14, Appendix VI ; Table 14, Parts 1 and 2, Appendix XII Ecosystem types: 63.1 POLYPODIUM - POLYSTICHUM - DF - WRC on loamy sand and sandy loam ske le ta l Mini and Orth ic Humo-Ferric Podzols with moder humus developed on c o l l u v i a l deposits 63.2 POLYPODIUM - POLYSTICHUM - DF - WRC on loamy sand and loam, ske le ta l Mini and Sombric Ferro-Humic Podzols with moder humus developed on c o l l u v i a l deposits 63.3 POLYPODIUM - POLYSTICHUM - DF - WRC on s i l t loam, ske le ta l Orthic Dystr ic Brunisol with moder humus developed on c o l l u v i a l deposi ts . 164 This i s a commonly occurring uni t throughout both subzones, on the middle and lower slopes with the average gradient of seventy percent. I t occurs ind iv idua l l y or in complexes wftfc other ecosystems of steepland c o l l u v i a l slopes (Figures 39 and 40) . Doug las- f i r in the upper and western redcedar in the lower tree layers dominate the fores t canopy. Western hemlock i s found in t ree layers mainly i n the CWHb subszone. I f decayed wood covers the ground sur face, then i t grows success fu l l y a lso in the CWHa subzone. Occurrence o f deciduous species [Acer macrophyllum, Alnus rubra, Betula papyrifera, Cornus nuttallii) i s a regular feature, pa r t i cu l a r l y on very steep s lopes. In moderately dense shrub. layers advance regeneration of coni ferous tree species and Acer circinatum have the highest coverage. A well developed herb layer i s cha rac te r i s t i c by high species s ign i f i cance and v igor of ferns {Polystichum munitum, Dryopteris austriaca, Athyrium filix-femina and Polypodium glycyrrhiza). Stokesiella oregana and Hyloeomium splendens are the dominant species in the moss l aye r on humus. A great proport ion of moss f l o r a i s confined to surfaces o f coarse fragments, comprising over one-half of the ground surface. Out of many species Isoterygium elegans, Heterocladium macounii, Pogonatum macounii, Stokesiella oregana, Isotheeium stoloniferwn, Claopodium bolanderi are the constant and dominant species. Figure 40 The sample p lo t no. 006 of the POLYPODIUM - POLYSTICHUM -DF - WRC in an open second growth stand 166 MAHONIA - POLYSTICHUM - DF - WRC References: Table 15, Appendix V I ; Table 15, Parts 1 and 2, Appendix XII Ecosystem types: 64.1 MAHONIA - POLYSTICHUM - DF - WRC on sandy loam Mini and Orthic Humo-Ferric Podzols with moder and mor humus developed on c o l l u v i a l veneer over moraine deposits 64.2 MAHONIA - POLYSTICHUM - 'DF - WRC on loamy sand Mini and Sombric Humo-Ferric Podzols with moder and mor humus developed on c o l l u v i a l veneer over g l a c i o f l u v i a l and a l l u v i a l deposi ts. This un i t occurs less commonly in the Forest , being conf ined to slopes with an average gradient of f i f t y percent. I t may be more cha rac te r i s t i c of d r ie r parts of the CWH zone and base r i ch parent mater ia ls . The stand structure and composition i s s i m i l a r to that of the POLYPODIUM - POLYSTICHUM - DF - WRC assoc ia t i on . Doug las- f i r and western redcedar are the dominant species in the t ree layers . Western redcedar, Acer circinatum and Mahonia nervosa have the highest species s ign i f i cance in shrub layers . Predominance of ferns (Polystichum munitum, Brypteris austriaca, Blechnum spicant, Pteridivm aquilinum) and Trillium ovatum over other species s i g n i f i e s the composition of the herb laye r . The coverage of moss layer i s low due to unstable s o i l surface and lack of coarse fragments. Hyloeomium splendens, Stokesiella oregana and 167 Mnium spinulosum are the cha rac te r i s t i c species on humus. ADIANTUM - POLYSTICHUM - WRC References: Table 18, Appendix V I ; tab le 18, Parts 1 and 2, Appendix XII Ecosystem types: 73.1 ADIANTUM - POLYSTICHUM - WRC on loamy sand, ske le ta l Orth ic Regosol with mull humus developed on c o l l u v i a l deposits 73.2 ADIANTUM - POLYSTICHUM - WRC on loamy, ske le ta l Orthic Dyst r ic Brunisol with mull humus developed on c o l l u v i a l deposits 73.3 ADIANTUM - POLYSTICHUM - WRC on L i t h i c Humisol with mull humus developed on a l l u v i a l depos i ts . Very steep slopes (the average gradient s i x t y - s i x percent) of ske le ta l c o l l u v i a l mater ia ls and with intensive subsurface to surface seepage are the habitats of th is un i t . I t was i d e n t i f i e d and sampled on a slope above P i t t Lake. I t i s a very d i s t i n c t un i t eas i l y recog-nized by specia l edaphic and f l o r i s t i c features and exce l len t fo res t p roduc t iv i t y , which seems to be a s t r i k i n g feature in re la t ion to a shal low, ske le ta l s o i l . 1 Douglas- f i r and western redcedar dominate in the tree layers with common occurrence of broad lea f maple and a lde r . Western hemlock i s lack ing in th i s assoc ia t i on , however, i t may occur on decayed wood. Openings in fo res t canopy encourage development of moderately dense shrub layers dominated by Acer circinatum, Rubus spectabilis and advance regeneration of western redcedar. Fern species (Polystichum munitum, Adiantum pedatum, Dryopteris austriaca, Polypodium glycyrrhiza and Asplenium trichomanes) exh ib i t both the highest species s i g n i f i -cance and v igor in very dense herb layers (Figure 41) . The other herbs are the cha rac te r i s t i c species of the Thu je ta l ia p l i c a t a e . Plagiomnium insigne, Leucolepis menziesii, Stokesiella praelonga and Rhizomnium glabrescens are the constant dominant species on humus. In add i t i on , abundant moss f l o r a covers surfaces of coarse fragments inc luding Pogonatum maeounii, Leucolepis menziesii, Stokesiella praelonga, Heter-ocladium maeounii, Isothecium stoloniferum, Isopterygium elegans and Plagiothecium laetum. Management Unit No. 8 This management uni t includes the prev iously described biogeo-coenotic uni ts of the Thu je ta l ia p l i ca tae . These ecosystems have high values in protect ion of s o i l s on steep mountainous slopes and as w i l d -l i f e hab i ta ts . These values may be preserved in some cases when integrated with the use for wood product ion. A compatible harvesting Figure 41 A de ta i l of the sample p lot no. 157 of the ADIANTUM  POLYSTICHUM - WRC in a mixed (coniferous-deciduous) second growth stand 170 method and s i l v i c u l t u r a l system must be appl ied minimizing habi tat degradation and regeneration delays. In other cases such in tegrat ion i s doubtful and these ecosystems should not be managed as commercial fo res t . Then, avoidance of harvesting and the status of protect ion forests i s the best so lu t i on . These ecosystems need to be i den t i f i ed and mapped as to provide a forest manager with information for fur ther analys is on an ind iv idua l basis concerning the use and the leve l of operations that can. be safe ly performed. An understanding of mass wasting and s o i l erosion processes, t he i r con t ro l l i ng and contr ibut ing factors i s essent ia l to e f fec t i ve pred ic t ion and control of s o i l movement. This w i l l help to decide which var ia t ions of these eco-systems are to be excluded from harvesting e i the r due to s o i l i n s t a b i l i t y or to non-feasib le regeneration opt ion. For instance the TIARELLA - POLYSTIQHUM - WRC associat ion on hygric habitats under-l a i n by compacted t i l l and located on slopes exceeding seventy percent should be excluded at the present from harvest ing. Such ecosystems are highly suscept ib le to mass wast ing. Such l o c a l i t i e s are character-i s t i c of frequent gu l l y ing and therefore can be e a s i l y i d e n t i f i e d on ae r i a l photographs. S im i l a r l y the var ia t ions of the POLYPODIUM -POLYSTICHUM - DF - WRC on slopes with the gradient approaching one-hundred percent or with continuous cover of the ground surface by stones and boulders should also be avoided. A narrow s t r i p c learcuts along the contours seems to be the most feas ib le a l t e rna t i ve , intended to obtain the maximum amount of natural regeneration of Doug las- f i r , In order to f a c i l i t a t e harvest ing, 171 a subdiv is ion of steeplands into a number of cu t t ing sect ions in re la t ion to the road system could be advantageous. Each sect ion i s fu r ther so div ided into the coupes as to meet the necess i t i es of the l oca l s i t ua t i on . Each year a coupe can be cut in each sec t i on , progressing against the d i rec t ion of storm winds along the s lope. The s i z e of an in terva l between successive adjacent f e l l i n g s w i l l depend on the readiness of natural or a r t i f i c i a l regeneration. In essence, i f one s t r i p i s c leared the adjoining one should not be c leared un t i l the o r ig ina l one i s safe ly regenerated. H igh- lead, grapple and s lack l i n e tension yarding systems, causing minimal s o i l d is turbance, are des i rab le harvesting methods. Doug las- f i r with a high proport ion of western redcedar and broad lea f maple are recommended as the su i tab le tree species composi-t ion for second growth stands which w i l l provide high volume y i e l d s and s o i l s t a b i l i t y . Extensive regeneration by planting on steep slopes and p a r t i c u l a r l y on coarse c o l l u v i a l mater ia ls w i l l be associated with d i f f i c u l t i e s . The Douglas- f i r component could be introduced by spot seeding or p lant ing using container (bu l le t or styroblock) s tock , in a supporting ro le to abundant advance regeneration of western redcedar. Preservat ion of humus layers i s mandatory to f a c i l i t a t e the p lan ta t ion . Slash burning must be avoided on these hab i ta ts . I t would destroy advance regenerat ion, inc luding understory vegetat ion, and s o i l organic l a y e r s , thus exposing the s o i l to increased eros ion. There i s a high hazard fo r s lash f i r e s ' escape on steep s lopes. Tending 172 measures are l im i ted due to poorly access ib le t e r r a i n . Therefore, they should be confined to ear ly stand development with the object ive to control the selected tree species composition while maintaining a high ground cover. Adherance to the out l ined p r i n c i p l e s , inc luding smal l -s ized c lea rcu t t i ng , slow cut t ing sequence and re jec t ion of s lash burning, w i l l ensure integrated use of these ecosystems fo r wood production and as w i l d l i f e hab i ta ts , whi le providing adequate s o i l pro tect ion. * * * Hygric (temporari ly subhydric)habitats support development of several biogeocoenotic uni ts of the Thu je ta l ia p l ica tae (CWHa&b) and the Tsugetal ia heterophyllae (CWHb). A combination of the lower pos i t ion on the s lope, adjacent r e l i e f , the impermeable s o i l layer and humid macroclimate resu l ts in permanent subsurface seepage water flow through the s o i l s . The s o i l moisture regime can be described as hygric (temporari ly subhydric in a high r a i n f a l l season) and the s o i l nutr ient regime as permesotrophic to eutrophic. This was a t t r ibuted to an i n f l ux of bases by seepage and to more e f f i c i e n t cyc l ing of nutr ients by vegetat ion. Higher l i t t e r decomposition and nitrogen minera l iza t ion ra tes , and greater b io log ica l a c t i v i t y r e l a t i ve to other habitats were reported by'Garni (1958), Lesko (1961), Or loc i (1961 , 1964), Kraj ina (1969),, Kojima (1971), and Kl inka and Lowe (1975, 1976a, 1976b). Propert ies and ef fec ts of seepage water as reported in greater de ta i l l a t e r in the tex t , are fur ther modif ied by a number of i n te r -173 act ing environmental and b i o t i c f ac to r s , integrated in a biogeocl imat ic subzone. Weak melanizat ion, weak to strong g le i za t i on and moder (or even mull) humus formation are i n t e n s i f i e d in the s o i l s in the CWHa subzone, thus retarding the leaching and horizon d i f f e ren t i a t i on leading towards development of wel l defined a l b i c hor izons. However, s im i l a r habi tats in the CWHb subzone exh ib i t strong leach ing, g le i za t i on and formation of mor humus and o r t s te in hor izons. Mor (hydromor) humus develops in the montane CWHb subzone under the sustained dominance of western hemlock. The s u r f i c i a l L and F layers are underlain by more or less d is t ingu ishab le amorphous and greasy H layer akin to moder humus. Despite edaphic a f f i n i t i e s , there are prominent d i f ferences in vegetation and s o i l s developing on hygric (temporari ly subhydric) habitats, between the subzones. The di f ferences in the f l o r i s t i c com-p o s i t i o n , humus form and soi l horizons provided the basis on which to c l a s s i f y the TIARELLA - POLYSTICHUM - WRC (CWHa & b) and the RUBUS -POLYSTICHUM - WRC (CWHa&b) associat ions into the Thu je ta l ia p l i ca tae , and the BLECHNUM - AF - WH (CWHb), BLECHNUM - STREPTOPUS - AF - WH (CWHb) and the BLECHNUM - WH - WRC (CWHb) associat ions into the Tsuge-t a l i a heterophyl lae. These uni ts represent a complex of highly productive ecosystems eminently su i tab le for wood product ion. U t i l i z a t i o n of th is production potent ia l requires a thoughtful se lec t ion and in tensive app l i ca t ion of a su i tab le s i l v i c u l t u r a l system. Preservat ion of values for other uses, which should not predominate, w i l l require the i r in tegrat ion with the fo res t ry use. 174 The TIARELLA - POLYSTICHUM - WRC is d is t r ibu ted on the lower (concave) slopes with gentle gradient. Seepage water i s moving r e l a -t i v e l y fas t over the impermeable layer at an average depth of 90 cm. The associated s o i l s are coarse to medium textured (Gleyed) Mini or Sombric Humo-Ferric or Ferro-Humic Podzols. The lower B podzol ic horizons show inc ip ien t g l e i z a t i o n . The d i s t r i bu t i on of the RUBUS -POLYSTICHUM - WRC coincides with medium to f ine textured f l a t l y ing moraine, glaciomarine, g lac io lacus t r ine and a l l u v i a l deposi ts . Seepage water moves slowly and exh ib i ts a great seasonal f l uc tua t ions . During the r a i n f a l l season the water table may ra ise very c lose to the s o i l sur face. Consequently, the lower B (podzol ic) horizons show strong g l e i z a t i o n . The associated s o i l s are c l a s s i f i e d as Gleyed Mini or Sombric Humo-Ferric Podzol , Or th ic Humic G leyso l , Regosols and Te r r i c Humisol. Subzonal va r ia t ions are d is t inguished by the presence of ambi l is f i r in t ree l aye rs , Vaooinivm alaskaense in the shrub l aye r , high species s ign i f i cance of Blechnum spicant, Gymnocarpium dvyoptevis3 and less commonly occurr ing n i t rophi lous species in the herb layer . In the course of future synecological studies i t may be advantageous to separate subzonal va r ia t ions . For instance the BLECHNUM -POLYSTICHUM - AF - WRC may be recognized in the submontane CWHb sub-zone to el iminate overlap between the TIARELLA - POLYSTICHUM - WRC (CWHa&b) and the BLECHNUM - AF - WH (mainly in the montane CWHb). Natura l ly establ ished stands are ra re ly f u l l y stocked, due to the development of very dense shrub layers providing few chances 175 for the establishment of coniferous t rees , p a r t i c u l a r l y of Doug las- f i r . There a re , however, exce l lent growing condit ions fo r Doug las- f i r and western redcedar, which should be u t i l i z e d by intensive fo res t management. Western hemlock, o r i g i n a l l y estab l ished mainly on decayed wood, grows poorly when decayed wood i s f u l l y decomposed. Dense brush and herb layers with a great var ie ty of species, and less abundant moss layers are the typ ica l s t ructura l features of the understory vegetat ion. Plant species cha rac te r i s t i c fo r the Tsugetal ia heterophyl lae (on decayed wood) or even Psedotsugetal ia menziesi i (on stony or rocky sur-faces) may occur here. Epiphyt ic mosses are wel l developed in the lower tree l aye rs . Isothecium stoloniferwn, as prominent member of th i s f l o r a , i s cha rac te r i s t i c species for the CWH zone, i n d i -cat ive of high atmospheric humidity. F l o r i s t i c a l l y these associat ions show a close a f f i n i t y . The RUBUS - POLYSTICHUM - WRC assoc ia t ion can be d is t inguished on the basis of the fo l lowing d i f f e ren t i a t i on combin-at ion of species which are lack ing or occurr ing less f requent ly in the TIARELLA - POLYSTICHUM - WRC: Populus trichocarpa, Lysichitum americanum, Circaea alpina, Maianthemum dilatatum, Tolmiea menziesii, Carex deweyana and Conocephalum conicum. Several uni ts f l o r i s t i c a l l y re la ted to the TIARELLA - POLYSTICHUM - WESTERN REDCEDAR a l l i a n c e were described from Vancouver Island by Kraj ina and Spi lsbury (1953), McMinn (1957), Mueller-Dombois (1959), Kra j ina (1969), and Kojima (1971). The RUBUS - POLYSTICHUM - WRC assoc iat ion shows both f l o r i s t i c and edaphic re la t ionsh ips to the VACCINIUM - LYSICHITUM - WRC assoc ia t ion develop-ing on subhydric habi ta ts . 176 TIARELLA - POLYSTICHUM - WRC References: Table 16, Appendix V I ; Table 16, Parts 1 and 2; Appendix XII Ecosystem types: 71.1 TIARELLA - POLYSTICHUM - WRC on loamy (Gleyed) Mini Humo-Ferric and Ferro-Humic Podzols wi th moder humus developed on moraine deposits 71.2 TIARELLA - POLYSTICHUM - WRC on sandy loam (Gleyed) Mini and Sombric Humo-Ferric and Ferro-Humic Podzols with moder humus developed on g l a c i o f l u v i a l and a l l u v i a l deposits over moraine deposits 71.3 TIARELLA - POLYSTICHUM - WRC on sandy loam (Gleyed) Mini and Sombric Humo-Ferric and Ferro-Humic Podzols with moder humus developed on c o l l u v i a l deposits over moraine deposi ts . This un i t occurs commonly on areas of var iab le extent e i the r on lower parts of long slopes or at the bottom of short but steep s lopes. Doug las- f i r with western redcedar dominate r e l a t i v e l y open tree layers . Polystichum munitum3 Dryopteris austriaca, BZechnum spicant} Athynlum filix-femina, Tiarella trifoliata and Galium triflorum are the prominent species in the understory (Figure 42). Acer circinatum and Rubus spectabilis are found in the lower shrub layer , which coverage i n -creases with decreasing cover of tree layers . Di f ferences in the Figure 42 The sample p lo t no. 098 of the TIARELLA - Figure 43 The sample plot no. 066 of the RUBUS  POLYSTICHUM - WRC in a highly produc- - POLYSTICHUM - WRC in a second growth t i v e , second growth stand of Doug las- f i r stand of black Cottonwood and red alder 178 composition and structure of understory vegetation may be expected depending on quanti ty of decayed wood, age and densi ty of stands, the i r tree species composit ion, pa r t i cu l a r l y coniferous or deciduous tree species (espec ia l l y Acer macrophyllum and Alnus rubra). Management Uni t No. 9 This management uni t includes the described var ia t ions (ecosystem, types 71.1 and 71.2) of the TIARELLA - POLYSTICHUM - WRC assoc iat ion occurr ing on slopes with the gradient less than t h i r t y percent. The ecosystem type 71.3 i s included in the management un i t no. 8. These highly productive ecosystems should be managed in tens ive ly as commercial forests for wood production. They provide an exce l len t opportunity for the app l ica t ion of in tensive s i l v i c u l t u r a l p rac t i ces . Certain pre-cautions are required to keep these habitats f u l l y product ive; one of them is the preservation, of undisturbed subsurface seepage water flow by road lay out and road construct ion techniques. Doug las- f i r should be the major component i n the tree species composition of second growth. Variable proport ions of grand f i r (CWHa), ambi l is f i r (CWHb) and western redcedar (CWHa&b) may be considered to increase the stand density to f i l l the lower tree layers and to improve the qua l i t y of Doug las- f i r by se l f -p run ing . These hab i ta ts , r i ch in moisture and nut r ien ts , can support high density stands and s t i l l provide high volume y ie lds not a t ta inable in unmanaged 179 na tura l l y or ig inated stands. The primary regeneration method would be moderate-sized c learcu t t ing in order to ensure control and success in regenerat ion. The cut t ing sequence should be against the d i rec t ion of p reva i l ing winds. The lay out of cut t ing ( f e l l i n g ) sec t ions should not include other ecosystems than those of the TIARELLA - POLYSTICHUM -'•WESTERN REDCEDAR a l l i a n c e in order to f a c i l i t a t e the app! i ca t i on of s lash burning. Immediate regeneration by .planting and the use of wel l developed nursery stock of Douglas- f i r to avoid the high hardwood and brush hazard, inc lud ing pr imar i l y Acer circinatum, Alnus rubra, and Rubus spectabilis,- i s des i rab le . Acer macrophyllum, Alnus rubra, and Acer circinatum may- get establ ished in such density that the shade in to le ran t Doug las- f i r cannot succeed, i f not planted immediately a f t e r logg ing. The present ly poorly stocked areas, harvested not very long ago and neglected in the p lant ing a lso deserve primary a t t en t i on . Ear ly control of stocking and regulat ion of t ree species composition are needed. Crop tending measures may be required more frequent ly than in other ecosystems. Slash burning i s not harmful and may be appl ied to help in preparat idn- for p lan t ing . These ; ecosystems have a high aesthet ic value because of the species mixture and large trees grown wi th in a short time span. Therefore, rotat ion age and stand densi ty should not be general ized but determined l o c a l l y in re la t i on to w i l d l i f e corr idors or other areas in which forest ry use may be integrated with recreat ion . Here a l im i ted number of Acer macro-phyllum or other usual ly non-commercial species may be inc luded in the stands. . 180 RUBUS - POLYSTICHUM - WRC References: Table 17, Appendix V I ; Table 17, Parts 1 and 2 Appendix XII Ecosystem types: 72.1 RUBUS - POLYSTICHUM - WRC on sandy loam Gleyed Mini Humo-Ferric Podzol with moder humus developed on moraine deposits 72.2 RUBUS - POLYSTICHUM - WRC on. sandy loam Gleyed Mini Humo-Ferric Podzol with mull humus developed on g l a c i o -f l u v i a l deposits over g lac io lacus t r i ne and glaciomarine deposits 72.3 RUBUS - POLYSTICHUM - WRC on loamy sand Orth ic and Cumulic Regosols with mull and hydrornull humus developed on a l l u v i a l deposits 72.4 RUBUS - POLYSTICHUM - WRC on sandy Or th ic Dyst r ic Brunisol with mull humus developed on a l l u v i a l deposits 72.5 RUBUS - POLYSTICHUM - WRC on sandy loam Gleyed Sombric Humo-Ferric Podzol with mull humus developed on a l l u v i a l deposits 72.6 RUBUS - POLYSTICHUM - WRC on s i l t loam Orthic Humic Gleysol with hydrornull humus developed on a l l u v i a l deposits 72.7 RUBUS - POLYSTICHUM - WRC on Te r r i c Humisol with hydrornull humus developed on a l l u v i a l deposits 181 72.7 RUBUS - POLYSTICHUM - WRC • on Te r r i c Humisol with hydromull humus developed on a l l u v i a l deposits 72.8 RUBUS - POLYSTICHUM - WRC on s i l t y c lay Orthic Humic Gleysol with hydromull humus developed on g l a c i o -lacus t r ine deposits 72.9 RUBUS - POLYSTICHUM - WRC on c lay loam Gleyed Sombric Humo-Ferric Podzol with mull humus developed on g lac io -marine deposi ts . The RUBUS - POLYSTICHUM - WRC associat ion combines ecosystem types confined to f l a t te r ra in of various s u r f i c i a l depos i ts , inc luding recent a l l u v i a l deposits which are not pe r i od i ca l l y subjected to f l ood ing . Among a var ie ty of tree spec ies, western redcedar usual ly has a leading r o l e . Very often natura l ly estab l ished secondary stands are composed of a mixture of deciduous spec ies , inc luding Alnus rubra, Acer macro-phyllum, Populus trichocarpa, Betula papyrifera, Rhamnus purshiana and Malus fusca. Very dense shrub l aye rs , dominated by Rubus spectabilis and Acer circinatum and developed under the open fo res t canopy of coniferous stands and under deciduous stands, are the cha rac te r i s t i c feature of the assoc ia t ion s t ruc ture . Though ferns have the highest species s ign i f i cance in herb layer (Polystichum munitum and Athyrium filix-femina), other herbaceous species such as Tiarella trifoliata, Galium triflorum, Circaea alpina and Tolmiea menziesii have a lso a high coverage. The moss layer on mull humus has a low coverage, being represented by Plagiomnium insigne, Rhizomnium glabrescens, Stokesiella oregana and Leucolepis menziesii. 182 Management Unit No. 10 This management un i t , inc luding the RUBUS - POLYSTICHUM - WRC has s im i l a r use and management p r inc ip les as out l ined fo r the TIARELLA -POLYSTICHUM - WRC. Forest product iv i ty of these habitats i s the highest as compared to other ecosystems in the CWH zone. However, the present volume y ie l ds of old growth or unmanaged secondary stands do not represent the at ta inable production level (Figure 43). Extremely dense development of shrub l aye rs , the r i s i n g of water table to the ground surface and destruct ion of s o i l s t ructure by compaction on medium or f ine textured s o i l s are the hazards which must be considered in the use fo r the in tens ive wood production. Apart from Doug las- f i r , which should be the major species i n second growth, western redcedar, (CWHa&b), grand f i r (CWHa) and amabi l is f i r (CWHb) may be introduced in minor proportions to provide a necessary s t a b i l i z i n g e f fec t in secondary stands. Small to moderate-s ized c learcu t t ing would, be preferable in order to ensure success of immediate p lan t ing . This would a lso f a c i l i t a t e the app l i ca t ion of s lash burning and minimize waterlogging of the s o i l s . Use of advance nursery stock of the above species to avoid the competit ion by hard-wood and brush species i s des i rab le . Instead of using heavy equip-ment f o r ground sk idd ing, high lead or grapple yarding systems should be employed to avoid compaction and excessive s o i l disturbance, which could increase sediment production or red a lder invas ion . I f poss ib le , the road layout should be designed at the perimeter of these ecosystems. 183 P a r t i a l in tercept ion of subsurface water flow may be b e n e f i c i a l in reducing the r i se of the water table and in improving-the s o i l drainage, p a r t i c u l a r l y on f ine textured s o i l s . Changes in s o i l s t ruc ture (s ize and kind) and reduction of s o i l aerat ion w i l l a lso r e s u l t i f stumps are removed. Ear ly commencing and frequent ly repeated crop tending measures w i l l be required to control the tree species composition and stand densi ty l e v e l s . * * * As a resu l t of d i f fe ren t form and pattern of p r e c i p i t a t i o n in the CWHb subzone,the s o i l moisture regime in the BLECHNUM - AF - WH assoc ia t ion i s f luc tua t ing from subhydric (perhygric) i n the spr ing, to hygric i n the summer and subhygric in the second par t o f the summer. The associated s o i l s are c l a s s i f i e d as Gleyed Or th ic o r Mini Humo-Fer r i c or Ferro-Humic Podzols with o r t s te in development and a f ine textured, greasy H-mor humus. The BLECHNUM - STREPTOPUS - AF - WH was not sampled in th is study. The mater ia ls provided by Lesko (1961) and O r l o c i (1961, 1964) were used fo r i t s descr ip t ion and in te rp re ta t i on . This un i t forms a t r ans i t i on between the BLECHNUM - AF - WH and the STREPTOPUS - AF [Streptopo (rosei) - Abietetum ambi l is ] described by Brooke at di. (1970) on s i m i l a r habitats in the neighbouring MHa subzone. Seepage water i s located very close to the ground sur face. Thus, the s o i l s provide very shallow root ing depth and fo res t stands are prone to windthrow. The s o i l s are c l a s s i f i e d as strongly Gleyed Or th ic 184 Ferro-Humic Podzol or Orthic Humic Gleysol with hydromor humus exh ib i t -ing a muck- l ike, greasy subsurface layer : The BLECHNUM - WH - WRC is a newly described uni t which i s included into the Tsugetal ia heterophyl lae. I t represents a t rans i t i on between the Thu je ta l ia p l ica tae and the Tsugetal ia heterophyl lae, developing in the process of primary succession in to the l a t t e r un i t . The moisture regime of these s o i l s , confined to shallow depressions, can be described as.subhygr ic ; in the f a l l and in the spring i t becomes subhydric, then hygric in the f i r s t part of the summer and subhygric in the second part of the summer. Supply of moisture in addi t ion to p rec ip i t a t i on i s minimal, therefore the s o i l s p a r t i a l l y dry out as a resu l t of evapotranspirat ion or drainage. This i s re f lec ted in the vegetation composition and structure which resemble more that of the Tsugetal ia heterophyllae than of the Thuje ta l ia p l i c a t a e . For instance Lysichitum americanum i s not found here because of the year ly moisture f l uc tua t i on . Although, at the present v/estern redcedar, yel low-cedar or amabi l is f i r may be more frequent i n the tree layers than western hemlock, th is w i l l be changed i n the fu r ther process of succession in favour of western hemlock, due to the accumulation of decayed wood and organic mater ia ls i n depressions and concurrent changes of s o i l moisture regime from hygr ic to subhygric or even to mesic. The s o i l s are c l a s s i f i e d as Gleyed Mini Ferro-Humic Podzol or Te r r i c Humisol with hydromor humus. These associat ions in the CWHb subzone do not have well defined cha rac te r i s t i c combinations of species. The d i f f e ren t i a t i ng combinations of species are as fo l lows: 185 BLECHNUM - AF - WH BLECHNUM - STREPTOPUS -AF - WH BLECHNUM - WH - WRC : Taxus brevi folia Acer circinatum Abies amabilis Vaccinium ovalifolium Thuja pZicata Chamaecyparis Sambucus pubens Streptopus Tiarella trifoliata Tiarella unifotiata Lysichitum americanum Streptopus roseus. nootkatensis Lycopodium clavatum Listera caurina Diplophyllum albicans amplexifolius Trillium ovatum Streptopus streptopoides Sphagnum girgensohnii Western hemlock, amabil is f i r and western redcedar are the dominant species in the fores t canopy of usual ly f u l l y stocked and dense stands. Their proportions vary; western hemlock tends to preva i l in o ld growth stands, whereas amabil is f i r i s more frequent in secondary stands estab-l i shed a f te r windthrow, espec ia l l y at higher a l t i t u d e s . Less frequent ly occurr ing Doug las- f i r , Polystichum munitum and n i t roph i lous species s i gn i f y the f l o r i s t i c d i f ference between the s i m i l a r habitats i n the CWHa subzone. Thus, the d i s t r i bu t i on of the BLECHNUM - AF - WH i s cont ro l led pr imar i l y by macrocl imatic f ac to rs , i . e . a high snow cover and shorter vegetative season. However, s i m i l a r plant communities may develop in low elevat ions under the inf luence of high r a i n f a l l . Slow decomposition of organic mater ia ls and accumulation of decayed wood resu l t i n formation of th ick H-mor humus layers under which edaphic condi t ions plant communities of the Thu je ta l ia p l ica tae cannot develop. However, these habitats support very good growth of western hemlock and amabi l is 186 f i r , which species regenerate read i l y on humus layers under the forest canopy. BLECHNUM - AF - WH References: Table 10, Appendix V I ; Table 10, Parts 1 and 2, Appendix XII Ecosystem types': 51.1 BLECHNUM - AF - WH on sandy loam Orth ic Humo-Ferric Podzol with o r t s te in and mor humus developed on moraine deposits 51.2 BLECHNUM - AF - WH on sandy loam Gleyed Orth ic Ferro-Humic Podzol with o r t s te in and mor (moder) humus devel-oped on g l a c i o f l u v i a l and a l l u v i a l deposits over moraine deposits 51.3 BLECHNUM - AF - WH on sandy loam (Gleyed) Or th ic and Mini Ferric-Humic Podzols with o r t s te in and moder humus developed on c o l l u v i a l deposits over moraine deposits 51.4 BLECHNUM - AF -• WH on loamy (Gleyed) Mini Ferro-Humic Podzol with o r t s te in and moder humus developed on c o l l u v i a l veneer over g lac io lacus t r ine deposi ts . This uni t occurs frequent ly in the upper parts of the Forest (CWHb) on lower concave slopes with gentle or steep gradients,(Figures 187 44 and 45). I ts habitats are often free of snow e a r l i e r than adjacent l o c a l i t i e s in depressions or on gentle middle s lopes. In many instances th is i s the resu l t of r e l a t i v e l y warmer wester ly , eas te r l y or southerly exposure in combination with the slope gradient . Western hemlock, western redcedar and ambi l is f i r in var iab le proportions are the cha rac te r i s t i c tree species in t ree layers . Moderately dense shrub l aye rs , apart from advance natural regenerat ion, include Vaccinium aZaskaense, Eubus spectabiZis, Acer circinatum, Sambucus pubens, and Oplopanax horridus. Charac te r i s t i c species of the Thuje ta l ia p l i ca tae have low species s ign i f i cance and are confined to less prominent accumulations of organic mater ia ls on fo res t f l o o r or to mineral s o i l s exposed by uprooted t rees. Blechnum spicant, Dryopteris austriaca and PZagiothecium undulatum, Ehizomnium glabrescens are the most abundant species in herb and moss layers respec t i ve l y . BLECHNUM - STREPTOPUS - AF - WH References: Lesko (1961), Or loc i (1961, 1964, 1965), Eis (1962a 1962b) Ecosystem type: 52.1 BLECHNUM - STREPTOPUS - AF - WH on sandy loam Gleyed Mini Ferro-Humic Podzol with hydromoder humus developed from moraine deposi ts . 1 This assoc ia t ion has infrequent and l im i ted d i s t r i b u t i o n in the upper parts of the CWHbm subzone. I t i s confined to lower s lopes or depressions between the s lopes. Intermittent creeks or streamlets running through these ecosystems add to ample s o i l moisture (Figure. 46). Amabi l is f i r and western hemlock are the dominant spec ies in tree l aye rs with common occurrence of western redcedar and ye l low-cedar . In moderately dense brush layers a high coverage of advance regeneration o f ambil is f i r and western hemlock, Vaccinium alaskaense3 Vaccinium ovalifolium, Rubus spectabilis and Menziesia ferruginea i s the conspicuous f e a t u r e . Bleehnwn spiqantj Dryopteri-s austriaca3 Streptopus amplexifolius3 Athyrium filix-femina3 Rubus pedatus3 Tiarella trifoliata3 Streptopus roseus3 Clintonia uniflora and Streptopus streptopoides dominate herb l a y e r s . Moss f l o r a i s sparse, comprised mainly by Rhizonmium glabrescens, Rhytidiadelphus loreus3 Rhytidiopsis robusta3 and Plagiothecium undulatum . BLECHNUM - WH - WRC _ References: Table 11, Appendix V I ; Table 11, Parts 1 and 2, Appendix XII Ecosystem types: 53.1 ' BLECHNUM - WH - WRC or\ sandy loam Gleyed Min i Humo-Ferric and Ferro-Humic Podzols with hydromor humus developed on moraine deposits 53.2 BLECHNUM - WH - WRC on Te r r i c Humisol w i th hydromoder; humus developed from organic deposits over moraine deposits 190 This uni t i s confined to numerous shallow depressions d is t r ibu ted in r o l l i n g uplands of the central and northern part of the Forest (Figure 47). In most cases i t s s i ze was too small to be shown on the synecological map. Western redcedar and yel low-cedar predominate over western hemlock and amabi l is f i r in open tree layers . Vaccinium alaskaense, Gaultheria shallon (low viqor) and Menziesia ferruginea are the constant dominant species in the lower shrub layer . Herbs are very sparsely present and include species cha rac te r i s t i c fo r the Tsugetal ia heterophyl lae: Bleehnum spicant, juven i le Vaccinium parvi-folium, Comus canadensis, Lycopodium clavatum and L i s t e r a caurina have the highest species s ign i f i cance . Moss f l o r a i s represented by the ac id iph i lous species such as Isopterygium elegans, Rhytidiadelphus Figure 47 The sample p lo t no. 061 of the BLECHNUM -WH - WRC in an old growth stand 192 loveus, Rhizomnium glabvescens, Plagiothecium undulatum, Diplophyllum albicans and Sphagnum givgensohnii. Accumulation of organic and mineral mater ia ls on the ground surface of these depressional habitats i s s t i l l progressing at greater rates than the i r decomposition. Charcoal, fragments of decayed wood of western redcedar and volcanic ash were found i n the organic port ion of the solum. S im i l a r l y as in the s o i l s of the VACCINIUM - LYSICHITUM -WRC, the volcanic ash or ig inated from the Mount Mazama errupt ion of 6600 years B.P. (Brooke et al., 1970; Matthews et al. ,1972; Sneddon, personal communication)(Figure 48). Management Uni t No. 11 The BLECHNUM -.AJF - WH, BLECHNUM - STREPTOPUS - AF - WH and BLECHNUM - WH - WRC assoc iat ion are included in th is management un i t . Their habitats support moderately to good productive ecosystems but a l im i ted number of tree species. They are su i tab le mainly for wood production and, therefore, they should be managed.as commercial f o res t s . Pa r t i a l or temporary in tegrat ion with the other uses, mainly w i l d l i f e , may be eas i l y incorporated. Habitats on steep slopes with the gradient exceeding seventy percent should be avoided from harvesting and excluded from wood production (ecosystem type 51.3). Such po ten t i a l l y unstable l o c a l i t i e s should be designated as protect ion fo res ts due to high hazard of mass wast ing, as i t was discussed for the management un i t no. 8. 193 Also the maintenance of interrupted seepage water f low should be the major management considerat ion in sustain ing high produc t iv i t y l e v e l s . Western hemlock and ambi l is f i r are the most su i tab le tree species which can provide good volume y i e l ds in a reasonably short time span (about 120 years ) . Douglas- f i r i s not adapted to the heavy snow cover of the CWHbm subzone and i t s establishment by p lant ing w i l l l i k e l y be associated with heavy losses . Therefore, i t s in t roduct ion should be minimized and l imi ted to the submontane CWHb subzone. Greater pro-port ions of western redcedar and yel low-cedar are recommended pa r t i cu la r l y in the BLECHNUM - STREPTOPUS - AF - WH and BLECHNUM - WH - WRC associat ions to increase windfirmness. The proportion between western hemlock and amabi l is f i r w i l l depend on s o i l nut r ient s ta tus . On r icher s o i l s amabi l is f i r should predominate over western hemlock. Noble f i r could be a lso app l i ed , pending experimental t r i a l s , e s p e c i a l l y in the upper l i m i t s of the CWHb subzone (Kra j ina , personal communication). As a primary regeneration method r e l a t i v e l y small c lea rcu ts , with the s i ze re la ted to ex i s t i ng advance natural regenerat ion, are recommen-ded. Upslope cut t ing sequence along the contours would be preferable to long c learcuts along the slope in order to slow down runoff and the melt ing rate of snow. Increased temperature of the s o i l organic layers a f ter exposure w i l l r esu l t i n increased decomposition of humus. Slash burning must be avoided since i t destroys advanced natural regeneration and humus laye rs , which represent an important storage of nut r ient in th is high leaching environment. Although western 194 hemlock and ambi l is f i r can regenerate (or be planted) in mineral s o i l s , the i r growth might be adversely af fected by the removal of acid s o i l organic l aye rs , with the exception of amabil is f i r on n u t r i t i o n a l l y r i c h and moist s o i l s . Natural regeneration of western hemlock and amabil is f i r i s usual ly present in great quant i t ies under the fo res t canopy, thus e l iminat ing the need for the i r p l an t i ng . Leaving small patches of timber on l i t h i c hab i ta ts , usual ly in terspersed on the s lopes, could a lso increase post- logging regeneration chances but must be located for windfirmness. Advance regeneration of both species responds well to release and i s considered preferable (both e c o l o g i c a l l y and economically) to p lan t ing . In second growth stands a simple form of two-cut shelterwood system (with the second cut occurr ing a f te r f i v e to ten years) can be advantageously appl ied when a permanent road system of the r i gh t sor t has been es tab l ished. Moderate disturbance of s o i l organic layers w i l l favor the establishment of western hemlock and amabi l is f i r . Other desired species should be introduced by p lan t ing fo l lowing the second cut . Shelterwood techniques could avoid the severe c l ima t i c condit ions associated with the c l ea rcu t t i ng , p a r t i c u l a r l y in the upper l i m i t of the montane CWHbm subzone and in the t r a n s i t i o n a l areas towards a more cont inental c l imate. The second phase, i . e . the complete removal of the residual stand, must be implemented i n such a time as to prevent the establishment of extremely dense western hemlock regenerat ion. Ear ly spr ing with a low snow cover on the ground w i l l permit the f i na l removal without causing excessive damage to young 195 regenerat ion. E i ther system whether c learcu t t ing or shelterwood with var ia t ions could be appl ied depending upon the ind iv idua l ecosystem, stand condit ions and management object ives at the t ime. Ear ly crop tending w i l l be necessary for good control of the t ree species composi-t ion and regulat ion of stand densi ty . This should be followed by fewer tendings in advanced immature stages. * * * Two a l l i a n c e s , the OPLOPANAX - WESTERN REDCEDAR and the RED ALDER - SITKA ALDER, are recognized on hygric ( temporari ly subhydric) and pe r i od i ca l l y flooded habi ta ts . They represent ecosystems along the banks of in termi t tent and permanent streams and adjacent s lopes. Therefore, they can also be designated as stream-edge ecosystems. The s o i l s are enriched by subsurface seepage, s u r f i c i a l f low of organic and mineral mater ia ls on the slope and by per iod ic f l ood ing . The s o i l moisture status can be described as hygric to temporari ly subhydric and the s o i l nutr ient status as subeutrophic to eutrophic. In addi t ion to the p reva i l ing pedogenic processes in the CWH zone, melanizat ion, g l e i z a t i o n , cumulizat ion by hydrologic and g rav i ta t iona l add i t i ons , decomposition, synthesis and minera l iza t ion o f organic mater ia ls are act ing more in tens ive ly than in other s o i l s . The s o i l s were c l a s s i f i e d as G leyso ls , Gleyed Sombric B run iso ls , Gleyed Humo-Ferric and Ferro-Humic Podzols and Regosols with mull or moder humus forms, developing from a var ie ty of s u r f i c i a l deposi ts . 196 These habitats support very productive p lant communities whose edaphic features and re la t i on to streams impose l i m i t a t i o n s to wood production as a s ing le use. Seepage water i s moving r e l a t i v e l y fast and in greater quant i t ies through the s o i l at the base of steep slopes adjacent to streams* The solum is permanently saturated* thus increasing the weight of the s o i l mantle above the impermeable layer or bedrock. Hydraul ic pressure exerted by water pushes against and between the s o i l p a r t i c l e s , thus reducing the i r f r i c t i o n a l or cohesive res is tance to movement and causing inherent s o i l i n s t a b i l i t y . Due to secluded and protected locat ion and presence of streams, these habitats have a cool and humid microcl imate. A var iab le mixture of deciduous (red a lde r , broad lea f maple, black cottonwood) and coniferous (mainly western redcedar) species i s cha rac te r i s t i c of the stand composit ion. The fo res t canopy i s con-s i s t e n t l y open and we l l -d i f f e ren t i a ted v e r t i c a l l y . This allows develop-ment of very dense shrub and herb layers r i c h in hygrohylophilous and eutrophophytic species. The moss layer on humus i s less developed. Bryophytes are res t r i c ted to rock (boulder) surfaces and decayed wood. A low stocking i s due to severe brush competi t ion, slowing down the process of natural regeneration by shade to lerant coni ferous species, and to slope i n s t a b i l i t y . Slope f a i l u res or more subt le forms of mass wasting (e .g . s u r f i c i a l creep) occur even in undisturbed con-d i t ions (Figure 49). The assoc ia t ion OPLOPANAX - WRC was subdivided on the basis of f l o r i s t i c and edaphic features into two subassoc ia t ions, which can be recognized by the fo l lowing d i f f e ren t i a t i ng combinations of species: Figure 49 Exposed compacted t i l l ind icates slope i n s t a b i l i t y (the sample p lo t no. 045) 198 Polystichum - Oplopanax - WRC Ribes - Oplopanax - WRC Rhamnus purshiana Aruncus Sylvester (Trisetum eernuum) Pogonatum maeounii Eookeria lucens Pellia epiphylla Sambueus pubens Ribes braeteosum (Gymnoearpium dryopteris) Pogonatum oontortum Riceardia sinuata The f l o r i s t i c structure and composit ion, however, does not provide a de f in i te basis for d i f f e r e n t i a t i o n . Many common vegetation features ind icate close edaphic a f f i n i t i e s of these un i t s . Habitat fea tu res , mainly the s ize and flow regime of streams may be more useful i n the i d e n t i f i c a t i o n . Both uni ts occur throughout the CWH zone with minor f l o r i s t i c and edaphic va r ia t i ons . Abies amabilis and Alnus sinuata may d i f f e r e n -t i a t e subzonal va r i a t i ons , although i t was observed, that both species extend on these habitats deep into the CWHa subzone. In the neighbour-ing MHa subzone Abies amabilis forms a s i g n i f i c a n t component i n tree layers of stream-edge ecosystems. The OPLOPANAX - AF - WRC, described by Brooke et al. (1970), can be considered as a subalpine va r i a t i on of the OPLOPANAX - WESTERN REDCEDAR a l l i a n c e . The OPLOPANAX - ADIANTUM -WRC assoc ia t ion , described by Kojima (1971) on base r i c h parent mate r ia l s , i s under the inf luence of seepage water with greater concentrat ions of nutr ients than in the study area. 199 Habitats of the ATHYRIUM - ARUNCUS - RA - SA associat ion are confined to sma l l , coarse textured a l l u v i a l mater ia ls recent ly deposited in the environment of fas t running mountainous streams in the CWHb sub-zone. These streams have a complex gradient. Frequent overflows resu l t s in both aggradation and degradation of mater ia ls along the banks. Polystichum -Qplopanax - WRC References: Table 19, Appendix VI ; Table 19, Parts 1 and 2, Appendix XII Ecosystem types: 811.1 Polystichum - Qplopanax - WRC on sandy loam (Gleyed) Sombric Brum'sol with moder humus developed on a l l u v i a l deposits over moraine deposits 811.2 Polystichum - Qplopanax - WRC on sandy loam and s i l t loam Gleyed Mini Humo-Ferric and Ferro-Humic Podzols with mull and moder humus developed on a l l u v i a l deposits 811.3 Polystichum - Qplopanax - WRC on s i l t y Orthic Gleysol with hydromoder humus developed on a l l u v i a l deposits over moraine deposi ts . These ecosystems occur along smal l , numerous intermi t tent streamlets or creeks in the upper drainages. I t was not often possible to reg is te r t he i r d i s t r i bu t i on on the synecological map due to the i r 200 small areal extent. Western redcedar i s the major component of the tree laye rs , with scattered Doug las - f i r , western hemlock and deciduous species. Advance regeneration of western redcedar, overgrowing through moderately dense th ickets of Acer circinatum and Rubus spectdbilis, dominates shrub laye rs . Ferns (Polystichum munitvjn3 BleeJraum spicant3 Athyrium filix-femina and Dryopteris austriaca) are the prominent feature of herb layers containing a great var ie ty o f species. Plagio-mnium insigne3 Rhizqmnium glabrescens3 Stokesiella praelonga and Leucolepis menziesii are the common species in the moss layer On humus. The s o i l s have developed from shallow a l l u v i a l deposi ts or reworked o r ig ina l mater ia ls . Mapping of ecosystem types i s d i f f i c u l t due to abrupt changes of s o i l features over a short d is tance. A s i g n i f i c a n t proport ion of the ground surface on steep c o l l u v i a l slopes may be formed by bedrock. Ribes - Qplopanax - WRC References: Table 20, Appendix VI ; Table 20, Parts 1 and 2, Appendix XII Ecosystem types: 812.1 Ribes - Qplopanax - WRC on sandy loam (Gleyed) Sombric and Mini Humo-Ferric Podzols with moder humus developed on c o l l u v i a l veneer over moraine and a l l u v i a l deposits 812.2 Ribes - Qplopanax - WRC on loamy and s i l t y c lay Gleyed Sombric and Mini Humo-Ferric Podzols with mull humus developed on c o l l u v i a l veneer over g lac io lacus t r i ne and glaciomarine deposi ts . 201 Stream edges and rav ines, i . e . depressions worn out by running water in unconsolidated mater ia ls are habitats of t h i s un i t (Figure 50). I ts d i s t r i bu t i on i s associated with deep s u r f i c i a l deposits usual ly in the middle or lower parts of drainages. The shal low layer of c o l l u v i a l mater ia ls , over ly ing the o r i g ina l depos i ts , i s moving slowly downhill toward the stream banks. This movement retards horizon d i f f e ren t i a t i on and the s o i l s d isplay frequent ly bur ied layers and horizons. Gleyed Sombric or Mini Humo-Ferric Podzols with mull or moder humus are the associated s o i l s . D i f f e ren t i a t i on of Sombric or Mini subgroups has l i t t l e genetic meaning due to abrupt changes in s o i l morphology over short distances Douglas- f i r and western hemlock are l im i ted to the upper slopes of the rav ine, whereas western redcedar and several deciduous species (broadleaf maple, red a lder and black cottonwood) occur along the banks and at the Tower s lopes . Very dense shrub laye rs , lack ing only in the immediate v i c i n i t y of coniferous t rees,are dominated by Acer circinatum and Rubus spectdbilis. Poly-stichum munitum3 Blechnum spicant, Tiarella trifoliata and Athyrium filix-femina have the highest species s ign i f i cance i n herb laye r . Moss layer on humus and mineral surfaces i s poorly developed. ATHYRIUM - ARUNCUS - RA - SA References: Table 23 , Appendix V I ; Table 23, Parts 1 and 2, Appendix XII Ecosystem types: 101.1 ATHYRIUM - ARUNCUS - RA - SA on sandy L i t h i c and Orthic Regosol with mull humus developed on a l l u v i a l deposits 202 101.2 ATHYRIUM - ARUNCUS - RA - SA on loamy sand (Gleyed) Sombric Humo-Ferric Podzol with mull humus developed on a l l u v i a l deposi ts. This assoc ia t ion i s absent in the CWHa subzone. I t occurs commonly in the CWHb subzone in the eastern part of the Forest along permanent streams with a steep gradient (Figures 51 and 52). Most l i k e l y i t extends to the MHa subzone with S i t ka a lder {Alnus sinuata) as a dominant component in the upper brush laye r . Mountainous streams have a steep gradient , which prevents a great amount of deposits to be l a i d down along the banks. The stream leve ls f luctuate great ly during the year . Af ter a period of heavy r a i n s , the stream leve l suddenly r i ses to about one metre, f looding the adjacent areas. How-ever, most of the f i ne r materials are car r ied away. The s o i l s have developed from very recent bouldery a l l u v i a l mater ia ls deposited marginal ly along the stream banks. Boulder, stones and exposed rock surfaces form a s i g n i f i c a n t part of the ground sur face. L i t h i c or Orth ic Regosols with th in mull humus are the commonly associated s o i l s . Red a lder and scattered western redcedar preva i l in open tree l aye rs . Openings in the canopy promote growth of dense shrub layers in which S i tka a lde r , Rubus speotabilis and Acer circinatum are the dominant spec ies. Athyrium filix-femina, Aruncus Sylvester, Poly-stichum munitum, Blechnum spicant and Gyrmocarpium dryopteris have the highest presence and species s ign i f i cance in herb l aye r . Moss f l o r a i s la rge ly confined to rocky sur faces, where i t includes hygrophytic, The sample plot no. 137 of the ATHYRIUM -ARUNCUS - RA - SA along the banks of the North Alouette River 204 mesophytic and xerophytic spec ies , which are d i s t r i bu ted at d i f f e ren t l eve ls in re la t i on to the stream. Red alder i s more frequent i n the lower par ts , whereas S i tka alder i s more abundant i n the upper part of the CWHb subzone. Management Unit No. 12 The stream-edge ecosystems are included in one management uni t due to the i r habi tat a f f i n i t i e s . Although they represent a complex of h ighly productive ecosystems for wood product ion, they have a relevance to stream bank pro tec t ion, stream qua l i t y for f i s h , and as w i l d l i f e hab i ta ts . Recreational use appears to be a lso important, s ince the waterways are a t t rac t i ve p a r t i c u l a r l y during hot summers. The occas iona l ly associated water fa l l s scenery in the glens or ravines and d i v e r s i f i e d vegetation are the most valuable features of these areas. With respect to substant ia l l im i t a t i on to management a c t i v i t i e s (slope i n s t a b i l i t y , steep slope gradients, high brush hazards, e tc . ) these ecosystems should be managed mainly as protect ion f o r e s t s . The i r main funct ion w i l l cons is t in s t a b i l i z i n g stream banks and adjacent s lopes, maintaining stream qua l i t y and in act ing as buf fer s t r i p s for run-of f from neighbouring cut-over ecosystems. An extremely small extent of the Polystichum - Qplopanax - WRC ecosystems does not warrant th is separat ion. However, the preservat ion of present fo res t stands fo r some minimum distance alongside streams i s not considered as a sa t i s fac to ry 205 long term so lu t i on . F i r s t l y , the stand composition and structure of the OPLOPANAX - WRC does not represent plant communities which would funct ion e f f i c i e n t l y i n the preservat ion of f i s h and w i l d l i f e habitats as wel l as in s t a b i l i z i n g the s o i l s . Secondly, these stands when exposed by adjacent cutt ings are suscept ib le to windthrow, escape slash f i r e s and other impacts created d i r e c t l y or i n d i r e c t l y by harvesting operat ions. Even i f protected in g u l l i e s , w ind fa l l s are frequent, because the s o i l s saturated by water, are loose and shal low. A s a t i s -factory distance for a buffer w i l l often include a la rger area of the adjacent, very productive ecosystems, than that of the stream edge ecosystem i t s e l f . Therefore, the present fo res t coniferous cover should be con-verted to funct ional p lant communities such as the ATHYRIUM - ARUNCUS -RA - SA. Such plant communities must be es tab l ished by a r t i f i c i a l re fores ta t ion of a selected mixture of deciduous spec ies . The fo l low- . ing species may be appl ied i nd i v i dua l l y or c o l l e c t i v e l y in the CWH zone: Alnus rubra, Alnus sinuata, Acer macrophyllwn, Populus tricho-carpa, Prunus emarginata, Betula papyrifera, Rhamaus purshiana and Comus nuttallii. The stands developed from these species w i l l be r e l a t i v e l y more windfirm than much t a l l e r coniferous stands, even i f exposed a f te r cut t ing of secondary stands. Under deciduous tree layers dense brush layers {Acer circinatum, Rubus speetabilis, Sambucus pubens, Ribes parviflorus, Lonicera involucrata, e tc . ) and r i c h herb f l o r a w i l l be developed. Al together , such stands w i l l y i e l d extensive vegetation cover over the s o i l s . By providing n u t r i t i o n a l l y r i ch 206 biomass, they also w i l l become a valuable source of food for f i s h and w i l d l i f e . Recreational use can be integrated with the protect ion funct ion of these ecosystems by thoughtfu l ly l a i d out and ca re fu l l y b u i l t t r a i l s , which could connect small p i cn i c s i t e s , rest benches and f i sh ing pools. Subhydric (Temporarily Hydric) Habitats The a l l i a n c e LYSICHITUM - WESTERN REDCEDAR combines ecosystems which are confined to depressions, the lowest parts of the s lopes , and adjacent f l a t s , spr ings, edges of streams and lakes in both subzones of the CWH zone. A combination of the pos i t ion on the s lope, add i t iona l moisture supply, presence of th ick layers of organic mater ia ls and the impermeable s o i l layer causes permanent seepage inf luence and sedimen-ta t ion of material as removed from upslope ecosystems. A permanent water table i s at or near the s o i l sur face. The subsurface seepage i s very slow, often stagnating in depressions and forming small water pools. The s o i l s are enriched by a steady supply of nutr ients brought by seepage water and surface sediments. Their drainage i s poor to very poor so that the s o i l moisture regime can be described as sub-hydric to temporari ly hydric and the s o i l nutr ient regime as subeutrophic to eutrophic. Addit ions of moisture and mater ia ls remove to a s i g n i f i -cant degree the inf luence of the underlying parent mater ia ls and macro-c l imate . As a resu l t s im i l a r ecosystems can develop in several b io -207 gee-climatic subzones with minor f l o r i s t i c or edaphic va r ia t i ons . Under the inf luence of the cool and humid macroclimate of the CWH zone and a microcl imate of these hab i ta ts , decomposition of organic residue mater ia ls proceeds to intermediate stages, i . e . to the formation of humic mater ia ls . The fur ther decomposition and m inera l i z -a t ion progresses very s lowly , and humified mater ia ls accumulate at the s o i l surface. Cumul izat ion, g l e i z a t i o n , humif icat ion and paludizat ion are i n tens i f i ed in the s o i l s . The s o i l s were c l a s s i f i e d as Humic Gleyso ls , Te r r i c and Typic Humisols with hydromor or hydromoder humus forms. The o r ig ina l mineral deposits have been gradual ly over la in by a layer of organic mater ia ls over f i f t y cm th ick . Undecomposed organic residues (mainly decayed wood of western redcedar), charcoal and volcanic ash were found in s o i l p r o f i l e s , point ing out addi t ions of mater ia ls by cumulizat ion and pa lud iza t ion . These cha rac te r i s t i cs give the eco-systems a bog- l ike appearance. Such habitats s t i l l support moderately productive fo res t communi-t i e s , in which excess of moisture, c u r t a i l i n g c i r c u l a t i o n of oxygen through the s o i l , becomes the l im i t i ng fac to r . Product iv i ty obtained f igures were quite va r i ab le , thus re f l ec t i ng growth response to the dynamics of moisture regime, i . e . the rate of water movement, the depth of water table and i t s f l uc tua t i on . Many trees are confined to d r i e r , ra ised hummocks at the sur face. The hummocks or ig inated mainly from decayed stumps and l y ing uprooted t rees , which provide opportuni t ies fo r a p r o l i f i c regeneration of western hemlock. 208 There i s a d i s t i n c t pattern of vegetation in the LYSICHITUM -WESTERN REDCEDAR a l l i a n c e . The wettest parts are occupied by sub-hydrohylophilous species, cha rac te r i s t i c fo r Thu je ta l ia p l i c a t a e , whereas r e l a t i v e l y d r ie r e levat ional prominences, are occupied by meso-hylophi lous species cha rac te r i s t i c for the Tsugeta l ia heterophyl lae. In the lower brush layer th is pattern i s wel l represented by Rubus spectabilis and Vaeoinium alaskaense. A s im i l a r pattern was reported by Brooke et al. (1.970) and Kojima (1971). Tree layers are cons is -ten t ly open, al lowing the development of dense shrub, herb and moss l aye rs , which are r i ch in a number of spec ies. A low stocking i s due to the presence of water pools , i n h i b i t i n g the establ ishment o f vegetat ion, and to reduction of forest cover by windthrow. Western redcedar i s the dominant species in tree as well as in the lower layers excluding decayed wood substratum where western hemlock was more abundant. The VACCINIUM - LYSICHITUM - WRC assoc ia t ion i s re lated to the LYSICHITUM - YELLOW-CEDAR described by Brooke et al. (1970) i n the neighbouring Mountain hemlock zone. The subassociat ion Vaccinium -Lysichitum - YC - WRC, occurr ing in the montane CWHb subzone represents a t rans i t i ona l uni t in th is respect. Other va r ia t i ons of the LYSICHITUM -WESTERN REDCEDAR a l l i ance in the CWH zone were described by Kra j ina (1969), and Cordes (1972) and Wade (1965). An i n t e r e s t i n g , but rare ly occurr ing var ia t ion in the Forest was found south of Marion Lake. This low productive community was ten ta t i ve ly designated CAREX (LEPTALEA) -LYSICHITUM - WRC (Figure 53). Figure 54 The sample p lo t no. 106 of the Vaccinium - Lysichitum -WRC in a second growth stand 210 The VACCINIUM - LYSICHITUM - WRC assoc ia t ion i s fur ther sub-divided into two subassociat ions. They can be e a s i l y recognized by the respect ive d i f f e ren t i a t i ng combination of spec ies : Vaccinium - Lysichitum - WRC Populus trichocarpa Pioea sitchensis (Athyrium filix-femina) Polystichum munitum (Tiarella trifoliata) Leucolepis menziesii Plagiomnium insigne Pellia epiphylla Sphagnum squarrosum Stokesiella praelonga Vaccinium - Lysic'nitum - YC - WRC Chamaecyparis nootkatensis (Abies ambilis) Tsugci mertensiana Coptis asplenifolia Dicranum howellii Riccardia sinuata Sphagnum papillosum Vaccinium - Lysichitum - WRC References: Table 21, Appendix V I ; Tables 21, Par ts 1 and 2 , Appendix XII Ecosystem types: 911.1 Vaccinium - Lysichitum - WRC on sandy loam Or th ic Humic Gleysol with hydromoder humus developed from organic veneer over various mineral unconsolidated deposits •911.2 Vaccinium - Lysichiturn - WRC on T e r r i c Humisol with hydromor humus developed from organic veneer over various mineral unconsolidated deposits 211 911.3 Vaccinium - Lysichitum - WRC on Typic Humisol with hydromoder humus developed from organic deposits over various mineral unconsolidated deposi ts . The Vaccinium - Lysichitum - WRC (Figure 54) comprises eas i l y d is t ingu ishable ecosystems occurr ing both in the CWHa and the submontane CWHb subzones. They are frequent ly found on small and even extensive ind iv idua l areas. Density of fo res t cover and amount of organic mater-i a l s on the fores t f l oo r may cause substant ia l v a r i a b i l i t y of under-story vegetat ion. Western redcedar i s the major component in tree l aye rs , fol lowed by western hemlock and scattered S i t k a spruce, black Cottonwood, and amabil is f i r . Rubus spectabilis, Vaccinium alaskaense and Gaultheria shallon (these species grow on hummocks of organic mater ia ls and decayed wood) in the lower brush layer and Lysichitum americanum, Blechnum spicant3 Athyrium filix-femina and Dryopteris aus-triaca in herb l aye rs , are the prominent species. The moss l aye r i s dominated by Rhizomnium perssonii and Stokesiella praelonga. The p reva i l ing s o i l s are Ter r i c or Typic Humisols with ac id hydromorphic humus forms at the surface. Rooting i s l im i ted to the upper s o i l layers in response to the f l uc tua t ing water tab le . Orth ic Humic Gleysols were cha rac te r i s t i c of springs or habi tats with fas t moving seepage water. 212 Vaccinium - Lysichitum - YC - WRC References: Table 22, Appendix VI ; Table 22, Parts 1 and 2, Appendix XII Ecosystem types: 912.1 Vaccinium - Lysichitum - YC - WRC on Ter r ic Humisol with hydromor humus developed from organic veneer over various mineral unconsolidated deposits 912.2 Vaccinium - Lysichiturn - YC - WRC on Typic Humisol with hydromoder humus developed from organic deposits over various mineral unconsolidated deposi ts . This subassociat ion occurs exc lus ive ly in the montane CWHb sub-zone confined to lake shores and numerous depressions on a r o l l i n g land-scape of the northern part of the Forest (Figure 55). Due to t he i r small ind iv idua l area, i t was not often possib le to reg is te r a l l l o c a l -i t i e s on the synecological map. Western redcedar and yel low-cedar are the main species i n tree l a y e r s , which a lso include western hemlock, amabi l is f i r , mountain hemlock and western white p ine. Vaccinium alaskaense and Gaultheria shallon dominate moderately dense shrub layers . Lysichitum americanum, Blechnum spicant, Coptis asplenifolia have the highest cover values in poorly developed herb layer . Prominent species in the moss layer on humus are Plagiothecium undulatum3 Rhizomnium perssonii and Sphagnum papillosum. These species ind icate a c i d i f i c a t i o n of humus l a y e r s , Figure 55 The sample p lot no. 141 of the Vaccinium -Lysichitum - YC - WRC - in an old growth stand Figure 56 Natural regeneration of western red-cedar established a f te r harvesting i n 1930 of subhydric habitats of the Vaccinium - Lysichitum - WRC ^ i CO 214 as compared to the Vaccinium - Lysichitum - WRC. Seepage water often stagnates in depressional habitats or i t moves very slowly through f i ne textured organic layers . The depressional habi tats are character-i s t i c of a higher and longer l y ing snow cover r e l a t i v e to neighbouring hab i ta ts . The s o i l s are s im i la r to those of the previous uni t but appear more compacted. Management Uni t No. 13 The LYSICHITUM - WESTERN REDCEDAR a l l i a n c e represents moderately productive ecosystems which are su i tab le for wood product ion, as w i l d -l i f e hab i ta ts , fo r recreat ion and l a s t but not l e a s t they are water conserving ecosystems with a relevance for water y i e l d , qua l i t y and regime of streams. Their potent ia l for wood production, however, i s not f u l l y u t i l -i zed . Forest product iv i ty might be subs tan t ia l l y increased by a proper tree species se lec t ion and densi ty con t ro l . Western redcedar should be maintained as the major tree species in the stand composit ion. Var iable proportions of western hemlock, S i tka spruce and black cot ton-wood on an ind iv idua l basis may be introduced in the Vaccinium -Lysichitum - WRC subassociat ion; ye l low-cedar, western hemlock, white pine and amabi l is f i r may be introduced in the Vaccinium - Lysichitum -YC - WRC subassociat ion. The se lec t ion and proport ion of minor species depend on a kind of associated s o i l , i . e . ecosystem type. 215 Western hemlock w i l l most l i k e l y regenerate na tu ra l l y on hummocks. S i tka spruce, black cottonwood and western white pine are to be appl ied on g leyso l i c s o i l s with hydrornull or hydromoder humus. Forest stands should not be exposed by adjacent cu t t i ngs . In most cases they could be harvested with neighbouring stands. I f extending over a large area, narrow c learcuts should progress against the d i rec t i on of p reva i l ing storm winds. Large c lea rcu ts and excessive disturbance w i l l be associated with a r i s e of the water table and formation of f ros t pockets which both may pose problems in re fore-s ta t i on . Such disturbances can resu l t in a long l a s t i n g , less pro-duc t ive , ear l y hydrosere successional stages (Figure 56). Construct ion of drainage di tches may be recommended to lower the water tab le , however, th is ought to be temporary and exercised wi th caut ion, pa r t i c -u l a r l y in the case of organic s o i l s . When these s o i l s are drained, they may ox id i z ide (mineral ize) and subside, making fur ther drainage of mineral substratum more d i f f i c u l t , i f not imposs ib le , when organic matter i s destroyed. Harvesting of old growth stands and second growth where western redcedar is the major component brings a high s lash accumulation, which can be disposed of by broadcast burning. Disturbance or disposal of decayed wood can also increase the area for the plant ing of western redcedar. Immediate plant ing i s mandatory due to high brush hazard, espec ia l l y i n the CWHa subzone. Natural regenerat ion i s slow and does not provide the control over the tree species composit ion. Select ion of elevated mic ros i tes , i r regu la r spacing and strong p lant-216 ing stock are recommended. Regulation of the tree species composition at ear ly stages should also consider increased res is tance against windthrow. Forest Product iv i ty The synecological c l a s s i f i c a t i o n del ineates areas of fo res t lands which have a s im i l a r potent ia l fo r growth and y i e l d of tree spec ies . I t helps to provide s i t e spec i f i c information concerning the se lec t ion of tree species and density leve l for managed stands which are essent ia l measures determining forest p roduc t i v i t y . Growth parameters measured in the study are accessory information ind ica t ing product iv i ty of major tree species and dens i t ies of unmanaged, second growth stands of these species developed by natural reproduction in d i f f e ren t fo res t ecosystems. More ref ined growth and y i e l d data should be used, however, in addi t ion to other cons iderat ions, in pro-v id ing th is information for managed second growth stands. A meaningful product iv i ty comparison of fo res t ecosystems requires the sampling of fo res t stands which are s im i l a r in tree species compo-s i t i o n , age and stand h is to ry . Although in th is case the stand age and h is tory may be considered the same, the tree species composition was va r iab le . However, with the exception of very dry and very wet hygrotopes, the tree species composition was found to be a mixture of Doug las - f i r , western hemlock and western redcedar. Therefore, density f igures may be interpreted on a re l a t i ve basis as being i n -d icators of trends for ecosystem un i ts . 217 Terms of stocking and density are considered to be d i s t i n c t l y d i f f e ren t (Osborne, 1968; Smith, 1971). Stocking measures the area of a s i t e ac tua l l y covered and u t i l i z e d by the t rees . I t i s expressed on a percentage basis of to ta l area. In th is study stocking was measured as the projected area covered by tree layers (over ten m in height) expressed as a percentage of the p lo t area. Stand density measures ind icate the degree of crowding of fo res t stands. There i s no optimum parameter for th is measurement although a var ie ty have been t r i ed (Osborne, 1968; Smith, 1971). A commonly used parameter of stand density i s the number of stems and basal area per uni t a rea , which were used in th is study. In addi t ion to G r i f f i t h (1960), an extensive study of f o res t product iv i ty on an ecological basis in the UBC Research Forest was ca r r ied out by E is (1962a, 1962b). His data of s i t e indices re lated to the biogeocoenotic units were found to be comparable to those of th i s study. Growth c lasses and f igures of density (basal area in sq m per hectare and in columns a number of stems per hectare --data in Appendix XII) fo r the uni ts (arranged from dry and n u t r i t i o n a l l y poor to wet and n u t r i t i o n a l l y r ich) are presented in Figures 57 and 58. Each ecosystem uni t wi th in the l i m i t s of a biogeocl imat ic subzone with i t s own moisture and nu t r i t i ona l regime can be fur ther character ized by growth classes of tree species and the density of fo res t stands composed of these species. The uni ts with s im i l a r growth c lass for a cer ta in species have e i ther d i f f e ren t stand density Figure 57 Product iv i ty and density of forest stands of the ecosystems in the CWHa subzone 219 CZ) D o u g l a s - f i r t J W e s t e r n h e m l o c k 139 W e s t e r n r e d c e d a r Figure 58 Product iv i ty and density of forest stands of the ecosystems in the CWHb subzone 220 leve ls or d i f f e ren t edatopes, requi r ing d i f f e ren t management p rac t i ces . For instance the growth classes of western redcedar in the MOSS -(POLYSTICHUM) - WRC - WH, MAHONIA - POLYSTICHUM - DF - WRC and Vaccinium - Lysichitum - WRC associat ions are very s i m i l a r . However, t he i r habi tats are d i f f e ren t , imposing a specia l set of management pract ices fo r each un i t . Forest p roduct iv i ty , in genera l , i s lower i n the CWHb than in the CWHa subzone, due mainly to a shorter vegative season and a greater leaching e f fec t . Comparing uni ts with the equivalent moisture and nu t r i t i ona l regimes, e .g . the Moss - WH (CWHa) and the VACCINIUM -MOSS - WH (CWHb), there i s a proport ionate decrease i n fo res t produc-t i v i t y for a l l species concerned. Western hemlock maintains the highest growth c lass in both un i t s , although in absolute terms Doug las- f i r i s s t i l l the t a l l e s t t ree. The best growth- of Douglas- f i r and western redcedar i s l im i ted to hygric and subeutrophic edatopes which are represented in the CWHa subzone by the TIARELLA - POLYSTICHUM - WESTERN REDCEDAR a l l i a n c e . With the exception of the VACCINIUM - LYSICHITUM - WRC assoc ia t i on , Douglas-f i r i s the best growing species throughout a l l other uni ts in t h i s sub-zone. I t is s t i l l the fas tes t growing species even in the CWHb sub-zone in the un i ts of the Pseudotsugetalia menziesi i and Thu je ta l ia p l i ca tae The best growth of western hemlock i s l im i ted to subhygric and submesotrophic edatopes, which correspond to MOSS - (POLYSTICHUM) - WRC -WH (CWHa), the BLECHNUM - AF - WH and the POLYPODIUM - POLYSTICHUM -WH - WRC (both CWHb) assoc ia t ions . In the l a t t e r assoc ia t ions the 221 height growth of western hemlock may even equal that of Doug las- f i r . A good growth of western hemlock in the TIARELLA - POLYSTICHUM -WESTERN REDCEDAR a l l i ance i s a resu l t of a loca l accumulation of decayed wood which occurred on these s i t e s . The best growth of western redcedar is confined to hygric and subeutrophic to eutrophic edatopes in the CWH subzone. Such edaphic condit ions are del ineated wi th in the TIARELLA - POLYSTICHUM - WESTERN REDCEDAR a l l i a n c e , espec ia l l y in the ADIANTUM - POLYSTICHUM - WRC assoc ia t ion . The average stocking of natura l ly developed stands was ca lcu la ted as 67.3 percent. Assmann (1961) gives the f igure e ighty- four percent as the hypothet ical maximum stocking l e v e l . This would imply that the stands are understocked. Unless prohib i ted by the nature of the ground surface the stocking might be increased by sixteen percent above the present l e v e l . Doug las- f i r stands in the units of the Pseudotsugetal ia menziesi i (CWHa) exh ib i t the highest number of stems per hectare (1,499) and the lowest stand basal area (36.6 sq m per ha) at the age approaching 100 years . Due to a low growth rate on xer i c hab i ta ts , t ree development i s slow. Therefore, at the same age a greater number of trees can be expected on xer i c than on hygric hab i ta ts . Open fo res t stands would favor development of shrub layers of Gaultheria shallon and might increase losses of s o i l moisture by evaporation. Higher stand basal areas (and hence volumes) in the Mahonia - Gaul ther ia - WH - DF than in the Gaulther ia - WH - DF subassociat ion can be accounted for 222 by a higher number of stems in the f i r s t un i t , mainly of codominants of western redcedar. Intermediate values of number of stems per ha were found for fo res t stands in the Tsugetal ia heterophyllae on amphimesic hab i ta ts . The mean values were s t r a t i f i e d by plant a l l i ances as fo l l ows : " MOSS - WESTERN HEMLOCK 939 stem/ha MOSS - (POLYSTICHUM) - WESTERN HEMLOCK VACCINIUM - WESTERN HEMLOCK 1378 stem/ha In th is study sample p lots in the MOSS - WESTERN HEMLOCK a l l i ance were i n ten t i ona l l y establ ished in pure western hemlock and Douglas- f i r fo res t stands. Number of stems and basal area per hectare at the age approaching one hundred years were found to be very much a l i ke fo r both spec ies ; i . e . 1076 stems and 69.7 sq m per ha fo r western hemlock and 1027 stems and 68.7 sq m per ha for Douglas f i r stands, respec t ive ly . Doug las- f i r stands, however, w i l l y i e l d higher wood volume than those of western hemlock stands. A low basal area of stands in the MOSS - (POLYSTICHUM) - WESTERN HEMLOCK a l l i a n c e , which represents an edatopic t r a n s i t i o n between mesic and hygric hygrotopes, was a t t r i bu ted , e i the r to a large proport ion of western hemlock in the stand composition o r to a low s tock ing. Western hemlock stands with amabil is f i r or Douglas- f i r in the VACCINIUM - WESTERN HEMLOCK a l l i ance exh ib i t high numbers of stems. This was considered to be a re f l ec t i on of shade to lerant western 223 hemlock and ambi l is f i r in the stand composition and to a lower growth rate in the CWHb subzone. A to ta l volume production of western hemlock and amabi l is f i r stands of the Tsugetal ia heterophyllae in the montane CWHb subzone may surpass that of Douglas- f i r stands due to a high density leve l which these species can sustain and to an adverse cl imate a f fec t ing the growth of Doug las- f i r . The a l l i ances of the Thuje ta l ia p l ica tae and the a l l i a n c e BLECHNUM - AMBILIS FIR - WESTERN HEMLOCK of the Tsugetal ia heterophyl lae are d is t inguished by the lowest number of stems per ha r e l a t i ve to other u n i t s , with the exception of subhydric hab i ta ts . Tree growth i s much more intensive on these n u t r i t i o n a l l y r i ch and moist habitats so that more space i s needed for the development of ind iv idua l t rees . As a r e s u l t a r e l a t i v e l y small number of trees with large diameters accounts for a high basal area. However, the production potent ia l of these habi tats i s not u t i l i z e d in unmanaged stands. This i s due e i ther to a low stocking or to undesirable tree species composition or both. For ins tance, the average stand basal area in the TIARELLA - POLYSTICHUM -WRC, which represents the most productive group of ecosystems, i s most l i k e l y below the possible l e v e l . This can be explained by the fac t that these stands or ig inated from natural regenerat ion. I f the seed of tree species, p a r t i c u l a r l y of shade in to lerant Doug las - f i r , does not a r r i ve soon a f te r the disturbance, the chances of good stocking are diminished due to a high shrub development of Rubus spectabilis and Acer• circinatum. Large patches of ground were found to be t r e e l e s s , covered by the above shrub species and Polystichum munitum. Slowly growing and shade to lerant western redcedar cannot replace Douglas- f i r as the most productive tree on these exce l len t s i t e s . However there are except ions, which might provide guidance in stand management. For instance the sample p lot no. 098 may simulate very c l ose l y the optimal density and product iv i ty l e v e l : basal area of 85 sq m/ha, 395 stems/ha and the average height 56 m were measured in even-aged, 92 year -o ld Douglas- f i r and western redcedar stand (mixture 7:3) with 85 percent stocking (Figure 42). The ecosystems in the CWHa subzone o f fe r bet ter opportuni t ies fo r wood production than those in the CWHb subzone. With the exception of the Pseudotsugetalia menziesi i a l l other uni ts i n the CWHa subzone are su i tab le for wood production. In the CWHb, p a r t i c u l a r l y in the highest e leva t ion , these opportuni t ies are lessened; only the associat ions VACCINIUM - MOSS - WH, PLECHNUM - AF - WH and POLYPODIUM - POLYSTICHUM -WH - WRC are considered to be su i t ab le , fo r wood product ion. Rotation age, remaining to be accurately determined by add i t iona l growth, eco log ica l and economic s tud ies , should be higher i n the CWHb than fo r the fores t stands in the CWHa subzone, due to a slower rate of growth ( E i s , 1962a, 1962b) and with respect to sustained s o i l p roduc t iv i t y . Some aspects of "eco log i ca l " ro ta t ion and i t s r e l a t i on to the management ro ta t ion age have been discussed by Kimmins (1974b). In conc lus ion, i t i s suggested that synsystematic units at the leve l of the plant a l l i ance or even order in conjunct ion with fo res t cover types can be used as a r e l i a b l e basis to pred ic t future pro-duction of managed stands wi th in a f a i r l y narrow range. Therefore, 225 they should be employed in the s t r a t i f i c a t i o n of fo res ts to d i f f e r e n -t i a te the stand species composit ion, research- in growth and y i e l d , par-t i c u l a r l y in reference to the ro ta t ion age, stand dens i ty and growth model l ing. Compositional and Age Var iat ions of Biogeocoenotic Uni ts I t has been suggested that changes in the composition and age of tree layers may inf luence the remaining vegetation layers and propert ies of s o i l organic layers . To i l l u s t r a t e th is e f f ec t an attempt was made to examine compositional and age var ia t ions of the fo res t cover. F l o r i s t i c d i f ferences (Constance c lass and species s ign i f i cance) and the i r eco-l og i ca l evaluat ion are given and supported by chemical analys is of s o i l organic layers and plant f o l i age . Due to the lack o f rep l icas f o r ecosystem types, a comparison was made at the. level of the plant assoc ia t ion . Detai led descr ipt ions of the uni ts were given previously in the text^ Abbreviated vegetation tables, were prepared from the environment-vegetation tables (Appendix XII).. Non-companion species occurr ing in shrub ( B 2 ) , herb (C) and moss (Dh) layers with presence greater than twenty percent were used in the t ab les . So i l ana ly t i ca l data were extracted from Appendices VI and VII.. 226 Compositional Var ia t ions The tree species composition introduced a f te r cut t ing e i the r by natural reproduction or a r t i f i c i a l l y by planting over the area of an ecosystem type may range from a monoculture of a s ing le species to mixed coniferous and deciduous stands of many species (Figure 13). As a r e s u l t , the f l o r i s t i c composition of the understory may vary in re -sponse to changes in stand and s o i l microcl imate, propert ies of s o i l and nutr ient c y c l i n g . The RUBUS - POLYSTICHUM - WRC and the MOSS - WH associat ions were selected f o r such comparison. Forest stands were regenerated natura l l y a f te r the f i r e in 1868. S i t es of the Moss - WH regenerated soon a f te r the f i r e with Douglas- f i r and western hemlock in var iab le proport ions, whereas the regeneration at s i t e s of the RUBUS -POLYSTICHUM - WRC was very slow due to severe brush competi t ion. Consequently, many coniferous stands have low stocking and densi ty or these s i t es are s t i l l occupied by deciduous t rees . A prominent f l o r i s t i c d i f ference was found between coniferous and deciduous stand types of the RUBUS - POLYSTICHUM - WRC which has a lso af fected s o i l development. The herb layer re ta ins a high coverage in both types; whereas the moss layer i s better developed in the coniferous stand type; and the shrub layers are best developed i n the deciduous stand type (Table 11). A few recorded plant species cha rac te r i s t i c fo r the Tsugetal ia heterophyllae are more frequent ly found underneath the coniferous stand type, due to the loca l accumulation of l i t t e r and decayed wood of coniferous trees on the fores t f l o o r . Several spec ies , such as 227 TABLE 11 Compositional V a r i a t i o n s . Abbreviated Vegetation Table and Some Chemical Properties of the S o i l Organic Layers f o r Other RUBUS - POLYSTICHUM - WRC (CWH a & b) Forest Stand Type Deciduous Coniferous Number of Sample P l o t s 4 7 Age 60 74 S t r a t a Coverage: A layer 60 0 66 4 ,»> B layer w C layer 64 3 48 1 43 0 46 .6 Dh layer 33 8 50 .9 C h a r a c t e r i s t i c Species f o r the Tsugetal i a Heterophyllae Menziesia ferruginea II 1 1 Vaccinium alaskaense ' I I I 1 2 Vaccinium ovalifolivm II + 1 (Blechnum spiaant) V 4 1 Dryopteris austriaca) IV 2.8 V 3 4 (Cornus canadensis). II + .0 I I I 1 2 Isopterygivm elegans II + .0 I I I + 4 (Rhizomnium glabrescens) IV 2.9 V 5 0 Rhytidiadelphus loveus IV 2.0 V 3 2 C h a r a c t e r i s t i c Species f o r the Thujetal i a Plicatae (and Populetali 3 Balsamiferae): Acer circinatum V 5.6 V 5 0 Lonicera involucrata I I I 3.1 II 1 0 Oplopanax horridus I I I 1.1 V 2 2 Sambuaus pubens IV 3.3 IV 1 5 Rubus parviflorus I I I 2.8 II 1 4 Rubits spectabilis V 6.3 V 5 7 Viburnum edule I I I 2.0 II 1 0 Achlys triphylla II + .3 I I I 1 5 Atkyrium filix-femina V 4.7 V 3 0 Carex deweyana IV 1.3 II + 4 Circaea alpina V 4.6 I I I + 9 Galium triflorum V 3.3 V 1 4 Gymnocarpium dryopteris II +.0 I I I 2 3 Lactuca muralis II +.0 I I I 1 3 Lysichitum americanum V + .5 IV 2 7 Montia sibirica I I I 2.0 _ Qsmorhiza chilensis I I I 1.1 _ •Polystichum munitum v 4.4 V 5 0 Streptopus amplexifolius . I I I + 4 (Streptopus roseus) I I I + .0 I I I + 0 Tiarella trifoliata IV 3.1 V 5 0 Tolmiea menziesii V 2.2 II + 7 Trillium ovatum II + .0 I I I + 2 Trisetum cernuum V 1.3 I I I + 2 Atrichum undulatum I I I 1.8 Conocephalum conicwn II + .3 I I I + 7 Leucolepis menziesii IV 3.6 V 3 0 Plagiomnium insigne V 5.0 V 4 1 Pogonatum contortum IV 1.4 _ Rhytidiadelphus triquetrus I I I 1.3 _ Stokesiella praelonga V 3.3 V 3 7 Some Chemical Properties o f S o i l Organi c Layers Humus form MU MU MD "Thickness (cm.) 2 0 2 1 pH* 5 5 4 5 Total N (%) 1 82 1 31 C/N 24 5 30 9 Exch. Ca*(meq/100 gm) Exch. Mg*(meq/100 gm) 49 12 18 60 7 00 2 66 Exch. K* (meq/100 gm) 1 96 1 42 C E C* (meq/100 gm) 104 37 79 70 Elemental Analysis (ppm) Ca* 18300 8069 Mg 1956 2137 Na 165 180 K 121 2 1107 Fe 7427 1 2280 Al 9107 8487 Mn 489 775 •Difference between means i s s i g n i f i c a n t at P =0.10 l e v e l , using t - t e s t 228 Menziesia ferruginea, Vaccinium alaskaense, Vaccinium ovalifolium and Blechnum spicant were not detected underneath the deciduous stands of the RUBUS - POLYSTICHUM - WRC assoc ia t ion . A great number of species cha rac te r i s t i c f o r the Thu je ta l ia p l i ca tae (and Populeta l ia balsamiferae) i s common to both stand types. Ecological evaluat ion of the f l o r i s t i c change, i . e . near absence of mesohylophilous and mesotrophophytic species and prevalence of hygro-hylophi lous and eutrotrophophytic species ind icate that the deciduous stand type i s cha rac te r i s t i c of a more intensive rate of nut r ient cy-c l i n g than the coniferous stand type. Re la t i ve ly la rger quant i t ies of macronutrients are extracted and retained in the fo l iage of many d i f fe ren t species in the deciduous stands. Subsequently, l i t t e r decomposition and nitrogen minera l iza t ion proceed extremely fast . Shed fo l i age decomposes in the f a l l soon a f te r the f i r s t r a ins . The high species s ign i f i cance of Sambucus pubens, Tolmiea menziessi, Athyrium filix-femina, Galium triflorum and Circaea alpina. i n the deciduous stand type ind icates more in tensive n i t r i f i c a t i o n than in the coniferous stand type. This i s considered to be the main edatopic d i f ference between the types. The described f l o r i s t i c d i f ference and the derived in te rpre-ta t ion are supported by chemical propert ies of s o i l organic l aye rs . Comparison of the data between the types with respect to mean values fo r several chemical cha rac te r i s t i cs suggests strong re la t ionsh ips to the amount of calcium in both exchangeable and to ta l forms. The higher Ca concentrations in the deciduous stand type are c l e a r l y re la ted to 229 more in tensive n i t r i f i c a t i o n (Thimann, 1955; K ra j i na , 1969, 1972) and to changes of other parameters. Humus layers in the deciduous stand type are t yp i f i ed by higher values for pH, to ta l N, concentrat ions of exchangeable cat ions of Ca and Mg, and by lower values for the C/N r a t i o . Moder or even mull humus formation, n i t r i f i c a t i o n and melaniza-t i o n , cha rac te r i s t i c for both types, a re , however, more pronounced in the deciduous stand type. Ameliorat ion e f fec ts of most deciduous tree species on s o i l propert ies are wel l known. Therefore, i t would seem correct to introduce a small proportion of deciduous species in to Douglas- f i r stands, pa r t i cu l a r l y those on base poor s o i l s , to s a t i s f y nu t r i t i ona l requirements of the coniferous component. Less d i s t i n c t changes in the structure and composition af the understory vegetation were observed between western hemlock and Douglas-f i r stand types of the Moss - WH (Table 12). However, the d i f ferences became more evident, when chemical cha rac te r i s t i cs of respect ive s o i l organic layers were examined. No d i s t i n c t s t ruc tura l d i f ferences were found between the types. St ra ta coverage values, f igures of number of stems and basal area per hectare ind icate the s t ruc tura l s i m i l a r i t y of the stands and t h e i r understory. However, the change in presence and species s ign i f i cance of species cha rac te r i s t i c fo r the Tsugetal ia heterophyl lae i s considered to be s i g n i f i c a n t . Blechnum spicant, Cornus canadensis and Linnaea borealis are absent in the Douglas- f i r stand type, whereas the other species occur much less frequently than in the western hemlock stand type, with the exception of Dryopteris austriaca. Small f l o r i s t i c 230 TABLE 12 Compositional Variations. Abbreviated Vegetation Table and Some Chemical Properties of Soil Organic Layers for the Moss - WH (CWHa) Forest Stand Type Number.of Sample Plots Age Strata Coverage: A layer ( % ) B layer w C layer Dh layer Characteristic Species for the Tsugetalia Heterophyllae Menziesia ferruginea Vaccinium alaskaense Blechnum spicant Cornus canadensis (Dryopteris austriaaa) Linnaea borealis Trientalis latifolia (Hylocomium splendens) Plagiothecium undulatum (Rhizomriium glabrescens) Rhytidiadelphus loreus Characteristic Species for the Thujetalia Plicatae Acer circinatum Sharmus purshiana Polystichum munitum Tiarella trifoliata Trillium ovatum Some Chemical Properties of Soil Organic Layers Humus form Thickness (cm) pH Total N C/N Exch. Ca (meq/100 gm) Exch. Mg (meq/100 gm) Exch. K (meq/100 gm) C E C (meq/100 gm) Elemental analysis: Ca* (ppm) Mg Na K Fe Al Mn S P Douglas-fir 6 68.3 71.0 22.2 12.0 81.0 III +.0 II +.4 III 3.4 II V - V V V + .4 4.1 4.6 2.1 3.6 III 1.0 V 2.2 V 2.2 II +.4 II +.4 MR 7.0 4.0 1.48 33.4 15.45 2.52 1.77 184.42 5116 724 117 723 3424 2949 510 1001 1181 Western Hemlock 5 81.5 83.0 27.6 12.2 76.0 IV 1.5 III II II III 1.2 + .8 1.0 1.0 II +:8 V 5.7 V 5.4 IV 2.6 V 4.5 IV 1.2 V 3.2 II +.0 MR 14.2 3.8 1.47 35.3 12.85 2.08 1.48 152.24 3891 504 109 711 2459 2287 283 862 868 Difference in means was signif icant at P = 0.10 level using t-test 231 changes are observed again for the species cha rac te r i s t i c for the Thu-j e t a l i a p l i ca tae . Ehamnus purshiana and Tiarella trifoliata are present only underneath the Douglas- f i r stands. Ecological evaluat ion of the f l o r i s t i c change, i . e . mainly de-crease of cha rac te r i s t i c species fo r the Tsugetal ia heterophyllae in the Douglas- f i r stand type, suggests a warmer stand and s o i l microcl imate, less ac id and n u t r i t i o n a l l y r i cher s o i l organic layers with a greater b io log ica l ac t i v i t y . t han in the western hemlock stand type. This rather f ine f l o r i s t i c d i f ference between two coniferous stand types on mesic habitats in the CWHa subzone was found to be related to a number of d i f ferences in chemical cha rac te r i s t i cs of s o i l organic layers . Although s o i l organic layers in both types were c l a s s i f i e d as mor humus they should not be considered as q u a l i t a t i v e l y i d e n t i c a l . Re la t i ve ly higher values of pH, concentrations of exchangeable cat ions of Ca, Mg, and K, cat ion exchange capacity and concentrations of Ca, Mg, Fe, A l , Mn, S and P obtained from the to ta l a n a l y s i s , are character-i s t i c fo r the humus layers of the Douglas- f i r stand type. Correspond-i ng l y , humus layers are less th ick and have lower values of the C/N ra t i o than in the western hemlock stand type. The di f ference in concentrations of both to ta l and exchangeable Ca between the types i s considered to be eco log i ca l l y the most s i g n i f i c a n t . This i s not surpr is ing in view of d i f fe ren t nu t r i t i ona l requirements o f Douglas- f i r and western hemlock. We may conclude that the composition of tree layers plays an i n f l u e n t i a l ro le in a forest ecosystem. The comparisons of composi-232 t iona l var ia t ions in the fores t cover showed that changes in the f l o r i s -t i c composition were a lso associated with changes in s o i l organic l aye rs . These changes were a t t r ibuted to the di f ferences in nu t r i t i ona l requirements among forest tree species as described by Kraj ina (1969). Age Var ia t ions The BLECHNUM - AF - WH (CWHb) assoc iat ion and the Vaccinium -Lysichitum - WRC (CWHa&b) subassociat ion were se lected for the comparison of the mature and immature stand types. The composition of tree layers in both units was quite a l i k e ; western hemlock with a small proport ion of Doug las - f i r , western redcedar and amabi l is f i r in the f i r s t un i t , and a mixture of western redcedar and western hemlock in the l a t t e r un i t . Immature stands which regenerated na tu ra l l y a f te r logging had in both cases a few ind iv idua ls of red a lder and black cottonwood. L i t t l e evidence was found that these s i tes had been af fected by f i r e s at the time of o r i g i n . The p r inc ipa l d i f ference between the mature and immature stand types in the BLECHNUM - AF - WH was found in the s t ra ta coverage (Table 13). Tree layers in the mature type are more open and less dense than in the immature type. As a resu l t of higher densi ty and s tock ing , the s t ra ta coverage of shrub, herb and even moss layers in the immature type i s reduced. Also eco log i ca l l y s i g n i f i c a n t i s the d i f ference in the f l o r i s t i c composition. Plant species c h a r a c t e r i s t i c for the Tsugetal ia heterophyl lae decrease in presence and species s ign i f i cance in the immature stand type. The opposite was true fo r the species TABLE 13 Age Variations. Abbreviated Vegetation Table and Some Properties of Soil Organic Layers for the BLECHNUM - AF - WH (CWHb) 233 Forest Stand Type Immature Mature Number of Sample Plots Age Strata Coverage: A layer B layer C layer Dh layer 55 83.1 19.3 11.8 44.3 5 176 68.1 49.0 26.2 56.0 Characteristic Species for the Tsugetalia Heterophyllae Henziesia fewu.gi.nea Vaoainium alaskaense (Bleohnum spioant) (Comus canadensis) (Dryopteris austriaca) Goody era oblongifolia Rubus pedatus (Hyloeomium splendens) -Isopterygium elegans Plagiothecium undulatum (Rhizomnium glabrescens) Rhytidiadelphus loreus V 1.7 V 3.4 V 3.1 IV 3.0 V 4.0 III 1.2 III 2.1 V 4.6 V 3.7 II 2.6 V 3.2 V 5.3 V 5.2 IV 3.0 IV 2.5 III 1.2 III V 2.7 3.4 V 2.4 5.9 4.9 V 4.1 Characteristic Species for the Thujetalia Plicatae Acer circinatum -Oplopanax horridus Rubus speatabilis Sambusus pubens Athyrium filix-femina Gymnocarpium dryopteris (Lyaopodium selago, var. myoshianum) Lysichitum americanum Maianthemum dilatatum Polystichum munitum Streptopus amplexifolius Tiarella trifoliata Trillium ovatum Leucolepis menziesii Pogonatum contortum Plagiomnium insigne Plagiothecium laetum Stokesiella praelonga 3.3 1.7 3.3 III 1.4 IV 1.4 II +.8 IV 1.1 II +.4 II +.0. V 3.1 IV 1.1 V 1.6 IV +.7 II +.0 IV 2.1 III 2.1 III +.3 IV 1.1 II 4.1 III 1.2 III 2.7 IV 1.8 III 3.5 IV 2.0 III +.5 V 2.5 III 1.1 II +.4 I +.0 Some Chemical Properties of Soil Organic Layers Humus form Thickness (cm) PH Total N (%) <C/N* Exch. Exch. Exch. C E C {meq/100 gm) (meq/100 gm) (meq/100 gm) (meq/100 gm) Elemental analysis (ppm) Ca Mg Na K Fe Al Mn. S P MR - MD 26.5 3.9 1.56 27.7 9.52 2.65 1.52 134.06 4315 919 164 541 10031 11116 549 1440 1461 MR 18.5 3.9 1.19 37.7 11.16 2.16 1.50 105.15 3852 693 163 662 9681 12596 132 1084 1132 * Difference between means is signif icant at P = 0.10 level using t-test 234 cha rac te r i s t i c for the Thujeta l ia p l i c a t a e , some of them newly occurr ing underneath the immature stands: Sambucus pubens, Gymnocarpium dryopteris, Lysichitum americanum, Leucolepis menziesii and Plagiomnium insigne. These changes suggest also edatopic d i f ference between the mature and immature stand types. Based on eco log ica l evaluat ion of f l o r i s t i c changes, i . e . de-crease of mesohylophilous and submeso- to mesotrophophytic spec ies , and increase of hygrophylophilous and subeutro- to eutrophophytic spec ies , i t can be in fe r red that the immature stand type possesses higher moisture s ta tus , with fas te r decomposition and greater a v a i l a b i l i t y of nu t r ien ts , mainly those of n i t rogen, calcium and potassium, than the mature stand type. Examination of the ana ly t i ca l data, with respect to mean values for a number of chemical cha rac te r i s t i cs supports the above conc lus ion. Despite the th icker humus layers in the immature stand type and the iden t i ca l pH values in both types, the to ta l n i t rogen leve ls are higher and the C/N ra t ios are lower in the immature stand type . This i s re f lec ted by humus forms, which were c l a s s i f i e d as moder or mor, whereas those in mature stand were c l a s s i f i e d cons i s ten t l y as mor. S ign i f i can t d i f ference in the C/N r a t i o , i s i n d i c a t i v e of a greater b io log ica l a c t i v i t y in the immature stand. Exchangeable bases did. not d i f f e r s i g n i f i c a n t l y between the types, although the values ob ta in -ed from the elemental analys is of s o i l organic layers showed greater concentrations of Ca, Mg, S and P in the immature stand type. 235 The main d i f ference in the f l o r i s t i c s t ructure between the mature and immature stand types of the Vaccinium - Lysichitum - WRC was found again in the s t ra ta coverage (Table 14). A remarkable de-crease in the coverage of shrub, herb and moss layers in the immature stand type was a t t r ibu ted to a high stand dens i ty . The mature stand type i s character ized by a hummocky ground surface with accumulation of decayed wood and depressions with temporary water pools . Conse-quently, fo res t stands cannot become f u l l y stocked over the whole area. Charac te r i s t i c species for the Tsugetal ia heterophyl lae r e l a -t i v e l y decrease in presence and species s ign i f i cance or both in the immature stand type when compared to those for the Thu je ta l ia p l i ca tae . Vaccinium alaskaense, Blechnum spicant, Cornus canadensis, Linnaea borealis, Rubus pedatus and Rhytidiadelphus loreus showed pa r t i cu l a r l y a strong reduct ion. These meso- to hygrohylophilous and meso- to permesotrophophytic species can to lera te very a c i d , often compacted, mor humus with a s i g n i f i c a n t proport ion of decayed wood. Furthermore, several species cha rac te r i s t i c fo r the Thu je ta l ia p l i ca tae occur more frequent ly i n the immature stand type: Acer circinatum, Rubus specta-b i l i s , Taxus brevifolia, Athyrium filix-femina, Streptopus amplexifalius, Conocephalum conicum, Pellia epiphylla and Plagiomnium insigne. These hygro- to subhydrohylophilous and subeutro- to eutrotrophophytic species, are ind ica t i ve of permanently wet and f r i a b l e s o i l organic l a y e r s , f as te r l i t t e r decomposition and N minera l iza t ion rates and bet ter a v a i l a b i l i t y of nu t r ien ts . Less frequent ly occurr ing Lysichitum 236 TABLE 14 Age Var ia t ions . Abbreviated Vegetation Table for the Vaccinium -Lysichitum - WRC (CWH a &b) Forest Stand Type Mature Immature Number of sample p lots 5 4 Age 92 47 St ra ta coverage: A layer 60.0 76.0 [%) • B layer 72.0 47.3 C layer 52.8 16.0 Dh layer 78.0 39.0 Charac te r i s t i c Species for the Tsugetal ia Heterophyllae Menziesia ferruginea II 1.4 V 1.8 Vaccinium alaskaense V 6.4 V 2.4 Bleehnwn spicant V 4.8 V 3.3 (Cornus canadensis) V 3.7 V 1.6 (Dryopteris austriaca) V 3.3 V 3.0 Linnaea borealis III 1.4 -Rubus pedatus V 3.8 II +.3 Rhytidiadelphus loreus V 5.1 -Plagiothecium undulatum I I I 4.7 I l l 3.1 Sphagnum girgensohnii I +.2 IV 1.8 Charac te r i s t i c Species for the Thuje ta l ia P l i ca tae Acer circinatum I + .2 IV 1.6 Oplopanax horriduS. IV 3.3 IV +.8 Rubus spectabilis V 5.4 V 5.6 Sambueus pubens II 1.6 II +.0 Taxus brevifolia II + .0 IV 1.4 Athyrium filix-femina V 2.8 V 3.6 Lysichitum americanum V 6.9 V 3.8 Maianthenum dilatatum II 4.4 IV 2.9 Polystichum munitum III 1.6 V 1.3 Streptopus anrplexifolius V + .5 IV 1.1 Conocephalum conicum III 1.3 IV 3.1 Leucolepis menziesii II 3.0 IV 1.1 Pellia epiphylla III 2.0 III 3.2 Plagiomnium insigne I + .2 IV 1.6 Sphagnum squarrosum III 5.0 -Stokesiella praelonga V 5.3 V 3.2 237 americanum, Sphagnum girgensohnii and Sphagnum squarrosum might suggest a r e l a t i v e l y lower or less f luc tua t ing water table i n the immature stand type. This f l o r i s t i c change i s l i k e l y re la ted to a less pro-nounced hummocky microtopography fo l lowing logging disturbance. No chemical ana lys is i s ava i lab le fo r th is un i t . The di f ferences between the immature and mature stand types can be summarized as fo l lows: 1. The most obvious change i s that in the s t ra ta coverage. Under f u l l y stocked and dense immature stands of con-i ferous species in the CWH zone lack of l i g h t causes sup-pression of shrub, herb and moss layers . The moss layer i s the leas t reduced and i t i s the cha rac te r i s t i c physiognomic features of the immature stand type. 2. B io log i ca l a c t i v i t y , decomposition rates and a v a i l a b i l i t y of nutr ients in humus layers in the immature stand type appear to be higher than those in the mature stand type. This i s somewhat surpr is ing in view of less l i g h t energy reaching the forest f l oo r in the immature stand type. Disturbance of s o i l organic layers by logging and the i r temporary exposure might have i n i t i a t e d fas te r rates of decomposition. General trends in the composition of understory vegetation and s o i l propert ies acquired in response to changes in the age and composition of the forest cover are known (Sukachev and D y l l i s , 1964; L ikens, 1970; Reich le , 1970; Odum, 1971). These studies confirm the trends i n s i a. spec i f i c frame of the basic synsystematic un i t—plan t assoc ia t i on . CHAPTER 7 SOME ASPECTS OF THE CHEMICAL COMPOSITION OF UNDERSTORY VEGETATION The f l o r i s t i c composition of espec ia l l y the understory vegetation ( l esse r , minor vegetation) was employed as a major c r i t e r i o n in the synecological c l a s s i f i c a t i o n . Ecosystem un i t s , however, were character-ized by both f l o r i s t i c and edatopic features so that d i s t r i bu t i on of understory vegetation along s o i l moisture and nutr ient gradients became apparent. The object ive of elemental analys is on fo l iage samples of understory vegetation was to provide accessory information concerning i nd i ca t i ve values of commonly occurr ing plant species in the CWH zone. This information could enhance se lec t i ve use o f understory vegetation in detect ing f ine edatapic d i f fe rences, p a r t i c u l a r l y in s o i l organic layers and re la te them to forest p roduct iv i ty . Subsequently, i t could be determined whether or not ind iv idua l plant species and t h e i r group-ings, which are l im i ted in the i r d i s t r i bu t i on to cer ta in ecosystems, have a s p e c i f i c chemical composit ion. I t was assumed that the pro-v i s ion of more nutr ients along with moisture should resu l t i n qua l i t a t i ve f l o r i s t i c changes associated with changes in chemical composit ion. I t has been known that each plant species has by nature a spec-i f i c ash content of a de f in i te composit ion. These parameters may vary in a given species but usual ly wi th in cer ta in l i m i t s . Many studies have indicated cer ta in s t a b i l i t y of the chemical composition fo r various species even f o r those growing over a var ie ty of ecotopes. Higher plants have developed various mechanisms fo r regulat ing uptake and d i s t r i bu t i on of mineral elements, e i ther to meet demands fo r essent ia l elements when the supply i s low or to prevent t o x i c i t y where there i s excess supply. P o s s i b i l i t y and l im i ta t ions of these regulatory mechanisms were demonstrated by Marschner (1974). Understory vegetation has received r e l a t i v e l y l i t t l e a t tent ion as to i t s ro le in the ecosystem funct ion ing. A l i t t l e has been done to e luc idate the ro le of ind iv idua l plant species in the biogeochemical cyc le and hence to ascerta in the importance of understory vegetation in undisturbed and disturbed ecosystems. However, there are many studies report ing on the chemical composition of p lant species outside the CWH zone. Chemical concentrations reported by various authors were recent ly summarized by Yar ie (personal communication). The data for plant species were grouped according to t h e i r eco-l og i ca l and synsystematic values given in the ecosystem synthes is . Synsystematic uni ts at the leve l of the plant order were selected to be the framework fo r the purpose of th is ana lys is (Table 5) . Each plant order has a cha rac te r i s t i c combination of species (Table 6 ) . The co l lec ted plant species were s t r a t i f i e d accordingly. Thus, developed 241 groupings cons is t of cha rac te r i s t i c species fo r the respect ive p lant orders recognized in the study area. Plant species in parenthesis were considered to be non-character is t ic fo r a pa r t i cu l a r group although they may be more cha rac te r i s t i c of another group in an adjacent biogeocl imat ic zone, or s t i l l higher synsystematic u n i t s . Samples of several spec ies, though analyzed were not included for various reasons in the d iscuss ion . These species were: Alnus rubra, Cornus nuttallii, Cladothamnus pyrolaeflorus, Ledum groelandicum, Malus fusca, Myrica gale, Spiraea douglasii, Physo carpus capitatus, Epilobium angusti folium, Isothecium stoloniferum, and decayed wood of Ptcea sitchensis. Variable number of samples for ind iv idua l species and approx i -mate values obtained fo r some elements ruled out a comprehensive s t a t i s t i c a l treatment. One-way analys is of variance and Duncan's mul t ip le range test were employed for the species in which number of samples was equal to or exceeded f i ve c o l l e c t i o n s , to tes t d i f ferences in concentrations among the species fo r ind iv idual elements. Despite seasonal v a r i a b i l i t y in f o l i a r concentrat ions, fu r ther subjected to changes due to d i f f e r e n t i a l rates of leaching fo r d i f f e ren t spec ies , the data obtained represent a re la t i ve basis upon which to examine di f ferences in the chemical composition of understory vegetat ion. 242 General Evaluat ion Considerable i n t r aspec i f i c var ia t ions in concentrat ions are apparent for any given species and for most of the elements (Appendix V I I I ) . Nevertheless, s i gn i f i can t di f ferences in the chemical composi-t ion among the species were observed. Mean values f o r the ash content, C/N r a t i o , N, Ca, Mg, K, Na, Fe, Al and Mn concentrat ions for fo r ty plant species and three samples of decayed coniferous sapwood are given in Table 15. The order of abundance for a l l samples, inc lud ing decayed wood samples was: N > K > Ca > Mg > Mn > Al > Fe > Na wi th the percentage values being 2.07, 1.20, 0.40, 0.20, 0.08, 0.07, 0.05 and 0.03 respec t i ve ly . The average ash content was 8.47 percent. A s i m i l a r order for understory vegetation was reported by Ovington (1962). There are, however, not iceable var ia t ions and these can be elucidated by an examination of the average concentrations found in the fo l iage of ind iv idua l species. According to Remezov and Pogrebnyak (1969), K ranks as the t h i rd element, a f te r N and Ca in fo l iage of tree spec ies . The higher ranking of K in fo l iage of understory vegetation was considered to be a major nu t r i t i ona l cha rac te r i s t i c in the biogeochemical cycle of understory vegetat ion. Ranking the groups of cha rac te r i s t i c species by t he i r ash content the order was: Thu je ta l ia p l i ca tae > Tsugeta l ia heterophyllae > Pseudotsugetal ia menz ies i i . A remarkably high ash content was found 243 Table 15 Elemental a n a l y s i s of f o l i a g e and decayed wood of common p l a n t species i n the CWH zone. P l a n t s p e c i e s Number samples Ash content T o t a l N C/N Concentration i n ppm of oven-dried (105°C) m a t e r i a l Mg C h a r a c t e r i s t i c species f o r the P s e u d o t s u g e t a l i a m e n z i e s i i : Gaultheria shallon 56/7 8 59 d 0 80 68 9401 b 2713 c . 316 c 6608 i 78 e 187 d 2081 c Mahonia nervosa 9/3 4 80 fg 1 00 56 3213 fgh 1259 gh 141 cde 9787 g 70 e 39 d 135 ef Vaccinium parvi folium 22/4 7 86 de 1 87 31 6708 d 1506 9 . 123 cde 10527 g 87 e 224 d 2880 b Dicranum howellii 4/2 6 18 1 30 42 1456 611 125 2553 1528 2089 305 (Pleurozium schreberi) 4/2 5 12 0 86 70 1919 598 142 2455 1041 1240 199 Rhacomitrium canescens 6/4 3 91 9 0 91 64 747 j 437 i j 114 cde 7821 1610 be 2363 b 75 e f Stokesiella oregana 33/5 8 63 d 1 49 37 3437 1071 h 186 cde 5474 i j 1465 c 1388 b 785 d •-C h a r a c t e r i s t i c species f o r the T s u g e t a l i a he t e r o p h y 1 1 a e Henziesia ferruginea 5/2 10. 76 c 1 95 31 3320 fgh 4073 a ' 235 cde 14706 f 165 e 146 d 7531 a Vaccinium alaskaense 25/5 7 54 e 2 46 23 5255 e 2404 d 320 c 10279 g 89 e 238 d 2081 c Linnaea borealis 1/1 11 99 1 35 38 10799 2948 341 14687 400. 529 649 (Blechnum spicant) 29/4 16 47 a 1 27 39 3253 fgh 4071 a 1202 a 22001 d 113 e 160 d 188 ef (Dryopteris austriaca) 10/3 10. 28 c 2 54 21 2074 h i j 2900 be 248 cd 26273 c 113 e 110 d 830 d (Pteridium aquilinum) 14/3 10 32 c 2 00 27 2030 h i j 2120 de 184 cde 27132 c 105 e 72 d 208 ef (Hyloeomium splendens) 33/5 5 63 f 1 67 36 2480 h i 812 hi' 159 cde 4902 jk 951 d 1166 c 386 def Plagiothecium undulatum 28/4 9 83 c 1 83 32 2342 h i 1560 9 286 cd 7823 h i 1809 b 2048 b 331 def Rhytidiadelphus loreus 36/5 5 87 f 1 43 39 2116 h i . 832 h i 206 cde 4637 jk 1170 d 1227 c 380 def Rhytidiopsis robusta 8/3 5' 48 fg 1 39 41 2568 ghi 721 h i j 132 cde 4135 jk 927 d 1157 c 343 def C h a r a c t e r i s t i c s p e c i e s f o r the T h u j e t a l i a p l i c a t a e (and the P o p u l e t a l i a b a l s ami f e r a e ) : Acer circinatum 27/4 7 39 e' 2 00 29 6077 de 2329 de 118 cde 10003 g 104 e 65 d 547 de Lonicera involucrata 4/2 9. 71 3 63 14 5709 2304 153 21222 118 2762 110 Oplopanax horridus 7/2 16 61 a • 3 98 12 6367 de 3163 de 806 b 38067 a 123 e 51 d 268 def Ribes bracteosum 1/1 16 56 3 46 14 1111 3983 639 32705 105 63 43 Rubus parvi florus 3/2 13. 21 1 97 32 9218 4587 164 19804 120 69 135 Rubus spectabilis 23/5 10 32 c 2 94 18 4256 f 3876 a' 923 b 16196 f 129 e 97 d 458 def Sambucus pubens 6/3 16 32 a 4 87 10 7902 c 4152 a 800 b 33787 b 142 e 110 d 343 def Viburnum edule 12. 28 2 21 23 10819 2109 82 15606 118 145 51 Achlys triphylla 4/2 10. 69 2 49 21 8080 2214 147 23701 137 121 422 Aruncus Sylvester 3/2 10. 61 2 48 23 3994 3020 191 23463 147 82 268 Circaea alpina 1/1 16. 45 2 08 23 8175 6536 871 21895 839 1656 381 Lysichitum amaricanum 13/3 29. 38 5 02 8 7664 2748 8392 65365 204 162 1674 Kaianthemum dilatatum 1/1 18. 11 2 68 20 5895 2229 2690 38049 246 354 299 Tiarella trifoliata 6/2 14. 19 b 1 91 26 11595 a 3919 287 cd 20987 d 376 e •499 d 300 e f Tolmiea menziesii 1/1 18 97 2 96 16 13398 5413 191 35370 96 75 46 Trillium ovatum 2/2 18. 26 2 56 18 9643 3081 259 41278 753 811 83 Adiantum pedatum 3/2 12. 01 3 17 16 5580 3473 200 22596 75 11 80 Athyrium filix-femina 21/4 16 05 a 2 70 18 3273 fgh 3886 a 295 c 36995 a 144 e 130 d 128 e f Gymnccarpium dryopteris 2/2 11 83 2 89 22 2309 4736 500 30086 176 288 124 Polystichum muni turn 71/10 7 70 e 1 43 40 1936 i j 2094 e f 250 cd 18507 e. 95 e 466 d 95 ef Leucolepis menziesii 5/2 11 04 c 1 90 28 5673 de 1652 fg 240 cde 5191 i j k 3899 a 3776 a 490 ef Plagiomnium insigne 4/4 12 11 1 69 31 5875. 1392 348 6784 1958 2242 299 Stokesiella praelonga 4/2 15 43 2 21 22 5280 1502 323 5717 4203 5259 433 Decayed wood: Pseudotsuga menziesii 15/4 0.94 h 0 43 222 963 j 176 k 48 e 157 1 111 e 123 d 49 f Thuja plicata 18/4 1. 75 h 0 63 98 14 36 i j 176 k 60 de 244 1 334 e 298 d 92 e f Tsuga heterophylla 5/1 1 11 h 0 42 136 1069 i j 193 jk 49 de 144 1 154 e 171 d 90 ef Values w i t h i n columns c a r r y i n g the same l e t t e r . s u p e r s c r i p t were not s i g n i f i c a n t l y d i f f e r e n t a t the P = 0.10 l e v e l , using Duncan's m u l t i p l e range t e s t . *The number before and a f t e r a v i r g u l e i n d i c a t e s a number of samples taken f o r the a n a l y s i s o f i n o r g a n i c elements and ni t r o g e n r e s p e c t i v e l y . 244 fo r Lysichitum americanum (29.4%) and several other herbs such as ToZmiea menziesii, Maianthemum dilatatum and Trillium ovatum. Blechnum spieant had the highest ash content (16.47%) among the species df the Tsugetal ia heterophyl lae. I t i s most frequent ly found at high e levat ion seepage hab i ta ts . A c i d o p h i l u s mosses had a r e l a t i v e l y low ash content among the species fo r th is plant order. Xerophytic mosses and Mahonia nervosa had s i g n i f i c a n t l y lower ash content than the other charac te r i s -t i c species for the Pseudotsugetal ia menz ies i i . The decayed wood samples had the lowest ash content, in the range from 0.94 to 1.75%. Correspondingly, the lowest chemical concentrations were c h a r a c t e r i s t i c fo r decayed wood of coniferous spec ies , suggesting a l i t t l e nu t r i t i ona l va lue. Dif ferences in the Chemical Composition Between Charac te r i s t i c Species  fo r the Plant Orders Charac te r i s t i c species of the Pseudotsugetal ia menziesi i had, in genera l , the lowest concentrations among a l l other species. However, on average, Ca concentrations were higher and Fe, Al and Mn concentra-t ions were not s i g n i f i c a n t l y d i f fe ren t than those fo r the cha rac te r i s t i c species of the Tsugetal ia heterophyl lae. Higher concentrations of to ta l N and lower C/N ra t io values were cha rac te r i s t i c fo r Vaccinium parvifolium and Stokesiella oregana, whereas the opposite was found for Gaultheria shallon, Pleurozium schreberi, Rhacomitrium canescens and Mahonia nervosa. 245 A high Ca level for Gaultheria shallon (0.9%) was the s ingu lar exception among the cha rac te r i s t i c species for the order and a lso ericacaeous p lan ts , which may be accounted fo r by inher i ted ext ract ion a b i l i t y . A high f o l i a r content of l i p i d s (Kl inka and Lowe, 1975a), preventing leach ing , and progressive accumulation o f Ca in perennial f o l i age might also be suggested. Ca leve ls obtained fo r Stokesiella oregana, Mahonia nervosa and Vaccinium parvifolium were wi th in the range of cha rac te r i s t i c species fo r the Tsugetalia heterophyllae, whereas those fo r xerophytic mosses, namely Rhacomitrium canesoens, were extremely low—below 0.2 percent. S im i la r trends as for Ca were observed also for Mg l e v e l s . Mahonia nervosa and Vaccinium parvifolium had s i g n i f i c a n t l y higher K concentrations than the other cha rac te r i s t i c spec ies , e .g . Gaultheria shallon and pa r t i cu l a r l y xerophytic mosses. The Pseudotsugetalia menz ies i i , confined in the CWH zone to s t rongly drained, xe r i c hab i ta ts , have cha rac te r i s t i c species with the lowest chemical concentrations ( re la t i ve to other spec ies) . This might ind ica te a shortage of ava i lab le nutr ients ( r e l a t i ve to other hab i ta ts ) , e i t he r due to t ree species competit ion or to t he i r losses to adjacent, topographical ly lower located ecosystems. Therefore, these plant species can be designated as xerohylophilous and by t he i r t rophic valence as o l i g o - to submesotrophophytic (K ra j i na , 1969). Charac te r i s t i c species of the Tsugetal ia heterophyllae by the i r chemical concentrations showed a f f i n i t i e s to those of the Pseudotsuge-t a l i a menz ies i i . In general , Fe, Al and Mn concentrations were the h ighest , N, Mg, K and Na concentrations were intermediate, and f i n a l l y Ca concentrations were the lowest when compared to a l l other spec ies. 246 Re la t i ve ly high N leve ls and low C/N ra t io values were charac-t e r i s t i c for Dryopteris austriaoa and Vaccinium alaskaense whereas the opposite was found for Blechnum spicant, Linnaea borealis and Rhytidiopsis robusta. Among acidophi lous mosses, Plagiothecium undul-ation was the species with the highest N concentrat ion (1.83%), resembling in th is respect Plagiomnium insigne (1.69%). Linnaea borealis and Vaccinium alaskaense v/ere the only species with Ca concentrations above 0.5%. A l l other species had less than 0.3 percent. Mg concentrations for Menziesia ferrnxginea, Blechnum spicant and Linnaea borealis were comparable to those fo r the character-i s t i c species fo r the Thuje ta l ia p l i c a t a e . Acidophi lous mosses were the l a s t ranking species with K leve ls from 721 to 1560 ppm. With the exception of fe rns , K concentrations d id not s i g n i f i c a n t l y d i f f e r from those for the cha rac te r i s t i c species of the Pseudotsugetal ia menz ies i i . The Tsugetal ia heterophyl lae, occurr ing in the CWH zone on amphimesic habitats have cha rac te r i s t i c species wi th intermediate chemical concentrat ions. This might ind icate that these habitats, provide correspondingly an intermediate nutr ient supply. Therefore, these plant species can be designated as mesophylophilous and by t he i r t rophic valence as o l i g o - to mesotrophophytic (K ra j i na , 1969). Charac te r i s t i c species of the Thu je ta l ia p l i ca tae had the highest N, Ca, Mg, Na and K concentrat ions, whereas those of Fe, Al and Mn were the lowest when compared to other spec ies . For most of the species to ta l N concentrations were above two percent and the C/N ra t io value below twenty. Remarkably high N l e v e l s and 247 correspondingly low C/N ra t io values were obtained f o r Lysichitum americanum (5.02%, 8 ) , Sambucus pubens (4.87%, TO), and Oplopanax horridus (3.98%, 12), whereas the opposite was found f o r Leucolepis menziesii (1.90%, 28), Plagiomnium insigne (1.69%, 31) and p a r t i c u -l a r l y for Polystichum munitwn (1 .43%,40) . The highest Ca concentrations were c h a r a c t e r i s t i c for Tolmiea menziesii, Tiarella trifoliata and Ribes bracteosum exceeding one percent. The l a s t ranking species in th is respect were Gymnocarpium dryopteris, Athyrium filix-femina and Polystichum munitum with concen-t ra t ions below 0.3 percent. Plagiomnium insigne and Stokesiella praelonga had s i g n i f i c a n t l y higher Ca concentrations than any other mosses. Ca leve ls in ferns were found to be comparable with those for mosses. Among ferns Adiantum pedatum was ranked as the lead ing species i n th is respect. The highest Mg concentrat ions were obtained for• Circea alpina, Tolmiea menziesii, Gymnocarpium dryopteris and Rubus parviflorus, exceeding 0.4 percent, whereas the lowest concentrat ions were character-i s t i c fo r Leucolepis menziesii, Stokesiella praelonga, Plagiomnium in-signe and Polystichum munitum, below 0.2 percent. With the exception of Adiantum pedatum, Mg concentrations in, a l l s tud ied fern species exceeded those fo r Ca. S i m i l a r l y as in the case of the tota l ; N, K concentrat ions were s i g n i f i c a n t l y higher for almost a l l cha rac te r i s t i c spec ies , the exception being Acer circinatum and mosses. The range of K concen-t ra t ions was from 1.5 to 6.5 percent. The highest K concentrations 248 were obtained fo r Lysichitum amevicanum (6.54%), Trillium ovatum (4.13%) and Oplopanax horridus (3.81%). A l l ferns had r e l a t i v e l y high K leve ls wi th in a f a i r l y narrow range: from 1.85 percent f o r Polystichum munitum to 3.7 percent fo r Athyrium filix-femina,. despite being charac te r i s t i c species of d i f f e ren t plant orders. Stokesiella praelonga and Leucolepis menziesii had the highest Fe and Al concentrations which were s i g n i f i c a n t l y above the l eve ls of the other spec ies. -Lonicera involucrata showed s i g n i f i c a n t l y higher Al concentrat ion than any other vascular plants (2762 ppm). The Thu je ta l ia p l i ca tae , confined in the CWH zone mainly to hygric and subhydric habitats have cha rac te r i s t i c species with the highest chemical concentrations ( re la t i ve to other spec ies) . This strongly points out that seepage habitats provide along with moisture, a s u f f i c -ien t supply of ava i lab le nut r ien ts . Therefore, these plant species can be designated as hygro- to subhydrophilous and by the i r t rophic valence as permeso- to eutrophophytic (K ra j i na , 1969). To tes t the a b i l i t y of the chemical composition to discr iminate between fo l iage samples of cha rac te r i s t i c spec ies , a stepwise d isc r im-inate analys is was car r ied out. The discr iminant ana lys is i s a s t a t i s t i c a l technique to c l a s s i f y subjects in to one or several popu-la t ions based on the observation of one or more va r iab les . In the present study the object ive was to ascer ta in to what extent the chemical composition of cha rac te r i s t i c species could be used to reproduce the vegetation synsystematic c l a s s i f i c a t i o n . Gaultheria shallon, Plagiothecium undulatum and Polystichum munitum being cha rac te r i s t i c species for d i f f e ren t plant orders were selected 249 for the ana l ys i s . Ca, Mg, K, Fe and Al concentrat ions were used as va r iab les . Each species was represented by ten samples, which or ig inated at xe r i c habitats for Gaulthevia shallon, at mesic habi tats fo r Plagio-thecium undulatum and at hygric habitats fo r Polystichum munitum. A computer program (UBC BMD07M, Lloyd and Gerbrandt, 1974) was used to implement the analys is at the UBC Computing Centre. The ana lys is was completed at the fourth s tep , in which c l a s s i f i -cat ion funct ions were computed fo r each spec ies , using Ca, K, Fe and Al concentrations as d iscr iminat ing va r iab les . A l l samples were c l a s s i f i e d in to the o r i g ina l groupings with 0.0 p robab i l i t y that any sample might be c l a s s i f i e d to d i f fe ren t species. Differences i n the chemical composition provided a highly s i g n i f i c a n t basis on which to d is t ingu ish between taxonomically and eco log i ca l l y d i f f e ren t p lant species. The p lo t of the f i r s t two canonical var iab les gives a two dimensional picture of the d ispers ion for the species (Figure 59). I t was concluded that the analys is was successfu l in d i sc r im in -at ing between fo l iage samples derived from c h a r a c t e r i s t i c plant spec ies . Ecological Evaluat ion of the Differences in the Chemical Composition The form and amount of N in d i f fe ren t ecosystems has important consequence fo r growth and d i s t r i bu t i on of plant spec ies . Invest igat ions of the N forms used by species growing in cont rast ing ecotopic s i tua t ions revealed marked di f ferences between species as regard t he i r potent ia l to ass imi la te n i t ra te (Kra j ina , 1969; Stewart et al. , 1974). 8 . 8 0 0 3 . 4 6 7 8 . 1 3 3 7 . 8 C 0 7 . 4 6 7 • e.soo 6 . 4 6 7 8 . 1 3 3 7 . 8 0 C 7 . 4 6 7 J 7 . 1 3 3 6 . 8 0 0 6 . 4 6 7 • 7 . 1 3 3 6 . 8 0 0 6 . - 6 7 \ 6 . 1 3 3 5 . 8 0 0 5 . 4 6 7 6 . 1 3 3 S . 8 0 C 5 . 4 o 7 5 . 1 3 3 4 . SCO 4 . 4 6 7 • 5 . 1 3 3 4 . 6 G 0 4 . 4 6 7 4 . 1 3 3 3 . SCO 3 . 4 6 7 • E Plagiothecium undulatum 4 .1 3 3 3 . 6 0 0 3 . T 6 7 3 . 1 3 3 2 . 8 0 0 2 . 4 6 7 • E Polystichum munitum E E * E 3 . 1 3 3 2 . 3 0 0 2 . 4 f c 7 2 . 1 3 3 1 . 8 C 0 1 . 4 6 7 * E * E > E E E EE E E E 2 . 1 3 3 1 . 3 0 0 1 . 4 6 7 1 . 1 3 3 0 . 8 C C 0 . 4 67 • E 1 . 1 3 3 C . S O O 0 . 4 6 7 . 0 . 1 3 3 - 0 . 2 C 0 - 0 . 5 3 3 • 0 . 1 3 3 - 0 . 2 0 0 - C . 5 3 3 - 0 . 8 6 7 - 1 . 2 0 0 - 1 . 5 3 3 - 0 . 3 6 7 - 1 . 2 0 0 - 1 . 5 3 3 - 1 . 8 6 7 - 2 . 2 C 0 - 2 . 5 3 3 • - 1 . 6 6 7 - 2 . 2 0 0 - 2 . 5 3 3 - 2 . 8 6 7 - 3 . 2 0 0 - 3 . 5 3 3 E E E - 2 . H 6 7 - 3 . 2 0 0 - 3 . 5 3 3 - 3 . 8 6 7 - 4 . 2 C 0 - 4 . 5 3 3 • E Gaultheria shallon * E $ - 3 . 3 6 7 - 4 . 2 0 0 - 4 . 5 3 3 - 4 . 8 6 7 - 5 . 2 C 0 - 5 . 5 3 3 • c E £ - 4 . 6 6 7 - 5 . 2 0 C - 5 . 5 3 3 - 5 . 8 6 7 - 6 . 2 C 0 - 6 . 5 3 3 • - 5 . 66 7 - t . 2 0 0 - 6 . 5 3 3 - 6 . 8 6 7 - 7 . 2 C 0 - 7 . 5 3 3 • - c . b 6 7 - 7 . 2 0 C - 7 . 5 3 3 - 7 . 8 6 7 - 3 . 2 C C - 8 . 5 3 3 • * Mean 'E - 7 . 6 6 7 - E . 2 C C - 6 . 5 3 3 - 8 . 8 6 7 - S . 2 C 0 + Overlap - 6 . 5 6 7 - ? . 2 G C V 9 . 2 0 0 - 7 . 2 00 • 2 0 C - 3 . 2 0 3 C . 8 0 C 4 . 6 G U - 1 . 2 0 0 2 .6oo c - . e o c 6 . 3 0 0 V I o Figure 59 Discriminant analysis — the plot of the f i rs t canonical variable against the second 251 Ni t ra te anions were detected in fo l i age of Sambucus pubens, Tiarella laciniata, Tiarella trifoliata, Tolmiea menziesii, Tellima grandiflora, Galium triflorum, Athyrium filix-femina, Urtica dioca, subsp. l y a l l i i , Cinna l a t i f o l i a , Bromus vulgaris, Dd-centra formosa and SOinc Otuct p i a n o s uy M a j l i la ib/c). nicy a)c ITlOsc uequenciy found on habitats n u t r i t i o n a l l y r i c h , p a r t i c u l a r l y i n Ca, which are character ized by the highest l i t t e r decomposition and N minera l iza t ion ra tes . Such habitats are then ind icated by the presence of these species designated as n i t rophi lous o r "n i t ra te f i x e r s " ( K r a j i n a , 1969). In view of that , i t became understandable that i d e n t i c a l spec ies , which were analyzed fo r the to ta l N in th is study had a l so the highest N leve ls and correspondingly the lowest C/N ra t i o va lues . Accumulation of ni trogen compounds in fo l iage of these species may simply r e f l e c t the fac t that the rate of uptake exceeds the rate o f reduction (Stewart et al., 1974). Some n i t roph i lous plants ( e . g . Oplopanax horridus, Adiantum pedatum and Lysichitum americanum) do not belong to "n i t ra te f i x e r s . " No n i t ra tes were found in t h e i r leaves (Kra j ina , personal communication), even i f they might prefer n i t ra tes in the i r d i e t . The n i t rophi lous plants do not occur on amphimesic hab i ta ts , where under the inf luence of acid humus layers there i s no act ive n i t r i f i c a t i o n but only ammonization and ammonification (Jackson, 1967; K ra j i na , 1972). Mosses and ericacaeous plants c h a r a c t e r i s t i c for the Tsugetal ia heterophyllae and the Pseudotsugetal ia menzies i i had subs tan t ia l l y lower N leve ls and wider C/N ra t ios than the n i t roph i lous 252 species. Higher N leve ls detected for the cha rac te r i s t i c species of the Tsugetal ia heterophyllae than fo r those of the Pseudotsugetal i a menziesi i are less eas i l y accounted fo r . Nitrogen concentrations in fo l i age of understory vegetation of these uni ts seem to be corre lated to N leve ls in s o i l organic l aye rs , which were again higher in the Tsugetal ia heterophyl lae. While low pH would be expected to contr ibute to lower b io log ica l a c t i v i t y at both un i t s , the C/N ra t io of s o i l organic layers in the Tsugetal ia heterophyllae was s i g n i f i c a n t l y higher (Kl inka and Lowe, 1975, 1976a, 1976b). This would indicate slower l i t t e r decomposition, lower N minera l iza t ion rates and b io log i ca l a c t i v i t y than in the Pseudotsugetalia menz ies i i . Ranking of cha rac te r i s t i c species by the i r Ca concentrations was iden t i ca l to that of exchangeable Ca in s o i l organic laye rs . Therefore, a greater supply of ava i lab le Ca from the exchange complex may be related to greater Ca concentrations in fo l iage of understory vegetat ion. Concentrations of exchangeable Mg in s o i l organic layers decreased from hygr ic , to mesic and to xer ic habitats in re la t i on to the Ca l e v e l s , whereas the opposite was found in th is study fo r Mg concentrations in fo l iage of understory vegetat ion. This might ind ica te that progressively greater amounts of Mg are cycled by understory vegetat ion on mesic and hygric habitats re la t i ve to xer ic hab i ta ts . A s i m i l a r trend was c l e a r l y demonstrated for potassium. The widest range (157 - 65,365 ppm) and the highest absolute values were d i s t i n c t i v e fo r K concentrat ions. The high concentrat ion of K in herbaceous l i t t e r f a l l were reported by Scott (1955) (a maximum 25,300 pp) and Tappeiner and Aim (1975). I t i s known that potassium 253 serves as a regulator of plant growth but does not form any wel l -def ined compounds in the p lant . The e f fec t of K in regulat ing the long distance transport of n i t ra te in higher plants i s a specia l example of the cat ion/anion balance in regulat ing ion uptake in general (Marschner, 1974). This pa r t i cu la r ro le of K seems to be corroborated fo r cha rac te r i s t i c species of the Thuje ta l ia p l ica tae which had both high N and K concentrat ions. Kl inka and Lowe (1975a) reported the d i s t r i b u t i o n of exchange-able bases in s o i l organic layers in re la t ion to the plant orders in the CWHa subzone. Increase in moisture (from xe r i c to mesic and to hygric) along with nu t r i t i ona l changes was associated with increasing leve ls of exchangeable Ca but decreasing leve ls of exchangeable Mg and p a r t i c u l a r l y exchangeable K. This trend can also be detected by data for ecosystem uni ts provided by Kojima (1971). Such di f ferences in exchangeable Ca: exchangeable K ra t ios are l i k e l y to be of considerable nu t r i t i ona l s ign i f i cance . K leve ls in fo l iage of understory vegetat ion, however, showed the opposite t rend. I t would be incor rec t to conclude that the most product ive, seepage habitats—the Thu je ta l ia p l i ca tae— are de f i c i en t in K. I t was a lso noted that exchangeable K leve ls represented, on average, over ninety percent of the tota l s o i l K values whereas exchangeable Ca, although va r iab le , represented, on average, only about f i f t y - t h r e e percent of the to ta l Ca present in the s o i l organic l aye rs . Thus continuing decomposition would tend to increase the leve ls of Ca ava i lab le for dominating the cat ion exchange s i t e s . On the basis of 254 ava i lab le data i t i s suggested that understory vegetat ion, and par t i cu -l a r l y fern spec ies , act ing in d i f fe ren t proportions and i n t e n s i t i e s , has a considerable s ign i f i cance as K storage, preventing i t s losses from the biogeochemical cyc le . S im i l a r l y as n i t roph i lous p lan ts , under-story vegetat ion, i n general , might be regarded as a nu t r i t i ona l cooperator of tree species in re leasing great quant i t ies of ava i lab le K from i t s l i t t e r , thus forming a s i g n i f i c a n t l i n k in the K biogeochemical cyc le of the i r ecotopes. The range fo r Na concentrations was a very narrow one. Ranking the cha rac te r i s t i c species by t he i r Na leve ls ind icated s i m i l a r i t y for most of the spec ies . A remarkable exception in th is respect was Lysichitum americanum (8392 ppm) and Maianthemum dilatatum (2690 ppm), both cha rac te r i s t i c of subhydric and eutrophic edatopes o f the Thujeta l ia p l i ca tae . In view of the fac t that both species a lso had high K concentrat ions, i t i s possib le that they possess a b i l i t y to exchange K for Na when K supply becomes low (Marschner, 1974). Narrow ranges for both Fe and Al concentrations were detected fo r most of the species. I t was observed that Al l eve ls f o r mosses, ferns and few herbs were higher than those of Fe. Mosses,par t icu lar ly Stokesiella praelonga and Leucolepis menziesii, were species with s i g n i f i c a n t l y higher Fe and Al concentrations than any other p lan ts . High Mn concentrations in the range from 2081 to 7531 ppm were found fo r ericaceous p lants . Mn concentrations in fo l iage o f Menziesia ferruginea, Vaccinium alaskaense, Vaccinium parvifolium and Gaultheria shallon were s i g n i f i c a n t l y higher than for any other species. 255 CHAPTER 8 SEEPAGE (GROUND) WATER IN SOILS OF FOREST ECOSYSTEMS Frequently in the environment of the P a c i f i c Coastal Mesothermal Forest as wel l as in any macroclimate in which annual to ta l prec ipat ion i s higher than i t s corresponding evapot ranspi ra t ion, condit ions e x i s t for the common occurrence of seepage hab i ta ts , i . e . habi tats in which the s o i l s are temporari ly or permanently af fected by an underground flow * of seepage water. These condit ions are : a large amount of p r e c i p i -t a t i on , a g lac ia ted mountainous landscape with long slopes and the presence of a r e s t r i c t i n g s o i l layer such as compacted t i l l or bedrock. Although the s o i l s are coarse-textured and highly permeable, they are imperfect ly or poorly drained due to in f luxes of water co l lec ted upslope. Studies of seepage water re la ted to fo res t growth were ca r r i ed out by Kraj ina and Spi lsbury (1953), McMinn (1957, 1960, 1965), Muel le r -Dombois (1959, 1965), G r i f f i t h (1960), Lesko (1961), Or loc i (1961, 1964, 1965), Eis (1962a, 1962b), Jablanczy (1964),, Waring and Major (1964), Kraj ina (1969), Brooke et al. (1970), Kojima (1971), Cordes (1972), Bourgeois and Lavkul ich (1972), F e l l e r (1974) and o the rs . On the basis of these studies the fo l lowing can be concluded: * Seepage water (phreatic water--Meinzer ( e d . ) , 1942), as used by Kraj ina and his students, refers to l a t e r a l l y moving ground water whose upper surface reaches, temporari ly or permanently, a s o i l horizon conta in-ing roots . Ground water (p le ro t i c water--Meinzer ( e d . ) , 1942) i s a port ion of the tota l p rec ip i ta t i on which at any pa r t i cu la r time i s e i the r passing through or standing in the s o i l above the underlying (impermeable) layer . I t i s free to move under the inf luence of grav i ty (SSSA, 1970). 256 1. Under the inf luence of seepage water, s o i l moisture remains read i l y ava i lab le for most of the growing season, although f i e l d moisture capaci ty of the s o i l may be the same as that of moderately wel l drained s o i l . 2. Product iv i ty of fo res t t r ees , such as Doug las- f i r and western redcedar in the P a c i f i c Coastal Mesothermal Fores t , i s highest on seepage hab i ta ts . Despite s o i l moisture being the most important fac tor corre lated to forest produc-t i v i t y , the growth of fo res t trees on s o i l s which are moder-a te ly wel l drained but suppl ied with abundant moisture from p r e c i p i t a t i o n , such as in the CWHb subzone,is not as great as that found on seepage habi ta ts . Therefore, mainly on the basis of i nd i rec t evidence, i t has been suggested by the authors quoted above, that: (a) Seepage water suppl ies the s o i l s not only with moisture but a lso with nu t r ien ts , permit t ing the development of highly productive ecosystems, even though the s o i l s may be of a low base s ta tus . (b) So i l chemical analyses, which do not take into account any e f fec t of seepage water, do not reveal any sub-s tan t i a l d i f ference in chemical propert ies between s o i l s af fected by seepage and those not af fected by seepage. Very often chemical analys is suggests that a s o i l may be lacking in nu t r ien ts , although th i s may not be the case i f the s o i l has an addi t ional supply through seepage water f low. 257 (c) Water percolat ing through the fo res t and the fo res t f l oo r i s r e l a t i v e l y a c i d i c . This a c i d i c water leaches chemicals away from the upper part of the s o i l pro-f i l e , as i t occurs in the s o i l s of the CWH zone. (d) Seepage water supplying nutr ients ( pa r t i cu l a r l y calcium and magnesium), may counteract t h i s leaching through the act ion of forest vegetat ion. The general object ive of th is study i s to present some data which may contr ibute to our knowledge o f the ro le of seepage water in the s o i l s of fo res t ecosystems in the CWH zone. The so i l -water system i s a very complex one, whose water i s cont inua l ly undergoing changes in i t s p roper t ies . These changes should depend on the environment of the water, i . e . on the fo res t ecosystem in which i t occurs. Consequently, an attempt has been made to determine whether or not s p e c i f i c fo res t eco-systems af fected by seepage water can be fur ther character ized on the basis of chemical propert ies of t he i r seepage water. Complete data of seepage water analys is are given in Appendix IX. Seepage Water Chemistry A General Evaluation A l l water samples had pH values between 3.9 and 7.2 and had e l e c t r i c a l conduct iv i t ies of 8 . 0 - 6 1 . 0 Limhos/cm. In terms of equiv-2+ a lents the order of abundance of cations in seepage water was Ca > 258 Na + > M g 2 + > K + > H + and of anions, HCO3 > S0^"> C l " > NO3 > H 2P0~. Thus, calcium was the most abundant cat ion and bicarbonate the most abundant anion. S im i la r resu l ts were obtained by Bourgeois and Lavkul ich (1972) and F e l l e r (1974) in the same area. The order of " 2+ 2+ cat ion abundance in ground water from Russian podzols was Ca > Mg > Na + > K + and of anion abundance: HCOg > S0Jj~> C l ~ (Vazhenin et al.3 1972), which are s im i l a r to those found in the study a rea . The presence of c h l o r i t e , vermicul i te and mica c lay minerals i n the s o i l s of the study area could cause the low potassium and magnesium content i n seepage water, due to the s t ructura l ro le these two ca t ions have i n the c lay minerals (Bourgeois and Lavku l ich , 1972). Both ammonium and phosphate concentrat ions are rather low. Re la t i ve ly higher values of ammonium have been found in samples where anaerobic cond i t ions p r e v a i l . These condit ions would retard oxidat ion of ammonium to n i t r a t e , favor ing ammonium ions ( F e l l e r , 1974). In genera l , ion concentrations in seepage water i n the study area were very low, although s l i g h t l y higher than those o f stream and lake waters. The low status i s a t t r ibu ted mainly to the base poor nature of the s o i l parent mater ia ls which were derived from quartz-d i o r i t e bedrock. Dif ferences Between Spring and Summer Samples In genera l , greater concentrations were found in s p r i n g , except fo r sulphate which was higher in summer (Table 16). There was no large d i f ference in pH values. This trend i s opposite to that found by F e l l e r TABLE 16 259 Summary of Seepage Water Analyses O r i g i n of the Seepage Water Samples No.of Samples Depth (cm) pH Cond. umhos/cm at 25°C Ca 2* Mg 2 + K+ Na + F e 3 + NH4 NOj cr H 2P0- » r S i 0 2 HCO- Hygrotopes CWHa, TIARELLA - POLYSTICHUM - WRC, mature -forest stand types Season: Spring Summer . 12 8 67 71 6.1 6.0 21.0 17 .8 1.7 1.1 0.28 0.21 0.53 0.15 1.71 0.72 0.35 0.05 0.382 0.041 0.74 4.78 0.86 0.16 0.08 1.32 2.41 2.68 9.43 5.14 hygric Mean 6.1 19.7 1.5 0.25 0.33 1.32 0.23 0.246 3.21 0.13 1.76 7.71 CWHa, TIARELLA - POLYSTICHUM - WRC, spring sampling, f o r e s t stand types Mature Immature Undisturbed cut-over Disturbed cut-over 12 4 4 6 67 72 131 36 6.1 6.3 6.4 6.6 21.0 31 .8 34.4 37.4 1.7 3.6 2.2 3.7 0.28 0.41 0.29 0.66 0.53 0.45 0.46 0.83 1.71 1.77 2.17 2.59 0.35 0.12 0.46 0.44 0.382 0.312 0.280 0.329 4.78 2.75 3.72 6.91 0.16 0.19 0.18 0.18 1.32 1.67 1.06 1.26 9.43 10.17 11.19 18.71 hygric Mean 6.3 28.5 2.6 0.39 0.58 1.99 0.36 0.343 4.79 0.17 1.32 11.96 CFHa, mature f o r e s t stand types, simmer sampling, ecosystem u n i t s MOSS - (POLYSTICHUM) -WRC - WH TIARELLA - POLYSTICHUM -WRC ADIANTUM - POLYSTICHUM -WRC Polystichum - Oplopanax -WRC Ribes - Oplopanax - WRC 3 8 3 4 • 3 62 71 S* 5'4 115 5.9 6.0 6.5 6.2 6.0 25 .8 17 .8 29.4 15.3 14.4 1.0 1.1 1.7 0.5 0.6 0.24 0.21 0.30 0.12 0.16 0.95 0.15 0.76 0.28 0.41 1.48 0.72 1.08 0.94 0.91 0.18 0.05 0.02 0.02 0.00 0.934 0.041 0.278 0.269 0.098 1.58 0.74 0.34 0.23 0.16 1.86 0.86 1.36 1.14 1.29 0.00 0.08 0.00 0.00 0.07 2.96 2.41 3.67 3.56 2.68 0.76 2.68 2.32 0.62 1.94 4.00 5.14 8.72 4.42 4.47 subhygric hygric hygric hygric hygric Mean 6.1 19.6 1.0 0.21 0.42 0.95 0.05 0.254 0.62 1.19 0.04 2.93 1.86 5.26 CWHb, mature f o r e s t stand types, summer sampling, ecosystem u n i t s I n t e r m i t t e n t seepage over q u a r t z d i o r i t e bedrock BLECHNUM - WH - WRC BLECHNUM - AF - HH Vaccinium - Lysichitum - WRC Vaccinium - Lysichitum - YC -WRC ATHYRIUM - ARUNCUS - RA -SA 4 3 4 6 3 3 S» 58 70 47 68 S* 5.9 5.3 5.4 5.4 5.3 6.4 10 .8 11.3 16.4 17.3 15.7 12.9 0.6 0.2 0.6 0.7 0.6 1.1 0.22 0.09 0.20 0.21 0.22 0.23 0.07 0.22 0.21 0.31 0.23 0.10 0.78 0.85 0.97 0.80 0.74 0.65 0.00 0.00 0.00 0.08 0.17 0.00 0.007 0.019 0.265 0.247 0.121 0.007 0.00 0.13 0.54 0.33 0.16 0.24 0.64 0.75 1.31 1.10 1.24 0.53 0.00 0.00 0.00 0.04 0.07 0.05 2.00 2.10 3.11 4.28 2.76 2.00 4.45 0.38 1.70 1.47 1.63 2.90 3.50 2.52 2.26 4.01 2.97 5.47 Int e r m i t t e n t seep-age flow of very short duration Subhydric-stagnant or f l u c t u a t i n g water t a b l e h y g r i c sybhydric - a slow movement o f seepage water subhydric-stagnant o r f l u c t u a t i n g water table streamwater Mean . 5.6 14.5 ' 0.6 0.20 0.20 0.81 0.04 0.131 0.25 0.95 0.03 2.90 2.10 3.48 S ref e r s to seepage water flowing through s o i l organic lay e r s to the mineral s o i l surface 260 (1974) in the same area and Gr ier and Cole (1972) and McColl (1972,1973) in western Washington. They found maximum concentrat ions in seepage water and s o i l leachates general ly occurred in autumn whereas minimum concentrations occurred in la te winter based on year-round sampling. This apparent discrepancy requires exp la in ing . Sampling in the present study was not continuous and occurred during the onset (Apr i l ) and the middle (June and Ju l y ) of the vegetative season. During summer, decreased p rec ip i ta t i on and increased decompo-s i t i o n tend to increase the concentrat ion of chemicals in seepage water, whereas increased b io log ica l uptake tends to decrease the concentrat ions. Enhanced geological weathering may release more ions to so lut ion but may also make ava i lab le more exchange s i t es in the s o i l which may immobilize ions. There i s a balance between these various react ions which pro-duces cer ta in concentrations of ions in seepage water. The autumn peak corresponds to the beginning of autumn r a i n s , when the accumulated mineral weathering and decomposition products are f lushed through the s o i l . Throughout autumn and winter , seepage water becomes progressively more d i l u t e , as fewer ions are l e f t behind to be leached away. Now, the existence of another concentration peak in spr ing as found by Cole (1963) and F e l l e r (1974) may expla in the higher concentrat ions found in spr ing . With the onset of warmer weather i n the spring and the resu l t i ng increase in biogeochemical a c t i v i t y , the amount of ions in so lu t ion begins to increase. In add i t i on , chemical inputs from leach-ing of f resh l i t t e r may a lso be important. S i g n i f i c a n t quant i t ies of fresh l i t t e r have been observed in the Forest in spr ing as a resu l t of 261 windy storms. These may be responsible for the spr ing peak in seepage water concentrat ions. I t may be that the spr ing samples of t h i s study were co l lec ted during the spring peak period when concentrat ions were higher than the summer ones. I t may also be a phenomenon charac te r i s -t i c of the TIARELLA - POLYSTICHUM - WRC assoc iat ions sampled. Further research would be necessary to completely resolve the problem. Differences Between Forest Stand Types In genera l , e l e c t r i c a l conduct iv i ty , pH, and chemical concentrat ions were found to increase in the order from mature to immature, to undis-turbed, and disturbed cut-over forest types. However, there were no c lear trends in ammonium, sulphate and phosphate concentrat ions (Table 16, Figure 60). Forest ecosystems with mature fo res t communities are character ized by t igh t nutr ient cycles and minimum output of nut r ients in the form of d issolved substances, and, hence, are able to c l o s e l y regulate the chemistry of the i r seepage water (F isher et al., 1968; Johnson et al.3 1969; Likens et al., 1970). A fo res t ecosystem responds to stand removal by an increased s o l u b i l i z a t i o n of nu t r ien ts , i . e . more nutr ients are transported by seepage water than was the case in a mature ecosystem. The increased s o l u b i l i z a t i o n may be the combined resu l t of increased decomposition of organic matter stored in the eco-system and from an increased n i t r i f i c a t i o n or CO,, product ion, which produces hydrogen ions that exchange with cat ions in the s o i l exchange complex, hence re leas ing them to the s o i l so lu t ion (Bormann et al.3 1968, 1970; Dominski, 1971; F e l l e r , 1974; Likens e t a l . 3 1969, 1970). 262 60 h o ID CM E u to o x: E 3. +-> o -o a o u to u s-+-> o SO 40 301 20 U J 55 a UJ I -Z < a . CO < UJ a: > o i r -O 00 or i -a 10 o i - P H 6.1 6.3 6.4 6.6 Figure 60 E l e c t r i c a l conduct iv i ty and pH of seepage water samples co l -lected in d i f fe rent forest stand types (CWHa, TIARELLA - PO-LYSTICHUM - WRC, spr ing sampling) 263 An a l tered microcl imate, causing enhanced decomposition of s o i l organic layers a f ter stand removal, i s a major fac tor responsible fo r increased concentrations of chemicals in seepage water. These increases may also be a t t r ibu ted to disturbances of the s o i l sur face, which may have opened up more macrochannels, al lowing large amounts of the concentrated s o i l so lut ions to t ravel qu ick ly to the water tab le . Water f lowing through macrochannels has less opportun-i t y to lose ions than i t does percolat ing through the mineral s o i l , where i t comes into contact with a large surface area of s o i l pa r t i c l es for longer periods of time ( F e l l e r , 1974). Dif ferences Between Ecosystems Comparing seepage water chemistry in the d r i e r and wetter sub-zone, chemical concentrations were found to be lower in the more humid cl imate of the wet subzone with the exception of d issolved s i l i c a , fo r which the reverse occurred (Table 16). Higher concentrations of hydrogen ions were found in the wet subzone, which i s consistent with lysimeter leachate analyses from western Washington (Johnson, Singer and Minden, 1974). High concentrations of d issolved s i l i c a found in in termi t tent seepage over quar tzd ior i te c l i f f s , o r ig ina t ing from shallow organic s o i l s , i nd i ca tes a vigorous act ion of d issolved chemicals in seepage water on the underlying bedrock. A s im i l a r act ion of seepage water has been reported by Bunting (1961) and Ke l le r and Frederickson (1952). Intermit tent water flow on the abundant rock surfaces in the area permits the establishment of trees and shrubs i n an otherwise extremely unfavorable environment (Figures 61 and 62). Dif ferences in chemical concentrations between the subzones may be a t t r ibu ted to a number of in terac t ing environmental and b i o t i c factors which are integrated in a biogeocl imat ic subzone. Among these are the fo l low ing : 1. C l imat ic inf luences — Tower temperatures and shorter dry periods in the CWHb subzone al low less accumulation of b io log ica l decomposition and mineral weathering products which are flushed away by subsequent r a i n s . In add i t i on , the more intense r a i n f a l l of the CWHb subzone i s also l i k e l y to resu l t in lower concentrations of chemicals in seepage water i n th i s subzone. 2. The rate and volume of seepage water passing through the soi1 - - Dr iebelb is and McGuinness (1957) have suggested that shortening the equ i l i b ra t i on time in a so i l -water system lowers the ion ic concentrations in the s o i l water as has been found by McColl (1972). Rapid movement of large quant i t ies of seepage water through the coarse-textured, rubbly and sloping s o i l s i n the CWHb subzone reduces the equ i l i b ra t i on period wi th in these s o i l s . 3. Propert ies of so i l organic l aye rs - -p rominen t features of the s o i l s i n the CWHb subzone in the study area a re th ick Figure 62 S u r f i c i a l root system of Douglas- f i r [Pseudotsugo. menziesii) on rock c l i f f s under the inf luence of in termi t tent water flow 266 and very acid s o i l organic laye rs . Under s t rong ly ac id condit ions (pH less than 4 .0 ) , the percent base saturat ion i s lowered and fewer meta l l i c cat ions can occupy exchange s i t es in the so i l exchange complex, than may be the case in the less ac id s o i l organic layers i n the dry subzones. The magnitude of the d i f ferences in chemical concentrat ions be-tween the subzones i s , however, r e l a t i v e l y sma l l . Thus, the to ta l amount of d issolved chemicals transported by seepage water i s s t rongly dependent on volume f low. The volume flow can be assumed to be larger in the wet subzone, due to the larger amount of p rec i p i t a t i on and lower evapotranspirat ion losses . As a resu l t the to ta l amount of chemicals transported out of the ecosystems in the wet subzone i s thought to be greater than in the dry subzone, despite lower concentrat ions in the wet subzone. Comparing seepage water chemistry between ecosystems wi th in the same biogeocl imat ic subzone, a general trend of an increase, fol lowed by a decrease (s im i la r to a normal d i s t r i bu t i on curve) has been found for a l l the chemical parameters in the order from subhygric to hygric to subhydric hygrotopes respect ive ly (Figures 63 and 64). A s i m i l a r graph was prepared for the sum of Ca and Mg concentrat ions found in ecosystems in the dry subzone (Figure 65). This order also corresponds to the topographic pos i t ion of the ecosystems in the landscape from upper to lower s lopes. Again, the magnitude of the di f ferences in concentrations between the ecosystems i s r e l a t i v e l y sma l l , so that 267 60 •r— > ~ •r- o +-> o O LO 3 CM •o C +-> O r<3 U E i— o « — • i - o s- JC +-> E O =1, CD — -r— LU 40 20 0 L 5.9 6.0 6.5 6.2 6.0 pH Figure 63 E l e c t r i c a l conduct iv i ty and pH of seepage water samples co l l ec -ted in d i f fe rent forest ecosystems (CWHa, mature forest stand types, summer sampling) 30 > ~ 20 •<- CJ 4-> O U LO =J CM *o C 4-> O ro O t— o ra ^ O to • i - o S- J= •*-> E <-> 3, CU 10 CJ> >-o Z3 4-> • i — CJ • i — (/) Si OO § 1 >-0 L. 5.9 5.3 5.4 5.4 5.3 5.6 PH f igure 64 E l e c t r i c a l conduct iv i ty and pH of seepage water samples c o l l e c -ted in d i f fe ren t forest ecosystems (CWHb, mature forest stand types, summer sampling) 268 QJ CD E to c o • l — +-> na i-c Q J O c o o CD ( 0 5.9 6.0 6.5 6.2 6.0 PH Figure 65 Calcium plus magnesium concentrations of seepage water samples co l lec ted in d i f fe rent forest ecosystems (CWHa, mature fores t stand types, summer sampling) 269 di f ferences in the total amount of chemicals transported by seepage water probably depend mainly on the volume of f low. Sukachev and Dy l is (1964) reported a s i m i l a r pattern in ground water chemical concentrations in fo res t ecosystems in a topographic sequence. U i rsch l (1972) found de f i n i t e patterns of pH, e l e c t r i c a l conduct iv i ty and cat ion concentrations in the ground water of several ecosystems from the Saskatchewan River De l ta . Bourgeois and Lavkul ich (1972) found no profound di f ferences in seepage water chemical concen-t ra t ions between the Moss - WH subassociat ion and the TIARELLA -POLYSTICHUM - WRC assoc iat ion in the area, however, they sampled only two s o i l pedons fo r three months in the f a l l . Seepage water f lowing downslope on a r e s t r i c t i n g layer under the inf luence of grav i ty has ve r t i ca l and l a te ra l components. Although no measurements of the durat ion, flow rate and s p e c i f i c volume of seepage water were taken, i t can be assumed that each separate ecosystem w i l l funct ion d i f f e ren t l y to the others with respect to th is seepage water f low. The ecosystems are arranged in Table 16 in order of increasing volume of seepage water passing through the i r s o i l s . This order i s based pr imar i ly on the topographic pos i t ion of the un i t in the landscape together with v isual observations of the flow rate as the water seeped into s o i l p i t s . Greater water volumes from s o i l s i n lower slope posi t ions have been reported in the area by Bourgeois and Lavkul ich (1972) and Fe l l e r (1974). The di f ferences in seepage water chemical concentrations between the ecosystems may be a t t r ibu ted to a number of in te rac t ing 270 environmental and b i o t i c factors which are integrated in a plant assoc ia t ion . Forest vegetation - - the composition of a fo res t community, mainly that of the tree layer together with i t s densi ty , a f fec ts the chemical composition of th roughfa l l . Several workers have reported throughfal l chemistry to vary with the tree species (Tarrant et al., 1968), and with p lant assoc iat ions (Cordes, 1972; Kimmins, 1974a). Although through-f a l l chemistry i s subjected to fur ther changes as the so lu t ion passes through s o i l pedons, the highest chemical concentrations in th i s study were found in seepage water beneath forest stands composed mainly of western redcedar, such as those in the ADIANTUM - POLYSTICHUM - WRC (CWHa) assoc ia t i on , and Vaccinium - Lysichitum - WRC (CWHa&b) sub-assoc ia t i on . Of the tree species present in the study area, western redcedar i s known to contain the highest amount of macronutrients in i t s f o l i a g e , fol lowed by amabi l is f i r and Doug las- f i r . Western hemlock has the l eas t amount of macronutrients in i t s fo l iage (Tarrant et al., 1951). The r e l a t i v e l y low chemical concentrations found fo r the TIARELLA -POLYSTICHUM - WRC as compared to those of the MOSS - (POLYSTICHUM) -WRC - WH assoc ia t ion may be a t t r ibu ted to d i f ferences in the stand densi ty which would a f fec t concentrations in th rough fa l l . Forest stands in the former ecosystems were rather open, whereas those on the l a t t e r were very dense. S i m i l a r l y , low density of the fo res t stands in the Polystichum - Oplopanax - WRC subassociat ion may expla in the rather low concentrations found in the i r seepage water. 271 The chemistry of seepage water from the Vaccinium - Lysichitum -YC - WRC and Ribes - Qplopanax - WRC subassociat ions i s very s i m i l a r to that of open waters in the area as has been reported for Marion Lake by Wa l i , Grundling and B l inn (1972). Topographic factors - - these factors are p r imar i l y slope gradient and the distance from height of land, and are among those con t ro l l i ng the ra te , durat ion and volume of seepage water passing through the s o i l s . Thus, rapid movement of large quant i t ies of seepage water can be expected in the QPLOPANAX - WRC assoc ia t ion bordering streams. This would resu l t in low chemical concentrations in the seepage water due to a reduction in the equ i l i b ra t i on period wi th in the s o i l s , as discussed above. So i l parent mater ia ls — local changes in s o i l mineralogy may profoundly inf luence the chemical composition of seepage water (Gr ier et al., 1974). Easily-weathered or chemica l l y - r i ch mineral pa r t i c l es low in the s o i l p r o f i l e may account for increased chemical concentra-t ions in the seepage water. So i l physical and chemical propert ies— la te r percolat ing down through a s o i l pedon general ly loses ions to the s o i l exchange complex so that i t becomes less concentrated with increas ing depth in the so i l (Cole, 1963; F e l l e r , 1974; Windsor, 1969). The amount of pores in the s o i l and the i r arrangement, can great ly a f fec t the amount of ions l os t from so lu t ion (Terry and McCants, 1970). Measurements of pore s i ze and d i s t r i bu t i ons were not made in th is study. 272 The cat ion exchange capacity of the s o i l and i t s degree of base saturat ion would a lso a f fec t the amount of ions l o s t from so lu t ion (Cole, 1963). In th is respect no great d i f ferences were found in cat ion exchange capac i t ies or in base saturat ion between the various mineral s o i l s . The s i tua t ion in s o i l organic layers i s rather complex. Both i l l u v i a t i o n and e luv ia t ion may occur at d i f fe ren t ra tes fo r d i f f e ren t chemicals in d i f fe ren t ecosystems (Sukachev and D y l l i s , 1964). Detai led studies of so lu t ion chemistry in s o i l organic layers were not made in the present study. Ef fect of Seepage Water on Vegetation Composition I t has been documented that seepage habi tats are associated with d i s t i n c t p lant communities which vary in the i r f l o r i s t i c composition depending on the macroclimate. They have been described by Kraj ina and Spi lsbury (1953), McMinn (1957) and Mueller-Dombois (1959) in the Coastal Doug las- f i r zone; by Brooke (1965, 1966), Brooke et aZ.(1970) and Peterson (1964) in the MH zone and by Cordes (1972), Kojima (1971), Lesko (1961), Or loc i (1961, 1964) and in t h i s study in the CWH zone. However, not a l l seepage habitats are i d e n t i c a l with respect to fo res t p roduc t i v i t y . Habitats with shallow water tables together with very slow movement of seepage water such as those VACCINIUM -LYSICHITUM - WRC have d i f fe ren t vegetation and lower fores t product iv i ty than the TIARELLA - POLYSTICHUM - WRC, for example. Anaerobic or re -273 ducing condit ions predominate in such s o i l s . This retards root growth. Thus, in the ecosystems character ized by such s o i l s , a poor supply of oxygen to the roots i s l i k e l y to cause the poor tree growth despi te a high nu t r i t i ona l status and abundant moisture of the s o i l s . The f l o r a of seepage communities includes three categor ies of plants (a f ter Braun-Blanquet, 1932; Dansereau, 1957; K ra j i na , 1969): 1. Plants which require a large amount of water rather than a large amount of mineral nu t r i en ts ; 2. Plants which require a large amount of mineral nut r ients rather than a large amount of water; and 3. Plants which require a large amount of both water and mineral nu t r ien ts . I f the seepage habitats provide more nu t r i en ts , then t h e i r f l o r a may be expected to be also r i ch in a l l nutr ients inc lud ing n i t rogen, and consequently large quant i t ies of nutr ients w i l l be returned to the s o i l through biogeochemical c y c l i n g . Therefore, vegetation and s o i l organic layers from ecosystems with mesic, subhygric and hygric hygro-topes were sampled to compare the i r chemical concentrations obtained through elemental ana lys is . I t should be noted that the elemental concentrat ions, pa r t i cu l a r l y of s o i l organic l aye rs , give l i t t l e ind ica t ion of the to ta l chemical content. Results of f o l i a r elemental analys is were discussed prev ious ly . I t was shown that cha rac te r i s t i c species for the Thu je ta l ia p l i c a t a e , representing the f l o r a on seepage habitats have the highest concen-t ra t ions of the to ta l nitrogen and mineral macronutrients. Abundance 274 and vigor of th is f l o ra then indicates greater amounts of eas i l y a v a i l -able nutr ients and fas ter rates of minera l iza t ion of organic matter on seepage than on the other hab i ta ts . A great amount of nu t r ien ts , p a r t i c u l a r l y of Ca, K and N, may be stored in plant f o l i a g e , and thus prevented from leaching. Now, observations of the thickness of s o i l organic l aye rs , the humus form and the product iv i ty of forest stands suggested that rates of decomposition of organic matter, and hence the in tens i t y of b i o -geochemical cyc l i ng increased with increasing amounts of seepage water. This i s supported by L a c e l l e ' s (1971) study of the decomposition of mor, moder and mull humus forms in western B r i t i s h Columbia. In th is study i t was found that as the amount of seepage water increased, so d id the concentrat ion of chemicals in the s o i l organic layer (Table 17). This increase in concentrations i s more s i g n i f i c a n t i f the duration of seepage water flow i s throughout the vegetative reason. This t rend, both in concentrations and in re la t i ve proportions of d i f fe ren t elements, i s s i m i l a r to that reported by Sukachev and D y l l i s (1964) and Baz i lev ich and Rodin (1967).in re la t i on to fores t ecosystems and by Lace l le (1971) in re la t ion to humus forms. Seepage water co l lec ted from one p lo t (no. 059) exhib i ted the highest chemical concentrations whereas the s o i l organic layer from th i s p lo t was found to have very low concentrations of chemicals. Western hemlock covers th is s i t e and i s known to require less nutr ients than other tree species (K ra j i na , 1969). Replacement of western hemlock by more nutrient-demanding tree spec ies, such as Douglas- f i r TABLE 17 Elemental Analysis of Soil Organic Layers from Mesic, Subhygric and Hygric Ecosystems Plot No. Dominant Tree Species Growth Class of The Dominant Tree Species Humus Form Thickness (cm) pH (H20) C/N Concentration in ppm of Organic Matter Content in the Original Sample Ca Mg K Na Fe Al Mn Moss - WH on Mini and Orthic Humo-Ferric Podzols Developed on Moraine Blanket (Mesic) 005 DF 007 DF 024 WH 032 DF 124 WH Mean H-mor F-mor H-mor (DW) H-mor F-mor 5 4 35 12 7 13 3.82 4.23 3.85 3.98 3.85 3.95 30.5 32.6 33.8 37.2 34.6 33.7 4478 5360 4109 5208 3215 4474 664 623 554 883 467 638 504 859 508 806 1031 742 100 115 104 137 115 114 2730 2330 1622 5208 2274 2833 2292 2482 1936 4071 2400 2636 157 1060 314 311 343 437 1127 973 931 903 983 1062 1307 925 1173 1117 MOSS - (POLYSTICHUM) - WRC - WH on Orthic and Mini Humo-Ferric Podzols Developed on Moraine Blanket and Glaciof luvia l Deposits (Subhygric) 001 WH 010 WH on DF 026 WH 027 DF Mean H-mor H-mor moder F-mor H-mor 14 6 4 13 3.99 3.93 4.16 3.98 4.20 4.05 34.8 33.6 26.8 35.9 36.8 33.6 5932 4264 4728 3509 5357 4758 689 739 860 442 816 709 904 613 975 584 854 786 180 127 107 83 130 125 2584 3004 2123 1267 5817 2959 2641 3382 2335 1462 4500 2864 429 81 347 210 393 292 1012 1118 1091 651 978 970 1150 1196 1266 753 1278 1129 Ribes - Oplopanax - WRC on (Gleyed) Sombric and Mini Humo-Ferric Podzols Developed on Glaciomarine, Glaciolacustrine and Moraine Deposits (Hygric) 013 RA 1 mull 1 4.92 16.1 9373 2474 1386 139 7498 9440 301 _ 047 WH 2 moder 6 4.04 29.3 7251 6455 2041 256 27796 27796 965 1364 1900 059 WH 2 moder 8 3.82 29.0 4357 1206 1206 188 14471 10347 98 1201 1307 099 WRC 2 mul 1 10 4.48 18.2 9907 2681 995 289 24847 15443 510 1737 1718 151 DF 2 moder 4 4.35 24.5 7701 1934 2013 282 20924 12467 206 - -Mean 6 4.32 23.4 7718 2950 1328 230 19107 14105 416 1434 1642 I N 3 tn 276 or western redcedar, would probably withdraw more nut r ients from seepage water and hence, by a more closed b io log ica l nu t r ien t c y c l e , would reduce the outflow of nutr ients in seepage water from the system. An increased stand density would also minimize the outf low of nut r ients and increase the stand produc t iv i t y . E f fec t of Seepage Water on S o i l s The necessi ty to recognize seepage water as a fac tor of s o i l formation has been noted by many s o i l s c i e n t i s t s . According to Rode (1961), moving ground water may reach another s o i l , e i ther nearby or some distance away. This water immediately becomes a l lochthon ic in r e l a t i on to the other s o i l and exh ib i ts the features of a separate, independent and o r ig ina l fac tor of s o i l formation. Pedogenic processes in the CWHa a t t r ibu ted to the e f fec ts of seepage water, are b r i e f l y described here. These processes do not operate in the mesic Moss - WH which s o i l s and vegetat ion are more dependent on the ef fects of the macroclimate. Moder (Mull) Humus Formation The presence of seepage water may not only increase chemical concentrations in organic l aye rs , but may cause a q u a l i t a t i v e improve-ment in the layers in terms of decreasing thickness and ac i d i t y and a narrowing of the C/N ra t i o . This would cause a change in humus 277 form from mor (raw humus) to moder or even mu l l . In the study area, f r i a b l e moder and mull humus forms were observed exc lus i ve l y On seepage habi ta ts . In these habitats ac t ive n i t r i f i c a t i o n occurs as indicated by Sambucus pubens, Tiarella tvifoliata, Tiarella laciniata, Tellima grandiflor-a, Tolmiea menziesii and several o thers, i n which fo l i age a high n i t ra te content was detected by Kraj ina (1969) and a high to ta l nitrogen content was found during th is study. Nitrogen f i xa t i on i s produced e i ther by free l i v i n g bacter ia—aerobic Azotobaoter above the seepage water table or by anaerobic Clostridium below the seepage water table (Garm, 1958). Chemical cha rac te r i s t i c s of organic and inorganic const i tuents of humus layers in seepage habi tats were described in deta i l by Kl inka and Lowe (1975, 1976a, 1976b). Weak Melanizat ion The occurrence of Ah (or Ahe) horizons was cha rac te r i s t i c of s o i l s on seepage habi ta ts . This indicates that e luv ia t i on rates were somewhat reduced with an accumulation of bases in the s u r f i c i a l mineral s o i l hor izon. However, most of these s o i l s did not belong to the sombric s o i l subgroup (CSSC, 1970, 1974) as t he i r Ah horizons were not th icker than three inches (7.6 cm). Weak G le iza t ion Most of the so i l horizons affected by seepage water flow were not colored or mottled s u f f i c i e n t l y to be c l a s s i f i e d as proper gleyed 278 horizons (CSSC, 1970, 1974). Red co lors were cha rac te r i s t i c of most of the B horizons affected by seepage water f low. This would ind icate the presence of f ree i ron ox ides, common in well-oxygenated s o i l s where the oxygen supply i s high and b io log ica l demand i s r e l a t i v e l y low. The presence of long- l i ved anaerobic or reducing condit ions can a lso be el iminated by the common occurrence of roots in the zone of sa tura t ion . Evidence fo r reducing condit ions v/as found only in f ine- tex tured s o i l s with very slow movement of seepage water. I t can be concluded that fas t f lowing seep-age water with a high pH and d issolved oxygen content passing through coarse textured s o i l s does not produce gray co lo r s , because the i ron i s maintained in the f e r r i c form. Consequently a t yp i ca l gleyed horizon i s not developed (Buol et al.3 1973; CSSC, 1970, 1974). Therefore, these horizons were designated by gj suf f ixes and the s o i l s were designated as (Gleyed) (Figure 66). Although seasonal f l uc tua t ion from ox id iz ing to reducing condit ions occurs in response to changes in the depth, height , rate of movement and oxygen content of seepage water, ox id iz ing condit ions prevai l in the s o i l s . Enrichment of S o i l s by Seepage Water Keser (1960), studying the s o i l s on several habitats in the area, found no s i g n i f i c a n t d i f ferences in cat ion concentrat ions. Sim-i l a r l y , Lesko (1961), comparing s o i l chemical propert ies in several Figure 66 The s o i l p ro f i l e of the Ribes - Qplopanax - WRC on (Gleyed) Mini Humo-Ferric Podzol developed on moraine blanket. Seepage water flows through part of the Bfhgj horizon (65-110 cm) which i s underlain by a compacted t i l l . This horizon i s ye l lowish- red (5 YR 4/6 m) with many, medium, d i s t i n c t , strong brown mottles (7.5 YR 5/6 m). Root d i s t r i bu t i on reaches wel l into the Bfhgj horizon (p lot no. 059, June 1973) 280 ecosystem in the area, also found no s i g n i f i c a n t d i f ferences in concen-t ra t ions between mesic and seepage hab i ta ts . However, Kojima (1971) found some s i g n i f i c a n t di f ferences in s o i l chemical propert ies between mesic and seepage habitats in the s o i l s developed from base r i c h , v o l -canic rocks derived from g lac ia l t i l l on Vancouver Is land. To demonstrate enrichment (addit ions) in s o i l s on seepage hab i ta ts , s o i l s with mesic, subhygric and hygric hygrotopes were compared. The ra t i o of the amount of a chemical parameter in the s o i l horizon immediately 3a _LFH_ A in <U J _ OJ 30J Bw amount in B Ratio between s o i l horizons = amount in B, +-> CD O 60-1 Bx +J O-Q 904 By Seepage water flow Bz 120 I IC Figure 67 So i l p ro f i l e i l l u s t r a t i n g the ra t io ca lcu la t ions 281 above one af fected by seepage water to that d i r e c t l y af fected by the water (Figure 67) was ca lcu la ted fo r a number of chemical parameters (Table 18). This was done to decrease the v a r i a b i l i t y inherent in any s o i l property due to v a r i a b i l i t y in propert ies other than the amount of seepage water present. These ra t ios fo r the mesic ecosystems are greater than one, ind ica t ing a decrease in the parameter with increasing so i l depth, the exceptions between pH and base saturat ion whose ra t i os did not change. In seepage hab i ta ts , however, the ra t ios tended to be less than one, ind ica t ing an increase in exchangeable cat ion concentrat ions and base saturat ion with depth. Ratios fo r pH, to ta l ni t rogen and ammonium oxalate and sodium pyrophosphate extractable aluminum did not change great ly between ecosystems. Decrease in the ca lcu la ted C/N ra t i o with depth i s probably due to cooler temperatures and less aerat ion in the lower s o i l hor izons. Although the cat ion exchange capaci ty general ly decreased with depth, th is trend was not so great i n the seepage hab i ta ts , ind ica t ing perhaps minor addi t ions of organic matter and clay to the s o i l s by seepage water. A s im i l a r va r ia t ion between ecosystems was found for to ta l carbon and for i ron extractable by ammonium oxalate and sodium pyrophosphate. S im i la r va r ia t ion between ecosystems was reported by Sukachev and Dy l is (1964) and can also be shown from data provided by Bourgeois (1969). The increase in base saturat ion in the horizons af fected by seepage water may be a t t r ibu ted to loss of cat ions from seepage water to the s o i l exchange complex. Cations in so lu t ion can replace ' TABLE 18 Ratios of Chemical Parameters in a Soi l Horizon Immediately Above One Affected by Seepage Water to Those in the Horizon Affected by the Water Plot No. Ratio Between Soi l Horizons PH (H20) C (50 N (*) Exchang. Cat. (meq/100 gm) CEC (meq/ 100 gm) BS w Oxal. Extr. : (%) Pyroph. Extr. (%) C/N Ca Mg Na K . Fe Al Fe Al Koss -005 007 024 032 124 Mean WH on Mini and Orthi Bf2 : Bf3 Bfl : Bf2 Bf : BIIC Bfh : Bf Bfh : Bf c Humo-Fer 0.99 0.96 1.02 0.94 0.93 0.97 r i c Podzc 1.38 1.75 2.17 1.85 2.28 1.89 Is Deve 1.42 1.20 2.00 1.50 1.71 1.57 loped or 0.96 1.46 1.09 1.23 1.33 1.21 i Moraine 1.35 2.92 0.82 0.89 0.50 1.30 Blanket 1.00 2.00 2.00 1.17 1.67 1.57 ; (Mesi 1.25 1.75 0.75 1.25 0.86 1.17 c) 1.25 1.20 0.44 4.86 1.40 1.83 1.02 1.35 1.22 1.44 1.38 1.28 1.27 1.63 0.54 0.94 0.60 "1.00 0.80 0.56 3.92 1.28 1.42 1.60 1.21 0.59 4.03 1.01 1.21 1.61 1.00 1.67 4.00 2.46 2.12 2.25 1.11 1.08 1.85 1.76 1.68 1.50 MOSS -001 010 o n 026 027 Mean (POLYSTICHUM) - WRC Bf3 : Bfgj Bfh : Bfhgj Bfl : Bf2 Bfh : Bf Bfhc : Bfh - WH on Or 0.93 1.01 0.99 0.98 1.01 0.99 thic and 2.50 0.80 1.92 2.42 0.90 1.71 Mini Hu 2.33 0.64 1.55 2.38 0.79 1.54 no-Fern 1.07 1.26 1.23 1.01 1.13 1.14 c Podzols 0.71 0.97 1.56 2.17 0.68 1.22 Develc 0.50 0.31 0.33 1.80 0.60 0.71 ped on 0.75 1.00 1.00 0.80 0.80 0.87 Moraine 0.55 0.83 1.40 1.33 0.87 1.00 Blanket an 1.20 0.66 1.27 3.01 0.86 1.40 d Glac io f l i 0.56 1.17 1.00 2.00 0.90 1.13 v ia l Dep 2.00 1.09 1.69 1.73 1.15 1.53 osi ts (Su 1.69 1.10 1.34 1.02 1.82 1.40 bhygric) 1.00 1.56 2.40 3.91 0.65 1.90 1.42 1.44 1.43 2.00 1.04 1.47 Ribes -013 047 059 099 151 Mean Oplopanax - WRC on BC : Cgj Bfgj : BC Bf : Bfhgj Bf2 : I IBfgj l Bf : IIBfgj (Gleyed) S 0.93 0.98 0.91 0.98 0.99 0.96 ombric an 3.45 1.24 0.73 0.95 1.58 1.59 d Mini \ 3.00 1.40 0.55 1.06 1.50 1.50 iumo-Fer 1.15 0.88 1.32 0.90 1.05 1.06 r i c Podzc 0.33 0.34 0.10 0.96 0.80 0.51 Is Deve 0.33 0.32 0.09 0.54 0.80 ' 0.42 loped 0.58 0.64 0.55 1.00 1.17 0.79 3n Glacio 0.75 0.86 1.00 1.00 0.67 0.86 marine, G1 0.97 1.00 0.80 1.30 1.38 1.09 aciolacustr 0.36 0.37 0.20 0.70 0.57 0.44 ine and 1.24 1.27 0.55 0.98 1.69 1.15 Moraine De 1.27 1.19 0.48 1.22 1.43 1.12 jposits (H5 2.40 1.48 0.91 0.54 1.22 1.31 'gric) 2.40 2.15 0.93 0.97 1.31 1.55 ro co ro 283 cat ions absorbed on the s o i l exchange complex. Gains of cat ions on the s o i l exchange complex, in the horizon af fected by seepage water re la t i ve to the horizon immediately above, were found to decrease in 2+ 2+ + + + the order Mg > Ca > Na > K > H . This agrees f a i r l y wel l with the order of the replac ing a b i l i t y of cat ions in so lu t ion which depends on several factors such as the type of exchange material in the s o i l , the exchange capacity and nature of the ions in s o l u t i o n , the concentrat ion of the so lu t ion and the re la t i ve proportions of exchangeable ions in so lu t i on . In the Haney area , the order i s Al > H > Ca > Mg > K > Na (Lavkul ich, personal communication). In s o i l s with a low base saturat ion such as those a t Haney, loss of cat ions from so lu t ion to the s o i l exchange complex i s more l i k e l y than the reverse process. However, th is does not imply that nut r ient chemicals in seepage water are obtained by plants s o l e l y v ia the s o i l exchange complex. This study suggests that plant roots may obtain nut r ient chemicals quite read i ly from seepage water by a simple mass flow e f fec t . Nutr ient uptake would require very l i t t l e energy output on the part of the p lant . Consequently, a s imple, r e l a t i v e l y unbranched root system may be adequate for a successful growth on seepage habi tats (Ba l la rd and Cole, 1975). In th is fashion a p lant may accumulate large quant i t ies of mineral nutr ients even from weak solut ions as long as the root c e l l s are not deprived of oxygen (Lewi t t , 1954). 284 Weathering The ef fec ts of seepage water on geochemical weathering reactions has not been studied. The release of ions from the c rys ta l structures of minerals by hydrolys is may be promoted on seepage habitats by a steady water supply. This may represent an important source of nut r ients due to seepage water. Addi t ions of d issolved substances by seepage water to the s o i l on seepage habitats tend to retard the expected trend of s o i l develop-ment under the macroclimate of the CWHa subzone. Although a l l eco-systems in th i s subzone develop under the same macrocl imate, in those ecosystems inf luenced by seepage water, mull (moder) formation and weak melanizat ion counteract the downward leaching of so lub le s o i l cons t i tu -tents by percolat ing water. As a resu l t (Gleyed) Sombric or Mini Humo-Fer r i c Podzols develop on seepage habitats as compared to Orth ic Humo-Fe r r i c Podzols which develop on mesic hab i ta ts . Numerical C l a s s i f i c a t i o n of Seepage Water Samples To test the a b i l i t y of seepage water ana lys is to d iscr iminate between samples of diverse o r i g i n , a h ie ra rch ica l grouping ana lys is (Ward,1963; Veldman, 1967) was car r ied out. Such a technique performs a grouping to determine the extent to which natural groups ex i s t among 285 samples. The object ive was to ascer ta in to what extent the o r i g i n a l groupings as presented in Appendix IX can be reproduced when numerical values obtained from chemical analyses were considered as a basis for the c l a s s i f i c a t i o n instead of the sample o r i g i n . Values of the fo l lowing var iab les were employed in the ana l ys i s : pH, conduct iv i ty , concentrations of Ca, Mg, K, Na, Fe, NH^, NO*, C l , PO^, SO^, S i O | and HCO3. A computer program was obtained at the UBC Computing Centre (Lloyd and Gerbrandt, 1974). Obtained tree graphs (dendrograms) are included in the Appendix IX. The graphs are successive groupings with a decreasing degree of s i m i l a r i t y among the data and with an increasing associated er ror term. Select ion index and the p lo t of the logarithm of er ror against number of groups were helpful in se lec t ing the most appropriate number of groups without introducing unnecessary e r ro r . Sampling by Seasons Examination of the errors associated with successive stages revealed that step 18 with two groups was worth studying. The grouping obtained (Table 19) was almost iden t i ca l to the o r i g i n a l grouping in which the samples had been s t r a t i f i e d by the season of sampling, with the exception of a s ing le sample (no. 094) which was co l l ec ted in the spr ing but included among the samples co l lec ted in the summer. * These var iab les were not employed in the numerical c l a s s i f i -cat ion for spring and summer or for forest stand type seepage water chemistry. 286 TABLE 19 Iden t i f i ca t i on and C l a s s i f i c a t i o n of Seepage Water Samples - Seasons Items Grouped Sample Number and Or ig in 1 01 Spring 3 04 Spring 2 . 02 Spring 10 18 Spring 4 07 Spring 5 11 Spring 8 15 Spring 9 17 Spring 6 13 Spring 11 19 Spring 7 14 Spring 12 094 Spring 17 086 Summer 13 014 Summer 14 016 Summer 15 025 Summer 19 036 Summer 16 036 Summer 18 096 Summer 20 150 Summer Group 1 Group 2 287 Sampling by Forest Stand Types In th is case step 22 suggests that four " na tu ra l " groups were present in the set of samples. The composition of these groups (Table 20) was very s im i l a r to the o r ig ina l grouping in which the samples had been s t r a t i f i e d according to the age of the fores t cover . The f i r s t group was character ized by samples with low conduct iv i ty values. The major i ty of these samples or ig inated in mature f o r e s t s . However, two samples from undisturbed (not s lash burnt) cut-over areas were a l so inc luded. Two d i s t i n c t subgroups could be recognized in the second group; the f i r s t included samples from mature and immature f o r e s t s , whereas the l a t t e r included samples from undisturbed cut-over areas. The second group was character ized by intermediate conduct iv i ty values which increased progressively from mature to d is turbed cut-over areas. The th i rd group was comprised of a s ing le sample (no. 08) , o r i g ina t i ng from an undisturbed cut-over area, character ized by a high conduct iv i ty value. The fourth group character ized by the highest conduct iv i ty va lues, comprised only samples o r ig ina t ing from disturbed cut -over areas. Sampling by Plant Associat ions S ix "na tu ra l " groups were recognized in each biogeocl imat ic subzone (Tables 21 and 22). The composition of these groups was some-what s im i l a r to the o r ig ina l grouping in which the samples were s t r a t -i f i e d by t he i r ecosystematic o r i g i n . An iden t i ca l grouping was not 288 TABLE 20 Iden t i f i ca t ion and C l a s s i f i c a t i o n of Seepage Water Samples - Forest Stand Types I terns Grouped Sample Number and Or ig in 1 01 Mature 3 04 Mature 2 02 Mature 10 18 Mature 18 12 Undisturbed cut-over 19 16 Undisturbed cut-over 4 07 Mature 5 11 Mature 8 15 Mature 9 17 Mature 12 094 Mature 6 13 Mature 11 19 Mature 14 23 Immature 7 " 14 Mature 13 22 Immature 15 25 Immature 16 26 Immature 20 21 Undisturbed cut-over 25 20 Disturbed cut-over 26 24 Disturbed cut-over 17 08 Undisturbed cut-over 21 05 Disturbed cut-over 22 06 Disturbed cut-over 23 09 Disturbed cut-over 24 10 Disturbed cut-over Group 1 Group 2 Group 3 Group 4 289 TABLE 21 Iden t i f i ca t ion and C l a s s i f i c a t i o n of Seepage Water Samples - Plant Associat ions in the CWHa Subzone Items Grouped 1 3 2 17 21 4 5 13 6 10 8 14 7 19 9 11 15 16 18 20 12 Sample Number and Or ig in 009 MOSS - (POLYSTICHUM) - WH - WRC 037 MOSS - (POLYSTICHUM) - WH - WRC 035 MOSS - (POLYSTICHUM) - WH - WRC 078 Polystichum - Oplopanax - WRC 059 Ribes - Oplopanax - WRC 014 TIARELLA - POLYSTICHUM - WRC 016 TIARELLA - POLYSTICHUM - WRC 135 ADIANTUM - POLYSTICHUM - WRC 025 TIARELLA - POLYSTICHUM - WRC 145 TIARELLA - POLYSTICHUM - WRC 086 TIARELLA - POLYSTICHUM - WRC 157 ADIANTUM - POLYSTICHUM - WRC 036 TIARELLA - POLYSTICHUM - WRC 029 Ribes - Oplopanax - WRC 096 TIARELLA - POLYSTICHUM - WRC 150 TIARELLA - POLYSTICHUM - WRC 03 Polystichum - Oplopanax - WRC 038 Polystichum - Oplopanax - WRC 117 Polystichum - Oplopanax - WRC 047 Ribes - Oplopanax - WRC 015 ADIANTUM - POLYSTICHUM - WRC Group 1 Group 2 Group 3 Group 4 290 TABLE 22 Iden t i f i ca t i on and C l a s s i f i c a t i o n of Seepage Water Samples - Plant Associat ions in the CWHb Subzone Items Grouped Sample Number and Orig in 1 3 22 2 10 14 16 19 4 23 5 7 15 18 6 9 8 12 11 20 13 28 Intermittent seepage over quar tzd io r i te bedrock 067 Intermittent seepage over quar tzd io r i te bedrock Group 1 137 ATHYRIUM - ARUNCUS - RA - SA 29 Intermittent seepage over quar tzd io r i te bedrock 095 BLECHNUM -065 Vaccinium -144 Vaccinium • 094 Vaccinium -AF - WH • Lysichitum  Lysichitum  Lysichitum WRC WRC YC - WRC Group 2 077 Intermittent seepage over quar tzd io r i te bedrock 139 ATHYRIUM - ARUNCUS - RA - SA Group 3 140 061 088 092 048 062 BLECHNUM -BLECHNUM -Vaccinium  Vaccinium  BLECHNUM -BLECHNUM -WH - WRC WH - WRC - Lysichitum - Lysichitum WH - WRC AF - WH . WRC YC - WRC Group 4 27 034 149 143 043 BLECHNUM -Vaccinium  BLECHNUM -Vaccinium Vaccinium AF - WH - Lysichitum AF - WH - Lysichitum - Lysichitum WRC YC - WRC WRC Group 5 17 21 147 Vaccinium - Lysichitum - WRC 138 ATHYRIUM - ARUNCUS - RA - SA Group 6 291 expected in th is case. Therefore, i t was not su rp r i s ing that samples with low concentrations were grouped together despi te t he i r ecosystem-a t i c d i s s i m i l a r i t y , such as those o r ig ina t ing from in termi t tent seepage over quar tzd io r i te bedrock and those from the ATHYRIUM - ARUNCUS - WRC (Groups 1 and 3, Table 22). The small number of samples co l lec ted for the units was not amenable to thorough s t a t i s t i c a l ana lys is to tes t whether d i f ferences in e l e c t r i c a l conduct iv i ty among ecosystems are resu l ts of a proportionate or disproport ionate increase of chemicals contained in seepage water. I t was concluded that seepage water ana lys is was r e l a t i v e l y e f f i c i e n t in d iscr iminat ing between spring and summer samples or between samples from mature, immature, cut-over undisturbed and cut-over disturbed stands. However, i t was only p a r t i a l l y successful in d i s -t inguish ing between samples derived from d i f fe ren t f o res t ecosystems. In view of a small number of samples and v a r i a b i l i t y of seepage water chemistry, th is i s not en t i r e l y su rp r i s i ng . Forest Management Interpretat ions Seepage habitats in the P a c i f i c Coastal Subalpine and Mesother-mal Forest are an asset , general ly being the most product ive fo r forest growth and should be maintained in the i r productive s t a te . There i s a steady flow of water containing d issolved plant nut r ien ts through the s o i l . Some of these nutr ients eventual ly reach open waters such 292 as streams or l akes , and are usual ly l os t from the t e r r e s t r i a l system. These losses can be minimized by the se lec t ion of proper tree species f o r the s i t e and optimum stand dens i t ies as discussed above. This requires eco log i ca l l y based fores t management. Any serious disturbance of the natural patterns o f flow of sub-surface seepage water, such as those caused by a dense, i ne f f ec t i ve l y drained network of roads on long s lopes, may cause habi tat degradation and lower s i t e product iv i ty . This comes about when seepage water i s channelled in to a few small areas, depriving much of the slope of i t s benef i t . Such degradation can be avoided by the design of roads and the prov is ion fo r red i s t r i bu t i on of seepage water which helps to main-ta in a widespread flow of seepage water in the slopes below roads. In p r i n c i p l e , seepage water brought to the s o i l surface should be put back into the s o i l s . Serious disturbances to fo res t s o i l s , which re -move s o i l organic layers or stumps, increase nut r ient concentrations in water f lowing through the s o i l . Although some disturbance of forest ecosystems i s unavoidable, i t i s recommended that , under the rainy macroclimate of the CWH zone, re foresta t ion should occur as soon as poss ib le to minimize the loss of nutr ients from a s i t e . Delays in re fores ta t ion al low not only increased amounts of water to pass through the s o i l (due to decreased evapotranspi rat ion) , but a lso prolong the period of increased nutr ient concentrations in t h i s water, the combin-at ion of which may produce highly s i gn i f i can t losses of nutr ients from an ecosystem. To minimize such nutr ient l osses , a slow cut t ing 293 sequence, i f awaiting natural regenerat ion, would be preferable to large c learcu ts , pa r t i cu l a r l y in the more rainy cl imate of the coastal B r i t i s h Columbia. 294 CHAPTER 9 SYNECOLOGICAL MAP The object ives of the synecological (ecosystem) mapping were to demonstrate i t s f e a s i b i l i t y , and to provide a reference framework fo r future research studies in the Forest. I ts potent ia l use for forest management and planning becomes se l f -ev iden t when the map i s l inked to in terpreta t ions made in descr ipt ions of ecosystem u n i t s . Or loc i (1964) mapped by ground survey a small area in the Forest at the scale 1:4,800. As mapping uni ts he used biogeocoenotic uni ts at the leve l of plant assoc iat ion or subassociat ion. Lacate (1965) car r ied out a land c l a s s i f i c a t i o n for the Forest and prepared a map at the scale 1:12,000. The recognized land units were mapped by airphoto in te rp re ta t ion . This procedure was also employed in th is study. He subdivided forested lands into un i t s , i n -tegrat ing several environmental parameters:, tex ture , r e l i e f and the mode of o r i g in of so i l parent mater ia ls (landforms) and the i r drainage. Consequently, when th is map i s compared wi th a synecological map, a f f i n i t i e s are expressed by the frequent.coincidence of boundary l i n e s , due to the fac t that the same parameters as wel l as others were used in the present study. According to Kiichler (1967) the qua l i t y and hence the value of a map depends heavi ly on the c l a s s i f i c a t i o n employed, which in th is study preceded the mapping. 295 From a p rac t i ca l v iewpoint, the appl ied c l a s s i f i c a t i o n system impl ies t y p i f i c a t i o n of many ind iv idua l ecosystems (represented by studied sample plots) into several biogeocoenotic un i t s , which then occur repeatedly in the landscape. A s ing le un i t , in tegra t ing many b i o t i c and environmental f ac to rs , also becomes a mapping uni t and, i f appropr iate, an in te rpre ta t i ve (management) un i t . Therefore, there i s no need to iden t i f y the units on the map by complex symbols. I den t i f i ca t i on of the mapping uni ts by short numerical symbols and enhancement by co lor gives the user an opportunity to re la te d i r e c t l y the map content and in terpre ta t ion made for the uni ts to a var ie ty of management propos i t ion . A comprehensive bibl iography of published vegetat ion maps and mapping methods was compiled by Klichler (1966, 1967, 1968, 1970). Mueller-Dombois and El lenberg (1974) discuss the i r views on vegetation and s i t e mapping. From numerous publ icat ions re fe r r i ng to s o i l mapping the So i l Survey Manual (1951), published by U.S. Department of Ag r i cu l t u re , was used as a guide with some minor modi f ica t ion to accommodate the system of s o i l c l a s s i f i c a t i o n for Canada (CSSC, 1974). As au thor i ta t i ve references fo r airphoto in te rp re ta t ion the Manual of  Photographic Interpretat ion (1960), published by Amer. Soc. of Photogrammetry, and Leuder's (1959) Aer ia l Photographic Interpretat ion were used. 296 Ecosystem Type as a Mapping Unit Mapping of biogeocl imat ic subzones and ecosystem types was considered to be the most su i tab le fo r p rac t i ca l purposes. By mapping O X 4- U 1 -> +• f r , w i » + • ^* -4- U Oi k o i i ^ ^ ^ vi-i k n f i , i A O ^ 4- In o C ' l K " 7 n n Q C u i f i V O a i m I u i l c i a i t c i U M I ui ic uuu n u u i i L i c t H t c n ^ i t t . i u U t u i l c j VvL. i «~ uio«^ reg is te red . To provide spec i f i c information fo r management, the ecosystem type, a f a i r l y homogeneous uni t with regard to i t s vegetation and s o i l , was chosen as the mapping un i t . The scale 1:12,000 of the ava i lab le base map a lso favored th is choice. The ecosystem type represents a cer ta in l im i ted hab i ta t , d i s -t i n c t l y d i f fe ren t ia ted from any other, sometimes t r a n s i t i o n a l l y connected with the neighbouring ones through some gradients, sometimes abrupt ly separated, when gradients are lack ing . This habi tat can be character-ized by a combination of i t s plant community and the associated s o i l s . The plant community, which tree species are able to perpetuate under the forest.canopy, i s used as a benchmark vegetation component. The associated s o i l s (polypedons) correspond to s o i l ser ies although s o i l ser ies per se were not establ ished in th is study. Var ia t ions in the forest cover are being pe r i od i ca l l y registered by fores t inventory as fores t cover types. A fo res t cover type may be located wi th in the l i m i t s of a s ing le ecosystem type or i t may ex-tend over several such un i t s . I t would seem advantageous to s t r a t i f y forest cover types by ecosystem types (more p rec ise ly by t he i r mapping 297 uni ts) in which they occur. Overlaying the forest cover map and the synecological map would provide a deta i led breakdown of mapping un i ts in to forest stand types. A l i s t of ecosystem types recognized in the Forest i s given in Table 23. Soon a f te r mapping was i n i t i a t e d ~ i t became apparent that ecosystem type could not be used cons is tent ly as the mapping un i t . D i f ferent s o i l s at the leve l of s o i l ser ies were associated with the same plant assoc ia t ion in such an intimate and often i r regu la r pa t te rn , that the add i t iona l time and cost to map them separately could not be j u s t i f i e d . Moreover, with the exception of research, th is separat ion would not be meaningful fo r a l l p rac t i ca l purposes concerned. There-fo re , a number of mapping uni ts were establ ished to f i t the sca le of the map and d i s t r i bu t i on of the ecosystem in the landscape (Table 23). In t h i s study, the mapping uni t may have up to f i f t een percent of i t s mapped area composed of other ecosystem types. I f the pattern of fo res t ecosystems was too i n t r i c a t e , a complex of mapping uni ts was used. The complex consis ts usual ly of two ecosystem types with d i f fe ren t vegetation components and the i r associated s o i l s . Numerical symbols were to designate mapping uni ts on the map. The f i r s t part of the symbol refers to a synsystematic uni t and i t s pos i t ion in the hierarchy of the c l a s s i f i c a t i o n system up to the leve l of the plant a l l i a n c e . I t may contain up to three d i g i t s . The abbreviated name in the legend i s used for a uni t at the categor ica l leve l of the plant assoc ia t ion or subassociat ion recognized by the Table 23 Complete Identification legend cf ecosystem types and their mapping units Symbol for synsystema-t ic unit Blogeo-cllmatic subzone Characteristic synsystematic unit at the level of plant association or subasso-ciation Associated soil units (polypedons) Symbol for mapping unit aSb Non-forested ecosystems on rocks • R 11.1 11.2 11.3 a (LICHEN) - GAULTHERIA - DF on loamy sand Lithic Mini Humo-Ferric Podzol with nor humus,developed on moraine veneer on loamy sand Lithic Podzol ulth mor humus,developed on moraine veneer on Lithic Folisol with mor humus,developed from organic veneer . 11.30 12.1 12.2 12.3 b LICHEN - GAULTHERIA - LP - DF on sandy loam Lithic Orthic Humo-Ferric Podzol ulth mor humus, developed on moraine veneer on sandy loam Lithic Podzol with mor humus, developed on moraine veneer on Lithic Folisol and Protoranker with mor humus, developed from organic veneer 12.30 131.1 131.2 131.3 a Gaultheria - WH - DF on loamy sand Lithic Mini Humo-Ferric Podzol with mor humus, developed on moraine veneer on loamy sand Lithic Podzol ulth mor humus,.developed on moraine veneer on Lithic Folisol with mor humus, developed from organic veneer 131.30 131.4 on sandy loam Mini Humo-Ferric Podzol with mor humus, developed on moraine blanket 131.23 131.5 on sandy loam Mini Humo-Ferric Podzol with mor humus, developed on glaciofluvial deposits 131.4 132.6 aSb Mahonia - Gaultheria - WH - DF on sandy loam Mini and Orthic Humo-Ferric Podzols with mor humus, developed on colluvial veneer 132.9 211.1 a Moss - WH on sandy loam Mini and Orthic Humo-Ferric Podzols with mor humus, developed on moraine deposits 211.12,23 211.2 on loamy sand Mini Humo-Ferric Podzol with mor humus, developed on glaciofluvial deposits 211.4 212.3 212.4 aSb Mahonia - moss - WRC - WH on sandy loam Mini and Orthic Humo-Ferric Podzols with mor humus, developed from colluvial deposits on loamy sand Sombric Humo-Ferric Podzol with moder humus, developed on colluvial deposits 212.89 31.1 a&b MOSS - (POLYSTICHUM) - WRC --WH on sandy loam Orthic Humo-Ferric Podzol with ortstein development and mor humus, developed on moraine deposits 31.12,23 31.2 on loamy sand (Gleyed) Mini and Orthic Humo-Ferric Podzols with moder humus, developed on glaciofluvial deposits over moraine deposits 31.412 31.3 on si l ty clay (Gleyed) Sombric Ferro-Humic Podzol with moder humus, developed on glaciomarine deposits 31.7 41.1 41.2 41.3 b VACCINIUM - GAULTHERIA - DF - WH on sandy loam Lithic Orthic Humo-Ferric Podzol with mor humus, developed on moraine veneer on loamy sand Lithic Podzol with mor humus, developed on moraine veneer on Lithic Folisol with mor humus, developed from organic veneer 41.30 41.4 on loamy sand Lithic and Orthic Humo-Ferric Podzols with mor humus, developed on colluvial veneer 41.9 • ro CO Table 23 Complete Identification legend of ecosystem types and their mapping units (continued) Symbol for synsystema-tic unit Biogeo-climatic subzone .Characteristic synsystematic unit at the level of plant association or subasso-datlon Associated soil units (polypedons) Symbol for napping unit 42.1 42.2 b VACCINIUM - MOSS - WH on loamy sand Lithic Podzol with nor humus, developed on moraine veneer on sandy loam Lithic and Orthic Humo-Ferric Podzols with mor humus, developed on moraine deposits 42.23 42.3 on sandy loam Lithic and Orthic Humo-Ferric Podzols with mor humus, developed on colluvial veneer 42.89 51.1 b BLECHNUM - AF - WH on sandy loam Orthic Humo-Ferric Podzol with ortstein and nor hums, developed on moraine deposits 51.12,23 51.2 on sandy loam Gleyed Orthic Ferro-Humic Podzol with ortstein and mor (moder) humus, developed on glaclofluvlal and alluvial deposits 51.4,5 51.3 on sandy loan (Gleyed) Orthic and Mini Ferro-Humic Podzols with ortstein and noder hunus, developed on colluvial deposits 51.89 51.4 on loamy (Gleyed) Mini Ferro-Humic Podzol nith ortstein and noder humus, developed on colluvial veneer over gla-ciolacustrine deposits 51.96 52.1 b BLECHNUM * STREPTOPUS - AF - WH on sandy loam Gleyed Mini Ferro-Hunic Podzol ui th hydronoder humus, developed on moraine deposits 52.23 53.1 53.2 b BLECHNUM - WH - WRC on sandy loan Gleyed Mini Humo-Ferric and Ferro-Hunc Podzols with hydromoder humus, developed on moraine deposits on Terric Hunisol with hydromoder hunus, developed fron organic deposits over moraine deposits 53.20 61.1 61.2 61.3 b RIBES - VM on loamy sand, fragmental Typic Folisol with noder humus, developed on colluvial blanket • on loamy sand, fragmental Orthic Sonbric Brunisol with null humus, developed on colluvial blanket . on loamy sand, fragmental Sombric Humo-Ferric Podzol with moder humus, developed on colluvial blanket 61.89 62.1 62.2 b POLYPODIUM - GAULTHERIA - DF - WRC on Lithic Folisol and Protoranker with mor and noder hunus, developed fron organic veneer on sandy loan Lithic Podzol with nor and moder hunus, developed on colluvial veneer 62.90 63.1 63.2 63.3 aSb POLYPODIUM - POLYSTICHUM - DF - WRC on coarse textured, skeletal Lithic. Mini and Orthic Humo-Ferric Podzols with noder hunus, developed on colluvial deposits on loamy sand and loamy, skeletal Mini and Sombric Ferro-Humic Podzols with moder hunus, developed on colluvial deposits on s i l t loam, skeletal Orthic Dystric Brunisol with moder humus, developed on colluvial deposits 63.89 .64.1 aSb MAHONIA - POLYSTICHUM - DF - WRC on sandy loam Mini and Orthic Humo-Ferric Podzols with moder and mor humus, developed on colluvial deposits 64.89 64.2 on loamy sand Mini and Sombric Humo-Ferric Podzols nith moder and mor humus, developed on colluvial veneer over glaciofluvial and alluvial deposits 64.4,5 ro Table 23Comp1et» Identification legend of ecosystem types and their mapping units (continued) Symbol for synsystema-tic unit Biogeo-climatic subzone Characteristic synsystematic unit at the level of plant association or subasso-clatlon Associated soil units (polypedons) Symbol for mapping unit 71.1 alb TIARELLA - POLYSTICHUM - DF - WRC on loamy (Gleyed)'Mini Humo-Ferric and Ferro-Humic Podzols with moder humus, developed on moraine deposits 71.12,23 71.2 on sandy loam (Gleyed) Mini and Sombric Humo-Ferric and Ferro-Humic Podzols with moder humus, developed on glaclo-fluvlal and alluvial deposits 71.4,5 71.3 on sandy loam (Gleyed) Mini and Sombric Humo-Ferric and Ferro-Humic Podzols with moder humus, developed on col lu-vial deposits 71.89 72.1 alb RUBUS - POLYSTICHUM - WRC on sandy loam Gleyed Mini Humo-Ferric Podzol with moder humus, developed on moraine deposits 72.12 72.2 on sandy loam Gleyed Mini Humo-Ferric Podzol with mull humus, developed on glaciofluvial deposits over glaciolacu-strine or glaciomarine deposits 72.46,47 72.3 72.4 72.5 . 72.6 72.7 on loamy sand Orthic and Cumulic Regosols with mull and hydromull humus, developed on alluvial deposits onsandy Orthic Dystric Brunisol with mull humus, developed on. alluvial deposits on sandy loam Gleyed Sombric Humo-ferric Podzol with mull humus, developed on alluvial deposits on s i l t loam Orthic Humic Gleysol with hydromull humus, developed on alluvial deposits on Terrlc Humisol with hydromull humus, developed on alluvial deposits 72.5 72.8 en silty clay Orthic Humic Gleysol with hydromull humus, developed on glaciolacustrine deposits 72.6 72.9 on clay loam Gleyed Sombric Humo-Ferric Podzol with mull humus, developed on glaciolacustrine deposits 72.7 73.1 73.2 73.3 alb ADIANTUM - POLYSTICHUM - WRC on loamy sand, skeletal Orthic Regosol with mull humus, developed on colluvial deposits on loamy, skeletal'Orthic Sombric Brunisol with mull humus, developed on colluvial deposits on Lithic Humisol with mull humus, developed on alluvial deposits 73.89 811.1 811.2 811.3 alb Polystichum - Oplopanax - WRC on sandy loam (Gleyed) Sombric Brunisol with moder humus, developed on alluvial deposits over moraine deposits on sandy loam and s i l t loam Gleyed Mini Humo-Ferric and Ferro-Humic Podzols with mull and moder humus, developed on alluvial deposits over moraine deposits on silty Orthic Gleysol with hydromoder humus, developed on alluvial deposits over moraine deposits 811.5 812.4 alb Ribes - Oplopanax - WRC on sandy loam (Gleyed) Sombric and Mini Humo-Ferric Podzol with moder humus, developed on colluvial veneer over moraine and alluvial deposits 812.5 812.5 on loamy, and silty clay Gleyed Sombric and Mini Humo-Ferric Podzol with mull humus, developed on colluvial veneer over various mineral unconsolidated deposits 812.96,97 C O o o Tabla 23 Complete Identification legend of ecosystem types and their mapping units (continued) Symbol for synsystema-tic unit Blogeo-cllmatlc subzone Characteristic synsystematic unit at the level of plant association or subasso-ciation -Associated soil units (polypedons) Symbol for mapping unit 911.1 911.2 911.3 aSb Vaccinium - Lysichitum - WRC on sandy loam Orthic Humic Gleysol with hydromoder humus, developed from organic veneer over various mineral, un-consolidated deposits on Terrlc Humlsol with hydromoder humus, developed from organic veneer over various mineral unconsolidated deposits on Typic Humlsol with hydromoder humus, developed from organic deposits over various mineral unconsolidated deposits 911.0 912.4 912.5 aSb Vaccinium - Lysichitum - YC - WRC on Terrlc Humlsol with hydromoder humus, developed from organic veneer over various mineral unconsolidated deposits on Typic Humlsol with hydromoder humus, developed from organic deposits over various mineral unconsolidated deposits 912.0 101.1 101.2 b ATHYRIUM - ARUNCUS - RA - SA on sandy Lithic and Orthic Regosols with mull humus developed on alluvial deposits on loamy sand (Gleyed) Sombric Humo-Ferric Podzol with mull humus, developed on alluvial deposits 101.5 aSb Non-forested ecosystems in aquatic environment A The categorical level of plant association and subassociation Is designated by capital and small letters respectively. The tree species are abbreviated as follows: AF - amabilis f i r (Abies amabilis), DF - Douglas-fir (Pseudotsuga menziesii, var. menziesii). LP - lodgepole pine (Pinus contorta). RA - red alder (Alnus rubra). SA - Sitka alder (Alnus slnuata). VM - vine maple (Acer circinatum), WH - western hemlock (Tsuga heterophylla). WRC - western redcedar (Thuja pllcata). YC - yellow-cedar (Chamaecyparis nootkatensis). 302 second or th i rd d i g i t respec t ive ly . The f i r s t d i g i t refers to a plant a l l i ance that comprises th is and poss ib ly other u n i t s . The second part of the symbol refers to s o i l parent mater ials of the un i t , using genetic categories of landform c l a s s i f i c a t i o n (Ful ton, 1972). I t may contain up to two d i g i t s i nd ica t ing then l i t h o l o g i c a l d iscont inu i ty or complexity in the d i s t r i bu t i on of mater ia ls in the landscape. The complete numerical symbol i d e n t i f i e s f u l l y the s o i l component and hence.the ecosystem type. The s i m i l a r numerical symbol i d e n t i f i e s a lso ecosystem types as synsystematic un i ts in the c l a s s i f i -cat ion system. In th is case the d i g i t ( s ) in the second part of the symbol only denotes an associated s o i l un i t . Ecosystem types have been designated in the agreement with the foregoing by names of selected plants for the vegetat ion component; whereas s o i l tex ture , s o i l subgroup (CSSC, 1974), humus forms (Bern ier , 1968) and s o i l parent mater ia ls have been used to designate the s o i l component. Synecological Mapping The mapping involved the i d e n t i f i c a t i o n of fo res t ecosystems through the i r t yp i f i ed vegetation and s o i l s and ou t l i n ing t he i r boundaries to show the i r d i s t r i bu t i on and area extent . During the mapping external cha rac te r i s t i cs of ecosystems are used to locate t he i r boundaries. As in s o i l mapping (C l ine , 1963) a 303 mapper predic ts that the del ineated areas w i l l have the same propert ies as those, l im i ted in the i r extent , where both external and in terna l propert ies were sampled and measured. The predict ions are based on cor re la t ions between external and internal sets of ecosystem proper t ies . These cor re la t ions ex is t and they are repeated in the landscape wi th in the l im i t s of a kind of macroclimate and s o i l parent mater ia ls . Descr ipt ions of ecosystem types were prepared fo r the purpose of mapping containing d i f f e ren t i a t i ng cha rac te r i s t i cs for vegetat ion and s o i l components. Following the i d e n t i f i c a t i o n of the represen-ta t i ve area of an ecosystem, i t s boundaries were then extrapolated mainly on the basis of lesser vegetation and the pos i t ion of the ecosystem in the landscape. Most of the boundaries were seen in the f i e l d ; the rest were ca re fu l l y located on a i r photographs and f i e l d checked to ensure r e l i a b i l i t y . The mapping was star ted in June 1972 and continued through the summer months in 1973 and 1974. The southern port ion of the Forest was mapped by ground survey whereas the-northern port ion of the Forest was mapped by a combination of ground and airphoto in te rp re ta t ion . Black and whi te, co lor and co lor in f rared imageries at the sca le 1:12,000 were used in the in te rp re ta t ion . The southern port ion was also mapped during the winter 1972/1973 on ae r ia l photographs. Com-parison of these maps indicated to what extent the mapping uni ts can be del ineated by airphoto in te rp re ta t ion . In mapping by airphoto i n te rp re ta t i on , landforms ( so i l parent mater ia ls) were i n i t i a l l y separated using t he i r topographic expression 304 (the form and r e l i e f ) , stream drainage pat tern, erosion features, forest cover and photographic tones. A catenary sequence of ecosystematic uni ts re lated to each landform was then establ ished by ground survey. By stereoscopic study of aer ia l photographs the same mapping uni ts were del ineated and the mapping was extended to neighbouring areas using those features which were found to be r e l i a b l e for ex t rapo la t ion. E s s e n t i a l l y , landforms were broken down into mapping units using the pos i t ion on the s lope, slope gradient, shape of s lope, aspect, expression of forest cover (s t ruc ture , topography and texture of tree canopy, tree heights and stand density) and other features. With respect to the synecological mapping by airphoto in te rpre-ta t ion i t was possib le to draw the fo l lowing conclusions: 1. Mapping of ecosystems by airphoto in terpre ta t ion i s f eas i b l e . 2. Ground mapping of representat ive parts of the area to main-ta in ground control i s necessary. 3. Airphoto in terpre ta t ion makes i t possible to evaluate re -l i a b l y topography, landforms (so i l parent ma te r ia l s ) , s o i l drainage, s o i l tex ture, e t c . , i . e . mainly edatopic features plus upper vegetation l aye rs . A very prec ise descr ip t ion of vegetation-environment re la t ionsh ips i s indispensable for the successful app l ica t ion of airphoto in te rp re ta t ion . 4. Some ecosystems cannot be r e l i a b l y i den t i f i ed by airphoto in terpre ta t ion due to overlapping of habitats of one uni t with those of another re lated un i t . With respect to manage-305 ment i n te rp re ta t ion , i t may be possib le that in such cases ecosystem units can be grouped together in cer ta in l im i ted ways to reduce the i r number, using important edaphic features. 5. There are many inaccess ib le areas such as steep rocky c l i f f s , b l u f f s , windfa l l areas, dense immature stands in which coverage by ground mapping would be i n e f f i c i e n t . Airphoto in terpre ta t ion i s necessar i ly appl ied in such areas instead of ground mapping. I t i s est imated, based on the author 's experience in mapping the UBC Research Forest and other areas on the P a c i f i c Coast, that ground mapping by a we l l - t ra ined person can be car r ied out at the average rate of f i f t y hectares (123.55 acres) per day; the mapping using airphoto in te rpre ta t ion can be car r ied out at the average rate of 500 hectares (1,235.5 acres) per day. I t would be incorrect to extrapolate from these f igures to estimate the cost of mapping other areas. For instance Daubenmire (1973) gives the f igure e ighty-e ight hectares (217 acres) per day for the ground mapping of habitat types (the uni ts comparable to plant associat ions in th is study) in northern Idaho. Overal l costs should include a lso the synecological study (sampling, data analys is and syn thes is ) , i f such information cannot be appl ied from the neighbouring areas. 306 Synecological Map A synecological map shows where forest ecosystems occur in re la t i on to each other and to other landscape features. The map provides then a complete "inventory of ecosystem units inc lud ing the i r area extent , and a pattern of d i s t r i bu t i on which can be u t i l i z e d fo r p rac t i ca l purposes. I t provides a refinement of much broader and complex eco-systems such as biogeocl imat ic zones or subzones (Figure 68). I n i t i a l l y the map can give the impression of an i n t r i c a t e l y deta i led pattern of forest ecosystems in the area. However, one obtains a s im i la r impression reviewing Lacate 's (1965) de ta i led map of land un i ts . Mountainous physiography, d is t inguished by a strong d issec t ion of r e l i e f , and combined with recent g l a c i a t i o n , which resul ted i n the deposi t ion of several s u r f i c i a l deposits of extremely var iab le thickness and extent, imposes an extreme s o i l and vegetation v a r i a b i l i t y over short d is tances. The symbols, co lors and names used to describe the mapping units are summarized in Tables 23 and 24. Each mapping un i t i s i d e n t i f i e d on the map by a set of d i g i t s and co lo r . The set of d i g i t s , separated by per iod, i d e n t i f i e s the mapping uni t by i t s vegetation and s o i l components. This provides fo r the reg is t ra t i on of the described combinations between vegetation and i t s associated s o i l s . Certain guidel ines have been followed in choosing co lors for mapping uni ts (Gaussen, 1961; Mueller-Dombois and El lenberg, 1974 and Kuchler, 1967). The so i l moisture regime of the forest ecosystems was 307 Figure68 Reproduction of a part of the synecological map of the UBC Research Forest 308 Table24 Abbreviated identification legend for the mapping units of the synecological map Bi ogeo-climatic subzone Mapping symbol Number I Color Characteristic synsystematic unit at the le-vel of plant association or subassociation Mapping symbol Parent materials (landforms) alb a b a a a atb alb b b b b b b alb alb alb alb alb alb alb alb alb b b alb R 11 12 131 132 211 212 31 41 42 51 52 53 61 62 63 64 71 72 73 811 612 911 912 101 A Non-forested ecosystems on recks (LICHEN) - GAULTHERIA - DF LICHEN - GAULTHERIA - LP - DF Gaultheria - WH - DF Mahonia - Gaultheria - WH - OF Moss - WH Mahonia - moss - WRC MOSS - (POLYSTICHUM) - WRC -VACCINIUM - GAULTHERIA - DF WH VACCINIUM - MOSS - WH BLECHNUM - AF - WH BLECHNUM - STREPTOPUS - AF - WH BLECHNUM RIBES -POLYPODI - WRC - GAULTHERIA - OF - WRC POLYPODIUM - POLYSTICHUM - DF - WRC MAHONIA - POLYSTICHUM - DF - WRC TIARELLA - POLYSTICHUM - WRC RUBUS - POLYSTICHUM - WRC ADIANTUM - POLYSTICHUM - WRC Polystichum - Oplopanax - WRC Ribes - Oplopanax - WRC Vaccinium - Lysichitum - WRC Vaccinium - Lysichitum - YC - WRC ATHYRIUM - ARUNCUS - RA - SA Non-forested ecosystems in aquatic environment Slope variations: b 41.9 b 42.89 b 51.89 alb 71.89 VACCINIUM - GAULTHERIA - DF - WH VACCINIUM - MOSS - WH BLECHNUM - AF - WH TIARELLA - POLYSTICHUM - WRC Exposed bedrock Deep moraine deposits Moraine blanket Moraine veneer Glacifluvlal deposits Alluvial deposits Glaciolacustrine deposits Glaciomarine deposits Colluvial blanket Colluvial veneer Organic deposits Aquatic environment Explanations of the mapping legend: 211.4 The digits before the period identify the rank of the synsystematic unit at the le -vel of plant alliance, association and sub-association in the order from left to right; the digits after the period refer to parent materials. All digits identify an ecosystem type - see the complete identification le -gend. 4.1-42.30-23 A complex unit; dash (-) means with 16 '49 % of the following unit or parent ma-to terlals. The categorical level of plant association and subassociation Is designated by capital and small letters respectively. The tree species are abbreviated as follows: AF - amabilis f i r (Abies amabilis), DF - Douglas-fir (Pseudotsuqa menziesii, var. menziesii). LP - lodgepole pine (Pinus contorta), RA - red alder (Alnus rubra), SA - Sitka alder (Alnus sitchensis). VM - vine maple (Acer circinatum), WH - western hemlock (Tsuqa  heterophylla). WRC - western redcedar (Thuja plicata), YC - yellow-cedar (Chamaecyparis nootkatensis). 309 s i g n i f i e d by the fo l lowing co lo rs : red - very x e r i c ; pink - xe r i c and subxer ic ; yel low - submesic and mesic; brown (Tsugetal ia heterophyllae) and green ( Thuje ta l ia p i icatae) - subhygric; l i g h t blue - hygr ic ; dark blue - hygric (temporari ly subhydr ic) ; purple - hygr ic ( temporari ly subhydric) f looded hab i ta ts ; v i o l e t - subhydric (temporari ly hyd r i c ) . The same colors were used for the mapping uni ts in both subzones of the CWH zone. For slope var ia t ions of the units that usual ly occur on f l a t or gent le s loping areas, the colors of the re la ted uni ts but of a darker tone were chosen. Non-forested ecosystems on rocks and in aquatic environment were designated by the l e t t e r s R and A respect ive ly and l e f t without any co lo r on the map. The minimal area of any mapping unit shown on the map i s about 0.36 hectares (0.89 acres) . However, some ecosystems were shown on the map with some exaggeration (e .g . very narrow streamline ecosystems: Qplopanax - Polystichum - WRC). The scale 1:12,000 was found to be appropriate with respect to the complexity of the area. 310 CHAPTER 10 SUMMARY AND CONCLUSIONS The purpose of th is study was to c l a s s i f y and map fores t eco-systems in the Univers i ty of B r i t i s h Columbia Research Forest , and to provide p rac t i ca l in terpretat ions as to the i r use fo r wood production and s i l v i c u l t u r a l management. The main resu l ts are summarized as fo l lows: 1. The Forest belongs mostly to the CWH zone wi th both dry and wet subzones occurr ing in the area. The occurrence of the CDF zone at the lowest e levat ions and the MH zone above 1,000 meters i s fragmentary. Therefore, th i s study was concen-t rated pr imar i ly on problems of the CWH zone. The mesic s o i l s , developed from base poor, coarse textured g l a c i a l t i l l , are Humo-Ferric or Ferro-Humic Podzols with mor humus. They are ac id and of low base satura t ion. Accumulation of ac id de-composition products, leaching and t rans locat ion of mater ia ls to the lower solum are the p reva i l ing pedogenic processes in the CWH zone. 2. For evaluat ion of ecosystem units 185 sampling plots (500 sq m in s ize) of homogeneous vegetation underlain by cer ta in poly-pedons in the same biogeocl imat ic subzone were used. Plant 311 communities and s o i l s of these p lots were analyzed and compared. The most c l ose l y related ones were averaged and abstracted through f l o r i s t i c and environmental synthes is . Thus twenty associat ions comprising in to ta l seventy eco-system typesj div ided into ten a l l i ances and four orders^ are recognized in the Forest as fo l lows: Order I: Psuedotsugetalia menziesi i are confined to xe r i c (CWHa) or to very xer ic (CWHb) habi ta ts : A l l i ance 1: Gaultherio (sha l lon is ) - Pseudotsugion menziesi i Plant assoc ia t ions : 11 Cladino ( rang i fe r inae) -Pe l t igero (aphthosae & membranaceae)-Gaultherio ( sha l l on i s ) - [(Pino (contor tae) ] - Pseudotsugetum menziesi i 12 Cladino ( rangi fer inae & arbusculae)- Dicrano (howe l i i ) -Rhytidiopsido (robustae)- Rhacomitrio ( lanug inos i ) -Vacc in ia (a laskaens is ) - Gaultherio ( s h a l l o n i s ) - Pino (contortae)- Pseudotsugetum menziesi i 13 S tokes ie l l o (oreganae)- Hylocomio (sp lendent is ) - Gaultherio ( sha l l on i s ) - Pseudotsugetum menz ies i i . The s o i l s are strongly drained and leached. There are s i g n i f i -cant losses of moisture and mater ia ls removed by grav i ty to ecosystems located downslope. The s o i l s are Fo l i so l s and Humo-Ferric Podzols with mor humus and l i t h i c contact at the depth less than f i f t y cm. S u i t a b i l i t y for wood production i s marginal. The main management object ive here should consis t of s o i l protect ion of seed source fo r natural regeneration and of w i l d l i f e hab i ta ts . 312 Order I I : Tsugetal ia heterophyllae are the most frequently occurring ecosystems on xer ic (CWHb), amphimesic (CWHa&b) and hygric (CWHb) habitats in the Forest: A l l i ance 2: Plagiothecio (undulat i ) - Rhytidiadelpho ( l o r e i ) -Pseudotsugo (menz ies i i ) - Tsugion heterophyllae Plant assoc ia t ion : 21 Rhytidiadelpho ( l o r e i ) - Plagiothecio (undulat i ) -Pseudotsugo (menz ies i i ) - Tsugetum heterophyllae A l l i ance 3: Hylocomio (sp lendent is) - Polyst icho (muni t i ) -Psuedotsugo (menz ies i i ) - Tsugion heterophyllae Plant assoc ia t ion : 31 Hylocomio (spendentis)- Plagiothecio (undulat i ) -Polyst icho (mun.iti)- Pseudotsugo (menziesi i) - Thujo (p l i ca tae ) - Tsugetum heterophyllae A l l i ance 4: Rhytidiopsido (robustae)- Vaccinio (a laskaensis) -Menziesio ( ferrugineae)- Tsugion heterophyllae Plant assoc ia t ion : ' -41 Pleurozfo (schreber i ) - Rhytidiopsido (robustae)-Gaultherio ( sha l l on i s ) - Vaccinio (a laskaensis) -Pseudotsugo (menz ies i i ) - Tsugetum heterophyllae 42 Rhytidiopsido (robustae)- Vaccinio (a laskaens is ) -Menziesio ( ferrugineae)- Tsugetum heterophyllae A l l i ance 5: Rhytidiadelpho ( l o r e i ) - Plagiothecio (undulat i ) -Blechno ( sp i can t i s ) - Vaccinio (a laskaensis) - Men-z ies i o ( ferrugineae)- Abieto (amabi l is ) - Tsugion heterophyl lae Plant assoc ia t ion : 51 Rhytidiadelpho ( l o r e i ) - Plagiothecio (undulat i ) -Blechno ( sp i can t i s ) - Vaccinio (a laskaens is) - Menziesio ( ferrugineae)- Abieto (amabi l i s ) - Tsugetum heterophyllae 52 Rhytidiadelpho ( l o r e i ) - Streptopo (amplex i fo l i i & rosei & s t r ep topo id i i ) - Blechno ( sp i can t i s ) - Vaccinio (a laskaensis) - Abieto (amabi l is ) - Tsugetum heterophyllae 313 53 Diplophyl lo ( a l b i c a n t i s ) - Rhytidiadelpho ( l o r e i ) -Plagiothecio (undu la t i ) - Blechno ( s p i c a n t i s ) -Vaccinio (a laskanes is) - Gaulther io ( s h a l l o n i s ) -Abieto (amabi l i s ) - Tsugo (heterophyl lae & merten-s ianae)- Thujetum p l i ca tae . Humo-Ferric or Ferro-Humic Podzols with well developed a l b i c and occas iona l ly o r t s te in horizons and th ick layers of ac id mor humus are the associated s o i l s . The s o i l development on mesic habitats i s cha rac te r i s t i c by a cer ta in independence, since the biogeochemical cycle r e l a t i ve to other habitats i s nei ther af fected by s i g n i f i c a n t losses nor add i t ions . The Tsugetal ia heterophyllae are very su i tab le f o r wood production. A s i l v i c u l t u r a l system, inc luding moderate s ize s t r i p c learcu t t ing and e l iminat ion of s lash burning, w i l l be s u f f i c i e n t to provide good volume y i e l ds and sustain forest p roduc t i v i t y . Order I I I : Thu je ta l ia p l ica tae are confined to hygr ic (CWHa&b) and subhydric (CWHa&b) hab i ta ts . These habitats provide addi t ional moisture and nutr ients e i t he r by seepage water in t he i r s o i l s or by flow of organic and mineral mater ia ls on steep slopes over the s o i l surface fo r t he i r development: A l l i ance 6: S tokes ie l lo (oregani)- Hylocomio (sp lendent is ) -Polyst icho (muni t i ) - Pseudotsugo (menz ies i i ) -Thujion p l i ca tae Plant assoc ia t ions : 61 Rhacomitrio (heterost ich i & canescent is ) - Rhytidiadelpho ( l o r e i ) - Blechno ( sp i can t i s ) - Gaulther io (sha l lon is & o v a t i f o l i a e ) - Vaccinio (a laskaens is ) - Ribeso ( l a c u s t r i s ) -Aceretum c i r c i n a t i 314 62 Heterocladio (maeounii)- Hylocomio (sp lendent is ) -Polypodio (g lycyr rh izae) - Pseudotsugo (menz ies i i ) -Thujetum p l ica tae 63 Hylocomio (sp lendent is ) - Polypodio (g l ycy r rh i zae) -Polyst icho (muni t i ) - Acero (macrophyll i & c i r c i n a t i ) -Pseudotsugo (menz ies i i ) - Thujetum p l i ca tae 64 S tokes ie l l o (oregani)- Polyst icho (muni t i ) - Mahonio (nervosae)- Pseudotsugo (menz ies i i ) - Thujetum p l i ca tae A l l i ance 7: Plagiomnio ( i n s i g n i s ) - T i a r e l l o ( t r i f o l i a t a e ) -Polyst icho (munit i ) - Thujion p l i ca tae Plant assoc ia t ions : 71 Plagiomnio ( i n s i g n i s ) - T i a r e l l o ( t r i f o l i a t a e ) - Polyst icho (muni t i ) - Pseudotsugo (menz ies i i ) - Thujetum p l i ca tae 72 Plagiomnio ( i n s i g n i s ) - T i a r e l l o ( t r i f o l i a t a e ) - Athyr io ( f i l i c i s - f e m i n a e ) - Polyst icho (muni t i ) - Rubo ( s p e c t a b i l i ) -Thujetum p i i ca tae 73 Leucolepido (menz ies i i ) - Plagiomnio ( i n s i g n i s ) - Adianto (pedat i ) - Athyr io ( f i l i c i s - f e m i n a e ) - Polyst icho (muni t i ) -Acero (macrophyl l i ) - Pseudotsugo (menz ies i i ) - Thujetum p l ica tae A l l i ance 8: OpTopanacion (hor id i ) - Thujion p l ica tae Plant assoc ia t ions : 81 Plagiomnio ( i n s i g n i s ) - Leucolepido (menz ies i i ) - Oplopanaco (ho r r i d i ) - Acero ( c i r c i n a t i ) - Thujetum p l ica tae A l l i ance 9: Lys ich i to (amer icani) - Thujion p l i ca tae Plant assoc ia t ion : 91 S tokes ie l l o (praelongi ) - Rhizomnio (pe rsson i i ) - Athyr io ( f i l i c i s - f e m i n a e ) - Lys ich i to (amer icani ) - Vaccinio (a laskaens is) - Thujetum p l ica tae Humo-Ferric or Ferro-Humic Podzols (usual ly g leyed), Sombric and Dyst r ic B run i so l s , Regosols, Humic or Orth ic G leyso l s , F o l i s o l s , Mesisols and Humisols are the associated s o i l s . Relat ive to other habi tats the 315 Thuje ta l ia p l i ca tae exh ib i t the highest b io log ica l a c t i v i t y and decompo-s i t i o n ra tes. They counteract leaching and slov; down the development of Podzols through the i r respect ive nutr ient cyc le . With the exceptions of the biogeocoenotic uni ts on temporari ly subhygric and l i t h i c ( ta lus) habitats and extremely steep var ia t ions of other un i t s , they represent a complex of h ighly productive ecosystems su i tab le for wood product ion, recreat ion and as w i l d l i f e hab i ta ts . Their use for wood production deserves a spec ia l at tent ion and the app l ica t ion of in tensive s i l v i -cu l tu re p rac t i ces , including immediate regeneration by plant ing s t r i c t control over the tree species composit ion, stocking and density l e v e l s . Order IV: Popu le ta l ia balsamiferae are confined in the Forest to f looded, .hygric (temporari ly subhydric) habitats in the CWHb subzone. A l l i a n c e 10: Alnion rubrae & sinuatae Plant assoc ia t ion : 101 Hypno ( d i e c k i i ) - Athyr io ( f i l i c i s - f e m i n a e ) - Arunco ( s y l v e s t r i s ) - Lonicero ( invo lucratae)- Rubo (spec-t a b i l i ) - Alnetum rubrae & sinuatae. The s o i l s are Regosols developing under the inf luence of hydro-l og i c addi t ions to the s o i l surface and solum. These stream-edge eco-systems are not su i tab le for wood production. 316 3. To enhance prac t i ca l value of the known and newly described biogeocoenotic un i t s , they can be grouped into in te rp re ta t i ve (management) un i t s . S i m i l a r i t y of the tree species s e l e c t i o n , product iv i ty and comparabi l i ty of adequate s i I v i c u l t u r a l procedures for biogeocoenotic units were the main c r i t e r i a to derive th i r teen management un i t s . S i l v i c u l t u r a l and harvesting in terpre ta t ion suggested fo r the management un i ts were corroborated by th is and previous synecological s tud ies . I t i s concluded that ecosystem evaluat ion of f o res t s , subse-quent assessment of ecosystem s u i t a b i l i t y for wood production and ecosystem-specif ic management are the necessary pre-requ is i tes for eco log i ca l l y and economically sound fo res t management. In th i s perspective the primary management con-s idera t ion in the Forest and in s im i l a r environments should be given to s o i l protect ion and preservat ion of s o i l f e r t i l i t y by e l iminat ion of extensively large c learcu t t ing associated with ind iscr iminate s lash burning. 4. Forest product iv i ty i s higher in the CWHa than in the CWHb subzone. The product iv i ty increases in each subzone from x e r i c to mesic and to hygric hab i ta ts . Growth of Doug las - f i r , western hemlock and western redcedar in the edaphic spectrum confirmed the growth project ion suggested by Kraj ina (1969). In unmanaged secondary stands the number of trees per area uni t i s the highest on xer ic hab i ta ts , i t decreases on mesic and espec ia l l y on hygric hab i ta ts , whereas i t increases on sub-317 hydric hab i ta ts . This trend i s fur ther modif ied by the biogeocl imat ic subzone and the pa r t i cu la r tree species composit ion. I t can be concluded that production leve ls in the Forest could be increased by the control over tree J U C I . I C 3 :>e i ev» u I UII , 3nu i 1 1 f c u i e ui SuuCrviiiy anu i cyu I Q I I O I I of stand density l e v e l s . The stand density l e v e l s , however, should be fur ther invest igated and appl ied according to d i f f e ren t ia ted synsystematic un i t s . Shade to lerant tree species (western redcedar, western hemlock) contr ibute to bet ter pruning of shade in to le ran t tree species (Douglas- f i r ) in f u l l y stocked stands assuming the l a t t e r grow fas te r . 5. Some compositional and age var ia t ions of the forest cover wi th in the l i m i t s of a ecosystem type were compared. The comparative analys is indicated d i f fe ren t trends from funct ional and successional (syngenetic) point of view, namely in point ing out concomitant changes of edaphic p roper t ies , and ind ica t i ve values of species in shrub, herb and moss layers . 6. Chemical concentrations of N, Ca, Mg, K, Na, Fe, Al and Mn in fo l i age of understory vegetat ion, the f l o r i s t i c structure of which i s usual ly d i f fe ren t in d i f fe ren t orders, a l l i ances or even plant assoc ia t ions , in the CWH zone were determined. These concentrations increase progressively along the moisture and nutr ient gradients. Charac te r i s t i c species for the 318 Pseudotsugetalia menziesi i have the lowest concentrat ions, those for the Tsugetal ia heterophyllae have the interme-diate concentrat ions, whereas cha rac te r i s t i c species fo r the Thuje ta l ia p l ica tae and the Popu le ta l ia balsamiferae have the highest chemical concentrat ions. I t appears that the cha rac te r i s t i c species of a synsystematic uni t have s im i l a r f o l i a r concentrations of the above elements. There-fo re , the cha rac te r i s t i c combinations of species have a high ind ica t i ve value in the i d e n t i f i c a t i o n , mapping and assess-ing the edatopes of the un i ts . 7. Seepage water i n the s o i l s of those ecosystems in which i t occurs i s character ized by cer ta in q u a l i t a t i v e chemical proper t ies . Chemical concentrations in seepage water were found to vary with the season, fo res t type (based on age) and plant assoc ia t ion . Seepage water in the study area a f fec ts s o i l development through formation o f moder (mull) humus, and weak melanizat ion. Fast f lowing seepage water i n coarse-textured s o i l s does not appear to give r i s e to reducing con-d i t i ons so that proper gleyed horizons do not develop. There tends to be a bui ld-up of cat ions in the s o i l in the horizons af fected by seepage water f low. However, t h i s bui ld-up alone might not completely account fo r increased nutr ient uptake by fores t t rees. Mass flow of nutr ients i n so lut ion to tree roots may also be important. The increased nutr ient uptake 319 on seepage habitats i s considered to be re f lec ted by r e l e -t i v e l y high concentrations of nutr ients in s o i l organic layers . This increased nutr ient uptake, together with the occurrence of mull (moder) humus, indicated the presence of a more intense biogeochemical cyc l ing as compared to other . hab i ta ts . Seepage water can be considered as a fac tor of ecosystem formation which counteracts the leaching and other pedogenic processes involved in formation of Podzols. 8. The synecological map of the 5,151 hectare Univers i ty of B r i t i s h Columbia Research Forest at the scale 1:12,000 was completed to demonstrate the f e a s i b i l i t y of ecosystem mapping. The mapping was done by a combination of ground survey and aer ia l photographic i n te rp re ta t ion , using black and white, co lor and co lor in f rared imagery. Ecosystem type was used as a mapping un i t . Each mapping uni t was designated by numerical symbols that i den t i f y synsystematic units (plant a l l i a n c e , associat ion and subassociat ion) and the i r s o i l s , although s o i l ser ies per se were not estab-l i shed in th is study. Boundaries of b iogeocl imat ic subzones were a lso reg is tered. I t i s concluded that deta i led eco-system mapping based on ecosystem c l a s s i f i c a t i o n i s f e a s i b l e . When car r ied out by a combination of ground survey and aer ia l photographic i n te rp re ta t i on , i t can be e f f i c i e n t . The use of numerical symbols and co lo r to iden t i f y the mapping un i ts contr ibutes to greater usefulness of the map. 320 BIBLIOGRAPHY American Society of Photogrammetry. 1960. Manual of photographic inter-pre ta t ion . The George Banta Company, Inc . , Menasha, Wisconsin. 868 p. Armstrong, J . E . 1957. S u r f i c i a l geology of New Westminster Area , B r i t i s h Columbia. Geol . Surv. Can. Paper 57-5. 25 p. Armstrong, J . E . and-W.L. Brown. 1954. Late Wisconsin marine d r i f t and associated sediments of the Lower Fraser Va l l ey , B r i t i s h Columbia, Canada. B u l l . Geol . Soc. Amer. 65:349-364. Armstrong, J . E . , D.R. Crandel1, D.J . Easterbrook and J . B . Noble. 1964. Late Pleistocene strat igraphy and chronology in southwestern B r i t i s h Columbia and northwestern Washington. B u l l . Geol . Soc. Amer. 76:321-330. Armstrong, J . E . and R . J . Ful ton. 1965. In INQUA 7th Congress, 1965. Guidebook for F ie ld Conference J , P a c i f i c Northwest: 108 p. Assmann, E. 1961. Waldertragskunde. BLV Ver lagsgesel lschaf t Miinchen, Bonn, Wien. 490 p. B a l l a r d , T.M. and D.W. Cole. 1975. Transport of nutr ients to tree root systems. Can. J . For. Res. 4(4):563-565. Bascomb, C L . 1968. D is t r ibu t ion of pyrophosphate extractable i ron and organic carbon in s o i l s of various groups. J . So i l Sci 19:251-263. B a z i l e v i c h , N.I . and L .E . Rodin. 1967. Production and mineral cyc l ing in t e r r e s t r i a l vegetat ion. (Engl ish t rans la t ion edi ted by C E . Fogg). O l i ve r and Boyd, Edinburgh and London. 288 p. Becking, R.W. 1957. The Z i i r ich-Montpel l ier School of phytosociology. Bot. Rev. 23:411-488. 321 Beecher, G.R. and B.K. Wit ten. 1970. Ammonia determinat ion: Reagent modi f icat ion and in te r fe r ing compounds. Ana l . Biochem. 36: 243-246. Benninghoff, W.S. and W.C. Southworth. 1964. Ordering of tabular arrays of phytosocio logical data by d i g i t a l computer. Demonstration for Plant Sociology and Phytogeography (SOC) Sec t ion , 10th Internat ional Bot~" Congress, Edinburgh. 1 p, (mineo). Bern ier , B. 1968. Descr ipt ive out l ine of fo res t humus-form c l a s s i f i -ca t ion . Proceedings of the 7th Meeting of the Canada So i l Survey Committee, 1971. pp. 139-154, (mimeo). B lack, C A . (ed . ) . 1965. Method of so i l ana l ys i s . Am. Soc. Agron . , Monograph No. 9, Madison, Wisconsin, Part 2. Chemical and microb io log ica l propor t ies. PP- 711-1572. Bormann, F . H . , C E . L ikens, D.W. Fisher and R.S. P ie rce . 1968. Nutr ient loss accelerated by c learcu t t ing of a fores t ecosystem. Science 159:882-884. Bormann, F.H. and GiE. L ikens. 1970. The nutr ient cyc le of an eco-system. S c i e n t i f i c American 223:92-101. Bourgeois, W.W. 1969. A study of s o i l s and leachates from two fores t s i t es using tension lys imeters. M.Sc. t h e s i s , Dept. S o i l Science, Univ. B r i t i s h Columbia. 172 p. and L.M. Lavku l ich . 1972. A study of fo res t s o i l s and leach-ates on sloping topography using a tension lys imeter . Can. J . So i l S c i . 52:375-391. Bouyoucos, G . J . 1936. Direct ions fo r making mechanical ana lys is of s o i l s by the hydrometer method. So i l S c i . 42:225-228. . 1951. A reca l ib ra t ion of the hydrometer method fo r making mechanical analys is of s o i l s . Agron. J . 43:434-438. Braun-Blanquet, J . 1921. P r inz ip ien einer Systematik der Pf lanzen-gesselschaften auf f l o r i s t i c h e r Grundlage. Jahrb. S t . Ga l l i sche Naturw. G e s e l l . 57:305-351. 322 Braun-Blanquet, J . 1928. Pf lanzensoz io log ie . Grundzuge der Vegetat ion-skunde. 1 A u f l . , Spr inger, B e r l i n . 330 p. 1932. Plant socio logy. (Engl ish t rans la t ion of Pf lanzen-soz io l og i e , G.D. Fu l l e r and H.S. Conard, eds.) McGraw-Hill Book Co. Inc . , New York. 439 p. . 1951. Pf lanzensoz io log ie . Grundzuge der Vegetationskunde. 2 A u f l . , Spr inger-Ver lag, Wien. 631 p. . 1964. Pf lanzensoz io log ie . 3rd e d . , Spr inger -Ver lag, Wien, New York. 865 p. B r i t i s h Columbia Forest Serv ice , Inventory D i v i s i o n . 1962. Forest inventory s t a t i s t i c s of B r i t i s h Columbia. Dept. of Lands, Forest and Water Resources, V i c t o r i a , B.C. 213 p. Brooke, R.C. 1965. The Subalpine mountain hemlock zone. Part I I . Ecotopes and biogeocoenotic un i ts . E c o l . of Western N.A. H i ) ; 79-101. 1966. Vegetation-environment re la t ionsh ips of the Subalpine mountain hemlock zone ecosystems. Ph.D. t h e s i s , Dept. Bo t . , Univ. B r i t i s h Columbia. 255 p . , App. 110 p. , E.B. Peterson and V . J . K ra j ina . 1970. The Subalpine mountain "hemlock zone. Ecology of Western N.A. 2^(2): 148-349. Bunting, B.T. 1961. The ro le of seepage moisture in s o i l formation, slope development and stream i n i t i a t i o n . Am. J . S c i . 259: 503-518. Buo l , S.W., F.D. Hole and R . J . McCracken. 1973. S o i l genesis and c l a s s i f i c a t i o n . The.Iowa Univ. Press , Ames. 360 p. Cajander, A.K. 1926. The theory of forest types. Acta Fores ta l ia Fennica 29:1-108. Cajander, A.K. 1949. Forest types and the i r s i gn i f i cance . Acta Fores ta l ia Fennica 56:1-71. Canada So i l Survey Committee. 1970. The System of So i l C l a s s i f i c a t i o n for Canada. Canada Dept. Agr icu l ture. 249 p. . 1974. The System of s o i l c l a s s i f i c a t i o n for Canada. Canada Dept. Agr icu l tu re Publ . 1455. 255 p. Ceska, A. and H. Roemer, 1971. A computer program fo r i den t i f y ing species-releve" groups in vegetation s tud ies . Vegetat io. 23(3-4) 255-277. Chapman, H.D. 1965. Cation-exchange capaci ty . In C A . Black (ed . ) . 1965. Methods of s o i l ana lys i s . Am. Soc. Agron. , Monograph No. 9, Madison, Wisconsin. Part 2: Chemical and b i o l og i ca l proper t ies , pp. 891-901. C l i n e , M.G. 1949. Basic p r inc ip les of s o i l c l a s s i f i c a t i o n . S o i l S c i . 67:81-91. . 1961. The changing model of s o i l s . So i l S c i . Soc. Am. Proc. 25:442-446. . 1963. Logic of the new system of s o i l c l a s s i f i c a t i o n . So i l S c i . 96(1):17-22. Co le , D.W. 1963. Release of elements from the fo res t f l oo r and migra-t ion through associated s o i l p ro f i l es (a lysimeter s tudy) . Ph.D. t h e s i s , Univ. Washington. 110 p. , W.J.B. Crome and C C Gr ie r . 1973. The e f fec t of fo res t management pract ices on water qua l i ty in second growth Douglas-f i r ecosystems. Paper presented at the 4th North American Forest So i l Conference. Cordes, L.D. 1972. An ecologica l study of the s i t ka spruce fo res t in the West coast of Vancouver Is land. Ph.D. t h e s i s , Dept. B o t . , Univ. B r i t i s h Columbia. 452 p. 324 Crocker, R.L. 1952. So i l genesis and the pedogenic fac to rs . Quart. Rev. B i o l . 27:139-168. Crum, A . H . , W.C. Steere and L .E . Anderson. 1973. A new l i s t of mosses of North America north of Mexico. The Bryo log is t 76:85-130. Dahl , E. 1956. Rondane. Mountain vegetation in South Norway and i t s re la t i on to the environment. Norske Vidensk.- Akad. Os lo , Mat-Naturv. K l . , Skr . 1956(3): l -374. Dansereau, P i e r r e . 1957. Biogeography. The Ronald Press Co . , New York. 394 p.-Daubenmire, R.F. 1952. Forest vegetation of northern Idaho and adjacent Washington, and i t s bearing on concepts of vegetation c l a s s i f i c a t i o n . Ecol.Monog. 22:301-330. • 1966. Vegetation i d e n t i f i c a t i o n of typal communities. Science 151:291-298. . 1967. Plant communities. Harper and Row Pub l ishers , New York and London. 300 p. . 1973. A comparison of approaches to the mapping of forest land for in tensive management. For. Chron. 49(2):87-91. Day, R. 1950. Physical basis of p a r t i c l e s ize analysis by the hydro-meter method. S o i l . S c i . 70:363-374. Department of So i l Science. 1974. Methods of so i l ana lys is . Pedology Laboratory, Univ. B r i t i s h Columbia. 229 p. D i r s c h l , H .J . 1972. Geobotanical processes in the Saskatchewan River Del ta . Can. J . Earth Sciences 9(11):1529-1549. Dokuchaev, V.V. 1898. Uchenie o zonakh pr i rody. SPb, i z d . 2. 1948, Moska, Geografgiz. 325 Dominski, A .S . 1971. Nitrogen transformation in a northern-hardwood podzol on cut-over and forested s i t e s . Ph.D. t h e s i s , Yale Un ivers i t y , New Haven. 157 p. Drees, E. Meyer. 1953. A tentat ive design fo r ru les of phytosociological nomenclature. Vegetatio 4:205-214. D r iebe lb i s , F.R. and J . L . McGuinness. 1957. Plant nut r ient losses in lysimeter percolate. Agron. J . 49:523-527. Dyrness, C.T. 1967. Mass s o i l movements in the H .J . Andrews experimental fo res t . P a c i f i c Northwest Forest & Range Exp. Sta. , U.S.D.A. Forest Serv. Res. Pap. PNW-42. 12 p. E i s , S. 1962a. S t a t i s t i c a l analys is of several methods for est imation of forest habitats and tree growth near Vancouver, B.C. Faculty of Forestry B u l l . No. 4, Univ. B r i t i s h Columbia. 76 p. _. 1962b. S t a t i s t i c a l analys is of tree growth and some environ-mental factors of plant communities in a selected area of the Coastal western hemlock zone. Ph.D. t h e s i s , Dept. B i o l , and Bo t . , Uaiv. B r i t i s h Columbia. 242 p. E l lenberg, H. 1956. Aufgaben und Methode der Vegetationskunde. In H. Walter (ed. ) . Einfuhrung in die Phyto log ie. V o l . IV, Part 1. F e l l e r , M.C. 1974. I n i t i a l e f fec ts of c learcu t t ing on the f low of chemicals through a forest watershed ecosystem in southwestern B r i t i s h Columbia. Ph.D. t h e s i s , Faculty of Forest ry , Univ. B r i t i s h Columbia. 351 p. F isher , D.W., A.W. Gambell, G.E. Likens and F.H. Bormann. 1968. Atmos-pheric contr ibut ions to water qua l i t y of streams in the Hubbard Brook Experimental Forest , New Hampshire. Water Resour. Res. 4:1115-1126. Frank, A .B. 1894. Die Bedeutung der Mykorrhizapi lze fur die gemeine K ie fe r . Fo rs tw iss .Zen t ra lb l . 16:185. 326 Frye, T.C. and L. Clark. 1937, 1943, 1945, 1946, 1947. Hepaticae of North America. Univ. Washington Pub!. i n B i o l . Part 1 (1937) 6(1):1-162; Part 2 (1943) 6(2):163-336; Part 3 (1945) 6(3):337-564; Part 4 (1946) 6(4):565-733; Part 5 (1947) 6 T5):735-1022. Fu l ton, R . J . 1971. Radiocarbon chronology of southern B r i t i s h Columbia. Geol. Surv. Can. Pap. 71-37. 28 p. . 1972. Landform c l a s s i f i c a t i o n . B.C. Department of A g r i c u l -ture. 8 p . , Appendix 6 p, (mimeo). Garm, R. .1958. Some aspects of the nitrogen cyc le in s o i l s of the Doug las- f i r fo res t . M.Sc. t h e s i s , Dept. B i o l , and Bot. and Dept. So i l S c i . , Univ. B r i t i s h Columbia. 97 p. Gaussen, H. 1961. Mdthodes de la cartographic de l a ve*ge"tation. P a r i s , Centre National de l a Recherche S c i e n t i f i q u e . 97th Interna-t iona l Colloquium, Toulouse, 1960. pp. 137-145. Greig-Smith, P. 1964. Quant i tat ive plant ecology. 2nd e d . , Butterworths, London. 256 ,p. G r i e r , C C , and D.W. Cole. 1972. Elemental t ransport changes occurr ing during development of a second-growth Doug las- f i r ecosystem. In the Proceedings: Research on Coniferous Forest Ecosystem. A Symposium, Bell ingham, Washington, pp. 103-113. , D.W. Cole, C T . Dyrness, and R.L. Fredr iksen. 1974. Nutr ient cyc l ing in 37- and 450- year old Doug las- f i r ecosystems. In the Integrated Research in the Coniferous Forest Biome. R.H.. Waring and R.L. Edmonds (eds . ) , Coniferous Forest Biome Eco-system Analysis S tud ies , B u l l . 5_:21-34. G r i f f i t h , B.G. 1960. Growth of Douglas- f i r at the Univers i ty of B r i t i s h Columbia Research Forest as re lated to cl imate and s o i l . Facu-l t y of Forestry B u l l . No. 2, Univ. B r i t i s h Columbia. 62 p. Hale, M.E. J r . and W.L. Culberson. 1960. A second check l i s t of the l ichens of the cont inental United States and Canada. The Bryo log is t 63:137-172. 327 Hitchcock, C . L . , A. Cronquist , M. Ownbey and J.W. Thompson. 1955, 1959, 19.61, 1964, 1969. Vascular plants of the P a c i f i c Northwest. Part 1 (1969), Vascular Cryptograms, Gymnosperms and Monoco-ty ledons; Part 2 (1964), Sal icaceae to Saxi fragaceae; Part 3 (1961), Saxifragaceae to Er icaceae; Part 4 (1959), Ericaceae through Campanulaceae; Part 5 (1955), Compositae. Univ. Washington Press, Sea t t l e , Wash. Ivemey-Cook, R.B. and M.C.F. Proctor . 1966. The app l ica t ion of assoc-i a t i on ana lys is to phytosociology. J . of E c o l . 54(1):179-192. Jablanczy, Alexander. 1964. Influence of s lash burning on the es tab l i sh -ment and i n i t i a l growth of seedlings of Doug las- f i r , western hemlock, and western redcedar. Ph.D. thesis Dept. B i o l , and Bo t . , Univ. B r i t i s h Columbia. XII p . , 193 p. , XXX p. Jackson, W.A. 1967. So i l a c i d i t y and l im ing . R.W. Pearson and F. Adams (eds . ) , American Society for Agronomy, Madison, Wisconsin, pp. 43-124. Jenny, H. 1941. Factors of s o i l formation. McGraw-Hill Book Co . , Inc . , New York and London. 281 p. . 1958. Role of the plant factor in pedogenic func t ions . Ecology 39:5-16. . 1961. Derivat ion of state fac tor equations of s o i l s and "ecosystems. So i l S c i . Soc. Am. Proc. 25:385-388. Johnson, D.W., H .J . Singer and R. Minden. 1974. Nutr ient cyc l i ng in a subalpine Abies f o res t . I I . Processes of mineral t rans fe r . Paper presented at 47th Annual Meeting of the Northwest S c i e n t i f i c Assoc ia t ion , Vancouver, B.C. Johnson, L.A. 1972. Ni t ra te and n i t r i t e (AAII) . Dept. Agr. Eng. , Univ. B r i t i s h Columbia. 2 p, (mimeo). Johnson, N.M., G.E. L ikens, F.H. Bormann, D.W. Fisher and R.S. P ie rce . 1969. A working model for the var ia t ion in streamwater chem-i s t r y at the Hubbard Brook Experimental Forest, New Hampshire. Water Resour. Res. 5:1353-1363. 328 Johnson, W.M. 1963. The pedon and the polypedon. So i l S c i . Soc. Am. Proc. 27:212-215. K e l l e r , W.D. and A . F . Frederickson. 1952. Role of plants and c o l l o i d a l acids in the mechanism of rock weathering. Am. J . S c i . 250: 594-608. Ke l logg, C E . 1963. Why a new system of s o i l c l a s s i f i c a t i o n ? So i l S c i . 96(1) :1-5. Keser, N. 1960. A study of s o i l s as related to s i t e index of Douglas- f i r a t Haney, B r i t i s h Columbia. M.F. t hes i s , Dept. Forest ry , Univ. B r i t i s h Columbia. 148 p. Kimmins, J . P . 1974a. Comparative studies of throughfalV chemistry in four West Coast fo res t biogeocoenoses in B r i t i s h Columbia. Paper presented at 47th annual meeting of the Northwest Sc ien -t i f i c Assoc . , Vancouver, B.C. . 1974b. Sustained y i e l d , timber mining, and the concept of "ecological ro ta t i on ; a B r i t i s h Columbian view. For. Chron. 50 (1) :27-31. K l i n k a , K. and R.M. Annas. 1973. Ecosystematic uni ts and some chemical propert ies of the i r s o i l organic laye rs . 1973. Progress Report National Research Council Grant No. A-92, V . J . Kra j ina (ed . ) , Dept. Bo t . , Univ. B r i t i s h Columbia, pp. 25-33. and L .E . Lowe. 1975, 1976a, 1976b. Organic const i tuents of fo res t humus layers in the Coastal western hemlock biogeocl imat ic zones of B r i t i s h Columbia in re la t ion to fores t ecosystems. B.C. For. Se rv . , Research D i v i s i on , V i c t o r i a , B.C. Part 1 (1975); Proximate ana lys i s . Research Note No. 74 ( in p r i n t ) . Par t 2 (1976a) : Humus f rac t ion d i s t r i b u t i o n , Research Note No. 75 ( in p r i n t ) ; Part 3 (1976b): Opt ical propert ies of humic acid f r ac t i ons . Research Note No. 76 ( in p r i n t ) . Knox, E.G. 1965. So i l ind iv idua ls and so i l c l a s s i f i c a t i o n . S o i l S c i . Soc. Am. Proc. 29(1):79-84. 329 Kojima, S. 1971. Phytogeocoenoses of the Coastal western hemlock zone in Strathcona Prov inc ia l Park, B r i t i s h Columbia, Canada. Ph.D. t hes i s , Dept. Bo t . , Univ. B r i t i s h Columbia. XIV p. , 321 p. Kononova, M.M. 1966. So i l organic matter. 2nd e d . , Pergamon Press , New York. 450 p. Koppen, W. 1936. Das Geoyraphische System der Kl imate. In Koppen, W. & G. Geiger, Handbuch der K l imato log ie . V o l , 1, Part C , Gebrueder Borntrager, B e r l i n . K ra j i na , V . J . 1933. Die Pflanzengesel1schaften des Mlynica-Tales in den Vysoke Tatry (Hohe Tatra) mit besonderer Beri icksichtigung der bkologischen Verha l tn isse. Bot. C e n t r a l b l . , Abt. 2 , 5_0: 744-957, 51:1-244. . 1959. B ioc l imat ic zones in B r i t i s h Columbia. Univ. B r i t i s h "Columbia, Botanical Ser ies 1:1-47. 1960a. Can we f ind a common platform for d i f f e ren t schools of fo res t type c l a s s i f i c a t i o n . S i l v a Fennica 105(160):50-55. . 1960b. Ecosystem c l a s s i f i c a t i o n of f o res t s . S i l v a Fennica 105(1960):107-1T0. . 1965a. Biogeocl imat ic zones in B r i t i s h Columbia. Ecology of "Western N.A. ]_(!): !-17. . 1965b. Philosophy of ecology. Ecology of Western N.A. 1_(1): 102-109. . 1969. Ecology of forest trees in B r i t i s h Columbia. Ecology "of Western N.A. 2(1):1-146. . 1972. Ecosystem prespectives in fo res t ry . The H.R. MacMillan Lectureship in Forestry. Univ. B r i t i s h Columbia. 31 p. . 1975. Some observations on the three subalpine biogeocl imat ic zones in B r i t i s h Columbia, Yukon and Mackenzie D i s t r i c t . Phytocoenologia 2_(3/4):396-400. 330 Kra j i na , V . J . and R.H. Sp i lsbury . 1952. The eco log ica l c l a s s i f i c a t i o n of the forests of the eastern part of Vancouver Is land. Interim Report, 51 p. . 1953. Forest associat ions on the east coast of Vancouver Is land. Forestry Handbook for B . C . , pp. 142-145. 2nd ed. (1959):582-585. K ra j i na , V . J . , L. Or loc i and R.C. Brooke. 1953. Standard forms used for ecosystem s tud ies . Reprint from 1962 Progress Report (Appendix K) , National Research Council Grant No. T-92, Dept. B i o l , and Bo t . , Univ. B r i t i s h Columbia, pp. 83-105. Kubiena, W.L. 1953. The s o i l s of Europe. Thomas Murby and Company, London. 317 p. Ki ichler, A.W. 1966. Internat ional bibl iography of vegetation maps. Vo l . I I , Europe. Univ. Kansas L ibrary Se r i es . 584 p. . 1967. Vegetation mapping. Ronald Press , New York. 472 p. . 1968. Internat ional bibl iography of vegetation maps. Vo l . I l l , USSR, As ia and A u s t r a l i a . Univ. Kansas L ib ra ry Se r i es . 389 p. . 1970. Internat ional bibl iography of vegetation maps. Vo l . IV, "Af r ica , South America and the World (General ) , Univ. Kansas L ibrary Ser ies . 561 p. Lacate, D.S. 1965. Forest land c l a s s i f i c a t i o n fo r the Univers i ty of B r i t i s h Columbia Research Forest. Forest Research Branch, Dept. For. Pub l . 1107. 24 p. Lacate, D.S. 1969. Guidelines for biophysical land c l a s s i f i c a t i o n . Dept. F i sh , and For . , Can. For. Serv. Pub l . T264. 61 p. L a c e l l e , L .E .H . 1971. Carbon and nitrogen transformation in some forest f l o o r s . M.Sc. t hes i s , Dept. So i l Science, Univ. B r i t i s h Columbia. 58 p. 331 Lavku l i ch , L.M. 1972a. So i l c l a s s i f i c a t i o n and mapping. Dept. So i l Science, Univ. B r i t i s h Columbia. 4 p, (mimeo). . 1972b. So i l c l a s s i f i c a t i o n - legends and in te rp re ta t i ons . Dept. So i l Science, Univ. B r i t i s h Columbia. 8 p, (mimeo). 1973. Mapping uni ts in surveys of fo res t land and permafrost areas. Dept. So i l Science, Univ. B r i t i s h Columbia, 5 p, (mimeo). Lawton, E. 1971. Moss f l o r a of the P a c i f i c Northwest. The Botanical Laboratory Nichinan, Miyazaki , Japan. 362 p, 195 p. Leco. 1959. Inst ruct ional manual for operation of Leco carbon analyzer . Laboratory Equipment Corp. , S t . Joseph, Mich. 20 p. Lemieux, G . J . 1963. So i l -vegeta t ion re la t ionsh ip in the northern hardwoods of Quebec. In C T . Youngberg (ed . ) , Fo res t - so i l re la t ionsh ips in North America. Oregon State Univ. Press , pp. 163-176. Leskiw, L. 1973. So i l drainage c l a s s i f i c a t i o n . Agr icu l tu re of Canada, Vancouver, B.C. 12 p, Appendices, (mimeo). Lesko, G.L. 1961. Ecological study of s o i l s i n the Coastal western hemlock zone. M.Sc. t h e s i s , Dept. B i o l , and Bo t . , Univ . B r i t i s h Columbia. 141 p. Leuder, P.R. 1959. Aer ia l photographic in te rp re ta t ion . McGraw-Hill Book Company. 462 p. Lewi t t , J . 1954. Plant physiology. P r e n t i c e - H a l l , I nc . , New York. 172 p. L ikens, G . E . , F.H. Bormann, and N.M. Johnson. 1969. N i t r i f i c a t i o n : Importance to nutr ient losses from a cutover forested ecosystem. Science 163:1205-1206. 332 L ikens, G . E . , F.H. Bormann, N.M. Johnson, D.W. F isher , and R.S. P ie rce . 1970. E f fec t of f o res t cut t ing and herbicide treatment on nutr ient budgets in the Hubbard Brook Watershed ecosystem. Eco l . Monogr. 40:23-47. L loyd, L. and L. Gerbrandt. 1974. Hierarch ica l grouping analys is with optional cont igu i ty const ra in ts . Univ. B r i t i s h Columbia o u u i p u U I I i y U C I I O I C , C\J p . Loughnan, F.C. 1969. Chemical weathering of the s i l i c a t e minerals. American E lsev ie r Publ ishing Company, Inc . , New York. 154 p. Lu tz , H .J . 1960. Movement of rocks by uprooting of forest t rees . Am. J . S c i . 258:752-756. Major, J . 1951. A func t iona l , f ac to r i a l approach to plant ecology. Ecology 32:392-412. _. 1958. Plant ecology as a branch of botany. Ecology 39:352-363. . 1961. Use in plant ecology of causat ion, physiology, and a d e f i n i t i o n of vegetat ion. Ecology 42:167-169. . 1963. A c l imat i c index to vascular plant a c t i v i t y . Ecology 44:485-498. . 1969. H i s to r i ca l development of the ecosystem concept. Eco-system concept in natural resource management, G.M. Van Dyne (ed . ) , Academic Press New York and London. 383 p. . 1973. Letters to the ed i to r . B u l l e t i n of B r i t i s h Ecological Society IV ( l ) : 3 -5 . Marschner, H. 1974. Mechanism of regulat ion of mineral nu t r i t i on in higher p lants . The Royal Society of New Zealand, Wel l ington. B u l l e t i n No. 12:99-109. 333 Mathews, W.H., Fy les , J . G . and Naismith, H.W. 1970. Pos tg lac ia l crusta l movements in southwestern B r i t i s h Columbia and adjacent Washington State. Can. J . Earth S c i . 7(2):690-702. McCol l , J . G . 1972. Dynamics of ion transport during moisture flow from a Douglas- f i r forest f l o o r . So i l S c i . Soc. Am. Proc. 36:668-674. __. 1973. Environmental factors in f luencing ion transport in a Douglas- f i r forest s o i l in western Washington. J . Eco l . 61: 71-83. McKeague, J . A . and J . H . Day. 1966. Dithionate and oxalate ext ractable i ron and aluminum as aids in d i f f e ren t i a t i ng various c lasses of s o i l s . Can. J . So i l S c i . 46:13-22. McMinn, R.G. 1957. Water re la t ions in the Doug las- f i r region on Vancouver Is land. Ph.D. t h e s i s , Dept. B i o l , and Bo t . , Univ. B r i t i s h Columbia. 11.4 p. . 1960. Water re la t ions and fores t d i s t r i bu t i ons in the Douglas-f i r region on Vancouver Is land, Canada Dept. Ag r i cu l t u re , Forest B i o l . Lab. Publ . 1091. 71 p. . 1965. Water re la t ions of phytogeocoenoses in the Coastal Douglas- f i r zone of B r i t i s h Columbia. Ecology of Western N.A. 1(1):35-37. McVean, D.N. and D.A. R a t c l i f f e . 1962. Plant communities of the Scot t i sh highlands. A study of Scot t ish mountain moorland and fo res t vegetat ion. Monog. Nature Conservancy, No. 1, London. 455p. Meinzer, D.E. (ed . ) . Hydrology. Denver P u b l i c a t i o n s , - I n c . , New York. 712 p. Moore, J . J . 1962. The Braun-Blanquet system: A reassessment. J . Eco l . 50:761-769. 334 Mueller-Dombois, D. 1959. The.Douglas- f i r forest associat ions on Vancouver Island in the i r i n i t i a l stages of secondary succession. Ph.D. t hes i s , Dept. B i o l , and Bo t . , Univ. B r i t i s h Columbia. 570 p. . 1965. I n i t i a l stages of secondary succession in the Coastal Douglas- f i r and western hemlock zones. Ecology of Western N.A. 1(1): 3.8-41. and H. E l lenberg. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, New York, London, Sydney and Toronto. 547 p. Muir , J.W. 1962. The general p r inc ip les of c l a s s i f i c a t i o n with re fe r -ences to s o i l s . J . So i l S c i . 13(1):25-30. Neuhausl, R. 1968. Draft proposals for nomenclature p r inc ip les in f l o r i s t i c phytosociology. Fo l i a Geobot. Phytotax. 3_:47-55. Nyholm, E. 1969. I l l us t ra ted f l o ra of Fennoscandia. GWK Gleerup, Lund, Sweden. Fasc. 6 (Sphagnales ):698-765. O'Loughl in, C L . 1972. An invest iga t ion of the s t a b i l i t y of the steep-land forest s o i l s in the Coast Mountains of Southwest B r i t i s h Columbia. Ph.D. t hes i s , Fac. Forestry , Univ. B r i t i s h Columbia. 197 p. ' Odum, E.P. 1971. Fundamentals of ecology. 3rd e d . , W.B. Saunders Co. 574 p. Oost ing, H . J . 1956. The study of plant communities. W.H. Freemann & Co . , San Francisco. 440 p. O r l o c i , L. 1961. Forest types of the Coastal western hemlock zone. M.Sc. t h e s i s , Dept. B i o l , and Bo t . , Univ. B r i t i s h Columbia. 206 p. . 1964. Vegetational and environmental var ia t ions in the eco-systems of the Coastal western hemlock zone. Ph.D. t h e s i s , Dept. Bo t . , Univ. B r i t i s h Columbia. 199 p. 335 O r l o c i , L. 1965. The Coastal western hemlock zone in the Southwestern B r i t i s h Columbia mainland. Ecology of Western N.A. 1_(1): 18-34. Osborne, L .E. 1968. Influence of stocking and densi ty upon growth and y i e l d of trees and stands of coastal western hemlock. Ph.D. t h e s i s , Fac. Forestry, Univ. B r i t i s h Columbia. 396 p. Otto, G.F. and T. A h t i . 1967. Lichens of B r i t i s h Columbia, prel iminary c h e c k l i s t . Dept. Bot. Univ. B r i t i s h Columbia. 40 p, (mimeo). Ovington, J .D . 1962. Quant i tat ive ecology and woodland ecosystem concept. Advances in ecological research. J . B . Cragg (ed . ) , Academic Press, London and New York. Vo l . 1_: 103-192. Peterson, E.B. 1964. Plant associat ions in the Subalpine mountain hemlock zone in southern B r i t i s h Columbia. Ph.D. t h e s i s , Dept. Bo t . , Univ. B r i t i s h Columbia. 171 p. Pogrebnyak, P.S. 1930. Uber die Methodik von Standortuntersuchungen in Verbindung mit Waldtypen. Verh. I I . Int. Congr. F o r s t l . Versuchsanstal ten, 1929, Stockholm, pp. 455-471. Poore, M.E.D. 1955. The use of phytosociologieal methods in ecologica l i nves t iga t ions . Part I, II and I I I , J . E c o l . 43_:226-244, 245-269 and 606-651. . 1956. The use of phytosociologieal methods in eco log ica l i n v e s t i -gat ions. IV. General d iscussion of phytosocio logieal problems. J . Eco l . 44:28-50. . 1962. The method of successive approximation in descr ip t ive ecology. Adv. Eco l . Res. l_:35-68. Re ich le , D.E. (ed . ) . 1970. Analys is of temperate fo res t ecosystems. Spr inger-Ver lag, New York, Heidelberg and B e r l i n . 304 p. Remezov, N.P. and P.S. Pogrebnyak. 1969. Forest s o i l sc ience. Translat ion of the Russian o r i g i n a l : Lesnoe pochvovedenie (1965) by I s rae l i Program fo r S c i . T r a n s ! . , Jerusalem. 261 p. 336 Roddick, J . A . 1965. Vancouver North, Coquitlam and P i t t Lake map-areas, B r i t i s h Columbia with special emphasis on the evolut ion of p lutonic rocks. Canada Dept. Mines and Tech. Surveys, Geol . Survey of Canada, Memoir 334. 276 p. . 1966. Coast c r y s t a l l i n e be l t of B r i t i s h Columbia. Can Inst. Min. Met. Spec. Pub l . No. 8:73-82. Rode, A.A. 1961. The s o i l forming processes and s o i l evo lu t ion . Pochvoo-brasovatelnyi protsessi i evo lyuts ia pochv. (1947), Trans la t ion of the Russian o r i g ina l by I s rae l i Program fo r S c i . T r a n s ! . , Jerusalem. 100 p. Rowe, J . A . 1960a. Can we f ind a common platform for the d i f f e ren t schools of fo res t type c l a s s i f i c a t i o n ? S i l v a Fennica 105 (1960):83-88. . 1960b. Def in i t ion and c l a s s i f i c a t i o n of fo res t ecosystems. "Si lva Fennica 105 • (I960): 110-112. . 1961a. The level of in tegrat ion concept and ecology. Ecology "42(2):419-427. . 1961b. Cr i t tque of some vegetational concepts as appl ied to "forests of northwestern A lber ta . Can. J . Bot. 39(1961): 1007-1017. . 1962. S o i l , s i t e and land c l a s s i f i c a t i o n . For. Chron. 38(4): "420-232. Scho f i e l d , W.B. 1968a. A check l i s t of Hepaticae and Anthocerotae of B r i t i s h Columbia. Syesis 1_:157-162. . 1969b. A se lec t i ve l y annotated check l i s t of B r i t i s h Columbia "mosses. Syesis 1_: 163-175. Schuster, R.M. 1966, 1969, 1974. The Hepaticae and Anthocerotae of North America east of the hundredth meridian. V o l . 1 (1966), 802 p; Vo l . 2 (1969), 1062 p; Vo l . 3 (1974), 880 p. Columbia Univ. Press , New York and London. 337 Sco t t , D.R.M. 1955. Amount and chemical composition of the organic matter contr ibuted by overstory and understory vegetation to the fo res t s o i l . Yale Univ. Sch. For. B u l l . No. 62, 73 p. Shimwell, D.W. 1972. The descr ip t ion and c l a s s i f i c a t i o n of vegetation. Univ. Washington Press , Sea t t l e . 322 p. Simonson, R.W. 1968. Concept of s o i 1 . Adv. Agron. 20:1-47. Smith, J .H .G . 1971. Product iv i ty of western Canadian forests and the i r potent ia ls for improvements. A paper prepared for Symposium A 5 .3 , Twelfth P a c i f i c Science Congress, Canberra, A u s t r a l i a , August 18-September 3, 1971. 19 p. Sneddon, T . I . , L. Farstad and L.M. Lavku l ich . 1971. Fibre content determination and the expression of resu l ts in organic s o i l s . Can. J . So i l S c i . 51:138-141. So i l Research Ins t i t u te . 1973. Revised system of s o i l c l a s s i f i c a t i o n fo r Canada. A prov is ional co l l ec t i on of o f f i c i a l and tentat ive de f i n i t i ons for use by Canadian pedologis ts . Canada Dept. A g r i -cu l tu re . 99 ;p, (mimeo). So i l Science Society of America. 1970. Glossary of s o i l science terms. Published by SSSA, Madison, Wisconsin. 29 p. So i l Survey S ta f f . 1951. So i l survey manual. U.S.D.A. Handbook No. 18, U.S. Government Pr in t ing O f f i c e , Washington, D.C. 503 p. _. 1960. So i l c l a s s i f i c a t i o n , a comprehensive system. 7th approxi-mation. U.S.D.A. , U.S. Government Pr in t ing O f f i c e , Washington, D.C. 265 p. Stark , N. 1971. Nutr ient c y c l i n g . Nutr ient d i s t r i bu t i on in some Ama-zonian vegetat ion. Tropical Ecology l_2:24-50, 177-201. Stewart, G.R. , J . A . Lee, T.O. Orebanyo and D.C. H a v i l l . 1974. Ecological aspects of nitrogen metabolism. The Royal Society of New Zealand. B u l l e t i n No. 12:41-47. 338 Sukachev, V.N. 1944. 0 pr incipah geneticeskoj k l a s s i f i k a c i i v bioceno-l o g i i . Zhur. Obshchei B i o l . 5_: 213-277. (Ci ted from condensed Engl ish t rans la t ion by F. Raney and R.F. Daubenmire, 1958. On the p r inc ip les of genetic c l a s s i f i c a t i o n in biocenology. Ecology 39:364-367). . 1945. Biogeocenology and phytocoenology. Dokl. Akad. Nauk SSSR 47:447-449. Moskva. . 1960. Relat ionship of biogeocoenosis, ecosystem and fac ies . Soviet So i l S c i . (Engl , t rans.) 6_:579-584, (Pochvovedenie 6_: 1-10). and N. Dyl is (eds . ) . 1964. Fundamentals of forest b i o g e o c e -nology. O l i ve r and Boyd L t d . , Edinburgh and London. 672 p. Swanston, D.N. 1967. Debris avalanching in th in s o i l s derived from bedrock. P a c i f i c Northwest Forest & Range Exp. S ta . U.S.D.A. Forest Serv. Res. Note PNW-64, 7 p. . 1970. Mechanism of debris avelanching in shallow t i l l s o i l s b f southeast A laska . U.S.D.A. Forest Serv. Res. Pap. PNW-103. 17 p. and C T . Dyrnes. 1973. S t a b i l i t y of steep land. J . For. 71(5):264-269. Tansley, A .G. 1935. The use and abuse of vegetat ional concepts and terms. Ecology 16_: 284-307. Tappeiner, J . C . and A.A. Aim. 1975. Undergrowth vegetation e f fec ts on . the nut r ient content of l i t t e r f a l l and s o i l s in red pine and b i rch stands in Northern Minnesota. Ecology 56:1193-1200. Tarrant , R . F . , L.A. Isaac and R.F. Chandler. 1951. Observation on l i t t e r f a l l and fo l iage nutr ient content of some P a c i f i c Northwest tree spec ies. J . For. 49:914-915. 339 Tarrant , R . F . , K.C. Lu, W.B. Bul len and C.S. Chen. 1968. Nutr ient cyc l ing by throughfal l and stemflow p rec ip i ta t i on in three coastal Oregon fores t types. U.S.D.A. Forest Serv. Res. Pap. PNW-54. 7 p. Tay lor , T.M.C. 1966. Vascular f l o r a of B r i t i s h Columbia. Pre l iminary c h e c k l i s t . Dept. Bo t . , Univ. B r i t i s h Columbia. 30 p. Technicon Indust r ia l Systems. 1971a. Ammonia in sea water. Indust r ia l Method AA11, No. 154-71W. 2 p. . 1971b. Chlor ide in water and waste water. Indust r ia l Method AA11, No. 99-70W. 2 p. 1971c. Phosphate (ortho) in water and waste water. Indus t r ia l "Methods AA11, No. 155-71W. 2 p. . 1971d. Sul fate in water and waste water. Indust r ia l Method AA11, No. 118-71W. 2p. . 1973. S i l i c a t e s in water and waste water. Indust r ia l Method AA11, No. 105-71W. 2 p. Terry , D.L. and C.B. McCants. 1970. Quant i tat ive pred ic t ion of leaching in f i e l d s o i l s . So i l S c i . Soc. Am. Proc. 34:271-276. The Forest Club. 1971. Forestry Handbook. 3rd e d i t i o n , Univ. B r i t i s h Columbia. 815 p. Thimann, K.V. 1955. The l i f e of bac te r ia . The MacMillan Co . , New York. 775 p. Thornthwaite, C.W. 1948. An approach toward a ra t iona l c l a s s i f i c a t i o n of c l imate . Geogr. Rev. 38:55-90. Trewartha, G.T. 1954. An introduct ion to c l imate. McGraw-Hill Book Co . , New York. 402 p. 340 U t z i g , G. and L. Herr ing. 1974. Factors s i gn i f i can t to high e levat ion forest management. B.C. For. Se rv . , Research D i v i s i o n , V i c t o r i a , B.C. 52 p. . 1975. Forest harvesting impacts at high e levat ions . Five case s tud ies . B.C. For. Se rv . , Research D i v i s i o n , V i c t o r i a , B . C . , Research Note No. 72. 85 p. Vazhenin, I .G . , J . G . Tsyurupa and Ye. I. Absenyeva. 1972. Chemical composition of natural waters in the Vyg r i ve r basin in re la t i on to the s o i l s of central K a r e l i a . Sov. So i l S c i . 4_:90-9T. Wade, L.K. 1965. Vegetation and h is tory of the Sphagnum bogs of the Tofino area, Vancouver Is land. M.Sc. t h e s i s , Dept. Bot. Univ. B r i t i s h Columbia. 125 p. Wa l i , M.K., G.K. Grundling and D.W. B l i nn . 1972. Observations on the nutr ient composition of a freshwater lake ecosystem. Arch. Hydrobio l . 69:452-464. Ward, J . H . 1963. H ierarch ica l grouping to optimize an object ive funct ion. J . Am. S ta t . Assoc. 58:236-244. Waring, R.H. and J . Major. 1964. Some vegetation of the Ca l i f o rn i a redwood region in re la t i on to gradients of moisture, nu t r i en ts , l i g h t and temperature. Eco l . Monog. 34:167-215. Weatherburn, M.W. 1967. Phenol-hypochlori te react ion fo r determination of ammonia. Ana l . Chem. 39:971-974. Weldman, D .J . 1967. Fortran programming fo r behavioral sc iences. Ho l t , Rinehart & Wilson, pp. 308-317. Wi lde, S.A. 1971. Forest humus: i t s c l a s s i f i c a t i o n on a genetic bas is . So i l S c i . 3:1013. ,W T and J .M . Lambert. 1959. Mu l t i var ia te methods in plant ecology. I. Associat ion analys is in plant communities, J . Eco l . 47:83-101. 341 Wi l l i ams, W.T. and J .M. Lambert. 1960. Mu l t i var ia te methods in plant ecology. I I . The use of an e lec t ron ic d i g i t a l computer f o r assoc iat ion ana lys is . J . Eco l . 48:689-710. . 1961. Mu l t i var ia te methods in plant ecology. I I I . Inverse assoc iat ion ana lys i s . J . Eco l . 49:717-729. Windsor, G . J . 1969. Dynamics of phosphorus, s i l i c o n , i ron and aluminum movement in grav i ta t iona l rainwater in a Douglas- f i r ecosystem Ph.D. t h e s i s , Univ. Washington. 188 p. 342 A P P E N D I C E S 343 LIST OF APPENDICES Appendix Page I. LOCATION OF SAMPLING SITES (MAP 1:12,000) .' 344 I I . LIST OF SAMPLE PLOTS 345 I I I . PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS . 347 IV. IDENTIFICATION OF BEDROCK AND ROCK FRAGMENTS 388 V. TEXTURAL ANALYSIS OF SOILS 393 VI . CHEMICAL ANALYSIS OF SOILS . . . . . . . 406 VII . ELEMENTAL ANALYSIS OF SOIL ORGANIC LAYERS . . . . . . . 446 VI I I . ELEMENTAL ANALYSIS OF FOLIAGE . 452 IX. CHEMICAL ANALYSIS OF SEEPAGE (GROUND) WATER . . . . . . 475 X. CHECK LIST OF PLANT SPECIES . . . . . . . . . . . . . . 483 XI . ENVIRONMENT-VEGETATION TABLES BY A COMPUTER PROGRAM . 496 XI I . ENVIRONMENT VEGETATION TABLES AND THE TABLE OF COMPANION SPECIES . . . 521 XI I I . SYNECOLOGICAL MAP OF THE UBC RESEARCH FOREST (1:12,000) 622 344 APPENDIX I LOCATION OF SAMPLING SITES (MAP 1:12,000) . (MAPPflt@=P©eKET) ^ ( , L ^ - ^ APPENDIX II LIST OF.SAMPLE PLOTS \ i u u i c i / 346 TABLE 1 L i s t of the Sample Plots and Their C l a s s i f i c a t i o n Using the Numerical Symbolic for Synsystematic Units (see the complete i d e n t i f i c a t i o n legend for ecosystem types in the tex t par t , Table 23) P lo t Ecosystem P lo t Ecosystem P lo t Ecosystem Pilot Ecosystem PI a t Ecosystem No. Type No. Type No. Type No. 1 Type N o . Type 001 31.2 036 51.2 071 63.1 106 911.3 141 : 912.4 002 211.2 037 71.3 072 63.2 107 212.3 142 11.1 003 71.3 038 811.2 073 64.1 108 811.2 143 912.5 004 64.2 039 31.2 074 212.3 109 63.3 (144)* (91) 005 211.2 040 53.1 075 64.1 110 63.1 145 72.7 006 63.1 041 12.1 076 132.6 111 64.2 146 41.2 007 211.1 042 42.1 077 71.3 112 62.2 147 911.3 . 008 132.6 043 53.2 078 811.2 113 71.3 148 72.9 009 63.1 044 42.3 079 63.2 114 51.3 149 51.3 010 31.2 045 71.3 080 911.2 115 73.2 150 72.5 011 31.2 046 131.5 081 131.4 116 71.3 151 811.4 012 72.2 047 812.5 082 132.6 117 811.3 152 63.2 013 812.5 048 53.1 083 131.1 118 62.1 153 63.2 014 72.8 049 63.1 084 63.2 119 63.1 154 211.1 015 73.1 050 61.1 085 31.3 120 12.1 155 63.1 016 72.3 051 42.2 086 72.6 121 132.6 156 811.1 017 63.2 052 63.1 087 42.1 122 42.2 157 73.3 018 63.1 053 41.2 088 912.4 123 132.6 158 51.4 019 131.4 054 12.1 089 42.2 124 211.1 020 132.6 055 42.2 090 42.2 125 42.1 021 11.1 056 132.6 091 53.1 126 51.2 022 212.4 057 11.1 092 912.4 127 51.1 023 63.1 058 212.3 093 53.1 128 61.2 024 211.1 059 812.4 094 912.4 129 61.1 025 72.3 060 41.2 095 51.3 130 61.3 026 31.1 061 53.2 096 72.1 131 62.2 027 31.1 062 51.3 097 64.2 .132 62.1 028 31.1 063 41.1 098 71.2 133 62.1 029 812.4 064 51.2 099 812.4 134 ! 62.2 030 131.3 065 911.1 100 131.2 135 i 73.2 031 132.6 066 72.4 101 811.2 ; i36) * : (12 ) 032 211.1 067 63.2 102 63.1 137 101.1 033 64.1 068 51.3 103 12.3 138 101 .2 034 51.2 069 71.2 104 131.2 139 101.1 035 51.3 070 61.1 105 911.2 140 101.1 Sample plots nos. 136 and 144 were not included i n the data synthesis. 347 APPENDIX III PROFILE DESCRIPTIONS AND PHOTOGRAPHS OF REPRESENTATIVE SOIL SUBGROUPS (Tables 1-21 s Figures 1-18) Descript ions and co lor photographs of s o i l p r o f i l e s con-sidered to be representat ive of each s o i l subgroup recognized in the UBC Research Forest were se lec ted. The descr ip t ions fol lowed pract ices of the Canadian So i l Survey Committee (CSSC 1971, 1974). The c l a s s i f i c a t i o n followed the System of s o i l c l a s s i f i c a t i o n f o r Canada (CSSC, 1974). However, l i t h i c and gleyed subgroups, wi th the exception of the organic order, shown with a hyphen a f te r the f i r s t two numbers and a v i rgu le before the l a s t number (CSSC, 1974, p. 13), were considered here as subgroup mod i f ie rs , according to the Revised system of s o i l c l a s s i f i c a t i o n f o r Canada (So i l Research Ins t i t u te 1973), and, therefore, were not selected for the presentat ion. Or ts te in or Or ts te in development, not recognized in the present system, was appended to any subgroup of the Podzol ic order in parentheses. The fo l lowing subgroups were described and i l l u s t r a t e d : Orth ic Ferro-Humic Podzol (with o r ts te in development; Table 1, Figure 1 Mini Ferro-Humic Podzol ; Table 2, Figure 2 Sombric Ferro-Humic Podzol ; Table 3, Figure 3 L i t h i c Or th ic Humo-Ferric Podzol ; Table 3, Figure 3 Mini Humo-Ferric Podzol ; Table 5, Figure 5 348 Gleyed Sombric Humo-Ferric Podzol ; Table 6, Figure 6 L i t h i c Podzo l ; Table 7, Figure 7 Orthic Sombric B run i so l ; Table 8, Figure 8 Orth ic Dyst r ic B r u n i s o l ; Table 9, Figure 9 Orth ic Regosol; Table 10, Figure 10 Cumulic Regosol; Table 11, Figure 11 Orth ic Humic G leyso l ; Table 13, Figure 13 Typic Mes iso l ; Table 14 Te r r i c Mes i so l ; Table 15, Figure 14 Typic Humisol; Table 16 Te r r i c Humisol; Table 17, Figure 15 L i t h i c Humisol; Table 18 Typic F o l i s o l ; Table 19, Figure 16 L i t h i c F o l i s o l ; Table 20, Figure 17 Protoranker; Table 21, Figure 18 TABLE 1 PROFILE DESCRIPTIONS. OF REPRESENTATIVE SOIL SUBGROUPS PLOT NO. 068 COASTAL WESTERN H E M L O C K ZONE U.B.C.R.F. SOIL SUBGROUP : Orth ic Ferro-Humic Podzol (with o r t s t e i n development) developed on c o l l u v i a l veneer over moraine blanket HORIZON DEPTH DESCRIPTION LFH-DW 40-0 Ae Bhf Bhfcj 0-3 3-25 25-45 H-mor; coniferous fo l i age and par t l y decomposed mate r ia l s , underlain by a buried layer of mineral s o i l (deposited mater ia ls from upper s lopes) ; a th ick layer of decayed coniferous wood and amorphous organic mater ia ls ; p l e n t i f u l , f i ne and coarse roots ; abrupt, wavy boundary gray (10 YR 5/1) ; loamy sand; weak, f i n e , subangular b locky; f r i a b l e few f ine roots; 5% c f . ; abrupt, wavy boundary dark reddish brown (2.5 YR 3 /4 ) ; sandy loam; moderate, medium, sub-angular blocky; f i rm; p l en t i f u l f ine and coarse roo ts ; 6 0 % . c f . ; c l e a r , wavy boundary dark reddish brown (5 YR 3 /2 ) ; sandy loam; moderate, s t rong, sub-angular blocky; medium st rong, i nc ip i en t cementation; f i rm to very f i rm; 40% c f . ; few, very f i ne roots ; abrupt, wavy boundary IIC 45+ compacted t i l l 350 TABLE 2 . PLOT NO. 116 SOIL SUBGROUP: HORIZON DEPTH PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS C O A S T A L WESTERN H E M L O C K ZONE U . B . C R F . Mini Ferro-Humic Podzol developed on c o l l u v i a l veneer over quartz-d i o r i t e stones and boulders DESCRIPTION (L)H Bhfl Bhf2 Bf RB 8-0 0-15 15-40 moder (mullmoder); discontinuous layer of herbaceous and deciduous f o l i age , over ly ing wel l decomposed, f r i a b l e H- layer ; abundant, very f ine roots; c l e a r , wavy boundary yel lowish red (5 YR 4 /6 ) ; sandy loam; weak, f ine granular; very f r i a b l e ; p l e n t i f u l , f ine roots;.40% c f . ; gradual , wavy boundary yel lowish red (5 YR 5/6) ; s i l t loam; moderate, f ine to very f ine granular; very f r i a b l e ; p l e n t i f u l , f ine and coarse roots; 40% c f . ; c lear , wavy boundary 40-80 strong brown (7.5 YR 5 /6 ) ; loam; weak, medium, subangular blocky; f r i a b l e ; few f ine roots ; 60% c f . ; very abrupt, i r regu la r boundary .80+ quar tzd ior i te stones and boulders CO cn 352 70 -8 0 -9 0 -100-110-120— RB TABLE 3 . PLOT NO. 135 SOIL SUBGROUP: HORIZON DEPTH L(F) H Ah Bhf RB 2-0 . 0-10 10-30 30-60 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS C O A S T A L WESTERN H E M L O C K ZONE U . B . C R F . Sombric Ferro-Humic Podzol developed on c o l l u v i a l veneer over quar tzd ior i te stones and boulders DESCRIPTION mul l ; a th in layer of recent ly shed and p a r t i a l l y decomposed con-i ferous and herbaceous f o l i a g e ; c l e a r , discontinuous boundary Hrlayer mixed with mineral s o i l ; well decomposed; granular; very f r i a b l e ; abundant, f ine roo ts ; gradual , wavy boundary dark brown (5 YR 2 /2 ) ; loam; moderate, f i n e , granular; f ine roots; very f r i a b l e ; p l e n t i f u l , f ine roots ; 50% c f . ; c l e a r , i r regu la r boundary dark brown (7.5 YR 3-4 /2 ) ; loam; moderate to s t rong, f ine to medium, subangular blocky; f i rm ; p l e n t i f u l , f i ne roots; 80% c f . ; very abrupt i r regu la r boundary 60+ quar tzd ior i te stones and boulders co cn co 130 354 TABLE 4 PLOT NO. 121 SOIL SUBGROUP: HORIZON DEPTH PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS C O A S T A L WESTERN H E M L O C K ZONE U . B . C R F . L i t h i c Orthic Humo-Ferric Podzol developed on c o l l u v i a l veneer over quar tzd ior i te bedrock DESCRIPTION LF(H) 7-0 ;F-mor; a th in layer o f coniferous needles, twigs and mosses, underlain by a thick layer of p a r t i a l l y decomposed organic mater ia ls ; common yel low fungous mycel ia ; abundant f ine and coarse roots; H-layer i n d i s t i n c t ; very abrupt, wavy boundary Ae 0-5 gray (7.5 YR 6-5 /0) ; medium sand; weak, f ine to medium, subangulc blocky; f r i a b l e ; few, f ine roo ts ; 30% c f . ; c lear i r r egu la r boundary Bfh 5-12 yel lowish red (.5 YR 4 -5 /6 ) ; loamy sand; weak, f i n e , subangular blocky; very f r i a b l e ; p l e n t i f u l , f ine roots ; 35% c f . ; c l e a r , i r regu la r boundary Bf 12-45 strong brown'(7.5 YR 5 /6 -8) ; loamy sand; weak, f i n e , subangular blocky; f i rm; few, f ine roots ; 70% c f , ; very abrupt, i r regu la r boundary RB 45+ quartzdiorite stones and boulders 356 Figure 4 Loamy sand L i t h i c Orth ic Humo-Ferric Podzol with F-mor humus developed on c o l l u v i a l veneer over quar tzd io r i te bedrock (p lo t no. 121) £ 40—I UJ O ? 50 ' I r -2} 60-1 70H 80-90H 100-110-120—4 B f 2 BIIC R TABLE 5 PLOT NO. 046 SOIL SUBGROUP: HORIZON DEPTH LFH Ae Bf l Bf2 BIIC 10-0 0-3 0-15 15-50 50-80 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK ZONE U . B . C R F . Mini Humo-Ferric Podzol developed on g l a c i o f l u v i a l deposits over moraine veneer DESCRIPTION F-mor; a th in layer of f resh coniferous f o l i a g e , underlain by a th ick layer of p a r t i a l l y decomposed organic materials with common fragments of decayed wood; i n d i s t i n c t , f e l t y H-layer; common, yellow fungous mycel ia ; p l e n t i f u l , f ine roots; very abrupt, wavy boundary gray (5 YR 5/1) ; sandy loam; weak, f i n e , subangular b locky; f r i a b l e ; many, f ine roo ts ; 2 0 % c f . ; abrupt, discontinuous boundary dark reddish brown (2.5 YR 3 /4 ) ; sandy loam; weak, f i n e , sub-angular blocky; very f r i a b l e ; p l e n t i f u l , f ine roo ts ; 70% c f . ; gradual , wavy boundary yel lowish brown (10 YR 5 /6 ) ; sand; weak, f i n e , subangular blocky; very f r i a b l e ; common, f ine roots ; 50% c f . ; gradual , wavy boundary l i gh t yel lowish brown (10 YR 6 /4 ) ; loam; very weak, medium, sub-angular blocky; very f r i a b l e ; p l e n t i f u l , f ine to coarse roots ; " % c f . ; very abrupt, smooth boundary 80+ massive quar tzd ior i te bedrock to cn 130 358 Figure 5 Sandy loam Mini Humo-Ferric Podzol with F-mor humus developed on g l a c i o f l u v i a l deposits over moraine veneer (p lot no. 046) TABLE 6 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS PLOT NO. 148 SOIL SUBGROUP: HORIZON DEPTH COASTAL- WESTERN HEMLOCK ZONE U.B.C.R.F. Gleyed Sombric Humo-Ferric Podzol developed on g l a c i o f l u v i a l over glaciomarine deposits DESCRIPTION L(F) Ah Bfh Bf 3-0 0-10 10-25 25-65 I IB fg j l 65-80 mu l l ; a th in layer of recent ly shed herbaceous and deciduous f o l i a g e ; c l ea r , smooth boundary very dark brown (7.5 YR 3/2) ; loam; moderate, f i n e , granular; very f r i a b l e ; abundant, f i ne roots; 83% c f . ; abrupt, smooth boundary red (2.5 YR 4 /6 ) ; sandy loam; moderate, medium, subangular blocky; very f r i a b l e ; p l e n t i f u l , f ine roots ; c l e a r , i r regu la r boundary ye l lowish brown (10 YR 5 /4 ) ; sandy loam; weak, medium to coarse, subangular blocky; f i rm ; few, f ine roots; 6% c f . ; c l e a r , wavy boundary dark brown (10 YR 4 /3 ) ; common, medium, f a i n t , brown (10 YR 5/3) mott les; clay loam; moderate, medium to coarse, blocky; f i rm; few, f ine roots; 10% c f . ; c l e a r , wavy boundary I IBfgj2 80-100 brown (10 YR 5 /3 ) ; common, f i n e , f a i n t , dark ye l lowish brown (10 YR 4/4) mott les; c lay loam; moderate, medium, subangular blocky; f i rm; few, f i ne roo ts ; less than 5% c f . ; abrupt, smooth boundary BIIIC 100-120 pale brown (10 YR 6 /3 ) ; loam; weak, medium, blocky; f i rm; few, f ine roots; 30% c f . ; very abrupt, smooth boundary IHCg 120-135+ pale brown (10 YR 6 /3 ) ; sandy loam; massive; 50% c f . ; saturated with seepage water at the depth of 130 cm 0 0 cn 1 0 360 Figure 6 (Clay) loam Gleyed Sombric Humo-Ferric Podzol with mull humus developed on g l a c i o f l u v i a l over glaciomarine (shorel ine) deposits (p lot no. 148) X r-Q. 30 20H 10 20-£ 30H 2 4 0 " UJ O 5 50H 60-70H 80H 90H 100H 110H 120H 130—} Ae R TABLE 7 . PLOT NO. 053 SOIL SUBGROUP: HORIZON DEPTH LF(H) 10-0 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS C O A S T A L WESTERN H E M L O C K ZONE U.B.C.R.F. L i t h i c Podzol developed on moraine veneer over quar tzd io r i te bedrock* DESCRIPTION F-mor; a th in layer of undecomposed coniferous f o l i age , underlain by a uniform, th ick layer of p a r t i a l l y decomposed organic mater ia ls ; abundant white and yel low fungous mycel ia ; compacted root matt; i n d i s t i n c t , discontinuous, amorphous H-layer; abundant, f ine and coarse roots ; very abrupt, wavy boundary Ae 0-25 25+ gray (10 YR 6 /1) ; sandy loam; moderate f r i a b l e ; few, coarse and f ine roots ; i r regu la r boundary f i n e , subangular blocky; c . f . ; very abrupt, massive quar tzd ior i te bedrock, etched by coarse and f ine roots spreading over the rock surface K This s o i l , c l a s s i f i e d by Lesko (1961) as Eluviated Acid Regosol represents a l i t h i c var ia t ion of Humo-Ferric or Ferro-Humic Podzol with LFH and Ae horizons, underlain by bedrock. It meets c r i t e r i a nei ther for Organic nor Regosolic orders and, therefore, i t was designated as L i t h i c Podzol (Lavkul ich 1974), persona! communication) CO Figure 7 Sandy loam L i t h i c Podzol with F-mor humus developed on moraine veneer over quar tzd io r i te bedrock (p lo t no. 053) TABLE 8 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS PLOT NO. 115 ( p ro f i l e no. 2) COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. SOIL SUBGROUP: Orthic Sombric Brunisol developed on c o l l u v i a l veneer over quar tzd ior i te bedrock HORIZON DEPTH DESCRIPTION L 1-0 Ah 0-13 AB 13-28 mu l l ; a very th in layer of recent ly shed, undecomposed, herbaceous (fern) f o l i age ; discont inuous; very abrupt, smooth boundary very dark gray (10 YR 3/1) ; sandy loam; moderate, f ine to very f i n e , granular; very f r i a b l e ; abundant, f ine to coarse roots; less than 5% c f . ; c l e a r , i r r egu la r boundary dark yel lowish brown (10 YR 3/4) ; loam; weak, f i n e , granular; very f r i a b l e ; abundant, f i ne roots; 50% c f . ; gradual, wavy boundary Bm 28-60 dark gray brown (10 YR 4 /2 ) ; sandy loam; weak, f i n e , subangular b locky; very f r i a b l e ; p l e n t i f u l , f ine roots; 60% c f . ; very abrupt, i r regu la r boundary R 60+ massive quar tzd ior i te bedrock CO CO 364 Figure 8 Sandy loam Orthic Sombric Brunisol with mull humus developed on c o l l u v i a l veneer over quar tzd io r i te bedrock (plot no. 115) TABLE 9 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS PLOT NO. m COASTAL WESTERN HEMLOCK ZONE U.B.CRF. SOIL SUBGROUP: N ... N ... N ' ,, . , . Orthic Dystr ic Brunisol developed on a l l u v i a l deposits HORIZON DEPTH DESCRIPTION L(F) 3-0 moder; a th in layer of recent ly shed herbaceous (ferns) and dec i -duous fo l i age , underlain by a discont inuous, very f r i ab l e layer of p a r t i a l l y decomposed mater ia ls ; very abrupt, wavy boundary Bml 0-20 brown (10 YR 4 /3 ) ; sandy loam; moderate, f ine to very f i n e , granular very f r i a b l e ; abundant, f ine to coarse roots; 65% c f . ; c l ea r , wavy boundary Bm2 20-50 dark yel lowish brown (10 YR 4 /4 ) ; sandy loam; weak, very f i n e , granular; very f r i a b l e ; abundant, f ine to coarse roots; 70% c f . ; gradual, smooth boundary Bm3 50-90 ye l lowish brown (10 YR 5/4) ; loamy sand; weak, f i n e , granular; very f r i a b l e ; abundant, f ine to coarse roots; 70% c f . ; very abrupt, i r r egu la r boundary RB 90+ quar tzd ior i te stones and boulders CO cn cn Figure 9 Sandy loam Orthic Dystr ic Brunisol with moder humus developed on a l l u v i a l deposits (p lo t no. I l l ) TABLE 10 PLOT NO. 025 SOIL SUBGROUP: HORIZON DEPTH L(F) Ah AC C RB 2-0 0-20 20-45 45-65 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK ZONE U.B.CRF. Orthic Regosol developed on a l l u v i a l deposits DESCRIPTION hydromor; a th in layer of recent ly shed herbaceous f o l i age , underlain by a discontinuous F- layer ; abrupt, wavy boundary very dark gray (5 YR 3/1) ; sandy loam; moderate, medium to coarse, granular; very f r i a b l e ; abundant, very f ine roots ; very abrupt, i r regu la r boundary dark brown (10 YR 4 / 3 ) ; loamy sand; weak, medium, subangular blocky; few, f ine roots ; 35% c f . ; gradual., wavy boundary dark brown (7.5 Y R 4 / 2 ) ; loamy sand; s ing le grained; loose; few, f ine roots; 80% c f . ; saturated with seepage water at the depth of 45 cm; very abrupt, i r regu la r boundary 65+ quar tzd ior i te stones and boulders 120-4 130—I co Figure 10 Loamy sand Orthic Regosol with hydromor humus developed on a l l u v i a l deposits (p lot no. 025) TABLE I] PLOT NO. 016 SOIL SUBGROUP: HORIZON DEPTH PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. Cumulic Regosol developed on a l l u v i a l deposits DESCRIPTION Ah 1-0 0-14 14-35 mu l l ; a very th in layer of recent ly shed herbaceous fo l iage (dense mat of Civoaea alpina and Tiarella trifoliata); very abrupt , ' wavy boundary black (5 YR 2 /1) ; sandy loam; moderate, medium, granular ; f r i a b l e ; abundant, f ine roo ts ; abrupt, i r r egu la r boundary, f requent ly occurr ing earthworms reddish brown (5 YR 4 /4 ) ; loam; weak, f i n e , granular; loose to very f r i a b l e ; common, f ine roots ; 50% c f . ; abrupt, smooth to wavy boundary Ahb&Cb 35-115+ many th in to medium thick layers of Ahb and Cb horizons of yery dark gray (7.5 YR 3/2) and very dark gray brown (10 YR 3/2) respec t ive ly ; loamy sand; weak, medium, subangular blocky; f r i a b l e ; few f ine roots; abrupt to c l e a r , smooth to discontinuous boundary CO cn Figure 11 Loamy Cumulic Regosol with mull humus developed a l l u v i a l deposits (p lot no. 016) TABLE 12 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS PLOT NO. 014 SOIL SUBGROUP: HORIZON DEPTH COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. Orthic Humic Gleysol developed on g lac io lacus t r ine over g lac io-marine deposits DESCRIPTION L(H) 2-0 hydrornull; a very th in layer of recent ly shed, undecomposed herba-ceous fo l i age , intermingled with mosses {Plagiomnium insigne), underlain by an i n d i s t i n c t , discontinuous H-layer; very abrupt, wavy boundary Ah 0-20 very dark gray brown (10 YR 3/2) ; c lay loam; moderate, medium, subangular blocky; f r i a b l e ; abundant, f ine t o c o a r s e roots ; 26% c f . ; c l ea r , wavy boundary AIIC 20-30 l i gh t yel lowish brown (10 YR 6 /4) ; sandy loam; weak, medium, blocky; f i rm; few, f ine roots ; gradual , wavy boundary I lCg 30-90+ gray (5 YR 6/1) ; many, la rge , prominent, strong brown (7.5 YR 5/6) mott les; s i l t y c l ay ; massive; very f i rm; stagnant water table at the depth of 75 cm co 372 I Figure 12 S i l t y clay Orthic Humic Gleysol with hydromull humus developed on g lac io lacus t r ine over glaciomarine deposits (p lot no. 014) TABLE 13 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS • PLOT NO. 117 SOIL SUBGROUP: HORIZON DEPTH COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. LFH OH Bhfgj Bfg 10-1 0-35 35-65 65-105 Or th ic Gleysol developed on a l l u v i o - c o l l u v i a l deposits over quar tz-d i o r i t e bedrock DESCRIPTION hydromoder; a th in layer of recent ly shed herbaceous f o l i a g e , i n t e r -mingled with mosses [Plagiomnium insigne and Leucolepis menziesii)', underlain by i n d i s t i n c t , discontinuous F- layer ; H-layer gradual ly changes to Oh laye r ; gradual to d i f f use , wavy boundary very dark brown (10 YR 2 /2 ) ; f ine to medium granular (crumby); f r i a b l e abundant, f i ne roo ts ; very abrupt, wavy boundary reddish brown (5 YR 4 /4 ) ; common, f i n e , f a i n t red (2.5 YR 4/6) mot t les; s i l t loam; massive to weak, medium subangular blocky; many, f ine roots ; 5% c f . ; c lear wavy boundary dark brown (7.5 YR 4 /4 ) ; s i l t loam; massive to weak, coarse, sub-angular b locky; many, f ine roots ; 20% c . f . ; saturated with seepage water at the depth of 70 cm; very abrupt, i r r egu la r boundary RB 105+ quar tzd ior i te stones and boulders CO CO Figure 13 S i l t loam Orthic Gleysol with hydromoder humus developed on a l l u v i a l deposits over quar tzd io r i te stones and boulders (p lo t no. 117) 30-20-TABLE 14 PLOT NO. 144 SOIL SUBGROUP: PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. Typic Mesisol developed on organic blanket 10-o-b-20H HORIZON DEPTH to K jf 30-Of Om Of Om 7-0 0-35+ DESCRIPTION hydromoder; a poorly def ined, discontinuous layer of undecomposed organic mater ia ls , underlain by coherent mass of p a r t i a l l y decom-posed mater ia ls ; matted, abundant roots of Carex leptalea and Sphagnum spp. p a r t i a l l y decomposed organic mater ia ls ; common wood and vegetation fragments; massive; s o f t ; stagnant water table at the depth of 5 cm £ 40-S 50-x Q. 60H 70H 80H 90H 100H 110-120H CO cn 130H 30-20-i T A B L E 15 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS . PLOT NO. 038 COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. SOIL SUBGROUP-- Ter r i c Mesisol developed on organic veneer over moraine blanket 10- HORIZON DEPTH 10-20-OC ju 30-U J s £ 40-Z 50-I H uJ 60-70-80-Om1 OmZ 0m3 OmU 0ml 0m2 0m3 0m4 HCg & VA 10-0 0-35 35-55 55-80 80-95+ DESCRIPTION hydromor; a th in layer o f coniferous fo l i age and twigs, underlain by a th i ck , p a r t i a l l y decomposed l a y e r ; somewhat matted; abundant f i ne to coarse roo ts ; gradual , smooth, boundary dark reddish brown (5 YR 2 /2 ) ; p a r t i a l l y decomposed; common fragments of decayed wood; somewhat matted; f r i a b l e ; abundant, f ine to coarse roots ; gradual , smooth boundary dark reddish brown (5 YR 3 /4 ) ; fragments of charred and decayed wood; massive; so f t ; few, f i ne roo ts ; c l e a r , wavy boundary very dark gray (5 YR 3/1) ; common fragments of herbaceous fo l iage and large undecomposed wood fragments; massive; s o f t ; saturated with very slowly moving seepage water at the depth of 55 cm; c l e a r , wavy boundary gray (10 YR 6 /0) ; s i l t ; massive; f r i a b l e ; mixture of vo lcanic ash and t i l l 90H IICg&VA IOOH noH 120H co 130-H 377 TABLE 16 PLOT NO. 143. SOIL SUBGROUP^ HORIZON DEPTH PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. Typic Humisol developed on organic blanket DESCRIPTION 0ml 0m2 Ohl 0h2 8-0 0-30 30-70 hydromor; a th in layer of coniferous fo l iage and twigs, underlain by p a r t i a l l y decomposed organic mater ia ls ; granular; f r i a b l e ; abundant, f ine to coarse roo ts ; c l ea r , wavy boundary strong brown (10 YR 4 /4 ) ; massive; so f t ; p len t i f u l f ine to coarse roots; common decayed wood fragments; abundant, undecomposed mosses (Sphagnum spp.);stagnant water table at the depth of 30 cm; c l ea r , wavy boundary very dark brown (7.5 YR 3 /2 ) ; massive; so f t ; common wood fragments of western redcedar; gradual , i r regu la r boundary 70-100+ very dark brown (7.5 YR 2 /2 ) ; massive; so f t ; common, large wood fragments of western redcedar co ' - v l 0 0 30-2 0 H TABLE 17 PLOT NO. 080 SOIL SUBGROUP: PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK, ZONE U.B.C.R.F. Ter r i c Humisol developed on organic veneer over a l l u v i a l deposits 10- HORIZON DEPTH DESCRIPTION in at 10H 20H 30-£ 40-U J O Z 50-X S} 60 H 70-80-H 90H 100H Om-DW Oh VA HCg Of 2-0 hydromoder; a poorly def ined, th in layer of undecomposed and p a r t i a l l y decomposed mater ia ls ; somewhat compacted; intermingled with mosses; abrupt, wavy boundary Om-DW 0-30 dark brown (7.5 YR 3 /2 ) ; medium, f i n e , granular ; very f r i a b l e ; abundant, f ine to coarse roo ts ; common fragments of decayed wood; c l ea r , wavy boundary Oh 30-50 very dark brown (10 YR 3 /2 ) ; weak, medium, blocky; f r i a b l e ; many, f ine roots ; few decayed wood fragments; very abrupt, i r r egu la r boundary VA 50-65 brownish yel low (10 YR 6 /6 ) ; s i l t y c l ay ; massive; s o f t ; intermingled with i r r egu la r , t h i n , discontinuous bands of organic mate r ia l s ; very abrupt, wavy boundary-, stagnant water table at the depth of 55 cm HCg 65-90+ dark gray brown (2.5 Y 4 / 2 ) ; s i l t y c lay loam; massive; sof t 110-H 120-130H 380 10-20-at UJ 30-UJ £ 40-o 5 50-I t-Q. 60-H 70-80-90H 100H 110H 120H 130H 3L Oh R B TABLE 18 PLOT NO. 078-SOIL SUBGROUP: HORIZON DEPTH L 2-0 Oh RB 0-45 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. L i t h i c Humisol developed on organic veneer over quar tzd io r i te bedrock (stream al luvium) DESCRIPTION hydrornull; a very t h i n , discontinuous layer of recent ly shed deciduous fo l iage {Alnus sinuata)\ very abrupt, broken; boundary very dark gray (10 YR 3 /1 ) ; weak, coarse, subangular blocky to massive; f r i a b l e to so f t ; abundant, f i ne roo ts ; fast.moving stream water at the depth of 35 cm; very abrupt, wavy boundary 45+ quar tzd ior i te stones and boulders co 00 TABLE 19 PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS PLOT NO. 050 SOIL SUBGROUP: COASTAL WESTERN HEMLOCK ZONE Typic Fo l i so l developed on c o l l u v i a l blanket U.B.CR.F. HORIZON DEPTH DESCRIPTION (LF)H H&RB 5-0 moder; a very th in , discontinuous layer of recent ly shed deciduous fo l iage (Acer civcinatum); underlain by an i n d i s t i n c t , d i scon t i n -uous layer of p a r t i a l l y decomposed mater ia ls ; both layers are i r regu la r l y d is t r ibu ted in the upper part of the p r o f i l e 0-75+ amorphous organic mater ials are mixed with coarse sand and small fragments of charred and decayed wood; moderate, f i n e , granular ; f r i a b l e ; common, f ine roots ; i n t e r s t i ces are p a r t i a l l y f i l l e d with organic mater ia ls co 00 ro Figure 16 Typic Fo l i so l with moder humus developed on c o l l u v i a l blanket (p lo t no. 050) TABLE 20 10-20-30-</) 01 U l t-U J £ 40—} UJ O 5 50H I H 2} 60-70H 80H 90 H 100H 110-120-} 130H R PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. PLOT NO. 030 (p ro f i l e no. l ) SOIL SUBGROUP: L i t h i c Fo l i so l developed on organic veneer over quar tzd io r i te bedrock HORIZON DEPTH LFH 10-0 Ae R 0-3 3+ DESCRIPTION very th in layers of coniferous fo l iage and leaves, of Gaultheria shallon, underlain by an i n d i s t i n c t F- layer with many f ine roots ; black (5 YR 2/2) H-layer has abundant, f ine to coarse roots ; common fragments of decayed and charred wood; very abrupt, wavy boundary dark gray (5 YR 4 / 1 ) ; sandy loam; weak, f i n e , subangular blocky; f r a i b l e ; many, f ine roo ts ; very abrupt, smooth boundary massive quar tzd ior i te bedrock, etched by coarse and f ine roots , spreading over the rock surface co OO -J> Figure 17 L i t h i c Fo l i so l with H-mor humus developed on organic veneer over quar tzd ior i te bedrock (p lo t no. 030) 30 2 0 — 10 20-cr UJ 3 0 -z O 4 0 -5 50H I l -CL 60H 70H 80-90H 100H 110-1 120-4 130H R TABLE 21 PLOT NO. 132 SOIL SUBGROUP-HORIZON DEPTH (L)FH 9-0 0+ Kubiena (1953) PROFILE DESCRIPTIONS OF REPRESENTATIVE SOIL SUBGROUPS COASTAL WESTERN HEMLOCK ZONE U.B.C.R.F. * Proranker developed on organic veneer over quar tzd ior i te bedrock DESCRIPTION F-mor; very thick to discontinuous layers of recent ly shed conifer-ous f o l i age ; F and H layers mixed; black (7.5 YR 2 /0 ) ; moderate f ine granular ; very f r i a b l e ; few, f ine roots ; common, coarse sandy g ra ins ; very abrupt, smooth boundary massive quar tzd ior i te bedrock, etched by coarse and f ine roots, spreading over the rock surface to oo 387 388 APPENDIX III IDENTIFICATION OF BEDROCK AND ROCK FRAGMENTS (Tables 1 - 3 ) The samples marked by three d i g i t s (p lo t number) were co l lec ted from the s o i l p i t s . The samples, marked by two d i g i t s (sample number), were co l lec ted from other s i t e s . Each sample i s referred to a compartment number (COMP. NO.) for easy or ien ta t ion on the map showing the locat ion of sampling s i tes (Appendix I ) . Rock fragments found in s o i l p i t s are presumed to have been transported and they can be s i m i l a r or bear no s i m i l a r i t y with the underlying bedrock. MODE OF ORIGIN - refers to the o r i g in of a sample, GLACIAL - rock fragments transported during g lac ia t i on of the area, POSTAGLACIAL - rock fragments transported a f te r g lac ia t i on by the act ion of grav i ty or moving water or both, and BEDROCK - rock fragments separated from residual bedrock e i ther exposed or mantled by unconsolidated mate r ia l s . Pref ixes used for the mafic mineral ra t i o are : hornblende more abundant than b i o t i t e b i o t i t e more abundant than hornblende hornblende more than 90% of the to ta l mafic content b i o t i t e more than 90% of the to ta l mafic content. HB BH H B Following the root name of rock, estimates of mafic minerals and potassium feldspars are given ( in percent) , occas iona l ly with . some comment on texture of a sample. I D E N T I F I C A T I O N OF B E D R O C K A N D R O C K F R A G M E N T S C O A S T A L W E S T E R N H E M L O C K Z O N E C O L L E C T E D IN S U M M E R 1 9 7 2 A N D 1 9 7 3 B Y K . K L I N K A < U . B . C . R E S E A R C H F O R E S T I D E N T I F I E D B Y G . R I C H A R D S T A B L E 1 1 P L O T NO. ORl C O M P . 1 M O D E OF 1 C L A S S I F I C A T I O N B Y R O D D I C K ( 1 9 6 5 ) . 1 1 S A M P L E NO. 1 N O . 1 O R I G I N I 1 0 0 2 3 0 I G L A C I A L 1 B H - O U A R T Z D I O R I T E 1 0 ? 1 1 0 0 * 3 0 1 G L A C I A L 1 H - Q U A R T Z D I O R I T E 1 0 3 , 3 ? K - F E L D S P A R ; H - O I O R I T E 5 0 ? ; A N O E S I T E 1 1 0 0 6 3 0 I G L A C I A L 1 B - . Q U A R T Z D I O R I T E 5 5 , 2 ? K - F E L D S P A R ; H - Q U A R T Z D I O R I T E 1 0 ? } A N D E S 1 T E . 1 1 0 0 7 3 0 I G L A C I A L 1 B H - O U A R T Z D I O R I T E 731, 1 ? K - F E L D S P A R i H - D I OR I T E 5 0 ? , F I N E G R A I N E D 1 1 0 0 8 3 0 I P O S T G L A C I A L 1 H - D I O R I T E 50'; 1 1 0 1 5 1 1 P O S T G L A C I A L 1 H - Q U A R T Z D I O R I T E 5 ? , F O L I A T E D , A M P H I B O L I T E J H - D I O R I T E 2 0 ? 1 1 0 1 7 1 I P O S T G L A C I A L 1 H - D I O R I T E 15-30? 1 1 0 2 3 3 1 I G L A C I A L 1 A N D E S I TE, P O R P H Y R I T I C ; Q U A R T Z D I O R I T E 2 ? 1 1 0 2 * 3 1 I G L A C I A L 1 H B - Q U A R T Z O I O R I T E 2 - 1 0 ? 1 1 0 2 6 3 1 I G L A C I A L 1 H - Q U A R T Z D I O R I T E 7 ? 1 1 0 2 7 3 1 I G L A C I A L 1 A P L I T E D Y K E ; H - Q U A R T Z D I O R I T E 10% 1 1 0 2 9 3 1 I G L A C I A L 1 B H - Q U A R T Z D I O K I T E 5 ? , F I N E G R A I N E D ; H - Q U A R T Z D I O R I T E 8 ? , F O L I A T E D 1 1 0 3 0 3 1 1 B E D R O C K I H - Q U A R T Z D I O R I T E 8? 1 1 0 3 2 3 1 I G L A C I A L 1 H - Q U A R T Z D I O R I T E 10%; H - D I O R I T E 3 0 ? , F I N E G R A I N E D 1 1 0 3 3 3 1 I P O S T G L A C I A L 1 H B - Q U A R T Z D I O R I T E 10% 1 1 0 5 0 5 I P O S T G L A C I A L 1 H - Q U A R T Z D I O R I T E 1 2 ? , F O L I A T E D 1 1 0 6 0 1 8 1 B E D R O C K I H - Q U A R T Z D I O R I T E 1 0 - 3 0 5 1 P O R P H Y R I T I C A N D E S I T E 1 1 0 6 2 1 8 I P O S T G L A C I A L 1 B H - Q U A R T Z D I O R ITE 7 ? 1 1 0 6 3 1 8 1 B E D R O C K I H - Q U A R T Z D I O R I T E 1 0 3 1 1 0 6 * 1 6 I G L A C I A L 1 B - Q U A R T Z D I O R I T E ICS; 1 1 0 6 6 1 6 I P O S T G L A C I A L 1 H - D I O R I T E 1 0 - * 0 S ' 1 1 0 6 9 2 3 I G L A C I A L 1 B H - Q U A R T Z D I O R I T E 8?, F O L I A T E D , A N D E S I T E 1 I 0 7 0 2 3 I P O S T G L A C I A L ! B - Q U A R T Z D I O K I TE 8?, F O L I A T E D 1 1 0 7 0 2 3 1 B E D R O C K 1 B - Q U A R T Z D I O R I TE 8%, F O L I A T E D 1 1 0 7 1 2 3 I P O S T G L A C I A L 1 H B - Q U A R T Z D I O R I T E 8? y F O L I A T E D * P O R P H Y R I T I C A N D E S I T E 1 1 0 7 2 2 3 I P O S T G L A C I A L H - Q U A R T Z D I O R I T E 1 5 3 , F O L I A T E D 1 1 0 7 3 2 1 1 B E D R O C K I H b - G R A N O D I O R I T E 7 ? , R X K - F E L D S P A R 5 ( A N D E S I T E ) 1 1 0 7 * 2 1 I P O S T G L A C I A L 1 H - Q U A R T Z D I O R I T E 15? 1 1 0 7 5 2 1 I G L A C I A L 1 B H - Q U A R T Z D I O R I T E 1 0 ? ; B H - G R A N O D I O R I T E 5% 1 1 0 7 6 2 1 I G L A C I A L H - Q U A R T Z D I O R I T E 10% 1 1 0 7 7 1 8 I P O S T G L A C I A L B H - Q U A R T Z D I O R I T E 1 0 ? , F O L I A T E D 1 1 0 7 7 1 8 1 B E D R O C K ! H - D I O R I T E 20'*, F I N E G R A I N E D 1 1 0 7 9 1 9 I P O S T G L A C I A L H - Q U A R T Z D I O R I T E 15? 1 1 0 8 1 2 5 I G L A C I A L H B - Q U A R T Z D I O R I T E 1 0 ? 1 1 oe2 2 5 1 B E D R O C K A N D E S ITE P O R P H Y R I T I C 1 1 0 8 3 2 7 1 B E D R O C K H B - Q U A R T Z D I G R I T E 10? 1 1 0 8 * 2 7 I P O S T G L A C I A L H - Q U A R T Z D I C R I T E 3?; P O R P H Y R I T I C A N D E S I T E 1 I 0 8 9 2 1 1 B E D R O C K H - Q U A R T Z D I O R I TE 10'?; A M P H I B O L I T E 1 1 0 9 0 2 1 I 8 E 0 R 0 C K A M P H I B O L I T E ; H - D I O R I T E 1 5 ? 1 1 0 9 3 6 I G L A C I A L H - D I O R I T E 1?"; ( P O R P H Y R I T I C A N O E S I T E ) 1 1 0 9 * 6 I G L A C I A L H - D I O R I T E *GS; H - Q U A R T Z D I O R I T E 1 0 ? 1 1 1 0 2 2 6 I P O S T G L A C I A L Q U A R T Z D I O R I T E ; A N D E S I T E 1 1 1 0 7 2 2 I P O S T G L A C I A L H - Q U A R T Z D 1 O K I T c 7 ? 1 1 1 0 8 2 2 I P O S T G L A C I A L A N D E S I T E 1 1 1 0 9 2 2 I P O S T G L A C I A L H - Q U A R T Z D I O R I T E 1 2 ? 1 1 1 1 0 2 2 I P O S T G L A C I A L H - D I O R I T E 10?; A M P H I B O L I T E 1 1 1 1 1 1 1 1 G L A C I A L H B - Q U A R T Z D I O R I T E 2%', H - Q U A R T Z D I OR I T E 1 0 - 2 5 ? / F O L I A T E D , A N D E S I T E 1 1 1 1 2 1 0 1 B E D R O C K A M P H I B O L I T E 1 1 1 1 5 2 1 B E D R O C K B - Q U A R T Z P I O R I TE 5 ? , - ( A N D E S I T E ) 1 1 1 1 6 2 I P O S T G L A C I A L B - Q U A R T Z D I O R I T E 5 ? ; H - Q U A R T Z D I O R I T E 2 5 ? 1 I D E N T I F I C A T I O N O F B E D R O C K A N D R O C K F R A G M E N T S C O A S T A L W E S T E R N H E M L O C K Z O N E C O L L E C T E D I N S U M M E R 1 9 7 2 A N D 1 9 7 3 S Y K . K L I N K A ' U . B . C . R E S E A R C H F O R E S T I D E N T I F I E D B Y G . R I C H A R D S T A B L E 2 1 P L O T N O . O R l COMP.1 MODE OF 1 C L A S S I F I C A T I O N B Y R O D D I C K 1 9 6 5 1 S A M P L E NO.I N O . ! O R I G I N 1 1 1 8 1 2 1 B E D R O C K I B H - O U A R T Z D I O R I T E 7 ? 1 1 9 | I P O S T G L A C I A L 1 H B - Q U A R T Z D I C R l T E 1 5 % ; H D I O R I T E 1 5 - 5 0 % 1 5 2 1 1 9 I P O S T G L A C I A L I F E L S I T E ; Q U A R T Z R I C H A P L I T E ; H - D I O R I T E 15? 1 5 3 1 2 6 1 B E D R O C K I B H - Q U A R T Z D I O R I I E 10% 1 5 5 1 2 2 1 BEDROCK I A N D E S I T E ; H - O U A R T Z D I O R I T E 10? 1 5 6 1 1 0 1 G L A C I A L 1 A M P H I B O L l T E i H - D I O R I T E 4 0 % ; H - Q U A R T Z D I O R I T E 1 0 % , 8 % K - F E L D S P A R R 0 1 1 1 4 1 BE DROCK I Q U A R T Z V E I N j 5 - 7 % F E P Y R I T E ; ANDES I T E R 0 2 1 1 * 1 BEDROCK I A M P H I B O L I T E R 0 3 1 U I P O S T G L A C I A L 1 E P I DOTE R O * 1 1 1 I P O S T G L A C I A L 1 A M P H I B O L I T E R 0 5 1 1 4 1 BEDROCK I H - D I U R I T E 5 0 " , ' H - Q U A R T Z D I O R I T E 7% . R 0 6 1 1 2 1 B E D R O C K 1 H B - O U A R T Z D I O R I T E 10%, F O L I A T E D R 0 7 1 4 1 BE DROCK I A N D E S I T E 5 0 % ; P Y R I T E - F I N E G R A I N E D ; H - O U A R T Z D I O R I T E 5%, F O L I A T E D R 0 8 1 3 0 1 BEDROCK I A N D E S I T E 50% R 0 9 1 4 1 BE DROCK 1 H B - O U A R T Z D I O K I T E 1 0 " , F O L I AT ED R I O 1 1 6 I P O S T G L A C I A L 1 R E C E N T L I M E S E D I M E N T OF UNKNOWN O R I G I N R 1 2 1 6 1 B E D R O C K j H - D I O R I T E 40° ; , F I N E G R A I N E D ; P Y R I T E , A P L I T E R 1 3 1 6 1 BEDROCK j H B - O U A R T Z D I O K I T E 5 ? R H 1 6 1 BE DROCK 1 H - O U A R T Z D I O R I T E 15%, F O L I A T E D ; O U A R T Z ! F E L S I T E R 1 5 I 7 1 BEDROCK I H - Q U A R T Z D I O R I T E 15%, t F O L I ATED F E L S I T E ) ; H - D I O R I T E 3 0 % J P Y R I T E R 1 6 1 7 1 B E D R O C K 1 H - Q U A K T Z D I G K I T E 10% R 1 7 1 1 8 I B E D R O C K 1 H - Q U A R T Z D 1 0 R ! T E 10% R 1 8 1 7 1 BEDROCK 1 H - Q U A R T Z D I O R I T E 10% R 1 9 ! 6 1 BE DROCK • 1 B - Q U A R T Z D I G R 1 T E 7%; A N D E S I T E R 2 0 1 2 9 I B E D R O C K 1 H - Q U A R T Z D I C R I T E 10% R 2 1 1 2 9 1 B E D R O C K I H - D I O R I T E 1 5 - 6 0 % R 2 2 1 2 9 I B E D R O C K I H - Q U A R T Z D I O R I T E 30% R 2 3 1 2 9 I B E D R O C K I H - Q U A R T Z D I O R I T E 8% R 2 4 I 2 4 1 BEDROCK I B H - O U A R T Z D I O R I T E 8 ? R 2 5 1 2 4 I B E D R O C K | H - Q U A R T Z D I O K I T E 10%; H - Q U A R T Z D I O R I T E 30%, F I N E G R A I N E D " , C O P P E R R 2 6 1 2 4 I B E D R O C K I H - Q U A R T Z D I U R I T E 7% R 2 7 1 3 2 I B E D R O C K I H - Q U A R T Z D I O R I T E 1 0 % ; ( P O R P H Y R I T I C A N D E S I T E ) R 2 8 1 2 9 I B E D R O C K 1 H - U U A R T Z D I O K I T E 10% R 2 9 1 2 1 1 B E D R O C K I H - Q U A R T Z D I O R I T E 15% R 3 0 1 7 I B E D R O C K I H - U U A R T Z D I C R I T E 8%, ( F I N E G R A I N E D ) R 3 1 1 2 4 I B E D R O C K I B H - O U A R T Z O I O R I T E 5%; ( A N D E S I T E ) } C O P P E R R 3 2 1 2 4 1 B E D R O C K 1 H B - Q U A R T Z D I O R I T E 6%, ( K - F E L D S P A R ) R 3 3 1 7 I B E D R O C K | H - Q U A R T Z D I O R I T E 10% R 3 4 1 7 I B E D R O C K I H B - Q U A R T Z D I O R ITE 7% R 3 5 1 8 1 B E D R O C K 1 H - Q U A R T Z D IO R I I C 1 0 % ; ( A N D E S I T E ) R 3 6 1 1 8 I B E D R O C K 1 H - Q U A R T Z D I O R I I E 7% R 3 7 1 2 6 I B E D R O C K I H B - Q U A R T Z D I O R I T E 7% R 3 8 1 2 2 I B E D R O C K 1 H - O U A R T Z D I O R I T E 12% R 3 9 1 2 2 I B E D R O C K 1 H - U U A R T Z D I O R I T E . 1 0 % ; ( A N D E S I T E ) R 4 0 1 2 7 I B E D R O C K ! H B - Q U A R T Z D I O R I T E 7%; ( F E L S I T E ) R 4 1 1 2 2 I B E D R O C K 1 H - U U A R T Z D l f i R I T E 12% R 4 2 1 2 4 I B E D R O C K 1 H B - Q U A R T Z D I O R I T E K%, S L I G H T L Y F O L I A T E D R 4 3 1 1 9 1 B E D R O C K 1 B - Q U A R T Z D I O R I T E 5%; M I G M A T 1 T E 3 0 % ; P Y R I T E R 4 4 1 1 9 I B E D R O C K I B H - Q U A R T Z D I O R I IE 15%, W E A K L Y F O L I A T E D R 4 5 1 1 8 I B E D R O C K I B H - Q U A R T Z D I O R I T E 5%; ( P O R P H Y R I T I C A N D E S I T E ) I D E N T I F I C A T I O N OF BEDROCK AND ROCK F R A G M E N T S C O A S T A L W E S T E R N H E M L O C K ZONE C O L L E C T E D IN SUMMER 1 9 7 2 AND 1 9 7 3 BY K . K L I N K A U . B . C . R E S E A R C H F O R E S T I D E N T I F I E D BY G . R I C H A R D S T A B L E 3 1 P L O T N O . OR 1 C O M P . I MODE OF I C L A S S I F I C A T I O N BY R O D D I C K 1 9 6 5 1 S A M P L E N O . I N O . I O R I G I N 1 R46 1 16 1 BE DROCK 1 B H - Q U A R T Z D I O R I T E 1 5 2 , WELL F O L I A T E D R47 1 15 1 BE DROCK 1 B - Q U A R T Z D I O R I T E 5 ? R48 1 18 1 BEDROCK I B - Q U A R T Z D I O R I T E 5 ? PA9 1 16 1 B E D R O C K 1 B H - Q U A R T Z D I O R I T E 1531, WEAKLY F O L I A T E D R50 1 18 I B E D R O C K 1 B - Q U A R T Z D I O R I T E 5 % ; ( A N D E S I T E ) R51 1 2 0 1 B E D R O C K I B - Q U A R T Z D I O R I T E 5 * R52 1 19 1 B E D R O C K '1 B - Q U A R T Z D I O R I T E 10? R 5 3 1 2 0 I B E D R O C K 1 B - Q U A R T Z D I O R I T f c 5 ? R 5 * 1 2 0 1 BEDROCK 1 B - Q U A R T Z D I O R I T E 5 S ; ( A N D E S I T E ) R 5 5 1 2 0 1 BEDROCK I B - U U A R T Z O I O R I T E 5 ? , WEAKLY F O L I A T E D R56 1 19 I B E D R O C K 1 B - Q U A R T Z D I O R I T E 5 ? ; ( A N D E S I T E ) R57 1 1 9 1 B E D R O C K 1 B - Q U A R T Z D I O R I T E 7 ? ! .( AL ASK IT E - A P L I T E ) R58 1 6 1 B E D R O C K 1 H - Q U A R T Z D I O R I T E 1%, F O L I A T E D ; ( A N D E S I T E ) R 5 9 1 * I B E D R O C K 1 H B - Q U A R T Z D I O R I T E 1 0 ? , F O L I A T E D R60 1 6 I B E D R O C K I H B - Q U A R T Z D I O R I T E 105 R61 1 6 I B E D R O C K 1 H B - Q U A R T Z D I O R I T E 7 ? F O L I A T E D ! ( A N D E S I T E ) R62 1 7 I B E D R O C K 1 H - D I O R I T E 3031, ( F I N E R G R A I N E D ) ; P Y R I T E ; ( G A B R O ? ) R63 1 3 0 1 BEDROCK I H - Q U A R T Z D I O R I T E 10?, F O L I A T E D R 6 * 1 8 1 BEDROCK 1 B - Q U A R T Z D I OR 1TE b%i ( P O R P H Y R I T I C A N D E S I T E ) R65 1 8 I B E D R O C K 1 B - Q U A R T Z D I C R I T E 7 ? ; ( P O R P H Y R I T I C A N D E S I T E ) R66 1 2 * 1 B E D R O C K 1 B - Q U A R T Z D I O R I T E 7 ? R 6 7 1 2 0 1 B E D R O C K I H - Q U A R T Z D I C R I T E 15% R68 1 2 1 I B E D R O C K 1 B H - Q U A R T Z D I O R I T E 1 0 ? R69 1 8 1 B E D R O C K I B - Q U A R T Z D I O R I T E 5 ? R70 1 2 1 1 B E D R O C K I B H - Q U A R T Z D I O R I T E 1 0 ? R71 1 8 I B E D R O C K 1 B - Q U A R T Z D I O R I T E 5 ? R72 1 2 * 1 B E D R O C K | B - Q U A R T Z O I O R I T E 5 ? R73 I 7 I B E D R O C K I H - Q U A R T Z D I O R I T E 8 ? ; ANDES I T E R 7 * 1 1 8 I B E D R O C K 1 H - D I O R I T E 1 0 ? ; ( P O R P H Y R I T I C A N D E S I T E ) R75 1 8 1 B E D R O C K 1 H B - Q U A R T Z D I O R I T E 1 0 ? R76 1 18 1 BEDROCK 1 H - Q U A R T Z D I O R I T E 1 5 ? R77 1 7 1 BEDROCK I B - Q U A R T Z D I O R I T E 7 ? i H - O U A R T Z O I O R I T E F I N E G R A I N E D R78 1 7 I B E D R O C K I H - Q U A R T Z D I O R I T E 6 ? , F O L I A T E D R79 1 6 1 BEDROCK 1 H - D I O R I T E 10? R80 1 6 I B E D R O C K 1 H - D I O R I T E 40?, ( F I N E G R A I N E D ) ; P Y R I T E S ; ( G A B R O ? ) R81 1 2 7 1 BEDROCK I H B - Q U A R T Z D I O R I T E 1 0 ? , C O A R S E G R A I N E D R82 1 2 5 I B E D R O C K 1 H b - Q U A R T Z D I OR I T E 1 0 ? ; ( P U R P H Y R I T I C A N D E S I T E ) R 8 3 1 7 I B E D R O C K 1 B H - Q U A R T Z D I O R I T E 1 0 ? ; ( P O R P H Y R I T I C A N D E S I T E ) R8<» 1 5 1 BEDROCK 1 B H - Q U A R T Z O I D R I TE 1 0 ? , WELL F O L I A T E D " , P O R P H Y R I T I C ANDES I T E 393 APPENDIX V TEXTURAL ANALYSIS OF SOILS (Tables 1 - 12) Ana ly t i ca l data are arranged numerical ly by p lo t numbers, p ro f i l e members and then by horizons. Parent mater ia ls , inc lud ing l i t h o l o g i c a l d i s c o n t i n u i t i e s , are i den t i f i ed fo r each p r o f i l e (pedon ). Conventions, concerning designation of master mineral horizons and layers , and lower case su f f i ces fol lowed those of CSSC (1971, 1974). A to ta l of 236 samples from 77 s o i l p ro f i l e s was analyzed.. The fo l lowing sample p lo ts , representing recognized plant communities and parent mater ia ls , were selected for the ana lys i s : 001, 002, 003, 004, 005, 006, 007, 008, 012, 013, 014, 015, 016, 017, 018, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 032, 033, 034, 035, 036, 037, 039, 041, 042, 044, 045, 046, 052, 053, 054, 055, 056, 057, 059, 060, 062, 063, 074, 075, 079, 082, 087, 089, 090, 097, 098, 099, 100, 104, 109, 111, 112, 114, 116, 119, 126, 137, 138, 148, 150, 153, 155, 156 and 158. PARTICLE SIZE ANALYSIS SAMPLED BY: K. KLINKA ANALYZED BY: K. KLINKA AND D. J . WORT, JR. COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 1 I SAMPLE I HORIZONl DEPTH I PARTICLE SIZE IN % BY WEIGHT (FRACT ION<2MM) I COARSE I SOIL TEXTURAL | I NO. I I (CM.) I SAND I SILT I CLAY I FRAG.% I CLASS I PLOT NO.: 1 PARENT MATERIAL: GLACIOFLUVIAL DEPOSITS PROFILE NO.: 1 3 AE OOC-003 67.49 29.80 2.71 21 SANDY LOAM 4 BF1 003-040 82.25 17.72 0.03 46 LOAMY SAND 5 BF2 040-055 87.60 12.37 0.03 5 SAND 6 BF3 055-100 76.72 23.26 0.02 51 LOAMY SAND 7 BFGJ 100-130 67.53 31.26 1.21 10 SANDY LOAM PLOT NO.: 2 PARENT MATERIAL: GLACIOFLUVIAL DEPOSITS OVER MORAINE BLANKET PROFILE NO.: 1 2 BHF 000-015 69.11 28.93 1.96 65 SANDY LOAM 3 BF1 015-045 73.06 26.42 0.52 66 LOAMY SAND 4 BF2 045-070 67.93 31.06 1.01 70 SANDY LOAM 5 IIC 070-090 62.76 32.42 4.82 60 SANDY LOAM PLOT NO.: 3 PARENT MATERIAL: COLLUVIAL BLANKET OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO.: I 3 ' AH 000-006 61.11 26.24 12.65 47 SANDY LOAM 4 AB 006-020 72.99 23.11 3.90 68 LOAMY SAND 5 BF1 020-070 77.87 21.18 0.95 60 LOAMY SAND 6 BF2 070-110 73.00 20.90 6.10 67 SANDY LOAM 7 BFGJ 110-140 90.34 9.51 0.15 71 SAND PLOT NO.: 4 PARENT MATERIAL: GLACIOFLUVIAL DEPOSITS OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO.: 1 3 AHE . 000-008 65.63 21.32 13.05 67 SANDY LOAM <t BFH 008-050 87.97 11.72 0.31 60 SAND 5 BF1 050-095 92.72 4.15 3.13 71 SAND 5 BF2 095-140 82.30 8.67 9.03 80 LOAMY SAND PLOT NO.: 5 PARENT MATERIAL: GLACIOFLUVIAL DEPOSITS OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO.: 1 2 BF1 000-030 77.03 19.94 3.03 55 LOAMY SAND 3 BF2 030-045 84.29 15.04 0.67 73 LOAMY SAND 4 BF3 045-070 81.50 16.50 2.00 77 LOAMY SAND PLOT NO.: 6 PARENT MATERIAL: COLLUVIAL BLANKET OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO.: 1 2 AH 000-003 59.10 33.53 7.37 67 SANDY LOAM 3 AE 003-010 64.62 30.82 4.56 62 SANDY LOAM T A B L E 2 SAMPLE I HORIZON! NO. I I DEPTH (CM. ) PARTICLE SIZE IN % BY WEIGHT (FRACTION<2MM)I COARSE I SAND I SILT I CLAY I FRAG.% I SOIL TEXTURAL CLASS BF1 BF2 010-100 100-150 75.83 73. 19 22.13 23.06 0* 75 80 85 LOAMY SAND LOAMY SAND PLOT NO.: PROFILE NO. PARENT MATERIAL: MORAINE BLANKET OVER ACIDIC INTRUSIVE BEDROCK AHE AE BF1 BF2 000-002 002-005 005-055 055-130 71.07 61.74 83.83 84. 18 22.51 32.21 15.30 15.77 6.42 6.05 0.87 0.05 35 37 80 82 SANDY LOAM SANDY LOAM LOAMY SANO LOAMY SAND PLOT NO. : PROFILE NO. PARENT MATERIAL: COLLUVIAL VENEER OVER ACIDIC INTRUSIVE BEDROCK AE BF 000-004 004-070 54.61 77. 14 37.43 20.64 7.96 2.22 74 92 SANDY LOAM LOAMY SAND PLOT NO. : PROFILE NO.: 12 1 PARENT MATERIAL: GLACIOFLUVIAL DEPOSITS OVER GLACIOLACUSTRINE DEPOSITS 2 BFH 000-007 71.61 24.04 4.35 5 SANDY LOAM 3 BF1 007-025 81.13 16.96 1.91 5 LOAMY SAND 4 BF2 025-072 64.39 31.41 4.20 1 SANOY LOAM 5 BFGJ 072-090 60.58 36.07 3.35 1 SANDY LOAM 6 I ICG 090-110 6.97 61.80 31.23 5 SILTY CLAY LOAM PLOT NO. : 13 PARENT 1 MATERIAL: GLACIOLACUSTRINE DEPOSITS PROFILE NO.: 1 2 AHE 000-005 17.85 61.71 20.44 0 SILT LOAM 3 BF 005-025 56.56 41. 83 1.61 0 SANDY LOAM 4 BC 025-065 20.82 68.68 10.50 0 SILT LOAM 5 CGJ 065-140 11.05 63.44 25.51 0 SILT LOAM PLOT NO.: 14 PROFILE NO.: 1 PARENT MATERIAL: GLACIOLACUSTRINE DEPOSITS OVER GLACIOMARINE DEPOSITS AH AIIC I ICG 000-020 020-030 030-090 24.42 71.86 1.54 41.06 15.54 56.43 34.52 12.60 42.03 26 0 0 CLAY LOAM SANDY LOAM SILTY CLAY PLOT NO.: PROFILE NO. 15 1 PARENT MATERIAL: COLLUVIAL VENEER OVER ACIDIC INTRUSIVE BEDROCK AH AC 000-030 030-080 33.96 82.76 48.00 13.52 18.04 3.72 90 83 LOAM LOAMY SAND TABLE 3 SAMPLE NO. HORIZONI DEPTH I PARTICLE SIZE IN % BY WEIGHT (FRACTI ON< 2MM) | COARSE I I (CM.) I SAND I SILT I CLAY I FRAG.% I SOIL TEXTURAL CLASS PLOT NO.: PROFILE NO. 2 3 4 16 : 1 AH C AHB&CB PLOT NO. : 17 PROFILE NO.: 1 2 3 4 PLOT NO. : PROFILE NO. AHE BHF1 BHF2 18 1 BFH PLOT NO.: PROFILE NO. 19 : 1 BF PLOT NO.: PROFILE NO. 20 : 1 2 3 PLOT NO.: PROFILE NO. BFH BF 21 : 1 BFH PLOT NO.: 22 PROFILE NO.: 1 2 3 4 PLOT NO.: PROFILE NO. 2 3 AH AE BF 23 1 AE BFH PARENT MATERIAL: ALLUVIAL DEPOSITS 000-014 014-035 035- 115 65.19 50.69 85.77 27.52 39.42 14.21 PARENT MATERIAL: COLLUVIAL BLANKET 000-007 007-025 025-115 48.87 57.43 77.07 34.83 37.29 20. 16 PARENT MATERIAL: MORAINE VENEER 004-050 59.33 33.12 PARENT MATERIAL: MORAINE VENEER 000-055 69.08 24.54 PARENT MATERIAL: COLLUVIAL VENEER 000-025 025-088 65.36 37.71 23.57 48.54 PARENT MATERIAL: MORAINE VENEER 000-023 58.80 33.77 PARENT MATERIAL: COLLUVIAL VENEER 000-010 010-025 025-090 55.12 55.00 78.34 38.20 39.75 18.95 PARENT MATERIAL: COLLUVIAL BLANKET 000-045 045-140 70.62 70.32 27. 15 27.84 7.29 9.89 0. 12 0 SANDY LOAM 90 LOAM 3 LOAMY SAND OVER ACIDIC INTRUSIVE BEDROCK 16.30 5.28 2.77 84 82 84 LOAM SANDY LOAM LOAMY SAND OVER ACIDIC INTRUSIVE BEDROCK 7.55 54 SANDY LOAM OVER ACIDIC INTRUSIVE BEDROCK 6.38 76 SANDY LOAM OVER ACIDIC INTRUSIVE BEDROCK 11.07 13.74 43 89 SANDY LOAM LOAM OVER ACIDIC INTRUSIVE BEDROCK 7.43 72 • SANDY LOAM OVER ACIDIC INTRUSIVE BEDROCK 6.68 5.25 2.71 69 SANDY LOAM 91 SANDY LOAM 94 LOAMY SAND OVER ACIDIC INTRUSIVE BEDROCK 2.23 1.83 64 84 LOAMY SAND LOAMY SAND T A S L E I S A M P L E I H O R I Z O N I I N O . I I D E P T H | P A R T I C L E S I Z E I N % BY WEIGHT (FRACTION<2MM) | C O A R S E I ( C M . ) | SAND I S I L T I C L A Y I F R A G . % I S O I L T E X T U R A L C L A S S P L O T N O . : P R O F I L E N O . 2 4 i 1 P A R E N T M A T E R I A L : M O R A I N E B L A N K E T AE B F H B F B l IC 0 0 0 - 0 0 9 0 0 9 - 0 4 1 0 4 1 - 0 8 1 0 8 1 - 1 1 5 5 9 . 0 9 7 0 . 0 3 8 4 . 26 8 8 . 2 4 3 5 . 4 4 2 3 . 4 7 1 5 . 6 2 1 1 . 3 6 5 . 4 7 6 . 5 0 0 . 1 2 0 . 4 0 2 3 6 6 67 8 6 S A N D Y L O A M SANDY LOAM LOAMY SAND SAND P L O T N O . : 2 5 P A R E N T M A T E R I A L : A L L U V I A L D E P O S I T S P R O F I L E N O . : 1 2 AH 0 0 0 - 0 2 0 5 9 . 7 8 2 e . 0 2 1 2 . 2 0 0 SANDY LOAM 3 AC 0 2 0 - 0 4 5 8 1 . 3 3 1 4 . 4 9 4 . 18 | 7 6 LOAMY SAND 4 C 0 4 5 - 0 6 5 8 3 . 1 2 1 1 . 6 9 5 . 1 9 9 5 LOAMY SAND P L O T N O . : 2 6 P A R E N T M A T E R I A L : M O R A I N E B L A N K E T OVER A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 AE 0 0 0 - 0 0 6 5 2 . 4 5 4 4 . 2 2 3 . 3 3 6 2 SANDY LOAM 3 B F H 0 0 6 - 0 5 0 6 7 . 1 6 2 9 . 6 6 3 . 18 71 SANDY LOAM 4 BF 0 5 0 - 1 1 0 7 4 . 8 2 1 6 . 7 5 8 . 4 3 9 4 LOAMY SAND P L O T N O . : 2 7 PARENT M A T E R I A L : M O R A I N E B L A N K E T OVER A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 AE 0 0 0 - 0 2 0 5 5 . 8 8 4 2 . 4 5 1 . 6 7 4 7 SANDY LOAM 3 B F H C 0 2 0 - 0 8 0 8 0 . 3 6 1 6 . 2 3 3 . 4 1 92 LOAMY SAND 4 B F H 0 8 0 - 1 2 0 7 7 . 3 9 1 9 . 14 3 . 4 7 8 8 LOAMY SAND P L O T N O . : 2 8 P A R E N T M A T E R I A L : M O R A I N E B L A N K E T OVER A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 AE 0 0 0 - 0 0 5 4 6 . 8 2 4 7 . 0 7 6 . 11 2 9 SANDY LOAM 3 B F C J 0 0 5 - 0 3 0 7 5 . 7 0 1 9 . 8 2 4 . 1 4 73 LOAMY SAND 4 B F 1 0 3 0 - 0 8 0 7 4 . 1 2 2 4 . 4 2 1 . 4 6 5 9 LOAMY SAND 5 B F 2 0 8 0 - 1 2 5 6 1 . 0 7 3 1 . 5 0 7 . 4 3 88 SANDY LOAM P L O T N O . : 2 9 P A R E N T M A T E R I A L : M O R A I N E B L A N K E T OVER A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 AHE 0 0 0 - 0 0 5 5 2 . 7 6 3 6 . 2 6 1 0 . 9 8 53 SANDY LOAM 3 B F H 0 0 5 - 0 1 5 4 7 . 3 9 4 0 . 3 7 1 2 . 2 4 5 7 LOAM 4 B F 1 0 1 5 - 0 5 5 7 2 . 13 2 2 . 0 2 5 . 8 5 6 8 SANDY LOAM 5 B F 2 0 5 5 - 1 1 0 6 2 . 5 3 2 9 . 00 8 . 4 7 7 9 SANDY LOAM 6 B F H G J 1 1 0 - 1 2 5 7 6 . 1 3 1 7 . 9 0 5 . 9 7 9 3 LOAMY SAND T A B L E 5 T _ S A M P L E _ T ~ O R T Z O N T ~ ~ D E P T H ~ T " P A R T T C L E S O T L ~ T E X T U R A L f I N O . I I ( C M . ) I SAND I S I L T I C L A Y I F R A G . ? I C L A S S I PLOT N O . : P R O F I L E N O . 30 i 1 AE PLOT N O . : P R O F I L E N O . 30 i 2 B F H P L O T N O . : P R O F I L E N O . 31 : 1 PARENT M A T E R I A L : ORGANIC VENEER 0 0 0 - 0 0 5 5 5 . 7 5 3 9 . 7 7 PARENT M A T E R I A L : MORAINE VENEER 0 0 0 - 0 4 0 5 2 . 7 1 4 0 . 2 2 PARENT M A T E R I A L : C O L L U V I A L VENEER OVER A C I D I C I N T R U S I V E BEDROCK 4 . 4 8 3 SANDY LOAM OVER A C I D I C I N T R U S I V E BEDROCK 7 . 0 7 ( 4 7 SANDY LOAM OVER A C I D I C I N T R U S I V E BEDROCK 2 BHF 0 0 0 - 0 6 0 5 9 . 9 4 2 9 . 9 4 1 0 . 1 2 82 SANDY LOAM P L O T N O . : 32 PARENT M A T E R I A L : MORAINE BLANKET P R O F I L E N O . : 1 2 AE 0 0 0 - 0 0 7 4 9 . 3 8 4 4 . 5 3 6 . 0 9 19 SANDY LOAM 3 BFH 0 0 7 - 0 3 2 6 9 . 4 9 1 7 . 6 0 1 2 . 9 1 82 SANDY LOAM 4 BF 0 3 2 - 0 9 0 8 4 . 4 7 1 2 . 6 6 2 . 9 7 95 LOAMY SAND 5 I IC 0 9 0 - 1 1 0 6 7 . 4 9 2 8 . 1 1 4 . 4 0 75 SANDY LOAM P L O T NO. ' : 33 PARENT M A T E R I A L : C O L L U V I A L B L A N K E T P R O F I L E N O . : 1 2 B F H 0 0 0 - 0 1 5 6 2 . 6 9 2 9 . 5 0 7 . 8 1 71 SANDY LOAM 3 BF 1 0 1 5 - 0 6 0 6 8 . 3 3 2 6 . 3 2 5 . 3 5 71 SANDY LOAM 4 B F 2 0 6 0 - 1 1 0 5 2 . 5 1 4 3 . 9 2 3 . 5 7 67 SANDY LOAM 5 B F 3 1 1 0 - 1 6 5 5 6 . 9 8 3 6 . 9 4 6 . 0 8 70 SANDY LOAM P L O T N O . : 34 PARENT M A T E R I A L : A L L U V I A L D E P O S I T S P R O F I L E N O . : 1 3 AE 0 0 0 - 0 0 4 5 3 . 9 6 3 4 . 1 8 1 1 . 8 6 53 SANDY LOAM 4 B H F G J 0 0 4 - 0 3 0 7 1 . 1 5 1 5 . 8 8 1 2 . 9 7 46 SANDY LOAM 5 BFC 0 3 0 - 0 9 5 8 7 . 6 1 9 . 2 6 3 . 1 3 78 LOAMY SAND P L O T N O . : 35 PARENT M A T E R I A L : C O L L U V I A L VENEER OVER D E E P MORAINE D E P O S I T S P R O F I L E N O . : 1 3 BHF 0 0 2 - 0 3 0 7 4 . 1 5 1 4 . 9 4 1 0 . 9 1 51 SANDY LOAM 4 I I C G J 0 3 0 - 0 5 0 4 7 . 0 8 3 7 . 1 1 1 5 . 8 1 81 LOAM TABLE 6 7~SAMPLE~T~ 1 N O . 1 H O R I Z O N I 1 D E P T H I P A R T I C L E S I Z E : I C M . ) I S A N D 1 I N % B Y W E I G H T S I L T 1 ( F R A C T I 0 N < 2 M M ) I C O A R S E 1 C L A Y 1 F R A G . % I S O I L T E X T U R A L 1 C L A S S 1 P L O T N O . : 3 6 P A R E N T M A T E R I A L : G L A C I O F L U V I A L D E P O S I T S O V E R D E E P M O R A I N E D E P O S I T S P R O F I L E N O . : 1 2 A H E O O O - O I O 7 7 . 0 1 1 6 . 7 0 6 . 2 9 3 8 L O A M Y S A N D 3 B F H 0 1 0 - 0 2 0 7 0 . 2 9 2 5 . 4 0 4 . 3 1 3 7 S A N D Y L O A M 4 B F H G J 0 2 0 - 0 5 0 6 9 . 9 7 2 6 . 0 5 3 . 9 8 4 6 S A N D Y L O A M 5 I I C G 0 5 0 - 0 6 0 7 7 . 3 0 1 7 . 2 8 5 . 4 2 4 8 L O A M Y S A N D P L O T N O . : 3 7 P A R E N T M A T E R I A L : C O L L U V I A L V E N E E R O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 A H E 0 0 0 - 0 0 6 7 8 . 6 4 2 0 . 6 4 0 . 7 2 4 8 L O A M Y S A N D 3 B F H 0 0 6 - 0 4 5 7 6 . 8 6 2 2 . 4 3 0 . 7 1 5 8 L O A M Y S A N D 4 B F H G J 0 4 5 - 0 8 5 5 7 . 6 5 4 2 . 1 1 0 . 2 4 6 1 S A N D Y L O A M P L O T N O . : 3 9 P A R E N T M A T E R I A L : D E E P M O R A I N E D E P O S I T S P R O F I L E N O . : 1 2 A E 0 0 0 - 0 0 5 5 1 . 2 3 3 9 . 4 1 9 . 3 6 3 7 L O A M 3 B H F 0 0 5 - 0 1 7 7 1 . 5 9 1 9 . 8 9 8 . 5 2 5 0 S A N D Y L O A M 4 B F H 0 1 7 - 0 4 5 7 4 . 1 5 2 5 . 5 5 0 . 3 0 4 9 L O A M Y S A N D 5 B I I C G J 0 4 5 - 0 8 5 7 3 . 3 8 2 6 . 3 3 0 . 2 9 6 4 L O A M Y S A N D 5 I I C 0 8 5 - 1 0 0 7 8 . 4 8 2 0 . 7 7 0 . 7 5 7 0 L O A M Y S A N D P L O T N O . : 4 1 P A R E N T M A T E R I A L : M O R A I N E V E N E E R O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 A E 0 0 0 - 0 0 5 4 5 . 3 3 4 8 . 4 0 6 . 2 7 1 7 S A N D Y L O A M 3 B F H 0 0 5 - 0 2 0 4 9 . 8 1 4 1 . 7 1 8 . 4 8 2 6 L O A M P L O T N O . : 4 2 P A R E N T M A T E R I A L : M O R A I N E V E N E E R O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 A E 0 0 0 - 0 1 3 2 1 . 3 1 6 5 . 8 3 1 2 . 8 6 7 0 S I L T L O A M P L O T N O . : 4 4 P A R E N T M A T E R I A L : C O L L U V I A L V E N E E R O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . , : 1 2 A E 0 0 0 - 0 1 5 4 9 . 4 1 3 6 . 7 0 1 3 . 8 9 5 1 L O A M 3 B F H 0 1 5 - 0 4 5 5 9 . 3 2 2 9 . 6 3 1 1 . 0 5 8 0 S A N D Y L O A M P L O T N O . : 4 5 P A R E N T M A T E R I A L : C O L L U V I A L V E N E E R O V E R D E E P M O R A I N E ' D E P O S I T S P R O F I L E N O . , : 1 4 I I C 0 2 8 - 0 4 0 4 3 . 6 1 3 9 . 5 1 1 6 . 8 8 8 8 L O A M I S A M P L E I H O R I Z O N I D E P T H | P A R T I C L E S I Z E I N % BY W E I G H T I N O . I I ( C M . ) ' | SAND I S I L T P L O T N O . : P R O F I L E N O . 4 6 : 1 P A R E N T M A T E R I A L : G L A C I O F L U V I A L D E P O S I T ! 2 B F 1 3 B F 2 <. B l IC P L O T N O . : 52 P R O F I L E N O . : 1 2 B F H P L O T N O . : 5 3 P R O F I L E N O . : 1 AE P L O T N O . : P R O F I L E N O . 2 3 4 5 4 : 1 AE B F H BF P L O T N O . : 5 5 P R O F I L E N O . : 1 A E BF BHF B F G J P L O T N O . : 5 6 P R O F I L E N O . : 1 2 3 4 P L O T N O . : P R O F I L E N O . AE BF B F H 5 7 1 0 0 0 - 0 1 5 0 1 5 - 0 5 0 0 5 0 - 0 8 0 6 3 . 3 4 9 5 . 5 7 5 2 . 3 3 2 8 . 9 1 4 . 2 9 2 8 . 6 0 P A R E N T M A T E R I A L : C O L L U V I A L V E N E E R 0 0 0 - 0 3 5 3 6 . 7 0 5 0 . 3 5 P A R E N T M A T E R I A L : M O R A I N E V E N E E R 0 0 0 - 0 2 5 6 5 . 6 4 2 8 . 1 4 P A R E N T M A T E R I A L : C O L L U V I A L V E N E E R 0 0 0 - 0 0 5 0 0 5 - 0 1 5 0 1 5 - 0 4 5 6 5 . 4 7 5 6 . 4 4 6 6 . 15 2 6 . 0 7 3 7 . 2 9 2 6 . 51 P A R E N T M A T E R I A L : M O R A I N E V E N E E R 0 0 0 - 0 1 5 0 1 5 - 0 2 0 0 2 0 - 0 4 5 0 4 5 - 0 7 0 3 4 . 7 3 7 9 . 1 5 7 8 . 7 3 8 0 . 2 0 4 9 . 0 5 1 7 . 9 8 1 7 . 73 1 2 . 3 3 P A R E N T M A T E R I A L : C O L L U V I A L V E N E E R 0 0 0 - 0 1 5 0 1 5 - 0 3 5 0 3 5 - 0 8 5 3 8 . 7 5 3 4 . 2 4 3 4 . 2 3 4 7 . 0 2 4 6 . 5 7 4 7 . 0 0 P A R E N T M A T E R I A L : M O R A I N E V E N E E R 2 BHF 0 0 2 - 0 1 6 7 1 . 6 9 2 6 . 2 7 T A B L E 7 ( F R A C T I 0 N < 2 M M ) I C O A R S E I S O I L T E X T U R A L T C L A Y I F R A G . ? I C L A S S OVER M O R A I N E V E N E E R 7 . 7 5 8 6 SANDY LOAM 0 . 1 4 7 8 S A N D 1 9 . 0 7 8 1 LOAM OVER A C I D I C I N T R U S I V E B E D R O C K 1 2 . 9 5 84 S I L T LOAM OVER A C I D I C I N T R U S I V E B E O R O C K 6 . 2 2 6 5 SANDY LOAM OVER A C I D I C I N T R U S I V E B E D R O C K 8 . 4 6 4 8 SANDY LOAM 6 . 2 7 6 4 SANOY LOAM 7 . 3 4 76 SANDY LOAM OVER A C I D I C I N T R U S I V E B E D R O C K 1 6 . 2 2 5 8 S I L T LOAM 2 . 8 7 80 LOAMY SAND 3 . 5 4 8 8 LOAMY SANO 7 . 4 7 87 LOAMY SAND OVER A C I D I C I N T R U S I V E B E D R O C K 1 4 . 2 3 7 7 LOAM 1 9 . 1 9 8 5 LOAM 1 8 . 7 7 8 5 LOAM OVER A C I D I C I N T R U S I V E B E D R O C K 2 . 0 4 4 4 LOAMY SANO T A B L E 8 7 ~ S A M P L E 7 ~ H O RTIO N 7 " OIP T H ~ ~ P A R T 7 C ^ ^ WEIGHT~7FRACT7ON<2MM77~COARSE I S O I L T E X T U R A L | N O . I I ( C M . ) | S A N D I S I L T I C L A Y I F R A G . % I C L A S S P L O T N O . : 5 9 P A R E N T M A T E R I A L : C O L L U V I A L B L A N K E T O V E R M O R A I N E B L A N K E T P R O F I L E N O . : 1 3 B H F 0 0 2 - 0 3 5 8 3 . 6 8 1 0 . 5 9 5 . 7 3 6 4 L O A M Y S A N D 4 B F 0 3 5 - 0 6 5 3 4 . 3 6 5 1 . 2 4 1 4 . 4 0 7 7 S I L T L O A M 5 B F H G J 0 6 5 - 1 1 0 7 9 . 5 2 1 6 . 8 9 3 . 5 9 7 0 L O A M Y S A N D P L O T N O . : 6 0 P A R E N T M A T E R I A L : M O R A I N E V E N E E R O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 A E 0 0 0 - 0 1 0 6 8 . 7 8 1 7 . 5 4 1 3 . 6 8 2 8 S A N D Y L O A M P L O T N O . : 6 0 P A R E N T M A T E R I A L : M O R A I N E V E N E E R O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 2 2 A E 0 0 0 - 0 1 3 3 5 . 9 8 5 0 . 2 7 1 3 . 7 5 1 0 S I L T L O A M 3 B H F C J 0 1 3 - 0 3 0 1 9 . 3 3 5 1 . 5 7 2 9 . 1 0 5 7 S I L T Y C L A Y L O A M 4 B H F G J 0 3 0 - 0 4 0 5 5 . 0 3 3 5 . 1 0 9 . 8 7 6 0 S A N D Y L O A M P L O T N O . : 6 2 P A R E N T M A T E R I A L : C O L L U V I A L B L A N K E T O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 A E 0 0 0 - 0 0 3 7 1 . 3 7 2 4 . 0 4 4 . 6 0 2 5 S A N D Y L O A M 3 - B H F 0 0 3 - 0 2 0 3 8 . 6 6 4 1 . 1 4 2 0 . 2 0 5 3 L O A M 4 B H F C 0 2 0 - 0 6 0 3 6 . 9 4 3 5 . 9 6 2 7 . 1 0 5 1 L O A M 5 B H F G J 1 0 6 0 - 0 9 5 7 1 . 4 2 1 7 . 4 9 1 1 . 0 9 7 1 S A N O Y L O A M 6 B H F G J 2 0 9 5 - 1 4 0 3 9 . 4 4 4 4 . 4 9 1 6 . 0 7 6 0 L O A M P L O T N O . : 6 3 P A R E N T M A T E R I A L : M O R A I N E V E N E E R O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 A E 0 0 0 - 0 0 4 7 1 . 3 5 2 2 . 3 5 6 . 3 0 5 0 S A N D Y L O A M 3 B F H 0 0 4 - 0 3 0 5 5 . 1 9 2 9 . 3 9 1 5 . 4 2 5 1 S A N D Y L O A M P L O T N O . : 7 4 P A R E N T M A T E R I A L : C O L L U V I A L B L A N K E T O V E R A C I D I C I N T R U S I V E B E D R O C K P R O F I L E N O . : 1 2 A E 0 0 0 - 0 1 5 6 5 . 7 7 2 7 . 0 3 7 . 2 0 8 3 S A N O Y L O A M 3 B F 1 0 1 5 - 0 6 0 7 0 . 2 3 2 1 . 7 9 7 . 9 8 8 8 S A N D Y L O A M 4 B F 2 0 6 0 - 1 0 5 6 2 . 3 5 3 2 . 3 5 5 . 3 0 9 4 S A N D Y L O A M P L O T N O . : 7 5 P A R E N T M A T E R I A L : C O L L U V I A L B L A N K E T O V E R M O R A I N E B L A N K E T P R O F I L E N O . : 1 2 B F H 0 0 0 - 0 2 5 7 8 . 2 5 2 1 . 1 2 0 . 6 3 8 5 L O A M Y S A N D 3 8 F C J 0 2 5 - 0 5 0 8 9 . 6 0 9 . 3 6 1 . 0 4 8 7 S A N D 4 B F 1 0 5 0 - 1 1 0 8 7 . 4 2 8 . 2 9 4 . 2 9 9 1 L O A M Y S A N D 5 B F 2 1 1 0 - 1 4 0 8 2 . 2 1 1 1 . 5 7 6 . 2 2 9 3 L O A M Y S A N D TABLE 9 I SAMPLE I HORIZONI DEPTH I PARTICLE SIZE IN Z BY WEIGHT I FRACT10N<2MM) I COARSE 1 SOIL TEXTURAL I I MO. I I (CM.) | SAND I SILT I CLAY | FRAG.3! I CLASS I PLOT NO.: 79i PARENT MATERIAL: COLLUVIAL VENEER OVER MORAINE VENEER PROFILE NO.: 1 2 AHE 000-020 54.34 31.66 14.00 67 SANDY LOAM 3 BHF 020-050 54.95 38.35 6.70 80 SANDY LOAM 4 I I BHF 050-110 82.17 15.37 2.46 91 LOAMY SAND PLOT NO.: 82 PARENT MATERIAL: COLLUVIAL VENEER OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO .: 1 2 BFH1 000-040 57.55 35. 13 7.32 79 SANDY LOAM 3 BFH2 040-085 52.50 38.52 8.97 81 SANDY LOAM PLOT NO.: 87 PARENT MATERIAL: MORAINE VENEER OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO .: 1 2 AE1 000-018 60.77 26.16 13.07 20 SANDY LOAM 3 AE2 018-050 58.32 28. 32 13.36 29 SANDY LOAM PLOT NO.: 89 PARENT MATERIAL: MORAINE VENEER OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO .: 1 2 AE 000-003 31.94 59.97 8.09 18 SILT LOAM 3 BFH 003-005 27.76 53. 16 19.08 59 SILT LOAM 4 BF1 005-035 33.47 50.84 15.69 77 SILT LOAM 5 BF2 035-055 82.63 17.24 0.13 96 LOAMY SAND PLOT NO.: 90 PARENT MATERIAL: MORAINE VENEER OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO .: 1 2 BFH1 000-010 39.16 45.55 15.29 62 LOAM 3 BFH2 010-055 61.45 33. 78 14.77 60 SANDY LOAM PLOT NO.: 97 PARENT MATERIAL: GLACIOFLUVIAL DEPOSITS OVER MORAINE BLANKET PROFILE NO.: 1 2 AHE 000-005 61.60 33.90 4.50 54 SANDY LOAM 3 BF1 005-030 73.24 25.52 1.24 71 LOAMY SAND 4 BF2 030-060 68.67 27. 22 4.11 75 SANDY LOAM 5 BF3 060-100 73.52 25.65 0.83 80 LOAMY SAND 5 BIIC1 100-140 82.80 11.81 5.39 85 LOAMY SAND 7 BI IC2 140-170 78.73 18. 76 2.51 87 LOAMY SAND NO.: 98 PARENT MATERIAL: ALLUVIAL DEPOSITS OVER GLACIOFLUVIAL DEPOSITS PROFILE NO.: 1 2 11AE 015-017 39.22 42.29 13.49 3 11BFH 017-045 50.59 40.79 8.62 62 LOAM 62 LOAM TABLE 10 SAMPLE I HORIZONI NO. I I DEPTH (CM. ) PARTICLE SIZE IN 2 BY WEIGHT (FRACTI0N<2MM)I SANO 1 SILT I CLAY I 4 5 6 7 PLOT N O . : PROFILE NO. 2 3 4 5 b 7 I IBF 045-080 80 .72 IIBFGJ1 080-110 8 6 . 3 7 IIBFGJ2 110-135 5 6 . 6 9 IICG 135-140 7 5 . 4 3 17.C96 6 . 9 4 3 3 . 8 5 2 1 . 6 6 99 : 1 PARENT MATERIAL: COLLUVIAL VENEER AHE 000-006 8 1 . 2 7 BF1 006-030 5 6 . 8 8 BF2 0 3 0 - 0 7 0 5 7 . 7 5 IIBFGJ1 070-100 8 4 . 0 5 I I B F G J 2 100-150 5 0 . 0 3 IICG 150-175 71 .62 PLOT N O . : 100 PROFILE N O . : 1 1 0 . 9 9 3 1 . 5 0 3 1 . 5 7 13 .67 4 4 . 2 9 2 2 . 2 8 PARENT MATERIAL: MORAINE VENEER COARSE I F R A G . * I SOIL TEXTURAL CLASS 31 69 46 91 81 63 70 42 LOAMY SAND LOAMY SAND SANDY LOAM LOAMY SAND OVER GLACIOFLUVIAL DEPOSITS 7 . 7 4 1 1 . 6 2 10 .68 2 . 2 7 5 . 6 8 6 . 1 0 41 58 66 72 60 58 LOAMY SAND SANDY LOAM SANDY LOAM LOAMY SAND SANDY LOAM SANDY LOAM OVER A C I D I C INTRUSIVE BEDROCK AHE PLOT N O . : 104 PROFILE N O . : 2 AE PLOT N O . : 109 PROFILE N O . : 1 H BM PLOT N O . : 111 PROFILE N O . : 1 BM1 BM2 BM3 PLOT N O . : 112 PROFILE N O . : 1 AHE BF AEB PLOT N O . : 114 PROFILE N O . : 1 0 0 0 - 0 0 4 7 2 . 8 0 19 .32 PARENT MATERIAL: MORAINE VENEER 000-009 7 4 . 4 2 2 3 . 9 3 PARENT MATERIAL: COLLUVIAL VENEER 000-030 030-080 5 5 . 2 7 3 4 . 4 5 30 . 91 50 .38 PARENT MATERIAL: ALLUVIAL DEPOSITS 000-020 020-050 050-090 5 8 . 6 0 6 6 . 7 4 8 1 . 8 7 34. 39 2 7 . 8 9 1 4 . 3 0 PARENT MATERIAL: COLLUVIAL VENEER 000-030 030-040 040-050 2 4 . 2 4 4 4 . 24 3 8 . 8 3 6 4 . 2 3 4 8 . 16 5 2 . 3 6 PARENT MATERIAL: COLLUVIAL VENEER 7 . 8 8 35 SANDY LOAM OVER ACIDIC INTRUSIVE BEDROCK 1.65 31 LOAMY SAND OVER ACIDIC INTRUSIVE BEDROCK 13 .82 1 5 . 1 7 7 . 0 1 5 . 3 7 3 . 8 3 3 92 83 85 91 SANDY LOAM S I L T LOAM SANDY LOAM SANDY LOAM LOAMY SAND OVER BASIC INTRUSIVE BEDROCK 1 1 . 5 3 7 . 6 0 8 . 8 1 48 34 36 SILT LOAM SANDY LOAM SILT LOAM OVER BASIC INTRUSIVE BEDROCK AE 0 0 0 - 0 0 3 4 4 . 8 9 4 7 . 0 4 8 . 0 7 33 LOAM TABLE 11 I SAMPLE" HORIZONI DEPTH I PARTICLE SIZE IN % BY WEIGHT (FRACTI ON< 2MM) I COARSE I SOIL TEXTURAL I I NO. I I (CM.) | SANO I SILT I CLAY I FRAG.? | CLASS I 3 BFHGJ1 003-010 69.82 25.20 4.98 62 SANDY LOAM 4 BFHGJ2 010-025 41.81 47.25 10.93 39 LOAM 5 BFHC 025-068 81.67 17.54 0.79 73 LOAMY SAND PLOT NO.: 116 PARENT MATERIAL: COLLUVIAL VENEER OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO.: 1 2 BHF1 000-015 64.66 28.64 6.70 69 SANDY LOAM 3 BHF2 015-040 23.85 48.23 27.92 69 SILT LOAM 4 BF 040-080 40.51 50.34 9.15 78 LOAM PLOT NO.: 119 PARENT MATERIAL: COLLUVIAL VENEER OVER ACIDIC INTRUSIVE BEDROCK PROFILE NO.: 1 2 AE 000-005 61.72 29.41 8.87 89 SANDY LOAM 3 BFH 005-060 82.15 9.14 ' 8.71 92 LOAMY SANO 4 BF 060-090 57.33 41.83 0.84 87 SANDY LOAM PLOT NO.: 126 PARENT MATERIAL: MORAINE BLANKET OVER ACIDIC INTRUSIVE BEDROCK PROFILE MO.: 1 3 AHE 000-004 52.54 29.81 17.65 13 SANOY LOAM 4 BHFCJ 004-007 36.12 41.58 22.30 20 LOAM 5 BHFC 007-070 36.26 51.56 12.18 37 SILT LOAM 6 - BHF 070-100 38.36 51.28 10.36 45 SILT LOAM PLOT NO.: 137 PARENT MATERIAL: ALLUVIAL DEPOSITS OVER BASIC INTRUSIVE BEDROCK PROFILE NO.: 1 2 AH 000-Q35 91.50 4.28 4.22 60 SAND PLOT NO.: 138 PARENT MATERIAL: ALLUVI AL'OEPOSITS OVER BASIC INTRUSIVE BEDROCK PROFILE NO.: 1 2 AHE 000-009 51.52 34.34 14.14 I LOAM 3 BFH 009-045 75.79 18.18 6.06 9 LOAMY SAND 4 CGJ 045-090 86.89 4.54 8.57 64 LOAMY SAND PLOT NO.: 148 PARENT MATERIAL: GLACIOFLUVIAL DEPOSITS OVER GLACIOMARINE DEPOSITS PROFILE NO.: 1 2 AH 000-010 29.65 46.99 23.36 83 LOAM 3 BFH 010-025 55.56 40.52 3.92 1 SANDY LOAM 4 BF 025-065 51.60 41.10 7.30 6 SANDY LOAM 5 IIBFGJ 065-080 20.66 48.40 39.94 10 CLAY LOAM 6 IIBFGJ 080-100 21.58 49.08 29.34 1 CLAY LOAM 7 BIIIC ' 100-120 51.80 34.06 14.14 47 LOAM 8 IIICG 120-135 64.32 19.60 16.08 19 SANDY LOAM T A B L E 12 I SAMPLE I NO. HOR1ZONI DEPTH I P A R T I C L E S I Z E IN % BY WEIGHT (FRACTION<2MM)I COARSE I (CM.) | SAND I S I L T I CLAY I F R A G . ? I SOIL TEXTURAL CLASS PLOT N O . : 150 P R O F I L E N O . : 1 PARENT M A T E R I A L : A L L U V I A L DEPOSITS OVER G L A C I O F L U V I A L DEPOSITS AHE BFHGJ BFGJ I IBFHG IIBFHG 000-015 015-025 025-055 055-080 080-110 3 4 . 3 4 3 8 . 0 0 52 . 10 4 1 . 9 8 5 8 . 8 7 43 . 15 49 .21 3 2 . 8 0 5 1 . 4 0 3 8 . 8 0 22 .51 1 2 . 7 9 15. 10 6 .62 2 . 3 3 S I L T LOAM LOAM SANDY LOAM S I L T LOAM SANDY LOAM PLOT N O . : . 153 P R O F I L E N O . : 1 PARENT M A T E R I A L : C O L L U V I A L VENEER OVER ACIDIC INTRUSIVE BEDROCK AHE BHF 000-005 005-045 7 3 . 4 3 76 . 17 19. 16 20 .62 7 .41 3 . 2 1 30 68 SANDY LOAM LOAMY SANO PLOT N O . : 155 P R O F I L E N O . : 1 PARENT M A T E R I A L : C O L L U V I A L VENEER OVER A C I D I C INTRUSIVE BEDROCK BFH BF BHF 000-015 015-030 030-060 6 9 . 6 9 7 1 . 1 5 6 7 . 4 9 2 1 . 1 3 2 3 . 7 3 25 .25 9 . 18 5 . 1 2 2 . 2 6 77 70 80 SANDY LOAM SANDY LOAM SANDY LOAM PLOT N O . : 156 P R O F I L E N O . : 1 PARENT M A T E R I A L : A L L U V I A L DEPOSITS OVER A C I D I C INTRUSIVE BEDROCK AH BMGJ 000-015 015-050 7 8 . 8 7 7 3 . 10 16 .02 16 .51 5 . 1 1 1 0 . 3 9 73 73 LOAMY SAND SANDY LOAM PLOT N O . : 158 P R O F I L E N O . : 1 PARENT M A T E R I A L : C O L L U V I A L VENEER OVER G L A C I O L A C U S T R I N E DEPOSITS BHFCJ BFHCJ BHFGJ I I C G J 000-010 010-045 050-090 090-115 6 6 . 15 50 .51 4 1 . 3 7 3 4 . 2 7 18. 28 3 5 . 9 0 4 7 . 2 8 4 5 . 3 8 1 5 . 5 7 1 3 . 5 9 11 .35 2 0 . 3 5 9 SANDY LOAM 14 LOAM 20 LOAM 11 LOAM o <J1 406 APPENDIX VI CHEMICAL ANALYSIS OF SOILS (Tables 1 - 23) Ana ly t i ca l data i s arranged according to p lan t assoc ia t ions , then numerical ly by p lo t numbers, p r o f i l e numbers and hor izons. Humus form, s o i l subgroup and parent mater ia ls , inc lud ing l i t h o l o g i c a l d i s -c o n t i n u i t i e s , are i den t i f i ed fo r each p r o f i l e (pedon). Conventions, concerning designations of organic l aye rs , master mineral horizons and l aye rs , and lowercase su f f i xes , fol lowed those of CSSC (1970, 1974). Ana ly t i ca l symbols are se l f -exp lanatory . Zero values (0.0) were pr inted fo r hor izons, which were not sampled, o r fo r chemical parameters fo r which the respect ive ana lys is was not ca r r i ed out. SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE, M. FELLER, J. WORT JR., L. SIMPSON AND K. KLINKA FOREST ECOSYSTEM: CWHA, (LICHEN) - GAULTHERIA - DF COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE I S A M . I HORIZON I DEPTH I NO.I I (CM) I I I PK ITOT.CITDT.Nl C/N I EXCH. H20 | CACL2I Z I ? I I CA I I I I I I I CAT. MEQ/100 GM I CEC I BS MG I NA | K I MEQ/lOOl ? I I I GM | I FE? I AL? I FE? I AL? I 1 OXAL. EXTR. I PYROPH.EXTR.I I ! I PLOT NO. PROFILE MO. 021 1 HUMUS FORM: F-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER LITHIC MINI HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF(H) 2 BFH . R 007-000 4.18 000-023 4.79 023-+ 0.0 3.66 37.39 4.29 3.56 0.0 0.0 1 .22 .24 0.0 30.6 11.66 14.8 .20 0.0 0.0 3.51 .07 0.0 1.08 .05 0.0 3.09 .20 0.0 92.00 40.25 0.0 21.0 1.3 0.0 0.0 1.06 0.0 0.0 2.04 0.0 .12 .70 0.0 .28 1.96 0.0 PLOT NO. PROFILE MO. 057 1 HUMUS FORM: MOOER SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER LITHIC MINI FERRO-HUMIC PODZOL / QUARTZDIDRITE BEDROCK I OR BOULDERS) 1 LF(H) 004-000 4.06 3.64 29.04 1 .09 26.6 8.11 1.85 .87 2.21 81.90 15.9 0.0 0.0 .15 .18 AE 000-002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 EHF 002-016 5.06 4.60 6.24 .28 22.3 3.87 .43 .07 .36 37.18 12.7 .84 3.82 .33 1.67 R 016- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 136 1 HJMUS FORM: H-MOR SOIL SUBGROUP: PROTORANKER PARENT MATERIAL : ORGANIC VENEER / DIORITE (GABRO) BEDROCK (OR 80ULDERS) 1 (F)H R 002-000 000- + 3.98 0.0 3.53 27.88 0.0 0.0 .30 0.0 92.9 0.0 4.37 0.0 1.23 0.0 .27 0.0 .64 0.0 62.40 0.0 10.4 0.0 0.0 0.0 0.0 0.0 .10 0.0 .19 0.0 PLOT NO. PROFILE NO. 142 1 HJMUS FORM: H-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER LITHIC ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (LF)H 2 AE J 3 BFH R 013-000 3.60 000-004 3.74 004-015 3.88 015 - t 0.0 3.12 57.04 3.25 3.77 3.53 4.31 0.0 0.0 1.57 .24 .43 0.0 36. 3 15.7 10.0 0.0 9.29 .42 .11 0.0 2.23 . 19 .28 0.0 .29 .06 .10 0.0 1.73 .19 .34 0.0 109.17 23.24 43. 12 0.0 12.4 3.7 1.9 0.0 0.0 .37 .35 0.0 0.0 .23 .31 0.0 .04 .16 .08 0.0 .20 .20 .44 0.0 4 * O ^1 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE, M. FELLER, J . WORT JR., L. SIMPSON AND K. FOREST E:OSYSTEM: CWHB, LICHEN - GAULTHERIA - LP - DF KLINKA COASTAL WESTERN HEMLOCK ZONE U . B . C . RESEARCH FOREST TABLE 2 ISAM. I HORIZON I DEPTH I PH I TOT.CI TOT.NI C/N | EXCH. CAT. I NO.I I (CM) I H20 I CACL2I ? I X I I CA I MS I I I I I I I I I I MEQ/100 GM I CEC I BS I NA I K I MEQ/100I % I I I GM I FES I AL? I O X A L . E X T R . I F E ? I A L ? P Y R O P H . E X T R . PLOT NO. PROFILE NO. 041 1 HJMUS FORM: F-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER LITHIC ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF(H) 006-000 3.42 2.96 51.42 1.52 33.8 6.86 2.49 1.97 2.04 165.10 8.1 0.0 0.0 .04 .14 2 AE 000-005 3.70 3.26 3.96 .17 23.3 .35 .16 .07 .31 29.24 3.0 .27 .10 .20 .14 3 BFH 005-020 4.40 4.03 3.23 .15 21.5 .15 .12 .04 .27 20.80 2.8 .76 ..58 .39 .54 R 020-+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO.* : 054 HJMUS FORM: F-MOR SOIL SUBGROUP: LITHIC ORTHIC HUMO-FERRIC PODZOL PROFILE MO.: 1 PARENT MATERIAL : COLLUVIAL i/ENEER. / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 L(FH) 004-000 3.54 3.17 45.39 1 .28 35.5 6.86 1.95 1.68 1.28 106.60 11.0 0.0 0.0 .06 .16 2 AE 000- 005 3.90 3.34 2.04 .11 18.5 .44 .12 .08 .19 18.75 4.4 .08 .09 .07 .06 3 BFH 005- 015 4.64 4.36 3.01 .15 20.1 .21 .05 .27 .09 30.80 2.2 .83 1.73 .31 .59 4 BF 015-045 4.61 4.30 1.94 .08 24.2 .09 .04 .04 .09 18.46 1.4 .46 .92 .21 .55 R 045- f 0.0 0.0 0.0 0.0 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 103 HJMUS FORM: F-MOR SOIL SURGROUP: PROTORANKER PROFILE NO.: 1 PARENT MATERIAL : ORGANI C VE *!EER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LFH 010-030 3.62 3.19 48 .46 1.45 33.4 10.10 1.99 .38 2.43 104.08 14.3 0.0 0.0 0.0 0.0 R 000-+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 103 HJMUS FORM: F-MUR SOIL SUBGROUP: PROTORANKER PROFILE NO.: 2 PARENT MATERIAL : ORGANIC VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LFH 005-000 3.53 3.01 52.06 1.52 34.2 4.12 1.20 .25 1.36 111.12 6.2 0.0 . 0.0 0.0 0.0 R 000-+ C O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 120 HJMUS FORM: F-MOR SOIL SUBGROUP: LITHIC ORTHIC FERRO -HUMIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (L)FH 009- 000 3.59 3. 10 42.43 1.17 36.3 7.05 1.66 .44 1.48 105.64 10.1 0.0 0.0 .04 .16 2 AE 000- 013 3.68 3.22 3.37 .10 33.7 .65 .20 .10 .20 18.23 6.3 .22 .15 .08 .10 3 BHF 013- 025 4.06 3.62 7.16 . 19 37.7 .29 .23 .11 .30 33.02 2.8 1.42 .69 .47 .52 R 025- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S O I L C H E M I C A L A N A L Y S E S ( F R A C T I O N < 2 MM) S A M P L E D IN SUMMER 1972 AND 1 9 7 3 BY K. K L I N K A A N A L Y Z E D B Y : R. B E A L E » M. F E L L E R , J . WORT J R . F O R E S T E : O S Y S T E M : CWHA, G A U L T H E R I A - WH - DF S I M P S O N AND K . K L I N K A C O A S T A L WESTERN H E M L O C K ZONE U . B . C . R E S E A R C H F O R E S T TABLE 3 I S A M . I HORIZON I I NO. I I DEPTH I PH ! T O T . C l T O T . N l C / N I E X C H . C A T . M E Q / 1 0 0 GM I C E C I BS C M ) I H20 I C A C L 2 I % I % I I CA I MG I NA I K I M E Q / 1 0 0 1 ? I I I I I I I I I I GM I I F E ? I A L ? I F E ? I A L ? I I O X A L . E X T R . I P Y R O P H . E X T R . I PLOT N C . : P R O F I L E N O . : 0 1 9 1 HJMUS FORM: F-MOR S O I L SUBGROUP: MINI PARENT MATERIAL : M3RAINE VENEER H U M O - F E R R I C PODZOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 L F I H J - D W 0 0 8 - 0 0 0 3 . 7 9 3 . 3 1 4 6 . 9 8 1 . 3 7 3 4 . 3 1 1 . 6 6 2 . 3 7 1 . 2 6 2 . 3 2 1 4 9 . 5 0 1 1 . 8 0 . 0 0 . 0 . 0 7 . 2 0 AE 0 0 0 - 0 0 4 0 . 0 b.o 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 2 BF 0 0 0 - 0 5 5 5 . 0 5 4 . 6 0 2 . 1 8 . 1 2 1 8 . 2 . 1 6 . 0 5 . 0 3 . 0 9 2 4 . 9 5 1 . 3 . 4 4 1 . 6 5 . 1 2 . 6 8 R 0 5 5 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 P L O T N O . P R O F I L E MO. 1 LFH 2 AE R 0 3 0 HJMUS FORM: H-MOR S O I L SUBGROUP: L I T H I C F O L I S O L 1 PARENT M A T E R I A L : ORGANIC VENEER Oll-COO 3 . 6 4 0 0 0 - 0 0 5 3 . 6 4 005 -+ 0 . 0 3 . 1 3 4 3 . 7 1 3 . 3 3 6 . 3 0 0 . 0 0 . 0 1 . 1 7 . 2 5 0 . 0 3 7 . 4 1 0 . 2 9 2 5 . 2 . 5 2 0 . 0 0 . 0 3 . 7 3 . 2 3 0 . 0 1 . 2 0 . 0 8 0 . 0 2 . 0 4 . 3 8 0 . 0 / Q U A R T Z D I O R I T E B E D R O C K (OR B O U L D E R S ) 1 4 3 . 7 5 5 7 . 5 0 0 . 0 1 2 . 0 2 . 1 0 . 0 0.0 .17 0.0 0.0 .13 0.0 . 0 7 . 0 8 0 . 0 .20 .42 0.0 P L O T NO. P R O F I L E MO. 0 3 0 2 HUMUS FORM: H-MOR S O I L SUBGROUP: PARENT MATERIAL : MORAINE VENEER L I T H I C MINI H U M O - F E R R I C PODZOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 LFH 0 1 0 - 0 0 0 3 . 8 0 3 . 0 8 4 8 . 0 6 1 . 2 3 3 9 . 1 1 0 . 2 9 2 . 7 1 . 9 6 2 . 1 1 1 2 6 . 5 0 1 2 . 7 0 . 0 0 . 0 . 0 7 .22 A E ' 0 0 0 - 0 0 3 0 . 0 0 . 0 0 . 0 O . C 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 2 BFH 0 0 0 - 0 4 0 4 . 8 6 4 . 4 4 3 . 0 1 . 1 7 1 7 . 7 . 0 7 . 0 3 . 0 4 . 1 5 2 6 . 4 5 l . l 1 . 0 4 2 . 0 7 . 3 4 1 . 3 3 R 0 4 0 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 PLOT N O . : 0 4 6 HJMUS ; FORM: F-MOR SOI L SUBGROUP: MINI H U M O - F E R R I C PODZOL P R O F I L E N O . : 1 PARENT M A T E R I A L : G L A C I O F L U V I A L D E P O S I T S / MORAINE V E N E E R 1 LFH 0 1 0 - 0 0 0 3 . 4 7 3 . 1 0 4 9 . 0 4 1 . 2 9 3 8 . 0 6 . 8 6 2 . 3 7 1 . 3 2 1 . 5 5 1 4 1 . 7 0 8 . 6 0 . 0 0 . 0 . 0 8 . 1 8 AE 0 0 0 - 0 0 3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 2 BF1 0 0 0 - 0 1 5 4 . 54 4 . 2 1 2 . 0 8 . 2 2 9 . 5 . 0 7 . 0 3 . 0 4 . 0 5 1 5 . 3 4 1 .2 . 6 4 1 .21 . 17 . 5 4 3 BF2 0 1 5 - 0 5 0 4 . 8 8 4 . 5 9 1 .41 . 12 1 1 . 7 . 0 9 . 0 3 . 0 3 . 0 5 1 3 . 0 0 1 .5 . 4 8 1 . 0 8 . 1 2 . 4 5 4 B I I C 0 5 0 - 0 3 0 4 . 67 4 . 6 1 . 9 1 . 0 7 1 3 . 0 . 0 6 . 0 2 . 0 3 . 1 9 1 0 . 14 3 . 0 .33 . 6 0 . 1 3 . 4 4 R 0 8 0 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 P L O T N O . P R O F I L E MO. 081 1 HJMUS FORM: F-MOR PARENT MATERIAL : MORAINE VENEER S O I L SUBGROUP: MINI H U M O - F E R R I C PODZOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 • L F ( H ) 0 0 4 - 0 0 0 3 . 7 3 3 . 3 4 5 0 . 2 6 1 . 4 9 3 3 . 7 1 1 . 2 3 3 . 0 8 . 3 3 4 . 3 5 9 7 . 7 5 1 9 . 5 0.0 0.0 . 0 7 . 13 AE 0 0 0 - 0 0 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 0 . 0 0.0 0.0 0.0 0.0 0.0 2 BFH 1 0 0 0 - 0 4 0 4 . 8 0 4 . 54 2 . 9 8 . 1 7 1 7 . 5 . 1 7 . 0 6 . 0 5 . 1 5 1 0 . 2 7 4 . 2 . 6 3 1 . 3 5 . 2 6 .72 3 BFH2 0 4 0 - 0 8 5 5 . 1 1 4 . 9 4 2 . 9 5 . 19 1 5 . 5 . 1 1 . 0 4 . 0 3 . 0 9 1 1 . 5 7 2 . 4 . 6 9 2 . 3 1 . 2 2 1.00 R 0 8 5 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT N O . P R O F I L E N O . 083 1 . HJMUS FORM: F-MDR S O I L SUBGROUP: PARENT MATERIAL : MORAINE VENEER L I T H I C MINI H U M O - F E R R I C PODZOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 L F ( H ) AE 2 BFH 0 1 2 - 0 0 0 3 . 6 9 0 0 0 - 0 0 1 0 . 0 0 0 0 - 0 1 5 4 . 8 1 3 . 2 2 5 1 . 4 8 0 . 0 0 . 0 4 . 4 0 5 . 3 3 1 . 7 6 0 . 0 . 3 4 2 9 . 2 1 1 . 2 3 0 . 0 0 . 0 1 5 . 7 . 2 6 3 . 6 0 0 . 0 . 0 7 . 3 8 0 . 0 . 0 5 2 . 4 3 0 . 0 . 1 2 8 5 . 1 5 0 . 0 2 9 . 2 5 2 0 . 7 0 . 0 1 . 7 0.0 0.0 1 . 5 8 0.0 0.0 2 . 6 8 .09 . 1 8 0.0 0.0 .90 2 . 1 4 TABLE 3 (continued) ISAM.I H3RIZ0N I DEPTH I PH I TOT.CITDT.NI C/N I EXCH. | NO.I I (CM) I H2D I CACL2I S I ~ I I CA I I I I I I I I I I I CAT. MEQ/100 GM I CEC I BS I FES I ALS I FES I ALS I MS I NA I K I MEQ/IOOI % I OXAL. EXTR. I PYROPH.EXTR.I I I I GM | I I I PLOT NU. : PROFILE NO.: PLOT NO. : PROFILE NO.: 1 LF(H) 2 AHE R PLOT NO. : PROFILE NO.: 1 (L)FH R PLOT NO. : PROFILE NO.: 1 (L)FH 2 AE K 083 1 015- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 HJMUS FORM: MODER SOIL SUBGROUP: LITHIC PODZOL 1 PARENT MATERIAL : MORAINE VENEER 004-000 4.47 000-004 4.36 .004-+ 0.0 4.03 30.32 3.88 5.07 0.0 0.0 1 .57 .50 0.0 19.3 10. I 0.0 18.09 1.97 0.0 2.67 .34 0.0 .87 .18 0.0 104 HUMUS FORM: MODER SOIL SUBGROUP: PROTORANKER 1 PARENT MATERIAL : ORGANIC VENEER 004-000 000- + 4.02 0.0 3.53 22.96 0.0 0.0 1.02 0.0 22.5 0.0 3.74 0.0 1.64 0.0 .71 0.0 1.28 .19 0.0 1.41 0.0 104 HJMUS FORM: F-MUR SOIL SUBGROUP: 2 PARENT MATERIAL : MORAINE VENEER LITHIC PODZOL 005-000 3.75 000-009 3.79 009-+ 0.0 3.37 42.09 3.42 2.50 0.0 0.0 1.52 .13 0.0 27.7 19.2 0.0 8.73 .36 0.0 2.16 .09 0.0 .50 1.69 .08 .12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 / QUARTZDIORITE BEDROCK (OR BOULDERS) 87.05 26.3 24.94 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 / QUARTZDIORITE BEDROCK (OR BOULDERS) 72.55 0.0 10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 / QUARTZDIORITE BEDROCK (OR BOULDERS) 97.85 10.79 0.0 13.5 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SOIL CHEMICAL ANALYSES (FRA;TION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALEt M. FELLER, J . WORT JR., L. SIMPSON AND K. KLINKA FOREST E:0SYSTEM: CWHASB, MAHONIA - GAULTHERIA - WH - DF COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 4 ISAM.I HORIZON I DEPTH I PH I TOT.CI TOT.MI C/N I EXCH. CAT. I NO.I I (CM) | H20 I CACL2I ? I ? I I CA I MG I I I I I I I I I I MEQ/100 GM I CEC I BS I NA I K I MEQ/lOOl % I I I GM I FE? I AL? I FE? I AL? I OXAL. EXTR. I PYROPH.EXTR.I I I PLOT NO. PROFILE MO. 008 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOJLDERS) 1 LFH 2 AE 3 fc-F RB 005-000 A.84 000-004 4.83 004-070 5.18 070-+ 0.0 4.51 41.59 4.32 2.08 4.59 1.85 0.0 0.0 1 .64 .14 . 16 0.0 25.4 22.46 14.9 1.37 11.6 .37 0.0 0.0 3.29 .19 .05 0.0 .38 .05 .04 0.0 2.05 .18 . 10 0.0 173.25 46.90 38.62 0.0 16.3 2.8 1 .5 0.0 0.0 .26 .70 0.0 0.0 .30 1.62 0.0 .05 .30 .45 0.0 .10 .40 .95 0.0 PLOT NO. PROFILE NO. 020 1 HUMUS FORM: F-MOR PARENT MATERIAL : SOIL SUBGROUP: COLLUVIAL VENEER . MINI HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF( H) 007-000 4.07 3.55 43.07 1.30 33. 1 16.47 2.71 1.20 2.92 132.25 • 17.6 0.0 0.0 . 13 .32 2 BFH 000-C25 4.62 4.22 5.36 .40 13.4 1.00 .19 .08 .50 54.50 3.4 .54 1.17 .35 1.04 3 P.F 025-C88 4.99 4.60 2.88 .22 13.1 .44 .10 .06 .20 27.60 2.9 .61 1.92 .23 1.04 R 088- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 031 1 HJMUS FORM: F-MOR SOIL SUBGROUP: MINI PARENT MATERIAL : COLLUVIAL VENEER FERRO-HUMIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF(H) 2 BHF R 006-000 3.72 000-060 4.53 060- + 0.0 3.24 48.93 4.15 7.15 0.0 0.0 1.14 .33 0.0 42.9 11.66 21.7 .15 0.0 0.0 2.60 .11 0.0 1.26 .08 0.0 6.08 .28 0.0 132.25 56.35 0.0 16.3 1.1 0.0 0.0 1.93 0.0 0.0 2.63 0.0 .06 1. 17 0.0 .19 2.28 0.0 PLOT NO. : PROFILE MO.: 056 1 HJMUS FORM: F-MOR PARENT MATERIAL : SOIL SUBGRDUP: :OLLUVIAL VENEER ORTHIC HUMO-FERRIC PODZOL / DIORITE (GABRO) BEDROCK (OR BOULDERS) 1 (L ) F H 011-000 3.80 3.33 49.39 1.25 39.5 10.60 2.67 1.03 2.33 124.80 13.3 0.0 0.0 .10 .18 2 AE 000-015 3.94 3.44 2.07 . 12 17.2 .25 .13 .07 .14 10.92 5.3 .26 .12 . 13 .11 3 BF 015-035 4.20 3.74 2.30 . 15 15.3 . 10 .08 .06 .24 19.76 2.5 .68 .40 .59 .42 4 BFH 035-085 4. 19 3.71 3.40 .20 17.0 .15 .12 .06 .49 31.06 2.6 .92 .37 .67 .38 K 085- + 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 076 1 HJMUS FORM: F-MOR SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL BLANKET MINI HUMO-FERRIC PODZOL / MORAINE BLANKET 1 LF(H) 005-000 3.86 3.36 35.42 .90 39.4 6.86 1.34 .92 1.18 69.65 14.7 0.0 0.0 .12 .19 AE 000-002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 BF 1 002-055 5. 12 4. 68 1.71 .14 12.2 .12 .03 .04 .12 7. 15 4.5 .39 2.00 . 14 .74 3 eF2 055-075 5.27 4.88 .83 .07 11.9 .15 .02 .05 .04 4.29 6.2 .23 1.71 .04 .41 4 BF 3 075-100 5. 12 5.01 .83 .10 8.3 .17 .02 .08 .05 4.29 7.5 .35 1.95 .04 .40 n: 100- + 0. 0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE MO. 082 1 HJMUS FORM: F-MOR SOIL SUBGROUP: LITHI! PS RENT MATERIAL : COLLUVIAL VENEER MINI HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOJLDERS) 1 LF(H) AE 2 BFH 1 009-000 3.76 000-001 0.0 000-025 4.64 3.36 42.78 0.0 0.0 4.29 3.15 1 .34 0.0 . 14 31.9 0.0 22.5 11.23 0.0 .24 2.67 0.0 .05 .33 0.0 .05 2.72 0.0 .12 74. 35 0.0 12.61 22.8 0.0 3.5 0.0 0.0 .66 0.0 0.0 1.22 .13 0.0 .34 .26 0.0 .79 TABLE 4 (contiriufed) ISAM. I NO. HORIZON I DEPTH | PH I TOT.CI TOT.NI C/N I EXCH. CAT. MEQ/100 GM I CEC I BS I (CM) | H20 I CACL2I % I % | I CA | MG I NA I K I MEQ/lOOl ? I I I I I I I I I I I GM I I FE* I AL? I FE? I AL? I I OXAL. EXTR. I PYROPH.EXTR.| I I I PLOT NO. : PROFILE NO.: BFH2 R 082 1 025-050 050- + 4.78 0.0 4.49 0.0 4.62 0.0 .24 o.c 19.2 0.0 .16 0.0 .05 0.0 .05 0.0 .10 0.0 17.29 0.0 2.2 0.0 .70 0.0 1.96 0.0 .38 0.0 1.25 0.0 PLOT NO. PROFILE NO. 121 1 HJMUS FORM: F-MOR PARENT MATERIAL : SOIL SUBGROUP: COLLUVIAL VENEER LITHIC ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOJLDERS) J. LF( H ) 007-000 3.76 3.29 38.43 1.07 35.9 9.C4 2.08 .46 1.79 104.47 12.8 0.0 0.0 .04 .11 2 AE 000-005 3.78 3.29 2.93 .10 29. 3 .54 .10 .08 .11 15.42 5.4 . 18 .16 .05 .12 3 BFH 005-012 4.88 4.42 3.31 . 12 27.6 .11 .06 .07 .13 23.01 1.6 1.22 1.99 .25 .83 4 BF 012-045 5.08 4.55 2.05 .09 22.8 .26 .06 .07 .08 17.53 2.7 1.05 2.22 .12 .57 RB 045- + 0.0 0.0 0.0 0.0 0.0 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE MO. 123 1 HJMUS FORM: H-MOR SOIL SUBGROUP: MINI PARENT MATERIAL : COLLUVIAL VENEER HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (LF )H 004-000 3.85 3.36 38.26 1.20 31.9 9.29 1.43 .29 1.38 97.04 12.8 0.0 0.0 2 BFH1 000-035 4.85 4.52 5.21 .32 16.3 .04 .06 .07 .14 30.91 1.0 1.17 1.85 3 BFH2 035-075 5.03 4.80 3.99 .25 16.0 .01 .05 .07 .13 27.47 1.0 1.30 2.48 R 075-t 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .14 .24 .17 0.0 .34 1.07 1.10 0.0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED 3Y: R. BE ALE, M. FELLER, J . WORT JR., L. FOREST ECOSYSTEM: CWHA, MOSS - WH : l~-SIMPSON AND K. KLINKA C O A S T A L W E S T E R N H E M L O C K ZONE U . B . C . R E S E A R C H F O R E S T T A B L E 5 ISAM.I HDRIZON I NO. I I I DEPTH I PH ITOT.ClTOT.Nl C/N I EXCH. CAT. (CM) I H20 I CACL2I % I % I I CA | MG I I I I I I I MEQ/100 GM I C E C I BS | NA | K I MEQ/100 I ? I I I GM I F E S I A L ? I F E ? I A L ? I O X A L . E X T R . I P Y R O P H . E X T R . I I I PLOT NO. PROFILE NO. LFH AE BHF BF 1 BF2 IIC PLOT NO. : PROFILE NO.: 1 (LF)H AE 2 CF 1 3 EF2 4 bF3 R PLOT NO. : PROFILE NO.: 002 1 HJMUS FORM: F-MOR SOIL SUBGROUP: MINI HUMO-FERRIC PODZOL PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS / MORAINE BLANKET 010-000 000- 001 001- 015 015-C45 045-070 070-090 3.87 0.0 4.97 5. 19 5.26 5. 35 3.26 48.84 1.46 33.5 11.23 1.34 .33 .77 214.50 6.4 0.0 0.0 .10 .18 6 . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 4. 53 5.94 .36 16.5 .27 .03 .07 .09 29.32 1.6 .72 2.80 .37 .11 4.90 1.88 .15 12.5 .24 .03 .04 .04 31.57 l . l .54 2.32 .18 .75 4.75 1.80 .12 15.0 .41 .04 .08 .08 34.72 1.7 .47 2.28 .25 .92 4. 97 - .36 .05 7.2 .24 .01 .07 .06 10.27 3.5 .30 .72 .02 .22 005 1 HJMUS FORM: H-MOR SOIL SUBGROUP: MINI HUMO-FERRIC PODZOL PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS / QUARTZDIORITE BEDROCK (OR BOJLDERS) .08 .72 0.0 0.0 .22 .72 .10 .50 .10 .45 0.0 0.0 005-ODD 3. 82 3.38 49.71 1.63 30.5 14.97 2.57 .33 1.02 188.25 10.0 0.0 0.0 000-001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 001-030 4.84 4.37 2.07 .12 17.2 .22 .03 .04 .04 30.77 .9 .36 1.40 030-045 5.02 4.59 1.59 . 10 15.9 . 19 .02 .05 .05 15.90 1.9 .20 1.16 045-070 5.07 4.55 1.15 .07 16.4 . 14 .02 .04 .04 15.52 1.5 . 25 .96 070- + 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 007 1 HUMUS FORM: F-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE BLANKET LF( H) 004-000 4.23 3.75 50.23 1.54 32.6 15.59 1.95 .43 1.85 221.25 9.0 0.0 0.0 AHE 000-002 4. 48 3.89 12.53 .62 20.2 7.24 .82 .12 .53 99.45 8.8 .08 .13 AE 002-005 3.99 3.43 2.06 . 10 20.6 .39 .11 .07 .07 31.42 2.0 .08 .04 b F l 005-055 4.94 4.61 1.77 .12 14.8 .35 .04 .07 .06 28.42 1.8 .26 .99 bF2 055-130 5. 15 4. 88 1.01 . 10 10. 1 . 12 .02 .04 .05 21.05 l . l .46 1 .69 R 130- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DRTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) .08 .10 .22 .30 .10 .15 .25 .70 .15 .65 0.0 0.0 PLOT NO. : PROFILE NO.: 024 1 HJMUS FORM:•H-MOR SOIL SUBGROUP: ORTHIC HUMO-FERRIC PODZOL PARENT MATERIAL : MORAINE BLANKET 1 (LF)H-DW 035-030 3.85 3.48 54.14 1.60 33.fi 15.78 2.71 .96 1.20 207.00 10.0 0.0 0.0 .03 .19 2 AE 000-009 3. 58 3.08 3.03 . 16 18.9 .24 .14 .06 .09 27.75 1.9 .24 .07 . 19 .23 3 BFH 009-041 4.48 4.12 4.04 .26 15.5 .16 .05 .04 .05 42.20 .7 .62 1.85 .39 1.28 4 EF 041-091 4. 90 4.92 1.41 .08 17.6 .09 .02 .03 .04 23. 35 .7 .47 2.34 .08 .63 5 611 C 081-115 4.77 4.83 .65 .04 16.2 .11 .01 .04 .09 19.55 1.3 . 12 .58 .02 .34 IIC U 5 - + 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : PROFILE ND.: 032 1 (LF )H AE BFH BF 1 1 : HJMUS FORM: H-MOR SOIL SUBGROUP: URTHIC HUMO-FERRIC PODZOL PARENT MATERIAL : MORAINE OLANKET 012-000 000-007 007-032 032-090 090-110 3.98 3.49 47.65 1.28 37.2 15.78 3.05 .96 2.43 143.75 15.5 0.0 0.0 .04 .18 3.84 3.36 2.13 .14 15.2 .50 .13 .06 .26 16. 10 5.9 .31 .12 .06 .12 4. 73 4.36 3.71 .18 20.6 .42 .07 .05 .34 26.45 3.3 .68 1 .36 .32 .97 5.00 4.62 2.00 .12 16.7 .47 . 06 .04 .07 18.40 3.5 .53 1.35 .13 .55 5.16 4.94 .43 .02 21.5 .27 .01 .07 .15 9.20 5.5 .33 .93 .01 .27 TABLE 5 (continued) ISAM. I HDRIZON I DEPTH I PH I TOT.C I TOT.NI C/N I EXCH- CAT. MEQ/100 GM I CEC I BS I FE? I AL? I FE? I AL? I | NO.I I (CM) | H20 I CACL2I % I % I I CA I MG I NA I K I MEQ/lOOl ? I OXAL. EXTR. I PYROP H. EXTR. I | | I I I I I I I I I I I GM I I I I PLOT NO. : 124 HJMUS FORM: F-MOR SOIL SUBGROUP: MINI HUMO-FERRIC PODZOL PROFILE MO.: 1 PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOUL>ERS> 1 LF(H) 007-000 3.56 3.12 52.58 1.33 39.5 10.67 2.03 .39 2.05 108.77 13.9 0.0 0.0 .0? .13 2 AE 000-006 3.79 3.33 1.09 .08 13.6 .46 .06 .08 .07 8.69 7.7 . 19 .09 .0.'. .08 3 BFH 000-050 5.02 4. 56 2.58 .12 21.5 .11 .05 .06 .07 16.82 1.8 .85 1.62 . r. .79 4 EF 050-095 5. 36 4.90 1.13 .07 16.1 .22 .03 .07 .05 12.21 3.0 .60 1.34 .0! .47 R 095-* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 154 HJMUS FORM: F-MOR SOIL SUBGROUP:. MINI HUMO-FERRIC PODZOL (WITH ORTSTEIN) PROFILE MO.: 1 PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOULDr.RS) 1 LFH 005-000 3.85 3.32 51.25 1.48 34.6 13.72 2.26 .71 1.92 78.65 23.7 0.0 0.0 .0'. .11 AE 000-002 0.0 0.0 0.0 0.0 0.0 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 BF1 000-035 4. 58 4.33 1.94 .11 17.6 . 19 .03 .07 .05 6.89 4.8 .52 .69 • 2:> . 5 7 3 BF 2 035-050 5.02 4.67 2.40 . 12 20.0 .32 .04 .08 .07 9.37 5.4 .96 2.24 . I ' l .91 4 BFCJ 050-070 4. 84 4.49 2.65 . 14 18.9 .06 .03 .07 .05 12.87 1.6 .72 1.09 • 3 .83 5 BHF C 070-085 4.93 4.42 8.41 .38 22. 1 .12 .05 .08 .07 54.86 .6 2. 14 4.98 .59 2.21 RB 085- + 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S O I L C H E M I C A L A N A L Y S E S ( F R A ; T I 0 N < 2 M M ) S A M P L E D I N S U M M E R 1 9 7 2 A N D 1 9 7 3 B Y K . K L I N K A A N A L Y Z E D B Y : R . B E A L E , M . F E L L E R . J . W O R T J R . , L . S I M P S O N A N D K . F O R E S T E I O S Y S T E M : C W H A C B , M A H O N I A - M O S S - W R C - W H K L I N K A COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 6 I SAM. I H O R I Z O N I I N O . I I I I I DEPTH I Prf ITOT.CITOT.NI C/N I EXCH. CAT. (CM) I H20 I CACL2I * 1 ? I I CA I MG I I I I I I I M E Q / 1 0 0 GM | CEC I I N A | K I M E Q / 1 0 0 I I I I GM I 8S I FE? I AL? I FE? I AL? I % I OXAL. EXTR. | PYROPH.EXTR . I I I I P L O T N O . P R O F I L E N O . 0 2 2 H J M U S F O R M : M O D E R S O I L S U B G R O U P : I P A R E N T M A T E R I A L : C O L L U V I A L V E N E E R SOMBRIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ( L F ) H 0 1 0 - 0 0 0 4 . 9 5 4 . 3 3 2 2 . 1 4 . B O 2 7 . 7 9 . 6 1 1 . 1 3 1 . 6 1 1 . 4 8 6 3 . 2 5 2 1 . 9 0 . 0 0 . 0 . 2 8 . 6 5 2 A H 0 0 0 - 0 1 0 5 . 3 1 4 . 7 5 6 . 3 2 . 2 9 2 1 . 8 1 . 5 7 . 1 7 . 0 8 . 3 9 4 6 . 0 0 4 . 8 . 8 9 2 . 7 7 . 3 9 1 . 7 7 3 A E 0 1 0 - 0 2 5 5 . 0 4 4 . 4 0 2 . 5 6 . 1 5 1 7 . 1 . 9 6 . 1 1 . 0 5 . 1 7 2 7 . 2 5 4 . 7 . 2 7 . 4 7 . 2 6 . 6 0 4 B F 0 2 5 - 0 9 0 5 . 0 6 4 . 5 9 2 . 3 9 . 1 4 1 7 . 1 . 4 5 . 0 8 . 0 6 . 1 9 2 9 . 5 5 2 . 6 . 6 1 1 . 8 4 . 2 4 1 . 0 4 R B 0 9 0 - * - 0 . 0 0 . 0 0 . 0 . 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 P L O T N O . P R O F I L E N O . 0 5 3 1 H J M U S F O R M : H - M O R S O I L S U B G R O U P : M I N I P A R E N T M A T E R I A L : C O L L U V I A L B L A N K E T FERRO-HUMIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ( L F ) H 0 1 5 - 0 0 0 3 . 9 6 3 . 4 1 4 6 . 4 3 1 . 4 2 3 2 . 7 1 . 8 7 . 6 2 . 7 1 1 . 5 3 1 3 2 . 6 0 3 . 6 0 . 0 0 . 0 . 1 0 . 2 1 2 B H F 0 0 0 - 0 7 5 4 . 7 1 4 . 1 3 7 . 1 9 . 3 4 2 1 . 1 2 . 0 2 . 2 5 . 1 2 . 9 3 4 2 . 1 2 7 . 9 . 7 0 1 . 4 4 . 4 6 1 . 2 1 3 B F 0 7 5 - 1 2 0 5 . O S 4 . 4 9 1 . 9 2 . 0 9 2 1 . 3 . 8 4 . 1 6 . 0 8 . 1 6 1 8 . 8 4 6 . 6 . 4 7 . 7 8 . 2 4 . 4 7 R B 1 2 0 - t 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 P L O T N O . : P R O F I L E M O . : 0 7 4 1 H J M U S F O R M : H - M O R P A R E N T M A T E R I A L : S O I L S U B G R O U P : A L L U V I A L B L A N K E T ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ( L ) F H 0 2 0 - 0 3 0 3 . 9 3 3 . 4 9 4 0 . 2 9 1 . 1 6 3 4 . 7 1 1 . 2 3 2 . 3 5 . 6 5 . 9 3 8 5 . 2 5 1 7 . 7 0 . 0 0 . 0 . 1 1 . 2 5 2 A E 0 0 0 - 0 1 5 4 . 3 5 3 . 9 2 2 . 1 8 . 1 5 1 4 . 5 1 . 4 5 . 2 1 . 0 9 . 0 7 1 6 . 8 9 1 0 . 8 . 3 0 . 2 5 . 2 0 . 2 6 3 B F 1 0 1 5 - 0 5 0 5 . 0 6 4 . 5 8 1 . 7 4 . 1 1 1 5 . 8 1 . 2 2 . 1 4 . 0 6 . 0 8 7 . 8 5 1 9 . 2 . 5 0 . 6 1 . 2 3 . 4 9 4 E F 2 0 5 0 - 1 3 5 5 . 1 7 . 4 . 7 7 2 . 3 3 . 1 5 1 5 . 5 1 . 2 8 . 1 5 . 0 5 . 1 2 1 1 . 0 5 1 4 . 5 . 7 3 1 . 3 6 . 3 6 . 7 9 K B 1 0 5 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 P L O T N O . : P R O F I L E N O . : 1 0 7 1 H J M U S F O R M : H - M O R P A R E N T M A T E R I A L : S O I L S U B G R O U P : C O L L U V I A L V E N E E R M I N I FERRO-HUMIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ( L F ) H 0 0 6 - 0 0 0 3 . 7 1 3 . 2 6 4 5 . 2 2 1 . 6 6 2 7 . 2 7 . 4 9 1 . 4 4 . 7 6 1 . 0 5 1 2 1 . 9 0 8 . 8 0 . 0 0 . 0 . 0 9 . 4 6 2 B H F 0 0 0 - 0 3 0 4 . 9 4 4 . 7 0 6 . 3 7 . 3 2 1 9 . 9 . 1 9 . 0 5 . 0 8 . 0 9 4 6 . 8 0 . 8 . 9 1 3 . 6 3 . 1 0 1 . 2 5 A E 3 0 3 0 - 0 3 4 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 - 0 . 0 0 . 0 0 . 0 0 . 0 3 B H F B 0 3 4 - 0 7 0 4 . 9 8 4 . 6 4 1 8 . 6 6 1 . 1 1 1 6 . 8 . 1 5 . 1 4 . 1 1 . 2 1 6 9 . 3 2 . 9 1 . 0 8 7 . 1 5 . 3 3 4 . 8 6 R B 0 7 0 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 P L O T N O . P R O F I L E N O . 1 0 7 2 H J M U S F O R M : M O D E R S O I L S U B G R O U P : P A R E N T M A T E R I A L : O R G A N I C V E N E E R P R O T O R A N K E R / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ( L F ) H R 0 1 0 - 0 0 0 3 . 8 4 0 0 0 - t 0 . 0 3 . 4 0 3 4 . 4 9 0 . 0 0 . 0 1 . 5 8 0 . 0 2 1 . 8 0 . 0 6 . 2 4 0 . 0 1 . 9 5 0 . 0 .87 0 . 0 . 9 0 0 . 0 1 1 3 . 1 0 0 . 0 8.8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 P L O T N O . : P R O F I L E N O . : 1 0 7 3 H J V . U S F O R M : M U L L P A R E N T M A T E R I A L : S O I L S U B G R O U P : O R G A N I C V E N E E R P R O T O R A N K E R / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (LF ) H R 0 0 8 - 0 0 0 0 0 0 - + 4 . 7 5 0 . 0 4 . 6 1 4 7 . 3 0 0 . 0 0 . 0 2.64 0 . 0 1 7 . 9 3 3 . 0 6 0 . 0 0 . 0 4 . 2 1 0 . 0 . 7 1 0 . 0 1 . 9 2 0 . 0 2 0 4 . 1 0 0 . 0 1 9 . 5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IM SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE, M. FELLER. J . WORT JR., FOREST ECOSYSTEM: CWHA, MOSS - (POLYSTICHUM) -L . S IMPSON AND K . WRC - WH : -KLINKA COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE-7 . I SAM. I H3R IZON I I NO.I I DEPTH I PH ITOT.ClTOT.Nl C/N I EXCH. CAT. MEQ/100 GM I CEC I BS (CM) I H20 I CACL2I % I % I I CA I MG I NA I K I MEQ/lOOl ? I I I I I I I I I I GM I 1 FE? I AL? I FE? I AL? I I OXAL. EXTR. I PYROPH.EXTR.I I I I PLOT NO. PROFILE NO. 001 1 HJMUS FORM: H-MOR PARENT MATERIAL : SOIL SUBGROUP: (GLEYED) GLACIOFLUVIAL DEPOSITS ORTHIC HUMO-FERRIC PODZOL 1 LF-DW 014-007 3.99 3.50 51.91 1.49 34. 8 18.09 2.47 .60 2.05 198.00 11.7 0.0 0.0 .08 .13 2 H 007-000 3.77 3.21 38.63 1.15 33.6 11.23 1.64 .38 .83 173.25 8. 1 0.0 0.0 .15 .22 3 AE 000-003 4.86 4.38 1.15 .11 10.5 .20 .02 .07 .08 17.85 2.0 .21 .52 .25 .42 4 BF 1 003-C4O 5.34 5.18 1.60 .12 13.3 .22 .04 .05 .04 35.60 .9 .77 4.48 . 17 .75 5 8F2 040-055 5.47 5.35 .92 .07 13. 1 .21 .04 .05 .04 26. 17 1.3 .46 2.48 .08 .42 6 BF3 055-100 5.62 5.37 .95 .07 13.6 .25 .02 .06 .05 19.72 1.9 .48 2.44 .02 .44 7 BFGJ 100-130 5.70 5.40 .38 .03 1 2. 7 . .35 .04 .08 .09 16.42 3.4 .24 1.44 • .02 .31 PLOT NO. PROFILE NO. 010 HJMUS FORM: H-MOR SOIL SUBGROUP: (GLEYED) MINI HUMO-FERRIC PODZOL 1 PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS / OEEP MORAINE DEPOSITS 1 LFH 006-000 3.93 3.46 49.07 1.46 33.6 11.85 3.08 .49 1.60 170.37 9.9 0.0 0.0 .11 .25 AE 000-003 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 BFH 000-042 5.09 4.68 3.88 .28 13.9 .29 .04 .06 ' .05 31.10 1.4 .87 2.96 .64 2.38 3 BFHGJ 042-095 5.02 4.62 4.84 .44 11.0 .30 .13 .06 .06 47.27 1.2 .80 2.69 .41 1.65 4 IICGJ 095-110 5.34 5. 19 1.37 .11 12.5 .17 .01 .06 .04 26. 10 1.1 .11 1.48 .07 .37 PLOT NO. PROFILE NO. O i l 1 HJMUS FORM: MDDER SOIL SUEGROUP: (GLEYED) PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS. MINI HUMO-FERRIC PODZOL / OEEP MORAINE DEPOSITS 1 ( D F 004-000 4. 16 3.66 53.42 1.99 26.8 13.72 4.42 .43 2.33 169.25 12.7 0.0 0.0 .06 .19 AHE 000-002 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 BFH 000-020 5.26 4.89 3.01 . 16 18.8 .65 .15 .05 .10 57.30 1.7 .75 2.05 .33 1.13 3 BF 1 020-075 5.42 5.11 2.55 .14 18.2 .25 .01 .05 .07 47.77 .8 .61 1.98 .12 .60 4 BF2 075-095 5.48 5.04 1.33 .09 14.8 .16 .03 .05 .05 37.50 .8 .36 1.48 .05 .42 5 IICGJ 095-120 5. 56 5. 05 .67 . 10 6.7 .19 .02 .06 .05 21.07 1.5 .22 1.43 .03 .36 PLOT NO. PROFILE 'JO. 026 1 HJMUS FORM: F-MUR SOIL SUBGROUP: PARENT MATERIAL : MORAINE BLANKET ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOJLDERS) 1 LF(H) 013-000 3.98 3.46 54.20 1.51 35.9 13.72 2.37 1.43 2.57 120.75 16.6 0.0 0.0 .02 .13 2 AE 000-006 3.82 3.47 1.33 .09 14.8 .30 .08 .06 .12 13.80 4.0 .03 .13 .09 .22 3 BFH 006-050 4.93 4.57 4. 15 .31 13.4 1.22 .09 .04 .08 45.60 1.0 .76 1.59 .47 1.42 4 BF 050-110 5.07 4.70 1.71 .13 13.2 .56 .05 .05 .06 15. 10 .5 .44 1.55 .12 .71 R 110- + 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 •0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLDT NO. PROFILE NO. 027 1 HJMUS FORM: H-MDR SOIL SUBGROUP: PARENT MATERIAL : MORAINE BLANKET ORTHIC HUMO-FERRIC PODZOL (WITH ORTSTEIN) / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (LF ) H 008-000 4.20 3.67 44.17 1.20 36.8 14.41 2.60 1.08 2.18 182.00 11.1 0.0 0.0 .07 .23 2 AE 000-020 3.79 3.33 1.71 .18 9.5 .27 .06 .06 .12 18.60 2.7 .07 .11 .04 .20 3 BFHC 020-080 4. 97 4. 84 3.47 .23 15.1 .20 .03 .04 .14 46.90 .9 .86 3.92 .30 1.48 4 BFH 080-120 4.90 4.58 3.85 .29 13.3 .29 .05 .05 .16 54.60 1.0 .75 2.15 .45 1.42 •t. R3 120- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TABLE 7 (continued) I S A M . I HORIZON I DEPTH I PH I T O T . C I T O T . N I C / N I E X C H . C A T . M E Q / 1 0 0 GM I C E C I BS I F E Z I A L ? I F E ? I A L ? I | N 0 . | I (CM) I H2C I C A C L 2 I ? I ? I I CA I MG I NA 1 K I M E Q / 1 0 0 1 ? I O X A L . E X T R . I P Y R O P H . E X T R . I | 1 I | | I I I I I I I I GM I I I I P L O T N O . : 0 2 8 H J M U S F O R M : H-MOR S O I L S U B G R O U P : O R T H I C H U M O - F E R R I C ( W I T H OR TSTEIN DEVELOPMENT) P R O F I L E N O . : 1 P A R E N T M A T E R I A L : M O R A I N E B L A N K E T / Q U A R T Z D I O R I T E B E D R O C K (OR B O U L D E R S ) 1 LFH 0 0 5 - 0 0 0 3 . 9 9 3 . 5 1 A 8 . 7 5 1 . 3 3 3 6 . 7 2 0 . 5 8 2 . A9 1 . 3 7 2 . 2 2 1 6 1 . 0 0 1 6 . 5 0 . 0 0.0 . 0 3 . 1 7 2 AE 0 0 0 - 0 0 5 A . 0 3 3 . A 6 1 . 8 5 . 1 2 1 5 . A . 8 6 . 1 5 . 0 6 - 2 A 3 1 . 2 0 A . 2 . 3 A . 1 2 . 10 . 19 3 B F ; j 0 0 5 - 0 3 0 A . 8 8 A . 6 1 2 . 2 8 . 1 5 1 5 . 2 . 3 1 • OA . O A . 0 9 A 6 . 9 0 1 . 0 . 6 9 1 . 9 5 . 2 5 1 . 0 3 4 BF 1 03 0 -08 0 5 . 0 2 A . 7 5 1 . 3 3 . 0 7 1 9 . 0 . 2 A . 0 3 • OA . 0 7 2 A . 7 0 1 . 5 . 3 5 . 9 9 . 1 0 . 6 0 5 BF2 0 8 0 - 1 2 5 A . 8 7 A . 5 A 1 . A 5 .OS 2 A . 2 . 2 2 . O A . O A . 0 7 1 9 . 5 0 1 . 9 . 3 1 . 6 7 . 2 2 . 7 1 RB 1 2 5 - + 0 . 0 6. 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 P L O T N O . : 0 3 9 H J M U S F O R M : H-MOR S O I L S U B G R O U P : ( G L E Y E D ) O R T H I C F E R R O - H U M I C P O D Z O L P R O F I L E N O . : 1 P A R E N T M A T E R I A L : D E E P M O R A I N E D E P O S I T S 1 (L F ) H 0 1 0 - 0 0 0 3 . 9 3 3 . A O A O . 9 3 1 • AA 2 8 . A , 6 . 1 8 1 . 5 8 1 . 3 2 1 . 3 0 1 2 6 . 5 0 8 . 2 0.0 0.0 . 1 5 . 5 4 2 AE 0 0 0 - 0 D 5 3 . 82 3 . A 6 A . 2 A . 2 0 2 1 . 2 . 0 9 . 0 5 . 0 5 . 1 5 2 7 . 6 0 1 . 3 . 4 9 . 3 1 . 2 9 . 3 8 3 BHF 0 0 5 - 0 1 7 A . 7A A . 30 8 . A 6 . A l 2 0 . 6 . 1 7 . 0 5 . 0 7 . 1 0 6 5 . 5 5 . 6 1 . 4 1 4 . 9 3 . 7 4 2 . 4 3 A BFH 0 1 7 - 0 A 5 5 . O A A . 89 2 . 8 7 . 1 3 2 2 . 1 . 10 . 0 2 . 0 7 . 0 5 3 A . 5 0 . 7 . 7 8 4 . 2 8 . 1 0 . 7 4 5 BI I C 0 4 5 - 0 B 5 5 . 1 3 5 . 0 1 1 . 9 2 . 0 8 2 A . 0 . 1 6 . 0 1 . O A . 0 6 2 6 . A 5 1.0 . 4 4 3 . 4 9 . 0 5 . 5 8 6 i I : G J 0 8 5 - 1 0 0 A . 93 A . 9 A . 8 2 . 0 2 A 1 . 0 . A O . 0 1 . 0 7 . 0 3 1 2 . 6 5 A . O . 3 4 1 . 2 5 . 0 3 . 4 3 P L O T N O . : 0 8 5 H J M U S F O R M : MODER S O I L S U B G R O U P : ( G L E Y E D ) S O M B R I C F E R R O - H U M I C P O D Z O L P R O F I L E N O . : 1 P A R E N T M A T E R I A L : G L A C I O M A R I N E D E P O S I T S 1 L (F I 0 0 4 - 0 0 0 3 . 8 7 3 . 3 8 3 6 . 8 1 1 . 3 0 2 8 . 3 7 . 4 9 2 . 3 6 . 2 7 . 8 3 7 0 . 4 5 1 5 . 5 0.0 0.0 . 5 5 . 6 4 2 AH 0 0 0 - 0 1 0 4 . 68 A . 2 7 5 . 7 8 . 3 5 1 6 . 5 . 3 5 . 1 I . 0 5 . 0 9 4 0 . 4 3 1 . 5 1 . 0 3 2 . 2 1 . 7 8 1 . 8 9 3 AB 0 1 0 - 0 4 0 4 . 9 3 A . 5 3 3 . 6 A . 2 1 1 7 . 3 . 2 6 . 0 7 . 0 7 . 0 8 2 7 . 6 9 1 . 7 . 9 1 1 . 9 9 . 4 3 1 . 0 7 4 BHF 0 4 0 - 0 5 2 4 . 6 8 A . 2 9 6 . 5 0 . 4 3 1 5 . 1 . 3 6 . 0 0 . 0 7 . 1 0 4 6 . 4 1 1 . 3 1 . 0 5 2 . 7 2 . 7 2 2 . 1 2 5 C G J 0 5 2 - 0 8 0 4 . 8 0 - A . A A 2 . 4 7 . 2 3 1 0 . 7 . 2 5 . 0 5 . 0 7 . 0 7 3 1 . 3 3 1 . 4 . 7 9 1 . 9 8 . 4 9 1 . 4 0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) COASTAL WESTERN HEMLOCK ZONE SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA U.B.C. RESEARCH FOREST ANALYZED BY: R. BEALE, M. FELLER, J . WORT JR., L. SIMPSON AND K. KLINKA FOREST ElOSYSTEM: CWHB, VACCINIUM - GAULTHERIA - DF - WH TABLE 8 ISAM.I HORIZON | DEPTH | PH I TOT. CI TO T. NI C/N I EXCH. CAT. MEQ/100 GM I CEC I BS I FE? I AL? I FE? I AL? I I NO. I I (CM) I H20 I CACL2I ? I % I I CA I MG I NA I K I MEQ/lOOl ? I OXAL. EXTR. I PYROPH.EXTR.I I I I I I I I I I I I I I GM I I I I PLOT NO. : PROFILE MO.: 053 1 HUMUS FORM: F-MOR PARENT MATERIAL : SOIL SUBGROUP: MORAINE VENEER LITHIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF(H) 2 AE R 010-030 3.55 000-025 3.73 025-+ 0.0 3.04 53.33 3.21 1.60 0.0 0.0 1.31 .11 0.0 40.7 14.5 0.0 9.36 .24 0.0 3.39 .11 0. 0 .76 .03 0.0 2.05 .07 0.0 148.20 7. 28 0.0 10.5 6.2 0.0 0.0 .05 0.0 0.0 .08 0.0 .05 .02 0.0 .16 .04 0.0 PLOT NO. PROFILE NO. 060 1 HUMUS FORM: F-MOR SOIL SUBGROUP: LITHIC PODZOL PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOULOERS) 1 LF 2 AE R 007-000 3.93 000-010 3.69 010-+ 0.0 3.12 28.87 3.13 1.83 0.0 0.0 .85 .09 0 .0 34.0 20.3 0.0 2.50 .15 0.0 1.44 .11 0.0 1.20 .14 0.0 1.57 .16 0.0 80.60 8.84 0.0 8.3 6.3 0.0 0.0 .23 0.0 0.0 .12 0.0 . 15 .05 0.0 1.26 .07 0.0 PLOT NO. PROFILE NO. 060 2 HUMUS FORM: H-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER (GLEYED) ORTHIC FERRO-HUMIC PODZOL (WITH ORTSTEIN DEVELOPMENT) / QUARTZDIORITE BEDROCK (OR BOULOERS) LFH 013-000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 AE 000-013 3.94 3.36 2.00 . 10 20.0 .25 . 14 .14 .10 15.34 4.2 .26 .29 .15 .24 3 BHF C J 013-030 4.45 3 .89 8.43 .45 18.7 .62 . 17 .09 . 19 53. 56 2.0 .56 2.85 .34 2. 10 4 BHF G J 030-055 5.08 4. 62 5. 10 .16 31.9 .25 .05 .08 .14 38.22 1.4 .39 5.75 . 12 1.35 R 055- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 063 1 HJMUS FORM: F-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER LITHIC ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF ( H ) 009-000 3.70 3.10 53.80 1 .34 40.1 9.36 3.39 2.34 2.59 132.60 13.3 0.0 0.0 .07 .14 2 AE 000-004 3.72 3. 09 3.32 . 14 23.7 .50 .23 .26 .19 25.22 4.7 .08 .09 .03 .05 3 BFH 004-030 3.73 3.22 4.75 .22 21.6 .32 .24 .11 .21 37.56 2.3 .40 .40 .29 .33 R 030-t 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : PROFILE NO.: 146 1 HJMUS FORM: F-MOR SOIL SUBGROUP: LITHIC PODZOL PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF(H) 2 AE R 004-000 3.79 000-013 3.45 013-+ 0.0 3.72 53.86 3.02 4.69 0.0 0.0 1.49 . 19 0.0 36. 1 24.7 0.0 8.05 .34 0.0 2.86 .25 0.0 .26 .05 0.0 4.54 .31 0.0 105.25 23.40 0.0 14.9 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE, M. FELLED. J . WORT JR., L. SIMPSON AND K. FOREST ECOSYSTEM: CWHB, VACCINIUM - MOSS - WH KLINKA COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 9 I SAM.I HORIZON I I NO.I I DEPTH I PH ITOT.CITOT.N! C/N I (CM) I H20 I CACL2I % I % I 1 I I I I I I EXCH. CAT. MEQ/100 GM I CEC I BS I FE? CA I MG t NA I K I MEQ/1O0I ? I OXAL. I I I I GM I I I AL? I FE? I AL? I EXTR. I PYROPH.EXTR.I I I PLOT NO. : 042 HUMUS FORM: H-MOR SOIL SUBGROUP: LITHIC PODZOL PROFILE MO.: 1 PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ILFIH-OW 2 AE R 010-000 000-013 013- + 3.79 3. 50 0.0 3.29 42.03 3.17 2.78 0.0 0.0 .97 .17 0.0 43.3 16.4 0.0 6.18 .11 0.0 1.92 .06 0.0 1.32 .05 0.0 4.64 .79 0.0 117.00 13.52 0.0 12.0 7.4 0.0 0.0 .07 0.0 C O .06 0.0 .04 .03 0.0 .17 .10 0.0 PLOT NO. : PROFILE NO. : 044 1 HJMUS FORM: H-MOR SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER LITHIC ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ( L F ) H 2 AE 3 BFH R 015-000 3. 53 000-015 - 3.65 015-045 4.19 C45- + 0.0 3.07 49.33 3.16 2.13 3.78 3.45 0.0 0.0 1.58 .71 .30 0.0 31.2 3.0 11.5 0.0 7.49 . 15 .06 0.0 2.57 .07 .07 0.0 .92 .07 .05 0.0 2.01 .07 .19 0.0 133.90 15.60 30.42 0.0 9.7 2.3 1.2 0.0 0.0 .10 1.81 0.0 0.0 .12 .56 0.0 .04 .02 1.46 0.0 .16 .17 .84 0.0 PLOT NO. PROFILE NO. 051 1 HJMUS FORM: H-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER LITHIC ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (LF ) H 018-000 3. 56 3.09 52.35 .96 54.5 6.86 2.26 1.32 3.52 135.20 10.3 0.0 0.0 .04 .11 2 AE ' 000-013 3.54 3.09 1.45 .13 11.2 .21 .09 .05 .41 9. 10 8.4 .08 .07 .05 .02 3 BFH 1 013-027 4. 43 4.07 5.06 .31 16.3 .09 .05 .05 .12 32.76 .9 .86 2.69 .44 1.04 4 6FH2 C27-040 4. 53 4.IB 2.89 .19 15.2 . 12 .04 .04 .08 22.62 1.3 .49 1.50 .28 .66 R 040- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 PLOT NO. PROFILE NO. 055 1 HJMUS FORM: F-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER ORTHIC FERRO-HUMIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULOERS) 1 LF(H) 012-000 3.56 3.10 52.93 1.17 45.2 6.24 3.39 .92 3.16 122.20 11.2 0.0 0.0 .04 .11 2 AE 000-015 3.45 2.94 2.13 . 13 16.4 . 14 .13 . .04 .12 19.36 2.2 .13 .08 .03 .03 3 BF 015-020 4.75 4.43 2.69 . 16 16.8 .07 .06 .06 .09 36.92 .8 1.40 4.16 .57 2.68 4 BHF 020-045 4.94 4.52 5.80 .34 17.1 .11 .07 .08 .11 48.74 .7 1.60 3.56 .53 1.96 5 BFGJ 045-070 4.94 4.58 2.72 . 15 18.1 .15 .03 .04 .06 20.28 1.4 .69 1.59 .27 .93 R 070- + 0. 0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 087 1 HJMUS FORM: H-MOR SOIL SUBGROUP: LITHIC PODZOL PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOJLDERS) 1 (L)FH 2 AE 1 3 AE2 R 018-000 3.56 000-018 3.58 018-05 0 3. 56 050-+ 0.0 3.17 53.97 3.08 4.04 3.11 2.95 0.0 0.0 1.02 .16 . 12 0.0 52.9 25.2 24.6 0.0 7.55 .39 .32 0.0 2.49 .16 .15 0.0 .37 . 10 .10 0.0 3.64 .33 .24 0.0 91.56 11.97 13. 15 0.0 15.4 8.1 6.1 0.0 0.0 .05 .05 0.0 0.0 .03 .07 0.0 .05 .09 .04 .03 .05 .06 0.0 0.0 PLOT NO. PROFILE NO. 089 1 HJMUS FORM: F-MOR SOIL SUBGROUP: PARENT MATERIAL : MORAINE VENEER ORTHIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF(H) 2 AE 3 BFH 010-000 3.60 000-003 3.69 003-005 4.32. 3.18 53.22 3.24 2.87 3.87 4.84 1 .77 . 14 .20 30.1 16.84 20.5 .72 24.2 .24 4.21 .17 .12 .33 .06 .06 1.66 .08 .06 104.65 16.25 46.37 22.0 6.4 1.0 0.0 0.0 .18 .08 1.01 1.49 .05 .10 .50 .12 .10 .86 TABLE 9 (continued) ISAM.I HORIZON I N O . I I I DEPTH I PH ITOT.CITOT.Nl C/N I EXCH. CAT. MEQ /100 GM I CEC I BS I F E * (CM) I H20 i C A C L 2 I S I ? I I CA | M3 I NA I K I MEQ / 100 ! % I OXAL. I I I I I I I I I | GM I 1 I AL? I FE? I AL? I EXTR. I PYROPH.EXTR.I I I PLOT NO. : P R O F I L E N O . : 4 P.FI 5 BF 2 P. 0 8 9 1 0 0 5 - 0 3 5 5 . 0 3 0 3 5 - 0 5 5 4 . 9 4 055 -+ 0 . 0 4 . 6 2 4 . 5 9 0 . 0 1 . 6 9 1 . 4 4 0 . 0 . 0 9 . 0 8 0 . 0 1 8 . 8 1 8 . 0 0 . 0 . 12 . 2 4 0 . 0 . 0 2 . 0 3 0 . 0 . 0 5 . 0 5 0 . 0 . 0 3 2 7 . 4 3 . 0 3 1 0 . 0 1 0 . 0 0 . 0 . 9 3 . 6 0.0 . 5 5 . 4 2 0.0 1 . 6 9 1 . 2 3 0.0 . 0 7 . 4 0 . 0 9 . 4 4 0 . 0 0 . 0 PLOT N O . P R O F I L E N O . 1 ( L F ) H 0 8 9 2 HJMUS FORM: F-MOR SOIL SUBGROUP: O R T H I C H U M O - F E R R I C PODZOL PARENT MATERIAL : MORAINE VENEER / Q U A R T Z D I O R I T E BEDROCK (OR BOULDERS) 0 0 8 - 0 0 0 3 . 7 4 3 . 3 5 5 2 . 0 6 1 .61 3 2 . 3 1 5 . 5 9 2 . 3 6 . 3 3 1 . 7 9 1 0 5 . 7 5 1 8 . 7 0.0 0 . 0 . 0 5 . 1 1 P L O T N O . : P R O F I L E N O . : 1 L F I H ) AE 2 BFH 1 3 BFH 2 R 0 9 0 1 HJMUS FORM: F-MOR PARENT M A T E R I A L : SOIL SUBGROUP: MORAINE VENEER . MINI H U M O - F E R R I C PODZOL / DIORITE (GABRO) BEDROCK (OR BOULDERS) 0 1 3 - 0 0 0 0 0 0 - 0 0 2 0 0 2 - 0 1 0 0 1 0 - 0 5 5 0 5 5 - + 3 . 3 6 0 . 0 4 . 5 6 4 . 59 0 . 0 3 . 0 1 5 2 . 9 3 0 . 0 0 . 0 4 . 2 3 4 . 3 0 0 . 0 5 . 7 1 4 . 0 5 0 . 0 1 . 1 8 4 4 . 9 8 . 7 3 2 . 5 7 . 3 3 2 . 0 8 9 5 . 5 5 1 4 . 3 0 . 0 0.0 . 0 4 . 1 3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 . 0 8 7 1 . 4 . 1 9 . 0 6 . 0 7 . 1 1 2 9 . 2 5 1 . 5 1 . 2 3 2 . 2 4 . 4 1 1 . 2 9 . 0 5 8 1 . 0 . 1 5 . 0 7 . 0 7 . 1 0 2 5 . 6 1 1 . 5 . 9 3 1 . 4 9 . 3 7 . 9 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 P L O T N O . P R O F I L E N O . L F I H ) P L O T N O . P R O F I L E N O . ( L F ) H AE BFH BFHC BFC R 09C 2 HJMUS FORM: F-MOR • S O I L SUBGROUP: PARENT MATERIAL : ORGANIC V E N E E R PROTORANKER 0 0 9 - 0 0 0 3 . 3 0 2 . 9 7 5 0 . 7 2 . 8 9 5 7 . 0 8 . 1 1 3 . 1 9 . 2 7 1 . 6 9 / DIORITE (GABRO) BEDROCK (OR BOULDERS) 9 9 . 4 5 1 3 . 3 0.0 0.0 . 0 9 . 2 5 122 HUMUS FORM: H-MOR S O I L SUBGROUP: O R T H I C H U M O - F E R R I C PODZOL (WITH ORTSTEIN) 1 PARENT MATERIAL : MORAINE VENEER / Q U A R T Z D I O R I T E BEDROCK (OR BOULDERS) 0 1 2 - 0 0 0 0 0 0 - 0 1 5 0 1 5 - 0 2 2 0 2 2 - 0 4 0 0 4 0 - 0 5 5 0 5 5 - + 3 . 8 7 3 . 9 4 4 . 59 5 . 10 5 . 4 5 0 . 0 4 9 . 2 2 1 . 2 7 3 8 . 8 1 3 . 8 5 2 . 9 5 . 3 2 1 . 5 0 1 2 2 . 4 7 1 5 . 2 0 . 0 0 . 0 . 0 3 . 1 2 . 9 3 . 0 7 1 3 . 3 . 3 0 . 07 . 0 6 . 0 7 7 . 0 4 7 . 1 . 1 9 . 0 7 . 0 2 . 0 4 3 . 7 4 . 11 3 4 . 0 . 0 1 . 1 3 . 1 1 . 2 3 5 1 . 6 5 . 9 1 . 7 3 1 . 0 5 . 5 8 . 6 2 3 . 0 2 . 0 8 3 7 . 8 . 0 1 . 0 2 . 0 5 . 0 5 2 4 . 4 9 . 5 1 . 16 2 . 6 9 . 1 9 . 6 6 2 . 6 5 . 1 2 2 2 . 1 . 0 2 . 0 2 . 0 6 . 0 3 2 8 . 5 6 . 4 1 . 0 9 3 . 2 4 . 1 0 . 8 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 PLOT N O . : P R O F I L E N O . : 1 ( L F I H 2 AE 1 3 AE2 R 125 HJMUS FORM: H-MDR S O I L SUBGROUP: L I T H I C PODZOL 1 PARENT MATERIAL : MORAINE VENEER 0 1 4 - 0 0 0 3 . 9 4 0 0 0 - 0 0 5 3 . 6 8 0 0 5 - 0 1 5 3 . 7 6 0 1 5 - + 0 . 0 3 . 4 7 4 9 . 7 4 3 . 2 2 1 . 4 9 3 . 2 2 3 . 9 5 0 . 0 0 . 0 1. 50 . 1 3 . 1 8 0 . 0 3 3 . 2 1 2 . 5 4 1 1 . 5 . 6 9 2 1 . 9 . 8 6 0 . 0 0 . 0 2 . 16 . 1 5 . 2 6 0 . 0 . 4 0 . 0 7 . 0 8 0 . 0 2 . 2 3 . 2 4 . 2 4 0 . 0 / DIORITE (GABRO) BEDROCK (OR BOULDERS) 1 0 2 . 1 2 8 . 1 4 1 2 . 5 2 0 . 0 1 7 . 0 1 4 . 1 1 1 . 6 0 . 0 0 . 0 . 2 5 . 3 5 0 . 0 0 . 0 . 0 1 . 0 5 0 . 0 . 0 5 . 1 3 . 0 1 . 0 4 . 0 2 . 0 7 0 . 0 0 . 0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K..KLINKA ANALYZED BY: R. BEALE, M. FELLER, J . WORT JR. FOREST ECOSYSTEM: CWHB, BLECHNUM - AF - WH . L. SIMPSON AND K. KLINKA iOASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 10 I SAM. I HORIZON I DEPTH I NO. I I CM) I I I PH ITOT.ClTOT.Nl C/N I EXCH. H20 I CACL2I % I % I I CA I I I I I I I CAT. MEQ/100 GM I CEC I BS I FE? M3 I NA I K I MEQ/lOOl ? I OXAL. I I I GM I I I AL? I FE? I AL? I EXTR. I PYROPH.EXTR.| PLOT NO. : 034 HJMUS FORM: H-MOR SOIL SUBGROUP: (GLEYED) ORTHIC FERRO-HUMIC PODZOL (WITH ORTSTEIN) PROFILE NO.: 1 PARENT MATERIAL : ALLUVIAL DEPOSITS 1 LF 065- 055 3.94 3.21 48.23 1.28 37.7 10.29 3.39 1.32 2.22 143.75 12.0 0.0 0.0 .21 .40 2 Drf-H 055- 000 3.56 3.20 48.46 .98 49. 4 7.61 3.39 .38 1.04 149.50 E.3 0.0 0.0 .19 .60 3 AE 000- 004 3. 85 3.22 5.38 .18 29.9 .60 .26 .11 .08 34.50 3.0 .53 .27 .53 .34 4 BHFGJ 004- 030 4. 54 4.20 10.14 .37 27.4 .26 .10 .08 .15 63.25 .9 2.04 3.08 1.60 2.98 5 BFC 030- 095 4.88 4.74 1.60 .06 26.7 .22 .03 .06 .04 23.00 1.5 1.64 1.34 .27 .69 PLOT NO. : 035 HJMUS FORM: H-MOR SOIL SUBGROUP: ( GLEYED) MINI HUMO-FERRIC PODZOL PROFILE ND.: 1 P^ RENT MATERIAL : COLLUVIAL l/ENEER / DEEP MORAINE DEPOSITS 1 (LF)H 030- ODO 3.73 3.23 36.70 1.15 31.9 8.92 2.04 .48 3.52 218.50 6.8 0.0 0.0 .19 .47 2 AHE 000- 002 4.48 4.02 7.51 .42 17.9 2.84 .33 .12 .30 61.40 5.7 .86 .77 .61 .77 3 BHF 002- 030 5. 16 4.56 5.86 .35 16.7 1.27 .13 .07 .05 44.85 3.4 .38 2.80 .23 1.77 4 IICGJ 030- 050 4.94 4.81 .91 .11 8.3 .34 .02 .04 .34 11. 50 6.5 .33 .85 .04 .32 PLOT NO. : 036 HJMUS FORM: MOOER SOIL SUBGROUP: SLEYED SOMBRIC HUMO -FERRIC PODZOL PROFILE NO. : 1 PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS / DEEP MORAINE DEPOSITS 1 LF(H) 007- 000 4. 74 4. 14 20.87 1.25 16.7 3.43 .79 .54 1.20 66.00 9.0 0.0 0.0 .41 1.43 2 AHE 000- 010 4.62 4.31 5.17 .37 14.0 .31 .08 .08 .23 29.90 2.3 1.04 .92 1.00 1.16 3 BFH 010- 020 4.95 4.50 4.85 .45 10.8 .21 .05 .04 .06 37.95 1.0 1.40 2.00 1. 15 1.78 4 BFHGJ 020- 050 5.01 4. 51 5.08 .50 10.2 .30 .05 .07 .05 40.25 1.2 1.24 2.50 .92 1.88 5 IICG 050- 050 4.93 4.61 2.24 .20 11.2 .22 .03 .04 .19 34.50 1.4 .83 2.32 .54 1.29 PLOT NO. : 062 HJMUS FORM: F-MOR SOIL SUBGROUP: (GLEYED) ORTHIC HUMO-FERRIC PODZOL (WITH ORTSTEIN) PROFILE NO.: I PARENT MATERIAL : COLLUVIAL BLANKET / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF(H) 012- 000 3.84 3.20 53. 10 1.47 36.1 14.97 2.06 1.74 1.98 131.30 15.8 0.0 0.0 .05 .11 2 AE 000- 003 3.87 3.26 1.43 .07 20.4 .50 .10 .08 .14 7.02 11.6 .39 .10 .07 .04 3 BHF 003- 020 4. 69 4.07 7.91 .27 29.3 .40 .08 .07 .09 44.20 1.5 2.88 4.05 1.02 1.79 4 BHFC 020- 050 4.78 4. 19 12. 71 .44 28.9 .16 .08 .07 .12 88.40 .5 2.84 7.95 1. 30 4.15 5 BHFGJ1 050- 095 4.93 4.39 11.77 .19 61.9 .22 .07 .13 .10 88.92 .6 I.11 8.40 .92 4.27 6 BHFGJ2 095- 140 5.26 4.69 6.03 .10 60.3 . 11 .03 .07 .06 52.26 .5 .54 7.15 .33 2.00 R 140- 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 064 HJMUS FORM: F-MOR SOIL SUBGROUP: (GLEYED) ORTHIC FERRO-HUMIC PODZOL (WITH ORTSTEIN) PROFILE NO. : 1 PARENT MATERIAL : ALLUVIAL DEPOSITS / MORAINE BLANKET 1 LF(H )-DW 035- 000 3.55 2.96 46.90 1.45 32.3 6.24 2.57 .33 1.63 131.30 8.2 0.0 0.0 .28 .40 2 AE 000- 005 4.11 3.61 2.82 .17 16.6 .31 .08 .09 .09 15.08 3.8 .33 .31 .36 .28 3 BHF 005- 012 4.93 4. 17 8.85 .33 26.8 .62 .09 .18 .13 60.32 1.7 1.82 5..9 8 1. 15 2.47 4 BFHC 012- 05 5 5.55 4.89 4.07 .20 20.3 . 36 .03 .06 .04 43.42 1.2 .92 6.94 .22 1.11 5 IICGJ 055- 055 5.61 5.07 1.01 .07 14.4 .27 .02 .09 .05 13.52 3.2 .50 3.29 .03 .33 TABLE 10 (continued) ISAM. I HORIZON I DEPTH 1 PH I TOT.C I TOT .NI C/N | EXCH. CAT. MEQ/100 GM I CEC I BS I FE? I AL ? I FE* I AL? ! I NO. I I (CM) | HZO I CACL21 ? I ? I I CA | MG I NA I K I MEQ/lOOl ? I OXAL. EXTR. I PYROP H. EXTR. I I I I I I I I I I I I I I GM I I I I PLOT NO. : 068 . HJMUS FORM: H-MOR SOIL SUBGROUP: ORTHIC FERRO-HUMIC PODZOL (WITH ORTSTEIN DEVELOPMENT) PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL VENEER / MORAINE BLANKET 1 LFH-DW 040-000 4. 15 3.52 31.42 .91 34.5 4.99 1.54 1.03 1.28 94.90 9.3 0.0 0.0 .43 1.02 AE 000-003 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 BHF 003-025 5. 14 4.47 8.84 .41 21.6 .95 .18 .11 .10 50.96 2.6 1.15 3.25 1.11 2.64 3 EHFCJ 025-045 5.00 4.42 8.01 .34 23.6 1.01 . 19 .06 .09 47.58 2.8 1.28 2.78 1.25 2.45 i i : 045- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 095 HJMUS FORM: H-MOR SOIL SUBGROUP: (GLEYED) MINI FERRO-HUMIC PODZOL (WITH ORTSTEIN DEVELOPMENT) PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL VENEER / QUARTZDIORITE BEDROCK (OR BOULOERS) 1 LF 015-010 3.87 3.34 53.04 1.31 40.5 16.22 3.19 .27 1.47 102.05 20.7 0.0 0.0 .05 .15 2 H 010-000 4. 10 3.60 45.74 .84 54.5 . 5.61 1.13 .27 .45 118.95 6.3 0.0 0.0 .36 2.72 3 BHFC J 000-010 4.51 4. 14 22.26 .97 22.9 .75 .25 .13 .15 100.10 1.3 1.31 4.25 .70 4.28 4 BHF 1 010-025 4.88 4.50 11.92 .44 27. 1 .15 .10 .13 .17 56.42 1.0 2.73 4.56 1. 10 3.55 5 BHF 2 025-035 4. 84 4.41 18. 14 .65 27.9 .15 .16 .14 . 19 93.86 .7 4.06 6.10 1.93 5.68 6 BHF G J 030-050 5.15 4.81 9.46 .39 24.3 .06 .05 .07 .07 62.79 .4 2.51 6.58 2.24 8. 19 RB 050- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 114 HJMUS FORM: MODER SOIL SUBGROUP: (GLEYED) ORTHIC HUMO-FERRIC PODZOL (WITH ORTSTEIN) PROFILE MO.: 1 PARENT MATERIAL : COLLUVIAL VENEER / DIORITE (GABRO) BEDROCK (OR BOULDERS) 1 (LFIH 012-000 4.37 4.03 44. 58 1.57 28.4 29.94 2.88 .33 .61 124.80 27.0 0.0 0.0 . 12 .47 2 AE 000-003 4. 57 4. 16 4.68 .20 23.4 5.49 .49 .08 .06 31.32 19.5 .73 .19 .44 .19 3 BFHGJ1 003-010 5. 20 4.58 3.65 .25 14.6 1.72 .12 .08 .05 23.66 8.3 1.73 1.43 .85 1.01 4 BFHGJ2 010-025 5.25 4.71 5.00 .29 17.2 1.88 .16 .07 .07 38.22 5.7 1.92 3.10 .66 1.20 5 BFHC 025-068 5.52 4. 90 3.97 .21 18.9 1.66 .07 .07 .04 18.46 9.9 .91 3.42 .29 1.00 R 068-+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 126 HJMUS FORM: H-MOR SOIL SUBGROUP: ORTHIC FERRO-HUMIC PODZOL (WITH ORTSTEIN) PROFILE NO.: 1 PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS / QUARTZDIORITE BEDROCK (OR BOULOERS) 1 (LF ) H 048-030 3.76 3.23 41.22 1.57 26.3 11.04 1.59 .31 .77 108.38 12.7 0.0 0.0 .15 .43 2 DW 030-000 3.42 2.97 55. 13 .76 72.5 12.54 2.03 .24 .51 138.51 11.1 0.0 0.0 .02 .21 3 AHE 000-004 3.73 3.20 7.49 .34 22.0 1.16 .17 .07 .08 26.29 5.7 .47 .22 .19 .26 4 BHFC J 004-007 4.38 3.76 9.40 .46 20.4 .52 .17 .07 .10 55.25 1.6 1.67 1.67 .92 1.64 5 BHFC 007-070 5. 12 4.63 6. 19 .25 24.8 .01 .04 .05 .06 45.78 .3 .96 3.74 .24 1.62 6 EHF 070-130 5. 44 . 5.05 7. 14 . 16 44.6 .09 .02 .05 .04 32.08 .6 .83 3.67 .09 .76 R8 100- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 127 HJMUS FORM: F-MOR SOIL SUBGROUP: ORTHIC HUMO-FERRIC PODZOL (WITH ORTSTEIN) PROFILE NO.: 1 PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LFIH) 007-030 3.66 3.15 39.88 1.06 37.6 8.48 1.84 .26 1.29 92.34 12.8 0.0 0.0 .04 .18 2 AE 000-004 4.24 3.78 1.91 .07 27.3 .11 .05 .05 .06 11. 19 2.4 .49 .23 .09 .18 3 BFHC 004-020 4. 74 4. 36 4.99 .13 38.4 .01 .03 .04 .06 34.20 .4 .96 2.13 . 19 .74 4 BFH 020-070 5.31 4.82 2. 89 .10 28.9 .31 .06 .06 .05 23.95 2.0 .83 2.32 .10 .68 5 EHFCJ 070-09 5 5.44 4.96 6.91 .31 22.3 .22 .05 .06 .07 46.41 .9 1.36 5 .20 .22 1.87 R3 095-* 0.0 C. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 • 0.0 TABLE 10 (continued) ISAM.I HORIZON I I NO.I I DEPTH 1 PH ITOT.CITOT.Nl C/N I EXCH. CAT. MEQ/100 GM | CEC I BS (CM) I H20 I CACL2I S: I ? I I CA I MG I NA I K I MEQ/1001 ? | | I I I I I I I I GM I I FE? I AL? I FES I ALS I I OXAL. EXTR. I PYROPH.EXTR.I I I I PLOT NO. PROFILE NO. 149 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER (GLEYED) MINI FERRO-HUMIC PODZOL (WITH ORTSTEIN) / MORAINE BLANKET 1 L ( F ) H O05-C3O 3.66 3.19 46.72 2.20 21.2 9.42 2.41 .22 2 BHF 1 000-005 4. 77 4.21 9.81 .74 13.3 .02 .09 .07 3 BHF 2 005-030 4.86 4.43 6.98 .43 16.2 .01 .04 .06 4 H3 030-035 4.34 3.83 29.33 .28 104.8 1 .30 .14 .06 5 II3HFGJ 035-045 4.81 4. 35 14.24 .99 14.4 .05 .04 .04 6 IIBFHC 045-075 5. 10 4.58 5.33 .27 19.7 .06 .02 .04 7 IICG 075-090 5. 16 4.69 4.71 . 10 47. 1 .75 .08 .27 1.09 131.86 10.0 0.0 .10 .07 .08 .06 .04 .24 62.76 43.67 40.22 33.81 34.98 94. 30 .4 .4 3.9 .6 .5 1.4 1.65 1.42 0.0 1.40 .68 .38 0.0 3.65 3.20 0.0 3.65 2.79 1 .84 . 19 .50 .40 .31 .61 .31 .12 .43 2.39 1.72 1.55 2.80 2.02 .91 PLOT NO. PROFILE NO. 158 1. HJMUS FORM: MODER SOIL SUBGROUP: I PARENT MATERIAL : COLLUVIAL VENEER 5LEYED) MINI FERRO-HUMIC PODZOL (WITH ORTSTEIN DEVELOPMENT) / GLACIOLACUSTRINE DEPOSITS 1 (LF)H-DW 010-000 3. 29 2.82 54.67 2.04 26.8 6.42 5.50 .37 AE 000-003 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 BHF Z J 000-010 4. 60 4.02 9.58 .51 18.8 .01 .11 .06 3 BFHCJ 010-045 5.26 4.66 4.48 .27 16.6 .02 .03 .05 h£AEB 045-050 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 BHF G J 050-090 5. 30 4.54 6.23 .36 17.3 .32 .08 .07 5 1ICGJ 090-115 5. 32 4.72 2.31 .12 19.3 .40 .01 .07 1.16 0.0 .08 .04 0.0 .05 .04 147.90 0.0 58.85 35.92 0.0 44. 14 14.16 9.1 0.0 .5 .4 0.0 1.2 3.7 0.0 0.0 1.61 1.47 0.0 1.67 .24 0.0 0.0 2.78 3.25 0.0 2.75 1 .26 .04 0.0 .74 .38 0.0 .49 .06 .27 0.0 2.46 1.74 0.0 1.76 .60 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE, M. FELLER, J . WORT JR., L . SIMPSON AND FOREST ECOSYSTEM: CWHB, BLECHNUM - WH - WRC KLINKA COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 11 ISAM. | HORIZON I DEPTH | PH I TOT.CI TOT.NI C/N I EXCH. CAT. MEO/10O GM I CEC I BS I FE? I NO.I I CM) I H20 I CACL2I % I % I I CA I M3 I NA I K I MEQ/lOOl ? I OXAL. I I I I I I I I I I I I I GM I I I AL? I FE? I AL? I EXTR. I PYRQPH.EXTR.I I I PLOT NO. : 040 HJMUS FORM: HYDROMOR SOIL SUBGROUP: GLEYED MINI FERRO-HUMIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : MORAINE VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF(H) 025-•000 4. 44 3.84 44.87 .89 50.4 .69 .79 1.32 3.13 166.75 3.5 0.0 0.0 .85 3.24 2 BHF 000-•007 4. 83 4.51 13.79 .57 24.2 .10 .08 .08 .51 105.80 .7 1.84 5.85 .85 6.10 3 BHFGJ 007-•02 7 5. 40 5.38 5.99 .34 17.6 .02 .02 .06 .33 78.20 .5 .27 5.75 .09 1.90 4 6FHG 027-•055 5.48 5 .37 5.12 .40 12.8 .05 .02 .07 .17 57.50 .5 .34 5.50 .11 1.24 RB 055-• + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 043 HUMUS FORM: HYDROMOR SOIL SUBGROUP: TERRIC MESISOL PROFILE NO.: 1 PARENT MATERIAL : ORGANIC VENEER / MORAINE VENEER 1 OHl 000- 030 3. 80 3.48 29.91 .68 44.0 1.37 .79 1.20 2.22 104.00 5.4 0.0 0.0 0.0 0.0 2 UH2 030-•040 4.22 3.85 19.07 .42 45.4 .40 . 14 .08 .14 72.00 1.1 0.0 0.0 0.0 0.0 3 I C G 040-•055 4. 55 4.22 12.07 .37 32.6 .10 .01 .06 .09 93.08 .3 0.0 0.0 0.0 0.0 PLOT NO. : 048 HJMUS FORM: HYDROMOR SOIL SUBGROUP: GLEYED MINI FERRO-HUMIC PODZOL PROFILE NO. : 1 PARENT MATERIAL : ORGANIC VENEER / MORAINE BLANKET 1 OH' 025-•000 4.82 4.30 41.62 1.05 39.6 .69 .23 1.20 .49 135.20 1.9 0.0 0.0 .24 4.60 2 BHF 000-•025 4.98 4.54 12.17 .81 15.0 .50 .25 .35 1.18 80.60 2.8 0.0 0.0 .27 4.70 3 BHFGl 025-•045 5 .09 4.88 8.74 .37 23.6 .25 .12 .37 .27 93.60 1.1 .93 7.07 .66 2.52 4 BHFG2 045-•055 5.25 4 .77 11.88 .52 22.8 .20 .13 .09 .38 111.80 .7 .36 6.62 .45 3.05 PLOT NO. : 061 HJMUS FURM: HYDROMOR SOIL SUBGROUP: TERRIC HUMISOL PROFILE NO.: 1 PARENT MATERIAL : ORGANIC VENEER / MORAINE BLANKET 1 OM 005- OJO 4.32 3.78 53.62 1.25 42.9 1 .87 .82 1.25 1.28 119.60 4.4 0.0 0.0 .26 1.75 2 OHl 000-•025 4.44 3.86 47 .77 1.45 32.9 1.25 .72 1.68 1.05 126.10 3.7 0.0 0.0 1.97 3.15 3 OH2 025-•050 4.99 4.38 36.3.5 1.23 29.6 .15 .09 .11 .23 104.52 .5 0.0 0.0 .88 7.50 4 VA 050-•05D 5. 16 4.73 6.52 .01 652.0 .15 .02 .11 .18 61.88 .7 .54 7.32 .35 2.10 5 V A U I C G 060-•090 5. 13 4. 73 6.64 . 73 9.1 . 12 .02 .12 .24 80.08 .6 .86 7.99 .70 4.60 PLOT NO. : 091 HJMUS , FORM: HYDROMOR SOIL SUBGROUP: GLEYED MINI HUMO-FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : MORAINE BLANKET 1 (L)FH 016-•000 4.48 3.98 34.20 1. 19 28.7 1.25 .51 .33 .77 79.95 3.6 0.0 0.0 .64 2.65 2 BFH1 000-•025 4. 60 4.05 4.76 .40 11.9 .06 .04 .07 .06 48.61 .5 1.72 4.39 .53 1.87 3 BFH26VA 025-•055 4.82 4.22 3.54 .21 16.9 .07 .02 .07 .04 44.59 .5 .57 6.50 .15 1.19 4 BFHGSVA 055-•C85 4.88 4.43 3.25 .16 20.3 .10 .02 .13 .06 22.62 1.4 .68 3.83 . 14 .98 PLOT NO. 093 HJMUS FORM: HYDROMOR SOIL SUBGROUP: (GLEYED) MINI HUMO-•FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : ORGANIC VENEER / MORAINE BLANKET 1 LF 015- 000 4. 19 3.80 53.51 1.02 52.5 3.12 1 .03 .33 .96 103.35 5.3 0.0 0.0 .13 1.91 2 H 000-•025 4. 72 4.26 39.77 •KO 49.7 1.67 .51 .33 .51 99.45 3.2 0.0 0.0 1. 18 4.75 3 BHF 1 025-•045 4.77 4.31 12 .49 .44 28.4 .25 .15 .13 . 19 55.90 1.3 4.40 3.88 2.08 3.73 4 BHF 2 045- 050 4.75 4.42 10.63 .30 35.4 .15 .07 . 14 .10 52.26 .9 ' 1.88 4.12 1. 12 4.19 5 IIBFHGJ 060-085 4.82 4.56 3.17 .05 63.4 .19 .03 .07 .04 31.07 1.0 .78 1.67 .52 1.70 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) COASTAL WESTERN HEMLOCK ZONE SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA U.B.C. RESEARCH FOREST ANALYZED BY: R. BEALE, M. FELLER, J . WORT JR., L. SIMPSON AND K. KLINKA FOREST ECOSYSTEM: CWHB, RIBES - VM TA8LE 12 ISAM.I HORIZON I DEPTH I PH I TOT. CI TOT. NI C/N | EXCH. CAT. MEQ/100 GM I CEC I BS I FE? I AL? 1 FE? I AL? I I NO. I I (.C>1> I H20 I CACL21 ? I ? I I CA I MG I NA I K I MEQ/100 I ? I OXAL. EXTR. I PYR3? H. EXTR. | I I I I I I I I I I I I I GM I I I I PLOT NO. PROFILE NO. 050 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL BLANKET TYPIC FOLISOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ( LF ) H H £ R B 005-000 000-075 3.97 0.0 3.37 21.80 0.0 0.0 1.36 0.0 16.0 0.0 2.74 0.0 .77 0.0 .48 0.0 1.41 0.0 95.68 0.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 070 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL BLANKET TYPIC FOLISOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (L)FH-DW HSR B 008-000 000-075 3.81 0.0 3.34 30.20 0.0 0.0 1.87 0.0 16. 1. 0.0 4.49 0.0 1.17 0.0 .16 0.0 .87 0.0 75.52 0.0 8.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : PROFILE NO.: 128 1 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: COLLUVIAL BLANKET ORTHIC SOMBRIC BRUNISOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 L ( F ) 003-000 5.08 4. 78 41.16 1.58 26. 1 41.60 6.60 .19 1.44 96.64 51.6 0.0 0.0 .03 .19 2 AH 000-065 4.87 4.34 12.53 .64 19.6 3.42 .46 .15 .35 54.00 8.1 .72 1.36 .32 1.32 3 BM 065-030 5.13 4.59 5.85 .30 19.5 2.42 .15 . 14 .15 39.60 7.2 .71 1.21 .32 1.24 RB 080- + 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : PROFILE NO.: 130 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL BLANKET LITHIC SOMBRIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 L ( F ) 2 AHE 3 BFH RB 004- 000 4.56 000-005 4.28 005- 040 4. 85 040-+ 0.0 4.13 45.51 3.79 16.54 4.39 4.18 0.0 0.0 1.39 1 .00 .21 0.0 32.7 28.94 16.5 6.81 19.9 1.19 0.0 0.0 5.39 1.71 .18 0.0 .22 .11 .06 0.0 1.03 .33 .14 0.0 107.99 63.07 23.48 0.0 32.9 14.2 6.7 0.0 0.0 .34 .87 0.0 0.0 .36 .76 0.0 .02 . 16 .37 0.0 .12 .43 .61 0.0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE. M. FELLER. J . WORT JR., L. SIMPSON AND K. FOREST ECOSYSTEM: CWHACB., PDLYPODIUM - SAULTHERIA - DF- WRC . KLINKA COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 13 I SAM.I HORIZON I NO. I D E P T H I ( C M ) | PH ITOT.CITOT.Ml C/N I H20 I CACL2I % I % I I EXCH. CAT. MEO/lOO GM | CEC I BS CA I MG I NA I K I MEO/IOOI ? I I I I GM I FE? I AL? I FE? I AL? I OXAL. EXTR. I PYROPH.EXTR.I PLOT NO. PROFILE MO.: 1 ILF)H 2 AHE 3 BF 4 AEB R 112 1 HJMUS FORM: H-MOR SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER LITHIC ORTHIC HUMO-FERRIC PODZOL / DIORITE (GABRO) BEDROCK (OR BOULDERS) 006-000 3.84 3.47 43.54 .75 58. 1 11.23 3.70 .33 1.89 101.40 16.9 0.0 0.0 .02 .07 000-030 4.00 3.63 6.72 .29 23.2 1.67 .36 .13 .24 29.64 8.1 .74 .30 . 18 .16 030-040 4.12 3.80 2.63 .20 13.2 .27 .10 .07 .08 13.26 4.0 .63 .16 .23 .14 040-050 4.08 3.21 5.21 .21 24.8 .90 .24 .07 .11 23.92 5.5 .58 .18 .30 .22 050- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C O 0.0 0.0 PLOT NO. PROFILE NO. 1 L ( F ) H R 118 HJMUS FORM: MODER SOIL SUBGROUP: LITHIC FOLISOL 1 PARENT MATERIAL : ORGANIC VENEER 015-000 000- + 3.79 0.0 3.40 19.48 0.0 0.0 .95 0.0 20.5 0.0 3.12 0.0 .62 0.0 .33 0.0 .45 0.0 / QUARTZDIORITE BEDROCK (OR BOULDERS) 74.10 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : PROFILE NO.: 1 L ( F ) H R 118 HJMUS FORM: H-MOR SOIL SUBGROUP: LITHIC FOLISOL 2 PARENT .MATERIAL : ORGANIC VENEER 015-000 000- + 3.84 0.0 3.38 29.45 0.0 0.0 .79 0.0 37. 3 0.0 4.99 0.0 1.13 0.0 .33 0.0 .70 0.0 / QUARTZDIORITE BEDROCK (OR BOULDERS) 71.50 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 1 ( L ) F H R 132 " HJMUS FORM: F-MOR SOIL SUBGROUP: PROTORANKER 1 PARENT MATERIAL : ORGANIC VENEER 009-000 000- + 4.11 0.0 3.63 50.14 0.0 0.0 1.65 0.0 30.4 0.0 1.12 0.0 .61 0.0 .20 1.25 0.0 0.0 / QUARTZDIORITE BEDROCK (OR BOULDERS) 105.64 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 C O 0.0 0.0 PLOT NO. PROFILE NO.: 1 ( L ) F H 2 AE R 134 HJMUS FORM: MODER SOIL SUBGROUP: LITHIC PODZOL 1 PARENT MATERIAL : COLLUVIAL VENEER 005-000 3.84 000-015 3.87 000-005 0.0 3.45 24.64 3.43 4.42 0.0 0.0 .94 .20 0.0 26.2 22. 1 0.0 3.12 .30 0.0 .88 .13 0.0 .19 .05 C O 1.26 .17 0.0 / QUARTZDIORITE BEDROCK (OR BOULDERS) 64.95 20.19 0.0 8.4 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C O C O C O 0.0 0.0 SOIL CHEMICAL ANALYSES ( F R A C T I O N < 2 MM) COASTAL WESTERN HEMLOCK ZONE S A M P L E D IN SUMMER 1972 AND 1973 BY K• KL INKA U.B.C. RESEARCH FOREST A N A L Y Z E D B Y : R . B E A L E , M. F E L L E R , J . WORT J R . , L . SIMPSON AND K . KLINKA F O R E S T E C O S Y S T E M : CWHASB, POLYPODIUM - . P O L Y S T I C H U M - DF - WRC TABLE 14 ISAM. I HORIZON | DEPTH 1 PH I T O T . CI T O T . N | C / N I E X C H . C A T . M E Q / 1 0 0 GM | CEC I BS I FES I AL? I FE? I AL? I I NO. | I (CM) | H20 I CACL21 ? I % I I CA I MG I NA I K I MEQ /1001 ? I OXAL. EXTR. I PYROPH.EXTR.I I I I I I I I I I I I I I GM I | | | P L O T N O . : P R O F I L E N O . : 0 0 6 1 HUMUS FORM: MODER S O I L SUBGROUP: ORTHIC H U M O - F E R R I C PODZOL PARENT MATERIAL : C O L L U V I A L B L A N K E T / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 LF ( H) 002-•030 4 . 73 4 . 2 9 4 7 . 2 7 1 . 7 * 2 7 . 2 2 4 . 9 5 3 . 2 9 . 6 5 2 . 1 1 1 4 6 . 6 2 2 1 . 1 0.0 0.0 . 0 8 . 1 2 2 AH 000--003 4 . 70 4 . 16 5 . 7 4 . 3 7 1 5 . 5 2 . 6 9 . 3 4 . 0 9 . 17 4 1 . 2 5 8.0 . 2 8 . 3 2 . 2 7 . 3 3 3 AE 003--010 4 . 6 0 4 . 0 3 2 . 4 3 . 1 2 2 0 . 3 . 4 2 . 0 6 . 0 6 . 0 8 2 4 . 0 2 2 . 6 . 2 5 . 2 4 . 2 5 . 8 0 4 BF 1 010--100 5 . 0 9 4 . 7 6 1 . 4 2 ' . 1 0 1 4 . 2 . 5 6 . 0 4 . 0 5 . 0 5 3 1 . 1 2 2 . 2 . 3 3 1 . 1 9 . 2 7 . 8 3 5 BF2 100--150 5 . 4 3 4 . 38 2 . 0 9 . 1 2 1 7 . 4 . 9 0 . 0 8 . 0 7 . 0 6 4 6 . 3 5 , 2 . 4 . 3 6 1 . 8 9 . 2 7 . 9 0 RB 150-• + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 C O 0.0 0 . 0 0.0 0.0 0.0 PLOT NO. : 009 HUMUS FORM: MODER S O I L SUBGROUP: MINI H U M O - F E R R I C PODZOL P R O F I L E N O . : 1 PARENT MATERIAL : C O L L U V I A L VENEER / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 (L ) F H 007 - •000 4 . 0 2 3 . 8 0 3 4 . 6 3 1 . 5 4 2 2 . 5 2 2 . 8 5 4 . 1 2 . 41 2 . 0 5 1 7 9 . 2 5 1 6 . 4 0 . 0 0.0 . 4 8 . 8 3 2 B F-ll 000- •012 4 . 8 3 4 . 6 3 3 . 7 9 . 3 7 1 0 . 2 1 . 7 7 . 2 1 . 0 6 . 15 6 3 . 6 7 3 . 4 . 6 7 1 . 3 0 . 6 2 1 . 3 2 3 BFH2 012- •040 5 . 0 5 4 . 6 0 3 . 2 6 . 3 0 1 0 . 9 . 5 7 . 0 8 . 0 6 . 0 8 5 2 . 5 5 1 . 5 . 7 6 1 . 3 4 . 7 2 1 . 3 5 4 BF 040 - •07 0 5 . 1 9 4 . 7 4 2 . 4 4 . 1 7 1 4 . 4 . 3 2 . 1 1 . 0 5 . 0 7 3 8 . 4 7 1 . 5 . 9 4 2 . 1 8 . 5 7 1 . 4 5 RB 0 7 0 - • + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 0.0 0.0 0.0 P L O T NO. ' : 0 1 7 HJMUS F O R M : MODER S O I L SUBGROUP: SOMBRIC ; FERRO--HUMIC ; PODZOL P R O F I L E N O . : 1 PARENT M A T E R I A L : C O L L U V I A L 1 BLANKET / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) L H ) 002- •030 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0 . 0 0.0 0.0 0 . 0 0.0 0.0 2 AHE 000 - •007 4 . 2 5 3 . 86 1 3 . 0 1 . 9 3 1 4 . 0 2 . 4 7 . 7 7 . 2 0 . 3 4 7 2 . 8 0 5 . 2 . 7 7 . 8 4 1 . 0 7 1 . 2 6 3 BHF 1 0 0 7 - •025 5 . 1 5 4 . 7 4 6 . 4 5 . 2 9 2 2 . 2 1 . 0 9 . 0 9 . 0 8 . 0 4 4 6 . 8 0 2 . 8 . 8 5 2 . 3 1 . 8 5 2 . 3 9 4 BHF 2 025 - 115 5 . 2 5 4 . 9 2 6 . 9 8 . 3 7 1 8 . 9 . 7 7 . 0 7 . 0 6 . 0 6 5 2 . 0 0 1 . 9 . 8 4 2 . 9 5 . 7 4 2 . 5 7 RB 115- 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0 . 0 0.0 0 . 0 0.0 P L O T N U . : 018 HJMUS , FORM: MODER S O I L SUBGROUP: I MINI H U M O - F E R R I C PODZOL P R O F I L E N O . : 1 PARENT MATERIAL : C O L L U V I A L i / E N E E R / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) L 0 0 4 - 000 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0 . 0 0.0 0 . 0 0.0 0.0 0.0 1 AH 0 0 0 - 004 4 . 4 5 3 . 9 4 1 3 . 1 7 . 9 3 1 4 . 2 4 . 1 2 . 6 8 1 .08 1 . 8 6 65.00 1 1 . 9 0.0 0.0 . 5 4 . 9 9 2 BFH 0 3 4 - •055 4 . 9 6 4 . 4 9 3 . 9 3 . 2 2 1 7 . 9 . 3 2 . 0 7 . 0 6 . 3 3 3 7 . 7 0 2 . 1 . 7 2 1 . 5 6 . 5 7 1 .51 R 0 5 5 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 0.0 0.0 0.0 P L O T N C . : 0 2 3 HJMUS FORM: H-MOR S O I L SUBGROUP: O R T H I C H U M O - F E R R I C POOZOL P R O F I L E N O . : 1 PARENT MATERIAL : C O L L U V I A L B L A N K E T / Q U A R T Z D I O R I T E BEDROCK ; (OR B O U L D E R S ) 1 ( L F ) H - DW 0 2 0 - 000 3 . 7 0 3 . 2 8 5 5 . 4 2 1 . 0 9 5 0 . 8 9 . 6 1 2 . 4 9 1 . 2 0 1 . 7 9 1 1 8 . 7 5 1 2 . 7 0.0 0.0 . 0 1 . 1 1 2 AE 0 0 0 - 045 4 . 7 0 4 . 2 1 2 . 7 4 . 15 1 8 . 3 3 . 0 8 . 2 7 . 0 6 . 1 6 2 6 . 4 5 1 3 . 5 . 0 9 . 1 4 . 1 2 . 3 0 3 BFH 0 4 5 - 140 5 . 50 5 . 0 3 4 . 7 8 . 3 0 1 5 . 9 5 . 2 4 . 4 2 . 0 8 . 1 1 4 9 . 5 5 1 1 . 7 1 .21 3 . 2 5 . 4 2 1 . 3 4 R3 1 4 0 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0.0 0.0 0.0 0.0 P L O T N O . : 049 HJMUS FORM: H-MOR S O I L SUBGROUP: O R T H I C H U M O - F E R R I C PODZOL P R O F I L E N O . PARENT M A T E R I A L C O L L U V I A L BLANKET / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 ( L F ) H 0 2 5 - 0 0 0 3 . 6 3 3 . 0 1 4 8 . 3 5 1 . 2 0 4 0 . 3 7 . 5 5 1 . 9 2 2 . 5 7 1 . 9 0 1 4 6 . 9 0 9 . 5 0 . 0 0 . 0 . 0 5 . 1 4 TABLE 14 (continued) I SAM. I HORIZON I NO. I DEPTH | PH ITOT.CITOT.Nl C/N I EXCH. CAT. MEQ/100 GM I CEC I BS (CM) I H20 I CACL2I % I % I I CA I MG I NA I K I MEQ/100I % I I I I I I I I I I GM I I FE? I AL? I FE? I AL? I I OXAL. EXTR. I PYROPH.EXTR.I I I I PLOT NO. : 049 PROFILE NO.: I 2 AE 000-008 3.84 3.33 1.56 .09 17.3 .25 .06 .04 .45 9.24 8.7 .04 .05 .03 .01 3 BF 1 008-030 4.45 4.16 1.68 . 10 16.8 .12 .04 .05 .06 14.56 1.9 .47 .96 .33 .62 4 BF 2 030-120 4.72 4.38 2.63 .16 16.4 .14 .03 .04 . 13 20.54 1.7 .61 1.46 .26 .79 RB 120- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE MO. 052 1 HJMUS FORM: H-MOR SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER LITHIC MINI HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) .1 ( L ) F H -DW 035-•000 3.57 3.15 51.83 1.40 37.0 8.23 1.70 1.49 1.62 143.00 9.1 0.0 0.0 .06 .23 AE 000-•003 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 BFH 000-•035 4. 58 4. 26 4.70 .26 18.1 . .12 .04 .04 .09 32.50 .9 .73 2.13 .49 1.37 R 035-•+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 067 HJMUS FORM: MULL SOIL SUBGROUP: LITHIC SOMBRIC FERRO-HUMIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL VENEER / QUARTZOIORITE BEDROCK (OR BOULOERS) 1 L(FH) 002- 000 5.21 4.84 45.45 1 .34 33.9 43.66 3.90 .23 1.15 94.30 51.9 0.0 0.0 0.0 0.0 2 AH 000-•023 5.01 4.40 17.12 .89 19.2 4.37 1.23 .15 .51 71.50 8.8 0.0 0.0 0.0 0.0 R 023-•+ 0.0 0.0 0.0 0 . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 067 HJMUS FORM: MODER SOIL SUBGROUP: MINI FERRO-HUMIC PODZOL PROFILE NO.: 2 PARENT MATERIAL : COLLUVIAL VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 L ( F ) 003- 0 0 0 5.09 4. 69 48.00 1.13 42.5 38.05 3.97 .29 .84 87.65 49.2 0.0 0.0 0.0 0.0 2 BHF 000-•070 5. 10 4.62 9.03 . 53 17.0 2.25 .53 .05 .18 46.28 6.5 0.0 0.0 0.0 0.0 R 070-•+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 071 HJMUS FORM: MODER SOI L SUBGROUP: MINI HUMO-FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 ( L ) F H 004-• 0 0 0 3.70 3.34 42.03 2.14 19.6 11.23 2.26 .76 .54 110.50 13.5 0.0 0.0 . 13 .24 2 AHE 000-•004 4.04 3.53 13.45 .77 17.5 2.84 .41 .20 .28 63.96 5.8 .60 .64 .56 .72 AE 000- 007 0.0 0.0 0.0 0 . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 BFH 004-•071 4.61 4. 14 4.61 .30 15.4 .99 .12 .13 .10 31.46 4.3 .72 .75 .64 .88 RB 071-•+ 0.0 0.0 0 . 0 0 . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 072 HUMUS FORM: MODER SOIL SUBGROUP: LITHIC ORTHIC FERRO-•HUMIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF 004-•000 4.33 3. 93 22.90 1.12 • 20.4 2. 50 .62 .92 .58 62.40 7.4 0.0 0.0 .52 .36 2 AHE 000-•008 3.95 3.52 3.45 . 33 10.5 .67 .11 .05 .13 23.66 4.1 .18 .26 .18 .28 3 BHF 008- 015 4.37 4.02 8. 36 .61 13.7 .59 .16 .09 .17 43.94 2.3 .98 .86 .98 1.00 R 015-•* 0.0 0.0 0 . 0 0 . 0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 079 HJMUS FORM: MULL SOIL SUBGROUP: SOMBRIC FERRO--HUMIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL VENEER / MORAINE VENEER 1 LIF ) 004-• 0 0 0 5. 14 4.74 3 6 . 0 0 . 2.07 17.4 37.43 7.50 .22 1.69 69.55 67.3 0.0 0.0 .14 .24 2 AHE 000-•020 4.81 4.32 7.98 .82 9.7 7.73 1.34 .13 .34 34. 18 27.9 .75 .43 .69 .44 TABLE 14 (continued) I S A M . I HORIZON I DEPTH I PH | T O T . C | T O T . N | C / N I N O . (CM) -1 1 H20 1 1 C A C L 2 I 1 % 1 1 % 1 0 2 0 - 0 5 0 5 . 1 8 4 . 6 1 6 . 5 5 . 4 4 0 5 0 - 110 5 . 3 6 4 . 8 3 7 . 1 3 .61 110 - + 0 . 0 0 . 0 0 . 0 0 . 0 HJMUS i FORM: H-MOR SOI L PARENT MATERIAL : C O L L U V I A L ' 0 0 8 - •000 3 . 6 5 3 . 2 4 4 0 . 12 1 . 3 9 0 0 0 - 0 1 5 4 . 7 7 4 . 3 6 8 . 4 6 . 4 6 0 1 5 - •040 4 . 9 0 4 . 54 9 . 8 8 . 6 7 0 4 0 - • + 0 . 0 0 . 0 0 . 0 0 . 0 HJMUS i FORM: MODER S O I L PARENT MATERIAL : C O L L U V I A L ' 0 1 5 - 000 4 . 59 4 . 1 4 2 8 . 1 2 1 . 4 6 0 0 0 - •015 4 . 7 0 4 . 1 8 9 . 3 7 . 6 7 0 1 5 - •0 35 4 . 9 6 4 . 5 1 4 . 3 6 . 3 4 0 3 5 - •075 5 . 2 9 4 . 7 5 2 . 6 2 . 1 4 0 7 5 - • + 0 . 0 0 . 0 0 . 0 0 . 0 HJMUS , FORM: MULL SOIL PARENT MATERIAL : C O L L U V I A L 1 0 1 0 - •030 4 . 7 9 4 . 4 5 3 0 . 6 1 1 .43 0 0 0 - •030 5 . 0 2 4 . 67 1 9 . 36 1 . 1 5 0 3 0 - •OBO 5 . 2 9 4 . 7 5 2 . 0 9 . 17 0 8 0 - • + 0 . 0 0 . 0 0 . 0 0 . 0 E X C H . C A T . M E Q / 1 0 0 GM I C E C I BS CA I MG I NA | K | M E Q / 1 0 0 1 ? I ! I I GM I I FES I A L ? I F E ? I A L ? I I O X A L . E X T R . I P Y R O P H . E X T R . I I I I PLOT N O . : P R O F I L E N O . : 3 BHF 4 11BHF RB PLOT N U . : P R O F I L E N O . : 1 ( L F ) H 2 BHF 1 3 BHF 2 R PLOT N O . : P R O F I L E N O . : L F I H ) AH AE BF RB P L O T NO. P R O F I L E MD. 1 LF 2 H 3 BM R 0 7 9 1 0 8 4 1 1 4 . 9 1 1 . 7 0 . 0 4 . 9 3 3 . 12 0 . 0 . 4 2 . 2 8 0 . 0 . 1 2 . 0 9 0 . 0 . 1 2 . 0 8 0 . 0 3 8 . 6 1 5 4 . 4 7 0 . 0 1 4 . 4 6 . 6 0.0 1 . 8 3 2 . 2 8 0.0 1 . 7 7 4 . 9 1 0.0 1 . 5 5 1 . 2 8 0.0 1 . 6 0 2 . 2 6 0 . 0 L I T H I C MINI F E R R O - H U M I C PODZOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 2 8 . 9 1 1 . 8 5 1 8 . 4 . 3 5 1 4 . 7 . 1 6 0 . 0 . 0 . 0 3 . 7 0 . 0 7 . 0 8 0 . 0 . 2 7 . 0 3 . 0 5 0 . 0 1 . 2 1 . 1 2 . 1 3 0.0 7 7 . 3 5 4 8 . 7 5 6 4 . 3 5 0 . 0 2 2 . 0 1 .2 . 7 0 . 0 0.0 2 . 2 2 2 . 8 3 0.0 0.0 3 . 9 3 5 . 4 1 0.0 . 0 8 . 1 6 1 . 2 9 3 . 5 0 1 . 5 9 4 . 6 1 0 . 0 0 . 0 102 1 SUBGROUP: SOMBRIC H U M O - F E R R I C POOZOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 9 . 3 1 7 . 4 7 1 4 . 0 5 . 9 9 1 2 . 8 4 . 4 9 1 8 . 7 2 . 4 8 0 . 0 0 . 0 2 . 3 6 . 7 9 . 4 8 . 2 5 0 . 0 . 6 5 . 1 8 . 1 0 . 1 4 0 . 0 . 7 4 . 4 0 . 1 1 . 0 7 0 . 0 9 5 . 7 5 5 3 . 4 2 3 0 . 6 7 1 9 . 8 9 0 . 0 2 2 . 2 1 3 . 8 1 6 . 9 1 4 . 8 0 . 0 0.0 . 9 3 . 4 4 . 9 9 0.0 0 . 0 . 8 0 . 3 9 1 . 9 2 0 . 0 . 2 4 . 4 9 . 4 2 . 2 5 0.0 . 3 9 . 6 9 . 5 9 . 6 0 0 . 0 109 1 ORTHIC D Y S T R I C BRUNISOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 2 1 . 4 3 1 . 1 9 1 6 . 8 2 4 . 9 5 1 2 . 3 5 . 8 6 0 . 0 0 . 0 5 . 1 4 4 . 1 5 . 8 5 0 . 0 . 16 . 2 2 . 0 7 0 . 0 . 9 6 . 6 1 . 2 7 0.0 7 0 . 2 0 7 1 . 7 6 2 0 . 5 4 0 . 0 5 3 . 3 4 1 . 7 3 4 . 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT N O . : P R O F I L E N O . : 110 1 HJMUS FORM: F-MOR SOIL SUBGROUP: PARENT MATERIAL : C O L L U V I A L VENEER MINI H U M O - F E R R I C POOZOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 L F I H ) 0 1 0 - 0 0 0 4 . 0 9 3 . 7 3 3 6 . 9 9 1 . 2 2 3 0 . 3 1 6 . 2 2 2 . 0 6 . 2 7 1 . 0 2 9 1 . 9 0 2 1 . 3 0 . 0 0 . 0 . 0 8 . 2 4 2 BFH 0 0 0 - 0 5 0 5 .21 5 . 0 3 5 . 1 9 . 3 0 1 7 . 3 . 2 1 . 0 4 . 0 7 . 0 7 3 5 . 3 6 l . l 1 . 1 6 3 . 8 1 . 1 0 . 8 6 3 BHF 0 5 0 - 0 9 5 5 . 1 6 4 . 8 9 1 0 . 4 4 . 4 4 2 3 . 7 . 1 4 . 0 6 . 0 7 . 1 2 6 5 . 7 8 . 6 1 . 9 9 6 . 9 5 . 4 2 4 . 6 0 R 0 9 5 - + 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 P L O T N O . : P R O F I L E N O . : 110 2 HJMUS FORM: MODER S O I L SUBGROUP: PROTORANKER PARENT MATERIAL : ORGANIC VENEER / Q U A R T Z D I O R I T E BEDROCK (OR B O U L O E R S ) L F I H ) R 0 1 0 - 0 3 0 0 0 0 - + 3 . 9 8 0 . 0 3 . 5 7 3 4 . 9 6 0 . 0 0 . 0 1 .42 0 . 0 2 4 . 6 0 . 0 8 . 1 1 0 . 0 1 . 1 3 0 . 0 . 3 3 0 . 0 . 9 0 0 . 0 9 7 . 5 0 0 . 0 1 0 . 7 0 . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 P L O T N O . : P R O F I L E N O . : 119 1 HJMUS FORM: MODER S O I L SUBGROUP: PARENT MATERIAL : C O L L U V I A L VENEER ORTHIC H U M O - F E R R I C PODZOL / Q U A R T Z D I O R I T E BEDROCK (OR B O U L D E R S ) 1 (LF ) H 2 AE 3 BFH 0 1 0 - 0 0 0 4 . 2 8 0 0 0 - 0 0 5 4 . 3 8 0 3 5 - 0 6 0 5 . C 9 3 . 9 0 3 0 . 7 8 3 . 9 1 3 . 0 0 4 . 5 1 4 . 7 3 1 .31 . 1 7 . 1 7 2 3 . 5 1 6 . 8 4 1 7 . 6 2 . 0 3 2 7 . 8 . 9 1 2 . 5 7 . 2 3 . 0 9 . 3 3 . 0 7 . 0 7 . 8 3 . 1 0 . 0 6 8 3 . 2 0 1 5 . 6 0 3 6 . 4 0 2 4 . 7 1 5 . 6 3 . 1 0.0 0.0 . 5 7 . 1 9 . 8 1 2 . 2 7 . 0 5 . 1 4 . 17 . 0 9 . 1 8 . 9 4 TABLE 14 (continued) | SAM. I HORIZON I DEPTH | PH I TOT.CI TOT.NI C/N I EXCH. CAT. MEQ/100 GM | CEC I BS I FES I ALS I FES I ALS I | NO. I I (CM) I H20 I CACL2I S I % I I CA | MG I NA I K I MEQ/lOOl S I OXAL. EXTR. I PYROPH.EXTR.I I I I I I I I I I I I I I GM I I I I PLOT NO. PROFILE MO. 119 1 BF R 060-090 090- + 5.06 0.0 4.50 0.0 2.77 0.0 .1). 0.0 25.2 0.0 .60 0.0 .08 0.0 .07 0.0 .09 0.0 20.54 0.0 4.1 0.0 .84 0.0 1.56 0.0 .20 0.0 .66 0.0 PLOT NO. PROFILE NO. 152 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER MINI FERRO-HUMIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (LF )H 030-000 4.11 3.85 22.43 1.62 13.8 5.49 .86 .20 .40 74.36 9.3 0.0 0.0 .48 .80 2 BHF 1 000-030 4.71 4.27 7.05 .33 21.4 1.35 .16 .06 .11 39.78 4.2 1.19 1.32 .85 2.53 3 BHF 2 030-065 4.99 4.50 8.81 .39 22.6 1.00 .11 .05 .08 54.08 2.3 1.07 3.17 1. 14 1.56 RB 065- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 153 1 HUMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEEK LITHIC MINI FERRO-HUMIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF 009-000 4.70 4.27 45.04 1.98 22.7 26.20 3.60 .43 1.92 92.95 34.6 0.0 0.0 .05 .12 2 AHE 000-005 4.09 3.60 5.57 .44 12.7 1.55 .25 .19 .13 10.66 19.8 .55 .30 .34 .30 3 BHF 005-045 5.07 4.56 8.73 .80 10.9 .87 .53 .24 .22 34.58 5.4 1.72 2.28 .89 1.64 k 045- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : PROFILE NO.: 155 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER MINI HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 L ( F ) H 008-000 4.69 4.22 40.35 2.27 17.8 8.73 1.64 .65 .70 110.50 10.6 0.0 0.0 .04 1.10 2 BFH 000-015 4.62 4.19 4.59 .33 13.9 .90 .17 .11 .14 19.24 6.9 .46 .49 .24 .94 3 BF 015-030 4. 57 4. 17 2.22 .36 6.2 .99 .20 .07 .15 21.06 6.7 .59 .49 . 16 .92 4 BHF 030-050 4.65 4.27 6.85 .66 10.4 .95 .21 .13 .20 29.12 5.1 1.09 1.19 .04 .49 R 050- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE, M. FELLER, J . WORT JR., L. FOREST ECOSYSTEM: CWHA&B, MAHONIA - POLYSTICHUM -COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST SIMPSON AND K. KLINKA DF - WRC TABLE 15. ISAM.I HDRIZON I I NO. I I DEPTH (CM) PH ITOT.ClTOT.Nl C/N I EXCH. CAT. H20 I CACL2I X I % I I CA | MG MEQ/100 GM I CEC I BS I FES I ALS I FES I ALS I I NA I K I MEQ/lOOl S I OXAL. EXTR. I PYROPH.EXTR.I t I I GM I I I I PLOT NO. : 004 HUMUS FORM: MODER SOIL SUBGROUP: SOMBRIC HUMO--FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : GLACIOFLUVIAL OEPOSITS / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (LF ) H 006- 000 4.86 4.37 49.19 1.85 26.4 24.95 4.11 .33 1.60 103.12 30.0 0.0 0.0 .08 .13 2 AHE 000- •008 4. 42 4. 10 9.07 .43 21.1 8.11 1.14 .10 .28 78.50 12.2 .32 .48 .35 .47 3 BFH 008- •05 0 5.24 4.69 3. 14 .25 12.6 .59 .08 .04 .06 34.42 2.2 .60 2.44 .30 1.05 4 BF 1 050- •095 5.21 4.89 .80 .05 16.0 .16 .02 .04 .04 12.22 2.1 .21 1.08 . 12 .50 5 BF2 095- •140 5.27 4. 91 .88 .06 14.7 .25 .29 .04 .04 16.65 3.8 .26 1 .28 . 10 .47 RB 140- • + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 004 HJMUS FORM: MODER SOIL SUBGROUP: SOMBRIC HUMO--FERRIC PODZOL PROFILE NO.: 2 PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 L(F )H 006- •000 4.68 4. 46 48.78 1.91 25.5 27.45 4.11 .33 1.63 137.62 24.4 0.0 0.0 .08 .17 PLOT NC. : 033 HJMUS FORM: H-MOR SOIL SUBGRDUP: I MINI HUMO-FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL 1 BLANKET 1 (LF )H 008- •000 3.91 3.47 47.97 1.63 29.4 17.15 3.17 .96 1.86 149.50 15.5 0.0 0.0 .03 .13 AE ' 000- •002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 3FH 000- •015 4.79 4.39 4.22 .21 20.1 .19 .06 .06 .13 28.75 1.5 .72 1.94 .36 1.29 3 BF 1 015- •060 4. 42 4. 50 2.13 .14 15.2 .12 .04 .04 .25 18.40 2 .6 .49 1.35 .20 .68 4 BF2 060- •UO 5.00 4.62 1.01 .08 12.6 .19 .03 .06 .29 13.80 4.1 .47 1.14 .08 .39 5 BF3 110- •155 5.38 5.30 1.22 .12 10.2 .25 .06 .06 .06 26.45 1.6 .61 2.59 .03 .41 PLOT NO. : 073 HJMUS FORM: MUDER SOIL SUBGROUP: (GLEYED) ORTHIC HUMO-FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL 1 VENEER / MORAINE BLANKET 1 L(FH) 006- •000 4.07 3.60 32.41 1.39 23.3 18.09 2.36 .54 .54 114.40 18.9 0.0 0.0 .12 .24 AE 000- •036 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 BF 000- •04 1 5. 11 4.52 2.93 .22 13.3 .40 .05 .09 .09 28.08 2.2 .67 2.27 .25 1.12 3 BFH 041- •090 5. 13 4.72 5.57 .27 20.6 .19 .03 .06 .13 52.26 .8 .84 4.58 .41 2.12 4 II3HFGJ1 090- •130 5.04 4.65 8.46 .47 18.0 .24 .04 .06 .24 59.54 1.0 1.27 5.85 .76 2.84 5 II3HFGJ2 130- •170 5.02 4.58 7.90 .48 16.5 .21 .04 .05 .09 58.50 .7 1.46 4.43 1.03 2.56 PLOT NO. : 073 HJMUS , FORM: MODER SOIL SUBGROUP: LITHIC MINI 1 FERRO-HUMIC PODZOL PROFILE NO. PARENT MATERIAL COLLUVIAL VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LFH 2 BHF R 016-000 4.76 000-050 4.81 050-f 0.0 4.33 50.09 4.39 15.13 0.0 0.0 1.73 .97 0.0 29.0 14.47 15.6 1.75 0.0 0.0 2.04 .29 0.0 .26 .22 0.0 1.52 .20 0.0 106.43 46.54 0.0 17.2 5.3 0.0 0.0 .45 0.0 0.0 2.37 0.0 0.0 .32 0.0 0.0 1.92 0.0 PLOT NO. PROFILE NO. 075 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL BLANKET MINI HUMO-FERRIC PODZOL / MORAINE BLANKET 1 (LF)H AE 2 BFH 003-000 4.41 000-002 0.0 000-025 5.22 4.00 26.67 0.0 0.0 4.62 3.49 .84 0.0 .22 31.7 0.0 15.9 16.84 0.0 .50 1.64 0.0 .06 .21 0.0 .07 .49 0.0 .05 51.85 0.0 19.63 36.6 0.0 3.4 0.0 0.0 .26 0.0 0.0 .69 .12 0.0 .29 .23 0.0 1.00 TABLE 15 (continued) ISAM.) HORIZON I DEPTH I PH I TOT .C1 TOT. NI C/N I EXCH. CAT. MEQ/100 GM | CEC I BS I FE? I AL? ! FE? I AL? I I NO.I I (CM) I H20 I CACL21 % I S I I CA I MG I NA I K I MEQ/1001 ? I OXAL. EXTR. I PYROPH. EXTR.I I I I I I I I I I I I I I GM I I I I PLOT NO. : 075 PROFILE MO.: 1 3 BFCJ 025-050 5.28 4.91 2.78 .20 13.9 .72 .07 .05 .05 20.41 4.3 .83 3.12 .26 1.08 4 BF 1 050-110 5.29 5.03 1.26 .11 11.5 .26 .02 .05 .04 6.11 6.0 .31 2.08 .06 .46 5 BF2 110-140 5.24 4.91 2.18 . 15 14.5 .30 .03 .06 .05 17.55 2.5 .31 2.67 .11 .81 IIC 140- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT MO. : 097 HUMUS FORM: F-MOR SOIL SUBGROUP: MINI HUMO-FERRIC PODZOL PROFILE MO.: 1 PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS / MORAINE BLANKET 1 (L) F 004-000 3.86 3.38 40.81 1.01 40.4 6.86 1.54 .33 1.21 83.55 12.5 0.0 C O .10 .25 2 AHE 000-005 4.92 4.56 2.50 .08 31.3 .51 .07 .08 .09 16.89 4.5 .43 .89 .19 .64 3 BF 1 005-030 5. 12 4.71 1.76 .04 44.0 , , .41 .05 .07 .07 15.33 3.9 .53 1.10 .15 .59 4 BF2 030-050 5.36 4.89 1.41 .07 2 0. 1 .32 .07 .07 .07 12.99 4. 1 .47 1.05 . 12 .46 5 BF3 060-100 5.39 4.99 .60 .05 12.0 .31 .05 .07 .08 8.29 6.2 .47 1.26 .06 .35 6 Bl I C l 100-140 5.55 5.37 .51 .04 12.8 .30 .07 .07 .07 7.67 6.8 .34 2.16 .03 .39 7 Bl I C2 140-180 5.31 5.08 1.06 .11 9.6 .24 .05 .07 .07 16.51 2.6 .35 3.30 .06 .67 PLOT NO. : 111 HJMUS FORM: MDDER SOIL SUBGROUP: ORTHIC DYSTRIC BRUNISOL PROFILE MO.: 1 PARENT MATERIAL : ALLUVIAL DEPOSITS 1 L ( F ) 0 0 3 - 0 0 0 4 . 8 6 3 . 7 7 3 6 . 2 3 l . b l 2 2 . 5 1 1 . 2 3 1 . 9 5 . 3 3 . 5 4 9 5 . 4 0 1 4 . 7 C O C O . 0 5 . 2 0 2 BM i 0 0 0 - 0 2 0 4 . 50 4 . 0 8 6 . 2 6 . 3 0 2 0 . 9 2 . 2 7 . 2 4 . 1 3 . 1 3 3 0 . 1 6 9 . 2 . 6 1 . 9 9 . 2 1 . 7 2 3 BM2 0 2 0 - 0 5 0 5 . 0 3 4 . 5 5 2 . 8 2 . 12 2 3 . 5 2 . 2 3 . 1 6 . 0 8 . 0 5 2 1 . 0 6 1 2 . 0 . 6 3 . 7 1 . 13 . 3 8 4 BM3 0 5 0 - 0 9 0 5 . 0 2 4 . 6 1 1 . 9 3 . 0 2 9 6 . 5 1 .81 . 1 6 . 0 8 . 0 5 1 6 . 3 8 1 2 . 8 . 6 4 . 6 9 . 10 . 3 2 t o r o SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: P.. BEALE, M. FELLER, J . WORT JR., L. SIMPSON AND K. KLINKA FOREST ECOSYSTEM: CWHASB, TIARELLA - POLYSTICHUM - WRC -COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 16 ISAM.I HORIZON I I NO.I I I I I DEPTH I PH ITOT.CITOT.NI C/N I EXCH. CAT (CM) I H20 I CACL2I ? I ? I I CA I MG I I I I I I I , MEQ/100 GM I CEC I BS I NA I K I MEQ/100I * I I I GM | I FE? I AL? I FE? I AL? I I OXAL. EXTR. I PYROPH.EXTR.I PLOT NO. PROFILE NO. 003 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL BLANKET (GLEYED) SOMBRIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (LF )H 002-000 4.39 4.00 49.71 1.92 25.9 19.96 4.11 .33 1.28 122.62 20.9 0.0 0.0 .10 .25 2 AH 000-036 4.70 4.38 7.31 .35 20.9 5.04 .88 .10 .26 36.90 17.0 .42 .84 .50 .82 3 AB 006-020 5.47 4.96 1.70 . 16 10.6 .52 .04 .06 .08 19.87 3.5 .54 1.68 .25 .80 4 BF1 020-070 5.66 5. 12 1.26 . 12 10. 5 .22 .03 .04 .05 21.30 1.6 .52 2.16 .15 .65 5 BF2 070-110 5.58 5.09 1.09 .15 7.3 . 19 .03 .04 .04 22.35 1.3 .42 2.12 .10 .58 6 BFGJ 110-140 5.37 4.89 1.53 . 19 8.1 .39 .04 ..04 .04 26.47 1.9 .43 2.20 . 17 .70 RB 140- + 0.0 0.0 0.0 0.0 0. 0 , . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 003 2 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL BLANKET (GLEYED) SOMBRIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) ( LF ) H 002-030 4.61 4.18 46.75 1.88 24.9 18.71 4.32 .38 1.15 145.75 16.8 0.0 0.0 . 10 .20 PLOT NO. PROFILE NO. 037 1 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER (GLEYED) MINI HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LF'(H) 004-000 4.82 4.38 41.45 1.48 28. 0 16.47 2.37 1.37 1.97 97.75 22.7 0.0 0.0 .15 .42 2 AHE 000-036 4. 94 4.44 6.45 .50 12.9 1.27 .19 .05 .43 44.50 4.4 .71 1 .09 .54 1.14 3 BFH 006-045 5.22 4.71 3.67 .33 11.1 .26 .06 .03 .14 26.45 1.8 1.04 2.25 .40 1.20 4 BFHGJ 045-085 5.10 4.70 5.14 .49 10.5 .26 .05 .06 .18 42.55 1 .3 .89 4.00 .32 1.51 RB 085- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 045 1 HUMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: A L L U V I A L VENEER MINI FERRO-HUMIC PODZOL / DEEP MORAINE DEPOSITS L(H) 2 AH 3 BHF 4 IIC 032-000 0.0 000-003 4.89 003-028 4.92 028-040 5.05 0. 0 4.40 4.36 4. 70 0.0 6.21 6.49 .39 0.0 .39 .64 ' .05 0.0 15.9 10. 1 7.8 0.0 4.74 1.75 .31 0.0 .99 .22 .03 0.0 .33 .22 .06 0.0 .35 .05 .09 0.0 52.00 37.96 10.72 0.0 0.0 12.3 .52 5.9 .52 4.5 .42 0.0 .72 1.13 .88 0.0 .43 .35 .02 0.0 .93 1.12 .24 PLOT NO. PROFILE NO. 069 1 HJMUS FORM: H-MOR SOIL SUBGROUP: PARENT MATERIAL : COLLUVIAL VENEER (GLEYED) ORTHIC FERRO-HUMIC PODZOL / MORAINE BLANKET 1 LF ( H ) 023-016 3.64 3.04 55.01 1.55 35.5 11.23 2.88 .87 .86 156.00 10.2 0.0 0.0 .06 .17 2 DW 016-006 3.93 3.50 40. 12 1.70 23.6 13.72 2.36 .71 .74 107.90 16.2 0.0 0.0 .16 .26 3 H 006-000 3.68 3.02 28.81 .98 29.4 4.18 .86 .24 .35 94.90 5.9 0.0 0.0 .32 .42 AE 000-003 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 BHF 000-020 4.37 3.83 13.11 .26 38.9 .45 .14 .04 .11 67.86 1.1 2.9,1 2.01 2.71 2.20 5 BHFGJ 020-065 4.74 4. 52 6.67 .31 21.5 .30 .05 .04 .07 56.42 .8 1.23 3.68 .78 2.01 BIIC 065- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ' 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 069 2 HJMUS FORM: MODER PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS MINI FERRO-HUMIC PODZOL / MORAINE BLANKET LFH 010-000 4.52 4.04 18.20 .68 26.8 1.75 .33 .39 .35 69. 16 4.1 0.0 0.0 .74 1.45 TABLE 16 (continued) ISAM.I HORIZON I DEPTH I PH ITDT .CITOT.N I C/N I E X C H . | NO.I I (CM) I H20 I CACL2I ? I ? I I CA | I I I I I I I I I I CAT. MEQ/100 GM | CEC I BS I FE? I AL? I FE? I AL? I MG I NA I K I MEQ/lOOl ? I OXAL. EXTR. I PYROPH.EXTR.I I I I GM 1 I I I PLOT NO. : PROFILE NO.: 2 BHF IIC PLOT NO. : PROFILE NO.: 069 2 000-020 020- + 4.89 0.0 4.45 0.0 7.69 0.0 077 1 HJMUS FORM: MODER PARENT MATERIAL : .34 0.0 22.6 0.0 1.21 0.0 . 35 0.0 .04 0.0 .09 44.72 0.0 0.0 3.8 0.0 .77 0.0 2.54 0.0 .58 0.0 1.73 0.0 SOIL SUBGROUP: CULLUVIAL BLANKET SOMBRIC FERRO-HUMIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) L(F ) AHE BHF 1 BHF 2 BHF 3 BHF 4 BHF 5 RB 008-000 4.89 4.39 38.49 1. 17 32.9 18.09 2.88 .91 .83 72.65 31.3 0.0 0.0 .34 1.13 000-015 5.33 4.80 10.73 .80 13.4 6.11 .72 .14 .18 43.94 16.3 .96 2.92 .80 2.39 015-030 5.36 4.79 8.84 .59 15.0 3.74 .43 .10 .11 46. 15 9.5 1.21 3.40 1.05 2.79 030-080 5. 32 4.80 8.55 .52 16.4 3.06 .36 .12 .12 45.11 8.1 .97 3.38 .84 2.77 080-110 5.28 4.72 8. 19 .52 15. 7 . 1.92 .20 .10 .08 45.89 5.0 1.03 4.05 .74 2.76 110-150 5.22 4.59 6.49 .44 14.7 .62 .08 .12 .06 47.71 1.9 1. 17 5.23 .50 2.25 160-190 5.06 4. 60 7.48 .39 19.2 .71 .09 .11 .07 52.65 1 .9 1.31 5.22 .61 2.54 190- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 098 1 HJMUS FORM: MODER PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS (GLEYED) SOMBRIC HUMO-FERRIC PODZOL / GLACIOFLUVIAL (DEPOSITS L 001- 000 1 AH 000- 015 2 IIAE 015- 017 3 II3FH 015- 045 4 IIBF 045- 080 5 IIBFGJ1 080- 110 6 IIBFGJ2 110- 135 7 I ICG 135- 140 0.0 4.56 5. 10 4. 06 5.29 5.21 5.29 5.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4. 18 15.07 • 7<t 20.4 8.98 1.36 .13 .31 49.26 21.9 0.0 0.0 .30 .39 4.73. 1.30 .09 14.4 2.00 .15 .07 .07 20. 15 11.3 .32 .30 .16 .32 4.49 4.24 .22 19.3 .50 .05 .06 .08 23.91 2.9 .82 1.70 . 39 1.09 4. 73 1.86 . 12 15.5 .47 . 06 .06 .06 16.25 4.0 .46 1.49 .17 .58 4.80 1.77 .12 14.8 .39 .05 .06 .04 16.75 3.2 .40 1.67 .11 .61 4.85 1.68 .13 12.9 .32 .04 .06 .03 16.25 2.8 .45 1.99 . 10 .51 4.94 .73 .06 12. 2 •34 .04 .07 .05 12.00 4.2 .55 1.19 .07 .37 PLOT NO. : PROFILE ND.: L 1 AHE 2 IIBFH 3 IIAEB PLOT NO. : PROFILE NO.: L(F ) H BFH1 BFH2 BF 1 BF2 IIAEB II3FB 098 2 HJMUS FORM: MODER SOIL SUBGROUP: PARENT MATERIAL : ALLUVIAL DEPOSITS (GLEYEDI SOMBRIC HUMO-FERRIC PODZOL / GLACIOFLUVIAL DEPOSITS 001-000 0.0 000-015 4.46 015-035 5.03 035-041 5.13 0.0 0.0 4.39 15.42 4.55 4.27 4.63 2.54 0.0 .65 .17 .17 0.0 23.4 25. 1 14.9 0.0 12.48 2.99 .81 0.0 1.56 .37 .10 0.0 .17 .07 .08 0.0 .28 .12 .07 0.0 54.00 20.25 16.75 0.0 26.8 17.6 6.3 0.0 0.0 .70 .69 0.0 0.0 .78 1.11 113 1 HJMUS FORM: MODER SOIL SUBGROUP: MINI HUMO-FERRIC POOZOL 0.0 . 34 .55 .40 0.0 .46 .54 .82 PARENT MATERIAL : COLLUVIAL VENEER / ALLUVIAL DEPOSITS 003-000 4. 16 3.82 23.88 1.25 19. 1 8.11 1.44 .27 .48 65.00 15.8 0.0 0.0 .10 .48 000-010 4.98 4.57 4.31 .22 19.6 .54 .05 .08 .08 • 23.92 3.1 .56 1.47 .14 .62 010-020 4.82 4.53 5.08 .28 18.1 .34 .05 .06 .10 34.84 1.6 .85 2.86 .29 1.51 020-050 4.98 4.80 2.10 . 10 21.0 .27 .02 .07 .06 18.72 2.3 .72 1.85 . 11 .63 060-035 5.33 5.12 1.53 .06 25.5 .21 .01 .08 .04 18.46 1.9 .58 2.49 .03 .36 085-100 5.00 4.75 2.48 .04 62.0 .32 .02 .07 .05 16. 12 2.8 .49 .95 . 10 .46 100-125 5. 40 5.29 1.34 .01 134.0 .25 .01 .06 .03 17.94 2.0 .55 2.47 .03 .37 TABLE 16 (continued) ISAM.I HDRIZON | DEPTH | PH I TOT.C I TOT.N I C/N I EXCH. CAT. MEQ/100 GM | CEC I BS I FES I AL? I FE? I AL? I | NO.I I (CM) I H20 I CACL2I ? I % I I CA I MG I NA I X I MEQ/100I ? I OXAL• EXTR. I PYROPH.EXTR.I I I I I I I I I I I I I I GM I I I I PLOT NO. : 116 HUMUS FORM: MODER SOIL SUBGROUP: MINI FERRO-HUMIC PODZOL PROFILE MO.: 1 PARENT MATERIAL : COLLUVIAL VENEER / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 (L) H 008-000 4.42 4.11 26.61 1.11 24.0 19.34 4.21 .33 .74 87.10 28.3 0.0 0.0 .23 .34 2 BHF 1 000-015 4.86 4.42 6.11 .38 16. 1 1.75 .41 .13 .22 43.16 5.8 1.42 1.75 .49 .91 3 BHF 2 015-040 5. 16 4.58 7.75 .31 25.0 1.50 .21 .11 .18 57.04 3.5 1.17 3.17 .45 2.06 4 BF 040-080 . 4.72 4.33 2.54 .11 23. 1 1.11 .11 .07 '.09 30. 16 4.5 .84 .58 .13 .24 RB 080- + 0.0 0. 0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 8Y K. KLINKA ANALYZED BY: R. BEALE, M. FELLER, J . WORT JR., L. SIMPSON AND K. FOREST ECOSYSTEM: CWHACB, RUBUS - POLYSTICHUM - WRC KLINKA COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 17 ISAM.I HORIZON I NO.I DEPTH | PH I TOT.CI TOT.NI (CM) I H20 I CACL2I % I S I I I I I I C/N I EXCH. CAT. MEQ/100 GM I CEC I BS I CA I MS I NA I K | MEQ/100I S I I I I I GM I FES I ALS 1 FES I ALS I OXAL. EXTR. I PYROPH.EXTR.I PLOT NO. PROFILE NO. 012 1 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: GLEYED MINI HUMO-FERRIC PODZOL GLACIOFLUVIAL DEPOSITS / GLACIOLACUSTRINE DEPOSITS L H ) BFH BF 1 BF2 BFGJ IICG 001-030 4.',3 4.09 28.02 1.23 22.8 16.22 2.26 000-007 007-025 025-072 072-090 090-110 PLOT NO. PROFILE NO. LIF) A H A ; c RB PLOT NO. PROFILE NO. L AH BMI BM2 BC PLOT NO. PROFILE NO. 1 L I F ) 5.01 5.46 5.73 5. 47 5.35 4. 78 4.37 4.78 4.82 5. 04 72 15 22 1.22 .11 .16 .18 . 12 .10 .02 17.0 11.9 10. 2 12.2 5.5 2.20 1.00 .99 1.50 7.11 .25 .11 .18 .35 2.64 PLOT NO. : 014 PROFILE NO.: 1 1 L ( H ) 2 AH 3 AIIC • 4 IICG PLOT NO. : 016 PROFILE NO.: 1 1 L 2 AH 3 C 4 AH3GC3 HJMUS FORM: HYDRUMULL SOIL SUBGROUP: PARENT MATERIAL : GLACIOLACUSTRINE DEPOSITS 002-000 5.13 000-020 5.34 020-030 5.54 030-090 5.50 4.61 24.65 4.71 3.24 4.74 .73 4.99 .29 .19 .26 .05 .05 20.7 20.21 12.5 5.24 14.6 2.64 5.8 8.68 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS 001-030 4.72 000-014 4.86 014-035 5.29 035-115 5.32 4.39 47.85 4.54 6.81 4.68 2.06 4.76 6.71 1.88 .64 .11 .27 25.5 28.69 10.6 3.29 18.7 .95 24.9 2.21 025 1 HJMUS FORM: HYDROMOR SOIL SUBGROUP: PARENT MATERIAL ALLUVIAL DEPOSITS 002-000 000-020 020-045 045-065 065- + 3.61 4.83 4.79 4.87 0.0 3. 13 53.10 4.39. 8.42 4.57 4.63 0.0 2.55 2.30 0.0 1.20 .44 .20 .06 0.0 44. 3 19. 1 12.8 38. 3 0.0 7.55 1.20 .74 .55 0.0 066 1 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS 001-030 000-011 011-035 035-075 075-100 5. 60 5. 60 5.42 5.36 5. 40 5.24 3B.B4 4.84 13.45 5.04 1.52 4.99 2.78 5.11 2.24 1 .92 .90 .16 .17 .11 20.2 48.03 14.9 8.98 9.5 2.62 16.4 1.91 20.4 .96 3.41 1.32 .61 1.97 3.30 .41 .05 .05 3.17 .13 .06 .06 0.0 4.90 .56 .10 .07 .05 086 1 HJMUS FORM: HYDRUMULL SOIL SUBGROUP: PAkENT MATERIAL : ALLUVIAL DEPOSITS 001-000 4.77 4.41 4H.23 1.58 30.5 33.06 2.99 .43 .86 95.62 20.7 0.0 0.0 .37 .58 .05 .16 40.35 6.6 .90 1.61 .72 1.29 .06 .13 32.85 4.0 .34 1.22 .26 .86 .11 .15 40.12 3.6 .46 1.44 .24 .61 .13 .15 44.77 4.7 .52 1.22 .37 .69 .17 .18 20.62 49.0 .34 .20 .08 .13 HUMIC GLEYSOL / GLACIOMARINE DEPOSITS .15 .97 78.02 31.7 0.0 0.0 .32 .24 .13 .47 43. 13 16'. 6 1. 18 .63 1.05 .78 .13 .36 20.75 18.0 .34 .26 .46 .47 .22 .27 21.40 52.1 .73 .39 . 10 .22 REGOSOL .24 1.76 98.21 34.6 0.0 0.0 0.0 0.0 . 17 .28 80.60 5.1 0.0 0.0 0.0 0.0 .07 .08 20.80 5.5 0.0 0.0 0.0 0.0 .13 .06 62. 10 3.9 0.0 0.0 0.0 0.0 REGOSOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1.85 2.07 40.25 36.4 0.0 0.0 0.0 C O . 10 .32 66.70 2.6 0.0 0.0 0.0 0.0 .06 .25 21.85 5.1 0.0 0.0 0. 0 0.0 .05 .13 23.00 3.4 0.0 0.0 0.0 C O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SOMBRIC BRUNISOL .21 1.92 95.86 57.4 0.0 0.0 0.0 0 . 0 .13 .27 56.68 17.6 0.0 0.0 .47 1.63 .09 .07 18.98 15.2 .63 1.88 .25 .71 .10 .07 20.28 10.6 .67 1.72 .26 .66 .09 .08 17.42 6.8 .61 2.05 . 13 .55 HUMIC GLEYSOL .43 1.51 94.30 40.3 0.0 0.0 0.0 C O TABLE 17 (continued) ISAM. | HORIZON | DEPTH | PH I TOT.CI TOT.Nl C/N I EXCH. CAT. MEO/lOO GM | CEC I BS I FE? I AL? I FE? I AL? I I NO. I I (CM) I H20 I CACL2I ? I ? I I CA I HG I NA I K I MEQ/1001 Z I OXAL. EXTR. I PYROPH.EXTR.I I I I I I I I I I I I I I GM I I I I PLOT NO. : 086 PROFILE NO.: 1 2 H 000- 007 4.73 4.25 28.75 1.48 19.4 8.30 1.00 .20 .49 80.99 12.3 0.0 0.0 0.0 0.0 3 AH1 007- 015 4.67 4.23 13.45 .78 17.2 .35 .14 .12 .12 47.89 1.5 0.0 0.0 0.0 0.0 4 AH2 015- 050 4.86 4.39 13.51 .71 19.0 .10 .12 .11 .10 48.83 .9 0.0 0.0 0.0 0.0 5 CGI 050- 050 4. 91 4.59 2.89 .37 7.8 .16 .03 .06 .13 18. 31 2.1 0.0 0.0 0.0 0.0 6 CG2 060- 100 4.96 4.57 10.32 .61 16.9 .17 .04 .10 .05 41.79 .9 0.0 0.0 0. 0 0.0 PLOT NO. : 096 HJMUS FORM: MODER SOIL SUBGROUP: GLEYED MINI FERRO-HUMIC POOZOL PROFILE NO.: 1 P4RENT MATERIAL : COLLUVIAL VENEER / MORAINE BLANKET 1 LF 004- 000 4.20 3.78 50.72 1.52 33.4 19.34 3. 19 ..38 1.92 92.15 26.9 0.0 0.0 .07 .22 2 AH 000- 004 4.30 3.96 11.92 .34 35.1 . , 2.25 .41 . 17 .18 55.22 5.5 1. 19 .61 .96 .64 3 BFH 1 004- 018 4.98 4.63 9.62 .28 34.4 6.74 .81 .10 .22 42.38 18.6 0.0 0.0 .68 1.14 4 BFH2 018- 030 4.90 4.57 4.92 .25 19.7 .46 .08 .06 .07 28.21 2.4 1.30 2.12 .94 1.59 5 113FH3J 030- 050 5.39 5.02 3.01 .13 23.2 .54 .09 .05 .05 20.41 3.6 .85 2.79 .46 1.00 5 II3FG 050- 100 5. 48 5.06 .25 .01 25.0 .31 .04 .05 .03 6.37 6.8 .64 1.71 . 19 .54 PLOT NO. : 145 HJMUS , FORM: HYDROMULL SOIL SUBGROUP: TERRIC HUMISOL PROFILE NO.: 1 PAREN IT MATERIAL : ORGAN I C VENEER / ALLUVIAL DEPOSITS 1 L1 F ) 003- •000 4.83 4.45 39.59 1.17 33.8 15.22 1.95 .27 1.21 77.86 24.0 0.0 0.0 0.0 0.0 2 CHI 000- 008 4. 59 4.13 28.75 1.57 18.3 5.18 .54 .14 .43 77.86 8.1 0.0 0.0 0.0 0.0 3 OH 2 008- •075 4.87 4.38 19.35 .71 27. 3 1 .20 .30 .74 .22 63.39 3.9 0.0 0.0 0.0 0.0 4 - IICG1 075- 090 5.09 4.51 5.81 .41 14.2 .37 .07 .07 .09 35.76 1.7 0.0 0.0 0.0 0.0 5 IICG2 090- 120 5.27 4.72 13.62 .85 16.0 .37 .07 .10 .07 48. 13 1.3 0.0 0.0 0.0 0.0 PLOT NO. : 148 HJMUS FORM: MULL SOIL SUBGROUP: G LEYED SOMBRIC HUMO--FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : GLACIOFLUVIAL DEPOSITS / GLACIOMARINE DEPOSITS 1 L(F ) 003- •000 5.98 5.61 45.16 1 .49 30.3 61.50 10.73 .20 2.03 104.08 71.5 0.0 0.0 .08 .14 2 AH 000- •010 5.20 4.73 8.39 .73 11.5 6.34 2.16 .09 .58 41.94 21.8 1.51 .71 .61 .62 3 BFH 010- •025 5.41 4. 71 3.98 .41 9.7 2.00 .46 .05 .28 36.08 7.7 1.38 1 .89 .55 1.43 4 BF 025- •055 5.50 4.78 2.73 .27 10. 1 1.48 .35 .09 .20 30.83 6.9 1.07 1 .64 .34 .86 5 113FGJ1 055- 030 5.64 4.74 1.85 .23 8.0 1.43 .38 .11 .17 30.99 6.7 1.07 1.47 . 36 .71 6 II3FGJ2 080- 100 5. 66 4.68 1.01 . 15 6.7 1.41 .49 . 12 .17 24.57 8.9 .95 1 .05 .24 .47 7 BII IC 100- •120 5.68 4. 76 1.00 .11 9. 1 1.25 .41 .12 .14 20.97 9.2 .78 .93 .18 .41 8 IIICG 120- 135 5.49 4.70 .43 .09 4.8 1.00 .30 .10 .09 11.11 13.4 .51 .53 .11 .35 PLOT NO. : 150 HJMUS FORM: MULL SOI L SUBGROUP: 5 LEYED SOMBRIC HUMO--FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : ALLUVIAL DEPOSITS / GLACIOFLUVIAL DEPOSITS 1 L(F) 003- •000 5.70 5.43 44.35 2.01 22. 1 58.01 9.06 .38 2.14 119.34 58.3 0.0 0.0 .07 .29 2 AHE 000- •Ut5 5.25 4.75 9.35 .89 10.5 12.72 1.73 .09 .41 64.48 23.2 1.20 1.43 .54 1.09 3 BFHGJ 015- 025 5.08 4.50 5. 56 .39 14.3 .17 .11 .04 .14 41.24 1.2 1.95 3.61 .62 1.39 4 BFGJ 025- •055 5. 41 5.37 2.19 .20 10.9 . 14 .04 .04 .13 26.14 1.3 1.22 4.06 .29 1.25 5 II3FHGJ 055- •030 5.59 5. 13 3.23 .30 10.8 . 10 . 02 .04 .04 30.60 .7 1. 23 4.35 .17 1.07 6 II3FHG 080- 110 5. 57 5.06 3.58 .33 to.a .14 .02 .05 .04 31.22 .8 1.35 3.92 .25 1.02 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE. M. FELLER, J . WORT JR., L. FOREST ECOSYSTEM: CWHA, ADIANTUM - POLYSTICHUM -SIMPSON AND K. WRC KLINKA COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 18 I SAM. I I NO. I HORIZON I DEPTH I PH I TOT .CI TOT.N1 C/N I EXCH. CAT. MEQ/100 GM I CEC I BS I (CM) I H20 I CACL2 I % I % I I CA I MG I NA I K I MEQ/lOOl S I I I I 1 I I I I I I GM I I FES I ALS I FES I ALS I I OXAL. EXTR. I PYROPH.EXTR.I I I I PLOT NO. : 015 HJMUS FORM: MULL SOIL PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL \ 1 L 001- 000 5.94 5.67 45. 53 1.79 2 AH 000- 030 5.33 5.03 15.07 1.16 3 AC 030- 030 5. 50 5.09 5.59 .23 RB 080-•4- 0.0 0.0 0.0 0.0 PLOT NO. : 115 HJMUS FORM: MODER SOIL PROFILE NO.: 1 PARENT MATERIAL : ORGANIC VL-; 1 (LF ) H 012-•000 4.24 3.92 25.97 1.40 R 000- 0.0 0.0 0.0 0.0 PLOT NO. : 115 HJMUS FORM: MULL SOIL PROFILE NO.: 2 PARENT MATERIAL : COLLUVIAL \ L 001-•000 0.0 0.0 • 0.0 0.0 1 AH 000-•013 5.08 4.70 12.93 .80 2 AB' 013-•028 4.80 4. 39 3.43 .37 3 BM 028-•050 4.59 4.18 3.84 .27 R 050-• + 0.0 0.0 0.0 0.0 PLOT NO. : 135 HJMUS FORM: MULL SOI L PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL ' 1 L(H) 002--000 5.28 4.91 50.61 2.02 2 H 000--010 5.60 5.20 41.91 1.81 3 AH 010-•030 6.01 5.53 16.50 1 .26 4 BHF 030--060 5.98 5.38 13.26 1.07 RB 050-- + 0.0 0.0 0.0 0.0 PLOT NO. : 157 HJMUS , FORM: HYDRUMULL SOIL ORTHIC REGOSOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 25.4 61.13 13.0 1.67 24.3 .37 0.0 0.0 SUBGROUP: 7.40 .17 .04 0.0 .22 .02 .01 0.0 1.76 .04 .02 0.0 100.56 78.00 44.20 0.0 70.1 2.4 1.0 0.0 0.0 .46 .21 0.0 0.0 1.48 1.03 0.0 0.0 0.0 .52 1.67 .53 1.92 0.0 0.0 LITHIC FOLISOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 18.6 18.09 0.0 0.0 2.98 0.0 .49 0.0 .74 0.0 156.00 0.0 14.3 0.0 0.0 0.0 0.0 0.0 .06 0.0 .12 0.0 ORTHIC SOMBRIC BRUNISOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 0.0 16.2 9.3 14.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.98 1 .85 .20 .40 55.64 22.3 0.0 0.0 .17 .67 1.60 . 19 .07 .12 21.06 9.4 .46 .63 . 19 .54 1.73 .27 .07 .14 16.90 13.1 .37 .28 .22 .32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SOMBRIC FERRO-HUMIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 25.1 54.27 23.2 56.08 13.1 19.71 12.4 28.94 0.0 0.0 3.39 .16 .96 116.21 51.0 0.0 0.0 .07 .60 3. 85 .23 .52 129.12 47.0 0.0 0.0 .36 1.72 2.02 .15 .25 101.73 21.8 1.69 5.82 .83 2.86 3.04 .24 .45 183.90 17.8 1. 17 6.78 .87 2.74 0.0 0.0 0.0 0.0 0.0 0.0 C O C O C O LITHIC HUMISOL PROFILE NO. L 1 H RB PARENT MATERIAL : ALLUVIAL DEPOSITS / QUARTZDIORITE BEDROCK (OR BOULDERS) 001-000 0.0 000-C 20 5.60 020-+ 0.0 0.0 5. 16 0.0 0.0 19.71 0.0 0.0 1.38 0.0 0.0 0.0 14.3 22.46 0.0 0.0 C O 3.39 0.0 0.0 .33 0.0 0.0 .51 0.0 C O 75.40 0.0 0.0 35.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .22 0.0 0.0 .76 0.0 CO CO SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE, M. FELLER, J . WORT JR., L. SIMPSON AND K. FOREST ECOSYSTEM: CWHACB, p3LYSTICHUM - OPLOPANAX - WRC KLINKA COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 1 9 ISAM.I HORIZON I I NO.I I DEPTH | PH ITOT.Cl TOT.NI C/N I EXCH. CAT, (CM) | H20 I CACL2I ? I % I I CA I MG I I I I I I I MEQ/100 GM I CEC I BS I NA I K I MEQ/1001 ? I I I GM I I FE? I AL? I FE? I AL? I I OXAL. EXTR. I PYROPH.EXTR.I I I I PLOT NO. : 038 HJMUS FORM: MULL SOIL SUBGROUP: (GLEYED) MINI FERRO--HUMIC PODZOL PROFILE NO.: 1 PS RENT MATERIAL : ALLUVIAL DEPOSITS / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LH 004- 000 4.83 4.29 25.86 1.75 14.8 10. 98 2.04 1.14 2.43 103.50 16.0 0.0 0.0 .41 .99 2 AHE 000- 004 4.93 4.58 17.08 1.26 13.6 12. 48 1.76 .21 .51 87.40 17.1 .79 1 .62 .61 1.42 3 BHF 004- 030 5. 14 4.66 8.92 .69 12.9 3. 12 .37 .13 .13 54.05 6.9 1.92 3.65 1.40 2.29 4 BFHGJ 030- 070 5. 48 4.94 5.86 .42 14.0 2. 56 .29 .24 .23 34.05 9.7 1.57 3.97 1.06 1.90 R3 070- + 0.0 0. 0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 038 HJMUS FORM: H-MOR SOIL SUBGROUP: (GLEYED) MINI FERRO--HUMIC PODZOL PROFILE NO.: 2 PARENT MATERIAL : ALLUVIAL DEPOSITS / QUARTZDIORITE BEDROCK (OR BOULOERS) 1 LFH-DW 030- 000 3.56 3.13 51.60 1.09 47.3 16. 47 3.51 1.43 1.51 166.75 13.7 0.0 0.0 .06 .24 PLOT NO. : PROFILE NO.: 078 1 HUMUS FORM: MODER SOIL SUBGROUP: GLEYED MINI FERRO-HUMIC PODZOL (WITH DRSTEIN DEVELOPMENT) PARENT MATERIAL : ALLUVIAL DEPOSITS / MORAINE BLANKET 1 LF-DW 020- 000 4. 15 3.60 33.51 1.59 21.1 7.49 3.08 .65 1 .02 63.95 19.2 0.0 0.0 .47 . 5 7 2 AHE 000- 005 4.55 3.99 9.23 . 74 12.5 .70 .25 .21 .20 39.78 3.4 1.66 2.51 1.03 1 . 5 5 3 BHFCJ 005- 035 4.63 4.19 12.44 .66 18.8 .20 .13 .13 .17 77.35 .8 2.31 5.03 1.77 3.57 4 CHFGJ 035- 07 0 4.82 4.42 8.59 .75 11.5 .52 .12 .13 .18 52.65 1.8 1.38 3.72 .91 2.16 5 IIBFHG 070- 110 5.25 4.79 5. 39 .45 12.0 .70 .07 .22 .11 30.42 3.6 1.30 3.86 .56 1.43 PLOT NO. : 078 HJMUS FORM: HYDROMULL SOIL SUBGROUP: LITHIC HUMISOL PROFILE NO.: 2 PARENT MATERIAL : ORGANIC VENEER / QUARTZDIORITE BEOROCK (OR BOULDERS) 1 OH 000- 045 5.08 4.64 33.91 1.84 18.4 21.83 3.08 .33 .54 70.85 36.4 0.0 0.0 0.0 0.0 PLOT NO. : PROFILE NO.: 101 1 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS (GLEYED) MINI HUMO-FERRIC POOZOL / QUARTZDIORITE BEDROCK (OR BOULOERS) 1 (LF )H 010-000 5.30 4.91 41.74 1.88 22.2 40.54 5.35 .92 .54 99.45 47.7 0.0 0.0 .08 .29 2 AHE 000-006 5.42 4.95 4.46 .27 16.5 4.99 .65 .18 .12 28.06 20.8 .44 .57 .29 .50 3 BF 006-021 5.42 4. 87 2.37 .26 9. 1 1.67 .28 .11 .07 18.51 10.5 .57 .75 . 34 .55 4 BFH 021-040 5.59 5.03 4.63 .32 14.5 2.68 .38 .13 .07 36.01 9.1 1.61 3.48 .55 1.24 5 BFHGJ 040-075 5.61 4.98 2.89 .11 26.3 1.88 .21 .13 .05 24.57 9.3 .78 2.41 .28 .90 R 075- f - 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 PLOT NO. : PROFILE NO.: 101 2 HJMUS FORM: HYDROMULL SOIL SUBGROUP: PARENT MATERIAL : ALLUVIAL DEPOSITS LITHIC MINI HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULOERS) 1 (LFIH 2 BFH R 029-000 5.10 000-013 5.29 013-*- 0.0 4.64 19.88 4.75 4.53 0.0 0.0 1.51 .49 0.0 13.2 9.2 0.0 10.60 2.22 O.C 1.95 .28 0.0 .87 . 16 0.0 3.52 .06 0.0 78.35 28.73 0.0 21.6 9.5 0.0 0.0 1.18 0.0 0.0 2.10 0.0 .30 .46 0.0 .89-1.11 0.0 TABLE 19 (continued) I SAM.I HORIZON I I NO. I I DEPTH | PH ITOT.CITOT.NI C/N I EXCH. CAT, (CM) I H20 I CACL2I S I " ! I CA | MG I I I I I I I MEQ/100 GM | CEC I BS I FES I NA I K I MEQ/100I S I OXAL. I I I GM I I I ALS I FES I ALS I EXTR. I PYROPH.EXTR.I I I PLOT NO. PROFILE NO. 108 HJMUS FORM: MODER • SOIL SUBGROUP: 1 PARENT MATERIAL : ALLUVIAL DEPOSITS (GLEYED) SOMBRIC HUMO-FERRIC PODZOL / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LIF1H 010-000 4.76 4.29 46.20 1.82 25.4 5.61 1.03 .60 .54 117.00 6.7 2 AHE 000-015 4. 80 4.45 5.15 .42 12.3 .42 .08 .08 .08 33.28 2.0 3 BFH 015-035 5.10 4.73 3.72 .26 14.3 .26 .03 .07 .04 29.12 1.4 4 BFGJ 035-055 5.32 4.93 1.41 .12 11.7 .25 .02 .07 .03 15.86 2.3 R 055- + 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .98 .83 .36 0.0 0.0 2.44 3.20 1.86 0.0 .14 . 12 .34 .30 0.0 .92 .24 .51 .67 0.0 PLOT NU. : PROFILE NO.: 117 HJMUS FORM: HYDROMODER SOIL SUBGROUP: ORTHIC GLEYSOL 1 PARENT MATERIAL : ALLUVIAL DEPOSITS / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LFH 010-030 4. 50 4.07 36.70 1.72 21.3 13.10 2.67 .33 .70 122.20 2 OH . 000-035 5.46 4.92 19.54 .70 27.9 .13.72 1.54 .33 .26 79.30 3 BHFGJ 035-055 5.43 4.96 6.47 .39 16.6 4.74 .65 .15 .24 47.32 4 EF3 055-105 5.43 . 4.94 1.55 . 10 15.5 2.03 .19 .09 .04 17.94 RB 105- + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.7 20. 1 12.2 13.1 0.0 0.0 0.0 1.35 .83 0.0 0.0 0.0 3.43 1.30 0.0 .46 .39 .44 .11 0.0 1.35 .78 1.23 .27 0.0 PLOT NO. : PROFILE NO.: 1 (LF1H 2 AH 3 BM'GJ R 156 1 HJMUS FORM: MQDER SUIL SUBGROUP: (GLEYED) PARENT MATERIAL : ALLUVIAL DEPOSITS 015-000 4.63 000-020 4.86 020-040 4.79 C40-+ 0.0 4.35 33.57 4.47 5.34 4.37 3 . U 0.0 0.0 1.58 .48 . 15 0.0 21.2 23.70 11.1 2.99 20.7 1.87 0.0 0.0 3.60 .58 .27 0.0 LITHIC SOMBRIC BRUNISOL / QUARTZDIORITE BEDROCK (OR BOULDERS) .54 .15 .08 0.0 .93 . 14 .08 0.0 100.10 23.40 15.08 0.0 28.7 16.5 15.3 0.0 0.0 .77 .49 0.0 0.0 .56 .33 0.0 .12 .42 .30 0.0 .44 .51 .33 0.0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZED BY: R. BEALE, M. FELLER, J . WURT JR., L. SIMPSON AND K. KLINKA FOREST ECOSYSTEM: CWHAEB, RIBES - OPLOPANAX - WRC COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 20 ISAM.I HDRIZON I DEPTH I PH I TOT.CI TOT.HI C/N I EXCH. CAT. I NO.I I (CM) I H20 I CACL2I % I % I I CA I MG I I I I I I I I I I MEQ/100 GM | CEC I BS I NA I K I MEQ/lOOl ? I I I GM | I FE? I AL? I FE? I AL? I I OXAL. EXTR. I PYROPH.EXTR.I PLOT NO. : 013 HJMUS FORM: MULL SOIL SUBGROUP: (GLEYED) MINI HUMO-FERRIC PODZOL PROFILE MO.: 1 PARENT MATERIAL : GLACIOLACUSTRINE DEPOSITS 1 L 001-000 4.92 4.57 42.87 2.66 16. 1 32.44 7.21 .24 2.25 93.51 45.1 0.0 0.0 0.0 0.0 2 AHE 000-035 4.60 4.20 5.21 .28 18.6 2.62 .70 .08 .36 41.40 9. 1 .58 .89 .33 .74 3 BF 005-025 5.24 4.78 2.44 .13 18.8 .50 .10 .06 .55 29.76 4.1 .88 1.69 .37 .83 4 BC 025-055 5.27 4.62 . 38 .03 12.7 2.87 .79 .11 .34 22.50 18.3 .45 .28 .12 .24 5 C3J 055-140 5. 64 5.00 .11 .01 U.O 8.73 2.39 .19 .45 23.25 50.6 .37 .22 .05 .10 3T MO. : 029 HUMUS FORM: MODER SOIL SUBGROUP: (GLEYED) ORTHIC HUMO-•FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : MORAINE BLANKET / QUARTZDIORITE BEDROCK (OR BOULDERS) 1 LFH 005-000 4. 34 3. 73 51.48 1.86 27.7 19.90 3.62 1.08 1.90 124.50 20.5 0.0 0.0 .08 .27 2 AHE 000-005 4.92 4.39 4.97 .20 24.8 1. 10 .15 .06 .32 75.40 2.2 .24 .40 .40 1.07 3 BFH 005-015 4.97 4.45 5.44 .36 15.1 .24 .07 .04 .11 68.20 .7 .77 2.18 .60 2.21 4 BF1 015-055 5.13 4.69 2.68 .14 19. 1 .12 .03 .03 .04 41.60 .6 .66 2.34 .23 1.17 5 BF2 055-110 5.08 4.67 2.32 .13 17.8 . 14 .03 .04 .06. 28.60 .9 .61 1.98 .20 1.01 6 BFHGJ 110-125 5.11 4.65 4.74 .35 13.5 .17 .04 .04 .05 56.35 .6 .81 4.25 .35 1.57 R3 _ 125-«- 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 047 HJMUS . FORM: MODER SOIL SUBGROUP: GLEYED SOMBRIC , HUMO--FERRIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : GLACIOMARINE DEPOSITS 1 (L)H 006-000 4.04 3.59 29.28 1.00 29.3 9.36 2.67 .60 1.31 98.80 14.1 0.0 0.0 .27 .37 2 AHE 000-020 5. 10 4.53 3.62 . 15 24. 1 1.70 .35 .06 .21 39.90 5.8 .78 .96 .54 .97 3 BF 020-035 5.18 4.60 1.98 .07 28.3 .46 .16 .06 .26 28.86 3.3 .65 1.11 .38 .91 4 BFGJ 035-070 5. 13 4.56 1.90 .07 27. 1 .60 .19 .07 .13 26.52 3.7 .70 1.10 .43 1.01 5 BC 070-100 5.25 4.56 1.54 .05 30.8 1.77 .59 .11 .15 26.52 9.9 .55 .92 .29 .47 6 CG 100-125 5.23 4. 79 .27 .05 5.4 3.62 1.01 .13 .45 14.04 37.1 .38 .33 .08 .14 PLOT NO. : 059 HJMUS , FORM: H-MOR SOIL SUBGROUP: (GLEYED) MINI FERRO--HUMIC PODZOL PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL 1 BLANKET / MORAINE BLANKET 1 (L) FH 008-000 3.82 3.40 36.29 1.25 29. 0 6.24 2.26 1.41 2.01 81.90 14.6 0.0 0.0 .19 .35 2 AE 000-002 4.05 3.51 1.96 .14 14.0 .47 .12 .05 .09 12.48 5.9 .32 .22 .20 .14 3 BHF 002-035 4.78 4. 30 6.16 .31 19.9 . 14 .05 .06 .07 41.08 .8 1.34 4.05 .64 1.92 4 BF 035-055 5.00 4.58 2.59 .15 17.3 .16 .03 .05 .08 32.24 1.0 .66 2.50 .27 .88 5 BFHGJ 065-110 5.50 5.17 3.54 .27 13.1 1.55 .32 .09 .08 40. 16 5. 1 1. 19 5.15 .33 .95 IIC 110- + 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. : 099 HJMUS , FORM: M'JLL SOIL SUBGRDUP: 1 3LEYED MINI HUMO-FERRIC PODZOL PROFILE MD.: 1 PARENT MATERIAL : COLLUVIAL ' VENEER / GLACIOFLUVIAL DEPOSITS 1 LH 010-030 4.48 3.94 21.62 1.19 18.2 13.72 2.26 .27 .64 71.25 23.7 0.0 0.0 .16 .32 2 AHE 000-006 4.79 4.29 5.99 .43 13.9 1.75 .29 .09 .15 25.50 8.9 .49 1.12 .29 .88 3 EF1 006-030 4.94 4.61 2.78 .20 13.9 .41 .05 .06 .06 19.00 3.1 .50 1.65 .18 .77 4 EF2 030-070 5.21 4.69 2.23 .16 13.9 .50 .06 .06 .06 16. 25 4.2 .58 U 6 2 .14 .63 5 II3FGJ1 070-100 5.30 4.57 2.33 .15 15.5 .52 .11 .06 .06 12.50 6.0 .59 1.33 .22 .65 TABLE 20 (continued) ISAM.I HORIZON I DEPTH I PH I TOT. CI TOT. NI C/N | EXCH. CAT. MEQ/100 GM I CEC I BS I FE? I AL? I FE? I AL? I | ND. 1 I (CM) | H20 I CACL2I ? I ? I I CA I MG I NA I K I MEQ/lOOl ? I OXAL. EXTR. I PYROPH. EXTR. I i | | I I I I I I I I I I GM I I I I PLOT NO. : 099 PROFILE NO.: 1 6 11BFGJ2 100-150 5.30 A.82 1.75 . 14 12.5 .34 7 IICG 150-175 5.18 4.99 .55 .07 7.9 .25 PLOT NO. : 151 HJMUS FORM: MODER SOIL SUBGROUP: PROFILE NO.: 1 PARENT MATERIAL : COLLUVIAL VENEER 1 LF 004-000 4. 35 3.78 25.74 1.05 24.5 9.61 2 AHE 000-C15 4.81 4.32 6.74 .35 19.3 .69 3 BFH 015-045 5.01 4.68 3.35 .20 16.8 .15 4 BF 045-075 5. 35 4. 82 2.40 .09 26.7 .37 5 II3FGJ 075-115 5. 40 4.91 1.52 .06 25.3 . .46 .05 .07 .04 10.27 4.8 .56 1.52 .22 .56 .02 .11 .05 8.69 4.9 .29 1.03 .05 .25 LEYED) SOMBRIC HUMO-FERRIC PODZOL / DEEP MORAINE DEPOSITS 2.37 1.91 3.27 87.10 19.7 0.0 0.0 .24 .36 . 13 .07 .20 35.62 3.1 .72 1.39 .57 1.50 .02 .04 .21 30.42 1.4 .63 2.64 . 19 1.08 .04 .07 .10 27.30 2.1 .54 2.51 .11 .64 . 05 .06 .15 19.76 3.7 .32 1.75 .09 .49 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) COASTAL WESTERN HEMLOCK ZONE SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA U.B.C. RESEARCH FOREST ANALYZED BY: R. BE ALE t M. FELLER, J . WORT JR., L. SIMPSON AND K. KLINKA FOREST ECOSYSTEM: CWHASB, VACCINIUM - LYSICHITUM - WRC ' - r . - . s TABLE 21 ISAM.I HDRIZON I DEFTH I PH | TOT. CI TOT.N I C/N I EXCH. CAT. MEQ/100 GM I CEC I BS I FE? I AL? I FE? I AL? I | NO. I I (CM) I H20 I CACL21 ? I ? I I CA I MG I NA I K I MEQ/lOOl ? I OXAL. EXTR. I PYROPH.EXTR.I I I I I I I I I I I I I I GM I I I I PLOT NO. PROFILE NO. 065 1 HUMUS FORM: HYDROMODER SOIL SUBGROUP: PARENT MATERIAL :" ORGANIC VENEER ORTHIC HUMIC GLEYSOL / ALLUVIAL DEPOSITS 1 DH1 005-000 4. 54 3.98 44.64 1.79 24.9 16.22 2.36 .33 .64 105.30 18.6 0.0 0.0 0.0 0.0 2 0H2 000-035 4. 76 4.13 19.54 .18 108.6 1.50 .16 .07 .08 67.60 2.7 0.0 0.0 0.0 0.0 3 IIAHG 035-070 5. 19 4.41 8.35 .28 29.8 .95 .06 .13 .06 23.40 5.1 0.0 0.0 0.0 0.0 4 IICS 070-100 5.20 4.90 .80 .06 13.3 .62 .02 .10 .23 19.76 4.9 0.0 0.0 0.0 0.0 PLOT NO. : 080 HJMUS FORM: HYDROMODER SOIL SUBGROUP: TERRIC HUMISOL PROFILE NO.: 1 PARENT MATERIAL : ORGANIC VENEER / ALLUVIAL DEPOSITS OF 002-000 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 .0 0.0 3.0 0.0 0.0 3.0 0.0 1 OM-DW 000-030 4.55 4.16 44.46 1.93 23.0 13.72 2.57 .27 .74 89.05 19.4 0.0 0.0 0.0 0.0 2 OH 030-050 4.79 4.22 35.35 1.75 20.2 5.61 .93 .22 .19 60.45 11.5 0.0 0.0 0.0 0.0 3 VA 050-065 5.48 4.83 6.94 .56 12.4 1.47 .11 .10 .04 60.06 2.9 0.0 0.0 3.0 0.0 4 IICG 055-090 5.44 4.84 4.77 .52 9.2 1.20 .07 .09 . 06 32.50 4.4 0.0 0.0 0.0 0.0 PLOT NO. : 105 HUMUS FORM: HYDROMOR SOIL SUBGROUP: TERRIC HUMISOL PROFILE NO.: 1 PARENT MATERIAL ORGANIC VENEER / MORAINE BLANKET 1 OHl 015-000 4.62 4.09 51.94 2. 14 24.3 1.87 .82 .71 .77 120.90 3.4 0.0 0.0 .06 1.78 2 0H2 000-015 4.74 4.23 48.52 1.96 24. 8 1.25 .62 .43 .42 127.40 2.1 0.0 0.0 .28 3.60 3 0H3 015-030 4.98 4.45 40.41 1.61 25.1 .50 .22 .14 . 18 119.60 .9 0.0 0.0 .21 4.53 4 0H4 030-060 5.10 4.68 29.91 1.45 20.6 .27 .09 .32 .09 99.84 .8 0.0 0.0 .26 1.88 5 IICG1SVA 060-075 5.20 4.73 6. 14 .47 13. 1 . 17 .04 .12 .04 54.oe .7 .90 5.16 . .11 .74 6 IIC32&VA 075-100 5.13 4.80 12.21 .57 21.4 .20 .05 . 14 .05 84. 24 .5 .39 5.65 .30 2.10 7 IICG3SVA 100-120 5. 38 4.95 9. 10 .87 10.5 .20 .07 .12 .04 54.60 .8 .08 6.52 .04 1. 32 8 VA 120-124 5.45 5.10 5.02 .45 11.2 .22 .04 .12 .04 43.68 1.0 .15 7.25 .03 .62 PLOT NO. : PROFILE NO.: 106 1 HUMUS FORM: HYDROMODER SOIL SUBGROUP: PARENT MATERIAL : ORGANIC BLANKET TYPIC HUMISOL / ALLUVIAL DEPOSITS 1 OHl 015-000 4.63 4.11 41.16 2.26 18.2 3.74 1.13 .76 .99 109.20 6. 1 0.0 0.0 0.0 0.0 2 0H2 000-030 4.71 4.23 40.35 2.25 17.9 1.87 .41 .76 .29 111.80 3.0 C O 0.0 0.0 0.0 3 0H3 030-050 4.87 4.29 42.53 2.33 18.3 2.50 .41 .65 .38 222.30 1.8 0.0 0.0 0.0 C O 4 0H4 060-090 4.90 4.40 25.73 .95 27.1 2.89 .27 . 14 .04 96.28 3.4 0.0 o.c 0.0 0.0 PLOT NO. : 147 HJMUS FORM: HYDROMODER SOIL SUBGROUP: TYPIC 1 HUMISOL PROFILE NO.: 1 PARENT MATERIAL : ORGANIC BLANKET 1 OHl 010-000 4.82 4.19 36.70 1.43 25.7 13.35 2.63 .33 .76 98.60 17.3 0.0 0.0 0.0. 0.0 2 0H2 000-015 4.71 4.10 28.52 1.18 24.2 2.74 .45 .20 .38 91. 17 4. 1 0.0 0.0 0.0 C O 3 0H3 015-050 5.03 4.28 28.29 1.25 22.6 1.43 .32 . 15 .34 90.78 2.5 C O 0.0 0.0 C O 4 0H4 050-080 4.83 4.33 34.03 1.78 19.1 .69 .17 .17 .23 95.86 1.3 0.0 0.0 0.0 0.0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) COASTAL WESTERN HEMLOCK ZONE SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA U.B.C. RESEARCH FOREST ANALYZED BY: R. BEALE. M. FELLER, J. WORT JR., L. SIMPSON AND K. KLINKA FOREST ECOSYSTEM: CWHB, VACCINIUM - LYSICHITUM - YC - WRC TABLE 22 ISAM.I HDRIZON I DEPTH | PH I TOT.Cl TOT.Nl C/N I EXCH. CAT. MEQ/100 GM I CEC I BS I F E " I AL % I F E " I AL3 I | ND. I I CM) I H20 I CACL2I % I % I I CA I MG I NA I K I MEQ/lOOl Z I OXAL. EXTR. I PYROPH. EXTR. I I I I I I I I I I I I I I GM I I I I PLOT NO. PRDFILE NO. 088 1 HUMUS FORM: HYDROMODER SOIL SUBGROUP: PARENT MATERIAL : ORGANIC VENEER TERRIC MESISOL / MORAINE BLANKET 1 0M1 010-000 3. 45 3.02 53.39 1.83 29.2 11.85 3.29 .33 .86 98.15 16.6 0.0 0.0 0.0 0. 0 2 0M2 000-035 3.47 2.93 55.25 .81 68.2 7.49 6.68 .38 .42 126.75 11.8 0.0 0.0 0.0 0.0 3 0M3 035-055 4.05 3.60 49.57 1.79 27.7 1.87 1.03 .33 .10 94.25 3.5 0.0 0.0 0.0 0.0 4 OM* 055-080 4. 73 4.15 42.86 1.91 22.4 1.25 .31 .43 .03 104.65 1.9 0.0 0.0 0.0 0.0 5 ICGCVA 080-095 5. 25 4.70 7.90 .53 14.9 .22 .05 .13 .03 27.04 1.6 0.0 0.0 o.o 0.0 PLOT NO. : 092 HUMUS , FORM: HYDROMOR SOIL SUBGROUP: TERRIC HUMISOL PROFILE NO.: 1 PARENT MATERIAL : ORGANIC VENEER / MORAINE BLANKET 1 OHl 005-000 4. 32 3.77 44.23 1.15 38.5 3.12 1.03 .38 1.89 81.25 7.9 0.0 0.0 0.0 0.0 2 0H2 000-030 5. 26 4.87 47.94 1.17 41.0 .44 .35 .33 .52 107.25 1.5 0.0 o.o- 0.0 0.0 3 0H3 030-050 5.44 5.27 31.54 .96 32. 9 .27 .26 .14 .32 87.52 1.1 o.c 0.0 0.0 0.0 4 I C G 1 050-090 5.41 5.33 13.60 .43 31.6 .35 .11 .13 .03 46. 54 1.3 0.0 0.0 0.0 0.0 5 IICG2CVA 090-125 4. 95 4.42 3.65 . 16 22.8 .16 .05 .09 .04 26.39 1.3 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 094 1 HJMUS FORM: HYDROMOR SOIL SUBGROUP: TERRIC HUMISOL PARENT MATERIAL : ORGANIC VENEER / GLACIOFLUVIAL DEPOSITS 1 OM 010-000 3.92 3.53 53.97 1.17 46.1 3.12 1.23 .43 1.85 124.05 5.3 2 OHl 000-015 4. 36 3.83 50.55 1.16 43.6 1.25 .62 .38 .83 107.35 2.9 3 0H2 015-033 4. 73 4. 19 27. 88 .44 63.4 .50 .25 .15 .29 46.54 2.6 4 VA 033-037 4.58 4.12 15.07 .31 48.6 .22 .19 . 15 .29 84.50 1.0 5 DH3 037-060 4. 81 4.24 25.20 .71 36.9 .25 .14 .15 .17 34.58 2.0 OH 4 060-090 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 IICG 090-120 4.30 4.51 2.77 . 11 25.2 .37 .03 .09 .03 6.89 7.7 PLOT NO. PROFILE NO. 1 OF 2 OM 3 OH 4 VA 5 IICG PLOT NO. PROFILE NO. 141 1 HUMUS FORM: HYDROMODER SOIL SUBGROUP: PARENT MATERIAL : ORGANIC VENEER TERRIC HUMISOL 010-000 000-020 020-040 040-050 050-070 4.55 4.58 4.41 4. 83 4.76 4.11 55.94 4.20 46.32 4.01 49.62 4.27 4.23 4.24 3.02 16 58 02 22 13 48.2 30.75 29.3 5.61 24.6 6.36 19.2 .92 23.2 .67 22 1 0 24 12 07 .36 1.82 .42 .83 .34 .59 .08 .08 .07 .06 143 1 HUMUS FORM: HYDROMOR SOIL SUBGROUP: PARENT MATERIAL : ORGANIC BLANKET TYPIC HUMISOL 1 0M1 008-000 3.41 3.06 55.07 1.38 39.9 10.29 3.99 .34 1.19 2 0M2 000-030 3. 32 2.80 56.41 1.75 32.2 2.12 5.01 .40 .90 3 OHl 030-070 3.67 3. 17 56. 17 2. 52 22.3 6.92 1.31 .23 .18 4 0H2 070-100 4.00 3.52 49.39 2.49 19.8 3.31 .43 . 19 .21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 / ALLUVIAL DEPOSITS 121.30 119.73 133.42 16.12 15.34 307.56 138.90 129.90 111.90 32, 6. 6. 7. 5. 5. 1 6.1 6.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SOIL CHEMICAL ANALYSES (FRACTION < 2 MM) SAMPLED IN SUMMER 1972 AND 1973 BY K. KLINKA ANALYZES BY: R. BEALE, M. FELLER, J . WORT JR., L. SIMPSON AND K. FOREST ECOSYSTEM: CWHB, ATHYRIUM - ARUNCUS - RA - SA KLINKA COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 23 ISAM.I HORIZON I I NO.I I I I I DEPTH I PH ITOT.ClTOT.Nl C/N I EXCH. CAT. (CM) I H20 I CACL2I ? I S I I CA I MG I I I I I I I MEQ/100 GM I CEC I I NA I K I MEQ/1001 I I I GM I BS FE? I AL" OXAL. EX7R. FE? I AL? I PYROPH.EXTR. I PLOT NO. PROFILE NO. 137 1 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS LITHIC REGOSOL / DIORITE (GABRO) BEDROCK (OR BOULDERS) 1 L(H) 2 AH R 033-030 4.29 000-035 4.83 035-+ 0.0 3.86 47.71 4.31 1.85 0.0 0.0 2.34 .14 0.0 20.4 15.91 13.2 .66 0.0 0.0 4.32 .06 0.0 .22 .07 0.0 1.67 .13 0.0 215;02 8. 30 0.0 10.3 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PLOT NO. PROFILE NO. 138 1 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS (GLEYED) SOMBRIC HUMO-FERRIC PODZOL / DIORITE (GABRO) BEDROCK (OR BOULDERS) 1 L H ) 002-000 4.62 4.16 35.77 1.61 22.2 13. 10 3.41 .15 1.28 73.56 24.4 0.0 0.0 . 12 .37 2 AHE 000-009 4. 69 4.13 6.67 .54 12.4 1.67 .27 .06 .26 33.18 6.8 .73 .76 .29 .76 3 BFH 039-045 5.40 4.94 3.08 . 18 17. 1 .40 .05 .04 .11 20.82 2.9 .92 1.88 .15 .85 4 CGJ 045-090 5. 20 4.63 3.40 . 13 26.2 .92 .11 .04 .13 14.63 8.2 .52 .71 . 15 .52 RB 090- + 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.C PLOT NO. PROFILE NO. 139 1 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS LITHIC REGOSOL / DIORITE (GABRO) BEDROCK (OR BOULDERS) L 2 AH 3 AC R 031-030 0.0 000-015 4.71 015-030 4.97 030-+ 0.0 0.0 4.15 4.32 0.0 0.0 3.17 2.29 0.0 0.0 .38 .20 0.0 0.0 8.3 11.4 0.0 0.0 1.92 1.46 0.0 0.0 .30 .23 0.0 0.0 .08 .10 0.0 0.0 .24 .11 0.0 0.0 25.51 16.36 0.0 0.0 10.0 11.6 0.0 0.0 1.17 1 .14 0.0 0.0 .45 .33 0.0 0.0 0.0 .53 .38 .45 .31 0.0 0.0 PLOT NO. PROFILE NO. 140 1 HJMUS FORM: MULL PARENT MATERIAL : SOIL SUBGROUP: ALLUVIAL DEPOSITS LITHIC REGOSOL / DIORITE (GABRO) BEDROCK (OR BOULDERS) 1 L 002-000 5. 11 4.79 47.88 2.17 22.1 37.99 6.11 .16 3.52 101.34 47.1 0.0 0.0 .U6 .25 2 AH 000-035 5.44 4.80 4.28 .26 16.5 2.07 .30 .05 .11 18.55 13.7 .59 .76 .21 .66 3 AC 005-030 5.43 4.83 2.20 .17 12.9 1.55 .22 .09 .11 12.99 15.2 .55 .66 . 14 .47 R 030- + 0.0 . 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 APPENDIX VII ELEMENTAL ANALYSIS OF SOIL ORGANIC LAYERS (Tables I - 5) Ana ly t i ca l data fo r composite samples of s o i l organic layers i s arranged according to humus forms in the order of H-mor, F-mor, moder, mu l l , hydromull, hydromoder and hydromor; then numerical ly by sample p lo ts and s o i l p r o f i l e s . Ana ly t ica l symbols are s e l f -explanatory. No symbols were pr inted in the corresponding columns fo r a small number of samples co l lec ted add i t i ona l l y in 1973 and not analyzed fo r sulphur and phosphorus. E L E M E N T A L A N A L Y S I S OF S O I L ORGANIC L A Y E R S SAMPLED IN SUMMER 1972 £ 1973 BY K . K L I N K A ANALYXEO BY K. KLINKA AND M . C . F E L L E R COASTAL WESTERN HEMLOCK ZONE U-B.C. RESEARCH FOREST TABLE 1 I PLOT I P R O F . I S A M . I T H I C K N E S S I O . M . I CONCENTRATION IN PPM OF ORGANIC MATTER IN ORGANIC SAMPLE ( 1 0 5 C) I | N O . I N O . I MO. I (CM) | S I CA I MG I NA I K I FE I AL I MN I S I P I HUMJS F O R M : H-MOR 001 1 1 14 7 8 . 1 5 7 0 4 791 164 717 4 6 5 0 4 3 6 2 291 948 1056 005 1 1 5 8 5 . 7 4 7 8 1 664 100 504 2732 2 2 9 3 158 1127 1062 0 1 0 1 1 5 8 4 . 6 4 2 6 2 7 3 8 126 612 3002 3 3 8 1 82 1118 1196 023 1 1 20 9 5 . 6 2 6 7 6 387 129 745 981 1 2 9 3 197 721 866 024 1 1 ' 35 9 3 . 4 4 1 0 9 5 5 4 104 509 1622 1936 314 931 925 027 1 1 8 7 6 . 2 5361 • 816 130 854 5 8 2 0 4 5 0 3 394 978 1278 028 1 1 5 8 4 . 1 6941 561 99 649 2 8 1 9 2 4 9 5 209 1075 983 030 1 1 11 7 5 . 4 5 7 1 0 7 3 7 123 736 6 0 1 1 3 9 0 7 179 1294 1324 0 3 0 2 1 10 8 2 . 9 3 7 7 7 662 122 812 3642 3 2 5 1 470 9 6 9 1227 032 1 1 12 8 2 . 2 5 2 0 9 , 883 137 807 5 2 0 9 4 0 7 2 311 9 0 3 1 1 7 3 033 1 ' 1 . 8 8 6 . 2 6404 6 9 3 93 590 2 8 5 7 2 8 5 7 223 1002 1 0 6 0 0 3 4 1 1 65 8 3 . 4 2446 938 129 398 5 7 7 5 6 8 9 4 40 1125 1052 035 1 1 30 6 3 . 3 4 5 6 4 967 251 542 10221 1 0 4 9 6 47 1278 1 1 1 8 037 2 1 50 4 0 . 0 3 0 6 3 1578 348 1073 3 4 2 3 5 4 2 1 6 8 3 3 1 3 1963 2 4 1 5 038 2 1 30 8 8 . 8 5 2 4 5 807 125 500 3278 3 6 2 7 106 8 8 7 738 039 1 1 10 7 0 . 6 3030 695 251 813 1 1 3 6 4 11137 110 996 965 042 1 1 10 7 2 . 5 35 27 521 185 1167 3982 3 0 5 0 128 1033 1011 044 1 1 15 8 5 . 1 3092 4 6 4 190 941 2208 2 3 9 6 101 ' 1013 1 1 0 0 049 1 1 25 8 3 . 4 3682 462 163 920 2 4 5 6 2 8 0 8 49 922 9 6 3 031 1 1 18 9 0 . 3 32 96 526 147 1162 1 9 7 7 2 0 3 0 162 805 1053 052 1 1 35 8 9 . 4 44 06 647 177 673 3696 3 8 6 6 88 888 883 0 5 8 1 1 15 8 0 . 1 7144 117 1 146 768 6441 5 8 2 0 166 9 6 4 1 0 9 6 059 1 1 8 6 2 . 6 4 3 5 9 1206 188 883 1 4 4 7 8 10351 9 7 1201 1307 058 1 1 40 5 4 . 2 2 2 9 2 1054 236 1015 2 3 5 9 8 2 5 2 1 6 172 1 2 3 6 1 5 0 0 0 5 9 1 1 23 7 1 . 3 3780 735 154 492 10160 4 9 6 8 108 1100 9 9 3 0 7 4 1 1 20 6 9 . 5 43 83 8 2 9 102 5 1 2 5 2 6 9 4 4 7 2 269 922 968 084 1 1 8 6 9 . 2 4 2 2 7 1108 163 806 1 3 5 2 5 1 0 3 5 4 445 1415 2 6 2 0 0 3 7 1 1 18 9 3 . 1 2 7 8 0 497 125 1783 1438 1544 186 095 1 1 15 8 5 . 2 4 3 9 2 521 115 572 6 6 2 0 1 9 1 3 6 36 1131 1 0 7 9 107 1 I 6 7 8 . 0 3 1 9 9 1660 99 672 8 7 6 7 10781 194 1199 1265 112 1 1 6 7 5 . 1 42 53 1065 123 879 15386 2 5 2 7 389 4 6 3 7 9 4 118 2 1 15 5 0 . 8 37 44 1563 148 8 1 3 13480 8 0 8 9 1 9 1 7 1222 2 9 4 9 122 1 1 12 8 4 . 9 5591 608 107 750 2 8 8 9 2 4 7 0 84 123 1 1 4 6 6 . 0 46 47 1467 138 944 1 1 5 8 3 9 2 2 7 209 125 1 1 14 8 5 . 8 4 4 6 0 4 9 0 169 1076 3 1 2 9 2 0 3 7 291 126 1 1 48 8 3 . 1 4 1 8 5 508 97 315 4 9 9 6 4 6 1 3 113 1 3 6 1 1 2 4 8 . 1 3738 . 2 4 9 9 179 744 3 0 0 5 4 8942 339 5 3 0 1 1 0 4 142 1 1 13 9 8 . 4 2 3 5 5 466 151 795 2 8 5 5 2 7 9 7 201 M E A N : 18 7 8 . 0 4 2 5 8 8 5 6 151 777 7 7 1 9 6741 321 1042 1223 TABLE 2 I PL DT I PROF. I SAM. ITHICKNESSI O.M. | CONCENTRATION IN PPM OF ORGANIC MATTER IN ORGANIC SAMPLE (105 C) I | ND. I NO. I g 3 - I (CM) I Z I CA I MS I NA I K I FE I AL I MN I S I P I HUMJS FDRM; F-MOR 002 1 1 10 84.2 3747 495 90 374 2998 2409 86 729 638 007 1 1 4 86.6 5358 62 4 115 858 2330 2482 1060 973 1307 019 1 1 8 81.0 2959 722 127 573 3946 3330 260 781 1075 020 1 1 7 74. 3 5431 980 153 775 6537 6335 390 972 1436 021 1 1 7 64. 5 5400 1155 192 1138 9181 7022 901 1067 1740 026 1 1 13 93. 5 3508 44 3 82 584 1267 1462 210 650 753 031 1 1 ' 6 84.4 3305 562 117 750 3944 3720 592 867 1134 041 1 1 6 88.7 3157 675 209 896 3157 2893 19 760 689 046 1 1 10 84.6 3061 602 135 876 2755 3245 234 856 889 053 1 1 10 92.0 3318 608 113 859 1952 2646 176 798 824 054 1 1 4 78.3 3473 575 112 719 3314 3322 132 783 931 055 1 1 12 91.3 2814 . 599 179 1376 1816 2306 103 660 984 056 1 1 . ' 11 85.2 4770 700 135 1025 3886 3357 198 837 1109 050 1 1 7 49.8 2315 2618 227 1088 20378 31028 209 1131 1685 052 1 1 12 91.6 5243 355 90 517 1932 1766 38 885 817 053 1 1 9 . 92.8 3055 472 109 97 3 2037 2014 159 893 1124 054 1 1 35 80.9 2593 483 121 410 5188 5583 41 1091 874 076 1 1 5 61.1 4457 1077 180 872 11645 5879 417 1139 1283 031 1 1 9 73.8 4523 1121 215 1642 6904 5428 636 1130 1469 032 1 1 4 86.7 3655 655 157 1775 3183 3066 584 991 1403 033 1 1 12 88.8 4200 702 153 1023 3116 2696 300 1131 1341 089 ' 1 1 10 91.8 5850 669 96 803 1620 1989 85 97 7 1047 039 2 1 8 89.8 5362 479 128 795 2425 2502 89 1117 1308 09C 1 I 13 91.3 28 32 481 100 905 2287 2168 99 821 872 090 2 1 9 87.5 2894 591 199 890 3430 3633 97 1215 1168 097 1 1 4 70.4 4158 983 151 1040 8818 7080 284 999 1327 103 1 1 10 83.6 3812 502 206 1106 2647 3505 300 103 2 1 5 89.8 1585 327 136 499 3326 6906 53 104 2 1 5 72.6 4636 675 146 993 5072 3463 525 682 1076 110 1 1- 10 63.8 5820 1687 107 679 12934 11408 362 898 1528 120 1 1 9 73.2 2746 522 153 844 5249 4740 127 121 1 1 7 6 6 . 3 4071 1314 169 1186 8041 5466 302 124 1 1 7 90.7 3216 466 115 1032 2275 2400 343 127 1 1 7 68.8 3481 842 212 545 6576 4267 283 132 1 1 9 73 . 8 760 676 126 749 11152 17107 n o 146 1 1 4 92.9 2532 569 186 1849 1871 2113 872 154 1 1 5 88.4 4492 523 127 928 2943 2402 386 925 1042 a MEAN: 9 81.8 3746 744 145 917 4922 4950 299 924 1134 TABLE 3 I PLOT I PROP. I SAM. iTHICKNESSl O.M. I CONCENTRATION IN PPM OF ORGANIC MATTER IN ORGANIC SAMPLE (105 C) I I NO. I NO. I NO. I (CM) I % I CA I MG I NA I K I FE I AL I MN I S I P I HUMJS FORM: MODER 003 1 1 2 85.7 6882 1037 90 594 2793 3278 303 1151 1131 003 2 1 2 80.6 73 96 1264 133 706 4558 4455 551 1099 1225 004 2 1 5 84.1 10243 1237 102 760 2529 2542 332 958 1124 034 I 6 84. 8 8658 1019 99 699 2844 2461 434 905 1147 03b I 2 81.5 9521 1148 114 855 3631 4082 953 793 1240 00.8 I 5 71.7 8278 1621 128 983 5950 4760 2425 883 1618 039 I 7 59. 7 4342 963 154 546 11395 12616 868 1077 1961 011 4 92. 1 4727- 860 107 975 2123 2336 347 1091 1266 022 1 10 38.2 10463 5927 298 1113 32437 35576 3160 1346 5016 029 L 5 88.8 b215 743 150 685 2459 2991 422 1213 1291 03b I L 7 36.0 3122 1619 350 1114 36614 44422 3481 2189 3019 037 I 4 71.5 4413 . 801 190 520 7200 9136 34 1031 1578 0*7 I L 6 50. 5 7255 6459 257 2042 27816 22844 966 136 4 1901 050 I L 5 37.6 3729 1827 309 2202 17843 18085 434 1926 2771 057 I L 4 50. 1 7230 1782 265 1527 19505 11172 1006 1230 1627 057 L 3 82.8 10588 1028 107 454 3950 5643 634 059 I 10 31.4 3131 4758 433 1567 84561 66943 7459 2237 4089 070 I 8 52.1 2514 1140 161 1069 17595 11242 313 071 I L 4 72.5 5276 674 101 491 7975 5436 167 1383 1142 072 I 4 39. 5 2066 1891 243 1028 42975 3263B 496 1747 2268 073 I L 6 55.9 9174 1689 190 907 18714 8122 191 1216 945 073 L 16 86.4 5828 579 113 384 3411 11784 640 075 1 L 3 46.0 9617 1785 193 600 25007 10100 604 1417 1465 077 I L 8 66.4 74 11 1711 127 569 10730 15819 488 1138 1369 078 I 20 57. 8 3332 1844 154 730 21593 13943 763 1318 1479 085 I L 4 63. 5 3488 2014 170 1266 21630 11750 693 1312 1962 096 I I 4 87.5 6947 739 . 103 946 3263 3253 394 886 987 100 1 L 4 52.3 1U614 2797 207 1306 15011 6111 3662 1554 1918 102 L 15 48. 5 1 1629 3909 202 792 18515 18210 6680 1616 2487 104 L 4 39.6 3992 4139 255 2626 26354 9904 576 1879 2265 107 L 10 59.5 3934 2420 188 845 17000 12195 321 1402 1919 108 I 10 79.7 3596 650 103 474 9547 19344 1300 1657 1419 110 I 10 60.3 2 8 77 1250 126 1005 20721 16577 167 1838 3262 111 I I 3 62.5 7358 32*48 296 730 14371 13739 299 1138 1226 113 I I 3 41.2 6517 2490 306 975 24602 20692 558 1490 1752 114 L 12 76.9 11991 1194 103 484 7704 7376 545 1515 1246 115 1 I 12 44.8 11013 3451 167 895 16810 9337 873 1978 2000 115 I L 8 45.9 10551 5009 235 1253 31094 16181 891 2255 2351 118 L 15 33.6 45 51 2964 265 1107 37324 20756 2027 1432 3113 119 1 L 10 53. 1 9047 2380 158 983 11699 6443 1282 1533 1554 130 I 4 78.5 9848 1766 121 645 4848 3334 624 134 I L 5 42.5 2753 1955 188 1447 10320 14071 221 149 I L 5 80. 6 35 63 713 122 543 7127 6432 107 132 I L 30 38.7 4615 1442 305 1098 39101 29000 1465 2080 3881 153 I L 9 77.7 10981 1146 152 803 4631 3453 1032 1238 1375 155 1 L 8 69.6 2990 864 142 609 6978 39043 414 1809 2376 TABLE 4 I PLOT I PROF. I SAM. I THICKNESS I O.M. I CONCENTRATION IN PPM OF ORGANIC MATTER IN ORGANIC SAMPLE (105 C) I | NO. I NO. I NO. I (CM) I % I CA I MG I NA I K I FE I AL I MN I S I P I HUMJS FORM: MODER 156 1 1 15 57.9 10553 2371 157 788 11043 11841 1114 1834 1931 158 I 1 10 94.3 2054 934 142 520 2524 3115 21 MEAN: 9 62.8 6602 1991 183 943 16261 13845 1099 1443 1944 HUMJS FORM: MULL 012 1 48.3 8226 3710 205 1273 25062 18122 1246 1582 2400 013 I I I 73.9 9371 2474 138 1386 7497 9437 302 015 I i 1 78.5 18231 1865 118 949 3586 6694 383 016 1 1 1 82.5 7953 1345 127 1028 6076 11436 715 038 1 I 4 44.6 8361 3085 365 1339 28989 32195 1491 2009 2574 045 I i 2 44. 4 7696 1932 282 1011 20910 12459 207 1556 1570 066 1 67.0 21769 2037 185 1196 11630 12643 415 057 2 78. 4 1 7287 1318 106 661 4841 6071 592 079 4 62.1 14907 3256 156 879 10747 6414 1560 1488 1496 099 1 1 10 37.3 9906 25e i 293 995 24845 15442 509 1737 1718 131 1 I 10 72.0 15853 2100 157 450 6675 8093 1272 1250 1431 107 3 I 8 81.6 122 10 1375 143 1238 5456 6668 3 92 3 1642 3474 139 I I 10 52.8 14680 6862 169 1670 29718 15873 2566 1847 2307 128 I i 3 71.0 15596 3527 139 1089 9575 7830 968 135 1 1 2 87.3 152 14 852 95 541 3270 7035 529 137 1 1 3 82.3 5925 2233 164 977 6872 4716 214 138 I I 2 61.7 77 84 2052 219 1010 13120 10496 415 140 I i 2 82.6 12501 2191 162 1811 . 5770 6475 401 148 I i 3 77.9 18361 2697 153 1268 6307 6363 608 150 1 1 3 76.5 25118 1746 197 1358 5695 5987 220 MEAN : 4, 68.6 13347 2467 179 1106 11832 10562 927 1639 2121 HUMJS FDRM: HYDROMULL 014 1 1 2 42.5 12765 5141 224 1628 23621 21421 1635 1445 2656 078 2 1 45 58. 5 9809 2152 215 515 20270 32368 1738 2492 3622 086 1 1 1 63.2 10095 1105 192 1100 7066 8591 629 131 2 1 29 34.3 9501 3458 391 1041 41571 43233 14076 2668 3598 145 I 1 3 68.3 8022 1553 220 791 12880 16835 772 157 1 1 20 34.0 15676 4374 338 1306 30518 44088 2088 2285 3444 MEAN: 17 54.0 10978 2964 2 63 1054 22671 27756 3490 2223 3330 O TABLE 5 I PLDT I PROF. I SAM. ITHICKNESSI O.M. I CONCENTRATION IN PPM OF ORGANIC MATTER IN ORGANIC SAMPLE (105 C) I | NO. I NO. I NO. 1 (CM) I % I CA I MG I NA I K I FE I AL I MN I S I P I HUMUS FORM: HYDROMODER 055 1 1 5 77.0 6666 657 126 391 13332 9517 175 1171 1845 030 1 1 30 76.7 4992 641 163 583 41966 17677 7920 1533 2346 0B8 1 1 10 92. i 3765 537 96 248 2839 2995 54 1107 1076 105 1 1 15 71.0 1825 594 175 817 41441 43951 5649 2335 2655 117 1 1 10 63.3 7284 1793 167 859 19809 31694 1278 2066 3385 141 1 1 10 96.5 7504 1070 187 803 5330 4633 235 144 1 1 7 87.0 5767 508 134 3e7 6520 6494 10 147 1 1 10 63. 3 6482 1487 196 589 22058 24038 1098 MEAN: 12 78.9 5546 911 155 585 19162 17625 2052 1642 2262 HUMJS FORM: HYDROMOR 025 1 1 2 91.6 2357 597 136 903 1791 2489 167 783 940 040 1 1 25 77.4 279 194 112 1276 16583 40712 49 1196 3119 04 3 1 1 30 51.6 810 202 227 760 2271 20921 153 1955 6434 048 1 1 25 71.8 . 396 265 145 653 5538 67113 79 1318 2432 051 1 1 5 92.5 646 195 114 591 3664 16056 15 777 1169 091 1 1 16 59.0 571 493 192 835 31592 60703 254 1481 5968 092 1 1 5 76.3 972 700 156 1206 18055 29190 119 1633 1617 093 1 1 15 92.3 976 168 87 531 2563 20509 18 958 1219 094 ' 1 1 10 . 93. 1 1090 235 92 954 2400 14940 16 1028 1174 135 1 1 15 89.6 920 165 115 481 2147 24538 1635 1269 2337 143 1 1 8 95.0 3658 653 143 501 1888 1853 39 MEAN: 14 81.4 1152 352 138 790 8045 27184 231 1240 2641 APPENDIX VIII ELEMENTAL ANALYSIS OF FOLIAGE (Tables 1 - 2 2 ) Ana l ty iea l data fo r f o l i a r samples of common plant species in shrub, herb and moss, l aye rs , and fo r decayed wood samples were arranged by layers (A, B, C and D), then a lphabe t i ca l l y by spec ies , and f i n a l l y numerical ly by sample p lo t s . Ana ly t i ca l symbols are s e l f -explanatory. The analys is fo r the to ta l nitrogen was car r ied out on a l im i ted number of samples. The samples which were not analyzed for n i t rogen, have no symbols were pr inted in the corresponding column. ELEMENTAL ANALYSIS OF FOLIAGE AND DECAYED WOOD FOR SOME COMMON PLANT SPECIES SAMPLED IN JUNE - AUGUST 1972 6 1973 BY K. KLINKA ANALYZED BY K. KLINKA AND J . WCRT, JR. "' COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST TABLE 1 PLOT 1 NO. 1 LAYER 1 1 ASH I 1 X 1 O.M. % 1 N I 1 % 1 C/N 1 1 CA CONCENTRATION 1 MG 1 IN PPM OF NA I OVEN-DRIED K 1 (105 C) FE 1 MATERIAL AL 1 MN PLANT SPECIES: ALNUS RUBRA BONG. (SHED FOLIAGE) 004 OH 7. 17 92.83 2.41 22. 34 12620 1141 163 1359 207 196 320 MEAN: 7.17 92.83 2.41 22.34 12620 1141 163 1359 207 196 320 PLANT SPECIES: PICEA SITCHENSIS (BONG.) CARR. (DECAYED WOOD) 08b DW 0.11 99.89 0.23 251.92 345 151 72 269 75 43 140 MEAN: 0. 11 99.89 0.23 251.92 345 151 72 269 75 43 140 PLANT SPECIES: PSEUDOTSUGA MENS IEZI I (MIRBEL) FRANCO (DECAYEO WOOD) 001 DW 1. 29 58.71 1654 215 43 140 54 43 29 002 DW 0.43 99.57 0.97 59. 54 333 97 39 107 43 64 53 003 DW 1.52 98.48 412 174 63 358 423 423 30 004 DW 1.19 98.81 757 216 70 314 119 141 45 005 CW 2.25 97.75 2189 343 52 161 215 215 20 006 DW 0.43 99.57 0.13 444.28 845 64 27 86 21 43 13 007 DW 1.07 98.93 1706 149 36 64 11 32 71 008 OW 0.53 99.47 374 75 ' 40 171 64 96 24 C23 DW 0.7 5 99.25 395 75 52 181 107 171 33 024 DW 0.75 99.25 748 28 8 43 85 43 75 40 026 ' DW 0.43 99.57 " " 0.37 156.10 553 85 67 234 85 96 46 027 DW 0. 85 99.15 1 155 127 36 64 42 85 64 028 CW 1. 17 98.83 1477 213 45 96 53 85 74 032 DW 0.76 99 .24 887 206 58 152 249 206 117 033 DW 0. 76 99.24 0.25 230.27 960 313 47 140 129 65 74 MEAN: 0.94 99.06 0.43 222.55 963 176 48 157 U l 123 49 PLANT SPECIES: THUJA PLICATA DONN EX D. DON- IN LAMB. 001 002 003 004 C05 006 CW DW DW DW DW DW 1.30 0.86 2. 28 1.51 1.51 1.40 98.70 99.14 97.72 98.49 98 .49 98.60 0.55 104. 10 1242 537 2579 1356 1593 2333 184 75 239 248 226 17 3 55 48 39 43 43 37 184 150 294 183 140 151 184 64 174 301 689 205 216 54 163 205 151 205 129 21 53 41 33 55 TABLE 2 I PLOT I LAYER I ASH I O.M. I N I C/N I CONCENTRATION IN PPM OF OVEN-DRIED (105 C) MATERIAL t I NO. I I % I * , l * I I CA I MG I NA I K I FE I AL I MN I PLANT SPECIES: THUJA PLICATA DGNN EX D. DON IN LAMB. • C07 OW 3.96 96 .04 0.59 94.42 1595 24 6 63 268 867 803 161 008 DW 2. 56 97.44 2233 224 79 406 470 417 120 024 DW 0.96 99.04 0.98 58.62 584 106 52 170 138 181 75 025 DW 1.06 98 .94 635 106 29 148 138 116 29 026 OW 2. 03 97.97 1461 203 58 256 341 352 147 027 DW 1.92 98.08 553 149 227 468 319 266 50 028 DW 2.65 97.35 1295 234 54 255 552 563 238 029 DW 1.27 98.73 978 149 47 244 234 266 53 030 DW 2.37 97.63 3998 183 43 248 280 463 96 C32 DW 1. 19 98.81 " 1 110 16 2 5Q 312 334 280 131 033 DW 1. 19 58.81 "" 1390 183 42 216 399 420 134 C86 DW 1.50 98.50 0.42 136.03 376 86 62 301 322 247 84 MEAN: 1. 75 98.25 0.63 98 .29 1436 176 60 244 334 298 92 PLANT SPECIES: TSUGA HETEROPHYLLA (RAF .) SARG. (DECAYED WOOD) C02 OW 1. 40 98.60 1570 97 34 97 75 97 187 024 DW 1.50 98.50 0.42 136.03 1490 204 59 129 161 204 61 C25 DW 1.17 98.83 1301 384 51 171 43 107 28 030 DW 1. 38 98.62 426 149 53 160 330 341 85 032 DW 0. 11 99.89 ' 559 129 49 • 161 161 107 87 MEAN: 1. 11 98.89 0.42 136.03 1069 193 45 144 154 171 90 PLANT SPECIES : ACER CIRCINATUM PURSH C03 B2 8. 96 91.04 3931 1944 67 7516 227 205 268 013 B2 9.41 90.59 5455 2610 72 11551 96 21 274 018 B2 8.28 91.72 4409 2903 131 12581 183 65 705 019 B2 7.95 92.05 6337 2524 261 7519 64 140 1880 022 B2 6.40 93.60 5870 1430 90 9605 85 21 330 037 B l 9.24 90.76 2.46 21.40 6376 2816 113 11477 74 64 369 039 B 1 6. 61 93.39 4158 1343 106 12900 85 85 400 050 B2 7.92 92.08 7375 2755 111 7115 98 54 1155 C58 B2 7.97 92.03 2.42 22.06 5660 2558 126 12369 94 84 249 066 B2 5.54 94.46 3 940 3046 68 9478 117 21 81 068 B2 6.60 93.40 5 144 2034 135 7348 85 43 314 C70 B2 6.60 93.40 1.75 30.96 7543 2170 79 6489 64 43 336 C74 B2 8.47 91.53 5583 2341 141 11664 95 64 663 079 B2 7.53 92.47 4560 3128 135 11241 159 32 295 C84 82 6. 55 93.45 4857 1869 107 10137 116 32 1045 T A B L E 3 PLOT 1 LAYER 1 ASH | O.M. 1 N 1 C/N I CONCENTRATION IN PP* OF OVEN-DRIED (105 C) MATERIAL NO. 1 1 % 1 % 1 % 1 1 CA 1 MG 1 NA I ! K 1 FE 1 AL 1 MN PLANT SPECIES : ACER CIRCINATUM PURSH' 085 B2 6.47 93.53 5196 1919 86 9650 127 32 456 C98 B2 9.96 90.04 13242 1769 117 9958 85 127 547 101 B2 7.39 92.61 4456 2650 116 12460 84 106 551 126 B2 8.35 91.65 7717 1469 60 7822 74 42 642 129 B2 4. 67 95.33 2152 1609 ice 8804 65 22 707 130 B2 6.67 93.33 5731 3086 116 9032 118 54 511 135 82 7. 30 92.70 13358 3745 99 10944 86 32 134 139 B2 6. 85 93.15 1 .36 39.73 7283 2348 96 4691 87 54 308 148 B2 7.61 92.39 5895 2186 151 10182 75 32 203 152 B2 8.12 91.88 3846 2244 124 14530 128 43 521 153 82 4. 18 95.82 4073 1511 130 7503 118 86 572 154 B2 7.88 92.12 9935 2873 217 15119 108 162 1080 MEAN: 7.39 92.61 2.00 28.54 6077 2329 118 10003 104 65 541 PLANT SPECIES: CLAOOTHAMNUS PYROLAEFLORUS BONG • C41 B2 7.11 92 .89 1.98 27.21 3772 3287 756 10452 75 216 206 MEAN: 7. 11 92.89 1.98 27.21 3772 3287 756 10452 75 216 206 PLANT SPECIES: CORNUS NUTTALL 11 AUD 015 B l 15.85 84.15 1.59 30.70 26766 2687 U O 11991 64 1092 27 MEAN: 15.85 84.15 1.59 30.70 26766 2687 110 11991 64 1092 27 PLANT SPECIES: GAULTHERIA SHALLON PURSH 001 B2 9.93 90.07 11740 4376 530 6617 64 128 1825 C02 B2 11.18 88.82 0.86 59.90 15418 4256 418 6189 98 228 2291 003 B2 14.48 85.52 13412 3509 250 7189 86 193 2361 005 B2 11.58 88.42 15284 4394 538 5788 96 193 1511 0J6 B2 10. 20 89.80 13770 3695 319 7948 118 236 3061 007 B2 10.73 89.27 12875 4292 466 8906 97 215 29C8 COS B2 12.46 87.54 14286 1386 206 4619 75 226 2223 009 B2 8. 60 91.40 8710 2473 269 9570 129 215 2570 015 B2 9. 19 90.81 0.90 58.53 10577 3558 186 7 153 53 128 1165 020 B2 9.03 90.97 0.87 60.65 9358 2775 589 8596 109 196 2405 021 B2 8.34 91.66 8663 2396 157 6CS6 64 128 2139 022 B2 9.11 90.89 10611 3333 170 9C03 64 182 2476 TABLE 4 PLOT NO. 1 LAYER 1 1 ASH | 1 % 1 O.M. % 1 ' N I 1 % 1 1 C/N 1 1 1 CA CONCENT RATION 1 KG 1 IN PPM NA OF OVEN-DRIEO 1 K 1 (105 C) FE 1 MATERIAL AL 1 MN . ANT SPECIES: GAULT HERIA SHALLON PURSH C23 B2 16. 02 83.98 16026 4915 360 3312 85 321 1517 024 B2 13.21 86.79 12997 3985 408 6552 75 150 1310 026 B2 10.73 89.27 11910 3165 3S3 7296 75 204 1792 029 B2 8.41 91.59 7872 2074 222 6702 53 160 4723 030 B2 9.28 90.72 8751 2892 360 5870 53 181 2209 032 B2 10.83 89.17 11253 3546 272 9236 64 265 1868 031 B2 6.28 93.72 6603 1991 193 5644 75 192 19C6 037 B2 7.55 92.45 8714 2232 193 5632 53 128 1052 038 82 6.24 93.76 8387 2763 344 7204 86 161 2785 039 B2 9.90 90.10 10226 2982 333 6136 97 269 10C1 041 B2 6.32 93.63 0.79 68.79 6959 2570 2C0 4711 54 193 1424 C46 B2 8. 74 91.26 8221 1998 242 8012 62 146 3455 047 B2 8.71 91.29 9129 2581 193 5666 73 147 1480 048 B2 8.77 91 .23 9840 1615 353 8717 53 321 2299 052 B2 6. 72 93.28 7783 1652 267 5277 64 107 1087 054 82 6. 11 93.89 7503 2571 274 6533 63 158 2761 055 82 6.77 93.23 8469 2219 427 5729 52 104 2729 056 B2 7.99 92.01 8517 2755 231 7781 63 158 1651 057 B2 7.32 92.68 6186 2184 282 9404 73 104 1348 C58 B2 9. 89 90.11 10146 3340 447 8429 94 187 1041 C59 B2 5.68 94.32 11361 2304 536 6913 64 129 IC02 060 B2 6. 15 93.85 6363 2556 313 4030 64 106 2280 C62 B2 8. 25 91.75 0.84 63.36 8002 4101 217 7611 63 159 20C8 063 B2 6.32 93.68 6358 1621 244 4842 53 126 1716 064 B2 8. 33 91 .67 8429 1346 183 5342 53 139 2800 C73 B2 10. 2 8 89.72 9364 1960 3S6 9428 191 403 1091 074 B2 9. 05 90.95 8733 2758 268 6922 64 149 21C9 076 82 8.57 91 .43 8682 2294 332 8146 193 772 2290 C80 B2 5. 42 94.5 8 6383 1809 309 6319 106 340 1447 081 82 7.64 92.36 7211 2195 435 7497 53 212 2757 C82 B2 7.92 92 .08 6631 235 3 342 8S84 75 193 1455 C83 B2 10.29 89.71 12301 3107 387 5938 95 212 19"=9 086 B2 7.44 92.56 7864 1785 542 7194 149 223 2115 C87 B2 8. 18 91.82 0.78 68.28 8077 2550 173 5314 53 149 2338 092 B2 6. 29 93.71 0.56 97.06 6508 1659 226 6725 98 108 1410 093 B2 7.89 92.11 9081 2573 2C4 6487 86 141 2097 C94 B2 5.22 94.78 7826 1957 166 5S78 65 120 2533 095 B2 7. 8'5 92.15 8942 2148 322 7961 87 153 1134 100 B2 9.09 90.91 8986 2738 408 7315 52 104 1463 103 B2 5.45 94.5 5 5989 1701 201 4385 43 107 3241 104 B2 8.27 91.73 10204 2803 218 3867 64 140 4253 106 82 6.95 93.05 10695 2823 3 5 5 4599 64 203 3176 112 82 9.64 90.36 8351 4325 299 5567 54* 150 1060 120 82 8. 11 91.89 7364 2156 263 5870 53 139 . 2316 cn TABLE 5 1 PLOT 1 LAYER 1 ASH 1 O.M. t N 1 C/N 1 CONCENT RATION IN PPM OF OVEN-DRIED (105 C) MATERIAL 1 NO. 1 1 % 1 1 CA 1 MG 1 NA 1 K I FE i AL 1 MN PLANT SPECIES: GAULTHERIA SHALLON PURSH 121 B2 9. 38 90.62 8102 2676 390 7596 53 149 1599 123 B2 7.26 92.74 8111 2092 243 9392 43 128 1942 125 B2 7.90 92.10 0.79 67.62 7151 2519 185 6403 53 160 1174 127 B2 7.45 92.55 8855 2819 544 6264 86 205 1328 139 B2 8.86 91.14 0.68 77.74 12973 3286 270 3784 65 151 1795 141 82 5.62 94.38 6595 1316 161 5730 65 108 2054 142 B2 6. 34 93.66 0.97 56.01 5591 1892 389 7527 97 140 2215 143 82 6.88 93.12 8817 2763 332 4409 75 140 1161 144 B2 7.73 92.27 8700 2664 3C5 5263 86 161 1096 145 82 8.96 91.04 10246 2028 174 5336 96 224 2999 501 B2 8.92 91.08 8710 3333 357 5914 97 194 2473 508 B2 14. 04 85.96 15541 4502 661 6538 118 332 5182 HEAN: 8. 59 91.41 0.80 67.79 9401 2713 316 6608 78 187 2081 PLANT SPECIES: LEDUM GROELANDICUM OEDER 141 B2 4. 19 55.81 1.21 45. 93 3548 903 108 5914 108 108 1860 144 B2 5.50 94.50 1.34 40.91 4974 1122 63 4339 116 138 1249 MEAN: 4. 85 95.15 1.27 43.42 4261 1013 86 5127 112 123 1555 PLANT SPECIES: LON IC ERA I NVOL UCRATA (RICH. ) BANKS EX SPRENG. C66 B2 12. 67 87.33 3.36 15 .08 6890 2449 147 21299 96 43 55 138 82 5.62 94.38 4865 2119 . 160 21081 86 10919 255 147 B2 8.74 91 .26 5570 2431 151 15352 75 32 53 150 B2 11. 82 88.18 3.89 13.15 5112 2215 112 27157 213 53 38 MEAN: 9.71 90.29 3.63 14. 11 5709 2304 153 21222 118 2762 110 PLANT SPECIES: MAHCNIA NEPVCSA (PURSH) NUTT • 004 C 5. 01 94.99 4669 1215 187 7463 64 21 94 008 C 3.49 96.51 2389 666 75 8562 74 21 168 033 C 4. 74 95.26 " 1.02 54.17 2316 1232 151 11368 42 42 67 058 C 6.76 93.24 6652 1567 236 9764 54 11 106 C73 C 4.42 95.58 0.92 60.26 3488 906 118 7C60 63 53 130 C74 C 5. 16 94.84 2 947 853 129 8547 53 32 142 C76 C 4.46 95.54 ' 1603 955 176 10403 96 21 110 C97 C 3. 73 96.27 1.06 52.68 3109 2922 114 14508 135 135 213 in I PLOT I LAYER I ASH I C M . I N I C/N I I NO. I I % I % I * I I PLANT SPECIES: MAHCNIA NERVOSA (PURSH) NUTT. 504 C 5.43 94.57 MEAN: 4.80 95.20 1.00 55 .70 PLANT SPECIES: MALUS FUSCA (RAF.) SCHNEIDER 150 B l 9.34 90.66 2.89 18.20 MEAN: 9.34 90.66 2.89 18.20 PLANT SPECIES: MENZIESIA FERRUGINEA SMITH 037 B2 13.92 £6.08 C87 B2 7.44 92.56 1.18 45.50 C96 B2 1 1. 18 88.82 095 82 10. 17 89.83 104 B2 11.06 88.94 2.72 18.97 MEAN: 10. 75 89.24 ' 1 .95 32 .23 PLANT SPECIES: MYR ICA GAL E L. 141 B2 4.45 95.55 2.05 27.04 144 82 5.01 94.99 : 2.86 19.27 MEAN: 4.73 95.27" 2.45 23.15 PLANT SPECIES: OPLOPANAX HORRIDUS (SMITH) MI Q. 013 B2 19.98 80.02 038 B2 23. 38 76.62 3.82 11.64 068 B2 16.17 83.83 4.14 11.75 C78 B2 16.01 83.99 C99 B2 13. 17 86.83 '"" 101 B2 12.11 87.89 500 B2 15.46 84.54 MEAN: 16.61 83.39 3.98 11.69 TABLE 6 CA CONCENTRATION IN PPM OF OVEN-DRIED (105 C) MATERIAL I MG I NA I K I FE I AL I 1747 3213 1012 1259 82 141 10011 9787 53 70 11 39 184 135 7537 7537 2357 2357 97 97 13163 13163 96 96 64 64 28 28 5246 2265 2299 3138 3652 3320 5375 2718 4013 4026 4232 4073 296 151 118 180 430 235 18630 10572 13480 17099 13749 14706 171 162 178 130 183 165 225 119 136 108 140 146 7615 9083 7818 6158 6982 7531 3366 2343 2855 1705 1416 1561 118 125 122 7383 7242 7313 119 128 124 54 75 65 217 283 250 8163 8225 6435 8965 5353 3969 3460 6 367 2943 3701 2955 3522 2698 3326 2995 3163 288 1234 675 1137 642 851 816 806 47798 45455 36938 3C203 35867 30534 39676 38067 118 152 96 128 118 98 151 123 54 119 64 21 43 11 43 51 200 202 252 157 214 198 655 268 TABLE 7 I PLOT NO. I LAYER I I f ASH O.M. % C/N CA CONCENTRATION IN PPM OF OVEN-ORIEO (105 CJ MATERIAL I MG I NA I K I FE I AL I MN PLANT SPECIES: 145 B2 MEAN: PLANT SPECIES: 059 B2 MEAN: PLANT SPECIES: PHYSOCARPUS CAPITATUS (PURSH) KUNTZE 4.58 95.42 2.55 128 137 139 MEAN: B2 B2 B2 PLANT SPECIES: 4. 58 95.42 2.55 RIBES BRACTEOSUM OOUGL. 16.56 83.44 ' 3.46 16.56 83.44 3.46 RUBUS PARVIFLCRUS NUTT. 12.03 11.98 15.61 13.21 87.97 88 .02 84.39 86.79 2.91 1.04 1.97 21.70 21.70 13.99 13.99 17. 54 47.07 32. 30 3314 3314 11111 11 111 6652 5229 15502 9128 741 741 3983 3983 4875 4466 4421 4587 135 135 639 639 91 267 133 164 9C64 9064 32705 32705 19285 22004 18123 19804 RUBUS SPECTABILIS PURSH 97 97 105 105 108 131 120 120 78 78 63 63 76 76 55 69 106 106 43 43 121 105 179 135 037 B2 13.05 86.95 4746 5405 561 21359 86 86 177 038 • B2 13.02 86.98 4909 4632 6ec 21238 64 64 105 C47 B2 11.87 88.13 5417 4010 734 17604 125 83 271 059 B2 14.07 85.93 " 5478 6015 983 23845 107 21 259 C65 62 10. 9 3 89.07 3473 2819 1683 15434 182 86 463 066 B2 9.24 90.76 3.26 16.15 3706 4071 393 15033 86 43 156 068 B2 11.62 88.38 3348 3785 1109 21109 107 75 447 C69 B2 9. 08 90.92 2650 2821 694 19552 96 75 919 072 B2 9.45 90.55 2314 3057 209 21231 117 96 1035 078 B2 10.74 89.26 3404 3617 14C4 20106 128 32 343 C80 B2 8. 92 91.08 2.86 18.47 5591 4527 1360 9688 108 54 1253 086 B2 7. 10 92.90 1801 2267 1282 13136 127 106 837 C99 B2 11.82 88.18 5C48 4792 1171 22790 117 170 670 105 B2 6.64 93.36 3108 2358 1029 9539 86 64 423 137 B2 9. 14 90.86 2.97 17.75 4892 3817 • 763 14731 108 43 322 138 B2 10.08 89.92 3575 4334 742 14518 217 152 353 145 B2 12.05 87.95 "' 2878 3817 174 8 24520 309 352 297 147 B2 10.69 89.3 1 5027 4310 1273 15615 64 21 237 148 B2 10.26 89.74 2.66 19.57 4167 4113 143 17C94 75 43 140 149 B2 8.09 91.91 3514 2396 777 15549 213 245 307 150 B2 6.72 93.28 3308 1996 397 12914 160 139 154 T A B L E 8 PLOT 1 L A Y E R 1 A S H 1 O . M . 1 N 1 C / N I C O N C E N T R A T I O N I N PPM OF O V E N - D R I E D (105 C) M A T E R I A L 1 N O . 1 1 * 1 * I S 1 1 CA 1 MG 1 NA 1 K 1 F E 1 A L 1 P L A N T S P E C I E S : RUBUS S P E C T A B I L I S P U R S H 156 B 2 1 0 . 9 8 8 9 . 0 2 9 3 4 8 4 9 7 8 7 1 7 7 5 0 0 1 0 9 87 1005 1 5 8 B2 1 1 . 7 1 8 8 . 2 9 6 1 8 2 5 2 0 6 1 3 8 8 1 4 9 6 8 1 7 4 9 8 3 5 2 M E A N : 1 0 . 3 2 8 9 . 6 8 2 . 9 4 1 7 . 9 8 4 2 5 6 3 8 7 6 9 2 3 1 6 5 1 6 1 2 9 9 7 4 5 8 PLANT S P E C I E S : SAM BUCUS P U B E N S M I C H X . C 1 3 B 2 1 7 . 55 8 2 . 4 5 4 6 8 1 4 0 0 0 336 4 6 2 7 6 1 9 1 7 4 223 0 1 6 B 2 1 6 . 0 6 8 3 . 9 4 9 5 9 1 5 0 5 4 1 2 9 3 3 0 1 7 3 108 54 3 6 9 101 B 2 1 5 . 5 7 8 4 . 4 3 ' 5 . 2 0 9 . 4 2 8 3 1 6 4 9 7 9 2 2 2 3 0 1 9 1 1 1 7 212 212 1 0 5 B 2 1 6 . 2 5 8 3 . 7 5 6 2 8 4 4 4 1 0 1 2 7 8 3 4 1 2 8 1 5 2 7 6 6 7 7 149 B2 1 7 . 7 6 8 2 . 2 4 5. 18 9 . 2 1 8 9 8 5 3 4 4 6 9 6 2 3 4 8 8 4 1 4 8 1 3 7 1 5 8 1 5 0 8 2 1 4 . 7 6 85 . 2 4 4 . 2 2 1 1 . 7 2 9 5 5 4 3 0 2 5 7 C 6 2 7 C 7 0 1 3 8 1 0 6 3 7 9 M E A N : 1 6 . 3 2 8 3 . 6 8 ' ' 4 . 8 7 . 1 0 . 1 1 7 9 0 2 4 1 5 2 8 0 0 3 3 7 8 7 1 4 2 1 1 0 3 4 3 P L A N T S P E C I E S : S P I R A E A DOUGLAS I I H O O K . 1 3 7 B 2 5 . 2 0 9 4 . 8 0 2 . 4 8 2 2 . 1 7 1 7 4 1 1 0 8 3 1 0 1 1 2 8 4 5 1 0 6 42 175 1 4 4 B 2 5 . 7 9 9 4 . 2 1 2 . 8 0 1 9 . 52 3 1 1 2 1 5 6 7 86 1 1 1 5 9 1 2 9 54 837 M E A N : 5 . 50 9 4 . 5 0 2 . 6 4 2 0 . 8 4 2 4 2 7 1 3 2 5 9 4 12C02 1 1 8 4 8 506 P L A N T S P E C I E S : V A C C I N I U M A L A S K A E N S E HOWELL C 3 7 B 2 8 . 9 6 9 1 . 0 4 4 9 0 9 2 6 5 7 5 5 2 1 1 5 5 3 7 5 320 1729 0 4 0 B 2 9 . 5 7 9 0 . 4 3 5 2 1 3 3 2 0 2 3 2 1 1 5 2 1 3 7 4 2 7 7 2 0 6 4 0 4 1 B 2 5 . 6 4 9 4 . 16 4 2 4 6 1 3 0 6 5 7 4 8 1 7 4 4 2 1 3 8 1 2 0 0 C 4 2 B 2 8 . 52 9 1 . 4 8 2 . 6 4 2 0 . 1 0 4 6 8 6 2 7 0 5 4 7 4 1 3 6 3 2 8 5 3 5 1 4 2 7 1 0 4 8 B 2 9 . 9 9 9 0 . 0 1 6 1 6 4 2 8 2 7 4 9 9 1 7 0 0 3 6 4 2 4 4 1 7 2 7 0 5 3 62 8 . 7 6 9 1 . 2 4 6 1 2 5 2 0 3 8 4 3 8 1 0 C 3 2 7 4 2 2 2 2 7 6 7 0 6 0 B 2 5 . 0 6 9 4 . 9 4 5 2 3 7 1 6 3 3 1 5 3 7 3 7 6 84 1 4 8 3 0 7 7 0 6 1 82 8 . 4 4 9 1 . 5 6 3 . 0 6 1 7 . 3 6 5 2 8 5 3 1 9 6 2 3 7 1 2 8 6 9 116 2 9 5 1 8 7 8 C 6 2 B 2 6 . 5 1 9 3 . 4 9 5 4 5 2 1 7 8 6 2 2 5 6 6 1 8 8 4 2 1 0 1 4 9 2 C 6 3 B 2 5 . 4 7 9 4 . 5 3 3 2 1 1 1 6 1 1 2 7 4 7 0 5 3 8 4 1 6 8 1 7 7 9 0 6 4 B2 5 . 3 8 9 4 . 6 2 6 0 2 1 4 3 6 6 1 2 6 6 4 5 2 8 6 3 0 1 1 1 0 8 C78 B 2 7 . 6 0 9 2 . 4 0 4 8 5 7 1 9 2 2 3 0 1 eE70 1 2 7 3 7 0 4 6 0 9 0 9 2 B 2 7 . 9 2 9 2 . 0 8 5 7 8 2 1 6 6 0 1 7 2 1 0 5 2 1 1 0 7 2 6 8 2 e e o 0 9 3 B2 8 . 0 8 9 1 . 9 2 5 9 2 7 2 3 7 1 2 6 6 1 0 1 2 9 7 5 2 3 7 2 5 3 2 C 9 4 B 2 6 . 4 1 9 3 . 5 9 1 . 5 1 35 . 9 5 4 7 7 7 1 7 2 6 i t s 5 C 1 2 6 5 2 0 6 23e9 0 9 5 B 2 6 . 2 2 9 3 . 7 8 6 4 3 1 2 3 0 4 3 0 7 1 0 6 1 1 8 6 2 1 4 1 6 7 2 ov o TABLE 9 I PLOT I LAYER I ASH I O.M. I N I C/N I CONCENTRATION IN PPM OF OVEN-DRIED (105 C J MATERIAL I | NO. I | % | % | * I I CA I MG I NA I K I FE I AL I MN I PLANT SPECIES: VACCINIUM ALASKAENSE HOWELL 104 B2 10.62 89.33 7006 3429 245 12951 96 297 4193 125 B2 8. 82 91.18 6408 2195 264 9579 53 147 1765 127 B2 9. 19 90.81 "' 6346 2692 530 12500 139 385 2618 130 B2 7.63 92 .37 6284 3276 266 5589 75 161 1074 136 B2 5.91 94.09 2.64 20.67 4941 1600 180 8808 75 193 524 143 B2 6.72 93.28 4691 2409 117 7356 107 267 766 144 B2 6. 20 93.80 2.44 22 .30 3205 2051 ICC 5722 107 85 1955 149 B2 5.51 94.49 ' 3072 1674 300 7627 95 191 10CI 158 B2 9.26 90.74 5106 3457 920 12123 138 266 561 MEAN: 7. 54 92.46 2.46 23.28 5255 2404 320 1C279 89 238 2061 PLANT SPECIES: VACCINIUM PARVIFOLIUM SMITH G09 B2 7. 07 92.93 6745 1445 115 5957 107 300 4304 017 82 7.91 92.09 8861 1519 105 7173 74 243 2521 019 B2 9.69 90.31 9798 1608 56 1 0 C U 106 298 2801 021 B2 7. 61 92.39 6660 1089 112 8668 74 222 3562 031 B2 6.72 93.28 1.39 38.92 5357 1124 103 7663 63 231 3582 054 B2 8.03 91.97 6969 1499 146 9240 74 190 3110 055 B2 6. 10 . 93.90 1.43 38.09 4463 1116 124 5814 41 207 1777 057 B2 8.06 91.94 7152 1791 136 10890 73 209 2304 G58 82 11.18 88.82 8997 2581 125 17555 84 355 3124 060 B2 6.43 93.57 4879 2150 216 7166 84 200 4341 C75 B2 10.37 89.63 6702 2450 171 17487 157 10 5 1557 C81 B2 9. 49 90.51 8544 1297 75 1C538 105 274 3924 082 B2 7. 13 92.97 "'" 2.41 22.35 7337 1342 83 13302 84 231 24 11 C83 B2 6.84 93.16 6211 1105 56 9011 95 189 1458 C84 B2 6. 55 93.45 6025 1406 179 12644 137 317 3013 102 B2 7.85 92. 15 2.24 23. 86 5090 1442 94 13736 85 148 2269 103 B2 7.67 92.33 7029 1331 114 8200 64 213 3770 104 B2 6.65 91.35 5169 1688 168 13524 74 169 3565 120 B2 6.43 93.57 4742 1012 97 8114 53 137 2792 121 B2 9.48 90.52 7692 1401 66 8652 84 200 2529 133 82 5.23 94.77 5757 928 135 6C77 96 203 1962 154 B2 8.47 91.53 ' 7407 1799 119 11323 95 286 2645 MEAN: 7. 86 92.14 1 .87 30.81 6708 1506 123 1C527 87 224 2880 TABLE 10 1 PLOT 1 NO. 1 LAYER 1 1 ASH 1 % 1 O.M. 1 1 % 1 N 1 % 1 C/N 1 1 CA CONCENTRATION 1 MG 1 IN PPM NA ! QF OVEN-DRIED I K 1 (105 C) FE 1 MATERIAL AL 1 PLANT SPECIES: VIBURNUM EDULE (MICHX. ) RAF. 066 B2 12.90 87.10 2.45 20.62 11055 2111 69 16524 96 149 37 144 B2 11.66 88.34 1.98 25.88 10583 2106 94 14687 140 140 65 MEAN: 12. 28 87.72 2.21 23.25 10819 2109 82 15606 118 145 51 PLANT SPECIES: ACHLYS TRIPHYLLA (SMITH) OC. 012 C 10.56 89.44 2.57 20.19 9698 2047 136 26401 129 75 342 037 C 12.27 87.73 8181 1884 164 23789 183 215 185 C85 C 7. 76 92.24 2.41 22.20 4570 2476 125 17535 117 96 6C0 098 C 12. 19 87.81 9871 2449 162 27077 119 97 561 MEAN: 10.69 89.31 2.49 21.19 8080 2214 147 23701 137 121 422 PLANT SPECIES: AOIANTUM PEOATUM L. 015 C 12.90 87.10 3.08 16.40 14086 4237 184 25592 86 11 153 131 C 12. 3 7 87.63 3.26 15.59 1652 4104 180 22281 85 11 23 505 c 10.76 89.24 1001 2078 236 19914 54 11 65 MEAN: 12.01 87.99 3.17 16.00 5580 3473 2CC 22596 75 11 80 PLANT SPECIES: ARUNCUS SYLVESTER KOSTEL. 137 C 11.05 88.95 3.28 15.73 3432 3847 257 23485 181 85 225 138 C 9. 69 90.31 3122 2282 181 25296 108 97 181 139 C 11.03 88.92 1.68 30.70 5429 2932 136 21607 152 65 397 MEAN: 10.61 89.39 2.48 23.22 3994 3020 191 23463 147 82 268 PLANT SPECIES: ATHYR IUM F I LI X-FEMI NA (L.) ROTH. 015 C 14.93 85.07 4619 3136 227 39742 86 97 61 016 C 13.33 86.67 2503 3684 259 31419 141 130 140 038 C 19.36 80.64 2.25 20.79 5376 3720 3C2 37527 118 140 91 047 C 15.73 84.27 2500 3490 35C 35104 146 135 116 059 C 16.92 83.08 2398 4358 509 38330 139 96 76 062 C 17.04 82.96 3.20 15.04 3778 2265 437 37883 138 127 152 069 C 17. 01 82.99 3.18 15 .14 2642 359 4 210 42780 107 128 80 077 C 17.24 82.76 1809 5139 193 39187 171 64 99 OS ro T A B L E 1 1 I PLOT I LAYER I ASH | O.M. I N I C/N I CONCENTRATION IN PPM OF OVEN-DRIED (105 C) MATERIAL I | NO. I I % I % " ' I ' . " % I I CA I MG I NA I K I FE I AL I MN I PLANT SPECIES: ATHYRIUM F IL1X-FEMI NA ( L . I ROTH. C78 C 16. 26 83.74 1947 4492 326 43E50 160 53 237 C36 C 16. 15 83.35 1233 3730 319 45484 191 213 56 096 C 18.46 81.54 3858 5120 444 34098 136 104 276 C98 C 17. 83 82.17 5382 3230 361 45647 180 180 184 130 C 17. 86 82.14 4232 4978 158 35173 87 87 49 135 C 17.42 82 .58 "' 4032 4839 228 37634 118 108 84 138 C 9. 28 90.72 ' 1402 2524 311 26969 173 129 320 139 C 16.61 83.39 5465 4645 297 27323 109 153 141 145 C 17.18 82.82 2439 3680 23C 41357 255 276 91 147 C 12.95 87.05 ' 2.18 23.16 3560 4013 145 33441 65 54 84 149 c 15.79 84.21 1921 3330 252 43757 171 203 93 151 c 16.54 83.46 4296 3635 233 31686 183 172 79 152 c 13. 23 86.77 3333 3763 395 28495 140 86 144 EAN: 16.05 83.95 2.70 18.53 3273 3886 295 36995 144 130 128 LANT SPECIES: BLECHNUM SPICANT (L.) ROTH. 001 C 14.59 85.41 5103 4378 1751 10270 130 195 541 002 C 15.98 84.02 1.41 34.56 4978 4348 1772 16522 98 163 305 003 C 17. 86 82.14 5195 5433 3160 10714 195 184 249 006 c 20.07 79.93 4973 4067 344 15210 86 108 137 C25 c 13. 17 86.83 4615 2066 2548 9636 86 86 328 029 c 19.00 81.00 3095 3789 1345 17716 64 128 340 033 c 16.95 83.05 1.23 39.16 45C6 4421 1931 17918 86 161 273 037 c 16. 15 83.35 2368 4704 744 30140 75 108 75 038 c 17.98 82.02 3229 3832 605 23143 75 108 144 C45 c 11.99 88 .01 1820 3083 1071 23876 107 96 82 C47 c 14.17 85.83 1562 3562 320 30208 94 73 69 048 c 14.46 65.54 1989 3913 359 37717 54 174 40 052 c 16. 50 83.50 1.16 41.75 2006 4099 690 25135 65 129 85 059 c 18.33 81.67 2646 5206 2386 18221 108 195 121 061 c 16.58 83.42 4503 4834 460 18182 118 171 120 062 c 18.48 81.52 4412 2126 855 16560 96 128 115 068 c 20.09 79.91 2202 4082 720 30075 397 687 173 069 c 18. 13 81.87 4300 4419 2845 11509 109 174 172 078 c 16. 11 83.89 1418 4404 741 25242 118 75 189 086 c 20.76 79.24 4688 3717 1953 13393 179 346 234 093 c 14.68 85.32 1752 3297 321 32859 99 120 166 C95 c 17.74 82.26 3395 4294 767 23C01 110 142 72 096 c 12.96 87.04 1254 3751 1139 31348 73 42 88 C98 c 15. 52 84.48 2109 4711 439 39C79 75 107 135 104 c 16.52 83.48 3132 5184 1091 25918 162, 194 273 u> TABLE 12 1 PLOT 1 LAYER 1 ASH I O.M. I N 1 C/N 1 CONCENTRATION IN PPM OF OVEN-ORIEO ( 105 1 NO. 1 1 % 1 % 1 * ' 1 1 CA I MG 1 NA ! K I FE PLANT SPECIES: BLECHNUM SPICANT JL.) ROTH. 105 C 15.40 84.60 3254 4121 1638 2C282 87 127 C 14.46 85.54 1.28 38.77 4065 3467 957 15217 152 158 c 17.76 82.24 3813 4662 1138 25163 109 739 c 15.20 84.80 1954 4082 771 23778 76 MEAN: 16.47 83.53 1.27 38.56 3253 4071 1202 22C01 113 PLANT SPECIES: CIRCEA ALPINA L . 016 C 16.45 83.55 " 2.08 23.30 8715 6536 871 21E95 839 MEAN: 16.45 83.55 2.08 23.30 8715 6536 871 21895 839 PLANT SPECIES: ORYCPTERIS AUSTRIACA (JACQ.) WOYNAR E X SCHIN2 : S T H E L L . 045 C 11.09 88.91 3092 2345 157 27506 96 069 C 8. 91 91.09 1524 2052 266 28111 75 072 C 10.08 89.92 2.46 21.20 1747 2744 290 28296 107 075 C 10.96 89.04 1809 2585 281 31489 149 C85 C 10. 64 89.36 1160 4298 177 23617 117 . 096 C 8. 92 91.08 3148 2907 205 19832 63 105 C 10.12 89.88 2045 2085 214 27126 75 148 C 10. 46 89.54 2.77 18.75 2028 2903 180 26681 75 149 c 11.43 88.57 1496 2585 378 29380 256 158 c 10.24 89.76 2.40 21.69 2694 3664 289 2C690. 119 MEAN: 10.28 89.72 2.54 20.55 2 074 2900 248 26273 113 PLANT SPECIES: EPILOBIUM ANGUSTIFOLIUM L . 502 C 9. 58 90.42 1.98 26.49 7726 3047 66 8161 152 503 C 8.75 91.25 6127 3392 119 8862 98 506 C 9. 87 90.13 5965 3015 124 12147 152 507 C 6. 95 93.05 1.11 48.63 5103 2736 96 7C58 65 MEAN: 8.79 91.21 1.54 37.56 6230 3048 101 9057 117 AL 141 207 131 76 160 1656 1656 139 97 107 53 96 42 54 43 342 129 110 76 66 87 33 66 MN 434 216 207 80 1E8 381 381 1119 382 686 704 1346 1228 1055 209 605 970 830 77 399 312 319 277 TABLE 13 PLOT 1 LAYER 1 ASH I O.M. 1 N 1 C/N 1 CONCENTRATION IN PPM CF OVEN-DRIED (105 C) MATERIAL I NO. 1 1 % 1 % 1 % 1 1 CA 1 MG 1 NA 1 1 K I FE 1 AL 1 CN PLANT SPECIES: GYMNOCARPIUM DRYOPTERIS (L.) NEWM. 149 C 12.01 87.99 4.17 12.24 1382 2784 521 37155 255 478 56 151 C 11.65 88.35 1.61 31.83 3236 6688 479 22977 97 V 152 HEAN: 11.83 88.17 2.89 22.03 2309 4736 5C0 30086 176 288 124 PLANT SPECIES: LINNAEA BOREALIS Li. 009 C 11.99 88.01 ' 1.35 37.82 10799 2948 341 14687 400 529 649 HEAN: 11.99 88.01 1.35 37.82 10799 2948 341 14687 400 529 649 PLANT SPECIES: POLYSTICHUH MUNITUM (KAULF.) PRESL 001 C 7. 51 92.49 2049 2114 221 16953 118 622 183 002 C 7.78 92.22 2034 2172 261 13312 117 852 117 003 c 7. 76 92.24 " 2058 2274 133 17673 97 603 77 004 c 7.74 92.26 ' ; i.38 38.78 2753 1785 190 16451 118 559 55 005 c 7.30 92.70 1912 2148 405 15360 97 709 92 006 c 8.04 91.96 2433 2369 263 15756 96 707 87 009 c 8.30 91.70 "' 1540 2241 196 21229 151 313 143 O i l c 6.82 93.18 2C56 2100 327 13561 87 400 58 012 c 7.27 92.73 1692 2202 143 19557 87 325 53 013 c 7.21 92.79 1572 2024 184 21636 54 312 37 C14 c 7.69 92.31 2058 1560 255 21668 98 542 25 015 c 7.74 92.26 1.48 36.16 1129 2312 244 18280 65 333 65 016 c 5.04 94.96 1674 128 8 146 14485 54 182 67 C17 c 7. 55 92.45 12 30 2190 235 17152 65 388 99 018 c 7. 16 92.84 1944 2169 210 17949 75 363 120 019 c 8.04 91 .96 1065 2196 2CS 16304 109 304 268 020 c 9. 36 90.64 1828 2057 250 25136 98 370 107 022 c 8.66 91.34 1937 2067 190 21645 108 476 113 023 c 5.70 94.30 1.50 36.47 1505 4720 362 15462 97 699 56 025 c 6.52 93.48 2147 3333 223 13596 96 491 126 026 c 6.73 93.27 2244 1955 304 15919 85 641 145 027 c 7. 79 92.21 1.26 42.45 2668 1622 188 14728 85 523 107 028 c 7. 26 92. 74 2668 1889 235 13767 85 342 102 029 c 6.84 93.16 1.34 40.33 2350 1549 422 14209 139 759 156 C32 c 8.32 91.68 3092 1663 378 16418 128 714 130 033 c 7.09 92.91 2900 1579 234 12245 86 816 107 037 c 7.43 92.57 " 1.64 32.74 1722 1712 4C2 18837 32 355 54 038 c 9. 28 90.72 2050 2319 222 21359 65 302 69 039 c 7.51 92.49 2468 1577 244 17918 43 418 90 TABLE 14 PLOT 1 LAYER 1 ASH I O.M. 1 1 N 1 C/N 1 CONCENTRATION IN PPM OF OVEN-DRIED (105 C) MATERIAL NO . 1 1 % 1 i " % 1 1 CA I *G 1 NA 1 K 1 FE 1 AL I MN .ANT SPECIES: POLYSTICHUM MUNITUM' (KAULF. ) PRE SL C45 C 6.48 93.52 1594 1637 291 16791 74 361 56 047 C 8.75 91.25 1475 2234 347 21285 116 316 90 058 C 8. 15 91.85 " 1839 2194 261 24033 73 418 104 059 C 7. 57 92.43 1245 1699 3C3 18939 87 628 137 066 C 9.04 SO.96 1529 1604 194 22605 86 463 56 06 8 C 8.04 91.96 1736 1833 27C 20686 86 472 93 069 c 7. 40 92.60 1661 1490 227 16399 75 654 72 071 c 7.28 92.72 1413 2120 236 21628 75 310 e5 C72 c 8.34 91.66 1.97 26.99 2075 1754 255 19037 86 503 125 C73 c 8.65 91.35 ' 2 842 2051 373 17201 150 662 72 C74 c 8.46 91.54 1745 1991 281 21413 75 418 1C9 C75 c 8. 12 91.88 " 1923 2009 257 19765 160 374 115 076 c 8. 50 91.50 " ' 2 021 2312 326 17957 118 151 140 077 c 7.42 92.58 1645 2129 212 20108 108 323 72 C78 c 6. 85 93.15 "' 1465 2128 224 18717 86 257 92 079 c 8.00 92.00 1546 2228 290 21535 117 245 90 080 c 6.51 93.49 1910 1772 224 16222 53 171 93 C83 c 6. 63 93.37 - I • < 5769 2340 192 17842 75 288 88 034 c 7. 19 92.81 1105 2060 235 17275 107 461 79 085 c 7.92 92 .08 1199 3051 332 14347 75 792 94 C86 c 6.30 93.70 1902 1667 235 20406 235 759 80 096 c 8.54 91.46 1582 2605 448 21730 95 253 86 C97 c 8.50 91.50 2833 1605 314 18258 136 682 75 098 c 8. 34 91.66 1816 2418 232 23970 74 422 96 C99 c 7.79 92.21 1.27 42.11 1750 2561 203 25614 85 576 98 100 c 7. 92 92.08 1670 2548 246 19700 107 353 93 101 c 7. 85 92.15 1559 2322 201 21421 53 286 47 104 c 8.36 91.64 1404 1522 2C8 17577 139 943 123 105 c 7. 62 92.38 1 309 1931 211 14056 64 547 94 115 c 8.51 91.49 1606 2662 205 18858 86 560 106 116 c 7.48 92.52 1015 1741 198 18590 64 374 107 126 c 7.91 92.0 9 1891 1688 243 18483 64 449 101 128 c 8.59 91.41 2587 2304 211 21413 87 467 60 130 c 7.46 92.54 0.71 75.60 1416 2173 2C1 19676 54 249 56 138 c 5. 26 94.74 2851 1656 329 12939 121 658 89 145 c 8.09 91.91 1597 2098 197 17359 138 373 50 148 c 8. 70 91.30 1074 2642 153 25242 43 322 57 149 c 7. 20 92.80 2151 1323 271 14624 172 742 99 152 c 8.32 91 .68 2160 1955 238 20195 140 378 89 153 c 8.47 91.53 2063 2693 231 19652 98 326 76 156 c 7.77 92.23 2265 2362 163 16397 108 324 114 157 c 8.67 91.33 1.80 29.43 2058 2384 215 20260 87 358 88 EAN: 7.70 92.30 1.43 40.11 1936 2094 250 18507 95 466 95 OS OS T A B L E 15 I PLOT 1 LAYER 1 ASH 1 O.M. 1 N 1 C/N 1 CONCENTRATION IN PPM OF OVEN-DRIED (105 C) MATERIAL NO. 1 1 % 1 % 1 - % 1 1 CA 1 MG 1 NA 1 1 K I FE 1 AL ! PLANT SPECIES: PTE RI 01 UM AQUILINUM" IL. ) KUHN 019 C 12.28 87.72 2155 2004 158 31250 97 65 352 020 C 10. 68 89.32 2457 1741 145 26C68 85 85 262 021 C 9.57 90.43 1.73 30.32 2151 1602 119 22151 75 22 351 023 C 6. 28 93.72 3571 4275 174 27662 216 260 214 038 C 12. 38 87.62 2134 1889 138 32578 85 64 75 055 C 9.49 50.51 1.62 32.41 1074 2263 167 23253 63 42 106 073 C 10.85 89.15 2245 2170 274 30213 106 106 304 C76 C 11.83 88.17 2.64 19.37 1709 1993 262 31544 164 66 208 032 C 8.93 91.07 : 1838 1626 213 22848 64 53 165 C83 C 10.23 89.77 1108 1941 253 24573 95 74 254 094 C 9. 86 90.14 12 05 2059 ' 161 30668 110 33 104 057 C 12. 12 87.88 2717 2038 172 30512 94 42 154 112 C 8. 56 91.44 2567 1829 112 14332 64 32 148 127 c 11.42 88.58 ' 1487 2252 221 31789 151 65 170 MEAN: 10.32 89.68 2.O0 27.37 2030 2120 184 27132 105 72 208 PLANT SPECIES: TIARELLA TRIFGLIATA L. 016 C 13.73 86.22 13340 4273 190 16377 206 336 155 025 C 15. 39 84.61 1.63 30.11 14424 4650 312 16500 172 194 383 059 C 11.52 88.48 11215 5759 283 25236 220 314 351 086 C 16.25 83.75 2.20 22.08 11548 3402 4C9 21744 592 807 285 C96 C 11.47 88.53 " 8421 1968 185 20105 758 863 359 145 c 16.72 83.28 10224 3461 344 25559 309 479 146 MEAN: 14. 19 85.81 1.91 26.09 11595 3919 287 20587 376 499 300 PLANT SPECIES: TOLMIEA MENZIESII (PURSH) T. £ G. 148 C . 18.97 81.03 "' 2.96 15.88 13398 5413 151 35370 96 75 46 MEAN: 18. 97 81.03 " 2.96 15.88 13398 5413 191 35370 96 75 46 PLANT SPECIES: TRI LLIUM OVATUM PURSH 075 C 13.65 86.35 2.54 19.72 8297 2566 248 38100 207 142 78 098 C 22.88 77.12 2.59 17.27 10989 3596 270 44456 1299 1479 88 MEAN: 18.26 81.74 2.56 18 .50 9643 3081 255 41278 753 811 83 cn TABLE 16 ADDITIONS: t P t c r I LAYER 1 ASH 1 O . M . 1 N .1 1 CONCENTRATION I MG 1 IN PPM NA 1 OF UVt'4 ORIEL) K 1 F E 1 AL 1 MN 1 PLANT SPECIES: MAIANTHEMUM DILATATUM .(WOOD) NELS. & MACBR. 145 C 18.11 81.89 2.68 19.98 5895 2229 2690 38049 246 354 299 MEAN : 18.11 81.89 2.68 19.98 5895 2229 2690 38049 246 354 299 PLANT SPECIES: LYSICHITUM AMERICANUM HULTEN & ST. JOHN 064 c 38.58 61.42 4.11 8.58 8260 2304 12711 88043 391 478 2196 065 c 41.59 58.41 7080 5133 17699 90708 398 387 3307 078 C 40.34 59.66 9442 3004 10622 62232 129 21 2575 080 c 24.84 75.16 9677 2043 9408 52688 118 161 2290 092 c 22.11 77.89 5.60 7.98 6318 2047 7843 49019 130 43 250 094 c 25.96 74.04 9081 2745 6089 60363 267 74 336 106 c 37.49 62.51 7948 3738 12608 106337 150 86 2707 096 c 33.57 66.43 6969 3242 6230 62830 285 296 4086 141 C 21.48 78.52 6201 2635 5924 49833 99 66 603 144 C 23.30 76.70 6373 2406 3736 50000 110 77 288 145 c 19.62 80.38 5.36 8.60 5263 1721 1381 48245 274 208 566 147 c 27.47 •72.53 9989 2529 10532 58089 141 65 1096 047 c 25.60 74.40 7030 2172 4260 71354 168 147 1217 MEAN: 29.38 70.62 5.02 8.39 7664 2748 8392 65365 204 162 1674 TABLE 17 I PLOT I LAYER I ASH I O.M. I N I C/N I CONCENTRATION IN PPM OF CVEN-ORIEO (105 C) MATERIAL I I NO. I I Z | % I % I I CA I MG I NA I K I FE I AL I CN I PLANT SPECIES: DICRANUM HCWELLII REN. C CARD. 050 DR 5.81 94.19 1.29 42. 35 1645 669 120 2116 1414 1579 220 C55 DW 7.10 92.90 1811 625 117 2331 1589 2087 5 89 056 DR 5.31 94.69 I486 541 106 2123 I486 2229 142 142 CR 6.51 93.49 1.32 41.08 883 607 155 3642 1623 2461 269 1EAN: 6. 18 93.82 1.30 41.72 1456 611 125 2553 1528 2089 305 'LANT SPECIES: HYLOCOMIUM SPLENDENS (HEDW.) B. S. G. 001 DH 4.79 95.21 1580 675 146 5664 980 1253 463 002 OH 4.45 95.55 1703 7C5 164 5743 868 889 215 002 CR 5.84 94.16 1450 866 165 4329 1407 1645 465 002 DM 5. 87 94.13 1663 837 U 2 6304 978 1163 507 003 DW 7.44 92.56 4717 1898 164 6548 888 810 192 006 DW 6.00 94.00 1.95 27.96 2443 905 144 5671 1200 1276 365 006 DH 5. 93 94.07 2799 1043 171 6147 1317 1076 324 008 DH 6. 37 93.63 2030 875 122 5400 1296 1145 561 O U DW 4.54 95.46 2879 963 189 4873 720 897 399 012 DW 4. 40 95.60 1.37 40.47 2974 903 169 4405 518 705 211 020 DH 6.39 93.61 2315 706 170 3308 1268 1367 311 022 DH 7.59 92.41 3688 640 114 3254 1215 1302 857 023 DR 6.44 93.56 " 18 34 862 200 5786 1179 1550 440 025 DW 2.94 97.06 ' 1750 913 141 4457 478 598 313 02 5 DF 4. 79 95.21 2122 827 176 4244 947 1219 303 027 DW 5.40 94.60 1836 670 173 5400 853 1015 240 027 OR 9.59 90.41 2047 711 279 6358 1907 3373 301 028 DH 7. 03 92.97 2811 984 2CC 8433 541 1578 144 028 DW 5. 85 94.15 1842 s e s 144 6934 845 1268 287 028 OR 6.80 93.20 2052 842 153 6803 1026 1404 371 029 DH 4. 56 95.44 "' 1952 86 8 170 5531 553 759 172 029 DW 4.55 95.45 • 1842 693 144 4984 878 1073 116 030 DR 4.23 95.77 1300 639 172 4767 921 1138 262 031 DH 4. 54 95.46 1.07 51.75 2162 703 196 4757 714 854 629 046 CH 6. 18 93.82 '"" 2709 823 164 4767 1073 1235 757 051 DH 3. 71 96.29 1004 622 122 3679 808 1103 241 C52 Dh 4.68 95.32 2168 632 136 3C50 904 1155 351 060 Ch 5.26 94.74 1.42 38.70 1933 655 114 3974 870 956 623 C67 DH 3. 72 96.28 1421 667 162 3C60 525 623 170 083 Dh 7. 15 92.85 4984 748 154 3185 1073 1094 639 084 DH 6.26 93.74 2635 832 122 3305 972 1069 529 125 DH 7. 40 92.60 2.53 21.23 6311 577 122 3C47 696 740 460 154 Dh 5.13 94.87 2511 633 119 3603 972 1146 497 EAN: 5.63 94.37 1.67 36.02 2408 812 159 4902 951 1166 . 386 OS TABLE 18 PLOT 1 LAYER 1 ASH I O.M. I N 1 C/N I CONCENTRATION IN PPM CF OVEN-DRIEC (105 C) MATERIAL 1 NO. 1 1 % 1 » ".! CA 1 MG 1 NA I 1 K 1 FE 1 AL 1 CN PLANT SPECIES: ISOTHECIUM STOLONIFERUM (HOOK.) BRID. C01 DH 7.07 92.93 3.17 17.01 3022 837 171 3478 1957 2022 399 002 DW 6.72 93.28 2124 693 143 3575 1842 1571 362 003 DW 7. 60 92.40 " 3260 804 130 3524 1762 1410 68 005 OW 6. 30 93.70 1216 586 113 2714 1846 1498 75 006 DW 6.32 93.68 1876 600 101 2944 1963 1592 75 007 DW 7. 05 92.95 1161 607 136 3688 2169 1996 214 006 CW 7.23 92.77 1920 734 152 3236 2589 2255 260 021 DW 7. 14 92.86 0.35 153.89 3077 769 138 2967 1352 1341 570 023 DW 5. 33 94.67 1349 80 5 152 3591 1850 1730 211 025 DW 5.67 94.33 3097 74 2 133 3926 1123 1200 3S0 029 DW 7.67 92.3 3 4272 843 157 3633 1391 1292 229 030 OW 7. 17 92.83 1.86 28.95 1194 619 147 2e23 1944 2063 175 044 DW 7.97 92.03 2511 819 157 2 074 3515 5240 163 052 DW 7. 89 92.11 "* 1884 548 112 1501 1950 2716 156 056 DW 6. 59 93.41 '" 1498 648 117 2125 1913 2370 181 062 DW 7.57 92.4 3 2335 1162 123 2559 1674 1802 103 C85 DW 5. 70 94.30 " 2110 678 i c e 2400 1270 1389 3es 123 DW 8. 19 91.81 1304 614 93 1886 1724 1994 249 135 DW 8.66 91.34 6667 1140 1C5 3180 1754 1250 158 142 DW 8. 54 91.46 1.65 32.15 1314 767 105 . 1194 3286 3242 446 MEAN: 7. 12 92.88 1.76 58. OC 2360 751 130 2861 1944 1999 243 PLANT SPECIES: LEUCOLEPIS MENZIESII (HOOK.) STEERE EX L . KOCH 014 DH 13.53 86.47 6491 1672 235 7151 2398 3190 548 C15 DH 10.41 89.59 4491 1741 215 4C53 7448 5805 625 C47 DH 11.04 88.96 "' 1.65 31.27 2917 1510 275 4375 5625 6042 530 101 OH 11.25 88.7 5 2.16 23. 83 7020 1565 268 6431 1501 2465 482 148 DH 8.98 91.02 " 7448 1774 2C5 3943 1522 1380 266 MEAN: 11.04 88.96 1.90 27.55 5673 1652 240 5191 3699 3776 490 PLANT SPECIES: PLAGICMNIUM INS I GNE' (MITT.) KOPCNEN 065 DH 9. 88 90.12 2.07 25.25 3018 1086 246 4995 1954 2693 326 086 DH 12.20 87.80 1.54 33.07 6 263 1080 356 7462 1836 2613 361 C86 DH 10. 27 89.73 1 .47 35.41 4973 1038 292 3676 2422 2151 134 101 DH 16.07 83.93 " 1.68 28.98 9245 2362 496 11003 1618 1510 374 CEAN: 12.11 87 .89 1.69 30.68 5 875 . 1392 348 6784 1958 2242 299 TABLE IS PLOT ! LAYER 1 ASH I O.M. 1 N 1 C/N 1 CONCENTRATION IN PPN CF CVEN-•ORIEC (105 C) MATERIAL NO. 1 1 % 1 % I % 1 . 1 CA 1 MG 1 NA 1 K 1 FE 1 AL 1 MN PLANT SPECIES: PLAGIOTHECIUM UNDULATUM (HEDW . ) B. S . G . 001 CM 10.00 90.00 1677 1677 225 8617 1935 2151 380 002 DW 9. 13 90.87 1719 1772 285 10419 1504 1697 363 002 DR 10. 02 89.98 1724 1778 lee 9698 1940 2317 644 00 3 OW 10.23 89.77 2699 2002 289 10120 1850 1719 146 005 OW 7.95 92.05 1944 1869 537 9560 1182 1139 148 006 DW 10. 94 89.06 3391 1777 174 7151 2492 1972 256 007 DW 11. 33 88.67 2362 1607 218 8306 2050 2028 542 008 DR 14.47 85.53 1533 1717 363 • 7451 3240 3564 999 009 DW 11. 67 88.33 2399 1712 609 10905 1897 3162 797 017 DR 9.37 90.63 "" 1.89 27. 82 2070 1318 219 5991 1939 2505 224 C18 DW 7.35 92 .65 2054 1135 263 3e92 1578 1730 237 023 DR 9. 49 90.51 1402 1014 299 5533 1942 2643 262 023 CW 9.45 90.55 2739 892 256 5156 3545 4941 300 027 DW 11. 18 88.82 2473 1892 265 11398 1430 1903 329 028 DW J 11.37 88.63 " " ' 1.48 34.73 2790 2135 304 11266 1545 1888 259 029 DW 10.46 89.54 2589 1823 2C3 7875 1553 1618 309 030 DR 12.69 87.31 2581 2172 214 10215 1742 2183 618 030 DW 10.02 89.58 1832 1746 320 9698 1638 1940 335 062 OH 11.47 88 .5 3 1645 1911 239 7219 2229 2569 173 064 DH 7. 24 92.76 1 697 811 272 7243 1103 1416 229 084 CH 6.72 93.28 1204 803 188 3200 1768 1909 213 095 DH 8.60 91.40 1.43 35.82 2426 959 250 3418 2426 2062 164 098 DW 9.09 90.91 " 2981 1956 243 5631 1163 1300 143 123 DH 9.46 90.54 "'" 1935 1129 252 5161 1720 1957 305 126 DH 9. 54 90.46 3001 1618 328 8253 1329 1265 282 127 DH 6.54 93.46 1963 949 213 4793 1363 1407 362 135 Oh 8.71 91.29 3993 1904 5C6 8379 1197 1110 50 143 DH 10. 71 89.29 1.66 31.20 4762 1602 271 7684 1364 1255 163 WEAN: 9. 83 90.17 *" 1.63 32.39 2342 1560 286 7823 1809 2048 331 PLANT SPECIES: PLEUROZIUM SCHREBERI (BRID.) MITT. 031 DH 3.76 96.24 "' 0.61 91.51 2258 634 183 3333 538 581 315 049 DR 6. 18 93.82 1.11 49.03 2093 553 115 1171 1432 1681 248 C56 DR 5. 15 94.85 1567 557 147 3C49 1157 1588 106 070 DR 5.39 94.61 1758 647 123 2265 1036 1111 126 f E AN: 5.12 94.88 0.86 70.27 1919 59 8 142 2455 1041 1240 199 TABLE 20 I PLOT I LAYER I ASH I O.M. I N I C/N I CONCENTRATION IN PPM CF CVEN-DRIEO (105 C) MATERIAL I | NC. I I X I % ' \ X I I CA I MG I NA I K I FE I AL I CN I PLANT SPECIES: RHACOMITRIUM CANESCENS (HEDW.) BPID. 041 DR 4.88 95.12 - 325 705 161 813 3395 3471 54 050 DR 3.50 96.50 0.75 74.63 1039 416 78 744 952 941 131 056 DR 3. 38 96.62 0.70 80.06 539 327 127 591 1162 1658 63 070 DR 2. 30 97.70 " 1.20 47. 23 8 86 372 121 580 864 821 39 103 DR 4.21 95.79 1.00 55.56 365 288 87 642 1417 4208 72 132 DR 5. 16 94.84 1330 516 109 1319 1868 3077 88 EAN: 3.91 96.09 0.91 64.37 747 437 114 782 1610 2363 75 .ANT SPECIES: RHYTI D1ADELPHUS LOREUS (HEDW. I WARNST. 001 OH 6.40 93.60 40.64 1551 759 271 •6291 1247 1562 717 001 DW 6.11 93.89 1.34 1692 742 176 3930 1528 1736 353 C05 DR 5. 56 94.44 2 083 949 '200 5760 1091 1080 143 005 DW 5. 14 94.86 1661 863 167 5792 1530 1399 106 006 DW 8. 57 91.43 3275 1041 154 5531 2169 1692 312 007 DW 8.66 91.34 2608 93 1 189 4978 2056 1753 618 007 OR 6.65 93.35 2571 893 145 5229 1743 1819 527 C08 DF 7. 58 92.42 ' 2654 1268 372 8342 1083 1116 492 008 OR 5.54 94.46 1889 858 263 4560 1292 1390 47C 009 DW 7.02 92.98 1.74 31.00 3289 877 254 5811 1031 1020 380 C16 DW 5. 79 94.21 2 842 940 273 4699 1180 1279 101 017 CR 5.77 94.23 3159 784 109 2614 1176 1307 341 019 DH 6.60 93.40 2420 671 275 5C61 946 957 453 021 DH 6. 13 93.87 ' 2300 701 173 4162, 1095 1128 349 022 DK 6.97 93.03 2612 686 202 3700 1186 1284 569 023 DR 9. 18 90.82 1301 732 232 5355 2295 3585 408 023 DW 4. 24 95.76 1435 707 197 4 130 913 1185 3C3 025 OW 0. 11 99.89 1000 835 2C4 4C66 1044 978 282 025 DH 4. 51 95.49 1527 7E0 174 3516 1165 1077 366 027 DW 7.03 92.97 2165 801 255 6277 1061 1234 220 029 DW 6.49 93.51 "1.54 35.22 1623 866 265 6494 1061 1223 297 030 DW 6. 60 93.40 1948 920 220 5303 1385 1483 452 030 DR 6. 16 93.84 2054 919 173 5081 1351 1514 414 C40 DH 5.31 94.6 9 1735 683 26C 4013 672 2364 216 044 DR 5. 08 94.92 2152 68 1 150 3692 995 1427 358 047 CH 5.44 94.56 " 2132 789 261 5650 746 1023 252 C48 DW 4.35 95.65 1696 620 162 3826 663 924 266 050 DR 5.48 94.52 1610 679 136 3C12 1150 1281 163 055 DW 3.81 96.19 1534 730 2C1 3069 751 974 295 060 DH 6. 73 93.27 1656 983 157 2685 1496 1667 1538 067 OH 5.00 95.00 1.02 54.03 1737 1053 186 4886 597 879 36C 070 DR 4.68 95.32 2503 805 135 3264 740 892 201 TABLE 21 1 PLOT 1 LAYER 1 ASH I O.M. 1 N 1 C/N 1 CONCENTRATION IN PPM CF OVEN-DRIEC (105 C) MATERIAL 1 NO. 1 1 % 1 % 1 % 1 1 CA 1 MG 1 NA 1 1 K 1 FE 1 AL 1 CN PLANT SPECIES : RHYTIDIACELPHUS LOREUS (HEDW. ) WARNST. C84 DH 6. 82 93.18 1.51 35.79 2110 747 195 3539 1342 1504 318 096 CM 4.75 95.25 2218 876 173 3696 993 1056 444 116 DH 5. 13 94.87 2838 1179 247 5895 524 480 119 125 DH 5.93 94.07 2589 604 173 3883 820 852 478 MEAN: 5.87 94.13 1.43 39. 34 2116 832 206 4673 1170 1337 380 PLANT SPECIES: RHYTIDIOPSIS ROBUSTA (HOOK.) BRCTH. 040 DH 4.88 95.12 " 1842 715 193 5C92 704 1419 423 042 DH 6. 17 93.83 1 .84 29.58 3788 725 153 5195 779 758 481 044 DH 5. 23 94.77 47.94 2290 752 174 7634 633 862 368 C54 DH 5.79 94.21 1.14 1965 600 1C5 2620 1266 1987 215 055 DH 4. 03 95.97 2707 679 106 2335 902 1008 300 063 DH 4.68 95.32 "1.20 46. 07 1800 1001 91 3621 777 852 391 C87 DR 6.27 93.73 4250 671 112 3740 913 836 184 142 OR 6.78 93.22 1858 623 119 2842 1443 1530 383 MEAN: 5.48 94.52 1.39 41.20 2568 721 132 4135 927 1157 343 T A 9 L E 22 I PLOT I LAYER I ASH | O.M. | N I C/N I CONCENTRATION IN PPM CF CVEN-ORIED (105 C) MATERIAL I I NO. I I % | % | % | | CA | MG I NA I K | FE I AL I ¥h . \ PLANT SPECIES: STOKESIELLA OREGANA, (SOLL/)- ROBINS. C02 DR 8. 11 91.89 1.54 34.61 1968 1168 154 6270 1405 1773 632 002 DW 6. 83 93.17 2 874 998 175 6508 1085 1323 773 002 DH 7.69 92.31 3933 932 138 6501 1192 1192 283 003 DW 8. 77 91.23 6748 2297 158 e768 777 677 211 003 DR 7. 82 92.18 " 4714 1046 217 5235 1211 1421 349 005 OR 7.09 92 . 9 1 2489 1103 236 6878 1201 1485 174 C07 DH 6. 99 93.01 3 362 1277 166 6878 1092 1092 9 i e i 008 DW 8.97 91.03 1.26 41.91 . 3654 1178 177 7027 1514 1308 484 008 DR 7.70 92.30 2983 1074 2C6 65C8 1410 1367 672 010 DH 6.05 93.95 4070 1034 193 4641 902 1133 499 o n OF. 6.59 93.41 4281 1120 194 5818 670 779 552 012 DW 6. 16 93.84 3410 1199 169 4840 • 814 1012 145 019 DH 8. 83 91. 17 3863 938 132 4525 1424 1645 1C89 020 OH 8.89 91.11 3513 867 121 3 842 1427 1592 565 021 DH 12.32 87.68 3272 905 14C 3162 2225 2552 1C31 027 DW 7 .93 92.07 1.41 37.88 3583 1097 177 7166 890 1107 559 028 DR 7. 10 92.90 2688 968 233 7742 914 1290 470 028 DH 7. 93 92.07 4348 1076 296 7283 630 1304 203 028 DW 8.57 91.43 2928 1063 194 8351 993 1312 597 030 DW 16.32 33.68 3892 90 8 226 5730 3892 5297 292 031 DH 6. 86 93.14 3486 893 249 5773 773 871 702 037 DH 16.56 83 .44 2165 1082 273 3463 3225 5032 451 C38 DH 12. 13 87.87 2842 1257 211 5355 3016 5574 322 039 DH 6. 18 93.82 2925 953 177 4875 780 1105 349 C46 Dh 6.50 93.50 3142 899 183 4875 1029 1300 766 06 5 DH 5. 83 94.12 1.38 39.56 2451 1766 192 5556 686 948 394 081 OH 7.72 92.28 3011 84 8 168 4239 1043 1000 832 C82 DH 7.27 92.73 2516 954 177 4469 1150 1540 781 C83 DW 6. 50 93.50 38 14 693 118 2763 1083 1322 1170 121 DH 7.48 92.52 1.88 28. 55 3034 921 158 5200 1094 1311 527 143 DW. 5. 88 94.12 4440 810 141 3996 1065 1032 119 145 OW 20.74 79.26 2280 999 212 2932 6189 9229 452 153 DH 8.52 91.48 4757 996 129 3208 1549 1394 292 EAN: 8. 63 91.37 1 .49 36.50 3437 1071 186 5474 1465 1888 , 765 LANT SPECIES: JSTOKESIELtA- PRAELONGA, (HEDW:) ROBINS. 014 DH 12.71 e7.29 2.03 24 .94 6243 1873 285 6681 2552 4491 3E4 015 DH 19 .74 80.26 4362 1527 220 4689 5234 7306 348 099 DH 9. 03 90.97 5622 1052 478 5526 4123 1254 275 101 DH 20.26 79.74 2.39 19. 35 4893 1556 309 5970 4904 7985 725 EAN: 15 .43 84.57 2.21 22.15 5280 1502 323 5717 4203 5259 433 APPENDIX IX CHEMICAL ANALYSIS OF SEEPAGE WATER (Tables 1 - 5 , Figures 1 - 4) Chemical analys is for water samples from ind iv idua l s o i l p i ts i s given in the fo l lowing tab les . The samples marked by three d ig i t s (p lo t number) were co l lec ted from the completely described p l o t s ; the samples, marked by two d i g i t s (sample number) were co l lec ted from other s i t e s . In few cases chemical analyses fo r n i t ra te and d issolved s i l i c a were not car r ied out. Zero values (0.0) were then pr inted in the corresponding columns. DEPTH (CM) - re fers to the depth from the surface of the f i r s t mineral horizon (or from the surface of the s o i l p i t in the case of organic s o i l s ) where seepage (ground) water table was encountered. The l e t t e r S in th is column refers to seepage flow through s o i l organic l aye rs , underlain by bedrock, o r to stream water samples PH - re fers to pH COND. JU M H O C M - re fers to conduct iv i ty in jjmho/cm (micromhos per centimeter) at 25°C CA, MG, K, NA, FE and NH4 - re fe r to cat ions of ca lc ium, magnesium, potassium, sodium, i ron and ammonium N03, CL, P04, SI02 and HC03 - re fer to anions of n i t ra tes (plus n i t r a t e ) , ch lo r ides , phosphates, sulphates and bicarbonates and to dissolved s i l i c a . SEEPAGE AND GROUND WATER ANALYSES SAMPLED BY: K. KLINKA ANALYZED BY: M. FELLER COASTAL WESTERN HEMLOCK ZONE U.B.C. RESEARCH FOREST SEASON (CWHA, TIARELLA - POLYSTICHUM - WRC ECOSYSTEMS; MATURE FOREST . STAND TYPES) : TABLE 1 IPLOTI SAMPLE I DEPTHl PH I COND.I CONCENTRATION IN MG/LITRE | NO.I NO. I (CM . ) I IUMHOCM! CA I MG I K I NA | FE I NH4 I N03* I CL I POA I S04 I SI02 * I HC03 I SPRING: 01 013 5.9 19.8 1.0 .27 1.40 3.77 1.90 .600 0.0 10.25 .17 .14 0.0 10.68 02 050 6.3 20.9 1.3 .26 .57 1.70 .70 .300 0.0 5.60 .21 .23 0.0 9.15 04 150 6. 5 13.0 1.1 . 14 .32 1.06 .30 .125 0.0 9.00 .21 3.95 0.0 8.54 07 080 5.9 18.0 1.4 .29 .12 1.44 .01 . 250 0.0 4.00 .18 1 .40 0.0 10.37 11 006 6. 1 19 1 5 1.6 .27 .50 1.45 .20 .263 0.0 3. 90 .17 .60 0.0 9.46 13 010 6.4 25.0 3.2 .46 .12 1.42 .01 .250 0.0 3.25 .17 .90 0.0 11. 59 14 010 6.4 29.5 3. 1 .47 .59 1.90 .30 .625 0.0 4.10 .17 1.10 0.0 11.29 15 220 6.1 18.0 • 2.1 .26 .25 1.32 0.0 .286 0.0 2.20 .19 .65 0.0 10.37 17 085 5.9 19.0 1.8 .22 .53 1.42 .10- .550 0.0 3.90 .15 .90 0.0 7.32 18 056 5.5 23.0 1.5 .27 . 75. 1.92 .02 .363 0.0 5.00 .15 .90 0.0 10.37 19 035 6.3 26.0 2.2 .26 .76 1.97 .70 .437 0.0 5.00 .15 1.16 0.0 9.76 094 090 5.8 19.8 .7 .15 .49 1.20 0.0 .537 0.0 1.12 0.0 3.92 0.0 4.27 MEAN 6.1 21.0 1.7 .28 .53 1.71 .35 .382 0.0 4.78 .16 1.32 0.0 9.43 SUMMER: 014 075 6.4 20.7 1.2 .22 .14 .67 .13 .027 .09 1.35 0.0 4.13 3.63 8.54 016 115 6.7 20.6 1.9 .36 .09 .99 0.0 0.0 .27 . 85 0.0 3.50 4.10 6. 10 025 045 6. 2 20.1 1.5 .28 .08 1.03 0.0 .030 .18 .69 .20 1.63 1.80 6. 10 036 055 5.4 14.5 .7 . 15 .12 .68 0.0 .084 1.56 .94 0.0 2.30 .30 2.93 086 060 5.2 19.6 .9 . 16 .12 .76 0.0 .100 1.99 .70 .15 2.50 3.52 2.60 096 070 6.4 13.7 .8 . 10 .08 .37 0.0 .016 .11 .72 0.0 2.23 1.47 4.76 145 070 6.0 18 .0 1.2 . 22 .17 .76 0.0 .010 .84 .75 .15 1.50 3.20 5.60 150 080 6.1 15.1 .9 .22 .44 .54 .30 .060 .89 . 85 .15 1.50 3.40 4.50 MEAN 6.0 17.8 1.1 .21 .15 .72 .05 .041 .74 . 86 .08 2.41 2.68 5.14 OVERALL MEAN 6.1 19.7 1.5 .25 .38 1.32 .23 .246 .30 3.21 .13 1.76 1.07 7.71 * '1N0T DETERMINED IN' THE' SPRING COLLECTION FOREST STAND TYPES (SPRING SAMPLING; CWHA, TIARELLA - POLYSTICHUM - WRC ECOSYSTEMS) : .TABLE 2 I PLOT I SAMPLE I DEPTHl PH I COND.I CONCENTRATION IN MG/LITRE ) NO. I NO. 1 (CM . ) I lUMHOCMI CA I MG I K I NA I FE I NH4 I N03*| CL I P04 I SO* I SI02* I HC03 I MATURE: 01 013 5.9 19.8 1.0 .27 1.40 3.77 1.90 .600 0.0 10.25 .17 .14 0.0 10.68 02 050 6.3 20.9 1.3 .26 .57 1.70 .70 .300 0.0 5.60 .21 .23 0.0 9. 15 04 150 6. 5 13.0 1.1 . 14 .32 1.06 .30 .125 0.0 9.00 .21 3.95 0.0 8. 54 07 080 5.9 18.0 1.4 .29 .12 1.44 .01 .250 0.0 4.00 .18 1 .40 0.0 10.37 11 006 6.1 19.5 1.6 .27 .50 1.45 .20 .263 0.0 3. 90 .17 .60 0.0 9.45 13 010 6. 4 25.0 3.2 .46 ,12 1.42 .01 .250 0.0 3.25 .17 .90 0.0 11. 59 14 010 6.4 29.5 3. 1 .47 .59 1.90 .30 .625 0.0 4. 10 .17 1.10 0.0 11.29 15 220 6.1 18.0 2. 1 .26 .25 1.32 0.0 .286 0.0 2.20 .19 .65 0.0 10.37 17 oes 5. 9 19.0 1.8 .22 .53 1.42 .10 .550 0.0 3.90 . 15 .90 0.0 7.32 18 056 5.5 23.0 1.5 .27 .75 1.92 .02 . 363 0.0 5.00 .15 .90 0.0 10.37 19 035 6.3 26.0 2.2 .26 .76 1.97 .70 .437 0.0 5.00 .15 1.16 0.0 9.76 090 5.8 19.8 . 7 .15 .49 1.20 0.0 .537 0.0 1.12 0.0 3.92 0.0 4.27 6.1 21.0 1.7 . 28 .53 1.71 .35 .382 0.0 4.78 . 16 1.32 0.0 9.43 IMMATURE: 22 110 6.6 33.0 23 040 6.2 27.0 25 030 6. 1 36.0 26 U O 6.2 31.0 MEAN 6.3 31.8 3.8 .37 .53 2.05 .10 .300 3.3 .41 .23 1.17 .10 .286 4.4 .47 .42 1.69 .20 .375 2.9 .40 .63 2. 18 . 10 .286 3.6 .41 .45 1.77 .13 .312 0.0 3.10 .23 1.16 0.0 15.62 0.0 2.60 .18 1.66 0.0 9. 15 0.0 2.90 .17 2.69 0.0 7.02 0.0 2.40 . 18 1 .16 0.0 8.88 0.0 2.75 .19 1.67 0.0 10.17 UNDISTURBED CUT-OVER AREAS (PLANTED): 08 120 6.5 61 .0 1.9 .25 .32 2.35 .15 .286 0.0 4.10 .20 .80 0.0 10.37 12 170 6. 5 21.5 .3 .18 .31 3.35 1.10 .250 0.0 4.00 .17 .60 0.0 11.51 16 085 6.6 22.5 2 .4 .30 .70 1.53 .50 .286 0.0 2.90 .17 .65 0.0 13.42 21 150 6.2 32.5 4.4 .44 .52 1.44 .10 .300 0.0 3.90 .17 2.18 0.0 9.45 MEAN 6.4 34.4 2.2 .29 .46 2. 17 .46 .280 0.0 3.72 . 18 1.06 0.0 11.19 DISTURBED CUT- OVER AREAS (PLANTED): 05 070 6.8 30.5 3.5 .58 .62 2.16 .01 .150 0.0 10.25 .18 .60 0.0 19.22 06 070 6.5 37.0 3.3 .67 .87 2.50 .10 . 275 0.0 8.40 .18 .85 0.0 22.88 09 014 7.2 46.0 3.8 1.08 .65 3.61 .15 .350 0.0 8.00 .18 .90 0.0 28.37 10 O i l 7. 1 44.0 3.0 .63 1.60 4.34 2.10 .625 0.0 10.30 .23 1.35 0.0 21. 96 20 010 5.8 33.0 4.3 .41 .66 1.27 .20 .286 0.0 2.50 .17 1.66 0.0 8.54 24 040 6. 3 34.0 4.2 .57 .61 1.65 .10 .286 0.0 2.00 .17 2.18 0.0 11.29 MEAN 6.6 37.4 3.7 . 66 .83 2.59 .44 .329 0.0 6.91 . 18 1.26 0.0 18. 71 OVERALL MEAN 6.3 28. 5 2.6 .39 .58 1.99 .36 .343 0.0 4. 79 .17 1.32 0.0 11.96 * NOT DETERMINED FOREST ECOSYSTEMS (SUMMER SAMPLING, MATURE FOREST STAND TYPES) : IPLOTl SAMPLE I DEPTHl PH I CQND.I CONCENTRATION IN MG/LITRE I NO. I NO. I (CM.) | IUMH0CMI CA I MG 1 K I NA I FE I NH4 I N03 I CL I POA | S04 I SI02 I HC03 I CWHA, MOSS - (POLYSTICHUM) - WRC - WH: 009 012 6.3 29.0 1.4 .29 1.37 1.95 .50 1.050 0.0 2.50 0.0 2.69 0.0 5.15 035 065 5.5 22.5 1.2 .28 .22 .86 0.0 .386 4.43 .97 0.0 2.01 .59 2.20 037 n o . 5.8 25.8 .5 .15 1.25 1.64 .03 1.367 .32 2.11 0.0 4.19 1.70 4.64 MEAN 5 .9 25.8 1.0 .24 .95 1.48 .18 .934 1.58 1.86 0.0 2.96 .76 4.00 CWHA, TIARELLA -- POLYSTICHUM - WRC: 014 075 6.4 20.7 1.2 .22 .14 .67 .13 .027 .09 1.35 0.0 4.13 3.63 8.54 016 115 6.7 20.6 1.9 .36 .09 .99 0.0 0.0 .27 .85 0.0 3.50 4.10 6. 10 025 045 6.2 20.1 1.5 .28 .08 1.03 0.0 . .030 .18 .69 .20 1 .63 1.80 6.10 036 055 5.4 14.5 .7 . 15 .12. .68 0.0 .084 1.56 .94 0.0 2.30 .30 2.93 086 060 5.2 19.6 .9 . 16 .12 .76 0.0 .100 1.99 .70 .15 2. 50 3.52 2.60 096 070 6.4 13.7 .8 . 10 .08 .37 0.0 .016 .11 .72 0.0 2.23 1.47 4.76 145 070 6.0 18 .0 1.2 . 22 .17 .76 0.0 .010 .84 .75 .15 1.50 3.20 5.60 150 080 6. 1 15.1 .9 .22 .44 .54 .30 .060 .89 .85 .15 1.50 3.40 4.50 MEAN 6.0 17.8 1.1 .21 .15 .72 .05 .041 .74 .86 .08 2.41 2.68 5.14 CWHA, ADI ANTUM -• POLYSTICHUM - WRC: 015 S 6.1 52.0 2.3 .40 1.92 1.34 .07 .520 .13 2.37 0.0 3.12 1.55 11.10 135 s 6.6 19.9 1.8 . 30 .17 .93 0.0 o . c .09 .65 0.0 4.00 4.05 5.90 157 s 6. 8 16.3 1.0 .21 .20 .98 0.0 .314 .79 1.05 0.0 3. 88 1.35 9. 15 MEAN 6.5 29.4 1.7 .30 .76 1.08 .02 .278 .34 1.36 0.0 3.67 2.32 8.72 CWHA, POLYSTICHUM - OPLOPANAX - WRC: 03 s 6.2 15.4 .4 .11 .22 1.26 .03 .019 .53 .78 0.0 3.54 .50 5.00 038 060 6.0 15.3 1.0 .20 .09 .64 0.0 .018 .17 .58 0.0 3.35 .25 3.90 078 085 5.7 21.9 . 1 .06 .81 1.48 .04 1.013 .17 2. 19 0.0 3.59 .46 3. 17 117 070 6.8 8.8 .7 . 12 .02 .40 0.0 .027 .04 1.01 0.0 3.76 1.28 5.61 MEAN 6.2 15.3 .5 . 12 .28 .94 .02 .269 .23 1. 14 0.0 3.56 .62 4.42 CWHA, RIBES - OPLOPANAX - WRC: 029 125 5.6 12.7 .5 .15 .41 .71 0.0 .040 .18 1. 23 .20 1.74 .18 2.93 047 120 6. 6 9.5 .6 . 12 .21 .54 0.0 .090 .09 1.21 0.0 2.60 4.76 5.37 059 100 5.9 21.0 .8 .21 .61 1.48 0.0 . 164 .20 1.44 0.0 3.71 .87 5.12 MEAN 6.0 14.4 .6 .16 .41 .91 0.0 .098 .16 1. 29 .07 2.68 1.94 4.47 OVERALL MEAN 6. 1 19.6 1.0 .21 .42 .95 .05 .254 .62 1.19 .04 2.93 1.86 5.26 F O R E S T E C O S Y S T E M S ( S U M M E R S A M P L I N G . M A T U R E F O R E S T STAND TYPES) : TABLE 4 I P L O T I S A M P L E I D E P T H I P H I C U N D . I C O N C E N T R A T I O N I N M G / L I T R E I N O - I N O - I ( C M . ) | I U M H O C M I C A I MG I K . I N A I F E I N H 4 I N 0 3 I C L I P 0 4 I S 0 4 | S I 0 2 I H C 0 3 I C W H B . I N T E R M I T T E N T S E E P A G E O V E R C U A R T Z D I OR I T E B E D R O C K : 2 8 S 5 . 8 ' 1 1 . 2 . 6 . 2 1 . 1 4 . 6 7 0 . 0 . 0 2 0 0 . 0 . 6 5 0 . 0 2 . 5 0 3 . 0 0 3 . 2 0 2 9 s 5 . 5 1 2 . 7 . 5 . 2 2 . 0 8 . 8 7 0 . 0 0 . 0 0 . 0 . 7 5 0 . 0 2 . 0 0 7 . 5 0 3 . 3 0 0 6 7 s 6 . 2 1 1 . 3 . 7 . '2 7 . 0 4 . 9 3 0 . 0 0 . 0 0 . 0 . 7 0 0 . 0 2 . 0 0 4 . 2 0 3 . 7 0 0 7 7 s 6 . 3 8 . 0 . 6 • 1 7 . . 0 2 . 6 7 0 . 0 . 0 1 0 0 . 0 . 4 5 . 0 1 1 . 5 0 3 . 1 0 3 . 8 0 M E A N 5 . 9 1 0 . 8 . 6 . 2 2 . 0 7 . 7 8 0 . 0 . 0 0 8 0 . 0 . 6 4 . 0 0 2 . 0 0 4 . 4 5 3 . 5 0 C W H B , BLECHNUM - WH - WRC. 0 4 0 0 6 0 5 . 5 1 0 . 6 . 1 . 0 6 . 4 1 . 6 4 0 . 0 . 0 2 5 . 1 7 . 7 3 0 . 0 1 . 7 8 . 2 9 3 . 1 7 0 4 8 0 6 5 5 . 1 1 1 . 5 . 2 . 0 9 . 1 5 1 . 2 4 0 . 0 . . 0 1 1 . 1 1 . 6 8 0 . 0 2 . 3 9 . 5 5 1 . 5 9 0 6 1 0 5 0 5 . 4 1 1 . 9 . 3 . 1 2 . 1 1 . . 6 8 0 . 0 . 0 2 2 • 1 2 . 8 4 0 . 0 2 . 1 2 . 3 1 2 . 8 1 M E A N 5 . 3 1 1 . 3 . 2 . 0 9 . 2 2 . 8 5 0 . 0 . 0 1 9 . 1 3 . 7 5 0 . 0 2 . 1 0 . 3 8 2 . 5 2 C W H B , BLECH;NUM - A F - W H : 2 7 0 4 0 6 . 1 1 9 . 6 . 6 . 1 3 . 4 3 1 . 5 3 0 . 0 . 6 7 0 . 1 9 1 . 7 6 0 . 0 3 . 3 2 . 6 2 4 . 1 5 0 6 2 1 3 5 5 . 1 1 2 . 8 . 3 . 0 7 . 1 6 . 5 2 0 . 0 . 3 5 9 . 2 0 1 . 3 2 0 . 0 3 . 1 4 . 4 5 1 . 7 1 0 9 5 0 5 0 5 . 1 1 4 . 9 . 4 . 2 9 . 0 6 . 9 4 0 . 0 . 0 2 0 0 . 0 1 . 1 0 0 . 0 3 . 0 0 2 . 7 5 2 . 0 0 1 4 9 0 5 5 5 . 2 1 8 . 4 1 . 0 . 3 0 . 2 0 . 7 9 0 . 0 . 0 1 0 1 . 7 7 1 . 0 5 0 . 0 3 . 0 0 3 . 0 0 1 . 2 0 M E A N 5 . 4 1 6 . 4 . 6 . 2 0 . 2 1 . 9 7 0 . 0 . 2 6 5 . 5 4 1 . 3 1 0 . 0 3 . 1 1 1 . 7 0 2 . 2 6 C W H B , V A C C I N I U M - L Y S I C H I T U M • - W R C : -0 3 4 0 7 7 5 . 3 2 0 . 6 . 6 . 2 9 . 4 1 . 9 0 . 0 . 0 . 4 0 2 1 . 0 4 1 . 1 2 0 . 0 3 . 7 0 . 5 0 2 . 5 6 0 4 3 0 2 0 ' 4 . 7 2 2 . 8 . 6 . 1 9 . 3 4 . 7 6 . 0 4 . 0 2 0 . 1 6 . 8 7 0 . 0 6 . 4 8 . 5 0 . 9 8 0 6 5 0 7 0 6 . 0 1 4 . 0 . 4 . 0 7 . 2 4 . 7 8 0 . 0 . 2 2 5 . 2 5 . 8 3 0 . 0 3 . 4 5 . 5 1 3 . 9 0 0 6 8 0 5 5 5 . 6 1 1 . 9 . 2 . 11 . 1 2 . 8 0 0 . 0 . 1 2 8 . 1 5 1 . 1 2 0 . 0 2 . 5 4 . 4 6 3 . 4 2 1 4 4 0 1 0 5 . 5 1 6 . 5 . 8 . 1 8 . 3 0 . 7 6 . 1 7 . 6 0 0 . 1 8 1 . 0 5 . 0 6 3 . 5 0 3 . 2 0 5 . 6 0 1 4 7 0 5 0 5 . 6 1 7 . 9 1 . 4 . 4 1 . 4 4 . 8 3 . 2 6 . 1 1 0 . 1 8 1 . 6 0 . 2 1 6 . 0 0 3 . 6 5 7 . 6 0 M E A N 5 . 4 1 7 . 3 . 7 . 2 1 . 3 1 . 8 0 . . 0 8 . 2 4 7 . 3 3 1 . 1 0 . 0 4 4 . 2 8 1 . 4 7 4 . 0 1 C W H B , VACCINIUM - LYSICHITUM - YC - WRC : ' -0 9 2 0 8 5 5 . 6 1 2 . 3 . 2 . 1 2 . 3 1 . 7 8 0 . 0 . 1 2 4 . 1 6 . 7 6 0 . 0 2 . 2 7 . 4 0 3 . 4 2 0 9 4 0 9 0 6 . 4 1 4 . 8 1 . 1 . 2 9 . 2 1 . 7 3 . 2 0 0 . 0 . 0 4 . 7 0 0 . 0 2 . 5 0 2 . 6 5 5 . 5 0 1 4 3 0 3 0 3 . 9 2 0 . 1 . 6 . 2 4 . 1 8 . 7 0 . 3 1 . 2 4 0 . 2 7 2 . 2 7 . 2 1 3 . 5 0 1 . 8 5 0 . 0 M E A N 5 . 3 1 5 . 7 . 6 . 2 2 . 2 3 . 7 4 . 1 7 . 1 2 1 . 1 6 1 . 2 4 . 0 7 2 . 7 6 1 . 6 3 2 . 9 7 F O R E S T E C O S Y S T E M S ( S U K M E R ' S A M P L I N G , MATURE F O R E S T S T A N D TYPES)_:_ T A B L E 5 |PLOT I SAMPLE I DEPTH! PH I COND.I CONCENTRATION IN MG/LITRE I N C I NO. I (CM.) I lUMHOCMl CA I MG | K I NA 1 FE I NH4 I N03 I CL I POA I S04 I SI02 I HC03 I CWHB, ATHYRIUM - ARUNCUS - RA - S A : . 138 S 6. 7 20.3 2 .0 .31 .13 .84 0.0 .010 .18 .65 .15 2. 00 4.60 8.30 137 S 6. 4 12.4 .9 .24 .14 .65 0.0 0. 0 .44 .55 0.0 2. CO 2.85 5.00 139 s 6. 0 5.9 .5 . 13 .04 . .47 0.0 .010 .09 .40 .01 2. 00 1.25 3. 10 MEAN 6. 4 12.9 1.1 . 23 .10 .65 0.0 . CC7 .24 .53 .05 2. 00 2.90 5.47 OVERALL MEAN 5. 6 14.5 .6 .20 .20 .81 .04 . 131 .25 .95 .03 2. 90 2.10 3.48 481 ITEMS GROUPED 17 19 3 J 11 13 16 STEP I J EPRCR * 2 8 10 9 7 14 18 12 15 20 * > 1 18 20 1.4823647 * 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L I * 2 4 5 1.9546E14 4 1 1 1 1 l.l 1 1 1 1 1 1 1 1 1 1 1 1 1 * 3 14 15 2. 1157464 * 1 1 1 1 1 I I 1 1 1 1 1 1 L I 1 1 1 * 4 16 18 2.6392078 » i i i i i i r i i I I I i i r L _ 1 * • 5 4 a 2.5041777 * 1 1 1 1 L . l 1 1 1 1 1 1 I 1 1 1 * 6 12 17 2.S626EC6 * 1 1 1 1 I I 1 1 1 L I 1 1 1 1 * 7 2 10 3.965C543 * 1 1 l_1 1 1 1 1 1 1 1 1 1 1 * 8 6 11 4.£762617 * I I I I I L I 1 1 1 1 1 1 » 9 14 19 '.5612627 * I I I I I 1 1 1 1 L . l 1 * 10 4 9 6.1872425 * 1 1 1 L - l 1 1 1 1 1 1 * 11 13 14 5.2453744 * I I I 1 1 1 1 1 1 1 * 12 6 7 11.12M55 I I I 1 L . l 1 1 1 * 13 12 13 15.296004 * I I I 1 " | | „ { | * 14 2 4 15.556611 * 1 1 1 1 1 1 1 * 15 1 3 25.251282 l.l 1 1 I I . * 16 12 16 6 4.102295 1 1 1 l l * 17 1 2 66.125534 * 1 1 1 ' 1 * 18 1 6 145.71466 * 1 :. . . . . 1 1 * 19 1 12 271.44580 * * * 1 * * * * * * * * 1 * * * Figure 1 Dendrogram of 20 seepage water samples - spring and summer Figure 2 Dendrogram of 26 seepage water samples - forest stand types 482 I T E M S GROUPED S T E P I J E P R C R 21 10 19 15 16 12 17 13 14 It 18 20 f T ~ c 13 .<.<r42584 * 1 1 1 1 1 1 L I 1 1 1 1 1 1 1 I I 1 1 1 1 * 2 15 16 1.1492472 * 1 1 1 1 1 1 1 1 1 1 1 1 1 f 1 L I 1 1 1 * 1 •j 19_ _2.ttl715.9._ . * l_l 1 l._ _.L L I 1 J _l 1 1 J—t—1 * 4 17 21 3 .3366413 * 1 1 1 l_l 1 1 1 1 1 1 1 I I I I I ! * 5 6 I C 3.144SC6 6 M i l 1 1 i I.I 1 1 1 I I 1 I I I * 6 - 11 3.6<-90135 * I I I I I I I I I 1 I I 1 I I I * 7 5 5 .3090219 * 1 1 1 1 L _ | t i l l 1 1 1 1 1 * fc I E 20 7.C7733^7 * 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 a 15 __S.C33717? * i I I I 1 1 1 1 1 I t I I * 10 I 3 8 .7030258 * I.I 1 1 1 1 1 1 1 1 I I * 11 7 a 5.CC92654 * 1 1 1 1 I I I 1 .1 1 1 1? s 1 r -f 77 51 7 * I I I I I 1 1 1 I I * 13 17 18 .436 11 1 * 1 1 I I 1 I I * 1 14 4 6 18.6S7144 * 1 1 1 1 I I I I * 1 1 5 14 ? ? . ? 3 R ? H I *- i i I I I I t * i 16 I 2 45 .262619 * 1 1 I . I I I ft 1 17 7 I S 53-733536 * 1 • 1 l_ I I * i I H ] 4 ic = . c ; i ioo * I I I I 1? 1 7 330.Et7: 6 * l__ 1 ft 20 I 12 H U .7473 * 1 i 1 * * * * 4 f t f t 4 » 4 * * « « 4 * * # * » * * * * * « Figure 3 Dendrogram o f 21 seepage water samples - ecosystems i n the CWHa subzone I T E M S G R O U P E D 10 15 13 3 14 23 18 12 17 S T E P I j E f R C R 22 16 5 6 11 21 2 19 7 9 20 V * ft f 1 15 18 .2014 * 1 1 1 1 1 1 1 1 1 1 1 1 I.I 1 1 1 1 1 1 1 1 1 ft 2 7 15 • 4C19 * 1 1 1 1 1 1 1 1 1 1 1 I..I I I 1 1 1 1 1 1 1 ft 3 1 3 1 .1020 * 1 1 1 1 1 1 1 1 1 1 1 1 I I I | | | | f | ft 4 6 9 1.60E 3 * 1 1 1 1 1 1 1 1 1 1 I.I 1 1 1 1 1 1 1 ft e e 7 1.6533 ft 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ft * 1 Q 2.8151 ft 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 ft 7 8 12 2.9769 « 1 1 1 1 1 1 1 1 1 L I 1 1 1 1 1 ft e 1 22 3.2C45 ft L . I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ft c B (• 4.3fcJ>3 ft 1 1 1 1 1 1 1 1 1 I I I | I 1 ft ' 10 4 23 4.3625 ft 1 1 1 1 1 1 ft 11 I C 14 5.3670 ft |" | | | | | | 1 1II 1 i1 1 ft 1 ? 1 1 = . F 4 ^ 1 ft I I t I I I ft 13 I C 15 10.-,92339 ft 1 1 1 1 1 ft 14 17 21 12.9C6212 ft I I I I 1 1 1 1 L I 4 1 5 P 1 1 _13^il460.6_ ft 1 1 1 1 1 1 I I I ft 16 1 2 14 .504030 ft 1 1 1 1 1 1 I I ft 17 £ 13 1E.C74921 ft • ~7 i I i 1 1 1 ft n 1 1 0 ? 1 . i f 4 i f . » I I I i 1 1 ft 19 4 5 4 3.-59 244 « i i i 1 1 ft 20 1 4 54.2799a8 ft i i 1 1 ft _ 2 L - _ l.T_ _2.L.3S122.1 * t I I ft 22 l 8 321.60229 * i 1 ft ft ft ft ft 4 # f t f t * f t « # * * f t * * # * 4 ft ft ft ft » ft 4 Figure 4 Dendrogram o f 23 seepage water samples - ecosystems the CWHb subzone i n 483 APPENDIX X CHECK LIST OF PLANT SPECIES The l i s t of plant species i s arranged a lphabet i ca l l y in the order of vascular p lants , bryophytes and l i chens . I t includes a l l species referred to in the text and in the tables and also those l i s t e d by Or loc i (1964). The nomenclature and au thor i t ies for vascular p lan ts , fol lowed Hitchcock et al_. (1955-1969) and Taylor (1966); Crum, Steere and Anderson (1973); Frye and Clark (1937-1947); Lawton (1971); Nyholm (1969); Schof ie ld (1968a, 1968b) and Schuster (1969-1974) f o r mosses and hepatics ; and Hale and Culberson (1970);and Otto and Ahti (1967) fo r l i chens . VASCULAR PLANTS Abies amabilis (Dougl.) Forbes Abies grandis (Dougl.) LindT. Acer circinatum Pursh. Acer macrophyllum Pursh. Achillea millefolium L. Achlys triphylla (Smith) DC. Adenocaulon bicolor Hook. Actaea rubra (A i t . ) W i l l d . Adiantum pedatum L. Agrostis diegoensis Vasey Agrostis scabra W i l l d . Alnus rubra Bong. Alnus sinuata (Regel) Rydb. Amelanchier alnifolia Nutt. Anaphalis margaritjacea (L . ) B. & H. Anemone lyallii B r i t t . Angelica genuflexa Nutt. Aquilegia formosa F isch . Arbutus menziesii. Pursh Arctium minus ( H i l l ) Bernh. Arctostaphylos uva-ursi (L. ) Spreng. Aruncus Sylvester Kos te l . Asarum caudatum L i n d l . Asplenium trichomanes L. Athyrium filix-femina (L. ) Roth. Betula; papyrifera Marsh. Blechnum spicant (L . ) Roth. Boschniakia hookeri Walpers Boykinia elata (Hook.) Shear Bromus vulgaris (Nutt . ) Greene Calamagrostis canadensis (Michx.) Beauv. Cardamine breweri Wats. Carex aquatilis. Wahl. Carex canescens L. Carex deweyana Schw. Carex hendersonii L.H. Bai ley Carex interior L .H. Ba i ley Carex laeviculmis Meinsh. Carex lasiocarpa Ehrh. Carex leptalea Wahl. 485 Carex loptopoda Mack. Carex mertensii Prescott ex Bong. Carex pauoiflora L igh t f . Carex retrorsa Schw. Carex rossii Boott in Hook. Carex sitchensis Prescott in Bong. Carex spectdbilis Dewey Cassiope mertensiana (Bong.) G. Don Chamaecyparis nootkatensis (D. Don) Spach. Chimaphila menziesii (R .B r . ) Spreng. Chimaphila umbellata (L.) Bart . Cinna lati folia (Trev.) Gr iseb. Circaea alpina L. Circaea pacifica Asch. & Mag. Cirsium edule Nutt. ' Cladothamnus pyrolaefloras Bong. Clintonia uniflora (Schul t . ) Kunth. Coptis asplenifolia S a l i s b . Coptis trifolia (L . ) S a l i s b . Corallorhiza maculata Raf. Corallorhiza mertensiana Bong. Cornus canadensis L. ^Cornus nuttallii Aud. Corylus cornuta Marsh. Cryptogramma crispa[L.) R. Br. Cystopteris fragilis (L. ) Bernh. Dactylis glomerata L. Danthonia spicata (L . ) B*eauv. Dicentra formosa (Andr.) Walpers Disporum hookeri (Torr . ) Nicholson Drosera longifolia L. Bros era rotundi folia L. Dryopteris austriaca (Jacq.) Woynar ex Schinz & T h e l l . Dryopteris arguta (Kaul f . ) Watt. Elymus glaucus Buck!. Epilobium alpinum L. Epilobium angustif olium L. Equisetum arvense L. Equisetum fluviatile L. Equisetum hiemale L. Equisetum telmateia Ehrh. Equisetum variegatum Sch le ich . Eriophorum chamissonis C A . Mey. Eriophorum gracile Koch in Roth Erigeron speciosus ( L ind l . ) DC. Festuca occidentalis Hook. Festuca subuliflora Scr ibn . Galium triflorum Michx. Gaultheria ovatifolia Gray Gaultheria shallon Pursh Gentiana soeptrum Griseb. Geum macrophyllum W i l l d . Glyceria elata (Nash)-M.E. Jones Glyoeria striata (Lam.) A .S . Hi tchc. Goody era oblongifolia Raf. Gymnocarpium dryopteris (L. ) Newm. Habenaria orbiculata (Pursh) Torr . Eabenaria saocata Greene Hemitomes conges turn Gray Heuchera glabra W i l l d . ex R. & S. Heuchera micrantha Dougl. ex L i n d l . Hieracium albiflorum Hook. Holcus lanatus L. Holodiscus discolor (Pursh) Maxim. Hypericum anagalloides C. & S. Hypopitys monotropa Crantz Ilex aquifolium L. Impatiens noli-tangere L. Juncus ensifolius Wikst. Kalmia polifolia Wang. Lactuca muralis (L. ) Fresen. Ledum groenlandieum Oeder Lilium columbianum Hanson Linnaea borealis L. Listera caurina Piper Listera cordata (L. ) R. Br. Lonicera ciliosa (Pursh) DC. Lonicera involuerata (Rich.) Banks ex Spreng. Luzula glabrata (Hoppe) Desv. Luzula multiflora. (Retz.) Le j . Luzula parviflora (Ehrh.) Desv. Lycopodium clavatum L. Lycopodium complanatum L. Lycopodium obscurum L. Lycopodium selago L. var..myoshianum Makino Lycopus unifloras Michx. Lysichitum amerieanwn Hulten & S t . John Mahonia nervosa (Pursh) Nutt. Maiantherrum dilatatum (Wood) Nels. & MacBr. Malus fusca (Raf.) Schneider 487 Menyanthes trifoliata L. Menziesia ferruginea Smith Mimulus moschatus Dougl. in L i n d l . Mitella ovalis Greene Mitella pentandra Hook. Moneses uni flora (L . ) Gray Montia parvi folia (Moc.) Greene Montia sibirioa (L. ) Howell Myrioa gale L. Nuphar polysepalwn Engelman. Oenanthe sarmentosa Presl Oplopanax horridus ( J . E . Smith) Miq. Osmaronia cerdsiformis (T. & G.) Greene Osmorhiza ehilensis H. & A. Paehystima myrsinites (Pursh) Raf. Penstemon davidsonii Greene Penstemon serrulatus Menzies ex Smith in Rees Phyllodoee empetriformis (Smith) D. Don Physooarpus capita-pus (Pursh) Kuntze Picea sitchensis (Bong.) Carr . Pinus contorta Dougl. ex Loud. Pinus monticola Dougl. ex D. Don in Lamb. Poa palustris L. Poa pratensis L. Poa trivialis L. Polypodium glycyrrhiza D.C. Eaton Polypodium montense F.A. Lang Polystichum andersonii Hopkins Polystichum munitum (Kau l f . ) Presl Populus tremuloides Michx. Populus trichocarpa T. & G. ex Hook Prenanthes alata (Hook.) D. D ie t r . Prunella vulgaris L. Prunus emarginata (Dougl.) ex. Eaton Prunus virginiana L. Pseudotsuga menziesii (Mirb.) Franco Pteridium aquilinum (L. ) Kuhn Pyrola asarifolia Michx. Pyrola secunda L. Ranunculus repens L. Rhamnus purshiana DC. Ribes bracteosum Dougl-Ribes divaricatum Dougl. Ribes lacustre (Pers. ) Po i r . Ribes sanguineum Pursh Rosa gymnocarpa Nutt. Rosa nutkana Presl Rubus chamaemorus L. Rubus leucodermis Dougl. T. & G. Rubus parvif'torus; Nutt. Rubus pedatus J . E . Smith. Rubus speotabilis Pursh Rubus ursinus Cham. & Schlecht. Rumex obtusifolius L. Salix hookeriana Barrat t Salix lasiandra Benth. Salix scouleriana Barrat t in Hook. Salix sitchensisSanson in Bong. Sambuous pubens Michx. Sanguisorba menziesii Rydb. Sanguisorba miorocephala Presl Saxifraga ferruginea Grah. Scirpus microoarpus Presl Selaginella wallacei Hieron. Smilaoina racemosa (L. ) Desf. Smilacina stellata (L . ) Desf. Sorbus sitchensis Roemer Spiraea douglasii Hook. Stachys ciliata Dougl. ex Benth. Stellaria calycan^ha (Ledeb.) Bong. Stellaria crispa Cham. & Schlecht. Streptopus amplexifolius (L.) DC, in Lam. & Streptopus roseus Michx. Streptopus strep topoi'des (Ledeb.) Frye & Ri Symphoricarpos albus (L. ) Blake Taraxacum officinale Weber in Wiggers Taxus brevifolia Nutt. Tellima grandiflora (Pursh) Dougl. Thalictrum occidentale Gray Thelypteris phegopteris (L.) Slosson Thuja plicata Donn ex D. Don in Lamb. Tiarella laciniata Hook. Tiarella trifoliata L. Tiarella unifoliata Hook. Tofieldia glutinosa (Michx.) Pers. Tolmiea menziesii (Pursh) T. & G. Trautvetteria caroliniensis (Walt.) Va i l Trientalis arctica F i s c h . ' e a : Hook. Trientalis lati folia Hook. • . Trillium ovatum Pursh Trisetum cernuum T r i n . Tsuga heterophylla (Raf.) Sarg. Tsuga mertensiana (Bong.) Carr . Urtica dioica L. Vaccinium alaskaense Howe!1 Vaccinium membranaeeum Douglas ex Hook. Vaccinium ovalifolium Smith in Rees Vaccinium oxycoccus L . Vaccinium parvifolium Smith in Rees Vaccinium uliginosum L . Veratrum viride A i t . Veronica amerieana Schwein. ex Benth. i n Viburnum edule (Michx.) Raf. Vicia amerieana Muhl. Viola glabella Nutt. in T. & G. Viola orbieulata Geyer ex Hook. Viola palustris L. Viola sempervirens Greene 490 BRYOPHYTES Amphidium californicum (Hampe ex C. Muel l . ) Broth. Andreaea rupestris Hedw. Antitrichia curtipendula (Hedw.) B r i d . Atrichum selwynii Aust. ' Atrichum undulatum (Hedw.) P.-Beauv. Aulacomnium androgynum (Hedw.) Schwaegr. . Avlacomnium palustre (Hedw.) Schwaegr. Barbula cylindrica (Tayl . ex Mackay) Schimp. ex Boul . Barbula vinealis B r i d . Bartramia pomiformis Hedw. Bazzania ambigua (Lindenb.) Trevis Bazzania denudata (Torr.) Trevis Bazzania tricrenata (Wg.) Trevis Blepharostoma trichophyllum (L.) Dum. Brachythecium albicans (Hedw.) B.S.G. ^Brachythecium asperrimum (Mi t t , in C. Muel l . ) S u l l . Brachythecium frigidurn (C. Muel l . ) Besch. Bryum capillare Hedw. Bryum pseudotriquetrum (Hedw.) Gaer tn. , Meyer & Scherb. Buxbaumia aphylla Hedw. Calypogeia integristipula Steph. Calypogeia muelleriana (Sch i f fn . ) C. Muel l . Calypogeia neesiana (Massal. & Carest . ) C. Mue l l . Calypogeia suecica (Arn. & Perss. ) C. Muell Calypogeia trichomanis (L.) Corda Campylium hispidulum (Br id . ) M i t t . Cephalozia bicuspidata (L.) Dum.. Cephalozia lammersiana (Hub.) Spr. Cephalozia leucantha Spr. Cephalozia media Lindb. Cephaloziella divaricata (Franc.) Sch i f f n . Ceratodon purpureus (Hedw.) B r i d . Chiloscyphus pallescens (Ehrh.) Dumort. Claopodium bolanderi Best Claopodium crispifolium (Hook.) Ren. & Card. Claopodium whippleanum ( S u l l . ) Ren. & Card. * In 1973 Crum, Steere and Anderson considered th is species as ident ica l with B, frigidurn from which i t mainly d i f f e r s by growth charac te r i s t i cs and habitat ( s l i g h t l y d r ie r ) requirements. Climacium dendvoid.es (Hedw.) Web. & Mohr. Conocephalum conicum (L . ) Dum. Dichodontium -pellucidum (Hedw.) Schimp. Dicranella heteromalla (Hedw.) Schimp. Dicranoweisia cirrata (Hedw.) Lindb. ex Milde Dicranum fuseescens Turn. Dicranum howellii Ren. & Card. Dicranum magus Sm. Dicranum pallidisetum ( B a i l , ex Holz . ) I r e l . Dicranum tauricum Sapeh. Diplophyllum albicans (L. ) Dum. Diplophyllum apiculatum (Evans) Steph. . Diplophyllum obtusifolium (Hook.) Dum. Diplophyllum taxi folium (Wahlenb.) Dum. Douinia ovata (Dicks.) Buch. -Dryptodon patens.(Hedw.) B r i d . Fontinalis howellii Ren. & Card. Frullania nisquallensis S u l l . Grimmia apocarpa Hedw. Grimmia torquata Homsch. ex Grev. Gymnomitrion obtusum (Lindb.) Pears. Gyrothyra underwoodiana Howe Harpanthus flotovianus (Ness) Mees Herzogiella seligeri (Br id . ) Iwats. Heterocladium macounii Best Heterocladivm procurrens (Mi t t . ) Rau & Herv. 1 Homalothecium fulgescens (Mi t t , ex C. Muel l . ) Lawt. Eomalothecium megaptilum ( S u l l . ) Robins. Homalothecium nutallii (Wi ls . ) Jaeg. & Sauerb. Eookeria 'acutifolia Hook. & Grev. Hookeria lucens (Hedw.) Sm. Hygrohypnum ochraceum [Turn, ex W i l s . ) Loeske Hylocomium splendens (Hedw.) B .S.G. Hypnum circinale Hook. Hypnum dieckii Ren. & Card ex Roell Hypnum subimponens Lesq. Isopterygium elegans (Br id . ) Lindb. Isopter^gium pulohellum (Hedw.) Jaeg. ex Sauerb. Isothecium stoloniferum (Hook.) B r i d . Jamesoniella autumnalis (DC.) Steph. Lepidozia reptans (L. ) Dum. Leucolepis menziesii (Hook.) Steere ear L. Koch 492 Lophocolea ouspidata (Nees) Limpr. Locopholea heterophylla (Schrad.) Dum. Lophozia alpestris (Schle ich.) Evans Lophozia incisa (Schrad.) Dum. Marsupella emarginata (Ehrh.) Dumort. Marsupella revoluta (Nees) Lindb. Marsupella sphacelata (Gies.) Dum. Metzgeria conjugata Lindb. Metzgeria pubescens (Schrank) Raddi Mnium spinulosum B.S.G. Mylia taylori (Hook.) S.F. Gray Neekera douglasii Hook. Neckera menziesii Hook. = Metaneekera menziesii (Hook, ex Drumm.) Steere Orthocaulis floerkii (Web. & Mohr.) Buch Pellia columbiana Kraj ina & Brayshaw Pellia epiphylla (L.) Lindb. Pellia neesiana (Gottsche) Limpr. Plagiochila asplenioides (L.) Dum. Plagiomnium insigne (M i t t . ) Koponen . Plagiothecium cavifolium (Br id . ) Iwats. Plagiothecium denticulatum (Hedw.) B.S.G. Plagiothecium laetum B.S.G. Plagiothecium piliferum (Sw. ex C . J . Hartm.) B.S.G. Plagiothecium undulatum (Hedw.) B.S.G. Pleuroclada albescens (Nook.) Spruce Pleurozium schreberi (Br id . ) M i t t . Pogonatum alpinum (Hedw.) Roehl. Pogonatum contortum (Br id . ) Lesq. Pogonatum maeounii (Kindb.) Kindb. & Mac. Pohlia cruda (Hedw.) Lindb. Pohlia nutans (Hedw.) Lindb. Polytrichum commune Hedw. Polytrichum juniperinum Hedw. Polytrichum piliferum Hedw. Porella navicularis (Lehm. & Lindenb.) Lindb. Porella platyphylla (L.) Lindb. Porotrichum bigelovii ( Su l l . ) Kindb. Pseudoleskea bailey Best & Grout ex Grout Ptilidium californicum (Aust.) Underw. & Cook Ptilidium pulcherrimum (Web.) Hampe Eadula complanata (L.) Dum. Rhacomitrium aciculare (Hedw.) B r id . Ehacomitrium caneseens (Hedw.) B r i d . Rhacomitrium heterostichum (Hedw.) B r i d . Rhacomitrium lanuginosum (Hedw.) B r i d . Rhacomitrium varium (M i t t . ) Jaeg. & Sauerb. 493 Rhizomnium glabrescens (Kindb.) Koponen Rhizomnium nudum ( B r i t t . & Wil l iams) Koponen Rhizomnium perssonii Koponen Rhytidiadelphus loreus (Hedw.) Warnst. Rhytidiadelphus squarrosus (Hedw.) Warnst. Rhytidiadelphus triquetrus (Hedw.) Warnst. Rhutidiopsis robusta (Hook.) Broth, in Engl . & P ran t l . Ricoardia palmata (Hedw.) Carruth. Riocardia sinuata (Dicks.) T rev is . Roellia roellii (Broth, ex Roel l ) Andr. ex Crum Scapania americana C. Muel l . Scapania boldnderi Aust. Scapania umbrosa (Schrad.) Dumort. Scapania undulata (L.). Dum. Scouleria aquatica Hook. Scouleria marginata B r i t ton Solenostoma obovatum (Nees) Schust. Solenostoma rubrum (Underw.) Schust. Sphagnum capillaceum(Weiss) Schrank Sphagnum fuscum (Schimp.) K l inggr . Sphagnum girgensohnii Russow Sphagnum magellanicumBritl. Sphagnum palustre L. Sphagnum papillosum Lindb. Sphagnum recurvum P. -Beauv. Sphagnum russowii Warnst. Sphagnum squarrosum Crome Sphagnum subnitens Russ. & Warnst. ex Warnst. Sphagnum tenellum Ehrh. ex Hoffm. Stokesiella oregana ( S u l l . ) Robins. Stokesiella praelonga (Hedw.) Robins. Tetraphis pellucida Hedw. Thamnobryum neckeroides (Hook.) Lawt. Timmia austriaca Hedw. Tritomaria scitula (Tayl . ) Joerg. Ulota megalospora Vent, ex Roell LICHENS Agyrophora rigida (Du Rietz) Llano Alectoria amerieana Mot. Aleetoria sarmentosa (Ach.) Ach. Cladina arbuscula (Wal l r .) Hale & W. Culb • Cladina impexa (Harm.) B. de Lesd. Cladina mitis (Sandst.) Hale & W. Culb. Cladina rangiferina (L.) Harm. Cladonia bellidiflora (Ach.) Schaer. Cladonia cariosa (Ach.) Spreng. Cladonia ehlorophaea (Floerke ex Somm.) Spreng. Cladonia coniocraea (Floerke) Spreng. Cladonia furcata (Huds.) Schrad. Cladonia gracilis (L.) W i l l d . Cladonia maeilenta Hoffm. Cladonia macrophylla (Schaer.) Stenham. Cladonia pityrea (Floerke) Fr. Cladonia pocillum (Ach.) 0. Rich. Cladonia squamosa (Scop.) Hoffm. Cladonia subsquamosa (Nyl.) Vain. Cladonia uncialis (L.) Wigg. Covnicularia aculeata (Schreb.) Ach. Hypogymnia enteromorpha (Ach.) Ny l . Hypogymnia tubulosa (Schaer.) Hav. Hypogymnia vittata (Ach.) Gas. Iemadophila ericetorum (L.) Zahlbr. Lecidea granulosa (Ehrh.) Ach. Lepraria membranacea (Dicks.) Vain. Letharia vulpina (L.) Hue Lobaria pulmonaria (L.) Hoffm. Parmelia sacatilis (L.) Ach. Parmelia sulcata Tay l . Peltigera aphthosa (L.) W i l l d . Peltigera membranacea (Ach.) Nyl . Peltigera polydactyla (Neck.) Hoffm. Peltigera rufescens (Weis.) Humb. Pertusaria ambigens (Nyl.) Tuck. Pilophoron cereolus (Ach.) Th. Fr. Pilophoron clavatus Th. Fr. Platismatia glauca (L.) W. Culb. & C. Culb. Platismatia herrei (Imsh.) W. Culb. & C. Culb. Sphaerophorus globosus (Huds.) V a i n . Stereocaulon glareosum (Sav . ) Magn. Stereocaulon spp. Vmbilicaria angulata Tuck. Vmbilicaria einereorufescens (Schaer . ) Frey Vmbilicaria poluphylla ( L . ) Baumg. Usnea hirta ( L . ) Wigg. Usnea longissima Ach. 496 APPENDIX XI ENVIRONMENT AND VEGETATION TABLES BY A COMPUTER PROGRAM Ecosystem synthesis i s time consuming and becomes u l t imate ly expensive. I t involves several preparations of working tables and a f i n a l typing for the presentat ion. Any l a te r changes in releves mean numerous simple reca lcu la t ions of presence, species s ign i f i cance and repeated rearrangements of the order of p lant spec ies . With respect to a great number of re leves an attempt was made to reduce extremely time consuming manual-visual procedures and to el iminate frequent t ranscr ip t ion errors by using a computer. In contrast to s im i l a r attempts by Benninghoff and Southward (1964), Moore's program ( J . J . Moore, Un ivers i ty Col lege, Dubl in, manuscript without da te ) , Ivimey-Cook and Proctor (1966) and Ceska and Roemer (1971), there was no in tent ion to achieve a c l a s s i f i c a t i o n of ecosystems (vegetation) by a computer. A computer c l a s s i f i c a t i o n procedure, employing presence and absence of species as the standard p r i n c i p l e , have been found not sa t i s fac to ry for releves from plots which are weakly structured and species poor (Ceska and Roemer, 1971). Such releves were common fo r secondary fores t stands typ ica l fo r the study area. Ivimey-Cook and Proctor (1966) compared computerized mathematical techniques and t rad i t i ona l methods of phytocoenology in data synthes is . They con-c luded, that the assoc ia t ion ana lys is techniques of Wil l iams and Lambert (1959, 1960, 1961) repeatedly confirmed the broad features of arrange-497 merits of the data arr ived by the t rad i t i ona l methods, often suggesting useful improvements or rearrangements in de t a i l s . A simple computer program for the pr intout of environment-vege-ta t ion tab les, inc luding explanat ion, legend and input spec i f i ca t ions i s descr ibed. I t allows the c l a s s i f i c a t i o n procedures {sensu Kraj ina and his students) to be used as before, however, without any hand compi l -a t i on . Inef fect ive time needed for conventional table work i s almost el iminated and f i n a l pr intouts can be used with minor modif icat ions d i r e c t l y in the presentat ions. Using th is time-saving computer method, environmental and vegetation tables can be more eas i l y incorporated in the contents of synecological studies. Sincere thanks are expressed to Mrs. L. Kerr, Faculty of Forestry, Univers i ty of B r i t i s h Columbia, for her exce l lent work in wr i t ing the programs. F inancia l support for programming and computer time was k indly provided by Dr. A. Kozak, Faculty of Forestry, Un ivers i ty of B r i t i s h Columbia. The helpful assistance and advice of Mr. S. Hausknecht, Faculty of Forestry and Mr. D. Annas, Department of Botany, Univers i ty of B r i t i s h Columbia are great ly appreciated. 498 5 15-18 Explanat ion, legend and Input Spec i f i ca t ions for Environment Tables Deck of Releve Cards Card * Columns Contents 1 1-3 PLOT NUMBER 2 4-7 ELEVATION (M) 3 8-10 SLOPE GRADIENT (%) refers to the average i nc l i na t i on of the ground surface from a hor izonta l plane 4 11-14 ASPECT (exposure) refers to the compass reading BEDROCK refers to a continuous or non-fragmented con-so l ida ted mater ia ls e i ther exposed or mantled with g lac ia l t i l l at the sample p lo t . Bedrock symbols followed those of Roddick (1965): HBQD - quar tzd io r i t e , where hornblende i s more abundant than b i o t i t e BHQD - quar t zd io r i t e , where b i o t i t e i s more abundant than hornblende HQD - quar t zd io r i t e , where hornblende i s the only maff ic mineral present i n appreciable amounts BQD — quar t zd io r i t e , where b i o t i t e i s the only maffic mineral present in appreciable amounts HD - d i o r i t e ^ where hornblende i s the only maff ic mineral present in appreciable amounts A - amphibolite FOD - re fers to HB - or BHQD but o f the f o l i a t ed st ructure • - . Capital l e t te rs under contents are used as they appear on pr in touts . 499 Card ^ Columns Contents* 6 19-22 TEXTURE refers to the textura l c l a s s of the contro l sec t ion . Symbols followed those o f CSSC (1970, 1974): S - sand LS loamy loam SL - sandy loam L - loam SIL - s i l t loam SI - s i l t SCL - sandy c lay loam CL - c lay loam SICL - s i l t y c lay loam SC - sandy c lay SIC - s i l t y c lay C - c lay HC r heavy c lay 7 23-24 PARENT MATERIAL refers to unconsol idated and more or less weathered mineral or organic mater ia ls from which the solum of a s o i l has developed. I t i s i den t i f i ed by the texture, base saturat ion (%) and the mode of o r i g i n using landform c l a s s i f i c a t i o n ( F u l t o n , 1972). Further d i f f e ren t i a t i on of some genetic categor ies by thickness was done mainly fo r the i n te rp re ta t i on and mapping purposes. The symbols employed a r e : MP - Moraine p la in (loose t i l l over compacted t i l l ) ; r e l a t i v e l y f l a t , deep unconsol idated mater ia ls deposited by g lac ia l ice and th ick enough to cover i r r e g u l a r i t i e s of the underlying bedrock MB - Moraine blanket (loose t i l l over compacted t i l l ) ; s l op ing , more than 1 m th i ck unconsolidated mater ials deposited by g l a c i a l ice with bedrock cont ro l led topography 500 Card * Columns Contents MV - Moraine veneer ( loose t i l l over a d iscont inuous layer o f compacted t i l l ) ; s l o p i n g , l e s s than 1 m th ick unconsol idated mater ia ls deposi ted by g l a c i a l i c e . The mater ia l i s too th in to mask morphological expression of the under ly ing bedrock GF - Und i f fe ren t ia ted g l a c i o f l u v i a l m a t e r i a l s deposi ted by f lowing water adjacent to i c e . A - U n d i f f e r e n t i a t e d f l u v i a l m a t e r i a l s deposited by f lowing water a f t e r r e t r e a t o f i c e GL - Und i f fe ren t ia ted g l a c i o l a c u s t r i n e mater ia ls de -pos i ted in standing f resh water adjacent to i c e and l a t e r exposed GW - U n d i f f e r e n t i a t e d glaciomarine m a t e r i a l s deposi ted in a marine environment adjacent to o r under i c e and l a t e r exposed CB - C o l l u v i a l b lanket ; a heterogenous mixture o f m a t e r i a l s , re leased by var ious processes o f masswasting, which have moved down slope as a r e s u l t of g r a v i t a t i o n a l a c t i o n . Ma te r ia ls are more than 1 m t h i c k , masking the under ly ing bedrock i r r e g u l a r i t i e s CV - C o l l u v i a l veneer; a t h i n , l e s s than 1 m th ick heterogenous mixture of m a t e r i a l s re leased by var ious processes o f masswasting, which have moved down slope as r e s u l t o f g r a v i t a t i o n a l a c t i o n . The mater ia ls are too t h i n to mask morphologic . expression o f the under ly ing bedrock OB - Organic b lanket ; o r g a n i c m a t e r i a l s more than 1 m t h i c k , masking i r r e g u l a r i t i e s o f under ly ing mater ia ls of another genet ic c a t e g o r y . They conta in more than 30% o f o rgan ic matter and are saturated fo r most o f the. year 0V - Organic veneer; a t h i n , l e s s than 1 m th ick l a y e r o f organic mater ia ls deposited on bedrock, f r a g -mental mater ia ls or on mate r ia ls o f other genet ic c a t e g o r i e s . The mater ia ls are too th in to cover morphologic expression of the u n d e r l y i n g bedrock. They contain more than 3.0% o f o r g a n i c matter and are not u s u a l l y saturated with water f o r more than a few days. 501 Card Columns Contents 8 25-27 SOIL DEPTH (CM) was measured from the surface of the f i r s t mineral horizon or from; the surface of the. s o i l p i t , as in the case of organic: s o i l s , down t r j the: l i t h i c layer or to a r e s t r i c t i v e layer . In few cases the measurements re fer to the s o i l depth, which could be pract icab ly reached by d igging, such i n the s o i l s with a high water table 9 28 COARSE FRAGMENTS refer to the names, s i z e s , shapes and kinds of fragments which are designated as fol lows: G - Grave l ly ; dominantly gravel and coarse sand sized material (1 cm up to 25 cm i n diameter) \ \ R - Rubbly; dominantly angular rock fragments (1 cm \ up to 25 cm in diameter) S - Stony; dominantly angular rock fragments (25 cm up to 50 cm in diameter) ; B - Bouldery; dominantly i r r egu la r l y shaped angular fragments (more than 50 cm in diameter) 10 29-30 CONTENTS OF COARSE FRAGMENTS {%) refer to the estimated amount of g rave l , rubble, stones and boulders , approx i -mately 1 cm in diameter and larger in the s o i l p r o f i l e when expressed as a volume percentage o f the p ro f i le c ross-sect ion 11 31-33 HYGROTOPE refers to the moisture regime classes of s o i l s studied in the CWH zone. In th is sense i t i s approx i -mately equivalent to a new scheme of s o i l drainage c l a s s i f i c a t i o n proposed by Leskiw (1973). Hygrotope represents a part of the funct ional (edatopic) level of synecological in tegra t ion , which i s app l ied through an edatopic g r id matr ix, composed, of two major gradients hygrotope and trophotope (nutr ient regime) as proposed by Pogrebnyak (1930). Symbols employed for the hygrotope c lasses (after Kraj ina 1969): VX - very xe r i c X - xer ic SX - subxeric 502 C a r d Columns C o n t e n t s SM - s u b m e s i c M - m e s i c SHG - s u b h y g r i c ( w i t h a t e m p o r a r y s e e p a g e ) HG - h y g r i c ( w i t h a p e r m a n e n t s e e p a g e , m o s t l y 30 t o 60 cm be low t h e s o i l s u r f a c e SHD - s u b h y d r i c ( w i t h a pe rmanen t s e e p a g e l e s s t h a n 30 cm be low t h e s o i l s u r f a c e o r w i t h more o r l e s s s t a g n a n t w a t e r , s a t u r a t i n g t h e w h o l e p r o f i l e ) HD - h y d r i c ( s u b a q a e o u s s o i l s - i n w h i c h w a t e r i s above s o i l s u r f a c e f o r mos t o f t h e t i m e d u r i n g t h e v e g e t a t i v e s e a s o n ) 12 3 4 - 3 6 GROUND WATER DEPTH (CM) r e f e r s t o t h e d e p t h f rom t h e s u r f a c e o f t h e f i r s t m i n e r a l h o r i z o n ( o r f rom the s u r f a c e o f t h e s o i l p i t i n the. c a s e o f o r g a n i c s o i l s ) where seepage o r w a t e r t a b l e was e n c o u n t e r e d 13 3 7 - 4 0 SOIL SUBGROUP MODIFIER ( S o i l R e s e a r c h I n s t i t u t e 1973) was u s e d t o a c h i e v e a f i n e r d i f f e r e n t i a t i o n among t h e s o i l s u b g r o u p s . The s y m b o l s emp loyed a r e : L - L i t h i c r e f e r s t o t h e s o i l s , * w h i c h , i n a d d i t i o n t o t h e c h a r a c t e r i s t i c s o f t h e m a j o r s u b g r o u p s , have a l i t h i c c o n t a c t be tween 10 a n d 50 cm f r o m t h e m i n e r a l s u r f a c e G * - ( G l e y e d ) r e f e r s t o t h e s o i l s , w h i c h , i n a d d i t i o n t o t h e c h a r a c t e r i s t i c s o f t h e m a j o r s u b g r o u p s , do n o t meet t h e s p e c i f i c c r i t e r i a s e t f o r t h e d e s i g n a t i o n o f t h e g l e y e d m o d i f i e r G - G l e y e d r e f e r s t o t h e s o i l s , w h i c h , i n a d d i t i o n t o t h e c h a r a c t e r i s t i c s o f t h e m a j o r s u b g r o u p s , have e v i d e n c e o f g l e y i n g w i t h i n 1 m f r om t h e m i n e r a l s u r f a c e as f o l l o w s ; : a - m o t t l i n g ( f a i n t t o p r o m i n e n t ) w i t h i n 50 cm o f t h e m i n e r a l s u r f a c e b - d i s t i n c t o r p r o m i n e n t m o t t l i n g w i t h i n 1 m o f t h e m i n e r a l s u r f a c e 0 * - ( w i t h o r t s t e i n d e v e l o p m e n t ) r e f e r s t o the s o i l s , w h i c h , i n a d d i t i o n o f t h e c h a r a c t e r i s t i c s o f t h e m a j o r s u b g r o u p s , have p r e s e n t an o r t s t e i n h o r i -z o n , t h a t does n o t meet t h e s p e c i f i e d l i m i t s f o r t h e d e s i g n a t i o n o f a cemented o r t s t e i n h o r i z o n 503 * Contents 0 - (with or ts te in ) refers to the s o i l s , which, in addi t ion to the charac te r i s t i cs o f the major subgroups, have present an o r t s t e i n horizon, that i s st rongly cemented and t ha t occurs a t leas t one th i rd of the exposure SOIL SUBGROUP (CSSC 1970, 1974), re fers to the th i rd category in the System of s o i l c l a s s i f i c a t i o n for Canada. The s o i l c l a s s i f i c a t i o n of Kubiena (1953) was used in a few cases for the c l a s s i f i c a t i o n of very shallow organic s o i l s Symbols employed for the s o i l subgroups are : OFHP - Orthic Ferro-Humic Podzol MFHP - Mini Ferro-Humic Podzol . SFHP OHFP - Sombric Ferro-Humic Podzol - Orthic Humo-Ferric Podzol MHFP - Mini Humo-Ferric Podzol SHFP - Sombric Humo-Ferric Podzol LP - L i t h i c Podzol OSB - Orthic Sombric Brunisol ODB - Orthic Dystr ic Bruniso l OR - Orthic Regosol CR - Cumulic Regosol OHG - Orthic Humic Gleysol OG - Orthic Gleysol TYPM - Typic Mesiso.l TERM - Ter r i c Mesisol TYPH - Typic Humisol TERH - Ter r i c Humisol LH L i t h i c Humisol 504 Card Columns Contents * TYPF - Typic Fo l i so l LF - L i t h i c Fo l i so l PRRA - Protoranker (Kubiena, 1953) 15 45-48 HUMUS FORM refers to the c l a s s i f i c a t i o n of so i l organic layers by the i r respect ive pH, C/N r a t i o and thickness of F- and H-layers in to several c lasses (Bernier , 1968). Symbols used are : H-MR - H-mor (raw prominent F-MR - F-mor (raw prominent MD - moder MU - mull HDMR - hydromor HDMD - hydromoder HDMU - hydromull 16 49-50 THICKNESS (CM) refers to the to ta l th ickness of s o i l organic layers (ectorganic l a y e r s - - W i l de, 1971), res t ing on the mineral surface of the s o i l s . In the case of organic s o i l s the thickness re fe r s to the f i r s t , morphological ly d i s t i n c t layer 17 51-53 pH refers to the measurement of reac t ion of ground, composite samples of s o i l organic l a y e r s . The deter-mination of pH was car r ied out i n 1 : 4 organic matter - water s i u r r i e s 18 54-56 AGE (YRS) refers to age determinations that were made on a pa r t i cu la r plot by counts from increment borings. Age determinations were made of dominant or codominant t rees , i f a pa r t i cu la r species was absent in higher s t r a t a . A correct ion factor was added to the counts using the tables of the B r i t i s h Columbia Forest Serv ice , Inventory Div is ion ( in Forestry Handbook, The Forest Club, 1971) 505 Card C o l u m n s Contents* 19 57 GROWTH CLASS of Douglas-fir - DF 20 58 GROWTH CLASS of western hemlock; - WH 21 59 GROWTH CLASS of western redcedar - WRC Growth class refers to a r e l a t i v e scale of growth f o r the above trees species as applied by Krajina (1969) and modified i n the study to f i t the s i t e tables used by the B r i t i s h Columbia Forest Service. Growth classes are based on s i t e indices (SI/l00) of the respective species as shown below: \ • . • • Growth classes for Douglas-fir {Pseudotsuga menziesii var. menzie-sii), western hemlock (Tsuga heterophylla) a n d western redcedar (Thuja \ • plicata). Growth Class Douglas-fir western hemlock western redcedar Site Index (SI/100) in metres (feet) 1 more than 60 (200) more than 45 (150) more than 45 (150 2 52-60 (170-200) 40-45 (130-150) 40-45 (130-150) 3 46-52 (150-170) 35-40 (115-130) 35-40 (115-130) 4 40-46 (130-150) 31-35 (100-115) 31-35 (100-115) 5 34-40 (110-130) 27-31 (85-100) 27-31 (85-100) 6 28-34 (90-110) 23-27 (75-85) 23-27 (75-85) 7 22-28 (70-90) 19-23 (65-75) 19-23 (65-75) 8 15-22 (50-70) 15-19 (50-65) 15-19 (50-65) 9 less than 15 (50) less than 15 (50) le s s than 15 (50) Capital l e t t e r s under contents are used as they appear on p r i n t o u t s . 506 Card Columns Contents* 22 60-63 NT/HA (ALL DBH) refers to a number of trees per hectare more than 10 cm (4 in . ) in diameter as calcu lated from the measurements of diameters at 1.3 m height included in the sample p lo t . 23 64-66 BA/HA (SQ. NI.) refers to the basal area per hectare as ca lcu lated from the measurements of diameters of a l l trees greater than 10 cm in the diameter at 1.3 m height included in the sample p lo t STRATA COVERAGE [%) AND GROUND COVERAGE (%) re fer to the area (or projected area) covered by the indicated s t ra ta or mater ia l when expressed as a percentage of the p lo t area. Symbol used are: 24 67-68 A LAYER - dominant, codominat, intermediate and supressed trees over 10 m (30 feet) i n height 25 69-70 B LAYER - sap l ings , shrubs and woody plants less than 10 m (30 feet) and over 15 cm (6 inches) in height 26 71-72 C LAYER - small woody plants less than 15 cm (6 inches) in height and a l l herbaceous plants 27 73-74 D LAYER - bryophytes, l ichens and seedl ings 28 75-76 H & MS - humus ( so i l organic layers) and mineral s o i l 29 77-78 DW - decayed wood 30 79-80 R & S - rock and stones Explanat ion, Legend and Input Spec i f i ca t ions for Vegetation Tables Nomenclature of ecosystem units followed standard phytosocio-log ica l pract ices (Drees, 1953; Neuhausl, 1968). A s imp l i f i ed nomen-c lature i s used in the text to ease communications on the operational l e v e l . The nomenclature of ecosystem units at the biogeocoenotic 507 level was supplemented by habitat characteristics, in which case the combination of the humus form, soil subgroup and parent material is appended. In vegetation tables species are arranged vertically in the following order: (a) by strata (ST) and layers, (b) by decreasing presence (P) values within a strata, (c) by decreasing mean species significance values (MS), where presence values were identical within the strata, and (d) alphabetically, i f presence and mean species significance values within the strata were identical. Deck of Releve Cards \ Card Columns Contents 1 1 - 3 Plot number 2 4-5 Card number in a releve 3 6 ST (strata: symbols and coding on punch cards are used as follows: Symbol Code Description Al 1 Dominant and codominant trees A2 2 Intermediate trees A3 3 Suppressed trees over 10 m (30 ft) in height Bl 4 Saplings and shrubs between 2 and 10 m (6 and 30 ft) in height B2 5 Shrubs and woody plants between 15 cm and 2 m (6 in. and 6 ft) in height C 6 Small woody plants less than 15 cm (6 in) and all herbaceous plants DH 7 Bryophytes, lichens and seedlings DW 8 Bryophytes, lichens and seedlings on decayed wood DR 9 Bryophytes, 1ichens and seed!ings on rocks and stones 508 Card Columns Contents 4 7-9 Code number of a species (see a deck of species cards) 5 10-11 Species rat ings are based on the Domin-Krajina scale (Kra j ina , 1933) and are given by two f i gu res , i . e . species s ign i f i cance and vigor respec t i ve ly . Symbols and coding of species s ign i f i cance are as fo l lows: Symbol Code Corresponding Cover value (%) Descr ipt ion + -1 0.2 very sparsely present, domin-ance very small (0:1-0.3%) 1 1 0.7 sparsely present, dominance small (0.3-1 .0%) 2 2 1.5 very sca t te red , dominance small (1.0-2.2%) 3 3 3.5 scat tered to p l e n t i f u l , domin ance 2.2-5.0%; 4 4 7.5 often present , dominance 5.0-10% 5 5 17.5 often present, dominance 10-25%, 6 6 29.0 any number of i nd i v i dua l s , dominance 25-33%•• : 7 7 41.5 any number of i n d i v i d u a l s , dominance 33-50% 8 8 62.5 any number of i nd i v i dua l s , dominance .* 50-75%, . 9 9 87.5 any number of i nd i v i dua l s , dominance • over 75% • Card Columns Contents 6 12 V i go r r a t i ng s are a f t e r Peterson (1964). Symbols and coding o f spec ies v i g o r are used as f o l l o w s : Symbol Code .. De s c r i p t i o n 0 4 Spec ies dead + 0 v i g o r poor 1 1 v i g o r f a i r 2 •' 2 . v i g o r good 3 3. v i g o r e x c e l l e n t Code number of a spec ies (3 co lumns) , a spec ies s i g n i f i c a n c e (2 columns) and vigor 5- (1 columns) f o r o the r spec ies w i t h i n a s t r a t a are coded p r o g r e s s i v e l y on the ca rd i n the desc r i bed o rde r , i . e . the code number o f the next spec ies w i l l be p laced i n t o the columns 13 -15 , the-spec ies s i g n i f i c a n c e i n t o the columns 16-17 and the spec i e s v i g o r i n t o the column 18, r e s p e c t i v e l y . Thus one punch card may c o n t a i n up;to 12 spec i e s and t h e i r r a t i n g s . I f there are more spec ies i n a s t r a t a the cod ing cont inues on a new c a r d . Releve cards are o rde r ed accord ing to s t r a t a w i t h i n a p l o t . Other Input S p e c i f i c a t i o n s and Ca l c u l a t i o n s Deck o f Spec ies Cards Card Columns Contents 1 1-3 Code number o f a spec ies 2 4-24 Gener ic name o f a spec ies 510 Card Columns Contents 3 25-43 Spec i f i c name of a species 4 44-80 Author i ty for a species Species cards are ordered numerically by the species code numbers. The f u l l species name i s pr inted in vegetat ion tables, however, author-i t i e s fo r the species are not read and p r in ted . The deck o f species may be used advantageously for a check l i s t of species. I t i s recommended to arrange the deck of species cards a lphabet i ca l l y in the order of vascular p lants , bryophytes and l i chens . Deck of Sort ing Cards The same deck i s used for both environment and vegetat ion tab les, which are run separately on the computer. The order of the tables w i l l correspond to that of the deck of sort ing cards. (a) T i t l e card: Card Columns Contents 1 1-80 Any preferred designation f o r a synsystematic uni t (The t i t l e may be extended on several cards) (b) P lot card: Card Columns Contents 1 1 - 4 Number of releves in the unit 2 . 5 - 8 Releve (plot) numbers, in the consecutive groups of four columns • 511 Card C o l u m n s Contents 3 9-12 The total number of 19 releves: can be accommodated on a card which corresponds to the. space ava i l ab l e on e tc . the pr in touts . 76-80 Each t i t l e card must be fol lowed by i t s respect ive p l o t number card. Computations Used in Vegetation Tables Mean species s ign i f i cance (MS) was ca lcu la ted on the basis of the corresponding cover values. Each species s ign i f i cance value was t rans-formed to the corresponding cover value; the mean was ca l cu la ted and assigned to a cover c l a s s , which was d iv ised into, ten i n t e r v a l s . Then the mean was transformed back into the o r i g ina l scale o f species s ign i f i cance with two s i gn i f i can t f i gu res . Working with a non-l inear sca le , t h i s ca lcu la t ion was preferred to the mean ca l cu la ted d i rec t l y from f igures of species s ign i f i cance . The mean species s ign i f i cance and the range of species s ign i f i cance were ca lcu la ted f o r a l l releves and spec ies , whereas ca lcu la t ions for v igor were omit ted. Presence was ca lcu lated as fo l lows : Number of occurrences of species P = _ x 100 . Number of releves in a un i t 512 Percent values of presence (P) are pr inted in the tables as per-cent, according to Braun-Blanquet (1928, 1932), scale of presence and constancy: Species Occurring on Percent o f .P l o t s Presence (constancy) Class Descript ion 81-100 V constant ly present 61-80 IV mostly present 41-60 III of ten present 21-40 II seldom present 1-20 I rare Descr ipt ion of the Computer Program  Language , The program was wr i t ten in Fortran IV, G - l e v e l . I t can be u t i l i z e d on any computer system using Fortran compi lers. Minor changes w i l l be needed to adapt th is program to other systems, since two subroutines i n -corporated in publ ic f i l e s at the Univers i ty of B r i t i s h Columbia's computer f a c i l i t y were used. These subroutines are UBC IS0RT and UBC CHARACTER. Although these subroutines are unique to the Univers i ty o f B r i t i s h Columbia's f a c i l i t y in basic programming they would undoubtedly be ava i lab le at other computing f a c i l i t i e s , since they are subroutines that are used extens ive ly . 513 General Programming Steps 1. The species names are read and the subroutine CHAR manipulates the names in to the proper pos i t ion on each l i n e . 2. The t i t l e i s read i n . 3. The number of p lots to be included in each group are read i n . 4. The data i s now read i n . 5. A check rout ine i s performed to make sure the p lo t data read in i s the one spec i f i ed . 6. Transformation of species s ign i f i cance and vigour takes place so that the values can be used as subscr ipts from 1 to jn. 7. The species s ign i f i cance and v igor values are now transformed from coded values to the appropriate values to be pr in ted. 8. The data i s now put in to the proper vegetation layer where i t occurs and located in a scratch f i l e . 9. Subroutine HEAD i s ca l l ed and headings pr inted on each page. 10. The data contained in the scratch f i l e s i s ca l l ed and pr inted in the appropriate format. 514 Array and Storage Requirements Dimension SP(9,400), NP(19), ISP(12), ISG(12), IVG(12), VL(10), SIG1(10), VIG(6), SIG2(10), SIG3(11), KVG(6), T(20) , SV(50,100), IFLAG(IOO), XING(IO), MIN(IOO), MAX(IOO), ISFLAG(400), JFLAG(IO). The use and meaning of the preceding parameters are defined below: SP - Array containing the to ta l number of species encountered NP - Number of p lots l i s t e d across one page ISP - Number of species coded across one data card ISG - Number of species s ign i f i cance values coded across one data card IVG - Number of vigour values coded across one data card VL - Total number of vegetation layers encountered SIGI - Array containing the mean species s ign i f i cance values to be used in the ca l cu la t i on of mean species s ign i f i cance SIG2 - Array cdntaining the species s i gn i f i cance values to be pr inted SIG3 - Array containing the mean values used i n the ca lcu la t i on of presence VIG - Array containing the v igor c lasses to be pr inted KVG - Array containing the v igor c lasses coded SV - Matr ix denoting species s ign i f i cance and vigour values to be pr inted for each species by vegetation layer T - T i t l e IFLAG - Indicates in which row and column a species i s located in a matrix XING - Calculates in which tenth of mean species s ign i f i cance a species l i e s . XINC i s set to 1/10 of a species s ign i f i cance c lass MIN Calculates the range of species s i gn i f i cance values that can - occur. 100 indicates the number of species able to occur in one MAX layer 515 ISFLAG - D imens i oned t o i n c l u d e t h e t o t a l number o f s p e c i e s o c c u r r i n g , and i n d i c a t e s whe t he r a s p e c i e s h a s o c c u r r e d once w i t h i n a v e g e t a t i o n l a y e r in; t h e o u t p u t t a b l e JFLAY - I n d i c a t e s t h e p r e s e n c e o f a v e g e t a t f o n l a y e r i n t h e o u t p u t . The p rog ram f o r t h e e n v i r o n m e n t a l t a b l e s has been a l s o w r i t t e n i n F o r t r a n I V , G - l e v e l l a nguage . I t i s l i s t e d i n T a b l e 1 . T h e program f o r t h e v e g e t a t i o n t a b l e s i s l i s t e d i n T a b l e 2 . \ O u t p u t \ The e n v i r o n m e n t and v e g e t a t i o n t a b l e s in Append i x X I I a r e p r i n t -o u t s W d a t a c o l l e c t e d i n t h e s t u d y . Some m i n o r changes i n t h e f o rma t a r e p o s s i b l e , w h i c h c o u l d r e s u l t i n an o v e r a l l improvement a n d p o s s i b l y some e x t e n s i o n o f t h e number o f r e l e v e s on ea ch t a b l e . A l s o d a t a e n t r y can be m o d i f i e d ; f o r i n s t a n c e v i g o r r a t i n g s can be r e p l a c e d by s o c i a b i l i t y v a l u e s and s i m i l a r l y . Computer t i m e f o r t he e n v i r o n m e n t t a b l e s was 0 . 9 m i n u t e s , w i t h an a p p r o x i m a t e c o s t o f t h e run $ 2 . 7 5 ; f o r t h e v e g e t a t i o n t a b l e s 2 . 3 m i n u t e s and $ 14 . 0 0 r e s p e c t i v e l y , ba sed on t h e t o t a l number o f 158 r e l e v e s and 23 s y n s y s t e m a t i c u n i t s . 516 TABLE 1 L i s t i n g of the Program f o r the Environmental Tables FORTRAN IV G COMPILER MAIN 02-18-75 00:26:57 PAGE 0001 0001 . DIMENSION T ( 6 0 ) , K ( 2 9 ) , X ( 2 9 ) , Y 1 2 9 ) , X P < 1 9 ) , H ( 6 , ,29),TAB(29, 19) 0002 DIMENSION AVGI29),P(19),XN(29),XXI 29) 0003 COMMON TAB,XN,AVG,T,H 0004 DATA K/0,1,1,4*0,1,0,0,1,3*0,15*1/,B/' ' / . Z / 1 '-9</ 0005 READI5.2) H 0006 102 READ!5,13.EN0=100) T 0007 13 FORMAT(20A4) 0008 READ15.15) NP,(PI I),1=1,NP) 0009 15 FORMAT!14,19(IX,A3)) 0010 2 FORMAT (18 A4 ) 001 1 REWIND 4 0012 DO 4 1=1,29 0013 DO 6 J = l , 1 9 0014 6 TABt I , J ) = B 0015 IF IKl11.EQ.1) GO TO 7 0016 AVGI I ) = B 0017 GO TO 4 0018 7 AVGI I 1 = 0. 0019 XN(I)=0. 0020 4 CONTINUE 0021 KP=0 0022 16 READ(4,3,END=101) Y 0023 3 FORMAT!A3,A4,A3,3A4,A2,4A3,3A4,A2,2A3,3A1,A4 .A3.7A2) 0024 DO 18 1=1,NP 0025 I F ( Y ( 1 ) . E Q . P I I ) ) GO TO 19 0026 18 CONTINUE 0027 GO TO 16 0028 19 KP = I 0029 DO 8 1 = 1,29 0030 T A B l I , K P ) = Y ( I ) 0031 XXI1)=Y(1) 0032 IF(K(1).EQ.1.AND.YI I).EO.B) XXII)=Z 0033 8 CONTINUE 0034 REWIND 7 0035 WRITEI7.9) XX 0036 9 FORMAT!A3.A4,A3.3A4,A2,4A3,3A4,A2,2A3,3A2,A4 .A3.7A2) 0037 REWIND 7 0038 READI7.10) X 0039 10 FORMAT!A3.F4.0.F3.0,3A4,A2,F3.0,2A3,F3.0,3A4 1F4.0.F3.0.7F2.0) ,F2.0,2F3.0, 3F2.1, 0040 DO 12 1=1,29 0041 IF(K<I).EO.O) GO TO 12 004 2 IF(XI I ).LT.O.) GO TO 12 0043 AVGI 1 ) = AVG( I )+X( I ) 0044 XN(I)=XN(I 1 + 1.0 0045 12 CONTINUE 0046 GO TO 16 0047 101 CALL TABLE(K) 0048 GO TO 102 0049 100 WRITE16.200) 0050 200 FORMAT(•1•) 005 1 STOP 0052 END TOTAL MEMORY REQUIREMENTS 0007BE BYTES COMPILE TIME = 0.3 SECONDS TABLE 1 (Continued) 517 FORTRAN IV G COMPILER TABLE 02-18-75 00:26:57 PAGE 0001 0001 0002 000 3 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0D40 0041 0042 004 3 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 006 3 0064 0065 0066 4 22 5 11 15 16 17 18 19 7 9 12 13 14 20 21 10 SUBROUTINE TABLEIK) DIMENSION K ( 2 9 ) , T A B l 2 9 , 1 9 ) , X N ( 2 9 ) , A V G ( 2 9 ) , T ( 6 0 ) .HI 6,29) OOUBLE PRECISION F(36),FMT(471,B COMMON TAB,XN.AVG.T.H DATA F/', IX,A3',•,A4',•,IX,A3', 3*',A4•,•,2X,A2•,4*•,1X,A3•, 13*',A4',•,2X,A2',2*',IX,A3',3*',3X.A1•,•,A4•,•,IX,A3•,7*',2X,A2', 2' < I X ' , • , " I " •,•,2X,A4',•,3X',•,F6.1' , • ) • , •,6A4'/ DATA B/' •/ DATA IPAGE/O/ IF(IPAGE.GT.0) GO TO I FMT(1)=F(30) FMT(3)=F(36) DO 3 1=2,42,2 FMT(I) = F ( 3 1 ) FMT(43)=F(33) FMTI44)=B FMT(46)=F (31 ) FMT(47)=F(35) WRITE(6,2 ) FORMAT( ' IENVIRONMENT-VEGE T AT I ON TABLE, PART 1 • ,55X,' COASTAL WESTER IN HEMLOCK ZONE, U.B.C.R.F.') IPAGE=IPAGE+1 WRITE(6,4) T FORMAT!* FOREST ECOSYSTEM: •,20A4/(19X.20A4)) WRITE(6,22I [PAGE FORMAT(124X,'TABLE' , 13) WRITEI6.5) FORMATtIX,1311'-•)) DO 10 1=1,29 DO 11 J=5,41,2 F M T ( J ) = F ( I ) FMT(45)=F(32) IF(K( I ) .ECI.O) GO TO 6 I F I X N l I l . L E . O . ) GO TO 6 AVG( I ) = AVG(.I )/XN( I ) FMT145)=F(34) WRITE I 6,FMT) < HI J , I > . J= 1, 6 ) , ( T A B ! I , J ) , J = 1 , 1 9 ) , A V G ( I ) IF ( I . E O . 1 1 GO TO 15 IF ( I . E Q . 4 ) GO TO 16 IF( I .EO.13) GO TO 17 IF ( I.EQ.16) GO TO 18 GO TO 10 WRITEI6,7) WRITE(6,5) WR1TEI6.9) GO TO 19 WRITE 16,21) WRITE(6,20) WRITE(6,12) GO TO 19 WRITE(6,21) WRITE(6,20) WRITE(6,13) GO TO 19 WRITE(6,21) WR1TE(6,20) WRITEI6,14) WRITE(6,20) FORMAT!'+',126X,•MEAN') FORMAT( • I PHYSIOGRAPHY',12X, •I•,1914X,' I ' 1,9X,• I ' ) I SOIL',20X,' I•,19I4X,• I' 1,9X,•I•) IHUMUS',19X,'|',19(4X,'|'),9X,'|') I VEGETATION',14X,• I•,19(4X,•I •),9X,• I ' ) I • ,24 1'-•),• I •,19(4X,• I" I ,9X,•I•) I •,24X,•I•,19(4X,• I') ,9X, • I • ) FORMAT!• FORMAT(« FORMAT(' FORMAT(• FORMAT(• CONTINUE WRITE(6,5) RETURN END TOTAL MEMORY REQUIREMENTS 000968 BYTES COMPILE TIME = 0.3 SECONDS TABLE 2 518 L i s t i n g of the Program for the Vegetation Tables FORTRAN IV G COMPILER MAIN 11-08-74 0 l : 4 2 : 3 e PAGE OOOl C KAREL KLINKA VEGETATION DATA 0001 DIMENSION S P ( 9 , 4 0 0 ) , N P ( 1 9 ) , I S P ( l 2 ) t I S G ( l 2 ) f I V G ( 1 2 ) 0002 DIMENSION VL ( 10) , S I G H 10) , VIG16) ,SIG2( 10) , SIG3I 11 ) 000 3 DIMENS I ON K V G ( 6 ) , T ( 6 0 ) , S V ( 5 0 , 100),IFLAG(ICO),X INC 110),MIN( 000-, DI MENSI ON MAX(100),ISFLGI400),JFLAG(101 0005 DATA ULNK/' •/ 0006 DATA VL/' Al • , < A2' , « A3 1 , MU •, «B2', ' C , • DH • , 'DW, ' DR ' , 'E« / 000 7 DATA SIG1/0.2,0.7,1.5,3.5,7.5.17.5,29.0,41.5,62.5,87.5/ 0001) DATA SIG2/ , + ' , M , , , 2 , , ' 3 , , , 4 , , , 5 , , , 6 ' , ' 7 ' , , 8 , , , 9 ' / 0009 DATA S I G l / . 1 , - 3 , 1.0, 2.2, 5.0, 10. ,25.,33.,5 0. ,75. ,100./ 0010 DATA VIG/' + ','1' , 1 2 " , « 3 ' , ' 0 ' , • •/ 001 I DATA KVG/'0•,'1 1,'2','3*,'4', 1 •/ 0012 COMMON IP 0013 CALL CHAR 0014 DO 18 INC=1,10 0015 XINC1INC)=(SIG3( INC + D - S I G 3 I INC ) 1/10. 0016 18 CONTINUE 0017 2 RE A D ( 1 2 , l , E N D = 9 9 9 ) I , ( S P 1 J , I ) , J = 1 , 9 ) 0018 1 F0RMAT(I3,8A4,A3) 0019 GO TO 2 0020 999 DO 50 1 = 1,10 0021 REWIND I 0022 50 J F L A G ( I ) = 0 0023 IP=0 0024 RE AD(13,12,END=9999) T 0D25 12 FORMAT(20A4) 0026 CALL SET(400,ISFLG.O) 0027 NNSP=0 0028 READ(13,3) JP.NP 0029 3 FORMAT!14,191IX,A3)) 0030 KN=JP*2+9 0031 REWIND 0 0032 98 READ! 0,5, END=6) IPLT, I VL , ( ISP (K ), ISG ( K ), IVG (K ), K= 1, 12 ) 0033 5 FORMAT ( A3, 2X, I 1,12(13,12,AD) 0034 DO 7 1=1, JP 0035 I F ( I P L T . E O . N P I I ) ) GO TO 8 0036 7 CONTINUE 00 37 GO TO 98 0036 8 CONTINUE 0039 DO 99 K=1,12 0040 I F I I S P ( K ) . E Q . O ) GO TO 99 0041 IFIIVL.EQ.O) IVL=10 0042 DO 60 KK=1,6 0043 I F(IVGIK).EO.KVG(KK)) GO TO 61 0044 60 CONTINUE 0045 WRITE(11,62) IPLT 0046 62 FORMAT! • ERROR IN VIGOR - PLOT',14) 0047 STOP 0048 61 I F ! I S G ( K ) . E Q . - l ) 1SG!K)=0 0049 ISG(K)=ISG!K)+1 0050 II VL=IVL 0051 JFLAG 11IVL )=1 0052 WRITE(IIVL) IS P ( K ) , 1 , I S G I K ) , K K 0053 99 CONTINUE 0054 GO TO 98 0055 6 CALL HEADILINE.NP,JP.T) 005 6 DD 101 IU=1,10 0057 IF(JFLAG!IU1.EO.0 I GO TO 101 0058 DO 33 1=1,100 0059 SV (49, I 1 = 0. 0060 SVI50.I1=0. 006 1 DO 53 J=12,48,2 0062 53 SV(J,I1=BLNK 0063 33 CONTINUE 0064 END F I L E IU 006 5 REWIND IU 0066 IF(LINE.GT.561 CALL HEAD!LINE,NP,JP , T1 006 7 55 FORMAT! 1 X , 1 311 ' -« 1 ) 0068 WRITE(11,35)VL!IU) 0069 35 F0RMAT(IX,A2, 39X,77( •-• ) ) 0070 LI NE= LINE*2 007 I NT = 0 0072 NSP=1 TABLE 2 (Continued) FORTRAN IV G COMPILER MAIN 11-08-74 01:42:38 PAGE 0002 0073 00 22 1=1,100 0074 MA XI I 1 = 0 007 5 M1N(I)=11 0076 22 IF LAG 11 >=0 0077 16 READ!1U,END=100) JSP,JPLT,JSC,JVG 0078 JPLT=JPLT*2+9 0079 NT =NT * 1 0080 I F ( N T . E Q . l ) GO TO 15 0081 D3 13 1=1,NSP 0082 IF< IFLAGII>.EU.JSP) GO TO 14 0083 13 CONTINUE 0084 NSP=NSP+1 0385 15 I = NSP 0086 IF LAG(I) = JSP 0087 14 SVI1,I)=JSP 0088 SV1JPLT,I ) = JSG 0089 SV(JPLT+1,1)=VIG(JVG) 0090 SVI50.I ) = SV(50,1 l + S I G H JSGI 0091 S V I 4 9 . I ) = SV(49,I 1 + 1 0092 GO TO 16 0093 100 00 17 1=1,NSP 0094 SV ( 50, I )=SV( 50,1 )/JP 009 5 SV(49,I ) = S V ( 4 9 , I ) / J P * 1 0 0 . 0096 J J = SVl 1, I l+.OOl 0097 DD 21 J = l , 9 0098 21 S V I J + l , I ) = S P ( J . J J ) 009y 17 CONTINUE 0100 M= 11 0101 DD 59 MM=2, 10 0102 M=M-1 0103 ' 59 CALL I SORT!SV,50, 100,1,NSP,M,2,1,£30,630) 0104 CONTINUE 1 0105 CALL ISORTISV,50,100,1,NSP,50,3,-1,£30,£301 0106 CALL I S O R T ( S V , 5 0 , 1 0 0 , 1 , N S P , 4 9 , 3 , - 1 , £ 3 0 , £ 3 0 ) 0107 GO TO 31 0108 30 WRITE(11,32) 0109 32 FORMAT!• ERROR IN CALL TO I SORT*) 0110 STOP 0111 31 CONTINUE 0112 DO 29 1=1,NSP 0113 J = l 0114 K=0 0115 IF ( SV(50,1 ).LT. SIG3! 1) ) GO TO 41 0116 DO 37 J = 2 , l l 0117 I F ( S V ( 5 0 , I 1 . L T . S I G 3 ! J ) ) GO TO 38 0118 37 CONTINUE 0119 J = l l 0120 38 J=J-1 0121 K=(SV150,I1-SIG3!J1l/XINC1J) 0122 41 SV ! 50, I ) = S IG2 ( J 1 0123 00 54 KK=11,47,2 0124 JSG=SV(KK,Il+.OOl 0125 IF(JSG.EU.O) GO TO 56 0126 IFlJSG.LT.MINI I) ) MIN(I1 = JSG 0127 IF I JSG.GT.MAXlI)) MAX(I) = JSG 0128 SV (KK, I ) = SIG2( JSG) 0129 GO TO 54 0130 56 SV(KK,I1=BLNK 0131 54 CONTINUE 0132 KK = SV( 1, I l + .OOl 0133 I F ( I S F L G U K ) . E Q . O ) GO TO 25 0134 WRITE(11,36)(SV(J,I),J = 2,50),K,SIG2IMINII 11,SIG2(MAX(111 0135 36 FORMAT!7X.8A4,A3, 19(• | 1.A 1,•.•,A 11, • I•,F5.1, IX, 1A1, • . •, 11, I X . A l , •-• , A l l 0136 GD TO 51 0137 25 NNSP=NNSP+1 0138 ISFLG(KK)=1 0139 WRITE(11,2 71NNSP,(SV(J,I 1,J=2,501,K,SIG2(MIN1 I 11,SIG2 !MAX(I)) 0140 27 FORMAT!3X,13,IX,8A4,A3,19(<|•,A1,<.',All,•|•.F5.1.1X, 1 A 1 , • . I I , I X , A l , • - • , A 1 1 0141 51 LINE= LI ME +1 0142 IFILINE.GT.57) CALL HEAD!LINE,NP,JP,T1 0143 29 CONTINUE 0144 101 CONTINUE 0145 WR1TE(11,35) BLNK 0146 GO TO 999 0147 9999 STOP 0148 ENU TOTAL MEMORY REQUIREMENTS 00A4BC BYTES COMPILE TIME = 0.9 SECONDS 520 TABLE 2 (Continued) FORTRAN IV G COMPILER HEAD 11-08-74 01 :42:41 PAGE 0001 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 SUBROUTINE HEADI L I N C N P . J P , T) DIMENSION N P ( 1 9 ) , T ( 6 0 ) COMMON IP 5 FORMAT!IX,1311•-•)) IP=IP+1 WRITE! 11. I) 1 F 3 K M A T C 1 M WRITEI11.2) T 2 FORMAT! • ENVIRONMENT—VEGETATI ON TABLE, PART 2',55X, l'COASTAL WESTERN HEMLOCK ZONE, U . B . C . R . F . « / 1 I X , 2 0 A 4 ) ) WRITE(11,7) IP 7 FORMAT!'+',122X,'TABLE',14) WRITE ( 1 1, 5) WRITE(11,3) NP 3 FORMAT( 1 PLOT NUMBER',30X,19 I'I•,A3) , • I « ) WR I TE ( 11. 5) WR ITE(11,4) 4 FORMAT(' ST NO. 128X,'P MS RS' WRITEI11.5) WRITEI11.6) 6 FORMAT!« •) LINE=10 RETURN END SPECIES',46X,•SPECIES SIGNIFICANCE AND VIGOR', TOTAL MEMORY REQUIREMENTS 000344 BYTES COMPILE TIME = 0.0 SECONDS FORTRAN IV G COMPILER CHAR 11-08-74 01:42:41 PAGE 0001 0001 SUBROUTINE CHAR 0002 LUGICAL*1 A(41),D(19> 0003 4 CALL SETC141.A,' •) 0004 READ(13,1,END = 2) I , ( A ( J ) , J = 1 , 2 1 ) , B 000 5 1 FORMAT!I3.41A1) 0006 CALL FINDC(A,21,' ' , 1, l . I F I N , I C F . C 3 . C 3 ) 0007 IFIN=IFIN + 1 0008 CALL MOVEC!19,B(1),A!IFIN)) 0009 WRITEI12,1)1,A 0010 GO TO 4 0011 2 REWIND 12 0012 RETURN 0013 3 WRITE(6,5 ) 0014 5 FORMAT( • ERROR IN CALL TO FINDC• ) 0015 STOP 0016 END TOTAL MEMORY REQUIREMENTS 000302 BYTES COMPILE TIME = 0.0 SECONDS 521 APPENDIX XII ENVIRONMENT - VEGETATION TABLES (Part 1, Tables 1 - 23) (Part 2 , Tables 1 - 23) (Table 24) Complete de ta i l s and explanatory notes fo r the tables are given in Appendix XI. The tables for the synsystematic un i ts at or below the leve l of a plant assoc iat ion are arranged according to the synopsis . Part 1, containing edaphic , product iv i ty s t ra ta and ground coverage data, i s followed by Part 2, showing f l o r i s t i c de ta i l s for the u n i t s . The l i s t of companion species and t he i r species s ign i f i cance is given in Table 24. ENVIRONMENT-VEGETATION TABLE, PART 1 FOREST ECOSYSTEM: CWHA, (LICHEN) - GAULTHERIA - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 1 I P L O T N U M B E R 0 2 1 5 6 0 1 0 5 7 1 5 6 9 | 1 4 2 1 I I 1 I 1 1 1 1 1. 1 1 1 1 M E A N 1 1 P H Y S I O G R A P H Y 1 1 I I I I I 1 1 1 1 I J } j 1 E L E V A T I O N (M) 2 5 7 3 8 1 1 4 0 8 1 4 2 i*| 5 6 5 1 1 1 1 1 1 1 1 1 1 I I 1 1 407.61 1 S L O P E G R A D I E N T ( ? ) 35 581 551 01 3 0 | I 1 1 1 1 1 1 1 1 1 1 1 1 3 5 . 6 1 1 A S P E C T S40W E 1 S70WI NB5WI . 1 l . l 1 ! ! ! ! i I I i i i 1 S O I L S i ! ! ! i i i ! I i ! j | | 1 B E D R O C K HBQD H B Q D ] HBQD 1 H B Q D 1 H B Q D I 1 1 1 1 i i i i i i i 1 1 1 1 T E X T U R E S L L S I L S I L S I L S I I I 1 1 i i i i I I i 1 1 1 1 P A R E N T M A T E R I A L MV MV ] M V | M V l M V | I I 1 1 i i i i i i i I I 1 1 S O I L D E P T H ( C M ) 2 3 3 1 161 131 151 1 I 1 1 i i i i i i i 1 1 14.01 I C O A R S E F R A G M E N T S ( ? ) R 5 R 4 0 | R 51 R 4 0 ] R 2 5 I | 1 1 1 i i i i i i i 1 1 1 1 H Y G R O T O P E X X l XI XI XI 1 1 1 1 i i i i i i i 1 1 1 1 S E E P A G E W A T E R D E P T H ( C M ) 1 1 I 1 1 i i i i i i i I I I 1 M O D I F I E R L L 1 L I 1 1 1 I i i i i i i i 1 1 1 1 S O I L S U B G R O U P ( C S S C 1 9 7 0 ) M H F P L P I M H F P I L P I O H F P l I I 1 1 i ! I I i i I ! ! i 1 HUMUS I I I ! ! ! ! ! ! ! ! ! I ! i I H U M J S F O R M F - M R MR I MDl MR H - M R 1 1 1 1 1 i i i i i i I i i i I T H I C K N E S S ( C M ) 7 5 4 | 5 131 1 1 1 1 i i i i i i i 1 1 6 . 8 1 I PH 4 . 2 4 . 0 1 4 . 1 1 3 . 7 | 3 . 6 | I I 1 1 ! ! ! ! ! ! ! 1 1 3 . 9 | I V E G E T A T I O N i i i I i i i j i i I | 1 j | 1 A G E ( Y R S • ) 79 851 861 1 1 1 1 i i i i i i i 1 1 8 3 . 3 1 I GROWTH C L A S S - DF 8 91 8| 81 8 | 1 1 I 1 i i I I i i i 1 1 8 . 2 1 1 WH 9] 1 1 1 1 1 i i i i i i i 1 1 9 . 0 1 1 WRC 8 9 1 8 81 1 1 I I i i i I I i i 1 1 8 . 3 1 I N T / H A ( A L L D B H ) 1 2 6 0 1 4 5 5 1 2 5 8 3 1 1 1 1 1 i i i i i I I 1 I 1766 .01 I B A / H A ( S Q . M . ) 2 5 311 411 1 1 1 1 i i i i i i i 1 1 3 2 . 3 1 1 S T R A T A A L A Y E R 50 4 0 201 6 0 651 1 1 1 1 i i i i i i i 1 1 4 7 . 0 1 1 C O V E R A G E B L A Y E R 80 701 65| 6 0 55 1 I I 1 1 I T 1 1 1 1 1 1 1 7 0 . 0 1 1 ( ? ) C L A Y E R 3 51 31 5 101 I | I I 1 1 1 1 1 1 1 1 1 5 . 2 1 1 D L A Y E R 70 85 401 8 8 701 I I 1 1 1 1 1 1 1 1 1 1 1 7 0 . 6 1 1 G R O U N D H £ MS 40 7 5 ] 601 551 301 I | I I 1 1 1 1 1 1 1 1 1 5 2 . 0 1 I C O V E R A G E DW 2 1 3 | 10 51 1 1 1 1 1 1 1 1 ! 1 1 1 1 4 . 2 1 1(%) R £ S 55 25 1 301 3 0 601 1 1 1 1 1 1 4 0 . 0 1 r-ENVI ^ ONMENT-VEGETATI 0,N TA8LE', CWHA, (LICHEN) - GAULTHERIA -PART 2 'OF COASTAL WESTERN HEMLOCK ZONE, U . B . C . R . F . TABLE l PLOT NUMBER 102115601057!56911A21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS A l A2 A3 B l 1 PSEUDOTSUGA MENZIESII PSEUDOTSUGA MENZIESII 2 TSJGA HETEROPHYLLA 3 THUJA PLICATA PSEUDOTSUGA MENZIESII THUJA PLICATA TSUGA HETEROPHYLLA 4 PINUS MONTICOLA PSEUDOTSUGA MENZIESII THJJA PLICATA TSUGA hETEROPHYLLA 5 ALNUS RUBRA 5 ALMUS SINUATA 7 CORNUS NUTTALL II 32 8 GAJLTHERIA SHALLON 9 VACCINIUM PARVIFOLIUM PSEUDOTSUGA MENZIESII THJJA PLICATA 10 hOLODISCUS DISCOLOR TSUGA HETEROPHYLLA 11 AMELANCHIER ALNIFOLIA 12 MENZIESIA FERRUGINEA 13 VACCINIUM OVALIFOLIUM 14 CO^YLUS CORNUTA 15 ROSA GYMNOCARPA 16 PTERIDIUM AOUILINUM 17 POLYPODIUM GLYCYRRHIZA TSUGA HETEROPHYLLA 18 POLYSTICHUM MUNITUM 19 FESTUCA OCCIDENTALS 20 LINNAEA BOREALIS 21 KU3US URSINUS 22 TRIENTALIS LATIFDLIA 23 DANTHONIA SPICATA 24 LILIUM COLUMBIANUM 25 LISTERA CORDATA 14.21 4.2|4.l|5.2|3.11 . - • . 1100.0 4.7 3-5 15.1 +.115.115.216.11 . a . 1100.0 5.4 +-6 6.212.+14.211.11 . a a # • • - . I 80.0 4.5 1-6 1 • 2.+ 1 1.113.+ 13.11 . • • • * • • • • • • . I 80.0 2.6 1-3 16.1 1.116.112.116.01 . a a a . 1100.0 5.5 1-6 . I 3.11 . 12.11 . a a a a • . 1 40.0 2.0 2-3 + . 1 1 . 1 . 11 . + 1 . a a • • . 1 40.0 +.4 +-1 I • . I . |+,0| . 1 . 1 • • • i • • • • • • • . 1 20.0 +.0 1 3.+ + .l |7.1 |4.+ |5.+ 1 . 1 . m a a a . 1100.0 5.2 +-7 12.1 + .+ I4 . + I . 14.11 . 1 . a a a • 1 . 1 80.0 3.4 +-4 | . 3.21 . 15.21 . 1 . a 1 # . . I 40.0 3.7 3-5 1.11 . 1 . 1 . 1 . | . * | " • • ! . . 1 20.0 H-.2 1-1 +.1! . 1 . 1 . 1 . a a | « • ! . . 1 20.0 +.0 +-• 1 • . 1 . 1 . l+.ll . i • 1 • * • • . 1 20.0 + .0 • - + 19.3 6.2|8.317.217.11 . i . 1 a a i . a . [ . 1 . I 100.0 8.0 6-9 11.3 3. 11 1.21 +.21 2.21 . | . | m | a i . « ! . . . I 100.0 2.2 +-3 I1.+ . I3.0|+.+I4.+I . | a \ m [ , i . • ! . 1 . t . 1 80.0 3.0 +-4 | . +.+I5.+I . 12.11 . a \ # [ a i . I . 1 . 1 . 1 60.0 3.5 +-5 1 1.3 + .21 . 1 . 11.21 . 1 . I a i . 1 . ! . . 1 60.0 1.0 +-1 . I . 14.21 1.11 . I , i . | . I . I . 1 . 1 . 1 40.0 2.5 1-4 . 1 . 1 . 1 1 . 2 1 . I . a | « i . ! . . . 1 . 1 . 1 20.0 + .2 1-1 1.2| . | . | . l . | . i . I • . 1 . 1 . 1 . . 1 20.0 +.2 l - l 1.21 . 1 . 1 . 1 . | • i . I • 1 . I . 1 . 1 . 1 . 1 20.0 +.2 1-1 j . . 1 . 1 . l+.+l • j . [ . i . I . I . 1 . [ . 1 . 1 . 1 20.0 +.0 • - • 1 • . I . |+.2| . I . i • 1 - I • i • 1 • 1 • 1 • • • 1 • 1 . 1 20.0 +.0 +-• 12.2 4.2| + .113.2 I2.ll . i . 1 • 1 # i . 1 , j . | . | . | . 1 . I1C0.0 3.2 +-4 l + . l . |1. + | . l + .+ l . | , | . | « | • i . I . I . 1 . 1 . 1 60.0 +.5 +-1 | . . I+.+I+.2I+.11 . 1 # | a i . | . ] . I . I . 1 . 1 60.0 +.0 +-• 11.1 . 1 . 1 . 1 1.1 1 . ] . | a | « i . | . | . 1 . 1 . 1 . 1 40.0 +.8 1-1 l + . l . 1 . 1 - I+.2I . | . 1 * i . | • I . 1 . 1 . 1 . 1 40.0 +.0 +-+ . 1 . 1 . 12.21 . i . I . 1 . 1 . 1 . 1 . I 20.0 1.0 2-2 11.2 * 1 • I • I • 1 • | . i . I . 1 . 1 . 1 . 1 . 1 20.0 +.2 1-1 | . . 1 • 1 • 1 1-21 . I . | . | • i . | • 1 . 1 . 1 . 1 . 1 . 1 20.0 +.2 1-1 . 1 . 1 . I+.2I . | # ] . ] « i . 1 . 1 . 1 . 1 . 1 . I 20.0 +.0 +-+ 1 .1 . 1 . I+.2I . | , | « 1 , | . i . | • 1 . 1 . 1 . 1 . 1 . 1 20.0 +.0 •-+ . I . I . l+.ll . 1 • 1 . j . 1 • 1 • i . 1 - 1 • 1 • 1 • 1 • 1 . 1 20.0 +.0 +-+ ro ENVIRONMENT-VEGETATION TABLE, PART 2 CWHA, (LICHEN) - GAULTHERIA - OF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. PLOT NUMBER ST NO. SPECIES I 02115601057156911421 I I I I I TABLE 1 (continued) I 1 P MS RS SPECIES SIGNIF CANCE AND V GOR OH OW OR 26 LUZULA MULTIFLORA 1 . 1 . 1 . 1 . 1 + .11 VACCINIUM PARVIFOLIUM 1 . 1 • + .11 . 1 . 1 27 STOKESIELLA OREGANA 14.3 6.3 5.219.31 4 .21 28 HYLUCOMIUM SPLENDENS 12.2 3.3 1.213.3 3 .21 29 ISOPTERYGIUM ELZGANS 1 1.2 + .3! 1.21 +.3 + .21 30 PLAGIOTHECIUM UNDULATUM 1 . 2.3 3.214.3 4.2| 31 POLYTRICHUM JUNIPERINUM I+.3 1.3 1. 21 . + .21 32 RHIZOMNIUM GL ABKE SCENS 1 +. 1 . + .2I+.2 . 1 33 DICRANUM HOWELL 11 1 . 5.3 4 .21 . . 1 34 RHYTIDIADELPHUS LOREUS 1 . . 14.3 3 .21 35 PLEUR0Z1UM SCHREBERI 1 . 2.21 . 2.21 36 RHYTIDIADELPHUS TRIOUETRUS 1 1.2 . 1 . 1 + .21 37 RHYTIDIOPSIS ROEUSTA 1 . . 1 • 5 .31 33 ATR I CHUM UNDULATUM 1 +. 1 . 1 . . 1 STOKESIELLA OREGANA 12.2 1.2 2 . 212.3 2.2 1 39 SCAPANIA BOLANDERI 1 +.2 + .2 1. 31 1.3 1.21 40 LOPHOCOLEA CUSPIDATA I + .2 + .3 +.31+.3 + .31 41 IS3T HECIUM STOLONIFERUM 13.2 . 3.212.3 2 .21 42 HYPNUM CIRCINALE 1 2.2 + .2 . 1 3.3 1.21 43 DICRANUN FUSCESCENS 1 1.2 1.3 . 11.3 1.21 44 CLADONIA SUBSQUAMOSA I . + .3 + .31 + .3 + .31 45 hYPOGYMNI A ENTEROMORPHA 1 . + .3 . I +.3 + .31 RHYTIDIADELPHUS LOREUS I . . . 1 2.3 3.21 46 CALYPOGEIA TRICIlOMANIS I + .2 . 1 • . 1 47 CEPHALOZIA MEDIA 1 . . I +.3 . 1 48 CLADONIA BELLIDIFLORA 1 . + .3 . 1 . . 1 DICRANUM HOWELLII I . + .21 . . 1 49 PARMELIA SAX AT I LIS I . . 1 - + .21 50 LOPHOCULEA HETEROPHYLLA I . + .21 . . 1 PLAGIOTHECIUM UNDULATUM 1 . . I + .2 . 1 51 PTILIDIUM PULCHERRIMUM I + .2 • . 1 - . 1 STOKESIELLA OREGANA 1 7.2 2.2 1.214.2 1.21 DICRANUM HOWELLII 1 1.2 1.2 3.3| 1.3 5.31 PLAGIOTHECIUM UNDULATUM 12.2 + .2 2 .21+.2 3.21 52 RHACOMITRIUM HETEROSTI CHUM I + .3 + .3 1 .2I+.3 3.2 1 53 PELTIGERA MEMBRANACEA 11.3 1.3 + .21 . + .21 ISOTHECIUM STOL ON IFERU M 14.3 • 3 .31+.2 5.31 RHYTIDIADELPHUS LOREUS 12.2 . 1.211.2 3 .21 54 RHACOMITRIUM CANESCENS I . + .3 3 . 212.2 1.21 ISOPTERYGIUM ELEGANS 11.2 + .2 2.21 . 2.21 55 PELTIGERA APHTHUSA ! . 1.3 1 1.2I+.2 + .31 hYLOCOMIUM SPLENDENS 1 3.2 . 1 . I+.2 4.31 1 20.0 + .0 • - + 1 20.0 + .0 •- + 1 100.0 6.5 4-9 1100.0 3. 1 1-3 1 100.0 1.1 + -1 1 80.0 3.6 2-4 1 80.0 1.0 +-1 1 60 .0 + .0 •- + 1 40.0 4.0 4-5 1 40.0 3.0 3-4 1 40.0 1.4 2-2 1 40.0 + .4 + -1 1 20.0 3.4 5-5 1 20.0 + .0 +- + 1100.0 2.2 1-2 1 100.0 1.2 +-1 1100.0 + .5 +—+ I 80.0 2.8 2-3 1 80.0 2.1 +-3 1 60.0 1.3 l - l 1 80.0 + .3 +- + 1 60.0 + .0 • - • 1 40.0 2.0 2-3 1 20.0 + .0 + —+ 1 20.0 + .C +- + 1 20.0 + .0 +- + 1 20.0 + .0 +- + 1 20.0 + .0 +- + 1 20.0 + .0 + - + 1 20.0 + .0 + - + 1 20.0 + .0 +- + 1 100.0 5.0 1-7 1100.0 3.8 1-5 1100.0 2.3 +-3 I 100.0 1.9 • -3 1 80.0 1.2 +-1 I 80.0 4.1 +-5 1 80.0 2.2 1-3 1 80.0 2.1 + -3 1 80.0 1.6 + -2 1 80.0 1.0 + -1 1 60.0 3.0 +-4 tn ro ENVIRONMENT-VEGETATION TABLE, CWHA, (LICHEN) - GAULTHERIA -PART 2 CF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 1 (continued) PLOT NUMBER I 02115601057156911421 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS 56 CLADINA RANGIFERINA 1 . 1 3. 311.21 . 11.31 57 POLYTRICHUM PILIFERUM I . I * 313.21 . I+.2I RHYTIDIOPSIS ROBUSTA | . | . 1 1.21 15.31 56 MARSUPELLA SPHACELATA I . 1 + 31 . 1 1 +.21 PLEUKOZIUM SCHRE3ER1 1 . 1 I . I . 13.3 1 59 CLADINA IMPEXA 1 . 1 2 31 . 1 . 1 . 1 60 DRYPTODON PATENS 1 * 1 1 . 1 . 11.31 61 RHACOMITRIUM LANUGINOSUM 1 . 1 1 . 1 1 1.21 62 BRYUM CAP ILLARE 1 * 1 It.21 . 1 . 1 63 CLADON I A MACROPHY LLA 1 > 1 . I+.2I . 1 . 1 64 DIPLOPHYLLUM ALBICANS 1 . 1 1 . 1 I + .2 1 65 GRIMMIA APOCARPA 1 a | 4-31 . 1 . 1 . 1 60.0 60.0 40.0 40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 1.9 1-3 1.6 3.5 + .0 1.5 1.0 + .2 + .2 + .0 + .0 + .0 + .0 +-3 1- 5 +- + 3-3 2- 2 l - l 1-1 +- + + - + + - + ENVIRONMENT-VEGETATION TABLE, PART 1 FOREST ECOSYSTEM: CWHB, LICHEN - GAULTHERIA - LP - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 2 P L O T N U M B E R 1 2 0 1031 0 5 A | 0 4 1 1 ! I I 1 1 1 1 1 1 1 1 1 1 1 MEAN I P H Y S I O G R A P H Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E L E V A T I O N (M) 5 3 5 5801 7 7 4 1 8 4 0 | I I I I I 1 1 I I 1 1 1 1 1 6 8 2 . 3 1 S L O P E G R A D I E N T it) 15 AO 351 301 1 1 1 1 I I 1 1 I I 1 1 1 1 3 0 . 0 1 A S P E C T N 1 0 E S70W S05WI SI 1 I I 1 I I 1 i l l ' ! ! 1 S O I L ! ! I I I ! ! ! I I I ' ! ! ! 1 B E D R O C K HBOD H B O D 1 F H Q D I F H Q D I 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 T E X T U R E L S S L 1 LI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 P A R E N T M A T E R I A L MV • V I C V I M V | I I j 1 I 1 1 1 1 1 1 1 1 1 1 S O I L D E P T H ( C M ) 2 5 Oi 451 201 I I 1 1 1 1 1 1 1 1 1 1 1 1 2 2 . 5 1 C O A R S E F R A G M E N T S ( ? ) R 1 5 01 R 2 0 l R 1 0 I 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 H Y G R O T O P E VX VX I VX I V X | I 1 1 1 1 1 1 1 1 1 1 I I I 1 S E E P A G E W A T E R D E P T H ( C M ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M O D I F I E R L L 1 !- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S O I L S U B G R O U P I C S S C 1 9 7 0 ) O F H P PRRA1 O H F P 1 O H F P ! I I I 1 I I 1 ! ! ! ! ! ! ! ! H U M U S I I I 1 ! 1 1 1 ! i ! J ! * I I H U M J S F O R M F - M R F - M R ! F - M R I F - M R I I I 1 1 1 I I i i i i i i i i T H I C K N E S S ( C M ) 9 5] 4 | 6 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 . 0 ! P H 3 . 6 3 . 5 3 .51 3 . 4 | 1 1 1 1 1 I 1 1 1 1 1 1 1 ! 3 . 5 1 V E G E T A T I O N ! i i ! I i i ! ! ! ! ! ! ! ! i A G E ( Y R S . ) 8 0 751 1001 9 6 | I 1 1 1 1 1 1 I I 1 1 I 1 1 8 7 . 8 1 G R O W T H C L A S S - D F 8 91 91 I j I 1 I 1 1 1 1 1 1 I 1 1 8 . 7 1 WH 9 | 91 I I 1 1 I I ! 1 1 1 1 1 1 1 9 . 0 1 WRC 9 91 9 | 1 1 I I 1 1 1 1 1 1 1 1 1 1 9 . 0 1 N T / H A ( A L L D B H ) 1 1 1 I I 1 I I 1 1 1 1 1 1 1 1 B A / H A ( S Q . M . ) 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 S T R A T A A L A Y E R AO 101 401 251 1 I I 1 1 1 1 1 1 1 1 1 1 1 2 8 . 8 1 C O V E R A G E B L A Y E R 9 0 15 20 1 351 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 0 . 0 1 1 ? ) C L A Y E R 6 A 101 4 | I I I I 1 I I 1 1 1 1 1 1 1 6 . 0 1 D L A Y E R 5 0 8 5 601 801 1 1 1 1 I I 1 1 1 1 1 1 1 1 6 8 . 8 1 G R O U N D H £ MS 55 15 151 3 0 | I I 1 1 I I 1 1 1 1 1 1 1 1 2 8 . 8 1 C O V E R A G E DW 5 2 ! 21 21 I 1 1 1 1 1 1 1 1 1 1 1 1 1 2 . 8 1 ( ? ) R £ S 35 801 801 651 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 5 . C l ro ENVIRONMENT-VEGETATION TABLE, PART 2 CWHB, LICHEN - GAULTHERIA - LP - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 2 PLOT NUMBER 112011031054)0411 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS r. r A3 31 32 C 1 PINUS CONTORTA 4.1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 2.7 4-4 2 PSEUDOTSUGA MENZIESII | . 2.+ . I . I . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 1. 1 2-2 3 CHAMAECY PARIS NOD TKATENS IS 1 • • i . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .3 l - l PSEUDOTSUGA MENZIESII 1 2. 1 4.+ 2.+ 2. + I . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3.2 2-4 PINUS CONTORT A 15.1 . 6. 1 5.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 75.0 5.4 5-6 4 TSUGA HETEROPHYLLA j . + .+ • 3.11 . 1 . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 50.0 1.8 +-3 5 PINUS MONT I COLA | . • 3.+I . 1 . I . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 1.8 3-3 CHAMAECY PAR IS NODTKATENSIS | . 1. 1 • 1 . 1 . 1 • I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .3 1-1 6 THUJA PL I CA TA j . + .1 . 1 . 1 . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 +- + 7 TSJGA MERTENSIANA 1 • + .+ • . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 25.0 + .0 • - + PINUS CUNTORTA 15.1 3.1 4.+ 3.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 4.6 3-5 PSEUDOTSUGA MENZIESII |3.+ 2.+ 2.+ 3. + I . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I i c o . o 3. 1 2-3 CHAMAECYPARIS NOOTKATENSIS 12.1 . 1. 1 3. 1| . 1 . I . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 75.0 2.3 1-3 THUJA PLICATA 12.1 1.1 3.+ . | . | . I . I . | . j . | . | . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 75.0 2.3 1-3 TSJGA HETEROPHYLLA | . • . 4.+I . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 2.7 4-4 TSUGA MERTENSIANA 1 • • • l . + l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .3 1-1 THJJA PLICATA |6.+ 2.1 1.+ 3.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . ! . 1 . 1 . 1 . 1 . 1 . 1100.0 4.7 1-6 PSEUDOTSUGA MENZIESII 1 3.+ 3.+ 2.+ 3. + I . I . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3.2 2-3 PINUS CONTORT A | . 4.1 3.+ . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 • 1 . 1 . 1 • 1 . 1 - 1 - 1 50.0 3.1 3-4 PINJS MONT I COLA | . . + . + 1.1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 + .6 + -1 TSUGA HETEROPHYLLA j . • • 4.+I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 2.7 4-4 CHAMAECYPARIS NOOTKATENSIS j . 2.+I . I . I . I . I . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 1.1 2-2 8 TAXUS BREVIFOLI A | . + .+ . I . I . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 + -• TSJGA MERTENSIANA 1 • • • +.+I . 1 . I . 1 . I . I . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 +- + 9 GAULTHERIA SHALLON 18.1 5.1 8.1 3.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 7.2 3-8 THJJA PLICATA 14.1 1.+ 2. + 2.11 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . I . 1 . 1 . 1 . 1 . 1100.0 3.2 1-4 TSUGA HETEROPHYLLA 1 1.+ 1.+ 3.+ 3.+I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 2.9 1-3 PINUS CONTORTA l + . l 3.+ 2.+ 1.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 2.3 + -3 10 VACCINIUM ALASKAENSE | . 1.1 1. 1 4.2| . I . 1 . I . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 75.0 3.0 1-4 11 VACCINIUM PARVIFULIUM 1 2.2 . 1.1 3.11 . I . I . 1 . I . 1 . 1 . I . 1 . 1 . 1 . 1 - 1 . 1 . 1 • 1 75.0 2.3 1-3 12 VACCINIUM MEMBRANACEUM | . 1.1 4 .1 | . I . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 2.8 1-4 PSEUDOTSUGA MENZIESII j . 1.+ . + . + | . l . l . | . | . | . | . | . 1 . 1 • 1 • 1 . 1 . 1 • 1 . 1 50.0 + .6 + -1 13 CLADGTHAMNUS PYROLAEFLORUS j . 5.21 . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 25.0 3.7 5-5 14 PHYLLODOCE EMPEIRI FORM IS | . 1.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .3 1-1 15 AMELANCHIER ALNIFOLIA l + . l • • . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 • 1 . 1 • 1 . 1 . 1 - 1 25.0 + .0 +- + 16 OANTHDNIA SPICATA 1*1-2.1.211.211.21 . . . I . 1 . 1 - 1 . I . I . I . I . 1 . 1 . . . 1 . 1 . 1100.0 1.5 l - l ENVIRONMENT-VEGETATION TABLE, PART 2 CWHB, LICHEN - GAULTHERIA - LP - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 2 (continued) PLOT NUMBER 11201103105410411 1 1 1 1 I I 1 1 1 I I I I 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS 17 SAXIFRAGA FERRUGINEA 1 1.21 1.2I+. 11 1.21 . | | . . . | . | . . 1 . 1 . 1100.0 1.3 +-1 18 SEL AGINELLA WALLACE I 1 . I 1.2I+.2 | 1 .2 | . I . I . I . I . I . I . I . 1 . I . I . I . . 1 . 1 . 1 75.0 1.6 l - l VACCINIUM PARVIFDLIUM 1 1. 1 1 1. 11 1. 11 . I . I . I . I . I . I . I . I . I . I . I . 1 . . 1 . 1 . 1 75.0 1.3 1-1 THJJA PLICATA 12.+I+.+I . 1 . 1 . I . I . I . I . I . I . I . I . I . I . I . . | . | . | 50.0 1.1 +-2 19 GOODYERA OBLONG IF OLI A ! . I+ .11 1 .2 | . 1 . I . I . I . I . I . I . I . 1 . 1 . I . I . . 1 . 1 . 1 50 .0 + .6 +-1 20 CRrPTOGRAMMA CRISPA I + . H + .2I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . - I . I . I 50 .0 + .0 +- + 21 LISTERA COKDATA 1+.11+.21 . j . 1 . I . I . I . I . I . I . I . I . I . I . I . . | . | . | 50 .0 + .0 +—+ PINUS CONTORTA I . I . !+. + !+.11 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 50 .0 + .0 +-+ 22 POLYPODIUM GLYCYRRHIZA l + . l l + . l l . 1 . 1 . I . I . I . I . 1 . 1 . I . I . I . I . I . . 1 . 1 . 1 50.0 + .0 + -+ 23 ARCTOSTAPHYLOS UVA-URSI 1 . 1 . 1 • 12.11 • 1 . 1 . I . I . I . I . I . I . I . I . 1 . . 1 . 1 . 1 25 .0 1.1 2-2 24 LINNAEA BOREALIS 1 . 1 1.21 . 1 . . 1 . | . | . l . l . | . l . | . | . | . l . | . . 1 . 1 . 1 2 5 . 0 + .3 1-1 25 LUZULA MULTIFLORA 11.1 1 . 1 . 1 • 1 . I . I . I . I . I . I . I . I . I . I . | . . 1 . 1 . 1 2 5 . 0 + .3 1-1 25 PENSTEMON DAVIDSQNII 1 . 1 . 1 1.21 . 1 . I . I . 1 . 1 . 1 . I . I . I . I . I . I . . 1 . 1 . 1 25.0 + .3 1-1 TSUGA HETEROPHYLLA 1 . I . 1 . I l . + j . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 - 1 25.0 + .3 1-1 27 BLECHNUM SPICANT l+.+l . 1 . 1 . 1 . I . I . I . 1 . I . I . I . I . 1 . I . I . • I . I . I 25.0 + .0 +-• 28 EPILOBIUM ANGUSTIFOLIUM 1 +.11 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25 .0 + .0 • - + 29 HIERACIUM ALB IFLORUM I+.2I . 1 . 1 . 1 . I . I . I . I . 1 . I . I . I . I . I - I . . 1 . 1 . 1 2 5 . 0 + .0 •- + 30 LISTERA CAURINA 1 . 1 . 1 +.11 . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25 .0 + .0 +- + DH 31 PSEUDOTSUGA MENZIESII 1 . l+.+l . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 25 .0 + .0 +-• DICRANUM HOWELLII 11.211 .214.2|5.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1100.0 4.3 1-5 32 KHYTIDIOPSIS ROBUSTA |4 .2 | 1 . 2 1 3 . 2 1 2 . 3 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1100.0 3.3 1-4 33 CLADINA RAMGIFERINA I + .31 1 . 213 . 2|4 . 2 | . I . I . I . I . I . I . 1 . 1 . I . I . I . . 1 . 1 . 1 1 0 0 . 0 3 .2 +-4 34 PLEUROZIUM SCHREBERI 11.211.213.212.21 . I . I . I . I . I . I . I . I . | . | . 1 . . 1 . 1 . 1100.0 2.4 1-3 35 HYLOCOMIUM SPLENDENS 15.212.21 . 11.21 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75 .0 3.9 1-5 35 ISOPTERYGIUM ELEGANS I+.2I1.21 . 1 1.21 . I . I . I . I . I . I . I . I . I . 1 . 1 . . 1 . 1 - 1 75 .0 1.1 • -1 37 CLADINA ARBUSCULA 1 . I + .2I+.2I 1.2| . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 75 .0 + .8 • -1 38 CLADONIA SQUAMOSA 1 . I+.3I+.2I+.2I . | . | . | . | . l . | . | . | . | . | . | . . 1 . 1 . 1 75 .0 + .2 +- + 39 P S E U D O L E S K E A B A I L E Y I | . | . 11.313.31 . 1 . 1 . I . I . I . I . I . I . I . I - I . . 1 . 1 - 1 50.0 2.0 1-3 40 CLADONIA CARIOSA 1 . 12 .212 .21 . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 50 .0 1.6 2-2 41 RHYTIDIADELPHUS LOREUS 12.21 . 1 . 12.21 . 1 . 1 . I . I . I . 1 . 1 . 1 . 1 . | . l . . 1 . 1 . 1 50 .0 1.6 2-2 42 UMBILICARIA POLYPHYLLA 1 . I . |1 .2 I2 .2 | . I . I . I . I . I . I . 1 . I . 1 . 1 . 1 . . 1 . 1 . 1 50 .0 1.3 1-2 43 STEREOCAULON SPP. I . I . I+.2I2.2I . I . I . I . I . I . I . I , j . I . I . I . . 1 . 1 . 1 50.0 1.1 • -2 44 PELTIGERA APHTHOSA I + . 3 U . 3 I . 1 . 1 . | . | . l . | . | . | . | . | . | . | . | . . | . | . | 50 .0 + .6 +-1 45 UICRANUM PALLI01SETUM 1 . I . 1 + . 2 11 + . 21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 50 .0 + .0 +-+ 46 SCAPA.NIA UMBROSA I+.H . I+.2I . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 50.0 + .0 + -+ 47 CLADONIA UNCIALIS I . I . I . 13.21 . | . | . | . | . 1 . | . | . | . | . | . | . - I . I . I 25.0 1.8 3-3 48 PLAGIOTHECIUM UNDULATUM 12.21 . 1 . 1 . 1 . 1 . I . j . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25.0 1.1 2-2 49 STOKESIELLA OREGANA 11.21 . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25 .0 + .3 1-1 50 DR 51 RHYTIDIADELPHUS TRIQUETRUS 1+.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 - 1 . 1 • 1 • 1 . . 1 . 1 . 1 25 .0 + .0 +- + RHACOMITRIUM LANUGINOSUM 1 4 . 2 1 4 . 2 1 7 . 2 1 7 . 2 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . 1100.0 5.9 4-7 DICRANUM HOWELLII 15.313 .215.213.21 . | . | . | . | . | . | . | . | . | . | . | . . 1 . 1 . 1 1 0 0 . 0 5 .0 3-5 52 RHACOMITRIUM HETEROSTI CHUM 12 .3|4 . 213 . 214 .2 ) . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . I 100.0 4 .0 2-4 CLADINA RAMGIFERINA 12.214.211.213.21 . I . I . I . I . I . 1 . 1 . I . I . 1 . 1 . . 1 . 1 . 1100.0 3.3 1-4 53 DICRANUM TAURICUM 1 2.21+.21 1. 21 1. 21 . | . | . | . l . | . | . | . | . | . | . | . • I . I . I 1 0 0 . 0 1.6 +-2 ro Co ENVIRONMENT-VEGETATION TABLE» PART 2 CWHB, LICHEN - GAULTHERIA - LP - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C-R.F. TABLE 2 (continued) PLOT DUMBER 11201103I054|041| I 1 1 1 1 I , 1 1 1 1 1 i I I ST ND SPECIES . SPECIES SIGNIFICANCE AND VIGOR p MS RS 54 DIPLOPHYLLUM TAXIFOLIUM I+.2I+.2I1.212.21 . . 1 . 1 . 1100.0 1 .4 +-2 55 RHACOMITRIUM CANE SCENS 11.318.314.21 . I . 1 . 1 . I . I . I . I * I . I . I . I * 1 . . 1 . 1 . 1 75.0 5.5 1-8 55 POLYTRICHUM PIL IFERUM 1 . I 4.21 1. 2! 3.21 . | . | . | . | . l . | . | . | . l . | . | . . 1 . 1 . 1 75.0 3.2 1-4 57 DRYPTODON PATENS 1 . |+.313.313.2| . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 75.0 2.6 *-3 58 GYMNOMITRI ON OBTUSUM 1 . 1 1.21 1.312.31 . I . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 75.0 1.6 1-2 59 CLADONIA CONIOCRAEA 1 . | + . 212.2| 1.21 . 1 . | . j . | . | . | . | . | . | . | . | . . 1 . 1 . 1 75.0 1.4 *-2 PLEUROZIUM SCHREBERI |+.211.21 . I+.21 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 + .8 +-1 60 POGONATUM ALPINUM I1.2I+.2I . I+.2I . I . I . I . I . I . I . I . I . I . I . 1 . . 1 . 1 . 1 75.0 + .8 *-1 61 CLADONIA CHLOROPHAEA 1 . I+.2I+.2I+.2I . | . | . | . | . | . | . | . | . | . | . | . . 1 . 1 . 1 75.0 + .2 +- + hYLCCOMIUM SPLENDKNS 11.213.21 . 1 . 1 . I . I . I . I . I . I . I . I . I . I . I . . | . | . | 50.0 2.C 1-3 62 ORTHDCAULIS FLOERKI! I . I . II.212-31 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 50.0 1.3 1-2 63 POLYTRICHUM JUN1PERINUM I2.3I+.2I . I . | . 1 . 1 . 1 . 1 •• | . | . | . | . | . | . | . . 1 . 1 . 1 50.0 1.1 +-2 64 PEL TIGERA MEMERANACEA 1 . I 1.21 1.21 . 1 . 1 . I . I . I . I . I . I . I . I . | . | . . 1 . 1 . 1 50.0 1.0 1-1 RHYTIDIOPSIS RObUSTA 1 1.2! 1.2 1 . 1 . 1 . I . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 50.0 1.0 1-1 55 SCAPANIA AMERICANA I+.2I1.2I . 1 . 1 . I . I . I . I . | . | . | . | . | . | . | . . 1 . 1 . 1 50.0 + .6 +-1 65 ANDREAEA RUPESTRIS 1 . 1 . I+.2I+.2I . I . l . l . l . l . l . l . l . l . i . l . . | . | . | 50.0 + .0 +—+ 67 CEPHALOZIELLA DIVARICATA 1 . I+.2I+.2I . 1 . I . l . l . l . l . l . l . l . l . i . l . . 1 . 1 . 1 50.0 + .0 +- + 68 CLADONIA POCILLUM I . I . I+.2I+.2I . 1 . 1 . 1 . 1 . I . I . I . 1 . | . 1 . | . . 1 . 1 . 1 50.0 + .0 •+-• 69 CORNICULARIA ACUL EATA I . I . I+.2I+.3I . I . I . I . i . I . I . I . I . I . I . I . . 1 . 1 . 1 50.0 + .0 +-+ 70 DOUINIA OVATA I . I . I+.2I+.2I . I . l . l . l . l . l . l . l . l . i . l . . 1 . 1 . 1 50.0 + .0 • IS3PTERYGIUM ELEGANS 13.21 . | . | . | . I . | . | . | . | . | . | . | . | . l . | . . 1 . 1 . 1 25.0 1.8 3-3 71 ISOTHECIUM STOLONIFERUM 11.21 . | . | . | . i . l . l . l . l . l . l . l . l . i . l . . 1 . 1 . 1 25.0 + .3 1-1 72 MARSUPRLLA EMARGINATA 1 . 1 1.2 1 . 1 . 1 . j . j . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 25.0 + .3 1-1 73 PARHELIA SULCATA 1 . 1 . 11.21 . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25.0 + .3 1-1 RHYTIDIADELPHUS LOREUS 1 . 11.21 . 1 . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25.0 + .3 1-1 74 AGYRUPHORA RIGI DA . I . I . I+.2I • 1 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 25.0 + .0 +-+ 75 LECIDEA GRANULOSA I . I . I + .2I . I . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 25.0 + .0 76 UM8ILI CAR I A CINEREORUFESCENS I . I . I+.2I . | . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25.0 + .0 +-+ <J1 ro E N V I R O N M E N T - V E G E T A T I O N T A B L E , P A R T 1 F O R E S T E C O S Y S T E M : C W H A , G A U L T H E R I A - WH - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. T A B L E 3 I P L O T N U M B E R 0 8 3 0 4 6 ] 1001 5 6 5 1 0 1 9 1 0 3 0 1 6 0 4 1 0 8 1 1 0 4 1 1 1 1 I I 1 1 1 1 1 M E A N I 1PHYSIOGR A P H Y 1 1 1 1 I.I 1 1 1 1 1 1 1 E L E V A T I O N (M) 72 1871 2 0 1 1 2471 2031 2981 3 1 4 | 4 0 5 3 9 5 1 1 1 1 1 1 1 1 1 1 1 258.01 I S L O P E G R A D I E N T ( ? ) 2 5 01 5 | 7 | 5 1 01 9] 10 51 1 1 1 1 1 1 1 1 1 1 7 . 3 1 1 A S P E C T N65W S8 5WI S S10W] N 4 5 E S70W N S 5 E I 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 S O I L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B E D R O C K HBOD H B Q D l H B Q D l B H Q D I H B Q D BHQD1 1 I I 1 1 1 1 1 1 1 1 1 T E X T U R E L S S L l S L l S L 1 S L l S L L S I 1 1 1 1 1 1 1 1 1 1 ! 1 P A R E N T M A T E R I A L MV G F I MV 1 MV] MV 1 0 V | MV] MV M V | 1 1 1 1 1 1 1 1 1 1 1 ! S O I L D E P T H ( C M ) 15 8 0 ! 41 451 55 ] 5 | 4 0 | 8 5 91 1 1 1 1 1 1 1 1 1 1 37.61 I C O A R S E F R A G M E N T S ( S ) R 2 5 G 3 0 I R 1 0 I R 3 0 ] R 1 0 I R 51 R 2 5 R 4 0 R 1 0 I 1 1 1 1 1 1 1 1 1 1 1 1 H Y G R O T O P E SX SXI S X l SXI S X ] S X | SM] S X M | 1 1 I 1 1 1 1 I I 1 1 ! S E E P A G E W A T E R D E P T H ( C M ) 1 1 1 1 1 1 1 1 1 1 1 1 I M O D I F I E R L 1. ] L] 1 1 1 1 1 1 1 1 1 1 1 1 1 S O I L S U B G R O U P I C S S C 1 9 7 0 ) M H F P M H F P ] L P 1 M H F P ] M H F P L F ] O H F P ] M H F P L P l 1 1 1 1 1  1 I I   1 1 1 1 1 1 1 HUMUS ! ! ! ! ! ! 1 1 1 1 1 1 1 1 1 1 1 1 I H U M J S F O R M F - M R F - M R | MDI MR F - M R ] H - M R 1 MD F - M R F - M R I 1 1 1 1 1 1 1 1 1 1 1 I T H I C K N E S S ( C M ) 12 101 4 | 8! 111 10 4 51 1 1 1 1 1 1 1 1 1 1 8.01 | P H 3 . 7 3 . 5 1 4 . 5 1 3 . 8 ] 3 . 6 | 4 . 5 1 3 . 7 3 . 8 | 1 1 1 1 1 t i l l ! 3 . 9 | 1 1 1 1 1 1 1 V E G E T A T I O N I I I ! ! ! 1 1 1 1 1 1 1 1 1 1 1 1 1 A G E ( Y R S . ) 7 3 991 7 7 7 4 ! 8 6 i i i i i i 1 1 1 1 1 8 1 . 8 1 1 GROW T H C L A S S - DF 7 71 5 | 61 61 6] 8 i i i i i i 1 1 1 1 1 6 . 4 | 1 WH 6 61 7 7 ! 7 i j i i i i 1 1 1 1 1 6 . 6 1 1 WRC 7 7 6 6] 8! 6 8 i i i i i i 1 1 1 1 1 6.91 I N T / H A ( A L L D B H ) 5 4 4 1 5 6 3 1 1 3 8 3 9 6 4 | 1 1 3 8 3 4 3 1 1 1 1 1 1 1 1 1 1 1 9 8 9 . 2 1 I B A / H A ( S Q . M . ) 17 391 3 4 | ' 4 8 ] 2 8 271 I 1 1 1 1 1 1 1 1 1 3 2 . 2 1 1 S T R A T A A L A Y E R 65 95 1 401 7 0 751 601 7 0 6 5 4 0 1 1 1 1 1 1 1 1 1 1 1 6 4 . 4 1 1 C O V E R A G E B L A Y E R 8 5 75 ] 401 601 801 751 9 0 7 0 51 1 1 1 1 1 1 1 I I 1 6 4 . 4 1 1 U> C L A Y E R 7 51 351 2 5 2 10 5 71 1 1 ! 1 1 1 1 1 1 1 8 . 7 1 1 D L A Y E R 3 0 601 401 9 5 6 0 7 0 ! 85 7 5 9 0 1 I I 1 I 1 1 1 1 1 1 6 7 . 2 1 1 G R O U N D H £ MS 50 75 ] 6 0 ] 60] 5 0 5 0 8 0 7 5 551 I I I I 1 1 1 1 1 1 6 1 . 7 1 1 C O V E R A G E DW 10 101 101 2 0 5 3 0 10 5 251 I I I 1 1 1 1 1 1 1 1 3 . 9 | 1 (%) R £ S 3 5 101 251 15 40: 151 1 0 15 2 0 1 I 1 1 1 1 1 1 1 1 1 20.61 u> o ENVIRONMENT-VEGETATION TABLE* PART 2 CWHA, GAUL THERIA - WH - DF CdASTAL WESTERN HEMLOCK ZONE» U.B.C.R.F. TABLE . 3 PLOT NUMBER l 0 8 3 i 0 4 6 l i 0 0 J 5 6 5 i 0 i 9 l 0 3 0 l 6 0 4 | 0 8 i l i 0 4 l i 1 \ 1 1 i 1 i i i ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS A l A2 A3 B l B2 C 1 PSEUDOTSUGA MENZIESII |4.2 4.1 4.2 5.2 4.2 4.2 + .2 4.1 4.21 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1100.0 4.5 • -5 2 TSJGA HETEROPHYLLA 1 2. 1 • + .2 • • • • . 1 - 1 . 1 . 1 . 1 . . j . 1 . 1 . 1 . I 22.2 + .4 • -2 3 PINUS MONT I COL A | . • • • • + .0 . 1 . 1 • 1 • l . l . ! . 1 . 1 . 1 . 1 . 1 11.1 + .0 +- + 4 THUJA PLICATA I ' +.i • • • • • • . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 11.1 + .0 +-+ PSEUDOTSUGA MENZIESI I 15.1 8.1 6.2 8.2 8. 1 7. 2 7. 2 5. 1 6.21 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1100.0 7.4 5-8 THUJA PLICATA 1 3. 2 3 - i 2.2 + .2 1.2 + .2 3. 1 3.2| . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 88.9 2.7 •-3 TSJGA HETEROPHYLLA |4. 1 1.1 • • • + .1 + . + 4.2| . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 55.6 2.6 + -4 PSEUDOTSUGA MENZIESII 1 1.+ 4.+ 3.+ 3-0 5.+ 4.1 5.1 7.+ l . + l . I . 1 . 1 . I . . 1 . 1 . 1 . 1 . 1100.0 5.0 1-7 THJJA PLICATA 16. 1 4.1 4.2 6.2 • 5.2 3.2 5.1 3.11 . | . | . | . | . . 1 . 1 . 1 . 1 . 1 88.9 5.1 3-6 TSUGA HETEROPHYLLA | . 1.+ • . • 3. 1 3. 1 2.+ 2.21 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 55.6 2.1 1-3 5 BETULA PAPYRIFERA 1 . + .1 • • 1.1 • • • . 1 . 1 . 1 . i . 1 . . 1 . 1 . 1 . 1 . 1 22.2 + .0 + -1 THUJA PLICATA 15. 1 7. 1 4. 2 3. 2 4.1 5. 2 5.2 5.+ 2.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 5.3 2-7 TSUGA HETEROPHYLLA | . 1 .+ 2.2 1.1 2.1 4.2 1.+ 3.2! . 1 . 1 . I . 1 . . 1 . 1 . 1 . 1 . 1 77.8 2.6 1-4 PSEUDOTSUGA MENZIESII 2.0 • . 2.* . . 2.0 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 33.3 1.2 2-2 5 ACER MACROPHYLLUM +. + . • | . | . | . | . | . . 1 . 1 . 1 . 1 . 1 11.1 + .0 +- + BETULA PAPYRIFERA | . • .+ • • • . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 11.1 + .0 +- + 7 P'RJNUS EMARGINATA l + . l • • • • • • • . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 11.1 • .0 +- + 8 GAULTHERIA SHALLON 18.3 8.2 4.2 7.2 8. 3 7.2 8.2 8.3 5.21 . 1 . 1 . 1 . 1 . . I . I . | . I . 1100.0 7.8 4-8 9 VACCINIUM PARVIFOLIUM 13.3 2.2 2.3 • 2.3 4.3 6.3 2.2 1.2| . 1 . 1 . 1 . 1 . . 1 , 1 . 1 . 1 . 1 88.9 4.0 1-6 THUJA PLICATA | . 2. 1 2. 2 + . 1 3.1 5. 2 4.2 2.+ 3.2 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 88.9 3.6 +-5 TSUGA HETEROPHYLLA . • 1.2 . 3. 1 2. 2 + .+ 5.21 . | . | . | . | . . 1 . I . I . I . 1 55.6 3.1 +-5 10 MEMZIESI A FERRUGINEA | . + .2 . 1.2 3.3 . 3.21 . | . | . | . | . . 1 . 1 . 1 . 1 . 1 44.4 1.8 +-3 11 ACER CIRCINATUM 1 1.1 3. 2 1.2 + .1 . • . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 44.4 1.3 +-3 12 HUL0D1SCUS DISCOLOR 11.3 • 2.2 + .2 • + .2 . 1 . 1 . 1 . 1 - 1 - . 1 . 1 . 1 . 1 . 1 44.4 + .9 • -2 13 RHGMNUS PURSHI ANA | . + .2 . + .1 • • 1.11 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 .33.3 + .1 + -1 14 VACCINIUM ALASKAENSE | . . • • 1. 1 3.21 . I . I . I . | . . 1 . 1 . 1 . 1 . 1 22.2 1.2 1-3 15 RUBUS SPECTABILIS j . 2.2 . • 1.21 . l . | . | . | . . 1 . 1 . 1 . 1 . 1 22.2 + .7 1-2 15 AMELANCHIER ALNIFOLIA 1 1. 1 • . 1 . 1 . 1 . 1 • 1 . . 1 . 1 . 1 . 1 . 1 11.1 + .0 1-1 PSEUDOTSUGA MENZIESII | . • 1.0 • . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 11.1 + .0 1-1 17 ALNUS RUBRA | . + . 1 . 1 . 1 . 1 . I . I . . 1 . 1 . 1 . 1 . 1 11.1 + .0 • - + 18 CO^YLUS CORNUTA I+.2 _ . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 11.1 + .0 + - + 19 RDSA GYMNOCARPA I+.2 • • • • • • • 1 . 1 • 1 . 1 . 1 « . 1 . 1 . 1 . 1 . 1 11.1 + .0 •- + 20 TAXUS BREVIFOLI A 1 • • • • • + .1 • • . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 11.1 + .0 + -• 21 PTERIOIUM AQUILINUM 13.2 + .1 1.2 2.2 2.2 5.2 2.1 2.21 . 1 . 1 . 1 . I . . 1 . 1 . 1 . 1 . 1 88.9 3.3 • -5 22 POLYSTICHUM MUNITUM 1 1.2 . 4.2 + .2 + .1 1.2 + .2 • 2.21 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 77.8 2.1 + -4 VACCINIUM PARVIFOLIUM 1 . 1.2 1.2 2.2 2.2 1.2 l . l ! . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 . 1 66.7 1.4 1-2 CO ENVIRONMENT-VEGETATION TABLE » PART 2 CWHA, GAULTHERIA - WH - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 3 (continued) PLOT NUMBER |083|046|100|565!019|030|604|081!104| I I I I I . I 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS 23 RUBUS URSINUS 1 • 1 +.212.2 + .3 1. 1 + . 2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 55.6 1.0 +-2 TSUGA HETEROPHYLLA 1 1.+ . 1 . + .1 . +.01 . 14.21 . | . | . l . | . | . | . . 1 . 1 . 1 44.4 1.9 +-4 24 LINNAEA BOREALIS I . 1.2| . 1.1 . 12.211.21 . 1 . 1 . 1 . 1 . 1 . 1 . . I . 1 . I 44.4 1.1 1-2 25 DRYOPTERIS AJSTRIACA l+ . l . 11.2 + . 1 . 1 . 1 1.21 . 1 . 1 . ,1 • 1 . 1 • 1 . . 1 . 1 . 1 44.4 + .4 +-1 THUJA PLICATA 11.2 . 1 . • 1.1 +.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 33.3 + .3 +-1 26 BLECHNUM SPICANT I . • 1 . + .2 . . 1 . 11.21 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 22.2 + .0 +-1 27 CORNUS CANADENSIS | . . l + . l . 1 . 1 1.21 . I . I . 1 . 1 . I . 1 . . 1 . 1 . 1 22.2 + .0 +-1 26 GOODYERA OB LUNG IF OLI A j . + .11 . . 1 1.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 22.2 + .0 + -1 29 ATHYRIUM FILIX-FEMINA | . . l+ . l • • . I . l + . l l . | . l . I . I . I . I . . 1 . 1 . 1 22.2 + .0 + - + 30 TRILLIUM OVATUM | . . l + . l + . 1 • • . | . | . | . I . I . I . I . I . I . . 1 . 1 . 1 22.2 + .0 + - + 31 LUZULA MULTI FLORA 11.1 . 1 . • . 1 . 1 . | . | . I . I . I . | . | . . 1 . 1 . 1 11.1 + .0 l - l 32 RU3US LEUCOOERMIS 11.2 • 1 . • • I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 11.1 + .0 1-1 33 TRIENTALIS LATIFOLI A | . . 1 1. 2 • I . | . I . I . I . I . I . I . I . . 1 . 1 . 1 11.1 + .0 1-1 34 CAREX DEWEYANA 1 +.2 . 1 . • • . I . I . I . I . I . I . I . I . I . . I . 1 . 1 11.1 + .0 +- + 35 CAREX ROSSI I l+ . l . 1 . • • • . 1 . 1 . j . | . I . I . | . | . | . . 1 . 1 . 1 11.1 + .0 +- + 36 CLINTONIA UN I FLORA | . . 1 . • . I + .+ | . | . I . I . I . I . I . I . . 1 . 1 . 1 11.1 + .0 +- + 37 LACTUCA MURAL IS | . . I+.2 • . I . I . I . | . | . | . | . | . | . . 1 . 1 . 1 11.1 + .0 +- + 33 LISTERA CQP.DATA j . . 1 . . l + . l l . I . I . I . I . I . I . I . . 1 . 1 . 1 11. 1 + .0 + - + 39 MON TI A PARVIFOLIA I + .2 • 1 . • | . I . | . I . I . I . I . I . I . . 1 . 1 . 1 11.1 + .0 +- + 40 POLYPODIUM GLYCYRRHIZA | . . 1 . + .+ • . | . | . | . | . I . I . I . I . | . . | . | . | 11.1 + .0 +- + PSEUDOTSUGA MENZIESII | . . 1 . • • . 1 . l + . l ! . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 11.1 + .0 + -• DH 41 TIARELLA TRIFOLIATA 1 • . 1 . • • • . | . | + . 1 | . | . | . | . | . | . | . . 1 . 1 . 1 11.1 + .0 +- + 42 STOKESIELLA OREGANA 13.3 7.2 15.2 7.3 6.2 4.2 5.318.315.21 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1100.0 6.1 3-8 43 hYLOCOMIUM SPLENOENS 11.2 6.214.2 6. 3 2.2 5.2 4.3|4.2|4.2I . I . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . i 100.0 5.1 1-6 44 PLAGIOTHECIUM UMDULATUM 12.1 2.111.2 5.3 1.2 3.2 5.31 2.21 4.31 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1100.0 4.1 1-5 45 RHYTIDIADELPHUS LOREUS 14.3 4.2 12.2 + .3 2.2 2.2 +.211.213.21 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1100.0 3. 1 + -4 46 RHIZOMNIUM GLABRESCENS | . . 1 1.2 2. 3 . + .3 +.21 . 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 55.6 1.2 +-2 47 DICRANUM HOWELLII 11.3 . 11.2 . • . 12.211.21 . 1 . 1 . I . 1 . 1 . 1 . . 1 . 1 . 1 44.4 1.1 1-2 48 RHYTIDIADELPHUS TRIOUETRUS | . 1.21 . • . 1 1.21 . 1 . 1 . 1 . 1 . 1 • 1 . 1 • . 1 . 1 . 1 22.2 + .2 1-1 49 PLEUROZIUM SCHREBERI j . • 1 • . I 3.2 I . 1 . 1 . 1 . 1 . 1 . 1 . ! . 1 . 1 . 1 . 1 11.1 1.1 3-3 50 RHYTIDICPSIS RODUSTA | . • 1 . • • . 13.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 11.1 1.1 3-3 51 PLAGIOCHILA ASPLENI01DES . 1 . • +.31 . 1 . 1 . I . I . I . I . I . I . . 1 . 1 . 1 11.1 + .0 + -+ DW 52 SPHAGNUM GIRGENSOHNII 1 • . 1 . • • + .2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . I . 1 11.1 + .0 +-• 53 DICRANUM FUSCESCENS 11.2 1.2I+.1 + .2 1.2 2.2 2.31 1.21 1.21 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1100.0 1.6 +-2 54 IS3THECIUM STOLONIFERUM 13.2 3.21 3.2 4.3 2.2 . 2.213.214.21 . 1 . 1 . 1 . 1 • 1 • 1 • . ! . ; . { 88.9 3.4 2-4 55 HYPNUM CIRCINALE 11.2 4.211.2 3.3 1.2 3.3 1.3| . 14.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 88.9 3.1 1-4 56 LEPIDOZIA REPTANS I + .2 +.311.3 . + .3 1.3 + .3I+.3I1.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 88.9 1.0 •-1 57 SCAPANIA BOLANOERI | . 2.313.3 2.3 2.3 • . 3.313.313.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 77.8 2.8 2-3 RHIZOMNIUM GLABRESCENS 11.2 . 1 1 . 3 3.3 1.2 3. 2 1.31 . 12.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 77.8 2.2 1-3 58 ISOPTERYGIUM ELCGANS | . +.312.3 . 1.3 + .3 +.311.312.31 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 77.8 1.3 + -2 PLAGIOTHECIUM UNDULATUM 12.2 2.21 2. 2 2. 3 . 4. 2 2.31 . 1 . 1 . 1 . 1 . 1 • 1 • 1 . 1 • . I . I . I 66.7 2.5 2-4 STOKESIELLA OREGANA 1 3.2 3.213.2 1.3 2. 2 1.31 . I . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 66.7 2.4 1-3 59 CLADONIA SUBSQUAMUSA 11.3 + .31 . + .3 + .3 1 . 2 1 . I . I . I . I . I . I . I . I ' . ' 1 . 1 . ! . 1 55.6 + .6 + -1 60 LOPHCJCOLEA CUSPIDATA I + .2 . I + .3 . + .2 . . I+.3I+.3I . I . 1 . I . 1 . 1 . 1 . 1 • 1 • 1 • 1 55.6 + .0 +- + CO ro ENVIRONMENT-VEGETATION TABLE, PART 2 CWHA, GAJLTHEP. IA - WH - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 3 (continued) PLOT NUMBER |083|046|10C|565|019|030|604|081|104| 1 I I 1 I I 1 1 1 1 ST NO SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS 61 LOPHOCOLEA HETEROPHYLLA 1 . I+.2I+.3I . I+.2I . I + . 31+.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 55.6 + .0 +-+ DICRANUM HOWELL I I 11.211.21 . 1 . 11.21 . 12. 31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 44.4 1.1 1-2 52 CEPHALOZIA MEDIA 1 . 1 • 1 . I+. 31 . I+.3I+. 3I+.3I . I . I . 1 . 1 . 1 . I . 1 . . 1 . 1 . 1 44.4 + .0 • - + RHYTIDIADELPHUS LOREUS 1 . 1 . 1 . 16. 311.21 . 15. 31 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . . 1 . 1 . 1 33.3 4.0 1-6 63 CALYPOGEIA TRICHOMANIS 11.21 . 1 . 1 . 1 . I+.3I . I+.3I . 1 . 1 . 1 . I . 1 . 1 . 1 . . 1 . 1 . 1 33.3 + .1 •-1 6', CALYPOGEIA SUECICA I+.2I+.2I . 1 . 1 . I+.2I . I . I . I . I . I . I . 1 . 1 . 1 . . 1 . 1 . 1 33.3 + .0 +- + 65 SCAPANIA UMBROSA I+.2I . 1 . 1 1 . I+.3I . I . l . l . | . l . | . | . | . | . . 1 . 1 . 1 22.2 + .0 +- + 66 HYPNUM SUBIMPONENS 12.2 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 11.1 + . 3 2-2 67 BAZZANIA AMBIGUA 1 . 1 • 1 . 1 . 1 . I+.3I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 11.1 + .0 +- + 68 DIPLOPHYLLUM TAXIFOLIUM I . I . I+.3I I . I . I . | . I . I . I . I . I . I . | . | . . 1 . 1 . 1 11.1 + .0 +- + 6? FRJLLANIA NISOUALLENSIS 1 . 1 . 1 . I t . 31 . 1 . 1 . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 11.1 + .0 +- + HYLOCOMIUM SPLENDENS 1 . 1 . 1 . 1 . 1 . 1 . I+. 31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 11.1 + .0 +- + 70 DR PTILIDIUM PULCHERRI MUM 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I+.3I . l . | . | . | . | . l . . I . I . I 11.1 + .0 +- + STOKESIELLA OREGANA 13.313.215 .311 3 1 6 . 3 1 2 .21 1. 3|5.312.31 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 100.0 4.6 1-6 HYLOCOMIUM SPLENDENS 14.311.21 3.21 • .31 . 1 3.2| 1. 21 3.21 1.31 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 88.9 3.0 • -4 RHYTIDIADELPHUS LOREUS I3.3I+.2I2.2I 13.21 . I+. 213 .212.31 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 77.8 2.4 • -3 ISOPTERYGIUM ELEGANS 11.2!+.31 . 1 . I+.2I2.3I+. 21 1 . 3 1 3 . 3 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 77.8 1.6 +-3 ISOTHECIUM STOLON IFERUM 14.2|2.21 . |1 213.21 . 1 . 1 1.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 55.6 2.4 1-4 PLAGIOTHECIUM UNDULATUM 11.21 . 1 . 11 212.21 . 1 . 1 1.21 2 .31 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 55.6 1. 3 1-2 71 SCAPANIA AMERICANA I+.2I 1.2| . 1 . I+.2I+.2I . I+.2I . 1 . 1 . 1 . I . 1 . 1 . 1 . . | . | . l 55.6 + .3 +-1 DICRANUM HOWELLII I+.2I . 1 . 1 I + .2I . 1 . 1 1.21 . I . I . I . I . 1 . 1 . I . . 1 . 1 . 1 33.3 + .1 + -1 PLEUROZIUM SCHREBERI 12.21 . 1 . 1 I . I . I . I . I . I . I . I . I . I . I ' . I . . 1 . 1 . 1 11.1 + .3 2-2 72 POGONATUM MACOUNI I 1 . 1 . 12.21 I . I . I . . I . I . I 11.1 + .3 2-2 73 CLAOPOOIUM CRISPIFOLIUM 1 1.21 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . 1 . I . I . I . I . . 1 . 1 . 1 11.1 + .0 1-1 RHYTIDIOPSIS ROBUSTA 1 . i . 1 . 1 I . I . I . 1 1 . 2 1 . I . I . I . 1 . 1 . I . I . . 1 . 1 . 1 11.1 + .0 1-1 7 i BART RAM I A POMIFURMIS 1 . 1 . 1 . 1 . I+.21 . 1 . | . | . | . | . | . | . | . | . | . . 1 . 1 . 1 11.1 + .0 + - • 75 MARSUPELLA SPHACELATA 1 . 1 . 1 . 1 1 . I+.3I . 1 . I . I . I . I . I . I . I . I . . I . I . I 11.1 + .0 +- + 76 PL AG I OMNI UM INSIGNE I . I . 21 I . I . I . I . I . I . I . I . I . 1 . 1 . 1 . . 1 . 1 . 1 11.1 + .0 + - • 77 PLAGIOTHECIUM PILIFERUM 1 . 1 • 1 • 1 I+.2I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . | . | . | 11.1 + .0 • - + 78 POLYTRICHUM JUNIPERINUM 1 . 1 . 1 . 1 . I + .3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 11.1 + .0 +—+ Or LO CO ENVIRONMENT-VEGETATION TABLE, PART 1 FOREST ECOSYSTEM: CWHASB, MAHONIA - GAULTHERIA - WH - DF COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 4 IPLOT NUMBER 031 0081 0201 5451 0821 1211 0761 123 0561 I 1 | I 1 ! 1 1 1 1 MEAN 1 1PHYSIOGRAPHY 1 I I 1 1 1 1 1 1 1 1 1 1ELEVAT I ON (M) 178 2401 2631 305 382 2961 446| 480 6901 1 1 1 I ' ! ! ! 1 1 364.41 ISLOPE GRADIENT (?) 55 351 751 331 85 451 50! 55 50| | I I i i j j i 1 I 53.71 1 ASPECT S55W S85W| Wl SI w: S80WI S80W! S05E S55EI I I I ! i ! i i 1 ! 1 1 SOIL i i ! ! ! i ! ! ! ! ! I IBEDROCK BHQD BHQD 1 HBQD 1 HBQD I HBQD 1 BHQD! HBQD HDl 1 I 1 ! i ! i i i ! i 1 TEXTURE SL LS 1 LI SLi LSI LSI LS L 1 1 1 1 1 1 I I I 1 1 1 1 PARENT MATERIAL CV cvl c v l MV CV CV| CBl CV CV| I I | 1 I 1 1 1 1 1 1 ISOIL DEPTH (CM) 60 701 88| 85 50 451 1001 75 851 I j j 1 1 1 1 1 1 1 73.11 1 COARSE FRAGMENTS (S ) R55 S55I R45| R50I R60I S40I R25I S40 R50| I I I 1 1 1 1 I 1 1 1 1HYGROTOPE SX SX| SMI SM SX SM 1 SMI SM SXI I | | 1 1 1 1 1 j j | 1 SEEPAGE WATER DEPTH (CM) 1 1 1 1 1 1 ! I I j j | 1 MODIFIER L L l 1 1 1 1 1 1 1 1 1 j j | ISOIL SU3GROUP(CSSC 1970) MFHP OHFPl MHFP I MHFP MHFP OHFP 1 MHFP! MHFP OHFP| I I | i i ! ! ! i i ! IHUMJS ! I I ! ! I ! i ! ! i i 1HUMJS FORM F-MR MDI F-MR I MR 1 F-MR i F-MR I F-MR I H-MR F-MRI I | I i i ! ' ! ! ! i ITHICKNESS (CM) 6 51 7 I 31 91 7| 51 4 m i l l i i j j i ! 1 6.31 1 PH 3.7 4.8 1 4. 1 1 3.41 3.8! 3.81 3.9! 3.9 3.81 1 I I 1 ! ! I ! 1 1 3.91 1VEGETAT I ON I I I ! ! ! i i ! i i ! 1 AGE (YRS.I 96 74 | 781 81 1 821 811 96 1141 I | | J i i j i 1 t 87.81 1 GROWTH CLASS - DF 7 6 1 61 61 81 61 61 6 81' 1 1 I i i i i i 1 1 6.6| 1 WH 6| 6| 6| 5 71 1 1 1 i j i i j 1 1 6.01 1 WRC 6 7| 7| 7| 6 8| 1 1 1 i j j i j 1 1 6.81 INT/HA (ALL DBH) 1798 815 1 2019| 11071 1557 31661 1 1 I i j i i i j 1 1 1743.71 IBA/HA (SO.M.) 55 26| 26 ] 581 47 601 1 1 1 i i i i i 1 1 45.31 1 STRATA A LAYER 45 601 501 851 701 701 701 85 301 | | I i j j j j 1 1 62.31 1 COVE RAGE B LAYER 90 651 901 501 80| 60| 451 40 30! 1 1 1 i j i i i 1 1 61.11 1(%) C LAYER 3 101 5| 101 7| 101 101 5 31 I I 1 i i i i i 1 1 7.01 1 D LAYER 70 701 751 551 651 601 151 45 351 I I 1 1 1 1 ' 1 ! 1 1 54.41 1 GROUND H £ MS 50 401 251 551 301 501 701 70 601 1 1 1 1 1 1 1 1 1 1 50.01 1 COVERAGE DW 10 251 101 301 21 101 5| 5 31 1 1 I 1 1 1 1 1 1 1 11.11 1 (?) R £ S 40 301 601 151 65 | 351 201 20 351 1 I 1 1 1 1 , 1 1 1 35.61 cn ENVIRONMENT-VEGETATION TABLE, PART 2 ' COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. CWHA&B, MAHONIA - GAULTHERIA - WH - DF TABLE 4 PLOT NUMBER 103110081020154510821121 10761 12310561 I I 1 I I I I I I I ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS A l A2 A3 B l B2 1 PSEUDOTSUGA MENZIESII 2 TSJGA HETEROPHYLLA 3 PINUS MONT I COL A 4 THUJA PLICATA PSEUDOTSUGA MENZIESII TSUGA HETEROPHYLLA THJJA PLICATA THUJA PLICATA PSEUDOTSUGA MENZIESII ISUGA HETEROPHYLLA 5 PINUS CONTORTA THJJA PLICATA TSUGA HETEROPHYLLA PSEUDOTSUGA MENZIESII 5 MALUS FUSCA 7 GAULTHERIA SHALLON 8 VACCINIUM PARVIFOLIUM 9 MAHONIA NERVOSA THJJA PLICATA TSUGA HETEROPHYLLA 10 CORNUS NUTT ALL 11 11 ACER CIRCINATUM 12 RHAMNUS PURSHI ANA 13 AMELANCHIER ALNIFOLIA 14 HOLODISCUS DISCULOR 15 MENZIESIA FERRUGINEA 15 TAXUS BREVIFOLIA 17 ACER MACROPHYLLUM 18 ROSA GYMNOCARPA 19 VACCINIUM ALASKAENSE 20 PTERIDIUM AQUILINUM 21 POLYSTICHUM MUNITUM VACCINIUM PARVIFOLIUM 22 RUBUS URSINUS TSUGA HETEROPHYLLA 23 LINNAEA BOREALIS 14. 1 4.2| 5.216.21 4.214.21 4.21 4.114.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 5.0 4-6 . 12.2] . 13.21 2.21 1.2 1+.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 55.6 1.7 +-3 . 1 . 1 . 1 . 1 „ . l + . + l . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 11.1 + .0 +-• 1 • • . 1 . 1 . 1 . 1 + .0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 11.1 +.0 +-+ 15. 1 7.21 5. 2| 5.2 6.11 7. 2 8.2 8.113.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 6 . 9 3-8 1.21 4. 1! . 12.1 1.2 1.115.21 . 1 . 1 . 1 . 1 • I . 1 . 1 . 1 . 1 . 1 66.7 3.3 1-5 1 4. 1 • . 12.21 1.1 1 . 2.11 4.1|4 .2 l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 3.2 1-4 1 4. 1 3.1 4.2| 6..21 2.+I3.1 5. 1 5.113.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 5.0 2-6 14. + 3.+ 4.+I4.+ 5.+I3.+ 3.+ 4. + I+-.+ 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 4.2 +-5 | , 1.+ . I 3.1 . 12. 1 # 2.+|5.11 . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 55.6 3.1 1-5 1 • • . 1 . 1 . 1 . 1 • . l + . l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 11.1 +.0 +-• 1 4 1 5. 1 4.214.2 3.+14.1 4. 2 4.+ |3.11 . | . | . | . | . 1 . 1 . 1 . 1 . 1 . 1100.0 4.5 3-5 | 3.+ +.113.2 . 1 3.1 2. 1 3.+I5.+I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 77.8 3.5 +-5 12 0 2. + I . 4. +1 . 1.0 1.01 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 55.6 2.2 1-4 • • 1 • . 1 • • + .1 1 . 1 . 1 . 1 • 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 11.1 +.0 •-• 1 8. 2 7.2 8.215.2 9.318.2 5.2 6.215.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 7.6 5 - 9 1 1 2 3.1 3.312.2 2.2 12.3 2.2 1.212.21 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1100.0 2.6 1-3 | + 2 3.2 1.2I+.2 + .21 1.2 4.2 2.21 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 . 1 • 1 8 8 . 9 2.5 +-4 1 1 1 5.1 . 13.2 3.11 . 5.2 . 14.+1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 4.1 1-5 | 1.1 . 1 - . 1 1. 1 2. 1 . 1 3 . + | . | . | . | . | . 1 . 1 . 1 . 1 . 1 . 1 44.4 1.5 1-3 | 1.1 3.21 . 1.11 1. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 44.4 1.4 1-3 | . 3.21 . 2.11 . +.+1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 1.3 +-3 | + .+ + .11 . . l + . l . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 . 1 . 1 33.3 +.0 +-+ | + .21 . 1.21 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 22.2 +.0 +-1 | . 1 . 1.2 1 . „ + . 1 1 . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 22.2 +.0 +-1 j . 1 . . 1 . + .2 +.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 22.2 +.0 •-• | . I+.2 . 1 . + .2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 22.2 +.0 +-+ | + .11 . . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 11.1 +.0 +-+ | + .21 . . 1 . . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 . 1 . 1 - 1 11.1 +.0 +-+ 1 • . 1 . . 1 . + .2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 11.1 +.0 •-• | 2.1 3.214.2 2.212.2 2.1 + .111.11 . 1 . 1 • 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 8 8 . 9 2.8 +-4 1 1 .1 1.1 2.2|+.1 1.111.1 2.2 1.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 8 8 . 9 1.6 +-2 | 2.2 2.212.1 . 11.2 1.2 1.21 1.21 . .1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 77.8 1.7 1-2 | 12. 1 2.2I+.1 1.2I+.2 I + .2 + . +1 . 1 . I . 1 • 1 . 1 • 1 . 1 . 1 . 1 . 1 • 1 77.8 1.2 +-2 I + . + . I+.2 . 11.1 1. 1 + .H+.1 I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 66.7 +.7 +-1 I • 2.212.2 . 11.2 + .2 +.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 55.6 1.2 +-2 tn tn ENVIRONMENT-VEGETATION TABLE, PART 2 CWHASB, MAHONIA - GAULTHERIA - WH - DF COASTAL WESTERN HEMLOCK ZONE, U . B . C . R . F . TABLE 4 (continued) PLOT NUMBER 10311008!020108211211 076112310561 1 1 1 I 1 1 1 i i i ST NO SPECIES SPECIES SIGNIFICANCE AND VIGOR p MS RS THUJA PLICATA 11.11 . 11 .21 . I l . l i + . l l . l + . l l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 55.6 + .8 •-1 24 POLYPODIUM GLYCYRRHIZA 1 l . + l + . l l 1 . 2 1 . l + . l j . 1 . l + . l l . 1 . 1 . 1 . 1 . 1 . 1 • 1 . i . I.I.I 55.6 + .6 • -1 25 CHIMAPHILA MENZIESII 1 . 1 . 1 . 1 . 1 . 1+.11+.211.21+.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - I.I.I 44.4 + . 2 +-1 2b TRIENTALIS LAT I FDL IA I . I . 11.21 . l + . l l + . l j . I + .2 I . 1 . 1 . 1 . 1 . 1 . 1 . i • 1 . I.I.I 44.4 + .2 +-1 27 GOOD YE RA OBLONG IF ULI A l + . l l . 1 . 1 - 1 - 1 . 1 . I+.1I1.2I . 1 . 1 . 1 . 1 • I.I.I. I.I.I 33.3 + .1 +-1 28 TRILLIUM OVATUM 1 . 1 . I+. + I+.3) . 1 . l + . + l . 1 . 1 . 1 . 1 . 1 . 1 • i • i . i . I.I.I 33.3 + . 0 +- + 29 FESTUCA OCCIDENTALIS 1 . j . l + . l j . I+.2I . | . | . | . I.I. I.I.I . i . 1 . 1 . I.I.I 22.2 + .0 +- + 30 LILIUM COLUMBIANUM 1 . 1 . 1  1  l + . l l . 1 . 1 . I+.2I . j . j - I . I • i • i • i • I.I.I 22.2 + .0 31 BLECHNUM SPICANT l + . l l . I . I . I . i . I . I . I . I . I . I . I . I • i . i . i . I.I.I 11.1 + . 0 +- + 32 CLI NT ON I A UNI FLORA 1 . 1 . 1 . 1 . 1+.11 . 1 . 1 . 1 . i . 1 . 1 . 1 . i . i . i . i . I.I.I 11.1 + .0 +- + 33 DANTHGNI A SPICATA l . l . i . i . . i + . 2 i . l . j . i . i . j . l . j . | . i • i • i . I.I.I 11.1 + .0 + - • 34 GALIUM TRIFLORUM i • i + . i i . i . i . i . i . i . i . i . i . i . i . i • i • i • i . I.I.I 11.1 + . 0 • - + 35 HYPUPITYS M0N0TR3PA i .I+.II. i . i . i . i . i . i . i . i . i . i . i . i . i . i . I.I.I 11.1 + . 0 +- + 36 LUZULA MULT IF LORA i . i . i . i . i + . 2 i . i . i . i . i . i . j . i . i • l . i • i . I.I.I 11.1 + .0 + - + PSEUDOTSUGA MENZIESII i . i - i - i . i + . i i . I . I . i . i . i . i . i . i .I.I.I. I.I.I 11.1 + . 0 +- + 37 DH 38 STREPTOPUS AMPLcXIFOLIUS i . i - i . i . i . i . i+.n .I.I.I.I.I.I . \f . i . i . I.I.I 11.1 + . 0 ST3 KESI ELLA OREGANA 1 7 .315.214.316 .315.215.212.21 5 . 2 I 1.11 . 1 . 1 . 1 . 1 . J . I . I . l . l . 1100.0 5.4 1-7 39 PLAGIOTHECIUM UNDULATUM 1 3.2| 4.21 2. 2| 3.21 2.21 3. 21 4.2 |4 .2 12.2 1 . 1 . 1 . | . 1 .I.I.I. l . l . 1100.0 3.7 2-4 40 HYLUC0M1UM SPLENDEMS 15 .31 . 1 3 .2|4 . 3 | . |4.2|+.2 |3.2 |3.2| .~ 1 . I . 1 . 1 • i . i . i . | . | . l 77.8 3.9 + -5 41 RHYTIDIADELPHUS LOREUS 1 . 13.21 . 12.21 . 12.21 1.211.2! . 1 . I . I . I . I • i • i • i • I.I.I 55.6 1. 8 1-3 42 RHYTIDIOPSIS ROBJSTA 1 - 1 • 1 • 1 - 11.21 . I 1.213.314.31 . 1 . 1 . 1 . 1 • i . i . i . I.I.I 44.4 2 . 3 1-4 43 DICRANUM HOWELLII 1 . 1 . 1 1.21 . 1 2.21 . 1 . 1 1.21 . 1 . 1 . I . I . 1 • i . i . i . I . I . I 33.3 1.0 1-2 44 RHYTIDIADELPHUS TKIOUETRUS 1 - 1 . 11.21 . 1 . 1 . 1 . 1 . I+.2I . | . l . | . | . i . i . i . I.I.I 22.2 + . 0 • -1 45 DW 46 RHIZOMNIUM GLABRESCENS I . I . I . I . I . I - l + . l l . I . I . I . I . I . I • I.I.I. I.I.I 11.1 + .0 +- + SCAPANIA BGLANDERI 1 3 .312.312.313.312.313.313.313 . 3 1 3 .31 . 1 . 1 . 1 . 1 • I.I.I. l . l . 1100 .0 3. 2 2 - 3 47 HYPNUM CIRCINALE 1 1.21 1 . 3 | 3. 2| 3.3| 2.21 3. 31 3.2| 3.3 13 .3 I . | . I . I . I • i • i • i • 1 . 1 . 1 1 C 0 . 0 3.1 1-3 48 ISOTHECIUM STOLONIFERUM 1 2.21 3.313.31 2.31 4.21 4.31 1.21 2.21 . 1 . I . I . I . I • i . i • i . I.I.I 88.9 3 . 2 1-4 49 LEP1D0ZIA REPTAMS I+.3I+.3I+.3J . i + . 3 l + . 3 l + . 3 l + . 3 l + . 3 l . I . 1 . 1 . 1 • i . i . i . I.I.I 88.9 + .3 • - + PLAGIOTHECIUM UNDULATUM 1 1.212.112.21 . 12.21 . 14.211.3|2.2 1 . 1 . 1 . 1 . 1 . i . i • i . I.I.I 77.8 2 . 5 1-4 50 DICRANUM FUSCESCENS I 1.21 2.21 2.2| 2.21 . 1 1.21 1.21 1.21 . I . I . 1 . I . I • I.I.I. I.I.I 77.8 1.7 1-2 51 CALYPOGEIA SUECICA 1 . 1+.3I+.3I1.21+.31+.31+.31+.31 . 1 . 1 . 1 . 1 . 1 • i . i . i . I . i . i 77.8 + . 5 • -1 STOKESIELLA OREGANA - 12.215.214.212.213.2|4.2| . I . I . | . | . | . | . | • i . i • i . I.I.I 66.7 3.7 2-5 RHIZOMNIUM GLABRESCENS 1+.21 2.1| 2.2| 3.31 . 12.211.11 . I . I . I . I . I . I . I.I.I. I.I.I 66.7 1.9 + - 3 52 ISOPTERYGIUM ELEGANS 1 . 11.31 . 1 . 1 . 12.211.312 .311.31 . 1 . 1 . 1 . 1 • i . i . i . I.I.I 55.6 1. 3 1-2 53 LOPHOCOLEA HETERJ PHYLL A i + . 3 i + . 3 i . i . i + . 3 i + . 3 i + . 3 i . i . i . i . i . i . i . i . i . i . I.I.I 55.6 + . 0 +- + 54 CLADONIA SUBSQUAMOSA 1+.31 +.31+.311.3| . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .I.I.I. I.I.I 44.4 + .2 +-1 55 LOPHOCOLEA CUSPIDATA I+.3I+.3I . j . i + . 3 l + . 3 l . i . 1 . j . 1 . 1 . i . i . i . i . i . 1 . 1 . j 44.4 + . 0 + -+• RHYTIUIADELPHUS LOREUS 1 . 1 . 13 .213.3| . 1 . I . 12.21 . 1 . 1 . 1 . 1 . 1 • i . i . i . I.I.I 33.3 1.9 2 - 3 DICRANUM HOWELLII 1 . 1 . 1 . 1 . 1 . 1 1.2I+.1I 1.21 . 1 . 1 . 1 . 1 . I • i . i . i . I . I . I 33.3 + .3 +-1 56 CEPHALOZIA MEDIA 1 . I+.3I . J+ .3J+ .3 I . 1 . 1 . 1 . i . i . 1 . 1 . i • i . i . i . I.I.I 33.3 + . 0 + -+ 57 PTILIDIUM PULCHERRIMUM I+.3I+.3I . I . I+.3I . 1 . I . I . I . I . I . | . I • i • i • i • l - l . l 33.3 + .0 • - + 58 CEPHALOZIELLA DIV ARI CATA l . l . 1 . 1 . i . i+.3| . I+.3I . 1 . 1 . 1 . 1 . 1 • I.I.I. I . I . I 22 . 2 + .0 + - + HYLUCOMIUK SPLENDENS i . i s . z i . i . i . i . i . i . i . i . i . i . i . i • i . i . i . I . I . I 11.1 1.1 3 - 3 59 BLEPhAROSTOMA TRICHOPHYLLUM i . i . i . i . i + . 3 i . i . i . i . i . i . i . i . i . i . i . i . I . I . I 11.1 + .0 + - + E N V I R O N M E N T - V E G E T A T I O N T A B L E . P A R T 2 C W H A & B . M A H O N I A - G A U L T H E R I A - W H - D F COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 4 (continued) P L O T N U M B E R 1 0 3 1 1 0 0 8 . 0 2 0 1 5 4 5 1 0 8 2 1 1 2 1 1 0 7 6 1 1 2 3 1 0 5 6 1 1 1 1 1 1 1 1 1 1 1 S T N O S P E C I E S S P E C I E S S I G N I F I C A N C E A N D V I G O R P M S RS 6 0 F R U L L A N I A N I S Q U A L L E N S I S + . 2 . 1 . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 1 . 1 + . 0 +- + 6 1 " E R T U S A R 1 A A M B I G E N S , . I+. 3 ! . 1 . I . I . 1 . 1 . I . I . I * I . I . 1 . 1 . 1 1 1 . 1 + . 0 + -+ K H Y T I 0 1 O P S I S R O B J S T A j . + . 1 . 1 . 1 . 1 . 1 • | . | . | . I . I . I . I . I . I . . 1 . 1 . 1 1 1 . 1 + . 0 +- + 6 2 D R S P H A E R O P H O R U S G L O B O S U S 1 • • + . 3 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 1 . 1 + . 0 +- + I S O F T E R Y G I U M E L E G A N S 1 2 - 3 1 . 3 +.2I+. 2 1 4 . 3 1 2 . 3 1 4 . 3 1 3 . 3 | 4 . 3 | . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 0 0 . 0 3 . 4 + - 4 S T O K E S I E L L A O R E G A N A 1 7 . 3 4 . 3 7 . 3 1 3 . 31 5 . 2 1 5 . 2 1 + . 2 1 2 . 2 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 8 8 . 9 5 . 3 + - 7 P L A G I O T H E C I U M U N D U L A T U M 1 3 . 2 1 . 2 3 . 2 I + . 2 1 2 . 2 1 . 1 2 . 2 1 3 . 2 1 + . 2 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 8 8 . 9 2 . 5 • - 3 6 3 S C A P A N I A A M E R I C A N A 1 1 . 2 1 . 2 1 .21 . 1 2 . 3 1 . 1 1 . 2 1 1 . 2 1 1 . 3 1 . 1 . I . 1 . 1 . 1 . 1 . . 1 . 1 . 1 7 7 . 8 1 . 4 1 - 2 I S O T H E C I U M S T O L O N I F E R U M | . 1 . 2 3 . 2 1 + . 2 | . 1 . 1 3 . 2 1 5 . 3 1 4 . 3 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 6 6 . 7 3 . 5 + - 5 H Y L O C O M I U M S P L E N D E N S 1 3 . 2 . 4 . 2 1 1 , II . 1 2 . 21 . 1 . 11 .21 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 5 5 . 6 2 . 4 1 - 4 R H Y T I D I A D E L P H U S L O R E U S 1 U 2 2 . 2 3 . 3 I + . 2 1 . 11. 21 • 1 • 1 • 1 • 1 - 1 • 1 • 1 • 1 - 1 • • I . I . I 5 5 . 6 1 . 6 + - 3 6 4 H E T E R O C L A D I U M M A C O U N I I | . + .2 1 .31 . 1 . 1 +. 21 1.31 +.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 5 5 . 6 + . 6 • - 1 D I C R A N U M H O W E L L I I 1 3 . 2 . 1 . 2 | . 1 2 . 3 1 . I . I . 1 3 . 2 1 . 1 . 1 . 1 . 1 . 1 . 1 . . I . I . I 4 4 . 4 2 . 0 1 - 3 6 5 P L E U R O Z I U M S C H R E 3 E R I 1 3 . 3 2 . 2 1 . 1 3 . 3 1 . 1 . 1 . 1 1 .21 . 1 . 1 . 1 . 1 . I . 1 . . | . | . | 4 4 . 4 2 . 0 1 - 3 6 6 R H A C O M I T R I U M C A M E S C E N S 1 2 . 3 + . 3 1 1 1 . 3 1 . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 3 3 . 3 + . 8 + - 2 R H I Z O M N I U M G L A B R E S C E N S 1 + . 2 + . 2 . 1 • 1 . 1 I . I . I . I . I . I * I . I . I . I . . 1 . 1 . 1 3 3 . 3 + . 5 + -+ 6 7 P L A G I O T H E C I U M L A E T U M 1 1 . 2 1.21 . I+.31 . I . | . | . | . | . | . | . | . | . | . . 1 . 1 . 1 3 3 . 3 + . 3 + - 1 6 B P O G O N A T U M A L P I N U M 1 +.2 + . 2 1 1 1 . 2 | I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 3 3 . 3 + . 1 + - 1 6 9 D I P L O P H Y L L U M T A X I F O L I U M I . • + . 3 | . 1 +.2 1 1 . 1 . I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 3 3 . 3 + . 0 + -+ 7 0 M A R S U P E L L A S P H A G E L A T A I + . 2 • 1 . 1 * 1 . 1 . I+.3I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . . I . I . I 3 3 . 3 + . 0 +- + 7 1 P E L T I G E R A M E M B R A N A C E A | . + .31 . 1 + . 3 1 1 . 1 . I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 3 3 . 3 + . 0 + -+ 7 2 R H A C O M I T R I U M H E T E R O S T I C H U M . 1 • 1 1 . 3 I I . I . 13.31 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 2 . 2 1 . 2 1 - 3 K H Y T I D I O P S I S R O B J S T A 1 . 2 1 . I . I . I . I . 1 3 . 3 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 2 2 . 2 1 - 2 1 - 3 7 3 P O G O N A T U M M A C O U N I I . 1 . 1 • 1 11.21 . 1 2 . 2 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 2 . 2 + . 7 1 - 2 7 4 B A R T R A M I A P O M I F U R M I S | . + . 2 1 . 1 2 . 3 1 I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 2 2 . 2 + . 4 + - 2 7 5 C L A D I N A R A N G I F E R I N A 1 1 . 2 . 1 . 1 1 . 2 1 . I . I . 1 . I . I . I - I - | . I . I . . 1 . I . 1 2 2 . 2 + . 2 1 - 1 7 S C L A O P O D I U M C R I S P I F O L I U M j . • 1 • 1 . 1 1 1 . 3 I + .3 I . I . I . .1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 2 . 2 + . 0 + - 1 7 7 D I P L O P H Y L L U M A L B I C A N S 1 + . 3 • 1 > 1 > 1 I . I . 1 1 . 3 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 2 . 2 + . 0 + - 1 7 8 C E R A T O D O N P U R P U R E U S | . + . 2 1 . 1 . 1 1 . 1 . ! . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 1 . 1 + . 0 +- + 7 9 U R Y P T O D O N P A T E N S . 1 . 1 . 1 . 1 . 1 . 1 1 1 . 1 + . 0 +- + 8 0 H E T E R O C L A D I U M P R O C U R R E N S | . . 1 • 1 + . 2 1 1 . 1 . I . I . I . I . I . I . I . I . . 1 . 1 . 1 1 1 . 1 + . 0 + - + 8 1 M N I U M S P I N U L O S U M j . . 1 . 1 . 1 . 1 . 1 . 1 1 1 . 1 + . 0 • - + 8 2 P O L Y T R I C H U M J U N I P E R I N U M 1 • • . 1 . 1 + . 3 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 1 . 1 + . 0 + - • ENVIRONMENT-VEGETATION T A B L E , PART 1 FOREST ECOSYSTEM: CWHA, MOSS - WH COAST.AL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 5 IPLOT NUMBER 002 1 1241 024| 6071 1541 0051 0071 0321 544| 5461 I I 1 1 1 1 1 1 1 MEAN I 1PHYSIOGRAPHY 1 1 1 1 1 1 1 1 1 1 1 1 1 ELEVATION (M) 160 2931 3141 3201 3901 1831 246| 2761 3141 314! 1 1 1 1 1 1 1 1 I 281.0! ISLOPE GRADIENT (?) 0 101 10 I 251 15 51 29| 20 1 131 311 1 1 1 1 1 1 1 ! 1 15.31 lASPECT S45WI S25WI E 1 N10W S10W| S65WI S10E 1 S45WI S45EI 1 1 1 1 | | J I SOIL | i i ! I I ! I i I I i 1 BEDROCK H3QDI | HBQDl BHQD I BHQD 1 i i ' ! ' ' I I ! ' i 1 TEXTURE SL LSI SL l LSI LSI SL l SL l i i i i i i j j j j i 1 PARENT MATERIAL GF I MV| MB I MB I MV GF I MB 1 MB 1 MVl GF| I 1 I | i j j j i j ISOIL DEPTH (CM) 70 1 95 1 1151 1381 85 1 701 1301 901 95 1 751 I I I 1 1 1 I 1 1 96 .31 ICOARSE FRAGMENTS (?) G15 S15I R25I R60| R10I G10I R20I G2 0| R50 I G25I 1 1 1 1 I 1 1 1 1 1 1HYGROTOPE M Ml M 1 SMI M Ml SM| SM| M | SMI 1 1 1 I 1 1 1 1 1 1 1 SEEPAGE WATER DEPTH (CM) | 1 1 1 1 1 1 1 1 1 1 1 1 MODIFIER | 0*! 1 1 1 I I j j j | j | ISOIL SU3GROUPICSSC 1970) MHFP MHFP 1 OHFPI MHFP 1 MHFPl OHFPI OHFP| 1 I I 1 1 i i ' ! ! I IHUMJS j i i ! "! ! I I I ' ! i 1 HUMUS FORM H-MR F-MR 1 H-MR | MR 1 F-MR I H-MR I F-MR ] H-MR I MD I MD| I | I I i i 1 ' ' ! i ITHICKNESS (CM! 101 7 1 35| 131 51 51 41 121 101 31 1 1 1 1 I 1 1 1 1 10.41 1 PH 3 . 9 ] 3 . 6 | 3 . 8 | 4 . 2 | 3 . 8 ! 3 .8| 4.21 4 .01 4 . 5 1 4 .5 1 I 1 I I 1 1 1 1 1 4.01 1VEGETATION j I.! ! ! I i i ! ! ! ! 1 AGE ( Y R S . ) 65 1 971 851 791 631 69| 731 ' ' i i ! I I 1 1 1 75.91 1 GROWTH CLASS - DF 61 4| 5| 4| 41 4| 51 41 4 1 4 1 1 1 1 1 1 1 1 1 1 4 . 4 | 1 WH 5 1 41 41 31 3 1 31 4| 41 1 I I 1 1 I I 1 1 3.81 1 WRC 4 1 4 1 6 1 4| 61 5| I I I I 1 1 1 1 1 4 .81 1 NT/HA "(ALL DBH) 1722 1 8151 544| 12111 10281 983| j | | | | 1 1 1 1 1 1051.31 !E A/H A ( S O . M . ) 1 16 I 481 421 99| 501 6 0 ! 1 1 1 1 1 1 1 1 1 I 69 .21 1 STRATA A LAYER 85 1 801 901 751 85 1 751 301 901 70| 9 0 ! I I I I 1 1 1 1 1 7 7 . 0 1 1 COVERAGE B LAYER 351 401 13! 151 351 251 551 151 11 151 I I I I I I 1 1 1 24 .91 1 (?) C LAYER 30| 3| 8 1 101 101 351 6| 121 5 1 21 1 1 1 1 1 1 1 1 1 12.11 1 D LAYER 90 I 751 30 1 95 1 901 801 951 601 90 I 801 1 1 1 1 1 1 1 1 1 78 .51 1 GROUND H £ MS 50 1 80| 551 50! 401 551 40| 5 5 ! 55 1 701 1 1 1 1 1 1 1 1 1 55.01 1 COVERAGE DW 20 1 15| 451 401 55| 40| 451 40| 3 5 ! 201 1 1 1 1 I 1 1 1 1 35.51 II?) R £ S 25 I 1 I 21 01 01 51 201 31 01 01 1 1 1 1 1 1 I 1 1 5.6| co CO ENVIRONMENT-VEGETATION TABLE, PART 2 CWHA, MOSS - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R TABLE 5 • F. PLOT NUMBER 10021124102416071154100510071032154415461 I 1 1 1 1 1 I 1 1 ST NO. SPECIES . SPECIES SIGNIFICANCE AND VIGOR P MS RS A l A2 A3 B l B2 C 1 PSEUDOTSUGA MENZIESII 1 4.2 4.2 • 6.3 + .2 5.2 4.2 6.2 7.3 5.2| . 1 . i • i • i . i . i . 1 . 1 . 1 90.0 5.3 + -7 2 TSJGA HETEROPHYLLA | . 4.3 5.2 5. 3 • • + .3 +.31 . 1 . i . i . i . i . i . 1 . 1 . 1 50.0 3.7 + -5 3 THJJA PLICATA 1 5.2 • 3.2 + . 1 • • • • . 1 . 1 . i . i . i . i . i . 1 . 1 . 1 30.0 2.9 +-5 PSEUDOTSUGA MENZIESII 1 2.2 3.1 2. 1 5.3 5.2 4.2 5.1 7.2 5.2 7.31 . I . i . i . i . i . i . 1 . 1 . I1C0.O 5.4 2-7 TSUGA HETEROPHYLLA 18.2 8.2 7. 2 4. 3 7.3 6. 2 • 3.2 + .2 6.21 . 1 . i • i • i . i . i . I . I . I 90.0 6.3 +-8 THUJA PLICATA I . 1.2 3.2 + .3 . 4.2 + .1 . + .2 4.21 . 1 . i . i . i . i . i . 1 . 1 . 1 70.0 2.8 +-4 4 ALNUS RUBRA 1 • • • • • 3.2 • • • . 1 . 1 . i . i . i . i . i . I . I . I 10.0 1.0 3-3 TSUGA HETEROPHYLLA 15.1 4.2 6.2 4-2 2.2 2.1 + .1 4.1 8.1 3.31 . 1 . i . i . i . i . i . 1 . 1 . 1100.0 5.2 +-8 THJJA PLICATA 13.1 4.2 4. 2 . 3.2 5.2 3.2 3.2 5.2 4.21 . 1 . i . i . i . i . i . 1 . 1 . 1 90.0 4.4 3-5 PSEUDOTSUGA MENZIESII | . 3.+ + . 1 + .0 4.+ 3.+ 4.+ 2.+ l . + l . 1 . i . i . i • i • i . 1 . 1 . 1 80.0 3.0 + -4 ALNUS RUBRA • • • • 4. 1 • • • . 1 . 1 . i . i . i . i . i . 1 . 1 . 1 10.0 1.6 4-4 THJJA PLICATA 1 1.1 3. 1 3. 1 3.2 3.2 6. 2 7.2 4.2 1.2 4.21 . 1 . i . i . i . i . i . 1 . 1 . 1 100.0 5.0 1-7 TSUGA HETEROPHYLLA 14.1 1.1 4.1 2.2 1.2 3. 1 2. 1 4.1 3.11 . 1 . 1 • 1 • i • 1 • i . 1 . 1 . 1 90.0 3.4 1-4 5 CORNUS NUTTALL11 1 • • • • • • + .+ • • . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 10.0 + .0 +- + 6 GAULTHERIA SHALLON 15.2 4.2 2.2 4.2 4.2 2. 1 5.2 4.2 1.1 3.11 . 1 . 1 . 1 . 1 . 1 . 1 . | . | . 1100.0 4.4 1-5 7 VACCINIUM PARVIFOLIUM 11.2 2.2 . + .2 2.2 2.2 1.2 2.2 + .2 1.21 . I . i • i • i • i • i . 1 . 1 . 1 90.0 1.7 +-2 TSJGA HETEROPHYLLA | . 2.1 4. 2 5.2 + . 1 + . 1 . + .2 +.21 . 1 . i . i . i • i . i . 1 . 1 . 1 70.0 3.1 +-5 B MENZIESIA FERRUGINEA 1 1.2 . 1.2 2.3 1.2 • + . 1 . + .2 +.21 . 1 . i • i • i • i • i • I . I . I 70.0 l . l +-2 9 ACER CIRCINATUM 1 1.2 + .1 1. 1 • 1.1 l . l • 1.1 •.2 . 1 . 1 . i • i • i • i • i . 1 . 1 . 1 70.0 1. 1 + -1 10 VACCINIUM ALASKAENSE | . 2. 2 • .2 1.2 • 1.2 + . 1 . 1 . 1 . i • i • i . i • i . 1 . 1 . 1 50.0 1.0 • -2 11 RUBUS SPECTABILIS 1 1. 1 1.1 + .1 3.2 . . I . i . i . i • i . i . i . 1 . 1 . 1 40.0 1.3 + -3 THJJA PLICATA | . l . l . . 1.1 1.1 • • . 1 . 1 . i • i • i • i • i . 1 . 1 . 1 30.0 + .5 1-1 12 RHAMNUS PURSH1 ANA 1 1. 1 1. 1 • + .1 • 1 • 1 • i . i . i • i . i . 1 . 1 . 1 30.0 + .2 +-1 13 VACCINIUM OVALIFOLIUM 1 • • • • + .2 • • • • . 1 . 1 . i . i . i . i . i . 1 . 1 . 1 10.0 + .0 +- + 14 PTERIDIUM AOJILINUM 1 1.1 2.2 3. 2 4.2 1.2 1. 1 1. 1 2.1 + .2 3.21 . 1 . i . i i . i . i . 1 . 1 . 1 100.0 2.8 +-4 15 POLYSTICHUM MUNITUM 13.2 + .2 3.2 1.1 4. 2 1. 1 3.2 2.2 , | . | . i . i . i . i . i . 1 . 1 . 1 80.0 2.9 +-4 VACCINIUM PARVIFOLIUM 14.2 1.2 2.2 . 2.2 1.2 3.1 . . 1 . 1 . i . i • i . i . i . 1 . 1 . 1 70.0 2.5 1-4 IS DRYOPTERIS AJSTRIACA 1 1.1 . 1. 1 + .2 5.2 + .1 • + .1 • 1 • 1 • i • i • i . i . i . 1 . 1 . 1 60.0 2.7 • -5 17 RUBUS URSINUS I I. 1 + .2 1.1 • • 2.2 1. 1 I. 1 . I . I . i • i • i . i . i . 1 . 1 . 1 60.0 1.2 • -2 TSUGA HETEROPHYLLA 1 4.2 2.2 3.2 4.2 . . 3. 1 . . 1 . 1 . i • i • i • i • i . 1 . 1 . 1 50.0 3.0 2-4 18 TRILLIUM OVATUM I . + .2 + .1 1.2 • . + .3 • 1 • 1 « i . i • i . i • i . 1 . 1 . 1 40.0 + .1 +-1 19 TRIENTALIS LATIFOLIA 12.2 1.3 # . + .2 • i . i . i . i . i • i . i . i . I . I 30.0 + .7 • -2 20 BLECHNUM SPICANT 11.2 . 1.1 . 1.2 • i . i . i • i • i • i . i . 1 . 1 . 1 30.0 + .5 1-1 21 LINNAEA BOREAL IS | . 1.2 • • 1.2 1.1 • . i . i . i . i . i . i . i . 1 . 1 . 1 30.0 + .5 1-1 22 TIARELLA TRIFOLIATA | . + .1 + .2 1.2 • i . i . i • i . i • i • i . 1 . 1 . 1 30.0 + .0 •-1 23 CORNUS CANADENSIS 12.2 + .2 . . I . I . i . i . i . i . i . 1 . 1 . 1 20.0 + .3 • -2 cn CO ENVIRONMENT-VEGETATION TABLE, PART 2 CWHA, MOSS - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 5 (continued) PLOT NUMBER |002|124|024|607|154|005|007|032|544|546| I | I I I I I I ! ST NO. SPECIES . SPECIES SIGNIFICANCE AND VIGOR P MS RS 24 GOODYERA OBLONG IFGLI A l + . l 1.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 20.0 + .0 +-1 THUJA PLICATA I . 1.1 • • . 1 . 1 +.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 20.0 + .0 + -1 25 ATHYRIUM FILIX-FEMINA | . + . 1 • • • 1 • 1 +.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 - 1 . 1 . 1 20.0 + .0 +- + 25 HEM I TOMES CONGESTUM • • . 1 . . I+.3I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 20.0 + .0 +- + 27 HYPOPITYS MONOTRUPA | . . 1 . 1 . 1 • 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 10.0 + .2 2-2 28 POLYPODIUM MONTENSE • • • 11.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 10.0 + .0 1-1 29 LISTERA CORDATA • • . 1 . . I+.3I . I . I . I . I . I . I . 1 . 1 . 1 . 1 10.0 + .0 +- + 30 LUZULA PARVIFLORA • • I . I +.11 . I . I . I . I . I . I . ! . 1 . 1 . 1 . 1 10.0 + .0 +- + 31 PYROLA ASARIFOLIA + .2 • . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 10.0 + .0 +- + 32 STREPTOPUS AMPLEXIFOLIUS • • + .+ • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 10.0 + .0 +- + DH 33 VIOLA ORBICULATA 1 • + .1 • • . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 10.0 + .0 +- + 34 STOKESIELLA OREGANA 15.2 6.2 + .2 4.3 3.2 6.216.2 5.213.314.21 . | . | . l . | . l . 1 . 1 . I . I 100.0 5 . 2 +-6 35 HYLOCOMIUM SPLENDENS 16.2 6.3 3.2 3.3 7.2 2.21 3.21 4.214.314.31 . I . 1 . I . I . I . 1 . I . | . 1100.0 5.2 2-7 36 PLAGIOTHECIUM.UIIDULATUM 14.2 2.2 5.2 7.3 5.2 2.212.21 3.215.315.31 . 1 . 1 . 1 . 1 . 1 . I . I . I . 1100.0 5 . 1 2-7 37 RHYTIDIADELPHUS LOREUS 1 1.2 3.2 1. 2 5. 3 5.2 4. 21 2. 1 1.214.313.31 . 1 . 1 . 1 . 1 . 1 . I . I . I . 1100.0 4.2 1-5 3 8 RHIZOMNIUM GLABRESCENS | . + .2 3.2 2.3 3.2 + .21 1.21 1.213.31 1.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 90.0 2 . 3 +-3 DW 39 PL AG IOCHI LA ASPLENIOIDES I + .2 • • • • . 1 . 1 +.21 . I . I . I . I . I . I . ! . 1 . 1 . 1 . 1 20.0 + .0 + - + 40 SCAPANIA BOLANDERI 13.3 4.3 4.3 5.31 4.3 4.31 2.31 4. 315.313.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 4.6 2-5 41 I'SOTHECIUM STOLON I FE RUM 12.2 3.2 1. 2 2. 3 2.1 3.213.21 2.213.212.21 . | . I . 1 . I . I . I . I . I . 1100.0 3. 0 1-3 PLAGIOTHECIUM UNUULATUM 12.3 1.2 3. 3 4. 3 4.2 3.213.11 4.213.31 . | . | . | . | . | . | . 1 . 1 . 1 . 1 90.0 3 . 5 1-4 RHIZOMNIUM GLABRESCENS 1 4.3 1.2 2.2 . 4.3 1.2| 3 . 2i 3.214.311.31 . | . | . | . | . | . 1 . I . I . I 90.C 3.3 1-4 42 HYP MUM CIRCINALE | . 4.3 1.2 + .3 2.3 2.213.21 3.214.312.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 90.0 3.1 • - 4 43 LEPIDOZIA REPTANS 11.3 1.3 + . 3 2. 3 2.3 . 12.31 1.3I+.2I+.3I . I . I . I . I . I . 1 . 1 . 1 . 1 90.0* 1.5 +-2 44 DICRANUM FUSCESCENS | . 1.2 2.2 2.3' 1.2 . 12.21 1.21 2.31 2.21 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I 80.0 1.9 1-2 HYLOCOMIUM SPLENDENS |4.2 1.2 . + .3 4.2 4.212.21 . 13.31 . I . I . I . I . I . I . 1 . 1 . 1 . 1 70.0 3.2 + - 4 45 ISOPTERYGIUM ELEGANS 11.3 + .3 1. 3 . . . 11.31 1.311.21+.31 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 70.0 1.1 + -1 STOKESIELLA OREGANA 13.2 . 2.3 2.2 3.2 16.21 3 . 2 1 . I . I . I . I . I . I . I . 1 . I . I . I 60.0 3.7 2-6 RHYTIDIADELPHUS LOREUS | . 1.2 . 5.3 4.2 12.21 . 14.212.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 60.0 3.5 1-5 45 CALYPOGEIA TRICHOMAN1S 11.3 + . 3 . 1.31 . 1 +.311.211.2) . I . I . I . I . I . 1 . I . 1 . 1 60.0 1. 0 + -1 47 TETRAPHIS PELLUCIDA 1 +.2 + .3 + .3 +.31+.31 +.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 60.0 + .0 +- + 48 BAZZANIA DENUDATA I + .2 3.3 2.3 • l . l . 1 . 1 . I . I . I . I . I . I . 1 . 1 . I . rj 30.0 1.3 +-3 49 LOPHOCOLEA CJSPIDATA | . + .3 • . I+.3I +.31 . 1 . ] . I . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 30.0 + .0 •- + 50 LOPHOCOLEA HETEROPHYLLA j . . • . I+.3I +.31 . I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 30.0 + .0 +-+ 51 CEPHALOZIA MEDIA 1 . 2.3 • l . l . I+.3I . I . I . I . I . I . I . 1 . 1 . 1 . 1 20.0 + . 3 • -2 52 CALYPOGEIA NEESI ANA • + .3 1.3 • 1 - 1 . 1 - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 20.0 + .0 + -1 53 CALYPOGEIA SUECICA • + .3 • • 1 . + .31 . I . I . I . I . 1 . 1 . I . 1 . 1 . 1 . 1 20.0 + .0 +-• 54 CEPHALOZIA BICUSPIDATA + .3 • . • I . I . I+.3I . I . I . I . I . I . I . 1 . 1 . 1 . 1 20.0 + .0 +-+ 55 PTILIDIUM PULCHERRI MUM • + .3 . I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 20.0 + .0 +- + 55 OIPLOPHYLLUM TAXIFOLIUM | . • • • I . i . I+.3I . I . I . I . I . I . I . 1 . 1 . 1 . 1 10.0 + .0 +-+ 57 FRULLANIA NISQUALLENSIS 1 ' • • • • +.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 10.0 +.0 +-+ cn o ENVIRONMENT-VEGETATION TABLE. PART 1 FOREST ECOSYSTEM: CWHACB, MAHONIA - MOSS - WRC - WH COASTAL WESTERN HEMLOCK ZONE. U.B.C.R.F. TABLE 6 IPLOT NUMBER 022 1 058 107| 074 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MEAN I 1 PHYSIOGRAPHY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ELEVATION (M) 1911 362 467 | 4911 1 1 I I I I I 1 1 1 1 1 1 1 377 . 81 ISLOPE GRADIENT (S i 55 1 75 601 70| 1 1 I 1 I 1 I 1 1 1 1 1 1 1 65 .01 1 A S P E C T ' N85WIS40W N60W 1 S45W| I I | | I I 1 I 1 ! 1 1 1 1 1 1 SOIL | i 1 i i i i i i ! 1 1 i 1 1 1 1 1 BEDROCK HBQDlHBOD HQD 1 BHQDI 1 1 1 1 1 1 1 i i i i ! i i i 1 TEXTURE LS1 SL LSI SL l 1 1 1 1 1 1 1 i j j i i i i i 1 PARENT MATERIAL CV I CB CV 1 CBI 1 1 1 1 1 1 1 j i j j j j j i ISOIL DEPTH (CM) 901 120 701 1051 1 1 1 1 1 1 1 I I 1 I . I 1 1 96 .31 ICOARSE FRAGMENTS (S) R45 | S65 S45I S60 | 1 1 1 1 1 1 1 I I 1 I I 1 1 1 1HYGROTOPE SHG1 M SM| Ml 1 1 1 I I 1 1 j j j I | j 1 j 1 SEEPAGE WATER DEPTH (CM) | 1 1 1 1 I 1 1 1 | | j j j j | j IMODIFIER | I 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 ISOIL SUBGROUP(CSSC 1970) SHFP|MFHP MHFP I OHFPI 1 1 1 1 1 1 1 I I I ! ! ! ! ! 1 HUMUS ' ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 HUMUS FORM MDIH-MR H-MR I H-MR | 1 1 1 1 1 1 1 i J i I i I I ! ITHICKNESS (CM) 101 15 61 201 I I 1 I I I I I I 1 1 1 1 1 12.81 1 PH 5.01 4 . 0 3.71 3.91 I | I I | | | 1 1 1 1 1 1 1 4 .11 1 VEGETATION j I i 1 ! ! ! ! ! ! i i i ! I ! i ! 1 AGE ( Y R S . ) 731 73 66| 751 1 1 1 1 1 1 I 1 1 1 1 1 1 1 71.81 IGROWTH CLASS - DF 41 6 41 4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4.51 1 WH 1 5 51 j j j j | | j j 1 1 1 1 1 1 1 5.01 1 WRC 61 5 51 1 1 1 1 1 1 1 5.01 INT/HA (ALL DBH) 988 11507 908 1 4611 1 1 1 1 1 1 1 1 1 1 1 1 1 1 966.01 IBA/HA ( S O . M . ) 441 111 38| 50| I I I I I 1 I 1 1 1 1 1 1 1 60.81 1 STRATA A LAYER 601 55 901 651 1 1 1 1 I I I 1 1 1 1 1 1 1 67 .51 1 COVERAGE 8 LAYER 351 55 251 401 1 I I 1 | | I 1 1 1 1 1 1 1 38.81 I IS) C LAYER IS 1 4 31 301 1 1 1 1 1 1 I 1 1 I I 1 1 1 13.31 1 D LAYER 55 I 40 15 I 30 1 1 1 1 I | I I 1 1 1 1 1 1 1 35.01 1 GROUND H £ MS 20 I 55 501 551 1 1 1 I I I 1 1 1 1 1 1 1 1 45.01 1 COVERAGE DW 251 5 151 151 1 I 1 1 I I I 1 1 1 1 1 1 1 15.01 1 (?) R £ S 501 35 301 251 1 I I | | I I 1 I I 1 1 1 1 35.01 ENVIRONMENT-VEGETATION TABLE > PART 2 CWHASB, MAHONIA - MOSS - WRC - WH C O A S T A L W E S T E R N H E M L O C K Z O N E , U . B . C . R . F . TABLE 6 PLOT NUMBER 10221058|107|074| 1 1 1 1 1 1 1 1 1 1 1 i i i ST NO SPECIES SPECIES SIGNIFICANCE AND VIGOR p MS R S A l 1 PSEUDOTSUGA MENZIESII 15.2|5 .2|6.2|5.2| . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 0 0 . 0 5 . 6 5-6 A2 2 THUJA PLICATA I . I . I . I+.OI . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 5 . 0 + . 0 +- + PSEUDOTSUGA MENZIESII 17.21 5.215.217.2J . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 0 0 . 0 6 . 5 5 - 7 THUJA PLICATA 1 1.21 . 1 5.2| 1.21 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 7 5 . 0 3 .9 1-5 3 TSUGA HETEROPHYLLA 1 . 1 2 . 2 1 1 . 2 1 . I . i . i . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 5 0 . 0 1.3 1-2 A3 4 BETULA PAPYRIFERA 1 . 1 . 1 1. 21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 5 . 0 + . 3 1-1 THUJA PLICATA 15. l | 4 . 1 1 7 . 2 1 5 . 2 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 0 0 . 0 5 . 7 4 - 7 PSEUDOTSUGA MENZIESII 1 4 . + I5. +I 4.1 13.1 I . I . I . I . I . I . I . I . I . 1. I . I . . 1 . 1 . I I C O . O 4 . 8 3 - 5 TSUGA HETEROPHYLLA 1 1. 11 3. 11 +. 11 . I . 1 . I . I . I . I . I . I . I . I . I . | . . 1 . 1 . 1 7 5 . 0 2 .0 +-3 BETULA PAPYRIFERA 13.21 . 1 . 1 . 1 . 1 • 1 • 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 5 . 0 1.8 3 - 3 B l 5 TAXUS BREVIFOLIA I . I . I . l + . l l . 1 . . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 5 . 0 + . 0 +- + THUJA PLICATA 1 5 . 1 | 5 . 1 | 5 . 1 1 4 . 2 ! . 1 . 1 - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 0 0 . 0 5 . 3 4 - 5 TSJGA HETEROPHYLLA 1 1 . 1 1 4 . + 1 . 12.11 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 7 5 . 0 3 . 0 1-4 & ACER MACROPHYLLUM l + . l l . 1 . l + . l l . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 5 0 . 0 + .0 +- + PSEUDOTSUGA MENZIESII 1 . 13.+1 . | . | . I . I . I . I . I . I . I . i . i . I . I . . 1 . 1 . 1 2 5 . 0 1.8 3 - 3 B2 TAXUS BREVIFOLIA ' I . I . I . I+.2I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 2 5 . 0 + . 0 • - + 7 ACER CIRCINATUM 1 4 . 2 1 6 . 2 1 1 . 2 1 5 . 2 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 1 0 0 . 0 5 .2 1-6 B MAHONIA NERVOSA 1 3. 21 3 .214. 2| 4 . 2 | . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 1 0 0 . 0 4 . 1 3 - 4 9 GAULTHERIA SHALLON 1 4.21 4 . 2 | 3. 11 2.21 . i . i . i . i . i . i . i . i . i . i . i . . 1 . I . 1 1 0 0 . 0 4 . 0 2-4 THUJA PLICATA 1 3. 11 3.21 3. 11 3 . 11 . i . i . j . i . j . j . j . i , i . i . i . . 1 . 1 . 1 1 0 0 . 0 3 .4 3 - 3 10 VACCINIUM PARVIFOLIUM 1 3. 3| 2.21 1. 21 1. 21 . i . i . i . i . i . i . i . i . I . I . i . . 1 . 1 . 1 1 0 0 . 0 2 .4 1-3 TSUGA HETEROPHYLLA 1 1.11 1 .2I+. l l + . l l . i . j . i . i . i . I . I . i . i . i . i . . 1 . 1 . 1 1 0 0 . 0 1.2 +-1 11 HOLODISCUS DISCULOR I l . 2 | . 1 . 1 . I . i . i . i . i . i . i . i . I . I . i . i . . 1 . 1 . 1 2 5 . 0 + .3 l - l Q 12 RUBUS SPECTABILIS I+.2I . 1 . 1 . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 2 5 . 0 + . 0 +-• 13 POLYSTICHUM MUNITUM 1 4 . 2 1 2 . 2 13.1 1 5 . 2 | . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 1 0 0 . 0 4 . 5 2-5 14 PTE RIDIUM AQUILINUM 11.21 . 1 2 . 1 1 1 . 1 1 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 7 5 . 0 1.6 1-2 15 TRIENTAL1S L A T I F O L I A 1 2.21 1.21 . | 1.21 . I . I . I . I . i . i . i . I . I . I . I . . 1 . 1 . 1 7 5 . 0 1.6 1-2 VACCINIUM PARVIFOLIUM 12.21 1 .211 .21 . 1 . i . i . i . i . i . i . i . j . I . I . I . . 1 . 1 . 1 7 5 . 0 1.6 1-2 16 RUBUS URSINUS 12.21 . I t .2|1.21 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 7 5 . 0 1.4 • - 2 17 POLYPODIUM GLYCYRRHIZA I + . 2 I 2 . 1 I . I . | . j . i . j . i . i . i . i . I . I . i . i . . 1 . 1 . 1 5 0 . 0 l . l +-2 18 DRYOPTERIS AUSTRIACA I+.2I . 1 . 11.21 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 5 0 . 0 + .6 +-1 19 LINNAEA BOREALIS 13.21 . 1 . 1 . 1 . 1 • I . I . I . I . | . | . I . i . i . i . • I . I . I 2 5 . 0 1.8 3 - 3 THUJA PLICATA 1 - 1 1.21 • 1 . 1 . i . i . i . i . i . I . I . I . I . I . I . . 1 . 1 . 1 2 5 . 0 + . 3 l - l 20 BLECHNUM SPICANT I . I . I . l + . l l . I . I . I . I . I . I . I . I . I . I . I . . I . I . I 2 5 . 0 + . 0 +- + 21 FESTUCA O C C I D E N T A L S 1 . l + . l l . 1 . 1 . I . I . I . i . I . I . I . i . i . i . i . . 1 . 1 . 1 2 5 . 0 + . 0 + - + 22 GOODYERA OBLONGIFOLIA 1 . | . l + . l l . 1 . i . i . i . i . i . i . i . i - i . i . i . . 1 . 1 . 1 2 5 . 0 + . 0 + - + ro ENVIRONMENT-VEGETATION TADLE, PART 2 COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. CWHASB, MAHONIA - MOSS - WRC - WH TABLE 6 (continued) PLOT NUMBER I 02210581107|074| I I I I I I I I I I I I I I I DH DW DR NO SPECIES SPECIES SIGNIFICANCE AND VIGOR p . MS RS 23 TRILLIUM OVATUM I + .3 . 1 - I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25.0 + .0 +-• TSJGA HETEROPHYLLA t . 1 + .1 • . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25.0 + .0 +- + 24 STOKESIELLA OREGANA 1 3.2 5.2 2.21 1.21 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1100.0 4.1 1-5 25 PLAGIOTHECIUM UNDULATUM 1 3.2 1.2 1. 2 2. 2 I . I . I . I . I . I . I . I . I . I . I . I . . I . I . 1100.0 2.4 1-3 25 HYLOCOMIUM SPLENDENS 1 5.2 2.2 3.2 . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 4. 1 2-5 27 POGONATUM MACOUNII I+.2 1.2 2.2 . 1 • I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 1.4 + -2 28 DICRANUM HOWELLII 11.3 1.2 1. 1 . 1 . I . I . I . I . I . I . I . I . I . I . ! . . 1 . 1 . 1 75.0 1.3 1-1 29 RHYTIDIADELPHUS LUREUS 1 4.2 . . + .31 . I . l . l . l . l . l . l . l . l . i . l . . 1 . 1 . 1 50.0 2.7 • -4 30 DICRANUM FUSCESCENS 11.3 1.2 • . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 50.0 1.0 1-1 31 MNIUM SPINULOSUM j . + .2 • + .21 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 50.0 + .0 + - + 32 RHIZOMNIUM GLABRESCENS 1 +.3 • . 1 . I . I . I . I . I . I . I . I . I . I . I . . I . I . I 25.0 + .0 +- + 33 RHYTIDIADELPHUS TRIQUETRUS I+.3 • • . 1 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 25.0 + .0 • -+ PLAGIOTHECIUM UNDULATUM 1 3.2 3.2 4. 2 4.21 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1100.0 4.1 3-4 34 HYPNUM CIRCINALE 1 2.3 3.3 3.2 3.31 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1100.0 3.2 2-3 35 SCAPANIA BOLANDERI 1 2.3 2.3 3. 3 3.31 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . I1C0.0 3.1 2-3 35 ISDTHECIUM STOLON IFERUM 1 4.2 4.2 . 3.21 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 3.8 3-4 RHYTIDIADELPHUS LOREUS 14.2 . 1.2 2 .21, . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 3.0 1-4 STOKESIELLA OREGANA 1 2.2 4.2 . 1.2! . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 3.0 1-4 RHIZOMNIUM GLABRESCENS j . 1.3 1. 2 3.31 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 2.1 1-3 37 ISDPIERYGIUM ELEGANS + .3 + .3 1.21 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 + .8 + -1 38 CLADUN I A SUBSOUAMOSA | . + .3 + . 3 + .31 . I . l . l . l . l . l . l . l . l . i . l . . 1 . 1 . 1 75.0 + .2 +- + 39 LEPIDOZIA REPTANS . 1. 3 1.31 . I . I . I . I . I . I . I . I . I . I . I . .1 .1 . 1 50.0 1.0 1-1 40 6 A L Y P U G B I A TRICMOMANI 5 | . + .3 + .31 , i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 50.0 + .0 + - + 41 LOPHOCOLEA HETEROPHYLLA | . t.3 t. 3 . ! . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 50.0 • .0 • - + 42 TETRAPHIS PELLUCIDA i . • + . 3 + .31 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 50.0 + .0 +-• 43 PLAGIOCHI LA ASPLENIOIDES i . 2.3 . 1 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 25.0 1.1 2-2 DICRANUM FUSCESCENS 11.2 . 1 • i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 25.0 + .3 1-1 44 BAZZANIA AMBIGUA 1 . • + .31 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 25.0 + .0 +- + 45 BLE PHAROSTOMA TRICHOPHYLLUM 1 . + .31 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 25.0 + .0 +-+ 45 CALYPOGEIA SUECICA I + .2 . . 1 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 25.0 + .0 + - + 47 CEPHALOZIA MEDIA | . + .3 • . ! . i . i . i . i . i . i . i . i . i . i . i . i . 1 . 1 . 1 25.0 + .0 48 LOPHOCOLEA CUSPIDATA 1 • + .3 • . 1 . I . I . I . I . I . I . I . I . I . I . I . 1 . I . 1 . 1 25.0 + .0 +- + ISOTHECIUM STOLON IFERUM 11.2 5.2 3. 2 3.21 . I . I . I . I . I . I . I . I . I . I . I . 1 . 1 . 1 . 1100.0 4.2 1-5 STOKESIELLA OREGANA 1 3.2 4.2 1.2 3.21 . i . i . i . i . i . i . i . i . i . i . i . t . 1 . 1 . 1100.0 3.5 1-4 ISOPTERYGIUM ELEGANS 14.3 3.3 2.3 2.31 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . I1C0.0 3.4 2-4 PLAGIOTHECIUM UNUULATUM 13.2 1.2 + . 2 2 .2| . i . i . i . i . i . i . i . i . i . i . i . 1 . 1 . 1 . 1100.0 2.3 • -3 HYLOCOMIUM SPLENDENS 13.2 2.2 + .2 . 1 . i . i . i . i . i . i . i . i . i . i . i . 1 . 1 . 1 . 1 75.0 2.2 +-3 49 PLAGIOTHECIUM LAETUM 12.3 . 1.3 + .31 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 75.0 1.4 + -2 50 hETERDCLADIUM MACOUNI I 1 + .2 + .3 . 2.31 . I . I . I . I . I . I . I . I . I . I . I . . 1 . 1 . 1 75.0 1.2 • -2 51 CLAOPODIUM BOLANDERI 1 +.3 1.3 1.31 . i . i . i . i . i . i . i . i . i . i . i . 1 . 1 . 1 . 1 75.0 1.1 + -1 POGONATUM MACOUNII I + .2 . + . 2 + .21 . i . i . i . i . i . i . i . i . i . i . i . . 1 . 1 . 1 75.0 + .2 + - + RHYTIDIADELPHUS LOREUS 14.2 1. 2 . 1 . i . i . i . i . i . i . i . i . i . i . i . 1 . 1 . I . 1 50.0 2.8 1-4 ENVIRONMENT-VEGETATION TABLE» PART 2 CWHACB, MAHONIA - MOSS - WRC - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 6 (continued) PLOT NUM3ER I02210581107)0741 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS DICRANUM HOWELLII 11 .212 .21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 1.3 MNIUM SPINULOSUM 1 . I+.2I . 11.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 + .6 52 SCAPANIA AMERICANA I+.2I . 11. 21 . ! . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 + .6 53 EARTRAMIA POMIFORMIS I+.2I . 1+ 21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 • 1 . 1 • 1 . 1 50.0 + .0 54 PLEUROZIUM SCHREBERI 12.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 1. 1 55 CLAOPODIUM CRISHIFOLIUM 1 • I+.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 55 CLAOPODIUM WHI PPL fcANUM I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 DICRANUM FUSCESCENS 1 . 1 . 1+ 21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 57 PLAGIOMNIUM INSIGNE I . I . I . I+.2I . 1 . 1 . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 58 POGONATUM ALPINUM 1 . I+.2I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 cn ENVIRONMENT-VEGETATION TABLE, PART 1 FOREST ECOSYSTEM: CWHA, MOSS - 1POLYSTICHUM! - WRC - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 7 |PL0T NUMBER 085 0011 504| 5711 5281 027] 028) 026 1 010 I out 0391 I | I I 1 1 1 1 MEAN I 1PHYSIOGRAPHY 1 1 1 I I 1 1 1 1 1 1 1 ELEVATION (M) 53 1601 1641 2321 171 2911 266| 3301 1631 1241 308 1 1 1 1 1 1 1 1 1 205. 6| ISLOPE GRADIENT (?) 5 31 531 271 36 101 51 15| 01 101 31 1 1 1 1 1 1 1 1 15. 21 1 ASPECT N10W S65WI N20EI W| E S65WI S20W! S05WI S35WI N| 1 1 1 1 1 I 1 SOIL j ! I i ! ! ! ! ! i ! 1 BEDROCK | I BHQD 1 BHQDl BHQD I i i ! ' ' ' I i ! 1 TEXTURE SIC LSI j i SLI SLl S L l LSI LS! LSI 1 1 I I I I I ! 1 PARENT MATERIAL GM GF I GM I MB 1 A MB I MB I MB 1 GF I GF I MPl 1 1 I I 1 1 1 1 ISOIL DEPTH (CM) 52 1301 1181 90| 125! 1201 1251 1101 951 951 851 1 1 I I I I I ! 104. 11 ICOARSE FRAGMENTS (?) 0 G10I G20| R40I G701 G30I R15I R20I G 31 G35I G 51 1 1 I I 1 1 I 1 1HYGROTOPE SHG SHG1 SHGl SHGl SHG SHGl SHGl SHGl SHGl SHGl SHGl I I 1 1 1 1 I 1 1 SEEPAGE WATER DEPTH (CM) | | 1 1 1 1 1 I I 1 1 1 MODIFIER G* G*l | | 01 U*| G* 1 G*l G*l 1 1 1 1 1 1 1 1 1 SOIL SUBGROUP1CSSC 1970) SFHP OHFPl ] | OHFPl OHFPl OHFPl MHFP I MHFP I OFHPl I 1 1 1 i i ! i IHUMUS j ! i i ! ! ! I I I ! 1 HUMUS FORM MD H-MR 1 MR 1 MD 1 MO! H-MR I H-MR I F-MR I H-MR I MD 1 H-MRI 1 1 1 I ' I I ! ITHICKNESS (CM) 4 14| 201 5| 3! 81 5| 131 61 4| 101 1 I I I 1 1 1 1 8 . 41 | PH 3.9 3.91 ! 3.9| 4.5! 4.21 4 .01 4.01 3.9| 4.21 3.9| 1 1 1 1 1 1 I 1 4 . 01 1 VEGETATION 1 1 ! i ! I i i i ! 1 1 AGE (YRS.) 105 701 1 ! 871 871 87| 401 451 45) I I I I 1 1 1 1 70. el 1 GROWTH CLASS - DF 4 1 31 41 4 1 3| 4| 4 1 21 4| 1 1 1 I 1 1 1 1 3. 61 1 WH 2 31 4| 31 4 ! 4| 4| 31 21 21 4| 1 1 1 1 1 1 1 1 3. 21 1 WRC 5 I 51 3| 5| 4| 31 4 1 4| 1 1 1 1 1 1 I I 4 . 11 1 NT/HA (ALL DBH) 420 6671 | | 8151 12361 8651 13341 13841 766 1 1 1 1 1 1 1 1 1 935. 9 1 IBA/HA (SQ.M.) 51 501 j | 60| 661 501 531 51 1 351 1 I I 1 1 1 1 1 52. 01 (STRATA A LAYER 55 701 751 951 701 901 85| 85| 95| 951 751 I I I I t i l l 80. 91 ICOVERAGE B LAYER 60 50| 301 251 601 201 251 151 5 | 151 351 1 I I I I I 1 1 30. 91 1 (?) C LAYER 35 401 401 151 201 U l 131 201 2 1 31 3| 1 1 1 1 1 1 1 1 18. 4| 1 D LAYER 65 98 1 101 25 1 601 901 951 751 551 351 351 I I I I 1 1 1 1 58. 51 IGROJND H t MS 70 501 701 651 601 451 651 55| 601 70| 801 1 1 1 1 1 1 1 1 62. 71 ICOVERAGE DW 25 55| 20| 251 30] 451 301 401 351 251 151 1 I I I 1 1 1 1 31. 4| 1 (?) R £ S 0 01 01 01 01 51 01 01 2 1 21 01 1 1 I 1 1 1 1 1 . 81 ENVIRONMENT-VEGETATION TABLE, PART 2 CWHA, MOSS - (POLYSTICHUM) - WRC - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 7 PLOT NUMBER 1085!0011 50415711 528102710281026101010111039 I I 1 1 1 1 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS A l A2 A3 B l B2 1 PSEUDOTSUGA MENZIESII |4.3 4.2 1 5.3 8. 3 4.316.2 5 . 2 1 5.2! . 4.3 5 .31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 90.9 5.4 4-8 2 TSUGA HETEROPHYLLA j . . 1 . . 1 • . 1 . 14. 2 4.3 +.31 . 1 . 1 . 1 . 1 • I . I . I . I 27.3 2.3 +-4 3 THUJA PLICATA 13.3 . 14.3 . 1 . . 1 . 13. 2 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 27.3 2.2 3-4 4 BETULA PAPYRIFEKA | . . 1 . . 1 . . 1 . I+. 2 2.3 +.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 27.3 + .3 •-2 5 POPULUS TRICHOCARPA 1 • . 1 . • ! . . 1 . 1 . + .3 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9 . 1 + .0 • - + TSJGA HETEROPHYLLA 1 7.2 7 .213.2 5. 3 4 .316.2 7 . 2 13.215. 2 8.2 8 .31 . 1 . 1 . 1 . ! . 1 . 1 . 1 . 1100.0 6.6 3-8 THUJA PLICATA | . 5.2| 5. 3 7. 3 3 .213.2 1 . 2 I + . 2 I 8 . 2 4.3 1.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 90.9 5.2 +-8 PSEUDOTSUGA MENZIESII 3 . 114.2 3. 2 . 1 3.2 3 . 216 .21 . • 1 .21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 63.6 3.8 1-6 5 ALNUS RUBRA | . . 16.3 3. 2 . 1 . . t . 1 . 4.3 2.2! . I . I . I . I . 1 . 1 . 1 . 1 36.4 3.5 2-6 BETULA PAPYRIF ERA 1 . . 1 . . 1 • . 1 . I+. 1 • 2 .21 . 1 - 1 . 1 . 1 . I . I . I . I 18.2 + .2 +-2 TSUGA HETEROPHYLLA 13.1 5 .21 . 1. 3 5 .315.1 7.1)3 . 1 1 4 1 3.2 4 .21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 90.9 5 . 0 1-7 THUJA PLICATA | . 4 .21 . 6 .216.2 3. 117.2 I 5. 1 5.2 5 .21 . | . | . | . | • I . I . I . I 72.7 5.3 3-7 PSEUDOTSUGA MENZIESII 1 . + .0| . . 1 1.+ +.1I+.1! . 1.+ . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 45.5 + .4 + -1 ALNUS RUBRA | . . 13.2 3 .21 . . 1 . 1 3.1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 27.3 1.9 3-3 BETULA PAPYRIFERA | . . 1 • . 1 • . 1 . 11. 0 1.1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 18.2 + . 1 1-1 7 ACER MACROPHYLLUM 14.3 . 1 . . 1 . . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9 . 1 1 .5 4-4 8 PRUNUS EMARGINATA 1 • . • 1 • . 1 . . 1 . 1 . + .1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9 . 1 + . 0 • -+ TSUGA HETEROPHYLLA 13.2 2 . 113.2 3 2 2 . 2 1 3 .1 5 . 1 1 3 . 1 1 3 + 3.+ 3.+ I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100 .0 3.7 2-5 THUJA PLICATA | . . 1 4.3 5 3 3 .215.2 3. 113 . 2 14 1 4.1 3 .11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 81.8 4.3 3-5 9 ACER CIRCINATUM 1 3.3 3.2! . . 13.3 1 . 114 .21 4.2 6 .31 . | . | . | . | . I . I . I . I 63.6 4 . 0 1-6 10 CORNUS NUTTALLII j . . 1 1.2 . 1 . . 1 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9 . 1 + .0 1-1 ALNUS RUBRA j . . 1 . . 1 . . 1 . 1 + .11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9 . 1 + . 0 + -+ BETULA PAPYRIFERA l + . l . 1 . • 1 . . 1 . 1 - . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9.1 + . 0 • - + PSEUDOTSUGA MENZIESII 1 • + .01 . . 1 . . 1 . 1 • . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9 . 1 + .0 + -+ TSJGA HETEROPHYLLA 1 2.2 3 .212.2 + , 2 2.3!1.1 2 . 1 1 1 . 1 1 + 2 1.1 3.+I . 1 . 1 . 1 . 1 . I . I . I . I 1 0 0 . 0 2.3 + -3 11 VACCINIUM PARVIFOLIUM 1 3.3 2 . 213.2 1 1 2 .313.2 2.2|2.2| 1.2 1 .11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 90.9 2.5 1-3 ACER CIRCINATUM 1 8.3 1.21 . 4 .312.2 + . 1 1 4 . 2 11 . 1 4.2 4 .11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 81.8 4.7 • -8 12 GAJLTHERIA SHALLON 11.1 7 .213.2 3 .213.1 4 . 1 1 3 . 1 1 1.1 3 .21 . 1 . 1 . 1 . 1 . I . I . I . I 81.8 4.2 1-7 13 RUBUS SPECTABILIS 1 3.3 1.11 2.3 + 2 2 .113.1 +.11 . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 63.6 2.0 + -3 14 VACCINIUM ALASKAENSE | . l . l l . 4.31 1.1 3 . 2 11 . 1 1 2 .11 . 1 . 1 . 1 . 1 • I . I . I . I 54.5 2.2 1-4 THUJA PLICATA 1 • . |4.3 3.31 . . l + . l l 1.1 2.+I . 1 . 1 . 1 . 1 • I . I . I . I 45.5 2. 1 • -4 15 MENZIESI A FERRUGINEA | . 2.21 . . 11.2 2 . 2 1 2 . 1 1 1.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 45.5 1.3 1-2 16 SAMBUCUS PUBENS 1 +.2 +.112.2 + 2 . 1 . • I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 36.4 + .4 + -2 17 RHAMNUS PURSHIAMA 1 1.1 + .11 . . 1 . . 1 . 1 + .1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 27.3 + . 0 +-1 IB RUBUS PARVIFLORUS 1 1.2 . 1 . 1.21 . . 1 . 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 18.2 + .1 1-1 19 VACCINIUM UVALIFOLIUM | . . 1 . . 1 . 1.21 1.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 18.2 + .1 l - l 20 OPLOPANAX HORRIUU.S l + . l • 1 . . 1 . . 1 . 1 + .1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 18.2 + .0 • - • 21 TAXUS BREVIFOLIA 1 . . 1 . 2.31 . . 1 . 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9 . 1 + .1 2-2 Ul CA ENVIRONMENT-VEGETATION TABLE. PART 2 CWHA, MOSS - (POLYSTICHUM) - WRC - WH COASTAL WESTERN HEMLOCK ZONE. U.B.C.R.F. TABLE 7 (continued) PLOT NUMBER 10851001150A15711 5281027 I 0281026101010111039| I 1 1 1 1 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS DH 22 CORYLUS CDRNUTA 11.2 • . j . 1 . 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 9.1 + .0 1-1 23 SORBUS SITCHENSIS 1 . 1 • 1 + .31 • 1 • • • 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . I • 1 9.1 + .0 +- + 24 POLYSTICHUM MUNITUM 15.3 5.2 6.31 4.31 4.3 4.21 3.21 5. 21 2. 21 3.21 3. 21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 5.0 2-6 25 BLECHNUM SPICANT 11.1 3.1 + .2 1.2 . 1. 1 3.2 + . 1 + . 2 + .21 2. 21 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 90.9 2. 0 •-3 2b RU3US URSINUS 1 • 1 1.11 + .21 1.21 + .2 1.21 1. 11 1. 1 1.2 2. 21 . 1 . 1 . 1 - 1 . 1 . 1 . 1 . 1 90.9 1.4 +-2 27 TRILLIUM UVATUM I + .3 + .1 . + .2 + .2 + .2 1.21 1. 1 +, 2 1.21 1. 21 . I . 1 . 1 . . 1 . 1 . 1 . 1 90.9 1.0 + -1 28 DRYOPTERIS AUSTRIACA 14.3 4.1 4. 2 + .2 2.3 2.2 2.2 + . 1 + .1 1 • 1 • 1 • 1 • 1 . 1 . 1 . 1 . 1 81.8 3.1 + -4 29 TIARELLA TRIFOLIATA 11.2 3.2 • 2.21 2.2 . 1.2 1. 1 1. 1 1.2 +. 2| . 1 . 1 . 1 . . 1 . 1 . 1 . 1 81.8 1.8 + -3 30 PTE RIDIUM AOUILINUM | . 4.2 1.2 + .2 2.2 1.1 2.1 2. 21 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 63.6 2. 1 + -4 VACCINIUM PARVIFOLIUM 1 3.2 1.2 _ • . 2. 2 2.1 +, 2 1.21 1. 1 1 . 1 . 1 . 1 * 1 . 1 . 1 . 1 . 1 63.6 1.7 +-3 TSUGA HETEROPHYLLA 12.2 3.1 • • 3.2 3. 2 3. 2 . 1 . 1 . 1 • 1 • . 1 . 1 . 1 . 1 45.5 2.3 2-3 31 LINNAEA BOREALIS I . l . l 3.3 . 1.1 2.2 I . 1 . 1 . 1 . . 1 . 1 . 1 . 1 36.4 1.4 1-3 32 CORNUS CANADENSIS | . 3. 2 . 2.3 1.2 . 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 27.3 1. 3 1-3 33 ACHLYS TRIPHYLLA 1 2.3 • • 1.2 . . + .3 1 . 1 • 1 • 1 . . 1 . 1 . 1 . 1 27.3 + .5 +-2 34 TRIENTALIS LATIFOLIA I + .2 . • + .3 . 2.2 1 . 1 • 1 • 1 • . 1 . 1 . 1 . 1 27.3 + .3 • -2 35 ATHYRIUM FILIX-FEMINA | . 1.1 + .2 • + .2 . 1 . 1 . 1 • 1 • 1 . 1 . 1 . 1 . 1 27.3 + .0 + -1 3b LYCOPODIUM CLAVATUM + .2 • + .3 -. • . + 2 1 . 1 • 1 . 1 . . 1 . 1 . 1 . 1 27.3 + .0 • - + 37 POLYPODIUM MONTENSE . . 1.2 +, +1 • 1 . 1 . 1 . . 1 . 1 . 1 . 1 18.2 + .0 + -1 THJJA PLICATA | . + . 1 • • 1.1 1 . 1 . 1 . 1 * . 1 . 1 . I . 1 18.2 + .0 + -1 38 GALIUM TRIFLDRUM j . • + .3 + .2 • 1 . 1 . 1 • 1 . . 1 . 1 . 1 . 1 18.2 + .0 +- + 39 LACIUCA MURAL IS | . • + .2 + .1 1 . 1 . 1 • 1 . . 1 . 1 . 1 . 1 18.2 + .0 +- + 40 LUZULA PARVIFLORA I + .2 + .2 • • 1 • 1 • 1 . 1 * . I . I . 1 . 1 18.2 + .0 +- + 41 STREPTOPUS AMPLEXIFOLIUS l + . l • • • + .1 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 18.2 + .0 • - + 42 GYMNOCARPIUM DRYOPTERIS I . 2.3 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 9.1 + .1 2-2 43 RUBUS LEUCOUERMIS 1 2.2 • • 1 . 1 . 1 . 1 • . 1 . 1 . 1 . 1 9.1 + . 1 2-2 44 POLYPODIUM GLYCYRRHIZA j . 1 • 1 • 1 • 1 • . 1 . 1 . 1 . 1 9.1 + .0 1-1 45 FESTUCA SUBULIFLORA | . + .2 1 . 1 . 1 • 1 . . 1 . 1 . 1 . 1 9.1 + .0 +- + 46 COODYERA O3L0NGIFOLIA j . • + . 3 • 1 . 1 . 1 • 1 . . . 1 . 1 . 1 . 1 9.1 + .0 +- + 47 LISTERA CAURINA j . . + .1 1 . I . I . I . . 1 . 1 . 1 . 1 9.1 + .0 +-• 48 LYCOPODIUM SELAGO | . • + .3 1 . 1 . 1 • 1 • . 1 . 1 . 1 . 1 9.1 + .0 +-+ 49 PYROLA ASARIFOLIA I . • + .3 1 . 1 . 1 1 • . 1 . 1 . 1 . 1 9.1 + .0 +—+ 50 RUBUS PEDATUS 1 . + .1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 9.1 + .0 +-• 51 TRISETUM CERNUUM I . • + .3 1 . 1 • 1 . 1 . . 1 . 1 . 1 . 1 9.1 + .0 + -+ 52 V13LA GLABELLA 1 • • • + .3 • • • • . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 9.1 + .0 +- + 53 HYLOCOMIUM SPLENDENS 15.3 7.2 + .3 2.2 3.3 5.2 5.2 5 .2 5 .2 5.3 2 31 . 1 . 1 . 1 . . 1 . 1 . 1 . 1100.0 5.2 + -7 54 RHYTIDIADELPHUS LOREUS 1 3.2 3.2 2.2 2.3 1.3 1.2 3.2 + .2 3 .3 1.2 1 .21 . 1 . 1 . 1 . . 1 . 1 . 1 . 1100.0 2.6 • -3 55 PLAGIOTHECIUM UNDULATUM 1 3.2 + .2 1. 3 + . 3 2.3 3.2 . 3 2 4 .2 2.2 1 21 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 90.9 2.8 • -4 56 RHIZOMNIUM GLABRESCENS 1 +.3 + .2 2.3 1.3 2.3 . 1.3 1 .3 4 .3 1.3 3 .31 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 90.9 2.4 + -4 57 STOKESIELLA OREGANA | . . 3. 3 3. 3 • 4.2 7.2 2 . 1 6 .3 6.3 5 .21 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 72.7 5.1 2-7 53 PLAGIOMNIUM INSIGNE 11.3 + . 3 + . 3 1. 3 . . • + .2 13.3 . 1 . 1 • 1 . 1 • . 1 . 1 . 1 . 1 54.5 1.2 • -3 59 ISOPIERYGIUM ELEGANS j . • + .3 . + .3 1.3 1 . 1 . 1 . 1 . 1 36.4 + .3 • -1 60 STOKESIELLA PRAELONGA 11.3 . + .2 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 18.2 + .0 + -1 61 HOOKERIA LUCENS I . 1.2 - . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 9.1 + .0 1-1 62 LEUCOLEPIS MENZIESII I . 1.2 . 1 . 1 • 1 . 1 . . 1 . 1 . 1 . 1 9.1 + .0 1-1 ENVIRONMENT-VEGETATION TABLE, PART 2 CWHA, MOSS - (POLYSTICHUM) - WRC - WH - " i COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 7 (continued) PLOT NUMBER | 0 8 5 | 0 0 1 1 5 0 * 1 5 7 1 1 5 2 8 | 0 2 7 1 0 2 8 1 026101010111C39 | 1 1 1 1 I I 1 1 ST NO- SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS 63 64 65 66 67 68 DW 69 70 71 72 73 74 75 76 77 78 79 60 81 82 83 84 85 86 POGONATUM CONTORTUM 1 1.21 1 . | • • 1 . 1 . 1 . 1 1 . 1 • 1 • 1 • 1 . 1 * 1 * 1 * 1 9.1 + .0 1- 1 KHYTIDIOPSIS ROBUSTA 1 • ! 1 . 1 1.3 1 . 1 . . I . I . I . I . . 1 . 1 . 1 . 1 9.1 + .0 1- 1 PLAGIOCHILA ASPLENIOIDES I . 1 . ! + .3 I . 1 . 1 • 1 I . I . I . I . . 1 . 1 . 1 . 1 9.1 + .0 + -+ POGONATUM MACOUNI1 | . + . 21 . . 1 . 1 . . 1 1 . 1 . 1 • 1 • I • I . I . I . I 9.1 + . 0 + -+ RHYTIDIADELPHUS TRIOUETRUS 1 . 1 . ! 1 . 1 . + .2 I . I . I . I . . 1 . 1 . 1 * 1 9 . 1 + .0 +-- + SPHAGNUM RUSSOWII 1 • • 1 • 1 • + .21 • 1 . 1 . • ' I . I . I . I . . 1 . 1 . 1 . 1 9.1 + .0 +- + PLAGIOTHECIUM UNDULATUM 14.31 2. 21 4.31 2.3 3.3 4. 2 3. 2|6. 2 14.2 2.2 2. 21 . 1 . 1 . 1 . . 1 . 1 . 1 * 1100.0 4 .3 2-•6 SCAPANIA BOLANDERI 12.3 4. 31 1.3 + .2 2.3 3. 3 2. 313. 31 2.3 2.3 2. 21 . 1 . 1 . 1 . . 1 . 1 . 1 . 1100.0 3 .0 + -•4 KHIZOMNIUM GLASKESCENS 1 5.3 5. 31 2. 3 2. 3 2.3 5. 2 3. 212. 314.3 4.3 I . I . I . I - . I . I . I . I 90.9 4 .4 2-•5 RHYTIDIADELPHUS LOREUS 14.3 4. 21 2. 3 2. 3 5.3 4. 2 3. 213. 21 . 1.2 I! 2| . 1 . 1 . 1 . . 1 . 1 . 1 . 1 90.9 3 .8 1--5 ISOTHtCIUM STOLUN!FERUM 15.3 3. 21 3.3 3.3 3.3 3. 3 1 3. 31 3.2 1.2 i . 21 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 90.9 3 .6 1-•5 hYLOCOMIUM SPLENDENS 1 3.2 3. 21 . 2.3 4.3 5. 2 5 215. 212.2 2.2 1 . 1 • 1 - 1 • . l . l . j . l 81.8 4 .3 2-•5 HYPNUM CIRCINALE | . 2. 21 3. 3 + .3 + .3 2. 3 3. 21 . 11.3 . 2. 31 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 72.7 2 .1 +--3 LEPIDOZIA REP TANS 1 2.3 1. 21 . . + .3 2. 3 2 31+. 31 . 1.3 1. 31 . 1 . 1 . 1 - • I . I . I . I 72.7 I .4 + --2 STOKESIELLA OREGANA | . +. 21 3. 3 • 2.3 3. 2 14. 213.2 2.3 I . I . I . I . . l . l . j . l 63.6 2 .7 + --4 DICRANUM FUSCESCENS 1 1.2 2. 21 • + .2 1.3 2. 2 11. 2 I+.2 . 1 . 1 . I . 1 . . 1 . 1 . 1 . 1 63.6 1 .2 +--2 ISOPTERYGIUM ELEGANS | . 1. 21 + .3 . + . 3 I+. 312.3 1.3 1. . 1 . 1 . 1 . 1 63.6 I .1 + - 2 CALYPOGEIA NE ESI ANA I + .3 . 1 • + .3 + . 3 + 31+. 3 11.3 + .3 I . I . I . I . . 1 . 1 . 1 . 1 63.6 + .3 + - 1 3AZ ZAN I A AMBIGUA 1 2.3 1 • 1.3 + . 3 3i+. 31 . . 1 31 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 54.5 1 .0 +--2 CEPHALUZ1A MEDIA | . • 1 • + .3 + . 3 + 3I+. 3I+.3 + 31 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 54.5 + .0 +-- + PLAGIOTHECIUM DENTICULATUM I + .3 1 2. 3 + .3 . I+. 31 . I . I . I . I . . 1 . 1 . 1 . 1 36.4 .4 + - 2 CALYPOGEIA TRICHOMANIS | . 1 +, 3 I+. 31 . 1.3 1 . 1 . 1 . 1 . 1 36.4 + .3 +--1 PLAGIOCHILA ASPLENIOIDES j . 1 • 1.3 + . 2 I 21+. 21 . . 1 . 1 . 1 • 1 . . 1 . 1 . 1 . 1 36.4 + .3 +--1 CEPHALUZIA BICUSPIUATA | . 1 + . 3 + . 3 1 . I+.3 + .3 I . I . I . I . . 1 . 1 . 1 . 1 36.4 + .0 +-- + LOPIIOCOLEA HET ERDPHYLL A | . + . 31 + .3 + .3 + . 3 1 . 1 . . I . I . I . I . . 1 . 1 . 1 . 1 36.4 + .0 +-- + TETRAPHIS PELLUCIDA 1 +.3 1 • + . 3 I+. 31 . + .3 I . I . I . I . . 1 . 1 * 1 . 1 36.4 + .0 +-- + SCAPANIA UMBROSA 1 . 2. 21 + .31+. 31 . . 1 . 1 . 1 . 1 . • I . I . I . I 27.3 + .3 + - 2 LOPHOCOLEA CJSPIDATA I . 1 1. 3 . 1 . 1 . I . I . I . I . . 1 . 1 . 1 . 1 9.1 + .0 l--1 PLAGIOMNIUM INSIGNE I . 1 1.2 . 1 . 1 . • . | . | . | . | . . 1 . 1 . 1 - 1 9.1 + .0 l --1 L.AZZANIA TKICRENATA 1 . 1 + .3 . 1 . 1 . . 1 . 1 * 1 . 1 . . 1 . 1 . 1 . 1 9. 1 + .0 +--+ DICRANOWEISIA CIRRATA I . 1 + . 3 . 1 - 1 . • . I . I . I . I . . 1 . 1 . 1 . 1 9.1 + .0 +-- + LEUCOLEPIS MENZIESII 1 . 1 1 - 1 • + .2 • I . I . I . I . . 1 . 1 . 1 . 1 9.1 + .0 +• -+ PTILIDIUM PULCHERRIMUM 1 • • 1 • • + .3 • . 1 . 1 . • . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 9.1 + . 0 + -+ cn CO E N V I R O N M E N T - V E G E T A T I O N T A B L E , P A R T 1 F O R E S T E C O S Y S T E M : C W H B , V A C C I N I U M - G A U L T H E R I A - DF - WH C O A S T A L W E S T E R N H E M L O C K Z O N E , U . B . C . R . F . T A B L E 8 ( P L O T N U M B E R 5571 5 5 2 1 0 6 0 1 0 6 3 1 a 1461 0531 1 1 1 1 1 I I 1 1 1 1 1 1 M E A N 1 1 P H Y S I O G R A P H Y 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I E L E V A T I O N (M) 5 1 1 1 5 4 9 | 5 9 2 | 6241 6 3 6 | 7 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 4 . 0 1 I S L O P E G R A D I E N T ( ? ) 0 1 01 151 151 201 451 I 1 I 1 1 1 1 1 1 1 1 1 ! 1 5 . 8 1 1 A S P E C T N 4 0 E 1 N 4 5 E I N20WI S 2 0 W I 1 1 1 1 1 1 1 1 1 ! i i i i I i I I ! 1 S O I L 1 1 1 1 1 1 1 1 1 1 I i 1 1 1 1 B E D R O C K HBQD H B Q D 1 H Q D l HQD HBQUI F H Q D I 1 1 1 1 I I i i i i i 1 1 1 I T E X T U R E L S ! L S I S L l S L l L S I S L l 1 1 1 1 i i i i i i i 1 1 1 1 P A R E N T M A T E R I A L MV MV 1 MV MV M V | M V | I 1 1 1 i i i i i i i 1 1 1 1 S O I L D E P T H ( C M ) 5 4 ! 101 3 0 131 251 1 1 1 1 i i i i i i i 1 1 1 4 . 5 1 1 C O A R S E F R A G M E N T S ( ? ) R 5 R10 I R20 I R10 I R 5 | R 3 5 | 1 1 1 1 i i i i i i i 1 1 1 1 H Y G R O T O P E X x ! S X ! X XI XI 1 1 1 1 i i i i I I i 1 1 1 1 S E E P A G E W A T E R D E P T H ( C M ) 1 1 1 1 1 i i I I i I I 1 1 1 1 M O D I F ( E R LI l . l 1 1 1 i i i i i i i 1 1 I 1 S O I L S U B G R O U P I C S S C 1 9 7 0 ) L P L P LP I O H F P L P I L P I 1 1 1 1 1 1 1 1 1 I ! ! I i I i 1 1 1 1 HUMUS 1 1 1 1 1 1 1 1 1 1 ! i i l i i i 1 1 1 I H U M J S F O R M MR MR' F - M R F - M R F - M R I F - M R | 1 1 1 1 1 1 1 1 I I I 1 1 1 I T H I C K N E S S ( C M ) 5 9 7 9 41 101 I I 1 1 1 1 1 1 1 1 1 1 1 7 . 3 1 I PH 3 . 4 3 . 7 3 . 9 3 . 7 3 . 8 ! 3 . 5 1 1 1 1 1 1 1 1 1 1 i I I i i i i 1 1 3 . 7 1 1 V E G E T A T I O N 1 1 1 1 1 I 1 1 1 1 I I ! ! I ! I I j j 1 A G E I Y R S . ) 2 6 2 2 4 9 1151 1 1 1 1 i i i i i i i 1 1 2 0 8 . 7 1 I G R O W T H C L A S S - DF 8 8 8 8 1 1 1 1 1 i i i i i i i 1 1 8 . 0 ! 1 WH 9 9 7 8 91 1 1 1 1 i i i i i i i 1 1 8 . 4 | 1 WRC 9 9 8 9 91 1 l . l 1 i i i i i i i 1 1 8 . 8 1 I N T / H A ( A L L D B H ) 6 6 7 9 4 4 3 0 1 4 1 1 1 1 1 i i i i i i i 1 1 1 5 4 1 . 7 1 ! B A / H A ( S Q . M . ) 6 9 52 621 1 1 1 1 i i i i i i i 1 1 6 1 . 0 1 1 S T R A T A A L A Y E R 6 0 5 5 5 5 50 5 0 601 1 1 1 1 i i i i i i i 1 1 5 5 . 0 1 I C O V E R A G E B L A Y E R 8 0 6 0 55 5 0 5 5 551 I I 1 1 i i i i i i i 1 1 5 9 . 2 1 1 ( ? ) C L A Y E R 1 5 8 7 3 251 I 1 1 1 i i i i i i i 1 I 8 . 2 1 1 D L A Y E R 98 9 8 6 5 6 0 6 5 351 1 1 1 1 i i i i i i i 1 1 7 0 . 2 1 1 G R O U N D H £ MS 7 0 55 55 4 0 3 5 6 0 | 1 1 1 1 i i i i i i i 1 1 5 2 . 5 1 I C O V E R A G E DW 5 10 - 2 0 5 10 31 1 1 1 1 i i i i i i i 1 1 8 . 3 | 1 ( ? ) R £ S 2 5 35 20 5 0 5 0 201 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 . 3 1 E N V I R O N M E N T - V E G E T A T I O N T A B L E • CWHB. V A C C I N I U M - G A U L T H E R I A PART 2 - DF - WH C O A S T A L WESTERN HEMLOCK Z O N E . U . B . C . R . TABLE 8 F . PLOT NUMBER 1 5571 5521 0601 063.11461 0531 1 1 1 1 1 1 1 1 1 1 1 1 1 ST N D . S P E C I E S S P E C I E S S I G N I F I C A N C E AND VIGOR P MS RS Al A2 A3 B l B2 1 PSEUDOTSUGA M E N Z I E S I I 1 4. 1 + .2 4. 1 3. 1 3.1 4.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1100.0 3.9 +-4 2 TSUGA H E T E R O P H Y L L A 1 4. 2 7.2 5.2 5.2 2.2 . I . I . 1 . 1 . i . j . | . 1 . 1 . 1 . 1 . 1 . 1 . 1 83.3 5.2 2-7 3 PINUS MONTI COLA 15.1 + .2 • • + .1 . i . i . i . i . i . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 3.2 + -5 4 T H J J A P L I C A T A | . 4.2 3. 1 • • . i . i . i . i . i . i . i . 1 . 1 • 1 . 1 • 1 • 1 • 1 33.3 2.6 3-4 5 PINUS CONTORTA | . . • • 3.2| . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 1.4 3-3 6 CHAMAECYPARIS N O O T K A T E N S I S 1 • + .2 • • • . i . i . i . i . i . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 + .0 + -+ T H U J A P L I C A T A 15.2 4.2 4. 1 4. 1 2. 1 I . I . I . I . I . I . I 100.0 4.4 1-5 TSUGA H E T E R U P H Y L L A 16.2 4.2 4. 1 5. 1 5.1 . I . I . I . i . i . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 83.3 5.2 4-6 PSEUDOTSUGA M E N Z I E S I I 11.1 . . . 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 1.5 1-3 PINUS MONT I COL A 13. C + .2 . i . i . i . I . I . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 1.4 • -3 P I N U S CONTORTA | . . 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 3.9 6-6 CHAMAECYPARIS N O O T K A T E N S I S | . • 4.2 • i . i . i . i . i . i . i 1 . 1 . 1 . 1 - 1 . 1 • 1 16.7 2.2 4-4 7 TSUGA MERTENSIANA 1 • - • • 2. 1 . i . i . i . i . i . i . i . I . I . I . I . I . I . ) 16.7 + .7 2-2 TSUGA H E T E R O P H Y L L A 13.1 4. 1 3. 1 4.+ 5.1 3.11 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . I1C0.0 4.4 3-5 T H J J A P L I C A T A 1 5.1 4. 1 4. 1 3. 1 . 2. 11 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 83.3 4.2 2-5 PSEUDOTSUGA M E N Z I E S I I 1 2.+ + .0 . 3.+ i . + i . I . I . I . I . I . I . I . I . I . I . I . I . I 66.7 1.9 + -3 TSUGA MERTENSIANA- | . + . 1 1.1 . I . I . I . I . i . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 • .4 +-1 P INUS CONTORTA | . . • 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 3.2 5-5 CHAMAECYPARIS N O O T K A T E N S I S 1 • • • • 4.1 . i . i . i . i . i . i . i . I . I . I . I . I . I . ) 16.7 2.2 4-4 TSUGA H E T E R O P H Y L L A 1 3. 1 5. 1 6. * 5.+ 6.+ 6.1| . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 100.0 5.7 3-6 THUJA P L I C A T A 17.1 5.1 4.+ 4.+ 2.+ l.+ l . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . 1100.0 5.1 1-7 CHAMAECYPARIS N O O T K A T E N S I S | . + .2 • . 3.+ . i . i . i . i . ' i . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 1.4 + -3 PINUS MONTICOL A | . . 2.+ I . | . | . | . | . | . | . 1 • 1 . 1 . i . 1 . 1 . 1 16.7 + .7 2-2 PSEUDOTSUGA M E N Z I E S I I j . 2.+I . | . | . | . | . | . | . 1 • 1 . 1 . I - 1 • 1 . 1 16.7 + .7 2-2 T S J G A MERTENSIANA | . • 1 .+ • I . i . i . I . I . I . I 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 + .0 1-1 B A B I E S AMABIL IS 1 • • • + . + • . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 + .0 +- + 9 G A U L T H E R I A SHALLON 17.2 6.1 4. 1 5.1 4.1 5.11 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I . I . 1100.0 5.6 4-7 T S J G A H E T E R O P H Y L L A 1 3.2 4.2 2.+ 2.+ 6.+ 5. + I . | . | . I . | . I . I . I . I . I . I . I . I . 1100.0 5.0 2-6 10 V A C C I N I U M A L A S K A E N S E |6.2 6.2 3.2 5.2 3.2 . i . i . i . i . i . i . i . 1 • 1 . 1 • 1 • 1 • 1 - 1 83.3 5.2 3-6 11 VACCIN IUM P A R V I F O L I U M | . . 5.2 1. 2 1.2 1.2 1 . 1 . 1 - 1 1 . 1 . 1 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 3. 3 1-5 12 V A C C I N I U M OVAL I FOL IUM | . 3.3 1. 1 I. 1 4.2 . i . i . i . i . i . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 2.8 1-4 13 M E N Z I E S I A F E R R U G I N E A 13.2 3.2 2.2 1. 1 • . i . i . i . i . i . i . i . 1 . 1 . 1 . i . 1 • 1 • 1 66.7 2.4 1-3 THUJA P L I C A T A | . 1.+ 2.+ 2.+ 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 1.6 1-2 CHAMAECYPARIS N O O T K A T E N S I S 1 +.2 1.2 . . 1.+ • i . i . i . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 + .8 +-1 PSEUDOTSUGA M E N Z I E S I I 1 . • 1.+ 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 + .6 1-1 14 PHYLLODOCE E M P E T R I F O R M I S I . • 1.2 . i . i . i . i . i . i . i 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 + .0 1-1 15 V A C C I N I U M MEMBRANACEUM 1 • • . • • 1 . 1 • 1 • 1 • 1 . 1 . 1 16.7 • .0 1-1 16 SORBUS S I T C H E N S I S 1 . + . 1 " . i . i . i • i • i . i . i . 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 + .0 + - + cn ENVIRONMENT-VEGETATION TABLE. PART 2 CWHB, VACCINIUM - GAULTHERIA - DF - WH COASTAL WESTERN HEMLOCK ZONE, U.8.C.R.F. TABLE 8 (continued) PLOT NUMBER 1557|55210601063114610531 1 1 1 1 1 1 1 1 1 1 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS DH DW 17 GOODYERA OBLONG IFOLI A 1 +.31 + .3 1.21 1.21 2.21 1.21 . I . I . I . I . I . I . 1 . I . I . 1 . 1 . 1 . 1 100.0 1.5 +-2 TSUGA HETEROPHYLLA l + . l . 2.+ 2. + I l . + l l .+ l . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 1.6 +-2 18 CORNUS CANADENSIS 1 2.2 2 3 1. 2 + .1 . . 1 . 1 . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 1.5 +-2 19 PTERIDIUM AQJIL1NUM l + . l l 1.2 + .21 • + .1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 +.5 +-1 20 LINNAEA BOREALIS 12.3 1.2 2.2 . . 1 . 1 . 1 . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 1.4 1-2 VACCINIUM PARVIFOLIUM I . • . 2.2 1.1 I . I . I . I . I . I . ) 50.0 1.2 1-2 21 CORALLORHIZA MACJLATA 1 +.3 . + .2 1.2 . . I . I . I . 1 * 1 . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 + .4 +-1 22 LISTERA CAURINA | . + .3 1.2 + .1 . I . 1 . 1 . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 +.4 +-1 23 BLECHNUM SPICANT 1 2.2 3.2 . . . I . I . | . | . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 33.3 1.7 2-3 24 CHIMAPHILA MENZIESII I+.3 + .2 . I . I . 1 . I . | . | . | . 1 . I . 1 . 1 . 1 . 1 . 1 33.3 +.0 +-+ 25 C LI NT ON I A UNIFLORA | . + .2 + .2 • . I . I . j . I . I . I . I - 1 . 1 . 1 . 1 . 1 . 1 • 1 33.3 +.0 +-+ CHAMAECYPARIS NODTKATENSIS | . . . • 1.+ . I . I . I . I . I . I . I - 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 +.0 1-1 2b RUBUS PEDATUS | . 1. 2 . . I . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 + .0 1-1 27 GAULTHERIA OVATIFOLIA I . + .1 . 1 . 1 . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 • 1 . 1 16.7 +.0 +-+ 28 LILIUM COLUMBIANUM 1 . + .2 . 1 . I . I . I . I . I . I - 1 . 1 . 1 . ! . 1 . 1 . 1 16.7 +.0 +-• 29 LISTERA CURDATA | . + .3 . I . I . I . I . 1 . I . I - 1 . 1 . 1 . 1 . I . 1 . 1 16.7 +.0 +-+ PINUS MONTICOLA j . + .+ . I . I . I . I . I . I . I - I . 1 . 1 . 1 . 1 . 1 - 1 16.7 +.0 +-+ 30 POLYSTICHUM MUNITUM 1 • + .2 • • • . 1 . 1 . 1 . 1 . 1 . 1 . 1 -1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 +.0 +-+ 31 R'HYTIDIOPSIS ROBUSTA |6.3 1.2 3.2 4.3 1.2 5.3| . I . I . I . I . I . I - 1 . I . 1 . 1 . 1 . 1 . 1100.0 4.9 1-6 32 HYLOCOMIUM SPLENDENS 15.3 5.3 5.2 3.2 1.2 2.2! . I . I . I . I . I . I I . I . I . I . I . I . 1100.0 4.9 1-5 33 RHYTIDIADELPHUS LOREUS 1 3.3 5.3 6. 2 3.2 3.2 1.2| . I . I . I . I . I . I I . I . I . 1 . 1 . 1 . 1 100.0 4.9 1-6 34 PLAGIOTHECIUM UNDULATUM 13.3 3.2 4.2 5.2 5.2 +.21 . I . I . I . I . I . I - I . I . I . I . I . I . 1100.0 4.6 +-5 35 PLEUROZIUM SCHREBERI 12.2 4.3 + .2 1.2 4.2 2 . 2 | . I . I . I . I ' . I . I I . I . I . I . I . I . 1100.0 3.3 +-4 3b DICRANUM HOWELLII | . . 1.2 1. 2 3.2 4.31 . | . | . | . | . | . | 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 2.3 1-4 37 STOKESIELLA OREGANA 1 2.3 . . . . I . I . I . I . I . I . I - 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 +.7 2-2 38 SPHAGNUM GIRGENSOHNII 1 • • + .2 • • . I . I . I . I . 1 . 1 . 1 . 1 . 1 . I . I . I . I . I 16.7 +.0 +-• 39 DICRANUM FUSCESCENS 11.3 + .2 2.2 2.2 4.2 2.2| . I . I . I . I . I . I I . I . I . I . I . I . 1100.0 2.9 +-4 40 HYPNUM CIRCINALE 1 2.3 . 1.3 3.3 3.2 2.31 . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 83.3 2.6 1-3 41 LEPIDOZIA REPTAMS | . + .3 + .3 1. 3 1.3 +.31 . I . I . I . I . I . I . 1 . 1 . 1'. 1 . 1 . 1 . 1 83.3 1.0 +-1 42 SCAPANIA BOLANDERI 11.3 3.3 2.3 . 1.31 . I . I . I . I . I . I 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 2.0 1-3 43 BAZZANIA AMB1GUA | . 2.3 1.3 2.3 +.31 . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 1.5 +-2 44 CLADONIA SUBSQUAMOSA 1 1.2 + .3 + . 3 . + .3 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . ! . 1 . 1 . 1 . 1 . 1 66.7 +.5 +-1 45 SPHAEROPHORUS GLOBOSUS 1 +.3 1.3 + .3 + .3 . 1 . 1 . I . I . I . I . I 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 +.5 +-1 46 JAMESONIELLA AUTUMNALIS I . + .2 + .2 + .3 . 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 +.1 +-+ PLAGIOTHECIUM UNDULATUM 12.3 4. 2 + .3 . . I . | . | . l . | . | . | . 1 . 1 . I . 1 . 1 . 1 . 1 50.0 2.4 +-4 DICRANUM HOWELLII | . • + .2 . 1.2 . I . 1 . 1 . 1 . 1 . 1 . 1 50.0 2.3 +-4 47 LOPHOCOLEA HETEROPHYLLA j . + .3 2.3 + .3 . I . I . I . I . I . I . ! . I . 1 . 1 . 1 . 1 . 1 . 1 50.0 1.0 +-2 48 CALYPOGEIA SUECICA I . + .3 + . 3 . + .3 . 1 . I . I . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 50.0 +.0 +-+ 49 CALYPOGEIA TRICHOMANIS 1 . . + .3 + .3 + .3 . 1 . 1 . 1 . I . I . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 +.0 +-+ 50 CEPHALOZIA MEDIA I . + .3 + .3 + .3 . 1 . 1 . 1 . 1 . I . I . I . 1 . 1 . I . I . I . I . I 50.0 +.0 +-+ RHYTIDIADELPHUS LOREUS 1 +.3 4. 2 . I . 1 . I . I . I . I . I . 1 . 1 . 1 • 1 . 1 . 1 . 1 33.3 2.2 +-4 51 BAZZANIA DENUDATA 1 . + .3 . 1 . 1 . I . I . I . I . I . 1 . 1 . 1 . 1 . 1 . I . 1 16.7 +.0 +-+ en E NVIRCNMENT-VEGETATI ON TABLE, PART 2 CWHB, VACCINIUM - GAULTHERIA - DF - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 8 (continued) PLOT NUMBER 155715521060!063114 610531 1 1 1 1 1 i 1 1 1 1 1 1 1 ST NO SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS 52 BAZZANIA TRICRENATA . 1 . It.21 . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I 16.7 t.O + -+ 53 DIPLOPHYLLUM TAXIFOLIUM | . t . 3 l . 1 . 1 . 1 . 1 . 1 . 1 - 1 • 1 . 1 • 1 - 1 • 1 . 1 • I . I . I . I 16.7 t.O +- + HYLOCOMIUM SPLENDENS 1 +.3 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 16.7 t.O -*•- + 54 HYPOGYMNIA ENTEROMORPHA I+.2 . 1 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 16.7 t.O + 55 ISDTHECIUM STOLON IFE RUM I + .3 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I I . I . I 16.7 t.O +- + 55 PORELLA NAVICULARIS | . +.21 . | . | . | . I . j . I . I . I . I . | . | . | . l . I . I . I . I 16.7 t.O +-+ 57 PTILIDIUM PULCHERRI MUM I + .2 I . I . I . I 16.7 t.O • -+ DR PLAGIOTHECIUM UNDULATUM 11.3 1.31 3.21 3 . 2 13 . 2 1 1 . 2 1 . I . I . I . I . I . I . I . I . I . I . I . I . 1100.0 2.9 1-3 RHYTIDIADELPHUS LOREUS 1 3.2 4.2|3 . 212 .213.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 83.3 3 . 3 2-4 HYLOCOMIUM SPLENDENS |4.3 1.21 . 11 .214 .211.21 • 1 . 1 . 1 . 1 • 1 • 1 • 1 • 1 . 1 . I . I . I . I 83.3 3.2 1-4 58 KHACUMITRIUM CANESCENS 1 2.3 1.31 . 1 1.312.314.31 . I . 1 .. 1 . 1 . I . 1 . 1 . 1 . 1 . I . I . I . I 83.3 2.8 1-4 59 ISOPTERYGIUM ELESANS 1 +.3 . I 2.3 14 . 3 1 t .31 2 . 3 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 83.3 2.6 t-4 RHYTIDIOPSIS ROBUSfA 1 3. 3 t . 2 l 2 . 2 | t . 2 l . 13.21 . I . I . I . I . 1 . 1 . 1 . I . 1 . I . I . I . I 83.3 2.4 t-3 60 SCAPAMIA AMERICANA 1 +.3 . I t.2|4.3 | t.2 | t.3| . I . I . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . I . I . I . I 83.3 2.3 t-4 61 RHACOMITRIUM LANUGINOSUM 1 +.3 1.31 . 11 . 3 12 . 3 1 t .31 . 1 . I . I . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 83.3 1.3 t-2 PLEUROZIUM SCHREBERI 1 5.2 6.31 . 1 . 14 .213 .21 . I . I . I . I . I . I . 1 . 1 . 1 . I . I . I . I 66.7 4.9 3-6 62 RHACOMITRIUM HETEROSTI CHUM j . 1.31 t . 31 . | t.3|2.3| . I . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 66.7 1.1 t-2 63 CLADINA RANGIFERINA | . . It.31 . 12 .312 .31 . | . | . | . I . I . I . | . I . I . I . I . I . I 5 0 . 0 1.3 t-2 64 CRT HOC AUL1S FLOERKII . 1 . | t.3|2.3 | t . 3 l . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 50.0 1.0 t - 2 65 PLAGIOCHILA ASPLENIOIDES . 1 1.2| 1.2|+.21 . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 50.0 t.8 t-1 66 DIPLOPHYLLUM ALBICANS | . . 11 .31t.3| t.2| . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 50.0 t.4 t-1 67 PELTIGERA APHTHUSA j . t . 3 | t . 3 l . | t . 3 l . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 50.0 t.O *-- + BAZZANIA AM8IGUA | . . I . 14 .312 .31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 33.3 2.4 2-4 68 URYPTODON PATENS . j . I t .3| . I3.3| . I . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 33.3 1.4 t-3 69 CLADONIA SQUAMOSA j . . 1 . | t . 3 l . 11.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 • I . I . I . I 33.3 t.2 t - 1 70 DOUINIA OVATA | . . 1 . 1 t.31 . 1 1.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 33.3 t.2 t-1 71 STEREOCAULON GLAR EOSUM | . . . 1 . | t.3| . |1.3| . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 33.3 t.2 t-1 72 UMBILICARIA ANGULATA '. I . | t.3| . | t.3| . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 33.3 t.O + -4-DICRANUM HOWELL 11 . 1 . 1 . 1 . 14.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . 1 . 1 16.7 2.2 4-4 73 ISOPTERYGIUM PULCHELLUM | . . 1 . | t.2| . I . I . I . I . I . I . I . I . I . I . I . I . I . I . I 16.7 t.O 74 PELTIGERA MEMBRANACEA 1 • . 1 . 1 . 1 . I t .31 . 1 . I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I . I . I . I 16.7 t.O + - + ENVIRONMENT-VEGETATION TABLE» PART 1 FOREST ECOSYSTEM: CWHB, VACCINIUM - MOSS - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 9 IPLOT NUMBER 537 5A7| 0871 6031 0511 042| 1251 1221 0551 0441 0901 0891 1 1 1 I 1 1 1 MEAN 1 1PHYSIOGRAPHY I 1 1 1 [ j ' J j 1 ELEVATION (M) 180 5151 5521 609| 7351 7751 5301 5581 7401 7651 827 I 8351 I 1 1 1 I I 1 635.11 1 SLOPE GRADIENT (?) 9 181 501 14| 41 30| 151 301 51 601 5 1 251 1 1 1 1 1 1 1 22.11 1 ASPECT S E I S40WI S77WI S20EI S20EI N60E 1 El N 1 S15WI N| S30EI 1 1 1 1 I 1 1 i l l ! 1 1 SOIL I 1 1 1 1 1 1 1 1 | j | | 1 BEDROCK HBQD FHQDI HBQD 1 FHQDI FHQDI FHQDI HDl HQDl FHQDI FHQDI HDl HQDl 1 1 1 1 I I 1 1 1 TEXTURE LS LSI SLl LS SLl LSI SI SLl LSI S L l S L l LSI 1 1 1 ( I I I ! 1 PARENT MATERIAL MV MV| MVl MV| MVl MVl MVl MVl MVl CV| MVl MVl 1 1 1 I I I ! 1 ISOIL DEPTH (CM) 13 101 501 151 401 131 15| 551 701 45| 55 | 551 1 1 1 I I I ! 36 .31 ICOARSE FRAGMENTS (?) RIO R10I R20| R 51 R35I R10I R10I SIOI R30 R15I R30| R40I 1 1 1 1 I 1 1 1 1HYGROTOPE SX XI X| SX I SX I xi SM| SM| SM! Ml SX I SMI I I 1 I I I ! 1 1 SEEPAGE WATER DEPTH (CM) 1 1 1 1 ' I I I 1 1 MODIFIER LI 0*1 LI 1 1 1 1 1 ! 1 1 I ISOIL SUBGROUPICSSC 1970) LP LPI LP OHFP LPI LP! OHFPl OHFP OHFPl MHFPl OHFPl I 1 1 i ! i i i 1HUMJS 1 1 1 1 t i l l i i i ! i 1HUMJS FORM H-MR MR' H-MR MR H-MR H-MR I H-MR H-MR 1 F-MR H-MR I F-MR I F-MRl I I 1 1 1 ! 1 I ITHICKNESS (CM) 20 13 18 17 18 101 14 121 12 151 131 101 1 1 1 I I I ! 14.31 1 PH 4.0 3.5 3.6 3.2 3 .6 3.81 3.9 3.9 3 . 6 3.51 3.4| 3.61 1 1 1 1 1 1 1 1 1 1 1 3.61 [VEGETATION 1 1 1 1 1 1 I 1 1 1 1 1 1 ! 1 1 1 1 AGE (YRS.) 100 186 1101 235 116 115 105 1851 I I I I I I ! 144.01 1 GROWTH CLASS - DF 7 8 7 8 ' 6 1 1 1 1 1 1 1 1 7.21 1 WH 7 8 8 8 6 6 6 8 61 8 61 1 1 1 1 1 1 1 7.01 1 WRC 7 8 9 8 7 71 7 9 6 81 8! 1 1 1 1 1 1 1 7.61 INT/HA (ALL DBH) 2657 583 568 825 2083 861 1076 10641 1 1 1 1 1 1 1 1214.61 IEA/HA (SQ.M.) 45 46 41 45 32 94 16 1221 1 1 1 I I I ! 55.11 1 STRATA A LAYER 50 70 60 75 85 751 40 85 40 90 85 601 1 1 1 1 1 1 1 67.91 1 COVERAGE B LAYER 60 70 40 85 33 20 50 15 55 12 20 401 1 1 1 ( I I I 41.71 1 (?) C LAYER 10 5 7 5 2 4 3 3 3 4 2 171 I 1 1 1 1 1 1 5.41 1 D LAYER 98 80 52 91 50 70 85 30 85 65 33 651 1 1 1 1 1 1 1 67.01 I GROUND H £ MS 70 80 35 80 70 70 50 45 85 50 55 601 1 1 1 1 1 1 1 62.5! ICOVERAGE DW 10 10 35 5 10 15 20 30 2 25 20 20| I I 1 I I I ! 16.81 1 (?) R £ S 20 10 25 15 15 10 25 25 . 10 20 20 151 I 1 1 I I I ! 17.51 UT CO ENVIRONMENT-VEGETATION TABLE, PART 2 CWHB, VACCINIUM - MOSS - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE • 9 PLOT NUMBER 15371 5471087|60 310511042 I 1251122 I 0551OAAJ 09010891 1 1 1 1 1 1 1 ST NO SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS A l 1 TSUGA HETEROPHYLLA l . l 7.313.1 5.215 .214.214. 2 1 5 .21 2 .115.214. 215.21 . 1 . 1 • ] • | • | . | . 1 91.7 5.2 2-7 2 PSEUDOTSUGA MENZIESII 1 +.2 . 12.1 5.214.11 . 1 . 1 . I+.111.115. 21 . 1 . 1 . 1 . 1 . 1 • 1 . 1 . 1 5 8 . 3 3.5 + -5 3 THUJA PLICATA 14.3 4.11 . 5.2|+.212.214.21 . 1 . 1 . 1 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 58 . 3 3.4 • -5 4 PINUS MCNTICOLA | . + .21 . 2.11 . | . | . | . 12.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . I 25.0 + .8 + -2 5 CHAMAECYPARIS NOOTKATENSIS | . +.31 . 1 . 1 . 1 . 14.21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 16.7 1.4 +-4 A2 6 ABIES AMABILIS 1 • . 1 . . 1 . 1 . 1 . 1 . 1 . 14.21 . 1 . 1 . 1 . 1 • 1 • 1 • 1 . 1 8 . 3 1.4 4-4 TSUGA HETEROPHYLLA 16.2 4 . 217.1 7. 31 7 . 2 |7. 11 4. 1|8.2|6.1|7.2|8 216.11 . 1 . 1 - | . | . | . 1100.0 7.1 4-8 THUJA PLICATA 14.2 5.112.1 5.214.114.112 .11 3.21 . 1 1 - 0 I 1. 214.11 . 1 . 1 . 1 . 1 • 1 . 1 91.7 4.2 1-5 CHAMAECYPARIS NOOTKATENSIS | . 5.212.1 .. 1 . 11.1|3.112.211.114 .21 1 . 1 . 1 . 1 . 1 . 1 . 1 • 1 . 1 58.3 3.1 1-5 PSEUDOTSUGA MENZIESII 14.2 . 1 . . 13.01 . 1 . I . I . 1 . 1 2. 11 • 1 . 1 • . . 1 . 1 . 1 25.0 2.0 2-4 ABIES AMABILIS j . . 1 . . 1 . 1 . 1 . 1 . 1 . 16.21 13.21 . 1 . 1 . . . 1 16.7 3. 1 3-6 A3 PINUS MONTICOLA 1 • . 1 . . 1 . I+.OI . | . | . | . l 1 . 1 . 1 . 1 • ! • 1 . 1 8.3 + .0 •- + TSUGA HETEROPHYLLA 13.2 4.2I5.+ 4.21 5.11 5.1|4.115.114.115. 115. 11 . 1 . 1 . 1 - - . . I . 1 91.7 5.1 3-5 THJJA PLICATA I + .2 . 1 1.+ . |4.1|3.111.112.114.112.11 1 111.11 . 1 . 1 . 1 . 1 . 1 . I . 1 83.3 2.8 + -4 CHAMAECYPARIS NOOTKATENSIS | . . I 2 . 1 . I . 1 . 13.112.111.113.11 1 . 1 . 1 . 1 . 1 . 1 41.7 1.8 1-3 ABIES AMABILIS - 1 . . 1 . 1 . 11.11 . 1 . 11.01 15.11 . 1 . . . 1 25.0 2.4 1-5 B l PINUS MONTICOLA 1 • . 1 . . 1 . 1 . 1 . 1 . 1+.01 . 1 1 . 1 . 1 . 1 . | 8.3 + .0 +- + TSUGA HETEROPHYLLA 15.3 4.2I5.+ 3 . 2 14. + I4. + |5.114.11 . 12.+ 15 + 13.11 . 1 . . 1 91.7 4.8 2-5 ABIES AMABILIS 1 2.3 3.21 . + .311.11 . 11.11+. + I6. + I1.11 1 115.11 . 1 . 1 . 1 83.3 3.8 + -6 THUJA PLICATA 1 + . 3 .11.+ 4.2| . I 2. + I l . + l +. 1 |4. 11 2.+ 1 1 . 1 . 1 . 1 . 1 . I 66.7 2.5 +-4 CHAMAECYPARIS NOOTKATENSIS | . 4 .21 1.+ . 1 . 11.+ 12.11+.0 I+. + I4. + I I . I . I . . 1 58.3 2.4 + -4 7 TAXUS BREVIFOLIA 11.2 . 1 . +.11 . 1 . 1 . l + . l l . 1 . 1 . 1 . 1 . 1 . • • • . 1 25.0 + .0 +-1 B2 PSEUDOTSUGA MENZIESII 1 • . 1 . . 1 . 1 . 1 . I+.OI . 1 . 1 . 1 . 1 . 1 . 1 • • • 1 . 1 8.3 + .0 +- + 8 VACCINIUM ALASKAENSE 16.3 7.31 1.2 8.315.2|4 . 215.2|5.214.114.2 |3 .216.1) . I . # . 1100.0 5.6 1-8 TSUGA HETEROPHYLLA 1 2.+ 3.21 1.+ 4. 3|4.+ |2.+ | 3 . 113.+ 15.+ 12.+ 12 .+ 13.11 . 1 . . 1 . I 100.0 3.7 1-5 9 MENZI ESI A FERRUGINEA 12 . 3 1 .311.2 2. 212.213.211.212. 212.113. 21 . l + . l l . 1 • . ! 91.7 2.3 +-3 10 GAJLTHER1A SHALLON 14.2 3.216.2 4.21 . | 3 .11 4.213.113.111.1 I . 1 . 1 . 1 . . 1 75.0 4. 1 1-6 ABIES AMABILIS 1 2.2 3.21 . + .21 1.11 1. 114. 1 I . I . 1 . 1 . 13.21 . 1 . . 1 58.3 2.3 +-4 THUJA PLICATA 12.2 . 1 . . 1 . 1 l . + l l . + l2.+ 13.+ 1 l . + l . l + . l l . 1 . • . 1 58.3 1.6 + -3 CHAMAECYPARIS NOOTKATENSIS I + .2 2.211.+ . I . I+. + I 2 . H . I+.1I2. + I . 1 . 1 . 1 . • . 1 58.3 1.2 +-2 11 VACCINIUM PARVIFOLIUM | . . 12.1 . 12.211.2I+.2I . 1 . 1 . 11 .21 . 1 . 1 . • . 1 41.7 1.1 +-2 12 VACCINIUM OVAL1FOLIUM j . 3.31 . 3.21 . 1 . 12.21 . I . I . I . 1 . 1 . 1 . • . 1 25.0 1.5 2-3 13 SORBUS SITCHENSIS 1 1.2 . 1 . . l + . l l 1 . • . 1 16.7 + .0 +-1 14 CLADOTHAMNUS PYRDLAEFLORUS | . . 1 . . 1 . I . I . I . 1 1 . + 1 . 1 . 1 . 1 . 1 . • • . I 8.3 + .0 1-1 15 PHYLLODOCE EMPETRI FORM IS . ! . . 1 . 1 . 1 . 1 - I+.2I . 1 . 1 . 1 . 1 . • • • . 1 8.3 + .0 +- + C TSUGA HETEROPHYLLA I+.2I+.2I 1.+ + .21 . 13. + 13.111. + 11 . + 13. 11 + .111.2 1 . 1 . . 1 91.7 2.1 +-3 OI ENVIRONMENT-VEGETATION TABLE, PART 2 CWHB, VACCINIUM.- MOSS - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 9 (continued! PLOT NUMBER 1 537| 5471 08716031 05110421 1251 122 I 055 I OA* 1 0<30|089| 1 I I 1 I I I ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS DH DW 16 GODDYERA OBLONGIF OLI A 11.3 + .2 I .2 4 .1 1.2 1.2 1.2 1.2 1.2 • I . I . I . I I . I . I . I 75.0 1.2 • -1 VACCINIUM PARVIFOLIUM | , . 2 I 2 2 2.2 1. 1 1.1 1 .1 „ 1 .1 +.11 - I . I . I 1 . 1 . 1 . 1 66.7 1.4 +-2 17 LINNAEA BOREALIS 1 5 . 3 3.3 + .2 1.2 . 1.2 . 2.2 3.2| . | . | . | I . I . I . I 58.3 3.0 +-5 18 CORNUS CANADENSIS 14.3 2.2 3.2 2.2 2.2 1.2 . 2.21 - I . I . I . I . I . I . I 58.3 2.3 1-4 19 CLINTONIA UNI FLORA | . . + 2 + .2 1.2 1.2 „ 4 .4 3 .21 . 1 . 1 . 1 . 1 . I . I . I 50.0 1.2 + -3 20 CHIMAPHILA MENZIESII 1 1.3 + .2 . 2.2 + .2 + .2 4 1 • I . I . I . I I . I . I . I 50.0 + .7 + -2 21 BLECHNUM SPICANT 1 2.2 3.2 • . + .1 2. 1 +.11 . 1 . 1 . 1 . I . I . I . I 41.7 1.3 + -3 ABIES AMABILIS | . . 1.1 3.2 4 .1 1.21 . | . | . | • l - l . l . l 41.7 1.2 + -3 22 LISTERA CAURINA 2.2 • + .2 4.1 4.2 1 .21 . I . I . I I . I . I . I 41.7 + .6 +-2 23 LISTERA CORDATA 4 2 1.3 4.2 + .1 . 1.21 . ! . I . 1 . I . I . I . I 41.7 + .3 + -1 24 RU3US PEDATUS _ „ . + .2 1.2 1.2 4 .21 . 1 . I . I . 1 . 1 . 1 . 1 33.3 1.6 + -4 25 COR ALLORH I Z A MERTENSIANA | . 1 .2 2.2 1.2 „ 1.2 • I . I . I . I I . I . I . I 33.3 1.0 1-2 26 PTERIDIUM AQUILINUM 12.2 4 .1 + .2 . 2.1 • I . I . I . I . I . I . I . I 33.3 + .9 + -2 27 LILIUM COLUMBIANUM j . + 2 1.2 1.2 . I . I . I . I I . I . I . I 25.0 + .1 + -1 28 DRYOPTERIS AUSTRIACA 1 1.2 + .1 „ 1 . 1 . 1 . 1 25.0 + .0 +-1 29 POLYSTICHUM MUNITUM I 1.2 + .+ + . + I . 1 . 1 . 1 . I . I . I . I 25.0 + .0 + -1 30 GAJ L THERIA OVATIFOLIA | . 1.2 1.2 • I . I . I . I I . I . I . I 16.7 + .C 1-1 31 ATHYRIUM F IL I X-FEMINA 1 1.2 • • +. +1 • 1 . 1 . 1 I . I . I . I 16.7 + .0 +-1 32 M0NESE3 UNIFLOEA | . • + .2 1.2 • I . I . I . I . I . I . I . I 16.7 + .0 +-1 CHAMAECYPARIS NOOTKATENSIS | . + .1 • I . I . I . I . I . I . I . I 8.3 + .0 +- + 33 C'ORALLORHIZA MACJLATA 1 +.2 • • • • • • . 1 . 1 . 1 . 1 I . I . I . I 8.3 + .0 +- + 34 HYLOCOMIUM SPLENDENS |9.3 6.3 2. 2 6.3 4 2 2.2 6.2 2.2 3.2 2.2 3 2 3.21 . | . | . | I . I . I . 1100.0 5.4 2-9 35 RHYTIDIADELPHUS LOREUS 15.3 5.3 2. 2 5.3 6 2 1. 2 6.2 3.2 2.2 6.2 4 2 4 .21 . 1 . 1 . 1 I . I . I . 1100.0 5.2 1-6 36 PLAGIOTHECIUM UNDULATUM 12.2 4.2 1 2 4.3 1 2 3.2 4.2 5.2 1.2 3.2 1. 2 1 .21 . | . | . | . I . I . I . 1100.0 3.7 1-5 37 RHYTIDIOPSIS ROUUSTA I+.3 1.3 7. 3 3.3 4 2 7.3 1.2 „ 8.3 5.3 5 2 6.3| . 1 . 1 . 1 I . I . I . I 91.7 5.5 +-8 38 ISOPTERYGIUM ELEGANS 1 1.3 . 1. 3 . 1 3 2. 3 + .3 1.3 3 3 1.31 . | . | . | I . I . I . I 66.7 1.6 +-3 39 PLAGIOCHILA ASPLENIOIDES 11.3 + .3 + .3 4 3 . • I . I . I . I . I . I . I . I 33.3 + .0 +-1 40 STOKESIELLA OREGANA 11.3 3.3 + .1 • I . I . I . I I . I . I . I 25.0 1. 0 + -3 41 PLEUROZIUH SCHREBERI 1 1.2 2.2 2.2 • 1 • 1 • 1 • 1 I . I . I . I 25.0 1.0 1-2 42 PELTIGERA MEMBRANACEA 11.3 2.3 4 3 • I . I . I . I . I . I . I . I 25.0 + .4 +-2 43 SPHAGNUM RECURVUM 1 3.3 1.3 # . 1 . 1 . 1 . 1 I . I . I . I 16.7 1.0 1-3 44 DICRANUM HOWELLII | . 2.2 2 .21 . 1 . 1 . I I . I . I . I 16.7 + .7 2-2 45 DIPLOPHYLLUM ALBICANS 1 . 1 4 3 + .3 # . I . I . I . I . I . I . I . I 16.7 + .0 • - + 46 CLADINA RANGIFERINA 1 • 1.2 . i . i . i . i I . I . I . I 8.3 + .0 1-1 47 SPHAGNUM GIRGENSOHN11 j . 1.2 • i • i • i . i I . I . I . I 8.3 + .0 1-1 43 PLAGIOTHECIUM PILIFERUM 1 • + 3 • i . i . i . i . I . I . I . I 8.3 + .0 +- + 49 POGONATUM ALPINUM 1 +.2 . i . i . i . i I . I . I . I 8.3 + .0 +- + 50 SPHAGNUM RUSSOWII 1 +.2 • • • • • • • • I - I . I . I I . I . I . I 8.3 + .0 +- + 51 HYPNUM CIRCINALE 1 2. 3 3.3 4. 3 + .2 4 3 3.3 2.2 3.2 1.2 3.2 1 2 1.21 . 1 . 1 . 1 I . I . I . 1100.0 3.2 • -4 52 SCAPANIA BOLANDERI 14 . 3 2.3 3. 3 + .3 2 3 2. 3 2.3 2.3 4.3 3.3 2 3 3.3| . | . | . | I . I . I . I 1 0 0 . 0 3.0 + -4 53 DICRANUM FUSCESCENS 12.3 1.2 2. 2 + .3 1 2 1.3 1.2 1.2 1.2 1.2 3 2 2 .21 . 1 . 1 . 1 . I . I . I . 1100.0 2.0 + -3 54 LEPIDOZIA REPTANS l + .3 + .3 1. 3 4.2 I 3 1.3 1.3 1.3 4.3 1.3 1 3 1.31 . 1 . 1 . 1 I . I . I . 1100.0 1.3 + -1 RHYTIDIADELPHUS LOREUS 1 1.2 . + .3 2. 2 3.2 4.2 3.2 • 4.2 4 2 3 .21 . | . | . | I . I . I . I 75.0 3.2 + -4 PLAGIOTHECIUM UNDULATUM 11.21 1.2 . 4.2 3.2 5.2 3. 2 1 2 4.21 . 1 . 1 . 1 I . I . I . I 66.7 3.2 + •^ 5 tn ENVIRONMENT-VEGETATION TA3LE, PART 2 CWHB, VACCINIUM - MOSS - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 9 (continued) PLOT NUMBER 1537|547|087|603|051|042|1251122!0551044|C9C|089| 1 1 1 I 1 1 1 ST NO SPECIES . SPECIES SIGNIFICANCE AND VIGOR P MS RS 55 BAZZANIA DENUOATA I+.3I . I+.3I . I+.3I . 1 1 . 3 11 . 3 I + . 3 11 . 3 1 . 12.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 66.7 1.0 • -2 55 1SDTHECIUM STOLON IFERUM 12 .3|3.3| . I+.2I . 1 . 12.21 . 1 . 1 1 .2I + .2I + .21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 58.3 1.5 +-3 PLAGIOCHILA ASPLENIOIDES 11.31 . 1 . 1 . 1 1.31 . 1 1.21 1.21 . I+.2I+.2I+.2I . 1 . 1 . 1 . 1 . 1 . 1 . 1 58.3 + .9 +-1 57 LOPHOCOLEA HETEROPHYLLA 1 . I+.3I+.3I . 1 . 1+.31+.31+.3| . 1 . 1+.3I+.3I . I . 1 . 1 . 1 . 1 . 1 . 1 58.3 + .0 +- + 5S BAZZANIA AMBIGUA I . I . I+.3I . I + .3I 1.31 1.2I + .3 I . 1 . 1 . I + . 3 I . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 + .4 +-1 59 CEPHALOZIA MEDIA I+.3I . I+.3I . I+.3I . I+.3I . 1 1 . 3 I+ .3 I . l . | . | . | . | . | . 1 . 1 . 1 50.0 + .2 +-1 60 CLADONIA SUBSOUAMOSA I+.3I+.2I+.21 . 1+.31+.31 . 1 . I . 1 . 1 . I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 50.0 + .0 +- + HYLOCOMIUM SPLENDENS I . I . I . I+.3I . I . 15 .212 .21 . 1 . 12 .212 .21 . | . | . | . | . 1 . 1 . 1 41.7 2.7 • -5 61 CALYPOGEIA SUECICA 1 . I+.3I+.3I . 1+.31+.31 . 1 . 1 . 1 . I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 41.7 + .0 + - + 62 CALYPOGEIA TRICHOMANIS 1 . 1 . 1 . 1 . I . I . I . I+.3I +.31+.31+.31+.31 . 1 . 1 . 1 . 1 . 1 . 1 . 1 41.7 + .0 + - + RHYTIDIOPSIS ROBJSTA 1 . 1 . 1 . 1 . . 12.21 . | . | . | 1 .21 . 13 .212 .21 . 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 1.4 1-3 ISOPTERYGIUM ELEGANS 1 . 1 . I . 1 . l . l . I+.3I . 1 - . 1 1 . 3 1 2 . 3 1 2 . 3 1 . | . | . | . | . 1 . 1 . ! 33.3 1.0 +-2 63 RHIZOMNIUM GLABRESCENS 1 . 1 . 1 . 1 . 1 . I+.2I1.2I . 1 . 1 . I2.2I+.2I . 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 + .5 + -2 54 SPHAEROPHORUS GLOBOSUS 1+.21 1.2|31 . 1 . j + .21 . I . I . 1 . 1 . 1 • 1 . 1 . 1 . 1 . I . 1 . 1 . 1 33.3 + .0 +-1 DIPLOPHYLLUM ALBICANS 1 . 1 . 1 . 1 . 1 . 1 . j+.31+.31 . I+ .3 I+ .3 I . | . | . | . | . | . 1 . 1 . 1 33.3 + .0 +- + 65 DIPLUPHYLLUM TAXIFOLIUH 1 . 1 . 1 . 1 . 1 +.3 1 +.31 . 1 . 1 . 1 . I+.2I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 33.3 + .0 +- + DICRANUM HOWELL II 1 . I . 1 . 1 . 13 .215.31 . 1 . 1 2.21 . 1 . 1 . 1 . I . 1 . 1 . I . 1 . 1 . 1 25.0 2.7 2-5 65 URTHOCAULIS FLOERKII 1 . 1 . 1 . 1 • 1 . 1 . 1 . 1 1.31 1.31 . I+.3I . 1 . 1 . 1 . I . 1 . 1 . 1 . 1 25.0 + .1 + -1 67 BLEPHAROSTOMA TKICHOPHYLLUM 1 . 1 . 1 . 1 . I . I . I . I+.3I . I+ .3I+.3I . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 25.0 + .0 + - + 6B PTILIDIUM PULCHERRIMUM 1 • I+.2I . 1 . 1 . I+.31 . 1 . I . 1 - 1 • 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 16.7 + .0 +- + STOKESIELLA OREGANA I . I . 13.11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 8.3 + .9 3-3 69 DICRANELLA HETEROMALLA I+.3I . 1 . 1 . 1 . 1 . 1 . I . 1 . I . I . I . I . I . I . ! . ! . 1 . 1 . 1 8.3 + .0 + - + cn ENVIRONMENT-VEGETATION TABLE, PART 1 FOREST ECOSYSTEM: CWHB, BLECHNUM - AF - WH COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE 10 IPLOT NUMBER 0681 0951 0621 127 5491 035| 034| 126 0361 064 158| 149| 1141 I I I 1 1 1 MEAN I 1 PHYSIOGRAPHY 1 1 1 1 1 I I I 1 1 ELEVATION (M) 395 5761 605 i 395 512 | 2801 254] 280 3061 326 3311 3361 373| I I I 1 1 1 382.21 ISLOPE GRADIENT i t ) 40 651 651 5 11! 851 31 5 71 5 5| 301 101 1 1 1 1 1 1 25.81 1 ASPECT E S80WI S70WI N50W S45WI N70WI 1 SI S20W S80EI W N80E1 El N70WI I 1 1 i i 1 ! 1 ISOIL 1 1 1 1 1 1 1 I I I 1 1 BEDROCK HBQD HBQDl HQDl BHQD 1 1 HBQD HOI 1 1 1 1 1 1 1 1 TEXTURE L SL I L 1 SL LSI SLl SL LSI SL LI LI LSI 1 1 1 I I I 1 1 PARENT MATERIAL CV CV| CBI MV MV cvl A] GF GF I A cvl CV| CV| I I I I I I I ISOIL OEPTH (CM) 45 50| 1401 95 35! 301 95] 100 501 55 1151 75 I 681 1 1 1 1 1 1 73.31 ICOARSE FRAGMENTS (? ) R40 S30| S35| R25 R30I G 51 G10] G15 GlOl 615 01 S30I R30I 1 I 1 I I I 1 1HYGROTOPE SHG SHGl HGl SHG HG HGl HG] SHG HGl SHG HGl HGl HGl 1 1 1 I I I 1 1 SEEPAGE WATER DEPTH (CM) 501 1351 301 301 771 55| 55! 68| 1 I I 1 1 1 62.51 1 MODIFIER 0* G*0* I G*0| 0 G*I G*OI 0 Gl G*0 G*0*l G*0l G*0| 1 I I I I I 1 ISOIL SUBGROUPICSSC 1970) OFHP MFHP I OFHP 1 OHFP MHFP|OFHP| 1 1 OFHP SHFP] OFHP MFHP I MFHP 1 OHFPI I I I •! ! ! I 1 HUMUS 1 ' 1 i I ' l l I ! ! ! IHUMJS FORM H-MR H-MR I F-MR I F-MR MR 1 1 H-MR I H-MR ] H-MR MD 1 F-MR MD I MD I MD1 1 1 1 I I I i ITHICKNESS (CM) 40 15| 12| 7 28 301 651 48 7| 35 101 51 121 I I I I I 1 24.21 1 PH 4.1 3.9| 3.8| 3.7 4.11 3.71 1 3.6 3.8 4.7| 3.5 3.31 3.71 4.71 I 1 | 1 1 1 3.91 1 VEGETATION 1 1 i ! ! ! ! i i ! ! 1 AGE (YRS.) 83 2851 2341 103 1 551 60] 56 58 ] 81 501 491 311 1 1 1 1 1 1 95.41 IGROWTH CLASS - DF 3 51 1 5 41 31 1 1 1 1 1 1 4.01 1 WH 2 4| 31 3 31 31 3] 4 3| 4 3! 31 31 1 1 1 1 1 1 3.21 1 WRC 51 5| 5 5| 31 3 31 4 31 1 1 1 1 1 1 4.0| INT/HA (ALL DBH) 344 4691 4311 568 10381 494] 1285 815] 991 673 I t i l l 1 1 1 710.81 IBA/HA (SQ.M.) 94 801 451 66 481 47] 65 68 I 58 66| i i i i 1 1 1 63.71 ISTRATA A LAYER 65 65 I 651 75 70! 80| 70! 90 951 90 751 851 801 1 I I 1 1 1 77.31 1 COVERAGE B LAYER 65 751 441 20 401 81 121 5 14| 25 421 14| 34| I I I 1 1 1 30.61 11%) C LAYER 28 26| 9| 8 60! 81 29! 2 4 ] 3 161 18! 14| I I I 1 1 1 17.31 1 D LAYER 60 35 1 45 1 80 60] 251 751 35 401 35 85 I 341 251 1 I 1 1 1 1 48.81 1 GROUND H £ MS 65 45 1 701 45 501 751 501 55 701 35 55 1 70 1 801 I I | 1 I I 58.81 (COVERAGE DW 30 301 151 45 40] 201 501 35 251 60 401 251 151 I 1 I I I I 33.11 1 (?) R 6, S 0 20| 101 5 01 01 11 5 01 0 01 2 1 0| 1 1 1 1 1 1 3.31 cn cn ENVIRONMENT-VEGETATION TABLE, PART 2 CWHB, BLECHNUM - AF - WH ' COASTAL WESTERN HEMLOCK ZONE, U.B.C.R.F. TABLE' 10 PLOT NUMBER 106810951052112715491035103*11261036106*1158114911141 I I I 1 1 1 ST NO. SPECIES SPECIES SIGNIFICANCE AND VIGOR P MS RS Al A2 A3 B l 1 TSJGA HETEROPHYLLA 1 5.3 *.2 3.2 3.3 *.2 3.3 2.3 1.3 5.3 3.3 3.2 2 .31 . I . I . I . 1 . 1 . 1 92.3 * . 0 1-5 2 PSEUDOTSUGA MENZIESII | . 5.2 3.2 5.2 6.3 *.3 • *.2 *.3 • • 3 .31 . 1 . 1 . 1 . 1 . 1 . 1 61.5 *.* 3-6 3 ABIES AMABILIS 1 3.3 . . 1.2 . 2.3 *.3 3.2 2.3 • *.3 5.3 . 1 . 1 . 1 . 1 . 1 . 1 . 1 61.5 3 . * 1 -5 4 THJJA PLICATA 1 . 3.2 *.2 . + .3 3.3 3.2 . . • • • 1 .31 . 1 . 1 . 1 . 1 . 1 . 1 *6.2 2.3 • -4 5 ALNUS RUBRA j . 1.3 . • • • * . 3 I . 1 . 1 . 1 . 1 . 1 . 1 1 5 . * 1.* 1 - * 6 POPULUS TRICHOCARPA 1 • • • • • 3.2 • • • • • • . 1 . 1 . 1 . 1 . 1 . 1 . 1 7.7 + .8 3 - 3 TSUGA HETEROPHYLLA 16.3 *.2 *. 1 7.3 7.2 7. 3 7. 2 7.3 7.3 7.2 7.2 7 .31 . 1 . 1 . 1 . 1 . 1 . 1 92.3 6.8 *-7 THUJA PLICATA | . 6.2 5.1 7.3 *.2 1.2 5.2 *.3 *.2 • . 3 .31 . 1 . 1 . 1 . 1 . 1 . 1 69.2 5.0 1-7 ABIES AMABILIS 1 *.2 . • • . 5.2 5.3 *.2 5.3 1.2 5.2 5.3 • I . I . I . I . 1 . 1 . 1 61.5 * . 5 1 -5 PSEUDOTSUGA MENZIESII 1 . 3.1 • 5.2 + .2 2. 2 . 2.2 • • . 1 . 1 . 1 . 1 . 1 . 1 . 1 38.5 2.7 + - 5 ALNUS RUBRA | . • • 2.2 *.2 • • • • * . 3 l . 1 . 1 . 1 . 1 . 1 . 1 23.1 2.2 2 - * 7 8ETULA PAPYRIFERA | . . + .2 • + .2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 5 . * + .0 +- + 8 ACER MACROPHYLLUM j . • • • 1.2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 7.7 + .0 1-1 POPULUS TRICHOCARPA i • • • • • • • • • • + . 1 • . 1 . 1 . 1 . 1 . 1 . 1 . 1 7.7 + .0 + -+ TSUGA HETEROPHYLLA 15.2 3. 1 5. 1 2. 1 *.2 5.2 5.1 * . l 5.2 *. 1 5.2 5. 1 *.2| . 1 . 1 . 1 . 1 . 1 . 1100.0 5.1 2 - 5 THUJA PLICATA | . 5.1 *. 1 *. 1 3.2 5.2 1.1 6. 1 *.2 5.2 • 5 .21 . 1 . 1 . 1 . 1 . 1 . 1 76.9 *.9 1-6 ABIES AMABILIS 1 2. 1 . + .+ + .3 1.2 3.1 1.2 1.+ + .2 1.2 2. 1 . 1 . 1 - 1 . 1 . 1 . 1 . I 76.9 1.6 + -3 ACER MACROPHYLLUM j . • . 1.2 . . + .1 • . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 5 . * + .0 + -1 ALNUS RUBRA | . • 1.1 • + .1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 5 . * + .0 + -1 BETULA PAPYRIFERA | . • • . 1.+ • . 1 . 1 . 1 . 1 • I . I . I 7.7 + .0 1-1 PSEUDOTSJGA MENZIESII 1 • + .0 • • • • • • • • • • . 1 . 1 . 1 . 1 . 1 . 1 . 1 7.7 + .0 +- + B2 TSJGA HETEROPHYLLA 1 3.2 6.2 6.+ 1.2 4.3 4. 1 4.1 5.+ 4.2 4.+ 4.2 4.+ 6.11 . 1 . 1 . I . I . I . 1100.0 5. 1 1-6 THJJA PLICATA 1 +.2 3.2 3. 1 . 4. 1 2. 1 4.+ 3.2 4.+ 3.21 . | . | . I . I . I . I 69.2 3.2 •-4 9 TAXUS BREVIFOLIA | . + .1 . + .2 1.2 + . 1 1.2 1.11 . 1 . 1 . I . I . I . I 46.2 + .5 • -1 ABIES AMABILIS 3.2 + .3 1.2 . . 2.+ 2.+ . 1 . 1 . 1 . I . I . I . I 38.5 1.3 + -3 10 ACER CIRCINATUM . . . • 4.3 . 1 . 1 . 1 . I . I . I . I 7.7 1.3 4-4 11 RHAMNUS PURSHI ANA | . • • 1.3 • . 1 . 1 . 1 . I . I . I . I 7.7 + .0 1-1 12 MALUS FUSCA 1 • • • • • • • • • + .+ • . 1 . 1 . 1 . 1 . 1 . 1 - 1 7.7 + .0 + - + 13 VACCINIUM ALASKAENSE 1 3 .2 6.2 *.2 3.2 6.3 3.2 3.2 2.2 4.3 4.3 2.2 2.2 1.21 .